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Per–lhyh

H paro‘sa didaktorik† diatrib† epikentr∏netai sth melËth trisdiàstatwn energ∏n jewri∏n pe-
d–ou suzeugmËnwn me th bar‘thta Einstein proerqÏmenec apÏ to qamhloenergeiakÏ Ïrio thc jewr–ac
uperqord∏n. Pio sugkekrimËna melet∏ntai oi idiÏthtec trisdiàstatwn energeiak∏n ken∏n pou proËr-
qontai apÏ th dekadiàstath uperbar‘thta Type II, h opo–a perigràfei to qamhloenergeiakÏ Ïrio thc
kleist†c uperqord†c, ‘stera apÏ sumpagopo–hsh twn pleonazous∏n diastàsewn se eftadiàstatouc
q∏rouc me dom† G2. Xekinàme me thn parous–ash basik∏n ennoi∏n thc àmazhc jewr–ac uperqord∏n
kai tou qamhloenergeiako‘ or–ou thc parajËtontac Ënnoiec kai orismo‘c pou qrhsimopoio‘ntai sto
k‘rio mËroc thc anàlushc. Sth sunËqeia epikentrwnÏmaste sthn kataskeu† trisdiàstatwn ener-
geiak∏n ken∏n kai wc pr∏to b†ma parËqoume thn eswterik† gewmetr–a Ïpou sumpagopoio‘ntai oi
pleonàzousec diastàseic Ïpwc ep–shc parajËtoume thn elàssona trisdiàstath uperbar‘thta pou pe-
rigràfei thn energ† jewr–a ped–ou. Xekin∏ntac apÏ th jewr–a Type IIA sumpagopoio‘me se q∏rouc
G2 mhdenik†c kampulÏthtac kai lambànontac upÏyin thn parous–a O2-uperepifanei∏n katal†goume
se energeiakà kenà t‘pou Minkowski. ProsjËtontac sto fàsma th màza Romans kai th suneisforà
O6-uperepifanei∏n br–skoume upersummetrikà kai mh-upersummetrikà energeiakà kenà t‘pou AdS ta
opo–a qarakthr–zontai apÏ idiÏthtec Ïpwc: h stajeropo–hsh Ïlwn twn ped–wn moduli, parametrikÏc
diaqwrismÏc thc energeiak†c kl–makac twn Kaluza-Klein katastàsewn apÏ thn kosmologik† stajerà
thc trisdiàstathc jewr–ac, Ïpwc ep–shc th sunep† kbàntwsh twn stajer∏n thc jewr–ac. Oi para-
pànw l‘seic paramËnoun sto Ïrio thc klasik†c jewr–ac uperqord∏n kajist∏ntac Ëtsi thn perigraf†
mËsw tou or–ou thc uperbar‘thtac axiÏpisth. WstÏso h mh-entopismËnh perigraf† twn uperepifa-
nei∏n pou apotele– sun†jh prosËggish sthn kataskeu† energ∏n jewri∏n apÏ sumpagopo–hsh qr†zei
pereta–rw anàlushc me skopÏ th melËth thc axiopist–ac twn apotelesmàtwn. Xekin∏ntac apÏ mia
genik† morf† thc metrik†c kai anal‘ontac th morf† twn ped–wn se dunamoseirà br–skoume th mh-
tetrimmËnh morf† touc (mËsw diorj∏sewn epÏmenhc tàxhc) kontà sta shme–a Ïpou oi uperepifàneiec
e–nai entopismËnec. MetËpeita ektimo‘me thn apÏstash apÏ ta shme–a autà Ïpou oi proseggistiko–
upologismo– mporo‘n na jewrhjo‘n axiÏpistoi. Sth sunËqeia ereunàtai h dunatÏthta kataskeu†c
energeiak∏n ken∏n t‘pou de-Sitter me thn prosj†kh ant–-bran∏n spàzontac thn enapomËnousa u-
persummetr–a, suneisfËrontac ep–shc jetikà sto energeiakÏ kenÏ. H melËth twn kr–simwn shme–wn
tou dunamiko‘ de–qnei pwc h stajerÏthta tou keno‘ mpore– na epiteuqje– Ïtan h puknÏthta enËr-
geiac paramËnei jetik† allà sqetikà mikr†, wstÏso h apa–thsh thc kbàntwshc twn stajer∏n thc
jewr–ac kai h sunËpeia twn exis∏sewn k–nhshc odhgo‘n sthn anàgkh gia gen–keush tou eswteriko‘
q∏rou. AkÏma kai se aut† thn per–ptwsh mpore– na melethje– poiotikà pwc ta klasikà trisdiàstata
energeiakà kenà de-Sitter e–te ja odhghjo‘n se diàspash e–te se parous–a taquonik∏n katastàse-
wn. Akolouj∏ntac thn –dia mejodolog–a meletàme th sumpagopo–hsh thc Type IIB se eswteriko‘c
q∏rouc G2 me kampulÏthta. Upolog–zontac tic exis∏seic k–nhshc pou perigràfoun tic upersumme-
trikËc l‘seic thc qamhloenergeiak†c jewr–ac kai qrhsimopoi∏ntac thn S-duadikÏthta epalhje‘oume
tic l‘seic thc Type IIB, me thn parous–a O9-uperepifanei∏n, mËsw aut∏n thc Eterotik†c uperba-
r‘thtac. Sth sunËqeia parousiàzoume analutikà parade–gmata energeiak∏n ken∏n t‘pou Minkowski
kai AdS d–nontac Ëmfash sto rÏlo twn stajer∏n dom†c tou eswteriko‘ q∏rou sth stajeropo–hsh
twn ped–wn moduli kaj∏c ep–shc parousiàzoume stajerËc l‘seic sto klasikÏ Ïrio thc jewr–ac.
WstÏso o diaqwrismÏc thc energeiak†c kl–makac sthn per–ptwsh twn AdS energeiak∏n ken∏n apÏ
Type IIB Ërqetai se ant–jesh me thn kbàntwsh twn stajer∏n dom†c. TËloc lambànontac upÏyin
epitrepÏmenec uperepifàneiec pou spàne thn enapomËnousa upersummetr–a meletàme thn kataskeu†
energeiak∏n ken∏n de-Sitter. H kataskeu† tËtoiwn ken∏n, ikanopo∏ntac th kbàntwsh stajer∏n,
thn apofug† taquon–wn kai paramËnontac tautÏqrona sto klasikÏ Ïrio thc jewr–ac qord∏n e–nai
mh-tetrimmËnh. WstÏso h ‘parxh sunep∏n de-Sitter energeiak∏n ken∏n sthn per–ptwsh aut† mpore–
na apofanje– ‘stera apÏ ekten† melËth tou parametriko‘ q∏rou twn stajer∏n dom†c.
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Abstract

In this thesis we concentrate on the study of minimal three-dimensional effective field theories
coupled to Einstein gravity originating from the low-energy limit of string theory. The main
motivation behind this work is to use it as an accurate but simpler testing ground for the study of
flux vacua with moduli stabilization and scale separation but also to study aspects of the swampland
program. The existence of vacua with such properties is the foundation of string phenomenology.
More specifically we work with Type II supergravities at classical string theory regime and after
compactification on seven-dimensional G2 spaces we study the properties of three-dimensional flux
vacua. We start with a review of basic concepts of the massless string theory and its supergravity
limit in order to provide definitions and concepts which are used in the main part of the analysis.
We focus on the construction of three-dimensional vacua and as a first step we provide the internal
geometry where we compactify on as well as the minimal three-dimensional supergravity which
apply for all the parts of the analysis. Starting from Type IIA we perform compactification on Ricci
flat G2-manifolds and considering O2 orientifolds we find no-scale Minkowski vacua and the proper
truncated three-dimensional minimal supergravity. Considering the Romans mass in the spectrum
and net contribution of O6-planes we find supersymmetric and non-supersymmetric AdS vacua
which posses elementary properties of consistent vacua such as full moduli stabilization, parametric
separation of scales, quantization of fluxes while remaining at the classical string theory regime.
Both the supersymmetric and non-supersymmetric vacua are stable in the smeared approximation
of sources. As a consequence of the latter we extend our calculations and focus on the backreaction
of the local sources whose exact formulation was approximated. Starting from a general metric
ansatz and performing a proper expansion for the fields we find the next-to-leading order corrections
which describe the non-trivial profile of the fields close to the source. We estimate the relevant
distance to the source loci where the smeared approximation and subsequently our previous results
can be trusted. Furthermore, we explore the possibility of de-Sitter vacua construction using
the previous stable models including anti-branes which break completely the supersymmetry and
contribute positively (uplift) to the energy vacua. A critical point analysis indicates that shallow
de-Sitter vacua can be stable, however performing flux quantization and solving properly the
equations of motion shows that consistent solutions can exist when going to more general spaces
including warping. Nevertheless a qualitative calculation reveals that an interplay of fluxes and
charges which might lead to either brane-flux decay or tachyonic vacuum setting once again the de-
Sitter vacua from string theory difficult to control. Along the same line we perform compactification
of Type IIB on co-calibrated G2 spaces with internal curvature. We study the supersymmetric
equations of the effective field theory and use S-duality to verify that the supersymmetric conditions
of Type IIB including O9-planes in the smeared approximation are in agreement with those of
Heterotic supergravity. This verifies our results and possibly indicates that the non-closeness of
the field-forms (non-trivial profile) capture the backreaction effects of the sources. We present
two explicit examples of Minkowski and AdS vacua pointing out the dependence of our results
on the choice of the structure group of the internal space and their role on moduli stabilization.
It is shown that scale separation for AdS vacua is in contrast with the quantization of the group
structure constants. Lastly we include supersymmetry breaking sources in order to perform de-
Sitter uplift however it seems non-trivial to satisfy flux quantization, avoid tachyonic states and
remain in the classical string theory regime at the same time. An exhaustive scan over various
parameter values of structure groups should be performed in order to have a final verdict on the
existance of consistent classical de-Sitter vacua from Type IIB.
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Chapter 1

Introduction

The Standard Model of particle physics describes successfully physical phenomena at low
energies well below the Planck scale, however it cannot provide satisfactory answers to
several fundamental questions such as the hierarchy problem, the presence of dark matter
and dark energy, the universe evolution in the very beginning etc. Therefore the Standard
Model can be considered as an effective field theory that originates from a more funda-
mental theory that its description is not known yet. On the other hand General Relativity
seems to pass all the tests for the description of large scale interactions however it is de-
coupled from the rest of the forces and not included in the Standard Model. Trying to fit
General Relativity into the framework of quantum field theory leads to ultraviolet diver-
gences spoiling the validity of the theory. However it is reasonable for someone to ask for a
theory where all these fundamental forces are unified at higher energies, in other words to
ask for a theory of quantum gravity. The root of this problem seems to be that particles are
treated as point-like objects. The best proposed candidate for quantum gravity we have so
far is string theory where strings can be described by one-dimensional objects embedded in
higher dimensional backgrounds. In string theory the oscillations of the strings define the
mass spectrum and predict the existance of graviton, a quantum mechanical particle that
carries the gravitational force, thus string theory can be considered as a theory of quantum
gravity. In addition to graviton, several fields emerge from the string oscillations together
with special properties and symmetries such as supersymmetry which relates the bosonic
and fermionic degrees of freedom. Different types of strings has lead to the discovery of
five versions of superstring theory : type I, type IIA, type IIB and heterotic string theories
SO(32) and E8 ⇥ E8, which are related via dualities [1–3]. Requiring consistency of the
vacua one finds that superstring theory lives in ten dimensions. The low-energy limit of
these theories can be described by the relevant ten-dimensional supergravities which ex-
hibit different spectrum and symmetries and it is the starting point of our analysis. At
this limit strings can be considered as point particles and not as strings. In order string
theory to be the correct quantum gravity should be able to reproduce both the Standard
Model and the spacetime properties of our universe however both higher dimensions and
supersymmetry have not be observed in our experiments and for this reason we have to
treat them in special manner in order to justify their existance only at high energies.
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CHAPTER 1. INTRODUCTION

So the goal of research in string theory is to find a solution of the theory that re-
produces the Standard Model and at the same time be compatible with the cosmological
observations for an accelerated universe expansion. This seems to be non-trivial since we
have not yet managed to obtain successfully any of these. The accelerated expansion can
be achieved by the presence of either a constant vacuum energy (cosmological constant)
or with slowly rolling scalar field(s). In the current analysis we study the possibility of
getting general cosmological constants which are characterized by elementary properties
of the cosmological constant of our Universe. This is a crucial starting point in order to
understand if string theory can accommodate consistent vacua.

In order to describe our four-dimensional spacetime using string theory it is reasonable
to ask what is the mechanism that keeps the rest of dimensions unobserved at low energies.
Since we detect only four out of the ten dimensions that string theory predicts close to the
Planck scale, a canonical mechanism to hide the remaining dimensions is to assume that
going to low energies the extra-dimensions become small. This means that at low energies
they cannot be observed and physics are well described by an effective field theory. To
proceed we assume the ten-dimensional metric is a product

M10 = Md ⇥X10�d , (1.0.1)

where Md for d = 4 is the spacetime we experience while X10�d is a compact manifold with
small size directions. This mechanism is the so-called Kaluza-Klein (KK) compactification
firstly introduced by Kaluza and Klein [4]. The mass states of the Kaluza-Klein modes
after compactification are dictated by m2

⇠ 1/R2 where R stands for the radius of the
periodically compactified dimension ym ⇠ ym + 2⇡R. Thus at energies E ⌧ 1/LKK with
LKK the typical scale of the compactified dimension, the observed physics should be the
Standard Model and the General Relativity while effects of the internal space should be
suppressed. We will define the criteria for keeping the extra dimensions unobserved in the
following section.

A crucial step to obtain a d-dimensional effective action out of the ten-dimensional
one is to integrate over the compactified extra dimensions, this step is called dimensional

reduction. The reduced effective action comes with a number of free massless scalar fields
however their existance cannot be interpreted in our spacetime. For example, with the
presence of free massless fields one does not reproduce 4d relativity since scalar fields me-
diate forces. These fields contain information about the shape of internal space and usually
combine with gauge potentials from the 10d theory. Since their dynamics should not affect
the effective theory we want them to obtain large masses. This method is called moduli

stabilization for compactifications [3, 6] and is one of the most relevant activities in string
phenomenology and central point of this analysis. A crucial ingredient for moduli stabi-
lization in a computable way are fluxes together with local objects and we refer to [3,6–9].
If such ingredients are not included the effective field theory will contain massless moduli.
It is fair to say that by now, our best understanding of flux compactifications involve com-
pactifications to anti-de-Sitter (AdS) space, whereas compactifications to de-Sitter (dS)
space are notoriously difficult to control, if they exist at all [10, 11]. Compactifications
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CHAPTER 1. INTRODUCTION

down to Minkowski space with stabilized moduli are not known to us. Thus the presence
of non-trivial fluxes turns on an effective potential for the moduli and minimizing it we
attempt to stabilize them. For example a bosonic d-dimensional effective field theory, with
Einstein gravity and scalar moduli, will have the following form

S = Md�2

p

Z
ddx

p
�gd

⇣
1

2
Rd +

1

2
Gij@µ�

i@µ�j
� Ṽ (�)

⌘
(1.0.2)

where � stands for scalar moduli fields1. The stabilization of moduli is not a trivial task
and usually not all of them are stabilized even with the presence of fluxes. Apart from the
difficulty to control all the moduli, their vacuum expectation value at the minimum of the
potential can be interpreted as a cosmological constant ⇤ in the effective field theory. This is
a mechanism to derive and interpret the cosmological constant from flux compactifications.

As discussed previously a very essential feature of string compactifications is that the
compact dimensions should be “small” enough in order to find a genuine four-dimensional
effective field theory. Since we described the method for deriving the cosmological constant
it is important to estimate whether the extra-dimension effects are absent from the effective
theory. Usually one defines “small” with respect to the four-dimensional Hubble scale.
This feature is also referred to as scale separation since the KK scale is supposed to be
parametrically separated/decoupled from the Hubble scale

LKK

L⇤
⌧ 1 . (1.0.3)

For an isotropic compactified internal space (e.g torus) the Kaluza-Klein scale can be
considered to be the volume of the internal space while the cosmological constant totally
depends on the effective potential and its ingredients after the dimensional reduction.
Since the goal of this analysis is to find consistent effective field theories with maximally
symmetric vacua coupled to Einstein gravity we attempt to construct consistent AdS vacua
too (also Minskowski) and study possible features such as separation of scales and moduli
stabilization.

Another feature of the effective field theory is the possibility of preserving some amount
of the initial supersymmetry of the ten-dimensional supergravity. The presence of super-
symmetry guaranties the absence of tachyon but also can provide a way to cross-check
the validity of some of our results. A method to break the desirable amount of super-
symmetry is the specific choice of internal space accompanied with discrete symmetries
under which supersymmetric spinors at the vacuum are not invariant. Apart from this, ex-
tended local objects related to the sting endpoints like D-branes can break or preserve some
amount of supersymmetry while orientifold planes can further reduce it. In this analysis
we will study cases where the effective field theory preserves the minimal supersymmetry
which is phenomenologically desirable but we also study the possibility of constructing
non-supersymmetric anti-de Sitter vacua and de Sitter including anti-D-branes.

1
Ṽ (�) =

R
d10�d

y
p
g10�d V (F,�)
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As we discussed, the low-energy dynamics of string theory compactifications can be
described by lower-dimensional effective theories whose properties are determined by the
specifics of the internal geometry, fluxes and other ingredients. The range of effective the-
ories that can be obtained in this fashion is vast, but it appears that not all otherwise
internally consistent lower-dimensional effective theories can appear as low-energy limits
of string compactifications. The delineation of criteria that determine whether an effective
theory can be realized in string theory (or be consistent with quantum gravity more gen-
erally) has come to be known as the swampland program [12,13], with theories that fail to
satisfy these criteria said to reside in the swampland.

One general expectation that has come out of the swampland program is that compact-
ifications to non-supersymmetric anti-de Sitter space should be able to decay [14], and that
supersymmetric compactifications cannot have an arbitrarily small internal mean radius
compared to the external AdS radius [15]. In contrast to these conjectures, the effective
theories describing specific compactifications to non-susy AdS constructed in the literature
appear to be both fully stable and also enjoy a separation of scales when the supersymme-
try breaking effects are switched off [16–20]. This discrepancy has motivated the further
scrutiny of such constructions. For instance, the supersymmetric vacua appearing in [16]
have been further analyzed and partially challenged in a series of publications [21–23],
where the gaugino condensation backreaction is properly taken into account as proposed
in [24]. With regards to the constructions in [17], which are classical, one could suspect that
the inconsistent approximation is the use of “smeared” orientifold sources. In the mean-
time, various difficulties for achieving scale separation in Type II are discussed in [25–27],
further recent developments can be found in [28–32], and implications on the holographic
side are discussed in [33–35].

The generality of the swampland conjectures means they should also apply to flux com-
pactifications with any number of external dimensions, unless of course there are quantum
gravity reasons to expect a specific dimensional dependence. Conversely, if the qualita-
tive properties of flux compactifications depend on the external dimensions, then from
the perspective of the swampland this means that some aspects of quantum gravity are
intrinsically different across dimensions. Therefore, string flux compactifications down to
dimensions different than four are a valuable resource for our understanding of the swamp-
land. In particular, three-dimensional compactifications are especially interesting for a
number of reasons. Firstly they are dual to two-dimensional field theories living on the
boundary and in the case of supersymmetric AdS vacua, this means two-dimensional super-
symmetric CFTs (for a sample of recent work see e.g. [36–41]). As a result the properties
of such vacua can be cross-checked with 2d CFT methods. Secondly, from a technical
point of view, the field content of a 3d flux compactification is considerably simpler than
the 4d counter-parts which allows to perform a more thorough study of such vacua in this
analysis. For example, the minimal supersymmetric background in 3d allows half of the
number of supersymmetries than the minimal 4d background. Thirdly, since gravitation
in three dimensions is intrinsically different than four dimensions or beyond, the study of
the 3d swampland offers a unique ground to test the dependence of the conjectures on the
dimensions of the external space.
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Outline

In chapter 2 we review basic concepts of superstring theory starting from the Polyakov
action and discuss the massless spectrum and perturbative limits such as the weak coupling
and large volume regime. Next we write down the low-energy actions of Type II and
the local sources which are extensively used in the analysis. We end this chapter with
few examples on Kaluza-Klein compactifications and the introduction of the concept of
orientifold plane.

In chapter 3 we introduce the internal space where we compactify on. We start by
reviewing some general properties of seven-dimensional manifolds with G2-structure and
focus on the identities of the fundamental three-form and its relation to curvature. Next
we choose the internal compact space to be a seven-torus accompanied with an orbifold
group leading to singular space. We introduce properties of the final singular geometry
that will be used extensively in the analysis.

In chapter 4 we demonstrate our first compactification example of Type IIA on G2
orientifolds. We consider net O2-plane contribution and find the effective field theory
to be minimal three-dimensional supergravity with no-scale Minkowski vacua with a flat
direction. Next we consider the Romans mass and net contribution of O6-planes leading
to supersymmetric AdS vacua with full moduli stabilization, separation of scales, flux
quantization, parametrically large volume and small weak coupling. Furthermore it is
shown that for specific choice of fluxes stable non-supersymmetric exists. We mention that
we use the smeared approximation for all our sources.

In chapter 5 we calculate the backreaction of the local sources on the fields of the theory.
We start from a general warped metric and performing a proper expansion for the fields we
find the next-to-leading order corrections due to the presence of local sources. We estimate
the exact first order corrections to all the fields as well as the relevant distance from
the source loci where the smeared approximation and subsequently our previous smeared
results can be trusted.

In chapter 6 we construct de-Sitter vacua by adding anti-branes to the previous Type
IIA setup. We check the consistency of the new vacua by performing critical point analysis
of the potential considering the bounds arising from the quantization of fluxes and the
equations of motion. We assume the existance of more general spaces with warp factor in
order the solution to be consistent however the interplay of fluxes and charges signifies a
possible decays of the vacuum.

Finally in chapter 7 perform compactification of Type IIB on co-calibrated G2 spaces
with internal curvature. We solve the supersymmetric equations of the effective field theory
and use S-duality to compare our results with supersymmetric vacua from Heterotic super-
gravity. We present two explicit examples of Minkowski and AdS vacua which significantly
depend on the choice of the structure group after the twisting of internal manifold. Then
we examine the possibility of constructing AdS vacua with scale separation and proper flux
quantization. Lastly we attempt to perform de-Sitter uplift by adding several combinations
of supersymmetry breaking.
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Chapter 2

Low energy actions from String theory

In this chapter we give an introduction to the superstring theory, we review the basic steps
to obtain the spectrum and derive low-energy effective actions of string theory. Since our
main topic of the analysis involves low-energy effective actions we try to link and justify
how the actions are derived from string theory but also introduce concepts and definitions
that will appear repeatedly in the main passage.

2.1 Basics on String theory

We start from the two-dimensional Polyakov action which describes the bosonic string.
We discuss how boundary conditions on the equations of motion are satisfied and how
they define the string oscillations. Next we comment on the spectrum of the bosonic
string and finally arrive at the dynamics which can describe the universal part of the low-
energy target space action. Next we introduce worldsheet fermions which leads us to the
relevant for our analysis RR and NSNS sectors (which contain the fluxes for the effective
vacua emergence) in order to write down the complete bosonic target space action. For a
detailed description of the quantization of the string, where we do not go through, we refer
to the textbooks [1–3] where also this chapter is based on.

2.1.1 The bosonic string sector

The two-dimensional action of a moving string can be described by the Polyakov action

SP =
1

4⇡↵0

Z
d2�

p
��abGMN(X)@aX

M@bX
N , (2.1.1)

where � is the flat worldsheet metric with coordinates �1
: �1 < ⌧ < 1 and �2

: 0 < � < l.
The metric GMN is the D-dimensional target space metric of a general background and
XM

⌘ XM
(�, ⌧) are real scalar fields which can be thought to parametrize the manifold

and define a map from the string worldsheet to the physical D-dimensional spacetime. The
action describes the propagation of a string in the D-dimensional spacetime. The overall
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CHAPTER 2. LOW ENERGY ACTIONS FROM STRING THEORY

coefficient is the Regge slope, a dimensionful parameter which is related to the string scale
l2
s

via ↵0
=

l
2
s
2

and the string tension

T =
1

2⇡↵0 =
1

2⇡l2
s

. (2.1.2)

It is important to mention that the Polyakov action is characterized by Poincare invariance,
diffeomorphism invariance, worldsheet Weyl invariance at classical level, while the Weyl
invariance is not a symmetry at curved backgrounds at quantum level and imposing this
condition to hold will lead to significant outcome in the next subsection.

2.1.2 Mass spectrum of the strings

The variation principle of the Polyakov action with respect to the metric and the scalar
fields gives the equations of motion together with boundary terms. The vanishing condi-
tions on the boundary terms define the nature of the string; open strings that oscillate with
endpoints moving independently or fixed on the boundaries and different kind of solutions
with closed strings. The classical solutions of these fields describe the propagation of the
string in the target space and the oscillation part is described by mode operators. These
theories can be quantized either with canonical or gauge fixing light-cone quantization by
constructing the Hamiltotian and making use of the Virasoro algebra. The quantization
follows by defining the Hilbert space of string states with a ground state |0, kM

i annihi-
lated by the positive modding n > 0 oscillators an. Higher energy states are described by
momentum eigenstates |N, kM

i where N is a number operator and stands for counting the
excited states. Excited states are constructed by acting on the ground state with creation
operators an with n < 0. Acting with the negative mode oscillators increases the mass of
the state and the masses of spacetime particles increase with the number of oscillators in
the corresponding state. We neither go through the quantization nor the explicit wave-
function solutions of the string however we just present the spectrum which will help us to
understand the origin of terms in the low-energy action.

Closed bosonic string

For the closed string the boundary conditions which make the boundary terms vanish are

XM
(⌧, 0) = XM

(⌧, l) . (2.1.3)

For completeness we indicate that the scalar fields XM can be expressed in the light-
cone coordinates as linear combination of right and left movers XM

(⌧, �) = XM

L
(⌧ + �) +

XM

R
(⌧ � �). The left and right-moving coordinates are frequently noted as �±

= ⌧ ± �.
The closed string has two oscillatory operators ↵M

n
and ↵̃M

n
which describe the amplitude

of the momentum mode n of the left and right movers and make up the number operators

N =
1

2

X

M

X

n>0

↵M

�n
↵M

n
, (2.1.4)
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and the mass relation

M2
=

2

↵0 (N + Ñ � 2) , (2.1.5)

which is the sum of left and right movers mass. For physical states the number operators of
left and right movers should match N = Ñ . Requiring Poincare invariance and absence of
tachyons on finds the critical dimensions for the bosonic string to be D = 26 which has been
considered in the mass relation. It is easy to see that the ground state M2

|0, kM
i of the

closed string is a tachyon. The massless state created by M2
(ai�1

ãj�1
)|0, kM

i corresponding
to the tensor product of two massless vectors, one left mover and one right mover. The
part of the tensor product that is symmetric and traceless transforms under SO(D� 2) as
a massless spin-2 particle, the graviton. The trace term is a massless scalar which is called
the dilaton and the antisymmetric part is an antisymmetric second-rank tensor. Thus
the reducible representation of the massless state decomposes into a symmetric traceless
tensor, an antisymmetric tensor and a scalar consisting the spectrum of the state. As stated
also in the introduction string theory predicts gravity which is not trivial. Acting further
with creation operators one can construct infinite massive states with more complicated
structure.

Open bosonic string

For the open string there are two conditions that can be imposed in order to make the
boundary terms vanish. The first possibility comes with Poincare invariance of the ten-
dimensional theory and the fields satisfy the following conditions

@�XM
(⌧, 0) = @�XM

(⌧, l) = 0 , (2.1.6)

which are known as Neumann boundary conditions applied on both open string endpoints
at � = 0, l. In this case the endpoints are free to move through spacetime. The other
possibility of boundary conditions breaks the Poincare invariance

XM
(⌧, 0) = xM

0
, XM

(⌧, l) = xM

l
, (2.1.7)

and is known as Dirichlet boundary conditions while the endpoints of the string are fixed
and not free to move. Considering Dirichlet conditions for M = m = 1, . . . , p + 1 and
Neumann conditions for M = i = p+2, . . . , D dimensions the Lorentz invariance is broken
in the following way SO(1, D � 1) ! SO(1, p)⇥ SO(D � p� 1). These hypersurfaces are
called D-branes and their low-energy effective action has an important role in our analysis.

The worldsheet field expansion for fields with Dirichlet boundary conditions is similar
to what we have discussed before, it includes propagating and oscillating parts of the string.
However the main difference is that the string center of mass is localized on the D-brane
and thus the target-space particles propagate along the (p+ 1)-dimensional worldvolume.
Performing the quantization of the open string one finds that the massless states transform
as a vector, originating from the (p + 1) creation operator ↵m, while scalars are coming
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from the transverse oscillator ↵i. Following the quantization procedure one can find the
mass state for the open string to be

M2
=

1

↵0 (N � 1) , (2.1.8)

and it is obvious that the ground state |0, kM
i is a tachyon. The first excited state for

oscillations longitudinal to the brane transforms as massless vector boson on the D-brane
↵i

�1
|0, kM

i = |1, kM
i in a vector representation of SO(1, p). For oscillations transverse to

the brane the states transform as scalars under SO(1, p) which live on the D-brane and
can be interpreted as fluctuations of the D-brane in the transverse directions while they
transform as vectors under the SO(D � p� 1) transverse to the D-brane. We notice that
the massive spectrum for both closed and open strings scales inversely proportional to the
length of the string M2

⇠ 1/↵0
⇠ 1/l2

s
which means that at energies lower than the string

scale one can neglect these states and consider only the massless spectrum.

2.1.3 Perturbative limits and regimes

It useful to express the massless states found after the quantization the Polyakov action so-
lutions into a new perturbative-limit action including so-called Neveu-Schwarz (NS) sector:
the graviton, the antisymmetric rank two field and the dilaton

S =
1

4⇡↵0

Z
d2�

p
�
h
�abGMN(X)@aX

M@bX
N
+ ✏abBMN(X)@aX

M@bX
N
+ ↵0�R

i
(2.1.9)

and for our purposes we focus on the last term of the 2d action. For constant values
of the dilaton it corresponds to the Einstein-Hilbert term for the metric. However the
integrated curvature scalar over the 2d surface is a topological invariant quantity, the
Euler characteristic, which is defined by the handles h, boundaries b and cross-caps c of
the surface in the following way

� =
1

4⇡

Z
d2�

p
�R = 2� 2h� b� c . (2.1.10)

The coupling of the string to a constant dilaton weights each worldsheet diagram in the
path integral by a factor exp(-��) such that the dilaton vacuum expectation value is the
string coupling constant gs

gs = e� . (2.1.11)

The path integral sums over topologies is a loop expansion in the worldsheet with the
coupling gs as the loop counting parameter. For example for one loop effect we add one
handle to the tree-level diagram gs, the coupling constant is g2

s
and the amplitudes are

weighted by exp(2�). The 2d worldsheet theory is non-interacting however there are non-
trivial interaction in the spacetime theory which arise from the non-trivial worldsheet
controlled by the string coupling. In our analysis we want classical string coupling thus we
work in the weakly coupled regime gs ⌧ 1 where string loop effects are neglected. As we
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will see when allow the presence of fluxes the action obtains a potential and it’s vacuum
expectation value determines the value of the dilaton and thus the string coupling constant.

The Polyakov action describes a 2d field theory in non-trivial curved background which
is known as non-linear sigma model and usually is not exactly solvable but can be done
perturbatively. It can be seen in the Polyakov action (but also in (2.1.9)) that the Regge
slope ↵0 can be considered as expansion parameter since the action becomes large in the
limit where ↵0 goes to zero. One can expand in perturbation series XM

(�) = XM

0
+Y M

(�)
where Y M are the variations around the point XM

0
. Then the integrand of the action is

given by the expansion

GMN(X)@aX
M@bX

N
=

⇣
GMN(X0) + @SGMN(X0)Y

S
+ . . .

⌘
@aY

M@bY
N . (2.1.12)

In this expansion the first term simply gives the kinetic terms for the scalar field fluctuations
while the second term is a cubic interaction term with coupling constant @SGMN(X0) which
includes derivative of the target space metric at the point X0. For LR the length scale of
the variation, the coupling constant @SGMN(X0) is of order 1/LR. Since the dimensionless
coupling is ↵0/L2

R
, if LR is much larger than the length scale of the string

↵0

L2

R

⌧ 1 , (2.1.13)

then the coupling constants in the expansion are small and we can use perturbation theory
in the two-dimensional theory. Also when this limit is satisfied no massive string states
are created and the theory describes only massless backgrounds. At this limit we ignore
the internal structure of the string and use point-particle low-energy effective field theory.
We will consider this regime extensively in the compactification of internal dimensions.

As we saw there a double perturbative expansions that we will consider. We want
small coupling constant to perform spacetime loop expansion ↵0 expansion is worldsheet
loop expansion for fixed topology and suppresses the stringy effects.

Weyl invariance and the universal sector

We have mentioned before that the bosonic string action is invariant under some symme-
tries at classical level, however it is not Weyl invariant at quantum level. This can be
also verified from the trace of the stress-energy tensor which vanishes classically but not
in the quantum theory. The requirement of the theory to be invariant at quantum level
lead to the low-energy supergravity limit description. The stress-energy tensor contains
the renormalization group beta functions for the NS fields and imposing Weyl invariance
they should vanish. We write down the beta function expansion including all the fields
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which appear in the massless states

�G

MN
= ↵0

⇣
RMN + 2rMrN��

1

4
H2

MN

⌘
+O(↵02

) , (2.1.14)

�B

MN
= ↵0

⇣
�

1

2
r

SHSMN +r
S�HSMN

⌘
+O(↵02

) , (2.1.15)

��
=

D � 26

6
+ ↵0

⇣
�

1

2
r

2�+rMr
M��

1

24
H2

MN

⌘
+O(↵02

) . (2.1.16)

Now setting the beta functions to zero �G

MN
= �B

MN
= ��

= 0 gives us spacetime equations
of motion at one loop for the massless closed fields. It is worth to mention that the dilaton
beta function vanishes exactly for D = 26 which states the critical dimensions of the
bosonic string. These equations can be also obtained from the following spacetime action

SU =
1

22
0

Z
dDx

p
�Ge�2�

⇣
R�

1

12
HMNLH

MNL
+ 4@M�@

M�+O(↵02
)

⌘
. (2.1.17)

Computing the �-function to higher orders in ↵0 one can obtain higher derivative corrections
to the effective action.

As we will see this is the universal action for all the low-energy effective actions. The
normalization constant 0 that appears in the target space action can be absorbed by �,
while in the Einstein frame with a canonical Einstein-Hilbert term, 0 should be observed
as the gravitational coupling constant. As we saw the Polyakov action which describes a
two-dimensional field theory can be replaced by a field theory living in a 26-dimensional
spacetime when imposing Weyl invariance in curved background and considering the ↵0

expansion limit.

2.1.4 The fermionic string sector

So far we have discussed the bosonic string and the universal low-energy sector that arises
from its massless states. It is natural to include worldsheet fermions in the theory and also
suggested in some cases to cure the tachyons. The inclusion of such worldsheet fermions
will also give rise to target space fermions and extra bosons which are physical and desired
in order to construct flux vacua which potentially describe the vacuum state of the universe.

In analogy to the bosonic sector we introduce two component spinor free fermionic
action

SF =
1

4⇡↵0

Z
d2�  ̄M⇢a@a M , (2.1.18)

where  are Dirac spinors and ⇢a are 2 ⇥ 2 matrices. There are actually the superpart-
ners of XM and this action is related to the bosonic part via two-dimensional worldsheet
supersymmetry

@XM
= ✏̄ M , � M

= ⇢a@aX
M✏ , (2.1.19)
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where ✏ is the supersymmetric parameter, an anti-commuting Majorana spinor. Similarly
to what was described for the bosonic string, from the equations of motion one can derive
the mode expansion and use the quantization process to construct the spectrum of the
theory. One can express the action above in the Majorana representation with two real
Majorana spinors and in the light-cone coordinates the action can be written as

SF =
1

4⇡↵0

Z
d2�( �@+ � +  +@� +) . (2.1.20)

where  + is the left-mover and  � the right-mover. The variation of this action gives Dirac
type solutions in these coordinates but also the following boundary terms which should
vanish independently

�SF ⇠

Z
d⌧( �� � �  +� +)

���
�=l

�

Z
d⌧( �� � �  +� +)

���
�=0

. (2.1.21)

The combinations to make these boundary terms vanish leads again to open and closed
strings with different sectors which we study separately.

Superstring states

Similar to the bosonic string, the fermionic modes arising from the closed-string boundary
conditions can be expressed as left and right-movers. There are two possible periodicity
conditions which make the boundary terms vanish

 M

± (⌧, �) = + M

± (⌧, � + l) Ramond boundary condition (2.1.22)
 M

± (⌧, �) = � M

± (⌧, � + l) Neveu-Schwarz boundary condition (2.1.23)

where the positive sign describes periodic boundary conditions, Ramond conditions (R),
while the negative sign describes anti-periodic boundary conditions Neveu-Schwarz con-
ditions (NS). The solution of the former have oscillators di

n
and d̃i

n
with integer modes

n 2 Z while the later bi
r

and b̃i
r

half-integer modes r 2 Z + 1/2. Either R or NS boundary
conditions can be imposed on the left and right-movers separately. This leads to the two
choices for the mode expansion1 for the left-movers and two for the right-movers.

Next we define ground states annihilated by positive modding oscillators di
n
|0, kM

iR

and bi
r
|0, kM

iNS (respectively for the left movers) while the excited states are constructed
by acting on the ground state with the negative oscillators which are the creation operators.
Quantizing properly the fermionic modes using anticommutation relations and considering
the bosonic oscillators on the states ai

n
|0, kM

iR and ai
n
|0, kM

iNS one arrives at the critical
dimension D = 10 for the superstring theory. We write down indicatively the mass of the

1Left movers R :  
M
+
(⌧,�) =

P
n d̃

M
n e

�2in(⌧+�) , NS :  
M
+
(⌧,�) =

P
r b̃

M
r e

�2ir(⌧+�)

Right movers R :  
M
� (⌧,�) =

P
n d

M
n e

�2in(⌧��) , NS :  
M
� (⌧,�) =

P
r b

M
r e

�2ir(⌧��)
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right movers

R :
↵0M2

r

2
=

1X

n=1

↵i

�n
↵i

n
+

1X

n=1

ndi�n
di
n
, (2.1.24)

NS :
↵0M2

r

2
=

1X

n=1

↵i

�n
↵i

n
+

1X

r=1/2

rbi�r
bi
r
�

1

2
. (2.1.25)

It is easy to see that the groundstate of the NS sector is a tachyon which can be removed
from the physical spectrum by the GSO projection such that the massless states of the
left and right movers match. Then the physical mass is given by the sum M2

= M2

l
+M2

r
.

The left and right massless states form SO(D � 2) representations. Applying the critical
dimension D = 10 the first excited state of the NS is the vector representation 8V of SO(8)

while the R sector first excited state forms one spinor of positive and one of negative
chirality representation, 8S and 8C respectively. The true state is given by tensoring
together a left-mover with a right-mover

|+i ⌦ |�i , (2.1.26)

and since there are two choices for the left-movers and two choices for the right-movers,
we get a total of four different sectors: the RR sector, the R-NS sector, the NS-R sector
and finally the NSNS sector. Note that the states in RR and NSNS sectors are background
spacetime bosons, while states in the NS-R and R-NS sectors are background spacetime
fermions. The decomposition in the following table

type IIA type IIB
Sector |+i ⌦ |�i SO(8) |+i ⌦ |�i SO(8)

NSNS 8V ⌦ 8V 1� 28V � 35V 8V ⌦ 8V 1� 28V � 35V

NS-R 8V ⌦ 8S 8C � 56C 8V ⌦ 8C 8S � 56S

R-NS 8C ⌦ 8V 8S � 56S 8C ⌦ 8V 8S � 56S

RR 8C ⌦ 8S 8V � 56V 8C ⌦ 8C 1� 28C � 35C

Table 2.1: Bosonic and fermionic spectrum of the closed string arising from the tensoring
left and right movers constructing this was the type II theories.

2.2 Low energy actions

In the previous section we have naively discussed the worldsheet superstring action and the
massless spectrum of the theory as well as the low-energy limit of the bosonic string. We saw
that the presence of worldsheet fermions gives rise to states which transform as fermions,
vectors and bosons and make up two types of theories based on their decomposition. In this
section introduce properties of so called Type II supergravities focusing on the universal
NSNS and the RR sector.
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2.2.1 Type II supergravities

Two different theories, the Type IIA and Type IIB supergravities can be obtained from
the closed string massless spectrum discussed before and differ on the RR sector due to
their different chirality. The low-energy effective action is described by the analogous
supergravities in ten dimensions and they admit N = 2 supersymmetry due to their 32
supercharges described by two ten-dimensional Majorana-Weyl spinors. The spectrum is
demonstrated in Table 2.2 and corresponds to the states in Table 2.1. The RR sector of
Type IIA contains odd p-forms Cp with their respective field strengths Fp+1 = dCp

2 and
the NS-R and R-NS sector contain two gravitinos and two dilatinos with opposite chirality.
The Type IIB RR sector contains even p-forms Cp with self-dual F5, while the NS-R and
R-NS contain two left-handed gravitinos and two right-handed dilatinos.

Type IIA Type IIB
NSNS g, B2, � g, B2, �
NS-R �̃1 ,  ̃1M �1 , 1M

R-NS �2 , 2M �2 , 2M

RR C1, C3 C0, C2, C4

Table 2.2: The massless spectrum of Type IIA and IIB supergravities.

Since we are looking for background solutions in this analysis the fermionic fields vanish
at the vacuum in order to be compatible with Poincare symmetry after compactification.
Thus we introduce only the bosonic part of the Type II supergravity action in string frame

SII =
1

22
10

Z
d10X

p
�G

n
e�2�

�
R10 + 4GMN@M⌧@N⌧ �

1

2
|H3|

2
�
�

1

2
|F̃p+1|

2

o
, (2.2.1)

where 22
10

= (2⇡)7↵04 , the closed field strength of the Kalb-Ramond field H3 = dB
the ten-dimensional determinant of the metric G ⌘ det(GMN). The above supergravity
action is invariant under ten-dimensional diffeomorphisms and as referred before admits
N=2 local supersymmetry. The presence of field strengths in the tree-level action signifies
the gauge invariance under the transformation of the Kalb-Ramond field B2 ! B2 + d�̃1
which is naturally involved in the worldsheet action and the gauge invariance under the
transformation of the Ramond-Ramond potentials Cp ! Cp + d�̃p+1.

Type IIA

These bosonic states that we are interested in are obtained by tensoring a pair of Majorana-
Weyl spinors as shown in Table 2.2. In the IIA case, the two Majorana -Weyl spinors have
opposite chirality and one obtains a one-form C1 and a three-form C3 which enter the

2
|Fp|

2 = 1

p!FM1...MpF
M1...Mp
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action (2.2.1) in the following combinations

F̃2 = F2 + F0 ^ B2 , (2.2.2)

F̃4 = F4 + C1 ^H3 +
1

2
F0 ^B2 ^B2 . (2.2.3)

In the definitions above we mention that the Romans mass F0 is included such that the
Type IIA supergravity admits a deformation by a mass parameter, which may be considered
as a background field strength. This field is auxiliary, it is not propagating any degrees
of freedom dF0 = 0 = d ? F10, while we need to put a nine-form potential F10 = dC9

in the perspective. However the Romans mass has physical effects since it contributes to
the energy density and contains additional contributions to Chern-Simons couplings too.
Setting it to zero the Type IIA supergravity can be obtained by dimensional reduction of
11d supergravity on a circle of radius R. The presence of the Romans mass will for the
construction of consistent vacua in this analysis.

Type IIB

In the IIB case the two Majorana-Weyl spinors have the same chirality, and one obtains
a zero-form C0, a two-form C2 and a C4 gauge field as shown in Table 2.2 with the field
strength of the later to respect the self-dual relation F5 = ?F5 and the enter the super-
gravity action (2.2.1) in the following way

F̃3 = F3 �H3 ^ C0 , (2.2.4)

F̃5 = F5 �
1

2
(B2 ^ F3 � C2 ^H3) . (2.2.5)

2.2.2 D-branes

D-branes (Dp-branes) are lower-dimensional planes which span (p + 1)-dimensional sub-
spaces within the 10d spacetime with open strings ending one them as described in 2.1.2.
They are dynamical and non-perturbative objects in the low-energy limit of string theory.
The (p + 1)-dimensional low-energy action which describes the gravitational part of the
massless bosonic open string is the Dirac-Born-Infeld (DBI) action. In addition to the
standard Nambu-Goto part, this action describes the coupling of the D-brane to the rest
NSNS fields and includes the number of scalars interpreted as transverse fluctuations of
the D-brane which parametrize its position in the transverse space

XM
(⇠) = 2⇡↵0�M

(⇠) , M = p+ 2, . . . , D , (2.2.6)

where ⇠ = 1, · · · , p+1 are the longitudinal coordinates (2.1.7). For our purposes we ignore
the supersymmetric part and write down only the bosonic part of the action

SDBI = �TDp

Z
dp+1⇠e��

q
�det

�
gab + Fab + (2⇡↵0)2@a�@b�

�
, (2.2.7)
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where Fab = Bab + 2⇡↵0Fab with Bab the NSNS massless two-form and Fab is the field
strength of the U(1) gauge boson F = dA living on the worldvolume of the D-brane.
The existence of the Fab term in the action is reasonable because it is the only invariant
combination under the gauge symmetries of the worldsheet action. The metric gab indicates
the induced metric

gab(⇠) =
@XM

@⇠a
@XN

@⇠b
GMN(X(⇠)) . (2.2.8)

We note also in (2.2.7) that in this frame the dilaton is an overall factor and can be
considered as part of the tension TDp. Its dependence to the string coupling constant is
inversely proportional which means that in the weak coupling limit gs ⌧ 1 the D-branes
are non-perturbative states and behave as rigid objects. The tension of the D-brane is
related to the string length via

TDp = (2⇡)�p↵0(�1�p)/2 . (2.2.9)

Apart from the gravitational coupling described by the DBI action, D-branes are elec-
trically charged under RR charges. They emit closed strings and this is expressed via the
coupling with the Chern-Simons action which describes the Cp coupling of D-branes

SCS = QDp

Z
C ^ eF |p+1 , (2.2.10)

where QDp is the electric charge of the D-brane. C stands for the polyform C =
P

n
Cp for

p the gauge potentials allowed in Type II theories. However the presence of background
flux F can make the D-brane carry also lower RR charges. Performing Taylor expansion
for the exponential term eF = 1 + F + F

2/2! + . . . and considering the polyform C we
keep only the (p+ 1) piece of the integral which corresponds to the D-brane worldvolume.
For example the first term of this expansion in the Chern-Simons action gives the D-brane
sourcing Cp gauge fields. The next term describes the worldvolume gauge field inducing
lower-dimensional D-brane charges Cp�1^F . Since we have already given the Cp potentials
for Type II theories we can read off from the Dp-brane action that Type IIB theory is
compatible with Dp-branes with odd p and even in the number of p+ 1 dimensions while
Type IIA theory contains only Dp-branes with even p and odd number of p+1 dimensions

Type IIA : D0,D2,D4,D6,D8 ,

Type IIB : D1,D3,D5,D7,D9 .

Having introduced the gravitational and electric part, there is a condition for supersymmet-
ric D-branes that relates the tension to the charge TDp = QDp and indicates the cancelling
of the forces among parallel branes ensuring stability of a D-brane system. Furthermore,
D-branes preserve on their worldvolume one half of the original supersymmetry making
them stable objects. For this to happen their charge has to be equal to their tension.
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Anti-D-branes

We end this subsection by considering the so called anti-D-branes or Dp-branes which are
similar to the common D-branes but they carry the opposite charge. Anti-D-brane have the
same tension as D-branes which means that they have the same coupling to fields coming
from the NSNS closed string. On the other hand, the coupling to the RR fields comes with
the opposite sign. This means that for a system of parallel D-branes and anti-D-branes
the total charge vanishes (brane-antibrane annihilation) while the tensions sum up. This
also indicates that this state of the system is not BPS anymore since the total charge
vanishes while the tension does not and BPS relation is not satisfied. Actually for parallel
D-branes and anti-D-branes all the supersymmetries are broken since the anti-D-branes
break exactly the preserved D-branes supersymmetries. This property will be used in the
de-Sitter uplift where all the supersymmetries preserved in the Minkowski or AdS vacua
should vanish while the tension will contribute positively to the energy density.

2.2.3 Toroidal compactification

Starting from the worldsheet perspective we have discussed the effective action of the su-
perstrings which gives rise to bosons and fermions living in a 10d target space. However
as described in the introduction in order to make contact with the real world we have to
obtain an effective field theory by compactifying the extra dimensions. The first step for
the compactification of the extra dimensions is to express the ten-dimensional metric as the
product of two manifolds Md ⇥ X10�d, where X10�d stands for the compact manifold, so
called internal space while Md stands for the external space. In our examples the external
space will be three-dimensional. The idea of compactification is based historically on the
Kaluza-Klein mechanism while as we will see for a proper and realistic compactification
not just compact dimensions needed to be small but also a hierarchy on scales will play
crucial role.

Compactification in field theory

In this first example we consider a field theory in five-dimensional spacetime with the
presence of a scalar field. We consider the fifth dimensions, internal manifold, to be a
circle x5

= S1 and so it is compactified in following way x5 ⇠= x5
+ 2⇡R. Since we want to

investigate the effect of the extra dimension we consider the five-dimensional scalar field
which can be expanded in Fourier modes in the following way

�(xM
) =

X

k2Z

e
ikx5

R �k(x
µ
) , (2.2.11)

due to the periodicity of the extra dimension. The indices here M = 1, . . . , 5 and µ =

1, . . . , 4. We assume that the scalar field is massless such that there are only kinetic terms
in the five-dimensional action. It is straightforward to see that the momentum of the field

20



CHAPTER 2. LOW ENERGY ACTIONS FROM STRING THEORY

in the extra dimension is quantized p = k/R. From the five dimensional equations of
motion we find that

@µ@
µ�k �

k2

R2
�k = 0 , (2.2.12)

and the mass of the four-dimensional fields is a tower of states m2

k
= (k/R)

2 which depends
one the radius of the fifth periodical dimension. The effect of the fifth dimensions appear in
the four dimensional equation. However at energies lower than the compactification scale

L ⌧ MKK ⇠ R�1 (2.2.13)

the modes are heavy and only the four-dimensional part contributes. On the other hand
when L � R�1 we see the tower of Kaluza-Klein states entering the scale. If one considers
initially a massive scalar field the effects of the extra dimension appear as a shift in the
mass spectrum m2

k
= M2

+ (k/R)
2.

In order to study further the effective field theory which arises after the compactification
of extra dimensions and make a connection to string theory field content we consider the
universal action (2.1.17) and D = 5. Assume the existance of a scale factor (a scalar
component of the initial metric) for the fifth dimension ds2 = gµ⌫dxµdx⌫

+ e2bdx5dx5 and
we compactify over the periodic dimension to get the following action

S =
⇡R

2
0

Z
d4x

p
�g4e

�2�̃
�
R4 � @µb@

µb+ 4@µ�̃@
µ�̃�

1

12
Hµ⌫�H

µ⌫�
�

1

4
e�2bH5µ⌫H

5µ⌫
�

(2.2.14)

for �̃ = �� b/2. Firstly we observe that the gravitational coupling of the effective theory
has changed and depends on the radius of the internal space and the scale factor. Second
the effective action contains massless scalar fields which do not have a potential thus they
can mediate gravitational-like forces which are not observed in our experiments. These
fields are so called moduli which we want to stabilize with the presence of fluxes and super-
symmetry in order to obtain masses but also extra fields come due to the decomposition
of the three-rank antisymmetric field after the reduction. For a more general analysis for
compactifications with warped metric see [5].

Bosonic string compactification

The effect of compactification in string theory is global and arises in the boundary condi-
tions for the worldsheet fields. More specifically consider a ten-dimensional bosonic field
where one of the spatial directions satisfy the boundary condition

X i
(⌧, � + l) = X i

(⌧, �) + 2⇡Rw , (2.2.15)

while the rest satisfy the standard closed string boundary condition (2.1.3). The presence of
winding w it’s due to the 2d nature of the strings and the standard closed string boundary
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condition is restored for w = 0. Obsiously this periodicity condition changes the mode
expansion for both bosons and fermions and affect the spectrum as we will see. In contrast
to the example of the compactification on a circle in field theory, the momenta in the
compactified direction of closed strings contains extra winding terms in addition to the
quantized standard ones pR/L =

k

R
±

wR

↵0 while these terms squared enter to the mass for
the closed string (2.1.5)

M2
=

⇣ k2

R2
+

w2R2

↵02

⌘
+

2

↵0 (N + Ñ � 2) . (2.2.16)

It is important to note that compactifying over more than one dimensions there are ex-
tra contributions to closed string spectrum due to the scalars arising from the two-rand
antisymmetric tensor decomposition. Regarding the mass of the closed string in this ex-
ample it is obvious that the standard massless string limit is derived for k = w = 0. For
non-zero winding and R/↵0

� 1 the stringy modes (↵0 effects) decouple from the standard
KK modes. This is the large internal volume approximation where the radius is much
larger than the string length. On the other hand for R/↵0

⌧ 1 the winding states become
important and we cannot trust the field theory approximation. The effective field theory
with energy scale L has to be L ⌧ MKK ⌧ Mstring. In addition to the compactification
scale now there is an extra constrain in order the stringy scales not to be present in the
low energy theory.

Toroidal orbifold, untwisted and twisted sector

So far we have seen the compactification of a string on a circle which can be generalized to
a torus. However compactifying on such a smooth manifold the remaining effective theory
preserves a large amount of supersymmetry resulting effective field theories which are not
phenomenology friendly. Now we want to construct a d-dimensional internal space imposing
the periodic condition (2.2.15) to fields X i with the presence of discrete symmetries. In
short one can define an orbifold as the quotient space of a smooth manifold T divided by
the isometry group � leading to the singular space Xd

= T d/�. Actually considering our
smooth manifold to be a torus divided by some discrete symmetry we construct the so
called toroidal orbifolds.The group � acts with fixed points on the coordinates of the torus.

One might think that a singular space could be problematic due to the singularities on
the worldsheet. However the nature of strings which are extended objects are compatible
with propagating in such spaces. The spectrum of closed strings considering an orbifold
group � falls in two cases. To discuss them we write down the periodic boundary condition
of a compactified closed string up to the action of g 2 � on the field

XM
(⌧, � + l) = gXM

(⌧, �) + 2⇡Rw . (2.2.17)

The first case is the so called untwisted states where g = 1 and corresponds to the string
theory compactified on a manifold e.g a torus with boundary condition (2.2.15). The mode
expansions and the mass spectrum is the one described in the compactification of bosonic
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string subsection thus the string states are invariant under the group action. The second
case is the so called twisted states which correspond to the fixed points by the orbifold,
for example for the group element g = �1. This implies that for the center of mass of the
string is located at a fixed plane. The presence of such twisted states is also required by a
strong symmetry of type IIB, the modular invariance. The complete massless spectrum is
anomaly-free thus both the untwisted and twisted sectors should be taken into account.

2.2.4 Orientifolds

Unoriented strings

So far have discussed the spectrum of oriented strings which means that the worldsheet
has an orientation. In order to introduce unoriented strings we consider the worldsheet
parity operator ⌦ which acts on the worldsheet fields as a coordinate transformation in the
following way

⌦ : XM
(⌧, �) = XM

(⌧, l � �) , (2.2.18)

changing the orientation of the worldsheet. This condition holds for both open and closed
strings and changes only the oscillatory part of the XM field expansion acting as aM $

(�1)
NaM for the open string and aM $ ãM for the closed string. This corresponds to

the exchanges of right and left moving sectors. Applying the worldsheet operator on the
ground states we get

⌦|N, ki = (�1)
N
|N, ki , (2.2.19)

⌦|N, Ñ, ki = |N, Ñ, ki , (2.2.20)

while only the invariant states, which have eigenvalues +1, survive. As we notice for the
open string there is change of the sign for odd states which signifies that the worldsheet
parity truncates the spectrum of the oriented open string. In addition to this, the open
string carries degrees of freedom at the endpoints, known as Chan-Paton indices, which
can be interpreted as indices of a gauge group. The worldsheet parity acts non-trivially on
them leading to the O� projections giving SO(N) gauge bosons, and the projection O+

giving USp(N) gauge bosons. The former are related to the usual orientifold planes which
we describe next while the later will be used in the construction of de-Sitter vacua in our
Type IIB example.

Orientifold involution and O-planes

Another important local object in string theory is the p-dimensional hyperplane with fixed
loci, so called orientifolds or Op-planes. An orientifold plane is a result of the orientifold
projection O that we will introduce in a short, a combination of the worldsheet parity ⌦
which produces unoriented strings and target space reflections which create orbifolds and
does not affect the external spacetime. The action � is a reflection in target space and

23



CHAPTER 2. LOW ENERGY ACTIONS FROM STRING THEORY

the subspace fixed under � correspond to a region where the orientation of a string can
flip. In addition, the involutions leave invariant certain submanifolds and the product of
these submanifolds to the external space are referred as Op-planes where p stands for the
worldvolume similar to Dp-branes. Finally the orientifold projection is given to be

O = ⌦�(�1)
FL , (2.2.21)

where FL is the spacetime fermion number in the left-moving sector and is needed to ensure
O

2
= 1 on all states.
In contrast to D-branes, these objects are non-dynamical and strings are not tied up

to the orientifold plane and thus there are no gauge fields in their worldvolume. However
they also couple to the RR sector via a Chern-Simons part and their effect on the target
space can be described at tree-level by an action similar to the one we have introduced for
Dp-branes

SOp = �TOp

Z
dp+1⇠e��

p
�det(gab) +QOp

Z

p+1

C , (2.2.22)

which consists of two pieces and these objects have a tension TOp and a charge QOp. The
most common type of O-plane has tension opposite to this D-brane and are related the
following way

TOp = �2
p�5TDp . (2.2.23)

In this analysis we take the charge of D-branes to be positive thus the orientifold planes
have negative charge. This is the most common kind of orientifold plane but in a special
case we will consider also orientifold planes with positive tension and charge which are
usually denoted as O+-planes. These objects should not be confused with anti-O-planes
which have the same tension but opposite charge to this of the regular O-planes. Next we
list the O-planes allowed in Type II depending on their worldvolume

Type IIA : O2,O4,O6,O8 ,

Type IIB : O3,O5,O7,O9 .

An extensive review of orientifold planes in string theory can be found in [42].
The presence of orientifolds determine the spectrum of the effective theory since they

project out fluxes which are not invariant under the orientifold involution. In order the
NSNS sector to be invariant under the local orientifold projection O, the fields should
transform in the following way under the target space involutions

�� = � , �g = g , �H3 = �H3 . (2.2.24)

For the RR fields we need

�Fp = �↵Fp , (O4,O5,O8,O9) (2.2.25)
�Fp = +↵Fp , (O2,O3,O6,O7) (2.2.26)

where ↵ is the operator which reverses all the indices of a p-form see [43]. The orientifold is
supersymmetric if the orientifold operator leaves the supersymmetry generator invariant.
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2.2.5 Tadpole cancellation and flux quantization

Consider now a simple example where the background flux F = 0. Integrating by part the
kinetic terms of the RR fields and considering the simplified CS term we get

SCp ⇠

Z
Cp ^ dF9�p +

X

i

N

Z
Cp ^ �i,9�p , (2.2.27)

where we have also included the number N of D-branes which in general can be arbitrary
but integer. We have used the delta function with support on the transverse directions in
order to express the Chern-Simons part in ten dimensions. Performing the variation for
the Cp field we arrive at the Bianchi identity

dF8�p = QDp

X

i

N�i,9�p . (2.2.28)

From this equation one can calculate the nonzero charge of the D-brane which acts as a
source term in the equations of motion for the Cp field. However, considering the internal
indices and performing the integral over the internal space there are inconsistencies arising.
In complete analogy to Gauss law there should not be net charge on compact manifolds
since the magnetic lines emanating from the charge either have to extend to infinity or
end up on another source with opposite charge. Actually in Type II string theory there
is a tadpole in the string perturbation series for RR-fields reflected in target space by
non-trivial total RR-field flux on compact spaces. This inconsistency cancels if the charge
can be neutralized by adding opposite charge source. So far we have seen that anti-D-
branes are charged with the opposite charge of D-branes so one can include them to cancel
the tadpole. This can be done however implies that the model will be necessarily non-
supersymmetric. The introduction of orientifold planes with negative tension and opposite
charge to those of D-branes can satisfy the Bianchi identity but also reduce the amount
of supersymmetry leading to friendly phenomenological vacua. Thus we have to consider
orientifold backgrounds.

So far we have seen in short that the presence of D-branes in string theory arises as
open string endpoints that at the low-energy description of supergravity they appear as
non-perturbative objects. However when solving the supergravity equations of motion such
local objects are involved in the vacua solution and their charges are fixed together with the
fluxes of RR and NSNS fields. One restriction of string theory on the supergravity solutions
is the quantization of the fluxes which we consider it here as a consistency condition. The
quantization rules in our conventions for the 10d theory are

Z
Fp = (2⇡)p�1

(↵0
)
(p�1)/2fp , fp 2 Z , (2.2.29)

thus in order the flux vacua to be of string origin the fluxes and the charges have to be
integer numbers.

An other condition that has to be satisfied to avoid inconsistencies both in the world-
sheet and in the target space is the tadpole cancellation which was discussed before for the
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simple case of RR charges sourced by a number of D-branes. The equation of motion for
the RR field, Bianchi identity. We we consider the Bianchi identity including extra flux
and sources

dF8�q = H3 ^ F6�q + (2⇡)7↵04
(NOpQOp +NDpQDp)�9�p . (2.2.30)

where except the local sources the presence of fluxes appeared on the right hand side(+).
However now except the sources with opposite charge that can neutralize the total charge
the extra flux term has to vanish. In order the right hand side to vanish after integration
over the internal space perform the smearing approximation

�9�n ! j9�n , (2.2.31)

where we have replaced the delta function with a regular function. Then the integral of
the Bianchi identity gives the tadpole cancellation condition

Z

X

dF8�p = 0 !
1

(2⇡)7↵04

Z

X

H3 ^ F6�p +Qsource = 0 . (2.2.32)

where Qsource = (NOpQDp +NDpQDp) where as we referred before the number of O-planes
is fixed by the geometry while of the D-branes is not. To satisfy this equation the number
of D-branes NDp should be chosen in such a way to cancel the flux, roughly speaking

Qsource ⇠ h3f6�p , (2.2.33)

the left hand side is the fluxes of the relevant NSNS and RR forms. This condition bounds
significantly the values of the fluxes which are responsible for scale separation.
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Chapter 3

Internal space: G2-structures and

toroidal orbifold

In this section we start by introducing basic concepts of smooth manifolds with G2-
structure. We review properties of G2-structures such as the curvature of the manifold,
the structure equations which characterize the fundamental three-form of G2 as well as
the torsion classes which correspond to the irreducible representation of G2-structures and
will appear explicitly in our analysis. Next we specify the choice of our internal space to
be seven-dimensional torus with G2-structure together with a specific orbifold group. As
previously discussed the presence of orbifold will lead us to the construction of effective
field theories with reduced amount of supersymmetry.

3.1 G2-structures

In this subsection we introduce the basic features of the seven-dimensional internal space
X7 to be used in our compactifications. Our scope is to define the general properties of
a seven-dimensional manifold X7 which admits a G2-structure and we establish we basic
tools for our analysis. The G2-structure is characterized by the invariant three-form in an
oriented seven dimensional manifold X7

� = e127 � e347 � e567 + e136 � e235 + e145 + e246 , (3.1.1)

where e127 = e1 ^ e2 ^ e7, etc and ei are one-form basis coordinates of X7. Given this
three-form on X7 it is possible to define a unique Riemannian metric g(�) = g associated
to � and thus a Hodge duality operation. Then we can write down the co-associative
invariant four-form

?� =  = e3456 � e1256 � e1234 + e2457 � e1467 + e2367 + e1357 . (3.1.2)

A convenient expression for the internal volume in terms of the fundamental forms is

vol(X7) =
1

7

Z
� ^ ?� . (3.1.3)
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The fundamental three-form and the relevant metric are uniquely defined in the follow-
ing way: a stable three-form � on the tangent spaces of X7 reduces the structure group
GL(7) ! G2 so that X7 is a G2-structure manifold [45]. Then the three-form (3.1.1) is
uniquely defined together with the symmetric bilinear Bab

gab
p

det g = Bab =
1

144
�amn�bpq�rst✏

mnpqrst , (3.1.4)

where ✏mnpqrst is the seven dimensional Levi-Civita symbol and the metric can be read off
in terms of the three-form. See [46] for a detailed derivation.

Irreducible representations of G2

To study further manifolds with G2-structure it is important to understand the decomposi-
tion of representations of p-forms living in ⇤p spaces after the reduction GL(7) ! G2. We
denote by ⇤p

l
(X7) ⌘ ⇤

p

l
the l-dimensional irreducible representation of G2 and define the

Hodge duality operation ?⇤p

l
⇠= ⇤

7�p

l
that we have used already. The ⇤1

= ⇤
1

7
is irreducible

representation of G2 while the 21-dimensional space of two-forms on X7 follows the direct
sum decomposition ⇤2

= ⇤
2

7
� ⇤

2

14
. The 35-dimensional space of three-forms decomposes

as ⇤3
= ⇤

3

1
�⇤

3

7
�⇤

3

27
. The higher form representations are induced by Hodge duality. We

write down the properties and conditions of each irreducible representation in terms of the
fundamental three-form

⇤
2

7
= {?(↵ ^ ?�) |↵ 2 ⇤

1
} , (3.1.5)

⇤
2

14
= {� 2 ⇤

2
| � ^ ?� = 0} , (3.1.6)

⇤
3

1
= {f� | f 2 C

1
} , (3.1.7)

⇤
3

7
= {?(↵ ^ �) |↵ 2 ⇤

1
} , (3.1.8)

⇤
3

27
= {� 2 ⇤

3
| � ^ � = 0 , � ^ ?� = 0} . (3.1.9)

3.1.1 Intrinsic torsion, curvature and closeness of the three-form

In this subsection we introduce algebraic and analytic properties of the three-form and
geometric quantities like torsion and curvature which will be crucial for analytical calcu-
lations and for understanding the physical notion of curvature on manifolds with group
structure.

We have seen that the fundamental three-form on a smooth manifold X7 defines a
Riemannian metric gij and therefore a unique connection r (Levi-Civita covariant deriva-
tive). The exterior derivative on the three-form does always vanish, it is called the intrinsic
torsion of the G2-structure and is defined as

rl�abc = Tlmg
mn
 nabc , (3.1.10)

which lies in the product space r� 2 ⇤
1

7
⌦⇤

3

7
. The expression above is written in terms of

the full torsion tensor Tlm which has 49-components and fully defines the intrinsic torsion
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r�. The fundamental three-form is not necessarily covariantly constant while whether the
covariant derivative of the three-form vanishes depends on the fully antisymmetric torsion
Tlm that we define next

Tlm =
1

4
W1glm +

1

3
(W7)lm �

1

2
(?W14)lm � (?W27)lm , (3.1.11)

which is expressed in terms of the metric and the Wi p-differential forms (we follow the
notation of [47]). The latter, which are the so-called torsion classes, correspond to the
irreducible representations W1 2 1 is a function, W7 2 7, W14 2 14, W27 2 27 of the
G2 structure after the decomposition 49 = 1 � 7 � 14 � 27. The torsion classes can
be calculated in terms of the torsion tensor as in [45] however in our examples we will
only define them after twisting the torus with the presence of group structure constants.
The presence of torsion forms was classified by Fernandez and Gray [48] in 16 different
classes and they showed that torsion free G2-structures are equivalent to the fundamental
three-form being closed and co-closed.

However one can get more analytic and handy expressions than the covariant derivative
which relate derivatives on the fundamental forms to the torsion classes. It was shown
in [49] that the exterior derivatives on the three-form and its dual give the structure
equations and can be decomposed in terms of the torsion classes

d� = W1 ? �� � ^W7 +W27 , (3.1.12)

d ? � =
4

3
? � ^W7 +W14 , (3.1.13)

together with the useful relations � ^W27 = 0 and ?W14 ^ � = W14. From the structure
equations it is easy to read that W1 is a zero-form, W7 a two-form, W14 a five form and
W27 a four-form. Having defined the metric and the covariant derivative one can find the
non-vanishing Ricci tensor and scalar which are a key feature for studying more general
internal spaces. For this reason we introduce the form of the Ricci scalar is

R(7)
= �4 ? d ?W7 +

21

8
W 2

1
+

30

9
|W7|

2
�

1

2
|W14|

2
�

1

2
|W27|

2 , (3.1.14)

for all non-zero torsions. This expression will be simplified for our specific examples.
A case of great interest for compactifications that we also study here arise when all

torsions are simultaneously set to zero, the G2-structure is torsion free. This directly
imposes that the full torsion is zero and thus r� = 0 while the structure equations
simplify to

d� = 0 , (3.1.15)
d ? � = 0 . (3.1.16)

Since the fundamental three-form determines a Riemannian metric we can also find ex-
pressions for the Ricci curvature of the manifold and can be expressed in terms of the
torsion. and then the G2-structure group is equivalent to the G2-holonomy of the man-
ifold Hol(g) ✓ G2, the internal space is Ricci flat. Non-vanishing covariant derivative
r� 6= 0 signify deviation from G2 holonomy.

29



CHAPTER 3. INTERNAL SPACE: G2-STRUCTURES AND TOROIDAL ORBIFOLD

3.2 The T 7
orbifold with G2-structure

The first step to a specific model is the choice of G2 manifold and then study the possible
O-plane involutions that can be defined over it. The easiest examples are G2 spaces that
arise from toroidal orbifolds whose singularities are blown up or not. For singularities that
can be resolved by a known geometric blow-up procedure the canonical set of examples
were constructed in the original work by Joyce [50, 51]. But truly singular G2 spaces are
physical as well in the context of string or M-theory and they are even required to get more
interesting lower-dimensional phenomenology [52]. Both regular and singular G2 spaces
constructed from toroidal orbifolds come with extra modes not visible at the level of the
torus covering space. Either these modes are really the extra moduli of cycles introduced
by the geometric blow up, or they come from the twisted sector of the string. In our exam-
ples in this thesis we will use the simplest singular toroidal orbifold and be careless about
the unresolved orbifold singularities, which we assume can be resolved in string theory at
the cost of extra twisted sectors. In any case the restricted set of seven real circle radii
we consider are present in most models. So in that sense we capture the “universal” sector
of many toroidal G2 compactifications, just like the STU truncation in four-dimensional
N=1 flux reductions.

So far we have discussed the basic setup of a seven dimensional manifold with G2-
structure. Now we want to specify the internal manifold to be toroidal orbifolds of the
form

X7 =
T 7

Z2 ⇥ Z2 ⇥ Z2

. (3.2.1)

We introduce the seven vielbeins of the torus

em = rmdym , (3.2.2)

and the seven internal coordinates are labeled as ym

ym ' ym + 2⇡rm . (3.2.3)

The finite group of isometries �, forming the orbifold group, should preserve the three-form
in Eq.(3.1.1) and the co-associative four-form in Eq.(3.1.2). For our orbifold group � we
use the following Z2 involutions

⇥↵ : (y1, . . . , y7) ! (�y1,�y2,�y3,�y4, y5, y6, y7) ,

⇥� : (y1, . . . , y7) ! (�y1,�y2, y3, y4,�y5,�y6, y7) ,

⇥� : (y1, . . . , y7) ! (�y1, y2,�y3, y4,�y5, y6,�y7) ,

(3.2.4)

and then � = {⇥↵,⇥�,⇥�}. Note that the ⇥ commute, they square to the identity, and
they preserve the calibration �. All of the three ⇥, the three ⇥2 and the single ⇥3 have
each 16 copies of T3 as fixed points, but they do not act on each other freely, therefore we
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have a singular G2;1 to find the singular space of the full � and to perform the blow-up is
studied in this work.

Let us focus now on the untwisted sector of this orbifold. The untwisted Betti numbers
(i.e. the Betti numbers before we resolve the singularities) can be simply found by counting
the number of linearly independent p-forms dyi1...ip invariant under the orbifold action �.
For example in the simplest case where the invariant forms are the fundamental three and
four-form and the volume the Betti numbers will be b0 = 1, b1 = 0, b2 = 0, b3 = 7. The
seven invariant three-forms build a basis

�i =
�
dy127,�dy347,�dy567, dy136,�dy235, dy145, dy246

�
, i = 1, . . . , 7 , (3.2.5)

on which we have already expanded the calibration as

� =

7X

i=1

si(x)�i , or � = si�i , (3.2.6)

where the si(x) = si are the metric moduli and describe the internal metric deformations
and relate to the vielbeins as e1 = (s1s6s7)1/2(

Q
i
si)�1/6dy1, etc. (we refer to them as

shape moduli or deformations too). Indeed, the si can be related to the seven torus radii
rm as follows

s1�1 = e127 ! s1 = r1r2r7 , s2�2 = �e347 ! s2 = r3r4r7 , etc. (3.2.7)

Now one can re-express the internal volume (3.1.3) in terms of the seven torus radii

vol(X7) =

7Y

m=1

rm =

 
7Y

i=1

si
!1/3

=
1

7

Z
� ^ ?� , (3.2.8)

where we use
R

T7 dy1 ^ · · · ^ dy7 = 1 in the covering space. For later convenience we also
define here a basis of closed and co-closed four-forms that are left invariant under the
orbifold involutions

 i =
�
dy3456,�dy1256,�dy1234, dy2457,�dy1467, dy2367, dy1357

�
, i = 1, . . . , 7 . (3.2.9)

which together with the basis of harmonic three-forms satisfy an orthogonality condition
of the form We denote a generic G2 space as X7 and introduce the basis for the dual
four-form  = ?� on X7 as

Z
�i ^ j = �ij (3.2.10)

Notice that the three-forms (3.2.5) and the four-forms (3.2.9) satisfy the relation (3.2.10)
and that in the  i basis the co-associative calibration takes the form

?� =

7X

i=1

vol(X7)

si
 i , ?�i =

vol(X7)

(si)2
 i . (3.2.11)

1In [50] these singularities are referred to as ‘bad’ not because they cannot be resolved but rather
because there is no straightforward prescription to do so.
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Chapter 4

Three-dimensional vacua in Type IIA

4.1 Introduction

In this part of the thesis we focus mainly on the construction of AdS vacua from Type
IIA orientifold compactifications. So far our best motivated scenarios for achieving moduli
stabilization in scale-separated AdS vacua are [16,17,53], where only reference [17] succeeds
in finding an arbitrary separation between the KK scale and the AdS scale by taking an
unconstrained flux quantum to infinity. On the downside this AdS vacuum does have
scalars of the order of the AdS mass scale and hence these vacua are not so useful for true
phenomenological models.

Interestingly, the very basic assumption of being able to achieve scale separation is
under debate [15, 25, 28, 54, 55] since the compactifications used in string phenomenology
always feature ingredients which obscure fully explicit computations. One can hope that
holography could settle this discussion once it can be shown there are huge families of CFTs
that could reproduce qualitative features like full moduli stabilization and scale separation.
We refer to [29,56–60] for recent work in that direction.

These issues motivate us to investigate moduli stabilization and scale separation in 3d
vacua. Such vacua or not obviously relevant for phenomenology but the ingredients used in
the construction of 4d vacua exist there as well, whereas that seems not to be true in 5d or
higher in our opinion. This already makes 4 dimensions special in string theory. The nice
feature of 3 dimensions is that supersymmetric AdS vacua can be dual to SCFTs in 2d.
Since 2d CFTs are somewhat more studied than 3d CFTs our hope is that we can settle
the issue for 3d AdS vacua1. Although, in this thesis we focus entirely on the supergravity
problem and do not venture into a holographic description. We hope to come back to this
in the future.

So we are led to consider compactifications of string theory on seven-dimensional man-
ifolds that preserve some amount of supersymmetry. Furthermore, we want to have some
handle on the moduli problem for such manifolds. This restricts us to manifolds with G2
holonomy, since by now there is an extended literature on the moduli problem for such

1One can of course also ponder AdS vacua in 2d, see for instance [30].
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spaces; see e.g. [52, 61–64] for a sample of papers. In contrast, manifolds with a G2 struc-
ture group but no G2 holonomy are much less understood when it comes to fluctuation
theory.

Spaces with G2 holonomy, abbreviated G2 spaces from here onwards, are Ricci flat and
compactifying over them without fluxes and sources will lead to a 3d supergravity theory
with 4 supercharges and a moduli space. We are interested in lifting the moduli space using
fluxes and therefore one should worry whether the flux backreaction will drive the system
away from the Ricci flat internal G2 space. It is believed that orientifolds ameliorate this
issue to some extend as we explain below. Orientifolds are anyhow needed to cancel the RR
tadpoles induced by the fluxes and also to circumvent certain nogo arguments for having
Minkowski solutions or scale-separated AdS solutions2 [25].

The negative tension of orientifold planes can help in keeping the deformation away
from the Ricci flat manifold (G2, Calabi–Yau) under control. This is best seen when the
orientifolds are smeared over the internal dimensions as to reflect the course graining over
distances smaller than the KK scale. Smeared orientifolds provide the necessary negative
energy/momentum in order to cancel the positive energy/momentum of the fluxes, thus
providing a well behaved “solution” with a flat internal space [65–67].

Of course orientifolds are localized objects in string theory and if one wants a more
sensible solution that can be probed at distances smaller than the Kaluza-Klein scale one
needs to find 10d supergravity solutions with orientifold singularities. This can be done
explicitly for flux solutions that do not involve intersecting planes, but only parallel ones
[65, 67, 68]. Such solutions have internal manifolds that differ from the smeared solution,
and furthermore have a warp factor in front of the external space metric. Nonetheless the
backreaction of the orientifolds is mild since the alteration of the internal metric can be
described in terms of a conformal factor multiplying the space transversal to the wrapped
planes3. From the 10d equations one can then verify that derivatives of the warp and
conformal factor are crucial in canceling the flux energy/momentum. Nonetheless the
smeared solution is well approximated away from the sources, especially in the limit of
weak coupling and large volume [69]. This can be understood from the fact that those
limits dilute the fluxes sufficiently such that the original flat space Ansatz was sensible.
This connection between smeared and localized solutions is not proven for flux vacua with
intersecting sources but there is some recent evidence that points towards it [70,71].

Crucially, the low energy effective field theories that are commonly used for flux com-
pactifications do not take into account warping and other backreaction effects, so they
effectively probe the smeared orientifold solutions. This is not strange and just means that
the EFT course grains over distances smaller than the KK scale. There are constructions
however which do take it into account and go under the name of warped effective field

theory ; see [72–78] for a biased sample of papers on the topic.
Four-dimensional flux vacua of interest to phenomenology that are obtained within

2Scale separation here means a decoupling of the KK scale from the AdS scale [26].
3To be more precise: parallel branes and planes wrap a fibre of a bundle. The conformal factor of the

base equals the warp factor and the conformal factor of the fibre equals the inverse in string frame.
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the classical realm of 10d supergravity with Dp-brane and Op-plane sources come in two
kinds: 1) there are the no-scale Minkowski vacua in Type IIB from three-form fluxes and
their T-duals [65, 79, 80] or 2) the scale-separated AdS vacua in Type IIA [17, 81] and
their Type IIB cousins [27, 82]. Whereas the no-scale Minkowski solutions tend to feature
parallel sources and their 10d description in terms of localized orientifolds is more or less
understood, the same does not hold for the scale-separated AdS vacua, which always feature
intersecting sources. For the latter we are also not aware of an EFT improvement, like
warped effective field theory, to describe the backreaction effects in the scale-separated
AdS vacua. Although as we mentioned earlier there is recent progress towards justifying
the smeared approach [70,71].

In this chapter we follow the “standard” strategies used in compactifications to 4d:
we are led to find vacua in 3d using fluxes and sources as described directly in the 3d
supergravity. Similarly to 4d, we find the two classes: no-scale Minkowski vacua and scale-
separated AdS vacua, and again it is only clear for the no-scale vacua how to “backreact”
the orientifolds properly and find 10d solutions.

4.2 Fluxes, sources and G2 spaces

Before we dive into concrete flux compactifications we wish to understand what the possi-
bilities are, insisting that the internal manifold is of G2 holonomy. Note that the expected
3d supergravity theories will only have 2 real supercharges. The reason is that the orbifold
� group already restricts the 32 supercharges of Type IIA theories to 4 real supercharges
and then the O2-planes which are allowed in our setup further cut them in half:

Type IIA supercharges : 32
� orbifold
������! 4 real O2-plane

�����! 2 real (4.2.1)

To list the possibilities we work in the democratic formalism for the fluxes and then take
all fluxes to be internal (also called magnetic), without loss of generality. For instance an
electric H3 flux is then simply described by magnetic H7 flux. All fluxes we can have are

Type IIA : H3, H7, F0, F2, F4 ,

where we used that a G2 space has no one- or six-cycles and we assume that fluxes are
closed but non-exact.

For reasons explained in the first chapters, we make sure that the Op-plane charges in
the compactification are always cancelled by fluxes and not only by Dp-branes. So we will
ignore Dp-branes in what follows, although they will eventually be impossible to avoid in
some of our concrete models. The relevant Bianchi identities and flux equations of motion
are summarized by

dF8�p = H3 ^ F6�p + �Op . (4.2.2)

The possible planes that can be used, bearing in mind there are no one- or six-cycles, are

Type IIA : O2,O4,O6 ,

Type IIB : O5,O7 .
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The charges of O7 or O5-planes can never be cancelled by fluxes. For O7-planes this is
obvious and for O5-planes we have to realize that the Bianchi identity requires non-zero
F1 flux, which cannot be present because of a lack of one-cycles. This rules out Type IIB
and G2 holonomy altogether and we are now left with Type IIA.

We ignore O4-planes all together since they wrap two-cycles and G2 has calibrated
two-cycles, but they are never supersymmetric [62]. We thus have O2 and O6-planes left.
Consider an O2-plane filling the 3d space. The parities of the fluxes are

even : F0, F4, H7 ,

odd : F2, H3 .

But there are no odd two-forms in the space transversal to the O2-plane, neither even
seven-forms, so H7 and F2 are removed. Then, in absence of O6-planes we also have to
remove F0 because of the F2 Bianchi identity (note that we do not want to eliminate H3

since then we cannot cancel the O2-plane tadpole), which brings us to

O2 allowed flux: F4, H3 .

The solutions in this model have been considered earlier in [67] and are of the no-scale
Minkowski type where ?7H3 ⇠ F4. If the internal space would be S1

⇥ CY6 this would be
T-dual to the well-known 4d Minkowski solutions in Type IIB with three-form fluxes. The
“solutions” described in [67] are completely general and only the conditions to solve the
10d equations were stated. Neither supersymmetry nor the moduli problem was treated.
One of the aims of this thesis is to fill this gap and construct the 3d supergravity in case
the internal manifold is G2.

Since space-filling O2-planes can intersect space-filling O6-planes in a supersymmetric
manner, we can consider their combination. Then the above reasoning goes through but
without removing the F0 flux. So we have

O2/O6 allowed flux: F0, F4, H3 . (4.2.3)

Imagine we want to have an O6-plane and cancel its tadpoles with fluxes and that we
do not want an O2-plane. O6-planes wrap four-cycles inside the G2 space that need
to be calibrated in a supersymmetric manner if one wants to achieve a 3d supergravity
description. Note that H3^F2 and H3^F4 then have to vanish from the Bianchi identities.
From the tadpole cancellations we get F2 = 0, whereas we can keep F4 6= 0 as long as it
wedges to zero with the H3, which brings us to

O6 allowed flux: F0, F4, H3 , F4 ^H3 ⌘ 0 . (4.2.4)

To summarize, assuming G2 holonomy we could prove that the only models in the market
are O2, O6-planes and possibly O2/O6-planes together.
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4.2.1 Brief summary of minimal 3d supergravity

Here we list few basic aspects of three-dimensional N=1 supergravity and later we will
present the specific theory of our interest. More details can be found in Appendix 8.1.

The bosonic sector of N=1 supergravity in 3d has a metric field, real scalar fields �I and
(abelian) vectors A(A), which can be dualized to scalars. The bosonic part of the general
action is

e�1
L =

1

2
R� gµ⌫GIJ(�)@µ�

I@⌫�
J
�

1

4
f(�)F (A)

µ⌫
F µ⌫(A)

� V (�) , (4.2.5)

with

V (�) = GIJPIPJ � 4P 2 . (4.2.6)

We name the function P the real superpotential and PI is shorthand for @IP . The gauge
kinetic function f(�) is real but otherwise unrestricted. From here onwards GIJ is the
inverse of the target space metric GIJ .

On the fermion side we have the gravitino  µ, the Majorana spinors �I which are the
superpartners of the real scalars �I , and the superpartners of the vectors (gaugini) which
are also Majorana and denoted �(A). We need the supersymmetry variations in order to
understand the supersymmetry invariance of flux solutions

� µ

���
shift

=
1

4
!ab

µ
�ab✏� P�µ✏ ,

��I

���
shift

= GIJPJ✏ ,

��(A)

���
shift

= 0 ,

(4.2.7)

where ✏ is the 2-component fermionic Majorana local supersymmetry parameter.

4.3 The no-scale model

In this section we discuss the “no-scale” type backgrounds obtained from space-filling O2-
planes whose tadpole is cancelled by a combination of F4 and H3 fluxes that obey the
proportionality rule H3 ⇠ ?F4. The 10d description of such backgrounds has appeared
in [67], but without any details; rather, it was only explained what is needed to solve the
10d equations of motion. Here we discuss how to obtain the effective field theory in 3d
when warping can be sufficiently ignored. These backgrounds are inspired from T-duality
of the GKP backgrounds in Type IIB [79].

Because we compactify on G2 spaces we expect maximally four of the original 32 su-
percharges to be preserved. The O2-plane further reduces the number of supersymmetries
in half (i.e. two supercharges remain) by essentially truncating the spectrum. As a result
the low energy theory will be a 3d N=1 supergravity. Our interest here is in finding the
exact low energy description of such theory by matching the 3d objects to the 10d data.
We first start with a general discussion of 3d minimal supergravity.
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4.3.1 A 10d view on the effective theory

We will work with Type IIA supergravity with space-filling O2-planes and we will have
only non-vanishing F4 and H3 fluxes as dictated by

dF6 = H3 ^ F4 +QO2�7 , (4.3.1)

where QO2 is the negative O2-plane charge. The relevant bosonic part of the 10d action in
10d Einstein frame is

S =

Z

10

�
?10R�

1

2
e�� ?10 H3 ^H3 �

1

2
e�/2 ?10 F4 ^ F4

�
+ e��/4TO2

Z

O2

p
|g3| . (4.3.2)

The O2-plane fills the external space, has its world-volume perpendicular to the seven
dimensional internal G2 space on which we compactify on. From the 10d action one can
readily find the 10d form of the scalar potential in 3d as we now show. A direct dimensional
reduction gives the following 10d expression for the 3d potential V3d given by

V =

Z

7

✓
1

2
e�� ?7 H3 ^H3 +

1

2
e�/2 ?7 F4 ^ F4 � e��/4TO2

✏7
vol7

◆
, (4.3.3)

where now the stars are 7d Hodge stars and ✏7 is the 7d volume form. Because the O2-planes
are BPS objects their tension and charge are related as TO2 = ±QO2 where the minus sign
refers to anti-O2-planes. That charge, however, can be obtained from the Bianchi identity
(4.3.1), or equivalently from the RR tadpole condition

�

Z

7

H3 ^ F4 = QO2 = QO2

Z

7

✏7
vol7

. (4.3.4)

As a result one can replace the charge of the source in the action and the effective potential
becomes

V3d =

Z

7

�
1

2
e�� ?7 H3 ^H3 +

1

2
e�/2 ?7 F4 ^ F4 ⌥ e��/4H3 ^ F4

�
, (4.3.5)

which can be recast in a form that is a manifest total square4

V3d =
1

2

Z

7

p
g7
�
e��/2H3 ⌥ e�/4 ?7 F4

�2
. (4.3.6)

One of the ± signs corresponds to O2-planes while the other to anti-O2-planes. Since the
scalar potential is a total square, the vacuum must live at configurations for which the
square vanishes, that is

H3 ⌥ e3�/4 ?7 F4 = 0 , (4.3.7)

and therefore the solutions are Minkowski. Whether supersymmetry is present or not is
discussed below.

4In our notation the square of a form is defined as: p
gF

2d7
x = ?F ^ F =

p
g

1

p!Fµ1...µpF
µ1...µpd7

x
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Let us now discuss the spectrum of bosonic fields in 3d. The graviton of course is
given directly by the dimensional reduction of the 10d metric tensor, so let us now focus
on what can be the scalars of the 3d theory. Recall that in going from 11d to 4d on a
G2, see e.g. [61], the scalars come from the metric and the gauge three-form C of the 11d
supergravity, which are decomposed as

C = ci�i + . . . , � = si�i , (4.3.8)

where the si and the ci are real scalar moduli. The real scalars combine into complex holo-
morphic moduli as: zi = ci + isi. The low-energy theory is standard 4d N=1 supergravity
and the kinetic terms of this sector are

Lkin. = �gij̄@µz
i@µz j̄ , (4.3.9)

where the Kähler metric is given by

gij̄ =
1

4
vol(X7)

�1

Z

X7

�i ^ ?�j . (4.3.10)

Let us now turn to compactifications of Type IIA to three dimensions. At first sight
we would expect to have moduli from C3, C1 and B2. However, since there are no one-
cycles, there are no scalars coming from reducing C1. There is also no scalar coming from
dualizing the vector C1 to a scalar in 3d since the vector is projected out by the O2-plane,
thus the dilaton also remains a genuine real scalar. Indeed, without the orientifold, that
dualized vector would have paired up with the dilaton to a complex field. Moreover there
are no scalars coming from C3 either, again because of the O2-plane projection since all
three-cycles are necessarily odd whereas C3 is even under O2-plane Eq.(2.2.26). There are
furthermore no scalars from reducing B2 over two-cycles because there are no odd two-
cycles for an O2-plane here. There are however even two-cycles and reducing C3 over them
gives vectors in 3d that dualize to scalars. These are actually axions with compact field
ranges. Without the O2-plane projections they would have paired up with the scalars from
B2 to give complex fields. We therefore find that exactly those scalars that would have
paired up with the metric scalars si to give complex scalars are absent consistent with the
real formulation of minimal 3d supergravity.

To sum it up, all scalars come from the metric (ignoring for the moment the dilaton)
which one obtains from expanding � over a basis of harmonic three-forms Eq.(3.2.5). So we
have b3 amount of metric scalars si and b2 axions from C3 expanded along harmonic two-
forms. There can also be scalars corresponding to D2 or D6 positions if D2- or D6-branes
are needed for tadpole cancellation. Also such scalars will have compact field ranges.

Our fluxes F4 and H3 can give masses to the metric scalars but not to the axions and
brane positions, which instead should get a mass from quantum effects. However, we will
find that a linear combination of the volume and the dilaton necessarily remains massless
in the Minkowski vacua where only (4.3.7) holds.

Indeed, at this point we can readily study the generic formulas that arise from our
discussion, and ask how many moduli can be stabilized from imposing (4.3.7). In the spirit
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of this section we use generic G2 ingredients instead of restricting to specific models. We
define

Gij =
7

4

R
�i ^ ?�jR
� ^ ?�

=
1

4
vol(X7)

�1

Z
�i ^ ?�j , (4.3.11)

where we used the volume relation in (3.1.3). The bilinear form Gij becomes a metric on
the moduli space. We will expand on that in the next subsection. Then the expansion of
the ?7�i in the four-form basis (3.2.10) generically can be expressed as

?�i = Bi
l
(s) l , (4.3.12)

and by taking the wedge product with �j and using the orthonormality in (3.2.10) we find

Bi
l
(s) = 4vol(X7)Gij�

jl , (4.3.13)

which means that the moduli-dependent coefficients Bi
l
(s) are completely specified by the

geometry. Note that Bi
l
(s) is a b3(X)⇥ b3(X) invertible matrix.

We expand the fluxes as

F4 = f i
 i , H3 = hi

�i , (4.3.14)

with f i and hi flux quanta that should be properly quantized. If we insert them into (4.3.7)
together with (4.3.12) and (4.3.13) we find

hiBi
k
 k = ±e3�/4fk

 k ! hiBi
j
(s) = ±e3�/4f j . (4.3.15)

We see that we have in principle b3 conditions that can thus fix up to b3 moduli, which are
essentially all the si. We will show below that a linear combination of dilaton and volume
remains free and has to be fixed by different mechanisms. The flux parameters f i and
hi are a total of 2b3 � 1 independent parameters because of the tadpole condition (4.3.4)
which requires

f i�ijh
j
= �QO2 . (4.3.16)

One can therefore expect that all of the si will be fixed in terms of the dilaton because
there is a large freedom in choosing the fluxes. Of course for special values of the f i and
hi not all si will be fixed.

4.3.2 The 3d supergravity effective theory

Let us now turn to the specific low-energy supergravity theory we want to study. For com-
pactifications of Type IIA on Calabi–Yau orientifolds with fluxes the 4d N=1 supergravity
theory was constructed in [83], here we perform a similar investigation for Type IIA on G2
orientifolds. Since we readily have the scalar potential given by (4.3.6), we need also the
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kinetic terms in order to match the 3d supergravity with the compactified effective theory.
In 10d Einstein frame, the reduction Ansatz for the metric is

ds2
10

= e2↵vds2
3
+ e2�vfds

2

7
, (4.3.17)

where v is a 3d scalar that accounts for the compactification volume and hence fds
2

7
is the

metric on a unit-volume G2 space. With the specific choice of numbers ↵2
= 7/16 and

�7� = ↵ we find canonical kinetic terms in 3d

e�1
L = R3 �

1

2
(@v)2 � 1

2
(@�)2 � V3d . (4.3.18)

Taking now into account the volume scalings, the expression for the potential (4.3.6) takes
the form

V3d =
1

2

Z

7

p
g̃7e

�21�v
�
e��/2e�v/2H3 ⌥ e��v/2e�/4?̃7F4

�2
, (4.3.19)

where g̃7 is the unit-volume metric vol(X̃7) = 1. Finally we consider the following or-

thonormal redefinition of scalars5

x
p
7
= �

3�

8
+
�

2
v , 2y = �21�v �

1

4
� , (4.3.20)

and the action takes the form

e�1
L = R3 �

1

2
(@x)2 � 1

2
(@y)2 + . . .� V3d , (4.3.21)

where the . . . denote kinetic terms for all other geometric scalars and

V3d =
1

2

Z

7

p
g̃7e

2y

⇣
e

xp
7H3 ⌥ e�

xp
7 ?̃7F4

⌘2
. (4.3.22)

In the rest of this section we will derive the effective 3d supergravity theory that gives rise
to this action, meaning we fill in the dots of equation (4.3.21). Note already that y is the
massless “no-scale” direction we mentioned earlier and it indeed corresponds to a linear
combination of dilaton � and volume v.

Let us also establish the normalization of the kinetic terms for the volume-preserving
fluctuations, as it will be helpful to cross-check our results later. For that we consider a
single extra fluctuation, say z, of a unit-volume torus that serves as a proxy for our G2
internal space. We will also keep the volume modulus v in our discussion because we want
to keep track of the relative normalizations. We have for the unit-volume metric

fds
2

7
= e2⇠z[dy2

1
+ dy2

2
+ dy2

7
] + e2�z[dy2

4
+ dy2

5
+ dy2

6
+ dy2

3
] , (4.3.23)

where unit volume implies 3⇠ = �4�. Direct dimensional reduction of the 10d Einstein–
Hilbert term gives Z

3

p
�g3

�
R3 �

1

2
(@v)2 � 21

4
⇠2(@z)2

�
, (4.3.24)

5For later convenience we also note that � = �
3
p
7

8
x�

1

8
y and 7�v =

p
7

32
x�

21

32
y.
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therefore we set ⇠2 = 2/21 to have canonical kinetic terms. We will use this normalization
as a way to double check later our kinetic terms for the v the si moduli. We can express
the relevant part of the G2 form, keeping only the modulus z while freezing the rest, as

�̃ = e3⇠zdy127 + . . . , ?̃�̃ = e4�zdy3456 + . . . , (4.3.25)

where dy127 = dy1 ^ dy2 ^ dy7 and dy3456 = dy3 ^ dy4 ^ dy5 ^ dy6. If we wish to generate
this term from a general formula using the �-form we find that it comes from

e�1
Lkin = �

1

2
vol(X7)

�1

Z

7

�i ^ ?�j@s
i@sj . (4.3.26)

This is consistent with the kinetic term one derives in going from 11d to 3d [61]6. But
there is a small subtlety compared with the literature on G2 compactifications from 11d.
For that, let us use that

si = e3�vs̃i (4.3.27)

with s̃i the fluctuations for unit-volume spaces. Equation (4.3.26) contributes the following
piece, � 9

32
(@v)2, to the kinetic term for the volume. Hence we deduce that the full kinetic

term should be

e�1
Lkin =�
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Z
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�i ^ ?̃�j@s̃
i@s̃j .

(4.3.28)

One can verify that in contrast to our situation, in going from 11d to 4d, the contribution
of (4.3.26) to the volume kinetic term is complete. Notice also that in the second line of
(4.3.28) we have used the tilde notation to refer to the G2 expressions that instead of the
si make use of their unit-volume counter-parts, the s̃i. For the later in fact it holds that
vol(X̃7) = 1, but we have chosen to keep the expressions with the unit volume manifest to
avoid any confusion.

From here onwards we change to different normalizations to make contact with the
literature on 3d gravity. This we can simply do by rescaling the 3d metric as gµ⌫ !

1

4
gµ⌫ ,

such that we end with

e�1
Lkin =

1

2
R3 �

1

4
(@x)2 � 1

4
(@y)2 � 1

4
vol(X̃7)

�1

Z

7

�i ^ ?̃�j@s̃
i@s̃j . (4.3.29)

In the language of subsection 4.2.1 we have the real scalars �I
= x, y, s̃i. The x and y are

a combination of the volume modulus and of the dilaton, whereas the s̃i are moduli for the
6There is a 1/2 factor different from [61] but can be understood from the different normalization of the

Einstein Hilbert term.
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G2 metric deformations (but not volume) and the sigma model metric of (4.2.5) is given
by

GIJ =

2

4
1/4 0 0

0 1/4 0

0 0 Gij

3

5 , (4.3.30)

with Gij defined earlier in (4.3.11) where now all si are replaced with s̃i. But note that
this is overcounting the degrees of freedom since the above notation seems to imply that
the s̃i are independent whereas they should multiply to a fixed number as they describe
the unit-volume G2 space - indeed we know that after all vol(X̃7) = 1. In what follows
we will demonstrate that we can pretend the s̃i to be independent and at the very end
use that their product equals one. This is fully consistent with all our calculations in the
bosonic sector and also with supersymmetry as we shown in the appendix.

To fix the 3d supergravity theory we need to find the real superpotential function P ,
which will inform us about the supersymmetry shifts via equation (4.2.7). Instead of doing
a full derivation using 10d supersymmetry rules, we will guess the answer for P and verify
that indeed P leads to the scalar potential (4.3.22) we derived already from 10d, through
equation (4.2.6). The answer for P can be guessed in analogy with existing superpotentials
for flux compactifications to be

P =
ey

8


�ex/

p
7

Z
?� ^H3 vol(X7)

� 4
7 + e�x/

p
7

Z
� ^ F4 vol(X7)

� 3
7

�
. (4.3.31)

The number � will turn out to be ±1, depending on whether we look at theories with
O2 planes or anti-O2-planes. The reader may notice that we have used the si in (4.3.31)
instead of the s̃i, however, it is easy to check that P (si) ⌘ P (s̃i). When we take derivatives
of P with respect to s̃i, i.e. Pi, we will of course use the P (s̃i) version.

Now we want to evaluate the scalar potential. As we explained the 3d supergravity
built from GIJ and P will contain one additional degree of freedom because of the double
counting of the volume that will in any case appear in the kinetic terms and from the one
additional fermionic field. For the moment we ask the reader to bear with the extra degree
of freedom until we show that it can be fixed consistently. So our approach here is to
simply verify that our choice of P leads to the correct scalar potential derived from 10d.

We first note that y is special since

(Gyy)
�1PyPy � 4P 2

= 0 , (4.3.32)

and as a result the scalar potential takes the from

V = GijPiPj + (Gxx)
�1PxPx . (4.3.33)

This is what we call no-scale in 3d. First we evaluate Px which gives

Px =
@P

@x
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1
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7
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Z
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vol(X̃7)
� 3

7 �̃ ^ F4 , (4.3.34)
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where we remind the reader that we use the notation �̃ = �is̃i, etc. and

F4 = e�x/
p
7F4 � �ex/

p
7?̃H3 vol(X̃7)

� 1
7 . (4.3.35)

Therefore we find
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. (4.3.36)

Now we want to evaluate the Pi. To do this we need a series of properties that we now
list. The derivatives with respect to s̃i are defined as

@

@s̃i
� = �i ,

@

@s̃i
(?̃�̃) =

4

3
?̃⇡1

(�i)� ?̃⇡27
(�i) , @ivol(X̃7) =
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Z

7

�i ^ ?̃�̃ , (4.3.37)

where the ⇡1 and ⇡27 are projections to irreducible G2 representations defined for instance
in [61]. They obey the orthogonality properties

?̃⇡1
(�i) ^ ⇡

27
(�j) = 0 , ?̃⇡1

(�i) ^ ⇡
1
(�j) + ?̃⇡27

(�i) ^ ⇡
27
(�j) = �i ^ ?̃�j . (4.3.38)

In practice ⇡1
(�i) is defined as

⇡1
(�i) =

 R
�i ^ ?̃�̃R
�̃ ^ ?̃�̃

!
�̃ , (4.3.39)

therefore we can simplify our expressions such that only �̃ or �i appear instead of ⇡1
(�i).

Moreover, the ⇡27
(�i) can be also traded for �̃ and �i by using the manipulations

⇡27
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(�i) ^B = �i ^B �
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!
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To prove this relation one has to consider that the four-form B can be expanded as B =

?̃�jBj. Within this setup one can prove also that for the four-forms A and B we have
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Z
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Z
?̃A ^ B , (4.3.41)

which can be checked by expanding both A = ?̃�iAi and B = ?̃�iBi. Notice that
Gij
R
?̃�i ^ �̃

R
?̃�j ^ �̃ =

4
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. We can then evaluate the derivative of P

with respect to s̃i to be given by
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. (4.3.42)
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Then using the form of Pi and the aforementioned properties of the G2 three-form we find

GijPiPj = 4
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We notice that the second term of this equation exactly corresponds to minus the expression
in equation (4.3.36). Hence, from the no-scale structure (4.3.33) we finally find

V =
e2y
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Z

7

F4 ^ ?̃F4 vol(X̃7)
1
7 , (4.3.44)

which can then be rewritten as

V =
e2y
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. (4.3.45)

This almost concludes our proof, since, up to a factor of 1/8 we reproduce the 10d potential
(4.3.22). The extra 1/8 factor is due to the rescaling of the metric mentioned around
equation (4.3.29).

One issue remains; the double-counting of the volume modulus, in the sense that we
have been working with one scalar too much as we never enforced that the s̃i should
describe fluctuations of the unit-volume G2 space.7 The overall

R
�̃ ^ ?̃�̃ fluctuation has

to be eliminated and we would like to impose the constraint
Z
�̃ ^ ?̃�̃ = 7 , (4.3.46)

which equivalently means, in case of a seven-torus, that the scalars s̃i would be restricted
to satisfy

7Y

i

s̃i = 1 (for seven-torus) . (4.3.47)

Both equation (4.3.46) and (4.3.47) follow from each other in the case of a seven-torus
and can be imposed on the final bosonic action to give us the correct scalar potential with
the true degrees of freedom. However, at this point we have to be careful not to spoil
supersymmetry, therefore we have to impose this constraint on the superfield level (or al-
ternatively on the full multiplet level). In other words, the supersymmetry transformations
have to respect the constraint (4.3.46). This in fact will reduce also the fermionic degrees
of freedom by one. We leave the derivation of this technical point to Appendix 8.2.

7Let us point out that a similar situation does occur in compactifications of the Type IIB theory where
one has

R
⌦ ^ ⌦ ⇠ V ||⌦|| as a result one may be double-counting the Calabi–Yau metric gmn volume

V . This however does not happen because the volume modulus is extracted from the metric and one has
det[gmn] = 1.
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Finally we note that, by introducing an arbitrary constant c, there is an infinite family
of P -functions that gives rise to the same scalar potential V

P =
ey
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�ex/

p
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?� ^H3 vol(X7)

� 4
7 + e�x/
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� ^ F4 vol(X7)

� 3
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�
. (4.3.48)

It was noticed already in [84] that this is a generic way for finding “fake superpotential”
in no-scale models. This way, any no-scale solution can be made supersymmetric in a
different supergravity theory.

4.3.3 Open string moduli, axions, quantum corrections and uplifts

We have provided a first analysis of no-scale Minkowski vacua in 3d from flux compactifi-
cations. If our ultimate goal is full moduli stabilization then we need to take care of the
axions, the D2/D6 moduli (if any) and the closed string y-modulus. Especially the y field
is worrisome since it is the only one with a non-compact moduli space. In the next section
we will stabilize the y field using further fluxes (Romans mass). But we could equally be
tempted to parallel the history of moduli stabilization in 4D as pioneered in [16, 53, 85].
We furthermore could contemplate the further construction of de Sitter solutions from
uplifting any AdS vacuum one obtains after fixing the y-modulus supersymmetrically (if
at all possible). In what follows we merely mention the possible paths and difficulties for
achieving this.

In 4D the massless no-scale moduli are potentially fixed in a controllable fashion through
quantum effects, and most notably a leading non-perturbative correction to the superpo-
tential that involves the no-scale direction [16]8. But this approach does not seem feasible
to us in our 3d models for a simple reason: we have minimal supergravity in 3d which does
not come with holomorphic protection. Hence we expect no non-renormalization theorems
to exist for perturbative corrections to the superpotential, neither holomorphic arguments
to restrict the form of non-perturbative corrections. This seems to rime with the fact
that there seem no possible supersymmetric wrappings of Euclidean D2- or D4-branes.
Of course quantum effects induced by the strongly coupled gauge theories on multiple D6
branes wrapping calibrated four-cycles will be there. But they are not easily computable
and we think it seems realistic that we are faced with a standard Dine–Seiberg problem [87].

Imagine there is nonetheless a computable AdS vacuum that is sufficiently weakly
coupled and with high enough masses of the moduli such that some additional “mild”
supersymmetry breaking does not immediately destabilize the vacuum. Then we could
contemplate which supersymmetry breaking sources can provide an uplift to dS, if ever.
In that respect it is interesting to realize that the analogue of Klebanov–Strassler throats
does exist in such backgrounds and they were constructed in [88]. Anti-D2-branes are
then the natural SUSY-breaking uplift ingredient for which a probe computation à la [89]
would suggest the solutions can be metastable. However this probe computation has been
refuted in [90], but that criticism in turn was argued to be essentially harmless because of

8Although see [86] for some interesting worries about the self consistency of this approach.
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the arguments in [91–94], although other problems associated to anti-brane uplifting could
persist as reviewed in [10].

4.3.4 Toroidal orientifolds

Let us now turn to the Op-planes allowed in out Type IIA setup. As we have seen we
need to include O2-planes in our setup. To this end consider the target space part of the
O2-plane action, denoted �O2, as the following Z2 involution

�O2 : (y
1, . . . , y7) ! (�y1,�y2,�y3,�y4,�y5,�y6,�y7) . (4.3.49)

The �O2 has 27 fixed points, or alternatively different O2-plane sources, in the torus covering
space. For the periodic condition of the torus in Eq.(3.2.3), they sit at the points yi =
0, 1/2. Notice that the calibration is odd under the O2-plane involution

�O2 : �! �� , (4.3.50)

and that the � and the �O2 commute. We want the orbifold image of an O2-plane to be
again some physical object, and as we will see it is an O6-plane. For that it is sufficient to
consider the combination of the � involutions with the �O2

�↵ = ⇥↵�O2 : (y
1, . . . , y7) ! (y1, y2, y3, y4,�y5,�y6,�y7) , (4.3.51)

�� = ⇥��O2 : (y
1, . . . , y7) ! (y1, y2,�y3,�y4, y5, y6,�y7) , (4.3.52)

�� = ⇥��O2 : (y
1, . . . , y7) ! (y1,�y2, y3,�y4, y5,�y6, y7) . (4.3.53)

These three involutions can be interpreted as intersecting O6-planes on the positions dis-
played in the Table 4.1.

y1 y2 y3 y4 y5 y6 y7

O6↵ ⌦ ⌦ ⌦ ⌦ – – –
O6� ⌦ ⌦ – – ⌦ ⌦ –
O6� ⌦ – ⌦ – ⌦ – ⌦

Table 4.1: Indicative positions of a O6-planes filling the external space three-dimensional
space (not displayed here) and wrapping the four-cycles  2, 3 and  7 in the internal space.

Here “⌦” means the O6-plane world-volume contains these direction on the internal man-
ifold and “�” means the O6-plane positions are localized at yi = 0, 1/2 in that direction.
These intersections are nicely consistent with the rules for preserving supersymmetry and
this is no coincidence because the orbifold actions were chosen such as to preserve the G2
three-form.

One can explicitly verify the supersymmetric calibration of the O6-planes. According
to [95], the condition is that a four-cycle is calibrated if and only if � restricted to it
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vanishes identically. This is the case as can be checked for each of the O6-planes. Consider
for instance the planes in the directions spanned by e1, e2, e3, e4. Not a single component
of � carries indices only in that subspace. The same for the other O6-planes.

Equivalent conditions are that ?� restricted to the O6-plane four-cycle equals exactly
the volume form on it [95]. Yet another condition is that the source three-forms j3 appearing
in the F2 Bianchi identity wedge to zero against �. There is an unambiguous way to find
these source forms from the involution as explained in Appendix C of [96]. When applied
to our case one finds for the involutions in Eq.(4.3.51-4.3.53)

j↵ = �e567 , j� = �e347 , j� = e246 , (4.3.54)

which speak for themselves. We find each time that � ^ j3 = 0.
We are still not finished with the images however. We also have

�↵� = ⇥↵⇥��O2 : (y
1, . . . , y7) ! (�y1,�y2, y3, y4, y5, y6,�y7) , (4.3.55)

��� = ⇥�⇥��O2 : (y
1, . . . , y7) ! (�y1, y2, y3,�y4,�y5, y6, y7) , (4.3.56)

��↵ = ⇥�⇥↵�O2 : (y
1, . . . , y7) ! (�y1, y2,�y3, y4, y5,�y6, y7) , (4.3.57)

�↵�� = ⇥↵⇥�⇥��O2 : (y
1, . . . , y7) ! (y1,�y2,�y3, y4,�y5, y6, y7) . (4.3.58)

In total we have 7 different directions for O6-planes

y1 y2 y3 y4 y5 y6 y7

O6↵ ⌦ ⌦ ⌦ ⌦ – – –
O6� ⌦ ⌦ – – ⌦ ⌦ –
O6� ⌦ – ⌦ – ⌦ – ⌦

O6↵� – – ⌦ ⌦ ⌦ ⌦ –
O6�� – ⌦ ⌦ – – ⌦ ⌦

O6�↵ – ⌦ – ⌦ ⌦ – ⌦

O6↵�� ⌦ – – ⌦ – ⌦ ⌦

Table 4.2: We demonstrate the O6-planes localized positions with "-" and the warped
directions ⌦ in the internal space.

These intersections are mutually supersymmetric as one can verify. This is because
again all O6-planes are calibrated supersymmetrically. The total O6-plane source form
that enters the Bianchi is but the sum of the forms appearing in � for unit value of the
moduli si. In our current no-scale model we will cancel the O6-plane tadpole by simply
introducing two D6-branes for each O6-plane. This adds new open string fields, i.e. gauge
fields and scalar moduli. However, in the next section we will solve tadpoles differently
and find AdS vacua instead.

In total the geometric sector contains seven moduli that come from the seven-torus and
together with the dilaton we have overall eight real scalar moduli. From the form of the
scalar potential (4.3.44) we found that the vacua satisfy

e�x/
p
7F4 = �ex/

p
7?̃H3 vol(X̃7)

� 1
7 . (4.3.59)
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As before we expand the fluxes as

H3 = hi
�i , F4 = f i

 i , (4.3.60)

where f i and hi are appropriately quantized real constants restricted by the O2-plane
tadpole

�ij h
i f j

= �QO2 . (4.3.61)

We want to evaluate ?̃H3 and insert it into (4.3.59). This means we have to evaluate ?̃�i

in terms of  i. We find9

?̃�i =
vol(X̃7)

(s̃i)2
 i , (4.3.62)

where there is no summation over i implied. Now we insert everything into (4.3.59) to find
the seven conditions

(s̃i)2 = �e2x/
p
7vol(X̃7)

6/7
hi

f i
, (4.3.63)

for every i. To handle (4.3.63) we can take the product of all these seven equations together,
i.e. evaluate

Q
i
(s̃i)2 = 1 and use this to get a condition that their product gives vol(X̃7).

Indeed we find, taking into account that �7 = � = ��1, that

x =
1

2
p
7
Log

⇣
�
Y

i

f i

hi

⌘
, (4.3.64)

and x is fixed. Inserting the expression for x into (4.3.63) and using the definition of the
s̃i gives

(s̃i)2 =
⇣Y

j

(f j/hj
)

⌘1/7 hi

f i
, (4.3.65)

for every i. We see that 7 out of the 8 universal moduli are fixed, i.e. the y scalar still
remains undetermined and is the no-scale modulus. Searching now for a supersymmetric
vacuum will require that the derivatives of the superpotential with respect to the scalars
x, y, s̃i to be zero. The derivatives (4.3.34) and (4.3.42) are proportional to F4 and they
vanish due to the Minkowski condition F4 = 0, setting no extra conditions on the fluxes.
However, the derivative of the superpotential with respect to the scalar y sets the following
conditions

Py = P = 0 !

X

i

f 1/2

i

h
(�hi

)
�1/2

+ (�hi
)
1/2

i
= 0 . (4.3.66)

9We use ?dy
ijk = "ijklmnp

4!
p
g7

glqgmrgnsgpt dy
qrst, where ✏

ijklmnp is a tensor density and takes values
"
1234567 = 1.

48



CHAPTER 4. THREE-DIMENSIONAL VACUA IN TYPE IIA

4.4 AdS vacua in Type IIA with scale separation

4.4.1 Indication for scale separation

To find what the necessary conditions are for scale separation we apply a reasoning similar
to the one in (section 4 of) [27] and simply consider the dependence of the potential on
the dilaton and volume modulus. This gives us necessary but non-sufficient conditions for
scale separation. We first start with a discussion that is valid for compactifications down
to any d-dimensions. Consider 10d string frame and the following metric Ansatz

ds2
10

= ⌘2
0
⌘�2ds2

d
+ ⇢ds2

10�d
, (4.4.1)

with ⇢(10�d)/2 the volume in 10d string frame and where

⌘d�2
= e�2�⇢

10�d
2 , (4.4.2)

in order to find d-dimensional Einstein frame. In our notation ⌧0, ⇢0 describe the vacuum
expectation values such that in a vacuum we have

ds2
10

= ds2
d
+ ⇢0ds210�d

. (4.4.3)

We use the notation in which the (10 � d)-dimensional internal metric at unit volume is
denoted g̃10�d. In this analysis so far we left out the compensating ⌘2

0
-factor in the reduction

Ansatze which effectively means we work in Planck units since

Sd �

Z

d

p
gd (Rd + . . .� V ) , (4.4.4)

where the dots represent all omissions such as kinetic terms for the scalars. When we use
instead the formula (4.4.1) we find

Sd �

Z

d

p
gd
�
⌘d�2

0
Rd + . . .� ⌘d

0
V
�
, (4.4.5)

such that we conclude that the Planck scale is fixed by

Mp = l�1

p
= ⌘0 , (4.4.6)

in string units. An approximation for the KK scale in 10d string frame is L2

KK
= ⇢. In a

vacuum the Einstein equations tell us that

Rd =
d

d� 2
M2

p
V . (4.4.7)

So there are two length scales associated with this vacuum:

curvature radius (L⇤) : L�2

⇤
= M2

p
|V | , (4.4.8)

vacuum energy length scale (L⇢) : L�2

⇢
= M2

p
|V |

2/d . (4.4.9)
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We thus have two notions of scale separation that are expressed as

I :
L2

KK

L2

⇤

= ⇢0⌧
2

0
V ! 0 , II :

L2

KK

L2
⇢

= ⇢0⌧
2

0
V 2/D

! 0 . (4.4.10)

The combination ⇢0⌘20 exactly equals the volume modulus ⇢E
0

in 10d Einstein frame. So if
we apply the definitions to compactifications down to three-dimensions we have simply

I : e16�vV ! 0 , II : e16�vV 2/3
! 0 . (4.4.11)

We now verify some minimal conditions for compactifications of Type IIA to achieve scale
separation. We will use criterion I from now on. If we assume the internal space is Ricci
flat (G2) and we assume O6-planes, Romans mass F0, and F4, H3 fluxes and no net O2/D2
tension, then the scalar potential in 3d goes like

V =
1

3!
|H̃|

2⇢�3⌘�2
+

1

4!
|F̃4|

2⇢�1/2⌘�3
+ |F0|

2⇢7/2⌘�3
+ T6⇢

1/4⌘�5/2 . (4.4.12)

Here the tilde symbols denote contractions with the unit-volume metric. We hope to gen-
erate a separation of scales by cranking up the F4 form since that flux could be unbounded
by tadpoles in case it wedges to zero with H3. We first verify that the above ingredients
are the necessary minimal requirements to find AdS vacua. That they are sufficient will
be demonstrated with an explicit example below.

The equations of motion for stabilizing ⇢ and ⌘; ⌘ @⌘V = 0 = ⇢ @⇢V , can be regrouped
to obtain

2T6⇢
1/4⌘�5/2

= �
4

3!
|H̃3|

2⇢�3⌘�2
�

3

4!
|F̃4|

2⇢�1/2⌘�3 < 0 , (4.4.13)
4|F0|

2⇢7/2⌘�3
=

4

3!
|H̃3|

2⇢�3⌘�2
+

1

4!
|F̃4|

2⇢�1/2⌘�3 > 0 . (4.4.14)

We learn that we need net O6 tension and non-zero Romans mass to achieve moduli
stabilization with non-zero F4 flux, just like in the 4d models [17]. The on-shell potential
then becomes

V = �
1

4
|F̃4|

2⇢�1/2⌘�3 < 0 , (4.4.15)

which is indeed AdS3. To verify whether scale separation could be possible we perform a
scaling analysis to the potential and we consistently realize the following scalings which
are compatible with the tadpole conditions

F4 ⇠ N , F0 ⇠ H3 ⇠ T6 ⇠ N0 . (4.4.16)

Remarkably there is a possible scaling for the dilaton and volume with N such that every
term in the potential scales indeed in the same way:

⌘ ⇠ N13/4 , ⇢ ⇠ N1/2
! V ⇠ N�8 , exp(�) ⇠ N�3/4 . (4.4.17)

Notice that for large N the modulus ⇢ grows while the dilaton is damped so we are guar-
anteed to be in the supergravity limit. This scaling indeed implies separation since

⇢⌧ 2V ⇠ N�1 . (4.4.18)
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4.4.2 10d view on the effective theory from toroidal orbifolds

We now hunt for a concrete example by changing the Minkowski no-scale solution of the
previous section. We add Romans mass and realize tadpoles differently and this will turn
out to be sufficient.

The following Bianchi identities lead to non-trivial RR tadpoles

dF2 =H3 ^ F0 +QO6�O6 ,

dF4 =H3 ^ F2 ,

dF6 =H3 ^ F4 +QO2�O2 +QD2�D2 ,

(4.4.19)

where for completeness we have also indicated the presence of D2-branes. We now take

F2 = 0 , F4 = F4A + F4B 6= 0 , F0 6= 0 , H3 6= 0 , (4.4.20)

where the F4 splitting refers to the way the flux wegdes with H3, that is

H3 ^ F4A ⌘ 0 , H3 ^ F4B = �QO2�O2 �QD2�D2 . (4.4.21)

The F2 tadpole cancellation works by cancelling the contributions from the O6-planes with
H3 ^ F0. We can allow for an O2-plane source but we assume it is canceled by a correct
amount of D2-branes when F4B = 0. Otherwise we will not have any D2-branes and it will
be H3 ^ F4B that cancels the O2-plane tadpole.

The bosonic part of the 10d action that contributes to the potential is now

S =

Z

10

p
�G10

�
�

1

2
e��

|H3|
2
�

1

2
e�/2|F4|

2
�

1

2
e5�/2F 2

0

�

+ e��/4QO2/D2

Z

O2/D2

p
�g3 + e3�/4QO6/D6

X

{↵,�,�}

Z

O6

p
�g7 ,

(4.4.22)

and now we use the notation QO2/D2 = QO2 +QD2 and QO6/D6 = QO6 +QD6. Our notation
in the above formula for the integral over the O6 sources already anticipates our toroidal
orientifold example. In particular we use the orbifold setup that we studied in the previous
section. Since we have calibrated O6 sources j{↵,�,�}, the dF2 Bianchi (in the smeared
approximation) then gives

0 = F0 H3 +QO6/D6 J3 , J3 =
X j{↵,�,�}

vol({↵, �, �})3
=

X

i

�i . (4.4.23)

The notation j{↵,�,�}/vol3 reflects one should normalize each volume three-form j3 trans-
verse to each orientifold with respect to its own three-cycle volume. For example we have

j↵�
vol(↵�)3

=
e127

r1r2r7
=

s1�1

s1
= �1 . (4.4.24)
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We take the following fluxes consistent with the tadpoles

H3 = h3

X

i

�i =) h3m0 = ±QO6/D6 ,

F4A =

X

i

f i

4
 i =)

X

i

f i

4
= 0 , (4.4.25)

F4B =

X

i

f̂ i
 i =)

X

i

f̂ i

4
= ±QO2/D2/h3 .

We now compute the scalar potential for the 3d compactification and use (4.3.17) with the
internal metric given by the seven-torus orbifold. We split the scalar potential V into two
parts, one that relates to the fluxes together with the O2-plane that we call collectively
VFlux and one that relates to the O6-planes VO6. For the fluxes/O2 we have

VFlux =
1

2

Z

7

p
g̃7
h
e�21�v

�
e��/2e�v/2H3 ⌥ e��v/2e�/4?̃7F4

�2
+ e�14�ve5�/2F 2

0

i
, (4.4.26)

where
p
g̃7 = 1. Note that all internal space contractions are with the unit-volume metric

g̃mn as indicated by the tilde symbol. Let us now turn to the O6 contributions. For the
O6↵� orientifold for example we have

SO6↵�
= e3�/4TO6

Z

O6↵�

p
�g7 = e3�/4TO6

Z

O6↵�

p
�g7

Z
e127

s1
= e3�/4TO6

Z
p
�g10

1

s1
.

(4.4.27)

The contribution of all planes to the effective potential is then10

VO6 = �e3�/4TO6 e
�14�v

X

i

1

si
= �e3�/4TO6 e

�17�v
X

i

1

s̃i
, (4.4.28)

where in the last step we have inserted the unit-volume fluctuations s̃i with the use of
si = e3�vs̃i. Note that �17�v+3�/4 = (�10�v��/2)+ (�7�v+5�/4) which are exactly
the combinations of volume and dilaton that appear with H3 and m terms respectively, as
one can see in (4.4.26). In the end the most convenient form for the O6 contribution is the
one that is written in terms of the unit-volume scalars and the x and y, and reads

VO6 = �TO6 e
3
2y�

5
2
p
7
x
X

i

vol(X)
3/7

si
= �TO6 e

3
2y�

5
2
p
7
x
X

i

1

s̃i
, TO6 = � h3m0 , (4.4.29)

where � = ±1. Now we are ready to derive the full scalar potential VFlux + VO6 from a 3d
N=1 supergravity.

10We could calculate this result also by taking into account that the volume form on the associated
↵� four-cycle is ?j↵� = vol(X)

s1  1, which then would allow the following manipulations
R
O6

p
�g7 =

e
3↵v
R
3

p
�g̃3

R
4-cycle

p
g4 = e

3↵v
R
3

p
�g̃3

R
 

1 4-cycle ?j↵� = e
�14�v

R
3

p
�g̃3(s1)�1.
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4.4.3 The 3d supergravity

Our aim here is to find the superpotential P that defines our 3d supergravity theory.
Taking into account that for our 3d supergravity constructions we always use the nor-

malization R/2 for the Hilbert–Einstein term we have to rescale the 3d metric of the
previous subsection by 1/4. This means that with our superspace formulation the total
scalar potential we want to reproduce is

V Total
=
e2y

16

Z ⇣
e�2x/

p
7F4 ^ ?̃F4 vol(X̃7)

1
7 + e2x/

p
7H3 ^ ?̃H3 vol(X̃7)

� 1
7 ± 2F4 ^H3

⌘

+
F 2

0

16
ey�

p
7x

�
1

8
QO6/D6e

3
2y�

5
2
p
7
x
X

i

1

s̃i
, (4.4.30)

with the fluxes and QO6/D6 given by (4.4.25). As we have explained one should in the end
set

Q
i
s̃i = 1 to restrict to the true degrees of freedom of the toroidal orbifold. We will

verify that our new superpotential still satisfies the conditions that allow us to impose the
constraint on the s̃i without spoiling supersymmetry.

One can easily verify that in case there would only be Romans mass, the N=1 super-
potential equals

PR
=

m0

8
exp

"
1

2
y �

p
7

2
x

#
, (4.4.31)

where the R superscript is to stress this is the pure Romans mass contribution to the
superpotential. Note that PR

i
= 0. To reproduce the total scalar potential (4.4.30) we work

with the target space metric given by (4.3.30) and we suggest that the total superpotential
is simply a sum

PTotal
= P + PR , (4.4.32)

where P is given is (4.3.31) and PR is (4.4.31). Indeed, if one writes down all the contri-
butions to the scalar potential we have

V Total
= GIJPTotal

I
PTotal
J

� 4(PTotal
)
2
= V + V R

+ 8PR

x
Px + 8PR

y
Py � 8PRP , (4.4.33)

where V = GIJPIPJ � 4P 2, was our no-scale potential. Once we evaluate the cross-terms
we find

8PR

x
Px + 8PR

y
Py � 8PRP ⌘ VO6 . (4.4.34)

Finally note that
Z
�i ^ ?̃�̃ Gij PTotal

j
= 0 , (4.4.35)

which as we explain in the appendix is the condition that guarantees that we can set on the
superspace level

Q
i
S̃i

= 1 such that we reduce consistently to the true degrees of freedom.
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4.4.4 Supersymmetric AdS vacua

Now that we have found the superpotential11 for our toroidal orbifold to be

P =
m0

8
e

y
2�

p
7x
2 +

�h3

8
ey+

xp
7

7X

i=1

1

s̃i
+

1

8
ey�

xp
7

7X

i=1

(f i
+ f̂ i

)s̃i , s̃7 =
6Y

a=1

1

s̃a
, (4.4.36)

we can look for supersymmetric vacua. We first consider what happens in the simplest
case where F4A 6= 0 and F4B = 0 and we take the following simple concrete set of fluxes

f̂ i

4
= 0 , f i

4
= (�f,�f,�f,�f,�f,�f,+6f) , � = 1 , f , h3 ,m0 > 0 . (4.4.37)

Because of the O6 tadpole the values of h3 and m0 are in fact very limited - all our freedom
is essentially in f . At a later stage, once we established our solutions, we will properly
quantize all fluxes and charges. With this flux choice, the superpotential simplifies to

P = �
f

8
ey�

xp
7

"
6X

a=1

s̃a � 6

6Y

a=1

1

s̃a

#
+

h

8
ey+

xp
7

"
6X

a=1

1

s̃a
+

6Y

a=1

s̃a
#
+

m

8
e

y
2�

p
7x
2 . (4.4.38)

We search for solutions which are as isotropic as possible: meaning all s̃a (a = 1 . . . 6) have
the same value, which we denote �, namely

hs̃ai = � . (4.4.39)

The supersymmetric conditions (@P = 0) become:

0 = a�6
+ 6� +
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�
�

6

�6
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2
,

0 = a�6
� 6� +
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�
+
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0 = a�5
�
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6

�7
� 1 ,

(4.4.40)

where

a =
h

f
e

2xp
7 , b =

m

f
e�

y
2�

5x
2
p
7 . (4.4.41)

One can either do a numerical integration or solve analytically to find

a = 0.515696 . . . , b = 3.43111 . . . , � = 1.32691 . . . . (4.4.42)

We thus have for the dilaton and the volume modulus scalings

gs = e� ⇠ f�3/4 , vol(X7) = e7�v ⇠ f 49/16 , (4.4.43)
11We now simply refer to P

Total as P .
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and we can thus verify that our vacuum corresponds to weak string coupling and to large
volume for large f . The AdS vacuum energy is given by

hV i = �
1

64a6b4

✓
6�2

+
36

�12

◆
m4h6

f 8
. (4.4.44)

Finally we can check the scale separation in our example

|⇢ ⌧ 2 V | ⇠ f�1 , (4.4.45)

which matches exactly with (4.4.18). So we find small coupling, large volume and scale
separation. We see that in our solution all of the six s̃a moduli take the same numerical
value, �, by construction and the seventh is slightly different. But the torus remains, as a
whole, at large values and no separate directions get small.

Since the scalars s̃a are not canonically normalized the Hessian of the potential does not
directly correspond to the mass matrix, but does inform us about the possible existence of
tachyons (above the BF bound). We find

hVIJi

|hV i|
=

0

BBBBBBBBB@

4.282 3.321 3.321 3.321 3.321 3.321 6.823 2.132
3.321 4.282 3.321 3.321 3.321 3.321 6.823 2.132
3.321 3.321 4.282 3.321 3.321 3.321 6.823 2.132
3.321 3.321 3.321 4.282 3.321 3.321 6.823 2.132
3.321 3.321 3.321 3.321 4.282 3.321 6.823 2.132
3.321 3.321 3.321 3.321 3.321 4.282 6.823 2.132
6.823 6.823 6.823 6.823 6.823 6.823 21.286 4.913
2.132 2.132 2.132 2.132 2.132 2.132 4.913 5.

1

CCCCCCCCCA

, (4.4.46)

where the lines/columns are s̃a, x, y. The important thing to see in this matrix is that the
8 eigenvalues read: 39.296, 4.441, 3.434, 0.961, 0.961, 0.961, 0.961, 0.961. This means that
all the masses are positive.

Since we did not perform an exhaustive analysis of all possibilities, one can wonder if
starting with different F4A flux values instead of (4.4.37) leads to more solutions. One can
try for example configurations like f i

= f(1, 1, 1,�1,�1,�1, 0) or f i
= �f(2, 1, 1, 1, 1, 1,�7).

But we were not able to find supersymmetric AdS vacua in these cases. We therefore post-
pone performing a complete analysis of the vacuum structure for a future work.

In the appendix we explicitly show that there is an almost identical AdS3 solution
which can be found by taking f ! �f . This is sometimes called skew-whiffing and breaks
supersymmetry [97]. For the rest the solution seems essentially the same.

4.4.5 More flux

We now briefly discuss what happens when we turn on also the F4B component of the F4

flux. There is a good reason for doing this. In the previous solution we had to cancel the
O2 tadpole with D2-branes, leaving a compact moduli space of D2 positions on the G2
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space. But by adding F4B fluxes we can satisfy the O2 tadpole without any explicit D2
sources.

First one can think of turning on only the F4B component, in which case we will have
f̂ i

6= 0 and f i
= 0. The f̂ i that enter the superpotential (4.4.36) however are restricted

by flux quantization and by the tadpole cancellation and thus cannot be large enough to
give a scale separation. As a result, after one solves the eight equations Px = Py = Pa = 0

the eight scalars will generically be stabilized in a supersymmetric AdS vacuum, which
does not have a scale separation. In fact even if we turn on the F4A together with the
F4B component, but we do not take the former to be large, again we obtain vacua without
scale separation. We can ask how the large F4A component will influence the vacuum in
the presence of an F4B. Let us assume we have some unspecified values for the f̂ i but we
choose the values (4.4.37) for the other fluxes. In this case the supersymmetric conditions
read
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+
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(4.4.47)

The equations in the last line are a total of six equations, as they should be, because they
will specify the six s̃a. The a and b are given by (4.4.41). From (4.4.47) it is now clear what
happens in the generic case with parametrically large F4A. We see that the parametrically
large f will damp the f̂ i contribution, therefore (4.4.47) will essentially converge to (4.4.40),
and we will get again a vacuum with s̃a = � with the a, b and � values determined by our
previous solution up to negligible parametrically small corrections.

4.4.6 Flux quantization

We consider the relation in Eq.(2.2.23), an O6-plane has the charge of 2 anti-D6-branes.
If the charge quantum of the Romans mass F0 is m and that of the H3-flux is h3, then the
integrated form of the F2 Bianchi identity is the RR tadpole condition for each cycle

h3m = 2NO6 �ND6 , (4.4.48)

where NO6 and ND6 denote number of O6-planes and D6-branes respectively. There are
two ways to approach this: either one works on the covering space in which a single
O6 involution leaves multiple 8 O6 fixed points in a transversal T3 or one works in the
orbifolded space in which a single O6 has 6 other orbifold images. We will do the first.
Then we have for each O6 involution 8 fixed points. These make a total of 56 O6 planes
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with 8 corresponding to each one of the seven cycles. Hence for our supersymmetric AdS
vacuum considering the quantization condition in Eq.(2.2.29) with ↵0

= 1 we find

H3 = (2⇡)2h3 , F0 = (2⇡)�1m, h3m = 16 F4 = (2⇡)3f4 , (4.4.49)

where h3,m, f4 2 Z and we assumed no D6-branes.

4.5 Outlook

Let us summarize what we have done in this section. We have found the form of the 3d real
superpotential P for G2 compactifications of Type IIA supergravity with O2, O6 sources
and H3, F4, F0 fluxes to be

P =
ey

8


e

xp
7

Z
?� ^H3 vol(X7)

� 4
7 + e

� xp
7

Z
� ^ F4 vol(X7)

� 3
7

�
+

F0

8
e
1

2
y�

p
7

2
x , (4.5.1)

where x and y are specific linear combinations of the 10d dilaton and volume defined in
Eq. (4.3.20) and � the G2 invariant three-form. The 3d theory is a minimal supergravity
with two real supercharges and a scalar potential given by Eq. (4.2.6)

V (�) = GIJPIPJ � 4P 2 , (4.5.2)

where GIJ is the metric on the scalar manifold. To our knowledge this is the first investi-
gation of compactifications of Type II supergravity on G2 orientifolds.12

We then found two classes of (supersymmetric) solutions from the critical points of
P or V . The first class consists of no-scale Minkowski solutions and the second class of
scale-separated AdS3 vacua. Both were established on the same toroidal orbifold, although
the RR tadpoles were solved differently each time. These types of solutions are expected
to exist on general classes of G2 spaces that allow involutions for O2- and O6-planes.

The no-scale solution had one clear massless direction, the y-scalar, but more impor-
tantly we argued that there is no obvious obstacle in stabilizing all other moduli with
non-compact moduli spaces. The scalars with compact moduli spaces are D-brane posi-
tions and Abelian vectors (axions). This is in contrast with the no-scale vacua in 4d from
three-form fluxes in Type IIB [79] where all Kähler moduli are massless and to get a single
massless direction one needs to restrict to special Calabi–Yau spaces with single Kähler
moduli.

In the AdS3 solutions on the other hand we also stabilized the remaining y-scalar. Note
that all of our vacua are at tunably small coupling and large volume. This is not any
special for no-scale vacua, because of the flat y-direction, but it is for the AdS vacua where
all non-compact scalars can be stabilized. Especially the separation of scales is an extra
cherry on top of these AdS solutions. In contrast to 4d compactifications the bridge from

12Although see [98] for G2 compactifications of Type II without orientifolds and fluxes. Furthermore,
some of the AdS3 solutions in [36,99,100] could be related to our findings.
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no-scale vacua to moduli stabilized vacua can be done in one and the same model. We
simply added Romans mass and solved the tadpoles differently.

Our main focus was on demonstrating with simple examples what one expects to find in
three dimensions and so for none of our examples have we delved into a detailed discussion
of the twisted sector neither the axions and D-brane moduli, and this should be understood
better. Also increasing the number of examples would be a relevant task for the future.
We have summarized the classes of vacua in a schematic fashion in Fig. 1.

No-scale

AdS w/ scale sep.

AdS w/out scale sep.

AdS w/ scale sep.

F0 6= 0 F4A 6= 0

F4B 6= 0

F4B 6= 0

F0 6= 0

F4A 6= 0

Fig. 1: The backgrounds/vacua depending on the form of the F4 flux and the value of the
Romans mass. The parametrically large F4A component generates the scale separation for
the AdS vacua. The F4B fluxes can be used to cancel O2-plane tadpoles.

We want to emphasize that the no-scale vacua can be understood in the form of 10-
dimensional solutions with localized and backreacting orientifolds [67]. On the other hand,
this is not understood for the AdS3 vacua since they feature seven intersecting O6 planes
and it is not known how to find backreacted solutions of this kind, although the recent
results of [70,71] can most likely be applied here as well and could be encouraging.

Our main motivation for constructing the AdS3 vacua comes from holography. Already
for a while there is an interest in settling the discussions about the consistency of flux vacua
with scale separation. The existence of such vacua is the foundation of conventional string
phenomenology. Constructing the would-be CFTs dual to scale-separated AdS vacua or
show they do not exist (“bootstrap them away”) would be the natural way forward [56–59].
This endeavor has not yet materialized in actual concrete statements and this is why we
prefer to establish a landscape of scale-separated flux vacua in 3d using the “standard
techniques” in string phenomenology whose consistency is being debated. The reason
is that 2d CFTs have been studied in more detail and especially recently some novel
results seem to point against the existence of certain AdS3 vacua with very high moduli
stabilization (such that one arrives at pure gravity in the IR) [101]. If the same can
be argued for our scale-separated AdS3 vacua it almost certainly implies that also the
AdS4 vacua in massive Type IIA [17] neither have a holographic dual CFT [102] because
something is inconsistent about their construction [103,104].
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AdS vacua and O6-plane backreaction

5.1 Introduction

The consistency of the smearing approximation is often challenged since it is not yet clear
whether it leads to consistent truncation and misleading results. On one hand, the re-
sulting internal manifolds and localized source configurations are some highly complicated
solutions of the full higher-dimensional equations of motion, whose explicit construction
is prohibitively difficult. On the other hand, below the compactification scale, one could
expect the lower-dimensional effective theory to be somewhat insensitive to the local de-
tails of the internal manifold, at least to leading order in the compactification scale. For
this reason, one expects to obtain the same lower-dimensional effective description from a
“smeared” solution, in which the charge density from the “localized” sources is distributed
in a continuous fashion over the internal manifold. These solutions are much easier to con-
struct explicitly with many examples in the literature, and in some cases the approximation
is controllable [67, 69, 105]. More importantly, this logic also suggests that properties of
the true “unsmeared” solution are encoded in higher order corrections in some appropriate
perturbative expansion. Explicit procedures for finding such an expansion and computing
leading corrections to the internal geometry have been only recently proposed [71, 106],
and applications of this procedure have already appeared in [107,108].

In this chapter we go one step further and we apply the procedure proposed in [106]
to the AdS3 vacua of the previous chapter. We evaluate the backreaction of the local-
ized sources and explicitly verify the parametric control over the corrections in the scale-
separated limit. Our analysis indicates that, assuming such AdS3 solution with localized
sources exists, the smeared source approximation captures useful information about it -
at least to leading order in the backreaction. Such assumption has of course the caveat
that one has to assume that the O6-plane singularities we encounter here can be resolved
within string theory.
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5.2 Unsmearing the sources

5.2.1 The setup

We start from the bosonic part of the Type IIA supergravity action in Eq.(2.2.1) but in
the string frame

SIIA =
1

22
10

Z
d10X

p
�G
⇣
⌧ 2(R10 �

1

2
|H3|

2
) + 4GMN@M⌧@N⌧ �

1

2
|Fp|

2

⌘
, (5.2.1)

and have considered a redefinition for the dilaton field ⌧ = e�� in order to be in agreement
with [106]. For the Ricci curvature we have choose the calligraphic notation since in this
study contains the warp factor of the metric as well. For the local sources we write down
only the DBI part in the effective action which is relevant for our analysis and we ignore
the Chern–Simons terms and the fluctuations of world-volume fields of the Dp-branes.
The Chern–Simons terms will of course be properly taken into account when we check the
Bianchi identities/tadpole conditions. For the contribution of the localized sources to the
effective action we thus have

SOp/Dp = �Tp

Z
d10X

p
�G

X

i

⌧�(⇡i) , (5.2.2)

where �(⇡i) is a unit-normalized delta-like distribution denoting the locus of the sources
that wrap the cycle ⇡i. For example, in our three-dimensional compactification, for a
space-filling O6-plane ⇡i refers to four-cycles and ⇡̃i to 3-cycles. The coefficient Tp is given
by

Tp = NOpµOp +NDpµDp , (5.2.3)

and denotes total tension of all the sources wrapping a given cycle and the individual
D-brane and O-plane tensions are given by

µDp = (2⇡)�p
(

p

↵0)�(p+1) , (5.2.4)
µOp = �2

p�5
⇥ µDp . (5.2.5)

It is important to stress that the reason we have NOp and NDp appearing is because the
delta-distributions �(⇡i) integrate to unit.

We will be interested in a flux background where the external space is (warped) AdSd

and the internal space is compact. To this end we make an ansatz for the ten dimensional
metric, always in the string frame, of the form

ds2
10

= w2
(y)gµ⌫dxµdx⌫

+ gmndymdyn , (5.2.6)

where gµ⌫ is the unwarped d-dimensional external metric and gmn is the (10�d) dimensional
internal one. For convenience in computing the stress tensor, we write the local sources
in terms of the ten dimensional metric. Note however that, for external spacetime filling
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sources, the action can be expressed in terms of the source worldvolume metric by using
the relation

�(⇡i) ⌘

p
g⇡i

p
g(10�d)

�(9�p)
(y) , (5.2.7)

where g⇡i ⌘ det((g⇡i)↵�) is the metric determinant of the wrapped cycle. The �(9�p)
(y)

function collectively denotes the localized positions of the sources in the internal space and
integrates to one Z

⇡̃i

d9�py�(9�p)
(y) = 1 , (5.2.8)

over the dual cycle ⇡̃i.

5.2.2 Equations of motion

To compare the localized solutions to the smeared ones and find the next to leading order
corrections we first need to calculate the equations of motions for the metric, dilaton and
the fluxes. We start with a general discussion including all the possible sources in the
equations, eventually restricting to the specific choice of sources and fluxes that we are
interested in.

Equations with localized sources

In this section we set
2⇡

p

↵0 = 1 , (5.2.9)
and write down the equations of motion for the fluxes together with their sources which
are given by the Bianchi identities. For sources that wrap cycles of the internal space we
have Z

⇡i

vol⇡i =

Z
vol⇡i ^ �i,9�p =

Z
d10�dy

p
g10�d �(⇡i) , (5.2.10)

where vol⇡i is the volume density of the wrapped ⇡i cycles, and �i,9�p is a unit-normalized

(9� p)-form with legs transverse to the sources wrapping the i-th cycle and with support
on the source locus

�i,9�p = �(⇡i) d
9�py? , (5.2.11)

where y? are the coordinates transverse to the sources and wedge products are implied.
For the massive Type IIA supergravity considered in the previous chapter the relevant
Bianchi identities, including the number of sources wrapping each cycle, are

dF2 = H3 ^ F0 � 2NO6

7X

i

�i,3 +ND6

7X

i

�i,3 , (5.2.12)

dF4 = H3 ^ F2 , (5.2.13)
dF6 = H3 ^ F4 � 2

�3NO2�7 +ND2�7 . (5.2.14)
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Here NO6/O2 = 0 if there are no O-planes, otherwise it is non-vanishing and depends on
the number of fixed points the relevant orientifold involution has in the internal manifold.
Our specific case will involve NO2 = 2

7 for the total “number” of O2-planes. For O6-planes
we will have NO6 = 2

3 for each three-cycle, which are in fact all images of a single O-plane
under the G2 orbifold.

In order to proceed further, we need the equations of motion for the dilaton and the
metric; we have performed this analysis for d-external dimensions in the Appendix 8.4.
Note that throughout this work we assume that the dilaton profile does not depend on the
external space coordinates but only on the internal ones: ⌧(y). The equations of motion
for the dilaton are found in Eq.(8.4.2), and for three external dimensions (d = 3) they
become
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(5.2.15)

where we use the notation

µ6 = NO6 � 2
�1ND6 , µ2 = NO2 � 2

3ND2 . (5.2.16)

To find the variation with respect to the metric we need the stress-energy tensor of the
localized sources in the internal space, given by the projector

⇧i,mn = �
2

p
g⇡i

�
p
g⇡i

�gmn

= (g⇡i)
↵�
@yl

@⇠↵
i

@yp

@⇠�
i

gmlgnp , (5.2.17)

where ⇠↵
i

are worldvolume coordinates of the branes/planes wrapping the i-th cycle. The
Einstein equation in Eq.(8.4.8) becomes
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(5.2.18)
The trace-reversed Einstein equations using Eq.(8.4.6) and Eq.(8.4.9) become
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(5.2.19)
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for |Fp|
2

mn
=

1

(p�1)!
Fmµ2...µpF

µ2...µp
n . Since in the case of our interest O2/D2 sources fill the

external space, the projector ⇧mn for them is zero.

Smearing the sources

Having found the localized equations of motion we can directly find the ones in the smeared
approximation. In this approximation the sources take the form

�(⇡i) ! j⇡i =
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, (5.2.20)

with the three-form volume density given by vol⇡̃i =
p
g⇡̃idyi^dyj^dyk = ei^ej^ek, where

i, j, k are directions transverse to the O6-plane. For clarity we note that in our work ⇡i refer
to four-cycles and ⇡̃i to the corresponding/dual three-cycles; we will specify these once we
turn to the G2 example. Thus each smeared source that enters the Bianchi is normalized
with respect to its own three-cycle volume. The V7 is the internal space volume, which we
will explicitly define for our example later. We accompany the smeared approximation by
the following additional assumptions, which will be justified by the equations of motion:

• The warp factor w(y) of the external space as well as the dilaton ⌧(y) are slowly
varying with respect to the internal coordinates and can be considered to be constant
w(y) ⌘ const. and ⌧(y) ⌘ const.

• The background field strengths satisfy dFn = 0 = d?Fn and similarly for the H-flux,
and are thus expanded on the harmonic forms of the 7d internal space, while the
latter is chosen to be Ricci-flat, that is Rmn = 0 .

The equations of motion of the dilaton in Eq.(5.2.15) in the smeared approximation simplify
to
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The Einstein equation in Eq.(5.2.18) becomes
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and the trace-reversed Einstein equations of Eq.(5.2.19) reduce to
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(5.2.23)
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Considering our assumptions for the smeared localized objects and the harmonic expansion
of the field strength forms, the smeared Bianchi identities of Eqs.(5.2.12)-(5.2.14) become

0 = H3 ^ F0 � 2NO6

7X

i

ji,3 +ND6

7X

i

ji,3 , (5.2.24)

0 = H3 ^ F2 , (5.2.25)
0 = H3 ^ F4 � 2

�3NO2j7 +ND2j7 . (5.2.26)

Here j7 is the seven dimensional form of the internal space because the O2-planes fill the
full three-dimensional external one. At this point, we also impose by fiat F6 = 0. When
we specialize to the case of G2 holonomy, this will be justified by the absence of six-cycles.

The F4 background flux actually splits into two parts

F4 = F4A + F4B =

X

i

⇣
f i

+ f̂ i

⌘
 i , (5.2.27)

where, postponing further details for later, we only note that

 i = basis of harmonic four-forms of the internal space . (5.2.28)

The H-flux is also expanded on the harmonic three-forms of the internal space and takes
the form

H3 =

X

i

hi
�i , �i = basis of harmonic three-forms of the internal space . (5.2.29)

The F4 splitting refers to the way the RR-flux wedges with the H-flux, that is

H3 ^ F4A ⌘ 0 , H3 ^ F4B = 2
�3NO2j7 �ND2j7 . (5.2.30)

The term H3^F4A vanishes by construction, leaving the f i unconstrained, except for quan-
tization conditions. Meanwhile, the second equation can either be satisfied by balancing
the fluxes terms against the smeared source terms, or by demanding that H3 ^ F4B vanish
independently by setting F4B = 0 (or equivalently f̂ i

= 0). In the latter case, we require a
net charge cancellation between the D2-branes and O2-planes, i.e. NO2 = 8ND2.

The integral of dF6 over the internal closed manifold is zero and the tadpole relation
is satisfied for fixed “orientation” of the F4A flux while at the same time its magnitude
remains unbounded. In the case when the D2/O2 cancellation happens, we have

Z

7

dF6 = 0 , f̂ i
= 0 ,

X

i

hif i
= 0 ,

X

i

f if i
= free , 0 = 16�ND2 ,

(5.2.31)

always for properly quantized flux coefficients hi and f i. Scale separation can be achieved
parametrically in the limit of large f i, that is

X

i

f if i
� 1 ) separation of KK and AdS scales , (5.2.32)
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therefore it is not prohibited by flux quantization. The appropriate flux quantization
can be found in 4.4.6. When there is no net D2/O2 cancellation one has to consider
the appropriate amount of D2-branes because the last equation in (5.2.31) is altered toP

i
hif̂ i

= 2
�3NO2 �ND2. For the rest of the article we will have

F4 ⌘ F4A , unless otherwise noted, (5.2.33)

so that we do not clutter the formulas.

5.2.3 Scaling of the fields

Now we use the smeared equations of motion with net D2/O2 cancellation that we found
in the previous subsection and require each term in the equations to have the same scaling.
As expansion parameter of the fluxes we use the parameter n, and we will see that the
smeared equations of motion are invariant under its variation. The expansion parameter
can have a physical interpretation as the vacuum expectation value of some field or flux,
and it will later serve as our expansion parameter when we evaluate the backreaction.
The fact that the smeared solution leaves the n undetermined means that we can make it
parametrically large so that we can have a good control over the corrections.

To start we assume that the metric of the internal space has the following scaling at
smeared level

gmn ⇠ na . (5.2.34)

Then we consider the smeared O6-plane sources in Eq.(5.2.20) which enter the Bianchi
identity and the Einstein equations, and we find the following scaling

j⇡i ⇠

p
g4

p
g7

⇠ n� 3
2a , ji3 ⇠

p
g3

p
g3

⇠ n0 . (5.2.35)

We notice that the smeared O6-planes which enter the Einstein equations have the same
scaling as the ones in the 4d compactification on a Calabi–Yau [106]. This happens because
the difference of the dimensions between the wrapped volume and the internal space is the
same in both cases j⇡i ⇠

p
g3/

p
g6 ⇠

p
g4/

p
g7. The dual current of the wrapped cycles ji,3

is a three-form and therefore it has no scaling because it does not depend on the metric.
The next step is to consider the dilaton and the Einstein equations of motion as well as
the Bianchi identities to find the scaling of the fluxes. We will work with the ansatz

F0 ⇠ nc , F4 ⇠ nf , H3 ⇠ nb , ⌧ ⇠ nt , w ⇠ nw . (5.2.36)

Moreover, the square of a form of n-rank has the following scaling

|Fp|
2
=

1

p!
ga1a

0
1 ...gapa

0
pFa1...apFa01...a

0
p
⇠ n�p⇥a

⇥ n2k̃ , (5.2.37)
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where the k̃ is the RR or NSNS flux, therefore k̃ = c, f, b for our case. Let us first check
the Bianchi identities which will define the scaling of the RR and H fluxes. From the first
Bianchi identity in Eq.(5.2.12) we get

b+ c = 0 , (5.2.38)

since the smeared source in the Bianchi is not scaling. The second Bianchi in Eq.(5.2.13)
does not give us any scaling information, and the same goes for the third equation in
Eq.(5.2.14), because the specific combinations of fluxes vanish. From equation (5.2.22) we
find the following scaling relation

2⌧ � 2w = 2⌧ � 3a+ 2b = 2c = �4a+ 2f = ⌧ �
3

2
a , (5.2.39)

and from the traced Einstein equations (5.2.23) we find

2⌧ � 2a+ 2b = a+ 2c = �3a+ 2f = ⌧ �
1

2
a . (5.2.40)

Then the dilaton equations of motion in Eq.(5.2.21) give the following scaling relation

t� 2w = t� 3a+ 2b = �
3

2
a . (5.2.41)

Solving (5.2.39)-(5.2.41) and (5.2.12) we get

a ! �
2

3
t+

4

3
w , b ! �t+ w , c ! t� w , f ! �

1

3
t+

5

3
w . (5.2.42)

We need an extra condition to find the proper scaling and this comes from the Romans
mass, F0, which has no scaling because it is a quantized constant, thus c = 0. The
parametric scaling of the fluxes at smeared/leading order then is

F4 ⇠ n , F0 ⇠ n0 , H3 ⇠ n0 , ⌧ ⇠ n
3
4 , w ⇠ n

3
4 , gmn ⇠ n

1
2 , (5.2.43)

which is the same scaling as in [106]. Another way to see this scaling would be to impose
the dilaton and the warp factor to have the same scaling nt

= nw, which would then fix
the Romans mass to c = 0. It is gratifying to see that the scaling of the fluxes we found
here from analysing the full higher-dimensional equations does actually agree with the one
found in subsection 4.4.1 where the low-energy effective theory was instead analyzed.

When the flux F4B is not zero its wedge with H3 has to be cancelled by a non-vanishing
O2/D2 charge in the Bianchi identity. From the variation of the dilaton, including now
the net O2/D2 contribution, we find

0 = 2
⌧

w2
R3 � ⌧ |H3|

2
+ 2µ6

X

i

j⇡i + 2
�3µ2j⇡ . (5.2.44)

Performing the scaling analysis for the smeared sources we see that j⇡i ⇠ n�3a/2 and
j⇡ ⇠ n�7a/2, and requiring the equation to be invariant under the 1/n scaling we see that
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the scaling of the metric as well as the rest of the fields have to be zero. From the Bianchi
identity in Eq.(5.2.30) and considering the scaling of H3 ⇠ n0 and j7 ⇠ n0 we directly see
that

F4B ⇠ n0 . (5.2.45)

We will later discuss the contribution of the O2/D2 and F4B in the potential and see how
they affect the smeared potential.

5.2.4 Next to leading order equations of motion

In this subsection we expand the RR, NSNS fields and the warp factor in terms of a
scaling parameter n, which can be interpreted as tracking the leading order scaling of the
F4A flux responsible for the scale separation. The fields in the smeared approximation are
the leading order terms of a 1/np expansion. We then perform the 1/np expansion to find
the first order equations of motion. The power p for each field, i.e. the scaling rate of the
next to leading order terms, is not uniquely dictated by the system of equations we have
at our disposal. However, with a proper ansatz we can calculate all the next to leading
order RR flux corrections. Our ansatz is

F6 = F (0)

6
n+ F (1)

6
n0

+O(n�1
) , (5.2.46)

F4 = F (0)

4
n+ F (1)

4
n0

+O(n�1
) , (5.2.47)

F2 = F (0)

2
n1/2

+ F (1)

2
n0

+O(n�1/2
) , (5.2.48)

H3 = H(0)

3
n0

+H(1)

3
n�1

+O(n�2
) , (5.2.49)

⌧ = ⌧ (0)n3/4
+ ⌧ (1)n�1/4

+O(n�5/4
) , (5.2.50)

w = w(0)n3/4
+ w(1)n�1/4

+O(n�5/4
) , (5.2.51)

gmn = g(0)
mn

n1/2
+ g(1)

mn
n�1/2

+O(n�3/2
) . (5.2.52)

Starting with the Bianchi identities, we expand the fluxes in Eq.(5.2.12) at first order and
we get

d
⇣
F (0)

2
n1/2

+ F (1)

2
+ ...

⌘
=

⇣
H(0)

3
+H(1)

3
n�1

+ ...
⌘
^ F (0)

0
� 2µ6

X

i

�i,3 , (5.2.53)

where at leading order we recover the smeared expression along with the first order cor-
rection of the Bianchi identity

dF (0)

2
= 0 , (5.2.54)

dF (1)

2
= H(0)

3
^ F (0)

0
� 2µ6

X

i

�i,3 . (5.2.55)

For the Bianchi identity in Eq.(5.2.13) we get

d
⇣
F (0)

4
n1

+ F (1)

4
n0...

⌘
=

⇣
H(0)

3
n0

+H(1)

3
n�1

+ ...
⌘
^

⇣
F (0)

2
n1/2

+ F (1)

2
n0

+ ...
⌘
, (5.2.56)
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from which we deduce

dF (0)

4
= 0 , (5.2.57)

dF (1)

4
= H(0)

3
^ F (1)

2
6= 0 . (5.2.58)

We notice that the first order correction of this Bianchi contains the RR two-form correction
F (1)

2
whose exact form is calculated in the next section using the Einstein equations. For

the Bianchi identity in Eq.(5.2.14) we have

d
⇣
F (0)

6
n+ F (1)

6
n0...

⌘
=

⇣
H(0)

3
n0

+H(1)

3
n�1

+ ...
⌘
^

⇣
F (0)

4
n+ F (1)

4
n0

+ ...
⌘
� 2

�3µ2�7 .

(5.2.59)

In our case of interest, we will set F4B = 0 and we also consider vanishing net O2/D2
charge. In addition H(0)

3
^ F (0)

4A
and F (0)

6
vanish in the smeared approximation. Then we

have

dF (0)

6
= H(0)

3
^ F (0)

4A
= 0 , (5.2.60)

dF (1)

6
= H(0)

3
^ F (1)

4A
+H(1)

3
^ F (0)

4A
6= 0 . (5.2.61)

At leading order the orientation of the fluxes leads to the desired cancellation, while at
subleading order we can always set

Z

7

dF (1)

6
=

Z

7

⇣
H(0)

3
^ F (1)

4A
+H(1)

3
^ F (0)

4A

⌘
= 0 , (5.2.62)

by adjusting the harmonic parts of F (1)

4A
and H(1)

3
such that no new sources are required

for the tadpole cancellation.
We now turn to the first order expression of Einstein and dilaton equations of motion

Eq.(5.2.15)-(5.2.19). The dilaton equation is

0 =� 8r
2⌧ (1) + 2

⌧ (0)

(w(0))2
R3 � 12

⌧ (0)

w(0)
rmr

mw(1)
+ 2⌧ (0)R(1)

mn
g(0)mn

� ⌧ (0)|H(0)

3
|
2

+ 2µ6

X

i

�(⇡i) ,
(5.2.63)

and the next to leading order expansion of the Einstein equation in Eq.(5.2.18) is

0 =�
(⌧ (0))2

(w(0))2
R3 + 3

(⌧ (0))2

w(0)
r

2w(1)
+

3

4
⌧ (0)r2⌧ (1)

�
3

8
(⌧ (0))2|H(0)

3
|
2
�

3

2

4X

p=0

p� 1

8
|F (0)

p
|
2
+

3

8
µ6⌧

(0)
X

i

�(⇡i) .

(5.2.64)
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Next, the first order correction to the trace reversed Einstein equation in Eq.(5.2.19) be-
comes

0 =� (⌧ (0))2R(1)

mn
+ 3

(⌧ (0))2

w(0)
rm@nw

(1)
+

1

4
g(0)
mn
⌧ (0)r2⌧ (1) + 2⌧ (0)rm@n⌧

(1)

+
1

2
(⌧ (0))2

⇣
|H(0)

3
|
2

mn
�

1

4
g(0)
mn

|H(0)

3
|
2

⌘
+

1

2

4X

p=0

⇣
|F (0)

p
|
2

mn
�

p� 1

8
g(0)
mn

|F (0)

p
|
2

⌘

+ µ6

X

i

⇣
⇧

(0)

i,mn
�

7

8
g(0)
mn

⌘
⌧ (0)�(⇡i) .

(5.2.65)

We combine the smeared and the first order equations of motion to find the following
relations for the RR, the dilaton and the warping

dF (1)

2
= 2µ6

X

i

(ji,3 � �i,3) , (5.2.66)

r
2⌧ (1) = �

3

2
µ6

X

i

(j⇡i � �(⇡i)) , (5.2.67)

r
2w(1)

=
1

2

w(0)

⌧ (0)
µ6

X

i

(j⇡i � �(⇡i)) . (5.2.68)

For the backreaction on the internal metric we have

⌧ (0)R(1)

mn
� 3

⌧ (0)

w(0)
rm@nw

(1)
� 2rm@n⌧

(1)
= µ6

X

i

⇣
1

2
g(0)
mn

� ⇧
(0)

i,mn

⌘
(j⇡i � �(⇡i)) . (5.2.69)

These equations determine the backreaction of the localized sources on the solution from
the smeared approximation and can be used in different setups. To proceed further we
need to work on a specific example therefore we focus on a G2 orientifold.

5.3 The G2 orbifold example

5.3.1 Calculation for a single O6-plane

The internal space

So far we have found the formal expressions for the first order corrections to some of the
fields using just the presence of O6-planes and the dimensions of the internal space. To
find the exact form of the corrections at first order we need to specify the internal geometry
and solve Eqs. (5.2.66)-(5.2.69). We consider again the toroidal orbifold T 7/(Z2⇥Z2⇥Z2)

and the structure properties of the G2.
The diagonal metric of the internal space and the metric elements can be written as

ds2
7
=

7X

m

(rm)
2dymdym , g(0)

ij
⌘ (r(0)

m
)
2n1/2 , i = j = 1, ..., 7 . (5.3.1)
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For more details on this orbifold, and a series of different applications, see e.g. [47]. Con-
sidering the 1/n expansion form the metric in Eq.(5.2.52) the radii get corrections

rm = r(0)
m
n1/4

+ r(1)
m
n�3/4

+O(n�3/2
) . (5.3.2)

Corrections to the RR flux

In order to proceed and calculate the first order corrections to the fluxes one should solve
the equations in Eq.(5.2.66)-(5.2.69) for the seven intersected O6-planes in Eq.(4.3.51)-
(4.3.58). As a first step we solve the equations with the presence of a single O6-plane,
indicatively we choose the O6↵-plane with involution given by Eq.(4.3.51) which wraps the
four-cycle ⇡3. We start from the Bianchi in Eq.(5.2.66) in order to calculate the RR fluxes
and we write it in terms of the internal geometry basis

dF (1)

2
= 2⇢3

⇣
dy5 ^ dy6 ^ dy7

⌘
= �2⇢3�3 , (5.3.3)

where the ⇢3 refers to the appropriate “backreaction density”. For the specific O6-plane
Eq.(4.3.51) which wraps the ⇡3, this backreaction density term is

⇢3 = µ6

⇣
j⇡3 � �(⇡3)

⌘
= µ6

8
<

:1�
1

NO6

X

m2{0,1}

�
⇣
y5 �

m

2

⌘
�
⇣
y6 �

m

2

⌘
�
⇣
y7 �

m

2

⌘
9
=

; .

(5.3.4)

To avoid clutter we do not include the subscript “3” in ⇢3 in this part because it is always
implied. As we will verify momentarily, an inspection of Eq.(5.3.3) leads us to guess that
the F2 is of the form

F (1)

2
= �2 ?7 (d�3 ^ 3) . (5.3.5)

Here we have introduced the function �3 ⌘ �3(y) which as we will see satisfies a Poisson
equation and it will be further specified in the next section. For the few next steps we
suppress the subscript 3 to avoid clutter. Indeed the derivative on (5.3.5) gives

dF (1)

2
= �2(r

2�)�3 , (5.3.6)

which can be verified with the following series of steps

d(?7(d� ^ 3)) = d(?7d(� ^ 3)) = ?7((r
2�) 3) = r

2�(?7 3) = (r
2�)�3 . (5.3.7)

This is easily seen by the fact that ?d ? d(� 3) = r
2
(� 3). Comparing this to Eq.(5.3.3)

we get a Poisson equation for � that reads

r
2� = ⇢ . (5.3.8)
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Similar to [106] the transverse space at each point on the O6-plane is a three-torus. Note
that because F (1)

2
is not closed we do not need to expand it on harmonic cycles. From

(5.3.5) we see however that � : F (1)

2
! �F (1)

2
so it is odd, as it should be, and that

�↵ : F (1)

2
! �F (1)

2
so it is again odd as it should be under the O6 involutions, and finally

that ⇥↵ : F (1)

2
! F (1)

2
therefore it is invariant under the orbifold (as it should be). The

parities under the other orbifold/orientifold involutions can also be checked to be consistent.
It is also straightforward to check using (5.3.5) that d ?7 F (1)

2
= 0 which means that the

equation of motion for F2 (that is d ?10 F2 +H3 ^ ?10F4 = 0) is satisfied to leading order
in the 1/n expansion.

Since we have found the explicit form of F (1)

2
we are able to calculate the first order

corrections to the rest of the RR forms. Using the Bianchi identity in Eq.(5.2.58) the later
becomes

dF (1)

4
= H(0)

3
^ F (1)

2
= d

⇣
� 2

X

i

hi
 i ^ �(y)

⌘
. (5.3.9)

This can be seen from the following steps

H(0)

3
^ F (1)

2
= �

X

i

hi
�i ^ ?7d

⇣
�(y) ^

X

j

 j

⌘
=

X

i

hi
�i ^ ?7d

⇣
 i ^ �(y)

⌘

= �2

X

i

hi
 i ^ d�(y) = d

⇣
� 2

X

i

hi
 i ^ �(y)

⌘
. (5.3.10)

Thus the co-closed part of F4 which appears beyond the smeared approximation is

F (1)

4
= �2�(y)

X

i

hi
 i . (5.3.11)

Once more, for distances far from the source the F (1)

4
becomes negligible as expected in the

smeared limit and this becomes clear when we calculate the explicit form of �(y). Adding
the harmonic part we have

F (1)

4
= Gi

 i � 2�(y)
X

i

hi
 i , (5.3.12)

where Gi is the corrected flux and can be chosen to be

Gi
= 2hi

Z

 i

d4y�(y) . (5.3.13)

Thus from Eq.(5.2.61) we have

dF (1)

6
= H(0)

3
^ F (1)

4
+H(1)

3
^ F (0)

4
= H(0)

3
^

⇣
Gi
 i � 2�(y)

X

i

hi
 i

⌘
+H(1)

3
^ F (0)

4

= hi
�i ^

⇣
Gj
 j � 2�(y)

X

j

hj
 j

⌘
+H(1)

3
^ F (0)

4
.

(5.3.14)
As we will show in the next subsection, H(1)

3
is also fully specified by the function �, up to

harmonic pieces, which can be tuned to ensure
R

dF (1)

6
= 0.

71



CHAPTER 5. ADS VACUA AND O6-PLANE BACKREACTION

Corrections to the dilaton, warp factor, NS flux and the metric

So far we used the Bianchi identity of F (1)

2
and the internal geometry in order to specify

the explicit form of all the first order corrections of the RR fluxes. However we have not
found yet the exact first order corrections to the dilaton, the warp factor and the internal
metric.

In order to solve Eq.(5.2.69) and identify the first order corrections to the remaining
fluxes we start from the following definition of the Ricci tensor of the internal space

R(1)

mn
= �

1

2
g(0)rsrmrng

(1)

rs
+

1

2
g(0)rs

⇣
rsrmg

(1)

rn
+rsrng

(1)

rm

⌘
�

1

2
r

2g(1)
mn

, (5.3.15)

and the relation for the Ricci tensor Rmn from Eq.(5.2.69) we have

R(1)

mn
=

3

w(0)
rm@nw

(1)
+

2

⌧ (0)
rm@n⌧

(1)
+

1

⌧ (0)

X

i

⇣
1

2
g(0)
mn

� ⇧
(0)

i,mn

⌘pg⇡i
p
g7
⇢i , (5.3.16)

where ⇢i refers to the appropriate backreaction density for the i-th cycle. Combining
Eq.(5.3.15) and Eq.(5.3.16) we get the equation

�
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2
g(0)rsrmrng
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+

1
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g(0)rs
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+rsrng
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⌘
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(5.3.17)

=
3

w(0)
rm@nw

(1)
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⌧ (0)
rm@n⌧

(1)
+

1

⌧ (0)

X

i

⇣
1

2
g(0)
mn

� ⇧
(0)

i,mn

⌘pg⇡i
p
g7
⇢i .

Focusing now on the 3rd cycle (and again suppressing the subscript on ⇢3 and �3),
we write the volume of the four-cycles wrapping the internal space and the current of the
smeared source

V⇡3 = r(0)
1
r(0)
2
r(0)
3
r(0)
4

, j⇡3 =
1

r(0)
5
r(0)
6
r(0)
7

. (5.3.18)

Next we calculate the Ricci tensor for cases depending on parallel, transverse and mixed
leg components. For the calculation we make the following assumption

g(0)11g(1)
11

= g(0)22g(1)
22

= g(0)33g(1)
33

= g(0)44g(1)
44

, g(0)55g(1)
55

= g(0)66g(1)
66

= g(0)77g(1)
77

.
(5.3.19)

First, when both the legs of the Ricci tensor are along the wrapped cycle, the stress-energy
tensor in Eq.(5.2.17) gets the simple form

⇧3,mn = (g⇡3)mn , (5.3.20)

for m,n the directions of the wrapped four-cycle. The O6-plane wrapping the ⇡3 is parallel
to the directions y1, y2, y3, y4 and the fields w, ⌧ and gmn are sourced by �(y5 � ŷ5)�(y6 �
ŷ6)�(y7 � ŷ7) which depend only on the transverse y5, y6, y7 directions. We label the
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wrapped directions with with indices i, j and investigate first the case where the compo-
nents are parallel and same, the relation Eq.(5.3.17) gives the following solution

r
2g(1)

ii
=

(r(0)
i
)
2

r(0)
5
r(0)
6
r(0)
7
⌧ (0)

⇢ , i = j = 1, 2, 3, 4 . (5.3.21)

Now let us check the Ricci tensor for transverse and same directions, Rkl with k = l = 5, 6, 7

� 2g(0)11@5@5g
(1)

11
�

1

2
g(0)55@5@5g

(1)

55
�

1

2
r

2g(1)
55

=
3

w(0)
@5@5w

(1)
+

2

⌧ (0)
@5@5⌧

(1)
+

1

2

r(0)
5

r(0)
6
r(0)
7
⌧ (0)

⇢ .
(5.3.22)

For one parallel and one transverse direction, Rjk, the equation is trivially satisfied. For
two different transverse directions, i.e. Rkl with k 6= l , we can work-out for example the
case R56 which gives

0 = �
3

w(0)
@5@6w

(1)
� 2g(0)11@5@6g

(1)

11
�

1

2
g(0)55@5@6g

(1)

55
�

2

⌧ (0)
@5@6⌧

(1) . (5.3.23)

From Eq.(5.3.22)-(5.3.23) we have

r
2g(1)

kk
= �

(r(0)
i
)
2

r(0)
5
r(0)
6
r(0)
7
⌧ (0)

⇢ , k = l = 5, 6, 7 , (5.3.24)

and we write again the solution of the warp factor and the dilaton but expressed in terms
of the ⇢ source

r
2⌧ (1) = �

3

2

1

r(0)
5
r(0)
6
r(0)
7

⇢ , (5.3.25)

r
2w(1)

=
1

2

w(0)

⌧ (0)
1

r(0)
5
r(0)
6
r(0)
7

⇢ . (5.3.26)

With the use of the same function �(y) as in Eq.(5.3.8), and Eqs.(5.3.21), (5.3.22), (5.3.25)
and (5.3.26), we get the relations

�
g(1)
kk

r(0)2
i

=
g(1)
ii

r(0)2
i

= �
2⌧ (1)

3⌧ (0)
=

2w(1)

w(0)
=

1

r(0)
5
r(0)
6
r(0)
7

�(y5, y6, y7)

⌧ (0)
. (5.3.27)

Note that until now H(1)

3
was not required to solve for the leading correction to any

other fields. On the other hand, the equation of motion for H3 reads

d
�
⌧ 2 ?10 H3

�
= ?10F2 ^ F0 + ?10F4 ^ F2 , (5.3.28)
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which in our case becomes

(⌧ (0))2d(?10H(1)

3
) = d(⌧ (0))2 ^ ?10H(0)

3
+ ?10F0 ^ F (1)

2
+ ?10F

(0)

4
^ F (1)

2
, (5.3.29)

and involves the leading corrections to several other fields including the warp factor (from
the Hodge star inside the derivative on the left-hand side). All the corrections to the fields
involved in this equation are related to � in such a way that the final equation for for H3

takes the form
r

⇢H(1)

⇢µ⌫
= r

⇢
(�)X⇢µ⌫ , (5.3.30)

where X is a harmonic 3-form (i.e. dX = 0 = d ?7 X), which can be expanded on the �i

basis with coefficients that are determined by the other leading order corrections. This is
sufficient to determine the precise expression for H(1)

3
, which takes the form

H(1)

3
= �X +H i

�i , (5.3.31)

where H i are constants of integration, which give us the freedom to ensure tadpole cancel-
lation without new sources as in (4.4.48). Thus determining the � is sufficient to determine
all the leading order backreaction, including the form of F (1)

6
from (5.3.14).

5.3.2 Solution of Poisson equation

To solve the Poisson equation in Eq.(5.3.8) we mostly follow the steps of [106]. We intro-
duce a formal solution in terms of Fourier series and estimate the backreaction, without
specifying the regularization, because it is in any case independent of the choice.

We start from the �3 and we suppress the subscript 3 for now as usual and we also take
into account that µ6 = NO6 = 8. This means we have to solve the equation

r
2� = 8�

X

m,n,p2{0,1}

�
⇣
y5 �

m

2

⌘
�
⇣
y6 �

n

2

⌘
�
⇣
y7 �

p

2

⌘
. (5.3.32)

To solve this we expand � as
� =

X

m,n,k2{0,1}

�mnp , (5.3.33)

where
r

2�mnk = 1� �
⇣
y5 �

m

2

⌘
�
⇣
y6 �

n

2

⌘
�
⇣
y7 �

p

2

⌘
. (5.3.34)

We first look at one of the fixed points and use the Fourier transform of the delta distri-
bution to get

1� �(y5)�(y6)�(y7) = 1�

X

~k2Z3

e2⇡i
~k·~y

= �

X

~k2Z3\{0}

e2⇡i
~k·~y , (5.3.35)
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where ~y⇡3 = (y5, y6, y7) and we use the discrete Fourier transforms of the delta functions
to respect the toroidal periodicity.From this we deduce that

�000 =

X

~k2Z3\{0}

1

4⇡2k2
e2⇡i

~k·~y , (5.3.36)

and similarly for the other �mnk. So the Poisson equation in (5.3.32) is solved for

�(y) =
X

ma2{0,1}

X

~k2Z3\{0}

1

4⇡2k2
e2⇡i

~k·(~y� ~m
2 )

+ const.

=

X

~k2Z3\{0}

1

2⇡2k2
e4⇡i

~k·~y
+ const. (5.3.37)

The notation is ~m = (m5,m6,m7), ~k = (k5, k6, k7) and k2
= k2

5
/r(0)2

5
+ k2

6
/r(0)2

6
+ k2

7
/r(0)2

7
.

Since (5.3.37) is not convergent one may wish to regularize it by following [106,109–111],
or by simply introducing a hard cut-off on the magnitude of the momenta ~k. However,
to estimate the backreaction of the O-planes we just need the behavior near one of the
loci. This means we want to evaluate (5.3.37) at, say, ~y ! 0. Clearly, near such point
the impact of the other sources can be ignored and the divergence will be dominated only
by the source at ~y = 0. Therefore, near the source at ~y ! 0, the equation (5.3.32) can
be approximated by r

2� ' ��(~y) which has the text-book solution � ' r5r6r7/(4⇡
p

y2).
This means that near the O-plane we simply have a 1/|y| singularity. For completeness
we can verify this intuitive behavior in the following way. We first define, ŷi = yi/✏ and
i = ✏ki/ri, such that

k2
= gijkikj =

1

✏2
(2

5
+ 2

6
+ 2

7
) ⌘

1

✏2
2 , (5.3.38)

r2 ⌘ gij ŷ
iŷj = ✏2(r5y

2

5
+ r6y

2

6
+ r7y

2

7
) . (5.3.39)

Dropping finite contributions we can write

�(~y) =
X

i2(✏/ri)Z\{0}

✏2

2⇡22
e4⇡i~·ŷ =

1

✏

X

i2(✏/ri)Z\{0}

r5r6r7
2⇡22

e4⇡i~·~y�5�6�7, (5.3.40)

where �i = ✏/ri. The near-brane limit is captured by sending ✏ ! 0, in which case the
sum becomes an integral and we obtain

�(~y) !
r5r6r7
2⇡2✏

Z
d3

e4⇡i~·ŷ

2
=

1

4⇡

r5r6r7
✏|ŷ|

=
1

4⇡

r5r6r7
r

. (5.3.41)

Where the first equality follows from recognizing the Fourier transform of the Coulomb
potential.1 This fixes the behavior of � near a single O6-plane.

1Note that carrying out this Fourier transform properly also requires the use of a regularization scheme.
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From the � behavior derived in (5.3.41) and the relation in Eq.(5.3.27) we can see that
the first order correction on the fields near the locus of a single O6-plane is

⌧ = ⌧ (0)n3/4
�

3

8⇡r
n�1/4

+O(n�5/4
) , (5.3.42)

w = w(0)n3/4
+

w(0)

⌧ (0)
1

8⇡r
n�1/4

+O(n�5/4
) , (5.3.43)

gkk = g(0)
kk
n1/2

�
r(0)2
i

⌧ (0)
1

4⇡r
n�1/2

+O(n�3/2
) , k = 5, 6, 7 (5.3.44)

gii = g(0)
ii
n1/2

+
r(0)2
i

⌧ (0)
1

4⇡r
n�1/2

+O(n�3/2
) . i = 1, 2, 3, 4 (5.3.45)

Near the local sources the 1/|y| corrections play against the n suppression, but for large
enough n they are always subdominant. Conversely, for any value of n there is always a
region close enough to the O-plane where the leading order backreaction dominates.

For the rest of the O6-planes, we have that each one of them wraps one  i four-cycle,
thus the Bianchi identity can be immediately generalized to

dF (1)

2
= �2

7X

i

⇢i�i , (5.3.46)

and the source term is

⇢i = 1�
1

8

X

m2{1,2}

�
⇣
yA �

m

2

⌘
�
⇣
yB �

m

2

⌘
�
⇣
yC �

m

2

⌘
, (5.3.47)

where the combination of A,B and C is given by
(A,B,C)i = {(1, 2, 7), (3, 4, 7), (5, 6, 7), (1, 3, 6), (2, 3, 5), (1, 4, 5), (2, 4, 6)} . (5.3.48)

Then similarly to Eq.(5.3.46) we have

F (1)

2
= �2 ?7

7X

i

⇣
d�i(yA, yB, yC) ^ i

⌘
, (5.3.49)

where each �i satisfies a condition of the form (5.3.8). Then the backreaction near each
O-plane has an equivalent form as (5.3.41) and therefore can be controlled for large enough
n. The full form of ⌧ (1), w(1) and the metric follow similarly from the equivalent equations
to (5.3.27) to find individual contributions of the form (5.3.42)-(5.3.45) for each three-cycle
and adding them together.

5.4 Corrections to the effective scalar potential

5.4.1 Corrections in the absence of net D2/O2 charge

We want to investigate whether the backreaction corrections affect the leading order 3d
scalar potential and as a consequence the scale-separation. Considering the metric de-
composition in Eq.(5.2.6), the dimensional reduction of the ten-dimensional action (2.2.1)
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gives

S10 = 2⇡

Z
d3x

p
g3

Z
d7y

p
g7w

3

⇣
⌧ 2R10 + Lm

⌘
. (5.4.1)

Here R10 is the ten-dimensional Ricci scalar given in Eq.(8.4.1) and the Lm the rest of the
kinetic and potential terms. In order to get the effective 3d action one should integrate
over the internal coordinates. However, we just need to write down the action from a
three-dimensional point of view and study the contribution of the corrections. The 3d
effective action is

S3 =

Z
d3x

p
g3
⇣
Ṽ7R3 � V3

⌘
, Ṽ7 =

Z
d7y

p
g7w

3⌧ 2 , (5.4.2)

where the scalar potential takes the form

V3 =

Z
d7y
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(5.4.3)

To see the effect of the first order correction we replace the delta function corresponding to
the O6-plane by our next-to-leading order solution for the dF2 Bianchi identity. We start
from the volume of the wrapped cycle in Eq.(5.2.10) which gives

Z
d7y

p
g7�(⇡i) =

Z
vol⇡i ^ �i,3 =

1

2

Z
vol⇡i ^

⇣
H3 ^ F0 � dF2

⌘
. (5.4.4)

Replacing this into the effective scalar potential gives, after some manipulations,
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) ^ F2
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.

(5.4.5)

We now want to bring the effective action Eq.(5.4.2) to the Einstein frame. To do this we
perform the rescaling gS

µ⌫
= gE

µ⌫
(2⇡Ṽ7)

�1/2. The Einstein-frame scalar potential of the 3d
effective theory is

V E
=

V3

(2⇡)2Ṽ3/2

7

, (5.4.6)

and we will be ignoring from now on the superscript E. We can use this form of the effective
potential to estimate the impact of the backreaction. We will do this by comparing the
contributions from the unsmeared terms to the leading order smeared potential.
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Let us find the scaling of the smeared potential first. At leading order the volume Ṽ7

scales like Ṽ
(0)

7
⇠ n11/2 and vol(0)

⇡i
⇠ n. To find the scaling of R7 we need the scaling of

the Ricci tensor in (5.3.15). We see that Rmn ⇠ g(0)rsrmrng
(1)

rs + ... where nabla contains
products of the metric and its inverse so it doesn’t scale. The scaling of the internal Ricci
scalar at leading order is R(0)

7
⇠ n�3/2. The zeroth order potential (after few integrations

by parts) takes the form
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(5.4.7)

We see that the leading order potential scales as n�17/4.
We will now estimate the impact of the backreaction by evaluating the scaling of the

terms that correspond to the unsmearing corrections by inserting the expansions (5.2.46)-
(5.2.52) in the effective potential. First we can check the term that originates from the
leading order correction to the last term in (5.4.5). The leading order in n is

�V3 3 �
µ6

(2⇡)2Ṽ (0)3/2

7

X

i

Z
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⇡i
^

⇣
d(3⌧ (0)w(0)2w(1)

+ ⌧ (1)w(0)3
) ^ F (1)

2

⌘
n�21/4 . (5.4.8)

Note that there are derivatives of the dilaton and the warp factor. We see that this
correction term is damped faster for large values of n compared to the smeared term, thus
the potential matches to the smeared one at the leading order, assuming that the formal
singularities of the near-brane regions are somehow resolved from string theory. Indeed,
the formal expression (5.4.8) hides singularities related to the fact that the solution clearly
breaks down in the regions of the internal space surrounding the O-plane loci because the
1/r terms dominate over the n suppression. A way to see this is by focusing on the ⇡3
four-cycle backreaction in (5.4.8) and estimating the term

�V ⇡3
3

⇠
n�21/4

Ṽ
(0)3/2

7

Z
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⌘
, (5.4.9)

in the near-brane region. At that limit from (5.3.6), (5.3.27), (5.3.32) and (5.3.41) we have,

near the O6↵ central locus: F (1)

2
⇠

1

|~y|2
, dF (1)

2
⇠ �(~y)�3 ,

⌧ (1)

⌧ (0)
⇠

w(1)

w(0)
⇠

1

|~y| ⌧ (0)
.

(5.4.10)
We can regularize the divergence of the integral in (5.4.9) by excising regions around the
O6 locus, which we take to be three-spheres of radius r0 and denote S3(r0). Integrating
by parts now produces a non-vanishing boundary term. This leads to an estimation of the
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near-O6-plane backreaction of the form
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(5.4.11)

In the last line we used the relations in (5.4.10) and only the boundary contribution sur-
vives, because dF (1)

2
vanishes outside the excised regions. Clearly, the resulting expression

depends on r0, and diverges as we try to shrink the excised regions. This simply signals
the breakdown of the leading order solution near the O6 planes, where stringy corrections
to the 10d dynamics are expected to appear. These corrections, in principle determine a
physical value of r0 such that (5.4.11) would accurately capture the contribution to the
potential from fields away from the O6 locus. Indeed, if we require the backreaction to be
negligible we need

V smeared

3
� �V3 ) n�17/4

� n�21/4r�1

0
) n � r�1

0
. (5.4.12)

This suggests that we can have a good approximation of the true solution for distances
from the loci much greater than 1/n.

We can also estimate the backreaction from other terms to see if the 1/n estimate for
the safety distance from the loci is good enough. We can check for example the dilaton
term from the first line in (5.4.5) focusing on the higher order terms

�V3 3
1

(2⇡)2Ṽ3/2

7

Z
d7y

p
g7 w

3
(y)

 
� 4 @m �⌧@

m�⌧

!
. (5.4.13)

Following the same reasoning as before we find for the leading n unsmearing correction

�V dilaton

3
(O6↵ locus) ⇠ n�21/4r�1

0
, (5.4.14)

which agrees with (5.4.12).
It is however suggested in [106] that for a 10d “observer” the backreaction is stronger

and would require r0 � n�1/4 to be able to safely ignore the unsmearing effect. The
argument in [106] for this is to compare for example ⌧ 2|H|

3 to (@�⌧)2 and see that one
needs n � r�4. We note that this condition delineates the regions of the internal space
where leading order corrections to the 10d solution already give approximately the correct
field profiles.

The purpose of r0, however, is to properly separate out the additional gs corrections
to the 10d solution, over and above the 1/n corrections. Thus, the choice of r0 should be
determined by the regions where the string coupling becomes large, i.e. 1/n. It therefore
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appears that there is a region 1/n < r < 1/n1/4, where although the 10d equations of
motion can be trusted, the resulting 1/n expansion of their solution can not. The contri-
butions to the scalar potential coming from integrating over those regions likely have to be
computed to all orders and appropriately resummed.

Meanwhile the degrees of freedom near the O6 locus, i.e. at r < 1/n, would have to
be captured by a strong-coupling description of the O6 planes, as the string coupling truly
becomes large in those regions even at leading order in 1/n. Unfortunately, in the presence
of a Romans mass, such a strong coupling description is currently unavailable.

5.4.2 Corrections including a net O2/D2 charge contribution

When there is no net O2/D2 cancellation, such contribution needs to cancel by fluxes in
the tadpole/Bianchi. Then there is an extra contribution in the potential that comes from
the RR field |F4|

2
= |F4A + F4B|

2 and has the form
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7

Z

7

w3

 
F4A ^ ?7F4B +

1

2
F4B ^ ?7F4B � 2

�3µ2⌧
j7
V7

!

=
1
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since the extra terms scale as

F4A ^ ?7F4B ⇠ n3/4 , F4B ^ ?7F4B ⇠ n�1/4 , j7/V7 ⇠ n�7/4 , (5.4.16)

and indicatively F4A^ ?7F4A ⇠ n7/4. The scaling of F4B is dictated by the Bianchi identity
(5.2.59) with H(0) scaling as n0. Considering the scaling of the extra contributions it seems
that neither the O2/D2 contributions nor the terms which contain the F4B scale the same
way as the potential in Eq.(5.4.7) and are subleading at large values of the parameter n.

We stress that we do not unsmear the O2-plane here, this requires additional analysis
which we leave for a future work. However, the analysis of [67], where space-filling localized
and smeared O2 sources are compared, shows that at least for supersymmetric solutions
the backreaction is not expected to lead to inconsistencies.

5.5 Outlook

In this work we have analyzed the backreaction of localized sources on the scale-separated
AdS3 N=1 vacua of massive Type IIA supergravity. We have found that when one applies
the scale separation limit to the various ingredients then the corrections from the localized
sources can be made arbitrarily small. Therefore away from the sources the solution seems
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to be under control and its uplift to an actual solution of string theory seems plausible. Of
course, unless the O6-plane singularities that we encountered can be resolved within string
theory the smeared approximation is bound to fail. Moreover, our analysis here was only
the first step that accounts only for the leading order backreaction, and therefore we do not
know at this point if some intricate inconsistency can show up at the next order, as the AdS
conjecture would imply [15]. One could further check the consistency of the backreacted
solutions by matching with the supersymmetric analysis of Type II AdS3 vacua performed
in [37]. These questions and checks are left for future work.

One equally interesting question that could be now addressed is the stability of non-
SUSY AdS3 flux vacua, which should be unstable according to the swampland conjectures
[14]. In particular from the supersymmetric construction in the previous chapter one can
also find the non-supersymmetric “skew-whiffed” AdS3 vacua, where the F4 flux has flipped
sign. For the moment our leading order analysis has not indicated some pathology of such
vacua but it may be that by going to next to leading order in the backreaction some
pathology may show up thus verifying [14]. For example, four-dimensional “skew-whiffed”
vacua were studied recently in [108, 112] and possible instabilities were detected. We also
leave the analysis of the non-supersymmetric vacua for a future work.

Finally, on a more general note, the understanding of 3d non-supersymmetric vacua
of string theory is interesting on its own right due to the applications in holography, but
also as a way to scrutinize the 3d swampland. A clear classification of classical de Sitter
vacua (as is done in 4d [113,114]) would have its own merits and in addition would verify
or challenge the conspiracy of string theory against de Sitter [10, 115–118]. It would be
interesting to see how the unsmearing procedure we discussed here would change these
results in the three-dimensional solutions.
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Chapter 6

Type IIA : De–Sitter uplift

6.1 Introduction

Here we continue the scrutiny of the conservative setting; can we achieve small extra
dimensions, with all moduli stabilized and SUSY broken in a dS vacuum? This question
has been studied, for obvious reasons, mostly for flux vacua in 4d, see [6–9,119] for general
reviews and [10,11,120] for reviews with an emphasis on de Sitter vacua. It is however useful
to think of other dimensions as well. From a landscape viewpoint this is anyways required
if one wishes to understand what the total space of vacua is. Generic vacua can have any
number of compact dimensions up to 9. It should also be obvious that there are more
vacua in lower dimensions since the amount of compact manifolds, ways to wrap branes
and fluxes increases dramatically with every extra compact dimensions. Very intriguingly
there is not a single suggestion known to achieve moduli stabilization with small compact
dimensions in d > 4. That makes d = 4 rather special in a flux context similarly to the
string gas picture [121].

In this work in particular we will consider 3d vacua. In the previous sections we have
argued that compactifications of massive IIA supergravity on G2 orientifolds with fluxes can
lead to full moduli stabilization in 3d (SUSY) AdS vacua that allow a tuning to arbitrary
weak string coupling, large radii and a parametric separation of scales between the AdS
length and the KK scale. This is very analogous to flux compactifications of massive IIA
on Calabi–Yau orientifolds to four dimensions [17, 81].

Such striking parametric separation of scales at weak coupling is in contradiction with
some Swampland conjectures [15] (see also [55]). These conjectures are loosely derived from
the distance conjecture [122] and inspired from no-go theorems with given assumptions [25].
Recently however a suggestion was made how the massive IIA vacua can nonetheless be
consistent with the web of swampland conjectures in a very interesting way [29]. So purely
based on the conceptual ideas surrounding the Swampland it could be that such scale
separation is consistent with our understanding of string theory and the question is much
open right now.

On the technical side however, there have always been reasons to doubt the consistency
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of the massive IIA vacua [103, 104]. These worries are related to the backreaction of the
O6-planes which have only been taken into account in a smeared fashion [66]. Relatedly
there is also no 11-dimensional uplift of the strongly coupled region near an O6 singularity.
However, partial results about the backreaction of the localized sources are known and
encouraging [70,71,105] and simple flux vacua exist for which it can be shown that smearing
is harmless on the condition there is a large volume/weak coupling limit [69].

It is our hope that having an infinite family of 3d AdS vacua with scale separation at
weak coupling allows an easier holographic CFT study than with 4d vacua which hopefully
shines a complementary light on these issues.

In this chapter we continue our study of compactifications of massive IIA supergravity
on G2 orientifolds with fluxes but turn to the question of the existence of meta-stable dS
vacua which have been conjectured to be impossible completely [10,115,123] or impossible
at sufficiently weak coupling [116–118, 124]. Our setup is entirely classical in the sense
that we stick to 10d supergravity at the two-derivative level with orientifold and D-brane
sources.

The quest for classical dS vacua has already a history and started with the suggestive
works [125, 126] and later the more concrete proposals of [127–129]. A thorough but
outdated scan and overview can be found in [130] whereas an update of the recent situation
is described in [113, 131–134] and [135–138]. Most of these works focussed on 4d vacua,
but some preliminary results about higher dimensions are known [123] and a complicated
suggestion for a meta-stable solution in 3d was proposed in [139].

In here we follow a route towards classical dS solutions similar to to [139] (but consid-
erably simpler) and consider general mixtures of orientifold and anti-brane sources such
that the lower-dimensional would-be EFT has no (linearly realized) supersymmetry. Of
course the dangers are around every corner in that case since one should worry about the
anti-brane stability as well as their backreaction. In contrast, most of the works on classical
dS solutions start with calibrated orientifold and D-brane sources and break SUSY sponta-
neously instead of explicitly which provides slightly more control at first sight. Nonetheless
we will argue for a certain amount of control directly from ten dimensions, by verifying
whether the approximations made are justified. This means that all curvature and inverse
length scales should be small in string units and that the string coupling is small. In our
concrete example this will be the case but not parametrically in contrast with the AdS
vacua constructed in the previous chapter. The most surprising outcome of our analysis is
that by adding two different species of anti-branes together, namely anti-D2 and anti-D6,
we can achieve dS critical points with the following properties: 1) with some tuning of co-
efficients we can get rid of the typical tachyons present in classical dS vacua, 2) the internal
manifold does not need to be negatively curved, 3) the resulting model is very simple. Un-
fortunately the tuning required is impossible for the simple torus examples in this analysis,
but there is no reason to expect that a general G2 construction with warped throats would
not allow it. Interestingly we will find evidence that exactly those ingredients could trigger
perturbative brane-flux decay. This can be taken as non-trivial circumstantial evidence for
the no-dS conjecture although more concrete models should be constructed to verify our
general findings.
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6.2 Mass producing 3d de Sitter?

We have argued in a previous chapter that G2 compactifications of massive IIA supergrav-
ity with O2/O6 sources allow the stabilization of all moduli if enough fluxes are turned
on showed in the previous sections. The vacua are then (SUSY) AdS3 at tunably weak
coupling, large length scales and separation between KK and AdS scale. It is then tempt-
ing to somehow uplift these vacua to meta-stable dS by adding SUSY-breaking ingredients
with positive energy. It is known that this is not a good strategy in 4d [140]1 and the
same applies in 3d. Heuristically this works as follows: AdS vacua that are well suited for
uplifting have the feature that the mass m of the lightest (non-axionic) scalar is large in
AdS units, that is

m2L2 >> 1 , (6.2.1)

where L is the AdS length. Such vacua are at the bottom of a scalar potential that
approaches zero from below while being very narrow as depicted in figure 6.1 below. Due

V(Φ)

Φ

Figure 6.1: The potential with the dashed line is better suited for uplifting than the potential with
the solid line.

to the large L a small SUSY-breaking source necessarily brings one to positive energy and
due to the high m2 it will not destabilize the system. So models that achieve (6.2.1) very
well were therefore conjectured to be in the Swampland [54]. This Swampland conjecture is
of course inspired by the no-dS conjectures but applies to AdS vacua and should therefore
be easier to prove or disprove. Despite the difficulty in finding vacua obeying (6.2.1) this
conjecture is furthermore inspired by the bizarre properties the dual CFT would have
since m2L2 determines the dual conformal operator weight. The KKLT and LVS AdS
vacua [16, 53] are our most concrete suggestions for vacua that get close to obey (6.2.1),
but they cannot do so tunably. Racetrack models are built to achieve (6.2.1) if they
would allow the “Kallosh–Linde” fine-tuning [142], but there is not a single string theory

1Although see [141].
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example showing such behavior and it might also be in tension with Swampland bounds
on axion decay constants [143], see however [144, 145]. Finally it has been demonstrated
that non-geometric flux backgrounds can achieve (6.2.1) arbitrary well because they allow
moduli-stabilized Minkowski solutions [146, 147], where effectively m2L2

= 1. But such
backgrounds are far from being shown to be trustworthy because the EFTs derived from
non-geometry are difficult to control, see [148] for a review.

Although KKLT and LVS do not obey (6.2.1) tunably it is suggested they achieve it
sufficiently well to allow anti-D3 uplifts to dS vacua. However that procedure would require
warped throats in order to make the uplift energy tunably small, but recently it has been
appreciated that demanding the throat volume to fit inside the total Calabi–Yau volume
is so constraining that the tuning freedom might be lost [22]. We will come back to issues
related to gluing throat regions into compact spaces later.

This analysis is about following a somewhat related strategy but in 3d and with only
classical2 ingredients (fluxes, branes and orientifolds). So we turn to massive IIA super-
gravity with O2/O6-planes, (anti) D2/D6-branes. We will not attempt to uplift the AdS
vacua of the previous sections, but we will instead search directly for meta-stable de Sit-
ter critical points arising from uplifting moduli-stabilized non-SUSY Minkowski critical
points. Obviously any non-SUSY Minkowski minimum that is not of the no-scale type will
arise from a fine-tuning that is almost certainly impossible after quantization of fluxes and
charges, but we will use it nonetheless as a guiding principle and afterwards compute what
the effects of the quantization are. For the sake of meta-stable dS3 solutions quantization
will turn out problematic for simple set-ups but we argue that we do not expect this to be
a real issue for more involved set-ups.

We start our analysis by restricting to the universal bulk moduli, that is the dilaton and
the volume. Generically these scalars are the typical place where the classical tachyonic
instability would show up when we study Minkowski/de Sitter vacua with broken and full
moduli stabilization.3As we will see this situation is seemingly not the case here because
these tachyons don’t show up in a generic setup. A reason for why we can avoid tachyons
is related to our discussion around figure 6.1 as the “Minkowski limit” of our models is not
of the no-scale type, see also [150].

The two universal bulk moduli we have here are the real scalars x and y and they are a
linear combination of the dilaton and the volume modulus defined in the previous sections
and equation (4.3.20) further below.The scalar potential then reads4

V = Ae2y + F e2y�
2xp
7 +H e2y+

2xp
7 + C ey�

p
7x

+ T e
3y
2 � 5x

2
p
7 , (6.2.2)

where we have used the symbols A,F,H,C, T to indicate the various contributions from
the fluxes and the sources. These are functions of all other scalar fields specific to a

2Here ‘classical’ refers to string theory ingredients whose leading order contributions to the energy can
be captured using 10d supergravity at the two-derivative level, with inclusion of source terms.

3And if not in that 2-scalar subsector, the tachyon is in a 3-scalar sector with the third scalar representing
the overall volume of the orientifold cycles [149].

4If we had included the curvature of the internal manifold its contribution would be VR7 ⇠ �R7 e
3y
2 � x

2
p

7 .
However here we work directly with a Ricci flat internal space therefore R7 = 0.
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compactification. We will give the exact origin of these terms and their form for a toroidal
orbifold in the next section. The coefficient A relates to the O2-plane tension and T to the
O6-plane tension and both are negative. The coefficients F , H and C are related to |F4|

2,
|H3|

2 and |F0|
2 respectively, and they are positive definite. For technical simplicity we also

absorb the vacuum values of x and y in these coefficients such that

hxi = 0 = hyi . (6.2.3)

Similar to [125,126] we then analyze the three conditions

Vx = 0 , Vy = 0 , V = ✏ , (6.2.4)

where we use ✏ > 0 to parametrize the small vacuum energy. The “Minkowski limit” is
therefore ✏ = 0 and we will consider it essentially as a crude estimation to test stability,
and building on that, only a small uplifting will then give meta-stable de Sitter. Once we
apply these equations to the scalar potential we get after few manipulations

A = �8✏� 2F ,

H = F + C + 5✏ ,

T = 4✏� 2C .

(6.2.5)

Note that the consistency of these vacua simply requires H > C, H > F , A < 0 and T < 0

because we are assuming small ✏. The mass matrix of the x and y scalars has eigenvalues
given by

m± =
2

7

⇣
9C + 2H ±

p
88C2 + 29CH + 4H2

⌘
+O(✏) , (6.2.6)

where we have used the vacuum conditions. Since we can make ✏ arbitrarily small, to
check the positivity of the masses we only need to look at the ✏-independent parts (i.e. the
Minkowski limit). The reader can verify that

m± > 0 ! H > C , (6.2.7)

which is in complete agreement with the consistency of the de Sitter solutions.
We thus conclude that we have at hand a classical framework for “mass production” of

3d de Sitter. The reason it works (at the level of the 2 universal scalars) is exactly because
of our arguments surrounding figure 6.1: we have assumed small ✏ (effectively put it to
zero) and found a positive mass matrix in the universal directions. So the presence of such
regions in the scalar potential implies there are good reasons to expect meta-stable vacua.

We will see however for our specific example that careful consideration of quantization
and tadpole conditions changes this naive estimate and makes us wonder if these vacua
are in the swampland instead. Indeed notice first that if we did not take ✏ small then we
could have instabilities because the leading order contribution of ✏ to the masses is

7m+ m� = 4C(H � C)� 4✏ (39C + 4H) +O(✏2) . (6.2.8)
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From the second term we can see why an instability can arise if the de Sitter vacuum is not
shallow enough, i.e. if ✏ is not small enough5. In fact due to flux quantization the vacuum
conditions (6.2.5) put strong constraints on the possible values of ✏, especially once we take
the tadpole cancellation conditions into account which bound the fluxes. Therefore having
arbitrarily small ✏ should not be taken for granted.

Note that our analysis has not used any curvature of the internal 7D manifold, which
would contribute another piece to the 3d potential. The fact that the equations @xV =

@yV = 0 are consistent with the absence of such a term is different from the usual classical
dS vacua constructions. The reason this is possible now is because of a mixture of different
brane types, i.e., O2/D2 and O6/D6, which is usually not considered. One could worry that
a Ricci-flat Ansatz is not consistent with the 10d equations of motion due to backreaction
of fluxes. However the self-consistency of the approach is guaranteed if a critical point
is found and from a 10d viewpoint one finds that the negative tension of the smeared
orientifolds exactly cancels the positive tension of the branes and fluxes inside the compact
dimensions. Whether or not the smearing of the orientifolds is a problem depends probably
on how small the coupling can be and how large the internal volume is [69].

6.3 A toroidal example

In the previous section from the generic form of the scalar potential we have argued that
massive IIA compactified on a 7D Ricci flat space with O-plane and anti-D-brane sources
could potentially lead to meta-stable de Sitter vacua. Now we attempt at finding a specific
example: we specify the ingredients, we derive the potential (6.2.2), and we also discuss
the tadpoles and flux quantization conditions. We set ↵0

= 1, we utilize the orientifold and
orbifold of the previous sections, and we focus directly on solutions with an isotropic seven-
torus for simplicity but also as we will show, it can guarantee stability of the non-universal
scalars.

6.3.1 Tadpoles, flux quantization and potential

Let us first look at the Bianchi identities which we require to satisfy without using D2- or
D6-branes. For the O2 Bianchi identity we have

0 =

Z

7

H3 ^ F4 � (2⇡)5 (N
D2

+ 16) , (6.3.1)

where we have used NO2 = 2
7. For the O6-planes we have NO6 = 2

3 per 3-cycle and we
allow the same number (N (i)

D6
) of anti-D6-branes per i’th 3-cycle:

N (i)

D6
⌘ N

D6
, total number of N

D6
= 7⇥N

D6
. (6.3.2)

5Notice that had we set F = 0 then H �C would be of order ✏ and so the expression (6.2.8) would not
be reliable. In this sense we are implicitly assuming that F has a considerable contribution. However in
our examples latter we explicitly check that the masses are positive in any case thus verifying our generic
analysis.
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Therefore for the O6 Bianchi we have for each 3-cycle

0 =

Z

3�cycle

H3 ^ F0 � 2⇡ (N
D6

+ 16)

Z

3�cycle

J3 , (6.3.3)

where J3 is the unit-normalized 3-form source: J3 =
P

i
�i. Fluxes, consistent with a

isotropic seven-torus are the following:

H3 = (2⇡)2K
X

i

�i , F0 = (2⇡)�1M , F4 = (2⇡)3G
X

i

 i , (6.3.4)

where K,M,G 2 Z. The F2 tadpole condition gives the same result for each 3-cycle:

16 = KM �N
D6

. (6.3.5)

Whereas the F6 tadpole implies

16 = 7KG�N
D2

. (6.3.6)

We now spell out the various contributions to the 3d scalar potential. The contribution
from the fluxes to the 10d action in Einstein frame (with F0 = m, the Romans mass) is

Skin. flux =

Z

10

p
�G

✓
R10 �

1

2
e��

|H3|
2
�

1

2
e�/2|F4|

2
�

1

2
e5�/2m2

◆
, (6.3.7)

where we kept the ten-dimensional Ricci scalar to keep track of normalizations, the con-
tributions from the sources are (ignoring open string moduli)6

Sp=2 = �(2⇡)7 (µO2 + µ
D2
) e��/4

Z

3

p
�g3 , (6.3.8)

Sp=6 = �(2⇡)7 (µO6 + µ
D6
) e3�/4

7X

i=1

Z

Mi

p
�g7 , (6.3.9)

where the Mi denote the 7D worldvolumes of the anti-D6 branes and where

µ
D2

= N
D2

(2⇡)�2 , µO2 = �(2)
�3NO2 (2⇡)

�2
= �16 (2⇡)�2 ,

µ
D6

= N
D6

(2⇡)�6 , µO6 = �2NO6 (2⇡)
�6

= �16 (2⇡)�6 . (6.3.10)

When one considers spaces with warped regions then the anti-D2-brane tension can redshift
and we postpone the discussion of this until later.

Starting now from 10d Einstein frame we finally perform a direct dimensional reduction:

ds2
10

= e2↵vds2
3
+ e2�v eds

2

7
, (6.3.11)

6Note that our p-brane actions are multiplied with an overall factor (2⇡)7 because the total action we
are using is (2⇡)7 ⇥ (SIIA + Ssources).
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where ↵2
= 7/16, ↵ = �7� and eds

2

7
is the metric on a unit-volume G2 space. Similar to

the first part of the analysis we perform a rescaling of the 3d metric gµ⌫ !
1

4
gµ⌫ to match

to more conventional units for 3d supergravity theories. We extract the volume from the
metric deformation moduli by setting

si = vol(X)
3/7s̃i , vol(X) = e7�v , (6.3.12)

where the unit-volume deformations satisfy

7Y

i=1

s̃i = 1 ! s̃7 =
6Y

a=1

(s̃a)�1 . (6.3.13)

Notice for example that because of these definitions (taking into account that ?̃ i = (s̃i)2�i,
where the i does not sum) we have

|F4|
2
= F4 ^ ?̃F4 = (2⇡)6G2

X

i,j

 i ^ ?̃ j = (2⇡)6G2

7X

i=1

(s̃i)2

= (2⇡)6G2

 
6X

a=1

(s̃a)2 +
6Y

a=1

(s̃a)�2

!
,

(6.3.14)

and similarly for |H3|
2 and the other terms. We combine the volume and the dilaton again

in the useful combinations (x and y universal moduli) in Eq.(4.3.20) and once we include
all these ingredients, the 3d scalar potential becomes

V = Ae2y + F (s̃i)e2y�
2xp
7 +H(s̃i)e2y+

2xp
7 + Cey�

p
7x

+ T (s̃i)e
3y
2 � 5x

2
p

7 , (6.3.15)

with the coefficients given by

A =
(2⇡)5

8
(2N

D2
� 7KG) e2y0 ,

F =
(2⇡)6G2

16

 
6X

a=1

(s̃a)2 +
6Y

a=1

(s̃a)�2

!
e2y0�

2x0p
7 ,

H =
(2⇡)4K2

16

 
6X

a=1

(s̃a)�2
+

6Y

a=1

(s̃a)2
!
e2y0+

2x0p
7 ,

C =
M2

16(2⇡)2
ey0�

p
7x0 ,

T =
2⇡

8
(2N

D6
�KM)

 
6X

a=1

1

s̃a
+

6Y

a=1

s̃a
!
e

3y0
2 � 5x0

2
p
7 ,

(6.3.16)

where y0 and x0 have been inserted in the same places where x and y appear such that
in this way the vacuum is always at x = 0 = y, by appropriately defining x0 and y0. For
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completeness let us note again the kinetic terms

e�1
Lkin =

1

2
R3 �

1

4
(@x)2 � 1

4
(@y)2 � 1

4

Z

7

�i ^ ?̃�j@s̃
i@s̃j , (6.3.17)

where ?̃�i = (s̃i)�2
 i (no summation over i implied). The conditions (6.2.4) and (6.2.5)

that we studied in the previous section should now be enforced.

6.3.2 Moduli stabilization

In this part we turn to the stabilization of the 8 universal real scalar moduli (x, y, s̃a) of
toroidal orbifold compactifications. The very first observation we can make right away
from the form of the scalar potential (6.3.15) is that all the unit-volume toroidal moduli
s̃a are always stabilized at

hs̃ai = 1 = hs̃7i , (6.3.18)
giving a totally isotropic torus as we anticipated. In this way we always have

@V

@s̃a

���
s̃a=1

= 0 . (6.3.19)

We assume these vevs for the s̃a in what follows. On this background we can then notice
that

@2V

@x@s̃a
= 0 =

@2V

@y@s̃a
, (6.3.20)

which means there is no mass mixing between the x, y moduli and the s̃a. As a result we
can directly evaluate the eigenvalues for the mass matrix of the moduli s̃a independently.
Using the vacuum conditions (6.2.4) one can express the second derivatives of the moduli
on the scalar potential in terms of the functions H and C. First we find that the derivatives
of the functions F (s̃a), H(s̃a) and T (s̃a) at the vacuum are proportional to themselves, i.e.

Fab =
4

7
F (1 + �ab) , Hab =

4

7
H (1 + �ab) , Tab =

1

7
T (1 + �ab) , (6.3.21)

where �ab is the Kronecker delta. As a result we can evaluate Vab (for a, b = 1, . . . , 6) on
the vacuum, and find

Eigenvalues[Vab] =
1

7
(4F + 2H + 4✏+ 2(H � C))⇥ {7, 1, 1, 1, 1, 1} . (6.3.22)

Since we already require H > C, the stability of the s̃a is granted on any background of the
type we study here. In other words the tachyon that generically plagues de-Sitter string
vacua is making its appearance here in the dilaton-volume sector (i.e. x and y) and not
in the internal space deformations. A possible underlying reason for the positive masses of
the s̃a scalars is that hPai = 0 (where P is the superpotential) so they are in some sense
stabilized in their supersymmetric positions7.

7To construct the total superpotential including the SUSY-breaking sectors one would have to use 3d
nilpotent superfields, see e.g. [151].
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Now let us focus on the explicit x and y stabilization because we will see it gives few
more consistency conditions than our generic discussion, especially due to flux quantization.
For a de Sitter vacuum we ask as before that

V
��
x=0=y

= ✏ =
1

4
(2C + T ) . (6.3.23)

The condition (6.3.23) once combined with the scalar potential readily gives

ey0/2 =
e�

9x0
2
p
7M(1� ✏̃)

7(2⇡)3K (1� 2w)
, (6.3.24)

where we have introduced w, ✏̃ defined through

N
D6

= wMK , ✏̃ = 32(2⇡)2M�2e
p
7x0�y0 ✏ . (6.3.25)

Then for the consistency of the solution (6.3.24) we find that

w < 1/2 . (6.3.26)

The condition @V/@x = 0 can be simplified to give

e4x0/
p
7
= �

2(2⇡)2G2
(1� ✏̃)2

K2 (�2✏̃2 + 4(3 + 14(w � 1)w) + ✏̃(39 + 140(w � 1)w))
, (6.3.27)

where again we have to check the self-consistency of this solution. Since ✏̃ is small, we only
need to satisfy

3 + 14(w � 1)w < 0 ! 0.311... < w < 0.688... , (6.3.28)

with w a rational number. Here we can see the crucial contribution from the anti-D6-
branes: if they are set to vanish then the solution becomes inconsistent. Since we already
have an upper bound on w we find it more convenient to readily set

N
D6

= MK/3 , w = 1/3 , (6.3.29)

which gives

e4x0/
p
7
=

2(2⇡)2G2
(1� ✏̃)2

K2
�
4

9
�

71

9
✏̃+ 2✏̃2

� . (6.3.30)

From (6.3.30) we see that the solution is consistent indeed as long as ✏̃ ⌧ 1. Note that
by setting w = 1/3 we are assuming that MK is an integer multiple of 3. If we chose
different values of w it would still have to be a rational number, and thus we would have
to assume MK to be an integer times a bigger number than 3 which would most probably
be in tension with the tadpole conditions if we stay on the toroidal setup.

Finally, inserting the above conditions into the equation for @V/@y = 0 gives an equa-
tion that we should solve for N

D2
because we have already fixed y0, which gives

N
D2

= 7KG

✓
1

2
�

1

6
p
2

4� 43✏̃+ 18✏̃2
p
4� 71✏̃+ 18✏̃2(1� ✏̃)

◆
. (6.3.31)
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Equation (6.3.31) has a strong impact. Since N
D2

is integer and the values of K and G
are bounded to be rather small due to the tadpole conditions it is essentially impossible
to satisfy (6.3.31) and have ✏̃ ⌧ 1. To see this difficulty let us set ✏̃ = 0 which is the
Minkowski limit, and we get

N
D2

���
Mink.

= 7KG

✓
1

2
�

1

3
p
2

◆
, (6.3.32)

which can never be satisfied for any choice of integers due to the
p
2. Note that one could

choose a different value for w instead of 1/3, but still within the bounds (6.3.28), such that
no

p
2 appears in (6.3.31). In such case one is faced with the problem that the flux quanta

would acquire very large values which is in tension with our toroidal tadpole conditions.
To summarize, here we see that if we had ignored tadpole cancellation or flux quantization
we could not see the inconsistency of this solution.

Before turning to extensions let us see if the x and y masses and the s̃a masses are
positive. From (6.2.7) and (6.3.22) we know that all these positivity condition boil down
to

H > C . (6.3.33)

For the positivity of the x-y masses we also need ✏̃ ⌧ 1 as we have explained. One can
directly verify that H > C by using (6.3.24) as long as 1 > 2w > 0 (which is satisfied for
w = 1/3). Thus we see that our solution guarantees the positivity of the masses.

6.3.3 Beyond the toroidal orbifold

The toroidal orbifold example could only get us this far. However we have learned a few
things from this simple example. For example we have seen that the tachyon lies in the
dilaton-volume sector and not in the s̃a sector, we have seen that we need two sources of
supersymmetry breaking in order to even have a chance of achieving moduli stabilization in
de Sitter, and of course we have seen that a careful consideration of the tadpole conditions
reveals possible inconsistencies.

Let us then discuss how we could go beyond a toroidal orbifold. To address the difficulty
of consistently solving an equation like (6.3.31) one would have to study more general
spaces. Either spaces that allow a much larger range for the flux quanta or spaces that
induce warping to the anti-D2-brane. Indeed, if we had included anti-D2 warping, the
scalar potential would only change in the A term which would become

A =
(2⇡)5

8
(2↵N

D2
� 7KG) e2y0 , (6.3.34)

where ↵ is the effect of the warping. Then our calculations would follow through exactly
in the same way, but instead of (6.3.31) we would have

↵N
D2

= 7KG
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p
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4� 43✏̃+ 18✏̃2
p
4� 71✏̃+ 18✏̃2(1� ✏̃)

◆
⇠

7

4
KG , (6.3.35)
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which means we could easily solve (6.3.35) by assuming an appropriate value for ↵ as
long as N

D2
> 7KG/4 (always for small ✏̃). This small sample calculation we did here of

course does not guarantee that such procedure will work but rather it points to the possible
extensions that may lead to a classically stable 3d de Sitter.

Let us now elaborate on a specific setup for the fluxes. If we assume that somehow we
introduce warping then one can have for example

G = 4 , K = 1 , M = 24 , N
D6

= 8 , (6.3.36)

and
(24)

2 ✏̃ = 10
�4 , ↵N

D2
= 7.40034 , N

D2
= 12 . (6.3.37)

The vacuum energy is now of order 10�24 in string units whereas the x, y, s̃a moduli masses
are all positive and are of order 10

�17. In particular we have for the x� y mass matrix

m2

x�y
=

✓
1.468..⇥ 10

�16
4.085..⇥ 10

�17

4.085..⇥ 10
�17

1.2..⇥ 10
�17

◆
, (6.3.38)

which gives eigenvalues 1.58⇥ 10
�16 and 5.95⇥ 10

�19, whereas the matrix of the s̃a masses
is totally independent (i.e. hV,x,s̃ai = 0 = hV,y,s̃ai) and has eigenvalues of order hV,s̃a,s̃bi ⇠

10
�17 > 0 in agreement with our general discussion. For this example the string coupling

and volume reads

gs = e� = 0.112... , vol(X7) = 1.2669⇥ 10
7 , (6.3.39)

which potentially makes the supergravity approximation reliable. In fact taking into ac-
count the very strict constraints we have here it makes it hard to find other combination
of fluxes in the hope to reduce gs even more to weak coupling. This is of course the Dine–
Seiberg problem that says we cannot expect to be far from a strong coupling, which seems
specific to dS, not AdS [118, 131, 133]. In any case, one should keep in mind that we are
doing a sample computation and one should look into more suitable internal spaces to find
realistic and trustable solutions.

Finally, we face a possible problem that we elaborate on in the next section: generically
it seems that we have

Nanti�brane

flux quanta
> 1 , (6.3.40)

except for the comparison of the anti-D6 with the Romans quanta which gives

N
D6 per 3-cycle

M
=

1

3
. (6.3.41)

In the next section we explain that this may be another source of instabilities implying the
need to for internal spaces that allow larger numbers for the flux quanta.
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6.4 Open string instabilities?

Anti-branes break supersymmetry because they are “anti” with respect to the background
fluxes or orientifolds. With respect to the orientifolds they carry the same charge but op-
posite tension and preserve different supercharges. They are repelled from the orientifolds
both gravitationally and electromagnetically and need to find a position in between the ori-
entifolds where forces cancel out. We have not checked the details of that, but assume such
positions exist due to the compactness of the internal manifold. Even if the anti-branes
find such stable positions, there could still be perturbative instabilities lurking around the
corner. For instance anti-branes can annihilate against surrounding fluxes [89]. This is
possible when fluxes induce opposite brane charges via the transgression terms in type II
supergravity theories

dFq = H3 ^ Fq�2 +Q� , (6.4.1)

where the � denotes a (q+1)-form distribution describing the localized magnetic charge of
(anti-) D(8� q) branes. When that form does not have the same orientation as H3 ^ Fq�2

parts of that background flux can lower their flux quanta together with Q as to preserve
the charge. Heuristically one assumes that some D(8 � q) branes materialized out of the
flux cloud and annihilated with the actual anti-D(8� q) branes. One could think that this
process is always non-perturbative because it requires the nucleation of branes out of fluxes.
But this picture is too heuristic and a more detailed approach, first pioneered by Kachru,
Pearson and Verlinde (KPV) in [89], shows that this process can even be perturbative.
The specific mechanism relies on brane polarization aka the Myers effect aka the dielectric
effect [152]. We will not go in any details about this for the case at hand but instead
draw some basic lessons from known backgrounds with brane-flux instabilities and then
comment on the case at hand.

Let us start with the most well studied example of anti-D3 branes at the bottom of
the Klebanov–Strassler (KS) throat. This was the situation described by KPV [89]. The
bottom of this throat is an S3 with radius squared given by R2

= b2
0
gsM , where b0 is a

numerical factor close to 1 and M is the RR 3-form flux quantum piercing the S3. KPV
found that

N
D3

M
< 0.08 . . . , (6.4.2)

otherwise the anti-branes would decay perturbatively leaving M � N
D3

SUSY D3-branes
behind and one less unit of NSNS flux. Other simple models of anti-branes down throats
come with similar bounds. For instance anti-M2 branes down the “M-theory CGLP throat”
have [153]

N
M2

M
< 0.05 . . . , (6.4.3)

where now M is an F4 flux quantum. Or anti-D6 branes in environments with Romans
mass require [94]

N
D6

M
< 0.5 . . . , (6.4.4)
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where now M is the Romans mass quantum. Note that our torus model has N
D6
/M = 1/3

and so satisfies the inequality but not parametrically.
Note that all these inequalities were derived using brane probe actions in regimes where

it is unclear they should be trusted. Not only due to possible strong coupling effects but
also the classical backreaction of the anti-branes (see [154] for some pioneering work) could
be a worry and potentially enhance the instabilities [155]. However non-trivial evidence
in favor of the probe action results came from the complementary blackfold treatments
carried out in [93,156,157] as well as from arguments pointing to the absence of dangerous
singularities due to backreaction [91, 92, 94, 158]. It is however quite likely that the actual
bounds are a bit more strict than the probe results.

From the inequalities (6.4.2), (6.4.3) and (6.4.4) one could be tempted to think that in
general perturbative brane flux annihilation for anti-Dk branes is prevented if

N
Dk

Nflux
< � , (6.4.5)

where Nflux is some NSNS or RR flux integer8, N
Dk

is the number of anti-Dk branes and
� some specific number. We believe that (6.4.5) is morally correct but there is no general
formula for �. It will be highly dependent on the specific example, the details of the
manifold, the fluxes, etc. For instance anti-branes as defined earlier can be completely
stable against brane-flux decay in AdS backgrounds [159–161]. In general we expect � to
depend non-trivially on the values of the stabilized moduli and this is why a case by case
analysis is necessary. So it is impossible for us to discuss the general constraints from
brane-flux decay until we have a specific model in which the closed string tachyons are
absent after quantization of fluxes is taken into account. As we argue in this analysis our
torus example at least has shown there is no fundamental reason to expect tachyons to be
present in more involved models, unlike the situation with classical dS vacua without anti-
branes [149,162]. In what follows we will stick to explaining why we expect a dependence of
� on stabilized moduli. The only exception being the case of anti-D6 branes where (6.4.4)
seems independent of details. Our strategy will be to use the most well-studied example
of anti-D3 branes and demonstrate how moduli dependences creep into �.

We start with demonstrating gs dependences. For instance in [163] anti-D3 decay in
the “S-dual” KS throat9 was studied. This decay is against RR fluxes instead of NSNS
fluxes and find

gsND3

K
< 0.08 . . . , (6.4.6)

with K the NSNS flux quantum. Furthermore there will be a dependence on the size of the
cycle that harbors the anti-brane. In the examples of warped throats this is not obvious
since the cycles at the tip are localized cycles and do not change their volume when the
overall volume of the compactification manifold adjusts. So in models without anti-branes

8The flux quanta should either coming from fluxes piercing the cycle that harbors the anti-brane or is
“Poincaré dual” to it.

9This is the weakly coupled supergravity solution obtained by S-dualizing the KS solution and then
dialing to small coupling.
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living near deformed conifolds there is a dependence. Using the KPV computation we can
compute this by keeping the cycle size L arbitrary. From the brane-polarization potential
in [89] one then finds that

⇡

✓
N

D3

M

◆

max
= arccot

✓
L2

gsM

◆
�

1

2
sin

✓
2arccot

✓
L2

gsM

◆◆
. (6.4.7)

So when L2
= b2

0
gsM we will find (6.4.2), but if the cycle size is set by different effects

one can easily infer that large volume and small coupling enhances the decay. This simple
observation shows that using anti-branes that do not live at the bottom of warped throats
generated by deformed conifolds, is risky. In fact the above formula even suggests the
problems worsen at weak coupling and large volume. Hence, similar to our discussion
about closed string stability we are led to inserting anti-branes in warped throats from
desingularized conifolds since then these complicated dependences might be washed away.
Most studies on brane-flux decay assume there are no “compactification effects” on the
brane-flux decay when the throats are inserted in compact spaces. Although this is still
somewhat unclear and preliminary results can be found in [164, 165]. Interestingly other
compactification effects exist on stability when throats are inserted in compact spaces, see
for instance [22,166–169].

We have used anti-D2 branes and anti-D6 branes. Given the existence of smooth
supersymmetric G2 holonomy throats with D2 charges that cap off in a finite S4 [88], we
expect (in analogy with the KS throat) that also compact G2 manifolds can have such
throats. The probe computation for brane-flux decay of anti-D2 branes has not yet been
carried out10 and is somewhat obscured by having to use the self-dual 3 forms on the IIA
NS5 brane. We expect the computation to go along the lines of [170] and give a maximal
value of ND2

Nflux
of a few percent, just like for anti-D3 branes (6.4.2) and anti-M2 branes

(6.4.3). This will then lead to a new problem for our 3d de Sitter vacua. Since equation
(6.3.35) implies

N
D2

G
= 7K↵�1

✓
1

2
�

1

6
p
2

4� 43✏̃+ 18✏̃2
p
4� 71✏̃+ 18✏̃2(1� ✏̃)

◆
, (6.4.8)

we will have to increase ✏̃ such that the value of N
D2
/G drops and the system is safe

from such decays (in our discussion until now we always assumed ✏̃ ⌧ 1). However, we
know that increasing ✏̃ may lead to tachyons. Indeed, from (6.3.25) we have ✏̃ = 2✏/C and
combined with (6.2.8) we find that an absence of tachyons requires (up to order ✏̃2)

✏ < C
H � C

39C + 4H
< 1 !

✏̃

2
<

H � C

39C + 4H
. (6.4.9)

From now on we work only up to linear order in ✏̃. This will turn out consistent since we
will verify we need ✏̃ < 0.012. Indeed, using the properties of our solution and in particular
(6.3.24) we have

H =
9

7
(1� 2✏̃)C +O(✏̃2) . (6.4.10)

10But results about the backreaction do exist at first order in the SUSY-breaking charge [90].
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Then the no-tachyon condition (6.4.9) reads
4� 36✏̃

309� 72✏̃
� ✏̃ > 0 . (6.4.11)

One can see that the condition (6.4.11) gives small values for ✏̃ which essentially lead to large
values of N

D2
/G from (6.4.8). This tension is depicted in figure (6.2). To conclude, let us

0.01 0.02 0.03 0.04 0.05 0.06 e
é

-0.5

0.5
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1.5

2.0
Nanti-D2êG

Figure 6.2: The behavior of the ratio N
D2

/G in units of K↵�1 that determines brane-flux decay.
The smaller the ratio the more certain one can be there is no decay. The region to the right of the
vertical red line suffers from closed string tachyons.

translate our findings in terms of F4 flux quanta G. We have here a rather striking interplay
between the parameters and the instabilities they relate to: trying to avoid brane-flux decay
we have to increase G which in turn works against a tachyon-free vacuum. Instead a small
G leads to tachyon-free vacua but then such vacua are jeopardized by brane-flux decay. So
it seems that in our tachyon-free setup the fraction N

D2
/G is order one, and far well above

in case there is warping. This however could be due to our isotropic way of stabilizing
fluxes. We have not considered an alternative stabilization, but one would have to study
different internal spaces that would naturally point towards a non-isotropic setup. It would
be interesting to push this further and try to check whether this tension can somehow be
relaxed.

Note that anti-D6 branes, wrapping 4d cycles will probably extend in the whole bulk.
But it seems that the arguments of [94] leading to (6.4.4) are model independent, although
the actual bound might be tighter than (6.4.4) due to backreaction. We have shown that
in our model we could obey the bound (6.4.4), but not parametrically.

6.5 Outlook

We have shown that 3d flux compactifications of massive IIA supergravity with fluxes,
O2/O6 and anti-D2/anti-D6 sources are an interesting environment for classical dS model
building for multiple reasons:
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• The standard tachyons (or better: reasons for tachyon) in classical dS vacua [149,
150, 162] seem absent for generic models. However flux quantization in the simplest
toroidal model does lead to tachyons. As we argued throat models in which the anti-
D2 branes have warped down tensions should be safe from this in case the throat can
be long enough. The existence of such throats is inferred from the actual construction
for non-compact G2 spaces [88].

• The internal manifold can be Ricci flat and our understanding of the moduli problem
is better for such manifolds.

• If warping can be present one can achieve “border-line” numbers for the string cou-
pling (order 0.1) and for the volume (order 107 in string units)11.

Note that anti-D6 uplifts have been found to be useful in 4d compactifications as well.
For instance [171, 172] claims they lead to a dS landscape but the construction involves
a mixture of racetrack potentials and classical fluxes and it is unclear whether it is truly
top down. On the other hand, reference [141] added anti-D6 branes to the classical vacua
of [130] and found the tachyons were absent. But the problem of large coupling and
small volume persists. What we suggest in this analysis is that 3d compactifications allow
classical solutions with better numbers and with flat internal spaces. Even more, if we use
models with local throats the flux quantization problems we encountered seem alleviated.

If the no-dS conjecture is correct the problem with this scenario for constructing dS
solutions can come from multiple directions, which could actually work against each other.
Maybe the issues we noticed with flux quantization bringing one away from the meta-
stable minimum persist. Although as we argued, at the same level of precision of the uplift
procedure in KKLT one could argue that sufficiently large throats can do the job. We gave
an explicit example around equation (6.3.35) with very mild warping where already a meta-
stable minimum was reached. A different problem with these vacua that could enforce the
no-dS Swampland conjecture is the open string stability. We argued that the conditions
for open string stability would be of the form (6.3.40). We have explicitly verified that the
stability of the anti-D6 was satisfied in case we can trust existing probe results [94] but
that the stability of the anti-D2 is a worry due to equation (6.4.8), although no concrete
brane-flux decay computation is carried out in lack of a concrete model without closed
string tachyons after flux quantization. At this point it makes sense to assume that the
no-dS conjecture would actually be enforced from the open-string sector once the closed-
string sector seems stable. So dS model building continues to share many analogies with
the “whack-a-mole” game.

11So the radii of the separate circles are order 10.
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Chapter 7

Three-dimensional vacua in Type IIB

7.1 Introduction

As shown in the previous chapters, Type II on G2 holonomy manifolds seem to offer the
possibility to scrutinize swampland conjectures. Here we pursue this direction further by
working instead with manifolds with G2-structure thus non-zero internal curvature. There
is an extended bibliography on flux compactifications with G2-structure, for example 4d
vacua have been studied in [47, 61, 173–176] and 3d vacua of Heterotic strings have been
studied for example in [177, 178]. A simple deviation from G2 holonomy is co-calibrated

G2-structures, which will be our main focus. As we will see, since we want to reduce the
amount of preserved supersymmetry to the minimum, i.e. N=1 in 3d, Type IIB offers
a preferred framework, compared to Type IIA, due to the fact that O5/O9 planes are
naturally compatible with the co-calibrated G2-structure.

In the rest of this work we first present the background geometry and then perform
a direct dimensional reduction of Type IIB supergravity on toroidal orbifolds with co-
calibrated G2-structure. We then work out the 3d superpotential and verify our findings
via an appropriate S-duality. As an application, we study moduli stabilization within the
3d EFT framework which yields supersymmetric AdS3 vacua. We also consider a related
setup involving brane-supersymmetry-breaking (BSB) that has been developed and studied
for example in [179–185], which allows for non-supersymmetric Anti-de Sitter as well as
de Sitter vacua. For the de Sitter vacua we study first only the volume-dilaton sector and
we see that stable critical points are allowed, however when we also switch-on the shape
moduli we find that they pose a threat to stabilization in de Sitter. In addition, in all cases
we find that scale-separation is in tension with certain quantization conditions.
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7.2 Type IIB on toroidal orbifolds

7.2.1 Co-calibrated G2-structures and twisting the torus

We again restrict our attention to the simplest toroidal example where X7 = T 7/(Z2⇥Z2⇥

Z2) which is a seven torus orbifolded under the action of the Z2 involutions in Eq.(3.2.4).
The orbifold group is � = {⇥↵,⇥�,⇥�} and therefore one automatically has to take into
account the combined involutions

⇥↵⇥� : (y1, . . . , y7) ! (+y1,+y2,�y3,�y4,�y5,�y6,+y7) ,

⇥�⇥� : (y1, . . . , y7) ! (�y1,�y2,+y3,+y4,�y5,�y6,+y7) ,

⇥�⇥↵ : (y1, . . . , y7) ! (+y1,�y2,+y3,�y4,�y5,+y6,�y7) ,

⇥↵⇥�⇥� : (y1, . . . , y7) ! (�y1,+y2,+y3,�y4,+y5,�y6,�y7) .

(7.2.1)

The above involutions allow us to twist the torus by introducing non-zero (geo)metric
fluxes ⌧ i

jk
6= 0 which introduce non-trivial components of the curvature and thus deviate

from holonomy to G2-structure. We follow the steps of [47, 175] and twist the torus à la

Scherk–Schwarz [186]. For the twisted torus one replaces the straight differential forms dyi
with twisted one-forms dyi ! ⌘i which satisfy the Maurer–Cartan equation

d⌘i =
1

2
⌧ i
jk
⌘j ^ ⌘k . (7.2.2)

where ⌧ i
jk

1 describes a twisting of the direction i over the directions j and k, hence named
twisted torus. This means we also have twisted vielbeins

ei = ri⌘i , (7.2.3)

and in particular in the previous expressions one does the replacements dyijk ! ⌘ijk and
dyijkl ! ⌘ijkl. From the Scherk–Schwarz reduction the geometric flux is constrained by

⌧ i
ji
= 0 , ⌧ l

[ij
⌧m
k]l

= 0 . (7.2.4)

These conditions restrict the possible ⌧ l
ij

values. In particular the specific orbifold group
further projects out the torsion classes W7 and W14, therefore the structure equations in
Eq.(3.1.12) become

d� = W1 ? �+W27 ,

d ? � = 0 ,
(7.2.5)

which is the case of co-calibrated G2-structures due to the closure of ?�. This actually
happens because the eliminated torsion classes, which were one- and two-forms, were not

1The geometric fluxes have an algebraic interpretation where for each ⌘
i there exist a dual tangent

vector z
i in the following way ⌘

i = B
i
j(y)dyj ! zi = (B�1)ji@/@y

j where can be interpreted as the
structure constants of a Lie algebra [zi, zj ] = ⌧

l
ijzl.
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invariant under the orbifold action. The Betti numbers, which depend on the presence of
Wi, now coincide with those of the G2 holonomy case

b0(X7) = 1 , b1(X7) = 0 , b2(X7) = 0 , b3(X7) = 7 , (7.2.6)

and this means that the torsion class W27 can be expanded in the fundamental basis  i,
which will be important for our calculations later.

In addition, following [47], we can also define the geometric flux matrix

Mij =

Z

7

�i ^ d�j , (7.2.7)

such that d�i =
P

j
Mij j. The values of Mij depend on the coefficients ⌧ i

jk
in the

following way

Mij =
1

2

0

BBBBBBBB@

0 �⌧ 7
5,6

�⌧ 7
3,4
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+⌧ 2
4,6

+⌧ 1
3,6
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3,5

�⌧ 7
5,6

0 +⌧ 7
1,2

+⌧ 3
2,5

�⌧ 3
1,6

�⌧ 4
2,6

�⌧ 4
1,5

�⌧ 7
3,4

+⌧ 7
1,2

0 +⌧ 6
2,4

+⌧ 5
1,4

�⌧ 5
2,3

+⌧ 6
1,3

+⌧ 1
4,5

+⌧ 3
2,5

+⌧ 6
2,4

0 �⌧ 3
4,7

+⌧ 1
2,7

+⌧ 6
5,7

+⌧ 2
4,6

�⌧ 3
1,6

+⌧ 5
1,4

�⌧ 3
4,7

0 �⌧ 5
6,7

�⌧ 2
1,7

+⌧ 1
3,6

�⌧ 4
2,6

�⌧ 5
2,3

+⌧ 1
2,7

�⌧ 5
6,7

0 +⌧ 4
3,7

�⌧ 2
3,5

�⌧ 4
1,5

+⌧ 6
1,3

+⌧ 6
5,7

�⌧ 2
1,7

+⌧ 4
3,7

0

1

CCCCCCCCA

. (7.2.8)

With the use of this matrix one can show that

W1 =
1

7vol(X7)

X

i,j

siMijs
j
=

1

7

 
Y

k

sk
!�1/3X

i,j

siMijs
j , (7.2.9)

which gives an exact expression for the W1 torsion class in terms of the moduli si and the
geometric fluxes.

7.2.2 O5-planes and O9-planes

Now we turn the discussion to the relation of the orientifolds and the orbifold group �. In
the previous sections we worked with Type IIA and space-filling O2-planes, however now
the presence of both torsion and O2-planes is forbidden by the Maurer–Cartan equation,
which automatically sets the structure constants to zero and brings us back to G2 holonomy.
Thus one can only get N>1 Type IIA vacua with the presence of both O2-planes and
internal curvature induced by twisting the torus.

Here instead we will focus on Type IIB where we can have O3, O5, O7 and O9-planes.
Due to the lack of one-cycles and five-cycles in co-calibrated G2 the O3-planes and O7-
planes are excluded in our setup. Therefore we focus on the O5-planes and O9-planes
which as we will see fit nicely within the co-calibrated G2 setup. For the O5-planes, we
choose the calibration for the source current to be proportional to the associated four-form

J4(O5) ⇠

X

i

 i , (7.2.10)
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i.e. O5-planes wrap three-cycles inside the G2 space that need to be calibrated in a
supersymmetric manner, if one wants to achieve a 3d supergravity. In this way the O5-
plane involutions match with the orbifold group �. Then the O5-planes sit at the fixed
points of the involutions (3.2.4) and their positions are shown in the following diagram

y1 y2 y3 y4 y5 y6 y7

O5↵ – – – – ⌦ ⌦ ⌦

O5� – – ⌦ ⌦ – – ⌦

O5� – ⌦ – ⌦ – ⌦ –
O5↵� ⌦ ⌦ – – – – ⌦

O5�� ⌦ – – ⌦ ⌦ – –
O5�↵ ⌦ – ⌦ – – ⌦ –
O5↵�� – ⌦ ⌦ – ⌦ – –

Table 7.1: Localized positions and warped directions by the O5-planes. In contrast to the
Type IIA setup, the O5-planes are interpreted simply by the � group involutions.

Similarly to the O6-plane analysis, the “⌦” symbol denotes the directions on the internal
X7 manifold spanned by the O5-plane worldvolume, while the “�” denotes the “localized”
(modulo smearing) positions (i.e. 0 and 1/2) of the O5-planes, related to the wrapped
cycles by Hodge duality. This gives the following currents

j↵ = �e1234 , j� = �e1256 , j� = e1357 , (7.2.11)

and also j↵�, etc. One can also deduce the smeared contribution of the O5-planes to the
three-dimensional effective action. For example, for the ↵� three-cycle

j↵�
vol(↵�)4

=
e3456

r3r4r5r6
=  1 , (7.2.12)

we would have

SO5 ⇠

Z

O5↵�

p
�g6 =

Z

3

p
�g3

Z

3�cycle

p
g3 =

Z

3

p
�g3

Z

�1

?j↵� =

Z

3

p
�g3s

1 . (7.2.13)

We will give the exact and more compact form of (7.2.13) in the next section.
We see that the O5-planes are compatible with the G2 involutions. However, we should

also ask that when we combine the O5-plane involutions �(O5) with the G2 then the
generated involution is also due to a physical object. In other words we always ask the
images of Op-planes to be Op-planes. For example if we take

�(O5↵)⇥� : ⌘i ⌘ �(O5↵�) : ⌘
i , (7.2.14)

we verify that the web of O5-planes is generated. Now, there are six non-trivial combina-
tions that generate all the O5-planes even if we assumed the existence of only one of them,
but there is also a combination that leads to the identity. That is

�(O5↵)⇥↵ : ⌘i ! ⌘i , (7.2.15)
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which has to be identified as an involution arising from an Op-plane. Clearly the only can-
didate is the O9-plane, which is also 10d space-filling, and can be mutually supersymmetric
with the O5-planes. To this end we have

�(O5↵)⇥↵ : ⌘i ⌘ �(O9)⌘i . (7.2.16)

This means our setup really resides in Type I string theory. Naturally, the configuration
must also include a suitable number of D9-branes, resulting in an open string sector, which
we will largely ignore in this work. Alternatively, we could consider a similar setup with
O5- and O9+-planes resulting in the brane-supersymmetry-breaking scenario [183]. We
will return to this case in section 7.5.

7.2.3 The scalar potential from 10d

Since we plan to perform a dimensional reduction of Type IIB on a background that
includes Op-planes we now discuss the possible background fluxes we can introduce and
the field content of the 3d effective theory. We will need to discuss only the bosonic sector
as the fermionic sector is fixed by supersymmetry. The latter, because of the O5-planes on
top of the G2 and the O9-planes, is left with only two independent Killing spinors, that is
we have 3d N=1 local supersymmetry

Type IIB supercharges : 32
O9-plane – Type I
����������! 16

� orbifold
������! 2 real . (7.2.17)

The gravity sector will essentially include the 3d external metric gµ⌫ and the seven si

moduli that parametrize the twisted torus radii. We will further split them into the overall
volume modulus v and the unit-volume deformations s̃i (which we will often refer to as
shape moduli). These seven moduli, together with the dilaton �, form the full set of eight
real scalar moduli that will enter the 3d theory. Indeed, other scalar moduli would only
arise from the reduction of the RR fields or the NS two-form and we will outline now why
they are not a part of the 3d effective theory.

We will follow again [123] for the rules of the parities of the various fields

even : F1, F5, H3, H7 ,

odd : F3, F7 ,

and we focus explicitly on the parities under the O5-planes. First we note that the H3 has
to be odd and so does the H7 and since there is no odd three-form basis to expand H3 on
(or a seven-form to expand H7), the H flux has to vanish. In addition the co-calibrated
toroidal G2 has no one- or two-cycles (the Betti numbers are given by (7.2.6)) and so
the 3d fluctuations of the B2 NS gauge two-form are truncated. Now we turn to the RR
sector. The C0 RR field, which would be a scalar, is odd under the O5-plane and so its 3d
fluctuations are truncated. The F1 flux cannot be part of the background as there are no
one-cycles. The C2 RR field is even under the O5-plane, however, due to the lack of one- or
two-cycles it does not give rise to vector or scalar fluctuations in 3d. In addition, two-forms
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in 3d are auxiliary fields and so they only contribute via their three-form background flux.
Indeed, the three-form RR flux F3 can have non-vanishing values. The F3 is even under
the O5 parity and therefore can be expanded on the basis of the even forms �i, whereas
the F7, which is also even under O5, will just be proportional to the volume form of the
internal space. Finally the C4 is odd under O5 parity and since there are no odd three- or
four-cycles it does not give rise to any 3d fluctuations. In addition, its F5 flux would need
to be expanded in a basis of odd five-forms which do not exist in the co-calibrated G2. As
a result F5 (and C4) are completely truncated. This verifies that the 3d supergravity will
only have the seven radii of the torus together with the dilaton � as scalar moduli.

The (pseudo) action for the Type IIB supergravity in the Einstein frame is given by
the sum of the NSNS and the RR parts bellow

SNS =
1

22
0

Z
d10X

p
�G
⇣
R�

1

2
@M�@

M��
1

2
e��

|H3|
2

⌘
,

SRR =
1

22
0

Z
d10X

p
�G
⇣
�

1

2

X

n

e
5�n
2 �

|Fn|
2

⌘
,

(7.2.18)

where n runs over 1, 3 and 5. The Born–Infeld part of either of the Dp-brane or Op-plane
actions in the Einstein frame is

Sloc = µp

Z
e

p�3
4 �
p
�gp+1 , (7.2.19)

where the tension of the local object is µp > 0 for Op-planes and µp < 0 for Dp-branes.
We will give momentarily the details about the Bianchi identities that are related to the
couplings of these objects to the RR fields.

We can now perform a direct dimensional reduction down to 3d. In 10d Einstein frame,
our reduction Ansatz for the metric is written in Eq.(4.3.17)where v is a 3d scalar that
accounts for the compactification volume and hence eds

2

7
is the metric on a unit-volume G2

space. The world indices then break into external and internal respectively as M = (µ,m),
where µ = 0, 1, 2 and m = 1, . . . , 7. The potential energy contributions to the three-
dimensional action, that arise after the compactification from the ten-dimensional action
considering the reduction Ansatz, are

VR = �R̃(7) e�2�ve2↵v ,

Vflux =
1

2
|Fq|

2 e
5�q
2 �e2�v(

7
2�q)e3↵v ,

VDp/Op = �µp e
p�3
4 � e2�v(

2p�11
4 )e

5
2↵v ,

(7.2.20)

where the Ricci scalar of the co-calibrated G2 internal space is

R̃(7)
=

21

8
W̃ 2

1
�

1

2
|W̃27|

2 , (7.2.21)
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Note however that
p
g̃ = 1. Now with the specific choice of numbers

↵2
= 7/16 , � = �

1

4
p
7
, �7� = ↵ , (7.2.22)

we find canonical kinetic terms for the volume-dilaton in three dimensions Eq.(4.3.18).
Let us now recall that the only background RR fluxes that we can switch on due to the
O5-plane truncation (or the parity restrictions) are given by

F7 = �G dy1234567 , F3 =

X

i

f i
�i , (7.2.23)

which are consistent with tadpole cancellation, since H3 = 0 and

dF7 = 0 , dF3 6= 0 . (7.2.24)

The latter holds due to the co-calibrated G2-structure which gives rise to torsion. Because
of that, the Bianchi identity for the F3 is satisfied as

dF3 = �µO5J4(O5) , no D5-branes . (7.2.25)

As a result such background does not require D5-branes for the cancellation of the O5-plane
source even though the NS H-flux is identically vanishing. In the presence of D5-planes
the Bianchi identity (again for H3 = 0) becomes

dF3 = �µO5 J4(O5)� µD5i J4(D5i) , (7.2.26)

where µO5 > 0 and µD5i < 0, and we readily identify the O5-plane/D5-brane charges with
their tension (up to the dilaton factors) because they are supersymmetric BPS objects.
Here we indicate with J4(D5i) the source current for the D5-branes wrapping the i-th
4-cycle. Even though the tadpole cancellation is seemingly possible without the use of
D5-branes, namely as in (7.2.25), as we will see when we turn to explicit examples we will
often need to use (7.2.26). For a review of the Type IIB ingredients we have used here see
e.g. [67].

One may be worried about dF3 6= 0 because it implies the existence of magnetic sources
and that the F3 is not closed any more, which means that there can be inconsistencies if
in our theory a bare C2 RR field also appears. However, it is important to appreciate that
Type IIB supergravity does not have an honest Lorentz invariant Lagrangian, and as a
result the full information of the consistent reduction is captured by the 10d equations of
motion and the 10d tadpole conditions. In these equations the C2 in fact does not appear,
it is indeed introduced only after one solves the tadpoles with the condition dF3 = 0. Then
the effective pseudo-action for Type IIB can be written down which will also include the
C2. However, a priori one only has a set of 10d equations of motion and Bianchi equations
to solve. In our approach we first make sure we satisfy these conditions in the internal
space and then we look directly at the resultant 3d effective theory.
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7.3 The 3d N=1 superpotential

7.3.1 The scalar potential of 3d N=1 supergravity

Now we will construct the superpotential for the 3d N=1 supergravity by matching with
the scalar potential that we derived from dimensional reduction in the previous parts.
Since we want to have a 3d Einstein frame with the conventional 1/2 factor in front of the
Hilbert–Einstein term, we perform a Weyl rescaling of the external 3d space metric of the
form

gfrom dim. reduction
µ⌫

=
1

4
⇥ gin 3d N=1 supergravity

µ⌫
. (7.3.1)

This brings the kinetic terms for the scalar moduli and the scalar potential from the
dimensional reduction to the form

e�1
Lkin =

1

2
R3 �

1

4
@v@v �

1

4
@�@��

1

4
vol(X̃7)

�1

Z

7

�i ^ ?̃�j@s̃
i@s̃j �

1

8
V dim. red. , (7.3.2)

where we set the 3d Planck scale to unit and V dim. red. is the scalar potential from the direct
dimensional reduction. We use the tilde “⇠” symbol to denote that the internal metric
used is now the unit-volume one, and the internal metric shape moduli (s̃i) are also the
ones corresponding to the unit-volume. We will see momentarily exactly how this works.

In general, once we are given the kinetic terms of a 2-derivative 3d N=1 supergravity
theory, the scalar potential is uniquely fixed by the superpotential, the latter being a real
function of the scalar multiplets. In contrast to 4d N=1 here the superfields are real and
so the superpotential is also real. In addition the scalar manifold is only required to be
Riemannian and there is no pre-potential required to generate it. To be precise, the scalar
sector of 3d N=1 supergravity has the form

e�1
Lscalar =

1

2
R3 �GIJ@'

I@'J
�
�
GIJPIPJ � 4P 2

�
, (7.3.3)

where 'I are the various real scalar moduli, the real function P ('I
) is the superpotential,

and PI = @P/@'I . For our setup, the moduli are 'I
= (s̃i, v,�), and therefore the scalar

potential has the form

V = GIJPIPJ � 4P 2
= GijPiPj + 4P 2

v
+ 4P 2

�
� 4P 2 , I = i, v,� , (7.3.4)

where Gij is the inverse of 1

4
vol(X̃7)

�1
R
7
�i ^ ?̃�j and

Pi =
@P

@s̃i
, Pv =

@P

@v
, P� =

@P

@�
. (7.3.5)

Note that the s̃i satisfy the condition

vol(X̃7) = 1 =

 
Y

i

s̃i
!1/3

, (7.3.6)
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and therefore for our toroidal orbifold we find explicitly

Gij =
1

4
vol(X̃7)

�1

Z

7

�i ^ ?̃�j =
�ij

4(s̃j)2
. (7.3.7)

We can solve the condition (7.3.6) by setting

s̃7 =
6Y

a=1

1

s̃a
, (7.3.8)

which we will often invoke throughout this work and in the examples later. Then (7.3.7)
should not be used as the true scalar manifold metric for the s̃a scalars. Instead we have
to take into account that @µs̃7 also contains derivatives with respect to the @µs̃a. Therefore
from (7.3.3) once we take into account (7.3.7) and (7.3.8) we find

G̃ab =
1 + �ab
4 s̃as̃b

, a, b = 1, 2, 3, 4, 5, 6 , (7.3.9)

such that Gij@s̃i@s̃j ⌘ G̃ab@s̃a@s̃b. This matrix should be used when one wants to canoni-
cally normalize the scalars.

Let us now discuss an important technical point about the way that we evaluate the
scalar potential from the superpotential. We first take the derivatives of the superpotential
with respect to the unrestricted s̃i, and then, after all derivatives have been evaluated,
we impose the condition (7.3.6). This procedure is completely consistent because of the
specific properties of our superpotential, otherwise such procedure would not preserve
supersymmetry. In particular it was proven in previous section that a sufficient condition
for doing this is

GijPi

Z
�j ^ ?̃�̃ = 0 , (7.3.10)

which we will see is always satisfied by our superpotential. In particular, when (7.3.10)
holds then the condition (7.3.6) is fully supersymmetric in the sense that once we act on
the latter with a supersymmetry transformation it also eliminates the fermion superpartner
of the extra scalar and also the extra auxiliary field. In fact the condition (7.3.10) also
guarantees that

P (si) ⌘ P (s̃i) , (7.3.11)

where the si are the original seven moduli of the G2 that describe the internal metric
deformations

si = vol(X7)
3/7s̃i = e3�vs̃i . (7.3.12)

As a result, due to (7.3.11), we can present our superpotentials in terms of si instead of s̃i to
avoid cluttering, when possible, and without jeopardizing the result. However when we act
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with s̃i derivatives we have to recast them in terms of s̃i first and then take derivatives. We
also stress once more that because we performed a 3d Weyl rescaling after the dimensional
reduction we will have

V (7.3.4) from 3d N=1 superpotential
=

1

8
⇥ V from dim. reduction . (7.3.13)

This means we multiply the scalar potential found from the dimensional reduction with
1/8 to match to the scalar potential we get from the superpotential calculation. In this
way the supersymmetric theory (7.3.3) will agree with (7.3.2).

In the rest of this section we will present the total superpotential P in three steps: First
we will present the superpotential that corresponds to the internal curvature contribution,
then the one that corresponds to the F3 flux, and then the one that corresponds to the F7

flux. Since we essentially guess these contributions, we only need to check them by match-
ing with the respective terms in the dimensional reduction scalar potential. Moreover, we
will see that these three contributions to the superpotential can be combined without gen-
erating additional terms in the scalar potential, except one, which reproduces precisely the
scalar potential term from the calibrated and smeared O5-planes (and possibly D5-branes).
This cross-term is generated from the mixing of the internal curvature superpotential with
the superpotential for F3. Crucially it is the F3 that is used in the tadpole cancellation
conditions in the 10d supergravity and relates directly to the consistent incorporation of
the O5-planes. This means that 3d N=1 supergravity is somehow aware of the 10d tadpole
cancellation conditions and automatically takes them into account.

7.3.2 Superpotential from geometric flux

The superpotential for the internal curvature, i.e. the geometric flux, is

PR
=

1

16
e�8�v

Z
� ^ d� vol(X7)

� 6
7 . (7.3.14)

From (7.3.14) we directly see that

PR

v
= �

�

2
PR , PR

�
= 0 . (7.3.15)

For the derivatives with respect to s̃i we have

PR

i
=

e�8�v

16

⇣Z
�i ^ d�̃ vol(X̃7)

� 6
7 +

Z
�̃ ^ d�i vol(X̃7)

� 6
7

⌘

�
e�8�v

16

⇣
6

7

Z
�̃ ^ d�̃ vol(X̃7)

� 13
7 (vol(X̃7))i

⌘
,

(7.3.16)

where �̃ = s̃i�i and we have d(A3 ^ B3) = dA3 ^ B3 � A3 ^ dB3. Then we use the third
relation in Eq.(4.3.26) and the identity

�i ^ d�̃ = �̃ ^ d�i , (7.3.17)
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which bring the derivative of the superpotential with respect to s̃i to the form

PR

i
=

1

8
e�8�v

⇣Z
�i ^ d�̃�

R
?̃�i ^ �̃R
?̃�̃ ^ �̃

Z
�̃ ^ d�̃

⌘
vol(X̃7)

� 6
7 . (7.3.18)

We stress that the second formula in (7.3.17) is not an integration by parts, rather it is an
exact algebraic identity. From this we can also deduce

PR

i
=

1

8
e�8�v

Z

7

�i ^ W̃27 vol(X̃7)
� 6

7 , (7.3.19)

where W̃27 = W27(s̃i) (and we will similarly use W̃1 shortly). This equation means that
W27 sources the supersymmetry breaking due to torsion and that if it vanishes then the PR

i

vanish identically. A more extensive account of the properties we used here can be found
in the previous sections, from which one can also prove that (7.3.18) satisfies (7.3.10). Now
we insert the three pieces PR

i,v,�
into the formula (7.3.4) and obtain

V R

���
vol(X̃7)=1

=
1

8
e�16�v

⇣
�

21

8
W̃ 2

1
+

1

2
|W̃27|

2

⌘
= �

R̃7

8
e�16�v , (7.3.20)

which is exactly the desired result. Note that this corresponds to the Ricci scalar found
in [187], but here we write it in the notation of [47], and also it is automatically multiplied by
the correct volume prefactor that appears from the dimensional reduction. As a technical
remark, in deriving (7.3.20) we needed to contract (7.3.18) with Gij, and to do this we
have used in various instances the identity

Gij

Z
�i ^ A

Z
�j ^ B =

4

7

Z
�̃ ^ ?̃�̃

Z
?̃A ^ B , (7.3.21)

which can be checked by expanding A = ?̃�iAi and B = ?̃�iBi (see e.g. [61]). For example,
this identity was used to derive

Gij

Z
�i ^ d�̃

Z
�j ^ d�̃ =

4

7

Z
�̃ ^ ?̃�̃

Z
?̃d�̃ ^ d�̃

= 4

⇣
W̃ 2

1

Z
�̃ ^ ?̃�̃+

Z
W̃27 ^ ?̃W̃27

⌘

= 28W̃ 2

1
+ 4|W̃27|

2 . (7.3.22)

Here of course we have considered that d�̃ is expanded in the basis  i, otherwise (7.3.21)
cannot be used.

7.3.3 Superpotential from RR flux

The superpotential for F3 takes the form2

P F3
= �

q

8
e�10�v+

�
2

Z
?� ^ F3 vol(X7)

� 4
7 , q = ±1 . (7.3.23)

2From the Type I perspective one could say that F3 here is in fact F̃3 = F3 �
1

4
(!YM � !L), but we

largely ignore here the open string sector in any case.
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The role of q and the ambiguity in choosing it is physical and reflects the ambiguity, from
the 3d supergravity point of view, of introducing O5- or anti-O5-planes. In this section we
will be working with O5-planes and we will see shortly how the sign of q can be fixed by
matching with the potential from dimensional reduction.We can again directly evaluate

P F3

v
= �10�P F3 , P F3

�
=

1

2
P F3 , (7.3.24)

and

P F3

i
=

q

8
e�10�v+

�
2

⇣Z
�i ^ ?̃F3 �
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?̃�i ^ �̃R
?̃�̃ ^ �̃

Z
�̃ ^ ?̃F3

⌘
vol(X̃7)

� 4
7 . (7.3.25)

Note that (7.3.25) satisfies (7.3.10) as anticipated. We can also provide an alternative
expression that has the form

P F3

i
=

q

8
e�10�v+

�
2

Z

7

�i ^ ?̃⇡
27
(F3) vol(X̃7)

� 4
7 , (7.3.26)

where ⇡27
(F3) denotes the projection of F3 to the 27 representation of G2. Then we insert

all these pieces into (7.3.4) and through a similar calculation as the one of the previous
subsection we find

V F3

���
vol(X̃7)=1

=
1

16
e�20�v+�

Z

7

?̃F3 ^ F3 , (7.3.27)

which is exactly the contribution to the scalar potential from the RR flux F3. Note that we
took into account that q2 = 1 to get to this form. In addition, we are implicitly assuming
F3 = f i

�i which means

dF3 = f id�i with d�i 6= 0 , (7.3.28)

due to torsion. However, d(?̃F3) = 0 because our G2 is co-calibrated, i.e. d(?̃�i) = 0.
Since we have introduced and verified both PR and P F3, it is now a good time to

combine them and uncover the O5-plane/D5-brane contribution to the scalar potential.
To this end let us take

PR+F3
= PR

+ P F3 . (7.3.29)

Once we insert (7.3.29) into (7.3.4) we have

V R+F3
= V F3

+ V R
+ 2GIJPR

I
P F3

J
� 8PRP F3 , (7.3.30)

where the form of the cross-term is
�
2GIJPR

I
P F3

J
� 8PRP F3

� ���
vol(X̃7)=1

=
q

8
e�18�v+

�
2

Z

7

⇣
W̃1 ?̃�̃ ^ F3 + W̃27 ^ F3

⌘
. (7.3.31)
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This contribution has to be matched with the O5-plane/D5-brane contribution in the
effective potential (7.2.20). We will now see how exactly this happens. First recall that
each of the O5-planes wrap one internal three-cycle and therefore their currents wrap the
dual four-cycles. Therefore for the total O5/D5 contribution we have

SO5 + SD5s =
1

8
e�/2

X

3�cycles

(µO5 + µD5i)

Z

3D⇥ 3�cycle

p
�g6

=
1

8
e�/2

X

3�cycles

Z

3d⇥ 3�cycle

p
�g6

Z

4�cycle
(µO5 + µD5i)J4(O5)

�
,

(7.3.32)

where the 1/8 factor comes from the 3d Weyl rescaling (7.3.1), and in going to the second
line we have assumed a normalized integration over the four-cycles in the covering space
such that

Z

ith 4�cycle
J4(O5) = 1 =

Z

ith 4�cycle
J4(D5i) . (7.3.33)

Let us stress that we are here explicitly ignoring open string moduli related to the D5s,
which we assume to be fixed on their supersymmetric positions,otherwise we would have
to include them in (7.3.32) - we leave this interesting development for a future work. Now
we take into account that for each 6D integral that covers the 3d external space and one
internal three-cycle we have

Z
p
�g6 =

Z

3d

p
�g3

Z

3-cyc.

p
g3 =

Z

3d

p
�g3

Z

3-cyc.
� = e3�v+3↵v

Z

3d

p
�g̃3

Z

3-cyc.
�̃ ,

(7.3.34)

which gives

SO5/D5 =
1

8
e

�
2+3�v+3↵v

Z

3d

p
�g̃3

X

3-cycles

Z

3-cycle
�̃

Z

4-cycle
(µO5 + µD5i)J4(O5)

�
. (7.3.35)

To proceed it is instructive to work out the contribution for a specific three-cycle, and then
recombine all the contributions including the other cycles. For example, for i = 1, we have

SO5/D5(i=1) =
1

8
e�18�v+

�
2

Z

3d

p
�g̃3 s̃

1

Z

3-cyc.
�1

Z

4-cyc.
(µO5 + µD5(i=1))J4(O5)

=
1

8
e�18�v+

�
2

Z

3d

p
�g̃3

Z

7

(s̃1 �1) ^ J4(O5)(µO5 + µD5(i=1))

=�
1

8
e�18�v+

�
2

Z

3d

p
�g̃3

Z

7

(s̃1 �1) ^ dF3 .

(7.3.36)

The last step can be checked by acting with “ s̃1�1^” on (7.2.26). We then perform this pro-
cedure for the other six three-cycles and sum over the results to get the total contribution.
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Taking into account that
P

i
s̃i�i = �̃, we conclude that

SO5/D5 =

X

i

SO5/D5i = �
1

8
e�18�v+

�
2

Z

3d

p
�g̃3

Z

7

�̃ ^ dF3 . (7.3.37)

In addition we have that

�̃ ^ dF3 = d�̃ ^ F3 = W̃1 ?̃�̃ ^ F3 + W̃27 ^ F3 , (7.3.38)

where the first equality follows from �̃ ^ F3 ⌘ 0. Then we conclude that the total contri-
bution of the smeared O5-planes/D5-branes to the effective 3d potential is

V O5/D5
=

1

8
e�18�v+

�
2

Z

7

⇣
W̃1 ?̃�̃ ^ F3 + W̃27 ^ F3

⌘
, (7.3.39)

which matches exactly with the extra term in (7.3.30) for

q = 1 . (7.3.40)

Note that we could in principle split F3 as F3 = F3A+F3B with F3A 6= 0 such that dF3A = 0

but instead dF3B = �µO5J4(O5)� µD5iJ4(D5i), which would “free” one part of the F3 flux
from the tadpole condition.

Finally, for the F7 flux (which is of Freund–Rubin type) the superpotential contribution
is

P F7
=

1

8
G e�14�v��

2 , (7.3.41)

where G is a real constant related to the F7 flux (7.2.23). Then we evaluate the contribution
to the scalar potential which gives

V F7
=

1

16
G
2e�28�v�� . (7.3.42)

The superpotential exponential �14�v��/2 is compatible with the other exponentials and
does not produce any new cross-terms. Note that we could have “±G” in (7.3.41), but only
one of the two would correspond to the 10d reduction with F7 = �G dy1234567, the other
one would correspond to F7 = +G dy1234567. This ambiguity is fixed by S-duality which
chooses the “+” sign as we will see momentarily. We conclude that the full superpotential
that describes the dimensional reduction is given by PR

+ P F3
+ P F7, and reproduces the

3d effective scalar potential (without the brane-supersymmetry-breaking term) which one
can find by adding the contributions (7.3.20), (7.3.27), (7.3.39) and (7.3.42), and reads

V = V R
+ V F3

+ V O5/D5
+ V F7

= �R0(s̃
i
)e�16�v

+ F0(s̃
i
)e�20�v+�

+ T0(s̃
i
)e�18�v+

�
2 +G0e

�28�v�� ,
(7.3.43)
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with the coefficients given by

R0 =
R̃7

8
=

1

64

 
X

i,j

s̃iMij s̃
j

!2

�
1

16

X

i,j

s̃iMij s̃
j
X

m

s̃mMmj s̃
j , (7.3.44)

and

F0 =
1

16

X

i

⇣f i

s̃i

⌘2
, T0 =

1

8

X

k,l

f l
Mlks̃

k , G0 =
G
2

16
. (7.3.45)

7.4 Supersymmetric vacua

7.4.1 Supersymmetry cross-check

As a cross-check of the superpotential of the 3d theory, as well as the overall approach,
we would like to verify that the 3d vacua that we will find truly describe supersymmetric
configurations of the 10d theory. Because of the Op-plane truncations, the preservation of
supersymmetry on our background boils down to the supersymmetry Killing equations that
arise from Type I string theory with FYM = 0, which can in turn be related to Heterotic
string theory via S-duality. Earlier work on Heterotic string flux compactifications [178],
has shown that backgrounds with

H(HET)

3
=

1

6
W1�� ?W27 , d�(HET)

= 0 , (7.4.1)

are supersymmetric. In other words H(HET)

3
⌘ T (�) is identified with the full antisymmetric

G2 torsion (3.1.11). In [178] the W7 is also present and relates to the dilaton via d�(HET)
=

2W7, however, the specific orbifolding we use for our twisted torus projects it out, such
that we are strictly working with a co-calibrated G2. In addition an external component
of the H(HET)

3
flux is also allowed to be switched on, and is also related to the G2 torsion.

The vacuum condition for the external H(HET)

3
flux is

H(HET - ext)
��

= �
7W1

6
ea
�
eb
�
ec

✏abc , (7.4.2)

where ea
�

are the external drei-beins and ✏abc is the tangent space full antisymmetric symbol.
This means ea

�
eb
�
ec

✏abc is indeed a tensor. Two comments are in order here. First, note that

in [178] there is an overall factor en that relates the gravitino mass to the superpotential
via m3/2 = enP . Here we have implicitly set it to unit, that is we have n = 0, because in
our case the gravitino mass is given directly by m3/2 = P on supersymmetric AdS as seen
from (8.1.9). Secondly, in (7.4.2) we have not performed any additional Weyl rescalings,
therefore it is still written in the original Heterotic string frame.

To match with Type I string backgrounds we perform an S-duality, which for the string
frame fields is (see e.g. [2])

H(HET)

3
! F3 , �(HET)

! �� , g(HET)

MN
! e��gMN , �! e�3�/2

� , ?�! e�2� ? � ,
(7.4.3)
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and also affects the G2 torsion classes as

W1 ! e�/2W1 , W27 ! e�3�/2W27 . (7.4.4)

Therefore on a Type I supersymmetric background one would have the condition e�F3 =
1

6
W1�� ?W27 for the internal background flux and the condition e�F (ext)

3
= �

7W1
6

p
g3 dt^

dx ^ dz for the external background flux, with t, x and z being the external space coor-
dinates.The background dilaton value would still satisfy d� = 0. Then, going to Einstein
frame gMN = e�/2g(E)

MN
, we find

e
�
2F3 =

1

6
W1�� ?W27 , e

�
2F (ext)

3
= �

7W1

6

p
g3 dt ^ dx ^ dz , d� = 0 . (7.4.5)

From the condition on the external F (ext)
3

we find the required vacuum condition on F7 to
be

F7 = �e� ?10 F
(ext)
3

=
7W1

6
e

�
2
p
g7 dy1234567 , (7.4.6)

taking into account that e(5�n)�/2Fn = (�1)
(n�1)(n�2)/2 ? F10�n for n > 5. Finally these

conditions become

e
�
2F3 =

1

6
W1�� ?W27 , e�

�
2 G = �

7W1

6
vol(X7) . (7.4.7)

We conclude that the conditions (7.4.7) should hold for a supersymmetric vacuum of the
(Einstein frame) Type I theory and we will re-derive them from our superpotential by
requiring PI = 0. This is a non-trivial cross-check.

We recall that the total superpotential in our setup (we choose q = 1) reads

P =
G

8
e�14�v��

2 �
1

8
e�10�v+

�
2

Z
?� ^ F3 vol(X7)

� 4
7 +

1

16
e�8�v

Z
� ^ d� vol(X7)

� 6
7 .

(7.4.8)

We vary P with respect to the volume modulus v and the dilaton � and we require Pv =

0 = P�, which, after some manipulation, give

G e��/2
+

13

7
e�/2

Z
?� ^ F3 = W1vol(X7) , e�/2

Z
?� ^ F3 =

11

7
G e��/2

+ 3W1vol(X7) .

(7.4.9)

Combining these two equations yields two conditions. First we find

6

7
e��/2

G = �W1vol(X7) , (7.4.10)

which matches exactly with the second condition in (7.4.7), and we also find

7

6
W1vol(X7) = e�/2

Z
?� ^ F3 , (7.4.11)
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which matches exactly with the first condition in (7.4.7) once we act on it with
R
?�^ (·),

taking into account that
R
?� ^ � = 7vol(X7). Now we take the condition

@P

@s̃i
= 0 , (7.4.12)

where i = 1, . . . , 7. This condition is sufficient to guarantee that @P/@s̃a = 0, where
a = 1, . . . 6 are the true independent s̃a moduli. This happens because the unit-volume
restriction can be solved as s̃7 =

Q
6

a=1
(s̃a)�1 as we discussed earlier. The supersymmetry

condition (7.4.12) gives
Z
�i ^W27 = �e�/2

Z
?�i ^ ⇡

27
(F3) . (7.4.13)

Note that @P/@s̃a = 0 would at first sight correspond to only six equations, so one can
wonder why in (7.4.13) we have seven equations. In fact the six @P/@s̃a = 0 equations can
only be solved once they are expanded in the �i basis. The latter contains seven linearly
independent elements and as a result the six @P/@s̃a = 0 equations will eventually yield
7 equations (which are exactly (7.4.13)). Therefore, since the �i are a complete basis, we
can deduce

?W27 = �e�/2⇡27
(F3) . (7.4.14)

This equation matches exactly with the ⇡27 part of the first equation in (7.4.7), taking into
account that ⇡27

(?W27) ⌘ ?W27. Interestingly we see that W27 can exist on a supersym-
metric vacuum as long as it is cancelled by ⇡27

(F3). This is in contrast to reductions of
M-theory on co-calibrated G2 structures, where supersymmetry requires weak G2 holon-
omy, i.e. W27 = 0 [47].

Let us note at this point that the Type IIB background we have been considering
contains smeared O5-planes, but interestingly, we see an exact match with the Heterotic
supersymmetric background. This is a non-trivial check for the validity of the effective
theory derived from the smeared solution and implies that there should be an underlying
full solution in Type IIB where the orientifold sources are localized. Indeed, there are
instances where the smearing can be “OK” [67,69,70]. We leave the interesting exercise of
finding the underlying un-smeared solutions for the future.

7.4.2 Conditions for Minkowski and AdS

We can now examine the possibility of achieving full moduli stabilization and determine
the required conditions thereof. From the conditions on the vacuum, that is equations
(7.4.7), we find that the vacuum energy of a supersymmetric background is given by

V
���
SUSY

= �
G
2

16
e��vol(X7)

�4 . (7.4.15)
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From (7.4.15) we see that a Minkowski background would require G = 0, which from (7.4.7)
implies also that hW1i = ⇡1

(F3) = 0. In other words, for a Minkowski vacuum we find the
conditions

SUSY Minkowski : G ⌘ 0 , hW1i = 0 =

DZ
� ^ ?F3

E
. (7.4.16)

However we can still have non-trivial background flux and W27 torsion, as long as (7.4.14)
is satisfied, which in fact also tells us that unless W27 6= 0 the dilaton is not stabilized. Let
us now go through the moduli stabilization on Minkowski in more detail. Because of the
properties of the vacuum conditions it is more convenient to work directly with the si (and
the dilaton of course), instead of treating the s̃a and the volume independently. Taking
into account that F3 = f i

�i, the last equation in (7.4.16) gives
X

i

f i

si
= 0 , (7.4.17)

which for the moment fixes one of the 8 moduli (� and si). Additionally, the condition
W1 = 0 gives an equation of the form

W1 = 0 !

X

i,j

siMijs
j
= 0 , (7.4.18)

which fixes one more of the seven si moduli. Equation (7.4.14) now, due to (7.4.16), reduces
to

d� = �e�/2 ? F3 , (7.4.19)

where we omit the VEV symbols, since they are implied. Then (7.4.19) gives

X

i

siMij = �e�/2
 
Y

k

sk
!1/3

f j

(sj)2
, (7.4.20)

which seemingly amounts to 7 vacuum conditions. Note however that (7.4.20) combined
with (7.4.17) gives (7.4.18), which means one of the seven equations of (7.4.20) is already
trivially satisfied. We therefore conclude that (7.4.20) provides only six additional equa-
tions, which are however enough to fix the positions of the dilaton and the five remaining si

moduli. Clearly since this is a supersymmetric Minkowski vacuum, the absence of tachyonic
instabilities is granted from supersymmetry.

Simple Minkowski vacua can be provided by the 2-step nilpotent examples of [47] which
in our case read

M =

0

BBBBBBB@

0 � � � �� �� ��

� 0 0 0 0 0 0
� 0 0 0 0 0 0
� 0 0 0 0 0 0
�� 0 0 0 0 0 0
�� 0 0 0 0 0 0
�� 0 0 0 0 0 0

1

CCCCCCCA

, (7.4.21)
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and we choose the values of F3 and G to be

f i
= (0, f, f, f,�f,�f,�f) , G ⌘ 0 . (7.4.22)

The Minkowski vacuum can be found for the values

s̃i = 1 , f = �e�
1
14 (

p
7v0+7�0)� . (7.4.23)

We also notice that when the s̃i are fixed on their vacuum values (7.4.23) but � and v are
left free the scalar potential (7.3.43) takes the form

V |s̃i=1 =
3

8
e

4vp
7

⇣
e

1
14 (

p
7v+7�)f + �

⌘2
, (7.4.24)

which is consistent with (7.4.23) and also indicates the existence of at least one flat direc-
tion. This should not be confused with no-scale vacua because here hP i = 0. Naturally,
evaluating the determinant of the mass matrix, we find it to be vanishing.

Let us now turn to AdS supersymmetric vacua. Here we allow P 6= 0 and therefore we
do not have to set G to vanish. As a result, the conditions (7.4.10) and (7.4.11) directly
fix the dilaton and the volume fixed in terms of the six remaining independent si moduli.
Indeed we find

e��
= �G

�1

Z
?� ^ F3 , (7.4.25)

and

vol(X7)
2
= �

✓
6

7W1

◆2

G

Z
?� ^ F3 . (7.4.26)

Then the seven conditions (7.4.14) fix the six remaining si. However, since they are readily
contained in the first equation in (7.4.7), we can work directly with the latter. We can
recast in fact the first equation in (7.4.7) to take the form

6G ? F3

7W1vol(X7)
+

7

6
W1 ? � = d� , (7.4.27)

which then explicitly gives seven equations once we expand on the  i basis. After some
manipulations these equations read

6G

si

 
f i

si
�

7X

k=1

fk

sk

!
=

⇣P
m,n

smMmnsn
⌘

(
Q

l
sl)1/3

X

j

sjMji , (7.4.28)

and should be solved in terms of the si. Clearly (7.4.28) (or equivalently (7.4.27)) describes
only six independent equations due to the condition (7.4.26)that is satisfied by the volume.
We conclude that the RR and geometric fluxes give the possibility to stabilize all 8 moduli
on a supersymmetric AdS3 vacuum.
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An example for the matrix Mij (this is a specific instance of the SO(p, q) ⇥ U(1)

example of [47]) that leads to full moduli stabilization is

M =

0

BBBBBBB@

0 0 0 h 0 0 m

0 0 0 h 0 0 m

0 0 0 �h 0 0 m

h h �h 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
m m m 0 0 0 0

1

CCCCCCCA

, (7.4.29)

and we further assume that there exists a supersymmetric AdS vacuum at the positions

hs̃ii = 1 , h�i = �0 , hvi = v0 . (7.4.30)

To find this solution we start by evaluating P� = 0 on the Ansatz (7.4.30) and find that it
is solved by

G = �e�0� v0p
7

 
X

i

f i

!
. (7.4.31)

Similarly, we can evaluate Pv = 0 and using (7.4.31) and the Ansatz (7.4.30) to find

3

 
X

i

f i

!
e

�0
2 +

v0
2
p
7 = h+ 3m. (7.4.32)

This determines the explicit values for �0 and v0.Then from the expressions @P/@s̃i = 0,
for i = 1, . . . , 7, we get a series of equations which we simply satisfy by assigning the
appropriate values to the f i. Once we make use of the Ansatz and the conditions (7.4.31)
and (7.4.32) the solutions read

f 1
= f 2

= �
2

3
e�

�0
2 � v0

2
p
7 h ,

f 3
=

4

3
e�

�0
2 � v0

2
p
7 h ,

f 4
= �

1

3
e�

�0
2 � v0

2
p
7 (2h� 3m) ,

f 5
= f 6

=
1

3
e�

�0
2 � v0

2
p
7 (h+ 3m) ,

f 7
=

1

3
e�

�0
2 � v0

2
p
7 (h� 6m) .

(7.4.33)

One can also evaluate the vacuum energy which is given by

hV i = �
1

144
e

4v0p
7 (h+ 3m)

2 . (7.4.34)
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In general the above Ansatz/solution has full moduli stabilization on supersymmetric AdS
because

det[m2
] 6= 0 . (7.4.35)

For example, for a specific setup we can have

�0 = �3 , v0 = �33
p
7 , h = 1 , m = �1 , (7.4.36)

which gives large volume and weak string coupling, and we can easily verify numerically
that

hV i < 0 , Eigenvalues[m2
] > 0 , (7.4.37)

which guarantees a full moduli stabilization. Note however that if we take h = 3 instead
of h = 1 then we obtain a Minkowski solution with det[m2

] = 0.

7.4.3 Indication for scale separation

Let us now discuss the possibility of having scale separation in the supersymmetric AdS
vacua. The scalar potential in our setup has the form

V = F0 e
�20�v+�

� R0 e
�16�v

+ T0 e
�18�v+

�
2 +G0 e

�28�v�� , (7.4.38)

where F0 = |F3|
2/16, G0 = G

2/16, T0 = �µO5/8 and R0 = R7/8. Once we minimize
(7.4.38) we find the vacuum values v0 and �0, and the vacuum energy is given by (7.4.15).
To study the scale separation we follow closely the steps of the previous sections, which
means we ask that we can have flux values such that there is a limit where

L2

KK

L2

⇤

= e16�v Vvac ! 0 . (7.4.39)

Here LKK is the Kaluza–Klein scale that characterizes the internal space, and L⇤ is the
scale that characterizes the external 3d Anti-de Sitter space.

To this end we consider a scaling limit where G0 ⇠ Na and F0 ⇠ Na+2b as N ! 1 and
we demand that each term in the potential has the same scaling behavior. Equating the
scaling for the internal and external flux terms implies

Na+2be��20�v
⇠ Nae���28�v

=) N�2be�8�v
⇠ e2� ⌘ N2p , (7.4.40)

which leads to

Vvac ⇠ Na+6p+7b , T0 ⇠ Na+p+
5
2 b , R0 ⇠ Na+2p+3b , e16�vVvac ⇠ Na+2p+3b . (7.4.41)

The fact that R0 has the same scaling as e16�vVvac, means that in order to achieve scale
separation, we need to be able to take R0 small. We can also see that T0

2
⇠ R0F0,

consistent with the supersymmetric origin of the O5-plane term.
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In principle we expect our scaling limit to correspond to some large value for the fluxes.
However,the tadpole condition dF3 = �µO5J4 means thatthe only possible consistent scal-
ing we can have is

T0 ⇠ F0 ⇠ R0 ⇠ N0 , (7.4.42)

making scale separation impossible due to flux quantization.
Thus, to achieve scale separation we have to first cancel the tadpole in such a way that

the fluxes are not restricted neither from the Bianchi nor from the torsions. This will allow
them to take parametrically large or small values independently. As a result we include
D5s such that for the tadpole of the form (7.2.26) we get

dF3 = 0 = �µO5 J4(O5)� µD5 J4(D5) , (7.4.43)

where we recall that µO5 > 0 and µD5 < 0, but we keep the F3 flux to non-vanishing values,
that is F3 6= 0 and F7 6= 0. This can be achieved by taking

X

i

f id�i = 0 , (7.4.44)

which can have non-trivial solutions due to the freedom in choosing the torsion. Returning
to the scalar potential, which is now missing the contribution from the O5-plane as it is
cancelled by the D5-branes, we have

V = F0 e
�20�v+�

� R0 e
�16�v

+G0 e
�28�v�� . (7.4.45)

Note also that the supersymmetric minimization with respect to � and v is bound to give
(7.4.15), that is

hV i = �
G
2

16
e��0vol(X7)

�4
= �G0e

�28�v0��0 . (7.4.46)

This also guarantees that our moduli stabilization is consistent and non-tachyonic. Equiv-
alently one can vary the scalar potential with respect to the volume and the dilaton to
get

3G0 e
�28�v��

= R0 e
�16�v , F0 e

�20�v+�
= G0 e

�28�v�� , (7.4.47)

which are consistent for this setup and give again the supersymmetric vacuum energy
(7.4.46). To obtain scale separation, we take the scaling3

R ⇠ N�2 , F3 ⇠ N0 , F7 ⇠ N0 . (7.4.48)

Asking that all the terms in the scalar potential scale in the same manner, we get

V ⇠ N�6 , gs = e� ⇠ N�1 , vol(X7) = e7�v ⇠ N
7
4 . (7.4.49)

3Small values for the torsion can be also used, as in [188] and [132], to get de Sitter vacua. For
constraints on geometric fluxes see e.g. [189].
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Then we finally get
L2

KK

L2

⇤

= e16�v V ⇠ N�2 . (7.4.50)

We conclude that achieving parametric scale separation requires taking the internal cur-
vature R7 to extremely small but positive values. Note that in this limit we remain at
weak string coupling and large volume, and are therefore well within the regime of validity
of the supergravity approximation. Since the s̃i should be fixed to finite values (other-
wise the volume becomes singular), requiring small internal curvature means we have to
tune the structure constants in the twisted torus. However, this requirement can run into
tension with quantization conditions on the structure constants [189], potentially making
parametric scale separation impossible for the types of compactifications considered here.
For further discussion on the intricacies of achieving scale separation in string theory see
e.g. [17, 25–31, 56, 59, 71, 113]. Note in particular that in [27] the difficulty to get scale
separation in Type IIB vacua has been anticipated.

7.5 Brane supersymmetry breaking

7.5.1 Introducing anti-D9-branes

Until now we have worked with O5-planes which due to the orbifold involutions gave
rise to an image O9-plane, that is an object with negative tension and with charge with
opposite sign than that of a D9-brane. However, instead of a conventional O9-plane one can
consider a so-called “O9+”-plane which has positive tension, and charge with the same sign
as that of a D9-brane. Then the RR tadpole for the O9+-plane is now to be cancelled by
16 anti-D9-branes. This combination of O9+/D9s is the so-called brane-supersymmetry-
breaking (BSB) setup (a very recent review can be found in [183]). The gauge theory on
such setup is USp(32), and because both the anti-D9-brane and the O9+ have positive
tensions, these add up and give a non-vanishing dilaton-dependent vacuum energy. In
addition supersymmetry on the world-volume of this system is spontaneously broken and
non-linearly realized. In particular the vacuum energy in the 10d Einstein frame has the
form

V10d-BSB = B0 e
3
2� . (7.5.1)

In [181, 182] for example the coefficient B0 is specified to be B0 = 64T9, where T9 is the
D9-brane tension up to the e

3
2� dilaton factor, as in (7.2.20). Once we perform a direct

dimensional reduction by inserting our metric Ansatz (4.3.17) it becomes in 3d

V3d-BSB = B0 e
�14�v+

3
2� . (7.5.2)

To embed this new term in the 3d superpotetnial we have to include a real scalar nilpotent
superfield [151], let us call it X, which satisfies

X2
= 0 . (7.5.3)
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As in 4D (see e.g. [190]) such nilpotent superfields tend to rise the vacuum energy and
capture the effects of anti-branes. The modification to the GIJ metric to account for the
coupling of X to 3d supergravity will be GXX = 1 and GXi = GXv = GX� = 0, whereas
the superpotential contribution is

PBSB
=

p
B0 X e�7�v+

3
4� . (7.5.4)

Let us stress that this non-linearity is intrinsic and it is inherited directly by the non-linear
supersymmetry of the 10d BSB theory [179–182].

With the inclusion of the BSB term the total scalar potential for the volume-dilaton
sector, i.e. ignoring the s̃a or assuming they are stabilized, reads

V = F0e
�20�v+�

+G0e
�28�v��

+ T0e
�18�v+

1
2� � R0e

�16�v
+ B0e

�14�v+
3
2�

⌘ F +G+ T �R +B .
(7.5.5)

With F0,G0,B0 � 0 and T0  0 and we temporarily change notation such that F =

V F3, G = V F7 etc. for visual convenience in the equations below. A critical point of this
potential satisfies

4F + 14G+ 5T � 6R =0 ,

2F � 2G+ T + 3B =0 .
(7.5.6)

Which allows us to express the vacuum energy as

Vvac =
B

2
�G . (7.5.7)

The dependence of the vacuum energy only on two terms instead of three is remarkable.
Solving (7.5.6) for different pairs of terms and substituting back into the potential results
in an apparent dependence on all three remaining terms. However, note that the potential
with only F, T,R terms would result in a no-scale or runaway potential, and thus vanishing
vacuum energy, while the other terms give additive corrections to the scalar potential,
without generating cross-terms. In other words, the cosmological constant is ultimately
determined solely by the interplay of Freund–Rubin-type fluxes (F7) and supersymmetry
breaking terms. The reason internal fluxes do not contribute to the cosmological constant
appears to be that satisfying the tadpole condition by O5 planes generates precisely the
right tension to cancel their contribution. This is in line with the observation that although
O-planes appear to evade the usual supergravity de Sitter no-go theorems [191,192], once
the flux they source is taken into account, the total stress-tensor does not produce a positive
contribution to the vacuum energy [193].4

4From (7.5.7) we also see why one cannot get de Sitter vacua from Type I by simply adding anti-D5-
branes, and instead we have to switch to the BSB setup to be able to even discuss such possibility. The
fact that one may need two types of supersymmetry breaking sources to get classically stable de Sitter
vacua was already alluded to in our previous dS analysis and as we will see we will need here both anti-D5s
and anti-D9s as well, once we discuss the shape moduli stabilization.
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While in the case of the Freund–Rubin term (7.3.41) the lack of additional cross-terms
is justified by supersymmetry, with the BSB term, this amounts to ignoring backreaction
from the anti-branes and therefore constitutes an important caveat to the analysis. It is
possible that additional backreaction terms in the spirit of [194] are present. Nonetheless,
let us press forward and explore the possibility of de Sitter minima of this potential. The
mass matrix eigenvalues are

m2

± =
1

7

✓
20G� T � 2B ±

p
88B2 � 3B(8G+ T ) + (8G+ T )2

◆
, (7.5.8)

which are positive when

B < 8G , T <
12B2

+ 8BG� 48G2

B � 8G
. (7.5.9)

Note that this in principle allows for a positive vacuum energy when

2G < B < 8G =) 2 <
B0

G0

e14�v+
5
2� < 8 , (7.5.10)

with the lower inequality giving positive energy, while the upper inequality guaranteeing
(meta-) stability. Note however that this imposes a relation between the stabilized values of
the dilaton and the volume. Finally, our findings are consistent with [185] because we have
O5-plane sources. However the final verdict on the existence of such de Sitter vacuum can
only be made after we stabilize the s̃a moduli and we take into account flux quantization.

As in the supersymmetric case, we can consider a scaling limit where G0 ⇠ Na and
F0 ⇠ Na+2b as N ! 1 and we demand that each term in the potential has the same
scaling behavior. This once again determines the scalings

Vvac ⇠ Na+6p+7b , B0 ⇠ Na+p+
7
2 b , T0 ⇠ Na+p+

5
2 b , R0 ⇠ Na+2p+3b ,

(7.5.11)

which lead to
B0

G0

e14�v+
5
2� ⇠ N�b , e16�vVvac ⇠ Na+2p+3b , (7.5.12)

where we note that b 6= 0 means that we inevitably violate (7.5.10) as N ! 1. This means
that we need F0 ⇠ G0 to preserve the stable de Sitter vacua. As before, R0 has the same
scaling as the scale-separation parameter, e16�vVvac, so we need to be able to take it small
to achieve parametric scale separation, conflicting with the quantization of geometric flux.
Furthermore, b = 0 also ensures that B0 and T0 have the same scaling, which we expect
due to both terms arising from branes.

In fact we may further demand T0 ⇠ B0 ⇠ N0, which requires p = �a and R0 ⇠ Np.
This does indeed become small at large internal volume and weak coupling, yielding scale
separation, but being in tension with quantization of the structure constants of the internal
manifold.
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On the other hand, if we don’t demand parametric scale-separation, i.e. R0 ⇠ N0 then
we have B0 ⇠ T0 ! 1 in our scaling limit. This, however is also unacceptable since
the magnitude of B0 is fixed.5 Thus despite the scalar potential appearing to have de
Sitter critical points, string theory does not seem to allow for parameter values such that
these critical points appear at large internal volume and weak coupling, where this scalar
potential is trustworthy.6

7.5.2 Explicit examples of 3d de Sitter solutions?

Actually, achieving full moduli stabilization including the s̃a is challenging, and we do not
have a systematic way of tackling this question. However it is instructive to see first if
we can generate the de Sitter vacua with the co-calibrated G2 geometry we have at hand
following the methodology we also followed in our previous example with de Sitter in Type
IIA. This does not give the most general de Sitter solution but it offers a simple way to
obtain it. First we want to stabilize the s̃a in their “autonomous” supersymmetric positions,
which means supersymmetric position of s̃a which do not require to fix the other moduli.
From (7.4.14) we see that we would need

W27 = 0 , ⇡27
(F3) = 0 , (7.5.13)

such that the dilaton VEV is kept free and is to be determined independently. In addition
the equation W27 = 0 can be also solved independent of the volume modulus. Indeed
taking into account that si = e3�vs̃i, equation W27 = 0 takes the volume-independent form

X

i

s̃iMij �
1

7

⇣X

m,n

ŝmMmns̃
n

⌘
1

s̃j
= 0 ,

Y

i

s̃i = 1 . (7.5.14)

Then we notice that due to the structure of the scalar potential, even when it includes the
BSB term, we have

@P

@s̃a

���
(7.5.14)

= 0 !
@V

@s̃a

���
(7.5.14)

= 0 . (7.5.15)

This is because of the properties (7.3.15) and (7.3.24), but also (G��
)a = (Gvv

)a = 0, and
of course from (7.3.41) we automatically have P F7

a
⌘ 0. Therefore we can find vacua where

the shape moduli are stabilized at their autonomous supersymmetric positions, and then
we need only to stabilize the volume and the dilaton. This is exactly how the stabilization
happens in Chapter 6. Now let us see if under the assumptions (7.5.13) we can get de
Sitter. We do not have to go into details, only check if the conditions we derived for de
Sitter solution still hold. From (7.5.6) and (7.5.7) we see that

R = �F �G� 5Vvac , (7.5.16)
5This situation is similar to [133], where weakly coupled, large volume 4d dS compactifications of

massive Type IIA appear to require large numbers of O6 planes.
6A similar effect can be observed directly in gauged 4D N=2 supergravity [195].
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which means de Sitter critical points exist only for R̃(7) < 0. In contrast to the latter,
we see that (7.5.13) (or (7.5.14)) dictates R̃(7)

� 0. We conclude that there do not exist
any de Sitter critical points that can be found with the method we followed in Chapter 6.
As we said this does not exclude the possible existence of de Sitter, however it does leave
much less room for it.

The fact that the shape moduli interfere with the construction of de Sitter solutions has
been also discussed for example in [149, 168]. Indeed we believe that our example shows
exactly how fixing the shape moduli into their “autonomous” supersymmetric positions
creates problems to finding de Sitter. In other words, if we had the shape moduli fixed
in such autonomous supersymmetric positions and then we tried to uplift the vacuum to
de Sitter we would force them to move out of these supersymmetric positions, and so the
stabilization procedure would have to be worked out from scratch. We conclude that one
should not ignore the stabilization of shape moduli during the uplift, nor take it for granted
when searching for realistic examples.

One could try to construct de Sitter vacua with the shape moduli in their supersym-
metric positions by including also anti-D5-branes. Let us see what would happen if we
included such objects - assuming momentarily they can be included consistently in our
setup. Their contribution to the Bianchi identity would be

dF3 = �µO5 J4(O5)� µD5i J4(D5i) + µD5i
J4(D5i) , (7.5.17)

where µD5i
< 0, and the brane action (ignoring open string moduli) is

SD5s
=

1

8
e�18�v+

�
2

Z

3d

p
�g̃3

X

3-cycles

Z

3-cycle
�̃

Z

4-cycle
µD5i

J4(D5i)

�
. (7.5.18)

Once we also take into account the O5-planes contributions to the 3d action, the net effect
leads to the typical “doubling” of the anti-D5 terms due to (7.5.17). As a result, on top of
all the previous contributions we had until now, we also have the additional term

2⇥ V D5
= 2⇥

1

8
e�18�v+

�
2

X

i

µis̃
i , µi = �µD5i

> 0 . (7.5.19)

Then the total scalar potential is

V = V BSB
+ V R

+ V F3
+ V F7

+ V O5/D5
+ 2V D5 . (7.5.20)

Note that here V O5/D5 refers to the same contribution we had in (7.3.43). If one wanted to
assign to the smeared O5-plane its honest correct contribution it would be V O5

�V D5
+V D5,

and this the reason for the “doubling” of V D5 in (7.5.20) as well as the cancellation of the
D5-brane contribution. Assuming now that s̃7 = 1/

Q
a
s̃a, then we can have compatibility

with an isotropic critical point of the shape moduli by requiring

s̃a = 1 , µi = µ > 0 . (7.5.21)
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However here we would directly run into two problems if we wanted to get a de Sitter
solution with our prescription from the previous section. First of all the term (7.5.19)
evaluated on the (7.5.21) critical point clearly affects only the T0 term in the volume-
dilaton scalar potential. Therefore it cannot change the fact that critical points still require
R̃(7) < 0 which as we said is not possible to achieve with the autonomous shape moduli
stabilization. The second problem we would run into is that the tadpole (7.5.17) in the
presence of a background with dF3 = 0 (which will probably be forced on us by the
requirements (7.5.13)) will require various D5-branes for the cancellation of the O5-plane
charge. Then clearly we cannot easily add anti-D5-branes as such system will be typically
be inherently unstable.

As a means to escape the aforementioned issues we could still include anti-D5-branes
but instead this time not ask that the shape moduli to be stabilized in their autonomous
supersymmetric positions. This gives some more freedom in the construction and allows
to find de Sitter critical points, albeit possibly inconsistent once flux quantization is taken
carefully into account. However, here we want to give a general overview/exposition of
the possibilities rather than proving the existence of a bona fide stable de Sitter solu-
tion. We will therefore be more liberal with the flux quantization and brane/plane tension
constraints, but will still require basic self-consistency. In particular we do not include
D5-branes, such that there is no obvious instability, and we also want to satisfy the tad-
pole condition (7.5.17), without D5s. Taking into account that dF3 =

P
ij
f j
Mij i, the

tadpole takes the form
X

j

f j
Mij + µi = �µO5 < 0 , 8 i . (7.5.22)

This is forced on us by the fact that the Op-planes have the same contribution to each cycle
tadpole and therefore, since we do not have D5-branes, we need all tadpole contributions
related to dF3 and µi to take the same value - otherwise the existence of D5-planes is
implied. We shall work with the geometric fluxes that give rise to a matrix of the form
(this is a specific choice of 2-step nilpotent example of [47])

M =

0

BBBBBBB@

0 m m m m m m

m 0 0 0 0 0 0
m 0 0 0 0 0 0
m 0 0 0 0 0 0
m 0 0 0 0 0 0
m 0 0 0 0 0 0
m 0 0 0 0 0 0

1

CCCCCCCA

, (7.5.23)

and with F3 flux of the form

f i
= a (1,!,!,!,!,!,!) . (7.5.24)

The shape moduli are stabilized at the positions

s̃i =
⇣
!� 6

7 ,!
1
7 ,!

1
7 ,!

1
7 ,!

1
7 ,!

1
7 ,!

1
7

⌘
, (7.5.25)
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whereas the volume and dilaton are stabilized at the positions �0 and v0. To get a de Sitter
critical point we need to tune the geometric flux such that

m= �

e

�0
2 +

v0
2
p
7!

11
7

✓
a(5�30!) +

q
a2(33 + 4!(177!�29))�4!� 12

7 G2(!�1)(24!+1)e
2v0p

7
�2�0

◆

2 + 48!
.

(7.5.26)

Note that our solutions will have five parameters that we can in principle choose indepen-
dently, which are

a , ! , G , �0 , v0 (free parameters of the solution) . (7.5.27)

For the anti-D5-brane tensions we now have

µ1 = �
1

10

⇣
30am! + 2a2e

�0
2 +

v0
2
p
7!

18
7 + G

2!
6
7 e

5v0
2
p
7
� 3�0

2 + 24m2e�
�0
2 � v0

2
p
7!� 4

7

⌘
, (7.5.28)

and

µ2,3,4,5,6,7 = �
1

10

⇣
5am+ 2a2e

�0
2 +

v0
2
p
7!

11
7 � e�

3�0
2 � v0

2
p
7!� 11

7

⇣
e�0m2

� G
2e

3v0p
7 !

10
7

⌘⌘
.

(7.5.29)

Note that µ1 is different that the rest, this is because they need to cancel the different
contribution of the dF3 flux in each tadpole, even though the O5 contribution is the same.
Finally, we also tune the BSB contribution to take the form

B0 =
1

40
e

v0
2
p
7
� 5�0

2 !� 10
7

⇣
6e�0m2

+ 4G
2!

10
7 e

3v0p
7 � 7a2!

22
7 e

v0p
7
+2�0

⌘
. (7.5.30)

Then using our Ansatz and the specific aforementioned values for the various coefficients
one can check that

@V

@�
= 0 ,

@V

@v
= 0 ,

@V

@s̃a
= 0 , (7.5.31)

with the vacuum energy given by

Vvac =
1

80
e

4v0p
7

⇣
6m2!� 10

7 � G
2e

3v0p
7
��0

� 7a2!
12
7 e

v0p
7
+�0

⌘
. (7.5.32)

Clearly the existence of de Sitter depends on the specific values one chooses. In addition
one can check that if we ask that µi = 0 we are driven to an AdS vacuum, therefore the
inclusion of the anti-D5-branes is crucial.

Let us now give a few numerical examples. We can have

Example 1 : �0 = �3 , v0 = �3
p
7 , G = 0.01 , a = 2 , ! = 0.09985 , (7.5.33)
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which give self-consistent values

µi > 0 , B0 > 0 , µO5 > 0 , (7.5.34)

and also satisfy (7.5.22). Note that in this example m ' �0.0029 < 0. For this numerical
example we also find

Vvac ' 1.274⇥ 10
�13 , Eigenvalues[VIJ ] > 0 , I = �, v, s̃b , (7.5.35)

implying a stable de Sitter critical point. Clearly from the values of the various coefficients
we see that this example is in sharp contradiction with all sorts of flux quantization con-
ditions but also clearly the values of µO5, µD5

and B0 are unrealistic. In addition from the
values of �0 and v0 we see that we are definitely not safely within the large volume regime,
however the string coupling is indeed small.

Another numerical example is to have

Example 2 : �0 = �3 , v0 = �33
p
7 , G = 0.01 , a = 10 , ! = 0.0998 , (7.5.36)

which still gives self-consistent values for the various coefficients and allows for slightly
more realistic values for µO5, µD5

(but still overall unrealistic). We see that we are now
safely within a weak coupling and large volume regime, but flux quantization is clearly not
taken into account. For this example we find

Vvac > 0 , [VIJ ] < 0 , I = �, v, s̃b , (7.5.37)

therefore there are tachyons in the scalar sector.
We conclude that it seems that one can achieve (stable) de Sitter critical points from an

effective theory model building perspective, but the required coefficients seem to be totally
unrealistic from the string theory perspective. However, we believe that one needs to do
an exhaustive scan over the various parameter values that are allowed by string theory in
order to give a final verdict on the existence of classical 3d de Sitter vacua in string theory
and on their stability. Our aim here was instead to highlight these open possibilities and
we leave an exhaustive investigation for de Sitter solutions to future work. We expect that
the study of 3d de Sitter vacua can further contribute to our understanding of such vacua
from the perspective of the swampland program [10,115–118,134].

We finally stress that even if perturbative stability is achieved for the closed string
moduli, including (anti) D5-branes can open up new decay channels, both perturbative
and non-perturbative, in the open string sector, even if the various parameters are within
a controlled string theory regime. Such instabilities may lead to very short lived vacua or
completely destabilize them.

7.6 Type IIB – Outlook

In this work we have studied flux compactifications of string theory down to three external
dimensions and have highlighted properties that make them an interesting playground to
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test various swampland conjectures. Our primary motivation was to provide the tools for
the construction of the 3d N=1 supergravity, focusing in particular on the superpotential.
Then we studied some simple examples that give us intuition for the vacuum structure.
We focused in particular on discussing the possibility of having de Sitter and Anti-de Sitter
vacua with scale separation and have seen how these vacua are allowed by the effective
theory, but are hindered once we take into account proper quantization conditions as
required in string theory.

As an outlook for future work we would like to discuss various possible extensions.
One direction to expand on would involve a careful treatment of the open string sector,
which we have mostly ignored here. This can be done in various ways. Firstly, as we have
seen, it is un-avoidable to include O9-planes in this setup and so D9-branes also have to
be included. This means that one must study carefully the D9-brane sector which leads
to a non-abelian gauge theory in 3 dimensions. In addition since in principle we would
also need to include D5-branes these would further contribute to the non-abelian gauge
sector on the 3d external space as well as give rise to extra scalar moduli. Overall one
would need to include new contributions also to the superpotential to correctly describe
these sectors. Note that this setup could offer the basis for constructing a 3d toy-model
version of the 4D KKLT construction. Indeed, the non-abelian gauge theory may give
rise to gaugino condensation in the 3d EFT and including anti-D5-branes can give rise
to a putative ulplift mechanism similar to the KKLT model. This may be a worthwhile
endeavor as it may help to further understand the properties of de Sitter vacua in string
theory, if such vacua truly exist, or simply a way to get more intuition about KKLT-type
constructions. Along these lines one could also investigate the impact of Euclidean D-
branes that wrap internal cycles, which we have ignored in the present work. These should
give rise to non-perturbative contributions similar to the 4D case, however the absence of
suitable non-renormalization theorems in 3d N=1 means their form is less constrained. On
general grounds we can expect these contributions to take the form of non-perturbative
exponentials dressed by a perturbative series in the moduli describing the volume of the
wrapped cycle. It is also interesting to note that due to the dimensionality of the branes
involved in our setup, it seems that the effects of gaugino condensation may differ in form
from those of Euclidean D-branes, unlike the 4D scenario.

Another direction worth pursuing is to go beyond the co-calibrated toroidal G2 and
include also the W7 torsion. This is a very interesting development as it would allow to
have more cycles in the theory and so more interesting backgrounds may be found. We
have worked here only with toroidal oriefolds, however, one does not essentially need to
restrict oneself to this set of compactifications. For example it would be important to
study manifolds where the internal space allows warping, and this would also be important
if one tries to build a 3d KKLT type of model, as we discussed earlier. Yet another
direction to pursue would be finding the underlying un-smeared solutions of the orbifolds
we discussed here. In a similar vein, one could also try to realize scenarios where the
D5/O5 charge remains delocalized along the internal manifold but comes from topological
flux and curvature terms in the D9/O9 worldvolume theory [196]. These scenarios should
be related to resolutions of the orientifold singularities and therefore have a richer topology,
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with the un-smeared orientifold solutions as a limit. Such a study would undoubtedly shed
more light on the properties of Op-planes and the consistency of working with the smeared
solutions presented here.

Finally, one could try to classify all the 3d N=1 vacua that arise from flux compact-
ifications on G2 with torsion and get important insight about the properties of the 3d
swampland, especially by comparing to the dual 2d CFTs. Indeed, as we have seen (from
the few sample examples we presented) the 3d N=1 low energy supergravity has a very rich
vacuum structure, which however remains tractable due to its relatively simple ingredients.
This means that a full classification of the classical 3d vacua (de Sitter and Anti-de Sitter
alike) can be done and a thorough investigation of their properties is possible, especially
using more advanced methods as for example proposed in [197].
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Appendix

8.1 3d minimal supergravity

To describe the matter-coupled 3d N=1 supergravity we will follow closely notation and
conventions from [198]. The three-dimensional Clifford algebra has the 2 ⇥ 2 �-matrices
�a, where a = 0, 1, 2 are tangent space indices, and the matrices satisfy {�a, �b} = 2⌘ab,
whereas the properties of Majorana spinors in 3d can be found in [199]. We will refer
with Greek letters µ, ⌫ = 0, 1, 2 to world indices. To make our presentation easier we will
emulate a superspace description in terms of two real Grassmann variables ✓1 and ✓2, even
though we will not enter into a specific superspace construction1, instead we will follow
closely the multiplet setup of [198]. The 3d N=1 supermultiplets we will utilize are given
bellow:

• Supergravity sector: ea
µ

is the dreibein, and  µ is the gravitino which is a spin-3/2
Majorana spinor. This multiplet has a real scalar auxiliary field S. These component
fields appear in the Ricci scalar superfield

S = S + i✓2
�
R + 6S

2
�
+ fermions , (8.1.1)

where we abuse notation and use the same letter for the real superfield and for its
lowest component, and R is the 3d Ricci scalar. Note that because of the Grassmann
nature of the ✓ we have (i✓2)⇤ = i✓2. The supergravity sector appears also in the real
super-density

E = e� 8i✓2eS + fermions , (8.1.2)

where e =
p
�g3.

• Matter sector: �I are real scalars, �I are spin-1/2 Majorana spinors, and F I are real
scalar auxiliary fields. The indices I = 1, . . . n take values on the target space scalar

1See for example [151,200,201] for a recent and full superspace presentation.
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manifold with real coordinates �I and with Riemannian target space metric: GIJ(�).
Their superspace expansion is

�I
= �I

+ i✓2F I
+ fermions . (8.1.3)

• Gauge sector: The gauge fields are denoted as A(A)

µ where the indices (A) indicate
that the field transforms in the adjoint, and the gaugini are denoted by �(A) and
are Majorana spin-1/2 fermions. These multiplets do not have independent auxiliary
fields because the off-shell degrees of freedom of Aµ and � match.

From the above ingredients we can built locally supersymmetric actions, by using a single
superspace integral i

R
d2✓ and taking into account that i

R
d2✓(i✓2) = 1. For the super-

gravity sector we have

i

2

Z
d2✓E S =

1

2
eR� eS2

+ fermions . (8.1.4)

For the kinetic terms of the matter superfields we have

�
i

64

Z
d2✓E GIJ(�)�

I�J
= �eGIJ@µ�

I@µ�J
+

1

16
GIJ(�)F

IF J
+ fermions , (8.1.5)

where GIJ(�) is the real Riemannian target space metric and for the superpotential P (�)
we will always use

i

2

Z
d2✓E P (�) =

1

2
ePIF

I
� 4ePS + fermions . (8.1.6)

Here P (�) is a real function of the �I and PI = @P/@�I . Adding up these ingredients
(and including the gauge sector which has no auxiliary fields) we can then built the most
general Lagrangian for our purposes, which has bosonic sector

e�1
L =

1

2
R� gµ⌫GIJ(�)@µ�

I@⌫�
J
�

1

4
f(�)F (A)

µ⌫
F µ⌫(A)

� V (�) , (8.1.7)

with

V (�) = GIJPIPJ � 4P 2 , (8.1.8)

and the gauge kinetic function f(�) real but otherwise unrestricted. The auxiliary fields
F I and S have been already integrated out in (8.1.7). The GIJ is the inverse of the target
space metric GIJ . For completeness let us only point out that the quadratic gravitino
sector has the form

e�1
L3/2 = �

1

2
 

µ
�µ⌫⇢D⌫ ⇢ �

1

2
P  

µ
�µ⌫ ⌫ . (8.1.9)
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Then we verify that for supersymmetric AdS3 we have [199]

hPii = 0 , m3/2 = P =
1

2LAdS

, hV i = �4P 2
= �

1

L2

AdS

. (8.1.10)

The fermionic shifts on a generic maximally symmetric background are given by

� µ

���
shift

=
1

4
!ab

µ
�ab✏� P�µ✏ ,

��I

���
shift

= GIJPJ✏ ,

��(A)

���
shift

= 0 ,

(8.1.11)

where ✏ is the 2-component fermionic Majorana local supersymmetry parameter.

8.2 The unit-volume constraint

The way we will reduce the independent degrees of freedom in a consistent supersymmetric
way is by using a superspace Lagrange multiplier. To this end we define the real three-form
superfield (not a super three-form however)

� = �iS̃
i , (8.2.1)

where the S̃i are here the real superfields with lowest components s̃i. We now postulate
that the effective theory with the correct degrees of freedom is given by the Lagrangian

L+ i

Z
d2✓


E⇤

✓Z

X

� ^ ?̃� � 7

◆�
, (8.2.2)

where we have explicitly kept the X in
R
X

� ^ ?̃� to indicate that that integration is over
the internal space, and ⇤ is a real Lagrange multiplier superfield

⇤ = L+ ✓�L
+ i✓2FL . (8.2.3)

Once we vary the Lagrange multiplier superfield we have the superspace expression

�⇤ :

Z
� ^ ?̃� = 7 , (8.2.4)

which guarantees that the condition (4.3.46) is imposed consistently on the full superspace
level. Notice that this condition indeed eliminates one scalar degree of freedom due toR

� ^ ?̃�|✓=0 =
R
�̃ ^ ?̃�̃, but it will also eliminate a fermion degree of freedom because

the ✓ order term of (8.2.4) gives
X

j

Z
�j ^ ?̃�̃�

j
= 0 . (8.2.5)
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Here we have referred to the superpartners of s̃i as �i.
We have until now seen that by introducing the Lagrange multiplier ⇤ we can restrict

to the correct number of degrees of freedom and keep supersymmetry. However, we want
to verify that the extra term we put in the action will not alter the form of our scalar
potential. To see this we go to the bosonic sector of (8.2.2) and we focus on the extra term

i

Z
d2✓ [E⇤ (� ^ ?̃� � 7)]

= eF⇤
✓Z

�̃ ^ ?̃�̃� 7

◆
� 8e SL

✓Z
�̃ ^ ?̃�̃� 7

◆
+ eL

Z
�j ^ ?̃�̃F j .

(8.2.6)

Clearly when we vary FL we get (4.3.46) and (4.3.47) as we want. Then notice that the
second term that contains the supergravity auxiliary field S automatically drops out, and
we are left only with the third term which crucially contains the matter auxiliary fields F j.

Let us now describe how the variation of the third term in (8.2.6) works. First notice
that this term essentially acts as a constraint once we vary L that reads

Z
�i ^ ?̃�̃F i

= 0 . (8.2.7)

This relation restricts the auxiliary fields of the s̃i multiplets and reduces them by one,
consistently with the fact that we wanted to eliminate one complete multiplet. Since the
auxiliary fields F i are now subject to a restriction, in order to vary them and integrate them
out to derive the scalar potential we have to include this new constraint in the variation.
The simplest way to do this is to study the yet un-restricted auxiliary fields sector

LF i =
1

16
eGijF

iF j
+

1

2
ePiF

i
+ eL

Z
�j ^ ?̃�̃F j , (8.2.8)

where we have kept the Lagrange multiplier L and have not integrated it yet, such that
the F i are un-restricted and we can vary them normally. Now we vary both the F i and L
to find

F i
= �4GijPi � 8LGij

Z
�j ^ ?̃�̃ , (8.2.9)

and of course also (8.2.7). Now we multiply (8.2.9) with
R
�i ^ ?̃�̃ to find

Z
�i ^ ?̃�̃F i

= �4Gij

Z
�i ^ ?̃�̃Pi � 224L , (8.2.10)

where we are now using the fact that vol(X̃7) = 1 because the s̃i have been already
restricted from the variation of FL. Now we observe that the left hand side term in
(8.2.10) is vanishing because of the constraint (8.2.7), whereas the first term on the right
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hand side is also vanishing because an explicit calculation for our superpotentials shows
that

GijPi

Z
�j ^ ?̃�̃ = 0 . (8.2.11)

Then from (8.2.10) we see that

L = 0 . (8.2.12)

Therefore going back to (8.2.9) we see that on-shell

F i
= �4GijPi ! LF i = �eGijPiPj , (8.2.13)

and we get the standard contribution to the scalar potential from the S̃i multiplets even
though they are restricted. We conclude that our scalar potential (4.3.45) is consistent and
respects N=1 supersymmetry even when the s̃i are restricted to unit-volume. The same
holds for (4.4.33) because of (4.4.35).

Let us give a different and more intuitive perspective now on why we were able to
reduce to unit-volume and keep the scalar potential intact. We will discuss explicitly
the toroidal case, but our discussion works for the other cases as well. As we said we
wanted to have

Q
i
S̃i

= 1. This condition could be imposed by setting S̃i
= R3/7T i whereQ

i
T i

= 1, with T i and R real scalar superfields. Then we could re-derive the full theory
using P = P (x, y, r, ti) with this new set of superfields, where R|✓=0 = r and T i

|✓=0 = ti.
The most important property of the superpotential is that we would have @P/@r = 0,
which would also give FR

= 0. Then to reduce to unit-volume, such that we do not double
count the volume, we would have to set on the superfield level R = 1 which would give
r = 1 and FR

= 0. The latter condition is completely compatible with the fact that
@P/@r = 0 and this is exactly why our scalar potential does not change form.

8.3 Non-supersymmetric AdS3

Here we verify that there is a non-supersymmetric AdS3 when we flip the sign of the F4

flux for the supersymmetric solution. We first write the scalar potential in terms of the s̃a

V Total
= F (s̃a)e2y�

2xp
7 +H(s̃a)e2y+

2xp
7 + C ey�

p
7x

� T (s̃a)e
3y
2 � 5x

2
p
7 , (8.3.1)

where C =
m

2

16
and

F (s̃a) =
f 2

16

"
X

a

(s̃a)2 + 36

Y

a

1

(s̃a)2

#
,

H(s̃a) =
h2

16

"
X

a

1

(s̃a)2
+

Y

b

(s̃b)2
#
,

T (s̃a) =
hm

8

"
X

a

1

s̃a
+

Y

b

s̃b
#
.

(8.3.2)
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Here F (s̃a) is related to F4 flux, H(s̃a) is related to the H3, the constant C is related to
the Romans mass which does not depend on the s̃a, and the function T (s̃a) is related to
the O-plane contribution. Note that all these functions are positive definite.

To minimize the potential we again search for vacua in which s̃a = �. We therefore
calculate

@V

@x

���
s̃a=�

= 0 ,
@V

@y

���
s̃a=�

= 0 ,
@V

@s̃a

���
s̃a=�

= 0 , (8.3.3)

and we find after few manipulations respectively

0 = 12


�2

+
6

�12

�
� 2a2


6

�2
+ �12

�
+ 7b2 � 5ab


6

�
+ �6

�
,

0 = 12


�2

+
6

�12

�
+ 2a2


6

�2
+ �12

�
+ b2 � 3ab


6

�
+ �6

�
,

0 =


�2

�
36

�12

�
� a2


1

�2
� �12

�
+ ab


1

�
� �6

�
,

(8.3.4)

where we see that the solution is given by the identical same values as the supersymmetric
solution in Eq.(4.4.42). One can also evaluate the normalized VIJ on this background and
see that all the eigenvalues of this matrix are positive, and take the values of (4.4.46),
which means that all 8 scalars are stable. Now let us check supersymmetry. First we see
that for our background

P T
=

3f

4
ey�

xp
7


� �

1

�6

�
+

h

8
ey+

xp
7


6

�
+ �6

�
+

m

8
e

y
2�

p
7x
2 , (8.3.5)

which once we evaluate for the values (4.4.42) we notice that

hV Total
i 6= �4(P T

)
2 , (8.3.6)

which means we have a non supersymmetric vacuum.

8.4 Einstein equations

In this appendix we list some useful formulas and equations of motion of the Type II
action in Eq.(5.2.1) with the presence of O6-planes in Eq.(5.2.2). For simplicity, and direct
comparison to [106], we absorb NO6 in the

P
i
�(⇡i) part and then performing a dimensional

reduction down to d-dimensions.
For the metric in Eq.(5.2.6) we find the Ricci scalar in terms of the warp factor

R10 = w�2Rd +R(10�d) � 2dw�1
rmr

mw � d(d� 1)w�2
rmwr

mw . (8.4.1)

Here we define RMN to be the Ricci tensor for the 10d string frame metric GMN , and we
use the same notation for the 7d and the 3d counterparts, i.e. Rµ⌫ and Rmn, whereas when
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we work with the unwarped external or internal space metrics (gµ⌫ and gmn respectively)
we use the notation Rµ⌫ and Rmn. The dilaton equations of motion for external d and
internal (10� d) metric are

0 =� 8r
2⌧ + 2

⌧

w2
Rd �

8d

w
(@mw)(@

m⌧)� 2d(d� 1)
⌧

w2
rmwr

mw � 4d
⌧

w
rmr

mw

+ 2⌧R(10�d) � ⌧ |H3|
2
+ 2

X

i

�(⇡i) .

(8.4.2)
The variation of the action with respect to the ten dimensional metric GMN in the string

frame gives the following equations of motion

⌧ 2
⇣
RMN �

1

2
GMNR10

⌘
+ 2⌧GMN

⇣ d
w
(@µw)(@µ⌧) +r

2⌧
⌘

+ 2(@M⌧)(@N⌧)� 2⌧rMrN⌧

�
1

2
⌧ 2
⇣
|H3|

2

MN
�

1

2
GMN |H3|

2

⌘
�

1

2

6X

p=0

⇣
|Fp|

2

MN
�

1

2
GMN |Fp|

2

⌘
�

1

2
T loc

MN
= 0 ,

(8.4.3)

where we have used that

rMr
M⌧ =

d

w
@µw@

µ⌧ +rmr
m⌧ , rmr

m⌧ = r
2⌧ , (8.4.4)

and

T loc

MN
= 2⌧GMN |Op�(⌃p+1) = 2⌧⇧i,MN�(⌃p+1) . (8.4.5)

We contract Eq.(8.4.3) with the 10d metric to find R10 and plugging this back in Eq.(8.4.3)
gives

� ⌧ 2RMN +
d

4

⌧

w
GMN(@w)(@⌧) +

1

4
GMN(⌧r

2⌧) +
1

4
GMN(@L⌧)(@

L⌧) + 2⌧rMrN⌧

� 2(@M⌧)(@N⌧) +
1

2
⌧ 2
⇣
|H3|

2

MN
�

1

4
GMN |H3|

2

⌘
+

1

2

6X

p=0

⇣
|Fp|

2

MN
�

p� 1

8
GMN |Fp|

2

⌘

+
1

2

⇣
T loc

MN
�

1

8
GMNT

loc

⌘
= 0 ,

(8.4.6)
where for T loc we mean the contraction of 8.4.5 with the metric of the source worldvolume

T loc
= GMNT loc

MN
. (8.4.7)
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Now we contract (8.4.6) with gµ⌫ and we get

� ⌧ 2
✓
w�2Rd �

d

w
r

2w � d(d� 1)w�2
rwrw

◆

+
d2

4

⌧

w
(@w)(@⌧) +

1

4
d(⌧r2⌧) +

1

4
d(@L⌧)(@

L⌧)

+
1

2
⌧ 2
⇣
�

1

4
d|H3|

2

⌘
+

1

2

6X

p=0

⇣
�

p� 1

8
d|Fp|

2

⌘

+
1

2

⇣
gµ⌫T loc

µ⌫
�

d

8
T loc

⌘
= 0 .

(8.4.8)

Note that we have the relation

RMN

���
M=m,N=n

= Rmn �
d

w

⇣
@n@mw � @sw�

s

mn

⌘
= Rmn �

d

w
rm@nw . (8.4.9)
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