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Abstract

This thesis compares network information against chemical information for the prob-
lem of drug interaction prediction. Drug interactions can be studied as a network, with
the drugs represented as nodes, and interactions as edges. There is also the additional
information of the chemical formula of each drug. We apply two embedding mechanisms,
mol2vec and node2vec, on the problem of predicting Drug-Drug Interactions (DDIs). These
mechanisms, respectively, convert drugs into vectors using the chemical information of
the underlying chemical compound and the network information from the graph of drug
interactions. Our goal is to compare Single Link Prediction models that are based on each
embedding method by exploring the topological features of the drug interactions graph
that make each approach more efficient in making correct predictions. We base our ex-
periments on the DrugBank data set and use various computational chemistry tools such
RDKit and PubChem, along with NetworkX, in order to create the chemical and structural

embeddings for each drug.

Keywords

Drug-Drug Interaction Prediction, DrugBank, Network Embeddings, Chemical Em-

beddings, Graph Topological Features, mol2vec, node2vec
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IlepiAnypn

e auth] Vv epyaocia pedetdpe 1ig addndemdpdoeig petaiy eappakeutikov ouoiov. ITo
OUYKEKPIPIEVA, §ePEUVOULE T MANPOPOPIA TTOU PUITOPEL VA AVIATOEL KATTO10§ PECA Ao TOV
YPAPO YV®OONG ITOU IIPOKUITIEL AV Ye®@prjooule KABe pAapako g KopBo kat kabe aAAnAerni-
Spaon 6U0 PUPRAK®V GG KT PETASU TV aviiotolX®V KOPB®V — Tr] yVOOor] autr) ovopaloupe
Siktuaxkn 1) ypagikn mAnpogopia. [TapdAAnAa adlonolovpe Tov XNIKO TUITO ard 1) §paotik)
ouoia evog PAPHIAKOU Y1d VA AITOTUIIOOOULE TIG XNHIKEG 18101 TéG ToU Kat va e§ayouie autod
TTOU 0VONAdOUPE OTr OUVEXELA WG XKL TANpodopia. ZToX0g pag eivatl va ouyKkpivoupe )
81ktuakr) mAnpodopia pe v XNUIKn mAnpogopia mave oto rmpoBAnpa tng eKtipnong alin-
Aerubpacewv petadu eappdkev. Ta va to kdvouyie auto, ermotpatevoupe dUo peboddoug rou
EUIVEUOTNKAVY A0 TOV X®MPO TG PNXAVIKNG PAONnong, Kat OUYKEKPIEVA Al TOV TOPEA ETTES-
epyaoiag @uolkng yAwooag: to mol2vec kat to node2vec. Ot pébodot auvtoi pag fonbouv va
rapdadoupe S1aVUOPATIKEG AVATIAPACTACELS — TO00 BACEL NG XNIIKAG MAnpogopiag, 6oo Kat
g d1ktuakrg mMnpogopiag — and ta edpuaka nou £xoupe otn 61abeor) pag. Afloroloupe
AUTEG TIG AVATIAPAOTACELS Y1d VA avarttugoupe Katl va eKatbeuoouile tagivournteég Paotopié-
VOUG 0t Veup@Vvika Siktua ot oroiot pe dedopévo éva {eUyog @appdrav ©g €i0odo, Givouv
®g £5060 pa exktTipnon yia 1o av ta edppaka avtd aAAndermdpouv. Méow tng oUYKPlong
TV ATIOTEAEOPRATOV TOV TASIVOUNTOV pag ot éva KatdAAndo ouvodo eAéyxou katopBovoupe
va rapdfoulie XPrjoia CUPMEPAOHRATA Yid Td YPAPOBe®PpnTIKA XAPAKINPIOTIKA IOV ITPOO0-
b1opidouv yia éva pdppnaxo Tou ypadou yvaong (Ypadog yvootov aAAnAermdpdoenv) av ivat
MIPOTIHOTEPO va PeAetnBel BAoel g XNUIKNG 1 tng O1KTUAKIG MANPo¢popiag mou Umapyet
61abéomun yua auvto. Ma ta nepapatd pag xpnopornotovpe ) Baon debopévov DrugBank
Kat ot ropeia g £§6puing kat rpostopaciag v dedopévev pag ermotpatevouiie Stapopa
epyaleia g UTIOAOY10TIKEG XNeiag, onwg ta RDKit kat PubChem kabwg kat ) B1B8A1001kn

NetworkX yia va erne§epyaoctoUpe UTOAOYIOTIKA YPAPOUG Sebopévav.

Agterg KAe1ba

AMAnAerudpdoesig Pappdkav, Aiktuakeg Avaripaotacelg Pappakev, Xnuikég Avanapaotd-
oelg Pappakev, Fpagpobenpnuika Xapaktnpiotkd AAAnAemdpdoswv Pappakev, DrugBank,

mol2vec, node2vec
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Zuvoyn tng Epyaociag

0.1 Euwayoyn

Z16x0g tng rapovoag epyaociag eivat n pedétn tov aAdnAermdpaocenv petaiy eapparev
Kal, TTII0 OUYKEKPLPEVA, 1) OUYKPION TG XNHUIKEAG MANPopopiag mou Propoupe va e§ayoupe
amno 1) poplakn dourn g 6pactikng ouciag TOV @APPAK®V pe T dopikn (1) diktuaxky), 1)
ypagkr)) rmAnpodopia v oroia §Ayoupe and tov ypado Iou IMPOoKUITIEL av de®pPrjcoupe td
Sragopa pappaka ©g KOPBoUg 0 ortoiot cuvdEovial Petagy Toug He fia akpt yia Kabe yvootr)
aAAnAeniipaon ou €xel avakadudBei. a va kavoupe autr] ) OUYKP10T], EMOTPATEVUOUNE
) Bdaon dedopévav DrugBank [1] yia va e§opufoupe pdppaka kat addnemdpdoeig gote va
KATAOKEUACOUE TOV YPAdO Yvaong pag. Akoloubwg, xpnotponolovpe Suo pebodoug mmou
Baoidoviat otov adyopiBpo word2vec [2] arnd tov Xwpo g Enefepyaciag duokng I'Adooag:
10 mol2vec [3] kat to node2vec [4]. Ot pebobot autoi da pag Bonbrioouv va KHIKOO-
ooupe KABe @APPAKOo arod oV YPAPo Yvaong Pag o Pid S1avUoPaTiKy avanapdotaot] and
MIPAYHRATIKOUG ap1Boug Bacet g XNIKAG KAt TG §1KTuakng mAnpodopiag aviiotoxa.

Anpoupyouiie tpelg taSvopntég Pactopévoug o £va VEUP®VIKO diktuo 600 erurednv ot
0IT0101 TIaiPVOUV ®G 10060 TI§ H1AVUOPATIKEG AVATIAPACTACELG ATIO : Tr XKL TAnpodopia,
) Siktuakn mAnpodopia Kat tov ouviuaopd XNHUIKNG KAl S1KTUAKNG mAnpopopiag aviio-
to1Xa. AQoU eknatdeUOOUE Ta CUCTATA aUTd, e§etaloupe v arddoot| Toug oe £€va OUVOAO
Selypndtev eAéyxou IMou Aropovevoule arnd tov Yypado yvoong pag. ITo ocuykekpiéva, 8-
etadoupe g emAoyég tou KAbe ta§ivountr) Kat pedetdpe 81agopa ypapobempnuika Xapak-
TNP1OTIKA MOV TOUG AVIIOTOIX0UV QOTE VA €§AYOUNE CUNIEPACHATA OXETIKA HE TO IOU UTT-
eptepel 1) uotepel kKAOe poviedo. Me autd Tov TPOro KAToPO®VOUE va MEPLYPAYPOUE Kal
va OUYKPIVOULE 1 oUPIEPLPOPA £vOG CUCTHIATOG EKTIPNONG AAANAEIOPACEOV PAPHAK®OV
mou Bacidetatl otn XNHUIKL YV®OTr PE £va avtioTolXo oUoTnpad ITou XPNolHoTIolEl T S1KTuaKr)
rAnpogopia. Ovopdaloupe tov ouvduaopo NG XNPIKNG Kal TG S1IKTUAKNG Anpodopiag g

U6p1d1Kn TANPOPOopia, KAl T0 aviiototXo HOVIEAO g U6ptdtko tallvount).
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Zuvoyn ng Epyaoiag

Drug Prediction Experiment Pipeline

Input Layer Hidden Layer Output Layer
— ®
= — S
o x
< o
> X =}
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Figure 1. Aciyuata eknaibevong mou mpoKUTIOUV ano 1ig aiAniembpaocels eapudkmv, Ue m
uop@n ouleulnge SravuouatkOv avanapactace®v, XPNOWOTooUVIal yia thy eKnaidsuon tou
VEUPOUIKOU SUKTUOU.

0.2 MeOodolAoyia

A6 10 arnobetr)pio g DrugBank e€ayoupe ouvodika 14,624 @dppaxka xkat 1,389,184
Hovadikég aAANIMSPACELG PETASU AUTAOV TV PAPHUAK®V. ATIO ta Seopéva autd Kpatdjie ekeiva
HOvVo Ta @ApHaKa IoU ImapouctdcouV Touddyiotov pia aAAnlemnidpaon pe karmoto aAdo @ap-
paxo, kpatovag £tot 3,753 pdppaxa kat 1,207,953 aAAnAemidpdoeig — ot aAAnAsrudpaoelg
pewmbnKav 510t XpeldotnKe va adaipeCOUE A0 T YVAOOT] £€va PIKPO OUVOAO PAPHAK®V TO
ortoio dev eivatl oupBatod pe ta epyaleia mou neptypadoupe ot ouvexeld. Tov teAdikd ypado
IOV IPOKUITIEL ovopddoupie eQedrg mAnon yodago.

Ta va e€ayoupe 1§ XNHIKEG avarapaotdoelg and kKabe @APPAKO, IPEMNEL MPAOTA va
Bpoupe TOV XNIIKO TUITO TOU KAl Ot OUVEXELWD VA avAKAAUWOUPE 11 MMANpodopia oXeTKA
He ) poplaky dour) tng dpactikig tou ouciag. a tov OKOMO AUTO XPNOIOTOI0UNE TV
uninpeoia PubChem[5], éva and ta epyaleia ng omoiag dexetal wg €icodo 10 povadiko
aAvayveplotiko Kabes pappdkou arno 1o anobetriplo g DrugBank kat emotpédet 1ov XNpKo
TUTTIO TOU He T popdr) SMILES [6]. Zin ouvéxela adlomoovpe t B1BA1o0Orkn RDKit [7] tng
Python dote va petatpéyoupie autr] 1 Hopdr] XNHIIKOU TUIoU og pia dopr) rmou ovopdadetat
MOL xat ouolaotikd meplEXel KOSIKOMONPEVE O TivaKeg yertviaong ) 5oy Tou XNikou
popiou. Xto onpeio auto, sipaocte £101H01 va ePAPPOCOUHE £va TIPOEKTIAIGEUPEVO 11OVIEAO
mol2vec! yia va apaoupe éva Sravuopa 300 §1a0tdosmv 0¢ T XNHUIKL Avarnapdotaoct yid
KAOe pappaxo otov mANEN yoago.

Qg mipog 11§ Siktuakeg (1) ypadikeg) avanapaotdoetg, dev xpelaldpaote rpoenesepyacia
v 6edopévav pag. Xpnowpornoloupe areubeiag tov alyopiBpo tou node2vec, o oroiog
EKTIAOEVETAL TPWTA O £vaV YPAPO YVOONG KAl 0TI OUVEXELA XPNOLIOMOLEITal yid va avtt-

otolxioel kaBe kOPBo TOU O £va Hravuopa 128 draotdoewv — 1 diktuaky avartapdotaot).

"https://github.com/samoturk/mol2vec/tree/master/examples/models
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0.2 MebBodoloyia

Ebd®, 0ot600, urtapxet éva onpaviko npoBAnpa: v propouvpe va eKatdevooulie €va J10v-
1¢do node2vec otov mANen ypdgo. ITo cuykekpipéva, o alyopiBpog tou node2vec §etddet
) yerovia kabe kopBou otov ypdgo, diatpéyxoviag tuxaia povorndria, 0ote va KATdoKeEUd-
oel Savuopata ta ornoia Bpiokoviat oe PIKPOTEPT ATIOOTAOT HETASU Toug (.. €ukAeidia
anéotaocr) OTav avilotolXouv o€ KOPBOUG TOU YPAPOU Hie opola yettovid. Autd onpaivel ot
exknaldevoviag 10 poviédo otov mAnen ypago Sa ndpoupe diavuopata ta oroia Sa €xouv
EVOOPATOPEVI] P€OA TOUG, Of €vav onpaviliko Badpo, tn rminpodopia and 0Asg 1ig alAn-
Aetudpdoeig tou ypagou. Kdat této1o 9a ftav anayopeutiko yid td MEpApata rouU aKOAOU-
Youv, kabag dev Sa eixape ) duvatdTa va X®PIoOUPE TOV TANEN yodpo o CUVOAA E€K-
naidevong, ernaAnBeuong kat edéyyxou. Ia va Avooupe autd 1o mpoBAnpa epappolouiie
detypatoAnyia, Kpat®viag 6Aoug toug KopBoug kat ermAgyoviag tuxaia va diatnprijooupe
16vo 10 1% v akpov tou mAnen yoagou. To anotédeopa 9a ovopaloupe yoago Sstypuaro-
nyiag, Kai poKettal yla évav ypdgo pe 12,080 akpég. 'Oneg yivetal aviiAnd ot oUvexela,
0 YPA(dOg IoU MPOEKUYE, Iapd v éviaon g detypatoAnyiag, katopbmvel va exkraidevoet
tov ta§vountr) nou PBaociletal otn Siktuakrn mAnpogopia pe e§alpetiky] erutuyia. MdaAwota,
BEo® g Setypatodnyiag rnou kavoupe katopbwvoupe va s§acdadicoupie tnyv &g onuav-
TIKY 10101Ta yia 11§ S1IKTUAKEG avanapaotacslg pag: ta diavuopata mPoKUItouy OX1 aro
1§ apeoeg aAAnAsrudpdoetg petadu v eappdakev, adid and ta urndlorna ypapobempnukd
XOPAKTINP1OTIKA TTOU MEPTYPAPOUV H1d YEITOVIA TOU YpAdou — akpiBwg autou tou €iboug ta
XAPAKINPEOTIKA 9a Ipoortabrjooulie Otr) Iopeia va PEAETHOOUE KAl va CUYKPIVOULE yid va
aAvakaAUWouUE MEPLOXES TOU TL/lTjen yodgou ot onoieg Ya KATaotouv I XNHUIKI Anpogpopia
avotepn g diktuakng minpodopiag (1) to avtiBeto) yia v rpoBlewn aAdnierudpdaoswv
petadly eapuarev.

210 onpeio autd Propouple va €0TIACOUNE ota Oelypata eKmaideuong Kat tov TpoIo
IOU XPNOUIOIIO0UVIdl aro Toug tasivopntég pag. Eidwotepa, 9édoupe va avartugoupe
ouotpata ta onota da Héxoviat wg £i0odo éva {euyog pappakev, Kat og £50do va éxouv duo
Suvatég TIEG 01 Oroieg AVIIIPOO®ITEVOUV Ty Umapsn 1 PN plag adAnlesmnibpaong petadu
1OV PAPPAKeV £10060u. Enopévag, ermdéyoupe va divoupe wg €10060 ota veup@vikd pag
povtéda ) Savuopatikn oueudn aro TG avanapactdoslg 1oV EAPHRAKeVY, Oreg @aivetat
oto Suaypappa 1. To veUp®VIKO SIKTUO TOU OXNPATOG ATOTUTIOVEL Tr HOI) TOU HOVIEAOU
IIOU XPNO1H0IIO0UE Yld TOUG TPElS TaSvopuntég pe Baon ) XNHKY, 1 S1IKTUaKr), Kat Vv
uBp181kr) mAnpogdopia. IIpotou mpox®pProoupE, OP®S, HE TNV EKNAIBEUOT) TOV POVIEA®V p1ag
MPEMEL va AUCOUHE £€va aKOUn IPOBANUA IoU MPOKUITIEL Aard T0 oUVOAO tav Sebopévev
mou éxoupe ot 61abeon pag: Sev yvopidoupe kavéva apvnuko deiypa. AvaAutikotepa,
Yewpoupe wg Yetiko Setypa exknaibeuong éva oudeuypévo Sidvuopa Iou MPoEKUYe arnd pia
MPAYHATIKY aKPn ToU 70N yod@ou, 8ev £X0Upe OP®G aviioTolXeg U1 MPAYHATIKEG™ AKUESG
otov ypago yia va pag dwoouv ta apvnukd Seiypata. Xpelddetal, OUVEN®OG, va KAVOULE
AAAn pia SertypatoAnyia dote va niapdfoupe véeg “apvnuikéS” akpég otov ypado pag yua va
napagoupe apvnuka detypata eknaibeuong anod myv cUVEVEOOT TV AVIIoTOX®V S1avuopatev
— @povti{oupe 01 TUXaie§ aKPEG IOU TMAPAYOURE va pPnv umdpyouv 1dn otov ypddpo ©g
MIPAYHATIKEG aAAnAerubpaces.

'Exovtag etotpaocet ta detika Kat ta apvhuka detypata ya tov winoen ypdgo, sijpiacte

£T01101 VA eKMAISEVOOUNE Kal, £IELTA, VA €§ETACOUNE v ertidoon tov ta§vountov pag.
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Zuvoyn ng Epyaoiag

Xwpidoupe ta 6edopéva pag oe oUvoda exkmnaidsuong, emaAnOeuong Katl EAEYXOU 1€ TTO0O0TA
65% /5% /30%.

0.3 IIsipapatira AnoteAéopata

Class Classifier Precision Recall F1 Score Category mol2vec node2vec Hybrid
Negative Samples  TOI2VEC 091  0.89 0.90 Experimental 87 94 96
( Clgass o PIeS hode2vec 0.90 0.94 0.92 Approved 85 93 94
Hybrid 0.96 0.94 0.95 Investigational 87 94 95

Vet Approved 88 94 97

Positive Samples mol2vec 0.88 0.91 0.89 Withdrawn 87 96 97
(Class 1) node.2vec 0.96 0.93 0.94 Ilicit 87 95 96
Hybrid 0.93 0.95 0.94 Nutraceutical 91 90 97

(a) Classification Report yia toug 1peig 1aflvounteg (b) Zuyrpion g mocoouaiag axpibeiag v

MPOBAsYewy KAade UOVTEAOU yia Kkade Karn-
yopia gapudrov

Figure 2. Aiojioynon g Enidoong twv Tawountov

Znv evotnTa AUty Tapab£IoUlE Ta ONUAVIIKOTEPA ATTOTEAECHIATA ATIO Ta TElPAatd Pag.
O mivakag 2a riepiexet o classification report rmou mpokUITIel amno v a§loAdynon t@v Jov-
TEA®V PaG 0TO0 CUVOAO €EAEYXOU — O1 ApVNTIKEG AAANAETIIOPACEIS ATIOTUTIOVOVTAL € T KAAOoT)
0 kat o1 detkég adAnAermdpaocelg and v KAdon 1. Zto napapinpa A ntapabEetoupe ta Aem-
TopEPL otolXela oXetka e ta dedopéva ekmnaideuong, emaArBsuong Kat eAEYXOU yia TOUG
1pE1g Tagvounteg, eve oto rapdptpa B napabétoupe ta mAfprn edopéva oxeuka pe tov
niivaka 26, apouotddoviag pia avaAutikotepn a§loAdynon g mpog tnv akpiBeia kabe pov-
T€AOU yla KAOe povadikr) kammyopia pappakev. H katnyoplonoinon tov @appdkev divetat
aro 1 DrugBank xkat s§urnnpetel wote va KAvoupe e181KOTEPEG OUYKPIOELG OTO GUVOAO TRV
@aPPAKGV, OTIRG Yia rtapddetypa va pedetrjooupe v aglormotia mg XNPKAS Kat g Siktu-
aKng MAnpodopiag &g rpog v avadftnorn aAAnAemdpaoewv 0tav EPMAEKOVIAL MEPAPATIKA,
1] KINVIATp1KAa @ApuaKda.

Mropoupe va Stakpivoupe 6Tt 0 UBp181KOG TaSIvounThg £XE1 ONUAVIIKA KAAUTEPEG EIBO-
o€1g 0g OAeg oxedOV T1G ouyKpioelg pe ta dAAa duo cuotpata. To yeyovog autd urodsikvuet
OTl UTIAPXEL 11 ETMKAAUTTIONEVE Yvoorn and g §Uo Mmpoooeyioelg (XNHUIKIY Kal S1KTUAKT)
mAnpogopia) n oroia sivat ®PEApo va cuvduaoctei — apd 10 YEYOVOG OTL LEYAADVEL ONpLav-
TIKA T0 PAKOG NG UBP181KNG H1avuopatikng avanapaotaong Kal, Katd oUVEreld, SUOKOAEUEL
1] eKNaideU0T) TOV VEUPOVIKOV Pag S1IKTU®V HE TS £10000UG peyaAutepwv draotdoemv. Movn
eCaipeon oV urepoyxr tou uBpld1KOU tagivour ) arnotedel 10 peyadutepo precision tou
node2vec PoviéAou g 1og Ta detukda deiypata, KATL IOV pag 0dnyel oto oupmnépaopia ot 1
diktuakr) mMAnpogopia eivatl 10XUPOTEPT) OV AVAYVOPLOT TOV APVNTIKOV delypdtov Kat v
anoduyn v false positive ripoBAeyewmv.

O mivakag 3a rmapouotddel ) oUYKPLon NG Péong Tpng arnod Sidpopa XapaKiploTika
1oV Setypdtev eAéyxou, Kat o mivakag 38 mepiexetl v anokAlon Kullback-Leibler avapeoa
OTIG KATAVOEG TIOU 0pidovial aro 11§ OROTEG KAt TG AavOaopéveg EKTIINOELS TOV TASIVOL TRV

pag. O 6pog average mean degree avadEpetal ot PECT) T A0 T0 CUVOAO TTOU TTPOKUITIEL
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0.3 Telpapatika Anotedéopata

Metric mol2vec node2vec Hybrid
Average Min Degree 518.06 470.07 517.01
False Average Max Degree 1137.02 1143.09 1163.44
Prediction Average Mean Degree 827.54 806.58 840.22
Average Core Difference 237.17 266.10 242.34
Average Betweenness Centrality 4.57e-06 6.99e-06 6.76e-06
Average Min Degree 519.66 593.45 512.09
Correct Average Max Degree 1083.25 1143.96 1078.67
Prediction Average Mean Degree 801.45 868.713 795.38
Average Core Difference 228.50 196.01 231.80

Average Betweenness Centrality 1.39e-06 1.29e-06 1.44e-06

(a) ZuyKkpion yoa@podewpnTik®v xapaKtnpiotkev &¢ Tpog ouvoa Setyuatov efléyyou Tou opifovtat ano
mv emiAoyn (owotn 1 Aavdaouévn) kade taltvountn

Classifier Correct False

Average Degree 0.018 0.047
Min Degree 0.019 0.199
Max Degree 0.010 0.110
Core Difference 0.013 0.103
Betweenness C. 0.109 0.071

(b) Amorjhon KL avdueoa otg Karavoueg
betyparov v talwouniov mol2vec kai
node2Zvec (tuég peyaivtepeg ano 0.1 eupavi-
Jovtar pe €vtovn ypagn)

Figure 3. Xapaxmpiouka anotefléopuara avad kammyopia npo6isyng (Zwot 1} Aavdaousvn)

av UroAoyicoupe 10 €00 0po arto Toug Pabpoug twv KOBmv mou anaptidouv kabe {euyog
mbavov adAnAemidpdoswv (betypdtev) oto ouvolo edéyyou. ‘Opola, o 6pog average min
degree TieplypAdet ) PO TIUn Ao tov eAdy1oto Badbpo kdbe {euyoug ota Seiypata eAéyyou
Kal 0o 6pog average max degree avadepetal ot PEOCH TP And toug pEyiotoug Badpoug.
Axonn, n tr) tou betweenness centrality untoAoyidetal ovo yia TG 9eTKEG aAAnAemdpaoelg
(etypata rmou arotun®vouy rpaypatikr aAAnAenidpaon petady appdkav), eve o 0pog core
difference avagépetat otnv anoAutn dapopd tev k-cores avapeoa otoug dUo kKOPBoUg TTOU
arnaptidouv eva deiypa aAAnAenidpaong.

Axopr, ta daypdappata 4a kat 48 anotuniovouv 1 SiapopdPeorn g HEONS TIHNG TOU
recall wg ipog tov gAdaxioto Babuod (min degree) kat 1o core difference tov deitypdtov. Mo
OUYKEKPIEVA, 0 autd ta daypdppata, o dovag x kabopiletl mowa Selypata eAéyxou oupl-
petéyxouv ot Stapodpdpworn g Tpng tou recall: emAéyoupe 0Aa ta delypata mou €xouv 1o
UTIO €AEYX0 XAPAKTNPlotiko (eAaxioto Babpuo 1) core difference) va eivat pikpotepo 1) ico g
TIUNG TTOU £XE1 0 Agovag X yla KABe onpeio g ypadikng rmapdotaocng — enopévag ya x = 0
bev ouppetéxetl kavéva Selypa, eve yia T PEYLOTn T Tou X (§e§1dtepo onpeio tng ypadikng
napdotaocng) ouppetEXouv 6Aa ta delypata.

To Swaypappa 4a pag Ponba va efayoupe €va MoOAU XPrjolio cupnépacua: ta Oeiy-
pata ota oroia 1o @Appako pe tig Atyotepeg adAnderubpaoelg (ko0p6og 10U ypadou e Tov

HKpOTEPO Babpod ota dxkpa plag arpng) £xel aplfpod aAAndemdpdoewv PIKPOTEPO amod €va
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Zuvoyn ng Epyaoiag

Recall over Min Degree Recall over Core Difference
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Figure 4. Awaypauuata ue m petpuen recall yia poviéAa mouv Saocifovial otig avanapactaosls
e XNUIKNG, ¢ SikTtuakng Kat ¢ v6pldkng manpogpopiag.

KatopAl — oto Sraypappa Stakpivoupie 1o KatwdAt autd va Bpioketatl kovida otov aptdpo 350
— ouviotd KaAutepo unown o yia tg pebodoug mou Pacifovral oty Xnuiki minpogopia oe
ouyKkptlon pe 1g pebodoug mou expetadAevovial ) Siktuakn mAnpogopia. Ilpokertatl yua
Hia Aoyikr) unobeor), KaOwg eAPHaKa Ta Oroia £XoUv PIKPr) rmapoucia o €vav ypddo sivat
Aoy1ké va pnv propouv va aglononfouv arod S1Ktuakeg rnpooeyyioelg. Qotd00, 10 YEYOVOg
OT1 JUIopPOoUE va ermBeBaidooupe TV UMOBeon MEPAPIATIKA KaAl, AKOPdA TIEPI000TEPO, va 0Opi-
ooUllE KAl €va KATOQAL yia 1ov apifpo teov aAdAnAembpdosnv eivatl 18laitepa onpaviiko yia
Vv epyacia pag.

MelAetdviag ta Sraypdppata 4a kat 46 Popoupe va eKTIINCOUHE OTL TA POVIEAA Pag
Kavouv 1o adomoteg mpoBAéwelg yia Seiypata mou mapouoidadouv xapndoé core differ-
ence. ErurpdoBeta, yia xapndotepeg tipég oto core difference tov Setypdtov o tadvountrig
node2vec retuyaivel rapopola eridoorn pe tov uBpd1koO Tadivountr), yepupwvoviag to xaopa

nou kepbidape ouvduadovrag ) XNIKI PE T d1Ktuakr) rmAnpogopia.

0.4 ZTupnepdaopata

"Exovtag oAokAnpmost ta otddia g £§opudng Kat enegepyaoiag tov Sedopévav pag aote
va apagoupe Tg XNUIKES Kat TG S1IKTUaKEG avarnapaotdoeig yia ta gappaxka g DrugBank,
Vv eKnaidevorn v tadivopntov pag Kabomg Kat 1oug KUKAOUG MEPAPATOV avapopika pe
NV avdAuoTn) TV EMAOYOV TOV POVIEADV 1A KOG ITPOG Td 51adopa XAPAKINPoTIKA ToU TT/nen
Yoagou, PIopoUPE vd CUVOWICOUPE O€ AUTH TV £vOTNTd TA ONHAVIIKOTEPA CUNIEpAcHATd
ou £§Ayoupe amo v 0Arn ropeia pag.

Katapyag, ogpeidoupe va avayvepicoupe o1t 10 poBAnpa g avadninong @apuakeu-
KOV aAAnAerudpdoswv eKteiveTal o TTOAU PeyaAutepa BAbn aro ekelva mou ixape v u-
kapia va eepeuvrjooupe. XiAadeg pdppaxa yia ta ornoia Sev £Xoupe akOIA YVOOTEG aAAn-
Aeidpdoetg EPIPIEVOU QOTE VA CUPHETEXOUV KAl AUTA OTOV YPAPO YVAo1g, Padl pe Tig ouvde-
O€1§ TOUG PE dAAa @AppaKka IMou avtioTolXa avapévouv v avakdaluyr) toug. Mrmopoupe
®OTO0O0 VA EKTIPHO0UNE T nowdtnta v Sedopévev tng DrugBank, kabwg 1o amobetr)plo

@PAPPAK®V KAl aAAnAemdpdoemv oto omnoio Baciomkape anodeixOnke amno v avdiuor) pag
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0.4 Zupnepdaopata

EKTEVEG Kal 181aitepa Xp1io1o yia ta mepapard pag.

AE{Ce1 ertiong va otaboupe otg e€alpetikég erudooetg 1ou adyopibpou node2vec. ITo ouy-
KERP1PEVA, TO YEYOVOG OTL Iapd v adaipeon tou 99% eV aKp®V arno Tov TAnen yoapo o ai-
YOp18110g¢ Katdgepe va Apdel H1avUoPATIKEG AVATIAPAOTACELG TTOU 08-ynoav oe eSalpetika
ertineda padnong 1a veup®VviKA ag Uodelkvuet ) duvapin tou node2vec va avakaAurtet
) Anpodopia amo 1) yerrovid Kabe KOpBou evog ypApou, aropd Ki av Aeiret 1) ouviput-
TIK TMAE10VOTTA TG ApXIKNG mAnpogopiag, kat va odnyei oe adlomoteg KU oeIg yla v
urapdn 1 un mbavov akpov.

e avtiBeon pe 1g Sravuopatikég avanapactdoelg, yia Tig oroieg yvopidajie ek tov mpo-
TEPWV aro 1 oXetky BiBAloypadia Ot €xouv 1dn ePpappootel ermruxnpéva oe ouotpata
rou rpoBAriouv aAAnAermbpdoeig petadu eappakeyv, dev eixape kamowa £voeiln mpotou ex-
TEAE0OUE TA MEPAPATA PAG Yid TNV AVIIOTOX] XPNOHOTNTA TV XNHIKGOV avaidpaotdoemV
péoa aro tov adyopibpo mol2vec. [MapoAautd, o OXETKOG TASIVOUNTAS KATAPEPE va METUXEL
e€looU onuaviikeg ermdOoelg OV AVAYVOPLOT] JETIKOV KAl ApVTIKOV aAANAeruSpdoemy.

To KUp10 {nNTovpevo g epyaciag autrg, BeBata, dev eivatl n e§atopikeupévn) pedétn Kabe
oUOTATOG, AAAd 1 CUYKPLON NG XNIKNG HE T S1KTUAKY TANPOQopid yia ToV OKOIO NG
rpoBAeyng aAlAnlermdpdoenv pappdakev. Qg rpog Tov 0T0X0 aUuTd, PIOPECALE Va eEAYOUHE

16laitepa Xprotpa cuprnepaopatd, e Kupiotepa ta eEng:

e O ta§vounmg mol2vec mapouctalel kKaAutepo recall yia deiypata pe xapnAotepo
edaxioto Badbpd kopBwv, péxpt o Pabpog autdg va gerepdoel £va KAt®PAL OIIOU TOTE
erukpartei o tavopn g node2vec. Akopur, o ta§vopurn)g node2vec ermtuyxavet mavia
KaAutepeg ermbooelg otav pedetatal og npog to core difference tov detypatov (aAAn-

Aerubpdoenv).

e H xatavopn g tpng tou betweenness centrality ota deiypata yia ta oroia éyive
owmotr) npoBAeyn epdavidel onpaviikeég Siapopég avapeoa ota povieda mol2vec kat

node2vec.

o XapnAég tpég g mapapérpou core difference kabiotouv ta detypata tov adAn-
Aerudpdoenv kadutepoug unoyrneioug yua pebodoug mou Paocidovial ot S1KTUAKY)
rmAnpogdopia — pdAiota 1o poviedo node2vec KaAtaPEéPvel va PTACEL OV MEPITIROOT

autr) akopun Kat tig ermdooelg 10U uBp1dikoU poviedou.

e T'a peydleg tpég g mapapétpou core difference n xnuikr mAnpogopia prmopet va

ouvduaotel pe ) diktuakn wote va Bedtiwoet v eniboor) tou ta§vopntr).

TéAog, yivetal epgpavég péoa amod ta nepdpatd pag ot 1o uBpidiko Poviédo, 1o o1oio
ouvdudadlel ) XNUIKY Pe ) S1Ktuakr) mAnpodopia, eival cadpog 10XUPOTEPO ATIO ATIO TA POV-
TéAdA NG XNHIKEAGS Kat TG S1IKTUAKNG TTANPOPOPiag ®G IIPog T O®OTL AvAyVeP10T] TV IETKOV
1] ApvNTIK®OV aAANAETISPACERDV.

KAeivoviag, kataypadoupe PEPIKEG ATTO TIG ONHAVIIKOTEPES PNEAAOVIIKEG ETIEKTAOCELS ITOU
9a propovocape va PEALTHOOUE OOTE VA EEEPEUVIIOOULIE TIEPATTEP® TO TIPOBANHA g rpdB-
Aewng aAAndermubpdoswv petadl @apdraV Kat T CUYKPL0T] PETady tou podou rou nailouv

N XNHIKG Kat 1 Siktuakn mAnpogopia.
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Zuvoyn ng Epyaoiag

e [IpoBAeyrn tOoU TUMOU NG aAAnAemidpaocng: 1o MPOBANpa mou pedstdpe propet va
ernektabel oe pa mo ouvOetn €kdoon Omou Sev ApKOUPAOTE OV AVAYVOPLON Mg
arAederidpaong petadu §uo @appdrev, adld mpooraboupe va eKTIPCOUNE KAl TO
€160g g avdpeoa oe €va oplopévo MANO0G A0 AVAYVOPIOHEVEG KATNYOPieg — ep-
yaoieg onwg 1 [8] amotedouv xapaxtnplouka rapadsiypata avtng g IpooEyylong.
H péletn oe autdv tov topéa da anattel cadpag 1o averntuypéva poviéda npoBAeyng
Kal 100G 00nyr)oel og Mo oadpn] ypapobe®pnTKA oTo1Xeia avadopika e TV UTEPOXT

G YPAPIKNG Ao 1) XNHKL MAnpodopia (kat 1o aviibeto).

e AvaBdadnion 1ou Tpo1ou delypatoAnyiag yia apvntikeég aAAnderudpdoeig: yivetat capeg
Oota TMEPAPATIKA Pag arotedéopata 0Tl Td HOVIEAd HUITOPOoUV va avayvepioouv pe
ONPavIlKA peyadutepn eukoAia ta apvnuka detypata oe ouykptlon pe ta Setukd dety-
pata. Oa nrav Xprjotpo ouvernwg va e§epeuvrjooupie KaAutepeg peboboug yia va
rapdadoupe TG apvnukeég aAAnAerudpAoelg pag pe Otoxo ) KaAdutepn exkmnaibeuon
v tasvopntov pag. MdAiwota, oto Xwpo g rpoBleyng g Katnyopiag tov aiAn-
Aerubpdaoewv, Kat 0X1 artAwg g Urapsn toug, £xouv avarrtuxdei 1dn adiodoyeg pébodot

KATAOKEUTNG apvnTiKaV detypatev [9].
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Chapter E

Introduction

1.1 Motivation

The combination of more than one drugs can often improve the outcome of a treat-
ment that would be based on a single one [10]. Also it is very common for patients that
suffer from comorbidities to follow a multiple drug scheme. Yet, there can be adverse
effects in those combinations, which occasionally might be toxic. While many drug in-
teractions have been discovered, there are potentially new ones that could be predicted
with computational methods, before their laboratory investigation [11]. Thus predicting
Drug-Drug Interactions (DDIs) is important for the well-being of patients. The problem of
drug interaction prediction with computational methods is usually reduced to the problem
of link prediction in a network of interactions. Additional features, such as structural,
physicochemical and biochemical characteristics of chemical compounds could poten-
tially increase the accuracy of predictions; the usefulness of such properties is already
proven in the field of drug discovery [12].

Usually, notable approaches to create systems that predict drug interactions either
exploit the knowledge graph of the already known DDIs, or study the chemical features of
compounds that are related to the drugs of interest. This is where an important question
arises: when is it preferable to choose the network information over the chemical features
— or the opposite — in order to study possible interactions in a set of drugs? And
further more, is there sufficient gain in combining these sets of characteristics (graph and
chemical) for the purpose of creating even more efficient systems for link prediction in the

area of drug interactions?

1.2 Field of Study

Our work is focused on single link prediction between drugs. We study the embed-
ding of a drug’s chemical formula towards vector representations that encapsulate the
properties of chemical compounds. We also study the embedding of the network infor-
mation that we extract when we consider each drug to be a node in a graph of drug
interactions; interactions are denoted as edges in this type of graph. We utilize these
embedding methods in creating machine learning models that attempt to predict inter-

actions between drugs. Our interest is not just to isolate those methods and separately

Diploma Thesis m



Chapter 1. Introduction

evaluate their efficacy in creating link prediction systems; we delve into the network of
drug interactions and compare the two embedding mechanisms in order to discover which
are the network properties that make each approach more efficient than the other when
it comes to predicting DDIs. For example, we could assume that a drug for which there is
plenty of network information (e.g. a high degree node in our graph) is a great candidate
for network embedding methods that work on exploiting this kind of knowledge. On the
other hand, a drug that may seem isolated in the network of drug interactions (perhaps
a newly discovered compound with only a few known interactions), may be more suitable
for chemical embedding methods. We study various graph properties, such as the de-
gree, core difference and betweenness centrality of nodes and edges in order to discover
parts and characteristics of the interactions graph that will help us compare in detail the

chemical and the structural methods of embedding drug information.

1.3 Contribution

In this work we make the following contributions:

e Comparison of two drug interaction prediction methods. One based on network
information and and the other on chemical information. node2vec and mol2vec

were used for embedding network and chemical information respectively.

e In-depth study of topological features that influence the accuracy of the two link
prediction models. In particular, we focus on what renders chemical information

more useful than network information when it comes to drug interaction discovery.

e Experimental Evaluation of the link prediction methods on a graph created from

DrugBank’s [1] drug interactions.

1.4 Thesis Structure

The rest of this thesis is structured as follows:

e Chapter 2.1 provides a literature review regarding notable works in the fields of Link
Prediction, Network Analysis and Drug Interaction Prediction. This chapter also
provides the reader with the essential definitions behind the concepts discussed in
this thesis.

e Chapter 3 explains the details behind our experiments, as well as how we proceed
with the data mining operations that are needed in order to prepare our source
data for mol2vec and node2vec. Finally, we discuss the way in which we compare

network against chemical information for the purpose of DDIs prediction.

e Chapter 4 presents the results of our experiments: cross-experiment study allows
for comparisons between embedding types in regard to topological characteristics of
the samples, while detailed reports on each classifier’s predictions provides in-depth

analysis of each embedding model’s behavior on the test samples.
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1.4 Thesis Structure

e Chapter 5 summarizes the most important observations from our experiments; we
also draw our conclusions from the work we did for this thesis. Finally, we suggest
ideas for future work on the topic of comparing chemical against network informa-

tion for the problem of drug interactions prediction.

e Appendix A contains information about the dataset and classification report for
each one of our experiments that are based on: mol2vec, node2vec and hybrid

embeddings.

e Appendix B provides a detailed evaluation of each one of our classifiers per Drug-

Bank’s drug categories (see subsection 3.2.1)

e Appendix C presents a complete report on our hybrid classifier’s choices over key

graph characteristics.

Diploma Thesis m






Chapter E

Literature & Definitions

2.1 Literature Review

Link Prediction in graphs is a well researched area [13], with many applications in
social networks analysis [14, 15] and drug interaction prediction [16], to name just two
prominent ones.

Predicting missing (from existing knowledge) or future edges of a network can be based
on graph features, upon which matrix and tensor factorization can be applied [17, 15].
Such methods have also been applied to graphs that evolve in time [18]. Node and edge
embedding methods are widely used to create features for classification [19]. Lately graph
neural networks have become popular in link prediction [20, 21].

Link prediction has also been used for drug interactions, with methods varying from
predicting the presence or absence of an interaction, to methods the predict the type of
an interaction a in multi-relational network [22, 23]. Moreover, many methods have been
proposed that employ additional features apart from graph based features, for instance
the usage of chemical information has been proposed in [24]. Also a hybrid method
that combines multiple types of information, including structural information has been
proposed in [20]. Finally, for multi relational link prediction there are approaches based
on graph neural networks [8].

This thesis focuses on the difference between chemical and structural information in
DDI prediction, and in particular how the network topological features could render one

of these types of information more useful for discovering new interactions.

2.2 Prerequisites

In this section we present the fundamental definitions, algorithms and graph mea-
sures that we use in this thesis. We do not include all the concepts that are required for
someone to understand this document and for that reason a familiarity with data science

and machine learning topics is important for efficiently going through this thesis.

Kullback-Leibler divergence KL divergence [25] is a non-symmetric statistical measure
of how one probability distribution p is different from another distribution @ over the
same variable x. Denoted by Dk (P||@), for discrete probability distributions P and Q KL
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divergence is given by:

_ P(x)
DkL(PIlQ) = ;{P(x) log ( Q(x)) 2.1)

KL divergence will prove particularly useful in chapter 4, were we will compare the
distributions of the graph characteristics of the samples sets that are defined by the

choices of our classifiers.

2.2.1 Machine Learning & NLP Concepts

Shallow Neural Networks Feed forward neural network models with only one hidden
layer are called Shallow Neural Networks (SNNs). The information stored in the hidden
layer after the training of the network is considered to be the projection of the raw data
input of the network towards a new representation of features. Essentially, when an input
is given to the network, the values that are formed in this hidden layer can be used to

produce an embedding for that input.

word2vec Proposed in 2013 by Tomas Mikolov and his team of Google researchers,
word2vec [2] is a NLP technique that uses a neural network model in order to capture
the relations between words in a large corpus of text. Each unique word is embedded
into a fixed-size vector of real numbers; words that are semantically similar should lead to
vectors that also satisfy a metric of similarity (e.g. euclidean distance or cosine similarity).
These vectors are called word embeddings, and the models that are used to produced them
are called Vector Space Models (VSMs). There are two major algorithmic approaches for

the word2vec paradigm, based on Shallow Neural Networks:

e Continuous skip-gram: the model attempts to predict the most semantically fitting
surrounding window of context words when a word is given as an input. The archi-
tecture behind the skip-gram approach weighs nearby context words more heavily

than more distant context words inside the surrounding window of context words.

e Continuous bag-of-words (CBOW): the model attempts to predict the current word
of a sentence from a window of surrounding context words. The order of these
context words does not affect prediction of the model — this property is known as

the bag-of-words assumption.

node2vec Inspired by word2vec, node2vec is a machine learning algorithm for produc-
ing node embeddings, by mapping the nodes of a graph to a low-dimensional space of
features that maximizes the likelihood of preserving their network neighborhoods [4].
To achieve this goal, node2vec simulates biased random walks based on an efficient
network-aware search strategy where the nodes appearing in the random walk define
neighbourhoods. The search strategy accounts for the relative influence nodes exert in a

network.
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2.2.2 Computational Chemistry Definitions

mol2vec Mol2vec is also a variation of word2vec. This algorithm encodes chemical
compounds as vectors through training an unsupervised machine learning approach on
a so called corpus of compounds that consists of all available chemical matter [3]. The
result vector representations of molecular substructures are close for chemically related
substructures, just like vector representations of semantically related words are close in
a word2vec model’s embeddings.

For example, figures 2.1a and 2.1b show the 2D and 3D representations for the
chemical compound of Clozapine: the first atypical antipsychotic approved for treatment
of schizophrenia. These figures were generated by the PubChem website !. The purpose
of mol2vec is to embedd the chemical structure of compounds like clozapine into a vector

of real numbers.

\

o

(a) 2D Structure of the chemical compound of (b) 3D Conformer of the chemical compound
Clozapine of Clozapine

Figure 2.1. Representations of Clozapine from PubChem

2.2.2 Computational Chemistry Definitions

SMILES Notation SMILES (Simplified Molecular Input Line Entry System) is chemical
notation system based on principles of molecular graph theory [6]. Given a chemical
graph from which hydrogen atoms have been removed and cycles have been broken in
order to turn the graph into a spanning tree T, SMILES is a string that we obtain by
concatenating the symbol nodes that we encounter in a depth-first traversal of T. For
the example of Clozapine, the corresponding molecular formula and canonical SMILES
notations are respectively:
C18H19CINy

and

CN1CCN(CC1)C2 = NC3 = C(C =CC(= C3)CI)NC4 = CC =CC =C42

MOL Data Structure RDKit’s [7] MOL data structure, is essentially an MDL Molfile; a

file format for holding information about the atoms, bonds, connectivity and coordinates

'https://pubchem.ncbi.nlm.nih.gov/compound/135398737
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of a molecule. Stored in what is called a "molfile ", this data structure holds some header
information, the Connection Table (CT) containing atom info and the bond connections
and types of a chemical compound, followed by sections for more complex information.
We use MOL data structures as input for the mol2vec model in order to produce the

chemical embeddings of drug chemical compounds.

2.2.3 Graph Metrics

The following paragraphs briefly present the most important graph metrics that we use
in both our Link Prediction experiments and comparisons between chemical and network

embeddings in regard of their usefulness in DDIs prediction.

Node Degree & Degree Centrality The degree of a node in the graph denotes the num-
ber of edges that are connected to it. Also, the Degree Centrality of a node is equal to its
degree; this is the simplest one of the centrality measures that we use. We only focus on
the variations of these metrics for unweighted and undirected graphs since our graph of

drug interactions fits this category.

Clustering Coefficient The local clustering coefficient ([26], [27]) for a node v; of an
undirected graph G = (V,E) is

2 |{ejk DU, U € Ny, €5 € E}|
C = 2.2
' ki (J — 1) 22

where we consider N; to be the neighbourhood of v;, defined as the set of its immedi-

ately connected neighbours (nodes):

N;={vj:e; €EV ej € Ef 2.3)

and k; is the size of N;. The clustering coefficient essentially quantifies how close are

a node’s neighbours to being a clique (complete graph). The average clustering coefficient

C= % Z cy 2.4)

where n is the number of nodes in G.

of a graph, is given by:

Eigenvector Centrality Eigenvector centrality ([28]) computes the centrality for a node

based on the centrality of its neighbors. The eigenvector centrality for node i is:
Ax = jix (2.95)

where A is the adjacency matrix of the graph G with eigenvalue A. The Perron-Frobenius
theorem ([29]) establishes that there is a unique and positive solution for this equation if
A is the largest eigenvalue associated with the eigenvector of the adjacency matrix A.

In other words, Eigenvector Centrality quantifies the transitive influence of nodes on

the graph. Edges originating from high-scoring nodes contribute more to the eigenvector
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centrality of a node than edges from low-scoring nodes. A high eigenvector centrality value
means that a node is connected to many nodes who themselves have a high eigenvector

centrality.

Closeness Centrality The closeness centrality [30] of a node v is given by the reciprocal
of the sum of the shortest path distances from v to all the other n — 1 nodes of the graph.
Since the sum of these distances depends on the number of nodes in the graph, closeness

is normalized by the sum of minimum the n — 1 possible distances.

n-—1
CV) =977 (2.6)
Zu:l d( u, U)

Closeness centrality is a way of identifying nodes that have the capacity to convey
information very efficiently through a network.The closeness centrality of a node denotes
its average farness (inverse distance) to all other nodes. Nodes with a high closeness score

have the shortest distances to all other nodes of the graph.

Node Betweenness Centrality In graph theory, betweenness centrality is a measure of
centrality in a graph based on shortest paths. For every pair of vertices in a connected
graph, there exists at least one shortest path between the vertices such that either the
number of edges that the path passes through (for unweighted graphs) or the sum of the
weights of the edges (for weighted graphs) is minimized. The betweenness centrality for
each vertex is the number of these shortest paths that pass through the vertex.

Defined in the NetworkX documentation 2: betweenness centrality of a node v is the

sum of the fraction of all-pairs shortest paths that pass through v :

cg(v) = Z als.tv) 2.7)

s,tevV O(S’ t)

where V is the set of nodes, o(s, t) is the number of shortest (s, t)-paths, and o(s, t | v) is
the number of those paths passing through some node v other than s, t. If s = t, o(s, t) = 1,
andifve s, t o(s, t|v)=0][31].

Edge Betweenness Centrality In chapter 4 we use the edge betweenness centrality,
which, for an edge e of the graph, is calculated by the sum of the fraction of all-pairs of
the shortest paths that pass through e :

cgle) = Z gs.t]e) (2.8)

s,teV O(S’ t)

where V is the set of nodes, sigma(s, t)? is the number of shortest (s, t)-paths, and o(s, t | €)

is the number of those paths passing through edge e [30].

2https://networkx. org/documentation/networkx-1.10/reference/generated/networkx.algorithms.centrality.
betweenness_centrality.html
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K-Cores Given a graph G and an integer K, the K-cores of the graph are connected
components that are left after all nodes that have degree less than k have been removed.
Also, the k-shell is the set of vertices of a graph that are part of the k-core set but not
part of the (k+1)-core set. For each k-shell set, we assign k as the k-core value to each
node of that set. In our experiments we will refer to the Core Difference of our drug
interactions graph’s edges as the absolute difference of the k-core values of the nodes
that are denoted by that edge of the graph (where the edge also expresses an interaction

between the underlying drugs).
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Chapter B

Methodology

This chapter describes all of our link prediction experiments, along with the steps
we follow in order to prepare our data for these experiments. Although the primary
goal of this thesis is to explore topological features that render network embeddings of
drugs more useful than chemical embeddings, and vice versa, for the problem of DDIs
prediction, it is crucial that we prepare a complete set of experiments that will form the
basis for our comparisons between the embedding methods. At the same time, these
experiments constitute a case study for the application of mol2vec and node2vec on the

DrugBank dataset for predicting drug interactions.

3.1 Experiment Design

For each drug, we create two embedding vectors: a network and a chemical based
representation. Next, we use three neural network classifiers to predict DDIs: a classifier
based on graph (network) embeddings, another classifier for chemical embeddings, and a
hybrid classifier that is based on both network and chemical embeddings. We evaluate the
performance of each classifier in chapter 4, and proceed to compare their DDI prediction
behavior against various network topological features on the network of drug interactions.

The embedding mechanisms we use on drugs are inspired by Natural Language Pro-
cessing techniques and are both variations of word2vec [2]. The result in both cases is a
vector that encapsulates information derived from either network or chemical properties.
In order to create DDI prediction models, we train the neural network classifiers to accept
as an input the vector embedding from pairs of drugs, and predict whether an interaction

exists between them.

3.1.1 Chemical Embeddings

We discussed in 2.2.1 that mol2vec creates vector embeddings from drugs, by travers-
ing the molecular structure of a drug’s underlying chemical compound, in a similar fash-
ion to word2vec’s traversal of a sentence of words. Our set of unique chemical compounds
— which is presented in 3.2.1 — consists only of a few thousand chemicals; a number
which is sufficient when we explore drugs and their interactions, but is not enough to

train an efficient mol2vec model. Therefore, in our experiments we use a pre-trained
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model of mol2vec to produce the chemical embeddings of the drugs in our dataset’.

3.1.2 Network Embeddings

After harvesting DrugBank’s drug interaction graph and then extracting a sample sub-
graph (see 3.2.2), we train a node2vec model on the sampled graph and use it to produce
the structural embeddings of all the drugs in the dataset. The embedding mechanism of

node2vec is presented in 2.2.1.

3.1.3 Training Samples

Since the experiments focus on predicting drug interactions, we consider two cate-
gories of samples: positive and negative. Positive samples refer to observed interactions
between drugs, and negative samples refer to interactions that have not been observed so
far, i.e. a closed world assumption. The input to a classifier is a pair of drugs, represented
as a vector, for all of our models. The output is the presence or absence of an interaction,
denoted by classes 1 and O respectively. Figure 3.1 displays how drugs v; and v; can form
a training sample for our neural network classifiers, through the concatenation of their
embedding vectors; the desired result from the classifier should be O, if this is a negative
interaction (meaning that these drugs do not interact), or 1, in the opposite scenario.

Note that each DDI leads to two different vector concatenations depending on the order
that the concatenation is done; in the following experiments we included both options to
generate positive samples. Acquisition of positive samples was straightforward. However,
to create negative interactions it was assumed that unobserved interactions do not exist,
and thus the graph was sampled for pairs of nodes that do not form edges. We chose to
created balanced sets for training and evaluating the classifiers by sampling a number of

negative samples equal the number of the positive samples.

3.1.4 Experiments & Evaluation

In total, we evaluated three classifiers based on the same neural network architecture

of a feed forward model with two hidden layers.
e A mol2vec classifier based on mol2vec embeddings.
e A node2vec classifier based on node2vec embeddings.
e A hybrid classifier based on both mol2vec and node2vec embeddings.

The aim is to compare chemical and structural information when used for DDI predic-
tion. For this purpose, along with commonly used metrics in classification, we also use in
chapter 4 network topological features such as node degree, k-core values and between-
ness centrality, in order to identify which topology characteristics make each approach

more efficient in the problem of link prediction.

Thttps://github.com/samoturk/mol2vec/tree/master/examples/models.
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3.2 Data Harvesting

Drug Prediction Experiment Pipeline
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Figure 3.1. DDIs, in the form of concatenated vectors of drug embeddings, are used as
training samples for our classifiers.

3.2 Data Harvesting

3.2.1 Drug Interactions Graph

We extract our dataset from DrugBank [1] (version 5.1.9), a drug interactions repos-

itory that is human curated. The dataset includes 14,624 drug entries and 1,389,184

unique DDIs. We keep only the drugs that have at least one known interaction, and we

also exclude (a relatively small number of a few hundred) drugs that have chemical com-

pounds that are incompatible with the tools that we use for our data mining processes

(i.e. PubChem) and are described in this section. After the data cleaning, we obtain a

set that comprises of 3,753 nodes and 1,207,953 edges, and it will be referred as the full

graph. Table 3.1 contains the DrugBank entries that have the most interactions in the

dataset; interactions are denoted in the form of tuples: (id;, idy).

Drug Name # Interactions DrugBank Categories DrugBank ID

Quinidine 2402 approved, investigational DB00908
Clozapine 2379 approved DB00363
Chlorpromazine 2369 approved, investigational vet approved DB00477
Amitriptyline 2298 approved DB00321
Imipramine 2287 approved DB00458
Doxepin 2236 approved, investigational DB01142
Clomipramine 2217 approved, investigational, vet approved DB01242
Haloperidol 2214 approved DB00502
Methylene blue 2203 approved, investigational DB09241
Nefazodone 2196 approved, withdrawn DB01149

Table 3.1. DrugBank drugs with the most interactions. DrugBank ID refers to the data-
set’s unique identifier for each drug.

Diploma Thesis



Chapter 3. Methodology

Graph Nodes Edges Avg. Degree Clustering Co. Conn. Components Diameter

Full 3,753 1,207,953 643.73 0.621 1
Sampled 3,753 12,080 6.44 0.005 799

Table 3.2. Basic Properties for full graph and sampled graph

Graph Degree C. Eigenvector C. Closeness C. Betweenness C.
Full 0.1715 0.012 0.5030 0.00027
Sampled 0.0017 0.011 0.1556 0.00049

Table 3.3. Average Centrality Measures for full graph and sampled graph

When we refer to structural information regarding DDIs, it is critical to make the
distinction between direct edges which denote drug interactions and information that
derives from the rest of the properties the two interacting drugs (nodes) share. There is
no point in creating node2vec embeddings over a graph that holds all the direct edges
between interacting drugs, because that information — which is essentially the train and
test set of the following experiments — will infiltrate in the structural embeddings. What
we do instead, is take a small sample of the full graph that contains the same number
of nodes and only 1% of its edges. We will refer to the result of this process as sampled
graph. We train the node2vec model on the sampled graph and then use it to create the

structural embeddings for our experiments.

3.2.2 Graph Sampling

Sampling 1% of the edges of the full graph, serves two purposes. First, it showcases
the ability of node2vec to capture graph properties of the original graph, from a subset
of edges that is smaller by two orders of magnitude; this fact is presented in detail in
section 4. The second and most important purpose is the removal of direct links between
interacting drugs. The graph information that we wish to use in our experiments needs
to depend on properties between interacting drugs minimizing the effect of the edge that
directly links the corresponding graph nodes. Closeness centrality in table 3.3 confirms
that the sampled graph has been stripped off most of the direct edges, raising the average
distance between nodes of the graph and, therefore, setting a level of difficulty for our
model to identify interacting drugs through graph information that does not include the
direct edges. Figure 3.3a provides a more detailed view on closeness centrality [32] for
both graphs; for the case of more than one connected components we use the Wasserman
and Faust formula [33].

Table 3.2 depicts some basic properties for the full and the sampled graph, and table
3.3 contains the average centrality measures. Also, DrugBank labels drugs with the
categories shown in table 3.4; note that some drugs belong to more than one category.
Interestingly, drugs that belong to different categories also seem to differentiate on a
graph/topological perspective (avg. node degrees and std. of node degrees).

The average node degree of the full graph reflects a high density of drug-interactions,
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M [ Degree in Full Graph
o0 Category Frequency Degree (mean, std.)
600 Approved 2,179 787.54 + 540.90
g Investigational 1,585 635.09 + 541.51
© 400 ’_\ Experimental 853 480.82 + 447.84
I o Vet Approved 309 731.11 + 578.32

200
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Figure 3.2. Histogram and KDE for Node Table 3.4. Full Graph’s Drug Cate-
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Figure 3.3. Closeness Centrality & Eigenvector Centrality in full graph and sampled graph

thus an average drugs interacts with 600 other drugs. Also, figure 3.2 reveals that there
is a considerable number of drugs that have only few known interactions, as well as many
drugs with thousands of identified interactions.

Although reducing closeness centrality in the sampled graph is one of our goals,
we also need to keep enough edges to train node2vec embeddings to be useful for the
classification. Thus we considered the eigenvector centrality of the full graph and the
sampled graph. Edges originating from high-scoring nodes contribute more to the score
of a node than connections from low-scoring nodes. A high eigenvector score means that
a node is connected to many nodes who themselves have high scores [34]. Figure 3.3b
shows that sampling the full graph did not result in big difference at nodes’ eigenvector
centrality. We can say that nodes in the full graph that not only have many connections
to other nodes, but are also connected with other nodes of importance — in the sense of

eigenvector centrality — continue to hold this characteristic in the sampled graph.

3.2.3 Data pre-processing

node2vec embeddings Starting from DrugBank’s drug IDs, we use various tools in
order to obtain the chemical and the structural embeddings (see Figure 3.4). With the
NetworkX library [35] we create a graph data structure out of DrugBank’s data — the

full graph — and we also use the implemented sampling methods to create the sampled
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graph. We train node2vec on the sampled graph, setting the algorithm to embed nodes to
vectors of 128 dimensions. Once the node2vec [4] model is trained, we apply it on each

drug (node) to produce the corresponding node2vec (structural) embedding.

Data Processing Pipeline

DrugBa”k PubChem SMILES =\ ppkit—  MOL Data
Interac’uon Notations

NetworkX Mol2Vec

Graph (Graph) Vector (Chemical)
k { Structure Node2Vec Notation Vector Notation

Figure 3.4. Data Processing Pipeline: steps between DrugBank data and final embeddings
Jor each drug

mol2vec embeddings To compute the mol2vec (chemical) embeddings, we must first
use PubChem’s services and acquire the isomeric SMILES notation for each drug [5].
PubChem is a large repository of chemical information that is free to access, and also
offers various tools for searching and studying chemical compunds; specifically, we utilize
the PubChemPy ? library for Python. We use RDKit [7] to convert each SMILES entry to a
MOL data structure [36], a widely-used chemical structure file format in which adjacent
lists and adjacent matrices are mostly used to describe a chemical compound’s structure.
Finally, we apply mol2vec [3] on the MOL data structures, using a pre-trained model, to
embed drugs to vectors of 300 dimensions.

At this point, we are ready to proceed with our experiments. We have completed the
data harvest of DrugBank’s contents, and we have also created a unique network (or
structural) embedding as well as a unique chemical embedding for each drug. We used
the sampled graph to train the node2vec model that produced our network embeddings,
however these embeddings also refer to the full graph, which is the only graph that we
should be concerned about from this point and forward; the sampled graph has fulfilled

its purpose.

2https://pubchempy.readthedocs.io/en/latest
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Experimental Results

4.1 Classifier Evaluation

Table 4.1a displays the classification report of the three models on the test set; neg-
ative interactions are denoted by class O and positive interactions are denoted by class
1. We used a 65/5/30 split on all samples (positive and negative) of the Full Graph for
training, validation and testing — we applied a random split, with the exception that all
of the edges in the sampled graph (which are also present in the full graph) ended up on
the training set. Also, we make sure that both variations of an interaction sample (re-
garding the order of the concatenation of the corresponding drug embeddings) are always
included in the same set. Appendix A contains detailed information about the data used
for training, evaluating and testing the classifiers, as well as their detailed classification
reports. Appendix B provides the complete data behind table 4.1b, presenting a detailed

evaluation of each classifier’s accuracy for each drug category.

Class Classifier Precision Recall F1 Score Category mol2vec node2vec Hybrid
Nesative Samples  MOI2VEC 091  0.89 0.90 Experimental 87 94 96
( o “g; AMPIES  hodeavee 090 094 0.92 Approved 85 93 94
ass Hybrid 0.96 0.94 0.95 Investigational 87 94 95
Vet Approved 88 94 97
Positive Samples mol2vec 0.88 0.91 0.89 Withdrawn 87 96 97
(Class 1) node?vec 0.96 0.93 0.94 Ilicit 87 95 96
Hybrid 0.93 0.95 0.94 Nutraceutical 91 90 97
(a) Classification Report (b) Accuracy percentage comparison for each
drug category

Figure 4.1. Classification Report & Accuracy Comparison per Drug Category

Table 4.2a compares the average value of useful graph properties of the test samples,
and table 4.2b provides a comparison between the Kullback-Leibler divergence of the
distributions of test sample properties for the correct and false predictions of mol2vec
and node2vec classifiers. Average mean degree refers to the average of all means of the
node degrees of the test samples; similarly average min degree denotes the average of
all minimum degrees between all test interactions, and average max degree denotes the
average maximum degree. Also, betweenness centrality in this section is calculated only
for positive samples, and refers to the corresponding edge betweenness centrality (and

not the node betweenness centrality that is reported in section 3.2).
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Metric mol2vec  node2vec Hybrid
Average Min Degree 518.06 470.07 517.01
False Average Max Degree 1137.02 1143.09 1163.44
Prediction Average Mean Degree 827.54 806.58 840.22
Average Core Difference 237.17 266.10 242.34
Average Betweenness Centrality 4.57e-06 6.99e-06 6.76e-06
Average Min Degree 519.66 593.45 512.09
Correct Average Max Degree 1083.25 1143.96 1078.67
Prediction Average Mean Degree 801.45 868.713 795.38
Average Core Difference 228.50 196.01 231.80

Average Betweenness Centrality 1.39e-06 1.29e-06 1.44e-06

(a) Comparison of average graph properties of interactions grouped by each model’s prediction

Classifier Correct False

Average Degree 0.018 0.047
Min Degree 0.019 0.199
Max Degree 0.010 0.110
Core Difference 0.013 0.103
Betweenness C. 0.109 0.071

(b) KL Divergence between mol2vec and
node2Z2vec sample distributions (values over
0.1 in bold)

Figure 4.2. Result Metrics by Classifier Choice (Correct or False)

Note that all of the figures in this section do not plot a function directly on a variable
of the corresponding samples characteristic, but show the classification value (accuracy
or recall) over the set that includes all samples that have a characteristic value that is
equal or less than the variable of x-axis for each point of the plot. This means that the
value of O of the x-axis refers to an empty set of samples, where the greatest shown value
of the x-axis refers to all the samples of the test set.

The higher performance of the hybrid classifier compared to the other models in the
classification report suggests that there is knowledge on DDIs that is unique for both the
chemical and the structural embedding methods. Combining the embeddings to train
the hybrid model — trading this abundance of information with higher vector dimensions
that are known to hinder the learning capabilities of neural networks — leads to a better
predictor. The only exception here is the higher precision on positive interactions for the
node2vec classifier; hinting that the node2vec classifier shows a greater ability to identify
negative interactions properly and maintain a lower number of false positives choices
through the evaluation phase. Figure 4.3a confirms our assumption that drugs with few
known interactions (possibly newly discovered compounds) make better candidates for
chemical based predictors when recall is more important than accuracy; identifying more
true interactions by trading some false positives may be a good trade off for a chemical
researcher. The figure even sets a threshold value at a Min Degree of 350 where node2vec

begins to perform better than mol2vec in terms of recall.
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4.1 Classifier Evaluation
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Figure 4.3. Recall plots for mol2vec, node2vec and hybrid Classifiers for min degree and
core difference of sample interactions
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Figure 4.4. Recall plots for mol2vec, node2vec and hybrid Classifiers for avg. and max
degree of sample interactions

Figures 4.3b ans 4.5b show that for low core difference values of sample interactions
the node2vec classifier performs as well as the hybrid classifier in terms of recall and
accuracy. The fact that node2vec classifier reaches hybrid model’s efficiency means that
chemical embeddings, when it comes for test interactions with low core difference, show
no unique knowledge to add to structure embeddings’ learning capabilities. Also, all
models seem to perform better for lower values of core difference.

The sections that follow will focus on each classifier separately as we attempt to explore

the topological characteristics of the samples that lead to correct and false estimations of
our classifiers.
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Figure 4.5. Accuracy plots for mol2vec, node2vec and hybrid Classifiers for min degree

and core difference of sample interactions
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Figure 4.6. Accuracy plots for mol2vec, node2vec and hybrid Classifiers for avg.

degree of sample interactions
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4.2 In-depth Study of mol2vec Model’s Performance

4.2 In-depth Study of mol2vec Model’s Performance

by

We consider the following prediction categories:
e Negative Samples Correctly Identified (NSCI)
o Negative Samples Incorrectly Identified (NSII)
e Positive Samples Correctly Identified (PSCI)

e Positive Samples Incorrectly Identified (PSII)

The following figures study mol2vec classifier’s choices by splitting the test sample set
prediction category. The aim of this categorization is to provide a topological insight

behind the model’s weaknesses and strengths when it comes to DDIs prediction.
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Figure 4.7. Frequency and Density Histograms for mol2vec’s sample distributions’ Min.
Degree per prediction type

Frequency

Frequency Histogram of Classifier's predictions Density Histogram of Classifier's predictions
14000 A i ifi
— Negat!ve Correctly Identlﬁﬁd 0.00200 A mmm Negative Correctly Identified
12000 4 == Neg.a'tlve Incorrectly Id?".mf'ed W Negative Incorrectly Identified
) Eosntlve ::orrectlylld:jntm(:dd 0.00175 + s Positive Correctly Identified
ositive Incorrectly Identifie i i
10000 - 0.00150 Positive Incorrectly Identified
8000 2 0.00125 -
@
§ 0.00100 A
6000 - o
0.00075 -
4000 -
0.00050 -
2000 A 0.00025
0 0.00000 -
1000 1500 2000 2500 1000 1500 2000
Mean Degree Mean Degree
(a) Frequency Histogram over Avg. Degree (b) Density Histogram over Avg. Degree

Figure 4.8. Frequency and Density Histograms for mol2vec’s sample distributions’ Min.
Degree per prediction type

Figures 4.7a and 4.7b present the frequency and density histograms respectively for

all the test samples (edges); minimum degree means that for each edge, only the node
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Frequency Histogram of Classifier's predictions Density Histogram of Classifier's predictions
Negative Correctly Identified Negative Correctly Identified
20000 - mmm Negative Incorrectly Identified I Negative Incorrectly Identified
Positive Correctly Identified 0.0020 A Positive Correctly Identified
Positive Incorrectly Identified Positive Incorrectly Identified

15000

Density

10000 1

Frequency

5000 4

0 500 1000 1500 2000 2500 500 1000 1500 2000 2500

Max Degree Max Degree
(a) Frequency Histogram over Max. Degree (b) Density Histogram over Max. Degree

Figure 4.9. Frequency and Density Histograms for mol2vec’s sample distributions’ Max.
Degree per prediction type
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Figure 4.10. Frequency and Density Histograms for mol2vec’s sample distributions’ Core
Difference per prediction type

with the minimum degree was taken into account. Similarly, figures 4.8a and 4.8b study
the average degree (mean value of the degrees of the two nodes for each edge/sample of
the test set) and figures 4.9a and 4.9b report on the maximum degree. Core Difference
(see chapter 2.1 for definition) is studied in figures 4.10a and 4.10b

Frequency Histograms are easy to read for the categories where our models’ predic-
tions are correct since the high accuracy of our classifiers in the test set means that
most of the samples in these histograms will represent a correct prediction. However,
the scarcity of false predictions led us to also present the density histograms, where it is
easier to study the regions for each characteristic that false predictions occur.

All histograms over node degrees (minimum, average or maximum for each sample
interaction) show that correctly identified negative samples are gathered on the left side of
the plot and correctly identified positive samples are gathered on the right side; the latter
observation is consistent with our previous notes on how all of our models’ efficiency rises
as the drugs that are evaluated correspond to nodes of the full graph with higher degrees.
However, the fact that NSCI gather at the left of our plots suggests the — not obvious —
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4.3 In-depth Study of node2vec Model’s Performance

Classifier Predictions: Density of Min Degree

Negative Correctly Identified Negative Incorrectly Identified Positive Correctly Identified Positive Incorrectly Identified

0.020
0.015
0.010

0.005

0.000

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

Figure 4.11. Density Histograms over Min. Degree for each prediction category of mol2vec
test samples

Classifier Predictions: Density of Mean Degree
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Figure 4.12. Density Histograms over Avg. Degree for each prediction category of mol2vec
test samples

idea that it is easier for mol2vec model to understand that a sample interaction is fake
when the nodes involved have small degrees. This observation provides proof over the
guess we made in section 1.2: drugs that do not have a strong presence in the interaction
graph are better candidates for methods that are based on the chemical information.
Also, we observe that plotting the density over max. degree provides less distinguishable
distributions in figure 4.9b than the other density plots.

Interestingly, figure 4.10b follows the opposite pattern from the previous figures re-
garding the various degree characteristics. The fact that NSCI are on the right side and
PSCI on the left side suggests that both great and minor values of core difference, which
in turn translates to nodes in a sample interaction with either very distant or very close
k-core shells, correlate with better accuracy scores for our model.

Figures 4.11, 4.12, 4.13, 4.14 separate the sample distributions in autonomous plots

to produce a more clear image from the mixed category density histograms

4.3 In-depth Study of node2vec Model’s Performance

Similar to our study of mol2vec model’s test samples’ distributions per prediction
category, we proceed to analyze node2vec model’s decisions.

Figures 4.15a and 4.15b present the frequency and density histograms respectively

Classifier Predictions: Density of Max Degree
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Figure 4.13. Density Histograms over Max. Degree for each prediction category of mol2vec
test samples
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Classifier Predictions: Density of Core Difference
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Figure 4.14. Density Histograms over Core Difference for each prediction category of
mol2vec test samples
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Figure 4.15. Frequency and Density Histograms for node2vec’s sample distributions’ Min.
Degree per prediction type

for all the test samples (edges). Similarly, figures 4.16a and 4.16b study the average
degree and figures 4.17a and 4.17b report on the maximum degree. Core Difference is
studied in figures 4.18a and 4.18b.

The pattern of NSCI on the left and PSCI on the right is also present in node2vec’s
classifier when it comes to density of degree characteristics; the reversed pattern is also
consistent for figure 4.18b.

Comparing the separated density plots over min. degree for mol2vec and node2vec
classifiers (figures 4.11 and 4.19) we observe almost the same pattern for all prediction
categories’ distributions. The only noticeable difference can be found positive incorrectly
identified samples’ distribution, where node2vec shows greater density values at the left
side of the x-axis; validating the logical assumption that lack of network information
for one of the two drugs that are studied for interactions (as in nodes that have few
connections and lead to sample interactions with low min. degree) constitutes a weakness
for graph-based models.

Separated density plots over avg. and max. degree also seem to be similar between
mol2vec and node2vec. When it comes to core difference, however, figures 4.14 and 4.22
suggest that<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>