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Extended Abstract

The present era is the era of information and direct communication in any part of the world.
Government documents, transactions, and our communication are all digital, and the huge
volume of data is stored very easily and cheaply and is available to anyone for processing.
The significant development of the internet and technology has led us to a digital age; now,
the world is moving into a digital reality, which poses many risks to protecting our privacy.
How can we protect our privacy? The EU, since May 2018, has established a mechanism
for the protection of personal data in each member country, the Data Protection Privacy
Regulation, also known as the GDPR, to avoid unconsented sharing of personal informa‐
tion. Nevertheless, is a strict mechanism sufficient to protect sensitive information? Clearly
not, because any malicious combination of free data from various sources can target an in‐
dividual, while hackers can violate the security systems of companies and institutions and
steal huge volumes of personal data.

In addition, the growth of technology and, more specifically, the progress of artificial intel‐
ligence and machine learning is inextricably linked to big data and its processing. However,
now researchers and scientists must also consider the data protection from various mali‐
cious people who try to process it for their purposes. So, what is the solution to protect
privacy?

The answer is data anonymization. Anonymization of personal data is the process of en‐
crypting or removing personally identifiable data from data sets so that the person can no
longer be identified directly or indirectly. So, data anonymization is not limited to simply
removing the identification of an individual, such as name or surname, but it is focused on
”hiding” secondary information such as age, zip code, gender, etc. The data may include
pieces of information that are not themselves unique identifiers but can become identify‐
ing when combined with other datasets. These pieces are known as quasi‐identifiers. For
example, around 87 percent of the US population can be uniquely identified with just their
5‐digit zip code, gender, and date of birth taken together. Even in cases where only a small
fraction of individuals are uniquely identifiable, it can still lead to a severe privacy breach
for the individuals affected. It is never possible to know the full set of what additional in‐
formation is out there and, therefore, what could be identifying.

Data anonymization reduces the risk of unintended disclosure when sharing data between
countries, industries, and even departments within the same company. It also reduces the
chances of identity theft occurring. Anonymization of data is performed in various ways,
including deletion, encryption, generalization, and others. A company can either delete per‐
sonally identifiable information (PII) from its gathered data or encrypt this information with
a strong passphrase. They can also decide to generalize the information collected in their
database.

Various data protection models have been developed, such as k‐anonymity, l‐diversity, D‐
volatility, differential privacy, etc., which anonymize the data while limiting the information
loss. The anonymization procedure must take into account the utility of the anonymized
data. It is important for a dataset not to lose its utility after the anonymization completely
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in order for the statisticians and analysts to be able to draw safe conclusions about the
data. For example, a table contains the exact gross income earned by five CEOs in the retail
sector. Let’s assume the recorded incomes are $520,000, $230,000, $109,000, $875,000,
and $124,000. This information can be generalized into categories like ”< $500,000” and
”≥ $500,000”. The generalization categories are given through a hierarchy, a structured
grouping of entities that share common attributes. It is a powerful and widely used method
for representing common characteristics among entities while preserving their differences.
Although the data is obfuscated, it will still be useful to the user. Decoding anonymized
data is possible through a process known asDe‐anonymization (or ”re‐identification”). Since
anonymized data can be decoded and unraveled, critics believe anonymization provides a
false sense of security. For instance, different attack methods re‐identify a k‐anonymous
table because k‐anonymity does not provide adequate protection against attribute expo‐
sure. However, k−anonymity is a common and most popular model that preserves privacy.
For K‐anonymity to be achieved in a dataset, there need to be at least k‐records that share
the set of attributes that might reveal the entity’s identity whose properties are repre‐
sented in the dataset. Nevertheless, l‐diversity came to solve the problems that arose from
k−anonymity. The main purpose is that there should be diversity in sensitive data values
greater than or equal to l for each subgroup created by k‐anonymity. However, l− diversity
also has limitations and issues that t‐closeness helps resolve. Many other anonymization
techniques will be analyzed in this thesis, and they try to figure out other problems; how‐
ever, they are outdated.

On the other hand, there is a relatively new and promising technique that sharply reduces
information loss and preserves intelligence privacy. Differential privacy is a mathematical
definition of what it means to have privacy and addresses the paradox of learning noth‐
ing about an individual while learning useful information about a population. Nonetheless,
there are limitations to the anonymization of big data. The huge volume and complexity
characterize big data, and it is very demanding to handle them in the main memory of a
traditional operating system. Modern computing systems provide the speed, power, and
flexibility needed to access massive amounts and types of big data quickly. Along with reli‐
able access, companies also need methods for integrating the data, building data pipelines,
ensuring data quality, providing data governance and storage, and preparing the data for
analysis. Traditional data tools are not equipped to handle this kind of complexity and vol‐
ume, which has led to a slew of specialized big data software and architecture solutions
designed to manage the load. The diversity of big data makes it inherently complex, result‐
ing in the need for systems capable of processing its various structural and semantic dif‐
ferences. So, most handling and processing operations take place on the hard disk, where
specialized databases can store the data in a way that does not require strict adherence to
a particular model. Big data is used in nearly every industry to identify patterns and trends,
answer questions, gain insights into customers, and tackle complex problems. Companies
and organizations use the information for many reasons like growing their businesses, un‐
derstanding customer decisions, enhancing research, making forecasts, and targeting key
audiences for advertising, so big data anonymization must prevent privacy leakages.

In the current thesis, we focused on big data anonymization, implementing an algorithm
that holds the main volume of data into the hard disk and in the main memory handles basic
information about them. Following a one‐time clustering approach in order to be executed
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in regular terms of time, the records are deposited into clusters using a similarity‐distance
metric. After that, the clusters which contain similar‐identical are anonymized through the
hierarchies and k‐anonymity privacy model. This is a demanding algorithm, and except for
execution time and information loss, we have to handle clusters’ splitting, ”small” (size less
than k) clusters, fast iteration through thousands of clusters, etc. The disk‐based clustering
algorithm is developed in the context of the Amnesia Anonymization Tool, which provides
many anonymization techniques via a user‐friendly graphical user interface. Finally, the
algorithm’s evaluation took place in Amnesia Anonymization Tool using the information
loss metrics NCP and Total.
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Εκτεταμένη Ελληνική Περίληψη

Ησημερινή εποχή είναι η εποχή της πληροφορίας και της άμεσης επικοινωνίας σε οποιοδ‐
ήποτε μέρος του κόσμου. Τα κρατικά έγγραφα, οι συναλλαγές και η επικοινωνία μας είναι
όλαψηφιακά και ο τεράστιος όγκος δεδομένων αποθηκεύεται πολύ εύκολα και φθηνά και
είναι διαθέσιμος σε οποιονδήποτε για επεξεργασία.Ησημαντική ανάπτυξη του διαδικτύου
και της τεχνολογίας μας έχει οδηγήσει σε μια ψηφιακή εποχή. Τώρα, ο κόσμος κινείται σε
μια ψηφιακή πραγματικότητα, η οποία εγκυμονεί πολλούς κινδύνους για την προστασία
του απορρήτου μας. Πώς μπορούμε να προστατεύσουμε το απόρρητό μας; Η ΕΕ, από τον
Μάιο του 2018, έχει δημιουργήσει έναν μηχανισμό για την προστασία των προσωπικών
δεδομένων σε κάθε χώρα‐μέλος, τον Κανονισμό Προστασίας Προσωπικών Δεδομένων,
γνωστό καιωςGDPR, για νααποφευχθεί η κοινοποίησηπροσωπικώνπληροφοριών χωρίς
συναίνεση. Ωστόσο, επαρκεί ένας αυστηρός μηχανισμός για την προστασία ευαίσθητων
πληροφοριών; Σαφώς όχι, γιατί οποιοσδήποτε κακόβουλος συνδυασμός δωρεάν δεδομέ‐
νων από διάφορες πηγές μπορεί να στοχοποιήσει ένα άτομο, ενώ οι χάκερ μπορούν να
παραβιάσουν τα συστήματα ασφαλείας εταιρειών και ιδρυμάτων και να κλέψουν
τεράστιους όγκους προσωπικών δεδομένων.

Επιπλέον, η ανάπτυξη της τεχνολογίας και πιο συγκεκριμένα η πρόοδος της τεχνητής
νοημοσύνης και της μηχανικής μάθησης είναι άρρηκτα συνδεδεμένη με τα μεγάλα
δεδομένα και την επεξεργασία τους.Ωστόσο, τώρα οι ερευνητές και οι επιστήμονες πρέπει
επίσης να εξετάσουν την προστασία δεδομένων από διάφορα κακόβουλα άτομα που
προσπαθούν να τα επεξεργαστούν για τους σκοπούς τους. Λοιπόν, ποια είναι η λύση για
την προστασία της ιδιωτικής ζωής;

Η απάντηση είναι η ανωνυμοποίηση δεδομένων. Η ανωνυμοποίηση προσωπικών
δεδομένων είναι η διαδικασία κρυπτογράφησης ή αφαίρεσης δεδομένων προσωπικής
ταυτοποίησης από σύνολα δεδομένων, έτσι ώστε το άτομο να μην μπορεί πλέον να
αναγνωριστεί άμεσα ή έμμεσα. Έτσι, η ανωνυμοποίηση δεδομένων δεν περιορίζεται στην
απλή κατάργηση της ταυτότητας ενός ατόμου, όπως όνομα ή επώνυμο, αλλά επικεντρώ‐
νεται στην ”απόκρυψη” δευτερευουσώνπληροφοριών όπωςηλικία, ταχυδρομικός κώδικας,
φύλο κ.λπ. Τα δεδομένα μπορεί να περιλαμβάνουν πληροφορίες που δεν είναι από μόνα
τους μοναδικά αναγνωριστικά, αλλά μπορούν να στοχοποιήσουν οποιοδήποτε όταν
συνδυάζονται με άλλα σύνολα δεδομένων. Αυτά τα κομμάτια είναι γνωστά ως οιονεί
αναγνωριστικά. Για παράδειγμα, περίπου το 87 τοις εκατό του πληθυσμού των ΗΠΑ
μπορεί να αναγνωριστεί μοναδικά μόνο με τον 5ψήφιο ταχυδρομικό κώδικα, το φύλο
και την ημερομηνία γέννησής του μαζί. Ακόμη και σε περιπτώσεις όπου μόνο ένα μικρό
ποσοστόατόμων είναι μοναδικά αναγνωρίσιμο, μπορεί να οδηγήσει σε σοβαρήπαραβίαση
του απορρήτου για τα άτομα που επηρεάζονται. Δεν είναι ποτέ δυνατό να γνωρίζουμε το
πλήρες σύνολο των πρόσθετων πληροφοριών που υπάρχουν εκεί έξω και, επομένως, τι
θα μπορούσε να είναι ταυτοποιήσιμο;

Η ανωνυμοποίηση δεδομένων μειώνει τον κίνδυνο ακούσιας αποκάλυψης κατά την κοινή
χρήση δεδομένων μεταξύ χωρών, βιομηχανιών, ακόμη και τμημάτων της ίδιας εταιρείας.
Μειώνει επίσης τις πιθανότητες κλοπής ταυτότητας. Η ανωνυμοποίηση δεδομένων
πραγματοποιείται με διάφορους τρόπους, συμπεριλαμβανομένης της διαγραφής, της
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κρυπτογράφησης, της γενίκευσης και άλλων.Μια εταιρεία μπορεί είτε να διαγράψει προσω‐
πικά αναγνωρίσιμες πληροφορίες από τα δεδομέναπου έχει συλλέξει ή να κρυπτογραφήσει
αυτές τις πληροφορίες με μια ισχυρήφράσηπρόσβασης.Μπορούν επίσης νααποφασίσουν
να γενικεύσουν τις πληροφορίες που συλλέγονται στη βάση δεδομένων τους.

Έχουν αναπτυχθεί διάφορα μοντέλα προστασίας δεδομένων, όπως η k‐ανωνυμία,
l‐ποικιμολομορφία, διαφορική ιδιωτικότητα κ.λπ., τα οποία ανωνυμοποιούν τα δεδομένα
ενώ περιορίζουν την απώλεια πληροφοριών. Η διαδικασία ανωνυμοποίησης πρέπει να
λαμβάνει υπόψη τη χρησιμότητα των ανωνυμοποιημένων δεδομένων. Είναι σημαντικό
ένασύνολο δεδομένων ναμην χάσει τη χρησιμότητά τουμετά τηνπλήρηανωνυμοποίηση,
προκειμένου οι στατιστικολόγοι και οι αναλυτές ναμπορούν να βγάλουνασφαλήσυμπερά‐
σματα σχετικά με τα δεδομένα. Για παράδειγμα, ένας πίνακας περιέχει το ακριβές ακαθάρι‐
στο εισόδημα που κερδίζουν πέντε διευθύνοντες σύμβουλοι στον τομέα του λιανικού
εμπορίου. Ας υποθέσουμε ότι τα καταγεγραμμένα εισοδήματα είναι $520.000, $230.000,
$109.000, $875.000 και $124.000. Αυτές οι πληροφορίες μπορούν να γενικευθούν σε
κατηγορίες όπως ”< $500.000” και ”≥ $500.000”. Οι κατηγορίες γενίκευσης δίνονται μέσω
μιας ιεραρχίας, μιας δομημένης ομαδοποίησης οντοτήτωνπουμοιράζονται κοινά χαρακτη‐
ριστικά. Είναι μια ισχυρή και ευρέως χρησιμοποιούμενη μέθοδος για την αναπαράσταση
κοινών χαρακτηριστικών μεταξύ των οντοτήτων διατηρώντας τις διαφορές τους. Αν και
τα δεδομένα είναι ασαφή, θα εξακολουθούν να είναι χρήσιμα στον χρήστη. Η αποκωδικ‐
οποίηση ανωνυμοποιημένων δεδομένων είναι δυνατή μέσω μιας διαδικασίας γνωστής
ωςΑπο‐ανωνυμοποίηση (De‐anonymizationή ”re‐identification”). Δεδομένου ότι τα ανών‐
υμα δεδομένα μπορούν να αποκωδικοποιηθούν και να αποκαλυφθούν, οι επικριτές πιστ‐
εύουν ότι η ανωνυμοποίηση παρέχει μια ψευδή αίσθηση ασφάλειας. Για παράδειγμα,
διαφορετικές μέθοδοι επίθεσης επαναπροσδιορίζουν έναν k‐ανώνυμο πίνακα επειδή η k‐
ανωνυμία δεν παρέχει επαρκή προστασία έναντι της έκθεσης χαρακτηριστικών. Ωστόσο,
η k−ανωνυμία είναι ένα πολύ δημοφιλές μοντέλο που διατηρεί το απόρρητο. Για να επιτε‐
υχθεί η k‐ανωνυμία σε ένα σύνολο δεδομένων, πρέπει να υπάρχουν τουλάχιστον k‐
εγγραφές που να μοιράζονται το σύνολο των χαρακτηριστικών που θα μπορούσαν να
αποκαλύψουν την ταυτότητα της οντότητας της οποίας οι ιδιότητες αντιπροσωπεύονται
στο σύνολο δεδομένων. Παρόλα αυτά, η l‐ποικιλομορφία ήρθε να λύσει τα προβλήματα
που προέκυψαν από την k−ανωνυμία. Ο κύριος σκοπός είναι να υπάρχει ποικιλομορφία
στις τιμές ευαίσθητων δεδομένων μεγαλύτερη ή ίση με l για κάθε υποομάδα που δημιου‐
ργείται από k‐ανωνυμία. Ωστόσο, η l‐ποικιλομορφία έχει επίσης περιορισμούς και ζητή‐
ματα που η t‐εγγυήτητα βοηθά στην επίλυση. Πολλές άλλες τεχνικές ανωνυμοποίησης
θα αναλυθούν σε αυτή τη διπλωματική εργασία και προσπαθούν να ανακαλύψουν άλλα
προβλήματα, ωστόσο τα περισσότερα είναι ξεπερασμένα.

Από την άλληπλευρά, υπάρχει μια σχετικά νέα και πολλά υποσχόμενη τεχνική που μειώνει
απότομα την απώλεια πληροφοριών και διατηρεί το απόρρητο των πληροφοριών. Το
διαφορικό απόρρητο είναι ένας μαθηματικός ορισμός του τι σημαίνει να έχεις ιδιωτικότητα
και αντιμετωπίζει το παράδοξο να μην μαθαίνεις τίποτα για ένα άτομο ενώ μαθαίνεις
χρήσιμες πληροφορίες για ένανπληθυσμό.Ωστόσο, υπάρχουνπεριορισμοί στην ανωνυμο‐
ποίηση τωνμεγάλων δεδομένων.Ο τεράστιος όγκος και η πολυπλοκότητα χαρακτηρίζουν
τα μεγάλα δεδομένα και είναι πολύ απαιτητικός ο χειρισμός τους στην κύρια μνήμη ενός
παραδοσιακού λειτουργικού συστήματος. Τα σύγχρονα υπολογιστικά συστήματα παρ‐
έχουν την ταχύτητα, την ισχύ και την ευελιξία που απαιτούνται για γρήγορη πρόσβαση σε

6



τεράστιους όγκους και τύπους μεγάλων δεδομένων. Μαζί με την αξιόπιστη πρόσβαση, οι
εταιρείες χρειάζονται επίσης μεθόδους για την ενοποίηση των δεδομένων, τη δημιουργία
αγωγώνδεδομένων, τη διασφάλιση της ποιότητας των δεδομένων, τηνπαροχή διαχείρισης
και αποθήκευσης δεδομένων και την προετοιμασία των δεδομένων για ανάλυση. Τα
παραδοσιακά εργαλεία δεδομένων δεν είναι εξοπλισμένα για να χειρίζονται αυτού του
είδους τηνπολυπλοκότητα και τον όγκο, γεγονός που οδήγησε σε μια σειρά εξειδικευμένων
λύσεων λογισμικούμεγάλωνδεδομένων και αρχιτεκτονικής σχεδιασμένων για τη διαχείριση
του φορτίου. Η ποικιλομορφία των μεγάλων δεδομένων τα καθιστά εγγενώς πολύπλοκα,
με αποτέλεσμα την ανάγκη για συστήματα ικανά να επεξεργάζονται τις διάφορες δομικές
και σημασιολογικές διαφορές τους. Έτσι, οι περισσότερες λειτουργίες χειρισμού και επεξεργα‐
σίας πραγματοποιούνται στον σκληρό δίσκο, όπου οι εξειδικευμένες βάσεις δεδομένων
μπορούν να αποθηκεύσουν τα δεδομένα με τρόπο που δεν απαιτεί αυστηρή τήρηση
ενός συγκεκριμένου μοντέλου. Τα μεγάλα δεδομένα χρησιμοποιούνται σχεδόν σε κάθε
κλάδο για τον εντοπισμό προτύπων και τάσεων, απαντήσεις σε ερωτήσεις, απόκτηση
γνώσεων για τους πελάτες και αντιμετώπιση σύνθετων προβλημάτων. Οι εταιρείες και οι
οργανισμοί χρησιμοποιούν τις πληροφορίες για πολλούς λόγους, όπως η ανάπτυξη των
επιχειρήσεων τους, η κατανόηση των αποφάσεων των πελατών, η ενίσχυση της έρευνας,
η πραγματοποίηση προβλέψεων και η στόχευση βασικών ειδών κοινού για διαφημίσεις,
επομένωςηανωνυμοποίησημεγάλωνδεδομένωνπρέπει να αποτρέπει τις διαρροές απορ‐
ρήτου.

Στην παρούσα διπλωματική εργασία, εστιάσαμε στην ανωνυμοποίηση μεγάλων δεδο‐
μένων, εφαρμόζοντας έναν αλγόριθμο που συγκρατεί τον κύριο όγκο δεδομένων στον
σκληρό δίσκο και στην κύρια μνήμη χειρίζεται βασικές πληροφορίες για αυτά. Ακολουθ‐
ώντας μια εφάπαξ προσέγγιση ομαδοποίησης προκειμένου να εκτελεστούν σε κανονικούς
όρους χρόνου, οι εγγραφές κατατίθενται σε συστάδες χρησιμοποιώντας μια μέτρηση
ομοιότητας‐απόστασης. Μετά από αυτό, τα συμπλέγματα που περιέχουν παρόμοια‐
πανομοιότυπα ανωνυμοποιούνται μέσω των ιεραρχιών και του μοντέλου απορρήτου k‐
ανωνυμίας. Αυτός είναι ένας απαιτητικός αλγόριθμος και εκτός από τον χρόνο εκτέλεσης
και την απώλεια πληροφοριών, πρέπει να χειριστούμε τον διαχωρισμό τωνσυμπλεγμάτων,
τα ”μικρά” (μέγεθος μικρότερααπόk) συμπλέγματα, τη γρήγορηπροσπέλασημέσωχιλιάδων
συμπλ‐εγμάτων κ.λπ.Ηομαδοποίησηπου βασίζεται σε δίσκο.Οαλγόριθμος αναπτύσσεται
στο πλαίσιο του εργαλείου ανωνυμοποίησης Amnesia, το οποίο παρέχει πολλές τεχνικές
ανων‐υμοποίησης μέσωμιαςφιλικής προς τον χρήστη γραφικής διεπαφής χρήστη. Τέλος,
η αξιολόγηση του αλγορίθμου πραγματοποιήθηκε στο εργαλείο ανωνυμοποίησης Amne‐
sia χρησιμοποιώντας τις μετρικές απώλειας πληροφοριών NCP και Total.
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Περίληψη

Καθώςη τεχνολογία διαπερνά όλο και περισσότερες πτυχές της ζωής μας, κάθε ανθρώπινη
δραστηριότητα αφήνει ένα ψηφιακό σημάδι σε κάποιο χώρο αποθήκευσης. Τεράστιοι
όγκοι προσωπικών δεδομένων δημιουργούνται καθημερινά και σπάνια κάποιος γνωρίζει
την έκταση τωνπληροφοριώνπου τηρούνται και υποβάλλονται σε επεξεργασία για λογαρ‐
ιασμό του/της. Αυτά τα προσωπικά δεδομένα εγείρουν σημαντικές ανησυχίες σχετικά με
το απόρρητο των χρηστών, καθώς σημαντικές και ευαίσθητες λεπτομέρειες σχετικά με τη
ζωή ενός ατόμου συλλέγονται και εκμεταλλεύονται από τρίτα πρόσωπα. Για παράδειγμα,
οι ανακαλύψεις στη μηχανική μάθησηπροέρχονται από τεχνικές εκμάθησηςπουαπαιτούν
μεγάλο όγκο δεδομένων εκπαίδευσης, ενώ τα ερευνητικά ιδρύματα συχνά χρησιμοποιούν
και μοιράζονται δεδομένα που περιέχουν ευαίσθητες ή εμπιστευτικές πληροφορίες για
διαφορετικούς ανθρώπους. Ομολογουμένως, δεδομένα υπάρχουν παντού. Ο κόσμος έχει
μετατραπεί σε μια έκρηξη πληροφοριών και δεν πρέπει να αποτελεί έκπληξη, ειδικά σε
μια εποχή που η αποθήκευση δεδομένων είναι φθηνή και προσβάσιμη. Ως αποτέλεσμα,
η ανάγκη των εταιρειών για πληροφορίες αυξάνεται κάθε λεπτό. Οι εταιρείες πρέπει να
γνωρίζουν όσο το δυνατόν περισσότερα για τους πελάτες τους. Ωστόσο, πώς μπορεί
να επιτευχθεί αυτό χωρίς να διακυβεύεται η ιδιωτική ζωή των ατόμων; Πώς μπορούν
οι εταιρείες να παρέχουν εξαιρετικές δυνατότητες και να διατηρήσουν το απόρρητο; Η
ανάπτυξη τυπικών μοντέλων απορρήτου, όπως η k‐ανωνυμία και το διαφορικό απόρρητο
έχει βοηθήσει στην επίλυση αυτού του προβλήματος, έτσι υπάρχει ένας αυξανόμενος
αριθμός οργανισμώνπουανωνυμοποιούν δεδομένα για τηνπροστασία ευαίσθητωνπληρ‐
οφοριών, όπωςπροσωπικές πληροφορίες, διάφορες εκδηλώσεις πουσυμμετέχει ένα χρήσ‐
της, πραγματική ‐ώρα τοποθεσίας κ.λπ.Ηk‐ανωνυμία είναι ένα σύνηθες μοντέλο απορρή‐
του που εφαρμόζεται για την προστασία προσωπικών δεδομένων των υποκειμένων σε
σενάρια κοινής χρήσης δεδομένων και τις εγγυήσεις που μπορεί να παρέχει η k‐ανωνυμία
όταν χρησιμοποιείται για την ανωνυμοποίηση δεδομένων. Σε πολλάσυστήματα διατήρησ‐
ης της ιδιωτικής ζωής, ο τελικός στόχος είναι η ανωνυμία για των δεδομένων. Έτσι, μια
έκδοση ενός συνόλου δεδομένων παρέχει προστασία k‐ανωνυμίας, εάν οι πληροφορίες
για κάθε άτομοπουπεριέχονται στην έκδοση δεν μπορούν να διακριθούν από τουλάχιστον
άτομα k‐1 των οποίων οι πληροφορίες εμφανίζονται επίσης στο σύνολο δεδομένων που
κυκλοφόρησε. Η κύρια ιδέα του μοντέλου βασίζεται στην ιδέα ότι συνδυάζοντας σύνολα
δεδομένων με παρόμοια χαρακτηριστικά, η αναγνώριση πληροφοριών για οποιοδήποτε
από τα άτομα που συνεισφέρουν σε αυτά τα δεδομένα μπορεί να συγκαλυφθεί. Σε αυτή
τη μελέτη, θα εφαρμοστεί ένας αλγόριθμος ομαδοποίησης βασισμένου σε δίσκο, ο οποίος
εστιάζει στην ανωνυμοποίηση μεγάλων δεδομένων, με βάση το μοντέλο απορρήτου k‐
ανωνυμίας.

Λέξεις κλειδιά
ανωνυμοποίηση,k‐ανωνυμία, εξόρυξη δεδομένων, ομαδοποίηση, μεγάλα δεδομένα, απόρρητο
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Abstract

As technology permeates more and more aspects of our lives, every human activity leaves
a digital mark on some storage space. Vast amounts of personal data are explicitly created
every day, and rarely does someone know the extent of the information being held and
processed for him/her. This personal data raises important concerns about users’ privacy, as
important and sensitive details about an individual’s life are collected and exploited by third
parties. For example, the discoveries in machine learning come from learning techniques
that require large amounts of training data, while research institutes often use and share
data that contains sensitive or confidential information about different people. Admittedly,
data is everywhere. The world has become an explosion of information, and it should not
come as a surprise, especially when the data storage is cheap and accessible. As a result,
corporations’ need for information grows by the minute. Companies need to know as much
as possible about their customers.

Nonetheless, how can this be achieved without compromising the privacy of individuals?
How can companies provide excellent features and maintain great privacy? The develop‐
ment of standard privacy models such as k‐anonymity and differential privacy has helped
solve this problem, so a growing number of organizations anonymize data to protect sen‐
sitive information, such as personal information, user events, and a person’s real‐time lo‐
cation, etc.

This studywill implement a disk‐based clustering algorithm that focuses on big data anonymiza‐
tion based on the k‐anonymity privacy model. K‐anonymity is a standard privacy model ap‐
plied to protect the data subjects’ privacy in data sharing scenarios and the guarantees that
k‐anonymity can provide when used to anonymize data. The main concept of the model is
based on the idea that by combining sets of data with similar attributes, identifying infor‐
mation about any one of the individuals contributing to that data can be obscured. In many
privacy‐preserving systems, the end goal is anonymity for the data subjects. So, a dataset
release provides k‐anonymity protection if the information for each person contained in
the release cannot be distinguished from at least k‐1 individuals whose information also
appears in the released dataset.

Keywords
anonymization, k‐anonymity, data mining, clustering, big data, privacy
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1. Introduction

In this day and age, personal data records are increasingly collected by governments, health
centers, social networks, organizations, companies, and individuals for data analysis and
other different purposes. Sharing and exploiting these data is the key to significant value
and productivity gains, but at the same time, it poses crucial threats to user privacy. Hence,
the risks of violating the user’s privacy are constantly increasing especially with the rapid
growth of the technology and, more specifically, the sharp evolution of the internet through
which data are transmitted very quickly and are vulnerable to hackers.

The need for solid commitments and strong rules, national, European and global, for the
processing of personal data is becomingmore urgent as the breach of personal data can lead
to serious damage to the reputation of the subjects concerned, restriction of their rights,
discrimination, abuse or interception of identity, and even financial loss. On the other hand,
releasing sharing and free access to data helps the scientists and gives significant opportu‐
nities to researchers to develop new methods by analyzing datasets. However, it is crucial
to protect each person’s information privacy in the dataset. If anybody can be explicitly
distinguishable from the released data, their private data will potentially be compromised.

Consequently, it is very essential that before someone releases a dataset, the private data
must be secured so that the identity of a person contained in the information cannot be dis‐
cerned and at the same time, the whole data should be still useful and processable. There‐
fore, it is necessary to develop efficient techniques and methods for data anonymization,
for which the main challenge is to guarantee a small trade‐off between the efficacy of the
privacy guarantee and the quality of the anonymous data offered.

1.1 Privacy Leakage

As mentioned above, the huge volume of collected data and the many ways of sharing has
led to a rapidly increasing accumulation of personal data, leading to privacy issues such as
the reporting of sensitive data and the massive collection of personal information by third
parties. [1].

The anonymization procedure is not limited to removing direct identifiers that might exist
in a dataset, e.g. the name or the person’s Social Security Number; it also includes removing
secondary information, e.g. age, zip code that might lead indirectly to the true identity of
an individual. This form of identification called linking attack, many studies show that the
majority of the U.S. population can be uniquely distinguished by linking zip code, gender,
and date of birth, making it clear that published information containing these characteristics
can not be considered anonymous data [1–3]. This secondary information is referred to as
quasi‐identifiers which will be analyzed in detail in the following chapters.

Consider the following example to better understand how secondary information can be
used to re‐identify a person, consider the following example. A publisher that owns pa‐
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tients’ medical data wants to publish an anonymized version of the data. The dataset is
superficially anonymized by removing direct identifiers e.g., names and social security num‐
bers, but descriptive information like the zip code of the patient’s residence and her/his age
remain. An adversary whowants to identify the patients that are related to the anonymized
data, may have access to such descriptive information from other sources, e.g., a voter’s
registry. The re‐identification can be achieved by matching the descriptive information (zip
code, age) of the anonymized data to the public registry. If a single match is produced for a
given combination, then a patient can be accurately identified as depicted in Figure 1.

Figure 1: Data Linking

The sparser the data are, the more unique combinations exist, and the easier it is for an
adversary to locate unique records that correspond to specific users. Below, it is examined
a few instances of privacy protection failures that led to identifying individuals or users.

1.1.1 Netflix Competition

A typical and well‐known example is the Netflix Crowdsourcing competition which began
on October 2, 2006. Netflix the largest online video streaming service, provided a training
dataset with over 100 million ratings which approximately 480 thousands users gave to
over 17 thousands movies. Moreover, all the direct personal information such as names,
surnames etc. had been removed from the dataset which contained only an anonymized
user Id, ratings, and the dates the subscriber rated the movie. However, Narayanan and
Shmatikov [4] from the University of Texas demonstrated that an attacker who knows little
about individuals contributing could recognize the subscriber information in the dataset.
By combining the IMDB as background knowledge with the Netflix’s open dataset they
achieved to identify subscribers’ record and revealed personal sensitive information [5].

1.1.2 Group Insurance Commission (GIC)

As described and presented in Figure 1 data linking is a serious problem and everyone
is capable to match secondary information in order to identify a specific person, Latanya

15



Sweeney shows us how simple is the above procedure. In Massachusetts, the Group Insur‐
ance Commission (GIC) is responsible for purchasing health insurance for state employees.
GIC collected patient‐specific data with nearly one hundred attributes such as diagnosis,
medication etc. per encounter for approximately 135,000 state employees and their fam‐
ilies. Because the data were believed to be anonymous, GIC gave a copy of the data to
researchers and sold a copy to industry. Latanya Sweeney purchased the voter registration
list and she managed to link it with the (GIC) data by using zip code, birth date, gender and
identified diagnosis, procedures, and medications to particularly named individuals. For ex‐
ample, William Weld was governor of Massachusetts at that time and his medical records
were in the (GIC) data. GovernorWeld lived in Cambridge Massachusetts. According to the
Cambridge Voter list, six people had his particular birth date; only three of them were men;
and, he was the only one in his 5‐digit ZIP code [1]. The example above provides a demon‐
stration of re‐identification by directly linking (or “matching”) on shared attributes which
provide secondary information (quasi‐identifiers) about a person.

1.1.3 American Online (AOL) Search Log

Search engine’s logs are a vast source of information for both researchers and marketing
companies, but at the same time, their publication may expose the privacy of the users
from whom the logs are created. There is at least one case of such exposure of users’ per‐
sonal search logs where very simple anonymization procedure was applied, revealing much
information for their identification. Another shocking example is the release of 20 million
detailed search logs of many numbers of AOL users collected over a three months’ period
for research purposes. AOL made the in an effort to help the ”Information Retrieval Re‐
search Community” which has dealt a severe blow both the privacy policy of AOL’s users
as well as AOL itself, with lawsuits and objections against it. Ideally search logs should be
anonymous before their publication. The problem is that achieving the desired level of pri‐
vacy in logs becomes difficult, while balancing between usability and data privacy. There
are several approaches to anonymize such data, but they are usually limited to deleting spe‐
cific queries or logs. In addition, common techniques used in disclosure statistical analysis
have never been applied, until recently for such cases.

1.1.4 Cambridge Analytica and Facebook

In 2013, University of Cambridge psychology professor Dr. Aleksandr Kogan created an
application called “thisisyourdigitallife.” This app, offered on Facebook, provided users with
a personality quiz. After a Facebook user downloads the app, it would start collecting that
person’s personal information such as profile information and Facebook activity (e.g., what
content was “liked”). Around 300,000 people downloaded the app. But the data collection
did not stop there. Because the app also collected information about those users’ friends,
who had their privacy settings set to allow it, the app collected data from about 87 mil‐
lion people. Then, Dr. Kogan passed this data on to Strategic Communication Laboratories
(SCL), which owns Cambridge Analytica (CA), a political consulting firm that uses data to
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determine voter personality traits and behavior. It then uses this data to help conserva‐
tive campaigns target online advertisements and messaging. The scandal of Facebook and
Cambridge Analytica indicates us the need to impose a tough legal framework that will
force companies to anonymize data and the further extension of the existing anonymiza‐
tion techniques.

1.2 Privacy Protection

In a study by Paul Ohm [6], a professor of Law at the Georgetown University Law Center
in Washington, points out that for almost every human being on earth there is at least one
digital information that, implies a fact of his/her life, stored in a database. A malicious agent
can use this digital record to harm the victim, whether it is through blackmail, harassment,
or even identity theft.

The privacy protection field deals with developing various algorithms and anonymization
techniques, which remove identifying information from the provided data so that the at‐
tacker can not identify individuals. A common technique used in anonymization models is
that of generalization [7]. Generalization is when the initial value that displayed in data is
replaced by a more general value, such as a set of values that may contain it. The set of pos‐
sible generalizations of the values, forms the generalization hierarchy. A part of the initial
information is lost with the generalization technique.

For this reason, privacy guarantees are sought that prevent the transfer of personal infor‐
mation but while removing as little information as possible from the original dataset while
maintaining their usefulness for those who want to use it. The basic guarantee which men‐
tioned above that satisfactorily prevents the identification of a record is k‐anonymity [2] .
The purpose of k‐anonymity privacy‐model is that no value combination should appear in
the database in less than k‐records.

In addition, another powerful privacy‐model is Differential Privacy [8]. Differential Privacy
offers a strict privacy guarantee with particularly favorable, powerful properties and strong
mathematical definition for preserving the privacy of individuals. The general principle of
Differential Privacy is that the attacker can learn virtually nothing more about an individual
than they would learn if that person’s record were absent from the dataset. The guarantee
is strong enough because it aligns with real world incentives—individuals have no incentive
not to participate in a dataset, because the analysts of that dataset will draw the same
conclusions about that individual whether the individual includes himself in the dataset or
not. As their sensitive personal information is almost irrelevant in the system’s outputs,
users can be assured that the organization handling their data is not violating their privacy.
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1.3 Big Data Anonymization

Our age is characterized by the way big data is processed in many sectors such as security,
extracting important results and statistics, the storage of them etc [9]. For quite some time,
organizations and companies have been investing in developing solutions for implementing
systemswith enough computing power to process large volumes of data. However, big data
are so large and complex containing so much volume that can not be handle by the main
memory of an operation system and generally by traditional data‐processing application
softwares. The analysis of this data is very important for both businesses and public‐interest
organizations. Data with many fields required greater statistical power, while data with
higher complexity may lead to a higher false discovery rate [10].

Indeed, the complexity is quite high, while at the same time, the data types aremany. For in‐
stance, some data is stored in a traditional relational database, but data such as documents,
various files as well as videos and images are unstructured. New data sources have emerged
in recent years, such as data generated by social networks or applications on smart devices.
Therefore, as mentioned above, since the technology has penetrated very deeply into the
society [11] and most of the big data concerns ordinary individuals, so, it is imperative to
anonymize facing their complex management. However, it is impossible for algorithms and
software tools that use only a computer’s main memory to manage big data which contain
information in different formats or even to anonymize them.

In this thesis we designed and developed an algorithm which is customized to big data and
utilizes the hard disk so that the main memory is not overloaded. Using a clustering logic
[12] we split the data into clusters in order to load the data in small quantities into the main
memory which provides the anonymization procedure via k‐anonymity guarantee using
hierarchies [13]. In a nutshell, our method stores the dataset in an embedded database on
a hard disk then, divides the data into clusters and finally, applies the k‐anonymity privacy‐
model to these clusters.

1.4 Amnesia Anonymization tool

The disk‐based clustering algorithm has been implemented in the context of developing
and upgrading the Amnesia Anonymization Tool. Amnesia is a flexible, user‐friendly, free,
and open‐source data anonymization tool. More specifically, Amnesia converts relational
and transactional data into anonymous datasets to which formal privacy guarantees ap‐
ply by [14] removing immediate identifiers (names, SSNs, etc.) and converting secondary
identifiers ¹ (dates of birth, postal codes, etc.) while focusing on applicability and user‐
friendliness. Amnesia provides an easy‐to‐use editing mode, a module for auto‐generating
hierarchies, efficient and scalable algorithms for anonymizing relational and transactional
datasets through k‐anonymity [2,7] and km‐anonymity [15], Users can regulate the informa‐
tion loss and guide the anonymization process by graphically exploring candidate solutions,
observing data mining statistics, and mixing user‐defined suppression rules with algorithm‐

¹https://privacy-analytics.com/
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generated generalization‐based solutions.

1.5 Thesis Structure

This section provides a summary of the following chapters and the organization of the
current thesis, giving better guidance and understanding to the reader.

• In Chapter 2, we analyze the main anonymization techniques and privacy models
dividing them into two categories, generalization and randomization. The former in‐
cludes many classic privacy techniques that have been applied for several years such
as k‐anonymity, l‐diversity, t‐Closeness, δ‐Presence and km‐Anonymity and the cor‐
responding algorithms that apply the aforementioned techniques. Moreover, we pre‐
sente many examples that show how the algorithms modify the data to anonymize
them as well as the disadvantages and advantages of the them. Finally, we define and
formalize the promising notion of differential privacy providing basic definitions and
theorems while showing known mechanisms and techniques for achieving differen‐
tial privacy.

• In Chapter 3, we present in detail the proposed algorithm for anonymizing big data,
which achieves less information loss by applying local recording and employing a clus‐
tering method storing the main volume of the data in the hard disk. Initially, we de‐
scribed related clustering approaches presenting our new corresponding clustering
method. Moreover, we analyze the basic methods and describe the main data struc‐
tures. Furthermore, we list the problems and necessary optimizations, and we evalu‐
ate the algorithm using graphs regarding execution time and information loss. Finally,
we present a use case scenario utilizing the Amnesia Anonymization Tool.

• In Chapter 4, we summarize and conclude the current study proposing future work
for the disk clustering algorithm and possible extensions.

2. Anonymization Techniques

As described previously, increasing access to vast data is vital for reasearch and study
puproses mainly of scientific, economic and statistical interest. However, it poses serious
risks concerning the privacy of individuals. For personal data to be analyzed without the
risk of losing privacy, various anonymization techniques have been developed, varying from
simple to very complex ones.

Anonymization is a special category of processing personal data that aims to prevent the
verification of the identity of the data subject but, at the same time, the data must remain
valuable. There are essentially two different approaches of data anonymization. The former
is based on the randomization of data and the latter on the generalization of the specifics
of a database as noted below in this chapter.
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In order to better understand the study of the problem of privacy protection, it is advisable
at this point to clarify some useful definitions that are often used in the scientific commu‐
nity.

• Personal data: The set of personal information of an individual such as his/her gender,
job position, age or salary which determine him/her. These data are usually collected
in databases, so that they can be more easily processed and transferred.

• Table: Data which organized in a tabular format (A1, A2, ..., An) and are part of a re‐
lation database where A1, A2, .., An are its attribute columns.

• Attribute:Defines a specific view of the sample objects and is displayed as a separate
column in the data table having a set of possible values.

• Key attributes or Direct identifiers: They directly identify a person such as full name,
ID, Social Security Number etc. which are removed from the data table before being
published.

• Sensitive attributes: It is a subset of table’s attributes that refers to personal infor‐
mation which is required to remain confidential as they relate to sensitive personal
data.

• Quasi‐identifiers: It is a subset of QI = (Ai, .., Aj) (where 1 <= i <= j <= n)
attributes of the table T = (A1, A2, .., An) which can lead to the recognition of an
individual’s identity if they link or combine with other data.

2.1 Pseudo‐anonymization

Pseudonymization is a data management and de‐identification procedure by which per‐
sonally identifiable information fields (names, ids, phone numbers, etc.) are removed or re‐
placed by one or more artificial identifiers, or pseudonyms from a sensitive dataset (health
records, medical prescriptions, financial information, online surveys, workplace files, etc.)
[16]. A single pseudonym for each replaced field or collection of replaced [17] fields makes
the data record less identifiable while remaining suitable for data analysis and data process‐
ing. Pseudonymized data can be restored to its original state with the addition of informa‐
tion which allows individuals to be re‐identified. In contrast, anonymization is intended to
prevent re‐identification of individuals within the dataset.

2.1.1 Masking

Masking is a pseudo‐anonymization method that refers to hiding some of the information
in the dataset using alternative characters. Masking techniques are widely used for hiding
parts of credit card numbers during credit card processes and payments. However, remain‐
ing identifying data (date of birth, zip code, gender, marital status, etc.) could be combined
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to re‐identify persons and compromise their privacy. Note that the triple (date of birth, gen‐
der, zip code) is enough to uniquely identify at least 87% of US citizens in publicly available
datasets.

2.2 Generalization

The process that more general values replace quasi‐identifiers while, the purpose is to pre‐
serve part of the original value information without changing it completely. In turn, this
generalized value can be generalized again to a more generalized value, again maintaining
the same semantics as the initial field value, and so on.

2.2.1 Generalization Hierarchy

All generalization levels at which a database value can be generalized constitute a gener‐
alization hierarchy [18] which are usually represented in a tree form. The generalization
technique applies to both numerical and categorical data. In the former, the initial value is
replaced by a value interval containing the initial value, which can be further generalized
to a larger value interval and so on. A typical example of numerical data generalization is
presented below in figure 2 and concerns the annual income feature, where the initial value
that reflects the income of a person can be generalized over an interval of five thousands
dollars, twenty thousands dollars, etc. Concerning the latter, each value field is generalized
to a more general value based on the semantics of the initial values, as shown in the figure
below 3. There are two ways to apply the Generalization technique in a dataset, Global
Generalization (Global Recording) and Local Generalization (Local Recording).

Figure 2: Hierarchy for numerical
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Figure 3: Hierarchy for categorical

2.2.2 Global Generalization

Global Generalisation was proposed by Samarati and Sweeney [2, 19]and maps the entire
domain of each quasi‐identifier attribute in T to a more general domain in its domain gen‐
eralization hierarchy. This scheme guarantees that all values of a particular attribute in V
belong to the same domain. In this case, the anonymized datasets have all the attributes
equally generalized in all the entries. If different records had the same attribute value, this
value would correspond to the same generalized value as depicted in image 4.

Figure 4: Global Generalization dataset (Initial ‐> Generalized)

Global Generalisation can be described as single‐dimensional generalization ormultidimen‐
sional generalization. A single‐dimension recoding defines some function ϕi : DQi

→ D′

for each attributeQi of the quasi‐identifier. A generalization V of T is obtained by applying
each ϕi to the values of Qi in each record of T. Whereas, multidimensional generalization
is defined by a single function ϕ : ⟨DQ1

× . . .×DQn
⟩ → D′ which is used to recode the do‐
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main of value vectors associated with the set of quasi‐identifier attributes. Generalization
V of T is obtained by applying φ to the vector of quasi‐identifier values in each record of
T [20].

Global Generalisation achieves anonymity by mapping the quasi‐identifier attribute do‐
mains to general values. The advantage of the method is that the anonymized table will
have a homogeneous set of values while its disadvantage is that the original dataset is
overgeneralized and as a result the information loss is too large.

2.2.3 Local Generalization

In Local Generalization two records with same quasi‐identifier value, may have different
generalized values. In contrast to Global, Local generalization hides attributes per entry
element. The result is a set of data with less generalised data than Global Generalization.
The data space is divided into different regions and all records in the same regions are
assigned to the same generalized group. Since the quality limits are quite large, it is not
easy to prove the best solution given to generalization [21]. Local generalization models
capture (indistinguishable) individual data items in generalized values 5. Moreover, Local
Generalization produces much better results in a real‐life scenario and is much more useful
than Global Generalisation.

Figure 5: Local Generalization dataset (Initial ‐> Generalized)

2.3 Suppression

Like generalization, suppression can be applied to both cells and entire attributes. It is
recommended to remove sensitive attributes as well as records to reduce the amount of
generalization when k‐anonymity [1,2] is achieved. The combination of generalization and
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suppression was used to create different algorithms to satisfy k‐anonymity which we will
analyze in the next section.

The conventional framework of such an algorithm always starts with hiding many sensitive
attributes and then splitting records of the remaining features into groups as it replaces
the exact values of the quasi‐identifiers with their generalized forms for each group, called
equivalence classes. This generalization is a homogeneous [22,23].

2.4 k‐Anonymity

Researchers have proposed variousmethods to preserve privacy to deal with the shortcom‐
ings of simple data anonymization. One of the most popular methods of privacy preserva‐
tion is the k‐anonymity. For k‐anonymity to be achieved in a data set, there need to be at
least k‐records that share the set of attributes that might reveal the identity of the entity
whose properties are represented in the dataset [1]. In other words, a dataset is said to
be k‐anonymous if every combination of values of the quasi‐identifiers in the data set ap‐
pears at least in k different records. K‐anonymity is defined as the level of data protection
on inference by linking. It prevents linking the released data to other information sources
(background information) [7].

The k‐anonymity technique aims to transform the data of a table in such a way that each
of the records becomes indistinguishable from other k − 1 records in the table. Therefore,
k‐anonymity can be considered as an application of the grouping technique where data is
divided into k groups. So, the main goal of this privacy method is to reduce the possibility of
identifying an individual, even by intersection of published records thatmay be anonymous.
In order to do this, there must be a maximum probability at most 1/k and an attacker being
able to find out at data linking, to whom the record belongs.

Through the generalization method, the values of the quasi‐identifiers fields are converted
to a more general form to create equivalence classes. As explained above, generalization
hierarchies are used to generalise the quasi‐identifiers attributes in order to satisfy k‐
anonymity privacy model as we can observe in the figures below 6, 7, 8.

Figure 6: Generalization Hierarchy for ’Age’ quasi‐identifier
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Figure 7: Generalization Hierarchy for ’Zipcode’ quasi‐identifier

Figure 8: Generalization to satisfy 4‐Anonymity

Furthermore, k‐anonymity is the combination of generalization and suppression [2]. It is a
harmonious combination of computational complexity and quality of the anonymized data.
More specifically, the most common combination used by most k‐anonymity application
algorithms is the generalization at the column level and suppression at the row level of a
data table. In addition, suppression is applied in direct identifiers in order to remove them
from the data table before being published. An example of suppression is depicted in the
figure 9.

To sumup, the parameters below, describe the problemof k‐anonymity and are competitive
for the best trade‐off between generalization and information loss:

• Generalization: The amount of information that lost by generalizing the data to some
generalization level ,the higher in the generalization hierarchy the greater the infor‐
mation loss.

• Suppression: The number of records removed from the data, in the anonymization
procedure.

25



Figure 9: Generalisation + Suppression

Id Surname Age Gender Post− Code

1 Smith 44 Male 12278

2 Anderson 57 Male 23448

3 Garcia 53 Female 31284

4 Johnson 45 Male 45026

5 Miller 49 Female 45354

6 Williams 42 Male 12456

7 Brown 59 Male 23781

8 Taylor 54 Female 31695

Table 1: Example Dataset

• Anonymity: the minimum tolerable size of k for each equivalence class.

2.4.1 Incognito Algorithm

Incognito is a full‐domain generalization algorithm that uses the approach of dynamic pro‐
gramming with the help of subset property. A relation T onset of attributes is said to be
k‐anonymous with respect to a chosen set of attributes Q if all the subsets P of the set
of attributes are k‐anonymous P ⊆ Q [20]. Using the predefined generalization hierar‐
chy creates a multi‐attribute generalization lattice. The lattice illustrates schematically all
the possible combinations between the levels of the quasi‐identifiers generalization hier‐
archies, where all possible generalizations of the records are expressed. The algorithm aims
to find the minimum global generalization, so that there is the least possible information
loss.
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The whole procedure of the algorithm can be enumerated in 3 simple steps using the
dataset in table 1:

• Step 1: In the first step, the domain and value generalization hierarchy is defined for
all the quasi‐identifiers. Figures 10, 11, 12 show the possible domain generalization
for the attributes post‐code , age and gender.

• Step 2: If each of the quasi‐identifiers has distinct domains, the domain generalization
hierarchy formed in step one can be combined to form amulti‐attribute generalization
lattice. Figure 13 shows the generalization lattice created for the quasi‐identifiers.
Each node in the lattice represents a generalization solution. In the lattice shown in
Figure 13, the node <P0, G1, A1> is a direct generalization of <P0, G1, A0> and is an
implied generalization of <P0, G0, A0>.

• Step 3: The third step is to perform the anonymization of data. Using a breadth‐first
search algorithm, the lattice is traversed. While traversing the lattice, each node is
checked to see if k‐anonymity is satisfied. If a node satisfies k‐anonymity then all its
direct generalizations are removed as it is guaranteed that the subsets also satisfy
k‐anonymity.

The algorithm’s complexity is ultimately exponential in terms of the size of the set of quasi‐
identifier features. It is a correct and complete algorithm for the k‐anonymization that is
produced, but themain disadvantage of Incognito is the generation of all possible anonymiza‐
tions of the dataset from which only the most efficient one is used, so the algorithm is time
consuming.

Figure 10: Generalization Hierarchy of post‐code

2.4.2 Flash Algorithm

This anonymization algorithm uses the same concept of the lattice as Incognito in figure
13 and it goes over the lattice using a bottom‐up breadth‐first approach [24]. Flash uses a
greedy depth‐first strategy and the lattice is traversed vertically. It uses predictive tagging
to reduce the number of nodes to be examined. Flash algorithm iterates through every node
and finds the path from that node to the next node that only has tagged successors. If that
condition is not fulfilled, the path will be from the node in question to the top node. The
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Figure 11: Generalization Hierarchy of age

Figure 12: Generalization Hierarchy of gender

created path is checked using binary search so that anonymous nodes are tagged and non
anonymous are added to the heap. After the path check is done, the algorithm continues
to next iteration using the heap nodes. The whole procedure is explained in detail as an
illustration below.

Suppose we have three attributes: Birth place, Birth year and Zip code for natural persons,
which are matched to the respective hierarchies as shown in figures 14 15 16.We can have
a solution where countries are generalized to continents (level 1 in the first hierarchy), birth
dates have not been generalized (level 0 in the second hierarchy) and zip codes have their
last digit removed (level 1) in the third and last hierarchy. This solution represents a node in
the generalization lattice, which we mark with [1,0,1], denoting this way the generalization
level of each attribute. The lattice is ordered as in Figure 17, where the nodes of each
horizontal level, have the same number of total generalization levels.

Flash, as mentioned above, uses a depth first strategy, which allows it to prune several so‐
lutions and avoid examining them.Flash builds a path towards the top node, implementing a
greedy depth‐first strategy for every node in each level, if the node is not already tagged (as
anonymous or not anonymous). The construction of a path is based on a vertical traversal
strategy aiming at choosing nodes according to three fixed criteria:
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Figure 13: Generalization Lattice of quasi‐identifiers

1. The total generalization level of the node in the lattice.

2. The average generalization of all quasi‐identifiers of the node.

3. The average of the number of distinct values on the current level of each quasi‐
identifier.

The search is terminated when the top node is reached or the current node does not have
a successor that is not already tagged.

When a path is built, the algorithm starts checking for k‐anonymity with a binary search
strategy. It starts with the node at the middle of the path, then continues with the path
to the bottom of the lattice or to the top, depending on whether the middle node was
anonymous or not. Whenever a node is checked, predictive tagging is applied within the
whole generalization lattice. This allows completely avoiding to examine other nodes. For
instance, if a node is not anonymous, then all nodes, in all paths from the bottom of the
lattice to that node, will not be anonymous either. The algorithm continues until all nodes
in the generalization lattice are checked for anonymity.

Figure 17 depicts the first iteration of the Flash algorithm. A path is constructed from root
node [0,0,0] to reach top node [2,2,3]. This path contains nodes linked with red arrows in
the figure. Then, Flash checks for 2‐anonymity node [1,0,3] which is the mid‐node of the
path. As this node is not 2‐anonymous, all predecessors of this node are also tagged non‐
anonymous and the algorithm continues by examining the upper half path containing nodes
[1,0,3], [2,0,3], [2,1,3] and [2,2,3]. Again mid‐node [2,1,3] is checked which is 2‐anonymous
so successor [2,1,3] is also tagged as anonymous and predecessor [2,0,3] is checked for
anonymity, which does not hold. Finally, all nodes of the path have been checked and then
the algorithm proceeds with the same process for the nodes of level 1. Two of them have
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Figure 14: Generalization Hierarchy of birth‐place

Figure 15: Generalization Hierarchy of birth‐year

been tagged from the previous stage so only node [0,1,0] is a candidate, from which Flash
will construct a newpath towards the top node and traverse it in the sameway. This process
continues until all nodes of the lattice are checked. The traversal strategy employed by Flash
gives a clear advantage over Incognito’s breadth‐first traversal.

2.4.3 Mondrian Algorithm

As alreadymentioned, the above algorithms apply global generalization to quasi‐identifiers.
The drawback of this approach is the over‐generalization of the datawhich become useless.
For example, in a numerical database, a full‐domain generalization means the replacing of
all the initial values with fixed separate intervals or their completely concealment.

These kind of problems are solved by theMondrian [25] algorithm, offering a higher quality
anonymization, due to the multidimensional local recording model with which it can be
applied. Based on this model, a space of ‐dimensions is defined, where is the number of
quasi‐identifiers. By dividing this space into partitions, a k‐anonymous solution is sought.
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Figure 16: Generalization Hierarchy of zipcode

The following example in figure 19 defines two anonymization models (single‐dimensional
and multidimensional) for a simple dataset 18.

In single‐dimensional anonymization, there are values from specific non‐overlapping inter‐
vals at each level of the generalization hierarchy, in contrast tomultidimensional anonymiza‐
tion, in which overlapping intervals are allowed in the generalization hierarchy.

To define the correct partitions in single‐dimensional model, the domain is divided by draw‐
ing parallel lines with respect to the axes, and these lines cross the entire space. Alterna‐
tively, in the multidimensional model, two sub‐domains are defined, drawing a straight line
parallel to one axis. Then, these two sub‐domains are retrospectively defined other sub‐
domains by drawing lines with respect to any axis, as long as these lines do not intersect
with other sub‐domains. Each record can be represented as a point on the space as shown
in the figure 19. To solve k‐anonymity it is enough to have at least k records in each sub‐
space.

Mondrian’s basic concept is the retrospective separation of ‐dimensional space using a
greedy algorithm. The algorithm follows a few steps below:

1. Chooses the dimension according to which the space will be divided.

2. Implements the partition based on the above dimension, fromwhich two sub‐domains
S1 and S2 arise.

3. For each of the two sub‐domains S1 and S2, the procedure is repeated until there is
no other allowable point for separation in any dimension.

4. The optimal multidimensional partition is constructed and therefore the appropriate
multidimensional generalization to be used.

Following the above procedure, the algorithmmanages to find the optimalmultidimensional
partition, in each region of which more than k records belong, and therefore k‐anonymity
is satisfied.

31



Figure 17: Generalization Lattice with the first iteration of Flash

Although optimal multidimensional partitioning is NP‐hard, the algorithm provides a simple
and efficient greedy approximation algorithm for several general‐purpose quality metrics
compared to other models that have been proposed. The overall complexity is O(nlogn)
wheren is the number of records in the dataset and it is a quite satisfactory time execution.

2.4.4 Datafly Algorithm

Datafly algorithm is an algorithm for providing anonymity in medical data proposed by La‐
tanya Sweeney [26]. Anonymization is achieved by automatically generalizing, substituting,
inserting, and removing information as appropriatewithout losingmany of the details found
within the data. The method can be used on‐the‐fly in role‐based security within an insti‐
tution, and in batch mode for exporting data from an institution. To achieve generalization
and suppression of records, this algorithm uses a three‐step process.

1. A frequency list is created which holds the unique combinations of the quasi iden‐
tifier set created in the second step of the Datafly‐prior process. Each entry in the
frequency list corresponds to one or more records in the original dataset.

2. Using domain generalization defined for each quasi‐identifiers, the generalization is
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Figure 18: Simple table

Figure 19: Mondrian example

made. The attribute with the most distinct values is generalized first. This step is run
recursively till k or fewer records are having a unique combination of values.

3. All recordswith unique sequenceswhich have a frequency less than k are suppressed.

The complexity of the Datafly algorithm is O(nlogn). However, this algorithm performs
unnecessary generalizations and as so, it does not provide an optimal solution even the
solution satisfies k‐anonymity. This is one of the biggest problems with Datafly as it may
generate a solution with high information loss. To illustrate the whole procedure in image
20 we are using the table 1 with quasi identifiers zipcode and age, their generalization hi‐
erarchies as represented in figures 10 11 and k = 2.

2.5 Attacks on K‐anonymous Table

Κ‐anonymity offers simple protection and easy to understand it. If a dataset satisfies k‐
anonymity, then everyone who knows only quasi‐identifiers’ values of an individual, can
not identify the appropriate record for that individual with a certainty greater than 1/k.
While k‐anonymity protects identity disclosure, it does not provide adequate protection
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Figure 20: Datafly’s iterations

against attribute exposure. There are two main major attacks known as Homogeneity and
Background Knowledge attacks; let us discuss them based on the 3‐anonymous table 2
which contains medical data of a hospital.

2.5.1 Homogeneity Attack

Homogeneity attack showed that when there is little diversity in the sensitive attributes,
the adversary can identify the value of the sensitive attribute for that group of k‐records.
Suppose we have a group of k different files and they all share a specific pseudo‐ID. An
attacker cannot identify the person based on pseudo‐IDs. However, if the main interest of
the attacker is the sensitive features and all groups have the same value then, the data has
been leaked.

For instance, a politician who intends to be elected to a post in the governance of mu‐
nicipality of Athens utilizes the medical history of his opponent in demonstrating to the
populace that his opponent cannot or is not ready to deal with the obligations as an agent
of the municipality due to his medical problems. He will have to search for his opponent’s
medical information by utilizing the released data of the 3‐anonymous table from the hos‐
pital 2. Despite the likelihood that the data is a 3‐anonymized table. Since he has some
information about his opponent, he can recognize what ailment his opponent has because
when there is no much contrasts (there is little diversity) in the sensitive data. Case in point,
he knows that the patient is 37 years old who lives in the postal division 11633 at Athens,
so due to this current data, he realizes that his rival has Cancer.

2.5.2 Background Knowledge Attack

In this attack, the adversary uses background knowledge to make the attack successful, and
we will show that k‐anonymity does not guarantee privacy against background knowledge
attacks. To give an example based on table 2, a woman whose director’s father is sick needs
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Direct‐Identifier Quasi‐Identifiers Sensitive
Full‐name Age Post‐code Gender Μunicipality Disease

* (20− 40] 116∗∗ ∗ Athens Cancer
* (20− 40] 116∗∗ ∗ Athens Cancer
* (20− 40] 116∗∗ ∗ Athens Cancer
* (40− 60] 151∗∗ ∗ Marousi Covid‐19
* (40− 60] 151∗∗ ∗ Marousi Covid‐19
* (40− 60] 151∗∗ ∗ Marousi Covid‐19
* (60− 80] 185∗∗ ∗ Pireus Anaemia
* (60− 80] 185∗∗ ∗ Pireus Anaemia
* (60− 80] 185∗∗ ∗ Pireus Broken Leg

Table 2: 3‐Anonymous Medical Dataset

to comprehend the nature of the sickness. She knows that her manager’s dad is old and he
lives at Pireus so she can conclude that he is suffering from either anaemia or he broke his
leg. Nonetheless, it is realized that her boss has thalassemia which is a type of inherited
anemia. Therefore, it is easy for her to conclude that her director’s father has anaemia.
Using background knowledge, she distinguishes what malady her colleague’s dad has. To
summarise, from the above examples, it can be seen that k‐anonymity does not guarantee
privacy preservation.

2.5.3 l‐Diversity

Privacy protection’s purpose in a set of records is not only the security against identifying
records. It is also the assurance that the attacker will not be able to find easily personal
information about an individual from this dataset. A new definition in privacy protection
that solved the above problems of revealing sensitive traits consistent with k‐anonymity
is l‐diversity. As the name indicates, it ensures the diversity of the sensitive attributes’
values in each equivalence class while maintaining the minimum size of the k‐set. The main
concept of this method is that there should be diversity in the values of sensitive data
greater than or equal to l for each subgroup created by k‐anonymity.

According to the definition of l‐diversity [27], a data table T = {A1...An, S}, where S is a
sensitive attribute, is l‐diverse if each q*‐block equivalence class of quasi‐identifier of the
anonymous table T ∗ = {A1...An, S} is l‐diverse, i.e. contains at least l ”well‐represented”
values for the sensitive attribute S.

To make this more comprehensible, let us consider an example of a homogeneity attack
on a 4 Anonymous table 3, with yellow color is the problematic equivalence class from
which an attacker can easily identify that someone has cancer despite the satisfaction of
4‐anonymity.

35



‐ Direct Identifier Quasi‐Identifiers Sensitive
Row number Full‐name Age Post‐code Gender Μunicipality Disease
1 ∗ [15− 30) 116∗∗ ∗ ∗ Anaemia
2 ∗ [15− 30) 116∗∗ ∗ ∗ Anaemia
3 ∗ [15− 30) 116∗∗ ∗ ∗ Covid‐19
4 ∗ [15− 30) 116∗∗ ∗ ∗ Covid‐19
5 ∗ [40− 60) 1858∗ ∗ ∗ Cancer
6 ∗ [40− 60) 1858∗ ∗ ∗ Anaemia
7 ∗ [40− 60) 1858∗ ∗ ∗ Covid‐19
8 ∗ [40− 60) 1858∗ ∗ ∗ Covid‐19
9 ∗ [30− 40) 116∗∗ ∗ ∗ Cancer
10 ∗ [30− 40) 116∗∗ ∗ ∗ Cancer
11 ∗ [30− 40) 116∗∗ ∗ ∗ Cancer
12 ∗ [30− 40) 116∗∗ ∗ ∗ Cancer

Table 3: 4‐Anonymous Medical Dataset‐Homogeneity Attack

In order to deal with the above problem, we can choose a different generalization approach
and randomize the row order, so the following table 4 is obtained, which satisfies the l‐
divarsity with l = 3. Each equivalence class contains at least three different values for the
sensitive attribute Disease

2.5.3.1 Distinct l‐Diversity

Distinct l‐Diversity is indeed the simplest form, with the ”well‐represented” values being
considered the l distinct values. In this case, there is no limit to the occurrence frequency
of each sensitive value in every equivalence class. As a result, if a value has a very high
frequency of occurrence, it is possible to draw a conclusion from someone with knowledge
of the distribution of sensitive values. This led to the development of the following two
strongest concepts of l ‐ diversity.

2.5.3.2 Entropy l‐Diversity

Ιn order for an anonymized table to be considered T ∗ = {A1...An, S} l‐diverse with entropy,
the relation below must apply to each equivalence class (q*‐block) [27].

−
∑
s∈S

p(q∗,s) · logp(q∗,s′) ≥ log(l)

where p(q⋆,s) =
n(q⋆,s)∑

s′∈S n(q⋆,s′)
is the fraction of records in the q*‐block with sensitive attribute
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‐ Direct Identifier Quasi‐Identifiers Sensitive
Row number Full‐name Age Post‐code Gender Μunicipality Disease
10 ∗ [15− 40) 1163∗ ∗ ∗ Cancer
9 ∗ [15− 40) 1163∗ ∗ ∗ Cancer
4 ∗ [15− 40) 1163∗ ∗ ∗ Covid‐19
1 ∗ [15− 40) 1163∗ ∗ ∗ Anaemia
6 ∗ [40− 60) 1858∗ ∗ ∗ Anaemia
8 ∗ [40− 60) 1858∗ ∗ ∗ Covid‐19
5 ∗ [40− 60) 1858∗ ∗ ∗ Cancer
7 ∗ [40− 60) 1858∗ ∗ ∗ Covid‐19
3 ∗ [15− 40) 1169∗ ∗ ∗ Covid‐19
11 ∗ [15− 40) 1169∗ ∗ ∗ Cancer
12 ∗ [15− 40) 1169∗ ∗ ∗ Cancer
2 ∗ [15− 40) 1169∗ ∗ ∗ Anaemia

Table 4: 3‐Diversity Dataset

value equal to s and n(q∗,s) the number of tuples of T ∗ from the equivalence class q* with
sensitive attribute value s. As a consequence of this condition, every q*‐block has at least
l distinct values for the sensitive attribute. Thus, the entropy of the whole dataset must be
at least log (l). Sometimes this can be very restrictive, as the entropy of the whole table can
be small if a few values are very common. So, we are led to the following, the less restrictive
notion of l‐diversity.

2.5.3.3 Recursive (c, l)‐Diversity

An anonymous table T ∗ = A1,…, An, S satisfies the recursive (c, l) diversity if for each
equivalence class q* the following relation is fulfilled [27]

r1 < c (rℓ + rℓ+1 + · · ·+ rm)

where c is a given constant and ri is the rate of occurrence of the ith most frequently dis‐
played value for the sensitive attribute S within the equivalence class.

For the recursive (c, l)‐Diversity, there are two different ways of application depending on
how the data mining is applied to a published table T ∗. Publishing an anonymous T ∗ table
leads to a positive disclosure if the attacker can correctly recognize the value of a sensitive
feature with high probability. In contrast, a negative disclosure leads when the attacker can
confidently exclude some values of a sensitive feature.

2.5.3.4 Positive Disclosure‐Recursive (c, l)‐Diversity
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Therefore in caseswhere positive disclosure is allowed, the technique of positive disclosure‐
recursive (c, l)‐diversity is applied. Corresponding to the above definitions, and in this con‐
cept in order for an anonymized table T ∗ to satisfy the positive disclosure‐recursive (c, l)
‐diversity, all its equivalence classes must satisfy the positive disclosure‐recursive (c, l)‐
diversity, i.e. one of the following relations applies [27]:

y ≤ ℓ− 1 and ry < c

m∑
j=ℓ

rj

y > ℓ− 1 and ry < c

y−1∑
j=ℓ−1

rj + c

m∑
j=y+1

rj

where Y is a subset of the values of the sensitive trait S for which positive disclosure is
allowed, y is the most frequently appearing sensitive value of the equivalence class q∗,
which does not belong to the set Y, ri is the occurrence frequency of the ith most frequently
displayed value within the equivalence class q∗ and c is a given constant.

2.5.3.5 Negative/Positive Disclosure‐Recursive (c1, c2, l)‐Diversity

Finally, the Negative/Positive Disclosure‐Recursive (c1, c2, l)‐Diversity is defined for a sub‐
setW of values of the sensitive feature S for which negative disclosure is not allowed. An
anonymized table T ∗ satisfies the negative/positive disclosure‐recursive (c1, c2, l)‐diversity
if it satisfies the positive disclosure‐recursive (c, l)‐Diversity and each value s ∈ W is ap‐
peared in proportion at least c2 in the records of each equivalence class.

As an extension of k‐anonymity, the main advantage of l‐Diversity is the insurance of data‐
subject’s privacy and anonymity, and the avoidance of attacks from drawing conclusions
and recognizing sensitive attributes.

2.5.3.6 l‐Diversity’s weaknesses

However, the technique is insufficient to prevent attribute disclosure, as it remains vulner‐
able to both skewness and similarity attacks, whereas in many cases, applying l‐Diversity
can be difficult and unnecessary such as implementing l‐Diversity to Big Data [28]. For in‐
stance, suppose that in an equivalence class there are 1000 records. In the Disease there
is a hundred records of Cancer, another hundred for Anaemia and the other eight hundred
are Covid‐19. This class satisfies the 3‐diversity, but the attacker can conclude with 80%
certainty that the target person’s disease is the Covid‐19. Another significant drawback is
the high degree of complexity when a data table contains more than one sensitive column.
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‐ Direct Identifier Quasi‐Identifiers Sensitive
Row number Full‐name Age Post‐code Monthly Income Disease
1 ∗ [15− 30) 476∗∗ 500 Lung Cancer
2 ∗ [15− 30) 476∗∗ 700 Pneumonia
3 ∗ [15− 30) 476∗∗ 650 Pulmonary Edema
4 ∗ [40− 60) 4790∗ 1, 200 Pneumonia
5 ∗ [40− 60) 4790∗ 1, 250 Anaemia
6 ∗ [40− 60) 4790∗ 980 Bronchitis
7 ∗ [30− 40) 476∗∗ 1, 450 Bronchitis
8 ∗ [30− 40) 476∗∗ 1, 000 Anaemia
9 ∗ [30− 40) 476∗∗ 1, 100 Lung Cancer

Table 5: 3‐Diverse Dataset‐Similarity Attack

2.5.3.7 Skewness attack

When the overall distribution is distorted, l‐Diversity will not prevent attributes disclosure.
For example, consider a dataset containing data for 1000 patients. The quasi‐identifiers in
the dataset are Age, Height andWeight. There is a single confidential attribute AIDS whose
values can be ”Yes” or ”No” with 99% being negative, and only 1% positive. Assuming that
an equivalence class has the same number of negative and positive records and it satisfies
distinct 2‐diversity, entropy 2‐diversity, and any recursive (c, 2)‐diversity can be imposed.
However, this is a serious threat to privacy, because everyone in the class can be considered
to have a 50% chance of being positive, compared to 1% of the total population.

2.5.3.8 Similarity attack

When the sensitive features’ values in the equivalence class are distinct but semantically
similar, the attacker is capable to learn important information about an individual. Let ex‐
amine the following example, with the depicted data table 5 which satisfies 3‐Diversity
with sensitive attributes Disease andMonthly Income.

If the attacker knows that Nick is 27 years old and lives in the area with postal code 47678
then he belongs to the first class of equivalence of the table 5. From the above information
the attacker is led to the conclusion that Nick’s income is relatively low and he suffers from
lung‐related disease. So, l‐diversity can ensure the diversity of sensitive values in each
group, but it does not take into account the semantic proximity of these values.
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2.5.4 t‐Closeness

To prevent the limitations of l‐diversity proposed a notion of privacy called t‐closeness [29].
As a result of the above l‐diversity’s problems, distributions that have the same level of
diversity offer different levels of privacy, and these are:

• Depending on the semantic relations between the sensitive values.

• The different sensitivity levels of the fields.

• The total data distribution of the dataset.

The basic principle of the technique is that the distribution of a sensitive attribute in each
equivalence class of the data table should be as close as possible to the distribution of that
attribute in the overall data table. Therefore in the t‐closeness, the values of the sensitive
features in each equivalence class must not only be l‐diverse from each other but must
have the same occurrence frequency as the original table.

We must now determine the appropriate metric for the distance between two probabilis‐
tic distributions, which will reflect the semantic distance between the sensitive attributes
values. Consequently, according to the definition [29], a table T ∗ satisfies the t‐closeness if
each of its equivalence classes satisfies the t‐closeness, i.e. if the distance between the dis‐
tribution of the sensitive feature within the equivalence class and its distribution through‐
out the table is not greater than the limit t. The lower the t value, the closer the two distri‐
butions are, which means the more secure anonymization is achieved.

The appropriate metric for calculating the distance between two probabilistic distributions
is EMD (Earth Mover’s Distance) [30], The EMD is based on the minimal amount of work
needed to transform one distribution to another bymoving distributionmass between each
other and formally it is defined as follows.

Let P = (p1, p2, ...pm), Q = (q1, q2, ...qm), and dij be the ground distance between element
i of P and element j of Q. We want to find a flow F = [fij]where fij is the flow of mass from
element i of P to element j of Q that minimizes the overall work:

EMD[P,Q] =WORK(P,Q,F) =
m∑
i=1

m∑
j=1

dijfij

subject to the following constraints:
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fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ m

pi −

m∑
j=1

fij +

m∑
j=1

fji = qi 1 ≤ i ≤ m

m∑
i=1

m∑
j=1

fij =

m∑
i=1

pi =

m∑
i=1

qi = 1

To use t‐closeness with EMD, we need to be able to calculate the EMD between two dis‐
tributions. One can calculate EMD using solutions to the transportation problem, such as a
min‐cost flow [31]. However, these algorithms dο not provide an explicit formula. For this
reason, different algorithms for calculating the EMDmetric are proposed below, depending
on the data type of the sensitive attribute.

2.5.4.1 Calculation of EMD metric for Numerical sensitive attributes

In case that the sensitive feature data are numerical, wewill calculate themetric EMD using
the ordered distance. So, we consider that numerical attribute values are ordered. Let the
attribute domain be v1, v2...vm, where vi is the ith smallest value. Ordered distance is defined
as the distance between two values equal to the number of values between them in the
total order, i.e.

ordered_dist (vi, vj) =
|i− j|

m− 1

To calculate EMD under ordered distance, we only need to consider flows that transport
distribution mass between adjacent elements, P = (p1, p2,…, pm) to Q = (q1, q2…, qm)
achieving the smallest possibleworkwhen they are transferred sequentially, so the distance
between the two distributions can be calculated from the following function [29]:

EMD[P,Q] = 1

m− 1
(|r1|+ |r1 + r2|+ . . .+ |r1 + r2 + . . . rm−1|) =

1

m− 1

i=m∑
i=1

∣∣∣∣∣
j=i∑
j=1

rj

∣∣∣∣∣
where ri = pi − qi, (i = 1, 2, . . . ,m)

2.5.4.2 Calculation of EMD metric for Categorical sensitive attributes

For categorical attributes, a total order often does not exist. We consider two distance
measures.
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Equal Distance: The ground distance between any two value of a categorical attribute is
defined to be 1. It is easy to verify that this is a metric. As the distance between any two
values is 1, for each point that pi−qi > 0, one just needs to move the extra to some other
points. Thus we have the following formula [29]:

EMD[P,Q] = 1

2

m∑
i=1

|pi − qi| =
∑
pi≥qi

(pi − qi) = −
∑
pi<qi

(pi − qi)

Hierarchical Distance:We consider the distance between two alphanumeric values of an
identifier and it is based on theminimum required level of generalization so that both values
are generalized to the same value according to the domain generalization hierarchy. Given
an hierarchy with height H and two distributions P = (p1, p2,…, pm) andQ = (q1, q2…, qm)
we define the extra function as follows [29]:

extra(N) =

{
pi − qi if N is a leaf∑

C∈Child(N) extra(C) otherwise

where Child(N) is the set of all leaf nodes below nodeN. The extra function has the property
that the sum of extra values for nodes at the same level is 0. We further define two other
functions for internal nodes [29]:

pos_ extra(N) =
∑

C∈Child(N)∧extra(C)>0

| extra(C)|

neg_ extra(N) =
∑

C∈Child(N)∧extra(C)<0

| extra(C)|

The EMDmetric can be calculated as the sum of the movement costs between the descen‐
dants of N, i.e. [29]

EMD[P,Q] =
∑
N

cos t(N)

where: cost(N) = height (N)
H

min( pos_extra (N), neg_extra (N)) and N is a non‐leaf node.

Let examine the example in [29] according to the table 7 which is the 3‐Diverse version
of table 6, there is a semantic problem in the first equivalence class where an attacker is
capable to conclude that an individual who belongs in that class has a stomach disease and
has low salary income. The distance between the distribution gastric ulcer,gastritis, stom‐
ach cancer and the overall distribution is 0.5, while the distance between the distribution
gastric ulcer, stomach cancer, pneumonia is 0.278. Respectively, the distance for the dis‐
tribution 30.000, 40.000, 50.000 is 0.375 whereas for the distribution 60.000, 110.000,
80.000 is 0.278.

42



ZIP Code Age Salary Disease
1 47677 29 3 K gastric ulcer
2 47602 22 4 K gastritis
3 47678 27 5 K stomach cancer
4 47905 43 6 K gastritis
5 47909 52 11 K flu
6 47906 47 8 K bronchitis
7 47605 30 7 K bronchitis
8 47673 36 9 K pneumonia
9 47607 32 10 K stomach cancer

Table 6: Original Medical Data

ZIP Code Age Salary Disease
1 476∗∗ 2∗ 3 K gastric ulcer
2 476∗∗ 2∗ 4 K gastritis
3 476∗∗ 2∗ 5 K stomach cancer
4 4790∗ ≥ 40 6 K gastritis
5 4790∗ ≥ 40 11 K flu
6 4790∗ ≥ 40 8 K bronchitis
7 476∗∗ 3∗ 7 K bronchitis
8 476∗∗ 3∗ 9 K pneumonia
9 476∗∗ 3∗ 10 K stomach cancer

Table 7: 3‐Diverse Dataset of Table 6‐Similarity Attack
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ZIP Code Age Salary Disease
1 4767∗ ≤ 40 3 K gastric ulcer
3 4767∗ ≤ 40 5 K stomach cancer
8 4767∗ ≤ 40 9 K pneumonia
4 4790∗ ≥ 40 6 K gastritis
5 4790∗ ≥ 40 11 K flu
6 4790∗ ≥ 40 8 K bronchitis
2 4760∗ ≤ 40 4 K gastritis
7 4760∗ ≤ 40 7 K bronchitis
9 4760∗ ≤ 40 10 K stomach cancer

Table 8: Table that has 0.167‐closeness for Salary and 0.278‐closeness for Disease

In order to minimize the values of t in the first equivalence class, the table is reconstructed
as shown in the table 8 .

The Similarity Attack is prevented in Table 8. For instance, an attacker can not infer that
an individual has a low salary or has stomach‐related diseases. It is noted that t‐closeness
protects against attribute disclosure, but does not deal with identity disclosure. Thus, it may
be desirable to use both t‐closeness and k‐anonymity at the same time.

2.5.5 Anatomy

In data anonymization, a large part of useful information is lost, as a result of which they can
not be utilized. This is caused by data generalizations in order to create equivalence classes.
In addition, the correlation of each record with its sensitive value is often not protected.

The basic concept of Anatomy [32] is the data publication without generalization but sep‐
arated in two tables and linked together by a grouping mechanism. In this way the informa‐
tion loss is reduced because in the published records the original values of quasi‐identifiers
and sensitive attributes remain the same, however the correlation of every record with its
sensitive value is hidden.

More specifically, the procedure is analyzed in a few steps below [32]:

1. Sensitive features are separated from the data table.

2. Two sub‐tables are created, the former contains the set of quasi‐identifiers in the data
sample called quasi‐identifier table (QIT), the latter contains the sensitive attribute of
the original dataset called sensitive table (ST).

3. The data of QIT is divided into equivalence classes in such a way that each element
of the table belongs to a single equivalence class. Moreover, l‐diversity is applied on
every record and an identifier number (id) is assigned on them.
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Quasi‐Identifiers Sensitive
Age Sex Zipcode Disease
23 M 11000 pneumonia
27 M 13000 dyspepsia
35 M 59000 dyspepsia
59 M 12000 pneumonia
61 F 54000 flu
65 F 25000 gastritis
65 F 25000 flu
70 F 30000 bronchitis

Table 9: Original Medical Dataset

Quasi‐Identifiers Sensitive
Age Sex Zipcode Disease
[21, 60] M [10001, 60000] pneumonia
[21, 60] M [10001, 60000] dyspepsia
[21, 60] M [10001, 60000] dyspepsia
[21, 60] M [10001, 60000] pneumonia
[61, 70] F [10001, 60000] flu
[61, 70] F [10001, 60000] gastritis
[61, 70] F [10001, 60000] flu
[61, 70] F [10001, 60000] bronchitis

Table 10: 4‐anonymous and 2‐diverse table

4. In the QIT table, which includes the accurate values of the quasi‐identifiers, a column
is added that contains the number that identifies which equivalence class each record
belongs to.

5. The ST table contains the sensitive attribute values and two additional columns, the
first holds the identifier number (id) of equivalence class to which every sensitive
value belongs to, and the other columns depicts the frequency of every value in each
equivalence class.

Let’s focus on the following example according to [32], the table 9 demonstrates the data
of a hospital the quasi‐identifiers are Age, Sex, Zipcode and the sensitive attribute is Disease

Initially, the table 9 is generalized in such a way as to create equivalence classes that satisfy
4‐anonymity and 2‐diversity, as shown below in the table 10.

Then, the table 11 (QIT) is created with the original values of the quasi‐identifiers , adding
a new column containing the number of the equivalence class (id) to which each record
belongs.
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Age Sex Zipcode Group‐ID
23 M 11000 1

27 M 13000 1

35 M 59000 1

59 M 12000 1

61 F 54000 2

65 F 25000 2

65 F 25000 2

70 F 30000 2

Table 11: The quasi‐identifier table (QIT)

Group‐ID Disease Count
1 dyspepsia 2

1 pneumonia 2

2 bronchitis 1

2 flu 2

2 gastritis 1

Table 12: The sensitive table (ST)

In the last step, the sensitive table (ST) 12 is formed, which includes the initial values of the
sensitive feature, together with the number of the equivalence class (id), and the number
of occurrences of the specific value within the equivalent class.

Using anatomy and publishing the last two tables, the attacker on the one hand, knowing
some of the values of the quasi‐identifier, can determine if the person he is looking for
belongs to a record, on the other hand the attacker can not relate any record with the
sensitive value of the equivalence class to which it belongs, since each group satisfies the
2‐diversity. Anatomy is preferred over generalization, in cases where the attacker knows
quasi‐identifiers values of a record and he is certain that the target person is in the published
records.

2.6 m‐Invariance

Them‐invariance [33] technique was created to ensure anonymity in non‐static data pub‐
lications, i.e. in cases when the published data table needs to be updated periodically de‐
pending on the nature of the data and how they change at predetermined time periods.

None of the above methodologies support the republishing of data after any changes to
the database, such as adding and deleting records. Them‐invariance is an extension of the
l‐diversity [27], so that dynamic data can also be anonymized.

The first attempt to create a technique that would anonymize incremental datasets took
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place in 2006 by J‐W. Byun, Y.Sohn, E.Bertino and N. Li [34]. However, this concept was
not considered enough effective , as it concerns data lists that are constantly growing, i.e.
it refers only to the addition of new data without taking into account their modification
or deletion. For this reason in 2007 it was proposed them‐invariance by Xiaokui Xiao and
Yufei Tao [33].

In the following lines, basic and useful concepts for the definition of m‐invariance are pre‐
sented as formulated in [33].

• Generalized Historical Union: Given a generalized relation T ∗(j)(1≤j≤n), we convert
each row t∗ ∈ T ∗(j) to a timestamped tuple< t∗, j >, which augments t� with another
attribute Atm, called ”Timestamp”, storing j. The generalized historical union U∗(n)
includes all the timestamped tuples converted from T ∗(1), ..., T ∗(n), or formally:

U∗(n) =

n⋃
j=1

 ⋃
t∗∈T∗(j)

⟨t∗, j⟩


• Lifespan: Each tuple t ∈ U(n) is implicitly associated with a lifespan [x, y], where x(y)
is the smallest (largest) integer j such that t appears in T(j).

• Signature: LetQI∗ be aQI group in T ∗(j) for any j ∈ [1, n]. The signature ofQI∗ is the
set of distinct sensitive values in QI∗.

Now, according to the above definitions we can define the m‐invariance concept.

A generalized table T ∗(j)(1≤j≤n) is m‐unique, if each QI group in T ∗(j) contains at least
m tuples, and all the tuples in the group have different sensitive values. A sequence of
published relations T ∗(1), ..., T ∗(n) (where n ≥ 1) is m‐invariant if the following conditions
hold:

1. T ∗(j) is m‐unique for all j ∈ [1, n].

2. For any tuple t ∈ U(n)with lifespan [x, y], t.QI∗(x), t.QI∗(x+1), ..., t.QI∗(y) have the
same signature, where t.QI∗(j) is the generalized hosting group of t at time j ∈ [x, y].

The difficulty of applying them‐invariance technique lies in fulfilling the second condition
of the above definition, as two equivalence classes can not have the same signature when
there are records deletions that may remove a single sensitive value from the updated data
list which will be published.

These cases, called ”critical absence” and leading to a possible exposure of personal in‐
formation, are treated by adding counterfeit tuples to the published table when applying
m‐invariance, which have the deleted sensitive values. Along with each published table
containing counterfeit tuples, another table is released containing the number of counter‐
feit tuples for each equivalence class.
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Name Age Zip. Disease

Bob 21 12000 dyspepsia

Alice 22 14000 bronchitis

Andy 24 18000 flu

David 23 25000 gastritis

Gary 41 20000 flu

Helen 36 27000 gastritis

Jane 37 33000 dyspepsia

Ken 40 35000 flu

Linda 43 26000 gastritis

Paul 52 33000 dyspepsia

Steve 56 34000 gastritis

G.ID Age Zip. Disease

1 [21, 22] [12k, 14k] dyspepsia

1 [21, 22] [12k, 14k] bronchitis

2 [23, 24] [18k, 25k] flu

2 [23, 24] [18k, 25k] gastritis

3 [36, 41] [20k, 27k] flu

3 [36, 41] [20k, 27k] gastritis

4 [37, 43] [26k, 35k] dyspepsia

4 [37, 43] [26k, 35k] flu

4 [37, 43] [26k, 35k] gastritis

5 [52, 56] [33k, 34k] dyspepsia

5 [52, 56] [33k, 34k] gastritis

Table 13: Initial table T(1) and Generalized table T ∗(1) at the 1st release

Name Age Zip. Disease

Bob 21 12000 dyspepsia

David 23 25000 gastritis

Emily 25 21000 flu

Jane 37 33000 dyspepsia

Linda 43 26000 gastritis

Gary 41 20000 flu

Mary 46 30000 gastritis

Ray 54 31000 dyspepsia

Steve 56 34000 gastritis

Tom 60 44000 gastritis

Vince 65 36000 flu

G.ID Age Zip. Disease

1 [21, 23] [12k, 25k] dyspepsia

1 [21, 23] [12k, 25k] gastritis

2 [25, 43] [21k, 33k] flu

2 [25, 43] [21k, 33k] dyspepsia

2 [25, 43] [21k, 33k] gastritis

3 [41, 46] [20k, 30k] flu

3 [41, 46] [20k, 30k] gastritis

4 [54, 56] [31k, 34k] dyspepsia

4 [54, 56] [31k, 34k] gastritis

5 [60, 65] [36k, 44k] gastritis

5 [60, 65] [36k, 44k] flu

Table 14: Initial table T(2) and Generalized table T ∗(2) at the 2nd release

To cite an example, suppose a hospital releases patients data every six months. In Table
13, T(1) is the original table which is used as a basis for anonymizing and publishing Table
T ∗(1). After six months based on data from the initial table T(2), the T ∗(2) is released. The
last two datasets are depicted in table 14.

The patients Alice, Andy, Helen, Ken and Paul have been deleted from the database. Re‐
spectively, patients Emily, Mary, Ray, Tom and Vince have been added.Even though both
published relations (Tables T ∗(1), T ∗(2)) are 2‐anonymous and 2‐diverse, an adversary can
still precisely determine the disease of a patient, by exploiting the correlation between the
two “snapshots”.

To illustrate this, assume, again, an adversary who has Bob’s age and Zip‐code, and knows
that Bob has a record in both Tables T ∗(1) and T ∗(2) (i.e., Bob was admitted for treatment,
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Name G.ID Age Zip. Disease

Bob 1 [21, 22] [12k, 14k] dyspepsia

c1 1 [21, 22] [12k, 14k] bronchitis

David 2 [23, 25] [21k, 25k] gastritis

Emily 2 [23, 25] [21k, 25k] flu

Jane 3 [37, 43] [26k, 33k] dyspepsia

c2 3 [37, 43] [26k, 33k] flu

Linda 3 [37, 43] [26k, 33k] gastritis

Gary 4 [41, 46] [20k, 30k] flu

Mary 4 [41, 46] [20k, 30k] gastritis

Ray 5 [54, 56] [31k, 34k] dyspepsia

Steve 5 [54, 56] [31k, 34k] gastritis

Tom 6 [60, 65] [36k, 44k] gastritis

Vince 6 [60, 65] [36k, 44k] flu

Group− ID Count

1 1

3 1

Table 15: T ∗(3) which is T ∗(2) with counterfeits and published counterfeit statistics table

within 6 months before both publication times). Based on Table T ∗(1), the adversary is
certain that Bob must have contracted either dyspepsia or bronchitis. From Table T ∗(2),
he/she finds out that Bob’s disease must be either dyspepsia or gastritis. By combining the
above knowledge, the adversary correctly captures Bob’s real disease dyspepsia.

According to the m‐invariance method, table T ∗(2) is replaced by table T ∗(3), as shown
above 15. More specifically, table T ∗(3) involves a generalized tuple for every row in table
T ∗(2), together with two counterfeit tuples c1 and c2 (names are not published; they are
included for row referencing). The 13 tuples are partitioned into six QI groups.

The two releases (tables T ∗(1) and T ∗(3)) have an important property. If a tuple appears in
the microdata at both publication timestamps, it is generalized to two QI groups (one per
timestamp) containing the same sensitive values. For instance, the tuple <Jane, 37, 33k,
dyspepsia> belongs to both Tables T(1) and T(2). It is generalized to QI groups 4 and 3 in
Tables T ∗(1) and T ∗(3), respectively. The two groups include an equivalent set of diseases:
{dyspepsia, flu, gastritis} (as is achieved via a counterfeit c2). As a result, even if an adversary
finds out both QI groups, he/she can only conjecture that Jane’s disease may be an element
in that equivalent set.

To be precise, m‐invariance requires the satisfaction of m‐diversity and at the same time
a record always belong to the same equivalence class, which has the same set of sensitive
properties, for all publications.

In this way we avoid personal information leakage but we significantly corrupt the original
data, which is the main drawback of this technique. The information loss from the constant
generalizations of quasi‐identifiers values as well as the gradual accumulation of counter‐
feits records as the number of publications increases, often leads to information that is
impossible to use for any kind of research or study.
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2.7 δ‐Presence

Another metric used to protect privacy in databases is the δ‐presence. The method guar‐
antees that by anonymizing the database, an attacker will not be able to determine if an
individual is included in that database with a certainty greater than δ [35] [36]. So, given an
external public table P, and a private table T , we say that δ‐presence holds for a general‐
ization T ∗ of T , with δ = (δmin, δmax) if

δmin ≤ P (t ∈ T | T ∗) ≤ δmax ∀t ∈ P

In such a dataset, we say that each tuple tϵP is δ‐present in T . Therefore, δ = (δmin, δmax)
is a range of acceptable probabilities for P (t ∈ T | T ∗).

The k‐anonymity and l‐diversitymethods guarantee privacy protection under the condition
that an attacker knows information about a person and is sure that individual’s information
is included in the published dataset. However, this is not enough in many cases. Suppose a
dataset which contains the cancer patients of a country. The attacker does not have to be
sure that the victim is included in this table, because then he/she knows with certainty that
the individual has cancer. Other examples of such datasets may be a database containing
information about illegal organizations or a set of patients data with a specific type of dia‐
betes. In both cases, specifying that an individual or group is included in the database may
be harmful to the individual’s privacy.

In [35] examines whether the data is considered sufficiently anonymous, through the anal‐
ysis of the risk of the participation or not of a natural person in the anonymized data. It is
defined as the problem of hiding individuals’ presence in a database and proves the impos‐
sibility of k‐anonymity in publication cases of sensitive attribute values.

2.8 km‐Anonymity

Despite the various techniques that have been developed, and the various guarantees of‐
fered in the literature, many privacy risks remain unaddressed. The available information
that the attacker may possess can take many forms. At the same time, the published data
models may differ from time to time, with the result that each case requires a different
processing in order to ensure the databases privacy.

Km‐anonymity [15] comes to solve such a problem as described above. In this problem each
record consists of datasets that get values from a common domain depicted in teble 16. The
attacker who knows up to m items of a target record, and tries to identify the remaining
values of the record and associate the published recordwith a real person. So, km‐anonymity
provides protection against identity disclosure.

In contrast to previous privacy guarantees, there is no clear distinction between sensitive
and quasi‐identities. In each case a subset of the records’ values forms the set of the quasi‐
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Figure 21: Data Generalization Hierarchy

Name Payments
John {11000, 11000, 20000, 40000, 40000}

Mary {11000, 30500, 40000}

Nick {11000, 11000, 40000, 40000}

Sandy {11000}

Mark {20000}

Table 16: Set‐valued dataset‐Payment data

identifiers and the remaining values form the set of the sensitive attributes. Each record has
a different size, as opposed to relational databases where the size of each record is fixed.

This is a new version of k‐anonymity, in which each combination of values with m size ,
appears at least k times in the dataset. Km‐anonymity ensures that any attacker who knows
up tom items of a target record cannot use that knowledge to identify more than k individ‐
uals in the dataset. This guarantee is a relaxation of the classic k‐anonymity [1,2]. Consider
the 2²‐anonymous Table 17 which is an anonymization of Table 16. An attacker with partial
knowledge of up to 2 values of a target, will not be able to identify less than 2 records. To
achieve this level of privacy in our dataset, using the data hierarchy of Figure 21, all values
had to be generalized because values 20,000 and 30,500 were rare. However, the same
privacy can be ensured in Table 18 where values 20,000 and 30,500 are generalized to the
range [20,000‐30,500] [37]. As we can observe, less values are generalized and a smaller
information loss is achieved.

Therefore, according to definition in [15] a dataset D satisfies km‐anonymity, if every com‐
bination of m values is presented in at least k different records.
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Id Payments
1 (10000− 20000], (10000− 20000], (30000− 40000], (30000− 40000], (30000− 40000]
2 (10000− 20000], (30000− 40000], (30000− 40000]
3 (10000− 20000], (10000− 20000], (30000− 40000], (30000− 40000]
4 (10000− 20000]
5 (10000− 20000]

Table 17: 2²‐anonymous table using a data generalization hierarchy

Id Payments
1 11000, 11000, [20000− 30500], 40000, 40000
2 11000, [20000− 30500], 40000
3 11000, 11000, 40000, 40000

4 11000

5 [20000− 30500]

Table 18: 2²‐anonymous table using a dynamic hierarchy

2.8.1 Generalization model

For the anonymization process, the global recording [2,19] technique is selected, according
to which a value in the database is replaced by a more general value containing the original,
without changing its semantics. The set of possible generalizations of a database is the tree
of the generalization hierarchy as shown in the figure 22. The higher the generalization
level, the greater the information loss presented by the data. In a data collection, all the
values in the database must be in the hierarchy tree as shown in the figure 22.

In this example the dataset D in table 19 does not satisfy the km‐anonymity, since for k = 2

andm = 2 the combination of values a1, b1 appears only once. The application of general‐
ization {a1, a2} → A to the database can solve the problem, since now any combination of
m = 2 values in the database, appears in at least k = 2 records as demonstrated in figure
20 .

id contents
ι1 {a1, b1, b2}

t2 {a2, b1}

t3 {a2, b1, b2}

t4 {a1, a2, b2}

Table 19: Dataset D
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Figure 22: Sample generalization hierarchy

id contents
t′1 {A,b1, b2}

t′2 {A,b1}

t′3 {A,b1, b2}

t′4 {A,b2}

Table 20: Anonymized dataset D

2.8.2 Apriori Algorithm

The Apriori algorithm transforms set‐valued data to km‐anonymous datasets, and exploits
the principle of apriori property. According to this property if an itemset J of size i causes a
privacy breach, then each superset of J causes a privacy breach. First the algorithm exam‐
ines the privacy breaches that might be feasible if the adversary knows only 1 item from
each trajectory, then 2 and so forth till we examine privacy threats from an adversary that
knows m items. The benefit of this algorithm is that we can exploit the generalizations
performed in step i, to reduce the search space at step i+1.

Unlike the case of previous algorithms such as Flash, Apriori does not perform full‐domain
hierarchy, but partial‐domain hierarchy. The aim of the algorithm is to find a “cut” is the
generalization hierarchy, i.e., a horizontal partitioning of nodes as demonstrated in figure
24, that guarantees that if every value is generalized to themost abstract descendant which
is under the cut‐off line, then the resulting dataset will be anonymous. The solution space
is exponential to the size of the domain and the record, thus exhaustive algorithms are very
inefficient for realistic datasets. Apriori offers a greedy heuristic with performs efficiently
and finds solutions of high quality. It relies on creating a count tree 23, which is a trie tree
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that traces the supports of sets of values in the dataset.

Figure 23: Count‐tree

Figure 24: Generalization cuts

More specifically, the algorithm practically iterates the direct algorithm for combination of
sizes i = {1, ...,m}. The database is scanned at each iteration i and the count‐tree is popu‐
lated with itemsets of length i. Then, the algorithm finds in the count‐tree the values in the
nodes‐leaves that have support less than k. Each of these values it refers to the general‐
ization hierarchy tree, and replaces the problematic values with the more generalized ones
in order to increase the support of each value to a number greater than k. The algorithm
repeats the procedure for all the problematic values of the count‐tree. In other word, the
basic idea is to iteratively count the supports of sets of increasing length (up to sizem) and
at each step to perform all the necessary generalizations to keep the dataset anonymous.
The basic steps of the algorithm are the following in the pseudocode 1 according to [15].

2.9 Randomization

Randomization involves changing the attributes in a dataset to be less precise, while main‐
taining the overall distribution.More specifically, randomization is a category of anonymiza‐
tion techniques that modify data accuracy to remove the strong connection between the
data and the natural person they refer to. Moreover, randomization protects the dataset
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Algorithm 1 Apriori‐based Anonymization
1: procedure AA(D, I, k, m)
2: initialise cout ▷ cout: set of generalization rules
3: for i := 1 to m do
4: initialize a new count‐tree
5: for all t ∈ D do
6: extend t according to cout
7: add all i‐subsets of extended t to count‐tree
8: for all leaves v in count‐tree do
9: if support(v) < k then
10: J := itemset corresponding to v
11: find generalization of items in J that make J k‐anonymous
12: merge generalization rules with cout
13: backtrack to longest prefix of path J, wherein no item has been gen‐

eralized in cout

from the risk of inference. Examples of randomization techniques include noise addition,
permutation and differential privacy. A key advantage of randomization methods is their
relatively simple application as will be presented in detail below.

2.9.1 Adding noise

Adding noise is the most studied anonymization technique as many different models have
been designed for privacy. The technique of adding noise was initially created to be used
in statistical databases with numerical data [38]. However, over the years, after various
studies and analyzes, a substantial number of models were created which can be used for
categorical data [39].

Before developing the methodology of this technique we will try to clarify the meaning
of noise addition. So, adding noise concerns the modifying attributes values in a dataset
through the addition of synthetic records with similar quasi‐identifiers values. Therefore,
the main principle of noise addition is the modification of the attributes of the dataset to
make them less accurate.

In the case of databases with numerical data, the addition of noise involves the modify‐
ing the values of the quasi‐identifiers by a very small number called noise. So the basic
logic of the statistical noise addition technique is to integrate n numbers r1, r2, ..., rn from
a known distribution into the initial values vi of a feature V = {v1, v2, ..., vn} creating a set
of anonymized values of the same feature U = {u1, u2, ..., un}. The integration of noise in
the initial values of a feature is fulfilled either additively or multiplicatively [40].

In the case of additive noise, the following applies:
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ui = vi + ri, r ∈ [−a, a], a ∈ R

that is, the noise variable belongs to a distribution with an average value of 0 and a very
small standard deviation.

In the occasion of multiplicative noise, the following applies:

ui = viri

Where the noise variable belongs to a distribution to which the following applies to the
mean and variance:

E (ui | vi) = vi

σ2
ui|vi

= V (ui | vi) = v2σ2
r

As for the alphanumeric data as is evident from the above, the addition of noise alters the
data. Therefore, to reduce the effects of data alteration, the statistical data of the sample
should be preserved during the application of the technique, ie the average, the variation,
etc.

The main benefit of noise addition is that a third party will not be able to identify an indi‐
vidual nor will they be able to restore the data or otherwise discern how the data has been
altered if the noise addition is applied effectively and retains the global distribution of the
dataset. However, the noise introduced alters the quality of the data as described above, so
the analyses performed on the dataset are less relevant. The level of noise depends on the
level of information required and the impact that the disclosure of attributes would have
on the privacy of individuals.

The basic common mistakes in noise addition can be categorized as follows:

• Inconsistent noise addition: If the noise is not semantically viable (i.e. it is dispropor‐
tionate and does not respect the logic between attributes in a set) or if the data set
is too sparse.

• Assuming that adding noise is sufficient: Adding noise is a complementary measure
that makes it more difficult for an attacker to recover the data, it should not be as‐
sumed to be a self‐sufficient anonymisation solution.

2.9.2 Permutation

The permutation technique is quite similar to the anatomy technique which described in
above section, both maintain the accuracy of the data values.
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The key idea of permutation consists of mixing attribute values in a table in such a way
that some of them are artificially linked to different data subjects. Permutation, therefore,
alters the values within the dataset by simply swapping them from one record to another.
More specifically, permutation eliminates the relations between quasi‐identifiers and sen‐
sitive features by grouping the records into equivalence classes and ”shuffling” the sensitive
features of each class [41].

Generally, a permutation on a set V , is an one‐to‐one mapping from V to itself. If |V | = N,
there are overallN! permutations on V. Let α be a permutation on a set V of tuples, we use
α (ti) to denote the image of ti under α. We use SV to denote the set of all permutations on
V . If V is a QI‐group of microdata T , for example, V = QIi, we can independently uniformly
select a permutation from SQIi at random [42].
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2.9.2.1 Permutation Anonymization

Let T be a table consisting of QI‐attributes Ai(1 ≤ i ≤ d) and sensitive attribute As. Given
a partition P withm QI‐groups on T , permutation anonymization is a procedure with (T, P)
as input, which produces a quasi‐identifier table PQT and a sensitive table PST satisfying
following conditions:

1. PQT is a table with schema (A1, A2, · · · , Ad , Group‐ID ) such that for each tuple t ∈
QIi, PQT has a tuple of the form: (αi1(t) ·A1, αi2(t) ·A2 , · · · , αid(t) ·Ad, i), where{
αij : (1 ≤ j ≤ d)

}
is independently uniformly selected from SQIi at random.

2. PST is a table with schema (Group‐ID, A s ) such that for each tuple t ∈ QIi, PST
has a record of the form: (i, αis(t) ·As), where αis is uniformly selected from SQIi at
random.

In simple terms, the table T is split into sensitive attributes and simple quasi‐identifiers,
creating two subsets of data. The relation between quasi‐identifiers and sensitive attributes
is removed and two sub‐tables are created, one QT, which contains all the quasi‐identifiers
and the other ST, which contains the sensitive table attribute. Given partition P of the data
table T with m quasi‐identifiers, the permutation anonymization creates two subsets of
data PQT and PST which satisfy the above conditions.

2.9.3 The concept of Differential Privacy

Although k‐anonymity is quite a powerful model of anonymization, it has been shown that
k‐anonymity alone does not always ensure privacy. k‐Anonymity is able to prevent identity
disclosure, i.e. a record in the k‐anonymized dataset cannot be mapped back to the corre‐
sponding record in the original dataset. However, in general, it may fail to protect against
attribute disclosure [43]. On the contrary Differential Privacy satisfy the demands of being
a formal privacy definition.

Differential privacy [44, 45] is a mathematical definition of what it means to have privacy.
It is not a specific process like de‐identification, but a property that a process can have.
For example, it is possible to prove that a specific algorithm “satisfies” differential privacy.
Introduced in 2006 [8, 44], Differential Privacy describes a promise to protect individuals
fromany additional harm that theymight face due to their data being in the private database
D that they would not have faced if their data were not been part of D.

Furthermore, differential privacy addresses the paradox of learning nothing about an in‐
dividual while learning useful information about a population [46]. Informally, differential
privacy guarantees the following for each individual who contributes data for analysis: the
output of a differentially private analysis will be roughly the same, whether or not you con‐
tribute your data. In other words, differential privacy is a powerful, mathematical definition
of privacy in the context of statistics and machine learning analysis.
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As mentioned above, differential privacy is a powerful standard for data privacy [44, 47],
it guarantees that the probability of an attacker who brings good or harm to any set of
participants is essentially the same, regardless of whether an individual is inside or outside
from the dataset. To achieve this, differential privacy adds a random noise to the query
output, so that the difference in output results is covered by the presence or absence of a
single person.

Differential privacy has been studied in theory and shown that provides a strict guarantee of
privacy, even when the attacker has the background knowledge of the worst‐case scenario
[8]. It neutralizes all data‐linkage attacks and statistical attacks because it uses the property
of a data access mechanism that does not depend on the presence or absence of basic
background knowledge.

To put it simply, consider an individual who is deciding whether to allow their data to be
included in a database. For example, a patient may decide whether their medical records
can be used in a study, or someone deciding whether to answer a survey. A useful notion
of privacy would be an assurance that allowing their data to be included should have neg‐
ligible impact on them in the future. As we’ve already seen, absolute privacy is inherently
impossible but what is being guaranteed here is that that the chance of a privacy violation
is small. This is precisely what differential privacy provides.

2.9.3.1 Fundamental Properties and Definitions for Differential Privacy
Before defining differential privacy, we need to mention some useful concepts.

It is useful to think of the dataset D as a finite collection of records from a universe U.
Let D = (r1, r2, ..., rn) ∈ U be a dataset in which ri represents a record or an individual.
Informally, any particular row is indiscreet to a differentially private output. Therefore, when
viewed from the perspective of any particular data, the calculation is like from a dataset
that does not include it. So, we come to the concept of adjacent datasets. Moreover, it
is convenient to represent a dataset or database D by its histogram which is a function
h(D) : U → N|U | in which each entry hi represents the number of records in the dataset D
of type i ∈ U

In order to explain the distance between datasets, we have to define the l1 norm which a
basic term for neighbour datasets.

Definition 2..1 (l1 norm) The l1 norm of a dataset D is denoted ∥D∥1 and is defined to be :

∥D∥1 =
|D|∑
i=1

|Di|

Definition 2..2 (DistanceBetweenDatabases [46]) The distance between twoadjacent or neigh‐
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boring datasets D, D’ with the l1 norm is:

∥D−D′∥1 =
|D|∑
i=1

|Di −D′
i| ≤ 1

Note that ∥D∥1 is a measure of the size of a database D (i.e., the number of records it
contains), and |Di −D′

i| is a measure of how many records differ between D and D’.

Beforewe get into the definition of differential privacy, wewill therefore need to discuss the
necessity of randomization. More precisely, as we analyzed above any non‐trivial privacy
guarantee that holds regardless of all present or even future sources of auxiliary information
requires randomization. For instance, a non‐trivial deterministic algorithm yields different
outputs between two dataset under a specific query. Changing one row at a time we see
there exists a pair of databases differing only in the value of a single row, onwhich the same
query yields different outputs. An attacker knowing that the database is one of these two
almost identical databases learns the value of the data in the unknown row [46]. Thus, it
is important to define the input and output space of randomized algorithms. A randomized
algorithm with domain A and (discrete) range B will be associated with a mapping from A

to the probability simplex over B.

Definition 2..3 (Probability Simplex [46]) Given a discrete set B, the probability simplex over B,
denoted ∆(B) is defined to be:

∆(B) =

x ∈ R|B| : xi ≥ 0 for all i and
|B|∑
i=1

xi = 1


Definition 2..4 (Randomized Algorithm [46]) A randomized algorithm M with domain A and
discrete range B is associated with a mapping M : A → ∆(B). On input a ∈ A, the algorithm
M outputs M(a) = b with probability (M(a))b for each b ∈ B. The probability space is over
the coin flips of the algorithmM.

Hence, the important concept of the above definition where the probability space is over
the coin flips of the algorithmM implies that it is the source of randomness.

We are now ready to formally define differential privacy, which intuitively will guarantee
that a randomized algorithm produces similar outputs on adjacent inputs. Correspondingly,
the influence of any single record‐individual on the output of the algorithm is influence and
the leakage of any individual’s information is prevented.

Definition 2..5 (Differential Privacy [44, 46]) A randomized algorithm M with domain N|U | is
(ϵ, δ)‐differentially private if for all S ⊆ Range(M) and for all adjacent input datasetsD,D ′ ∈
N|U | such that |D−D′| ≤ 1 :
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Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D ′) ∈ S] + δ

where the probability space is over the coin flips of the mechanismM. If δ = 0, we say that M is
ϵ‐differentially private.

The parameter ϵ, called the privacy budget and controls how much noise is needed to
protect privacy, so it directly impact on accuracy. The noise protects the individual of a data
point in the dataset. In general, smaller values of ϵ imply more privacy, as the distributions
of algorithm’s outputs for neighbouring inputs tend closer. However, the optimal selection
of ϵ is open question but there several methods for choosing ϵ [48].

Regarding the parameter δ we are interested in values less than the inverse of any poly‐
nomial in the size of the database. In particular, values of δ on the order of 1/∥D∥1 are
very dangerous, they publish complete records of a small number of database participants.
Even when δ is negligible, however, there are theoretical distinctions between (ϵ, 0)‐ and
(ϵ, δ)‐differential privacy. Chief among these is what amounts to a switch of quantification
order. (ϵ, 0)‐differential privacy ensures that, for every run of the mechanism M(D), the
output observed is almost equally likely to be observed on every neighboring database, si‐
multaneously. In contrast, (ϵ, δ)‐differential privacy says that for every pair of neighboring
databasesD,D ′ , it is extremely unlikely that, the observed valueM(D) will be muchmore or
much less likely to be generated when the database is D than when the database is D ′ . In
other words, (ϵ, δ)‐differential privacy allows a privacy leakage with some small probability
delta.

Now, we will examine some basic properties of differential privacy which make the pri‐
vacy guarantee resilient to various changes in the algorithm itself, in the group of people
to whom the privacy is offered, and when combining the results of a series of algorithms
executed on private data. These properties make differential privacy stand out from other
anonymization techniques.

• Post‐processing: Differentially private mechanisms are immune to post‐processing.
The composition of any function with a differentially private mechanism will remain
differentially private. Formally, the composition of a data‐independentmapping fwith
an (ϵ, δ)‐differentially private algorithmM is also (ϵ, δ)‐differentially private as defined
in the lemma which proof can be found in [46].

Lemma 1 (Post‐processing) Let M : N|U | → Z be a randomized algorithm that is (ϵ, δ)‐
differentially private. Let f : Z → R be an arbitrary randomized mapping. Then f ◦ M :
N|X | → R is (ϵ, δ)‐differentially private.

Essentially, what this says is that we may obtain some intermediate private result (in
a potentially easy‐to‐implement way) and then release this result, allowing anyone
to perform any further (statistical or other) calculations on their own, without having
to worry whether they might process this result in a certain way so as to violate the
(ϵ, δ) privacy guarantee
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• Composition: Perhaps most crucially, the quantification of loss also permits the anal‐
ysis and control of cumulative privacy loss over multiple computations. Understand‐
ing the behavior of differentially private mechanisms under composition enables the
design and analysis of complex differentially private algorithms from simpler differ‐
entially private building blocks. The composition property splits into sequential com‐
position and parallel composition.

– Sequential Composition: The sequential composition states that if we combine
multiple differentially private mechanisms at the same input and release all the
results, the privacy budget will add up. Formally, the sequential composition
theorem for differential privacy says that [46,49]:

Theorem 1 (Sequential Composition) Let Mi : N|U | → Zi, be an (ϵi, 0)‐differential
private algorithm for i ∈ [k]. Then their combination defined to be M[k] : N|U | →∏k

i=1 Zi by the mapping:M[k](D) = (M1(D),M2(D), ...,Mk(D)) is
(∑k

i=1 εi, 0
)

differentially private.

Sequential composition is a vital property of differential privacy because it en‐
ables the design of algorithms that consult the data more than once. Sequential
composition is also important when multiple separate analyses are performed
on a single dataset, since it allows individuals to bound the total privacy cost
they incur by participating in all of these analyses. The bound on privacy cost
given by sequential composition is an upper bound ‐ the actual privacy cost of
two particular differentially private releases may be smaller than this, but never
larger.

– Parallel Composition: Parallel composition can be seen as an alternative to se‐
quential composition ‐ a second way to calculate a bound on the total privacy
cost of multiple data releases. Parallel composition is based on the idea of split‐
ting your dataset into disjoint chunks and running a differentially private mech‐
anism on each chunk separately. Since the chunks are disjoint, each individual’s
data appears in exactly one chunk ‐ so even if there are k chunks in total (and
therefore k runs of the mechanism), the mechanism runs exactly once on the
data of each individual. More formally, parallel composition theorem [46, 50]
states that:

Theorem 2 (Parallel Composition) Let Mi : N|U | → Zi, be an (ϵi, 0)‐differential
private algorithm for i ∈ [k]. LetD1, D2, ..., Dk be k partitions of the datasetD, such

that
k⋃

i=1

Di = D and
k⋂

i=1

Di = ∅.

Then their combinationM[k](D) = (M1(D),M2(D), ...,Mk(D)) : N|X | → ∏k

i=1 Zi

satisfies (max {ε1, ε2, ..., εk})‐differential privacy.

Note that this is a much better bound than sequential composition would give.
Since we runM k times, sequential composition would say that this procedure
satisfies kϵ‐differential privacy. Parallel composition allows us to say that the
total privacy cost is just ϵ

• Group privacy: Differential privacy permits the analysis and control of privacy loss
incurred by groups, such as families. In this case, we can guarantee a similar fact for
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groups of k individuals, which is extremely useful. It also addresses the case that
multiple k records in the dataset refer to the same individual [46].

Theorem 3 Any (ϵ,0)‐differentially private mechanism is (kϵ,0)‐differentially private for
groups of sizekThat is, for all datasetsD,D′ such that |D−D′| ≤ k and allS ⊆ Range(M)

Pr[M(D) ∈ S] ≤ exp(kε)Pr[M(D′) ∈ S],

where the probability space is over the coin flips of the mechanismM

2.9.4 Differentially Private Mechanisms

Unlike k‐Anonymity [1], differential privacy [8, 44] is a property of algorithms, and not a
property of data. That is, we can prove that an algorithm satisfies differential privacy ; to
show that a dataset satisfies differential privacy, we must show that the algorithm which
produced it satisfies the above definition 2..5.

Definition 2..6 A randomized algorithmwhich satisfies differential privacy property2..5 is called
privacy mechanism.

Consequently, a privacy mechanism is essentially a randomized which quantifies the ran‐
domness producing a noise result of the original input that one would have expected from
a non‐private algorithm. This general method contains a number of techniques, and we will
investigate here some versions for numerical statistical methods.

2.9.4.1 Randomized Response

Differential privacy builds conceptually on a prior method known as randomized response
which is a research method introduced in the middle 60’s [38]. Here, the key idea is to
introduce a randomizationmechanism that provides plausible deniability. A simple example
especially developed in the social sciences [38, 46] to collect statistical information about
embarrassing or illegal behavior, captured by having a property P. Study participants are
told to report whether or not they have property P as follows:

1. Flip a coin.

2. If tails, then respond truthfully.

3. f heads, then flip a second coin and respond “Yes” if heads and “No” if tails.
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“Privacy” comes from the plausible deniability of any outcome; in particular, if having prop‐
erty P corresponds to engaging in illegal behavior, even a “Yes” answer is not incriminat‐
ing, since this answer occurs with probability at least 1/4 whether or not the respon‐
dent actually has property P. Accuracy comes from an understanding of the noise gen‐
eration procedure (the introduction of spurious “Yes” and “No” answers from the random‐
ization): The expected number of “Yes” answers is 1/4 times the number of participants
who do not have property P plus 3/4 the number having property P . Thus, if p is the
true fraction of participants having property P , the expected number of “Yes” answers is
(1/4)(1−p)+(3/4)p = (1/4)+p/2. Thus, we can estimate p as twice the fraction answering
“Yes” minus 1/2, that is, 2((1/4) + p/2) − 1/2.

Differential privacy formalizes how we define, measure, and track the privacy protection
afforded to an individual as functions of factors like randomization probabilities and the
number of times surveyed. In this example, there is a parameter which is the probability that
the true response is recorded. If it is very likely that the true response is recorded, there is
less privacy protection. Conversely, if it is unlikely that the true response is recorded, more.
It is also clear that, regardless of the probability, if an individual is surveyed multiple times,
then there will be less protection, even if their answer is potentially randomized every time.

2.9.4.2 Laplace Mechanism

Before analyzing the Laplace Mechanism, we introduce the concept of l1 sensitivity which
intuitively captures the maximum effect that a individual single record may cause to the
output of the function that we want to estimate over the dataset. Using the definitions
2..1 2..2 we define the l1 sensitivity between two datasets D,D′

Definition 2..7 (l1 sensitivity [44,46]) The l1‐sensitivity of a function f : N|U | → Rk is:

∆f = max
D,D′∈N|U|

∥f(D) − f(D′)∥1

Now, we will examine one of the classical techniques for differential privacy. The Laplace
Mechanism takes a deterministic function of a database and adds noise to the result. Much
like randomizing the response to a binary question, adding noise to continuous valued func‐
tions provides ”plausible deniability” of the true result and hence, privacy for any inputs into
that computation. Initially, we must introduce the Laplace Distribution:

Definition 2..8 (Laplace Distribution [46]) A random variableX is distributed as per the Laplace
distribution L(µ, b) centered at θ with scale b if its probability density function is:

Lap(x | θ, b) =
1

2b
exp

(
−
|x− θ|

b

)
, x ∈ R
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We will now define the Laplace Mechanism

Definition 2..9 (Laplace Mechanism [46]) Given any function f : N|U | → Rk the Laplace mech‐
anism is defined as:

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yk)

where Yi are i.i.d. random variables drawn from Lap(∆f/ε).

2.9.4.3 Exponential Mechanism

The exponential mechanism [46, 51] can be used to provide differentially private answers
to queries whose responses aren’t numeric. For instance ”what colour of eyes is most com‐
mon?” or ”which town has the highest prevalence of cancer?”. It is also useful for construct‐
ing better mechanisms for numeric computations like medians, modes, and averages.

The exponential mechanism was designed for situations in which we wish to choose the
“best” response but adding noise directly to the computed quantity can destroy its value,
such as setting price in an auction, where the goal is to maximize revenue, and adding a
small amount of positive noise to the optimal price (in order to protect the privacy of a bid)
could dramatically reduce the resulting revenue.

The exponential mechanism is the natural building block for answering queries with arbi‐
trary utilities (and arbitrary non‐numeric range), while preserving differential privacy. Given
some arbitrary rangeR, the exponential mechanism is defined with respect to some utility
function q : N|U|×R → R which maps database/output pairs to utility scores. Intuitively,
for a fixed database x, the user prefers that the mechanism outputs some element of R
with the maximum possible utility score. Note that when we talk about the sensitivity of
the utility score q : N|U| ×R → R we care only about the sensitivity of q with respect to
its database argument; it can be arbitrarily sensitive in its range argument [46]:

∆q ≡ max
r∈R

max
D,D′:∥D−D′∥1≤1

|q(D, r) − q(D′, r)|

The intuition behind the exponential mechanism is to output each possible r ∈ R with
probability proportional to exp(εq(D, r)/∆q) and so the privacy loss is approximately [52]:

ln
(
exp(εq(D, r)/∆q)

exp(εq(D′, r)/∆q)

)
= ε[q(D, r) − q(D′, r)]/∆q

)
≤ ε
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Definition 2..10 (The ExponentialMechanism [46,52]) The exponentialmechanismME(D,q,R)

selects and outputs an element r ∈ R with probability proportional to exp
(

εq(D,r)
2∆q

)

When the range of exponential mechanism is super‐polynomially large in the natural pa‐
rameters of the problem, it can define a complex distribution over a large arbitrary domain
and so it may not be possible to implement it efficiently.

2.9.4.4 Median Mechanism

The median mechanism is a differentially private mechanism answering predicate queries
f1, f2, ..., fk on the flywhere k could be large, even super‐polynomial.Without future knowl‐
edge queries, this mechanism determines the appropriate correlations between different
output perturbations. Moreover, the median mechanism is the first interactive mechanism
better than the Laplace mechanism, and its performance is close to the best possible even
in the non‐interactive setting [53].

Classifying queries as ”easy” or ”hard” with low privacy cost is the main concept of mech‐
anism, for the ”hard” queries there is an upper bound to O(logk · log |X|) because of VC
(Vapnik‐Chervonekis) argument dimension [54] and the constant factor reduction of the
number of databases consistent with the mechanism’s answers, every time we answer a
”hard” query [53].

The procedure of median mechanism can be explained in the following algorithm as de‐
scribed in [53]:

Algorithm 2Median Mechanism
1: procedureMM(X,f1, f2, ..., fk)
2: Initialize C0 = { databases of sizem over X}.
3: for all queries f1, f2, ..., fk do
4: Define ri and let r̂i = ri + Lap

(
2
cnα

)
5: Let ti = 3

4
+j·γ, where j ∈

{
0, 1, . . . , 1

γ
3
20

}
is chosenwith probability proportional

to 2−j

6: if r̂i ≥ ti then
7: set ai to be the median value of fi on Ci−1

8: if r̂i < ti then
9: set ai to be fi(D) + Lap

(
1

nα′

)
10: if r̂i < ti then
11: set Ci to the databases S of Ci−1 with |fi(S) − ai| ≤ c/50

12: else
13: Ci = Ci−1

14: if r̂j < tj for more than 20m log |X| values of j ≤ i then
15: Halt and report failure
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The median mechanism makes use of several additional parameters which are set in [53]

m =
160000 lnk ln 1

ϵ

ϵ2

α′ =
α

720m ln |X|
= Θ

(
αϵ2

log |X| logk log 1
ϵ

)

γ =
4

α′ϵn
ln

2k

α
= Θ

(
log |X| log2 k log 1

ϵ

αϵ3n

)

The α′ can be thought of as our ”privacy cost” as a function of the number of queries k.

3. Disk based Clustering for Big Data Anonymization

Big data have become a reality with the new millennium. Almost any human activity leaves
a digital trace that is collected and stored by someone (sensors of the Internet of Things,
social apps, machine‐to‐machine communication, mobile video, etc.). As a result, data from
several different sources are available, and they can be merged and analyzed to generate
knowledge. Therefore, in this day and age, big data is the big star and they are important
for both research and business. For instance, companies use big data in their systems to
improve operations, provide better customer service, create personalized marketing cam‐
paigns and take other actions that, ultimately, can increase revenue and profits.

Big data provides valuable insights into customers that companies can use to refine their
marketing, advertising, and promotions to increase customer engagement and conversion
rates. Businesses that use it effectively hold a potential competitive advantage over those
that don’t because they can make faster and more informed business decisions. Both his‐
torical and real‐time data can be analyzed to assess the evolving preferences of consumers
or corporate buyers, enabling businesses to become more responsive to customer wants
and needs.

However, as we said above big data are used from scientists and researchers. For example,
medical researchers for identifying disease signs and risk factors and doctors for helping
diagnose illnesses and medical conditions in patients. In addition, a combination of data
from electronic health records, social media sites, the web and other sources gives health‐
care organizations and government agencies up‐to‐date information on infectious disease
threats or outbreaks. Big data are characterised by their huge volume, their velocity and
their variety.

For a long time now, organizations and companies have been investing in developing solu‐
tions for implementing systems with enough computing power to process large volumes of
data. Even though big data are extremely valuable in many fields, they increasingly threaten
the privacy of individuals on whom they are collected. So, privacy is significant; however,
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big data are complex and contain so much volume that it is difficult to manage them all
in the main memory of an operating system. Indeed, the complexity is quite high, while
at the same time, the data types are many. For example, some data is stored in a tradi‐
tional relational database, but data such as documents, various files, videos, and images are
unstructured.

From the above paragraphs, the conclusion is born that so much information in differ‐
ent formats makes it impossible to manage data in traditional ways and, more specifically,
with algorithms and programs that use only the main memory of a machine. Therefore, big
data anonymization requires smart and optimal management of all resources. For a privacy
model to be useful for big data, it must be compatible with the volume, the velocity, and
the variety of this kind of data [55].

So,wewere led to the design and implementation of a newalgorithm for Amnesia Anonymiza‐
tion Tool which will be adapted to the big data and will utilize the hard drive so that the
main memory is not overloaded. Using a clustering logic [56], the data are loaded in small
quantities on the main memory where they can be anonymized. The privacy model that
perfectly fits on clustering approach is k‐anonymity [1, 2] which is used in our algorithm
and essentially applying local recording [21] . So the main problem now is which clustering
method we will use in order to split the data with the least computational cost using the
hard drive for the main volume of the data and the main memory for the procedure. Let us
explore some popular cluster approaches in anonymization field.

3.1 Related Clustering Approaches

J.‐W. Byun et al. [12] proposed the greedy k‐member clustering algorithm fork‐anonymization
using clustering. This algorithm works by first randomly choosing an initial record r to start
building a cluster and consecutively picking and adding more records to the cluster such
that the attached records incur the least information loss within the cluster. Once the num‐
ber of records in this cluster reaches k, the algorithm chooses a new record that is the fur‐
thest from r, and repeats the same process to create the next cluster. Once fewer than k

records are not yet assigned to any clusters yet, this algorithm then individually attaches
these records to their respective closest clusters. However this algorithm is slow with time
complexity O(n2) and sensitive to outliers.

Loukides and Shao [57] proposed another greedy algorithm for k‐anonymization using the
clustering concept. The algorithm forms one cluster at a time. Nevertheless this algorithm
picks the initial records for each cluster randomly. Furthermore, when creating a cluster, this
algorithm continues choosing and attaching records to the cluster until the information loss
of the cluster exceeds a user‐defined threshold. Consecutively, if the number of records in
this cluster is fewer than k, the whole cluster is deleted. With the help of the user‐defined
threshold, this algorithm is less sensitive to outliers. Themain disadvantage of this algorithm
is the selection of a proper value for the user‐defined threshold. Moreover the deletion
of many clusters may cause a considerable information loss. The time complexity of this
algorithm is O

(
n2 log(n)

c

)
where c is the average number of records in each cluster.
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Chiu and Tsai [58] proposed a weighted feature C‐means clustering algorithm for k‐
anonymization. This algorithm attempts to form all clusters simultaneously by first ran‐
domly picking

⌊
n
k

⌋
initial records for the clusters. This algorithm then assigns all records to

their respective nearest clusters, and updates feature weights to minimize information loss.
This step is iterated until the assignment of records to clusters stops changing. Since some
clusters might contain fewer than k records, a final step is necessary to merge those small
clusters with large clusters to meet the constraint of k‐anonymity. The time complexity of
this algorithm isO

(
cn2

k

)
, where c is the number of iterations needed for the assignment of

records to clusters to converge.

Zhu and Ye [59] proposed a density‐based clustering method for k‐anonymization. The
density of a record is defined as the inverse of the sum of distance from this record to each
of its k−1 nearest neighbors. A cluster is created by the record with the lowest density
and its k−1 nearest neighbors. This step is repeated until there are fewer than k records to
be assigned to any clusters. Eventually, this algorithm individually assigns these remaining
records to their respective nearest clusters.

Lin and Wei [60] proposed a two‐stage algorithm, called OKA. During the first stage, the
algorithm clusters data using the K‐means algorithm, but it only runs one iteration of the
K‐means algorithm. During the second stage, it removes records from those clusters with
more than k records (called the shrinking clusters) and attach them to those clusters with
fewer than k records (called the growing clusters) such that each cluster ultimately contains
no fewer than k records. The time complexity of this algorithm is O

(
n2

k

)
.

Zheng et al. [61] proposed a clustering‐based k‐anonymity algorithm that considers the
overall distribution of quasi‐identifier groups in a multidimensional space. The algorithm
first selects randomly an initial record r as a centroid of the first cluster and adds the k− 1

closest records to it, in order to form the first cluster. Then the algorithm selects the record
which has the biggest distance between itself and the initial centroid and set it to the sec‐
ond centroid. The ith centroid is created by in the same way, based on the distance between
the ith record and all the existed centroids. After each centroid creation step, the algorithm
attaches the k‐1 closest records to the centroid to form the clusters. The algorithm iterates
the remaining records and adds each record to the closest cluster, i.e., having the small‐
est distance with its centroid. All the clusters created contain k records at the end of this
process if there are ungrouped records.

3.2 Clustering algorithm description

Our anonymity clustering algorithm is a combination of the previous clustering approaches
and mainly uses the hybrid clustering method proposed by Lin et al. [62]. This method es‐
sentially combine theOne‐pass K‐means (OKA) [61] and k‐member algorithm for anonymiza‐
tion [12]. The basic ideas of this hybrid method are using OKA to reduce the total infor‐
mation loss, and using the k‐member algorithm to reduce the variance of information loss
among clusters. Before analyzing the disk‐based clustering algorithm in detail, let us take a
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Direct‐Identifiers Quasi‐Identifiers
Name Family Name Age Gender Salary Date of Death Disease ICD Code
Conan Curbeam 89 male 5422 11/05/1957 ICD9:7048
Yovonnda Leos 43 female 1280 04/05/1980 ICD10:O91213
Keith Lowder 28 male 7785 18/01/1980 ICD9:94158
West Entel 76 male 2374 30/11/1964 ICD10:V983
Humfrey Venner 30 male 4214 12/11/1979 ICD9:3530
Zulema Aliberti 4 female 3012 10/08/1988 ICD10:S32313K
Oswell Hietala 59 male 895 09/06/2004 ICD9:59970
Shizue Ornellas 22 female 1624 14/08/1983 ICD9:0579

Table 21: Big Data model

look at the structure of the big data that the algorithm will try to anonymize.

3.2.1 Data Model

This thesis focuses on datasets or databases with both numerical and categorical attributes.
The examined data model relates to a databaseDwith total records |D|. Every record r ∈ D

contains a set of columns A = (a1, a2, ..., ad) the quasi‐identifiers are selected by the user
and described by the setQI ⊆ A. The attacker has a partially knowledge ofQI, so the main
purpose is to anonymize each quasi‐identifier column. This type of datamodelmay contains
millions of records and substantial amount of columns so its management it is difficult in
the main memory, which very limited in relation to the volume of the data.

The use of databases representing the above structure model is often encountered in daily
life. For instance, the data model is capable to describe banking transactions, surveys, med‐
ical datasets, demographics etc. The table 21 illustrates the examined data model. The at‐
tribute which contains the ICD code of a disease is normally sensitive. However, the user
can set it as a quasi‐identifier for simplicity andmore privacy protectionwithout to perform
more complicated additional procedures such as l‐diversity [27].

3.2.2 Hybrid Method

Now let us move on to a detailed description of the Hybrid method [62] in which we have
made some modifications to the whole procedure especially in k‐member step. Moreover,
we have customized the approach using the hard disk and parallel programming to be flex‐
ible enough on the big data. Therefore, the main concept is that the dataset will be loaded
by the user and stored in a built‐in SQLite database. After that, the data will be split into
the clusters (OKA step) and will be anonymized based on k‐anonymity privacy model (k‐
member step).
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So let us delve into the details, more specifically how the data will be grouped based on the
description of Byun et al [12] and Jun‐Lin Lin et al [62]. Let T denote a set of records, which
is described by m numeric quasi‐identifiers N1, ..., Nm and q categorical quasi‐identifiers
C1, ..., Cq. LetP = {P1, ..., Pp} be a partitioning of T , namely,

⋃
i∈[1,p] Pi = T , and Pî∩Pĭ = ∅

for any î ̸= ĭ. Each categorical attribute Ci∈[1,q] is associated with a distinct hierarchy tree
HCi

and each numeric attribute Ni∈[1,m] is associated with a range hierarchy tree HNi. Both
distinct and range hierarchy trees are used to generalize the values of a attribute as depicted
in figures 25 26.

Figure 25: Distinct hierarchy

Figure 26: Range hierarchy

Each cluster‐partition is represented by a centroid structure P̄ which is basically a record
whose value of attributeNi∈[1,m] equals P̄ [Ni] which is the average values of the records in
P, and the value of attribute Ci∈[1,q] equals P̄ [Ci] which is the lowest common ancestor in
distinct hierarchy treeHCi of the valuesCi inP’s records. Thus, in thiswaywe can implement
processes for calculating the distance of a record from the cluster and updating these values
when a new record is inserted into the cluster. The procedure of the distance calculation
will be explained in the below section.

Regarding the cluster initialization, the algorithm randomly selects
⌊
n
k

⌋
records with their

identical in order to seed the clusters as described in [58]. Then the following questions
arise, howwill the clusters be initialized?What will be their size?Moreover, what will be the
total number of these clusters? Knowing the number of records that exist in the database
and the user‐defined k we can easily find the number of blocks with size k; however, their
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maximum size will be 2k−1when it is exceeded, they must be split down into two new par‐
titions illustrated by 27. Splitting helps to reduce information loss during the anonymization
procedure, e.g., if a cluster contains a substantial number of records, then the lowest com‐
mon ancestor of categorical attributes will be near the root of the hierarchy tree producing
more general values in the anonymization dataset.

Figure 27: Splitting procedure

The clusters are essentially stored in the database, in the main memory there are only the
centroids structures that represent the clusters. So basically with centroids it is not nec‐
essary to have the data records in the main memory; all the essence and functionality of
the algorithm is based on centroid structure. More specifically, the clusters are stored in
the hard disk in a relational table in which each record consists of the cluster‐ID which is
a simple number, the distance of the data record from the centroid and the data record‐ID
from the original data table, as a foreign key. So there is no need for a separate table for
each cluster, as demonstrated in figure 28, saving disk space as well as speed because the
process of creating a database table is expensive.

Additionally, we must take into account the clusters which have small size (fewer than k)
when the filling process of the clusters with the original data is completed. It is almost
certain that some clusters, when the access to the dataset is terminated in order to assign
the original records to a partition (OKA step), some will remain fewer than k records, and
therefore it will not be possible to anonymize them. So, a final step is needed tomerge those
small clusters with large clusters to meet the constraint of k‐anonymity (k‐member step)
such as in [58]. In our approach the records of the problematic clusters are redistributed to
the bigger clusters in order to avoid clusters with unsatisfactory size.

Finally another problem that arises is how clusters records should be stored in the main
memory in order to anonymize them. Therefore, our main contribution in the algorithm is
the implementation of a tree structure similar to B‐tree [63] which groups the identical
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Figure 28: Relational database table containing all the clusters

centroids based on the total number number of clusters and the available main memory
i.e. centroids that have short distances (Reminder: cetroids are also records, so it is possible
the calculation of distance metrics) are grouped together so that identical or similar cluster
records can be loaded into main memory without being overloaded and stored at close
locations for quick access.

Below we present the algorithm’s pseudocode as well as its visualization in the figure 29.

Algorithm 3 Disk‐based Clustering anonymization algorithm
Input

Dataset T (set of n records)
H (m+ q hierarchies for each quasi‐identifier)
k value for k‐anonymity

Output
T ′ anonymized table with k

1: Let D = save T into the disk
2: Let p =

⌊
n
k

⌋
p number of clusters

3: Let P = initialiseClusters(D,p, k) P centroids of clusters
4: fillClusters(P,D, k,H) OKA step
5: removeSmallClusters(P,H, k) k‐member step
6: T ′ = anonymization(P, p,H, k)
7: return T ′

3.2.3 Distance ‐ Cost Metric

In the clustering process, the definition of distance is very critical for both the duration of
the algorithm and the quality of the results. A good and intelligent choice of distance metric
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Figure 29: Disk‐based clustering procedure

can lead to optimal results concerning the information loss but also in avoiding partition
splitting making the process of clustering slower. In this algorithm the distance metric and
the information loss are inextricably linked which makes sense since, for example, an in‐
sufficient metric can lead to the same partition two or more records which are not similar.
Therefore, for the algorithm to find the equivalence class, it will need to reach high enough
in the hierarchy tree, resulting in a significant information loss to satisfy the k‐anonymity
in this cluster.

There are several classicmethods for calculating distance such as Euclidean andManhattan.
However, these are restricted to numerical quasi‐identifiers only and can not handle cate‐
gorical attributes e.g. Gender, Country of origin, etc. Consequently, they are not adopted in
this current thesis. Essentially, we need a metric that does not just calculate a distance but
a similarity between records and clusters in order to reduce the information as explained
above.

• Distance for numerical attributes: For any numerical attribute Ni where i ∈ [1,m]
of the table T which associated with range hierarchies HNi

and N̂i, N̆i denote the
maximum and minimum values of Ni respectively, the distance for any two values
vl, vj ∈ Ni is defined as

δN (vl, vj) =
|vl − vj|

N̂i − N̆i
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• Distance for categorical attributes: The categorical attributes contain many discrete
forms without any ordering relation; therefore the above distance metric for the nu‐
merical data cannot be applied. The only information about categorical quasi‐identifiers
is the generalization hierarchy which is essentially a semantic correlation of the dis‐
crete values.

For any categorical feature Ci where i ∈ [1, q] of the table T which with distinct
hierarchies HCi

, the distance for any two values vl, vj ∈ Ci is defined as

δC (vi, vj) =

{
0, vl = vj

h(HCi(vl,vj))
h(HCi)

, vl ̸= vj

where h (HCi
(vl, vj)) represents the height of the lowest common tree of vl, vj and

h (HCi
) denotes the total height of the distinct hierarchy tree HCi

.

• Distance between record and cluster: To define the distance‐similarity between a
record and a cluster it is enough to find the distance from the corresponding centroid
P̄. However, since centroid is also a record, which contains the averages for each nu‐
meric attribute and the lowest common ancestors for each categorical attribute, it is
enough to define the distance between two records.

Let r ∈ T a record where r = (N1, ..., Nm, C1, ..., Cq) so the distance for two records
rl, rjT is defined as

∆ (rl, rj) =

m∑
i=1

δN (rl [Ni] , rj [Ni]) +

q∑
i=1

δC (rl [Ci] , rj [Ci])

where r[Ni] represents the value of numerical attribute Ni in record r and r[Ci] de‐
notes the value of the categorical attribute Ci in record r.
Αccordingly, the distance between a centroid P̄ of clusterP ∈ P whereP = {P1, ..., Pp},⋃

i∈[1,p] Pi = T and a record r ∈ T is defined as

∆
(
r, P̄
)
=

m∑
i=1

δN
(
r [Ni] , P̄ [Ni]

)
+

q∑
i=1

δC
(
r [Ci] , P̄ [Ci]

)
where P̄ [Ni] is the average values of ofNi∈[1,m] attributes of the records in P and P̄ [Ci]
equals the lowest common ancestor of the values of Ci∈[1,q] in distinct hierarchy tree
HCi.

3.3 Technical Details

Let us analyze each of the individual functions of the pseudocode 3 in more detail, bearing
in mind that in each of them, there will be parallelism in order to increase the speed of the
algorithm. Since, the read and write processes in the database cause a considerable delay
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in the algorithm’s performance and the fact that the volume of data is very large, therefore
parallelism is a one‐way option. Three intermediate storage areas (buffers) are also used for
imports, deletions, and updates to tables in the database where a certain limit is exceeded,
which is determined by the available main memory and the size of the dataset. The above
database’s tasks are performed in bulk where needed, significantly reducing the delay of
processes when they are performed in units for each record.

• initialiseClusters(D,p, k)
D: Original dataset stored in SQLite database
p: The number of clusters to be initialised
k: The value for k‐anonymity

In this procedure the clusters are initialized. Let us briefly analyze what it does. Firstly
p random records are selected from the dataset. Then, the records, which have the
same values in quasi‐identifiers as the random ones, are loaded in the main memory;
thus, some clusters may initially contain more than one record. If the set of initial
records to be assigned to a cluster is greater than k, this means that this cluster is
already k‐anonymous. So, these records are assigned to a database table in which
the whole anonymized dataset will be stored in the end. Now, taking into account the
available threads of the processor, the remaining clusters that need to be initialized
are equally divided to the threads that undertake their initialization. Consequently,
the clusters are initialized with the help of parallelism.

• fillClusters(P,D, k,H)
P: List of centroids
D: Original dataset stored in SQLite database
k: The value for k‐anonymity
H: The hierarchies to be used for computing the distance and for the generalization
of the original values

In the above method, the records are assigned in clusters. The current and the previ‐
ous method reflect the OKA step. Given the available memory and processor threads,
a certain range of records is loaded into the main memory that is neither anony‐
mous nor assigned to a cluster. This range of records is evenly distributed among
the threads, which take on the insertion procedure into a cluster for each record. So,
each thread computes the distance between an original record and every centroid in
the list P in order to find the minimum distance and assign the record to the ”clos‐
est” cluster. Once that happens, the corresponding centroid updates its values to be
consistent with the new record described above. However, if the cluster size exceeds
2k− 1, the cluster must be split into two new ones.
Let us analyze the split procedure, essentially half of the records that have the short‐
est distance remain into the cluster and its centroid is redefined according to these
records. The remaining records are assigned to a new cluster and a new corresponding
centroid is created based on its records and it is added in the centroid list P.
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• removeSmallClusters(P, k,H)
P: List of centroids
k: The value for k‐anonymity
H: The hierarchies to be used for computing the distance and for the generalization
of the original values

Since the insertion of all records into the clusters has been completed, it must be
checkedwhether all the clusters have the appropriate size to anonymize, i.e., whether
they contain at least k records as mentioned above. Using the processor’s threads
again for parallelism, the database ids of the problematic clusters are loaded into a
list accessible to all threads. Thus, the threads take over from one cluster at a time
until the list is empty, assigning its records to the nearest clusters calculating the
distance with the help of the centroids and the hierarchies and deleting the cluster
with a small size. The redeployment of records can be done even to another small
cluster. Finally, if at least one record has been assigned into a ”small” cluster then the
latter is discarded by the deletion process. The current procedure is performed until
the elimination of problematic partitions.

• anonymization(P, k,H)
P: List of centroids
k: The value for k‐anonymity
H: The hierarchies to be used for computing the distance and for the generalization
of the original values
Output: T ′, the anonymized dataset

Let us move on to anonymize the clusters. Nevertheless, first, the tree structure must
be implemented based on the set of clusters and the available main memory groups
similar to centroids in a specific range in order to load the records of clusters in the
main memory in nearby memory pages so that they can be accessed quickly as de‐
scribed above. The tree structure is depicted in the figure 30.

Figure 30: Tree structure which groups similar centroids
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After that, the available threads of the processor will be utilized so that there is paral‐
lelism again. Therefore, each range of centroids is divided equally among the threads
which then anonymize the clusters’ records depending on the information present in
the corresponding centroids for each quasi‐identifier as illusteated in figure 31.

Figure 31: Cluster anonymization for ’Age’ and ’Diagnosis ICD Code’ quasi‐identifiers

Finally, the anonymized records are inserted into the database table, where the whole
anonymized dataset is stored as mentioned above. Thus, the entire original dataset
was anonymized with local recording using a clustering method.

3.4 Problems and Possible Solutions

The algorithm is capable of several optimizations in order to be able to manage cases in
which the total of the clusters is a few hundred thousand. This occurswhen the data volume
is too large and the user‐defined k is too small. Themain optimizations that need to be done
are filling clusters with records, managing cluster splitting, andmanaging ”small” (fewer than
k records) clusters.

In these cases, which are extreme but also quite frequent, themain adjustment thatmust be
implemented is to reduce the width of the clusters when a record is assigned into a cluster.
More specifically, for each record all centroids are searched computing the distance metric
in order to find the most similar cluster so, the complexity is O (np) where the p may be
increased due to cluster splits.
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A satisfactory solution would be that the set of centroids to be split into smaller sets and
for each of these sets to be represented by a new centroid, if we repeat the same proce‐
dure for the new centroids a tree structure is implemented. For each record that needs to
be assigned to a cluster, we can compare it with the levels of the tree structure until the
bottom level, where the appropriate smaller set of clusters is found. Hence, the minimum
distance must be found within this particular set which is much smaller than the entire set
of centroids.

3.5 Optimizations

Although we use parallelism in many cases, it is necessary to extend this method to more
algorithm’s functionalities. Especially, whether the choice of k, to apply the k‐anonymity
model, is small enough in size concerning the total number of records, and if we take into
account that the processes in the database via the SQLite can not be easily parallelized,
this makes the optimization of the time execution even more difficult. For example, in the
initial algorithm for a dataset with one million records, the definition of k had to be at least
around 500 in order for the algorithm to run in a reasonable time frame.

Eventually, what we recognized after experiments is that the execution time of the algo‐
rithm is inextricably linked to the selection of k, which is proportional to the number of
records in the dataset. However, in anonymization applications, the selection of k over ten
does not make much sense, let alone in the above example, which reaches between one
hundred and one thousand. Consequently, it is necessary to minimize this problem, and the
time execution should not depend on the user‐defined k in relation to the size of the data.

Meanwhile, what makes k so important in executing the algorithm? If we refer to the pseu‐
docode of the algorithm 3 what we observe is that a simple division calculates the number
of clusters of the number of records (n) by k. So, the problem is located in the number of
partitions and consequently in the space occupied by a cluster. The size of each cluster,
as mentioned above, includes up to 2k‐1 records. As soon as this threshold is exceeded,
the cluster must be split into two more. If in the example above, with the dataset of one
million records, the user sets k = 4 then the total number of the clusters is 250,000, and if
we take into account that some partitions will need to be split. At the same time there will
be clusters containing records less than k, then the number of clusters is rapidly increased
because it is impossible to have absolute similarity between four records per million and
to have precisely 250,000 partitions with exactly four records. Thereby, some clusters will
work as points of convergence and will constantly be divided where this operation is very
expensive in time execution, especially if the splits are thousands.

In addition, in this case, we also have an issue in the main memory because all these clus‐
ters have a corresponding centroid, so the number of these structures will be equal to the
number of clusters. Hence there is a relative overload in the main memory, which, unfortu‐
nately, we can not avoid at this moment, but there is another problem arises. To compute
the distance between a record and a partition, it is necessary to access all the centroids to
find the most similar cluster. The similarity search consumes substantial time, but we can
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reduce it.

Finally, another problem that arose based on a large number of centroids is the creation
of the tree structure in the anonymization phase. Depending on the number of clusters
and the available main memory, the tree structure groups identical centroids in a specific
range in order to load the clusters records in the main memory and in nearby memory page
frames so that their access can be done rapidly. However, to implement this structure,
it essentially makes new centroids that represent a range of similar clusters of centroids.
Τo calculates the centroids’ similarity to create the representative centroid, the whole set
of centroids is continuously accessed to find the most similar. The appropriate centroid is
inserted in the range centroid list then the values of the representative centroid are up‐
dated to have accuracy in the similarity‐distance of the centroids. Nevertheless, when the
algorithm makes continuous accesses and comparisons of similarity across the multitude
of centroids, the algorithm’s execution slow down rapidly, especially when the clusters are
enumerated in thousands (same as centroids). As an effect, this algorithm’s malfunction
should be addressed.

Let us now turn in more detail at which points in the algorithm we have improved the time
performance, highlighting the modifications in some functionalities and the new structures
we designed to have a more optimal search and processing of the data. Our issue, as men‐
tioned above, is when the volume of data (V ) is very large and the user‐defined k is too small
(V ≫ k). So, we use a relatively simple metric that we will distinguish this case to recognize
in terms of implementation and apply a different approach, using a new tree structure for
quick access to a specific range of clusters.

The aforementioned metric checks the order of magnitude between k and the number of
records (n) by computing the k/n ratio to be greater than 10−3 and the volume of clusters to
be greater than 50000. The new tree structure is very similar to the tree structure we used
in the anonymization phase of the clusters. The tree is built from the bottom up, where
a specific range of children is initially defined for each immediate inner node of the tree
(ancestor node of initial original centroids).

The tree’s leaves are the centroids that represent the clusters in the main memory stored
on an array. Having defined the range of leaves‐children, the centroids’ array is split among
the defined range, and for each partition of the array, a parent‐centroid is created, which
contains the average values of the centroids. We repeat the same process until we make
the root as depicted in 32. This structure is used in different phases of the algorithm, while
the range of children of the tree is calculated based on a percentage of the total number of
clusters in the system in each phase of the algorithm.

As a result, the tree structure gives us the ability to deposit a record to a cluster without
calculating the distance metric for each centroid, but it is enough to find through the tree in
which partition of centroids the record has more similarities and then look for the shortest
distance only to the corresponding centroids. Normally, in the creation of a tree structure,
each centroid should have been checked in terms of the distance metric with all the others
in order to group identical centroids; however, it is a process with a long time cost O (n!).
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In the end, another two important improvements were made in the algorithm in fillClusters
and removeSmallCluster, using the metric that analyzed above and the new tree‐structure
for computing the distance for each record among to the available clusters. However, in
the former process, the splitting procedure significantly delayed the algorithm execution,
especially when the k value was very small. So, we decided the splits to take place when all
the records are set to a cluster. After that, the partitions with a size bigger than 2k− 1 are
split until to reach the desired size between k and 2k− 1 using parallelism with threads. In
the latter process, we load in the main memory all the records to the memory of the ”small”
(size less than k) clusters which are totally removed from the database. Then the records
are redistributed to the remained clusters. After that, the algorithm splits the ”big” (size
bigger than 2k− 1) clusters as mentioned above. The described optimization occurs when
the described new metric is satisfied, and the algorithm significantly accelerates despite
the small increase of information loss using the tree structure.

Figure 32: Tree structure which separate the centroids array in specific ranges

3.6 Evaluation

The disk‐based clustering k‐anonymity algorithmwas evaluated inNetbeans IDE,where the
Amnesia Anonymization Tool was developed. The experiments were performed using Java
18 on windows 10, 64bit Home edition, with Intel Core i7‐1065G7 @ 1.30GHz 1.50GHz
CPU, 16GB of RAM, and SK Hynix SSD hard disk. The dataset contains up to one million
records and is depicted in figure 21 as mentioned above.
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3.6.1 Execution Time

Time is a useful tool for concluding the performance of the algorithm. In particular, any dif‐
ference in the execution time can be observed concerning the number of quasi‐identifiers
and the value of the k parameter. The following section presents the results from the dif‐
ferent executions of the algorithm regarding its execution time.

The proposed disk‐based clustering algorithm is expected tomove at lower levels compared
to other algorithms such as the parallel Flash, which is also present in Amnesia Anonymiza‐
tion Tool since our new algorithm has more complicated processes and it uses SQLite and a
database stored on a hard disk to handle the data. The operations via SQLite, such as insert,
delete, and the execution of queries, are really slow without the possibility of parallelism
because it does not allow the database usage from two ormore threads simultaneously. The
execution of database operations in a second stage from one thread only and via batches,
i.e., thousands of operations at the same time and not one by one, helped significantly and
decisively in the algorithm’s performance.

The supplied diagram33 outlines the time execution of the algorithm using a different num‐
ber of quasi‐identifiers. As it is observed, the anonymization of a single quasi‐identifier is
much slower than the other experiments using two or more quasi‐identifiers. As we men‐
tioned above in the optimizations section, we split the algorithm into two approaches. The
former is the classic approach which is slow but more efficient in terms of information
loss, and the latter is more optimized regarding the time execution; however, it is weak in
information loss. It is obvious that by anonymizing only the ’Date of Death’ feature, the
algorithm runs the classical, which achieves better performance in information loss, as we
will see in the next section.
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Figure 33: Execution time with varied combinations of quasi‐identifiers

Another interesting note that demonstrated from the illustration 33 is the convergence of
the three other cases in a given time range proves that despite the fact that the algorithm
is non‐deterministic the optimizations we have performed lead to the execution of the
algorithm always within a specific context in order to be executed in a reasonable time
frame. Of course there are other factors that affect the execution time such as e.g. the
hierarchy’s form.

In image 34 is depicted the time execution of the algorithm, which anonymizes only the
feature ”Salary” with two different hierarchies where one is a range hierarchy, and the other
is a distinct hierarchy. The experiment was performed in 10 executions of the algorithm for
each hierarchy and we received the average value of time. It is clear from the bar graph
34 that the execution of the algorithm with range hierarchies is more efficient in terms
of time because the distance for the quasi‐identifiers which have range hierarchies is more
simple and fast than the others that have distinct hierarchies. This happening because of the
seeking of the lowest common ancestor, which an time expensive procedure to compute
the cost metric.
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Figure 34: Mean execution time in relation to hierarchy’s type

The following figure 35 presents information about the execution time of the algorithm
among different data types of the quasi‐identifiers. As observed, the ’Age’ and ’Salary’ at‐
tributes give us better results about ’Date of Death’ and ’Disease ICD Code’ features. This
is perfectly reasonable due to the limited domain set for the first two quasi‐identifiers, and
in one million records, it is certain that ’Age’ and ’Salary’ values are repeated many times, so
it is obvious that very few records are required to anonymize. More specifically, the ’Age’
attribute satisfies the k‐anonymity for many values of the k parameter; hence the algorithm
is rapidly executed without performing the clustering approach. On the contrary, ’Date of
Death’ and ’Disease ICD Code’ quasi‐identifiers have huge domain sets, and the number of
the repeated values on the dataset is minimal, especially for ICD codes.
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Figure 35: Execution time in relation to quasi‐identifiers’ data types

Finally, the last graph 36 demonstrates how the execution time of the algorithm is affected
by the number of quasi‐identifiers. As can be seen, the execution time is rapidly decreased
between 1 and 2 quasi‐identifiers due to the classic clustering approach that the algorithm
follows when the QIDs=1. On the other hand, between 2 and 3 number of quasi‐identifiers
is observed sharply ιncrease in the execution time, and in the end, there is a slight fall
between 3 and 4 QIDs. In the current evaluation, we took the best execution times for
every quasi‐identifier combination from the line graph 33.

85



Figure 36: Mean execution time in relation to the number of quasi‐identifiers

3.6.2 Information Loss

In order to perform the evaluation experiments to illustrate the information loss of the
anonymized dataset we used two information loss metrcs: Normalized Certainty Penalty
(NCP) [21] and Total [12].

• Normalized Certainty Penalty (NCP): The NCP is one of the most popular metric that
quantifies the information loss. NCP is a kind of algorithm to measure the degree of
loss, which is efficient and easy to use. For every generalization value g, NCP calcu‐
lates the number of leaves which are generalized by g. Then, it makes a normalization
by dividing by the total number of leaves. To find the NCP of a record it is required to
sum the individual NCP for every generalized quasi‐identifier and divide by the num‐
ber of quasi‐identifier. Adding the NCP of every record, then by dividing by the total
number of rows, we conclude the final NCP proportion for the whole dataset.

• Total: Another famous information loss metric is Total. Total takes into account the
level of the generalized value in the hierarchy. More specifically, in k‐anonymity, Total
finds the level of every generalized attribute on its hierarchy and divides it by the
height of the hierarchy minus 1. The ratios for every quasi‐identifier are summed up
and normalized by dividing by the number of quasi‐identifiers.
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Let us examine the experiments below and analyze the graphs of the information loss eval‐
uation of the disk‐based clustering algorithm. In the line graphs 37, 38 we can observe that
proportion of information is increased when we combine 2 or more quasi‐identifiers in the
anonymization procedure. This is completely normal because the number of combinations
for two ormore columns in the dataset is usually unique or less than k. So, the algorithm has
to search at a higher level in the generalization trees of quasi‐identifiers to find an accepted
generalized combination that satisfies the k‐anonymity. Therefore, a general, logical, and
unofficial rule is that the more quasi‐identifiers we have in the anonymization process, the
more information loss we usually obtain.

An important remark that should be noted is that in Flash algorithm we can observe much
better performance in information loss metrics in many cases. However, a lot of accepted
solutions in the lattice, depicted in 17, are useless due to the fact thatmany quasi‐identifiers
are generalized in a very high level and in the most cases in the root level of the gen‐
eralization hierarchy and other features are not generalized because they are already k‐
anonymous. So, basically Flash algorithm removes the specific columns that does not sat‐
isfy k‐anonymity in order to reduce information loss. For instance, in our data model 21 for
quasi‐identifiers ’Age’ and ’Diagnosis ICD Codes’ Flash produces a solution with 50% infor‐
mation loss in the anonymized table according Total metric, applying global generalization
with hierarchy’s root value in ’Diagnosis ICD Codes’ attribute. Thus, Flash algorithm seems
to have better performance than disk‐based clustering algorithm in 38 in terms of informa‐
tion loss but, essentially, corrupts the quasi‐identifiers similar to ’Diagnosis ICD Codes’.

Figure 37 the NCP quantifies better the information loss due to the fact that enumerates
the original values that have been anonymized by a specific general value in the hierarchy
tree. On the other hand the Total depends on the hierarchy’s height. However, it is difficult
to make a hierarchy with satisfactory height, for example, on the ’Age’ attribute which has a
limited domainmostly from0 to 100we can not construct a very deep and sparse hierarchy.
Nevertheless, the ’Date of Death’ feature has a higher and more sparse hierarchy and this is
illustrated in both graphswhere the information loss is substantial less than the other cases.
Moreover, the figure 38 expresses that for Total metric 2 or more combinations of quasi‐
identifier make the information loss proportion to converge in specific values according
to the k value. Finally, as it is described above when anonymizing the ’Date of Death’ the
algorithms execute the slower approach which gives fewer information loss.
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Figure 37: Information Loss using NCP metric with varied combination of quasi‐identifiers

Figure 38: Information Loss using Total metric with varied combination of quasi‐identifiers
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Nonetheless, it is worth observing every quasi‐identifier alone in the anonymization proce‐
dure to have a better overview and understanding of quasi‐identifier hierarchies and their
importance in information loss.

In figures 39 and 40 we can see the information loss for 3 from 4 quasi‐identifiers for fixed
k = 100 because for smaller values the ’Salary’ quasi‐identifier was not generalized at all
since it satisfies the k‐anonymity. Unfortunately, the ’Age’ attribute has a limited domain
set, and it is already anonymous for a significant number of k values without generaliza‐
tion. Obviously, the ’Salary’ quasi‐identifier has the least information loss due to the lim‐
ited records that do not satisfy k‐anonymity, so very few records were anonymized. Many
records maintained their original salary value. On the contrary, ’Date of Death’ and ’Dis‐
ease ICD Codes’ values’ have more sparsity in the dataset, and the disk‐based algorithm
is obliged to generalize the values at a higher level. Moreover, the Total proportion is sig‐
nificantly larger than the NCP metric for the ’Date of Death’ quasi‐identifier. We can find
this explanation in its hierarchy, which has a great height proportionally to the number of
leaves in each hierarchy’s generalized node.

Figure 39: Information Loss using NCP metric for a single quasi‐identifier
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Figure 40: Information Loss using Total metric for a single quasi‐identifier

3.7 Use case in Amnesia Anonymization Tool

Let us examine a use case scenario of our disk‐based clustering anonymization algorithm in
Amnesia Anonymization Tool. Summarizing the key concepts of the procedure, initially, the
dataset is stored in a SQLite database because this method is focused on big data which
are very difficult to handle them in the main memory. After that, the data are split in clus‐
ters having size between [k− (2k− 1)]. Finally, the dataset is partially anonymized with the
k‐anonymity privacy model and the hierarchies for the quasi‐identifiers. Therefore, the so‐
lution generated by the algorithm is unique, and the main feature is that a value that exists
in different records may have a different value in the anonymous dataset or even not be
anonymized at all in some records (Local Recording). The following example analyzes the
crucial steps that the user must follow to utilize this algorithm through Amnesia.

3.7.1 Loading Dataset

A user can upload a dataset to the Amnesia Anonymization tool with plenty of options

• Option 1: Clicking the orange button Amnesia shows in a modal view the available
upload options as depicted in figures 41 42. The user is able to choose the source
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destination of the dataset, Amnesia offers 4 loading choices:

Figure 41: Amnesia Loading screen

Figure 42: Amnesia sources loading

1. Loading from Local: The user can choose the dataset from his/her personal de‐
vice.

2. Load fromZenodo: Loading aDataset fromZenodo ² repository is quite common
in various software systems especially for reasearch data.

3. Load from Dataverse Server: A lot of institutes and research centers have in‐
stalled Dataverse [64] servers in order to deposit data, papers etc. So, a scientist
can easily load to Amnesia through Dataverse.

²https://www.eui.eu/Research/Library/ResearchGuides/Economics/Statistics/DataPortal/
Zenodo
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4. Load folder with DICOM images: A doctor or a user is able to anonymize sensi‐
tive metadata from DICOM images through Amnesia Anonymization Tool.

For simplicity in our example the dataset is loaded from a personal device. However,
the user can upload the desired dataset file from many other screen positions in Am‐
nesia application.

• Option 2:By simply clicking on the box or dragging it, the file that user want to upload
as illustrated in figure 43.

Figure 43: Amnesia drag drop to load a dataset

• Option 3: By clicking on the ”source” option in the left menu, then some options from
the first loading case appear. However by pressing ”manage”, ignoring the warning
message and then press the ”load new dataset” button and load the desired file from
the local storage presented in figures 44 45.
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Figure 44: Amnesia loading from main menu

Figure 45: Amnesia loading dataset

After the user uploads the data file, he must specify additional information about the file.
Firstly, specify the column separator as shown in the image 46. In this case, the separator
is the comma. In addition, the user must specify the type of data set defined by the tool as
follows:

• Simple table

• Sets of values

• Table with a set‐valued attribute

• Disk based simple table
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Figure 46: User‐defined information about dataset

So, it is evident in our example that the dataset is loaded as a ”Disk‐based simple table”.
Then, Amnesia presents to the user all the columns of the data set and suggests possible
data types for the attributes refers in figure 47. The user has to choose which columns
he wants to load and their types. Moreover, the tool allows the user with the ”Toggle All”
button to release all the columns and select each one that he/she needs in case he/she
wants to abort several columns from the anonymization process.

Figure 47: Choosing columns and desired data types
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Figure 48: The loaded dataset

When the loading procedure is completed as shown in 48, the hierarchies for the quasi‐
attributes that will be anonymized must be imported.

3.7.2 Loading Hierarchies

The user can load hierarchies in two ways as depicted in figure 49:

1. Option 1: Pressing the ”Load New Hierarchy” button

2. Option 2: Pressing ”Load from Local” in the left menu.

Figure 49: Hierarchy’s loading options

The hierarchies that already attached to the tool are presented as graphs, shown in figure
50.
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Figure 51: Selection of a Attribute to Autogenerate an Hierarchy

Figure 50: Amnesia Hierarchy Visualization

The user is capable to automatically create a hierarchy according to the dataset that he/she
uploaded by clicking the ”Autogenerate hierarchy” button. In order to automatically create
a hierarchy, the dataset must have been imported into the tool. Then the user should select
the attribute from which the new hierarchy will be created and will be its leaves. Further‐
more, the user is obliged to select the type of hierarchy (distinct hierarchy (distinct), range
hierarchy (range)), but for string data type, there are grouping options (Group Based) and
mask (Masking Based). After that, the user should give more information about the desired
hierarchy, such as fanout, name, a sort method, etc., as illustrated in images 51, 52 below.

Finally, Amnesia allows the user to edit,delete or add a node in the hierarchy tree.
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Figure 52: Additional Information about Hierarchy’s Autogeneration

Figure 53: Bind Hierarchies and set the value of k

3.7.3 Algorithm Execution

After the data set and the hierarchies for the quasi‐attributes have been entered, in order
for the algorithm to be executed, the correlation of these hierarchieswith the columnsmust
be done as well as the value of k must be determined as indicated in the image 53 below.

The anonymous dataset is presented to the user next to the original when the algorithm is
executed. As can be seen from the images 54,55, the value 58 has been anonymized to the
value 105 in the first record, but in the fourth record, the value has remained the same as
the original dataset proved the local recording anonymization approach.
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Figure 54: Anonymized and Original datasets

Figure 55: Local Recording

4. Conclusions & Future Work

4.1 Summary

The present age is characterized as the information age. Everyday life of the citizens is
flooded with a huge amount of data through the use of computers and smartphones. Com‐
munication takes place almost exclusively digitally as well as the entertainment. While
mainly in recent years, the work can be carried out online from home without a physi‐
cal presence in the workplace. All these are accomplished by transferring and exchanging
data via the internet.

In addition, the development of social networks as well as the rapid digitization of gov‐
ernment services and documents make personal data vulnerable on the internet. Also, the
huge data volume has led to the rapid growth of statistical science and research. However,
there is the issue of personal data privacy and their secure processing without the leakage
of individuals’ personal information.

In this thesiswe dealtwith the problemof secure data processing by analyzing all anonymiza‐
tion techniques by presenting the relevant literature and examples in the main anonymiza‐
tion models. Moreover, we developed an anonymization algorithm for big data by storing
the data on the hard disk via SQLite database and loading essential parts of the dataset
into the main memory so as not to burden it. At the same time, a clustering method was

98



applied to satisfy the k‐anonymity privacy model with local recording in the data to pro‐
duce an anonymization dataset with less information loss. However, various problems and
weaknesses of the algorithm were analyzed and solved. Besides, various issues and weak‐
nesses of the algorithm were analyzed and solved. Additionally, the algorithm was evalu‐
ated through a one million records dataset in terms of execution time and information loss.
A use case scenario of the algorithm was presented through the Amnesia anonymization
tool for which the specific algorithm was developed.

4.2 Extensions

Our algorithm is quite satisfactory in terms of big data management and can pique the in‐
terest of many users for Amnesia as big data is now an integral part of the research. Despite
the analyzed optimizations, the disk‐based clustering algorithm can be further improved,
especially in terms of time.

An improvement that will be made soon is to consider the number of records that exist
in each cluster in the distance metric. Thus, there will be more data dispersion into the
clusters so that the records do not converge in certain clusters reducing the splits and the
unacceptable clusters with a number of records smaller than k, making the algorithm faster.

A simple implementation would be to deposit the number of cluster records as a weight
on the already existing distance metric so the distance will be substantially longer, and one
record will prefer the cluster which is essentially less similar but with fewer records so that
the distribution of the record becomes more uniform.

Of course, the information loss will certainly be affected, but probably much less since
there will no longer be many ”small” clusters and there will be no need to redistribute these
records into ”big” clusters, this hypothesis will be revealed in practice.

An essential extension would be applying a differentially private mechanism for possible
improvement of the algorithm and extension of the algorithm’s philosophy combining gen‐
eralization and noise addition. As mentioned above, the concept of differential privacy is
a very innovative and up‐and‐coming anonymization technique. In the existing algorithm,
in order to avoid splits and redistributions of unacceptable clusters’ records, we could use
a Laplace mechanism to add noise to the number of records with such a sensitivity to en‐
sure that the number of each cluster would be in the range [k − (2k − 1)]. As a result, the
algorithm will not need to split and redistribute the registrations of unacceptable clusters,
which are quite time‐consuming processes. Another consideration is the simple application
of a differentially private mechanism when the k‐anonymity through the existing algorithm
has been completed and simply adding noise to the number of all combinations of quasi‐
identifiers. The latter idea may offer the combination of k‐anonymity with differential pri‐
vacy but does not provide a substantial improvement to our algorithm.

However, differential privacy is now an important procedure in order to achieve data pri‐
vacy, and many researchers and private entities use it in their data. Thus it is imperative
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need to apply differential privacy to this algorithm in order to reduce data corruption and
maintain important statistics.
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