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Me empOhaln movtdg SLXaOUATOS.

Anoayopebeton 1 avTiypapr, anotixeuon xou Slovouy| Tng topoloos epyaciog, €€ oAoxAhpou
1) TUWAUATOC QUTAG, Yia EUTOEX6 oxomo. Emtpénetan 1 avatinwor, anodrixeuon xal dioavour
Yot OXOTO U] XEEOOOKOTINO, EXTUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolnddeoT va
AVOPERETOL 1) TNYT) TEOEAEUOTC o VoL BlaTneeitan To Topdy urvupa. EpwtAuata tou apopodv

N XenoT TNS EpYOsiag VLol XEEOOOXOTIXO OXOTO TEETEL VoL aneudivVOVTaL TEOC TOV GUYYROPEA.






Euyapiotieg

Apywd, Yo fideha vo euyopiothon tov x.Mopxdxn mou gou €dwoe TNy duvaTéTATA Vol
EPYNOT® TAvVW ot Ul SpaocThplor epeuvnTxy) xatéduvon xon Vo TUEdEw XAl OPLOUEVL
anoteléopota.  Puoxd, ywele TV cUYPOAR TOL xou TIC CUYVEC pag oLNTACES O OYXOC
QUTWV TOV ATOTEAECUATWY Vo HTory ancInTd UixpdTepoc.

Enlong, euyoaplotd biaitepa xou tor WEAN TNG xpluxhc emtponic, tov x. Ilayovptln xa
Tov x. PwTtdnr, TO60 Yo T CUUUETOYY| TOUC GE AUTY GCO XAl Yol Tol Pard|Uortd ToUg auTd ToL
000 YEOVIAL TOU UETATTUYLOXOU.

Télog, omwe mévta, Yo Hieho vor EUYUEIGTAGE TNV OXOYEVELY UOU.






HeptAngm

Ye aut T OmAoyotiny epyaoio, UEAETIUE TO TEOBANUO TOL  Sloxpltod  Blxouou
Olootpaopol, dmAad tne avddeong adlalpetwy ayodwy ot maixteg ue dixowo teomo. To
TeoPBANua Tnydler and TARYOC EQUOUOYDY, omd TO UOlRPUCUo Tk VIBWWY ot Taudid UEypeL To
YWPELOUA  XANPOVOULLY,  OTIoU  cUVIBOXTNCt  ayod®y 1) YENUATNS  avTUAAGYUAToL  OEV
emtpénovton. Aedouévou 6Tl 1) Bxonocvn ebval plol SOOXOAT TOGOTIXOTOCLUN LOEX, TOANES
gvvoleg €youv avantuyVel oTo TEPAOUN TWV YEOVwY. AucTuY®S, 1 TOEOUGTa AdLUPETWY
ayadwv Tig xohotd pn epuetéc. o TV avTETOToN ouTAC TG Buoxohiog, TOAAES
YoAopwoel Toug Eyouv ewoaydel To teheutaior ypovia.  Emxevipwvouocte otnv, xatd
mohholg, o onpavtix:  to xpithplo EFX. Q¢ topa, 1o EFX undpyel yévo oe mold
TEPLOPIOPEVEC XAUTACTACELS, OTWS OTAV UTEEYOUV TO TOAD TEEWC TaixTeg 7 O6tav Ohot ol
TaxTeEC €youv TNV (Blor cuVBETNoT amotiunong. Axdun xou Yol TNV TEOCEYYIoTIXY EXOOYT, O
%xah0TEPOC YVWotoe Aoyoc wolta e ¢ — 1(~ 0.618)

H Bouvkewd pag opyavwveton oe tpec dovec. Ilpdtov, xatooxevdlovue éva mhaiclo
TEOGEYYIONG Yiot ApOLOTIXEG CUVAPTNACELC AmOTUNONG TO OTolo EAEYYEL TNV OAANAETSpAOT
peto€l e toybog pla cuVIRUNG XL TN ToLOTNTOC TNE TeoceyYlong. To xlplo anotéheoud
poc €8¢ ebvon Aoyog mpocéyylone 2/3 dtov oL maiXTEC CUUPWYVOLY GTNY XATdTody TwWY
TEOTWY AVTXEWEVLY. AeVUTEPOV, TPOTEIVOUUE [Lol VEO UEBOBO YLol TOPOUOIES XATATAEELS TWV
ayadwy v onolo ovopdlouue xatatdlelc o otpouata.  Actyvouue 6Tt to EFX undpyel
otav To oTpwuata €youv péyedog uEyet 3, oxOun o YL TO YEWXEC OCUVUPTACELS
armotiunone and Tic adpowotixés. Teltov, epapudlovue Tic Véeg TeyVixég yior vor AdBoupe
EVOAXTIXEC OMAOUCTERPEC OMOOEIEEC Yt OPLOUEVO Omd TA UTHEYOVIA AMOTEAECUATOL.
Oloxhnpwvouue v epyaocio pe uio EUTELRIXY AVAAUCY] UE TEOYUOTIXG OEDOUEVA, TOU WS

00Uy amd TNV ONUOPLAT| Lo ToceADBa Bixonou dapolpacuol Spliddit.

Agleic KAewod

Ahyopriuur Vewpla maryviwy, avddeorn ndpwv, OSixona Suépior, obdialpetor oryardd,

CLVUPTACELS amoTIUNOTG.






Abstract

In this thesis, we study discrete fair division; that is allocating indivisible goods to
agents in a fair manner. The problem is motivated by a wide range of applications, from
distributing toys to kids to splitting an inheritance, where no sharing of items or monetary
compensations are allowed. Since fairness is a hard concept to quantify, many notions have
been defined throughout the years. Unfortunately, the presence of indivisible items renders
them infeasible. As a countermeasure, a number of relaxations have been introduced more
recently. We focused on the, arguably, most compelling one: finding allocations satisfying
the EFX criterion. So far, EFX is guaranteed to exists only in very restricted settings;
most notably when there are at most three agents or when they have identical valuations.
Even for its approximation version, no progress has been made past ¢ — 1(=~ 0.618).

Our work is along three axes. Firstly, we construct an approximation framework for
additive valuations which controls tradeoffs between the strength of a condition and the
quality of the approximation. Our main result here is a 2/3 ratio assuming a common top
ranking. Secondly, we propose a new method to capture similar rankings which we call
tiered rankings. Within our model, we show that EFX exists when the size of the tier is
at most 3, even for a broader than the additive class of valuation functions. Finally, we
apply our new techniques to produce alternative simpler proofs for some existing results.
We conclude the thesis with some real world data experiments, based on data obtained

from the popular fair division website Spliddit.

Keywords

Algorithmic game theory, resource allocation, fair division, indivisible items, valuation

functions.
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Kegdharo 1
Extetopevn EAAnvixr Ilepiindm

Zexwvolue Ty mapodoo Simhwuoatixy epyacio cuvodilovtag ota eENVIXE To TEOBANUL
TOU OLaXELITOL OiXaLoU DLUUEPLOMOY XL T CUVEIGPOREE HAG OE oUTO. XTO TUEOV XEQPAAALO
TapouctdlovTal oL Bactxol 0ploUol oL Ta XUPLOTERX ATOTEAECUATY oS, Ywelc amodellelc xat

TEYVIXEC AETTOUERELEC.

1.1 To mpdBinua

[ot pior ool eloay oy, ag Yewpfoouue €va tpdopoto {ATNUN Tou dnuLoleYNoE, UETAUE)
Gy, n movdnulo tou Covidl9: v élkewdn eComhiopod Movddwy Evtatixfc Ocpaneiog.
‘Eotw, howmdv, 6Tt 0 avayvewothg eivor umehuvog Yol TNV OTEAEYWOT TV YOGOXOUEIWY UE
unyoviato o&uyovou. Kdde unydvnua meénet vo otalel o €va vocoxoueto, dnhadr| 6ev etvon
ePXTO VoL UTIAPYEL XATOLOL EIBOUE UOLRAOLY aVOUESH OF TEPLOGOTERA Vosoxoueia. Puoixd, dev
Olord€TOUUE YEAUOTA YLl TNV 0YOpd EMTEOCVETWV UNYOVNUAT®WY OTOTE TEETEL TA UTEQRYOVTOL
VoL UOLpAOTOUY UE 600 TO BiXALO TEOTO Yol TNV XAALPT TV avaryx®v xdde Teployng.

Metoppdlovtog T0 mopamdve TEOBANUN ot padnuatixy) YAOOCO XUTOAYOUUE GTOV

oax6houdo oplopo:

Opwopdg 1. Eotww éva obvoro mouxtdv N = {1,...,n} pe ovvopticec anotiunong
V1, ..., Uy avTioToya xou éva oOvolo adtadpetwy ayaddy M = {1,...,m}. M avddeon
A = {A1,..., A} ebvan omowdAnote Bdopépton tou M oe n unocOvoha. Mo avdideon

xahelton Oixano oy €va xptthplo dixatocivng cavorotettal Yo xde mabxTy).

Ye autd 1o onuelo, Yo Arav yehowo va eENYROOLPE TNV ONUACIA TWV GUVIRTAOEWY
amotiunone. Aedouévou 6Tl xde dtouo eivan SlaopeTind, €lTe WANUE YLl TOV TEUYUOTIXG
%x60Uo elte yia T0 TEOBANUA pog, elvon eTOuEvo var ixavoroleitan oe SopopeTind Bodud amd
OLUPOPE TN AVTIXEIUEVL, T.)(., XATOLOC UTOPEL VoL TEOTWAEL v BIBAl0 eV xdmol0g dANOG Lo
Tawvio.  Emotpégovtag oto mapdderydor Tou x0pmvoiol, T0 VOGOXOUElD eVOg Uuixpol ympelol
Yo elvonr TApwc evyoptotnuévo ue Myo unyoviuata (xou {owe var unv €yer xhpo yio tTnv
PUNAEN TEPLOGOTEPWY) EVE €VaL VOGOXOUEID OE PEYEAO aoTd xévTpo Vo ixavorondel Tohd
Ayo6tepo ye Tov (B0 apudud.  Ev mpoxewévew, auth 1 mAnpogoplo pag diveton Yéow Twv

CLVAPETACEWY amoTiUNoNS.



2 Kegpadawo 1. Extetouévy EAnvixr} Hepidngn

Opwowodg 2. T to medPhnua g dixoung Sopéptone adlalpeTwy oryorddy Uiol cLVEETNOT
amotiunong etvar omoladhTote adZouca cUVAETNOT UE TEdlo 0plouoy To duvauocsivoro Tou M

xou ed{o Ty to R>g. Emnpdodeta, v(f) = 0.

Not avagépoupe 6Tl oL cuvapTHcE amoTiunone Yewpolvion PEEOC TN ELGOBOL XoL OEV
Hog amacyoArel méco eOxoho 1 BUoxOoho Umopel vo elvol OTNV TEOYUATIXOTNTO VAL TG
TAneogopnUolue. And 8w xou oTo €€ig, 0Ty WAGUE Yo €val GOVORO TOUXTOV GLOTNAG Vo
CUUTERLAUBAVOUUE XaL TIC CUVORTAHOELS Toug. Eninicov, mpénel vor WAHCOUUE XL Yo TNV TLO
oLy Vv xatnyopla TETOWY cuvapThoewy, T adpoilcTxés. [loA) amhd, autéc exgpdlouv To
To xodnuepvd mapddelypo 6mou 1 ala evog cuvohou ayadov elvar To dbpotoua e o&lug

Tou xde ayodol PEUOVOUEVL.

1.2  TIlepl dixowoocbvng

Evdeyopévwe o avayvonotng va éuetve e uio amopia and tov Oploud 1: 1L evvoolue
otav Mépe ‘xprthplo dixatoclvne’ Baoixd, oe puiocogixd eninedo axdun o&ilel va avopntniel
xavelg T onpadver dixatocvr. Eueic Yo apxectolye otny mapoucioor xdmowwy tpocrodelny

VoL 0pLloTEL TOGOTIXG. 1) €VVOoLa.
Optopoéc 3 (Ioovopia). M avddeon A Aéyeton wodvoun av v;(A;) = vj(A;) yioo xdde
Lelyog TouxT®y 1, j.

n

Optopog 4 (Avahoydtnta). Mo avddeon A Aéyeton avahoy av v;(A;) > yio

xade maixT i

Opiopdeg 5 (Exediepn {hhag). M avddeon A héyetoa ehehdepn Lo av v (A;) > v;(Aj)

vio xdde Lebyog mouxtow i, 5.

Ytov teheutaio oploud amodWOooUE TOV ayYAxd Opo envy free mou Yy cuvioplo
ovuntiooetor we EF. Aedouévou 6tL 1 ehhnvixry anddoor Oev elvar blodtepa €dmym, Yo

XEATACOLUE TNV ayYAxr cuvtopoypapia EF.

Ko o1 tpeic évvoleg avamtiydnpay apyixd Yio To SLoolpaoud SLtee TV ayodoy. LivToud

OLUmoTOUNXE OTL OTNV TERIMTWOT TwV adlolpeTwy elvar un emtedlies.

IMapdderypa 1. 'Eotw 61t to M nepiéyel m avtlypagpa tou (Blou ayadol g. Av to m elvou
TOMOTAGOL0 Tou N TOTE 1 avdleon m/n aviiypdpwy ot xdde maixtn TANEOl xat TIC TEELS
évvoleg duxatoouvng. 201600, oe xdlde dAAN TepinTwor xouio avdeor dev ixavorolel xopuio

and TIC TEEC EVVOLEC.

It v EemepaoTel To Topamdve YOO YEELALETAL VoL YONIPOTOUUE XATWS THY EVVOLL TNG
dixaoolvng mou emdlwxouye. Ilpoondieieg Eyvay yia TNV €vvolo TS avoloYIXOTNTISC XoL TNV
eéMerdn hhoe (EF). Emxevtpwvépaote ot Settepn xotetiuvorn. M npdhtn oxédn yio tny
uTEETRONOT Tou eunodiou HTay 1 e&derhn tne {HAaG Enelta and wa YewenTnr agolpeot evog

ayodol.



1.3 I'vwotol alydpuiuol xau aroteAéouato 3

Opwopocg 6 (EF1). Mo avddeon A héyetaw EF1 av dg € Aj @ v;i(Ai) > vi( A\ g) v

7 ’ , ..
%x&de Lebyog TauxTOV 1, j.

IMopddeiypa 2. 'Eotw éva oTlypldTUTO TOU TEOBAAUATOC UE 2 GUOLOUE TOUXTES o 3 oryordd
a,b,c ye v(a) =10, v(b) =5 xu v(c) = 4. Téte, n avdideon Tou a GTOV Evay TalXTN XAt TWY
b, c oTov Mo eivan EF1. Auctuyg, To (6o toylet xau yioe Ty avddeon 6mou T a, ¢ Sivovto

oTov (Blo malxTn.

Bhénouye, dnhad, 6Tl 1 yohapwuévn évvola elvon urepBoAnd aclevic, Ue anoteAéoua vo

emTEénel dlanoUnTnd doixeg avoléoelg. Tlap” 6N autd, unopolue Vo TNV aUGTNEOTOLACOUUE.

Optowdc 7 (EFX). Mo avédeon A Aéyetau a-EFX av Vg € Aj @ vi(A;) > a-vi(A; )\ 9)

vio x&e Ledyog TauxTOV 7, j.

Y10V mponyoUUEVo 0ploUd, amhwe, dwoaue dUo évvoleg woll, autr Tou xprtnelou EFX yuo
a = 1 xou TNE TEOCEYYIoTIXNS EXBOYNE Yia THES UxpoTERES TNg Uovadag. To xpitriplo EFX
amoTehel TOV %xUPL0 GTOYO GTNV EPELVNTIXY TEPLOY T OOV EVIAGOETUL 1) BLTAWUOTIXY X0 OAES

MO OL CLVEIGPORES TEQIGTEEPOVTOL YUPW Omd oUTO.

1.3 TI'vwotol aAyoplduol xol ATOTEAECUAT

Towe o yYvwototepog ahyopuluog otnv epeuvnuxy] meployr) mou eetdlovue elvon o

alyopripoc Amoxheiopol Koxhwy Zhhog (Envy Cycle Elimination).

ANyopuipog 1 Anoxdeopol Koy Zhig

: ©¢oe A; = 0 v xdde maixtn @
: while 3 xdmow un avatedév ayadsé g do
while 3 xdnow mnyr s do
Oéoe A; = A;Ug
end while

A A

Koatéotnoe tov ypdpo oxuxinAd PETOMVOVTAS To HERIDLAL TV TUIXTOY TEVL OF EVay
x0xho (HMae 6mwe optlet o xUxhog
7: end while
8: return A = (A,.... Ay)

Ta xupldtepa anotéopota oo xuvyt EFX avadéoewy eivou:

o "Tropén yio n makxTeg Ye Wla amd BU0 YEVIXEC CUVUPTACELS amoTiUNoNg

o "Tropln yio n TUXTES Ye xOWT| XATHToET TwV oryoddv xat adeoloTixég CUVOPTHOELS
o "Tropén yio 3 maixteg ye adpoloTinéc cLUVUPTAHCELS

o "Tropln vy m = n + 3 ayadd

o Ilpboeyyion ¢ — 1 ~ 0.618 yia n nodxteg Ye adpOloTIXEC GUVAPTATELS
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1.4 Xvuvelocgopd

Iot Ty xahOTepn 0pYEvWwoT TNG CUVELGPORAS Hag, TNV Ywellouue pe Bdon Ty owoyéveia

CLVIPTACEWY AmoTiUNONS.

AVYpoiocTixég cuVAETACELS

ANyopuipog 2 I'evind Ipooeyyiotind IThaiclo

1: Apywomnoinoe e tnv xevr avadeon

2: Tmohoyioe pla pepiny| a-EFX avddeon S Swatnemviag tny iotnTa
v;(S;) > B -vi(h) vy xdde h € M\ S

3: Yuvéyloe pe tov ahyodprduo 1 edg dtou e€avtintoldv ta avtixeluevo

Ocwpnua 1. O arhyodpripog 2 vroloy(let yio min (a, %)—EFX avadean.

To npoceyyloTixd mAalolo Yog dlvel tn duvatdtnta var puduilouue 0 AOYO TEOGEYYIONC
avéroya pe Tov Bodud mou toylel  cuvinxn Utoeéng. o mopdderyua, ov o TaixTeg Sev €youy
O xaTdTadn yior OAa o oryadd oARS €youv yia Ta TeMTo 4n To Thaiolo Yog ey yudtol Aéyo
npooéyyone 4/5. H eNdyotn cuvidin o Atay av elyay xowv xatdtaln otny medtn n-oda
ue Aoyo 1/2. Qotéoo, napatnpolue 6Tt yior TNV entiteudn oautod Tou AGyou dev ypeldlovTo

vrnoYéoelc.

Afppoe 1. SEexvoviog and Ty Pepixy| avdleot 6mou xdie taixtng SIhEYeL Ye TNV OELRd TO

ayanfuevo tou dradéoipo ayodd, o alyoprduog 2 utoloyiler pio 1/2-EFX avddeon.

YUVETOE, Tay AOYLXO YE TNV EMTEOCVETN GUVITXTN Yo TNV TEMT N-000 VO UTOPOVUE Vol

eTTOYOUUE 0XOU XUAVTEQO AOYO TROGEYYLONG.

AXrybprdpoc 3 2/3 EFX yio xovh xatdtoln tov n tpdtmy ayodoy

1: Enihe€e pla oavdolpetn oelpd twv mauxtedy

2: Awoe oe xde nafxtng e TN oelpd To aryannuévo tou Sodéoulo ayado
3: for i in range(N,1) do

4: ‘Optoe A; = A; U arg max v;(g)

5: Enilee tov naixtn j = arg Iglef?l)]( v; (Ag)

6 if ¢ # j then

T Ai = .Aj

8 A;j = argmax vj(m)

9 MeTaxivnoe toug maixteg ¢ — 1 w¢ j + 1 xotd pla Yéom
10: Metaxivnoe tov j otny tpéyouca mtpwtr Véon

11: end if

12: end for

13: Yuvéytoe ye tov alyopriuo 1




1.5 Eriloyoc 5

Ochpnpa 2. O akydprduoc 3 unoroyilet pia 2/3-EFX avédeon dtav ol naixtec cuupwvoly

OTNY XATATOE N TOV 1 TEOTOY oy adoy.
Arnlomotiolpeg JLvapTRoELS

Oplopodg 8. Mia cuvdptnon arnotyrone v ovoudleTal ATAOTOLOT €4V YId OTOLONTOTE

noxéta ayodov S, T C M xou onowodinote ayadd g € M\ (SUT) woylel bt
v(SUg)>v(TUg) = v(S) >v(T)

Biénouye 61t otov opiopd autic TS xAdong epgavilovton to obvora S xou S U g. Emi
¢ ouotag, To Blo oupPaiver xan otov oplopd tou EFX 6nou epgaviCovtar ta A; o A; \ g.
Yuverndg, @aivetan vo ebvon ol yioo Ty YeAETn Tou mpofifuatoc. Emnpdoieto, edxola
OLATLOTAOVOUPE OTL 0L apOLOTIXES CUVUPTAHCELS Efval ATAOTOACLUES dpa 1) XAdoT anotehel Eva
EVOLAUETO BN TPV TIC YEVIXEC CUVAPTNAOELS amoTiunong.

Ye aquTH) TNV OITAWUATIXY ONUEWWOUUE TEO0BO GTNY UEAETN TOU TEOPBAAUATOS Yl TIG

AMAOTIOLACUIES GUVORTACELS, EEXVAOVTOC TG TOV TORAUXATE OPLOUO.

Optopodg 9. Mia pepin) xatdtadn T elvon pio xowvn xatdtoln o€ oTpouata oV UTEeYEL Ula

Srotetarypév Stopéplon AV twv avixewévey M = (M, Ma, ..., M;) tétow dote:

Vg € M;,Yh € Mj~; : v(g) > v(h)
yioe 6houg toug Talxteg. Emniéov, opllouue we péyedoc tou T 1o uéyedog tou peyalbtepou
M;.

Hapatneeiote 611 plo xatdtaln oe otpouata peyédoug 1 etvar amhéde 1 xowY| xotdtaln.
YUVETOC, 0 0PLOPOC LIS ETEXTEIVEL EVaL YVOOTO TANLGL0. AZlomolwvTag Tov dptopo dellaue To

eZn¢ anoTéAeouaL.

Ocpnua 3. Av 6lol oL TUXTES €Y0UV ATAOTONCWES CUVOPTACELS AMOTIUNONG XL XOWT
xatdtadn Ty ayodoy o oTpOpata Yeyédoug To TOAL 3, TOTE umdpyel mdvtote wo EFX

avaeot.

[t Ty anddelrn Tou mopandve VewERUAToS YENOHLIOTOOUUE Yol £Val AU TO OTolo XaL

Yo BaTUTOOOUPE €86 Xt UTopEel var evar aveZdETNTOU EVOLUPECOVTOC.

Adppa 2 (Llpbodeon avicotitwy). Eotw S, T, Q xou R chvora tétola dote SNQ = 0 xou
TNR=0. Téte

} = v(SUQ)>v(TUR)

1.5 Eniloyocg

Kietvovtog authiv v elnvixy) meplindm, meénet va avopépoupe 6Tt TeooTod|ooue Vol

eAEYEOUPE EUTELPXE TOL ATOTEAECUATA UaG, UECW BOXWOY OE TEayHaTiXd dedouéva o omola



6 Kegpadawo 1. Extetouévy EAnvixr} Hepidngn

NBope amd v 1oTooeAdo Spliddit.org. Auctuywg, o cuumépaoua HTov OTL 1 TEAEN
améyel, oxour, omd v Yewplo. Tior tar avahuTING YEAUPHUOTA TUPATEUTOUPE TOV AVAY VOO TH
o010 xe@dhano 6 Tou oyyAxoU xewévou. Télog, agprivouue W AvVOIXTEC EPWTACELS Yo
welovtny) epyaoio t6oo v Umopln 2/3-EFX avadéoewv dveu ocuvinudv 600 xar tny

EMEXTUOT GTO PEYEVOC TWV CTRWUATOVY.


Spliddit.org

Chapter 2

Introduction

2.1 Motivation

Dividing resources among people in a manner that satisfies everyone is not exactly a
new problem. In the Bible, upon arriving in Canaan, Abraham and Lot set to fairly divide
the land between them. In more recent examples, the reader of this thesis may have tried
to divide a collection of NFTs among their friends. Of course, all of them are treated as
equals meaning that no one should feel dissatisfied by their share.

The first study of fair division from a mathematical viewpoint dates back to Steinhaus
in 1948, | ]. The problem there was illustrated via cutting a cake; making the phrase
a synonym of fair division. Imagine we have a dual flavoured cake: vanilla and chocolate,
and it must be split into two pieces, one for Alice and one for Bob. However, there is a
catch: Alice prefers vanilla and Bob prefers chocolate. Therefore, weighting the cake and
giving half to each child is not enough. Alice may receive the piece with more chocolate
and Bob the one with more vanilla. The proposed solution here is to have Alice cut the
cake into pieces with equal amounts of vanilla and let Bob choose the one he likes the
most.

At this point, the reader may wonder what happens if a third child comes to the
party. Is it still possible to partition the cake in a fair manner? The short answer would
be “yes” but the follow up question would be “how”? The point of this little discussion

“yes”) with computation

is to emphasize the difference between existence (the answer is
(“how”). In the age of personal computers, most mathematical problems have followed
this very path: from theory to algorithms. In the first example of Alice and Bob, the cut-
and-choose method was the algorithm, albeit a simple one. Our work will follow this path
as well: every existential result will be paired with an algorithm computing the promised
allocation.

Next, we have to establish some division rules. Imagine that we have a land like
Abraham and Lot. Can we make a contract and give, for example, 55% to Alice? That
would result in a kind of co-ownership. Or is there any spare cash to give to Bob to

compensate for his smaller share? In many occasions, the answer would be affirmative in

7
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both scenarios. Indeed, a lot of work has been carried over the years in various such
settings, see, for instance, | | for settings with money and | ] for joint
ownership. In general, in the previous century the problem was mainly studied for
divisible goods, e.g., | | and | |, with indivisible ones only studied when some
divisible resources were also at hand.

However, in the last decade or so, a new paradigm has emerged causing a surge of
research in the area. To illustrate it, think about a recent issue caused by Covid19: a
shortage on ventilators. In this scenario, we are in charge to distribute a number of the
life saving machines to a number of hospitals. Clearly, we cannot send 55% of a ventilator
to a hospital. Neither can we have the two hospitals sharing a machine with time shifts;
during the transport from one hospital to another valuable time would be lost. Similarly,
we cannot compensate a hospital that does not have enough ventilators with money or
otherwise. One way or another, we must choose which hospital to send the equipment to.

To conclude this short introduction, there are many fair division types of problems,
depending on whether we can compensate agents with currency and on whether or not
the goods can be split/shared. Inspired from problems like the one above, we will focus

only on instances where each item must be given as a whole to a single agent.

2.2 Contribution

So far, we have used the term “fair” somewhat loosely, invoking the reader’s inner
sense of justice. For a mathematical study of the problem, this will not suffice. Thus,
we will present the most prominent fairness notions with their pros and cons in order to
establish which one is most suitable for our problem. As we will argue in the sequel, this
will be the notion of envy freeness up to any good, | |, or EFX for short.

Having decided upon the fairness notion, we then proceed with the literature in two
ways. Firstly, we present the main tools developed: Greedy Round Robin and Envy Cycle
Elimination, | ]. Secondly, we present an important part of the current literature,
mainly centered around the existence of EFX allocations for identical valuations, [ 1,
and EFX with bounded charity, | ]. Given that this a very active line of research,
a complete survey is out of the scope of this thesis.

Apart from bibliographical insights, we also provide some new theoretical results.

— In the study of additive valuations, we show a simpler way to match the ratio of
1/2 in the approximate version of EFX. Based on that result we show how simple
conditions can allow us to improve the ration even further. The culmination of our
work leads to a general approximation framework that can leverage conditions to
get better approximations. The highlight of the framework is a 2/3-EFX allocation

when the agents have a same ranking for their (few) top items.

— Since ordinal information seems fruitful in improving the approximation ratio, we

then explore what can we say about similar rankings. We introduce the term tiered
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ranking to denote a partial ranking with some missing information, allowing the
agents to deviate from the identical setting. We then prove that an EFX allocation
exists when the size of the tier is at most 3; a result that holds for the broader class

of cancelable valuations.

— Finally, for general valuations we present a new allocation rule which allows Envy
Cycle Elimination to compute an EFX allocation not only when agents have identical
valuations but also when they have identical rankings over all item subsets. The same
rule is also used to obtain a non cut-and-choose algorithm for two players and an
EFX allocation when the number of items is at most two greater than the number

of agents.

2.3 Document outline

The structure of the thesis is:

Chapter 3: A formal definition of the problem followed by a discussion about the

different fairness notions and their relaxations

Chapter 4: An overview of the two main algorithms in the area and and a summary

of the currently known results about EFX allocations
Chapter 5: Our contributions
Chapter 6: Experimentation with real world data

Chapter 7: Conclusion with some directions for future work






Chapter 3

Fundamentals of Discrete Fair

Division

Discrete Fair Division lies within the broader field of Algorithmic Game Theory. As
such, it concerns scenarios where a decision needs to be made for players or agents with
different goals and objectives. In the language of Game Theory, an agent ¢ is described
by her wvaluation function v;, which reflects her opinion about a possible output of some

algorithm; in our case, the output is, of course, some bundles of items.

3.1 Discrete Fair Division

There are two major Fair Division settings: the continuous and the discrete one.
Before proceeding any further, we feel the need to explain the difference that we already
touched in the Introduction to a greater extent. To that end, consider the most famous
example of the continuous setting: cutting a cake. The cake may consist of many layers -
chocolate, caramel etc. - and each agent prefers different flavours to different extents (a
first example of valuation functions). Intuitively, we can cut the cake to as many and as
tiny pieces as needed to accommodate all the agents. Now, replace the cake with some
jewels. Unfortunately, cutting one jewel deprives it of value. The fact that cutting one
item may destroy it or, in other words, that the item is indivisible, is the distinction
between the two settings.

While the continuous case is not as trivial as our previous example made it look, it
is evident that Discrete Fair Division is more challenging, and thus unexplored. On the
contrary, there is a vast literature on cake cutting and continuous Fair Division. The
interested reader may start with | | or | ].

On a different note, observe that in both the examples mentioned above, regarding the
cake and the jewels, the goods under consideration are desired by the agents. This is not
always the case in fair division problems. For example, if each agent is a CPU and the items
to be allocated are processes, similarly to a job scheduling scenario, the agents are not

pleased when receiving a greater load of work. That means the items can be divided into

11
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goods and chores, as named in the literature. In this thesis we consider only the division
of goods, and the terms “items” and “goods” are going to be used interchangeably. For
more about chores we refer the reader to | ] and references therein.

At this point we can make a first attempt to formulate the problem.

Definition 3.1.1 (Discrete Fair Division). Let N'= {1,...,n} be a set of agents and M
be a set of indivisible goods. An allocation A = {A,,...,A,} is any valid partition of M;
that is A; U A; = ) for every pair of agents 7, j and | J;c\rAi = M. An allocation is fair

if a fairness criterion is satisfied for every agent.

That begs the question: what is fairness?

We will (try to) answer the question, but firstly we must note something about Definition
3.1.1: it informs us that we are dealing with sets and subsets. Therefore, the domain of
every valuation function v should be the powerset of M, or v : 2 — R. However, not all
of these functions make sense in the context we are studying. If we loosely translate v to
the “happiness” of an agent we would expect it to improve every time the agent receives
more items. Similarly, we could wonder what is the appropriate value of "happiness”
when some agent ¢ does not participate, i.e., A; = (). Addressing those issues leads to the

following definition.

Definition 3.1.2 (General valuation function). In the context of Fair Division with goods,

a general valuation function v : 2M — R>o must obey the following two assumptions:
i) normalization, i.e., v()) =0
il) monotonicity, i.e., SCT = v(S) <v(T)

In the vast majority of the literature, the valuation functions are actually restricted to

a more “everyday” class:

Definition 3.1.3 (Additive valuation function). A valuation function v : 2™ — Rxq is

additive if v(S) = > v(g), VS C M.
ges

3.2 Fairness notions

At this point we can return to our question about fairness. Leaving aside our theories
for a moment, if we were to go outside and ask people “what is fairness” the most probable

answer would be something along the lines of “everyone should receive the same”.

Definition 3.2.1 (Equitability). An allocation A is equitable if v;(A;) = v;(A;) for any

pair of agents i, j.

Note the different subscripts of the valuation functions: agent i may not necessarily

value A; and A; equally but if we ask the agents how much is their bundle worth to them,
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we get the same answer from everyone. Unfortunately, this is an extremely stringent
requirement. To verify it, just consider an instance with 2 agents and 2 items where the
agents do not prefer the same item. The next fairness notion can be seen as asking only
one agent at a time. Assuming that Alice knows that all the goods combined cost 100$

and there are ten agents in total, what would be a fair value for her bundle?

’Uz(M)

Definition 3.2.2 (Proportionality). An allocation A is proportional if v;(.A4;) >
n

For this notion, note the use of inequality instead of strict equality. Continuing with
our toy example, Alice would be expecting a 10$ bundle. Give her a 9% one and she will
most definitely complain but no one will complain were they to receive more. One the
other hand, what if Alice received a bundle she values at 11$ but Bob got one at 12$?

Definition 3.2.3 (Envy-freeness). Let A be an allocation and i, j a pair of agent such as
v;(Ai) < v;(A;). Then we say that agent i envies agent j and denote this by ¢ — j. If no

such pair exists, A is envy-free.

3.3 The need for relaxations

With the fairness notions in place, our next goal should have been designing algorithms
to compute them. Unfortunately, we will show that these notions are too strong to ask for.
Consider the most minimal example possible: two agents and an odd number of identical
goods g. Equitability cannot be achieved since one agent will value a bundle at least
v(g)! more . Neither can proportionality since the copies of g are an odd number and,
finally, whichever side will be receiving less items will be envying the other, thus ruling
out envy-freeness.

So we have established the need for some relaxed notions of fairness, justifying this
section’s title. Still, one may wonder if it is possible to identify restricted settings where
the strong notions can be satisfied and if it is fruitful to search for allocations in those

settings. The answer is a definite “No”.

Proposition 1 (] ). Computing an allocation satisfying any of the three notions

of fairness is computationally intractable.

Proof sketch. Consider a setting with 2 agents and identical additive valuation functions.
Then, the problem of satisfying any notion reduces to partitioning an array of integers

into two parts of equal sum; thus it cannot be solved efficiently, unless P=NP. ]

To the best of our knowledge, no attempts to relax equitability have been proposed

in the literature. This is probably because envy-freeness is already a relaxed and more

'Note that we abused the notation, writing v(g) instead of v({g}) ; a practice we will follow throughout
this thesis.
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natural version®. Therefore, we shift our focus to relaxing the notion of envy-freeness. We
saw that problems arise even in the simplest setting with one good and two agents. As a
result, any proposed relaxation should start by addressing this scenario. The first try was
by Budish, [ ].

Definition 3.3.1 (EF1). An allocation A is envy-free up to 1 good (EF1) if for every pair
of agents i, j it holds that

dge Aj: vi(Ai) > vi(Aj\ 9)

The introduction of EF1 trivially solves the problem with 2 agents and odd copies of
g since A; \ g = A;. Moreover, as we will see later in paragraph 4.1.2, EF1 allocations
always exist and can be computed efficiently. So, are we done? Well, not quite. Let us

first examine the following example.

Example 3.1 (The unfairness of EF1). Assuming that we have two agents with
identical additive valuations v and 3 goods: v(g1) = 10, v(g2) = 5 and v(g3) = 4. Then,
{91,{92,93}} is an EF1 allocation since agent 2 will not envy 4; = g; after the removal

of ¢. However, there is one more EF1 allocation:  {g2,{g1,93}} since
v1(g2) > v1(gs) = vi(A2 \ g1)- A

Clearly, anyone diving that set of 3 goods, and without any fair division knowledge,
would pick the first allocation and would not even consider the second. Which means
that our relaxed notion of fairness is actually too relaxed. Caragiannis et al., | 1,

proposed a stricter version of EF1.3

Definition 3.3.2 (EFX). An allocation A is envy-free up to any good (EFX) if for every
pair of agents 4, j it holds that

Vg € .Aj : U@(Az) > Ui(-Aj \g)

A subtle yet crucial change from the definition of EF1: by strengthening the
requirement from dropping some good to dropping any good the “unfair” allocation of
example 3.1 is ruled out. Similarly to EF1 and EFX, one can define the equivalent

relaxations of proportionality, namely Propl and PropX.

The next relaxed fairness notion is based on a different train of thought. Imagine that
instead of dividing the goods ourselves we give them to Alice and ask her to help us. At
first, that seems flawed since Alice may try to keep everything for herself. But there is a
catch: once she divides the items into bundles, she will be the last one to pick. To counter
that disadvantage, Alice must try to make even her least favorite bundle valuable; thus

making the allocation, in a way, fairer. The following definition is due to Budish, [ ]

2Consider a 2-agent setting with the goods a, b where agent 1 prefers a and 2 prefers b. Allocating the
goods based on agents’ preference gives us an envy-free but not equitable allocation. Should the latter be
an issue?

3The notion was already introduced by Gourves et al.,[ ], under the name near envy-freeness.
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Definition 3.3.3 (MMS). Let A(N, M) be the set of all possible allocations of the goods
in M to the agents in N. The mazimin share u(N, M) of agent i is defined as

BN = e A

An allocation A is mazimin share fair (MMS) if for every agent i € N it holds that
vi(Ai) > pi(N, M)

When it is clear from context, we will drop the (N, M) part of the notation and simply
refer to the maximin share of ¢ as ;. MMS solves the problem of dividing 2k + 1 identical
items in a different manner: since an agent must create two bundles, one will have k copies
and the other k + 1 and both agents will be satisfied with either. Unfortunately, even if

MMS is a relaxed notion itself, it is still too strict to always exist.

Example 3.2 (Example 7 of | |). Consider the following instance with 4 goods M =

{a,b,c,d} and 2 agents with valuation functions:

1,if S ={a,b}, {c,d} or |S| >3
) = {@.b} {e.d) or |8

0, otherwise

1, if S ={a,c},{b,d} or |S| >3
UQ(S =
0, otherwise
It is easy to see that agent 1 would partition the goods into {a,b} and {c,d}, yielding
w1 = 1. Likewise, po = 1 due to the partition {a,c}/{b,d}. However, no allocation can

give their maximin share to both agents simultaneously. A

As a consequence, variations of MMS have become a new research direction, as initiated

in [ ].
Definition 3.3.4 (Pairwise MMS). An allocation A is pairwise mazimin share fair
(PMMS) if for every pair of agents i, j € A it holds that

i(Ai) > in(vi(B;), vi(B;
vi(Ai) BGA({g?ﬁiuAj)mm(v( ); vi(B;))

In words, the pairwise maximin share of agent ¢ is computed by merging her bundle
with j’s and then redistributing the cumulative share in an MMS fashion. Of course, one
can go a step further and repeat the same process with any group of agents, | ],

instead of just pairs.

Definition 3.3.5 (Groupwise MMS). An allocation A is groupwise maximin share fair
(GMMS) if for every group of agents G C N it holds that

i(Ai) > in v; (B;
vilAi) BGAI?C?:)LCJAj)ménU( i)

For other relevant fairness notions, we refer the reader to Chapter 5 of the recent

survey by Amanatidis et al., | ].
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3.4 Approximate versions

As mentioned, we will solely focus on the pursuit of EFX. It is, after all, “fair division’s
most enigmatic question” - Procaccia, | ]. Asis common when dealing with Computer
Science problems, figuring out an exact answer is difficult, if not outright impossible. Thus

one seeks approximate answers.

Definition 3.4.1 (a-EFX). An allocation A is a-EFX if for every pair of agents i, it
holds that
Vge A vi(A) > a-vi(A5\ 9)

Obviously, setting a = 1 retrieves definition 3.3.2. Our new objective is to compute
allocations satisfying the property with « as closer to the unity as possible. Of course, one
can respectively define a-EF1, a-MMS etc. For a detailed comparison of the approximate
notions we refer the reader to | ]. From there we will also borrow the final example

of this chapter.

3.4.1 A thorough example

Example 3.3 (Example 1 of | ]). Consider the instance with 3 agents,

M ={a,b,c,d,e} aset of 5 goods and valuations:

a b c d e
Agent 113 1 1 1 4
Agent2 |4 3 3 1 4
Agent3 13 2 1 3 4

We start by examining the maximin shares of the agents. It is easy to check that:
— p1 = 3 due to the partition {a} / {b,c,d}/ {e}

— po = 4 due to the partition {a} / {b,c¢} / {d,e}

— pg = 4 due to the partition {a,b} / {c,d} / {e}

Of course, the MMS guaranteeing partitions are not unique. Moving on to allocations, the
allocation A = ({e}, {b, c},{a,d}) is envy-free, and thus EF1 and EFX, and MMS, thus
also PMMS and GMMS. On the other hand, the allocation B = ({a}, {b, e}, {c,d}) is only
EF1 and MMS. We will leave the details as an exercise to the reader and proceed with

the calculation of o from definition 3.4.1.
e Agent 1

vi(A1) =3<4=vwi(e) =v1(A2\b) = a<3/4
Ul(.Al) > 7)1(./43) — o<1
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e Agent 2
va(A2) > v2(A1) = a<1
va(Az) > va(A3) = a<1
e Agent 3
v3(Az) > v3(A1) = a<1
v3(As) =4 >4 =w3(e) =v3(A2\b) = a<1
Combining the inequalities yields that B is a %—EFX allocation. A

In the previous example, agent 1 is still envious of agent 3 even after the removal of

item b. On the contrary, agent 3’s envy towards 2 was eliminated. When pursuing exact

EFX (o = 1), it is useful to be able to separate the two cases. To that end, we say that

some agent strongly envies another when the envy persists even after removing the least

significant good.






Chapter 4

Literature Review

In this chapter, our aim is twofold. Firstly, we present the existing techniques based
upon which we will build our contributions. Secondly, we discuss existing results to

understand how ours are positioned within the current research agenda.

4.1 The main techniques

Despite many years of active research on the topic, there are only two main techniques
used in pretty much every work, just with some minor tweaks every time. Those are the
greedy round robin and the envy cycle elimination algorithms. Both (efficiently) compute

EF1 allocations and are used as building blocks in the search for EFX.

4.1.1 Greedy Round Robin

The first such technique is a classic round robin algorithm. Although it appears in
various works, e.g., [ ], it is not attributed to someone due to its simplicity. The

algorithm is presented below.

Algorithm 1 Greedy Round Robin(N, M)
. Set A; = () for every agent 7

: Fix some arbitrary agent ordering m
: while J some unallocated item do

Let 7 € N be the next agent according to 7 in a round robin fashion

Set A; = A;Ug
: end while

: return A= (Ay,..., A,)

1
2
3
4
5: Let g be i’s most preferred item among the currently unallocated items
6
7
8

The term “greedy” is due to line 5: every agent picks greedily when it is her turn.
Before proving the correctness of the algorithm we must note that it does not work for

general valuations.

19
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Proposition 2. When the agents have additive valuations, Greedy Round Robin computes

an FEF1 allocation in polynomial time.

Proof. Let i, j be any two agents such as ¢ comes before j in 7 and let r be the number of

rounds where ¢ receive some good. Then we can write:

Ai = (91,92, 9r-1,9r)
'Aj = (h17h27 .- '7h7‘—17h7‘)

where h, may not exist (if the algorithm run out of items between i’s and j’s turns), and
we then treat it as a zero.

Now, v;(gx) > vi(hg) for every k since agent i could have picked either item and by
adding the inequalities v;(A;) > v;(\A;); thus there is no envy from i’s side. From j’s side
it may exist but it can be bounded based on the following observation: j prefers hi over
g2, ho over gs etc since now she was the one with the choice. Again by the adding the
inequalities we receive v;(A;j) > v;(A; \ g1) thus the allocation is EF1. The efficiency of

the algorithm is trivial since we simply need m max operations. ]

4.1.2 Envy Cycle Elimination

The second algorithm of this section is called Envy Cycle Elimination and is due to
Lipton et al., | ]. It is based on a graph theoretic approach to the problem:
consider a graph where each node represents an agent. Two nodes, or agents, 7,j are
connected with a directed edge i — j if and only if ¢ envies j. This directed graph is called
the envy graph of the allocation and is usually denoted by Eg. The algorithm works in
incremental style, allocating one item at a time to some unenvied agent, and moves the

bundles around when there is none.

Algorithm 2 Envy Cycle Elimination(N, M)
Set A; = ) for every agent i

while 3 some unallocated item g do
if 9 some source s then
Set As =As;Ug
end if
Decycle the envy graph by repeatedly finding envy cycles and reallocating backword

the bundles along the edges of each cycle
7: end while
8: return A = (A;,..., A,)

Let us explain line 6 (the decycling step) a bit more. Since the inner while loop broke
we know that there are no sources in Eg. Or, in other words, every node has an incoming
edge which mean that the graph has an envy cycle of the form agent ¢; — agent co —

.-+ — agent ¢; for some [ > 2. In terms of envy, ¢; envies co, co envies cg etc. Now, if we
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reallocate A., to agent c1, A, to c2 and so on until we allocate A, to ¢, every agent on
the cycle has improved their bundle while no agent outside it has gotten worse. Intuitively,
that is a good measure of progress and it implies that the decycling process cannot go on

forever.

Definition 4.1.1 (Pareto). Let A and B be two possible allocations between the same
group of agents V. If Vi € N : v;(A;) > v;(B;) with strict inequality for at least one agent
we say that A Pareto dominates B. Also, we say that A is Pareto optimal if no allocation

dominates it.
We are ready to prove the following claim:
Proposition 3. Envy Cycle Elimination computes an EF1 allocation in polynomial time.

Proof. The valuation of any agent ¢ is upper bounded by v;(M). Since eliminating the
envy cycle in line 6 produces Pareto dominating allocations we are guaranteed to enter
the inner loop eventually. Now, allocating any item to any agent also produces a new
allocation that Pareto dominates the current one. Thus the algorithm must terminate
after allocating all the items. Having proved the termination, showing the EF1 property
is now trivial: As was not envied by any agent. Even if A U g is, removing ¢ solves the
issue. To complete the proof note that locating and removing a cycle costs O(n?), while
at the same time reducing the number of edges in the graph. On the other hand, each
newly allocated good adds less than n edges to it; thus the total number of added edges

is less than mn yielding a complexity of O(mn?). O

It should be mentioned that we formulated Algorithm 2 as it was originally formulated
by Lipton et al. However, one may interchange lines 5 and 6 and get the exact same
result. The original version removes cycles when there is a need to while the modified
version removes them the moment they are created. As a result, the modified version also
maintains the invariant that Eg is a directed and acyclic graph (DAG); an observation
that will be useful later on. Another useful observation is that in striking contrast to
Greedy Round Robin, Envy Cycle Elimination removes the envy by removing the last
added item, not the first.

4.2 State of the art results

The first positive results of the area are due to Plaut and Rougharden, | ]
Regarding exact EFX allocations, they showed that it is possible to compute one when
the agents have general but identical valuations by introducing the leximin+-+ operator.
Leximin, a portmanteau of the words “lexixocgraphic” and “maximin”, refers to the
technique of picking some arbitrary agent ordering, e.g. agent 1 is more important than
agent 2 etc, and maximizing the minimum value (that of agent n’s bundle), then the

second minimum and so on. Plaut and Roughgarden’s tweak was that once the value of
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a bundle was maximal they also maximized its size. A small sketch proof: consider a non
EFX allocation A. Then there exists at least one pair of agents i,j that contradicts
definition 3.3.2: v(A;) < v(A; \ g) for some g € A;. Construct a new allocation B by
moving g to A;. Now, every agent less important than ¢ has the same bundle and agent i
has either A; U g or some A, which originally belonged to a more important agent. In
either case, B is better than A with respect to the leximin+-+ operator. Therefore the
leximin++ solution must be EFX.

Based on their solution for identical valuations they show that EFX allocations exist
for two agents even with different valuations: one agent cuts the set of goods into two
bundles based on her valuation and the other chooses her favorite. The cut and choose
protocol, as it is named, is EFX because the cutter constructed the bundle based on the
leximin++ solution therefore she is satisfied with both and the chooser picks the best
available thus she is never envious.

In the restrictive domain of additive valuations, Plaut and Roughgarden showed that
the identical valuations setting can be extended to identical rankings by running
algorithm 2 with the goods in decreasing order of value. They were also the first to show
how to compute an approximate EFX allocation, developing an algorithm for 1/2-EFX
even for subadditive! valuations. Unfortunately, with the exception of identical additive
rankings, every algorithm they presented is inefficient. They proved that this last caveat

cannot be avoided when working past additive valuations.

Given the challenging nature of the problem, after the work of Plaut and Roughgarden,
there was a shift of interest in improving the 1/2 approximation ratio. Chan et al.,
[ | presented a polynomial time algorithm that matches the approximation ratio.
Their algorithm proceeds in rounds, computing a matching between agents and unallocated
items in each round. In the next chapter we will adapt their proof technique to get a
simpler algorithm by slightly tweaking the Envy Cycle Elimination algorithm. The first,
and currently only, (unconditional) improvement upon the 1/2 approximation of | ]
is due to Amanatidis et al., | ]. Their algorithm outputs a (¢ — 1)-EFX allocation
(where ¢ ~ 1.618 is the golden ratio) and runs in polynomial time as well. The base of
their algorithm is once again algorithm 2 equipped with a clever preprocessing step: the
agents are partitioned in two sets, one where each agent receives her favorite and high
valued good and the other where the agents receive two goods as a way of compensation.

Amanatidis et al. also introduced the concept of EFX with few items. When the
number of items is not larger than the number of agents it easy to check that any
allocation where no agent receives multiple goods is EFX. It is also trivial to find an
EFX allocation when there are exactly n 4+ 1 items, even if the agents have general
valuations: the agents pick according to a given ordering, their favorite unallocated item
with the last agent picking both the remaining goods. In | |, it is shown how to

get an EFX allocation with n 4 2 items and additive valuations. We will show an elegant

'For two disjoint sets S, T a valuation is subadditive if v(S U T) < v(S) + v(T)



4.2 State of the art results 23

proof for extending this result to general valuations; however, Mahara already extended
the result to n 4+ 3 items in | ]. Still, their analysis is cumbersome and spans

multiple pages so our result may be useful in simplifying and/or further extending it.

With regard to exact EFX allocations, the first major breakthrough after the work of
Plaut and Roughgarden is due to Chaudhury et al., [ |: they demonstrated how
to compute an EFX allocation for 3 agents with additive valuations. They studied the
problem from a graph theoretical perspective, similar to Lipton et al., | ]; using
the envy graph and the novel champion graph. Informally, the champion graph reflects,
via its labelled edges, the largest envy after allocating some unallocated good. The result
was later extended by Berger et al., | ], to the broader class of nice cancelable
valuations. They showed that this new class of valuation functions exhibits some welcomed
properties when chasing fair allocations which, in turn, lead us to studying them further

in this thesis.

Definition 4.2.1 (Definition 2.1 in [ |). A valuation function v is cancelable if for
any bundles S, C M, and item g € M \ (SUT), it holds that

v(SUg) >v(TUg) = v(S) > v(T)

At the time of writing this thesis, a new result by Akrami et al., [ |, was
published which greatly extends the class of valuation functions that admit EFX
allocations in the 3 agent setting. Namely, it suffices that only one agent’s valuation
abides by some mild condition while the other two agents can have general and possibly

distinct valuations.

Beyond the study of approximate EFX allocations, and the settings of few agents or
few items, there has been some progress in some more cases, although quite restricted as
well. Aleksandrov and Walsh, [ |, showed how to compute an EFX allocation for the
class of binary additive valuations, Babaioff et al., | ], for dichotomous submodular
valuations and Amanatidis et al., | ], designed algorithms for instances with 2
values (vi(g) = a or v;(g) = b for all goods and agents) and when all possible item
values lie in an interval of the form [z, 2x]. The former result was extended by Gard and
Murhekar, [ ], where EFX was achieved in conjunction with Pareto optimality. The
same conjunction was achieved by Hosseini et al., | ] for lexicographic preferences.
As for the second result of Amanatidis et al., it will be later exploited in the design of
algorithms with better approximation ratio. Finally, Mahara, | ], initiated the study
of allocations where every agent has one out of two possible valuations, proving that EFX
allocations exist when the two valuations are additive. Later on the result was extended
to nice cancelable valuations before it got completely settled, in | | and | ]

respectively.
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4.3 A new direction: EFX with charity

We will close this chapter studying a different relaxation of EFX. EFX with charity,
as named by Caragiannis et al., [ |, relaxes the requirement of the allocation being
complete; some items are left unallocated (donated to charity). Caragiannis et al.
demonstrated that after starting with the optimal Nash social welfare? allocation and
carefully discarding some items one can end up with an EFX allocation that enjoys at
least half as much social welfare as the optimal. While the Nash social welfare is an
important fairness measure in its own when dealing with multiagent problems, no more
guarantees regarding exclusively EFX allocations were provided in | ]. However,
the idea of charity gained attraction after the work of Chaudhury et al., [ ]
They introduced the following term.

Definition 4.3.1 (Bounded charity). Let A = {A;,..., A,} and P be a partition of M
into n + 1 sets where A; is the bundle of agent i and P is the bundle donated to charity.

Moreover, we say that the charity is bounded if:
e v;(A;) > v;(P) for every agent i,
o |P| <n.

They developed an algorithm that computes such an allocation with charity in pseudo-
polynomial time (since there is a dependency on the value v;(M)). They, also, showed
how to modify it to obtain an FPTAS3. Here, we will just sketch the basic parts of the
main algorithm.

The algorithm is, in a way, a sophisticated Envy Cycle Elimination. The change is
that an item g is not allocated in every round as in line 4 of algorithm 2, but only if it
does not disrupt the EFX property. This is update rule Uy, to stick with the original
notation. The second update rule, U, deals with the possible envy towards the
unallocated items, P. Chaudhury et al. introduced the notion of the most envious agent.
Simply put, agent ¢ is the most envious agent of a bundle X if the subset of X she envies
has the smallest cardinality. For instance, if agent 1 envies X \ g1 and agent 2 envies
X \ (g2 U g3), then agent 2 is more envious of X than agent 1. Update rule U; simply
gives the most envious agent of P that minimal cardinality subset and adds her previous
bundle to P. Update rule Us is the most complex one. We will explain it in two steps.
Firstly, remember that the modified version of algorithm 2 maintains the envy graph as
a DAG. Now, consider the case where there is exactly one source s in that DAG. Since
Up is not applicable we deduce that some agent ¢ is strongly envious of A; U g and let Z
be its minimum envied by s subset. The key observation is that ¢ is reachable from s,

i.e., there is a path of agents s — i1 — -+ — i — t. Changing s’s bundle from A to Z

2The geometric mean of agents’ valuations for their bundles
3 Fully polynomial time approzimation scheme is a solution concept in approximation algorithms. For

more we refer the reader to [ ]
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adds the edge ¢ — s to complete a cycle. Thus, we can move the bundles around
(As = A, Ai,_, = Ai,, Ay = Z) to decycle the graph as usual. Note that since Z was
the envied subset of minimal cardinality no agent strongly envies it; otherwise Z \ h
would have been an envied subset of X U g with even smaller cardinality. Therefore, the
EFX property is maintained. Now consider that there are two sources s; and so and t;
and t2 are the respective most envious agents of As, U g;, ¢ = 1,2. If t; (resp t2) is
reachable from s; (resp. s3) we can use the same approach as before. Assuming the
contrary means that ¢; (resp. t3) is reachable from sy (resp. s1). Therefore, we can
create the “merged” cycle s; — -+ — to — s — --- — t; — s1; and decycle it.
Chaudhury et al. showed that as long as Uy is not applicable and there are at least as
many items in P as agent in ANV we can carefully craft a “merged” cycle. Finally, note
that all three rules produce Pareto dominating allocations thus the algorithm is

guaranteed to terminate.

The approach of bounded charity opened a new way to attack the problem: instead
of a searching for a complete EFX allocation directly or gradually improving the
approximation ratio, one can attempt to reduce the charity until no items get donated.
It should be mentioned that both proofs for the 3 agent settings that were discussed in
the previous paragraph, | | and | | based their case analysis on allocating
the 2 remaining items. Moreover, in | | it was shown that for nice cancelable
valuations one can reduce the size of charity to n — 2 item and, as with the case of two
valuations functions, Mahara, [ | extended the result to general valuations. The
technique of charity also helped with one more result of | |: in the case of 4
agents (with nice cancelable valuations) we can do one item better, leaving only one item

unallocated.

The next step in reducing the number of donated items was, at least from a
complexity theory standpoint, searching for sublinear charity. It was firstly achieved by
Chaudhury et al., | |. Specifically, they showed that an (1 — ¢)-EFX allocation

with high Nash welfare can be computed (in polynomial time) with charity

|P| < 64 (ﬁ>4/5. Interestingly enough, they obtained the result via a connection with
extremal graph theory and combinatorics. Said connection allowed the independent
study of the problem and led to further improvement by Berendsohn et al., [ ,
where the number of items was reduced to O(n?/3). The same complexity result was also
obtained in | ].  Since the connection with the field of combinatorics was
established, both works improved upon bounds from the works of Alon and Krivelevich,
[ ], and Meszaros and Steiner,] ], on zero-sum combinatorics.

The technique of bounded charity has also started being applied in restricted settings.
Akrami et al., | |, presented an algorithm that produces an exact EFX allocation,
i.e., not 1—e, with less than n/2 unallocated items when the agents have restricted additive

valuations, a class that extends identical additive valuations allowing some agents to not
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value some good(s).



Chapter 5

Contribution

In this chapter we present the theoretical contributions of the thesis. The first part
of the chapter is dedicated to additive valuations where we show how to obtain better
approximations under various conditions. In the second part, we generalize the result of
Plaut and Roughgarden, | ], from identical additive valuations to identical cancelable
ones and introduce the notion of a ranking with tiers as a further extension. Our work
is based on case analysis on the number of sources in the envy graph. Finally, we show
that the same technique can be applied even in some settings with general valuations to

simplify known results.

5.1 Approximations for additive valuations

In this paragraph, we attempt to go beyond the ¢—1 approximation ratio of Amanatidis
et al., | ]. While we did not manage to obtain a general result for all additive

valuations, we will show some approaches that work under certain conditions.

5.1.1 Preferential Envy Cycle Elimination

We begin with a new way to obtain a 1/2-EFX in polynomial time. While the result
is not interesting in itself, since there is a known 1/2-approximation, we will then build
upon our proposed algorithm. The algorithm is quite simple, and consists of running one
round of Greedy Round Robin (GRR from now on), followed by Envy Cycle Elimination
(ECE).

Algorithm 3 Envy Cycle Elimination with a top preference
1: Run one round of algorithm 1 (GRR)

2: Continue with algorithm 2 (ECE) until there are no unallocated items

Note that algorithm 3 is equivalent with running ECE with the tweak that in the first n

iterations (where there always exists at least one source), we first select a source agent

27
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and then have the agent select her favorite item, hence its name. We are now ready to

prove our first result.
Theorem 1. Algorithm 6 computes an % EFX allocation in polynomial time.

Proof. First, note that if the number of items is at most n, the algorithm is trivially EFX.
Hence assume m > n for the sequel. Let M; be the set of unallocated goods after the
execution of the single round robin round. By that time, each agent ¢ has received exactly
one good g¢; and the allocation is trivially EFX. Since m > n, we know that M; # (), and
we have that

Vi Vh € My : vi(gi) > vi(h)

Since the second step of the algorithm can never decrease an agent’s valuation, then if A;

is the bundle of agent ¢ during any phase of the algorithm, it holds that

Vi UZ(.AZ) > vi(gi) — VYh e M : U,(.Al) > Ul(h) (51)

Since the initial allocation of the round robin step is EFX, and thus EF1, the final
allocation will also be EF1 as step 2 maintains the EF1 property. Fix agent ¢ and
assume that she envies another agent j. Then, by the EF1 property it holds that

vi(Ai) > vi(Aj\ ¢) (5.2)

where ¢ is the last item added to A; (which may not have belonged to agent j at the
time). We can assume that ¢’ € M; (otherwise, |A;] =1 and agent ¢ trivially satisfies the

EFX property w.r.t. j). Using (5.1) for h = ¢/, and adding it to (5.2) gives
2-vi(A) > vi(A;\ ¢) +vilg') = vi(A;)

The last relation implies that the allocation is at least 1/2 envy free (1/2-EF) and thus
1/2-EFX as claimed. Given than both procedures run independently and in polynomial
time the proof is completed. O

Remark 1. We used the term 1/2 envy free without having formally defined the
approximation version of envy freeness. Still, it works like Definition 3.4.1:
v;(A;) > a - vi(Aj). Most results in this section imply an o-EF allocation when there are

enough items but we will refrain from mentioning it.

The same result is obtained via a different algorithm in [ ]. We should also
note that the result of Theorem 1, in contrast to the next ones, holds even for subadditive
valuations. So we just saw how adding preferential selection only in the first step of ECE
improves the resulting allocation from EF1 to EF1 and 1/2-EFX. The next logical step
is to check what happens when we do the same modification in every step of the way.
The resulting algorithm, as presented below, was actually introduced by [ | with

a different aim in mind.
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Algorithm 4 Preferential Envy Cycle Elimination

. Set A; = () for every agent i
: Let M’ = M denote the currently unallocated items
: while M’ # ) do

if 3 some source s then

1
2
3
4
5: Set A = AU arg maxy e vs(g')
6 Update M’

7 end if

8 Decycle the envy graph

9

: end while

10: return A = (A4, ..., A,)

Line 5 is the single change between algorithms 2 and 4. Furthermore, this is the

algorithm Plaut and Roughgarden proposed for the setting with identical rankings in

[PR18].

Theorem 2. Let Eg denote the resulting envy graph after running Preferential Envy
Cycle Elimination (pECE). For every directed edge (i,j) € Eg let t;; be the number of
times agent ¢ got to pick a good before the edge was created and set k¥ = min; ; ¢;;. Then,

pECE computes a kLH—EFX allocation.

Proof. Let A be the allocation output by the algorithm, and fix some agent i that is
envious of another agent j in A. Let k; = min; ¢;; for some edge e. Note that agent i’s
bundle at the time e gets added may not be the collection of the items she picked, C;,
due to some envy cycle elimination(s). However, since the algorithms proceeds without
decreasing the valuation of any agent, we can guarantee that ¢ prefers her bundle at the
time, say T;, to C;. Since agent i was always picking her favorite available item, it holds
that
Vg e C; Vh e M': vi(g) > vi(h)

By combining the inequalities above, we deduce from the additivity of v; that

vi(T3) > vi(Ci) > ki - vi(m) (5.1)
Equation (5.1") substitutes (5.1) of the previous proof. Similarly we have

ki vi(Ty) > ki -vi(Tj\ g') (5.2')
where we simply multiplied by k;. Once again setting h = ¢’ and adding yields

ki
vilfi) 2 377

vi(T})

Note that once someone envies j, she will never become a source, therefore T; = A;, and

vi(A;) > v;(T;) meaning that v;(A;) > k_k—jrlvi(.%lj). Thus the allocation is ﬁ—EFX where

k = min k; and the proof is completed. ]
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Clearly, everybody gets to pick at least once, thus k£ > 1. Hence, this is at least as
good as the 1/2 bound established earlier, but is it always strictly better? The following

example shows than in worst case, this algorithm still gives only a 1/2-approximation.

Example 5.1. Consider the following instance with 2 agents and 4 items where every tie

is broken lexicographically:

‘ a b c d
agent 1 | 2 2 0 2
agent 2 |2 1 1—€ e

with 0 < €; < e2 < 1/2. The algorithm gives a to agent 1 and the rest items to agent
2. Tt is easy to verify that the allocation is exactly 1/2-EFX. Moreover, the issue is not
the number of agents since we can add as many single minded! agents and one item for
each. A

However, not all hope is lost. The analysis of algorithm 4 tells us that the more items
an agent receives, the better the approximation which, as a first step, leads to the following

corollary.

Corollary 2.1. Assuming some sort of large market where each agent must receive at
v(M)

n

least I goods, e.g., every bundle of size [ is valued at most at € for some € < 1, then

there exists an H%—EFX approximation.

5.1.2 Relaxed condition-approximation tradeoffs

The previous corollary may seem a bit vague, but it points us to the right direction. The
troublesome cases in the pursuit of EFX, at least when agents have additive valuations, are
when the agents value the top items much more than the rest. In order to make progress
we may try to condition our instances accordingly. One such simple scenario to consider

is when agents have different top preferences.

Theorem 3. Assuming that each agent ¢ has a different favorite good h; then a 2/3-EFX

allocation can be computed efficiently.

Firstly, we show how to properly modify algorithm 3 and then we prove the claim.

Algorithm 5 Envy Cycle Elimination with different favorite items
1: Run two rounds of algorithm 1 (GRR)

2: Continue with algorithm 2 (ECE) until there are no unallocated items

Proof. Let S; = {hi,g;} be the bundle of agent i after the execution of step 1. Then, for

any pair of agents ¢ and j,

vi(53) = vi(hi) > mazgen; g;3vi(S5\ 9)

! Agents interested in a single good
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Or, in words, agent ¢ satisfies the EFX condition w.r.t. the other bundles of size 2. Thus

the initial allocation S is EFX. Moreover,

Vh e M\ U {hiygi} : vi(S;) = vi(hy) + vi(gi) > 2v;(h) (%)
i€[n]
And the analysis is now identical to that of pECE with k£ = 2. O

At that point, one may argue that the condition is too weak to have any practical
value. We will return to it later but we will argue that it gives a hint on the needed
conditions to improve the approximation ratio. The intuition behind Theorem 2 was that
you need a lot of goods to guarantee good approximations. Theorem 3 shows us that it
suffices to force an initial allocation with few items but not singleton sets. In reality, what
we really need is some property like in Equation (). Going back to the proof of Theorem
2 that was equation (5.1"). Putting everything together we form the following general

framework:

Algorithm 6 General approximation framework

1: Start with the empty allocation
2: Compute a partial a-EFX allocation S maintaining the property

Uz(Sz) > B . Uz(h) forall h e M \ S

3: Continue with algorithm 2 (ECE) until there are no unallocated items

Theorem 4 (Approximation Framework). Algorithm 6 computes a min (a, %)—EFX
allocation. Moreover, whenever the partial allocation can be computed efficiently, the

same holds for the whole allocation of the algorithm as well.

Under our approximation framework, the algorithm of Amanatidis et al., [ ],

achieves its ¢ — 1 ratio by setting o = § = ¢.

Up to this point we have not discussed anything about relaxed conditions. Notice that
our general approximation framework is plug and play: if you have an algorithm for step
2 you are good to go. Now, recall that the first result about additive valuations is under
the common item ranking assumption due to Plaut and Roughgarden, | ]. What if we

relaxed that condition and only ask for a common ranking of the most important items?

Corollary 4.1 (Relaxed top ranking). Assuming that all agents agree upon the order of
the top [ items, then one can efficiently compute a k—ﬁl—EFX allocation with k = [I/n].

Proof. For | < 2n we do not improve upon the bound of 1/2 anyway, thus we will prove the
claim for [ > 2n. By | ], running the pECE algorithm for the top [ items constructs a
partial EFX allocation (aw = 1). For an agent i with a bundle of size at least k it obviously
holds that v;(S) > k-v;(h) (8 = k). If there is some agent j with a bundle of size less than
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k then, by the pidgeonhole principle, there exists some j’ with at least k + 1 items. The
EFX property of S gives v;(S;) > v;(S;\ g), where the last bundle is of size at least k, and

therefore v;(S;) > kv;(h). Thus we have everything the general framework requires. [
We provide yet another corollary of the approximation framework.

Corollary 4.2 (Relaxed top bounded interval). Assuming that all agents value the top

[ items between x and 2x, then one can efficiently compute a %H—EFX allocation, with

k= 1l/n]

Proof. The proof is the same as above except that S is produced by algorithm 2 of
[ ]. O

Similarly, one can obtain an approximate EFX allocation by relaxing any constrained
domain where a full EFX allocation is known to exist to the first few items. Still, the

main question on the agenda of EFX approximations is achieving the ratio of 2/3.

5.1.3 2/3 approximation for common top n rankings

The result of the previous paragraph means that a 2/3-EFX allocation exists when
the agents have a common ranking of the top 2n items or when their top 2n items are
valued within the interval [z, 2z]. It turns out we can do even better. Before presenting
the algorithm, let us build some intuition first. Ideally, we would like to run two complete
rounds of GRR, like in algorithm 5. That is too much to ask for. A more reasonable
alternative would be to run one round of GRR and the second in reverse order. Clearly,
this procedure is fairer in the sense that agents with a bad pick in round one may offset
it in round two. Unfortunately, it is far from certain than an agent with two goods will
not envy one with a single item.

In algorithm 7 we treat this problem by simply giving to the agent with two items the
single one she envies the most, which is practically equivalent to restarting the process after
putting said agent higher in the order. Note, however, that in contrast with the previous
algorithms, algorithm 7 may (temporarily) unallocate some goods (the old bundle of i
before line 7).

Theorem 5. Assuming that all agents agree upon the ranking of the top n items, then

algorithm 7 computes efficiently a 2/3-EFX allocation.

Proof. Firstly, note that if m < n, the allocation is EFX by step 2 alone and no further
work is needed. For the rest of the proof we will assume that m > n. Secondly, we
will show that when the loop terminates (or when we run out of items in its middle) the
partial allocation, say S, is EFX. To do so we will start by showing that every time the
loop starts all of the top n items are allocated. That holds trivially the first time. If i = j
no unallocations happen so it still holds and when i # j agent i returns her item, say g;,

to get j’s top n item (line 7). Then agent j picks g; (line 8) since it is the only top n item
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Algorithm 7 2/3 EFX for identical top n rankings

1. Pick an arbitrary ordering of the agents 7: 7(i) = j means that ¢ is in the j-th position
2: Run one round of algorithm 1 (GRR)

3: Let M’ be the unallocated items after the GRR round

4: for i in range(N,1) do

5: Set ¢’ = arg maxgenr vi(9)

6: Set A; =A;Ug

7 Select agent j = arg gleeb}]( v; (Ag)
8: if i # j then

9: M = MU A;

10: Ai = .Aj

11: Aj; = argmax v;j(m)

12: Shift every agent from ¢ — 1 to j + 1 one position forward
13: Set j in the front (i — 1) = j
14: else

15: M =M\¢

16: end if

17: end for

18: Continue with algorithm 2 (ECE)

available. In other words, ¢ and j simply swapped their initial items. In any case, any
agent has exactly one top n item and maybe one extra.

To see that the EFX property is maintained pick agent ¢ in the £th position of the final
ordering. Any agent j in position ¢/ > [ either has exactly one item thus EFX is trivial
or has two items but she picked her top n item gy after the agent in position ¢. Thus
v;(Si) > vi(gr) = vi(S; \ g). On the other hand, the quantifier in line 5 informs us that
agent ¢ does not envy any agent with ¢ < ¢, when she is in the front, therefore she cannot
strongly envy them after they receive one more good.

To complete the proof we need the relation
’Uz(SZ) > 6 . ’Uz(h> forallhe M \ S

for B = 2. If ¢ has a bundle of size 2 then the property holds trivially after her turn is
completed. It suffices than no items get unallocated after. Since the main loop does not
permanently unallocate the top n items we are done. If agent ¢ ended up with only one

item, say a, then we can write
vi(a) > v;(b) + vi(c) > 2 - vi(c)

where {b, ¢} is her bundle before the check ¢ # j with b the top n item. So it suffices for
b and every item in front to not get unallocated but again those are top n items. Thus
algorithm 7 matches the approximation framework. Since every step of the main loop is

at most linear in n and m the algorithm is also efficient. O
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The logical next step is to check what the algorithm can do without the common top

n ranking assumption.

Corollary 5.1. Allowing a little charity (up to n — 1 items), a 2/3-EFX allocation can
be computed efficiently.

Proof. To achieve such an allocation we will use a slight modification of algorithm 7;
during the main loop every agent will mark the items she values more than half of her
current bundle. Then, before running Envy-Cycle-Elimination all the marked items will
be donated to charity. Firstly, note that the 2/3 approximation follows trivially from
the previous proof since all the items disrupting the property then were top n while now
are donated. It remains to show the bound on the number of items. To that end, note
that agent n will mark at most n — 1 items. After that, every time a marked good (g;)
is unallocated (line 7) and replaced by a new one to be potentially marked (line 8), one
marked item (g;) is guaranteed to remain in the final allocation, thus the number of marked

goods can never exceed n — 1. O

A final remark before leaving additive valuations behind us: when a = 1 the
approximation framework actually guarantees something stronger than %—EFX. It
%—EF. As a result, we believe that one can

further weaken the top m ranking condition, or eliminate it altogether to achieve the

gives an allocation that is either EFX or

desired 2/3 approximation.

5.2 Tiers for cancelable valuations

We now shift our focus to cancelable valuations. As mentioned in Chapter 4, a version
of them was introduced by Berger et al., | | where it was shown that many results
that hold for additive valuations can be extended to this broader class. Before adding one
more result to this list, we will offer an explanation as to why cancelable functions seem
to behave well. Recall that in Definition 4.2.1 the bundle S\ g is mentioned. That is the
same as in the definition of EFX (3.3.2). Perhaps, the class of cancelable valuations is the

broader one that encompasses such information into its definition.

5.2.1 Common ranking

Without any further delay, we are ready to state and prove the first result of this
section, which is a generalization of | ] under the common ranking assumption on the

goods:

Theorem 6. Algorithm 4 (pECE) efficiently computes an EFX allocation when all agents

have a common ranking of all goods and cancelable valuations.

Proof. Let g1,...,gm, denote the ordering of the goods. Obviously, this is also the order
in which the goods get allocated by the algorithm. Assume that after the allocation of
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gr. some agent ¢ strongly envies agent j who received it. Here, we remind the reader the
discussion in Chapter 3: strong envy means that the EFX property is violated. Then it
holds that

vi(A;) < vi(A; Ugk \ gi) for some | < k

Since j received the good, she was previously a source, that is, unenvied:
vi(Ai) = vi(A;))
Combining the two inequalities gives
vi(A; U gk \ i) > vi(A;)
And by iteratively applying the definition of cancelability for any good in A; \ g; yields
v;(gr) > vi(g;) for some | < k

which contradicts the common ordering. O

We must note that the same result was obtained independently by Garg and Sharma,
[ |. However, after this point the two works follow a completely different path.

5.2.2 Tiers of size 3

We will now proceed to a relaxation of the common ranking assumption. Our path

starts with a technical lemma.

Lemma 1 (Inequalities under addition). Let S, T, @ and R be sets such that SN Q = 0,
and TN R = (. Then
v(S) = o(T)
v(Q) > v(R)
Proof. In the definition of cancelable valuations, it is easy to see that one direction implies

the opposite: v(T') < v(S) = v(T'Ug) <v(SUg). Applying this form of the definition
for every g € Q \ T gives

} = v(SUQ) >v(TUR)

W(TUQ) = v(TU(Q\T)) <u(SUQ\T)) <u(SUQ)

where the last inequality is due to the monotonicity assumption. Similarly we obtain
v(QUT)>v(RUT) and the lemma follows.
O

Before delving into the details about the new notion of tiers that we are about to
introduce, let us consider a quick warm-up. We just saw that when the rankings are
common, an EFX allocation exists for cancelable valuations. Previously, we saw also that
only a common ranking of the top n items suffices for a good approximation. Can we

somehow combine the two settings? For example, what if the agents agree on the set of
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the best n items (but not necessarily on their ordering), and then agree on the set of the
second best n items, and so on? Those settings are common in real life: it is often the
case that when asked to do a list of favorite athletes, movies, etc., people find it too hard
to produce a complete ordering and instead use tiers to denote their preferences. In such
situations, several people may agree on the elements contained in each tier, but without

necessarily agreeing on the ordering within the tiers.

Definition 5.2.1. A partial ranking 7 is a common tiered ranking among all agents, if
there exists an ordered partition of all items M = (My, Ma, ..., M;), such that:

Vg € My, Yh € Mjsy = vi(g) > vi(h)
for every agent i. Moreover, we define the size of 7 to be the size of the largest tier Mj;.

Based on the above definition the question raised earlier can be restated as: does an
EFX allocation exist when all agents have common tiered rankings of size n?
Unfortunately, we failed to answer this. Still, some measurable progress was made. Note
that the common ranking is equivalent to a tier of size 1. A natural way to progress is to

try increasing the size to 2, 3 etc. The main result of this paragraph is the following:

Theorem 7. Assuming that all n > 3 agents have cancelable valuations and a common

tiered ranking of size at most 3, i.e.
arg, blv C1 = az, b27 C2 .= ag, bk:a Ck
then an EFX allocation exists and can be computed efficiently.

Proof. We will prove the theorem by induction. We present the proof for the case where
each tier has exactly 3 items, since the other cases are easier. Note that the base of our
induction, allocating the first triplet, is easy: just give a single item to three different
agents. For the inductive step assume that we have a partial EFX allocation after
allocating all the goods up to some tier k, and let Eg be the envy graph of this
allocation. Moreover, assume that we maintain the envy graph FEg of this current
allocation as a DAG. If it is not, we can always remove all the envy cycles prior to
continuing with the next tier. Also, we will simplify the notation from a4 to just a and
so on. We discern three cases based on the number of sources in E¢g, and discuss them in
order of difficulty.

e Case 1: E¢ has at least three sources

This is the easiest case since we have three items and we can pick three sources and
just do a matching. The EFX property is maintained and the proof is analogous to
that of Theorem 6.

For the two remaining cases we will have less sources than items. Let a,b,c be the 3

items of the tier under consideration, and let (Ay,...,.A;) be the current EFX allocation
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of the goods in the first k£ tiers. On a high level, both case analyses work as follows:
the agents closest (in the sense of topological distance) to the sources are possible new
sources. Therefore, if our current sources outvalue them or maybe get their bundles via
some envy cycle elimination we can allocate the remaining items. Otherwise, some current
source will receive more than one items without violating the EFX property. Some extra
notation: we will refer to agents based on their level when we view Eg as a DAG that is
topologically ordered, i.e. all sources are at level 0, agents envied by the sources at level
1 etc.

e Case 2: Ex has one source s1

Let 01,09, ..., 0¢ be the agents of level 1 ordered based on s1’s valuation: vg, (Ay, ) <

sy (Aoy) <+ S ws, (Aog).

— Subcase 2a: s1 can receive multiple items

If s1 can receive all three goods of the tier without violating the EFX property
we are done. If not but she still can receive two goods, say a and b, we allocate
them to her. It remains to allocate c. If v,, (A5, UaUb) > vg, (Ao, ) we allocate ¢
to 01 and complete the inductive step. Indeed, note that c is the least valuable
item of the bundle that o; has now. Since s; was not envying o; after she
received a and b, the EFX property will not be violated by giving ¢ to o;.
There is no other pair of agents that we need to check since no one else is
allocated any items. Suppose now that vs, (As; Ua Ub) < v, (A, ). We also
know that since s; could not receive all 3 items, some agent, say x, must envy
her. The fact that s; was the single source of Es means that z is reachable
from s; via an envy path. Therefore the allocation of @ and b to s; has created
an envy cycle s; = 0; — .-+ = x — s1, for some agent o; of level 1. After
decycling the graph, s; will be in possession of the bundle A,,. Since previously
she was the only one envying the bundle, we can now allocate ¢ to her without
disrupting EFX.

— Subcase 2b: s; cannot receive multiple items If allocating 2 items is

problematic for the EFX property, we deduce that after giving, say a, to si,
some agent x becomes envious of her. Firstly, we will identify possible new
sources. Those are the o; agents, and more specifically o1 and 02, and agents
envied only by 0; (and maybe s1), which we denote by t¢i,t9,.... The nodes

of interest are shown in Figure 5.1.

Similarly to the previous case, if vy, (A, U a) > v, (Ay,), we allocate one item
to both 07 and 02 and we are done. Otherwise, we continue in the same spirit as
before. Suppose first that x is reachable from o,, for some r > 2. Then, given
that vs, (As, Ua) < vs, (Ao,) < vs,(A,, ), an envy cycle s — 0, — -+ = — 51
is created. After decycling it, we allocate one item to o1 and one to the current

owner of oz (it could be either oy or s;1), and we are done. And this is where
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Figure 5.1: Subcase 2b

the similarities between the two subcases stop since x could be some agent only
reachable from o7 or she could be o7 herself. We need to look at these two
further cases separately but before doing so, notice that for agents who are

unreachable from o7, whoever owns A;, can get two items.

% Subcase 2b(i): r = 1, and z can be some agent other than o;

In this subcase, the role of the t; nodes becomes more clear. So far, the
possible new sources were always o1 and 0. Now they are o7 and some
node t;. To proceed, note that there may not be a path from s; to = after
allocating item a to si, but we will reallocate the bundles as if there was;
checking that the EFX property is maintained is easy. Also, we pick x as

the agent furthest away from s;. The image looks as follows:

@ ©

-Aol Atl ASl U a

Figure 5.2: Subcase 2b(i)

Now s; with her new bundle is again a source (single if x is not one) and
if any node other than x is envious of A, Ub or A,, U c the next source
will be either o; (owning A;,) or 0;,¢ > 2 and we are done. The same
applies if s1 can stop envying some t; after she receives a good since said t;
will become the final source or if s; will receive Ay, after some envy cycle
elimination. If neither is true and s; cannot receive both of the remaining
items without violating the EFX property, x must be a source as well and
some agent reachable only from her envies s; after she receives a good.
In this scenario, if one of the two matchings between the two sources and
the two items produce an EFX allocation, we have completed this case.
Otherwise, there is a cycle containing both sources and nodes from one or
both connected components (Lemma 1 guarantees that no agent between
51 and x can strongly envy the other one) if we substitute a with b or c.?

Now, s is in possession of some A;, and she can have the last item.

2Remember the discussion in paragraph 4.3. Now Z = As; Ubor Ay, Uc
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* Subcase 2b(ii): » =1, and z is oy

In this last case, we have only one source and one possible new source.
However, apart from o7, no other agent would strongly envy Ag, Ua Ub
(or any other combination of Ag, with a pair of goods from the given
tier); otherwise we would be back to Subcase 2b(i). Therefore, we will
compensate the lack of possible sources by possibly adding two items to
one bundle. We start by asking s; to choose between receiving her favorite
item or o1’s favorite, thus creating an envy cycle of size 2 and causing a
swap. Note, however, that if s; and o1 have a different favorite item then
s1 will always choose to swap since she well get her favorite item right after
and lemma 1 guarantees the optimality of the choice. At any case, and with
a the favorite item of o1, the owner of A,, will be the new source. If she can
get both of the remaining items the proof is completed. Otherwise some
agent envies A,, Ub or A,, Uc. Since we have a single source that envious
agent is reachable so we ask our source to choose between her favorite item
or the one that forms the envy cycle implied above. At any case, the new

source will be eligible to receive the last item even if her bundle is A;, Ua.

e Case 3: Two sources s; and sy

Now, we have more sources but also a harder time identifying the possible new one.

To bypass this problem we partition the envy graph Eg in the following manner:
Ea=51UssUViUVoUVio

where V7 (resp. V3) is the set of nodes reachable only from s; (resp. s2) via an envy
path and Vi is the set of nodes reachable from both sources. Since E¢g is a DAG it
follows that V7, V2 and Vo are as well. If s is a source of the V; DAG we have that
s1 is the only agent envious of her; otherwise it would be reachable from so thus
contradicting the definition of the partition. Therefore, s} is a possible new source
substituting s; and, symmetrically, a source s, of V5 is a candidate substitution for
sa. A source s}, of V2 may be a possible replacement for both. Now, if s; can
receive two items or one and simultaneously stop envying s} we easily allocate all
the items of the tier. Therefore, we assume this is not the case and denote with e;
her envious agent after receiving some item of the current tier, and respectively, eo
for so. We will do some case analysis based on which connected component e; and
ey belong to. Since they may not be unique, we define 77 to be the set of those
envying s (and respectively for s9). Fortunately, due to symmetry the number of

different subcases is small.

— Subcase 3a: Ty NV; # 0 (or resp. To N Vo # 0)

Let e; € T1 N V. In that case e; is reachable from s; and we have an envy

cycle. After applying a decycling step, s1 will own As’l , a bundle of which she
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previously was the only envious agent. Therefore, we can allocate one more

item to s; and the other to sy and we are done.
— Subcase 3b: T1 N (s2 U Va) £ 0 (or resp. To N (s1 U V) # 0)

Let e; € s N Vo, Now, e7 is not reachable from s;. However, the same must

apply to so and es otherwise the symmetrical of subcase 3a holds for so. In
other words, es € Eg \ Vo. This means that, after allocating two of the three
items of the tier, a cycle in the form: s; — -+ 5> e3 = 89 = -+ > €1 = 51
is created. Once we decycle the graph, checking that the EFX property is
maintained is trivial. Moreover, there will be again two sources. If one of them
does not own one of the two bundles previously owned by the sources, we can
allocate the final item. In the unique case where e; = s9 and s; = ey were the
only choices for envious agents, we can allocate the last item to any of them.
To see why, assume that s; owns A, UaUc. Agent sy cannot strongly envy her

and if some other agent x does it means that e; = so was not the only choice.

After careful inspection, subcases 3a and 3b and their symmetrical cover for 8 out

of the 9 possible scenarios. It remains to check when both envious agents are in V5.

— Subcase 3c: Ty NVig # 0 and To N Vis # 0

Let e;,es € Vis. Note that since e is reachable from s; if the first node

in the path between them belongs to V; the argument of subcase 3a applies.
Therefore, the first envy edge in the path is from s; to some source of Vio. If
e1 and e belong to different weakly connected components of Vio we are done
since one of the owners (s1 or s2) of some Ay will get the last item. Assuming

the contrary, the image is given in Figure 5.3.

Figure 5.3: Subcase 3c

To continue, we select the source, say s1, and the item, say a to allocate based
on e;’s preference, who we pick to be in maximum topological distance.
(Determining the largest distance can be achieved by allocating all items to s;
one by one and checking) After reallocating the bundles along the cycle (if s;
stops envying s}, she becomes a possible new source similar to case 2 and we
finish accordingly) and the image changes as in Figure 5.4.

The way we picked e; she and every possible node reachable from her cannot

strongly envy A, UbUc; otherwise the strongly envious agent would have been
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A4 (G

As, As, Ua

Figure 5.4: Subcase 3¢ continued

envious before and in a greater topological distance®. Therefore, either sy will
get both items or there will be an envious agent she can reach. In the end,

whoever owns As’l , will get the last item and the proof is completed.

5.3 Simplifications for general valuations

We have just seen how case analysis based on the number of sources in the envy graph
can produce some positive results. With general valuations the analysis could be even
harder so we will focus only on instances with a small number of them (one or two).
Our work is once again built upon the ECE algorithm, equipped with a new allocation
rule which combines those introduced by Chaudhury et al., | |. If U is the set
of currently uncallocated then our update rule allocate to some source s the minimum
envied subset of As; UU. By construction of the rule, which we will call 4, no strong envy

towards s can be created.

5.3.1 EFX with identical preferences

We start with an alternative proof about the existence of EFX allocations with
identical but general valuations, [ . Actually, we prove a slightly stronger claim:
EFX allocations exist when agents have identical preferences; for every two subsets S, T

of M all agents prefer the same set.

Theorem 8. When all agents have general valuations but identical preferences an EFX

allocaton can be computed by running ECE with the U/ rule.

Proof. Let A be the allocation at some step of the algorithm. Since the agents have
identical preferences vs(U(As)) > vs(As) thus the new allocation Pareto dominates A

which guarantees the termination of the algorithm. O

3To be precise, e; could have been envious of As, Ub but then we restart the tier allocation working

with s9
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5.3.2 EFX for two agents

In the previous section there was always one source. Moving on to the next simpler
setting, we present a non cut and choose proof for the existence of EFX allocations for two
agents. Our algorithm is again the same, with the difference that whenever the allocation

is envy free with deterministically select agent 2 as the source.

Proof. Consider the following potential function

P(A) = (v1(A1),v1(A2))

e Agent 1 is the source
Then either Ay will be directly improved from the application of &/ or mutual envy

will occur resulting in a swap. Since vq(Az2) > v1(Az), ¢ increases.

e Agent 2 is the source or the allocation is envy free

Since agent 1 will pick the new bundle of agent 2 the potential increases again.

We must note that the same potential function appeared in [ .

5.3.3 EFX with n + 2 goods

The final result of this thesis is a proof that EFX allocations exist when the number of
items is at most two more than the number of agents even when the agents have general
valuations. As note earlier, Amanatidis et al., | ], show this for additive valuations

while Mahara, | |, proved even for three more items but via a very long analysis.

Theorem 9. An EFX allocation exists when the number of goods is at most two higher

than the number of agents.

Proof. We have discussed how an allocation with up to n + 1 items is trivial so it remains
to prove the statement for exactly n+ 2 items. Our proof is algorithmic and combines the
allocation rule I presented in this paragraph with the idea of case analysis based on the
number of sources. After allocating the first n items in a greedy style, and with a, b being

the remaining two, there are 3 cases:

e Two sources in Eg

Then we simply allocate one item to each.

e One source s in Fg and U(Ag) C As
Since there is a single source, the envious agent is reachable and we can allocate the

last item to the new source after decycling the graph.

e One source s in Eg and U(As) = {a, b}
Now we create a new allocation from scratch where the first agents up to the most
envious pick as before, the envious agent gets a and b and the remaining agents pick

again greedily, with the last one receiving the final item.
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In all three cases, it easy to see that agents with one item prefer it over any item belonging

to bundle of size 2, thus no strong envy exists. O






Chapter 6
Experimental evaluation

The final chapter of the main body of this thesis is dedicated to some experiments.
Looking back, every contribution presented in Chapter 5, with the exception of the
simplifications of existing results in paragraph 5.3, is based upon some assumption.
Therefore, we deem proper to examine how often our assumptions occur in real world
data.

6.1 Setup

First of all, we should mention that the data used is extracted from the Fair Division
website www.spliddit.org, | |. We are thankful to Nisarg Shah for providing the
data as of July 2021. The site provides a range of applications but, of course, we are
focused on dividing goods. Now, our setup is pretty simple: since Spliddit allows for
instances with both divisible and indivisible goods together we filtered out any instance
that contains the first category and implemented our algorithms in Python, | ]. We
collected information about instances with distinct favorite goods (Theorem 3), bounded
intervals (| |) and about the tiers of the rankings (Theorem 7) which includes

information about the top n ranking (Theorem 5).

6.2 About zero valued items

A quick pause before presenting the results. So far we have consider only goods, i.e.,
positive valued items, and have left negative ones out of our scope. But what about zero
valued goods? The EFX definition of Caragiannis et al., | |, considers only the

hypothetical removal of a positive value good. Let us see it in practice.
Example 6.1. Consider the instance with 2 agents and 3 items

C

Agent 1 |3 2 1
Agent2 |0 O
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According to the original definition, the allocation where agent 1 receives every item
is EFX. Still, the allocation where agent 2 receives ¢ seems fairer; and it is, indeed, envy
free. A

Kyropoulou et al., [ |, strengthen the definition to include zero valued goods
under the name EFXj. Clearly, EFX, implies EFX but not vice versa. But how does zero
valued items alternate our results?

To demonstrate their effect, let us consider an execution of pECE, algorithm 4, with
input the instance of example 6.1. When there are more sources the algorithm picks one
arbitrarily; therefore it is possible that agent 1 will be the first to receive one item and a
will be her choice. Since va(a) = 0 the allocation remains envy free and it is possible that
agent 1 is again the source. Continuing in the same manner we can see that the algorithm
may output the allocation described in the example; which is 0—EFXg. Thus the bound
of 1/2 does not hold anymore. To maintain consistency with the rest of the thesis, we

have opted to perform our experiments with the original definition.

6.3 Results

At this point, we will remind the reader that EFX allocations are guaranteed to exist
when there are few items: m < n + 3. Consequently, it would be expected to work only
with the subset of “many items” instances. Unfortunately, their number is too small. As
a middle solution, we decided to present the results firstly for the whole dataset and then

for the many items instances only.

6.3.1 All instances

A similar discussion as the one above can be had about the number of agents since
EFX allocations exist when there are at most three. In the same spirit as before, we will
present the results for both cases. The total number of instances is 4323 and it drops

down to 203 if we exclude the instances with few agents. The statistics are the following:

#agents ‘ Distinct favorites Bounded intervals Same top n
n 1.851% 6.153% 13.046%
n>3 0% 7.389% 3.941%

Table 6.1: Statistics for all instances

As for the information about the tiers, it is presented in Figure 6.1. For presentation’s
sake, we have chosen to include up to the tier of size 10. From the two diagrams we see
that theorem 7 applies to roughly 29% of all instances while the number reduces to 18%

when there are more than 3 agents.
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Distribution of tier size with n agents
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Figure 6.1: Tier information for all instances

6.3.2 Many items instances

Now we repeat our previous experiments excluding instances with few items (m <
n + 3). There are 475 such instances and, unfortunately, only 51 if we further constraint

them on the number of agents.

#agents ‘ Distinct favorites Bounded intervals Same top n
n 3.158% 5.684% 12.842%
n>3 0% 5.882% 3.922%

Table 6.2: Statistics for many items instances

In Figure 6.1 we see that &~ 17.5% of the many items instances have a tier size of at
most 3. Moreover, only three of those many item instances include 4 or more agents. And,
actually, in all three the agents share a common ranking. Therefore, algorithms 4 and 7
both output an EFX allocation for all 3 instances. Still, we would like to compare the

actual approximation ratios versus the theoretical results for both algorithms so we had to
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Distribution of tier size with n agents
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Figure 6.2: Tier information for many items instances

include instances with few agents. Interestingly enough, both algorithm ouptut an EFX
allocation for 77 out of the 83 instances. The remaining 6 were split with an almost equal
average approximation ratio. Finally, pECE computed an EFX allocation for 79 out of
83 instances and algorithm 7 for one more; with only one instance where neither method

achieved a perfect ratio.
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Conclusion and Future Work

In this thesis, we studied the problem of fairly allocating a set of indivisible goods to
agents with possibly different valuation functions. Out of the many fairness criteria we
focused on the most prominent one: EFX. We showed a tight analysis of a variant of the
famous Envy Cycle Elimination method, which eventually resulted in an approximation
framework for additive valuations functions. Under our framework, we saw how the
approximation version of EFX gradually degrades as some existence condition is getting
more and more relaxed. Our main result was a 2/3 approximation under the assumption
that all n agents have a common ranking of the top n items. The main open question
now is whether one can achieve the same result unconditionally.

Then, we moved on to the the broader class of cancelable valuation functions where we
led a new path to attack the problem of the existence of EFX allocations. We introduced
tiered rankings as a way to extend the setting with one identical ranking to families with
exponentially many similar ones. Some future work could be the extension to tiers of size
4 and beyond. Ideally, it may be possible to show that that the tier size is as large as the
number of agents; similarly to the top n ranking discussed above.

Finally, we also studied general valuation functions where we presented alternative
proofs for a few existing results. The most interesting followup of this direction is applying

our source based analysis to larger instances with few items, eg m =n + 4.
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