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Abstract

The purpose of this Master thesis is to examine the exact solutions of black
holes with phantom scalar fields and investigate the nature of phantom
fields as a dark matter candidate. The first chapter is a general intro-
duction to the topic, while the second chapter deals with the general case
of an n-dimensional theory in which gravity is coupled to a dilaton and
Maxwell field. In Chapter 3 we investigate the nature of Phantom Black
Holes and combine the dilaton and phantom cases. Chapter 4 focuses on
the energy conditions and thermodynamic laws of phantom black holes.
Finally, conclusions are drawn in Chapter 5.
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Chapter 1

Introduction

The accelerating expansion of the universe is a fact. The origin of the
matter that induces this expansion of the universe is still unknown and it
is dubbed as dark energy. Although we don’t know much about its nature,
there are phenomenological models which can suitably describe the cur-
rent expansion of the Universe. ΛCDM ,(Λ-cosmological constant, cold,
dark, matter) predicts an equation of state with a constant pressure to
energy density ratio of −1. Meanwhile, this model takes into account dark
matter’s existence and is still the best fit to the observational data. How-
ever, ΛCDM has its own malfunctions. Recent findings have suggested
that violations of the cosmological principle, especially of isotropy, exist.
These violations have called the ΛCDM model into question, with some
authors suggesting that the cosmological principle is now obsolete or that
the Friedmann–Lemâıtre–Robertson–Walker metric breaks down in the late
universe.

Physicists didn’t exclude other models that could suitably describe the
current acceleration as well. In fact, several models that could induce a
positive acceleration have been suggested, e.g.

• Quintessence models, which are those that preserve the null energy
condition, i.e. 0 ≤ ρ + p, in such a way that w (equation of state)
parameter is always larger than 1.

• Phantom models where the null energy condition is violated and the
w parameter can go below 1.

Surprisingly, phantom models are not excluded, but even seem to be
favoured by recent observations, as Planck 2018 suggest. We are going to
mention few observational data in the last chapter. Phantom Black Holes
is a topic which made its appearance due to phantom scalar fields. One
of the first papers trying to propose the behaviour of these fields is called
”a phantom menace” and investigates the consequences of a dark energy
component with supernegative equation of state [5]
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In past few years there have been tremendous efforts in modeling the
dark energy. They include scalar field models, some models of brane worlds
and specific compactification schemes in string theory which have been
shown to mimic the dark energy like behaviour.

A wide variety of scalar field models have been conjectured for this pur-
pose including quintessence as we mentioned, K-essence, tachyonic scalar
fields with the last one being originally motivated by string theory. All
these models of scalar fields lead to the equation of state parameter w = p/ρ
greater than or equal to minus one. However, the recent observations of SN
Ia (supernova of type Ia) do not seem to exclude values of this parameter
less than minus one [20].

It is therefore important to look for theoretical models to describe dark
energy with w < −1 called phantom energy. This kind of energy comes up
from a theoretical built, named phantom field, and inevitably has its own
spacetime anomalies such as the phantom black holes. Or else, phantom
black holes are the exact solutions of black holes with phantom fields.

Phantom fields have negative kinetic energy. This constraint is enforced
on the action level by considering a plus sign in front of the kinetic term
of the field. So the action of phantom fields in n-dimensions is assumed to
be:

S =

∫
dnx

√
−g

[
R+

4

n− 2
∂µψ∂

µψ − V (ψ)

]
, (1.1)

where g is the metric, R the Ricci scalar, the factor in front of the kinetic
term is a consequence of the compactification of Brans-Dicke theory in n-
dimensions. More about this certain compactification and the origins of
dilaton and phantom fields, can someone find in [23]. Finally, V is the
phantom potential.

In chapter 2 we will start the analysis of the dilatonic black hole space-
time, extract physical quantities and walk through the equations of motion.
Our effort will go back to the paper of Horowitz and Strominger [16].

Chapter 3 is focused on the same procedure, but we are considering
the phantom case of the field. In particular, via a Wick rotation on the
dilaton, one may derive the corresponding action of the phantom black hole
and solve the corresponding equations of motion in a similar manner. The
analogy would be straightforward. What we are going to do is to combine
the results already existed in the bibliography, and show them in the most
intuitive way we can. In the end, always comes physics, so we need to come
up with the physical quantities of mass and charge. The results which are
going to be extracted are,

Q2 =
(n− 2)(n− 3)2

2(n− 3− β2)
rn−3
+ rn−3

− (1.2)
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M =
r+
2
(n− 3)

[
1−

(
r−
r+

)n−3
] (n−3)2−β2

(n−3)(n−3−β2)

+
(n− 2)(n− 3)

2(n− 3− β2)
rn−3
− (1.3)

of course those expressions are immensely simplified in 4 dimensions
and in more specific cases, sush as spherical symmetry and staticity.

To continue, we just mention that some authors investigate a step fur-
ther and deal with the quintom case, which is a dilaton-phantom mixture.

Thesis is ending in Chapter 4, where we examine the energy condi-
tions and thermodynamics of phantom black holes. Next, we just mention
the intense research of the community on phantom fields, including all
of its extra parts. In particular, the research on dark matter and dark
energy expands from gravity and quantum mechanics to thermodynamics
and experimental processes such as gravitational lensing, and further to
observational data analysis. My hope is that if someone, if not the author
of this thesis himself, wishes to start his own research in these interesting
fields, this thesis will prove itself helpful.





Chapter 2

Dilaton Black Holes

Let us first set up the stage of our work. We are considering a gravitational
action with a dilaton contribution and a Maxwell field. We will perform
the corresponding variations of the degrees of freedom and extract the
corresponding equations of motion. Then we will follow the steps of [8]
and estimate dilaton black hole’s metric. In bibliography we have found
the phantom black hole’s metric calculation through a transformation from
the dilaton’s case. So our steps, is finding the dilaton’s behaviour and then
transform our results in those we need, i.e. the phantom ones.

2.1 Dilaton’s Coupling behaviour

2.1.1 Action’s Variation

In Brans–Dicke theory of gravity, Newton’s constant is not presumed to be
constant but instead 1/G is replaced by a scalar field ϕ and the associated
particle is the dilaton. It should be noted that the dilaton originated from
Kaluza Klein theory as a classical unified field theory of gravitation and
electromagnetism built around the idea of a fifth dimension. Dilaton (or
radion) was an intrinsic component of the metric tensor and since then, it
stands in scalar field theories of gravity on its own.

To cut a long story short, the properties of black holes are modified
when the dilaton field is present and naturally, so does when the phantom
field is present as well. But let us not be hasty, we will come there later.
Some authors say that dilaton changes the causal structure of the black
hole and leads to the curvature singularities at finite radii.

We are going to have a more analytic flow, but anyway be guided by
[8]. So we begin by considering the n-dimensional theory in which gravity
is coupled to dilaton and Maxwell field with an action

S =

∫
dnx

√
−g

[
R− 4

n− 2
∂µϕ∂

µϕ− V (ϕ)− e−
4aϕ
n−2F 2

]
, (2.1)
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where R is the scalar curvature, F 2 = FµνF
µν is the usual Maxwell

contribution, and V (ϕ) is a potential of dilaton ϕ. The parameter α is
an arbitrary coupling constant governing the strength of the interaction
between the dilaton and the Maxwell field as the authors mention. One
should note that the minus sign in front of dilaton’s kinetic term makes
the dilaton automatically inappropriate as a field-candidate for the w < −1
case.

Let us now go through the variation of the action with respect to the
metric, Maxwell, and dilaton field respectively, which will yield 3 indepen-
dent equations. Starting from the variation of the metric we will follow the
same pattern and deal with the 3 main parts of the action separately, as
follows:

δS = δS1 + δS2 + δS3 (2.2)

where

S1 =

∫
dnx

√
−gR, (2.3)

S2 = −
∫
dnx

√
−g

[
4

n− 2
∂µϕ∂

µϕ+ V (ϕ)

]
, (2.4)

S3 = −
∫
dnx

√
−ge

−4αϕ
n−2 F 2 (2.5)

(2.3) is the classical Einstein-Hilbert action, (2.4) contains the dilaton’s
kinetic term and dilaton’s potential, while (2.5) is the Maxwell term cou-
pled with a suitable dilaton exponential, such that the coupling vanishes
at infinity.

Starting from the variation of the classical Einstein Hilbert action we
have

δS1 =

∫
dnx

[
δ(
√
−g)R+

√
−gRµνδgµν +

√
−ggµνδRµν

]
(2.6)

the last term leads to a total derivative which doesn’t contribute to the
equations of motion. So we have

δS1 =

∫
dnx

√
−g

[
−1

2
gµνR+Rµν

]
δgµν (2.7)

from where we will extract the trace reversed Einstein equation, which
we will work on. In particular, by performing the contraction with the
metric on the corresponding Einstein equations, we find that

(Rµν −
1

2
gµνR)g

µν = Gµνg
µν = −R = −T (2.8)
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where T is the trace of the total stress energy tensor. This will greatly
simplify the calculations. Next up is the dilaton’s kinetic and potential
term. We are going through the metric’s variation process.

δS2 = −
∫
dnx

[
δ(
√
−g) 4

n− 2
gµν∂µϕ∂νϕ+ δ(

√
−g)V (ϕ)

+
√
−g 4

n− 2
δ(gµν)∂µϕ∂νϕ

] (2.9)

now through the following equation

δ(
√
−g) = −1

2

√
−ggµνδgµν (2.10)

we may take

δS2 =

∫
dnx

[√
−g 2

n− 2
gµνg

αβ∂αϕ∂βϕ+
1

n− 2
gµνV (ϕ)− 4

n− 2
∂µϕ∂νϕ

]
δgµν ,

δS2 =

∫
dnx

√
−g

[
+

4

n− 2
∂µϕ∂νϕ− 2

n− 2
gµνg

αβ∂αϕ∂βϕ

+
1

n− 2
gµνV (ϕ)

]
δgµν

(2.11)

The second term in the last equation produces a total derivative which
doesn’t contribute in the equations of motion, so we have,

δS2 =

∫
dnx

√
−g

[
4

n− 2
∂µϕ∂νϕ+

1

n− 2
gµνV (ϕ)

]
δgµν (2.12)

Finally we deal with the Maxwell term and variate with respect to the
metric. We can write the S3 term like:

S3 =

∫
dnxδ

[√
−ge

−4αϕ
n−2 Fµνg

µρgνσFρσ

]
(2.13)

So through variation one can get:

δS3 =

∫
dnxδ(

√
−g)

[
e

−4αϕ
n−2 Fµνg

µρgνσFρσ

]
+

∫
dnx

√
−g

[
e

−4αϕ
n−2 Fµνδ(g

µρ)gνσFρσ

]
+

∫
dnx

√
−g

[
e

−4αϕ
n−2 Fµνg

µρδ(gνσ)Fρσ

]
By inserting the equations (2.8), (2.12) and (2.13) with (2.2), we finaly

find the trace reversed Einstein equations, which read:
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Rµν =
4

n− 2

(
∂µϕνϕ+

1

4
gµνV

)
+2e

−4αϕ
n−2

(
FµαF

α
ν − 1

2n− 4
gµνF

2

)
(2.14)

Next we will deal with the variation via the Maxwell field. Only the S3
term is the one which contributes in this variation and yields

∂µ

(√
−ge

−4αϕ
n−2 Fµν

)
= 0 (2.15)

The last equation is provided from the variation with respect to the
dilaton field. So we have:

δS1 = 0, (2.16)

δS2 =

∫
dnxδ

[√
−g

(
− 4

n− 2
gµν∂µϕ∂νϕ− V (ϕ)

)]
, (2.17)

δS3 = −
∫
dnxδ

(
e−

4αϕ
n−2F 2

)
(2.18)

The variation of the dilaton field and potential of (2.17) via (2.10) yields

δS2 =

∫
dnx

√
−g

(
4

n− 2
gµν∂µ(δϕ)∂νϕ+

4

n− 2
gµν∂µϕ∂ν(δϕ)−

dV (ϕ)

dϕ
δϕ

)
=

∫
dnx

√
−g

(
8

n− 2
gµν∂µ(δϕ)∂νϕ− dV (ϕ)

dϕ
δϕ

)
= −

∫
dnx

8

n− 2

[
∂ν

(√
−g∂νϕδϕ

)
− ∂ν

(√
−g∂νϕ

)
δϕ

]
−
∫
dnx

√
−gdV (ϕ

dϕ
δϕ

= −
∫
dnx

√
−g 8

n− 2

[
1√
−g

∂ν

(√
−g∂νϕδϕ

)
− 1√

−g
∂ν

(√
−g∂νϕ

)
δϕ

]
−
∫
dnx

√
−gdV (ϕ)

dϕ
δϕ

= −
∫
dnx

√
−g 8

n− 2

[
∇ν

(
∂νϕδϕ

)
−∇ν

(
∂νϕ

)
δϕ

]
−
∫
dnx

√
−gdV (ϕ)

dϕ
δϕ

=

∫
dnx

√
−g

[
8

n− 2

(
∇µ∇µϕ

)
− dV (ϕ)

dϕ

]
δϕ

Meanwhile, (2.18) is trivially found to be

δS3 =

∫
dnx

4α

n− 2
e

4αϕ
n−2F 2δϕ (2.19)

So finally, taking into account (2.16), (2.17) and (2.19), we have the
following equation of motion:

δS = 0 => δS1 + δS2 + δS3 = 0 => ∇µ∇µϕ =
n− 2

8

∂V

dϕ
− α

2
e

4αϕ
n−2F 2

(2.20)
So (2.14), (2.15) and (2.20) gives as the whole picture of the varia-

tion which we are going to exploit in order to produce the metric for the
spacetime we seek.
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2.1.2 Dilaton’s metric

We will take the most general form of the metric for the static dilaton black
hole. The metric ansatz we are going to use is the following:

ds2 = −U(r)dt2 +
1

U(r)
dr2 + f(r)2dΩ2

n−2 (2.21)

Firstly, the equation (2.15) is easily solved to yield

F01 = Q
e−

4αϕ
n−2

√
−g

(2.22)

since the F01 component is the only non-trivial component of our case.
Q is simply an integration constant (which will assume the role of the
electromagnetic charge). The denominator can be written due to (2.21) as
fn−2, so we will get

F01 = Q
e−

4αϕ
n−2

fn−2
(2.23)

Working out the laplacian operator and taking into consideration the met-
ric and (2.22) equation, the equations of motion (2.14, 2.15 and 2.20) be-
come via trivial mathematical operations, the following ones:

1

fn−2

d

dr

(
fn−2U

dϕ

dr

)
=
n− 2

8

∂V

∂ϕ
+ α

Q2e
4αϕ
n−2

f2n−4
, (2.24)

1

f

d2f

dr2
= − 4

(n− 2)2

(
dϕ

dr

)2

, (2.25)

1

fn−2

d

dr

[
U
d

dr
(fn−2)

]
=

(n− 2)(n− 3)

f2
− V − 2

Q2e
4αϕ
n−2

f2n−4
. (2.26)

There is a problem here. We have four unknown quantites U(r), f(r),
ϕ(r) and V(ϕ), with three equations. So we can’t solve the system in a
straightforward way. Our way out of this conundrum is to exploit the
results of Strominger and Horowitz in their paper [16] where they found an
explicit expression for the n-dimensional dilaton black hole with vanishing
potential.

The metric in equation (11) as far as the aforementioned paper is con-
cerned is the following one,
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ds2 =−
[
1−

(
r+
r

)n−3][
1−

(
r−
r

)n−3]1−γ(n−3)

dt2

+

[
1−

(
r+
r

)n−3]−1[
1−

(
r−
r

)γ−1]
dr2

+ r2
[
1−

(
r−
r

)n−3]γ
dΩ2

n−2

(2.27)

where r+, r− are the two event horizons of the black hole and γ is a
constant which is related with the coupling constant α and the dimensions
n of the spacetime. The authors of both papers [16, 8], agree in the value
of γ which should be:

γ =
2α2

(n− 3)(n− 3 + α2)
, (2.28)

.
Strominger and Horowitz, found the value of γ via boundary conditions

in their model at the horizon and spatial infinity, while Gao and Zhang
agreed on the same value as a final assumption in their theory, where only
by imposing this value for γ, the metric would have the correct form.

We want to express the (2.27) metric in a form similar to the Schwarzschild
case, so we will have to fix the components in order to achieve, −g00 = g11.
This is achieved via the following coordinate transformation,

r(x) =

∫
dr

[
1−

(
r−
r

)n−3]−γ(n−4)/2

, i.e.
∂r

∂x
= r′ =

[
1−

(
r−
r

)n−3]γ(n−4)/2

,

where on goes from (t,r) coordinate system to (t,x), with x variable taking
the aforementioned expression, not to be confused with the 4 dimension
ansatz.

Equation (2.27) takes the form we wanted

ds2 =−
[
1−

(
r+
r(x)

)n−3][
1−

(
r−
r(x)

)n−3]1−γ(n−3)

dt2

+

[
1−

(
r+
r(x)

)n−3]−1[
1−

(
r−
r(x)

)n−3]−1+γ(n−3)

dx2

+ r2
[
1−

(
r−
r(x)

)n−3]γ
dΩ2

n−2,

(2.29)

where one can obtain that g00 = −g11.
We wish to note that Gao and Zhang have also examined the case of the
four dimensional dilaton black hole with cosmological constant [7], and
extracted a metric of the form:
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ds2 =−
[(

1− r+
x

)(
1− r−

x

) 1−a2
1+a2

− 1

3
λx2

(
1− r−

x

) 2a2

1+a2
]
dt2

+

[(
1− r+

x

)(
1− r−

x

) 1−a2
1+a2

− 1

3
λx2

(
1− r−

x

) 2a2

1+a2
]−1

dx2

+ x2
(
1− r−

x

) 2a2

1+a2

dΩ2
2,

(2.30)

where r+, r− are the two horizons of the black hole. α is an arbitrary
constant governing the strength of the coupling between the dilaton and
the Maxwell field in the same manner to our case.

2.2 Dilaton’s charge and potential

Inspired by the two solutions, Gao and Zhang considered the following
metric ansatz for the case of the n-dimensional dilatonic black hole with a
dilatonic potential: ,

U(r) =

[
1−

(
r+
r(x)

)n−3][
1−

(
r−
r(x)

)n−3]1−γ(n−3)

−1

3
λx2

[(
1− r−

x

)n−3]γ
,

f(r) = r2
[
1−

(
r−
r(x)

)n−3]γ/2
(2.31)

The equations of motion for this case can easily be found to be,

1

fn−2
r′
d

dr

(
fn−2Ur′

dϕ

dr

)
=
n− 2

8

∂V

∂ϕ
+ α

Q2e
4αϕ
n−2

f2n−4
, (2.32)

1

f

d

dr

(
r′
df

dr

)
= − 4

(n− 2)2

(
dϕ

dr

)2

r′, (2.33)

1

fn−2
r′
d

dr

[
Ur′

d

dr
(fn−2)

]
=

(n− 2)(n− 3)

f2
− V − 2

Q2e
4αϕ
n−2

f2n−4
, (2.34)

which can now be solved by virtue of the fact that they fixed two of the
degrees of freedom to expressions that would agree with the two known
solutions of the n-dimensional case with zero potential (and zero cosmo-
logical constant) and the four dimensional case with cosmological constant
respectively.

Indeed, it is now easy to calculate the remaining degrees of freedom. In
particular equation (2.33) can be easily integrated and yields the expression
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e2ϕ = e2ϕ0
[
1−

(
r−
r

)n−3](n−2)
√
γ
√
2+3γ−nγ/2

, (2.35)

where ϕ0 is an integration constant assuming the asymptotic value of
the dilaton. From equations (2.32-2.34) the ”founders” of the dilaton black
hole have found the important expressions of V(ϕ) and Q considering the
same value of γ we previously mentioned. The electromagnetic charge Q
can straightforwardly be found to be

Q2 =
(n− 2)(n− 3)2

2(n− 3 + α2)
e−

4aϕ0
n−2 rn−3

+ rn−3
− , (2.36)

while it can be deduced that under these reasonable assumptions, the po-
tential for the dilaton is necessarily of the following form:

V (ϕ) =
λ

3(n− 3 + α2)2

[
− α2(n− 2)(n2 − nα2 − 6n+ α2 + 9)e

− 4(n−3)(ϕ−ϕ0)
(n−2)α

+ (n− 2)(n− 3)2(n− 1− α2)e
− 4α(ϕ−ϕ0)

(n−2)

+ 4α2(n− 3)(n− 2)2e
− 4(ϕ−ϕ0)(n−3−α2)

(n−2)α

]
,

(2.37)

One may verify that the above expressions can indeed be reduced to
the aforementioned known cases under suitable limits (λ=0 for the n-
dimensional dilatonic black hole and n=4 for the four dimensional case
with the cosmological constant respectively).

In the Schwarzschild coordinate system we wish to make use of, the
final expression for the n-dimensional black hole with the above dilatonic
potential is the following:

ds2 =−
{[

1−
(
r+
r

)n−3][
1−

(
r−
r

)n−3]1−γ(n−3)

− 1

3
λr2

[
1−

(
r−
r

)n−3]γ}
dt2

+

{[
1−

(
r+
r

)n−3][
1−

(
r−
r

)n−3]1−γ(n−3)

− 1

3
λr2

[
1−

(
r−
r

)n−3]γ}−1

·
[
1−

(
r−
r

)n−3]−γ(n−4)

dr2 + r2
[
1−

(
r−
r

)n−3]γ
dΩ2

n−2

(2.38)

We see now that when the couling constant between the Maxwell and
dilaton field is zero, then respectively, γ = 0, and then we get in 4 di-
mensions the Reissner-Nordstrom metric as expected. This model fits
good with the string theory background, although it remains a theoret-
ical project. The reason we got involved with the dilaton’s case, is to pass
through to the phantom’s case via a Wick transformation.



Chapter 3

Phantom Black Holes

In this chapter we are going focus on case of the phantom field. As we said
before, compared to the action of the ordinary scalar fields, the phantom
field has the negative kinetic term. To reproduce this term we are going
to follow [14] and make use of the mathematical trick of Wick rotation.

3.1 Via a Wick Rotation

So, with ϕ being the dilaton field, ψ the phantom field and α, β being the
coulping constants in either case, the Wick rotation will be,

ϕ −→ iψ, α −→ iβ (3.1)

which yields the following action

S =

∫
dnx

√
−g

[
R+

4

n− 2
∂µψ∂

µϕ− V (ψ)− e−
4βψ
n−2F 2

]
(3.2)

while the potential of the phantom field via the same transformation
will be, similar to (2.36),

V (ψ) =
λ

3(n− 3− β2)2

[
β2(n− 2)(n2 + nβ2 − 6n− β2 + 9)e

− 4(n−3)ψ
(n−2)β

+ (n− 2)(n− 3)2(n− 1 + β2)e
− 4βψ

(n−2)

− 4β2(n− 3)(n− 2)2e
− 2ψ(n−3+β2)

(n−2)β

]
(3.3)

We straightforwardly observe, how the the action reduces to the Einstein-
Maxwell one when ψ = 0 or β = 0. Now the procedure followed in the
previous chapter will be of use for the case of the metric. So taking into
account the (3.1) transformation, we can write down the metric of the

13
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phantom black hols with cosmological constant in a similar fashion to the
dilaton version.

ds2 =−
{[
k −

(
r+
r

)n−3][
1−

(
r−
r

)n−3]1−γ(n−3)

− 1

3
λr2

[
1−

(
r−
r

)n−3]γ}
dt2

+

{[
k −

(
r+
r

)n−3][
1−

(
r−
r

)n−3]1−γ(n−3)

− 1

3
λr2

[
1−

(
r−
r

)n−3]γ}−1

·
[
1−

(
r−
r

)n−3]−γ(n−4)

dr2 + r2
[
1−

(
r−
r

)n−3]γ
dΩ2

n−2

(3.4)

where r+ and r− are the two horizons of the black hole, and γ, physical
mass M and electrical charge Q are respectively given by

γ = − 2β2

(n− 3)(n− 3− β2)
, (3.5)

Q2 =
(n− 2)(n− 3)2

2(n− 3− β2)
rn−3
+ rn−3

− , (3.6)

M =
r+
2
(n− 3)

[
1−

(
r−
r+

)n−3
] (n−3)2−β2

(n−3)(n−3−β2)

+
(n− 2)(n− 3)

2(n− 3− β2)
rn−3
− (3.7)

where k = 0,±1 denotes the three kinds of topologies of black holes,
torus, an (n-2) dimensional sphere, and hyperboloid respectively. (see [14]
for more.)

3.2 Four dimensional spherical Phantom Black
Holes

The most simple example to deal with is the spherical and four dimensional
phantom black holes. So, setting n=4 and k=1, there occurs the case we
wanted. By means of simplicity the cosmological constant is ommitted
too. So the metric of the previous relationship, taking into consideration
the relationship (3.5), is given by

ds2 =−
(
1− r+

r

)(
1− r−

r

) 1+β2

1−β2

dt2 +

(
1− r+

r

)−1(
1− r−

r

)− 1+β2

1−β2

dr2

+ r2
(
1− r−

r

) 2β2

1−β2

dΩ2
2

(3.8)
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Now, the expressions of the physical quantities are simplified a lot, and
then we have for the phantom field (in a similar way with the dilaton’s
case), the physical mass, and the electrical charge of the phantom black
hole, the following relationships,

e−2βψ =

(
1− r−

r

) 1+β2

1−β2

, Q2 =
r+r−
1− β2

, (3.9)

M =
r+
2

+
1 + β2

1− β2
· r−
2

If the coupling constant β of the phantom field with the Maxwell one, is
zero then we go to the Reissner-Norström solution as it should be expected.
However, if β ̸= 0 there the case differs a lot. Following the analysis by
Chang Jun Gao and Shuang Nan Zhang in [14] , for all β, r = r+ is an
event horizon. The surface r = r− is a curvature singularity except for
the case β = 0 when it is a nonsingular inner horizon. Thus they describe
black holes only when r− < r+.”
One can find that the two horizons r+ and r− locate respectively at

r+ =M +
√
M2 − (1 + β2)Q2,

r− =
1− β2

1 + β2

[
M −

√
M2 − (1 + β2)Q2

]
.

(3.10)

What these equations tell us is that when, β >> 1, a small amount of
electrical charge whould be responsible for a large change in the geometry
close to the horizon. Meanwhile for β ̸= 0 the extremal black hole, where
r− = r+ can never be achieved. Other gravitational quantities, is the
surface gravity which will be,

κ =
1

2r+

(
1− r−

r+

) 1+β2

1−β2

. (3.11)

Thus the surface gravity will never approach zero except for β = 0. For
all β, the surface gravity does not diverge. Since the temperature is pro-
portional to κ, the third law of thermodynamics for black holes still holds
as we are going to explain in next chapter. The transition between black
holes and naked singularities occurs at Q =M/

√
1 + β2. For the phantom

black holes, the extremal value corresponds to the case where the repul-
sive forces of electrical charge and phantom charge can exactly destroy the
event horizon. In other words, dilaton field contributes an extra attractive
force and phantom field contributes an extra repulsive force between black
holes. So for a given M, one needs a smaller Q to destroy the event horizon.
Furthermore the curvature singularity in the phantom case is present only
for 0 ≤ β < 1.
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Now lets go back to recover the Schwarzschild case from phantom’s
point of view. If we consider the case β = 1 then the metric, with the help
of the exponential series, take the following form

ds2 = −
(
1− r+

r

)
e

−r−
r dt2 +

(
1− r+

r

)−1

e
r−
r dr2 + r2e

r−
r dΩ2

2,

with the two horizons being now

r+ =M +
√
M − 2Q2, r− =M −

√
M − 2Q2 (3.12)

The authors of [14] propose the kind of charge named phantom charge
which is a parameter determined only by the mass and the charge. This
one results to be,

P =
1

4π

∫
d2Σµ∇µψ =

1

2
(
√
M2 − 2Q2 −M) (3.13)

As we can see by (3.12) the Phantom Charge goes from −M/2 to 0. Now
the metric simplifies to

ds2 = −
(
1− 2M + 2P

r

)
e

2P
r dt2+

(
1− 2M + 2P

r

)−1

e−
2P
r dr2+r2e−

2P
r
dΩ2

2

with ψ = P
r .

The metric approaches the Schwarzschild case if we set P = 0 as some-
one would expect. It is obvious when you get rid of the charge, you are
leading to the basic case, of a static and spherical black hole. If we go
back to the Newtonian gravitational field now, we will remember, if we
set G = 1 using the natural system of units, that ψN = −M/r where N
denotes Newtonian. So the phantom field will be ψ = P/r, which denotes
then that the Phantom field will have a negative charge. However some-
one can’t make the assumption, that the phantom charge contributes a
long-range, attractive force to the physical mass.

Similar to Schwarzschild case, r = 2M + 2P is the regular event hori-
zon and r = 0 is the curvature singularity. The corresponding Hawking
temperature is

T =
e

−P
M+P

8π(M + P )
(3.14)

This reveals that the corresponding Hawking temperature increases
with the presence of the phantom charge. For the maximum value of elec-
trical charge, i.e. Q = M/ 2 (That is the transition between black hole and
singularity), we have the non-vanishing temperature T = e/(4M).
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3.3 In understanding the Phantom Black Hole

In [14] there exists a chapter named physical realizations where we can see
the exact formation of the phantom black hole, via a theoretical model of
a fluid ball being soaked in the phantom field. One can their understand
the process in which a phantom black hole should be constructed, similar
with the Reissner-Nordström case. Alhtough we won’t get busy with this
situation. What we will see is a few words about the physical part of the
phantom black holes, and whether they or not violate the energy conditions
of general relativity.

As far as the energy conditions are concerned, in [4], we see that a
phantom scalar field itself doesn’t respect the usual energy conditions so
nonsingular solutions would be expected in black holes physics or in cos-
mology. Their they propose a big variety of solutions, and end in a way
where they say:

”Such solutions also lead to the idea that our Universe could be created from
a phantom dominated collapse in another universe, with KS (Kantowski-
Sachs) expansion and isotropization after crossing the horizon. Explicit ex-
amples of regular solutions are built and discussed. Possible generalizations
include k -essence type scalar fields (with a potential) and scalar-tensor the-
ories of gravity”

There, someone can see how the phantom fields may be a part of the possi-
ble cosmological endings. More about energy conditions will be presented
in last chapter.

3.4 Both Phantom and Dilaton fields

In the beginning of this analysis we dealt with the dilaton black hole and
then went into the phantom case, with a Wick rotation. However, there
is no reason why these two kind of fields can’t coexist in the same theory.
Especially, the dilaton-phantom case is being examined in [14]. There, the
authors deal with a combined action of these fields, which reads

S =

∫
d4x

√
−g[R− ∂µϕ∂

µϕ+ ∂µψ∂
µψ − e−2αϕ+2βψF 2] (3.15)

and as we saw ϕ, ψ are the dilaton and phantom fields while α, β their
coupling constants respectively. Following the same analysis, the authors
vary the action with respect to the metric, Maxwell, phantom and dilaton
fields. Then they took the most general form of the metric for the static
spacetime and solve the equations of motion in the end. There, they found
that:
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e2ϕ/α = e2ψ/β =

(
1− r−

r

) 2
1+α2+β2

M =
r+
2

+
1− α2 + β2

1 + α2 + β2
· r−
2
,

Q2 =
r+r−

1 + α2 − β2
.

(3.16)

So we can see with a glimpse that when α2 = β2, revives the Reissner-
Nordström case. While the other cases are α2 > β2 and α2 < β2 where we
get a dilaton like and a phantom like black hole respectivily. There is al-
ways a sign difference before the two coupling constants in the expressions
of the metric and the physical mass and charge. It follows then that the
effect of the phantom field is opposite to that of the dilaton field. There
it comes to enhance this point the paper, [14] where we encounter the fol-
lowing words, which we have already mentioned:

”The transition between black holes and naked singularities occurs at Q =
M/

√
1 + β2 rather than Q = M/

√
1− β2 as in the dilaton case. For the

electrically charged dilaton black holes, the extremal value corresponds to
the case where the repulsive force of the electric charge can exactly destroy
the event horizon (or the repulsive force of electric charge exactly balances
the attractive forces of mass and dilaton). However, for the phantom black
holes, the extremal value corresponds to the case where the repulsive forces
of electrical charge and phantom charge can exactly destroy the event hori-
zon. In other words, dilaton field contributes an extra attractive force and
phantom field contributes an extra repulsive force between black holes.”

There we see again the repulsive force bringing apart even the phantom
black holes, by nature of the phantom fields. We encounter their in a way,
the famous riveting senario of the Big Rip, bringing apart every corner of
space.

3.4.1 A Quintom model for Dark Energy

As we mentioned earlier, current observations seem to mildly favor an
evolving dark energy with the equation of state getting across -1 [20]. How-
ever, neither quintessence nor phantom can fulfill this transition. So the
models of combination of quintessence scalar field and phantom scalar field,
which is called quintom have been developed (from the words quintessence
and phantom fields respectively). As we found in research papers [13], ”os-
cillating Quintom can unify the early inflation and current acceleration of
the universe, leading to oscillations of the Hubble constant and a recurring
universe”. Though oscillating Quintom wouldn’t lead to a Big Rip as a
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phantom menace would expect, with the universe torned apart, neither to
a big crunch, with the universes heat death. The Quintom senario sug-
gest that ”the scale factor keeps increasing from one period to another and
leads naturally to a highly flat universe. The universe in this model recurs
itself and we are only staying among one of the epochs, in which sense the
coincidence problem is reconciled.”

It would be interesting setting here just a note for this topic, because
the quintom model can also be realized in the dilaton-phantom frame. So
if we consider the action in the case of both phantom and dilaton fields we
have:

S =

∫
d4x

√
−g[R− p− 2∂µϕ∂

µϕ+ 2∂µψ∂
µψ − V1(ϕ)− V2(ψ)], (3.17)

Where V1(ϕ), V2(ψ) are the potentials of dilaton and phantom fields which
have been examinded in previous analysis [(see) (2.36) and (3.3)] and p the
Lagrangian for dark matter. Cosmologically, in the Friedmann equations,
one can see that, if we consider a flat universe described by the flat FRW
metric, the equations of motion would be:

3H2 = 8π(ϕ̇2 − ψ̇2 +
1

2
V1 +

1

2
V2 + ρm0α

−3),

ϕ̈ = −3Hϕ̇− 1

4

∂V1
∂ϕ

,

ψ̈ = −3Hψ̇ +
1

4

∂V2
∂ψ

,

(3.18)

where we see again the sign difference between the phantom and dilaton
fields, while dot denotes the derivative with respect to time and α(t) is the
scale factor of the Universe. H ≡ ȧ/a is the Hubble parameter and ρm0 is
the energy density of the dark matter today. So the equation of state for
dark energy would be,

w =
ϕ̇2 − ψ̇2 − 1

2V1 −
1
2V2

ϕ̇2 − ψ̇2 + 1
2V1 +

1
2V2

(3.19)

This equation tells us whether the difference of the kinetic energy between
the dilaton field and phantom field evolves or not. So the difference is
initially positive, then zero, finally negative, then w crosses 1 smoothly.
This is the effect of quintom.





Chapter 4

Conditions of Phantom
Black Holes

4.1 Energy Conditions

4.1.1 A glimpse to the principles

We want to remember in this part the energy conditions in the general case,
and then investigate if phantom black holes discipline in these principles.
So energy conditions are some rules that tells us if a physical system is
truly ”physical”, if it obeys some natural identities of matter, energy and
logic. Even if the logic is the one we have for the behaviour of natural
systems nowadays. Energy conditions are coordinate-invariant restrictions
on the energy-momentum tensor, which takes part in Einstein’s equations.
There from this tensor the theory constructs some scalar-tensor quantities
by contracting it with timelike or null vectors and express some physical
restrictions on the result. This is a point where the fluid like nature of the
stress-energy tensor is indeed very helpful in extracting meaningful results.
So we will set for reader’s facility the basic energy conditions here, as they
are proposed in [9].

• Weak Energy Condition (WEC): The energy density as measured by
any observer with a timelike four-velocity tµ, is non-negative, which
formally can be expressed as

Tµνt
µtν ≥ 0, ∀t : tµtµ < 0 (4.1)

This equivalently means that ρ ≥ 0 and ρ+ P ≥ 0

• Null Energy Condition (NEC): expresses the requirement that the
geometry has an attractive effect on null geodesics,

Tµν l
µlν ≥ 0, ∀l : lµlµ = 0 (4.2)

21
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where lµ is any null four-vector. This is a straightforward generaliza-
tion of the WEC. The energy density may now be negative as long
as there is a compensating positive pressure.

• Strong Energy Condition (SEC): expresses the requirement that the
geometry has an attractive effect on timelike geodesics.

Tµνt
µtν ≥ 1

2
Tgµνt

µtν , ∀t : tµtµ < 0 (4.3)

where T is the gravitational trace of the stress tensor T ≡ gµνTµν .

• Dominant Energy Condition (DEC): This energy condition refers to
the current density: Jα = −Tαβ tβ, i.e. the energy density current
as seen by an observer with 4-velocity tµ. Jα should be causal and
future directed for all timelike and future directed tα. Since tα is
timelike and future directed, the above conditions are mathematically
expressed as follows

Jαt
α ≤ 0 and JαJ

α ≤ 0 (4.4)

which yields the DEC as a set of the two requirements

Tµνt
µtν ≥ 0 and TµνT

µ
α t
νtα ≤ 0 ∀t : tµtµ < 0 (4.5)

Where the first one is the Weak Energy Condition.

The most physically reasonable condition is the Dominant Energy Con-
dition (DEC), which is what allows one to prove that energy can’t prop-
agate faster than the speed of light. Sean Carroll then pointed out that
DEC would exclude the w < −1 possibility. So going back to the words
of its article called ”Phantom Energy”[6] ”people were happily ignoring
w < −1 a priori” as they believed that this occasion was breaking causal-
ity, we suppose. Although, Robert Caldwell, had another idea on, when
investigating the ”phantom menace”. [5].

4.1.2 Phantom’s Energy Conditions

The idea of Robert Cladwell was the following: have a scalar field rolling
in a potential, but give it a negative kinetic energy. That means that the
field tends to roll up the hill to the top of the potential, rather than rolling
down to the bottom. The energy density thus tends to increase, implying
w < −1. Caldwell called his idea ”phantom energy,” both because the
Phantom Menace had just come out (the first episode of the movie se-
ries Star Wars) and also because negative-kinetic-energy fields also appear
in the context of quantized gauge theories, where they are called ”ghost”
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fields. If w is less than -1 and constant, the energy density grows without
bound and everything in the universe is ripped to shreds at some finite
point in the future. This is the idea of the Big Rip, however noone tells
us that w won’t variate and change value in the nick of time, because then
the Big Rip senario would go away.

DEC violation

From the above we see that in a way the phantom fields violate the Dom-
inant Energy Condition, if someone imagines how it breaks the common
sense, i.e. the causality of the energy density, for a field to run up to
an uphill potential. This nature of physics would be something new, and
changes things as we know them. So by then it is where the the phantom
fields are a candidate in dark matter-energy and quintessence theories.

WEC violation

Even from the begining of this thesis, one could have noticed the violation
of WEC. The first point where a sharp mind would stare, was in the intro-
duction of dilaton and phantom. Both of them own their existence in string
theory and Brans-Dick extensions in Einstein’s work. Violation of WEC is
one of the natural consequences of string theory. But lets investigate the
case from ”another” point of view.

If we go to the basics of the dark energy we’ ll see that dark energy it is
a component with a positive energy density ρ = 0 and a negative pressure
p < −(1/3)ρ. This dark energy would be either of the form of a vacuum
energy with p = −ρ either a dynamically evolving scalar field with negative
pressure. By definition, phantom energy is being proposed as ρ+p < 0. In
this case the cosmological phantom energy density grows at large times and
disrupts finally all bounded objects up to subnuclear scale, and violates by
definition the weak energy condition which states that ρ+ p ≥ 0.

NEC violation

As we saw the energy density in a rolling up potential tends to increase.
However, in [21] we can see that (4.2), the NEC, can be seen through
the conservation of the covariant energy-momentum tensor, ∇µT

µν = 0.
Through cosmology, and Friedman equations, we can read this equation
as,

dρ

dt
= −3H(ρ+ p). (4.6)

Rubakov says, ”Thus, the NEC implies that energy density always de-
creases in expanding Universe” as we can see from the minus sign in the
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above equation. Phantom fields so seem to violate the most basic energy
condition, the NEC, because if this one is violated then in a ”chain reac-
tion” all the other conditions will be violated too.

Their is a wide range of papers and investigations, which propose scalar
tensor-theories and ways in which the dark energy seem to violate the NEC-
and approach de Sitter from below- the phantom region. In [11, 21] some-
one can investigate more and more scalar tensor theories, with or without
extra degrees of freedom (as there is in dilaton’s or phantom’s case), which
violate some of the energy conditions.

4.2 Black Hole Thermodynamics

Except from the energy conditions, which are a measure in the minds of
the physicist, for a physical theory to be acceptable for research, there are
the thermodynamic laws of black holes too, which we have to test in the
phantom black hole’s case.

As we did in the previous subsection we are going to mention the laws
of black hole thermodynamics, and then see what happens in the phantom
black hole case. Our reference for the following is [9]

• Zeroth law: The surface gravity of a stationary black hole remains
constant on the horizon. A system in thermal equilibrium will have
settled to a stationary state, corresponding to a stationary black hole.
In a few words, the temperature of a body in thermal equilibrium is
constant all over the body.

• First law: If a stationary black hole of mass M, angular momentum J
(and electric charge Q) is perturbed so that it settles down to another
black hole of massM+MδM , angular momentum J+δJ (and charge
Q+), then.

δM =
κ

8πG
δA+ΩHδJ(+ΦHδQ) (4.7)

The above equation yields, in principle, the concept of conservation
of energy

• Second Law: In any physical process, the area of the black hole does
not decrease. However, in the general case this can be true only if
spacetime does not violate the null energy conditions (NEC). In ther-
modynamics, the second law states in a thermodynamic process, the
entropy of an isolated system cannot decrease, which indeed verifies
our understanding of considering the area of the black hole as its
entropy.

• Third Law: No physical process exists that allows one to reach an
exactly extremal black hole. An extremal black hole have vanish-
ing surface gravity, which implies that their temperature may reach
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absolute zero. Recalling the third law of thermodynamics: It is im-
possible to reach the absolute zero temperature state with a finite
number of thermodynamic steps. We can go to zero temperature
asymptotically, but we cannot reach it.

4.2.1 Phantom’s thermodynamic conditions

2nd law violation

One may have already noticed that in the phrase of the second law, men-
tioned above, it is being proposed that this law is true only if the NEC isn’t
violated. Although, we have already seen that this case isn’t the one which
fits with the phantom black hole manner. We have seen that phantom field
has important consequences on the properties of black holes. Babichev,
Dokuchaev and Eroshenko [2] have found a very interesting feature, that
the mass (and consequently the entropy) of a black hole decreases in such
a process as an accretion of phantom fluid onto a black hole. This one
is similar to the result of Gao and Shuang. This result comes in contrast
with the second law of thermodynamics which states that the entropy of an
isolated system in a thermodynamical process, cannot decrease. Now since
the flow is outwards all the time in the expanding Universe, the authors
conclude that at some times, the phantom black holes would be evaporated
completely. And this is why they are part of the phantom fields senario,
the Big Rip. Babichev and his partners took it a step further and found
the ”law” of the black hole mass evolution through time.

M =Mi

(
1 +

Mi

M0τ

t

τ − t

)
(4.8)

where τ is the time of the ”doomsday”, Mi is the initial mass of the black
hole and M0 is a constant depending on the accretion flux A and the
coupling constant α. The diminishing of a black hole mass is caused by
the violation of the dominant energy condition, which includes the WEC
, ρ + p ≥ 0, as a principal assumption of the classical black hole ‘non-
diminishing’ theorems. The possible physical interpretation of a black hole
mass diminishing is that accreting particles of phantom scalar field have
a total negative energy. The similar negative energy particles are created
in the Hawking radiation process and participate the Penrose black hole
rotation energy extraction mechanism.

3rd law conservation

We have already mentioned about the third law of black hole mechanics.
We have seen that for large coupling constant, (β in the equations of previ-
ous sections), a small amount of electrical charge would make remarkable
change on the structure of spacetime. In particular, we have mentioned
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that, for every value of the coupling constant β, taking part in (3.11), the
surface gravity does not diverge. So extremal black holes which have van-
ishing surface gravity can never be achieved in the phantom case, so the
third law of thermodynamics for black holes is remedied. Another clue
is that for β ̸= 0 the extremal black hole, which exist in the case where
r− = r+, can’t be achieved. The case of r− = r+ necessarilly leads to
β = 0 which means no coupling constant, no phantom field and thus, the
original Reissner- Norström spacetime is recovered, which, as we know, the
extremal black hole case, violates the concept of the third thermodynami-
cal law, and is being regarded as a theoretical toy.

A note would be that in the dilaton, for β < 1 the surface gravity goes to
zero in the extremal limit, for β = 1 it approaches a constant and for β > 1
it diverges, which propose a new investigation channel. However we won’t
deal with it.

4.3 About Constraints

Phantom black holes, phantom energy, phantom fields etc. are very in-
teresting topics, with a big amount of papers concerning them. However,
the nature of physics needs experimentally questionable theories, and so
constraints do exist in the theories. Although, scientists did not stop at
the weakness of w < −1 to describe physics, due to WEC violation. If they
would, nothing of the above would have been existed. The present acceler-
ated expansion of the universe seems to be an experimental fact, since 2003,
when data from distant type Ia supernovae [20] have been corroborated by
those from the cosmic microwave background from WMAP observations.
[3]. Furthermore large scale structure (LSS) brings further cosmological
data. These three experimental-cosmological ways of seeing the know-how
of the cosmos, allowed the theory of phantom energy and therefore phan-
tom black holes to exist, as so they did in many other quintessence theories.
These cosmological data, set the constraints for the equation of state for
dark energy and so physicists saw the possibility of wQ < −1, being a real
one.[15]

Recent papers, after 2016 use another way to constrain the model param-
eters, the Baryonic Acoustic Oscillations, coming from the Planck 2015
results. Planck 2018 seem to favor phantom models from the observational
results. In addition, the cosmological perturbations have been a useful tool
for cosmologists. They predict the matter distribution that can be com-
pared with the observations. The predicted observables within the cosmo-
logical perturbations theory have been widely used to test several models
of dark energy, as well as dark energy-dark matter interacting models and
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f(R) modified gravity.

The test for observational constraints, goes long way through the cosmo-
logical data of the aforementioned methods. Phantom black holes could
exist, only if phantom fields and all about phantom models could exist. So
the constraints, are the same. We mention a few papers, which investi-
gate recent observational data, and the constraints which they contribute.
[10, 1, 17]





Chapter 5

Conclusion

Concluding what we have dealt with in this review, the phantom field
considered has some great features because of the negative kinetic energy.
Using the phantom field, we have constructed through the dilaton’s case the
exact solutions of electrically charged phantom black holes with the cosmo-
logical constant. We have seen, how one can get the Reissner-Nordström
and the Scwarzschild metric, going in the classical situations of black holes.

We went from dilaton black holes to phantom black holes with a Wick ro-
tation, and examined the differences between ths kind of spacetime anoma-
lies. We dealt with the phantom black hole’s metric and special features
such as surface gravity and the scenario of extremal black holes. Even if
we didn’t make a great analysis of this part, we mentioned the quintom
case and its possible cosmological consequences.

The energy conditions of phantom black holes is an important aspect which
we encountered and takes a crucial role on how we imagine those gravita-
tional anomalies, as being a candidate for dark matter. Violation of NEC,
tests our understanding of phantom’s nature and makes phantom black
holes much different from simple black holes. As they seem to evaporate
and end their lives in the Big Rip senario, thermodynamics of phantom
black holes seem to bear some differences with the classical black holes,
when someone comes up with the violation of the second law of black hole
thermodynamics. In the end we slightly mentioned some observational
methods of cosmological data and observational constraints in phantom
theories, at the availability of whoever wants to research more.

There is a huge amount of papers and analysis in this topic which goes from
gravitational quasinormal modes, [18], experimental methods, as gravtita-
tional lensing in phantom black holes [12] , and a way to another huge
topic, the influence of phantom fields in Cosmology. There are many re-
search to be made so forth, and its going on, in a theoretical level, such
as investigating the thermal stability and criticality of those systems[22]
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or the research of wormholes in modified f(R) gravities sourced by these
phantom scalar fields [19].

The good news is that more and more precise observational results are
being collected from large research groups and research programms, while
the theoretical background flourish every year passing. Ending this thesis,
relevant to phantom black holes and the phantom nature generally, we have
to mention that dark matter and dark energy still remains a mystery. here
are more to be investigated in the corners of universe’s future and its own
acceleration, whether phantom scalar fields have to be blamed or not.
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