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Abstract

This work deals with parametric resonance which poses a great danger especially for
container ships sailing in following or head seas. As a parametric resonance phenomenon,
parametric roll is characterized by a periodical alteration of one of its characteristics, in
this case the restoring ability of the ship. In this diploma thesis, important parameters
that affect the instability of the ship are discussed. Also, the way in which the problem
is modeled to find the ship’s response to roll is presented. The ship used for this study,
as a sample ship, is a large containership, with Loa = 250meters.

The response of the ship is found by solving the one degree of freedom differential
equation of rolling motion. The value of the righting arm, hence the restoring term, is
derived from the equilibrium of the ship in the pitch and heave motions (pseudo-static
model or else called 1.5 D.O.F.), for each specific time instant and position of the ship on
the wave.

After constructing the numerical model and selecting the appropriate discretization of
the hull geometry to solve the hydrostatic equilibrium at each position, the information on
the form of the free surface is selected. The waves are irregular one-directional following
waves. The free surface elevation is approximated by the random phase model. The
different harmonic frequencies are correlated with the corresponding wave heights by a
specific energy spectrum (in particular the Jonswap spectrum).

Specific cases were selected for consideration in order to construct a stability diagram,
with the values of the significant height and the ratio a = 4 ω0

2

ωep
2 with the encounter

frequency corresponding to the peak period. The diagrams were constructed for a different
range of ship’s forward speed and sea states. The results showed that, there are regions of
instability, of which a few are cases of capsizing. These regions are narrower and generally
shorter than those found in regular waves. From the data extracted we could say that the
areas of instability correspond to lower ship speeds. In addition, for speeds over 12 knots
there was no parametric roll observed at all.

Parametric resonance is a dangerous phenomenon that can lead to large roll angles,
and cause severe container losses and economic damage. From the results of this thesis it
is obvious that in irregular waves parametric roll occurs at a lower frequency. However,
in cases where it occurs it can cause large roll angles and even capsizing.

As the phenomenon of wave randomness in combination with dynamic stability is
a complex one, further studies are needed to provide a more complete picture of the
occurrence of parametric roll in random waves.
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Chapter 1

Introduction

In the last decades, we have seen many big vessels (most of them being containers), suffer
from sudden severe rolling motion. Potential effects of this phenomenon are: unpleasant
accelerations for the crew members, the containers and lashing system are placed under
extreme stress, container loss, exposure of the vessel’s propulsion system to varying loads
and even can lead to capsizing of the vessel.

This phenomenon is called parametric rolling and it belongs to the family of parametric
resonance phenomena of the dynamic stability of the ship. What is this phenomenon but
also why and under what circumstances is it considered a problem?

Parametric roll has been recognized by naval architects for more than fifty years. It is
described by spontaneous rolling motions when the ship travels in head or following seas.
Although the disturbance is in the longitudinal direction (following or head seas) of the
ship, the ship’s response to roll is in the transverse direction. This is a result of dynamic
instability of the motion of the ship, due to the variation in the transverse stability of the
ship as it moves in these types of waves. So when a small initial disturbance occurs in
roll (i.e. gust wind), an oscillatory rolling can be triggered. This, as already mentioned,
can grow to amplitudes that may cause the ship to capsize.

At first, parametric rolling has historically been of practical concern for smaller vessels

(a) Disasters form the APL CHINA
accident [1]

(b) Svendborg Maersk, aft deck at arrival
in Malaga [2]

Figure 1.1: Pictures of the casualties from the APL CHINA and
Svendborg Maersk containerships

1
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(such as coasters and fishing vessels) of low or marginal stability in following seas. In the
1990s, however, there has been an increase in accidents due to parametric instability of
larger ships, such as containerships, and even cruise ships. These ships had a hull form
characterized by great flare in bow, and wide flaring in stern sections. One of the major
accidents that occurred was the APL CHINA in October 1998. APL CHINA was a post-
Panamax, C11 class containership, which encountered extreme weather and sustained
extensive loss and damage to deck stowed containers, as the ship reached as great as
35 deg to 40 deg rolling angles, while extreme pitching occurred simultaneously. This
accident was one of the first to initiate research model tests and numerical analyses [3].

Figure 1.2: Examples of lashing bridge damages and container losses,
occurred in MAERSK ESSEN accident [4]

And even in more recent accidents, losses have been reported on ships linked to para-
metric instability. Some examples include the accident of the Svendborg Maersk on 14
February 2014, when it was sailing under heavy weather conditions [5]. At first, the
master reduced speed and changed heading into the wind and sea to minimize rolling.
After two hours the vessel suddenly rolled to extreme angles of 38 deg three to four times,
without any warning. And even after three hours had passed, the vessel experienced again
rolling over 41 deg. After investigation, the casualties were up to 600 damaged contain-
ers, more than 500 lost at sea and damage to other equipment was also reported. Later
studies showed that the master unknowingly exposed the ship to conditions that led to
parametric instability.

More recent incidents include the accident of the containership CMA CGM G. Wash-
ington [6]. During heavy weather on the passage from Xiamen to Los Angeles on 20
January 2018. The containership lost 137 containers as three container bays collapsed.
The loss was due to a 20 deg rolling angle, which was later investigated and found to be
due to parametric instability. Another incident occurred on a voyage from China to Los
Angeles on the ship Maersk Essen on 16 January 2021 [7]. The number of lost containers
was reported at 750. The investigation later done, conclude that the ship most likely ex-
perienced parametric resonance with large rolling angles building up during a six-minute
period.

These accidents, and many others, were the beginning for the marine community to
reflect and start to consider parametric instability as a real risk. Over the years, many
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theoretical and experimental papers have focused on dynamic stability in general and
parametric rolling in particular, as discussed to some extent in the literature review.

So as a brief mention, the factors that may cause parametric roll to occur are:

1. The direction of the waves (following, head, or quartering sea),

2. The wavelength concerning the length of the ship,

3. The hull geometry of the ship. For instance a flared hull increases the variation in
changes in the stability when the position of the waves (crest and trough) changes
the waterplane area and buoyancy,

4. Low roll damping due to small or no bilge keels,

5. The loading condition of the ship, and

6. Vessel’s speed (corresponding to the encounter period of the ship)

In more detail, parametric roll can be explained by the following phenomenon. The
stability of the ship is somewhat different for following or head waves than in beam waves.
When the middle of a ship is on the crest of the wave, the surface area of its waterplane
is reduced compared to still sea state. In contrast, the surface area of the waterplane
increases when the ship is in a wave trough. In both cases, this effect is most pronounced
when the length of the wave is almost equal to the length of the ship. This, somewhat
periodically variation of the waterplane area, affects the restoring energy in rolling motion.
So as stated above, a small distribution may lead to big rolling angles, due to the dynamic
instability of the motion of the ship.

The above condition is mainly satisfied when the wave is regular and has a clear
periodicity and alternation between crest and trough. But in a real sea state, normal
waves are not encountered frequently. Waves in reality are one of the most complex and
unpredictable phenomena in nature. As harmonious and peaceful as they can be, they can
also become destructive and tumultuous. This is why it is not easy to achieve a complete
understanding of the fundamental characteristics and behavior of waves. If we wanted
to observe the waves of the sea, we would find that they have an irregular form. There
consists of small and large peaks, which have different directions, collide and create foam
or merge harmoniously and create different wave patterns.

The foundation of a better understanding and modelling of the waves was introduced
by Sverdrup and Munk [8], who clearly understood that sea waves are composed of large
and small waves. They introduced the concept of the significant wave, which was based
upon the understanding of sea waves as a random process. Later on, in the early 1950’s a
group of American oceanographers, headed by Pierson, formed the basis for the recogni-
tion of the irregular nature of waves, as they introduced the idea of the energy spectrum
as a basic tool for describing the irregular sea. At first, while the idea of the spectrum was
common knowledge among oceanographers, it was considered complex among the wide
circle of engineers. Over time, however, this idea became recognized for its importance
and assimilated into the engineering community, to the point that it is now commonly
used. The use of this method in applications involving floating or fixed platforms and
ships can now give a clearer picture of the actual phenomenon and is widely used in
studies and numerical simulations.
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Finally, it would be impossible not to mention the regulatory background. Initially,
the stability criteria covered only the static behavior of the ship (A.167 [9]). But it was
subsequently shown that the static-type criteria do not cover all the ship’s conditions
satisfactorily. In 1985, the so-called ’weather criterion’ was introduced, which took into
account the effect of the wind and the ship’s inclination angle to some extent. All of the
above were assimilated into a single code (the Intact Stability Code) in November 1993
(resolution A.749(18))[10]. Later in 2008, the Maritime Safety Committee adopted the
International Code in Intact Stability[11], which contains the above for the intact sta-
bility of the ship, including both mandatory requirements and recommended provisions.
The code describes, in addition to the mandatory regulations, proposals concerning the
dynamic stability of the ship. There are also guidelines for masters on how to avoid para-
metric instability in following and quartering seas [12]. Until recently, the IMO has been
working on the creation of performance-based criteria concerning dynamic phenomena, in
order to assess the stability of the ship in conditions regarding parametric roll, excessive
acceleration, pure loss of stability, surf-riding/broaching and others [13].

Although awareness of dynamic stability has increased in recent years, because it is a
multifaceted and challenging problem, there is still room for research and progress towards
a better understanding of it.



Chapter 2

Literature Review and Thesis Objective

2.1 Literature Review
A general reference has already been made to what parametric instability is and what
factors affect it in a general sense. As early as 1860’s, researchers such as Froude and
Reed had observed the change in the righting arm when ships were traveling in large
waves [14]. William Froude spotted a ship roll-heave coupling, a phenomenon similar to
parametric roll. This phenomenon was consisting of heave oscillations at the heave natural
period, stimulated by the small changes in buoyancy force caused by rolling motion, which
occurred at twice the roll frequency.

Later, in 1938, Kerf in Germany stated that in a following seaway the roll-righting-arm
of a ship can become seriously dependent on its position relatively to the following waves
[15]. This observation was based on the change of the stability, which decreases when the
mid of the ship is on the crest of a wave, and increases when it is on a wave trough. This
theory was subsequently confirmed by experiments until, in the 1950’s, Professors Paulling
(in the USA) and Wendel (in Germany) attributed some accidents to the phenomenon
of righting arm variation combined with a reduction in the restoring torque when large
rolling angles occur [16].

Paulling et al. in 1959 [17], investigated the nonlinear equations of motion of a ship
having three degrees of freedom (heave, pitch, and roll). The nonlinear parts were all of
second order. His study showed that instability can occur in any of the three degrees of
freedom, when a distribution occurs in one of the other two degrees. Instabilities occur
when the natural frequency in the unstable motion is almost half the natural frequency
of the excitation motion or when these natural frequencies are almost equal.

Around the same time, Professors Grim [18] and Kerwin observed that there is a
periodic variation of the metacentric height in following waves. Their observation resulted
in a description of the rolling motion by the differential equation of "Mathieu’s", or else
called parametric. This equation is amenable to numerical solution and assumes a linear
relationship between the rolling angle and the metacentric height.

The first experimental observation of parametric roll was done by Paulling, Kastner,
Sigismund, et al. (1972) [19] in San Francisco Bay. These experiments shed a light on the
mechanism of capsizing in heavy seas. The models examined were strongly influenced by
the effect of quartering or following seas, as they were appeared to be affected by pure
loss of stability, and broaching.

5
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Initially the concern with parametric roll was mostly for smaller ships. For example in
the work by Umeda, Hamamoto, Takaishi, et al. (January 1995) [20], models of two types
of ships were examined, a pure seiner and a small containership with length of 150 meters.
The experiments were carried out in both long and short-crested irregular waves and the
results showed a link in capsizing in the cases of short-crested following and quartering
seas. However, when the post-Panamax APL China (Type C11) containership encoun-
tered a severe storm and suffered heavy losses of containers and damage to machinery,
due to the casualties, further research and investigations were initiated by researchers
and regulatory authorities. These investigations were either related to the ship itself or to
ships of similar shape and size. The study by Pesman and Taylan [21] indicated that a 261
meter long containership can exhibit parametric instability in both head and following
seas with response angles of 30 and 20 degrees respectively.

In further studies, researchers such as Spyrou (2000) [15], Neves and Rodriguez (2006)
[22], Bulian (2005) and Neves, Perez, Lorca, et al. [24] focused on nonlinear aspects and
effect of changing frequency range on parametric roll motion. A model with 3 degrees
of freedom could be used to estimate the ship’s response. Most of the above authors
have worked on 3-DOF nonlinear models. In this case, all three equations of motion are
solved, which are coupled (assuming surge, sway and yaw to be restrained). In this case
the resulting equation contains a large number of parameters (related to geometric and
hydrodynamic aspects of the problem), the precise and simple determination of which
is questionable [24]. A highly non-linear 3-DOF analytical system, although suitable for
rapid scheduling numerical simulations, can hardly be addressed by analytical technique,
due to the cumbersome calculations required.

Other researchers have devoted their attention to finding the most appropriate form
for introducing the restoring term into the differential equation of roll. In addition to
Mathieu’s model which considers that the GM varies sinusoidally between two extreme
values, there are other approaches that can be used. It is not always necessary for GM
to be approached sinusoidally, as long as its variation is periodic. An example of this
assumption is the study done by Shin, Blenky, Paulling, et al. [25], where they consider
the linear relationship between the rolling angle and the metacentric height, but calculated
individually the GM values for successive instantaneous wave positions along the ship.
This is possible by calculating the basic characteristics of the varying stability as the ship
moves through longitudinal waves. In that study the heave and pitch motions of the ship
are neglected in the calculations. Only the geometry under the wave and how it changes
form as the ship moves through, is considered.

A similar logic to Shin, Blenky, Paulling, et al. [25], was followed by Ms. Dousia [26]
in her diploma thesis, of which the present study can be considered a continuation. Ms.
Dousia proceeded in numerical calculations, which provided the local value of metacentric
height while the ship passes through each position on the wave. Later a single-degree of
freedom in roll with linear damping, characterized by linear restoring term was used for
the calculations. The resonance of the ship was calculated for linear and for higher orders
Stokes waves (up to 5th order).

A different approach is, instead of changing the metacentric height, to directly address
the righting arm of the ship. The simplest approximation formulas, like for instance
GZ(ϕ) = GM ϕ (1 − ϕ2), see Belenky, Bassler, and Spyrou (2011) [27], produces so
rough estimation of the GZ characteristic that applied in the rolling equation they cannot
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achieve a sufficient accuracy of the results of rolling simulation. One of the most popular
approach is the application of a polynomial power series. Many authors use the fifth to
ninth order polynomials (Contento, Francescutto, and Piciullo, 1996 [28]; Surendran and
Venkata Ramana Reddy[29], 2003; Taylan 2000 [30]) with only odd powers of the angle
of heel due to a symmetrical character of the GZ curve. A limited number of authors,
such as Bulian [23], apply higher order polynomials like seventh or ninth, and rarely even
higher.

Perunovic [31] calculated the parametric roll response in a container sailing in irregular
head seas. She uses a a single degree of freedom rolling differential equation. For the
calculation of the restoring term, she also estimates GZ as a function of angle. She
examines three methods for the computation of the restoring term.

1. The first method, is by calculating the instantaneous GZ obtained by the equilibrium
of gravity and buoyancy forces at each time step.

2. With the second method, the GZ curve is fitted with fifth order, non-linear function
of roll and relative position the ship according to the wave’s crest.

3. Finally, the third method is by using the effective Grim wave.

In addition, for the representation of the irregular waves, she uses the energy spectra
approach (for methods 1, and 2), and most specific the JONSWAP wave spectrum. For
the third approach she uses the effective wave spectrum.

In this study it was chosen to use a pseudo-static model (similar to Bulian analysis).
The GZ, is calculated from the equilibrium (by heave and pitch), for each time instant and
entered into the differential equation (as stated in the paper Perunovic [31]). Finally, the
differential equation of roll with one degree of freedom is solved for following seas. The
remaining terms of the differential equation (terms of inertia and damping) are calculated
in the same way as in the work of Ms.Dousia [26]. The irregular waves are calculated with
the energy spectral approach as already done by many researchers, such as Shin, Blenky,
Paulling, et al., [25], and Bulian, Francescutto, and Lugni [32].

2.2 Thesis Objective-Contributions
The phenomenon of parametric instability is a dynamic phenomenon. And while for
regular waves, there are methods for finding the instability regions, in real sea states
the whole picture is not yet clear. There are guidelines for captains to understand the
phenomenon and to take precautions to avoid the occurrence of large angles [12]. However,
accidents still happen, as the shipbuilding community still relies more on the human factor
to avoid such cases. This is why the second generation criteria have been developed in
an attempt to reduce the occurrence of parametric instability, but now with a regulatory
background, which requires knowledge and expertise.

In this thesis, an attempt is made to construct the so-called stability diagrams or
otherwise Ince-Stutt diagrams, but for irregular seas. These diagrams will show the areas
of instability as derived from the ship’s response to random waves. However, to find the
responses of the ship in rolling motion, it is essential to construct a numerical model
to solve the differential motion of the ship. It is therefore chosen to use a pseudo-static
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model, in which instead of solving all three coupled equations of motion of the ship (heave,
pitch, and roll), the roll motion is modelled dynamically using a single degree of freedom,
whereas the additional half DOF indicates that the coupling with heave and pitch is taken
into account by means of hydrostatic calculations without considering dynamic effects. In
this way, the model of the differential equation will have a non-linear relationship between
the inclination angle and the righting arm.

This approach is interesting because the actual righting arm will be implied at each
point in time. Also because the model is nonlinear it will be possible to calculate the
maximum response angle of the ship. In this way, the intensity of the instability and
whether it leads to capsize or not will be shown.

Further, the random phase model will be used to represent the irregular wave. Due
to the randomness of the phenomenon, 16 ship responses are calculated for each case,
resulting from 16 different runs of the experiment, i.e. 16 randomly generated lists of
phase angles.

Therefore, in this thesis, all these aspects are explored, trying to bridge the non-
linearity of the dynamic phenomenon called parametric roll with the randomness of the
waves. This attempt is a small insight into the actual phenomenon, which is multidimen-
sional, depends on many parameters and can be studied from many aspects.

2.3 Thesis Structure
In Chapter 3 (Theoretical background), the theoretical groundwork of this thesis is laid;
which include the static stability, a brief description of the intact stability criteria, the
physics underlying parametric roll and the corresponding differential equations describing
it. Then there is a brief mention of the theoretical backround of the random waves, and
the energy spectra.

In Chapter 4 (Hydrostatic Equilibrium and Hull Discretization), the method for the
computation of the hydrostatic equilibrium, the validation of the accuracy of the model
and the procedure for selecting the appropriate discretization of the hull geometry are
described.

Chapter 5 (Differential Equation Model), presents the form of the differential equation
for the parametric roll, and how it was modelled in the code. Next, in section 5.2, the
application of the model for regular waves is presented and two stability diagrams are
obtained for specific cases.

Chapter 6 (Modelling Irregular waves) describes how random waves are modeled. In
addition, the logic behind the choice of the spectrum and its characteristics is explained.

Finally, in Chapter 7 (Results and Discussion), the results for the different cases for
which the stability diagrams were constructed are presented. An attempt is made to
interpret the results. Overall, the conclusions and suggestions for future work are listed
in Chapter 8.



Chapter 3

Theoretical background

3.1 Definition of Equilibrium and Stability of a ship

3.1.1 Equilibrium of a floating body

A ship is a complicated structure that sails in the sea, but in fact, it is nothing less
than a floating body that must follow specific equilibrium rules. A body is said to be
in equilibrium if it is not subjected to accelerations. As dictated by Newton’s second
law 1, the force on an object is equal to its mass times its acceleration. As a result, if
the sum of all forces acting on that body is zero and the sum of the moments of those
forces is also zero, then the body is in equilibrium. Regarding a floating body, such as a
ship, two forces are always applied on it: the weight of the body and the buoyancy force.
Two principles should be implemented, for equilibrium equations to be formed.The first
condition for equilibrium, which is the one regarding the sum of forces, is expressed as
Archimedes’ principle. The second condition, regarding the sum of moments, is stated as
Stevin’s law [33]. In the paragraphs that follow, it will be explained how these principles
lead to a better understanding of the ship’s stability.

According to Archimedes’s principle, a body immersed in a fluid is subjected to an
upward force equal to the weight of the fluid displaced. Let’s assume that a body is floating
in a fluid and the wetted surface area is S. To find the force acting on the surface, it is
necessary to integrate the pressure distribution over the surface. As the wetted surface
is more likely to be curved, the integration will be done over a vector element ds. The
pressure force acting on the element of area ds, is given by

¯dFB = −p d̄s (3.1.1)

, where the minus sign indicates that the force acts on the area in the direction opposite
to the normal area. Therefore, the resultant force, called buoyancy, is calculated with the
following formula [34]:

F̄B = −
∫∫

S

p ds (3.1.2)

1
∞∑

n=1

F⃗ = ma⃗, Newton’s second law states that, if there is a net force F⃗ on a body with mass m, the

body accelerates in the same direction as the net force with a⃗

9
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Using divergence theorem expression (3.1.2) can be written as a volume integral over
the submerged volume of the floating body.

F̄B = −
∫∫∫

V

∇p dV (3.1.3)

The proof of (3.1.3) formula exceeds the purpose of this diploma thesis. When the floating
body is in hydrostatic equilibrium, the buoyancy equals the weight of the body. Assuming
that the submerged body is a ship, then the weight of a ship, in any given loading
condition, equals the weight of the fluid which is displaced, called Displacement ∆. For
the corresponding volume of the hull’s underwater part, the symbol ∇ is used.

The second condition of equilibrium of a floating body is that the sum of the moments
of all forces acting on it must be zero. By applying this principle, we can find the
coordinates of the Center of Buoyancy (COB = (xb, yb, zb)). Let us assume that a floating
body is in equilibrium and the waterline corresponding to this condition is W0L0, then
the weight of the body, ∆ , and the buoyancy force, FB are equal. Also, the two forces
act along the same line, and as there is no righting arm, the sum of their moments about
any reference is zero. If the position of the center of gravity changes, G1, then the sum
of the moments is no longer zero. This alteration causes a clockwise inclination of the
body, by an angle ϕ. A volume submerges at right, so another one emerges at left. The
result is that the center of buoyancy moves to the right, to a new point that is marked by
Bϕ, until it reaches a position of equilibrium in which the new waterline is WϕLϕ . The
floating body will find a position of equilibrium when the two points G1 and Bϕ will be on
the same vertical line, perpendicular to the waterline WϕLϕ. This situation is illustrated
in Figure 3.1. Thus, in the case of a floating body, the second condition of equilibrium is
satisfied if the center of gravity and the center of buoyancy are on the same vertical line.
This condition refers to Simon Stevin’s law. [33].

Figure 3.1: Stevin’s Law [33]

There is only one thing left to be determined, and that is the application of the
momentum theory of forces due to pressures, so that the Center of Buoyancy can be
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calculated. These can be expressed as follows [35]:

Mx = g

∫∫∫
V

ρ(z)y dV = |F̄B|yB (3.1.4)

My = g

∫∫∫
V

ρ(z)x dV = |F̄B|xB (3.1.5)

Mz = 0 (3.1.6)

In the equations (3.1.4), (3.1.5) and (3.1.6), symbol B indicates the center of mass of
the displaced water. Assuming that the density is constant, then:

yB =

∫∫∫
V
y dV∫∫∫

V
dV

(3.1.7)

xB =

∫∫∫
V
x dV∫∫∫

V
dV

(3.1.8)

It is important to state that we cannot always give information about the zB coordinate,
as the point of application of the center of buoyancy does not necessarily coincide with
the central of the submerged volume.

3.1.2 Initial Stability and Stability Criteria

In the preceding section, we learned the conditions of equilibrium of a floating body. But
equilibrium alone is not enough. It should also be determined whether a condition of
equilibrium is stable or not. So the concept of stability should be defined. Again the
easiest way to approach it is by considering a floating body in equilibrium and assuming
that some force or moment causes a small change in its position, such as a wind gust.
With this change, the force of buoyancy and the weight no longer act on the same vertical
line. Thus three situations can occur when that force or moment ceases to act.

1. The body returns to its initial position; The equilibrium is stable.

2. The position of the body continues to change. In this case the equilibrium is unsta-
ble. In practical terms, this can mean, for example, that the floating body capsizes.

3. The body remains in the displaced position until the smallest perturbation causes it
to return to the initial position or to continue to move away from the initial position.
We call this situation neutral equilibrium.

Considering that the displacement of the floating body is known, then with an external
heeling moment, the body should react with a righting moment, for it to return to its
initial condition, thus its condition is stable. Due to the fact, that the buoyancy and the
weight of the body do not act on the same vertical line, a couple of equal and opposite
forces is produced. The coupled moment that is created, depends on whether it tends to
roll the body back to its initial condition or the other way. Let us see what happens in
this case in more detail.
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Figure 3.2: Righting Moment generation

When the body is in equilibrium and at its initial condition then its corresponding
waterline is WL. In this condition, the weight force, equal to ∆, see Figure 3.2, acts
through the initial center of gravity (G); it is vertical that is perpendicular to the waterline
WL. The buoyancy force, also equal to ∆, acts through the initial center of buoyancy,
B: it is also vertical, that is perpendicular to the initial waterline. As stated above, if
the floating body rotates by a small angle ϕ, the new waterline that corresponds to this
position is W1L1. The buoyancy force acts from the new center of buoyancy B1, which
is equal again to the weight of the floating body. As the floating body rotates, the two
forces continue to act vertically after rotation but, in general, the position of the center
of buoyancy changes, as the geometry of the submerged volume changes. As a result,
the body is subjected to a moment mGZ, where Z is the foot of the normal from G on
the line of the buoyancy force. Another way to determine the stability of the ship is to
use the intersection point, M between the perpendicular line to W1L1 from the center of
buoyancy and the z-axis [36]. For small values of rotation angle ϕ the righting arm GZ
follows the simple formula below:

GZ = GMsinϕ ≈ GMϕ (3.1.9)

The distance GM is termed the metacentric height and is said to be positive when M
is on top of G. This is the condition of stable equilibrium, where the coupled moment that
is created, tends to return the body to its initial condition. On the contrary, when M lies
below G the moment acting on the body tends to increase ϕ and the body is unstable, as
shown in Figure 3.3. Finally, if M and G coincide, the equilibrium is neutral.

As stated above, a floating body, namely a ship, is initially stable if its initial metacen-
ter is above the center of gravity for any given loading condition. To make calculations
easier, a mathematical formula has been created in order to evaluate if a condition is
stable or not. As shown in Figure 3.2, point K is established as a reference point, where
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Figure 3.3: The stable and unstable equilibrium

the centerline and the baseline intersect. From this point, we measure any coordinates
vertical from it, upwards. In the figure, the initial metacenter, M0, is the one correspond-
ing to the waterline WL, and for any other waterline the metacenter is expressed with
the symbol M . So, to have a sense of the stability of the ship, we use the vector GM ,
which can be calculated by the following formula:

GM = KM −KG = KB +BM −KG (3.1.10)

, where

• the vector GM is called metacentric height,

• the vector KB is the z -coordinate of the centroid of the submerged hull (center of
buoyancy), as a result of hydrostatic calculations,

• the vector KG is the z -coordinate of the centroid of the center of gravity of the
ship, thus it depends on the weight calculations and the Loading Condition (LC),
and finally

• the vector BM is called the metacentric radius and is equal to the ratio of the
transverse waterplane moment of inertia IT , about the axis of inclination, to the
volume of displacement ∇, and is calculated by equation 3.1.11. IT is given by
equation 3.1.12.

BM =
IT
∇

(3.1.11)

IT =

∫∫
AWL

y(x)2 dxdy (3.1.12)
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The GM is also described as the gradient of the righting arm GZ(ϕ) curve for inclination
angle ϕ = 0.

GM =
dGZ(ϕ)

dϕ
|ϕ=0 (3.1.13)

The equation (3.1.11) is fundamental for static stability and it is preferable for the
BM to be as large as possible, something that, for a given displacement, can be achieved
by increasing the waterplane moment of inertia. Conversely, if the value of the waterplane
area AWL is low, then this leads to low BM and consequently low or even negative GM
values.

With the calculation of the metacentric height, we can easily calculate the righting arm
with the equation (3.1.9). Although, the knowledge of GM can determine the righting
moment, hence the stability for each angle, in bigger inclination angles, it does not remain
in the same position [16]. As a result, other criteria are used to determine the static
stability of the ship, at bigger rolling angles. Initially, the criteria used are the Intact
Stability Criteria, where the whole GZ(ϕ), for a large range of heeling angles is taken into
consideration. The information of GM , alone is not able to determine the static stability
of the ship.

The Intact Stability Criteria according to IMO 2008 Intact Stability Code [11] consists
of two main parts; the Criteria regarding the righting lever curve properties and the Severe
wind and rolling criterion (Weather Criterion). They valuate the point where the ship
becomes unstable, and the values of certain parameters that are obtained from the stability
curve, are examined [37]. These parameters are the following:

1. Three areas should be calculated under the GZ curve. The area under the GZ curve
between 0◦ and 30◦ of the heeling angle (gray area in Figure 3.4a). Additionally the
area between 30◦ and 40◦ (or flooding angle, whichever is less) should be calculated.
The sum of the areas above, that is the total area under the GZ curve between 0◦ and
40◦ (or flooding angle, whichever is less), should not be less than 0.09 meter-radians.

2. The righting lever at an angle of heel equal to or greater than 30◦, (GZ(30◦) ≥
0.20m).

3. The heeling angle where the maximum righting lever occurs (preferably more than
30◦, but not less than 25◦)

4. The initial metacentric height which takes into account the influence of the free
surface of the liquid and should be more than 0.15 m.

5. Steady wind pressure on the ship causes a heeling arm, lw1, according to the weather
criterion, which is illustrated in Figure 3.4b. As a result, a steady heel angle θ0 is
generated to achieve equilibrium at the point of intersection of the heeling curve
and static stability curve. This angle plays a major role not only in determining the
safety of the crew, personnel, and cargo on board, but also helps in determining the
angle at which the deck edge of the ship is likely to submerge. In other words, it
helps evaluate a ship’s resistance to capsizing, for a given loading condition.

6. The weather criterion examines also the heeling angle that is caused by the wave
motion, θ1 (see Figure 3.4b) against the wind. Moreover, due to the gust wind
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pressure, the ship is subjected to an inclination with gust wind heeling lever lw2. In
this case, the area of "b" should be larger than the area of "a".

(a) General Regulations[16] (b) Regulations for Severe Wind and
Rolling Criteria (Weather Criteria)[11]

Figure 3.4: IMO Regulations for Intact Stability

As explained above, determining the stability of a ship is more complex than what
it seems at first glance. According to IMO Regulations, an attempt is made to find out
whether a ship is stable or not, considering many parameters. This is so that there is a
general picture of the GZ curve’s shape, which is obtained by meeting various criteria and
does not depend solely on one value, such as GM0.

As a continuation of the general criteria, the Weather criterion evaluates the ability
of a ship to withstand the combined effects of beam wind and rolling. This criterion
was originally developed to guarantee the safety against capsizing for a ship losing all
propulsive and steering power in severe wind and waves, which is known as a dead ship
[38].

Second Generation Intact Stability Criteria (SGISC) [13] are (from December 2020
onwards) included in Chapter 2.3 of the I.S. Code as an extension and as an optional
audit for understanding the dynamic stability characteristics of a ship. They use a multi-
tiered approach that consists of three levels of successive assessment. Level 1 vulnerability
criteria are intended as a simple assessment to identify loading conditions that are not
vulnerable to the given failure mode. Level 2 is a more complex analytical assessment
applied to those loading conditions that do not satisfy the Level 1 standard. Loading
conditions that do not satisfy the Level 2 standard may be subject to the third level,
called Direct Stability Assessment (DSA), which involve the application of sophisticated,
proprietary computer software that meets IMO agreed specifications. These assessment
levels should be consistent: an assessment outcome of "not vulnerable" for a loading
condition in Level 1 should not have an opposite outcome for Level 2. Likewise, a "not
vulnerable" Level 2 outcome should not have an opposite outcome for DSA.

The second generation of intact stability criteria consist of assessment for dynamic
stability failure modes in waves, as requested in section 1.2 of part A of the 2008 Intact
Stability (IS) Code [11]. These dynamic stability failure modes are as follows: dead
ship condition, excessive acceleration, pure loss of stability, parametric rolling, and surf-
riding/broaching. In this sense, the aim is to use the latest technology and knowledge on
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ship dynamics, which is something that the previous stability criteria had not taken into
consideration.

As already stated the dynamic stability of the ship is something that only lately has
started to be taken into consideration in IMO Regulations. One of those dynamic phe-
nomena is parametric roll, whose theoretical background will be discussed in the following
subsection.

3.2 Parametric Roll Resonance

3.2.1 Physics of Parametric Roll

Not only the presence or absence of waves but also their direction, have a great influence
on the ship’s stability. In this subsection, the physics of parametric roll will be explained
and how the stability of a ship changes in longitudinal waves. The stability of a ship in
waves depends on three main parameters. The first parameter, and the most important,
is the one regarding the changes in the submerged volume of a ship at any given time.
The other two parameters are the effect of the non-hydrostatic component of the pressure
distribution along the hull, and the effect due to the disturbance of the pressure field
due to its movement, (e.g., heave or pitch motion). The first parameter, mainly revolves
around the distribution of the hydrostatic pressure on the ship’s hull, as a result of the
ship’s position on the wave.

When a ship is in equilibrium in calm water with a certain waterline, in this position
the area of the waterplane is constant, and as the center of buoyancy and gravity do not
change, this leads to a specific value of GM . The GM is calculated with equation (3.1.13),
while the waterplane affects the transverse waterplane moment of inertia, thus the BM
(eq. 3.1.11), between the crest and trough of a large wave [25].

When the ship travels through waves, the waterline changes, and so does the water-
plane area as shown in figure 3.5. This effect becomes more noticeable in large contain-
erships, which are designed with substantial bow flare and stern overhang that causes a
great variation in waterline form, and therefore in transverse stability,

Provided that a typical containership travels through a regular wave with wavelength
equal to the length of the ship, the waterline constantly changes. As the mid of the ship
is located on a wave trough, the average waterplane width is greater than the one in
calm water. In this position, the wave crest is found on the ship’s bow and stern, where
they are more deeply immersed. On the contrary, the draught in the midship, where
the trough is located, decreases. This makes the mean instantaneous waterplane wider,
so the waterplane area’s second moment IT increases, with the result that the value of
BM is greater than the one in calm water, assuming that the displacement of the ship is
constant.

Thereafter, when the ship is located with the wave crest amidships, the immersed
portion of the bow and stern sections are narrower than in calm water. Consequently, the
mean waterplane is narrower, so the waterplane area’s second moment decreases and the
value of BM is decreased in comparison to calm water.

In these positions, the value of KB also changes. The value of KB becomes insignif-
icantly bigger when the wave crest is located on the midship, where there is the most
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Figure 3.5: Difference in the waterplane for crest trough the midship,
calm water and for wave trough amidship.

For a containership traveling through a longitudinal wave, with wavelength equal to the
ship’s length

volume of the ship. However, this increase in KB has a hardly noticeable effect, as the
change in BM usually has a more significant effect on the decrease in GM .

As stated above, when a ship is traveling in longitudinal waves, its stability increases
when the trough is near amidship and decreases on the wave crest. When in such state,
a small distribution (e.g. wind gusts) is likely to cause a rolling motion with large angles
as a result of parametric resonance. The most rapid increase of parametric roll can
be observed when the ship encounters the waves at a frequency near twice the normal
frequency of rolling motion, as will be explained further in this section. There are other
factors, individually or cumulatively, that can influence the development of parametric
resonance. Some of these factors are:

1. The presence of large enough waves, with wavelength close to the length of the ship,
and waves of certain wave height cause big GM variation, else called wave steepness
H/λ.

2. The direction of the ship in relation to the waves (head and following waves)

3. Low roll damping due to small or no bilge keels.

4. The geometry of the hull. For instance, a flared hull increases the waterline breadth
when wave trough is amidship.

5. Encounter period of half that of the natural roll period, encounter period the same
as natural roll period.

6. Sufficiently many encounters of similar types of waves for resonance to grow.
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3.2.2 The Differential Roll Equation

Free Rolling Equation

When a ship is in calm water, a sudden disturbance in roll or roll velocity (such as that
caused by a wind gust) can set up an oscillatory roll motion. The period of such roll
oscillations in calm water depends on the ship’s stability or restoring moment properties
and the mass properties, and is known as the "natural roll period" [39]. In such case, the
ship motion is called free rolling and is often used in the roll amplitude decay test. A plot
of a roll decay time series (Fig. 3.6) shows the main properties of a damped roll motion.
In addition, the measured period of the damped (free) roll motion, can be approximately
set equal to the ship’s natural period of roll. The differential equation that describes the
free rolling motion of the ship (eq.: 3.2.4) results from Newton’s second law as shown in
equation (3.2.1).

MIN(ϕ̈) +MD(ϕ̇) +MR(t, ϕ) = 0 (3.2.1)

The first term represents a moment from the inertia of the ship around its longitudinal
axis as a function of angular acceleration. When a body moves in a fluid, the inertia of the
fluid opposes the motion and that effects are equivalent to having a virtual mass added
to the mass of the solid. For this reason, the term related to inertia can be divided into
the term of the mass moment of inertia of the (dry) ship and the hydrodynamic (added)
moment of inertia about the ship’s roll axis that increases the mass moment of inertia
of the ship by about 10 to 25% [40]. As a result, the term MIN can be replaced by the
following argument.

MIN(ϕ̈) = (Ix + A44)ϕ̈ (3.2.2)

,where Ix is the transverse moment of ship inertia; A44 is the added mass due to water
dragging by the rolling hull. Henceforth, when reference is made to Ix, it will be considered
to include the added mass A44.

Figure 3.6: Time series of a roll decay motion[39]
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The second term represents a moment due to the roll angle velocity of the system linked
with damping. When the damping moment is based only of its linear (or "equivalent"
linear) component, it takes the following form.

MD(ϕ̇) = B1ϕ̇ (3.2.3)

where B1 can be the linear or linearized damping coefficient, but in this thesis B1 repre-
sents the linear roll damping coefficient , assumed to be dependent only on the instanta-
neous roll velocity ϕ̇.

The third term represents a moment due to the restoring moment when a ship rolls,
as described above (Section 3.1.2:Initial Stability and Stability Criteria). This moment is
the force of buoyancy from the displaced water of the ship times the righting arm GZ.

After substitution of formulas (3.2.2) and (3.2.3) into equation (3.2.1) the rolling
equation is the following:

(Ix + A44)ϕ̈+B1ϕ̇+mgGZ(ϕ) = 0 (3.2.4)

Further, by dividing both sides of equation (3.2.4) with (Ix + A44), we introduce the
commonly used notation for free rolling [41].

ϕ̈+ 2ζ ω0 ϕ̇+
ω0

2

GM0

GZ(ϕ) = 0 (3.2.5)

where ω0 denotes the natural roll frequency of the ship, GM0 is the initial metacentric
height and ζ is the damping ratio. From the damping ratio’s value ζ the magnitude of
the damping that exists in the dynamic system can be easily determined. For the rolling
motion damping ratio is usually about 0.05 and it does not become greater than 0.2 [16].

The natural roll frequency of the ship is defined by the following equation [40]:

ω0 =

√
mg GM0

Ix + A44

(3.2.6)

In the application of the above formula the main difficulty is the evaluation of the moment
of inertia that includes the mass moment of inertia and the added hydrodynamic moment
of inertia due to the acceleration of the fluid by the oscillating ship. Although we might
find in the bibliography [40] many semi-empirical formulas to approximate the value of
the moment of inertia, they all give quite different values for the same type of ship, as the
value of the moment of inertia is not constant for a particular ship, but it also depends
on its loading condition and the distribution of the weight on the ship.

Differential Roll Equation in Longitudinal waves

The rolling motion of the ship in longitudinal waves (pure head or following seas), which
neglects any couplings from motions taking place in other than the rolling degree of
freedom, can be also expressed with Newton’s second law by the equation (3.2.1). For
parametric oscillations of a ship, no external roll moments are acting on the system so
the second part of the formula is zero[42].

As already mentioned above, the value of the righting arm changes in compliance with
the inclination angle of the ship. However, when the ship travels through a longitudinal
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wave, the form of the GZ curve changes as the stability increases or decreases when the
trough or the crest of a wave is near amidship, respectively. For this reason, the value
of the righting arm GZ is time-dependent, as it changes accordingly with the position of
the ship on the wave, as shown in figure 3.7, so the restoring moment can be calculated
by the equation (3.2.7).

MR(t, ϕ) = mgGZ(t, ϕ) (3.2.7)

It is common for the righting arm GZ curve to be approximated as a polynomial power
series with odd powers so that the curve that will be created will be an odd function.
Finally, the differential equation of rolling motion of the ship in longitudinal waves, by
applying the equations (3.2.5) and (3.2.6) becomes:

ϕ̈+ 2ζ ω0 ϕ̇+
mgGZ(t, ϕ)

Ix + A44

= 0 (3.2.8)

Mathieu’s differential Roll Equation

The GZ curves vary between the trough amidship and crest amidship values as shown
in Figure 3.7, as the waves move past the ship. In regular waves this change can be
considered approximately sinusoidal between two extreme values. The single degree of
freedom rolling motion of a ship in head or following seas may then be described by an
equation of motion similar to that for still water, as in equation (3.2.5). However, the
restoring moment is not only a function of heeling angle but also varies sinusoidally with
time. For small amplitudes of motion, we may use the simplified form of the righting arm
(eq. 3.1.9) expression with a time-varying metacentric height as follows.

ϕ̈+ 2ζ ω0 ϕ̇+
ω0

2

GM0

GM(t) ϕ = 0 (3.2.9)

Figure 3.7: Example of GZ curves for calm water, wave crest amidship
and wave trough amidship for a C11 type container ship [43].

Wave length equal to the ship length
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Considering that the GM varies approximately sinusoidally between two extreme values,
then it is modeled as:

GM(t) = GM0 + δGM cos(ωe t) (3.2.10)

, where GM0 denotes the metacentric height of the ship in calm water, ωe is the frequency
of variation of GM equals to the encounter frequency of waves and δGM is the variation
of GM due to waves.

After substitution of formulas (3.2.10) into equation (3.2.9) the linear differential equa-
tion of roll becomes:

ϕ̈+ 2ζ ω0 ϕ̇+ ω0
2 [1 + h cos(ωe t)] ϕ = 0 (3.2.11)

The form of (3.2.11) without the damping term is recognized as the Mathieu Equation
even though the equation is seen to be a linear differential equation with a time-varying
restoring coefficient, there is no closed-form analytic solution of Mathieu’s equation. Stud-
ies and applications of this equation are inevitably fraught by numerical approximation
schemes and nonlinear analysis of so-called Stability Charts or Ince-Stutt diagrams [3].
The solutions of Mathieu’s equation have been studied extensively and are found to exhibit
unstable behavior formula (3.2.12) satisfiable, for any n ∈ N.

4 ω0
2

ωe
2

≈ n2 (3.2.12)

In figure 3.8 the shaded regions represent stable solutions to the equation and unshaded
regions correspond to unstable solutions when the damping coefficient is zero. In the
diagram the symbol δ represents the ratio ω0

2

ωe
2 and ϵ equals to h ω0

2

ωe
2 .

Figure 3.8: Stability Chart of solutions of the Mathieu Equation [3]

From Mathieu’s Stability Chart, we can see that δ is equal to the square of the ratio
of the natural roll frequency of roll to the frequency of the time-varying GM , or else
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the encounter frequency. Additionally, ϵ is proportional to the fractional change in GM .
The first unstable region is centered on a value δ = 1/4 (or else for n = 1 from eq.
(3.2.12) called the case of principle resonance). In principle resonance the ratio of natural
frequency to frequency of GM variation is 1/2. If the frequency of GM variation does
not exactly satisfy this value, unstable motion can still take place if ϵ is sufficiently
large. It is also important to highlight that, the effect of linear damping is merely to
raise the threshold value of ϵ at a given frequency of variation, ω. From this simplified
analysis, when we examine regular waves, it is expected that, if the ship encounters regular
head or following seas at a frequency near one-half the natural frequency of roll, a small
disturbance in roll will grow to appreciable amplitude depending on the amplitude of the
stability variation and the roll damping. In reality, for regular waves, it would be more
correct to express the GM change with a periodic, but not necessarily sinusoidal function.

However, the simplification provided by Mathieu’s model allows us to have a relatively
small knowledge of the ship’s instability areas at a relatively small computational cost.
Things become even more uncertain in a sea state that is close to the real sea. For this
reason, in this diploma thesis, an attempt will be made to calculate the change of the
righting arm in random waves. Subsequently, the next section will refer to the theoretical
background used to model the random sea waves.
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3.3 Irregular Waves
Waves are the most important phenomenon to be considered among the environmental
conditions, as they significantly affect the ship. Wave behavior is not always easy to
understand, since the waves are one of the most complex and mutable phenomena in
nature. Waves occur in many ways, they appear as the wind starts to blow, grow into
mountainous waves amid storms, and completely disappear after the wind ceases blowing.
An observer on a ship easily recognizes the pattern of waves consisting of large and small
waves moving in many directions. In most cases, the waves are characterized by significant
irregularity.

However, when reaching the shore a wave swell breaks as individual waves, giving the
impression of regular repetition. Ocean swell refers to a series of ocean surface waves that
were not generated by the local wind, but from a distant storm, as shown in figure 3.9a.
Many swell oceans originate in the oceans around Antarctica where there are high winds
with nearly infinite duration and fetch [44].

Another type of wave, widely known in fluid dynamics, is wind wave, or wind-generated
wave, figure 3.9b. A wind wave is a water surface wave that results from the wind blowing
over a fluid surface. More precisely wind wave is created by energy transferred from the
wind to the water surface.

(a) Swell ocean [45] (b) Waves generated by wind [46]

Figure 3.9: Examples of swell ocean and wind generated waves

In oceanography, a sea state is the general condition of the free surface on a large body
of water, such as swell or wind-generated waves, at a certain location and moment. A
sea state is characterized by statistics, including the wave height, period, and spectrum
[8]. The sea state varies with time, as the wind conditions or swell conditions change.
The resulting statistics are determined for a time interval in which the sea state can
be considered to be constant. This duration has to be much longer than the individual
wave period, but smaller than the period in which the wind and swell conditions vary
significantly. Typically, records of one hundred to one thousand wave periods are used to
determine the wave statistics. Usually, 20 to 30 minutes are enough for a sea state to be
represented. Another term that is commonly used in oceanography, is the term of a fully
developed sea. A fully developed sea has the maximum wave size theoretically possible
for a wind of specific strength and duration.

At first, the simplest approach for describing ocean waves is to consider that the waves
can be approximated by two-dimensional sinusoidal form, as called regular waves. De-
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termining the wave parameters is the first step in understanding and, later on, modeling
the free surface of the sea. Wave height, wave period, and direction are the most relevant
parameters to be studied for the modeling of waves. Additionally, there are other param-
eters, such as the wave number k, which refers to the number of waves per unit distance,
k = 2π/λ. One important formula that includes the wave number is the dispersion
relation which relates the wavelength or wave number of a wave to its frequency. It is
expressed as the equation (3.3.1).

ω2 = g k tanh(kh) (3.3.1)

, where h is the water depth. For deep water, where h is large tanh(kh) ≈ 1 the dispersion
relation becomes:

ω2 = g k (3.3.2)

Thus, the free surface elevation of the sea, ηw is defined as:

ηw(x, t) = a cos(kx− ω t) (3.3.3)

Although linear wave theory is useful and simplifies calculations in many cases, sinu-
soidal waves are never found in the natural environment as single wave forms. Picture
3.9b, clearly shows that they are many small and large wavelets with different lengths and
heights moving in various directions, that all together combined resemble the real sea. So
the natural seaway can be decomposed to a sum of partial sinusoidal waves, each having
a relatively small steepness, even for a severe sea as depicted in picture 3.10a. Therefore,
the spectral approach with a sum of partial waves is considered a valid representation for
a random sea [47].

(a) Multi-directional waves (b) Unidirectional waves [47]

Figure 3.10: Irregular wave from sum of regular waves

Wave spectrum Sηw is defined, as the distribution of the total wave energy with respect
to the circular wave frequency ω. More precisely, the wave energy distribution with respect
to the frequency alone, irrespective of wave direction, is called the frequency spectrum,
while the energy distribution expressed as a function of both frequency and direction is
called the directional wave spectrum [8].

Figure 3.10b gives an example of an unidirectional irregular wave profile which was
constructed by adding three sinusoidal waves (component waves) of different heights and
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periods. Although this example is rather simplistic, it already approaches the real rep-
resentation of the sea. Further increase in the number of component waves, will create
quite irregular profiles similar to those of the real sea. So the energy per unit area of the
sea, for a single sine wave component is proportional to its height squared as shown in
equation (3.3.4).

Ew =
1

2
ρ g a2 =

1

8
ρ g H2 (3.3.4)

Adding the energy of each individual regular wave component, the average energy per
unit area Ē is as follows:

Ē =
ρ g

8N

N∑
i=1

H2
i (3.3.5)

or
E

ρ g
=

1

2N

N∑
i=1

a21 = σ2 (3.3.6)

The value σ2 is the variance 2 of the water surface elevation record and it follows the form
of equation (3.3.6). In the limit, for N → ∞, the amplitude spectrum can be expressed
as a continuous spectrum Sηw , called frequency spectrum or omnidirectional spectrum (it
does not dependent on the direction of the wave). For every component i, the following
equation applies [48].

Sηw(ωi) ∆ω =
a2i
2

(3.3.7)

In bibliography [49] the variance is linked with the zero-order spectrum moment of the
stationary seaway m0 with the following equivalence, σ =

√
m0 . From integration of Sηw

for all positive frequencies ω, we derive the value of m0, which is also equal to the area
under the wave spectrum:

m0 =

∫ ∞

0

Sηw(ω) dω (3.3.8)

Oceanographers have studied the ocean pattern extensively and tried to fit measure-
ments into general formulas. One of the most popular wave spectrums for fully developed
seas in deep water is Pierson and Moskowitz (PM) (1963). An alternated model of the
Pierson and Moskowitz’s seaway spectrum was also developed by Bretschneider (1952,
1961) [8]. Another commonly used spectrum is the Jonswap (Joint North Sea Wave
Observation Project) spectrum, which is more narrow (peakier) than the pure open sea
spectra. Last but not least, another worth mentioning type of spectrum is the Ochi-
Hubble spectrum. It is a double-peaked spectra that represents sea states including both
a remotely generated swell and a local wind-generated sea [50]. In figure 3.11, an example
of Pierson and Moskowitz’s and Jonswap, a higher peak, spectrum is shown.

After this brief reference to the definition of wave spectrums, we can follow the opposite
procedure to determine the elevation of the sea. By decomposing a spectrum, for a
certain sea state, the characteristics of the regular wave components can be calculated.

2The variance in statistics is calcualted by taking the average of squared deviations from the mean.

For time history of the surface elevation σ2 =

N∑
n=1

(ai − ā)2/N)
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Figure 3.11: Comparison of PM and JONSWAP spectra [47]

The unidirectional, irregular wave pattern ηw is seen as the sum of regular partial waves,
as shown in Figure 3.10b (at x=0). Using Fourier analysis we can calculate the wave
components of a sea state out of a record of sea elevation over time. An irregular record
can be plotted again as a sum of the partial waves, according to the following equation
for t ∈ R.

ηw(x, t; β) =
N∑

n=1

an cos(knx− ωnt+ Ξn(β)) (3.3.9)

swhere

• β, is a selection variable, stochastic 3 argument, used to distinguish one outcome of
an experiment from another.

• ωn > 0, n = 1, 2, ..., N , are deterministic values that represent the the frequencies of
every wavelet component n. ωn in deep water is linked with the wave number with
the equation (3.3.2)

• an > 0, n = 1, 2, ..., N , are also deterministic values that correspond to the amplitude
of every wavelet component n.

• Ξn(β), are the random phases that have the same Probability density function (pdf).
All wave phases have an equal probability of occurrence as they follow an uniform
distribution, expressed by a constant probability density 1/(2π) in the range [0, 2π).

Randomization with phase means that every wavelet component of the sum is moved
randomly with respect to the phase (i.e., to the beginning of the axes) as defined by

3Stochastic is the experiment which can be repeated many times under similar routines (uniform
repetitions), yet the results of which vary irregularly from one test to another. However, certain "average"
values and certain histograms of the results, after many repetitions show an obvious statistical regularity
of the process. i.e., they show a clear tendency of stabilization, when the number of repetitions increases.
For example the experiment of measurement of the free surface elevation is a stochastic experiment.
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Ξn(β). In the end, to get the value of the surface elevation ηw(x, t; β) at a specific point x,
all the partial waves will be added. For every experiment outcome, β, one set of random
phases provides us with only one realization of irregular waves. Simulation with another
realization of waves requires generation of another set of random phases (with each set
containing N values) [42].

The spectral form Sηw(ω) acknowledges that the water surface is composed of compo-
nents across a range of frequencies; however, it does not consider that these components
could propagate in a variety of directions. An extension of (3.3.9) to account for direction
would take the form [48]:

ηw(x, y, t; β) =
N∑

n=1

an cos[kn(x cosei + y sinei)− ωnt+ Ξn(β)] (3.3.10)

, where ei is the angle between the x-axis and the direction of propagation of component
i. The spectrum that describes the energy distribution among the wave frequencies, will
now be defined, equation (3.3.11) as the directional frequency spectrum Sηw(ω, ϵ).

m0 =

∫ 2 π

0

∫ ∞

0

Sηw(ω, ϵ) dω dϵ (3.3.11)

However, in this dimploma thesis the directional spectrums will not be used, as only the
unidirectional irregular waves will be examined. So in this chapter, a small introduction
has been made, of the spectral method and the use of the Fourier analysis in order to
approach the free surface elevation, with the phase of each partial wave as a stochastic
value.



Chapter 4

Hydrostatic Equilibrium and Hull
Discretization

The first topic explained in Chapter 3.1.1 is the hydrostatic equilibrium of the ship. For
this reason, in the current chapter, the method for the computation of the hydrostatic
equilibrium will be described. For this diploma thesis, a code has been developed in Math-
ematica environment that calculates the longitudinal and transverse center of buoyancy
of the ship for a specific loading condition. For these computations, the knowledge of
the geometry of the hull is necessary. The data from a sample Post-Panamax Contain-
ership are used, and later on, the same data are used for the simulations. To make the
appropriate calculations, the geometry of the hull must be introduced into the program
in a format that simplifies the calculations. For this reason, a mesh was created with the
appropriate discretization. From every cell of the mesh, specific data were extracted.

Finally, an analysis of the hydrostatic equilibrium of the ship was performed not
only to confirm the accuracy of the code but also to examine which discretization of
the mesh achieved the desired accuracy. This analysis shall consist of the calculation of
the displacement and longitudinal centre of buoyancy for a range of draughts, and the
construction of the GZ curve for specific loading conditions. For the validation of the
code, two models were designed. The first model was designed in AvevaTM Initial Design
Program and the second in Rhinoceros®Design Program. The mesh created of the hull’s
geometry with the Rhinoceros®was used as an input for the code. The data that were
calculated with the code were compared with the data exported from Aveva and data
from the Trim and Stability Booklet of the ship.

4.1 Calculation of Hydrostatic equilibrium in Mathe-
matica

For the computation of the hydrostatic equilibrium and the righting arm of a ship in any
position, a code was provided by Doctoral Candidate Ioannis Kontolefas, developed in
Mathematica programming language. In this section, we will describe the development
process of this code and its functions. Later on, these functions were used and modified
accordingly for subsequent calculations as the ship moves in longitudinal waves.

It is common knowledge that when a ship floats in water, it is free to move in all six

28
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Figure 4.1: Definition of motions in 6DOF (surge, sway, heave, roll, pitch and yaw) [51]

possible degrees of freedom (6DOF) as illustrated in figure 4.1. The three of these motions
describe translations in the three main perpendicular axes of the ship, the longitudinal
axis (surge motion), the transverse axis (sway), and the vertical axis (heave). The other
three movements describe the rotation around the respective axes (roll, pitch, and yaw).
Two systems /frames of reference are used, one as an earth-fixed frame (ϵ-frame) and the
other as a ship-fixed frame (called s-frame). For later applications, we place the s-frame
to always on the midship. The position of the ship is defined by the coordinates of the
ship-fixed origin with respect to the earth-fixed frame as defined in (4.1.1). While the
orientation by the ship-frame with respect to the earth frame is defined in (4.1.2)

res = (ξ, η, ζ) (4.1.1)

qes = (ϕ, θ, ψ) (4.1.2)

The coordinates of a point can be transferred from the ship-frame to the earth-frame
with the use of the transformation matrix Re

s(q
e
s).

rep = res +Re
s(q

e
s) r

s
p (4.1.3)

This equation refers to the transport by res and then the rotation of the point p with
respect to the s−frame by multiplying it with the transformation matrix. The ship, as a
3D body, can be rotated about the three orthogonal axes as shown in 4.1.

The yaw, pitch and roll counterclockwise rotations about the z, y and x-axis respec-
tively are given by the following rotation matrices 1.

Rz(ψ) =

cψ −sψ 0
sψ cψ 0
0 0 1

 , Ry(θ) =

 cθ 0 sθ
0 1 0

−sθ 0 cθ

 , Rx(ϕ) =

1 0 0
0 cϕ −sϕ
0 sϕ cϕ

 (4.1.4)

1Note that c• = cos(•) and s• = sin(•)
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The yaw, pitch ,and roll rotations can be used to place a 3D body in any orientation.
A single rotation matrix can be formed by multiplying the yaw, pitch ,and roll rotation
matrices to obtain the following rotation matrix [52].

Re
s(q

e
s) = Rz(ψ)Ry(θ)Rx(ϕ) =

cψ cθ −sψ cϕ+ cψ sϕ sθ sψ sϕ+ cψ cϕ sθ
sψ cθ cψ cϕ+ sψ sϕ sθ −cψ sϕ+ sψ cϕ sθ
−cθ cθ sϕ cθ cϕ

 (4.1.5)

It is important to note that Re
s(q

e
s) performs the roll first, then the pitch, and finally

the yaw. If the order of these operations is changed, a different rotation matrix would
result.

We now introduce a moving frame (m-frame) located at the s-origin and aligned with
the e-frame, so that it change with the rotational movements of the ship. The decompo-
sition of all vector quantities hereafter is performed with respect to the m-frame, unless
otherwise stated. It is also assumed that the ez axis is collinear with the gravitational
acceleration vector. The hydrostatic pressure is calculated for each point on the ship by
the following formula.

p = p(x, y, z, t) = ρ g[ηw(x, y, t)− z] = ρ g h (4.1.6)

,where h is the vertical distance between any submerged point at the ship and the free
surface ηw. Dividing the pressure into three components along the x-,y and z directions
,with the unit vectors ex, ey, ez respectively, the formula (3.1.3) results in:

F̄B = −ex
∫∫∫

V

ρ g
∂ηw
∂x

dV − ey

∫∫∫
V

ρ g
∂ηw
∂y

dV + ez

∫∫∫
V

ρ g dV (4.1.7)

Considering that the first two components of formula (4.1.7) are significant small, then
we use (3.1.2) and (4.1.7) becomes:

∇ =

∫∫∫
V

dV =

∫∫
S

h nz dS (4.1.8)

Furthermore, by neglecting the x- and y-component of the buoyancy force and considering
that the element forces are parallel to each other, the expressions (3.1.8), (3.1.7) and
(4.1.8) can be described as

∇ ≊
N∑
i=1

hinzi δSi (4.1.9)

xB ≊

N∑
i=1

cxihinzi δSi

N∑
i=1

hinzi δSi

, yB ≊

N∑
i=1

cyihinzi δSi

N∑
i=1

hinzi δSi

(4.1.10)

,where

N is the number of surface elements considered for the discretization of the sub-
merged part of the hull,
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ci is the centroid of the surface element with index i,

hi is the distance of ci from the free surface,

nzi is the z-component of the unit normal vector n at ci, which points inwards and,

δSi is the area of the surface element with index i

As has already been discussed in chapter 3.1.1, for a floating body to be in hydrostatic
equilibrium, the buoyancy should equal its weight. Additionally, the center of gravity with
the center of buoyancy should be on the same vertical line. Thus, the following equations
should be satisfied.

ρ∇ = m
xb = xg
yb = yg

(4.1.11)

When the ship has rotated around an axis then the coordinates of the center of gravity
should be expressed with respect to the m-frame, by using the rotation matrix as shown
in (4.1.12). xgyg

zg

 = Re
s(q

e
s)

xsgysg
zsg

 (4.1.12)

Finally, considering expressions (4.1.5), (4.1.9), (4.1.10) and (4.1.12) system (4.1.11) can
be written in the following form.

ρ
N∑
i=1

hinzi δSi −m = 0 (4.1.13)

N∑
i=1

cxihinzi δSi

N∑
i=1

hinzi δSi

− (cψ cθ) xsg − (cψ sϕ sθ− sψ cϕ) ysg − (sψ sϕ+ cψ cϕ sθ) zsg = 0 (4.1.14)

N∑
i=1

cyihinzi δSi

N∑
i=1

hinzi δSi

− (sψ cθ) xsg − (cψ cϕ+ sψ sϕ sθ) ysg − (sψ cϕ sθ− cψ sϕ) zsg = 0 (4.1.15)

All points on the deck are assumed to be in the reference plane, with z = 0. Con-
sequently, all other elements of the hull discretization will have negative z-coordinates.
The sea surface is also considered at z = 0, as shown in figure 4.2a. In addition, ηw is the
elevation of the free surface in case of regular or irregular waves. In the beginning, when
the hydrostatic equilibrium is examined, ηw, is considered a wave with a height equal to
zero.
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One of the inputs of the code is a vector with the generalized position of the ship

(res, q
e
s) = (ξ, η, ζ, ϕ, θ, ψ) (4.1.16)

Every transformation and rotation from (4.1.16), is applied from the s-frame, which is
located in the midship and on the deck of the ship (Fig. 4.2b)

(a) Position vector (res, q
e
s) = (0, 0, 0, 0, 0, 0)

(b) Position vector (res, q
e
s) = (0, 0, 8.1,−π/12, π/180, 0)

Figure 4.2: Example of Buoyancy calculation- graphic representation of
the position of the ship for specific (res, q

e
s) position vector

The black axes refer to the e-frame, whereas the blue and red axes refer to s- and m-
frame respectively.

With the use of the formula (4.1.3), every centroid is transferred with respect to the
m-frame. And every unit normal is rotated with the rotation matrix. Then formula
(4.1.9) is applied to the elements that are under the free surface, in order to calculate the
Displacement volume. Similarly, equations (4.1.14) and (4.1.15) can be used to calculate
the longitudinal and transverse center of buoyancy from the midship. For the above
calculation the function Buoyancy.m2 is used.

Conversely, by using the functions that were created, the generalized position of the
ship can be calculated. This time the coordinates of the center of gravity and the dis-
placement of the ship for a given loading condition will be used as input. In the function
Equilibrium.m3, the equations (4.1.13), (4.1.14), (4.1.15) can be solved as a 3x3 system to
find the appropriate pair (ζ, ϕ, θ) of the ship’s position that satisfies the equations. Then
the function searches for a numerical root of (ζ, ϕ, θ), starting from the point (ζ0, ϕ0, θ0).
For this reason, the initial position vector should be provided as input. With this sense,
three functions were developed, Equilibrium 3, Equilibrium 35 and Equilibrium 345. In
each of the above functions, the equilibrium is resolved in only one degree of freedom (cor-
responding to heave response motion), two degrees of freedom (corresponding to heave

2//BuoyUp2Lite/Needs/Mathematica/BuoyUp/Buoyancy.m
3//BuoyUp2Lite/Needs/Mathematica/BuoyUp/Equilibrium.m
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and pitch response motion), and finally three degrees of freedom (corresponding to heave,
roll and pitch response motion) respectively.

Finally, combining the functions developed so far, the righting arm (GZ) is calculated.
Since the righting arm must be found for a particular loading condition, there is no
equilibrium on the transverse axis. For a certain rolling angle, the function Equilibrium
35 is used, so the solution for the ship’s position (ζ, θ) is found. After knowing the
position vector (res, q

e
s), but with the equilibrium being applied only in the direction of

the heave and pitch motion, yb can be computed. After this process, the righting arm is
calculated, for a given roll angle by the following formula.

GZ = yb − yg (4.1.17)

As already mentioned that quantities yb and yg are considered with respect to them-frame.

4.2 Discretization of hull’s geometry

4.2.1 Sample ship Data

To calculate the righting arm, as described in the previous section, the ship’s hull geometry
must be input to the program. This is done via descretizing the hull surface into small
elements. From each element, the coordinates of the centroid, its unit normal vector, and
the area of the surface element are used. The coordinates of the elements are used with
respect to the origin point in the s-frame, located in the middle of the ship.

As a sample for this study, a Post-Panamax Container Carrier is used. This ship is
capable of worldwide trading, including Suez Canal and Panama Canal. The Container-
ship’s capacity is between 4275 TEU (10 t/TEU homogeneous) and 2366 TEU (18 t/TEU
homogeneous) approximately, depending on the loading condition of the ship. The sample
ship is a vessel with a block coefficient of around 0.65, no paraller midship section, a bow
with a large flare and a bulb. It also has a pair of bilge keels with width of 0.415 m and
length of about 30% of Lpp. The Containership appears to have a deckhouse in the stern
section. The vessel’s hull lines, bulbous bow ,and bow flare are optimized by HSVA (The
Hamburg Ship Model Basin).

For this ship, studies on parametric roll have been done in the past. The ship was
investigated at design draught with a low transverse metacentric height of GMt = 0.5m.
The ship at this investigated load case has a natural roll period of T0 = 41.5sec. At this
condition, the ship suffers from low static stability and it is likely for parametric rolling
to occur at medium ship speeds in following waves. According to the calculations of the
HSVA report, severe roll motions can occur in a wide range of wave periods and ship
speeds ,and even capsizing is possible in following seas of 6 m significant wave height and
wave periods between approximately 10 and 20 sec.

In this diploma thesis, this case will not be examined, as the purpose of the diploma
thesis is not to evaluate whether or not this particular ship has sufficient stability. This
ship is used as a typical sample ship so that the response to parametric roll in waves can
be examined in general. In addition, the same ship was also used by Ms. Dousia in her
diploma thesis [26]. So it is used so that a relative comparison can then be made between
the results of Ms. Dousia’s and this diploma thesis. In table 4.1 the main particulars of
the ship, that was chosen for this study, are shown.



CHAPTER 4. HYDROSTATIC EQUILIBRIUM AND HULL DISCRETIZATION 34

Table 4.1: Principal Dimensions of the sample ship

Length overall Loa 250 m
Length between perpendiculars Lpp 238.35 m
Breadth (mld.) B 37.3 m
Depth (mld.) D 19.6 m
Design Draught (mld.) Td 11.5 m
Scantling Draught (mld.) Tsc 12.5 m

4.2.2 Rhino Model and hull discretization

A model has been created with the Rhinoceros ®Design Program. After creating the
surface of the model by following the lines of the ship, a mesh is made with triangular
elements (trimesh). The triangular mesh is then exported to a .raw file, consisting of a
list of the coordinates of the 3 corners (pcorn1, pcorn2, pcorn3) of each triangular element.
The list consist of the x, y, z− coordinates for each corner, as shown below.

pcorn1 = (xcorn1, ycorn1, zcorn1),

pcorn2 = (xcorn2, ycorn2, zcorn2),

pcorn3 = (xcorn3, ycorn3, zcorn3)

(4.2.1)

Then the coordinates of the centroid of each element are calculated as follows.

cx =
xcorn1 + xcorn2 + xcorn3

3
,

cy =
ycorn1 + ycorn2 + ycorn3

3
,

cz =
zcorn1 + zcorn2 + zcorn3

3

(4.2.2)

In a triangle two vectors A⃗ = pcorn2 − pcorn1 and B⃗ = pcorn3 − pcorn1 are selected. The
surface normal of each triangle can be calculated by taking the vector cross product of two
edges of that triangle , as N⃗ = A⃗×B⃗. The order of the vertices used in the calculation will
affect the direction of the normal (inwards or outwards of the face). After the calculation
vector cross product, each vector component can be calculated as follows:

Nx = AyBz − AzBy,

Ny = AzBx − AxBz,

Nz = AxBy − AyBx

(4.2.3)

Finally, the unit vector n⃗ is equal to the normal vector N⃗ divided by its magnitude. The
magnitude |N⃗ | of the normal vector N⃗ is equal to the square root of the sum of the squares
of its components, |N⃗ | =

√
N2

x +N2
y +N2

z .
For all the above computations a function was created in Mathematica 4, and the

direction of the unit vector is checked so that it is always directed inwards to the ship’s
hull. The area of the surface of each element is also calculated. With the use of this

4//BuoyUp2Lite/Needs/Mathematica/BuoyUp/Discretization.m
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function, the unit normals, centroid, and area of each element are determined, in order
to be used as input for the calculation of the Hydrostatic Equilibrium for the previous
functions.

The mesh generated by the model designed in Rhino is shown in figure 4.3. Three
different meshes were selected, with 1000, 10,000, and 20,000 elements respectively. The
meshes are automatically generated by the Rhino program to capture the geometry of the
ship as accurately as possible, according to the number of elements specified.

In figure 4.3, we notice that the elements that form the mesh are not of constant size
and are sometimes larger and sometimes smaller. At positions where the geometry is
complex, there are a more numerous but smaller elements. In areas where the hull surface
is flat, e.g. FOS, FOB or the upper deck the mesh consists of larger elements.

(a) Discretization with 1,000 elements

(b) Discretization with 10,000 elements

(c) Discretization with 20,000 elements

Figure 4.3: Rhino Tri-Mesh with different number of elements

In particular, it is observed that in the deck the triangular elements have an elongated
structure and are not evenly distributed over the entire surface. In every triangle one of
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the three corners is fixed on the same point and this is what creates the elongated shape.
As a result the centroids of the triangular elements in the deck are concentrated in one
area only. This is a problem as the program recognizes the geometry by the location of
the centroids and therefore may not produce accurate results for the equilibrium of the
ship at large angles where the free surface will exceed the deck.

For the above reasons, another discretization of the hull was created in a slightly
different way. The frames, taken from the ship’s data, were placed at equal distances.
Each frame was divided into a sufficient number of points. For each frame these points
will be at an appropriate location so that they create quadrilateral elements as they line
up with the points of the adjacent frame. Again, three different meshes were selected,
with 2,320, 4,382, and 6,694 elements respectively, as shown in figure 4.4. Since the
mesh is quadrilateral, the centroids, unit vectors and area for each element are calculated
respectively.

(a) Discretization with 2,320 elements

(b) Discretization with 4,382 elements

(c) Discretization with 6,694 elements

Figure 4.4: Mathematica Quad-Mesh with different number of elements
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4.3 Validation of Mathematica code with Aveva and
Trim & Stability data

4.3.1 Displacement and LCB hydrostatic calculations

A model of the ship was then designed in AvevaTM Initial Design to validate the accuracy
of the program in the hydrostatic calculations. A comparison of the created meshes will
also be made to select the proper discretization with as few elements as possible in order
to speed up the calculation process, but at the same time provide a sufficient level of
accuracy.

First, the values of Displacement and LCB (from the Aft Peak) were calculated from
Aveva and Mathematica for a range of drafts. The cases that are examined are for even
keel (or else called zero trim), for trim by stern (trim=−1), and trim by head (trim=1)
in still water. For the Mathematica calculations, the functions developed in Section 4.1
for the calculation in hydrostatic equilibrium are used, in function TDisp.m 5. With the
function TDisp.m, the ship’s displacement is calculated for a given draught, to ensure
the equilibrium in the three degrees of freedom (corresponding to heave, roll and pitch
response motion respectively). Similarly, the longitudinal center of buoyancy is calculated
from the AP, for variant draughts. For the computations, the generalized position of the
ship is fed into the program as input data, (res, qes) = (0, 0, ζi, 0, θ(0,−1,1), 0) (see equation
(4.1.16)). The value ζi is the vertical transformation corresponding to the desired drafts.
The values θ(0,−1,1) in rad are the right rotation angles that the ship should be subjected
in order to have zero trim, trim by stern, and trim by head accordingly.

The calculations of the ship’s displacement and LCB are made with the six different
hull meshes. The former are compared with the corresponding values from the hydrostatic
table of the reference ship and the results from the Aveva model as presented in the
figures 4.5, 4.7, and 4.6. For each case, the error is calculated from the real data, which
is the data extracted from the Trim & Stability of the ship and are considered to be
the most accurate. For each draft the deviation between the displacement calculated by
Mathematica or Aveva and the actual one (Trim & Stability), is evaluated. The error is
then divided by the real value, and finally, it is multiplied by 100 to obtain the percentage
error, as shown in the following formula.

PercentageError =
∆CASE −∆REAL

∆REAL

100 (4.3.1)

In the same way, for the LCB, the error is presented as a percentage of the ship’s Lpp

which is always constant and equal to 238.35 metres, as follows.

Error as percentage of Lpp =
LCBCASE − LCBREAL

Lpp

100 (4.3.2)

From the graphs what we observe primarily, is that there are no extreme values nor
logical errors. The LCB for zero trim calculated for each draught is between the corre-
sponding values for the trim by stern and by head. This is to be expected, as when the
ship has trim by stern, the stern of the ship is deeper submerged in the water. This results

5//BuoyUp2Lite/Needs/Mathematica/BuoyUp/TDisp.m
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Figure 4.5: Validation with Trim & Stability data and Aveva model of
LCB and Displacement in Calm Water with Trim =0
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Figure 4.6: Validation with Trim & Stability data and Aveva model of
LCB and Displacement in Calm Water with Trim by Head

in the submerged volume of the ship being more towards the stern and therefore the LCB
is further aft than it would be for zero trim. The opposite applies when the ship has a
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
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Figure 4.7: Validation with Trim & Stability data and Aveva model of
LCB and Displacement in Calm Water with Trim by Stern

trim by head. Then the longitudinal center of buoyancy is further forward than it would
be for the same situation at zero trim. By observing the diagrams above it is obvious
that this happens in all cases, and for every draught. So the program in Mathematica
approximates and understands well the changes that will occur with the alteration of the
ship’s position on the free surface of the sea.

For the condition of the ship with even keel, both the Mathematica and Rhino model
discretizations have a modest error from the actual values. The error for the displacement
calculation decreases further for larger draughts. For the calculation of the LCB, the error
becomes almost close to zero. The same seems to occur for the trim by stern and by head.

For the displacement, the discretizations 2 and 5, with the fewest elements, both
from the quadrilateral and triangular mesh, have the poorest accuracy. The models from
Rhino (models no. 2, 3, and 4) have better accuracy for smaller drafts than the ones
from Mathematica (models no. 5, 6, and 7). This may be due to the Rhino model having
additional geometry detail in the bulb and the stern of the hull (see figure 4.4). As the
draught increases the accuracy of Model 6 and 7 is better than the one of Model 3 and 4.
This may be because of the larger elements in FOS that exist in the Rhino models (see
figure 4.3). Either way, both models have acceptable levels of accuracy. The same is true
for the LCB calculation. For bigger drafts, models no. 5, 6, and 7, both for trim by stern
and by head, estimate the LCB with almost zero error (figures 4.6 and 4.7).

The Aveva model has the highest accuracy of all the examined models, as far as the
calculation of the displacement is concerned. At smaller drafts, the error for calculating
the LCB is as low as −0.3% of Lpp. However, for larger drafts, the error is very close to
zero.

As final findings, we can say that, for these hydrostatic calculations both discretiza-
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tions (Rhino and Mathematica models) were acceptable. The mesh with 2,320 elements
seems to be the least exact for calculations of the displacement, but without affecting the
accuracy for calculating LCB. The next most inaccurate models are those derived from
the Rhino model, especially for the LCB, where it results up to 0.7 meters larger than the
actual LCB, as shown in figure 4.7. However, even the values with the largest deviation
are considered to have acceptable errors.

In some cases, the Aveva model (model no. 1) has some noticeable error, but this is
because it may have undergone the most processing during the geometry representation
process. In this process, some of its details may have been altered. In contrast, with the
Aveva model, we see that the absence of some vertices from the model in Mathematica
does not significantly affect the hydrodynamic calculations. In general, for displacement
and LCB, the Mathematica models have very good precision, although they are lacking
a little at smaller draughts.

4.3.2 GZ curve in calm water

Next, the ability of the code to accurately calculate the righting arm in calm water for a
given loading condition will be further investigated. This comparison is necessary as the
main purpose of the code in Mathematica is to calculate the righting arm. As already
discussed in section 4.1, the righting arm is calculated for a specific rolling angle, with the
function Equilibrium 35. This function is used to find the solution for the ship’s position
(ζ, θ), so that the equilibrium of the ship in the two degrees of freedom (corresponding to
heave and pitch motion) is achieved.

For the calculation of the righting arm for a specific rolling angle, the function GzEq35 6

is used. The value of the righting arm depends on time, the ship’s position on the x− and
y− axis (generalized ship’s position), the angle of inclination, the hull geometry, and the
loading condition (hence the displacement and center of gravity, vertical and longitudinal).
The GZ curves generated by Mathematica code in still water should be compared with
the corresponding curves generated by Aveva and those in Trim & Stability booklet. The
comparison will be made under 5 main loading conditions, the characteristics of which
are presented in the following table.

Table 4.2: Loading Conditions of the sample ship from the Trim & Stability Booklet

Loading Condition 15 18 27 30 36
No. of Containers [-] 3858 3118 3889 3262 2659
tons/TEU [t] 12 hom. 16 hom. 10 hom. 12 hom. 16 hom.
Mean Draught [m] 12.52 12.52 11.52 11.52 11.52
Displacement [t] 75973.8 76078.1 68322.2 68192.8 68199.1
KG (Fluid) [m] 17.17 16.21 16.88 15.62 14.83
LCG (from AP) [m] 115.39 114.99 121.62 116.41 123.48

The GZ curves resulting from the six different discretizations of the hull for the loading
conditions are shown in figure 4.8. For most models, the GZ is calculated accurately for
small inclination angles. Only the Rhino model no. 2 has in certain loading conditions

6//BuoyUp2Lite/Needs/Mathematica/BuoyUp/NDSolve4.m
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Figure 4.8: Validation with Trim & Stability data and Aveva model of
GZ curve in Calm Water

a larger deviation for small angles,between the data from the Trim and Stability or the
Aveva model. The other two Rhino models (models no. 3, and 4) have large deviations
for bigger angles and higher inconsistencies in the calculation of maximum GZ and the
capsizing angle. This could be partly due to the fact that in larger angles, the FOS
gets wet and then parts of the upper deck may be immersed. Then the results may be
distorted because of non-uniform discretization and the presence of large and non-uniform
elements.

Because of the limited data available to produce the GZ charts from the ship’s Trim
and Stability, the generated curves are not smooth. But already from the few points, it is
obvious that there are no obvious similarities with the other curves, for large roll angles.
At this point, it should be noted that both for Aveva model and Mathematica/ Rhino
models, the geometry of the bare hull has been recreated. This may be the reason why
the GZ curve from the ship’s Trim and Stability has a higher maximum righting arm and
capsizing angle in all loading conditions. Apart from the above reason, the purpose of
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this diploma thesis is not to evaluate the stability of the sample ship. Since the model
in Aveva has sufficient accuracy, as already shown in figures 4.5, 4.6, and 4.7, it can be
considered quite reliable.

Finally, models 5, 6, and 7, are the ones that calculate the GZ curve most accurately.
In some loading conditions (LC 15, and 27) the calculated curve, falls exactly on the
points of the Aveva. Moreover, the capsizing angle is predicted exactly in every case,
and the position and value of the maximum righting arm are computed with acceptable
accuracy.

At this stage, by examining the diagrams 4.8, it is interesting to observe how the
loading condition affects the intact stability of the ship. As shown in table 4.2, depending
on the number of containers loaded, and the weight of each one, the KG decreases or
increases accordingly. It seems that the loading conditions, where the KG is higher, are
less stable. Conversely, stability increases (both the maximum GM and capsizing angle
have a higher value). This is consistent with the formula (3.1.10), as the KG fluctuates,
the metacentric height of the ship changes. For a constant displacement obviously, there
are other factors affecting stability, such as the change in the waterline, the moment of
inertia of the waterplane IT or the KB, but the effect of KG is more pronounced here.

4.3.3 GZ curve in sinusoidal longitudinal wave

At this stage, the Aveva model is considered rather accurate. Further verification was
made, using Aveva Hydrostatics and Hydrodynamics, to calculate the ship’s GZ curve in
a cosine longitudinal wave. Since there are no data for waves in the Trim and Stability
Booklet, the Aveva model is used to check the accuracy of the calculations performed by
the Mathematica code.

From Aveva the values of the GZ curves for the different Loading Conditions were
calculated as shown in the table 4.2. Aveva can calculate the Intact Stability of the ship
in a cosine wave, by entering the appropriate parameters. The wave was chosen to have
wavelength equal to the ship’s Lpp, (λ/Lpp)= 1. Each time, calculations are made to shift
the wave by λ/8, so that after 8 translations, the wave has traveled a distance equal to one
wavelength. The reference point was chosen to be located at the ship’s amidships, i.e. for
Aveva, the parameter "Pivot Point" (P.P.) took the value Lpp/2 = 238.35/2 = 119.175m.
Therefore the distance of the wave crest from this reference point was shifted accordingly
each time.

For the computations with the Mathematica code the only parameter that needed to
be modified, was the formula for the description of the free surface elevation. Since the
wave is a cosine wave, the free surface relation was expressed by the equation (3.3.3). In
Mathematica, the change of the wave’s position was done by changing its phase, ϵ, from 0
to 2π in steps of π/4. Therefore the wave equation was appropriately modified as below.

ηw(x, t) = a cos(kx− ω t+ ϵ) = a sin(kx−
√
k g t+ ϵ) (4.3.3)

In this application, the wave amplitude a is chosen to be equal to 3m and the wave
direction angle is zero. The wavenumber k is defined as, k = 2π/Lpp.

As the wave was located in different positions, the GZ curve of the ship was calculated.
The parameters of the wave, used for the Aveva to determine its position in each case are
given in the table below.
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Table 4.3: Parameters for the ship’s position in wave for calculation of Gz curve

Wave phase 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4
Wavelength [m] 238.35 238.35 238.35 238.35 238.35 238.35 238.35 238.35

Height [m] 6 6 6 6 6 6 6 6
Crest

position from
P.P.

[m] 0 -29.79 -59.59 -89.38 119.175 89.38 59.59 29.79

Dir. angle to
C.L.

[deg] 0 0 0 0 0 0 0 0

The figures 4.9 show the representation of the free surface elevation and the ship for
some of the phase ϵ of the wave, according to relation (4.3.3). In 4.9c the wave trough is
located amidship, so the restoring ability of the ship is better than when the wave crest is
located amidship. In this condition, the restoring ability drastically decreases, as shown
in 4.10.

Correspondingly, figure 4.10 shows the GZ curve as calculated for the 6 different hull
discretizations, compared to the corresponding curve obtained from Aveva. As the wave
passes through the ship, its equilibrium changes (in the 2 DOF, heave, and pitch motion).
Therefore the ship for each differing rolling angle will have a different value of the righting
arm. In this figure, the variance of GZ is presented only for LC 18. The rest diagrams,
for LC 15, 27, 30, and 36, are shown in Appendix A.

Looking at the graphs, it is clear that the Mathematica discretizations (models 5,
6, and 7) are in perfect agreement with the results obtained by Aveva. The same is
true for the other loading conditions (see Appendix A). The models from Rhino, fail to
calculate the righting arm, especially at larger roll angles. As already mentioned, due to
the non-structural shape of the deck elements, the centroids are not evenly distributed
over the entire deck surface. This provides incorrect information during calculations, as
the program does not find a deck element submerged, even though in reality the edge of
the deck may be immersed. This leads to the impression that the capsizing angle is larger
or that the ship has in general a higher restoring ability.

In conclusion, this chapter has presented the way of developing the code for calculating
the hydrostatic values and consequently the ship’s equilibrium in the three degrees of
freedom (regarding heave, roll, and pitch motion). Also by using the code, the righting
arm is calculated at each position, time, and rolling angle of the ship. For the correct
calculation of the required values, the appropriate geometry of the ship had to be used,
creating a mesh with the adequate discretization and number of elements. For this reason,
two different models were made, each with three different number of elements.

The hydrostatic values calculated by Mathematica were checked with Aveva’s model
and the ship’s Trim & Stability Booklet, for each discretization (section 4.3.1). Further
verification was also done for the GZ curves in still water (section 4.3.2) and in regular
wave (section 4.3.3) for some typical loading conditions.

The comparisons show that the more structured discretization was quite accurate even
for model no. 5, which has fewer elements. Model no. 5 had larger deviations for LCB
and displacement calculations, while it was accurate on the computation of the GZ curve.
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Models 6, and 7, have very close results to each other in all comparisons, with very
satisfactory accuracy. For this reason, from now on, either model 6 or 7 are the options
for the discretization of the hull, as far as the calculations are concerned.

(a) Wave phase ϵ = 0π,
or else with 0 m crest distance from Pivot Point

(b) Wave phase ϵ = 0.5π,
or else with -59.59 m crest distance from Pivot Point

(c) Wave phase ϵ = 1π,
or else with 119.175 m crest distance from Pivot Point

(d) Wave phase ϵ = 1.5π

, or else with 59.59 m crest distance from Pivot Point

Figure 4.9: Positioning of a ship on a regular wave
Model no. 6 with 4,382 element, positioned at different time instants by changing the

wave phase
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Figure 4.10: Validation with Aveva model of GZ curve in sinusoidal
Wave for LC 18



Chapter 5

Differential Equation Model

In this chapter the form of the differential equation is presented. The model used, is a
pseudo-static model which uses the equilibrium in two degrees of freedom, to calculate the
righting arm in every time instant, during the solving of the rolling differential equation.
Section 5.1 explains the assumptions made in the model and how it differs from the
Mathiue’s model. Then the terms of the differential are presented and how they are
approximated. Next, in section 5.2, the application of the model for regular waves is
presented. Runs for selected case studies were conducted. One of them is identical to the
case study chosen by Ms. Dousia [26] to produce one of the stability chart in her diploma
thesis. Finally, two stability diagrams will be presented, obtained after the simulations
for specific cases.

5.1 Differential Roll Equation in Longitudinal waves
Ship motions are described as an object with respect to six degrees of freedom in transla-
tion and rotation as shown in figure 4.1. As already stated, the translation motions include
surge, sway and heave and the rotation movements include roll (heel), pitch (trim) and
yaw. In the actual operation condition, ship motions have a complicated relationship.

However, ship motions can be split into two categories. The first category consists of
pitch, heave and roll influenced by sea waves and the second category consists of surge,
sway and yaw produced mainly by propeller force, rudder, current and wind [53]. In this
section, the method for finding the roll resonance and building the differential equation
for longitudinal waves will be introduced.

The procedure for calculating the ship’s roll response is based on modelling the roll
motion dynamically using a single degree of freedom. At the same time, the coupling
with heave and pitch motion is taken into account by means of hydrostatic calculations
without considering dynamic effects. So the model developed is not one of 3DOF, but is
pseudo-static, as far as the approximation of the righting arm is concerned.

In the general differential equation, developed in section 3.2.2, the righting arm is a
function of time, position of the ship, and the inclination angle. In order to accurately
describe the shape of the GZ curve, it is common use for the curve to be approximated
as a polynomial power series with odd powers. As a result, the differential equation
describing the rolling motion in longitudinal waves becomes non-linear (equation 3.2.8).

46
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It is common practice, to assume a linear relation of the restoring term and the rolling
angle. Further for regular waves, the GM varies approximately sinusoidally between
two extreme values. This consideration leads to the the well-known Mathieu’s equation
(3.2.11), which is implemented in many occasions as an attempt to simplify the procedure
of the GZ-curve calculation.

In this analysis, however, the pseudo-static model is used instead of the linear Math-
ieu’s model. In this way we can transition from the linear to the non-linear model and
compare the results between these two methods of calculating the ship’s roll resonance.
Afterwards, once the model for solving the differential equation is developed, the mod-
elling of the irregular longitudinal waves can be included (see Chapter 6).

For calculating the ship’s roll resonance, all the terms of the equations (3.2.8) need
to be calculated. These terms are, the damping term, the natural roll frequency and the
transverse moment of inertia. Considering that the ship has a constant forward speed,
the value of GZ needs to be computed by taking into account the relative position of the
ship and the wave, as the ship moves forward.

5.1.1 Damping term

While describing the equation of roll motion there are many ways for the damping term to
be expressed. To capture the nonlinear behavior of roll damping, higher order equations
are used. Often a equivalent damping coefficient can be computed, in order to com-
pare these models to linear damping coefficients. By calculating an equivalent damping
coefficient, a linearized damping term is obtained.

However, for the present application the damping term of the differential rolling equa-
tion is chosen to be linear rather than linearized, thus having a linear relationship with
the angular velocity. In addition, ζ is the damping ratio’s value and is obtained from the
differential analysis as introduced in chapter 3.2.2. It usually takes values between 0.05
and 0.2.

5.1.2 Natural roll frequency and transverse moment of inertia

The natural rolling frequency is given by the formula (3.2.6). The main difficulty of this
formula, is the evaluation of the moment of inertia that includes the mass moment of in-
ertia and the added hydrodynamic moment of inertia due to the acceleration of the fluid
by the oscillating ship. For this application the added moment of inertia is considered
approximately constant with frequency and, therefore the total inertia is constant. The
natural frequency of the ship, mainly depends on the loading condition and the distribu-
tion of the weight on the ship. Since no information is provided on the transverse moment
of inertia or the natural rolling period of the ship, the approximate method, provided by
the IMO is used [12]. According to the IMO, when the period of rolling motion cannot
be measured, the following approach is indicated to be used.

T0 =
2CB√
GM0

(5.1.1)

The coefficient C can be calculated as

C = 0.373 + 0.023
B

T
− 0.043

L

100
(5.1.2)
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Figure 5.1: Polynomial fitting of data for approximation of GM0

where B, T , and L are the breadth, the mean draft , and the length of the ship at the
waterline respectively.

The GM0, is the initial metacentric height in still water and refers to a specific loading
condition. It can be calculated by computing the gradient of the righting arm GZ(ϕ) curve
for inclination angle ϕ = 0. The data for the production of the GZ curve in still water,
can be calculated the same way as in chapter 4.3.2. Further, the function of the curve
can be found by fitting the points to a eleventh-order polynomial power series [41], with
the following form.

GZ(ϕ) = C1 ϕ
1 + C3 ϕ

3 + C5 ϕ
5 + C7 ϕ

7 + C9 ϕ
9 + C11 ϕ

11 (5.1.3)

After finding the function of the GZ curve, the value of the initial metacentric height
is approximated by relation (3.1.13). Applying this procedure for the different loading
conditions, the values of the natural rolling period, are obtained. It should be noted that
these values may differ from the corresponding values listed in the ship’s Trim & Stability
Booklet. However, as it is already discussed in Chapter 4, the validiability of the code is
now taken for granted. The code calculates the righting arm with reasonable accuracy,
with the introduction of the appropriate discretized hull. The results of the above process
are shown in figure 5.1, for the loading conditions 18 and 27.

Once the natural period T0, and therefore the frequency ω0, has been calculated, an
approximation of transverse moment of inertia can be made from relation 3.2.6 for every
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given loading condition.

5.1.3 Righting arm

The calculation of the GZ is the most important factor, and the main focus of this
diploma thesis. The righting arm at any given time depends on the position of the ship
and the angle of the intersection. As described in the previous chapter (section 4.1:
Calculation of Hydrostatic equilibrium in Mathematica), for a certain rolling angle, the
function Equilibrium 35 is used, for the solution of the ship’s position (ζ, θ) to be found.
After knowing the position vector (res, qes), but with the equilibrium being applied only in
the direction of the heave and pitch motion, the righting arm for the specific ship position
can be computed. The sea state is entered into the program through the elevation of
the free surface1, and the equilibrium of the two degrees of freedom (by heave and pitch
motion) is calculated accordingly. The righting arm used is the one that results from
equilibrium and is not approximated in a linear way (Mathieu’s model) or by a higher
degree polynomial function. For this reason the equilibrium is described as pseudo-static.

Three ways were studied, in which the GZ curve could be introduced into the program
in the differential equation, to find the ship’s roll resonance (see Appendix B.1). After
experimenting with these methods, trying to find which one is the most suitable and the
most time efficient, the model finally used is that of the equation (5.1.4). A function was
created for this purpose 2, which directly calculates the righting arm. This function uses
as input the inclination angle and the absolute time of the simulation. In addition, the
position of the ship is indirectly entered into the equation through the ship’s speed, if any.
This function is introduced directly into the differential function. So, the rolling angle
satisfying the system, is approximated with the appropriate iterations (as an internal
process of the differential solver). The differential is solved directly for all simulation
time, with the time step either selected by the solver automatically or manually set by
the user. The differential equation, in the program, has the following form, which is the
closest to the form introduced in chapter 3.2.2.

ϕ̈+ 2ζ ω0 ϕ̇+
mgGZ(x, t, ϕ)

Ix
= 0 (5.1.4)

The approach is considered more accurate, because the function of GZ calculation is
imbedded directly into the differential equation. As a result, after some iterations the
angle, thus the response of the ship in roll motion, that satisfies all the equations, is
approximated. For each instant, the response angle is found to satisfy the system.

5.1.4 Numerical Integration of the Roll equation

The above form of the differential equation is solved in Mathematica, with the NDSolve
numerical solver 3. The above differential equation, can be solved by numerical solvers,
as they are no exact analytical solutions. NDSolve is a default Mathematica function,

1//BuoyUp2Lite/Needs/Mathematica/BuoyUp/FreeSurface.m
2//BuoyUp2Lite/Needs/Mathematica/BuoyUp/NDSolve4.m
3//BuoyUp2Lite/Needs/Mathematica/BuoyUp/NDSolve4.m
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which adapts its step size so that the estimated error in the solution is just within the
tolerances specified by PrecisionGoal and AccuracyGoal4. NDSolve typically solves dif-
ferential equations by going through several different stages, depending on the type of
equations. With the option Method, each stage is handled by the chosen method. The
actual stages used and their order are determined by NDSolve, based on the problem to
solve.

Originally the default form of NDSolve was used. However, later (see Chapter 6),
when the information about the free surface of irregular wave was introduced during
the solution of the differential equation, the times became prohibitive for the solution
of each case. For this reason the functions for the hydrostatic calculations were rewrit-
ten in C/C++ programming language by Doctoral Candidate Ioannis Kontolefas. The
interaction of C/C++ with the Wolfram Language is enabled through the Wolfram Sym-
bolic Transfer Protocol (WSTP). In addition to the introduction of functions in C++,
in order to speed up the hydrostatic calculations, another solver was implemented for
the numerical integration of the rolling equation (WSTP-RK45). With this solver, not
only are the equations for hydrostatic calculations from C++ used, but it further uses
"ExplicitRungeKutta" as the method of solving the equation. That means it is a solver
using explicit Runge-Kutta methods of 4th degree. Also the option "StartingStepSize" is
used, that specifies the initial step size used in trying to generate results.

With this addition the computing time has been reduced considerably. These func-
tions, further developed at this stage, were then used to numerically solve the differential
equation in Chapter 6. The numerical stability of the differential and the numerical part
in general, are not directly related to the aim of the diploma thesis, as the physical prob-
lem is studied. Inevitably, attention had to be paid to this point as well, in order to reduce
the computation times. The Appendix B.2 shows some calculations and comparisons be-
tween the ship’s responses by using the default numerical solver and the WSTP-RK4 with
different initial solving steps, to confirm the accuracy of the solver.

Referring to the diagrams in Appendix B.2, we conclude that solver WSTP-RK4 does
not perform worse than the Default solver. On the contrary, the computation time, with
starting time step equal to 2 sec, is reduced by a factor of 20. The results of all the cases
are identical to each other most of the time. The only scenarios in which this is not the
case is when the ship has large response angles (30 degrees and above). In these cases,
some solvers predict capsizing and others do not. Of course, in a real case the ship would
have capsized, either way. Therefore, all these cases will be considered later as capsizing
cases, so the use of theWSTP-RK4 solver will not change the results.

5.2 Application of developed model in Regular Waves
In this section, the practices mentioned in 5.1 are applied. The differential equation of
roll is solved for regular following waves, for a chosen time span. Several simulations are
conducted, for the Stability Chart to be produced. In 5.2.1 the parameters chosen to
generate the two stability diagrams will be presented. The first one has parameters as
identical as possible to the one generated by Ms. Dousia, in her diploma thesis. For the

4In this application the PrecisionGoal and AccuracyGoal are set equal to six.
5//BuoyUp2Lite/Needs/Mathematica/BuoyUp/NDSolve4.m
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second chart, the parameters are for the same loading condition, but a different sea state.
In section 5.2.2, the two diagrams, are presented, together with some conclusions drawn
from them.

5.2.1 Parameters for the Stability charts

For the production of the stability charts in regular waves, the proper conditions and
parameters should be defined. If possible, these parameters were chosen the same as
those used by Dousia, to produce the corresponding charts. Some of the main param-
eters that affect the ship’s response are the loading condition, the damping ratio, the
initial conditions of the differential equation, as well as the wave steepness and encounter
frequency.

The stability chart for parametric roll resonance corresponds to a specific wavelength
λ. From the wavelength, the wavenumber k, and the wave frequency ωw, can be calculated.
In order to produce the data of the diagram, we need to make the simulations for a range
of the ratio a = 4 ω0

2

ωe
2 and wave steepness H/λ. The ratio a is commonly used because,

according to Mathieu’s equation solutions, there is an unstable behavior when this ratio
is appropriately 1 (principle resonance), 4 (fundamental resonance), and so on according
to equation (3.2.12).

The wave encounter frequency depends on three factors; the speed of the ship, the
radial wave frequency, and the direction of the wave. The wave encounter frequency is
defined as follows.

ωe = ωw − k Vs cos(µ) = ωw − ω2
w

g
Vs cos(µ) (5.2.1)

, where ωw refers to the wave’s radial frequency, Vs is the constant speed of the ship, and
µ is the encounter angle between the wave and the ship. Therefore, as long as it concerns
longitudinal waves along with the ship, the angle µ takes the following values.

• µ = 0 deg: for following waves, i.e. the waves and the ship travel in the same
direction.

• µ = 180 deg: for head waves, i.e. the waves and the ship travel in the opposite
direction.

From the above equation for the calculation of the encounter frequency, it is safe to say
that the encounter frequency (ωe) is greater than the wave frequency (ωw) in head seas.
In addition, the opposite applies for the following seas, as the encounter frequency is less
than the wave frequency. In this study, it is avoided to use the developed model for
head seas. The model is pseudo-static, so as the head seas have a big radial encounter
frequency (thus low encounter period), it is uncertain whether the model works properly,
as the changes are more rapid.

For the simulations, loading condition 18 was chosen, which is one of the cases consid-
ered by Dousia, in her work. It is a loading condition with relatively moderate stability.
The characteristics resulting from this condition are shown in Table 5.1. Some other
characteristics, such as parameters for the differential equation and wave characteristics,
are also presented in the same table.
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Table 5.1: Data necessary to derive the Stability Chart for two types of regular following
waves for LC 18

Characteristics of loading condition
Displacement [tons] 76078.1
Mean Draught [m] 12.52

KG [m] 16.21
LCG form AP [m] 114.99

Initial conditions of the differential equation
ϕ(0) [rad] π/180

ϕ̇(0) [rad/sec] 0
Parameters used in the differential equation

Damping ration ζ - 0.05
Ix [tonsm2] 1.20899 107

GM0 [m] 1.40707
T0 [sec] 21.3227

Simulation time [sec] 600
Wave Characteristics

Type of wave A B
Range of height

H = 2 a
[m] [0.5÷ 15] [0.5÷ 9]

Wave length [m] 1.25Loa = 312.5 188.85
Wavenumber k [1/m] 0.020106 0.03327
Wave Period [sec] 14.1513 11

Wave direction [deg] 0 0
Stability Chart Plot Range Data

Ratio a - [2.17÷ 5.77] [1.4÷ 5.9]
Range of wave

steepness
- [0.0016÷ 0.05] [0.00265÷ 0.04766]
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The wave characteristics were entered as data for the Mathematica function6 to cal-
culate the free surface elevation at each location. The form of the free surface elevation
was described by equation (3.3.3). Also, the drift of the ship on the longitudinal axis was
taken into consideration, due to the fact that the ship travels some distance in a given
time due to its forward speed.

A range of ship’s speeds was also chosen so that the calculations can be done for a
specific encounter frequency, hence a ratio a = 4 ω0

2

ωe
2 . Therefore, in this set of simulations,

the speed of the ship changes and not the wave frequency, which is constant because
we consider a constant wavelength (or equivalent constant wave period). With constant
wave frequency equal to ωw =

√
k g, the corresponding range of speeds of the ship is

approximately:
Vs = 4.273÷ 19.205 [knots]

For the production of the diagrams in regular waves, two sea states were chosen. The
first is the same as the one chosen by Dousia, in her diploma thesis (Type wave A). The
second one was selected as one of the possible sea state from a scatter diagram of North
Atlantic operation (Type wave B) as shown in figure 6.1.

For this set of simulations, the form of differential equation introduced in Chapter 5.1
was used, with the parameters described in table 5.1. The simulations were performed
in 600 seconds in total. From these, the roll response for the first 100 seconds, were not
taken into account, as it is considered to fall under the transient effect. Therefore for each
pair of data (a,H/λ) the maximum response observed after 100 seconds is captured. The
maximums for each data pair are finally plotted in a Contour Plot creating the Stability
Chart.

5.2.2 Stability Charts

The characteristics of the Stability Charts generated for regular following waves as shown
in Table 5.1. In diagram 5.2, it is obvious that parametric roll appears with fundamental
resonance. The minimum required value of wave height is at H/λ = 0.02 ⇒ H = 6.25 [m].

The minimum height, where parametric roll occurs, is the same as that shown in
diagram 5.2a with the calculations done by Dousia. However the ratio a in figure 5.2b,
which corresponds to the minimum wave steepness, is slightly smaller than in figure 5.2a
(4.14 and 4.4 respectively). Apart from that, the charts seem to have the same form. The
shape is also expected and is relatively similar to the one presented in the literature.

Parametric instability initially occurs for H/λ = 0.02, with a maximum response
angle of 5 or 10 degrees. However as the wave steepness increases the response angle also
increases rapidly. This effect is most pronounced on the left side of the instability region,
i.e. for ratio a in the range of 3.4 to 3.9. This region starts at H/λ = 0.025 ⇒ H =
7.81m and spreads gradually, so that, at higher amplitudes there are intense responses
everywhere.

The ship’s speed corresponding to the cases with instability have a range between 12
and 17 knots. These speeds are representative of the ship in case it is traveling with Slow
Steaming.

6//BuoyUp2Lite/Needs/Mathematica/BuoyUp/FreeSurface.m
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(a) Dousia’s stability chart [26]
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(b) Stability Chart with data produced by the model developed in this diploma thesis

Figure 5.2: Comparison of Stability Charts for regular following wave
(Type A) for LC -18

The cases have constant wave period with wavelength equal to 1.25Loa, but with various
ship’s forward speed
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Figure 5.3: Stability Chart for regular following wave (Type B) for
LC-18

In the diagram 5.3, the instability region appears close to a = 4 again, although it
is more restricted than the instability region in figure 5.2. The minimum required value
of wave height is for H/λ = 0.02 ⇒ H = 3.7m, which corresponds to a = 4.1, thus a
ship speed of about 16.4 knots. Again we can see that very quickly for H/λ > 0.028, the
maximum responses of the ship take large values, dangerous to capsize the ship.



Chapter 6

Modelling Irregular waves

This chapter describes how random waves are modeled. In section 6.1, the logic behind
the choice of the spectrum and its characteristics are explained. In addition, the way in
which, the elevation of the free surface is constructed from the spectrum, is described.
Finally, in section 6.2, the parameters to be used and the assumptions to be made for the
construction of the stability charts for the random waves are presented.

6.1 Spectrum Characteristics and Discretization
The study conducted in this diploma thesis examines the ship’s response to irregular
waves. The analysis refers to unidirectional random waves, which result from a sum of
regular partial waves. The free surface elevation for a specific time instant and longitudinal
position is calculated with the use of the equation (3.3.9) introduced in Chapter 3 :
Irregular Waves.

Each term of the sum is described as a regular wave with a defined amplitude, and
wave frequency (or else wavenumber k). Every sum component has a different wave phase,
thus is shifted accordingly, and this leads to a waveform as shown in the figure 3.10b. The
phases for the components are chosen randomly and have the characteristics described
in section Irregular Waves of Chapter 3. A specific sea state is represented by a wave
spectrum and its characteristics. Each wavelet has a certain frequency, corresponding
to a wave amplitude, thus transferring particular energy. This connection between wave
frequency and amplitude is given by the formula (3.3.7). Therefore, the type of spectrum
and its discretization (i.e. the number of sum terms that need to be used), should be
determined to describe the free surface of the irregular waves.

The following applies to parametric instability as far as the sea state is concerned [42]:

1. Swells are the most dangerous waves for parametric roll.

2. Wind-generated waves are less dangerous than swells but can become equally dan-
gerous if the ship’s encounter period acquires values that create instability relative
to the ship’s own period.

In this study, the JONSWAP spectrum is chosen to be used. The JONSWAP spec-
trum was established during a joint research project, the "JOint North Sea WAve Project".

56
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This spectrum model was proposed to describe deployed spectra, representing the devel-
opment of wave energy as a result of the force of the wind. During wave development
there is a high concentration of energy around the dominant frequency, resulting in a nar-
rower spectrum than the Pierson-Moskowitz (PM) spectrum. Thus it is a peak-enhanced
Pierson-Moskowitz spectrum with the following form

Sηw(ω) = (1− 0.287 ln(γ))
5

16
H2

s

ω4
p

ω4
exp(−5

4
(
ωp

ω
)4) γ

exp(−0.5 (
ω−ωp
σ ωp

)2) (6.1.1)

where σ =

{
σa , ω ≤ ωp

σb , ω < ωp

}
are the sigma parameters which are a relative measure of

the width of the spectrum’s peak. The typical values for these parameters (especially for
the North Atlantic) are σa = 0.07, and σb = 0.09 [54].

The peak enhancement factor (gamma) is representing the ratio of the maximum
spectral density to that of the corresponding Pierson-Moskowitz spectrum. It is usually
regarded to have an upper limit of about 7 and a lower limit of 1 [55]. Average values
for the Jonswap experimental data are γ = 3.3. For γ = 1, the Jonswap wave spectrum
reduces to the PM wave spectrum [56]. Thus, the average value given above for these
parameters are used for the present study.

For the values of the peak period and the significant wave height for each sea state,
the North Atlantic scatter diagram is used [56]. A scatter diagram defines the probability
of occurrence of the different sea states. Each sea state is defined by the significant wave
height, Hs, in m, and the zero up-crossing period, Tz (or peak period Tp) in sec. The
North Atlantic scatter diagram is shown in figure 6.1.

Figure 6.1: Scatter diagram for North Atlantic operation with Hs in m
and Tp in s

After determining the energy spectrum, it is possible to find the time history of the free
surface elevation by adding a large number of components, i.e. cosine waves (see equation
(3.3.9)). In principle, an infinite number of regular wave components is required. In fact,
it is sufficient to select the appropriate number of components for each sea state. For
this purpose, a characteristic interval of frequencies should be initially divided into small
intervals [ωi, ωi + δωi]. For each interval, the value of the spectrum corresponding, let us
say, to the frequency ωi, Sηw(ωi), is selected. Then the area under a segment of the curve
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equals the energy of that frequency component wave, so the amplitude of the wavelet can
be calculated by the equation (3.3.7) as follows.

ai =
√
2Sηw(ωi) δω (6.1.2)

Considering that frequency intervals are sufficiently small, each segment can be approxi-
mated by a rectangle, and then the sum of all the areas of the rectangles will equal the
energy of the sea state. However, a limited number of N ≈ 50 should be used, since
generally, the components with small ordinate values can be ignored [49].

In addition, to create an irregular wave energy time history, the phase angle for each
component (ϵ or else Ξn(β) as shown in equation (3.3.9)) should be determined. The
wave elevation is a sum of many random components (since phase ϵ is a random number,
components are random numbers too). Usually, most of the contribution comes from the
frequencies around the peak of the spectrum, and usually, there are enough of them, so
we can say that we consider the sum of a large number of approximately equal random
components [42]. For this study, these phases are chosen randomly by a RandomReal
generator by Mathematica between the range of [0, 2π). With the use of RandomReal,
real numbers are chosen with a uniform probability distribution in the desired range. For
every case, we generate as many random numbers (a list of randomly generated phases)
as the number of components needed. For the calculation, sixteen different groups (or
else seeds) of random phases are used for each case1.

The next step is to choose the frequencies and the intervals, of which the values of the
spectrum are calculated, thus the number of components. The number of components
is affected by the frequency spacing. It is known from simulation practice that if equal
frequency spacing is used, the time history reconstructed nearly repeats itself. This effect
is called the "self-repeating effect", and in order to diminish this effect, it is suggested
to use unequal spacing for the frequency set. This phenomenon is further explained and
studied in Appendix C.1, by following the approach of Belenky [57]. For this application,
the spacing of the frequencies was chosen as equal. However, to prevent the self-repeating
effect the distance was set equal to [42]:

δω =
2π

Tsim
(6.1.3)

where Tsim is the total duration for which the simulation is performed to find the ship’s
response. As the total simulation time is chosen as 600 sec, then the step of the spectrum
discretization is equal to δω = 2π/600 = 0.01047 rad/sec. With this method (equal steps
for the discretization of the spectrum), of course, a sufficient number of components are
selected, which provide meaningful statistical information.

Subsequently, taking the above discretization step as given, the number of elements is
calculated. This number changes as the characteristics of the spectrum (Hs, Tp) change its
form. Therefore for each case, the actual area under the spectrum curve was calculated.
Then an initial frequency (ωin) is chosen so that very small values of the spectrum are
excluded. Then for each resulting segment for each interval [ωi, ωi + δω], the area for

1With the use of SeedRandom[x] of Mathematica, we make sure you get the same sequence of pseu-
dorandom numbers on different occasions. In this application, we used seeds 1 to 16.
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each rectangle (Ei = Sηw(ωi) δω) is calculated. An iterative procedure is then followed,
starting with the initial frequency (ωin), and with step, δω, so that, the partial areas are
calculated and summed up each time. This process stops when the total area obtained
by summing the individual rectangles is equal to the actual area under the spectrum
curve with an error of 5%. This ensures an accurate approximation of the area under the
spectrum, hence the energy of the sea state. Still with the appropriate choice of ωin, very
small values of the spectrum are excluded, which would both require more computational
time and would not have a significant effect on the shape of the free surface. The ωin, for
the simulations below, is chosen to be ωin = wp − 0.5wp.

With the method described above, the number of components used in every case is
found. This means that for every set of (Hs, Tp), the number of components computed,
have to be summed at every time step of the simulation, for the free surface elevation
to be calculated. Some examples of the sea states (from figure 6.1) and their spectrum
discretization, which are also used for the simulations, are shown below.
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Figure 6.2: Jonswap spectrum discretization for Tp = 6.5 sec
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Figure 6.3: Jonswap spectrum discretization for Tp = 8. sec

As can be seen from the above figures, the number of points that make up the sum to
produce the free surface elevation is not always the same. For bigger Tp = 14 sec, thus
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Figure 6.4: Jonswap spectrum discretization for Tp = 11. sec
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Figure 6.5: Jonswap spectrum discretization for Tp = 14. sec

for smaller peak frequency, fewer points are needed, for the spectrum to be described.
The opposite is true for spectra with a higher peak frequency (Tp = 6.5 sec).

With the above analysis, we described how the free surface information for irregular
longitudinal waves are obtained by the energy spectrum.. For each sea state (i.e. each
case to be studied), sixteen different randomly generated lists of angle phases are used.
In this way, the ship’s response is calculated for sixteen different random realizations of
the water surface for the same sea state. To ensure that these lists are not randomly
generated with the same numbers, sixteen seeds are used (Seed 1, Seed 2,..., and Seed
16).

6.2 Parameters of Stability Charts
In this section, the parameters for the production of the Stability Charts in irregular
waves, are defined. Mainly, the methodology is the same as that described in section
5.2.1 for regular waves.

The loading condition 18 was studied, as in the regular waves. This is a condition with
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moderate stability as it has a relatively high center of gravity. Loading conditions 27 and
15 were chosen not to be considered, as their stability in regular waves is questionable.
As shown in the diagrams in Appendix A, the righting arm is drastically reduced when
the ship meets the crest of the wave amidship. This is evidence that the ship may be
suffering from Pure Loss of Stability. For these reasons, condition 18 was chosen which is
an intermediate condition.

The characteristics, therefore, regarding the loading condition and the parameters
used in the differential equation remain the same, as shown in Table 5.1. For random
waves, the wave characteristics change. Now instead of wave period and steepness, we
refer to peak period and significant height respectively. Still, since there is no fixed wave
period, the ratio a = 4 ω0

2

ωep
2 is calculated in the same way, but instead the peak period is

used to calculate the "encounter" frequency corresponding to the peak radial frequency,
as shown below.

ωep = ωp − k Vs cos(µ) = ωp −
ω2
p

g
Vs cos(µ) (6.2.1)

Furthermore, for the calculations, the discretization of the hull with 4,382 elements
is used. As shown by the analysis done in chapter 4, the more structured discretizations
with 4,382, and 6,694 were the ones that provided the most accurate results. In addition,
to reduce the computational time, the discretization with the fewest elements of the two
is used, as the calculations of the hydrostatics and the GZ are much faster.

The energy of waves can take certain values and, therefore, for a sea state, the energy
corresponding to a wave height can be distributed at certain frequencies. Therefore,
according to the scatter diagram, there are specific pairs (Tp, Hs) or else (a, Hs), which
represent sea states. Therefore the areas for which Stability Charts will be produced are
restricted by these values.

As the encounter frequency depends on the wave frequency and the speed of the ship,
two categories of diagrams are produced. Several diagrams are obtained in order to get
a better insight into the occurrence of parametric instability in random waves. First, the
runs are performed for each case, keeping the ship’s speed constant and changing the sea
states (i.e. Tp). In the second approach simulations are made by changing the ship’s speed
for the pairs (Tp, Hs), but keeping the peak period constant. In addition, in Appendix
C.2, the tables with the cases used and their computation time are documented.



Chapter 7

Results and Discussion

For the different cases of sea states and forward ship’s speeds, the Stability Charts are
presented below. The diagrams show the areas of instability in parametric roll, in random
one-directional following longitudinal waves. Each case (Tp, Hs) is the result of the ship’s
response to 16 different runs of the experiment (by changing the seed that generates the
list of random angle phases). In other words, 16 different ship responses are calculated
for the same sea state. The 16 realizations of the experiment in every case, do not in any
way provide a sufficient sample space for statistical analysis. However, if in a case (Tp,
Hs), instability occurs in a sufficient number of seeds, this means that it is a region with
a higher probability of instability. The maximum response angle of the ship is also an
important factor, that should be taken into consideration.

For each time history of the ship’s response, and for every seed, the maximum response
angle is found, from 100 seconds onwards (the first 100 are not taken into account as they
are considered to belong to the transition region). A threshold for exceeding the response
angle is then defined, and compared to the maximum response angle observed in each
case. Then in each case, and for each of the 16 seeds, it is recorded whether or not
the maximum response angle exceeded the set limit. At the end in each case (Tp, Hs),
the number of seeds whose maximum response angle, exceeded the threshold value, is
assigned. These results are presented below in the form of Contour Plots, and for several
threshold values.

7.1 Forward ship’s speed Vs = 6.5 knots constant
In this situation the ship’s speed was kept constant and the peak period was alternated
in each case. The data used have the range indicated in the table C.1, in the appendix
C.2.

There seems to be an area of instability of a smaller scale. There are many seeds for
which there is instability but with a small ship roll angle (charts with a threshold of 2 and
5 deg). This region occurs for peak periods between 11, 11.5 and 12 sec ( the a ratio is 1.6
to 1.8 respectively), for minimum Hs of 5.5 m. If we consider some correspondences with
the stability diagrams, according to the literature, it appears that the principal resonance
is shifted to the right, (for larger a), and upwards (instability occurs for relatively large
Hs).
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Figure 7.1: Stability Chart for constant Vs = 6.5 knots and threshold
=2 deg
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Figure 7.3: Stability Chart for constant Vs = 6.5 knots and threshold
=10 deg
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For larger thresholds (10 and 15 deg), this area decreases significantly around the
peak period 11 and 11.5 sec, but with an incidence rate of 4-5 seeds out of 16. For
the threshold value greater than 15 deg, there is a number of seeds which, as presented
in figure C.5, show very large response (above 30 degrees of rolling angle). These are
obviously dangerous cases of capsizing, but they are far fewer than we would expect for
regular waves.

7.2 Forward ship’s speed Vs = 12.5 knots constant
In this situation the ship’s speed was kept constant to 12.5 knots and the peak period
was alternated in each case. The data used have the range indicated in the table C.2, in
the appendix C.2.

For small threshold (1 deg), two regions are observed, one near a=2 and the other for
a=3. However, the first area is not present in the other diagrams where the threshold
value was increased. These are not cases of parametric instability, as illustrated in figures
C.10 and C.11. They are a extension of the transition region, which for these cases extends
beyond 100 seconds.

Finally, for the region with ratio a around 3, pronounced parametric instability appears
with a minimum Hs = 7 m (figure 7.6) and then with a minimum Hs = 7.5 m (figure 7.7).
This case, with the ship’s speed at 12.5 knots, has more pronounced responses, which in
a large percentage leads to capsizing of the ship for significant wave height of 8 meters
and above.
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Figure 7.6: Stability Chart for constant Vs = 12.5 knots and threshold
=10 deg
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7.3 Peak period Tp = 11 sec constant
In this situation the peak period was kept constant to 11 sec and the ship’s speed was
changing in each case. The data used have the range indicated in the table C.3b, in the
appendix C.2.

There are 2 regions of instability, very close together for a ratio a of 1.6 to 2.8 approx-
imately. These areas correspond to small ship speed, between 4 and 10 knots. Again, if
we assume that this region corresponds to the theoretical principal resonance, it is shifted
to the right, just like in the case with the constant speed at 6.5 knots.

Moreover, we can see that no other region of instability appears, at bigger ratio values
of a. In contrast, the regular wave with a wave period of 11 sec had created the instability
region in the fundamental region (figure 5.3), which does not appear in the stability chart
for the irregular waves. Of course, no direct comparison of the diagrams could be made,
because the free surface elevation, resulting from the energy spectrum with a peak period
of 11 sec, is obtained as the sum of several wavelets from different frequencies.

It is also observed that many of the seeds show instability with relatively low significant
height. In contrast to the above case, instability occurs (and it is not just the transient
effect) for Hs of 5 m, as shown in figure C.12. Of course, this instability is of small scale
and usually does not exceed 5 to 6 degrees of rolling angle. Hence afterwards in diagram
7.10, the instability range is significantly reduced.

Finally, for larger limits, the area of instability becomes significantly smaller. There
are some seeds, which create instability with large angles (shown in the diagrams C.7),
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=5 deg

1

1

2

3

4

5

2 3 4 5 6

2

3

4

5

6

7

8

9

4.3 7.7 10.2 12. 13.8 14.8 15.6 16.4 17.1 17.8 18.4 19.2

a=4*wo^2/we(p)^2

H
s[
m
]

Tpeak [sec]
Stability Chart for Irregular Waves Wave - Tp=11 sec, Threshold 10 deg

Number of seeds where the maximum response angle exceeds the threshold value

2 4 6 8 10 12 14

Figure 7.11: Stability Chart for constant Tp = 11 sec and threshold
=10 deg



CHAPTER 7. RESULTS AND DISCUSSION 70

1

1

2

2 3 4 5 6

2

3

4

5

6

7

8

9

4.3 7.7 10.2 12. 13.8 14.8 15.6 16.4 17.1 17.8 18.4 19.2

a=4*wo^2/we(p)^2

H
s[
m
]

Tpeak [sec]
Stability Chart for Irregular Waves Wave - Tp=11 sec, Threshold 15 deg

Number of seeds where the maximum response angle exceeds the threshold value

2 4 6 8 10 12 14

Figure 7.12: Stability Chart for constant Tp = 11 sec and threshold
=15 deg

but the number of these seeds is small (5 out of 16 or less).

7.4 Peak period Tp = 8.5 sec constant
In this situation the peak period was kept constant to 8.5 sec and the ship’s speed was
changing in each case. The data used have the range indicated in the table C.3c. For
these simulations, it is easy to assume that there is no instability at any of the speeds
tested for the sea state with a peak period of 8.5 seconds, as shown in figure 7.13.

7.5 Forward ship’s speed Vs = 0 knots constant
In this situation the ship’s speed was kept constant to 0 knots and the peak period was
alternated in each case. The data used have the range indicated in the table C.3a. The
simulations were initially made for the large significant height, and were only carried out
up to Hs = 3.5 m, as presented in figure 7.14. In this case, no instability occurred either.
There are, of course, some seeds that show some response greater than 1 deg even after
100 sec. As shown in figure C.9, the response angle is small and can be considered to be
part of the transient effect.
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7.6 Discussion
From the above diagrams, becomes apparent that we cannot be certain in which cases
instability will occur or not. In many cases instability occurred in areas close to a from 1.5
to 2 (case for constant Vs = 6.5 knots or case with constant Tp = 11 sec), or close to a = 3
(case for constant Vs = 12.5 knots). In the case with a ratio a, of near 2 the instability
started from a lower significant height (Hs=5.5-6 m), compared to the unstable regions
close to a=3 (Hs=7 and above). In any case, the number of seeds showing instability with
large response angles (from 10-15 threshold and above), was relatively small (less than
half of the seeds).

In addition, the ship speeds at which instability occurred were relatively low, not
exceeding 12.5 knots. The presence or absence of instability, therefore, depends both on
the speed and on the sea state, but it is not always necessary that there will be instability
for specific values of a ratio. This is illustrated by the fact that the case with a constant
peak period of 8.5 sec, did not generate any instability, even though a wide range of
velocities, and hence a ratios, were considered.

The instability does not occur for every seed, even for considerable significant heights,
and is more limited than in regular waves and occurs in smaller regions. However, para-
metric instability is still present even in random waves and in some cases so strong that
it can lead to capsizing.



Chapter 8

Conclusion and Future Work

8.1 Conclusions
In this diploma thesis, an attempt was made to develop a model in order to find the
ship’s response to random waves. For this purpose, a numerical model was created in
the Mathematica environment to calculate the exact value of righting arm in any given
time instant. The righting arm is calculated in relation to the position of the ship in the
wave, or in other words the free surface elevation. The model used, is a pseudo-static
model which uses the equilibrium in two degrees of freedom, to calculate the righting arm
in every time instant, during the solving of the rolling differential equation. Then, the
response of the ship was found by solving the 1-DOF rolling differential equation with the
nonlinear restoring term containing the calculated righting arm.

In the thesis first, the accuracy of the numerical model was confirmed hydrostatically,
and hydrodynamically (for a regular cosine wave) through the calculation of the GZ
curve in Aveva. Through this process, trials were carried out to ensure the appropriate
discretization of the hull, which is introduced into the model for the calculations.

After the model was developed, stability diagrams were constructed for two cases of
regular waves (one of which had been studied by Ms. Dousia in her thesis). Only one case
of Dousia’s study was examined, and was found to have several similarities, with the one
studied in this thesis. The instability region for parametric roll as well as the extremes
were quite close to those calculated by the model in this thesis. An important difference
between the two models is that by using this model, the maximum angle of response of the
ship could be found, and whether or not it would lead to capsize. Dousia’s model expresses
the restoring term by the change in metacentric height relative to the ship’s position and
relates it linearly to the rolling angle. On the contrary, the present developed model is
considered non-linear because in the GZ equation, the angle with respect to the ship’s
position and time is included.

Subsequently, the random wave was introduced into the code. In the thesis only
longitudinal following waves are studied. The free-surface elevation is calculated with
the random phase model, as a sum of regular waves, with phases, generated randomly.
Energy spectra were used to generate the waveforms, which describe the distribution of
the energy and therefore the wave heights at the harmonic frequencies.

Last but not least, the simulations were made to find the ship’s response to different
sea states. Only one loading condition of the ship was examined. To give a broader pic-
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ture, several simulations with different parameters were performed and the corresponding
stability diagrams were produced.

Finally, we end up to the following conclusions:

• The discretization of the hull is an important factor, as it determines the calcula-
tion time and at the same time the accuracy of the model during the hydrostatic
calculations. A more structured grid, which does not necessarily aim to capture
the geometry perfectly, is preferred, as it has no strange geometries and there is a
uniform numerical discretization of the ship’s hull.

• The development of a numerical model is a complex process, requiring the control
of many parameters. The modeling is done so that the computation time is not
prohibitive, but at the same time, the accuracy of the model is not reduced (examples
are the discretization of the hull, the solution time step, and how the calculation of
the restoring term is introduced in the differential equation).

• In the initial test for the regular waves (done only for one loading condition), the
stability diagram produced, had very close form to the one generated with the linear
model created by Ms. Dousia. There was, however, additional information about
the maximum angles of the ship’s response when parametric roll occurs.

• In random waves, because the random phase model was used, several runs are
required for each case (so that, lists of phase angles are generated randomly each
time). In the diploma thesis, calculations were made for 16 different realizations of
the same experiment (or otherwise referred, in this thesis as, seeds). If more seeds
were included, there would be a better picture of whether or not a region is more
likely to experience parametric instability. However, with the existing data, we can
make some worthwhile observations.

• From the data we have, it appears that the phenomenon of parametric roll is present
even in random waves. The free surface of the random waves does not always
follow the periodic alternation between crest and trough, as it does in regular waves.
However, parametric roll does occur, although not to such a large extent.

• Parametric roll in irregular waves occurs in smaller regions than in regular waves.
While dangerous responses are not always developed with large rolling angles. For
quite high significant height (Hs > 8m, which is not so rare situation to occur, as
shown in table 6.1), there are seeds, where the ship capsizes. The number of these
seeds is always less than 50% of the seeds (usually they have a rate of 3− 4/16).

• In addition, we can say that there are no clear regions of principal and fundamental
response, in the sense that exists for regular waves. For random waves, when para-
metric instability is detected, these regions are shifted close to regions with ratio a
from 1.6 to 2.4 and 3 respectively. While in some cases no instability occurs at all,
in any of the values of the ratio a.

• Finally, for the specific loading condition considered, parametric instability occurred
for lower ship speeds (approximately 4 and 12.5 knots). While for the cases tested
in regular waves, instability occurred for ship speeds of 14 and 16 knots.
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8.2 Future Work
At this point, the presentation of the results and findings of the diploma thesis is com-
pleted. Some of the author’s suggestions for extending the study work carried out are the
following:

• Discretization of the spectrum, with unequal frequency steps. In this way, it may
be possible to reduce the computing time. With this method, it could be possible
to run simulations for a longer period of time without a significant increase in
computational cost.

• The examination of different types of spectra. In particular, spectra could be con-
sidered for swell seas, which according to the literature may be more dangerous sea
states for parametric roll.

• The damping term can be described by non-linear damping coefficients, to capture
the nonlinear behavior of roll damping, with higher-order equations. Alternatively,
an equivalent damping coefficient can be computed for the specific ship and its LC.

• Considering more loading situations, as the instability of the ship also depends on
the LC of the ship.

• Modify the model to allow coupling in all six degrees of freedom and find out whether
there is indeed an effect or whether coupling by heave and pitch only is adequate.
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Appendix A

Validation of GZ curve in wave with
Aveva model

In this Appendix, diagrams depicting the validation with Aveva model, of the GZ curves
in sinusoidal waves are presented. The diagrams show the change in the GZ curve, as
the wave passes at various time instants. For each case, the Gz curves obtained from the
six hull discretizations are presented so that they can be compared with each other. This
section provides the complimentary to Section 4.3.3: GZ curve in sinusoidal longitudinal
wave of Chapter’s 4 figures for the rest Loading Conditions, LC 15, LC 27, LC 30, and
LC 36.
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Figure A.1: Validation with Aveva model of GZ curve in sinusoidal
Wave for LC 15
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Figure A.2: Validation with Aveva model of GZ curve in sinusoidal
Wave for LC 27
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Figure A.3: Validation with Aveva model of GZ curve in sinusoidal
Wave for LC 30
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Figure A.4: Validation with Aveva model of GZ curve in sinusoidal
Wave for LC 36



Appendix B

Equation of Roll

B.1 Study for the three approaches of solving the dif-
ferential equation

This Appendix provides material for the brief analysis performed for the form of the
righting arm, in the restoring term of the rolling differential equation. Three cases where
examined as explained in Section 5.1.3: Righting arm of Chapter 5.

Case 1: In the first approach, the total time of simulation is divided into many time
instants with a time step that is selected (step). At the beginning the step was set to 1
or 1.5 sec, but then it was reduced to 0.25 sec for greater accuracy. At any given time
instant, the ship is balanced at the vertical translation (heave) and the rotation about the
transverse plane (pitch). Also the ship is placed in the appropriate longitudinal position
relative to the wave (for when the ship has forward speed). Then with the appropriate
function the curve GZ is calculated for this specific position of the ship on the wave for
a range of inclination angles. Then the values of this curve are fitted to a polynomial
power series as in equation (5.1.3) to find the coefficients for the function GZ(ϕ). By
introducing the GZ curve function, the differential equation has the following form.

ϕ̈+ 2ζ ω0 ϕ̇+
∆gGZ(ϕ)

Ix
= 0 (B.1.1)

Finally, the above differential equation is solved, for the time interval [0, step], and the
response of the ship is found, for this specific time instant. With the inclination angle
obtained from the differential equation, the new position of the ship can be defined. By
calculating the new equilibrium of the ship on heave and pitch motion, the same procedure
is followed until the next time step. The differential equation is solved, for the time interval
[step, 2 step].

Case 2: In the second approach, again time is divided and the differential equation is
solved for a specific time period, as in the first approach. The only difference is that,
the entire GZ curve is not calculated for a range of angles. In the restoring term only
a value of the righting arm is used. This corresponds to the value of the righting arm
that the ship had for the response angle estimated in the previous calculation cycle. The
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differential equation, in the program, has the following form.

ϕ̈+ 2ζ ω0 ϕ̇+
∆gGZ

Ix
= 0 (B.1.2)

Case 3: In the third approach, a function1 was created that directly calculates the right-
ing arm. This function uses as input the inclination angle and the absolute time of the
simulation. The differential is solved directly for all simulation time, with the time step
either selected by the solver automatically or manually. The differential equation, in the
program, has the following form as 5.1.4, which is the closest to the form introduced in
chapter 3.2.2.

It should be noted that, just because in the differential equations of cases 1 and 2, the
righting arm do not appear to be time-depended, it does not mean that this dependence
does not exist. In these cases the differential equation is solved in many short time
intervals. As at each time period the initial conditions have changed, the ship’s position
is redefined and the equilibrium is recalculated. The data from the previous time interval
are then used to calculate the next time instant. Therefore, the time dependence still
exists, it is just not apparent. Moreover, the time step is set small, hence it is assumed
that between the intervals, no major changer occur in the system. Initially for the first
case, calculations were made for both 1 and 0.25 sec time step. Then only the 0.25 sec
time step was used for the comparison.

Table B.1: Parameters for solving the differential equation with the three approaches

Characteristics of loading condition
Displacement [tons] 68192
Mean Draught [m] 11.52

KG [m] 15.62
LCG [m] 116.41

Initial conditions of the differential equation
ϕ(0) [rad] π/180

ϕ̇(0) [rad/sec] 0
Parameters used in the differential equation

ζ - 0.05
Ix [tonsm2] 5.98374 107

GM0 [m] 2.05
T0 [sec] 41.5

Wave Characteristics
a [m] 3

Wave length [m] Lpp = 238.35
Wave direction [deg] 0

The test for the three cases was performed for a general loading condition with the
characteristics shown in table B.1. From the beginning, the third case was considered the

1Function GzEq35 in Directory //BuoyUp2Lite/Needs/Mathematica/BuoyUp/NDSolve4.m
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most appropriate approach to the problem, for the reasons mentioned below. The other
cases were studied in an attempt to reduce the computation time. For this reason, the
ship’s responses on regular waves, for these specific cases were compared with each other.

The third approach is considered to be more accurate, because the function of GZ
calculation is imbedded directly into the differential equation. As a result, after some
iterations the angle, thus the response of the ship in roll motion, that satisfies equation,
is approximated. For each instant, the response angle is found to satisfy the system. In
contrast to the other two cases, where the differential is solved for one time interval in
order to find the response angle, and then this is used as the initial condition for the next
time interval.

Even when cases 1 and 2, were studied with a reduced step, the results were not
satisfactory. The time step between calculations, especially for case 2, was reduced con-
siderably. But even with a small time step, the results for case 2 were not always close to
those of case 3. When comparing the responses, sometimes there was a correspondence
in the results, and in other cases there was not. So even though the second case requires
less computing time, it is not preferred because it does not accurately calculate the ship’s
response.

Further, as far as the first case is concerned, it is the one that requires the most time
to perform, because the whole GZ curve is calculated. Also, the polynomial interpolation
of the GZ curve’s data, to create the fitted function of the instantaneous GZ curve, may
lead to a distortion of its form.
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B.2 Roll resonance while reducing the initial time step
of solver in Mathematica

This Appendix provides material for the brief analysis performed on the accuracy pro-
vided by the solver developed to reduce the computation time. As explained in Section
5.1.4: Numerical Integration of the Roll equation, the numerical solver WSTP-RK4, was
developed. The figures in this appendix compare the ship’s responses resulting from the
use of the default numerical solver and the WSTP-RK4. In the solver WSTP-RK4 there
is the option to select the starting time step. Thus, for a given condition, the same sim-
ulations were performed, but with different starting time steps (0.5, 1 and 2 sec). The
calculation time is indicated in the legend of each diagram.

The simulations were performed for loading condition 15 with the characteristics listed
in the following table. The ship’s forward speed, was also chosen to be 12 or 13 knots.
In addition this time the simulations where conducted for irregular waves, with specific
spectrum characteristics and for 16 different seeds. The procedure for modelling irregular
waves is explained in (see chapter 6).

Table B.2: Parameters for solving the differential equation with the three approaches

Characteristics of LC 15
Displacement [tons] 75973.8
Mean Draught [m] 12.52

[KG, V CG, LCG] [m] [17.17, 0, 115.39]
Initial conditions of the differential equation
ϕ(0) [rad] π/180

ϕ̇(0) [rad/sec] 0
Parameters used in the differential equation

ζ - 0.075
Ix [tonsm2] 1.20733 107

GM0 [m] 0.494
T0 [sec] 35.9863

Wave Characteristics
Hs [m] 2.5
Tpeak [sec] [11.5, 12.5, 13.5]

Wave direction [deg] 0
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Parametric roll resonance-Jonswap

Spectrum,Hs=2.5 m ,a=0.948973,Tp=11.5 [sec],Vship=12 Knots

Spectrum Discretization->80 points
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

Figure B.5: Comparison of Parametric Roll Resonance in irregular
waves (Tpeak = 11.5 sec, Vs = 12 knots) with 4 differential solvers

The 16 different seeds of the random phase generator are presented and the 4 differential
solvers (Default, Runge-Kutta step 0.5, 1, and 2 sec) are compared
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Spectrum Discretization->74 points
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

Figure B.6: Comparison of Parametric Roll Resonance in irregular
waves (Tpeak = 12.5 sec, Vs = 12 knots) with 4 differential solvers

The 16 different seeds of the random phase generator are presented and the 4 differential
solvers (Default, Runge-Kutta step 0.5, 1, and 2 sec) are compared
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Spectrum Discretization->74 points
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Figure B.7: Comparison of Parametric Roll Resonance in irregular
waves (Tpeak = 12.5 sec, Vs = 13 knots) with 4 differential solvers

The 16 different seeds of the random phase generator are presented and the 4 differential
solvers (Default, Runge-Kutta step 0.5, 1, and 2 sec) are compared
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

Figure B.8: Comparison of Parametric Roll Resonance in irregular
waves (Tpeak = 13.5 sec, Vs = 12 knots) with 4 differential solvers

The 16 different seeds of the random phase generator are presented and the 4 differential
solvers (Default, Runge-Kutta step 0.5, 1, and 2 sec) are compared
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Figure B.9: Comparison of Parametric Roll Resonance in irregular
waves (Tpeak = 13.5 sec, Vs = 13 knots) with 4 differential solvers

The 16 different seeds of the random phase generator are presented and the 4 differential
solvers (Default, Runge-Kutta step 0.5, 1, and 2 sec) are compared



Appendix C

Irregular Waves

C.1 Self-Repeating Effect
In this Appendix, we will give a brief introduction to the phenomenon of self-repeating,
and explain how it was used to discretize the spectrum in order to produce the free surface
of irregular waves. This section provides the supplementary material of the section 6.1:
Spectrum Characteristics and Discretization of Chapter’s 6.
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Figure C.1: Jonswap spectrum discretization for Tp = 11. sec and
Hs = 4.5 m with 23 and 43 components respectively

The self-repeating effect is a phenomenon that occurs, when a wave record is recon-
structed from spectrum analysis, by using a constant frequency step. When plotting the
autocorrelation function for such a record, this can be observed, as a repetitive pattern of
high values appears. This means an unrealistically strong probabilistic dependence exists
between certain time sections of the process. This effect can be avoided by choosing a
non-constant frequency step. However, in the present application, we use a fixed step to
discretize the energy spectrum. A brief analysis is performed, which shows how this can
be implemented without showing the self-repeating effect.
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Figure C.1 presents, the same sea spectrum (with the same characteristics). In both
cases a fixed step, bigger than the step 2 π/600 sec, is used (see figure 6.4). The fist has
step equal to 2 pi/300 = 0.020944 rad/sec, and the second discretization has 2 pi/150 =
0.04188 rad/sec.

For these cases, as well as, for the discretization used in this diploma thesis (with
step 2 pi/300 rad/sec), the autocorrelation function will be obtained, following the below
formula.

R(τj) =
N∑
i=1

Sηwi cos(ωi τj); τj = τ − s = ∆ t j (C.1.1)

The result of calculations of autocorrelation function is presented in figures C.3, and C.2.
The autocorrelation functions in these figures have several characteristic features. From
the plotting of the water elevation for certain time durations, high amplitude oscillations
are followed by low-amplitude internals. The patterns are repeated at specific intervals,
which are the periods when group similarities are encountered in the elevation of the sea.
When the frequency step decreases, then these groups occur more often.

A closer look at the time history shown in figure C.2 reveals that two wave groups are
looking suspiciously similar. For the discretization with 23 components, that the first wave
group (for t = [0, 150]) is very close to the third wave group (t = [450, 600]). The second
wave group resembles the first group taken but with the sign inverted (the second group
is already plotted with the sign inverted). In figure C.2, we see also that are two bigger
wave groups that are almost identical (without one of them being inverted). In figure C.3,
the frequency step is larger, but identical wave groups are also detected. Finally, in figure
C.4, the self-repeating effect does not exist, as the frequency step is reduced sufficiently
so that the high amplitude oscillations in the autocorrelation function are shifted in time.

After this analysis, it is easy to say why we chose a fixed discretization step equal to
2 pi/600 [rad/sec], since we know a priori that the simulations are performed for 600 sec.
However, it should be noted that in order to avoid the self-repeating effect, a large number
of frequencies must be used if a long period of simulation is needed. For instance, if we
wanted to find the roll response for 1200 seconds, thus for 20 minutes, instead of 10, the
step should be at least 2 pi/1200 = 0.04188 rad/sec. This would require 165 frequencies
(twice as much). So 165 components would be needed to reconstruct a 20-minute wave
record, and so on. It means that 165 components have to be summed at every time step of
the simulation which significantly increases the computational cost of such a simulation.
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Jonswap Spectrum-Components=23 Hs=4.5 m ,Tp=11. [sec]
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Figure C.2: Autocorrelation function and water surface elevation for spectrum discretiza-
tion with N = 23 components
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Jonswap Spectrum-Components=43 Hs=4.5 m ,Tp=11. [sec]
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Figure C.3: Autocorrelation function and water surface elevation for
spectrum discretization with N = 43 components

Jonswap Spectrum-Components=84 Hs=4.5 m ,Tp=11. [sec]
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Figure C.4: Autocorrelation function and water surface elevation for
spectrum discretization with N = 84 components
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C.2 Data sets for Stability Charts and their Computa-
tion time

In this section there is additional material on the range of cases chosen to be used to
produce the stability diagrams. The tables below show the pairings (Tp, Hs) for which
the simulations were performed. The total time required for the calculation of all cases is
also presented.

Table C.1: Range of data and total computation time-constant Vs = 6.5 knots

Hs[m] Range of Tp in sec Cases x seeds
0.5 [5, 5.5, ..., 8.5, 9] 9 x 16
1.0 [5, 5.5, ..., 9.5, 10] 11 x 16
1.5 [5, 5.5, ..., 11.5, 12] 15 x 16
2.0 [5.5, 6, ..., 12, 12.5] 15 x 16
2.5 [5.5, 6, ..., 12.5, 13] 16 x 16

[3, 3.5] [6, 6.5, ..., 13, 13.5] 16 x 2 x 16
[4, 4.5] [6.5, 7, ..., 13.5, 14] 16 x 2 x 16

5.0 [7, 7.5, ..., 13.5, 14] 15 x 16
[5.5, 6, .., 7] [7.5, 8, ..., 13.5, 14] 14 x 4 x 16

7.5 [8, 8.5, ..., 13, 13.5] 12 x 16
[8, 8.5] [8.5, 9, ..., 13, 13.5] 11 x 2 x 16

9 [9, 10.5, ..., 12.5, 13] 9 x 16
Total Time: 75.744 hrs=3.1 days// Total cases: 244 x 16 =3904

Table C.2: Range of data and total computation time-constant Vs = 12.5 knots

Hs[m] Range of Tp in sec Cases x seeds
0.5 [6, 6.5, 6.8, 7.5, 8, 8.7, 9] 7 x 16
1.0 [6, 6.5, 6.8, 7.5, 8, 8.7, 9, 9.5, 10] 9 x 16
2.0 [6, 6.5, 6.8, 7.5, 8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5] 14 x 16

[3, 3.5] [6, 6.5, 6.8, 7.5, 8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5] 16 x 2 x 16
[4, 4.5] [6.5, 6.8, 7.5, 8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5, 14] 16 x 2 x 16

5.0 [6.8, 7.5, 8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5, 14] 15 x 16
[5.5, 6, .., 7] [7.5, 8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5, 14] 14 x 4 x 16

7.5 [8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5] 12 x 16
[8, 8.5] [8, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5] 11 x 2 x 16

9 [9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13] 9 x 16
Total Time: 64.035 hrs=2.66 days// Total cases: 208 x 16 =3328
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Table C.3: Range of data and total computation time for the other 3 cases

(a) Constant Vs = 0 knots

Hs[m] Range of Tp in sec Cases x seeds
2.5 [6, 6.5, 6.8, 7.5, 8] 5 x 16
3.5 [6, 6.5, 6.8, 7.5, 8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5] 16 x 16

[4, 4.5] [6.5, 6.8, 7.5, 8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5, 14] 16 x 2 x 16
5.0 [6.8, 7.5, 8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5, 14] 15 x 16

[5.5, 6, .., 7] [7.5, 8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5, 14] 14 x 4 x 16
7.5 [8, 8.7, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5] 12 x 16

[8, 8.5] [8, 9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13, 13.5] 11 x 2 x 16
9 [9, 9.5, 10, 10.8, 11, 11.5, 12, 12.5, 13] 9 x 16

Total Time: 54.32 hrs=2.26 days// Total cases: 167 x 16 =2672

(b) Constant Tp = 11 sec

Hs[m] Range of Vs in knots Cases x seeds
[1.5, 2, 2.5] [6.15,6.5] 3 x 2 x 16
[3, 3.5, ..., 9] [4.27,6.15,6.5,7.71,9.03,10.16,11.60,12.02, 21 x 13 x 16

13.16,14.42,14.84,15.23,15.94,16.37,
,16.77,17.148,17.58,17.98,18.35,18.69,19.2]

Total Time: 90.84 hrs=3.78 days// Total cases: 279 x 16 =4464

(c) Constant Tp = 8.5 sec

Hs[m] Range of Vs in knots Cases x seeds
[1, 1.5, ..., 9] [4.27,6.15,6.5,7.71,9.03,10.16,11.60,12.02, 21 x 18 x 16

13.16,14.42,14.84,15.23,15.94,16.37,
,16.77,17.148,17.58,17.98,18.35,18.69,19.2]

Total Time: 110.96 hrs=5.04 days// Total cases: 378 x 16 =6048

C.3 Stability Charts for every seed
In this appendix the stability diagrams for random waves, are presented in a contour plots.
For each case studied, the maximum response that occurred for each seed is plotted. This
section provides the supplementary material of the section 7: Results and Discussion of
Chapter’s 6.
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Grid

Stability Chart for Irregular Waves Wave - Vs=6.5 knots, Maximum response angle for every seed
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Figure C.5: Diagram for maximum angle response for every seed - constant Vs = 6.5 knots
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Stability Chart for Irregular Waves Wave - Vs=12.5 knots, Maximum response angle for every seed
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Figure C.6: Diagram for maximum angle response for every seed-constant Vs = 12.5 knots
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Figure C.7: Diagram for maximum angle response for every seed - constant Tp = 11 sec
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Figure C.8: Diagram for maximum angle response for every seed - constant Tp = 8.5 sec
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Grid

Stability Chart for Irregular Waves Wave - Vs=0 knots, Maximum response angle for every seed
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Figure C.9: Diagram for maximum angle response for every seed - constant Vs = 0 knots
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C.4 Ship Responses for different cases
In this appendix, some selected ship responses for each of the 16 seeds are presented.
This section provides supplementary material for the section 7: Results and Discussion
of Chapter’s 6, for the results of the stability diagrams produced.
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Figure C.10: Parametric roll resonance for Hs = 9 m - constant Vs = 12.5 knots
Certain peak periods are presented, Tp = 9 /9.5 /10 /10.8 sec
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Figure C.11: Parametric roll resonance for Hs = 8 m - constant Vs = 12.5 knots
Certain peak periods are presented, Tp = 9 /9.5 /10 /10.8 sec
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Figure C.12: Parametric roll resonance for Hs = 5 and Hs = 6 m - constant Tp = 11 sec
Specific speeds are presented, Vs = 6.5/6.15 knots
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Figure C.13: Parametric roll resonance for Hs = 7 and Hs = 7 m - constant Tp = 11 sec
Specific speeds are presented, Vs = 6.5/6.15 knots
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