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Abstract 
The present thesis is an attempt to light a spark in the field of object detection in ship 

navigation. This introduction is followed by an application based on an object detection model, 

named You Only Look Once (YOLO). Even though it is not the first time an object detection 

algorithm was applied to ship navigation problems, it is very fascinating to further research and 

experiment in this field by firstly testing an already existing algorithm and commenting on the 

results.  

Many object detection algorithms have been proposed with approaches ranging from 

traditional to deep learning. However, the majority of them have limited applications in real-

time applications as they are computationally intensive and have accuracy problems. Another 

challenge when dealing with ship navigation is the wide range of background sizes of the 

objects. To overcome these problems the most recent object detection algorithm was selected. 

In this thesis, the You Only Look Once version 5 (YOLOv5) model was used, which is created 

in 2020 and is fine-tuned with the more recent and best practices in object detection and also is 

constantly modified and readjusted to achieve better results. From the different models of 

YOLOv5, the smaller one was picked, because of its size and the comparatively good accuracy 

it performs.  

After the model was chosen, a sufficient database for the model’s training was created 

using images that contained the most common obstacles that a ship can face. These are other 

ships, buoys, humans on the surface, containers, and rocks. The images were categorized into 

3 teams, ship, floating object, and rock, which are the classes of the problem. The images were 

then labeled in a way that the YOLO accepts as input while some of them were kept and created 

the validation dataset. With these data some scenarios were created, namely, images that 

contained only one class in them, images of ship at night, and images of at least 2 classes 

coexisting in the same image and their combination. The model was trained with these different 

datasets and the results were collected, compared, and analyzed. The model achieved a 

Precision of 84%, Recall of 74%, and mAP of 79% on average when trained with 400 images 

of all the classes combined for 300 epochs and batch size 8. The model was also tested in a 

real-time application using a video and it detected all of the ships in most cases with 33 frames 

per second reload time. 
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Περίληψη 
Η παρούσα διπλωματική εργασία είναι μια προσπάθεια γίνει ένα πρώτο βήμα στον 

τομέα της ανίχνευσης αντικειμένων στη ναυσιπλοΐα πλοίων. Αυτή η εισαγωγή ακολουθείται 

από μια εφαρμογή που βασίζεται σε ένα μοντέλο ανίχνευσης αντικειμένων, που ονομάζεται 

YOLO. Παρόλο που δεν είναι η πρώτη φορά που εφαρμόζεται αλγόριθμος ανίχνευσης 

αντικειμένων σε προβλήματα πλοήγησης πλοίων, είναι πολύ συναρπαστική η περαιτέρω 

έρευνα και πειράματισμός σε αυτό το πεδίο, δοκιμάζοντας πρώτα έναν ήδη υπάρχοντα 

αλγόριθμο και σχολιάζοντας τα αποτελέσματα. 

Πολλοί αλγόριθμοι ανίχνευσης αντικειμένων έχουν προταθεί με προσεγγίσεις που 

κυμαίνονται από την παραδοσιακή έως την deep learning. Ωστόσο, η πλειοψηφία τους έχει 

περιορισμένες εφαρμογές σε πραγματικό χρόνο, καθώς απαιτούν πολλούς υπολογισμούς και 

έχουν προβλήματα ακρίβειας. Μια άλλη πρόκληση όταν ασχολούμαστε με τη ναυσιπλοΐα 

πλοίων είναι το ευρύ φάσμα background και μεγεθών των πλοίων. Για να ξεπεραστούν αυτά 

τα προβλήματα επιλέχθηκε ο πιο πρόσφατος αλγόριθμος ανίχνευσης αντικειμένων. Σε αυτή τη 

διατριβή χρησιμοποιήθηκε το μοντέλο You Only Look Once έκδοση 5 (YOLOv5), το οποίο 

δημιουργήθηκε το 2020 και είναι τελειοποιημένο με τις πιο πρόσφατες και βέλτιστες πρακτικές 

στον εντοπισμό αντικειμένων και επίσης τροποποιείται και αναπροσαρμόζεται συνεχώς για να 

επιτυγχάνονται καλύτερα αποτελέσματα. Από τα διαφορετικά μοντέλα του YOLOv5 

επιλέχθηκε το μικρότερο λόγω του μεγέθους του και της συγκριτικά καλής ακρίβειας που 

αποδίδει. 

Μετά την επιλογή του μοντέλου, δημιουργήθηκε μια επαρκής βάση δεδομένων για την 

εκπαίδευση του μοντέλου χρησιμοποιώντας εικόνες που περιείχαν τα πιο κοινά εμπόδια που 

μπορεί να αντιμετωπίσει ένα πλοίο. Αυτά είναι άλλα πλοία, σημαδούρες, άνθρωποι στην 

επιφάνεια της θάλασσας, container και βράχοι. Οι εικόνες κατηγοριοποιήθηκαν σε 3 ομάδες, 

πλοίο, πλωτό αντικείμενο και βράχος, που είναι οι κατηγορίες του προβλήματος. Στη συνέχεια, 

οι εικόνες επισημάνθηκαν με τρόπο που το YOLO δέχεται ως είσοδο, ενώ ορισμένες από αυτές 

διατηρήθηκαν και δημιουργήθηκε με αυτές ένα σύνολο δεδομένων επικύρωσης. Με αυτά τα 

δεδομένα δημιουργήθηκαν κάποιες περιπτώσεις, δηλαδή εικόνες που περιείχαν μόνο μία 

κατηγορία, εικόνες πλοίου τη νύχτα και εικόνες τουλάχιστον 2 κατηγοριών που συνυπάρχουν 

στην ίδια εικόνα καθώς και ο συνδυασμός τους. Το μοντέλο εκπαιδεύτηκε με αυτά τα 

διαφορετικά σύνολα δεδομένων και τα αποτελέσματα συλλέχθηκαν, συγκρίθηκαν και 

αναλύθηκαν. Το μοντέλο YOLOv5s πέτυχε precision 84%, recall 74% και mAP 79% κατά 

μέσο όρο. Επιπλέον, τα δεδομένα χρησιμοποιήθηκαν ως σύνολο δεδομένων εκπαίδευσης για 

το YOLOv5m, που είναι το μεσαίου μεγέθους μοντέλο, και συγκρίθηκαν οι προβλέψεις καθώς 

και ο χρόνος εκπαίδευσης των 2 μοντέλων. Το μοντέλο δοκιμάστηκε τέλος σε μια εφαρμογή 

σε πραγματικό χρόνο χρησιμοποιώντας ένα βίντεο και ανίχνευσε όλα τα πλοία στις 

περισσότερες περιπτώσεις με χρόνο ανανέωσης 33 καρέ ανά δευτερόλεπτο. 

 ΕΦΑΡΜΟΓΕΣ OBJECT DETECTION 

Η ανίχνευση αντικειμένων, object detection, έχει αρχίσει και εφαρμόζεται σε πολλούς 

τομείς, όπως την ανίχνευση και αναγνώριση προσώπων που υπάρχει στα σημερινά smartphone 

για να ξεκλειδώνεις το τηλέφωνο αλλά και στα μέσα μαζικής επικοινωνίας ενώ σε τράπεζες, 

και άλλα υψηλής προστασίας μέρη χρησιμοποιείται για να μπεις σε κάποια περιοχή. Ακόμη 

μία χρήση του είναι για την ασφάλεια και την παρακολούθηση, καθώς λόγω της αύξησης της 

εγκληματικότητας η επίβλεψη κάποιου απομακρυσμένου οικήματος ή την αναγνώριση των 

εισβολέων. Επιπλέον στην ρομποτική η γρήγορη απόκριση στα ερεθίσματα του περιβάλλοντος 

είναι πολύ σημαντική και μπορεί να επιτευχθεί με την γρήγορη και ακριβείς επεξεργασία των 

δεδομένων από μία κάμερα. Ένας ακόμη τομέας που μπορεί να χρησιμοποιηθεί η αναγνώριση 
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αντικειμένων είναι στην καταμέτρηση και την ιχνηλάτηση αντικειμένων σε παιχνίδια 

ποδοσφαίρου ή κινήσεις ανθρώπων σε κάμερες ή ακόμη και σε επίβλεψη της κίνησης στους 

δρόμους και  άλλα. Τέλος μια πιο πρόσφατη αλλά και πολύ σημαντική εφαρμογή του είναι τα 

αυτόνομα αυτοκίνητα, όπου όπως γίνεται εμφανές το να γνωρίζει το αυτοκίνητο ή το πλοίο τα 

εμπόδια στον δρόμο του είναι απαραίτητο για να επιλεγεί η επόμενη κίνηση του.  

 YOLO ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΝΑΥΤΙΛΙΑ 

 Στα πλαίσια της διπλωματικής έγινε προσπάθεια να εφαρμοστεί η λογική το object 

detection ώστε να αναγνωριστούν διάφορα εμπόδια στην πορεία του πλοίου. Για να επιτευχθεί 

αυτό χρησιμοποιήθηκε ο πιο πρόσφατος αλγόριθμος αναγνώρισης εμποδίων YOLO λόγω όχι 

μόνο της ταχύτητας του και της ακρίβειας του αλλά και της δυνατότητας για πραγματικού 

χρόνου εφαρμογές. To YOLO διαφέρει από τις πιο παλιές μεθόδους της αναγνώρισης εμποδίων 

καθώς δεν επιλέγει μόνο συγκεκριμένες περιοχές της φωτογραφία, που έχουν μεγαλύτερη 

πιθανότητα να περιέχουν ένα αντικείμενο, για να κάνει την αναγνώριση αλλά κάνει την 

αναγνώριση σε όλη την εικόνα βάζοντας ορθογώνια με κέντρο κάποιο κομμάτι του πλέγματος 

της εικόνας, με διαστάσεις που να περιέχουν το αντικείμενο καθώς και σε ποια ομάδα ανήκει 

το αντικείμενο με κάποια πιθανότητα. Η ομάδα με την  μεγαλύτερη πιθανότητα επιλέγεται σαν 

την ομάδα του αντικειμένου στο τέλος. Με αυτόν τον τρόπο μειώνεται το λάθος λόγο του 

background της εικόνας καθώς αυξάνεται η ταχύτητα και η ακρίβεια, όμως υπάρχει πιθανότητα 

να αναγνωρίσει περισσότερες φορές ένα αντικείμενο ενώ δεν μπορεί εύκολα να βρει πολλαπλά 

αντικείμενα στο ίδιο κομμάτι του πλέγματος.  

Αυτά τα αρνητικά αφορούν κυρίως την αρχική έκδοση του YOLO καθώς στις επόμενες 

εκδόσεις γίνεται προσπάθεια να περιοριστούν αυτά τα αρνητικά και να γίνει καλύτερη η 

απόδοση του μοντέλου. Γι’ αυτό το λόγο στην διπλωματική γίνεται επιλογή της τελευταίας 

έκδοσης του YOLO που είναι η έκδοση 5, που έχει εφαρμόσει τις πιο σύγχρονες πρακτικές 

στον τομέα. Οι πρακτικές που έχουν χρησιμοποιηθεί σε κάθε έκδοση αναφέρονται στο 

κεφάλαιο YOLO Versions.  

Για να γίνει η αναγνώριση εμποδίων πέραν του μοντέλου χρειάζεται και μια βάση 

δεδομένων. Αυτή η βάση δεδομένων περιέχει εικόνες που έχουν αντικείμενα που ενδιαφέρουν 

στην μελέτη. Τέτοια αντικείμενα είναι άλλα πλοία, βράχοι, σημαδούρες, άνθρωποι στην 

επιφάνεια της θάλασσας και container που είναι τα πιο συχνά εμπόδια στην πορεία ενός πλοίου. 

Οι φωτογραφίες αυτές για να μπορέσει να τις διαχειριστεί το πρόγραμμα πρέπει να 

επεξεργαστούν ανάλογα. Δηλαδή πρέπει με ένα πρόγραμμα να δημιουργηθούν αρχεία .txt που 

περιέχουν τις διαστάσεις των ορθογωνίων των αντικειμένων και την ομάδα στην οποία ανήκει 

το αντικείμενο. Αυτές οι φωτογραφίες μαζί με τα αρχεία τους χωρίζονται σε training και 

validation και τοποθετούνται σε φακέλους που δηλώνονται στο πρόγραμμα με ένα αρχείο 

YAML. Έχοντας αυτά τα δεδομένα το μοντέλο μπορεί να εκπαιδευτεί ώστε να μάθει τα 

χαρακτηριστικά του κάθε αντικειμένου στις φωτογραφίες και να ελεγχθεί το πόσο καλά 

ανταποκρίνεται σε φωτογραφίες που δεν τις έχει ξανά επεξεργαστεί. 

ΣΕΝΑΡΙΑ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΑ 

Στην παρούσα διπλωματική έγιναν διάφορα σενάρια για καταστάσεις και αντικείμενα 

που περιέχονται στις εικόνες και εξαχθήκαν κάποια αποτελέσματα. Τα σενάρια αυτά αφορούν 

τις ομάδες των αντικειμένων στις εικόνες, το πλήθος των φωτογραφιών και τις συνθήκες κάτω 

από τις οποίες έγινε η φωτογράφηση. Αρχικά υποτίθεται ότι μία μόνο ομάδα αντικειμένων, 

όπως πλοίο, βράχος, και πλεόμενα αντικείμενα, υπήρχε στην κάθε φωτογραφία. Γι’ αυτές τις 

περιπτώσεις έγινε χρήση 20, 50 και 100 φωτογραφιών και έγινε σύγκριση αποτελεσμάτων. 

Μετά έγινε εκπαίδευση του δικτύου με 50 φωτογραφίες από πλοία την νύχτα για να μπορεί το 

δίκτυο να λειτουργεί υπό όλες τις συνθήκες. Επόμενο σενάριο ήταν οι 100 φωτογραφίες από 
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όλες τις περιπτώσεις όπου υπήρχε μόνο μία ομάδα αντικειμένων σε κάθε μία καθώς και ο 

συνδυασμός όλων των περιπτώσεων μαζί με εικόνες που περιείχαν τουλάχιστον 2 ομάδες από 

αντικείμενα σε κάθε εικόνα, με συνολικό αριθμό 400 φωτογραφιών. Οι φωτογραφίες αυτές 

αντλήθηκαν από το ίντερνετ λόγω έλλειψης βάσης δεδομένων με διάφορες αναλύσεις καθώς 

το πρόγραμμα μπορεί να δεχτεί και διαφορετικές αναλύσεις. Τέλος η περίπτωση των 400 

φωτογραφιών εκπαιδεύτηκε και στον μεγαλύτερο νευρωνικό, το medium,  και έγινε μία 

εφαρμογή του μοντέλου σε ένα βίντεο σε πραγματικό χρόνο. 

Το μοντέλο YOLOv5s για τις 400 φωτογραφίες πέτυχε precision 84%, recall 74% και 

mAP 79% κατά μέσο όρο, ενώ μπόρεσε στις περισσότερες περιπτώσεις να προβλέψει όλα τα 

αντικείμενα με καλή σιγουριά και με χρόνο ανανέωσης 33 καρέ το δευτερόλεπτο. 

 

ΣΥΜΠΕΡΑΣΜΑΤΑ  

Ο αριθμός των εικόνων παίζει σημαντικό ρόλο για το μοντέλο. Καθώς το σύνολο 

δεδομένων εκπαίδευσης μεγαλώνει, οι μετρήσεις, η ακρίβεια, η ανάκληση και το mAP του 

μοντέλου, φτάνουν σε υψηλότερες τιμές για τις ίδιες εποχές και η διακύμανση των τιμών με 

κάθε εποχή είναι μικρότερη. Επιπλέον, οι υψηλότερες τιμές για τις μετρήσεις επιτυγχάνονται 

νωρίτερα καθώς επεκτείνεται το σετ εκπαίδευσης. Παρατηρείται επίσης ότι όταν το μοντέλο 

εκπαιδεύεται με διαφορετικές εικόνες, αλλά ίδιες σε αριθμό, τότε τα αποτελέσματα για τις 

μετρήσεις είναι διαφορετικά. Αυτό σημαίνει ότι το μοντέλο εξαρτάται σε μεγάλο βαθμό από 

την ποιότητα, το φόντο των εικόνων και τις συνθήκες κάτω από τις οποίες τραβήχτηκαν οι 

εικόνες.  

Ο χρόνος που δαπανάται για την εκπαίδευση αυξάνεται επίσης με τον αριθμό των 

εικόνων στο σύνολο δεδομένων εκπαίδευσης κατά σημαντικό ποσό. Ένα μοντέλο 

εκπαιδευμένο για 300 εποχές με ένα σύνολο δεδομένων 100 εικόνων χρειάζεται 1 ώρα για την 

εκπαίδευσή του, ενώ για τον ίδιο αριθμό εποχών 400 εικόνες χρειάζονται 4 ώρες. Επίσης, ο 

χρόνος που δαπανάται για την εκπαίδευση του μοντέλου αυξάνεται εκθετικά καθώς το μοντέλο 

γίνεται πιο μεγάλο, με 400 εικόνες να λαμβάνουν 4 ώρες στο μικρό δίκτυο και 11 ώρες στο 

μεσαίο δίκτυο εκπαιδευμένες για τις ίδιες 300 εποχές. 

Η εμπιστοσύνη του δικτύου στην ανίχνευση αντικειμένων σε εικόνες που δεν έχει δει 

ποτέ ενισχύεται καθώς το σετ εκπαίδευσης παρέχεται με μεγαλύτερη ποικιλία εικόνων και 

εικόνων που είναι σχετικές με αυτές που πρέπει να ανιχνεύει το μοντέλο. Τέλος, το μέγεθος 

του δικτύου είναι επίσης πολύ σημαντικό για τα αποτελέσματα, καθώς όσο περισσότερο 

μεγαλώνει το δίκτυο τόσο πιο εύκολο είναι να βρείτε τα σωστά αντικείμενα και να έχετε 

μεγαλύτερη ακρίβεια. 

ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΜΕΛΛΟΝΤΙΚΗ ΕΡΕΥΝΑ 

Παρατηρήθηκε ότι ο αριθμός των εικόνων στις οποίες εκπαιδεύτηκε το μοντέλο ήταν 

πολύ ανεπαρκής για να μπορέσει το μοντέλο να λειτουργήσει σωστά, καθώς απαιτούνται 

τουλάχιστον 1500 εικόνες ανά κατηγορία. Μελλοντικά, το μοντέλο θα πρέπει να ενισχυθεί με 

περισσότερες εικόνες για κάθε τάξη για να ληφθούν πιο ακριβή αποτελέσματα. 

Επιπλέον, οι εικόνες που χρησιμοποιούνται θα πρέπει να είναι πιο αντιπροσωπευτικές 

της περίπτωσης που θεωρείται, επικεντρώνοντας κυρίως στην προσπάθεια εύρεσης εικόνων 

που έχουν την ίδια γωνία και ύψος μιας κάμερας τοποθετημένης στην γέφυρα του πλοίου και 

επίσης της ίδιας ανάλυσης που απαιτεί το μοντέλο . Το σύνολο δεδομένων εκπαίδευσης θα 

πρέπει επίσης να δοκιμαστεί στις μεγαλύτερες εκδόσεις του YOLOv5 για να έχουμε καλύτερα 
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αποτελέσματα και οι παράμετροι του μοντέλου θα πρέπει επίσης να αλλάξουν και να γίνει 

έρευνα για το πού επιτυγχάνονται τα καλύτερα αποτελέσματα. 

Τέλος, μετά την εκπαίδευση του μοντέλου και την επίτευξη καλύτερων 

αποτελεσμάτων, το επόμενο βήμα θα πρέπει να είναι η δημιουργία μιας τεχνητής νοημοσύνης 

που συνδυάζοντας τα αποτελέσματα με ένα άλλο σύστημα του πλοίου, που ονομάζεται 

Electronic Chart Display and Information System (ECDIS) να μπορεί να βρίσκει την ταχύτητα 

και την πορεία των άλλων αντικειμένων. Σύμφωνα με αυτά τα αποτελέσματα να προτείνει μία 

πορεία για το πλοίο, ώστε να αποφύγει τα αντικείμενα στο δρόμο του. Στο τελικό στάδιο θα 

πρέπει αυτή η τεχνητή νοημοσύνη να μπορεί να αλλάζει την πορεία και την ταχύτητα του 

πλοίου για να αποφευχθεί η σύγκρουση, ενώ το σύστημα θα πρέπει να δοκιμαστεί πάνω σε 

μοντέλο σε κάποια δεξαμενή. 
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1 Literature Review 
Neural networks and especially Convolutional Neural Networks have made significant 

development over the last decades and are finding more and more applications in various 

industries. Specifically, object detection is a field that the tools for it to develop were found 

only recently. However its evolution was massive and so in only 20 years dozens of networks 

were created with each one being better than its predecessor solving some of their problems by 

applying new ways to manage the images or the feature maps, or even totally different ways to 

make the detection. YOLO is a good example, as in only 5 years there have been 5 versions of 

it that each applied the most recent techniques known until then and so having better results. 

YOLO applications extend to every industry that has an interest in computer vision, detection, 

tracking, counting, and so on. That’s why it is widely applied in ship navigation mainly in 

autonomous ships, where the detection of obstacles in the ship’s path is a very important feature, 

and in sea surveillance. 

Yang-Lang Chang and his team developed a ship detection algorithm based on 

YOLOv2 for SAR imagery in 2019 (Chang et al., 2019). By reducing the number of layers, and 

so creating a new model called YOLOv2-reduced, they managed to have the same accuracy, 

near 90%, of YOLOv2 but with reduced computational time. In the same period an article 

referring to ship detection under different weather conditions based on a deep neural network 

by Xin Nie (Nie et al., 2019). He and his team proposed to enlarge a dataset that contains only 

clear images in normal weather conditions, with synthetically generated images that match 

different weather conditions. They then trained the YOLOv3 network with this dataset and 

resulted in a decrease in accuracy and recall of 6% and 10% respectively, compared to the clear 

weather dataset, especially in smaller boats. In another article, Tianwen Zhang and his team 

proposed a high-speed SAR ship detection approach by improved YOLOv3 in 2019 (Zhang et 

al., 2019). They experimented on a public SAR ship detection dataset and the results indicated 

an increase in the detection speed compared to the YOLOv3, Faster R-CNN, and SSD methods 

while maintaining the same accuracy. In 2019 again Ruidong Zheng combined the YOLO 

algorithm and Automatic Identification System (AIS) to assist vessels in obstacle avoidance 

(Zheng et al., 2019). This system processes the image and video information that are acquired 

by cameras mounted on the ship and in combination with the AIS system of the ship provides 

a more accurate global view. The experiments showed that the system can identify the ships 

and visualize the AIS information, but didn’t report numbers for the metrics. 

Another application of YOLOv3 in ship navigation was done by Xinqiang Chen that 

used YOLOv3 to detect small, medium, and large ships in 2019 (Chen et al., 2019). The 

detection was done in different port navigation scenes, namely low traffic, foggy environment, 

high traffic, and small image scale. The results returned an average value of 84% and 92% for 

Recall and Precision respectively. In the same year, a region of interest extraction algorithm 

based on YOLOv3 was proposed by Li Tianwei (Li et al., 2019). In this method, different 

quality naval images were generated using image degradation algorithm, the network was 

retrained utilizing migration learning that achieves better accuracy and detection rate and lastly, 

the dimensions of the output tensors were optimized. These innovations resulted in a 4.25% 

increase in the detection rate, improving the effectiveness of the algorithm. An improved 

version of YOLOv3 for ship detection was proposed by Haiying Cui in 2019 (Cui et al., 2019). 

The main improvements were in the dimensions of Clusters, some network improvement, and 

applying the Squeeze-and-Excitation module. The experiments had as a result an mAP of 91%, 

increased by 4% from the YOLOv3 algorithm. Except for the last article an improved YOLOv3 

algorithm was also developed by Yuchao Wang and Xiangyun Ning that borrowed the CFE 

module from the CFE network and changed the 1x1 convolutional of YOLOv3, while 

improving the loss function and augmenting data for small ships (Wang et al., 2019). The 
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module achieved an accuracy of 74.8%, increased by 3.6% from the YOLOv3, but with fps 

29.8, decreased by 3.6 compared with YOLOv3. The last application of YOLO in shipping for 

2019 was Jie Yang and his team which developed a tracking algorithm for unmanned surface 

vehicles using YOLOv3 to extract high-performance object detection (Yang et al., 2019). Then 

a data association method is implemented combining the estimation of motion state through 

Kalman filter and the appearance feature. The results of the detectors that used YOLOv3 

returned an mAP of 80% while the tracking system seemed to better complete the detection 

compared with the SORT tracking algorithm. 

In 2020 Zhenfeng Shao and his team worked on making YOLOv2 more efficient in 

near coastline problems in the sea (Shao et al., 2020). They developed a novel saliency-aware 

CNN based on the YOLOv2 model that extracts coastline feature maps and inputs them into a 

CNN in increase to reduce the program’s ability to differentiate nearshore buildings and small 

ships. They compared their model with the most used ones, Fast R-CNN, Faster R-CNN, SSD, 

and YOLOv2 for different types of ships, and resulted in an mAP of 87%, 14% higher than the 

YOLOv2.  In the same year, an article regarding the discrimination between icebergs and ships 

using YOLOv3 was published by Fredrik Seerup Hass (Hass & Jokar Arsanjani, 2020). In this 

article, the author trained the YOLOv3 model with iceberg and ship images from a Synthetic 

aperture radar (SAR) for different epochs and resulted in precision, recall, and mAP scores with 

maximum values of 65%, 60%, and 55.7% respectively. Zhelin Li published an article about a 

Lightweight Ship Detection Method based on the YOLOv3 and DenseNet, in 2020 called 

LSDM (Li et al., 2020). The backbone of this method is improved by using dense connections 

inspired by the DenseNet, while the feature pyramid networks are improved using spatial 

separation convolution instead of regular convolution. These innovations affected positively 

the overall performance with the recall being 95%, the precision 85%, and the mAP 94%, 

almost the same as the YOLOv3 but with 66% fewer parameters.  

In 2021 the article of Yang Jie was published and involved ship detections and tracking 

in inland waterways with the use of YOLOv3 but with some improvements (Jie et al., 2021). 

They added the Kmeans clustering algorithm to initialize the anchor boxes, modified the output 

classifier to a single softmax classifier, and changed the Non-Max Suppression to a Soft Non-

Max Suppression. The mAP of the model was 95.5% with an increase of 5% in comparison to 

the YOLOv3 algorithm.  Dehai Chen and his team worked, in 2021, on a ship detection 

algorithm based on the improved YOLOv3 algorithm, containing the attention mechanism that 

was embedded in Darknet-53 and a new feature enhancement algorithm for having more 

semantic information on low-level features (Chen et al., 2021). The results of this research were 

97% for both the precision and the recall and a mAP of 99%, increased by 3% compared to 

YOLOv3. Meanwhile, in the same period of time, a similar article was published researching 

the recognition and tracking of water surface targets using YOLOv3 improved by the Inception 

module and the KCF algorithm to reduce the loss of blocked targets (Ma et al., 2021). This 

research was conducted by Zhongli Ma and his team and resulted in a mAP of 88%.  

The one to apply the YOLOv4 algorithm in ship detection was Xu Han in 2021 who 

replaced the backbone with a network called RCSPDarknet to improve precision, designed an 

amplified receptive field module named DSPP to reduce the loss of small ships, and used the 

attention mechanism and Resnet’s shortcut idea to create a new feature pyramid structure (Han 

et al., 2021). All these improved mAP0.5:0.95 by 1%, reaching 57.7% and increasing FPS to 69.4 

from 56.1 with 23% reduced parameters compared to YOLOv4. In the same year, a sea surface 

object detection algorithm based on YOLOv4 was created by Tao Liu (Liu et al., 2021). They 

added a Reverse Depthwise Separable Convolution in the backbone of the algorithm so as to 

detect unmanned surface vehicles resulting in 40% decreased weights, 20% increased detection 

speed and 2% increased mAP compared to the YOLOv4. Junchi Zhou in 2021 worked on an 
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improved YOLOv5, in which the initial frame at the target is re-clustered by K-means, the 

receptive field area is expanded and the loss function is optimized (Chen et al., 2021). The 

results from these changes show a precision of 98% and a recall of 96.2% while the mAP 

increased by 4.4% with a value of 98.6% compared to the YOLOv5. 

One year after the articles above, in 2022, an improved version of YOLOv3 was created 

by Lena Chang that appropriate input image size, fewer convolution filters, detection scales, 

and modifications of the spatial pyramid pooling to reduce complexity and improve 

performance (Chang et al., 2022). The model was trained with visible and infrared images and 

resulted in a 48% reduction in the billion floating point operations while increased the mAP 

and FPS by 2% and 8%, respectively, reaching values of 93% and 104.7. A ship detection and 

classification algorithm based on YOLOv4 was also designed by Weina Zhou and Lu Liu in 

2022 (Zhou & Lu, 2022). The model integrated a Multi-layer Feature Fusion and a Multi-layer 

Receptive Field Block module into the neck of YOLOv4 to reduce feature information loss. 

The impact on the main algorithm of YOLO was noticeable with an increase of 12% in mAP, 

with a value of 76.4%. 

In 2022 also, with their article “An Improved YOLO v4 Algorithm-based Object 

Detection Method for Maritime Vessels” Guowen He and his team used a k-means algorithm 

to increase clustering at the input side of image data (He et al., 2022). This change led to mAP, 

precision, and recall values of 86%, 86.4%, and 84% respectively, which is a 3% increase 

compared to YOLOv4. In the same year, Zakria published his modified version of YOLOv4 

(Zakria et al., 2022). A classification setting of the nonmax suppression threshold and two 

allocation schemes for the problem of frame anchor allocation in the base algorithm were 

proposed in order to increase the accuracy without affecting the speed. The mAP for the 3 

innovations either decreased or stayed at the same level as the YOLOv4 with the highest 

reaching 74.22%, namely decreasing the mAP by 1%. A new model that modified the YOLOv5 

model by replacing the CSP-DarkNet with CSP-DenseNet to increase the accuracy of target 

detection and classification was proposed by Xuan Zhang in 2022 (Zhang et al., 2022). 

Experiments showed that it reached 71.6% on mAP in comparison to 62.2% of the YOLOv5.  

Jia-Chun Zheng published a model based on YOLOv5 network in 2022 for fast ship 

detection (Zheng et al., 2022). The team proposed an optimization of the anchor boxes 

according to the ship target characteristics, mapped the k-means clustering algorithm to select 

more appropriate anchor boxes, and also used the scaling factor γ for the batch normalization, 

reaching an 86.5% mAP, increased by 2% of the base model YOLOv5. That year an article by 

Emmanuel Vasilopoulos and his team regarding autonomous object detection algorithms in the 

maritime environment using a UAV platform was published (Vasilopoulos et al., 2022). In the 

context of the research an embedded system that employed machine learning algorithms, 

specifically the YOLOv5 algorithm, was created allowing a UAV to detect objects in the water. 

The results for the precision were 87%, the recall 62%, and the mAP 67%. In 2022 also, an 

article about a Complete YOLO-based ship detection method for Thermal Infrared Remote 

Sensing Images under Complex Backgrounds was developed by Liyuan Li and his team (Li et 

al., 2022). The dataset was developed using a thermal imaging system, they were preprocessed 

and input in the YOLOv5s, which was improved by adding Dilated Convolutional, depthwise 

convolution, and SELayer modules. The results showed an mAP of value 98.7%, which is 9% 

higher than the YOLOv5s model but also increased the number of layers, from 283 in 

YOLOv5s to 390 in the proposed method. Lastly, Jun-Hwa Kim and his team in 2022 used a 

ship detection and classification algorithm based on YOLOv5 (Kim et al., 2022). They 

implemented the mix-up technique in addition to the basic augmentation of YOLOv5 and 

corrected the Singapore Maritime Dataset. They then used the dataset to train the YOLOv5 

which resulted in 89.8% mAP, in comparison to the 77.2% of the SMD before the correction. 
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2 Neural Networks 
 Since the late 1980s research activity in neural networks has seen a noticeable increase 

in interest. Even though most of the research has focused on developing new algorithms, there 

has been an increasing urge in the direction of applying neural networks to real-world problems. 

Through their use, it became clear that they are extremely good in pattern recognition and data 

processing and so very helpful to areas that need these features, like scientific instrumentation. 

Many types of neural networks have been developed, but in this thesis the main focus 

will be on Convolutional Neural Network (CNN) which is the one that the dataset was trained 

on. But before going in depth on those networks specifically there will be a brief introduction 

to the general idea behind Artificial Neural Networks (ANN) and their history. 

2.1 Overview of neural networks 
Neural Networks represent a computational example in which a set of examples is used 

in order to find a solution to a problem. The idea of neural networks comes mainly from studies 

of the information processing mechanism in biological neural networks, especially in the 

human brain. In fact, in the early years, the main focus of the research was on understanding 

the function of the biological nervous system of the human brain. 

A neural network in general is regarded as a non-linear mathematical function that is 

used to transform a set of input into a set of output. This transformation is controlled by a set 

of parameters that are called weights whose values are defined by a set of examples. The act of 

determining these weights is called learning or training and it generally requires much 

computational power. When the weights have been fixed then the neural can process new data, 

out of the training data quickly (Bishop, 2006). 

Neural networks can process data with high speed, find the solution to a problem with 

only a number of input values and also give the ability to work with incomplete data and 

produce an output. Although the loss of performance depends on the importance of the missing 

information.  

The disadvantages of neural networks originate from the need to produce a suitable set 

of examples to train on and the potential problems that may arise if the network is needed to 

locate the relation between data that are significantly different from the ones that it is trained 

on. Moreover, neural networks are very hardware depended as they require processors with 

parallel processing power and they also produce a solution without the user knowing why or 

how. Generally speaking, neural networks are suitable for solving problems that have the 

following characteristics (Bishop, 1994):  

i. There are abundant data to train on, 

ii. It is difficult to create an adequate simple solution based on models for the 

problem, 

iii. The data must be processed at high speed, as there is a great number of data to 

be processed and there is a need for real time application, 

iv. The method must be steady even if the input data have a moderate noise. 
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2.1.1 Biological neural networks 

 

 

The human brain is one of the most complicated structures of the human body but it is also the 

most exciting task that scientists faced. Biological neural networks are of high interest for 

humans, which derives from the desire to build better pattern recognition and information 

processing systems. For completeness and better understanding of the way neural networks 

work in this thesis, there will be a given a simplified review of biological neural networks. 

The human brain consists of 1011 active cells called neurons. Their most common 

features are shown in Figure 2.1. Every neuron consists of a cell body or soma that contains the 

cell nucleus. The branching tree of dendrites is associated with the cell body and acts as an 

input to the neuron as they receive signals from other neurons. From the soma, a single long 

fiber extends called axon, which branches out to threads connecting to many other neurons at 

the synapses. For the transition to take place a complex chemical process must be done, where 

substances are released from one neuron to the receiving one. This way the electrical potential 

is either lowered or increased in the receiving neuron. If that potential is higher than a threshold 

then the neuron is said to be fired and an electric impulse is triggered (Yegnanarayana, 1994). 

When this happens the signal of the fixed strength is sent down the axon and through the 

synapses passed to the dendrites of the next neuron. From there the neuron computes a weighted 

sum of the inputs from other neurons and if the sum exceeds a threshold then the neuron fires.  

The activity of a given synapse is dependent on the rate of the signals arriving at it. A 

synapse that continuously triggers the activation of its presynaptic neuron will grow in strength 

while others will gradually weaken. Thus the strength of the synaptic connection will repeatedly 

get modified. This mechanism of neural connectivity plays a significant role in the process of 

learning. 

In the human brain, each neuron is receiving signals from approximately 104 synapses. 

Also, every neuron passes its signal to hundreds of other neurons so the total number of 

connections between neurons reaches 1015, the majority of which are developed during the first 

few months after birth.  

Figure 2.1: Schematic of two biological neuron. 
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Each neuron alone is generally slow in processing information but when they are 

connected as the information can be processed parallel in many neurons the total computational 

power can be equal to or even more than the newest computers. It also leads to a high loss 

tolerance as the fact that every day many neurons die doesn’t affect the performance of the 

overall system. The overall simplified picture of the biological neural networks can be a good 

starting point in understanding the way neural networks are formed and the way they work. 

2.1.2 History of neural computing 
The history of neural networks goes back to 1943 when Warren McCulloch and Walter 

Pitts (McCulloch & Pitts, 1943) created a computational model for neural networks based on 

algorithms called threshold logic. They showed that networks of neural networks are capable 

of universal computation, paving the way for research that focused on the application of neural 

networks to artificial intelligence. 

Next up D.O.Hebb in 1949 in his book (Hebb, 1949) proposed a learning hypothesis 

based on the mechanism of neural plasticity, namely the ability of neural networks in the human 

brain to change through growth and reorganization. He suggested that learning happens through 

modification of the strengths of the synaptic connection between 2 neurons. He also said that 

when 2 neurons fire together then the synapse between them should be strengthened and 

accordingly if they don’t fire the synapse should be weakened. This learning hypothesis became 

known as Hebbian learning. Different researchers then started to apply these ideas and created 

neural network computational machines. Farley and Clark (Farley & Clark, 1954) in 1954 were 

the first to use computational machines. Other neural network computational machines were 

created by Rochester, Holland, and Duda (1956) (Rochester et al., 1956).  

In 1958 Rosenblatt was the one to develop the first hardware neural network system 

(Rosenblatt, 1958). They named it the perceptron and was based on McCulloch-Pitts neuron 

models. Its external input was an array of photoreceptors and the synaptic connections were 

provided by potentiometers. Adjustments in the potentiometers were made using the perceptron 

learning algorithm (Rosenblatt, 1961). The perceptron could learn to see the difference between 

characters and shapes which were provided as images in the input. Rosenblatt also resented the 

result that if a problem is soluble from the perceptron then the perceptron algorithm will solve 

it in a finite number of steps.  

Research, although, decreased in the 1960s after the discovery of 2 issues with 

computational machines by Minsky and Papert in 1969 (Minsky & Papert, 1969). The first was 

that the perceptron was incapable of computing the exclusive-or circuit and the second was that 

current computers couldn’t handle the work required by the larger neural networks as they 

lacked computational power. Therefore the research reduced in speed until greater processing 

power in computers was achieved. In 1970 the field of neural networks was abandoned with 

only a few researchers still active in the field. 

A “revival” in this field of science started in the early 1980s and was led by J. J. 

Hopfield with his work (Hopfield, 1982), (Hopfield, 1984), who pointed out the relation 

between neural network models and some systems known as spin glasses. The next 

development was the creation of new algorithms based on error backpropagation in 1986 by 

Rummelhart (Rumelhart et al., 1986). Backpropagation describes a method in which errors are 

processed at the output and then go through the system’s layers for learning and training. The 

fact that there was a big availability of cheap and high computational power computers, 

combined with the work of Rumelhart and the fact that Artificial Intelligent was not as good as 

anticipated led to a burst of interest in neural networks.  
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In 1992 the max-pooling layer was introduced to help in 3D object recognition through 

the building of the cresceptron by John (Juyang) Weng, Narendra Ahuja, and Thomas S. Huang 

(Weng et al., 1992) (Weng et al., 1993). In the same year, Schmidhuber used a multi-level 

hierarchy of networks (Schmidhuber, 1992). He pre-trained one level at a time by unsupervised 

learning and then used backpropagation to evaluate. This way he solved the vanishing gradient 

problem, in which the error in a neural network shrinks as it goes from one layer to another so 

it reaches a vanishingly small value which prevents the weight from changing in the next layer.  

In the next years, the topic of neural networks has attracted significant attention and 

thus there has been a great deal of research and progress. Especially the topic of pattern 

recognition, with the development of CNNs (LeCunn et al., 1998) that started to attract more 

and more interest over the years. From then on the main focus moved to CNN and especially 

object detection algorithms and their applications in real-time problems, with the development 

of different methods that will be analyzed in the next sections. 

Nowadays neural networks have been widely applied in many aspects of life problems. 

Some of their applications are in healthcare, as CNN are used for analyzing X-ray photos 

ultrasounds, face recognition in mobile smartphones, handwriting analysis, signature 

verification, weather forecasting, autonomous cars or ships that don’t need human assistance 

and the list goes on.  

2.2 A single neuron model 

 

Figure 2.2: McCulloch-Pitts model.  

In 1943 McCulloch and Pitts (McCulloch & Pitts, 1943) introduced the first neural 

network that consisted of one neuron. A schematic of the network is shown in Figure 2.2. This 

model transforms a number of input values x1, … , xn into an output variable z. The input xi is 

firstly multiplied with the corresponding parameter wi, which is called weight (the equivalent 

to the synaptic strength in the biological neural networks that were covered above). All the 

weighted inputs are then appended and so the output is produced (Equation (2.1)) : 

𝑧 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏 (2.1) 

, where b is the bias and is equivalent to the threshold in the biological neural networks.  
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The output a of the network, which can be compared slightly with the average firing rate of the 

neuron in the biological counterpart, is calculated by passing it to the non-linear function σ( ), 

which is called activation function, as in the following Equation (2.2): 

𝑎 = 𝜎(𝑧) (2.2) 

This simple model forms the base that every network works on. Just by linking many 

of these simple processing units together, more complicated networks can be formed. Now that 

both the biological and the artificial neural networks have been mentioned, a comparison 

between the elements of the two can be done with the help of the following Figure 2.3: 

 

Figure 2.3: Comparison between biological and artificial neurons 

The two neurons, both biological and artificial, have many similarities. The axon of the 

previous neuron and the dendrites are the arrows that connect the different artificial neurons. 

The synapses is where the multiplication of the input and the corresponding weight is done. 

The cell body is the artificial neuron where all the calculations are done and where the output 

of the summarization is altered with the use of the activation function. Finally, the output axon 

is the arrow that connects the artificial neuron with the next one.  

2.3 The Multilayered Perceptron  
Even though neurons on their own don’t have much computational power, when 

combined they can create a network of neurons which is called a neural network. Neurons that 

are in the same column create a layer. A neural network has many layers with each consisting 

of many neurons. The Figure 2.4 depicts a network with 3 separate layers and 2 layers of 

weights. Neurons that are in the first layer create the input layer where the input values are 

inserted. The ones that are in the middle layer create the hidden layer, which is called this way 

because they are not exposed directly to the input of the network and their activation values 

can’t be accessed from outside of the network. The simplest network consists of only one 

neuron in the hidden layer that outputs the final value. Although with the use of the continuously 

developing technology and computational power of computers it is feasible to create very deep 
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neural networks, namely to have many hidden layers, things unimaginable for researchers in 

the previous decades. Lastly, the output layer is the one that is responsible for outputting the 

final value or the vector of values, according to the format required for the problem.  

 

Figure 2.4: A multilayer perceptron with 3 layers of neurons, 2 layers of weights.  

The hidden layer’s values are denoted as xn and are given by the following Equation 

(2.3) (Bishop, 2006) 

𝑥𝑛 = 𝑔 ( ∑ 𝑣𝑛𝑚𝑧𝑚

𝑀

𝑚=0

) (2.3) 

, where vnm are the weights connecting the m neuron in the input layer with the n neuron in the 

hidden layer and g is the activation function between the input and hidden layer. Note that 

instead of putting the bias we included it in the summarization as a special weight from an input 

of z0=1. Although that is not the output of our network. To reach the output the z neurons must 

first be transformed by the activation function between the hidden layer and the output layer 

with a similar Equation (2.4) 

𝑦𝑘 = 𝑔′ (∑ 𝑤𝑘𝑛𝑥𝑛

𝑁

𝑛=0

) (2.4) 

, where wkn are the weights that connect the n neuron of the hidden layer with the k neuron in 

the output layer. Again the bias is included as a special weight from an input of x0=1. Lastly 

combining these previous 2 equations the final output of our neural network is created, which 

is represented in the Equation (2.5) below 

𝑦𝑘 = 𝑔′ (∑ 𝑤𝑘𝑛𝑔 ( ∑ 𝑣𝑛𝑚𝑧𝑚

𝑀

𝑚=0

)

𝑁

𝑛=0

) (2.5) 

Each of the components in Equation (2.5) corresponds to an element in the Figure 2.4. 

Something to note here is that activation functions g and g’ don’t need to be the same.  
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 In the literature, there are 2 ways to count the number of layers in a neural network, 

and they are both commonly used. The first way is by counting all the layers that the neural 

network has, except for the input layer. So in the above example, in Figure 2.4, the total layers 

are 2, the hidden and the output layer, which is equal to the layers of the weights. In the other 

way, the layers of the network are equivalent to the total number of layers in the network with 

the input layer included. So in the paradigm, there are 3 layers in the network and 2 layers of 

weights. 

2.3.1 Activation Functions 
 Activation functions, as discussed, are the functions that alter the output of the neuron. 

They are just a simple mapping of the weighted sum of the inputs in the neurons. It is called 

this way because it governs the threshold at which the neuron will activate and the strength of 

the output (Sharma et al., 2020). Activation functions are divided into 2 types: 

1. Linear Activation Functions 

2. Non-Linear Activation Functions 

The Linear Activation Function is the simple and well-known function of a line. As 

this function doesn’t help with the complexity or the various parameters of usual data inserted 

into the neural networks there won’t be an emphasis on that function. A typical figure for that 

function is illustrated in Figure 2.5. 

 

Figure 2.5: Linear Activation Function 

Even though Linear Activation Function is useful in some problems, when 

generalization and adaptation of the model through different input values are needed then a 

Non-Linear Activation Function is chosen. A Non-Linear Activation Function is used to give 

non-linearity to the network. There are many functions of this type, although for simplicity the 

most common will only be mentioned.  

The Sigmoid Activation Function is depicted in the Figure 2.6(a) and has an S-shape. 

It is useful because it restricts values between 0 and 1. Therefore, it is used especially in models 

that have to predict the probability of the output, as the probability is also limited between 0 

and 1. 
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The Tanh or hyperbolic tangent Activation Function is illustrated in the Figure 2.6(b) 

and has also an S-shape as the Sigmoid. Although the difference is that the Tanh function’s 

values range from -1 to 1, which means that the negative values will be mapped strongly 

negative and respectively the positive will be mapped strongly positive. For this reason, the 

Tanh function is mainly used in classification between 2 classes. 

The Rectified Linear Unit Activation Function (ReLU) is shown in the Figure 2.6(c). 

It is the most commonly used function right now as it is used widely in convolutional neural 

networks and deep learning. All the values that are less than 0 are mapped 0 and the positive 

are mapped, as in the linear function, without some difference. Although it is not the best go-

to function as it doesn’t map the negative input values, which decreases the ability of the 

network to train from the data properly. 

The Leaky Rectified Linear Unit Activation Function (LeakyReLU) function, (Figure 

2.6(d)) is an attempt to solve the problem of the ReLU not mapping negative values. For this 

reason, a “leak” is put and the function doesn’t nullify the negative values but maps them with 

a linear function ax with a not being 1, as then it turns into the already discussed linear function. 

 

Figure 2.6: Typical Activation Functions (a) Sigmoid, (b) Tanh or hyperbolic tangent, (c) Rectified Linear 

Unit(ReLU), (d) Leaky Rectified Linear Unit(LeakyReLU) 

In the above example (Figure 2.4) there were 2 activation functions g() and g’(). If these 

functions were linear then the network transformation would be reduced to a product of 2 

matrices, which is again a matrix. Although if the g() was considered to be non-linear then the 

network would represent easier some general-purpose problems.  

Another thing to note here is that if a sigmoid activation function is used in the hidden 

layers then its properties will hold even if in the output layer a linear function is applied, as 

when a linear function is used as an activation function is like not applying any change in the 

values. In general for interpolation problems, where a smooth change in the values is needed, 

usually, a linear activation function is used in the output layer (Sharma et al., 2020). For 

classification problems though a sigmoid function is used as it limits the values between 0 and 

1 values. Sigmoid however is inappropriate for most interpolation problem as the restriction of 

the output between 0 and 1 is not needed. 
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2.4 Network training and error implementation 
 In order to better understand the training and especially the loss which will be 

mentioned in this chapter, an analogy is drawn between the training of neural networks and the 

fitting of a polynomial curve. Below the m-th order polynomial equation is illustrated in 

Equation 2.6: 

𝑦 = 𝑤𝑚𝑥𝑚 + ⋯ + 𝑤1𝑥 + 𝑤0 = ∑ 𝑤𝑗𝑥𝑗

𝑚

𝑗=0

(2.6) 

This is a non-linear mapping that takes x as input and y as output. The value of y is 

determined by the values of wm…w0 that are equivalent to the weights in a neural network. The 

equivalent of the w0 is the bias. Polynomials are in general similar to neural networks, although 

neural networks have a higher number of inputs compared to the one input of polynomials and 

they can also define a large class of functions easily. In fact, a large enough network can define 

any continuous function with sufficient accuracy (Bishop, 1994).  

Once the neural network has been configured it must be trained on the dataset. Training 

is called the process of deciding the values of the weights in the neural network. To better 

introduce this process, the analogy of the polynomial curve above will be used for a set of data. 

Each point in the dataset, which is used as the input, has an index number q=1,…,n, symbolized 

as xq, and a value that is desired for the output to be, symbolized with tq
 and called target value. 

To find the best coefficients for the polynomial, the error between the output value predicted 

by the function of the polynomial y(xq;w), for a specific data point xq, and the corresponding 

desired output value tq for the same data point is calculated. Usually, some error functions are 

used to be minimized. The most common one is the sum-of-squares error function illustrated 

below (Equation (2.7)). 

𝐸(𝑤) =
1

2
∑{𝑦(𝑥𝑞 , 𝑤) − 𝑡𝑞}2

𝑛

𝑞=1

(2.7) 

It is obvious that E is a function of w so that the curve will be fitted to the data just by 

selecting the best values for w that minimizes the function E. In the Figure 2.7 a cubic 

polynomial, in Equation (2.6) setting m=3, is fitted over a set of data by minimizing the sum-

over-squares.  

In neural networks, the training follows an analogous pattern. Firstly a suitable error 

function is found, with respect to the input data. The weights are then chosen in order to 

minimize the error. Although, minimizing the error function in a complex neural network is 

more difficult than in the polynomials as the network’s functions depend in a non-linear manner 

on the weights and so require the use of non-linear algorithms for optimization. In neural 

networks, there are several input vectors xq(x1
q,…, xd

q), each one of them having a target vector 

tq. In that respect for every output k, the error, taking into consideration the Equation (2.7) if 

we instead sum over all q and output vectors k, is shown in the below Equation (2.8). 

   

𝐸(𝑤) =
1

2
∑ ∑{𝑦𝑘(𝑥𝑞, 𝑤) − 𝑡𝑘

𝑞
}

2
𝑐

𝑘=1

𝑛

𝑞=1

(2.8) 
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Figure 2.7: An example of curve fitting using a polynomial function. 

The error function can be considered as a surface above the weights, as in the Figure 

2.8. This way the problem of training a neural network can be regarded as finding the minimum 

value of the error function, which is the wA in the Figure 2.8. This is called global minimum. 

Although there might be other values higher than the global minimum, like wB, which is called 

local minimum. The ∇E is the function’s gradient at a point on the surface and is a key point to 

the gradient descent algorithm, as it firstly selects a value for the weight and then it alters it in 

order to move it in the direction of the negative of the error function gradient. In the case of 

single-layered neural networks with a linear activation function, the sum-of-squares error 

function has no local minima so by solving the linear equation the global minima are easily 

found just. Although in multilayered neural networks error function is non-linear and the 

minimum is found by firstly considering a random weight and then making some changes in 

order to find the minimum. Some algorithms will find the local minimum, which in some 

applications where the surface is very complicated can be sufficient, while others have 

techniques to escape the local minima and have a higher possibility to find the global minima.  

 

 

 

Figure 2.8: Schematic illustration of the error function E(w) as a surface above the weights wi.  
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The derivatives with respect to the network’s weights are used broadly from many error 

minimization algorithms. These derivatives are the components of the gradient vector ∇E of the 

error function. As there are substantial benefits for the training of the network in using gradient 

information there will be a more extensive discussion in the below paragraph about the ways 

to evaluate the derivatives and more specifically in the error backpropagation. 

2.4.1 Back Propagation 
Backpropagation algorithm (Bishop, 2006) is a very computationally efficient technique 

to calculate the derivatives, especially for nonlinear mapping function given by multi 

perceptron. Here for simplicity and better understanding, a general feed-forward network is 

considered with a single hidden layer, as shown in Equation (2.5), a nonlinear activation 

function, and the sum-of-squares error function, as indicated in Equation (2.8). 

The error function can be written as a sum of terms, one for each data in the training data 

set (Equation 2.9) 

𝐸 = ∑ 𝐸𝑞

𝑛

𝑞=1

(𝑤) (2.9) 

For that reason, we can separately calculate the derivatives for each term and then sum 

over all of the terms in the data set together in order to get the required derivative. 

Let’s first consider that the output values yk are linear combinations of the input xn 

(Equation (2.10)).  

𝑦𝑘 = ∑ 𝑤𝑘𝑖𝑥𝑖

𝑖

(2.10) 

The error function for a particular term q can be written, as in the Equation (2.8), in the 

following way (Equation (2.11)) 

𝐸𝑞(𝑤) =
1

2
∑{𝑦𝑘(𝑥𝑞 , 𝑤) − 𝑡𝑘

𝑞
}

2

𝑘

(2.11) 

The gradient of the error function for particular weight wji, taking into account the 

Equations (2.11) and (2.10), is given in Equation (2.12), 

𝜕𝐸𝑞

𝜕𝑤𝑗𝑖
= (𝑦𝑗

𝑞
− 𝑡𝑗

𝑞
)𝑥𝑖

𝑞 (2.12) 

However, this evaluation was about one term of the error function. Let’s now proceed 

in generalizing the above equation in a more complex feed-forward multilayered neural 

network. In a network like that, every unit computes the output as a weighted sum of the inputs 

while also considering the activation function of every layer. The output variable of the second 

layer (the layer of weights from hidden to the output layer) of the network can be written in the 

form (Equation (2.13)), 

𝑦𝑘 = 𝑔′(𝑎𝑘)  ,   𝑎𝑘 = ∑ 𝑤𝑘𝑗𝑧𝑗

𝑗

(2.13) 

, where zj is the activation, or input, of a unit that sends its signal to the unit k, wkj is the weight 

that connects the unit j with the unit k and g( ) is the nonlinear activation function of the unit k. 

There is no need to deal with the bias as it can be included in the sum with a fixed weight of 

+1.  
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The network being examined is assumed to be provided with the necessary input vector 

and it has calculated the activations of all hidden and output units just by applying the Equations 

(2.12) and (2.13) to the values. This process is most commonly referred to as forward 

propagation, as information flows forward in the network. The derivative with respect to the 

last layer weights wkj, as it depends on the weight only via ak, it can be written to the form, 

𝜕𝐸𝑞

𝜕𝑤𝑘𝑗
=

𝜕𝐸𝑞

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝑤𝑘𝑗

(2.14) 

Now the following useful notation is introduced, 

𝛿𝑘 ≡
𝜕𝐸𝑞

𝜕𝑎𝑘

(2.15) 

, where δ can be considered to be the error as it expresses the difference between the network’s 

output and desired value. Using the Equation (3.13) zj can be written as, 

𝜕𝑎𝑘

𝜕𝑤𝑘𝑗
= 𝑧𝑗 (2.16) 

Then by making use of the previous 3 Equations (2.14), (2.15), and (2.16) the derivative 

becomes, 

𝜕𝐸𝑞

𝜕𝑤𝑘𝑗
= 𝛿𝑘𝑧𝑗 (2.17) 

After that, an expression for the error of the hidden units can be found using Equations (3.11), 

(2.13), (2.15) 

𝛿𝑘 = 𝑔′(𝑎𝑘)(𝑦𝑘 − 𝑡𝑘) (2.18) 

 Note that in Equation (2.17) the derivative is simply found with a multiplication of the 

values δ, for the unit at the output end of the weight, with the values z, for the unit at the input 

end of the weight. Note also that this equation takes the same form as the simple linear model 

discussed at the start of the paragraph, so the only thing that must be done to evaluate the 

derivative is to apply the Equation (2.17) in the values of the δ’s in the hidden and output layers. 

Figure 2.9: Illustration of the calculation of δj for hidden unit j by backpropagation of 

the δ’s from those units k to which unit j sends connections. 
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 Now a similar equation must be found for the derivative with respect to weights in the 

first layer. Similarly to before the output variable of the second layer (the layer of weights from 

hidden to the output layer) of the network can be written in the form (Equation (2.19)), 

𝑧𝑗 = 𝑔(𝑎𝑗)  ,   𝑎𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖

𝑖

(2.19) 

, where xi is the input vector of the network. Then the derivative can be written as below 

(Equation (2.20)), 

𝜕𝐸𝑞

𝜕𝑤𝑗𝑖
=

𝜕𝐸𝑞

𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑤𝑗𝑖

(2.20) 

Now the following useful notation is introduced (Equation 2.21)), 

𝛿𝑗 ≡
𝜕𝐸𝑞

𝜕𝑎𝑗

(2.21) 

, and the other element of the equation can be written as (Equation 2.22)), 

𝜕𝑎𝑗

𝜕𝑤𝑗𝑖
= 𝑥𝑖 (2.22) 

So the derivative takes the form (Equation 2.23)), 

𝜕𝐸𝑞

𝜕𝑤𝑗𝑖
= 𝛿𝑗𝑥𝑖 (2.23) 

, which is the same form as the Equation (2.17), so that the derivative that connects the input of 

the network with the hidden layer is the δ for the hidden layer multiplied by the input of the 

network.  

Finally, the expression for the δ’s is found just by using the chain rule for the partial 

derivatives (Equation 2.24)), 

𝛿𝑗 =
𝜕𝐸𝑞

𝜕𝑎𝑗
= ∑

𝜕𝐸𝑞

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝑎𝑗
𝑘

(2.24) 

So by using the Equations (2.13), (2.15), and (2.18) we obtain the full back propagation 

expression (Equation 2.25)), 

𝛿𝑗 = 𝑔′(𝑎𝑗) ∑ 𝑤𝑘𝑗𝛿𝑘

𝑘

(2.25) 

, which states that the value of δ for a hidden unit can be obtained by backpropagating the δ’s 

from units higher in the network hierarchy. Figure 2.9 illustrates graphically the 

backpropagation that was described with equations above. Information during the forward 

propagation flows upwards in the figure while the black arrows show the direction of the error 

information during back propagation. 

In general, the backpropagation algorithms can be summarized in the following steps: 

1. Insert an input vector xn in the network and then forward propagate the information in 

order to evaluate the activation functions of the output units, Equation (2.18), and the 

hidden units, Equation (2.13). 

2. Evaluate the errors for the output unit using the Equation (2.18). 
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3. Backpropagate the δ’s using the Equation (2.25) to find the values for the error of the 

hidden units. 

4. Use Equations (2.17), and (2.23) in order to find the necessary derivatives. 

The backpropagation method is used generally because of its computational efficiency. 

Supposing the number of the weights in the network is N, the scaling of the derivative with the 

number of the weights is needed to be found. As the error function Eq(w), is associated with all 

the weights the evaluation of a single pattern will take O(N) steps. This means that the number 

of steps will increase like the weights. Accordingly, the evaluation of a derivative of the error 

function with respect to a single weight will take O(N) steps. There are N such derivatives so 

the number of steps would be O(N2) to calculate all the derivatives. On contrary, the 

backpropagation method evaluates all the derivatives only using a forward propagation, a 

backward propagation, and the use of the Equations (2.17) and (2.23).  Since each of these 

calculations is done in O(N) steps, the evaluation of all the derivatives takes O(3N) steps. For 

a set of data with n patterns, the total number of derivatives for the error function E would be 

O(n3N) in comparison to the O(nN2) if it was calculated separately with direct evaluation. This 

might not make so much of a difference in a lower number of weights but since the number of 

weights in a network can range from a few hundred to many thousands in larger networks, the 

saving in time for the calculation is significant. Taking also into consideration that, even with 

the use of the backpropagation method for evaluating the error function, in a multilayered 

perceptron the computing is still demanding the use of the backpropagation is necessary 

(Bishop, 1994). 

Some more advantages of the backpropagation algorithm, without giving details as they are 

of less importance, are: 

1. It simplifies the network structure by removing weighted links. 

2. It is fast and easy to program. 

3. It does not require prior knowledge about the networks. 

4. There is no need to specify the features of the function to be learned. 

5. It allows efficient computation of the gradient at each layer. 

 

2.5 Convolutional Neural Networks 
Although ANNs of type Feed Forward like the Multilayer Perceptron that was discussed in the 

above chapters are very good at dealing with problems that take as input a one-dimensional 

vector, they have difficulty in those that have inputs of 2 or 3 dimensions. Such problems are 

image classification, image recognition, voice recognition, and more. This is where 

Convolutional Neural Networks, CNNs, come in.  

CNNs can be considered as special case feed-forward neural networks. They don’t differ as 

much from the already discussed ANNs, as they are made up of neurons with learnable weights 

and biases. The main difference is that instead of general matrix multiplications, as in ANNs, 

they use convolution in at least one of their layers. Also, their input is considered to be an 

image, instead of a one-dimensional matrix, which means that knowing the input from the 

beginning the network can be enhanced with different properties in its architecture that help in 

the whole classification process (Teuwen & Moriakov, 2020). 

The basic use of CNNs is to classify images and patterns, like recognizing if in the picture there 

is a dog or a cat. Although before the model is ready to recognize classes in an image the image 

must be processed and the different features of the image must be extracted. Before CNN, some 

experts had to design their own feature extractor for the specific image, which was not only 
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costly but also time-consuming while being inconsistent as a method as every image could 

differ in a great way from the others (Kim, 2017). 

With the introduction of the CNN, the feature extractor was included in the training method 

rather than being designed from scratch. This feature extractor consists of some convolution 

layers, which are the main feature extraction layer, and some pooling layers, that help reduce 

the dimensionality of the image. After the features are extracted they enter the classification 

network, which is consisted of Fully Connected Layers. It takes as input the features extracted, 

processes them, and then generates an output. These particular layers will be discussed in the 

next sections in detail. 

 

2.5.1 An Introduction to images 
Images consist of pixels, which are the picture’s elements, and carry information about the color 

of the picture. In a 1920x1080 picture, the total number of pixels is 2.073.600, namely 2.1 

megapixels. Each pixel has a size of eight bits or more and the ability to project millions of 

different colors and contain several channels depending on the colors that the picture has. There 

are 2 types of pictures. 

Firstly there are the grayscale pictures. In these pictures every pixel has only one channel, which 

value ranges from 0, being the total black, to 255, being the total white. This way every pixel 

carries only the information about how high in the grayscale is the color that it represents, thus 

having only one value. A simple example of a greyscale picture is shown in the Figure 2.10 

below.  

 

Figure 2.10: A grayscale image with the representation of the values of each pixel. 

Although if instead of black and white the picture is in full color then the pixels would have 3 

channels if the Red Green Blue (RGB) system is considered. Each channel in this system is a 

grayscale image of the same size as the color image, made just from one of the primary colors 

Red, Green, or Blue. Sounds confusing but let’s suppose a grayscale that ranges from 0 to 255 

and instead of the 0 being the total black it is the total Red or Green or Blue. This way the scale 

of the chosen color is created. Every pixel in fully colored images carries 3 values, ranging 

from 0 to 255 and each one shows how much of the specific color this part of the picture has. 

Then combining these 3 channels a great number of colors can be created. If in the same figure 

(Figure 2.10) there were all the colors of the canvas, considering the RGB color system, then 

the picture would be a two-dimensional vector with each cell holding an RGB triplet. In Deep 

Learning though it is more convenient to consider the picture to be a 3-dimensional vector with 
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each dimension holding a 2-dimensional vector for each color of the RGB system, namely a 

12x16x3 array.  

2.5.2 Convolution Layer 
As the name implies, convolution layers are one of the most vital elements of a CNN. Through 

this layer, new pictures are generated, called feature maps. The features maps are just pictures 

similar to the starting one but they highlight the different unique features of the picture. The 

different feature maps are generated with the help of some filters that convert the picture. These 

filters are called kernels (O' Shea & Nash, 2015). They have small dimensions, usually 3x3 or 

5x5, sometimes 1x1, but their effect is spread throughout the entirety of the input. The values 

of the kernels are trained and changing constantly throughout the training process just like the 

values of the weights in an ANN. That’s because as the input hits the convolution layer the 

scalar product between the input and each kernel is calculated in order for the feature map to 

be generated. In the Figure 2.11 below an example of some feature maps of a handwritten 

number 9 generated by 5x5 kernels is shown. 

 

Figure 2.11: Examples of feature maps for a picture showing a handwritten 9 and the kernels that were used to 

create them. 

A scalar product, or else dot product, is an element-wise multiplication of the filter, kernel, and 

the filter-sized part of the image. These values are then summed in order to result in a single 

value every time. That’s the reason it is called a scalar product. 

 

Figure 2.12: The beginning of the operation. 



33 | Σ ε λ ί δ α  

 

The convolution layer’s operation is difficult to understand, as it involves calculations 

between two-dimensional vectors so a simple example will be shown. Firstly a 6x6 pixel image, 

as in Figure 2.12 with the form of a matrix is considered. A filter with a size of 3x3, the so-

called kernel size, is also assumed. In the convolution process, the filter is multiplied element-

wise with the same size patch of the input image, as shown in the Figure 2.12 below. The results 

of these operations are then added together in order for the single-valued output to be calculated. 

The operation is always starting from the top left corner of the matrix. After the result of this 

part is calculated the filter slides over, as shown in the Figure 2.13, both right and down by a 

number of elements, and does the same computation until the whole matrix is covered.  

 

 

Figure 2.13: The calculations for the filter moving one step right. 

Although when the input image has more than 1 channel, as in case of fully colored pictures, 

the calculation gets more complicated. The extra operation that must be done to get one number, 

as a result, is to apply the convolution operation for each channel and then add all the results 

together. An example is shown in the Figure 2.14 below. 

 

Figure 2.14: The operation for a 3 channeled vector. 

 Stride 

A very significant parameter of the convolution layer’s process is the stride. As 

discussed above, the operation starts from the top left corner and then continues to the rest of 

the picture by a step. The number of elements that the filter slides right to calculate the next 

result is called stride (O' Shea & Nash, 2015). In the previous example, the stride was set to 1. 

Although sometimes the filter can be moved more than one element at a time, skipping the 

intermediate locations (Figure 2.15). 
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Figure 2.15: Example for a stride number different that the default 1.  

Stride numbers different than the default 1 can have a positive effect on the 

computational efficiency of the network and also can be used in order to reduce the size of the 

output image, called downsampling if needed.   

 Padding 

Another way to affect the size of the output is through padding. Padding is a technique 

in which extra pixels are added around the boundaries of the picture, as illustrated in the Figure 

2.16. This might seem not so useful at first thought but let’s discuss its practicality. In general, 

the kernels being used in CNNs have a width and height greater than 1, so after doing some 

consecutive convolutions the result is significantly smaller than the input (O' Shea & Nash, 

2015). For example, an image with 240x240 pixels after 10 convolutions with a kernel size of 

5x5 will end up with 200x200 pixels eliminating any information on the boundaries of the 

image that may be useful. A straightforward solution to this problem is just to add extra pixels 

around the picture so that the effective size of the image increases.  

 

Figure 2.16: Example for padding equal to 1. 
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In CCNs when a kernel size with odd height and width values is used, like 1,3,5,7, then the 

dimensions of the image can stay the same. Some terminologies that are used in padding are 

the following: 

 “valid”, which means no padding  

 “same”, which means that the padding used is calculated so that the output has the same 

dimensions as the input. 

 Mathematical implementation of the Convolution operation 

The convolution function (x*w)(a) is defined as (Equation (2.26)), 

(𝑥 ∗ 𝑤)(𝑎) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝑎)𝑑𝑎 (2.26) 

, where a and t are the parameters of the problem, x is called the input, w is the so-called filters 

or kernels, as mentioned in the above sections, and the output is the feature map or activation. 

 In the above Equation (2.26) though the input and kernel are considered continuous 

functions. Images have a discrete number of pixels so it is useful to consider that the parameter 

t is discrete. So the discrete convolution can be written as (Equation (2.27)), 

(𝑥 ∗ 𝑤)(𝑎) = ∑ 𝑥(𝑡)𝑤(𝑡 − 𝑎)

𝑎

(2.27) 

In machine learning applications, the input is a multidimensional array of data, and the kernel 

is a multidimensional array of parameters. As the w includes the parameters of the network, 

that are finite in number, then the function w(a) is considered to be non-zero only for a finite 

amount of values a (O' Shea & Nash, 2015). This means that the above equation can be 

implemented as a finite sum. In images there is an interest in 2- (Equation (2.28)),or 3-

dimensional convolutions (Equation (2.29)), 

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

(2.28) 

, where I is a 2-dimensional image input and K is a 2-dimensional kernel  

(𝐼 ∗ 𝐾)(𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝐼(𝑚, 𝑛, 𝑙)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑘 − 𝑙)

𝑙𝑛𝑚

(2.29) 

, where I is a 3-dimensional image input and K is a 3-dimensional kernel  

As the Equations (2.26) and (2.27) are commutative, it is true that I*K=K*I, so the 

above Equation (2.28) can be written as (Equation (2.30)), 

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

(2.30) 

 

2.5.3 Pooling Layer 
Convolution or convolutional layers apply some filters or kernels to an input image and 

create a feature map of the summary of these specific features in the image. These layers are 

helpful when they are stacked in a deep neural network. That is because those close to the input 

of the image can imprint low-level features in it, like lines, and the ones deeper in the network 

high-level features, of it, like shapes or even some specific objects.  
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Notwithstanding, convolutional layers do have some limitations. The different feature 

maps produced from these layers record the exact location of the feature in the image. This way 

with the slightest change in the position of a feature, which happens when rotating, shifting, 

and re-cropping, a different feature map will be produced complicating the generalization of 

the model. This problem can be addressed with a method called down sampling. In this method, 

the input image is turned into a lower-resolution one so it keeps all the useful features without 

the fine details that create more of a problem rather than having some use to the task. 

 

The most common method, except for changing the number of strides in the 

convolution, is by adding a pooling layer in the network. Pooling layers aim to reduce the size 

of the image, thus reducing the number of parameters and the computational complexity of the 

model (Kim, 2017). This is achieved by the combination of adjacent pixels of the image to 

create a single value. The pooling layer is usually added after the convolution layer and operates 

over all the feature maps thus creating a new set of feature maps with the same number as the 

starting one.  

In these layers, the selection of the pooling operation is very important. The size of the 

operation must be smaller than the size of the image and is in most cases 2x2 pixels with a 

stride of 2 like in the following Figure 2.17. In the pooling operation 2 functions can be used, 

as shown in the Figure 2.18: 

 Average Pooling, which calculates the mean values of each patch of the feature map. 

 Maximum Pooling (or max), which calculates the maximum values of each patch of 

the feature map. 

Figure 2.17: Pooling operation with a size of 2x2 pixels and stride of 2. 
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Figure 2.18: Illustration of maximum and average pooling. 

The feature map produced from the 2 methods is different, but both of these methods 

are used in applications that can benefit from their advantages. The average pooling method 

smooths out the image so that some sharp features are not identified. Max pooling selects only 

the brighter pixels from the image and the ones that are more important like edges for example, 

so in cases when the background of the image is dark, this function is the one to go for when 

creating a CNN. The other way around when the background is too black min pooling is used, 

but is not that common, so it is not extensively discussed. A simple example in the Figure 2.19 

is shown to pinpoint how differently they affect the image.   

 
Figure 2.19: Effects of maximum and average pooling in an image. 
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2.5.4 Fully connected layers 

In the output of the last pooling layer or the convolution, in case there is no pooling, is 

usually applied a flattening, turning the multilayered array into a single 1-dimensional array of 

numbers. Then it is connected to one or more fully connected layers, which is known also as a 

dense layer, and is simply a feed-forward neural network (Teuwen & Moriakov, 2020), as the 

ones discussed in previous chapters. These layers are usually the last layers of a CNN and every 

neuron of each layer is connected to all the neurons of the next layer with a learnable weight, 

as depicted in the Figure 2.20. The fully connected layers are the ones that map the features that 

are extracted from the previous layers and produce the result of the CNN. Their output nodes 

are usually as many as the number of classes used in the model. Each one of the fully connected 

layers also uses a non-linear function as an activation function like the ones described in the 

Chapter Activation Functions. The output of a fully connected layer is shown in the below 

equation (Equation (2.31)):  

𝐹𝐶(𝑥) = 𝑓(𝑤𝑥 + 𝑏) (2.31) 

, where f is the activation function, w is the weight, x is the input and b is the bias. 

 

2.6 Generalization, overfitting and early stopping 
Training in the CNNs world is called the process of adjusting the kernels of the 

convolution layers and the weights of the fully connected layers in order to minimize the 

difference between the output values and the input values. The topic of training is more 

extensively discussed in the above chapter Network training and error implementation so here 

a general view will again be given.  

Figure 2.20: A representation of a fully connected network. 
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To start with CNN gives some random values to its learnable parameters. During the 

process of training, the network processes the data, which are labeled with their respective class, 

randomly and compares the output values of the class with the ones of the input image. If the 

output differs from the input, which happens more at the beginning of the training, then the 

network makes small adjustments in the learnable parameters in order for the input to match 

the output. A loss function calculates how well the network performs under specific kernels 

and weights through forward propagation and updates these parameters in accordance with the 

loss value with the use of the backpropagation algorithm, which was discussed in the above 

chapters. 

 The training data are processed multiple times by the CNN until sufficient accuracy is 

found or the loss is minimized. Each run of the training data is called epoch. The epochs that 

the data will be processed can be defined by the programmer or, in some cases of more 

advanced programs, the program can be set to stop when the accuracy reaches a max or the loss 

reaches a min. As the network improves epoch by epoch the loss between the input and the 

output becomes smaller and smaller so the adjustments done are decreasing.  

 The goal of the training process of the network is to achieve good performance. The 

network’s performance depends on many variables, some of them being the size of the training 

data and the network. For example, if a large deep network is given a small amount of training 

data then it will be generally easy for it to learn the data. Although keep in mind that the network 

should “memorize” the general trends of the data in order to have good results when facing new 

data outside the training dataset (Bishop, 2006). Supposing the data of the training set have a 

noise, as is in most applications, then if the network accomplishes a very good fit in the data 

the network will have memorized the exact noise of the data and will have a poor performance 

in data not being included in the dataset. Thus for a network to have a good performance on 

new data it must have the required flexibility to learn the trends of the training data and not 

their noise. 

 To better understand the issues of generalization of a network the problem of fitting a 

polynomial curve through a set of data points that have a noise is considered. In the Figure 2.21 

below a cubic polynomial curve and 10 points that have a noise in comparison to the curve are 

depicted. Considering the same equation (Equation (2.6)) as in the Chapter Network training 

and error implementation different numbers for the m are picked to see which fits better for the 

data. If the order m is too low, as in the cases of m=0 and m=1, then the curve produced gives 

an inadequate representation of the trends in the data, so its predictions with new data will be 

poor. If the order is increased to m=3 then, as shown in the Figure 2.21, the curve represents 

the general trends of the data much better. Although if the order is increased too much, as seen 

in the m=9 case in the Figure 2.21, then the problem of overfitting occurs. This means that the 

curve is very exact in representing the data in the training dataset but it has memorized the noise 

of the points and not their trends so it has a poor prediction of new data (Bishop, 1994). 
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Figure 2.21: An example of curve fitting using successively higher-order polynomials.  

The same situation can happen in neural networks. Overfitting is one of the main challenges in 

machine learning as an overfitted model can’t generalize well in new data. A way to check if a 

model is overfitted on the training data is to see the accuracy and loss function of the training 

and compare them to the ones of the validation data (Yamashita et al., 2018). A diagram of a 

model overfitted is illustrated in the Figure 2.22. The loss of the training data is a function that 

is always decreasing as the iterations increase. However, that doesn’t happen always in the loss 

of the validation data, as at some point it starts increasing. That point is where overfitting starts. 

To prevent this more data can be added to the training. Although this is not possible every time 

so the method of early stopping can be applied. In this method, the training is stopped at the 

point where the validation loss has the smallest value. This method is applied also in the 

network used in this thesis.  
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Figure 2.22: A diagram showing the relation between the error function and the number of iterations. 

2.6.1 Training, validation, and test data 
As a mention has been made about training data in the previous chapter, a more general 

discussion of the topic will be done in this section. Data are one of the most crucial components 

when creating a neural network. After having already created the network the next step is to 

collect the necessary data that the network will be trained on. This step is very important to the 

network although obtaining the right number of high-quality images as data is very time-

consuming.  

The total number of data collected is split into 3 sets usually. A training set is used to 

train the model and consists of pairs of an input vector and its corresponding output vector also 

called label. The loss is calculated using forward propagation comparing the output values of 

the network and the labels for each training data, then the learnable parameters are changed 

using backpropagation. A validation set is separated from the training model and is used for the 

already fitted model to predict the responses (Yamashita et al., 2018). This dataset provides an 

evaluation of the model while tuning the hyperparameters. Validation datasets are also used for 

regularization using early stopping. A test set is used, normally containing data not included in 

the training dataset, in the final model, as the training has ended to evaluate its performance. A 

normal ratio of training:validation data is 90:10 or 80:20, while the test data can be of any 

number as it doesn’t affect the training. 

 

2.7 Object Detection 
The main fields in computer vision that interest the researchers are 3: image 

classification, image localization, and image detection. These different methods can be seen in 

the Figure 2.23 below. The potential and challenges of these tasks with the parallel 

incorporation of deep convolutional neural networks to the field of computer vision gave the 

spark for the immense increase in the work being done in the fields.  

In image classification the main goal is to determine if there is an object in the image, 

turning a picture into a label. For example in image classification from a set of images with 

dogs and cats the ones that have a dog can be separated from the ones having a cat. However, 

the location of the different objects in the picture is still unknown. So here comes image 

localization to point out this position. 
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Although if in a picture there is more than one object, a cat and a dog, then with this 

method it can’t be defined where this will be categorized with the methods above. This problem 

is solved with object detection, where in each picture not only the label of a single object can 

be found but also the presence of other objects of different labels or more objects of the same 

label. For example, in the Figure 2.23 below both the 2 cats, the duck, and the dog is found, 

labeled and their location is pointed out. Object detection is considered the first process in 

computer vision, having many applications in security systems, human detection, robotics, 

product detection, and so on. 

 

Figure 2.23: Illustration of the main fields of computer vision 

 

People can learn things in many ways, as from their experience. Although for a machine 

to learn the different tasks it must be trained. The more proper the training is the better and 

faster the response of the system will be (Bhagya & Prof. Shyna, 2019). In the case of object 

detection, the training is done by training a classifier that can obtain even the slightest difference 

in the objects. In the input of this classifier, some areas are presented. These proposals, as they 

are called, have a significant role in the method and if they are improper they can have a 

negative effect on the output of the system. Thus these proposals are determined by deep neural 

networks. 

 

2.7.1 Applications of Object Detection 
Object detection is currently a very trending area of interest as the applications in real life are 

just endless (Kamate & Yilmazer, 2015).  Some common applications are the following: 

A. Face Detection and Face Recognition 

This is one of the most popular applications and is mostly used by social media for detecting 

faces in an image (Albiol et al., 2001). The convolutional neural networks have a significant 

role in spotting the faces, extracting the facial details, and returning the output. In 

smartphones face recognition is used for unlocking the phone and face detection for 

recognizing the presence of a face when taking a picture. Also, banks, vaults, and other 

high-security places use face recognition when entering an area. Finally, in airports, retail 

stores, stadiums, and other facilities face recognition is used to prevent violence  (Kamate 

& Yilmazer, 2015). 

B. Security and Surveillance 
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Taking into consideration the rise of criminality levels in today's society this application 

can be very useful for detecting intruders or even explosives in a remote facility or a house. 

Furthermore, anomaly detection is a field that businesses spend a lot of money on so a quick 

and accurate program is needed (Kmieć & Glowacz, 2015). 

C. Robotics 

Robotics is the most obvious of the applications that object detection can be useful. For the 

robots to quickly respond to environmental changes they must be provided with a fast and 

accurate visual image processor and object detection is usually the first step in achieving 

this goal (Lu et al., 2017). 

D. Object Tracking and Counting 

Object detection can be used when tracking some objects like the ball in football games or 

the movement of a person in a video camera and so it can be used in security systems 

too(Kamate & Yilmazer, 2015). Apart from that, it is applied in traffic monitoring, 

animation, video communication, robots, and so on (YuanQiang et al., 2020). 

E. Self-Driving Vehicles 

Last but not least the more modern application of object detection is in self-driving vehicles. 

For the vehicle, mainly speaking about cars, to accelerate, brake, or turn, it must know all 

the objects that are in its vicinity and what they are. These objects are cars, pedestrians, 

animals, traffic lights, signs, trees, and so on. To make a good and fast decision the 

convolutional network must be fast and effective or else it won’t have time to react. 

Although except cars nowadays research is being done in order for the ships to be made 

autonomous. The new fashion has already started but is not yet generalized (Naghavi et al., 

2017).  

 

2.7.2 Techniques employed in Object Detection 

 Sliding Window 

The most common and easy method being used in object detection is the sliding 

window method (Vedaldi et al., 2009). The first to create a face detector using this method was 

Viola and Jones in 2001 (Viola & Jones, 2001) and then in the next years, more progress is 

done on the topic with the works of Dalal and Triggs with the Histogram of Gradient Detector 

in 2005 (Dalal & Triggs, 2005) and Felzenswalb in 2010, who did an object detection system 

that represents highly variable objects using mixtures of multiscale deformable part models 

(Felzenszwalb et al., 2010). In the sliding window method, a rectangle is created, with respect 

to the object that is searched in the image, and then the rectangle scans the whole image starting 

from the top left corner and moving to the right. The box is usually much smaller than the image 

and it is enlarged every time it scans the picture by a standard value. This procedure is done 

continuously until a certain condition is reached. It is obvious that with this method the number 

of windows created for a single object will be very high and also the windows that have to be 

taken into consideration in order to find all, or at least the majority, of the objects in the picture, 

is massive. Thus this method is considered to be very computationally expensive as well as 

giving inaccurate bounding boxes for the objects.  
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 Regional Convolutional Neural Networks (R-CNN) 

 

In 2013 R. Girshick tried to solve the problems of the sliding window method by 

presenting his new method for object detection called Regional Convolutional Neural Networks 

(R-CNN) (Girshick et al., 2014). To limit the number of windows produced by the program, 

this method chooses only some regions that are more important for the CNN to run on. The 

regions that are proposed for the CNN are extracted with the selective search algorithm 

(Uijlings et al., 2013). Selective search is an algorithm that takes as an input the image segments 

it, depending on similarity, and returns some regional proposals. In contrast with the sliding 

window method these regions are less in number and produce a higher recall. The processes of 

this method are visualized in the Figure 2.24. Despite that in R-CNN the regions proposed are 

reduced, the method as a whole has some disadvantages. The selective search algorithm is very 

rigid and it can’t learn from the images input so the proposals are sometimes incorrect. It also 

takes a lot of time to train and the training has many stages. Thus it is very slow to detect and 

can’t be used in real-time applications as it takes 50 seconds approximately to compute an 

image. 

 Spatial Pyramid Pooling Network (SPP-Net) 

 

Figure 2.24: R-CNN architecture. 

Figure 2.25: SPP-net Architecture with a more explanatory way of how the spatial pyramid pooling layer work. 



45 | Σ ε λ ί δ α  

 

Later in 2015 Kaiming He proposed another method for pooling called Spatial Pyramid 

Pooling (SPP) and a network based on this method called Spatial Pyramid Pooling-Network 

(SPP-Net) (He et al., 2015). CNNs in general can’t accept images of varied sizes as the fully 

connected layers have as input fixed-sized images. If the images are of size larger or smaller 

than the ones that the fully connected layers want they are reshaped to reach the desired size, 

thus losing some important features. This problem is solved with SPP-net. Firstly the feature 

maps of the input image are generated, using a number of Convolutional layers. Those feature 

maps can then pass through the SPP pooling layer. The SPP pooling window and stride are 

relative to the input image so that a fixed-sized output is created. Furthermore, these layers 

apply a couple of different output-sized pooling operations and then combine them all in order 

to continue in the next layer, the fully connected as illustrated in the Figure 2.25. SPP-Net is 

considered to be faster than R-CNN as the only time-consuming part is the CNN, although they 

lack accuracy for very deep neural networks.  

 Fast Regional Convolutional Neural Networks (Fast R-CNN) 

 Later in 2015 Girshick (Girshick, 2015) came up with the idea of a new model, called 

Fast R-CNN, which purpose was to overcome the problems that occurred in R-CNN and SPP-

Net. The approach is very similar to the R-CNN method but instead of passing all the proposed 

regions to the CNN, the image is considered as an input in order to create the regions of interest. 

The proposals are then concatenated and, with the use of a Region of Interest (RoI) pooling 

layer, feature vectors with a fixed size are created and inserted into the Fully Connected Layers. 

After that, a softmax layer is used to predict the class of the proposed region and its bounding 

box. The whole process is depicted in the Figure 2.26 below. This method is considered to be 

faster than the former R-CNN as it doesn’t make a massive amount of region proposals in the 

CNN and also gives a higher quality object detection than SPP-Net and R-CNN. 

 

Figure 2.26: A representation of the Fast R-CNN model. 
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 Faster Regional Convolutional Neural Networks (Faster R-CNN)  

 

Both R-CNN and Fast R-CNN have high computational speed due to the use of 

selective search algorithm to find the region proposals, as this algorithm is slow and time-

consuming. For this exact reason, Shaoqing Ren (Ren et al., 2016) managed to create a model 

that is faster than both the previous ones and so called it Faster R-CNN. As in the Fast R-CNN, 

the whole image is passed through the CNN and a convolutional feature map is created. 

Although instead of using the selective search algorithm to produce the region proposals he 

assigned a separate region proposal network to do this exact process. Then the candidates are 

reshaped, with a RoI pooling layer and passed to a Fully Connected Layer for classification. 

The architecture is illustrated in the Figure 2.27. Even though this model is known for its speed 

it faced some challenges regarding the accuracy of the bounding boxes that were outputted. 

 You Only Look Once (YOLO) 

All the algorithms that were presented above perform two-stage object detection. With 

these methods, object detection is divided into 2 stages. The first one is the detection of all the 

regions that have a higher probability to contain an object, and then the classification of the 

image takes into consideration the regions proposed in the previous step. Therefore these 

networks don’t process all the image but only a piece of it. YOLO algorithm is much different 

than the ones above as a single CNN predicts the bounding boxes and the probabilities of each 

one.  

YOLO was created in 2016 by J. Redmon (Redmon et al., 2016) in order to limit the 

error of the bounding boxes of the previous method. The idea behind YOLO is to split the image 

into an SxS grid. For each grid cell, the network does the classification and detection outputting 

a class probability and the values of the bounding box. The cell that has the center of the 

bounding box for a specific object is the one that is responsible for the object. The bounding 

boxes that have a probability score above a threshold are the ones that are picked by the network 

and used to find the objects in the image. This method has high speed and high accuracy, with 

less background loss that the other methods so it can easily be used in real time applications. 

Although it can’t easily detect multiple objects in a single cell and sometimes it might detect 

an object twice. Although there are methods that are used to reduce these problems of YOLO. 

Figure 2.27: Faster R-CNN Architecture 
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To understand the way YOLO works, the most significant terminologies used in the 

algorithms perceptive will be analyzed.  

Bounding box 

 YOLO algorithm predicts the bounding boxes for all the objects that lie in the image 

and the class to that they belong. The name bounding box refers to a rectangular box that 

contains an object in it. Each bounding box can be defined with 4 descriptors. Its center, bx and 

by, its width bw, its height bh, and the number c that corresponds to its class. A class is every 

type of object that is considered in the problem. For example, in autonomous cars, the classes 

are cars, trees, pedestrians, animals, and so on. Each class comes with a probability, pc, showing 

how probable is an object being in the bounding box. An example of a bounding box is 

presented in the Figure 2.28 below. Each cell predicts B bounding boxes that consist of 5 

parameters and the class probabilities for the C classes. Taking into consideration the SxS grid, 

the total output of model parameters of the YOLO will be S*S*(5*B+C).  

 

Figure 2.28: Illustration of a bounding box. 

As is already discussed YOLO doesn’t search the image for a specific region of high 

importance, but instead, it splits the image into cells and each cell is responsible for a number 

of bounding boxes. Being responsible for a bounding box means that the center of the bounding 

box lies in the cell. That is the reason that the coordinates of the center of the bounding box are 

relative to the responsible cell. The weight and the height on the other hand are relative to the 

whole image.  

The architecture of the YOLOv1 (Redmon et al., 2016) uses the architecture of Darknet 

that processes all the features extracted and is followed by 2 fully connected layers that make 

the predictions of the bounding boxes. The author uses grid S=7, B=2 bounding boxes, and 20 

classes C=20, so the output is of dimensions S*S*(5*B+C)=7*7*30. The architecture is shown 

below in the Figure 2.29. 
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Figure 2.29: YOLOv1Architecture.  

Intersection over Union (IoU) 

The problem that emerges here is that the number of bounding boxes for each class will 

be very high when the program needs only one. To eliminate the bounding boxes that are less 

representative of the object, the Intersection over Union (IoU) method is used (Zhu et al., 2020). 

In this method, all the bounding boxes that were created are compared to the correct bounding 

box in the training set, called ground truth. From that comparison, 2 areas will be outputted. 

The area where the 2 bounding boxes intersect and the union area. The intersection area is 

divided by the union area and the IoU number is calculated, as illustrated in the following Figure 

2.30 where the B2 is the predicted bounding box and the B1 is the ground truth. If the IoU is 0 

then the 2 bounding boxes don’t intersect and if it is 1 then the prediction is perfect. Although 

IoU number of 1 is never reached in practice. To have a way to tell whether a bounding box is 

good enough the ones that have an IoU greater than 0.5 are considered descent, the ones greater 

than 0.7 are considered pretty good and the ones with IoU greater than 0.9 are considered almost 

perfect Let’s specify that this operation is done for the bounding boxes of a single class and is 

done for all the classes. After all the IoUs are calculated the bounding boxes that have an IoU 

number lower than a threshold, determined by the programmer, are discarded. This way the 

number of bounding boxes is significantly reduced.  

 

Figure 2.30: Calculation of IoU number. 

Non-max Suppression 

Even though the above method reduces the number of bounding boxes that refer to a 

certain class, the algorithm in the end has to output only one bounding box for an object. This 

is where Non-Max Suppression comes out. Non-max suppression is a method used to eliminate 

all the bounding boxes that predict the same object. This is done by firstly taking the bounding 

box that has the higher probability and this is then compared with the other bounding boxes of 

the same class. The IoU number between the 2 bounding boxes is calculated and the boxes that 
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have an IoU number higher than a threshold are discarded. In the following figure (Figure 2.31) 

after the IoU is applied, there are 3 bounding boxes left that represent the same object. After 

applying the Non-max Suppression there is only one left as the others have an IoU, with the 

one with the highest probability score, higher than a threshold.   

 

Figure 2.31: Non-max suppression 

Let’s now summarize the way YOLO classifies which bounding box corresponds better 

for the objects. The network predicts some bounding boxes. The ones that have a probability 

score lower than a threshold are discarded. Then the ones whose IoU, with the correct bounding 

box from the training set, is lower than a threshold are discarded. Lastly, the ones that have an 

IoU, with the predicted bounding box of the highest probability, higher than a threshold are 

also discarded and there is only one bounding box left that corresponds to the object.  

 Single Shot MultiBox Detector (SSD) and Region-based Fully 

Convolutional Network (RFCN) 

In order to overcome the problems of YOLO Angelov D. (Liu et al., 2016) proposed 

the single-shot mutlibox detector, or SSD, that could detect objects of different scales. These 

objects could be predicted as boxes of different scales are passed to the different layers of the 

CNN, so every layer could predict objects of different scales. Although it worked well on bigger 

objects it didn’t predict smaller objects that well, as it didn’t produce higher-level features. The 

architecture of this method is presented in the following Figure 2.32. 

 

Figure 2.32: SSD architecture 

 Also in 2016, a Region-based Fully Convolutional Network was proposed by Jifeng 

Dai (Dai et al., 2016). For it to overcome the problems of SSD and to improve accuracy in 

general it shared the results, so it was better than RCNN and fast RCNN even though it used 

them as a base architecture. It made training simpler, reducing complexity and also increasing 

accuracy. Its architecture is shown below. 
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Figure 2.33: RFCN architecture 

 

2.7.3 YOLO Versions 
 Until now the discussion on YOLO pertained to the release version of the algorithm, 

version 1. Although, today 5 versions of the YOLO algorithm have been released. Each version 

was just an upgrade of the previous one as it used the most modern and advanced ideas from 

the computer vision research community. Except for adding new ideas to the model, the old 

ones that were not performing so well were removed in order to reach the best accuracy and 

speed possible. This way YOLO is one of the best algorithms for object detection. Before using 

the YOLOv5 model, it seems necessary that a representation of the older version must be done 

and especially in the new ideas that were introduced in them. 

 YOLOv2 

YOLOv2 was released in 2016 by Joseph Redmon and Ali Fahradi (Redmon & 

Farhadi, 2016), the creators of the YOLOv1. It was named 9000 in the original article, which 

name was given because it could predict over 9000 different objects and still run in real-time. 

The different features introduced here are mentioned below. 

Batch Normalization 

 Batch normalization is a very common technique for deep neural networks that helps 

in accelerating the training and making it more steady by stabilizing the spread of the input 

layers. This idea normalizes the features, outputted from each layer, with the empirical mean 

and variance of each mini-batch being: 

𝜇 =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

  𝑎𝑛𝑑    𝜎2 =
1

𝑚
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𝑚
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(3.32) 

Each layer's dimension, represented with k, is normalized separately: 
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− 𝜇(𝑘)

√𝜎(𝑘)2
+ 휀

(3.33)
 

, where ε is added for numerical stability. The result has a mean of 0 and a variance of 1 if the 

ε is not taken into account. To restore that, the following transformation is introduced: 
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, where γ and β are parameters that are learned in the optimization process. 

 With the use of batch normalization, the training time is reduced, and also the mean 

Average Precision (mAP), which is a metric that will be discussed in the following chapter, 

increased by 2% according to the authors (Redmon & Farhadi, 2016).  

High-Resolution Classifier 

In version 1 the 20 first convolutional layers were trained on the 224x224 image and 

the feature extraction was done. Then the 4 extra convolutional layers and the 2 fully connected 

were trained on the 448x448 image. The thing that changed is that after the 20 first layers were 

trained with the 224x224 image the training continued for 10 more epochs in the 448x448 

image. This way the transition was better and the overall accuracy in mAP increased by 4%. 

Convolutional with anchor boxes 

YOLOv1 uses a grid cell to be responsible for a bounding box. Although this way a 

grid cell can’t be assigned to 2 bounding boxes if 2 objects are centered in the same cell. To 

solve this problem, in YOLOv2 the concept of anchor boxes was introduced. An anchor box is 

a list of boxes that match the objects. The bounding boxes were predicted not only from the 

ground truths, as in version 1, but also from the anchor boxes. 

YOLOv1 also didn’t restrict the bounding boxes that it predicted, so when the 

parameters are set in the initial step randomly then the boxes can be located away from the 

desired object. In YOLOv2 the sigmoid function was used to restrict the center of the bounding 

box between 0 and 1, which helped to locate the bounding box around the grid cell. An image 

representation is depicted in the Figure 2.34 below, where the sigmoid function is used to 

restrict the center of the bounding box. pw and ph are the height and the width of the bounding 

box. cx and cy are the offset position of the grid cell from the top left corner. 

 

Figure 2.34: Representation of anchor boxes 
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Since the bounding boxes' positions were restricted close to the grid cell where the object was 

the parameters were easier to be learned and so the impact to mAP was big, 5% (Redmon & 

Farhadi, 2016). 

 YOLOv3 

The version that changed the architecture of YOLO was released in 2018 by Joseph 

Redmon and Ali Fahradi (Redmon & Farhadi, 2018). The different features that changed are 

listed below. 

Darknet-53 and ResNet 

YOLOv2, even though it increased the number of layers from 19 of YOLOv1 to 30, 

some features were lost as the image was downscaled passing through the network. For this 

problem, ResNet introduced a way of skipping some connections to reduce the vanishing 

features. 

 

Figure 2.35: ResNet's architecture of skipping connections. 

Using this feature and also combining YOLOv2 and DarkNet-53, the YOLOv3 

architecture was created using a bottleneck architecture of 1x1 followed by a 3x3 convolutional 

network in each residual block. 

YOLOv3 used DarkNet-53 which had 53 layers in the beginning, as in Figure 2.36. 

Although after that another 53 layers were added so a 106-layered network was created.  
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Figure 2.36: YOLOv3 architecture 

Multi-scale detector 

In YOLOv2 the input image is firstly trained on the DarkNet and the features are 

extracted. Then it goes to some more layers and lastly the prediction is done in the last layer, 

the object detector. In YOLOv3 the prediction layers are appended and 3 feature vectors are 

created, which are forwarded to the detector, instead of stacking the prediction layer in the last 

layer (Redmon & Farhadi, 2018). The architecture of the network is shown in the Figure 2.37 

below. 

The 3 different detections are done in the 79, 91, and 103 layers where the first has a 

grid of 13x13, the second 26x26, and the third 52x52. Using these 3 detections helps in 

detecting the different-sized objects in the image. The higher-sized feature maps, 52x52, are 

more detailed and are used in detecting the smaller object and the 13x13 is used to detect the 

larger ones. By concatenating layers that are closer to the start of the network with the ones that 

have already passed through some layers of the network the fine-grained features from the 

previous layers don’t vanish which helps in detecting small objects. In the Figure 2.37, a 

concatenation is done before the 91st layer is reached with the 61 and one before the 103rd 

layer is reached with the 36th layer.  
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Figure 2.37: YOLOv3 network architecture 

 

 YOLOv4 

The fourth version of YOLO was introduced by Alexey Bochkovskiy, Chien-Yao 

Wang, and Hong-Yuan Mark Liao in 2020 (Bochkovskiy et al., 2020) after Joseph Redmon 

stopped working in the field of computer vision. This version of YOLO is considered to be the 

continuation of the YOLO family even though it was created by different scientists. The 

different features represented in this version are discussed below. 

By the time YOLOv4 was introduced many other object detection algorithms had 

achieved remarkable results. These algorithms had a common point that the input is firstly 

passed through the backbone, which is the feature extractor, and compress. Then the features 

are aggregated and mixed in the Detection Neck, or simple Neck, to prepare for the detection 

done in the Detection Head. 

Backbone 

In the backbone of the model the CSP Darknet53, CSP stands for Cross Stage Partial, 

was used. This network consists of k dense layer, where the output of each dense layer is 

concatenated with its input and then becomes the input for the next layer and the last layer goes 

to a transition layer where convolution and pooling are done. The only peculiarity is that the 

input feature map is separated into 2 different pieces where one passes through the dense layers 

and the other is concatenated in the end at the partial transition layer, as illustrated in the Figure 

2.38 below. 

With the use of CSP Darknet53 in YOLOv3, the residual blocks were removed and in 

their place, dense layers were placed. With the help of CSP, the model maintained some fine-

grained features and also reused some other features making the learning easier for the model.  
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Figure 2.38: Cross Stage Partial DenseNet  

 

Neck 

New SPP Block 

After the Dense layers, the feature maps have to go through an additional block called 

Spatial Pyramid Pooling (SPP) block in order to separate the most important features. SPP was 

discussed before in the 2.7.2.3 section and the architecture here is the same but as the fully 

connected layers have been removed from YOLOv2 turning the feature maps into a one-

dimensional vector wasn’t useful. So the new SPP concatenates the features into feature maps 

of size 𝑠𝑖𝑧𝑒𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 ∗ 𝑠𝑖𝑧𝑒𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 ∗ 512, after a 3-scale max pooling, and also keeps 

and includes the input feature map to the output feature map to keep all the information needed 

(Bochkovskiy et al., 2020). A representation of the new SPP is depicted in the Figure 2.39.  

 

Figure 2.39: The new SPP block used in YOLOv4 
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 Feature Aggregation with PANet 

As the input image goes through the model semantic features are produced. These 

features are becoming more and more complex as the network goes deeper and also their 

resolution is decreased so some important information might be lost in the process. So to resolve 

this the Path Aggregation Network (PAN) was introduced (Bochkovskiy et al., 2020). This 

network is an advanced Feature Pyramid Network (FPN), in which method the semantic 

features are transferred through a top-down path, and then they are concatenated with the fine-

grained features of the low-level layers to better predict smaller objects.  

 

Figure 2.40: PANet architecture (a) FPN backbone, (b) augmentation path, (c) feature pooling 

The PAN used in YOLOv4 had an FPN backbone followed by a bottom-up 

augmentation path that connected the fine-grained features with the semantic features of the 

high-level layer quicker, without having to pass through 100 layers of the backbone of the 

model, thus creating a shortcut (Figure 2.40). This bottom-up augmentation path is identical to 

the FPN with each layer creating feature maps of the same size. The different features produced 

from the layers are added in the normal PAN but in the YOLOv4 version of it, they are 

concatenated (Figure 2.41). 

 

Figure 2.41:(a) original PAN, (b) YOLO v4 version 
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Head 

The head is where all the predictions are done and vectors that contain all the bounding 

boxes’ coordinates, the confidence scores, and class probabilities are produced. In the case of 

YOLOv4, the head of the algorithm was kept the same as the YOLOv3. 

 

 YOLOv5 

Yolov5 was released one month later from YOLOv4 by the researcher Glenn Jocher, 

who is the CEO of Ultralytics LLC. The creator of YOLOv5 didn’t post a paper with the 

advancements of YOLOv5, but only posted a repository on GitHub (Redmon, 2020). Ultralytics 

managed to implement the YOLOv5 in PyTorch, which is the most famous framework in deep 

learning and is written in Python language. 

As versions 4 and 5 were released in a very short period of time, only one month 

(March-April 2020) there are not many differences between the 2 as both of them used the 

methods that were the most efficient at the time. However, YOLOv5 has some advantages 

compared to previous versions. Firstly it is written, as mentioned, in Python which is easier to 

install and integrate on devices, instead of C of the previous ones. Furthermore, it has high 

accuracy and fast speed, reaching 140 frames per second. Moreover, YOLOv5 is much smaller 

compared toYOLOv4, it is 90% smaller in fact, which makes it suitable for every device used 

in object detection. Further explanation of the architecture of the network will be done in the 

next chapter. 

Adaptive anchor boxes 

 YOLOv5 architecture, as in all the previous versions, has included all the most recent 

techniques in the computer vision field. In this algorithm, as it was implemented during the 

same period as the YOLOv4, there are not so many noticeable differences in the methods used.  

One point to mention is the adaptable anchor boxes. In YOLOv2 the anchor boxes were 

extracted by using the k-means clustering algorithm to pick the 5 best anchor boxes for each 

class from the COCO dataset and use them as a default. Although when these anchor boxes are 

applied in a unique dataset that doesn’t contain the same classes as the COCO dataset then the 

adaptation of the anchor boxes to match the ground truths is slow. So Joseph Redmon proposed 

to run the k-means algorithm in the unique dataset and find the best anchor boxes for this set. 

This way the program automatically learns the best anchor boxes for the specific applications 

and uses them in the training (Solawetz, 2020). 
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3 Methods 

3.1 YOLOv5s Architecture 
YOLOv5 network is the latest version of YOLO algorithm and it was created only 2 

years ago, in 2020. It contains 4 different architectures, named YOLOv5s, YOLOv5m, 

YOLOv5l, and YOLOv5x. The difference between them is the amount of feature extraction 

modules and the size of convolution kernels used in the model. The size of the network and the 

parameters in these different networks increase as the network gets larger. In the small version 

the size and the parameters are 14 MB and 7.2 million respectively, in the medium it is 41 MB 

and 21.2 million, in the large 89 MB and 45.6 million, and lastly, in the extra-large, it is 166 

MB and 86.7 million.  

Since the problem considered in this thesis has a small number of classes and images 

for each class the YOLOv5s model was used in the implementation. Also, it is fast, accurate, 

and takes up the least space in the device, so it was considered a perfect candidate for this thesis.  

YOLOv5s consists of 3 components: backbone, neck, and detect network. The 

backbone consists of 16 modules, 1 focus, 4 convolutional layers, 8 bottleneckCSP, and 1 SPP.  

The first block is the Focus. Here the input 3 channel image, which is in default of size 

3x640x640, is divided into 4 slices with a size of 3x320x320 each, to accelerate the training 

reducing the calculations of the model. Then these slices are concatenated with a concat layer 

and forwarded to a convolution layer with 32 kernels (Yan et al., 2021). The feature map created 

has a size of 32x320x320 which goes through a BN, Batch Normalization, with a Hardswish 

activation function, see 3.1.1, and continues onto the next block, Figure 3.1. 

 

Figure 3.1: Structure of Focus Block 

The next block that needs to be explained is the third in the row and is the 

BottleneckCSP block. This block is more complex as it contains another block inside of it. This 

block is the Bottleneck that connects a convolution layer of kernel size 1x1, with a BN and a 

Hardswish activation function, with another of size 3x3. Then the feature map produced by 

these 2 layers is added to the input feature map of the block, Figure 3.2. 
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Figure 3.2: Architecture of the Bottleneck block 

 The input of the BottleneckCSP block is firstly input to 2 different paths. The first 

passes through a convolution layer, of kernel size 1x1 and a BN with Hardswish. Then it is 

input in a convolution layer, of size 1x1, after it is output from the bottleneck block. The second 

feature map passes through the shortcut and then these two feature maps are connected by a 

concat layer and the output is produced after it passed through the BN with LeakyReLU 

activation function and a convolution layer (Figure 3.3). 

 

Figure 3.3: Structure of BottleneckCSP block 

The ninth block of the Backbone is the Spatial Pyramid Pooling, SPP. As it has been 

discussed the SPP has a purpose to convert the feature maps into a vector of fixed size, which 

is of size 512x20x20 for the current model. The feature map passes through a kernel size 1x1 

convolutional layer, with a BN and Hardswish, and then it is input into 3 max-pooling layers 

of size 5x5, 9x9, and 13x13 (Yan et al., 2021). Then the output is concatenated with the output 

of the BN and Hardswish layer. Lastly, as it goes through a convolutional layer, with kernel 

size 1x1 and BN and Hardswish, the result is produced (Figure 3.4). 
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Figure 3.4: SPP block architecture 

The neck network of the model mainly consists of feature aggregation layers. The 

feature maps produced in the neck are combined with several of the backbone but also from the 

ones created in the neck. It uses many Feature Pyramid Networks, FPN, which were explained 

in the section 2.7.3.3. This way the fine-grained features are kept and the detection of features 

of different scales is enhanced (Yan et al., 2021). Upscale blocks increase the scale of the 

feature map in order to match the one that is connected within the concat layer.  

The detect network is where the final detection is done. There, anchor boxes are applied 

to the feature map of the previous layer and the output of the whole network is produced. The 

output contains the position and size of the bounding boxes, the class predictions, and the 

probability. There are 3 detect layers for the network to be able to easier detect objects of 

different sizes. The input of these layers is feature maps of sizes 20x20, 40x40, and 80x80 

respectively. Each detect layer outputs a 24-channel vector in the specific application, that 

consists of 3 classes, 1 class probability, and 4 bounding box coordinates. These 8 numbers are 

for each anchor box. Taking into consideration that the anchor boxes produced in YOLOv5s 

are 3 then the number of channels in the output vector is 24. Lastly, the bounding boxes in the 

image are generated and labeled. An overview of the network is illustrated in the Figure 3.5 

below. 
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Figure 3.5:YOLOv5s Architecture 

3.1.1 Hardswish activation function 
The Hardswish activation function is a function that applies the Hardswish 

transformation (Pytorch): 

𝐻𝑎𝑟𝑑𝑠𝑤𝑖𝑠ℎ(𝑥) = {

0                      𝑖𝑓 𝑥 ≤ −3
𝑥                     𝑖𝑓 𝑥 ≥ +3
𝑥 ∗ (𝑥 + 3)

6
  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This function is based on Swish activation function,𝑓(𝑥) = 𝑥 ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥), but 

replaces the computationally expensive sigmoid function with a linear analog. The swish 

function is a smooth, non-monotonic, function that matches or outperforms ReLU applications 

of deep neural networks such as image classification. In general, swish is better than ReLU for 

networks with more than 40 layers and on every batch size. Hardswish managed not only to 

keep all the advantages of the Swish activation function but also to require fewer computations 

as it removed the sigmoid function. 

3.1.2 Metrics 
In object detection, the main purpose is to detect all the objects in the image that they 

are presented with. They do so by placing bounding boxes around the objects. Bounding boxes 
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have 3 attributes: the location of the center of and the dimensions of the bounding box, the 

object class, and the probability score which is how confident the algorithm is of the prediction 

with values from 0 to 1. There are 2 different sets of bounding boxes: 

 A set of ground truth bounding boxes, which are the ones given to the model in the 

training dataset, 

 A set of predicted bounding boxes, which are the ones that the object outputs as his 

predictions. 

Now the main metrics of the model will be presented in order to better understand the 

results that follow. 

 Precision and Recall 

It is obvious that not every bounding box that the model predicted is correct. Let’s start 

by classifying the bounding boxes. Each of them can be categorized in one of the following 

categories: 

 True Positive (TP), which is a correct prediction of a ground truth bounding box. 

 False Positive (FP), which is an incorrect detection of a non-existing object or a 

misplaced detection of an existing object. 

 True Negative (TN), which is a non-existing bounding box that was not predicted. 

 False Negative (FN), which is a ground truth bounding box that was not detected. 

In object detection, the TN bounding boxes are not used as there are many bounding 

boxes that should not be predicted in an image.  Correct and incorrect predictions are 

classified by the IoU that was introduced in Chapter 2.7.2.6. After the classification is done the 

Precision and Recall can be calculated. 

Precision (P) is the ability of the model to predict only relevant objects and is the 

percentage of the correct predictions. Recall (R) is the ability of the model to predict all the 

ground truth bounding boxes and is the percentage of the correct prediction among the ground 

truth bounding boxes (Padilla et al., 2020). These metrics are defined as, 

𝑃 =
∑ 𝑇𝑃

∑ 𝑇𝑃 + ∑ 𝐹𝑃
=

∑ 𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

𝑅 =
∑ 𝑇𝑃

∑ 𝑇𝑃 + ∑ 𝐹𝑁
=

∑ 𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 

 

 Average Precision 

As discussed before, the confidence level is taken into consideration when calculating 

Precision and Recall. The predictions that have a confidence score higher than the confidence 

threshold, with value t, can be considered positive, and respectively the ones with a lower score 

negative. Both TP and FP decrease as t increases, so fewer detections pass the threshold. On 

the contrary, FN will increase as more detections will be less than the threshold. However the 

number of all ground truths, ∑ 𝑇𝑃 + ∑ 𝐹𝑁, will stay the same as t alters. Thus R is a decreasing 

function of t, but for the P nothing can’t be said as both the numerator and denominator are 

decreasing as t increases. It becomes obvious that the graph of Precision and Recall has a zig-

zag form (Padilla et al., 2021).  

A good object detector should find all the ground truths, namely FΝ=0 which means 

high recall, while finding all the relative objects, FP=0 which means high precision. Therefore 

an object detector is good if the recall and precision remain high as the t decreases. High recall 



63 | Σ ε λ ί δ α  

 

and precision are indicated by a large area under the curve (AUC). Although this area is difficult 

to calculate as it is not monotonic, as described above, having a zig-zag form. To eliminate this 

problem the data are preprocessed. The Average Precision, AP, is the area under the curve of 

those preprocessed data.  

 

Figure 3.6: Detections are ranked depending on their confidence score and the way precision and recall are 

calculated for each. 

Firstly, to compute the AP the predicted bounding boxes are ranked according to their 

confidence scores, from the highest to the lowest and then the recall and precision for all the 

predictions are calculated. An example of these processes for the P and R is shown below 

(Padilla et al., 2020)Figure 3.6: Detections are ranked depending on their confidence score and 

the way precision and recall are calculated for each. (Figure 3.6). After that, the AP can be 

calculated by the below Equation 3.1, 

𝐴𝑃 = ∑(𝑅𝑛+1 − 𝑅𝑛) ∗ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅𝑛+1)

𝑛

(3.1) 

, where 

𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅𝑛+1) = max
�̃�:�̃�≥𝑅𝑛+1

𝑃(�̃�) (3.2) 

 

Figure 3.7: Precision-Recall Curve before applying the preprocessed data. 

 In this method, AP is calculated using the maximum precision values whose recall 

value is greater than Rn+1 or equal to it. Considering the above example the AP should be the 

area below the curve of the Figure 3.7, 𝐴𝑃 =
1

3
+

(
2

3
+

1

2
)∗

1

3

2
+

(
3

4
+

2

3
)∗

1

3

2
≈ 0.764. Although after 

applying the Equations 3.1 and 3.2 the Precision and Recall curve turns into the one displayed 

in Figure 3.8 in gold color. The Precision values taken were only 2, for the first two recalls the 

value of precision was 1 as it was the maximum of 1 and 1/2. Then for the other values, the 
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precision value was 3/4, as it was the maximum between 2/3 and 3/4 and also the maximum of 

3/4 and 3/5. So finally the value for AP is 0.833.  

 

 

Figure 3.8: Precision-Recall Curve before applying the preprocessed data, with red color, and after applying the 

preprocessed data with gold. 

 

 Mean Average Precision 

Average Precision is calculated individually for each class. In most object detection 

applications, although, the number of classes is surely more than one. In these cases, the mAP 

is a useful metric that is the average AP of all the classes in the problem. The below Equation 

(3.3) shows how to compute it, 

𝑚𝐴𝑃 =
1

𝐶
∗ ∑ 𝐴𝑃𝑖

𝐶

𝑖=1

(3.3) 

, where APi is the AP computed for the i class with a total of C classes. 

 In some cases, the mAP can be seen in the form of mAP0.5 or some other values for the 

index. This index shows the IoU threshold that the AP was calculated on. Another way that this 

metric can be found is maP0.5:0.95, which means that the mAP is calculated for all the IoU values 

between 0.5 and 0.95 with a step of 0.05 and the average is calculated.  

 Loss Function 

The Loss function used in YOLOv5 is the Binary CrossEntropy With Logits Loss 

(BCEWithLogitsLoss). Firstly the Binary CrossEntropy Loss (BCELoss) will be explained. 

Binary CrossEntropy is the negative average of the log of corrected predicted probabilities. 

What that means is that it compares the predicted probabilities of the model for each sample 

with the actual class that they belong to and then calculates how far from the actual value the 

predicted is, which is 0 or 1. The mathematical Equation of this loss is shown below, 

Equation (3.4): 
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𝑙(𝑥, 𝑦) = −
1

𝑁
∑ 𝑦𝑖 ∗ log (𝑝𝑖

𝑁

𝑖=1

) + (1 − 𝑦𝑖) ∗ log (1 − 𝑝𝑖) (3.4) 

, where: 

N is the number of samples, 

𝑝𝑖 is the probability of class 1 

𝑦𝑖 is the actual class that the object belongs to 

This Equation calculates the loss when there is only one class. What changes when 

there are multiple classes is that the sum is done for all the classes in the problem. In the case 

of the BCEWithLogits the sigmoid function, which is explained in previous sections, is 

combined with the above BCE in order to create better numerical stability. The Equation is 

shown below (Equation 3.5). 

𝑙(𝑥, 𝑦) = −
1

𝑁
∑ 𝑦𝑖 ∗ log (𝜎(𝑝𝑖

𝑁

𝑖=1

)) + (1 − 𝑦𝑖) ∗ log (𝜎(1 − 𝑝𝑖)) (3.5) 

, where σ is the sigmoid function. 

 

3.1.3   Scenarios 
In this thesis, the main purpose is to recognize all the objects that a ship will meet in 

its path. For this reason, some of the objects are considered as the classes of the problem. These 

classes are ships, as these are the most common object in collision avoidance, rocks, and 

floating objects. As floating objects are considered humans, containers, and buoys.  

 The different scenarios that are taken into consideration in this thesis are: 

1. Images with only one class of objects. 

2. Images containing at least 2 of the classes of the objects. 

3. Testing in a real-time video. 

In the first case, the network was trained with only one class of objects. Firstly the 

network was trained to recognize ships. For this reason, it was input with 20 images of ships, 

to acquire a first impression of the network. In these images, there are only images that contain 

only one ship in them. Then, 50 images of the ship were imported, with some of them being 

photos of more than one ship in them, to see how good it comprehends with many objects of 

the same class. Lastly, the input was 100 images and the impact on the confidence score of the 

system and the accuracy was inspected, in comparison to the 50. The same was done for the 

other 2 classes, where some images of the objects in the night were also considered. In every 

case, 90% of the data are for training and 10% are for validation.  

In the second case, the model was trained on images with a combination of the objects. 

A class is rarely alone in an image when dealing with real-life problems so in this case firstly 

50 images of all the object classes, or at least 2 of the classes, being in every one of them were 

collected. Secondly, the 100 images of ships, 100 of rocks, and 100 of floating objects are added 

all together as the training set to observe the model’s performance in determining what the class 

of the individual objects is. After that, the model was trained on 50 images of ships at night and 

in fog where the vision is very obscured. Lastly, all the photos that were collected, including 
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the 50 that had all or at least 2 classes in them and also 50 images of ships captured at night, 

with a total of 400 photos were input into the model.  

In the third case, a video of ships in the sea was found and the model was tested to 

determine the frames per second that it can get and so if it can be applied in real-time detections. 

3.1.4 Image Data Acquisition 
In order for the network to work in the best way possible the images that it is trained 

on must be very accurate in what they represent. For that to be done, images recorded by a 

camera placed on the bridge of a ship were necessary. Although that wasn’t possible in this 

thesis, so images containing the classes needed from the internet were carefully picked. An 

example of images is shown in the Figure 3.9 below. 

     

 After the images were collected, they had to be labeled. This was done with a program 

called labelimg, which was obtained by the repository of the program from GitHub (Tzutalin, 

2015). In this program, the images are selected and the user can create a square that contains 

the desired object and also the class that the object belongs to (Figure 3.10). Then a text file, 

that contains the position of the center of the bounding boxes of the image, their length, their 

height, and the class every box belongs to, is created (Figure 3.11).  

Figure 3.9: Example of images used in the training dataset.  
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Figure 3.10: An example of labeling in labelimg. 

 

Figure 3.11: An example of a .txt file that is output from the labelimg. 

After the labeling was done, the images had to be put in folders. For the model to run 

the position of the folder containing the training data, the labels, the validation data, and also 

the number of classes must be determined. This is done by a YAML file, which is a data 

serialization language that is often used for writing configuration files, inside the model where 

these exact positions are stated (Figure 3.12). After these processes were completed the model 

was run in a jupyter notebook with python using the PyTorch framework. 

 

 

Figure 3.12: An example of the YAML file that the program needs to operate. 
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4 Results 
Now that the theoretical part that refers to the artificial neural networks, the CNNs, and 

the object detection with the models that exist for solving such problems is covered it is about 

time that the results of the YOLOv5s model are represented. There won’t be a commented 

representation in every one of the cases. The results of the scenarios not commented on in the 

next chapter will be cited in the Appendix B: Results of different cases at the end of the thesis. 

4.1 Ship images 

4.1.1 20 images in the training dataset 
Firstly the model was trained for 300 epochs, with a batch size of 8, without early 

stopping and the input of the model was 20 images of ships. The results of the metrics are shown 

in the Figure 4.1 below.  

 

Figure 4.1: Metrics results for 20 images in the training dataset. 

Box_loss is the bounding box regression loss, using the mean square error loss 

function. Obj_loss is the confidence of object present loss and is calculated using the Binary 

CrossEntropy, while the cls_loss is the classification loss using the Cross-Entropy loss function.   

As it is observed the precision reached a value of 70% on average, while recall and 

mAP had a maximum value of 55% and 60% respectively. This is expected as the number of 

images that the model was trained on was significantly low. On the contrary, the loss functions 

reached low values, with the box_loss in the training and validation dataset being 0.02 and 0.06 

respectively while the training and validation obj_loss were 0.015 and 0.018 respectively. 

Lastly, the training and validation cls_loss is 0 as only 1 class is considered in these first 

scenarios so the model is not provided with different classes to classify. The metrics also have 

some variation between the epochs, which is a result of the low number of images in the training 

dataset. The reason that this such a scenario was done is to comment on the effect of the number 

of images in the model with the same number of epochs. The Figure 4.2 contains predictions 

of the model on some of the test data.  
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 In the images, the number refers to the confidence of the network that the bounding 

box contains an object of the mentioned class. The model in general returned good results for 

images that weren’t in the training and validation dataset, with 89% confidence for the top left 

image, 81% for the top right and 62%, and 66% for the bottom left and right respectively. 

Lastly, it can be observed that the bounding boxes of the different ships are larger than the ship 

they contain, meaning they are not that accurate. This is an effect of the small dataset.  

It must be mentioned that the test dataset, and especially these 4 images, will stay the same in 

the next scenarios so that a comparison between the different training dataset and their effect 

on the model’s predictions will be done.  

 

 

 

 

 

 

 

 

 

Figure 4.2: Results of the model detection in the test dataset, with 20 images of ship  in the training dataset.  
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4.1.2 50 images in the training dataset 
In the next case, 50 images were presented in the model as the training dataset. Below 

the metrics of the model are presented (Figure 4.3).  

 

 

Figure 4.3: Metrics results for 50 images in the training dataset. 

The precision, recall, and mAP in this scenario reached a value of 100% in the last 

epoch, with a 20% increase in the precision, and 50% in the recall, which means that the model 

can easier predict all the ground truth bounding boxes, and a 40% increase in the mAP0.5. In the 

loss functions, there weren’t any noticeable differences, with the box_loss in the training and 

validation dataset being 0.02 and 0.04 respectively while the training and validation obj_loss 

were 0.01 and 0.015 respectively. The variation of the values in the precision is smaller and as 

the model trains for more epochs, it is getting even lower.  

 
Figure 4.4: Results of the model detection in the test dataset, with 50 images of ships in the training dataset. 
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The predictions that the model made in the same 4 images are better with an increase 

of 5-10% in the confidence score on the upper images, reaching 95% for the upper left and 92% 

for the upper right, and an almost 30% increase in the bottom image in the confidence of the 

model, with values 89% in the bottom left and 93% in the right (Figure 4.4: ). Lastly, the 

bounding boxes are much better as they contain the objects more accurately. This outcome is 

logical taking into consideration the increase in the metrics.  

4.1.3 100 images in the training dataset 

 

Figure 4.5: Metric results for 100 images in the training dataset. 

In the last case, with 100 images of ships in the training dataset, the results are quite 

interesting, as the model not only reaches 100% for the precision, recall, and mAP but also does 

that in the first 200 epochs approximately, which is significantly faster than the previous 

scenarios that were discussed. In the loss function, there isn’t any notable difference with all 

the losses keeping approximately the same values as in the last case (Figure 4.5).  



72 | Σ ε λ ί δ α  

 

 

In this scenario, the top right image was predicted with 96% confidence, the upper right 

with 94% confidence, the bottom left with 84% confidence, and the bottom right with 93% 

confidence. The general increase is only 2% which isn’t high, but the bounding boxes, in this 

case, are even more precise containing exactly the shape of the ship meaning that the model is 

already at a good stage for predicting images of ships, that are close to the ones that it was 

trained on (Figure 4.6). 

One interesting result also is how the model responds when there is a higher number of 

ships in the image. The predictions of the model for such an image for the different training 

datasets are illustrated in the Figure 4.7 In this figure the first prediction is from the model 

trained with 20 images, the second prediction is from the model trained with 50 images, and 

the third one is from the model trained with 100 images. The difference between the predictions 

of the model is significant. The model in the first image didn’t manage to detect any of the 

ships, which can be explained by the fact that the number of such images in the training dataset 

was too few. In the second prediction, where the model had more images in the training dataset 

that contained more than one object of the same class in them, predicted the majority of the 

objects, although with not that precise bounding boxes. In the last case, with a training dataset 

of 100, the model not only predicted all the ships in the image with a 10% increase in confidence 

compared to the previous case but also managed to output more accurate bounding boxes that 

contain only the ships with less background. 

 

Figure 4.6: Results of the model detection in the test dataset, with 100 images of ships in the training dataset. 
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4.2 Rocks and Floating Objects images 
For these 2 cases, the results will be cited in the Appendix B: Results of different cases 

as they are almost the same as those of the ship so they won’t be extensively commented on 

here. Rocks are considered some tall stones that stick out of the sea and also some images of 

land. As floating objects are considered buoys, humans at sea and some containers that might 

have dropped from ships. The images that the network was trained on were 20, 50, and 100 for 

300 epochs and a batch size of 8. 

 

4.3 50 photos of limited visibility 
One more case that was considered in this thesis was the case of detecting ships with 

limited visibility. The training dataset included 50 images of ships taken at night or with fog 

and again the model run for 300 epochs with batch size 8 and considered only ships as the class. 

The results for the metrics (Figure 4.8) and some predictions of the model in the test images 

(Figure 4.9) are illustrated below. 

Figure 4.7: Comparison of the predictions of all the models in an image that contains more objects of the class 

ships.  
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Figure 4.8: Metric results for 50 images of ships with limited visibility in the training dataset.  

The precision and mAP reached a value of 80% on average while the recall had an 

average of 75%. The box_loss for the training and validation had values of 0.04 and 0.02 

respectively, while the training and validation obj_loss reaches 0.01 and 0.015 respectively. 

What is interesting is that the validation loss starts to rise, which means that the model started 

to overfit on the training dataset. The results for the metrics have high variance in comparison 

with the dataset that contained 50 ships in daylight, while the values of the metrics differ greatly 

from the other case with 50 images in the training dataset. This is expected when the model was 

run with images other than the ones in daylight as image detection is so dependent on the images 

themselves that every change in the training dataset returns other results.  

 

Figure 4.9: Results of the model detection in the test dataset, with 50 images of ships taken in limited visibility in 

the training dataset. 
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The model in this scenario predicted the images of the test dataset with good 

confidence, namely 96% for the upper left, 94% for the upper right, 93%, and 87% for the 

bottom left and right respectively even though the number of images for this difficult case was 

pretty limited. This case was added to the total scenarios that were analyzed as the ship must 

be able to find all the objects in its path regardless of the visibility conditions. These images 

were also included in the bigger dataset, of 400 images, that will follow.   

4.4 300 images of all the classes 
Next up the model was tested with 300 images in the training dataset. These images are 

the ones that the model was trained on in the previous cases individually, namely the 100 ships, 

the 100 rocks, and the 100 floating objects. In this case, the classes considered are 3, ship, rock, 

and floating object. The model was trained again for 300 epochs with 8 batch size. The results 

can be seen in the Figure 4.10 below. 

 

Figure 4.10: Metrics results for a 300 image training, with images of the ship, rocks, and floating objects. 

The training seems to have good results in the metrics with the precision, recall, and 

mAP reaching 0.8, and the loss being very low both in the training and in the validation. What 

is interesting to discuss is that the model doesn’t reach 100% for the values of the precision, 

recall, and mAP. This happens as the model was trained considering the presence of all the 

classes that were considered in the problem so it is more difficult to reach 100% precision. The 

network seemed to have a noticeable variance in the loss of the classes in the beginning, 

although in the end, it minimized. The model also seems to have started to overfit in the data 

as the validation obj_loss start to rise as the one in the training dataset lowers. This means that 

the number of epochs is sufficient as the object loss will have a serious effect on the 

performance of the model if the training continues for more epochs. 

The predictions that the model made for images in the test dataset (Figure 4.11) were 

generally good with the confidence being above 80% in all images. Although in some cases 

where the objects were too small or there all the classes coexist in the image the model was 

making mistakes in its detections regarding the class that the objects refer to as in the left image 

it considered some floating objects as ships, and didn’t recognize the land in the background, 

while in the left it didn’t manage to recognize any of the small objects, as humans and 

ships(Figure 4.12).  
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Figure 4.11:  Results of the model detection in the test dataset, with 300 images of ships, floating objects and rocks 

in the training dataset. 

Figure 4.12: Examples of inaccurate predictions of the model. 
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4.5 400 images of all the classes 
In order to overcome the previous case problems, 50 extra images were added to the 

dataset, which contained objects of all the classes, or at least 2 of them, in each one, and also 

the ones of ships taken in limited visibility. The model was trained for 300 epochs with a batch 

size of 8 and a total number of 400 training images.  

 

Figure 4.13: Metrics results for 400 images in the training dataset, containing images of all the previous cases. 

 

 

Figure 4.14: Results of the model detection in the test dataset, with 400 images of combination of the previous 

scenarios in the training dataset. 
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The model is very fast in its response reaching almost 1 in precision, 0.8 in recall, and 

mAP in the first 50 epochs and from then it stays the same (Figure 4.13). This is why the 

validation loss starts rising from then on as the model reached the max values for these metrics 

and overfits. The other losses don’t have some interest as they keep as usual low values, 0.02 

and 0.04 in box_loss for training and validation respectively, 0.015 for the training obj_loss, 0 

and 0.01 in for the cls_loss. 

There is not so much of a difference to be observed between this case and the last one 

for the confidence of the model in the predictions (Figure 4.14). Although there is a massive 

difference in the way the model distinguishes between the classes that the object belongs 

(Figure 4.15). The model now not only predicts the correct class but also can predict more 

objects than before and with higher confidence. That shows again how important are the images 

for the training process in object detection.   

 

 

What was also done in this case was to compare the results of YOLOv5s with those of 

the YOLOv5m. The difference in the architecture is that the YOLOv5m has more layers, 

especially more BottleneckCSP blocks, and generally the kernels in each of the convolutional 

layers were bigger than the ones in the YOLOv5s making the detection more precise and better. 

The YOLOv5m model was trained for the same amount of images for the same epochs and the 

same batch size as the YOLOv5s, namely 400 images, 300 epochs, and batch size 8. The metrics 

of the model didn’t have much of a difference, from the ones in the YOLOv5s case and are 

cited in the Appendix B: Results of different cases. Although the predictions of the model are 

better in most of the cases.  

In the following figure, Figure 4.16, the results of some predictions of the model are 

presented with the YOLOv5s predictions being on the right and the other on the left. In the first 

pair of images, the YOLOv5m’s confidence score is higher than the smaller model by 5% and 

in some cases 40%. In the second pair, it is observed that the right image scores are the same 

as the left ones in the ship classes, but the medium size model predicted the correct floating 

object. In the third pair, the medium model seems to have predicted all the objects in the image 

with an increase of 10% in the confidence score, in comparison to the small model that didn’t 

find some of them. In the last pair of images, it is obvious that the medium has done a better 

prediction all in all as it predicted all the ships in the image and with an increase in confidence 

score of 2% and in some cases 10% compared to the small, which predicted a floating object 

that didn’t exist. 

Generally, the predictions done with the YOLOv5m model were better than the ones 

done with the YOLOv5s as more layers help in analyzing the image better and finding all the 

important features. Although the increase in size, with YOLOv5s being 14MB and YOLOv5m 

Figure 4.15: Examples of images from the test dataset that the model predicted better than before. 
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being 41MB, the increase in the time spent with the same setup in the computer, with the 

YOLOv5s taking 4 hours to run 300 epochs with 400 images and batch size 8 and the 

YOLOv5m taking 11, with the same parameters, made the model not so efficient for the current 

project.  
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Figure 4.16: Comparison between YOLOv5s and YOLOv5m trained on the same 400 images for 300 epochs and batch size of 8. 

The right images are the results from the YOLOv5s model and the left are from YOLOv5m 
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4.6 Video 
Except for images, the model was tested on a video in order to see its performance. What was 

noticed is that even with only 400 images on the training dataset the model’s detections were 

very good not only in the accuracy of the bounding boxes, which contained the ships in most 

of the cases precisely but also in the confidence of the detections, which in most cases had 

values of 80% and higher. That combined with a zero fps reduction caused by the model, as the 

frames per second remain 25, the same as the original video, can prove that YOLOv5s can 

easily be used in real-time applications and return promising values. Some images from the 

video with the detections can be seen in the Figure 4.17: Images from the detections of the 

model in the video application below.  

 

 This video had some snapshots of the sea life and showed images from the bridge of 

the ship with other ships. These contained a ship being alone in the sea or a couple of ships and 

also ships at night. In the top left image, the model predicted the ship with an 85% confidence 

score, while in the top right the confidence is above 70% in most cases. In the bottom left the 

model output confidence of 69% and 56% for the right-most and the left-most ship and 84% 

and 94% for the other 2. In the last image, the model predicted both of the ships with confidence 

of 85% and 90%, even though it was an image taken in low visibility. 

Figure 4.17: Images from the detections of the model in the video application 
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4.7 Comparison with other studies 
Lastly, to have a way to compare the results of this model for the metrics, some other 

projects that also used YOLOv5s were considered. Although all of the projects were trained on 

a lot more images than the one in this thesis a comparison of the metrics can be done. In the 

project of Bin Yan (Yan et al., 2021) the precision of the model is 83%, the recall 91%, and the 

mAP 87%, while in the study of  Emmanuel Vasilopoulos (Vasilopoulos et al., 2022) the 

metrics were 86%, 62%, and 66% respectively. In some other studies mentioned in the 

Literature Review at the beginning of this thesis, one model achieved an mAP value of 71.6% 

(Zhang et al., 2022), another project achieved mAP 86.5% (Zheng et al., 2022), while the last 

one discussed resulted in mAP 89.8% (Kim et al., 2022). The results in this thesis on average 

were, 83% for precision, 78% for recall, and 83% for the mAP. Considering that these results 

were close enough and even in some cases higher than the other studies and also that this work 

was done on a very small dataset, the metrics of this thesis can be considered sufficient for the 

number of images. With more training, the model can be more accurate and also return better 

results. 
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5 Conclusion and Future Work 

5.1 Conclusion 
In this thesis, the use of an object detection algorithm, especially the method YOLO, 

in detecting objects, mainly ships, rocks, and other floating objects, was researched. The model 

used for that reason was the newest version of YOLO, YOLOv5, developed by Ultralytics. The 

model was trained for different scenarios and the results for the metrics and the model’s 

predictions were analyzed and compared. Some interesting results from this work were 

extracted and are presented here collectively. 

The number of images plays a significant role for the model. As the training dataset 

grows the model’s metrics, precision, recall, and mAP, reach higher values for the same epochs 

and the variance of the values with each epoch is lesser. For example, 20 images of ships 

reached a precision of 70% in comparison to the 100% in the 100 images. Furthermore, the 

highest values for the metrics are reached sooner as the training set expands. In the case of 50 

images, the higher values for the metrics weren’t reached with 300 epochs while in the scenario 

of 100 and 300 images, they were reached in less than 200 epochs and 50 epochs respectively. 

It is also observed that when the model is trained with different images, but the same in number, 

then the results for the metrics are different in some cases. This means that the model is very 

dependent on the quality, the background of the images, and the conditions under which the 

images were taken, namely if the vision is limited. 

The time spent for the training to be done also increases with the number of images in 

the training dataset by a significant amount. A model trained for 300 epochs with a dataset of 

100 images takes 1 hour for its training while for the same amount of epochs 400 images take 

4 hours, making it 1 hour extra for every 100 images added to the dataset. Also, the amount of 

time spent for the training of the model increases exponentially as the model gets larger and 

deeper, with 400 images taking 4 hours in the small network and 11 hours in the medium 

network trained for the same 300 epochs.  

The confidence of the network in detecting objects in images never seen by it is 

enhanced as the training set is provided with a more wide variety of images that are relevant to 

the ones that the model is supposed to detect. It was observed that the model was making 

mistakes in its predictions in images where all the classes coexisted when trained with 300 

images of ship, rocks and floating objects, but with no image having the objects coexist. When 

such images with all of the classes were included, like in the scenario of 400 images in the 

training dataset, the model managed to have a 2% increase in its confidence scores and 10% in 

some cases, while also predicting much more of the smaller objects with high confidence and 

accurate bounding boxes.  

Lastly, the size of the network is also very crucial for the results, as the more the 

network grows the easier it is to find the correct objects and have higher accuracy. When the 

same dataset was trained in the small and the medium model, improvements were observed not 

only in the confidence of the model, which reached a 20% increase in some cases but also in 

the number of objects the model could predict. 

5.2 Future work 
In this thesis, it became clear that the YOLOv5 algorithm can be used for object 

detection in ship navigation not only in detecting images of ships and other objects but also in 

real-time applications, such as in autonomous ships. This thesis can only be the spark of new 

works regarding the field of object detection application in ships, so some ideas for future works 

regarding this topic are presented here.  
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The number of images that the model was trained on was very insufficient for the model 

to be able to work properly as it requires 1500 images per class minimum. In future studies, the 

model should be enhanced with more images for each class to acquire better results. 

Moreover, the images used should be more representative of the case that is considered, 

mainly focusing on trying to find images that have the same angle and height of a camera placed 

on a ship and also be of the same analysis as the model requires. The training dataset should 

also be tested in the larger versions of YOLOv5 to have better results. The parameters of the 

model should be changed too and see where the best results are acquired. 

After the model was trained and better results were obtained, the next step should be to 

combine the results of the model with the EGDIS system that can find other obstacles’ courses 

in the vicinity but can’t recognize what those objects are. This way a full picture of the obstacles 

in the way of the ship can be obtained. An AI system can acquire these results and propose a 

course for the ship in order to avoid collision with these obstacles. This AI system then should 

be able to could change the speed of the ship and steer it, to avoid collision according to the 

results course it proposed. This whole system afterward should be tested on a model in a tank.  
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 Appendix  

Appendix A: Hardware and Software Specifics 
Hardware Specifics 

CPU Intel(R) Core(TM) i5-6300HQ 

CPU Clockspeed 2.3 GHz 

CPU threads 4 cores (4 threads) 

GPU Nvidia(R) GeForce(R) GTX 960M  

GPU Clockspeed 2.6 Ghz 

VRAM 4GB GDDR5 

Storage 450 GB SSD 

Software Specifics 

OS Windows 10 Pro (x64) 

Python version 3.9.7 

Cuda version release 10.2 version 10.2.89 

Pytorch version 1.10.2 

Jupyter notebook version 6.4.6 

 

Appendix B: Results of different cases 

 

Figure 0.2: Metric results for a training dataset with 20 images of floating objects. 

Figure 0.1:  Results of the model detections, with the 20 images of floating objects in the training dataset. 
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Figure 0.3: Metric results for a training dataset with 50 images of floating objects. 

 

 

Figure 0.5: Metric results for a training dataset with 100 images of floating objects in the training dataset. 

Figure 0.4: Results of the model detections, with the 50 images of floating objects in the training dataset. 
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Figure 0.7: Metric results for a training dataset with 20 images of rocks. 

 

Figure 0.6: Results of the model detections, with the 100 images of floating objects. 

Figure 0.8: Results of the model detections, with the 20 images of rocks in the training dataset. 
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Figure 0.9: Metric results for a training dataset with 50 images of rocks. 

 

 

 

Figure 0.11: Metric results for a training dataset with 100 images of rocks. 

Figure 0.10: Results of the model detections, with the 50 images of rocks in the training dataset. 
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Figure 0.13:  Metric results for a training dataset with 400 images trained on the medium-size network. 

 

Figure 0.12: Results of the model detections, with the 100 images of rocks in the training dataset. 


