

National Technical University of Athens

School of Naval Architecture and Marine Engineering

Division of Ship Design and Maritime Transport

DIPLOMA THESIS

An Application of Object Detection in ship

navigation

Author: Ioannis Dimitrelos

Supervisors: Nikolaos P. Ventikos

ATHENS, JULY 2022

2 | Σ ε λ ί δ α

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor, Professor Nikolaos

P. Ventikos, for his overall guidance and the trust he has shown in me, but also to the Ph.D.

Candidate Panagiotis Sotiralis, as his precious help and support, was crucial in the development

of this thesis.

Additionally, I would like to express my sincere gratitude to all the people who contributed to

the completion of the present thesis with their experience and judgment, each from his field of

expertise.

Also, I would like to thank the entire community of the School of Naval Architecture and

Marine Engineering of the National Technical University of Athens, and of the Division of Ship

Design and Maritime Transport, which provided me with all the knowledge and experience

during my studies, for making the current work possible.

Last but not least, I would like to thank my parents and my brother for their continuous trust,

for not losing faith, and for supporting me with all their strength. Special thanks to my precious

friends for their understanding and support throughout the completion of my studies.

3 | Σ ε λ ί δ α

Contents

Abstract ... 9

Περίληψη ... 10

1 Literature Review .. 14

2 Neural Networks .. 17

2.1 Overview of neural networks .. 17

2.1.1 Biological neural networks .. 18

2.1.2 History of neural computing .. 19

2.2 A single neuron model... 20

2.3 The Multilayered Perceptron ... 21

2.3.1 Activation Functions ... 23

2.4 Network training and error implementation .. 25

2.4.1 Back Propagation ... 27

2.5 Convolutional Neural Networks .. 30

2.5.1 An Introduction to images ... 31

2.5.2 Convolution Layer ... 32

 Stride ... 33

 Padding .. 34

 Mathematical implementation of the Convolution operation 35

2.5.3 Pooling Layer .. 35

2.5.4 Fully connected layers ... 38

2.6 Generalization, overfitting and early stopping .. 38

2.6.1 Training, validation, and test data ... 41

2.7 Object Detection .. 41

2.7.1 Applications of Object Detection .. 42

2.7.2 Techniques employed in Object Detection .. 43

 Sliding Window ... 43

 Regional Convolutional Neural Networks (R-CNN) 44

 Spatial Pyramid Pooling Network (SPP-Net) .. 44

 Fast Regional Convolutional Neural Networks (Fast R-CNN) 45

 Faster Regional Convolutional Neural Networks (Faster R-CNN) 46

 You Only Look Once (YOLO) .. 46

 Single Shot MultiBox Detector (SSD) and Region-based Fully

Convolutional Network (RFCN) ... 49

2.7.3 YOLO Versions ... 50

 YOLOv2 .. 50

 YOLOv3 .. 52

4 | Σ ε λ ί δ α

 YOLOv4 .. 54

 YOLOv5 .. 57

3 Methods ... 58

3.1 YOLOv5s Architecture ... 58

3.1.1 Hardswish activation function ... 61

3.1.2 Metrics ... 61

 Precision and Recall .. 62

 Average Precision .. 62

 Mean Average Precision .. 64

 Loss Function .. 64

3.1.3 Scenarios.. 65

3.1.4 Image Data Acquisition ... 66

4 Results ... 68

4.1 Ship images ... 68

4.1.1 20 images in the training dataset ... 68

4.1.2 50 images in the training dataset ... 70

4.1.3 100 images in the training dataset ... 71

4.2 Rocks and Floating Objects images .. 73

4.3 50 photos of limited visibility .. 73

4.4 300 images of all the classes ... 75

4.5 400 images of all the classes ... 77

4.6 Video ... 81

4.7 Comparison with other studies .. 82

5 Conclusion and Future Work ... 83

5.1 Conclusion ... 83

5.2 Future work ... 83

References ... 85

Appendix ... 89

Appendix A: Hardware and Software Specifics .. 89

Appendix B: Results of different cases ... 89

5 | Σ ε λ ί δ α

List of figures

Figure 2.1: Schematic of two biological neuron.. 18
Figure 2.2: McCulloch-Pitts model. .. 20
Figure 2.3: Comparison between biological and artificial neurons ... 21
Figure 2.4: A multilayer perceptron with 3 layers of neurons, 2 layers of weights. 22
Figure 2.5: Linear Activation Function ... 23
Figure 2.6: Typical Activation Functions (a) Sigmoid, (b) Tanh or hyperbolic tangent, (c)

Rectified Linear Unit(ReLU), (d) Leaky Rectified Linear Unit(LeakyReLU) 24
Figure 2.7: An example of curve fitting using a polynomial function. 26
Figure 2.8: Schematic illustration of the error function E(w) as a surface above the weights wi.

 ... 26
Figure 2.9: Illustration of the calculation of δj for hidden unit j by backpropagation of the δ’s

from those units k to which unit j sends connections. ... 28
Figure 2.10: A grayscale image with the representation of the values of each pixel. 31
Figure 2.11: Examples of feature maps for a picture showing a handwritten 9 and the kernels

that were used to create them. ... 32
Figure 2.12: The beginning of the operation. .. 32
Figure 2.13: The calculations for the filter moving one step right. ... 33
Figure 2.14: The operation for a 3 channeled vector. .. 33
Figure 2.15: Example for a stride number different that the default 1. 34
Figure 2.16: Example for padding equal to 1. ... 34
Figure 2.17: Pooling operation with a size of 2x2 pixels and stride of 2. 36
Figure 2.18: Illustration of maximum and average pooling. ... 37
Figure 2.19: Effects of maximum and average pooling in an image. 37
Figure 2.20: A representation of a fully connected network. .. 38
Figure 2.21: An example of curve fitting using successively higher-order polynomials. 40
Figure 2.22: A diagram showing the relation between the error function and the number of

iterations. ... 41
Figure 2.23: Illustration of the main fields of computer vision ... 42
Figure 2.24: R-CNN architecture. ... 44
Figure 2.25: SPP-net Architecture with a more explanatory way of how the spatial pyramid

pooling layer work. .. 44
Figure 2.26: A representation of the Fast R-CNN model. ... 45
Figure 2.27: Faster R-CNN Architecture .. 46
Figure 2.28: Illustration of a bounding box. .. 47
Figure 2.29: YOLOv1Architecture. .. 48
Figure 2.30: Calculation of IoU number. .. 48
Figure 2.31: Non-max suppression .. 49
Figure 2.32: SSD architecture ... 49
Figure 2.33: RFCN architecture .. 50
Figure 2.34: Representation of anchor boxes .. 51
Figure 2.35: ResNet's architecture of skipping connections. ... 52
Figure 2.36: YOLOv3 architecture .. 53
Figure 2.37: YOLOv3 network architecture.. 54
Figure 2.38: Cross Stage Partial DenseNet ... 55
Figure 2.39: The new SPP block used in YOLOv4 ... 55
Figure 2.40: PANet architecture (a) FPN backbone, (b) augmentation path, (c) feature pooling

 ... 56
Figure 2.41:(a) original PAN, (b) YOLO v4 version .. 56
Figure 3.1: Structure of Focus Block .. 58

file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465795
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465802
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465802
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465803
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465803
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465806
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465811
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465813
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465814
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465818
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465819
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465819
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465821

6 | Σ ε λ ί δ α

Figure 3.2: Architecture of the Bottleneck block .. 59
Figure 3.3: Structure of BottleneckCSP block .. 59
Figure 3.4: SPP block architecture .. 60
Figure 3.5:YOLOv5s Architecture .. 61
Figure 3.6: Detections are ranked depending on their confidence score and the way precision

and recall are calculated for each. ... 63
Figure 3.7: Precision-Recall Curve before applying the preprocessed data. 63
Figure 3.8: Precision-Recall Curve before applying the preprocessed data, with red color, and

after applying the preprocessed data with gold. .. 64
Figure 3.9: Example of images used in the training dataset. ... 66
Figure 3.10: An example of labeling in labelimg. ... 67
Figure 3.11: An example of a .txt file that is output from the labelimg. 67
Figure 3.12: An example of the YAML file that the program needs to operate. 67
Figure 4.1: Metrics results for 20 images in the training dataset... 68
Figure 4.2: Results of the model detection in the test dataset, with 20 images of ship in the

training dataset. ... 69
Figure 4.3: Metrics results for 50 images in the training dataset... 70
Figure 4.4: Results of the model detection in the test dataset, with 50 images of ships in the

training dataset. ... 70
Figure 4.5: Metric results for 100 images in the training dataset. ... 71
Figure 4.6: Results of the model detection in the test dataset, with 100 images of ships in the

training dataset. ... 72
Figure 4.7: Comparison of the predictions of all the models in an image that contains more

objects of the class ships.. 73
Figure 4.8: Metric results for 50 images of ships with limited visibility in the training dataset.

 ... 74
Figure 4.9: Results of the model detection in the test dataset, with 50 images of ships taken in

limited visibility in the training dataset. .. 74
Figure 4.10: Metrics results for a 300 image training, with images of the ship, rocks, and

floating objects. ... 75
Figure 4.11: Results of the model detection in the test dataset, with 300 images of ships,

floating objects and rocks in the training dataset. ... 76
Figure 4.12: Examples of inaccurate predictions of the model. .. 76
Figure 4.13: Metrics results for 400 image in the training dataset, containing images of all the

previous cases. ... 77
Figure 4.14: Results of the model detection in the test dataset, with 400 images of

combination of the previous scenarios in the training dataset. .. 77
Figure 4.15: Examples of images from the test dataset that the model predicted better than

before. .. 78
Figure 4.16: Comparison between YOLOv5s and YOLOv5m trained on the same 400 images

for 300 epochs and batch size of 8. The right images are the results from the YOLOv5s model

and the left are from YOLOv5m ... 80
Figure 4.17: Images from the detections of the model in the video application 81
Figure 6.1: Metric results for a training dataset with 20 images of floating objects. 89
Figure 6.2: Results of the model detections, with the 20 images of floating objects in the

training dataset. ... 89
Figure 6.3: Metric results for a training dataset with 50 images of floating objects. 90
Figure 6.4: Results of the model detections, with the 50 images of floating objects in the

training dataset. ... 90
Figure 6.5: Metric results for a training dataset with 100 images of floating objects in the

training dataset. ... 90

file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465844
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465849
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465849
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465851
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465851
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465853
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465853
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465854
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465854
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465856
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465856
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465858
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465858
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465859
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465861
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465861
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465862
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465862
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465863
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465863
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465863
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465864
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465866
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465866
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465868
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465868

7 | Σ ε λ ί δ α

Figure 6.6: Results of the model detections, with the 100 images of floating objects. 91
Figure 6.7: Metric results for a training dataset with 20 images of rocks. 91
Figure 6.8: Results of the model detections, with the 20 images of rocks in the training

dataset. ... 91
Figure 6.9: Metric results for a training dataset with 50 images of rocks. 92
Figure 6.10: Results of the model detections, with the 50 images of rocks in the training

dataset. ... 92
Figure 6.11: Metric results for a training dataset with 100 images of rocks. 92
Figure 6.12: Results of the model detections, with the 100 images of rocks in the training

dataset. ... 93
Figure 6.13: Metric results for a training dataset with 400 images trained on the medium-size

network. ... 93

file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465870
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465872
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465872
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465874
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465874
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465876
file:///C:/Users/giann/Desktop/sxolh/thesis/Diploma%20thesis/Diploma%20Thesis.docx%23_Toc108465876

8 | Σ ε λ ί δ α

Abbreviation List

ANN – Artificial Neural Network

ECDIS – Electronic Chart Display and Information System

BCE– Binary Cross-Entropy

BCEWithLogits – Binary Cross Entropy With Logits

BN – Batch Normalization

CNN – Convolutional Neural Network

CSP – Cross Stage Partial

Fast R-CNN – Fast Regional Convolutional Neural Networks

Faster R-CNN – Faster Regional Convolutional Neural Networks

FPN – Feature Pyramid Network

GPU – Graphics Processing Unit

LeakyReLU – Leaky Rectified Linear Unit Activation Function

mAP – mean Average Precision

MB – Megabyte

PAN – Path Aggregation Network

RCNN – Regional Convolutional Neural Networks

ReLU – Rectified Linear Unit Activation Function

RFCN – Region-based Fully Convolutional Network

ROI – Region of Interest

SPP – Spatial Pyramid Pooling

SPP-net – Spatial Pyramid Pooling Network

SSD – Single Shot MultiBox Detector

YOLO – You Only Look Once

9 | Σ ε λ ί δ α

Abstract
The present thesis is an attempt to light a spark in the field of object detection in ship

navigation. This introduction is followed by an application based on an object detection model,

named You Only Look Once (YOLO). Even though it is not the first time an object detection

algorithm was applied to ship navigation problems, it is very fascinating to further research and

experiment in this field by firstly testing an already existing algorithm and commenting on the

results.

Many object detection algorithms have been proposed with approaches ranging from

traditional to deep learning. However, the majority of them have limited applications in real-

time applications as they are computationally intensive and have accuracy problems. Another

challenge when dealing with ship navigation is the wide range of background sizes of the

objects. To overcome these problems the most recent object detection algorithm was selected.

In this thesis, the You Only Look Once version 5 (YOLOv5) model was used, which is created

in 2020 and is fine-tuned with the more recent and best practices in object detection and also is

constantly modified and readjusted to achieve better results. From the different models of

YOLOv5, the smaller one was picked, because of its size and the comparatively good accuracy

it performs.

After the model was chosen, a sufficient database for the model’s training was created

using images that contained the most common obstacles that a ship can face. These are other

ships, buoys, humans on the surface, containers, and rocks. The images were categorized into

3 teams, ship, floating object, and rock, which are the classes of the problem. The images were

then labeled in a way that the YOLO accepts as input while some of them were kept and created

the validation dataset. With these data some scenarios were created, namely, images that

contained only one class in them, images of ship at night, and images of at least 2 classes

coexisting in the same image and their combination. The model was trained with these different

datasets and the results were collected, compared, and analyzed. The model achieved a

Precision of 84%, Recall of 74%, and mAP of 79% on average when trained with 400 images

of all the classes combined for 300 epochs and batch size 8. The model was also tested in a

real-time application using a video and it detected all of the ships in most cases with 33 frames

per second reload time.

10 | Σ ε λ ί δ α

Περίληψη
Η παρούσα διπλωματική εργασία είναι μια προσπάθεια γίνει ένα πρώτο βήμα στον

τομέα της ανίχνευσης αντικειμένων στη ναυσιπλοΐα πλοίων. Αυτή η εισαγωγή ακολουθείται

από μια εφαρμογή που βασίζεται σε ένα μοντέλο ανίχνευσης αντικειμένων, που ονομάζεται

YOLO. Παρόλο που δεν είναι η πρώτη φορά που εφαρμόζεται αλγόριθμος ανίχνευσης

αντικειμένων σε προβλήματα πλοήγησης πλοίων, είναι πολύ συναρπαστική η περαιτέρω

έρευνα και πειράματισμός σε αυτό το πεδίο, δοκιμάζοντας πρώτα έναν ήδη υπάρχοντα

αλγόριθμο και σχολιάζοντας τα αποτελέσματα.

Πολλοί αλγόριθμοι ανίχνευσης αντικειμένων έχουν προταθεί με προσεγγίσεις που

κυμαίνονται από την παραδοσιακή έως την deep learning. Ωστόσο, η πλειοψηφία τους έχει

περιορισμένες εφαρμογές σε πραγματικό χρόνο, καθώς απαιτούν πολλούς υπολογισμούς και

έχουν προβλήματα ακρίβειας. Μια άλλη πρόκληση όταν ασχολούμαστε με τη ναυσιπλοΐα

πλοίων είναι το ευρύ φάσμα background και μεγεθών των πλοίων. Για να ξεπεραστούν αυτά

τα προβλήματα επιλέχθηκε ο πιο πρόσφατος αλγόριθμος ανίχνευσης αντικειμένων. Σε αυτή τη

διατριβή χρησιμοποιήθηκε το μοντέλο You Only Look Once έκδοση 5 (YOLOv5), το οποίο

δημιουργήθηκε το 2020 και είναι τελειοποιημένο με τις πιο πρόσφατες και βέλτιστες πρακτικές

στον εντοπισμό αντικειμένων και επίσης τροποποιείται και αναπροσαρμόζεται συνεχώς για να

επιτυγχάνονται καλύτερα αποτελέσματα. Από τα διαφορετικά μοντέλα του YOLOv5

επιλέχθηκε το μικρότερο λόγω του μεγέθους του και της συγκριτικά καλής ακρίβειας που

αποδίδει.

Μετά την επιλογή του μοντέλου, δημιουργήθηκε μια επαρκής βάση δεδομένων για την

εκπαίδευση του μοντέλου χρησιμοποιώντας εικόνες που περιείχαν τα πιο κοινά εμπόδια που

μπορεί να αντιμετωπίσει ένα πλοίο. Αυτά είναι άλλα πλοία, σημαδούρες, άνθρωποι στην

επιφάνεια της θάλασσας, container και βράχοι. Οι εικόνες κατηγοριοποιήθηκαν σε 3 ομάδες,

πλοίο, πλωτό αντικείμενο και βράχος, που είναι οι κατηγορίες του προβλήματος. Στη συνέχεια,

οι εικόνες επισημάνθηκαν με τρόπο που το YOLO δέχεται ως είσοδο, ενώ ορισμένες από αυτές

διατηρήθηκαν και δημιουργήθηκε με αυτές ένα σύνολο δεδομένων επικύρωσης. Με αυτά τα

δεδομένα δημιουργήθηκαν κάποιες περιπτώσεις, δηλαδή εικόνες που περιείχαν μόνο μία

κατηγορία, εικόνες πλοίου τη νύχτα και εικόνες τουλάχιστον 2 κατηγοριών που συνυπάρχουν

στην ίδια εικόνα καθώς και ο συνδυασμός τους. Το μοντέλο εκπαιδεύτηκε με αυτά τα

διαφορετικά σύνολα δεδομένων και τα αποτελέσματα συλλέχθηκαν, συγκρίθηκαν και

αναλύθηκαν. Το μοντέλο YOLOv5s πέτυχε precision 84%, recall 74% και mAP 79% κατά

μέσο όρο. Επιπλέον, τα δεδομένα χρησιμοποιήθηκαν ως σύνολο δεδομένων εκπαίδευσης για

το YOLOv5m, που είναι το μεσαίου μεγέθους μοντέλο, και συγκρίθηκαν οι προβλέψεις καθώς

και ο χρόνος εκπαίδευσης των 2 μοντέλων. Το μοντέλο δοκιμάστηκε τέλος σε μια εφαρμογή

σε πραγματικό χρόνο χρησιμοποιώντας ένα βίντεο και ανίχνευσε όλα τα πλοία στις

περισσότερες περιπτώσεις με χρόνο ανανέωσης 33 καρέ ανά δευτερόλεπτο.

 ΕΦΑΡΜΟΓΕΣ OBJECT DETECTION

Η ανίχνευση αντικειμένων, object detection, έχει αρχίσει και εφαρμόζεται σε πολλούς

τομείς, όπως την ανίχνευση και αναγνώριση προσώπων που υπάρχει στα σημερινά smartphone

για να ξεκλειδώνεις το τηλέφωνο αλλά και στα μέσα μαζικής επικοινωνίας ενώ σε τράπεζες,

και άλλα υψηλής προστασίας μέρη χρησιμοποιείται για να μπεις σε κάποια περιοχή. Ακόμη

μία χρήση του είναι για την ασφάλεια και την παρακολούθηση, καθώς λόγω της αύξησης της

εγκληματικότητας η επίβλεψη κάποιου απομακρυσμένου οικήματος ή την αναγνώριση των

εισβολέων. Επιπλέον στην ρομποτική η γρήγορη απόκριση στα ερεθίσματα του περιβάλλοντος

είναι πολύ σημαντική και μπορεί να επιτευχθεί με την γρήγορη και ακριβείς επεξεργασία των

δεδομένων από μία κάμερα. Ένας ακόμη τομέας που μπορεί να χρησιμοποιηθεί η αναγνώριση

11 | Σ ε λ ί δ α

αντικειμένων είναι στην καταμέτρηση και την ιχνηλάτηση αντικειμένων σε παιχνίδια

ποδοσφαίρου ή κινήσεις ανθρώπων σε κάμερες ή ακόμη και σε επίβλεψη της κίνησης στους

δρόμους και άλλα. Τέλος μια πιο πρόσφατη αλλά και πολύ σημαντική εφαρμογή του είναι τα

αυτόνομα αυτοκίνητα, όπου όπως γίνεται εμφανές το να γνωρίζει το αυτοκίνητο ή το πλοίο τα

εμπόδια στον δρόμο του είναι απαραίτητο για να επιλεγεί η επόμενη κίνηση του.

 YOLO ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

 Στα πλαίσια της διπλωματικής έγινε προσπάθεια να εφαρμοστεί η λογική το object

detection ώστε να αναγνωριστούν διάφορα εμπόδια στην πορεία του πλοίου. Για να επιτευχθεί

αυτό χρησιμοποιήθηκε ο πιο πρόσφατος αλγόριθμος αναγνώρισης εμποδίων YOLO λόγω όχι

μόνο της ταχύτητας του και της ακρίβειας του αλλά και της δυνατότητας για πραγματικού

χρόνου εφαρμογές. To YOLO διαφέρει από τις πιο παλιές μεθόδους της αναγνώρισης εμποδίων

καθώς δεν επιλέγει μόνο συγκεκριμένες περιοχές της φωτογραφία, που έχουν μεγαλύτερη

πιθανότητα να περιέχουν ένα αντικείμενο, για να κάνει την αναγνώριση αλλά κάνει την

αναγνώριση σε όλη την εικόνα βάζοντας ορθογώνια με κέντρο κάποιο κομμάτι του πλέγματος

της εικόνας, με διαστάσεις που να περιέχουν το αντικείμενο καθώς και σε ποια ομάδα ανήκει

το αντικείμενο με κάποια πιθανότητα. Η ομάδα με την μεγαλύτερη πιθανότητα επιλέγεται σαν

την ομάδα του αντικειμένου στο τέλος. Με αυτόν τον τρόπο μειώνεται το λάθος λόγο του

background της εικόνας καθώς αυξάνεται η ταχύτητα και η ακρίβεια, όμως υπάρχει πιθανότητα

να αναγνωρίσει περισσότερες φορές ένα αντικείμενο ενώ δεν μπορεί εύκολα να βρει πολλαπλά

αντικείμενα στο ίδιο κομμάτι του πλέγματος.

Αυτά τα αρνητικά αφορούν κυρίως την αρχική έκδοση του YOLO καθώς στις επόμενες

εκδόσεις γίνεται προσπάθεια να περιοριστούν αυτά τα αρνητικά και να γίνει καλύτερη η

απόδοση του μοντέλου. Γι’ αυτό το λόγο στην διπλωματική γίνεται επιλογή της τελευταίας

έκδοσης του YOLO που είναι η έκδοση 5, που έχει εφαρμόσει τις πιο σύγχρονες πρακτικές

στον τομέα. Οι πρακτικές που έχουν χρησιμοποιηθεί σε κάθε έκδοση αναφέρονται στο

κεφάλαιο YOLO Versions.

Για να γίνει η αναγνώριση εμποδίων πέραν του μοντέλου χρειάζεται και μια βάση

δεδομένων. Αυτή η βάση δεδομένων περιέχει εικόνες που έχουν αντικείμενα που ενδιαφέρουν

στην μελέτη. Τέτοια αντικείμενα είναι άλλα πλοία, βράχοι, σημαδούρες, άνθρωποι στην

επιφάνεια της θάλασσας και container που είναι τα πιο συχνά εμπόδια στην πορεία ενός πλοίου.

Οι φωτογραφίες αυτές για να μπορέσει να τις διαχειριστεί το πρόγραμμα πρέπει να

επεξεργαστούν ανάλογα. Δηλαδή πρέπει με ένα πρόγραμμα να δημιουργηθούν αρχεία .txt που

περιέχουν τις διαστάσεις των ορθογωνίων των αντικειμένων και την ομάδα στην οποία ανήκει

το αντικείμενο. Αυτές οι φωτογραφίες μαζί με τα αρχεία τους χωρίζονται σε training και

validation και τοποθετούνται σε φακέλους που δηλώνονται στο πρόγραμμα με ένα αρχείο

YAML. Έχοντας αυτά τα δεδομένα το μοντέλο μπορεί να εκπαιδευτεί ώστε να μάθει τα

χαρακτηριστικά του κάθε αντικειμένου στις φωτογραφίες και να ελεγχθεί το πόσο καλά

ανταποκρίνεται σε φωτογραφίες που δεν τις έχει ξανά επεξεργαστεί.

ΣΕΝΑΡΙΑ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΑ

Στην παρούσα διπλωματική έγιναν διάφορα σενάρια για καταστάσεις και αντικείμενα

που περιέχονται στις εικόνες και εξαχθήκαν κάποια αποτελέσματα. Τα σενάρια αυτά αφορούν

τις ομάδες των αντικειμένων στις εικόνες, το πλήθος των φωτογραφιών και τις συνθήκες κάτω

από τις οποίες έγινε η φωτογράφηση. Αρχικά υποτίθεται ότι μία μόνο ομάδα αντικειμένων,

όπως πλοίο, βράχος, και πλεόμενα αντικείμενα, υπήρχε στην κάθε φωτογραφία. Γι’ αυτές τις

περιπτώσεις έγινε χρήση 20, 50 και 100 φωτογραφιών και έγινε σύγκριση αποτελεσμάτων.

Μετά έγινε εκπαίδευση του δικτύου με 50 φωτογραφίες από πλοία την νύχτα για να μπορεί το

δίκτυο να λειτουργεί υπό όλες τις συνθήκες. Επόμενο σενάριο ήταν οι 100 φωτογραφίες από

12 | Σ ε λ ί δ α

όλες τις περιπτώσεις όπου υπήρχε μόνο μία ομάδα αντικειμένων σε κάθε μία καθώς και ο

συνδυασμός όλων των περιπτώσεων μαζί με εικόνες που περιείχαν τουλάχιστον 2 ομάδες από

αντικείμενα σε κάθε εικόνα, με συνολικό αριθμό 400 φωτογραφιών. Οι φωτογραφίες αυτές

αντλήθηκαν από το ίντερνετ λόγω έλλειψης βάσης δεδομένων με διάφορες αναλύσεις καθώς

το πρόγραμμα μπορεί να δεχτεί και διαφορετικές αναλύσεις. Τέλος η περίπτωση των 400

φωτογραφιών εκπαιδεύτηκε και στον μεγαλύτερο νευρωνικό, το medium, και έγινε μία

εφαρμογή του μοντέλου σε ένα βίντεο σε πραγματικό χρόνο.

Το μοντέλο YOLOv5s για τις 400 φωτογραφίες πέτυχε precision 84%, recall 74% και

mAP 79% κατά μέσο όρο, ενώ μπόρεσε στις περισσότερες περιπτώσεις να προβλέψει όλα τα

αντικείμενα με καλή σιγουριά και με χρόνο ανανέωσης 33 καρέ το δευτερόλεπτο.

ΣΥΜΠΕΡΑΣΜΑΤΑ

Ο αριθμός των εικόνων παίζει σημαντικό ρόλο για το μοντέλο. Καθώς το σύνολο

δεδομένων εκπαίδευσης μεγαλώνει, οι μετρήσεις, η ακρίβεια, η ανάκληση και το mAP του

μοντέλου, φτάνουν σε υψηλότερες τιμές για τις ίδιες εποχές και η διακύμανση των τιμών με

κάθε εποχή είναι μικρότερη. Επιπλέον, οι υψηλότερες τιμές για τις μετρήσεις επιτυγχάνονται

νωρίτερα καθώς επεκτείνεται το σετ εκπαίδευσης. Παρατηρείται επίσης ότι όταν το μοντέλο

εκπαιδεύεται με διαφορετικές εικόνες, αλλά ίδιες σε αριθμό, τότε τα αποτελέσματα για τις

μετρήσεις είναι διαφορετικά. Αυτό σημαίνει ότι το μοντέλο εξαρτάται σε μεγάλο βαθμό από

την ποιότητα, το φόντο των εικόνων και τις συνθήκες κάτω από τις οποίες τραβήχτηκαν οι

εικόνες.

Ο χρόνος που δαπανάται για την εκπαίδευση αυξάνεται επίσης με τον αριθμό των

εικόνων στο σύνολο δεδομένων εκπαίδευσης κατά σημαντικό ποσό. Ένα μοντέλο

εκπαιδευμένο για 300 εποχές με ένα σύνολο δεδομένων 100 εικόνων χρειάζεται 1 ώρα για την

εκπαίδευσή του, ενώ για τον ίδιο αριθμό εποχών 400 εικόνες χρειάζονται 4 ώρες. Επίσης, ο

χρόνος που δαπανάται για την εκπαίδευση του μοντέλου αυξάνεται εκθετικά καθώς το μοντέλο

γίνεται πιο μεγάλο, με 400 εικόνες να λαμβάνουν 4 ώρες στο μικρό δίκτυο και 11 ώρες στο

μεσαίο δίκτυο εκπαιδευμένες για τις ίδιες 300 εποχές.

Η εμπιστοσύνη του δικτύου στην ανίχνευση αντικειμένων σε εικόνες που δεν έχει δει

ποτέ ενισχύεται καθώς το σετ εκπαίδευσης παρέχεται με μεγαλύτερη ποικιλία εικόνων και

εικόνων που είναι σχετικές με αυτές που πρέπει να ανιχνεύει το μοντέλο. Τέλος, το μέγεθος

του δικτύου είναι επίσης πολύ σημαντικό για τα αποτελέσματα, καθώς όσο περισσότερο

μεγαλώνει το δίκτυο τόσο πιο εύκολο είναι να βρείτε τα σωστά αντικείμενα και να έχετε

μεγαλύτερη ακρίβεια.

ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΜΕΛΛΟΝΤΙΚΗ ΕΡΕΥΝΑ

Παρατηρήθηκε ότι ο αριθμός των εικόνων στις οποίες εκπαιδεύτηκε το μοντέλο ήταν

πολύ ανεπαρκής για να μπορέσει το μοντέλο να λειτουργήσει σωστά, καθώς απαιτούνται

τουλάχιστον 1500 εικόνες ανά κατηγορία. Μελλοντικά, το μοντέλο θα πρέπει να ενισχυθεί με

περισσότερες εικόνες για κάθε τάξη για να ληφθούν πιο ακριβή αποτελέσματα.

Επιπλέον, οι εικόνες που χρησιμοποιούνται θα πρέπει να είναι πιο αντιπροσωπευτικές

της περίπτωσης που θεωρείται, επικεντρώνοντας κυρίως στην προσπάθεια εύρεσης εικόνων

που έχουν την ίδια γωνία και ύψος μιας κάμερας τοποθετημένης στην γέφυρα του πλοίου και

επίσης της ίδιας ανάλυσης που απαιτεί το μοντέλο . Το σύνολο δεδομένων εκπαίδευσης θα

πρέπει επίσης να δοκιμαστεί στις μεγαλύτερες εκδόσεις του YOLOv5 για να έχουμε καλύτερα

13 | Σ ε λ ί δ α

αποτελέσματα και οι παράμετροι του μοντέλου θα πρέπει επίσης να αλλάξουν και να γίνει

έρευνα για το πού επιτυγχάνονται τα καλύτερα αποτελέσματα.

Τέλος, μετά την εκπαίδευση του μοντέλου και την επίτευξη καλύτερων

αποτελεσμάτων, το επόμενο βήμα θα πρέπει να είναι η δημιουργία μιας τεχνητής νοημοσύνης

που συνδυάζοντας τα αποτελέσματα με ένα άλλο σύστημα του πλοίου, που ονομάζεται

Electronic Chart Display and Information System (ECDIS) να μπορεί να βρίσκει την ταχύτητα

και την πορεία των άλλων αντικειμένων. Σύμφωνα με αυτά τα αποτελέσματα να προτείνει μία

πορεία για το πλοίο, ώστε να αποφύγει τα αντικείμενα στο δρόμο του. Στο τελικό στάδιο θα

πρέπει αυτή η τεχνητή νοημοσύνη να μπορεί να αλλάζει την πορεία και την ταχύτητα του

πλοίου για να αποφευχθεί η σύγκρουση, ενώ το σύστημα θα πρέπει να δοκιμαστεί πάνω σε

μοντέλο σε κάποια δεξαμενή.

14 | Σ ε λ ί δ α

1 Literature Review
Neural networks and especially Convolutional Neural Networks have made significant

development over the last decades and are finding more and more applications in various

industries. Specifically, object detection is a field that the tools for it to develop were found

only recently. However its evolution was massive and so in only 20 years dozens of networks

were created with each one being better than its predecessor solving some of their problems by

applying new ways to manage the images or the feature maps, or even totally different ways to

make the detection. YOLO is a good example, as in only 5 years there have been 5 versions of

it that each applied the most recent techniques known until then and so having better results.

YOLO applications extend to every industry that has an interest in computer vision, detection,

tracking, counting, and so on. That’s why it is widely applied in ship navigation mainly in

autonomous ships, where the detection of obstacles in the ship’s path is a very important feature,

and in sea surveillance.

Yang-Lang Chang and his team developed a ship detection algorithm based on

YOLOv2 for SAR imagery in 2019 (Chang et al., 2019). By reducing the number of layers, and

so creating a new model called YOLOv2-reduced, they managed to have the same accuracy,

near 90%, of YOLOv2 but with reduced computational time. In the same period an article

referring to ship detection under different weather conditions based on a deep neural network

by Xin Nie (Nie et al., 2019). He and his team proposed to enlarge a dataset that contains only

clear images in normal weather conditions, with synthetically generated images that match

different weather conditions. They then trained the YOLOv3 network with this dataset and

resulted in a decrease in accuracy and recall of 6% and 10% respectively, compared to the clear

weather dataset, especially in smaller boats. In another article, Tianwen Zhang and his team

proposed a high-speed SAR ship detection approach by improved YOLOv3 in 2019 (Zhang et

al., 2019). They experimented on a public SAR ship detection dataset and the results indicated

an increase in the detection speed compared to the YOLOv3, Faster R-CNN, and SSD methods

while maintaining the same accuracy. In 2019 again Ruidong Zheng combined the YOLO

algorithm and Automatic Identification System (AIS) to assist vessels in obstacle avoidance

(Zheng et al., 2019). This system processes the image and video information that are acquired

by cameras mounted on the ship and in combination with the AIS system of the ship provides

a more accurate global view. The experiments showed that the system can identify the ships

and visualize the AIS information, but didn’t report numbers for the metrics.

Another application of YOLOv3 in ship navigation was done by Xinqiang Chen that

used YOLOv3 to detect small, medium, and large ships in 2019 (Chen et al., 2019). The

detection was done in different port navigation scenes, namely low traffic, foggy environment,

high traffic, and small image scale. The results returned an average value of 84% and 92% for

Recall and Precision respectively. In the same year, a region of interest extraction algorithm

based on YOLOv3 was proposed by Li Tianwei (Li et al., 2019). In this method, different

quality naval images were generated using image degradation algorithm, the network was

retrained utilizing migration learning that achieves better accuracy and detection rate and lastly,

the dimensions of the output tensors were optimized. These innovations resulted in a 4.25%

increase in the detection rate, improving the effectiveness of the algorithm. An improved

version of YOLOv3 for ship detection was proposed by Haiying Cui in 2019 (Cui et al., 2019).

The main improvements were in the dimensions of Clusters, some network improvement, and

applying the Squeeze-and-Excitation module. The experiments had as a result an mAP of 91%,

increased by 4% from the YOLOv3 algorithm. Except for the last article an improved YOLOv3

algorithm was also developed by Yuchao Wang and Xiangyun Ning that borrowed the CFE

module from the CFE network and changed the 1x1 convolutional of YOLOv3, while

improving the loss function and augmenting data for small ships (Wang et al., 2019). The

15 | Σ ε λ ί δ α

module achieved an accuracy of 74.8%, increased by 3.6% from the YOLOv3, but with fps

29.8, decreased by 3.6 compared with YOLOv3. The last application of YOLO in shipping for

2019 was Jie Yang and his team which developed a tracking algorithm for unmanned surface

vehicles using YOLOv3 to extract high-performance object detection (Yang et al., 2019). Then

a data association method is implemented combining the estimation of motion state through

Kalman filter and the appearance feature. The results of the detectors that used YOLOv3

returned an mAP of 80% while the tracking system seemed to better complete the detection

compared with the SORT tracking algorithm.

In 2020 Zhenfeng Shao and his team worked on making YOLOv2 more efficient in

near coastline problems in the sea (Shao et al., 2020). They developed a novel saliency-aware

CNN based on the YOLOv2 model that extracts coastline feature maps and inputs them into a

CNN in increase to reduce the program’s ability to differentiate nearshore buildings and small

ships. They compared their model with the most used ones, Fast R-CNN, Faster R-CNN, SSD,

and YOLOv2 for different types of ships, and resulted in an mAP of 87%, 14% higher than the

YOLOv2. In the same year, an article regarding the discrimination between icebergs and ships

using YOLOv3 was published by Fredrik Seerup Hass (Hass & Jokar Arsanjani, 2020). In this

article, the author trained the YOLOv3 model with iceberg and ship images from a Synthetic

aperture radar (SAR) for different epochs and resulted in precision, recall, and mAP scores with

maximum values of 65%, 60%, and 55.7% respectively. Zhelin Li published an article about a

Lightweight Ship Detection Method based on the YOLOv3 and DenseNet, in 2020 called

LSDM (Li et al., 2020). The backbone of this method is improved by using dense connections

inspired by the DenseNet, while the feature pyramid networks are improved using spatial

separation convolution instead of regular convolution. These innovations affected positively

the overall performance with the recall being 95%, the precision 85%, and the mAP 94%,

almost the same as the YOLOv3 but with 66% fewer parameters.

In 2021 the article of Yang Jie was published and involved ship detections and tracking

in inland waterways with the use of YOLOv3 but with some improvements (Jie et al., 2021).

They added the Kmeans clustering algorithm to initialize the anchor boxes, modified the output

classifier to a single softmax classifier, and changed the Non-Max Suppression to a Soft Non-

Max Suppression. The mAP of the model was 95.5% with an increase of 5% in comparison to

the YOLOv3 algorithm. Dehai Chen and his team worked, in 2021, on a ship detection

algorithm based on the improved YOLOv3 algorithm, containing the attention mechanism that

was embedded in Darknet-53 and a new feature enhancement algorithm for having more

semantic information on low-level features (Chen et al., 2021). The results of this research were

97% for both the precision and the recall and a mAP of 99%, increased by 3% compared to

YOLOv3. Meanwhile, in the same period of time, a similar article was published researching

the recognition and tracking of water surface targets using YOLOv3 improved by the Inception

module and the KCF algorithm to reduce the loss of blocked targets (Ma et al., 2021). This

research was conducted by Zhongli Ma and his team and resulted in a mAP of 88%.

The one to apply the YOLOv4 algorithm in ship detection was Xu Han in 2021 who

replaced the backbone with a network called RCSPDarknet to improve precision, designed an

amplified receptive field module named DSPP to reduce the loss of small ships, and used the

attention mechanism and Resnet’s shortcut idea to create a new feature pyramid structure (Han

et al., 2021). All these improved mAP0.5:0.95 by 1%, reaching 57.7% and increasing FPS to 69.4

from 56.1 with 23% reduced parameters compared to YOLOv4. In the same year, a sea surface

object detection algorithm based on YOLOv4 was created by Tao Liu (Liu et al., 2021). They

added a Reverse Depthwise Separable Convolution in the backbone of the algorithm so as to

detect unmanned surface vehicles resulting in 40% decreased weights, 20% increased detection

speed and 2% increased mAP compared to the YOLOv4. Junchi Zhou in 2021 worked on an

16 | Σ ε λ ί δ α

improved YOLOv5, in which the initial frame at the target is re-clustered by K-means, the

receptive field area is expanded and the loss function is optimized (Chen et al., 2021). The

results from these changes show a precision of 98% and a recall of 96.2% while the mAP

increased by 4.4% with a value of 98.6% compared to the YOLOv5.

One year after the articles above, in 2022, an improved version of YOLOv3 was created

by Lena Chang that appropriate input image size, fewer convolution filters, detection scales,

and modifications of the spatial pyramid pooling to reduce complexity and improve

performance (Chang et al., 2022). The model was trained with visible and infrared images and

resulted in a 48% reduction in the billion floating point operations while increased the mAP

and FPS by 2% and 8%, respectively, reaching values of 93% and 104.7. A ship detection and

classification algorithm based on YOLOv4 was also designed by Weina Zhou and Lu Liu in

2022 (Zhou & Lu, 2022). The model integrated a Multi-layer Feature Fusion and a Multi-layer

Receptive Field Block module into the neck of YOLOv4 to reduce feature information loss.

The impact on the main algorithm of YOLO was noticeable with an increase of 12% in mAP,

with a value of 76.4%.

In 2022 also, with their article “An Improved YOLO v4 Algorithm-based Object

Detection Method for Maritime Vessels” Guowen He and his team used a k-means algorithm

to increase clustering at the input side of image data (He et al., 2022). This change led to mAP,

precision, and recall values of 86%, 86.4%, and 84% respectively, which is a 3% increase

compared to YOLOv4. In the same year, Zakria published his modified version of YOLOv4

(Zakria et al., 2022). A classification setting of the nonmax suppression threshold and two

allocation schemes for the problem of frame anchor allocation in the base algorithm were

proposed in order to increase the accuracy without affecting the speed. The mAP for the 3

innovations either decreased or stayed at the same level as the YOLOv4 with the highest

reaching 74.22%, namely decreasing the mAP by 1%. A new model that modified the YOLOv5

model by replacing the CSP-DarkNet with CSP-DenseNet to increase the accuracy of target

detection and classification was proposed by Xuan Zhang in 2022 (Zhang et al., 2022).

Experiments showed that it reached 71.6% on mAP in comparison to 62.2% of the YOLOv5.

Jia-Chun Zheng published a model based on YOLOv5 network in 2022 for fast ship

detection (Zheng et al., 2022). The team proposed an optimization of the anchor boxes

according to the ship target characteristics, mapped the k-means clustering algorithm to select

more appropriate anchor boxes, and also used the scaling factor γ for the batch normalization,

reaching an 86.5% mAP, increased by 2% of the base model YOLOv5. That year an article by

Emmanuel Vasilopoulos and his team regarding autonomous object detection algorithms in the

maritime environment using a UAV platform was published (Vasilopoulos et al., 2022). In the

context of the research an embedded system that employed machine learning algorithms,

specifically the YOLOv5 algorithm, was created allowing a UAV to detect objects in the water.

The results for the precision were 87%, the recall 62%, and the mAP 67%. In 2022 also, an

article about a Complete YOLO-based ship detection method for Thermal Infrared Remote

Sensing Images under Complex Backgrounds was developed by Liyuan Li and his team (Li et

al., 2022). The dataset was developed using a thermal imaging system, they were preprocessed

and input in the YOLOv5s, which was improved by adding Dilated Convolutional, depthwise

convolution, and SELayer modules. The results showed an mAP of value 98.7%, which is 9%

higher than the YOLOv5s model but also increased the number of layers, from 283 in

YOLOv5s to 390 in the proposed method. Lastly, Jun-Hwa Kim and his team in 2022 used a

ship detection and classification algorithm based on YOLOv5 (Kim et al., 2022). They

implemented the mix-up technique in addition to the basic augmentation of YOLOv5 and

corrected the Singapore Maritime Dataset. They then used the dataset to train the YOLOv5

which resulted in 89.8% mAP, in comparison to the 77.2% of the SMD before the correction.

17 | Σ ε λ ί δ α

2 Neural Networks
 Since the late 1980s research activity in neural networks has seen a noticeable increase

in interest. Even though most of the research has focused on developing new algorithms, there

has been an increasing urge in the direction of applying neural networks to real-world problems.

Through their use, it became clear that they are extremely good in pattern recognition and data

processing and so very helpful to areas that need these features, like scientific instrumentation.

Many types of neural networks have been developed, but in this thesis the main focus

will be on Convolutional Neural Network (CNN) which is the one that the dataset was trained

on. But before going in depth on those networks specifically there will be a brief introduction

to the general idea behind Artificial Neural Networks (ANN) and their history.

2.1 Overview of neural networks
Neural Networks represent a computational example in which a set of examples is used

in order to find a solution to a problem. The idea of neural networks comes mainly from studies

of the information processing mechanism in biological neural networks, especially in the

human brain. In fact, in the early years, the main focus of the research was on understanding

the function of the biological nervous system of the human brain.

A neural network in general is regarded as a non-linear mathematical function that is

used to transform a set of input into a set of output. This transformation is controlled by a set

of parameters that are called weights whose values are defined by a set of examples. The act of

determining these weights is called learning or training and it generally requires much

computational power. When the weights have been fixed then the neural can process new data,

out of the training data quickly (Bishop, 2006).

Neural networks can process data with high speed, find the solution to a problem with

only a number of input values and also give the ability to work with incomplete data and

produce an output. Although the loss of performance depends on the importance of the missing

information.

The disadvantages of neural networks originate from the need to produce a suitable set

of examples to train on and the potential problems that may arise if the network is needed to

locate the relation between data that are significantly different from the ones that it is trained

on. Moreover, neural networks are very hardware depended as they require processors with

parallel processing power and they also produce a solution without the user knowing why or

how. Generally speaking, neural networks are suitable for solving problems that have the

following characteristics (Bishop, 1994):

i. There are abundant data to train on,

ii. It is difficult to create an adequate simple solution based on models for the

problem,

iii. The data must be processed at high speed, as there is a great number of data to

be processed and there is a need for real time application,

iv. The method must be steady even if the input data have a moderate noise.

18 | Σ ε λ ί δ α

2.1.1 Biological neural networks

The human brain is one of the most complicated structures of the human body but it is also the

most exciting task that scientists faced. Biological neural networks are of high interest for

humans, which derives from the desire to build better pattern recognition and information

processing systems. For completeness and better understanding of the way neural networks

work in this thesis, there will be a given a simplified review of biological neural networks.

The human brain consists of 1011 active cells called neurons. Their most common

features are shown in Figure 2.1. Every neuron consists of a cell body or soma that contains the

cell nucleus. The branching tree of dendrites is associated with the cell body and acts as an

input to the neuron as they receive signals from other neurons. From the soma, a single long

fiber extends called axon, which branches out to threads connecting to many other neurons at

the synapses. For the transition to take place a complex chemical process must be done, where

substances are released from one neuron to the receiving one. This way the electrical potential

is either lowered or increased in the receiving neuron. If that potential is higher than a threshold

then the neuron is said to be fired and an electric impulse is triggered (Yegnanarayana, 1994).

When this happens the signal of the fixed strength is sent down the axon and through the

synapses passed to the dendrites of the next neuron. From there the neuron computes a weighted

sum of the inputs from other neurons and if the sum exceeds a threshold then the neuron fires.

The activity of a given synapse is dependent on the rate of the signals arriving at it. A

synapse that continuously triggers the activation of its presynaptic neuron will grow in strength

while others will gradually weaken. Thus the strength of the synaptic connection will repeatedly

get modified. This mechanism of neural connectivity plays a significant role in the process of

learning.

In the human brain, each neuron is receiving signals from approximately 104 synapses.

Also, every neuron passes its signal to hundreds of other neurons so the total number of

connections between neurons reaches 1015, the majority of which are developed during the first

few months after birth.

Figure 2.1: Schematic of two biological neuron.

19 | Σ ε λ ί δ α

Each neuron alone is generally slow in processing information but when they are

connected as the information can be processed parallel in many neurons the total computational

power can be equal to or even more than the newest computers. It also leads to a high loss

tolerance as the fact that every day many neurons die doesn’t affect the performance of the

overall system. The overall simplified picture of the biological neural networks can be a good

starting point in understanding the way neural networks are formed and the way they work.

2.1.2 History of neural computing
The history of neural networks goes back to 1943 when Warren McCulloch and Walter

Pitts (McCulloch & Pitts, 1943) created a computational model for neural networks based on

algorithms called threshold logic. They showed that networks of neural networks are capable

of universal computation, paving the way for research that focused on the application of neural

networks to artificial intelligence.

Next up D.O.Hebb in 1949 in his book (Hebb, 1949) proposed a learning hypothesis

based on the mechanism of neural plasticity, namely the ability of neural networks in the human

brain to change through growth and reorganization. He suggested that learning happens through

modification of the strengths of the synaptic connection between 2 neurons. He also said that

when 2 neurons fire together then the synapse between them should be strengthened and

accordingly if they don’t fire the synapse should be weakened. This learning hypothesis became

known as Hebbian learning. Different researchers then started to apply these ideas and created

neural network computational machines. Farley and Clark (Farley & Clark, 1954) in 1954 were

the first to use computational machines. Other neural network computational machines were

created by Rochester, Holland, and Duda (1956) (Rochester et al., 1956).

In 1958 Rosenblatt was the one to develop the first hardware neural network system

(Rosenblatt, 1958). They named it the perceptron and was based on McCulloch-Pitts neuron

models. Its external input was an array of photoreceptors and the synaptic connections were

provided by potentiometers. Adjustments in the potentiometers were made using the perceptron

learning algorithm (Rosenblatt, 1961). The perceptron could learn to see the difference between

characters and shapes which were provided as images in the input. Rosenblatt also resented the

result that if a problem is soluble from the perceptron then the perceptron algorithm will solve

it in a finite number of steps.

Research, although, decreased in the 1960s after the discovery of 2 issues with

computational machines by Minsky and Papert in 1969 (Minsky & Papert, 1969). The first was

that the perceptron was incapable of computing the exclusive-or circuit and the second was that

current computers couldn’t handle the work required by the larger neural networks as they

lacked computational power. Therefore the research reduced in speed until greater processing

power in computers was achieved. In 1970 the field of neural networks was abandoned with

only a few researchers still active in the field.

A “revival” in this field of science started in the early 1980s and was led by J. J.

Hopfield with his work (Hopfield, 1982), (Hopfield, 1984), who pointed out the relation

between neural network models and some systems known as spin glasses. The next

development was the creation of new algorithms based on error backpropagation in 1986 by

Rummelhart (Rumelhart et al., 1986). Backpropagation describes a method in which errors are

processed at the output and then go through the system’s layers for learning and training. The

fact that there was a big availability of cheap and high computational power computers,

combined with the work of Rumelhart and the fact that Artificial Intelligent was not as good as

anticipated led to a burst of interest in neural networks.

20 | Σ ε λ ί δ α

In 1992 the max-pooling layer was introduced to help in 3D object recognition through

the building of the cresceptron by John (Juyang) Weng, Narendra Ahuja, and Thomas S. Huang

(Weng et al., 1992) (Weng et al., 1993). In the same year, Schmidhuber used a multi-level

hierarchy of networks (Schmidhuber, 1992). He pre-trained one level at a time by unsupervised

learning and then used backpropagation to evaluate. This way he solved the vanishing gradient

problem, in which the error in a neural network shrinks as it goes from one layer to another so

it reaches a vanishingly small value which prevents the weight from changing in the next layer.

In the next years, the topic of neural networks has attracted significant attention and

thus there has been a great deal of research and progress. Especially the topic of pattern

recognition, with the development of CNNs (LeCunn et al., 1998) that started to attract more

and more interest over the years. From then on the main focus moved to CNN and especially

object detection algorithms and their applications in real-time problems, with the development

of different methods that will be analyzed in the next sections.

Nowadays neural networks have been widely applied in many aspects of life problems.

Some of their applications are in healthcare, as CNN are used for analyzing X-ray photos

ultrasounds, face recognition in mobile smartphones, handwriting analysis, signature

verification, weather forecasting, autonomous cars or ships that don’t need human assistance

and the list goes on.

2.2 A single neuron model

Figure 2.2: McCulloch-Pitts model.

In 1943 McCulloch and Pitts (McCulloch & Pitts, 1943) introduced the first neural

network that consisted of one neuron. A schematic of the network is shown in Figure 2.2. This

model transforms a number of input values x1, … , xn into an output variable z. The input xi is

firstly multiplied with the corresponding parameter wi, which is called weight (the equivalent

to the synaptic strength in the biological neural networks that were covered above). All the

weighted inputs are then appended and so the output is produced (Equation (2.1)) :

𝑧 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏 (2.1)

, where b is the bias and is equivalent to the threshold in the biological neural networks.

21 | Σ ε λ ί δ α

The output a of the network, which can be compared slightly with the average firing rate of the

neuron in the biological counterpart, is calculated by passing it to the non-linear function σ(),

which is called activation function, as in the following Equation (2.2):

𝑎 = 𝜎(𝑧) (2.2)

This simple model forms the base that every network works on. Just by linking many

of these simple processing units together, more complicated networks can be formed. Now that

both the biological and the artificial neural networks have been mentioned, a comparison

between the elements of the two can be done with the help of the following Figure 2.3:

Figure 2.3: Comparison between biological and artificial neurons

The two neurons, both biological and artificial, have many similarities. The axon of the

previous neuron and the dendrites are the arrows that connect the different artificial neurons.

The synapses is where the multiplication of the input and the corresponding weight is done.

The cell body is the artificial neuron where all the calculations are done and where the output

of the summarization is altered with the use of the activation function. Finally, the output axon

is the arrow that connects the artificial neuron with the next one.

2.3 The Multilayered Perceptron
Even though neurons on their own don’t have much computational power, when

combined they can create a network of neurons which is called a neural network. Neurons that

are in the same column create a layer. A neural network has many layers with each consisting

of many neurons. The Figure 2.4 depicts a network with 3 separate layers and 2 layers of

weights. Neurons that are in the first layer create the input layer where the input values are

inserted. The ones that are in the middle layer create the hidden layer, which is called this way

because they are not exposed directly to the input of the network and their activation values

can’t be accessed from outside of the network. The simplest network consists of only one

neuron in the hidden layer that outputs the final value. Although with the use of the continuously

developing technology and computational power of computers it is feasible to create very deep

22 | Σ ε λ ί δ α

neural networks, namely to have many hidden layers, things unimaginable for researchers in

the previous decades. Lastly, the output layer is the one that is responsible for outputting the

final value or the vector of values, according to the format required for the problem.

Figure 2.4: A multilayer perceptron with 3 layers of neurons, 2 layers of weights.

The hidden layer’s values are denoted as xn and are given by the following Equation

(2.3) (Bishop, 2006)

𝑥𝑛 = 𝑔 (∑ 𝑣𝑛𝑚𝑧𝑚

𝑀

𝑚=0

) (2.3)

, where vnm are the weights connecting the m neuron in the input layer with the n neuron in the

hidden layer and g is the activation function between the input and hidden layer. Note that

instead of putting the bias we included it in the summarization as a special weight from an input

of z0=1. Although that is not the output of our network. To reach the output the z neurons must

first be transformed by the activation function between the hidden layer and the output layer

with a similar Equation (2.4)

𝑦𝑘 = 𝑔′ (∑ 𝑤𝑘𝑛𝑥𝑛

𝑁

𝑛=0

) (2.4)

, where wkn are the weights that connect the n neuron of the hidden layer with the k neuron in

the output layer. Again the bias is included as a special weight from an input of x0=1. Lastly

combining these previous 2 equations the final output of our neural network is created, which

is represented in the Equation (2.5) below

𝑦𝑘 = 𝑔′ (∑ 𝑤𝑘𝑛𝑔 (∑ 𝑣𝑛𝑚𝑧𝑚

𝑀

𝑚=0

)

𝑁

𝑛=0

) (2.5)

Each of the components in Equation (2.5) corresponds to an element in the Figure 2.4.

Something to note here is that activation functions g and g’ don’t need to be the same.

23 | Σ ε λ ί δ α

 In the literature, there are 2 ways to count the number of layers in a neural network,

and they are both commonly used. The first way is by counting all the layers that the neural

network has, except for the input layer. So in the above example, in Figure 2.4, the total layers

are 2, the hidden and the output layer, which is equal to the layers of the weights. In the other

way, the layers of the network are equivalent to the total number of layers in the network with

the input layer included. So in the paradigm, there are 3 layers in the network and 2 layers of

weights.

2.3.1 Activation Functions
 Activation functions, as discussed, are the functions that alter the output of the neuron.

They are just a simple mapping of the weighted sum of the inputs in the neurons. It is called

this way because it governs the threshold at which the neuron will activate and the strength of

the output (Sharma et al., 2020). Activation functions are divided into 2 types:

1. Linear Activation Functions

2. Non-Linear Activation Functions

The Linear Activation Function is the simple and well-known function of a line. As

this function doesn’t help with the complexity or the various parameters of usual data inserted

into the neural networks there won’t be an emphasis on that function. A typical figure for that

function is illustrated in Figure 2.5.

Figure 2.5: Linear Activation Function

Even though Linear Activation Function is useful in some problems, when

generalization and adaptation of the model through different input values are needed then a

Non-Linear Activation Function is chosen. A Non-Linear Activation Function is used to give

non-linearity to the network. There are many functions of this type, although for simplicity the

most common will only be mentioned.

The Sigmoid Activation Function is depicted in the Figure 2.6(a) and has an S-shape.

It is useful because it restricts values between 0 and 1. Therefore, it is used especially in models

that have to predict the probability of the output, as the probability is also limited between 0

and 1.

24 | Σ ε λ ί δ α

The Tanh or hyperbolic tangent Activation Function is illustrated in the Figure 2.6(b)

and has also an S-shape as the Sigmoid. Although the difference is that the Tanh function’s

values range from -1 to 1, which means that the negative values will be mapped strongly

negative and respectively the positive will be mapped strongly positive. For this reason, the

Tanh function is mainly used in classification between 2 classes.

The Rectified Linear Unit Activation Function (ReLU) is shown in the Figure 2.6(c).

It is the most commonly used function right now as it is used widely in convolutional neural

networks and deep learning. All the values that are less than 0 are mapped 0 and the positive

are mapped, as in the linear function, without some difference. Although it is not the best go-

to function as it doesn’t map the negative input values, which decreases the ability of the

network to train from the data properly.

The Leaky Rectified Linear Unit Activation Function (LeakyReLU) function, (Figure

2.6(d)) is an attempt to solve the problem of the ReLU not mapping negative values. For this

reason, a “leak” is put and the function doesn’t nullify the negative values but maps them with

a linear function ax with a not being 1, as then it turns into the already discussed linear function.

Figure 2.6: Typical Activation Functions (a) Sigmoid, (b) Tanh or hyperbolic tangent, (c) Rectified Linear

Unit(ReLU), (d) Leaky Rectified Linear Unit(LeakyReLU)

In the above example (Figure 2.4) there were 2 activation functions g() and g’(). If these

functions were linear then the network transformation would be reduced to a product of 2

matrices, which is again a matrix. Although if the g() was considered to be non-linear then the

network would represent easier some general-purpose problems.

Another thing to note here is that if a sigmoid activation function is used in the hidden

layers then its properties will hold even if in the output layer a linear function is applied, as

when a linear function is used as an activation function is like not applying any change in the

values. In general for interpolation problems, where a smooth change in the values is needed,

usually, a linear activation function is used in the output layer (Sharma et al., 2020). For

classification problems though a sigmoid function is used as it limits the values between 0 and

1 values. Sigmoid however is inappropriate for most interpolation problem as the restriction of

the output between 0 and 1 is not needed.

25 | Σ ε λ ί δ α

2.4 Network training and error implementation
 In order to better understand the training and especially the loss which will be

mentioned in this chapter, an analogy is drawn between the training of neural networks and the

fitting of a polynomial curve. Below the m-th order polynomial equation is illustrated in

Equation 2.6:

𝑦 = 𝑤𝑚𝑥𝑚 + ⋯ + 𝑤1𝑥 + 𝑤0 = ∑ 𝑤𝑗𝑥𝑗

𝑚

𝑗=0

(2.6)

This is a non-linear mapping that takes x as input and y as output. The value of y is

determined by the values of wm…w0 that are equivalent to the weights in a neural network. The

equivalent of the w0 is the bias. Polynomials are in general similar to neural networks, although

neural networks have a higher number of inputs compared to the one input of polynomials and

they can also define a large class of functions easily. In fact, a large enough network can define

any continuous function with sufficient accuracy (Bishop, 1994).

Once the neural network has been configured it must be trained on the dataset. Training

is called the process of deciding the values of the weights in the neural network. To better

introduce this process, the analogy of the polynomial curve above will be used for a set of data.

Each point in the dataset, which is used as the input, has an index number q=1,…,n, symbolized

as xq, and a value that is desired for the output to be, symbolized with tq
 and called target value.

To find the best coefficients for the polynomial, the error between the output value predicted

by the function of the polynomial y(xq;w), for a specific data point xq, and the corresponding

desired output value tq for the same data point is calculated. Usually, some error functions are

used to be minimized. The most common one is the sum-of-squares error function illustrated

below (Equation (2.7)).

𝐸(𝑤) =
1

2
∑{𝑦(𝑥𝑞 , 𝑤) − 𝑡𝑞}2

𝑛

𝑞=1

(2.7)

It is obvious that E is a function of w so that the curve will be fitted to the data just by

selecting the best values for w that minimizes the function E. In the Figure 2.7 a cubic

polynomial, in Equation (2.6) setting m=3, is fitted over a set of data by minimizing the sum-

over-squares.

In neural networks, the training follows an analogous pattern. Firstly a suitable error

function is found, with respect to the input data. The weights are then chosen in order to

minimize the error. Although, minimizing the error function in a complex neural network is

more difficult than in the polynomials as the network’s functions depend in a non-linear manner

on the weights and so require the use of non-linear algorithms for optimization. In neural

networks, there are several input vectors xq(x1
q,…, xd

q), each one of them having a target vector

tq. In that respect for every output k, the error, taking into consideration the Equation (2.7) if

we instead sum over all q and output vectors k, is shown in the below Equation (2.8).

𝐸(𝑤) =
1

2
∑ ∑{𝑦𝑘(𝑥𝑞, 𝑤) − 𝑡𝑘

𝑞
}

2
𝑐

𝑘=1

𝑛

𝑞=1

(2.8)

26 | Σ ε λ ί δ α

Figure 2.7: An example of curve fitting using a polynomial function.

The error function can be considered as a surface above the weights, as in the Figure

2.8. This way the problem of training a neural network can be regarded as finding the minimum

value of the error function, which is the wA in the Figure 2.8. This is called global minimum.

Although there might be other values higher than the global minimum, like wB, which is called

local minimum. The ∇E is the function’s gradient at a point on the surface and is a key point to

the gradient descent algorithm, as it firstly selects a value for the weight and then it alters it in

order to move it in the direction of the negative of the error function gradient. In the case of

single-layered neural networks with a linear activation function, the sum-of-squares error

function has no local minima so by solving the linear equation the global minima are easily

found just. Although in multilayered neural networks error function is non-linear and the

minimum is found by firstly considering a random weight and then making some changes in

order to find the minimum. Some algorithms will find the local minimum, which in some

applications where the surface is very complicated can be sufficient, while others have

techniques to escape the local minima and have a higher possibility to find the global minima.

Figure 2.8: Schematic illustration of the error function E(w) as a surface above the weights wi.

27 | Σ ε λ ί δ α

The derivatives with respect to the network’s weights are used broadly from many error

minimization algorithms. These derivatives are the components of the gradient vector ∇E of the

error function. As there are substantial benefits for the training of the network in using gradient

information there will be a more extensive discussion in the below paragraph about the ways

to evaluate the derivatives and more specifically in the error backpropagation.

2.4.1 Back Propagation
Backpropagation algorithm (Bishop, 2006) is a very computationally efficient technique

to calculate the derivatives, especially for nonlinear mapping function given by multi

perceptron. Here for simplicity and better understanding, a general feed-forward network is

considered with a single hidden layer, as shown in Equation (2.5), a nonlinear activation

function, and the sum-of-squares error function, as indicated in Equation (2.8).

The error function can be written as a sum of terms, one for each data in the training data

set (Equation 2.9)

𝐸 = ∑ 𝐸𝑞

𝑛

𝑞=1

(𝑤) (2.9)

For that reason, we can separately calculate the derivatives for each term and then sum

over all of the terms in the data set together in order to get the required derivative.

Let’s first consider that the output values yk are linear combinations of the input xn

(Equation (2.10)).

𝑦𝑘 = ∑ 𝑤𝑘𝑖𝑥𝑖

𝑖

(2.10)

The error function for a particular term q can be written, as in the Equation (2.8), in the

following way (Equation (2.11))

𝐸𝑞(𝑤) =
1

2
∑{𝑦𝑘(𝑥𝑞 , 𝑤) − 𝑡𝑘

𝑞
}

2

𝑘

(2.11)

The gradient of the error function for particular weight wji, taking into account the

Equations (2.11) and (2.10), is given in Equation (2.12),

𝜕𝐸𝑞

𝜕𝑤𝑗𝑖
= (𝑦𝑗

𝑞
− 𝑡𝑗

𝑞
)𝑥𝑖

𝑞 (2.12)

However, this evaluation was about one term of the error function. Let’s now proceed

in generalizing the above equation in a more complex feed-forward multilayered neural

network. In a network like that, every unit computes the output as a weighted sum of the inputs

while also considering the activation function of every layer. The output variable of the second

layer (the layer of weights from hidden to the output layer) of the network can be written in the

form (Equation (2.13)),

𝑦𝑘 = 𝑔′(𝑎𝑘) , 𝑎𝑘 = ∑ 𝑤𝑘𝑗𝑧𝑗

𝑗

(2.13)

, where zj is the activation, or input, of a unit that sends its signal to the unit k, wkj is the weight

that connects the unit j with the unit k and g() is the nonlinear activation function of the unit k.

There is no need to deal with the bias as it can be included in the sum with a fixed weight of

+1.

28 | Σ ε λ ί δ α

The network being examined is assumed to be provided with the necessary input vector

and it has calculated the activations of all hidden and output units just by applying the Equations

(2.12) and (2.13) to the values. This process is most commonly referred to as forward

propagation, as information flows forward in the network. The derivative with respect to the

last layer weights wkj, as it depends on the weight only via ak, it can be written to the form,

𝜕𝐸𝑞

𝜕𝑤𝑘𝑗
=

𝜕𝐸𝑞

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝑤𝑘𝑗

(2.14)

Now the following useful notation is introduced,

𝛿𝑘 ≡
𝜕𝐸𝑞

𝜕𝑎𝑘

(2.15)

, where δ can be considered to be the error as it expresses the difference between the network’s

output and desired value. Using the Equation (3.13) zj can be written as,

𝜕𝑎𝑘

𝜕𝑤𝑘𝑗
= 𝑧𝑗 (2.16)

Then by making use of the previous 3 Equations (2.14), (2.15), and (2.16) the derivative

becomes,

𝜕𝐸𝑞

𝜕𝑤𝑘𝑗
= 𝛿𝑘𝑧𝑗 (2.17)

After that, an expression for the error of the hidden units can be found using Equations (3.11),

(2.13), (2.15)

𝛿𝑘 = 𝑔′(𝑎𝑘)(𝑦𝑘 − 𝑡𝑘) (2.18)

 Note that in Equation (2.17) the derivative is simply found with a multiplication of the

values δ, for the unit at the output end of the weight, with the values z, for the unit at the input

end of the weight. Note also that this equation takes the same form as the simple linear model

discussed at the start of the paragraph, so the only thing that must be done to evaluate the

derivative is to apply the Equation (2.17) in the values of the δ’s in the hidden and output layers.

Figure 2.9: Illustration of the calculation of δj for hidden unit j by backpropagation of

the δ’s from those units k to which unit j sends connections.

29 | Σ ε λ ί δ α

 Now a similar equation must be found for the derivative with respect to weights in the

first layer. Similarly to before the output variable of the second layer (the layer of weights from

hidden to the output layer) of the network can be written in the form (Equation (2.19)),

𝑧𝑗 = 𝑔(𝑎𝑗) , 𝑎𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖

𝑖

(2.19)

, where xi is the input vector of the network. Then the derivative can be written as below

(Equation (2.20)),

𝜕𝐸𝑞

𝜕𝑤𝑗𝑖
=

𝜕𝐸𝑞

𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑤𝑗𝑖

(2.20)

Now the following useful notation is introduced (Equation 2.21)),

𝛿𝑗 ≡
𝜕𝐸𝑞

𝜕𝑎𝑗

(2.21)

, and the other element of the equation can be written as (Equation 2.22)),

𝜕𝑎𝑗

𝜕𝑤𝑗𝑖
= 𝑥𝑖 (2.22)

So the derivative takes the form (Equation 2.23)),

𝜕𝐸𝑞

𝜕𝑤𝑗𝑖
= 𝛿𝑗𝑥𝑖 (2.23)

, which is the same form as the Equation (2.17), so that the derivative that connects the input of

the network with the hidden layer is the δ for the hidden layer multiplied by the input of the

network.

Finally, the expression for the δ’s is found just by using the chain rule for the partial

derivatives (Equation 2.24)),

𝛿𝑗 =
𝜕𝐸𝑞

𝜕𝑎𝑗
= ∑

𝜕𝐸𝑞

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝑎𝑗
𝑘

(2.24)

So by using the Equations (2.13), (2.15), and (2.18) we obtain the full back propagation

expression (Equation 2.25)),

𝛿𝑗 = 𝑔′(𝑎𝑗) ∑ 𝑤𝑘𝑗𝛿𝑘

𝑘

(2.25)

, which states that the value of δ for a hidden unit can be obtained by backpropagating the δ’s

from units higher in the network hierarchy. Figure 2.9 illustrates graphically the

backpropagation that was described with equations above. Information during the forward

propagation flows upwards in the figure while the black arrows show the direction of the error

information during back propagation.

In general, the backpropagation algorithms can be summarized in the following steps:

1. Insert an input vector xn in the network and then forward propagate the information in

order to evaluate the activation functions of the output units, Equation (2.18), and the

hidden units, Equation (2.13).

2. Evaluate the errors for the output unit using the Equation (2.18).

30 | Σ ε λ ί δ α

3. Backpropagate the δ’s using the Equation (2.25) to find the values for the error of the

hidden units.

4. Use Equations (2.17), and (2.23) in order to find the necessary derivatives.

The backpropagation method is used generally because of its computational efficiency.

Supposing the number of the weights in the network is N, the scaling of the derivative with the

number of the weights is needed to be found. As the error function Eq(w), is associated with all

the weights the evaluation of a single pattern will take O(N) steps. This means that the number

of steps will increase like the weights. Accordingly, the evaluation of a derivative of the error

function with respect to a single weight will take O(N) steps. There are N such derivatives so

the number of steps would be O(N2) to calculate all the derivatives. On contrary, the

backpropagation method evaluates all the derivatives only using a forward propagation, a

backward propagation, and the use of the Equations (2.17) and (2.23). Since each of these

calculations is done in O(N) steps, the evaluation of all the derivatives takes O(3N) steps. For

a set of data with n patterns, the total number of derivatives for the error function E would be

O(n3N) in comparison to the O(nN2) if it was calculated separately with direct evaluation. This

might not make so much of a difference in a lower number of weights but since the number of

weights in a network can range from a few hundred to many thousands in larger networks, the

saving in time for the calculation is significant. Taking also into consideration that, even with

the use of the backpropagation method for evaluating the error function, in a multilayered

perceptron the computing is still demanding the use of the backpropagation is necessary

(Bishop, 1994).

Some more advantages of the backpropagation algorithm, without giving details as they are

of less importance, are:

1. It simplifies the network structure by removing weighted links.

2. It is fast and easy to program.

3. It does not require prior knowledge about the networks.

4. There is no need to specify the features of the function to be learned.

5. It allows efficient computation of the gradient at each layer.

2.5 Convolutional Neural Networks
Although ANNs of type Feed Forward like the Multilayer Perceptron that was discussed in the

above chapters are very good at dealing with problems that take as input a one-dimensional

vector, they have difficulty in those that have inputs of 2 or 3 dimensions. Such problems are

image classification, image recognition, voice recognition, and more. This is where

Convolutional Neural Networks, CNNs, come in.

CNNs can be considered as special case feed-forward neural networks. They don’t differ as

much from the already discussed ANNs, as they are made up of neurons with learnable weights

and biases. The main difference is that instead of general matrix multiplications, as in ANNs,

they use convolution in at least one of their layers. Also, their input is considered to be an

image, instead of a one-dimensional matrix, which means that knowing the input from the

beginning the network can be enhanced with different properties in its architecture that help in

the whole classification process (Teuwen & Moriakov, 2020).

The basic use of CNNs is to classify images and patterns, like recognizing if in the picture there

is a dog or a cat. Although before the model is ready to recognize classes in an image the image

must be processed and the different features of the image must be extracted. Before CNN, some

experts had to design their own feature extractor for the specific image, which was not only

31 | Σ ε λ ί δ α

costly but also time-consuming while being inconsistent as a method as every image could

differ in a great way from the others (Kim, 2017).

With the introduction of the CNN, the feature extractor was included in the training method

rather than being designed from scratch. This feature extractor consists of some convolution

layers, which are the main feature extraction layer, and some pooling layers, that help reduce

the dimensionality of the image. After the features are extracted they enter the classification

network, which is consisted of Fully Connected Layers. It takes as input the features extracted,

processes them, and then generates an output. These particular layers will be discussed in the

next sections in detail.

2.5.1 An Introduction to images
Images consist of pixels, which are the picture’s elements, and carry information about the color

of the picture. In a 1920x1080 picture, the total number of pixels is 2.073.600, namely 2.1

megapixels. Each pixel has a size of eight bits or more and the ability to project millions of

different colors and contain several channels depending on the colors that the picture has. There

are 2 types of pictures.

Firstly there are the grayscale pictures. In these pictures every pixel has only one channel, which

value ranges from 0, being the total black, to 255, being the total white. This way every pixel

carries only the information about how high in the grayscale is the color that it represents, thus

having only one value. A simple example of a greyscale picture is shown in the Figure 2.10

below.

Figure 2.10: A grayscale image with the representation of the values of each pixel.

Although if instead of black and white the picture is in full color then the pixels would have 3

channels if the Red Green Blue (RGB) system is considered. Each channel in this system is a

grayscale image of the same size as the color image, made just from one of the primary colors

Red, Green, or Blue. Sounds confusing but let’s suppose a grayscale that ranges from 0 to 255

and instead of the 0 being the total black it is the total Red or Green or Blue. This way the scale

of the chosen color is created. Every pixel in fully colored images carries 3 values, ranging

from 0 to 255 and each one shows how much of the specific color this part of the picture has.

Then combining these 3 channels a great number of colors can be created. If in the same figure

(Figure 2.10) there were all the colors of the canvas, considering the RGB color system, then

the picture would be a two-dimensional vector with each cell holding an RGB triplet. In Deep

Learning though it is more convenient to consider the picture to be a 3-dimensional vector with

32 | Σ ε λ ί δ α

each dimension holding a 2-dimensional vector for each color of the RGB system, namely a

12x16x3 array.

2.5.2 Convolution Layer
As the name implies, convolution layers are one of the most vital elements of a CNN. Through

this layer, new pictures are generated, called feature maps. The features maps are just pictures

similar to the starting one but they highlight the different unique features of the picture. The

different feature maps are generated with the help of some filters that convert the picture. These

filters are called kernels (O' Shea & Nash, 2015). They have small dimensions, usually 3x3 or

5x5, sometimes 1x1, but their effect is spread throughout the entirety of the input. The values

of the kernels are trained and changing constantly throughout the training process just like the

values of the weights in an ANN. That’s because as the input hits the convolution layer the

scalar product between the input and each kernel is calculated in order for the feature map to

be generated. In the Figure 2.11 below an example of some feature maps of a handwritten

number 9 generated by 5x5 kernels is shown.

Figure 2.11: Examples of feature maps for a picture showing a handwritten 9 and the kernels that were used to

create them.

A scalar product, or else dot product, is an element-wise multiplication of the filter, kernel, and

the filter-sized part of the image. These values are then summed in order to result in a single

value every time. That’s the reason it is called a scalar product.

Figure 2.12: The beginning of the operation.

33 | Σ ε λ ί δ α

The convolution layer’s operation is difficult to understand, as it involves calculations

between two-dimensional vectors so a simple example will be shown. Firstly a 6x6 pixel image,

as in Figure 2.12 with the form of a matrix is considered. A filter with a size of 3x3, the so-

called kernel size, is also assumed. In the convolution process, the filter is multiplied element-

wise with the same size patch of the input image, as shown in the Figure 2.12 below. The results

of these operations are then added together in order for the single-valued output to be calculated.

The operation is always starting from the top left corner of the matrix. After the result of this

part is calculated the filter slides over, as shown in the Figure 2.13, both right and down by a

number of elements, and does the same computation until the whole matrix is covered.

Figure 2.13: The calculations for the filter moving one step right.

Although when the input image has more than 1 channel, as in case of fully colored pictures,

the calculation gets more complicated. The extra operation that must be done to get one number,

as a result, is to apply the convolution operation for each channel and then add all the results

together. An example is shown in the Figure 2.14 below.

Figure 2.14: The operation for a 3 channeled vector.

 Stride

A very significant parameter of the convolution layer’s process is the stride. As

discussed above, the operation starts from the top left corner and then continues to the rest of

the picture by a step. The number of elements that the filter slides right to calculate the next

result is called stride (O' Shea & Nash, 2015). In the previous example, the stride was set to 1.

Although sometimes the filter can be moved more than one element at a time, skipping the

intermediate locations (Figure 2.15).

34 | Σ ε λ ί δ α

Figure 2.15: Example for a stride number different that the default 1.

Stride numbers different than the default 1 can have a positive effect on the

computational efficiency of the network and also can be used in order to reduce the size of the

output image, called downsampling if needed.

 Padding

Another way to affect the size of the output is through padding. Padding is a technique

in which extra pixels are added around the boundaries of the picture, as illustrated in the Figure

2.16. This might seem not so useful at first thought but let’s discuss its practicality. In general,

the kernels being used in CNNs have a width and height greater than 1, so after doing some

consecutive convolutions the result is significantly smaller than the input (O' Shea & Nash,

2015). For example, an image with 240x240 pixels after 10 convolutions with a kernel size of

5x5 will end up with 200x200 pixels eliminating any information on the boundaries of the

image that may be useful. A straightforward solution to this problem is just to add extra pixels

around the picture so that the effective size of the image increases.

Figure 2.16: Example for padding equal to 1.

35 | Σ ε λ ί δ α

In CCNs when a kernel size with odd height and width values is used, like 1,3,5,7, then the

dimensions of the image can stay the same. Some terminologies that are used in padding are

the following:

 “valid”, which means no padding

 “same”, which means that the padding used is calculated so that the output has the same

dimensions as the input.

 Mathematical implementation of the Convolution operation

The convolution function (x*w)(a) is defined as (Equation (2.26)),

(𝑥 ∗ 𝑤)(𝑎) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝑎)𝑑𝑎 (2.26)

, where a and t are the parameters of the problem, x is called the input, w is the so-called filters

or kernels, as mentioned in the above sections, and the output is the feature map or activation.

 In the above Equation (2.26) though the input and kernel are considered continuous

functions. Images have a discrete number of pixels so it is useful to consider that the parameter

t is discrete. So the discrete convolution can be written as (Equation (2.27)),

(𝑥 ∗ 𝑤)(𝑎) = ∑ 𝑥(𝑡)𝑤(𝑡 − 𝑎)

𝑎

(2.27)

In machine learning applications, the input is a multidimensional array of data, and the kernel

is a multidimensional array of parameters. As the w includes the parameters of the network,

that are finite in number, then the function w(a) is considered to be non-zero only for a finite

amount of values a (O' Shea & Nash, 2015). This means that the above equation can be

implemented as a finite sum. In images there is an interest in 2- (Equation (2.28)),or 3-

dimensional convolutions (Equation (2.29)),

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

(2.28)

, where I is a 2-dimensional image input and K is a 2-dimensional kernel

(𝐼 ∗ 𝐾)(𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝐼(𝑚, 𝑛, 𝑙)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑘 − 𝑙)

𝑙𝑛𝑚

(2.29)

, where I is a 3-dimensional image input and K is a 3-dimensional kernel

As the Equations (2.26) and (2.27) are commutative, it is true that I*K=K*I, so the

above Equation (2.28) can be written as (Equation (2.30)),

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

(2.30)

2.5.3 Pooling Layer
Convolution or convolutional layers apply some filters or kernels to an input image and

create a feature map of the summary of these specific features in the image. These layers are

helpful when they are stacked in a deep neural network. That is because those close to the input

of the image can imprint low-level features in it, like lines, and the ones deeper in the network

high-level features, of it, like shapes or even some specific objects.

36 | Σ ε λ ί δ α

Notwithstanding, convolutional layers do have some limitations. The different feature

maps produced from these layers record the exact location of the feature in the image. This way

with the slightest change in the position of a feature, which happens when rotating, shifting,

and re-cropping, a different feature map will be produced complicating the generalization of

the model. This problem can be addressed with a method called down sampling. In this method,

the input image is turned into a lower-resolution one so it keeps all the useful features without

the fine details that create more of a problem rather than having some use to the task.

The most common method, except for changing the number of strides in the

convolution, is by adding a pooling layer in the network. Pooling layers aim to reduce the size

of the image, thus reducing the number of parameters and the computational complexity of the

model (Kim, 2017). This is achieved by the combination of adjacent pixels of the image to

create a single value. The pooling layer is usually added after the convolution layer and operates

over all the feature maps thus creating a new set of feature maps with the same number as the

starting one.

In these layers, the selection of the pooling operation is very important. The size of the

operation must be smaller than the size of the image and is in most cases 2x2 pixels with a

stride of 2 like in the following Figure 2.17. In the pooling operation 2 functions can be used,

as shown in the Figure 2.18:

 Average Pooling, which calculates the mean values of each patch of the feature map.

 Maximum Pooling (or max), which calculates the maximum values of each patch of

the feature map.

Figure 2.17: Pooling operation with a size of 2x2 pixels and stride of 2.

37 | Σ ε λ ί δ α

Figure 2.18: Illustration of maximum and average pooling.

The feature map produced from the 2 methods is different, but both of these methods

are used in applications that can benefit from their advantages. The average pooling method

smooths out the image so that some sharp features are not identified. Max pooling selects only

the brighter pixels from the image and the ones that are more important like edges for example,

so in cases when the background of the image is dark, this function is the one to go for when

creating a CNN. The other way around when the background is too black min pooling is used,

but is not that common, so it is not extensively discussed. A simple example in the Figure 2.19

is shown to pinpoint how differently they affect the image.

Figure 2.19: Effects of maximum and average pooling in an image.

38 | Σ ε λ ί δ α

2.5.4 Fully connected layers

In the output of the last pooling layer or the convolution, in case there is no pooling, is

usually applied a flattening, turning the multilayered array into a single 1-dimensional array of

numbers. Then it is connected to one or more fully connected layers, which is known also as a

dense layer, and is simply a feed-forward neural network (Teuwen & Moriakov, 2020), as the

ones discussed in previous chapters. These layers are usually the last layers of a CNN and every

neuron of each layer is connected to all the neurons of the next layer with a learnable weight,

as depicted in the Figure 2.20. The fully connected layers are the ones that map the features that

are extracted from the previous layers and produce the result of the CNN. Their output nodes

are usually as many as the number of classes used in the model. Each one of the fully connected

layers also uses a non-linear function as an activation function like the ones described in the

Chapter Activation Functions. The output of a fully connected layer is shown in the below

equation (Equation (2.31)):

𝐹𝐶(𝑥) = 𝑓(𝑤𝑥 + 𝑏) (2.31)

, where f is the activation function, w is the weight, x is the input and b is the bias.

2.6 Generalization, overfitting and early stopping
Training in the CNNs world is called the process of adjusting the kernels of the

convolution layers and the weights of the fully connected layers in order to minimize the

difference between the output values and the input values. The topic of training is more

extensively discussed in the above chapter Network training and error implementation so here

a general view will again be given.

Figure 2.20: A representation of a fully connected network.

39 | Σ ε λ ί δ α

To start with CNN gives some random values to its learnable parameters. During the

process of training, the network processes the data, which are labeled with their respective class,

randomly and compares the output values of the class with the ones of the input image. If the

output differs from the input, which happens more at the beginning of the training, then the

network makes small adjustments in the learnable parameters in order for the input to match

the output. A loss function calculates how well the network performs under specific kernels

and weights through forward propagation and updates these parameters in accordance with the

loss value with the use of the backpropagation algorithm, which was discussed in the above

chapters.

 The training data are processed multiple times by the CNN until sufficient accuracy is

found or the loss is minimized. Each run of the training data is called epoch. The epochs that

the data will be processed can be defined by the programmer or, in some cases of more

advanced programs, the program can be set to stop when the accuracy reaches a max or the loss

reaches a min. As the network improves epoch by epoch the loss between the input and the

output becomes smaller and smaller so the adjustments done are decreasing.

 The goal of the training process of the network is to achieve good performance. The

network’s performance depends on many variables, some of them being the size of the training

data and the network. For example, if a large deep network is given a small amount of training

data then it will be generally easy for it to learn the data. Although keep in mind that the network

should “memorize” the general trends of the data in order to have good results when facing new

data outside the training dataset (Bishop, 2006). Supposing the data of the training set have a

noise, as is in most applications, then if the network accomplishes a very good fit in the data

the network will have memorized the exact noise of the data and will have a poor performance

in data not being included in the dataset. Thus for a network to have a good performance on

new data it must have the required flexibility to learn the trends of the training data and not

their noise.

 To better understand the issues of generalization of a network the problem of fitting a

polynomial curve through a set of data points that have a noise is considered. In the Figure 2.21

below a cubic polynomial curve and 10 points that have a noise in comparison to the curve are

depicted. Considering the same equation (Equation (2.6)) as in the Chapter Network training

and error implementation different numbers for the m are picked to see which fits better for the

data. If the order m is too low, as in the cases of m=0 and m=1, then the curve produced gives

an inadequate representation of the trends in the data, so its predictions with new data will be

poor. If the order is increased to m=3 then, as shown in the Figure 2.21, the curve represents

the general trends of the data much better. Although if the order is increased too much, as seen

in the m=9 case in the Figure 2.21, then the problem of overfitting occurs. This means that the

curve is very exact in representing the data in the training dataset but it has memorized the noise

of the points and not their trends so it has a poor prediction of new data (Bishop, 1994).

40 | Σ ε λ ί δ α

Figure 2.21: An example of curve fitting using successively higher-order polynomials.

The same situation can happen in neural networks. Overfitting is one of the main challenges in

machine learning as an overfitted model can’t generalize well in new data. A way to check if a

model is overfitted on the training data is to see the accuracy and loss function of the training

and compare them to the ones of the validation data (Yamashita et al., 2018). A diagram of a

model overfitted is illustrated in the Figure 2.22. The loss of the training data is a function that

is always decreasing as the iterations increase. However, that doesn’t happen always in the loss

of the validation data, as at some point it starts increasing. That point is where overfitting starts.

To prevent this more data can be added to the training. Although this is not possible every time

so the method of early stopping can be applied. In this method, the training is stopped at the

point where the validation loss has the smallest value. This method is applied also in the

network used in this thesis.

41 | Σ ε λ ί δ α

Figure 2.22: A diagram showing the relation between the error function and the number of iterations.

2.6.1 Training, validation, and test data
As a mention has been made about training data in the previous chapter, a more general

discussion of the topic will be done in this section. Data are one of the most crucial components

when creating a neural network. After having already created the network the next step is to

collect the necessary data that the network will be trained on. This step is very important to the

network although obtaining the right number of high-quality images as data is very time-

consuming.

The total number of data collected is split into 3 sets usually. A training set is used to

train the model and consists of pairs of an input vector and its corresponding output vector also

called label. The loss is calculated using forward propagation comparing the output values of

the network and the labels for each training data, then the learnable parameters are changed

using backpropagation. A validation set is separated from the training model and is used for the

already fitted model to predict the responses (Yamashita et al., 2018). This dataset provides an

evaluation of the model while tuning the hyperparameters. Validation datasets are also used for

regularization using early stopping. A test set is used, normally containing data not included in

the training dataset, in the final model, as the training has ended to evaluate its performance. A

normal ratio of training:validation data is 90:10 or 80:20, while the test data can be of any

number as it doesn’t affect the training.

2.7 Object Detection
The main fields in computer vision that interest the researchers are 3: image

classification, image localization, and image detection. These different methods can be seen in

the Figure 2.23 below. The potential and challenges of these tasks with the parallel

incorporation of deep convolutional neural networks to the field of computer vision gave the

spark for the immense increase in the work being done in the fields.

In image classification the main goal is to determine if there is an object in the image,

turning a picture into a label. For example in image classification from a set of images with

dogs and cats the ones that have a dog can be separated from the ones having a cat. However,

the location of the different objects in the picture is still unknown. So here comes image

localization to point out this position.

42 | Σ ε λ ί δ α

Although if in a picture there is more than one object, a cat and a dog, then with this

method it can’t be defined where this will be categorized with the methods above. This problem

is solved with object detection, where in each picture not only the label of a single object can

be found but also the presence of other objects of different labels or more objects of the same

label. For example, in the Figure 2.23 below both the 2 cats, the duck, and the dog is found,

labeled and their location is pointed out. Object detection is considered the first process in

computer vision, having many applications in security systems, human detection, robotics,

product detection, and so on.

Figure 2.23: Illustration of the main fields of computer vision

People can learn things in many ways, as from their experience. Although for a machine

to learn the different tasks it must be trained. The more proper the training is the better and

faster the response of the system will be (Bhagya & Prof. Shyna, 2019). In the case of object

detection, the training is done by training a classifier that can obtain even the slightest difference

in the objects. In the input of this classifier, some areas are presented. These proposals, as they

are called, have a significant role in the method and if they are improper they can have a

negative effect on the output of the system. Thus these proposals are determined by deep neural

networks.

2.7.1 Applications of Object Detection
Object detection is currently a very trending area of interest as the applications in real life are

just endless (Kamate & Yilmazer, 2015). Some common applications are the following:

A. Face Detection and Face Recognition

This is one of the most popular applications and is mostly used by social media for detecting

faces in an image (Albiol et al., 2001). The convolutional neural networks have a significant

role in spotting the faces, extracting the facial details, and returning the output. In

smartphones face recognition is used for unlocking the phone and face detection for

recognizing the presence of a face when taking a picture. Also, banks, vaults, and other

high-security places use face recognition when entering an area. Finally, in airports, retail

stores, stadiums, and other facilities face recognition is used to prevent violence (Kamate

& Yilmazer, 2015).

B. Security and Surveillance

43 | Σ ε λ ί δ α

Taking into consideration the rise of criminality levels in today's society this application

can be very useful for detecting intruders or even explosives in a remote facility or a house.

Furthermore, anomaly detection is a field that businesses spend a lot of money on so a quick

and accurate program is needed (Kmieć & Glowacz, 2015).

C. Robotics

Robotics is the most obvious of the applications that object detection can be useful. For the

robots to quickly respond to environmental changes they must be provided with a fast and

accurate visual image processor and object detection is usually the first step in achieving

this goal (Lu et al., 2017).

D. Object Tracking and Counting

Object detection can be used when tracking some objects like the ball in football games or

the movement of a person in a video camera and so it can be used in security systems

too(Kamate & Yilmazer, 2015). Apart from that, it is applied in traffic monitoring,

animation, video communication, robots, and so on (YuanQiang et al., 2020).

E. Self-Driving Vehicles

Last but not least the more modern application of object detection is in self-driving vehicles.

For the vehicle, mainly speaking about cars, to accelerate, brake, or turn, it must know all

the objects that are in its vicinity and what they are. These objects are cars, pedestrians,

animals, traffic lights, signs, trees, and so on. To make a good and fast decision the

convolutional network must be fast and effective or else it won’t have time to react.

Although except cars nowadays research is being done in order for the ships to be made

autonomous. The new fashion has already started but is not yet generalized (Naghavi et al.,

2017).

2.7.2 Techniques employed in Object Detection

 Sliding Window

The most common and easy method being used in object detection is the sliding

window method (Vedaldi et al., 2009). The first to create a face detector using this method was

Viola and Jones in 2001 (Viola & Jones, 2001) and then in the next years, more progress is

done on the topic with the works of Dalal and Triggs with the Histogram of Gradient Detector

in 2005 (Dalal & Triggs, 2005) and Felzenswalb in 2010, who did an object detection system

that represents highly variable objects using mixtures of multiscale deformable part models

(Felzenszwalb et al., 2010). In the sliding window method, a rectangle is created, with respect

to the object that is searched in the image, and then the rectangle scans the whole image starting

from the top left corner and moving to the right. The box is usually much smaller than the image

and it is enlarged every time it scans the picture by a standard value. This procedure is done

continuously until a certain condition is reached. It is obvious that with this method the number

of windows created for a single object will be very high and also the windows that have to be

taken into consideration in order to find all, or at least the majority, of the objects in the picture,

is massive. Thus this method is considered to be very computationally expensive as well as

giving inaccurate bounding boxes for the objects.

44 | Σ ε λ ί δ α

 Regional Convolutional Neural Networks (R-CNN)

In 2013 R. Girshick tried to solve the problems of the sliding window method by

presenting his new method for object detection called Regional Convolutional Neural Networks

(R-CNN) (Girshick et al., 2014). To limit the number of windows produced by the program,

this method chooses only some regions that are more important for the CNN to run on. The

regions that are proposed for the CNN are extracted with the selective search algorithm

(Uijlings et al., 2013). Selective search is an algorithm that takes as an input the image segments

it, depending on similarity, and returns some regional proposals. In contrast with the sliding

window method these regions are less in number and produce a higher recall. The processes of

this method are visualized in the Figure 2.24. Despite that in R-CNN the regions proposed are

reduced, the method as a whole has some disadvantages. The selective search algorithm is very

rigid and it can’t learn from the images input so the proposals are sometimes incorrect. It also

takes a lot of time to train and the training has many stages. Thus it is very slow to detect and

can’t be used in real-time applications as it takes 50 seconds approximately to compute an

image.

 Spatial Pyramid Pooling Network (SPP-Net)

Figure 2.24: R-CNN architecture.

Figure 2.25: SPP-net Architecture with a more explanatory way of how the spatial pyramid pooling layer work.

45 | Σ ε λ ί δ α

Later in 2015 Kaiming He proposed another method for pooling called Spatial Pyramid

Pooling (SPP) and a network based on this method called Spatial Pyramid Pooling-Network

(SPP-Net) (He et al., 2015). CNNs in general can’t accept images of varied sizes as the fully

connected layers have as input fixed-sized images. If the images are of size larger or smaller

than the ones that the fully connected layers want they are reshaped to reach the desired size,

thus losing some important features. This problem is solved with SPP-net. Firstly the feature

maps of the input image are generated, using a number of Convolutional layers. Those feature

maps can then pass through the SPP pooling layer. The SPP pooling window and stride are

relative to the input image so that a fixed-sized output is created. Furthermore, these layers

apply a couple of different output-sized pooling operations and then combine them all in order

to continue in the next layer, the fully connected as illustrated in the Figure 2.25. SPP-Net is

considered to be faster than R-CNN as the only time-consuming part is the CNN, although they

lack accuracy for very deep neural networks.

 Fast Regional Convolutional Neural Networks (Fast R-CNN)

 Later in 2015 Girshick (Girshick, 2015) came up with the idea of a new model, called

Fast R-CNN, which purpose was to overcome the problems that occurred in R-CNN and SPP-

Net. The approach is very similar to the R-CNN method but instead of passing all the proposed

regions to the CNN, the image is considered as an input in order to create the regions of interest.

The proposals are then concatenated and, with the use of a Region of Interest (RoI) pooling

layer, feature vectors with a fixed size are created and inserted into the Fully Connected Layers.

After that, a softmax layer is used to predict the class of the proposed region and its bounding

box. The whole process is depicted in the Figure 2.26 below. This method is considered to be

faster than the former R-CNN as it doesn’t make a massive amount of region proposals in the

CNN and also gives a higher quality object detection than SPP-Net and R-CNN.

Figure 2.26: A representation of the Fast R-CNN model.

46 | Σ ε λ ί δ α

 Faster Regional Convolutional Neural Networks (Faster R-CNN)

Both R-CNN and Fast R-CNN have high computational speed due to the use of

selective search algorithm to find the region proposals, as this algorithm is slow and time-

consuming. For this exact reason, Shaoqing Ren (Ren et al., 2016) managed to create a model

that is faster than both the previous ones and so called it Faster R-CNN. As in the Fast R-CNN,

the whole image is passed through the CNN and a convolutional feature map is created.

Although instead of using the selective search algorithm to produce the region proposals he

assigned a separate region proposal network to do this exact process. Then the candidates are

reshaped, with a RoI pooling layer and passed to a Fully Connected Layer for classification.

The architecture is illustrated in the Figure 2.27. Even though this model is known for its speed

it faced some challenges regarding the accuracy of the bounding boxes that were outputted.

 You Only Look Once (YOLO)

All the algorithms that were presented above perform two-stage object detection. With

these methods, object detection is divided into 2 stages. The first one is the detection of all the

regions that have a higher probability to contain an object, and then the classification of the

image takes into consideration the regions proposed in the previous step. Therefore these

networks don’t process all the image but only a piece of it. YOLO algorithm is much different

than the ones above as a single CNN predicts the bounding boxes and the probabilities of each

one.

YOLO was created in 2016 by J. Redmon (Redmon et al., 2016) in order to limit the

error of the bounding boxes of the previous method. The idea behind YOLO is to split the image

into an SxS grid. For each grid cell, the network does the classification and detection outputting

a class probability and the values of the bounding box. The cell that has the center of the

bounding box for a specific object is the one that is responsible for the object. The bounding

boxes that have a probability score above a threshold are the ones that are picked by the network

and used to find the objects in the image. This method has high speed and high accuracy, with

less background loss that the other methods so it can easily be used in real time applications.

Although it can’t easily detect multiple objects in a single cell and sometimes it might detect

an object twice. Although there are methods that are used to reduce these problems of YOLO.

Figure 2.27: Faster R-CNN Architecture

47 | Σ ε λ ί δ α

To understand the way YOLO works, the most significant terminologies used in the

algorithms perceptive will be analyzed.

Bounding box

 YOLO algorithm predicts the bounding boxes for all the objects that lie in the image

and the class to that they belong. The name bounding box refers to a rectangular box that

contains an object in it. Each bounding box can be defined with 4 descriptors. Its center, bx and

by, its width bw, its height bh, and the number c that corresponds to its class. A class is every

type of object that is considered in the problem. For example, in autonomous cars, the classes

are cars, trees, pedestrians, animals, and so on. Each class comes with a probability, pc, showing

how probable is an object being in the bounding box. An example of a bounding box is

presented in the Figure 2.28 below. Each cell predicts B bounding boxes that consist of 5

parameters and the class probabilities for the C classes. Taking into consideration the SxS grid,

the total output of model parameters of the YOLO will be S*S*(5*B+C).

Figure 2.28: Illustration of a bounding box.

As is already discussed YOLO doesn’t search the image for a specific region of high

importance, but instead, it splits the image into cells and each cell is responsible for a number

of bounding boxes. Being responsible for a bounding box means that the center of the bounding

box lies in the cell. That is the reason that the coordinates of the center of the bounding box are

relative to the responsible cell. The weight and the height on the other hand are relative to the

whole image.

The architecture of the YOLOv1 (Redmon et al., 2016) uses the architecture of Darknet

that processes all the features extracted and is followed by 2 fully connected layers that make

the predictions of the bounding boxes. The author uses grid S=7, B=2 bounding boxes, and 20

classes C=20, so the output is of dimensions S*S*(5*B+C)=7*7*30. The architecture is shown

below in the Figure 2.29.

48 | Σ ε λ ί δ α

Figure 2.29: YOLOv1Architecture.

Intersection over Union (IoU)

The problem that emerges here is that the number of bounding boxes for each class will

be very high when the program needs only one. To eliminate the bounding boxes that are less

representative of the object, the Intersection over Union (IoU) method is used (Zhu et al., 2020).

In this method, all the bounding boxes that were created are compared to the correct bounding

box in the training set, called ground truth. From that comparison, 2 areas will be outputted.

The area where the 2 bounding boxes intersect and the union area. The intersection area is

divided by the union area and the IoU number is calculated, as illustrated in the following Figure

2.30 where the B2 is the predicted bounding box and the B1 is the ground truth. If the IoU is 0

then the 2 bounding boxes don’t intersect and if it is 1 then the prediction is perfect. Although

IoU number of 1 is never reached in practice. To have a way to tell whether a bounding box is

good enough the ones that have an IoU greater than 0.5 are considered descent, the ones greater

than 0.7 are considered pretty good and the ones with IoU greater than 0.9 are considered almost

perfect Let’s specify that this operation is done for the bounding boxes of a single class and is

done for all the classes. After all the IoUs are calculated the bounding boxes that have an IoU

number lower than a threshold, determined by the programmer, are discarded. This way the

number of bounding boxes is significantly reduced.

Figure 2.30: Calculation of IoU number.

Non-max Suppression

Even though the above method reduces the number of bounding boxes that refer to a

certain class, the algorithm in the end has to output only one bounding box for an object. This

is where Non-Max Suppression comes out. Non-max suppression is a method used to eliminate

all the bounding boxes that predict the same object. This is done by firstly taking the bounding

box that has the higher probability and this is then compared with the other bounding boxes of

the same class. The IoU number between the 2 bounding boxes is calculated and the boxes that

49 | Σ ε λ ί δ α

have an IoU number higher than a threshold are discarded. In the following figure (Figure 2.31)

after the IoU is applied, there are 3 bounding boxes left that represent the same object. After

applying the Non-max Suppression there is only one left as the others have an IoU, with the

one with the highest probability score, higher than a threshold.

Figure 2.31: Non-max suppression

Let’s now summarize the way YOLO classifies which bounding box corresponds better

for the objects. The network predicts some bounding boxes. The ones that have a probability

score lower than a threshold are discarded. Then the ones whose IoU, with the correct bounding

box from the training set, is lower than a threshold are discarded. Lastly, the ones that have an

IoU, with the predicted bounding box of the highest probability, higher than a threshold are

also discarded and there is only one bounding box left that corresponds to the object.

 Single Shot MultiBox Detector (SSD) and Region-based Fully

Convolutional Network (RFCN)

In order to overcome the problems of YOLO Angelov D. (Liu et al., 2016) proposed

the single-shot mutlibox detector, or SSD, that could detect objects of different scales. These

objects could be predicted as boxes of different scales are passed to the different layers of the

CNN, so every layer could predict objects of different scales. Although it worked well on bigger

objects it didn’t predict smaller objects that well, as it didn’t produce higher-level features. The

architecture of this method is presented in the following Figure 2.32.

Figure 2.32: SSD architecture

 Also in 2016, a Region-based Fully Convolutional Network was proposed by Jifeng

Dai (Dai et al., 2016). For it to overcome the problems of SSD and to improve accuracy in

general it shared the results, so it was better than RCNN and fast RCNN even though it used

them as a base architecture. It made training simpler, reducing complexity and also increasing

accuracy. Its architecture is shown below.

50 | Σ ε λ ί δ α

Figure 2.33: RFCN architecture

2.7.3 YOLO Versions
 Until now the discussion on YOLO pertained to the release version of the algorithm,

version 1. Although, today 5 versions of the YOLO algorithm have been released. Each version

was just an upgrade of the previous one as it used the most modern and advanced ideas from

the computer vision research community. Except for adding new ideas to the model, the old

ones that were not performing so well were removed in order to reach the best accuracy and

speed possible. This way YOLO is one of the best algorithms for object detection. Before using

the YOLOv5 model, it seems necessary that a representation of the older version must be done

and especially in the new ideas that were introduced in them.

 YOLOv2

YOLOv2 was released in 2016 by Joseph Redmon and Ali Fahradi (Redmon &

Farhadi, 2016), the creators of the YOLOv1. It was named 9000 in the original article, which

name was given because it could predict over 9000 different objects and still run in real-time.

The different features introduced here are mentioned below.

Batch Normalization

 Batch normalization is a very common technique for deep neural networks that helps

in accelerating the training and making it more steady by stabilizing the spread of the input

layers. This idea normalizes the features, outputted from each layer, with the empirical mean

and variance of each mini-batch being:

𝜇 =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

 𝑎𝑛𝑑 𝜎2 =
1

𝑚
∑(𝑥𝑖 − 𝜇)2

𝑚

𝑖=1

(3.32)

Each layer's dimension, represented with k, is normalized separately:

𝑥𝑖
(𝑘)

=
𝑥𝑖

(𝑘)
− 𝜇(𝑘)

√𝜎(𝑘)2
+ 𝜀

(3.33)

, where ε is added for numerical stability. The result has a mean of 0 and a variance of 1 if the

ε is not taken into account. To restore that, the following transformation is introduced:

51 | Σ ε λ ί δ α

𝑥̅𝑖
(𝑘)

= 𝛾(𝑘)𝑥̂𝑖
(𝑘)

+ 𝛽(𝑘)

, where γ and β are parameters that are learned in the optimization process.

 With the use of batch normalization, the training time is reduced, and also the mean

Average Precision (mAP), which is a metric that will be discussed in the following chapter,

increased by 2% according to the authors (Redmon & Farhadi, 2016).

High-Resolution Classifier

In version 1 the 20 first convolutional layers were trained on the 224x224 image and

the feature extraction was done. Then the 4 extra convolutional layers and the 2 fully connected

were trained on the 448x448 image. The thing that changed is that after the 20 first layers were

trained with the 224x224 image the training continued for 10 more epochs in the 448x448

image. This way the transition was better and the overall accuracy in mAP increased by 4%.

Convolutional with anchor boxes

YOLOv1 uses a grid cell to be responsible for a bounding box. Although this way a

grid cell can’t be assigned to 2 bounding boxes if 2 objects are centered in the same cell. To

solve this problem, in YOLOv2 the concept of anchor boxes was introduced. An anchor box is

a list of boxes that match the objects. The bounding boxes were predicted not only from the

ground truths, as in version 1, but also from the anchor boxes.

YOLOv1 also didn’t restrict the bounding boxes that it predicted, so when the

parameters are set in the initial step randomly then the boxes can be located away from the

desired object. In YOLOv2 the sigmoid function was used to restrict the center of the bounding

box between 0 and 1, which helped to locate the bounding box around the grid cell. An image

representation is depicted in the Figure 2.34 below, where the sigmoid function is used to

restrict the center of the bounding box. pw and ph are the height and the width of the bounding

box. cx and cy are the offset position of the grid cell from the top left corner.

Figure 2.34: Representation of anchor boxes

52 | Σ ε λ ί δ α

Since the bounding boxes' positions were restricted close to the grid cell where the object was

the parameters were easier to be learned and so the impact to mAP was big, 5% (Redmon &

Farhadi, 2016).

 YOLOv3

The version that changed the architecture of YOLO was released in 2018 by Joseph

Redmon and Ali Fahradi (Redmon & Farhadi, 2018). The different features that changed are

listed below.

Darknet-53 and ResNet

YOLOv2, even though it increased the number of layers from 19 of YOLOv1 to 30,

some features were lost as the image was downscaled passing through the network. For this

problem, ResNet introduced a way of skipping some connections to reduce the vanishing

features.

Figure 2.35: ResNet's architecture of skipping connections.

Using this feature and also combining YOLOv2 and DarkNet-53, the YOLOv3

architecture was created using a bottleneck architecture of 1x1 followed by a 3x3 convolutional

network in each residual block.

YOLOv3 used DarkNet-53 which had 53 layers in the beginning, as in Figure 2.36.

Although after that another 53 layers were added so a 106-layered network was created.

53 | Σ ε λ ί δ α

Figure 2.36: YOLOv3 architecture

Multi-scale detector

In YOLOv2 the input image is firstly trained on the DarkNet and the features are

extracted. Then it goes to some more layers and lastly the prediction is done in the last layer,

the object detector. In YOLOv3 the prediction layers are appended and 3 feature vectors are

created, which are forwarded to the detector, instead of stacking the prediction layer in the last

layer (Redmon & Farhadi, 2018). The architecture of the network is shown in the Figure 2.37

below.

The 3 different detections are done in the 79, 91, and 103 layers where the first has a

grid of 13x13, the second 26x26, and the third 52x52. Using these 3 detections helps in

detecting the different-sized objects in the image. The higher-sized feature maps, 52x52, are

more detailed and are used in detecting the smaller object and the 13x13 is used to detect the

larger ones. By concatenating layers that are closer to the start of the network with the ones that

have already passed through some layers of the network the fine-grained features from the

previous layers don’t vanish which helps in detecting small objects. In the Figure 2.37, a

concatenation is done before the 91st layer is reached with the 61 and one before the 103rd

layer is reached with the 36th layer.

54 | Σ ε λ ί δ α

Figure 2.37: YOLOv3 network architecture

 YOLOv4

The fourth version of YOLO was introduced by Alexey Bochkovskiy, Chien-Yao

Wang, and Hong-Yuan Mark Liao in 2020 (Bochkovskiy et al., 2020) after Joseph Redmon

stopped working in the field of computer vision. This version of YOLO is considered to be the

continuation of the YOLO family even though it was created by different scientists. The

different features represented in this version are discussed below.

By the time YOLOv4 was introduced many other object detection algorithms had

achieved remarkable results. These algorithms had a common point that the input is firstly

passed through the backbone, which is the feature extractor, and compress. Then the features

are aggregated and mixed in the Detection Neck, or simple Neck, to prepare for the detection

done in the Detection Head.

Backbone

In the backbone of the model the CSP Darknet53, CSP stands for Cross Stage Partial,

was used. This network consists of k dense layer, where the output of each dense layer is

concatenated with its input and then becomes the input for the next layer and the last layer goes

to a transition layer where convolution and pooling are done. The only peculiarity is that the

input feature map is separated into 2 different pieces where one passes through the dense layers

and the other is concatenated in the end at the partial transition layer, as illustrated in the Figure

2.38 below.

With the use of CSP Darknet53 in YOLOv3, the residual blocks were removed and in

their place, dense layers were placed. With the help of CSP, the model maintained some fine-

grained features and also reused some other features making the learning easier for the model.

55 | Σ ε λ ί δ α

Figure 2.38: Cross Stage Partial DenseNet

Neck

New SPP Block

After the Dense layers, the feature maps have to go through an additional block called

Spatial Pyramid Pooling (SPP) block in order to separate the most important features. SPP was

discussed before in the 2.7.2.3 section and the architecture here is the same but as the fully

connected layers have been removed from YOLOv2 turning the feature maps into a one-

dimensional vector wasn’t useful. So the new SPP concatenates the features into feature maps

of size 𝑠𝑖𝑧𝑒𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 ∗ 𝑠𝑖𝑧𝑒𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 ∗ 512, after a 3-scale max pooling, and also keeps

and includes the input feature map to the output feature map to keep all the information needed

(Bochkovskiy et al., 2020). A representation of the new SPP is depicted in the Figure 2.39.

Figure 2.39: The new SPP block used in YOLOv4

56 | Σ ε λ ί δ α

 Feature Aggregation with PANet

As the input image goes through the model semantic features are produced. These

features are becoming more and more complex as the network goes deeper and also their

resolution is decreased so some important information might be lost in the process. So to resolve

this the Path Aggregation Network (PAN) was introduced (Bochkovskiy et al., 2020). This

network is an advanced Feature Pyramid Network (FPN), in which method the semantic

features are transferred through a top-down path, and then they are concatenated with the fine-

grained features of the low-level layers to better predict smaller objects.

Figure 2.40: PANet architecture (a) FPN backbone, (b) augmentation path, (c) feature pooling

The PAN used in YOLOv4 had an FPN backbone followed by a bottom-up

augmentation path that connected the fine-grained features with the semantic features of the

high-level layer quicker, without having to pass through 100 layers of the backbone of the

model, thus creating a shortcut (Figure 2.40). This bottom-up augmentation path is identical to

the FPN with each layer creating feature maps of the same size. The different features produced

from the layers are added in the normal PAN but in the YOLOv4 version of it, they are

concatenated (Figure 2.41).

Figure 2.41:(a) original PAN, (b) YOLO v4 version

57 | Σ ε λ ί δ α

Head

The head is where all the predictions are done and vectors that contain all the bounding

boxes’ coordinates, the confidence scores, and class probabilities are produced. In the case of

YOLOv4, the head of the algorithm was kept the same as the YOLOv3.

 YOLOv5

Yolov5 was released one month later from YOLOv4 by the researcher Glenn Jocher,

who is the CEO of Ultralytics LLC. The creator of YOLOv5 didn’t post a paper with the

advancements of YOLOv5, but only posted a repository on GitHub (Redmon, 2020). Ultralytics

managed to implement the YOLOv5 in PyTorch, which is the most famous framework in deep

learning and is written in Python language.

As versions 4 and 5 were released in a very short period of time, only one month

(March-April 2020) there are not many differences between the 2 as both of them used the

methods that were the most efficient at the time. However, YOLOv5 has some advantages

compared to previous versions. Firstly it is written, as mentioned, in Python which is easier to

install and integrate on devices, instead of C of the previous ones. Furthermore, it has high

accuracy and fast speed, reaching 140 frames per second. Moreover, YOLOv5 is much smaller

compared toYOLOv4, it is 90% smaller in fact, which makes it suitable for every device used

in object detection. Further explanation of the architecture of the network will be done in the

next chapter.

Adaptive anchor boxes

 YOLOv5 architecture, as in all the previous versions, has included all the most recent

techniques in the computer vision field. In this algorithm, as it was implemented during the

same period as the YOLOv4, there are not so many noticeable differences in the methods used.

One point to mention is the adaptable anchor boxes. In YOLOv2 the anchor boxes were

extracted by using the k-means clustering algorithm to pick the 5 best anchor boxes for each

class from the COCO dataset and use them as a default. Although when these anchor boxes are

applied in a unique dataset that doesn’t contain the same classes as the COCO dataset then the

adaptation of the anchor boxes to match the ground truths is slow. So Joseph Redmon proposed

to run the k-means algorithm in the unique dataset and find the best anchor boxes for this set.

This way the program automatically learns the best anchor boxes for the specific applications

and uses them in the training (Solawetz, 2020).

58 | Σ ε λ ί δ α

3 Methods

3.1 YOLOv5s Architecture
YOLOv5 network is the latest version of YOLO algorithm and it was created only 2

years ago, in 2020. It contains 4 different architectures, named YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x. The difference between them is the amount of feature extraction

modules and the size of convolution kernels used in the model. The size of the network and the

parameters in these different networks increase as the network gets larger. In the small version

the size and the parameters are 14 MB and 7.2 million respectively, in the medium it is 41 MB

and 21.2 million, in the large 89 MB and 45.6 million, and lastly, in the extra-large, it is 166

MB and 86.7 million.

Since the problem considered in this thesis has a small number of classes and images

for each class the YOLOv5s model was used in the implementation. Also, it is fast, accurate,

and takes up the least space in the device, so it was considered a perfect candidate for this thesis.

YOLOv5s consists of 3 components: backbone, neck, and detect network. The

backbone consists of 16 modules, 1 focus, 4 convolutional layers, 8 bottleneckCSP, and 1 SPP.

The first block is the Focus. Here the input 3 channel image, which is in default of size

3x640x640, is divided into 4 slices with a size of 3x320x320 each, to accelerate the training

reducing the calculations of the model. Then these slices are concatenated with a concat layer

and forwarded to a convolution layer with 32 kernels (Yan et al., 2021). The feature map created

has a size of 32x320x320 which goes through a BN, Batch Normalization, with a Hardswish

activation function, see 3.1.1, and continues onto the next block, Figure 3.1.

Figure 3.1: Structure of Focus Block

The next block that needs to be explained is the third in the row and is the

BottleneckCSP block. This block is more complex as it contains another block inside of it. This

block is the Bottleneck that connects a convolution layer of kernel size 1x1, with a BN and a

Hardswish activation function, with another of size 3x3. Then the feature map produced by

these 2 layers is added to the input feature map of the block, Figure 3.2.

59 | Σ ε λ ί δ α

Figure 3.2: Architecture of the Bottleneck block

 The input of the BottleneckCSP block is firstly input to 2 different paths. The first

passes through a convolution layer, of kernel size 1x1 and a BN with Hardswish. Then it is

input in a convolution layer, of size 1x1, after it is output from the bottleneck block. The second

feature map passes through the shortcut and then these two feature maps are connected by a

concat layer and the output is produced after it passed through the BN with LeakyReLU

activation function and a convolution layer (Figure 3.3).

Figure 3.3: Structure of BottleneckCSP block

The ninth block of the Backbone is the Spatial Pyramid Pooling, SPP. As it has been

discussed the SPP has a purpose to convert the feature maps into a vector of fixed size, which

is of size 512x20x20 for the current model. The feature map passes through a kernel size 1x1

convolutional layer, with a BN and Hardswish, and then it is input into 3 max-pooling layers

of size 5x5, 9x9, and 13x13 (Yan et al., 2021). Then the output is concatenated with the output

of the BN and Hardswish layer. Lastly, as it goes through a convolutional layer, with kernel

size 1x1 and BN and Hardswish, the result is produced (Figure 3.4).

60 | Σ ε λ ί δ α

Figure 3.4: SPP block architecture

The neck network of the model mainly consists of feature aggregation layers. The

feature maps produced in the neck are combined with several of the backbone but also from the

ones created in the neck. It uses many Feature Pyramid Networks, FPN, which were explained

in the section 2.7.3.3. This way the fine-grained features are kept and the detection of features

of different scales is enhanced (Yan et al., 2021). Upscale blocks increase the scale of the

feature map in order to match the one that is connected within the concat layer.

The detect network is where the final detection is done. There, anchor boxes are applied

to the feature map of the previous layer and the output of the whole network is produced. The

output contains the position and size of the bounding boxes, the class predictions, and the

probability. There are 3 detect layers for the network to be able to easier detect objects of

different sizes. The input of these layers is feature maps of sizes 20x20, 40x40, and 80x80

respectively. Each detect layer outputs a 24-channel vector in the specific application, that

consists of 3 classes, 1 class probability, and 4 bounding box coordinates. These 8 numbers are

for each anchor box. Taking into consideration that the anchor boxes produced in YOLOv5s

are 3 then the number of channels in the output vector is 24. Lastly, the bounding boxes in the

image are generated and labeled. An overview of the network is illustrated in the Figure 3.5

below.

61 | Σ ε λ ί δ α

Figure 3.5:YOLOv5s Architecture

3.1.1 Hardswish activation function
The Hardswish activation function is a function that applies the Hardswish

transformation (Pytorch):

𝐻𝑎𝑟𝑑𝑠𝑤𝑖𝑠ℎ(𝑥) = {

0 𝑖𝑓 𝑥 ≤ −3
𝑥 𝑖𝑓 𝑥 ≥ +3
𝑥 ∗ (𝑥 + 3)

6
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This function is based on Swish activation function,𝑓(𝑥) = 𝑥 ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥), but

replaces the computationally expensive sigmoid function with a linear analog. The swish

function is a smooth, non-monotonic, function that matches or outperforms ReLU applications

of deep neural networks such as image classification. In general, swish is better than ReLU for

networks with more than 40 layers and on every batch size. Hardswish managed not only to

keep all the advantages of the Swish activation function but also to require fewer computations

as it removed the sigmoid function.

3.1.2 Metrics
In object detection, the main purpose is to detect all the objects in the image that they

are presented with. They do so by placing bounding boxes around the objects. Bounding boxes

62 | Σ ε λ ί δ α

have 3 attributes: the location of the center of and the dimensions of the bounding box, the

object class, and the probability score which is how confident the algorithm is of the prediction

with values from 0 to 1. There are 2 different sets of bounding boxes:

 A set of ground truth bounding boxes, which are the ones given to the model in the

training dataset,

 A set of predicted bounding boxes, which are the ones that the object outputs as his

predictions.

Now the main metrics of the model will be presented in order to better understand the

results that follow.

 Precision and Recall

It is obvious that not every bounding box that the model predicted is correct. Let’s start

by classifying the bounding boxes. Each of them can be categorized in one of the following

categories:

 True Positive (TP), which is a correct prediction of a ground truth bounding box.

 False Positive (FP), which is an incorrect detection of a non-existing object or a

misplaced detection of an existing object.

 True Negative (TN), which is a non-existing bounding box that was not predicted.

 False Negative (FN), which is a ground truth bounding box that was not detected.

In object detection, the TN bounding boxes are not used as there are many bounding

boxes that should not be predicted in an image. Correct and incorrect predictions are

classified by the IoU that was introduced in Chapter 2.7.2.6. After the classification is done the

Precision and Recall can be calculated.

Precision (P) is the ability of the model to predict only relevant objects and is the

percentage of the correct predictions. Recall (R) is the ability of the model to predict all the

ground truth bounding boxes and is the percentage of the correct prediction among the ground

truth bounding boxes (Padilla et al., 2020). These metrics are defined as,

𝑃 =
∑ 𝑇𝑃

∑ 𝑇𝑃 + ∑ 𝐹𝑃
=

∑ 𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑅 =
∑ 𝑇𝑃

∑ 𝑇𝑃 + ∑ 𝐹𝑁
=

∑ 𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠

 Average Precision

As discussed before, the confidence level is taken into consideration when calculating

Precision and Recall. The predictions that have a confidence score higher than the confidence

threshold, with value t, can be considered positive, and respectively the ones with a lower score

negative. Both TP and FP decrease as t increases, so fewer detections pass the threshold. On

the contrary, FN will increase as more detections will be less than the threshold. However the

number of all ground truths, ∑ 𝑇𝑃 + ∑ 𝐹𝑁, will stay the same as t alters. Thus R is a decreasing

function of t, but for the P nothing can’t be said as both the numerator and denominator are

decreasing as t increases. It becomes obvious that the graph of Precision and Recall has a zig-

zag form (Padilla et al., 2021).

A good object detector should find all the ground truths, namely FΝ=0 which means

high recall, while finding all the relative objects, FP=0 which means high precision. Therefore

an object detector is good if the recall and precision remain high as the t decreases. High recall

63 | Σ ε λ ί δ α

and precision are indicated by a large area under the curve (AUC). Although this area is difficult

to calculate as it is not monotonic, as described above, having a zig-zag form. To eliminate this

problem the data are preprocessed. The Average Precision, AP, is the area under the curve of

those preprocessed data.

Figure 3.6: Detections are ranked depending on their confidence score and the way precision and recall are

calculated for each.

Firstly, to compute the AP the predicted bounding boxes are ranked according to their

confidence scores, from the highest to the lowest and then the recall and precision for all the

predictions are calculated. An example of these processes for the P and R is shown below

(Padilla et al., 2020)Figure 3.6: Detections are ranked depending on their confidence score and

the way precision and recall are calculated for each. (Figure 3.6). After that, the AP can be

calculated by the below Equation 3.1,

𝐴𝑃 = ∑(𝑅𝑛+1 − 𝑅𝑛) ∗ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅𝑛+1)

𝑛

(3.1)

, where

𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅𝑛+1) = max
𝑅̃:𝑅̃≥𝑅𝑛+1

𝑃(𝑅̃) (3.2)

Figure 3.7: Precision-Recall Curve before applying the preprocessed data.

 In this method, AP is calculated using the maximum precision values whose recall

value is greater than Rn+1 or equal to it. Considering the above example the AP should be the

area below the curve of the Figure 3.7, 𝐴𝑃 =
1

3
+

(
2

3
+

1

2
)∗

1

3

2
+

(
3

4
+

2

3
)∗

1

3

2
≈ 0.764. Although after

applying the Equations 3.1 and 3.2 the Precision and Recall curve turns into the one displayed

in Figure 3.8 in gold color. The Precision values taken were only 2, for the first two recalls the

value of precision was 1 as it was the maximum of 1 and 1/2. Then for the other values, the

64 | Σ ε λ ί δ α

precision value was 3/4, as it was the maximum between 2/3 and 3/4 and also the maximum of

3/4 and 3/5. So finally the value for AP is 0.833.

Figure 3.8: Precision-Recall Curve before applying the preprocessed data, with red color, and after applying the

preprocessed data with gold.

 Mean Average Precision

Average Precision is calculated individually for each class. In most object detection

applications, although, the number of classes is surely more than one. In these cases, the mAP

is a useful metric that is the average AP of all the classes in the problem. The below Equation

(3.3) shows how to compute it,

𝑚𝐴𝑃 =
1

𝐶
∗ ∑ 𝐴𝑃𝑖

𝐶

𝑖=1

(3.3)

, where APi is the AP computed for the i class with a total of C classes.

 In some cases, the mAP can be seen in the form of mAP0.5 or some other values for the

index. This index shows the IoU threshold that the AP was calculated on. Another way that this

metric can be found is maP0.5:0.95, which means that the mAP is calculated for all the IoU values

between 0.5 and 0.95 with a step of 0.05 and the average is calculated.

 Loss Function

The Loss function used in YOLOv5 is the Binary CrossEntropy With Logits Loss

(BCEWithLogitsLoss). Firstly the Binary CrossEntropy Loss (BCELoss) will be explained.

Binary CrossEntropy is the negative average of the log of corrected predicted probabilities.

What that means is that it compares the predicted probabilities of the model for each sample

with the actual class that they belong to and then calculates how far from the actual value the

predicted is, which is 0 or 1. The mathematical Equation of this loss is shown below,

Equation (3.4):

65 | Σ ε λ ί δ α

𝑙(𝑥, 𝑦) = −
1

𝑁
∑ 𝑦𝑖 ∗ log (𝑝𝑖

𝑁

𝑖=1

) + (1 − 𝑦𝑖) ∗ log (1 − 𝑝𝑖) (3.4)

, where:

N is the number of samples,

𝑝𝑖 is the probability of class 1

𝑦𝑖 is the actual class that the object belongs to

This Equation calculates the loss when there is only one class. What changes when

there are multiple classes is that the sum is done for all the classes in the problem. In the case

of the BCEWithLogits the sigmoid function, which is explained in previous sections, is

combined with the above BCE in order to create better numerical stability. The Equation is

shown below (Equation 3.5).

𝑙(𝑥, 𝑦) = −
1

𝑁
∑ 𝑦𝑖 ∗ log (𝜎(𝑝𝑖

𝑁

𝑖=1

)) + (1 − 𝑦𝑖) ∗ log (𝜎(1 − 𝑝𝑖)) (3.5)

, where σ is the sigmoid function.

3.1.3 Scenarios
In this thesis, the main purpose is to recognize all the objects that a ship will meet in

its path. For this reason, some of the objects are considered as the classes of the problem. These

classes are ships, as these are the most common object in collision avoidance, rocks, and

floating objects. As floating objects are considered humans, containers, and buoys.

 The different scenarios that are taken into consideration in this thesis are:

1. Images with only one class of objects.

2. Images containing at least 2 of the classes of the objects.

3. Testing in a real-time video.

In the first case, the network was trained with only one class of objects. Firstly the

network was trained to recognize ships. For this reason, it was input with 20 images of ships,

to acquire a first impression of the network. In these images, there are only images that contain

only one ship in them. Then, 50 images of the ship were imported, with some of them being

photos of more than one ship in them, to see how good it comprehends with many objects of

the same class. Lastly, the input was 100 images and the impact on the confidence score of the

system and the accuracy was inspected, in comparison to the 50. The same was done for the

other 2 classes, where some images of the objects in the night were also considered. In every

case, 90% of the data are for training and 10% are for validation.

In the second case, the model was trained on images with a combination of the objects.

A class is rarely alone in an image when dealing with real-life problems so in this case firstly

50 images of all the object classes, or at least 2 of the classes, being in every one of them were

collected. Secondly, the 100 images of ships, 100 of rocks, and 100 of floating objects are added

all together as the training set to observe the model’s performance in determining what the class

of the individual objects is. After that, the model was trained on 50 images of ships at night and

in fog where the vision is very obscured. Lastly, all the photos that were collected, including

66 | Σ ε λ ί δ α

the 50 that had all or at least 2 classes in them and also 50 images of ships captured at night,

with a total of 400 photos were input into the model.

In the third case, a video of ships in the sea was found and the model was tested to

determine the frames per second that it can get and so if it can be applied in real-time detections.

3.1.4 Image Data Acquisition
In order for the network to work in the best way possible the images that it is trained

on must be very accurate in what they represent. For that to be done, images recorded by a

camera placed on the bridge of a ship were necessary. Although that wasn’t possible in this

thesis, so images containing the classes needed from the internet were carefully picked. An

example of images is shown in the Figure 3.9 below.

 After the images were collected, they had to be labeled. This was done with a program

called labelimg, which was obtained by the repository of the program from GitHub (Tzutalin,

2015). In this program, the images are selected and the user can create a square that contains

the desired object and also the class that the object belongs to (Figure 3.10). Then a text file,

that contains the position of the center of the bounding boxes of the image, their length, their

height, and the class every box belongs to, is created (Figure 3.11).

Figure 3.9: Example of images used in the training dataset.

67 | Σ ε λ ί δ α

Figure 3.10: An example of labeling in labelimg.

Figure 3.11: An example of a .txt file that is output from the labelimg.

After the labeling was done, the images had to be put in folders. For the model to run

the position of the folder containing the training data, the labels, the validation data, and also

the number of classes must be determined. This is done by a YAML file, which is a data

serialization language that is often used for writing configuration files, inside the model where

these exact positions are stated (Figure 3.12). After these processes were completed the model

was run in a jupyter notebook with python using the PyTorch framework.

Figure 3.12: An example of the YAML file that the program needs to operate.

68 | Σ ε λ ί δ α

4 Results
Now that the theoretical part that refers to the artificial neural networks, the CNNs, and

the object detection with the models that exist for solving such problems is covered it is about

time that the results of the YOLOv5s model are represented. There won’t be a commented

representation in every one of the cases. The results of the scenarios not commented on in the

next chapter will be cited in the Appendix B: Results of different cases at the end of the thesis.

4.1 Ship images

4.1.1 20 images in the training dataset
Firstly the model was trained for 300 epochs, with a batch size of 8, without early

stopping and the input of the model was 20 images of ships. The results of the metrics are shown

in the Figure 4.1 below.

Figure 4.1: Metrics results for 20 images in the training dataset.

Box_loss is the bounding box regression loss, using the mean square error loss

function. Obj_loss is the confidence of object present loss and is calculated using the Binary

CrossEntropy, while the cls_loss is the classification loss using the Cross-Entropy loss function.

As it is observed the precision reached a value of 70% on average, while recall and

mAP had a maximum value of 55% and 60% respectively. This is expected as the number of

images that the model was trained on was significantly low. On the contrary, the loss functions

reached low values, with the box_loss in the training and validation dataset being 0.02 and 0.06

respectively while the training and validation obj_loss were 0.015 and 0.018 respectively.

Lastly, the training and validation cls_loss is 0 as only 1 class is considered in these first

scenarios so the model is not provided with different classes to classify. The metrics also have

some variation between the epochs, which is a result of the low number of images in the training

dataset. The reason that this such a scenario was done is to comment on the effect of the number

of images in the model with the same number of epochs. The Figure 4.2 contains predictions

of the model on some of the test data.

69 | Σ ε λ ί δ α

 In the images, the number refers to the confidence of the network that the bounding

box contains an object of the mentioned class. The model in general returned good results for

images that weren’t in the training and validation dataset, with 89% confidence for the top left

image, 81% for the top right and 62%, and 66% for the bottom left and right respectively.

Lastly, it can be observed that the bounding boxes of the different ships are larger than the ship

they contain, meaning they are not that accurate. This is an effect of the small dataset.

It must be mentioned that the test dataset, and especially these 4 images, will stay the same in

the next scenarios so that a comparison between the different training dataset and their effect

on the model’s predictions will be done.

Figure 4.2: Results of the model detection in the test dataset, with 20 images of ship in the training dataset.

70 | Σ ε λ ί δ α

4.1.2 50 images in the training dataset
In the next case, 50 images were presented in the model as the training dataset. Below

the metrics of the model are presented (Figure 4.3).

Figure 4.3: Metrics results for 50 images in the training dataset.

The precision, recall, and mAP in this scenario reached a value of 100% in the last

epoch, with a 20% increase in the precision, and 50% in the recall, which means that the model

can easier predict all the ground truth bounding boxes, and a 40% increase in the mAP0.5. In the

loss functions, there weren’t any noticeable differences, with the box_loss in the training and

validation dataset being 0.02 and 0.04 respectively while the training and validation obj_loss

were 0.01 and 0.015 respectively. The variation of the values in the precision is smaller and as

the model trains for more epochs, it is getting even lower.

Figure 4.4: Results of the model detection in the test dataset, with 50 images of ships in the training dataset.

71 | Σ ε λ ί δ α

The predictions that the model made in the same 4 images are better with an increase

of 5-10% in the confidence score on the upper images, reaching 95% for the upper left and 92%

for the upper right, and an almost 30% increase in the bottom image in the confidence of the

model, with values 89% in the bottom left and 93% in the right (Figure 4.4:). Lastly, the

bounding boxes are much better as they contain the objects more accurately. This outcome is

logical taking into consideration the increase in the metrics.

4.1.3 100 images in the training dataset

Figure 4.5: Metric results for 100 images in the training dataset.

In the last case, with 100 images of ships in the training dataset, the results are quite

interesting, as the model not only reaches 100% for the precision, recall, and mAP but also does

that in the first 200 epochs approximately, which is significantly faster than the previous

scenarios that were discussed. In the loss function, there isn’t any notable difference with all

the losses keeping approximately the same values as in the last case (Figure 4.5).

72 | Σ ε λ ί δ α

In this scenario, the top right image was predicted with 96% confidence, the upper right

with 94% confidence, the bottom left with 84% confidence, and the bottom right with 93%

confidence. The general increase is only 2% which isn’t high, but the bounding boxes, in this

case, are even more precise containing exactly the shape of the ship meaning that the model is

already at a good stage for predicting images of ships, that are close to the ones that it was

trained on (Figure 4.6).

One interesting result also is how the model responds when there is a higher number of

ships in the image. The predictions of the model for such an image for the different training

datasets are illustrated in the Figure 4.7 In this figure the first prediction is from the model

trained with 20 images, the second prediction is from the model trained with 50 images, and

the third one is from the model trained with 100 images. The difference between the predictions

of the model is significant. The model in the first image didn’t manage to detect any of the

ships, which can be explained by the fact that the number of such images in the training dataset

was too few. In the second prediction, where the model had more images in the training dataset

that contained more than one object of the same class in them, predicted the majority of the

objects, although with not that precise bounding boxes. In the last case, with a training dataset

of 100, the model not only predicted all the ships in the image with a 10% increase in confidence

compared to the previous case but also managed to output more accurate bounding boxes that

contain only the ships with less background.

Figure 4.6: Results of the model detection in the test dataset, with 100 images of ships in the training dataset.

73 | Σ ε λ ί δ α

4.2 Rocks and Floating Objects images
For these 2 cases, the results will be cited in the Appendix B: Results of different cases

as they are almost the same as those of the ship so they won’t be extensively commented on

here. Rocks are considered some tall stones that stick out of the sea and also some images of

land. As floating objects are considered buoys, humans at sea and some containers that might

have dropped from ships. The images that the network was trained on were 20, 50, and 100 for

300 epochs and a batch size of 8.

4.3 50 photos of limited visibility
One more case that was considered in this thesis was the case of detecting ships with

limited visibility. The training dataset included 50 images of ships taken at night or with fog

and again the model run for 300 epochs with batch size 8 and considered only ships as the class.

The results for the metrics (Figure 4.8) and some predictions of the model in the test images

(Figure 4.9) are illustrated below.

Figure 4.7: Comparison of the predictions of all the models in an image that contains more objects of the class

ships.

74 | Σ ε λ ί δ α

Figure 4.8: Metric results for 50 images of ships with limited visibility in the training dataset.

The precision and mAP reached a value of 80% on average while the recall had an

average of 75%. The box_loss for the training and validation had values of 0.04 and 0.02

respectively, while the training and validation obj_loss reaches 0.01 and 0.015 respectively.

What is interesting is that the validation loss starts to rise, which means that the model started

to overfit on the training dataset. The results for the metrics have high variance in comparison

with the dataset that contained 50 ships in daylight, while the values of the metrics differ greatly

from the other case with 50 images in the training dataset. This is expected when the model was

run with images other than the ones in daylight as image detection is so dependent on the images

themselves that every change in the training dataset returns other results.

Figure 4.9: Results of the model detection in the test dataset, with 50 images of ships taken in limited visibility in

the training dataset.

75 | Σ ε λ ί δ α

The model in this scenario predicted the images of the test dataset with good

confidence, namely 96% for the upper left, 94% for the upper right, 93%, and 87% for the

bottom left and right respectively even though the number of images for this difficult case was

pretty limited. This case was added to the total scenarios that were analyzed as the ship must

be able to find all the objects in its path regardless of the visibility conditions. These images

were also included in the bigger dataset, of 400 images, that will follow.

4.4 300 images of all the classes
Next up the model was tested with 300 images in the training dataset. These images are

the ones that the model was trained on in the previous cases individually, namely the 100 ships,

the 100 rocks, and the 100 floating objects. In this case, the classes considered are 3, ship, rock,

and floating object. The model was trained again for 300 epochs with 8 batch size. The results

can be seen in the Figure 4.10 below.

Figure 4.10: Metrics results for a 300 image training, with images of the ship, rocks, and floating objects.

The training seems to have good results in the metrics with the precision, recall, and

mAP reaching 0.8, and the loss being very low both in the training and in the validation. What

is interesting to discuss is that the model doesn’t reach 100% for the values of the precision,

recall, and mAP. This happens as the model was trained considering the presence of all the

classes that were considered in the problem so it is more difficult to reach 100% precision. The

network seemed to have a noticeable variance in the loss of the classes in the beginning,

although in the end, it minimized. The model also seems to have started to overfit in the data

as the validation obj_loss start to rise as the one in the training dataset lowers. This means that

the number of epochs is sufficient as the object loss will have a serious effect on the

performance of the model if the training continues for more epochs.

The predictions that the model made for images in the test dataset (Figure 4.11) were

generally good with the confidence being above 80% in all images. Although in some cases

where the objects were too small or there all the classes coexist in the image the model was

making mistakes in its detections regarding the class that the objects refer to as in the left image

it considered some floating objects as ships, and didn’t recognize the land in the background,

while in the left it didn’t manage to recognize any of the small objects, as humans and

ships(Figure 4.12).

76 | Σ ε λ ί δ α

Figure 4.11: Results of the model detection in the test dataset, with 300 images of ships, floating objects and rocks

in the training dataset.

Figure 4.12: Examples of inaccurate predictions of the model.

77 | Σ ε λ ί δ α

4.5 400 images of all the classes
In order to overcome the previous case problems, 50 extra images were added to the

dataset, which contained objects of all the classes, or at least 2 of them, in each one, and also

the ones of ships taken in limited visibility. The model was trained for 300 epochs with a batch

size of 8 and a total number of 400 training images.

Figure 4.13: Metrics results for 400 images in the training dataset, containing images of all the previous cases.

Figure 4.14: Results of the model detection in the test dataset, with 400 images of combination of the previous

scenarios in the training dataset.

78 | Σ ε λ ί δ α

The model is very fast in its response reaching almost 1 in precision, 0.8 in recall, and

mAP in the first 50 epochs and from then it stays the same (Figure 4.13). This is why the

validation loss starts rising from then on as the model reached the max values for these metrics

and overfits. The other losses don’t have some interest as they keep as usual low values, 0.02

and 0.04 in box_loss for training and validation respectively, 0.015 for the training obj_loss, 0

and 0.01 in for the cls_loss.

There is not so much of a difference to be observed between this case and the last one

for the confidence of the model in the predictions (Figure 4.14). Although there is a massive

difference in the way the model distinguishes between the classes that the object belongs

(Figure 4.15). The model now not only predicts the correct class but also can predict more

objects than before and with higher confidence. That shows again how important are the images

for the training process in object detection.

What was also done in this case was to compare the results of YOLOv5s with those of

the YOLOv5m. The difference in the architecture is that the YOLOv5m has more layers,

especially more BottleneckCSP blocks, and generally the kernels in each of the convolutional

layers were bigger than the ones in the YOLOv5s making the detection more precise and better.

The YOLOv5m model was trained for the same amount of images for the same epochs and the

same batch size as the YOLOv5s, namely 400 images, 300 epochs, and batch size 8. The metrics

of the model didn’t have much of a difference, from the ones in the YOLOv5s case and are

cited in the Appendix B: Results of different cases. Although the predictions of the model are

better in most of the cases.

In the following figure, Figure 4.16, the results of some predictions of the model are

presented with the YOLOv5s predictions being on the right and the other on the left. In the first

pair of images, the YOLOv5m’s confidence score is higher than the smaller model by 5% and

in some cases 40%. In the second pair, it is observed that the right image scores are the same

as the left ones in the ship classes, but the medium size model predicted the correct floating

object. In the third pair, the medium model seems to have predicted all the objects in the image

with an increase of 10% in the confidence score, in comparison to the small model that didn’t

find some of them. In the last pair of images, it is obvious that the medium has done a better

prediction all in all as it predicted all the ships in the image and with an increase in confidence

score of 2% and in some cases 10% compared to the small, which predicted a floating object

that didn’t exist.

Generally, the predictions done with the YOLOv5m model were better than the ones

done with the YOLOv5s as more layers help in analyzing the image better and finding all the

important features. Although the increase in size, with YOLOv5s being 14MB and YOLOv5m

Figure 4.15: Examples of images from the test dataset that the model predicted better than before.

79 | Σ ε λ ί δ α

being 41MB, the increase in the time spent with the same setup in the computer, with the

YOLOv5s taking 4 hours to run 300 epochs with 400 images and batch size 8 and the

YOLOv5m taking 11, with the same parameters, made the model not so efficient for the current

project.

80 | Σ ε λ ί δ α

Figure 4.16: Comparison between YOLOv5s and YOLOv5m trained on the same 400 images for 300 epochs and batch size of 8.

The right images are the results from the YOLOv5s model and the left are from YOLOv5m

81 | Σ ε λ ί δ α

4.6 Video
Except for images, the model was tested on a video in order to see its performance. What was

noticed is that even with only 400 images on the training dataset the model’s detections were

very good not only in the accuracy of the bounding boxes, which contained the ships in most

of the cases precisely but also in the confidence of the detections, which in most cases had

values of 80% and higher. That combined with a zero fps reduction caused by the model, as the

frames per second remain 25, the same as the original video, can prove that YOLOv5s can

easily be used in real-time applications and return promising values. Some images from the

video with the detections can be seen in the Figure 4.17: Images from the detections of the

model in the video application below.

 This video had some snapshots of the sea life and showed images from the bridge of

the ship with other ships. These contained a ship being alone in the sea or a couple of ships and

also ships at night. In the top left image, the model predicted the ship with an 85% confidence

score, while in the top right the confidence is above 70% in most cases. In the bottom left the

model output confidence of 69% and 56% for the right-most and the left-most ship and 84%

and 94% for the other 2. In the last image, the model predicted both of the ships with confidence

of 85% and 90%, even though it was an image taken in low visibility.

Figure 4.17: Images from the detections of the model in the video application

82 | Σ ε λ ί δ α

4.7 Comparison with other studies
Lastly, to have a way to compare the results of this model for the metrics, some other

projects that also used YOLOv5s were considered. Although all of the projects were trained on

a lot more images than the one in this thesis a comparison of the metrics can be done. In the

project of Bin Yan (Yan et al., 2021) the precision of the model is 83%, the recall 91%, and the

mAP 87%, while in the study of Emmanuel Vasilopoulos (Vasilopoulos et al., 2022) the

metrics were 86%, 62%, and 66% respectively. In some other studies mentioned in the

Literature Review at the beginning of this thesis, one model achieved an mAP value of 71.6%

(Zhang et al., 2022), another project achieved mAP 86.5% (Zheng et al., 2022), while the last

one discussed resulted in mAP 89.8% (Kim et al., 2022). The results in this thesis on average

were, 83% for precision, 78% for recall, and 83% for the mAP. Considering that these results

were close enough and even in some cases higher than the other studies and also that this work

was done on a very small dataset, the metrics of this thesis can be considered sufficient for the

number of images. With more training, the model can be more accurate and also return better

results.

83 | Σ ε λ ί δ α

5 Conclusion and Future Work

5.1 Conclusion
In this thesis, the use of an object detection algorithm, especially the method YOLO,

in detecting objects, mainly ships, rocks, and other floating objects, was researched. The model

used for that reason was the newest version of YOLO, YOLOv5, developed by Ultralytics. The

model was trained for different scenarios and the results for the metrics and the model’s

predictions were analyzed and compared. Some interesting results from this work were

extracted and are presented here collectively.

The number of images plays a significant role for the model. As the training dataset

grows the model’s metrics, precision, recall, and mAP, reach higher values for the same epochs

and the variance of the values with each epoch is lesser. For example, 20 images of ships

reached a precision of 70% in comparison to the 100% in the 100 images. Furthermore, the

highest values for the metrics are reached sooner as the training set expands. In the case of 50

images, the higher values for the metrics weren’t reached with 300 epochs while in the scenario

of 100 and 300 images, they were reached in less than 200 epochs and 50 epochs respectively.

It is also observed that when the model is trained with different images, but the same in number,

then the results for the metrics are different in some cases. This means that the model is very

dependent on the quality, the background of the images, and the conditions under which the

images were taken, namely if the vision is limited.

The time spent for the training to be done also increases with the number of images in

the training dataset by a significant amount. A model trained for 300 epochs with a dataset of

100 images takes 1 hour for its training while for the same amount of epochs 400 images take

4 hours, making it 1 hour extra for every 100 images added to the dataset. Also, the amount of

time spent for the training of the model increases exponentially as the model gets larger and

deeper, with 400 images taking 4 hours in the small network and 11 hours in the medium

network trained for the same 300 epochs.

The confidence of the network in detecting objects in images never seen by it is

enhanced as the training set is provided with a more wide variety of images that are relevant to

the ones that the model is supposed to detect. It was observed that the model was making

mistakes in its predictions in images where all the classes coexisted when trained with 300

images of ship, rocks and floating objects, but with no image having the objects coexist. When

such images with all of the classes were included, like in the scenario of 400 images in the

training dataset, the model managed to have a 2% increase in its confidence scores and 10% in

some cases, while also predicting much more of the smaller objects with high confidence and

accurate bounding boxes.

Lastly, the size of the network is also very crucial for the results, as the more the

network grows the easier it is to find the correct objects and have higher accuracy. When the

same dataset was trained in the small and the medium model, improvements were observed not

only in the confidence of the model, which reached a 20% increase in some cases but also in

the number of objects the model could predict.

5.2 Future work
In this thesis, it became clear that the YOLOv5 algorithm can be used for object

detection in ship navigation not only in detecting images of ships and other objects but also in

real-time applications, such as in autonomous ships. This thesis can only be the spark of new

works regarding the field of object detection application in ships, so some ideas for future works

regarding this topic are presented here.

84 | Σ ε λ ί δ α

The number of images that the model was trained on was very insufficient for the model

to be able to work properly as it requires 1500 images per class minimum. In future studies, the

model should be enhanced with more images for each class to acquire better results.

Moreover, the images used should be more representative of the case that is considered,

mainly focusing on trying to find images that have the same angle and height of a camera placed

on a ship and also be of the same analysis as the model requires. The training dataset should

also be tested in the larger versions of YOLOv5 to have better results. The parameters of the

model should be changed too and see where the best results are acquired.

After the model was trained and better results were obtained, the next step should be to

combine the results of the model with the EGDIS system that can find other obstacles’ courses

in the vicinity but can’t recognize what those objects are. This way a full picture of the obstacles

in the way of the ship can be obtained. An AI system can acquire these results and propose a

course for the ship in order to avoid collision with these obstacles. This AI system then should

be able to could change the speed of the ship and steer it, to avoid collision according to the

results course it proposed. This whole system afterward should be tested on a model in a tank.

85 | Σ ε λ ί δ α

References
Albiol, A., Torres, L., & Delp, E. J. (2001). An unsupervised color image segmentation

algorithm for face detection applications. https://doi.org/10.1109/ICIP.2001.958585

Bhagya, C., & Prof. Shyna, A. (2019). An Overview of Deep Learning Based Object

Deteection Techniques.

Bishop, C. M. (1994). Neural Networks and their applications. Rev. Sci. Instrum, 65, 1803-

1830.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning.

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and

Accuracy of Object Detection.

Chang, L., Chen, Y.-T., Wang, J.-H., & Chang, Y.-L. (2022). Modified Yolov3 for Ship

Detection with Visible and Infrared Images. Electronics, 11(5).

https://doi.org/10.3390/electronics11050739

Chang, Y.-L., Anagaw, A., Chang, L., Wang, Y., Hsiao, C.-Y., & Lee, W.-H. (2019). Ship

Detection Based on YOLOv2 for SAR Imagery. Remote Sensing, 11(7).

https://doi.org/10.3390/rs11070786

Chen, D., Sun, S., Lei, Z., Shao, H., Wang, Y., & Chen, X. (2021). Ship Target Detection

Algorithm Based on Improved YOLOv3 for Maritime Image. Journal of Advanced

Transportation, 2021, 1-11. https://doi.org/10.1155/2021/9440212

Chen, X., Qi, L., Yang, Y., Postolache, O., Yu, Z., & Xu, X. (2019). Port ship detection in

complex environments 2019 International Conference on Sensing and Instrumentation

in IoT Era (ISSI),

Cui, H., Yang, Y., Liu, M., Shi, T., & Qi, Q. (2019). Ship Detection: An Improved YOLOv3

Method.

Dai, J., Li, Y., He, K., & Sun, J. (2016). R-FCN: Object Detection via Region based Fully

Convolutional Networks.

Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection.

Farley, B. G., & Clark, W. A. (1954). Simulation of Self-Organizing systems by digital

computer.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object detection

with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach

Intell, 32(9), 1627-1645. https://doi.org/10.1109/TPAMI.2009.167

Girshick, R. (2015). Fast R-CNN 2015 IEEE International Conference on Computer Vision

(ICCV),

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation 2014 IEEE Conference on

Computer Vision and Pattern Recognition,

Han, X., Zhao, L., Ning, Y., Hu, J., & Chen, C.-H. (2021). ShipYOLO: An Enhanced Model

for Ship Detection. Journal of Advanced Transportation, 2021, 1-11.

https://doi.org/10.1155/2021/1060182

Hass, F. S., & Jokar Arsanjani, J. (2020). Deep Learning for Detecting and Classifying Ocean

Objects: Application of YoloV3 for Iceberg–Ship Discrimination. ISPRS

International Journal of Geo-Information, 9(12). https://doi.org/10.3390/ijgi9120758

He, G., Wang, W., Shi, B., Liu, S., Xiang, H., & Wang, X. (2022). An Improved YOLO v4

Algorithm-based Object Detection Method for Maritime Vessels. International

Journal of Science and Engineering Applications, 11(04), 50-55.

https://doi.org/10.7753/ijsea1104.1001

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial Pyramid Pooling in Deep Convolutional

Networks for Visual Recognition. IEEE Trans Pattern Anal Mach Intell, 37(9), 1904-

1916. https://doi.org/10.1109/TPAMI.2015.2389824

Hebb, D. O. (1949). The organization of Behaviour.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective

computational abilities. Biophysics, 79, 2554-2558.

https://doi.org/10.1109/ICIP.2001.958585
https://doi.org/10.3390/electronics11050739
https://doi.org/10.3390/rs11070786
https://doi.org/10.1155/2021/9440212
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1155/2021/1060182
https://doi.org/10.3390/ijgi9120758
https://doi.org/10.7753/ijsea1104.1001
https://doi.org/10.1109/TPAMI.2015.2389824

86 | Σ ε λ ί δ α

Hopfield, J. J. (1984). Neurons with grabed response have collective computational properties

like those of two-state neurons. 81, 3088-3092.

Jie, Y., Leonidas, L., Mumtaz, F., & Ali, M. (2021). Ship Detection and Tracking in Inland

Waterways Using Improved YOLOv3 and Deep SORT. Symmetry, 13(2).

https://doi.org/10.3390/sym13020308

Kamate, S., & Yilmazer, N. (2015). Application of Object Detection and Tracking

Techniques for Unmanned Aerial Vehicles. Procedia Computer Science, 61, 436-441.

https://doi.org/10.1016/j.procs.2015.09.183

Kim, J.-H., Kim, N., Park, Y. W., & Won, C. S. (2022). Object Detection and Classification

Based on YOLO-V5 with Improved Maritime Dataset. Journal of Marine Science

and Engineering, 10(3). https://doi.org/10.3390/jmse10030377

Kim, P. (2017). Convolutional Neural Network. In MATLAB Deep Learning (pp. 121-147).

https://doi.org/10.1007/978-1-4842-2845-6_6

Kmieć, M., & Glowacz, A. (2015). Object detection in security applications using dominant

edge directions. Pattern Recognition Letters, 52, 72-79.

https://doi.org/10.1016/j.patrec.2014.09.018

LeCunn, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied

to Document Recognition.

Li, L., Jiang, L., Zhang, J., Wang, S., & Chen, F. (2022). A Complete YOLO-Based Ship

Detection Method for Thermal Infrared Remote Sensing Images under Complex

Backgrounds. Remote Sensing, 14(7). https://doi.org/10.3390/rs14071534

Li, T., Zhang, K., Li, W., & Huang, Q. (2019). Research on ROI Algorithm of Ship Image

Based on Improved YOLO 2019 International Conference on Artificial Intelligence

and Advanced Manufacturing (AIAM),

Li, Z., Zhao, L., Han, X., Pan, M., & Hwang, F.-J. (2020). Lightweight Ship Detection

Methods Based on YOLOv3 and DenseNet. Mathematical Problems in Engineering,

2020, 1-10. https://doi.org/10.1155/2020/4813183

Liu, T., Pang, B., Zhang, L., Yang, W., & Sun, X. (2021). Sea Surface Object Detection

Algorithm Based on YOLO v4 Fused with Reverse Depthwise Separable

Convolution (RDSC) for USV. Journal of Marine Science and Engineering, 9(7).

https://doi.org/10.3390/jmse9070753

Liu, W., Anguelov, D., Erhan, D., & Szegedy, C. (2016). SSD: Single Shot MultiBox

Detector. https://doi.org/10.1007/978-3-319-46448-0

Lu, K., An, X., Li, J., & He, H. (2017). Efficient deep network for vision-based object

detection in robotic applications. Neurocomputing, 245, 31-45.

https://doi.org/10.1016/j.neucom.2017.03.050

Ma, Z., Zeng, Y., Wu, L., Zhang, L., Li, J., & Li, H. (2021). Water Surface Targets

Recognition and Tracking Based on Improved YOLO and KCF Algorithms 2021

IEEE International Conference on Mechatronics and Automation (ICMA),

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, 5.

Minsky, M., & Papert, S. (1969). Perceptrons, An Introduction to Computational Geometry.

Naghavi, S. H., Avaznia, C., & Talebi, H. (2017). Integrated Real-Time Object Detection for

Self-Driving Vehicles. 10th Iranian Conference on Machine Vision and Image

Processing, 154-158.

Nie, X., Yang, M., & Liu, W. R. (2019). Deep Neural Network-Based Robust Ship Detection

Under Different Weather Conditions. 2019 IEEE Intelligent Transportation Systems

Conference (ITSC), 47-52.

O' Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks.

Padilla, R., Netto, S. L., & da Silva, E. A. B. (2020). A Survey on Performance Metrics for

Object-Detection Algorithms. https://doi.org/10.1109/iwssip48289.2020

Padilla, R., Passos, W. L., Dias, T. L. B., Netto, S. L., & da Silva, E. A. B. (2021). A

Comparative Analysis of Object Detection Metrics with a Companion Open-Source

Toolkit. Electronics, 10(3). https://doi.org/10.3390/electronics10030279

https://doi.org/10.3390/sym13020308
https://doi.org/10.1016/j.procs.2015.09.183
https://doi.org/10.3390/jmse10030377
https://doi.org/10.1007/978-1-4842-2845-6_6
https://doi.org/10.1016/j.patrec.2014.09.018
https://doi.org/10.3390/rs14071534
https://doi.org/10.1155/2020/4813183
https://doi.org/10.3390/jmse9070753
https://doi.org/10.1007/978-3-319-46448-0
https://doi.org/10.1016/j.neucom.2017.03.050
https://doi.org/10.1109/iwssip48289.2020
https://doi.org/10.3390/electronics10030279

87 | Σ ε λ ί δ α

Pytorch. Pytorch Hardswish activation function.

https://pytorch.org/docs/stable/generated/torch.nn.Hardswish.html

Redmon, J. (2020). Ultralytics YOLOv5. https://github.com/ultralytics/yolov5

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once:

Unified, Real-Time Object Detection. Computer Vision Foundation, 779,788.

Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger.

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement.

Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks.

Rochester, N., Holland, J. H., Haibt, L. H., & Duda, W. L. (1956). Tests on a cell assembly

theory of the action of the brain using a large digital computer.

Rosenblatt, F. (1958). The Perceptron: A probabilistic model for information storage and

organization in the brain. Physcological Review, 65, Article 6.

Rosenblatt, F. (1961). Pricniples of neurodynamics, Perceptron and the theory of brain

mechanisms.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning represantations by back-

propagating errors. NATURE, 323, 533-536.

Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of history

compression. Neural Computation, 4, 234-242.

Shao, Z., Wang, L., Wang, Z., Du, W., & Wu, W. (2020). Saliency-Aware Convolution

Neural Network for Ship Detection in Surveillance Video. IEEE Transactions on

Circuits and Systems for Video Technology, 30(3), 781-794.

https://doi.org/10.1109/tcsvt.2019.2897980

Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation functions in neural networks.

International Journal of Engineering Applied Sciences and Technology, 4(12), 310-

316.

Solawetz, J. (2020, June 29, 2020). YOLOv5 New Version - Improvements And Evaluation.

https://blog.roboflow.com/yolov5-improvements-and-evaluation/

Teuwen, J., & Moriakov, N. (2020). Convolutional neural networks. In Handbook of Medical

Image Computing and Computer Assisted Intervention (pp. 481-501).

https://doi.org/10.1016/b978-0-12-816176-0.00025-9

Tzutalin, D. (2015). labelimg. https://github.com/tzutalin/labelImg

Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T., & Smeulders, A. W. M. (2013).

Selective Search for Object Recognition. International Journal of Computer Vision,

104(2), 154-171. https://doi.org/10.1007/s11263-013-0620-5

Vasilopoulos, E., Vosinakis, G., Krommyda, M., Karagiannidis, L., Ouzounoglou, E., &

Amditis, A. (2022). A Comparative Study of Autonomous Object Detection

Algorithms in the Maritime Environment Using a UAV Platform. Computation,

10(3). https://doi.org/10.3390/computation10030042

Vedaldi, A., Gulshan, V., Varma, M., & Zisserman, A. (2009). Multiple Kernels for Object

Detection.

Viola, P., & Jones, M. (2001). Rapid Object Detection using a Boosted Cascade of Simple

Features.

Wang, Y., Ning, X., Leng, B., & Fu, H. (2019). Ship Detection Based on Deep Learning

International Conference on Mechatronics and Automation,

Weng, J., Ahyja, N., & Huang, T. S. (1992). Cresceptron: A Self-Organizing Neural Network

Which Grows Adaptively. 576-581.

Weng, J. J., Ahyja, N., & Huang, T. S. (1993). Learning Recognition and Segmentation of 3-

D Objects from 2-D Images. 121-128.

https://pytorch.org/docs/stable/generated/torch.nn.Hardswish.html
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/tcsvt.2019.2897980
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://doi.org/10.1016/b978-0-12-816176-0.00025-9
https://github.com/tzutalin/labelImg
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.3390/computation10030042

88 | Σ ε λ ί δ α

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural

networks: an overview and application in radiology. Insights Imaging, 9(4), 611-629.

https://doi.org/10.1007/s13244-018-0639-9

Yan, B., Fan, P., Lei, X., Liu, Z., & Yang, F. (2021). A Real-Time Apple Targets Detection

Method for Picking Robot Based on Improved YOLOv5. Remote Sensing, 13(9).

https://doi.org/10.3390/rs13091619

Yang, J., Li, Y., Zhang, Q., & Ren, Y. (2019). Surface Vehicle Detection and Tracking with

Deep Learning and Appearance Feature 2019 5th International Conference on

Control, Automation and Robotics,

Yegnanarayana, B. (1994). Artificial neural networks for pattern recognition. Sadhana, 19,

189-238.

YuanQiang, C., Du, D., Zhang, L., Wen, L., Wang, W., Wu, Y., & Lyu, S. (2020). Guided

Attention Network for Object Detection and Counting on Drones Proceedings of the

28th ACM International Conference on Multimedia,

Zakria, Z., Deng, J., Kumar, R., Khokhar, M. S., Cai, J., & Kumar, J. (2022). Multiscale and

Direction Target Detecting in Remote Sensing Images via Modified YOLO-v4. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15,

1039-1048. https://doi.org/10.1109/jstars.2022.3140776

Zhang, T., Zhang, X., Shi, J., & Wei, S. (2019). HIGH-SPEED SHIP DETECTION IN SAR

IMAGES BY IMPROVED YOLOV3. 149-152.

Zhang, X., Yan, M., Zhu, D., & Guan, Y. (2022). Marine ship detection and classification

based on YOLOv5 model. Journal of Physics: Conference Series, 2181.

https://doi.org/10.1088/1742-6596/2181/1/012025

Zheng, J. C., Sun, S. D., & Zhao, S. J. (2022). Fast ship detection based on lightweight

YOLOv5 network. IET Image Processing, 16(6), 1585-1593.

https://doi.org/10.1049/ipr2.12432

Zheng, R., Zhou, Q., & Wang, C. (2019). Inland River Ship Auxiliary Collision Avoidance

System 2019 18th International Symposium on Distributed Computing and

Applications for Business Engineering and Science (DCABES),

Zhou, W., & Lu, L. (2022). An Efficient Ship Detection and Classification Algorithm based

on YOLOv4. International Core Journal of Engineering, 8(4), 163-173.

https://doi.org/10.6919/ICJE.202204_8(4).0023

Zhu, H., Wei, H., Baoqing, L., Yuan, X., & Kehtarnavaz, N. (2020). A review of Video

Object Detection: Datasets, Metrics and Methods. applied sciences.

https://doi.org/10.3390/app10217834

https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.3390/rs13091619
https://doi.org/10.1109/jstars.2022.3140776
https://doi.org/10.1088/1742-6596/2181/1/012025
https://doi.org/10.1049/ipr2.12432
https://doi.org/10.6919/ICJE.202204_8(4).0023
https://doi.org/10.3390/app10217834

89 | Σ ε λ ί δ α

 Appendix

Appendix A: Hardware and Software Specifics
Hardware Specifics

CPU Intel(R) Core(TM) i5-6300HQ

CPU Clockspeed 2.3 GHz

CPU threads 4 cores (4 threads)

GPU Nvidia(R) GeForce(R) GTX 960M

GPU Clockspeed 2.6 Ghz

VRAM 4GB GDDR5

Storage 450 GB SSD

Software Specifics

OS Windows 10 Pro (x64)

Python version 3.9.7

Cuda version release 10.2 version 10.2.89

Pytorch version 1.10.2

Jupyter notebook version 6.4.6

Appendix B: Results of different cases

Figure 0.2: Metric results for a training dataset with 20 images of floating objects.

Figure 0.1: Results of the model detections, with the 20 images of floating objects in the training dataset.

90 | Σ ε λ ί δ α

Figure 0.3: Metric results for a training dataset with 50 images of floating objects.

Figure 0.5: Metric results for a training dataset with 100 images of floating objects in the training dataset.

Figure 0.4: Results of the model detections, with the 50 images of floating objects in the training dataset.

91 | Σ ε λ ί δ α

Figure 0.7: Metric results for a training dataset with 20 images of rocks.

Figure 0.6: Results of the model detections, with the 100 images of floating objects.

Figure 0.8: Results of the model detections, with the 20 images of rocks in the training dataset.

92 | Σ ε λ ί δ α

Figure 0.9: Metric results for a training dataset with 50 images of rocks.

Figure 0.11: Metric results for a training dataset with 100 images of rocks.

Figure 0.10: Results of the model detections, with the 50 images of rocks in the training dataset.

93 | Σ ε λ ί δ α

Figure 0.13: Metric results for a training dataset with 400 images trained on the medium-size network.

Figure 0.12: Results of the model detections, with the 100 images of rocks in the training dataset.

