
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Σημασιολογικός Εμπλουτισμός Προεκπαιδευμένων

Νευρωνικών Δικτύων για την Επεξεργασία

Φυσικής Γλώσσας με τη Χρήση Εργαλείων

Αναπαράστασης Γνώσης

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Βασιλική Α. Ξεφτέρη

Επιβλέπων: Γεώργιος Στάμου

Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2022

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Σημασιολογικός Εμπλουτισμός Προεκπαιδευμένων

Νευρωνικών Δικτύων για την Επεξεργασία

Φυσικής Γλώσσας με τη Χρήση Εργαλείων

Αναπαράστασης Γνώσης

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Βασιλική Α. Ξεφτέρη

Επιβλέπων: Γεώργιος Στάμου

Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 13η Ιουλίου 2022.

..

Γεώργιος Στάμου

Καθηγητής Ε.Μ.Π.

..

Αθανάσιος Βουλόδημος

Επίκουρος Καθηγητής Ε.Μ.Π.

..

Ανδρέας-Γεώργιος

Σταφυλοπάτης

Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2022

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMPUTER SCIENCE

Semantic Enrichment of Pre-trained Neural Networks for
Natural Language Processing with the Use of Knowledge

Representation Tools

DIPLOMA THESIS

Vasiliki A. Xefteri

Supervisor: Georgios Stamou
NTUA Professor

Athens, July 2022

...................................

Βασιλική Α. Ξεφτέρη

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Βασιλική Ξεφτέρη, 2022.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολο-

κλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευ-

ση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό

την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυ-

μα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει

να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον

συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του

Εθνικού Μετσόβιου Πολυτεχνείου.

Ευχαριστίες

Ολοκληρώνοντας τις σπουδές μου στο ΕΜΠ, θα ήθελα να ευχαριστήσω

ιδιαίτερα τον επιβλέποντα καθηγητή μου κ. Στάμου για την εμπιστοσύνη που

έδειξε στις δυνατότητές μου και τη συνεργασία μας. Επίσης, θα ήθελα να

ευχαριστήσω τον Γιώργο Φιλανδριανό για την άμεση και εποικοδομητική συ-

νεργασία μας στην υλοποίηση της παρούσας διπλωματικής. Τέλος, ένα μεγάλο

ευχαριστώ στον αδελφό μου, τους γονείς μου και σε όλους τους φίλους μου

για τη στήριξή τους σε όλη τη διάρκεια των σπουδών μου.

8

Περίληψη

Τα τελευταία χρόνια, η επιστημονική βιβλιογραφία στον βιοϊατρικό και κλι-

νικό τομέα αυξάνεται ολοένα και περισσότερο. Αυτή η ταχεία ανάπτυξη έχει

περιπλέξει τον εντοπισμό πληροφοριών που ενδιαφέρουν τους ερευνητές. Επί

του παρόντος, υπάρχουν διάφορα εποπτευόμενα μοντέλα για την ανάκτηση πλη-

ροφοριών και την ταξινόμηση ιατρικών εγγράφων, ωστόσο η ταχεία εμφάνιση

νέων θεμάτων και ευρημάτων συχνά εμποδίζει την απόδοσή τους. Η διπλω-

ματική αυτή ασχολείται με τη διερεύνηση του σημασιολογικού εμπλουτισμού

αρχιτεκτονικών βαθιάς μάθησης transformer με σκοπό την εύρεση των σχε-
τικών ιατρικών εγγράφων με ένα ερώτημα χρήστη και επίσης την ταξινόμηση

αυτών των εγγράφων. Αξιολογούμε τις μεθόδους μας σε υποσύνολα δεδομένων

OHSUMED. Και στα δύο προβλήματα, ο σημασιολογικός εμπλουτισμός επιτυγ-
χάνεται με τη SNOMED CT, μια οντολογία κλινικής υγειονομικής περίθαλψης,
και χρησιμοποιούμε κυρίως δύο διαφορετικές προσεγγίσεις.

Σε αυτή τη διπλωματική, αρχικά, διερευνούμε τον εμπλουτισμό των ενσω-

ματώσεων κειμένων που βασίζονται σε μοντέλα transformer με ενσωματώσεις
οντολογιών, που παράγονται από το OWL2Vec* [11]. Το OWL2Vec* είναι
ένα πλαίσιο που διατηρεί τις λεξιλογικές πληροφορίες και τους λογικούς τε-

λεστές μιας οντολογίας. Πειραματιζόμαστε με διαφορετικές παραμέτρους του

OWL2Vec* και διαφορετικές προ-διεργασίες του συνόλου δεδομένων και της
οντολογίας μας και αποδεικνύουμε ότι το OWL2Vec* δεν μπορεί επί του πα-
ρόντος να εφαρμοστεί σε μεγάλες οντολογίες, όπως η SNOMED CT. Αυτό το
αποδεικνύουμε όχι μόνο στην ανάκτηση πληροφοριών αλλά και στην ταξινόμη-

ση κειμένων. Στο μέλλον, η απόδοση του OWL2Vec* αναμένεται να βελτιωθεί
με μεγαλύτερες οντολογίες.

Για την ταξινόμηση, δοκιμάζουμε επίσης μια άλλη μέθοδο που βασίζεται

στο φιλτράρισμα. Ενισχύουμε κάθε κλάση και κάθε έγγραφο με έννοιες της

SNOMED CT και, στη συνέχεια, επιβάλλουμε φίλτρα στη συνύπαρξη εννοιών
μεταξύ τους. Η μέθοδος επιτυγχάνει καλή απόδοση στην ταξινόμηση. Εξε-

τάζουμε αυτή την προσέγγιση συνδυάζοντάς την με τα μοντέλα BERT και
βελτιώνουμε σημαντικά την απόδοσή τους. Ως αποτέλεσμα, αποδεικνύουμε ότι

μια εξειδικευμένη οντολογία μπορεί να εφαρμοστεί με επιτυχία για την προσαρ-

10

μογή μοντέλων, που δεν εξειδικεύονται σε έναν τομέα, σε έναν νέο τομέα και

να βελτιώσει την απόδοση των μοντέλων επεξεργασίας φυσικής γλώσσας.

Λέξεις κλειδιά

BERT, SNOMED CT, OWL2Vec*, Σημασιολογικός εμπλουτισμός, Ανάκτηση
πληροφορίας, Ταξινόμηση, Επεξεργασία φυσικής γλώσσας

11

Abstract

In recent years, the scientific literature in the biomedical and clinical
domain is more and more increasing. This rapid growth has complicated the
identification of information of interest by researchers. Various supervised
models currently exist for the information retrieval and the classification of
medical documents, however the rapid emergence of new topics and findings
often hinders their performance. The thesis is concerned with investigating
the semantic enrichment of deep transformer architectures in order to find
the related medical documents with a user query and also to classify these
documents. We evaluate our methods on subsets of OHSUMED dataset. On
both tasks the semantic enrichment is achieved with SNOMED CT, a clinical
healthcare terminology, and we use mainly two different approaches.

In this thesis, firstly, we investigate the enrichment of transformer-based
embeddings with owl embeddings, produced by OWL2Vec* [11]. OWL2Vec*
is a framework that preserves the lexical information and the logical con-
structors of an ontology. We experiment with different settings of OWL2Vec*
and different pre-processes of our dataset and ontology and we prove that
OWL2Vec* is currently unable to be applied in large ontologies, like SNOMED
CT. We prove this not only on information retrieval but also on text classifi-
cation. In the future the performance of OWL2Vec* is expected to improve
with larger vocabularies.

For the classification task we, also, try another method based on filtering.
We enhance each class and each document with SNOMED CT concepts and
then impose filters on concept co-occurrence between them. The method
achieves good performance on classification. We examine this approach while
combining it with BERT models and improve significantly their performance.
As result, we prove that a specialized ontology, can successfully be applied to
adapt out-of-domain models to a new domain and improve the performance
of natural language processing models.

13

Keywords
BERT, SNOMED CT, OWL2Vec*, Semantic enrichment, Information re-
trieval, Classification, Natural language processing

14

Contents

Ευχαριστίες 8

Περίληψη 10

Abstract 13

Contents 18

List of Figures 20

List of Tables 21

1 Εκτεταμένη Ελληνική Περίληψη 22

1.1 Εισαγωγή . 22

1.2 Αναπαράσταση Φυσικής Γλώσσας 24

1.2.1 Ενσωματώσεις Λέξεων 24

1.2.2 Ενσωματώσεις με βάση τα Συμφραζόμενα 25

1.3 Μοντέλα NLP . 25
1.3.1 Transformer . 26
1.3.2 BERT . 27

1.3.3 BioBERT . 28

1.3.4 Longformer . 28
1.4 Αναπαράσταση Γνώσης . 28

1.5 Πειραματική Μελέτη . 30

2 Introduction 32
2.1 Motivation . 32
2.2 Related Work . 33
2.3 Thesis Contribution . 34
2.4 Thesis Structure . 35

16

3 Introduction to Artificial Intelligence 36
3.1 Machine Learning . 37

3.1.1 Supervised Learning 37
3.1.2 Unsupervised Learning 38
3.1.3 Semi-supervised Learning 38
3.1.4 Reinforcement Learning 38

3.2 Natural Language Processing 39

4 Deep Learning Background 42
4.1 The Perceptron . 43

4.1.1 Perceptron Training Algorithm 44
4.2 Multilayer Feed-Forward Neural Networks 45

4.2.1 Activation Functions 46
4.2.2 Learning Process . 46

4.3 Recurrent Neural Networks . 51
4.3.1 Backpropagation Through Time (BPTT) 53
4.3.2 Types of RNNs . 55
4.3.3 Different RNN Architectures 55

5 Vector Representation of Language 59
5.1 One-hot Representation . 59
5.2 Vector Space Models . 60

5.2.1 Word Embeddings . 60
5.2.2 Predictive Models . 61
5.2.3 Similarity Metrics . 62
5.2.4 Contextualized Embeddings 63

6 The Transformer Model 64
6.1 Model Architecture . 65

6.1.1 Encoder - Decoder . 65
6.1.2 Attention . 66
6.1.3 Position-Wise Feed-Forward Network 68
6.1.4 Positional Encoding . 69

6.2 Bi-Directional Encoder Representation From Transformers
(BERT) . 69
6.2.1 Input and Output Representations 69
6.2.2 Pre-training BERT . 70
6.2.3 Mean Pooling Operation 72
6.2.4 Fine-tuning BERT . 72

6.3 Other Transformer Models . 72
6.3.1 RoBERTa . 72

17

6.3.2 DistilBERT . 73
6.3.3 Longformer . 73
6.3.4 BioBERT . 73

7 Knowledge Representation 75
7.1 Graph Embeddings . 77
7.2 Ontology Embeddings . 77

7.2.1 OWL2Vec* . 78

8 Experimental study 83
8.1 Experimental Settings . 83

8.1.1 Data Description . 83
8.1.2 Data Preprocessing . 88
8.1.3 Platform . 89
8.1.4 Implementation . 89
8.1.5 Metrics . 95

8.2 Experimental Results . 97
8.2.1 Information Retrieval 97
8.2.2 Classification . 102

9 Conclusion and Future Work 108

18

List of Figures

4.1 Biological Neuron and Perceptron 43
4.2 MLP Architecture . 45
4.3 Forward and Backward Pass 47
4.4 RNN vs FFNN . 52
4.5 RNN Depenedncies . 53
4.6 Types of RNN . 55
4.7 Biological Neuron and Perceptron 56
4.8 Sequence to Sequence Model 58

5.1 CBOW and Skip-gram Models of Word2vec 62

6.1 The Transformer Model Architecture 66
6.2 Scaled Dot-Product and Multihead Attention 67
6.3 BERT Input Representation 70
6.4 Overview of the pre-training BioBERT 73

7.1 The Overall Framework of OWL2Vec* 78

8.1 SNOMED CT Example Concept 86
8.2 SNOMED CT Hierarchy . 87
8.3 Summary of First System Architecture (IR) 91
8.4 Summary of Second System Architecture (IR) 93
8.5 Summary of System Architecture (Classification) 94
8.6 Comparison of different Settings of OWL2Vec* with SNOMED

CT . 99
8.7 Comparison of different Settings of OWL2Vec* with SNOMED

CT-DS . 101
8.8 Best Results in Information Retrieval 102
8.9 Comparison of F1-Scores of BERT, BioBERT and Concept

Filter for two Classes . 103

19

8.10 Comparison of F1-Scores of simple BERT, BioBERT with their
enhancement with the Concept Filter for "Musculoskeletal
Diseases" Class . 104

8.11 Comparison of F1-Scores of simple BERT, BioBERT with their
enhancement with the Concept Filter for specific thresholds
and various depths ("Musculoskeletal Diseases" Class) 105

8.12 Comparison of F1-Scores of simple BERT, BioBERT with their
enhancement with the Concept Filter for "Endocrine Diseases"
Class . 106

8.13 Comparison of F1-Scores of simple BERT, BioBERT with their
enhancement with the Concept Filter for specific thresholds
and various depths ("Endocrine Diseases" Class) 107

20

List of Tables

7.1 Projection Rules . 79

8.1 Query - Document set size for Information Retrieval in OHSUMED
dataset . 84

8.2 Number of Documents at each Category 85
8.3 Explanation of Depths and Thresholds for Concept Filter . . . 96
8.4 Comparison between the results of Transformer Models and

their enhancement with OWL2Vec* 97
8.5 Comparison of different Embedding Sizes 98
8.6 Comparison of different Settings of OWL2Vec* 98
8.7 Comparison of the Results of the Models before and after

Splitting each Document . 100
8.8 Comparison of the Results of the Models before and after Split-

ting each Document and after inserting them into SNOMED
CT . 100

8.9 Comparison of the Results of BioBERT Model with OWL2Vec*
after Splitting each Document and after inserting them into
SNOMED CT . 100

8.10 Comparison of the Results of BERT and BioBERT with pre-
trained OWL2Vec* after Splitting each Document and after
inserting them into SNOMED CT 100

8.11 Comparison of the Results of BERT and BioBERT with OWL2Vec*
for different Settings after Splitting each Document and after
inserting them into SNOMED CT 101

8.12 Comparison of nDCG scores for different Values of k 102

21

Κεφάλαιο 1

Εκτεταμένη Ελληνική

Περίληψη

Αυτό το κεφάλαιο περιλαμβάνει μία περιληπτική παρουσιάση των περιεχο-

μένων αυτής της διπλωματικής εργασίας στα ελληνικά.

1.1 Εισαγωγή

Τα τελευταία χρόνια, η ανάγκη εφαρμογής μοντέλων μηχανικής μάθησης

σε διάφορους τομείς αυξάνεται ολοένα και περισσότερο. Για περισσότερα από

50 χρόνια, οι επιστήμονες έχουν επικεντρωθεί στην ανάπτυξη της ικανότητας

των ηλεκτρονικών υπολογιστών για την κατανόηση της ανθρώπινης γλώσσας,

γραπτής και προφορικής, που αναφέρεται ως φυσική γλώσσα. Αυτό το πεδίο

που συνδιάζει την Γλωσσολογία, την Επιστήμη Υπολογιστών και την Τεχνητή

Νοημοσύνη ονομάζεται Επεξεργασία Φυσικής Γλώσσας (NLP). Οι εφαρμογές
της επεξεργασίας φυσικής γλώσσας αφορούν συνήθως την ανάκτηση πληρο-

φορίας, την ομαδοποίηση πληροφορίας, την μηχανική μετάφραση, την περίληψη

κειμένων, την ανάλυση συναισθημάτων, την ταξινόμηση και την αυτοματοποιη-

μένη αναγνώριση ομιλίας.

Σήμερα, τα βαθιά νευρωνικά δίκτυα, όπως τα μοντέλα BERT, είναι ευρέως
διαδεδομένα και αποτελεσματικά στο πεδίο της επεξεργασίας φυσικής γλώσσας.

Κατανοούμε, φυσικά, ότι η συμβολή τους ιδιαίτερα στον τομέα της ιατρικής είναι

πολύ σημαντική αφού η επεξεργασία φυσικής γλώσσας βοηθάει στην ανάλυση

σημειώσεων και κειμένων, που βρίσκονται σε ηλεκτρονική μορφή, και τα ο-

ποία διαφορετικά θα ήταν απρόσιτα για μελέτη. Ενώ οι μέθοδοι μηχανικής

εκμάθησης όμως βελτιώνονται συνεχώς, τα ιατρικά θέματα αλλάζουν γρήγορα

και το ίδιο αλλάζουν και οι σχετικοί πόροι (επιστημονικές δημοσιεύσεις, εκ-

θέσεις, κλινικές δοκιμές). ΄Ετσι, αν και τα τυπικά σύνολα δεδομένων παρέχουν

22

μια σταθερή βάση για την εκπαίδευση, τη βελτίωση και την αξιολόγηση νέων

μεθόδων, δεν μπορούν να λάβουν υπόψη αναδυόμενα θέματα, νέες οντότητες

και ορολογίες.

Ο στόχος της διπλωματικής εργασίας είναι ο σημασιολογικός εμπλουτισμός

των προεκπαιδευμένων νευρωνικών δικτύων για την επεξεργασία φυσικής γλώσ-

σας με τη χρήση εργαλείων αναπαράστασης γνώσης. Συγκεκριμένα εστιάζουμε

σε διαφορετικούς τρόπους βελτίωσης των ενσωματώσεων (embeddings) των
μοντέλων BERT με γνώση που εξάγεται από την SNOMED CT. Η SNOMED
CT αποτελεί την πιο ολοκληρωμένη ορολογία κλινικής υγειονομικής περίθαλ-
ψης, που αποτελείται από πάνω από 350.000 έννοιες και καλύπτουν κλινικά

ευρήματα, συμπτώματα, διαγνώσεις, διαδικασίες, οργανισμούς και άλλες αιτιο-

λογίες, ουσίες, φαρμακευτικά προϊόντα, συσκευές και δείγματα. Τα μοντέλα

BERT, τα οποία ενσωματώνουμε, είναι μια οικογένεια υψηλών επιδόσεων προ-
εκπαιδευμένων γλωσσικών μοντέλων που παράγουν αποτελέσματα αιχμής σε

ένα ευρύ φάσμα προβλημάτων επεξεργασίας της φυσικής γλώσσας (NLP). Η
βασική τεχνική καινοτομία του BERT είναι η εφαρμογή της αμφίδρομης εκπα-
ίδευσης των Transformers στη μοντελοποίηση γλώσσας. Με τη χρήση πολλα-
πλών μηχανισμών προσοχής (πολλαπλή προσοχή), το μοντέλο είναι σε θέση να

συλλάβει ένα ευρύτερο φάσμα σχέσεων μεταξύ των λέξεων από αυτό που θα

ήταν δυνατό με έναν μόνο μηχανισμό προσοχής. Επιπλέον, το BERT στοιβάζει
πολλαπλά στρώματα προσοχής, καθένα από τα οποία λειτουργεί στην έξοδο

του στρώματος που ήρθε πριν. Μέσω αυτής της επαναλαμβανόμενης σύνθεσης

ενσωματώσεων λέξεων, το BERT είναι σε θέση να σχηματίσει πολύ πλούσιες
αναπαραστάσεις καθώς φτάνει στα βαθύτερα στρώματα του μοντέλου.

Επικεντρωνόμαστε στην ανάκτηση πληροφοριών και στην ταξινόμηση κει-

μένου. Για την αξιολόγηση χρησιμοποιούμε υποσύνολα του συνόλου δεδομένων

OHSUMED ώστε να βαθμολογήσουμε τις μεθόδους μας σε σύγκριση με δια-
φορετικά μοντέλα BERT. Αρχικά, και για τις δύο εργασίες, εμπλουτίζουμε
τις ενσωματώσεις κειμένων των μοντέλων BERT με ενσωματώσεις οντολογιών
της SNOMED CT. Οι ενσωματώσεις οντολογιών για κάθε έγγραφο παράγονται
χρησιμοποιώντας το OWL2Vec*, το οποίο διατηρεί τις λεξιλογικές πληροφορίες
και τους λογικούς τελεστές μιας οντολογίας. Πειραματιζόμαστε με διαφορετι-

κές ρυθμίσεις του OWL2Vec* και διαφορετικές προ-διεργασίες του συνόλου
δεδομένων και της οντολογίας μας και αποδεικνύουμε ότι το OWL2Vec* δεν
μπορεί να εφαρμοστεί επί του παρόντος σε μεγάλα λεξιλόγια, όπως η SNOMED
CT. Χρησιμοποιούμε, επίσης, αυτόν τον σημασιολογικό εμπλουτισμό των εν-
σωματώσεων στην ταξινόμηση των εγγράφων και επιβεβαιώνουμε και πάλι την

υπόθεσή μας.

Δοκιμάζουμε, επίσης, στην ταξινόμηση μια μέθοδο φιλτραρίσματος. Δη-

μιουργούμε ένα φίλτρο στα έγγραφα που βασίζεται στη συνύπαρξη μεταξύ των

εννοιών που σχετίζονται με την κλάση και των όρων των εγγράφων. Για την

23

εύρεση των εννοιών που σχετίζονται με την κλάση εκμεταλλευόμαστε την ι-

εραρχία εννοιών της SNOMED CT. Πειραματιζόμαστε με διαφορετικά βάθη
στη SNOMED CT και διαφορετικά κατώφλια στα έγγραφα. Αποδεικνύουμε
ότι τα μοντέλα BERT σε συνδυασμό με το φιλτράρισμα επιτυγχάνουν καλύτερη
απόδοση από τα αφιλτράριστα μοντέλα. Ως αποτέλεσμα, αποδεικνύουμε ότι μια

εξειδικευμένη οντολογία μπορεί να εφαρμοστεί με επιτυχία για την προσαρμο-

γή μοντέλων, που δεν εξειδικεύονται σε έναν τομέα, σε έναν νέο τομέα και να

βελτιώσει την απόδοση των μοντέλων επεξεργασίας φυσικής γλώσσας.

1.2 Αναπαράσταση Φυσικής Γλώσσας

Προτού αναφερθούμε σε κάποια μοντέλα επεξεργασίας φυσικής γλώσσας,

είναι σημαντικό να αναλύσουμε τον τρόπο με τον οποίο οι υπολογιστές επεξερ-

γάζονται τη φυσική γλώσσα. Στην πραγματικότητα οι υπολογιστές αναπαρι-

στούν την γλώσσα ως διάνυσμα.

Οι αναπαραστάσεις της γλώσσας που δημιουργούνται χρησιμοποιώντας νευ-

ρωνικά δίκτυα αναφέρονται συνήθως ως ενσωματώσεις (embeddings). Η ση-
μασιολογική ενσωμάτωση αναφέρεται σε μια σειρά τεχνικών εκμάθησης αναπα-

ράστασης (ή εκμάθησης χαρακτηριστικών) που κωδικοποιούν τη σημασιολογία

των δεδομένων, όπως οι ακολουθίες και τα γραφήματα σε διανύσματα, έτσι ώστε

να μπορούν να χρησιμοποιηθούν από εργασίες πρόβλεψης μηχανικής μάθησης

και στατιστικής ανάλυσης. Αρχικά θα αναφερθούμε στα θεμέλια πίσω από την

κατασκευή σημασιολογικών χώρων, ειδικά για την δημιουργία των ενσωματώσε-

ων λέξεων.

1.2.1 Ενσωματώσεις Λέξεων

Οι σημασιολογικοί χώροι κατασκευάζονται αυτόματα αναλύοντας την συ-

νύπαρξη των λέξεων σε μεγάλα κείμενα. Λέξεις που εμφανίζονται σε παρόμοια

συμφραζόμενα τείνουν να έχουν παρόμοια σημασία. Οι ενσωματώσεις λέξεων

είναι στην πραγματικότητα ένας ειδικός τύπος κατανεμημένης αναπαράστασης

λέξεων. Κατασκευάζονται με νευρωνικά δίκτυα, κυρίως διαδεδομένων μετά

το 2013. Δύο από τα πιο γνωστά μοντέλα ενσωματώσεων λέξεων είναι το

Word2vec και το GloVe.
Το Word2vec αναπτύχθηκε αρχικά από μια ομάδα της Google το 2013.

Μόλις εκπαιδευτεί, ένα τέτοιο μοντέλο μπορεί να ανιχνεύσει συνώνυμες λέξεις

ή να προτείνει πρόσθετες λέξεις για μια μερική πρόταση. ΤοWord2vec αντιπρο-
σωπεύει κάθε ξεχωριστή λέξη με ένα διάνυσμα, το οποίο επιλέγεται προσεκτικά

έτσι ώστε μια απλή μαθηματική συνάρτηση να υποδεικνύει το επίπεδο σημασιο-

λογικής ομοιότητας μεταξύ των λέξεων.

24

ΤοWord2vec βασίζεται σε ένα απλό αλλά αποτελεσματικό νευρωνικό δίκτυο
που εκπαιδεύεται με στόχο τη μοντελοποίηση γλώσσας. Το Word2vec μπορεί
να χρησιμοποιεί οποιαδήποτε από τις δύο κλασικές αρχιτεκτονικές αυτόματης

κωδικοποίησης για εκμάθηση αναπαραστάσεων διαδοχικών στοιχείων: συνεχής

Skip-gram και συνεχής Bag-of-Words (CBOW). Το μοντέλο CBOW στοχεύει
στην πρόβλεψη της τρέχουσας λέξης χρησιμοποιώντας το περιβάλλον της. Το

μοντέλο Skip-gram είναι παρόμοιο με το μοντέλο CBOW αλλά ο στόχος είναι

να προβλέψει τις λέξεις στο περιβάλλον δεδομένης της λέξης-στόχος, αντί να

προβλέπει την ίδια τη λέξη-στόχο.

Το GloVe αναπτύχθηκε στο Stanford το 2014. Το μοντέλο είναι ένας αλ-
γόριθμος μάθησης χωρίς επίβλεψη για τη λήψη διανυσματικών αναπαραστάσεων

για λέξεις. Αυτό επιτυγχάνεται με την αντιστοίχιση λέξεων σε ένα χώρο με

νόημα όπου η απόσταση μεταξύ των λέξεων σχετίζεται με τη σημασιολογική

ομοιότητα. Η εκπαίδευση εκτελείται σε συγκεντρωτικά καθολικά στατιστικά

στοιχεία συνύπαρξης λέξεων από ένα κείμενο.

1.2.2 Ενσωματώσεις με βάση τα Συμφραζόμενα

Το πρόβλημα των προεκπαιδευμένων ενσωματώσεων λέξεων είναι ότι υπο-

λογίζουν μια στατική αναπαράσταση για κάθε λέξη αφού η αναπαράσταση είναι

ανεξάρτητη από το περιεχόμενο στο οποίο εμφανίζεται η λέξη. Αυτό μπορεί να

εμποδίσει την ικανότητα των συστημάτων NLP να κατανοούν τη σημασιολο-
γία ενός κειμένου. Αντίθετα οι ενσωματώσεις με βάση τα συμφραζόμενα είναι

δυναμικές και η ίδια λέξη μπορεί να έχει διαφορετικές ενσωματώσεις εάν εμφα-

νίζεται σε διαφορετικά πλαίσια. Τα μοντέλα αυτά λαμβάνουν ολόκληρο το κε-

ίμενο (τη λέξη-στόχο μαζί με το περιεχόμενό της) και παρέχουν εξειδικευμένες

ενσωματώσεις για μεμονωμένες λέξεις που προσαρμόζονται στο περιεχόμενο

των κειμένων. Αυτές οι ενσωματώσεις είναι στην πραγματικότητα οι εσωτε-

ρικές καταστάσεις ενός βαθέως νευρωνικού δικτύου το οποίο εκπαιδεύεται με

αντικείμενα γλωσσικής μοντελοποίησης. Η εκπαίδευση των συμφραζομένων εν-

σωματώσεων πραγματοποιείται σε στάδιο προεκπαίδευσης, ανεξάρτητα από την

κύρια εργασία. Το εκπαιδευμένο μοντέλο μπορεί στη συνέχεια να δημιουργήσει

αναπαραστάσεις με βάση τα συμφραζόμενα για όλες τις λέξεις σε ένα δεδομένο

κείμενο. Δύο τέτοια μοντέλα, είναι τα RNN και Transformer.

1.3 Μοντέλα NLP
΄Οπως προαναφέραμε, δύο μοντέλα που μπορούν να καταγράψουν τις εξαρ-

τήσεις μεταξύ των λέξεων και χρησιμοποιούνται για την επεξεργασία φυσικής

γλώσσας είναι τα RNN και Transformer. Τα RNN διαθέτουν την έννοια της

25

«μνήμης» που τους βοηθά να αποθηκεύουν τις καταστάσεις ή τις πληροφορίες

προηγούμενων εισόδων για τη δημιουργία της επόμενης εξόδου της ακολου-

θίας. Ειδικά τα LSTM και GRUs διαθέτουν μηχανισμούς που στοχεύουν στην
αντιμετώπιση του προβλήματος της μακροπρόθεσμης εξάρτησης.

Ωστόσο, τα RNN τείνουν να είναι αργά και η ικανότητά τους να μάθουν τις
μακροπρόθεσμες εξαρτήσεις εξακολουθεί να είναι περιορισμένη. Το 2017 ένα

εποπτευόμενο μοντέλο βαθιάς μάθησης, το οποίο ονομάστηκε Transformer,
παρουσιάστηκε για πρώτη φορά και χρησιμοποιείται πλέον όλο και περισσότερο

για προβλήματα NLP, αντικαθιστώντας τα μοντέλα RNN με μηχανισμούς προ-
σοχής. Αυτό το χαρακτηριστικό επιτρέπει μεγαλύτερη παραλληλοποίηση από τα

RNN και επομένως μειώνει τους χρόνους εκπαίδευσης. Επίσης προσδιορίζει το
περιεχόμενο που προσδίδει νόημα σε κάθε λέξη της πρότασης. Στην συνέχεια,

αναλύουμε την αρχιτεκτονική του Transformer καθώς και τα μοντέλα BERT,
BioBERT και Longformer, που είναι βασισμένα στο Transformer.

1.3.1 Transformer

Το δίκτυο Transformer αποτελείται από έναν κωδικοποιητή καθώς και έναν
αποκωδικοποιητή. Ο κωδικοποιητής κωδικοποιεί την ακολουθία εισόδου σε μία

ενδιάμεση αναπαράσταση. Στη συνέχεια, η αναπαράσταση αυτή τροφοδοτείται

στον αποκωδικοποιητή, ο οποίος παράγει την ακολουθία εξόδου. Ο μηχανισμός

attention επιτρέπει στο μοντέλο σε κάθε βήμα να επικεντρώνεται σε εκείνο το
τμήμα της ακολουθίας εισόδου, το οποίο θεωρεί σημαντικό για τον υπολογισμό

της εξόδου. Με άλλα λόγια, το μοντέλο μαθαίνει να διακρίνει τις σχέσεις μεταξύ

των συμβόλων της ακολουθίας εισόδου. Στην περίπτωση του Transformer η
συνάρτηση attention είναι γνωστή ως scaled dot-product attention. Για κάθε
σύμβολο xi της ακολουθίας εισόδου υπολογίζονται τρία διανύσματα: το query
qi, το key ki και το value vi. Οι Q,K, V είναι οι πίνακες με όλα τα queries,
keys, values αντίστοιχα ενώ dk το μέγεθος των διανυσμάτων key και query.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1.1)

Στο μοντέλο Transformer, τα διανύσματα query, key και value υπολογίζο-
νται πολλές φορές με διαφορετικούς πίνακες προβολής, οι οποίοι μαθαίνονται

κατά την εκπαίδευση του μοντέλου. Στη συνέχεια, ο μηχανισμός attention ε-
φαρμόζεται παράλληλα για κάθε σύνολο διανυσμάτων και το τελικό αποτέλεσμα

προκύπτει από την παράθεση των επιμέρους αποτελεσμάτων. Η τεχνική αυτή

ονομάζεται multi-head attention και επιτρέπει στο μοντέλο να επικεντρώνεται
ταυτόχρονα σε πολλά τμήματα της ακολουθίας εισόδου.

Ο κωδικοποιητής αποτελείται από έξι πανομοιότυπα επίπεδα τοποθετημένα

σε στοίβα. Κάθε επίπεδο αποτελείται από δύο υποεπίπεδα: τον μηχανισμό multi-

26

head self-attention και ένα πλήρως συνδεδεμένο δίκτυο. Ο αποκωδικοποιητής
αποτελείται και αυτός από έξι επίπεδα. Τα επίπεδα του αποκωδικοποιητή είναι

όμοια με τα επίπεδα του κωδικοποιητή, με τη διαφορά ότι περιέχουν ένα επιπλέον

υποεπίπεδο, το οποίο υλοποιεί τον μηχανισμό του multi-head attention μεταξύ
της τρέχουσας κατάστασης του αποκωδικοποιητή και της εξόδου του τελευταίου

κωδικοποιητή. Επίσης, ο μηχανισμός self-attention τροποποιείται, έτσι ώστε η
έξοδος του αποκωδικοποιητή να εξαρτάται μόνο από τις προηγούμενες εξόδους.

Αυτό επιτυγχάνεται με τη χρήση μασκών. Επίσης, επειδή το μοντέλο αυτό

δεν χρησιμοποιεί ανάδραση, η κωδικοποίηση θέσης (positional encoding) είναι
απαραίτητη για να κωδικοποιήσει την πληροφορία της θέσης του κάθε συμβόλου

της ακολουθίας εισόδου.

1.3.2 BERT

Το BERT είναι ένα μοντέλο αναπαράστασης γλώσσας που κυκλοφόρησε το
2018 και η αρχιτεκτονική του είναι βασισμένη στα Transformer. Τα προεκπαι-
δευμένα μοντέλα BERT έχουν χρησιμοποιηθεί αποτελεσματικά σε διάφορες ερ-
γασίες επεξεργασίας φυσικής γλώσσας. Οι αναπαραστάσεις εισόδου και εξόδου

του μοντέλου είναι συγκεκριμένες και έχουν μέγιστο μέγεθος 512 διακριτικά

(tokens). Η είσοδος BERT μπορεί να είναι τόσο μια μεμονωμένη πρόταση όσο
και ένα ζευγάρι προτάσεων. Το πρώτο διακριτικό κάθε ακολουθίας είναι πάντα

ένα ειδικό διακριτικό ταξινόμησης ([CLS]) ενώ το τελευταίο διακριτικό κάθε
πρότασης είναι ένα ειδικό διακριτικό ([SEP]). Το BERT, επίσης, προσθέτει
στις ενσωματώσεις των tokens ενσωματώσεις τμημάτων ώστε να ενημερώσει
το μοντέλο σε ποια πρόταση το toke ανήκει και ενσωματώσεις θέσης ώστε να
ενημερώσει το μοντέλο πού στην ακολουθία ανήκει το token. Για την προ-
εκπαίδευση του μοντέλου BERT χρησιμοποιήθηκαν η μοντελοποίηση μάσκας
γλώσσας (Masked Language Model) και η πρόβλεψη επόμενης πρότασης (Next
Sentence Prediction).

Μοντελοποίηση Μάσκας Γλώσσας

Προκειμένου να εκπαιδευτεί το BERT, το 15% των tokens εισόδου κα-
λύπτονται τυχαία χρησιμοποιώντας ένα ειδικό token [MASK]. Το μοντέλο έτσι
εκπαιδεύεται να προβλέπει αυτά τα tokens χρησιμοποιώντας όλα τα άλλα tokens
της ακολουθίας. Ωστόσο, η εργασία fine-tuning δεν πρόκειται σε καμία πε-
ρίπτωση να δει το token [MASK] στην είσοδό του. ΄Ετσι, για να προσαρμόσει
το μοντέλο, το 80% των περιπτώσεων, τα tokens του καλύπτονται κατα 15%,
10% των περιπτώσεων, τα tokens αντικαθίστανται κατά 15% με τυχαία tokens
και το 10% των περιπτώσεων μένουν ως έχουν, δηλαδή ανέγγιχτα. Το πλε-

ονέκτημα αυτής της διαδικασίας είναι ότι ο κωδικοποιητής δεν γνωρίζει ποιες

λέξεις θα κληθεί να προβλέψει και ποιες έχουν αντικατασταθεί από τυχαίες

27

λέξεις, επομένως αναγκάζεται να διατηρήσει μια αναπαράσταση κατανομής με

βάση τα συμφραζόμενα για κάθε token εισόδου.

Πρόβλεψη Επόμενης Πρότασης

Η πρόβλεψη της επόμενης πρότασης είναι σημαντική για την κατανόηση της

σχέσης μεταξύ 2 προτάσεων. Το BERT, λοιπόν, είναι προεκπαιδευμένο για
μια δυαδική εργασία πρόβλεψης επόμενης πρότασης. Πιο συγκεκριμένα, όταν

επιλεχθούν 2 προτάσεις Α και Β για κάθε παράδειγμα προεκπαίδευσης, το 50%

του χρόνου η Β είναι η πραγματική επόμενη πρόταση που ακολουθεί το Α (με

την ετικέτα IsNext) και το άλλο 50% των φορών είναι μια τυχαία πρόταση από
το σώμα (με την ένδειξη NotNext).

1.3.3 BioBERT

Το BioBERT είναι μια παραλλαγή του μοντέλου BERT και εισήχθη το 2019.
Οι ερευνητές προεκπαίδευσαν το BERT σε βιοϊατρικά κείμενα, συγκεκριμένα
σε περιλήψεις του PubMed και στα άρθρα πλήρους κειμένου PubMed Central.
Το προεκπαιδευμένο μοντέλο αυτό είναι πολύ σημαντικό για την επεξεργασία

της φυσικής γλώσσας στον χώρο της ιατρικής.

1.3.4 Longformer

Τα μοντέλα Transformer δεν μπορούν να επεξεργαστούν μεγάλες ακολου-
θίες λόγω της λειτουργίας της αυτοπροσοχής. Για την αντιμετώπιση αυτού του

περιορισμού, το Longformer εισήχθη με ένα μηχανισμό προσοχής που κλιμα-
κώνεται γραμμικά με το μήκος της ακολουθίας, καθιστώντας το εύκολο για την

επεξεργασία εγγράφων χιλιάδων tokens ή περισσότερων.

1.4 Αναπαράσταση Γνώσης

Η αναπαράσταση γνώσης είναι το πεδίο της τεχνητής νοημοσύνης που σχε-

τίζεται με την αναπαράσταση πληροφοριών για τον κόσμο με μια μορφή που

ένας υπολογιστής μπορεί να χρησιμοποιήσει. Η αναπαράσταση γνώσης ενσω-

ματώνει ευρήματα από τη λογική για να αυτοματοποιήσει διάφορα είδη συλ-

λογισμών. Στις αναπαραστάσεις της γνώσης περιλαμβάνονται οι οντολογίες

και τα γραφήματα γνώσης. Στην παρούσα διπλωματική ασχολούμαστε με την

αναπαράσταση οντολογιών.

Μια οντολογία είναι ένα τυπικά καθορισμένο λεξιλόγιο για έναν συγκεκρι-

μένο τομέα ενδιαφέροντος που χρησιμοποιείται για τη συλλογή γνώσεων σχε-

τικά με αυτόν τον (περιορισμένο) τομέα ενδιαφέροντος. Η οντολογία, λοιπόν,

28

περιγράφει τις έννοιες στον τομέα αυτόν καθώς και τις σχέσεις μεταξύ αυτών

των εννοιών. Η Γλώσσα Οντολογίας Ιστού (OWL) είναι μία από τις διασημότε-
ρες οικογένειες γλωσσών αναπαράστασης γνώσης για τη σύνταξη οντολογιών.

Η χρήση εξωτερικών πηγών γνώσης όπως οι οντολογίες και τα γραφήμα-

τα γνώσης μπορούν να χρησιμοποιηθούν για την παραγωγή ενσωματώσεων

για τους όρους τους με στόχο τη σημασιολογική ενίσχυση ενός μοντέλου

για την επεξεργασία φυσικής γλώσσας. Εστιάζουμε ιδιαίτερα στον αλγόριθμο

OWL2Vec*, που χρησιμοποιήθηκε στην πειραματική μελέτη της διπλωματικής
εργασίας για την παραγωγή των ενσωματώσεων της οντολογίας SNOMED CT.
Το OWL2Vec* αναπτύχθηκε το 2021 με σκοπό την δημιουργία ενός αλγο-

ρίθμου που θα μπορεί να κωδικοποιεί τη σημασιολογία μιας οντολογίας OWL
λαμβάνοντας υπόψη τη δομή του γράφηματός της, τις λεξιλογικές πληροφο-

ρίες καθώς και τους λογικούς τελεστές. Το συνολικό πλαίσιο του OWL2Vec*
αποτελείται κυρίως από δύο βασικά μέρη, την εξαγωγή πληροφοριών από την ο-

ντολογία με την παραγωγή τριών αρχείων (αρχείο δομής, λεξιλογικό αρχείο και

συνδυαστικό) και την εκπαίδευση του γλωσσικού μοντέλου με τις πληροφορίες

αυτές με σκοπό την παραγωγή ενσωματώσεων των οντοτήτων της οντολογίας.

Αρχικά, γίνεται η μετατροπή της αρχικής οντολογίας OWL σε ένα γράφημα
σε RDF μορφή. Το OWL2Vec* ενσωματώνει δύο στρατηγικές για την διαδικα-
σία αυτή. Η πρώτη στρατηγική εφαρμόζει τον μετασχηματισμό OWL to RDF
Graph Mapping που ορίζεται από τοW3C. Η δεύτερη στρατηγική βασίζεται σε
κανόνες προβολής που προτείνονται στον Πίνακα 7.1. Στη συνέχεια δημιουρ-

γούνται τα τρία έγγραφα. Η δημιουργία του εγγράφου δομής στοχεύει στην

αποτύπωση τόσο της δομής του γραφήματος όσο και των λογικών τελεστών

της οντολογίας. Μια επιλογή είναι ο υπολογισμός τυχαίων περιπάτων για κάθε

οντότητα-στόχο. Κάθε περίπατος, που είναι μια ακολουθία IRI οντοτήτων, απο-
τελεί πρόταση στο έγγραφο δομής. Το OWL2Vec* επιτρέπει επίσης τη χρήση
του Weisfeiler Lehman kernel. Για να συλλάβει τους λογικούς τελεστές, το
OWL2Vec* εξάγει όλα τα αξιώματα της οντολογίας και συμπληρώνει τις προ-
τάσεις του εγγράφου δομής. Το λεξιλογικό έγγραφο περιλαμβάνει προτάσεις

που δημιουργούνται από τις προτάσεις IRI οντοτήτων στο έγγραφο δομής και
προτάσεις που εξάγονται από τα σχετικά αξιώματα λεξιλογικού σχολιασμού

στην οντολογία. Το OWL2Vec*, επίσης, εξάγει ένα συνδυαστικό έγγραφο α-
πό το έγγραφο δομής και τους λεξιλογικούς σχολιασμούς της οντότητας, έτσι

ώστε να διατηρηθεί η συσχέτιση μεταξύ των οντοτήτων και των λέξεων στις

λεξιλογικές πληροφορίες. Αυτό μπορεί να προσθέσει θόρυβο στη συσχέτιση

μεταξύ των λέξεων και να επηρεάσει αρνητικά τις ενσωματώσεις των λέξεων.

Στο τέλος, το OWL2Vec* συγχωνεύει τα τρία έγγραφα σε ένα έγγραφο και,
στη συνέχεια, χρησιμοποιεί αυτό το έγγραφο για να εκπαιδεύσει ένα μοντέλο

Word2vec. Μπορούμε επίσης να εκπαιδεύσουμε εκ των προτέρων το μοντέλο
Word2vec αλλά αυτό μπορεί να αποδειχθεί θορυβώδες. Με το εκπαιδευμένο μο-

29

ντέλο ενσωμάτωσης λέξεων, το OWL2Vec* υπολογίζει τις ενσωματώσεις κάθε
IRI και κάθε λέξης.

1.5 Πειραματική Μελέτη

Στην πειραματική μελέτη της διπλωματικής αυτής συγκρίνουμε την απόδοση

των προεκπαιδευμένων μοντέλων BERT με τον σημασιολογικό εμπλουτισμό
τους με την χρήση της οντολογίας SNOMED CT. Εστιάζουμε την μελέτη
μας στα μοντέλα BERT και BioBERT. Για την αξιολόγση χρησιμοποιούμε ένα
υποσύνολο από τα έγγραφα της OHSUMED και συγκεκριμένα τον τίτλο και
την περίληψή τους. Επίσης, χρησιμοποιούμε το εργαλείο MetaMap ώστε να
αντιστοιχίσουμε τα ιατρικά κείμενα με όρους της SNOMED CT.
Αρχικά, επικεντρωνόμαστε στο πρόβλημα της ανάκτησης πληροφορίας α-

πό ιατρικά έγγραφα. Χρησιμοποιπούμε το OWL2Vec* ώστε να εμπλουτίσου-
με τις ενσωματώσεις των μοντέλων BERT με ενσωματώσεις της οντολογίας
SNOMED CT. Παράγουμε τις ενσωματώσεις κάθε κειμένου και κάθε ερώτη-
σης προσθέτοντας τις ενσωματώσεις τους από το BERT και από τον μέσο όρο
των ενσωματώσεων των όρων τους από το OWL2Vec*. Στη συνέχεια, ταξι-
νομούμε τη συνάφεια των εγγράφων για καθένα ερώτημα υπολογίζοντας την

απόσταση μεταξύ δύο διανυσματικών αναπαραστάσεων για την ανάκτηση εγ-

γράφων που σχετίζονται με το ερώτημα. Η απόσταση μεταξύ του διανύσματος

κειμένου di και του ερωτήματος qj υπολογίζεται με το cosine similarity.

relevance(di, qj) =
di · qj

∥di∥ · ∥qj∥
(1.2)

Πειραματιζόμαστε με διαφορετικές ρυθμίσεις του OWL2Vec* καθώς και
τροποποιήσεις του συνόλου δεδομένων μας, χωρίζοντας την περίληψη των κει-

μένων σε μέρη, και της οντολογίας SNOMED CT, εισάγοντας και τα κείμενα
μέσα στην οντολογία ώστε να παραχθούν οι ενσωματώσεις κάθε κειμένου αυ-

τόματα. Για την αξιολόγηση του συστήματός μας χρησιμοποιούμε την μετρική

nDCG, που ορίζεται για k in {0,1,...,N}:

nDCGk =
1

Q

Q∑
q=1

IDCG
(q)
k

DCG
(q)
k

, for DCG(q)
k = rel

(q)
1 +

k∑
i=2

rel
(q)
i

log2(i)
(1.3)

όπου IDCG υποδηλώνει το ιδανικό και υψηλότερο DCG και το rel
(q)
i α-

ναφέρεται στην συνάφεια του ith αποτελέσματος που κατατάσσεται ανάλογα με
το ερώτημα q.

30

Μετά την εκτέλεση όλων των πειραμάτων βλέπουμε ότι το OWL2Vec* αδυ-
νατεί να αποτυπώσει σωστά την οντολογία SNOMED CT καθώς είναι μια με-
γάλη οντολογία με πολλούς όρους. Τα καλύτερα αποτελέσματα τα λαμβάνουμε

χωρίζοντας την περίληψη των κειμένων σε μέρη και εισάγοντας τα στην οντο-

λογία SNOMED CT. Η βελτίωση όμως δεν είναι τόσο μεγάλη συγκριτικά με
τα απλά μοντέλα BERT.
Την αδυναμία αυτή του OWL2Vec* την αποδεικνύουμε και στο πρόβλη-

μα της ταξινόμησης. Και εκεί η επαύξηση των ενσωματώσεων των μοντέλων

BERT με τις ενσωματώσεις της οντολογίας SNOMED CT επιδρά αρνητικά
στην ταξινόμηση των κειμένων. Γι΄ αυτό, αποφασίζουμε να δημιουργήσουμε

ένα άλλο σύστημα που θα αξιοποιούμε την ιεραρχία των εννοιών της SNOMED
CT. Συγκεκριμένα, δημιουργούμε μια μέθοδο φιλτραρίσματος των κειμένων.
Επικεντρωνόμαστε σε δύο κλάσεις: Μυοσκελετικές Ασθένειες και Ενδοκρινι-

κές Ασθένειες. Αναζητούμε τους όρους που σχετίζονται με τις έννοιες αυτές

στην SNOMED CT καθώς και τα συνώνυμά τους. Επίσης, αναζητούμε τους
γονείς και τα παιδιά τους, τους γονείς των γονέων και τα παιδιά των παιδιών

κοκ. ΄Ετσι, διερευνούμε διαφορετικά βάθη της οντολογίας. Με τις έννοιες που

βρίσκουμε, φιλτράρουμε τα κείμενά μας χρησιμοποιώντας διαφορετικά κατώφλια

και αξιολογούμε το σύστημά μας χρησιμοποιώντας την μετρική f1-score.
Διαπιστώνουμε ότι ένα απλό φιλτράρισμα καταφέρνει να προσεγγίσει αρκετά

την απόδοση του μοντέλου BERT. Στη συνέχεια συνδυάζουμε το φιλτράρισμα
που προαναφέραμε με ένα νευρωνικό δίκτυο με 1 κρυφό επίπεδο. Σαν είσοδο

χρησιμοποιούμε τις ενσωματώσεις του μοντέλου BERT. Διαπιστώνουμε ότι
το μοντέλο BERT συνδυασμένο με το φιλτράρισμα ξεπερνά την απόδοση του
απλού BioBERT, το οποίο είναι ένα εξειδικευμένο μοντέλο για ιατρικά κείμενα.
΄Ετσι, αποδεικνύουμε ότι μια οντολογία μπορεί να εξειδικεύσει ένα γενικευμένο

μοντέλο ώστε να φέρει καλύτερα αποτελέσματα.

31

Chapter 2

Introduction

This chapter’s goal is to describe the motivation behind this work and
introduce readers to the actual problem. It also contains previous relevant
work, as well as a brief outline of the rest of the thesis and its contribution.

2.1 Motivation
Information retrieval was always a challenging task in natural language

processing, especially when that concerns the medical sector. Imagine a
researcher who needs to find information concerning a specific disease among
multiple documents. We understand that navigating existing and upcoming
literature with efficient and fast systems can not only make researcher’s life
easier but also lead to the improvement of medical research. Indeed, this need
is expressed on information retrieval and question answering task as well as
classification task.

Lately, the need to apply machine learning models in the biomedical natural
language processing field has been more and more increased. Indeed, deep
neural architectures such as BERT-based models have shown great potential in
information retrieval and classification, rendering them strong vanilla models.
However, while machine learning methods keep improving, the domain topics
change rapidly and so do the related textual resources (scientific publications,
reports, clinical trials). Thus, although standard datasets provide a solid basis
for training, improving and evaluating new methods, they cannot account for
emerging topics, new entities and terminology.

Knowledge bases, such as SNOMED CT, consists of a huge number of
medical terms and in fact the specific terminology is updated every six
months and so it includes each time more and more new entities. As a result,
we wanted to explore the potential of using such knowledge sources in a

32

post-processing manner in order to enhance such pretrained models.

2.2 Related Work
While there is a range of work that relates to the work presented in

this thesis, the main line of research is the semantinc enrichment of natural
language processing models with the use of external knowledge sources. The
specific diploma thesis was mainly inspired by Dervakos et al. [15]. Dervakos
et al. proposed a filtering method in information retrieval task based on
concept hierarchy of SNOMED CT. In particular, they enhanced queries
and documents with SNOMED CT concepts, imposed filters on concept
co-occurence between them and in that way they enriched bert-based models.
This approach showed competitive performance when applied on medical
papers. Similarly, we wanted to investigate the semantic enrichment of these
models with owl embeddings and also extend this approach in another task.

Especially in textual classification significant performance boosts can be
obtained by using external knowledge sources to complement the textual
representations and provide more informative features. Ostendorf et al. [44]
proposed the enrichment of BERT models with knowledge graphs embeddings
which encode author information for the classification of books. Zhang et
al. [69] experimented with external knowledge graphs to enrich embedding
information in order to ultimately improve language understanding. They
used structural knowledge represented by Wikidata entities and their relation
to each other. Earlier, Wang et al. [61] proposed and evaluated an approach to
improve text classification with knowledge from Wikipedia. Based on a bag of
words approach, they derived a thesaurus of concepts from Wikipedia and used
it for document expansion. The resulting document representation improved
the performance of an SVM classifier for predicting text categories. Ritchie
et al [48] used owl embeddings from OWL2Vec* to drive the computation of
ontology entity clusters.

Focusing on the information retrieval task, several publications used
external knowledge sources to improve their performance. Agosti et al. [3]
considered the relation between text and queries and aimed to reduce the
semantic gap between queries and documents, by incorporating polysemy and
synonymy information during the training of neural networks.

33

2.3 Thesis Contribution
In this thesis, we focus on different ways to enhance bert-based embeddings

with knowledge extracted from SNOMED CT. BERT (Bidirectional Encoder
Representations from Transformers) is a family of high performance pre-
trained language models which produce state-of-the-art results in a wide
variety of NLP tasks [16]. BERT’s key technical innovation is applying the
bidirectional training of Transformers [60] to language modelling. By using
multiple attention mechanisms (multi-head attention), the model is able
to capture a broader range of relationships between words than would be
possible with a single attention mechanism. Moreover, BERT stacks multiple
layers of attention, each of which operates on the output of the layer that
came before. Through this repeated composition of word embeddings, BERT
is able to form very rich representations as it gets to the deepest layers of
the model. As for the knowledge source we choose SNOMED CT, which is
the most comprehensive clinical healthcare terminology, consisting of more
than 350,000 concepts and covering clinical findings, symptoms, diagnoses,
procedures, body structures, organisms and other etiologies, substances,
pharmaceuticals, devices and specimens among others.

We concentrate on two different tasks of natural language processing:
information retrieval and text classification. For evaluation we use subsets
of OHSUMED dataset to assess the improvement our methods can achieve
compared to different BERT models, used as baselines. Firstly, for both
tasks, we enrich bert-based embeddings with owl embeddings from SNOMED
CT. The owl embeddings for each document are produced using the frame-
work OWL2Vec*, which preserves the lexical information and the logical
constructors of an ontology. More specifically, we search the terms of each
document in SNOMED CT and generate their embeddings with OWL2Vec*.
For information retrieval, given a query we retrieve its bert-based and owl
embeddings and we calculate the cosine similary of this vector representa-
tion between query and document. We experiment with different settings of
OWL2Vec* and different pre-processes of our dataset and ontology and we
prove that OWL2Vec* is currently unable to be applied in large vocabularies,
like SNOMED CT. We use, also, this semantic enrichment of embeddings on
text classification while using a neural network with 1 hidden layer to classify
our documents. Our assumptions for the inefficiency of OWL2Vec* for large
ontologies are again confirmed.

We then apply a filtering method on documents for the classification
task. We create a concept filter on documents which is based on concept
co-occurence between the concepts associated with the class and the terms of
the documents. For finding the concepts that are associated with the class

34

we take advantage of the concept hierarchy of SNOMED CT. We experiment
with different depths on SNOMED CT and different thresholds on documents.
We prove that by removing the documents with no concept co-occurrence
with the class and by creating a neural network, as before, with 1 hidden
layer and the bert-based embeddings as input, we achieve better performance
than unfiltered bert-based models. As a result, we prove that a specialized
ontology, can successfully be applied to adapt out-of-domain models to a new
domain and improve the performance of natural language processing models.

2.4 Thesis Structure
The remaining of the thesis is structured as follows. In Chapter 3 we

make an introduction to artificial intelligence and natural language processing
(NLP) tasks. In Chapter 4 we present the background of deep neural networks,
which is helpful for completely understanding how the models that we use
in our experimental study work. We, also, present some fundamental neural
networks that are commonly used in NLP and the basic ideas behind them.
Within Chapter 5 we describe several methods for representing language
in computers and we emphasize on word embedding models. We continue
in Chapter 6 by introducing the Transformer Model and we focus on bert-
based models, on which our experiments are based. In the next chapter
(Chapter 7), we emphasize on knowledge representation and how external
knowledge sources such as ontologies and knowledge graphs can be used for
producing vector representations that can semantically enhance a NLP model.
Finally, in Chapter 8 we present the experimental results of our framework
and in Chapter 9 we make our concluding remarks.

35

Chapter 3

Introduction to Artificial
Intelligence

In our days, especially during the last decade, the main focus is on
Artificial Intelligence, whose practical applications and current research topics
are increasing and expanding. It was founded as an academic discipline
in 1956, and in the years since has experienced several waves of optimism,
followed by disappointment and the loss of funding (known as an "AI winter").
In the first steps of Artificial Intelligence, its goal was to solve problems which
were challenging and intellectually hard for human beings, like complex
mathematical operations, with impressive speed and accuracy. What’s proven
really hard though, is to solve problems that are easy, like automatic, for
human brain, and that they can’t be formally described, such as recognizing
similar faces in images or spoken words [25].

In order for this kind of problems to be solved, machines need to learn from
experience and examples. The procedure of running algorithms, that improve
the ability of a computer to solve a specific problem through experience and
by the use of data is called Machine Learning.

For more than 50 years computer scientists focus on developing the ability
of computer programs to understand human language as it is spoken and
written, referred to as natural language. This subfield of Linguistics, Computer
Science and Artificial Intelligence is called Natural Language Processing
(NLP).

In the following sections we give a definition of Machine Learning algo-
rithms (Section 3.1), which can be approached by four different methods:
supervised learning (Section 3.1.1, unsupervised learning (Section 3.1.2), semi-
supervised learning (Section 3.1.3) and reinforcement learning (Section 3.1.4).
Furthermore we analyze Natural Language Processing and its applications
(Section 3.2).

36

3.1 Machine Learning
Machine learning is the study of computer algorithms that can improve

automatically through experience and by the use of data. It is seen as a
subset of Artificial Intelligence. Machine learning algorithms build a model
based on sample data, known as training data, in order to make predictions or
decisions in new cases. They are used in a wide variety of applications, such
as in medicine, email filtering, speech recognition, and computer vision, where
it is difficult or unfeasible to develop conventional algorithms to perform the
needed tasks.

The discipline of Machine Learning employs various approaches to teach
computers to accomplish tasks where no fully satisfactory algorithm is avail-
able. Machine learning approaches are traditionally divided into three broad
categories, depending on the nature of the "signal" or "feedback" available to
the learning system.

3.1.1 Supervised Learning

Supervised learning algorithms build a mathematical model of a set of
data that contains both the inputs and the desired outputs. The data is
known as training data, and consists of a set of training examples. Each
training example has one or more inputs and the desired output, also known
as a supervisory signal. In the mathematical model, each training example is
represented by an array or vector, sometimes called a feature vector, and the
training data is represented by a matrix. Through iterative optimization of
an objective function, supervised learning algorithms learn a function that
can be used to predict the output associated with new inputs. An optimal
function will allow the algorithm to correctly determine the output for inputs
that were not a part of the training data. An algorithm that improves the
accuracy of its outputs or predictions over time is said to have learned to
perform that task.

Types of supervised learning algorithms include active learning, classifica-
tion and regression. Classification algorithms are used when the outputs are
restricted to a limited set of values, and regression algorithms are used when
the outputs may have any numerical value within a range. Similarity learning
is an area of supervised machine learning closely related to regression and
classification, but the goal is to learn from examples using a similarity function
that measures how similar or related two objects are. It has applications in
ranking, recommendation systems, visual identity tracking, face verification,
and speaker verification [63].

37

3.1.2 Unsupervised Learning

Unsupervised learning, also known as unsupervised machine learning, uses
machine learning algorithms to analyze and cluster unlabeled datasets. These
algorithms discover hidden patterns or data groupings without the need for
human intervention.

Its ability to discover similarities and differences in information make it the
ideal solution for exploratory data analysis, cross-selling strategies, customer
segmentation, image and pattern recognition. It’s also used to reduce the
number of features in a model through the process of dimensionality reduction;
principal component analysis (PCA) and singular value decomposition (SVD)
are two common approaches for this [19].

3.1.3 Semi-supervised Learning

Semi-supervised learning is an approach to machine learning that combines
a small amount of labeled data with a large amount of unlabeled data during
training. Semi-supervised learning falls between unsupervised learning (with
no labeled training data) and supervised learning (with only labeled training
data).

Unlabeled data, when used in conjunction with a small amount of labeled
data, can produce considerable improvement in learning accuracy. The
acquisition of labeled data for a learning problem often requires a skilled
human agent or a physical experiment. The cost associated with the labeling
process thus may render large, fully labeled training sets infeasible, whereas
acquisition of unlabeled data is relatively inexpensive [62].

3.1.4 Reinforcement Learning

Reinforcement learning is a machine learning technique, whose goal is to
solve the problem of choosing the most suitable action to take in a given
environment, in order to maximize a specific reward. In contrast to traditional
supervised learning, reinforcement learning does not get desired labels of the
training inputs, but estimates the best outputs (actions), based on the reward
it yields. Often, the current action not only affects the immediate reward, but
the long-term reward as well. An important issue of reinforcement learning is
the trade-off between exploration, in which the system experiments with new
kinds of actions to check how profitable or harmful they are, and exploitation,
in which the system follows a more conservative approach of selecting already
known actions to achieve a high reward. The most efficient approach is to

38

maintain a balance between the two strategies, because focusing on only one
of those will result in poor outcomes [7].

Reinforcement learning is mostly used to train computers to play games
and they can achieve really high scores compared to human performance.
Reinforcement learning remains an active area of machine learning research.

3.2 Natural Language Processing
Natural Language Processing has its roots in the 1950s. Already in

1950, Alan Turing published an article titled "Computing Machinery and
Intelligence" which proposed what is now called the Turing test as a criterion
of intelligence, though at the time that was not articulated as a problem
separate from artificial intelligence. The proposed test includes a task that
involves the automated interpretation and generation of natural language.

Nowadays, representation learning and deep neural network-style machine
learning methods became widespread in natural language processing. That
popularity was due partly to a flurry of results showing that such techniques
can achieve state-of-the-art results in many natural language tasks, e.g., in
language modeling and parsing. This is increasingly important in medicine
and healthcare, where NLP helps analyze notes and text in electronic health
records that would otherwise be inaccessible for study when seeking to improve
care.

In NLP, there are two main phases: data preprocessing and algorithm
development. Data preprocessing involves preparing and "cleaning" text data
for machines to be able to analyze it. It specifically includes methods such as
tokenization (the split of the text into smaller units) and stop word removal
(the removal of the most common words from the text). Once the data has
been preprocessed, an algorithm is developed to process it. There are many
different natural language processing algorithms, but two main types are
commonly used: rules-based systems which uses carefully designed linguistic
rules and machine learning-based system [64].

The following is a list of some of the most commonly researched tasks in
natural language processing.

• Information Retrieval: With the help of NLP, we can find the needed
piece among unstructured data. An information retrieval system indexes
a collection of documents, analyzes the user’s query, then compares
each document’s description with the query and presents the relevant
results.

39

• Information grouping: Grouping, or text classification, is performed
via the text tags. The NLP model is trained to classify documents
according to specific attributes: subject, document type, time, au-
thor, language, etc. Text classification usually requires labeled data.
Information grouping is used for supervised machine learning, which
correspondingly triggers a multitude of use cases.

• Machine Translation: This typically involves translating one natural
language into another, preserving the meaning and producing fluent text
as a result. Different methods and approaches are used here: rule-based,
statistical and neural machine translation.

• Summarization: NLP algorithms can be used to create a shortened
version of an article, document, number of entries, etc., with main points
and key ideas included. There are two general approaches: abstractive
and extractive summarization. In the first case, the NLP model creates
an entirely new summary in terms of phrases and sentences used in
the analyzed text. In the second case, the model extracts phrases and
sentences from the existing text and groups them into a summary.

• Sentiment analysis: It’s a type of text classification where the NLP
algorithms determine the text’s positive, negative, or neutral connota-
tion. Use cases include analyzing customers’ feedback, detecting trends,
conducting market research, etc., via an analysis of tweets, posts, re-
views and other reactions. Sentiment analysis can encompass everything
from the release of a new game on the App Store to political speeches
and regulation changes.

• Named-Entity Recognition: NER is an entity extraction, identifica-
tion and categorization. It involves extracting names of locations, people
and things from the text and placing them under certain categories
– Person, Company, Time, Location, etc. The use cases may include
content classification for SEO, customer support, patient lab reports
analysis, academic research and others.

• Automated speech recognition (ASR): NLP techniques are actu-
ally designed for text but can also be applied to spoken input. ASR
transcribes oral data into a stream of words. Neural networks and
hidden Markov models are used to reduce speech recognition’s error
rate, however, it’s still far from perfect. The main challenge is the lack
of segmentation in oral documents. And while human listeners can
easily segment spoken input, the automatic speech recognizer provides
unannotated output.

40

As a result, we understand that the value of using NLP techniques is
apparent, and the application areas for natural language processing are
numerous. But so are the challenges researchers are facing to make NLP
results resemble human output.

41

Chapter 4

Deep Learning Background

During the last decades, the field of Machine Learning has brought forth
a variety of remarkable advancements in sophisticated learning algorithms
and efficient pre-processing techniques. One of these advancements was the
evolution of artificial neural networks (ANNs) towards increasingly deep
neural network architectures with improved learning capabilities summarized
as Deep Learning.

The idea is to employ Machine Learning to not only train the computer
to map the input feature vector to a desired output, but also to learn the
representation itself. Towards this end, Deep Learning can give the solution
to extracting high-level features from raw data by introducing representations
that are expressed in terms of other, simpler representations. So Deep Learning
enables the computer to build complex concepts out of simple ones. Deep
Learning is actually a subfield of Machine Learning inspired by the structure
and function of the human brain and the way humans think [32] [25].

During the 1960s, the interest in neural networks started with the devel-
opment of learning machines called perceptrons, that imitated the way brain
neurons work. However, as perceptrons could not guarantee successful results
in case of non-linearly separable data, the idea was then to employ multilayers
of perceptrons. This multilayer training is referred to as Deep Learning, and
its practical implementations are mostly associated with large data sets.

Deep Learning does not always provide the best possible solution; there are
numerous applications that are better handled by more traditional methods.
However, it has been proven extremely useful in applications that have been
challenging for other methods. In fact, it has offered the opportunity to solve
many problems in various domains and has been used in fields like natural
language processing and understanding [24].

In the following sections we begin with analyzing the function of a sin-
gle perceptron (Section 4.1), we then describe how they are combined to

42

create multilayer neural networks and more specifically we focus on their
learning process (Section 4.2). Finally, we present Recurrent Neural Networks
(Section 4.3), which are commonly used in natural language processing.

4.1 The Perceptron
In 1958 the American psychologist Frank Rosenblatt, inspired by the

Hebbian theory of synaptic plasticity (i.e. the adaptation of brain neurons
during the learning process), came up with the perceptron.

Figure 4.1: (left) A Biological Neuron. (right) A Perceptron. Source: Neural
Networks: The perceptron (Fig. 1 in [10]).

The perceptron is a mathematical model of a biological neuron. While
in actual neurons the dendrite receives electrical signals from the axons of
other neurons, in the perceptron these electrical signals are represented as
numerical values.

At the synapses between the dendrite and axons, electrical signals are
modulated in various amounts. This is also modeled in the perceptron by
multiplying each input value xi by a value called the weight wi.

An actual neuron fires an output signal only when the total strength of
the input signals exceed a certain threshold. This threshold is called bias b.
The total strength of the input signals is modeled as the weighted sum of the
input values [10]. The weighted sum is expressed as follows:

w1x1 + w2x2 + ...+ wnxn + b =
n∑

i=1

wixi + b = w⊤x+ b (4.1)

At its simplest a step function is applied on the sum (4.1) to determine
whether the neuron will fire or not. This function was originally used by
Rosenblatt [10]. The output f of the neuron can be described by the following
equation:

f(x) =

{
1, if w⊤x+ b >= 0

0, if w⊤x+ b < 0
(4.2)

43

https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron

4.1.1 Perceptron Training Algorithm

It is obvious that the weighted sum calculated in the perceptron corre-
sponds to a linear boundary (hyperplane) in n-dimensional space:

w⊤x+ b = 0 (4.3)

This means that we can employ a single perceptron unit to solve a classi-
fication problem by learning this linear boundary between linearly separable
pattern classes.

An example of the Perceptron Training Algorithm, which according to
the Perceptron Convergence Theorem will surely converge to a solution (a
set of weights that define a hyperplane) after a finite number of steps, if the
pattern classes are linearly separable, is explained below. We first define some
variables:

• the learning rate r of the perceptron which is between 0 and 1 while
larger values make the weight changes more volatile.

• f(z) denotes the output from the perceptron for an input vector z.
• D = (x1, d1), ..., (xs, ds) is the training set of s samples where xj is the

n-dimensional input vector and dj the desired output value of the perceptron
for that input.

• xj,i is the value of the ith feature of the jth training input vector.
• xj,0 = 1.
• wi is the ith value in the weight vector, to be multiplied by the value of

the ith input feature.
So the steps in the algorithm are:

1 Initialize the weights. Weights may be initialized to 0 or to a small
random value.

2 For each example j in our training set D, perform the following steps
over the input xj and desired output dj:

a Calculate the actual output: yj(t) = f [w(t) · xj] = f [w0(t)xj,0 +
w1(t)xj,1 + ...+ wn(t)xj,n].

b Update the weights: wi(t+ 1) = wi(t) + r · (dj − yj(t))wj,i for all
features 0 ≤ i ≤ n.

The concept behind this algorithm is that if a pattern is misclassified, we
are trying to shift the weight vector to a direction that increases the probability
of correct classification the next time the specific pattern is presented. That’s
also why if the classification of a pattern is correct, no change is applied to
the weight vector [65].

44

4.2 Multilayer Feed-Forward Neural Networks

Figure 4.2: Architecture of an MLP which is constituded by an input layer
with 10 neurons, two hidden layers with six and four neurons respectively
and an output layer with one neuron. Source: (Fig. 1 in [23]).

In 1996 Minsky and Papert showed that a single layer Feed-Forward
Neural Network (FFN) cannot solve problems in which the data is not linearly
separable, such as the XOR problem [42]. The solution is to add one or more
hidden layers to FNN. Per Universal Approximation Theorem, a FNN with
one hidden layer can represent any function, although in practice training such
a model is very difficult (if not impossible), hence, we usually add multiple
hidden layers to solve complex problems [13]. These are called the Multilayer
Feed-Forward Neural Networks.

In a multi-layer neural network, we have an input layer, an output layer,
and one or more hidden layers (between input and output layers). The input
layer has as many neurons as the dimension of the input data. The number
of neurons in the output layer depends on the type of the problem the neural
network is trying to solve. The more hidden layers that we have (and the
more neurons we have in each hidden layer), our neural network can estimate
more complex functions [5] [35].

45

https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide

4.2.1 Activation Functions

An activation function is applied on the output and hidden layer to
determine whether the neuron will fire or not. However, the activation function
described in (4.2) is a hard thresholding function which is discontinuous at 0
and causes problems in mathematical computations. Thus, it cannot be used
in multi-layers networks. We can overcome this problem by using smoother
versions of the above function.

In all cases, let z denote the output of the perceptron before thresholding
and h the function employed to calculate the neuron’s final output.

The sigmoid function is used very frequently as the activation function
of artificial neurons. It can be used both at the output layer and hidden
layers of a multilayer network and it allows the network to model non-linear
relationships between input and output.

h(z) =
1

1 + e−z
(4.4)

Hyperbolic tangent, similarly to Sigmoid function, is a soft step function.
But its range is between -1 and 1 (instead of 0 and 1).

h(z) = tanh z =
ez − e−z

ez + e−z
(4.5)

ReLU (Rectified Linear Unit) is an activation function popular in deep
neural networks. ReLU keeps all the positive inputs unchanged and sets all
negative inputs to zero:

h(z) = max (0, z) (4.6)

The softmax function can convert a K dimension vector to another k
dimension vector. After applying softmax, each component will be in the
interval (0,1) and the sum of components will be 1.

h(zi) =
ezi∑K
j=1 e

zj
(4.7)

4.2.2 Learning Process

Machine learning algorithms work on the basis of trying to learn from
experience and training examples by optimizing a cost function. In order to
train a neural network, there are four main steps that should be followed:

1 Forward Propagation: given an input, the model calculates an output.

46

2 Backward Propagation: this step calculates the gradient of the output
and how each weight in the model affects it. This will then be used in
the optimizer step.

3 Loss Function: a cost function is defined in order to know the accuracy
of the model. It’s a metric that shows as how far is the model from the
correct label.

4 Optimization: tries to minimize the cost function using the gradient
calculated in the backward propagation step by adjusting the weights
of the model.

4.2.2.1 Backpropagation Algorithm

Neural network training relies on repeated application of the Backprop-
agation Algorithm to compute gradients of the loss with respect to model
parameters. These gradients are then used to update the parameters of the
model using the gradient-based optimization strategy. The Backpropagation
Algorithm consists of two phases: the forward and backward pass [59].

Figure 4.3: Architecture of an MLP where the forward and the backward
pass is illustrated. Source: (Fig. 2 in [23]).

47

https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide

In the forward pass, the input data gets propagated to the input layer,
goes through the hidden layer(s), then the network’s predictions from the
output layer are measured and finally the network error is calculated based
on the predictions the network made. The process of propagating the inputs
from the input layer to the output layer is called forward propagation. Once
the network error is calculated, then the forward propagation phase has ended,
and backward pass starts [23].

In the backward pass, the flow is reversed so that the error is propagated
from the output layer to the input layer after passing through the hidden
layer(s). The process of propagating the network error from the output layer
to the input layer is called backward propagation, or simple backpropagation.
The backpropagation algorithm is the set of steps used to update network
weights to reduce the network error [23].

Let consider a multilayer perceptron (MLP) with an input layer h0, fol-
lowed by L hidden layers h1, h2, ..., hL, followed by an output layer O. Except
of the input layer, each layer is described by a set of parameters, the weights
and biases, as hl = {W l, bl}, for all l = 1, ..., L. The final output layer is
also governed by the weight and bias parameters O = {W o, bo}. We use the
element-wise activation function ϕ in our model for each hidden layer [59].

The forward propagation phase:
In forward propagation pass there are 4 main steps:

1 Compute the output of the first hidden layer as a function of the input
x:

h1 = ϕ(W⊤
1 x+ b1) (4.8)

2 For each hidden layer, compute the output of that layer as a function
of the output of the previous layer as:

hl = ϕ(W⊤
l hl−1 + bl), ∀l = 2, ..., L (4.9)

3 Finally, compute the output of the neural network as:

o = W⊤
o hL + bo (4.10)

4 Compute the loss of the model as the error of the predicted output o
compared to the desired output y as l(o, y).

The backward propagation phase:
After the forward pass is complete, the backward pass starts:

48

1 Compute gradient of loss with respect to the output and store it for use
in steps 2 and 3. :

∇l(o,y)
o =

∂l(o, y)

∂o
(4.11)

2 Compute gradients of the loss with respect to the parameters of the
output layer.

∇l(o,y)
W o

= (
∂o

∂W o

)⊤∇l(o,y)
o (4.12)

∇l(o,y)
bo

= (
∂o

∂bo
)⊤∇l(o,y)

o (4.13)

3 Compute gradient of the output of the outermost hidden layer HL with
respect to the loss and store it for use in step 4 and 5.

∇l(o,y)
hL

= (
∂o

∂hL

)⊤∇l(o,y)
o (4.14)

4 Compute gradients of the loss with respect to the parameters of the
outermost hidden layer HL.

∇l(o,y)
WL

= (
∂hL

∂W L

)⊤∇l(o,y)
hL

(4.15)

∇l(o,y)
bL

= (
∂hL

∂bL
)⊤∇l(o,y)

hL
(4.16)

5 Let l = L− 1. Compute and store gradients of outputs and parameters
of that layer using gradients of layer l + 1 as follows.

∇l(o,y)
hl

= (
∂hl+1

∂hl

)⊤∇l(o,y)
hl+1

, ∀l = 1, ..., L− 1 (4.17)

∇l(o,y)
W l

= (
∂hl

∂W l

)⊤∇l(o,y)
hl

, ∀l = 1, ..., L− 1 (4.18)

∇l(o,y)
bl

= (
∂hl

∂bl
)⊤∇l(o,y)

hl
, ∀l = 1, ..., L− 1 (4.19)

6 If l = 1, terminate. Else, set l = l − 1. Go back to step 5.

49

4.2.2.2 Loss Function

The cost function is also called the loss function and is task-dependent.
It has the aim of objectively measuring how much the network’s predicted
output is different than the expected output. We will now go through some
basic loss functions, that are widely used in machine learning. Loss func-
tions can be classified into two major categories depending upon the type
of learning task we are dealing with, Regression losses and Classification losses.

Regression Loss Functions
Regression predictive modeling is the task of approximating a mapping

function from input variables to a continuous output variable.

• Squared Error Loss: Squared Error Loss is the squared difference
between the actual value y and the predicted o.

l(o, y) = (y − o)2 (4.20)

• Absolute Error Loss: Absolute Error Loss is the absolute value of the
difference between the actual y and the predicted value o.

l(o, y) = |y − o| (4.21)

Classification Loss Functions
Classification predictive modeling is the task of approximating a mapping

function from input variables to discrete output variables.

• Cross Entropy Loss: Cross Entropy Loss increases as the predicted
probability diverges from the actual label.

l(o, y) = −(y log(o) + (1− y) log(1− o)) (4.22)

• Hinge Loss: Hinge Loss not only penalizes the wrong predictions but
also the right predictions that are not confident.

l(o, y) = max(0, 1− y ∗ o) (4.23)

4.2.2.3 Optimization

Optimization is the process of choosing the most suitable model parameters
in order to minimize the loss function, which is scalar. This problem of
minimizing a loss function l(a) with respect to a parameter vector a can
be solved by a gradient descent procedure. The idea behind this iterative

50

method is to use gradient information from the loss function, in order to
update the parameter vector by comprising a small step in the direction of
negative gradient. In general a(k+1) is calculated from a(k) by the equation:

a(k + 1) = a(k)− r(k)∇l(a(k)) (4.24)

where r is a positive scale factor, called learning rate, which sets the step
size, and as a consequence how "steep" the actual update is. The goal is this
sequence of parameter vectors to finally converge to a solution minimizing
l(a). Thus, the number of updates (iterations) needed are problem-dependent.
Another interesting issue about gradient descent methods in machine learning,
is that the choice of the loss function l is based on the training set, so
each step requires the use of the whole data set in order to calculate ∇l.
Techniques that use the whole data set at each iteration are called batch
methods. Gradient descent optimization algorithms are numerous (Adaline,
Adamax, Adam, RMSprop etc), each one inserting a small variation to the
classical approach. One of the most widely used is Adam (Adaptive Moment
Estimation), which updates the weights using estimations of the first two
moments of past gradients (mean and standard deviation).

4.3 Recurrent Neural Networks
A Recurrent Neural Network (RNN) is a special type of an artificial neural

network adapted to work for time series data or data that involves sequences.
RNNs were based on David Rumelhart’s work in 1986. These deep learning
algorithms are commonly used for ordinal or temporal problems, such as
language translation, natural language processing, speech recognition, and
image captioning. They are incorporated into popular applications such as
Siri, voice search, and Google Translate [20].

RNNs have the concept of ‘memory’ that helps them store the states or
information of previous inputs to generate the next output of the sequence
and so the output of RNNs depend on the prior elements within the sequence.
Another distinguishing characteristic of Recurrent Networks is that they
share parameters across each layer of the network. While Feed-forward
Networks have different weights across each node, RNNs share the same
weight parameter within each layer of the network. These weights are still
adjusted in the processes of backpropagation and gradient descent to facilitate
reinforcement learning [20].

An RNN’s self-connections cause neuron activities (the RNN’s state) to
reverberate as time passes. In machine learning we typically discretize the
state changes, computing them using the activities at the previous discrete

51

Figure 4.4: Recurrent Neural Network vs Feed-Forward Neural Network
Source: A Guide to RNN: Understanding Recurrent Neural Networks and
LSTM Networks (Fig. 2 in [17]).

time step and the synaptic weights. This is known as "unrolling" the network
[38].

We present a simplified model of RNN without bias parameters, whose
activation function in the hidden layer uses the identity mapping (ϕ(x) = x).
For time step t, let the single example input and the label be xt ∈ Rd and
yt, respectively [68]. The hidden state ht ∈ Rh and the output ot ∈ Rq are
computed as:

ht = W hxxt +W hhht−1 (4.25)

ot = W qhht (4.26)

where W hx ∈ Rh×d,W hh ∈ Rh×h and W qh ∈ Rq×h are the weight param-
eters.

We denote by l(ot, yt) the loss at time step t. Our objective function, the
loss over T time steps from the beginning of the sequence is thus:

L =
1

T

T∑
t=1

l(ot, yt) (4.27)

52

https://builtin.com/data-science/recurrent-neural-networks-and-lstm
https://builtin.com/data-science/recurrent-neural-networks-and-lstm

4.3.1 Backpropagation Through Time (BPTT)

Recurrent Neural Networks leverage Backpropagation Through Time
(BPTT) algorithm which is slightly different from traditional backpropagation
as it is specific to sequence data. The pronciples of BPTT are the same
as traditional backpropagation, where the model trains itself by calculating
errors from its output layer to its input layer.

Figure 4.5: Computational graph showing dependencies for an RNN model
with 3 time steps. Boxes represent variables (not shaded) or parameters
(shaded) and circles represent operators. Source: Backpropagation Through
Time (Fig. 2 in [68]).

The goal of BPTT is to compute the partial derivatives of the error with
respect to the synaptic weights, known as the gradients. The dependencies
among model variables and parameters during computation of the RNN are
shown in Figure 4.5. In order to calculate and store the gradients in turn the
arrows can be traversed in the opposite direction [68]. To flexibly express
the multiplication of matrices, vectors and scalars of different shapes in the
chain rule, we use the prod operator to multiply its arguments after the
necessary operations, such as transposition and swapping input positions,
have been carried out. For vectors, this is straightforward: it is simply matrix-
matrix multiplication. For higher dimensional tensors, we use the appropriate
counterpart. The operator prod hides all the notation overhead.

First of all, differentiating the objective function with respect to the model
output at any time step t is fairly straightforward:

∂L

∂ot

=
∂l(ot, yt)

T · ∂ot

∈ Rq (4.28)

The gradient of the objective function with respect to the parameter W qh

in the output layer is ∂L/∂W qh. The objective function L depends on Wqh

53

https://d2l.ai/chapter_recurrent-neural-networks
https://d2l.ai/chapter_recurrent-neural-networks

via o1, ..., oT . Using the chain rule ∂L/∂W qh is calculated as follows:

∂L

∂W qh

=
T∑
t=1

prod(
∂L

∂ot

,
∂ot

∂W qh

) =
T∑
t=1

∂L

∂ot

h⊤
t (4.29)

At the final time step T the objective function L depends on the hidden
state hT only via oT . Therefore, the gradient ∂L/∂hT ∈ Rh using the chain
rule is described as:

∂L

∂hT

= prod(
∂L

∂oT

,
∂oT

∂hT

) = W⊤
qh

∂L

∂oT

(4.30)

It gets trickier for any time step t < T , where the objective function L
depends on ht via ht+1 and ot. According to the chain rule, the gradient of
the hidden state ∂L/∂ht ∈ Rh at any time step t < T can be recurrently
computed as:

∂L

∂ht

= prod(
∂L

∂ht+1

,
∂ht+1

∂ht

) + prod(
∂L

∂ot

,
∂ot

∂ht

) = W⊤
hh

∂L

∂ht+1

+W⊤
qh

∂L

∂ot

(4.31)
For analysis, expanding the recurrent computation for any time step

1 ≤ t ≤ T gives

∂L

∂ht

=
T∑
i=t

(W⊤
hh)

T−iW⊤
qh

∂L

∂oT+t−i

(4.32)

Finally, the objective function L depends on model parameters W hx and
W hh in the hidden layer via hidden states h1, ...,hT . To compute gradients
with respect to such parameters ∂L/∂W hx ∈ Rh×d and ∂L/∂W hh ∈ Rh×h,
we apply the chain rule that gives:

∂L

∂W hx

=
T∑
t=1

prod(
∂L

∂ht

,
∂ht

∂W hx

) =
T∑
t=1

∂L

∂ht

x⊤
t (4.33)

∂L

∂W hh

=
T∑
t=1

prod(
∂L

∂ht

,
∂ht

∂W hh

) =
T∑
t=1

∂L

∂ht

h⊤
t−1 (4.34)

BPTT can be computationally expensive as the number of timesteps
increases. If input sequences are comprised of thousands of timesteps, then
this will be the number of derivatives required for a single update weight
update. Through this process, RNNs tend to run into two problems, known
as exploding gradients and vanishing gradients. These issues are defined by

54

the size of the gradient, which is the slope of the loss function along the
error curve. When the gradient is too small, it continues to become smaller,
updating the weight parameters until they become insignificant. When that
occurs, the algorithm is no longer learning. Exploding gradients occur when
the gradient is too large, creating an unstable model. In this case, the model
weights will grow too large, and they will eventually be represented as NaN
[20].

4.3.2 Types of RNNs

There are different types of recurrent neural networks with varying archi-
tectures. While feed-forward neural networks map one input to one output,
RNNs can map one to many, many to many (translation) and many to one
(classifying voice) [17].

Figure 4.6: Different Types of RNN Source: The Unreasonable Effectiveness
of Recurrent Neural Networks (Fig. 2 in [36]).

4.3.3 Different RNN Architectures

There are different variations of RNNs that are being applied practically
in machine learning problems.

4.3.3.1 Long Short-Term Memory (LSTM)

This is a popular RNN architecture, which was introduced by Sepp
Hochreiter and Juergen Schmidhuber in 1997 as a solution to vanishing
gradient problem. The main work aims to address the problem of long-term
dependencies. That is, if the previous state that is influencing the current
prediction is not in the recent past, the RNN model may not be able to
accurately predict the current state. As an example, if we wanted to predict

55

http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://karpathy.github.io/2015/05/21/rnn-effectiveness

the italicized words in following, “Alice is allergic to nuts. She can’t eat
peanut butter.”, the context of a nut allergy can help us anticipate that the
food that cannot be eaten contains nuts. However, if that context was a few
sentences prior, then it would make it difficult, or even impossible, for the
RNN to connect the information [30].

To remedy this, LSTMs have “cells” in the hidden layers of the neural
network, which have three gates–an input gate, an output gate, and a forget
gate. These gates control the flow of information which is needed to predict
the output in the network. For example, if gender pronouns, such as “she”,
was repeated multiple times in prior sentences, that may be excluded from
the cell state [30].

4.3.3.2 Gated Recurrent Units (GRUs)

This RNN variant is similar the LSTMs as it also works to address the
short-term memory problem of RNN models. It was first introduced in 2014
by Kyunghyun Cho et al. Instead of using a “cell state” regulate information,
it uses hidden states, and instead of three gates, it has two—a reset gate and
an update gate. Similar to the gates within LSTMs, the reset and update
gates control how much and which information to retain [12].

4.3.3.3 Bidirectional Recurrent Neural Networks (BRNN)

BRNN was invented in 1997 by Schuster and Paliwal so as to increase the
amount of input information available to the network. While unidirectional
RNNs can only drawn from previous inputs to make predictions about the
current state, bidirectional RNNs pull in future data to improve the accuracy
of it. The principle of BRNN is to split the neurons of a regular RNN into

Figure 4.7: General structure of the bidirectional recurrent neural network
(BRNN) shown unfolded in time for three time steps. Source: Bidirectional
Recurrent Neural Networks (Fig. 1 in [51]).

56

https://www.researchgate.net/publication/3316656_Bidirectional_recurrent_neural_networks
https://www.researchgate.net/publication/3316656_Bidirectional_recurrent_neural_networks

two directions, one for positive time direction (forward states), and another
for negative time direction (backward states). Outputs from forward states
are not connected to inputs of backward states, and vice versa. This leads
to the general structure that can be seen in Figure 4.7, where it is unfolded
over three time steps. Note that without the backward states, this structure
simplifies to a regular unidirectional forward RNN, as shown in Fig. 1. If
the forward states are taken out, a regular RNN with a reversed time axis
results. With both time directions taken care of in the same network, input
information in the past and the future of the currently evaluated time frame
can directly be used to minimize the objective function without the need for
delays to include future information, as for the regular unidirectional RNN
discussed above [51].

The BRNN can principally be trained with the same algorithms as a
regular unidirectional RNN because there are no interactions between the
two types of state neurons and, therefore, can be unfolded into a general
feed-forward network. However, if, for example, any form of back-propagation
through time (BPTT) is used, the forward and backward pass procedure is
slightly more complicated because the update of state and output neurons
can no longer be done one at a time. For forward pass, forward states
and backward states are passed first, then output neurons are passed. For
backward pass, output neurons are passed first, then forward states and
backward states are passed next. After forward and backward passes are
done, the weights are updated [51].

4.3.3.4 Sequence to Sequence Model

A Sequence to Sequence (Seq2Seq) model consists of two Recurrent Neural
Networks. The most common architecture used to build Seq2Seq models is
Encoder-Decoder architecture. The encoder and decoder work simultaneously
either using the same parameter or different ones. Both encoder and the
decoder are LSTM models (or sometimes GRU models) [58].

Encoder reads the input sequence and summarizes the information in
something called the internal state vectors or context vector (in case of LSTM
these are called the hidden state and cell state vectors). The outputs of the
encoder are discarded and only the internal states are preserved [2].

The decoder is an LSTM whose initial states are initialized to the final
states of the Encoder LSTM, i.e. the context vector of the encoder’s final cell
is input to the first cell of the decoder network. Using these initial states,
the decoder starts generating the output sequence, and these outputs are
also taken into consideration for future outputs. This context vector aims
to encapsulate the information for all input elements in order to help the

57

decoder make accurate predictions [2].

Figure 4.8: Representation of the architecture a Sequence to Sequence Model
in a specific example. Source: Types of Neural Networks and Definition of
Neural Network(Fig. 12 in [58]).

This model, on contrary to the actual RNN, is particularly applicable in
those cases where the length of the input data is equal to the length of the
output data. While they possess similar benefits and limitations of the RNN,
these models are usually applied mainly in chatbots, machine translations,
and question answering systems [58].

58

https://www.mygreatlearning.com/blog/types-of-neural-networks
https://www.mygreatlearning.com/blog/types-of-neural-networks

Chapter 5

Vector Representation of Language

Before referring to others models for Natural Language Processing, it
is important to analyze how computers process natural language. Natural
language is one of the most complex tools used by humans for a wide range
of reasons, for instance to communicate with others, to express thoughts,
feelings, and ideas, to ask questions, or to give instructions. Therefore, it is
crucial for computers to possess the ability to use the same tool in order to
effectively interact with humans. In fact, computers represent language as
vectors.

In the following sections we discuss several methods for creating such a
vector representation of language and the theory behind them.

5.1 One-hot Representation
The simplest form of word representation is one-hot encoding, which

established the basis of word vector space models. Assume we have 100 words
in a vocabulary and we would like to encode them as one-hot representations.
First, we associate an index (between 1 to 100) to each word. Then, each
word is represented as a 100-dimension array-like representation, in which all
the dimensions are zero except for the one corresponding to its index, which
is set to one.

However, simple one hot vectors are not a very useful input to most
natural language processing tasks, because they are embedded in a vector
space that does not contain any extra meaning information about the words
being represented. Each word is assigned a different representation and
there is no notion of “similarity” between them. For example, using this
representation, it is not possible to encode the conceptual similarity between
“noon” and “midday”. Even worse, the two similar looking words such “desk”

59

and “desks” (which would have similar string-based representations) are
assigned completely different one-hot vectors. Moreover, the dimensionality
of one-hot representations grows with the number of words in the vocabulary.
In a typical vocabulary, we should expect hundreds of thousands of words.
Representing each word using one-hot representation is definitely too storage-
intensive and would make the processing difficult [46].

5.2 Vector Space Models
The Vector Space Model (VSM), first proposed by Salton et al. [49],

provides a more flexible solution to the limitations of one-hot representation.
In this model, objects are represented as vectors in an imaginary multi-
dimensional continuous space. In NLP, the space is usually referred to as
the semantic space and the representation of the objects is called distributed
representation. Objects can be words, documents, sentences, concepts, or
entities, or any other semantic carrying item between which we can define a
notion of similarity [46].

The representations that are generated using neural networks are com-
monly referred to as embedding, particularly due to their property of being
dense and low dimensional. We can call these representations semantic em-
beddings. Semantic embedding refers to a series of representation learning
(or feature learning) techniques that encode the semantics of data such as se-
quences and graphs into vectors, such that they can be utilized by downstream
machine learning prediction and statistical analysis tasks.

Sequence feature learning models such as Feed-Forward Neural Networks
and Recurrent Neural Networks, that were described in the previous chapter
(Chapter 3), are widely used for semantic embedding [11]. In this section,
we will talk about the foundations behind constructing semantic spaces,
particularly for words.

5.2.1 Word Embeddings

Semantic spaces are constructed automatically by analyzing word co-
occurrences in large text corpora. Words that occur in similar contexts tend
to have similar meanings. This link between similarity in how words are
distributed and similarity in what they mean is called the distributional
hypothesis. The hypothesis was first formulated in the 1950s by linguists Joos
[33], Harris [29] and Firth [22], who noticed that words which are synonyms
(like oculist and eye-doctor) tended to occur in the same environment (e.g.,
near words like eye or examined) with the amount of meaning difference

60

between two words “corresponding roughly to the amount of difference in
their environments” [14].

Word embeddings are in fact a special type of distributed word representa-
tion that are constructed by leveraging neural networks, mainly popularised
after 2013, with the introduction of Word2vec. Word embeddings are usually
classified as predictive models because they are computed through language
modeling objectives, such as predicting the next or a missing word [46].

5.2.2 Predictive Models

In the last decade, together with the growth of deep learning, embeddings
have dominated the field and predictive models have replaced the conventional
count-based models. Two of the most popular word embedding models are
Word2vec and GloVe.

5.2.2.1 Word2vec

Word2vec is a well known group of sequence feature learning techniques
for learning word embeddings from a large corpus, and was initially developed
by a team at Google in 2013 [41]. Once trained, such a model can detect
synonymous words or suggest additional words for a partial sentence. As the
name implies, Word2vec represents each distinct word with a particular list of
numbers called a vector. The vectors are chosen carefully such that a simple
mathematical function indicates the level of semantic similarity between the
words represented by those vectors.

Word2vec is based on a simple but efficient feedforward neural architec-
ture which is trained with language modeling objective. Word2vec can be
configured to use either of two classic auto-encoding architectures for learning
representations of sequential items: continuous Skip-gram and continuous
Bag-of-Words (CBOW).

The CBOW model aims at predicting the current word using its surround-
ing context. The Skip-gram model is similar to the CBOW model but in this
case the goal is to predict the words in the surrounding context given the
target word, rather than predicting the target word itself. A simplification of
the general architecture of the CBOW and Skip-gram models of Word2vec is
represented in Figure 5.1. The architecture consists of input, projection (hid-
den) and output layers. The input layer has the size of the word vocabulary
and encodes the context as a combination of one-hot vector representations of
surrounding words of a given target word. The output layer has the same size
as the input layer and contains a one-hot vector of the target word during
the training phase [41].

61

Figure 5.1: Learning architecture of the CBOW and Skip-gram models of
Word2vec Source: Efficient Estimation of Word Representations in Vector
Space (Fig. 1 in [41]).

5.2.2.2 GloVe

GloVe is developed as an open-source project at Stanford and was first
launched in 2014. GloVe is a model for distributed word representation. The
model is an unsupervised learning algorithm for obtaining vector representa-
tions for words. This is achieved by mapping words into a meaningful space
where the distance between words is related to semantic similarity. Training
is performed on aggregated global word-word co-occurrence statistics from a
corpus [45].

5.2.3 Similarity Metrics

In order to quantify the similarity between two embeddings, we need to
present some similarity metrics. The two most popular metrics for calculating
similarity are Euclidean Distance and Cosine Similarity. We consider two
vectors u and v of dimension n.

• Euclidean Distance

d(u,v) =

√√√√ n∑
i=1

(ui − vi)
2 (5.1)

where ui and vi are components of vectors u and v respectively.

62

moz-extension://a3e59636-b0c2-4df3-8f46-e5cf92c4f674/enhanced-reader.html?openApp&pdf=https%3A%2F%2Farxiv.org%2Fpdf%2F1301.3781.pdf
moz-extension://a3e59636-b0c2-4df3-8f46-e5cf92c4f674/enhanced-reader.html?openApp&pdf=https%3A%2F%2Farxiv.org%2Fpdf%2F1301.3781.pdf

• Cosine Similarity

sim(u,v) =
u · v

∥u∥∥v∥
=

∑n
i=1 uivi√∑n

i=1 u
2
i

√∑n
i=1 v

2
i

(5.2)

where ui and vi are components of vectors u and v respectively.

The resulting similarity ranges from -1 meaning exactly opposite, to
1 meaning exactly the same, with 0 indicating orthogonality or decor-
relation, while in-between values indicate intermediate similarity or
dissimilarity.

5.2.4 Contextualized Embeddings

The problem of the pretrained word embeddings, such as Word2vec and
GloVe, is that they compute a single static representation for each word.
The representation is fixed and independent from the context in which the
word appears. Therefore, the static representation of words can substantially
hamper the ability of NLP systems to understand the semantics of the input
text.

Unlike static word embeddings, contextualized embeddings are represen-
tations of words in context. These embeddings are dynamic and the same
word can be assigned different embeddings if it appears in different contexts.
Instead of receiving words as distinct units and providing independent word
embeddings for each, contextualized models receive the whole text span (the
target word along with its context) and provide specialized embeddings for
individual words which are adjusted to their context.

These context-sensitive embeddings are in fact the internal states of a deep
neural network which is trained with language modeling objectives either in an
unsupervised manner or on a supervised task. The training of contextualized
embeddings is carried out at a pretraining stage, independently from the main
task, on a large unlabeled (or differently labeled) text corpus. The trained
model can then generate contextualised representations for all the words in
the given text.

RNNs, which were represented in the previous chapter (Section 4.3),
and mostly LSTM constitute a good contextualized representation model.
However, most of the recent literature on contextualized embeddings is based
on a novel model called Transformer. Today, Transformers are dominantly
exceeding the performance levels of conventional recurrent models on most
NLP tasks that involve sequence encoding. So, it is important to provide a
brief overview of Transformer on Chapter 6.

63

Chapter 6

The Transformer Model

As we described on Chapter 4, a popular approach for language modeling
is RNNs as they capture dependencies between words well, especially when
using modules such as LSTM. However, RNNs tend to be slow and their ability
to learn long-term dependencies is still limited due to vanishing gradients.

In 2017 a supervised deep learning model, which was called Transformer,
was first introduced by a team at Google Brain and is increasingly the model
of choice for NLP problems, replacing RNN models, such as LSTM and GRUs
with added attention mechanisms. This feature allows for more parallelization
than RNNs and therefore reduces training times. The original Transformer
network was trained on translation tasks. Sentences were translated to
German from English and to French from English [60].

Like RNNs, Transformers are designed to handle sequential input data,
such as natural language, for tasks such as translation and text summarization.
However, unlike RNNs, Transformers do not necessarily process the data in
order. Rather, the attention mechanism provides context for any position
in the input sequence. For example, if the input data is a natural language
sentence, the Transformer does not need to process the beginning of the
sentence before the end. Rather, it identifies the context that confers meaning
to each word in the sentence [66].

The Transformer is the first transduction model relying entirely on self-
attention to compute representation of its input and output without using
sequence-aligned RNNs or convolution, highlighting the fact that attention
mechanisms alone can match the performance of RNNs with attention. Over
time, the Transformer architecture has become an effective and efficient
replacement to RNN-based models in a variety of domains involving sequential
data such as natural language processing, speech, and video-related tasks.
It is a precursor to some of the most popular natural language processing
models such as BERT and GPT [66].

64

In the following sections we describe Transformer’s Model Architecture
(Section 6.1) and then we introduce BERT model (Section 6.2) and four
other Transformer models (Section 6.3), such as RoBERTa (Section 6.3.1),
DistilBERT (Section 6.3.2), Longformer (Section 6.3.3) and BioBERT (Sec-
tion 6.3.4).

6.1 Model Architecture
The Transformer network consists of an encoding as well as a decoding

component. The encoder maps an input sequence of symbol representations
(x1, x2, ..., xn) to a sequence of continuous representations z = (z1, z2, ..., zn).
Given z, the decoder then generates an output sequence (y1, ..., ym) of symbols
one element at a time. At each step the model is auto-regressive [26], con-
suming the previously generated symbols as additional input when generating
the next. The Transformer follows this overall architecture using stacked
self-attention and point-wise, fully connected layers for both the encoder and
decoder [60].

6.1.1 Encoder - Decoder

The encoder is a feed forward network consisting of a stack of N = 6
identical layers, each composed of two sub-layers. The first sub-layer is an
attention layer known as the multi-head self-attention layer. The second
sub-layer is a position-wise feed forward network (FFN) layer. Each sub-layer
has residual connections around it, followed by layer-normalization [60].

The multi-head self-attention layer is composed of several parallel layers
known as self-attention layers. The self-attention mechanism relates input
tokens and their positions within the same input sequence. Such parallel
stacking of several self-attention layers achieves more expressiveness as opposed
to a single attention formulation. The particular form of attention used in
the Transformer is known as the scaled dot-product attention [60].

The decoder is also composed of a stack of N = 6 identical layers. In
addition to the two sub-layers in each encoder layer, the decoder inserts a
third sub-layer, which performs multi-head attention over the output of the
encoder stack. Similar to the encoder, there are residual connections around
each of the sub-layers, followed by layer normalization [60].

The decoder also uses restrictions to ensure that the prediction for a
particular position in the sequence depends only on the previous elements of
the sequence and not the subsequent ones. This is achieved by offsetting the

65

Figure 6.1: The Transformer Model Architecture. Source: Attention Is All
You Need (Fig. 1 in [60]).

output embeddings by one position and by masking the self-attention in the
decoder to prevent it from using knowledge of subsequent positions [60].

6.1.2 Attention

An attention function can be described as mapping a query and a set of
key-value pairs to an output, where the query, keys, values, and output are
all vectors. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility function of
the query with the corresponding key [60].

6.1.2.1 Scaled Dot-Product Attention

In the case of the Transformer, the specialized attention function is known
as scaled dot-product attention, which is a scaled version of the dot-product

66

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

attention. The only difference with the dot-product attention is the division
by the scaling factor

√
dk, where dk is the dimension of the keys. The input

consists of queries and keys of dimension dk, and values of dimension dv.
The dot products of the query with all keys are each divided by

√
(dk) and

then a softmax function is applied in order to obtain the weights on the
values. In practice, the attention function is computed on a set of queries
simultaneously, packed together into a matrix Q. The keys and values are
also packed together into matrices K and V [60]. The matrix of output is
computed as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (6.1)

The scaling term prohibits the dot product from being affected by keys
of large dimensions, which may lead the softmax functions into regions of
extremely small gradients.

Figure 6.2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention
consists of several attention layers running in parallel. Source: Attention Is
All You Need (Fig. 2 in [60]).

6.1.2.2 Multi-Head Attention

Instead of performing a single attention function, attention from multiple
perspectives may allow the model to jointly utilize information from different
representation subspaces at different positions. A multi-head attention block
runs several attention functions in parallel on linear projections of the same

67

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

queries, keys, and values. It then concatenates the results and further projects
them to arrive at a single output, just like regular attention would [60].

For creating a single head, each of the inputs is projected by multiplying
with a parameter matrix. The formulation for the hth head is just the attention
function applied to the hth linear projections of the queries, keys and values.
With all heads computed in parallel, they are first concatenated and then
multiplied with a multi-head output parameter matrix WO to arrive at the
multi-head formulation. The Transformer uses 8 heads in the multi-head
attention [60].

MultiHead(Q,K, V) = Concat(head1, ..., headh)WO (6.2)

where headi = Attention(QWQ
i , KWK

i , V W V
i)

6.1.2.3 Self Attention

Self-attention is a mechanism which allows the model to relate different
positions in the input sequence to each other. For example, this enables the
network to understand what the word “he” refers to in the tokenized sentence
“my dad baked a cake because he was happy”. The multi-head attention is
used in three different ways in the Transformer [60]. In "encoder-decoder
attention" layers, the queries come from the previous decoder layer, and the
memory keys and values come from the output of the encoder. This allows
every position in the decoder to attend over all positions in the input sequence
[60]. The encoder contains self-attention layers. In a self-attention layer all
of the keys, values and queries come from the same place, in this case, the
output of the previous layer in the encoder. Each position in the encoder can
attend to all positions in the previous layer of the encoder [60]. The decoder
also has several identical layers and there is a multi-head attention block
between adjoining layers. Unlike the encoder, the decoder is prohibited from
looking at subsequent positions of the output. It can only utilize queries, keys
and values from the previous positions. Therefore, the self-attention in the
case of the decoder is known as a masked multi-head attention. The masking
merely hides information of subsequent positions from visibility to a decoder
position. With this mask in place, for decoder self-attention, the inputs are
sourced in the same way as that of encoder self-attention [60].

6.1.3 Position-Wise Feed-Forward Network

Each of the layers in our encoder and decoder contains a fully connected
feed-forward network, which is applied to each position separately and identi-

68

cally. This consists of two linear transformations with a ReLU activation in
between [60].

Let W1, W2, b1, b2 be the weights and biases of the first (hidden) and
second (output) level FFN and x the input. The output of FFN is:

FFN(x) = max(0, xW1 + b1)W2 + b2 (6.3)

While the linear transformations are the same across different positions,
they use different parameters from layer to layer. Another way of describing
this is as two convolutions with kernel size 1.

6.1.4 Positional Encoding

Since the model contains no recurrence and no convolution, in order for
the model to make use of the order of the sequence, "positional encodings"
are added to the input embeddings at the bottoms of the encoder and decoder
stacks. The positional encodings have the same dimension dmodel as the
embeddings, so that the two can be summed. In the original Transformer, for
position pos and dimension i of the input embedding, the positional encoding
PE is computed as [60]:

PE(pos, 2i) = sin(pos/100002i/dmodel) (6.4)

6.2 Bi-Directional Encoder Representation From
Transformers (BERT)

BERT (Bidirectional Encoder Representations from Transformers) is a
language representation language model released in 2018 by researchers at
Google AI Language. BERT is designed to pre-train deep bidirectional
representations from unlabeled text by jointly conditioning on both left and
right context in all layers. As a result, the pre-trained BERT model can be
fine-tuned with just one additional output layer to create state-of-the-art
models for a wide range of tasks, such as question answering and language
inference, without substantial task-specific architecture modifications [16].

6.2.1 Input and Output Representations

The input to the lowest layer in the BERT network is able to unambigu-
ously represent both a single sentence and a pair of sentences in one token
sequence. A “sentence” can be an arbitrary span of contiguous text, rather

69

than an actual linguistic sentence while a “sequence” refers to the input token
sequence to BERT, which may be a single sentence or two sentences packed
together. WordPiece embeddings, which includes a 30000 token vocabulary,
is used to create tokens. The max sequence length is 512 tokens [16].

Figure 6.3: BERT input representation. The input embeddings are the sum
of the token embeddings, the segmentation embeddings and the position
embeddings. Source: BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding (Fig. 2 in [16]).

The first token of every sequence is always a special classification token
([CLS]) while the last token of each sentence is a special token (SEP). Similar
to the Transformer, BERT adds to the token segment embeddings to inform
the model of which sentence in a sentence pair the token belongs and posi-
tional embeddings to inform the model of where in the sequence the token
belongs. To summarize, each input embedding consists of the summation of
a token embedding, a positional embedding and a segment embedding [16].
A visualization of this construction can be seen in Figure 6.3.

6.2.2 Pre-training BERT

The BERT network is trained using two different unsupervised pre-training
tasks, which enable the bidirectional representation of each token and enable
the model to understand the relationship between two sentences. The pre-
training procedure largely follows the existing literature on language model
pre-training and for the pre-training corpus the BooksCorpus and English
Wikipedia are used [16].

6.2.2.1 Masked Language Model (MLM)

BERT uses a masked language procedure to enable bidirectional represen-
tations. This allows the model to condition on both the forward as well as the
backward context. In order to train a deep bidirectional representation, 15%

70

https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf

of the input tokens are masked at random using a special [MASK] token and
then these masked tokens are predicted. This procedure is called “Masked
LM”, but it is often referred as “Cloze task” [57]. In this case, the final hidden
vectors corresponding to the mask tokens are fed into an output softmax over
the vocabulary, As loss function, cross-entropy is used [16].

Since the [MASK] token does not appear during fine-tuning, a downside is
that a mismatch between pre-training and fine-tuning is created. To mitigate
this, the tokens randomly chosen to be masked are not always masked. 80% of
the time, the randomly chosen token is replaced by [MASK] token, 10% of the
time the token is replaced by a randomly chosen token from the vocabulary
and the rest of the time the token remains unchanged. Using this procedure,
the encoder does not know which token it has to predict, forcing the model
to keep a representation of each token which depends on the surrounding
context [16].

Assuming the unlabeled sentence is "my dog is hairy" and during the
random masking procedure the 4-th token is chose (which corresponding to
hairy), the masking procedure can be further illustrated by:

• 80% of the time: Replace the word with the [MASK] token, e.g., my
dog is hairy → my dog is [MASK].

• 10% of the time: Replace the word with a random word, e.g., my
dog is hairy → my dog is apple.

• 10% of the time:: Keep the word unchanged, e.g., my dog is hairy
→ my dog is hairy. The purpose of this is to bias the representation
towards the actual observed word.

The advantage of this procedure is that the Transformer encoder does not
know which words it will be asked to predict or which have been replaced by
random words, so it is forced to keep a distributional contextual representation
of every input token. Additionally, because random replacement only occurs
for 1.5% of all tokens (i.e., 10% of 15%), this does not seem to harm the
model’s language understanding capability [16].

6.2.2.2 Next Sentence Prediction (NSP)

Next sentence prediction is important for tasks that are based on under-
standing the relationship between two sentences, such as question answering.
In order to train a model that understands sentence relationships, BERT is
pre-trained for a binarized next sentence prediction task. More specifically,
when choosing the sentences A and B for each pre-training example, 50% of

71

the time B is the actual next sentence that follows A (labeled as IsNext) and
50% of the time it is a random sentence from the corpus (labeled as NotNext)
[16].

6.2.3 Mean Pooling Operation

The token embeddings outputted by BERT can be used to create a single
vector encoding, sentence embeddings. To produce a vector like this the mean
pooling operation is used where the individual token embeddings excluding the
non-real tokens ([CLS] and [SEP]) are averaged. Max pooling operation, also,
exists in which the maximum of the token embeddings is taken. Since BERT
consists of multiple stacked Transformer encoders, the token embeddings can
be excluded from any layer. The output embedding length is 768 [16].

6.2.4 Fine-tuning BERT

BERT can also be fine-tuned for a multitude of tasks. In the fine-tuning
training, most hyper-parameters stay the same as in BERT training, and
the BERT team gives specific guidance on the hyper-parameters that require
tuning. The BERT team has used this technique to achieve state-of-the-art
results on a wide variety of challenging natural language tasks [16].

6.3 Other Transformer Models
Google’s BERT and recent transformer-based methods have taken the

NLP landscape by a storm, outperforming the state-of-the-art on several tasks.
Over time many new models have been inspired by the BERT architecture
but are trained in different languages or optimized on domain-specific data
sets. There is continuous progress happening and many optimized versions
are introduced often [34]. In this section, some of the off-the-shelf pre-trained
models of BERT are presented.

6.3.1 RoBERTa

Known as a ‘Robustly Optimized BERT Pretraining Approach’ RoBERTa
is a BERT variant developed to enhance the training phase. RoBERTa
was developed by training the BERT model longer, on larger data of longer
sequences and large mini-batches. Facebook researchers, who introduced
RoBERTa, obtained substantially improved results with some modifications
of BERT hyperparameters [40].

72

6.3.2 DistilBERT

DistilBERT learns a distilled (approximate) version of BERT, retaining
97% performance but using only half the number of parameters. Specifically,
it does not has token-type embeddings, pooler and retains only half of the
layers from Google’s BERT. DistilBERT uses a technique called distillation,
which approximates the Google’s BERT, i.e. the large neural network by a
smaller one. The idea is that once a large neural network has been trained,
its full output distributions can be approximated using a smaller network.
This is in some sense similar to posterior approximation. One of the key
optimization functions used for posterior approximation in Bayesian Statistics
is Kulback Leiber divergence and has naturally been used here as well [50].

6.3.3 Longformer

Transformer-based models are unable to process long sequences due to
their self-attention operation, which scales quadratically with the sequence
length. To address this limitation, the Longformer was introduced with an
attention mechanism that scales linearly with sequence length, making it easy
to process documents of thousands of tokens or longer. Longformer’s attention
mechanism is a drop-in replacement for the standard self-attention and
combines a local windowed attention with a task motivated global attention
[6].

6.3.4 BioBERT

Figure 6.4: Overview of the pre-training BioBERT. Source: BioBERT: a
pre-trained biomedical language representation model for biomedical text
mining (Fig. 1 in [37].

Nowadays, biomedical text mining is becoming increasingly important as
the number of biomedical documents rapidly grows. With the progress in

73

https://arxiv.org/pdf/1901.08746.pdf
https://arxiv.org/pdf/1901.08746.pdf
https://arxiv.org/pdf/1901.08746.pdf

NLP. Extracting valuable information from biomedical literature has gained
popularity among researchers, and deep learning has boosted the development
of effective biomedical text mining models. However, biomedical domain texts
contain a considerable number of domain-specific proper nouns and terms,
which are understood mostly by biomedical researchers. As a result, NLP
models designed for general purpose language understanding often obtains
poor performance in biomedical text mining tasks.

BioBERT, which stands for Bidirectional Encoder Representations from
Transformers for Biomedical Mining, is a variation of BERT model and it was
introduced in 2019 by a research team from Korea University and Clova AI.
Researchers pre-trained BERT on biomedical corpora, specifically on PubMed
abstracts (PubMed) and PubMed Central full-text articles (PMC). By having
a pre-trained model that encompasses both general and biomedical domain
corpora, developers and practitioners could now encapsulate biomedical terms
that would have been incredibly difficult for a general language model to
comprehend [37].

74

Chapter 7

Knowledge Representation

Knowledge representation and reasoning is the field of artificial intelligence
(AI) dedicated to represent information about the world in a form that a
computer system can use. It actually incorporates findings from psychology
about how humans solve problems and represent knowledge in order to
design formalisms that will make complex systems easier to design and build,
especially expert systems. Knowledge representation and reasoning also
incorporates findings from logic to automate various kinds of reasoning, such
as the application of rules or the relations of sets and subsets. The knowledge
representation formalisms include ontologies and knowledge graphs.

Ontology was defined in 1993 by Gruber and in 1997 this definition was
adjusted more appropriately by Borst. In 1998, Studer and others adjusted
the two definitions in the following definition proposal: "An ontology is a
formal, explicit specification of a shared conceptualization" [28]. Several
authors have refined the definitions over time to indicate, more clearly, that
an ontology is a formally-defined vocabulary for a particular domain of interest
used to capture knowledge about that (restricted) domain of interest. So, an
ontology describes the concepts in the domain and also the relationships that
hold between those concepts [9].

There are a number of such languages for ontologies, both proprietary and
standards-based. The Web Ontology Language (OWL) is one of the most
famous family of knowledge representation languages for authoring ontologies.
The OWL languages are characterized by formal semantics. They are built
upon the World Wide Web Consortium’s (W3C) standard for objects called
the Resource Description Framework (RDF).

There are three variants of OWL with different levels of expressiveness.
OWL DL (description logic) is one of them and is designed to provide the
maximum expressiveness possible while retaining computational completeness,
decidability and the availability of practical reasoning algorithms. OWL DL

75

includes all OWL language constructs, but they can be used only under
certain restrictions. Complex concepts and roles can be composed using
DL constructors such as conjunction, disjunction, existential restriction and
universal restrictions. An OWL ontology comprises a TBox T and an ABox
A. The TBox is a set of axioms such as General Concept Inclusion (GCI)
axioms, Role Inclusion (RI) axioms and Inverse Role axioms. The ABox is
a set of assertions such as concept assertions, role assertions and individual
equality and inequality assertions.

In OWL, the aforementioned concept, role and individual are modeled
as class, object property and instance, respectively. There are, also, data
properties and annotation properties. We refer to classes, properties and
instances as entities. Object property models the relationship between two
instances, a data property models the relationship between an instance and a
literal value (number or text) and an annotation property is used to represent a
(non-logical) relationship between an entity and an annotation (e.g., comment
or label). Each entity is uniquely represented by an Internationalized Resource
Identifier (IRI). In OWL, complex concepts, complex roles, axioms and role
assertions can be serialised as (sets of) RDF triples, each of which is a tuple
composed of a subject, a predicate and an object. In addition to axioms
and assertions with formal logic-based semantics, an ontology often contains
metadata information in the form of annotation axioms. These annotations
can also be represented by RDF triples using annotation properties [11].

One the other hand, the definitions of knowledge graphs (KG) vary and
there is research which suggests that a knowledge graph is no different than an
ontology [21]. The term was popularized by the Google’s Knowledge Graph
in 2012. In fact, KG refers to structured knowledge resources which are often
expressed as a set of RDF triples. Many KGs only contain instances and
facts which are equivalent to an OWL ontology ABox. Some other KGs are
also enhanced with a schema which is equivalent to the TBox of an OWL
ontology. Thus, a KG can often be understood as an ontology [11].

The use of external knowledge sources such as ontologies and knowledge
graphs can be used in order to produce embeddings for their terms with
the aim of semantically enhancing a natural language processing (NLP)
model. In the following sections we describe Graph Embeddings (Section 7.1)
and Ontology Embeddings (Section 7.2) and some algorithms that produce
them. We particularly focus on the ontology embedding algorithm OWL2Vec*
(Section 7.2.1), which has been used at the experimental study of this diploma
thesis.

76

7.1 Graph Embeddings
Semantic embeddings, that were described on Chapter 3, have also been

extended to KGs composed of role assertions. The entities and relations
(object properties) are represented in a vector space while retaining their
relative relationships (semantics).

One technique for learning KG representations is computing the embed-
dings iteratively adjusting the vectors using an optimization algorithm to
minimize the overall loss across all the triples. Algorithms based on this
technique include translation based model such as TransE [8] and TransR
[39]. Another technique is to first explore the neighborhoods of entities and
relations in the graph, and then learn the embeddings using a word embedding
model. One representative algorithm based on this technique is node2vec
[27], which extracts random graph walks and creates skip-gram or CBOW
models as the corpus for training. Another is Deep Graph Kernels [67], which
uses graph kernels such as Weisfeiler-Lehman (WL) sub-graph kernels as the
corpus. However, both embedding algorithms were originally developed for
undirected graphs, and thus may have limited performance when directly
applied to KGs. RDF2Vec [47] addresses this issue by extending the idea
of the above two algorithms to directed labeled RDF graphs and has been
shown to learn effective embeddings for large scale KGs.

7.2 Ontology Embeddings
In recent years, the use of machine learning prediction and statistical

analysis with ontologies is receiving wider attention and as a result many
ontology embedding algorithms have been developed. The objective of OWL
ontology embedding is to represent each OWL named entity (class, instance
or property) by a vector, such that the inter-entity relationships indicated by
the above information are kept in the vector space, and the performance of
the downstream tasks, where the input vectors can be understood as learned
features, is maximized.

Onto2Vec [53] and OPA2Vec [54] are two ontology embedding algorithms
using a model of either the skip-gram architecture or the CBOW architecture.
Onto2Vec uses the axioms of an ontology as the corpus for training, while
OPA2Vec complements the corpus of Onto2Vec with the lexical information
provided by, e.g., rdfs:comment. Both methods treat each axiom as a
sentence, which means that they cannot explore the correlation between
axioms. This makes it hard to fully explore the graph structure and the
logical relation between axioms, and may also lead to the problem of corpus

77

shortage for small to medium scale ontologies.
OWL2Vec* is another method for generating ontology embeddings, which

deals with the above issues of OPA2Vec and Onto2Vec. It actually com-
plements their axiom corpus with a corpus generated by walking over RDF
graphs that are transformed from the OWL ontology with its graph struc-
ture and logical constructors considered. Furthemore, OWL2Vec* creates
embeddings for not only the ontology entities as the previous KG/ontology em-
bedding methods but also for the words in the lexical information. OWL2Vec*
embedding targets OWL ontologies, which are based on the SROIQ DL [11].

7.2.1 OWL2Vec*

In 2021 Jiaoyan Chen, Pan Hu, Ernesto Jimenez-Ruiz, Ole Magnus Holter,
Denvar Antonyrajah and Ian Horrocks proposed a random walk and word
embedding based ontology embedding method named OWL2Vec* [11], which
encodes the semantics of an OWL ontology by taking into account its graph
structure, lexical information and logical constructors. This team first applied
this framework in three different real world datasets and showed OWL2Vec*
benefits from these three different aspects of an ontology in class membership
prediction and class subsumption prediction tasks.

Figure 7.1: The Overall Framework of OWL2Vec*. Source: OWL2Vec*:
embedding of OWL ontologies (Fig. 2 in [11]).

The overall framework of OWL2Vec* mainly consists of two core steps:
(i) corpus extraction from the ontology, and (ii) language model training

78

https://link.springer.com/content/pdf/10.1007/s10994-021-05997-6.pdf
https://link.springer.com/content/pdf/10.1007/s10994-021-05997-6.pdf

Axiom of condition 1 Axiom of triple(s) of condition 2 Projected triple(s)
A ⊑ □r.D D ≡ B|B1 ⊔ ... ⊔Bn|B1 ⊓ ... ⊓Bn ⟨A, r,B⟩ or

or
□r.D ⊑ A

∃r.T ⊑ A (domain) ⊤ ⊑ ∀r.B (range) ⟨A, r,Bi⟩ for i ∈ 1, ..., n
A ⊑ ∃r.{b} B(b)

r ⊑ r′ ⟨A, r′, B⟩ has been projected
r′ ≡ r− ⟨B, r′, A⟩ has been projected

s1 ◦ ... ◦ sn ⊑ r ⟨A, s1, C1⟩...⟨Cn, sn, B⟩ have been projected
B ⊑ A − ⟨B, rdfs:subClassOf,A⟩

⟨A, rdfs:subClassOf−, B⟩
A(a) − ⟨a, rdf :type, A⟩

⟨A, rdf :type−, a⟩
r(a, b) − ⟨a, r, b⟩

Table 7.1: Projection rules used in the second strategy to generate an RDF graph.
⊑ is one of: ≥,≤,=,∃,∀, A,B,Bi and Ci are atomic concepts (classes), si, r and r′

are roles (object properties), r− is the inverse of a relation r, a and b are individuals
(instances), ⊤ is the top concept (defined by owl:Thing)

with the corpus and entity embedding. The corpus includes a structure
document, a lexical document, and a document combining the structure and
the lexical information. The former two aim at exploring the ontology’s graph
structure, logical constructors and lexical information, while the third aims
at preserving the correlation between entities (URIs) and their lexical labels
(words). Briefly, given an input ontology O and the target entities E of O for
embedding, OWL2Vec* outputs a vector for each entity e in E, denoted as
e ∈ Rd, where d is the (configurable) embedding dimension.

OWL2Vec* focuses on OWL ontologies instead of typical KGs, with the
goal of preserving the semantics not only of the graph structure, but also of
the lexical information and the logical constructors. It is worth point out that
the graph of an ontology, which includes hierarchical categorization structure,
differs from the multi-relation graph composed of role (relation) assertions of
a typical KG. Furthermore, there are currently no existing KG embedding
methods that jointly explore the ontology’s lexical information and logical
constructors.

From OWL ontology to RDF graph
In order to turn the original OWL ontology O into a graph G in RDF

form, OWL2Vec* incorporates two strategies. The first strategy implements
the transformation according to the OWL to RDF Graph Mapping defined
by the W3C 1. Some simple axioms such as membership and subsumption

1https://www.w3.org/TR/owl2-mapping-to-rdf/

79

https://www.w3.org/TR/owl2-mapping-to-rdf/

axioms for atomic entities, data and annotation properties associated to
atomic entities and relational assertions between atomic instances can be
directly transformed into RDF triples by introducing some built-in properties
or using the bespoke properties in the axioms. Axioms involving complex
class expressions need to be transformed into multiple triples and often rely
on blank nodes.

The second strategy is based on the projection rules proposed in Table 7.1
[55] [31]. Every RDF triple ⟨X, r, Y ⟩ in the projection (the third column)
is justified by one or more axioms in the ontology (the first and the second
columns). As in the first strategy, a simple relational assertion between two
atomic entities (the last row in Table 7.1), or a simple data or annotation
property associated to an atomic entity, is directly transformed into one
single triple while those complex logical constructors (the first six rows in
Table 1), unlike the first strategy, are approximated. This strategy avoids the
use of blank nodes in the RDF graph which may act as noise towards the
correlation between entities when the embeddings are learned; but, the exact
logical relationships are not kept in the resulting RDF graph. Moreover, the
projection of membership and subsumption axioms (the seventh and eighth
rows in Table 7.1) has two settings. In the first setting, the two involved
atomic entities are transformed into one triple with the predicate of rdf :type or
rdfs:subClassOf . In the second setting, in addition to the above triple, one
more triple which uses the inverse of rdf :type or rdfs:subClassOf is added.
This enables a bidirectional walk between two entities with a subsumption or
membership relationship on the transformed RDF graph, and would impact
the corpus and the embeddings.

Both strategies can incorporate an OWL reasoner to compute the TBox
classification and ABox realization before O is transformed into an RDF
graph G. Such reasoning grounds the axioms of logical constructors and leads
to explicit representation of some hidden knowledge [11].

Structure Document
The creation of the structure document aims at capturing both the graph

structure and the logical constructors of the ontology. One option is computing
random walks for each target entity in E with the RDF graph G. Each walk,
which is a sequence of entity IRIs, acts as a sentence of the structure document.
In order to implement the random walk algorithm, we first transform the
RDF graph G into a directed single relation graph G′. More specifically, for
each RDF triple ⟨X, r, Y ⟩ in G, the subject X, the object Y and the relation
r are transformed into three vertices, two edges are added from the vertex of
X to the vertex of r and from the vertex of r to the vertex of Y respectively.
Given one starting vertex, we fairly and randomly select the next vertex

80

from all its connected vertices, and iterate this "step" operation for a specific
number of times to perform "walking".

OWL2Vec* also allows the usage of the Weisfeiler Lehman (WL) kernel
[52] which encodes the structure of a sub-graph into a unique identity and thus
enables the representation and incorporation of the sub-graph in a walk. For
one vertex in the transformed single relation graph G′, there is an associated
sub-graph (neighbourhood) starting from this vertex. This sub-graph’s WL
kernel (identity) is called as this vertex’s WL kernel. In the implementation,
the original random walks are first extracted. For each random walk, the IRIs
of the starting vertex and the vertices that are obtained from the relations
are kept, but the IRIs of the none-starting vertices that are obtained from
the subjects or objects with their WL kernels are replaced.

To capture the logical constructors, OWL2Vec* extracts all the axioms
of the ontology and complements the sentences of the structure document.
In the implementation, each ontology axiom is transformed into a sequence
following the OWL Manchester Syntax , where the original built-in terms
such as "subClassOf" and "some" are kept [11].

Lexical Document
The lexical document includes two kinds of word sentences. The first kind

is generated from the entity IRI sentences in the structure document, while
the second is extracted from the relevant lexical annotation axioms in the
ontology. For the first kind, given an entity IRI sentence, each of its entities
is replaced by its English label defined by rdfs : label. Note that the label
is parsed and transformed into lowercase tokens, and those tokens with no
letter characters are filtered out, before it replaces the entity IRI.

The second kind of word sentences are extracted from the textual annota-
tions. They include two kinds: annotations by bespoke annotation properties
such as obo:IAO_0000115 (definition), obo:IAO_0010000 (hasaxiomlabel)
and oboInOwl:hasSynonym, and annotations by built-in annotation prop-
erties such as rdfs:comment and rdfs:seeAlso. In the current OWL2Vec*
implementation, we consider all the annotation properties of an ontology
except for rdfs:label. The annotations by rdfs:label are ignored in generating
word sentences of the second kind because they are already considered in the
word sentences of the first kind [11].

Combined Document
OWL2Vec*, also, extracts a combined document from the structure docu-

ment and the entity annotations, so as to preserve the correlation between
entities (IRIs) and words in the lexical information. On the one hand this
would benefit the embeddings of the IRIs with the semantics of words. On the

81

other hand, the association with IRIs would incorporate some semantics of
the graph structure into the words’ embeddings. This may also add noise to
the correlation between words and negatively impact the words’ embeddings.

Two strategies are dealing with each IRI sentence in the structure docu-
ment. The first strategy is to randomly select an entity in an IRI sentence,
keep the IRI of this entity, and replace the other entities of this sentence by
their lowercase word tokens extracted from their labels or IRI names as in
the creation of the lexical document. The other strategy is traversing all the
entities in a IRI sentence. For each entity, it generates a combined sentence
by keeping the IRI of this entity, and replacing the others by their lowercase
word tokens as in the random strategy. Thus for one IRI sentence, it generates
m combined sentences where m is the number of entities of the IRI sentence
[11].

Embeddings
After the generation of these three documents, OWL2Vec* merges the

structure document, the lexical document and the combined document as one
document, and then uses this document to train a Word2vec model with the
skip-gram architecture. The hyper-parameter of the minimum count of words
is set to 1 such that each word or entity (IRI) is encoded as long as it appears
in the documents at least once. We can also pre-train the Word2vec model by
a large and general corpus but this may be noisy and play a negative role in
a domain specific task. OWL2Vec* is compatible with other word embedding
or sequence feature learning methods, too.

With the trained word embedding model, OWL2Vec* calculates the em-
bedding of each IRI (Viri) and each word (Vword). The vectors can be used
independently or can be concatenated and represent the embeddings of each
entity. The embedding size is set before the training.

82

Chapter 8

Experimental study

In this chapter, we compare the performance of pretrained bert-based
models with their semantic enrichment with the use of knowledge representa-
tion tools for two natural language processing tasks: information retrieval and
text classification on medical papers. Firstly, we investigate the enrichment
of these models with owl embeddings produced by the framework OWL2Vec*
[11], which was described in Section 7.2.1, on the information retrieval task.
Unfortunately, we prove that OWL2Vec* is unable to represent correctly the
terms of SNOMED CT ontology, a terminology of medical terms, because it
consists of a large number of concepts. We prove this, also, on the classifica-
tion task. As a result, we decide to examine the enrichment of bert-based
models with a concept filter, depending on terms in SNOMED CT, which in
fact achieves better performance than simple bert-based models.

In the following sections we first describe the experimental settings for the
evaluation of the methods in both tasks (Section 8.1), and then we present
the results obtained (Section 8.2).

8.1 Experimental Settings
In this section, we provide the details about our experimental settings to

make all the experiments reproducible.

8.1.1 Data Description

While it is easy to measure the performance of algorithms for classification
problems, it is often hard to measure the performance of information retrieval
systems. The main difficulty is finding an appropriate test dataset with a
large number of documents and queries.

83

max #documents in OHSUMED 1 2 3 4 5 6 >6 Total
queries 0 1 1 0 0 0 61 63

Table 8.1: Query - document set size for Information Retrieval in OHSUMED
dataset

For evaluation in both tasks we use subsets of the OHSUMED dataset to
assess the improvement our method can achieve for document retrieval and
classification compared to two different BERT models, used as baselines. The
OHSUMED test collection is a subset of the MEDLINE database, the online
medical information database, consisting of titles and/or abstracts of 270
medical journals over a five-year period (1987-1991). The available fields are
the title, abstract, MeSH indexing terms, author, source and publication type
but we use only the title and the abstract for both tasks. In the following
sections we analyze the subsets of OHSUMED that were used in each task.

8.1.1.1 Information Retrieval

To evaluate the contribution of OWL2Vec* to Biomedical Information
Retrieval System, we use a subset of the OHSUMED test collection as it
was used for the TREC-9 Filtering Track. The test collection consists of
327,113 documents and it was built as part of a study assessing the use
of MEDLINE by physicians in a clinical setting. Novice physicians using
MEDLINE generated 106 queries. Only a subset of these queries was used in
the TREC-9 Filtering Track. For the evaluation step we use a subset of 63
of the original query set developed by Hersh et al. for their IR experiments,
each query was replicated by four searchers, two physicians experienced in
searching and two medical librarians. The results were assessed for relevance
by a different group of physicians, using a three-point scale: definitely, possibly
or not relevant. In Table 8.1 we present a more detailed breakdown of query-
document sets. As we discuss in the results, two queries are related with a low
number of documents and this can have a negative impact on performance.

8.1.1.2 Classification

For the classification task we use a smaller OHSUMED test collection
which consists of 30,590 documents. We refer to this subset of OHSUMED
dataset as OHSUMED-CL. Each document belongs to one or more of the
23 categories. In Table 8.2 we present how many documents belong to each
class. We can see that the dataset is unbalanced, which affects negatively our
system. We mainly focus on two classes: Musculoskeletal Diseases (C05) and

84

Code Name #documents
C01 Bacterial Infections and Mycoses 2343
C02 Virus Diseases 1032
C03 Parasitic Diseases 393
C04 Neoplasms 5607
C05 Musculoskeletal Diseases 1500
C06 Digestive System Diseases 2691
C07 Stomatognathic Disease 473
C08 Respiratory Tract Diseases 2329
C09 Otorhinolaryngologic Diseases 659
C10 Nervous System Diseases 3504
C11 Eye Diseases 924
C12 Urologic and Male Genital Diseases 2316
C13 Female Genital Diseases and Pregnancy Complications 1462
C14 Cardiovascular Diseases 5323
C15 Hemic and Lymphatic Diseases 1141
C16 Neonatal Diseases and Abnormalities 977
C17 Skin and Connective Tissue Diseases 1446
C18 Nutritional and Metabolic Diseases 1678
C19 Endocrine Diseases 714
C20 Immunologic Diseases 2754
C21 Disorders of Environmental Origin 2706
C22 Animal Diseases 454
C23 Pathological Conditions, Signs and Symptoms 8597

Table 8.2: Number of documents at each class (code of class, name of class, number
of documents) for Classification

85

Endocrine Diseases (C19). The first class consists of 1500 documents while
the second 714.

8.1.1.3 SNOMED CT

Figure 8.1: Example of the concept "Musculoskeletal pain (finding)" in SNOMED
CT. The concept has 2 parents (Is-A relationship), 16 children, 1 attribute relation-
ship (Finding site) and 3 synonyms. Source: SNOMED CT Browser (Fig. in [1]) .

SNOMED CT1 (International Edition) [18] is an international terminology,
a collection of medical terms, and their synonyms, descriptions, etc., with an
underlying description logic formal model. It consists of more than 350,000
concepts and covering clinical findings, symptoms, diagnoses, procedures,
body structures, organisms and other etiologies, substances, pharmaceuticals,
devices and specimens among others. Developed by SNOMED International,
a not-for-profit organisation based in the UK, it contains clinical knowledge
that can complement textual information, and help us process new documents.
Its core components include concepts, descriptions, and relationships.

Healthcare professionals in recording information can use different clinical
terms that mean the same clinical ‘thought’. SNOMED CT supports this
by allowing more than one clinical term (description) for the same clinical
‘thought’ (concept). The concept is the basic building block in SNOMED
CT and each concept has a unique ID (Code). In SNOMED CT there are,
also, two commonly used description types, Fully Specified Name (FSN)

1https://www.snomed.org/snomed-ct/five-step-briefing

86

https://browser.ihtsdotools.org/?perspective=full&conceptId1=138875005&edition=MAIN/2022-04-30&release=&languages=en
https://www.snomed.org/snomed-ct/five-step-briefing

and Synonym (S). The FSN is the unique, unambiguous description of a
concept while synonyms allow for different concepts to be used that have
the same clinical meaning. Concepts are also associated with other concepts
using relationships. These relationships are used to define and model in
a logical manner the concepts. There are two types of relationships that
exist in SNOMED CT, the ‘Is-A relationship’ and the attribute relationship.
The ‘Is-A relationship’ which relates a concept to more general concept(s)
is often known as the parent-child relationship. Each active child concept
has at least one parent concept in its hierarchy but can have more than
one. Concepts can also be further defined using an attribute relationship.
Attribute relationships are an association between two concepts that specifies
a defining characteristic of one of the concepts (the source of the relationship).
Each attribute relationship has a name (the type of relationship) and a value
(the destination of the relationship), all of which are concepts in their own
right.

Figure 8.2: SNOMED CT Hierarchy. Source: SNOMED CT Browser (Fig. in [1]) .

SNOMED CT concepts are organised into 19 distinct hierarchies, each of
which cover different aspects of healthcare. Concepts are organized from the
general to the more detailed. This allows detailed clinical data to be recorded

87

https://browser.ihtsdotools.org/?perspective=full&conceptId1=138875005&edition=MAIN/2022-04-30&release=&languages=en

and later accessed or aggregated at a more general level [43].

8.1.2 Data Preprocessing

We understand that preprocessing is necessary for both tasks. One of
the challenges in terms of transferring the SNOMED-CT concepts to raw
text, is to be able to identify the relevant terms in text. For this purpose,
we employ the MetaMap tool [4], which maps biomedical text to the UMLS
metathesaurus. Upon identifying the text spans that correspond to UMLS
concepts, we use a mapping between UMLS and SNOMED concepts in order
to incorporate the SNOMED knowledge. As a result, for each document apart
from the abstract and the title we have the annotated terms from SNOMED
CT.

In the information retrieval task, we, also, make experiments by splitting
the abstract of each document of the OHSUMED dataset. More particularly,
we split the abstract every two sentences and each subtext eventually contains
the title and two sentences of the abstract. For example, the document with
id "91005637" consists of the title "Gastrointestinal tuberculosis. Report of
four cases." and the abstract "Gastrointestinal tuberculosis is a rare disease
in the United States. Correct identification is often delayed because it is
not considered early on in the differential diagnosis. Four patients with
gastrointestinal tuberculosis and the symptoms, diagnosis, complications, and
treatment of the disease are discussed. Gastrointestinal tuberculosis should
be considered in Asian immigrant patients who present with symptoms and
signs of inflammatory bowel disease.". After splitting, the document consists
of two subtexts. The title belongs to both subtexts. As a result, the first
subtext consists of the title, the first and the second sentence "Gastrointestinal
tuberculosis. Report of four cases. Gastrointestinal tuberculosis is a rare
disease in the United States. Correct identification is often delayed because it
is not considered early on in the differential diagnosis." and the second subtext
consists of the title, the third and the fourth sentence "Gastrointestinal tuber-
culosis. Report of four cases. Four patients with gastrointestinal tuberculosis
and the symptoms, diagnosis, complications, and treatment of the disease
are discussed. Gastrointestinal tuberculosis should be considered in Asian
immigrant patients who present with symptoms and signs of inflammatory
bowel disease.". This split improves the performance of our system as we will
discuss later. We henceforth refer to this form of the dataset as OHSUMED-S
dataset while the OHSUMED dataset, which contains the abstracts without
split, is referred as OHSUMED dataset. No splitting to the queries dataset is
applied.

Furthermore, for the information retrieval task in some experiments we

88

decide to enhance the SNOMED CT ontology with the documents themselves.
Firstly, we create a new ontology, which contains the SNOMED CT terminol-
ogy, new concepts with the id of each document, two data properties of each
document, which contain its abstract and its title, and one object property,
which actually connects each document with its annotated terms of SNOMED
CT. We refer to this ontology as SNOMED CT-D. We also create a similar
ontology with OHSUMED-S dataset. We refer to this ontology as SNOMED
CT-DS and it contains the SNOMED CT terminology, new concepts with
the id of each document and the id of each subtext of each document, one
data property with the title of each document, one object property, which
connects each document with its subtexts, one data property with the text
of each subtext and one object property which connects each subtext of the
document with its annotated terms of SNOMED CT.

8.1.3 Platform

We run our experiments on the SPOCK server of NTUA which has an
Intel Xeon E5-2620 v4 CPU running at 2.10 GHz with 62 GB of RAM.

8.1.4 Implementation

We implement both tasks in Python. To load and modify SNOMED CT
ontology, we use OWLready2 package. For searching and navigating the
SNOMED CT hierarchy we use PyMedTermino2 module. We build and train
all the following models in TensorFlow.

8.1.4.1 Transformer’s Models Embeddings

We opt for two BERT embeddings trained on different domains, with
demonstrated high performance in downstream classification tasks. Specifi-
cally we choose the original BERT model (Section 6.2), trained on Wikipedia
and BookCorpus, hence fine-tuned for the generic domain and BioBERT
(Section 6.3.4) trained on Pubmed papers, hence fine-tuned on the biomedical
domain. We, also, use Longformer (Section 6.3.3), a transformer model pre-
trained on long documents. For generating the embeddings of these models,
we use the base models from HuggingFace’s transformers: bert-base-uncased,
biobert-v1.1 and longformer-base-4096 model respectively. To form a single
vector representation for each document, we produce a mean pooling operation
to the output vector of the models. In this way, we produce the embeddings
for each document using their title and their abstract, if it exists (OHSUMED

89

dataset). We, also, generate the embeddings for the documents based on the
splitting (OHSUMED-S dataset).

8.1.4.2 OWL Embeddings

To produce the embeddings of SNOMED CT, we use OWL2Vec*, a state-
of the art system that creates embeddings from both the entities and the
lexical information that appears in an ontology. We have, already, described
how OWL2Vec* works in Section 7.2.1.

The algorithm accepts an ontology as input and produces embeddings as
output. As we have analyzed previously, we have three different ontologies and
by extension three different inputs of OWL2Vec* (SNOMED CT, SNOMED
CT-D, SNOMED CT-DS). The algorithm first generates random walks over
the ontology to extract structural, lexical, and semantic information in order
to create a corpus of IRI and word sequences. As our ontology is very large,
the option of Weisfeiler Lehman sub-tree kernel makes OWL2Vec* very slow
and demands a lot of memory. As a result, we decide to choose random walks
with 3 as walking depth, which is the length of the walk.

For the corpus that is fed to the word embedding model we use two different
document settings of OWL2Vec*. The first is the Structure Document, Ds. It
is composed of IRI sequences captured from the walks as well as the axioms, or
relationships, between the classes within the ontology. The second document
configuration is the Lexical Document, Ds,l, which replaces the IRIs of the
structural document with the entity labels.

The corpus is then fed to the word embedding model Word2vec to create
IRI and word (token) vector representations, Viri and Vword. For the embedding
model, three dimensions are tested (80, 100, 200) if no pre-training is adopted,
and otherwise set to be consistent with the pre-trained model. For training
the Word2vec without pre-training the window size is set to 5, the minimum
count of words is set to 1; the number of epochs is set to 10. The Word2vec
pre-training (with a dimension of 100) uses the latest English Wikipedia
article dump and for fine-tuning this model the number of epochs is set to
100.

8.1.4.3 Information Retrieval

The goal is to compare the performance of the three different transformer’s
models with their enhancement with OWL2Vec*. Depending on the test
collection (OHSUMED and OHSUMED-S) and the ontology that is used as
input in OWL2Vec* (SNOMED CT, SNOMED CT-D, SNOMED-CT-DS),
the experiments in the information retrieval task are organized as follows.

90

Figure 8.3: Summary of First System Architecture (IR).

(i) In the first group of experiments we first produce the transformer’s
models embeddings of each document of the OHSUMED dataset as
described in Section 8.1.4.1. We then generate the owl embeddings
of SNOMED CT from OWL2Vec* using different settings on each
experiment (embedding size, document settings). In some experiments
we use the IRI vector representation Viri, in others the word vector
representations Vword and in some others we concatenate these two
vectors Viri,word for generating the owl embeddings of each document.
More particularly, we create the owl embeddings for each document by
taking the mean of the owl embeddings of the annotated terms of each
document, which have been mapped to SNOMED CT after ignoring the
terms that appear in all documents more than 30,000 times and all the
stop words. The final embeddings of each document is a vector which
contains both vector embeddings by concatenating the embeddings of
a transformer-based model (BERT or BioBERT or Longformer) and
the owl embeddings of this document. In a similar way we produce
the embeddings of each query (both transformer-based embeddings and
owl embeddings). We then rank the documents’ relevance for each
query by calculating the distance between two vector representations
(embeddings) in order to retrieve documents relevant to the query. We
use cosine similarity for the distance estimation, so if we assume that
di is the document vector and qi is the query vector then the relevance
score is calculated as:

91

relevance(di, qj) =
di · qj

∥di∥ · ∥qj∥
(8.1)

In that way, for each query we have calculated its cosine similarity
distance with every document.

(ii) In the second group of experiments the difference is that apart from
generating the embeddings of each document of OHSUMED dataset,
we also produce both transformer-based embeddings and owl embed-
dings after splitting the abstracts of the documents as described in
Section 8.1.2 (OHSUMED-S). In this way, for every subtext of the
document we produce its transformer-based embeddings and its owl
embeddings from the annotated terms that appear in this subtext. For
each subtext of the document, we concatenate the respective embeddings
(transformer-based and owl). As a result, to each document correspond
the embeddings of all the splits of the abstract of the document and
the embeddings of the whole abstract of the document. We refer to
this set of embeddings as S. If the number of sentences in the abstract
of a document is ns and the symbol // refers to the division which
rounds down the answer and returns a whole number, the number of
vectors (embeddings) corresponding to this document is ns//2 + 1 if
ns is even and ns//2 + 2 if ns is odd. The embeddings of each query
are produced in the same way as previously. For ranking a document’s
relevance for each query we calculate the cosine similarity between the
query’s vector representation and all the embeddings vectors of the
document (embeddings from the splits and from the whole document).
For each pair of document-query the maximum cosine similarity of these
distances is the distance between the document and the query.

(iii) In the third group of experiments, we produce the transformer’s models
embeddings of each document of the OHSUMED dataset as described in
Section 8.1.4.1 but the owl embeddings of each document are calculated
differently. More specifically, as input in OWL2Vec* we use SNOMED-D
and so we take the owl embeddings of each document by searching their
Viri. The final embeddings of each document is similarly a vector which
contains both vector embeddings by concatenating the embeddings of
a transformer-based model and the owl embeddings of this document.
The queries embeddings are generated as previously and the ranking
of the documents’ relevance for each query is calculated as in the first
experiments.

92

(iv) In the fourth group of experiments, we combine the approaches of the
second and the third group of experiments. As input in OWL2Vec*
we use SNOMED-DS and so we take the owl embeddings of each
document and their splits by searching their Viri. The transformer-
based embeddings are produced as descibed in the second group of
experiments. The final embeddings of each subtext is the concatenation
of the respective embeddings. The rest of the process is the same as in
the second group of experiments.

Figure 8.4: Summary of Second System Architecture (IR).

8.1.4.4 Classification

For the classification task, as we have already described, we use OHUSMED-
CL dataset. The goal is to compare the performance of bert-based models
with their enhancement with SNOMED CT. The dataset is split into 15%
training set and 85% test set. All the following models consist of three layers:
one input layer with relu as activation function, one hidden layer with 200
units with ReLU as activation function and one output layer with sigmoid as
activation function. The layers are densely connected, or fully connected. We
use as optimizer adam optimizer and as loss function binary cross-entropy
loss. For training the models, the number of epochs is set to 2. In fact we
investigate 3 different systems.

(i) Firstly, we test if OWL2Vec* enhances the bert-based models on the
multilabel classification. We compare the performance of plain bert-

93

Figure 8.5: Summary of System Architecture (Classification).

based models with their enhancement with owl embeddings. We first
build a neural network with 768 units in the input layer and 23 units in
the output layer and only the bert-based embeddings of each document
are fed into the network. Then, we enhance the bert-based embeddings
with owl embeddings. The embeddings for each document are generated
by concatenating its bert-based embeddings and owl embeddings. The
owl embeddings are produced like the owl embeddings in the first group
of experiments with an embedding size 100 of word vector representations
and by using the Ds,l document. The embeddings with a total size 868
(768+100) are fed into a neural network with 868 units in the input
layer and 23 in the output layer. The output indicates to which classes
belong each document.

(ii) Then, we test another system and we focus on two classes: Musculoskele-
tal Diseases (C05) and Endocrine Diseases (C19). On both classes we
apply a concept filter on the documents. For each class we search the
terms of SNOMED CT that include the words "musculoskeletal" and
"endocrine" respectively. We choose to search for these words instead
of searching "musculoskeletal disease" and "endocrine disease" as we
observe that these choices limit a lot the terms of SNOMED CT and
mainly focus on terms associated with the medical history of each dis-
ease. After finding the related concepts, we find their synonyms by
using the MetaMap tool as described in Section 8.1.2. We navigate
the SNOMED CT hierarchy to identify the parents, children and de-
scendants of these concepts. We try different depths in SNOMED CT
hierarchy. We refer to these two sets of concepts as CLj where j = 1, 2.
We apply this concept filter on documents in the following way: for

94

every document that all its term c ∈ CDi such that c /∈ CLj we suppose
that the document does not belong to the specific class. Otherwise, we
suppose that the document belongs to the class. We, also, investigate
the use of different thresholds on the value of the concept filter to filter
the initial set of documents. In Table 8.3 we report an explanation
of the different depths and thresholds of the concept filter that were
investigated for the class C05. The depths and the thresholds for C19
are similar. As a result, we compare the performance of plain bert-based
models with the performance of the concept filter.

(iii) Furthermore, we investigate the use of this concept filter with bert-
based models. In fact, we compare the performance of plain bert-based
models with their enhancement with the concept filter. We build a
neural network with 768 units in the input layer and 1 unit in the
output layer. Only the bert-based embeddings of each document are
fed into the network. As the dataset is imbalanced, we also use a
bias in the output layer, calculated as log (pos/neg) where pos is the
number of documents that belong to the class and neg the number of
documents that do not belong to the class. The output indicates if
the document belongs to the class or not. For every document that is
tested whether it belongs or not to the class, we first apply to it the
concept filter. If all its term c ∈ CDi such that c /∈ CLj, the document
does not belong to the class. Otherwise, the model predicts if the
document belongs to the class. Because our dataset is imbalanced and
the number of documents belonging to the class is small, we apply the
concept filter before splitting the dataset into train and test set. The
remaining set is split into train and test set and its set is fed into the
model. For calculating the performance of the whole system, we take
into account the predictions of the model for the test set and the set
with the documents that have not passed the concept filter which are
considered not to belong to the specific class.

8.1.5 Metrics

8.1.5.1 Information Retrieval

In the information retrieval task we base our evaluation on the normalised
discounted cumulative gain (nDCG) metric, used to assess the model’s ranking
of relevant papers pertaining to a set of queries Q. It is defined for position
k ∈ {0, 1, ..., N}:

95

Depths and Thresholds Explanation
Depth 0 terms and synonyms of "musculoskeletal"
Depth 1 parents and children of Depth 0

Depth 1 & Ancestors children and ancestors of Depth 0
Depth 2 parents and children of Depth 1

Depth 2 & Ancestors children and ancestors of Depth 1
Threshold 1 at least 1 term of concept filter in the document
Threshold 2 at least 2 terms of concept filter in the document
Threshold 3 at least 3 terms of concept filter in the document

Table 8.3: Explanation of Depths and Thresholds for Concept Filter in class
"Musculoskeletal Diseases"

nDCGk =
1

Q

Q∑
q=1

IDCG
(q)
k

DCG
(q)
k

, for DCG(q)
k = rel

(q)
1 +

k∑
i=2

rel
(q)
i

log2(i)
(8.2)

where IDCG denotes the ideal and highest possible DCG and rel
(q)
i refers

to the relevance of the ith result ranked according to query q.

8.1.5.2 Classification

In the classification task we base our evaluation on f1-score but we also
calculate the precision and the recall metrics. For the binary classification
(ii) and (iii) we calculate these metrics for each class separately while for the
multilabel classification (i) the metrics are computed separately for each label
and then these label-wise metrics are aggregated. The Precision, Recall and
F1-Score Metrics are described in the following equations:

Precision =
tp

tp + fp
(8.3)

Recall =
tp

tp + fn
(8.4)

F1-Score = 2 · Precision ·Recall

Precision+Recall
(8.5)

where tp the number of outcomes where the system correctly predicts that
the documents belong to the class, tn the number of outcomes where the
system correctly predicts that the documents do not belong to the class,
fp the number of outcomes where the system incorrectly predicts that the

96

Transformer Models Plain OWL2Vec*
BERT 0.114 0.073

BioBERT 0.137 0.11
Longformer 0.008 0.013

Table 8.4: nDCG scores (k = 5) of Transformer models before (Plain) and after
their enhancement with OWL2Vec* (Ds,l, embedding_size : 100, Vword).

documents belong to the class and fn the number of outcomes where the
system incorrectly predicts that the documents do not belong to the class.

8.2 Experimental Results
In this section, we present our experimental results. We first compare the

approaches mentioned in the information retrieval task (Section 8.2.1) and
then in the classification task (Section 8.2.2).

8.2.1 Information Retrieval

We first compare the results between the transformer’s-based models and
their enhancement with the owl embeddings produced by OWL2Vec* as
described at (i) in Section 8.1.4.3. In Table 8.4 we report the experimental
results of BERT, BioBERT and Longformer models in comparison with their
results after concatenating their embeddings with the owl embeddings of
OWL2Vec*. For producing these owl embeddings we choose the document
setting Ds,l, 100 for embedding size and the word vector representations
(Vword). As we expected BioBERT is better than BERT and Longformer as
BioBERT is trained on medical papers. However, OWL2Vec* when combined
with BERT and BioBERT worsens the results. Longformer seems not to have
good results on both cases but its results have a slight improvement when
combined with OWL2Vec*. We then experiment with the embedding size of
OWL2Vec*. In Table 8.5 we report the results of Biobert with OWL2Vec*
for the embedding sizes 80, 100 and 200. We can see that the nDCG score,
when the embedding size is 80, is the best one and the worst is when the
embedding size is 200. We also experiment with the document settings and
vector representations of owl embeddings. We set an embedding size of 80.
In Table 8.6 and in Figure 8.6 we compare BERT and BioBERT models with
their combination of OWL2Vec* for different settings. We can see that we
achieve the best scores when we use the iri vector representations Viri of owl

97

Embedding Size BioBERT & OWL2Vec*
80 0.126
100 0.11
200 0.091

Table 8.5: nDCG scores (k = 5) of BioBERT after its enhancement with OWL2Vec*
for different embedding sizes (Ds,l, Vword).

Settings BERT & OWL2Vec* BioBERT & OWL2Vec*
Ds + Viri 0.113 0.146
Ds,l + Viri 0.114 0.145
Ds,l + Vword 0.112 0.126

Ds,l + Viri,word 0.092 0.094

Table 8.6: nDCG scores (k = 5) of BERT and BioBERT after their en-
hancement with OWL2Vec* using different document and embedding settings
(embedding_size : 80).

embeddings and in fact OWL2Vec* improves slightly but not satisfactorily
the bert-based models. The use of the concatenation Viri,word worsens both
scores.

Furthermore, we compare the results between the approaches described at
(i) and at (ii) in Section 8.1.4.3. In Table 8.7 we present the nDCG scores
of BERT and BioBERT with or without their enhancement with OWL2Vec*
using these two methods and two different embedding sizes. In OWL2Vec*
we have used Ds,l and Vword. We can see that splitting the documents in fact
improves all models, especially BioBERT. It is, also, worth noting that the
BERT model with splitting almost reaches the scores of BioBERT without
splitting. In all cases, OWL2Vec* still does not improve the scores of bert-
based models.

In Table 8.8 we compare the results between the approaches described at
(iii) and at (iv) in Section 8.1.4.3. We represent the nDCG scores of BERT and
BioBERT with or without their enhancement with OWL2Vec* using these two
methods. In OWL2Vec* we have used Ds,l and Viri for the documents’ vector
representations and Vword for the queries’ vector representations. We can
conclude that by inserting the documents in SNOMED CT and then producing
their owl embeddings, the nDCG scores for both BERT and BioBERT are
slightly improved. Their splitting improves even more the models. We, also,
report some other experiments with the approach (iv). In Table 8.9 we report

98

Figure 8.6: Results of the models BERT and BioBERT with OWL2Vec* using
OHSUMED and SNOMED CT for different document and embedding settings
(embedding_size : 80)

the experiments with BioBERT and OWL2Vec* for two different embedding
sizes (80, 100) while in Table 8.10 the experiments with BERT and BioBERT
with pre-trained OWL2Vec*. We can see that the best embedding size is 100
while the scores of the pre-trained OWL2Vec* are worse. As a result we show
that pre-trained can be noisy as explained in Section 7.2.1. In Table 8.11
and in Figure 8.7 we compare different settings of OWL2Vec* in the (iv)
method. The vector representations Vword and Viri refer to the representations
of queries and Vword seem to represent them more appropriately. In Table 8.12
we compare the nDCG scores of BioBERT and BioBERT with OWL2Vec*
(Vword for queries, 100 embedding size, Ds,l) for different values of k. In
Figure 8.8 we present the best results of all approaches.

From the experimental results we can conclude that the best documents
and embeddings settings of OWL2Vec* for the information retrieval of medical
papers with the use of SNOMED CT are the following: the use of Ds,l,
embedding size of 80 for SNOMED CT and 100 for SNOMED CT with the
documents, iri vector representations Viri for both queries and documents
when we use SNOMED CT and word vector representations Vword for queries
when we use SNOMED CT-D and SNOMED-DS. Splitting the abstracts
into subtexts improves all the results, a method that was also proved that it

99

Model Without Split (i) With Split (ii)
BERT Plain 0.114 0.13

BERT & OWL2Vec* (80) 0.112 0.131
BERT & OWL2Vec* (100) 0.073 0.129

BioBERT Plain 0.137 0.194
BioBERT & OWL2Vec* (80) 0.126 0.182
BioBERT & OWL2Vec* (100) 0.11 0.168

Table 8.7: nDCG scores (k = 5) of BERT and BioBERT before and after their
enhancement with OWL2Vec* using the two different datasets OHSUMED and
OHSUMED-S (Ds,l, embedding_sizes : 80, 100, Vword).

Model Without Split (iii) With Split (iv)
BERT Plain 0.114 0.13

BERT & OWL2Vec* (100) 0.124 0.141
BioBERT Plain 0.137 0.194

BioBERT & OWL2Vec* (100) 0.142 0.206

Table 8.8: nDCG scores (k = 5) of BERT and BioBERT before and after their
enhancement with OWL2Vec* using the two different ontologies SNOMED CT-D
and SNOMED CT-DS (Ds,l, embedding_size : 100).

BioBERT & OWL2Vec* nDCG Score
Embedding Size 80 0.198
Embedding Size 100 0.206

Table 8.9: nDCG scores (k = 5) of BioBERT after its enhancement with OWL2Vec*
using the ontology SNOMED CT-DS for two different embedding sizes (Ds,l).

Model nDCG Score
BERT & pre-trained OWL2Vec* 0.126

BioBERT & pre-trained OWL2Vec* 0.147

Table 8.10: nDCG scores (k = 5) of BERT and BioBERT after their enhancement
with OWL2Vec* using the ontology SNOMED CT-DS (Ds,l).

100

Settings BERT & OWL2Vec* BioBERT & OWL2Vec*
Ds + Viri 0.115 0.119
Ds,l + Viri 0.116 0.132
Ds,l + Vword 0.141 0.206

Table 8.11: nDCG scores (k = 5) of BERT and BioBERT after their enhancement
with OWL2Vec* using the ontology SNOMED CT-DS using different document
and embedding settings (embedding_size : 100).

Figure 8.7: Results of the models BERT and BioBERT with OWL2Vec* using
SNOMED CT-DS for different document and embedding settings (embedding_size :

100)

improves the performance of models in text classification of other domains [56].
More specifically, Chi Sun et al. proposed that there are parts of a text that
involves more insignificant information, for example the middle of the text.
By using SNOMED CT-DS we have achieved slightly better performance
with OWL2Vec* in comparison with plain bert-based models. In general,
it seems that OWL2Vec* does not enhance the performance of bert-based
models in this task. In fact, OWL2Vec* has been tested with medium (e.g.
an events ontology) and small (e.g. pizza ontology) size ontologies and has
shown good performance. However, it seems unable to perform well in larger

101

k BioBERT BioBERT & OWL2Vec*
5 0.194 0.206
10 0.164 0.173
20 0.149 0.154
50 0.154 0.158
100 0.174 0.181
1000 0.279 0.283

Table 8.12: nDCG scores for different values of k of BioBERT before and
after its enhancement with OWL2Vec* using the ontology SNOMED CT-DS
(Ds,l, embedding_size : 100).

vocabularies, like SNOMED CT which has more than 350,000 concepts, and
render correctly their lexical information and logical constructors. Ritchie
et al. [48] expects that OWL2Vec* performance in OWL2Vec* will improve
with larger ontologies in the future. It is important to mention that the
low number of related documents per query significantly impacts the nDCG
scores. We expect that we would see considerably higher scores for datasets
with a larger number of related documents per query.

Figure 8.8: Best results of the models in information retrieval for different
versions of dataset and ontology.

8.2.2 Classification

We decide to use OWL2Vec* in a different task, multilabel text classifi-
cation as described in Section 8.1.4.4 (i), in order to prove that OWL2Vec*

102

(a) Class: Musculoskeletal Diseases (C05) (b) Class: Endocrine Diseases (C19)

Figure 8.9: Comparison of f1-scores of BERT, BioBERT and concept filter for two
classes.

cannot be applied well in SNOMED CT. The performance of bert-based
models is not indeed improved with their enhancement with OWL2Vec*. As
a result, we try a different approach in the binary classification task for two
classes with the use of a concept filter described at (ii) and (iii).

Firstly, we focus on the system (ii) which does not require a machine
learning model. We just apply a concept filter on the documents without
training a model. We use different depths while searching the parents and the
children of a term in SNOMED CT and different thresholds in the concept
filter as explained in Table 8.3. In Figure 8.9 we report the f1-scores of BERT,
BioBERT and the concept filter for both classes for depth 2 and threshold 2.
We can see that just by applying a concept filter in the dataset, our system
achieves f1-scores that are close to f1-scores of BERT model. In fact, the
f1-scores of the concept filter on the C19 class surpass those of BERT model.

We then continue with system (iii) which requires the use of a bert-based
model, its training for 2 epochs and the use of the concept filter. We compare
the bert-based models BERT and BioBERT with their enhancement with the
concept filter for different thresholds and depths.

Regarding the class "Musculoskeletal Diseases" in Figure 8.10 and Fig-
ure 8.11 we can see that BERT with the use of some depths and thresholds
of concept filter even surpasses simple BioBERT model. More specifically,
the concept filter with Depth 1 & Ancestors - Threshold 1 and Depth 2 -
Thresholds 2 and 3 in combination with BERT achieves better performance
than BioBERT. We can also see that the scores of concept filter in combi-
nation with BioBERT model outperform the scores of simple BioBERT in
many cases. Furthermore we notice that for small depths with the increase of
threshold the f1-score of the system is reduced as there are less terms that are

103

(a) BERT Model

(b) BioBERT Model

Figure 8.10: Comparison of f1-scores of simple BERT, BioBERT with their
enhancement with the concept filter for "Musculoskeletal Diseases" Class.

found in SNOMED CT and as a result there are not many documents that
pass the filtering and so many papers that belong to the class, are considered
not to be. Respectively, filtering with Depth 2 & Ancestors seems to be
worse than filtering with Depth 2 as many terms that belong to ancestors are
included in many documents.

As regards the second class "Endocrine Diseases" we can see in Figure 8.12
and in Figure 8.13 that all of our systems outperform BERT model. Moreover,
the concept filter with Depth 1 - Threshold 3 in combination with BERT
achieves better performance than BioBERT. It is worth noting that concepts
related with "endocrine" term are a lot more than those related with "muscu-
loskeletal". That’s why we achieve the best performance with a small depth
and a big threshold. The concept filter with Depth 1 - Threshold 3 has also
good scores with BioBERT but we also notice that even a concept filter with

104

(a) Threshold 1 (b) Threshold 2

(c) Threshold 3

Figure 8.11: Comparison of f1-scores of simple BERT, BioBERT with their
enhancement with the concept Filter for specific thresholds and various depths
("Musculoskeletal Diseases" Class).

105

(a) BERT Model

(b) BioBERT Model

Figure 8.12: Comparison of f1-scores of simple BERT, BioBERT with their
enhancement with the concept filter for "Endocrine Diseases" Class.

Depth 0 and Threshold 1 can outperform BioBERT.
We understand that the use of a concept filter with bert-based models

can help them achieve better results at text classification task. In fact, we
consider that with a more balanced dataset our system can accomplish better
performance.

106

(a) Threshold 1 (b) Threshold 2

(c) Threshold 3

Figure 8.13: Comparison of f1-scores of simple BERT, BioBERT with their
enhancement with the concept Filter for specific thresholds and various depths
("Endocrine Diseases" Class).

107

Chapter 9

Conclusion and Future Work

In this thesis, we explored options for improving unsupervised information
retrieval on emerging queries and supervised classification in the biomedical
domain. We investigated the use of SNOMED CT to improve the initial results
of bert-based models. We first investigated the framework OWL2Vec* for
both information retrieval and classification task but we found that currently
the framework cannot be implemented efficiently for large ontologies, such as
SNOMED CT. However, the performance is expected to improve with larger
vocabularies in the future. In the classification task we also proposed a simple
co-occurrence filtering method which accomplishes a very good performance
in comparison with bert-based models. Indeed, we found that BERT-based
results filtered using SNOMED CT surpass the performance of unfiltered
BioBERT results.

The aforementioned outcomes provide solid basis for further experimenta-
tion into better exploitation of knowledge graphs and concept hierarchies as
a means of boosting IR and Classification on new topics in an unsupervised
manner. More importantly, these observations demonstrate that a specialized
ontology, can successfully be applied to adapt out-of-domain models to a new
domain. In the future, as for OWL2Vec* the framework would efficiently
produce owl embeddings that express correctly the lexical information and
logical constructors of a large ontology. Owl embeddings can significantly
boost the performance of pretrained neural networks on natural language
processing tasks. As for the concept filter, the exploration in more detail
of the SNOMED CT hierarchy would enhance further the pretrained mod-
els. The position of a concept in the hierarchy, the size and the type of its
neighbors would potentially allow us to identify further connections among
classes and documents. The use of this filtering method can also be applied
on other domains, such as the financial sector, with other specialized external
knowledge sources.

108

Bibliography

[1] Snomed ct browser. https://browser.ihtsdotools.org/. Accessed:
2022-05-20.

[2] Admin, Jobs: A simple introduction to sequence to sequence mod-
els. "https://www.analyticsvidhya.com/blog/2020/08/a-simple-
introduction-to-sequence-to-sequence-models/", Accessed: 2022-
02-15.

[3] Agosti, Maristella, Stefano Marchesin, and Gianmaria Silvello: Learning
unsupervised knowledge-enhanced representations to reduce the semantic
gap in information retrieval. ACM Trans. Inf. Syst., 38(4), sep 2020,
ISSN 1046-8188. https://doi.org/10.1145/3417996.

[4] Aronson, Alan and François Michel Lang: An overview of metamap:
Historical perspective and recent advances. Journal of the American
Medical Informatics Association : JAMIA, 17:229–36, May 2010.

[5] Batut, Bérénice, Saskia Hiltemann, Andrea Bagnacani, Dannon Baker,
Vivek Bhardwaj, Clemens Blank, Anthony Bretaudeau, Loraine Brillet-
Guéguen, Martin Čech, John Chilton, Dave Clements, Olivia Doppelt-
Azeroual, Anika Erxleben, Mallory Ann Freeberg, Simon Gladman,
Youri Hoogstrate, Hans Rudolf Hotz, Torsten Houwaart, Pratik Jagtap,
Delphine Larivière, Gildas Le Corguillé, Thomas Manke, Fabien Mareuil,
Fidel Ramírez, Devon Ryan, Florian Christoph Sigloch, Nicola Soranzo,
Joachim Wolff, Pavankumar Videm, Markus Wolfien, Aisanjiang Wubuli,
Dilmurat Yusuf, James Taylor, Rolf Backofen, Anton Nekrutenko, and
Björn Grüning: Community-driven data analysis training for biology.
Cell Systems, 6(6):752–758.e1, jun 2018. https://doi.org/10.1016%
2Fj.cels.2018.05.012.

[6] Beltagy, Iz, Matthew E. Peters, and Arman Cohan: Longformer: The
long-document transformer, 2020.

109

https://browser.ihtsdotools.org/
"https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/"
"https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/"
https://doi.org/10.1145/3417996
https://doi.org/10.1016%2Fj.cels.2018.05.012
https://doi.org/10.1016%2Fj.cels.2018.05.012

[7] Bishop, Christopher M.: Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg,
2006, ISBN 0387310738.

[8] Bordes, Antoine, Nicolas Usunier, Alberto Garcia-Duran, Jason We-
ston, and Oksana Yakhnenko: Translating embeddings for model-
ing multi-relational data. In Burges, C.J., L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger (editors): Advances in Neu-
ral Information Processing Systems, volume 26. Curran Associates,
Inc., 2013. https://proceedings.neurips.cc/paper/2013/file/
1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

[9] Braga, Juliao, Joaquim Dias, and Francisco Regateiro: A MACHINE
LEARNING ONTOLOGY . October 2020.

[10] Caroline Clabaugh, Dave Myszewski, Jimmy Pang: Neural net-
works: The perceptron. "https://cs.stanford.edu/people/eroberts/
courses/soco/projects/neural-networks/Neuron/index.html", Ac-
cessed: 2022-02-15.

[11] Chen, Jiaoyan, Pan Hu, Ernesto Jimenez-Ruiz, Ole Magnus Holter,
Denvar Antonyrajah, and Ian Horrocks: Owl2vec*: Embedding of owl
ontologies, 2020. https://arxiv.org/abs/2009.14654.

[12] Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio: On the properties of neural machine translation: Encoder-decoder
approaches, 2014.

[13] Cybenko, G.: Approximation by superpositions of a sigmoidal func-
tion. Mathematics of Control, Signals, and Systems (MCSS), 2(4):303–
314, December 1989, ISSN 0932-4194. http://dx.doi.org/10.1007/
BF02551274.

[14] Daniel Jurafsky, James H. Martin: Speech and Language Processing .
2021.

[15] Dervakos, Edmund, Giorgos Filandrianos, Konstantinos Thomas, Alexios
Mandalios, Chrysoula Zerva, and G. Stamou: Semantic enrichment of
pretrained embedding output for unsupervised ir. CEUR Workshop Proc.,
2846, 2021.

[16] Devlin, Jacob, Ming Wei Chang, Kenton Lee, and Kristina Toutanova:
Bert: Pre-training of deep bidirectional transformers for language under-
standing, 2019.

110

https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
"https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html"
"https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html"
https://arxiv.org/abs/2009.14654
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274

[17] Donges, Niklas: A guide to rnn: Understanding recurrent neural networks
and lstm networks. "https://builtin.com/data-science/recurrent-
neural-networks-and-lstm", Accessed: 2022-02-15.

[18] Donnelly, Kevin: Snomed-ct: The advanced terminology and coding
system for ehealth. Studies in health technology and informatics, 121:279–
90, February 2006.

[19] Education, IBM Cloud: Machine learning. "https://www.ibm.com/
cloud/learn/machine-learning", Accessed: 2022-03-05.

[20] Education, IBM Cloud: Recurrent neural networks. "https://
www.ibm.com/cloud/learn/recurrent-neural-networks", Accessed:
2022-02-15.

[21] Ehrlinger, Lisa and Wolfram Wöß: Towards a definition of knowledge
graphs. September 2016.

[22] Firth, J. R.: A synopsis of linguistic theory 1930-55. 1952-59:1–32, 1957.

[23] Gad", "Ahmed: "a comprehensive guide to the backpropagation
algorithm in neural networks", December 2021. "https://neptune.ai/
blog/backpropagation-algorithm-in-neural-networks-guide",
Accessed: 2022-02-18.

[24] Gonzalez, R.C. and R.E. Woods: Digital Image Processing. Pearson-
/Prentice Hall, 2008, ISBN 9780131687288. https://books.google.gr/
books?id=8uGOnjRGEzoC.

[25] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville: Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[26] Graves, Alex: Generating sequences with recurrent neural networks, 2014.

[27] Grover, Aditya and Jure Leskovec: node2vec: Scalable feature learning
for networks, 2016. https://arxiv.org/abs/1607.00653.

[28] Guarino, Nicola, Daniel Oberle, and Steffen Staab: What Is an Ontology?,
pages 1–17. May 2009.

[29] Harris, Zellig S.: Distributional structure. <i>WORD</i>, 10(2-3):146–
162, 1954. https://doi.org/10.1080/00437956.1954.11659520.

[30] Hochreiter, Sepp and Jürgen Schmidhuber: Long short-term memory.
Neural computation, 9:1735–80, December 1997.

111

"https://builtin.com/data-science/recurrent-neural-networks-and-lstm"
"https://builtin.com/data-science/recurrent-neural-networks-and-lstm"
"https://www.ibm.com/cloud/learn/machine-learning"
"https://www.ibm.com/cloud/learn/machine-learning"
"https://www.ibm.com/cloud/learn/recurrent-neural-networks"
"https://www.ibm.com/cloud/learn/recurrent-neural-networks"
"https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide"
"https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide"
https://books.google.gr/books?id=8uGOnjRGEzoC
https://books.google.gr/books?id=8uGOnjRGEzoC
http://www.deeplearningbook.org
https://arxiv.org/abs/1607.00653
https://doi.org/10.1080/00437956.1954.11659520

[31] Holter, Ole Magnus, Erik Bryhn Myklebust, Jiaoyan Chen, and Ernesto
Jiménez-Ruiz: Embedding owl ontologies with owl2vec. In SEMWEB,
2019.

[32] Janiesch, Christian, Patrick Zschech, and Kai Heinrich: Machine learning
and deep learning. Electronic Markets, 31(3):685–695, apr 2021. https:
//doi.org/10.1007%2Fs12525-021-00475-2.

[33] Joos, Martin: Description of language design. Journal of the Acoustical
Society of America, 22:701–707, 1950.

[34] Kalyan, Katikapalli Subramanyam, Ajit Rajasekharan, and Sivanesan
Sangeetha: Ammus : A survey of transformer-based pretrained models in
natural language processing, 2021.

[35] Kamali, Kaivan: Deep learning (part 1) - feedforward neu-
ral networks (fnn) (galaxy training materials), June 2021.
"https://training.galaxyproject.org/training-material/
topics/statistics/tutorials/FNN/tutorial.html", [Online; ac-
cessed Tue Feb 22 2022].

[36] Karpathy, Andrej: The unreasonable effectiveness of recurrent
neural networks. "http://karpathy.github.io/2015/05/21/rnn-
effectiveness", Accessed: 2022-02-15.

[37] Lee, Jinhyuk, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu
Kim, Chan Ho So, and Jaewoo Kang: Biobert: a pre-trained biomedi-
cal language representation model for biomedical text mining. Bioin-
formatics, Sep 2019, ISSN 1460-2059. http://dx.doi.org/10.1093/
bioinformatics/btz682.

[38] Lillicrap, Timothy P and Adam Santoro: Backpropagation through
time and the brain. Current Opinion in Neurobiology, 55:82–89, 2019,
ISSN 0959-4388. https://www.sciencedirect.com/science/article/
pii/S0959438818302009, Machine Learning, Big Data, and Neuro-
science.

[39] Lin, Yankai, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu:
Learning entity and relation embeddings for knowledge graph completion.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intel-
ligence, AAAI’15, page 2181–2187. AAAI Press, 2015, ISBN 0262511290.

112

https://doi.org/10.1007%2Fs12525-021-00475-2
https://doi.org/10.1007%2Fs12525-021-00475-2
"https://training.galaxyproject.org/training-material/topics/statistics/tutorials/FNN/tutorial.html"
"https://training.galaxyproject.org/training-material/topics/statistics/tutorials/FNN/tutorial.html"
"http://karpathy.github.io/2015/05/21/rnn-effectiveness"
"http://karpathy.github.io/2015/05/21/rnn-effectiveness"
http://dx.doi.org/10.1093/bioinformatics/btz682
http://dx.doi.org/10.1093/bioinformatics/btz682
https://www.sciencedirect.com/science/article/pii/S0959438818302009
https://www.sciencedirect.com/science/article/pii/S0959438818302009

[40] Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov:
Roberta: A robustly optimized bert pretraining approach, 2019.

[41] Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean: Efficient
estimation of word representations in vector space, 2013. https://
arxiv.org/abs/1301.3781.

[42] Newell, Allen: A step toward the understanding of information processes:
Perceptrons. an introduction to computational geometry. marvin minsky
and seymour papert. m.i.t. press, cambridge, mass., 1969. vi + 258
pp., illus. cloth, $12; paper, $4.95. Science, 165(3895):780–782, 1969.
https://www.science.org/doi/abs/10.1126/science.165.3895.780.

[43] NHS Digital: SNOMED CT: A user guide for General Practice.

[44] Ostendorff, Malte, Peter Bourgonje, Maria Berger, Julian Moreno-
Schneider, Georg Rehm, and Bela Gipp: Enriching bert with knowledge
graph embeddings for document classification, 2019. https://arxiv.org/
abs/1909.08402.

[45] Pennington, Jeffrey, Richard Socher, and Christopher Manning: GloVe:
Global vectors for word representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, Doha, Qatar, October 2014. Association for Computa-
tional Linguistics. https://aclanthology.org/D14-1162.

[46] Pilehvar, Mohammad Taher and Jose Camacho-Collados. 2020.

[47] Ristoski, Petar and Heiko Paulheim: Rdf2vec: Rdf graph embeddings for
data mining. In SEMWEB, 2016.

[48] Ritchie, A., J. Chen, L. J. Castro, D. Rebholz-Schuhmann, and E.
Jimenez-Ruiz: Ontology clustering with owl2vec*. In Deep Learning meets
Ontologies and Natural Language Processing (DeepOntoNLP2021), vol-
ume 2918, pages 54–61. CEUR Workshop Proceedings, July 2021. https:
//openaccess.city.ac.uk/id/eprint/25933/, Copyright © 2021 This
paper is reproduced under the Creative Commons License Attribution
4.0 International (CC BY 4.0).

[49] Salton, G., A. Wong, and C. S. Yang: A vector space model for automatic
indexing. Commun. ACM, 18(11):613–620, nov 1975, ISSN 0001-0782.
https://doi.org/10.1145/361219.361220.

113

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://www.science.org/doi/abs/10.1126/science.165.3895.780
https://arxiv.org/abs/1909.08402
https://arxiv.org/abs/1909.08402
https://aclanthology.org/D14-1162
https://openaccess.city.ac.uk/id/eprint/25933/
https://openaccess.city.ac.uk/id/eprint/25933/
https://doi.org/10.1145/361219.361220

[50] Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf:
Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter,
2020.

[51] Schuster, Mike and Kuldip Paliwal: Bidirectional recurrent neural net-
works. Signal Processing, IEEE Transactions on, 45:2673 – 2681, Decem-
ber 1997.

[52] Shervashidze, Nino, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt
Mehlhorn, and Karsten M. Borgwardt: Weisfeiler-lehman graph kernels.
J. Mach. Learn. Res., 12(null):2539–2561, nov 2011, ISSN 1532-4435.

[53] Smaili, Fatima Zohra, Xin Gao, and Robert Hoehndorf: Onto2vec: joint
vector-based representation of biological entities and their ontology-based
annotations. Bioinformatics, 34(13):i52–i60, jun 2018. https://doi.org/
10.1093%2Fbioinformatics%2Fbty259.

[54] Smaili, Fatima Zohra, Xin Gao, and Robert Hoehndorf: Opa2vec: com-
bining formal and informal content of biomedical ontologies to improve
similarity-based prediction, 2018. https://arxiv.org/abs/1804.10922.

[55] Soylu, Ahmet, Evgeny Kharlamov, Dmitriy Zheleznyakov, Ernesto
Jiménez-Ruiz, Martin Giese, Martin Skjæveland, Dag Hovland, Rudolf
Schlatte, Sebastian Brandt, Hallstein Lie, and Ian Horrocks: Optiquevqs:
a visual query system over ontologies for industry. Semantic Web, 9,
August 2017.

[56] Sun, Chi, Xipeng Qiu, Yige Xu, and Xuanjing Huang: How to fine-tune
bert for text classification?, 2019. https://arxiv.org/abs/1905.05583.

[57] Taylor, Wilson L.: “cloze procedure”: A new tool for measuring readability.
Journalism & Mass Communication Quarterly, 30:415 – 433, 1953.

[58] Team, Great Learning: Types of neural networks and definition of
neural network. "https://www.mygreatlearning.com/blog/types-of-
neural-networks/", Accessed: 2022-02-15.

[59] Team, The Machine Learning: Backpropagation deep learning. "https://
the-learning-machine.com/article/dl/backpropagation?gclid=
Cj0KCQiApL2QBhC8ARIsAGMm-KHk3f4FuVGXpjQr--dfdWpCc3glgE6-
iYYb-lo_DGDJF2ovRFb26OsaArNwEALw_wcB", Accessed: 2022-02-15.

[60] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan Gomez, Lukasz Kaiser, and Illia Polosukhin: Attention is
all you need. June 2017.

114

https://doi.org/10.1093%2Fbioinformatics%2Fbty259
https://doi.org/10.1093%2Fbioinformatics%2Fbty259
https://arxiv.org/abs/1804.10922
https://arxiv.org/abs/1905.05583
"https://www.mygreatlearning.com/blog/types-of-neural-networks/"
"https://www.mygreatlearning.com/blog/types-of-neural-networks/"
"https://the-learning-machine.com/article/dl/backpropagation?gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHk3f4FuVGXpjQr--dfdWpCc3glgE6-iYYb-lo_DGDJF2ovRFb26OsaArNwEALw_wcB"
"https://the-learning-machine.com/article/dl/backpropagation?gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHk3f4FuVGXpjQr--dfdWpCc3glgE6-iYYb-lo_DGDJF2ovRFb26OsaArNwEALw_wcB"
"https://the-learning-machine.com/article/dl/backpropagation?gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHk3f4FuVGXpjQr--dfdWpCc3glgE6-iYYb-lo_DGDJF2ovRFb26OsaArNwEALw_wcB"
"https://the-learning-machine.com/article/dl/backpropagation?gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHk3f4FuVGXpjQr--dfdWpCc3glgE6-iYYb-lo_DGDJF2ovRFb26OsaArNwEALw_wcB"

[61] Wang, Pu, Jian Hu, Hua Jun Zeng, and Zheng Chen: Using wikipedia
knowledge to improve text classification. Knowl. Inf. Syst., 19:265–281,
June 2009.

[62] Wikipedia contributors: Semi-supervised learning — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Semi-
supervised_learning&oldid=1049180726, 2021. [Online; accessed 11-
March-2022].

[63] Wikipedia contributors: Machine learning — Wikipedia, the free en-
cyclopedia, 2022. https://en.wikipedia.org/w/index.php?title=
Machine_learning&oldid=1075772572, [Online; accessed 11-March-
2022].

[64] Wikipedia contributors: Natural language processing — Wikipedia,
the free encyclopedia, 2022. https://en.wikipedia.org/
w/index.php?title=Natural_language_processing&oldid=
1075824160, [Online; accessed 13-March-2022].

[65] Wikipedia contributors: Perceptron — Wikipedia, the free en-
cyclopedia, 2022. https://en.wikipedia.org/w/index.php?title=
Perceptron&oldid=1068824312, [Online; accessed 18-February-2022].

[66] Wikipedia contributors: Transformer (machine learning model) —
Wikipedia, the free encyclopedia, 2022. https://en.wikipedia.org/w/
index.php?title=Transformer_(machine_learning_model)&oldid=
1070758033, [Online; accessed 15-February-2022].

[67] Yanardag, Pinar and S.V.N. Vishwanathan: Deep graph kernels. In
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15, page 1365–1374,
New York, NY, USA, 2015. Association for Computing Machinery,
ISBN 9781450336642. https://doi.org/10.1145/2783258.2783417.

[68] Zhang, Aston, Zachary C. Lipton, Mu Li, and Alexander J. Smola: Dive
into Deep Learning . 2020. https://d2l.ai.

[69] Zhang, Zhengyan, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and
Qun Liu: ERNIE: Enhanced language representation with informative
entities. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1441–1451, Florence, Italy, July 2019.
Association for Computational Linguistics. https://aclanthology.org/
P19-1139.

115

https://en.wikipedia.org/w/index.php?title=Semi-supervised_learning&oldid=1049180726
https://en.wikipedia.org/w/index.php?title=Semi-supervised_learning&oldid=1049180726
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=1075772572
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=1075772572
https://en.wikipedia.org/w/index.php?title=Natural_language_processing&oldid=1075824160
https://en.wikipedia.org/w/index.php?title=Natural_language_processing&oldid=1075824160
https://en.wikipedia.org/w/index.php?title=Natural_language_processing&oldid=1075824160
https://en.wikipedia.org/w/index.php?title=Perceptron&oldid=1068824312
https://en.wikipedia.org/w/index.php?title=Perceptron&oldid=1068824312
https://en.wikipedia.org/w/index.php?title=Transformer_(machine_learning_model)&oldid=1070758033
https://en.wikipedia.org/w/index.php?title=Transformer_(machine_learning_model)&oldid=1070758033
https://en.wikipedia.org/w/index.php?title=Transformer_(machine_learning_model)&oldid=1070758033
https://doi.org/10.1145/2783258.2783417
https://d2l.ai
https://aclanthology.org/P19-1139
https://aclanthology.org/P19-1139

	Ευχαριστίες
	Περίληψη
	Abstract
	Contents
	List of Figures
	List of Tables
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Αναπαράσταση Φυσικής Γλώσσας
	Ενσωματώσεις Λέξεων
	Ενσωματώσεις με βάση τα Συμφραζόμενα

	Μοντέλα NLP
	Transformer
	BERT
	BioBERT
	Longformer

	Αναπαράσταση Γνώσης
	Πειραματική Μελέτη

	Introduction
	Motivation
	Related Work
	Thesis Contribution
	Thesis Structure

	Introduction to Artificial Intelligence
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning
	Reinforcement Learning

	Natural Language Processing

	Deep Learning Background
	The Perceptron
	Perceptron Training Algorithm

	Multilayer Feed-Forward Neural Networks
	Activation Functions
	Learning Process

	Recurrent Neural Networks
	Backpropagation Through Time (BPTT)
	Types of RNNs
	Different RNN Architectures

	Vector Representation of Language
	One-hot Representation
	Vector Space Models
	Word Embeddings
	Predictive Models
	Similarity Metrics
	Contextualized Embeddings

	The Transformer Model
	Model Architecture
	Encoder - Decoder
	Attention
	Position-Wise Feed-Forward Network
	Positional Encoding

	Bi-Directional Encoder Representation From Transformers (BERT)
	Input and Output Representations
	Pre-training BERT
	Mean Pooling Operation
	Fine-tuning BERT

	Other Transformer Models
	RoBERTa
	DistilBERT
	Longformer
	BioBERT

	Knowledge Representation
	Graph Embeddings
	Ontology Embeddings
	OWL2Vec*

	Experimental study
	Experimental Settings
	Data Description
	Data Preprocessing
	Platform
	Implementation
	Metrics

	Experimental Results
	Information Retrieval
	Classification

	Conclusion and Future Work

