
National Technical University of Athens
School of Electrical and Computer Engineering

Division of Data Science and Machine Learning

Towards Understanding Privacy-Aware

Artificial Intelligence

From Intuition to Application

Diploma Thesis
of

ANDREAS TRITSAROLIS

Supervisor: Stefanos Kollias

Professor

Co-Supervisors:

George Siolas

Laboratory Teaching Staff

Yannis Theodoridis

Professor

Athens, June 16, 2022

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Data Science and Machine Learning

Towards Understanding Privacy-Aware Artificial

Intelligence

From Intuition to Application

Diploma Thesis
of

ANDREAS TRITSAROLIS

Supervisor: Stefanos Kollias

Professor

Co-Supervisors:

George Siolas

Laboratory Teaching Staff

Yannis Theodoridis

Professor

Approved by the examination committee on June 16, 2022.

(Signature) (Signature) (Signature)

. .

Stefanos Kollias Yannis Theodoridis George Stamou

Professor Professor Professor

Athens, June 16, 2022

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Data Science and Machine Learning

Copyright © – All rights reserved.

Andreas Tritsarolis, 2021–2022.

The copying, storage and distribution of this diploma thesis, exall or part of it, is prohibited

for commercial purposes. Reprinting, storage and distribution for non - profit, educational

or of a research nature is allowed, provided that the source is indicated and that this

message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work

/ contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference

is included in the bibliographic references section. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

. .

Andreas Tritsarolis

June 16, 2022

Πεϱίληψη

Η Τεχνητή Νοηµοσύνη (Artificial Intelligence – AI), και πιο συγκεκριµένα η Μηχανική

Μάϑηση (Machine Learning – ML), υιοθετείται ευρέως σε πολλές πτυχές της καθηµερινότητάς

µας, µε τα δεδοµένα να παίζουν καθοριστικό ϱόλο στην επιτυχία της. Καθώς οι συσκευές

Internet of Things (IoT) παράγουν τεϱάστιες ποσότητες δεδοµένων µε ιλλιγιώδεις ταχύτητες,

πϱοκύπτει µια πϱόκληση όσον αϕοϱά τα Ϲητήµατα ιδιωτικότητας-αποϱϱήτου και τους υπολ-

ογιστικούς πόϱους. Ορισµένα δεδοµένα ενχεδοµένως να περιέχουν ευαίσθητες πληροφορίες

(π.χ. ιατρικά αρχεία) και να µη δύνανται να είναι διαθέσιµα σε ανοικτά αποθετήρια, ενώ άλλα

είναι τόσο ογκώδη που δεν µποϱούν να χρησιµοποιηθούν σε ένα σύστηµα κεντρικοποιηµένης

αρχιτεκτονικής για την εκπαίδευση ενός µοντέλου. Η Οµοσπονδιακή Μάϑηση (Federated

Learning – FL) προτάθηκε από την Google το 2016 [44, 45], προκειµένου να αντιµετω-

πίσει τις παραπάνω προκλήσεις. Εν ολίγοις, είναι µια προσέγγιση που επιτϱέπει σε ένα

µοντέλο να εκπαιδευτεί σε δεδοµένα που δεν κατέχουµε και δεν µποϱούµε να δούµε. Τα

δεδοµένα που δηµιουργούνται από edge devices (π.χ. smartphone) αποθηκεύονται τοπικά

και δεν κοινοποιούνται σε άλλους κόµβους στο δίκτυο ή τον κεντρικό διακοµιστή [11, 42].

Αντίθετα, µόνο οι ενηµερώσεις των τοπικών µοντέλων κοινοποιούνται και συγκεντρώνονται

προκειµένου να δηµιουργηθεί ένα ενιαίο µοντέλο. Σε αυτή τη διατριβή, κατανοούµε την

Οµοσπονδιακή Μάϑηση τόσο ϑεωρητικά όσο και αλγοριθµικά. Επιπλέον, συγκρίνουµε τα

πλεονεκτήµατα και τα µειονεκτήµατά της µε την κεντρικοποιηµένη προσέγγιση, στο πλαί-

σιο της Πρόβλεψης ∆ιαδροµής Πλοίου (Vessel Route Forecasting) και Κυκλοφοριακής Ροής

(Vessel Traffic Flow Forecasting).

Λέξεις Κλειδιά

Μηχανική Μάϑηση, ∆ιατήρηση Αποϱϱήτου-Ιδιωτικότητας, Οµοσπονδιακή Μάϑηση, Ανα-

λυτική Κινούµενων ∆εδοµένων, Πρόβλεψη ∆ιαδροµής Πλοίου, Πρόβλεψη Κυκλοφοριακής

Ροής Πλοίων

1

Σύνοψη

Η εξάπλωση των Internet of Things (IoT) συσκευών, όπως (ϐιο-)αισϑητήϱες, smart-

watches, smartphones και GPS trackers, έχουν οδηγήσει στην παραγωγή τεϱάστιων ποσοτήτων

ιατρικών, κινηµατικών και πολλών άλλων τύπων δεδοµένων. Η διαθεσιµότητα των εν λόγω

δεδοµένων έχει Ϲωτικό ϱόλο στην επιτυχία των τεχνολογιών Μηχανικής Μάϑησης (Machine

Learning – ML), οι οποίες µποϱούν να εκτελέσουν µια ποικιλία εργασιών που µεϱικές ϕοϱές

µποϱεί να υπερβαίνουν την ανθρώπινη ικανότητα [78]. Ωστόσο, τα δεδοµένα που παράγονται

από τα edge devices είναι εκ ϕύσεως ευαίσθητα (π.χ. ιατρικά αρχεία, πληροφορίες πλοίων

κ.λπ.), µε ουκ ολίγες ϕοϱές να είναι κατανεµηµένα σε πολλά µέϱη. Αυτές οι ιδιότητες ϑέ-

τουν νέες προκλήσεις όσον αϕοϱά την αποτελεσµατική αποθήκευση, ανάλυση και εξαγωγή

γνώσης από τέτοια δεδοµένα.

Η κεντρικοποίηση των δεδοµένων σε µια συγκεκριµένη τοποθεσία (π.χ. κέντρο δε-

δοµένων) δύναται να καταστεί ιδιαίτερα περίπλοκη εργασία, λόγω του υψηλού κόστους απο-

ϑήκευσης/bandwidth (π.χ., ένας στόλος πλοίων τύπου AIS αναµένεται να παϱάγει πολλά TB

δεδοµένων σε καθηµερινή ϐάση). Επιπλέον, λόγω κανονισµών όπως το GDPR
1
, η συλλογή

και κοινή χϱήση ευαίσθητων δεδοµένων µποϱεί να γίνει αρκετά δύσκολη, αν όχι αδύνατη,

αναγκάζοντας έτσι τα δεδοµένα να υπάρχουν σε µεµονωµένες αποθήκες δεδοµένων που

διατηρούνται από τους αντίστοιχους ιδιοκτήτες/εταίϱους. Εναλλακτικά, η ανάθεση της δι-

αδικασίας εκπαίδευσης στα edge devices και/ή στις αποθήκες δεδοµένων, έτσι ώστε κάϑε

εταίϱος να µποϱεί να χρησιµοποιήσει ένα µοντέλο ML χρησιµοποιώντας τα δικά του δε-

δοµένα, µποϱεί να επηρεάσει την απόδοση των µοντέλων, οδηγώντας είτε σε υποβέλτιστη

απόδοση (π.χ. υπό-πϱοσαϱµογή) είτε σε µεροληπτική (biased) κατανοµή στόχου (π.χ. υπέϱ-

πϱοσαϱµογή), ανάλογα µε το µέγεθος του συνόλου δεδοµένων και την κατανοµή των χαρακ-

τηριστικών, αντίστοιχα.

Πϱοκειµένου να επιλυθούν οι παραπάνω προκλήσεις και να εκπαιδευτεί ένα µοντέλο

Μηχανικής Μάϑησης που δεν ϐασίζεται στη συλλογή όλων των δεδοµένων σε µια κεντρική

αποθήκευση, οι McMahan et al. [45] και Konečný et al. [33] προτείνουν την Οµοσπονδι-

ακή Μάϑηση (Federated Learning – FL), µια καινοτόµο µεϑοδολογία Μηχανικής Μάϑησης,

όπου ένα κεντρικοποιηµένο µοντέλο εκπαιδεύεται σε αποκεντρωµένα δεδοµένα. Ενδελε-

χέστερα, κάϑε edge device λαµβάνει ένα αρχικό µοντέλο από τον διακοµιστή και προχωρά

στην εκπαίδευσή του χρησιµοποιώντας τα αντίστοιχα (τοπικά) δεδοµένα. Εν συνεχεία, όλα

τα ενηµερωµένα µοντέλα µεταφορτώνονται στον διακοµιστή, δηµιουργώντας έτσι ένα νέο,

ενοποιηµένο µοντέλο. Η επανάληψη της παραπάνω διαδικασίας για αρκετούς κύκλους,

ενδέχεται να προκαλέσει σύγκλιση του εν λόγω µοντέλου, δηµιουργώντας ένα ML µοντέλο το

1
Πϱοστασία δεδοµένων. Ευϱωπαϊκή Επιτϱοπή, https://ec.europa.eu/info/law/law-topic/data-protection_

en, Τελευταία επίσκεψη: 01/07/2022

3

https://ec.europa.eu/info/law/law-topic/data-protection_en
https://ec.europa.eu/info/law/law-topic/data-protection_en

Σύνοψη

οποίο αποδίδει, τουλάχιστον, καλύτεϱα σε σχέση µε το τι ϑα µποϱούσε να µάθει κάϑε µέϱος

από µόνο του. Ιδανικά, πϱόκειται για µια προσέγγιση του ίδιου µοντέλου εάν εκπαιδευτεί

µε κεντρικοποιηµένο τϱόπο.

Χάϱη στο FL, η αποκεντρωµένη ϕύση των δεδοµένων διατηρείται, καθώς τα edge devices

εκπαιδεύουν από κοινού ένα µοντέλο Μηχανικής Μάϑησης, στέλνοντας µόνο τις ενηµερώ-

σεις (δηλαδή, τις παραγώγους) των µοντέλων στον κεντρικό διακοµιστή. Εξαιτίας αυτού,

κάϑε εταίϱος διατηϱεί τον έλεγχο των δεδοµένων του, καθώς, ουσιαστικά, τα δεδοµένα δεν

”ϕεύγουν“ ποτέ από τη συσκευή, καθιστώντας δυσκολότεϱο για έναν εξωτερικό παϱατηϱητή

να εξάγει οποιαδήποτε ευαίσθητη πληροφορία. Επιπλέον, µοιράζοντας τον ϕόϱτο εργασίας

της εκπαίδευσης σε πολλά edge devices, το FL επιτϱέπει τη δηµιουϱγία δυνητικά πιο έξυπ-

νων µοντέλων, µε µικϱότεϱη λανθάνουσα καθυστέρηση συµπερασµού (inference latency),

λιγότεϱη συνολική κατανάλωση ενέϱγειας, και, κατ’ επέκταση, µικϱότεϱο περιβαλλοντικό

αντίκτυπο [52], διασφαλίζοντας παϱάλληλα το απόρρητο των δεδοµένων.

Πέϱαν των παραπάνω πλεονεκτηµάτων, επειδή το ενοποιηµένο µοντέλο είναι κοινόχϱηστο

µε όλα τα edge devices (π.χ., smartphones), δύναται να χρησιµοποιηθεί αµέσως, παρέχον-

τας µια εξατοµικευµένη εµπειρία. ΄Ενα χαρακτηριστικό παϱάδειγµα εφαρµογής FL είναι

το Google Gboard [20]. ΄Οταν το Gboard εµφανίζει µια προτεινόµενη λέξη, το smartphone

αποθηκεύει τοπικά πληροφορίες σχετικά µε το τϱέχον περιβάλλον, καθώς και εάν όντως

επιλέχϑηκε η προτεινόµενη πρόταση ή όχι. Στη συνέχεια, χρησιµοποιώντας την προαναφερ-

ϑείσα τεχνική, επεξεργάζεται το ιστορικό της συσκευής προκειµένου να προτείνει ϐελτιώσεις

για τον επόµενο γύϱο εκπαίδευσης του µοντέλου. ΄Αλλα παραδείγµατα από τη (σύγχϱονη)

καθηµερινότητα περιλαµβάνουν τις εφαρµογές του Apple macOS/iOS, όπου το FL χρησι-

µοποιείται για την πϱοστασία του απορρήτου των χϱηστών, δηµιουργώντας µοντέλα που

στοχεύουν στην πεϱαιτέϱω ϐελτίωση της εµπειρίας χϱήστη.

Λαµϐάνοντας υπόψη τα παραπάνω, στόχος µας σε αυτή τη διατριβή είναι να διερευνή-

σουµε εφαρµογές τεχνητής νοηµοσύνης µε διασφάλιση του αποϱϱήτου-ιδιωτικότητας, στο

πλαίσιο της ανάλυσης δεδοµένων ναυτιλίας. Συγκεκριµένα, επιλέγουµε µια πολύ κϱίσιµη

εργασία αναλυτικής, που ονοµάζεται Πρόβλεψη ∆ιαδροµής Πλοίων (Vessel Route Forecast-

ing – VRF) και χρησιµοποιούµε µεθόδους FL προκειµένου να εκπαιδεύσουµε από κοινού ένα

µοντέλο σε πολλαπλές αποθήκες δεδοµένων (π.χ. πανεπιστήµια, εταιϱείες, κ.λπ.), διασφαλί-

Ϲοντας παϱάλληλα ότι δεν ϑα διαρρεύσουν ευαίσθητες πληροφορίες σε άλλους εταίϱους εκτός

του κατόχου των δεδοµένων. Η εν λόγω εργασία είναι ιδιαίτερα σηµαντική, καθώς δύναται

να χρησιµοποιηθεί σε διάφορες πτυχές ασφάλειας της ναυτιλιακής κίνησης όπως, µεταξύ

άλλων, αλιευτική προσπάθεια/πίεση, µελλοντικές συγκρούσεις, καθώς και συµπορευόµενα

πρότυπα [68].

΄Ατυπα, δεδοµένου ενός χϱονικού διαστήµατος ∆t, στόχος µας είναι να προβλέψουµε τις

µελλοντικές k τοποθεσίες ενός κινούµενου σκάφους µετά από χϱόνο ∆t. Το πϱόϐληµα που

αντιµετωπίζουµε είναι αρκετά περίπλοκο καθώς, πέϱαν της εγγενούς δυσκολίας πρόβλεψης

του µέλλοντος, πϱέπει επιπλέον να ορίσουµε το πϱωτόκολλο επικοινωνίας Οµοσπονδιακής

Μάϑησης, καθώς και µεθόδους για τη διασφάλιση του αποϱϱήτου-ιδιωτικότητας των δε-

δοµένων, διαδικασίες που δεν είναι προφανείς. Εξ όσων γνωρίζουµε, το πϱόϐληµα που

στοχεύουµε να αντιµετωπίσουµε δεν έχει ακόµη αντιµετωπιστεί στη ϐιβλιογραφία.

Πολλές εφαρµογές που σχετίζονται µε την κινητικότητα ϑα µποϱούσαν να επωφεληθούν

4

Σύνοψη

από µια τέτοια εργασία ανάλυσης. Λόγω των µηχανισµών διασφάλισης του αποϱϱήτου-

ιδιωτικότητας, όχι µόνο τα edge devices (π.χ. πλοία τύπου AIS), αλλά και οι ιδιοκτήτες

αποθηκών δεδοµένων (π.χ. πανεπιστήµια) µποϱούν να εκπαιδεύσουν από κοινού ένα µον-

τέλο Μηχανικής Μάϑησης προκειµένου να δηµιουργήσουν ένα “εξυπνότερο” µοντέλο, το

οποίο εξατοµικεύεται για να ταιριάζει στις ανάγκες κάϑε εταίϱου.

Εν κατακλείδι, η συνεισϕοϱά µας αποτυπώνεται στα εξής:

• Παϱέχουµε µια εις ϐάϑος ϐιϐλιογϱαϕική ανασκόπηση σχετικά µε την Κατανεµηµένη

και Οµοσπονδιακή Μάϑηση, καϑώς και µεϑόδους για τη διασϕάλιση του αποϱϱήτου

των δεδοµένων.

• Υποδεικνύουµε εφαρµογές Τεχνητής Νοηµοσύνης µε διασφάλιση του απορρήτου στο

πεδίο ανάλυσης κινηµατικών δεδοµένων, µε έµφαση στην Πρόβλεψη ∆ιαδροµών Πλοίου.

• Πϱοτείνουµε το FedVRF, ένα γενικό πλαίσιο για την πρόβλεψη των µελλοντικών τοπο-

ϑεσιών των πλοίων χρησιµοποιώντας Οµονσπονδιακή Μάϑηση.

• Επιδεικνύουµε την αποτελεσµατικότητα και την ευελιξία του FedVRF χϱησιµοποιώντας

πολλαπλά σύνολα δεδοµένων πϱαγµατικής κίνησης από τον ναυτιλιακό τοµέα.

• ΠειϱαµατιϹόµαστε πεϱαιτέϱω σχετικά µε την αντιστάθµιση απώλειας ποιότητας/απόϱϱητου,

σε σχέση µε τα συστήµατα Οµονσπονδιακής Μάϑησης, καθώς και µε τους µηχανισ-

µούς διασφάλισης του απορρήτου, και δείχνουµε τα αποτελέσµατά µας όσον αϕοϱά

την ακϱίϐεια πρόβλεψης.

• Εκµεταλλευόµαστε το FedVRF και αποδεικνύουµε τη χϱηστικότητά του στο πλαίσιο

της Πϱόϐλεψης Κυκλοϕοϱιακής Ροής Πλοίων.

Η υπόλοιπη διατριβή είναι οργανωµένη ως εξής. Το κεφάλαιο 2 παϱέχει µια ολοκληϱωµένη

ϐιβλιογραφική επισκόπηση σχετικά µε την Κατανεµηµένη και Οµοσπονδιακή µάϑηση, κα-

ϑώς και τεχνικές για τη διατήρηση του απορρήτου, ενώ στο Κεφάλαιο 3 ορίζουµε επίσηµα

το πϱόϐληµα της Πρόβλεψης ∆ιαδροµών Πλοίων και παϱέχουµε µια σύντοµη ϐιβλιογραφική

επισκόπηση, καθώς και τη µεϑοδολογία µας σχετικά µε την εκπαίδευση του µοντέλου Fed-

VRF τόσο µε Κεντρικοποιηµένη, όσο και Οµοσπονδιακή Μάϑηση. Επιπλέον, στο Κεφάλαιο 4

πειραµατιζόµαστε διεξοδικά µε το FedVRF, χρησιµοποιώντας τέσσεϱα σύνολα δεδοµένων,

που εντοπίζονται στον πραγµατικό κόσµο και, συγκεκριµένα, στον ναυτιλιακό τοµέα, και

συϹητάµε πεϱαιτέϱω τα ευρήµατά µας σχετικά µε τα πλεονεκτήµατα και τα µειονεκτήµατα

της κάϑε µεθόδου εκµάθησης αναϕοϱικά µε την ακϱίϐεια πρόβλεψης. Τέλος, στο Κεφάλαιο 5

ολοκληρώνουµε τη διατριβή, δίνοντας παϱάλληλα κατευθύνσεις για µελλοντικές επεκτάσεις.

5

Abstract

Artificial Intelligence, and more specifically Machine Learning, is broadly adopted in

many aspects of our daily lives, with data playing a crucial role in its success. While Inter-

net of Things (IoT) devices generate massive amounts of data at high velocity, a challenge

arises when privacy and computational resources are concerned. Some data may be quite

sensitive (e.g., medical records) and cannot be openly available, while others are so volu-

minous that cannot be used in a centralized fashion to train a model. Federated Learning

was proposed by Google in 2016 [44, 45] to address the aforementioned challenges. In

a nutshell, it is an approach that allows a model to be trained on data we do not own

and cannot see. The data generated by edge devices (e.g., smartphones) are stored locally

and never shared with other nodes on the network or a central server [11, 42]. Instead,

only model updates are shared and aggregated in order to construct a global model. In

this thesis, we understand Federated Learning from both a theoretical and algorithmic

perspective and compare its advantages and disadvantages to the centralized approach

within the context of Vessel Route and Traffic Flow Forecasting.

Keywords

Machine Learning, Privacy-Preservation, Federated Learning, Mobility Data Analytics,

Vessel Route Forecasting, Vessel Traffic Flow Forecasting

7

Acknowledgements

First and foremost, I am extremely grateful to my co-supervisors, Prof. Yannis Theodor-

idis, and Dr. George Siolas, for their invaluable advice, continuous support, and patience

during my M.Sc. thesis. Their immense knowledge and plentiful experience have encour-

aged me throughout my academic research and daily life.

Also, I greatly appreciate my supervisor, Stefanos Kollias for his marvelous supervi-

sion, and guidance throughout the period of my study.

Many thanks to all of the members of staff in the Artificial Intelligence and Learning

Systems (AILS), and the Data Science (DataStories) Laboratory at National Technical

University of Athens (NTUA) and University of Piraeus, respectively, for their kind support

during my M.Sc. study. Also, I extend my thanks to all my friends and colleagues from

NTUA for their time, advice, and moral support.

Last, but not least, my warm and heartfelt thanks go to my mother, for her uncon-

ditional, unequivocal, and loving support and hope she had given to me. Without that

hope, this work would not have been possible. Thank you for all of your love and for

always reminding me of the end goal.

Athens, June 2022

Andreas Tritsarolis

9

Table of Contents

Πεϱίληψη 1

Σύνοψη 3

Abstract 7

Acknowledgements 9

1 Introduction 19

1.1 Thesis Contribution . 21

1.2 Thesis Organization . 22

2 From Distributed to Federated Learning - an Overview 23

2.1 Distributed Machine Learning . 23

2.2 Privacy-Preserving Learning . 26

2.3 Federated Learning . 28

3 Maritime Analytics and the VRF Problem 35

3.1 Definitions and VRF Problem Formulation 35

3.2 Related Work on VRF Methods . 35

3.3 Centralized vs. Federated Learning . 36

4 Use case: Application of our Approach over Real-world AIS datasets 39

4.1 Datasets and Preprocessing . 39

4.2 Experimental Setup . 40

4.3 Experimental Results . 41

4.3.1 Collaboration using Centralized ML 41

4.3.2 Collaboration using Federated ML . 44

4.3.3 Addressing Client Drift . 47

4.3.4 The Privacy Preservation Trade-off 49

4.4 Discussion and Exploitation . 53

5 Conclusions and Future Work 55

Bibliography 63

List of Abbreviations 65

11

List of Figures

1.1 Your phone personalizes the model locally, based on your usage (A). Many

users’ updates are aggregated (B) to form a consensus change (C) to the

shared model, after which the procedure is repeated [source]. 20

1.2 Vessel Route Forecasting – blue, green, and orange graphs correspond to

past, current, and predicted objects’ locations 21

2.1 Illustration of a Distributed Machine Learning (DML) system [78] 24

2.2 Federated Learning Communication Architectures [55] 30

2.3 Illustration of HFL, a.k.a. sample-partitioned federated learning [77]. . . . 31

2.4 Illustration of VFL, a.k.a. feature-partitioned federated learning [77]. . . . 31

2.5 Client-drift in FedAvg is illustrated for 2 clients with 3 local steps (N = 2, K =

3). The local updates yi (in blue) move towards the individual client optima

x
∗
i

(orange square). The server updates (in red) move towards
1

N

∑
i

x
∗
i

in-

stead of to the true optimum x
∗

(black square). [30] 33

3.1 GRU-based neural network architecture [68] 37

4.1 Snapshots of (a) Piraeus; (b) Brest; (c) Oslo; and (d) MarineTraffic datasets. 41

4.2 Training three VRF instances in centralized fashion on Brest (a,b,c); Norway

(d,e,f); and Piraeus (g,h,i) training set and assessing its displacement error

on Brest (a,d,g); Norway (b,e,h); and Piraeus (c,f,i) test set. 43

4.3 Learning curves for (a) Brest; (b) Norway; and (c) Piraeus centralized VRF

instances (blue and orange lines correspond to the training and validation

sets, respectively). 44

4.4 Training a centralized VRF model on Brest, Norway, and Piraeus unified

training set and assessing its displacement error on (a) Brest; (b) Norway;

and (c) Piraeus test set. 44

4.5 Learning curve for the unified centralized VRF instance (blue and orange

line corresponds to “train” and “dev” sets, respectively). 45

4.6 Training a VRF model using FL on Brest, Norway and Piraeus training set

and assessing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus

test set. 45

13

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

LIST OF FIGURES

4.7 Learning curve for (a) Brest; (b) Norway; and (c) Piraeus local VRF workers

compared to FedVRF. Blue/orange lines correspond to the workers’ training

and validation loss, while cyan/red lines correspond to the training and

validation loss of FedVRF, respectively. 46

4.8 Probability density functions (PDFs) of ∆x and ∆y of (a) Brest; (b) Norway;

and (c) Piraeus datasets. 46

4.9 Training a VRF model using PerFL on Brest, Norway and Piraeus training

set and assessing its displacement error on (a) Brest; (b) Norway; and (c)

Piraeus test set. 48

4.10 Learning curve for (a) Brest; (b) Norway; and (c) Piraeus local VRF workers

compared to personalized FedVRF. Blue/orange lines correspond to the

workers’ training and validation loss, while cyan/red lines correspond to

the training and validation loss of personalized FedVRF, respectively. . . . 48

4.11 Training a Differentially Private (DP) VRF model using PerFL on Brest, Nor-

way and Piraeus training set and assessing its displacement error on (a)

Brest; (b) Norway; (c) and Piraeus (c) test set. 49

4.12 Learning curve for DP-enabled (a) Brest; (b) Norway; and (c) Piraeus local

VRF workers compared to personalized FedVRF. Blue/orange lines corre-

spond to the workers’ training and validation loss, while cyan/red lines

correspond to the training and validation loss of personalized FedVRF, re-

spectively. 50

4.13 Training a Differentially Private (DP) VRF model using PerFL on pretrained

Brest, Norway and Piraeus corresponding CML model and training set and

assessing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus

test set. 50

4.14 Learning curve for DP-enabled (a) Brest; (b) Norway; and (c) Piraeus local

VRF workers (/w pretrained CML models) compared to personalized Fed-

VRF. Blue/orange lines correspond to the workers’ training and validation

loss, while cyan/red lines correspond to the training and validation loss of

personalized FedVRF, respectively. 51

4.15 Training a (ϸ, δ) Differentially Private (DP) VRF model using PerFL on pre-

trained Brest, Norway and Piraeus corresponding CML model and training

set and assessing its displacement error on (a) Brest; (b) Norway; and (c)

Piraeus test set. 52

4.16 Learning curve for (ϸ, δ) DP-enabled (a) Brest; (b) Norway; and (c) Piraeus

local VRF workers (/w pretrained CML models) compared to personalized

FedVRF. Blue/orange lines correspond to the workers’ training and vali-

dation loss, while cyan/red lines correspond to the training and validation

loss of personalized FedVRF, respectively. 52

4.17 Predicting the trajectory of a vessel up to ∆t = 15 min. using all (Fed-)VRF

variants on (a) Brest, (b) Norway, and (c) Piraeus dataset. 53

14

LIST OF FIGURES

4.18 Predicting maritime traffic flow up to ∆t = 15 min. using all (Fed-)VRF

variants, namely, (b) CML (share all), (c) CML (share model), (d) FL, (e)

PerFL, (f) DP-PerFL (ϸ = ∞), (g) DP-PerFL (pretrained; ϸ = ∞), and (h) DP-

PerFL (ϸ = 110) compared to (a) actual traffic flow on Piraeus dataset. . . . 54

15

List of Tables

2.1 Typical characteristics of federated learning settings vs. distributed learn-

ing in the datacenter (e.g. [7]). Cross-device and cross-silo federated learn-

ing are two examples of FL domains, but are not intended to be exhaustive.

The primary defining characteristics of FL are highlighted in bold, but the

other characteristics are also critical in determining which techniques are

applicable. [29] . 29

2.2 Comparison between gradient averaging and model averaging [78] 32

17

Chapter 1

Introduction

The vast spread of IoT-enabled devices, such as (bio-)sensors, smartwatches, smart-

phones, and GPS trackers, has led to the production of vast amounts of medical, mobility,

and several other types of data. The availability of such data is crucial to the success

of Machine Learning (ML) technologies, which can perform a variety of tasks that may

sometimes exceed human performance [78]. However, the data produced by the edge

devices are by nature sensitive (e.g., health records, vessel information, etc.), and, more

often than not, distributed across many parties. These properties pose new challenges in

terms of efficient storage, analytics, and knowledge extraction out of such data.

Centralizing the data to a certain location (e.g., data center) may become quite a cum-

bersome task because of the high storage/bandwidth costs (e.g., AIS-enabled vessels are

expected to generate several TBs of data on a daily basis). In addition, due to regula-

tions such as GDPR
1
, the collection and sharing of high sensitive data can become quite

difficult, if not outright impossible, thus forcing the data to exist in isolated data silos

maintained by the corresponding owners/parties. Alternatively, delegating the training

process to the edge devices and/or data silos, so that each party can use an ML-based

model using their own data, may impact the models’ performance, with sub-optimal per-

formance (e.g., under-fitting) or a biased target distribution (e.g., over-fitting), depending

on the datasets’ size and features’ distribution, respectively.

In order to solve the aforementioned challenges, and train an ML-based model that

does not rely on collecting all data to a centralized storage, McMahan et al. [45] and

Konečný et al. [33] propose Federated Learning (FL), a novel ML paradigm, where a

centralized model is trained on decentralized data. Figure 1.1 illustrates the proposed

cross-device FL architecture. In particular, each edge device receives a seminal model

from the server and proceeds to train it using its corresponding data. Afterwards, all

updated models are uploaded to the server, where they are aggregated, thus producing

a new model. Repeating the process for several cycles may eventually cause the global

model to converge, producing an ML model that performs at least better than what each

party can learn on its own, ideally an approximation of the same ML model if trained in a

centralized fashion.

Using FL, the decentralized nature of the data is maintained, as the edge devices

1
Data protection; European Comission, https://ec.europa.eu/info/law/law-topic/data-protection_en, Last

visited: 07/01/2022

19

https://ec.europa.eu/info/law/law-topic/data-protection_en

Chapter 1. Introduction

Figure 1.1. Your phone personalizes the model locally, based on your usage (A). Many

users’ updates are aggregated (B) to form a consensus change (C) to the shared model,

after which the procedure is repeated [source].

collaboratively train an ML model, only sending weight updates (i.e., gradients) to the

aggregation server. Because of that, every participant keeps control of its own data,

as it essentially never “leaves” the device, therefore making it harder for an adversary

to extract any sensitive information. Additionally, by sharing the training workload to

multiple edge devices, FL allows for potentially “smarter” models, lower inference latency,

less overall power consumption, and by extension, lighter environmental impact [52], all

while ensuring data privacy.

In addition to the aforementioned advantages, because the aggregated global model

is shared with all edge devices (i.e., smartphones), the improved model on your phone

can be used immediately, therefore providing a personalized experience. A prime example

of FL application in real-world scenarios is Google Gboard [20]. When Gboard shows a

suggested query, the smartphone locally stores information about the current context and

whether the suggestion was actually clicked or not. Afterwards, using FL, it processes

that history on-device to suggest improvements to the next model iteration. Other real-

world applications involve the applications of Apple macOS/iOS, where FL is used in

order to protect user privacy, building models that are used to improve features to further

enhance user experience.

Taking all the above into account, our aim in this thesis is to investigate privacy-aware

AI applications within the context of maritime data analytics. In particular, we choose a

very critical maritime analytics task, called Vessel Route Forecasting (VRF), and employ

privacy-preserving ML methods in order to collaboratively train an ML model across mul-

tiple data silos (e.g., universities, corporations, etc.), all while ensuring that no sensitive

information will leak to other parties other than the owner of the data. VRF is critical

20

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

1.1 Thesis Contribution

Figure 1.2. Vessel Route Forecasting – blue, green, and orange graphs correspond to past,

current, and predicted objects’ locations

because it can be used in various aspects of maritime mobility awareness, including,

among others, fishing effort/pressure, future collisions, as well as co-movement patterns

[68].

Informally, given a look-ahead time interval ∆t, the goal is to predict the future k

locations of a moving vessel after ∆t time. Figure 1.2 illustrates such an example, where

in blue and green, we have the information at hand (past and current locations, respec-

tively), whereas in orange, we have the predicted routes. The problem we address is quite

challenging since, apart from the inherent difficulty of predicting the future, we also need

to define the FL communication protocol, as well as methods for ensuring data privacy,

both of which are not straightforward procedures. To the best of our knowledge, the

problem we aim to address has not been addressed in the literature yet.

1.1 Thesis Contribution

Several mobility-related applications could benefit from such an analytics task. Due

to the privacy-preserving mechanisms in FL, not only edge devices (e.g., AIS-enabled

vessels) but also data silo owners (e.g., universities) can collaboratively train an ML model

in order to create a “smarter” predictive model, that, in addition, can be personalized to

fit the needs of each participant. In a nutshell, our main contributions are the following:

• We provide an in-depth literature review regarding Distributed and Federated Learn-

ing, as well as methods for ensuring data privacy.

• We indicate privacy-aware AI applications within the mobile data analytics field,

with emphasis on Vessel Location Forecasting (VRF).

• We propose FedVRF, a framework for predicting the vessels’ future locations using

FL.

• We demonstrate the efficiency and versatility of FedVRF using several large-volume

real-world data from the maritime mobility domain.

21

Chapter 1. Introduction

• We further experiment on the quality/privacy trade-off with respect to FL schemes,

as well as privacy-preserving mechanisms, and demonstrate our results in terms of

prediction accuracy.

• We exploit FedVRF and demonstrate its usability within the context of Vessel Traffic

Flow Forecasting (VTFF).

1.2 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides a comprehensive

overview of state-of-the-art works regarding Distributed and Federated Learning, as well

as techniques for privacy preservation, while in Chapter 3, we formally define the VRF

problem and provide a brief overview of related state-of-the-art works, as well as our

methodology regarding the training of the VRF and FedVRF models in Centralized, and

Federated Learning fashion. Additionally, in Chapter 4, we thoroughly experiment on

FedVRF using four real-world datasets from the maritime domain and further discuss our

findings, related to the pros and cons of each learning method, with respect to prediction

accuracy. Finally, in Chapter 5, we conclude our thesis, giving hints for future work.

22

Chapter 2

From Distributed to Federated Learning - an

Overview

Federated Learning is the intersection of multiple scientific discipline including, among

others, Distributed Learning, Cryptography, and Data Ethics/Privacy. In this chapter,

we discuss the related work behind the most important research topics of FL within the

scope of this thesis, its advances in the form of state-of-the-art works, as well as its open

problems.

2.1 Distributed Machine Learning

Distributed Machine Learning (DML), refers to multi-node ML models and systems that

are designed to improve performance, preserve privacy, and scale to more training data

and bigger models [16, 40, 66]. DML is divided into two main method families, namely

scalability-oriented and privacy-oriented, where the produced solutions are either geared

towards scalability, or privacy preservation, respectively. Recent advances on DML make

ML tasks on big data feasible, scalable, flexible, and more efficient [78].

Existing works regarding scalability-oriented methods can be distinguished into three

main sub-categories, depending on their training aspect, namely, Data, Model [26], and

Hybrid parallelism [43], respectively.

Data-Parallel DML refers to a technique, where a dataset is split into multiple shards,

which are afterwards processed through multiple replicas of the same model using dif-

ferent computing devices/workers, and communicating models’ information in periodic

intervals. Figure 2.1 illustrates an example of data-parallel DML, where three worker

nodes are tasked with training a single ML model, and one master node (i.e. Parameter

Server), where the workers’ model parameters are aggregated in order to produce a single

model. In particular, the training dataset is split into disjoint – ideally – independent

and identically distributed (i.i.d) shards, which are sent to the workers in order to train

an ML model using Stochastic Gradient Descent (SGD). After one batch (i.e. single SGD

forward-backward pass), the models’ weights w
i

are sent to the master node where they

are aggregated using weighted average (with respect to the number of observed training

samples), thus generating a global model that is be sent to the workers for the next batch.

In data-parallel distributed learning there are two main approaches, namely, syn-

23

Chapter 2. From Distributed to Federated Learning - an Overview

Figure 2.1. Illustration of a Distributed Machine Learning (DML) system [78]

chronous and asynchronous training, respectively. The former behaves as described in

Figure 2.1, i.e., all workers train independently over data shards of the same dataset on

replicas of the same model, and update its parameters after each training step. On the

other hand, with asynchronous training, the aforementioned behaviour is maintained,

with the difference that the workers do not necessarily need to constantly communicate

the model updates with the parameter server after each training step.

This approach can naturally scale up well with increasing amounts of training data,

which can no longer reside on a single machine. Data-parallel distributed learning is part

of many ML frameworks, including the popular libraries PyTorch [37], and TensorFlow
1
.

While the aforementioned training methodology is quite useful, finding the optimal syn-

chronization strategy can become a cumbersome task. Towards this direction, Zhang

et al. [83], propose AutoSync, a framework to automatically optimize synchronization

strategies given model structures and resource specifications using low-shot data. In

particular, by creating a search space from low-shot data collected in a few trial runs

combined with a domain adaptive simulator, they discover synchronization strategies up

to 1.6x better than manually optimized or fix-formed ones.

While the aforementioned approach is easily scalable with respect to processing power,

as the ML models get larger and larger (e.g. BERT [9]), we may face the problem that the

model cannot be loaded to a worker node, due to insufficient memory. This problem,

while very rare with servers, it is not uncommon with entities such as smartphones or

even a home PC.

Model parallelisation refers to a technique, where a model is split into multiple parts,

and distributed to the computing devices (i.e. workers). Training takes place in serial

function, where the forward/backward propagation involves communication of output

1
Google, Distributed training with TensorFlow, https://www.tensorflow.org/guide/distributed_training.

Last visited: 07-01-2020

24

https://www.tensorflow.org/guide/distributed_training

2.1 Distributed Machine Learning

from one device to another. While this approach reduces the memory footprint of the

model, it drastically increases the communication requirements, therefore we usually

resort to this approach only if the model cannot fit into a single node, not primarily to

speed up the training process.

For instance, in Krizhevsky et al. [35] because the authors had two GPUs with 3GB

each, they could not train a 60-million parameter Deep Convolutional Neural Network

(CNN) model in data-parallel mode. Thus, they chose to split the model and distribute it

among the two devices, and by cross-validation fine tune the communication scheme in

order to maintain an acceptable fraction of the amount of computation.

Like data-parallel, tuning the communication scheme in model-parallel distributed

learning can become a cumbersome task, especially with large ML models, with millions

of parameters. Towards this direction, Jia et al. [25] propose OptCNN, a framework

which employs model-parallel training on CNN models. By solving a graph search prob-

lem, based on different paralellisation schemes, they jointly optimize how each layer is

distributed, increasing training throughput up to 2.2x over previous state-of-the-art par-

allelization strategies, achieving better scalability to multiple workers, while maintaining

the performance of the original model.

Extending the previous work, Jia et al. [27] extend OptCNN, into a new framework,

FlexFlow, by introducing a new search space of parallelization strategies that generalizes

across different operator dimensions, namely, Sample, Operator, Attribute, and Parameter

(SOAP), which describe how the training details (operators, training samples, samples’

attributes, etc.) will be distributed. Employing the aforementioned architecture on six

real-world benchmark datasets on two GPU clusters, they show that SOAP suggests better

strategies achieving up to 3.3× over previous state-of-the-art approaches.

While data- and model- parallel are well-performing methods, they introduce a trade-

off between space availability vs. communication/bandwidth capacity. Another line of

research, in an effort to alleviate that trade-off, and provide further optimal training

schemes, attempts to combine the merits of both data and model parallelization methods,

thus producing a hybrid-parallel methodology.

For instance, Krizhevsky [34] propose a hybrid architecture, that trains a Convolu-

tional Neural Network (CNN) using model parallelisation for its convolutional and data

parallelisation for its fully-connected layers, respectively, for efficient scaling across mul-

tiple GPUs. In more advanced works, Low et al. [43] propose GraphLab, an ML frame-

work which exploits the models’ sparse structure and common computational patterns,

enabling highly scalable models both in data and model dimension as well. In more ad-

vanced works, Wang et al. [73] reduce the problem of finding the optimal parallelisation

strategy to finding the best tiling of partition tensors with the least overall communica-

tion cost. Within that context, they propose SOYBEAN, an ML framework which combines

data and model parallelism, thus producing a training scheme that reduces the commu-

nication cost up to 4x, compared to pure data- or model- parallel schemes.

25

Chapter 2. From Distributed to Federated Learning - an Overview

2.2 Privacy-Preserving Learning

Distributed Learning can not only be used to scale up the training process of an ML

model, but also integrate data from multiple sources. In many real-world scenarios, the

data are distributed among many parties, for instance, corporations, hospitals, univer-

sities, etc. Because in some cases, the data may contain highly sensitive information,

e.g., medical data, explicitly sharing them to outside sources is forbidden not only for

ethical, but also for legal reasons due to regulations such as GDPR. In addition, sharing

a (pre-)trained model on the aforementioned data, is not suggested, as recent works [22]

have shown that parts of the training dataset can be recovered both from the weights of

the model, as well as its gradients.

Therefore, in order to be able to either share data, or most commonly, ML models for

distributed learning, it is necessary to ensure some privacy guarantees so as to protect

our model from adversaries/outsiders. In general, a privacy-preserving distributed learn-

ing system must protect at least one of the following type of information [71], namely,

input data, output predictions, model information (e.g. parameters), and identifiable in-

formation (e.g. which AIS location is emitted from which vessel). The popular tools for

ensuring privacy can be sorted into two major categories, more specifically, obfuscation

and encryption methods, respectively.

Obfuscation methods’ primary aim is to modify the ML models’ parameters in order

to attain a certain level of privacy. Differential Privacy [13]) is a prime example of such

method. It is a technique that makes possible for outside parties to collect and share

aggregate sensitive information, while ensuring the privacy of individual users. Given the

users’ database X , a parallel database Y , and a randomized algorithm M with domain

N|X |, we can ensure that M is (ϸ, δ)-differentially private if for all S ⊂ Range(M) and for all

X, Y ∈ N|X | such that ||X − Y ||1 ≤ 1 we have that

Pr[M(X) ∈ S] ≤ exp(ϸ) ∗ Pr[M(Y) ∈ S] + δ (2.1)

The aforementioned definition does not create differential privacy per se, however it is

a measure of how much privacy is afforded by an aggregation query M. More specifically,

it’s a comparison between running M on a database X and a parallel database Y . A

parallel database is defined as a copy of the database X , albeit without the records of a

certain user. In a nutshell, it expresses that for each parallel database, the maximum

distance between an aggregation query on X and Y , will be at most e
ϸ
, with probability

1 − delta. ϸ is a metric of privacy loss, and the smaller its value, the better privacy it

ensures
2
. While setting ϸ and δ to zero may be tempting, absolute privacy comes at a

cost of added noise, which impacts the convergence and accuracy of an ML model. Thus

we need to compromise between privacy and model performance. For instance, Apple

uses a privacy budget with ϸ up to 8 for general applications, and ϸ = 2 for the Health

application, respectively
3
.

2
For algorithms other than the Laplace mechanism, e.g. Gaussian, another similar metric is δ [13].

3
Apple, Differential Privacy, https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf, Last

visited: 27/01/2022

26

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

2.2 Privacy-Preserving Learning

Differential Privacy has been used extensively in privacy-motivated ML models. From

the survey of Zhang et al. [82] regarding collaborative Deep Learning and privacy-

preserving mechanisms, we present some representative works. Song et al. [61] propose

a variant of the popular Stochastic Gradient Descend (SGD), which ensures user privacy

via Differential Privacy, called DP-SGD, which clips the gradients to a specific range, and

injects noise to them, either via Gaussian or Laplacian distribution during training, so

that the trained model ensures (ϸ, δ)-differential privacy. In a different direction from [61],

Shokri et al. [60] propose another variant of SGD, called Distributed Selective Stochastic

Gradient Descent (DSSGD), which allows the local model to selectively share a fraction

of the parameters, thus avoiding information leakage, while maintaining a comparable

performance with respect to centralized learning.

In a similar fashion, Sabater et al. [59] propose GOPA (GOssip noise for Private Aver-

aging), a novel differentially private averaging protocol for ensuring user privacy at fully

decentralized (e.g. peer-to-peer) learning environments. It relies on users exchanging (di-

rectly or through a server) correlated Gaussian noise in order to mask their private values

without affecting the global average. This ultimately canceling noise is complemented by

the addition of independent (non-canceling) Gaussian noise by each user. After extensive

evaluation, they demonstrate its robustness to client (i.e. edge devices) dropouts, as well

as its performance, which is on par with centralized ML training, all while maintaining a

low communication overhead.

On the other hand, encryption methods’ primary aim is to encode the ML models’ pa-

rameters in a manner that it does not alter the distributed computation process, while in

parallel not revealing sensitive information to other parties/adversarials. These methods

include, but are not limited to, Secure Multi-Party Computation (SMPC) [79], and Ho-

momorphic Encryption (HE) [56]. Within the scope of this thesis, we explore the related

works on HE methods.

In brief, the edge devices in SMPC environment jointly compute a function from the

private input by each party, without revealing such inputs to the other parties. SMPC

allows us to compute functions of private input values so that each party learns only the

corresponding function output value, but not input values from other parties.

Homomorphic Encryption on the other hand, encrypts the values in such way that

certain algebraic computations can be performed over the cyphertext, without the need of

decrypting it. Currently, the state-of-the-art in HE is from Gentry [17], where he proposed

a HE scheme that is able to perform not only addition (as in the original thesis), but also

multiplicative operations for unlimited number of times, with no computation loss.

Within PPML context, HE can be used in order to train an ML model so that the ag-

gregation server cannot access its parameters, therefore dropping the need for an honest-

but-curious server. The CryptoDL [21] framework is an HE-based approach for secure

neural network training and inference. In the aforementioned framework, several activa-

tion functions are approximated using low-degree polynomials and mean pooling is used

as a replacement for max pooling for the case of Convolutional Neural Networks.

Similarly, Juvekar et al [28] propose Gazelle, a scalable and low-latency system for

secure neural network inference, using an intricate combination of HE and traditional

27

Chapter 2. From Distributed to Federated Learning - an Overview

two-party computation techniques. By employing a simpler (compared to Linear HE in

CryptoNets [18]) packed additively HE scheme, Gazelle supports very fast matrix-vector

multiplications and convolutions over encrypted data.

2.3 Federated Learning

While Distributed Machine Learning (DML) can help us scale up the training process

across multiple computational nodes, it can only be used on centralized data. Federated

learning (FL) is a branch of DML which trains centralized models using decentralized data

[44]. In comparison to DML, FL algorithms are fundamentally different and primarily

geared towards data privacy. Table 2.1 illustrates the key differences between distributed

and federated learning in two popular variants depending on the clients’ type, namely,

cross-silo and cross-device.

In particular, the most important differences between distributed and federated learn-

ing lies within the scale and distribution of the data, the reliability of the computing nodes,

and the optimization schemes. In distributed learning, the data are centrally stored and

i.i.d balanced across clients, while in federated learning the data are usually non-i.i.d,

with them being either horizontally, or vertically partitioned, as they are generated locally

and remain decentralized among the edge devices. Additionally, in FL the distribution

scale is massive, spanning up to 10
10

edge devices collaboratively training an ML model,

while in distributed learning it is typically restricted to the available computing nodes

within the cluster/data-center (up to 1000 clients). Another difference lies within the

nodes’ reliability, where in distributed learning are – virtually – always available, whereas

in FL, and especially in the cross-device FL, only a fraction of clients are available at a

given time instance, mainly due to variations in factors such as communication, band-

width, resource allocation, etc.

Taking into account the characteristics of the data owners, we distinct two major FL

variants, namely, cross-silo and cross-device FL [29]. Cross-device FL can be considered

when the participating devices (clients) are typically large in number (up to 10
10

) and have

slow or unstable internet connections (c.f. Table 2.1). A principal motivating example for

Federated Learning arises when the training data comes from users’ interaction with

mobile applications [33]. On the other hand, cross-silo FL can be considered when a

relatively small group (usually 2 − 100) of companies or organizations share a common

incentive to collaboratively train an ML model based on their data, but cannot share them

directly, due to either cost (e.g. centralize data to a certain location) or legal constraints

(c.f. GDPR). Another key difference between cross-device and cross-silo FL, lies within

the privacy requirements of the FL framework. In cross-device FL, data privacy is of

the utmost importance, as the trained ML model will be available to virtually everyone,

whereas in cross-silo FL, the trained ML model most likely be available for internal use

among the participating parties, therefore the concerns about “virtually everyone” are less

important in the life-cycle of the ML model.

With respect to the nodes’ communication scheme, Rieke et al. [55] distinct three

major categories, namely, client-server, peer-to-peer, and hybrid, as illustrated by Figure

28

2.3 Federated Learning

Data-center

Distributed Learning

Cross-silo

Federated Learning

Cross-device

Federated Learning

Setting

Training a model on a large

but “flat” dataset. Clients

are compute nodes in a

single cluster or datacenter.

Training a model on siloed data.

Clients are different organiza-

tions (e.g. medical or financial)

or geo-distributed datacenters.

The clients are a very large

number of mobile or IoT

devices.

Data

distribution

Data is centrally stored and

can be shuffled and balanced

across clients. Any client can

read any part of the dataset.

Data is generated locally and remains decentralized.

Each client stores its own data and cannot read the data of

other clients. Data is not independently or identically distributed.

Orchestration Centrally orchestrated.
A central orchestration server/service organizes

the training, but never sees raw data.

Wide-area

communication

None (fully connected clients

in one datacenter/cluster).

Typically a hub-and-spoke topology, with the hub representing

a coordinating service provider (typically without data) and

the spokes connecting to clients.

Data

availability
All clients are almost always available.

Only a fraction of clients are

available at any one time,

often with diurnal or other

variations.

Distribution

scale
Typically 1 − 1000 clients. Typically 2 − 100 clients.

Massively parallel,

up to 10
10

clients.

Primary

bottleneck

Computation is more often

the bottleneck in the data-

center, where very fast

networks can be assumed.

Might be computation or

communication.

Communication is often the

primary bottleneck, though

it depends on the task.

Generally, cross-device

federated computations use

wi-fi or slower connections.

Addressability
Each client has an identity or name that

allows the system to access it specifically.

Clients cannot be indexed

directly (i.e., no use of client

identifiers).

Client

statefulness

Stateful; each client may participate in each round of

the computation, carrying state from round to round.

Stateless; each client will likely

participate only once in a task,

so generally a fresh sample of

never-before-seen clients in

each round of computation is

assumed.

Client

reliability
Relatively few failures.

Highly unreliable; 5% or more

of the clients participating in a

round of computation are ex-

pected to fail or drop out (e.g.,

because the device becomes

ineligible when battery, network,

or idleness requirements are

violated).

Data partition

axis

Data can be (re-)partitioned

arbitrarily across clients.

Partition is fixed. Could be

example (horizontal) or fea-

ture (vertical) partitioned.

Fixed partitioning by example

(horizontal).

Table 2.1. Typical characteristics of federated learning settings vs. distributed learning in

the datacenter (e.g. [7]). Cross-device and cross-silo federated learning are two examples

of FL domains, but are not intended to be exhaustive. The primary defining characteristics

of FL are highlighted in bold, but the other characteristics are also critical in determining

which techniques are applicable. [29]

2.2. Client-server architecture (Figure 2.2a), is quite similar to the architecture described

in Chapter 2.1 (i.e., Data-center Distributed Learning), where multiple parties collabo-

ratively train an ML model and via a central aggregation server, combine the acquired

knowledge into a global model. On the other hand, peer-to-peer (Figure 2.2b) is quite dif-

ferent, as there is no need for a central server to aggregate the models’ parameters. Each

entity trains the same ML model using its local data, and communicates the updated pa-

29

Chapter 2. From Distributed to Federated Learning - an Overview

Figure 2.2. Federated Learning Communication Architectures [55]

rameters with the other workers using secure communication channels (e.g asymmetric

cryptography).

Sending parameters from one entity to another can be conducted in two main ways,

either via Cyclic, or Random transfer. In the cyclic transfer mode, the training collabora-

tors are organized in a ring topology, where a worker receives the model parameters from

its upstream worker, performs a training step using mini-batches from its local dataset,

and sends the updated parameters to its downstream worker. This procedure is repeated

until wither the ML model converges, or until the maximum allowed training time/steps

is reached. Compared with the client-server, the advantage of peer-to-peer architecture is

that it enables fully decentralized training, eliminating the need for an aggregation server,

and the chance of leaking - potentially - sensitive information to it. However, there are

several disadvantages, especially in the communication costs. For instance, in the cyclic

transfer mode, since there is no central server, weight parameters are updated serially

rather than in parallel batches, which takes more time to train a model [78].

Finally, in hybrid architecture (Figure 2.2c), a combination of the previously men-

tioned architectures is used, in order to create a global ML model from some training

parties in peer-to-peer mode, which in their turn train a local ML model using multiple

edge devices (i.e. computing entities) in client-server mode. An example of this method is

the collaboration of several maritime organizations for training a global ML model for pre-

diction the future locations of their fleet in decentralized fashion, by using ML models that

are trained by the edge devices (i.e. AIS-enabled vessels) that belong to the organizations’

corresponding fleet.

As far as the data distribution within the workers’ data is concerned, we distinct two

main variants, Horizontal and Vertical Federated Learning, illustrated at Figures 2.3,

and 2.4, respectively. Horizontal Federated Learning (HFL) [29], can be used in cases

where the participating parties’ datasets overlap in feature but differ in sample space. For

instance, two maritime organizations may have different vessel fleets, depending on their

corresponding regions, albeit with very small overlap. However, their business models are

30

2.3 Federated Learning

Figure 2.3. Illustration of HFL, a.k.a. sample-partitioned federated learning [77].

Figure 2.4. Illustration of VFL, a.k.a. feature-partitioned federated learning [77].

very similar. Hence, the datasets’ feature spaces are similar. Formally, HFL is defined as

follows:

Xi = Xj, Yi = Yj, Ii , Ij,∀Di , Dj, i , j (2.2)

where (Di , Ii), (Dj, Ij) are the datasets and user spaces of the i
th

, and jth party, re-

spectively, with (Xi , Yi) and (Xj, Yj) being the corresponding feature and label spaces of

the aforementioned parties. On the other hand, Vertical Federated Learning (VFL) can

be used in cases where the participating parties’ datasets differ in feature but overlap in

sample space. For instance, maritime organizations may partner up with shipping com-

panies in order to provide faster and safer routes for its fleet. Formally, VFL is defined as

follows:

Xi , Xj, Yi , Yj, Ii = Ij,∀Di , Dj, i , j (2.3)

where (Di , Ii), (Dj, Ij) are the datasets and user spaces of the i
th

, and jth party, re-

spectively, with (Xi , Yi) and (Xj, Yj) being the corresponding feature and label spaces of

the aforementioned parties. In the cross-device setting the data is assumed to be par-

31

Chapter 2. From Distributed to Federated Learning - an Overview

titioned by examples. In the cross-silo setting, in addition to partitioning by examples,

partitioning by features is of practical relevance [29]. Finally, in cases where there are

neither enough shared features nor samples among the training parties Federated Trans-

fer Learning (FTL) [41] can be used in order to collaboratively train an ML model that

transfers knowledge acquired among the parties to achieve better performance.

On top of the aforementioned, Optimization is a yet another key difference between

distributed and federated learning. In distributed learning, the global model is created

by averaging the gradients of all local models, and performing SGD on the global model,

an approach called Gradient Averaging [45]. On the other hand, in Federated Learn-

ing, mainly due to privacy issues relating to data leakage from gradients [22], another

approach is preferred called Model Averaging, where the models’ weights are averaged,

instead of their gradients. In McMahan et al. [45] both methods are referred to as Feder-

ated Averaging (FedAvg).

Method Advantage Disadvantage

Gradient Averaging
Accurate gradient information

Guaranteed convergence

Heavy communication

Requires reliable connection

Model Averaging

Not bound to SGD

Tolerance of update loss

Infrequent synchronization

No guarantee of convergence

Performance loss

Table 2.2. Comparison between gradient averaging and model averaging [78]

Table 2.2 summarizes the key differences between the two variants of FedAvg. In

gradient averaging, the aggregation step is performed once per batch [34], the global model

is guaranteed to converge, with rate correlated to the batches’ size. While this approach

produces reliable results, it requires a high communication bandwidth, as well as a near-

constant connection with the clients, two hypotheses that may work with distributed

learning, but cannot within FL. On the other hand Model Averaging, in order to address

the availability/reliability issues within FL training environments, aggregates the models’

weights once per training step. This approach, while it is more tolerant than Gradient

Averaging, its infrequent synchronization, comes at a (great) performance loss, with no

guarantee of convergence.

Following the same line of research, Reddi et al. [54] generalize the FedAvg algorithm

in order to allow usage of adaptive optimization schemes, such as Adam [31], YOGI [81],

and AdaGrad [12]. In particular, in the approach they propose the clients use SGD

for local model training, while the aggregation server uses any of the aforementioned

optimization schemes in order to update the parameters of the global model. In addition,

by focusing on adaptive server optimization, they enable use of adaptive learning rates

without increase in client storage or communication costs, while ensuring compatibility

with cross-device FL [54].

Except network and communication efficiency, and client availability [33], another

key challenge of federated optimization is the training parties’ heterogeneity with respect

to their local datasets [32]. In order to address the first two issues, FedAvg performs

multiple local updates on the available clients before communicating to the server. While

32

2.3 Federated Learning

Figure 2.5. Client-drift in FedAvg is illustrated for 2 clients with 3 local steps (N = 2, K = 3).
The local updates yi (in blue) move towards the individual client optima x

∗
i

(orange square).

The server updates (in red) move towards
1

N

∑
i

x
∗
i

instead of to the true optimum x
∗

(black

square). [30]

this approach works well with high convergence guarantees (in applications where the

participating parties’ datasets are homogeneous), when the clients are heterogeneous

these guarantees fail to hold. By each step, the parties’ locally fitted ML model will

converge to different local optima, therefore introducing slow and unstable convergence

to the global model, as Figure 2.5 illustrates. This phenomenon is better known as “client-

drift”, and in order to avoid its fewer local updates and/or smaller learning rates must be

used, action which largely impact the convergence stability of FedAvg.

Towards this direction, Karimireddy et al. [30] acknowledge the aforementioned is-

sue and propose a new federated optimization framework called SCAFFOLD, which uses

control variates (variance reduction) in order to approximate an ideal unbiased update,

therefore taking into account the “client-drift” in its local updates. By experimenting

on various optimization settings, the authors prove that SCAFFOLD is resilient to client

sampling (i.e. independent of the amount of client heterogeneity), and consistently outper-

forms FedAvg on non-convex experiments. Further following this line of research, another

relevant approach is the q-FedAvg algorithm proposed by Li et al. [38], a novel optimiza-

tion objective “inspired by fair resource allocation in wireless networks that encourages a

more uniform accuracy distribution across devices in federated networks”. While effective

in cross-silo FL, the aforementioned methods are incompatible with cross-device FL as it

requires clients to maintain state across rounds, a problem which the adaptive federated

optimization algorithms at [54] aim to address.

33

Chapter 3

Maritime Analytics and the VRF Problem

3.1 Definitions and VRF Problem Formulation

Before we proceed to the actual formulation of the problem, let us provide some pre-

liminary definitions.

Definition 3.1. (Trajectory). A trajectory T = {p1, . . . pn} of a moving object is considered

as a sequence of timestamped locations, where n corresponds to the latest reported position

pi ∈ T, where pi = {xi , yi , ti}, with 1 ≤ i ≤ n.

Definition 3.2. (Future Location Prediction). Given a trajectory Ti and a time interval ∆t,

the goal is to predict p
pred

i = {x
pred

i , y
pred

i , t
pred

i } at timestamp t
pred

i = t
curr

i
+ ∆t, where t

curr

i

and t
pred

i correspond to current and predicted timestamps, respectively.

Definition 3.3. (Vessel Route Forecasting). Given a dataset D, a trajectory Tij of the vessel

vj, a prediction horizon ∆t and a number of transitions k, the goal is to train a data-driven

model, which will predict the vessels’ future k locations up to ∆t with step s.

If we recall Figure 1.2, its provides an illustration of Definition 3.3. More specifically,

we know the movement of four objects from timestamps T1 up to T3. Our goal, given t = 2,

and s = 1, is to predict the anticipated motion of these vessels until T5, in cross-silo FL.

3.2 Related Work on VRF Methods

Despite the significant improvement of ML tools over the past decades, adapting this

technology into the maritime industry is not a straightforward task. Distributed/Fed-

erated ML for solving extreme-scale streaming problems is a concept that is still in its

research phases. Indicatively, overviews of the current state-of-the-art techniques in the

field of Distributed ML are available in [72] and [2], while in Mohammadi et al. [46] present

a survey on Deep Learning (DL) methods over Big Data and streaming data within the

Internet of Things domain.

Considering the VRF problem, current status of state-of-the-art includes an adequate

number of research works. More specifically, one line of work includes clustering-based

prediction techniques. Such an approach was presented by Trasarti et al. [65] called My-

Way. MyWay is a hybrid, pattern-based approach that utilizes individual patterns when

35

Chapter 3. Maritime Analytics and the VRF Problem

available, and when not, collective ones, in order to provide more accurate predictions

and increase the predictive ability of the system. In a similar line of research, Petrou

et al. [49, 50] utilize the work done by [63] on distributed subtrajectory clustering, in

order to extract individual subtrajectory patterns from big mobility data. These patterns

are subsequently utilized in order to predict the future location of the moving objects in

parallel.

Specifically to the maritime domain, there are also works that leverage Neural Network

(NN), and particularly Recurrent Neural Network (RNN)-based models [58]. RNNs are

a popular method for trajectory prediction due to their powerful ability to fit complex

functions, along with their ability of adjusting the dynamic behaviour as well as capturing

the causality relationships across sequences.

Wang et al. [74] aiming at predicting the movement trend of vessels in the crowded

port water of Tianjin port, proposed a vessel berthing trajectory prediction model based on

bidirectional GRU (Bi-GRU) and cubic spline interpolation. Capobianco et.al. [5] provided

a genuine DL approach for vessel trajectory prediction. Using a temporal window within

an area of interest, and an encoder-decoder LSTM using the attention mechanism, they

predict the vessels’ future locations. Suo et al. [62] present an RNN-based model to

predict vessel trajectories based on the DBSCAN [14] algorithm to derive main trajectories,

and a symmetric segmented-path distance approach to eliminate the influence of a large

number of redundant data and optimize incoming trajectories. Liu et al. [39] propose

“Spatio-Temporal GRU”, a trajectory classifier for modeling spatio-temporal correlations

and irregular temporal intervals prevalently presented in spatio-temporal trajectories.

More specifically, a segmented convolutional weight mechanism was proposed to capture

short-term local spatial correlations in trajectories along with an additional temporal gate

to control the information flow related to the temporal interval information.

3.3 Centralized vs. Federated Learning

In this chapter we present the proposed solution to the problem of Vessel Route Fore-

casting (VRF), and elaborate further towards the methodology used in the aforementioned

FL scenarios.

In a nutshell, trajectories are a sequence of locations organized by time, therefore can

be considered as time-series data [76] and thus techniques capable of handling sequential

data and/or time series [57] can be applied. Over the past decades, the research interest

on time-series forecasting has shifted to RNN-based models, with Gated Recurrent Units

(GRU) being the newer generation of RNN, which has emerged as an effective technique

for several learning problems, including sequential/temporal data applications [10].

While Long Short-Term Memory (LSTM) [23] is a quite popular RNN-based architec-

ture, in our case however, GRU presents some interesting advantages over the LSTM. In

particular, GRU networks are less complicated, easier to modify and - compared to LSTM

- faster to train. Addidionally, GRU networks achieve better accuracy performance on

route forecasting problems on various domains, such as maritime [62], aviation [19], and

urban transportation [3]. Hence, in this thesis we follow the same direction and employ

36

3.3 Centralized vs. Federated Learning

a GRU-based model.

In brief, a GRU cell includes includes two gates, a reset gate which is used to decide

“how much” past information to forget and an update gate which decides “how much“

current information to add. Equations 3.1-3.4 briefly state the update rules for the

employed GRU layer [6]. Additionally, details for the Back-Propagation Through Time

(BPTT) algorithm, can be found in [75].

zk = σ(Wp̃z · p̃k + Whz · hk−1 + bz) (3.1)

rk = σ(Wp̃r · p̃k + Whr · hk−1 + br) (3.2)

h̃k = tanh(Wp̃h · p̃k + Whh · (rk ∗ hk−1) + bh) (3.3)

hk = zk � hk−1 + (1 − zk) � h̃k (3.4)

where z and r represent the update and reset gates, and h̃ and h represent the

intermediate memory and output, respectively. Additionally, p̃ represents the input data,

with W∗, and b∗ representing the weights and bias matrices of the GRU cell, respectively.

Figure 3.1. GRU-based neural network architecture [68]

To address the problem of Vessel Route Forecasting (VRF) in this thesis, we use the

GRU-based model employed in [68] for predicting the future location of co-movement

patterns in the maritime domain. Figure 3.1 illustrates the architecture of the employed

ML model. More specifically, it consists of the following layers: a) an input layer of four

neurons, one for each input variable, b) a single GRU hidden layer composed of 150

neurons, c) a fully-connected hidden layer composed of 50 neurons, and d) an output

layer of two neurons, one for each prediction coordinate (longitude and latitude). The

input variables consist of the differences in space (longitude and latitude), time, as well

as the time horizon for which we want to predict the vessel’s position. The differences

are computed between consecutive points of each vessel. For the centralized training

approach, we properly process and unify all available datasets into a single entity, which

is afterwards used for training the ML model, using the Adam [31] optimization algorithm.

On the other hand, in the cross-silo Distributed Learning environment, we create as many

entities as available datasets, which are then used in order to train the ML model in

37

Chapter 3. Maritime Analytics and the VRF Problem

parallel using the FedAvg algorithm [45].

In contrast to the aforementioned ML paradigms, Cross-device Federated Learning

(FL) instead of bringing the data to the model, i.e., centralizing the data to a single entity

or using large data silos from various data owners, it brings the model to the data. More

specifically, cross-device FL depends on various edge devices which are only aware of their

own data, which are used in order to partially train an instance of the latest iteration of

an ML model. Afterwards, this model is uploaded to a central (aggregation) server along

with the rest - partially - updated models that are aggregated into the next iteration of the

ML model, repeating the training cycle.

Within our FL environment, each “edge device” corresponds to the transmitted loca-

tions of a certain AIS vessel. Each “device” contains an instance of our proposed VRF

model which is trained using only their corresponding data. For the aggregation of all

VRF models, we use a variant of the FedAdam [54] algorithm, illustrated in Algorithm

3.1. In more detail, instead of SGD we use the Adam [31] optimizer for both on-device

(local), and on-server (aggregation) training, in order to provide a more stable and robust

convergence rate (compared to FedAvg). In Algorithm 3.1, the parameter τ corresponds to

the degree of adaptability of the algorithm, with smaller values of τ representing higher

degrees of adaptivity.

Algorithm 3.1: FedAdam

1 Initialization: x0, v−1 ≥ τ
2
, decay parameters �1, �2 ∈ [0,1)

2 for t = 0, . . . , T − 1 do

3 Sample subset S of clients

4 x
t

i,0
← xt

5 for each client i ∈ S in parallel do

6 for k = 0, . . . , K − 1 do

7 Compute an unbiased estimate g
t

i,k
of ∇Fi(x ti,k)

8 x
t

i,k+1
← x

t

i,k
− ηlg

t

i,k

9 end

10 ∆t
i
← x

t

i,K
− xt

11 end

12 ∆t ← �1∆t−1 + (1 − �1)
(

1

|S|

∑
i∈S ∆t

i

)
13 vt ← �2vt−1 + (1 − �2)∆2

t

14 xt+1 ← xt + η
∆t
√
vt + τ

15 end

38

Chapter 4

Use case: Application of our Approach over Real-

world AIS datasets

In this chapter, we evaluate our VRF model on several centralized and federated learn-

ing schemes using three real-world maritime mobility datasets and present our experi-

mental results.

4.1 Datasets and Preprocessing

In order to simulate all cross-silo federated learning scenarios, we use four large-

scale real-world datasets from the maritime mobility domain. In particular, the first data

source that we use is the “Piraeus AIS dataset for large-scale maritime data analytics”

[70], referred to as the “Piraeus”
1

dataset. It consists of over 200 million AIS positioning

messages from approximately 8,000 vessels (passenger boats, fisheries, cargo, containers,

etc) within Saronic Gulf, Greece. The dataset ranges in time and space, as follows:

• Temporal range: May 9
th

, 2017 to December 26
th

, 2019 (≈2.5 years)

• Spatial range: longitude in [22.992, 24.031]; latitude in [37.437, 38.046]

The second data source that we use is the “Heterogeneous Integrated Dataset for

Maritime Intelligence, Surveillance, and Reconnaissance” [53], referred to as the “Brest”
2

dataset. It consists of over 19 million AIS positioning messages from 5,055 vessels (pas-

senger boats, fisheries, cargo, containers, etc) within Brest Bay, France. The dataset

ranges in time and space, as follows:

• Temporal range: October 1
st

, 2015 to March 31
st

, 2016 (6 months)

• Spatial range: longitude in [-10.0, 0.0]; latitude in [45.0, 51.0]

In addition, the third data source that we use is the “Historical AIS data in Norwegian

waters” [8], referred to as the “Norway”
3

dataset. It consists of over 362 million AIS

positioning messages from 2,862 vessels (passenger boats, fisheries, cargo, containers,

1
The dataset is publicly available at https://doi.org/10.5281/zenodo.5562629

2
The dataset is publicly available at https://doi.org/10.5281/zenodo.1167594

3
The dataset is publicly available at https://ais-public.kystverket.no/

39

https://doi.org/10.5281/zenodo.5562629
https://doi.org/10.5281/zenodo.1167594
https://ais-public.kystverket.no/

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

etc) within Haugesund and Oslo, Norway. The dataset ranges in time and space, as

follows:

• Temporal range: January 1
st

, 2019 to December 31
st

, 2019 (1 year)

• Spatial range: longitude in [4.09, 31.76]; latitude in [57.76, 71.38]

Finally, a fourth data source that we use is the so called “MarineTraffic”
4

dataset. It

consists of over 5.5 million AIS positioning messages from 460 passenger vessels within

Greece. The dataset ranges in time and space, as follows:

• Temporal range: January 1
st

, 2019 to December 31
st

, 2019 (1 year)

• Spatial range: longitude in [22.63, 28.03]; latitude in [34.96, 41.00]

Out of the aforementioned datasets (namely, Piraeus, Brest, Norway, and MarineTraf-

fic) we selected a period of three months (January 1
st

– March 31
st

), which consists of

2,788,137, 3,744,412, 8,013,242, and 646,338 locations, from 1373, 1016, 335, and 177

vessels, respectively.

During the preprocessing stage, we drop erroneous records (i.e. GPS locations) based

on a speed threshold speedmax as well as stationary points with speed below speedmin.

Afterwards, we organize the cleansed data into trajectories based on the temporal inter-

val between two consecutive signals of the same vessel, given a threshold ∆t, and drop

those which consist of less than 10 points. In our experiments we set speedmax = 50

knots, speedmin = 1 knot, and ∆t = 30 minutes, respectively. The rationale behind these

thresholds stems from the characteristics of the dataset, which were unveiled after a

statistical analysis of the distribution of speed and ∆t between consecutive points of the

same trajectory.

A map visualization of all four datasets used in our experimental study is illustrated in

Figure 4.1. In particular, Figure 4.1a visualizes the transmitted AIS locations in Saronic

Gulf, Greece on July 10
th

, 2018, while Figures 4.1b and 4.1c visualizes the transmitted

AIS locations in Brest Bay, France, and Oslo, Norway on March 1
st

, 2016, and 2019,

respectively. Last but not least, Figure 4.1d illustrates the transmitted AIS locations

within (mostly) Aegean Sea on March 1
st

, 2019.

4.2 Experimental Setup

All conducted experiments on were implemented in Python3 (via Anaconda3
5

virtual

environments). More specifically, the aforementioned models were implemented using Py-

Torch [48] and trained using Flower [4] for Federated Learning, via a single node equipped

with 8 CPUs, 24 GB of RAM, and an Nvidia GTX 1050Ti with 4GB VRAM. Additionally,

for Differential Private (DP) -enabled FL, we use a computational cluster that consists of

the aforementioned node, and a MacBook Pro with 8 ARM CPUs and 16 GB of RAM.

4
The dataset is kindly provided by MarineTraffic

5https://www.anaconda.com/

40

https://www.anaconda.com/

4.3 Experimental Results

(a) (b)

(c) (d)

Figure 4.1. Snapshots of (a) Piraeus; (b) Brest; (c) Oslo; and (d) MarineTraffic datasets.

In the chapters that follow, we provide the experimental results of our study, compar-

ing the VRF model presented in Chapter 3 trained in Centralized fashion against its FL

variant, hereafter named “FedVRF”, and assess its exploitation value towards short-term

VRF and Vessel Traffic Flow Forecasting (VTFF).

4.3 Experimental Results

In this section, we train and evaluate our VRF model against its Centralized, and

Cross-silo FL variants, and assess the privacy preservation of the latter using Differential

Privacy.

4.3.1 Collaboration using Centralized ML

Suppose we have three partners, namely “Naval Academy Research Institute” (NARI),

“Norwegian Coastal Administration” (NCA), and “University of Piraeus Research Center”

41

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

(UPRC), who provide the Brest, Norway, and Piraeus datasets, respectively, who aim

to create a VRF model within the context of a research project. Having agreed on the

architecture of the model, a baseline approach is to train three VRF instances (i.e., one

for each of the aforementioned datasets/partners) in centralized fashion, and assess their

performance against the other datasets, in order to converge on a single model.

After preparing the dataset using the procedure described at Chapter 4.1, we get

9,285, 5,922, and 15,262 trajectories from Brest, Norway and Piraeus datasets, respec-

tively, which are split into training, validation and test sets with 70:20:10 split ratio. After

training our VRF instances for 170 epochs (with early stopping) on each aforementioned

dataset, Figure 4.2 illustrates the models’ displacement error with respect to ∆t for the

test sets of each partners’ dataset. At first, we observe that the VRF instance trained on

the Piraeus dataset (c.f. Figure 4.2g,h,i), as expected (in the sense that it consists of a

larger sample population), performs the best on all three datasets with displacement error

≈ 3.5 km on average for ∆t = 25−30 min. on the Piraeus’ test set, with Brest and Norway

yielding ≈ 7.5 and ≈ 15 km on average for ∆t = 25 − 30 min., on their corresponding

datasets, respectively.

Further following this hypothesis, we expect, due to the population of the training set,

that the VRF instance trained on the Norway and Brest datasets, respectively, will both

perform the least, with the latter instance performing slightly better, consistently being

between the Norway and Piraeus VRF instances.

Indeed, the model trained on the Norway dataset (c.f. Figure 4.2d,e,f) yields sub-

optimal performance with ≈ 17 km on average for ∆t = 25−30 min., on its corresponding

dataset, and ≈ 9 and ≈ 4 km, on Brest and Piraeus datasets, respectively. Similarly, the

displacement error of the VRF instance trained on the Brest dataset (c.f. Figure 4.2a,b,c)

is consistently between the two aforementioned models, with ≈ 8 km on its corresponding

dataset, and ≈ 15 and ≈ 3.8 km, on Norway and Piraeus datasets, respectively.

In general, we observe that both Norway, and Brest VRF instances constantly under-

perform, independent on which dataset are trained on, while the Piraeus’ VRF instance

consistently yields comparatively better predictions, i.e., has the smallest displacement

error, on all aforementioned datasets. Therefore, in the collaboration scenario among

NARI, NCA, and UPRC, the latter will be at an advantageous position since in whichever

VRF instance, the displacement error for the Piraeus dataset remains (on average) con-

sistently identical.

In more detail, Figure 4.3 illustrates the corresponding learning curves for each VRF

model instance. We observe that the instances trained on Norway and Brest datasets

appear to be underfit, while the instance trained on the Piraeus dataset appears to be well

trained, conclusions which are reflected on their corresponding prediction performance,

as Figure 4.2 illustrates. This behaviour is well justified, as the amount of training

samples on the former two instances is insufficient for training a VRF model with good

performance.

Because the participating partners are in agreement regarding privacy concerns, and

in an effort to increase the training samples’ population, a natural extension of the base-

line approach is to unify all datasets into a single entity, in order to train a single VRF

42

4.3 Experimental Results

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30
D

is
p

la
ce

m
en

t
E

rr
or

(m
)

×103

(a)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(b)

5 10 15 20 25 30
Lookahead (∆t)

0

2

4

6

8

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(c)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(d)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)
×103

(e)

5 10 15 20 25 30
Lookahead (∆t)

0.0

2.5

5.0

7.5

10.0

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(f)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(g)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(h)

5 10 15 20 25 30
Lookahead (∆t)

0.0

2.5

5.0

7.5

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(i)

Figure 4.2. Training three VRF instances in centralized fashion on Brest (a,b,c); Norway

(d,e,f); and Piraeus (g,h,i) training set and assessing its displacement error on Brest (a,d,g);

Norway (b,e,h); and Piraeus (c,f,i) test set.

instance, which will potentially fit all parties’ requirements. After training our “unified”

model for 170 epochs (with early stopping), Figure 4.4 illustrates its displacement error

on the Brest, Norway, and Piraeus datasets, respectively. We observe that, in all three

datasets the aforementioned instance outperforms the previous instances, either signif-

icantly (≈ −3 km for ∆t = 25 − 30 min.; c.f. Figure 4.4b vs. 4.2e) or marginally (≈ −0.1

and ≈ −0.2 km for ∆t = 25 − 30 min.; c.f. Figures 4.4a vs. 4.2a, and 4.4c vs. 4.2i,

respectively). Additionally, observing the learning curve of the model, we deduce that

both the training and validation loss trajectory presents an underfitting behaviour, which

is expected to some degree, mainly due to the datasets’ heterogeneity, something that we

43

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

0 50 100
#Epochs

0.050

0.075

0.100

0.125

0.150

M
S

E

×107

(a)

0 25 50
#Epochs

0.015

0.020

0.025

0.030

M
S

E

×107

(b)

0 50 100
#Epochs

0.02

0.04

0.06

M
S

E

×107

(c)

Figure 4.3. Learning curves for (a) Brest; (b) Norway; and (c) Piraeus centralized VRF in-

stances (blue and orange lines correspond to the training and validation sets, respectively).

discuss in later sections.

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(a)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(b)

5 10 15 20 25 30
Lookahead (∆t)

0.0

2.5

5.0

7.5

10.0

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(c)

Figure 4.4. Training a centralized VRF model on Brest, Norway, and Piraeus unified

training set and assessing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus

test set.

While the unified approach performs better than the baseline, in many real-world

situations it is an unfeasible solution, mainly due to the increased costs in storage,

bandwidth of transferring the data and setting up a unified database, as well as privacy

concerns regarding, e.g., the transmitted locations of the partners’ fleet. Therefore, in

order to increase the training samples’ population while ensuring a baseline privacy level,

a natural extension of the Centralized ML (CML) approach, is to use DML techniques,

such as FL in order to address the aforementioned issues.

4.3.2 Collaboration using Federated ML

Having created our three VRF instances, and trained them using CML, we proceed

to use FL techniques in order to train a unified model, that is able to fit all partners’

requirements (e.g., accurate prediction) without the need to centralize the datasets, and

potentially compromise the users’ privacy.

The server which previously was used to store the partners’ datasets and the unified

44

4.3 Experimental Results

0 25 50
#Epochs

0.03

0.04

0.05

0.06

M
S

E

×107

Figure 4.5. Learning curve for the unified centralized VRF instance (blue and orange line

corresponds to “train” and “dev” sets, respectively).

VRF model, now will serve as an aggregation node, which receives the updated parameters

of the partners’ VRF models (i.e., local model), and aggregates them into a single entity

(i.e., global model – FedVRF).

For training we use the FedAdam algorithm, as presented in Chapter 3.3 and the

FLOWER [4] framework for instantiating the aggregation server, as well as the models’ FL

workers and local VRF models. After 170 epochs, Figure 4.6 illustrates the performance

of the FL model in Brest, Norway, and Piraeus datasets. Compared to the displacement

error of the centralized models (c.f. Figures 4.2a,e,i), we observe that the prediction error

of FedVRF increased drastically (≈ 1 and ≈ 0.5 km) on Brest and Piraeus datasets, while

it is marginally close (≈ 0.1 km) on Oslo dataset, respectively, for ∆t = 25 − 30 min..

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(a)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(b)

5 10 15 20 25 30
Lookahead (∆t)

0.0

2.5

5.0

7.5

10.0

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(c)

Figure 4.6. Training a VRF model using FL on Brest, Norway and Piraeus training set and

assessing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus test set.

In order to further understand the reason behind this behaviour, Figure 4.7 illustrates

the learning curve of the partners’ local VRF instance, compared to the learning curve of

FedVRF. In general, We observe that in all three datasets, namely Brest, Norway, and

Piraeus, the loss of the local models diverges from the global model by a large margin, a

behaviour which is observed throught the training process, better known as “client-drift”.

The main cause behind “client-drift” lies within the participating parties’ heterogene-

ity. In particular, Figure 4.8 illustrates the Probability Density Function (PDF) of Brest,

45

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

Norway, and Piraeus datasets, respectively. We observe that the PDFs of Brest and Pi-

raeus datasets seem to follow a unimodal distribution, which is easier for the VRF model

to adapt to, as reflected by the rapidly downward trend in their corresponding learning

curves at Figures 4.3a and 4.3c, respectively. On the other hand, the multimodal PDF

of the Oslo dataset, introduces a high level of heterogeneity, which renders difficult the

training process for the VRF model, something which is not only reflected at Figure 4.3b

but also in the overall training process of FedVRF (c.f. Figure 4.6), where the aggregation

(averaging) process of FedAdam (and FedAvg, in general), inhibits the training process.

0 100
#Epochs

0.050

0.075

0.100

0.125

0.150

M
S

E

×107

(a)

0 100
#Epochs

0.02

0.04

0.06

M
S

E
×107

(b)

0 100
#Epochs

0.05

0.06

0.07

M
S

E

×107

(c)

Figure 4.7. Learning curve for (a) Brest; (b) Norway; and (c) Piraeus local VRF workers

compared to FedVRF. Blue/orange lines correspond to the workers’ training and valida-

tion loss, while cyan/red lines correspond to the training and validation loss of FedVRF,

respectively.

100 75 50 25 0 25 50 75
x

80

60

40

20

0

20

40

60

y

(a)

125 100 75 50 25 0 25 50 75
x

150

100

50

0

50

100

y

(b)

80 60 40 20 0 20 40 60
x

80

60

40

20

0

20

40

60

y

(c)

Figure 4.8. Probability density functions (PDFs) of ∆x and ∆y of (a) Brest; (b) Norway; and

(c) Piraeus datasets.

Related works regarding “client-drift” (c.f. Chapter 2) recommend using fewer local

updates and/or smaller learning rates. These action(s) however, largely impact the con-

vergence stability of FedAvg (and its variants), as well as the learning “capacity” of the FL

model, as Figure 4.7 illustrates for learning rate η = 10
−3

. In order to properly address

“client-drift” we use a branch of FL, called Personalized Federated Learning (PerFL), which

can properly alleviate the aforementioned issue by ensuring a more uniform accuracy dis-

46

4.3 Experimental Results

tribution across training parties [64].

4.3.3 Addressing Client Drift

As demonstrated in the previous section, models trained using FedAvg (or similar vari-

ants - e.g., FedAdam) on heterogeneous datasets, are prone to client drift, with its severity

level being correlated to the amount of client heterogeneity (c.f. Figure 4.8). In order to

effectively address that issue, we use a variant of FedAvg from the PerFL method family,

named qFedAvg [38], which is illustrated at Algorithm 4.1. In a nutshell, it emphasizes on

training parties (as q increases) with higher local empirical losses Fk(w), thus imposing

more uniformity to the training accuracy distribution and potentially creating a model

flexible enough to fit all parties’ needs.

In our experiments, we use a variant of qFedAvg in which the selected devices, update

their corresponding weights using Adam [31], instead of SGD, tuned using their default

values set at [4]. After 170 epochs, Figure 4.9 illustrates the performance of the PerFL

model in Brest, Norway, and Piraeus datasets, respectively. In general, we observe that

PerFL greatly outperforms the FL model, yielding smaller displacement errors up to ≈ 2.5

km on the Norway dataset, and up to ≈ 1 and ≈ 0.7 km on Piraeus and Brest datasets,

respectively, for ∆t ∈ [5,30) min.

Algorithm 4.1: qFedAvg, adapted from [38]

1 Input: K, E, T, q,1/L, η,w
0
, pk , k = 1, . . . , m

2 for t = 0, . . . , T − 1 do

3 Server selects a subset St of K devices at random (each device k is chosen with

probability pk)

4 Server sends w
t

to all selected devices

5 Each selected device k updates w
t

for E epochs of Adam on Fk with step size

η, to obtain ŵ
t+1

k

6 Each selected device k computes:

7 ∆wt

k
= L(wt − ŵt+1

k

8 ∆t
k

= F
q

k
(wt)∆wt

k

9 h
t

k
= qF

q−1

k
(wt)||∆wt

k
||2 + LF

q

k
(wt)

10 Each selected device k sends ∆t
k

and h
t

k
back to the server

11 Server updates w
t+1

as:

12 w
t+1 = w

t −

∑
k∈St

∆t
k∑

k∈St
h
t

k

13 end

Compared to the baseline CML approach (c.f. Figure 4.2a,e,i), we observe similar

results on Norway dataset, while on Brest and Piraeus datasets, the performance is

marginally worse, with displacement error up to 0.15 and 0.1 km larger, on average,

respectively. Additionally, compared to the unified CML approach (c.f. Figure 4.4), we

observe marginally worse results, as well, with displacement error up to 0.2 km larger,

on average, on all datasets.

Further focusing on the learning curve of the partners’ local models vs. the global (per-

sonalized) FedVRF model (c.f. Figure 4.10), we observe that the training/validation loss

47

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)
×103

(a)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(b)

5 10 15 20 25 30
Lookahead (∆t)

0.0

2.5

5.0

7.5

10.0

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(c)

Figure 4.9. Training a VRF model using PerFL on Brest, Norway and Piraeus training set

and assessing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus test set.

curves of the Brest and Piraeus follow the same downward trend as their corresponding

CML models (c.f. Figure 4.3), albeit with some added noise, mainly due to the aggregation

(averaging) process. Additionally, we observe that the local models’ learning curves are

closer to the curves of personalized FedVRF, therefore preserving minimal (compared to

FL) “client-drift”.

Particularly, in the case of the Norway dataset, we observe an upward trend with in-

creasing oscillations (i.e. noise), indicating a slight underfitting issue on that particular

VRF worker. This however is expected, mainly due to the complex PDF of the Norway

dataset (c.f Figure 4.8), and further demonstrates the advantage of PerFL, as the intro-

duced noise of this worker is smoothed out in the global model, thus not allowing the

datasets’ heterogeneity to inhibit the learning process.

0 100
#Epochs

0.05

0.10

0.15

M
S

E

×107

(a)

0 100
#Epochs

0.02

0.04

0.06

M
S

E

×107

(b)

0 100
#Epochs

0.02

0.04

0.06

M
S

E

×107

(c)

Figure 4.10. Learning curve for (a) Brest; (b) Norway; and (c) Piraeus local VRF workers

compared to personalized FedVRF. Blue/orange lines correspond to the workers’ training

and validation loss, while cyan/red lines correspond to the training and validation loss of

personalized FedVRF, respectively.

48

4.3 Experimental Results

4.3.4 The Privacy Preservation Trade-off

While FL ensures (to a certain degree) user privacy, this assumption only holds when

the aggregation server is considered to be honest-but-curious, or in other words, it has

complete access to the models’ weights/gradients (curious), but does not leak them (hon-

est) to any participant either from inside, or from outside the federation cluster (e.g. an

adversary). If the above assumption cannot hold, then FL may fail to ensure user pri-

vacy as the weights/gradients can be reverse engineered in order to recover (a part of)

the dataset [22]. Towards this direction, we can either encode (e.g., via Homomorphic

Encryption), or obfuscate the parties’ models, in order to decrease the probability of data

leakage.

In the scope of this thesis, we make use of Differential Privacy [13] (DP), as imple-

mented in the Opacus [80] framework, in order to obfuscate the models’ parameters by

adding noise sampled from a Gaussian distribution to their corresponding parameters

prior to sending them to the aggregation server. Practically, in this way, the training

parties can have more control over their data, with the aggregation server still being ca-

pable of training the model, as the added noise tends to cancel out during the aggregation

phase
6

[51].

After training our model using qFedAvg for 170 epochs with DP, Figure 4.11 illustrates

the distribution of the displacement error on the Brest, Norway, and Piraeus datasets,

respectively. We observe that, compared to non-DP PerFL, the added noise significantly

increased the prediction error in all datasets, with average perturbation up to 2.5 km for

the Norway dataset, and 0.8 km for Brest and 0.4 km Piraeus datasets, respectively.

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(a)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(b)

5 10 15 20 25 30
Lookahead (∆t)

0.0

2.5

5.0

7.5

10.0

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(c)

Figure 4.11. Training a Differentially Private (DP) VRF model using PerFL on Brest, Norway

and Piraeus training set and assessing its displacement error on (a) Brest; (b) Norway; (c)

and Piraeus (c) test set.

Further focusing on the models’ learning curves at Figure 4.12 we observe immediately

that the added noise severely impact the convergence of the global model, presenting not

only higher levels of client drift (compared to non-DP PerFL), but also an extreme case of

6
Facebook AI, Introducing Opacus: A high-speed library for training PyTorch models with differen-

tial privacy, https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-

models-with-differential-privacy/, Last visited: 2022/05/10

49

https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-differential-privacy/
https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-differential-privacy/

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

0 100
#Epochs

0.05

0.10

0.15

M
S

E
×107

(a)

0 100
#Epochs

0.02

0.04

0.06

M
S

E

×107

(b)

0 100
#Epochs

0.04

0.05

0.06

0.07

0.08

M
S

E

×107

(c)

Figure 4.12. Learning curve for DP-enabled (a) Brest; (b) Norway; and (c) Piraeus local VRF

workers compared to personalized FedVRF. Blue/orange lines correspond to the workers’

training and validation loss, while cyan/red lines correspond to the training and validation

loss of personalized FedVRF, respectively.

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(a)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(b)

5 10 15 20 25 30
Lookahead (∆t)

0.0

2.5

5.0

7.5

10.0

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(c)

Figure 4.13. Training a Differentially Private (DP) VRF model using PerFL on pretrained

Brest, Norway and Piraeus corresponding CML model and training set and assessing its

displacement error on (a) Brest; (b) Norway; and (c) Piraeus test set.

underfitting, as deduced by the curves’ “plateauing” behaviour. In an effort to improve

the aforementioned phenomena, one technique, presented by Papernot et al. [47] is to

use pretrained ML model instances, and via DP, produce a private model.

In our case, we use the VRF instances that were trained on Brest, Norway, and Piraeus

datasets using CML, and through DP-enabled qFedAvg, train a privacy-aware global model

that potentially can outperform the previous FedVRF instance. After 170 FL rounds,

Figure 4.13 illustrates the performance of the global model on all three aforementioned

datasets. While we indeed outperformed the non-pretrained DP-enabled FedVRF model,

the difference between the two models is quite marginal (up to 0.5 km), especially when

compared to the personalized FedVRF instance, where the displacement error difference

is up to 2, 0.7, and 0.4 km on the Norway, Brest, and Piraeus datasets, respectively.

Comparing the models’ learning curves (c.f. Figure 4.14), we observe an interest-

ing phenomenon. In general, the learning curves of local and global models are closer

compared to the non-pretrained variant (indicating less client drift; c.f. Figure 4.12).

50

4.3 Experimental Results

0 100
#Epochs

0.04

0.06

0.08

0.10

M
S

E
×107

(a)

0 100
#Epochs

0.01

0.02

0.03

0.04

0.05

M
S

E

×107

(b)

0 100
#Epochs

0.03

0.04

0.05

M
S

E

×107

(c)

Figure 4.14. Learning curve for DP-enabled (a) Brest; (b) Norway; and (c) Piraeus local VRF

workers (/w pretrained CML models) compared to personalized FedVRF. Blue/orange lines

correspond to the workers’ training and validation loss, while cyan/red lines correspond to

the training and validation loss of personalized FedVRF, respectively.

However, especially in the Brest and Oslo datasets, the training loss follows an upward

trend, instead of an downward one.

While in other ML workflows/frameworks, this could indicate a potentially major issue

in the training process, in our case it is expected, since the models have been separately

pretrained, thus they have converged on different local minima. Due to the “Fairness”

mechanism of qFedAvg, the participants’ training losses are combined in order to increase

the fairness/uniformity of models’ performance while maintaining their corresponding

average performance, therefore some local losses (e.g. Brest) tend to increase, and others

(e.g. Oslo) to decrease.

Another experiment, revolves around the trade-off between prediction accuracy and

privacy budget (ϸ). In DP, we have two additional hyperparameters, namely ϸ, and δ

(c.f. Equation 2.1). As defined in Chapter 2.2, ϸ is the privacy parameter which can be

controlled by the data analyst to maintain the trade-off between privacy and accuracy,

and δ is the probability of information accidentally being leaked [1].

Regarding δ, a rule of thumb is to be less than the inverse of the size of the training

dataset
7
. With that into account we choose delta to the inverse of the upper order of mag-

nitude of the samples’ population
8

(
e.g., #samples = 1024 ≤ 10

5; δ = 1/10
5
)
, or in other

words δ = 10
−5

, 10
−6

, and 10
−5

for Brest, Norway, and Piraeus datasets, respectively. On

the other hand, for ϸ there are some values that we can use as a reference (c.f. Chapter

2.2), as well as works towards approximating it [24, 36], within the scope of this thesis

we will use a baseline approach in which we set ϸ to the tightest value of total privacy

spent among the three workers. During the previous experiment, where the workers had -

virtually - unlimited privacy budget (ϸ = ∞), the total privacy budget spent was ϸ = 162.2,

247.683, 110.692 for the Brest, Norway, and Piraeus datasets, respectively, thus we set

7
"What does epsilon=1.1 really mean? How about delta?", Opacus FAQ, https://opacus.ai/docs/faq#what-

does-epsilon11-really-mean-how-about-delta, Last visited: 07/04/2022

8
"Building an Image Classifier with Differential Privacy", GitHub, https://github.com/pytorch/opacus/blob/

main/tutorials/building_image_classifier.ipynb, Last visited: 07/04/2022

51

https://opacus.ai/docs/faq#what-does-epsilon11-really-mean-how-about-delta
https://opacus.ai/docs/faq#what-does-epsilon11-really-mean-how-about-delta
https://github.com/pytorch/opacus/blob/main/tutorials/building_image_classifier.ipynb
https://github.com/pytorch/opacus/blob/main/tutorials/building_image_classifier.ipynb

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

ϸ = 110.

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(a)

5 10 15 20 25 30
Lookahead (∆t)

0

10

20

30

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(b)

5 10 15 20 25 30
Lookahead (∆t)

0.0

2.5

5.0

7.5

10.0

D
is

p
la

ce
m

en
t

E
rr

or
(m

)

×103

(c)

Figure 4.15. Training a (ϸ, δ) Differentially Private (DP) VRF model using PerFL on pre-

trained Brest, Norway and Piraeus corresponding CML model and training set and assess-

ing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus test set.

After 170 epochs, Figure 4.15 illustrates the displacement error distribution of the

global DP-enabled FedVRF model on all three aforementioned datasets. Comparing it to

the previous DP-enabled FedVRF experiment (c.f. Figure 4.13), restricting the privacy

budget ϸ does little impact on the prediction error (≈ 0.1 km for ∆t = 25 − −30 min.),

thus placing (ϸ, δ)-DP- between plain DP-, and pretrained DP-enabled FedVRF. Similarly,

the models’ corresponding learning curves at Figure 4.16 show similar behaviour as the

pretrained DP-enabled FedVRF (ϸ = ∞; c.f. Figure 4.13), albeit with slightly higher

introduced noise (due to the restricted privacy budget), but with less client drift, therefore

in general, we successfully traded-off model accuracy for higher user privacy.

0 100
#Epochs

0.04

0.06

0.08

0.10

M
S

E

×107

(a)

0 100
#Epochs

0.01

0.02

0.03

0.04

0.05

M
S

E

×107

(b)

0 100
#Epochs

0.03

0.04

0.05

M
S

E

×107

(c)

Figure 4.16. Learning curve for (ϸ, δ) DP-enabled (a) Brest; (b) Norway; and (c) Piraeus

local VRF workers (/w pretrained CML models) compared to personalized FedVRF. Blue/o-

range lines correspond to the workers’ training and validation loss, while cyan/red lines

correspond to the training and validation loss of personalized FedVRF, respectively.

52

4.4 Discussion and Exploitation

4.4 Discussion and Exploitation

Towards the real-world assessment of FedVRF, Figure 4.17 illustrates the predicted

trajectory of a randomly selected cargo vessel in Norway and Piraeus, as well as a Tanker

vessel in Brest dataset, respectively. We observe that in all three cases the personalized

FedVRF consistently outperforms all other VRF variants by a large margin, including the

CML ones, which are close to the PerFL solution following a similar trajectory, albeit with

larger deviation from the actual route.

Additionally, the added noise within the DP-enabled FedVRF models, renders them

unable to properly predict the vessels’ future route, being relatively accurate for the first

∆t ≈ 5 minutes, and afterwards making a “U-turn” before returning to where the trajectory

began. Similar results can also be found in plain FedVRF, where the “client-drift” has

greatly impact the vessels’ future route prediction, by deviating (and making the “U-turn”)

almost at the first ∆t ≈ 5 minutes.

(a) (b) (c)

Figure 4.17. Predicting the trajectory of a vessel up to ∆t = 15 min. using all (Fed-)VRF

variants on (a) Brest, (b) Norway, and (c) Piraeus dataset.

Towards the exploitation of FedVRF on maritime traffic control, Figure 4.18 illustrates

the traffic density within the Piraeus dataset for a period up to ∆t = 15 min. Focusing

on popular Cargo/Tanker and Passenger vessels’ routes, we observe that compared to

the actual traffic density, both CML VRF models anticipate increased traffic on passenger

routes, e.g., from Piraeus to Aegina, as well as increased intra-port traffic, either from

official or unofficial ports, such as the Tankers’/Cargos’ anchorage [69] south-east of

Salamina.

On the other hand, the FedVRF model anticipates higher intra-port traffic, with mod-

erate emphasis on popular passenger routes, and less focus on the cargos’ anchorages.

Similarly, the personalized FedVRF model predicts increased traffic flow on popular ves-

sels’ routes, ports, and anchorages, albeit with an increased interest within the inner Sa-

ronic Gulf, where higher flow is anticipated. Finally, the DP-enabled FedVRF solutions,

53

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

all provide similar results to personalized VRF, with slight variations on the predicted

flow within passengers’ routes. These findings may trigger domain experts into further

investigating these occurences and reach some meaningful conclusions.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.18. Predicting maritime traffic flow up to ∆t = 15 min. using all (Fed-)VRF

variants, namely, (b) CML (share all), (c) CML (share model), (d) FL, (e) PerFL, (f) DP-PerFL

(ϸ = ∞), (g) DP-PerFL (pretrained; ϸ = ∞), and (h) DP-PerFL (ϸ = 110) compared to (a) actual

traffic flow on Piraeus dataset.

54

Chapter 5

Conclusions and Future Work

In this thesis, we studied Federated Learning (FL) from both a theoretical and algo-

rithmic perspective, and compared its advantages and disadvantages to the centralized

approach, based on the task of Vessel Route Forecasting (VRF). Our experimental study

on four real-world AIS datasets demonstrates the advances and open problems of FL,

as well as the advantages of Personalized Federated Learning (PerFL) over highly het-

erogeneous datasets’. In the near future, we aim to further optimize the architecture of

the VRF model, in order to decrease its displacement error, and render it suitable not

only for short-term, but also long-term prediction as well. Additionally, we aim to fur-

ther experiment on PerFL algorithms by fine-tuning the existing algorithms as well as

implementing newer algorithms, such as [15]. Moreover we aim to further exploit on

privacy-preservation mechanisms, by adding more data silos, in order to further lever-

age the properties of Differential Privacy (DP). Finally, we aim to extend the applications’

scope of FedVRF into the scope of maritime transportation safety, and more specifically

in Vessel Collision Risk Assessment (VCRA) [67], therefore shifting to Federated Vessel

Collision Risk Assessment (FedVCRF).

55

Bibliography

[1] Aitsam, M. Differential privacy made easy. CoRR abs/2201.00099 (2022).

[2] Ben-Nun, T., and Hoefler, T. Demystifying parallel and distributed deep learning:

An in-depth concurrency analysis. ACM Computing Surveys (CSUR) 52, 4 (2019),

1–43.

[3] Benterki, A., Judalet, V., Maaoui, C., and Boukhnifer, M. Long-term prediction of

vehicle trajectory using recurrent neural networks. In IECON (2019), IEEE, pp. 3817–

3822.

[4] Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., and Lane, N. D. Flower:

A friendly federated learning research framework. CoRR abs/2007.14390 (2020).

[5] Capobianco, S., Millefiori, L. M., Forti, N., Braca, P., and Willett, P. Deep learning

methods for vessel trajectory prediction based on recurrent neural networks. IEEE

Trans. Aerosp. Electron. Syst. 57, 6 (2021), 4329–4346.

[6] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,

H., and Bengio, Y. Learning phrase representations using RNN encoder-decoder for

statistical machine translation. In EMNLP (2014), ACL, pp. 1724–1734.

[7] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao, M. Z.,

Ranzato, M., Senior, A. W., Tucker, P. A., Yang, K., and Ng, A. Y. Large scale

distributed deep networks. In NIPS (2012), pp. 1232–1240.

[8] Desjardins, J. Historical ais data in norwegian waters. https://ais-public.

kystverket.no/ais-download. Last Visited: 2022/02/01.

[9] Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT: pre-training of deep bidi-

rectional transformers for language understanding. In NAACL-HLT (1) (2019), Asso-

ciation for Computational Linguistics, pp. 4171–4186.

[10] Dey, R., and Salem, F. M. Gate-variants of gated recurrent unit (GRU) neural net-

works. In Proceedings of the IEEE 60th International Midwest Symposium on Circuits

and Systems (MWSCAS) (2017), pp. 1597–1600.

[11] Dinh, C. T., Tran, N. H., Nguyen, M. N. H., Hong, C. S., Bao, W., Zomaya, A. Y., and

Gramoli, V. Federated learning over wireless networks: Convergence analysis and

resource allocation. IEEE/ACM Trans. Netw. 29, 1 (2021), 398–409.

57

https://ais-public.kystverket.no/ais-download
https://ais-public.kystverket.no/ais-download

BIBLIOGRAPHY

[12] Duchi, J. C., Hazan, E., and Singer, Y. Adaptive subgradient methods for online

learning and stochastic optimization. J. Mach. Learn. Res. 12 (2011), 2121–2159.

[13] Dwork, C., and Roth, A. The algorithmic foundations of differential privacy. Found.

Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.

[14] Ester, M., Kriegel, H., Sander, J., and Xu, X. A density-based algorithm for dis-

covering clusters in large spatial databases with noise. In KDD (1996), AAAI Press,

pp. 226–231.

[15] Fallah, A., Mokhtari, A., and Ozdaglar, A. E. Personalized federated learning

with theoretical guarantees: A model-agnostic meta-learning approach. In NeurIPS

(2020).

[16] Galakatos, A., Crotty, A., and Kraska, T. Distributed machine learning. In Ency-

clopedia of Database Systems (2nd ed.). Springer, 2018.

[17] Gentry, C. Fully homomorphic encryption using ideal lattices. In STOC (2009), ACM,

pp. 169–178.

[18] Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K. E., Naehrig, M., and Wernsing,

J. Cryptonets: Applying neural networks to encrypted data with high throughput

and accuracy. In ICML (2016), vol. 48 of JMLR Workshop and Conference Proceedings,

JMLR.org, pp. 201–210.

[19] Han, P., Wang, W., Shi, Q., and Yang, J. Real-time short-term trajectory prediction

based on gru neural network. In Proceedings of the 38th Digital Avionics Systems

Conference (DASC) (2019), pp. 1–8.

[20] Hard, A., Kiddon, C. M., Ramage, D., Beaufays, F., Eichner, H., Rao, K., Mathews,

R., and Augenstein, S. Federated learning for mobile keyboard prediction, 2018.

[21] Hesamifard, E., Takabi, H., and Ghasemi, M. Cryptodl: Deep neural networks over

encrypted data. CoRR abs/1711.05189 (2017).

[22] Hitaj, B., Ateniese, G., and Pérez-Cruz, F. Deep models under the GAN: information

leakage from collaborative deep learning. In CCS (2017), ACM, pp. 603–618.

[23] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural Computation

9, 8 (1997), 1735–1780.

[24] Hsu, J., Gaboardi, M., Haeberlen, A., Khanna, S., Narayan, A., Pierce, B. C., and

Roth, A. Differential privacy: An economic method for choosing epsilon. In CSF

(2014), IEEE Computer Society, pp. 398–410.

[25] Jia, Z., Lin, S., Qi, C. R., and Aiken, A. Exploring hidden dimensions in accelerating

convolutional neural networks. In Proceedings of the 35th International Conference

on Machine Learning (2018), vol. 80 of Proceedings of Machine Learning Research,

PMLR, pp. 2274–2283.

58

BIBLIOGRAPHY

[26] Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model parallelism for deep neural

networks. In Proceedings of Machine Learning and Systems (2019), A. Talwalkar,

V. Smith, and M. Zaharia, Eds., vol. 1, pp. 1–13.

[27] Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model parallelism for deep neural

networks. In MLSys (2019), mlsys.org.

[28] Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A. P. GAZELLE: A low latency

framework for secure neural network inference. In USENIX Security Symposium

(2018), USENIX Association, pp. 1651–1669.

[29] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N.,

Bonawitz, K. A., Charles, Z., Cormode, G., Cummings, R., D’Oliveira, R. G. L., Eich-

ner, H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi,

B., Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson,

B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konečný, J., Korolova, A.,

Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R.,

Özgür, A., Pagh, R., Qi, H., Ramage, D., Raskar, R., Raykova, M., Song, D., Song,

W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma, P., Wang, J., Xiong,

L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., and Zhao, S. Advances and open problems in

federated learning. Found. Trends Mach. Learn. 14, 1-2 (2021), 1–210.

[30] Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich, S. U., and Suresh, A. T.

SCAFFOLD: stochastic controlled averaging for federated learning. In ICML (2020),

vol. 119 of Proceedings of Machine Learning Research, PMLR, pp. 5132–5143.

[31] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. In ICLR

(Poster) (2015).

[32] Konečný, J., McMahan, H. B., Ramage, D., and Richtárik, P. Federated optimiza-

tion: Distributed machine learning for on-device intelligence. CoRR abs/1610.02527

(2016).

[33] Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon,

D. Federated learning: Strategies for improving communication efficiency. CoRR

abs/1610.05492 (2016).

[34] Krizhevsky, A. One weird trick for parallelizing convolutional neural networks. CoRR

abs/1404.5997 (2014).

[35] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Sys-

tems (2012), F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,

vol. 25.

[36] Lee, J., and Clifton, C. How much is enough? choosing ϸ for differential privacy. In

ISC (2011), vol. 7001 of Lecture Notes in Computer Science, Springer, pp. 325–340.

59

BIBLIOGRAPHY

[37] Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., Paszke, A., Smith,

J., Vaughan, B., Damania, P., and Chintala, S. Pytorch distributed: Experiences on

accelerating data parallel training. CoRR abs/2006.15704 (2020).

[38] Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair resource allocation in federated

learning. In ICLR (2020), OpenReview.net.

[39] Liu, H., Wu, H., Sun, W., and Lee, I. Spatio-temporal GRU for trajectory classification.

In ICDM (2019), IEEE, pp. 1228–1233.

[40] Liu, T., Chen, W., and Wang, T. Distributed machine learning: Foundations, trends,

and practices. In WWW (Companion Volume) (2017), ACM, pp. 913–915.

[41] Liu, Y., Chen, T., and Yang, Q. Secure federated transfer learning. CoRR

abs/1812.03337 (2018).

[42] Lo, S. K., Lu, Q., Wang, C., Paik, H., and Zhu, L. A systematic literature review on

federated machine learning: From a software engineering perspective. ACM Comput.

Surv. 54, 5 (2021), 95:1–95:39.

[43] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M.

Graphlab: A new framework for parallel machine learning. CoRR abs/1006.4990

(2010).

[44] McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A.

Communication-efficient learning of deep networks from decentralized data. In AIS-

TATS (2017), vol. 54 of Proceedings of Machine Learning Research, PMLR, pp. 1273–

1282.

[45] McMahan, H. B., Moore, E., Ramage, D., and y Arcas, B. A. Federated learning of

deep networks using model averaging. CoRR abs/1602.05629 (2016).

[46] Mohammadi, M., Al-Fuqaha, A., Sorour, S., and Guizani, M. Deep learning for iot big

data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials

20, 4 (2018), 2923–2960.

[47] Papernot, N., Thakurta, A., Song, S., Chien, S., and Erlingsson, Ú. Tempered sigmoid

activations for deep learning with differential privacy. In AAAI (2021), AAAI Press,

pp. 9312–9321.

[48] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z.,

Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,

S. Pytorch: An imperative style, high-performance deep learning library. In NeurIPS

(2019), pp. 8024–8035.

[49] Petrou, P., Nikitopoulos, P., Tampakis, P., Glenis, A., Koutroumanis, N., Santipan-

takis, G. M., Patroumpas, K., Vlachou, A., Georgiou, H. V., Chondrodima, E., Doulk-

eridis, C., Pelekis, N., Andrienko, G. L., Patterson, F., Fuchs, G., Theodoridis, Y.,

60

BIBLIOGRAPHY

and Vouros, G. A. ARGO: A big data framework for online trajectory prediction. In

Proceedings of the 16th International Symposium on Spatial and Temporal Databases,

SSTD 2019, Vienna, Austria, August 19-21, 2019 (2019), pp. 194–197.

[50] Petrou, P., Tampakis, P., Georgiou, H. V., Pelekis, N., and Theodoridis, Y. Online

long-term trajectory prediction based on mined route patterns. In MASTER@ECML-

PKDD 2019 (2019), pp. 34–49.

[51] Qardaji, W. H., Yang, W., and Li, N. Differentially private grids for geospatial data.

In ICDE (2013), IEEE Computer Society, pp. 757–768.

[52] Qiu, X., Parcollet, T., Fernández-Marqués, J., de Gusmão, P. P. B., Beutel, D. J.,

Topal, T., Mathur, A., and Lane, N. D. A first look into the carbon footprint of

federated learning. CoRR abs/2102.07627 (2021).

[53] Ray, C., Dreo, R., Camossi, E., Jousselme, A.-L., and Iphar, C. Heterogeneous

integrated dataset for maritime intelligence, surveillance, and reconnaissance. Data

in Brief 25 (2019), 104–141.

[54] Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečný, J., Kumar,

S., and McMahan, H. B. Adaptive federated optimization. In ICLR (2021), OpenRe-

view.net.

[55] Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H., Albarqouni, S., Bakas, S.,

Galtier, M. N., Landman, B. A., Maier-Hein, K. H., Ourselin, S., Sheller, M. J.,

Summers, R. M., Trask, A., Xu, D., Baust, M., and Cardoso, M. J. The future of

digital health with federated learning. CoRR abs/2003.08119 (2020).

[56] Rivest, R. L., Adleman, L., and Dertouzos, M. L. On data banks and privacy homo-

morphisms. Foundations of Secure Computation, Academia Press (1978), 169–179.

[57] Rossi, A., Barlacchi, G., Bianchini, M., and Lepri, B. Modelling taxi drivers’ behaviour

for the next destination prediction. IEEE Trans. Intell. Transp. Syst. 21, 7 (2020),

2980–2989.

[58] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by

back-propagating errors. Nature 323 (1986), 533–536.

[59] Sabater, C., Bellet, A., and Ramon, J. Distributed differentially private averaging

with improved utility and robustness to malicious parties. CoRR abs/2006.07218

(2020).

[60] Shokri, R., and Shmatikov, V. Privacy-preserving deep learning. In Allerton (2015),

IEEE, pp. 909–910.

[61] Song, S., Chaudhuri, K., and Sarwate, A. D. Stochastic gradient descent with differ-

entially private updates. In GlobalSIP (2013), IEEE, pp. 245–248.

61

BIBLIOGRAPHY

[62] Suo, Y., Chen, W., Claramunt, C., and Yang, S. A ship trajectory prediction frame-

work based on a recurrent neural network. Sensors 20, 18 (2020), 5133.

[63] Tampakis, P., Pelekis, N., Doulkeridis, C., and Theodoridis, Y. Scalable distributed

subtrajectory clustering. In 2019 IEEE International Conference on Big Data (Big

Data) (2019), IEEE, pp. 950–959.

[64] Tan, A. Z., Yu, H., Cui, L., and Yang, Q. Towards personalized federated learning.

IEEE Transactions on Neural Networks and Learning Systems (2022), 1–17.

[65] Trasarti, R., Guidotti, R., Monreale, A., and Giannotti, F. Myway: Location predic-

tion via mobility profiling. Inf. Syst. 64 (2017), 350–367.

[66] Trask, A. Grokking Deep Learning, 1
st

ed. Manning Publications Co., 2019.

[67] Tritsarolis, A., Chondrodima, E., Pelekis, N., and Theodoridis, Y. Vessel Collision

Risk Assessment using AIS Data: A Machine Learning Approach. In MBDW (2022),

ACM, pp. 170–173.

[68] Tritsarolis, A., Chondrodima, E., Tampakis, P., and Pikrakis, A. Online co-movement

pattern prediction in mobility data. In EDBT/ICDT Workshops (2021), vol. 2841 of

CEUR Workshop Proceedings, CEUR-WS.org.

[69] Tritsarolis, A., Kontoulis, Y., Pelekis, N., and Theodoridis, Y. Masec: Discovering

anchorages and co-movement patterns on streaming vessel trajectories. In SSTD

(2021), ACM, pp. 170–173.

[70] Tritsarolis, A., Kontoulis, Y., and Theodoridis, Y. The piraeus ais dataset for large-

scale maritime data analytics. Data in Brief 40 (2022), 107782.

[71] Vepakomma, P., Swedish, T., Raskar, R., Gupta, O., and Dubey, A. No peek: A survey

of private distributed deep learning. CoRR abs/1812.03288 (2018).

[72] Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., and Reller-

meyer, J. S. A survey on distributed machine learning. ACM Computing Surveys

(CSUR) 53, 2 (2020), 1–33.

[73] Wang, M., Huang, C., and Li, J. Unifying data, model and hybrid parallelism in deep

learning via tensor tiling. CoRR abs/1805.04170 (2018).

[74] Wang, S., Cao, J., and Yu, P. S. Deep learning for spatio-temporal data mining: A

survey. CoRR abs/1906.04928 (2019).

[75] Werbos, P. J. Backpropagation through time: what it does and how to do it. Pro-

ceedings of the IEEE 78, 10 (1990), 1550–1560.

[76] Xue, H., Huynh, D. Q., and Reynolds, M. SS-LSTM: A hierarchical LSTM model for

pedestrian trajectory prediction. In WACV (2018), IEEE Computer Society, pp. 1186–

1194.

62

BIBLIOGRAPHY

[77] Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine learning: Concept and

applications. ACM Trans. Intell. Syst. Technol. 10, 2 (2019), 12:1–12:19.

[78] Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., and Yu, H. Federated Learning. Syn-

thesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool

Publishers, 2019.

[79] Yao, A. C. How to generate and exchange secrets (extended abstract). In FOCS

(1986), IEEE Computer Society, pp. 162–167.

[80] Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine, D., Prasad, K., Malek, M.,

Nguyen, J., Gosh, S., Bharadwaj, A., Zhao, J., Cormode, G., and Mironov, I. Opacus:

User-friendly differential privacy library in pytorch. CoRR abs/2109.12298 (2021).

[81] Zaheer, M., Reddi, S. J., Sachan, D. S., Kale, S., and Kumar, S. Adaptive methods

for nonconvex optimization. In NeurIPS (2018), pp. 9815–9825.

[82] Zhang, D., Chen, X., Wang, D., and Shi, J. A survey on collaborative deep learning

and privacy-preserving. In DSC (2018), IEEE, pp. 652–658.

[83] Zhang, H., Li, Y., Deng, Z., Liang, X., Carin, L., and Xing, E. P. Autosync: Learning

to synchronize for data-parallel distributed deep learning. In NeurIPS (2020).

63

List of Abbreviations

CML Centralized Machine Learning

CNN Convolutional Neural Network

DL Deep Learning

DML Distributed Machine Learning

DP-SGD Differentially Private Stochastic Gradient Descent

DSSGD Distributed Selective Stochastic Gradient Descent

FedAvg Federated Averaging

FedVRF Federated Vessel Route Forecasting

FL Federated Learning

FTL Federated Transfer Learning

GDPR General Data Protection Regulation

GRU Gated Recurrent Unit

HE Homomorphic Encryption

HFL Horizontal Federated Learning

I.I.D Independent and Identically Distributed

LSTM Long Short-Term Memory

ML Machine Learning

NN Neural Network

PDF Probability Density Function

PerFL Personalized Federated Learning

PPML Privacy-Preserving Machine Learning

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SMPC Secure Multi-Party Computation

VFL Vertical Federated Learning

VRF Vessel Route Forecasting

VTFF Vessel Traffic Flow Forecasting

65

	Περίληψη
	Σύνοψη
	Abstract
	Acknowledgements
	Introduction
	Thesis Contribution
	Thesis Organization

	From Distributed to Federated Learning - an Overview
	Distributed Machine Learning
	Privacy-Preserving Learning
	Federated Learning

	Maritime Analytics and the VRF Problem
	Definitions and VRF Problem Formulation
	Related Work on VRF Methods
	Centralized vs. Federated Learning

	Use case: Application of our Approach over Real-world AIS datasets
	Datasets and Preprocessing
	Experimental Setup
	Experimental Results
	Collaboration using Centralized ML
	Collaboration using Federated ML
	Addressing Client Drift
	The Privacy Preservation Trade-off

	Discussion and Exploitation

	Conclusions and Future Work
	Bibliography
	List of Abbreviations

