NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ge

v

DIVISION OF DATA SCIENCE AND MACHINE LEARNING

s

v &
] \PTANRY
7 1pomHOE
Q=
nvpPopos

|

Towards Understanding Privacy-Aware

Artificial Intelligence

From Intuition to Application

DipLoMA THESIS

of

ANDREAS TRITSAROLIS

Supervisor: Stefanos Kollias
Professor

Co-Supervisors:
George Siolas
Laboratory Teaching Staff
Yannis Theodoridis

Professor

Athens, June 16, 2022

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHooL OF ELECTRICAL AND COMPUTER ENGINEERING

DIvISION OF DATA SCIENCE AND MACHINE LEARNING

Towards Understanding Privacy-Aware Artificial

Intelligence

From Intuition to Application

DipLoOMA THESIS
of

ANDREAS TRITSAROLIS

Supervisor: Stefanos Kollias

Professor

Co-Supervisors:
George Siolas
Laboratory Teaching Staff
Yannis Theodoridis

Professor

Approved by the examination committee on June 16, 2022.

(Signature) (Signature) (Signature)

Stefanos Kollias Yannis Theodoridis George Stamou

Professor Professor Professor

Athens, June 16, 2022

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHooL OF ELECTRICAL AND COMPUTER ENGINEERING

DIvISION OF DATA SCIENCE AND MACHINE LEARNING

Copyright (C) - All rights reserved.
Andreas Tritsarolis, 2021-2022.

The copying, storage and distribution of this diploma thesis, exall or part of it, is prohibited
for commercial purposes. Reprinting, storage and distribution for non - profit, educational
or of a research nature is allowed, provided that the source is indicated and that this

message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference
is included in the bibliographic references section. I fully, individually and personally
undertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

Andreas Tritsarolis
June 16, 2022

Iepidnyn

H Texvnu Nonpoouvn (Artificial Intelligence - Al), kat o ocuykekpipéva n Mnyavikn
MdSnon (Machine Learning - ML), utoBeteital eUpEng oe TIOAAEG TTTUXEG TG KAONPEPIVOTNTAS
pag, pe ta dedopéva va nai¢ouv kabBoplotiko podo otnv ermtuyia tg. Kabwg o1 cuokeuég
Internet of Things (IoT) mapdyouv tepactieg roocotnteg dedopévav pe AY100e1g TaxUTnTeg,
TIPOKUITIEL P1d TIPOKANOCT 600V a@opd Ta {nthjpatd I910TKOTNTAg-aropPnTou KAl TOUG UTIOA-
oy10TiKoUG ropoug. Optlopéva dedopéva evyxedopévag va mepteXouv euaiodnieg mAnpodopieg
(.. watpkd apyeia) kat va pn Suvavtat va eivatl Siabéopia oe avoiktd anobetrpla, eve adda
€ival 1000 oyk®O1) 1Iou Hev PIIOPOUV va XPNotRortoln0ouv os £éva oUOTIa KEVIPIKOIIOUEVNG
APXITEKTOVIKIG Yid TV eknaidsuon evog poviedou. H Opoonoviaxkr) Madnon (Federated
Learning - FL) nipotdBbnke and v Google 1o 2016 [44, 45], POKEIPNEVOU VA AVIIHET®-
rioel g napandve npoxkAnoelg. Ev oAiyolg, eival pa mpooéyylon mou emitpénel oe Eva
povtedo va exkniaideutel o Hedopéva mou dev katéxoupe Kat Hev propoupe va doupe. Ta
b6edopéva mou Gnpoupyouvial aro edge devices (rt.x. smartphone) arobnkevoviatl tormuka
Kat dev Kowvorolouvial oe aAAoug KOpBoug oto SiKTUO 1) ToV Kevipko Stakopioty [11, 42].
Avtifeta, poOvo 01 eVIIEPWOELS TV TOTTIKAV HOVIEA®V KOVOITOl0UVIAl KAl CUYKEVIPOVOVIAL
npoKelpévou va dnuioupynBet €va eviaio poviedo. Xe autr) tr SiarpiBr, KAatavooupe v
Opoornoviiakr) Md9non 1000 Yewpnuikd 600 kat adyopibpika. ErmuAéov, ouykpivoupe ta
TTAEOVEKTIIATA KAl TA PEIOVEKTNHIATA TG HE TNV KEVIPIKOIIOUHEVI) TIPOCEYYIOT), OT0 TAdi-
oo g [TpdBAeywng Atadpoprg ITAoiou (Vessel Route Forecasting) kxat KukAogpopiakrg Porg

(Vessel Traffic Flow Forecasting).

Agterg KAe1ba

Mnyxavikr) MdaSnor, Alatrjpnon Anopprtou-Idietikotntag, Opoortovdiaxr MadSnon, Ava-
Auvtikry Kivoupevov Asdopévav, TIpdBreywn Awabpopng ITAoiou, ITpoBAeywn Kukdopoprakng
Por\g [TAoiwv

Zuvoyr

H sfarmlewon twv Internet of Things (IoT) cuokeudv, onwg (Bro-)aiodntrpeg, smart-
watches, smartphones kat GPS trackers, £€xouv 06nynoet otnv mapay®yr| tEpAcTti®V ITIOCOTHTOV
ATPIK®V, KIWVNPATIKOV KAl TTOAAOV dAAev Tuniov dedopévev. H Srabeopdinta tev ev Aoy
6edopévav €xel {WTIKO poAo otnv ermtuyia tv texvoloyiov Mnyxavikng MadSnong (Machine
Learning - ML), ot o1toieg PItopouUVv va eKTEAECOUV P1d MTOIKIALA EPYACIHV TTOU PEPIKES POPES
propet va uriepBaivouv v avBporivr kavotnta [78]. Qotooo, ta edopéva rmou apayoviat
and ta edge devices eival ek @UOswg cuaiobnta (r.X. watpka apxeia, minpodopieg mAoiwv
K.ATL.), € OUK OAlyeQ OPEG va eival katavepnpéva oe TIoAAd péprn. AUTEG o1 1610t teg Je-
TOUV VEEG TIPOKAIOEIS OO0V APOPA TV ATIOTEAEOHUATIKT] AOOKEUOT], AVAAUOT] KAl §ay®yn
yvoong aro t€towa dedopéva.

H xkevipwonoinon twv dedopévev oe pla ouykekpipévn tonobeoia (Y. KéEvipo Oe-
dopévev) duvatal va kataotel dlaitepa nepindokn epyacia, Adyem tou UPnAou KOCTOUG Arto-
9nkevong/bandwidth (mt.x., £évag otdéAog mMAoimv turou AlS avapévetat va mapayet rtoAda TB
dedopévav oe kaBnueptvr) Baon). Ermmiéov, Adye Kavoviopav émnwg 1o GDPR!, i ouddoyn
Katl Kowr xpnon suaiodntev dedopévav pmopet va yivel apretd SUOKO0An, av oxt aduvartn,
avaykaloviag €10l ta dedopéva va Umapyouv oe pepovopéveg anobrkeg dedopévav mmou
Slatnpouviatl ano toug avtiototxoug 1810kt teg/etaipoug. Evallaktika, n avabeon g 61-
adikaoiag exknaibeuong ota edge devices kati/1] otig anobrkeg debopévav, €101 Hote KAde
€taipog va pmopet va xpnotpornou)ost éva poviedo ML xpnoworowwviag ta dika tou Se-
dopéva, propel va ernnpedost v anodoon TV PoViEA@V, 0dnyoviag eite o UOBEATION
anodoorn (r.X. uro-rnpooappoyr)) eite oe pepoAnruikn (biased) katavoyir) otoxou (rt.X. UmEp-
POoappoyr)), avdloya pe 1o Peyebog Tou ouvoAoU 8eSopévav Kat TV KATAVOT) TOV XAPAK-
TPIOTIKOV, AvTioTotyd.

[Tpoxke€évou va emAuBoUV 01 MAPATIAVE ITIPOKATOEIS KAl va eKITAISEUTEL €va HOVIEAO
Mnyavikiig Madnong nou dev Paocifetat ot ouAdoyr) 0Aev tov §e60EVAOV OF 1110 KEVIPIKI)
anoBrikevor, ot McMahan et al. [45] kat Konecny et al. [33] mpoteivouv v Opoortovot-
akr) Madnon (Federated Learning - FL), pia kawvotopo peSodoloyia Mnyxavikng MaSnong,
OITOU £va KEVIPIKOIOUHEVO HOVIEAO eKratdevetal oe arokevipopéva debopéva. Evdele-
Xéotepa, kade edge device AapBavel €va apX1KO POVIEAO AITO TOV S1AKOLOTY] KAl IIPOX®Pd
otV eknaibeuor) 10U Xpnolponoloviag ta aviiototxa (tormkd) dedopéva. Ev cuvexeia, oAa
T EVIHEPOUEVA POVIEAA PETAPOPTIOVOVIAL OTOV S1aKOMI0TY], dnploupywviag £tol €va VEo,
evorolnpévo poviedo. H esnmavddnyn tng naparnave Siadikaciag yla apKetoug KUKAOUG,

eVOEXETAL VA MTPOKAAECEL CUYKALOT TOU €V AOY® Poviedou, dnpoupywviag éva ML poviédo 1o

Tpootacia Sedopévav. Eupwnaikr) Emtporr), https://ec.europa.eu/info/law/law-topic/data-protection_
en, Tedeutaia eriokeyn: 01/07/2022

https://ec.europa.eu/info/law/law-topic/data-protection_en
https://ec.europa.eu/info/law/law-topic/data-protection_en

Zuvoyn

ortoio arodidet, Touddyiotov, KaAUtepa o 0XE0T He 1o Tt da propouvoe va padet kade pépog
arnod povo tou. Idavikd, mpdkettal yla pa IIpooeyylon tou i610u poviédou eav ekmnatdeutel
L€ KEVIPIKOTIOUEVO TPOTIO.

Xapn oto FL, n anoxkevipopévn @uon tov dedopévav datnpeital, kabwg ta edge devices
eknatdevouv anod Kowvou eva poviedo Mnyxavikig MadSnong, otéAvoviag povo Tig evpep®-
oelg (6ndabdr), g mapaywyoug) tov HoviEd@v otov Kevipko Stakoptotr. Efattiag autou,
ka9e etaipog dratnpel tov EAeyyxo v dedopévav tou, Kabng, ouctaotikd, ta Sedopéva Sev
?eUyouVv” moTé arod) OUOKEUT], Kabiotwviag SUCKOAGTEPO yla £vav eERTEPIKO ITAPATNPNTL)
va e&ayet ornoladrote guaiodnn minpogopia. EmurAéov, poipaloviag tov @oépto epyaociag
g exnaidevong oe oAAd edge devices, 10 FL erutpénet) dnpiovpyia Suvnukda o egurt-
VOV POVIEA®V, HE MKpOotepn Aavbdvouoa kabuotépnon cuprniepacpou (inference latency),
Atyotepn OUVOAIKY] KATAVAA®ON €VEPYELAG, Kal, KAT €MEKTAOT, HMIKPOTEPO IMEPBAAAOVIIKO
avtikturno [52], StaopaAidovtag mapdAAnia 1o anoppnto 1wV dedopevav.

[Tépav TV MapAnAve MTAEOVEKTNIATRV, ETIEIOT] TO EVOTIOINEVO J1OVIEAO £1val KOVOXPNOTO
e 0Aa ta edge devices (rt.X., smartphones), Uvatat va xpnotpornoinfel apéowng, apéxov-
1ag pa efatopikeupévn epnepia. ‘Eva xapaxkinplotko rapadetypa epappoyrg FL eivat
10 Google Gboard [20]. 'Otav to Gboard epgaviletl pia npotevopevn Aén, to smartphone
aroBnKevUel TOTIIKA TANPOPOPIEG OXETIKA e TO TPEXOV TePIBAAAOV, KAOMG KAl £AV OVI®G
EMAEXINKE 1] TIPOTEWVOLIEVT] TIPOTAOCT] 1) OXl. XTI OUVEXELD, XPNOHOIIOIOVIAG TNV IIpoavadep-
Oeioa texviky, enedepyddetal 10 10TOPIKO TG CUOKEUTG IIPOKEIIEVOU va TIPoTeivel BeATidoelg
yla Tov enOpEVO YUpo eknaibeuong tou poviedou. AAda napadetypata ano wn (ouyxpovn)
KaBnpepwotnta neptaapBavouv tig epappoyeg tou Apple macOS/iOS, orou o FL xpnot-
poroteital yla v mpootacia Tou arnoppniou eV XPnotev, dnpioupyoviag HOVIEAd TIoU
OTOXEUOUV OtV MePAttEP® Pedtinon tng eprnelpiag xpnotn.

Aapfdvoviag unoyrn ta napandve, otoxXog Pag o autn 1 dtatpiBn eivat va Siepeuvr-
OOUHE EPAPHOYES TEXVITHG VONHoouvng pe S1aopdldion ToU AmopprIou-1810aTKOTNTAS, OTO
mAaiolo tng avaluong Sedopévev vautidiag. TUYKeKPIPEVa, eMMAEYOURE Pld TIOAU KPIioUn
epyaoia avadutkng, rou ovouddetat ITpdBAeyn Atadpoprg [TAoiwv (Vessel Route Forecast-
ing - VRF) kat xpnowornotoupe pebodoug FL rporkepévou va eknatdeooupie aro Kowou éva
poviédo oe oAAAAEG aroBnkeg Sedopévav (TT.X. TTAVETIOTLA, ETAIPEIES, K.ATL.), SraodaAi-
{ovtag mapadAnda ou 6ev Sa Srappevcouv euaiodnieg MAnpopopieg oe AAAOUG €1aipoUg EKTOG
TO0U Katoxou tav dedopévev. H ev Adyw epyaoia eivatl daitepa onpaviikr), kabwg duvatat
va xprnoporonfei oe 81apopeg mruxég aoPpdalelag g VauTIAlaKAG Kivnong Orneg, petadu
AAA®v, aAlEUTIKY] TipoortdBeia/iieot), PEAAOVIIKEG OUYKPOUOELS, KABMG Kal CUPIMOPEUOPEVA
nipotuna [68].

‘Aturta, 6edopévou evog Xpovikou Sraotnpatog At, otoxog pag eivatl va npoBAgyoupe Tig
peAdovikeg k TomoBeoieg evog Kivoupevou orAadoug petd aro xpovo At. To mpofAnpa mou
avtipetaidoupe eival apketd nepindoko Kabwg, mépav g eyyevoug SUokoAiag ripoBleyng
TOU PEAAOVIOG, TIPETIEL ETUTAEOV VA OPIOOUNE TO TIPOTOKOAAO erikoveviag Opoomovolakg
MdSnong, kabwg kat pebodoug yia) 61aodPdAAion TO0U AMOPPHTOU-81OTIKOTNTAS TV Oe-
dopévav, dadikaoieg ou Sev eival ipogaveig. EE dowv yvwpiloupe, to mpoPfAnpa rou
OTOXEUOULLE VA AVIIPEIRITIOOUNE eV £Xel aKOWn aviipetorotel ot BiBAtoypadia.

[ToAA¢G epaployeg TIOU oxetidoviatl pe v Kivnukotta Sa prnopovoav va en®deAnbouv

Zuvoyn

and pua o gpyacia avaduong. Aoye TV pnyaviopev 81acpdiiong Tou aropprtou-
dwtkotntag, oyt povo ta edge devices (r.x. rmdoia turou AlS), aAAd kat ot 1810KtTeEg
anobnkov dedopévev (I.X. MAVEMOTH1a) PIIopouV va eKMASEUC0UV A0 KOWOU £vd 1oV-
1¢do Mryxavikig Mdadnong mpoxepévou va dnpioupyrjoouv éva “eEurnvotepo” poviédo, 1o
ortoio e§atopikevetal ya va taiptddet oug avaykeg kade etaipou.

Ev kataxkAeibi, 1 ouvelo@opd Pag AroTuIi®VETAl otd eEHG:

o [Tapéxoupe pia e1g fadog PiRAoypa@ikr) avaokomnnon oxeukd pe v Katavepnpévn
kat Opoonovdlakr] Madnor, kadng kat pedodoug yia) Siacpdadion tou anopprou

v Sebopcvav.

e Yrodeikvuoupe epappoyeg Texvng Nonpoouvng pe 61acpaAion tou amnopprou oto
rniedio avaduong kivnpatikev Sedopévav, pe éngaor oty Ipd6Asyn Atadpouav ITAoiou.

e IIpoteivoupe 10 FedVRF, éva yeviko TAAIo10 yia TV NPOoBAEY] TOV PEAAOVIIKGOV TOITO-

Yeo1wv 1oV mMoiev xprnowponoioviag Opovorniovoiaky Madnon.

¢ Emdeikvuouye v anotedAeopaukotnta kat tny euedi§ia tou FedVRFE Xprotonoioviag

rtoAAarAd ouvolda 6edopévev MPAYHATIKLG KIv|oNg Ao TOV VAUTIAIAKO TOEA.

o [TelpapatidOpacte MEPAIEP® OXETIKA HE TNV AvIloTadnion anoAsiag rmoottag/anoppniovu,
oe oxéon pe 1a ouotnpata Opovortovolakrng Madnong, Kabmg Kal pe toug Pnxavio-
poug Staopadiong ToU AmoppnIou, KAl SeiXvoupe 1a amoteAéopatd pag 0oov agopd

mv akpifeia ipoBAsyng.

e ExpetadAeudpaote 10 FedVRF Kal anodelkvUoule) XPNOTIKOTHTA TOU OTo IMAAaiolo

g IIpoPAeyng Kukdogoprakrg Porg ITAoiwv.

H uniddounn StatpiBr) eivat opyavepévn g e§rg. To kepadaio 2 mapéxel 11a OAOKANPOHEVT)
BBAoypagikr) emokonnon oxeukd pe v Katavepnpévn kat Opoorovoiakn padnor, Ka-
Ywg Kal TEXVIKEG yla T Slatpnorn tou arnoppntou, eve oto Kedpddaio 3 opidoupe emionpa
10 ipoPAnpa g IpoBAsywng Atadpopwv IMTAoiwv kat mapexoupe pa ouvioprn) BBAloypadikr)
ETTIOKOIN O, KaB®g Kat) pedodoloyia pag oxetka pe myv exknaideuor tou poviedou Fed-
VRF 1600 pe Kevipikortoinpévr, oo kat Opoortovéiaxkr Madnor). ErmuAéov, oto Kepddawo 4
rnieipapatigopaocte §1e§0d1ka pe 10 FedVRF, xprnowpornoioviag t€ooepa ocUvoda dedopévav,
ITOU €VIOII{oVIal OTOV MPAYHATIKO KOOHPO Kdl, OUYKEKPIHEVA, OTOV VAUTIAIAOKO TOPEd, Kal
oulntape MEPAITEP® TA EUPHIATA PAG OXETIKA HE TA MTAEOVEKTNATA KAl Ta HPEIOVEKTHHATA
g Kade pebBodou expabdnong avagopikd pe v akpifeia npoBisyng. TéAog, oto KepdAao 5

oloxrAnpwvoupe) diatpiBr), divoviag mapdAAnda KateubUvoetg yia PEAAOVIIKESG ETIEKTACELG.

Abstract

Artificial Intelligence, and more specifically Machine Learning, is broadly adopted in
many aspects of our daily lives, with data playing a crucial role in its success. While Inter-
net of Things (IoT) devices generate massive amounts of data at high velocity, a challenge
arises when privacy and computational resources are concerned. Some data may be quite
sensitive (e.g., medical records) and cannot be openly available, while others are so volu-
minous that cannot be used in a centralized fashion to train a model. Federated Learning
was proposed by Google in 2016 [44, 45] to address the aforementioned challenges. In
a nutshell, it is an approach that allows a model to be trained on data we do not own
and cannot see. The data generated by edge devices (e.g., smartphones) are stored locally
and never shared with other nodes on the network or a central server [11, 42]. Instead,
only model updates are shared and aggregated in order to construct a global model. In
this thesis, we understand Federated Learning from both a theoretical and algorithmic
perspective and compare its advantages and disadvantages to the centralized approach

within the context of Vessel Route and Traffic Flow Forecasting.

Keywords

Machine Learning, Privacy-Preservation, Federated Learning, Mobility Data Analytics,

Vessel Route Forecasting, Vessel Traffic Flow Forecasting

Acknowledgements

First and foremost, I am extremely grateful to my co-supervisors, Prof. Yannis Theodor-
idis, and Dr. George Siolas, for their invaluable advice, continuous support, and patience
during my M.Sc. thesis. Their immense knowledge and plentiful experience have encour-
aged me throughout my academic research and daily life.

Also, I greatly appreciate my supervisor, Stefanos Kollias for his marvelous supervi-
sion, and guidance throughout the period of my study.

Many thanks to all of the members of staff in the Artificial Intelligence and Learning
Systems (AILS), and the Data Science (DataStories) Laboratory at National Technical
University of Athens (NTUA) and University of Piraeus, respectively, for their kind support
during my M.Sc. study. Also, I extend my thanks to all my friends and colleagues from
NTUA for their time, advice, and moral support.

Last, but not least, my warm and heartfelt thanks go to my mother, for her uncon-
ditional, unequivocal, and loving support and hope she had given to me. Without that
hope, this work would not have been possible. Thank you for all of your love and for

always reminding me of the end goal.

Athens, June 2022

Andreas Tritsarolis

Table of Contents

Mepidnyn

Zuvoyn

Abstract
Acknowledgements

1 Introduction
1.1 Thesis Contribution e

1.2 Thesis Organization oo

2 From Distributed to Federated Learning - an Overview
2.1 Distributed Machine Learning
2.2 Privacy-Preserving Learningo o000
2.3 Federated Learning L oo

3 Maritime Analytics and the VRF Problem
3.1 Definitions and VRF Problem Formulation
3.2 Related Work on VRF Methods
3.3 Centralized vs. Federated Learning

4 Use case: Application of our Approach over Real-world AIS datasets
4.1 Datasets and Preprocessing n e
4.2 Experimental Setup Lo
4.3 Experimental Results L0 oo
4.3.1 Collaboration using Centralized ML
4.3.2 Collaboration using Federated ML
4.3.3 Addressing ClientDrift
4.3.4 The Privacy Preservation Trade-off

4.4 Discussion and Exploitationo

5 Conclusions and Future Work

Bibliography

List of Abbreviations

19
21
22

23
23
26
28

35
35
35
36

39
39
40
41
41
44
47
49
53

55

63

65

List of Figures

1.1

1.2

2.1
2.2
2.3
2.4
2.5

3.1

4.1
4.2

4.3

4.4

4.5

4.6

Your phone personalizes the model locally, based on your usage (A). Many
users’ updates are aggregated (B) to form a consensus change (C) to the

shared model, after which the procedure is repeated [source].

Vessel Route Forecasting - blue, green, and orange graphs correspond to

past, current, and predicted objects’ locations

[lustration of a Distributed Machine Learning (DML) system [78]
Federated Learning Communication Architectures [55]
Mlustration of HFL, a.k.a. sample-partitioned federated learning [77].
[Mlustration of VFL, a.k.a. feature-partitioned federated learning [77].

Client-drift in FedAvg is illustrated for 2 clients with 3 local steps (N = 2, K =
3). The local updates y; (in blue) move towards the individual client optima

x; (orange square). The server updates (in red) move towards N Z x; in-

stead of to the true optimum x* (black square). [30]
GRU-based neural network architecture [68]

Snapshots of (a) Piraeus; (b) Brest; (c) Oslo; and (d) MarineTraffic datasets.

Training three VRF instances in centralized fashion on Brest (a,b,c); Norway
(d,e.f); and Piraeus (g,h,i) training set and assessing its displacement error

on Brest (a,d,g); Norway (b,e,h); and Piraeus (c,f,i) testset.

Learning curves for (a) Brest; (b) Norway; and (c) Piraeus centralized VRF
instances (blue and orange lines correspond to the training and validation

sets, respectively).

Training a centralized VRF model on Brest, Norway, and Piraeus unified
training set and assessing its displacement error on (a) Brest; (b) Norway;

and (c) Piraeus testset.

Learning curve for the unified centralized VRF instance (blue and orange

line corresponds to “train” and “dev” sets, respectively).

Training a VRF model using FL on Brest, Norway and Piraeus training set
and assessing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus

test set. L e e e e e e e e e e e e e e

20

21

24
30
31
31

33

37

41

43

44

44

45

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

LIST OF FIGURES

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

Learning curve for (a) Brest; (b) Norway; and (c) Piraeus local VRF workers
compared to FedVRF. Blue/orange lines correspond to the workers’ training
and validation loss, while cyan/red lines correspond to the training and

validation loss of FedVREF, respectively.
Probability density functions (PDFs) of Ax and Ay of (a) Brest; (b) Norway;

and (c) Piraeus datasets.o

Training a VRF model using PerFL on Brest, Norway and Piraeus training
set and assessing its displacement error on (a) Brest; (b) Norway; and (c)

Piraeus testset. e e e e e e e

Learning curve for (a) Brest; (b) Norway; and (c) Piraeus local VRF workers
compared to personalized FedVRF. Blue/orange lines correspond to the
workers’ training and validation loss, while cyan/red lines correspond to

the training and validation loss of personalized FedVRF, respectively.

Training a Differentially Private (DP) VRF model using PerFL on Brest, Nor-
way and Piraeus training set and assessing its displacement error on (a)

Brest; (b) Norway; (c) and Piraeus (c) testset.

Learning curve for DP-enabled (a) Brest; (b) Norway; and (c) Piraeus local
VRF workers compared to personalized FedVRF. Blue/orange lines corre-
spond to the workers’ training and validation loss, while cyan/red lines
correspond to the training and validation loss of personalized FedVRF, re-

spectively. L. e e e

Training a Differentially Private (DP) VRF model using PerFL on pretrained
Brest, Norway and Piraeus corresponding CML model and training set and
assessing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus

test set. L e e e e e e e e e e e e e e e

Learning curve for DP-enabled (a) Brest; (b) Norway; and (c) Piraeus local
VRF workers (/w pretrained CML models) compared to personalized Fed-
VREF. Blue/orange lines correspond to the workers’ training and validation
loss, while cyan/red lines correspond to the training and validation loss of

personalized FedVRF, respectively.
Training a (e, 6) Differentially Private (DP) VRF model using PerFL on pre-

trained Brest, Norway and Piraeus corresponding CML model and training
set and assessing its displacement error on (a) Brest; (b) Norway; and (c)

Piraeus testset. L e e e e e e e e

Learning curve for (e, 6) DP-enabled (a) Brest; (b) Norway; and (c) Piraeus
local VRF workers (/w pretrained CML models) compared to personalized
FedVRF. Blue/orange lines correspond to the workers’ training and vali-
dation loss, while cyan/red lines correspond to the training and validation

loss of personalized FedVRF, respectively.

Predicting the trajectory of a vessel up to At = 15 min. using all (Fed-)VRF

variants on (a) Brest, (b) Norway, and (c) Piraeus dataset.

46

46

48

48

49

50

50

51

52

52

LIST OF FIGURES

4.18 Predicting maritime traffic flow up to At = 15 min. using all (Fed-)JVRF
variants, namely, (b) CML (share all), (c) CML (share model), (d) FL, (e)
PerFL, (f) DP-PerFL (e = o), (g) DP-PerFL (pretrained; € = o0), and (h) DP-

PerFL (¢ = 110) compared to (a) actual traffic flow on Piraeus dataset. . . . 54

List of Tables

2.1

2.2

Typical characteristics of federated learning settings vs. distributed learn-
ing in the datacenter (e.g. [7]). Cross-device and cross-silo federated learn-
ing are two examples of FL domains, but are not intended to be exhaustive.
The primary defining characteristics of FL are highlighted in bold, but the
other characteristics are also critical in determining which techniques are
applicable. [29]

Comparison between gradient averaging and model averaging [78]

Chapter E

Introduction

The vast spread of IoT-enabled devices, such as (bio-)sensors, smartwatches, smart-
phones, and GPS trackers, has led to the production of vast amounts of medical, mobility,
and several other types of data. The availability of such data is crucial to the success
of Machine Learning (ML) technologies, which can perform a variety of tasks that may
sometimes exceed human performance [78]. However, the data produced by the edge
devices are by nature sensitive (e.g., health records, vessel information, etc.), and, more
often than not, distributed across many parties. These properties pose new challenges in
terms of efficient storage, analytics, and knowledge extraction out of such data.

Centralizing the data to a certain location (e.g., data center) may become quite a cum-
bersome task because of the high storage/bandwidth costs (e.g., AIS-enabled vessels are
expected to generate several TBs of data on a daily basis). In addition, due to regula-
tions such as GDPR!, the collection and sharing of high sensitive data can become quite
difficult, if not outright impossible, thus forcing the data to exist in isolated data silos
maintained by the corresponding owners/parties. Alternatively, delegating the training
process to the edge devices and/or data silos, so that each party can use an ML-based
model using their own data, may impact the models’ performance, with sub-optimal per-
formance (e.g., under-fitting) or a biased target distribution (e.g., over-fitting), depending
on the datasets’ size and features’ distribution, respectively.

In order to solve the aforementioned challenges, and train an ML-based model that
does not rely on collecting all data to a centralized storage, McMahan et al. [45] and
Konecény et al. [33] propose Federated Learning (FL), a novel ML paradigm, where a
centralized model is trained on decentralized data. Figure 1.1 illustrates the proposed
cross-device FL architecture. In particular, each edge device receives a seminal model
from the server and proceeds to train it using its corresponding data. Afterwards, all
updated models are uploaded to the server, where they are aggregated, thus producing
a new model. Repeating the process for several cycles may eventually cause the global
model to converge, producing an ML model that performs at least better than what each
party can learn on its own, ideally an approximation of the same ML model if trained in a
centralized fashion.

Using FL, the decentralized nature of the data is maintained, as the edge devices

Data protection; European Comission, https://ec.europa.eu/info/law/law-topic/data-protection_en, Last
visited: 07/01/2022

https://ec.europa.eu/info/law/law-topic/data-protection_en

Chapter 1. Introduction

N FFEEE —o
/] \

| %Bm%ﬁ SN

Figure 1.1. Your phone personalizes the model locally, based on your usage (A). Many
users’ updates are aggregated (B) to form a consensus change (C) to the shared model,
after which the procedure is repeated [source].

collaboratively train an ML model, only sending weight updates (i.e., gradients) to the
aggregation server. Because of that, every participant keeps control of its own data,
as it essentially never “leaves” the device, therefore making it harder for an adversary
to extract any sensitive information. Additionally, by sharing the training workload to
multiple edge devices, FL allows for potentially “smarter” models, lower inference latency,
less overall power consumption, and by extension, lighter environmental impact [52], all

while ensuring data privacy.

In addition to the aforementioned advantages, because the aggregated global model
is shared with all edge devices (i.e., smartphones), the improved model on your phone
can be used immediately, therefore providing a personalized experience. A prime example
of FL application in real-world scenarios is Google Gboard [20]. When Gboard shows a
suggested query, the smartphone locally stores information about the current context and
whether the suggestion was actually clicked or not. Afterwards, using FL, it processes
that history on-device to suggest improvements to the next model iteration. Other real-
world applications involve the applications of Apple macOS/iOS, where FL is used in
order to protect user privacy, building models that are used to improve features to further

enhance user experience.

Taking all the above into account, our aim in this thesis is to investigate privacy-aware
Al applications within the context of maritime data analytics. In particular, we choose a
very critical maritime analytics task, called Vessel Route Forecasting (VRF), and employ
privacy-preserving ML methods in order to collaboratively train an ML model across mul-
tiple data silos (e.g., universities, corporations, etc.), all while ensuring that no sensitive

information will leak to other parties other than the owner of the data. VRF is critical

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

1.1 Thesis Contribution

O
Q@
) ® o e
®)
Q. o o
@ ® (@)
PY O
Tl T2 T3 T4 T5

Figure 1.2. Vessel Route Forecasting - blue, green, and orange graphs correspond to past,
current, and predicted objects’ locations

because it can be used in various aspects of maritime mobility awareness, including,
among others, fishing effort/pressure, future collisions, as well as co-movement patterns
[68].

Informally, given a look-ahead time interval At, the goal is to predict the future k
locations of a moving vessel after At time. Figure 1.2 illustrates such an example, where
in blue and green, we have the information at hand (past and current locations, respec-
tively), whereas in orange, we have the predicted routes. The problem we address is quite
challenging since, apart from the inherent difficulty of predicting the future, we also need
to define the FL communication protocol, as well as methods for ensuring data privacy,
both of which are not straightforward procedures. To the best of our knowledge, the

problem we aim to address has not been addressed in the literature yet.

1.1 Thesis Contribution

Several mobility-related applications could benefit from such an analytics task. Due
to the privacy-preserving mechanisms in FL, not only edge devices (e.g., AlS-enabled
vessels) but also data silo owners (e.g., universities) can collaboratively train an ML model
in order to create a “smarter” predictive model, that, in addition, can be personalized to

fit the needs of each participant. In a nutshell, our main contributions are the following:

We provide an in-depth literature review regarding Distributed and Federated Learn-

ing, as well as methods for ensuring data privacy.

e We indicate privacy-aware Al applications within the mobile data analytics field,

with emphasis on Vessel Location Forecasting (VRF).

e We propose FedVRF, a framework for predicting the vessels’ future locations using
FL.

e We demonstrate the efficiency and versatility of FedVRF using several large-volume

real-world data from the maritime mobility domain.

Chapter 1. Introduction

e We further experiment on the quality/privacy trade-off with respect to FL schemes,
as well as privacy-preserving mechanisms, and demonstrate our results in terms of

prediction accuracy.

e We exploit FedVRF and demonstrate its usability within the context of Vessel Traffic
Flow Forecasting (VTFF).

1.2 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides a comprehensive
overview of state-of-the-art works regarding Distributed and Federated Learning, as well
as techniques for privacy preservation, while in Chapter 3, we formally define the VRF
problem and provide a brief overview of related state-of-the-art works, as well as our
methodology regarding the training of the VRF and FedVRF models in Centralized, and
Federated Learning fashion. Additionally, in Chapter 4, we thoroughly experiment on
FedVRF using four real-world datasets from the maritime domain and further discuss our
findings, related to the pros and cons of each learning method, with respect to prediction

accuracy. Finally, in Chapter 5, we conclude our thesis, giving hints for future work.

Chapter g

From Distributed to Federated Learning - an

Overview

Federated Learning is the intersection of multiple scientific discipline including, among
others, Distributed Learning, Cryptography, and Data Ethics/Privacy. In this chapter,
we discuss the related work behind the most important research topics of FL within the
scope of this thesis, its advances in the form of state-of-the-art works, as well as its open

problems.

2.1 Distributed Machine Learning

Distributed Machine Learning (DML), refers to multi-node ML models and systems that
are designed to improve performance, preserve privacy, and scale to more training data
and bigger models [16, 40, 66]. DML is divided into two main method families, namely
scalability-oriented and privacy-oriented, where the produced solutions are either geared
towards scalability, or privacy preservation, respectively. Recent advances on DML make
ML tasks on big data feasible, scalable, flexible, and more efficient [78].

Existing works regarding scalability-oriented methods can be distinguished into three
main sub-categories, depending on their training aspect, namely, Data, Model [26], and
Hybrid parallelism [43], respectively.

Data-Parallel DML refers to a technique, where a dataset is split into multiple shards,
which are afterwards processed through multiple replicas of the same model using dif-
ferent computing devices/workers, and communicating models’ information in periodic
intervals. Figure 2.1 illustrates an example of data-parallel DML, where three worker
nodes are tasked with training a single ML model, and one master node (i.e. Parameter
Server), where the workers’ model parameters are aggregated in order to produce a single
model. In particular, the training dataset is split into disjoint - ideally - independent
and identically distributed (i.i.d) shards, which are sent to the workers in order to train
an ML model using Stochastic Gradient Descent (SGD). After one batch (i.e. single SGD
forward-backward pass), the models’ weights w' are sent to the master node where they
are aggregated using weighted average (with respect to the number of observed training
samples), thus generating a global model that is be sent to the workers for the next batch.

In data-parallel distributed learning there are two main approaches, namely, syn-

Chapter 2. From Distributed to Federated Learning - an Overview

Parameter Server

/5'
“ N
Worker 1 Worker 2
—

Data Shard 1 T~ Data Shard 2

Figure 2.1. lllustration of a Distributed Machine Learning (DML) system [78]

chronous and asynchronous training, respectively. The former behaves as described in
Figure 2.1, i.e., all workers train independently over data shards of the same dataset on
replicas of the same model, and update its parameters after each training step. On the
other hand, with asynchronous training, the aforementioned behaviour is maintained,
with the difference that the workers do not necessarily need to constantly communicate
the model updates with the parameter server after each training step.

This approach can naturally scale up well with increasing amounts of training data,
which can no longer reside on a single machine. Data-parallel distributed learning is part
of many ML frameworks, including the popular libraries PyTorch [37], and TensorFlow!.
While the aforementioned training methodology is quite useful, finding the optimal syn-
chronization strategy can become a cumbersome task. Towards this direction, Zhang
et al. [83], propose AutoSync, a framework to automatically optimize synchronization
strategies given model structures and resource specifications using low-shot data. In
particular, by creating a search space from low-shot data collected in a few trial runs
combined with a domain adaptive simulator, they discover synchronization strategies up
to 1.6x better than manually optimized or fix-formed ones.

While the aforementioned approach is easily scalable with respect to processing power,
as the ML models get larger and larger (e.g. BERT [9]), we may face the problem that the
model cannot be loaded to a worker node, due to insufficient memory. This problem,
while very rare with servers, it is not uncommon with entities such as smartphones or
even a home PC.

Model parallelisation refers to a technique, where a model is split into multiple parts,
and distributed to the computing devices (i.e. workers). Training takes place in serial

function, where the forward/backward propagation involves communication of output

!Google, Distributed training with TensorFlow, https://www.tensorflow.org/guide/distributed training.
Last visited: 07-01-2020

https://www.tensorflow.org/guide/distributed_training

2.1 Distributed Machine Learning

from one device to another. While this approach reduces the memory footprint of the
model, it drastically increases the communication requirements, therefore we usually
resort to this approach only if the model cannot fit into a single node, not primarily to

speed up the training process.

For instance, in Krizhevsky et al. [35] because the authors had two GPUs with 3GB
each, they could not train a 60-million parameter Deep Convolutional Neural Network
(CNN) model in data-parallel mode. Thus, they chose to split the model and distribute it
among the two devices, and by cross-validation fine tune the communication scheme in

order to maintain an acceptable fraction of the amount of computation.

Like data-parallel, tuning the communication scheme in model-parallel distributed
learning can become a cumbersome task, especially with large ML models, with millions
of parameters. Towards this direction, Jia et al. [25] propose OptCNN, a framework
which employs model-parallel training on CNN models. By solving a graph search prob-
lem, based on different paralellisation schemes, they jointly optimize how each layer is
distributed, increasing training throughput up to 2.2x over previous state-of-the-art par-
allelization strategies, achieving better scalability to multiple workers, while maintaining

the performance of the original model.

Extending the previous work, Jia et al. [27] extend OptCNN, into a new framework,
FlexFlow, by introducing a new search space of parallelization strategies that generalizes
across different operator dimensions, namely, Sample, Operator, Attribute, and Parameter
(SOAP), which describe how the training details (operators, training samples, samples’
attributes, etc.) will be distributed. Employing the aforementioned architecture on six
real-world benchmark datasets on two GPU clusters, they show that SOAP suggests better

strategies achieving up to 3.3 over previous state-of-the-art approaches.

While data- and model- parallel are well-performing methods, they introduce a trade-
off between space availability vs. communication/bandwidth capacity. Another line of
research, in an effort to alleviate that trade-off, and provide further optimal training
schemes, attempts to combine the merits of both data and model parallelization methods,

thus producing a hybrid-parallel methodology.

For instance, Krizhevsky [34] propose a hybrid architecture, that trains a Convolu-
tional Neural Network (CNN) using model parallelisation for its convolutional and data
parallelisation for its fully-connected layers, respectively, for efficient scaling across mul-
tiple GPUs. In more advanced works, Low et al. [43] propose GraphLab, an ML frame-
work which exploits the models’ sparse structure and common computational patterns,
enabling highly scalable models both in data and model dimension as well. In more ad-
vanced works, Wang et al. [73] reduce the problem of finding the optimal parallelisation
strategy to finding the best tiling of partition tensors with the least overall communica-
tion cost. Within that context, they propose SOYBEAN, an ML framework which combines
data and model parallelism, thus producing a training scheme that reduces the commu-

nication cost up to 4x, compared to pure data- or model- parallel schemes.

Chapter 2. From Distributed to Federated Learning - an Overview

2.2 Privacy-Preserving Learning

Distributed Learning can not only be used to scale up the training process of an ML
model, but also integrate data from multiple sources. In many real-world scenarios, the
data are distributed among many parties, for instance, corporations, hospitals, univer-
sities, etc. Because in some cases, the data may contain highly sensitive information,
e.g., medical data, explicitly sharing them to outside sources is forbidden not only for
ethical, but also for legal reasons due to regulations such as GDPR. In addition, sharing
a (pre-)trained model on the aforementioned data, is not suggested, as recent works [22]
have shown that parts of the training dataset can be recovered both from the weights of
the model, as well as its gradients.

Therefore, in order to be able to either share data, or most commonly, ML models for
distributed learning, it is necessary to ensure some privacy guarantees so as to protect
our model from adversaries/outsiders. In general, a privacy-preserving distributed learn-
ing system must protect at least one of the following type of information [71], namely,
input data, output predictions, model information (e.g. parameters), and identifiable in-
formation (e.g. which AIS location is emitted from which vessel). The popular tools for
ensuring privacy can be sorted into two major categories, more specifically, obfuscation
and encryption methods, respectively.

Obfuscation methods’ primary aim is to modify the ML models’ parameters in order
to attain a certain level of privacy. Differential Privacy [13]) is a prime example of such
method. It is a technique that makes possible for outside parties to collect and share
aggregate sensitive information, while ensuring the privacy of individual users. Given the
users’ database X, a parallel database Y, and a randomized algorithm M with domain
NI we can ensure that M is (e, 6)-differentially private if for all S ¢ Range(M) and for all
X, Y € N¥l such that ||X — Y||; < 1 we have that

PrIM(X) € S] < exp(e) * Pr[M(Y) € S] + & 2.1)

The aforementioned definition does not create differential privacy per se, however it is
a measure of how much privacy is afforded by an aggregation query M. More specifically,
it’'s a comparison between running M on a database X and a parallel database Y. A
parallel database is defined as a copy of the database X, albeit without the records of a
certain user. In a nutshell, it expresses that for each parallel database, the maximum
distance between an aggregation query on X and Y, will be at most e®, with probability
1 — delta. € is a metric of privacy loss, and the smaller its value, the better privacy it
ensures®. While setting e and 6 to zero may be tempting, absolute privacy comes at a
cost of added noise, which impacts the convergence and accuracy of an ML model. Thus
we need to compromise between privacy and model performance. For instance, Apple
uses a privacy budget with ¢ up to 8 for general applications, and ¢ = 2 for the Health

application, respectively®.

2For algorithms other than the Laplace mechanism, e.g. Gaussian, another similar metric is 6 [13].
3Apple, Differential Privacy, https://www.apple.com/privacy/docs/Differential_Privacy Overview.pdf, Last
visited: 27/01/2022

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

2.2 Privacy-Preserving Learning

Differential Privacy has been used extensively in privacy-motivated ML models. From
the survey of Zhang et al. [82] regarding collaborative Deep Learning and privacy-
preserving mechanisms, we present some representative works. Song et al. [61] propose
a variant of the popular Stochastic Gradient Descend (SGD), which ensures user privacy
via Differential Privacy, called DP-SGD, which clips the gradients to a specific range, and
injects noise to them, either via Gaussian or Laplacian distribution during training, so
that the trained model ensures (e, §)-differential privacy. In a different direction from [61],
Shokri et al. [60] propose another variant of SGD, called Distributed Selective Stochastic
Gradient Descent (DSSGD), which allows the local model to selectively share a fraction
of the parameters, thus avoiding information leakage, while maintaining a comparable
performance with respect to centralized learning.

In a similar fashion, Sabater et al. [59] propose GOPA (GOssip noise for Private Aver-
aging), a novel differentially private averaging protocol for ensuring user privacy at fully
decentralized (e.g. peer-to-peer) learning environments. It relies on users exchanging (di-
rectly or through a server) correlated Gaussian noise in order to mask their private values
without affecting the global average. This ultimately canceling noise is complemented by
the addition of independent (non-canceling) Gaussian noise by each user. After extensive
evaluation, they demonstrate its robustness to client (i.e. edge devices) dropouts, as well
as its performance, which is on par with centralized ML training, all while maintaining a
low communication overhead.

On the other hand, encryption methods’ primary aim is to encode the ML models’ pa-
rameters in a manner that it does not alter the distributed computation process, while in
parallel not revealing sensitive information to other parties/adversarials. These methods
include, but are not limited to, Secure Multi-Party Computation (SMPC) [79], and Ho-
momorphic Encryption (HE) [56]. Within the scope of this thesis, we explore the related
works on HE methods.

In brief, the edge devices in SMPC environment jointly compute a function from the
private input by each party, without revealing such inputs to the other parties. SMPC
allows us to compute functions of private input values so that each party learns only the
corresponding function output value, but not input values from other parties.

Homomorphic Encryption on the other hand, encrypts the values in such way that
certain algebraic computations can be performed over the cyphertext, without the need of
decrypting it. Currently, the state-of-the-art in HE is from Gentry [17], where he proposed
a HE scheme that is able to perform not only addition (as in the original thesis), but also
multiplicative operations for unlimited number of times, with no computation loss.

Within PPML context, HE can be used in order to train an ML model so that the ag-
gregation server cannot access its parameters, therefore dropping the need for an honest-
but-curious server. The CryptoDL [21] framework is an HE-based approach for secure
neural network training and inference. In the aforementioned framework, several activa-
tion functions are approximated using low-degree polynomials and mean pooling is used
as a replacement for max pooling for the case of Convolutional Neural Networks.

Similarly, Juvekar et al [28] propose Gazelle, a scalable and low-latency system for

secure neural network inference, using an intricate combination of HE and traditional

Chapter 2. From Distributed to Federated Learning - an Overview

two-party computation techniques. By employing a simpler (compared to Linear HE in
CryptoNets [18]) packed additively HE scheme, Gazelle supports very fast matrix-vector

multiplications and convolutions over encrypted data.

2.3 Federated Learning

While Distributed Machine Learning (DML) can help us scale up the training process
across multiple computational nodes, it can only be used on centralized data. Federated
learning (FL) is a branch of DML which trains centralized models using decentralized data
[44]. In comparison to DML, FL algorithms are fundamentally different and primarily
geared towards data privacy. Table 2.1 illustrates the key differences between distributed
and federated learning in two popular variants depending on the clients’ type, namely,
cross-silo and cross-device.

In particular, the most important differences between distributed and federated learn-
ing lies within the scale and distribution of the data, the reliability of the computing nodes,
and the optimization schemes. In distributed learning, the data are centrally stored and
i.i.d balanced across clients, while in federated learning the data are usually non-i.i.d,
with them being either horizontally, or vertically partitioned, as they are generated locally
and remain decentralized among the edge devices. Additionally, in FL the distribution
scale is massive, spanning up to 10'° edge devices collaboratively training an ML model,
while in distributed learning it is typically restricted to the available computing nodes
within the cluster/data-center (up to 1000 clients). Another difference lies within the
nodes’ reliability, where in distributed learning are - virtually - always available, whereas
in FL, and especially in the cross-device FL, only a fraction of clients are available at a
given time instance, mainly due to variations in factors such as communication, band-
width, resource allocation, etc.

Taking into account the characteristics of the data owners, we distinct two major FL
variants, namely, cross-silo and cross-device FL [29]. Cross-device FL can be considered
when the participating devices (clients) are typically large in number (up to 10'°) and have
slow or unstable internet connections (c.f. Table 2.1). A principal motivating example for
Federated Learning arises when the training data comes from users’ interaction with
mobile applications [33]. On the other hand, cross-silo FL can be considered when a
relatively small group (usually 2 — 100) of companies or organizations share a common
incentive to collaboratively train an ML model based on their data, but cannot share them
directly, due to either cost (e.g. centralize data to a certain location) or legal constraints
(c.f. GDPR). Another key difference between cross-device and cross-silo FL, lies within
the privacy requirements of the FL framework. In cross-device FL, data privacy is of
the utmost importance, as the trained ML model will be available to virtually everyone,
whereas in cross-silo FL, the trained ML model most likely be available for internal use
among the participating parties, therefore the concerns about “virtually everyone” are less
important in the life-cycle of the ML model.

With respect to the nodes’ communication scheme, Rieke et al. [55] distinct three

major categories, namely, client-server, peer-to-peer, and hybrid, as illustrated by Figure

2.3 Federated Learning

Data-center
Distributed Learning

Cross-silo
Federated Learning

Cross-device
Federated Learning

Setting

Data
distribution

Orchestration

Wide-area
communication

Data
availability

Distribution
scale

Primary

bottleneck

Addressability

Client
statefulness

Client
reliability

Data partition
axis

Training a model on a large
but “flat” dataset. Clients
are compute nodes in a
single cluster or datacenter.

Data is centrally stored and
can be shuffled and balanced
across clients. Any client can
read any part of the dataset.

Centrally orchestrated.

None (fully connected clients
in one datacenter/cluster).

Training a model on siloed data.
Clients are different organiza-
tions (e.g. medical or financial)
or geo-distributed datacenters.

The clients are a very large
number of mobile or IoT
devices.

Data is generated locally and remains decentralized.
Each client stores its own data and cannot read the data of
other clients. Data is not independently or identically distributed.

A central orchestration server/service organizes
the training, but never sees raw data.

Typically a hub-and-spoke topology, with the hub representing
a coordinating service provider (typically without data) and

the spokes connecting to clients.

All clients are almost always available.

Typically 1 — 1000 clients.

Computation is more often
the bottleneck in the data-
center, where very fast

networks can be assumed.

Typically 2 — 100 clients.

Might be computation or
communication.

Each client has an identity or name that
allows the system to access it specifically.

Stateful; each client may participate in each round of
the computation, carrying state from round to round.

Relatively few failures.

Data can be (re-)partitioned
arbitrarily across clients.

Partition is fixed. Could be
example (horizontal) or fea-
ture (vertical) partitioned.

Only a fraction of clients are
available at any one time,
often with diurnal or other
variations.

Massively parallel,
up to 10'° clients.

Communication is often the
primary bottleneck, though
it depends on the task.
Generally, cross-device
federated computations use
wi-fi or slower connections.

Clients cannot be indexed
directly (i.e., no use of client
identifiers).

Stateless; each client will likely
participate only once in a task,
so generally a fresh sample of
never-before-seen clients in
each round of computation is
assumed.

Highly unreliable; 5% or more
of the clients participating in a
round of computation are ex-
pected to fail or drop out (e.g.,
because the device becomes
ineligible when battery, network,
or idleness requirements are
violated).

Fixed partitioning by example
(horizontal).

Table 2.1. Typical characteristics of federated learning settings vs. distributed learning in
the datacenter (e.g. [7]). Cross-device and cross-silo federated learning are two examples
of FL domains, but are not intended to be exhaustive. The primary defining characteristics
of FL are highlighted in bold, but the other characteristics are also critical in determining

which techniques are applicable. [29]

2.2. Client-server architecture (Figure 2.2a), is quite similar to the architecture described

in Chapter 2.1 (i.e., Data-center Distributed Learning), where multiple parties collabo-

ratively train an ML model and via a central aggregation server, combine the acquired

knowledge into a global model. On the other hand, peer-to-peer (Figure 2.2b) is quite dif-

ferent, as there is no need for a central server to aggregate the models’ parameters. Each

entity trains the same ML model using its local data, and communicates the updated pa-

Chapter 2. From Distributed to Federated Learning - an Overview

a) Client/Server Architecture b) Peer to Peer Architecture c) Hybrid Architecture
Federation Medical Consensus Model Model Locally Trained Secure Compute Model .)
of Nodes Database Redistribution Aggregation Model Node Forwarding Cyclic Learning

Figure 2.2. Federated Learning Communication Architectures [55]

rameters with the other workers using secure communication channels (e.g asymmetric
cryptography).

Sending parameters from one entity to another can be conducted in two main ways,
either via Cyclic, or Random transfer. In the cyclic transfer mode, the training collabora-
tors are organized in a ring topology, where a worker receives the model parameters from
its upstream worker, performs a training step using mini-batches from its local dataset,
and sends the updated parameters to its downstream worker. This procedure is repeated
until wither the ML model converges, or until the maximum allowed training time/steps
is reached. Compared with the client-server, the advantage of peer-to-peer architecture is
that it enables fully decentralized training, eliminating the need for an aggregation server,
and the chance of leaking - potentially - sensitive information to it. However, there are
several disadvantages, especially in the communication costs. For instance, in the cyclic
transfer mode, since there is no central server, weight parameters are updated serially
rather than in parallel batches, which takes more time to train a model [78].

Finally, in hybrid architecture (Figure 2.2c), a combination of the previously men-
tioned architectures is used, in order to create a global ML model from some training
parties in peer-to-peer mode, which in their turn train a local ML model using multiple
edge devices (i.e. computing entities) in client-server mode. An example of this method is
the collaboration of several maritime organizations for training a global ML model for pre-
diction the future locations of their fleet in decentralized fashion, by using ML models that
are trained by the edge devices (i.e. AIS-enabled vessels) that belong to the organizations’
corresponding fleet.

As far as the data distribution within the workers’ data is concerned, we distinct two
main variants, Horizontal and Vertical Federated Learning, illustrated at Figures 2.3,
and 2.4, respectively. Horizontal Federated Learning (HFL) [29], can be used in cases
where the participating parties’ datasets overlap in feature but differ in sample space. For
instance, two maritime organizations may have different vessel fleets, depending on their

corresponding regions, albeit with very small overlap. However, their business models are

2.3 Federated Learning

T
Data:from A

Horizontal

Samples

Federated Learning

Data ﬁ’pm B

Features

Figure 2.3. Illustration of HFL, a.k.a. sample-partitioned federated learning [77].

Data from A

Samples

Vertical Federated Learning

Data from B

Features

Figure 2.4. Illustration of VFL, a.k.a. feature-partitioned federated learning [77].

very similar. Hence, the datasets’ feature spaces are similar. Formally, HFL is defined as

follows:

Xi=X;.Yi =Y., I; # ;,YD;, D, i # j (2.2)

where (D, I;), (D;, I;) are the datasets and user spaces of the i, and jg party, re-
spectively, with (X;, Y;) and (X, Y;) being the corresponding feature and label spaces of
the aforementioned parties. On the other hand, Vertical Federated Learning (VFL) can
be used in cases where the participating parties’ datasets differ in feature but overlap in
sample space. For instance, maritime organizations may partner up with shipping com-
panies in order to provide faster and safer routes for its fleet. Formally, VFL is defined as

follows:

X #X,Y;# Y, I = [,VD., D}, i #j 2.3)

where (D;, I;), (D;,Ij) are the datasets and user spaces of the i, and js party, re-
spectively, with (X;, Y;) and (X, Yj) being the corresponding feature and label spaces of

the aforementioned parties. In the cross-device setting the data is assumed to be par-

Chapter 2. From Distributed to Federated Learning - an Overview

titioned by examples. In the cross-silo setting, in addition to partitioning by examples,
partitioning by features is of practical relevance [29]. Finally, in cases where there are
neither enough shared features nor samples among the training parties Federated Trans-
fer Learning (FTL) [41] can be used in order to collaboratively train an ML model that
transfers knowledge acquired among the parties to achieve better performance.

On top of the aforementioned, Optimization is a yet another key difference between
distributed and federated learning. In distributed learning, the global model is created
by averaging the gradients of all local models, and performing SGD on the global model,
an approach called Gradient Averaging [45]. On the other hand, in Federated Learn-
ing, mainly due to privacy issues relating to data leakage from gradients [22], another
approach is preferred called Model Averaging, where the models’ weights are averaged,
instead of their gradients. In McMahan et al. [45] both methods are referred to as Feder-

ated Averaging (FedAvg).

Method Advantage Disadvantage
Accurate gradient information Heavy communication
Gradient Averaging & . vy . :
Guaranteed convergence Requires reliable connection

Not bound to SGD
Model Averaging Tolerance of update loss
Infrequent synchronization

No guarantee of convergence
Performance loss

Table 2.2. Comparison between gradient averaging and model averaging [78]

Table 2.2 summarizes the key differences between the two variants of FedAvg. In
gradient averaging, the aggregation step is performed once per batch [34], the global model
is guaranteed to converge, with rate correlated to the batches’ size. While this approach
produces reliable results, it requires a high communication bandwidth, as well as a near-
constant connection with the clients, two hypotheses that may work with distributed
learning, but cannot within FL. On the other hand Model Averaging, in order to address
the availability /reliability issues within FL training environments, aggregates the models’
weights once per training step. This approach, while it is more tolerant than Gradient
Averaging, its infrequent synchronization, comes at a (great) performance loss, with no
guarantee of convergence.

Following the same line of research, Reddi et al. [54] generalize the FedAvg algorithm
in order to allow usage of adaptive optimization schemes, such as Adam [31], YOGI [81],
and AdaGrad [12]. In particular, in the approach they propose the clients use SGD
for local model training, while the aggregation server uses any of the aforementioned
optimization schemes in order to update the parameters of the global model. In addition,
by focusing on adaptive server optimization, they enable use of adaptive learning rates
without increase in client storage or communication costs, while ensuring compatibility
with cross-device FL [54].

Except network and communication efficiency, and client availability [33], another
key challenge of federated optimization is the training parties’ heterogeneity with respect
to their local datasets [32]. In order to address the first two issues, FedAvg performs

multiple local updates on the available clients before communicating to the server. While

2.3 Federated Learning

client 1 M x7 T client update

I

I

! T server update
I
I

] SGD update
server

|

/ | client drift
I

I

! | true opt.

Y2 client 2 I client opt.

Figure 2.5. Client-drift in FedAuvg is illustrated for 2 clients with 3 local steps (N = 2, K = 3).
The local updates y; (in blue) move towards the individual client optima x; (orange square).

1
The server updates (in red) move towards N Z xf instead of to the true optimum x* (black
i

square). [30]

this approach works well with high convergence guarantees (in applications where the
participating parties’ datasets are homogeneous), when the clients are heterogeneous
these guarantees fail to hold. By each step, the parties’ locally fitted ML model will
converge to different local optima, therefore introducing slow and unstable convergence
to the global model, as Figure 2.5 illustrates. This phenomenon is better known as “client-
drift”, and in order to avoid its fewer local updates and/or smaller learning rates must be
used, action which largely impact the convergence stability of FedAvg.

Towards this direction, Karimireddy et al. [30] acknowledge the aforementioned is-
sue and propose a new federated optimization framework called SCAFFOLD, which uses
control variates (variance reduction) in order to approximate an ideal unbiased update,
therefore taking into account the “client-drift” in its local updates. By experimenting
on various optimization settings, the authors prove that SCAFFOLD is resilient to client
sampling (i.e. independent of the amount of client heterogeneity), and consistently outper-
forms FedAvg on non-convex experiments. Further following this line of research, another
relevant approach is the q-FedAvg algorithm proposed by Li et al. [38], a novel optimiza-
tion objective “inspired by fair resource allocation in wireless networks that encourages a
more uniform accuracy distribution across devices in federated networks”. While effective
in cross-silo FL, the aforementioned methods are incompatible with cross-device FL as it
requires clients to maintain state across rounds, a problem which the adaptive federated

optimization algorithms at [54] aim to address.

Chapter E

Maritime Analytics and the VRF Problem

3.1 Definitions and VRF Problem Formulation

Before we proceed to the actual formulation of the problem, let us provide some pre-

liminary definitions.

Definition 3.1. (Tragjectory). A trajectory T = {p1,...pn} of a moving ohject is considered
as a sequence of timestamped locations, where n corresponds to the latest reported position

pi € T, where p; = {x;, y;, t;}, with 1 < i < n.

Definition 3.2. (Future Location Prediction). Given a trajectory T; and a time interval At,
the goal is to predict p? red _ {xP red, y? red, tf red} at timestamp t red _ " + At, where 7
tpred
1

and correspond to current and predicted timestamps, respectively.

Definition 3.3. (Vessel Route Forecasting). Given a dataset D, a trajectory Ty of the vessel
v;, a prediction horizon At and a number of transitions k, the goal is to train a data-driven

model, which will predict the vessels’ future k locations up to At with step s.

If we recall Figure 1.2, its provides an illustration of Definition 3.3. More specifically,
we know the movement of four objects from timestamps T up to Ts. Our goal, given t = 2,

and s = 1, is to predict the anticipated motion of these vessels until Ts, in cross-silo FL.

3.2 Related Work on VRF Methods

Despite the significant improvement of ML tools over the past decades, adapting this
technology into the maritime industry is not a straightforward task. Distributed/Fed-
erated ML for solving extreme-scale streaming problems is a concept that is still in its
research phases. Indicatively, overviews of the current state-of-the-art techniques in the
field of Distributed ML are available in [72] and [2], while in Mohammadi et al. [46] present
a survey on Deep Learning (DL) methods over Big Data and streaming data within the
Internet of Things domain.

Considering the VRF problem, current status of state-of-the-art includes an adequate
number of research works. More specifically, one line of work includes clustering-based
prediction techniques. Such an approach was presented by Trasarti et al. [65] called My-

Way. MyWay is a hybrid, pattern-based approach that utilizes individual patterns when

Chapter 3. Maritime Analytics and the VRF Problem

available, and when not, collective ones, in order to provide more accurate predictions
and increase the predictive ability of the system. In a similar line of research, Petrou
et al. [49, 50] utilize the work done by [63] on distributed subtrajectory clustering, in
order to extract individual subtrajectory patterns from big mobility data. These patterns
are subsequently utilized in order to predict the future location of the moving objects in
parallel.

Specifically to the maritime domain, there are also works that leverage Neural Network
(NN), and particularly Recurrent Neural Network (RNN)-based models [58]. RNNs are
a popular method for trajectory prediction due to their powerful ability to fit complex
functions, along with their ability of adjusting the dynamic behaviour as well as capturing
the causality relationships across sequences.

Wang et al. [74] aiming at predicting the movement trend of vessels in the crowded
port water of Tianjin port, proposed a vessel berthing trajectory prediction model based on
bidirectional GRU (Bi-GRU) and cubic spline interpolation. Capobianco et.al. [5] provided
a genuine DL approach for vessel trajectory prediction. Using a temporal window within
an area of interest, and an encoder-decoder LSTM using the attention mechanism, they
predict the vessels’ future locations. Suo et al. [62] present an RNN-based model to
predict vessel trajectories based on the DBSCAN [14] algorithm to derive main trajectories,
and a symmetric segmented-path distance approach to eliminate the influence of a large
number of redundant data and optimize incoming trajectories. Liu et al. [39] propose
“Spatio-Temporal GRU”, a trajectory classifier for modeling spatio-temporal correlations
and irregular temporal intervals prevalently presented in spatio-temporal trajectories.
More specifically, a segmented convolutional weight mechanism was proposed to capture
short-term local spatial correlations in trajectories along with an additional temporal gate

to control the information flow related to the temporal interval information.

3.3 Centralized vs. Federated Learning

In this chapter we present the proposed solution to the problem of Vessel Route Fore-
casting (VRF), and elaborate further towards the methodology used in the aforementioned
FL scenarios.

In a nutshell, trajectories are a sequence of locations organized by time, therefore can
be considered as time-series data [76] and thus techniques capable of handling sequential
data and/or time series [57] can be applied. Over the past decades, the research interest
on time-series forecasting has shifted to RNN-based models, with Gated Recurrent Units
(GRU) being the newer generation of RNN, which has emerged as an effective technique
for several learning problems, including sequential/temporal data applications [10].

While Long Short-Term Memory (LSTM) [23] is a quite popular RNN-based architec-
ture, in our case however, GRU presents some interesting advantages over the LSTM. In
particular, GRU networks are less complicated, easier to modify and - compared to LSTM
- faster to train. Addidionally, GRU networks achieve better accuracy performance on
route forecasting problems on various domains, such as maritime [62], aviation [19], and

urban transportation [3]. Hence, in this thesis we follow the same direction and employ

3.3 Centralized vs. Federated Learning

a GRU-based model.

In brief, a GRU cell includes includes two gates, a reset gate which is used to decide
“how much” past information to forget and an update gate which decides “how much*
current information to add. Equations 3.1-3.4 briefly state the update rules for the
employed GRU layer [6]. Additionally, details for the Back-Propagation Through Time
(BPTT) algorithm, can be found in [75].

Z) = o(Wf,z “Pr +Wpz-hj_; +by) (3.1)

r. = o(Wg, - Py + Wi - hyey +by) (3.2)

hy. = tanh(Wpp, - P + Whp, - (1) # hy_1) + bp) (3.3)
h, =2z, 0h;; + (1 —2z;)Ohy (3.4)

where z and r represent the update and reset gates, and h and h represent the
intermediate memory and output, respectively. Additionally, p represents the input data,

with W,, and b, representing the weights and bias matrices of the GRU cell, respectively.

Il 1
Fully Output
Connected Layer
Layer

Figure 3.1. GRU-based neural network architecture [68]

To address the problem of Vessel Route Forecasting (VRF) in this thesis, we use the
GRU-based model employed in [68] for predicting the future location of co-movement
patterns in the maritime domain. Figure 3.1 illustrates the architecture of the employed
ML model. More specifically, it consists of the following layers: a) an input layer of four
neurons, one for each input variable, b) a single GRU hidden layer composed of 150
neurons, c) a fully-connected hidden layer composed of 50 neurons, and d) an output
layer of two neurons, one for each prediction coordinate (longitude and latitude). The
input variables consist of the differences in space (longitude and latitude), time, as well
as the time horizon for which we want to predict the vessel’s position. The differences
are computed between consecutive points of each vessel. For the centralized training
approach, we properly process and unify all available datasets into a single entity, which
is afterwards used for training the ML model, using the Adam [31] optimization algorithm.
On the other hand, in the cross-silo Distributed Learning environment, we create as many

entities as available datasets, which are then used in order to train the ML model in

Chapter 3. Maritime Analytics and the VRF Problem

parallel using the FedAvg algorithm [45].

In contrast to the aforementioned ML paradigms, Cross-device Federated Learning
(FL) instead of bringing the data to the model, i.e., centralizing the data to a single entity
or using large data silos from various data owners, it brings the model to the data. More
specifically, cross-device FL depends on various edge devices which are only aware of their
own data, which are used in order to partially train an instance of the latest iteration of
an ML model. Afterwards, this model is uploaded to a central (aggregation) server along
with the rest - partially - updated models that are aggregated into the next iteration of the
ML model, repeating the training cycle.

Within our FL environment, each “edge device” corresponds to the transmitted loca-
tions of a certain AIS vessel. Each “device” contains an instance of our proposed VRF
model which is trained using only their corresponding data. For the aggregation of all
VRF models, we use a variant of the FedAdam [54] algorithm, illustrated in Algorithm
3.1. In more detail, instead of SGD we use the Adam [31] optimizer for both on-device
(local), and on-server (aggregation) training, in order to provide a more stable and robust
convergence rate (compared to FedAvg). In Algorithm 3.1, the parameter 7 corresponds to
the degree of adaptability of the algorithm, with smaller values of t representing higher
degrees of adaptivity.

Algorithm 3.1: FEDADAM

1 Initialization: xp, v_; > 12, decay parameters f3;, 32 € [0, 1)
2 fort=0,...,T—1do

3 Sample subset S of clients
4 xl.fo — X
5 for each client i € S in parallel do
6 fork=0,..., K- 1do
7 Compute an unbiased estimate g, of VFi(x{,)
8 Xijer1 < Xiie = i
9 end
10 A} — X = Xt
11 end
12 | A= BiA+ (1 _ﬁl)(é ZiESAg)
13 v — Bavio1 + (1 — Bo)A?
Ay
14)(,;+1<—)ct+71\/7t_'_I
15 end

Chapter

Use case: Application of our Approach over Real-

world AIS datasets

In this chapter, we evaluate our VRF model on several centralized and federated learn-
ing schemes using three real-world maritime mobility datasets and present our experi-

mental results.

4.1 Datasets and Preprocessing

In order to simulate all cross-silo federated learning scenarios, we use four large-
scale real-world datasets from the maritime mobility domain. In particular, the first data
source that we use is the “Piracus AIS dataset for large-scale maritime data analytics”

[70], referred to as the “Piraecus”!

dataset. It consists of over 200 million AIS positioning
messages from approximately 8,000 vessels (passenger boats, fisheries, cargo, containers,

etc) within Saronic Gulf, Greece. The dataset ranges in time and space, as follows:

e Temporal range: May 9%, 2017 to December 26", 2019 (x2.5 years)

e Spatial range: longitude in [22.992, 24.031]; latitude in [37.437, 38.046]

The second data source that we use is the “Heterogeneous Integrated Dataset for
Maritime Intelligence, Surveillance, and Reconnaissance” [53], referred to as the “Brest”2
dataset. It consists of over 19 million AIS positioning messages from 5,055 vessels (pas-
senger boats, fisheries, cargo, containers, etc) within Brest Bay, France. The dataset

ranges in time and space, as follows:

e Temporal range: October 1%, 2015 to March 315, 2016 (6 months)

e Spatial range: longitude in [-10.0, 0.0]; latitude in [45.0, 51.0]

In addition, the third data source that we use is the “Historical AIS data in Norwegian

»3

waters” [8], referred to as the “Norway” dataset. It consists of over 362 million AIS

positioning messages from 2,862 vessels (passenger boats, fisheries, cargo, containers,

The dataset is publicly available at https://doi.org/10.5281/zenodo.5562629
2The dataset is publicly available at https://doi.org/10.5281/zenodo. 1167594
3The dataset is publicly available at https://ais-public.kystverket.no/

https://doi.org/10.5281/zenodo.5562629
https://doi.org/10.5281/zenodo.1167594
https://ais-public.kystverket.no/

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

etc) within Haugesund and Oslo, Norway. The dataset ranges in time and space, as

follows:

e Temporal range: January 15, 2019 to December 315¢, 2019 (1 year)

e Spatial range: longitude in [4.09, 31.76]; latitude in [57.76, 71.38]

Finally, a fourth data source that we use is the so called “MarineTraffic’* dataset. It
consists of over 5.5 million AIS positioning messages from 460 passenger vessels within

Greece. The dataset ranges in time and space, as follows:

e Temporal range: January 1%, 2019 to December 315¢, 2019 (1 year)

e Spatial range: longitude in [22.63, 28.03]; latitude in [34.96, 41.00]

Out of the aforementioned datasets (namely, Piraeus, Brest, Norway, and MarineTraf-
fic) we selected a period of three months (January 15t - March 31%), which consists of
2,788,137, 3,744,412, 8,013,242, and 646,338 locations, from 1373, 1016, 335, and 177
vessels, respectively.

During the preprocessing stage, we drop erroneous records (i.e. GPS locations) based
on a speed threshold speed.x as well as stationary points with speed below speednn.
Afterwards, we organize the cleansed data into trajectories based on the temporal inter-
val between two consecutive signals of the same vessel, given a threshold At, and drop
those which consist of less than 10 points. In our experiments we set speedmg. = 50
knots, speedn = 1 knot, and At = 30 minutes, respectively. The rationale behind these
thresholds stems from the characteristics of the dataset, which were unveiled after a
statistical analysis of the distribution of speed and At between consecutive points of the
same trajectory.

A map visualization of all four datasets used in our experimental study is illustrated in
Figure 4.1. In particular, Figure 4.1a visualizes the transmitted AIS locations in Saronic
Gulf, Greece on July 10%", 2018, while Figures 4.1b and 4.1c visualizes the transmitted
AIS locations in Brest Bay, France, and Oslo, Norway on March 1%, 2016, and 2019,
respectively. Last but not least, Figure 4.1d illustrates the transmitted AIS locations

within (mostly) Aegean Sea on March 15¢, 2019.

4.2 Experimental Setup

All conducted experiments on were implemented in Python3 (via Anaconda3® virtual
environments). More specifically, the aforementioned models were implemented using Py-
Torch [48] and trained using Flower [4] for Federated Learning, via a single node equipped
with 8 CPUs, 24 GB of RAM, and an Nvidia GTX 1050Ti with 4GB VRAM. Additionally,
for Differential Private (DP) -enabled FL, we use a computational cluster that consists of
the aforementioned node, and a MacBook Pro with 8 ARM CPUs and 16 GB of RAM.

“The dataset is kindly provided by MarineTraffic
5https://www.anaconda.com/

https://www.anaconda.com/

4.3 Experimental Results

(c) (d)

Figure 4.1. Snapshots of (a) Piraeus; (b) Brest; (c) Oslo; and (d) MarineTraffic datasets.

In the chapters that follow, we provide the experimental results of our study, compar-
ing the VRF model presented in Chapter 3 trained in Centralized fashion against its FL
variant, hereafter named “FedVRF”, and assess its exploitation value towards short-term
VRF and Vessel Traffic Flow Forecasting (VTFF).

4.3 Experimental Results

In this section, we train and evaluate our VRF model against its Centralized, and
Cross-silo FL variants, and assess the privacy preservation of the latter using Differential
Privacy.

4.3.1 Collaboration using Centralized ML

Suppose we have three partners, namely “Naval Academy Research Institute” (NARI),

“Norwegian Coastal Administration” (NCA), and “University of Piraeus Research Center”

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

(UPRC), who provide the Brest, Norway, and Piraeus datasets, respectively, who aim
to create a VRF model within the context of a research project. Having agreed on the
architecture of the model, a baseline approach is to train three VRF instances (i.e., one
for each of the aforementioned datasets/partners) in centralized fashion, and assess their
performance against the other datasets, in order to converge on a single model.

After preparing the dataset using the procedure described at Chapter 4.1, we get
9,285, 5,922, and 15,262 trajectories from Brest, Norway and Piraeus datasets, respec-
tively, which are split into training, validation and test sets with 70:20:10 split ratio. After
training our VRF instances for 170 epochs (with early stopping) on each aforementioned
dataset, Figure 4.2 illustrates the models’ displacement error with respect to At for the
test sets of each partners’ dataset. At first, we observe that the VRF instance trained on
the Piraeus dataset (c.f. Figure 4.2g,h,i), as expected (in the sense that it consists of a
larger sample population), performs the best on all three datasets with displacement error
~ 3.5 km on average for At = 25—-30 min. on the Piraeus’ test set, with Brest and Norway
yielding ~ 7.5 and = 15 km on average for At = 25 — 30 min., on their corresponding
datasets, respectively.

Further following this hypothesis, we expect, due to the population of the training set,
that the VRF instance trained on the Norway and Brest datasets, respectively, will both
perform the least, with the latter instance performing slightly better, consistently being
between the Norway and Piraeus VRF instances.

Indeed, the model trained on the Norway dataset (c.f. Figure 4.2d,e,f) yields sub-
optimal performance with ~ 17 km on average for At = 25— 30 min., on its corresponding
dataset, and ~ 9 and ~ 4 km, on Brest and Piraeus datasets, respectively. Similarly, the
displacement error of the VRF instance trained on the Brest dataset (c.f. Figure 4.2a,b,c)
is consistently between the two aforementioned models, with ~ 8 km on its corresponding
dataset, and ~ 15 and = 3.8 km, on Norway and Piraeus datasets, respectively.

In general, we observe that both Norway, and Brest VRF instances constantly under-
perform, independent on which dataset are trained on, while the Piraeus’ VRF instance
consistently yields comparatively better predictions, i.e., has the smallest displacement
error, on all aforementioned datasets. Therefore, in the collaboration scenario among
NARI, NCA, and UPRC, the latter will be at an advantageous position since in whichever
VRF instance, the displacement error for the Piraeus dataset remains (on average) con-
sistently identical.

In more detail, Figure 4.3 illustrates the corresponding learning curves for each VRF
model instance. We observe that the instances trained on Norway and Brest datasets
appear to be underfit, while the instance trained on the Piraeus dataset appears to be well
trained, conclusions which are reflected on their corresponding prediction performance,
as Figure 4.2 illustrates. This behaviour is well justified, as the amount of training
samples on the former two instances is insufficient for training a VRF model with good
performance.

Because the participating partners are in agreement regarding privacy concerns, and
in an effort to increase the training samples’ population, a natural extension of the base-

line approach is to unify all datasets into a single entity, in order to train a single VRF

4.3 Experimental Results

x10° x10? x10°
Ehe E30 3
: : g .
& 20 & 99 &0
K K K
: E H g4
g 10 g 10 S
= = =2
A, & S-S L 8, &
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Lookahead (At) Lookahead (At) Lookahead (At)
(a) (b) ()
x10°% x10° x10°
230 G T =
= = . 2 10.0
: s :
= = = 5
Lq 20) 0 Ld 7.5
g g Q £ 50
ER % 210 % E 2.5
5, & a & 1 B g0 &
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Lookahead (At) Lookahead (At) Lookahead (At)
(d) (e) ®
x10° %103 x103
30 - T _
) E30 £
5 5 575
= 20 g =}
= M 90 m
= = H 250
: : :
g 10 3 8
2 g 22
2 & A & 1 B0 *+
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Lookahead (At) Lookahead (At) Lookahead (At)
(8 (h) (@

Figure 4.2. Training three VRF instances in centralized fashion on Brest (a,b,c); Norway
(d,e.f); and Piraeus (g,h,i) training set and assessing its displacement error on Brest (a,d,g);
Norway (b,e,h); and Piraeus (c.f,i) test set.

instance, which will potentially fit all parties’ requirements. After training our “unified”
model for 170 epochs (with early stopping), Figure 4.4 illustrates its displacement error
on the Brest, Norway, and Piraeus datasets, respectively. We observe that, in all three
datasets the aforementioned instance outperforms the previous instances, either signif-
icantly (r —3 km for At = 25 — 30 min.; c.f. Figure 4.4b vs. 4.2e) or marginally (= —0.1
and ~ —0.2 km for At = 25 — 30 min.; c.f. Figures 4.4a vs. 4.2a, and 4.4c vs. 4.2i,
respectively). Additionally, observing the learning curve of the model, we deduce that
both the training and validation loss trajectory presents an underfitting behaviour, which

is expected to some degree, mainly due to the datasets’ heterogeneity, something that we

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

x 107 x107 x 107
0.150 0.030
0.06
0.125
B
@ = 0.025 =
= 0.100 = = 0.04
0.020
0.075
\ 0.02
0.050 0.015
0 50 100 0 25 50 0 50 100
#Epochs #Epochs #Epochs
(a) (b) (c)

Figure 4.3. Learning curves for (a) Brest; (b) Norway; and (c) Piraeus centralized VRF in-
stances (blue and orange lines correspond to the training and validation sets, respectively).

discuss in later sections.

%103 x10? x10?

o
S

w

S
|
{
—
<
o

7.5

Do
S

5.0

0 g
2 25 é
0 = é 0 =+ % - 0.0 =+
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Lookahead (At) Lookahead (At) Lookahead (At)

1

—_
(=)

Displacement Error (m)
2
(P}
Displacement Error (m)

Displacement Error (m)

(a) (b) (c)

Figure 4.4. Training a centralized VRF model on Brest, Norway, and Piraeus unified
training set and assessing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus
test set.

While the unified approach performs better than the baseline, in many real-world
situations it is an unfeasible solution, mainly due to the increased costs in storage,
bandwidth of transferring the data and setting up a unified database, as well as privacy
concerns regarding, e.g., the transmitted locations of the partners’ fleet. Therefore, in
order to increase the training samples’ population while ensuring a baseline privacy level,
a natural extension of the Centralized ML (CML) approach, is to use DML techniques,

such as FL in order to address the aforementioned issues.

4.3.2 Collaboration using Federated ML

Having created our three VRF instances, and trained them using CML, we proceed
to use FL techniques in order to train a unified model, that is able to fit all partners’
requirements (e.g., accurate prediction) without the need to centralize the datasets, and
potentially compromise the users’ privacy.

The server which previously was used to store the partners’ datasets and the unified

4.3 Experimental Results

x107

0.06

0.05

MSE

0.04

0.03

0 25 50
#Epochs

Figure 4.5. Learning curve for the unified centralized VRF instance (blue and orange line
corresponds to “train” and “dev” sets, respectively).

VRF model, now will serve as an aggregation node, which receives the updated parameters
of the partners’ VRF models (i.e., local model), and aggregates them into a single entity
(i.e., global model - FedVRF).

For training we use the FedAdam algorithm, as presented in Chapter 3.3 and the
FLOWER [4] framework for instantiating the aggregation server, as well as the models’ FL
workers and local VRF models. After 170 epochs, Figure 4.6 illustrates the performance
of the FL model in Brest, Norway, and Piraeus datasets. Compared to the displacement
error of the centralized models (c.f. Figures 4.2a,e,i), we observe that the prediction error
of FedVRF increased drastically (* 1 and = 0.5 km) on Brest and Piraeus datasets, while
it is marginally close (= 0.1 km) on Oslo dataset, respectively, for At = 25 — 30 min..

x10? x10? x10?
230 = T 2 10.0
= = 30 =
=} o o
5 20 5 5 w5
- = 20 =
Z Z g 5.0
g g £
I @ @
S0 10 £ 25
A, & S 1 S 00
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30

Lookahead (At) Lookahead (At) Lookahead (At)

(a) (b) (c)

Figure 4.6. Training a VRF model using FL on Brest, Norway and Piraeus training set and
assessing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus test set.

In order to further understand the reason behind this behaviour, Figure 4.7 illustrates
the learning curve of the partners’ local VRF instance, compared to the learning curve of
FedVRF. In general, We observe that in all three datasets, namely Brest, Norway, and
Piraeus, the loss of the local models diverges from the global model by a large margin, a
behaviour which is observed throught the training process, better known as “client-drift”.

The main cause behind “client-drift” lies within the participating parties’ heterogene-

ity. In particular, Figure 4.8 illustrates the Probability Density Function (PDF) of Brest,

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

Norway, and Piraeus datasets, respectively. We observe that the PDFs of Brest and Pi-
raeus datasets seem to follow a unimodal distribution, which is easier for the VRF model
to adapt to, as reflected by the rapidly downward trend in their corresponding learning
curves at Figures 4.3a and 4.3c, respectively. On the other hand, the multimodal PDF
of the Oslo dataset, introduces a high level of heterogeneity, which renders difficult the
training process for the VRF model, something which is not only reflected at Figure 4.3b
but also in the overall training process of FedVRF (c.f. Figure 4.6), where the aggregation

(averaging) process of FedAdam (and FedAvg, in general), inhibits the training process.

x 107 x107 x 107
PNV e
0.150 5 i S e,
0.06 0.07
0.125 Moo A A, add
2] €] 2]
[p] 9} [p]
= 0.100 = 0.04 = 0.06
0.075
0,050 0.02 0.05
0 100 0 100 0 100
#FEpochs #FEpochs #Epochs
(@) (b) (c)

Figure 4.7. Learning curve for (a) Brest; (b) Norway; and (c) Piraeus local VRF workers
compared to FedVRF. Blue/orange lines correspond to the workers’ training and valida-
tion loss, while cyan/red lines correspond to the training and validation loss of FedVRF,
respectively.

20
04
3

—404

—604

—804

-100 -75 =50 =25 0 25 50 75 -125 -100 -75 -50 =25 0 25 50 75 -80 -60 —40 -20 0 20 40 60
Ax Ax Ax

(a) (b) (c)

Figure 4.8. Probability density functions (PDFs) of Ax and Ay of (a) Brest; (b) Norway; and
(c) Piraeus datasets.

Related works regarding “client-drift” (c.f. Chapter 2) recommend using fewer local
updates and/or smaller learning rates. These action(s) however, largely impact the con-
vergence stability of FedAvg (and its variants), as well as the learning “capacity” of the FL
model, as Figure 4.7 illustrates for learning rate n = 1073. In order to properly address
“client-drift” we use a branch of FL, called Personalized Federated Learning (PerFL), which

can properly alleviate the aforementioned issue by ensuring a more uniform accuracy dis-

4.3 Experimental Results

tribution across training parties [64].

4.3.3 Addressing Client Drift

As demonstrated in the previous section, models trained using FedAvg (or similar vari-
ants - e.g., FedAdam) on heterogeneous datasets, are prone to client drift, with its severity
level being correlated to the amount of client heterogeneity (c.f. Figure 4.8). In order to
effectively address that issue, we use a variant of FedAvg from the PerFL method family,
named qFedAvg [38], which is illustrated at Algorithm 4.1. In a nutshell, it emphasizes on
training parties (as q increases) with higher local empirical losses Fj(w), thus imposing
more uniformity to the training accuracy distribution and potentially creating a model
flexible enough to fit all parties’ needs.

In our experiments, we use a variant of gFedAvg in which the selected devices, update
their corresponding weights using Adam [31], instead of SGD, tuned using their default
values set at [4]. After 170 epochs, Figure 4.9 illustrates the performance of the PerFL
model in Brest, Norway, and Piraeus datasets, respectively. In general, we observe that
PerFL greatly outperforms the FL model, yielding smaller displacement errors up to = 2.5
km on the Norway dataset, and up to = 1 and = 0.7 km on Piraeus and Brest datasets,

respectively, for At € [5, 30) min.

Algorithm 4.1: gFEDAVG, adapted from [38]

1 Input: K.E, T,q,1/L.n.u, p.k=1,...,m
2 fort=0,...,T—1do
3 Server selects a subset S; of K devices at random (each device k is chosen with

probability py)
Server sends w' to all selected devices
Each selected device k updates w' for E epochs of Adam on Fj with step size

S|
n, to obtain w,_

6 Each selected device k computes:
7 Awl = L(w' - 0!
8 Al = F,f(uit)Aw,t{
9 hi = gF (wHllAwt | + LA (w")
10 Each selected device k sends Af(and h,t(back to the server
11 Server updates w'*! as:
t
12 witt = wt - Zres, A
Dkes, h;tc
13 end

Compared to the baseline CML approach (c.f. Figure 4.2a,e,i), we observe similar
results on Norway dataset, while on Brest and Piraeus datasets, the performance is
marginally worse, with displacement error up to 0.15 and 0.1 km larger, on average,
respectively. Additionally, compared to the unified CML approach (c.f. Figure 4.4), we
observe marginally worse results, as well, with displacement error up to 0.2 km larger,
on average, on all datasets.

Further focusing on the learning curve of the partners’local models vs. the global (per-

sonalized) FedVRF model (c.f. Figure 4.10), we observe that the training/validation loss

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

x103 x103 x10?

Eg L %} E s é
0‘5% 0%% < A o0 &
5 10 5 10

15 20 25 30 15 20 25 30 5 10 15 20 25 30
Lookahead (At) Lookahead (At) Lookahead (At)

=
|
{
—
=
o

30

. 8

Do
=}

—_
(e=)

Displacement Error (m)
Displacement Error (m)
Displacement Error (m)

(@) (b) (c)

Figure 4.9. Training a VRF model using PerFL on Brest, Norway and Piraeus training set
and assessing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus test set.

curves of the Brest and Piraeus follow the same downward trend as their corresponding
CML models (c.f. Figure 4.3), albeit with some added noise, mainly due to the aggregation
(averaging) process. Additionally, we observe that the local models’ learning curves are
closer to the curves of personalized FedVRF, therefore preserving minimal (compared to
FL) “client-drift”.

Particularly, in the case of the Norway dataset, we observe an upward trend with in-
creasing oscillations (i.e. noise), indicating a slight underfitting issue on that particular
VRF worker. This however is expected, mainly due to the complex PDF of the Norway
dataset (c.f Figure 4.8), and further demonstrates the advantage of PerFL, as the intro-
duced noise of this worker is smoothed out in the global model, thus not allowing the

datasets’ heterogeneity to inhibit the learning process.

x107 x107 x107

0.06

\ 0.02
T—— e —

0 100 0 100 0 100
#Epochs #Epochs #Epochs

(a) (b) (c)

Figure 4.10. Learning curve for (a) Brest; (b) Norway; and (c) Piraeus local VRF workers
compared to personalized FedVRF. Blue/orange lines correspond to the workers’ training
and validation loss, while cyan/red lines correspond to the training and validation loss of
personalized FedVRF, respectively.

4.3 Experimental Results

4.3.4 The Privacy Preservation Trade-off

While FL ensures (to a certain degree) user privacy, this assumption only holds when
the aggregation server is considered to be honest-but-curious, or in other words, it has
complete access to the models’ weights/gradients (curious), but does not leak them (hon-
est) to any participant either from inside, or from outside the federation cluster (e.g. an
adversary). If the above assumption cannot hold, then FL may fail to ensure user pri-
vacy as the weights/gradients can be reverse engineered in order to recover (a part of)
the dataset [22]. Towards this direction, we can either encode (e.g., via Homomorphic
Encryption), or obfuscate the parties’ models, in order to decrease the probability of data
leakage.

In the scope of this thesis, we make use of Differential Privacy [13] (DP), as imple-
mented in the Opacus [80] framework, in order to obfuscate the models’ parameters by
adding noise sampled from a Gaussian distribution to their corresponding parameters
prior to sending them to the aggregation server. Practically, in this way, the training
parties can have more control over their data, with the aggregation server still being ca-
pable of training the model, as the added noise tends to cancel out during the aggregation
phase® [51].

After training our model using qFedAvg for 170 epochs with DP, Figure 4.11 illustrates
the distribution of the displacement error on the Brest, Norway, and Piraeus datasets,
respectively. We observe that, compared to non-DP PerFL, the added noise significantly
increased the prediction error in all datasets, with average perturbation up to 2.5 km for

the Norway dataset, and 0.8 km for Brest and 0.4 km Piraeus datasets, respectively.

x103 x103 x103
30 6 T F 10,0
f =30 =
E E £ 75
/= ¢ = =
. 20 " 20 Q -z
3} 5} g 5.0
g g g
o) o} 5]
g E% ERU % S 95
g, g, 2,
2 & 20 B L A g &
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Lookahead (At) Lookahead (At) Lookahead (At)

(a) (b) (c)

Figure 4.11. Training a Differentially Private (DP) VRF model using PerFL on Brest, Norway
and Piraeus training set and assessing its displacement error on (a) Brest; (b) Norway; (c)
and Piraeus (c) test set.

Further focusing on the models’learning curves at Figure 4.12 we observe immediately
that the added noise severely impact the convergence of the global model, presenting not

only higher levels of client drift (compared to non-DP PerFL), but also an extreme case of

SFacebook Al, Introducing Opacus: A high-speed library for training PyTorch models with differen-
tial privacy, https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-
models-with-differential-privacy/, Last visited: 2022/05/10

https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-differential-privacy/
https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-differential-privacy/

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

x107 x107 x107
M—A_.M._L 0.08
0.15 0.06
Wit O
&2) &2
Z 0.10 MWMMM\ g 0.04 Z 0.06
| il
0.05 Wrhuthmionn iy L TR
0.04
0 100 0 100 0 100
#Epochs #Epochs #Epochs
(a) (b) (c)

Figure 4.12. Learning curve for DP-enabled (a) Brest; (b) Norway; and (c) Piraeus local VRF
workers compared to personalized FedVRF. Blue/orange lines correspond to the workers’
training and validation loss, while cyan/red lines correspond to the training and validation
loss of personalized FedVRF, respectively.

x10° x10° x10?
. . X 100
230 g g
N — 30 o
5 5 = 79
E 20 E‘i 20 Q E _
=1 =1 = 5.0
g g g
g1 g10 3 25
A g 2 & L 2 g0 &
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Lookahead (At) Lookahead (At) Lookahead (At)
() (b) (c)

Figure 4.13. Training a Differentially Private (DP) VRF model using PerFL on pretrained
Brest, Norway and Piraeus corresponding CML model and training set and assessing its
displacement error on (a) Brest; (b) Norway; and (c) Piraeus test set.

)«

underfitting, as deduced by the curves’ “plateauing” behaviour. In an effort to improve
the aforementioned phenomena, one technique, presented by Papernot et al. [47] is to

use pretrained ML model instances, and via DP, produce a private model.

In our case, we use the VRF instances that were trained on Brest, Norway, and Piraeus
datasets using CML, and through DP-enabled qFedAvg, train a privacy-aware global model
that potentially can outperform the previous FedVRF instance. After 170 FL rounds,
Figure 4.13 illustrates the performance of the global model on all three aforementioned
datasets. While we indeed outperformed the non-pretrained DP-enabled FedVRF model,
the difference between the two models is quite marginal (up to 0.5 km), especially when
compared to the personalized FedVRF instance, where the displacement error difference
isup to 2, 0.7, and 0.4 km on the Norway, Brest, and Piraeus datasets, respectively.

Comparing the models’ learning curves (c.f. Figure 4.14), we observe an interest-
ing phenomenon. In general, the learning curves of local and global models are closer

compared to the non-pretrained variant (indicating less client drift; c.f. Figure 4.12).

4.3 Experimental Results

x107 x 107 x107
0.05 _ Attt bmpehn iy 0.05 WMA—&.
0.10
0.04 F l l A n
0.08 b 1p 0.04
% t% r.‘lv v L2 o o N %
<2 £ 0.03 | . 4
= 0.06 = =
— 0.02 0.03
0.04 | A II'J Aanch A
0.01
0 100 0 100 0 100
#Epochs #Epochs #Epochs
(@) (b) ()

Figure 4.14. Learning curve for DP-enabled (a) Brest; (b) Norway; and (c) Piraeus local VRF
workers (/w pretrained CML models) compared to personalized FedVRF. Blue/orange lines
correspond to the workers’ training and validation loss, while cyan/red lines correspond to
the training and validation loss of personalized FedVRF, respectively.

However, especially in the Brest and Oslo datasets, the training loss follows an upward
trend, instead of an downward one.

While in other ML workflows /frameworks, this could indicate a potentially major issue
in the training process, in our case it is expected, since the models have been separately
pretrained, thus they have converged on different local minima. Due to the “Fairness”
mechanism of qFedAvg, the participants’ training losses are combined in order to increase
the fairness/uniformity of models’ performance while maintaining their corresponding
average performance, therefore some local losses (e.g. Brest) tend to increase, and others

(e.g. Oslo) to decrease.

Another experiment, revolves around the trade-off between prediction accuracy and
privacy budget (¢). In DP, we have two additional hyperparameters, namely ¢, and 6
(c.f. Equation 2.1). As defined in Chapter 2.2, ¢ is the privacy parameter which can be
controlled by the data analyst to maintain the trade-off between privacy and accuracy,
and 6 is the probability of information accidentally being leaked [1].

Regarding 6, a rule of thumb is to be less than the inverse of the size of the training
dataset”. With that into account we choose delta to the inverse of the upper order of mag-
nitude of the samples’ population® (e.g., #samples = 1024 < 1056 =1/ 105), or in other
words 6§ = 1075, 1075, and 1075 for Brest, Norway, and Piraeus datasets, respectively. On
the other hand, for e there are some values that we can use as a reference (c.f. Chapter
2.2), as well as works towards approximating it [24, 36], within the scope of this thesis
we will use a baseline approach in which we set € to the tightest value of total privacy
spent among the three workers. During the previous experiment, where the workers had -
virtually - unlimited privacy budget (e = o), the total privacy budget spent was € = 162.2,
247.683, 110.692 for the Brest, Norway, and Piraeus datasets, respectively, thus we set

7"What does epsilon=1.1 really mean? How about delta?", Opacus FAQ, https://opacus.ai/docs/fag#what-
does-epsilonll-really-mean-how-about-delta, Last visited: 07/04/2022

8"Building an Image Classifier with Differential Privacy", GitHub, https://github.com/pytorch/opacus/blob/
main/tutorials/building_image_classifier.ipynb, Last visited: 07/04/2022

https://opacus.ai/docs/faq#what-does-epsilon11-really-mean-how-about-delta
https://opacus.ai/docs/faq#what-does-epsilon11-really-mean-how-about-delta
https://github.com/pytorch/opacus/blob/main/tutorials/building_image_classifier.ipynb
https://github.com/pytorch/opacus/blob/main/tutorials/building_image_classifier.ipynb

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

e =110.
%103 x10% x10%
— — T —~10.0
230 g g
= 30 =
g S S 75
e Z .
§ § § 5.0
E 20 2 25
A, & A, &8 1 A g0 &
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Lookahead (At) Lookahead (At) Lookahead (At)
(a) (b) (c)

Figure 4.15. Training a (e, 6) Differentially Private (DP) VRF model using PerFL on pre-
trained Brest, Norway and Piraeus corresponding CML model and training set and assess-
ing its displacement error on (a) Brest; (b) Norway; and (c) Piraeus test set.

After 170 epochs, Figure 4.15 illustrates the displacement error distribution of the
global DP-enabled FedVRF model on all three aforementioned datasets. Comparing it to
the previous DP-enabled FedVRF experiment (c.f. Figure 4.13), restricting the privacy
budget e does little impact on the prediction error (= 0.1 km for At = 25 — —30 min.),
thus placing (e, 6)-DP- between plain DP-, and pretrained DP-enabled FedVRF. Similarly,
the models’ corresponding learning curves at Figure 4.16 show similar behaviour as the
pretrained DP-enabled FedVRF (¢ = oo; c.f. Figure 4.13), albeit with slightly higher
introduced noise (due to the restricted privacy budget), but with less client drift, therefore

in general, we successfully traded-off model accuracy for higher user privacy.

x107 x107 x107

0.05 _ Avnsrardbhn Aty
0.05
0.10

0.04
0.08 . .
2 0.03 Z
-~
0.06
- 0.02 0.03
0.04
AT TNV M 0.01 N A,

0 100 0 100 0 100
#Epochs #Epochs #Epochs

MSE
MSE

(@) (b) (c)

Figure 4.16. Learning curve for (e, 6) DP-enabled (a) Brest; (b) Norway; and (c) Piraeus
local VRF workers (/w pretrained CML models) compared to personalized FedVRF. Blue/o-
range lines correspond to the workers’ training and validation loss, while cyan/red lines
correspond to the training and validation loss of personalized FedVRF, respectively.

4.4 Discussion and Exploitation

4.4 Discussion and Exploitation

Towards the real-world assessment of FedVRF, Figure 4.17 illustrates the predicted
trajectory of a randomly selected cargo vessel in Norway and Piraeus, as well as a Tanker
vessel in Brest dataset, respectively. We observe that in all three cases the personalized
FedVRF consistently outperforms all other VRF variants by a large margin, including the
CML ones, which are close to the PerFL solution following a similar trajectory, albeit with
larger deviation from the actual route.

Additionally, the added noise within the DP-enabled FedVRF models, renders them
unable to properly predict the vessels’ future route, being relatively accurate for the first
At = 5 minutes, and afterwards making a “U-turn” before returning to where the trajectory
began. Similar results can also be found in plain FedVRF, where the “client-drift” has
greatly impact the vessels’ future route prediction, by deviating (and making the “U-turn”)

almost at the first At * 5 minutes.

Actual (Ground Truth)

Centralized Machine Learning (CML; share all)

Personalized Federated Learning (PerFL)
Differentially Private PerFL (e = 00)
Differentially Private PerFL (pre-trained; e = oo)
Differentially Private PerFL (pre-trained; ¢ = 110)

® Centralized Machine Learning (CML; share model)
Federated Learning (FL)

N

\
:

() (b) (c)

Figure 4.17. Predicting the trajectory of a vessel up to At = 15 min. using all (Fed-)VRF
variants on (a) Brest, (b) Norway, and (c) Piraeus dataset.

Towards the exploitation of FedVRF on maritime traffic control, Figure 4.18 illustrates
the traffic density within the Piraeus dataset for a period up to At = 15 min. Focusing
on popular Cargo/Tanker and Passenger vessels’ routes, we observe that compared to
the actual traffic density, both CML VRF models anticipate increased traffic on passenger
routes, e.g., from Piraeus to Aegina, as well as increased intra-port traffic, either from
official or unofficial ports, such as the Tankers’/Cargos’ anchorage [69] south-east of
Salamina.

On the other hand, the FedVRF model anticipates higher intra-port traffic, with mod-
erate emphasis on popular passenger routes, and less focus on the cargos’ anchorages.
Similarly, the personalized FedVRF model predicts increased traffic flow on popular ves-
sels’ routes, ports, and anchorages, albeit with an increased interest within the inner Sa-

ronic Gulf, where higher flow is anticipated. Finally, the DP-enabled FedVRF solutions,

Chapter 4. Use case: Application of our Approach over Real-world AIS datasets

all provide similar results to personalized VRF, with slight variations on the predicted
flow within passengers’ routes. These findings may trigger domain experts into further

investigating these occurences and reach some meaningful conclusions.

(@) (b)
(c) (d) (e)
® (® (h)
B
100 10t 102 103 104
#Points

Figure 4.18. Predicting maritime traffic flow up to At = 15 min. using all (Fed-)VRF
variants, namely, (b) CML (share all), (c) CML (share model), (d) FL, (e) PerFL, (f) DP-PerFL
(e = =), (g) DP-PerFL (pretrained; € = o), and (h) DP-PerFL (¢ = 110) compared to (a) actual
traffic flow on Piraeus dataset.

Chapter E

Conclusions and Future Work

In this thesis, we studied Federated Learning (FL) from both a theoretical and algo-
rithmic perspective, and compared its advantages and disadvantages to the centralized
approach, based on the task of Vessel Route Forecasting (VRF). Our experimental study
on four real-world AIS datasets demonstrates the advances and open problems of FL,
as well as the advantages of Personalized Federated Learning (PerFL) over highly het-
erogeneous datasets’. In the near future, we aim to further optimize the architecture of
the VRF model, in order to decrease its displacement error, and render it suitable not
only for short-term, but also long-term prediction as well. Additionally, we aim to fur-
ther experiment on PerFL algorithms by fine-tuning the existing algorithms as well as
implementing newer algorithms, such as [15]. Moreover we aim to further exploit on
privacy-preservation mechanisms, by adding more data silos, in order to further lever-
age the properties of Differential Privacy (DP). Finally, we aim to extend the applications’
scope of FedVRF into the scope of maritime transportation safety, and more specifically
in Vessel Collision Risk Assessment (VCRA) [67], therefore shifting to Federated Vessel
Collision Risk Assessment (FedVCRF).

Bibliography

(1]

(2]

(3]

[4]

(5]

6]

(7]

(8]

(9]

[10]

(11]

Arrsam, M. Differential privacy made easy. CoRR abs/2201.00099 (2022).

BEN-NuN, T., aND HOEFLER, T. Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis. ACM Computing Surveys (CSUR) 52, 4 (2019),
1-43.

BENTERKI, A., JUDALET, V., Maaoul, C., AND BOUKHNIFER, M. Long-term prediction of
vehicle trajectory using recurrent neural networks. In IECON (2019), IEEE, pp. 3817-
3822.

BEUTEL, D. J., TopAaL, T., MATHUR, A., QiU, X., PARCOLLET, T., AND LANE, N. D. Flower:
A friendly federated learning research framework. CoRR abs/2007.14390 (2020).

CAPOBIANCO, S., MILLEFIORI, L. M., ForTl, N., BrRACA, P., AND WILLETT, P. Deep learning
methods for vessel trajectory prediction based on recurrent neural networks. IEEE
Trans. Aerosp. Electron. Syst. 57, 6 (2021), 4329-4346.

CHO, K., vAN MERRIENBOER, B., GULCEHRE, C., BAHDANAU, D., BOUGARES, F., SCHWENK,
H., anD BENGIO, Y. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In EMNLP (2014), ACL, pp. 1724-1734.

DEAN, J., CorraDO, G., MonGA, R., CHEN, K., DEVIN, M., LE, Q. V., Mao, M. Z.,
RanzaTO, M., SENIOR, A. W., TUCKER, P. A., YanG, K., anD NG, A. Y. Large scale
distributed deep networks. In NIPS (2012), pp. 1232-1240.

DEsJARDINS, J. Historical ais data in norwegian waters. https://ais-public.
kystverket.no/ais-download. Last Visited: 2022/02/01.

DEvLIN, J., CHANG, M., LEE, K., aND Toutanova, K. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In NAACL-HLT (1) (2019), Asso-
ciation for Computational Linguistics, pp. 4171-4186.

DEY, R., AND SALEM, F. M. Gate-variants of gated recurrent unit (GRU) neural net-
works. In Proceedings of the IEEE 60th International Midwest Symposium on Circuits
and Systems (MWSCAS) (2017), pp. 1597-1600.

DingH, C. T., TraN, N. H., NGuYEN, M. N. H., Hong, C. S., Bao, W., ZoMAYA, A. Y., AND
GramolLl, V. Federated learning over wireless networks: Convergence analysis and
resource allocation. IEEE/ACM Trans. Netw. 29, 1 (2021), 398-409.

https://ais-public.kystverket.no/ais-download
https://ais-public.kystverket.no/ais-download

BIBLIOGRAPHY

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

DucHl, J. C., Hazan, E., AND SINGER, Y. Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res. 12 (2011), 2121-2159.

Dworkg, C., aND RoTH, A. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9, 3-4 (2014), 211-407.

EsTER, M., KRIEGEL, H., SANDER, J., AND XU, X. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In KDD (1996), AAAI Press,
pPp. 226-231.

FALLAH, A., MOKHTARI, A., AND OzDAGLAR, A. E. Personalized federated learning
with theoretical guarantees: A model-agnostic meta-learning approach. In NeurIPS
(2020).

GALAKATOS, A., CROTTY, A., AND KrasSkA, T. Distributed machine learning. In Ency-

clopedia of Database Systems (2nd ed.). Springer, 2018.

GENTRY, C. Fully homomorphic encryption using ideal lattices. In STOC (2009), ACM,
pp. 169-178.

GILAD-BACHRACH, R., DOWLIN, N., LAINE, K., LAUTER, K. E., NAEHRIG, M., AND WERNSING,
J. Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In ICML (2016), vol. 48 of JMLR Workshop and Conference Proceedings,
JMLR.org, pp. 201-210.

Han, P., WanG, W., SHI, Q., AND YANG, J. Real-time short-term trajectory prediction
based on gru neural network. In Proceedings of the 38th Digital Avionics Systems
Conference (DASC) (2019), pp. 1-8.

HaRD, A., KiDDON, C. M., RAMAGE, D., BEAUFAYS, F., EICHNER, H., Rao, K., MATHEWS,

R., AND AUGENSTEIN, S. Federated learning for mobile keyboard prediction, 2018.

HesaMIFARD, E., TakaBl, H., AND GHASEMI, M. Cryptodl: Deep neural networks over
encrypted data. CoRR abs/1711.05189 (2017).

Hirag, B., ATENIESE, G., AND PEREZ-CRUZ, F. Deep models under the GAN: information
leakage from collaborative deep learning. In CCS (2017), ACM, pp. 603-618.

HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural Computation
9, 8 (1997), 1735-1780.

Hsu, J., GABOARDI, M., HAEBERLEN, A., KHANNA, S., NARAYAN, A., PIERCE, B. C., AND
Rothl, A. Differential privacy: An economic method for choosing epsilon. In CSF
(2014), IEEE Computer Society, pp. 398-410.

Jia, Z., LN, S., Qr, C. R., AND AIKEN, A. Exploring hidden dimensions in accelerating
convolutional neural networks. In Proceedings of the 35th International Conference
on Machine Learning (2018), vol. 80 of Proceedings of Machine Learning Research,
PMLR, pp. 2274-2283.

BIBLIOGRAPHY

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

JiA, Z., ZAHARIA, M., AND AIKEN, A. Beyond data and model parallelism for deep neural
networks. In Proceedings of Machine Learning and Systems (2019), A. Talwalkar,
V. Smith, and M. Zaharia, Eds., vol. 1, pp. 1-13.

JiA, Z., ZAHARIA, M., AND AIKEN, A. Beyond data and model parallelism for deep neural

networks. In MLSys (2019), mlsys.org.

JUVEKAR, C., VAIKUNTANATHAN, V., AND CHANDRAKASAN, A. P. GAZELLE: A low latency
framework for secure neural network inference. In USENIX Security Symposium
(2018), USENIX Association, pp. 1651-1669.

Kairouz, P., McMaHaN, H. B., Avent, B., BELLET, A., BENNIS, M., BHAGOJI, A. N.,
Bonawitz, K. A., CHARLES, Z., CORMODE, G., CUMMINGS, R., D’OLIVEIRA, R. G. L., EicH-
NER, H., ROUAYHEB, S. E., EvAaNs, D., GARDNER, J., GARRETT, Z., GASCON, A., GHAZI,
B., GiBBONS, P. B., GRUTESER, M., HArRCcHAOUI, Z., HE, C., HE, L., Huo, Z., HUTCHINSON,
B., Hsu, J., JAGal, M., Javipl, T., JosHI, G., KHODAK, M., KONECNY, J., KOROLOVA, A.,
KOUSHANFAR, F., KoveJo, S., LepoinT, T., Liu, Y., MirTAL, P., MoHRI, M., Nock, R.,
OzGUR, A., Pach, R., Q1, H., RaMAGE, D., Raskar, R., Ravykova, M., Song, D., Song,
W., SticH, S. U., SuN, Z., SURESH, A. T., TRAMER, F., VEPAKOMMA, P., WANG, J., XIONG,
L., Xu, Z., YAaNG, Q., Yu, F. X., Yu, H., AND ZHAO, S. Advances and open problems in
federated learning. Found. Trends Mach. Learn. 14, 1-2 (2021), 1-210.

KARIMIREDDY, S. P., KALE, S., MoHRI, M., REDDI, S. J., STICH, S. U., AND SURESH, A. T.
SCAFFOLD: stochastic controlled averaging for federated learning. In ICML (2020),
vol. 119 of Proceedings of Machine Learning Research, PMLR, pp. 5132-5143.

Kingma, D. P., AND Ba, J. Adam: A method for stochastic optimization. In ICLR
(Poster) (2015).

KoONECNY, J., McMaHAN, H. B., RaMAGE, D., AND RICHTARIK, P. Federated optimiza-
tion: Distributed machine learning for on-device intelligence. CoRR abs/1610.02527
(2016).

KoONECNY, J., McMaHAN, H. B., Yu, F. X., RICHTARIK, P., SURESH, A. T., AND BACON,
D. Federated learning: Strategies for improving communication efficiency. CoRR
abs/1610.05492 (2016).

KRrizHEVSKY, A. One weird trick for parallelizing convolutional neural networks. CoRR
abs/1404.5997 (2014).

KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Sys-
tems (2012), F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,
vol. 25.

LEE, J., AND CLIFTON, C. How much is enough? choosing ¢ for differential privacy. In
ISC (2011), vol. 7001 of Lecture Notes in Computer Science, Springer, pp. 325-340.

BIBLIOGRAPHY

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

L1, S., ZHAO, Y., VARMA, R., SALPEKAR, O., NoorDHUIS, P., L1, T., PASZKE, A., SMITH,
J., VAUGHAN, B., DaMANIA, P., AND CHINTALA, S. Pytorch distributed: Experiences on
accelerating data parallel training. CoRR abs/2006.15704 (2020).

L1, T., SANJABI, M., BEIRAMI, A., AND SMITH, V. Fair resource allocation in federated
learning. In ICLR (2020), OpenReview.net.

Lw, H., Wu, H., Sun, W., anD LEE, I. Spatio-temporal GRU for trajectory classification.
In ICDM (2019), IEEE, pp. 1228-1233.

Liu, T., CHEN, W., AND WANG, T. Distributed machine learning: Foundations, trends,
and practices. In WWW (Companion Volume) (2017), ACM, pp. 913-915.

Liu, Y., CHEN, T., AND YANG, Q. Secure federated transfer learning. CoRR
abs/1812.03337 (2018).

Lo, S. K., Lu, Q., Wang, C., Pak, H., aND ZHu, L. A systematic literature review on
federated machine learning: From a software engineering perspective. ACM Comput.
Surv. 54, 5 (2021), 95:1-95:39.

Low, Y., GONZALEZ, J., KYROLA, A., BICKSON, D., GUESTRIN, C., AND HELLERSTEIN, J. M.
Graphlab: A new framework for parallel machine learning. CoRR abs/1006.4990
(2010).

McMaHAN, B., Moorg, E., RamaGe, D., HampsoN, S., AND Y ARcas, B. A.
Communication-efficient learning of deep networks from decentralized data. In AIS-
TATS (2017), vol. 54 of Proceedings of Machine Learning Research, PMLR, pp. 1273-
1282.

McMagaNn, H. B., Moork, E., RAMAGE, D., AND Y Arcas, B. A. Federated learning of
deep networks using model averaging. CoRR abs/1602.05629 (2016).

MoHAMMADI, M., AL-FugaHA, A., SOROUR, S., AND Guizani, M. Deep learning for iot big
data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials
20, 4 (2018), 2923-2960.

PAPERNOT, N., THAKURTA, A., SONG, S., CHIEN, S., AND ERLINGSSON, U. Tempered sigmoid
activations for deep learning with differential privacy. In AAAI (2021), AAAI Press,
pp. 9312-9321.

Paszke, A., GROSs, S., Massa, F., LERER, A., BRADBURY, J., CHANAN, G., KILLEEN, T.,
LiN, Z., GIMELSHEIN, N., ANTIGA, L., DESMAISON, A., KOPF, A., YANG, E. Z., DEVITO, Z.,
Rai1soN, M., TEJANI, A., CHILAMKURTHY, S., STEINER, B., FANG, L., Bal, J., AND CHINTALA,
S. Pytorch: An imperative style, high-performance deep learning library. In NeurIPS
(2019), pp. 8024-8035.

PeETROU, P., NIKITOPOULOS, P., TAMPAKIS, P., GLENIS, A., KOUTROUMANIS, N., SANTIPAN-
TAKIS, G. M., PATROUMPAS, K., VLACHOU, A., GEORGIOU, H. V., CHONDRODIMA, E., DOULK-

ERIDIS, C., PELEKIS, N., ANDRIENKO, G. L., PATTERSON, F., FucHs, G., THEODORIDIS, Y.,

BIBLIOGRAPHY

(50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

(591

[60]

[61]

AND VOUROs, G. A. ARGO: A big data framework for online trajectory prediction. In
Proceedings of the 16th International Symposium on Spatial and Temporal Databases,
SSTD 2019, Vienna, Austria, August 19-21, 2019 (2019), pp. 194-197.

PeTROU, P., TAMPAKIS, P., GEORGIOU, H. V., PELEKIS, N., AND THEODORIDIS, Y. Online
long-term trajectory prediction based on mined route patterns. In MASTER@ECML-
PKDD 2019 (2019), pp. 34-49.

QarpaAJI, W. H., YanGg, W., anD LI, N. Differentially private grids for geospatial data.
In ICDE (2013), IEEE Computer Society, pp. 757-768.

Qiu, X., PARCOLLET, T., FERNANDEZ-MARQUES, J., DE GUusMAo, P. P. B., BEUTEL, D. J.,
TopaL, T., MATHUR, A., aAND LaNE, N. D. A first look into the carbon footprint of
federated learning. CoRR abs/2102.07627 (2021).

Ray, C., Dreo, R., Camossi, E., JOUSSELME, A.-L., AND IPHAR, C. Heterogeneous
integrated dataset for maritime intelligence, surveillance, and reconnaissance. Data
in Brief 25 (2019), 104-141.

ReDDI, S. J., CHARLES, Z., ZAHEER, M., GARRETT, Z., RusH, K., KONECNY, J., KUMAR,
S., AND McMaHaAN, H. B. Adaptive federated optimization. In ICLR (2021), OpenRe-

view.net.

RIEKE, N., HANcOX, J., L1, W., MILLETARI, F., RoTH, H., ALBARQOUNI, S., BAkas, S.,
GALTIER, M. N., LanpmaN, B. A., MaAER-HEIN, K. H., OURSELIN, S., SHELLER, M. J.,
SuMMERS, R. M., Trask, A., Xu, D., Baust, M., anD Carposo, M. J. The future of
digital health with federated learning. CoRR abs/2003.08119 (2020).

RivesT, R. L., ADLEMAN, L., AND DERTOUZOS, M. L. On data banks and privacy homo-

morphisms. Foundations of Secure Computation, Academia Press (1978), 169-179.

Rossi, A., BARLACCHI, G., BIANCHINI, M., AND LEPRI, B. Modelling taxi drivers’ behaviour
for the next destination prediction. IEEE Trans. Intell. Transp. Syst. 21, 7 (2020),
2980-2989.

RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Learning representations by
back-propagating errors. Nature 323 (1986), 533-536.

SABATER, C., BELLET, A., AND RamoN, J. Distributed differentially private averaging
with improved utility and robustness to malicious parties. CoRR abs/2006.07218
(2020).

SHOKRI, R., AND SHMATIKOV, V. Privacy-preserving deep learning. In Allerton (2015),
IEEE, pp. 909-910.

SONG, S., CHAUDHURI, K., AND SARWATE, A. D. Stochastic gradient descent with differ-
entially private updates. In GlobalSIP (2013), IEEE, pp. 245-248.

BIBLIOGRAPHY

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

Suo, Y., CHEN, W., CLARAMUNT, C., AND YANG, S. A ship trajectory prediction frame-

work based on a recurrent neural network. Sensors 20, 18 (2020), 5133.

TampraKis, P., PELEKIS, N., DOULKERIDIS, C., AND THEODORIDIS, Y. Scalable distributed
subtrajectory clustering. In 2019 IEEE International Conference on Big Data (Big
Data) (2019), IEEE, pp. 950-959.

Tan, A. Z., Yu, H., Cul, L., AND YANG, Q. Towards personalized federated learning.

IEEE Transactions on Neural Networks and Learning Systems (2022), 1-17.

TRASARTI, R., GUIDOTTI, R., MONREALE, A., AND GIANNOTTI, F. Myway: Location predic-
tion via mobility profiling. Inf. Syst. 64 (2017), 350-367.

TRASK, A. Grolkking Deep Learning, 1t ed. Manning Publications Co., 2019.

TRITSAROLIS, A., CHONDRODIMA, E., PELEKIS, N., AND THEODORIDIS, Y. Vessel Collision
Risk Assessment using AIS Data: A Machine Learning Approach. In MBDW (2022),
ACM, pp. 170-173.

TRITSAROLIS, A., CHONDRODIMA, E., TAMPAKIS, P., AND PIKRAKIS, A. Online co-movement
pattern prediction in mobility data. In EDBT/ICDT Workshops (2021), vol. 2841 of
CEUR Workshop Proceedings, CEUR-WS.org.

TRITSAROLIS, A., KONTOULIS, Y., PELEKIS, N., AND THEODORIDIS, Y. Masec: Discovering
anchorages and co-movement patterns on streaming vessel trajectories. In SSTD
(2021), ACM, pp. 170-173.

TRrITSAROLIS, A., KOoNTOULIS, Y., AND THEODORIDIS, Y. The piraeus ais dataset for large-
scale maritime data analytics. Data in Brief 40 (2022), 107782.

VEPAKOMMA, P., SWEDISH, T., RASKAR, R., Gupta, O., AND DUBEY, A. No peek: A survey
of private distributed deep learning. CoRR abs/1812.03288 (2018).

VERBRAEKEN, J., WOLTING, M., KaTzy, J., KLOPPENBURG, J., VERBELEN, T., AND RELLER-
MEYER, J. S. A survey on distributed machine learning. ACM Computing Surveys
(CSUR) 53, 2 (2020), 1-33.

WangG, M., Huang, C., anD LI, J. Unifying data, model and hybrid parallelism in deep
learning via tensor tiling. CoRR abs/1805.04170 (2018).

WaNgG, S., Cao, J., aND Yu, P. S. Deep learning for spatio-temporal data mining: A
survey. CoRR abs/1906.04928 (2019).

WERBOS, P. J. Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE 78, 10 (1990), 1550-1560.

XuE, H., HuynH, D. Q., AND REYNOLDS, M. SS-LSTM: A hierarchical LSTM model for
pedestrian trajectory prediction. In WACV (2018), IEEE Computer Society, pp. 1186-
1194.

BIBLIOGRAPHY

[77]

(78]

[79]

(801

[81]

(82]

(83]

YANG, Q., Liu, Y., CHEN, T., AND TONG, Y. Federated machine learning: Concept and
applications. ACM Trans. Intell. Syst. Technol. 10, 2 (2019), 12:1-12:19.

YaNG, Q., Liu, Y., CHENG, Y., KANG, Y., CHEN, T., AND YU, H. Federated Learning. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2019.

Yao, A. C. How to generate and exchange secrets (extended abstract). In FOCS
(1986), IEEE Computer Society, pp. 162-167.

YOUSEFPOUR, A., SHILOV, I., SABLAYROLLES, A., TESTUGGINE, D., PrasaD, K., MALEK, M.,
NGUYEN, J., GOsH, S., BHARADWAJ, A., ZHAO, J., CORMODE, G., AND MIRONOV, I. Opacus:
User-friendly differential privacy library in pytorch. CoRR abs/2109.12298 (2021).

ZAHEER, M., REDDI, S. J., SACHAN, D. S., KALE, S., AND KUMAR, S. Adaptive methods
for nonconvex optimization. In NeurIPS (2018), pp. 9815-9825.

ZHANG, D., CHEN, X., WANG, D., AND SHI, J. A survey on collaborative deep learning
and privacy-preserving. In DSC (2018), IEEE, pp. 652-658.

ZHANG, H., L1, Y., DENG, Z., LIANG, X., CARIN, L., AND XING, E. P. Autosync: Learning
to synchronize for data-parallel distributed deep learning. In NeurIPS (2020).

List of Abbreviations

CML Centralized Machine Learning

CNN Convolutional Neural Network

DL Deep Learning

DML Distributed Machine Learning

DP-SGD Differentially Private Stochastic Gradient Descent
DSSGD Distributed Selective Stochastic Gradient Descent
FedAvg Federated Averaging

FedVRF Federated Vessel Route Forecasting

FL Federated Learning

FTL Federated Transfer Learning

GDPR General Data Protection Regulation
GRU Gated Recurrent Unit

HE Homomorphic Encryption

HFL Horizontal Federated Learning

LI.D Independent and Identically Distributed
LSTM Long Short-Term Memory

ML Machine Learning

NN Neural Network

PDF Probability Density Function

PerFL Personalized Federated Learning

PPML Privacy-Preserving Machine Learning
RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SMPC Secure Multi-Party Computation

VFL Vertical Federated Learning

VRF Vessel Route Forecasting

VTFF Vessel Traffic Flow Forecasting

	Περίληψη
	Σύνοψη
	Abstract
	Acknowledgements
	Introduction
	Thesis Contribution
	Thesis Organization

	From Distributed to Federated Learning - an Overview
	Distributed Machine Learning
	Privacy-Preserving Learning
	Federated Learning

	Maritime Analytics and the VRF Problem
	Definitions and VRF Problem Formulation
	Related Work on VRF Methods
	Centralized vs. Federated Learning

	Use case: Application of our Approach over Real-world AIS datasets
	Datasets and Preprocessing
	Experimental Setup
	Experimental Results
	Collaboration using Centralized ML
	Collaboration using Federated ML
	Addressing Client Drift
	The Privacy Preservation Trade-off

	Discussion and Exploitation

	Conclusions and Future Work
	Bibliography
	List of Abbreviations

