
NATIONAL TECHNICAL UNIVERSITY OF ATHENS 

 

 

Optimization Methods Applied in a Class of Vehicle Routing and Scheduling 

Problems 

 

DOCTORAL THESIS 

 

Author  Supervisor 

Grigorios D. Konstantakopoulos  Dr. Ilias P. Tatsiopoulos 

Professor NTUA 

 

A thesis submitted in fulfillment of the requirements 

for the degree of Doctor of Philosophy 

in the 

 

Industrial Engineering Laboratory 

Sector of Industrial Management and Operational Research 

Mechanical Engineering School 

 

 

 

July 2022 

  



 

 



 

 

NATIONAL TECHNICAL UNIVERSITY OF ATHENS 

 

 

Optimization Methods Applied in a Class of Vehicle Routing and Scheduling 

Problems 

 

DOCTORAL THESIS 

 

Author  Supervisor 

Grigorios D. Konstantakopoulos  Dr. Ilias P. Tatsiopoulos 

Professor NTUA 

 

A thesis submitted in fulfillment of the requirements 

for the degree of Doctor of Philosophy 

in the 

 

Industrial Engineering Laboratory 

Sector of Industrial Management and Operational Research 

Mechanical Engineering School 

 

 

 

July 2022 



 

 

   



 

 

 

National Technical University of Athens 

Mechanical Engineering School 

Sector of Industrial Management and Operational Research 

Industrial Engineering Laboratory 

 

Optimization Methods Applied in a Class of Vehicle Routing and Scheduling 

Problems 

 

PhD Thesis 

Grigorios D. Konstantakopoulos 

 

Examination Committee:  

 Dr. Tatsiopoulos I., Supervisor 

Professor NTUA 
  

 Dr. Panayiotou N. 

Professor NTUA 
  

 Dr. Ponis S. 

Professor NTUA 
  

 Dr. Aravossis K. 

Professor NTUA 
  

 Dr. Varvarigou T. 

Professor NTUA 
  

 
Dr. Τolis Α. 

Associate Professor NTUA 
  

 Dr. Zeimpekis 

Assistant Professor  

 



 

 



vii 

 

Acknowledgements 

This PhD thesis, entitled "Optimization Methods Applied in a Class of Vehicle Routing and 

Scheduling of Deliveries Problems" was conducted in Mechanical Engineering School of 

National Technical University of Athens during February of 2018 and May 2022. At this point, 

I would like to thank certain people who have been very supportive of me all this time and have 

contributed significantly to the completion of the work.  

First of all, I would like to express my gratitude to my primary advisor, Professor Ilias 

Tatsiopoulos, for allowing me to work on this project and guiding my PhD research. I want to 

thank him for trusting my potential, giving me the appropriate amount of freedom in following 

my ideas and providing a very supportive working environment as the research group head. 

Additionally, I would like to thank Dr. Sotiris Gayialis for providing me with precious advice 

and suggestions and being available anytime to solve questions and give me advice. Our 

cooperation led to writing multiple research articles and papers that helped me acquire 

knowledge and experience that will be valuable in the future. Also, I would like to thank Dr. 

Georgios Papadopoulos for his support. 

My sincere thanks go to my other two supervisors, Professors Stavros Ponis and Nikolaos 

Panayiotou, to participate in my thesis committee and give me valuable feedback on several 

occasions. Great thanks to my friend and colleague Evripidis Kechagias for his precious 

assistance, support and valuable collaboration. Many thanks to all the people in the Sector of 

Industrial Management and Operational Research for creating a friendly and professional 

environment. 

I am also indebted to all the people from Optimum S.A, especially Dimitris Pergamalis, Elias 

Kanakis and Aris Kolofotias who helped me by supporting the empirical part of this thesis. 

Finally, I would like to express my deepest sincere appreciation to my mother, father, and sister 

for their endless love and support and my friends for helping me relieve the pressure that is 

sometimes accumulated from the research process. And for the one who has made all the 

endless hours and effort spent seem to worth, my life partner Matina. You were always on my 

side, giving me faith and strength to accomplish my targets. 



viii 

 

Abstract 

The present thesis studies and addresses a class of vehicle routing and scheduling problems 

while also developing powerful evolutionary and local search metaheuristics that aim to 

optimize the distribution process in urban areas by proposing a plan of routes and deliveries. 

The fact that route planning is affected by many variables and constraints that have emerged 

by the nature of logistics companies, their external environment, and their customers' needs 

and requirements has led to an increased interest both scientifically and commercially. The 

current thesis, aiming to bring together research and industry, also studies and proposes the 

integration of the developed algorithms into a cloud routing system, offering highly efficient 

route plans.  

Moreover, the different variables and constraints of the Vehicle Routing Problem (VRP) 

correspond to different variants of the problem. In the current thesis, the variants considered 

have arisen through an analytical literature review and the cooperation with industrial and 

software development companies operating in this field. Specifically, the most commonly 

addressed, by researchers and practitioners, VRP variants and those with the potential to 

contribute financially and environmentally to logistics companies in the future are selected. 

This methodology ensures that both fields (research and industry) will benefit and be interested 

in, as they are inextricably linked to each other. The variants of the problem that are selected 

and studied are: 

• the Vehicle Routing Problem with Time Windows (VRPTW), 

• the Vehicle Routing Problem with Simultaneous Pickups and Deliveries (VRPSPD), 

• the Heterogeneous Fleet Vehicle Routing Problem (HVRP), and 

• the Collaborative VRP.  

The VRP variants under study belonging to NP-hard problems are highly complex, primarily 

when addressed simultaneously. In this thesis, one of the goals is to address all the above-

mentioned variants either solely or combined in order to cover most needs and requirements of 

logistics companies operating on freight distribution field. Each of the above VRP variants 

corresponds to specific characteristics, variables and restrictions. Specifically, the VRPTW 

considers the time slots that customers indicate in order to be served by logistics companies. 

The VRPSPD focuses, as its name indicates, on simultaneous pickups and deliveries, while the 

HVRP on the heteroginity of vehicles that logistics companies own, in terms of capacity, fixed 

and variable costs. Finally, the Collaborative VRP focuses on cases that logistics companies 

that locate and operate at the same areas collaborate in the distribution process. All these VRP 

variants form the main requirements and challenges that logistics companies face on freight 

distribution, and by addressing them great benefits can emerge.  



ix 

 

Combining multiple VRP variants is complex, along with the need of companies to acquire 

efficient and cost-saving solutions have led to the need for optimization algorithms. Initial ly, 

exact algorithms were proposed by researchers. Their advantage, which is optimally solving 

the VRP, is accompanied by a significant constrain; the limited number of customers that can 

be handled and the increased computation time needed, especially when customers exceed 100. 

This limitation is restrictive, and therefore these algorithms are not integrated into software 

packages. The disadvantages of exact algorithms resulted in researchers proposing heuristics 

algorithms that offer good quality solutions that are not optimal in most cases in limited 

computation time. Finally, researchers developed metaheuristic algorithms that, in most cases, 

offer the best trade-off between efficiency of solutions and computation time. 

In the current thesis, multiple metaheuristic algorithms are studied, developed, and proposed 

to solve the VRP variants that are mentioned above and correspond to those that logistics 

companies most commonly address on freight distribution. An Evolutionary Algorithm (EA) 

and two Local Search (LS) metaheuristics are developed. These algorithms address either 

separately or simultaneously some of the proposed VRP variants. More precisely, the 

developed EA addresses the Vehicle Routing Problem with Simultaneous Pickups and 

Deliveries and with Time Windows (VRPSPDTW). The algorithm is also applied in cases with 

electric vehicles with a limited driving range, affecting distribution. The novelty in this solution 

method is related to the applied crossover operator and the fact that the problem is addressed 

as multiobjective for the first time. In multiobjective optimization, two or more conflicting 

objectives exist and need to be optimized, which in the current research are (i) the number of 

vehicles needed for executing the routes, and (ii) the total traveled distance.  

Additionally, the first LS algorithm, a Large Neighborhood Search (LNS) metaheuristic, 

addresses the VRPTW as a multiobjective. This is the first time a multiobjective LNS algorithm 

is proposed in the specific problem, offering high-quality results. Finally, the second developed 

LS metaheuristic is an Adaptive Large Neighborhood Search (ALNS) metaheuristic that 

addresses the Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 

Deliveries and with Time Windows (HVRPSPDTW), which means that the three VRP variants 

are considered simultaneously. The ALNS algorithm is also applied, after some modifications, 

in the Collaborative VRP to estimate the economic and environmental benefits from the 

cooperation of distribution companies. In the context of studying VRP variants and addressing 

them through optimization algorithms, their mathematical model was formulated, as it is a vital 

part of efficiently addressing the problem and setting the right variables and constraints. 

Finally, the three algorithms have been developed in the Python programming language as 

libraries containing the necessary functions for solving the VRP. The algorithms are tested in 

multiple datasets of the literature to ensure their efficiency and ability to be integrated into a 

cloud routing system. The proposed system is developed in cooperation with a software 

development company that is responsible for the user interface part, as well as the connection 

of the cloud system with its individual parts of the system (such as online maps and the 



x 

 

database). Additionally, the requirements of the system regarding the master data, as well as 

its functionalities have been defined jointly.  

On the other hand, the core of the system, which is the algorithms that are implemented, have 

been developed exclusively by me, and configured to serve the need of the software 

development company. Since all of the proposed algorithms offer high-quality results, they are 

all stored in the software development company’s server, so that to be accessible by the cloud 

routing system through the appropriate requests. While the system has the ability to access any 

of the proposed algorithms, in its current form, the system receives the plan of routes that is 

extracted by the ALNS algorithm, covering multiple freight distribution cases. The system that 

handles and addresses multiple variables and constraints needs to be fed with the correct data 

to offer efficient routes and deliveries. Therefore, it exploits advanced technologies that can 

ensure the quality and accuracy of data. Online maps are exploited concerning the geocoding 

procedure and the data related to the distance and the travel time between order points.  

The benefits of using such a routing system provided through the cloud, and thus no installation 

of the system is required on each company's computers, are many and are not limited only to 

the financial aspect. Besides eliminating installation and maintenance costs, the users can 

extract efficient and high accuracy plans that are visualized on online maps, modify the 

proposed routes and schedules, and execute rerouting strategies after the distribution process 

has started. In addition to these functionalities, when fed with real-time data from online maps, 

the system can handle the dynamic nature of the problem and address unexpected events that 

are occurred after the plan of routes have begun. Specifically, data may change during the route 

execution, affecting the distribution process. All the technologies mentioned above and system 

functionalities can significantly enhance logistics companies' efforts and decision-makers 

before and after the distribution process started. 

Concluding, the research focuses on multiple aspects, starting with the study of the above-

mentioned VRP variants which are considered either solely or combined, along with their 

mathematical formulation. In addition, the presented thesis proposes and develops optimization 

algorithms that address these distribution cases and are tested in both datasets of the literature 

and in real-life cases in order to evaluate the ability of the algorithms to be implemented in a 

routing system. The last part of the research concerns the ability of algorithms to be suitable 

for integration into a cloud routing system, as well as their connection with technologies that 

are necessary for system development.



 

 

Contents 
 

Acknowledgements  ............................................................................................................ vii 

Abstract ............................................................................................................................ viii 

List of Tables ....................................................................................................................... 5 

List of Figures ...................................................................................................................... 7 

List of Acronyms ................................................................................................................. 9 

Chapter 1: Introduction .............................................................................................. 10 

1.1 Motivations ....................................................................................................... 10 

1.2 Research Methodology ...................................................................................... 12 

1.3 Purpose and Contribution of Thesis  ................................................................... 15 

1.4 Overview of the PhD thesis ................................................................................ 16 

References ......................................................................................................................... 1 

Chapter 2: State of the Art ............................................................................................ 2 

2.1 Introduction ......................................................................................................... 2 

2.2 The Vehicle Routing Problem and its Variants ..................................................... 4 

2.3 Solution Methods................................................................................................. 8 

2.3.1 Exact Approaches........................................................................................... 10 

2.3.2 Heuristic Algorithms ...................................................................................... 10 

2.3.3 Metaheuristic Algorithms ............................................................................... 11 

2.4 Literature Review Methodology......................................................................... 13 

2.5 Research Results Analysis ................................................................................. 16 

2.6 Applied Algorithms in VRP Variants ................................................................. 22 

2.6.1 Capacitated VRP ............................................................................................ 23 

2.6.2 VRP with Time Windows............................................................................... 23 

2.6.3 VRP with Pickups and Deliveries  ................................................................... 24 

2.6.4 Heterogenous Fleet VRP ................................................................................ 24 

2.6.5 VRP with Multiple Depots and Collaborative VRP......................................... 24 

2.6.6 Green VRP ..................................................................................................... 25 

2.6.7 Open VRP ...................................................................................................... 25 

2.6.8 Dynamic and Stochastic VRP ......................................................................... 26 



Chapter 1: Introduction 

2 

 

2.6.9 Multi‑Trip VRP .............................................................................................. 26 

2.6.10 Multi‑Echelon VRP  ........................................................................................ 27 

2.6.11 Time‑dependent VRP  ..................................................................................... 27 

2.6.12 Two Dimensional and Three Dimensional VRP.............................................. 27 

2.6.13 Consistent VRP .............................................................................................. 28 

2.6.14 Split Delivery VRP......................................................................................... 28 

2.6.15 Periodic VRP ................................................................................................. 28 

2.6.16 Truck and Trailer VRP ................................................................................... 28 

2.7 Applications to Practice ..................................................................................... 29 

2.8 Concluding Remarks.......................................................................................... 30 

References ....................................................................................................................... 31 

Chapter 3: The Vehicle Routing Problem with Time Windows ................................ 43 

3.1 Introduction ....................................................................................................... 43 

3.2 Problem Description and Mathematical Formulation .......................................... 45 

3.3 Problem Solution ............................................................................................... 47 

3.3.1 Pareto Optimal ............................................................................................... 48 

3.3.2 Time-Oriented Nearest Neighbor Algorithm ................................................... 49 

3.3.3 Multiobjective Large Neighborhood Search.................................................... 50 

3.3.4 General Framework ........................................................................................ 53 

3.4 Computational Study ......................................................................................... 53 

3.5 Concluding Remarks.......................................................................................... 58 

References ....................................................................................................................... 58 

Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries 

and Time Windows............................................................................................................ 62 

4.1 Introduction ....................................................................................................... 62 

4.2 Problem Description and Mathematical Formulation .......................................... 64 

4.3 Solution Method – Evolutionary Algorithm ....................................................... 67 

4.3.1 Multiobjective Optimization ........................................................................... 68 

4.3.2 Construction Method ...................................................................................... 69 

4.3.3 Chromosome Structure ................................................................................... 70 

4.3.4 Proposed Evolutionary Algorithm .................................................................. 71 

4.3.5 Crossover and Mutation Operators  ................................................................. 72 



Chapter 1: Introduction 

3 

 

4.4 Computational Study ......................................................................................... 73 

4.4.1 Results in the VRPTW ................................................................................... 74 

4.4.2 Results in the VRPSPD .................................................................................. 77 

4.5 Conventional vs Electric Vehicles ...................................................................... 78 

4.6 Concluding Remarks.......................................................................................... 81 

References ....................................................................................................................... 82 

Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous 

Pickups and Deliveries and Time Windows ..................................................................... 85 

5.1 Introduction ....................................................................................................... 85 

5.2 Problem Description and Mathematical Formulation .......................................... 87 

5.3 Solution Method – Adaptive Large Neighborhood Search .................................. 89 

5.3.1 Construction Procedure .................................................................................. 89 

5.3.2 Adaptive Large Neighborhood Search Algorithm ........................................... 90 

5.4 Computational Study – Case Studies .................................................................. 94 

5.4.1 Datasets of the Literature ................................................................................ 94 

5.4.2 HFVRP .......................................................................................................... 99 

5.4.3 VRPSPD ...................................................................................................... 100 

5.5 The Case of Collaborative Logistics................................................................. 101 

5.5.1 Benefits by Applying the ALNS to the Collaborative VRP ........................... 101 

5.5.2 Collaborative Logistics and VRP Variants  .................................................... 103 

5.5.3 Problem Description ..................................................................................... 104 

5.5.4 Case Studies ................................................................................................. 106 

5.5.5 Computational Results.................................................................................. 108 

5.5.6 Discussion .................................................................................................... 109 

5.6 Concluding Remarks........................................................................................ 110 

References ..................................................................................................................... 111 

Chapter 6: Practical Application of the Developed Algorithms into the Cloud Routing 

System 117 

6.1 Introduction ..................................................................................................... 117 

6.2 Master Data ..................................................................................................... 118 

6.3 System’s Technologies and Functionalities  ...................................................... 121 

6.4 Initial Routing and Scheduling ......................................................................... 123 



Chapter 1: Introduction 

4 

 

6.5 Rerouting Procedure ........................................................................................ 131 

6.6 Evaluation and Benefits ................................................................................... 136 

6.7 Concluding Remarks........................................................................................ 139 

References ..................................................................................................................... 139 

Chapter 7: Research Conclusions and Future Works.............................................. 140 

7.1 Synopsis of Research Contributions ................................................................. 140 

7.2 Future Research ............................................................................................... 141 

7.3 Research Outputs  ............................................................................................. 143 

Appendix A Supplement to Chapter 2 ............................................................................ 146 

Appendix Β Supplement to Chapter 3 ............................................................................ 147 

Appendix C Supplement to Chapter 4 ............................................................................ 158 

Appendix D Supplement to Chapter 5 ............................................................................ 174 

Appendix E Supplement Chapter 6  ................................................................................ 184 

 

 

 

 



Chapter 1: Introduction 

5 

 

List of Tables 

Table 2.1 Search Term Applied ........................................................................................... 14 

Table 2.2 VRP Variants over Years  ..................................................................................... 18 

Table 2.3 Applied Algorithms per Year ............................................................................... 20 

Table 2.4 Correlation between VRP Variants and Algorithms .............................................. 21 

Table 3.1 Average Computation Time, Computing Environment and Runs .......................... 54 

Table 3.2 Results of the MOLNS in Solomon Instances with Short Scheduling Horizon ...... 55 

Table 3.3 Results of the MOLNS in Solomon Instances with Long Scheduling Horizon ...... 56 

Table 4.1 Results of the MOEA in Solomon's Instances with Short Scheduling Horizon ...... 75 

Table 4.2 Results of the MOEA in Solomon's Instances with Long Scheduling Horizon ...... 76 

Table 4.3 Results of the MOEA in Salhi and Nagy Dataset  .................................................. 77 

Table 4.4 Features and Specifications of Vehicles  ............................................................... 79 

Table 4.5 Economic and Environmental Impact of Petrol Vehicles ...................................... 79 

Table 4.6 Economic and Environmental Impact of Diesel Vehicles  ..................................... 79 

Table 4.7 Economic and Environmental Impact of Electric Vehicles ................................... 80 

Table 5.1 FSMVRP-F Dataset Results ................................................................................. 96 

Table 5.2 FSMVRP-V Dataset Results  ................................................................................ 96 

Table 5.3 FSMVRP-FV Dataset Results .............................................................................. 96 

Table 5.4 Summarized Results on the FSMVRPTW ............................................................ 98 

Table 5.5 HFVRP Dataset Results  ....................................................................................... 99 

Table 5.6 HFVRPTW Dataset Results ............................................................................... 100 

Table 5.7 Comparing Routing Methods in Real-life Distribution Cases.............................. 101 

Table 5.8 Representative Data of Customers ...................................................................... 107 

Table 5.9 Data of Vehicles ................................................................................................ 107 

Table 5.10 Collaborative Logistics vs Current Situation Results  ........................................ 108 

Table 6.1 Distribution Cost per Running Time in a Store Replenishment Case................... 126 

Table 6.2 Distribution Cost per Running Time in a Door-to-Door Delivery Case ............... 127 

Table 6.3 Distribution Cost per Running Time in an E-commerce Case ............................. 128 

Table 6.4 Comparing Routing Methods in Real-life Distribution Cases.............................. 137 

Table B.1 New Optimal Solution in RC202 Instance ......................................................... 147 

Table B.2  New Optimal Solution in RC207 Instance ........................................................ 147 



Chapter 1: Introduction 

6 

 

Table B.3 New Optimal Solution in R201 Instance ............................................................ 147 

Table C.1 New Optimal Solution in R202 Instance ............................................................ 158 

Table C.2 New Optimal Solution in R210 Instance ............................................................ 158 

Table C.3 New Optimal Solution in CMT2X Instance ....................................................... 158 

Table C.4 New Optimal Solution in CMT5X Instance ....................................................... 159 

Table C.5 New Optimal Solution in CMT7X Instance ....................................................... 159 

Table C.6 New Optimal Solution in CMT8X Instance ....................................................... 159 

Table C.7 New Optimal Solution (a) in CMT9X Instance .................................................. 159 

Table C.8 New Optimal Solution (b) in CMT9X Instance .................................................. 160 

Table C.9 New Optimal Solution (c) in CMT9X Instance .................................................. 160 

Table C.10 New Optimal Solution in CMT10X Instance ................................................... 161 

Table D.1 Results in Cost Structure A of the FSMVRPTW Dataset ................................... 174 

Table D.2 Results in Cost Structure B of the FSMVRPTW Dataset  ................................... 175 

Table D.3 Results in Cost Structure C of the FSMVRPTW Dataset  ................................... 177 

Table D.4 New Optimal Solution in RC101B Instance....................................................... 178 

Table D.5 New Optimal Solution in RC102B Instance....................................................... 179 

Table D.6 New Optimal Solution in RC103B Instance....................................................... 179 

Table D.7 New Optimal Solution in RC106B Instance....................................................... 180 

Table D.8 New Optimal Solution in RC107B Instance....................................................... 180 

Table D.9 New Optimal Solution in R208B Instance ......................................................... 181 

Table D.10 New Optimal Solution in Problem Instance 16 ................................................ 181 

Table D.11 New Optimal Solution in HC102 Instance ....................................................... 182 

Table D.12 New Optimal Solution in HC204 Instance ....................................................... 182 

Table D.13 New Optimal Solution in HRC204 Instance .................................................... 182 

Table D.14 New Optimal Solution in HR201 Instance ....................................................... 183 

Table D.15 New Optimal Solution in HR202 Instance ....................................................... 183 

 

 

  



Chapter 1: Introduction 

7 

 

List of Figures 

Figure 1.1 Research Methodology ....................................................................................... 15 

Figure 1.2 Thesis Outline .................................................................................................... 17 

Figure 2.1 Classification of Algorithms for the VRP .............................................................. 9 

Figure 3.1 Illustration of the VRPTW .................................................................................. 47 

Figure 3.2 Steps of the MOLNS Algorithm ......................................................................... 48 

Figure 3.3 Pareto Optimal Front .......................................................................................... 49 

Figure 3.4 Destroy Operator ................................................................................................ 51 

Figure 3.5 Route Destroy and Repair ................................................................................... 52 

Figure 3.6 The General Framework of the MOLNS ............................................................. 53 

Figure 4.1 Illustration of the VRPSPD ................................................................................. 67 

Figure 4.2 Steps of the MOEA Algorithm............................................................................ 68 

Figure 4.3 Dominated, Non-dominated, and Pareto-optimal Front ....................................... 69 

Figure 4.4 Chromosome Structure ....................................................................................... 70 

Figure 4.5 Pseudocode of the MOEA................................................................................... 72 

Figure 4.6 Updated Pareto-optimal front on R210 Problem Instance .................................... 76 

Figure 5.1 Array of Vehicles and Routes ............................................................................. 90 

Figure 5.2 Framework of the ALNS Algorithm.................................................................... 91 

Figure 5.3 Route Example and Sequence of Deliveries ........................................................ 93 

Figure 5.4 Repair of a Destroyed Solution ........................................................................... 94 

Figure 5.5 (a) Current State Prevailing on most 3PL Companies in Greece. (b) Proposed 

Collaborative Strategy ....................................................................................................... 102 

Figure 6.1 Structure of Orders Data ................................................................................... 119 

Figure 6.2 Uploading of Data ............................................................................................ 119 

Figure 6.3 Vehicles and Vehicle Types Data...................................................................... 120 

Figure 6.4 System's Technologies ...................................................................................... 122 

Figure 6.5 Autocomplete Address Functionality ................................................................ 123 

Figure 6.6 Order Point On-map ......................................................................................... 124 

Figure 6.7 Defining the Computation Time........................................................................ 124 

Figure 6.8 Distribution Cost per Running Time in a Store Replenishment Case  ................. 125 

Figure 6.9 Distribution Cost per Running Time in a Door-to-Door Delivery Case.............. 126 



Chapter 1: Introduction 

8 

 

Figure 6.10 Distribution Cost per Running Time in an E-commerce Case .......................... 127 

Figure 6.11 Created Plan of Routes.................................................................................... 128 

Figure 6.12 Route Representation ...................................................................................... 129 

Figure 6.13 Entering the PoD System ................................................................................ 130 

Figure 6.14 Driver's Route................................................................................................. 130 

Figure 6.15  Monitoring and Updating the Status and of Orders through the PoD and Routing 

System .............................................................................................................................. 131 

Figure 6.16 (a) Initial Route (b) Final Route after Manually Integrating another Order ...... 132 

Figure 6.17 Initial Schedule of Deliveries .......................................................................... 133 

Figure 6.18 Revised Schedule of Deliveries ....................................................................... 133 

Figure 6.19 Information Flow between Companies, Cloud System and Webservices  ......... 135 

Figure 6.20  Door-to-Door Deliveries through the Cloud System ....................................... 138 

 

  



Chapter 1: Introduction 

9 

 

List of Acronyms 

Abbreviation Definition 

TSP Travelling Salesman Problem 

VRP Vehicle Routing Problem 

HVRP Heterogeneous Fleet Vehicle Routing Problem 

VRPTW Vehicle Routing Problem with Time Windows 

VRPSPD Vehicle Routing Problem with Simultaneous Pickups and Deliveries 

VRPSPDTW 
Vehicle Routing Problem with Simultaneous Pickups and Deliveries 

and Time Windows 

HVRPSPDTW 
Heterogeneous Fleet Vehicle Routing Problem with Simultaneous 

Pickups and Deliveries and Time Windows 

Coll-VRP Collaboration Vehicle Routing Problem 

DVRP Dynamic Vehicle Routing Problem 

PS Population Search 

GA Genetic Algorithm 

MA Memetic Algorithm 

EA Evolutionary Algorithms 

ACO Ant Colony Optimization 

PSO Particle Swarm Optimization 

SS Scatter Search 

LS Local Search 

LNS Large Neighborhood Search 

ALNS Adaptive Large Neighborhood Search 

ILS Iterated Local Search 

GRASP Greedy Randomized Adaptive Search Procedure 

GLS Guided Local Search 

MO Multi-objective 

MOLNS Multi-objective Large Neighborhood Search 

MOEA Multi-objective Evolutionary Algorithms 

SaaS Software as a Service 

GIS Geographic Information System 

DSS Decision Support System 

3PL Third-Party Logistics 



Chapter 1: Introduction 

10 

 

Chapter 1: Introduction 

This introductory Chapter aims to provide the background, motivation, contribution and 

overview of this thesis. The research topic, the Vehicle Routing Problem (VRP), is initially 

introduced, while the motivation that led to extensively studying the VRP is presented. 

Consequently, the contribution of this work is also given, followed by the overview of the 

thesis. 

1.1 Motivations 

Supply chain networks include multiple operations such as the supply of raw materials to 

manufacturers, the warehousing of products, and the distribution of goods to retailers and 

consumers. Regardless it is perceived or not, all these actions play an essential role in our lives. 

Efficient operations across the entire supply chain network can provide high-quality products 

delivered on time and at minimum cost. The current thesis enhances this effort by focusing on 

one of the last parts of supply chain networks, specifically on distributing goods, where 

multiple variables and constraints affect the process. 

The study's significance can also be enhanced by numerical data (Statistics Explained 2019), 

as the road freight transport, which includes national, international,  cross trade, and cabotage, 

increased by 0.2% from 2017 to 2018 in the countries of the European Union. More precisely, 

the total freight transportation in 2018 reached 1,925 billion tonne-kilometers. Concerning 

Greece, the total freight transport reached 28.4 billion tonne-kilometers, from which 54.5% 

correspond to national transportation. Additionally, the transport and logistics sector in Greece 

(including road, rail, air and shipping) is rapidly growing and contributes around 9% of gross 

domestic product (GDP) (19 billion). Despite the importance of the sector in the national 

economy, another research (EEL 2018) that included 181 companies operating in this field 

indicated that only 29% of the companies use routing systems and only 12% telematic systems. 

This fact is not limited only to Greece, as other studies such as Leyerer et al. (2019) indicate 

that most companies do not use routing software yet, despite the considerable saving potentials 

regarding driving distances, costs, and resulting emissions. These data can be interpreted either 

as that companies are mistrustful concerning the use of systems or that systems and software 

packages constitute expensive solutions for small-size companies.  

Additionally, in the past decade, e-commerce, online purchases, and urbanization have 

increased. This fact has led to an enlarged number of end customers and retailers, especially in 

city centers. This fact significantly affects the distribution process as logistics companies need 

to serve well over 2,000 orders daily. Moreover, logistics companies need to handle and respect 

the requirements of their customers, such as their time windows and their needs for 

simultaneously receiving and returning goods, as well as the company's characteristics such as 

the different vehicles that distribute items. As a result, advanced algorithmic approaches 

integrated into routing systems seem to be the only solution for companies. All these needs of 



Chapter 1: Introduction 

11 

 

logistics companies have driven us to study the VRP and its variants, develop algorithmic 

approaches that can handle large amounts of data while also considering multiple variables and 

constraints involved. Moreover, their integration into a cloud routing system provided through 

the internet and the Software as a Service (SaaS) model is also a field of study in the current 

thesis. 

However, besides the needs of logistics companies and the benefits that can emerge from this 

research, the primary motivation originates from the gap that exists in the research community. 

Specifically, only a few algorithmic approaches proposed and published by researchers are also 

integrated into routing software packages (Drexl 2012), let alone to cloud routing systems, as 

it emerges from the state of the art analysis regarding the VRP in Chapter 2. This is a significant 

case since researchers study the VRP for over 60 years as it was introduced by Dantzig and 

Ramser (1959). This is the simplest version of the VRP and is characterized by a fleet of 

vehicles, based at one or several warehouses, that need to serve geographically scattered 

customers with known demands. All vehicles start from a central depot and need to return after 

executing the routes (Máximo and Nascimento 2021). The aim is to serve these customers at 

minimum cost, by defining the routes of vehicles originating and terminating at the depot. Over 

the years, different variants of the VRP that are correlated with specific real-life distribution 

parameters or constraints have been considered, formulated, and studied (Konstantakopoulos 

et al. 2020a).  

One of the most known variants of the VRP is the Vehicle Routing Problem with Time 

Windows, where geographically scattered customers need to be served within a predetermined 

time interval (time window), only once and by a single vehicle. The total quantity of goods 

distributed in each route cannot exceed the vehicle's capacity, while each vehicle starts and 

ends its route at a specific depot. A vehicle may arrive at a customer before the opening of the 

time window and wait until the agreed service time, but is not allowed to deliver goods if it 

arrives after the time window closes (Nagata et al. 2010; Ait Haddadene et al. 2019; Juárez 

Pérez et al. 2019). Another variant of the VRP is the Vehicle Routing Problem with 

Simultaneous Pickups and Deliveries (VRPSPD), where customers can both receive and return 

goods (Nagy and Salhi 2005). This creates an extra constraint as at any stage of the distribution, 

whether goods are delivered or collected, the capacity of the vehicle cannot be violated. In the 

Heterogeneous Fleet Vehicle Routing Problem (HVRP), one of the most encountered variants, 

the vehicles are considered different in terms of capacity, variable and fixed cost. This is quite 

common in the distribution network as few companies own and operate exclusively identical 

vehicles. Finally, in the Collaborative VRP, logistics companies that locate and distribute goods 

on the same areas cooperate in the distribution process, and consequently in the routing. A 

mixture of these variants can represent a practical and realistic routing problem that most 

logistics companies that distribute freight face daily. 

Moreover, as the VRP variants increased over the years and newly emerged, the need for more 

efficient algorithms that could handle multiple variants at the same time also arose. Initially, 



Chapter 1: Introduction 

12 

 

exact algorithms were proposed most often by researchers. However, the fact that these 

methods can handle only a limited number of customers (around 100) due to the computational 

complexity of the VRP was a determining factor for not being studied and applied so often. 

Consequently, researchers focused on developing approximate methods that offer the best 

trade-off between quality of solutions and computation time. This was necessary since, in real-

life distribution cases, the number of orders may exceed 2,000. This becomes increasingly 

important, especially in today's challenging market where e-commerce and urbanization have 

increased. Heuristics constitute such methods that produce good quality solutions in minimum 

computation time. The first heuristics that was developed focused on constructing a feasible 

solution, while in a later face focused on the improvement of the solution by relocating one 

customer to another route. After heuristics, the attention was given to metaheuristics considered 

sophisticated heuristics based on mathematical, biology, and nature concepts. Their ability to 

provide improved solutions compared to heuristics at a similar computation time made them 

more popular. 

Additionally, the fact that researchers have intensely studied metaheuristic algorithms over the 

years is also a motivation for creating even more efficient metaheuristics that can outperform 

the existing algorithms and have the ability to tackle multiple VRP variants simultaneous ly. 

The developed algorithms focus on specific attributes to be optimized and offer the best 

possible results.  

To conclude, while the main gap between research and logistics industry is observed on the 

limited algorithms that are developed and integrated into real-life systems, the presented thesis 

aims to study the VRP from multiple perspectives. Specifically, the objectives of the research 

are to study the VRPTW, VRPSPD, HVRP and Collaborative VRP either solely or combined, 

formulate the complex problems, propose and develop efficient metaheuristic algorithms, and 

finally study how the proposed algorithms can be integrated into a cloud routing system and 

connect with latest technological advances. The benefits that can be offered to consumers and 

logistics companies by addressing the VRP through efficient algorithmic approaches integrated 

into real-life applications constitute an important motivating force of the current research. In 

addition, the study of a cloud routing system that integrates novel algorithmic approaches and 

exploits advanced technologies that offer the necessary data fast and with high accuracy 

constitute another key pillar of the research. Finally, this thesis covers a wide range of 

operations to develop a cloud routing system, aiming to bring the research community and 

industry closer. 

1.2 Research Methodology 

Over the years an increasing number of problems arise, leading applied research to become 

more and more common, as it aims to solve practical problems of the modern world. On the 

other hand, pure research is driven by scientists’ curiosity and interest on a specific 

research/question, aiming to expand knowledge and not to create or invent something. The 



Chapter 1: Introduction 

13 

 

current research is classified in the applied research category and propose practical solutions 

on a problem that is of great interest for practitioners and city inhabitants. That is the Vehicle 

Routing Problem (VRP) that is related to the distribution of freight to consumers and retailers.  

Specifically, in the current research a number of optimization algorithms are developed for 

addressing the VRP and its variants. The developed algorithms propose novel operators based 

on advanced mathematical models, some of which formulated for the first time. Consequently, 

while the research belongs on the applied research category, multiple elements of innovations 

are proposed. 

Additionally, besides classifying the research, either as pure or applied, it is essential to identify 

the followed research methodology, as well as, the rationale behind the decision. The current 

research follows the quantitative approach, as the research focuses on the generalization of 

experimental results and adopts structured, and highly planned approaches that will give 

specific results (Fee J.F 2012). In general, these methods require large sample sizes and use of 

statistical analysis techniques to make sense of the data (Rokou E. 2013). In the current 

research, multiple datasets of the literature are exploited for testing the proposed algorithms 

along with case studies arose from logistics companies. 

The steps followed on the current research are clearly defined bellow in order to clarify the 

aims and contributions of the thesis. Specifically, the first step of the research methodology is 

the literature review of the VRP regarding freight distribution, focusing on the multip le 

variables and constraints that have been formed over the years, as well as the optimization 

algorithms that have been developed for addressing the problem. Through this approach, the 

multiple VRP variants that have been formed over the years are studied and analyzed, offering 

an overall knowledge in the specific research subject. Additionally, through the literature 

review analysis, the most commonly studied VRP variants are identified. This analysis directs 

the research in selecting the VRP variants that concern most logistics companies and 

stakeholders, as the trends in the research community comfort with those of the industry. In 

addition, an identical analysis is executed in the optimization algorithms, so that to identify 

those that are most commonly applied in the VRP.  

Since the most commonly addressed VRP variants are identified in the review process, along 

with the optimization methods applied, multiple algorithms are developed for addressing these 

variants. Each developed algorithm addresses different variants of the problems, but may has 

similarities with the other algorithms. For each problem addressed, the mathematical model is 

formulated, as the description of a system using mathematical concepts and language and is 

mandatory before developing an algorithm.  

Consequently, two multiobjective algorithms are developed, a Large Neighborhood Search 

(LNS) and an Evolutionary Algorithm (EA). The first one addresses solely the VRP with Time 

Windows, while the former the VRP with Simultaneous Pickups and Deliveries, and Time 

Windows. Both algorithms aim to minimize both the total travelled distance and the number of 



Chapter 1: Introduction 

14 

 

vehicles. Both objectives are significant and shape the total distribution cost. The aim for 

developing two algorithms that address similar problems and are tested in the same dataset is 

to evaluate a Population Search metaheuristic (as the EA) and a Local Search Metaheuristic (as 

the LNS) in order to identify their efficiency both in terms of solution quality and in time 

complexity. The choice for selecting metaheuristic algorithms over heuristics is based on the 

review process.  

Following the evaluation of the two algorithms and its outcome, another local search 

metaheuristic algorithm is developed. The proposed algorithm aims to address more variables 

and constraints, compared to the previously mentioned algorithms, so that to enhance the effort 

of logistics and distribution companies operating in city environments. Considering that the 

aim of the developed algorithms is also to be integrated into a cloud system, the selection of 

the variables and constraints constitutes an important decision. Therefore, the considered 

variants are not limited to those that originate from the review process, but are strengthened by 

other variants that are proposed from stakeholders of the field. The developed algorithm is an 

Adaptive LNS algorithms that considers only a single objective which is the total distribution 

cost.  

The common thread between all developed algorithms is the process followed after their 

development which is the testing procedure. All algorithms are tested in datasets of the 

literature in order to estimate their efficiency. 

Following the testing procedure, the integration of the developed algorithms in a cloud routing 

system is performed. The integration of algorithms into the system makes the evaluation of the 

system possible. Only through this way the benefits by using a system for the distribution 

process can be identified. Therefore, real-life distribution cases from multiple sectors (e-

commerce, supermarket chain, door to door deliveries) are solved, so that to enhance the 

evaluation process and the statements of the current study. 

Concluding, the methodology followed in the current research is multifaceted as it focuses in 

multiple aspects, so that to be complete and eliminate research gaps. The steps of the research 

methodology describe the process for developing algorithms that are implemented in a cloud 

routing system. On the contrary, most research studies focus on some of these steps, leaving 

aside in most cases the implementation of the algorithm in a decision support system. Finally, 

the research methodology is described in Figure 1.1. 



Chapter 1: Introduction 

15 

 

 

Figure 1.1 Research Methodology 

1.3 Purpose and Contribution of Thesis 

The main purpose of the current study is to fill the research gap, which is the limited algorithms 

that are developed by researchers and address simultaneously multiple variables and constraints 

involved in the distribution process, as well as that are integrated into real-life applications. To 

fulfill this objective and offer advanced technological solutions, it is necessary to initially 

identify the variables and constraints that are most commonly addressed by logistics 

companies, and consequently define the mathematical formulation of the problem. The most 

commonly addressed variables and constraints correspond to the needs of most logis tics 

companies and that is the main reason for focusing on them. Thereafter, the research focuses 

on developing advanced metaheuristic algorithms that solve the complex distribution cases that 

have been formed and offer decreased distribution costs. Finally, another critical objective of 

the current study is the integration of the proposed metaheuristics in a cloud routing system 

that can be applied in real distribution operations.  

As for the contributions of the current study, they are inextricably linked to the aims of the 

research. More specifically, the contributions of the current study are separated into five main 

pillars which are: 

i. the literature review for identifying the trends of the Vehicle Routing Problem (VRP) variants 

and optimization algorithms, their correlation, as well as for the algorithms that lead to real-

life applications,  

ii. the optimization methods that are developed for addressing a wide range of VRP variants 

that correspond to multiple variables and constraints of the distribution process, 

iii. the mathematical formulations that are developed for the addressed problems, even in cases 

that multiple variables and constraints of urban freight distribution are met,  



Chapter 1: Introduction 

16 

 

iv. the computational results, as the developed algorithms are tested both in multiple datasets 

of the literature, offering new optimal solutions, as well as in real-life distribution cases, 

offering decreased distribution costs to companies, and 

v. the practical application and implementation of the developed algorithms into a cloud routing 

system. 

1.4 Overview of the PhD thesis 

The remainder of this thesis is organized as follows:  

Chapter 2 presents state of the art in VRP and the multiple VRP variants that exist, and how 

these variants are connected to real-life distribution cases regarding urban freight 

transportation. This is a fundamental part of the research as the most frequently addressed VRP 

variants are defined and compared with the variables and constraints that companies of the 

industry consider most important. Additionally, the literature review focuses on the algorithmic 

approaches that exist, along with the trends that the algorithms follow. Moreover, a correlation 

and connection between VRP variants algorithmic approaches are defined, while the 

publications that develop algorithms and integrate them into real-life applications are 

analyzed.  

Chapter 3 addresses the Vehicle Routing Problem with Time Windows (VRPTW) solely. 

More specifically, a literature review concerning the VRPTW is conducted. Consequently, the 

mathematical formulation of the problem is presented, and the proposed algorithmic approach 

(Multiobjective Large Neighborhood Search - MOLNS) addresses the specific problem. 

Finally, the algorithm is tested in Solomon's benchmark instances, and its results are compared 

to the best-published in the literature. The algorithm indicates high-quality results, and even 

new best results are proposed. 

Chapter 4 addresses the Vehicle Routing Problem with Simultaneous Pickups and Deliveries 

and Time Windows (VRPSPDTW). The structure of the current Chapter follows Chapter 3 as 

initially a literature review in the VRPSPD is presented. Consequently, the mathematical 

formulation of the VRPSPDTW is presented, along with the proposed algorithmic approach, 

i.e., the Multiobjective Evolutionary Algorithm (MOEA). The algorithm is tested in two 

datasets of the literature to define its efficiency, indicating high-quality results in both datasets, 

as in both cases, new optimal solutions are proposed. 

Chapter 5 addresses the Heterogeneous Fleet Vehicle Routing Problem with Simultaneo us 

Pickups and Deliveries and Time Windows (HVRPSPDTW), which combines the VRPTW, 

the VRPSPD, and the HVRP. The literature review of this problem is followed by the 

mathematical formulation and description of the problem. The proposed Adaptive Large 

Neighborhood Search (ALNS) algorithm is initially presented, while its efficiency is defined 

by testing it in multiple literature datasets. Additionally, the algorithm is tested in a 



Chapter 1: Introduction 

17 

 

collaborative case to estimate the benefits in terms of cost and emissions when three Third -

Party Logistics (3PL) companies cooperate in the distribution process. 

Chapter 6 describes a cloud routing system that exploits the developed in Chapter 3, Chapter 

4, and Chapter 5 algorithms. Additionally, the technologies that are exploited for the 

development of the cloud system are also discussed, along with the system's functionalities. 

Finally, the system is tested and validated in three real-life distribution cases to estimate its 

efficiency and the benefits offered to logistics companies and planners. 

Chapter 7 summarizes the contribution of the current research, the goals that have been 

achieved, and the future research steps that will be followed for addressing even more variants 

that concern researchers and practitioners, as well as the improvements that can be made to the 

mathematical formulation and the algorithms for extracting even more efficient route plans.  

Finally, the analytical results produced by the testing of the proposed algorithms are presented 

in the Appendices. More specifically, the solutions that improve the best-published results in 

the datasets of the literature are thoroughly analyzed and presented. Finally, the developed 

algorithms are also given in the Python programming language. 

The interactions between the Chapters of the thesis are depicted in Figure 1.2. Specifically, the 

research process starts with state-of-the-art analysis concerning the vehicle routing problem 

and related optimization methods. Then, the research continues with developing three 

metaheuristic algorithms addressing multiple VRP variants and ends with their integration into 

a cloud routing system that offers multiple benefits to logistics and distribution companies that 

are the potential users. 

 

Figure 1.2 Thesis Outline 

 

 

Chapter 3
MOLNS

Chapter 5
ALNS

Chapter 4
MOEA

Heterogeneous 
Vehicle Routing

Vehicle Routing with 
Simultaneous Pickups 

and Deliveries

Vehicle Routing 
with Time 
Windows

Chapter 2
State of the Art

Vehicle 
Routing & 

Optimization 
Algorithms

Chapter 6 & 7
Algorithms 

Integration & 
System 
Benefits



 

 

References 

Ait Haddadene S, Labadie N, Prodhon C (2019) Bicriteria Vehicle Routing Problem with 

Preferences and Timing Constraints in Home Health Care Services. Algorithms 12:152. 

https://doi.org/doi.org/10.3390/a12080152 

Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manage Sci 6:80–91. 

https://doi.org/10.1287/mnsc.6.1.80 

Drexl M (2012) Rich vehicle routing in theory and practice. Logist Res 5:47–63. 

https://doi.org/10.1007/s12159-012-0080-2 

EEL (2018) Logistics in Greece Today 

Fee, J.F. (2012). Quantitative Methods in Action Research. In: Klein, S.R. (eds) Action 

Research Methods. Palgrave Macmillan, New York. 

https://doi.org/10.1057/9781137046635_8 

Juárez Pérez M., Pérez Loaiza RE, Quintero Flores PM, et al (2019) A Heuristic Algorithm for 

the Routing and Scheduling Problem with Time Windows: A Case Study of the Automotive 

Industry in Mexico. Algorithms 12:111. https://doi.org/10.3390/a12050111 

Konstantakopoulos GD, Gayialis SP, Kechagias EP (2020) Vehicle routing problem and 

related algorithms for logistics distribution: a literature review and classification. Oper Res 

Int J. https://doi.org/10.1007/s12351-020-00600-7 

Leyerer M, Sonneberg M-O, Heumann M, et al (2019) Individually Optimized Commercial 

Road Transport: A Decision Support System for Customizable Routing Problems. 

Sustainability 11:. https://doi.org/10.3390/su11205544 

Máximo VR, Nascimento MC V (2021) A hybrid adaptive iterated local search with 

diversification control to the capacitated vehicle routing problem. Eur J Oper Res. 

https://doi.org/10.1016/j.ejor.2021.02.024 

Nagata Y, Bräysy O, Dullaert W (2010) A penalty-based edge assembly memetic algorithm 

for the vehicle routing problem with time windows. Comput Oper Res 37:724–737. 

https://doi.org/https://doi.org/10.1016/j.cor.2009.06.022 

Nagy G, Salhi S (2005) Heuristic algorithms for single and multiple depot vehicle routing 

problems with pickups and deliveries. Eur J Oper Res 162:126–141. 

https://doi.org/https://doi.org/10.1016/j.ejor.2002.11.003 

Rokou E. (2013) Decision making in project management: multi objective extended resource 

constrained project scheduling. National Technical University of Athens 

Statistics Explained (2019) Road freight transport statistics 



 

 

Chapter 2: State of the Art 

2.1 Introduction 

The Vehicle Routing Problem (VRP) is one of the most critical challenges that logistics 

companies face nowadays. Researchers have been studying the routing of vehicles and 

scheduling of deliveries since 1959, when Dantzig and Ramser (1959) introduced the Truck 

Dispatching Problem. It is considered the paradigmatic case of the vehicle routing problem 

(VRP) and refers to the distribution of goods from a central depot to geographically scattered 

customers.  

Since then, several factors influencing the problem have been introduced, such as the variance 

of vehicles' capacities, time-related restrictions, i.e., time windows set by customers, and the 

existence of multiple depots involved in the distribution. These and other characteristics and 

requirements are transformed either to constraints framing the problem or variables defining 

the problem. This challenge creates a complex problem in which multiple criteria and 

limitations must be taken into account at the same time, including the requirements of each 

client. In any case, the variables and the constraints that originate from real-life cases that 

logistics companies face are transformed from researchers to VRP variants. Therefore, the VRP 

variants that are analyzed below are connected to real-life cases. The objective, in most cases, 

both in practice and in theory, remains the same and is the minimization of the total distribution 

costs while the distribution services remain at a high level.  

The distribution cost constitutes a big part of the final selling price of a product and consists of 

both fixed and variable costs. Therefore, companies need to reduce either or both of these costs 

to achieve higher product demand. The fixed costs mainly originate from the driver's wage or 

the vehicle usage costs and burden the distribution company just by using the vehicle, 

irrespectively of the route and the number of served customers. On the other hand, the variable 

costs mainly originate from the fuel costs or the traveling time of each route. As a result, 

variable costs are affected by the length and the duration of the route. The restrictions and 

parameters included in real-life routing problems related to the different VRP variants 

determine the routes, length, and duration. Therefore, it is primarily needed to define the VRP 

variants of a real-life case, the formulation of the problem, and the objective function that 

compose the total cost. All these factors will enable searching for the appropriate optimization 

method to address the problem most cost-effectively.  

In the past, the entire process of vehicle routing and scheduling was complex for business 

executives to execute because it was almost exclusively based on maps and the person's 

empirical knowledge in charge. Today, with the use of computers, the process has become 

more accessible, using vehicle routing and scheduling software, although challenges continue 

to arise mainly due to the large volume of data needed to be managed and the increasing 

demands and requirements of the external environment. Of course, this does not mean that the 



Chapter 2: State of the Art 

3 

 

experience of those responsible for planning deliveries is questioned. The experience of market 

leaders is the basis on which every computer developer will rely to develop efficient algorithms 

integrated into routing software. Today, the demand and the challenges faced by logistics 

companies are more intense than ever. Therefore, it is becoming increasingly necessary to use 

advanced systems for the routing and execution of deliveries.  

In this direction, it is vital for companies to adequately recognize the many variants and 

parameters that influence their daily operations and algorithms. On this premise, the thesis's 

main objective is to first define the most common VRP variants in logistics distribution and 

then present the algorithms used for solving the specific variants. The algorithms are necessary 

for logistics companies in today's challenging and constantly changing environment. The 

number of customers and their needs and requirements is increasing, and optimization 

algorithms are a key component for effective customer service and efficient operations. 

This Chapter recognizes the trends characterizing the VRP variants, the algorithms proposed, 

and their correlation. The different VRP variants are classified into sixteen (16) categories 

representing the most real-life cases in logistics. Some of the variants with similar 

characteristics are classified and discussed together in one of the 16 categories. Next, the 

algorithms solving the VRP variants are presented using a systematic literature review, and the 

relations between VRP variants and the various algorithms are discussed. Additionally, while 

other literature reviews of VRP algorithms categorize them just in the high-level: exact, 

heuristic, and metaheuristics, in the current research the analysis extends to lower levels of 

algorithms’ categorization. Marinakis and Migdalas (2007) were the first to conduct qualitative 

research of the VRP variants and the algorithms solving them, being a good starting point for 

the current research. These VRP variants were further enhanced by the other variants that have 

either presented in the publications of Eksioglu et al. (2009), Lahyani et al. (2015), and 

Braekers et al. (2016) either have been proposed the last few years and are considered 

significant in the VRP.  

Finally, besides focusing on the VRP variants and the algorithms that solve them, the current 

Chapter also presents studies and papers that lead to practical applications (software packages 

and information systems) in vehicle routing. It is vital to estimate how much of the proposed 

and developed algorithms are employed in information systems and software packages. 

The remaining part of this Chapter is organized as follows: Section 2.2 presents the main VRP 

variants for logistics and their classification applied in the literature review. Section 2.3 

classifies the identified algorithms; Section 2.4 presents the research methodology followed for 

selecting the papers and Section 2.5 the quantitative results. In Section 2.6, some of the most 

significant publications found in the review process are further discussed concerning the 

correlation between VRP and applied algorithms to solve distribution cases. Finally, in Section 

2.7, the research focusing on routing applications is presented, while in Section 2.8 the 

concluding remarks are presented. 



Chapter 2: State of the Art 

4 

 

2.2 The Vehicle Routing Problem and its Variants 

In this section, the variants that most logistics and distribution companies face in their daily 

operations, regarding the routing of vehicles and scheduling of deliveries, and the way the 

variants are related to real-life cases, are analyzed. Firstly, the capacity of the vehicles 

constitutes a key factor of the vehicle routing problem, as it is the most studied factor for real-

life distribution cases (Kim et al. 2015; Mańdziuk and Nejman 2015) and the one that 

researchers and practitioners first considered. Capacity forms two variants of the VRP: 1) the 

Capacitated VRP (CVRP) in which all vehicles are identical and have the same capacity and 

2) the heterogeneous fleet VRP (HVRP), in which multiple types of vehicles exist, each of 

which is defined by a different capacity, fixed and variable costs (Prins 2009). In actual 

practice, few companies have a fleet of identical vehicles. Instead, in their effort to serve 

customers cost-effectively, companies use different types of vehicles. Small-sized vehicles 

mainly serve customers in city centers (last-mile distribution). In contrast, bigger-sized vehicles 

primarily serve customers and retailers separated by more considerable distances and require 

larger orders in terms of volume and weight. In both cases, when formulating the problem, it 

is assumed that vehicles will return to the central depot after the completion of their route. 

However, it is expected, especially for Third-Party Logistics (3PL) companies that seek to 

reduce their fixed costs, to cooperate with transportation companies that operate a fleet of 

vehicles at their disposal. In such cases, partners' vehicles do not necessarily return to the 

warehouse after completing the route. This case is recognized as the Open VRP (OVRP) 

(Zachariadis and Kiranoudis 2010) in the research community.  

Regardless of whether the fleet of vehicles is heterogeneous or homogeneous, some 

researchers, in the last decade, consider either two-dimensional (2D-VRP) either three-

dimensional (3D-VRP) loading constraints for ensuring that the distributed items can be 

feasibly loaded into the vehicles (Zachariadis et al. 2016). When considering these constraints, 

researchers most commonly split the problem into different problems, including packing and 

routing. In the present thesis, the 2D and 3D loading constraints are considered as a single 

variant of the problem, the 3D-VRP, focusing only on the algorithms proposed for the routing 

of vehicles. Furthermore, another variant related to the loading capacity is the Truck and Trailer 

VRP (TTVRP). Some customers may be serviced by a truck pulling a trailer in the specific 

case, while others only by a single truck (Lin et al. 2010). It is related mainly to deliveries and 

collections in city centers and rural areas with accessibility restrictions (Usberti et al. 2013). 

In other cases, traffic congestion, access restrictions, and environmental regulations in cities 

force companies to use vehicles with lower capacities (Quak and de Koster 2009; Sitek 2014; 

Perboli and Rosano 2019). In this case, the vehicles can visit only a few customers during the 

trip. However, they can execute more than one trip during the working day, leading to the 

Multi-Trip VRP (MTVRP) (Brandão and Mercer 1998). To optimize the procedure and execute 

the maximum number of trips during the drivers' shifts, satellite facilities (VRPSF) are 



Chapter 2: State of the Art 

5 

 

commonly used to replenish the vehicles. In this context, the Two-Echelon VRP is applied, and 

the delivery of goods from the depot to customers is managed by routing vehicles through 

satellite facilities (Grangier et al. 2016). Therefore, there are two routing procedures: vehicles 

starting from the depot, delivering to satellites, and returning to the depot, and a second one 

from satellites to customers and back to the satellites (Crainic et al. 2010). When more than 

two distribution layers are considered, the variant is called Multi-Echelon VRP (MEVRP). 

Later in this Chapter, VRPSF, 2EVRP, and MEVRP are classified into one category, the 

MEVRP, as these variations have many common characteristics. 

The requirements of the customers determine to a great extent, the setting of the VRP 

parameters. One of the most common variants of the problem is the VRP with time windows 

(VRPTW), where each customer determines a time interval in which the order must be 

delivered. If the vehicle arrives before the start of the time window, it must wait until it opens, 

while it cannot arrive after the end of the time window (César and Oliveira 2010). In cases such 

as this, the time windows are characterized as hard. Another case is the time windows to be 

soft, meaning that the vehicle may arrive after the end of the time window, but at an additional 

cost. This variant is significant in logistics since most end-customers determine a time window 

for the goods to be delivered. It has been inextricably linked to the accuracy of deliveries and 

customer satisfaction. However, good interpersonal relationships can also improve the quality 

of services provided. In the last decade, a new variant of the VRP has emerged, the consistent 

(ConVRP), in which trust between distribution companies and customers becomes a priority. 

Therefore, companies construct consistent routes over a period of time, which reduces the 

number of drivers each customer has to deal with (Feillet et al. 2014), and consequently, the 

friction between them. 

It is also essential to highlight that logistics operations do not end at the phase of delivering 

goods, as the phenomenon of customers returning products is common in practice. Both the 

VRP with backhauls (VRPB) and the VRP with simultaneous pickups and deliveries 

(VRPSPD) study the case of deliveries and pickups during the execution of the routes. In 

VRPSPD, the goods start from the central depot and are delivered to customers, while pickups 

are simultaneously loaded to vehicles before returning to the depot (Montané et al. 2006). In 

every phase, both the delivery and the pickup loads must be taken into account, as the vehicle's 

total capacity cannot be exceeded. On the other hand, VRPB, which also involves pickups and 

deliveries, has an additional limitation, simplifying the problem. All pickup items are collected 

after the deliveries in every route (Goetschalckx and Jacobs - Blecha 1989). These two variants 

are considered as a single one, under the name VRPPD (VRP with pickups and deliveries) in 

the classification of the literature, as both of them involve pickups and deliveries. 

Environmental pollution has forced governments to set environmental regulations to reduce 

noise, traffic, CO2 emissions and consequently improve the quality of life for citizens. The fact 

that a big part of CO2 emissions originates from road freight transportation could not leave 

transportation companies unaffected. Therefore, along with minimizing transportation costs, 



Chapter 2: State of the Art 

6 

 

companies need to minimize CO2 emissions, a problem that is identified in the literature as the 

Green VRP (GVRP) (Lin et al. 2014) or as the Pollution Routing Problem (PRP). The PRP is 

somehow more difficult to solve as the emissions depend not only on the vehicle's speed but 

also on the vehicle's load in every step of the distribution process. Bektaş and Laporte (2011) 

were the first that studied the specific variant of the VRP.  

Additionally, electric vehicles and hybrid vehicles that can operate both electrically and with 

traditional fuel contribute to minimizing pollution and CO2 emissions. These versions of the 

problem are known as Electric VRP (EVRP), and Hybrid VRP (HVRP), respectively and have 

lately attracted companies' and researchers' attention (Mancini 2017). These four VRP variants 

(GVRP, PRP, EVRP, and HVRP) are considered as one category, under the name GVRP, in 

the classification of the literature. 

The accuracy of deliveries depends to a great extent on the travel time between delivery points, 

pick up points, and depots. This problem has been tackled via the use of a function, in which 

the departure time is the independent variable and is known as the Time-Dependent VRP 

(TDVRP) (Figliozzi 2012). This attribute is crucial for better predicting traffic congestion and 

travel time between nodes and checking the feasibility of routes. The initial routing and 

scheduling, where delivery and pickup orders are known before starting the routes, can become 

much more reliable through this variant. However, orders and unforeseen events may appear 

dynamically during the execution of the route (Flatberg et al. 2007). In this case, changes in 

the scheduling of deliveries are made to satisfy new customer orders and to avoid delays caused 

by unforeseen events. The dynamic and stochastic version of the problem (known as Dynamic 

VRP - DVRP and Stochastic VRP - SVRP), must be reinforced by real-time communication 

between the vehicles and the planners of the transportation companies to face each case 

effectively (Pillac et al. 2013). Nowadays, the need for dynamic routing also arises from traffic 

congestion, which usually affects a stochastic way of implementing deliveries (Yu and Yang 

2019). 

Another variable that is highly dependent on the number of distribution centers that collaborate 

for the distribution of goods is the Multi-Depot VRP (MDVRP). If a single company manages 

multiple distribution centers, customers are most commonly assigned to the nearest warehouse, 

which contains the goods each customer ordered (Renaud et al. 1996). Therefore, the MDVRP 

can be treated as a series of multiple single depot problems, simplifying the initial one. With 

this assumption, the problem can be addressed adequately, especially when new customers 

appear every day, leading to non-fixed routes. However, there are cases that this simplification 

cannot be made, such as in a collaborative distribution network (Collaborative VRP), where a 

group of companies cooperates to minimize the operating and distribution costs. The 

Collaborative VRP is usually considered an extension of the MDVRP, which can improve the 

load factor of vehicles, reduce crisscross transportation and enhance the efficiency of logistics 

network operation (Wang et al. 2017). Therefore, the Collaborative and the Multi-Depot VRP 

are united in a single category in the classification under the name MDVRP. 



Chapter 2: State of the Art 

7 

 

Finally, two variants of the VRP that are less common among transportation companies are (i) 

the Split Delivery VRP (SDVRP) and (ii) the Periodic VRP. In the first case, the constrain that 

each customer must be visited exactly once and by one vehicle is relaxed, and the customers' 

demand is allowed to be split (Silva et al. 2015) among the available vehicles. The specific 

relaxation may prove to be advantageous in some distribution environments, such as when the 

mean customer demand is a little over than the vehicle's capacity (Archetti et al. 2008), offering 

increased load factors of vehicles and reduced number of delivery routes, but at the expense of 

increased traveled distance. As for the PVRP, the routes are constructed over a planning 

horizon (Coene et al. 2010), which may be days or even weeks. This model is essential for 

logistics companies that manage fixed orders every day, needing an optimal plan for that 

period. 

Indeed, in most cases, both in practice and in theory, multiple constraints and challenging 

features are considered simultaneously so that the problem addressed reflects most in real-life 

routing cases. Some representative real-life constraints that are considered in such cases, 

according to Rabbouch et al. (2019) and Caceres-Cruz et al. (2014), are the capacity and the 

number of vehicles, ready and due times for serving each customer, the heterogeneous fleet of 

vehicles, and the different warehouses. These constraints are associated with some of the VRP 

variants that have already been analyzed, such as the Heterogeneous Fleet, the Multi Depot, 

the Pickup and Deliveries, the Open, and the Time Windows. More specifically, Penna et al. 

(2019) manage to tackle all the above VRP variants at the same time, while Belmecheri et al. 

(2013) and Belloso et al. (2019) address the heterogeneous fleet VRP with backhauls and time 

windows. In the last few years, the consideration of multiple constraints (and multiple VRP 

variants) at the same time is defined by researchers as the Rich VRP (Lahyani et al. 2015). The 

researchers, who study the Rich VRP, use algorithms commonly dealing with the containing 

variants to simplify the problem. Since the current research studies the correlation between the 

VRP variants and algorithms, Rich VRP has been incorporated in the search term to include all 

the related variants discussed in these studies. Still, it is not classified as an individual variant 

of the problem as it refers to other VRP variants. 

Over the years, researchers have studied more and more variations of the VRP to address cases 

that logistics companies face in their daily operations. The VRP variants analyzed in this 

section reflect most of the challenges logistics companies face in freight distribution. This is 

enhanced by the cooperating and software development companies operating in the logistics 

field that confirm that these variants are the most commonly addressed.  

The existence of multiple variables and constraints forces logistics companies to find ways to 

optimize their operations and minimize their costs. Information Systems can strengthen this 

approach by incorporating in their functionality the use of algorithms. Multiple algorithms have 

been developed and proposed to address the VRP. Initially, exact algorithms were proposed 

due to the high quality of the solutions produced. Still, in large-scale problems (more than 100 

customers), the computation time needed for an exact algorithm to find the optimum solution 



Chapter 2: State of the Art 

8 

 

increases so much that it ends up being impractical. Consequently, heuristic and metaheuristic 

algorithms were developed, offering a better balance between solution quality and computation 

time. 

2.3 Solution Methods 

In the current section, the algorithms which effectively deal with a set of VRP variants are 

studied. The selected variants are the most common ones faced by logistics companies in 

distribution, and their characteristics and constraints meet the requirements of freight 

transportation. Therefore, the taxonomy focuses on two key characteristics, namely the VRP 

variants, and the algorithms. The literature review deals with the algorithms addressing the 

selected variants of the VRP and is carried out to determine the research community's trends 

for both cases.  

More specifically, the classification of the algorithms based on the research of Labadie et al. 

(2016) and Lin et al. (2014) is shown in Figure 2.1. Exact algorithms mainly include Lagrange 

Relaxation methods and Column Generation but are not further analyzed due to the limited 

research interest. On the other hand, heuristic algorithms are separated into three main 

categories, Construction, Two-Phase, and Local Improvement heuristics, each containing 

specific algorithms, as shown in Figure 2.1. The interest of the research is mainly focused on 

this level of analysis, even if each category of heuristics contains specific algorithms. Other 

literature reviews, such as those of Eksioglu et al. (2009), Lahyani et al. (2015), and Braekers 

et al. (2016), either do not focus on algorithms, either do not present this level of analysis. Τhey 

only emphasize on the three main categories of algorithms, exact, heuristics, and 

metaheuristics, while in the current thesis the analysis is extended to a more detailed level. 

Consequently, the three main categories of algorithms are further analyzed. 

 



Chapter 2: State of the Art 

9 

 

 

F
ig

u
re

 2
.1

 C
la

ss
if

ic
at

io
n
 o

f 
A

lg
o
ri

th
m

s 
fo

r 
th

e 
V

R
P

 



Chapter 2: State of the Art 

10 

 

2.3.1 Exact Approaches 

Exact algorithms compute every possible solution until the best is reached, performing very 

poorly in computation time, even to fairly small instances (El-Sherbeny 2010). Exact methods 

are classified into three categories: Lagrange relaxation-based methods, column generation and 

dynamic programming. The Lagrange relaxation method penalizes violations of inequality 

constraints using a Lagrange multiplier, implying a cost on violations. Aggarwal et al. (2017) 

applied this method, while in the work of Fisher (1994), Holland (1975) and Kohl and Madsen 

(1997), a K-tree approach is followed by Lagrange relaxation. Desrochers et al. (1992) applied 

to the VRPTW a column generation method to solve up to 100-customer problems. A review 

of the exact methods up to 2012 is reported in Baldacci et al. (2012 and El-Sherbeny (2010). 

2.3.2 Heuristic Algorithms 

Distribution companies facing the VRPTW, need methods capable of producing high-quality 

solutions in limited computation time. Therefore, multiple heuristic algorithms have been 

proposed, divided into construction and local search heuristics. Route construction heuristics 

are separated into sequential and parallel methods. In the first method, nodes are selected 

sequentially until a feasible solution is constructed regarding vehicle capacity and time 

windows. On the other hand, parallel methods build several solutions simultaneously (Bräysy 

and Gendreau 2005). In the heuristic of Clarke and Wright (1964), called "Savings", every 

customer is supplied by a dedicated vehicle. Combining two end customers, i and j, results in 

a cost-saving of . However, when joining two close customers, in terms of distance, but far 

apart in time, waiting times are increased. 

The time-oriented nearest neighbor method, enriched in the present Chapter, constructs routes 

sequentially by finding the "closest" customer to the last customer served and ends when no 

more unrouted customers left (Solomon 1987). Insertion heuristics are also tour building 

heuristics, which involve the criteria of  and   for inserting a new customer u, between two 

customers i and j on the route. The sweep algorithm, introduced by Gillet et al. (1979), divides 

the problem into two sub-problems, one of assigning locations to routes and one of minimizing 

the length of each route, and has been enhanced by Solomon (1987) and Potvin and Rousseau 

(1993). 

Local search methods, on the contrary, modify the initial solution for improved neighboring 

solutions. The improvement of the solution can be within a route, called intra-route, or between 

different routes, called inter-route. The 2-opt, 3-opt, 2H-opt, and Or-opt are some intra-route 

procedures, while the λ-interchange (Osman 1993), relocate, exchange (Gendreau et al. 1992), 

ejection chain are some inter-route procedures. Through these procedures, either the decrease 

of the number of vehicles or the total traveled distance is attempted, either both. 

Finally, heuristic algorithms are mainly applied for constructing the initial population in 

metaheuristic algorithms and implemented in routing and scheduling software. Their simplicity 



Chapter 2: State of the Art 

11 

 

and the integration of various variants and parameters have made them popular and capable of 

solving complex real-life cases. 

2.3.3 Metaheuristic Algorithms 

In contrast to heuristics, metaheuristics intend to escape from the local optimum as they explore 

a more significant subset of the solution space. Metaheuristic algorithms are more advanced 

procedures and contain Population Search and Local Search methods. These two subcategories 

of metaheuristics are further analyzed in sections 2.3.3.1 and 2.3.3.2. 

2.3.3.1 Population Search Metaheuristics 

Population-based metaheuristics aim at generating a new solution from a set of solutions, either 

by combining and pairing existing ones or by making them cooperate through a learning 

process. Genetic algorithms (GA's) are the most common metaheuristic algorithms and are 

inspired by biological evolution. Initially, a population (parents) of solutions, known as 

chromosomes, is selected. Then in each iteration, two parents are selected from the population, 

according to their fitness function, and are combined through the crossover procedure to 

provide the offsprings (children). Consequently, the mutation procedure is applied to ensure 

the diversity of the population. Finally, the best solutions are selected to be used as parents in 

the next iteration.  

Memetic algorithms (MA's) are an "advanced" version of GA's as for each child, a local 

improvement method is applied. Both algorithms belong in the greater category of 

Evolutionary Algorithms (EA's) (Labadie et al. 2016). On the contrary, Scatter Search (SS) 

needs a smaller set of solutions, containing both good and diversified solutions in which local 

improvement methods are applied. In order to ensure that solutions are different from each 

other, a distance metric needs to be defined. The SS method was introduced by Glover (1977), 

and since then, multiple researchers have proposed SS algorithm for the VRP. Belfiore and 

Fávero (2007) tackles the HVRPTW while Russell and Chiang (2006) the VRPTW solely. 

The general category of swarm-based algorithms includes Ant Colony Optimization (ACO) 

and Particle Swarm Optimization (PSO). In ACO, ants move in the graph, building paths 

according to probabilistic rules. The ACO algorithm is based on the behavior of ants using 

pheromone-based strategies and has been used for solving multiple VRP variants. Gambardella 

et al. (1999) developed such an algorithm for the VRPTW, producing efficient results, while 

some of the best ACO algorithms that have been developed for addressing the VRP variants 

are those of Bullnheimer et al. (1999) and Kalayci and Kaya (2016). Additionally, in PSO a 

population of "particles" exists, and each one moves from its position to another in the search 

space. The move of each particle is influenced both by the best position the specific particle 

has achieved and the best solution of all particles (Eberhart and Kennedy 1995). 



Chapter 2: State of the Art 

12 

 

2.3.3.2 Local Search Metaheuristics 

On the other hand, Local Search metaheuristics aim at exploring the solution space by moving 

the current solution to another promising one in the neighborhood (Mekamcha et al. 2019). 

Tabu Search (TS) is one of the most frequently applied algorithms and depends on the principle 

of continuing the search even if a local optimum has been reached. Therefore, a move is applied 

in the current solution even if the objective deteriorates. However, it should be noted that a 

previously visited solution cannot be revisited as the tabu list records the recent searches. The 

tabu search (TS) algorithm was introduced by Glover (1986), and since then, multiple TS 

algorithms have been proposed, like those of Badeau et al. (1997), Chiang and Russell (1997), 

Cordeau et al. (2001), and Taillard et al. (1997).   

Another algorithm, the Large Neighborhood Search (LNS), explores a wide search space. In 

the specific algorithm, the initial solution is partially destroyed according to the destroy 

operators and finally repaired, according to the reinsertion operators. The Adaptive LNS 

method is similar, except that the most efficient operators subject to change during the search 

are applied in each iteration (Hornstra et al. 2020).  

Another metaheuristic, the Guided Local Search (GLS), operates by assigning penalties in the 

objective function so that the search space becomes more expansive and avoid trapping in a 

local optimum (Kilby et al. 1999; Zhong and Cole 2005; Arnold and Sörensen 2019a). This is 

because the search will be transported to a new area of the solution space. Simulated Annealing 

(SA) also belongs in LS metaheuristics and was proposed by Kirkpatrick et al. (1983). This 

method is inspired by the behavior of atoms and solids when the temperature changes. 

Concerning its application to the VRP, the algorithm makes repeatedly small local changes in 

an initial solution until no move can offer improvements in the objective function. In some 

cases, a move that worsens the objective function may be allowed for escaping from a local 

optimum (Chiang and Russell 1996; Kuo 2010). 

As for the Variable Neighborhood Search (VNS), which Mladenović and Hansen (1997) 

proposed, it is based on the fact that a systematic change of neighborhood is permitted when a 

local search algorithm makes no improvement. Moreover, the Greedy Randomized Adaptive 

Search Procedure (GRASP) is another LS metaheuristics applied in the VRP but less often 

compared to others. In the specific method, in each iteration, an initial solution needs to be 

obtained by a greedy randomized heuristic. Consequently, the GRASP algorithm, which is a 

multi-start metaheuristic, aims to improve the solution by applying local search procedures. 

The best solution obtained from all iterations constitutes the best-obtained solution. Finally, 

the Iterated Local Search (ILS) algorithm is based on creating a sequence of a locally optimal 

solution by making a modification, named perturbation, to the current local optimum, as well 

as by performing local search procedures after starting from the modified solution 

(Subramanian et al. 2010; Silva et al. 2014).  



Chapter 2: State of the Art 

13 

 

Finally, in their effort to optimally solve the VRP, researchers combine algorithms to exploit 

the advantages of each procedure. Especially in the last few years, hybrid algorithms that 

combine metaheuristics are developed to achieve better results (Kaboudani et al. 2018; Rajabi-

Bahaabadi et al. 2019). This is an attribute studied in the literature review to determine which 

algorithms are used in solving multiple VRP variants. 

2.4 Literature Review Methodology 

The VRP is a well-studied field as its variants deal with real-life cases and problems that most 

distribution and logistics companies face. Researchers have formed multiple variants to cover 

all cases and improve the routing of vehicles and scheduling of deliveries. The external 

environment in which logistics companies work, their size, their customers, and their partners 

determine the problems and variants that must be considered to a great extent. In Section 2.2, 

the VRP variants related to freight transportation and distribution are thoroughly described to 

justify how these variants are related to real-life cases. More specifically, selecting the VRP 

variants presented in this section has resulted mainly from the annotated bibliography 

(Marinakis and Migdalas 2007). The authors considered and analyzed the Capacitated VRP, 

the VRP with Time Windows, the VRP with pickup and deliveries, the Multi-Depot VRP, the 

Stochastic and Dynamic VRP, the Heterogeneous Fleet VRP, the Periodic VRP, and the Open 

VRP. The Split Delivery, the Time-dependent, the Green, the Truck and Trailer, and the Multi-

trip VRP are among the variants that emerged from the articles of Eksioglu et al. (2009), 

Lahyani et al. (2015), Braekers et al. (2016), and Elshaer and Awad (2020) which are review 

papers. As for the VRP with 3D loading constraints, the Multi-echelon VRP and the Consistent 

VRP have emerged independently as they seem to have attracted the interest of researchers the 

last few years. Through this way, the VRP variants that fit most in the research on freight 

transportation are included. However, apart from the VRP variants, emphasis must be given to 

the algorithms developed and proposed for solving those problems. Distribution companies 

that consider multiple VRP variants simultaneously cannot effectively face all variants without 

the contribution of algorithms. The integration of an algorithm into the system follows its 

testing and evaluation process through either benchmark instances presented in the literature 

or real-life cases. 

As there is no previous research correlating VRP variants and algorithms solving them, the 

need for such research has emerged. Therefore, a literature review process adopted from the 

research of Eksioglu et al. (2009), Braekers et al. (2016), and Gayialis et al. (2019) is followed. 

The research protocol is well defined as it aims at an efficient and well-recorded review, 

including multiple VRP variants. The main goal of the present Chapter is to identify the trends 

of VRP variants and the applied algorithms offered to tackle them and their correlation. 

Additionally, papers that are considered significant and pioneers in the research community are 

presented. The papers having the most citations were considered significant, and they were 

further discussed in this review.  



Chapter 2: State of the Art 

14 

 

Scopus database (https://www.scopus.com) was used for an advanced search, as it covers a 

wide range of peer-reviewed academic publications. Only articles published in journals, in the 

English language and the last decade, are considered. Initially, only publications containing at 

least one of the previously defined VRP variants, the term "algorithms", as well as, at least one 

of the terms "benchmark instances", “tested”, “test”, simulate”, “simulation", “validate” and 

“validation” in their title, abstract, or keywords are selected. Through this procedure, it is 

ensured that the resulted publications propose an algorithm and test and validate the algorithm 

either to benchmark datasets, either to real-life cases, making them more reliable. Also, the fact 

that the VRP has been intensively studied while this research concentrates on freight 

transportation lead to the decision not to include specific terms. Such terms are "waste", “cash”, 

“hazardous”, "concrete", "healthcare", “care”, “blood”, "bus" and "transportation of people", 

as they cannot be considered commodities and they have unique transportation condition which 

forms another field of study. 

Furthermore, the terms “bike”, “bicycle”, "flying robots" and "UAV” were excluded as they 

refer to different means of transportation than vans and tracks. The terms "location routing" 

and "inventory routing" were also excluded from the research as it was decided to exclude any 

combined problems. Also, this research is limited to the Subject Areas of “Computer Science”, 

“Engineering”, “Mathematics”, “Decision Sciences” and “Business, Management, and 

Accounting”. The research term includes only specific journals, selected according to the 

Scimago Journal Rank (https://www.scimagojr.com) to reduce the number of papers analyzed, 

focusing on the most prestigious journals. More specifically, only journals that belong in the 

first quartile (Q1) are considered and contained in the research protocol. The exact search term 

applied to the Scopus database is presented in Table 2.1. 

Table 2.1 Search Term Applied  

Literature Review Search Term 

TITLE-ABS-KEY ((("Time windows" OR "VRPTW") OR ("Multitrip" OR "Multi-trip" 

OR "MTVRP") OR (“Satellite Facilities” OR “Echelon”) OR (("Hybrid" AND "VRP") OR 

("Green" AND "VRP")) OR ("Time-dependent VRP" OR "Time dependent VRP" OR 

"TDVRP") OR ("Pollution routing" OR “PRP”) OR (“Electric VRP”) OR ("Capacitated 

VRP" OR "CVRP") OR ("VRP" AND ("two-dimensional" OR "three-dimensional" OR 

"3D loading constraints" OR "2D loading constraints")) OR “Truck and Trailer” OR 

("Dynamic VRP" OR "DVRP") OR ("Simultaneous Pickups and Deliveries" OR 

"VRPSPD" OR "Backhauls" OR "VRPB") OR (“Rich VRP”) OR ("Heterogeneous Fleet" 

OR "Heterogeneous" OR "HFVRP") OR ("Multi depot" OR "Multi-depot" OR "MDVRP") 

OR ("Open VRP" OR "OVRP") OR (“Split Delivery VRP” OR “SDVRP”) OR 

((“Periodic” AND “VRP”) OR “PVRP”) OR ((“Stochastic VRP”) OR “SVRP”) OR 

(“Collaborative VRP”) OR ((“Consistent” AND “VRP”) OR “ConVRP”) OR (“VRP with 

workload balance”) OR (“site-dependent” AND “VRP”)) AND ("Vehicle routing" AND 



Chapter 2: State of the Art 

15 

 

("Benchmark Instances" OR "Benchmark" OR “validate” OR “validation” OR “test” OR 

“tested” OR “simulate” OR “simulation” OR “case study”) AND ("Algorithm")) AND 

NOT ("Waste" OR “cash” OR “hazardous” OR  "Concrete" OR "Healthcare" OR "Cold"  

OR  "Care"  OR  "Location-routing" OR "Location routing" OR "UAV"  OR 

"Transportation of people" OR "Flying robots" OR "Bus" OR "Asset localization" OR 

"Inventory routing" OR "Blood" OR "Bike" OR "Bicycle")) AND (LIMIT-TO (SRCTYPE, 

"j")) AND (LIMIT-TO (DOCTYPE,  "ar")) AND (LIMIT-TO (SUBJAREA, "COMP") OR 

LIMIT-TO (SUBJAREA, "MATH") OR LIMIT-TO (SUBJAREA, "ENGI") OR LIMIT-

TO (SUBJAREA, "DECI") OR LIMIT-TO (SUBJAREA, "BUSI")) AND ((PUBYEAR > 

2009)) AND (LIMIT-TO (EXACTSRCTITLE, "Computers And Operations Research") 

OR LIMIT-TO (EXACTSRCTITLE, "European Journal Of Operational Research") OR 

LIMIT-TO (EXACTSRCTITLE, "Expert Systems With Applications") OR LIMIT-TO 

(EXACTSRCTITLE, "Applied Soft Computing Journal") OR LIMIT-TO 

(EXACTSRCTITLE, "Computers And Industrial Engineering") OR LIMIT-

TO(EXACTSRCTITLE, "Information Sciences") OR LIMIT-TO (EXACTSRCTITLE, 

"International Transactions In Operational Research") OR LIMIT-TO 

(EXACTSRCTITLE, "Soft Computing") OR LIMIT-TO (EXACTSRCTITLE, "Annals Of 

Operations Research") OR LIMIT-TO (EXACTSRCTITLE, "Journal Of The Operational 

Research Society") OR  LIMIT-TO (EXACTSRCTITLE, "Transportation Research Part C 

Emerging Technologies") OR LIMIT-TO (EXACTSRCTITLE, "Transportation Science") 

OR LIMIT-TO (EXACTSRCTITLE, "Applied Mathematical Modelling") OR LIMIT-TO 

(EXACTSRCTITLE, "Engineering Optimization") OR  LIMIT-TO ( EXACTSRCTITLE , 

"Operations Research") OR LIMIT-TO (EXACTSRCTITLE, "Transportation Research 

Part B Methodological") OR LIMIT-TO (EXACTSRCTITLE, "Transportation Research 

Part E Logistics And Transportation Review") OR LIMIT-TO (EXACTSRCTITLE , 

"Journal Of Advanced Transportation") OR LIMIT-TO (EXACTSRCTITLE, "Swarm And 

Evolutionary Computation") OR LIMIT-TO (EXACTSRCTITLE, "IEEE Transactions On 

Automation Science And Engineering") OR LIMIT-TO (EXACTSRCTITLE,  

"International Journal Of Advanced Manufacturing Technology") OR LIMIT-TO 

(EXACTSRCTITLE,  "International Journal Of Production Economics") OR LIMIT-TO 

(EXACTSRCTITLE, "Journal Of Intelligent Manufacturing") OR LIMIT-TO 

(EXACTSRCTITLE, "Optimization Letters") OR LIMIT-TO (EXACTSRCTITLE, 

"International Journal Of Industrial Engineering Computations") OR LIMIT-TO 

(EXACTSRCTITLE, "Neurocomputing") OR LIMIT-TO (EXACTSRCTITLE, 

"Advances In Production Engineering And Management") OR LIMIT-TO 

(EXACTSRCTITLE, "Flexible Services And Manufacturing Journal") OR LIMIT-TO 

(EXACTSRCTITLE, "IEEE Access") OR LIMIT-TO (EXACTSRCTITLE, "IEEE 

Computational Intelligence Magazine") OR LIMIT-TO (EXACTSRCTITLE, "IEEE 

Systems Journal") OR LIMIT-TO (EXACTSRCTITLE, "IEEE Transactions On Systems 



Chapter 2: State of the Art 

16 

 

Man And Cybernetics Part C Applications And Reviews") OR LIMIT-TO 

(EXACTSRCTITLE, "Informs Journal On Computing") OR LIMIT-TO 

(EXACTSRCTITLE, "International Journal Of Bio Inspired Computation") OR LIMIT-

TO (EXACTSRCTITLE, "International Journal Of Geographical Information Science") 

OR LIMIT-TO (EXACTSRCTITLE, "International Journal Of Shipping And Transport 

Logistics") OR LIMIT-TO (EXACTSRCTITLE, "International Journal Of Sustainable 

Transportation")) 

 

This specific research strategy resulted in 334 publications, each of which was studied 

thoroughly to determine its relevance. The fact that the VRP is well studied in the literature has 

led to its connection with other research topics. Typical examples are the dial-a-ride and the 

team orienteering problems that do not refer to freight transportation. Also, the single-vehic le 

case, which is known as the Travelling Salesman Problem (TSP), was decided to be excluded 

from the research. In this research study, it is not the intention to review the complete TSP 

literature or research topics related to the VRP; instead, it focuses on the VRP and the variants 

described in Section 2.2. Following the described process and as seen in the next section, 263 

articles were categorized according to the classification of the proposed algorithms. In this way, 

an established statistical analysis is presented. 

2.5 Research Results Analysis 

In this subsection, the numerical results that have emerged from the categorization of the 

relevant papers are presented. The detailed classification results of the 263 articles are given in 

Appendix A of this thesis, through a link from which an excel file is downloaded. These papers 

concluded from the methodological approach presented in Section 2.4. The classification of 

the articles has been separated into two strands, the VRP variants and the applied algorithms 

for solving these variants. The present research focuses on published articles from 2010 until 

the first quarter of 2020 to identify the last decade's trends. The results of the research indicate 

that there is a constant interest in solving the selected VRP variants, as about 24 papers are 

published every year. Most publications come from the journals “Computers & Operations 

Research”, “European Journal of Operational Research”, “Expert Systems with Applications”, 

“Applied Soft Computing Journal” and “Computers & Industrial Engineering”. Over the last 

decade, these journals have published at least 20 articles that meet the requirements in the 

specific research approach. 

Table 2.2 presents the number of publications that deal with each one of the selected VRP 

variants. In their effort to address real-life problems, most papers examine more than one 

variant of the problem. This is the reason why the cumulative relative percentage is more than 

100%. Capacitated VRP is, by far, the most studied variant (82.89%) as it is the simplest variant 

and, therefore, can be easily combined with others. Papers that do not consider the CVRP deal 



Chapter 2: State of the Art 

17 

 

instead with the Heterogeneous Fleet VRP (17.11%). Variants that use time windows are 

significantly studied as they adequately reflect real-life cases and thus appear in almost half of 

the problems (46.39%). Respectively, the VRPPD is appeared in one-fifth of the reviewed 

papers due to its high correlation with real-life distribution cases. The GVRP seems to attract 

the attention of researchers during the last 6 years due to the current need for minimizing CO2 

emissions and fuel consumption and the use of electric vehicles. The industrial partners and 

software development companies confirmed that these VRP variants are the most commonly 

addressed variables and constraints in the distribution process. 

Since many companies have multiple warehouses that need to be considered for the distribution 

process, as well as, that more often in today’s competitive environment, companies collaborate 

and cooperate in the distribution process for reducing operating cost, made the MDVRP and 

the Collaborative VRP among the most studied variants of the VRP. Also, compared to other 

classification and reviews, like those of Eksioglu et al. (2009) and Braekers et al. (2016), which 

are among the most analyzed, there are no data relative to the MEVRP. This variant has gained 

the interest of researchers and practitioners in the last few years due to the need of companies 

to optimize the routing of vehicles in every stage of the supply chain. 

Also, the VRP with two and three-dimensional loading constraints present an increased interest 

since 2013. This variant has been favored by the evolution of computer science and has given 

researchers the opportunity to consider simultaneously two complex problems, the routing of 

vehicles and the packing. Respectively, the DVRP and the TDVRP have taken advantage of 

new technologies, which offer real-time and big data. Both can significantly enhance the efforts 

of planners not only to create an initial and reliable plan of routes but also to make better 

decisions when needed in less time. On the other hand, variants such as the OVRP, the SDVRP, 

and the MTVRP, seem to have a relatively low but constant interest from researchers over the 

last decade due to their correlation with real-life logistics cases that do not frequently occur.  

Finally, some variants of the VRP seem to receive the least attention from the research 

community. More specifically, the Periodic VRP and the ConVRP have relative percentages 

of less than 1.95 % over the years. That is mainly because few companies can plan their routes 

overtime in today's dynamic environment, as well as concerning the ConVRP. It is a relatively 

new variant of the VRP. Also, the TTRP is appeared in only 4 articles out of 263 extracted, and 

though trailers are used in some cases, such as in milk collection, it is a commonly neglected 

variant of the VRP in the last decade.  

 

 

 



Chapter 2: State of the Art 

18 

 

Table 2.2 VRP Variants over Years  

VRP 

Variants 2
0
1
0

 

2
0
1
1

 

2
0
1

2
 

2
0
1
3

 

2
0
1
4

 

2
0
1
5

 

2
0
1
6

 

2
0
1
7

 

2
0
1
8

 

2
0
1
9

 

2
0
2
0

 

Total 
Relative 

Percentage 

CVRP 18 11 12 15 19 34 24 24 18 31 12 218 82.89% 

VRPTW 7 5 7 7 10 16 12 12 13 22 11 122 46.39% 

VRPPD 3 1 3 6 4 10 6 5 3 8 4 53 20.15% 

HVRP 3 2 1 3 7 4 6 2 4 11 2 45 17.11% 

MDVRP 1 1 2 3 4 5 3 1 3 3 3 29 11.03% 

GVRP    1 3 2 7 6 1 8 2 30 11.41% 

DVRP 1 1 2  3 4 2 1 1 5 1 21 7.98% 

3D-VRP    2 2 4 3  3 1 2 17 6.46% 

OVRP 4 1  1 1 1 1  1 1 1 12 4.56% 

SDVRP  1   2 1 2 1  3  10 3.80% 

TDVRP  1 1 1   2 4  1  10 3.80% 

MEVRP    2  1 1  1 4  9 3.42% 

MTVRP 1 1    1 1 1  3 1 9 3.42% 

PVRP  2        2 1 5 1.90% 

ConVRP   1   1   1 1  4 1.52% 

TTRP 2 1       1   4 1.52% 

 

In Table 2.3, the amount of papers that propose or develop each one of the algorithms of the 

classification shown in Section 2.3, is also presented. It should be pointed out that hybrid 

algorithms were presented as a separate category, including algorithms explicitly stated as 

“hybrid” in the studied papers. Metaheuristic algorithms dominate proposed algorithms with 

252 cases, followed by Classical Heuristics (122) and Hybrid algorithms (53). Exact algorithms 

(32) are developed less often due to their computational complexity and their limitation of 

applying successfully only to small-scale problems. It is an expected outcome that heuristic 

and metaheuristic algorithms are used more often than the rest, mainly because the VRP is an 

NP-Hard Problem. It should be noted that the sum of the number of publications does not equal 

to 263, which is the number of the studied papers because many of the examined papers either 

propose hybrid algorithms (53 articles) which by definition include more than one method or 

combine multiple algorithms.  

In a more detailed analysis, construction algorithms seem to appear more frequently as they are 

applied to solve the problem and create the initial solution used by metaheuristic algorithms. 

Local improvement heuristics are also widely used due to their ease of implementation and 

their ability to improve solutions fast. The first metaheuristics proposed for the VRP, clearly 

surpassing other algorithms in terms of solution quality, were Simulated Annealing and Tabu 

Search, which researchers still study. However, GA’s have attracted the interest of researchers 

in the last decade, as they are the second most frequently applied metaheuristic. In total, 

Evolutionary algorithms, which contain GA’s and MA’s, are developed and applied more often 

than swarm-based algorithms (ACO and PSO). As for the local search metaheuristics, 

researchers equally apply and develop these algorithms, except the GLS and the GRASP, which 



Chapter 2: State of the Art 

19 

 

are less studied. Metaheuristic algorithms can offer good quality solutions or even optimum 

results when tested on benchmark instances. Simultaneously, their computational speed 

improves as technological advances. These two factors guarantee the research interest in these 

algorithms in the future. 

As already mentioned above, the VRP variants are rarely studied individually. In most cases, 

researchers tackle a combination of these variants simultaneous ly to a better approximate real-

life case. The CVRP, the HVRP, and the VRPTW are among the most examined variants as 

shown in Table 2.1, combined with almost all the other variants. The only exception is the 

combination of the CVRP with HVRP, as these two variants present different and mutually 

exclusive initial parameters relating to the capacity of the vehicles used. The CVRP is 

combined most with other variants because all vehicles are identical, which simplifies the 

problem significantly. As for the rest variants, multiple combinations between the VRPTW, 

the VRPPD, the HVRP, the MDVRP, and the GVRP are observed and formed by researchers.  

In Table 2.4, the correlation between VRP variants and their algorithms is being presented. 

Many papers suggest hybrid resolving algorithms for almost all variants of VRP, indicating a 

trend in the research community towards these algorithms. Construction and local 

improvement heuristics are involved in the solution of all VRP variants. As for the VRPTW, 

while TS and SA used to be among the most common applied algorithms, a new direction 

towards Evolutionary Algorithms (mainly GA’s) seems to have formed. In cases that only the 

CVRP and the VRPTW are considered, the chromosome’s structure in GA’s contributes to the 

faster execution of the crossover and mutation operators and the storage of the population. 

More specifically, the chromosome is an array with length equal to the number of customers 

and contains all customers-nodes. The sequence of the elements-customers determines the 

order of visitations. In the last decade, the VRPTW is more frequently faced as multiobjective, 

and the simultaneous existence and development of multiobjective EA's leads in an increased 

number of articles solving the VRPTW with EA’s.



Chapter 2: State of the Art 

20 

 

 

T
ab

le
 2

.3
 A

p
p

li
ed

 A
lg

o
ri

th
m

s 
p

er
 Y

ea
r 

 

 

 

 
 

A
p

p
li

ed
 M

et
h
o

d
 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

Total 

 
 

E
x

ac
t 

2
 

2
 

1
 

5
 

2
 

2
 

2
 

4
 

4
 

6
 

2
 

3
2
 

Heuristics 

(122) 

C
o

n
st

ru
ct

io
n
 

8
 

6
 

5
 

4
 

7
 

9
 

9
 

3
 

7
 

1
0
 

2
 

7
0
 

T
w

o
-P

h
as

e 
 

1
 

 
 

 
1

 
1

 
 

 
1

 
 

4
 

L
o

ca
l 

Im
p

ro
v

em
en

ts
 

6
 

1
 

4
 

5
 

2
 

1
2
 

5
 

2
 

2
 

9
 

 
4

8
 

Metaheuristics (252) 

Local Search (145) 

S
im

u
la

te
d

 A
n
n

ea
li

n
g

 (
S

A
) 

1
 

 
 

2
 

2
 

6
 

3
 

3
 

1
 

1
 

1
 

2
0
 

T
ab

u
 S

ea
rc

h
 (

T
S

) 
4

 
2

 
1

 
1

 
4

 
1

 
1

 
5

 
2

 
3

 
1

 
2

5
 

V
ar

ia
b

le
 N

ei
g

h
b
o

rh
o

o
d

 S
ea

rc
h

 (
V

N
S

) 
2

 
1

 
2

 
1

 
5

 
5

 
3

 
3

 
4

 
1

0
 

4
 

4
0
 

It
er

at
ed

 L
o

ca
l 

S
ea

rc
h

 (
IL

S
) 

2
 

 
1

 
1

 
2

 
6

 
1

 
1

 
1

 
3

 
2

 
2

0
 

A
d

ap
ti

v
e 

L
ar

g
e 

N
ei

g
h
b

o
rh

o
o

d
 S

ea
rc

h
 (

A
L

N
S

) 

an
d

 L
ar

g
e 

N
ei

g
h
b

o
rh

o
o

d
 S

ea
rc

h
 (

L
N

S
) 

1
 

1
 

1
 

 
1

 
5

 
9

 
2

 
1

 
5

 
2

 
2

8
 

G
u

id
ed

 L
o

ca
l 

S
ea

rc
h

 (
G

L
S

) 
1

 
 

 
 

 
 

 
 

 
 

 
1

 

G
re

ed
y

 r
an

d
o

m
iz

ed
 a

d
ap

ti
v

e 
se

ar
ch

 p
ro

ce
d
u

re
 

(G
R

A
S

P
) 

 
 

 
 

 
2

 
 

1
 

 
 

 
3

 

O
th

er
 L

o
ca

l 
S

ea
rc

h
 A

lg
o

ri
th

m
s 

(O
th

er
 L

S
A

’s
) 

1
 

1
 

1
 

 
 

1
 

 
2

 
1

 
 

1
 

8
 

Population Search (107) 

G
en

et
ic

 A
lg

o
ri

th
m

s 
(G

A
) 

3
 

1
 

2
 

3
 

4
 

6
 

 
3

 
4

 
5

 
2

 
3

3
 

M
em

et
ic

 A
lg

o
ri

th
m

 (
M

A
) 

1
 

 
 

 
 

1
 

1
 

 
1

 
2

 
1

 
7

 

O
th

er
 E

v
o

lu
ti

o
n

ar
y

 A
lg

o
ri

th
m

s 
2

 
 

1
 

1
 

1
 

4
 

2
 

1
 

3
 

2
 

1
 

1
8
 

A
n

t 
C

o
lo

n
y

 O
p
ti

m
iz

at
io

n
 (

A
C

O
) 

1
 

2
 

1
 

1
 

2
 

2
 

4
 

2
 

2
 

2
 

2
 

2
1
 

P
ar

ti
cl

e 
S

w
ar

m
 O

p
ti

m
iz

at
io

n
 (

P
S

O
) 

 
1

 
2

 
2

 
 

2
 

1
 

3
 

2
 

2
 

 
1

5
 

O
th

er
 S

w
ar

m
 I

n
te

ll
ig

en
ce

 A
lg

o
ri

th
m

s 
(O

th
er

 

S
IA

’s
) 

 
 

 
 

1
 

2
 

1
 

2
 

1
 

3
 

1
 

1
1
 

S
ca

tt
er

 S
ea

rc
h

 (
S

S
) 

1
 

 
 

 
1

 
 

 
 

 
 

 
2

 

 
H

y
b

ri
d
 

2
 

1
 

3
 

4
 

4
 

1
1
 

5
 

4
 

7
 

8
 

4
 

5
3
 

 



Chapter 2: State of the Art 

21 

 

T
ab

le
 2

.4
 C

o
rr

el
at

io
n

 b
et

w
ee

n
 V

R
P

 V
ar

ia
n

ts
 a

n
d

 A
lg

o
ri

th
m

s 

 

Variants 

Exact 

H
eu

ri
st

ic
s 

L
o

ca
l 

S
ea

rc
h

 M
et

ah
eu

ri
st

ic
s 

P
o

p
u

la
ti

o
n

 S
ea

rc
h

 M
et

ah
eu

ri
st

ic
s 

Hybrid 

Construction 

Two-Phase 

Local Improvement 

SA 

TS 

VNS 

ILS 

ALNS and LNS 

GLS 

GRASP 

Other LS 

GA 

MA 

Other EA’s 

ACO 

PSO 

Other SIA’s 

SS 

C
V

R
P

 
2

6
 

6
0
 

3
 

4
2
 

1
6
 

2
0
 

3
1
 

1
5
 

2
3
 

1
 

3
 

8
 

2
7
 

5
 

1
7
 

1
8
 

1
3
 

9
 

2
 

4
4
 

V
R

P
T

W
 

1
5
 

2
9
 

1
 

1
5
 

9
 

1
6
 

1
3
 

3
 

1
4
 

  
1

 
2

 
2

2
 

5
 

1
4
 

1
2
 

7
 

6
 

1
 

3
2
 

V
R

P
P

D
 

7
 

1
6
 

2
 

1
1
 

6
 

7
 

1
1
 

6
 

3
 

  
1

 
2

 
5

 
  

4
 

4
 

4
 

  
  

1
0
 

H
F

V
R

P
 

6
 

1
0
 

1
 

6
 

4
 

5
 

9
 

5
 

5
 

  
  

  
6

 
2

 
1

 
3

 
2

 
2

 
  

9
 

M
D

V
R

P
 

3
 

1
2
 

  
5

 
2

 
  

4
 

7
 

1
 

  
1

 
1

 
9

 
  

  
2

 
2

 
1

 
  

1
1
 

G
V

R
P

 
5

 
6

 
1

 
3

 
2

 
4

 
5

 
2

 
9

 
  

  
  

2
 

  
  

1
 

  
1

 
  

5
 

D
V

R
P

 
1

 
8

 
  

3
 

  
1

 
1

 
1

 
2

 
  

1
 

  
3

 
1

 
2

 
4

 
3

 
1

 
  

1
 

2
D

-V
R

P
 

  
4

 
  

5
 

3
 

1
 

6
 

2
 

2
 

  
  

  
  

  
1

 
  

  
1

 
  

2
 

O
V

R
P

 
2

 
2

 
  

2
 

1
 

1
 

2
 

4
 

  
1

 
  

1
 

  
  

1
 

  
1

 
1

 
  

2
 

S
D

V
R

P
 

3
 

5
 

  
3

 
  

  
1

 
1

 
1

 
  

  
  

  
  

  
  

  
  

  
  

T
D

V
R

P
 

  
4

 
  

1
 

  
  

2
 

  
1

 
  

  
  

2
 

  
  

2
 

1
 

1
 

  
1

 

M
E

V
R

P
 

4
 

3
 

  
1

 
  

  
1

 
  

2
 

  
  

1
 

1
 

2
 

  
  

  
1

 
  

2
 

M
T

V
R

P
 

2
 

3
 

  
2

 
  

  
2

 
1

 
2

 
  

  
  

1
 

1
 

  
  

  
  

  
2

 

P
V

R
P

 
2

 
  

  
  

1
 

1
 

  
  

  
  

  
  

  
  

  
2

 
  

  
  

  

C
o

n
V

R
P

 
  

2
 

  
2

 
  

2
 

2
 

  
1

 
  

  
  

  
  

  
  

  
  

  
  

T
T

R
P

 
1

 
1

 
1

 
1

 
1

 
  

1
 

  
  

  
  

  
  

  
  

  
  

  
  

1
 

 



Chapter 2: State of the Art 

22 

 

The HVRP is a significant variant for logistics and transportation companies, as most of them 

have a mixed fleet of vehicles. However, only 17.11% of articles consider the specific variant. 

The most common algorithms applied in the HVRP are i) GA's, ii) the VNS, iii) the ALNS and 

LNS algorithms, and iv) the ILS algorithm. The three local search algorithms are applied in a 

single solution leading to shorter computation times. Instead, EA's which are frequently applied 

in this problem, need to storage solutions (which vehicle is used in each route), leading to 

increased computation times. However, the evolution process can contribute to a better solution 

in a reasonable time depending on the population size and generations. 

The Green, the Electric, the Hybrid VRP, and the Pollution Routing Problem are considered 

one category in the analysis. These variants have been proposed and appeared for the last fifteen 

years and are thoroughly studied by researchers. In these first attempts for solutions reducing 

CO2 emissions and fuel consumption, ALNS and LNS algorithms are mostly applied due to 

their advantage of being applied in a single solution and their ease of implementation. More 

specifically, even simple "destroy" and "reinsertion" operators can be very effective in any 

class of the VRP and, therefore, to the GVRP and the PRP. Finally, the fact that in this class of 

VRP variants, the fleet is mixed, leads to the conclusion that algorithms that can be efficient in 

the HVRP can also be in the Green, the hybrid, and the Electric VRP, as the vehicles’ capacities 

and costs differentiate in most of these variants as well.  

Local based metaheuristics prevail population-based in the VRPPD. The fact that 

transportation companies must consider both delivering and returning quantities of goods leads 

to increased complexity. According to Avci and Topaloglu (2015), it is the last 15 years that 

population-based metaheuristics have been applied in the VRPPD. The advances in technology 

and computer science enhance these algorithms, which need a population set in order to 

operate.  

There are specific algorithms that are implemented in most VRP variants such as SA, TS, VNS, 

ILS, LNS, EA's, PSO, and ACO. These algorithms produce efficient results and, therefore, are 

proposed and implemented by researchers. Although metaheuristics have dominated the other 

methods, local improvement heuristics remain very popular and are used mainly as components 

of more sophisticated hybrid systems. In contrast, construction algorithms are mainly used for 

the creation of the initial solution or population, used as input in metaheuristics. Finally, a small 

part of the reviewed articles employs an exact method of problem-solving exclusively. 

2.6 Applied Algorithms in VRP Variants 

In this section, the papers that either propose novel algorithms and offer efficient results, either 

have been recognized by the research community, are presented. More specifically, insights to 

the algorithms proposed in these papers, in each one on the VRP variants selected are given in 

Section 2.2. 



Chapter 2: State of the Art 

23 

 

2.6.1 Capacitated VRP 

CVRP is perhaps the simplest variant of the VRP, as the only constraint considered is the 

vehicles' capacity, which is assumed to be identical in terms of actual capacity space and costs. 

In most cases, the CVRP is combined with other variants, with the most frequent being the 

VRPTW, which adds more constraints to the setting of the problem. The only papers that deal 

exclusively with the CVRP are Altabeeb et al. (2019) that propose a firefly algorithm for 

solving the CVRP, combined with a local search and a genetic operator, to search a wider space 

and avoid getting stuck in a local optimum. Also, Lysgaard and (Wøhlk 2014) study the 

cumulative CVRP, in which the sum of arrival times at the customers aims to be minimized 

instead of the total distance. They propose a branch and cut and-price algorithm for obtaining 

the optimum solutions of the problem. 

2.6.2 VRP with Time Windows 

The VRPTW is one of the most widely studied topics in vehicle routing, and therefore, multip le 

algorithms have been proposed for its solution. (Ghoseiri and Ghannadpour 2010) treat the 

problem as multiobjective, where both the total traveled distance, and the number of vehicles 

must be minimized. They proposed a Genetic Algorithm that applies the Pareto ranking process 

to find the non-dominated solutions. Through this approach, possible biased solutions, either 

to the total number of vehicles or the total traveled distance, are prevented. 

(Lei et al. 2011), in their research work, they propose an adaptive large neighborhood heuristic. 

Initially, a construction heuristic is applied for providing an adequate solution. At each 

iteration, several heuristics remove customers and destroy the current solution before insertion 

heuristics repair the damaged solutions. The selection of the destroy and repair heuristic in each 

phase is made probabilistically, while their combination offers a wide exploration of the 

solution space. (Vidal et al. 2013) addressed a wide range of large scale VRPTW, with route-

duration constraints and additional attributes involving requirements for customer assignments 

to particular vehicle types, depots, or planning periods. For solving this large class of VRPTW, 

they proposed a new hybrid genetic search with advanced diversity control. 

Yassen et al. (2015) proposed a harmony search (HS) metaheuristic with a local search (LS) 

algorithm with a proper balance between HS exploration and LS exploitation for solving the 

VRPTW. Nalepa and Blocho (2016) dealt with the unclear tuning of the numerous parameters, 

one of the main drawbacks of memetic algorithms for the VRPTW, and proposed an adaptive 

memetic algorithm. Parameters of the algorithm, such as the selection scheme, the population 

size, and the number of child solutions generated for each pair of parents, are adjusted 

dynamically during the search. Hu et al. (2018) examined a more realistic variation of VRPTW 

that involves demand and travel time uncertainty. To tackle large instances, they designed a 

two-stage method based on a modified variable neighborhood search heuristic. In the first 

phase, the total number of vehicles is minimized, while the second phase minimizes the total 

traveled distance. 



Chapter 2: State of the Art 

24 

 

2.6.3 VRP with Pickups and Deliveries 

Transportation companies are not responsible only for delivering goods to customers, but in 

many cases, for picking goods too. This need arises in reverse logistics and is tackled by 

multiple researchers, either by considering deliveries and pickups are executed simultaneous ly 

(VRPSPD), either by considering the pickups are executed after the end of deliveries (VRPB). 

(Çatay 2010) proposed an ACO algorithm that uses the nearest-neighbor heuristic (NNH) to 

construct the initial solution, and subsequently, a new savings-based visibility function is 

applied. Additionally, (Goksal et al. 2013) developed a hybrid algorithm based on PSO and 

Variable Neighborhood Descent (VND) for solving the VRPSPD. The initial solution set is 

formed both with random solutions and with solutions constructed by the NNH. The PSO 

algorithm uses VND algorithms as a local search procedure for improving these solutions. 

Finally, (Wang et al. 2015) combined the VRPSPD with the VRPTW and proposed a parallel 

SA method for solving this problem. 

2.6.4 Heterogenous Fleet VRP 

The HVRP is a generalization of the classical capacitated VRP by assuming that the fleet of 

vehicles is composed of different types of vehicles, each characterized by different capacities 

and costs. HVRP is rarely examined standalone, and it is usually combined with other variants. 

(Subramanian et al. 2012) proposed a hybrid algorithm consisting of an iterated local search 

based heuristic and set partitioning (SP) formulation for solving the HVRP. The SP model is 

solved utilizing a Mixed Integer Programming solver that interactively calls the ILS heuristic 

during its execution. Also, Koç et al. (2015) tackled the HVRP with time windows and 

introduced a hybrid evolutionary algorithm that combined two state-of-the-art metaheuristic 

concepts, adaptive large neighborhood search and population-based search to achieve great 

results. 

Finally, (Belloso et al. 2019) analyzed the HVRP with backhauls and proposed a solution based 

on a multi-start biased-randomized heuristic. This algorithm uses an iterative method that relies 

on solving smaller homogeneous instances of the problem and then uses these subsolutions as 

partial solutions for the original heterogeneous instance. 

2.6.5 VRP with Multiple Depots and Collaborative VRP 

MDVRP is an extension of the classical VRP problem by adding multiple depots that can serve 

the customers. Yu and Yang (2011) added a virtual central depot, thus converting MDVRP to 

VRP with the virtual depot as the original. They proposed an improved ant colony optimization 

process with coarse-grain parallel strategy, ant-weight strategy, and mutation operation for its 

solution. Juan et al. (2015) presented a hybrid approach that combined biased randomization, 

assign customers to depots, and improve routing solutions, with the iterated local search 

metaheuristic. Their approach is easy to implement and can be parallelized naturally.  



Chapter 2: State of the Art 

25 

 

The research of genetic algorithms (GA’s) for solving the MDVRP by Karakatič and 

Podgorelec (2015) is also worth mentioning. They claimed that GA’s are on par with other 

algorithms and are very efficient when addressing the MDVRP, with the main advantage of a 

GA being the linear scaling with the growing problem size. Thus, it is preferred for solving 

large NP problems over exact and other heuristic algorithms. 

Wang et al. (2020) studied the collaborative VRP with time window assignments, where the 

distribution centers of multiple service providers collaborate to improve the efficiency of their 

logistics operations and make sure that customers are served on time, while the operations costs 

are reduced. (Wang et al. 2020) proposed a hybrid heuristic that combines a customer clustering 

algorithm (K-means clustering), Clark-Wright saving algorithm, and the extended NSGA-II 

algorithm, which is a multiobjective evolutionary algorithm. The two objectives considered by 

the researchers are the minimization of the total operating cost and the number of vehicles 

needed for the deliveries. 

2.6.6 Green VRP 

From this class of problems, which contains the Green, the Hybrid, the Electric, and the 

Pollution, the Hybrid VRP seems to attract the most attention from researchers. It consists of a 

set of customers, a fleet of alternative fuel vehicles (electrical and hybrid), and a set of refueling 

stations to minimize the total traveled distance while also making use of the refueling stations 

to restore their autonomy. Schneider et al. (2014) tackled the mixed fleet VRP with time 

windows in which both electric cars and internal combustion cars are used. They presented a 

hybrid heuristic that combines a variable neighborhood search algorithm with a tabu search 

heuristic as a solution method. (Goeke and Schneider 2015)dealt with the same problem and 

developed an adaptive large neighborhood search, enhanced by a local search for 

intensification. (Hiermann et al. 2016) 

Hiermann et al. (2016) solved the same problem utilizing branch-and-price and proposing a 

hybrid heuristic, which combines an ALN with an embedded local search and labeling 

procedure for intensification. 

Yu et al. (2017) also focused on the hybrid VRP in which all the vehicles are plugged in hybrid 

electrical vehicles (PHEV), and they proposed a simulated annealing algorithm with a restart 

strategy. Last but not least, Andelmin and Bartolini (2019) also dealt with alternative fuel 

vehicles and their refueling stations and offered a multigraph reformulation of the GVRP in 

which refueling stations are not explicitly modeled. They exploited this reformulation by 

tailoring classical local search operators to work directly on it and combining them to develop 

a multi-start algorithm. 

2.6.7 Open VRP 

OVRP is another well-known combinatorial optimization problem that addresses the service 

of a set of customers using a fleet of non-depot returning vehicles. Repoussis et al. (2010) 



Chapter 2: State of the Art 

26 

 

developed a population-based hybrid metaheuristic consisting of the basic solution framework 

of evolutionary algorithms and memory-based trajectory local search algorithms, such as tabu 

search and guided local search to drive the local search process and to explore the solution 

space. Salari et al. (2010) presented a heuristic improvement procedure based on integer linear 

programming techniques. Given an initial feasible solution to be possibly improved, the 

method then destroys and repairs this solution by solving an ILP model to find a new, improved 

feasible solution. MirHassani and Abolghasemi (2011) proposed a particle swarm optimization 

algorithm and a particular decoding method for assigning customers to routes, and one point 

moves for improving the found solutions. 

2.6.8 Dynamic and Stochastic VRP 

In most VRP’s the data is assumed to be known before starting the routes and not being 

amenable to change. However, real-world routing problems are dynamic, as unforeseen events 

can constantly occur. Hong (2012) tackled the dynamic VRP with time windows (DVRPTW), 

which is modeled as a series of static VRPTW. Each phase has an event-trigger mechanism, 

which is a new request arrival during the operation in the specific case. The author proposed a 

large neighborhood search (LNS) that utilizes the remove and reinsert procedure. The newly 

arrived request is considered as a removed node, which is being reinserted into the current 

solution. Mavrovouniotis and Yang (2015), in their article, proposed an ant colony optimization 

algorithm with immigrant schemes, in which three different cases are investigated, random, 

elitism, and memory-based. These three immigrant schemes determine the way to introduce 

new solutions (called immigrants) and replace a small portion of the current population. 

Finally, Baradaran et al. (2019) addressed the heterogeneous fleet VRP with multiple hard 

prioritized time windows and proposed an artificial bee colony algorithm (which belongs in the 

class of swarm intelligent algorithms) in order to face three different models. The first model 

considers travel times and transportation costs deterministic, the second considers the fixed and 

variable costs as stochastic, while the third model considers the travel times and costs as normal 

random variables (Stochastic VRP). 

2.6.9 Multi‑Trip VRP 

A variant of the classical VRP is the problem that deals with multiple uses of vehicles, that 

arises when customers have either great demands or when they are close to each other. Azi et 

al. (2010), tackle the MTVRP along with the VRPTW, through a branch-and-price approach, 

in which a column generation approach is also integrated. This was the first attempt to solve 

the MTVRP with an exact algorithm. François et al. (2016) developed and tested two Adaptive 

Large Neighborhood Search (ALNS) algorithms in the MTVRP, which does not consider 

duration tour constraints. 



Chapter 2: State of the Art 

27 

 

2.6.10 Multi‑Echelon VRP 

It is the last few years that researchers deal with the MEVRP and the VRPSF and the 2EVRP, 

which belong in this class. More specifically, Baldacci et al. (2013) propose an exact algorithm 

for the two-echelon capacitated VRP (2E-CVRP), which is transformed into a multi depot 

CVRP with side constraints, while the routing and the handling costs aim to be minimized. In 

the paper of Breunig et al. (2019) the electric two-echelon VRP is faced, in which both 

conventional and electric vehicles are used. They propose two algorithms, an LNS-based 

metaheuristic and an exact algorithm for optimizing charging visitations and the routing 

procedures in both levels. 

2.6.11 Time‑dependent VRP 

The travel time between two points-customers depends on traffic congestion, which in turn is 

affected by multiple factors, such as unforeseen events, the time of the day, and the weather. 

Balseiro et al. (2011), solve the TDVRPTW where vehicles must deliver goods to a set of 

customers concerning their time windows, while travel time between two points, depends on 

the time of departure. They proposed an ACO algorithm hybridized with insertion heuristics. 

More specifically, the algorithm is based on the Multiple Ant Colony System framework, 

which coordinates two colonies, one for reducing the number of routes and one for optimizing 

the feasible solutions found by minimizing the total time. Since ants produce solutions with 

unrouted customers, insertion heuristics are further developed for incorporating customers into 

the solution. Figliozzi (2012), faces the same VRP variants and presents an Iterative Route 

Construction and Improvement (IRCI) algorithm. The construction phase includes a sequential 

heuristic, in which an auxiliary route building heuristic is reiterated during its execution of the 

construction algorithm. Since the set of the initial solutions have been generated, the 

improvement algorithm, based on the ruin and recreate approach presented by (Schrimpf et al. 

2000), is implemented in a subset of the routes. 

2.6.12 Two Dimensional and Three Dimensional VRP 

In the specific category of the VRP, the dimension of vehicles is considered as a loading 

constrain. Leung et al. (2013) addressed the heterogeneous fleet VRP with two-dimensional 

loading constraints. Vehicles have different capacities, fixed and variable operating costs, and 

dimensions (width and length), which determine the loading constraints. For these types of 

problems, both packing and routing algorithms are needed, and therefore, Leung et al. (2013) 

proposed a simulated annealing algorithm with local search heuristics for the routing of 

vehicles and six packing algorithms for the two-dimensional loading constraints.  

Zachariadis et al. (2016) also focus their research on the VRP with two-dimensional 

constraints, paired with simultaneous pickups and deliveries, while vehicles are identical. This 

problem is highly complicated since delivery goods are unloaded, while pickup goods are 

loaded to the vehicle. However, the algorithm proposed in this publication, a combination of a 



Chapter 2: State of the Art 

28 

 

construction heuristic algorithm with local search procedures, manages to offer good quality 

solutions in reasonable computation times. 

2.6.13 Consistent VRP 

The consistent VRP has attracted the least attention from researchers. This is due to the fact 

that most logistics companies, (i) do not have stable deliveries over a period of time, neither 

can plan their routes for multiple days, (ii) do not focus on creating consistent routes so that 

frequent customers being delivered by the same driver, approximately at the same time over 

the planning period, while it is a relatively new variant of the problem, proposed by Groër et 

al. (2009). However, Tarantilis et al. (2012) addressed the specific problem by proposing 

savings and insertion based construction heuristics paired with a Tabu Search algorithm, while 

Xu and Cai (2018) proposed a Variable Neighborhood Search algorithm for addressing the 

ConVRP. 

2.6.14 Split Delivery VRP 

In the Split Delivery VRP, the assumption that each customer is served by a single vehicle and 

only once is relaxed. Archetti et al. (2008) proposed two branch and cut algorithms for solving 

this variant of the VRP and tested it with up to 100 customers and with a time limit of 2 h. Han 

and Chu (2016) also studied this variant, coupled with minimum delivery amounts, and 

proposed a multi-start two-phased variable neighborhood descent heuristic algorithm. More 

specifically, a construction algorithm generates the initial solution, which is then improved by 

a VND procedure. The algorithm was tested in 128 cases and managed to find 81 best-known 

solutions and 43 new optimum solutions. 

2.6.15 Periodic VRP 

Yu and Yang (2011) state that there is little literature to use heuristics for periodic VRP with 

time windows. This statement is reinforced by the research, as no heuristic algorithm was 

proposed for solving the PVRP. More specifically, Yu and Yang (2011) proposed an improved 

ant colony optimization algorithm with multi-dimension pheromone information for solving 

the periodic VRP with time windows. On the other hand, Baldacci et al. (2011) and 

Rothenbächer (2019) proposed exact algorithms for solving the problem. 

2.6.16 Truck and Trailer VRP 

The Track and Trailer Routing Problem has not attracted the interest of researchers. In these 

few articles that study this variant of the VRP, Lin et al. (2010) developed and proposed a 

simulated annealing heuristic-based algorithm, and was tested not only existing benchmark 

problems but also in newly generated problems. Also, Rothenbächer et al. (2018) proposed an 

exact algorithm for the TTRP with time windows, and the computational results indicate that 

it outperforms other approaches facing this problem. 

 



Chapter 2: State of the Art 

29 

 

2.7 Applications to Practice 

The above research confirms that the VRP is widely addressed by researchers and consists one 

of the most studied problems in logistics. However, there is a limited number of research papers 

that lead to the integration of algorithms into routing systems. In order to identify the studies 

that have led to algorithms integrations and system development another literature review is 

applied, focusing on advanced systems addressing the vehicle routing. Respectively, the 

SCOPUS database was exploited for this research. The term is applied in Title, Abstract, 

Keywords and is ("vehicle routing problem" AND ("information system" OR "system" OR 

"software") AND ("metaheuristic" OR "heuristic" OR "exact") AND "case study"). 

The number of papers concluding from the research is limited to 92. However, only 5 of them 

discuss the development of a routing system or the integration of an algorithm in a real routing 

application. In addition, the studies focus on different aspects of distribution.  

Fanti et al. (2014) focused on the postal delivery operations, while Abbatecola et al. (2016) on 

both postal delivery and waste collection. Both studies aimed to develop decision support 

systems (DSS), focusing mainly on the architecture of the systems, the mathematical 

formulation of the problem, and their real-life testing. Abbatecola et al. (2016), integrated a 

two-phase heuristic into the system for addressing the delivery procedure, while Fanti et al. 

(2014) an Augment-insert heuristic one. Both studies, however, do not analytically present the 

algorithmic approaches as their aim wasn't to propose the integration of a novel method into a 

system. Additionally, Tarantilis and Kiranoudis (2007) proposed a flexible adaptive memory-

based algorithm for addressing the Heterogeneous Fixed Fleet VRP (HFVRP). The 

metaheuristic algorithm was integrated into a DSS solving two case studies. The first originated 

from a construction company, and the second one from a dairy company. Finally, Tarantilis et 

al. (2004a) proposed a DSS employing a metaheuristic algorithm for solving the OVRP. The 

proposed DSS geocodes and maps customers' locations by connecting to a Geographical 

Information System (GIS). 

All the aforementioned researches focused on a limited number of VRP variants, resulting in 

limiting the potential real-life cases that can benefit from the use of their systems. The research 

of Erdoğan (2017) is the only one that comes close to the presented research, as an open-source 

spreadsheet solver is developed for addressing most of the variants. The researcher connects 

online maps with Microsoft Excel and extracts significant data related to routing and 

scheduling. The application is tested in two real-world case studies from the healthcare and 

tourism sectors and manages to offer decent results. The limitation of this solution is the 

increased computation time needed as Visual Basic (VB), used by the researcher, is not a very 

efficient programming language. Other languages such as C++ and Python are more suitable 

for the optimization and the software development, as they perform way more efficient 

calculations.  



Chapter 2: State of the Art 

30 

 

To conclude, the advance in technology is tremendous over the years, and the optimization 

methods and algorithms proposed for addressing the VRP are numerous. However, only a few 

studies that propose algorithms lead to real-life applications and systems. One reason is the 

specialist knowledge needed for developing an operable system. In addition, real-life 

applications and software packages are, in most cases created by software development 

companies. In such cases, the algorithms are black-boxes since they constitute the intellectual 

property of companies.  

2.8 Concluding Remarks 

This Chapter studies and presents multiple VRP variants that have been studied over the years 

and are correlated to freight distribution. Additionally, the algorithmic approaches that have 

been developed and proposed for solving these cases are also categorized and presented. Both 

the variants and algorithms are the main fields of study and their extensive literature review 

aims as a first step to identify their correlation.  

The literature review has resulted from a well-defined methodological approach and research 

protocol. An initial group of 334 papers extracted from the Scopus database published between 

2010 and the first quarter of 2020. The articles were further shorted to a group of 263 relevant 

papers after applying deselection criteria. Emphasis was given in the applied algorithms 

proposed and developed for the VRP variants to distribute goods. Therefore, papers that are 

irrelevant from the freight transportation perspective were excluded from the analysis.  

The articles were classified according to the VRP variants and the applied method proposed 

for their solution to identify the trends in each case and present their correlation. A trend 

towards Evolutionary Algorithms and Local Search metaheuristics seems to be formed, as they 

are applied in many variants of the problem and offer very efficient results. Their ability to be 

combined with other algorithms, while also offering efficient solutions, led hybrid algorithms 

being applied more and more frequently in many variants of the VRP. That is because from the 

algorithms combined, the advantages of each algorithm are exploited. 

Also, it should be noted that logistics and distribution companies have to fulfill restrictions of 

their customers and the external environment dictate for optimizing their operations. In the last 

few years, environmental regulations have emerged and are studied by researchers. However, 

only a few algorithms have been applied to the relevant VRP variants. This will inevitably lead 

to increased interest in the variants of the VRP, that are related to environmental issues, such 

as the Green, the Hybrid, the Electric VRP, and the PRP. Simultaneously, in a competitive 

environment such as todays, where customers are increasingly demanding, the overall 

distribution process needs to be optimized. Therefore, the research interest about the multi-

echelon VRP, which contains multiple layers of distribution and routing, may be increased in 

the following years. These two statements are reinforced by the fact that they are being studied 

more intensively from 2013 and onwards. Also, the interest in the collaborative VRP may 



Chapter 2: State of the Art 

31 

 

increase in the future since significant benefits in a network of logistics companies are created. 

The collaboration between multiple logistics companies is a challenge, but an opportunity as 

well, for optimizing their deliveries and their operating costs. Finally, a topic for further 

investigation and research is that a minimum number of articles treat simultaneously a 

combination of different variants of the VRP (as is usual in the complexity of real-life 

scheduling problems), with most researchers limiting their study to 3 variants of the VRP. Only 

Penna et al. (2019) were found to simultaneously tackle a broad range of variants, whose hybrid 

Variable Neighborhood algorithm manages to treat 6 variants of the problem.  

Additionally, the literature review was not limited to the study of the VRP variants, the 

proposed algorithms, and their correlation, but was also expanded to the research studies that 

propose optimization algorithms for addressing the VRP and that are also integrated into real-

life routing applications. The results led to only a limited number of articles proposing both 

optimization algorithms and their integration to routing systems. The results also confirm the 

gap that exist in research community regarding the algorithms that are developed and also 

integrated into real-life systems.  

Specifically, most researchers focus on other research areas such as the development of 

improved algorithms and mathematical models addressing the VRP, without studying the 

integration of the algorithms into the system. This is not absurd since the development of a 

system requires a lot of development and programming knowledge and skills, as well as time 

and manpower. However, the entire process, the key parts for developing a routing system, as 

well as the functionalities of a system are crucial and can prove the importance of high-effic ient 

algorithms that fit to the studied problem, and the selection of the right technologies. 

To sum up, the literature review led to important conclusions regarding the algorithms that are 

most commonly implemented in specific VRP variants. Additionally, the review defined the 

VRP variants that are most commonly studied by researchers, along with their trends, and was 

the base for selecting the VRP variants that are addressed in the rest of the chapters. Moreover, 

the literature review managed to clarify the gap that exists in research community regarding 

the optimization algorithms that are integrated into real-life systems. 

References 

Abbatecola L, Fanti MP, Mangini AM, Ukovich W (2016) A Decision Support Approach for 

Postal Delivery and Waste Collection Services. IEEE Trans Autom Sci Eng 13:1458–1470. 

https://doi.org/10.1109/TASE.2016.2570121 

Aggarwal D, Kumar V, Girdhar A (2017) Lagrangian relaxation for the vehicle routing 

problem with time windows. In: 2017 International Conference on Intelligent Computing,  

Instrumentation and Control Technologies (ICICICT). pp 1601–1606 



Chapter 2: State of the Art 

32 

 

Altabeeb AM, Mohsen AM, Ghallab A (2019) An improved hybrid firefly algorithm for 

capacitated vehicle routing problem. Appl Soft Comput 84:105728. 

https://doi.org/https://doi.org/10.1016/j.asoc.2019.105728 

Andelmin J, Bartolini E (2019) A multi-start local search heuristic for the Green Vehicle 

Routing Problem based on a multigraph reformulation. Comput Oper Res 109:43–63. 

https://doi.org/10.1016/j.cor.2019.04.018 

Archetti C, Savelsbergh MWP, Speranza MG (2008) To split or not to split: That is the 

question. Transp Res Part E Logist Transp Rev 44:114–123. 

https://doi.org/https://doi.org/10.1016/j.tre.2006.04.003 

Arnold F, Sörensen K (2019) Knowledge-guided local search for the vehicle routing problem. 

Comput Oper Res 105:32–46. https://doi.org/https://doi.org/10.1016/j.cor.2019.01.002 

Avci M, Topaloglu S (2015) An adaptive local search algorithm for vehicle routing problem 

with simultaneous and mixed pickups and deliveries. Comput Ind Eng 83:15–29. 

https://doi.org/10.1016/j.cie.2015.02.002 

Azi N, Gendreau M, Potvin J-Y (2010) An exact algorithm for a vehicle routing problem with 

time windows and multiple use of vehicles. Eur J Oper Res 202:756–763. 

https://doi.org/https://doi.org/10.1016/j.ejor.2009.06.034 

Badeau P, Guertin F, Gendreau M, et al (1997) A parallel tabu search heuristic for the vehicle 

routing problem with time windows. Transp Res Part C Emerg Technol 5:109–122 

Baldacci R, Bartolini E, Mingozzi A, Valletta A (2011) An Exact Algorithm for the Period 

Routing Problem. Oper Res 59:228–241. https://doi.org/10.1287/opre.1100.0875 

Baldacci R, Mingozzi A, Roberti R (2012) Recent exact algorithms for solving the vehicle 

routing problem under capacity and time window constraints. Eur J Oper Res 218:1–6. 

https://doi.org/10.1016/j.ejor.2011.07.037 

Baldacci R, Mingozzi A, Roberti R, Calvo RW (2013) An Exact Algorithm for the Two-

Echelon Capacitated Vehicle Routing Problem. Oper Res 61:298–314. 

https://doi.org/10.1287/opre.1120.1153 

Balseiro SR, Loiseau I, Ramonet J (2011) An Ant Colony algorithm hybridized with insertion 

heuristics for the Time Dependent Vehicle Routing Problem with Time Windows. Comput 

Oper Res 38:954–966. https://doi.org/10.1016/j.cor.2010.10.011 

Baradaran V, Shafaei A, Hosseinian AH (2019) Stochastic vehicle routing problem with 

heterogeneous vehicles and multiple prioritized time windows: Mathematical modeling and 

solution approach. Comput Ind Eng 131:187–199. 

https://doi.org/https://doi.org/10.1016/j.cie.2019.03.047 



Chapter 2: State of the Art 

33 

 

Bektaş T, Laporte G (2011) The Pollution-Routing Problem. Transp Res Part B Methodol 

45:1232–1250. https://doi.org/10.1016/j.trb.2011.02.004 

Belfiore PP, Fávero LPL (2007) Scatter search for the fleet size and mix vehicle routing 

problem with time windows. Cent Eur J Oper Res 15:351–368. 

https://doi.org/10.1007/s10100-007-0036-9 

Belloso J, Juan AA, Faulin J (2019) An iterative biased-randomized heuristic for the fleet size 

and mix vehicle-routing problem with backhauls. Int Trans Oper Res 26:289–301. 

https://doi.org/10.1111/itor.12379 

Belmecheri F, Prins C, Yalaoui F, Amodeo L (2013) Particle swarm optimization algorithm 

for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time 

windows. J Intell Manuf 24:775–789. https://doi.org/10.1007/s10845-012-0627-8 

Braekers K, Ramaekers K, Nieuwenhuyse I Van (2016) The Vehicle Routing Problem: State 

of the Art Classification and Review. Comput Ind Eng 99:300–313. 

https://doi.org/10.1016/j.cie.2015.12.007 

Brandão JCS, Mercer A (1998) The multi-trip vehicle routing problem. J Oper Res Soc 49:799–

805. https://doi.org/10.1057/palgrave.jors.2600595 

Bräysy O, Gendreau M (2005) Vehicle routing problem with time windows, Part I: Route 

construction and local search algorithms. Transp Sci 39:104–118. 

https://doi.org/10.1287/trsc.1030.0056 

Breunig U, Baldacci R, Hartl RF, Vidal T (2019) The electric two-echelon vehicle routing 

problem. Comput Oper Res 103:198–210. 

https://doi.org/https://doi.org/10.1016/j.cor.2018.11.005 

Bullnheimer B, Hartl RF, Strauss C (1999) An improved Ant System algorithm for the Vehicle 

Routing Problem. Ann Oper Res 89:319–328 

Caceres-Cruz J, Arias P, Guimarans D, et al (2014) Rich Vehicle Routing Problem: Survey. 

ACM Comput Surv 47:1–28. https://doi.org/10.1145/2666003 

Çatay B (2010) A new saving-based ant algorithm for the Vehicle Routing Problem with 

Simultaneous Pickup and Delivery. Expert Syst Appl 37:6809–6817. 

https://doi.org/10.1016/j.eswa.2010.03.045 

César H, Oliveira B De (2010) A hybrid search method for the vehicle routing problem with 

time windows. Ann Oper Res 180:125–144. https://doi.org/10.1007/s10479-008-0487-y 

Chiang W-C, Russell RA (1996) Simulated annealing metaheuristics for the vehicle routing 

problem with time windows. Ann Oper Res 63:3–27. https://doi.org/10.1007/BF02601637 



Chapter 2: State of the Art 

34 

 

Chiang WC, Russell RA (1997) A Reactive Tabu Search Metaheuristic for the Vehicle Routing 

Problem with Time Windows. INFORMS J Comput 9:417–430. 

https://doi.org/doi:10.1287/ijoc.9.4.417 

Clarke G, Wright JW (1964) Scheduling of Vehicles from a Central Depot to a Number of 

Delivery Points. Oper Res 12:568–581. https://doi.org/10.1287/opre.12.4.568 

Coene S, Arnout A, Spieksma FCR (2010) On a periodic vehicle routing problem. J Oper Res 

Soc 61:1719–1728. https://doi.org/10.1057/jors.2009.154 

Cordeau JF, Laporte G, Mercier A (2001) A unified tabu search heuristic for vehicle routing 

problems with time windows. J Oper Res Soc 52:928–936. 

https://doi.org/10.1057/palgrave.jors.2601163 

Crainic TG, Perboli G, Mancini S, Tadei R (2010) Two-Echelon Vehicle Routing Problem: A 

satellite location analysis. Procedia - Soc Behav Sci 2:5944–5955. 

https://doi.org/https://doi.org/10.1016/j.sbspro.2010.04.009 

Desrochers M, Desrosiers J, Solomon M (1992) A new optimization algorithm for the vehicle 

routing problem with time windows. Oper Res 40:342–354. 

https://doi.org/10.1287/opre.40.2.342 

Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE 

international conference on neural networks. pp 1942–1948 

Eksioglu B, Vural AV, Reisman A (2009) The vehicle routing problem: A taxonomic review. 

Comput Ind Eng 57:1472–1483. https://doi.org/10.1016/j.cie.2009.05.009 

El-Sherbeny NA (2010) Vehicle routing with time windows: An overview of exact, heuristic 

and metaheuristic methods. J King Saud Univ 22:123–131. 

https://doi.org/10.1016/j.jksus.2010.03.002 

Elshaer R, Awad H (2020) A taxonomic review of metaheuristic algorithms for solving the 

vehicle routing problem and its variants. Comput Ind Eng 140:106242. 

https://doi.org/https://doi.org/10.1016/j.cie.2019.106242 

Erdoğan G (2017) An open source Spreadsheet Solver for Vehicle Routing Problems. Comput 

Oper Res 84:62–72. https://doi.org/10.1016/j.cor.2017.02.022 

Fanti MP, Laraspata R, Iacobellis G, et al (2014) A Decision Support System approach for the 

postal delivery operations. In: 2014 IEEE International Conference on Automation Science 

and Engineering (CASE). pp 588–593 

Feillet D, Garaix T, Lehuédé F, et al (2014) A new consistent vehicle routing problem for the 

transportation of people with disabilities. Networks 63:211–224. 

https://doi.org/10.1002/net.21538 



Chapter 2: State of the Art 

35 

 

Figliozzi MA (2012) The time dependent vehicle routing problem with time windows: 

Benchmark problems, an efficient solution algorithm, and solution characteristics. Transp 

Res Part E Logist Transp Rev 48:616–636. https://doi.org/10.1016/j.tre.2011.11.006 

Fisher ML (1994) Optimal Solution of Vehicle Routing Problems Using Minimum K-Trees. 

Oper Res 42:626–642. https://doi.org/10.2307/171617 

Flatberg T, Hasle G, Kloster O, et al (2007) Dynamic And Stochastic Vehicle Routing In 

Practice. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic Fleet 

Management: Concepts, Systems, Algorithms & Case Studies. Springer US, Boston, MA, 

pp 41–63 

François V, Arda Y, Crama Y, Laporte G (2016) Large neighborhood search for multi-trip 

vehicle routing. Eur J Oper Res 255:422–441. 

https://doi.org/https://doi.org/10.1016/j.ejor.2016.04.065 

Gambardella LM, Taillard É, Agazzi G (1999) Macs-vrptw: A multiple colony system for 

vehicle routing problems with time windows. In: New Ideas In Optimization. pp 63–76 

Gayialis SP, Konstantakopoulos GD, Tatsiopoulos IP (2019) Vehicle Routing Problem for 

Urban Freight Transportation: A Review of the Recent Literature. In: Sifaleras A, Petridis 

K (eds) Operational Research in the Digital Era--ICT Challenges, Springer P. Springer, pp 

89–104 

Gendreau M, Hertz A, Laporte G (1992) New insertion and postoptimization procedures for 

the traveling salesman problem. Oper Res 40:1086–1094. 

https://doi.org/10.1287/opre.40.6.1086 

Ghoseiri K, Ghannadpour SF (2010) Multi-objective vehicle routing problem with time 

windows using goal programming and genetic algorithm. Appl Soft Comput 10:1096–

1107. https://doi.org/10.1016/j.asoc.2010.04.001 

Gillet BE, Miller LE, Johnson JG (1979) Vehicle dispatching—Sweep algorithm and 

extensions. In: Disaggregation. Springer, pp 471–483 

Glover F (1977) HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE 

CONSTRAINTS. Decis Sci 8:156–166. https://doi.org/https://doi.org/10.1111/j.1540-

5915.1977.tb01074.x 

Glover F (1986) Future paths for integer programming and links to artificial intelligence. 

Comput Oper Res 13:533–549. https://doi.org/10.1016/0305-0548(86)90048-1 

Goeke D, Schneider M (2015) Routing a mixed fleet of electric and conventional vehicles. Eur 

J Oper Res 245:81–99. https://doi.org/10.1016/j.ejor.2015.01.049 

Goetschalckx M, Jacobs - Blecha C (1989) The vehicle routing problem with backhauls. Eur J 

Oper Res 42:39–51. https://doi.org/10.1016/0377-2217(89)90057-X 



Chapter 2: State of the Art 

36 

 

Goksal FP, Karaoglan I, Altiparmak F (2013) A hybrid discrete particle swarm optimization 

for vehicle routing problem with simultaneous pickup and delivery. Comput Ind Eng 

65:39–53. https://doi.org/10.1016/j.cie.2012.01.005 

Grangier P, Gendreau M, Lehuédé F, Rousseau L-M (2016) An adaptive large neighborhood 

search for the two-echelon multiple-trip vehicle routing problem with satellite 

synchronization. Eur J Oper Res 254:80–91. 

https://doi.org/https://doi.org/10.1016/j.ejor.2016.03.040 

Groër C, Golden B, Wasil E (2009) The Consistent Vehicle Routing Problem. Manuf Serv 

Oper Manag 11:630–643. https://doi.org/10.1287/msom.1080.0243 

Han AF-W, Chu Y-C (2016) A multi-start heuristic approach for the split-delivery vehicle 

routing problem with minimum delivery amounts. Transp Res Part E Logist Transp Rev 

88:11–31. https://doi.org/https://doi.org/10.1016/j.tre.2016.01.014 

Hiermann G, Puchinger J, Ropke S, Hartl RF (2016) The Electric Fleet Size and Mix Vehicle 

Routing Problem with Time Windows and Recharging Stations. Eur J Oper Res 252:995–

1018. https://doi.org/10.1016/j.ejor.2016.01.038 

Holland JH (1975) Adaptation in natural and artificial systems Ann Arbor. Univ Michigan 

Press 1:975 

Hong L (2012) An improved LNS algorithm for real-time vehicle routing problem with time 

windows. Comput Oper Res 39:151–163. https://doi.org/10.1016/j.cor.2011.03.006 

Hornstra RP, Silva A, Roodbergen KJ, Coelho LC (2020) The vehicle routing problem with 

simultaneous pickup and delivery and handling costs. Comput Oper Res 115:104858. 

https://doi.org/10.1016/j.cor.2019.104858 

Hu C, Lu J, Liu X, Zhang G (2018) Robust vehicle routing problem with hard time windows 

under demand and travel time uncertainty. Comput Oper Res 94:139–153. 

https://doi.org/https://doi.org/10.1016/j.cor.2018.02.006 

Juan, A.A., Adelantado, F., Grasman, S.E., Faulin, J., & Montoya-Torres JR (2009). S the 

capacitated vehicle routing problem with maximum traveling distance and service time 

requirements: an approach based on MC simulation. W ’09. (2009) Solving the capacitated 

vehicle routing problem with maximum traveling distance and service time requirements : 

an approach based on Monte Carlo simulation. In: Proceedings of the 2009 Winter 

Simulation Conference (WSC ’09). pp 2467–2475 

Juan AA, Pascual I, Guimarans D, Barrios B (2015) Combining biased randomization with 

iterated local search for solving the multidepot vehicle routing problem. Int Trans Oper Res 

22:647–667. https://doi.org/10.1111/itor.12101 



Chapter 2: State of the Art 

37 

 

Kaboudani Y, Ghodsypour SH, Kia H, Shahmardan A (2018) Vehicle routing and scheduling 

in cross docks with forward and reverse logistics. Oper Res Int J. 

https://doi.org/10.1007/s12351-018-0396-z 

Kalayci CB, Kaya C (2016) An ant colony system empowered variable neighborhood search 

algorithm for the vehicle routing problem with simultaneous pickup and delivery. Expert 

Syst Appl 66:163–175. https://doi.org/https://doi.org/10.1016/j.eswa.2016.09.017 

Karakatič S, Podgorelec V (2015) A survey of genetic algorithms for solving multi depot 

vehicle routing problem. Appl Soft Comput 27:519–532. 

https://doi.org/10.1016/j.asoc.2014.11.005 

Kilby P, Prosser P, Shaw P (1999) Guided local search for the vehicle routing problem with 

time windows. In: Meta-heuristics. Springer, pp 473–486 

Kim G, Ong Y, Heng CK, et al (2015) City Vehicle Routing Problem (City VRP): A Review. 

IEEE Trans Intell Transp Syst 16:1654–1666. https://doi.org/10.1109/TITS.2015.2395536 

Kirkpatrick S, Gelatt CD, Vecchi MP, P. VM (1983) Optimization by Simulated Annealing. 

Science (80- ) 220:671 LP-680. https://doi.org/10.1126/science.220.4598.671 

Koç Ç, Bektaş T, Jabali O, Laporte G (2015) A hybrid evolutionary algorithm for 

heterogeneous fleet vehicle routing problems with time windows. Comput Oper Res 64:11–

27. https://doi.org/10.1016/j.cor.2015.05.004 

Kohl N, Madsen OBG (1997) An optimization algorithm for the vehicle routing problem with 

time windows based on Lagrangian relaxation. Oper Res 45:395–406. 

https://doi.org/10.1287/opre.45.3.395 

Kuo Y (2010) Using simulated annealing to minimize fuel consumption for the time-dependent 

vehicle routing problem. Comput Ind Eng 59:157–165. 

https://doi.org/https://doi.org/10.1016/j.cie.2010.03.012 

Labadie N, Prins C, Prodhon C, Prins C (2016) Metaheuristics for Vehicle Routing Problems. 

John Wiley and Sons 

Lahyani R, Khemakhem M, Semet F (2015) Rich vehicle routing problems: From a taxonomy 

to a definition. Eur J Oper Res 241:1–14. https://doi.org/10.1016/j.ejor.2014.07.048 

Lei H, Laporte G, Guo B (2011) The capacitated vehicle routing problem with stochastic 

demands and time windows. Comput Oper Res 38:1775–1783. 

https://doi.org/10.1016/j.cor.2011.02.007 

Leung SCH, Zhang Z, Zhang D, et al (2013) A meta-heuristic algorithm for heterogeneous 

fleet vehicle routing problems with two-dimensional loading constraints. Eur J Oper Res 

225:199–210. https://doi.org/https://doi.org/10.1016/j.ejor.2012.09.023 



Chapter 2: State of the Art 

38 

 

Lin C, Choy KL, Ho GTS, et al (2014) Survey of Green Vehicle Routing Problem : Past and 

future trends. Expert Syst Appl 41:1118–1138 

Lin S-W, Yu VF, Chou S-Y (2010) A note on the truck and trailer routing problem. Expert 

Syst Appl 37:899–903. https://doi.org/https://doi.org/10.1016/j.eswa.2009.06.077 

Lysgaard J, Wøhlk S (2014) A branch-and-cut-and-price algorithm for the cumulative 

capacitated vehicle routing problem. Eur J Oper Res 236:800–810. 

https://doi.org/https://doi.org/10.1016/j.ejor.2013.08.032 

Mancini S (2017) The Hybrid Vehicle Routing Problem. Transp Res Part C Emerg Technol 

78:1–12. https://doi.org/10.1016/j.trc.2017.02.004 

Mańdziuk J, Nejman C (2015) UCT-Based Approach to Capacitated Vehicle Routing Problem. 

In: Rutkowski L, Korytkowski M, Scherer R, et al. (eds) Artificial Intelligence and Soft 

Computing. Springer International Publishing, Cham, pp 679–690 

Marinakis Y, Migdalas A (2007) Annotated bibliography in vehicle routing. Oper Res Int J 

7:27–46. https://doi.org/10.1007/BF02941184 

Mavrovouniotis M, Yang S (2015) Ant algorithms with immigrants schemes for the dynamic 

vehicle routing problem. Inf Sci (Ny) 294:456–477. 

https://doi.org/https://doi.org/10.1016/j.ins.2014.10.002 

Mekamcha K, Souier M, Bessenouci HN, Bennekrouf M (2019) Two metaheuristics 

approaches for solving the traveling salesman problem: an Algerian waste collection case. 

Oper Res Int J. https://doi.org/10.1007/s12351-019-00529-6 

MirHassani SA, Abolghasemi N (2011) A particle swarm optimization algorithm for open 

vehicle routing problem. Expert Syst Appl 38:11547–11551. 

https://doi.org/10.1016/j.eswa.2011.03.032 

Montané FAT, Galvão RD (2006) A tabu search algorithm for the vehicle routing problem with 

simultaneous pick-up and delivery service. Comput Oper Res 33:595–619. 

https://doi.org/10.1016/j.cor.2004.07.009 

Nalepa J, Blocho M (2016) Adaptive memetic algorithm for minimizing distance in the vehicle 

routing problem with time windows. Soft Comput 20:2309–2327. 

https://doi.org/10.1007/s00500-015-1642-4 

Osman IH (1993) Metastrategy simulated annealing and tabu search algorithms for the vehicle 

routing problem. Ann Oper Res 41:421–451. https://doi.org/10.1007/BF02023004 

Penna PHV, Subramanian A, Ochi LS, et al (2019) A hybrid heuristic for a broad class of 

vehicle routing problems with heterogeneous fleet. Ann Oper Res 273:5–74. 

https://doi.org/10.1007/s10479-017-2642-9 



Chapter 2: State of the Art 

39 

 

Perboli G, Rosano M (2019) Parcel delivery in urban areas: Opportunities and threats for the 

mix of traditional and green business models. Transp Res Part C Emerg Technol 99:19–36. 

https://doi.org/https://doi.org/10.1016/j.trc.2019.01.006 

Pillac V, Gendreau M, Guéret C, Medaglia AL (2013) A review of dynamic vehicle routing 

problems. Eur J Oper Res 225:1–11. https://doi.org/10.1016/j.ejor.2012.08.015 

Potvin J-Y, Rousseau J-M (1993) A parallel route building algorithm for the vehicle routing 

and scheduling problem with time windows. Eur J Oper Res 66:331–340. 

https://doi.org/10.1016/0377-2217(93)90221-8 

Prins C (2009) Two memetic algorithms for heterogeneous fleet vehicle routing problems. Eng 

Appl Artif Intell 22:916–928. https://doi.org/10.1016/j.engappai.2008.10.006 

Quak HJ, de Koster MBM (2009) Delivering Goods in Urban Areas: How to Deal with Urban 

Policy Restrictions and the Environment. Transp Sci 43:211–227. 

https://doi.org/10.1287/trsc.1080.0235 

Rabbouch B, Saâdaoui F, Mraihi R (2019) Efficient implementation of the genetic algorithm 

to solve rich vehicle routing problems. Oper Res Int J. https://doi.org/10.1007/s12351-019-

00521-0 

Rajabi-Bahaabadi M, Shariat-Mohaymany A, Babaei M, Vigo D (2019) Reliable vehicle 

routing problem in stochastic networks with correlated travel times. Oper Res Int J. 

https://doi.org/10.1007/s12351-019-00452-w 

Renaud J, Laporte G, Boctor FF (1996) A tabu search heuristic for the multi-depot vehicle 

routing problem. Comput Oper Res 23:229–235. https://doi.org/10.1016/0305-

0548(95)O0026-P 

Repoussis PP, Tarantilis CD, Bräysy O, Ioannou G (2010) A hybrid evolution strategy for the 

open vehicle routing problem. Comput Oper Res 37:443–455. 

https://doi.org/10.1016/j.cor.2008.11.003 

Rothenbächer A-K (2019) Branch-and-Price-and-Cut for the Periodic Vehicle Routing 

Problem with Flexible Schedule Structures. Transp Sci 53:850–866. 

https://doi.org/10.1287/trsc.2018.0855 

Rothenbächer A-K, Drexl M, Irnich S (2018) Branch-and-Price-and-Cut for the Truck-and-

Trailer Routing Problem with Time Windows. Transp Sci 52:1174–1190. 

https://doi.org/10.1287/trsc.2017.0765 

Russell RA, Chiang W-C (2006) Scatter search for the vehicle routing problem with time 

windows. Eur J Oper Res 169:606–622. 

https://doi.org/https://doi.org/10.1016/j.ejor.2004.08.018 



Chapter 2: State of the Art 

40 

 

Salari M, Toth P, Tramontani A (2010) An ILP improvement procedure for the Open Vehicle 

Routing Problem. Comput Oper Res 37:2106–2120. 

https://doi.org/10.1016/j.cor.2010.02.010 

Schneider M, Stenger A, Goeke D (2014) The Electric Vehicle-Routing Problem with Time 

Windows and Recharging Stations. Transp Sci 48:500–520. 

https://doi.org/10.1287/trsc.2013.0490 

Schrimpf G, Schneider J, Stamm-wilbrandt H, Dueck G (2000) Record Breaking Optimization 

Results Using the Ruin and Recreate Principle. J Comput Phys 159:139–171. 

https://doi.org/10.1006/jcph.1999.6413 

Silva MM, Subramanian A, Ochi LS (2015) An iterated local search heuristic for the split 

delivery vehicle routing problem. Comput Oper Res 53:234–249. 

https://doi.org/https://doi.org/10.1016/j.cor.2014.08.005 

Silva MM, Subramanian A, Ochi LS, et al (2014) An iterated local search heuristic for the split 

delivery vehicle routing problem. Eur J Oper Res 53:454–464. 

https://doi.org/https://doi.org/10.1016/j.cor.2014.08.005 

Sitek P (2014) A Hybrid Approach to the Two-Echelon Capacitated Vehicle Routing Problem 

(2E-CVRP). In: Szewczyk R, Zieliński C, Kaliczyńska M (eds) Recent Advances in 

Automation, Robotics and Measuring Techniques. Springer, Cham, pp 251–263 

Solomon MM (1987) Algorithms for the Vehicle Routing and Scheduling Problems with Time 

Window Constraints. Oper Res 35:254–265. https://doi.org/10.1287/opre.35.2.254 

Subramanian A, Drummond LMAA, Bentes C, et al (2010) A parallel heuristic for the Vehicle 

Routing Problem with Simultaneous Pickup and Delivery. Comput Oper Res 37:1899–

1911. https://doi.org/https://doi.org/10.1016/j.cor.2009.10.011 

Subramanian A, Penna PHV, Uchoa E, Ochi LS (2012) A hybrid algorithm for the 

Heterogeneous Fleet Vehicle Routing Problem. Eur J Oper Res 221:285–295. 

https://doi.org/https://doi.org/10.1016/j.ejor.2012.03.016 

Taillard É, Badeau P, Gendreau M, et al (1997) A tabu search heuristic for the vehicle routing 

problem with soft time windows. Transp Sci 31:170–186. 

https://doi.org/10.1287/trsc.31.2.170 

Tarantilis CD, Diakoulaki D, Kiranoudis CT (2004) Combination of geographical information 

system and efficient routing algorithms for real life distribution operations. Eur J Oper Res 

152:437–453. https://doi.org/https://doi.org/10.1016/S0377-2217(03)00035-3 

Tarantilis CD, Kiranoudis CT (2007) A flexible adaptive memory-based algorithm for real-life 

transportation operations: Two case studies from dairy and construction sector. Eur J Oper 

Res 179:806–822. https://doi.org/https://doi.org/10.1016/j.ejor.2005.03.059 



Chapter 2: State of the Art 

41 

 

Tarantilis CD, Stavropoulou F, Repoussis PP (2012) A template-based Tabu Search algorithm 

for the Consistent Vehicle Routing Problem. Expert Syst Appl 39:4233–4239. 

https://doi.org/https://doi.org/10.1016/j.eswa.2011.09.111 

Usberti FL, França PM, França ALM (2013) GRASP with evolutionary path-relinking for the 

capacitated arc routing problem. Comput Oper Res 40:3206–3217. 

https://doi.org/https://doi.org/10.1016/j.cor.2011.10.014 

Vidal T, Crainic TG, Gendreau M, Prins C (2013) A hybrid genetic algorithm with adaptive 

diversity management for a large class of vehicle routing problems with time-windows. 

Comput Oper Res 40:475–489. https://doi.org/10.1016/j.cor.2012.07.018 

Wang C, Mu D, Zhao F, Sutherland JW (2015) A parallel simulated annealing method for the 

vehicle routing problem with simultaneous pickup–delivery and time windows. Comput 

Ind Eng 83:111–122. https://doi.org/10.1016/j.cie.2015.02.005 

Wang Y, Ma X, Li Z, et al (2017) Profit distribution in collaborative multiple centers vehicle 

routing problem. J Clean Prod 144:203–219. 

https://doi.org/https://doi.org/10.1016/j.jclepro.2017.01.001 

Wang Y, Zhang S, Guan X, et al (2020) Collaborative multi-depot logistics network design 

with time window assignment. Expert Syst Appl 140:112910. 

https://doi.org/https://doi.org/10.1016/j.eswa.2019.112910 

Xu Z, Cai Y (2018) Variable neighborhood search for consistent vehicle routing problem. 

Expert Syst Appl 113:66–76. https://doi.org/https://doi.org/10.1016/j.eswa.2018.07.007 

Yassen ET, Ayob M, Nazri MZA, Sabar NR (2015) Meta-harmony search algorithm for the 

vehicle routing problem with time windows. Inf Sci (Ny) 325:140–158. 

https://doi.org/https://doi.org/10.1016/j.ins.2015.07.009 

Yu B, Yang ZZ (2011) An ant colony optimization model: The period vehicle routing problem 

with time windows. Transp Res Part E Logist Transp Rev 47:166–181. 

https://doi.org/10.1016/j.tre.2010.09.010 

Yu G, Yang Y (2019) Dynamic routing with real-time traffic information. Oper Res Int J 

19:1033–1058. https://doi.org/10.1007/s12351-017-0314-9 

Yu VF, Redi AANP, Yang C-L, et al (2017) Symbiotic organisms search and two solution 

representations for solving the capacitated vehicle routing problem. Appl Soft Comput 

52:657–672. https://doi.org/https://doi.org/10.1016/j.asoc.2016.10.006 

Zachariadis EE, Kiranoudis CT (2010) An open vehicle routing problem metaheurist ic for 

examining wide solution neighborhoods. Comput Oper Res 37:712–723. 

https://doi.org/10.1016/j.cor.2009.06.021 



Chapter 2: State of the Art 

42 

 

Zachariadis EE, Tarantilis CD, Kiranoudis CT (2016) The Vehicle Routing Problem with 

Simultaneous Pick-ups and Deliveries and Two-Dimensional Loading Constraints. Eur J 

Oper Res 251:369–386. https://doi.org/https://doi.org/10.1016/j.ejor.2015.11.018 

Zhong Y, Cole MH (2005) A vehicle routing problem with backhauls and time windows: a 

guided local search solution. Transp Res Part E Logist Transp Rev 41:131–144. 

https://doi.org/https://doi.org/10.1016/j.tre.2003.12.003 



 

 

Chapter 3: The Vehicle Routing Problem with Time Windows 

3.1 Introduction 

The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known variant of the 

VRP, which has received considerable attention in recent years and reflects many real-world 

scenarios in distribution operations. Τhe VRPTW consists of geographically scattered 

customers that need to be served within a predetermined time interval (time window), only 

once and by a single vehicle. The total quantity of goods distributed in each route cannot exceed 

the vehicle's capacity, while each vehicle starts and ends its route at the depot. A vehicle may 

arrive at a customer before the opening of the time window and wait until the agreed service 

time, but is not allowed to deliver goods if it arrives after the time window closes (Nagata et 

al. 2010; Ait Haddadene et al. 2019; Juárez Pérez et al. 2019). Instead, many research papers 

(Koskosidis et al. 1992; Taillard et al. 1997a; Hashimoto et al. 2006; Iqbal and Rahman 2012; 

Taş et al. 2014; Wu et al. 2019) consider that some or all customers have soft time windows 

and may be served before the opening of the time window or after the time window closes, 

paying a penalty parameter each time the time window is violated. Time windows become even 

more challenging in urban transportation where uncertain traffic conditions exist, meaning that 

traveling times change dynamically. In the current Chapter, as well as in a greater attempt to 

cover the requirements of most distribution cases, the time windows are considered hard and 

cannot be violated as this is a more realistic scenario for urban freight transportation, where a 

possible delay may have severe consequences. 

Moreover, solving the VRPTW is of great interest both for the research community and 

logistics and transportation companies, as it is crucial for delivering goods cost-effectively and 

facing customer requirements. If not all, most customers have the need to define a time slot in 

which they must be served, making the  VRPTW the most common variant both in research 

and in industry. The connection between the two fields is a two-way one, where companies and 

their associates and customers determine the constraints that are transformed into mathematical 

formulas and modeled by researchers. Researchers, aided by advanced computer science, 

propose and develop algorithms that solve the VRPTW. However, not all algorithms are easy 

to implement to solve real-life problems, mainly due to their computation time. Starting with 

exact algorithms, they compute every possible solution until the best one is reached, while 

performing very poorly in computation time, even when dealing with fairly small instances 

(El-Sherbeny 2010). Despite this limitation, multiple exact algorithms have been proposed by 

researchers (Kallehauge 2008; Qureshi et al. 2009; Azi et al. 2010; Baldacci et al. 2012) for 

tackling the VRPTW, all of which solve distribution cases with up to 100 customer orders. 

Consequently, since real-life cases include, in most cases, more than 100 customer orders, 

researchers aim to propose and develop algorithms that can handle bigger size cases. 



Chapter 3: The Vehicle Routing Problem with Time Windows 

44 

 

According to Arnold and Sörensen (2019b), heuristic algorithms provide the best trade-off 

between solution quality and computation time. This theory is reinforced by some paradigms 

of the successful implementation of heuristic algorithms solving the VRPTW. More 

specifically, the work of Solomon (1987) is considered pioneer as multiple algorithms where 

proposed, including the Time-oriented Nearest Neighbor (TONN), which constructs routes  

sequentially, by finding the "closest" customer to the last one served and ends when no more 

unrouted customers left. Additionally, Pisinger and Ropke (2007) proposed a unified heuristic 

that can solve a class of VRP variants, including time windows. Taillard et al. (1997a) 

developed a TS heuristic considered the time windows as soft.  

Even though heuristics offer good quality solutions, the latest advances in technology have 

enabled metaheuristic algorithms to search a wider solution space in limited CPU time, while 

offering efficient results (Kalayci and Kaya 2016). Metaheuristics categorized in Population 

Search and in Local Search are developed quite often for addressing the VRPTW. In most 

cases, the VRPTW is faced as a single objective as the individual objective functions are 

composed of a single one. This approach may significantly simplify the problem; however, it 

is not very reliable as a small variation in the weights may lead to different solutions (Konak 

et al. 2006). Tan et al. (2006a) and Ombuki et al. (2006) are some of the first that considered 

the VRPTW as multiobjective while also applying the Pareto optimality concept. In both 

articles, evolutionary algorithms were developed and proposed, and then tested in Solomon’s 

benchmark instances, offering new Pareto optimal solutions. Ever since, multiple researchers 

have studied and considered the multiobjective nature of the problem, as advances in 

technology and increasing computing capabilities have emerged. In many cases, multiobjective 

evolutionary algorithms (MOEA) are proposed or combined with other methods due to their 

search capabilities and their efficiency. Some very efficient multiobjective algorithms, 

according to their solutions in Solomon’s database, were proposed by Chiang and Hsu (2014), 

Garcia-Najera and Bullinaria (2011), and Baños et al. (2013). 

Concerning the contribution of this Chapter, it is noted in encountering the problem as 

multiobjective and developing a Multiobjective Large Neighborhood Search (MOLNS) 

algorithm that exploits the solution obtained from the construction heuristic algorithm. The 

proposed MOLNS algorithm is sufficient in minimizing both the number of vehicles and the 

total traveled distance by applying destroy and repair operators while also maintaining the 

concept of Pareto optimality (Yun et al. 2016). To the best of my knowledge, this is the first 

time a Large Neighborhood Search algorithm is applied in the multiobjective VRPTW. The 

algorithm is being tested in Solomon's 56 benchmark instances with 100 customers. The results 

of the algorithm are compared to the best-published results of the literature, indicating a very 

efficient algorithm. The proposed algorithm considers the problem as multiobjective and can 

offer more competitive solutions with a viable trade-off between the quality of the solution and 

the computation time.  



Chapter 3: The Vehicle Routing Problem with Time Windows 

45 

 

In the remainder of the Chapter, the VRPTW is defined and formulated in Section 3.2, while 

in Section 3.3, the proposed ΜΟLNS algorithm aiming to solve real-life VRPTW cases, is 

thoroughly presented. The computation results of the proposed algorithm in Solomon's 

benchmark instances are presented in Section 3.4. In the same section, the expected application 

of the algorithm in routing and scheduling software is discussed. Finally, Section 3.5 contains 

the conclusions of the Chapter. 

3.2 Problem Description and Mathematical Formulation 

The VRPTW is defined by a set of identical vehicles denoted by K, and by a direct network G 

(N, A), where N is the set of nodes and 𝐴 = (𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑁 is the set of arcs.  Node 0 

represents the central depot, while 𝑁∗ = {𝑁/0} represents customers. Every arc (i, j), which is 

a path from node i to node j is characterized by a distance which is indicated as 𝑑𝑖𝑗. 

Respectively 𝑡𝑖𝑗 stands for the travel time from node i to node j, and has the same value with 

𝑑𝑖𝑗, as the assumption that each distance unit corresponds to one specific time unit is made. 

Each customer i is characterized by the demand 𝑞𝑖, the service time needed 𝑠𝑖, and the time 

window (𝑒𝑖 , 𝑙𝑖), where ei is the opening time and 𝑙𝑖 the closing time. Customers must be served 

by exactly one vehicle that may arrive any time within the time window. The arrival time is 

given by 𝑎𝑖. Additionally, if the vehicle arrives before the beginning of the time window (𝑒𝑖 ), 

it must wait for 𝑤𝑖
𝑘 time, until service is possible, while no vehicle may arrive after the end of 

the time interval (𝑙𝑖). Additionally, all the essential variables are gathered and presented below, 

before the mathematical model. 

𝑑𝑖𝑗 Distance between node i and node j 

𝑡𝑖𝑗 Transit time between node i and node j 

𝑞𝑖 Demand of goods from node i 

𝑒𝑖  Node’s i open time 

𝑙𝑖 Node’s i close time 

𝑠𝑖 Service time needed at node i 

𝑎𝑖 Time of arrival of vehicle to node i 

𝑤𝑖
𝑘 Waiting time of vehicle k at customer i 

The decision variable 𝑥𝑖𝑗
𝑘  is equal to 1 if vehicle k drives from node i to node j, and 0 otherwise. 

The objective of the VRPTW is to service all customers, minimizing the number of vehicles 

and the total traveled distance while simultaneously ensuring that all the constraints are 

satisfied. The mathematical model of the VRPTW is presented below: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1: ∑ ∑ 𝑥0𝑗
𝑘

𝑗∈𝑁∗𝑘∈𝛫

 (3.1) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 2: ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝛫

 (3.2) 



Chapter 3: The Vehicle Routing Problem with Time Windows 

46 

 

∑ 𝑞𝑖

𝑖∈𝛮

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝛮

≤ 𝑞𝑚𝑎𝑥
𝑘 , ∀𝑘 ∈ 𝛫 (3.3) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝛮𝑘∈𝛫

= 1, ∀𝑖 ∈ 𝑁 (3.4) 

∑ 𝑥0𝑗
𝑘

𝑗∈𝑁∗

= 1, ∀𝑘 ∈ 𝛫 (3.5) 

∑ 𝑥𝑖𝑙
𝑘

𝑖∈𝛮

− ∑ 𝑥𝑙𝑗
𝑘

𝑗∈𝛮

= 0, ∀𝑙 ∈ 𝑁, ∀𝑘 ∈ 𝛫 (3.6) 

∑ 𝑥𝑗0
𝑘

𝑗∈𝑁∗

= 1, ∀𝑘 ∈ 𝛫  (3.7) 

𝑎0 =  𝑤0
𝑘 =  𝑠0 =  0 (3.8) 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝛮

(𝑎𝑖 + 𝑤𝑖
𝑘 + 𝑠𝑖 + 𝑡𝑖𝑗) ≤ 𝑙𝑗 , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝛫 (3.9) 

𝑒𝑖  ≤ 𝑎𝑖 + 𝑤𝑖
𝑘 ≤ 𝑙𝑖, ∀𝑖 ∈ 𝛮, ∀𝑘 ∈ 𝛫 (3.10) 

𝑥𝑖𝑗
𝑘 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝛫 (3.11) 

 

The objective function (3.1) states that the total number of vehicles and the total traveled 

distance should both be minimized based on the objective function (3.2). The constraint (3.3) 

states that a vehicle’s capacity cannot be exceeded and set (3.4) that each customer must be 

served exactly once and by one vehicle. The set of constraints (3.5), (3.6) and (3.7) make sure 

that each vehicle starts from the depot {0}, visits and serves a certain number of customers, and 

finally returns to the depot {0}. Constraints (3.8), (3.9) and (3.10) indicate that for a trip from 

node i to node j, no vehicle may arrive at customer j after the end of the time window, (li). 

Simultaneously, the time of arrival to a customer, depends on the time of arrival, the waiting 

time and the service time, to the previous served customer. An example of the VRPTW is 

illustrated in Figure 3.1. 



Chapter 3: The Vehicle Routing Problem with Time Windows 

47 

 

 

Figure 3.1 Illustration of the VRPTW 

3.3 Problem Solution 

The proposed MOLNS algorithm, as a first step, obtains the initial solution by applying the 

Time-oriented nearest neighbor algorithm, which is a construction heuristic one. Consequently, 

in each iteration, the destroy and repair operators are applied for improving the solution. If the 

newly obtained solution is better than the current best one, then it replaces it, and it is used as 

input in the next iteration. To evaluate whether a solution is better than another, Pareto 

optimality concept is applied, and it is thoroughly analyzed in Section 3.3.1. The construction 

heuristic algorithm is described in Section 3.3.2. In Section 3.3.3 and 3.3.4, the destroy and 

repair operators are presented respectively. Finally, the general framework of the MOLNS 

algorithm is presented in Section 3.3.5. The steps mentioned above are given in Figure 3.2. 



Chapter 3: The Vehicle Routing Problem with Time Windows 

48 

 

 

Figure 3.2 Steps of the MOLNS Algorithm 

3.3.1 Pareto Optimal 

Deliveries to end-customers and consumers constitute a key part of supply chain and logistics 

operations. Multiple stakeholders are involved, such as third-party logistics (3PL) companies, 

transportation companies or even production companies that have their own fleet of vehicles. 

Depending on the case, either the number of vehicles or the total traveled distance is more 

important or contributes more to the cost. Therefore, it is important to obtain every possible 

non-dominated solution, and each stakeholder makes the decision and selects the solution that 

is most profitable (Ehrgott 2005). More specifically, as shown in Figure 3.2 (a), when moving 

from one Pareto optimal solution to another, there is always a decrease in one objective and a 

Construct initial solutions using the 

TONN Algorithm

Keep the Pareto-optimal front solutions

Calculate the value of both objectives 

(obj1 - traveled distance and obj2 -

number of vehicles) for each solution

Destroy each solution si by applying a 

removal operator

Reconstruct the solution si by applying a 

repair operator

Calculate the values of both objective 

functions, obj1(t) and obj2(t)

Is the repaired solution a non-

dominated solution?

Update the Pareto-optimal front

YES

Beyond the given computing 

time?

NO

NO

Output the Pareto-optimal front

YES

Retain the Pareto-optimal front



Chapter 3: The Vehicle Routing Problem with Time Windows 

49 

 

simultaneous increase in the second objective. More specifically, when comparing solutions 

X2 and X3 of a minimization problem, it is observed that the solution X2 has a lower value in 

objective 2 and a higher value in objective 1. Therefore, it cannot decide which solution is more 

profitable with no further information as it depends on the case. 

  

(a) (b) 

Figure 3.3 Pareto Optimal Front  

Both in the phase of construction and in the phase of the LNS algorithm, every obtained 

solution is checked for belonging either to the dominated or the non-dominated solutions as 

shown in Figure 3.3 (a). If a solution obtained from the algorithm belongs to the non-dominated 

solutions, then the Pareto optimal front is updated. More specifically, in each iteration of the 

MOLNS, the set of optimal solutions (X1, X2, X3, X4, X5), that belong in the initial Pareto 

optimal front are selected, as presented in Figure 3.2 (a). In case solution X3’ is obtained after 

implementing the destroy and repair operators of the proposed MOLNS algorithm, which 

improves the value of objective 2 compared to solution X3. Both values of objective 1 and 

objective 2 compared to solution X2, the Pareto optimal front must be updated as shown in 

Figure 3.3 (b). Therefore, every solution obtained from the proposed algorithm is compared to 

the non-dominated solutions to ensure optimal solutions are maintained and continuously 

updated. 

3.3.2 Time-Oriented Nearest Neighbor Algorithm 

Several heuristic algorithms have been developed for obtaining solutions for the VRP. In the 

present Chapter, the Time-oriented Nearest Neighbor (TONN) algorithm is selected for 

obtaining the initial solutions due to its simplicity and speed. The algorithm works by building 

routes that start from the depot (node 0), and consequently, the "closest" to the last visited node 

unrouted customer is added. In searching the "closest" customer, time window constraints and 

capacity constraints must be respected; otherwise, no customer can be added. A new route is 

started if no customer is found, unless no more customers are left to add, meaning that all routes 

have been constructed and the process is completed. Solomon (Solomon 1987) proposed this 

method in an attempt to solve the VRPTW optimally. 

O
b

je
ct

iv
e 

1

Objective 2

X1

X2

X3

X4

X5

Dominated Solutions

O
b

je
ct

iv
e 

1
Objective 2

X1

X2

X3

X4

X5

Dominated Solutions
X3’

Pareto Optimal Front
Non-dominated Solutions

(a) (b)

Pareto Optimal Front
Non-dominated Solutions

O
b

je
ct

iv
e 

1

Objective 2

X1

X2

X3

X4

X5

Dominated Solutions

O
b

je
ct

iv
e 

1
Objective 2

X1

X2

X3

X4

X5

Dominated Solutions
X3’

Pareto Optimal Front
Non-dominated Solutions

(a) (b)

Pareto Optimal Front
Non-dominated Solutions



Chapter 3: The Vehicle Routing Problem with Time Windows 

50 

 

The "closeness" of each customer is measured through metric 𝑐𝑖𝑗. This metric measures the 

direct distance between the two customers 𝑑𝑖𝑗, the time difference between the completion of 

service at i and the beginning of service at j, 𝑇𝑖𝑗 , and the urgency of delivery to customer j, 𝑢𝑖𝑗. 

𝑇𝑖𝑗 = (𝑎𝑗 + 𝑤𝑗
𝑘) − (𝑎𝑖 + 𝑤𝑖

𝑘 + 𝑠𝑖) 

𝑢𝑖𝑗 =  𝑙𝑗 − (𝑎𝑖 + 𝑤𝑖
𝑘 +  𝑠𝑖 + 𝑡𝑖𝑗) 

𝑐𝑖𝑗 =  𝛽1 ∙ 𝑑𝑖𝑗 + 𝛽2 ∙ 𝑇𝑖𝑗 + 𝛽3 ∙ 𝑢𝑖𝑗 , 𝛽1 + 𝛽2 +  𝛽3 = 1  

3.3.3 Multiobjective Large Neighborhood Search 

As described in Section 3.3.2, customers are added in each route, based on their "closeness" to 

the last added customer. However, time windows affect to a great extent the initial solution, 

which in many cases, deviates from the optimum. Therefore, after the initial solutions are 

constructed, the MOLNS algorithm that partially destroys and then repairs the solution is 

applied to minimize both the number of vehicles and the total distance traveled. The general 

framework of the LNS algorithm was designed by Ropke and Pisinger (Ropke and Pisinger 

2006). The destroy and repair moves are thoroughly analyzed in Sections 3.3.4.1 and Section 

3.3.4.2.  

3.3.3.1 Destroy Operators 

In this section, five different destroy operators are described for selecting the customers who 

will be removed from their routes. Most operators are adapted by Ropke and Pisinger (2006) 

and Demir et al. (2012), while a new one (Distant and Waiting-time destroy) is presented. From 

all destroy operators, s customers are selected and removed from their routes. 

3.3.3.1.1 Route Destroy 

The specific operator removes an entire route from the solution. In each iteration, the route is 

randomly selected and "destroyed" from the solution. In a later phase, and since all customers 

must be served, the customers of the "destroyed" route are reinserted according to the insertion 

operator. 

3.3.3.1.2 Random Customers Destroy 

In this operator, a specific number of customers (s) removed from the existing solution is 

initially determined. Consequently, an empty list of size s is created and filled with customers 

who are randomly selected. The random nature of this operator increases the diversity, as well 

as the searching space. As shown in Figure 3.3, three customers are randomly selected (s = 3) 

and removed from the route that each one belongs. 

3.3.3.1.3 Distant Customers Destroy 

In this operator, as with the case of random customers destroy, the number of customers (s) 

removed from the solution is determined. Consequently, for each customer k the metric 𝑐𝑘 =

 𝑑𝑖𝑘 + 𝑑𝑘𝑗  is calculated, where i is the previous delivered customer and j the next delivered 



Chapter 3: The Vehicle Routing Problem with Time Windows 

51 

 

customer, according to k, while d indicates the distance between two customers. Then, all 

customers are sorted according to the metric ck and select the s “worst” customers (highest 𝑐𝑘). 

3.3.3.1.4 Waiting-time Destroy 

For each customer to be served, the metric 𝑤𝑡 calculates the difference between the start of the 

time window and arrival time. More specifically, the metric 𝑤𝑡 for customer i, is calculated by 

𝑤𝑡𝑖 = max {0, 𝑒𝑖 − 𝑡𝑖}, where 𝑡𝑖 is the arrival time at customer i. Consequently, customers are 

sorted according to metric 𝑤𝑡𝑘 and s number of customers that have the highest waiting times 

(𝑤𝑡𝑖) are selected.  

3.3.3.1.5 Distant and Waiting-time Destroy 

This operator combines in a single metric both the distant customers (3.3.3.1.3) and the 

waiting-time (3.3.3.1.4) operators, by assigning weights to both metrics. Respectively to the 

previous operators, a specific number of customers (s), with the worst metric are selected. 

  

(a) (b) 

Figure 3.4 Destroy Operator  

Regardless of the destroy operator, the initial solution is presented as an I list containing all 

customers. The sequence of the elements of I determines the order of customer visitations. 

When a constraint is violated (capacity or time window), then a new route begins, as shown in 

Figure 3.4 (a). Also, after the destroy operator is applied, the customers that no longer belong 

to the route are saved in another list L, as shown in Figure 3.4 (b). 

3.3.3.2 Repair Operators 

After a destroy operator is applied, a repair operator must be implemented so that all customers 

are reinserted in the solution. In the VRPTW there is a necessary precondition to serve all 



Chapter 3: The Vehicle Routing Problem with Time Windows 

52 

 

customers’ needs. In the current Chapter, three repair operators are applied for improving the 

initial constructed solution and are analyzed.  

3.3.3.2.1 Closer Customer Repair 

This operator cooperates with all removal operators. The selected customers of list L, are 

reinserted in the routes and, more specifically, in the sequence of deliveries where the total 

distance traveled is minimized. The specific repair procedure is separated into two different 

operators. The first one searches for the minimum distance while the number of vehicles must 

remain the same as before the removal operator was applied. In addition, the second operator 

searches for the minimum distance regardless of the number of vehicles. 

3.3.3.2.2 Repair for Minimizing the Number of Vehicles 

The specific repair operator is combined only with the route removal operator to decrease the 

number of vehicles. If all customers of the selected route can be inserted in the rest of the 

routes, then the number of vehicles is reduced by one, as shown in Figure 3.5. Simultaneous ly, 

the algorithm seeks to find the best sequence and schedule of deliveries to manage the distance 

traveled. However, the fact that VRPTW is a multi-objective optimization problem does not 

guarantee us that both the number of vehicles and the total distance traveled are simultaneous ly 

minimized. Instead, decreasing the number of vehicles by reinserting “destroyed” customers in 

the best-fitted sequence of deliveries, may cause increased total distance traveled. Figure 3.5 

describes how the route removal operator is combined with the specific repair operator. More 

specifically, among route 1: {0 → i- → i → i+ → 0} route 2: {0 → n → m → 0} and route 3: 

{0 → j- → j → j+ → 0}, the second one (route 2) is randomly selected and “destroyed”. In the 

search for inserting customers n and m in the rest of the routes, route 1': {0 → i- → m → i → 

i+ → 0} and route 3': {0 → j- → n → j → j+ → 0} are formed. 

 

Figure 3.5 Route Destroy and Repair 

When implementing the destroy and repair operators, it is essential to ensure the diversity of 

searching and the global search capabilities. Therefore, after saving the removed customers in 

list L, as described in Section 3.3.1, the sequence of insertion must be considered.  Repeating 

the same sequence of customers insertion may lead to getting stuck in a local optimum. In the 

presented repair operators, a random order for inserting customers is produced, for increasing 

the search space of the algorithm. 

i -

i +

i j

j +

j –

nm

i -

i +

i j

j +

j –

nm

i -

i +

i j

j +

j –

nm

0 0 0

Route 1

Route 2

Route 3 Route 1 Route 3 Route 1’ Route 3’

Route

Removal

Route

Insertion



Chapter 3: The Vehicle Routing Problem with Time Windows 

53 

 

3.3.4 General Framework 

Initially, the Pareto optimal solutions constructed from the TONN algorithm, are utilized as an 

input to the MOLNS algorithm, described in Figure 3.6. In each iteration that the MOLNS 

algorithm is implemented, the destroy and repair operators are applied in each one of the Pareto 

optimal solutions. Consequently, for each solution, a new one - Xnew is obtained. If Xnew solution 

constitutes a Pareto optimal solution, as it belongs to the non-dominated solutions, then the 

Pareto optimal front is renewed; otherwise, no changes are made. 

 

Figure 3.6 The General Framework of the MOLNS 

3.4 Computational Study 

This section describes computational experiments carried out to evaluate the performance of 

the proposed algorithm. The algorithm was coded in Python and ran on a personal computer 

with the following specifications: Intel Core i7 - 8550U 1.8GHz with 16GB memory. The 

proposed algorithm was tested in Solomon's VRPTW benchmark instances with 100 

customers, available at Solomon (1987). In the specific dataset, C1 and C2 problems have 

geographically clustered customers. In R1 and R2, geographical data are randomly generated, 

while in problem sets RC1 and RC2, a mix of random and clustered structures are included. 

Problem sets R1, C1 and RC1 have a short scheduling horizon, narrow time windows, and low 

vehicle capacities, while sets R2, C2, and RC2 have a long scheduling horizon, wide time 

windows, and high vehicle capacities, defining the number of customers serviced by the same 

vehicle. 

Table 3.2 and Table 3.3 present a summary of the results obtained from the proposed MOLNS 

algorithm, as well as the best-published solutions in the literature. The column labeled BP gives 

1. Construct solutions with the Time-oriented Nearest Neighbor heuristic

2. Save Pareto optimal solutions in P

3. While stopping criteria not met do

4. For each Pareto optimal solution – Xp do

5. Apply Removal and Insertion operators in Xp

6. New solution is produced – Xnew

7. If Xnew is a Pareto optimal solution then

8. Add Xnew in Pareto optimal solutions (P)

9. Update the Pareto optimal front

10. Else

11. Pareto optimal solutions (P) do not change

12. End If

13. Next

14. End while



Chapter 3: The Vehicle Routing Problem with Time Windows 

54 

 

the best-published results, while column MOLNS, the results of the Large Neighborhood 

Search algorithm. Each solution is characterized by the number of vehicles (NV) needed and 

the total distance traveled (TD). The published work in which the optimum solution is proposed 

is presented in column "Reference", the computation time needed to obtain each solution is 

given in column “Time” in seconds, while the percentage deviation in the total distance traveled 

between the BP and the LNS is presented in column "Deviation". 

Each instance runs three times, while the computation time limit is set to be 15 minutes, which 

is a reasonable time for logistics companies to obtain their plan of deliveries. This statement is 

enhanced both by other studies on Solomon’s instances, as shown in Table 3.1, as well as by 

the computational study of chapter 6. More specifically, as Table 3.1 shows, most studies run 

the algorithm multiple times to obtain the optimal results, while the computation time ranges 

from half a second to an hour. Moreover, in chapter 6 multiple real-life instances are solved by 

another similar LNS algorithm, and even instances with up to 750 customers can be efficiently 

solved in 15 minutes. Consequently, the time limit of 15 minutes seems to be reasonable when 

compared to other studies as well as to the computational results of the current thesis. Finally, 

in most cases, the best-obtained results needed less time than the time limit to obtain the optimal 

solution. More specifically, the average time needed for obtaining each optimal solution is 

approximately 1 minute.  

Table 3.1 Average Computation Time, Computing Environment and Runs  

Approach 

Average computation time (sec)  

CPU (Language) 

R1 R2 RC1 RC2 #runs 

Ombuki et al. (2006) not found in the original paper 10 1.6 GHz (Matlab) 

Lim and Zhang 

(2007) 
1576.8 1 

Pentium IV 2.8 GHz 

(Java) 

Alvarenga et al. 

(2007) 
3600 3 

not found in the 

original paper 

Labadi et al. (2008) 151.8 210.9 152.3 199.6 1 3 GHz (Delphi) 

Nagata et al. (2010) 300 5 
Opteron 2.4 GHz 

(C++) 

Ghoseiri and 

Ghannadpour (2010) 
>500 >900 >500 >1300 10 1.6 GHz (Matlab) 

Garcia-Najera and 

Bullinaria (2011) 
not found in the original paper 30 2218 2.6 GHz nodes 

Chiang and Hsu 

(2014) 
12 23 10.5 19.1 10 

Intel i7-3770 3.4 

GHz (C++) 



Chapter 3: The Vehicle Routing Problem with Time Windows 

55 

 

Moreover, since the VRPTW is faced as multiobjective, in some instances, more than one 

solution was obtained. In order for the BP solution and the solution obtained from the MOLNS 

to be comparable, the number of vehicles must be the same. Therefore, the deviation is 

measured in the total distance traveled between the BP solution and the solution of the MOLNS. 

It can be easily observed that instances with geographically clustered customers (C1 and C2) 

have more efficient results than problems with random geographical data, as the mean 

deviation, in that case, is 0.30%. In randomly generated geographical data (R), the mean 

deviation is higher and reaches 3.37%, while in mixed geographical customers’ data (RC) is 

3.47%. Finally, the mean deviation for all instances is less than 2.85%, which can be considered 

very efficient since the optimal results have emerged from multiple researchers over time. In 

total, 32.47% of the comparable solutions have a deviation of less than 1%, most of them in C 

instances. Simultaneously, 98.70% of the results deviate less than 10% from the optimum. 

Finally, three new Pareto-optimal solutions are proposed in Solomon’s benchmark instances, 

in RC202, RC207, and R201. In RC202 problem, a decrease in the total distance traveled is 

accomplished, but at the expense of an increased number of vehicles. In R201 and RC202 

instances, the algorithm managed to improve the solutions by decreasing the total distance 

traveled, while the number of vehicles remains steady. The exact routes and the schedule of 

deliveries in each of the three new optimal solutions that are proposed in the current research 

are given in Appendix B. 

Additionally, when comparing results obtained from algorithms, it is crucial to consider the 

computation time needed. Chiang and Hsu (2014) manage to produce high quality solutions 

within a half-minute and thoroughly present data related to the computation time for other 

algorithms addressing this problem. Ghoseiri and Ghannadpour (2010) and Ombuki et al. 

(2006) that also consider the VRPTW as multiobjective, do not present the computation time 

needed, while the proposed algorithm manages to produce high-efficiency results in less than 

a minute (52 seconds on average). Of course, the CPU and the programming language are also 

important factors affecting the computation time needed. 

Table 3.2 Results of the MOLNS in Solomon Instances with Short Scheduling Horizon  

Problem 

Type 

MOLNS 

NV 

MOLNS 

TD 
BPNV BPTD 

Deviation 

(%) 

C101 10 828.94 10 827.3 0.20 

C102 10 828.94 10 827.3 0.20 

C103 10 828.94 10 826.3 0.32 

C104 10 828.94 10 822.9 0.73 

C105 10 828.94 10 827.3 0.20 

C106 10 828.94 10 827.3 0.20 

C107 10 828.94 10 827.3 0.20 

C108 10 828.94 10 827.3 0.20 

C109 10 828.94 10 827.3 0.20 



Chapter 3: The Vehicle Routing Problem with Time Windows 

56 

 

R101 19 1654.93 18 1607.7 - 

R102 18 1475.33 17 1434 - 

R103 14 1240.44 13 1175.67 - 

R104 10 1010.72 10 974.2 3.75 

R105 15 1389.85 15 1346.12 3.25 

R106 13 1269.14 13 1234.6 2.80 

R107 11 1102.72 11 1051.84 4.84 

R108 10 991.57 10 942.9 5.16 

R109 12 1177.76 12 1101.99 6.88 

R110 12 1129.60 12 1068 5.77 

R111 12 1108.70 12 1048.7 5.72 

R112 10 964.15 10 953.63 1.10 

RC101 15 1662.56 15 1619.8 2.64 

RC102 14 1486.35 14 1461.33 1.71 

RC103 12 1291.95 12 1196.12 8.01 

RC104 10 1162.53 10 1135.48 2.38 

RC105 
15 1604.53 15 1519.29 5.61 

16 1575.31 16 1518.6 3.73 

RC106 13 1400.09 13 1371.69 2.07 

RC107 12 1259.55 12 1212.83 3.85 

RC108 11 1205.13 11 1117.53 7.84 

 

Table 3.3 Results of the MOLNS in Solomon Instances with Long Scheduling Horizon  

Problem Type 
MOLNS 

NV 

MOLNS 

TD 
BPNV BPTD Deviation (%) 

C201 3 591.56 3 589.1 0.42 

C202 3 591.56 3 589.1 0.42 

C203 3 591.56 3 591.17 0.07 

C204 3 590.6 3 590.6 0.00 

C205 3 588.88 3 586.4 0.42 

C206 3 588.49 3 586 0.42 

C207 3 588.29 3 585.8 0.43 

C208 3 588.32 3 585.8 0.43 

R201 

4 1305.25 4 1252.37 4.22 

5 1208.55 5 1193.29 1.28 

6 1174.98 6 1171.2 0.32 

7 1156.73 7 1173.75 -1.45 

R202 
4 1093.67 4 1079.39 1.32 

5 1065.73 5 1041.1 2.37 



Chapter 3: The Vehicle Routing Problem with Time Windows 

57 

 

R203 
4 915.43 4 901.2 1.58 

5 901.72 5 890.50 1.26 

R204 
3 775.99 3 749.42 3.55 

4 750.32 4 743.23 0.95 

R205 

3 1075.1 3 994.43 8.11 

4 975.21 4 959.74 1.61 

5 964.23 5 954.1 1.06 

R206 

3 979.21 3 906.14 8.06 

4 909.83 4 889.39 2.30 

5 907.35 5 879.89 3.12 

R207 3 851.89 3 812.76 4.81 

R208 
2 754.99 2 725.75 4.03 

3 731.84 3 706.86 3.53 

R209 4 898.23 4 864.15 3.94 

R210 4 941.58 4 924.79 1.82 

R211 
3 838.14 3 767.82 9.16 

4 782.75 4 755.82 3.56 

RC201 

4 1497.89 4 1406.91 6.47 

5 1329.59 5 1279.65 3.90 

6 1296.83 - - - 

7 1284.48 7 1273.51 0.86 

8 1281.81 8 1272.28 0.75 

RC202 

4 1199.53 4 1162.54 3.18 

5 1140.2 5 1118.66 1.93 

7 1109.21 - - - 

8 1104.94 8 1099.54 0.49 

RC203 
4 985.54 4 945.08 1.42 

5 938.04 5 926.82 1.21 

RC204 3 805.46 3 798.41 0.88 

RC205 

5 1340.38 5 1236.78 8.38 

6 1223.50 6 1187.98 2.99 

7 1162.43 7 1161.81 0.05 

RC206 

3 1316.42 3 1146.32 14.84 

4 1121.83 4 1081.83 3.70 

5 1097.07 5 1068.77 2.65 

RC207 
4 1031.62 4 1001.85 2.97 

5 970.78 5 982.58 -1.20 

RC208 
3 859.13 3 828.14 3.74 

4 810.99 4 783.035 3.57 



Chapter 3: The Vehicle Routing Problem with Time Windows 

58 

 

3.5 Concluding Remarks 

The results obtained from the MOLNS algorithm were compared to the best-published 

solutions in Solomon’s dataset, providing us significant insights about this method. Based on 

the conducted research, no algorithm can obtain all Pareto optimal solutions in each instance 

in Solomon’s dataset as it becomes clear. Instead, the results have been conjunctly obtained 

from multiple algorithms since the VRPTW firstly appeared. The results of the proposed 

MOLNS algorithm are near-optimal, with only minor deviations from the optimal, and even 

include three new non-dominated solutions. The computational experiments indicate that the 

results are efficient and are obtained in a very realistic time. As both efficiency and speed are 

critical factors when implementing an algorithm in software solutions, the proposed MOLNS 

algorithm can be examined for implementation.  

Additionally, the fact that the algorithm is a multiobjective one gives the opportunity to select 

the solution that best fits the needs. That is significant in cases that the best trade-off between 

two objectives needs to be found. The algorithm’s benefits seem to be significant and that is 

why each algorithm constitutes a library that includes functions for addressing the problem. 

The algorithm libraries are the core of the system and are stored into the server of the software 

development company, so that it can be accessed by the presented in Chapter 6 system through 

the appropriate request. In a later phase, that potential purchasers will define if two objectives 

can be useful, the system could easily offer users the ability to select which algorithm to be 

applied. 

Furthermore, in order to define the efficiency of the algorithm in terms of running time another 

multiobjective metaheuristic algorithm that can solve the VRPTW is developed. The algorithm 

is an Evolutionary Algorithm (EA) that handles simultaneously time windows, as well as 

simultaneous pickups and deliveries. The EA is presented below in Chapter 4. 

References 

Ait Haddadene S, Labadie N, Prodhon C (2019) Bicriteria Vehicle Routing Problem with 

Preferences and Timing Constraints in Home Health Care Services. Algorithms 12:152. 

https://doi.org/doi.org/10.3390/a12080152 

Alvarenga GB, Mateus GR, de Tomi G (2007) A genetic and set partitioning two-phase 

approach for the vehicle routing problem with time windows. Comput Oper Res 34:1561–

1584. https://doi.org/10.1016/j.cor.2005.07.025 

Arnold F, Sörensen K (2019) What makes a VRP solution good? The generation of problem-

specific knowledge for heuristics. Comput Oper Res 106:280–288. 

https://doi.org/10.1016/j.cor.2018.02.007 



Chapter 3: The Vehicle Routing Problem with Time Windows 

59 

 

Azi N, Gendreau M, Potvin J-Y (2010) An exact algorithm for a vehicle routing problem with 

time windows and multiple use of vehicles. Eur J Oper Res 202:756–763. 

https://doi.org/https://doi.org/10.1016/j.ejor.2009.06.034 

Baldacci R, Mingozzi A, Roberti R (2012) Recent exact algorithms for solving the vehicle 

routing problem under capacity and time window constraints. Eur J Oper Res 218:1–6. 

https://doi.org/10.1016/j.ejor.2011.07.037 

Baños R, Ortega J, Gil C, et al (2013) A hybrid meta-heuristic for multi-objective Vehicle 

Routing Problems with Time Windows. Comput Ind Eng 65:286–296. 

https://doi.org/10.1016/j.cie.2013.01.007 

Chiang TC, Hsu WH (2014) A knowledge-based evolutionary algorithm for the multiobjective 

vehicle routing problem with time windows. Comput Oper Res 45:25–37. 

https://doi.org/10.1016/j.cor.2013.11.014 

Demir E, Bektaş T, Laporte G (2012) An adaptive large neighborhood search heuristic for the 

Pollution-Routing Problem. Eur J Oper Res 223:346–359. 

https://doi.org/https://doi.org/10.1016/j.ejor.2012.06.044 

Ehrgott M (2005) Multicriteria optimization: Second edition 

El-Sherbeny NA (2010) Vehicle routing with time windows: An overview of exact, heuristic 

and metaheuristic methods. J King Saud Univ 22:123–131. 

https://doi.org/10.1016/j.jksus.2010.03.002 

Garcia-Najera A, Bullinaria JA (2011) An improved multi-objective evolutionary algorithm 

for the vehicle routing problem with time windows. Comput Oper Res 38:287–300. 

https://doi.org/10.1016/j.cor.2010.05.004 

Ghoseiri K, Ghannadpour SF (2010) Multi-objective vehicle routing problem with time 

windows using goal programming and genetic algorithm. Appl Soft Comput 10:1096–

1107. https://doi.org/10.1016/j.asoc.2010.04.001 

Hashimoto H, Ibaraki T, Imahori S, Yagiura M (2006) The vehicle routing problem with 

flexible time windows and traveling times. Discret Appl Math 154:2271–2290. 

https://doi.org/10.1016/j.dam.2006.04.009 

Iqbal S, Rahman MS (2012) Vehicle routing problems with soft time windows. In: 2012 7th 

International Conference on Electrical and Computer Engineering. pp 634–638 

Juárez Pérez M., Pérez Loaiza RE, Quintero Flores PM, et al (2019) A Heuristic Algorithm for 

the Routing and Scheduling Problem with Time Windows : A Case Study of the 

Automotive Industry in Mexico. Algorithms 12:111. https://doi.org/10.3390/a12050111 



Chapter 3: The Vehicle Routing Problem with Time Windows 

60 

 

Kalayci CB, Kaya C (2016) An ant colony system empowered variable neighborhood search 

algorithm for the vehicle routing problem with simultaneous pickup and delivery. Expert 

Syst Appl 66:163–175. https://doi.org/https://doi.org/10.1016/j.eswa.2016.09.017 

Kallehauge B (2008) Formulations and exact algorithms for the vehicle routing problem with 

time windows. Comput Oper Res 35:2307–2330. 

https://doi.org/https://doi.org/10.1016/j.cor.2006.11.006 

Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms : 

A tutorial. Reliab Eng Syst Saf 91:992–1007. https://doi.org/10.1016/j.ress.2005.11.018 

Koskosidis YA, Powell WB, Solomon MM (1992) An optimization-based heuristic for vehicle 

routing and scheduling with soft time window constraints. Transp Sci 26:69–85. 

https://doi.org/10.1287/trsc.26.2.69 

Labadi N, Prins C, Reghioui M (2008) A memetic algorithm for the vehicle routing problem 

with time windows. RAIRO-Operations Res 42:415–431. 

https://doi.org/10.1051/ro:2008021 

Lim A, Zhang X (2007) A Two-Stage Heuristic with Ejection Pools and Generalized Ejection 

Chains for the Vehicle Routing Problem with Time Windows. INFORMS J Comput 

19:443–457. https://doi.org/10.1287/ijoc.1060.0186 

Nagata Y, Bräysy O, Dullaert W (2010) A penalty-based edge assembly memetic algorithm 

for the vehicle routing problem with time windows. Comput Oper Res 37:724–737. 

https://doi.org/https://doi.org/10.1016/j.cor.2009.06.022 

Ombuki B, Ross BJ, Hanshar F (2006) Multi-objective genetic algorithms for vehicle routing 

problem with time windows. Appl Intell 24:17–30. https://doi.org/10.1007/s10489-006-

6926-z 

Pisinger D, Ropke S (2007) A general heuristic for vehicle routing problems. Comput Oper 

Res 34:2403–2435. https://doi.org/10.1016/j.cor.2005.09.012 

Qureshi AG, Taniguchi E, Yamada T (2009) An exact solution approach for vehicle routing 

and scheduling problems with soft time windows. Transp Res Part E Logist Transp Rev 

45:960–977. https://doi.org/10.1016/j.tre.2009.04.007 

Ropke S, Pisinger D (2006) An Adaptive Large Neighborhood Search Heuristic for the Pickup 

and Delivery Problem with Time Windows. Transp Sci 40:455–472. 

https://doi.org/10.1287/trsc.1050.0135 

Solomon MM (1987) Algorithms for the Vehicle Routing and Scheduling Problems with Time 

Window Constraints. Oper Res 35:254–265. https://doi.org/10.1287/opre.35.2.254 

Taillard E, Badeau P, Gendreau M, et al (1997) A Tabu Search Heuristic for the Vehicle 

Routing Problem with Soft Time Windows. Transp Sci 31:170–186. 

https://doi.org/10.1287/trsc.31.2.170 



Chapter 3: The Vehicle Routing Problem with Time Windows 

61 

 

Tan KC, Chew YH, Lee LH (2006) A Hybrid Multiobjective Evolutionary Algorithm for 

Solving Vehicle Routing Problem. Comput Optim Appl 34:115–151. 

https://doi.org/10.1007/s10589-005-3070-3 

Taş D, Jabali O, Van Woensel T (2014) A vehicle routing problem with flexible time windows. 

Comput Oper Res 52:39–54. https://doi.org/10.1016/j.cor.2014.07.005 

Wu L, He Z, Chen Y, et al (2019) Brainstorming-Based Ant Colony Optimization for Vehicle 

Routing With Soft Time Windows. IEEE Access 7:19643–19652. 

https://doi.org/10.1109/ACCESS.2019.2894681 

Yun Y, Nakayama H, Yoon M (2016) Generation of Pareto optimal solutions using generalized 

DEA and PSO. J Glob Optim 64:49–61. https://doi.org/10.1007/s10898-015-0314-3 



 

 

Chapter 4: The Vehicle Routing Problem with Simultaneous 
Pickups and Deliveries and Time Windows 

4.1 Introduction 

Supply chain networks include multiple operations such as distributing goods to retailers and 

consumers, warehousing products, and supplying raw materials to manufacturers. 

Additionally, they also include collecting products from end customers to be recycled, 

remanufactured, or repaired (Govindan et al. 2015). Given the range of supply chain operations, 

the routing of vehicles and the scheduling of deliveries constitute a small but essential part. 

Therefore, executing efficient routing of vehicles and scheduling of deliveries ensures that the 

transportation costs will be reduced and the provided services will be improved. 

Besides the VRPTW, which is the most commonly encountered VRP variant after the CVRP, 

researchers also focus on the VRP with Simultaneous Pickups and Deliveries (VRPSPD). In 

VRPSPD, the main variation from the initial problem is that each customer can receive and 

return goods (Nagy and Salhi 2005). This variation creates an extra constraint as at any stage 

of the route, where goods are both delivered and collected, the vehicle's capacity cannot be 

violated. By combining these two variants, this complex problem comes closer to real-life 

distribution cases that most logistics companies face daily.  

Moreover, the conversion of real distribution cases to variants of the VRP would have no value 

if not making the most of advances in technology and computer science. Both sectors have 

allowed researchers to develop more efficient algorithms to address the variants of the VRP. 

As in the case of solely addressing time windows, so in VRPSPD, exact algorithms are not 

developed that often. Their time complexity and the limited number of customers that exact 

algorithms can handle make the specific category less popular among others (Giaglis et al. 

2004) for addressing the VRPSPD. Only a few studies have proposed exact algorithms for this 

variant (Subramanian et al. 2011, 2013), most of which with up to 100 customer orders. 

As for heuristic algorithms that offer good quality solutions within a short time-space while 

also having the ability to solve problems of any size are developed more often than exact 

algorithms. Some of the most known and studied heuristics that applied for multiple variants 

of the VRP, including the VRPSPD, are (i) the Time-Oriented Nearest Neighbor (ΤΟΝΝ) 

(Solomon 1987), (ii) the Sweep (Gillett and Miller 1974) and (iii) the Savings (Clarke and 

Wright 1964) algorithm. Despite being more than 30 years old, these algorithms remain the 

basis of other more sophisticated and improved algorithms and are still used in commercial 

routing software (Gayialis and Tatsiopoulos 2004). 

However, the center of attention has shifted to metaheuristic algorithms as they combine 

advantages from both exact and heuristic algorithms. Metaheuristics are separated into two 

main categories, population search and local search methods (Labadie et al. 2016). Population-

based approaches maintain reasonable solutions in memory, combined and cooperate through 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

63 

 

a learning procedure for generating new solutions. On the other hand, local search approaches 

aim at exploring the solution space by moving the current solution to another promising one in 

the neighborhood. Multiple algorithms of both categories have been developed for addressing 

both the VRPTW and the VRPSPD efficiently. According to the current research, among the 

most frequently developed algorithm for these variants of the VRP are evolutionary and genetic 

algorithms (Berger et al. 2003), particle swarm optimization (Ai and Kachitvichyanukul 2009; 

Gong et al. 2012), ant colony optimization (Gambardella et al. 1999), simulated annealing 

(Czech and Czarnas 2002; Woch and Łebkowski 2009), large neighborhood search 

(Konstantakopoulos et al. 2020b)  and tabu search (Chiang and Russell 1997; 

Yousefikhoshbakht et al. 2014) 

In most cases, the algorithms that address the VRPTW and the VRPSPD produce biased 

solutions either to the number of vehicles or the total distance traveled, that are the two 

objectives. However, in recent years, some researchers consider the VRP as multiobjective 

which means that more than one solution can be considered optimal according to the values of 

the two objective functions. More specifically, Ombuki et al. (2006) and Tan et al. (2006b) 

were the first to propose a multiobjective genetic and evolutionary algorithm, respectively, for 

the VRPTW, offering new non-dominated solutions. Ghoseiri and Ghannadpour (2010) used 

goal programming for the formulation and a genetic algorithm for solving the multiobjective 

formulation of the VRPTW, while Baños et al. (2013) proposed a hybrid algorithm that 

combined evolutionary strategies with simulated annealing. Both Garcia-Najera and Bullinaria 

(2011) and Chiang and Hsu (2014) proposed MOEA’s which updated multiple non-dominated 

solutions in Solomon’s instances. Instead, researchers have not studied the multiobjective 

nature of the VRPSPD to the same extent. Gong et al. (2018) proposed an efficient bee 

evolutionary algorithm for this problem and was verified by simulating the reverse logistics of 

engineering machinery remanufacturing company. A characteristic feature of all these 

algorithms is that they maintain the Pareto-optimality concept, which means that a set of 

optimal solutions may result in each case. The solutions belonging to this set are called non-

dominated solutions, as no solution can be considered better than the others without further 

information, while solutions that do not belong in that set are known as dominated solutions. 

In the current Chapter, a MOEA that uses the non-dominated sorting procedure proposed by 

Deb et al. (2002), for solving the vehicle routing problem with simultaneous pickups and 

deliveries and with time windows (VRPSPDTW), while both the number of vehicles and the 

total distance traveled must be minimized, is proposed. The initial population of solutions 

utilized by the MOEA are produced by an improved variation of the TONN heuristic algorithm. 

Additionally, the proposed MOEA incorporates a new crossover operator and the swap node 

operator (mutation). The MOEA is tested both in Solomon’s benchmark instances for the 

VRPTW and Salhi and Nagy’s for the VRPSPD since there is no dataset in the literature to 

combine both problems. The computational results indicate that the algorithm is very efficient, 

offering competitive results compared with all the best-published of literature. However, since 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

64 

 

most studies do not focus on the multiobjective nature of the VRPSPDTW, neither do to the 

multiple optimal solutions (non-dominated solutions) that have been proposed in each 

benchmark instance over the years. This results in not evaluating the efficiency of algorithms 

correctly since, in many cases, the obtained solutions are not compared with all best-published 

solutions in each instance. Therefore, the contribution of this Chapter is not limited to 

addressing the VRPSPDTW as multiobjective in the variation of the TONN algorithm and in 

the crossover operator that is integrated into the algorithm. The presented research extends to 

the complete presentation of all non-dominated solutions in Solomon’s and Salhi and Nagy’s 

datasets.  

The algorithm also integrates and addresses the need of vehicles to refuel their tank or recharge 

their batteries. This attribute is rarely addressed is real-life cases as petrol and diesel vehicles 

have high autonomy, while the time needed for refueling is minimum. The driving range and 

the refueling time have great impact on electric vehicles that have limited driving range and 

increased refueling times. In most mathematical models the driving range is considered 

unlimited. However, over the years electric vehicles are used more often, making recharging a 

necessary procedure that needs to be considered during distribution. Therefore, the 

mathematical formulation has been created so that to consider the autonomy of each vehicle 

type. Finally, the algorithm is applied in real-life data that are adapted in the needs and 

requirements of the study to estimate the environmental and economic impact for each vehicle 

type (petrol, diesel, electric). 

The next sections of the Chapter include the formulation of the problem, the presentation of 

the proposed algorithm, its validation results and, finally, the conclusions of the research. More 

specifically, the mathematical formulation of the VRPSPDTW is presented in Section 4.2. 

Section 4.3 analyzes the structure of the proposed algorithm, the improved variation of the 

TONN algorithm, the new proposed crossover operator, and the mutation operator. The 

computational results are presented and compared with the best-published solutions in 

benchmark instances in Section 4.4. In Section 4.5 the economic and environmental benefits 

by the use of petrol, diesel and electric vehicles is discussed. Finally, the conclusions are 

discussed in Section 4.6. 

4.2 Problem Description and Mathematical Formulation 

The VRPSPDTW is a variant of VRP that combines time windows and simultaneous pickups 

and deliveries set by customers. More specifically, VRPSPDTW is defined by a set of identical 

in terms of capacity (𝑄) vehicles denoted by 𝐾 and by a direct network 𝐺 = {𝐹 ∪ 𝑁, 𝐴}, where 

vertex 𝑁 = {0, 1, … 𝑛} is the set of customers, vertex  𝐹 = {𝑛 + 1, 𝑛 + 2, … 𝑛 + 𝑠} is the set of 

charging and gas stations (CGS), and 𝐴 = (𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝐹 ∪ 𝑁 denotes the set of arcs. 

Node 0 represents the central depot, while 𝑁∗ = 𝑁 {0}⁄  represents the customers. Every arc 

(𝑖, 𝑗), which is a path from node 𝑖 to node 𝑗, is characterized by a distance which is indicated 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

65 

 

as 𝑑𝑖𝑗 and by a travel time 𝑡𝑖𝑗. Each client  𝑖 ∈ 𝑁 is characterized by a delivery quantity 𝑞𝑖, a 

pickup quantity  𝑟𝑖, a service time 𝑠𝑖 for unloading and a time window (𝑒𝑖, 𝑙𝑖), where  𝑒𝑖  is the 

opening and 𝑙𝑖 the closing time. The depot and the CGSs are also characterized by a service 

time 𝑠𝑖 and a time window (𝑒𝑖 , 𝑙𝑖) that corresponds to the working hours. The start of service 

of vehicle 𝑘 at node 𝑗, is denoted by 𝑎𝑗
𝑘  and depends on the time of arrival as vehicles arriving 

before the beginning of the time window must wait until service is possible 𝑒𝑖 . If the vehicle 

arrives between 𝑒𝑖  and 𝑙𝑖, the service starts immediately, while no vehicle may arrive after 𝑙𝑖. 

Additionally, each vehicle k has a specific driving range 𝑑𝑟𝑘  and a distance consumption rate 

𝑓𝑘. The decision variable 𝑥𝑖𝑗
𝑘  is equal to 1 if vehicle k executes the route from node 𝑖 to node 

𝑗. Otherwise 𝑥𝑖𝑗
𝑘  is equal to 0. The second decision variable, 𝑦𝑖

𝑘 indicates the quantity of items 

on board of vehicle 𝑘 when departing from node 𝑖. The third decision variable is 𝑔𝑖
𝑘 , which 

indicates the remaining charge or gas level when arriving at customer i, according to the vehicle 

type. The objective of the VRPSPDTW is to serve all customers in  𝑁∗, while minimizing both 

the number of vehicles and the total distance traveled. Additionally, all the essential variables 

are gathered and presented below before the mathematical model of the VRPSPDTW. 

 

𝑑𝑖𝑗 Distance between node i and node j 

𝑡𝑖𝑗 Transit time between node i and node j 

𝑞𝑖 Delivery demand of node i 

𝑟𝑖 Pickup demand from node i 

𝑒𝑖  Node’s i open time 

𝑙𝑖 Node’s i close time 

𝑠𝑖 Service time at node i 

𝑦𝑖𝑗
𝑘  Quantity of items on board of vehicle 𝑘 when departing from node 𝑖 

𝑑𝑟𝑘  Driving range of vehicle k 

𝑎𝑖
𝑘  Start of service of vehicle 𝑘 at customer 𝑗 

𝑔𝑖
𝑘 Remaining gas or power of vehicle k when departing from node i 

𝑓𝑘 Distance consumption rate of vehicle k 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1: ∑ ∑ 𝑥0𝑗
𝑘

𝑗∈𝛮∗𝑘∈𝛫

 
 (4.1) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 2: ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝛫

 
(4.2) 

∑ 𝑞𝑖

𝑖∈𝛮

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝛮

≤ 𝑄, ∀𝑘 ∈ 𝛫 
(4.3) 

∑ 𝑟𝑖

𝑖∈𝛮

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁

≤ 𝑄, ∀𝑘 ∈ 𝛫  
(4.4) 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

66 

 

∑ 𝑥𝑖𝑗
𝑘 (𝑦𝑖

𝑘 + 𝑟𝑗 − 𝑞𝑗)

(𝑖,𝑗)∈𝐴

≤ 𝑄, ∀𝑘 ∈ 𝛫 
(4.5) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝛮𝑘∈𝛫

= 1, ∀𝑖 ∈ 𝑁 
(4.6) 

∑ 𝑥0𝑗
𝑘

𝑗∈𝛮∗

= 1, ∀𝑘 ∈ 𝛫  
(4.7) 

∑ 𝑥𝑖𝑙
𝑘

𝑖∈𝛮

− ∑ 𝑥𝑙𝑗
𝑘

𝑗∈𝛮

= 0, ∀𝑙 ∈ 𝛮∗ , ∀𝑘 ∈ 𝛫  
(4.8) 

∑ 𝑥𝑗0
𝑘

𝑗∈𝛮∗

= 1, ∀𝑘 ∈ 𝛫 
(4.9) 

𝑎𝑖
𝑘 + 𝑠𝑖 + ∑ 𝑥𝑖𝑗

𝑘 𝑡𝑖𝑗

𝑗∈𝛮

≤ 𝑙𝑗 , ∀𝑖 ∈ 𝛮, ∀𝑘 ∈ 𝛫 
(4.10) 

𝑎𝑗
𝑘 = 𝑚𝑎𝑥 {∑ 𝑥𝑖𝑗

𝑘 (𝑎𝑖
𝑘 + 𝑠𝑖 + 𝑡𝑖𝑗), 𝑒𝑗

𝑗∈𝑁

} , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝛫 

(4.11) 

0 ≤ 𝑔𝑗
𝑘 ≤ 𝑑𝑟𝑘 , ∀𝑗 ∈ 𝐴, ∀𝑘 ∈ 𝛫 (4.12) 

𝑔𝑖
𝑘 − 𝑓𝑘𝑑𝑖𝑗𝑥𝑖𝑗

𝑘 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝛫 (4.13) 

𝑥𝑖𝑗
𝑘 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝛫 (4.14) 

𝑦𝑖
𝑘 ≥ 0, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝛫 (4.15) 

In the present Chapter, the VRPTW is encountered as a multiobjective problem and the two 

objectives, needed to be minimized, are the number of vehicles and the total distance traveled 

and are described by function (4.1) and (4.2), respectively. Constraints (4.3) and (4.4) state that 

the total quantity of products delivered and collected in total cannot exceed the capacity of the 

vehicle, while constraint (4.5) states that, at any stage of the distribution process, the total 

quantity of products in the vehicles cannot exceed its capacity. Equation (4.6) states that each 

customer must be served exactly once and by one vehicle since 𝑥𝑖𝑗
𝑘  can obtain only 1, or 0 as 

values. The set of constraints (4.7), (4.8) and (4.9) make sure that each vehicle starts from the 

depot and visits and serves the customers that belong in the route before it finally returns to the 

depot. Constraint (4.10) indicates that for a trip from node 𝑖 to node 𝑗, no vehicle may arrive at 

customer 𝑗 after the end of the time window, 𝑙𝑗 , while constraint (4.11) that the earliest time for 

starting serving customer 𝑗 is related to the time of arrival, depending on whether the time of 

arrival is before or after the start of the time window 𝑒𝑖 . Constraints (4.12) and (4.13) ensure 

that fuel/battery feasibility of each vehicle. An example of the VRPSPD is illustrated in Figure 

4.1. It is clear that the quantity of goods on board cannot exceed the vehicle's capacity at any 

stage of the distribution (in every customer). 

 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

67 

 

 

Figure 4.1 Illustration of the VRPSPD 

4.3 Solution Method – Evolutionary Algorithm 

In order to address the VRPSPDTW that is presented above, an efficient multiobjective 

evolutionary algorithm was developed. More specifically, Section 4.3.1 discusses the 

importance of multiobjective optimization and the Pareto-optimality concept. Section 4.3.2 

presents the improved version of the TONN algorithm used to create the initial population of 

solutions. Section 4.3.3 describes the structure of the chromosome applied in the MOEA. In 

Section 4.3.4, the methodological procedure of the MOEA, along with the pseudocode, are 

thoroughly described. Finally, the new proposed crossover operator and the mutation operator 

are described in Section 4.3.5. The steps that are mentioned above are given in Figure 4.2. 

1 2

3

d1 r1 d2 r2

d3 r3

4
d4 r4



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

68 

 

 

Figure 4.2 Steps of the MOEA Algorithm 

4.3.1 Multiobjective Optimization 

A set of optimal solutions can be obtained in multiobjective optimization problems, instead of 

a single solution. The solutions belonging to this set are non-dominated with respect to each 

other. The main characteristic of the non-dominated solutions is that while moving from one 

solution to another, there is always a certain amount of sacrifice in one objective to achieve a 

certain amount of gain in another objective, as shown in Figure 4.3. More specifically, no 

solution between the non-dominated solutions 𝑋1and 𝑋2 can be considered better since the 

mathematical relation 𝐹1(𝑋1) > 𝐹1(𝑋2) and 𝐹2(𝑋1) < 𝐹2(𝑋2)  is valid. This means that by 

moving from solution 𝑋1 to 𝑋2, a decrease in 𝐹1 objective with a simultaneous increase in 𝐹2 

objective is observed. Therefore, without further information, no solution can be considered 

better than the other and dominate. The set of all the non-dominated solutions is called Pareto-

optimal front as shown in Figure 4.3 

Creating initial population Rt using the 

TONN Algorithm

Merge the initial population and the 

offsprings obtained from the crossover 

and mutation operators

Evaluate and rank the initial population Rt

according to the non-dominance concept

Sort the merged solutions and fill each 

front according to the non-dominance 

concept

Setting of the algorithm’s parameters

Stopping criteria met?

Perform crossover and mutation operators 

to selected solutions of the population

NO

YES

Output the Pareto-

optimal front

Select the first solutions of the sorted 

population as new main population



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

69 

 

 

Figure 4.3 Dominated, Non-dominated, and Pareto-optimal Front  

In the case of the VRP, the different obtained solutions are translated into different plans of 

routes and deliveries. These different plans serve the interests of multiple stakeholders that 

choose the most profitable one. The choice is based on further information and on the nature 

of each company. For example, different plans may be selected when the fleet of vehicles is 

company-owned and when the distribution of goods is assigned to third party companies. 

Therefore, it is crucial to consider the VRPSPDTW as multiobjective, where the two objectives 

are the number of vehicles, and the total distance traveled to cover the needs of multip le 

stakeholders. Through this approach and in search of a cost-effective plan, more than one 

solution may result. Therefore, it is at the discretion of the decision-maker to select the most 

profitable plan. 

4.3.2 Construction Method 

The initial population of solutions contributes significantly to the efficiency of the proposed 

MOEA, where it is used as an input. Therefore, an efficient algorithm, in terms of time and 

solution’s quality, is needed. The fact that the TONN construction algorithm meets these 

requirements is the main reason it is selected for the construction procedure. Solomon (1987) 

first proposed the TONN algorithm and belongs in the sequential methods that construct one 

route at a time. More specifically, every route starts from the depot (node 0) and is built by 

adding the "closest" customer that has not been included in any other route to the last visited 

node. If no other customer can be added to the route, a new route starts due to capacity or time 

window constraints. The routes construction procedure ends when no more customers are left 

to add.  

The fact that the TONN algorithm was first proposed for the VRPTW, which is only one of the 

variants considered in the current Chapter, leads to adaptations in the closeness function to fit 

in the VRPSPDTW. The closeness is now given by the metric 𝑐𝑖𝑗 =  𝑤1𝑑𝑖𝑗 + 𝑤2 𝑣𝑖𝑗 +  𝑤3𝑢𝑖𝑗 , 

which involves the distance 𝑑𝑖𝑗 between customers 𝑖 and 𝑗, the capacity left to the vehicle 𝑘 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

70 

 

after serving customer 𝑗, 𝑣𝑖𝑗 = 𝑄 − 𝑦𝑖
𝑘 − 𝑞𝑗 and the urgency of delivery to customer 𝑗, 𝑢𝑖𝑗 =

 𝑙𝑗 − (𝑎𝑖 +  𝑠𝑖 + 𝑡𝑖𝑗). In this case, customer 𝑖 is the previously served customer, while 𝑗 the 

one for whom the metric 𝑐𝑖𝑗 is minimized.  

The second variation in the TONN is based on the fact that time, distance, and capacity are not 

on the same scale, affecting the constructed solutions. Therefore, a min-max normalization 

procedure [30], is applied in the dataset (𝑡𝑖𝑗, 𝑑𝑖𝑗 , 𝑒𝑖 , 𝑙𝑖, 𝑠𝑖, 𝑞𝑖). This normalization technique 

provides linear transformation and fits data in a pre-defined boundary, which is [0, 1]. The 

formula used for the normalization procedure is: 

𝑋′ = [(𝑋0 − 𝑋𝑚𝑖𝑛) (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)⁄ ](𝐷 − 𝐶) + 𝐶   

with 𝑋′  being the new value for variable X, [C, D] the pre-defined boundary, 𝑋0 the current 

value for variable X, and 𝑋𝑚𝑖𝑛 minimum and 𝑋𝑚𝑎𝑥 the maximum value in dataset X.  

This pre-processing data procedure improves the accuracy and achieves the best performance 

in the tested dataset. That is why, in the case of  𝑐𝑖𝑗 metric, in which the weights 𝑤1, 𝑤2 and 

𝑤3 are assigned to 𝑑𝑖𝑗, 𝑣𝑖𝑗  and 𝑢𝑖𝑗 respectively and sum up to 1, the normalization of data is 

essential and can offer improved results. Therefore, the dataset used in the construction 

algorithm involves normalized data. 

4.3.3 Chromosome Structure 

The chromosome structure significantly affects the algorithm in terms of efficiency and time 

complexity since it is involved in the crossover and mutation operators. Therefore, similar to 

most studies that propose evolutionary algorithms for the VRP, it was decided to represent the 

chromosome as an array with length equal to the total number of customers. Each object of the 

chromosome is a gene and is represented by an integer which refers to the customer’s node 

(id). The sequence of the genes determines the order of customers’ visitation. When a sequence 

cannot be continued due to the violation of capacity or time window constraints, a new route 

begins. An example of a chromosome with 9 customers is presented in Figure 4.4 and the order 

of visitations in each route.  

 

Figure 4.4 Chromosome Structure 

However, in the case of vehicles, that have limited driving range, the algorithm also considers 

the need either of recharging before the battery is discharged (electric vehicles), either of 

refueling the tank (conventional vehicles). Therefore, between two consecutive genes, a 

charging or a gas station (CGS) may intervene, but simultaneously the station’s ID is not 

Route 2: 0 – 4 – 6 – 0 

Route 1: 0 – 1 – 3 – 5 – 7 – 0

Route 3: 0 – 8 – 9 – 2 - 0 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

71 

 

contained in the chromosome. Additionally, both the time and the distance required for the 

vehicle to reach the CGS are taken into account. The possibility of a visit to a station (CGS) is 

greater in electric vehicles due to their limited driving range. 

4.3.4 Proposed Evolutionary Algorithm 

After the TONN algorithm generates the initial population (𝑅0) of size 𝑁, the MOEA is applied 

for evolving solutions and obtain the Pareto-optimal front. More specifically, in each 

generation t, taking into account the parents’ population 𝑅𝑡 set, the algorithm implements the 

crossover operator in all N parents and generates N offsprings saved in 𝑄𝑡 (offsprings’ 

population). The proposed crossover operator is thoroughly described in Section 4.3.5. 

Consequently, the chromosomes belonging to the union set 𝑅𝑡 ∪ 𝑄𝑡 (entire population) are 

sorted according to the non-dominated sorting and create Pareto fronts (sets) 𝐹1, 𝐹2, … 𝐹𝐾. This 

procedure is used for sorting the solutions in sets (𝐹1, 𝐹2, … 𝐹𝐾) according to the Pareto 

dominance principle. This means that each set 𝐹𝑖 contains solutions, with 𝐹1 being the best non-

dominated set that is represented as Pareto-optimal front in Figure 4.4. Accordingly, 𝐹2 set 

contains solutions that are dominated only by those in set 𝐹1. The set 𝑅𝑡+1, which contains the 

parents of the next generation starts being filled with solutions of sets 𝐹1, 𝐹2, and so on, until N 

chromosomes fill the 𝑅𝑡+1 set. Through this procedure, the best solutions in each iteration are 

maintained and used for evolving the solutions. The described procedure is followed for a 

specific number of iterations, which is the maximum number of generations. The pseudocode 

of the MOEA is shown in Figure 4.5.  



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

72 

 

 

Figure 4.5 Pseudocode of the MOEA 

4.3.5 Crossover and Mutation Operators 

Multiple crossover operators, such as those presented in Solomon (1987), have been developed 

over the years for the VRP. The most efficient crossover operator implemented in most genetic 

and evolutionary algorithms is the Best Cost Route Crossover (BCRC) that is thoroughly 

described in Ombuki et al. (2006). More specifically, from the 𝑃 set, two parents (𝑃𝑖, 𝑃𝑖+1) are 

selected, and from each one, a single route is also selected. The customers that belong to each 

route are then removed from the opposite parent. More specifically, customers selected from 

parent 𝑃𝑖 are removed from parent 𝑃𝑖+1, and reversely. Since all customers must be served, 

they must also be contained in the chromosome. The insertion of a customer is made in the 

position of the chromosome that minimizes the cost. After the insertion procedure, two new 

chromosomes, known as offsprings, are generated. Through this procedure, the set 𝑄𝑡   is filled 

with N new solutions, before the non-dominated sorting procedure is applied and consequently 

set 𝑃𝑡+1 arises.  



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

73 

 

The proposed and applied crossover operator works similarly to the BCRC and is called 

Sequential Crossover (SC). The differences between the two crossover operators are noted in 

two points. 

• In selecting customers, as in SC, a random number of consecutive genes are selected from 

each chromosome instead of a single route as in BCRC. In this way, the diversity and, 

consequently the search space increases. 

• In the reinsertion procedure, the customers can only be inserted in specific positions. More 

specifically, they can be inserted in the position of the chromosome for which the total 

distance traveled is minimized. However, they can also be inserted in the position of the 

chromosome for which the total distance traveled is minimized while simultaneously the 

number of vehicles is not increased (compared to the parent). This procedure also increases 

the diversity and the search capabilities of the algorithm. 

The mutation operator followed is a swap node operator. In this case, two customers (genes) 

of the chromosome are randomly selected and swapped. The main contribution of this 

procedure is the differentiation of chromosomes, which may help in escaping from local 

optimum. Finally, both the mutation and the crossover operator are not applied in each 

generation and in each set of parents (𝑃𝑖, 𝑃𝑖+1). Instead, each operator has a specific probability 

of being applied, which is defined at the beginning, as shown in Figure 4.5. 

4.4 Computational Study 

The proposed algorithm cannot be simultaneously tested in time windows and pickups and 

deliveries due to the lack of a dataset containing both attributes. Therefore, the algorithm is 

tested in two different datasets, Solomon’s, for the VRPTW and Salhi and Nagy’s, for the 

VRPSPD. In Solomon’s dataset, the instances are separated into those with geographic ally 

clustered customers’ data (C1 and C2), with randomly generated geographical customers data 

(R1 and R2) and with mixed geographical customers data (RC1 and RC2). Also, problem sets 

C1, R1 and RC1 have short scheduling horizon and narrow time windows, while set C2, R2, 

and RC2 have long scheduling horizon and wide time windows. The proposed algorithm was 

coded in Python and ran in a computer with the following specifications: Intel Core i7 - 8550U 

1.8GHz with 16GB memory. 

Additionally, the dataset of Salhi and Nagy (1999), is based on the dataset of Christofides et 

al. (1979). More specifically, all data remain the same except the demand that is separated in a 

delivery and in a pickup quantity. Finally, the evolutionary algorithm parameters used in the 

proposed algorithm are the same with those presented in Ombuki et al. (2006) so that the results 

be representative and comparable.  

• Population size = 300 

• Number of generations = 350 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

74 

 

• Crossover probability = 0.80 

• Mutation probability = 0.10 

Another parameter that is defined is the maximum computation time. In the current research, 

the time limit is set at 15 minutes as in section 3.4, which is considered a reasonable 

computation time for 100 customers. Additionally, the best-obtained results need less time than 

the time limit to obtain the optimal solution. More specifically, the average time needed for 

obtaining each optimal solution is approximately 13 minutes. Finally, each instance is solved 

three times and the best-obtained solution is given in Table 4.1 and Table 4.2. 

4.4.1 Results in the VRPTW 

The VRPTW has been widely studied and, therefore, for most of Solomon’s instances, a set of 

non-dominated solutions (Pareto-optimal front) has arisen over the years from multip le 

researchers, leading to the best-published results in these instances. The computational results 

obtained from the proposed MOEA are compared, in Tables 4.1 and 4.2, with the best-

published ones in the literature to evaluate their efficiency. More specifically, Table 4.1 

contains instances with short scheduling horizon, narrow time windows, and small vehicles’ 

capacities, while Table 4.2 contains instances with long scheduling horizon, wide time 

windows and large vehicles’ capacities. In each table and for each instance of the dataset, the 

set of non-dominated solutions characterized by the total distance traveled (TD), and the 

number of vehicles (NV) are presented. Column "MOEA" presents the results obtained by the 

proposed algorithms; column "Best-Published" showcases the best-published results. Finally, 

the column "Deviation (%)" presents the percentage difference between best-published and 

best-obtained results.  

The results are considered competitive compared to the best published in the literature. The 

deviation presented in both tables refers to the total traveled distance when the number of 

vehicles, both in the best-published results and those of the MOEA, are equal; otherwise, it is 

not calculated. The mean deviation is 2.64%, a criterion that proves the effectiveness of the 

algorithm. However, the MOEA seems to have better efficiency with geographically clustered 

customers’ data (C datasets), irrespective of the scheduling horizon and the range of the time 

windows, as the deviation of the obtained results with the best-published range from 0.00% to 

0.73%. 

 

 

 

 

 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

75 

 

Table 4.1 Results of the MOEA in Solomon's Instances with Short Scheduling Horizon  

Problem MOEA Best-Published Deviation Problem MOEA Best-Published Deviation 

Instance NV TD NV TD (%) Instance (%) TD NV TD (%) 

C101 10 828.94 10 827.3 0.20 R110 - - 11 1054.23 - 

C102 10 828.94 10 827.3 0.20  12 1122.48 12 1068 5.10 

C103 10 828.94 10 826.3 0.32 R111 - - 10 1096.72 - 

C104 10 828.94 10 822.9 0.73   - - 11 1084.76 - 

C105 10 828.94 10 827.3 0.20   12 1099.70 12 1048.7 4.86 

C106 10 828.94 10 827.3 0.20 R112 - - 9 982.14 - 

C107 10 828.94 10 827.3 0.20   10 965.12 10 953.63 1.20 

C108 10 828.94 10 827.3 0.20 RC101 - - 14 1650.14 - 

C109 10 828.94 10 827.3 0.20   15 1649.50 15 1619.8 1.83 

R101 20 1667.33 18 1607.7 - RC102 - - 12 1554.75 - 

R102 18 1499.67 17 1434 -   - - 13 1470.26 - 

R103 14 1237.50 13 1175.67 -   14 1504.56 14 1461.33 2.96 

R104 - - 9 1007.24 - RC103 - - 11 1261.67 - 

 10 1006.48 10 974.2 3.31   12 1292.51 12 1196.12 8.06 

R105 - - 14 1377.11 - RC104 10 1165.00 10 1135.48 2.60 
 15 1391.86 15 1346.12 3.40 RC105 - - 13 1629.44 - 

R106 - - 12 1251.98 -   14 1575.46 14 1542.29 2.15 
 13 1287.07 13 1234.6 4.25   15 1558.06 15 1519.29 2.55 

R107 - - 10 1104.66 -   - - 16 1518.6 - 

 11 1084.15 11 1051.84 3.07 RC106 - - 11 1424.73 - 

R108 - - 9 958.66 -   - - 12 1394.43 - 

 10 994.89 10 942.9 5.51   13 1417.86 13 1371.69 3.37 

R109 - - 11 1194.73 - RC107 - - 11 1222.16 - 
 12 1177.76 12 1101.99 6.88   12 1248.62 12 1212.83 2.95 
 13 1167.19 - - - RC108  - - 10 1139.82 - 

R110 - - 10 1118.59 -   11 1209.42 11 1117.53 8.22 

 

As for geographically random customer data (R and RC), multiple non-dominated solutions at 

each instance exist as the search space is more extensive, especially in cases with long 

scheduling horizon and wide time windows (C2 and RC2). The MOEA, which integrates the 

proposed crossover operator, can search a vast solution space to find non-dominated solutions. 

As a result, two new non-dominated solutions are proposed in Solomon’s R202 and R210 

instances. In the R202 instance, a decrease in the total distance traveled is accomplished, while 

in R210 instance, two non-dominated solutions are updated, as shown in Figure 4.6. More 

specifically, in R210 instance, the proposed solution with objective values (NV=4, TD=920.13) 

improves both the solution with objective values (NV=4, TD=924.79), since the distance 

traveled is decreased, as well as the solution with objective values (NV=5, TD=922.30), since 

both the number of vehicles and the total distance traveled are decreased. 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

76 

 

 

Figure 4.6 Updated Pareto-optimal front on R210 Problem Instance 

 

Table 4.2 Results of the MOEA in Solomon's Instances with Long Scheduling Horizon 

Problem MOEA Best-Published Deviation Problem MOEA Best-Published Deviation 

Instance NV TD NV TD (%) Instance NV TD NV TD (%) 

C201 3 591.56 3 589.1 0.42 R209 3 956.00 3 909.16 5.15 

C202 3 591.56 3 589.1 0.42   4 881.64 4 864.15 2.02 

C203 3 591.56 3 591.17 0.07   5 875.63 5 859.39 1.89 

C204 3 590.6 3 590.6 0.00 R210 - - 3 938.58 - 

C205 3 588.88 3 586.4 0.42   4 920.13 4 924.79 -0.50 

C206 3 588.5 3 586 0.43   - - 5 922.30 - 

C207 3 588.5 3 585.8 0.46   - - 6 912.53 - 

C208 3 588.32 3 585.8 0.43 R211 - - 2 885.71 - 

R201 4 1290.75 4 1252.37 3.06   3 838.85 3 767.82 9.25 

 5 1202.7 5 1193.29 0.79   4 770.54 4 755.82 1.95 

 - - 6 1171.2 - RC201 4 1473.09 4 1406.91 4.70 

 - - 7 1173.75 -   5 1329.59 5 1279.65 3.90 

 - - 8 1150.92 -   7 1284.48 7 1273.51 0.86 

 - - 9 1148.48 -   8 1282.64 8 1272.28 0.81 

R202 - - 3 1191.7 - RC202 - - 3 1365.65 - 

 4 1085.64 4 1079.39 0.58   4 1200.07 4 1162.54 3.23 

 5 1014.96 5 1041.1 -2.51   5 1129.46 5 1118.66 0.97 

R203 3 1026.22 3 939.5 9.23   6 1125.22 8 1099.54 - 

 4 902.25 4 901.2 0.12 RC203 - - 3 1049.62 - 

 5 891.03 5 890.5 0.06   4 958.55 4 945.08 1.43 

 - - 6 874.87 -   5 938.04 5 926.82 1.21 

R204 - - 2 825.52 - RC204 3 801.18 3 798.41 0.35 

 3 751.79 3 749.42 0.32   - - 4 788.66 - 

 4 746.01 4 743.23 0.37 RC205 4 1340.53 4 1297.19 3.34 

 - - 5 735.86 -   5 1304.35 5 1236.78 5.46 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

77 

 

R205 3 1048.74 3 994.43 5.46   6 1210.00 6 1187.98 1.85 

 4 1021.15 4 959.74 6.40   - - 7 1161.81 - 

 5 1004.27 5 954.16 5.25 RC206 3 1301.87 3 1146.32 13.57 

R206 3 970.22 3 906.14 7.07   4 1121.53 4 1081.83 3.67 

 4 897.25 4 889.39 0.88   5 1094.2 5 1068.77 2.38 

 5 892.18 5 879.89 1.40   6 1087.27 7 1054.61 - 

R207 - - 2 890.61 - RC207 - - 3 1061.14 - 

 3 854.95 3 812.76 5.19   4 1023.02 4 1001.85 2.11 

 - - 4 797.99 -   - - 5 982.58 - 

R208 - - 2 725.75 -   - - 6 966.37 - 

 3 731.84 3 706.86 3.53 RC208 3 859.52 3 828.14 3.79 

            4 805.66 4 783.035 2.89 

The solutions in Solomon’s instances that improve the results and offer new non-dominated 

solutions are presented in Appendix C. 

4.4.2 Results in the VRPSPD 

The VRPSPD is studied less frequently than the VRPTW, despite being the most common 

problem distribution and logistics companies face in their daily operations. The proposed 

MOEA, which is able to address the VRPSPDTW, is tested in the dataset of Salhi and Nagy, 

and the results obtained from the proposed MOEA algorithm are compared to the best-

published. As in the case of time windows, the algorithm manages to produce new non-

dominated solutions in instances CMT2X, CMT6X, CMT7X, CMT8X, CMT9X, CMT10X. In 

each of these 6 cases, the number of vehicles is reduced at the expense of increased total 

distance traveled, as shown in Table 4.3. In addition, the mean TD deviation between the best-

published results and the best-obtained ones from the MOEA was found to be 8.50%. As shown 

in Table 4.3, the TD deviation for each problem is not calculated for all solutions. Instead, the 

TD deviation is calculated only when the MOEA and the best-published results have equal NV 

values. 

Table 4.3 Results of the MOEA in Salhi and Nagy Dataset  

Problem 

CMT 

MOEA Best-published Deviation 

NV TD NV TD (%) 

1X 3 481.13 3 467 3.03 

2X 6 771.01 - - - 

 7 730.21 7 676 8.02 

3X 5 753.83 5 703 7.23 

4X 7 897.65 7 847 5.98 

5X 10 1130.28 10 1025 10.27 

6X 5 606.33 6 557 - 

7X 9 1040.67 11 919 - 

8X 8 1036.52   - 

 9 955.21 9 896 6.61 

9X 12 1744.19 - - - 

 
13 1741.36 - - - 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

78 

 

 14 1698.21 - - - 

 15 1354.51 15 1215 11.48 

10X 17 1937.02 19 1571 - 

11X 5 904.52 4 868 - 

12X 6 712.21 5 667 - 

13X 11 1757.99 11 1560 12.69 

14X 10 918.25 10 826 11.17 

The solutions in Salhi and Nagy’s instances that improve the results and offer new non-

dominated solutions are given in Appendix C. 

4.5 Conventional vs Electric Vehicles 

While the distribution of goods has attracted the interest of researchers for more than 60 years, 

it is only the last few years that the GHG emissions are considered in the VRP, due to the 

ecological awareness of transport sustainability, leading to green logistics. In the case of 

Electric VRP (EVRP), the vehicles that are used for the distribution process, have electric 

batteries. This implies a limited driving range and visitations to Charging Stations (CS) to 

recharge the batteries, when needed, for executing the routes (Erdelić et al. 2019). However, 

the EVRP can be much more challenging and complex if the battery consumption and CO2 

emissions are related to the load and the speed of the vehicle (Lin et al. 2016). Erdelić and 

Carić (2019) present a survey on the EVRP, focusing on consumption models and additional 

emerged EVRP variants, such as hybrid vehicles, charging stations, charging functions and 

dynamic traffic conditions. In the current research, it is assumed that the consumption and CO2 

emissions are fixed, irrespectively the vehicle's load and speed. 

Moreover, the distribution cases that are studied in the present subsection, are faced by a 

logistics company in the city of Athens, Greece. However, the data and other characteristics 

adapt to the requirements of the studied case. Therefore, the vehicles are considered identical 

in all distribution cases, while in practice, the company owns different types of vehicles. As for 

the customers' data (57 in total), they contain their addresses, their demand and return quantities 

(Kg), and their time windows. More specifically, 5 different cases are tested in order to extract 

more reliable conclusions. Starting from the first case (Case 1), and until the last one (Case 5), 

the quantities of goods that each customer requests, either to be delivered or to be returned, 

increase in size and constitute a bigger part of the vehicle's capacity.  

Additionally, considering the identical vehicles, three cases are discriminated according to the 

fuel type, (i) Petrol, (ii) Diesel, and (iii) Electric vehicles. However, to extract reliable 

conclusions from the research, the vehicles are of the same brand (Nissan) and the same model 

(NV200). Consequently, the distribution cases are tested for the three different vehicle types. 

In each case, the fleet of vehicles is composed only of the same type of vehicles. In addition, 

the fixed costs were calculated, taking into account depreciation time (10 years) and annual 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

79 

 

vehicle use (250 working days per year). The increased fixed cost of electric vehicles is at least 

expected since the purchase price is higher than the other typeσ of vehicles. 

On the other hand, the variable cost is inversely proportional to fixed costs, since it depends on 

fuel value. Furthermore, the driving range in electric vehicles is significantly lower, leading to 

the need for battery recharge, which is also time-consuming (45 minutes to recharge the empty 

battery fully). Batteries also cause another problem, which is the reduced capacity. However, 

all the above disadvantages are balanced by zero CO2 emissions. The above-mentioned 

characteristics and specifications of vehicles are presented in Table 4.4. 

Table 4.4 Features and Specifications of Vehicles 

Vehicle 

Type 

Fixed 

Cost (€) 

Variable 

Cost 

(€/Km) 

Driving Range 

(Km) 

Capacit

y 

(Kg) 

CO2 

Emissions 

(gr/km) 

Petrol 8.00 € 0.0972 750 795 166 

Diesel 8.82 € 0.0555 1100 728 131 

Electric 11.70 € 0.0196 275 630 0 

The computational results of the research, containing the number of vehicles needed (number 

of routes) to execute the plan of routes, the total distance, CO2 emissions and the costs (variable, 

fixed, and total), are calculated for each vehicle type (Petrol, Diesel, and Electric), as well as 

for each distribution case. Table 4.5, Table 4.6, and Table 4.7 contain the results of Petrol, 

Diesel, and Electric vehicles, respectively. 

Table 4.5 Economic and Environmental Impact of Petrol Vehicles 

Case 
Number of 

Routes 

Total 

Distance 

(Km) 

CO2 

Emissions 

(Kg) 

Fixed Cost 

(€) 

Variable 

Cost 

(€) 

Total Cost 

(€) 

1 4 378.82 62.88 32.00 36.82 68.82 

2 5 392.93 65.23 40.00 38.19 78.19 

3 5 427.78 71.01 40.00 41.58 81.58 

4 8 527.09 87.50 64.00 51.23 115.23 

5 9 561.64 93.23 72.00 54.59 126.59 

Total 31 2288.26 379.85 248.00 222.41 470.41 

 

Table 4.6 Economic and Environmental Impact of Diesel Vehicles 

Case 
Number of 

Routes 

Total 

Distance 

(Km) 

CO2 

Emissions 

(Kg) 

Fixed Cost 

(€) 

Variable 

Cost 

(€) 

Total Cost 

(€) 

1 4 377.25 49.50 35.28 20.93 56.21 

2 5 413.29 54.14 44.1 22.94 67.04 

3 6 421.71 55.24 52.92 23.41 76.33 

4 9 563.91 73.87 79.38 31.30 110.68 

5 9 630.35 82.58 79.38 34.99 114.37 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

80 

 

Total 33 2406.51 315.33 291.06 133.56 424.62 

 

It can be easily observed that petrol vehicles have the highest CO2 emissions. Diesel vehicles 

have also increased emissions, but they gain significant interest due to their low distribution 

cost. As for electric vehicles, zero emissions are accomplished, but at the expense of high 

distribution cost compared to other cases of vehicles. The main factor affecting deliveries with 

electric vehicles, leading to increased cost, is that more vehicles are needed to execute the 

deliveries compared to the other types of vehicles in each distribution case. That is due to the 

limited capacity of electric vehicles, as batteries have increased weight and volume, which 

prevent them from having the same capacity as other types of vehicles. 

Table 4.7 Economic and Environmental Impact of Electric Vehicles 

Case  
Number of 

Routes 

Total 

Distance 

(Km) 

CO2 

Emissions 

(Kg) 

Fixed Cost 

(€) 

Variable 

Cost 

(€) 

Total Cost 

(€) 

1 5 394.64 0 58.5 7.72 66.22 

2 6 432.91 0 70.2 8.48 78.68 

3 7 469.17 0 81.9 9.19 91.09 

4 10 617.21 0 117.00 12.09 129.09 

5 11 640.09 0 128.70 12.55 141.25 

Total 39 2554.02 0 456.3 50.02 506.32 

 

Moreover, in Case 1, where each customer has small demand, in terms of weight, multip le 

customers can be integrated into the same route. As a result, the number of electric vehicles 

that are utilized in deliveries are not much more than conventional vehicles, and therefore fixed 

costs are on the same level. Additionally, the variable costs remain very low in the case of 

electric vehicles, unlike to conventional vehicles. On the other hand, when the items are of 

bigger size (Case 5), the total distribution cost of electric vehicles is much higher, due to the 

increased number of vehicles needed. In conclusion, electric vehicles could be very efficient, 

both in terms of cost and CO2 emissions, in distribution of small size items such as parcels and 

mail. 

Surely, Greek companies should invest at least to diesel vehicles that will offer both decreased 

CO2 emissions and distribution costs, if not to electric. Τhe emissions reduction and the cost 

increment concerning the case of electric vehicles can be misleading. That is because the 

production of electricity in Greece is based, in a great extent, on the use of poorer quality fuel 

such as lignite and less to renewable sources. It is only the last few years that renewable sources 

are utilized. Consequently, electric vehicles may have zero emissions, however the production 

of electricity has increased emissions that can be minimized only by using renewable energies. 

Additionally, it is clear that the acquisition cost of electric vehicles is higher compared to petrol 

and diesel, as occurred with all new technologies. However, over the years, the acquisition cost 

is expected to be reduced and to be more cost effective for the distribution process.  



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

81 

 

4.6 Concluding Remarks 

To sum up, in this Chapter, the vehicle routing problem with simultaneous pickups and 

deliveries and time windows was examined, aiming to find an effective solution to the problem 

by proposing an evolutionary algorithm that solves the multiobjective VRPSPDTW. The first 

step to solving this problem was applying an improved TONN construction algorithm for 

generating the initial population of solutions. Consequently, these solutions were integrated 

into the proposed ΜΟΕΑ in order to find the best routes plan that minimizes the two objectives: 

the number of vehicles and the total distance traveled. These two objectives may be 

contradictory and this is why some instances of the problem may have multiple possible 

solutions. The Pareto-optimality concept was used to balance the results for the different 

objectives and find the best overall solution to the problem. Besides addressing the 

VRPSPDTW as a multiobjective problem, another contribution of the Chapter was proven to 

be the newly developed crossover operator (Sequential Crossover), which significantly affects  

the efficiency of the results obtained from the MOEA.  

The algorithm’s efficiency was validated using the dataset of Solomon for the VRPTW, and 

the dataset of Salhi and Nagy (1999) for the VRPSPD, and the outcomes obtained were 

compared to the best-published results, indicating the high efficiency of the algorithm in terms 

of solution’s quality.  

The specific algorithm offers slightly better results compared to the MOLNS algorithm 

proposed in Chapter 3. Moreover, the EA algorithm after the appropriate modifications has the 

ability to address multiple variants of the VRP, as well as distribution cases that involve electric 

vehicles that have a limited driving range. That is why the algorithm was tested in various cases 

that the fleet is composed of different types (petrol, diesel and electric) so that to estimate the 

economic and environmental impact. Among the findings of the research is that in distribution 

cases with low-volume goods the limitations of electric vehicles (driving range) do not greatly 

affect costs. However, as the volume of goods increases, more electric vehicles compared to 

other vehicle types are needed, leading to an increased distribution cost. This is due to the 

decreased capacity of electric vehicles. Irrespective of the cost, CO2 emissions are eliminated 

by the use of electric vehicles. 

Additionally, despite the advantages by using electric vehicles, in Greece the technologies 

concerning the vehicles are still far behind. This is obvious by the age and the type of vehicles 

used in the distribution. Moreover, the use of electric vehicles is not sufficiently supported by 

the infrastructure as only a limited number of recharging stations exist even in the capital of 

Greece, Athens. Considering this, the transition to more advanced vehicles, and more 

specifically to electric vehicles, may be difficult for logistics and distribution companies in 

Greece. However, even the replacement of petrol vehicles with diesel would offer significant 

reduction both to distribution costs and to CO2 emissions. 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

82 

 

Concluding, since the algorithm has the ability to efficiently handle multiple attributes, it also 

constitutes a library that includes all the necessary functions, stored in the software 

development company’s server,  and can be accessible by the presented in Chapter 6 system. 

Finally, the EA is most likely to be applied in the system and be offered as a choice to the users 

that need to optimize simultaneously two contradictory objectives simultaneously. 

The algorithm’s benefits seem to be significant and that is why each algorithm constitutes a 

library that includes functions for addressing the problem. The algorithm libraries are the core 

of the system and are stored into the server of the software development company, so that it 

can be accessed by the presented in Chapter 6 system through the appropriate request. 

References 

Ai TJ, Kachitvichyanukul V (2009) A particle swarm optimization for the vehicle routing 

problem with simultaneous pickup and delivery. Comput Oper Res 36:1693–1702. 

https://doi.org/https://doi.org/10.1016/j.cor.2008.04.003 

Baños R, Ortega J, Gil C, et al (2013) A hybrid meta-heuristic for multi-objective Vehicle 

Routing Problems with Time Windows. Comput Ind Eng 65:286–296. 

https://doi.org/10.1016/j.cie.2013.01.007 

Berger J, Barkaoui M, Bräysy O (2003) A Route-Directed Hybrid Genetic Approach For The 

Vehicle Routing Problem With Time Windows. INFOR Inf Syst Oper Res 41:179–194. 

https://doi.org/10.1080/03155986.2003.11732675 

Chiang TC, Hsu WH (2014) A knowledge-based evolutionary algorithm for the multiobjective 

vehicle routing problem with time windows. Comput Oper Res 45:25–37. 

https://doi.org/10.1016/j.cor.2013.11.014 

Chiang WC, Russell RA (1997) A Reactive Tabu Search Metaheuristic for the Vehicle Routing 

Problem with Time Windows. INFORMS J Comput 9:417–430. 

https://doi.org/doi:10.1287/ijoc.9.4.417 

Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. Wiley, Chichester 

Clarke G, Wright JW (1964) Scheduling of Vehicles from a Central Depot to a Number of 

Delivery Points. Oper Res 12:568–581. https://doi.org/10.1287/opre.12.4.568 

Czech ZJ, Czarnas P (2002) Parallel simulated annealing for the vehicle routing problem with 

time windows. In: 10th Euromicro Workshop on Parallel, Distributed and Network-based 

Processing. pp 376–383 

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic 

algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. 

https://doi.org/10.1109/4235.996017 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

83 

 

Erdelić T, Carić T (2019) A Survey on the Electric Vehicle Routing Problem: Variants and 

Solution Approaches. J Adv Transp 2019:5075671. https://doi.org/10.1155/2019/5075671 

Erdelić T, Carić T, Erdelić M, Tišljarić L (2019) Electric vehicle routing problem with single 

or multiple recharges. Transp Res Procedia 40:217–224. 

https://doi.org/https://doi.org/10.1016/j.trpro.2019.07.033 

European Automobile Manufacturers Association (2019) Vehicles in use - Europe 2019 

Gambardella LM, Taillard É, Agazzi G (1999) Macs-vrptw: A multiple colony system for 

vehicle routing problems with time windows. In: New Ideas In Optimization. pp 63–76 

Garcia-Najera A, Bullinaria JA (2011) An improved multi-objective evolutionary algorithm 

for the vehicle routing problem with time windows. Comput Oper Res 38:287–300. 

https://doi.org/10.1016/j.cor.2010.05.004 

Gayialis SP, Tatsiopoulos IP (2004) Design of an IT-driven decision support system for vehicle 

routing and scheduling. Eur J Oper Res 152:382–398. https://doi.org/10.1016/S0377-

2217(03)00031-6 

Ghoseiri K, Ghannadpour SF (2010) Multi-objective vehicle routing problem with time 

windows using goal programming and genetic algorithm. Appl Soft Comput 10:1096–

1107. https://doi.org/10.1016/j.asoc.2010.04.001 

Giaglis MG, Minis I, Tatarakis A, Zeimpekis V (2004) Minimizing logistics risk through real‐

time vehicle routing and mobile technologies. Int J Phys Distrib Logist Manag 34:749–764. 

https://doi.org/10.1108/09600030410567504 

Gillett BE, Miller LR (1974) A Heuristic Algorithm for the Vehicle-Dispatch Problem. Oper 

Res 22:340–349. https://doi.org/10.1287/opre.22.2.340 

Gong G, Deng Q, Gong X, et al (2018) A Bee Evolutionary Algorithm for Multiobjective 

Vehicle Routing Problem with Simultaneous Pickup and Delivery. Math Probl Eng 

2018:2571380. https://doi.org/10.1155/2018/2571380 

Gong YJ, Zhang J, Liu O, Hung CHS (2012) Optimizing the Vehicle Routing Problem With 

Time Windows: A Discrete Particle Swarm Optimization Approach. IEEE Trans Syst Man, 

Cybern Part C Appl Rev 42:224–267. https://doi.org/10.1109/TSMCC.2011.2148712 

Govindan K, Soleimani H, Kannan D (2015) Reverse logistics and closed-loop supply chain: 

A comprehensive review to explore the future. Eur J Oper Res 240:603–626. 

https://doi.org/10.1016/j.ejor.2014.07.012 

Hiermann G, Puchinger J, Ropke S, Hartl RF (2016) The Electric Fleet Size and Mix Vehicle 

Routing Problem with Time Windows and Recharging Stations. Eur J Oper Res 252:995–

1018. https://doi.org/10.1016/j.ejor.2016.01.038 



Chapter 4: The Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows 

84 

 

Konstantakopoulos GD, Gayialis SP, Kechagias EP, et al (2020) A Multiobjective Large 

Neighborhood Search Metaheuristic for the Vehicle Routing Problem with Time Windows. 

Algorithms 13:. https://doi.org/10.3390/a13100243 

Labadie N, Prins C, Prodhon C, Prins C (2016) Metaheuristics for Vehicle Routing Problems. 

John Wiley and Sons 

Lin J, Zhou W, Wolfson O (2016) Electric Vehicle Routing Problem. Transp Res Procedia 

12:508–521. https://doi.org/https://doi.org/10.1016/j.trpro.2016.02.007 

Nagy G, Salhi S (2005) Heuristic algorithms for single and multiple depot vehicle routing 

problems with pickups and deliveries. Eur J Oper Res 162:126–141. 

https://doi.org/https://doi.org/10.1016/j.ejor.2002.11.003 

Ombuki B, Ross BJ, Hanshar F (2006) Multi-objective genetic algorithms for vehicle routing 

problem with time windows. Appl Intell 24:17–30. https://doi.org/10.1007/s10489-006-

6926-z 

Salhi S, Nagy G (1999) A cluster insertion heuristic for single and multiple depot vehicle 

routing problems with backhauling. J Oper Res Soc 50:1034–1042. 

https://doi.org/10.1057/palgrave.jors.2600808 

Solomon MM (1987) Algorithms for the Vehicle Routing and Scheduling Problems with Time 

Window Constraints. Oper Res 35:254–265. https://doi.org/10.1287/opre.35.2.254 

Subramanian A, Uchoa E, Pessoa AA, Ochi LS (2011) Branch-and-cut with lazy separation for 

the vehicle routing problem with simultaneous pickup and delivery. Oper Res Lett 39:338–

341. https://doi.org/https://doi.org/10.1016/j.orl.2011.06.012 

Subramanian A, Uchoa E, Pessoa AA, Ochi LS (2013) Branch-cut-and-price for the vehicle 

routing problem with simultaneous pickup and delivery. Optim Lett 7:1569–1581. 

https://doi.org/10.1007/s11590-012-0570-9 

Tan KC, Chew YH, Lee LH (2006) A Hybrid Multiobjective Evolutionary Algorithm for 

Solving Vehicle Routing Problem. Comput Optim Appl 34:115–151. 

https://doi.org/10.1007/s10589-005-3070-3 

Woch M, Łebkowski P (2009) Sequential Simulated Annealing for the Vehicle Routing 

Problem with Time Windows. Decis Mak Manuf Serv 3:87–100 

Yousefikhoshbakht M, Didehvar F, Rahmati F (2014) A combination of modified tabu search 

and elite ant system to solve the vehicle routing problem with simultaneous pickup and 

delivery. J Ind Prod Eng 31:65–75. https://doi.org/10.1080/21681015.2014.893928 



 

 

 

Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem 
with Simultaneous Pickups and Deliveries and Time Windows 

5.1 Introduction 

Ιn order to overcome the challenge of vehicle routing, logistics and distribution companies  

need to minimize their distribution cost by defining the fleet composition and the sequence of 

customers’ deliveries of each route (Qureshi et al. 2009). This is not always an easy task for 

logistics companies since routes planning and deliveries scheduling are affected by multip le 

parameters and constraints, depending on the distribution case. In addition, the urbanization 

and the rise of e-commerce over the last few years has led to an increase in the daily orders that 

companies need to serve (Özarık et al. 2021). All these factors exacerbate the complexity of 

the problem and consequently complicate its resolution. 

Additionally, regardless of industry, every company must have the ability to recognize and 

follow the needs of the external environment and utilize the latest technological advances. This 

can offer companies efficient solutions in terms of product and service quality and valuable 

time savings. The same stands for logistics companies whose main activity lies in their 

distribution operations. Therefore, to optimize their operations, logistics companies first need 

to consider the multiple parameters and constraints involved in routing vehicles and scheduling 

deliveries and, consequently, implement advanced routing and scheduling systems that can 

facilitate their distribution operations (Bräysy and Hasle 2014).  

In the current Chapter, an Adaptive Large Neighborhood Search (ALNS) algorithm is 

developed for enhancing the efforts of logistics companies that operate in the field of freight 

distribution and thus considers the VRP variants that are most commonly addressed in this 

field. Among the most frequently encountered variants of the VRP in freight distribution, 

according to the current research, as well as to the research of Elshaer and Awad (2020), are 

(i) the VRP with Time Windows (VRPTW), (ii) , the Heterogeneous Fleet VRP (HVRP)  and 

(iii) the VRP with Simultaneous Pickups and Deliveries (VRPSPD). The VRPTW and the 

VRPSPD have been thoroughly analyzed in Chapter 3 and Chapter 4, respectively. As for the 

HVRP, which is another VRP variant, is frequently studied by researchers and practitioners, 

but not as commonly as the VRPTW and VRPSPD. The Capacitated VRP (CVRP) 

significantly simplifies the problem, as the vehicles are identical in terms of cost and capacity 

(Máximo and Nascimento 2021), making the HVRP appear and be studied less commonly by 

researchers. However, this is contradictory to real-life cases, as the fleet of vehicles in most 

logistics companies differentiate, as multiple types of vehicles exist (Liu 2013; Irnich et al. 

2014). Moreover, each type of vehicle has different fixed and variable costs, capacity, lates t 

returning times, and a limited number of available vehicles that all need to be considered when 

planning the delivery schedules. As a result, and to cover the needs of most real-life logistics 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

86 

 

companies, regardless of the types of vehicles each company owes, it was decided to deal with 

the heterogeneity of vehicles and, consequently, the HVRP.  

Additionally, drivers' shifts constitute one additional significant parameter both in the current 

Chapter and in real-life cases, since the drivers have specific working hours. That means that 

vehicles can start the distribution process from the depot after the start of the drivers’ shift and 

cannot return back after the end of their shift. This limitation has gained ground over the last 

few years as new stricter policies have pushed companies to comply with the labor legislation 

while also aiming to reduce road accidents due to overworking (Alcaraz et al. 2019). However, 

despite the importance of the variant for logistics companies, it has not yet attracted the 

appropriate attention from researchers studying the VRP, probably due to its complexity. In the 

current research, and to simplify this restriction, each shift has been transformed into the 

earliest starting and latest returning time of the vehicle.  

The aforementioned parameters and constraints, when simultaneously considered, cover the 

needs of most logistics companies operating in the field of freight distribution. However, the 

complexity of the problem dramatically increases when multiple variants of the VRP are 

simultaneously considered, and that is the main reason for the reduced number of methods  

proposed by researchers compared to those with single VRP variants. In addition, most of these 

algorithms are not integrated into routing systems but instead are limited to research studies. 

Examples of such studies include Penna et al. (2019), who proposed a hybrid heuristic 

algorithm for a class of VRP’s with a heterogeneous fleet, and Jiang et al. (2014), who studied 

the Heterogeneous Fleet VRP with Time Windows and proposed a tabu search algorithm 

belong in this category. Both algorithms manage to solve numerous datasets of the literature, 

proving their efficiency, but have not been implemented in software solutions and tested in 

real-life cases. The research that comes closest to the presented on is given by Erdoğan (2017), 

who developed an open-source spreadsheet solver for addressing most of the variants that are 

also considered in the current thesis. The researcher manages to connect online maps with 

Microsoft Excel and extract significant data related to routing and scheduling. However, the 

limitation of this solution is the increased computation time needed as Visual Basic (VB), 

which the researcher uses, is not as efficient as C++ and Python that are most often used for 

optimization and software development.  

Moreover, the ALNS algorithm, besides being applied in all the above-mentioned VRP 

variants, is also applied in a Collaborative case, where three Third-Party Logistics (3PL) 

locating and distributing goods in the same area, cooperate in the distribution process. This  

approach may seem difficult to implement in Greece due to the ground that is not fertile yet for 

such synergies. However, this theoretical approach's economic and environmental benefits are 

enough to convince companies to move toward this direction in the future.  

To sum up, the research conducted in this Chapter comes to support existing studies and present 

a metaheuristic algorithm that is used as a library, with all the necessary functions, and stored 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

87 

 

in the software development company’s server, so that to be accessible by the cloud routing 

system, presented in the next Chapter, that addresses the above VRP variants simultaneous ly. 

The current algorithm library constitutes the third that is developed for supporting the system. 

The algorithm developed in Python programming language can solve large-scale distribution 

cases, but at this stage is tested in datasets of the literature, including up to 100 customers. In 

order to enhance this effort and provide the desired outcomes, the variables and constraints  

involved in freight distribution and the mathematical formulation are subsequently defined in 

Section 5.2. In Section 5.3, the algorithmic approach, which includes the construction 

algorithm and the ALNS metaheuristic, is presented. The computational results obtained from 

the algorithm, when tested in datasets of the literature for the HVRPSPDTW, are presented in 

Section 5.4. Section 5.5 describes the Collaborative VRP and how the ALNS algorithm's 

implementation can contribute financially and environmentally to the cooperating companies. 

Finally, the concluding remarks of the Chapter are presented in Section 5.6. 

5.2 Problem Description and Mathematical Formulation 

All the characteristics and requirements described in Section 5.1 are set as variables and 

constraints in the problem formulation that follows. More specifically, a direct network G (N, 

A), where N is the set of nodes and 𝐴 = (𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑁 is the set of arcs, is first defined. 

Node 0 represents the central depot, while 𝑁∗ = {𝑁/0} represents the customers. Every arc 

(𝑖, 𝑗), which is a path from node i to node j is characterized by its distance which is indicated 

as 𝑑𝑖𝑗, and by its travel time 𝑡𝑖𝑗.  Each customer is characterized by the quantities of goods 𝑑𝑖 

and 𝑟𝑖 that must be delivered and collected respectively, and by the time 𝑠𝑖
𝑘 that the vehicle 

needs for serving each customer. All goods that must be delivered, are transported from the 

central depot to customers, while the collected items follow the opposite direction. Also, each 

customer, as well as the depot, has a time window [𝑒𝑖 , 𝑙𝑖], that represents the earliest and the 

latest times to start. Regarding to the depot, its time window, [𝑒0 , 𝑙0] = [E, L], determines the 

earliest departure time from the depot and the latest returning time to the depot. 

Additionally, the fleet of the heterogeneous vehicles is represented by set K, while each vehicle 

is indexed by 𝑘 ∈ 𝛫. Each vehicle k corresponds to a unique vehicle type 𝑐 ∈ 𝐶. Therefore, in 

order to correlate these two sets, 𝑆𝑐 that represents the set of vehicles of type c is formed. Each 

vehicle type is characterized by its capacity 𝑄𝑐, its fixed cost fc, its variable cost 𝑣𝑐, as well as 

by the maximum number of available vehicles, 𝑛𝑐. Finally, a driver is assigned in a one-to-one 

relationship to each vehicle, and is characterized by the starting time of the shift, 𝑝𝑘, as well as 

the ending time of the shift, 𝑚𝑘 of the driver.  

Finally, the studied problem requires some further variables so that the formulation be 

consistent. Starting with the decision variable 𝑥𝑖𝑗
𝑘  that is equal to 1 if vehicle k drives from node 

i to node j, and 0 otherwise, and continuing with variable 𝑦𝑖𝑗
𝑘  that refers to the total quantity on 

board, on arc (i, j). Moreover, the time variables include i)  𝑎𝑖
𝑘  which refers to the arrival time 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

88 

 

of vehicle k at node i, ii) 𝑤𝑖
𝑘 that refers to the waiting time of vehicle k at node i, and iii) 

𝑏𝑖
𝑘which refers to the departure time of vehicle k from node i. Concluding, all the essential 

variables are gathered and presented below, before the mathematical model. 

𝑞𝑖 Delivery demand of node i 

𝑟𝑖 Pickup demand from node i 

𝑒𝑖  Node’s i open time 

li Node’s i close time 

𝑠𝑖
𝑘 Service time of vehicle k at node i 

𝑄𝑐 Capacity of type c vehicles 

𝑓𝑐  Fixed cost of type c vehicles 

𝑣𝑐 Variable cost of type c vehicles 

𝑛𝑐 Number of available vehicles for each type 

𝑝𝑘 Earliest starting time of vehicle 

𝑚𝑘 Latest returning time of vehicle 

𝑦𝑖𝑗
𝑘  Total pickup items on board of the vehicle k, on arc (i, j) 

𝑎𝑖
𝑘  Arrival time of vehicle k at node i 

𝑤𝑖
𝑘 Waiting time of vehicle k at node i 

𝑏𝑖
𝑘  Departure time of vehicle k from node i 

The studied problem can be formulated as follows: 

∑ 𝑓𝑐

𝑐∈𝐶

∑ ∑ 𝑥0𝑗
𝑘

𝑗∈𝑁∗𝑘∈𝑆𝑐

+ ∑ 𝑣𝑐

𝑐∈𝐶

∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝑆𝑐

 (5.1) 

∑ ∑ 𝑥0𝑗
𝑘

𝑗∈𝑁∗𝑘∈𝑆𝑐

≤  𝑛𝑐, ∀𝑐 ∈ 𝐶 (5.2) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑘∈𝛫

≤ 1, ∀𝑖 ∈ 𝑁 (5.3) 

∑ 𝑥0𝑗
𝑘

𝑗∈𝑁

≤ 1, ∀𝑘 ∈ 𝛫 (5.4) 

∑ 𝑥𝑖0
𝑘

𝑖∈𝑁

≤ 1, ∀𝑘 ∈ 𝛫 (5.5) 

∑ 𝑥𝑖𝑙
𝑘

𝑖∈𝑁

− ∑ 𝑥𝑙𝑗
𝑘

𝑗∈𝑁

= 0, ∀𝑙 ∈ 𝑁∗ , 𝑘 ∈ 𝛫 (5.6) 

∑ 𝑞𝑖

𝑖∈𝑁

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁

 ≤ Q𝑐 , ∀𝑘 ∈ 𝑆𝑐, 𝑐 ∈ 𝐶 (5.7) 

∑ 𝑟𝑖

𝑖∈𝑁

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁

 ≤ Q𝑐, ∀𝑘 ∈ 𝑆𝑐, 𝑐 ∈ 𝐶 (5.8) 

(𝑦𝑖𝑗
𝑘 − 𝑞𝑗 + 𝑟𝑗)𝑥𝑖𝑗

𝑘 ≤ Q𝑐 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝑆𝑐, 𝑐 ∈ 𝐶  (5.9) 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

89 

 

𝑎0
𝑘 ≤ m𝑘∀𝑘 ∈ 𝛫 (5.10) 

𝑏0
𝑘 ≥  𝑝𝑘 , ∀𝑘 ∈ 𝛫 (5.11) 

𝑒𝑖  ≤ 𝑎𝑖
𝑘 + 𝑤𝑖

𝑘 ≤ 𝑙𝑖 (5.12) 

𝑥𝑖𝑗
𝑘 ∈ {0,1}, (𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝛫 (5.13) 

𝑦𝑖𝑗
𝑘 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝛫 (5.14) 

The objective function (5.1) aims to minimize the total cost derived from the composition of 

the variable and the fixed cost of each vehicle used in the distribution process. If a vehicle is 

not used for the distribution process, then the fixed and variable costs are considered zero. 

Constraint (5.2) ensures that the available number of vehicles for each type, is not exceeded, 

while constraint (5.3) that each customer is visited by only one vehicle. The set of constraints 

(5.4), (5.5) and (5.6) ensure that each vehicle serving a customer surely departs from this 

customer as well, and that each vehicle starts from the depot and returns to it after the 

completion of the route. Constraint (5.7) states that the total quantity of items delivered from 

each vehicle will not exceed the vehicle’s capacity. Respectively, constrain (5.8) is applied in 

the case of goods returned from each customer to the depot. Constraint (5.9) ensures that the 

quantity of goods on board of each vehicle does not exceed its capacity at any stage of the route 

execution. Constraint (5.10) and (5.11) state that each vehicle may depart from the depot when 

the driver’s shift opens and return to the central depot before the end of the driver’s shift. 

Constraint (5.12) ensures that no vehicle may arrive at a customer after the end of the time 

window and that the serving of each customer starts after the opening of the time window. 

Finally, the decision variable 𝑥𝑖𝑗
𝑘  is equal to 1 if vehicle k drives from node i to node j, and 0 

otherwise, while variable 𝑦𝑖𝑗
𝑘  is always a non-negative number. 

5.3 Solution Method – Adaptive Large Neighborhood Search 

The proposed ALNS algorithm integrated into the routing and scheduling system belongs in 

the category of local search metaheuristics. The algorithm is applied in a solution that is 

exploited by a construction heuristic algorithm that is analyzed in Section 5.3.1. Consequently, 

the individual pieces of the ALNS algorithm are presented in Section 5.3.2. 

5.3.1 Construction Procedure 

The construction algorithm applied in the current research is based on the Time-oriented 

Nearest Neighbor (TONN) heuristic, which was first proposed by Solomon (1987), and has 

been enhanced and adjusted to the requirements of the VRP variants that are considered in the 

current research. However, before applying the variation of the TONN algorithm, it is essential 

to construct and model the form of solutions firstly. Therefore, an array with all the availab le 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

90 

 

vehicles is firstly constructed, so that each element of the array includes the unique id and the 

type of the vehicle. The type of the vehicle contains all the necessary characteristics and 

specification of the vehicles (capacity, variable and fixed costs etc.). In contrast, the unique id 

of each vehicle is correlated to a specific driver and thus to a specific earliest starting and latest 

returning time. Consequently, all the necessary data of vehicles to address the problem have 

been included in the vehicles’ array. In addition, another array that includes the routes of 

vehicles is constructed. Since each vehicle corresponds to a single route, each row on the 

vehicles’ array corresponds to a single row in the array of routes, as shown in Figure 5.1.  

Moreover, the TONN algorithm belongs in sequential heuristics, which means that one route 

is built until all customers have been integrated into the routes. A new route starts only when 

no other customer can be added. However, the fact that each vehicle is characterized by 

different capacities, costs, shifts, and customer requirements (time windows, simultaneo us 

pickups and deliveries) greatly affects the customers inserted into the routes. Therefore, a 

metric that calculates the “closest” customer to the last visited one is used in this procedure, 

and through this way, the array of routes is filled. This means that all customers have been 

assigned to vehicles and routes, and consequently, a complete solution has been extracted that 

can now be fed to the ALNS algorithm. 

 

Figure 5.1 Array of Vehicles and Routes 

5.3.2 Adaptive Large Neighborhood Search Algorithm 

5.3.2.1 General Framework 

The large neighborhood search (LNS) framework, which explores a large neighborhood by 

destroying and repairing solutions, was proposed by Shaw (1998). The Adaptive Large 

Neighborhood Search (ALNS) algorithm is an extension of the LNS procedure that also 

operates with various destroy and repair operators. Both procedures need an initial solution, 

1

2

2

3

1

. . . . . . 

. . . . . . 

Array of vehicles
Array of routes

Route 1

Route 2

Route 3

Route n-1

Route n

ID Type

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

91 

 

such as the one produced by the TONN algorithm, to be applied and operated. However, their 

main difference is observed in the probability of each operator to be applied. In LNS, the 

probability of each destroy operator (𝜋𝑑), and of each repair operator (𝜋𝑟) to be applied is 

steady and is defined at the start of the procedure. On the contrary, in the ALNS algorithm, the 

probabilities of each destroy and repair operator (𝜋𝑑 and 𝜋𝑟  respectively) to be chosen increase 

the more the operator has contributed to the improvement of the solution.  In each iteration of 

the algorithm, a new solution is constructed (𝑋′ ) after the destroy and repair operator, that is 

compared to the optimal solution so far (𝑋∗). If the constructed solution 𝑋′  is better than the 

optimal 𝑋∗, then the optimal solution is renewed. That is the general framework of the 

algorithm, which is also given in Figure 5.2. 

 

Figure 5.2 Framework of the ALNS Algorithm 

5.3.2.2 Adaptive Mechanism 

In each iteration of the ALNS algorithm, a destroy and a repair operator is applied. For 

adjusting the probability of each operator to be applied, the search is divided into time segments 

of t computation time. The probability of each operator is calculated by taking into account the 

performance of the operator and the improvement that has offered into the solution, during 

each segment. More specifically, the probability of each destroy operator for the next segment 

(t+1) is calculated by 𝜋𝑡+1
𝑑 = 𝜋𝑡

𝑑 (1 − 𝑤 𝑑) + 𝑤 𝑑 ∗ (𝑠𝑑

𝑖𝑑⁄ ), where 𝜋𝑡
𝑑 is the probability of each 

operator to be applied, in the previous segment (t), 𝑠𝑑 the number of times the operator applied 

and offered an improved solution, 𝑖𝑑 the number of times any operator was applied and offered 

improved results, and finally 𝑤 𝑑, the weight of the successful improvements in the specific 

Algorithm Adaptive Large Neighborhood Search 

1: Construct an initial feasible solution 𝑋 

2: 𝑋∗ ← 𝑋 

3: initialize probability of each destroy (𝜋𝑑 ) and repair (𝜋𝑟) operator to be applied 

4: while the stopping criterion is not met do 

5: probabilistically select a destroy and a repair operator, based on their weights 𝜋𝑑  and 𝜋𝑟  

6: apply the selected destroy and repair operator to 𝑋∗ solution 

7: 𝑋′ ← the new solution that has resulted from the selected destroy and repair operators 

8: if 𝑋′  satisfies the acceptance criterion then 

9: if 𝑐(𝑋′) ≤ 𝑐(𝑋∗) then 

10: 𝑋∗ ← 𝑋′  

11: readjust weights 𝜋𝑑  and 𝜋𝑟  

12: return 𝑋∗ 

 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

92 

 

time segment. The same equation is adapted in the case of repair operators and is given by, 

𝜋𝑡+1
𝑟 = 𝜋𝑡

𝑟(1 − 𝑤 𝑟) + 𝑤 𝑟 ∗ (𝑠𝑟

𝑖𝑟⁄ ). 

5.3.2.3 Destroy Operators 

In the current paper, six destroy and three repair operators are applied for improving the initially 

produced solution. Through this approach, and since the probability of each operator is 

calculated according to its success, the produced solution is greatly improved while stacking 

on local optimal is avoided. In addition, before selecting the destroy operators, multip le 

operators of the literature were tested. However, those that offer the best balance between 

computation speed and results were selected. More specifically, the destroy operators 

implemented in the current research are the i) random, ii) single route, iii) two routes, iv) 

distant, v) longer waiting time, and vi) least beneficial. Through these operators, customers are 

removed from the existing routes. The operators are analytically given below, for clarifying the 

way customers are selected and removed. 

Random Removal. In this operator, a specific number of customers (q) that will be removed 

from the existing solution is initially determined. Specifically, the customers are selected 

randomly in the random destroy operator and are then removed from the routes. The number q 

of the selected customers ranges and depends on the size of the problem, meaning the number 

of orders.  

Route Removal. As its name indicates an entire route is randomly selected in the single route 

destroy operator. Specifically, a route is destroyed and its customers aim to be inserted either 

to the existing routes or to a new lower cost vehicle. 

Distant Removal. The distant destroy operator aims to find the more distant customers from 

the previously served and the upcoming customer, and remove them from routes. Thus, for 

each customer j the total distance 𝑑𝑖𝑗 +  𝑑𝑗𝑘  is calculated, where i is the previously served 

customer and k the upcoming customer, as depicted in Figure 5.3.  

Waiting-time Removal. In the waiting-time removal, for each customer j the waiting time 𝑤𝑗 =

𝑒𝑗 − 𝑎𝑗 is calculated. As it has already defined in section 3, 𝑒𝑗  is the opening time of customer's 

j time window, and 𝑎𝑗  the arrival time at customer j. In both the distant and waiting-time destroy 

operator, the number q of the selected customers ranges and depends on the total number of 

orders. Consequently, the q worst customers, based on the two operators mentioned above, are 

selected and removed from routes. 

Two-routes removal. Additionally, in the two routes destroy operator, all customers that belong 

in the two routes are selected. All routes are evaluated according to the cost per load 

(𝑑𝑐𝑧 (𝑞0 + 𝑟0⁄ ), where 𝑑𝑐𝑧 = 𝑓𝑧 + 𝑣𝑧 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑧

(𝑖,𝑗)∈𝐴  is the distribution cost of route x, and 𝑞0 

the quantity on board when starting the route and 𝑟0 the quantity of goods on board when 

returning to the depot. That means that from a pool of routes with increased cost per load factor, 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

93 

 

two routes are selected randomly, and their customers are removed. The two routes are selected 

randomly from the pool to ensure that the solution will not stack in a local optimum since 

different routes may be selected in each iteration. 

 

Figure 5.3 Route Example and Sequence of Deliveries 

Uneconomical Removal. Finally, in the uneconomical destroy operator, customers are sorted 

according to factor u. For each customer j the factor 𝑢𝑗  is calculated by 𝑢𝑗 = 𝑐𝑖𝑗 𝑞𝑗⁄ + 𝑐𝑗𝑘 𝑟𝑗⁄ , 

where i is the previously served customer and k the upcoming customer, as depicted in Figure 

5.3. Moreover, 𝑐𝑖𝑗 indicates the cost for moving from customer i to j, 𝑐𝑗𝑘 the cost for moving 

from customer j to k, 𝑞𝑗  the delivery demand of customer j and 𝑟𝑗 the returned quantity. That 

means that for each customer the cost per unit, both for the delivered items (𝑐𝑖𝑗 𝑞𝑗⁄ ) and the 

collected (𝑐𝑗𝑘 𝑟𝑗⁄ ), is calculated, constituting the criterion for sorting customers. Additionally, 

in this operator, as in the rest destroy operators, the number q of the customers to be selected 

ranges and depends on the number of orders. Therefore, according to indicator u, the q "worst" 

customers, namely those with increased cost per unit, are selected and removed from routes.  

The "two routes" and the "least beneficial" destroy operators have been developed and adapted 

for the algorithm, which is its integration into the system. The specific operators may not be 

very efficient in datasets of the literature where not all these variables are considered but can 

be very efficient in real-life cases. However, for the algorithm to be efficient in any 

circumstance, multiple operators are developed and applied. Moreover, the ALNS can evaluate 

the operators according to their success and therefore apply the more productive, more often. 

5.3.2.4 Repair Operators 

After implementing a destroy operator, a repair method must be applied to reconstruct the 

solution. In the current research, three repair operators are implemented to find the best plan of 

routes and the schedule of deliveries, in terms of total distribution cost, by inserting the 

removed customers either into existing routes or into new routes. The repair operators that are 

applied in the current research are given below.  

i

j

k

, 

, 

, 

0, 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

94 

 

Cost insertion. The current repair operator works by inserting each customer into the position 

of the routes that the total distribution cost is minimized. The customer can even be positioned 

in a new route in the total cost is minimized. 

Cost insertion without creating new routes. The second operator also uses the same criterion 

and restricts the search into routes that do not increase the fixed cost of all routes. That means 

that no new route can be created for inserting customers. This can be violated only in cases that 

there is no alternative and consequently a removed customer cannot be inserted into an existing 

route. In this case, the current operator is transformed into the cost insertion. 

Traveled distance insertion. The third repair operator aims to place customers in the route and 

sequence, that the total traveled distance is minimized.  

Finally, as in the case of destroy operators, multiple repair operators exist for avoiding stacking 

on local optimum, with the probabilities of the operators to be adapted according to their 

success to improve the solution. A repairing case with a single unrouted customer is depicted 

in Figure 5.4. The repair operator affects in a great extent in which route and sequence the 

customer will be placed. 

 

Figure 5.4 Repair of a Destroyed Solution 

5.4 Computational Study – Case Studies 

5.4.1 Datasets of the Literature 

Before integrating the metaheuristic algorithm into the system, the algorithm was tested in 

datasets of the literature. The fact that there is no dataset considering all the VRP variants that 

are studied in the current research simultaneously, led us to address multiple datasets. Through 

this approach, the algorithm's efficiency can be better estimated as the algorithm is tested in 

multiple well-known datasets, and the results are compared to the best-published in the 

literature.  

0 0

Unrouted Customers

Routed Customers

Destroyed Solution Repaired Solution



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

95 

 

The study and validation of the algorithm starts with the HVRP that is divided into two main 

categories, (i) the fleet size and mix vehicle routing problem (FSMVRP) and (ii) the 

heterogeneous fixed fleet vehicle routing problem (HFVRP), or as it is otherwise known, the 

vehicle routing problem with a heterogeneous fleet of vehicles (VRPHE). The FSMVRP was 

introduced by Golden et al. (1984) and works with an unlimited number of available vehicles 

of each type. On the other hand, the HFVRP was introduced by Taillard (1999) and works with 

a limited number of available vehicles of each type. In both cases, the objective is to minimize 

the total distribution cost that is formed by the fixed (F) and variable (V) vehicle costs.  

Moreover, the FSMVRP is further categorized according to the vehicle costs that are 

considered. More specifically, three different cases have been created, (i) the FSMVRP-F 

Golden et al. (1984), that only fixed costs are considered (while the variable cost is the same 

for each type of vehicles), (ii) the FSMVRP-V Taillard (1999), that only variable costs are 

considered, and (iii) the FSMVRP-FV (Ferland and Michelon 1988) that both fixed and 

variable vehicle costs are considered. In each of the three cases, all types of vehicles have 

different capacities and an unlimited number of available vehicles. 

Over the years, only a few researchers have tried to solve the VRP that simultaneous ly 

considers heterogeneous vehicles and time windows. Liu and Shen (1999) were the first to 

tackle the FSMVRP with time windows (FSMVRPTW), by reclaiming Solomon's VRPTW 

benchmark instances. However, this variant only considers different capacities and fixed costs 

for each vehicle type, while no variable costs and no limited number of available vehicles are 

considered, greatly simplifying the problem. With this opportunity, multiple researchers 

addressed the HFVRP with time windows (HFVRPTW), as it considers characteristics that did 

not previously faced. Most papers proposing algorithms for addressing the HFVRPTW, focus 

on real-life applications, while Jiang et al. (2014) were the first that reclaimed Solomon's 

VRPTW benchmark instances for creating a dataset for the HFVRPTW. In the current study, 

the algorithm is tested in all of these datasets and in real-life distribution cases to obtain a more 

comprehensive view of the algorithm. In the subsections that follow, the results of each of the 

dataset testing are presented. 

It should be noted that the datasets mentioned above only cover the variants of vehicle 

heterogeneity and time windows without considering simultaneous pickups and deliveries. 

Therefore, to validate the algorithm in this variant, the dataset of Salhi and Nagy (1999) that 

includes 14 problem instances was exploited. This way, the algorithm's efficiency was tested 

in every variant considered in the research. 

5.4.1.1 FSMVRP 

Starting with the FSMVRP, three cases were solved, FSMVRP-F, FSMVRP-FV and 

FSMVRP-V. Each problem instance runs ten times, and from each, we exclude the average 

value and the best-obtained. Moreover, regardless of the case, the algorithm presents similar 

results as the mean deviation between the best-published and the best-obtained results in 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

96 

 

FSMVRP-F is 2.02%, in FSMVRP-FV is 3.18%, and finally in FSMVRP-V it is 1.90%. 

Additionally, the results obtained from the algorithm in each case instance are thoroughly 

presented in Tables 5.1, 5.2 & 5.3 and are also compared to the best-published ones from the 

literature. Finally, the deviation of any of the problem instances does not exceed 5.95%, which 

is an essential factor that confirms the efficiency of the algorithm in this specific dataset. 

Table 5.1 FSMVRP-F Dataset Results 

Problem Best-published References Best-obtained Avg. Value Deviation 

13 2406.36 (Choi and Tcha 2007) 2480.15 2505.46 3.07% 

14 9119.03 (Choi and Tcha 2007) 9153.82 9199.63 0.29% 

15 2586.37 (Choi and Tcha 2007) 2600.68 2606.80 0.55% 

16 2720.43 (Choi and Tcha 2007) 2801.26 2817.26 2.97% 

17 1744.83 (Choi and Tcha 2007) 1789.9 1823.9 2.58% 

18 2371.49 (Choi and Tcha 2007) 2512.63 2512.63 5.95% 

19 8661.81 (Taillard 1999) 8880.12 8908.03 2.52% 

20 4039.49 (Choi and Tcha 2007) 4175.62 4215.58 3.37% 

Avg. 4212.04 - 4299.935 4331.14 2.02% 

 

Table 5.2 FSMVRP-V Dataset Results 

Problem Best-Published References Best-obtained 
Avg. 

Value 
Deviation 

13 1491.86 (Gendreau et al. 1999) 1568.21 1574.25 5.12% 

14 603.21 (Taillard 1999) 630.25 634.86 4.48% 

15 999.82 (Gendreau et al. 1999) 1025.63 1028.51 2.58% 

16 1131 (Wassan and Osman 2002) 1149.25 1172.52 1.61% 

17 1031 (Gendreau et al. 1999) 1059.6 1065.35 2.77% 

18 1801.4 (Gendreau et al. 1999) 1848.52 1854.52 2.62% 

19 1100.56 (Wassan and Osman 2002) 1153.25 1158.33 4.79% 

20 1530.16 (Wassan and Osman 2002) 1575.84 1585.74 2.99% 

Avg. 1212.72 - 1251.31875 1259.26 3.18% 

 

Table 5.3 FSMVRP-FV Dataset Results 

Problem Best-Published References Best-obtained Avg. Value Deviation 

13 2964.65 (Choi and Tcha 2007) 3099.25 3156.51 4.54% 

14 9126.9 (Choi and Tcha 2007) 9153.82 9166.31 0.29% 

15 2634.96 (Choi and Tcha 2007) 2674.32 2683.25 1.49% 

16 3168.92 (Choi and Tcha 2007) 3193.19 3205.45 0.96% 

17 2004.48 (Tarantilis et al. 2004b) 2068.74 2087.56 3.21% 

18 3147.99 (Choi and Tcha 2007) 3201.56 3241.32 1.70% 

19 8664.29 (Choi and Tcha 2007) 8869.32 8917.41 2.37% 

20 4154.49 (Choi and Tcha 2007) 4289.37 4312.52 3.25% 

Avg. 4484.09 - 4450.69 4609.95375 1.90% 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

97 

 

5.4.1.2 FSMVRPTW 

As it has already been mentioned, Liu and Shen (1999) deployed and combined the dataset of 

Golden et al. (1984) for the FSMVRP, and the dataset of Solomon for the VRPTW with 100 

customers. The dataset proposed by Solomon includes sets:  

• C1 and C2, with geographically clustered customers  

• RC1 and RC2, in which a mix of random and clustered structures is included 

• R1 and R2 in which geographical data are randomly generated 

As observed in column "Instance Set" next to each set letter (C, RC and R) there is an index (1 

or 2). Index 1 in C, RC and R sets indicates a short scheduling horizon, narrow time windows, 

and low vehicle capacities. On the contrary, index 2 indicates that the sets have a long 

scheduling horizon, wide time windows, and high vehicle capacities. Liu and Shen (1999) also 

added in this column three cost structures A, B, and C that are characterized by different fixed 

vehicle costs. A structure includes the highest fixed cost, while C the minimum. Finally, the 

variable cost in each problem instance, and regardless of the vehicle type, is equal to 1. 

Table 5.4 presents the summarized results of the proposed ALNS algorithm when tested in the 

FSMVRPTW dataset of Liu and Shen (1999). The best-obtained results that have emerged 

from ten runs of the algorithm are compared to the best-obtained from the HEA (Koç et al. 

2015), MDA (Bräysy et al. 2008), BPDRT (Bräysy et al. 2009), UHGS (Vidal et al. 2014) and 

MSDA (Jiang et al. 2014), as these studies propose the best-published results from the 

literature. The first column indicates the instance set, as well as the number of cases tested. The 

columns TC show the average total cost of each method (including the proposed ALNS) for 

each instance set and column Dev. the percent deviation of the values exploited by each method 

compared to the proposed ALNS method. Finally, in the column (BKS <) the number of 

instances that the ALNS algorithm performed better results compared to all the methods were 

defined. 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

98 

 

T
ab

le
 5

.4
 S

u
m

m
ar

iz
ed

 R
es

u
lt

s 
o

n
 t
h

e 
F

S
M

V
R

P
T

W
 

 

In
st

an
ce

 

S
et

 

M
D

A
 

B
P

D
R

T
 

U
H

G
S

 
H

E
A

 
M

S
D

A
 

 
A

L
N

S
 

B
K

S
 

T
C

 
D

ev
. 

T
C

 
D

ev
. 

T
C

 
D

ev
. 

T
C

 
D

ev
. 

T
C

 
D

ev
. 

T
C

 
<

 

R
1

A
 (

1
2

) 
4

0
6

8
.5

9
 

7
.3

2
%

 
4

0
6

0
.9

6
 

7
.5

2
%

 
4

0
3

1
.2

8
 

8
.3

1
%

 
4

0
4

1
.4

6
 

8
.0

4
%

 
4

0
6

4
.2

5
 

7
.4

3
%

 
4

3
6

6
.3

3
 

0
 

R
1

B
 (

1
2

) 
1

8
5

4
.6

0
 

8
.2

7
%

 
- 

- 
1

8
4

1
.4

3
 

9
.0

5
%

 
1

8
3

9
.4

0
 

9
.1

7
%

 
1

8
5

4
.5

5
 

8
.2

8
%

 
2

0
0

8
.0

6
 

0
 

R
1

C
 (

1
2

) 
1

5
3

9
.4

8
 

8
.7

9
%

 
1

5
3

9
.9

0
 

8
.7

6
%

 
1

5
3

0
.2

5
 

9
.4

5
%

 
1

5
2

5
.5

6
 

9
.7

8
%

 
1

5
3

9
.4

8
 

8
.7

9
%

 
1

6
7

4
.8

2
 

0
 

C
1

A
 (

9
) 

7
0

8
5

.5
6

 
8

.8
3

%
 

7
0

8
5

.9
1

 
8

.8
3

%
 

7
0

8
2

.9
8

 
8

.8
7

%
 

7
0

8
2

.9
8

 
8

.8
7

%
 

7
0

8
5

.5
6

 
8

.8
3

%
 

7
7

1
1

.3
0

 
0

 

C
1

B
 (

9
) 

2
3

3
5

.1
1

 
6

.1
7

%
 

- 
- 

2
3

3
2

.9
0

 
6

.2
7

%
 

2
3

3
2

.9
0

 
6

.2
7

%
 

2
3

3
5

.1
1

 
6

.1
7

%
 

2
4

7
9

.2
8

 
0

 

C
1

C
 (

9
) 

1
6

1
5

.7
5

 
6

.2
0

%
 

1
6

1
5

.4
0

 
6

.2
3

%
 

1
6

1
5

.4
9

 
6

.2
2

%
 

1
6

1
5

.3
9

 
6

.2
3

%
 

1
6

1
5

.7
5

 
6

.2
0

%
 

1
7

1
5

.9
7

 
0

 

R
C

1
A

 (
8

) 
4

9
4

4
.4

8
 

6
.3

5
%

 
4

9
3

5
.5

2
 

6
.5

5
%

 
4

8
9

1
.2

5
 

7
.5

1
%

 
4

9
1

6
.4

1
 

6
.9

6
%

 
4

9
4

4
.4

8
 

6
.3

5
%

 
5

2
5

8
.6

0
 

0
 

R
C

1
B

 (
8

) 
2

1
2

1
.6

2
 

-3
.0

1
%

 
- 

- 
2

1
0

7
.0

8
 

-2
.3

4
%

 
2

1
0

3
.2

1
 

-2
.1

6
%

 
2

1
2

1
.6

2
 

-3
.0

1
%

 
2

0
5

7
.7

4
 

6
 

R
C

1
C

 (
8

) 
1

7
4

1
.7

8
 

7
.3

4
%

 
1

7
4

9
.6

6
 

6
.8

6
%

 
1

7
3

4
.3

6
 

7
.8

0
%

 
1

7
2

5
.4

4
 

8
.3

6
%

 
1

7
4

1
.7

8
 

7
.3

4
%

 
1

8
6

9
.6

1
 

0
 

R
2

A
 (

1
1

) 
3

1
9

3
.4

1
 

3
.8

0
%

 
3

1
8

0
.5

9
 

4
.2

2
%

 
3

1
5

1
.9

5
 

5
.1

7
%

 
3

1
5

0
.3

0
 

5
.2

2
%

 
3

1
9

3
.3

9
 

3
.8

0
%

 
3

3
1

4
.8

9
 

0
 

R
2

B
 (

1
1

) 
1

3
9

2
.9

2
 

6
.1

1
%

 
- 

- 
1

3
5

1
.9

1
 

9
.3

2
%

 
1

3
5

1
.5

1
 

9
.3

6
%

 
1

3
9

2
.9

2
 

6
.1

1
%

 
1

4
7

7
.9

6
 

1
 

R
2

C
 (

1
1

) 
1

1
4

9
.6

5
 

6
.2

2
%

 
1

1
4

9
.1

1
 

6
.2

7
%

 
1

1
2

8
.7

1
 

8
.1

9
%

 
1

1
2

6
.4

2
 

8
.4

1
%

 
1

1
4

9
.6

5
 

6
.2

2
%

 
1

2
2

1
.1

6
 

0
 

C
2

A
 (

8
) 

5
6

9
0

.8
7

 
5

.1
9

%
 

5
6

8
9

.4
0

 
5

.2
1

%
 

5
6

8
6

.7
5

 
5

.2
6

%
 

5
6

8
6

.7
5

 
5

.2
6

%
 

5
6

9
0

.8
7

 
5

.1
9

%
 

5
9

8
5

.9
6

 
0

 

C
2

B
 (

8
) 

1
6

9
8

.5
1

 
6

.9
3

%
 

- 
- 

1
6

8
6

.7
5

 
7

.6
7

%
 

1
6

8
6

.7
5

 
7

.6
7

%
 

1
6

9
8

.5
1

 
6

.9
3

%
 

1
8

1
6

.1
9

 
0

 

C
2

C
 (

8
) 

1
1

8
6

.0
3

 
6

.7
6

%
 

1
1

8
5

.7
0

 
6

.7
9

%
 

1
1

8
5

.1
9

 
6

.8
4

%
 

1
1

8
5

.1
9

 
6

.8
4

%
 

1
1

8
6

.0
3

 
6

.7
6

%
 

1
2

6
6

.2
0

 
0

 

R
C

2
A

(8
) 

4
2

4
1

.3
3

 
4

.6
3

%
 

4
2

3
1

.2
5

 
4

.8
8

%
 

4
2

1
0

.1
0

 
5

.4
1

%
 

4
2

0
2

.6
1

 
5

.6
0

%
 

4
2

4
1

.3
3

 
4

.6
3

%
 

4
4

3
7

.8
9

 
0

 

R
C

2
B

(8
) 

1
7

0
4

.1
3

 
8

.1
7

%
 

- 
- 

1
6

8
6

.6
3

 
9

.2
9

%
 

1
6

8
6

.4
7

 
9

.3
0

%
 

1
7

0
3

.3
8

 
8

.2
2

%
 

1
8

4
3

.3
2

 
0

 

R
C

2
C

(8
) 

1
3

7
4

.5
5

 
8

.6
1

%
 

1
3

8
5

.3
2

 
7

.7
7

%
 

1
3

5
8

.2
4

 
9

.9
2

%
 

1
3

5
9

.3
3

 
9

.8
3

%
 

1
3

7
4

.5
5

 
8

.6
1

%
 

1
4

9
2

.9
7

 
0

 

 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

99 

 

The developed ALNS algorithm seems highly competitive given the results, as the deviation 

in all instance sets does not exceed 8.83%. Additionally, in set RC1B it managed to offer better 

solutions in 6 instances, while in set R2B in 1 of them. Finally, irrespective of the instance set, 

the clustering of customers or the time windows width, the ALNS algorithm performs equally 

well judging from the similar deviation in each instance set. 

5.4.2 HFVRP 

5.4.2.1 HFVRP 

The dataset of Taillard (1999) came a few years later than the one of Golden et al. (1984) and 

has attracted the interest of various researchers. Many consider that the limited number of 

available vehicles of each type seems to be a more realistic scenario for logistics operations. 

Therefore, the ALNS algorithm was also tested in this dataset, as shown in Table 5.5, and 

managed to produce a new best-published result in Problem Instance 16, as it reduced the total 

cost slightly by 0.06%. In the rest Problem Instances, the algorithm indicates good quality 

results, with the deviation ranging from 1.34% up to 7.85%, as shown in Table 5.5. Specifically, 

each problem runs 10 times, and from these runs emerge both the best-obtained results and the 

average value. 

Table 5.5 HFVRP Dataset Results 

 Problem Best-Published References Best-obtained 
Avg. 
Value 

Deviation 

13 1517.84 (Li et al. 2007) 1538.12 1547.92 1.34% 

14 607.53 (Li et al. 2007) 620.38 622.44 2.12% 

15 1015.29 (Tarantilis et al. 2004b) 1044.24 1050.34 2.85% 

16 1144.94 (Li et al. 2007) 1144.23 1150.25 -0.06% 

17 1061.96 (Li et al. 2007) 1100.13 1106.40 3.59% 

18 1823.58 (Li et al. 2007) 1891.25 1920.95 3.71% 

19 1117.51 (Taillard 1999) 1205.23 1223.73 7.85% 

20 1534.17 (Li et al. 2007) 1602.42 1613.14 4.45% 

Avg. 1228.21  1268.25 1297.84 3.23% 

5.4.2.2 HFVRPTW 

The last dataset that the ALNS algorithm was tested is Jiang et al. (2014). The authors derived 

Solomon's dataset and created different vehicle types characterized by their capacity, fixed and 

variable cost, number of available vehicles, and the latest returning time to the depot. The 

ALNS algorithm can manage all the above characteristics, including the latest returning time 

that can be considered as the end of the drivers' shifts. While seeming to be the closest one to 

real-life distribution cases, this dataset has yet to attract the interest of researchers it deserves. 

The proposed ALNS algorithm performs highly efficiently as, in 9 out of the 56 instances that 

exist, it proposes new best solutions, as seen in Table 5.6. The best-obtained result of each 

problem case results from 10 runs of the algorithm. Furthermore, all these instances range from 

-5.64% up to 7.57, with the mean deviation being 2.19%. Considering the heterogeneity of the 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

100 

 

data, the algorithm performs with high efficiency even in cases where multiple variables and 

constraints are simultaneously considered. 

 

Table 5.6 HFVRPTW Dataset Results 

Problem 
Case 

Best-

Published 

Best-

Obtained 
Dev. 
(%) 

Problem 
Case 

Best-

Published 

Best-

Obtained 
Dev. 
(%) 

Total Cost Total Cost Total Cost Total Cost 

HC101 1885.33 1908.24 1.22 HR112 4252.71 4441.68 4.44 

HC102 1890.66 1848.43 -2.23 HR201 1765.74 1666.2 -5.64 

HC103 1908.04 1852.11 -2.93 HR202 1536.81 1517.77 -1.24 

HC104 1809.78 1841.47 1.75 HR203 1337.39 1374.59 2.78 

HC105 1854.73 1865.86 0.60 HR204 1114.94 1156.57 3.73 

HC106 1880.64 1929.07 2.58 HR205 1263.91 1314.19 3.98 

HC107 1839.52 1847.95 0.46 HR206 1180.44 1221.39 3.47 

HC108 1826.49 1830.6 0.23 HR207 1102.06 1159.41 5.20 

HC109 1799.22 1878.54 4.41 HR208 1007 1052.89 4.56 

HC201 1313.28 1341.41 2.14 HR209 1119.04 1190.51 6.39 

HC202 1283.58 1273.89 -0.75 HR210 1307.53 1293.28 -1.09 

HC203 1259.97 1287.54 2.19 HR211 1010.22 1086.68 7.57 

HC204 1256.09 1254.25 -0.15 HRC101 5703.97 5864.28 2.81 

HC205 1325.84 1349.77 1.80 HRC102 5556.02 5739.09 3.29 

HC206 1263.63 1286.34 1.80 HRC103 5438.89 5560.29 2.23 

HC207 1307.35 1326.54 1.47 HRC104 5331.41 5485.83 2.90 

HC208 1190.81 1238.6 4.01 HRC105 5705.79 5923.23 3.81 

HR101 5125.252 5190.83 1.28 HRC106 5528.42 5763.65 4.25 

HR102 4982.39 4976.31 -0.12 HRC107 5451.31 5559.39 1.98 

HR103 4661.22 4764.39 2.21 HRC108 5322.31 5447.13 2.35 

HR104 4530.55 4640.73 2.43 HRC201 4501.65 4607.61 2.35 

HR105 4570.39 4802.39 5.08 HRC202 4408.53 4483 1.69 

HR106 4431.31 4621.01 4.28 HRC203 4321.87 4305.16 -0.39 

HR107 4391.14 4519.26 2.92 HRC204 4306.65 4284.38 -0.52 

HR108 4280.05 4508.36 5.33 HRC205 4452.88 4578.74 2.83 

HR109 4339.86 4581.27 5.56 HRC206 4419.09 4439.73 0.47 

HR110 4272.25 4474.73 4.74 HRC207 4343.55 4423.39 1.84 

HR111 4366.32 4533.23 3.82 HRC208 4276.15 4286.65 0.25 

5.4.3 VRPSPD 

The testing of the algorithm in VRPSPD constitutes an equally important stage of the 

algorithm's validation. The dataset of Salhi and Nagy (1999) is the only one of the studied 

datasets that address the VRPSPD. Consequently, this specific dataset is addressed 

individually, and the testing results are presented in Table 5.7. In this table, for each problem 

instance, the results obtained by the ALNS algorithm after ten runs are given in the 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

101 

 

homonymous column, along with the best-published results. Once again, the results validate 

the algorithm's efficiency since the mean deviation between the obtained and best-published 

solutions is just 3.72%. Finally, in all problem instances, the deviation (column "Deviation 

(%)") between the solution obtained by the ALNS algorithm and the best-published ones does 

not exceed 6.18%.  

Table 5.7 Comparing Routing Methods in Real-life Distribution Cases 

Problem 

Instance 

ALNS Best-published 
Deviation (%) 

NV TD NV TD 

CMT1X 3 467.85 3 467 0.18% 

CMT2X 7 700.35 7 676 3.60% 

CMT3X 5 733.8269 5 703 4.39% 

CMT4X 7 869.23 7 847 2.62% 

CMT5X 11 1087.28 10 1025 6.08% 

CMT6X 5 588.33 6 557 5.62% 

CMT7X 9 973.3 11 919 5.91% 

CMT8X 9 898.25 9 896 0.25% 

CMT9X 15 1234.96 15 1215 1.64% 

CMT10X 19 1613.2 19 1571 2.69% 

CMT11X 4 904.52 4 868 4.21% 

CMT12X 5 708.21 5 667 6.18% 

CMT13X 11 1603.5 11 1560 2.79% 

CMT14X 10 874.52 10 826 5.87% 

5.5 The Case of Collaborative Logistics 

5.5.1 Benefits by Applying the ALNS to the Collaborative VRP 

As stated in Chapter 2, the Multi-depot VRP and the Collaborative VRP are among the most 

commonly addressed variants. However, through the cooperation with logistics and software 

development companies, it was decided to avoid integrating any of these variants to the system, 

as it would get out of scope. That is mainly because the MDVRP is addressed in most cases as 

multiple single-depot cases, in which customers are assigned into a specific warehouse. As for 

the Collaborative VRP, the ground is not fertile for such actions yet. However, since new 

approaches need to be made for reducing the distribution cost and emissions, the case of 

collaboration is studied. 

Let us just consider that a few years ago, logistics companies, city inhabitants and consumers 

would have been satisfied with just accurate (on-time) and low-cost deliveries, as they 

constitute the main goals in distribution for these parties. However, in the current state, where 

the reduction of traffic congestion and air pollution in city centers have gained increased 

priority for all stakeholders (Xiao and Konak 2016), new technologies, applications (Kechagias 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

102 

 

et al. 2020a) and strategies (Kechagias et al. 2020b) are needed to be implemented, for 

satisfying the needs of all parties involved. In this direction, companies could share their 

resources, such as their vehicles, to reduce logistics costs and minimize the environmental 

impact of the last-mile distribution process. This strategy is either known as logistics pooling 

or collaborative logistics (Wang et al. 2018) and has been implemented in multiple cases 

worldwide (Rodrigues et al. 2018). 

In Athens, Greece, collaborative logistics was by no means a common strategy, preferred by 

logistics and distribution companies in the past. The logistics companies were not keen on 

sharing information, software tools, and platforms, which becomes essential when sharing their 

vehicles. This stance stems from the lack of openness and spirit of cooperation and has been 

the main reason for pushing away the idea of synergies. However, the stance against the 

collaborative routing of vehicles and scheduling of deliveries seems to change, as companies 

have started to recognize its benefits. These benefits are mainly related to the reduction of 

distribution costs and greenhouse gas emissions and the increase of competitiveness. 

In the present thesis, the prevailing conditions of the distribution of goods from 3PL companies 

to customers located in city centers, are presented, along with the concept of collaboration 

between these companies. Figure 5.5 presents both cases and describes that companies located 

in the same area organize and execute routes separately in the existing situation. On the other 

hand, according to the proposed concept, shared vehicles that receive goods from the 

warehouses of multiple companies execute routes that serve all customers. While the main 

benefit seems to be the decrease of needed vehicles at first sight, this cannot be thought as de-

facto without conducting further analysis. Therefore, to enhance the research, and extract more 

accurate and precise results, real-life distribution cases of three 3PL companies need to be 

analyzed.  

  
Figure 5.5 (a) Current State Prevailing on most 3PL Companies in Greece. (b) Proposed Collaborative Strategy 

More specifically, the benefits from the transition from the current state to collaborative 

logistics are estimated and calculated through the metaheuristic algorithm presented in the 

previous sections of Chapter 5. In the AS-IS scenario, the developed algorithm solves for each 

company separately, multiple daily distribution cases. On the contrary, in the collaborative 

(a) (b)



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

103 

 

routing and scheduling scenario, the daily distribution cases of all companies are united, 

forming a larger daily distribution case. In this case, the vehicles involved in the distribution 

originate from all 3PL companies and may need to load goods from all warehouses before 

executing the routes and the schedule of deliveries.  

The 3PL companies, when operating separately, combine and consider specific variants which 

are (i) the Heterogeneous Fleet VRP (HFVRP), in which vehicles are different in terms of 

capacity, fixed and variable costs (Subramanian et al. 2012), (ii) the VRP with Time Windows 

(VRPTW), that customers indicate time slots in which vehicles may arrive and start serving 

(de Oliveira and Vasconcelos 2010; Konstantakopoulos et al. 2020b), and (iii) the VRP with 

Simultaneous Pickups and Deliveries (VRPSPD). These are the variants that are considered in 

the proposed ALNS algorithm. In the synergy distribution cases, the Collaborative VRP 

(CVRP) (Gansterer and Hartl 2018) is also considered, along with the previous variants. This 

means that all the above characteristics and requirements exist, along with the fact that the 

resources, vehicles and deliveries of multiple companies are combined. The aim in both cases 

is to minimize the total distribution cost while all constraints are respected. 

5.5.2 Collaborative Logistics and VRP Variants 

The highly competitive industry of logistics and distribution forces companies to find efficient 

solutions in order to either maintain their position in business or expand it. These solutions may 

range from advanced information systems, algorithms and new technologies to collaborations 

between companies, or even to the combination of those. In addition, while technological 

solutions are most often preferred by companies due to their efficiency, their cost is sometimes 

prohibitive, leading companies to other solutions. On this premise, and due to the increased 

demands and orders in urban areas, logistics companies plan specific logistics processes jointly.  

Route planning constitutes an operation that belongs in the specific category of supply chain 

collaborations. However, a prerequisite in order logistics companies to collaborate in route 

planning is to perform similar logistics processes and functions and operate at the same level 

in a supply chain (Verdonck et al. 2013; Ferrell et al. 2020). Researchers identify this type of 

collaboration as horizontal (Pan et al. 2019; Santos et al. 2021b). On the other hand, the case 

in which multiple stakeholders (manufacturers, suppliers, distribution centers, carriers, 

customers etc.), that operate in different levels in a supply chain collaborate, is identified as 

vertical (Cleophas et al. 2019; Santos et al. 2021a). Both types of collaboration can be 

beneficial for companies and improve operational planning, but they focus on different aspects 

of a supply chain. 

In the current chapter of the thesis, the horizontal collaboration between three 3PL companies 

in the routing and distribution process is studied. This means that the customer requests of all 

companies that represent a shipment either from the distribution center of the company to the 

customer or the opposite are shared, along with their resources (vehicles). These variables 

define to a great extent the joint vehicle routing problem that can also be mathematically 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

104 

 

formulated. Soysal et al. (2018)  and Montoya-Torres et al. (2016) proposed such models and 

concluded that joint route planning offers significant reduction in the distribution cost and 

emissions. However, multiple factors may influence this reduction, such as the size of orders, 

the number of collaborating companies, as well as the variables and constraints considered in 

the routing procedure (Cruijssen and Salomon 2004). That is why defining the variants of the 

VRP that are involved in the routing process is very important. 

More specifically, in the Collaborative VRP researchers focus on the multiple depots that exist, 

since each logistics company has its central depot. Due to this fact, many researchers consider 

the CVRP an extension of the Multi-depot VRP (MDVRP) (Krajewska et al. 2008; Karakatič 

and Podgorelec 2015; Montoya-Torres et al. 2015), where additional resources and orders are 

shared. In the current research, the Collaborative VRP is formulated as a multi-depot routing 

case. Additionally, the variants of the VRP presented in the previous sections of Chapter 5, are 

also the variables and constraints that the studied 3PL companies consider in their operations. 

The main difference compared to the variables considered in the previous sections of Chapter 

5 is that in each vehicle, the CO2 emissions are considered, while all drivers operate in the same 

shift. 

In conclusion, all the above variables and constraints derived from the 3PL companies are 

considered in this study and included in the mathematical formulation of the next section. More 

specifically, the customer requests and the resources of logistics companies are gathered in a 

central pool (Verdonck et al. 2013). The collaboration strategy is formulated as a multi-depot 

vehicle routing problem with a heterogeneous fleet of vehicles, simultaneous pickups and 

deliveries, and time windows. As in most VRP variants, this problem aims to minimize the 

total distribution cost by defining the fleet composition and the specific schedule of deliveries 

in each route (Laporte 2007). This effort is enhanced by the ALNS algorithm that handles all 

these variables and constraints, aiming to offer efficient and sustainable routes. 

5.5.3 Problem Description 

In this class of VRP variants that are studied in the current Chapter, the set of depots 

(warehouses) D, as well as the set of customers N need to first be defined. The set 𝐺 = 𝐷 ∪ 𝑁 

defines the entire set, while 𝐴 = {(𝑖, 𝑗): 𝑖 ≠ 𝑗 ∈ 𝐺}, the set of arcs. Each arc (i, j), which is a 

path from i to j, is characterized by the distance 𝑑𝑖𝑗, and by the travel time 𝑡𝑖𝑗. Each customer 

i is associated with a demand for deliveries 𝑟𝑖, a demand for pickups 𝑝𝑖, a service time 𝑠𝑖, and 

a time window [𝑒𝑖, 𝑙𝑖]. The depots also have time windows which are emerged by the working 

hours of the logistics center. In each case, a vehicle may arrive before the start of the time 

window 𝑒𝑖 , and may have to wait until it opens, but never after the end of the time window, 𝑙𝑖. 

In addition, the fleet of vehicles is represented by set K, while each vehicle 𝑘 ∈ 𝐾 is 

characterized by its capacity 𝑄𝑘 , its variable cost 𝑣𝑘  and its fixed costs 𝑓𝑘 . In each route, and 

consequently in each vehicle, the goods on board can in no case, as well as in no stage of the 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

105 

 

distribution process, to exceed the vehicle’s capacity. Therefore, in each customer, both the 

delivered and the collected quantity of goods must be considered. All these variables, along 

with the limitations, make the studied problem complex and hard to solve. 

In the current state, each 3PL company has a single depot, and manages the data of customers 

and vehicles itself. On the other hand, in the case of Collaborative VRP, the depots come from 

the 3PL companies that cooperate, while the data of vehicles and customers of the cooperating 

companies are being united, forming problem of bigger size. However, the mathematical 

formulation remains the same, irrespective of the case, and is given below. 

 

∑ ∑ ∑ 𝑥𝑖𝑗
𝑘 ∙ 𝑓𝑘

𝑗∈𝑁𝑖 ∈𝐷𝑘∈𝐾

+ ∑ ∑ 𝑑𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑘 ∙ 𝑣𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐾

 (5.15) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑖∈𝐷

≤ 1, ∀𝑘 ∈ 𝐾 (5.16) 

∑ 𝑥𝑖𝑙
𝑘

𝑖∈𝐺

− ∑ 𝑥𝑙𝑗
𝑘

𝑗∈𝐺

= 0, ∀𝑙 ∈ 𝑁, 𝑘 ∈ 𝛫 (5.17) 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁

= 1, ∀𝑖 ∈ 𝐺, 𝑘 ∈ 𝛫 (5.18) 

∑(𝑢𝑖𝑗
𝑘 − 𝑟𝑗 + 𝑝𝑗) ∙ 𝑥𝑖𝑗

𝑘 ≤ Q𝑘

𝑗∈𝐺

, ∀𝑖 ∈ 𝐺, 𝑘 ∈ 𝛫 (5.19) 

∑ 𝑢𝑖𝑗
𝑘 ≤ Q𝑘 , ∀𝑖 ∈ 𝐷, 𝑘 ∈ 𝛫

𝑗∈𝑁

 (5.20) 

∑ 𝑢𝑖𝑗
𝑘 ≤ Q𝑘 , ∀𝑗 ∈ 𝐷, 𝑘 ∈ 𝛫

𝑖∈𝑁

 (5.21) 

𝑒𝑖  ≤ 𝑎𝑖
𝑘 + 𝑤𝑖

𝑘 ≤ 𝑙𝑖, ∀𝑖 ∈ 𝐺, 𝑘 ∈ 𝛫 (5.22) 

𝑥𝑖𝑗
𝑘 ∈ {0,1}, (𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝛫 (5.23) 

𝑢𝑖𝑗
𝑘 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝛫 (5.24) 

The objective function (5.15) seeks to minimize the total distribution cost, that consists of the 

fixed and variable costs of all routes. Inequality (5.16) ensures that each vehicle starts from one 

of the available depots (if multiple exist, such as in the Collaborative VRP), while equations 

(5.17) and (5.18) that each customer is served only once and by one vehicle. Constraints (5.19), 

(5.20) and (5.21) ensure that the load of goods in every stage of the distribution process, 

including the departure from the depot and the return to the depot, cannot exceed the vehicle’s 

capacity. Constrain (5.22) ensures that each vehicle cannot start serving any customer before 

the time window starts or after its close. Finally, the decision variable 𝑥𝑖𝑗
𝑘  is equal to 1, if the 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

106 

 

route from i to j is executed, 𝑢𝑖𝑗
𝑘  is the load on vehicle k and on arc (i, j), while 𝛼𝑖

𝑘  is the arrival 

time of vehicle k at customer i, and 𝑤𝑖
𝑘 the waiting time of vehicle k at customer i.  

5.5.4 Case Studies 

The need of companies to reduce both their distribution costs and their environmental footprint 

has led researchers and practitioners to search for new strategies to achieve these goals. The 

collaborative VRP studied in the current research can manage both factors and enhance this 

effort. The data that are essential for addressing the problem is exploited from three medium-

size 3PL companies. All companies are located in Mandra, a suburb in the western area of 

Athens, Greece, and distribute goods in the city center. Therefore, their cases can offer 

significant results concerning collaborations between companies in their distribution 

operations. 

Initially, the distribution cost and the CO2 emissions are calculated for each company, and for 

numerous daily distribution cases that each company addresses, separately. However, since the 

three companies distribute goods in Athens, the daily distribution cases that each company 

faces, are also combined producing a single daily case, with multiple depots, shared vehicles, 

and customer data resulting from all companies, in order to form the case of collaborative 

logistics. The distribution cost and the CO2 emissions are additionally calculated, and the 

results are compared to those exploited from the first case to estimate the benefits of this  

strategy. 

In order to create the schedule of deliveries, as well as to calculate the distribution cost and the 

total emissions, multiple data are needed. These data originate and are related to both the 

customers and the vehicles and are used either as variables or as restrictions of the vehicle 

routing and scheduling problem.  

Concerning the customers, each one separately is characterized by his ID number, address, the 

delivery and pickup quantity, and time window, as shown in Table 5.8. The addresses are  

essential for extracting all the necessary distances and travel times between customers 

(including the depots). For creating the distance and travel time matrices, online services are 

exploited. More specifically, these services, including geocoding and distance and travel time 

calculation, are offered by HERE Technologies (www.here.com). All these data, along with 

the delivery and pickup quantities, as well as with the time windows, are further exploited by 

the heuristic algorithm as variables and constraints of the problem for optimizing the plan of 

routes and schedule of deliveries. More specifically, the delivery and pickup quantities are 

considered in every stage of the distribution process so that the goods on board will not exceed 

the vehicle’s capacity, while the time windows are considered to avoid delays. 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

107 

 

Table 5.8 Representative Data of Customers 

ID Address 

Delivery 

quantity 

(kg) 

Pickup 

quantity (kg) 

Start of 

time 

window 

End of time 

window 

1001 
12 Arrianou, Athens, 

Attica 116 35, Greece 
24.3 8.1 07:30 08:30 

1002 
1 Angelon, Peristeri, 

Attica 121 36, Greece 
105.2 12 09:15 10:15 

1003 
12 Ithakis, Athens, Attica 

112 51, Greece 
31.8 2.5 08:00 09:00 

1004 
3 Troias, Athens, Attica 

113 62, Greece 
11.2 33.2 13:00 15:00 

xxxx 
6 Ippokratous, Athens, 

Attica 114 72, Greece 
78.4 38.6 12:30 14:00 

As for the vehicles, the variable and fixed costs have been calculated based on the data provided 

by each one of the 3PL companies. More specifically, the fixed cost of each vehicle is estimated 

by its annual and capital cost, which include depreciation, maintenance and repairs. According 

to the annual use of each vehicle, which is the working days per year, and by considering that 

each vehicle executes a single route each day, the fixed cost is then estimated in a daily basis. 

Moreover, the variable cost is based on the fuel consumption of each vehicle (liters/ 100 km) 

and the cost of fuel (€/ liter). Representative data of vehicles used in the distribution processes 

of all 3PL companies are given in Table 5.9. 

Table 5.9 Data of Vehicles 

Type 
Gross 

weight (tn) 

Load 

Capacity 

(tn) 

Fixed cost 

(€) 

Variable 

cost (€/km) 

CO2 emissions 

(gr/tkm) 

Petrol small van 1.975 0.795 14 0.101 143.4 

Diesel small van 1.928 0.728 19 0.055 109.2 

Large van 2.8 1.2 22 0.129 137.4 

Semi-light trucks 5.5 3.0 32 0.189 107.6 

Light trucks 12.5 7.5 42 0.252 86.0 

As for the CO2 emissions due to the use of vehicles, most manufacturers offer relevant 

information, such as the grammars of CO2 emitted for every tone transported over a distance 

of one kilometer, in urban environment. Consequently, the emissions depend on the factor 𝑐𝑘 

(gr/tkm), the tare weight of the vehicle 𝑤 𝑘, the load of goods on board on every arc (i, j), 𝑢𝑖𝑗
𝑘 , 

as well as on the distance of the arc, 𝑑𝑖𝑗. The mathematical expression that calculates CO2 

emissions is ∑ [(𝑢𝑖𝑗
𝑘 + 𝑤 𝑘) ∙ 𝑐𝑘 ∙ 𝑑𝑖𝑗 ∙ 𝑥𝑖𝑗

𝑘 ](𝑖,𝑗)∈𝐴 , and is valid for every vehicle 𝑘 ∈ 𝛫. This 

approach offers a good estimation of CO2 emissions, even if the speed, age, and other factors 

affect the emissions (Koç et al. 2014). 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

108 

 

All the data presented in Table 5.8 and Table 5.9 are essential and significant for distribution 

companies that address the HFVRP, the VRPSPD and the VRPTW. The specific VRP variants 

correspond to real-life problems and cases that most of the Greek companies operating in 

logistics face. Whether companies operate individually and execute single routes, or 

collaborate and share their resources, the needed data remains the same for optimizing the 

routing and scheduling problem.   

5.5.5 Computational Results  

Initially, multiple daily distribution cases that each 3PL company faces have been addressed 

and solved by the proposed heuristic algorithm. The daily schedules and results produced from 

each one of the cases are analyzed, offering the average cost, emissions, number of vehicles, 

vehicle load etc. Therefore, the results and the mean values that refer to each 3PL company 

individually correspond to a daily base and are indicated as 3PL C1, 3PL C2, and 3PL C3, 

respectively, as shown in Table 5.10. Moreover, the aggregated results of the three 3PL 

companies are presented in the row “Cumulative results” of Table 5.10.  

In addition, the daily distribution cases of all companies are united and form more complex 

ones that are addressed by the algorithm as the collaborative distribution cases. The results of 

the multiple collaborative logistics cases, in which the depots and the customers of all 

companies are simultaneously considered, also offer mean values (in cost, emissions, vehicles, 

load factor, etc.) given in the “Collaborative case” row. Finally, the results exploited both from 

the collaborative case and the cumulative case are compared, while their deviations are also 

calculated in multiple factors.  

Table 5.10 Collaborative Logistics vs Current Situation Results 

Case 
# of 

customers 

Total 

distance 
Total cost 

# of 

vehicles 

Emissions 

(kg of CO2) 

Load 

Factor 

3PL C1 137 1722 500.37 € 16 443.48 90.88 % 

3PL C2 385 4251 1299.86 € 33 1244.73 84.57 % 

3PL C3 226 2918 812.73 € 21 793.60 88.47 % 

Cumulative 748 8891 2612.96 € 70 2481.81 87.16 % 

Collaborative 748 7992 2527.18 € 66 2438.36 83.38 % 

Deviation - -10.11% -3.28% -5.71% -1.75% -4.35 % 

As shown in Table 5.10, the first company (3PL C1) serves on average 137 customers, the 

second one (3PL C2) 385, and the third one (3PL C3) 226, in a daily base. From the results of 

the three cases, it is easy to say that as the number of customers increases, the distribution cost, 

the total traveled distance, the number of vehicles needed, and the emissions also increase. 

Instead, the mean load factors in all 3PL companies remain at the same level, about 75-80%. 

On the other hand, in the collaborative case, the average number of customers served is 748, 

which is equal to those in the cumulative case, while the depots from which vehicles load the 

goods are three.  



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

109 

 

The comparison of results obtained from the cumulative and collaborative cases indicates that 

the collaboration between 3PL companies can offer improvements in multiple levels. The first 

aspect that is greatly improved, and constitutes the main objective that 3PL companies need to 

minimize, is the distribution cost, in which a reduction of 3.28% is observed. In addition, the 

emissions are also decreased (-1.75%), reducing them by 42.45 kg daily. Even though the 

reduction seems small, and considering that the companies operate at least 300 days per year, 

annually 12.735 tons of CO2 can be avoided. This would be hard to happen without reducing 

the total traveled distance (-10.11%) and in the number of vehicles needed (-5.71%). Finally, 

the only factor that is worsening through collaboration is the load factor, and more specifically, 

from 87.16%, the load factor decreased to 83.38%, which means that there is more unused 

space on vehicles. 

Additionally, there is a significant decrease in the total distribution costs, as the three 

companies save cumulatively 85.78 € every day, which correspond to 25,725.00€ yearly. 

However, the sharing of each company in the total distribution cost and, consequently, the 

savings differs. Multiple factors may affect the sharing of each company, such as the number 

of customers and the vehicles belonging to each company and involvement in the collaborative 

routing and scheduling procedures. Therefore, an agreement between the collaborative 

companies that determines the sharing of each company to the total cost is essential.  

5.5.6 Discussion 

As found in this study, the competition between logistics companies in Greece, as well as 

globally is severe. This has led companies to explore the processes that can be optimized and 

the technologies that need to be applied, in order to survive and operate more efficiently. The 

routing of vehicles is such an operation that, in most cases, is addressed by advanced systems. 

However, many companies have concluded that for maximizing cost savings, they need to 

explore new methods for more efficient operations. Collaborative routing is such an approach 

that, while initially was not accepted by practitioners, has now been recognized, and companies 

have a positive attitude towards it (Rodrigues et al. 2018). 

Most collaborative routing studies focus on developing complex mathematical models and 

advanced optimization methods in order to minimize the distribution cost and the traveled 

distance. Zhang et al. (2020) propose a collaborative model similar to the one of this chapter, 

without considering the time windows and the environmental impact, as well as an extended 

variable neighborhood search algorithm. The experimental results showed that the algorithm 

addressing the specific collaborative case offers cost reduction that ranges from 3.19% up to 

37.18% depending on the case. Similar results are obtained in Dahl and Derigs (2011) research, 

where the data of 50 express carriers were simulated, indicating that the cost can reduce up to 

14% by sharing customer requests. Other studies also conclude that the distribution cost and 

the total traveled distance can be reduced, offering a higher profit margin to the companies that 

plan routing jointly (Pradenas et al. 2013). However, all the aforementioned studies have not 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

110 

 

been tested in real-life cases. Moreover, over the last few years, the need for reducing the 

emissions has also emerged due to the global warming effect. This has led researchers to focus 

on this attribute and define how collaborations can enhance sustainable distribution and 

logistics (Pradenas et al. 2013; Perez-Bernabeu et al. 2015). In this content, Danloup et al. 

(2015) studied the effects of collaborative distribution on the environment. Their research 

focuses on food distribution, and their mathematical formulation aims to minimize the CO2 

emissions instead of the cost. The computational results indicate that the average emissions 

and cost reduction is 9.0 and 12.0 per cent respectively.  

The presented research gives equivalent results to any of the aforementioned studies but at the 

same time provides a novel that collaborative routing can have great impact both on cost 

(25,725.00€ every year) and emissions (12.735 tons of CO2). Additionally, besides the 

variables and constraints that are considered in each case, as well as the sector, the results can 

greatly be affected by the method of calculating the cost and emissions. In the current research, 

it is considered that both methods are pretty accurate since all the factors affecting the cost and 

emissions are considered and integrated into the formulation. As for the implications to 

practice, while the interest in collaborative logistics increases and researchers offer novel 

mathematical models and algorithms, software solutions and platforms to support this concept 

have not followed the same path.  

5.6 Concluding Remarks 

In the current Chapter, multiple variants of the VRP, which have emerged through the research 

of Chapter 2, as well as through the experience of cooperating logistics and software 

development companies are considered. The aim is to consider the variants that are most 

frequently addressed in freight distribution. Therefore, the VRPTW, the VRPSPD, and the 

HVRP are selected and addressed simultaneously. In addition to these variants, the different 

shifts of drivers are also considered to follow real-life limitations and labor legislation that can 

reduce road accidents due to overworking.  

Consequently, the mathematical formulation of the problem was developed to clearly define 

the variables and constraints of the problem in total. The mathematical formulation is exploited 

for developing the proposed ALNS algorithm, which offers high-efficiency results. In order to 

enhance this claim, the algorithm is tested in multiple datasets of the literature which focus on 

the studied variants. Moreover, new optimal solutions are obtained from the algorithm, while 

the deviation between the obtained from the algorithm and the best-published results are 

minimum. Concluding, the efficiency of the algorithm is sufficient for being integrated into a 

routing and scheduling system. 

However, the algorithm is not tested only to the variants of the VRP that are most frequently 

addressed in freight distribution. The algorithm is also implemented, after specific 

modifications, in one more variant, which is the Collaborative VRP. In this case, the previous 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

111 

 

VRP variants (VRPTW, VRPSPD, HVRP) are combined with the characteristics (variables 

and constraints) of the Collaborative VRP. The aim, in this case, is to define both the economic 

and environmental impact by the collaboration of companies that locate and operate in the same 

areas, in the distribution process. The implementation results are encouraging, giving great 

space to companies to reduce both distribution costs and emissions. 

Finally, the proposed ALNS algorithm can handle large amounts of data and multiple variables 

and constraints. The benefits by its implementation in real-life cases can be significant, 

considering the efficient results obtained, compared to the best-published. Consequently, its 

integration into a real-life cloud system could offer great benefits to logistics and distribution 

companies. 

References 

Alcaraz, J. J., Caballero-Arnaldos, L., & Vales-Alonso, J. (2019). Rich vehicle routing problem 

with last-mile outsourcing decisions. Transportation Research Part E: Logistics and 

Transportation Review, 129, 263–286. 

https://doi.org/https://doi.org/10.1016/j.tre.2019.08.004 

Bräysy, O., Dullaert, W., Hasle, G., Mester, D., & Gendreau, M. (2008). An Effective 

Multirestart Deterministic Annealing Metaheuristic for the Fleet Size and Mix Vehicle-

Routing Problem with Time Windows. Transportation Science, 42(3), 371–386. 

https://doi.org/10.1287/trsc.1070.0217 

Bräysy, O., & Hasle, G. (2014). Chapter 12: Software Tools and Emerging Technologies for 

Vehicle Routing and Intermodal Transportation. In P. Toth & D. Vigo (Eds.), Vehicle 

Routing (pp. 351–380). https://doi.org/10.1137/1.9781611973594.ch12 

Bräysy, O., Porkka, P. P., Dullaert, W., Repoussis, P. P., & Tarantilis, C. D. (2009). A well-

scalable metaheuristic for the fleet size and mix vehicle routing problem with time 

windows. Expert Systems with Applications, 36(4), 8460–8475. 

https://doi.org/10.1016/j.eswa.2008.10.040 

Choi, E., & Tcha, D.-W. (2007). A column generation approach to the heterogeneous fleet 

vehicle routing problem. Computers & Operations Research, 34(7), 2080–2095. 

https://doi.org/10.1016/j.cor.2005.08.002 

Cleophas, C., Cottrill, C., Ehmke, J. F., & Tierney, K. (2019). Collaborative urban 

transportation: Recent advances in theory and practice. European Journal of Operational 

Research, 273(3), 801–816. https://doi.org/https://doi.org/10.1016/j.ejor.2018.04.037 

Cruijssen, F., & Salomon, M. (2004). Empirical study: Order sharing between transportation 

companies may result in cost reductions between 5 to 15 percent. CentER Discussion Paper.  



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

112 

 

Dahl, S., & Derigs, U. (2011). Cooperative planning in express carrier networks — An 

empirical study on the effectiveness of a real-time Decision Support System. Decision 

Support Systems, 51(3), 620–626. https://doi.org/https://doi.org/10.1016/j.dss.2011.02.018 

Danloup, N., Mirzabeiki, V., Allaoui, H., Goncalves, G., Julien, D., & Mena, C. (2015). 

Reducing transportation greenhouse gas emissions with collaborative distribution: A case 

study. Management Research Review, 38(10), 1049–1067. https://doi.org/10.1108/MRR-

11-2014-0262 

de Oliveira, H. C., & Vasconcelos, G. C. (2010). A hybrid search method for the vehicle routing 

problem with time windows. Annals of Operations Research, 180(1), 125–144. 

https://doi.org/10.1007/s10479-008-0487-y 

Elshaer, R., & Awad, H. (2020). A taxonomic review of metaheuristic algorithms for solving 

the vehicle routing problem and its variants. Computers & Industrial Engineering, 140, 

106242. https://doi.org/https://doi.org/10.1016/j.cie.2019.106242 

Erdoğan, G. (2017). An open source Spreadsheet Solver for Vehicle Routing Problems. 

Computers & Operations Research, 84, 62–72. https://doi.org/10.1016/j.cor.2017.02.022 

Ferland, J. A., & Michelon, P. (1988). The Vehicle Scheduling Problem with Multiple Vehicle 

Types. Journal of the Operational Research Society, 39(6), 577–583. 

https://doi.org/10.1057/jors.1988.97 

Ferrell, W., Ellis, K., Kaminsky, P., & Rainwater, C. (2020). Horizontal collaboration: 

opportunities for improved logistics planning. International Journal of Production 

Research, 58(14), 4267–4284. https://doi.org/10.1080/00207543.2019.1651457 

Gansterer, M., & Hartl, R. F. (2018). Collaborative vehicle routing: A survey. European Journal 

of Operational Research, 268(1), 1–12. 

https://doi.org/https://doi.org/10.1016/j.ejor.2017.10.023 

Gendreau, M., Laporte, G., Musaraganyi, C., & Taillard, É. D. (1999). A tabu search heuristic 

for the heterogeneous fleet vehicle routing problem. Computers & Operations Research, 

26(12), 1153–1173. https://doi.org/10.1016/S0305-0548(98)00100-2 

Golden, B., Assad, A., Levy, L., & Gheysens, F. (1984). The fleet size and mix vehicle routing 

problem. Computers & Operations Research, 11(1), 49–66. https://doi.org/10.1016/0305-

0548(84)90007-8 

Irnich, S., Schneider, M., & Vigo, D. (2014). Chapter 9: Four Variants of the Vehicle Routing 

Problem. In Vehicle Routing (pp. 241–271). https://doi.org/10.1137/1.9781611973594.ch9 

Jiang, J., Ng, K. M., Poh, K. L., & Teo, K. M. (2014). Vehicle routing problem with a 

heterogeneous fleet and time windows. Expert Systems with Applications, 41(8), 3748–

3760. https://doi.org/10.1016/j.eswa.2013.11.029 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

113 

 

Karakatič, S., & Podgorelec, V. (2015). A survey of genetic algorithms for solving multi depot 

vehicle routing problem. Applied Soft Computing, 27, 519–532. 

https://doi.org/10.1016/j.asoc.2014.11.005 

Kechagias, E. P., Gayialis, S. P., Konstantakopoulos, G. D., & Papadopoulos, G. A. (2020a). 

An Application of a Multi-Criteria Approach for the Development of a Process Reference 

Model for Supply Chain Operations. Sustainability, 12(14), 5791. Retrieved from 

https://doi.org/10.3390/su12145791 

Kechagias, E. P., Gayialis, S. P., Konstantakopoulos, G. D., & Papadopoulos, G. A. (2020b). 

An Application of an Urban Freight Transportation System for Reduced Environmental 

Emissions. Systems, 8(4). https://doi.org/10.3390/systems8040049 

Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2014). The fleet size and mix pollution-routing 

problem. Transportation Research Part B: Methodological, 70, 239–254. 

https://doi.org/https://doi.org/10.1016/j.trb.2014.09.008 

Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2015). A hybrid evolutionary algorithm for 

heterogeneous fleet vehicle routing problems with time windows. Computers & Operations 

Research, 64, 11–27. https://doi.org/10.1016/j.cor.2015.05.004 

Konstantakopoulos, G. D., Gayialis, S. P., Kechagias, E. P., Papadopoulos, G. A., & 

Tatsiopoulos, I. P. (2020). A Multiobjective Large Neighborhood Search Metaheuristic for 

the Vehicle Routing Problem with Time Windows. Algorithms, 13(10). 

https://doi.org/10.3390/a13100243 

Krajewska, M. A., Kopfer, H., Laporte, G., Ropke, S., & Zaccour, G. (2008). Horizontal 

cooperation among freight carriers: request allocation and profit sharing. Journal of the 

Operational Research Society, 59(11), 1483–1491. 

https://doi.org/10.1057/palgrave.jors.2602489 

Laporte, G. (2007). What you should know about the vehicle routing problem. Naval Research 

Logistics (NRL), 54(8), 811–819. https://doi.org/https://doi.org/10.1002/nav.20261 

Li, F., Golden, B., & Wasil, E. (2007). A record-to-record travel algorithm for solving the 

heterogeneous fleet vehicle routing problem. Computers & Operations Research, 34(9), 

2734–2742. https://doi.org/10.1016/j.cor.2005.10.015 

Liu, F.-H., & Shen, S.-Y. (1999). The Fleet Size and Mix Vehicle Routing Problem with Time 

Windows. The Journal of the Operational Research Society, 50(7), 721–732. 

https://doi.org/10.2307/3010326 

Liu, S. (2013). A hybrid population heuristic for the heterogeneous vehicle routing problems. 

Transportation Research Part E: Logistics and Transportation Review, 54, 67–78. 

https://doi.org/10.1016/j.tre.2013.03.010 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

114 

 

Máximo, V. R., & Nascimento, M. C. V. (2021). A hybrid adaptive iterated local search with 

diversification control to the capacitated vehicle routing problem. European Journal of 

Operational Research. https://doi.org/10.1016/j.ejor.2021.02.024 

Montoya-Torres, J. R., López Franco, J., Nieto Isaza, S., Felizzola Jiménez, H., & Herazo -

Padilla, N. (2015). A literature review on the vehicle routing problem with multiple depots. 

Computers & Industrial Engineering, 79, 115–129. 

https://doi.org/10.1016/j.cie.2014.10.029 

Montoya-Torres, J. R., Muñoz-Villamizar, A., & Vega-Mejía, C. A. (2016). On the impact of 

collaborative strategies for goods delivery in city logistics. Production Planning & Control, 

27(6), 443–455. https://doi.org/10.1080/09537287.2016.1147092 

Özarık, S. S., Veelenturf, L. P., Woensel, T. Van, & Laporte, G. (2021). Optimizing e-

commerce last-mile vehicle routing and scheduling under uncertain customer presence. 

Transportation Research Part E: Logistics and Transportation Review, 148, 102263. 

https://doi.org/10.1016/j.tre.2021.102263 

Pan, S., Trentesaux, D., Ballot, E., & Huang, G. Q. (2019). Horizontal collaborative transport: 

survey of solutions and practical implementation issues. International Journal of Production 

Research, 57(15–16), 5340–5361. https://doi.org/10.1080/00207543.2019.1574040 

Penna, P. H. V., Subramanian, A., Ochi, L. S., Vidal, T., & Prins, C. (2019). A hybrid heuristic 

for a broad class of vehicle routing problems with heterogeneous fleet. Annals of 

Operations Research, 273(1), 5–74. https://doi.org/10.1007/s10479-017-2642-9 

Perez-Bernabeu, E., Juan, A. A., Faulin, J., & Barrios, B. B. (2015). Horizontal cooperation in 

road transportation : a case illustrating savings in distances and greenhouse gas emissions. 

International Transactions in Operational Research, 22, 585–606. 

https://doi.org/10.1111/itor.12130 

Pradenas, L., Oportus, B., & Parada, V. (2013). Mitigation of greenhouse gas emissions in 

vehicle routing problems with backhauling. Expert Systems with Applications, 40(8), 

2985–2991. https://doi.org/https://doi.org/10.1016/j.eswa.2012.12.014 

Qureshi, A. G., Taniguchi, E., & Yamada, T. (2009). An exact solution approach for vehicle 

routing and scheduling problems with soft time windows. Transportation Research Part E: 

Logistics and Transportation Review, 45(6), 960–977. 

https://doi.org/10.1016/j.tre.2009.04.007 

Rodrigues, M., Zampou, E., Zeimpekis, V., Stathacopoulos, A., Teoh, T., & Ayfantopoulou, 

G. (2018). Cooperative Models for Addressing Urban Freight Challenges: The NOVELOG 

and U-TURN Approaches. In E. Taniguchi & E. Thompson (Eds.), City Logistics 3: 

Towards Sustainable and Liveable Cities (pp. 215–234). John Wiley & Sons, Ltd. 

https://doi.org/10.1002/9781119425472.ch12 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

115 

 

Salhi, S., & Nagy, G. (1999). A cluster insertion heuristic for single and multiple depot vehicle 

routing problems with backhauling. Journal of the Operational Research Society, 50(10), 

1034–1042. https://doi.org/10.1057/palgrave.jors.2600808 

Santos, M. J., Curcio, E., Amorim, P., Carvalho, M., & Marques, A. (2021). A bilevel approach 

for the collaborative transportation planning problem. International Journal of Production 

Economics, 233, 108004. https://doi.org/https://doi.org/10.1016/j.ijpe.2020.108004 

Santos, M. J., Martins, S., Amorim, P., & Almada-Lobo, B. (2021). A green lateral 

collaborative problem under different transportation strategies and profit allocation 

methods. Journal of Cleaner Production, 288, 125678. 

https://doi.org/https://doi.org/10.1016/j.jclepro.2020.125678 

Shaw, P. (1998). Using Constraint Programming and Local Search Methods to Solve Vehicle 

Routing Problems. In M. Maher & J.-F. Puget (Eds.), Principles and Practice of Constraint 

Programming - CP98 (pp. 417–431). Berlin, Heidelberg: Springer Berlin Heidelberg. 

https://doi.org/10.1007/3-540-49481-2_30 

Solomon, M. M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with 

Time Window Constraints. Operations Research, 35(2), 254–265. 

https://doi.org/10.1287/opre.35.2.254 

Soysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., & van der Vorst, J. G. A. J. (2018). 

Modeling a green inventory routing problem for perishable products with horizontal 

collaboration. Computers & Operations Research, 89, 168–182. 

https://doi.org/https://doi.org/10.1016/j.cor.2016.02.003 

Subramanian, A., Penna, P. H. V., Uchoa, E., & Ochi, L. S. (2012). A hybrid algorithm for the 

Heterogeneous Fleet Vehicle Routing Problem. European Journal of Operational Research, 

221(2), 285–295. https://doi.org/https://doi.org/10.1016/j.ejor.2012.03.016 

Taillard, É. D. (1999). A heuristic column generation method for the heterogeneous fleet VRP. 

RAIRO-Operations Research-Recherche Opérationnelle, 33(1), 1–14. 

https://doi.org/10.1051/ro:1999101 

Tarantilis, C. D., Kiranoudis, C. T., & Vassiliadis, V. S. (2004). A threshold accepting 

metaheuristic for the heterogeneous fixed fleet vehicle routing problem. European Journal 

of Operational Research, 152(1), 148–158. https://doi.org/10.1016/S0377-2217(02)00669-

0 

Verdonck, L., Caris, A. N., Ramaekers, K., & Janssens, G. K. (2013). Collaborative Logistics 

from the Perspective of Road Transportation Companies. Transport Reviews, 33(6), 700–

719. https://doi.org/10.1080/01441647.2013.853706 



Chapter 5: The Heterogeneous Fleet Vehicle Routing Problem with Simultaneous Pickups and 
Deliveries and Time Windows 

116 

 

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2014). A unified solution framework for 

multi-attribute vehicle routing problems. European Journal of Operational Research, 

234(3), 658–673. https://doi.org/10.1016/j.ejor.2013.09.045 

Wang, Y., Zhang, J., Assogba, K., Liu, Y., Xu, M., & Wang, Y. (2018). Collaboration and 

transportation resource sharing in multiple centers vehicle routing optimization with 

delivery and pickup. Knowledge-Based Systems, 160, 296–310. 

https://doi.org/https://doi.org/10.1016/j.knosys.2018.07.024 

Wassan, N. A., & Osman, I. H. (2002). Tabu search variants for the mix fleet vehicle routing 

problem. Journal of the Operational Research Society, 53(7), 768–782. 

https://doi.org/10.1057/palgrave.jors.2601344 

Xiao, Y., & Konak, A. (2016). The heterogeneous green vehicle routing and scheduling 

problem with time-varying traffic congestion. Transportation Research Part E: Logistics 

and Transportation Review, 88, 146–166. 

https://doi.org/https://doi.org/10.1016/j.tre.2016.01.011 

Zhang, W., Chen, Z., Zhang, S., Wang, W., Yang, S., & Cai, Y. (2020). Composite multi-

objective optimization on a new collaborative vehicle routing problem with shared carriers 

and depots. Journal of Cleaner Production, 274, 122593. 

https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122593



 

 

 

Chapter 6: Practical Application of the Developed Algorithms into 
the Cloud Routing System 

6.1 Introduction 

Since the VRP was first introduced, researchers and practitioners focused on its solution. As 

was expected, due to the limited methods and the technological limitations in the 1960s, the 

solutions focused on non-computational methods, and more precisely, on the designing of 

routes on maps.  

However, over the years, the advances in technology and optimization methods helped 

researchers handle multiple variants of the VRP and develop advanced algorithms to address 

various distribution cases. Although the optimization methods proposed by researchers are 

tested in datasets of the literature, indicating high efficiency, they are rarely integrated into 

information systems or software. This is because researchers focus on developing new 

algorithms and mathematical formulation that can enhance the theoretical part of the study and 

a limited number of VRP variants. In addition, software companies have the expertise and the 

means to develop advanced algorithms that, after testing and adjustments, can cover the needs 

of each logistics company separately and consequently can be integrated in routing software 

solutions.  

While the optimization algorithm addressing the routing operations constitutes the core of the 

cloud routing system, it cannot ensure the functioning of the system. This is ensured by 

following specific steps during its development. Firstly, the requirements of the potential users 

i.e. logistics and distribution companies are defined and are consequently transformed into 

variables and constraints. Consequently, the technologies that can be used for developing a 

cloud system (such as the platform, the database, programming languages for system 

development and the Front-End interface), as well as those that can be exploited for extracting 

reliable data for the routing, are choose according to their offerings, potential and acquisition 

costs. Finally, after the combination of all the above attributes of the system, the testing of the 

system and of its functionalities is a step that is executed continuously until the final version 

of the system is created. 

As a result, the development of a system is a complex procedure that has multiple steps. 

However, since the core of the system is the developed optimization algorithm addressing the 

VRP, software companies treat them as black-boxes. Therefore, algorithms that have been 

successfully implemented in real-life systems are rarely published in research papers. However, 

this tendency was overcome in this thesis, as the algorithms proposed in Chapter 3, Chapter 4 

and Chapter 5 are stored in the software development company’s server and can be accessed 

anytime. However, in its current form, the cloud routing system uses the algorithm library of 

the ALNS algorithm that is presented in Chapter 5, and consequently receives its outputs. 

Moreover, since the MOLNS and MOEA algorithms are also stored in the software 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

118 

 

development company’s server as libraries, both algorithms can be accessed any time by the 

cloud system. In the future the user is expected to be able to choose which of the algorithms he 

wants to use. The decision to connect in this phase only the ALNS algorithm is based on the 

fact that handles more VRP variants compared to the MOEA and MOLNS algorithms.  

Moreover, the cloud routing system is provided as a Software as a Service (SaaS), which means 

that companies can avoid high upfront purchase costs and ongoing maintenance and upgrades 

costs since it is available to logistics companies over the internet (Arunachalam et al. 2018). 

The system also utilizes real-time traffic data and geolocation that enhance efficiency and 

accuracy (Seongmoon et al. 2005). Finally, since the ALNS algorithm has been tested in 

datasets of the literature in Chapter 5, its testing continues on real-life distribution cases of 

logistics companies operating in Athens, Greece. 

This thesis combines the parts that both research and industry focus on and presents both the 

developed algorithms and their integration into the cloud system. In the remainder of the 

Chapter, the system is presented. More specifically, the master data needed to be fed to the 

system in order to be functional, are presented in section 6.2. The technologies that are 

exploited by the system and the system’s functionalities are presented in section 6.3. 

Additionally, the initial routing procedure along with the necessary data are presented in 

section 6.4, while in section 6.5 the rerouting procedure is described. Finally, the system’s 

evaluation and benefits are presented in section 6.6, while the benefits are given in  section 6.7. 

6.2 Master Data 

The system, in order to be efficient, needs first to be fed with all the necessary data. 

Consequently, the algorithm will be exploited for creating the plan of routes. Initially, an excel 

file needs to be uploaded, including the customers’ data. The excel file needs to have a specific 

structure, as shown in Figure 6.1. First of all, in column “A” the order type needs to be defined, 

which is either a delivery or a pickup. An order code is given in column “B”, while the delivery 

date, as well as the start and the end of the time windows, are given in columns “C’, “D” and 

“E” respectively. Column “F” includes the customer’s code, while columns “G”, “H”, “I”, “J” 

and “K” include data related to the address of each customer, that is very important for 

executing the geocoding procedure and extracting travel times and distances between order 

points. Finally, columns “L” and “M” include the weight (Kg) and the volume (m3) of each 

order. 

 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

119 

 

 

Figure 6.1 Structure of Orders Data 

In the starting page of the cloud system, the structure and the specific order that the data need 

to follow are well defined, as shown in Figure 6.2. Additionally, each user can browse for the 

right file and upload it, as shown in Figure 6.2. 

 

Figure 6.2 Uploading of Data 

Additionally, logistics and distribution companies need to define the data related to their assets. 

More specifically, the address of the central depot, the available vehicles that execute the 

routes, their capacities (both in kg and m3), fixed and variable costs, the available drivers and 

their related information (email and name), and the shifts of drivers. Most of these data 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

120 

 

constitute either variables or constraints of the problem and need to be respected. As shown in 

Figure 6.3, the user needs to define the available types of vehicles, including all the necessary 

data and every single vehicle, by assigning it to a single vehicle type.  

The describes information and data are necessary since they are used as parameters of the 

problem and for extracting other data that are essential for the routing procedure. As a result, 

the algorithm cannot operate and offer a plan of routes without these data. In section 6.3, the 

way customer orders are exploited for extracting the distances and transit times between 

customers is thoroughly analyzed, and the necessity of all data. 

 

Figure 6.3 Vehicles and Vehicle Types Data  



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

121 

 

6.3 System’s Technologies and Functionalities 

The research made a major step further as the developed ALNS algorithm is implemented into 

a cloud routing system, ready to be used by logistics companies to facilitate their distribution 

operations. While operational research is highly related to logistics, and many methods have 

been proposed for addressing the vehicle routing problem, only a few are integrated into real-

life systems. This is because the development of a routing system is inextricably linked with 

software development and related technologies such as cloud computing, database 

management, Application Programming Interfaces (API's), and webservices. In addition, after 

finding efficient results for the optimization method in datasets of the literature, it was decided 

that the algorithm should also implement in a cloud routing system for it to be applicable in 

real-life distribution cases, where a large amount of data is dynamically managed.  

In order to develop a fully operatable system, multiple technologies and services need to be 

combined and work simultaneously. Firstly, since the provider's created software solution can 

be given to logistics companies/customers, using the Software as a Service (SaaS) distribution 

model, it needs to be hosted in a cloud computing platform. In the presented case, the clouding 

platform is Microsoft Azure, as it can build, run, manage and support large and complex 

applications that solve today's challenges. Moreover, Azure implemented many industry-

required security standards and regulatory compliance requirements that made it prevail to 

other cloud platforms. Consequently, companies ensure their security and eliminate the cost 

related to the maintenance of the application's infrastructure, like servers and databases.  

Moreover, companies that gain access to the system's services need to upload the master data 

firstly. The master data in the specific case are the warehouse locations, the orders of the 

customers (delivery points, delivery times, time windows, delivery quantities etc.), and the 

available fleet data (drivers, vehicles, capacity), that can be entered by uploading a datasheet, 

with a particular structure, or manually using the system. These data need to be stored, 

structured, and managed by the proper database. Oracle Database is selected in the cloud 

system due to the additional data management capabilities such as deep monitoring, data 

modeling tools, data visualization, and, more importantly, low code development 

environments. These additional features, along with the ability of Azure to access Oracle 

database efficiently, made us select the specific database. 

Additionally, the system uses the webservices offered by HERE Global B. V. company through 

the Azure Representation State Transfer Application Programming Interface (REST API). The 

REST API conforms to the constraints of REST architectural style and allows the interaction 

with RESTful services, such as the ones offered by HERE. The system calls through Postman 

the Azure REST APIs to request and obtain data from HERE services. Specifically, HTTP 

requests include the necessary information such as the URL, the id, the request method, and 

the API key. The response from HERE includes a JSON file with the data that are requested. 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

122 

 

Such requests are made to HERE Geocoding & Search service to extract customers' coordinates 

through their addresses. 

Furthermore, the coordinates are also used as input for requesting the transit times and distances 

between delivery points. Therefore, the HTTP requests are significant for the efficient 

operation of the system. Consequently, some of the data that have been inserted by the users, 

along with those retrieved by the HTTP requests, are given as input in the ALNS algorithm. 

The algorithm that is also stored in the cloud has been developed in Python programming 

language and is accessed once again through an HTTP request. Finally, the results of the 

routing procedure, which are specific routes with a specific order sequence, are depicted in an 

online map, provided once again by HERE. 

All the above-mentioned technologies and their interactions are presented in Figure 6.4. More 

specifically, the cloud computing platform can send and receive HTTP requests and responses 

to and from HERE company, Oracle cloud database and user’s front-end interface. The front-

end interface gives access to logistics and distribution companies, as well as truck drivers. The 

back-end is managed by the software provider who provides the cloud computing platform as 

a SaaS. 

 

Figure 6.4 System's Technologies 

A more analytical description of the data given as input in the HTTP requests and its response 

is given in the following sections. In Section 6.4, the technologies that are exploited for the 

initial routing (static) and the functionalities of the system are presented. On the other hand, 

Logistics & Distribution 

Companies

Oracle Cloud 

Database
Cloud 

Computing 

Platform

Back-End Control

Front-End User Interface

Get

Access

HTTP

Request

Response

REST API

HERE Web Services

.ΝΕΤ

Microsoft 

Azure

HTTP

Request

HTTP

Request

Response

Response
Master Data

Orders Data

Optimization 

Algorithms



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

123 

 

the technologies and functionalities of the system during the rerouting and dynamic routing 

procedures are presented in Section 6.5. 

6.4 Initial Routing and Scheduling 

For the initial routing, in which data related to customers are known before the distribution 

starts, transit times and distances between order points and warehouses need to be obtained. 

Therefore, an HTTP request that follows the RESTful API architectural style and includes the 

addresses of customers is sent to HERE Geocoding & Search service. The response from HERE 

includes a JSON file with the coordinates of customers. In cases where the address is not clearly 

stated and more than one set of coordinates matches the request, HERE gives the ability to 

manually select the on-map address that better fits the customer, as shown in Figure 6.5. 

 

Figure 6.5 Autocomplete Address Functionality 

After completing the first phase, which includes the data input and geocoding procedures, the 

system can visualize the delivery points on the map, as shown in Figure 6.6. Additionally, the 

system can then execute the routing and scheduling procedure. This requires, firstly, an 

estimation of the travel times between delivery points that are significant for accurate deliveries 

and high-quality services and the distances between delivery points used for calculating the 

distribution cost. These data are exploited once again through HERE Technologies and more 

accurately through an HTTP request (HERE Matrix Routing API v8), including the coordinates 

of delivery points. The JSON file that returns as a response to the request includes the distance 

(M x M) and the travel time (M x M) matrices, where M is the number of delivery points and 

depots.  



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

124 

 

 

Figure 6.6 Order Point On-map 

Moreover, these matrices, along with data such as the delivery and pickup quantities (in kg and 

in m3), time windows, vehicle capacities and costs etc., are fed to the routing and scheduling 

algorithm. Another request, including the aforementioned data, is made to get the plan of routes 

and schedule of deliveries through the ALNS algorithm stored in the software development 

company’s server. The developed ALNS algorithm is given in Appendix E. The only parameter 

that the user needs to define is the calculation time of the routing procedure, which affects the 

accuracy of the system’s results as they are strongly time-dependent. The field which the user 

needs to fill for defining the computation time is shown in Figure 6.7. 

 

Figure 6.7 Defining the Computation Time 

 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

125 

 

Defining the computation time is important since each company faces distribution cases of 

different sizes (ranging in most cases from 100 customers to more than 2000 per day). For 

example, in cases with around 2000 delivery points, a computation time of 30 minutes would 

be sufficient for the algorithm to produce an efficient route plan. Shorter computation times, 

i.e., less than 10 minutes, would lead to less efficient plans with higher delivery costs and lower 

vehicle fleet utilization. The above references are reinforced by Figures 6.8, 6.9, 6.10 and 

Tables 6.1, 6.2., 6.3 which validate the efficiency of the algorithm in terms of quality and 

computation time.  

Figure 6.8 and Table 6.1 present the algorithm results when tested in a store replenishment 

distribution case, including 141 orders. The case is solved four times (4 runs) in which the time 

limit is set to 3600 seconds (1 hour). The ALNS algorithm is based on the destroy and repair 

operators that in turn base on randomness. That is why the final results of each run in Table 6.1 

are different. Besides that, they indicate that 600 to 900 seconds would be enough time to 

produce an efficient delivery schedule while also maintaining the computation time at low 

levels.  

 

Figure 6.8 Distribution Cost per Running Time in a Store Replenishment Case 

 

 

 

 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

126 

 

Table 6.1 Distribution Cost per Running Time in a Store Replenishment Case 

Phase of the Algorithm Time (sec) Cost – 1
st
 Run Cost – 2

nd
 Run Cost – 3

rd
 Run Cost – 4th Run 

Construction 1 12829.18 12829.18 12829.18 12829.18 

ALNS 

60 12302.14 12297.97 12294.06 12298.28 

180 12180.88 12188.67 12290.79 12291.99 

300 12177.47 12124.36 12139.09 12255.62 

600 12074.91 12124.36 12085.76 12065.87 

900 12073.71 12073.05 12082.3 12063.66 

1200 12049.19 12070.43 12081.8 12060.9 

1500 12049.19 12069.61 12079.86 12060.9 

1800 12049.19 12069.61 12073.08 12055.3 

2400 12041.46 12068.08 12073.08 12012.89 

3000 12036.38 12054.85 12070.72 12012.89 

3600 12036.16 12037.56 12005.24 12009.84 

Additionally, the algorithm is tested in more distribution cases (with more orders), as shown in 

Figure 6.9 and Figure 6.10, accompanied by Table 6.2 and Table 6.3, respectively. The results 

presented in Figure 6.9 and Table 6.2 come from a door-to-door delivery case, including 195 

orders. The results indicate that 900 seconds (15 minutes) are enough for the planner to extract 

an efficient plan. Respectively, Figure 6.10 and Table 6.3 present the results from an e-

commerce case including 748 orders. With an increased number of orders, the computation 

time needed in such a case is also higher, and therefore 1800 seconds (30 minutes) seem 

necessary for producing a low-cost schedule. 

 

Figure 6.9 Distribution Cost per Running Time in a Door-to-Door Delivery Case 

 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

127 

 

Table 6.2 Distribution Cost per Running Time in a Door-to-Door Delivery Case 

Phase of the Algorithm Time (sec) Cost – 1
st
 Run Cost – 2

nd
 Run Cost – 3

rd
 Run Cost – 4th Run 

Construction 2 2051.96 2051.96 2051.96 2051.96 

ALNS 

60 1840.26 1833.81 1887.31 1859.06 

180 1820.69 1767.25 1829.07 1856.71 

300 1776.57 1763.59 1796.23 1849.61 

600 1769.54 1759.45 1722.26 1757.62 

900 1706.89 1735.49 1712.30 1720.64 

1200 1705.62 1711.42 1704.36 1711.58 

1500 1702.91 1703.28 1702.87 1709.61 

1800 1702.10 1700.08 1685.25 1692.43 

2400 1701.63 1673.16 1667.70 1689.15 

3000 1701.31 1669.98 1667.70 1687.91 

3600 1679.85 1667.83 1667.70 1676.71 

 

 

 

Figure 6.10 Distribution Cost per Running Time in an E-commerce Case 

 

 

 

 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

128 

 

Table 6.3 Distribution Cost per Running Time in an E-commerce Case 

Phase of the 

Algorithm 

Time 

(sec) 

Cost – 1
st

 

Run 

Cost – 2
nd

 

Run 

Cost – 3
rd

 

Run 

Cost – 4th 

Run 

Construction 78 2287.02 2287.02 2287.02 2287.02 

ALNS 

120 2257.88 2278.78 2282.94 2271.01 

180 2029.97 2157.65 2161.21 2167.08 

300 2025.46 2156.62 2161.18 2059.53 

600 2018.37 2028.4 2032.55 2029.79 

900 2016.37 1978.09 2011.7 2020.69 

1200 1900.25 1949.37 1951.84 2011.07 

1500 1887.4 1949.37 1939.91 1894.81 

1800 1875.31 1894.4 1890.3 1884.42 

2400 1864.34 1894.4 1884.76 1884.15 

3000 1860.39 1886.71 1883.8 1883.64 

3600 1858.23 1882.8 1875.3 1882.13 

As a result of these computations, the system can now display the plan of routes and schedule 

of deliveries that has been produced, as shown in Figure 6.11.  

 

Figure 6.11 Created Plan of Routes 

Each route includes specific order points, and their sequence defines the total cost and the 

traveled distance. The total distribution cost comes from the fixed and variable costs of each 

route. The variable cost in the presented case is based on the traveled distance of each vehicle 

(in km) and the cost of fuel per km (€/ km). Consequently, the sequence of deliveries affects 

the variable cost, since the distance of the route changes. By selecting each route, the user can 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

129 

 

isolate the route and analytically view the various data related to this route. More specifically, 

the estimated time of arrival in each customer/ delivery point, the quantity delivered or picked, 

its time window, as well as the status of the order can be observed in Figure 6.12.  

 

Figure 6.12 Route Representation 

Additionally, the system connects to a Proof of Delivery (PoD) system, located on the drivers’ 

vehicles, and enables the detection of the status of the orders in every step of the distribution 

process. As a result, the driver has the ability to take certain actions upon completion of serving 

an order through the SMARTRANS PoD application. The PoD is also accessible anywhere, as 

it can be used by any device connected to the internet, as long as the driver enters the link 

https://aberon-pod.azurewebsites.net into an internet browser. The driver also needs to enter 

his official email in the PoD, as shown in Figure 6.13, to see the schedule assigned to, as shown 

in Figure 6.14. 

https://aberon-pod.azurewebsites.net/


Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

130 

 

 

Figure 6.13 Entering the PoD System 

 

 

Figure 6.14 Driver's Route 

  



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

131 

 

Additionally, the PoD sytem enables and enhances the updating of order status during the 

distribution process. Moreover, after the completion of an order, the driver can update the status 

of the order which is also updated automatically in the routing system. In Figure 6.15 are 

presented both the PoD and the routing system, as well as how by selecting the PoD button, 

the status of the order is also updated in the routing system.  

 

Figure 6.15  Monitoring and Updating the Status and of Orders through the PoD and Routing System  

Concluding, in the initial (static) routing, a plan of routes and schedule of deliveries is produced 

and given to drivers through the PoD system. The static routing can surely enhance planners'  

efforts since high accurate data from HERE Technologies are exploited for this procedure. 

However, in some cases, the experience of planners may lead to modifications in the initial 

plan. Furthermore, unexpected events during the distribution process may lead to delays in the 

scheduled deliveries. Therefore, the system offers some other functionalities, presented in 

Section 6.5, to tackle the dynamic nature of routing. 

6.5 Rerouting Procedure 

As it has already been mentioned, planners may need to modify even if the initial plan of routes 

has already been extracted. Consequently, the system gives the user the ability to make such 

modifications on the routes. This action is often executed by logistics and distribution 

companies, as their requirements may change after the initial plan. In order to permit the 

addition of an order to an existing route, the system firstly checks that the time windows are 

respected and that the vehicle's capacity is not overflowed. The algorithm of the drag and drop 

procedure that execute is given in Appendix E. If this change is allowed and no constraint is 

violated, then the order is placed in the route, and the estimated time of arrival is recalculated 

for each order. Such a case is presented in Figure 6.16, where the order with code 0001025256 

that was initially located in another route is moved to the green-colored route.  



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

132 

 

  

(a) (b) 

Figure 6.16 (a) Initial Route (b) Final Route after Manually Integrating another Order 

Moreover, during the execution of deliveries, the logistics companies may need to modify the 

route of vehicles. These modifications may happen due to cancellations of orders, changes in 

time windows, as well as unexpected out-of-corporate events such as extreme traffic congestion 

or weather conditions that may occur during the execution of deliveries. In such cases, when 

necessary, the system implements rerouting tasks that use the updated data of customers and 

the real-time traffic data (updated travel times between customers) that prevail at the time by 

executing an HTTP request to HERE Technologies. Through this approach, the sequence of 

deliveries may change so that the delays can be minimized. 

An example of the rerouting procedure due to order delays is given in Figures 6.17 and 6.18, 

as when the first order is served, a rerouting task is executed. As shown in Figure 6.17, the first 

order has a 9.30 to 16.30-time window. However, the order was served after the estimated 

arrival time and more specifically, at 13:56, as shown in Figure 6.18. This difference between 

the estimated toa and the actual toa causes great delays in the rest of the plan. More specifically, 

only 6 of the 15 orders of the route are not affected by this delay, while others have been 

rescheduled to minimize the route delays. According to the renewed plan, the orders estimated 

to delay are presented in Figure 6.18 with a red “00:00” in the estimated toa column. 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

133 

 

 

Figure 6.17 Initial Schedule of Deliveries 

 

Figure 6.18 Revised Schedule of Deliveries 

As it becomes clear, the routing system provided through the cloud can efficiently address the 

complex problem of routing. The system’s functionalities cover, to a great extent, the needs 

and requirements of companies that operate in freight distribution. In addition, in contrast to 

most systems where large amount of data is needed that complicate the user’s experience, the 

presented system automatically performs these tasks as the geographical and traffic data are 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

134 

 

provided by calling HERE services. Furthermore, these calls are performed through fast HTTP 

requests, offering reliable real-time results. Finally, as it becomes evident, the system can 

greatly aid logistics companies to make the right decisions as it constitutes a valuable tool for 

their distribution operations. 

Finally, Figure 6.19 describes the flow of information and data that need to be provided to the 

routing system in order to be fully operable and produce efficient schedules. Additionally, the 

inputs and the outputs of the HTTP request sent to the service provider (Here Technologies) 

are also described. This information and data may change depending on the functionality of the 

system, as the requirements differ. The system's functionalities are separated into three main 

categories, the initial (static routing), the route modification and the dynamic routing. Other 

functionalities described in this section belong in one of the three categories.  



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

135 

 

 

Figure 6.19 Information Flow between Companies, Cloud System and Webservices 

 

 

Resources

Drivers, vehicles, depots, drivers

Data of orders

Type, address, time window,
quantity

Logistics and Distribution
Companies

Geocoding request

Input: address data

Geocoding response

Output: json file including
latitude and longitude of points

Webservices

Cloud Routing 
System

Visualization of order 
points in on-line maps

Matrix routing request

Input: coordinates

Matrix routing response

Output: json file including
distance and travel time matrix

Save data in the database

HTTP Request 

A HTTP request, following the
RESTful API architectural style
is made to Here Technologies
for extracting the
coordinates.

Save the new data in the 
database

Routing request

Input: all collected data

Routing response

Output: plan of routes

Visualization of routes, 
sequence of deliveries, 

and relative data

Initial plan of routes and 
schedule of deliveries

A HTTP request, following the
RESTful API architectural style
is made to Here Technologies
for extracting the transit time
and distances between
delivery points.

A HTTP request, following the
RESTful API architectural style
is made to the software
company’s server, in order to
call the ALNS algorithm, and
for creating the initial plan of
routes.

St
at

ic
-I

n
it

ia
l R

o
u

ti
n

g
R

o
u

te
 M

o
d

if
ic

at
io

n
s Modifications in the 

existing routes

Select customers and 
transfer them in another 

route

Check the feasibility of 
new routes

Route modifications request

Input: selected customers
Route to be transferred

Route modifications response

Output: Renewed plan of routes

A HTTP request is made to the
software company’s server, in
order to call the algorithm
used for the drag and drop
procedure, for extracting the
renewed plan of routes.

Visualization of routes, 
sequence of deliveries, 

and relative data

Renewed plan of routes and 
schedule of deliveries

D
yn

am
ic

 R
o

u
ti

n
g

Rerouting strategies in a 
specific route

Cause: Unexpected events, 
traffic congestion, delays

Check the feasibility of 
the route and possible 

modifications in the 
sequence

Rerouting request

Input: selected route 
and served customers

Rerouting response

Output: Renewed sequence of 
deliveries in the route

A HTTP request is made to the
software company’s server, in
order to call the algorithm
used for the drag and drop
procedure, for extracting the
renewed plan of routes.

Visualization of routes, 
sequence of deliveries, 

and relative data



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

136 

 

6.6 Evaluation and Benefits 

As it has already been stated, the algorithms presented in Chapter 3, Chapter 4, and Chapter 5 

are integrated into the presented system, while only the ALNS algorithm communicates, at the 

time, with the system. Since the system is ready to be used by logistics companies to facilitate 

their distribution operations, it was decided to be further tested in real-life distribution cases, 

where a large amount of data is dynamically managed.  This step, in which a system is 

evaluated, is avoided in most research studies as only a few algorithms are integrated into real-

life systems. This is because the development of a routing system is inextricably linked with 

software development and related technologies such as cloud computing, database 

management, Application Programming Interfaces (API’s), and webservices that are presented 

in section 6.3.  

In order to evaluate the efficiency of the algorithm and the system in total, three different real-

life distribution cases are considered. The first distribution case concerns the store 

replenishment of a supermarket chain and includes 141 big-size orders. The second case 

concerns door-to-door deliveries of appliances to consumers that includes 195 orders. Finally, 

the third case concerns the distribution of goods in an e-commerce channel that includes 748 

orders. In each case the plan of routes that emerges from the existing approaches that the 

companies use, was compared with the one that emerges from the cloud system. The fact that 

the distribution cases belong in different fields (Store Replenishment, Door-to-door deliveries, 

E-commerce) and the number and the size of orders vary enhance the research since a wider 

range of logistics operations is studied. 

Moreover, the comparison between the two approaches focuses on the number of routes created 

and the distribution cost. At this point, it is very important to clarify the significance of defining 

with a very detailed analysis the fixed and variables costs that form the total distribution cost 

of logistics companies which itself affects in a great extent the plan of routes and schedule of 

deliveries to be created. In the three studied companies, the fixed cost is  composed of the 

driver's wage, depreciation and insurance costs, while the variable is composed of the fuel and 

maintenance cost (Ehmke et al., 2018). In Table 6.4, the average daily numerical data and 

results of the three companies are presented analytically. More specifically, the results between 

the existing approach (Ex. Ap.) of the company and of the system (System) in each distribution 

case are compared, while their difference concerning the cost and the created routes is also 

calculated (Dif.). 

 

 

 

 

 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

137 

 

Table 6.4 Comparing Routing Methods in Real-life Distribution Cases 

 Store Replenishment 
Door-to-door 

deliveries 
E-commerce 

 Ex. Ap. System Dif. Ex. Ap. System Dif. Ex. Ap. System Dif. 

Orders in the specific 

distribution case 
141 141 0 195 195 0 748 748 0 

Number of routes 

created  
63 63 0 12 12 0 19 18 -1 

Orders per Route 2.24 2.24 0 16.25 16.25 0 39.37 41.55 +2.18 

Total distribution cost 11,777 11,771 -6 1711.23 1698.67 
-

12.56 
2198.43 2096.35 -102.08 

Cost per Route (€) 186.94 186.84 -0.10 142.60 141.56 1.04 115.71 116.46 +0.75 

Cost per Order (€) 83.53 83.48 -0.05 8.78 8.71 -0.07 2.93 2.80 -0.13 

Tones Distributed 601.122 600.122 0 10.514 10.514 0 6.922 6.922 0 

Distribution Cost (€) per 

tone 
19.62 19.61 -0.01 162.76 161.56 1.20 317.60 302.85 -14.75 

Distributed m3 1289 1289 0 85.5 85.5 0 33.67 33.67 0 

Distribution Cost (€) per 

m3 
9.14 9.13 -0.01 20.14 20.01 -0.13 65.29 62.26 -3.03 

As it can easily be observed in Table 6.4, for each company, the use of the system can be 

profitable for companies. However, the profit in the case of store replenishment is slight as it 

is reduced by only 6 € in a daily phase on average, while the number of routes created is the 

same. That is mainly because planners have optimized the procedure and base the plan of routes 

on their experience and the stability of orders in a daily phase, which allows them to make a 

few modifications before forming the final plan. In the case of door-to-door deliveries of 

appliances, the distribution cost is reduced by 12.56 € by using the system, while the routes 

remain the same. Finally, the e-commerce case presents the most interesting results as both the 

number of routes and the distribution cost are significantly reduced. More specifically, the 

number of routes is reduced by 1, while the cost by 102.08 € in a daily phase corresponds to 

35,728 € yearly (350 working days). The financial benefits seem important, especially in the 

e-commerce chain where multiple orders are served daily. However, to decide if the use of the 

system is profitable for a company, the cost of use needs to be defined. In the current state of 

the system, where only the service model has been defined (SaaS model), the precise financial 

profit of companies cannot be clearly defined. 

However, the benefits that companies receive by using the routing system are not limited to the 

decreased distribution cost and the number of vehicles but also expand to the visualization of 

the routes and the ability to modify them dynamically even during the distribution operations. 

For example, figure 6.20 presents the plan of routes as it emerges from the system in the door-

to-door deliveries case and a detailed plan for one of the routes of the case. By selecting each 

route, the user can isolate the route and analytically view the various related data. More 

specifically, the estimated time of arrival to each customer/ delivery point, the delivered or 

picked quantity, its time window, as well as the status of the order can be observed.  



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

138 

 

 

Figure 6.20  Door-to-Door Deliveries through the Cloud System 

In practice, static routing is significant for logistics companies and the main functionality of a 

routing system. However, the need for more intelligent systems in the competitive market o 

logistics exists. That is why the system addresses the dynamic nature of routing, offers drag 

and drop procedures to users, and connects with a PoD system. The dynamic routing is 

executed in a single route when the user considers it appropriate. Unexpected events and traffic 

congestion are the main reasons. 

On the other hand, the drag and drop procedure is executed when minor modifications need to 

be made between routes. Even in this procedure, the feasibility check is made automatically in 

order to ensure that no constraint is violated. These system functionalities are considered 

equally important since they enhance planners' efforts and offer better plans. Combining the 

experience of experts and the efficiency of an optimization algorithm and an advanced system 

is the key. Finally, the developed PoD system supports planers during the distribution, allowing 

them to track deliveries and know the status of each order.  

In conclusion, the system offers reduced costs and multiple functionalities to enhance planners'  

efforts and offer efficient plans. Additionally, it can support logistics companies throughout 

the entire distribution process, starting from the initial routing and expanding to the real-time 

updating of order status. 

 

 

 



Chapter 6:Practical Application of the Developed Algorithms into the Cloud Routing System 

139 

 

6.7 Concluding Remarks 

Routing and scheduling systems are necessary for today’s challenging distribution and logistics 

operations. The complex set of activities, functions, variables and restrictions that logistics 

companies face and need to consider for creating an efficient distribution plan cannot be 

handled without advanced routing and scheduling systems. This is even further complicated in 

city centers where daily deliveries and traffic congestion dramatically increase.  

The algorithm and the cloud routing system that was developed aimed to solve this exact 

inadequacy and difficulty, managing to cover the needs and requirements of most logistics 

companies operating in urban freight distribution. Besides creating efficient routes and delivery 

schedules, the system also has multiple functionalities to support planners and enhance the 

routing process. Such functionalities are mainly the visualization of routes on the map and the 

presentation of related to the orders and routes information and the modifications and 

adjustments that can be made to the plan of routes, based on the planners' experience. 

In order to support all these functions and create such an operable system, multiple technologies 

have been exploited and combined, such as cloud computing, database management, APIs, 

webservices etc., while simultaneously the core of the system is the ALNS algorithm that has 

been developed. The algorithm has been tested both in datasets of the literature and in real-life 

distribution cases and was proven to be efficient both in terms of results and computation time.  

References 

Arunachalam, D., Kumar, N., & Kawalek, J. P. (2018). Understanding big data analytics 

capabilities in supply chain management: Unravelling the issues, challenges and 

implications for practice. Transportation Research Part E: Logistics and Transportation 

Review, 114, 416–436. https://doi.org/10.1016/j.tre.2017.04.001 

Seongmoon, K., Lewis, M. E., & White, C. C. (2005). Optimal vehicle routing with real-time 

traffic information. IEEE Transactions on Intelligent Transportation Systems, 6(2), 178–

188. https://doi.org/10.1109/TITS.2005.848362 



 

 

 

Chapter 7: Research Conclusions and Future Works 

7.1 Synopsis of Research Contributions 

The VRP, which constitutes one of the most frequently encountered problems in logistics, was 

first proposed more than 60 years ago. Over the years, multiple variants have been proposed, 

each focusing on specific aspects and variables of the problem, leading to specific variations 

to the generic mathematical formulation. In most variants of the problem, the aim is to find the 

most cost-effective routes that serve the demand. Consequently, the objective function in most 

cases is set, which is the distribution cost minimization. However, in recent years, some 

researchers focus on the minimization of greenhouse gas emissions due to the increased need. 

In the current thesis, a class of vehicle routing problems are presented, studied, and addressed. 

The variants that are considered have emerged through a research study and the cooperation 

with companies of the logistics industry (distribution and software development companies). 

Moreover, the VRP is vital for the logistics industry since it affects the profit margins of 

production and logistics companies. This fact has made them among the most popular and 

widely studied problems in Supply Chain, while it has also attracted the interest of other fields, 

such as Mathematics, Operational Research, Information Management and Decision Sciences. 

The fact that so many different fields are interested in the VRP and its variants has led to 

multiple optimization algorithms. Each algorithm may focus on different variants and aspects 

of the problem. In most cases, the VRPTW is addressed due to its  connection with real-life 

cases. While this variant is widely studied and addressed by researchers and practitioners, the 

developed MOLNS and MOEA algorithms manage to be highly efficient and offer multip le 

new-optimal solutions so far. That is not an easy task, primarily when so many researchers 

have centered around the subject. 

The same stands for the VRPSPD and the HVRP, which are also highly related to real-life 

distribution cases. Initially, collecting goods that can be remanufactured, repaired, or recycled, 

from retailers, end customers, and stores, is significant and may lead to financial and 

environmental benefits both for consumers and logistics companies. That is why the VRPSPD 

is important for both research and industry. As for the vehicles’ types, some limited customers 

have identical vehicles. In most cases companies have different types to fulfil the requirements 

of distribution. That is the main reason for selecting the HVRP to be a main variant of study. 

Moreover, addressing the HVRP overlaps the cases in which logistics companies own identical 

vehicles, and consequently can cover their needs. The ALNS and MOEA algorithms propose 

new-optimal solutions in the datasets of the literature that are tested, indicating their efficiency.  

Moreover, in addition to the variants of the VRP that are taken into account and addressed, 

some variables and constraints are added to the mathematical model in order to bring the 

problem even closer to reality. Such variables and constraints are drivers’ shifts, as well as 

vehicle autonomy. Both can affect the length of routes and consequently the number of routes 



Chapter 7: Research Conclusions and Future Works 

141 

 

and the distribution cost. However, the benefits can be huge as no working regulation is 

violated and the schedule can be very precise. 

Moreover, the ALNS algorithm besides offering multiple new optimal solutions in various 

datasets of the literature, considers and addresses multiple variables and constraints, making 

the proposed algorithm the proper method to be integrated into the cloud routing system. As it 

has already been mentioned, the three algorithms are all stored in the server that is managed by 

the software development company. However, the system in its current form communicates 

and receives the plan of routes produced by the ALNS algorithm. The ALNS was selected in 

this initial form of the cloud system as it can address more variants of the VRP compared to 

the other two algorithms. Furthermore, the MOEA and the MOLNS focus on the number of 

vehicles and the total traveled distance, while the ALNS to the total distribution cost that in 

most cases is more important for logistics and distribution companies.  

However, in cases that an algorithm that is the core of a system, its efficiency is not the only 

aspect that needs to be studied and considered. The computation time and the number of orders 

that the system can handle are also important. That is why the specific algorithm is integrated 

into the cloud system. The ALNS has been tested in multiple datasets with the number of orders 

ranging from 100 to 748. In all instances, including datasets of the literature and real-life 

distribution cases, the algorithm can create a solution very fast (less than 80 seconds) while the 

more it runs, the more the solution is improved (reducing the distribution cost). 

Moreover, in addition to the efficiency of the developed algorithms and the results offered, a 

major contribution of the research is the utilization of real data of distances and transit times 

that make the routing and the schedule of deliveries even more reliable in terms of estimation 

of arrival times and cost estimation. Transit times data during static routing is a statistical 

estimation of cartographic data providers. On the contrary, during the dynamic routing the 

transit times data results from the traffic that prevails at the specific moment in the road network 

and therefore any routing process is done with great precision. 

In addition to the given transit times and distances utilized by the appropriate providers, in the 

present dissertation maps are utilized, in which the routes are visualized either cumulatively or 

individually. In addition, the order/sequence of visits and deliveries is graphically defined, a 

function that can significantly help drivers as these data can be obtained by the Proof of 

Delivery system. 

7.2 Future Research 

The objectives that were initially set, which are (i) the study of a class of VRP variants, (ii) 

their mathematical formulation, (iii) the development of metaheuristics algorithms addressing 

the studied VRP variants and (iv) the practical integration of the algorithms into a cloud routing 

system have been achieved during the doctoral studies. Nevertheless, these objectives and the 



Chapter 7: Research Conclusions and Future Works 

142 

 

individual elements of the study can constitute a starting point for future research activities. In 

the remainder of the 7.2 section, several directions regarding the future studies are given. 

Firstly, over the last few years, researchers focus on hybrid algorithms. These algorithms 

combine the full potential of multiple metaheuristic algorithms. Each particular algorithm 

focuses on specific aspects containing advantages and disadvantages. On the other hand, the 

combination of multiple metaheuristic algorithms aims to eliminate the weak elements of each 

method while also strengthen their essential features. In view of the benefits, the proposed 

algorithms of Chapter 3, 4 and 5 will be the base of new proposed hybrid metaheurist ics. 

However, additional metaheuristics will be studied in order to select the most suitable for each 

case. 

Another research direction concerns the aspect of CO2 emissions which will be considered in 

all of the three proposed algorithms. In the case of the two multiobjective algorithms, i.e. the 

MOEA and the MOLNS, the CO2 emissions will be involved as the one of the two objective 

functions. More specifically, the minimization of CO2 emissions will be the one objective 

function, while the second one will be the distribution cost. This can help companies that in 

today’s challenging market need to follow the national restrictions concerning the greenhouse 

gas emissions. As for the ALNS algorithm, this attribute should be included as an estimation. 

Through this way each company will be able to calculate with high accuracy the emissions 

caused by the distribution process. 

Furthermore, each of the proposed optimization methods can be further improved in order to 

obtain even better results. As for the MOLNS and the ALNS algorithm that have the same base, 

i.e. the LNS algorithm, new and efficient destroy and repair operators will be examined and 

studied. Concerning the MOEA, the next steps of the research approach will be focused on the 

crossover and mutation operators that significantly affect solutions. 

Despite the next steps of the research that concern the algorithms, there are several actions that 

can be made for transforming the cloud routing system to a commercial product. Initially, for 

the system to become a commercial product that fully supports logistics companies operating 

in freight distribution, more VRP variants should also be considered by the proposed 

algorithms and more specifically by the ALNS algorithm that is applied in the current form of 

the system. More specifically, after testing the algorithm in real-life distribution cases, it was 

found that a limited number of routes, mainly due to the vehicle capacity constraint, last less 

than half of the driver’s shift. This means that the same driver can execute another route before 

his shift ends. This variable is recognized as the Multi-trip VRP variant. Improving the 

algorithm by taking into account this variant will lead to more excellent coverage of the needs 

of logistics companies, regardless of their size. 

Additionally, since the ALNS was tested in the Collaborative VRP, the system may in the 

future incorporate the specific variant. Consequently, a further research study should focus on 

the profit-sharing mechanism that the collaborative companies need to define before 



Chapter 7: Research Conclusions and Future Works 

143 

 

cooperating. In each collaboration case, the profit-sharing approach needs to be fair for all 

parties while also profitable. However, the fact that profit-sharing constitutes another research 

topic and multiple approaches has already been proposed led us to not consider it as part of the 

research study. Finally, the system must handle data from multiple logistics providers in 

compliance with the General Data Protection Regulation (GDPR). This is essential since 

customers from different companies need to be uploaded in a shared platform for addressing 

the Collaborative VRP. This further research can provide logistics companies with a valuable 

tool for more efficient last-mile distribution. 

Moreover, while the three proposed algorithms are stored in the software development 

company’s server as libraries, as described in section 6.3, only the ALNS algorithm connects 

with the cloud routing system through the appropriate HTTP requests, in order to extract the 

plan of routes. Given that the ALNS algorithm is single-objective and does not cover the needs 

of companies that need to simultaneously optimize two objectives, a future step of the research 

is to incorporate the existing algorithms with the cloud routing system. Specifically, a future 

aim of this study is to give users the ability to select the algorithm that will be applied and 

extract the plan of routes. In order to succeed this step efficiently, the objectives which concern 

logistics and distribution companies the most need to be defined, and also integrated into the 

multiobjective algorithms. In their current form, the MOEA and the MOLNS algorithm do not 

address as many variables are considered and addressed by the ALNS algorithm. 

Concluding, it becomes clear that the developed ALNS algorithm, which is implemented by 

the cloud routing system, can offer significant benefits to logistics companies. The efficient 

plan of routes produced by the ALNS algorithm is enhanced by other system functionalities, 

offering a complete routing solution that strongly supports planners. However, this does not 

mean that the system cannot be further improved. As already mentioned, integrating more 

variables and constraints into the algorithm, and subsequently to the cloud routing system, will 

significantly increase its usability and needs coverage since more requirements and users’ 

needs will be covered. 

7.3 Research Outputs 

During the Ph.D dissertation, multiple variants of the VRP were studied, and multiple solution 

methods were developed for addressing them. Therefore, the publications that emerged are 

presented below. 

Scientific Journals 

• Kechagias, E. P., Gayialis, S. P., Konstantakopoulos, G. D., & Papadopoulos, G. A. 

(2019). Traffic flow forecasting for city logistics: a literature review and evaluatio n. 

International Journal of Decision Support Systems, 4(2), 159-176. 



Chapter 7: Research Conclusions and Future Works 

144 

 

• Kechagias, E. P., Gayialis, S. P., Konstantakopoulos, G. D., & Papadopoulos, G. A. 

(2020). An Application of a Multi-Criteria Approach for the Development of a Process 

Reference Model for Supply Chain Operations. Sustainability, 12(14), 5791. (H Index = 

85, IF = 3.251) 

• Konstantakopoulos, G. D., Gayialis, S. P., & Kechagias, E. P. (2020). Vehicle routing 

problem and related algorithms for logistics distribution: a literature review and 

classification. Operational Research, 1-30. (H Index = 22, IF = 2.410) 

• Konstantakopoulos, G.D.; Gayialis, S.P.; Kechagias, E.P.; Papadopoulos, G.A.; 

Tatsiopoulos, I.P. A Multiobjective Large Neighborhood Search Metaheuristic for the 

Vehicle Routing Problem with Time Windows. Algorithms 2020, 13, 243. (H Index = 34, 

Cite Score = 2.9) 

• Kechagias, E. P., Gayialis, S. P., Konstantakopoulos, G. D., & Papadopoulos, G. A. 

(2020). An Application of an Urban Freight Transportation System for Reduced 

Environmental Emissions. Systems, 8(4), 49.  

• Konstantakopoulos, G.D., Gayialis, S.P., Kechagias, E.P., Papadopoulos, G.A., 

Tatsiopoulos, I.P. Delivering and Picking Goods under Time Window Restrictions: An 

Effective Evolutionary Algorithm. Journal of Intelligent & Fuzzy Systems 2020. (H Index 

= 57, IF = 1.851) 

• Konstantakopoulos, G. D., Gayialis, S. P., Kechagias, E. P., Papadopoulos, G. A., & 

Tatsiopoulos, I. P. (2021). An algorithmic approach for sustainable and collaborative 

logistics: A case study in Greece. International Journal of Information Management Data 

Insights, 1(1), 100010. 

• Gayialis, S.P., Kechagias, E.P., Konstantakopoulos, G.D.  A City Logistics System for 

Freight Transportation: Operational Research and Information Technology in Practice. 

Operational Research. Operational Research, 1-30. (H Index = 22, IF = 2.410) 

• Konstantakopoulos, G.D., Kechagias, E.P., Gayialis, S.P., Tatsiopoulos, I.P. 

Development of an Optimization Algorithm for a Vehicle Routing and Scheduling System. 

Engineering Computations. (Under Review) 

Book Chapters 

• Gayialis, S. P., Konstantakopoulos, G. D., & Tatsiopoulos, I. P. (2019). Vehicle routing 

problem for urban freight transportation: A review of the recent literature. In Operational 

Research in the Digital Era–ICT Challenges (pp. 89-104). Springer, Cham. 

• Konstantakopoulos, G.D.; Kechagias, E.P.; Gayialis, S.P.; Tatsiopoulos, I.P. Green 

Freight Distribution: A Case Study in Greece. Business and Economics. (Under Review) 

 

https://link.springer.com/chapter/10.1007/978-3-319-95666-4_7
https://link.springer.com/chapter/10.1007/978-3-319-95666-4_7
https://link.springer.com/chapter/10.1007/978-3-319-95666-4_7


Chapter 7: Research Conclusions and Future Works 

145 

 

Conferences 

• Gayialis, S. P., Konstantakopoulos, G. D., Papadopoulos, G. A., Kechagias, E., & Ponis, 

S. T. (2018). Developing an Advanced Cloud-Based Vehicle Routing and Scheduling 

System for Urban Freight Transportation. In IFIP International Conference on Advances in 

Production Management Systems (pp. 190-197). Springer, Cham. 

• Gayialis, S. P., Kechagias, E., Papadopoulos, G. A., & Konstantakopoulos, G. D. (2019). 

Design of a Blockchain-Driven System for Product Counterfeiting Restraint in the Supply 

Chain. In IFIP International Conference on Advances in Production Management Systems 

(pp. 474-481). Springer, Cham. 

• Kechagias, E., Gayialis, S. P., Konstantakopoulos, G. D., Papadopoulos, G. A. (2019) An 

Advanced Routing and Scheduling System for Dangerous Goods Transportation. In 8th 

International Symposium and 30th National Conference on Operational Research (pp. 126-

130). 

• Gayialis, S. P., Konstantakopoulos, G. D., Papadopoulos, G. A., Kechagias, E. P. (2020) 

An Advanced Transportation System Based on Internet of Things. Proceedings of the 

International Conference on Industrial Engineering and Operations Management, Dubai, 

UAE. 

• Kechagias, E.P., Gayialis, S.P., Konstantakopoulos, G.D., Papadopoulos, G.A., (2020). 

Evaluating the Appropriateness of Traffic Forecasting Algorithms for Use in a Freight 

Transportation System. In Proceedings of XIV Balkan Conference on Operational 

Research (BALCOR 2020), 84-88. 

• Konstantakopoulos, G. D., Gayialis, S. P., Kechagias, E. P. & Papadopoulos, G. A. 

(2020). Conventional and Electric Vehicles for Freight Distribution: A Case Study in 

Greece. In Proceedings of XIV Balkan Conference on Operational Research (BALCOR 

2020), 292-296. 



Appendix A Supplement to Chapter 2 

146 

 

Appendix A Supplement to Chapter 2 

The link below includes the categorization of the 263 articles, which were exploited in the 

research of Chapter 2. 

https://static-content.springer.com/esm/art%3A10.1007%2Fs12351-020-00600-

7/MediaObjects/12351_2020_600_MOESM1_ESM.xlsx 

 

https://static-content.springer.com/esm/art%3A10.1007%2Fs12351-020-00600-7/MediaObjects/12351_2020_600_MOESM1_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1007%2Fs12351-020-00600-7/MediaObjects/12351_2020_600_MOESM1_ESM.xlsx


Appendix B Supplement to Chapter 3 

147 

 

Appendix Β Supplement to Chapter 3 

Solutions in Solomon’s instances which improve the results and offer new Pareto-optimal 

solutions are given below: 

Table B.1 New Optimal Solution in RC202 Instance 

Number 

of Route 
Route Sequence 

1 0-65-83-64-23-21-48-18-19-49-22-20-24-25-77-75-58-52-82-0 

2 0-69-68-88-53-99-57-86-87-9-10-97-59-74-13-17-60-100-70-0 

3 0-14-47-16-15-11-12-78-73-79-7-6-8-46-4-2-55-0 

4 0-71-67-62-76-51-84-56-66- 

5 0-92-95-85-63-33-34-31-29-27-26-28-30-32-89-50-93-96-94-91-80-0 

6 0-45-5-3-1-42-39-37-36-44-41-38-40-43-35-72-54-68-0 

7 0-81-61-90-0 

Total Distance 1117.41 

 

Table B.2  New Optimal Solution in RC207 Instance 

Number 

of Route 
Route Sequence 

1 
0-92-95-67-31-29-28-30-63-85-76-18-21-23-19-49-22-51-84-62-50-34-27-

26-32-33-89-56-91-80-0 

2 0-69-98-88-78-73-79-7-6-2-8-5-3-1-45-4-46-60-55-100-70-68-0 

3 0-61-72-71-93-94-81-42-44-40-36-35-37-38-39-43-41-54-96-0 

4 0-64-83-99-52-86-75-59-87-74-57-65-90-0 

5 0-82-53-12-14-47-17-16-15-11-10-9-13-97-58-77-25-48-20-24-66-0 

Total 

Distance 
970.78 

 

Table B.3 New Optimal Solution in R201 Instance 

Number 

of Route 
Route Sequence 

1 0-5-83-45-82-47-36-19-11-64-49-46-48-0 

2 0-95-59-92-42-15-14-98-61-16-44-38-86-85-99-6-94-53-26-0 

3 0-28-12-29-76-21-73-40-87-57-43-37-97-96-13-58-0 

4 0-33-65-71-30-51-9-81-79-78-34-50-3-68-54-0 

5 0-2-72-39-67-23-75-22-41-56-74-4-55-25-24-80-77-0 

6 0-52-69-31-88-7-18-8-84-17-91-100-93-60-89-0 

7 0-27-62-63-90-10-20-66-35-32-70-1-0 

Total Distance 1156.73 

  

 



Appendix B Supplement to Chapter 3 

148 

 

 

Besides the solutions in instances of well known datasets of the literature, Appendix C also 

includes the MOEA algorithm that is presented in Chapter 4, and is given in the Python 

programming language. 

1. import random 
2. import numpy as np 
3. import pandas as pd 
4. import timeit 
5.   
6. start = timeit.default_timer() 

7.   
8. filename = "Data_File.xlsx" 

9. dataset = pd.read_excel(filename)  
10. n=len(dataset) 
11. tt = pd.read_excel(travel_times_matrix.xlsx) 
12. dm = pd.read_excel(distance_matrix.xlsx) 
13.  
14. #---- seperating the dataset in arrays and matrices -------- 
15. idcust = dataset.iloc[:,0].values 
16. cx = dataset.iloc[:,1].values 
17. cy = dataset.iloc[:,2].values 
18. capacity = int(dataset.iloc[0,7]) 
19. demand  = dataset.iloc[:,3].values 

20. tws = dataset.iloc[:, 4].values 
21. twe = dataset.iloc[:, 5].values 
22. st = dataset.iloc[:, 6].values  
23. n1 = n - 1 
24.   
25. sumroutes = idcust.sum() 
26. paretosize = 15 
27. pareto = np.zeros(shape = (paretosize, n1)) 

28. f1 = np.zeros(shape = (paretosize, 1)) 
29. f2 = np.zeros(shape = (paretosize, 1)) 

30.    
31. def quantity(routes): 

32.     s = np.count_nonzero(routes) 
33.     q = 0 

34.     for i in range (1, s+1): 
35.         q = q + demand[routes[i]]   

36.     return q 
37.                  

38. def converter(route): 
39.     oprt = np.zeros(shape=(n,n)) 
40.     k1=0 
41.     t=0 
42.     q=0 
43.     j=0 

44.     s=1 
45.     nv = 1 

46.     k2 = int(route[j]) 
47.     oprt[nv, s] = int(k1) 
48.     while j in range(n-1): 



Appendix B Supplement to Chapter 3 

149 

 

49.         k2 = int(route[j]) 
50.         q = q + demand[k2] 
51.         if q > capacity or t + tt[k1,k2] > twe[k2]: 
52.             k1=0 

53.             q=0 
54.             t=0 

55.             s = 1 
56.             k2 = int(route[j]) 

57.             nv = nv + 1 
58.             oprt[nv-1, s] = int(k2) 

59.         else: 
60.             oprt[nv-1, s] = int(k2) 
61.             s = s+1 
62.             if t + tt[k1,k2] < tws[k2]: 
63.                 t = tws[k2] + st[k2] 
64.             else: 

65.                 t = t + tt[k1, k2] + st[k2] 
66.             k1 = int(route[j])             
67.             j = j + 1 
68.     return oprt 
69.      
70. #First function to optimize - Total Number of Vehicles    
71. def function1(route): 
72.     cch = converter(route) 

73.     chrom_nv = 0 
74.     for i in range(len(cch)): 

75.         if cch[i, 1] != 0: 
76.             chrom_nv = i+1 
77.     return chrom_nv 
78.   
79. #Second function to optimize - Total Travelled Distance 
80. def function2(route): 

81.     nov1 = function1(route) 
82.     cch = converter(route) 

83.     td = 0 
84.     for i in range(nov1): 
85.         for j in range(n-1): 
86.             td = td + dm[int(cch[i, j]), int(cch[i, j+1])] 
87.     return td 
88.   

89. def paretocheck(routeimp, f1, f2, pareto): 
90.     ff1 = function1(routeimp) 

91.     ff2 = function2(routeimp) 
92.     s1 = np.count_nonzero(f1) 
93.     k = 0 
94.     i1 = 0 

95.     while i1 in range(s1): 
96.         if ff1 == f1[i1] and ff2 < f2[i1]: 
97.             f2[i1] = ff2 
98.             pareto[i1, :] = routeimp.transpose() 

99.             k = 0 
100.             break 

101.         if ff2 < f2[i1] or (ff1 < f1[i1] and ff1 not in f1): 
102.             k = k + 1 
103.         i1 = i1 + 1 
104.     if  k == s1: 



Appendix B Supplement to Chapter 3 

150 

 

105.         f2[s1] = ff2 
106.         f1[s1] = ff1 
107.         pareto[s1, :] = routeimp.transpose() 
108.     return  f1, f2, pareto 

109.   
110. def par(f1, f2, pareto): 

111.     s1 = np.count_nonzero(f1) 
112.     x1 = np.zeros(shape = (s1,1)) 

113.     paretonew = np.zeros(shape=(paretosize, n1)) 
114.     f1new = np.zeros(shape=(paretosize, 1)) 

115.     f2new =  np.zeros(shape=(paretosize, 1)) 
116.     for i in range(s1): 
117.         k = 0 
118.         for j in range(s1): 
119.             if f2[i] < f2[j] or f1[i] < f1[j] and i != j: 
120.                 k = k + 1 

121.         if k < s1-1: 
122.             x1[i] = 1 
123.     k1 = 0 
124.     for i in range(s1): 
125.         if x1[i] == 0: 
126.             paretonew[k1, :] = pareto[i, :] 
127.             f1new[k1] = f1[i] 
128.             f2new[k1] = f2[i] 

129.             k1 = k1 + 1 
130.     return f1new, f2new, paretonew 

131.  
132. # part of the normalization procedure 
133. minv = int(demand.sum()//capacity) 
134. partstw = (twe.max() + tws.min())/2 
135. partsdm = (dm.max() + dm.min())/2 
136. categ = dm[:,:] / partsdm 

137. norm = partstw/partsdm 
138.   

139. #------
check which customers can not be combined in the same route based on their distance/time and their
 time windows------- 

140. xron = np.zeros(shape=(n, n)) 
141. nopos = 0 
142. for i in range(n): 

143.     for j in range(n): 
144.         if tws[i] + tt[i,j] + st[i] > twe[j] or i == j: 

145.             xron[i,j] = 101 
146.             nopos = nopos + 1 
147.   
148. step1 = 0.07                                        

149. chrom = np.zeros(shape=(int((1//step1)+2), n-1)) 
150. routes = np.zeros(shape=(n, n+1)) 
151. pos  = np.zeros(shape=(int((1//step1)+2), 1)) 
152. s123 = np.zeros(shape=(int((1//step1)+2), 1)) 

153. k = 0 
154.   

155. num_chrom = 0 
156. routeimp = np.zeros(shape=(1,n)) 
157. #------- starting to explore solutions ------  
158. for w1 in np.arange(0.0, 1.00001, step1): 



Appendix B Supplement to Chapter 3 

151 

 

159.     w2 = 1 - w1 
160.     v_chrom = 0 
161.     s_chrom = 0 
162.     r = 0 

163.     q = True 
164.     s = 0 

165.     i = 0         
166.     xron1 = np.copy(xron) 

167.     routes  = np.zeros(shape=(n, n+1)) 
168.     while q: 

169.         if i ==0: 
170.             t = 0 
171.             sumq = 0 
172.             k1 = 0 
173.             routes[r, k1] = 0 
174.         mindt = 1000000 

175.         dok = 0 
176.         minf = mindt 
177.         for j in range(1, n): 
178.             if xron1[i,j] != 101 and sumq + demand[j] <= capacity and t + tt[i,j] <= twe[j]: 
179.                 minf = w1*dm[i,j]*norm + w2*(-t-tt[i,j] + twe[j]) 
180.                 if minf < mindt: 
181.                     v_chrom = j 
182.                     s = j 

183.                     mindt = minf 
184.                     dok = dok + 1 

185.         if dok == 0 and j == n-1 : 
186.             s = 0 
187.             r = r + 1 
188.         else: 
189.             chrom[num_chrom, s_chrom] = v_chrom 
190.             s_chrom = s_chrom + 1 

191.         k1 = k1 + 1 
192.         routes[r, k1] = s 

193.         xron1[:, s] = 101 
194.         xron1[i, s] = 101 
195.         xron1[s, i] = 101 
196.         sumq = sumq + demand[s] 
197.         if t + tt[i,s] < tws[s]: 
198.             t = tws[s] + st[s] 

199.         else: 
200.             t = t + tt[i, s] + st[s] 

201.         i = s                             
202.         if xron1.sum() == 101*n*n:               
203.             break 
204.     if num_chrom == 1: 

205.         routeimp = np.copy(chrom[num_chrom, :]) 
206.     else: 
207.         routeimp = np.copy(chrom[num_chrom, :]) 
208.         f1, f2, pareto = paretocheck(routeimp,f1, f2, pareto) 

209.     if num_chrom%6==0: 
210.         f1, f2, pareto = par(f1, f2, pareto) 

211.     num_chrom = num_chrom + 1 
212. print("Constructed - Initial Solution", np.trim_zeros(f1), np.trim_zeros(f2))  
213. novinitial = function2(routeimp) 
214.   



Appendix B Supplement to Chapter 3 

152 

 

215. def insert1(noc, routes2, cust, nvinitial): 
216.     sss=0 
217.     while cust.sum() != 0: 
218.         customerchosen = int(cust[sss]) 

219.         cust[sss] = 0 
220.         initialcost = 99999999 

221.         sk = np.count_nonzero(routes2) 
222.         routes2n = np.copy(routes2) 

223.         new = 0 
224.         www = False 

225.         while new in range(0, sk): 
226.             routes2n = np.copy(routes2) 
227.             for j in range(0, new): 
228.                 routes2n[j] = routes2[j] 
229.             routes2n[new] = customerchosen 
230.             for j in range(new, n1-1): 

231.                 routes2n[j+1] = routes2[j] 
232.             if function2(routes2n) <= initialcost and function1(routes2n) <= nvinitial: 
233.                 routesopt = np.copy(routes2n) 
234.                 initialcost = function2(routes2n) 
235.                 www = True 
236.             new = new + 1 
237.         sss=sss+1 
238.         if www == True: 

239.             routes2 = np.copy(routesopt) 
240.     return routes2 

241.              
242. def insert2(noc, routes2, cust, nvinitial): 
243.     sss=0 
244.     while cust.sum() != 0: 
245.         customerchosen = int(cust[sss]) 
246.         cust[sss] = 0 

247.         initialcost = 99999999 
248.         sk = np.count_nonzero(routes2) 

249.         routes2n = np.copy(routes2) 
250.         new = 0 
251.         www = False 
252.         while new in range(0, sk): 
253.             routes2n = np.copy(routes2) 
254.             for j in range(0, new): 

255.                 routes2n[j] = routes2[j] 
256.             routes2n[new] = customerchosen 

257.             for j in range(new, n1-1): 
258.                 routes2n[j+1] = routes2[j] 
259.             if function2(routes2n) <= initialcost: 
260.                 routesopt = np.copy(routes2n) 

261.                 initialcost = function2(routes2n) 
262.                 www = True 
263.             new = new + 1 
264.         sss=sss+1 

265.         if www == True: 
266.             routes2 = np.copy(routesopt) 

267.     return routes2 
268.              
269. def insert3(noc, routes2, cust, nvinitial): 
270.     sss=0 



Appendix B Supplement to Chapter 3 

153 

 

271.     while cust.sum() != 0: 
272.         customerchosen = int(cust[sss]) 
273.         cust[sss] = 0 
274.         initialcost = 99999999 

275.         sk = np.count_nonzero(routes2) 
276.         routes2n = np.copy(routes2) 

277.         new = 0 
278.         www = False 

279.         while new in range(0, sk): 
280.             routes2n = np.copy(routes2) 

281.             for j in range(0, new): 
282.                 routes2n[j] = routes2[j] 
283.             routes2n[new] = customerchosen 
284.             for j in range(new, n1-1): 
285.                 routes2n[j+1] = routes2[j] 
286.             if function2(routes2n) <= initialcost  and function1(routes2n) <= nvinitial - 1: 

287.                 routesopt = np.copy(routes2n) 
288.                 initialcost = function2(routes2n) 
289.                 www = True 
290.             new = new + 1 
291.         sss = sss+1 
292.         if www == True: 
293.             routes2 = np.copy(routesopt) 
294.     return routes2 

295.   
296. dl = 3 

297. ul = 9 
298.   
299. def impnv1(routes): 
300.     nvinitial = function1(routes) 
301.     routes1 = np.copy(routes) 
302.     routesc = converter(routes) 

303.     kc = random.randint(0, len(routesc)-1) 
304.     while routesc[kc, 1] == 0: 

305.         kc = random.randint(0, len(routesc)-1)         
306.     customers = routesc[kc, :] 
307.     cust = np.trim_zeros(customers) 
308.     noc = np.count_nonzero(cust) 
309.     routes2 = np.zeros(shape=(n1, 1)) 
310.     k1 = 0 

311.     for i in range(n1): 
312.         if routes1[i] not in cust: 

313.             routes2[k1] = routes1[i] 
314.             k1 = k1 + 1 
315.     routes2 = insert3(noc, routes2, cust, nvinitial) 
316.     if (function1(routes2) < nvinitial or (function1(routes2) <= nvinitial and function2(routes2) < functio

n2(routes)))   and routes2.sum() == sumroutes: 
317.         routes = np.copy(routes2) 
318.     return routes 
319.   

320. def impnv2(routes): 
321.     nvinitial = function1(routes) 

322.     routes1 = np.copy(routes) 
323.     routesc = converter(routes) 
324.     kc = random.randint(0, len(routesc)-1) 
325.     while routesc[kc, 1] == 0: 



Appendix B Supplement to Chapter 3 

154 

 

326.         kc = random.randint(0, len(routesc)-1)   
327.     customers = routesc[kc, :] 
328.     cust = np.trim_zeros(customers) 
329.     noc = np.count_nonzero(cust) 

330.     routes2 = np.zeros(shape=(n1, 1)) 
331.     k1 = 0 

332.     for i in range(n1): 
333.         if routes1[i] not in cust: 

334.             routes2[k1] = routes1[i] 
335.             k1 = k1 + 1 

336.     p = random.random() 
337.     if p<0.5: 
338.         routes2 = insert1(noc, routes2, cust, nvinitial) 
339.     else: 
340.         routes2 = insert2(noc, routes2, cust, nvinitial) 
341.     if (function1(routes2) < nvinitial or (function1(routes2) <= nvinitial and function2(routes2) < functio

n2(routes)))  and routes2.sum() == sumroutes: 
342.         routes = np.copy(routes2) 
343.     return routes 
344.   
345. #steady number of customer selected according to the waiting time 
346. def impwaiting(routeinitial): 
347.     nvinitial = function1(routeinitial) 
348.     routes1 = np.copy(routeinitial) 

349.     routes = converter(routeinitial) 
350.     customers5 = np.zeros(shape = (n1,1)) 

351.     waiting = np.zeros(shape = (n1,1)) 
352.     toa = np.zeros(shape = (len(routes), n1)) 
353.     tstart = np.zeros(shape = (len(routes), n1)) 
354.     tod = np.zeros(shape = (len(routes), n1)) 
355.     k = 0 
356.     for i in range(0, len(routes)): 

357.         t = 0 
358.         smax = np.count_nonzero(routes[i,:]) 

359.         for j in range(0, smax+1): 
360.             t = t + tt[int(routes[i,j]), int(routes[i, j+1])] 
361.             if t < tws[int(routes[i, j+1])]: 
362.                 toa[i,j+1] = t 
363.                 tstart[i, j+1] = tws[int(routes[i, j+1])] 
364.                 waiting[k] = tws[int(routes[i, j+1])] - t 

365.                 customers5[k] = int(routes[i, j+1]) 
366.                 k = k +1  

367.             else: 
368.                 toa[i,j+1] = t 
369.                 tstart[i, j+1] = t 
370.                 waiting[k] = 0 

371.                 customers5[k] = int(routes[i, j+1]) 
372.             t = tstart[i, j+1] + st[int(routes[i, j+1])] 
373.             tod[i, j+1] = t 
374.     wait, custom = zip(*sorted(zip(waiting, customers5), reverse = True)) 

375.     noc = random.randint(dl, ul) 
376.     cust = np.zeros(shape = (noc, 1)) 

377.     routes2 = np.zeros(shape=(n1, 1)) 
378.     k1 = 0 
379.     for i in range(n1): 
380.         if routes1[i] not in cust: 



Appendix B Supplement to Chapter 3 

155 

 

381.             routes2[k1] = routes1[i] 
382.             k1 = k1 + 1 
383.     p = random.random() 
384.     if p<0.9: 

385.         routes2 = insert1(noc, routes2, cust, nvinitial) 
386.     else: 

387.         routes2 = insert2(noc, routes2, cust, nvinitial) 
388.     if function2(routes2) <= function2(routeinitial) and routes2.sum() == sumroutes: 

389.         routeinitial = np.copy(routes2) 
390.     return routeinitial 

391.   
392. def impdistant(routeinitial): 
393.     nvinitial =function1(routeinitial) 
394.     routes1 = np.copy(routeinitial) 
395.     routes = converter(routeinitial) 
396.     wc1 = np.zeros(shape=(n1, 1)) 

397.     wc2 = np.zeros(shape=(n1, 1)) 
398.     k = 0 
399.     for i in range(len(routes)): 
400.         sk = np.count_nonzero(routes[i,:]) 
401.         for j in range(1,sk+1): 
402.             wc1[k] = routes[i,j] 
403.             wc2[k] = (dm[int(routes[i,j-1]), int(routes[i,j])] + dm[int(routes[i,j]), int(routes[i,j+1])]) 
404.             k = k + 1          

405.     dmt, custom = zip(*sorted(zip(wc2, wc1), reverse = True)) 
406.     noc = random.randint(dl, ul) 

407.     cust = np.zeros(shape = (noc, 1)) 
408.     routes2 = np.zeros(shape=(n1, 1)) 
409.     k1 = 0 
410.     for i in range(n1): 
411.         if routes1[i] not in cust: 
412.             routes2[k1] = routes1[i] 

413.             k1 = k1 + 1 
414.     p = random.random() 

415.     if p<0.9: 
416.         routes2 = insert1(noc, routes2, cust, nvinitial) 
417.     else: 
418.         routes2 = insert2(noc, routes2, cust, nvinitial) 
419.     if function2(routes2) < function2(routeinitial) and routes2.sum() == sumroutes: 
420.         routeinitial = np.copy(routes2) 

421.     return routeinitial 
422.   

423. #steady number of customer selected according to the waiting time 
424. def impmixed(routeinitial): 
425.     nvinitial = function1(routeinitial) 
426.     routes1 = np.copy(routeinitial) 

427.     routes = converter(routeinitial) 
428.     customers5 = np.zeros(shape = (n1,1)) 
429.     waiting = np.zeros(shape = (n1,1)) 
430.     toa = np.zeros(shape = (len(routes), n1)) 

431.     tstart = np.zeros(shape = (len(routes), n1)) 
432.     tod = np.zeros(shape = (len(routes), n1)) 

433.     k = 0 
434.     for i in range(0, len(routes)): 
435.         t = 0 
436.         smax = np.count_nonzero(routes[i,:]) 



Appendix B Supplement to Chapter 3 

156 

 

437.         for j in range(0, smax+1): 
438.             t = t + tt[int(routes[i,j]), int(routes[i, j+1])] 
439.             if t < tws[int(routes[i, j+1])]: 
440.                 toa[i,j+1] = t 

441.                 tstart[i, j+1] = tws[int(routes[i, j+1])] 
442.                 waiting[k] = tws[int(routes[i, j+1])] - t 

443.                 customers5[k] = int(routes[i, j+1]) 
444.                 k = k +1  

445.             else: 
446.                 toa[i,j+1] = t 

447.                 tstart[i, j+1] = t 
448.                 waiting[k] = 0 
449.                 customers5[k] = int(routes[i, j+1]) 
450.             t = tstart[i, j+1] + st[int(routes[i, j+1])] 
451.             tod[i, j+1] = t 
452.     custom, wait = zip(*sorted(zip(customers5, waiting), reverse = False)) 

453.     wc1 = np.zeros(shape=(n1, 1)) 
454.     wc2 = np.zeros(shape=(n1, 1)) 
455.     k = 0 
456.     for i in range(len(routes)): 
457.         sk = np.count_nonzero(routes[i,:]) 
458.         for j in range(1,sk+1): 
459.             wc1[k] = routes[i,j] 
460.             wc2[k] = (dm[int(routes[i,j-1]), int(routes[i,j])] + dm[int(routes[i,j]), int(routes[i,j+1])]) 

461.             k = k + 1          
462.     custom, dmt  = zip(*sorted(zip(wc1, wc2), reverse = False)) 

463.     total = np.zeros(shape=(n1, 1)) 
464.     for i in range(n1): 
465.         total[i] = dmt[i] + wait[i]  
466.     total2, custom2 = zip(*sorted(zip(total, custom), reverse = True)) 
467.     noc = random.randint(dl, ul) 
468.     cust = np.zeros(shape = (noc, 1)) 

469.     k = 0 
470.     for i in range(0, noc): 

471.         cust[k] = int(custom2[i]) 
472.         k = k + 1 
473.     routes2 = np.zeros(shape=(n1, 1)) 
474.     k1 = 0 
475.     for i in range(n1): 
476.         if routes1[i] not in cust: 

477.             routes2[k1] = routes1[i] 
478.             k1 = k1 + 1 

479.     p = random.random() 
480.     if p<0.9: 
481.         routes2 = insert1(noc, routes2, cust, nvinitial) 
482.     else: 

483.         routes2 = insert2(noc, routes2, cust, nvinitial) 
484.     if function2(routes2) <= function2(routeinitial) and routes2.sum() == sumroutes: 
485.         routeinitial = np.copy(routes2) 
486.     return routeinitial 

487.   
488. def imprandom(routes): 

489.     nvinitial = function1(routes)  
490.     routes1 = np.copy(routes) 
491.     noc = random.randint(dl, ul) 
492.     cust = np.zeros(shape = (noc, 1)) 



Appendix B Supplement to Chapter 3 

157 

 

493.     k = 0 
494.     while np.count_nonzero(cust)<noc: 
495.         ranc = random.randint(0, n1-1) 
496.         while ranc in cust: 

497.             ranc = random.randint(0, n1-1) 
498.         cust[k] = ranc 

499.         k = k + 1 
500.     routes2 = np.zeros(shape=(n1, 1)) 

501.     k1 = 0 
502.     for i in range(n1): 

503.         if routes1[i] not in cust: 
504.             routes2[k1] = routes1[i] 
505.             k1 = k1 + 1 
506.     p = random.random() 
507.     if p<0.9: 
508.         routes2 = insert1(noc, routes2, cust, nvinitial) 

509.     else: 
510.         routes2 = insert2(noc, routes2, cust, nvinitial) 
511.     if function2(routes2) < function2(routes) and routes2.sum() == sumroutes: 
512.         routes = np.copy(routes2) 
513.     return routes 
514.   
515. i = 0 
516. iterations = ... 

517. time_limit = ... 
518. while i in range(iterations) and timeit.default_timer() - start < time_limit: 

519.     initialrouteimp = np.copy(routeimp) 
520.     kk = np.count_nonzero(f1) 
521.     for kk1 in range(1): 
522.         routeimp = pareto[kk1, :] 
523.         routeimp = impnv1(routeimp) 
524.         f1, f2, pareto = paretocheck(routeimp,f1, f2, pareto) 

525.     for kk1 in range(1, kk): 
526.         routeimp = pareto[kk1, :] 

527.         routeimp = impnv2(routeimp) 
528.         f1, f2, pareto = paretocheck(routeimp,f1, f2, pareto) 
529.         routeimp = imprandom(routeimp) 
530.         f1, f2, pareto = paretocheck(routeimp,f1, f2, pareto) 
531.         routeimp = impdistant(routeimp) 
532.         f1, f2, pareto = paretocheck(routeimp,f1, f2, pareto) 

533.         print(np.trim_zeros(f1), np.trim_zeros(f2),  i, (timeit.default_timer() - start)//1 ) 
534.         if i%6 == 0: 

535.             f1, f2, pareto = par(f1, f2, pareto) 
536.     i = i + 1 
537. stop = timeit.default_timer()  



Appendix C Supplement to Chapter 4 

158 

 

Appendix C Supplement to Chapter 4 

The new optimal solution so far, proposed by the EA algorithm in Solomon’s benchmark 

instances are: 

Table C.1 New Optimal Solution in R202 Instance 

Number 

of Route 
Route Sequence 

1 0-69-1-30-90-10-32-70-31-52-0 

2 0-45-47-36-63-64-11-19-62-88-7-18-6-99-96-95-97-43-2-13-58-0 

3 
0-92-37-42-15-14-38-44-16-61-86-84-83-8-82-48-49-46-17-60-5-93-85-91-  

100-98-59-94-89-0 

4 0-27-50-33-65-71-29-76-3-79-78-81-9-51-20-66-35-34-68-24-80-77-12-0 

5 0-28-26-39-67-23-72-73-21-40-53-87-57-41-22-75-56-4-0 

Total 

Distance 
1014.96 

 

Table C.2 New Optimal Solution in R210 Instance 

Number 

of Route 
Route Sequence 

1 
0-2-57-15-42-14-44-38-86-16-61-99-59-87-43-41-22-74-56-4-55-25-54-26-

58-0 

2 
0-95-92-98-85-5-45-36-47-48-82-7-88-62-19-11-64-49-46-8-84-17-83-60-

94-13-97-37-100-91-93-96-0 

3 0-27-69-1-30-65-71-33-50-76-3-79-81-9-34-78-29-24-80-68-77-0 

4 0-28-12-39-67-23-75-72-73-21-40-53-6-89-18-52-31-10-63-90-20-51-35-0 

Total 

Distance 
920.13 

 

The new solutions proposed in Salhi and Nagy’s benchmark instances are: 

Table C.3 New Optimal Solution in CMT2X Instance 

Number 

of Route 
Route Sequence 

1 0-8-35-53-14-19-54-13-57-15-5-37-20-70-60-71-36-69-61-22-0 

2 0-58-10-38-65-11-66-59-0 

3 0-26-67-34-68-73-62-28-74-21-47-48-30-0 

4 0-4-29-45-27-52-46-7-72-39-9-12-0 

5 0-2-33-63-1-43-42-64-41-56-23-24-49-16-0 

6 0-75-6-51-17-40-3-44-32-50-18-25-55-31-0 

Total Distance 771.01 



Appendix C Supplement to Chapter 4 

159 

 

 

Table C.4 New Optimal Solution in CMT5X Instance 

Number 

of Route 
Route Sequence 

1 0-46-11-2-20-35-36-3-28-22-0 

2 0-45-33-39-10-30-34-50-9-49-0 

3 0-5-38-16-29-21-31-26-7-23-6-0 

4 0-32-1-27-48-8-43-24-14-25-13-18-0 

5 0-12-47-17-37-15-44-42-19-40-41-4-0 

Total Distance 606.33 

 

Table C.5 New Optimal Solution in CMT7X Instance 

Number 

of Route 
Route Sequence 

1 0-75-4-67-34-46-52-27-13-0 

2 0-26-12-40-17-51-6-68-2-0 

3 0-7-35-8-54-19-14-53-11-0 

4 0-45-29-48-70-47-21-74-28-30-0 

5 0-33-73-1-43-41-42-22-62-0 

6 0-16-63-23-56-49-24-31-10-0 

7 0-38-65-66-59-58-25-55-18-0 

8 0-3-44-32-50-9-39-72-71-60-20-0 

9 0-57-15-5-37-36-69-61-64-0 

Total Distance 1040.67 

 

Table C.6 New Optimal Solution in CMT8X Instance 

Number 

of Route 
Route Sequence 

1 0-94-59-85-93-95-13-87-97-100-98-37-92-91-0 

2 0-27-28-68-79-81-9-71-66-65-51-53-58-0 

3 0-40-26-12-76-50-77-3-33-34-78-89-5-0 

4 0-96-99-61-16-44-86-17-84-83-18-30-32-90-10-62-52-0 

5 0-28-26-39-67-23-72-73-21-40-53-87-57-41-22-75-56-4-0 

6 0-2-57-42-15-14-38-43-41-22-23-75-72-0 

7 0-73-74-21-56-39-67-25-55-80-88-63-64-11-0 

8 0-82-48-47-49-36-46-19-7-60-8-45-0 

Total Distance 1036.52 

 

Table C.7 New Optimal Solution (a) in CMT9X Instance 

Number Route Sequence 



Appendix C Supplement to Chapter 4 

160 

 

of Route 

1 0-112-147-6-94-95-59-93-85-98-37-92-00-75-4-67-34-46-52-27-13-0 

2 0-97-117-53-105-26-149-109-12-132-69-1-30-62-0 

3 0-27-146-52-127-31-88-148-10-108-90-32-111-58-40-0 

4 0-21-73-72-74-133-22-75-56-139-110-28-89-18-0 

5 0-118-60-5-84-8-17-113-86-141-13-137-87-144-57-115-0 

6 0-2-145-41-15-96-99-104-100-138-0 

7 0-119-44-16-14-142-42-43-116-77-79-129-76-0 

8 0-33-81-102-50-68-101-70-122-20-51-9-120-0 

9 0-135-35-103-106-7-82-48-124-47-36-143-49-0 

10 0-150-80-134-24-29-121-34-78-3-54-83-114-46-123-19-107-0 

11 0-130-55-25-39-23-67-4-91-61-45-0 

12 0-38-140-125-11-63-126-64-131-128-71-136-65-66-0 

Total Distance 1744.19 

 

Table C.8 New Optimal Solution (b) in CMT9X Instance 

Number 

of Route 
Route Sequence 

1 0-112-147-94-95-59-93-85-98-37-92-97-0 

2 0-89-117-53-105-26-149-109-12-0 

3 0-132-69-1-30-62-52-127-31-88-148-10-108-90-32-111-0 

4 0-58-40-21-73-72-74-133-22-75-56-139-110-0 

5 0-28-27-146-18-118-60-5-84-8-6-0 

6 0-17-113-86-141-13-137-87-144-57-115-0 

7 0-2-145-41-15-96-99-104-100-138-0 

8 0-119-44-16-14-142-42-43-116-77-79-129-76-0 

9 0-33-81-102-50-68-101-70-122-20-51-9-120-0 

10 0-135-35-103-106-7-82-48-124-47-36-143-49-0 

11 0-150-80-134-24-29-121-34-78-3-54-83-114-46-123-19-107-0 

12 0-130-55-25-39-23-67-4-91-61-45-0 

13 0-38-140-125-11-63-126-64-131-128-71-136-65-66-0 

Total Distance 1741.36 

 

Table C.9 New Optimal Solution (c) in CMT9X Instance 

Number 

of Route 
Route Sequence 

1 0-112-94-95-59-85-93-98-100-37-92-0 

2 0-97-117-137-53-105-26-149-12-109-68-150-80-116-0 

3 0-40-76-77-102-27-146-0 



Appendix C Supplement to Chapter 4 

161 

 

4 0-89-147-6-96-99-104-118-5-84-61-28-111-138-0 

5 0-50-1-132-69-101-32-90-31-127-52-0 

6 0-13-87-144-57-115-2-145-41-22-133-0 

7 0-21-73-72-74-75-56-39-139-4-110-58-18-106-0 

8 0-7-82-124-47-123-19-107-48-60-83-0 

9 0-114-8-125-45-17-113-16-141-88-148-62-10-108-0 

10 0-131-128-20-30-79-129-120-81-3-0 

11 0-9-103-71-135-33-70-122-51-66-65-0 

12 0-136-35-78-54-130-134-24-29-121-34-0 

13 0-42-142-14-119-44-91-86-15-43-38-140-46-0 

14 0-55-25-67-23-126-63-11-64-49-143-36-0 

Total Distance 1698.21 

 

Table C.10 New Optimal Solution in CMT10X Instance 

Number 

of Route 
Route Sequence 

1 0-112-156-183-94-95-59-85-93-98-92-91-0 

2 0-27-167-190-31-162-101-176-102-157-81-120-0 

3 0-53-105-28-111-196-68-150-80-177-170-12-184-154-138-0 

4 0-152-58-40-13-87-97-151-100-193-141-44-119-142-15-147-0 

5 0-89-166-118-5-84-173-61-16-191-192-37-0 

6 0-146-52-127-88-182-148-159-62-10-189-108-0 

7 0-180-149-26-195-130-134-163-24-132-69-1-0 

8 0-50-76-116-77-158-3-79-129-169-55-109-0 

9 0-6-96-99-104-117-137-178-115-2-144-172-42-0 

10 0-18-153-106-194-7-82-48-123-19-107-175-0 

11 0-198-21-72-197-75-133-22-171-74-73-110-179-0 

12 0-155-4-139-39-187-165-60-83-199-114-8-174-125-45-17-113-0 

13 0-70-30-160-128-188-161-103-9-164-34-33-0 

14 0-185-78-135-35-136-71-66-20-122-51-0 

15 0-32-131-181-63-126-90-57-145-41-186-56-23-67-0 

16 0-121-29-25-54-65-11-124-47-168-36-143-49-64-0 

17 0-43-14-38-140-86-46-0 

Total Distance 1937.02 

  



Appendix C Supplement to Chapter 4 

162 

 

Besides the solutions in instances of well known datasets of the literature, Appendix C also 

includes the MOEA algorithm that is presented in Chapter 4, and is given in the Python 

programming language. 

1. import random 
2. import numpy as np 
3. import matplotlib.pyplot as plt 

4. import pandas as pd 
5. import timeit 

6. import math 
7.   
8. start = timeit.default_timer() 
9.   
10. #Maximum Number of Generations 
11. max_gen = 100 
12. #Population Size      
13. pop_size = 30 

14. step1 = 0.05 
15. pososto1 = 0.25 
16. pososto2 = 0.8 
17. pososto3 = 0.9 
18.   
19. filename = "r109.xlsx" 

20. dataset = pd.read_excel(filename) 
21. tt = pd.read_excel(“travel_times_matrix.xlsx”) 

22. dm = pd.read_excel(“distance_matrix.xlsx”) 
23.  

24. def totq(route, demand): 
25.     s = np.count_nonzero(route) 

26.     q=0 
27.     for j in range(1, s+1): 
28.         q = q + demand[int(route[j])] 
29.     return q 

30.   
31. def totcroute(route, dm): 

32.     td = 0 
33.     s = np.count_nonzero(route) 
34.     for j in range(0, s+1): 
35.         td = td + dm[int(route[j]),int(route[j+1])] 
36.     return td 
37.   

38. #Random customers 
39. def remove1(routes, dl, ul, n1): 

40.     noc = random.randint(dl, ul) 
41.     cust = np.zeros(shape = (noc, 1)) 
42.     k = 0 
43.     while np.count_nonzero(cust)<noc: 
44.         ranc = random.randint(0, n1-1) 
45.         while ranc in cust: 
46.             ranc = random.randint(0, n1-1) 
47.         cust[k] = ranc 

48.         k = k + 1 
49.     return cust 
50.   



Appendix C Supplement to Chapter 4 

163 

 

51. #select entire route 
52. def remove2n(routes, demand, n, capacity, tt, twe, tws, st, dm): 
53.     routesc = converter(routes, n, demand,capacity, tt, twe, tws, st) 
54.     r1 = np.zeros(shape=(len(routes), 1)) 

55.     r2 = np.zeros(shape=(len(routes), 1)) 
56.     for i in range(len(routes)): 

57.         r1[i] = i 
58.         r2[i] = totcroute(routesc[i, :], dm)/totq(routesc[i, :], demand) 

59.     rrr2, rrr1 = zip(*sorted(zip(r2, r1), reverse = True)) 
60.     randomnumb = random.randint(0, 6) 

61.     ii = int(rrr1[randomnumb]) 
62.     noc = np.count_nonzero(routesc[ii, :]) 
63.     while noc ==0: 
64.         randomnumb = random.randint(0, 6) 
65.         ii = int(rrr1[randomnumb]) 
66.         noc = np.count_nonzero(routesc[ii, :]) 

67.     cust = np.zeros(shape = (noc, 1)) 
68.     return cust 
69.   
70. #distant customers 
71. def remove3(routes, n1, dm, dl, ul, n, demand,capacity, tt, twe, tws, st): 
72.     wc1 = np.zeros(shape=(n1, 1)) 
73.     wc2 = np.zeros(shape=(n1, 1)) 
74.     routes1 = converter(routes, n, demand,capacity, tt, twe, tws, st) 

75.     k = 0 
76.     nvv = function1(routes, n, demand,capacity, tt, twe, tws, st) 

77.     for i in range(nvv): 
78.         sk = np.count_nonzero(routes1[i,:]) 
79.         for j in range(1,sk+1): 
80.             wc1[k] = routes1[i,j] 
81.             wc2[k] = (dm[int(routes1[i,j-1]), int(routes1[i,j])] + dm[int(routes1[i,j]), int(routes1[i,j+1])]) 
82.             k = k + 1          

83.     dem, custom = zip(*sorted(zip(wc2, wc1), reverse = True)) 
84.     noc = random.randint(dl, ul) 

85.     cust = np.zeros(shape = (noc, 1)) 
86.     for i in range(noc): 
87.         cust[i] = int(custom[i]) 
88.     return cust 
89.   
90. #waiting time at customers 

91. def remove4(routeinitial, n1, tws, twe, tt, st, dl, ul, demand, capacity, n): 
92.     routes = converter(routeinitial, n, demand, capacity, tt, twe, tws, st) 

93.     customers5 = np.zeros(shape = (n1,1)) 
94.     waiting = np.zeros(shape = (n1,1)) 
95.     toa = np.zeros(shape = (len(routes), n1)) 
96.     tstart = np.zeros(shape = (len(routes), n1)) 

97.     tod = np.zeros(shape = (len(routes), n1)) 
98.     k = 0 
99.     for i in range(0, len(routes)): 
100.         t = 0 

101.         smax = np.count_nonzero(routes[i,:]) 
102.         for j in range(0, smax+1): 

103.             t = t + tt[int(routes[i,j]), int(routes[i, j+1])] 
104.             if t < tws[int(routes[i, j+1])]: 
105.                 toa[i,j+1] = t 
106.                 tstart[i, j+1] = tws[int(routes[i, j+1])] 



Appendix C Supplement to Chapter 4 

164 

 

107.                 waiting[k] = tws[int(routes[i, j+1])] - t 
108.                 customers5[k] = int(routes[i, j+1]) 
109.                 k = k +1  
110.             else: 

111.                 toa[i,j+1] = t 
112.                 tstart[i, j+1] = t 

113.                 waiting[k] = 0 
114.                 customers5[k] = int(routes[i, j+1]) 

115.             t = tstart[i, j+1] + st[int(routes[i, j+1])] 
116.             tod[i, j+1] = t 

117.     wait, custom = zip(*sorted(zip(waiting, customers5), reverse = True)) 
118.     noc = random.randint(dl, ul) 
119.     cust = np.zeros(shape = (noc, 1)) 
120.     k = 0 
121.     for i in range(0, noc): 
122.         cust[k] = int(custom[i]) 

123.         k = k + 1 
124.     return cust 
125.   
126. def insert1(routes2, cust, nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st): 
127.     s1 = len(cust) 
128.     while cust.sum() != 0: 
129.         i = random.randint(0, s1-1) 
130.         while cust[i] == 0: 

131.             i = random.randint(0, s1-1) 
132.         customerchosen = int(cust[i]) 

133.         cust[i] = 0 
134.         initialcost = 99999999 
135.         sk = np.count_nonzero(routes2) 
136.         routes2n = np.copy(routes2) 
137.         new = 0 
138.         www = False 

139.         while new in range(0, sk): 
140.             routes2n = np.copy(routes2) 

141.             for j in range(0, new): 
142.                 routes2n[j] = routes2[j] 
143.             routes2n[new] = customerchosen 
144.             for j in range(new, n1-1): 
145.                 routes2n[j+1] = routes2[j] 
146.             if function2(routes2n, n , dm, demand, capacity, tt, twe, tws, st) <= initialcost and function1(rou

tes2n, n, demand,capacity, tt, twe, tws, st) <= nvinitial: 
147.                 routesopt = np.copy(routes2n) 

148.                 initialcost = function2(routes2n, n , dm, demand, capacity, tt, twe, tws, st) 
149.                 www = True 
150.             new = new + 1 
151.         if new == sk and www == False: 

152.             cust[i] = customerchosen 
153.             nvinitial = nvinitial + 1 
154.         if www == True: 
155.             routes2 = np.copy(routesopt) 

156.     return routes2 
157.   

158. def insert2(routes2, cust, nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st): 
159.     s1 = len(cust) 
160.     while cust.sum() != 0: 
161.         i = random.randint(0, s1-1) 



Appendix C Supplement to Chapter 4 

165 

 

162.         while cust[i] == 0: 
163.             i = random.randint(0, s1-1) 
164.         customerchosen = int(cust[i]) 
165.         cust[i] = 0 

166.         initialcost = 99999999 
167.         sk = np.count_nonzero(routes2) 

168.         routes2n = np.copy(routes2) 
169.         new = 0 

170.         www = False 
171.         while new in range(0, sk): 

172.             routes2n = np.copy(routes2) 
173.             for j in range(0, new): 
174.                 routes2n[j] = routes2[j] 
175.             routes2n[new] = customerchosen 
176.             for j in range(new, n1-1): 
177.                 routes2n[j+1] = routes2[j] 

178.             if function2(routes2n, n , dm, demand, capacity, tt, twe, tws, st) <= initialcost: 
179.                 routesopt = np.copy(routes2n) 
180.                 initialcost = function2(routes2n, n , dm, demand, capacity, tt, twe, tws, st) 
181.                 www = True 
182.             new = new + 1 
183.         if www == True: 
184.             routes2 = np.copy(routesopt) 
185.     return routes2 

186.   
187.                         

188. def insert3(routes2, cust, nvinitial, n1, n, dm, demand, capacity, tt, twe, tws, st): 
189.     s1 = len(cust) 
190.     while cust.sum() != 0: 
191.         i = random.randint(0, s1-1) 
192.         while cust[i] == 0: 
193.             i = random.randint(0, s1-1) 

194.         customerchosen = int(cust[i]) 
195.         cust[i] = 0 

196.         initialcost = 99999999 
197.         sk = np.count_nonzero(routes2) 
198.         routes2n = np.copy(routes2) 
199.         new = 0 
200.         www = False 
201.         while new in range(0, sk): 

202.             routes2n = np.copy(routes2) 
203.             for j in range(0, new): 

204.                 routes2n[j] = routes2[j] 
205.             routes2n[new] = customerchosen 
206.             for j in range(new, n1-1): 
207.                 routes2n[j+1] = routes2[j] 

208.             if function2(routes2n, n , dm, demand, capacity, tt, twe, tws, st) <= initialcost and function1(rou
tes2n, n, demand,capacity, tt, twe, tws, st) <= nvinitial - 1: 

209.                 routesopt = np.copy(routes2n) 
210.                 initialcost = function2(routes2n, n , dm, demand, capacity, tt, twe, tws, st) 

211.                 www = True 
212.             new = new + 1 

213.         if new == sk and www == False: 
214.             cust[i] = customerchosen 
215.             nvinitial = nvinitial + 1 
216.         if www == True: 



Appendix C Supplement to Chapter 4 

166 

 

217.             routes2 = np.copy(routesopt) 
218.     return routes2 
219.   
220. def converter(route, n, demand,capacity, tt, twe, tws, st): 

221.     oprt = np.zeros(shape=(n,n)) 
222.     k1=0 

223.     t=0 
224.     q=0 

225.     j=0 
226.     s=1 

227.     nv = 1 
228.     k2 = int(route[j]) 
229.     oprt[nv, s] = int(k1) 
230.     while j in range(n-1): 
231.         k2 = int(route[j]) 
232.         q = q + demand[k2] 

233.         if q > capacity or t + tt[k1,k2] > twe[k2]: 
234.             k1=0 
235.             q=0 
236.             t=0 
237.             s = 1 
238.             k2 = int(route[j]) 
239.             nv = nv + 1 
240.             oprt[nv-1, s] = int(k2) 

241.         else: 
242.             oprt[nv-1, s] = int(k2) 

243.             s = s+1 
244.             if t + tt[k1,k2] < tws[k2]: 
245.                 t = tws[k2] + st[k2] 
246.             else: 
247.                 t = t + tt[k1, k2] + st[k2] 
248.             k1 = int(route[j])             

249.             j = j + 1 
250.     return oprt 

251.      
252. #First function to optimize - Total Number of Vehicles    
253. def function1(route, n, demand,capacity, tt, twe, tws, st): 
254.     cch = converter(route , n, demand,capacity, tt, twe, tws, st) 
255.     chrom_nv = 0 
256.     for i in range(n): 

257.         if cch[i, 1] != 0: 
258.             chrom_nv = i+1 

259.     return chrom_nv 
260.   
261. #Second function to optimize - Total travelled distance 
262. def function2(route, n , dm, demand,capacity, tt, twe, tws, st): 

263.     nov1 = function1(route, n, demand,capacity, tt, twe, tws, st) 
264.     cch = converter(route, n, demand,capacity, tt, twe, tws, st) 
265.     td = 0 
266.     for i in range(nov1): 

267.         for j in range(n - 1): 
268.             td = td + dm[int(cch[i, j]), int(cch[i, j+1])] 

269.     return td 
270.   
271. def afairesi(chrom, x, n): 
272.     child = np.zeros(shape=(n-1, 1)) 



Appendix C Supplement to Chapter 4 

167 

 

273.     k1=0 
274.     for i in range(n-1): 
275.         if chrom[i] not in x: 
276.             child[k1] = chrom[i] 

277.             k1 = k1 +1 
278.     return child 

279.   
280. def crossover1(chromo1, chromo2, demand, n1, sumroutes, n, dl, ul, tws, twe, tt, st, dm, capacity): 

281.     r2=random.random() 
282.     ss = False 

283.     if r2<pososto1: 
284.         x2 = remove1(chromo2, dl, ul, n1) 
285.         ss = True 
286.     elif r2<pososto2: 
287.         x2 = remove2n(chromo2, demand, n, capacity, tt, twe, tws, st, dm) 
288.     elif r2<pososto3: 

289.         x2 = remove3(chromo2, n1, dm, dl, ul, n, demand,capacity, tt, twe, tws, st) 
290.         ss = True 
291.     else: 
292.         x2 = remove4(chromo2, n1, tws, twe, tt, st, dl, ul, demand, capacity, n) 
293.         ss = True 
294.     child1 = afairesi(chromo1, x2, n) 
295.     if ss == False: 
296.         r2 = random.random() 

297.         if r2 < 0.1: 
298.             nvinitial = function1(chromo1, n, demand,capacity, tt, twe, tws, st) 

299.             chromo1x = insert1(child1, x2,  nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st)  
300.         else: 
301.             nvinitial = function1(chromo1, n, demand,capacity, tt, twe, tws, st) 
302.             chromo1x = insert3(child1, x2,  nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st) 
303.     else: 
304.         r2 = random.random() 

305.         if r2 < 0.5: 
306.             nvinitial = function1(chromo1, n, demand,capacity, tt, twe, tws, st) 

307.             chromo1x = insert1(child1, x2,  nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st) 
308.         else: 
309.             nvinitial = function1(chromo1, n, demand,capacity, tt, twe, tws, st) 
310.             chromo1x = insert2(child1, x2,  nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st) 
311.     r3 =  random.random() 
312.     if r3 <= 0.05: 

313.         cust11 = np.zeros(shape = (1, 1)) 
314.         cust11[0] = random.randint(0, n1-1) 

315.         meion1 = afairesi(chromo1x, cust11, n) 
316.         nvinitial  = function1(meion1, n, demand,capacity, tt, twe, tws, st) 
317.         chromo1x = insert1(meion1, cust11, nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st) 
318.     if chromo1x.sum() <sumroutes: 

319.         chromo1x = np.copy(chromo1) 
320.     return chromo1x 
321.   
322. def crossover2(chromo1, chromo2, demand, n1, sumroutes, n, dl, ul, dm, tws, twe, tt, st, capacity): 

323.     r2=random.random() 
324.     ss = False 

325.     if r2<pososto1: 
326.         x2 = remove1(chromo1, dl, ul, n1) 
327.         ss = True 
328.     elif r2<pososto2: 



Appendix C Supplement to Chapter 4 

168 

 

329.         #x2 = remove2(chromo1) 
330.         x2 = remove2n(chromo1, demand, n, capacity, tt, twe, tws, st, dm) 
331.     elif r2<pososto3: 
332.         ss = True 

333.         x2 = remove3(chromo1, n1, dm, dl, ul, n, demand,capacity, tt, twe, tws, st) 
334.     else: 

335.         x2 = remove4(chromo1, n1, tws, twe, tt, st, dl, ul, demand, capacity, n) 
336.         ss = True 

337.     child1 = afairesi(chromo2, x2, n) 
338.     if ss ==False: 

339.         r2 = random.random() 
340.         if r2 < 0.1: 
341.             nvinitial = function1(chromo2, n, demand,capacity, tt, twe, tws, st) 
342.             chromo2x = insert1(child1, x2,  nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st)      
343.         else: 
344.             nvinitial = function1(chromo2, n, demand,capacity, tt, twe, tws, st) 

345.             chromo2x = insert3(child1, x2,  nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st)  
346.     else: 
347.         r2 = random.random() 
348.         if r2 < 0.5: 
349.             nvinitial = function1(chromo1, n, demand,capacity, tt, twe, tws, st) 
350.             chromo2x = insert1(child1, x2,  nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st) 
351.         else: 
352.             nvinitial = function1(chromo1, n, demand,capacity, tt, twe, tws, st) 

353.             chromo2x = insert2(child1, x2,  nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st) 
354.     r3 =  random.random() 

355.     if r3 <= 0.05: 
356.         cust11 = np.zeros(shape = (1, 1)) 
357.         cust11[0] = random.randint(0, n1-1) 
358.         meion1 = afairesi(chromo2x, cust11, n) 
359.         nvinitial  = function1(meion1, n, demand,capacity, tt, twe, tws, st) 
360.         chromo2x = insert1(meion1, cust11, nvinitial, n1, n , dm, demand, capacity, tt, twe, tws, st) 

361.     if chromo2x.sum() <sumroutes: 
362.         chromo2x = np.copy(chromo2)              

363.     return chromo2x 
364.   
365. #Function to carry out NSGA-II's fast non dominated sort 
366. def fast_non_dominated_sort(values1, values2): 
367.     S=[[] for i in range(0,len(values1))] 
368.     front = [[]] 

369.     n=[0 for i in range(0,len(values1))] 
370.     rank = [0 for i in range(0, len(values1))] 

371.   
372.     for p in range(0,len(values1)): 
373.         S[p]=[] 
374.         n[p]=0 

375.         for q in range(0, len(values1)): 
376.             if (values1[p] < values1[q] and values2[p] < values2[q]) or (values1[p] <= values1[q] and values2

[p] < values2[q]) or (values1[p] < values1[q] and values2[p] <= values2[q]): 
377.                 if q not in S[p]: 

378.                     S[p].append(q) 
379.             elif (values1[q] < values1[p] and values2[q] < values2[p]) or (values1[q] <= values1[p] and value

s2[q] < values2[p]) or (values1[q] < values1[p] and values2[q] <= values2[p]): 
380.                 n[p] = n[p] + 1 
381.         if n[p]==0: 
382.             rank[p] = 0 



Appendix C Supplement to Chapter 4 

169 

 

383.             if p not in front[0]: 
384.                 front[0].append(p) 
385.     i = 0 
386.     while(front[i] != []): 

387.         Q=[] 
388.         for p in front[i]: 

389.             for q in S[p]: 
390.                 n[q] =n[q] - 1 

391.                 if( n[q]==0): 
392.                     rank[q]=i+1 

393.                     if q not in Q: 
394.                         Q.append(q) 
395.         i = i+1 
396.         front.append(Q) 
397.     del front[len(front)-1] 
398.     return front 

399.   
400. def crowding_distance(values1, values2, front): 
401.     distance = [0 for i in range(0,len(front))] 
402.     sorted1 = sort_by_values(front, values1[:]) 
403.     sorted2 = sort_by_values(front, values2[:]) 
404.     distance[0] = 9999999999999999 
405.     distance[len(front) - 1] = 9999999999999999 
406.     for k in range(1,len(front)-1): 

407.         distance[k] = distance[k]+ (values1[sorted1[k+1]] - values2[sorted1[k-1]])/(max(values1)-
min(values1)) 

408.     for k in range(1,len(front)-1): 
409.         distance[k] = distance[k]+ (values1[sorted2[k+1]] - values2[sorted2[k-1]])/(max(values2)-

min(values2)) 
410.     return distance 
411.   
412. def sort_by_values(list1, values): 

413.     sorted_list = [] 
414.     while(len(sorted_list)!=len(list1)): 

415.         if index_of(min(values),values) in list1: 
416.             sorted_list.append(index_of(min(values),values)) 
417.         values[index_of(min(values),values)] = math.inf 
418.     return sorted_list 
419.   
420. #Function to find ton deikti tis listas 

421. def index_of(a,list): 
422.     for i in range(0,len(list)): 

423.         if list[i] == a: 
424.             return i 
425.     return -1 
426.   

427. def routing(dataset, tt, dm): 
428.     #-------------------------seperating the dataset in arrays and matrices----------------------------------- 
429.     cx = dataset.iloc[:,1].values 
430.     cy = dataset.iloc[:,2].values 

431.     capacity = int(dataset.iloc[0,7]) 
432.     print(capacity, filename) 

433.     demand  = dataset.iloc[:,3].values 
434.     tws = dataset.iloc[:, 4].values 
435.     twe = dataset.iloc[:, 5].values 
436.     st = dataset.iloc[:, 6].values 



Appendix C Supplement to Chapter 4 

170 

 

437.     nodes = dataset.iloc[:,0].values 
438.     n=len(dataset) 
439.     n1 = n - 1  
440.      

441.     customers1 = np.copy(nodes) 
442.     dl = 5 

443.     ul = 18 
444.     sumroutes = customers1.sum() 

445. #-----attributes of the normalization procedure ----- 
446.     minv = int(demand.sum()//capacity) 

447.     partstw = (twe.max() + tws.min())/2 
448.     partsdm = (dm.max() + dm.min())/2 
449.     categ = dm[:,:] / partsdm 
450.     norm = partstw/partsdm 
451.     chrom = np.zeros(shape=(5151, n1)) 
452.     pos  = np.zeros(shape=(5151, 1)) 

453.      
454.     num_chrom = 0 
455.     routeimp = np.zeros(shape=(1,n)) 
456.     #--------- starting to explore solutions ----------  
457.     for w1 in np.arange(0.0, 1.00001, step1): 
458.         for w2 in np.arange(0.0, 1.0001-w1, step1): 
459.             w3 = 1 - w1 - w2 
460.             customers = np.copy(customers1) 

461.             s_chrom = 0 
462.             q = True 

463.             s = 0 
464.             i = 0         
465.             while q: 
466.                 if i ==0: 
467.                     t = 0 
468.                     sumq = 0 

469.                     k1 = 0 
470.                 mindt = 1000000 

471.                 dok = 0 
472.                 minf = mindt 
473.                 for j in range(1, n): 
474.                     if customers[j] != 0 and sumq + demand[int(customers[j])] <= capacity and t + tt[i,int(custo

mers[j])] <= twe[int(customers[j])]: 
475.                         minf = w1*dm[i,int(customers[j])]*norm + w2*abs(t +tt[i,int(customers[j])] - tws[int(cust

omers[j])]) +w3*abs(-t-tt[i,int(customers[j])] + twe[int(customers[j])]) 
476.                         if minf < mindt: 

477.                             s = j 
478.                             mindt = minf 
479.                             dok = dok+1 
480.                 if dok == 0 and j == n1-1: 

481.                     i = 0 
482.                     s = 0 
483.                 if dok != 0: 
484.                     chrom[num_chrom, s_chrom] = int(customers[s]) 

485.                     s_chrom = s_chrom + 1 
486.                 sumq = sumq + demand[int(customers[s])] 

487.                 if t + tt[i,int(customers[s])] < tws[int(customers[s])]: 
488.                     t = tws[int(customers[s])] + st[int(customers[s])] 
489.                 else: 
490.                     t = t + tt[i, int(customers[s])] + st[int(customers[s])] 



Appendix C Supplement to Chapter 4 

171 

 

491.                 i = int(customers[s]) 
492.                 customers[s] = 0 
493.                 if customers.sum() == 0:               
494.                     break 

495.             num_chrom = num_chrom + 1 
496.       

497.     #Get rid of the duplicate solutions        
498.     solutions = np.zeros(shape=(num_chrom, n-1)) 

499.     solutions[0, :] = chrom[0, :] 
500.     kk = 1 

501.     for i in range(1, num_chrom): 
502.         j = 0 
503.         sss = True 
504.         while j in range(num_chrom) and sss == True: 
505.             if np.array_equal(chrom[i, :], solutions[j, :]) == True: 
506.                 sss = False 

507.             else: 
508.                 j = j + 1 
509.         if sss == True: 
510.             solutions[kk, :] = chrom[i, :] 
511.             kk = kk + 1 
512.     solution = np.zeros(shape=(kk - 1, n-1)) 
513.     for i in range(kk-1): 
514.         solution[i, :] = solutions[i, :]  

515.     solutionnew = np.zeros(shape=(kk - 1, n-1)) 
516.     function1_values = [function1(solution[i,:], n, demand,capacity, tt, twe, tws, st) for i in range(0,kk-

1)] 
517.     function2_values = [function2(solution[i,:], n , dm, demand, capacity, tt, twe, tws, st) for i in range(0

,kk-1)]     
518.     non_dominated_sorted_solution = fast_non_dominated_sort(function1_values[:],function2_values

[:]) 
519.     k = 0 

520.     i = 0 
521.     while k <=pop_size - 1 and i in range(len(non_dominated_sorted_solution)): 

522.         j = 0 
523.         while k <= pop_size and j in range(len(non_dominated_sorted_solution[i])): 
524.             solutionnew[k, :] = solution[non_dominated_sorted_solution[i][j], :] 
525.             j = j + 1 
526.             k = k + 1 
527.         i = i + 1 

528.     for i in range(pop_size): 
529.         solution[i,:] = solutionnew[i, :] 

530.   
531.     #Starting the generation     
532.     gen_no=0 
533.     while(gen_no<max_gen) and timeit.default_timer() - start < 1800: 

534.         function1_values = [function1(solution[i,:], n, demand, capacity, tt, twe, tws, st) for i in range(0,p
op_size)] 

535.         function2_values = [function2(solution[i,:], n , dm, demand, capacity, tt, twe, tws, st) for i in range
(0,pop_size)] 

536.         non_dominated_sorted_solution = fast_non_dominated_sort(function1_values[:],function2_valu
es[:])    

537.         print("The best front for Generation number ",gen_no, " is") 
538.         for valuez in non_dominated_sorted_solution[0]: 
539.             print(function1(solution[valuez], n, demand,capacity, tt, twe, tws, st), function2(solution[valuez

], n , dm, demand, capacity, tt, twe, tws, st)) 



Appendix C Supplement to Chapter 4 

172 

 

540.         print((timeit.default_timer() - start)//1) 
541.         crowding_distance_values=[] 
542.         for i in range(0,len(non_dominated_sorted_solution)): 
543.             crowding_distance_values.append(crowding_distance(function1_values[:],function2_values[:],

non_dominated_sorted_solution[i][:])) 
544.         solution2 = np.zeros(shape=(2*pop_size, n-1)) 

545.         for i in range(0, pop_size):     
546.             solution2[i,:] = solution[i, :]             

547.         for i in range(0,pop_size, 2): 
548.             s1 = crossover1(solution2[i, :],solution2[i+1, :], demand, n1, sumroutes, n, dl, ul, tws, twe, tt, st,

 dm, capacity) 
549.             s2 = crossover2(solution2[i, :], solution2[i+1, :], demand, n1, sumroutes, n, dl, ul, dm, tws, twe, 

tt, st, capacity) 
550.             for k in range(n-1): 
551.                 solution2[i+pop_size, k] = s1[k] 
552.                 solution2[i + pop_size +1, k] = s2[k] 

553.         solutions = np.zeros(shape=(pop_size*2, n-1)) 
554.         solutions[0, :] = solution2[0, :] 
555.         kk = 1 
556.         for i in range(1, pop_size*2): 
557.             j = 0 
558.             sss = True 
559.             while j in range(pop_size*2) and sss == True: 
560.                 if np.array_equal(solution2[i, :], solutions[j, :]) == True: 

561.                     sss = False 
562.                     j = pop_size*2 

563.                 else: 
564.                     j = j + 1 
565.             if sss == True: 
566.                 solutions[kk, :] = solution2[i, :] 
567.                 kk = kk + 1 
568.         solution = np.zeros(shape=(kk - 1, n-1)) 

569.         for i in range(kk-1): 
570.             solution[i, :] = solutions[i, :]  

571.         function1_values2 = [function1(solution[i,:], n, demand,capacity, tt, twe, tws, st)for i in range(0,kk
-1)] 

572.         function2_values2 = [function2(solution[i,:], n , dm, demand, capacity, tt, twe, tws, st)for i in rang
e(0,kk-1)] 

573.         non_dominated_sorted_solution2 = fast_non_dominated_sort(function1_values2[:],function2_va
lues2[:]) 

574.         k = 0 
575.         i = 0 

576.         while k <=pop_size - 1 and i in range(len(non_dominated_sorted_solution2)): 
577.             j = 0 
578.             while k <= pop_size-1 and j in range(len(non_dominated_sorted_solution2[i])): 
579.                 solutionnew[k, :] = solution[non_dominated_sorted_solution2[i][j], :] 

580.                 k = k + 1 
581.                 j = j + 1 
582.             i = i + 1 
583.         solution = np.copy(solutionnew) 

584.         for i in range(pop_size): 
585.             solution[i,:] = solutionnew[i, :] 

586.         gen_no = gen_no + 1 
587.     return solution, function1_values, function2_values 
588.   
589. solution, function1_values, function2_values = routing(dataset) 



Appendix C Supplement to Chapter 4 

173 

 

590.   
591. stop = timeit.default_timer() 
592. print('Time: ', stop - start)       



Appendix D Supplement to Chapter 5 

174 

 

Appendix D Supplement to Chapter 5 

In Appendix D, the analytical results of instance sets that are presented condensed, are given. 

Therefore, the results of the ALNS algorithm in the FSMVRPTW are analytically presented. 

Additionally, new best-published solutions that are exploited through the ALNS algorithm are 

given.  

FSMVRPTW 

Table D.1, D.2 and D.3 present the analytical results of Table 5.4, according to the cost 

structure (A, B and C). Additionally, Tables D.4, D.5, D.6, D.7, D.8, D.9 present new-optimal 

solutions obtained from the proposed ALNS algorithm when tested in the specific instance sets. 

Table D.1 Results in Cost Structure A of the FSMVRPTW Dataset 

Problem Case VC FC TC Dev Composition 

R101Α 1845.79 2710 4555.79 5.60% A3, B10, C9, D2 

R102Α 1834.43 2680 4514.43 8.36% A6, B6, C10, D2 

R103Α 1804.85 2670 4380 8.76% A6, B8, C7, D3 

R104Α 1510.67 2720 4230.67 7.48% A5, B4, C10, D3 

R105Α 1753.22 2670 4423.22 7.29% A7, B7, C9, D2 

R106Α 1589.52 2830 4419.52 9.16% A3, B6, C5, D6 

R107Α 1637.17 2730 4367.17 9.99% A7, B5, C7, D4 

R108Α 1419.64 2860 4279.64 8.95% A2, B7, C5, D4, E1 

R109Α 1276.06 3110 4386.06 9.22% A3, B5, C4, D6, E1 

R110Α 1530.26 2730 4260.26 7.54% A5, B8, C6, D4 

R111Α 1575.72 2750 4325.72 9.10% A5, B3, C9, D4 

R112Α 1563.52 2690 4253.52 8.54% A3, B7, C7, D4 

C101Α 1110.71 6500 7610.71 7.29% A11, B4 

C102Α 1190.58 6300 7490.58 5.80% A13, B3 

C103Α 1180.35 6900 8080.35 14.14% A7, B6 

C104Α 1076.09 6500 7576.09 7.08% A11, B4 

C105Α 983.66 6900 7883.66 11.14% A7, B6 

C106Α 1095.56 6700 7795.56 10.05% A9, B5 

C107Α 1173.77 6700 7873.77 11.14% A9, B5 

C108Α 1348.63 6100 7448.63 5.21% A15, B2 

C109Α 1342.36 6300 7642.36 7.98% A13, B3 

RC101Α 2304.91 3330 5634.91 9.40% A13, B9, C4 

RC102Α 2028.43 3390 5418.43 8.65% A9, B10, C3, D1 

RC103Α 1895.88 3360 5255.88 9.39% A11, B7, C4, D1 

RC104Α 1387.67 3540 4927.67 4.45% A4, B2, C7, D2 

RC105Α 2222.49 3240 5462.49 8.48% A9, B10, C4 

RC106Α 1826 3360 5186 5.05% A6, B8, C6 



Appendix D Supplement to Chapter 5 

175 

 

RC107Α 1951.61 3330 5281.61 10.29% A8, B10, C3, D1 

RC108Α 1391.83 3510 4901.83 4.10% A1, B6, C7, D1 

R201Α 1320.25 2250 3570.25 3.58% A5 

R202Α 1197.48 2250 3447.48 4.55% A5 

R203Α 1035.98 2250 3285.98 4.61% A5 

R204Α 810.23 2250 3060.23 1.39% A5 

R205Α 1104.79 2250 3354.79 4.22% A5 

R206Α 907.13 2550 3457.13 9.88% A1, B3 

R207Α 840.65 2550 3390.65 10.18% A1, B3 

R208Α 820.96 2250 3070.96 2.46% A5 

R209Α 808.09 2500 3308.09 6.04% A5 

R210Α 769.18 2500 3269.18 3.12% A5 

R211Α 749.05 2500 3249.05 7.59% A5 

C201Α 771.43 5000 5771.43 1.34% A5 

C202Α 854.47 5000 5854.47 2.98% A5 

C203Α 655.3 5200 5855.3 3.06% A1, B3 

C204Α 698.52 5200 5898.52 3.89% A1, B3 

C205Α 723.57 5400 6123.57 7.59% A4, B1 

C206Α 799.02 5400 6199.02 8.96% A4, B1 

C207Α 650.07 5400 6050.07 6.38% A4, B1 

C208Α 735.31 5400 6135.31 7.89% A4, B1 

RC201Α 1732.82 3050 4782.82 9.34% A6, B3, C2 

RC202Α 1485.42 3100 4585.42 8.03% A7, B2, C1, D1 

RC203Α 989.42 3250 4239.42 1.66% A8, B2, C1, D1 

RC204Α 987.72 3300 4287.72 6.50% A6, B, C1, D1 

RC205Α 941.04 3600 4541.04 5.80% A8, B3, C1, D1 

RC206Α 1402.36 3050 4452.36 4.72% A6, B3, C2 

RC207Α 1124.78 3250 4374.78 4.60% A8, B2, C1, D1 

RC208Α 989.56 3250 4239.56 4.04% A8, B2, C1, D1 

 

Table D.2 Results in Cost Structure B of the FSMVRPTW Dataset 

Problem  Case VC FC TC Dev Composition 

R101Β 1799.99 544 2343.99 5.46% A2,B9, C10, D2 

R102Β 1670.3 584 2254.3 10.07% A4, B3, C7, D6 

R103Β 1394.08 644 2038.08 9.95% A1, B1, C6, D5, E2 

R104Β 1110.97 676 1786.97 6.16% A2, B0, C2, D4, E4 

R105Β 1484.41 650 2134.41 7.75% A4, B3, C4, D5, E2 

R106Β 1408.42 678 2086.42 10.49% A4, B2, C2, D5, E3 

R107Β 1255.68 670 1925.68 9.91% A1, B3, C4, D4, E3 



Appendix D Supplement to Chapter 5 

176 

 

R108Β 1217.66 620 1837.66 11.52% A1, B3, C4, D3, E3 

R109Β 1342.79 624 1966.79 8.18% A3, B2, C4, D5, E2 

R110Β 1374.26 574 1948.26 10.78% A2, B4, C5, D3, E2 

R111Β 1308.33 602 1910.33 9.73% A2, B3, C3, D9 

R112Β 1137.85 726 1863.85 12.16% A1, B2, C3, D2, E5 

C101Β 1140.06 1340 2480.06 5.98% A9, B5 

C102Β 1136.48 1340 2476.48 6.48% A9, B5 

C103Β 1137.26 1300 2437.26 4.85% A11, B4 

C104Β 1177.5 1340 2517.5 8.60% A9, B5 

C105Β 1081.6 1380 2461.6 5.19% A7,  B6 

C106Β 1168.68 1300 2468.68 5.49% A11, B4 

C107Β 1008.82 1460 2468.82 5.50% A3, B8 

C108Β 1185.55 1300 2485.55 6.28% A11, B4 

C109Β 1127.57 1390 2517.57 8.12% A8, B4, C1 

RC101Β 1991.47 414 2405.47 -0.08% A12, B7, C1 

RC102Β 1673.27 396 2069.27 -6.53% A3, B12 

RC103Β 1508.6 450 1958.6 -2.83% A5, B5, C4 

RC104Β 1485.47 414 1899.47 0.16% A2, B7, C3 

RC105Β 1829.33 414 2243.33 -1.36% A7, B9, C1 

RC106Β 1596.62 408 2004.62 -5.98% A4, B10, C1 

RC107Β 1565.53 396 1961.53 -1.17% A3, B10, C1 

RC108Β 1433.63 486 1919.63 1.25% A3, B6, C3, D1 

R201Β 1398.09 500 1898.09 15.26% A4, B1 

R202Β 1208.43 510 1718.43 14.42% A1, B3 

R203Β 1050.76 450 1500.76 11.91% A5 

R204Β 831.64 500 1331.64 9.32% A4, B1 

R205Β 996.95 500 1496.95 5.50% A4, B1 

R206Β 958.9 560 1518.9 12.82% A2, B1, C1 

R207Β 885.25 560 1445.25 13.12% A2, B1, C1 

R208Β 831.51 360 1191.51 -0.48% A4 

R209Β 945.09 450 1395.09 5.50% Α5 

R210Β 1044.03 450 1494.03 9.02% Α5 

R211Β 856.93 410 1266.93 3.85% A3, B1 

C201Β 703.08 1080 1783.08 5.20% A2, B1, C1 

C202Β 782.34 1080 1862.34 10.51% A4, B1 

C203Β 845.92 1000 1845.92 9.77% A5 

C204Β 739.18 1080 1819.18 8.44% A4, B1 

C205Β 638.26 1200 1838.26 8.69% A2, C2 

C206Β 742.96 1080 1822.96 7.91% A4, B1 



Appendix D Supplement to Chapter 5 

177 

 

C207Β 702.29 1080 1782.29 5.63% A4, B1 

C208Β 695.46 1080 1775.46 5.27% A4, B1 

RC201Β 1433.73 700 2133.73 10.08% B3, C3, D1 

RC202Β 1181.36 720 1901.36 7.54% A2, C2, E2 

RC203Β 1078.92 700 1778.92 10.94% B3, C1, D1, E1 

RC204Β 917.15 730 1647.15 10.60% B1, C2, E2 

RC205Β 1318.36 700 2018.36 10.14% A1, B1, C2, D1, E1 

RC206Β 1259.49 600 1859.49 7.83% A1, B2, C1, D2 

RC207Β 1089.6 670 1759.6 6.88% A2, B1, C2, D2 

RC208Β 887.98 760 1647.98 11.11% A1, B1, E3 

 

Table D.3 Results in Cost Structure C of the FSMVRPTW Dataset 

Problem  Case VC FC TC Dev Composition 

R101C 1782.15 319 2101.15 0.084531687 A5, B4, C8, D4, E1 

R102C 1597.87 318 1915.87 8.72% A3, B1, C5, D9 

R103C 1349.43 359 1708.43 10.44% A4, B1, C4, D3, E4, F1 

R104C 1135.04 335 1470.04 8.70% A1, B2, C1, D6, E3 

R105C 1512.74 327 1839.74 9.41% A2, B8, C2, D7, E1 

R106C 1416.15 322 1738.15 9.79% A3, B4, D7, E2 

R107C 1208.85 333 1541.85 8.25% B2, C3, D5, E3 

R108C 1094.66 360 1454.66 10.63% A2, B1, C3, D4, E4 

R109C 1264.82 402 1666.82 10.64% A1, B2, C4, D3, E5 

R110C 1285.29 343 1628.29 12.81% A2, B2, C3, D5, E3 

R111C 1256.3 342 1598.3 12.60% A1, B6, C1, D3, E4 

R112C 1125.54 309 1434.54 8.06% A2, B3, D5, E3 

C101C 901.76 760 1661.76 2.01% A4, B8 

C102C 902.38 730 1632.38 2.17% A3, B8 

C103C 1008.06 730 1738.06 8.86% A3, B8 

C104C 1005.55 760 1765.55 10.99% A3, B5, C2 

C105C 958.08 730 1688.08 3.63% A3, B8 

C106C 988.03 740 1728.03 6.08% A6, B7 

C107C 1008.65 740 1748.65 7.35% A6, B7 

C108C 987.69 760 1747.69 7.70% A3, B5, C2 

C109C 993.5 740 1733.5 7.34% A6, B7 

RC101C 1855.55 375 2230.55 9.67% A5,  B6, C7, D1 

RC102C 1619.43 378 1997.43 8.09% A3, B6, C3, D4 

RC103C 1407.85 426 1833.85 11.39% A1, B2, C7, D4 

RC104C 1323.49 357 1680.49 10.63% A2, B1, C8, D2 

RC105C 1578.6 387 1965.6 4.28% A2, B3, C8, D2 



Appendix D Supplement to Chapter 5 

178 

 

RC106C 1473.25 387 1860.25 6.06% A2, B3, C8, D2 

RC107C 1308.5 426 1734.5 8.33% A1, B2, C7, D4 

RC108C 1282.19 372 1654.19 9.09% A2, B4, C4, D4 

R201C 1237.48 275 1512.48 5.80% A3, B2 

R202C 1150.7 275 1425.7 11.99% A3, B2 

R203C 915.96 225 1140.96 2.23% A5 

R204C 839.42 230 1069.42 7.68% A2, B2 

R205C 1095.19 205 1300.19 8.90% A3, B1 

R206C 917.8 305 1222.8 9.05% A1, B2, C1 

R207C 886.71 275 1161.71 10.37% A3, B2 

R208C 790.29 230 1020.29 5.20% A2, B2 

R209C 920.72 305 1225.72 11.94% A1, B2, C1 

R210C 1052.51 205 1257.51 9.78% A3, B1 

R211C 845.98 250 1095.98 10.16% A4, B1 

C201C 706.63 540 1246.63 4.38% A2, B1, C1 

C202C 689.33 540 1229.33 3.72% A2, B1, C1 

C203C 797.55 520 1317.55 12.01% A1, B3 

C204C 736.7 570 1306.7 11.17% A3, D1 

C205C 601.43 670 1271.43 6.81% C2, D1 

C206C 601.04 670 1271.04 6.93% C2, D1 

C207C 704.38 540 1244.38 5.02% A2, B1, C1 

C208C 702.57 540 1242.57 4.73% A2, B1, C1 

RC201C 1507.73 310 1817.73 11.97% A4, B4, C2 

RC202C 1222.88 385 1607.88 11.26% A2, C1, D1, E2 

RC203C 1084.97 345 1429.97 12.28% A1, B1, C1, D3 

RC204C 925.2 270 1195.2 3.22% A1, B1, E2 

RC205C 1313.58 290 1603.58 6.02% A2, B2, D1, E1 

RC206C 1153.55 405 1558.55 11.71% C1, D3, E1 

RC207C 1113.6 355 1468.6 11.73% C5, D1 

RC208C 902.22 360 1262.22 10.71% A2, C2, E2 

 

Table D.4 New Optimal Solution in RC101B Instance 

Number 

of Route 

Vehicle 

Type 
Specific Route 

1 B 0-92-31-29-27-26-34-32-93-80-92-31-29-27-26-34-32-93-80-0 

2 A 0-14-47-16-15-14-47-16-15-0 

3 A 0-36-39-61-36-39-61-0 

4 A 0-64-23-49-64-23-49-0 

5 A 0-90-66-56-90-66-56-0 



Appendix D Supplement to Chapter 5 

179 

 

6 B 0-95-62-67-71-94-96-54-95-62-67-71-94-96-54-0 

7 B 0-21-19-18-22-20-48-25-21-19-18-22-20-48-25-0 

8 A 0-63-76-51-63-76-51-0 

9 A 0-98-73-79-3-100-98-73-79-3-100-0 

10 A 0-88-53-55-60-88-53-55-60-0 

11 A 0-84-85-89-91-84-85-89-91-0 

12 B 0-72-42-44-40-38-41-35-37-72-42-44-40-38-41-35-37-0 

13 A 0-81-43-68-81-43-68-0 

14 A 0-33-28-30-50-33-28-30-50-0 

15 B 0-83-52-12-78-10-13-17-83-52-12-78-10-13-17-0 

16 A 0-65-59-75-74-65-59-75-74-0 

17 B 0-82-99-86-57-24-82-99-86-57-24-0 

18 C 0-5-45-2-7-6-8-46-4-1-70-5-45-2-7-6-8-46-4-1-70-0 

19 B 0-11-9-87-97-58-77-11-9-87-97-58-77-0 

20 A 0-69-0 

Cost 2405.47 

 

Table D.5 New Optimal Solution in RC102B Instance 

Number 

of Route 

Vehicle 

Type 
Specific Route 

1 A 0-91-95-62-67-84-0 

2 B 0-42-39-36-44-38-41-72-54-0 

3 B 0-14-47-11-15-16-9-74-52-0 

4 B 0-98-73-79-78-60-100-70-0 

5 B 0-3-5-45-8-7-6-46-4-0 

6 B 0-96-71-40-43-35-37-93-0 

7 A 0-90-81-68-55-0 

8 B 0-65-99-87-59-97-75-58-0 

9 B 0-21-23-57-86-77-25-83-0 

10 B 0-69-88-53-10-13-17-12-82-0 

11 B 0-92-64-51-76-49-20-24-0 

12 B 0-48-19-18-22-56-66-0 

13 B 0-50-29-27-26-89-85-0 

14 B 0-63-33-28-30-32-31-34-94-80-0 

15 A 0-2-1-61-0 

Cost 2069.27 

 

Table D.6 New Optimal Solution in RC103B Instance 

Number 

of Route 

Vehicle 

Type 
Specific Route 



Appendix D Supplement to Chapter 5 

180 

 

1 A 0-39-36-44-0 

2 A 0-65-64-53-98-80-0 

3 C 0-69-82-99-9-10-13-16-17-47-0 

4 C 0-2-45-46-8-7-6-4-5-3-1-100-0 

5 B 0-90-52-86-59-87-97-75-58-77-0 

6 A 0-85-63-33-30-32-95-91-0 

7 B 0-20-23-19-49-22-24-74-0 

8 B 0-51-76-89-18-48-21-25-83-0 

9 A 0-88-79-73-0 

10 A 0-68-55-70-0 

11 C 0-61-42-43-40-38-41-37-35-72-54-81-0 

12 C 0-94-34-31-27-26-28-29-71-93-96-0 

13 B 0-12-14-11-15-78-60-0 

14 B 0-92-62-50-67-84-56-66-57-0 

Cost 1958.6 

 

Table D.7 New Optimal Solution in RC106B Instance 

Number 

of Route 

Vehicle 

Type 
Specific Route 

1 B 0-71-94-67-50-56-91-80-0 

2 A 0-45-5-81-0 

3 B 0-11-12-14-47-15-16-17-13-0 

4 B 0-61-42-44-43-40-35-37-70-0 

5 B 0-83-57-19-22-20-66-0 

6 B 0-88-2-8-46-4-3-1-100-0 

7 B 0-63-76-23-21-18-48-49-25-24-0 

8 B 0-69-98-73-79-7-6-55-68-0 

9 B 0-72-36-38-39-41-54-96-0 

10 A 0-92-95-62-33-30-32-93-0 

11 B 0-31-29-27-26-28-34-89-0 

12 A 0-90-53-78-60-0 

13 A 0-64-51-85-84-0 

14 C 0-82-99-52-86-87-9-10-0 

15 B 0-65-59-75-97-58-77-74-0 

Cost 2004.62 

 

Table D.8 New Optimal Solution in RC107B Instance 

Number 

of Route 

Vehicle 

Type 
Specific Route 



Appendix D Supplement to Chapter 5 

181 

 

1 B 0-83-64-51-85-63-76-89-56-91-0 

2 B 0-65-52-74-86-57-22-49-20-0 

3 B 0-11-9-99-66-84-50-93-0 

4 B 0-95-67-72-38-37-36-40-42-0 

5 A 0-98-53-73-60-100-68-0 

6 B 0-82-12-14-47-17-16-15-13-10-0 

7 C 0-88-79-7-6-5-3-45-46-4-1-70-0 

8 A 0-39-35-43-44-0 

9 A 0-90-92-94-80-0 

10 B 0-71-81-61-41-54-96-0 

11 B 0-69-87-59-75-97-58-77-0 

12 B 0-2-8-78-55-0 

13 B 0-62-19-21-18-48-23-25-24-0 

14 B 0-31-29-27-28-26-30-32-34-33-0 

Cost 1961.53 

 

Table D.9 New Optimal Solution in R208B Instance 

Number 

of Route 

Vehicle 

Type 
Specific Route 

1 A 
0-94-92-42-15-43-14-44-38-86-16-61-5-60-83-7-88-31-70-51-9-81-

33-68-80-12-28-53-13-95-59-98-37-100-91-85-93-96-6-0 

2 A 
0-52-10-32-90-63-11-64-49-36-47-46-8-45-17-84-99-97-87-2-57-

41-22-74-73-58-0 

3 A 0-40-21-72-75-56-23-67-54-76-50-1-62-19-48-82-18-89-0 

4 A 0-27-69-30-20-66-65-71-35-34-78-79-3-77-29-24-55-25-39-4-26-0 

Cost 1191.51 

 

HFVRP 

Table D.10 present the new optimal solution obtained by the ALNS when tested in HFVRP 

dataset, in problem instance 16. 

Table D.10 New Optimal Solution in Problem Instance 16 

Number 

of Route 

Vehicle 

Type 
Specific Route 

1 B 0-12-47-0 

2 A 0-46-32-27-0 

3 B 0-48-8-26-31-28-1-0 

4 B 0-11-2-16-38-0 

5 B 0-4-41-13-14 

6 C 0-22-3-36-35-20-29-21-34-50-9-0 

7 C 0-6-23-7-43-24-25-18-0 



Appendix D Supplement to Chapter 5 

182 

 

8 A 0-19-40-42-37-0 

9 C 0-5-49-10-30-39-33-45-15-44-17-0 

Cost 1150.25 

 

HFVRPTW 

Table D.11 New Optimal Solution in HC102 Instance 

Number 

of Route 

Vehicle 

Type 
Specific Route 

1 A 0-20-24-27-29-30-28-26-23-0 

2 B 0-67-65-63-62-74-72-61-64-68-66-69-0 

3 B 0-43-42-41-40-44-46-45-48-51-50-52-49-47-0 

4 B 0-13-17-18-19-15-16-14-12-1-0 

5 B 0-57-55-54-53-56-58-60-59-0 

6 B 0-81-78-76-71-70-73-77-79-80-82-83-0 

7 A 0-10-2-75-88-91-0 

8 A 0-7-8-11-9-6-4-5-0 

9 A 0-31-35-37-38-39-0 

10 A 0-32-33-36-34-0 

11 A 0-90-87-86-84-85-89-0 

12 A 0-94-92-93-95-0 

13 A 0-21-25-22-0 

14 A 0-98-96-97-100-99-3-0 

Cost 1848.43 

 

Table D.12 New Optimal Solution in HC204 Instance 

Number 

of Route 

Vehicle 

Type 
Specific Route 

1 A 
0-20-22-24-27-29-6-32-33-34-36-39-38-37-35-31-52-50-51-46-41-

42-43-48-0 

2 A 
0-67-62-74-72-61-64-66-69-68-65-49-55-54-53-56-58-60-59-57-40-

44-45-47-0 

3 A 0-21-30-28-26-23-17-18-19-16-14-12-15-13-25-9-11-10-8-0 

4 B 
0-90-91-88-86-84-83-82-85-76-71-70-73-80-79-81-78-77-96-87-63-

0 

5 A 0-93-5-75-2-1-99-100-97-92-94-95-98-7-3-4-89-0 

Cost 1254.25 

 

Table D.13 New Optimal Solution in HRC204 Instance 

Number Vehicle Specific Route 



Appendix D Supplement to Chapter 5 

183 

 

of Route Type 

1 A 0-69-55-100-70-68-0 

2 A 0-65-99-87-59-9-82-90-0 

3 A 0-81-54-72-71-93-94-96-0 

4 B 0-10-11-15-16-17-47-14-12-53-98-0 

5 A 0-61-2-6-7-88-0 

6 B 0-67-34-31-29-27-26-28-30-32-33-50-0 

7 B 0-20-49-19-18-48-21-23-25-77-58-57-0 

8 B 0-60-78-73-79-8-46-4-45-5-3-1-0 

9 B 0-42-44-43-40-36-35-37-38-39-41-0 

10 A 0-83-24-22-64-66-0 

11 A 0-52-86-74-75-97-13-0 

12 A 0-92-62-85-63-89-76-51-0 

13 A 0-80-91-95-84-56-0 

Cost 4305.16 

 

Table D.14 New Optimal Solution in HR201 Instance 

Number 

of Route 

Vehicle 

Type 
Specific Route 

1 A 0-28-33-65-71-29-12-76-79-81-51-9-78-34-50-3-68-54-0 

2 B 0-2-73-21-40-18-8-46-48-60-17-91-100-93-58-0 

3 A 0-27-52-69-31-30-62-11-19-7-88-90-49-10-20-32-66-35-1-0 

4 B 0-72-39-67-23-75-22-41-56-74-4-55-25-24-80-77-70-0 

5 A 0-95-59-92-42-15-14-98-85-99-6-87-57-43-37-97-96-13-89-0 

6 A 0-5-83-45-36-63-64-47-82-61-16-44-38-86-84-94-53-26-0 

Cost 1666.2 

 

Table D.15 New Optimal Solution in HR202 Instance 

Number 

of Route 

Vehicle 

Type 
Specific Route 

1 A 0-27-50-33-65-34-29-71-30-88-7-19-49-10-20-66-35-68-12-0 

2 A 0-45-48-47-36-63-64-11-62-31-69-76-3-79-78-81-9-51-90-32-0 

3 A 0-94-95-92-42-15-14-44-38-86-18-82-8-46-83-59-97-43-74-2-13-0 

4 B 
0-96-99-61-16-91-37-87-57-41-22-75-56-4-54-55-25-24-80 

-77-1-70-52-0 

5 B 
0-28-26-39-67-23-72-73-21-40-53-6-5-84-17-85-100 

-98-93-60-89-58-0 

Cost 1517.77 



Appendix E Supplement to Chapter 6 

184 

 

Appendix E Supplement Chapter 6 

1. import random 

2. import numpy as np 

3. import pandas as pd 

4. import timeit 

5. from math import sin, cos, sqrt, atan2, radians 

6.   

7. start = timeit.default_timer() 

8.   

9. #------- Vehicles' dataset 

10. filename1 = "Vehicles.xlsx" 

11. datveh = pd.read_excel(filename1) 

12.   

13. filename2 = "Customers.xlsx" 

14. datcust = pd.read_excel(filename2) 

15.   

16. dminitial = np.loadtxt("distance_matrix.txt") 

17. ttinitial = np.loadtxt("travel_time_matrix.txt") 

18.   

19. #Create tha matrices of vehicles and routes 

20. def vehdata(sumnv, availnv, fc, vc, capacity1, capacity2, startingshift, vtype, endingshift):  

21.     vehdat = np.zeros(shape = (sumnv,7)) 

22.     av1 = np.copy(availnv) 

23.     k = 0 

24.     while av1.sum() != 0: 

25.         ran = random.randint(0,len(availnv)-1) 

26.         while av1[ran] ==  0: 

27.             ran = random.randint(0,len(availnv)-1) 

28.         vehdat[k, 0] = fc[ran] 

29.         vehdat[k, 1] = vc[ran] 

30.         vehdat[k, 2] = capacity1[ran] 

31.         vehdat[k, 3] = capacity2[ran] 

32.         vehdat[k, 4] = startingshift[ran] 

33.         vehdat[k, 5] = vtype[ran] 

34.         vehdat[k, 6] = endingshift[ran] 

35.         av1[ran] = av1[ran]-1 

36.         k = k + 1 

37.     return vehdat 

38.   

39. #Set the matrix related to the load of each route, the capacity of the vehicle, etc. 

40. def quantity(routes, vehdat, n2, demand1, demand2, dm, toa, tstart, tod, ttravel): 

41.     quantity = np.zeros(shape = (len(routes), 15)) 

42.     for i in range(len(routes)): 

43.         numberofcust = 0 

44.         quantity[i, 0] = vehdat[i,5] 

45.         quantity[i, 1] = 0 



Appendix E Supplement to Chapter 6 

185 

 

46.         quantity[i, 2] = vehdat[i, 2] 

47.         quantity[i, 3] = 0 

48.         quantity[i, 4] = vehdat[i, 3] 

49.         for j in range(n2-1): 

50.             quantity[i, 1] = quantity[i, 1] + demand1[int(routes[i, j])] 

51.             quantity[i, 3] = quantity[i, 3] + demand2[int(routes[i, j])] 

52.             quantity[i, 5] = quantity[i, 5] + dm[int(routes[i,j]), int(routes[i, j + 1])] 

53.             if routes[i,j]>0: 

54.                 numberofcust=numberofcust+1 

55.         quantity[i, 6] = vehdat[i,1] * quantity[i, 5] 

56.         if quantity[i, 5] != 0: 

57.             quantity[i, 7] = vehdat[i, 0] 

58.         else: 

59.             quantity[i, 7] = 0 

60.         quantity[i, 8] = quantity[i, 7] + quantity[i, 6] 

61.         quantity[i, 9] = ttravel[i,0] 

62.         quantity[i, 10] = ttravel[i,1] 

63.         quantity[i, 11] = ttravel[i,2] 

64.         quantity[i, 12] = vehdat[i, 4] 

65.         quantity[i, 13] = vehdat[i, 6] 

66.         quantity[i, 14] = numberofcust 

67.     return quantity 

68.   

69. #Calculation of the total cost of a single route 

70. def totc(route, vehdat, n2, dm): 

71.     s = np.count_nonzero(route) 

72.     fixedc = vehdat[0] 

73.     variablec = 0 

74.     td = 0 

75.     for j in range(s+2): 

76.         td = td + dm[int(route[j]), int(route[j+1])] 

77.     variablec = td*vehdat[1] 

78.     totalc = fixedc + variablec 

79.     if s == 0: 

80.         totalc = 0     

81.     return totalc 

82.   

83. #Calculation of the total cost of all routes 

84. def totalcost(route, vehdat, n2, dm): 

85.     fixedc = 0 

86.     variablec = 0 

87.     totaldist = 0 

88.     for i in range(len(route)): 

89.         if route[i, 1] != 0: 

90.             fixedc = fixedc + vehdat[i, 0]  

91.         td = 0 

92.         for j in range(n2 - 1): 

93.             td = td + dm[int(route[i, j]), int(route[i, j+1])] 



Appendix E Supplement to Chapter 6 

186 

 

94.         variablec = variablec + td*vehdat[i, 1] 

95.         totaldist = totaldist + td 

96.     totalc = fixedc + variablec 

97.     return totalc 

98.   

99. #Calculation of the fixed and variable cost of all routes seperately  

100. def fvc(routein, vehdat, n2, dm): 

101.     fixedc = 0 

102.     variablec = 0 

103.     totaldist = 0 

104.     for i in range(len(routein)): 

105.         if routein[i, 1] != 0: 

106.             fixedc = fixedc + vehdat[i, 0]  

107.         td = 0 

108.         for j in range(n2 - 1): 

109.             td = td + dm[int(routein[i, j]), int(routein[i, j+1])] 

110.         variablec = variablec + td*vehdat[i, 1] 

111.         totaldist = totaldist + td 

112.     return variablec,fixedc 

113.   

114. #Calculation of the total fixed cost of all routes 

115. def fcc(routein, vehdat): 

116.     fixedc = 0 

117.     for i in range(len(routein)): 

118.         if routein[i, 1] != 0: 

119.             fixedc = fixedc + vehdat[i, 0]  

120.     return fixedc 

121.   

122. #Calculation of the load of deliveries of a single route in Kg 

123. def totq1(route1, n2, demand1): 

124.     q = 0 

125.     s = np.count_nonzero(route1) 

126.     for i in range(0, s+1): 

127.         q = q + demand1[int(route1[i])] 

128.     return q 

129.   

130. #Calculation of the load of deliveries of a single route in m3  

131. def totq2(route1, n2, demand2): 

132.     q = 0 

133.     s = np.count_nonzero(route1) 

134.     for i in range(0, s+1): 

135.         q = q + demand2[int(route1[i])] 

136.     return q 

137.   

138. #Calculation of the load of pickups of a single route in Kg 

139. def totr1(route1, n2, reverse1): 

140.     q = 0 

141.     s = np.count_nonzero(route1) 



Appendix E Supplement to Chapter 6 

187 

 

142.     for i in range(0, s+1): 

143.         q = q + reverse1[int(route1[i])] 

144.     return q 

145.   

146. #Calculation of the load of pickups of a single route in m3 

147. def totr2(route1, n2, reverse2): 

148.     q = 0 

149.     s = np.count_nonzero(route1) 

150.     for i in range(0, s+1): 

151.         q = q + reverse2[int(route1[i])] 

152.     return q 

153.   

154. #Calculation of the total distance traveled from all routes 

155. def totdistance(routes, dm, n2): 

156.     td = 0 

157.     for i in range(len(routes)): 

158.         s = np.count_nonzero(routes[i, :]) 

159.         for j in range(s+1): 

160.             td = td + dm[int(routes[i,j]), int(routes[i, j+1])] 

161.     return td 

162.   

163. def countcust(customers): 

164.     s = 0 

165.     for i in range(len(customers)): 

166.         if customers[i] != 0: 

167.             s = s + 1 

168.     return s 

169.   

170. #Check in the load on board in each step of the distribution process for a single vehicle 

171. def posotites(routes, position, vehdat, reverse1, reverse2, demand1, demand2, n2): 

172.     rrr1 = np.count_nonzero(routes) 

173.     q = True 

174.     d1 = 0 

175.     d2 = 0 

176.     r1 = 0 

177.     r2 = 0 

178.     for i in range(0, rrr1+1): 

179.         d1 = d1 + demand1[int(routes[i])] 

180.         d2 = d2 + demand2[int(routes[i])] 

181.         r1 = r1 + reverse1[int(routes[i])] 

182.         r2 = r2 + reverse2[int(routes[i])] 

183.     if d1 >vehdat[position,2] or d2 > vehdat[position,3] or r1 > vehdat[position,2] or r2>vehdat[position

,3]: 

184.         q = False 

185.     i  = 1 

186.     while i in range(1,rrr1+2) and q == True: 

187.         d1 = d1 - demand1[int(routes[i])] + reverse1[int(routes[i])] 

188.         d2 = d2 - demand2[int(routes[i])] + reverse2[int(routes[i])] 



Appendix E Supplement to Chapter 6 

188 

 

189.         if d1 > vehdat[position,2] or d2 > vehdat[position,3]: 

190.             q = False 

191.         i = i+1    

192.     return q 

193.   

194. #Calculation of the load on board in each step of the distribution for all routes, both in kg and m3 

195. def analytikaposotites(routes, n2, demand1, demand2, reverse1, reverse2): 

196.     posotites1 = np.zeros(shape = (len(routes), n2+1)) 

197.     posotites2 = np.zeros(shape = (len(routes), n2+1)) 

198.     for i in range(len(routes)): 

199.         posotites1[i,0] = totq1(routes[i, :], n2, demand1) 

200.         posotites2[i,0] = totq2(routes[i, :], n2, demand2) 

201.         sk = np.count_nonzero(routes[i, :]) 

202.         for j in range(1, sk + 2): 

203.             posotites1[i,j] = posotites1[i, j-1]- demand1[int(routes[i,j])] + reverse1[int(routes[i,j])]     

204.             posotites2[i,j] = posotites2[i, j-1]- demand2[int(routes[i,j])] + reverse2[int(routes[i,j])]  

205.     return posotites1, posotites2 

206.   

207. #Check that all time windows of a single route are respected 

208. def twcheck(routes, position, vehdat, tws, tt, twe, st): 

209.     r1 = np.count_nonzero(routes) 

210.     t = vehdat[position, 4] 

211.     q = True 

212.     i  = 0 

213.     while i in range(0,r1+1) and q == True: 

214.         t = t + tt[int(routes[i]), int(routes[i+1])] 

215.         if t > twe[int(routes[i+1])] or t > vehdat[position, 6]: 

216.             q = False 

217.         else: 

218.             if t < tws[int(routes[i+1])]: 

219.                 t = tws[int(routes[i+1])] 

220.             t = t + st[int(routes[i+1])] 

221.         i = i + 1 

222.     return q 

223.   

224. #Calculation of the toa, tod, waiting time, and start of serving in each customer 

225. def times(routes, n2, tws, tt, twe, st, vehdat): 

226.     customers = np.zeros(shape = (n2-1,1)) 

227.     waiting = np.zeros(shape = (n2-1,1)) 

228.     toa = np.zeros(shape = (len(routes), n2+1)) 

229.     tstart = np.zeros(shape = (len(routes), n2+1)) 

230.     tod = np.zeros(shape = (len(routes), n2+1)) 

231.     ttravel = np.zeros(shape = (len(routes), 3)) 

232.     k = 0 

233.     for i in range(0, len(routes)): 

234.         t = vehdat[i, 4] 

235.         toa[i, 0] = vehdat[i, 4] 

236.         tod[i, 0] = vehdat[i, 4] 



Appendix E Supplement to Chapter 6 

189 

 

237.         smax = np.count_nonzero(routes[i,:]) 

238.         for j in range(0, smax+1): 

239.             t = t + tt[int(routes[i, j]), int(routes[i, j+1])] 

240.             if j ==0 and t <= tws[int(routes[i, j+1])]: 

241.                 ttravel[i,0] = tws[int(routes[i, j+1])] - tt[int(routes[i, j]), int(routes[i, j+1])] 

242.                 tstart[i, j] = ttravel[i, 0] 

243.                 tod[i, 0] = tws[int(routes[i, j+1])] - tt[int(routes[i, j]), int(routes[i, j+1])] 

244.             elif j == 0 and t > tws[int(routes[i, j+1])]: 

245.                 ttravel[i,0] = vehdat[i, 4] 

246.                 tstart[i, j] = ttravel[i, 0] 

247.                 tod[i, j] = 0 

248.             if t < tws[int(routes[i, j+1])]: 

249.                 tstart[i, j+1] = tws[int(routes[i, j+1])] 

250.                 waiting[k] = tws[int(routes[i, j+1])] - t 

251.                 customers[k] = int(routes[i, j+1]) 

252.                 k = k +1  

253.             else: 

254.                 tstart[i, j+1] = t 

255.                 waiting[k] = 0 

256.                 customers[k] = int(routes[i, j+1]) 

257.             toa[i,j+1] = t 

258.             t = tstart[i, j+1] + st[int(routes[i, j+1])] 

259.             tod[i, j+1] = t 

260.         ttravel[i,1] = toa[i,:].max() 

261.         ttravel[i,2] = toa[i,:].max() - ttravel[i,0] 

262.     return tstart, toa, tod, ttravel 

263.   

264. #Construction procedure for the initial plan of routes 

265. def construction1(sumnv, availnv, vehdat, w1, w2, customers1, n2, tws, tt, twe, st, demand1, reverse1

, demand2, reverse2, dm): 

266.     customers = np.copy(customers1)                          

267.     routes = np.zeros(shape=(sumnv, n2 + 2)) 

268.     routes1 = np.zeros(shape=(sumnv, n2 + 2)) 

269.     dmmax = dm.max() 

270.     twemax = twe.max() 

271.     r = 0 

272.     while r in range(len(routes)) and customers.sum()!=0: 

273.         q = True 

274.         i = 0 

275.         position = 1 

276.         dok = 0 

277.         t = vehdat[r, 6] 

278.         mindt = 999999 

279.         s = 0 

280.         while q: 

281.             mindt = 999999 

282.             dok = 0 

283.             s = 0 



Appendix E Supplement to Chapter 6 

190 

 

284.             routes1 = np.copy(routes) 

285.             for j in range(0, len(customers)): 

286.                 routes1[r, position] = int(customers[j]) 

287.                 if int(customers[j])!= 0 and posotites(routes1[r, :], r, vehdat, reverse1, reverse2, demand1, d

emand2, n2) == True and twcheck(routes1[r,:], r, vehdat, tws, tt, twe, st) == True: 

288.                     #minf = w1*dm[i,int(customers[j])]/dmmax +  w2*(twe[int(customers[j])] - t -  tt[i, int(cust

omers[j])])/twe[int(customers[j])] 

289.                     minf = w1*dm[i,int(customers[j])]/dmmax +  w2*(twe[int(customers[j])] - t  - tt[i, int(custo

mers[j])])/twe[int(customers[j])] 

290.                     if minf < mindt: 

291.                         s = int(customers[j]) 

292.                         k = j 

293.                         mindt = minf 

294.                         dok = dok + 1 

295.             if dok == 0 or customers.sum() == 0: 

296.                 q = False 

297.             else: 

298.                 if t + tt[i, s] < tws[s]: 

299.                     t = tws[s] + st[s] 

300.                 else: 

301.                     t = t + tt[i, s] + st[s] 

302.                 i = s 

303.                 routes[r, position] = s 

304.                 position = position + 1 

305.                 customers[k] = 0 

306.         r = r + 1 

307.     return routes, customers 

308.   

309. #function that is integrated into the construction procedure 

310. def incon(routes2, cust, vehdat, sumnv, n2, dm, tws, twe, tt, st, demand1, reverse1, demand2, revers

e2, customers1, k): 

311.     for i in range(len(cust)): 

312.         www = False 

313.         if cust[i] != 0: 

314.             initialcost = 99999999 

315.             www = False 

316.             if totq1(routes2[k, :], n2, demand1) + demand1[int(cust[i])] <= vehdat[k, 2] and totq2(routes2[k

, :], n2, demand2) + demand2[int(cust[i])] <= vehdat[k, 3] and totr1(routes2[k, :], n2, reverse1) + rever

se1[int(cust[i])] <= vehdat[k, 2] and totr2(routes2[k, :], n2, reverse2) + reverse2[int(cust[i])] <= vehdat[

k, 3]: 

317.                 sk = np.count_nonzero(routes2[k, :]) 

318.                 routes2n = np.copy(routes2) 

319.                 new = 1 

320.                 while new in range(1, sk+2): 

321.                     routes2n = np.copy(routes2) 

322.                     for j in range(0, new): 

323.                         routes2n[k, j] = routes2[k, j] 

324.                     routes2n[k, new] = cust[i] 



Appendix E Supplement to Chapter 6 

191 

 

325.                     for j in range(new, sk+1): 

326.                         routes2n[k, j+1] = routes2[k, j] 

327.                     if totc(routes2n[k,:], vehdat[k,:], n2, dm) -  totc(routes2[k,:], vehdat[k,:], n2, dm) <= initialc

ost and twcheck(routes2n[k,:], k, vehdat, tws, tt, twe, st) == True and posotites(routes2n[k, :], k, vehd

at, reverse1, reverse2, demand1, demand2, n2) == True: 

328.                         routesopt = np.copy(routes2n) 

329.                         initialcost = totc(routes2n[k,:], vehdat[k,:], n2, dm) -  totc(routes2[k,:], vehdat[k,:], n2, d

m) 

330.                         www = True 

331.                     new = new + 1 

332.         if www == True: 

333.             cust[i] = 0 

334.             routes2 = np.copy(routesopt) 

335.     return routes2, cust 

336.   

337. #Selection of customers randomly 

338. def selection1(routes, vehdat, dl, ul, sumnv, n2, customers, unrouted): 

339.     noc = random.randint(dl, ul) 

340.     cust = np.zeros(shape = (noc, 1)) 

341.     k = 0 

342.     while np.count_nonzero(cust) < noc: 

343.         ranc = random.randint(0, n2-2) 

344.         while customers[ranc] in cust or customers[ranc] in unrouted: 

345.             ranc = random.randint(0, n2-2) 

346.         cust[k] = customers[ranc] 

347.         k = k + 1 

348.     i = 0 

349.     routes2 = np.zeros(shape=(sumnv, n2+1)) 

350.     while i in range(0, sumnv): 

351.         if routes[i,:].sum() != 0: 

352.             s = np.count_nonzero(routes[i,:]) 

353.             k1 = 1 

354.             for j in  range(1, s+1): 

355.                 if routes[i, j] not in cust: 

356.                     routes2[i,k1] = routes[i, j] 

357.                     k1 = k1 + 1 

358.         i = i + 1  

359.     return routes2, cust, noc 

360.   

361. #Selection of the routes according to the highest €/quantity  

362. def selection2(routes, vehdat, sumnv, dm, n2, demand1, demand2, reverse1, reverse2): 

363.     r1 = np.zeros(shape=(sumnv, 1)) 

364.     r2 = np.zeros(shape=(sumnv, 1)) 

365.     p1 = random.random() 

366.     for i in range(len(routes)): 

367.         r1[i] = i 

368.         if p1<0.5: 



Appendix E Supplement to Chapter 6 

192 

 

369.             r2[i] = totc(routes[i,:], vehdat[i,:], n2, dm)/(totq1(routes[i, :], n2, demand1)+totr1(routes[i, :], n

2, reverse1)) 

370.         else: 

371.             r2[i] = totc(routes[i,:], vehdat[i,:], n2, dm)/(totq2(routes[i, :], n2, demand2)+totr2(routes[i, :], n

2, reverse2)) 

372.     rrr2, rrr1 = zip(*sorted(zip(r2, r1), reverse = True)) 

373.     ssss = np.count_nonzero(rrr2) 

374.     randomnumb = random.randint(0, ssss//3) 

375.     ii = int(rrr1[randomnumb]) 

376.     noc = np.count_nonzero(routes[ii, :]) 

377.     cust = np.zeros(shape = (noc, 1)) 

378.     for i in range(1, noc+1): 

379.         cust[i-1] = routes[ii, i] 

380.     routes2 = np.copy(routes) 

381.     for j in range(0, noc+2): 

382.         routes2[ii, j] = 0 

383.     return routes2, cust, noc 

384.   

385. #Selection of distant customers 

386. def selection3(routes, vehdat, n2, tws, twe, tt, st, dl, dm, ul, sumnv): 

387.     wc1 = np.zeros(shape=(n2-1, 1)) 

388.     k = 0 

389.     wc2 = np.zeros(shape=(n2-1, 1)) 

390.     for i in range(sumnv): 

391.         sk = np.count_nonzero(routes[i,:]) 

392.         for j in range(1,sk+1): 

393.             wc1[k] = routes[i, j] 

394.             wc2[k] = (dm[int(routes[i,j-

1]), int(routes[i,j])] + dm[int(routes[i,j]), int(routes[i,j+1])])*vehdat[i,1] 

395.             k = k + 1          

396.     dem, custom = zip(*sorted(zip(wc2, wc1), reverse = True)) 

397.     noc = random.randint(dl, ul) 

398.     cust = np.zeros(shape = (noc, 1)) 

399.     k = 0 

400.     for i in range(0, noc): 

401.         cust[k] = int(custom[i]) 

402.         k = k + 1 

403.     i = 0 

404.     routes2 = np.zeros(shape=(sumnv, n2+1)) 

405.     while i in range(0, sumnv): 

406.         if routes[i,:].sum() != 0: 

407.             s = np.count_nonzero(routes[i,:]) 

408.             k1 = 1 

409.             for j in  range(1, s+1): 

410.                 if routes[i,j] not in cust: 

411.                     routes2[i,k1] = routes[i,j] 

412.                     k1 = k1 + 1 

413.         i = i + 1  



Appendix E Supplement to Chapter 6 

193 

 

414.     return routes2, cust, noc 

415.   

416. #Selection of customers in which, vehicles wait the most to deliver  

417. def selection4(routes, vehdat, n2, tws, twe, tt, st, dl, dm, ul, sumnv): 

418.     customers5 = np.zeros(shape = (n2-1,1)) 

419.     waiting = np.zeros(shape = (n2-1,1)) 

420.     toa = np.zeros(shape = (len(routes), n2+1)) 

421.     tstart = np.zeros(shape = (len(routes), n2+1)) 

422.     tod = np.zeros(shape = (len(routes), n2+1)) 

423.     k = 0 

424.     for i in range(0, len(routes)): 

425.         t = vehdat[i, 6] 

426.         smax = np.count_nonzero(routes[i,:]) 

427.         for j in range(0, smax+1): 

428.             t = t + tt[int(routes[i, j]), int(routes[i, j+1])] 

429.             if t < tws[int(routes[i, j+1])]: 

430.                 if j == 0: 

431.                     toa[i,j+1] = tws[int(routes[i, j+1])] 

432.                 else: 

433.                     toa[i,j+1] = t 

434.                 tstart[i, j+1] = tws[int(routes[i, j+1])] 

435.                 if int(routes[i, j+1]) != 0: 

436.                     waiting[k] = tstart[i, j+1] - toa[i,j+1] 

437.                     customers5[k] = int(routes[i, j+1]) 

438.                     k = k +1  

439.             else: 

440.                 toa[i,j+1] = t 

441.                 tstart[i, j+1] = t 

442.                 if int(routes[i, j+1]) != 0: 

443.                     waiting[k] = 0 

444.                     customers5[k] = int(routes[i, j+1]) 

445.                     k = k + 1 

446.             t = tstart[i, j+1] + st[int(routes[i, j+1])] 

447.             tod[i, j+1] = t  

448.     dem, custom = zip(*sorted(zip(waiting, customers5), reverse = True)) 

449.     noc = random.randint(dl, ul) 

450.     cust = np.zeros(shape = (noc, 1)) 

451.     k = 0 

452.     for i in range(0, noc): 

453.         cust[k] = int(custom[i]) 

454.         k = k + 1 

455.     routes2 = np.zeros(shape=(sumnv, n2+1)) 

456.     i = 0 

457.     while i in range(0, sumnv): 

458.         if routes[i,:].sum() != 0: 

459.             s = np.count_nonzero(routes[i,:]) 

460.             k1 = 1 

461.             for j in  range(1, s+1): 



Appendix E Supplement to Chapter 6 

194 

 

462.                 if routes[i,j] not in cust: 

463.                     routes2[i,k1] = routes[i,j] 

464.                     k1 = k1 + 1 

465.         i = i + 1  

466.     return routes2, cust, noc 

467.   

468. #Selection of customers in which, vehicles wait the most to deliver  

469. def selection34(routes, vehdat, n2, tws, twe, tt, st, dl, dm, ul, sumnv): 

470.     customers5 = np.zeros(shape = (n2-1,1)) 

471.     waiting = np.zeros(shape = (n2-1,1)) 

472.     toa = np.zeros(shape = (len(routes), n2+1)) 

473.     tstart = np.zeros(shape = (len(routes), n2+1)) 

474.     tod = np.zeros(shape = (len(routes), n2+1)) 

475.     twemax = twe.max() 

476.     dmmax = dm.max() 

477.     k = 0 

478.     for i in range(0, len(routes)): 

479.         t = vehdat[i, 6] 

480.         smax = np.count_nonzero(routes[i,:]) 

481.         for j in range(0, smax+1): 

482.             t = t + tt[int(routes[i,j]), int(routes[i, j+1])] 

483.             if t < tws[int(routes[i, j+1])]: 

484.                 if j == 0: 

485.                     toa[i,j+1] = tws[int(routes[i, j+1])] 

486.                 else: 

487.                     toa[i,j+1] = t 

488.                 tstart[i, j+1] = tws[int(routes[i, j+1])] 

489.                 if int(routes[i, j+1]) != 0: 

490.                     waiting[k] = (tstart[i, j+1] - toa[i,j+1]/twemax)*0.2+((dm[int(routes[i,j-

1]), int(routes[i,j])] + dm[int(routes[i,j]), int(routes[i,j+1])])/dmmax)*0.8 

491.                     customers5[k] = int(routes[i, j+1]) 

492.                     k = k +1  

493.             else: 

494.                 toa[i,j+1] = t 

495.                 tstart[i, j+1] = t 

496.                 if int(routes[i, j+1]) != 0: 

497.                     waiting[k] = 0 + ((dm[int(routes[i,j-

1]), int(routes[i,j])] + dm[int(routes[i,j]), int(routes[i,j+1])])/dmmax)*0.8 

498.                     customers5[k] = int(routes[i, j+1]) 

499.                     k = k + 1 

500.             t = tstart[i, j+1] + st[int(routes[i, j+1])] 

501.             tod[i, j+1] = t  

502.     dem, custom = zip(*sorted(zip(waiting, customers5), reverse = True)) 

503.     noc = random.randint(dl, ul) 

504.     cust = np.zeros(shape = (noc, 1)) 

505.     k = 0 

506.     for i in range(0, noc): 

507.         cust[k] = int(custom[i]) 



Appendix E Supplement to Chapter 6 

195 

 

508.         k = k + 1 

509.     routes2 = np.zeros(shape=(sumnv, n2+1)) 

510.     i = 0 

511.     while i in range(0, sumnv): 

512.         if routes[i,:].sum() != 0: 

513.             s = np.count_nonzero(routes[i,:]) 

514.             k1 = 1 

515.             for j in  range(1, s+1): 

516.                 if routes[i, j] not in cust: 

517.                     routes2[i,k1] = routes[i, j] 

518.                     k1 = k1 + 1 

519.         i = i + 1  

520.     return routes2, cust, noc 

521.   

522. #Selection of two routes 

523. def selection5(routes, vehdat, n2, dl, ul, sumnv): 

524.     ii1 = random.randint(0, sumnv-1) 

525.     while routes[ii1,:].sum() == 0: 

526.         ii1 = random.randint(0, sumnv-1) 

527.     ii2 = random.randint(0, sumnv-1) 

528.     while routes[ii2,:].sum() == 0 or ii1 == ii2: 

529.         ii2 = random.randint(0, sumnv-1) 

530.     noc = np.count_nonzero(routes[ii1, :]) + np.count_nonzero(routes[ii2, :]) 

531.     cust= np.zeros(shape = (noc, 1)) 

532.     routes2 = np.copy(routes) 

533.     for i in range(np.count_nonzero(routes[ii1, :])): 

534.         cust[i] = routes[ii1, i+1] 

535.         routes2[ii1, i +1] = 0 

536.     for j in range(np.count_nonzero(routes[ii1, :]), noc): 

537.         cust[j] = routes[ii2, j+1 - np.count_nonzero(routes[ii1, :])] 

538.         routes2[ii2, j+1 - np.count_nonzero(routes[ii1, :])] = 0 

539.     return routes2, cust, noc 

540.   

541. #Selection of 3 routes  

542. def selection55(routes, vehdat, n2, dl, ul, sumnv): 

543.     ii1 = random.randint(0, sumnv-1) 

544.     while routes[ii1,:].sum() == 0: 

545.         ii1 = random.randint(0, sumnv-1) 

546.     ii2 = random.randint(0, sumnv-1) 

547.     while routes[ii2,:].sum() == 0 or ii1 == ii2: 

548.         ii2 = random.randint(0, sumnv-1) 

549.     ii3 = random.randint(0, sumnv-1) 

550.     while routes[ii3,:].sum() == 0 or ii3 == ii2 or ii3 == ii1: 

551.         ii3 = random.randint(0, sumnv-1) 

552.     noc = np.count_nonzero(routes[ii1, :]) + np.count_nonzero(routes[ii2, :]) + np.count_nonzero(route

s[ii3, :]) 

553.     cust= np.zeros(shape = (noc, 1)) 

554.     routes2 = np.copy(routes) 



Appendix E Supplement to Chapter 6 

196 

 

555.     for i in range(np.count_nonzero(routes[ii1, :])): 

556.         cust[i] = routes[ii1, i+1] 

557.         routes2[ii1, i +1] = 0 

558.     for j in range(np.count_nonzero(routes[ii1, :]), np.count_nonzero(routes[ii1, :])+np.count_nonzero(

routes[ii2, :])): 

559.         cust[j] = routes[ii2, j+1 - np.count_nonzero(routes[ii1, :])] 

560.         routes2[ii2, j+1 - np.count_nonzero(routes[ii1, :])] = 0 

561.     for j in range(np.count_nonzero(routes[ii1, :])+np.count_nonzero(routes[ii2, :]), noc): 

562.         cust[j] = routes[ii3, j+1 - np.count_nonzero(routes[ii1, :])] 

563.         routes2[ii3, j+1 - np.count_nonzero(routes[ii1, :])] = 0 

564.     return routes2, cust, noc 

565.   

566. #Insertion operator 1 

567. def insertion_1(noc, routes2, cust, vehdat, fcc1, sumnv, n2, dm, tws, twe, tt, st, demand1, reverse1, d

emand2, reverse2): 

568.     while cust.sum() != 0: 

569.         i = random.randint(0, noc-1) 

570.         while cust[i] == 0: 

571.             i = random.randint(0, noc-1) 

572.         customerchosen = int(cust[i]) 

573.         cust[i] = 0 

574.         initialcost = 99999999 

575.         www = False 

576.         k = 0 

577.         zeros = 0 

578.         while k in range(0, sumnv) and zeros < 10: 

579.             if routes2[k, 1] == 0: 

580.                 zeros = zeros + 1 

581.             if totq1(routes2[k, :], n2, demand1) + demand1[customerchosen] <= vehdat[k, 2] and totq2(rou

tes2[k, :], n2, demand2) + demand2[customerchosen] <= vehdat[k, 3] and totr1(routes2[k, :], n2, reve

rse1) + reverse1[customerchosen] <= vehdat[k, 2] and totr2(routes2[k, :], n2, reverse2) + reverse2[cus

tomerchosen] <= vehdat[k, 3]: 

582.                 sk = np.count_nonzero(routes2[k, :]) 

583.                 routes2n = np.copy(routes2) 

584.                 new = 1 

585.                 while new in range(1, sk+2): 

586.                     routes2n = np.copy(routes2) 

587.                     for j in range(0, new): 

588.                         routes2n[k, j] = routes2[k, j] 

589.                     routes2n[k, new] = customerchosen 

590.                     for j in range(new, sk+1): 

591.                         routes2n[k, j+1] = routes2[k, j] 

592.                     if totc(routes2n[k,:], vehdat[k,:], n2, dm) - totc(routes2[k,:], vehdat[k,:], n2, dm) <= initialco

st and fcc(routes2n, vehdat) <= fcc1 and  twcheck(routes2n[k,:], k, vehdat, tws, tt, twe, st) == True and

 posotites(routes2n[k, :], k, vehdat, reverse1, reverse2, demand1, demand2, n2) == True:                     

593.                         routesopt = np.copy(routes2n) 

594.                         initialcost = totc(routes2n[k,:], vehdat[k,:], n2, dm) -  totc(routes2[k,:], vehdat[k,:], n2, d

m) 



Appendix E Supplement to Chapter 6 

197 

 

595.                         www = True 

596.                     new = new + 1 

597.             k = k + 1 

598.         if www == True: 

599.             routes2 = np.copy(routesopt) 

600.     return routes2 

601.   

602. #Insertion operator 2 

603. def insertion_2(noc, routes2, cust, vehdat, fcc1, sumnv, n2, dm, tws, twe, tt, st, demand1, reverse1, d

emand2, reverse2): 

604.     while cust.sum() != 0: 

605.         i = random.randint(0, noc-1) 

606.         while cust[i] == 0: 

607.             i = random.randint(0, noc-1) 

608.         customerchosen = int(cust[i]) 

609.         cust[i] = 0 

610.         initialcost = 99999999 

611.         www = False 

612.         k = 0 

613.         zeros = 0 

614.         while k in range(0, sumnv) and zeros < 10: 

615.             if routes2[k, 1] == 0: 

616.                 zeros = zeros + 1 

617.             if totq1(routes2[k, :], n2, demand1) + demand1[customerchosen] <= vehdat[k, 2] and totq2(rou

tes2[k, :], n2, demand2) + demand2[customerchosen] <= vehdat[k, 3] and totr1(routes2[k, :], n2, reve

rse1) + reverse1[customerchosen] <= vehdat[k, 2] and totr2(routes2[k, :], n2, reverse2) + reverse2[cus

tomerchosen] <= vehdat[k, 3]: 

618.                 sk = np.count_nonzero(routes2[k, :]) 

619.                 routes2n = np.copy(routes2) 

620.                 new = 1 

621.                 while new in range(1, sk+2): 

622.                     routes2n = np.copy(routes2) 

623.                     for j in range(0, new): 

624.                         routes2n[k, j] = routes2[k, j] 

625.                     routes2n[k, new] = customerchosen 

626.                     for j in range(new, sk+1): 

627.                         routes2n[k, j+1] = routes2[k, j] 

628.                     if totc(routes2n[k,:], vehdat[k,:], n2, dm) -  totc(routes2[k,:], vehdat[k,:], n2, dm) <= initialc

ost and twcheck(routes2n[k,:], k, vehdat, tws, tt, twe, st) == True and posotites(routes2n[k, :], k, vehd

at, reverse1, reverse2, demand1, demand2, n2) == True: 

629.                         routesopt = np.copy(routes2n) 

630.                         initialcost = totc(routes2n[k,:], vehdat[k,:], n2, dm) -  totc(routes2[k,:], vehdat[k,:], n2, d

m) 

631.                         www = True 

632.                     new = new + 1 

633.             k = k + 1 

634.         if www == True: 

635.             routes2 = np.copy(routesopt) 



Appendix E Supplement to Chapter 6 

198 

 

636.     return routes2 

637.   

638. #Insertion operator 3 

639. def insertion_3(noc, routes2, cust, vehdat, fcc1, sumnv, n2, dm, tws, twe, tt, st, demand1, reverse1, d

emand2, reverse2): 

640.     while cust.sum() != 0: 

641.         i = random.randint(0, noc-1) 

642.         while cust[i] == 0: 

643.             i = random.randint(0, noc-1) 

644.         customerchosen = int(cust[i]) 

645.         cust[i] = 0 

646.         initialcost = 99999999 

647.         www = False 

648.         k = 0 

649.         zeros = 0 

650.         while k in range(0, sumnv) and zeros < 10: 

651.             if routes2[k, 1] == 0: 

652.                 zeros = zeros + 1 

653.             if totq1(routes2[k, :], n2, demand1) + demand1[customerchosen] <= vehdat[k, 2] and totq2(rou

tes2[k, :], n2, demand2) + demand2[customerchosen] <= vehdat[k, 3] and totr1(routes2[k, :], n2, reve

rse1) + reverse1[customerchosen] <= vehdat[k, 2] and totr2(routes2[k, :], n2, reverse2) + reverse2[cus

tomerchosen] <= vehdat[k, 3]: 

654.                 sk = np.count_nonzero(routes2[k, :]) 

655.                 routes2n = np.copy(routes2) 

656.                 new = 1 

657.                 while new in range(1, sk+2): 

658.                     routes2n = np.copy(routes2) 

659.                     for j in range(0, new): 

660.                         routes2n[k, j] = routes2[k, j] 

661.                     routes2n[k, new] = customerchosen 

662.                     for j in range(new, sk+1): 

663.                         routes2n[k, j+1] = routes2[k, j] 

664.                     if totdistance(routes2n, dm, n2) <= initialcost and twcheck(routes2n[k,:], k, vehdat, tws, tt, 

twe, st) == True and posotites(routes2n[k, :], k, vehdat, reverse1, reverse2, demand1, demand2, n2) =

= True : 

665.                         routesopt = np.copy(routes2n) 

666.                         initialcost = totdistance(routes2n, dm, n2) 

667.                         www = True 

668.                     new = new + 1 

669.             k = k + 1 

670.         if www == True: 

671.             routes2 = np.copy(routesopt) 

672.     return routes2 

673.   

674. #Insertion operator 4 

675. def insertion_4(noc, routes2, cust, vehdat, fcc1, sumnv, n2, dm, tws, twe, tt, st, demand1, reverse1, d

emand2, reverse2): 

676.     while cust.sum() != 0: 



Appendix E Supplement to Chapter 6 

199 

 

677.         i = random.randint(0, noc-1) 

678.         while cust[i] == 0: 

679.             i = random.randint(0, noc-1) 

680.         customerchosen = int(cust[i]) 

681.         cust[i] = 0 

682.         initialcost = 99999999 

683.         www = False 

684.         k = 0 

685.         zeros = 0 

686.         while k in range(0, sumnv) and zeros < 10: 

687.             if routes2[k, 1] == 0: 

688.                 zeros = zeros + 1 

689.             if totq1(routes2[k, :], n2, demand1) + demand1[customerchosen] <= vehdat[k, 2] and totq2(rou

tes2[k, :], n2, demand2) + demand2[customerchosen] <= vehdat[k, 3] and totr1(routes2[k, :], n2, reve

rse1) + reverse1[customerchosen] <= vehdat[k, 2] and totr2(routes2[k, :], n2, reverse2) + reverse2[cus

tomerchosen] <= vehdat[k, 3]: 

690.                 sk = np.count_nonzero(routes2[k, :]) 

691.                 routes2n = np.copy(routes2) 

692.                 new = 1 

693.                 while new in range(1, sk+2): 

694.                     routes2n = np.copy(routes2) 

695.                     for j in range(0, new): 

696.                         routes2n[k, j] = routes2[k, j] 

697.                     routes2n[k, new] = customerchosen 

698.                     for j in range(new, sk+1): 

699.                         routes2n[k, j+1] = routes2[k, j] 

700.                     if dm[int(routes2n[k, new-

1]), customerchosen]/dm.max() +  (twe[customerchosen] + tt[int(routes2n[k, new-

1]),customerchosen])/twe.max() <= initialcost and twcheck(routes2n[k,:], k, vehdat, tws, tt, twe, st) ==

 True and posotites(routes2n[k, :], k, vehdat, reverse1, reverse2, demand1, demand2, n2) == True: 

701.                         routesopt = np.copy(routes2n) 

702.                         initialcost = dm[int(routes2n[k, new-

1]), customerchosen]/dm.max() +  (twe[customerchosen] + tt[int(routes2n[k, new-

1]),customerchosen])/twe.max() 

703.                         www = True 

704.                     new = new + 1 

705.             k = k + 1 

706.         if www == True: 

707.             routes2 = np.copy(routesopt) 

708.     return routes2 

709.   

710. #Insertion operator 5 

711. def insertion_5(noc, routes2, cust, vehdat, fcc1, sumnv, n2, dm, tws, twe, tt, st, demand1, reverse1, d

emand2, reverse2): 

712.     while cust.sum() != 0: 

713.         i = random.randint(0, noc-1) 

714.         while cust[i] == 0: 

715.             i = random.randint(0, noc-1) 



Appendix E Supplement to Chapter 6 

200 

 

716.         customerchosen = int(cust[i]) 

717.         cust[i] = 0 

718.         initialcost = 99999999 

719.         www = False 

720.         k = 0 

721.         zeros = 0 

722.         while k in range(0, sumnv) and zeros < 10: 

723.             if routes2[k, 1] == 0: 

724.                 zeros = zeros + 1 

725.             if totq1(routes2[k, :], n2, demand1) + demand1[customerchosen] <= vehdat[k, 2] and totq2(rou

tes2[k, :], n2, demand2) + demand2[customerchosen] <= vehdat[k, 3] and totr1(routes2[k, :], n2, reve

rse1) + reverse1[customerchosen] <= vehdat[k, 2] and totr2(routes2[k, :], n2, reverse2) + reverse2[cus

tomerchosen] <= vehdat[k, 3]: 

726.                 sk = np.count_nonzero(routes2[k, :]) 

727.                 routes2n = np.copy(routes2) 

728.                 new = 1 

729.                 while new in range(1, sk+2): 

730.                     routes2n = np.copy(routes2) 

731.                     for j in range(0, new): 

732.                         routes2n[k, j] = routes2[k, j] 

733.                     routes2n[k, new] = customerchosen 

734.                     for j in range(new, sk+1): 

735.                         routes2n[k, j+1] = routes2[k, j] 

736.                     criterion1 = totc(routes2[k,:], vehdat[k,:], n2, dm) 

737.                     if criterion1 == 0: 

738.                         criterion1 = vehdat[k,1] 

739.                     if totc(routes2n[k,:], vehdat[k,:], n2, dm) -  criterion1 <= initialcost and twcheck(routes2n[k

,:], k, vehdat, tws, tt, twe, st) == True and posotites(routes2n[k, :], k, vehdat, reverse1, reverse2, dema

nd1, demand2, n2) == True: 

740.                         routesopt = np.copy(routes2n) 

741.                         initialcost = totc(routes2n[k,:], vehdat[k,:], n2, dm) -  criterion1 

742.                         www = True 

743.                     new = new + 1 

744.             k = k + 1 

745.         if www == True: 

746.             routes2 = np.copy(routesopt) 

747.     return routes2 

748.   

749. #Insertion of unrouted customers to existing routes  

750. def insertion_unrouted(routes2, cust, vehdat, sumnv, n2, dm, tws, twe, tt, st, demand1, reverse1, de

mand2, reverse2, customers1): 

751.     cust1 = np.copy(cust) 

752.     while cust1.sum() != 0: 

753.         i = random.randint(0, len(cust)-1) 

754.         while cust1[i] == 0: 

755.             i = random.randint(0, len(cust)-1) 

756.         customerchosen = int(cust[i]) 

757.         cust1[i] = 0 



Appendix E Supplement to Chapter 6 

201 

 

758.         initialcost = 99999999 

759.         www = False 

760.         k = 0 

761.         while k in range(0, sumnv): 

762.             if totq1(routes2[k, :], n2, demand1) + demand1[customerchosen] <= vehdat[k, 2] and totq2(rou

tes2[k, :], n2, demand2) + demand2[customerchosen] <= vehdat[k, 3] and totr1(routes2[k, :], n2, reve

rse1) + reverse1[customerchosen] <= vehdat[k, 2] and totr2(routes2[k, :], n2, reverse2) + reverse2[cus

tomerchosen] <= vehdat[k, 3]: 

763.                 sk = np.count_nonzero(routes2[k, :]) 

764.                 routes2n = np.copy(routes2) 

765.                 new = 1 

766.                 while new in range(1, sk+2): 

767.                     routes2n = np.copy(routes2) 

768.                     for j in range(0, new): 

769.                         routes2n[k, j] = routes2[k, j] 

770.                     routes2n[k, new] = customerchosen 

771.                     for j in range(new, sk+1): 

772.                         routes2n[k, j+1] = routes2[k, j] 

773.                     if totc(routes2n[k,:], vehdat[k,:], n2, dm) -  totc(routes2[k,:], vehdat[k,:], n2, dm) <= initialc

ost and twcheck(routes2n[k,:], k, vehdat, tws, tt, twe, st) == True and posotites(routes2n[k, :], k, vehd

at, reverse1, reverse2, demand1, demand2, n2) == True: 

774.                         routesopt = np.copy(routes2n) 

775.                         initialcost = totc(routes2n[k,:], vehdat[k,:], n2, dm) -  totc(routes2[k,:], vehdat[k,:], n2, d

m) 

776.                         www = True 

777.                         cust[i] = 0 

778.                     new = new + 1 

779.             k = k + 1 

780.         if www == True: 

781.             routes2 = np.copy(routesopt) 

782.     k1 = np.count_nonzero(cust) 

783.     unrouted2 = np.zeros(shape=(k1, 1)) 

784.     k = 0 

785.     for i in range(len(cust)): 

786.         if cust[i] != 0: 

787.             unrouted2[k] = cust[i] 

788.             k = k + 1 

789.     return routes2, unrouted2 

790.   

791. #Calculation of number of routes 

792. def number_of_routes(routes): 

793.     s = 0 

794.     for i in range(len(routes)): 

795.         if routes[i, 1] != 0: 

796.             s = s + 1 

797.     return s 

798.   

799. #Extra improvement 1 



Appendix E Supplement to Chapter 6 

202 

 

800. def route_improvement(routes, vehdattt, fcc1, sumnv, n2, dm, tws, twe, tt, st, demand1, reverse1, de

mand2, reverse2): 

801.     sumroutes = routes.sum() 

802.     routes21 = np.copy(routes) 

803.     routes22 = np.copy(routes) 

804.     kkk1 = 0 

805.     i = random.randint(0, len(routes)-1) 

806.     while (vehdattt[i, 2] == vehdattt[:, 2].min() or routes[i,1] == 0) and kkk1 <50: 

807.         i = random.randint(0, len(routes)-1) 

808.         kkk1 = kkk1 + 1 

809.     if kkk1 < 50: 

810.         cust= np.zeros(shape = (np.count_nonzero(routes[i, :]), 1)) 

811.         for j in range(np.count_nonzero(routes[i, :])): 

812.             cust[j] = routes[i, j+1] 

813.             routes21[i, j + 1] = 0 

814.             routes22[i, j + 1] = 0 

815.         k = 0 

816.         www=False 

817.         while k in range(len(routes)) and www == False: 

818.             if i != k and vehdattt[i, 5] != vehdattt[k, 5] and totq1(routes[i, :], n2, demand1) <= vehdattt[k, 2]

 and posotites(routes22[k, :], k, vehdattt, reverse1, reverse2, demand1, demand2, n2) == True and tot

c(routes[i,:], vehdattt[i,:], n2, dm) > totc(routes[i,:], vehdattt[k,:], n2, dm): 

819.                 for x in range(len(cust)): 

820.                     routes21[k, x+1] = cust[x] 

821.                 www = twcheck(routes21[k,:], k, vehdattt, tws, tt, twe, st) 

822.             k = k + 1 

823.     else: 

824.         cust = np.zeros(shape=(1, 1)) 

825.     if routes21.sum() < sumroutes: 

826.         routes21 = np.copy(routes) 

827.     ss = 0 

828.     nn = 1 

829.     if number_of_routes(routes) < len(routes) and cust.sum()!=0: 

830.         while cust.sum() != 0 and number_of_routes(routes22) < len(routes) and nn<=3: 

831.             k = random.randint(0, len(routes)-1) 

832.             while vehdattt[i, 5] == vehdattt[k, 5] or routes[k, 1] != 0: 

833.                 k = random.randint(0, len(routes)-1) 

834.             w = True 

835.             x = 1 

836.             while ss in range(len(cust)) and w == True: 

837.                 routes22[k, x] = cust[ss] 

838.                 if twcheck(routes22[k,:], k, vehdattt, tws, tt, twe, st) == True and totq1(routes22[k, :], n2, de

mand1) <= vehdattt[k, 2] and posotites(routes22[k, :], k, vehdattt, reverse1, reverse2, demand1, dem

and2, n2) == True: 

839.                     cust[ss] = 0 

840.                     ss = ss + 1 

841.                     x = x + 1 

842.                 else: 



Appendix E Supplement to Chapter 6 

203 

 

843.                     routes22[k, ss+1] = 0 

844.                     w = False 

845.             nn = nn + 1 

846.         noc = len(cust) 

847.         if cust.sum() != 0: 

848.             routes22 = insertion_5(noc, routes22, cust, vehdattt, fcc1, sumnv, n2, dm, tws, twe, tt, st, dem

and1, reverse1, demand2, reverse2) 

849.     if routes22.sum() < sumroutes: 

850.         routes22 = np.copy(routes) 

851.     if totalcost(routes21, vehdattt, n2, dm) < totalcost(routes22, vehdattt, n2, dm): 

852.         routes_return = np.copy(routes21) 

853.     else:  

854.         routes_return = np.copy(routes22) 

855.     return routes_return 

856.   

857. #Extra improvement 2 

858. def route_improvement_correct2(routes, vehdattt, fcc1, sumnv, n2, dm, tws, twe, tt, st, demand1, re

verse1, demand2, reverse2): 

859.     sumroutes = routes.sum() 

860.     routes21 = np.copy(routes) 

861.     i = 0 

862.     for i in range(sumnv): 

863.         if (vehdattt[i, 2] != vehdattt[:, 2].min() and routes[i,1] != 0): 

864.             cust= np.zeros(shape = (np.count_nonzero(routes[i, :]), 1)) 

865.             for j in range(np.count_nonzero(routes[i, :])): 

866.                 cust[j] = routes[i, j+1] 

867.                 routes21[i, j + 1] = 0 

868.             k = 0 

869.             www=False 

870.             while k in range(len(routes)) and www == False: 

871.                 if i != k and vehdattt[k, 2] < vehdattt[i, 2] and totq1(routes[i, :], n2, demand1) >= vehdattt[k, 

2] and totc(routes[i,:], vehdattt[i,:], n2, dm) > totc(routes[i,:], vehdattt[k,:], n2, dm): 

872.                     for x in range(len(cust)): 

873.                         routes21[k, x+1] = cust[x] 

874.                     www = twcheck(routes21[k,:], k, vehdattt, tws, tt, twe, st) 

875.                 k = k + 1 

876.         if routes21.sum() < sumroutes: 

877.             routes21 = np.copy(routes) 

878.         routes_return = np.copy(routes21) 

879.     return routes_return 

880.   

881. #Routing procedure 

882. def routing(datveh, datcust, dminitial, ttinitial): 

883.     #------------------- Vehices' data ----------------------- 

884.     vtype = datveh.iloc[:,0].values 

885.     capacity1 = datveh.iloc[:,2].values 

886.     capacity2 = datveh.iloc[:,1].values 

887.     fc = datveh.iloc[:,3].values 



Appendix E Supplement to Chapter 6 

204 

 

888.     vc = datveh.iloc[:,4].values 

889.     availnv =datveh.iloc[:,5].values 

890.     startingshift = datveh.iloc[:, 6] 

891.     endingshift = datveh.iloc[:, 7] 

892.     #----------------- Customers dataset ---------------------  

893.     n2 = len(datcust) 

894.     id = datcust.iloc[:,0].values 

895.     cx = datcust.iloc[:,1].values 

896.     cy = datcust.iloc[:,2].values 

897.     demand1  = datcust.iloc[:,3].values 

898.     demand2  = datcust.iloc[:,4].values 

899.     reverse1 = datcust.iloc[:,5].values 

900.     reverse2 = datcust.iloc[:,6].values 

901.     tws = datcust.iloc[:, 7].values 

902.     twe = datcust.iloc[:, 8].values 

903.     st = datcust.iloc[:, 9].values 

904.     #------------- Travel time and distance matrix ----------- 

905.     dm = np.copy(dminitial) 

906.     tt = np.copy(ttinitial) 

907.     #--------------------------------------------------------- 

908.     sumnv=availnv.sum() 

909.     customers1 = np.zeros(shape = (n2-1, 1)) 

910.     for i in range(1, n2): 

911.         customers1[i-1] = id[i]     

912.     sumroutes = customers1.sum() 

913.     #---------------- Construction procedure ----------------- 

914.     customnew = np.zeros(shape =(n2-1, 1)) 

915.     vehdattt = vehdata(sumnv, availnv, fc, vc,capacity1, capacity2, startingshift, vtype, endingshift) 

916.     routes, customers = construction1(sumnv, availnv, vehdattt, 0.85, 0.15, customers1, n2, tws, tt, twe

, st, demand1, reverse1, demand2, reverse2, dm) 

917.     #In case customers have not been integrated into routes are saved in array unrouted 

918.     if routes.sum() == sumroutes and customers.sum() == 0: 

919.         customnew = np.zeros(shape = (1,1)) 

920.         customnew[0] = 0 

921.         unrouted = np.zeros(shape = (1, 1)) 

922.         unrouted[0] = 0 

923.     else: 

924.         mincustsum = countcust(customers) 

925.         customnew = np.copy(customers) 

926.         sumroutes = routes.sum() 

927.         unrouted = np.zeros(shape = (mincustsum, 1)) 

928.         k = 0 

929.         for i in range(len(customers1)): 

930.             if customnew[i] != 0: 

931.                 unrouted[k] = customnew[i] 

932.                 k = k + 1 

933.   

934.     optcost = totalcost(routes, vehdattt, n2, dm) 



Appendix E Supplement to Chapter 6 

205 

 

935.     print("Construction", optcost, unrouted.sum()) 

936.      

937.     #Set of parameters 

938.     if n2-1 < 10: 

939.         dl = 1 

940.         ul = 2 

941.     elif n2-1 < 51: 

942.         dl = 3 

943.         ul = 8 

944.     else: 

945.         dl = 2 

946.         ul = 14 

947.          

948.     pososto1 = 0.25 

949.     pososto2 = 0.25 

950.     pososto3 = 0.17 

951.     pososto4 = 0.17 

952.     pososto5 = 0.10  

953.      

954.     #Computation time limit 

955.     timelimit = 900 

956.   

957.     r = 0.15 

958.     select1 = 0 

959.     select2 = 0 

960.     select3 = 0 

961.     select4 = 0 

962.     select5 = 0 

963.     select6 = 0 

964.     ssss = 1 

965.      

966.     #Starting of the improvement procedure 

967.     i = 0 

968.     while timeit.default_timer() - start < timelimit: 

969.         fcc1 = fcc(routes, vehdattt) 

970.         p = random.random() 

971.         if p <= pososto1: 

972.             routes2, cust, noc = selection1(routes, vehdattt, dl, ul, sumnv, n2, customers1, customnew) 

973.             s1 = 1 

974.         elif p <=pososto1 + pososto2: 

975.             routes2, cust, noc = selection2(routes, vehdattt, sumnv, dm, n2, demand1, demand2, reverse1,

 reverse2) 

976.             s1 = 2 

977.         elif p <= pososto1 + pososto2 + pososto3: 

978.             routes2, cust, noc = selection3(routes, vehdattt, n2, tws, twe, tt, st, dl, dm, ul, sumnv) 

979.             s1 = 3 

980.         elif p <= pososto1 + pososto2 + pososto3+pososto4: 

981.             routes2, cust, noc = selection4(routes, vehdattt, n2, tws, twe, tt, st, dl, dm, ul, sumnv) 



Appendix E Supplement to Chapter 6 

206 

 

982.             s1 = 4 

983.         elif p <= pososto1 + pososto2 + pososto3 + pososto4 + pososto5:    

984.             routes2, cust, noc = selection5(routes, vehdattt, n2, dl, ul, sumnv) 

985.             s1 = 5 

986.         else: 

987.             routes2, cust, noc = selection55(routes, vehdattt, n2, dl, ul, sumnv) 

988.             s1 = 55 

989.         p1 = random.random() 

990.         if p1 < 0.25: 

991.             routes2 = insertion_1(noc, routes2, cust, vehdattt, fcc1, sumnv, n2, dm, tws, twe, tt, st, deman

d1, reverse1, demand2, reverse2) 

992.         elif p1 < 0.5: 

993.             routes2 = insertion_2(noc, routes2, cust, vehdattt, fcc1, sumnv, n2, dm, tws, twe, tt, st, deman

d1, reverse1, demand2, reverse2) 

994.         elif p1 < 0.75: 

995.             routes2 = insertion_3(noc, routes2, cust, vehdattt, fcc1, sumnv, n2, dm, tws, twe, tt, st, deman

d1, reverse1, demand2, reverse2) 

996.         else: 

997.             routes2 = insertion_5(noc, routes2, cust, vehdattt, fcc1, sumnv, n2, dm, tws, twe, tt, st, deman

d1, reverse1, demand2, reverse2) 

998.      

999.         #Adating the parameters 

1000.         if totalcost(routes2, vehdattt, n2, dm) < optcost - 0.001 and routes2.sum() == sumroutes: 

1001.             routes = np.copy(routes2) 

1002.             optcost = (totalcost(routes, vehdattt, n2, dm)) 

1003.             if s1 == 1: 

1004.                 select1 = select1 +1 

1005.             elif s1 == 2: 

1006.                 select2 = select2 +1 

1007.             elif s1 == 3: 

1008.                 select3 = select3 +1 

1009.             elif s1 == 4: 

1010.                 select4 = select4 +1 

1011.             elif s1 == 5: 

1012.                 select5 = select5 + 1 

1013.             else: 

1014.                 select6 = select6 + 1 

1015.             if ssss%9==0: 

1016.                 pososto1 = pososto1*(1 - r) + r*select1/(ssss) 

1017.                 pososto2 = pososto2*(1 - r) + r*select2/(ssss) 

1018.                 pososto3 = pososto3*(1 - r) + r*select3/(ssss) 

1019.                 pososto4 = pososto4*(1 - r) + r*select4/(ssss) 

1020.                 pososto5 = pososto5*(1 - r) + r*select5/(ssss) 

1021.             ssss = ssss + 1 

1022.        

1023.         if i%5==0 and timeit.default_timer() - start > 0.55*timelimit: 

1024.             routes2 = route_improvement_correct2(routes, vehdattt, fcc1, sumnv, n2, dm, tws, twe, tt, st, 

demand1, reverse1, demand2, reverse2) 



Appendix E Supplement to Chapter 6 

207 

 

1025.             if totalcost(routes2, vehdattt, n2, dm) < optcost - 0.001 and routes2.sum() == sumroutes: 

1026.                 routes = np.copy(routes2) 

1027.                 optcost = (totalcost(routes, vehdattt, n2, dm)) 

1028.                 print("route_improvement_correct2") 

1029.         if i%5==0 and timeit.default_timer() - start > 0.55*timelimit: 

1030.             routes2 = route_improvement(routes, vehdattt, fcc1, sumnv, n2, dm, tws, twe, tt, st, demand1,

 reverse1, demand2, reverse2) 

1031.             if totalcost(routes2, vehdattt, n2, dm) < optcost - 0.001 and routes2.sum() == sumroutes: 

1032.                 routes = np.copy(routes2) 

1033.                 optcost = (totalcost(routes, vehdattt, n2, dm)) 

1034.                 print("route_improvement") 

1035.   

1036.         #Try to integrate the unrouted customers into the routes 

1037.         if i%15 ==  0 and unrouted.sum() > 0: 

1038.             routes, unrouted = insertion_unrouted(routes, unrouted, vehdattt, sumnv, n2, dm, tws, twe, tt,

 st, demand1, reverse1, demand2, reverse2, customers1) 

1039.             sumroutes = routes.sum() 

1040.             optcost = (totalcost(routes, vehdattt, n2, dm)) 

1041.             print(unrouted.sum()) 

1042.         i=i+1 

1043.     optimalroutexx = np.copy(routes) 

1044.     tstart, toa, tod, ttravel = times(optimalroutexx, n2, tws, tt, twe, st, vehdattt) 

1045.     vehicles = quantity(optimalroutexx, vehdattt, n2, demand1, demand2, dm, toa, tstart, tod, ttravel) 

1046.     posotites1, posotites2 = analytikaposotites(optimalroutexx, n2, demand1, demand2, reverse1, reve

rse2) 

1047.     print(optcost) 

1048.     #data that are returned after the routing procedure 

1049.     return vehicles, optimalroutexx, toa, tod, vehdattt, optcost 

1050.   

1051. stop = timeit.default_timer() 



Appendix E Supplement to Chapter 6 

208 

 

Dynamic Routing – Rerouting 

1. import random 

2. import numpy as np 

3. import pandas as pd 

4. import timeit 

5.   

6. start = timeit.default_timer() 

7.   

8. #Initial plan of routes, created by the ALNS algorithm 

9. filename1 = "static_routes.xlsx" 

10. routes = pd.read_excel(filename1) 

11.   

12. #Data of vehicles 

13. filename2 = "vehdattt.xlsx" 

14. datveh = pd.read_excel(filename2) 

15.   

16. #Data of Customers 

17. filename3 = "customers1.xlsx" 

18. datcust = pd.read_excel(filename3) 

19.   

20. #Customers that have been served 

21. filename4 = "servedcustomers.xlsx" 

22. servedcustomers = pd.read_excel(filename4) 

23.   

24. #Current time 

25. tnow = 410 

26.   

27. #Number of route we focus on 

28. nroute = 4 

29.   

30. #Check if the load on board of each vehicle, in every stage of the distribution is respected or not 

31. def posotitesrerouitng(routes, position, vehdat, reverse1, reverse2, demand1, demand2, n2, q1, q2): 

32.     rrr1 = np.count_nonzero(routes) 

33.     q = True 

34.     d1 = q1 

35.     d2 = q2 

36.     i  = 1 

37.     while i in range(1,rrr1+2) and q == True: 

38.         d1 = d1 - demand1[int(routes[i])] + reverse1[int(routes[i])] 

39.         d2 = d2 - demand2[int(routes[i])] + reverse2[int(routes[i])] 

40.         if d1 > vehdat[position,2] or d2 > vehdat[position,3]: 

41.             q = False 

42.             #print(d1, vehdat[position,2], d2, vehdat[position,3]) 

43.         i = i+1  

44.     return q 

45.   

46. #Calculation of load on truck in every step of the distribution 



Appendix E Supplement to Chapter 6 

209 

 

47. def analytikaposotitesrerouting(routes, n2, demand1, demand2, reverse1, reverse2): 

48.     posotites1 = np.zeros(shape = (n2+1, 1)) 

49.     posotites2 = np.zeros(shape = (n2+1, 1)) 

50.     posotites1[0] = totq1(routes, n2, demand1) 

51.     posotites2[0] = totq2(routes, n2, demand2) 

52.     sk = np.count_nonzero(routes) 

53.     for j in range(1, sk + 2): 

54.         posotites1[j] = posotites1[j-1]- demand1[int(routes[j])] + reverse1[int(routes[j])]     

55.         posotites2[j] = posotites2[j-1]- demand2[int(routes[j])] + reverse2[int(routes[j])]  

56.     return posotites1, posotites2 

57. #Second Calculation of load on truck in every step of the distribution 

58. def analytikaposotitesrerouting2(routes, n2, demand1, demand2, reverse1, reverse2, q1, q2): 

59.     posotites1 = np.zeros(shape = (n2+1, 1)) 

60.     posotites2 = np.zeros(shape = (n2+1, 1)) 

61.     posotites1[0] = q1 

62.     posotites2[0] = q2 

63.     sk = np.count_nonzero(routes) 

64.     for j in range(1, sk + 2): 

65.         posotites1[j] = posotites1[j-1]- demand1[int(routes[j])] + reverse1[int(routes[j])]     

66.         posotites2[j] = posotites2[j-1]- demand2[int(routes[j])] + reverse2[int(routes[j])]  

67.     return posotites1, posotites2 

68.   

69. #Check that all time windows of a single route are respected 

70. def twcheckrerouting(routes, position, vehdat, tws, tt, twe, st, tnow): 

71.     r1 = np.count_nonzero(routes) 

72.     t = tnow 

73.     tstart = tnow 

74.     q = True 

75.     i  = 0 

76.     while i in range(0,r1+1) and q == True: 

77.         t = t + tt[int(routes[i]), int(routes[i+1])] 

78.         if t > twe[int(routes[i+1])]: 

79.             q = False 

80.         else: 

81.             if t < tws[int(routes[i+1])]: 

82.                 t = tws[int(routes[i+1])] 

83.             t = t + st[int(routes[i+1])] 

84.         i = i + 1 

85.     if t - tstart > vehdat[position, 4]: 

86.          q = False 

87.     return q 

88.   

89. #Calculation of delays 

90. def delays(routes, vehdat, tws, tt, twe, st, tnow): 

91.     r1 = np.count_nonzero(routes) 

92.     t = tnow 

93.     delay = 0 

94.     i  = 0 



Appendix E Supplement to Chapter 6 

210 

 

95.     while i in range(0,r1+1): 

96.         t = t + tt[int(routes[i]), int(routes[i+1])] 

97.         if t > twe[int(routes[i+1])]: 

98.             delay = delay + t - twe[int(routes[i+1])] 

99.         else: 

100.            if t < tws[int(routes[i+1])]: 

101.                t = tws[int(routes[i+1])] 

102.            t = t + st[int(routes[i+1])] 

103.        i = i + 1 

104.    return delay 

105.  

106.#New calculation of the toa, tod, waiting time, and start of serving in each customer 

107.def timesrerouting(routes, n2, tws, tt, twe, st, tnow): 

108.    waiting = np.zeros(shape = (n2-1,1)) 

109.    toa = np.zeros(shape = (n2+1, 1)) 

110.    tstart = np.zeros(shape = (n2+1,1)) 

111.    tod = np.zeros(shape = (n2+1, 1)) 

112.    ttravel = np.zeros(shape = (3, 1)) 

113.    k = 0 

114.    t = tnow 

115.    toa[0] = tnow 

116.    tod[0] = tnow 

117.    smax = np.count_nonzero(routes) 

118.    for j in range(0, smax+1): 

119.        t = t + tt[int(routes[j]), int(routes[j+1])] 

120.        if t < tws[int(routes[j+1])]: 

121.            tstart[j+1] = tws[int(routes[j+1])] 

122.            waiting[k] = tws[int(routes[j+1])] - t 

123.            k = k +1  

124.        else: 

125.            tstart[j+1] = t 

126.            waiting[k] = 0 

127.        toa[j+1] = t 

128.        t = tstart[j+1] + st[int(routes[j+1])] 

129.        tod[j+1] = t 

130.    ttravel[1] = toa.max() 

131.    ttravel[2] = toa.max() - ttravel[0] 

132.    return tstart, toa, tod, ttravel 

133.  

134.def rerouting(datcust, datveh, routesall, nroute, servedcustomers, tnow, dm, tt): 

135.    #----------------- Vehices' data -------------- 

136.    vehdattt = datveh.iloc[:,:].values 

137.    #----------------- Routes --------------------- 

138.    routes = routesall.iloc[:,:].values 

139.    #-------------- Customers dataset -------------  

140.    n2 = len(datcust) 

141.    id = datcust.iloc[:,0].values 

142.    cx = datcust.iloc[:,1].values 



Appendix E Supplement to Chapter 6 

211 

 

143.    cy = datcust.iloc[:,2].values 

144.    demand1  = datcust.iloc[:,3].values 

145.    demand2  = datcust.iloc[:,4].values 

146.    reverse1 = datcust.iloc[:,5].values 

147.    reverse2 = datcust.iloc[:,6].values 

148.    tws = datcust.iloc[:, 7].values 

149.    twe = datcust.iloc[:, 8].values 

150.    st = datcust.iloc[:, 9].values 

151.    #----------------------------------------------   

152.    customers1 = np.zeros(shape = (n2-1, 1)) 

153.    for i in range(1, n2): 

154.        customers1[i-1] = id[i]     

155.    #---------------------------------------------- 

156.    checkroute = np.copy(routes[nroute,:]) 

157.    #---- find the unserved customers --------- 

158.    unserved = np.zeros(shape=(n2+1, 1)) 

159.    nuns = len(servedcustomers) 

160.    s = np.count_nonzero(routes[nroute,:]) 

161.    for j in range(nuns+1, s+1): 

162.        unserved[j-nuns-1] = checkroute[j] 

163.    #--- find the unserved customers and the last served one ------ 

164.    unservedwithstartpoint = np.zeros(shape=(n2+1, 1)) 

165.    for j in range(nuns, s+1): 

166.        unservedwithstartpoint[j-nuns] = checkroute[j] 

167.    sumroutes = unservedwithstartpoint.sum() 

168.    #---- initial quantities in the route ------- 

169.    posotites1, posotites2 = analytikaposotitesrerouting(checkroute, n2, demand1, demand2, reverse1,

 reverse2) 

170.    q1 = posotites1[nuns] 

171.    q2 = posotites2[nuns] 

172.    #print(q1, q2) 

173.    #------------------------------------------------------- 

174.    if twcheckrerouting(unservedwithstartpoint, nroute, vehdattt, tws, tt, twe, st, tnow) == True: 

175.        print("You can proceed as planned") 

176.        routenew = np.copy(unservedwithstartpoint) 

177.        tstart, toa, tod, ttravel=timesrerouting(routenew, n2, tws, tt, twe, st, tnow) 

178.        posotites1, posotites2 = analytikaposotitesrerouting2(routenew, n2, demand1, demand2, reverse

1, reverse2, q1, q2) 

179.    else: 

180.        print("There will be delays") 

181.        routenew = np.zeros(shape=(n2+1, 1)) 

182.        cust = np.trim_zeros(unserved) 

183.        noc = np.count_nonzero(unserved) 

184.        initialcost2 = 999999999 

185.        for i in range(1000): 

186.            cust1 = np.copy(cust) 

187.            routes2 = np.zeros(shape=(n2+1, 1)) 

188.            routes2[0] = unservedwithstartpoint[0] 



Appendix E Supplement to Chapter 6 

212 

 

189.            while cust1.sum() != 0: 

190.                i = random.randint(0, noc-1) 

191.                while cust1[i] == 0: 

192.                    i = random.randint(0, noc-1) 

193.                www = False 

194.                customerchosen = int(cust1[i]) 

195.                cust1[i] = 0 

196.                initialcost = 99999999 

197.                sk = np.count_nonzero(routes2) 

198.                routes2n = np.copy(routes2) 

199.                new = 1 

200.                while new in range(1, sk+1): 

201.                    routes2n = np.copy(routes2) 

202.                    for j in range(0, new): 

203.                        routes2n[j] = routes2[j] 

204.                    routes2n[new] = customerchosen 

205.                    for j in range(new, sk+1): 

206.                        routes2n[j+1] = routes2[j] 

207.                    if totc(routes2n, vehdattt[nroute,:], n2, dm) - totc(routes2, vehdattt[nroute,:], n2, dm) <= i

nitialcost and twcheckrerouting(routes2n, nroute, vehdattt, tws, tt, twe, st, tnow) == True and posotit

esrerouitng(routes2n, nroute, vehdattt, reverse1, reverse2, demand1, demand2, n2, q1, q2) == True: 

208.                        routesopt = np.copy(routes2n) 

209.                        initialcost = totc(routes2n, vehdattt[nroute,:], n2, dm) - totc(routes2, vehdattt[nroute,:], 

n2, dm) 

210.                        www = True 

211.                    new = new + 1 

212.                if www == True: 

213.                    routes2 = np.copy(routesopt) 

214.            tcnew = totc(routes2, vehdattt[nroute,:], n2, dm) 

215.            if routes2.sum() == sumroutes and cust1.sum() == 0 and tcnew < initialcost2: 

216.                routenew = np.copy(routes2) 

217.                initialcost2 = totc(routes2, vehdattt[nroute,:], n2, dm) 

218.        if routenew.sum() == 0: 

219.            for i in range(10): 

220.                cust1 = np.copy(cust) 

221.                routes2 = np.zeros(shape=(n2+1, 1)) 

222.                routes2[0] = unservedwithstartpoint[0] 

223.                while cust1.sum() != 0: 

224.                    i = random.randint(0, noc-1) 

225.                    while cust1[i] == 0: 

226.                        i = random.randint(0, noc-1) 

227.                    www = False 

228.                    customerchosen = int(cust1[i]) 

229.                    cust1[i] = 0 

230.                    initialcost = 99999999 

231.                    routes2n = np.copy(routes2) 

232.                    sk = np.count_nonzero(routes2) 

233.                    new = 1 



Appendix E Supplement to Chapter 6 

213 

 

234.                    while new in range(1, sk+1): 

235.                        routes2n = np.copy(routes2) 

236.                        for j in range(0, new): 

237.                            routes2n[j] = routes2[j] 

238.                        routes2n[new] = customerchosen 

239.                        for j in range(new, sk+1): 

240.                            routes2n[j+1] = routes2[j] 

241.                        if delays(routes2n, vehdattt[nroute,:], tws, tt, twe, st, tnow) -  delays(routes2, vehdattt[n

route,:], tws, tt, twe, st, tnow)<= initialcost and posotitesrerouitng(routes2n, nroute, vehdattt, revers

e1, reverse2, demand1, demand2, n2, q1, q2) == True: 

242.                            routesopt = np.copy(routes2n) 

243.                            initialcost = delays(routes2n, vehdattt[nroute,:], tws, tt, twe, st, tnow) -  delays(routes

2, vehdattt[nroute,:], tws, tt, twe, st, tnow) 

244.                            www = True 

245.                        new = new + 1 

246.                    if www == True: 

247.                        routes2 = np.copy(routesopt) 

248.                tcnew = delays(routes2, vehdattt[nroute,:], tws, tt, twe, st, tnow) 

249.                if routes2.sum() == sumroutes and cust1.sum() == 0 and tcnew < initialcost2: 

250.                    routenew = np.copy(routes2) 

251.                    initialcost2 = totc(routes2, vehdattt[nroute,:], n2, dm) 

252.            print("solution with the minimum delays is: ", routenew, "with, ", initialcost2) 

253.        else: 

254.            print("new route was found") 

255.        tstart, toa, tod, ttravel=timesrerouting(routenew, n2, tws, tt, twe, st, tnow) 

256.        posotites1, posostites2 = analytikaposotitesrerouting2(routenew, n2, demand1, demand2, revers

e1, reverse2, q1, q2) 

257.    return vehdattt,routenew, posotites1, posostites2, toa, tod, ttravel 

258.  

259.vehdattt,routenew, posotites1, posostites2, toa, tod, ttravel = rerouting(datcust, datveh, routes, nrou

te, servedcustomers, tnow, dm , tt) 

260.  

261.stop = timeit.default_timer() 

 



Appendix E Supplement to Chapter 6 

214 

 

Drag and Drop Procedure 

1. import random 

2. import numpy as np 

3. import pandas as pd 

4. import timeit 

5.   

6. start = timeit.default_timer() 

7.   

8. #Initial plan of routes, created by the ALNS algorithm 

9. filename1 = "static_routes.xlsx" 

10. routes = pd.read_excel(filename1) 

11.   

12. #Data of vehicles 

13. filename2 = "vehdattt.xlsx" 

14. datveh = pd.read_excel(filename2) 

15.   

16. #Data of Customers 

17. filename3 = "customers1.xlsx" 

18. datcust = pd.read_excel(filename3) 

19.   

20. #Customers that are selected (dragged) 

21. filename4 = "draged.xlsx" 

22. sel_cust = pd.read_excel(filename4) 

23. nroute = 22 

24.   

25. def times(routes, n2, tws, tt, twe, st, vehdat): 

26.     customers = np.zeros(shape = (n2-1,1)) 

27.     waiting = np.zeros(shape = (n2-1,1)) 

28.     toa = np.zeros(shape = (len(routes), n2+1)) 

29.     tstart = np.zeros(shape = (len(routes), n2+1)) 

30.     tod = np.zeros(shape = (len(routes), n2+1)) 

31.     ttravel = np.zeros(shape = (len(routes), 3)) 

32.     k = 0 

33.     for i in range(0, len(routes)): 

34.         t = vehdat[i, 4] 

35.         toa[i, 0] = vehdat[i, 4] 

36.         tod[i, 0] = vehdat[i, 4] 

37.         smax = np.count_nonzero(routes[i,:]) 

38.         for j in range(0, smax+1): 

39.             t = t + tt[int(routes[i,j]), int(routes[i, j+1])] 

40.             if j ==0 and t <= tws[int(routes[i, j+1])]: 

41.                 ttravel[i,0] = tws[int(routes[i, j+1])] - tt[int(routes[i, j]), int(routes[i, j+1])] 

42.                 tstart[i, j] = ttravel[i, 0] 

43.                 tod[i, 0] = tws[int(routes[i, j+1])] - tt[int(routes[i, j]), int(routes[i, j+1])] 

44.             elif j == 0 and t > tws[int(routes[i, j+1])]: 

45.                 ttravel[i,0] = vehdat[i, 4] 



Appendix E Supplement to Chapter 6 

215 

 

46.                 tstart[i, j] = ttravel[i, 0] 

47.                 tod[i, j] = 0 

48.             if t < tws[int(routes[i, j+1])]: 

49.                 tstart[i, j+1] = tws[int(routes[i, j+1])] 

50.                 waiting[k] = tws[int(routes[i, j+1])] - t 

51.                 customers[k] = int(routes[i, j+1]) 

52.                 k = k +1  

53.             else: 

54.                 tstart[i, j+1] = t 

55.                 waiting[k] = 0 

56.                 customers[k] = int(routes[i, j+1]) 

57.             toa[i,j+1] = t 

58.             t = tstart[i, j+1] + st[int(routes[i, j+1])] 

59.             tod[i, j+1] = t 

60.         ttravel[i,1] = toa[i,:].max() 

61.         ttravel[i,2] = toa[i,:].max() - ttravel[i,0] 

62.     return tstart, toa, tod, ttravel 

63.   

64. def din1(routes2, cust, vehdat, fcc1, nroute, n2, dm, tws, twe, tt, st, demand1, reverse1, demand2, re

verse2): 

65.     custreturn = np.copy(cust) 

66.     while cust.sum() != 0: 

67.         i = random.randint(0, len(cust)-1) 

68.         while cust[i] == 0: 

69.             i = random.randint(0, len(cust)-1) 

70.         customerchosen = int(cust[i]) 

71.         cust[i] = 0 

72.         initialcost = 99999999 

73.         www = False 

74.         k = nroute 

75.         if totq1(routes2[k, :], n2, demand1) + demand1[customerchosen] <= vehdat[k, 2] and totq2(route

s2[k, :], n2, demand2) + demand2[customerchosen] <= vehdat[k, 3] and totr1(routes2[k, :], n2, revers

e1) + reverse1[customerchosen] <= vehdat[k, 2] and totr2(routes2[k, :], n2, reverse2) + reverse2[custo

merchosen] <= vehdat[k, 3]: 

76.             sk = np.count_nonzero(routes2[k, :]) 

77.             routes2n = np.copy(routes2) 

78.             new = 1 

79.             while new in range(1, sk+2): 

80.                 routes2n = np.copy(routes2) 

81.                 for j in range(0, new): 

82.                     routes2n[k, j] = routes2[k, j] 

83.                 routes2n[k, new] = customerchosen 

84.                 for j in range(new, sk+1): 

85.                     routes2n[k, j+1] = routes2[k, j] 

86.                 if totc(routes2n[k,:], vehdat[k,:], n2, dm) - totc(routes2[k,:], vehdat[k,:], n2, dm) <= initialcost 

and fcc(routes2n, vehdat) <= fcc1 and  twcheck(routes2n[k,:], k, vehdat, tws, tt, twe, st) == True and p

osotites(routes2n[k, :], k, vehdat, reverse1, reverse2, demand1, demand2, n2) == True:                     

87.                     routesopt = np.copy(routes2n) 



Appendix E Supplement to Chapter 6 

216 

 

88.                     initialcost = totc(routes2n[k,:], vehdat[k,:], n2, dm) -  totc(routes2[k,:], vehdat[k,:], n2, dm) 

89.                     www = True 

90.                 new = new + 1 

91.         if www == True: 

92.             routes2 = np.copy(routesopt) 

93.             custreturn[i]=0 

94.     return routes2, custreturn 

95.   

96. def din2(routes2, cust, vehdat, fcc1, nroute, n2, dm, tws, twe, tt, st, demand1, reverse1, demand2, re

verse2): 

97.     custreturn = np.copy(cust) 

98.     while cust.sum() != 0: 

99.         i = random.randint(0, len(cust)-1) 

100.         while cust[i] == 0: 

101.             i = random.randint(0, len(cust)-1) 

102.         customerchosen = int(cust[i]) 

103.         cust[i] = 0 

104.         initialcost = 99999999 

105.         www = False 

106.         k = nroute 

107.         if totq1(routes2[k, :], n2, demand1) + demand1[customerchosen] <= vehdat[k, 2] and totq2(route

s2[k, :], n2, demand2) + demand2[customerchosen] <= vehdat[k, 3] and totr1(routes2[k, :], n2, revers

e1) + reverse1[customerchosen] <= vehdat[k, 2] and totr2(routes2[k, :], n2, reverse2) + reverse2[custo

merchosen] <= vehdat[k, 3]: 

108.             sk = np.count_nonzero(routes2[k, :]) 

109.             routes2n = np.copy(routes2) 

110.             new = 1 

111.             while new in range(1, sk+2): 

112.                 routes2n = np.copy(routes2) 

113.                 for j in range(0, new): 

114.                     routes2n[k, j] = routes2[k, j] 

115.                 routes2n[k, new] = customerchosen 

116.                 for j in range(new, sk+1): 

117.                     routes2n[k, j+1] = routes2[k, j] 

118.                 if totc(routes2n[k,:], vehdat[k,:], n2, dm) -  totc(routes2[k,:], vehdat[k,:], n2, dm) <= initialcost

 and twcheck(routes2n[k,:], k, vehdat, tws, tt, twe, st) == True and posotites(routes2n[k, :], k, vehdat, r

everse1, reverse2, demand1, demand2, n2) == True: 

119.                     routesopt = np.copy(routes2n) 

120.                     initialcost = totc(routes2n[k,:], vehdat[k,:], n2, dm) -  totc(routes2[k,:], vehdat[k,:], n2, dm) 

121.                     www = True 

122.                 new = new + 1 

123.         if www == True: 

124.             routes2 = np.copy(routesopt) 

125.             custreturn[i] = 0 

126.     return routes2, custreturn 

127.   

128. def din3(routes2, cust, vehdat, fcc1, nroute, n2, dm, tws, twe, tt, st, demand1, reverse1, demand2, re

verse2): 



Appendix E Supplement to Chapter 6 

217 

 

129.     custreturn = np.copy(cust) 

130.     while cust.sum() != 0: 

131.         i = random.randint(0, len(cust)-1) 

132.         while cust[i] == 0: 

133.             i = random.randint(0, len(cust)-1) 

134.         customerchosen = int(cust[i]) 

135.         cust[i] = 0 

136.         initialcost = 99999999 

137.         www = False 

138.         k = int(nroute) 

139.         if totq1(routes2[k, :], n2, demand1) + demand1[customerchosen] <= vehdat[k, 2] and totq2(route

s2[k, :], n2, demand2) + demand2[customerchosen] <= vehdat[k, 3] and totr1(routes2[k, :], n2, revers

e1) + reverse1[customerchosen] <= vehdat[k, 2] and totr2(routes2[k, :], n2, reverse2) + reverse2[custo

merchosen] <= vehdat[k, 3]: 

140.             sk = np.count_nonzero(routes2[k, :]) 

141.             routes2n = np.copy(routes2) 

142.             new = 1 

143.             while new in range(1, sk+2): 

144.                 routes2n = np.copy(routes2) 

145.                 for j in range(0, new): 

146.                     routes2n[k, j] = routes2[k, j] 

147.                 routes2n[k, new] = customerchosen 

148.                 for j in range(new, sk+1): 

149.                     routes2n[k, j+1] = routes2[k, j] 

150.                 if totdistance(routes2n, dm, n2) <= initialcost and twcheck(routes2n[k,:], k, vehdat, tws, tt, t

we, st) == True and posotites(routes2n[k, :], k, vehdat, reverse1, reverse2, demand1, demand2, n2) ==

 True : 

151.                     routesopt = np.copy(routes2n) 

152.                     initialcost = totdistance(routes2n, dm, n2) 

153.                     www = True 

154.                 new = new + 1 

155.         if www == True: 

156.             routes2 = np.copy(routesopt) 

157.             custreturn[i] = 0 

158.     return routes2, custreturn 

159.   

160. #Since we have selected the customers, we need to transfer them in a specific route, and therefore 

we check the feasibility 

161. #Input 1: The initial plan of routes 

162. #Input 2: the initial data of vehicles 

163. #Input 3: Customers' Data 

164. #Input 4: Array- Matrix of Distances 

165. #Input 5: Array- Matrix of Travel Times between Customers 

166. #Input 6: The id number of the route in which we want to tranfer the customers 

167. #Input 7: The selected customers 

168.   

169. def dragndrop(routesall, datveh, datcust, dm, tt, nroute, sel_cust): 

170.     #----------------- Vehices' data --------------------- 



Appendix E Supplement to Chapter 6 

218 

 

171.     vehdattt = datveh.iloc[:,:].values 

172.     #----------------- Routes --------------------- 

173.     routes = routesall.iloc[:,:].values 

174.     #-------------------------------------------------- 

175.     cust = sel_cust.iloc[:, :].values 

176.     nroute = int(nroute) 

177.     #-------------- Customers dataset ------------------  

178.     n2 = len(datcust) 

179.     id = datcust.iloc[:,0].values 

180.     cx = datcust.iloc[:,1].values 

181.     cy = datcust.iloc[:,2].values 

182.     demand1  = datcust.iloc[:,3].values 

183.     demand2  = datcust.iloc[:,4].values 

184.     reverse1 = datcust.iloc[:,5].values 

185.     reverse2 = datcust.iloc[:,6].values 

186.     tws = datcust.iloc[:, 7].values 

187.     twe = datcust.iloc[:, 8].values 

188.     st = datcust.iloc[:, 9].values 

189.     #------------------------------------------------------    

190.     customers1 = np.zeros(shape = (n2-1, 1)) 

191.     for i in range(1, n2): 

192.         customers1[i-1] = id[i]     

193.     #------------------------------------------------------ 

194.     #print(totalcost(routes, vehdattt, n2, dm)) 

195.     sssss=0 

196.     routes2 = np.copy(routes) 

197.     for sssss in range(120): 

198.         p1 = random.random() 

199.         fcc1 = fcc(routes, vehdattt) 

200.         if p1 < 0.33: 

201.             routes2, cust = din1(routes2, cust, vehdattt, fcc1, nroute, n2, dm, tws, twe, tt, st, demand1, rev

erse1, demand2, reverse2) 

202.         elif p1 < 0.67: 

203.             routes2, cust = din2(routes2, cust, vehdattt, fcc1, nroute, n2, dm, tws, twe, tt, st, demand1, rev

erse1, demand2, reverse2) 

204.         else: 

205.             routes2, cust = din3(routes2, cust, vehdattt, fcc1, nroute, n2, dm, tws, twe, tt, st, demand1, rev

erse1, demand2, reverse2) 

206.     routesfinal = np.zeros(shape=(len(vehdattt), len(datcust) + 1)) 

207.   

208. #Since we have completed the check, we export the final plan 

209. #If a customer has the ability to be tranfered in the selected route, it is removed from the existing one 

210.     for i in range(len(routes)): 

211.         if i != nroute and routes[i,:].sum() != 0: 

212.             k1 = 1 

213.             for j in range(1, np.count_nonzero(routes2[i,:])+1): 

214.                 if routes[i, j] not in routes2[nroute, :]: 

215.                     routesfinal[i,k1] = routes[i, j] 



Appendix E Supplement to Chapter 6 

219 

 

216.                     k1 = k1 + 1 

217.         else: 

218.             routesfinal[nroute] = np.copy(routes2[nroute, :]) 

219.         tstart, toa, tod, ttravel=times(routesfinal, n2, tws, tt, twe, st, vehdattt) 

220.         posotites1, posostites2 =  analytikaposotites(routesfinal, n2, demand1, demand2, reverse1, rever

se2) 

221.     #Return the final plan of routes 

222.     return vehdattt,routesfinal, posotites1, posostites2, toa, tod, ttravel 

223.   

224. vehdattt,routenew, posotites1, posostites2, toa, tod, ttravel = dragndrop(routes, datveh, datcust, dm,

 tt, nroute, sel_cust) 

225. stop = timeit.default_time 

 

 

 

 

 



 

 

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 

 

 

 

Μέθοδοι Βελτιστοποίησης για Ένα Σύνολο Προβλημάτων Δρομολόγησης 

Οχημάτων και Προγραμματισμού Παραδόσεων 

 

Διδακτορική Διατριβή – Εκτενής Περίληψη 

 

 

 

Συντάκτης Επιβλέπων 

Γρηγόριος Δ. Κωνσταντακόπουλος Δρ. Ηλίας Π. Τατσιόπουλος 

Καθηγητής ΕΜΠ 

 

 

 

 

Εργαστήριο Οργάνωσης Παραγωγής 

Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνας  

Σχολή Μηχανολόγων Μηχανικών 

 

 

Ιούλιος 2021 



i 

 

Περιεχόμενα 
 

Περίληψη ............................................................................................................................. 1 

1. Εισαγωγή ...................................................................................................................... 4 

1.1 Ερευνητικά Κίνητρα ............................................................................................ 4 

1.2 Στόχοι και Συνεισφορές της Διατριβής................................................................. 6 

1.3 Σύνοψη της Διδακτορικής Διατριβής ................................................................... 7 

2. Βιβλιογραφική Επισκόπηση ........................................................................................ 9 

2.1 Εισαγωγή............................................................................................................. 9 

2.2 Το Πρόβλημα της Δρομολόγησης Οχημάτων και οι Παραλλαγές του .................. 9 

2.3 Μέθοδοι Επίλυσης ............................................................................................. 11 

2.4 Μεθοδολογία Έρευνας....................................................................................... 13 

2.5 Ανάλυση ερευνητικών Αποτελεσμάτων ............................................................. 14 

2.6 Πρακτικές Εφαρμογές........................................................................................ 16 

2.7 Συμπεράσματα................................................................................................... 17 

3. Το Πρόβλημα της Δρομολόγησης Οχημάτων με Χρονικά Παράθυρα ...................... 18 

3.1 Εισαγωγή........................................................................................................... 18 

3.2 Περιγραφή Προβλήματος .................................................................................. 19 

3.3 Μέθοδος Επίλυσης – Πολυαντικειμενική Αναζήτηση Ευρείας Γειτονιάς ........... 19 

3.4 Υπολογιστική Μελέτη ....................................................................................... 21 

3.5 Συμπεράσματα................................................................................................... 22 

4. Πρόβλημα της Δρομολόγησης Οχημάτων με Ταυτόχρονες Περισυλλογές και 

Παραδόσεις και με Χρονικά Παράθυρα ........................................................................... 23 

4.1 Εισαγωγή........................................................................................................... 23 

4.2 Περιγραφή Προβλήματος .................................................................................. 25 

4.3 Μέθοδος Επίλυσης – Εξελικτικός Αλγόριθμος................................................... 26 

4.4 Υπολογιστικά Αποτελέσματα  ............................................................................ 28 

4.5 Συμβατικά έναντι Ηλεκτρικών Οχημάτων.......................................................... 29 

4.6 Συμπεράσματα................................................................................................... 31 

5. Πρόβλημα της Δρομολόγησης Οχημάτων με Ετερογενή Στόλο Οχημάτων, 

Ταυτόχρονες Περισυλλογές και Παραδόσεις και με Χρονικά Παράθυρα ....................... 32 

5.1 Εισαγωγή........................................................................................................... 32 



ii 

 

5.2 Περιγραφή Προβλήματος .................................................................................. 33 

5.3 Μέθοδος Επίλυσης – Προσαρμοστική Αναζήτηση Ευρείας Γειτονιάς ................ 33 

5.4 Υπολογιστική Μελέτη – Μελέτες Περίπτωσης .................................................. 35 

5.5 Η Περίπτωση των Συνεργατικής Δρομολόγησης ................................................ 38 

5.6 Συμπεράσματα................................................................................................... 40 

6. Πρακτική Εφαρμογή των Αναπτυγμένων Αλγορίθμων σε Cloud Σύστημα 

Δρομολόγησης ................................................................................................................... 41 

6.1 Εισαγωγή........................................................................................................... 41 

6.2 Στατικά Δεδομένα - Βασικά Αρχεία ................................................................... 41 

6.3 Τεχνολογίες και Λειτουργικότητα Συστήματος .................................................. 42 

6.4 Στατική-Αρχική Δρομολόγηση .......................................................................... 42 

6.5 Διαδικασία Επαναδρομολόγησης ....................................................................... 43 

6.6 Αξιολόγηση και Οφέλη ...................................................................................... 44 

6.7 Συμπεράσματα................................................................................................... 45 

7. Ερευνητικά Αποτελέσματα και Μελλοντικά Βήματα ............................................... 46 

7.1 Ερευνητική Συνεισφορά .................................................................................... 46 

7.2 Μελλοντικά Βήματα Έρευνας............................................................................ 48 

 

 

 

 

 



1 

 

Περίληψη 

Στο πλαίσιο της παρούσας διδακτορικής διατριβής μελετάται και επιλύεται μία σειρά 

προβλημάτων δρομολόγησης οχημάτων και προγραμματισμού παραδόσεων, ενώ ταυτόχρονα 

αναπτύσσονται αποδοτικοί εξελικτικοί και τοπικής αναζήτησης μεταευρετικοί αλγόριθμοι οι 

οποίοι έχουν ως στόχο την βελτιστοποίηση της διανομής, προτείνοντας το βέλτιστο πλάνο 

δρομολογίων και παραδόσεων. Το γεγονός ότι η δρομολόγηση οχημάτων επηρεάζεται από 

πολλές μεταβλητές και περιορισμούς, οι οποίες έχουν προέλθει από  τη φύση των εταιρειών 

διανομής, το εξωτερικό περιβάλλον αυτών, και από τις ανάγκες και τις απαιτήσεις των 

πελατών, έχει οδηγήσει τόσο στο εμπορικό/επιχειρηματικό όσο και ερευνητικό ενδιαφέρον. 

Προκειμένου να συνδεθούν οι δύο αυτοί τομείς, η παρούσα διατριβή μελετά και προτείνει την 

ενσωμάτωση των προτεινόμενων αλγόριθμων σε ένα cloud σύστημα δρομολόγησης.  

Επιπλέον, οι διάφορες μεταβλητές και περιορισμοί του Προβλήματος της Δρομολόγησης 

Οχημάτων (ΠΔΟ) αντιστοιχούν σε διαφορετικές παραλλαγές του προβλήματος. Στην παρούσα 

διδακτορική διατριβή, οι παραλλαγές του προβλήματος που λαμβάνονται υπόψιν έχουν 

προκύψει μέσα από την αναλυτική ανασκόπηση της βιβλιογραφίας, καθώς και μέσω της 

συνεργασίας με εταιρείες διανομής και ανάπτυξης λογισμικού. Πιο συγκεκριμένα, 

καθορίζονται οι παραλλαγές που απασχολούν πιο συχνά τους ερευνητές και τους 

επαγγελματίες που δραστηριοποιούνται στο χώρο, όσο και οι παραλλαγές που έχουν τη 

δυναμική να προσφέρουν στο άμεσο μέλλον. Οι παραλλαγές του προβλήματος της 

δρομολόγησης που τελικά επιλέχθηκαν προς μελέτη είναι:  

1. το ΠΔΟ με Χρονικά Παράθυρα (ΠΔΟΧΠ),  

2. το ΠΔΟ με Ταυτόχρονες Περισυλλογές και Παραδόσεις (ΠΔΟΤΠΠ),  

3. το ΠΔΟ με Ετερογενή Στόλο Οχημάτων (ΠΔΟΕΣΟ), και  

4. το Συνεργατικό ΠΔΟ (ΣΠΔΟ). 

Τα εξεταζόμενα προβλήματα δρομολόγησης, τα οποία ανήκουν στην κατηγορία των NP-hard 

προβλημάτων, παρουσιάζουν εξαιρετική πολυπλοκότητα, ειδικότερα όταν αντιμετωπίζονται 

ταυτόχρονα. Στην παρούσα διατριβή αντιμετωπίζονται όλες οι παραπάνω παραλλαγές είτε 

μεμονωμένα είτε συνδυαστικά προκειμένου να καλύπτουν τις ανάγκες και απαιτήσεις των 

εταιρειών διανομής που δραστηριοποιούνται στις εμπορευματικές μεταφορές. Συγκεκριμένα, 

το ΠΔΟΧΠΠ λαμβάνει υπόψιν το χρονικό εύρος που έχουν ορίσει οι πελάτες προκειμένου να 

πραγματοποιηθεί η παράδοση ή παραλαβή των εμπορευμάτων. Στο ΠΔΟΤΤΠ, όπως 

υποδεικνύει και η ονομασία, επικεντρώνεται σε παραδόσεις και επιστροφές που εκτελούνται 

ταυτόχρονα προς και από τους πελάτες. Όσον αφορά το ΠΔΟΕΣΟ, ο στόλος οχημάτων που 

διατηρούν και χρησιμοποιούν οι εταιρείες θεωρείται ετερογενής, που σημαίνει ότι τα οχήματα 

διαφέρουν όσον αφορά τη χωρητικότητά τους, και τα σταθερά και μεταβλητά κόστη διανομής. 

Τέλος, το ΣΠΔΟ επικεντρώνεται στις περιπτώσεις όπου εταιρείες διανομής που βρίσκονται 



2 

 

και λειτουργούν στις ίδιες περιοχές, συνεργάζονται στο κομμάτι της δρομολόγησης και 

διανομής. 

Το γεγονός ότι με την ταυτόχρονη αντιμετώπιση πολλών παραλλαγών του προβλήματος 

δυσκολεύει η επίλυση του, καθώς και η ανάγκη των εταιρειών για τη δημιουργία αποδοτικών 

διαδρομών, έχουν οδηγήσει στην ανάγκη για ανάπτυξη αλγορίθμων βελτιστοποίησης. Αρχικά 

προτάθηκαν οι ακριβείς αλγόριθμοι από τους ερευνητές. Το πλεονέκτημά τους, το οποίο είναι 

η βέλτιστη αντιμετώπιση και επίλυση του ΠΔΟ συνοδεύεται από έναν μεγάλο περιορισμό ο 

οποίος είναι ο περιορισμένος αριθμός πελατών που μπορούν να διαχειριστούν καθώς και ο 

αυξημένος χρόνος επεξεργασίας που απαιτείται για την επίλυση. Αυτός ο περιορισμός 

επηρεάζει σημαντικά, οδηγώντας στην μη εφαρμογή αυτών σε συστήματα δρομολόγησης. 

Επίσης, είχε ως αποτέλεσμα το ερευνητικό ενδιαφέρον να στραφεί στους ευρετικούς 

αλγορίθμους (heuristic algorithms) οι οποίοι προσφέρουν ποιοτικές λύσεις σε ελάχιστο 

υπολογιστικό χρόνο. Στη συνέχεια οι ερευνητές προχώρησαν στην ανάπτυξη των 

μεταευρετικών αλγορίθμων (metaheuristic algorithms) οι οποίοι κατάφεραν να 

εξισορροπήσουν την ποιότητα της λύσης και τον υπολογιστικό χρόνο που απαιτείται.  

Στη συγκεκριμένη έρευνα, μελετώνται και προτείνονται διάφοροι μεταευρετικοί αλγόριθμοι 

προκειμένου να επιλύσουν τα πολλαπλά προβλήματα δρομολόγησης που αντιμετωπίζουν οι 

εταιρείες του κλάδου των διανομών. Πιο συγκεκριμένα μελετάται ένας Εξελικτικός 

Αλγόριθμος (ΕΑ), καθώς και δύο αλγόριθμοι Τοπικής Αναζήτησης (ΤΑ). Οι αλγόριθμοι αυτοί 

αντιμετωπίζουν είτε μεμονωμένα, είτε συνδυαστικά ορισμένες παραλλαγές του προβλήματος 

της δρομολόγησης οχημάτων. Πιο συγκεκριμένα, ο ΕΑ αντιμετωπίζει το πρόβλημα της 

δρομολόγησης οχημάτων με ταυτόχρονες παραδόσεις και επιστροφές και με χρονικά 

παράθυρα. Επιπλέον, ο αλγόριθμος εφαρμόζεται σε περιπτώσεις διανομής με ηλεκτρικά 

οχήματα τα οποία έχουν μειωμένη αυτονομία. Η καινοτομία στον συγκεκριμένο αλγόριθμο 

συνδέεται με τον τελεστή εναλλαγής, καθώς επίσης και με το γεγονός ότι το πρόβλημα 

αντιμετωπίζεται ως πολύ-αντικειμενικό. Στην πολύ-αντικειμενική βελτιστοποίηση υπάρχουν 

δύο ή παραπάνω αντικρουόμενοι αντικειμενικοί στόχοι οι οποίοι πρέπει να βελτιστοποιηθούν. 

Στο συγκεκριμένο πρόβλημα είναι η ελαχιστοποίηση (i) του αριθμού των οχημάτων που 

απαιτούνται για την εκτέλεση των παραγγελιών και (ii) της συνολικά διανυόμενης απόστασης.  

Όσον αφορά τους αλγόριθμους τοπικής αναζήτησης, ο πρώτος που αναπτύχθηκε και 

αντιμετωπίζει το πρόβλημα της δρομολόγησης οχημάτων με χρονικά παράθυρα ως πολύ-

αντικειμενικό είναι αυτός της Αναζήτησης Ευρείας Γειτονιάς (ΑΕΓ). Ο δεύτερος αλγόριθμος 

τοπικής αναζήτησης που αναπτύχθηκε είναι αυτός της Προσαρμοστικής Αναζήτησης Ευρείας 

Γειτονιάς (ΠΡΑΕΓ), ο οποίος αντιμετωπίζει όλες τις προαναφερθείσες παραλλαγές του 

προβλήματος και πιο συγκεκριμένα το Πρόβλημα της Δρομολόγησης Οχημάτων με Ετερογενή 

Στόλο Οχημάτων, Ταυτόχρονες Περισυλλογές και Παραδόσεις και Χρονικά Παράθυρα. Ο 

αλγόριθμος ΠΡΑΕΓ, μετά από προσαρμογές, εφαρμόζεται στο Συνεργατικό ΠΔΟ προκειμένου 

να εκτιμηθούν τα οικονομικά και περιβαλλοντικά οφέλη από τη συνεργασία εταιρειών 

διανομής. Στο πλαίσιο της μελέτης παραλλαγών του ΠΔΟ και της αντιμετώπισής τους μέσω 



3 

 

αλγορίθμων βελτιστοποίησης διατυπώθηκε το μαθηματικό τους μοντέλο, καθώς αποτελεί 

βασικό μέρος για την αποτελεσματική αντιμετώπιση του προβλήματος.  

Τέλος, οι προτεινόμενοι αλγόριθμοι έχουν αναπτυχθεί στη γλώσσα προγραμματισμού Python  

και έχουν δοκιμαστεί σε πολλαπλά δεδομένα της βιβλιογραφίας, προκειμένου να εξασφαλιστεί 

η αποδοτικότητά τους και η ικανότητας του να ενσωματωθούν σε ένα cloud σύστημα 

δρομολόγησης. Από τη στιγμή που και οι τρεις προτεινόμενοι αλγόριθμοι προσφέρουν 

αποτελέσματα υψηλής ποιότητας αποθηκεύονται σε έναν cloud διακομιστή (server) 

προκειμένου να είναι προσπελάσιμοι μέσω των κατάλληλων αιτημάτων. Παρ’ όλα αυτά, στη 

συγκεκριμένη μορφή του συστήματος μόνο ο αλγόριθμος ΠΡΑΕΓ είναι προσπελάσιμος καθώς 

καλύπτει τις περισσότερες περιπτώσεις στη διανομή φορτίων. Το σύστημα το οποίο είναι ικανό 

να επιλύσει ένα μεγάλο εύρος παραλλαγών του προβλήματος, πρέπει να τροφοδοτηθεί με τα 

κατάλληλα δεδομένα προκειμένου να προσφέρει αποδοτικά πλάνα εξυπηρέτηση πελατών. 

Προκειμένου να εξασφαλιστεί αυτό, το σύστημα εκμεταλλεύεται τεχνολογίες που 

εξασφαλίζουν την ποιότητα και την ακρίβεια των δεδομένων. Όσον αφορά τη 

γεωκωδικοποίηση και τα δεδομένα χρόνων μετακίνησης και αποστάσεων μεταξύ των σημείων 

παραγγελίας, χρησιμοποιούνται χάρτες του διαδικτύου. Τα οφέλη από τη χρήση ενός τέτοιου 

συστήματος το οποίο παρέχεται μέσω διαδικτύου και δεν απαιτεί την εγκατάστασή του στους 

υπολογιστές της κάθε εταιρείας ξεχωριστά είναι πολλά και δεν περιορίζονται μόνο στο 

οικονομικό σκέλος. Πέρα από τη εξάλειψη του κόστους για την εγκατάσταση και συντήρηση 

του συστήματος, οι χρήστες έχουν τη δυνατότητα να εξάγουν αποδοτικά και με μεγάλη 

ακρίβεια πλάνα δρομολογίων τα οποία οπτικοποιούνται σε χάρτες του δ ιαδικτύου, να κάνουν 

αλλαγές στα προτεινόμενα δρομολόγια, καθώς επίσης και να εκτελούν διαδικασίες 

αναδρομολόγησης μετά την έναρξη της διανομής. Επιπλέον, οι τεχνολογίες και τα 

χαρτογραφικά δεδομένα δίνουν τη δυνατότητα στους χρήστες να αντιμετωπίσουν και τη 

δυναμική φύση του προβλήματος, καθώς ορισμένα δεδομένα ενδέχεται να αλλάξουν κατά τη 

διάρκεια του δρομολογίου και να επηρεάσουν την ομαλή εκτέλεσή του. Όλες οι παραπάνω 

τεχνολογίες και οι λειτουργίες του συστήματος μπορούν να ενισχύσουν σημαντικά τις 

προσπάθειες των εταιρειών διανομής και των υπευθύνων δρομολόγησης, τόσο πριν όσο και 

μετά την έναρξη της διανομής.  

Συμπερασματικά,  η έρευνα  επικεντρώνεται σε διάφορους πυλώνες και ξεκινά με τη μελέτη 

των παραλλαγών του  ΠΔΟ οι οποίες λαμβάνονται υπόψιν είτε μεμονωμένα είτε συνδυαστικά, 

και  για τα οποία διαμορφώνεται το μαθηματικό μοντέλο. Επιπρόσθετα, η παρούσα 

διδακτορική διατριβή  προτείνει και αναπτύσσει  αλγορίθμους βελτιστοποίησης  οι οποίοι 

αντιμετωπίζουν τις συγκεκριμένες  περιπτώσεις  διανομής και  δοκιμάζονται  τόσο σε δεδομένα 

της βιβλιογραφίας όσο και σε πραγματικά, προκειμένου να διαπιστωθεί η ικανότητά τους να 

ενσωματωθούν σε πληροφορικά συστήματα δρομολόγησης. Ο τελευταίος πυλώνας έρευνας  

αφορά τη δυνατότητα των αλγορίθμων να  ενσωματωθούν  σε πληροφοριακά συστήματα και 

να συνεργαστούν με τεχνολογίες που είναι απαραίτητες για την ανάπτυξη πληροφοριακών 

συστημάτων δρομολόγησης.



4 

 

1. Εισαγωγή 

Το κεφάλαιο της εισαγωγής παρέχει τα κίνητρα, τους στόχους, τη συμβολή και τη σύνοψη της 

διατριβής. Αρχικά εισάγεται το ερευνητικό θέμα, το οποίο είναι το Πρόβλημα Δρομολόγησης 

Οχημάτων (ΠΔΟ), ενώ παρουσιάζονται τα κίνητρα που οδήγησαν στην αναλυτική μελέτη του 

ΠΔΟ. Κατά συνέπεια, δίνεται και η συμβολή της παρούσας εργασίας και ακολουθεί η σύνοψη 

της διατριβής. 

1.1 Ερευνητικά Κίνητρα 

Τα δίκτυα της εφοδιαστικής αλυσίδας περιλαμβάνουν πολλαπλές λειτουργίες όπως η 

προμήθεια πρώτων υλών σε βιομηχανίες, η αποθήκευση εμπορευμάτων και η διανομή αυτών 

σε καταστήματα λιανικής πώλησης και καταναλωτές. Οι διαδικασίες αυτές παίζουν 

ουσιαστικό ρόλο στη ζωή μας, καθώς όντας αποτελεσματικές προσφέρουν εμπορεύματα και 

υπηρεσίες υψηλής ποιότητας με ελάχιστο κόστος. Η παρούσα διατριβή ενισχύει αυτή την 

προσπάθεια εστιάζοντας σε ένα από τα τελευταία μέρη της εφοδιαστικής αλυσίδας, τη 

διανομή, όπου πολλαπλές μεταβλητές και περιορισμοί επηρεάζουν τη διαδικασία.  

Η σημασία της συγκεκριμένης έρευνας ενισχύεται και από αριθμητικά δεδομένα καθώς οι 

οδικές εμπορευματικές μεταφορές, που περιλαμβάνουν εθνικές, διεθνείς, διασταυρούμενες 

εμπορικές και ενδομεταφορές, αυξήθηκαν κατά 0,2% από το 2017 έως το 2018 στις χώρες της 

Ευρωπαϊκής Ένωσης (ΕΕ). Πιο συγκεκριμένα, οι συνολικές εμπορευματικές μεταφορές στην 

ΕΕ έφθασαν το 2018 τα 1.925 δισεκατομμύρια τονοχιλιόμετρα ενώ για την Ελλάδα 28,4 δισ. 

Επιπλέον, ο τομέας των μεταφορών και των logistics στην Ελλάδα αναπτύσσεται με ταχείς 

ρυθμούς και συνεισφέρει περίπου το 9% του ακαθάριστου εγχώριου προϊόντος (ΑΕΠ) (19 

δισεκατομμύρια). Παρά τη σημασία του τομέα στην εθνική οικονομία, μια άλλη έρευνα (EEL 

2018) που περιελάμβανε 181 εταιρείες που δραστηριοποιούνται σε αυτόν τον τομέα έδειξε ότι 

μόνο το 29% των εταιρειών χρησιμοποιεί συστήματα δρομολόγησης και μόνο το 12% 

τηλεματικά συστήματα. Το γεγονός αυτό δεν περιορίζεται μόνο στην Ελλάδα, καθώς άλλες 

μελέτες όπως αυτή των Leyerer et al. (2019) υποδεικνύουν ότι οι περισσότερες εταιρείες δεν 

χρησιμοποιούν ακόμη λογισμικό δρομολόγησης, παρά τις σημαντικές δυνατότητες 

εξοικονόμησης όσον αφορά τις αποστάσεις οδήγησης, το κόστος και τις εκπομπές ρύπων. 

Αυτά τα δεδομένα μπορούν να ερμηνευθούν είτε ως ότι οι εταιρείες έχουν δυσπιστία όσον 

αφορά τη χρήση συστημάτων είτε ότι τα συστήματα και τα πακέτα λογισμικού αποτελούν 

ακριβές λύσεις για μικρές και μεσαίες επιχειρήσεις και για αυτόν τον λόγο δεν είναι πρώτη 

επιλογή. 

Επιπλέον, την τελευταία δεκαετία, το ηλεκτρονικό εμπόριο, οι διαδικτυακές αγορές και η 

αστικοποίηση έχουν αυξηθεί. Το γεγονός αυτό έχει οδηγήσει σε διευρυμένο αριθμό τελικών 

πελατών και καταστημάτων λιανικής, ειδικά στα κέντρα των πόλεων. Αυτό το γεγονός 

επηρεάζει σημαντικά τη διαδικασία διανομής καθώς οι εταιρείες διανομής πρέπει να 

εξυπηρετούν ακόμη και πάνω από 2.000 παραγγελίες καθημερινά. Επιπλέον, οι εταιρείες 



 

5 

 

διανομής πρέπει να χειρίζονται και να ικανοποιούν τις απαιτήσεις των πελατών τους, όπως τα 

χρονικά παράθυρά τους και τις ανάγκες τους για ταυτόχρονη παραλαβή και επιστροφή 

αγαθών, καθώς και τα χαρακτηριστικά της εταιρείας όπως τα διαφορετικά οχήματα που 

εκτελούν διανομές. Ως αποτέλεσμα, οι προηγμένες αλγοριθμικές προσεγγίσεις που 

ενσωματώνονται σε συστήματα δρομολόγησης φαίνεται να είναι η μόνη λύση για τις εταιρείες. 

Όλες αυτές οι ανάγκες των εταιρειών διανομής και των λοιπών εμπλεκόμενων οδήγησαν στη 

μελέτη του ΠΔΟ και των παραλλαγών του, στην ανάπτυξη αλγορίθμων που μπορούν να 

χειριστούν μεγάλο όγκο δεδομένων και πολλαπλές μεταβλητές και περιορισμούς. Τα 

παραπάνω, μαζί με την ενσωμάτωση των αλγορίθμων σε ένα cloud σύστημα δρομολόγησης 

αποτελούν βασικά πεδία μελέτης της παρούσας διατριβής. 

Ωστόσο, πέρα από τις ανάγκες των εταιρειών διανομής και τα οφέλη που μπορούν να 

προκύψουν από αυτή την έρευνα, το πρωταρχικό κίνητρο προκύπτει από το κενό που υπάρχει 

στην ερευνητική κοινότητα. Συγκεκριμένα, ελάχιστες αλγοριθμικές προσεγγίσεις που 

προτείνονται και δημοσιεύονται από ερευνητές ενσωματώνονται σε πακέτα λογισμικού 

δρομολόγησης, πόσο μάλλον σε cloud συστήματα δρομολόγησης, όπως προκύπτει από την 

βιβλιογραφική ανασκόπηση στο Κεφάλαιο 2. Αυτή είναι μια σημαντική διαπίστωση 

δεδομένου ότι οι ερευνητές μελετούν το ΠΔΟ για περισσότερα από 60 χρόνια όταν και 

προτάθηκε από τους Dantzig και Ramser (1959). Με τα χρόνια, διαφορετικές παραλλαγές του 

ΠΔΟ έχουν δημιουργηθεί, οι οποίες συσχετίζονται με συγκεκριμένες παραμέτρους ή 

περιορισμούς που εμφανίζονται σε πραγματικές περιπτώσεις διανομής .  

Μία από τις πιο γνωστές παραλλαγές του ΠΔΟ είναι το Πρόβλημα της Δρομολόγησης 

Οχημάτων με Χρονικά Παράθυρα (ΠΔΟΧΠ), όπου γεωγραφικά διάσπαρτοι πελάτες πρέπει να 

εξυπηρετούνται σε ένα προκαθορισμένο χρονικό διάστημα (χρονικό παράθυρο), μόνο μία 

φορά και από ένα μόνο όχημα. Η συνολική ποσότητα εμπορευμάτων που διανέμονται σε κάθε 

διαδρομή δεν μπορεί να υπερβαίνει τη χωρητικότητα του οχήματος, ενώ κάθε όχημα ξεκινά 

και τελειώνει τη διαδρομή του σε μια συγκεκριμένη αποθήκη. Ένα όχημα μπορεί να φτάσει σε 

έναν πελάτη πριν από την έναρξη του χρονικού παραθύρου και να περιμένει μέχρι τη 

συμφωνημένη ώρα εξυπηρέτησης, αλλά δεν επιτρέπεται η παράδοση εμπορευμάτων εάν 

φτάνει μετά τη λήξη του χρονικού παραθύρου. Μια άλλη παραλλαγή του ΠΔΟ είναι το 

Πρόβλημα της Δρομολόγησης Οχημάτων με Ταυτόχρονες Περισυλλογές και Παραδόσεις 

(ΠΔΟΤΠΠ), όπου οι πελάτες μπορούν να παραλαμβάνουν, όσο και να επιστρέφουν αγαθά. 

Αυτό δημιουργεί έναν επιπλέον περιορισμό καθώς σε οποιοδήποτε στάδιο της διανομής, είτε 

παραδίδονται είτε συλλέγονται τα αγαθά, η χωρητικότητα του οχήματος δεν μπορεί να 

παραβιαστεί. Στο Πρόβλημα Δρομολόγησης Οχημάτων με Ετερογενή Στόλο Οχημάτων 

(ΠΔΟΕΣΟ) τα οχήματα θεωρούνται διαφορετικά ως προς τη χωρητικότητα, το μεταβλητό και 

το σταθερό κόστος όσο και τις εκπομπές. Αυτό είναι αρκετά συνηθισμένο στο δίκτυο διανομής 

καθώς λίγες εταιρείες διατηρούν και χρησιμοποιούν αποκλειστικά όμοια οχήματα. Τέλος, στο 

Συνεργατικό Πρόβλημα Δρομολόγησης Οχημάτων (ΣΠΔΟ), οι εταιρείες διανομής που 

εδρεύουν και διανέμουν αγαθά στις ίδιες περιοχές συνεργάζονται στη διαδικασία της διανομής 



 

6 

 

και κατά συνέπεια στη δρομολόγηση. Ένα μείγμα αυτών των παραλλαγών μπορεί να 

αντιπροσωπεύει ένα πρακτικό και ρεαλιστικό πρόβλημα δρομολόγησης που αντιμετωπίζουν 

καθημερινά οι περισσότερες εταιρείες διανομής. 

Επιπλέον, καθώς οι παραλλαγές ΠΔΟ αυξάνονταν με τα χρόνια, ενώ ταυτόχρονα εμφανίζονται 

και νέες, έχει προκύψει η ανάγκη για πιο αποτελεσματικούς αλγόριθμους που μπορούν να 

χειριστούν πολλές παραλλαγές του ΠΔΟ ταυτόχρονα. Αρχικά, οι ακριβείς αλγόριθμοι 

προτείνονταν συχνότερα από τους ερευνητές. Ωστόσο, το γεγονός ότι αυτές οι μέθοδοι 

μπορούν να χειριστούν μόνο έναν περιορισμένο αριθμό πελατών (περίπου 100) λόγω της 

υπολογιστικής πολυπλοκότητας του ΠΔΟ ήταν καθοριστικός παράγοντας για τη μη συχνή 

μελέτη και εφαρμογή τους. Κατά συνέπεια, οι ερευνητές εστίασαν στην ανάπτυξη 

προσεγγιστικές μεθόδους που προσφέρουν την καλύτερη αναλογία μεταξύ ποιότητας λύσεων 

και υπολογιστικού χρόνου. Οι ευρετικοί αλγόριθμοι αποτελούν τέτοιες μεθόδους που 

παράγουν λύσεις καλής ποιότητας σε ελάχιστο υπολογιστικό χρόνο. Οι πρώτοι ευρετικοί που 

αναπτύχθηκαν επικεντρώθηκαν στην κατασκευή μιας εφικτής λύσης, ενώ σε μεταγενέστερο 

χρόνο επικεντρώθηκαν στη βελτίωση της λύσης με τη μεταφορά ενός πελάτη σε άλλη 

διαδρομή. Μετά τους ευρετικούς, η προσοχή δόθηκε στους μεταευρετικούς που θεωρούνται 

πιο εξεζητημένοι ευρετικοί βασισμένοι σε έννοιες μαθηματικών και βιολογίας. Η ικανότητά 

τους να παρέχουν βελτιωμένες λύσεις σε σύγκριση με τους ευρετικούς αλγορίθμους σε 

παρόμοιο υπολογιστικό χρόνο τους έκανε πιο δημοφιλείς. 

Συμπερασματικά, ενώ το κύριο χάσμα μεταξύ της έρευνας και της βιομηχανίας, όσον αφορά 

τη διανομή, παρατηρείται στους περιορισμένους αλγόριθμους που αναπτύσσονται και 

ενσωματώνονται σε πραγματικά και λειτουργικά συστήματα, η παρούσα διατριβή στοχεύει 

στη μελέτη του ΠΔΟ από πολλαπλές οπτικές γωνίες. Συγκεκριμένα, οι στόχοι της έρευνας 

είναι η μελέτη του ΠΔΟΧΠ, του ΠΔΟΤΠΠ, του ΠΔΟΕΣΟ και του ΣΠΔΟ, είτε μεμονωμένα 

είτε συνδυαστικά, η διαμόρφωση των σύνθετων μαθηματικών μοντέλων, η πρόταση και η 

ανάπτυξη αποτελεσματικών μεταευρετικών αλγορίθμων, και τέλος η μελέτη του τρόπου με 

τον οποίο οι προτεινόμενοι αλγόριθμοι μπορούν να ενσωματωθούν σε cloud σύστημα 

δρομολόγησης το οποίο εκμεταλλεύεται τις τελευταίες τεχνολογικές εξελίξεις. Επιπλέον, η 

μελέτη ενός cloud συστήματος δρομολόγησης το οποίο ενσωματώνει νέες αλγοριθμικές 

προσεγγίσεις και εκμεταλλεύεται προηγμένες τεχνολογίες που προσφέρουν τα απαραίτητα 

δεδομένα γρήγορα και με υψηλή ακρίβεια αποτελούν έναν ακόμα βασικό πυλώνα της έρευνας. 

Τέλος, η παρούσα διατριβή καλύπτει ένα ευρύ φάσμα λειτουργιών για την ανάπτυξη ενός 

cloud συστήματος δρομολόγησης, με στόχο να φέρει πιο κοντά την ερευνητική κοινότητα και 

τη βιομηχανία. 

1.2 Στόχοι και Συνεισφορές της Διατριβής 

Ο κύριος στόχος της παρούσας διατριβής είναι να καλύψει το ερευνητικό κενό, το οποίο είναι 

οι περιορισμένοι αλγόριθμοι που αναπτύσσονται από ερευνητές και αντιμετωπίζουν 

ταυτόχρονα πολλαπλές μεταβλητές και περιορισμούς που εμπλέκονται στη διαδικασία της 



 

7 

 

διανομής, καθώς και που ενσωματώνονται σε πραγματικές εφαρμογές. Για την  εκπλήρωση 

αυτού του στόχου και την προσφορά προηγμένων τεχνολογικών λύσεων, είναι απαραίτητο να 

εντοπιστούν αρχικά οι μεταβλητές και οι περιορισμοί που αντιμετωπίζονται πιο συχνά από τις 

εταιρείες διανομής και κατά συνέπεια να οριστεί η μαθηματική διατύπωση του προβλήματος. 

Οι μεταβλητές και οι περιορισμοί που αντιμετωπίζονται πιο συχνά αντιστοιχούν στις ανάγκες 

των περισσότερων εταιρειών διανομής και αυτός είναι ο κύριος λόγος για την εστίαση σε 

αυτές. Στη συνέχεια, η έρευνα επικεντρώνεται στην ανάπτυξη προηγμένων μεταευρετικών 

αλγορίθμων που επιλύουν τις περίπλοκες περιπτώσεις διανομής που έχουν δημιουργηθεί και 

προσφέροντας μειωμένο κόστος διανομής. Τέλος, ένας άλλος κρίσιμος στόχος της παρούσας 

μελέτης είναι η ενσωμάτωση των προτεινόμενων μεταευρετικών σε ένα σύστημα 

δρομολόγησης νέφους που μπορεί να εφαρμοστεί σε πραγματικές λειτουργίες διανομής.  

Όπως είναι φυσικό, οι στόχοι της διατριβής συσχετίζονται με τις συνεισφορές της, και 

χωρίζονται σε 5 κύριους πυλώνες που είναι:  

i. η βιβλιογραφική ανασκόπηση για την εύρεση των τάσεων που ακολουθούν οι παραλλαγές 

του ΠΔΟ και οι αλγόριθμοι, για τη συσχέτισή τους, και για τους αλγορίθμους που οδηγούν σε 

πρακτικές εφαρμογές, 

ii. οι μεθοδολογίες που αναπτύσσονται για την αντιμετώπιση εύρους παραλλαγών του ΠΔΟ, 

iii. η μαθηματική διατύπωση των προβλημάτων που αντιμετωπίζονται, ακόμα και σε 

περιπτώσεις που συνδυάζονται πολλαπλές μεταβλητές και περιορισμοί των αστικών 

εμπορευματικών μεταφορών, 

iv. τα υπολογιστικά αποτελέσματα, καθώς δοκιμάζονται τόσο δεδομένα της βιβλιογραφίας, με 

τους αλγόριθμους να προσφέρουν νέα βέλτιστα, όσο και με πραγματικά δεδομένα διανομής, 

εταιρειών που δραστηριοποιούνται στο χώρο, και 

v. η πρακτική εφαρμογή και ενσωμάτωση των αλγορίθμων σε ένα cloud σύστημα 

δρομολόγησης 

1.3 Σύνοψη της Διδακτορικής Διατριβής 

Η παρούσα διδακτορική διατριβή στη συνέχεια οργανώνεται ως εξής: 

Το Κεφάλαιο 2 παρουσιάζει τις τελευταίες εξελίξεις στο ΠΔΟ και στις πολλαπλές παραλλαγές 

που υπάρχουν, καθώς και πώς αυτές οι παραλλαγές συνδέονται με πραγματικές περιπτώσεις 

αστικών εμπορευματικών μεταφορών. Αυτό είναι ένα θεμελιώδες μέρος της έρευνας, καθώς 

οι παραλλαγές του ΠΔΟ που αντιμετωπίζονται πιο συχνά ορίζονται και συγκρίνονται με τις 

μεταβλητές και τους περιορισμούς που οι εταιρείες του κλάδου θεωρούν πιο σημαντικούς. 

Επιπρόσθετα, στο Κεφάλαιο 2 παρουσιάζεται μια βιβλιογραφική ανασκόπηση που σχετίζεται 

με τις αλγοριθμικές προσεγγίσεις που υπάρχουν τις τάσεις που ακολουθούν. Επιπλέον, 

ορίζεται η συσχέτιση μεταξύ των αλγοριθμικών προσεγγίσεων και των παραλλαγών του ΠΔΟ 

καθώς επίσης αναλύονται τα άρθρα που αναπτύσσουν αλγορίθμους οι οποίοι εντάσσονται σε 

συστήματα αποφάσεων. 



 

8 

 

Το Κεφάλαιο 3 αντιμετωπίζει το Πρόβλημα της Δρομολόγησης Οχημάτων με Χρονικά 

Παράθυρα (ΠΔΟΧΠ). Πιο συγκεκριμένα, πραγματοποιείται βιβλιογραφική ανασκόπηση για 

το ΠΔΟΧΠ. Επιπλέον, παρουσιάζεται η μαθηματική διατύπωση του προβλήματος και η 

προτεινόμενη αλγοριθμική προσέγγιση (Πολυαντικειμενική Αναζήτηση Ευρείας Γειτονιάς - 

ΠΑΕΓ) η οποία το αντιμετωπίζει. Τέλος, ο αλγόριθμος δοκιμάζεται σε δεδομένα της 

βιβλιογραφίας, και τα αποτελέσματά που προσφέρει συγκρίνονται με τα καλύτερα 

δημοσιευμένα στη βιβλιογραφία.  

Το Κεφάλαιο 4 πραγματεύεται το ΠΔΟ με Ταυτόχρονες Περισυλλογές και Παραδόσεις, 

καθώς και με Χρονικά Παράθυρα (ΠΔΟΤΠΠΧΠ). Η δομή του Κεφαλαίου 4 ακολουθεί αυτή 

του Κεφάλαιου 3. Στο συγκεκριμένο κεφάλαιο ωστόσο η προτεινόμενη αλγοριθμική 

προσέγγιση είναι ένας πολυαντικειμενικός εξελικτικός αλγόριθμος ο οποίος δοκιμάζεται σε 

δύο σύνολα δεδομένων της βιβλιογραφίας για να καθοριστεί η αποτελεσματικότητά του. 

Το Κεφάλαιο 5 πραγματεύεται το ΠΔΟ με Ετερογενή Στόλο Οχημάτων, Ταυτόχρονες 

Περισυλλογές και Παραδόσεις και με Χρονικά Παράθυρα (ΠΔΟΕΣΟΤΠΠΧΠ), το οποίο 

συνδυάζει το ΠΔΟΧΠ, το ΠΔΟΤΠΠ και το ΠΔΟΕΣΟ. Η βιβλιογραφική ανασκόπηση αυτού 

του προβλήματος ακολουθείται από τη μαθηματική διατύπωση και την περιγραφή του. Στη 

συνέχεια παρουσιάζεται ο προτεινόμενος αλγόριθμος Προσαρμοστικής Αναζήτησης Ευρείας 

Γειτονιάς (ΠΡΑΕΓ), ενώ η αποτελεσματικότητά του ορίζεται δοκιμάζοντάς τον σε πολλαπλά 

σύνολα δεδομένων της βιβλιογραφίας. Επιπλέον, ο αλγόριθμος δοκιμάζεται και στο 

Συνεργατικό ΠΔΟ για να εκτιμηθούν τα οφέλη όσον αφορά το κόστος και τις εκπομπές  ρύπων, 

όταν τρεις εταιρείες Third Party Logistics (3PL) συνεργάζονται στη διαδικασία της διανομής. 

Το Κεφάλαιο 6 περιγράφει το cloud σύστημα δρομολόγησης που αποθηκεύει τους 

αλγόριθμους, που έχουν αναπτυχθεί στα Κεφάλαιο 3, 4 και 5, στη βάση δεδομένων. Επιπλέον, 

αναλύονται οι τεχνολογίες που αξιοποιούνται για την ανάπτυξη του cloud συστήματος, καθώς 

και οι λειτουργίες του. Τέλος, το σύστημα δοκιμάζεται και επικυρώνεται σε τρεις πραγματικές 

περιπτώσεις διανομής για να εκτιμηθεί η αποτελεσματικότητά του και τα οφέλη που 

προσφέρονται στις εταιρείες διανομής και στους υπεύθυνους προγραμματισμού. 

Τέλος, το Κεφάλαιο 7 συνοψίζει τη συμβολή της τρέχουσας έρευνας, τους στόχους που έχουν 

επιτευχθεί και τα μελλοντικά ερευνητικά βήματα που θα ακολουθήσουν για την αντιμετώπιση 

ακόμη περισσότερων παραλλαγών που αφορούν τους ερευνητές και τους επαγγελματίες του 

χώρου, καθώς και τις βελτιώσεις που μπορούν να γίνουν στη μαθηματική διατύπωση και τους 

αλγόριθμους για την εξαγωγή ακόμη πιο αποτελεσματικών πλάνων δρομολογίων. 



 

9 

 

2. Βιβλιογραφική Επισκόπηση 

2.1 Εισαγωγή 

Το Πρόβλημα της Δρομολόγησης Οχημάτων (ΠΔΟ) αποτελεί μία από τις κύριες προκλήσεις 

που έχουν να αντιμετωπίσουν οι εταιρείες διανομής. Οι ερευνητές μελετάνε το πρόβλημα από 

το 1959  όταν οι Dantzig και Ramser (1959) εισήγαγαν το Truck Dispatching Problem. Έκτοτε, 

οι παράγοντες που επηρεάζουν τη διανομή έχουν μετατραπεί κατά τη μοντελοποίηση είτε σε 

μεταβλητές είτε σε περιορισμούς, διαμορφώνοντας τις διάφορες σε παραλλαγές του ΠΔΟ. Στις 

περισσότερες περιπτώσεις στόχος είναι η ελαχιστοποίηση του συνολικού κόστους διανομής. 

Προκειμένου να επιτευχθεί κάτι τέτοιο είναι βασικό να διαπιστωθούν οι παράγοντες που 

επηρεάζουν τη διανομή κάθε εταιρείας καθώς και να χρησιμοποιηθούν οι κατάλληλοι 

αλγόριθμοι και συστήματα. 

Σε αυτήν την κατεύθυνση, το Κεφάλαιο αναγνωρίζει τις τάσεις που χαρακτηρίζουν τις 

παραλλαγές του ΠΔΟ, τους προτεινόμενους αλγόριθμους και τη συσχέτισή τους. Οι διάφορες 

παραλλαγές ΠΔΟ ταξινομούνται σε δεκαέξι (16) κατηγορίες που αντιπροσωπεύουν τις κύριες 

περιπτώσεις που εμφανίζονται στη διανομή εμπορευματικών μεταφορών. Στη συνέχεια, 

παρουσιάζονται οι αλγόριθμοι που επιλύουν τις παραλλαγές του ΠΔΟ χρησιμοποιώντας μια 

συστηματική βιβλιογραφική ανασκόπηση όπου αναλύονται οι σχέσεις μεταξύ των 

παραλλαγών ΠΔΟ και των διαφόρων αλγορίθμων. Τέλος, το τρέχον Κεφάλαιο παρουσιάζει 

επίσης μελέτες και εργασίες που οδηγούν σε πρακτικές εφαρμογές (πακέτα λογισμικού και 

πληροφοριακά συστήματα) στη δρομολόγηση οχημάτων. 

Το υπόλοιπο μέρος αυτού του κεφαλαίου οργανώνεται ως εξής: Η ενότητα 2.2 παρουσιάζει τις 

κύριες παραλλαγές ΠΔΟ που σχετίζονται με τις αστικές εμπορευματικές μεταφορές. Η 

ενότητα 2.3 ταξινομεί και αναλύει τους διάφορους αλγόριθμους βελτιστοποίηση που 

εφαρμόζονται στο ΠΔΟ. Στην ενότητα 2.4 παρουσιάζεται η μεθοδολογία έρευνας που 

ακολουθήθηκε και στην ενότητα 2.5 τα ποσοτικά αποτελέσματα μετά την ανάλυση. Στην 

ενότητα 2.6 παρουσιάζονται οι πρακτικές εφαρμογές για την αντιμετώπιση του ΠΔΟ. Τέλος, 

στην ενότητα 2.7 παρουσιάζονται οι συμπερασματικές παρατηρήσεις. 

2.2 Το Πρόβλημα της Δρομολόγησης Οχημάτων και οι Παραλλαγές του 

Σε αυτή την ενότητα, αναλύονται οι παραλλαγές που αντιμετωπίζουν οι περισσότερες 

εταιρείες διανομής στις καθημερινές τους δραστηριότητες, σχετικά με τη δρομολόγηση των 

οχημάτων και τον προγραμματισμό των παραδόσεων. Αρχικά, η χωρητικότητα των οχημάτων 

αποτελεί βασικό παράγοντα του προβλήματος δρομολόγησης του οχήματος  (ΠΔΟ) (Kim et al. 

2015) και αυτόν που πρώτο οι ερευνητές και οι επαγγελματίες του χώρου έλαβαν υπόψη. Η 

χωρητικότητα σχηματίζει δύο παραλλαγές του ΠΔΟ: 1) το ΠΔΟ με Περιορισμούς 

Χωρητικότητα (ΠΔΟΠΧ) στο οποίο όλα τα οχήματα είναι πανομοιότυπα και έχουν την ίδια 

χωρητικότητα και 2) ΠΔΟ με Ετερογενή Στόλο (ΠΔΟΕΣΟ), στον οποίο υπάρχουν πολλοί 

τύποι οχημάτων, καθένας από τους οποίους χαρακτηρίζεται από διαφορετική χωρητικότητα, 



 

10 

 

σταθερό και μεταβλητό κόστος (Prins 2009). Και στις δύο περιπτώσεις, κατά τη διατύπωση 

του προβλήματος, θεωρείται ότι τα οχήματα θα ξεκινήσουν και θα επιστρέψουν στην κεντρική 

αποθήκη μετά την ολοκλήρωση της διαδρομής τους. Ωστόσο, κυρίως στις περιπτώσεις που 

εταιρείες συνεργάζονται με τρίτους για την διανομή, τα οχήματα των συνεργατών δεν 

επιστρέφουν απαραίτητα στην αποθήκη μετά την ολοκλήρωση της διαδρομής. Αυτή η 

περίπτωση αναγνωρίζεται ως το Ανοιχτό ΠΔΟ (ΑΠΔΟ) στην ερευνητική κοινότητα. Επίσης, 

ανεξάρτητα από το αν ο στόλος των οχημάτων είναι ετερογενής ή ομοιογενής, ορισμένοι 

ερευνητές, την τελευταία δεκαετία, εξετάζουν είτε δισδιάστατους (2Δ-ΠΔΟ) είτε 

τρισδιάστατους (3Δ-ΠΔΟ) περιορισμούς φόρτωσης για να διασφαλίσουν ότι τα εμπορεύματα 

μπορούν να φορτωθούν στα οχήματα (Zachariadis et al. 2016).  

Υπάρχουν αρκετές περιπτώσεις που μπορούν να εκτελέσουν περισσότερα από ένα ταξίδια 

κατά τη διάρκεια της εργάσιμης ημέρας, οδηγώντας στο ΠΔΟ με Πολλαπλές Διαδρομές 

(ΠΔΟΠΔ). Για τη βελτιστοποίηση της διαδικασίας και την εκτέλεση του μέγιστου αριθμού 

ταξιδιών κατά τις βάρδιες των οδηγών, χρησιμοποιούνται συνήθως Δορυφορικές 

Εγκαταστάσεις (ΠΔΟΔΕ) για την αναπλήρωση των οχημάτων. Σε αυτό το πλαίσιο εντάσσεται 

και το ΠΔΟ με δύο κλιμάκια και η διαχείριση της παράδοσης αγαθών από την κεντρική 

αποθήκη στους πελάτες γίνεται με δρομολόγηση οχημάτων μέσω δορυφορικών 

εγκαταστάσεων (Grangier et al. 2016).  

Οι απαιτήσεις των πελατών καθορίζουν σε μεγάλο βαθμό τη ρύθμιση των παραμέτρων του 

ΠΔΟ. Μία από τις πιο κοινές παραλλαγές του προβλήματος είναι το ΠΔΟ με Χρονικά 

Παράθυρα (ΠΔΟΧΠ), όπου κάθε πελάτης καθορίζει ένα χρονικό διάστημα στο οποίο πρέπει 

να παραδοθεί η παραγγελία (César and Oliveira 2010). Αυτή η παραλλαγή έχει συνδεθεί 

άρρηκτα με την ακρίβεια των παραδόσεων και την ικανοποίηση των πελατών.  

Είναι επίσης σημαντικό να τονιστεί ότι οι λειτουργίες διανομής δεν τελειώνουν στη φάση της 

παράδοσης αγαθών, καθώς το φαινόμενο των πελατών να επιστρέφουν προϊόντα είναι 

συνηθισμένο στην πράξη. Τόσο το ΠΔΟ με Επιστροφές (ΠΔΟΕ) όσο και το ΠΔΟ με 

Ταυτόχρονες Περισυλλογές και Παραδόσεις (ΠΔΟΤΠΠ) μελετούν την περίπτωση των 

παραδόσεων και των παραλαβών κατά την εκτέλεση των δρομολογίων.  

Η περιβαλλοντική ρύπανση ανάγκασε τις κυβερνήσεις να θεσπίσουν περιβαλλοντικούς 

κανονισμούς για τη μείωση του θορύβου, της κυκλοφορίας, των εκπομπών CO2 και κατά 

συνέπεια τη βελτίωση της ποιότητας ζωής των πολιτών. Σε αυτή την κατεύθυνση, οι εταιρείες 

διανομής στοχεύουν τόσο στην ελαχιστοποίηση του κόστους μεταφοράς, όσο και των 

εκπομπών CO2, ένα πρόβλημα που προσδιορίζεται στη βιβλιογραφία ως Πράσινο ΠΔΟ 

(ΠΠΔΟ) (Lin et al. 2014) ή ως Πρόβλημα Ρύπανσης Δρομολόγησης (ΠΡΔ).  

Επιπλέον, τα ηλεκτρικά οχήματα και τα υβριδικά οχήματα που μπορούν να λειτουργούν τόσο 

ηλεκτρικά όσο και με παραδοσιακά καύσιμα συμβάλλουν στην ελαχιστοποίηση της ρύπανσης 

και των εκπομπών CO2. Αυτές οι εκδοχές του προβλήματος είναι γνωστές ως Ηλεκτρικό ΠΔΟ 



 

11 

 

(ΗΠΔΟ) και Υβριδικό ΠΔΟ (ΥΠΔΟ) αντίστοιχα και έχουν προσελκύσει πρόσφατα την 

προσοχή εταιρειών και ερευνητών (Mancini 2017).  

Η ακρίβεια των παραδόσεων εξαρτάται σε μεγάλο βαθμό από τον χρόνο ταξιδιού μεταξύ των 

σημείων. Αυτό το πρόβλημα έχει αντιμετωπιστεί μέσω της χρήσης μιας συνάρτησης, στην 

οποία ο χρόνος αναχώρησης είναι η ανεξάρτητη μεταβλητή και είναι γνωστή ως Χρονικά 

Εξαρτώμενο ΠΔΟ (ΧΕΠΔΟ) (Figliozzi 2012). Ωστόσο, παραγγελίες και απρόβλεπτα 

γεγονότα μπορεί να εμφανιστούν δυναμικά κατά την εκτέλεση της διαδρομής, δημιουργώντας 

έτσι το Δυναμικό ΠΔΟ (ΔΠΔΟ) και το Στοχαστικό ΠΔΟ (ΣΤΠΔΟ). 

Μια άλλη μεταβλητή που εξαρτάται σε μεγάλο βαθμό από τον αριθμό των κέντρων διανομής 

που συνεργάζονται για τη διανομή αγαθών είναι το ΠΔΟ με Πολλαπλές Αποθήκες (ΠΔΟΠΑ) 

(Renaud et al. 1996). Μία επέκταση αυτού είναι και το Συνεργατικό ΠΔΟ (ΣΠΔΟ), στο οποίο 

ένας όμιλος εταιρειών συνεργάζεται για να ελαχιστοποιήσει το κόστος λειτουργίας και να 

βελτιστοποιήσει την αποτελεσματικότητα του δικτύου (Wang et al. 2017). 

Με τα χρόνια, οι ερευνητές μελετούν όλο και περισσότερες παραλλαγές του ΠΔΟ για να 

αντιμετωπίσουν περιπτώσεις που αντιμετωπίζουν οι εταιρείες διανομής στις καθημερινές τους 

λειτουργίες. Οι παραλλαγές του ΠΔΟ που αναλύονται σε αυτήν την ενότητα αντικατοπτρίζουν 

τις περισσότερες από τις προκλήσεις που αντιμετωπίζονται στη διανομή εμπορευμάτων. Τα 

Πληροφοριακά Συστήματα μπορούν να ενισχύσουν την αντιμετώπιση του προβλήματος 

ενσωματώνοντας στη λειτουργικότητά τους τη χρήση αλγορίθμων.  

2.3 Μέθοδοι Επίλυσης 

Στην συγκεκριμένη ενότητα μελετώνται οι αλγόριθμοι που αντιμετωπίζουν αποτελεσματικά 

ένα σύνολο παραλλαγών του ΠΔΟ. Η ταξινόμηση των αλγορίθμων βασίζεται στην έρευνα των 

Labadie et al. (2016) και Lin et al. (2014) και περιλαμβάνει τους ακριβείς, τους ευρετικούς και 

τους μεταευρετικους αλγορίθμους. Έμφαση και μεγαλύτερη ανάλυση γίνεται στους 

ευρετικούς και μεταευρετικούς αλγορίθμους, καθώς και στις επιμέρους κατηγορίες τους.  

2.3.1 Ακριβείς Αλγόριθμοι 

Οι ακριβείς αλγόριθμοι υπολογίζουν κάθε δυνατή λύση μέχρι να επιτευχθεί η καλύτερη, με 

πολύ κακή απόδοση σε υπολογιστικό χρόνο, ακόμη και σε αρκετά μικρές περιπτώσεις  (El-

Sherbeny 2010). Οι ακριβείς μέθοδοι ταξινομούνται σε τρεις κατηγορίες: Μέθοδοι χαλάρωσης 

Lagrange, δημιουργία στηλών και δυναμικός προγραμματισμός. 

2.3.2 Ευρετικοί Αλγόριθμοι 

Οι εταιρείες διανομής που αντιμετωπίζουν το ΠΔΟ χρειάζονται μεθόδους ικανές να παράγουν 

λύσεις υψηλής ποιότητας σε περιορισμένο υπολογιστικό χρόνο. Ως εκ τούτου, έχουν προταθεί 

πολλαπλοί ευρετικοί αλγόριθμοι, χωρισμένοι σε κατασκευαστικούς, τοπικής αναζήτησης και 

δύο φάσεων. Οι κατασκευαστικοί χωρίζονται σε διαδοχικές (sequential) και παράλληλες 

(parallel) μεθόδους. Στην πρώτη μέθοδο, οι κόμβοι επιλέγονται διαδοχικά μέχρι να 



 

12 

 

κατασκευαστεί μια εφικτή λύση λαμβάνοντας υπόψιν τη χωρητικότητα του οχήματος και τα 

χρονικά παράθυρα. Από την άλλη πλευρά, οι παράλληλες μέθοδοι δημιουργούν πολλές λύσεις 

ταυτόχρονα. Στη δεύτερη μέθοδο κατασκευάζονται διαδρομές διαδοχικά και η διαδικασία 

τελειώνει όταν δεν περισσεύουν άλλοι πελάτες εκτός των δρομολογίων (Solomon 1987). Οι 

τοπικές μέθοδοι αναζήτησης, αντίθετα, τροποποιούν την αρχική  λύση για βελτιωμένες 

γειτονικές λύσεις. Η βελτίωση της λύσης μπορεί να είναι εντός μιας διαδρομής, που 

ονομάζεται εντός διαδρομής, ή μεταξύ διαφορετικών διαδρομών.  

2.3.3 Μεταευρετικοί Αλγόριθμοι 

Σε αντίθεση με τους ευρετικούς, οι μεταευρετικοί σκοπεύουν να ξεφύγουν από το τοπικό 

βέλτιστο καθώς εξερευνά ένα πιο σημαντικό υποσύνολο του χώρου λύσης. Οι μεταευρετικοί 

αλγόριθμοι είναι πιο προηγμένες διαδικασίες και περιέχουν μεθόδους αναζήτησης πληθυσμού 

και τοπικής αναζήτησης. Αυτές οι δύο υποκατηγορίες μεταευρετικών αναλύονται περαιτέρω 

στις ενότητες 2.3.3.1 και 2.3.3.2. 

2.3.3.1 Μεταευρετικοί Αναζήτησης Πληθυσμού  

Οι μεταευρετικοι που βασίζονται στον πληθυσμό λύσεων στοχεύουν στη δημιουργία μιας νέας 

λύσης, είτε συνδυάζοντας υπάρχουσες λύσεις είτε κάνοντας τες να συνεργάζονται μέσω μιας 

μαθησιακής διαδικασίας. Οι γενετικοί αλγόριθμοι (ΓΑ) είναι οι πιο συνηθισμένοι 

μεταευρετικοί αλγόριθμοι και εμπνέονται από τη βιολογική εξέλιξη. Οι μεμετικοί αλγόριθμοι 

(ΜΑ) είναι μια "προηγμένη" έκδοση των ΓΑ καθώς για κάθε παιδί εφαρμόζεται μια τοπική 

μέθοδος βελτίωσης. Και οι δύο αλγόριθμοι ανήκουν στην ευρύτερη κατηγορία των 

Εξελικτικών Αλγορίθμων (ΕΑ) (Labadie et al. 2016).  

Η γενική κατηγορία αλγορίθμων που βασίζονται σε σμήνη περιλαμβάνει τη βελτιστοποίηση 

αποικίας μυρμηγκιών (ΒΑΜ) και τη βελτιστοποίηση μέσω σμήνους σωματιδίων (ΒΣΣ). Στο 

ΒΑΜ, τα μυρμήγκια κινούνται χτίζοντας μονοπάτια σύμφωνα με πιθανολογικούς κανόνες. Οι  

(Gambardella et al. 1999) ανέπτυξαν έναν τέτοιο αλγόριθμο για το ΠΔΟΧΠ, ενώ ένας 

αποτελεσματικός και καινοτόμος αλγόριθμους ΒΑΜ που έχει αναπτυχθεί για την 

αντιμετώπιση των παραλλαγών ΠΔΟ είναι αυτός των Kalayci and Kaya (2016). Επιπλέον, στο 

ΒΣΣ υπάρχει ένα πλήθος «σωματιδίων» και το καθένα μετακινείται από τη θέση του σε μια 

άλλη στον χώρο αναζήτησης. Η κίνηση κάθε σωματιδίου επηρεάζεται τόσο από την καλύτερη 

θέση που έχει επιτύχει το συγκεκριμένο σωματίδιο όσο και από την καλύτερη λύση όλων των 

σωματιδίων. 

2.3.3.2 Μεταευρετικοί Τοπικής Αναζήτησης 

Από την άλλη πλευρά, οι μεταευρετικοί τοπικής αναζήτησης στοχεύουν στην εξερεύνηση του 

χώρου λύσης μεταφέροντας την τρέχουσα λύση σε μια άλλη γειτονιά. Η αναζήτηση Tabu 

(Glover 1986) είναι ένας από τους πιο συχνά εφαρμοζόμενους αλγόριθμους και εξαρτάται από 

την αρχή της συνέχισης της αναζήτησης ακόμα κι αν έχει επιτευχθεί ένα τοπικό βέλτιστο. 

Επομένως, εφαρμόζεται μια κίνηση στην τρέχουσα λύση ακόμη και αν  ο στόχος επιδεινωθεί. 



 

13 

 

Ωστόσο, θα πρέπει να σημειωθεί ότι δεν είναι δυνατή η επανεξέταση μιας λύσης που έχει 

επισκεφτεί στο παρελθόν καθώς η λίστα tabu καταγράφει τις πρόσφατες αναζητήσεις.  

Ένας άλλος αλγόριθμος είναι αυτός της Αναζήτησης Ευρείας Γειτονιάς (ΑΕΓ) εξερευνά έναν 

ευρύ χώρο αναζήτησης. Στον συγκεκριμένο αλγόριθμο, η αρχική λύση καταστρέφεται μερικώς 

σύμφωνα με τους τελεστές καταστροφής και τελικά επισκευάζεται, σύμφωνα με τους τελεστές 

επανεισαγωγής. Η μέθοδος Προσαρμοστικής Αναζήτησης Ευρείας Γειτονιάς (ΠΡΑΕΓ) είναι 

παρόμοια, εκτός από το ότι οι πιο αποτελεσματικοί τελεστές που υπόκεινται σε αλλαγές κατά 

την αναζήτηση εφαρμόζονται σε κάθε επανάληψη (Hornstra et al. 2020). 

Ένα άλλος μεταευρετικός, αυτός της Κατευθυνόμενης Τοπικής Αναζήτησης λειτουργεί 

εκχωρώντας ποινές στην αντικειμενική συνάρτηση έτσι ώστε ο χώρος αναζήτησης να γίνει πιο 

εκτεταμένος και να αποφευχθεί η παγίδευση σε ένα τοπικό βέλτιστο. Αυτό συμβαίνει επειδή 

η αναζήτηση θα μεταφερθεί σε μια νέα περιοχή του χώρου λύσεων. Η μέθοδος της 

Προσομοιωμένης Ανόπτησης (ΠΑ) ανήκει επίσης στους μεταευρετικούς τοπικής αναζήτησης, 

εμπνέεται από τη συμπεριφορά των ατόμων και των στερεών όταν αλλάζει η θερμοκρασία, 

και προτάθηκε από τους (Kirkpatrick et al. 1983).  

Όσον αφορά την Αναζήτηση Μεταβλητής Γειτονιάς (ΑΜΓ), την οποία πρότειναν οι βασίζεται 

στο ότι επιτρέπεται μια συστηματική αλλαγή γειτονιάς όταν ένας αλγόριθμος τοπικής 

αναζήτησης δεν βελτιώνει (Mladenović and Hansen 1997). Επιπλέον, η διαδικασία της 

Άπληστης Τυχαιοποιημένης Προσαρμοστικής Αναζήτησης  (ΑΤΠΑ) είναι ένας ακόμα 

μεταευρετικός τοπικής αναζήτησης που εφαρμόζεται στο ΠΔΟ αλλά λιγότερο συχνά σε 

σύγκριση με άλλες. Τέλος, ο αλγόριθμος Επαναλαμβανόμενη Τοπική Αναζήτηση (ΑΤΑ) 

βασίζεται στη δημιουργία μιας ακολουθίας μιας τοπικά βέλτιστης λύσης κάνοντας μια 

τροποποίηση, που ονομάζεται διαταραχή, στο τρέχον τοπικό βέλτιστο, καθώς και εκτελώντας 

διαδικασίες τοπικής αναζήτησης μετά την εκκίνηση από την τροποποιημένη λύση  (Silva et al. 

2014). 

Τέλος, στην προσπάθειά τους να λύσουν βέλτιστα το ΠΔΟ, οι ερευνητές συνδυάζουν 

αλγόριθμους για να εκμεταλλευτούν τα πλεονεκτήματα κάθε διαδικασίας. Ειδικά τα τελευταία 

χρόνια, αναπτύσσονται υβριδικοί αλγόριθμοι που συνδυάζουν μεταευρετικές μεθόδους για την 

επίτευξη καλύτερων αποτελεσμάτων. Αυτό είναι ένα χαρακτηριστικό που μελετήθηκε στην 

ανασκόπηση της βιβλιογραφίας για να προσδιοριστεί ποιοι αλγόριθμοι χρησιμοποιούνται για 

την επίλυση πολλαπλών παραλλαγών ΠΔΟ. 

2.4 Μεθοδολογία Έρευνας 

Η έρευνα επικεντρώνεται στη τάση των παραλλαγών του ΠΔΟ καθώς και στους αλγόριθμους. 

Προκειμένου να επιτευχθεί η επιθυμητή ανάλυση καθορίστηκαν αρχικά οι παραλλαγές του 

ΠΔΟ, όσο και οι αλγόριθμοι που τις επιλύουν. Για τον στόχο αυτό χρησιμοποιήθηκε η βάση 

δεδομένων Scopus (https://www.scopus.com) καθώς καλύπτει ένα ευρύ φάσμα ακαδημαϊκών 

δημοσιεύσεων με κριτές. Πιο συγκεκριμένα, λαμβάνονται υπόψη μόνο άρθρα που 

δημοσιεύτηκαν σε περιοδικά, στην αγγλική γλώσσα και την τελευταία δεκαετία, καθώς επίσης 

και τα οποία περιέχουν τουλάχιστον μία από τις προηγουμένως καθορισμένες παραλλαγές του 

ΠΔΟ, προτείνοντας ή παρουσιάζοντας αλγόριθμο.  



 

14 

 

Επίσης, δεν συμπεριλαμβάνονται οι όροι, όπως «απόβλητα», «μετρητά», «επικίνδυνα», 

«σκυρόδεμα», «υγειονομική περίθαλψη», «φροντίδα», «αίμα», «λεωφορείο» και «μεταφορά 

ανθρώπων», καθώς δεν είναι σχετικά με τις εμπορευματικές μεταφορές . Οι όροι «ποδήλατο», 

«ιπτάμενα ρομπότ» και «UAV» εξαιρέθηκαν καθώς αναφέρονται σε διαφορετικά μέσα 

μεταφοράς από τα φορτηγά. Οι όροι "δρομολόγηση τοποθεσίας" και "δρομολόγηση 

αποθέματος" εξαιρέθηκαν επίσης από η έρευνα καθώς αποφασίστηκε να εξαιρεθούν τυχόν 

συνδυασμένα προβλήματα. Επίσης, η έρευνα αυτή περιορίζεται στους Θεματικούς Τομείς 

«Επιστήμη Υπολογιστών», «Μηχανική», «Μαθηματικά», «Επιστήμες Αποφάσεων» και 

«Επιχειρήσεις, Διοίκηση και Λογιστική». Ο όρος έρευνας περιλαμβάνει μόνο συγκεκριμένα 

περιοδικά που επιλέγονται σύμφωνα με το Scimago Journal Rank 

(https://www.scimagojr.com), περιλαμβάνοντας μόνο αυτά που ανήκουν στο πρώτο 

τεταρτημόριο (Q1). 

Η συγκεκριμένη ερευνητική μέθοδος οδήγησε σε 334 δημοσιεύσεις, καθεμία από τις οποίες 

μελετήθηκε διεξοδικά για να προσδιοριστεί η συνάφειά της. Επιπλέον, σε αυτήν την έρευνα 

δεν υπάρχει πρόθεση να επανεξεταστεί η πλήρης βιβλιογραφία του TSP ή τα ερευνητικά 

θέματα που σχετίζονται με το ΠΔΟ. Αντίθετα, εστιάζει στο ΠΔΟ και στις παραλλαγές που 

περιγράφονται στην ενότητα 2.2. Ακολουθώντας την περιγραφόμενη διαδικασία 263 άρθρα 

κατηγοριοποιήθηκαν σύμφωνα με την ταξινόμηση των προτεινόμενων αλγορίθμων.  

2.5 Ανάλυση ερευνητικών Αποτελεσμάτων 

Στην ενότητα αυτή παρουσιάζονται τα αριθμητικά αποτελέσματα που προέκυψαν από την 

κατηγοριοποίηση των σχετικών εργασιών. Η ταξινόμηση των άρθρων έχει χωριστεί σε δύο 

σκέλη, τις παραλλαγές του ΠΔΟ και τους εφαρμοσμένους αλγόριθμους για την επίλυση αυτών 

των παραλλαγών. Η παρούσα έρευνα επικεντρώνεται σε δημοσιευμένα άρθρα από το 2010 

έως το πρώτο τρίμηνο του 2020 για να εντοπίσει τις τάσεις της τελευταίας δεκαετίας.  

Στην προσπάθειά τους να αντιμετωπίσουν προβλήματα της πραγματικής ζωής , οι 

περισσότερες δημοσιεύσεις εξετάζουν περισσότερες από μία παραλλαγές του προβλήματος. 

Το ΠΔΟΠΧ είναι μακράν η πιο μελετημένη παραλλαγή (82,89%) λόγω της απλότητάς της. Οι 

δημοσιεύσεις που δεν αντιμετωπίζουν το ΠΔΟΠΧ ασχολούνται με το ΠΔΟΕΣΟ (17,11%). Οι 

παραλλαγές που χρησιμοποιούν χρονικά παράθυρα μελετώνται συχνά καθώς 

αντικατοπτρίζουν επαρκώς τις πραγματικές περιπτώσεις και έτσι εμφανίζονται σχεδόν στις 

μισές περιπτώσεις (46,39%). Αντίστοιχα, το ΠΔΟΠΠ εμφανίζεται στο ένα πέμπτο των 

αναθεωρημένων εργασιών λόγω της υψηλής συσχέτισής του με τις πραγματικές περιπτώσεις 

διανομής. Το ΠΠΔΟ φαίνεται να προσελκύει την προσοχή των ερευνητών τα τελευταία 6 

χρόνια λόγω της τρέχουσας ανάγκης για ελαχιστοποίηση των εκπομπών CO2.  

Η ανάγκη για καλύτερη διαχείριση του δικτύου και μείωση του κόστους οδήγησε το ΠΔΟΠΑ 

και το ΣΠΔΟ να καταταχθούν μεταξύ των οι πιο μελετημένων παραλλαγών του ΠΔΟ. Επίσης, 

σε σύγκριση με άλλες μελέτες ταξινόμησης το ΠΔΟΠΚ φαίνεται να έχει κερδίσει το 

ενδιαφέρον τα τελευταία χρόνια λόγω της ανάγκης των εταιρειών να βελτιστοποιήσουν τη 

δρομολόγηση σε κάθε στάδιο της εφοδιαστικής αλυσίδας. 

https://www.scimagojr.com/


 

15 

 

Επιπλέον, το ΔΠΔΟ και το ΧΕΠΔΟ έχουν εκμεταλλευτεί νέες τεχνολογίες, οι οποίες 

προσφέρουν σε πραγματικό χρόνο και μεγάλα δεδομένα. Από την άλλη πλευρά, παραλλαγές 

όπως το ΑΠΔΟ, το ΠΔΟΧΩΠ και το ΠΔΟΠΔ, φαίνεται να έχουν σχετικά χαμηλό αλλά 

σταθερό ενδιαφέρον από τους ερευνητές την τελευταία δεκαετία λόγω της συσχέτισής τους με 

πραγματικές περιπτώσεις logistics που δεν εμφανίζονται συχνά. 

Όσον αφορά τους τους αλγορίθμους, οι μεταευρετικοί κυριαρχούν στους προτεινόμενους 

αλγόριθμους με 252 περιπτώσεις, ακολουθούμενοι από τους Κλασσικούς Ευρετικούς (122) 

και τους Υβριδικούς (53). Οι ακριβείς αλγόριθμοι (32) αναπτύσσονται λιγότερο συχνά λόγω 

της υπολογιστικής πολυπλοκότητάς τους και του περιορισμού τους στην επιτυχή εφαρμογή 

τους μόνο σε προβλήματα μικρής κλίμακας.  

Σε μια πιο λεπτομερή ανάλυση, οι κατασκευαστικοί αλγόριθμοι φαίνεται να εμφανίζονται πιο 

συχνά καθώς εφαρμόζονται για την επίλυση του προβλήματος και τη δημιουργία της αρχικής 

λύσης σε μεταευρετικούς αλγόριθμους. Όσον αφορά τους μεταευρετικούς αλγόριθμους, οι ΓΑ 

έχουν προσελκύσει το ενδιαφέρον των ερευνητών την τελευταία δεκαετία. Συνολικά, οι ΕΑ, 

που περιέχουν ΓΑ και ΜΑ, αναπτύσσονται και εφαρμόζονται πιο συχνά από τους αλγόριθμους 

που βασίζονται σε σμήνη (ΒΑΜ και ΒΣΣ). Όσον αφορά τους μεταευρετικούς τοπικής 

αναζήτησης, οι ερευνητές εφαρμόζουν και αναπτύσσουν εξίσου αυτούς τους αλγόριθμους, 

εκτός από τον ΑΤΠΑ ο οποίος είναι λιγότερο μελετημένος. 

Επίσης, όπως ήδη αναφέρθηκε παραπάνω, οι παραλλαγές του ΠΔΟ σπάνια μελετώνται 

μεμονωμένα. Στις περισσότερες περιπτώσεις, οι ερευνητές αντιμετωπίζουν έναν συνδυασμό 

αυτών των παραλλαγών ταυτόχρονα για μια καλύτερη κατά προσέγγιση περίπτωση της 

πραγματικής ζωής. Το ΠΔΟΠΧ, το ΠΔΟΕΣΟ και το ΠΔΟΧΠ είναι από τις παραλλαγές  που 

συνδυάζονται με όλες σχεδόν τις λοιπές παραλλαγές. Το ΠΔΟΠΧ συνδυάζεται περισσότερο 

με άλλες παραλλαγές καθώς απλοποιεί σημαντικά το πρόβλημα. Όσον αφορά τις υπόλοιπες 

παραλλαγές, πολλαπλοί συνδυασμοί μεταξύ των ΠΔΟΧΠ, ΠΔΟΠΠ, ΠΔΟΕΣΟ, ΠΔΟΠΑ και 

ΠΠΔΟ παρατηρούνται και σχηματίζονται από ερευνητές. 

Επιπρόσθετα, πολλές δημοσιεύσεις προτείνουν υβριδικούς αλγόριθμους επίλυσης για όλες 

σχεδόν τις παραλλαγές του ΠΔΟ, υποδεικνύοντας μια τάση στην ερευνητική κοινότητα προς 

αυτούς τους αλγόριθμους. Οι ευρετικές τεχνικές κατασκευής και τοπικής βελτίωσης 

εμπλέκονται στη λύση όλων των παραλλαγών ΠΔΟ. Όσον αφορά τον ΠΔΟΧΠ, ενώ ο Tabu 

και ο ΠΑ ήταν μεταξύ των πιο κοινά εφαρμοζόμενων αλγορίθμων, φαίνεται να έχει 

διαμορφωθεί μια νέα κατεύθυνση προς τους ΕΑ. Σε περιπτώσεις που λαμβάνονται υπόψη μόνο 

το ΠΔΟΠΧ και το ΠΔΟΧΠ, η δομή του χρωμοσώματος στους ΓΑ συμβάλλει στην ταχύτερη 

εκτέλεση των τελεστών διασταύρωσης και μετάλλαξης και στην αποθήκευση του πληθυσμού.  

Το ΠΔΟΕΣΟ είναι μια σημαντική παραλλαγή για εταιρείες διανομής, καθώς οι περισσότερες 

από αυτές διαθέτουν μεικτό στόλο οχημάτων. Ωστόσο, μόνο το 17,11% των άρθρων εξετάζει 

τη συγκεκριμένη παραλλαγή. Οι πιο συνηθισμένοι αλγόριθμοι που εφαρμόζονται στο 

ΠΔΟΕΣΟ είναι i) οι ΓΑ, ii) οι ΑΜΓ, iii) οι αλγόριθμοι ΠΡΑΕΓ και ΠΑΕΓ και iv) ο αλγόριθμος 

ΑΤΑ. Οι τρεις μεταευρετικοί αλγόριθμοι τοπικής αναζήτησης εφαρμόζονται σε μια ενιαία 

λύση που οδηγεί σε μικρότερους υπολογιστικούς χρόνους. Αντίθετα, οι EA που εφαρμόζονται 

συχνά, χρειάζονται λύσεις αποθήκευσης οδηγώντας σε αυξημένους υπολογιστικούς χρόνους.  



 

16 

 

Τέλος, το Πράσινο, το Ηλεκτρικό, το Υβριδικό ΠΔΟ και το Πρόβλημα Ρύπανσης 

Δρομολόγησης θεωρούνται μία κατηγορία στην ανάλυση. Αυτές οι παραλλαγές έχουν 

προταθεί και εμφανιστεί τα τελευταία δεκαπέντε χρόνια και έχουν μελετηθεί διεξοδικά από 

ερευνητές. Σε αυτές τις πρώτες προσπάθειες για λύσεις που μειώνουν τις εκπομπές CO2 και 

την κατανάλωση καυσίμου, οι αλγόριθμοι ΠΡΑΕΓ και ΠΑΕΓ εφαρμόζονται ως επί το 

πλείστων.  

2.6 Πρακτικές Εφαρμογές 

Η παραπάνω έρευνα επιβεβαιώνει ότι το ΠΔΟ αντιμετωπίζεται ευρέως από τους ερευνητές και 

αποτελεί ένα από τα πιο μελετημένα προβλήματα στην εφοδιαστική. Ωστόσο, υπάρχει 

περιορισμένος αριθμός ερευνητικών εργασιών που οδηγούν στην ενσωμάτωση αλγορίθμων σε 

συστήματα δρομολόγησης. Η δήλωση  ενισχύεται από τη βιβλιογραφική ανασκόπηση, η οποία 

αξιοποιεί τη βάση δεδομένων SCOPUS. Ο όρος εφαρμόζεται στον τίτλο, την περίληψη, τις 

λέξεις κλειδια και είναι ("πρόβλημα δρομολόγησης οχήματος" και («πληροφοριακά 

συστήματα» ή «σύστημα» ή «λογισμικό») και  («μεταευρετικοί» ή «ευρετικοί» ‘η «ακριβείς») 

και «μελέτη περίπτωσης "). Ο αριθμός των εργασιών που προκύπτουν από την έρευνα είναι 

92. Ωστόσο, μόνο 5 από αυτές συζητούν την ανάπτυξη ενός συστήματος δρομολόγησης ή την 

ενσωμάτωση ενός αλγορίθμου σε μια πραγματική εφαρμογή δρομολόγησης.  

Δύο από αυτές τις μελέτες (Fanti et al. 2014; Abbatecola et al. 2016) στοχεύουν στην ανάπτυξη 

Συστημάτων Υποστήριξης Αποφάσεων (ΣΥΑ), εστιάζοντας κυρίως στην αρχιτεκτονική των 

συστημάτων και στη μαθηματική διατύπωση του προβλήματος τους, χωρίς να παρουσιάζουν 

αναλυτικά τις αλγοριθμικές προσεγγίσεις. Επιπλέον, οι Tarantilis και Kiranoudis (2007) 

πρότειναν έναν ευέλικτο προσαρμοστικό αλγόριθμο βασισμένο στη μνήμη για την 

αντιμετώπιση του ΠΔΟΕΣΟ και ο οποίος εντάχθηκε σε ένα ΣΥΑ. Τέλος, οι Tarantilis et al. 

(2004) πρότειναν ένα ΣΥΑ που χρησιμοποιεί έναν μεταευρετικό αλγόριθμο για την επίλυση 

του ΑΠΔΟ. Το προτεινόμενο ΣΥΑ γεωκωδικοποιεί και χαρτογραφεί τις τοποθεσίες των 

πελατών μέσω σύνδεσης σε ένα Γεωγραφικό Σύστημα Πληροφοριών (ΓΣΠ). 

Όλες οι προαναφερθείσες έρευνες επικεντρώθηκαν σε περιορισμένο αριθμό παραλλαγών 

ΠΔΟ, με αποτέλεσμα να περιορίσουν τις πιθανές πραγματικές περιπτώσεις που μπορούν να 

ωφεληθούν από τη χρήση των συστημάτων τους. Η έρευνα του (Erdoğan 2017) είναι η μόνη 

που πλησιάζει την παρουσιαζόμενη έρευνα, καθώς έχει αναπτυχθεί ένα υπολογιστικό φύλλο 

ανοιχτού κώδικα για την αντιμετώπιση περισσότερων παραλλαγών. Ο ερευνητής συνδέει 

διαδικτυακούς χάρτες με το Microsoft Excel και εξάγει σημαντικά δεδομένα που σχετίζονται 

με τη δρομολόγηση. Ο περιορισμός αυτής της λύσης είναι ο αυξημένος υπολογιστικός χρόνος 

που απαιτείται καθώς η γλώσσα προγραμματισμού Visual Basic (VB), δεν είναι μια πολύ 

αποτελεσματική γλώσσα προγραμματισμού για τη βελτιστοποίηση. 

Παρά την πρόοδο της τεχνολογίας, μόνο λίγες μελέτες που προτείνουν αλγόριθμους οδηγούν 

σε πραγματικές εφαρμογές και συστήματα. Ένας λόγος είναι η εξειδικευμένη γνώση που 

απαιτείται για την ανάπτυξη ενός λειτουργικού συστήματος. Επιπλέον, οι εφαρμογές και τα 

πακέτα λογισμικού της πραγματικής ζωής δημιουργούνται κυρίως από εταιρείες λογισμικού 

για τις οποίες οι αλγόριθμοι αποτελούν πνευματική ιδιοκτησία και δεν αποκαλύπτονται. 



 

17 

 

2.7 Συμπεράσματα 

Αυτό το Κεφάλαιο μελετά και παρουσιάζει πολλαπλές παραλλαγές ΠΔΟ που έχουν μελετηθεί 

όλα αυτά τα χρόνια και συσχετίζονται με τη διανομή εμπορευμάτων. Επιπλέον, 

κατηγοριοποιούνται και παρουσιάζονται οι αλγοριθμικές προσεγγίσεις που έχουν αναπτυχθεί 

και προταθεί για την επίλυση αυτών των περιπτώσεων. Τόσο οι παραλλαγές όσο και οι 

αλγόριθμοι είναι τα κύρια πεδία μελέτης και η εκτενής βιβλιογραφική ανασκόπηση στοχεύει 

ως πρώτο βήμα στη συσχέτισή τους. 

Η βιβλιογραφική ανασκόπηση προέκυψε από μια καλά καθορισμένη μεθοδολογική 

προσέγγιση και ερευνητικό πρωτόκολλο. Μια αρχική ομάδα 334 άρθρων που εξήχθη από τη 

βάση δεδομένων Scopus αξιολογήθηκε και περιορίστηκε περαιτέρω σε μια ομάδα 263 

σχετικών άρθρων μετά την εφαρμογή κριτηρίων επιλογής. Έμφαση δόθηκε στους αλγόριθμους 

που προτάθηκαν και αναπτύχθηκαν για το ΠΔΟ στη διανομή εμπορευμάτων. Επομένως, 

δημοσιεύσεις που δεν είναι σχετικά με τη μεταφορά εμπορευμάτων εξαιρέθηκαν. 

Τα άρθρα ταξινομήθηκαν σύμφωνα με τις παραλλαγές ΠΔΟ και την μέθοδο που προτάθηκε 

για τη λύση τους για τον εντοπισμό των τάσεων σε κάθε περίπτωση και την παρουσίαση της 

συσχέτισής τους. Μια τάση προς τους ΕΑ και τους Μεταευρετικούς Τοπικής Αναζήτησης 

φαίνεται να διαμορφώνεται, καθώς εφαρμόζονται σε πολλές παραλλαγές του προβλήματος και 

προσφέρουν πολύ αποτελεσματικά αποτελέσματα. Επιπλέον, οι υβριδικοί αλγόριθμοι 

εφαρμόζονται όλο και πιο συχνά σε πολλές παραλλαγές του ΠΔΟ.  

Τέλος, η ανασκόπηση της βιβλιογραφίας δεν περιορίστηκε στη μελέτη των παραλλαγών ΠΔΟ, 

των προτεινόμενων αλγορίθμων και της συσχέτισής τους, αλλά επεκτάθηκε και στις 

ερευνητικές μελέτες που προτείνουν αλγόριθμους βελτιστοποίησης για την αντιμετώπιση του 

ΠΔΟ και που ενσωματώνονται επίσης στη δρομολόγηση της πραγματικής ζωής. εφαρμογές. 

Τα αποτελέσματα οδήγησαν σε περιορισμένο μόνο αριθμό άρθρων που προτείνουν τόσο 

αλγόριθμους βελτιστοποίησης όσο και την ενσωμάτωσή τους σε συστήματα δρομολόγησης. 

Το γεγονός αυτό, μαζί με την απουσία συστημάτων δρομολόγησης cloud επιβεβαιώνουν το 

ερευνητικό χάσμα που εξακολουθεί να υπάρχει μεταξύ των ερευνητικών μελετών και των 

εφαρμογών της πραγματικής ζωής.



18 

 

3. Το Πρόβλημα της Δρομολόγησης Οχημάτων με Χρονικά 
Παράθυρα 

3.1 Εισαγωγή 

Το πρόβλημα δρομολόγησης οχημάτων με τα παράθυρα χρόνου (ΠΔΟΧΠ) είναι μια πολύ 

γνωστή παραλλαγή του ΠΔΟ, η οποία έχει λάβει μεγάλη προσοχή τα τελευταία χρόνια και 

αντικατοπτρίζει πολλά σενάρια πραγματικού κόσμου στις λειτουργίες διανομής. Το ΠΔΟΧΠ 

αποτελείται από γεωγραφικά διασκορπισμένους πελάτες που πρέπει να εξυπηρετηθούν μέσα 

σε ένα προκαθορισμένο χρονικό διάστημα (χρονικό παράθυρο), μόνο μία φορά και από ένα 

μόνο όχημα. Η συνολική ποσότητα εμπορευμάτων που διανέμεται σε κάθε διαδρομή δεν 

μπορεί να υπερβαίνει τη χωρητικότητα του οχήματος, ενώ κάθε όχημα ξεκινά και τελειώνει τη 

διαδρομή του στο αμαξοστάσιο. Ένα όχημα μπορεί να φτάσει σε έναν πελάτη πριν από το 

άνοιγμα του χρονικού παραθύρου και να περιμένει μέχρι τον συμφωνημένο χρόνο σέρβις, 

αλλά δεν επιτρέπεται να παραδώσει τα αγαθά εάν φτάσει μετά το κλείσιμο του χρονικού 

παραθύρου (César and Oliveira 2010). Αντίθετα, πολλές ερευνητικές εργασίες (Taş et al. 2014) 

θεωρούν ότι ορισμένοι ή όλοι οι πελάτες έχουν «χαλαρά» χρονικά παράθυρα και μπορεί να 

εξυπηρετηθεί πριν από το μετά το κλείσιμο του χρονικού παραθύρου, πληρώνοντας ποινή κάθε 

φορά που παραβιάζεται το χρονικό παράθυρο.  

Για την επίλυσή τους αρχικά προτάθηκαν ακριβείς αλγόριθμοι οι οποίοι υπολογίζουν κάθε 

δυνατή λύση έως ότου επιτευχθεί η καλύτερη, ενώ έχουν πολύ κακή απόδοση σε υπολογιστικό 

χρόνο, ακόμη και όταν ασχολούνται με σχετικά μικρές περιπτώσεις  (El-Sherbeny 2010). Παρά 

αυτόν τον περιορισμό, έχουν προταθεί ακριβείς αλγόριθμοι από ερευνητές  για την 

αντιμετώπιση του ΠΔΟΧΠ, όλοι εκ των οποίων επιλύουν περιπτώσεις διανομής με έως και 

100 πελάτες παραγγελίες. Κατά συνέπεια, οι ερευνητές κατευθύνθηκαν προς τους ευρετικούς 

αλγόριθμους οι οποίοι παρέχουν καλύτερη αντιστάθμιση μεταξύ ποιότητας λύσης και χρόνου 

υπολογισμού. Αυτή η θεωρία ενισχύεται από ορισμένα παραδείγματα επιτυχούς εφαρμογής 

ευρετικών αλγορίθμων που επιλύουν το ΠΔΟΧΠ. Πιο συγκεκριμένα, η εργασία του Solomon 

(1987) θεωρείται πρωτοποριακή, όπως και αυτή των Pisinger και Ropke (2007) πρότειναν ένα 

ευρετικό που μπορεί να λύσει μια κατηγορία παραλλαγών ΠΔΟ, συμπεριλαμβανομένων των 

χρονικών παραθύρων.  

Παρόλο που οι ευρετικοί προσφέρουν λύσεις καλής ποιότητας, οι τελευταίες εξελίξεις στην 

τεχνολογία επέτρεψαν στους μεταευρετικούς αλγόριθμους να αναζητήσουν έναν ευρύτερο 

χώρο λύσεων σε περιορισμένο χρόνο CPU, ενώ προσφέρουν ποιοτικά αποτελέσματα. Το 

ΠΔΟΧΠ συνήθως αντιμετωπίζεται θέτοντας μία αντικειμενική συνάρτηση. Παρ’ όλα αυτά τα 

τελευταία χρόνια  αντιμετωπίζεται και ως πολύ-αντικειμενικό, με τους (Tan et al. 2006) και 

(Ombuki et al. 2006) να είναι οι πρώτοι που θεώρησαν το ΠΔΟΧΠ ως πολυαντικειμενικό, 

εφαρμόζοντας την έννοια της βελτιστοποίησης Pareto.  



 

19 

 

Σε αυτή την κατεύθυνση, στο συγκεκριμένο Κεφάλαιο παρουσιάζεται η ανάπτυξη ενός 

αλγορίθμου Πολυαντικειμενικής Αναζήτησης Ευρείας Γειτονιάς (ΠΑΕΓ) που εκμεταλλεύεται 

τη λύση που προκύπτει από τον ευρετικό αλγόριθμο κατασκευής. Ο προτεινόμενος αλγόριθμος 

ΠΑΕΓ αντιμετωπίζει το ΠΔΟΧΠ ως πολύ-αντικειμενικό και στοχεύει στην ελαχιστοποίηση 

τόσο του αριθμού των οχημάτων όσο και της συνολικά διανυόμενης απόστασης εφαρμόζοντας 

τελεστές «καταστροφής» και «επισκευής», διατηρώντας ταυτόχρονα την έννοια της βέλτιστης 

Pareto. Τα αποτελέσματα του αλγορίθμου συγκρίνονται με τα καλύτερα δημοσιευμένα 

αποτελέσματα της βιβλιογραφίας, υποδεικνύοντας έναν πολύ αποτελεσματικό αλγόριθμο.  

Στο υπόλοιπο του Κεφαλαίου, το ΠΔΟTW ορίζεται και διατυπώνεται στην ενότητα 3.2, ενώ 

στην ενότητα 3.3 παρουσιάζεται διεξοδικά ο προτεινόμενος αλγόριθμος ΜΟLNS που στοχεύει 

στην επίλυση πραγματικών περιπτώσεων ΠΔΟTW. Τα υπολογιστικά αποτελέσματα του 

προτεινόμενου αλγορίθμου στις περιπτώσεις αναφοράς του Solomon παρουσιάζονται στην 

ενότητα 3.4. Στην ίδια ενότητα, συζητείται η αναμενόμενη εφαρμογή του αλγορίθμου σε  

λογισμικό δρομολόγησης και προγραμματισμού. Τέλος, η ενότητα 3.5 περιέχει τα 

συμπεράσματα του Κεφαλαίου. 

3.2 Περιγραφή Προβλήματος 

Από τη στιγμή που έχουν καθοριστεί οι παράμετροι του προβλήματος, πρέπει να διαμορφωθεί 

και το μαθηματικό μοντέλο του τελικού προβλήματος. Πιο συγκεκριμένα, το πρόβλημα 

καθορίζεται από ένα δίκτυο G (N, A), όπου Ν το σύνολο των κόμβων και and 𝐴 = (𝑖, 𝑗): 𝑖 ≠

𝑗, 𝑖, 𝑗 ∈ 𝑁 το σύνολο των τόξων (arcs). Ο κόμβος {0} αντιπροσωπεύει την αποθήκη, ενώ το 

σύνολο 𝑁∗ = {𝑁/0} περιγράφει το σύνολο των πελατών. Κάθε τόξο (𝑖, 𝑗), το οποίο είναι  η 

διαδρομή από τον κόμβο i προς τον κόμβο j, χαρακτηρίζεται από την απόσταση 𝑑𝑖𝑗, καθώς και 

από τον χρόνο μετακίνησης 𝑡𝑖𝑗. Επιπλέον, κάθε πελάτης χαρακτηρίζεται από τις ποσότητες 

προς παράδοση, 𝑞𝑖, ενώ επίσης ο πελάτης ορίζει ένα χρονικό παράθυρο [𝑒𝑖 , 𝑙𝑖], που 

αντιπροσωπεύει την ενωρίτερη και την αργότερη δυνατή έναρξη φόρτωσης/ εκφόρτωσης 

εμπορευμάτων στον πελάτη. Οι πελάτες πρέπει αν εξυπηρετηθούν ακριβώς μια φορά και από 

ένα  μοναδικό όχημα. Ο χρόνος άφιξης δίνεται από το 𝑎𝑖. Επιπλέον, αν το όχημα φτάσει πριν 

την άνοιξη του χρονικού παραθύρου (𝑒𝑖 ), τότε πρέπει να περιμένει 𝑤𝑖
𝑘 χρόνο, μέχρι η 

εξυπηρέτηση να είναι εφικτή, ενώ κανένα όχημα δεν μπορεί να καταφτάσει μετά την 

ολοκλήρωση του χρονικού παραθύρου (𝑙𝑖).  

3.3 Μέθοδος Επίλυσης – Πολυαντικειμενική Αναζήτηση Ευρείας 

Γειτονιάς 

Ο προτεινόμενος αλγόριθμος Πολυαντικειμενικής Αναζήτησης Ευρείας Γειτονιάς (ΠΑΕΓ), ως 

πρώτο βήμα, λαμβάνει την αρχική λύση εφαρμόζοντας τον αλγόριθμο του πλησιέστερου 

γείτονα με προσανατολισμό στον χρόνο, ο οποίος είναι ευρετικός κατασκευαστικός. Κατά 

συνέπεια, σε κάθε επανάληψη, εφαρμόζονται οι χειριστές καταστροφής και επισκευής για τη 

βελτίωση της λύσης. Εάν η πρόσφατα ληφθείσα λύση είναι καλύτερη από την τρέχουσα 



 

20 

 

καλύτερη, τότε την αντικαθιστά και χρησιμοποιείται ως είσοδος στην επόμενη επανάληψη. 

Για να αξιολογηθεί εάν μια λύση είναι καλύτερη από μια άλλη, εφαρμόζεται η έννοια της 

βελτιστοποίησης Pareto και αναλύεται διεξοδικά στην ενότητα 3.3.1. Ο κατασκευαστικός 

ευρετικός αλγόριθμος κατασκευής περιγράφεται στην ενότητα 3.3.2. Στην ενότητα 3.3.3 και 

3.3.4, παρουσιάζονται οι κινήσεις καταστροφής και επισκευής αντίστοιχα. Τέλος, το γενικό 

πλαίσιο του αλγορίθμου MOLNS παρουσιάζεται στην ενότητα 3.3.5. 

3.3.1 Αποτελεσματικότητα κατά Pareto 

Οι παραδόσεις σε τελικούς πελάτες και καταναλωτές αποτελούν βασικό μέρος της αλυσίδας 

εφοδιασμού και των λειτουργιών logistics. Εμπλέκονται πολλά ενδιαφερόμενα μέρη, όπως 

εταιρείες διανομής τρίτων (3PL), εταιρείες μεταφορών ή ακόμα και εταιρείες παραγωγής που 

διαθέτουν δικό τους στόλο οχημάτων. Ανάλογα με την περίπτωση, είτε ο αριθμός των 

οχημάτων είτε η συνολικά διανυόμενη απόσταση είναι πιο σημαντικός ή συμβάλλει 

περισσότερο στο κόστος. Ως εκ τούτου, είναι σημαντικό να επιτευχθεί κάθε πιθανή λύση χωρίς 

κυριαρχία, και κάθε ενδιαφερόμενος παίρνει την απόφαση και επιλέγει τη λύση που είναι πιο 

κερδοφόρα (Ehrgott 2005). Πιο συγκεκριμένα, κατά τη μετάβαση από μια βέλτιστη λύση 

Pareto σε μια άλλη, υπάρχει πάντα μείωση σε έναν στόχο και ταυτόχρονη αύξηση στον 

δεύτερο στόχο.  

Τόσο στη φάση της κατασκευής όσο και στη φάση του αλγορίθμου LNS, κάθε λύση που 

προκύπτει ελέγχεται αν ανήκει είτε στις λύσεις που κυριαρχούν είτε στις μη κυριαρχούμενες 

λύσεις. Εάν μια λύση που λαμβάνεται από τον αλγόριθμο ανήκει στις μη κυριαρχούμενες 

λύσεις, τότε το βέλτιστο σύνολο Pareto ενημερώνεται. Επομένως, κάθε λύση που λαμβάνεται 

από τον προτεινόμενο αλγόριθμο συγκρίνεται με τις μη κυριαρχούμενες λύσεις για να 

διασφαλιστεί ότι οι βέλτιστες λύσεις διατηρούνται και ενημερώνονται συνεχώς.  

3.3.2 Κατασκευαστική Διαδικασία 

Έχουν αναπτυχθεί αρκετοί ευρετικοί αλγόριθμοι για τη δημιουργία λύσεων για το ΠΔΟ. Στην 

παρούσα ενότητα επιλέγεται ο αλγόριθμος του πλησιέστερου γείτονα με προσανατολισμό στον 

χρόνο (ΠΓΠΧ) για τη λήψη των αρχικών λύσεων λόγω της απλότητας και της ταχύτητάς του. 

Ο αλγόριθμος λειτουργεί δημιουργώντας διαδρομές που ξεκινούν από την αποθήκη (κόμβος 

0), και κατά συνέπεια, προστίθεται ο "πλησιέστερος" στον τελευταίο κόμβο που επισκέφθηκε 

ο μη δρομολογημένος πελάτης. Κατά την αναζήτηση του "πλησιέστερου" πελάτη, πρέπει να 

τηρούνται οι περιορισμοί χρονικού παραθύρου και οι περιορισμοί χωρητικότητας. 

Διαφορετικά, δεν μπορεί να προστεθεί πελάτης. Ξεκινά μια νέα διαδρομή εάν δεν βρεθεί 

πελάτης, εκτός εάν δεν έχουν μείνει άλλοι πελάτες για προσθήκη, που σημαίνει ότι όλες οι 

διαδρομές έχουν κατασκευαστεί και η διαδικασία έχει ολοκληρωθεί. Ο Solomon (Solomon 

1987) πρότεινε αυτή τη μέθοδο σε μια προσπάθεια να λύσει το ΠΔΟΧΠ βέλτιστα.  



 

21 

 

3.3.3 Πολυαντικειμενική Αναζήτηση Ευρείας Γειτονιάς 

Όπως περιγράφεται στην ενότητα 3.3.2, οι πελάτες προστίθενται σε κάθε διαδρομή, με βάση 

την "εγγύτητα" τους με τον τελευταίο προστιθέμενο πελάτη. Ωστόσο, τα χρονικά παράθυρα 

επηρεάζουν σε μεγάλο βαθμό την αρχική λύση, η οποία σε πολλές περιπτώσεις αποκλίνει από 

τη βέλτιστη. Επομένως, αφού κατασκευαστούν οι αρχικές λύσεις, εφαρμόζεται ο αλγόριθμος 

ΠΑΕΓ που καταστρέφει εν μέρει και στη συνέχεια επισκευάζει τη λύση για να ελαχιστοποιηθεί 

τόσο ο αριθμός των οχημάτων όσο και η συνολική απόσταση που διανύθηκε. Οι τελεστές 

καταστροφής είναι 5 ενώ οι κινήσεις επισκευής είναι 2.  

3.3.4 Γενικό Πλαίσιο Αλγορίθμου 

Αρχικά, οι βέλτιστες λύσεις Pareto που κατασκευάζονται από τον αλγόριθμο ΠΓΠΧ, 

χρησιμοποιούνται ως είσοδος στον αλγόριθμο ΠΑΕΓ. Σε κάθε επανάληψη που εφαρμόζεται ο 

αλγόριθμος ΠΑΕΓ, οι κινήσεις καταστροφής και επισκευής εφαρμόζονται σε κάθε μία από τις 

βέλτιστες λύσεις Pareto. Κατά συνέπεια, για κάθε λύση, λαμβάνεται μια νέα - Xnew. Εάν η λύση 

Xnew αποτελεί βέλτιστη λύση Pareto, καθώς ανήκει στις μη κυριαρχούμενες λύσεις, τότε το 

βέλτιστο σύνολο Pareto ανανεώνεται, διαφορετικά δεν γίνονται αλλαγές. 

3.4 Υπολογιστική Μελέτη 

Αυτή η ενότητα περιγράφει τα αποτελέσματα των υπολογιστικών πειραμάτων που 

πραγματοποιήθηκαν για την αξιολόγηση της απόδοσης του προτεινόμενου αλγορίθμου. Ο 

αλγόριθμος αναπτύχθηκε σε Python και έτρεχε σε προσωπικό υπολογιστή με τις ακόλουθες 

προδιαγραφές: Intel Core i7 - 8550U 1,8 GHz με μνήμη 16 GB. Ο προτεινόμενος αλγόριθμος 

δοκιμάστηκε σε περιπτώσεις αναφοράς ΠΔΟΧΠ του Solomon με 100 πελάτες (Solomon 

1987). Στο συγκεκριμένο σύνολο δεδομένων, τα προβλήματα C1 και C2 έχουν γεωγραφικά 

συγκεντρωμένους πελάτες. Στα R1 και R2, τα γεωγραφικά δεδομένα δημιουργούνται τυχαία, 

ενώ στα σύνολα προβλημάτων RC1 και RC2, περιλαμβάνεται ένας συνδυασμός τυχαίων και 

ομαδοποιημένων πελατών. Τα σύνολα R1, C1 και RC1 έχουν μικρό χρονικό ορίζοντα 

προγραμματισμού, μικρού εύρους χρονικά παράθυρα και χαμηλή χωρητικότητα οχημάτων, 

ενώ τα σετ R2, C2 και RC2 έχουν μεγάλο χρονικό ορίζοντα προγραμματισμού, μεγάλου 

εύρους χρονικά παράθυρα και μεγάλη χωρητικότητα οχημάτων, που καθορίζουν τον αριθμό 

των πελατών που εξυπηρετείται από το ίδιο όχημα. 

Κάθε περίπτωση εκτελέστηκε τρεις φορές, ενώ το υπολογιστικό όριο έχει οριστεί στα 15 

λεπτά. Φυσικά, η CPU και η γλώσσα προγραμματισμού είναι επίσης σημαντικοί παράγοντες 

που επηρεάζουν τον υπολογιστικό χρόνο που απαιτείται.  Στις περισσότερες περιπτώσεις, τα 

αποτελέσματα απαιτούν λιγότερο από τα 15 λεπτά που είναι το όριο. Δεδομένου ότι το 

ΠΔΟTW αντιμετωπίζεται ως πολυαντικειμενικό, σε ορισμένες περιπτώσεις, ελήφθησαν 

περισσότερες από μία λύσεις. Για αυτόν τον λόγο τα αποτελέσματα συγκρίνονται μόνο όταν 

έχουν ίδιο αριθμό οχημάτων σαν λύση. Εφόσον ισχύει η προϋπόθεση αυτή, η απόκλιση 

υπολογίζεται μεταξύ της συνολικά διανυόμενης απόστασης που προκύπτει μεταξύ των  



 

22 

 

βέλτιστων λύσεων της βιβλιογραφίας και των λύσεων που προκύπτουν από τον προτεινόμενο 

αλγόριθμο.  Όσον αφορά τα αποτελέσματα, στις περιπτώσεις με γεωγραφικά ομαδοποιημένους 

πελάτες (C1 και C2) τα αποτελέσματα είναι καλύτερα σε σχέση με αυτές που έχουν τυχαία 

γεωγραφικά δεδομένα, καθώς η μέση απόκλιση, σε αυτήν την περίπτωση, είναι 0,30%. Στα 

τυχαία γεωγραφικά δεδομένα (R), η μέση απόκλιση είναι μεγαλύτερη και φτάνει το 3,37%, 

ενώ στα μικτά γεωγραφικά δεδομένα πελατών (RC) είναι 3,47%. Τέλος, η μέση απόκλιση για 

όλες τις περιπτώσεις είναι μικρότερη από 2,85%, η οποία μπορεί να θεωρηθεί πολύ 

αποτελεσματική αφού τα βέλτιστα αποτελέσματα έχουν προκύψει από πολλούς ερευνητές με 

την πάροδο του χρόνου. Συνολικά, το 32,47% των συγκρίσιμων λύσεων έχουν απόκλιση 

μικρότερη από 1%, οι περισσότερες από αυτές σε περιπτώσεις C. Ταυτόχρονα, το 98,70% των 

αποτελεσμάτων αποκλίνει λιγότερο από 10% από το βέλτιστο. Τέλος, τρεις νέες βέλτιστες 

λύσεις Pareto προτείνονται, στα RC202, RC207 και R201. Στο πρόβλημα RC202, 

επιτυγχάνεται μείωση της συνολικής διανυόμενης απόστασης, αλλά σε βάρος ενός επιπλέον 

οχήματος. Στις περιπτώσεις R201 και RC202, ο αλγόριθμος κατάφερε να βελτιώσει τις λύσεις 

μειώνοντας τη συνολική απόσταση, ενώ ο αριθμός των οχημάτων παρέμεινε σταθερός. 

3.5 Συμπεράσματα 

Τα αποτελέσματα που προέκυψαν από τον αλγόριθμο ΠΑΕΓ συγκρίθηκαν με τις βέλτιστες 

δημοσιευμένες λύσεις στα προβλήματα δίνοντας σχεδόν κοντινά στις βέλτιστες λύσεις 

αποτελέσματα, περιλαμβάνοντας ακόμη και τρεις νέες λύσεις Pareto. Τα υπολογιστικά 

πειράματα δείχνουν ότι τα αποτελέσματα είναι αποτελεσματικά και λαμβάνονται σε πολύ 

ρεαλιστικό χρόνο, καθώς τόσο η αποτελεσματικότητα όσο και η ταχύτητα είναι κρίσιμοι 

παράγοντες κατά την εφαρμογή ενός αλγορίθμου σε λύσεις λογισμικού, ο προτεινόμενος 

αλγόριθμος MOLNS μπορεί να εξεταστεί για εφαρμογή. 

Επιπλέον, το γεγονός ότι ο αλγόριθμος είναι πολυαντικειμενικός δίνει τη δυνατότητα επιλογής 

της λύσης που ταιριάζει καλύτερα στις ανάγκες. Αυτό είναι σημαντικό σε περιπτώσεις που 

πρέπει να βρεθεί η καλύτερη αντιστάθμιση μεταξύ δύο στόχων. Τα οφέλη του αλγόριθμου 

φαίνεται να είναι σημαντικά και γι' αυτό ο αλγόριθμος αποθηκεύεται στη βάση δεδομένων 

cloud της Oracle και είναι προσβάσιμος από το σύστημα που παρουσιάζεται στο Κεφάλαιο 6, 

με τις κατάλληλες αλλαγές στο αίτημα.  

Επιπλέον, για να καθοριστεί η αποδοτικότητα του αλγορίθμου ως προς το χρόνο εκτέλεσης, 

αναπτύσσεται ένας άλλος πολυσκοπικός μεταευρετικός αλγόριθμος που μπορεί να λύσει το 

ΠΔΟΧΠ. Ο αλγόριθμος είναι ένας Εξελικτικός Αλγόριθμος (ΕΑ) που χειρίζεται ταυτόχρονα 

χρονικά παράθυρα, καθώς και ταυτόχρονες παραλαβές και παραδόσεις. Ο ΕΑ παρουσιάζεται 

παρακάτω στο Κεφάλαιο 4. 

 

 



23 

 

4. Πρόβλημα της Δρομολόγησης Οχημάτων με Ταυτόχρονες 
Περισυλλογές και Παραδόσεις και με Χρονικά Παράθυρα 

4.1 Εισαγωγή 

Το δίκτυο εφοδιαστικής αλυσίδας περιλαμβάνουν πολλές διαδικασίες, όπως διανομή αγαθών 

σε λιανοπωλητές και καταναλωτές, καθώς και η αποθήκευση προϊόντων και η προμήθεια 

πρώτων υλών σε κατασκευαστές. Επιπλέον, περιλαμβάνουν τη συλλογή προϊόντων από 

τελικούς πελάτες για ανακύκλωση, ανακατασκευή ή επισκευή (Govindan et al. 2015). 

Δεδομένου του εύρους των λειτουργιών της εφοδιαστικής αλυσίδας, η δρομολόγηση των 

οχημάτων και ο προγραμματισμός των παραδόσεων αποτελούν ένα μικρό αλλά ουσιαστικό 

κομμάτι αυτής. Επομένως, η αποτελεσματική δρομολόγηση των οχημάτων και ο 

προγραμματισμός των παραδόσεων διασφαλίζει ότι θα μειωθεί το κόστος μεταφοράς και θα 

βελτιωθούν οι παρεχόμενες υπηρεσίες. 

Εκτός από το Πρόβλημα της Δρομολόγησης Οχημάτων με Χρονικά Παράθυρα (ΠΔΟΧΠ), το 

οποίο αποτελεί μία από τις πιο συχνά εμφανιζόμενες παραλλαγές του ΠΔΟ, οι ερευνητές 

εστιάζουν επίσης στο ΠΔΟ με Ταυτόχρονες Περισυλλογές και Παραδόσεις (ΠΔΟΤΠΠ) την 

έρευνα που παρουσιάζεται στο Κεφάλαιο 2. Στο ΠΔΟΤΠΠ, η κύρια παραλλαγή από το αρχικό 

πρόβλημα είναι ότι κάθε πελάτης μπορεί να παραλάβει και να επιστρέψει αγαθά  (Nagy and 

Salhi 2005). Αυτή η παραλλαγή δημιουργεί έναν επιπλέον περιορισμό, καθώς σε οποιοδήποτε 

στάδιο του δρομολογίου, όπου τα αγαθά παραδίδονται και συλλέγονται, η χωρητικότητα του 

οχήματος δεν μπορεί να παραβιαστεί. Συνδυάζοντας αυτές τις δύο παραλλαγές, αυτό το 

περίπλοκο πρόβλημα έρχεται πιο κοντά σε πραγματικές περιπτώσεις διανομής. 

Επιπλέον, η μετατροπή πραγματικών περιπτώσεων διανομής σε παραλλαγές του ΠΔΟ δεν θα 

είχε καμία αξία εάν δεν αξιοποιηθεί στο έπακρο η πρόοδος στην τεχνολογία και την επιστήμη 

των υπολογιστών. Και οι δύο τομείς επέτρεψαν στους ερευνητές να αναπτύξουν πιο 

αποτελεσματικούς αλγόριθμους για την αντιμετώπιση των παραλλαγών του ΠΔΟ. 

Περιορισμένες μελέτες έχουν προτείνει ακριβείς αλγόριθμους για αυτήν την παραλλαγή (El-

Sherbeny 2010), οι περισσότερες από τις οποίες αντιμετωπίζουν μέχρι 100 παραγγελίες. 

Όσον αφορά τους ευρετικούς αλγόριθμους οι οποίοι προσφέρουν λύσεις καλής ποιότητας σε 

σύντομο χρονικό διάστημα καθώς επίσης έχουν τη δυνατότητα να επιλύουν προβλήματα 

οποιουδήποτε μεγέθους, αναπτύσσονται συχνότερα από τους ακριβείς αλγόριθμους. Μερικά 

από τα πιο μελετημένουν ευρετικούς που εφαρμόζονται για διάφορες παραλλαγές του ΠΔΟ, 

συμπεριλαμβανομένου του ΠΔΟΤΠΠ, είναι (i) η αναζήτηση του πλησιέστερου γείτονα με 

προσανατολισμό στον χρόνο (ΠΓΠΧ) (Solomon 1987), (ii) ο Sweep (Gillett and Miller 1974) 

και (iii) τον αλγόριθμο Savings (Clarke and Wright 1964). Παρά το γεγονός ότι είναι άνω των 

30 ετών, αυτοί οι αλγόριθμοι παραμένουν η βάση άλλων πιο εξελιγμένων και βελτιωμένων 

αλγορίθμων και εξακολουθούν να χρησιμοποιούνται σε εμπορικά λογισμικά δρομολόγησης  

(Gayialis and Tatsiopoulos 2004). 



 

24 

 

Ωστόσο, το κέντρο της προσοχής έχει μετατοπιστεί στους μεταευρετικούς αλγόριθμους καθώς 

συνδυάζουν πλεονεκτήματα τόσο από ακριβείς όσο και από ευρετικούς αλγόριθμους. 

Σύμφωνα με την έρευνα που παρουσιάζεται στο Κεφάλαιο 2, μεταξύ των πιο συχνά 

αναπτυσσόμενων αλγορίθμων για αυτές τις παραλλαγές του ΠΔΟ είναι οι εξελικτικοί και 

γενετικοί αλγόριθμοι, η βελτιστοποίηση μέσω σμήνους σωματιδίων, η βελτιστοποίηση 

αποικίας μυρμηγκιών, προσομοιωμένης ανόπτησης, αναζήτηση ευρείας γειτονιάς και 

αναζήτηση tabu. 

Στις περισσότερες περιπτώσεις, οι αλγόριθμοι που απευθύνονται στο ΠΔΟΧΠ και το 

ΠΔΟΤΠΠ παράγουν μεροληπτικές λύσεις είτε ως προς τον αριθμό των οχημάτων είτε για τη 

συνολική απόσταση που διανύθηκε, που είναι οι δύο στόχοι. Ωστόσο, τα τελευταία χρόνια, 

ορισμένοι ερευνητές θεωρούν το ΠΔΟ ως πολυαντικειμενικό, πράγμα που σημαίνει ότι 

περισσότερες από μία λύσεις μπορούν να θεωρηθούν βέλτιστες σύμφωνα με τις τιμές των δύο 

αντικειμενικών συναρτήσεων. Πιο συγκεκριμένα, οι Ombuki et al. (2006) και Tan et al. (2006) 

ήταν οι πρώτοι που πρότειναν έναν πολυσκοπικό γενετικό και εξελικτικό αλγόριθμο, 

αντίστοιχα, για το ΠΔΟTW, προσφέροντας νέες μη κυριαρχούμενες λύσεις. Αντίθετα, οι 

ερευνητές δεν έχουν μελετήσει την πολυαντικειμενική φύση του ΠΔΟΤΠΠ στον ίδιο βαθμό, 

με αυτή των Gong et al. (2018) να είναι μία από τις κύριες, καθώς πρότεινε έναν 

αποτελεσματικό εξελικτικό αλγόριθμο μελισσών για αυτό το πρόβλημα.  

Στο τρέχον Κεφάλαιο, ένας Πολυαντικειμενικό Εξελικτικός Αλγόριθμος (ΠΕΑ) που 

χρησιμοποιεί τη διαδικασία ταξινόμησης χωρίς κυριαρχία που προτείνεται από τους  (Deb et 

al. 2002), προτείνεται για την επίλυση του Προβλήματος Δρομολόγησης Οχημάτων με 

Ταυτόχρονες Περισυλλογές και Παραδόσεις και με Χρονικά Παράθυρα (ΠΔΟΤΠΠΧΠ), ενώ 

τόσο ο αριθμός των οχημάτων όσο και η συνολικά διανυόμενη απόσταση πρέπει να 

ελαχιστοποιηθούν. Ο ΠΕΑ ελέγχεται και στις περιπτώσεις της βιβλιογραφίας προσφέρονται 

ανταγωνιστικά υπολογιστικά αποτελέσματα βέλτιστα της βιβλιογραφίας. Επομένως, η 

συνεισφορά αυτού του Κεφαλαίου δεν περιορίζεται στην αντιμετώπιση του ΠΔΟΤΠΠΧΠ ως 

πολυαντικειμενικό, στην παραλλαγή του αλγορίθμου ΠΑΕΓ και στον τελεστή διασταύρωσης 

που είναι ενσωματωμένος στον αλγόριθμο. Η προσφορά της έρευνας επεκτείνεται στην πλήρη 

παρουσίαση όλων των μη κυριαρχούμενων λύσεων στα σύνολα δεδομένων που μελετήθηκαν. 

Επιπλέον, ο αλγόριθμος ενσωματώνει και αντιμετωπίζει την ανάγκη των οχημάτων να 

ανεφοδιάζουν το ντεπόζιτό τους ή να επαναφορτίζουν τις μπαταρίες τους. Αυτό το 

χαρακτηριστικό σπάνια αντιμετωπίζεται σε πραγματικές περιπτώσεις, καθώς τα οχήματα 

βενζίνης και ντίζελ έχουν υψηλή αυτονομία, ενώ ο χρόνος που απαιτείται για τον ανεφοδιασμό 

είναι ελάχιστος. Η αυτονομία οδήγησης και ο χρόνος ανεφοδιασμού έχουν μεγάλο αντίκτυπο 

στα ηλεκτρικά οχήματα. Ως εκ τούτου, η μαθηματική διατύπωση έχει δημιουργηθεί έτσι ώστε 

να εξετάζεται η αυτονομία κάθε τύπου οχήματος. 

Οι επόμενες ενότητες του Κεφαλαίου περιλαμβάνουν τη διατύπωση του προβλήματος, την 

παρουσίαση του προτεινόμενου αλγορίθμου, τα αποτελέσματα επικύρωσής του και, τέλος, τα 



 

25 

 

συμπεράσματα της έρευνας. Πιο συγκεκριμένα, η μαθηματική διατύπωση του ΠΔΟSPDTW 

παρουσιάζεται στην ενότητα 4.2. Η ενότητα 4.3 αναλύει τη δομή του προτεινόμενου 

αλγορίθμου, τη βελτιωμένη παραλλαγή του αλγορίθμου TONN, τον νέο προτεινόμενο τελεστή 

διασταύρωσης και τον τελεστή μετάλλαξης. Τα υπολογιστικά αποτελέσματα παρουσιάζονται 

και συγκρίνονται με τις καλύτερα δημοσιευμένες λύσεις σε περιπτώσεις αναφοράς στην 

ενότητα 4.4. Στην ενότητα 4.5 συζητούνται τα οικονομικά και περιβαλλοντικά οφέλη από τη 

χρήση βενζίνης, ντίζελ και ηλεκτρικών οχημάτων. Τέλος, τα συμπεράσματα συζητούνται στην 

ενότητα 4.6. 

4.2 Περιγραφή Προβλήματος 

Από τη στιγμή που έχουν καθοριστεί οι παράμετροι του προβλήματος, πρέπει να διαμορφωθεί 

και το μαθηματικό μοντέλο του τελικού προβλήματος. Πιο συγκεκριμένα, το πρόβλημα 

καθορίζεται από ένα δίκτυο = {𝐹 ∪ 𝑁, 𝐴}, όπου Ν το σύνολο των κόμβων, 𝐹 =

{𝑛 + 1, 𝑛 + 2, … 𝑛 + 𝑠} το σύνολο των σημείων επαναφόρτισης και τροφοδότησης καυσίμου, 

και 𝐴 = (𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑁 το σύνολο των τόξων (arcs). Ο κόμβος {0} αντιπροσωπεύει την 

αποθήκη, ενώ το σύνολο 𝑁∗ = {𝑁/0} περιγράφει το σύνολο των πελατών. Κάθε τόξο (𝑖, 𝑗), 

το οποίο είναι  η διαδρομή από τον κόμβο i προς τον κόμβο j, χαρακτηρίζεται από την 

απόσταση 𝑑𝑖𝑗, καθώς και από τον χρόνο μετακίνησης 𝑡𝑖𝑗. Επιπλέον, κάθε πελάτης 

χαρακτηρίζεται από τις ποσότητες προς παράδοση, 𝑞𝑖, τις ποσότητες προς επιστροφή, 𝑟𝑖, οι 

οποίες φορτώνονται από τους πελάτες και επιστρέφουν στην κεντρική αποθήκη. Ακόμα, κάθε 

πελάτης ορίζει ένα χρονικό παράθυρο [𝑒𝑖 , 𝑙𝑖], που αντιπροσωπεύει την ενωρίτερη και την 

αργότερη δυνατή έναρξη φόρτωσης/ εκφόρτωσης εμπορευμάτων στον πελάτη. Αντίστοιχα, 

χρονικό παράθυρο έχει και η κεντρική αποθήκη (η οποία συμβολίζεται με 0) είναι [𝑒0 , 𝑙0] = 

[E, L], και ουσιαστικά ορίζει το διάστημα στο οποίο μπορούν να φορτώνουν και να 

εκφορτώνουν εμπορεύματα από και προς την αποθήκη τα φορτηγά/ οχήματα.  Αντίστοιχα, 

χρονικά παράθυρα έχουν και τα σημεία επαναφόρτισης και τροφοδότηση καυσίμου, τα οποία 

χαρακτηρίζονται και από χρόνο εξυπηρέτησης. 

Η έναρξη της εξυπηρέτηση του οχήματος 𝑘 στον κόμβο 𝑗, συμβολίζεται με 𝑎𝑗
𝑘  και εξαρτάται 

από τον χρόνο άφιξης του οχήματος, καθώς ένα όχημα που μπορεί να φτάσει πριν την έναρξη 

του χρονικού παραθύρου θα πρέπει να περιμένει μέχρι να είναι εφικτή η εξυπηρέτηση (𝑒𝑖 ). Αν 

το όχημα φτάσει μεταξύ 𝑒𝑖  και 𝑙𝑖, η εξυπηρέτηση ξεκινάει άμεσα, ενώ κανένα όχημα δεν 

μπορεί να εξυπηρετήσει εάν φτάσει μετά το κλείσιμο του χρονικού παραθύρου  𝑙𝑖. Επιπλέον, 

κάθε όχημα χαρακτηρίζεται από την αυτονομία του 𝑑𝑟𝑘  και από  ρυθμό κατανάλωσης βάσει 

απόστασης 𝑓𝑘. Η μεταβλητή απόφασης 𝑥𝑖𝑗
𝑘  η οποία ισούται με 1 αν το όχημα k εκτελεί τη 

διαδρομή από τον κόμβο i στον κόμβο j, και 0 σε διαφορετική περίπτωση, και συνεχίζοντας 

με την 𝑦𝑖𝑗
𝑘  η οποία αφορά την συνολική ποσότητα εντός του οχήματα κατά την μετακίνηση 

από τον κόμβο i στον κόμβο j. Η Τρίτη μεταβλητή απόφασης είναι η 𝑔𝑖
𝑘 , η οποία δίνει το 

εναπομένον επίπεδο καυσίμου όταν φτάνει στον πελάτη i, σύμφωνα με τον τύπο του οχήματος. 

Στόχος του ΠΔΟΤΠΠΧΠ είναι η εξυπηρέτηση όλων των πελατών στο 𝑁∗, καθώς 

ελαχιστοποιείται ταυτόχρονα η συνολικά διανυόμενη απόσταση και ο αριθμός των οχημάτων. 



 

26 

 

4.3 Μέθοδος Επίλυσης – Εξελικτικός Αλγόριθμος 

Για την αντιμετώπιση του ΠΔΟΤΠΠΧΠ που παρουσιάζεται παραπάνω, αναπτύχθηκε ένας 

αποτελεσματικός πολυαντικειμενικός εξελικτικός αλγόριθμος. Πιο συγκεκριμένα, η ενότητα 

4.3.1 συζητά τη σημασία της πολυαντικειμενικής βελτιστοποίησης και την έννοια της 

βελτιστοποίησης Pareto. Η ενότητα 4.3.2 παρουσιάζει τη βελτιωμένη έκδοση του αλγορίθμου 

πλησιέστερου γείτονα με προσανατολισμό στον χρόνο (ΠΓΠΧ) που χρησιμοποιείται για τη 

δημιουργία του αρχικού πληθυσμού λύσεων. Η ενότητα 4.3.3 περιγράφει τη δομή του 

χρωμοσώματος που εφαρμόζεται στο ΠΕΑ. Στην ενότητα 4.3.4, περιγράφεται διεξοδικά η 

μεθοδολογική διαδικασία του ΠΕΑ. Τέλος, ο νέος προτεινόμενος τελεστής διασταύρωσης και 

ο τελεστής μετάλλαξης περιγράφονται στην ενότητα 4.3.5.  

4.3.1 Πολυαντικειμενική Βελτιστοποίηση 

Ένα σύνολο βέλτιστων λύσεων μπορεί να ληφθεί σε προβλήματα βελτιστοποίησης πολλαπλών 

στόχων, αντί για μία μόνο λύση. Οι λύσεις που ανήκουν σε αυτό το σύνολο δεν κυριαρχούν 

μεταξύ τους. Το κύριο χαρακτηριστικό των λύσεων που δεν κυριαρχούν είναι ότι ενώ 

μετακινούνται από τη μια λύση στην άλλη, υπάρχει πάντα ένα ορισμένο ποσό θυσίας σε έναν 

στόχο για να επιτευχθεί ένα συγκεκριμένο ποσό κέρδους σε έναν άλλο στόχο. 

Στην περίπτωση του ΠΔΟ, οι διαφορετικές λύσεις που λαμβάνονται μεταφράζονται σε 

διαφορετικά σχέδια δρομολογίων και παραδόσεων. Αυτά τα διαφορετικά σχέδια εξυπηρετούν 

τα συμφέροντα πολλών ενδιαφερομένων που επιλέγουν το πιο κερδοφόρο. Η επιλογή 

βασίζεται σε περαιτέρω πληροφορίες και στη φύση της κάθε εταιρείας. Ως εκ τούτου, είναι 

κρίσιμο να θεωρηθεί το ΠΔΟΤΠΠΧΠ ως πολυαντικειμενικό, όπου οι δύο στόχοι είναι ο 

αριθμός των οχημάτων και η συνολική απόσταση που διανύθηκε για την κάλυψη των αναγκών 

πολλών ενδιαφερομένων. Μέσω αυτής της προσέγγισης και σε αναζήτηση ενός οικονομικά 

αποδοτικού σχεδίου, μπορεί να προκύψουν περισσότερες από μία λύσεις. Επομένως, 

εναπόκειται στη διακριτική ευχέρεια του υπεύθυνου λήψης αποφάσεων να επιλέξει το πιο 

κερδοφόρο σχέδιο. 

4.3.2 Κατασκευαστική Διαδικασία 

Ο αρχικός πληθυσμός λύσεων συμβάλλει σημαντικά στην αποτελεσματικότητα του 

προτεινόμενου ΠΕΑ. Επομένως, απαιτείται ένας αποτελεσματικός αλγόριθμος, από άποψη 

χρόνου και ποιότητας λύσης. Το γεγονός ότι ο  αλγόριθμος κατασκευής ΠΓΠΧ πληροί αυτές 

τις απαιτήσεις είναι ο κύριος λόγος που επιλέγεται για τη διαδικασία κατασκευής. Ο 

συγκεκριμένος κατασκευαστικός αλγόριθμος είναι ίδιος με αυτόν που παρουσιάζεται στην 

ενότητα 3.3.2 έχοντας μόνο μία διαφορά. Η διαφορά αυτή βασίζεται στο γεγονός ότι ο χρόνος, 

η απόσταση και η χωρητικότητα δεν είναι στην ίδια κλίμακα, επηρεάζοντας τις 

κατασκευασμένες λύσεις. Επομένως, εφαρμόστηκε η διαδικασία της κανονικοποίησης στα 

σύνολα (𝑡𝑖𝑗 , 𝑑𝑖𝑗 , 𝑒𝑖 , 𝑙𝑖, 𝑠𝑖, 𝑞𝑖). Αυτή η κανονικοποίησης παρέχει γραμμικό μετασχηματισμό και 

προσαρμόζει δεδομένα σε ένα προκαθορισμένο όριο, το οποίο είναι το [0, 1]. Αυτή η 



 

27 

 

διαδικασία δεδομένων προεπεξεργασίας βελτιώνει την ακρίβεια και επιτυγχάνει καλύτερη 

απόδοση στο δοκιμασμένο σύνολο δεδομένων. 

4.3.3 Δομή Χρωμοσώματος 

Η δομή του χρωμοσώματος επηρεάζει σημαντικά τον αλγόριθμο όσον αφορά την 

αποτελεσματικότητα και την πολυπλοκότητα του χρόνου, καθώς εμπλέκεται στους τελεστές 

διασταύρωσης και μετάλλαξης. Επομένως, αποφασίστηκε να αναπαρασταθεί το χρωμόσωμα 

ως πίνακας με μήκος ίσο με τον συνολικό αριθμό πελατών. Κάθε αντικείμενο του 

χρωμοσώματος είναι ένα γονίδιο και αντιπροσωπεύεται από έναν ακέραιο που αναφέρεται 

στον κόμβο (id) του πελάτη. Η αλληλουχία των γονιδίων καθορίζει τη σειρά επίσκεψης των 

πελατών. Όταν μια ακολουθία δεν μπορεί να συνεχιστεί λόγω παραβίασης των περιορισμών 

χωρητικότητας ή χρονικού παραθύρου, ξεκινά μια νέα διαδρομή. Στην περίπτωση οχημάτων 

που έχουν περιορισμένη αυτονομία, ο αλγόριθμος λαμβάνει επίσης υπόψη την ανάγκη είτε της 

επαναφόρτισης πριν αποφορτιστεί η μπαταρία (ηλεκτρικά οχήματα), είτε του ανεφοδιασμού 

του ντεπόζιτο (συμβατικά οχήματα). Επομένως, μεταξύ δύο διαδοχικών γονιδίων, μπορεί να 

παρέμβει ένα  σημείο φόρτιση ή ανεφοδιασμού καυσίμου (ΣΦΑΚ).  

4.3.4 Προτεινόμενος Εξελικτικός Αλγόριθμος 

Αφού ο ΠΓΠΧ δημιουργήσει τον αρχικό πληθυσμό (𝑅0) μεγέθους 𝑁, ο ΠΕΑ εφαρμόζεται για 

να εξελίξει τις λύσεις και να αποκτήσει το σύνολο Pareto. Πιο συγκεκριμένα, σε κάθε 

επανάληψη t, λαμβάνονται υπόψιν των σύνολο γονέων 𝑅𝑡, ο αλγόριθμος εφαρμόζει τις 

κινήσεις; διασταύρωσης σε όλους τους N γονείς και παράγουν N παιδιά τα οποία 

αποθηκεύονται στο 𝑄𝑡 (πληθυσμός παιδιών). Στη συνέχεια, τα χρωμοσώματα που ανήκουν 

στο σύνολο 𝑅𝑡 ∪ 𝑄𝑡 ταξινομούνται σύμφωνα με τη μη κυριαρχούμενη ταξινόμηση και 

δημιουργούν σύνολα Pareto 𝐹1, 𝐹2, … 𝐹𝐾. Αυτή η διαδικασία χρησιμοποιείται για ταξινόμηση 

των λύσεων σε σύνολα (𝐹1, 𝐹2, … 𝐹𝐾)σύμφωνα με τον κανόνα του Pareto. Αυτό σημαίνει ότι 

κάθε σύνολο 𝐹𝑖 περιέχει λύσεις, όπου 𝐹1 οι καλύτερες μη κυριαρχούμενες λύσεις. Αντίστοιχα, 

το σύνολο 𝐹2 περιέχει λύσεις που κυριαρχούνται μόνο από τις λύσεις του συνόλου 𝐹1. Το 

σύνολό 𝑅𝑡+1, που περιέχει τους γονείς της επόμενης επανάληψης γεμίζεται με λύσεις των 

συνόλων 𝐹1, 𝐹2, κλπ, μέχρις ότου N χρωμοσώματα γεμίσουν το σύνολο 𝑅𝑡+1. Μέσω αυτής της 

διαδικασίας, οι καλύτερες λύσεις σε κάθε επανάληψη διατηρούνται και χρησιμοποιούνται για 

την εξέλιξη των λύσεων. Η περιγραφόμενη διαδικασία ακολουθείται για συγκεκριμένο αριθμό  

επαναλήψεων, που είναι ο μέγιστος αριθμός γενεών.  

4.3.5 Τελεστές Διασταύρωσης και Μετάλλαξης 

Πολλές κινήσεις διασταύρωσης έχουν αναπτυχθεί με τα χρόνια για το ΠΔΟ. Ο προτεινόμενος 

και εφαρμοσμένος τελεστής διασταύρωσης ονομάζεται Διαδοχική Διασταύρωση (ΔΔ). Στην 

ΔΔ από το σύνολο P επιλέγονται δύο γονείς (𝑃𝑖, 𝑃𝑖+1) και από τον καθένα επιλέγεται ένας 

τυχαίος αριθμός διαδοχικών γονιδίων από κάθε χρωμόσωμα.  Στη συνέχεια, οι πελάτες που 

έχουν επιλεγεί αφαιρούνται από τον αντίθετο γονέα. Δεδομένου ότι όλοι οι πελάτες πρέπει να 



 

28 

 

εξυπηρετούνται, πρέπει επίσης να περιέχονται στο χρωμόσωμα. Η εισαγωγή πελάτη γίνεται 

στη θέση του χρωμοσώματος που ελαχιστοποιεί το κόστος. Μετά τη διαδικασία εισαγωγής, 

δημιουργούνται δύο νέα χρωμοσώματα, γνωστά ως απόγονοι. 

Ο τελεστής μετάλλαξης που ακολουθείται είναι ένας τελεστής κόμβου ανταλλαγής. Σε αυτή 

την περίπτωση, δύο πελάτες (γονίδια) του χρωμοσώματος επιλέγονται τυχαία και 

ανταλλάσσονται. Η κύρια συμβολή αυτής της διαδικασίας είναι η διαφοροποίηση των 

χρωμοσωμάτων, η οποία μπορεί να βοηθήσει στη διαφυγή από το τοπικό βέλτιστο. Τέλος, 

τόσο η μετάλλαξη όσο και ο τελεστής διασταύρωσης δεν εφαρμόζονται σε κάθε γενιά και σε 

κάθε σύνολο γονέων. Αντίθετα, κάθε κίνηση έχει μια συγκεκριμένη πιθανότητα να 

εφαρμοστεί. 

4.4 Υπολογιστικά Αποτελέσματα 

Ο προτεινόμενος αλγόριθμος δεν μπορεί να δοκιμαστεί ταυτόχρονα στο ΠΔΟΧΠ και το 

ΠΔΟΤΠΠ λόγω της έλλειψης ενός συνόλου δεδομένων που περιέχει και τα δύο 

χαρακτηριστικά. Επομένως, ο αλγόριθμος ελέγχεται σε δύο διαφορετικά σύνολα δεδομένων, 

του Solomon, για το ΠΔΟΧΠ και του Salhi και του Nagy, για το ΠΔΟΤΠΠ.  Ο προτεινόμενος 

αλγόριθμος αναπτύχθηκε σε Python και έτρεχε σε υπολογιστή με τις ακόλουθες προδιαγραφές: 

Intel Core i7 - 8550U 1,8 GHz με μνήμη 16 GB.  

Τέλος, οι παράμετροι του εξελικτικού αλγορίθμου που χρησιμοποιούνται στον προτεινόμενο 

αλγόριθμο είναι οι ίδιες με αυτές που παρουσιάζονται στο Ombuki et al. (2006) ώστε τα 

αποτελέσματα να είναι αντιπροσωπευτικά και συγκρίσιμα. 

• Μέγεθος πληθυσμού = 300 

• Αριθμός γενεών = 350 

• Πιθανότητα διασταύρωσης = 0,80 

• Πιθανότητα μετάλλαξης = 0,10 

Μια άλλη παράμετρος που ορίζεται είναι ο μέγιστος υπολογιστικός χρόνος. Στην έρευνα, το 

χρονικό όριο ορίζεται στα 15 λεπτά που θεωρείται εύλογος υπολογιστικός χρόνος για 100 

πελάτες. 

4.4.1 Αποτελέσματα στο ΠΔΟΧΠ 

Τα αποτελέσματα του ΠΕΑ θεωρούνται ανταγωνιστικά σε σύγκριση με τα καλύτερα 

δημοσιευμένα στη βιβλιογραφία. Η μέση απόκλιση μεταξύ των αποτελεσμάτων που 

προκύπτουν από τον αλγόριθμο και των βέλτιστων της βιβλιογραφίας είναι 2,64%, κριτήριο 

που αποδεικνύει την αποτελεσματικότητα του αλγορίθμου. Ωστόσο, το ΠΕΑ φαίνεται να έχει 

καλύτερη αποτελεσματικότητα με γεωγραφικά ομαδοποιημένα δεδομένα πελατών (σύνολα 

δεδομένων C), ανεξάρτητα από τον ορίζοντα προγραμματισμού και το εύρος των χρονικών 

παραθύρων, καθώς η απόκλιση των αποτελεσμάτων από τα βέλτιστα της βιβλιογραφίας 

κυμαίνεται από 0,00% έως 0,73%. 



 

29 

 

Ο ΠΕΑ, ο οποίος ενσωματώνει τον προτεινόμενο χειριστή crossover, μπορεί να αναζητήσει 

έναν τεράστιο χώρο λύσεων για να βρει λύσεις που δεν κυριαρχούν. Ως αποτέλεσμα, δύο νέες 

λύσεις χωρίς κυριαρχία προτείνονται στις περιπτώσεις R202 και R210 του Solomon. Στην 

περίπτωση R202, επιτυγχάνεται μείωση της συνολικά διανυόμενης απόστασης, ενώ στην 

περίπτωση R210, δύο λύσεις χωρίς κυριαρχία ενημερώνονται. Πιο συγκεκριμένα, στην 

περίπτωση R210, η προτεινόμενη λύση (NV=4, TD=920,13) βελτιώνει τόσο τη λύση (NV=4, 

TD=924,79), καθώς η απόσταση μειώνεται, όσο και η λύση (NV=5, TD=922,30), αφού τόσο 

ο αριθμός των οχημάτων όσο και η συνολικά διανυόμενη απόσταση μειώνονται. 

4.4.2 Αποτελέσματα στο ΠΔΟΤΠΠ 

Το ΠΔΟΤΠΠ μελετάται λιγότερο συχνά από το ΠΔΟΧΠ. Ο προτεινόμενος ΠΕΑ, ο οποίος 

είναι σε θέση να αντιμετωπίσει το ΠΔΟΤΠΠΧΠ, δοκιμάζεται στο σύνολο δεδομένων των 

Salhi και Nagy και τα αποτελέσματα που προκύπτουν από τον προτεινόμενο αλγόριθμο 

συγκρίνονται με τα καλύτερα δημοσιευμένα. Όπως και στην περίπτωση των χρονικών 

παραθύρων, ο αλγόριθμος καταφέρνει να παράγει νέες βέλτιστες λύσεις Pareto στις 

περιπτώσεις CMT2X, CMT6X, CMT7X, CMT8X, CMT9X, CMT10X. Σε κάθε μία από αυτές 

τις 6 περιπτώσεις, ο αριθμός των οχημάτων μειώνεται σε βάρος της αυξημένης συνολικής 

απόστασης που διανύθηκε. Επιπλέον, η μέση απόκλιση μεταξύ των καλύτερων 

δημοσιευμένων αποτελεσμάτων και των καλύτερων αποτελεσμάτων από τον ΠΕΑ όσον 

αφορά την συνολικά διανυόμενη απόσταση είναι 8,50%.  

4.5 Συμβατικά έναντι Ηλεκτρικών Οχημάτων 

Ενώ η διανομή αγαθών έχει προσελκύσει το ενδιαφέρον των ερευνητών για περισσότερα από 

60 χρόνια, είναι μόνο τα τελευταία χρόνια που οι εκπομπές αερίων του θερμοκηπίου 

εξετάζονται στο ΠΔΟ, λόγω της οικολογικής συνείδησης της βιωσιμότητας των μεταφορών, 

που οδηγεί σε πράσινη εφοδιαστική. Στην περίπτωση του Ηλεκτρικού ΠΔΟ (ΗΠΔΟ), τα 

οχήματα που χρησιμοποιούνται για τη διαδικασία διανομής διαθέτουν ηλεκτρικές μπαταρίες. 

Αυτό συνεπάγεται περιορισμένη εμβέλεια οδήγησης και επισκέψεις στους σταθμούς φόρτισης 

(ΣΦΑΚ) για την επαναφόρτιση των μπαταριών, όταν χρειάζεται, για την εκτέλεση των 

διαδρομών (Erdelić et al. 2019). Ωστόσο, το ΗΠΔΟ μπορεί να είναι πολύ πιο δύσκολο και 

πολύπλοκο εάν η κατανάλωση της μπαταρίας και οι εκπομπές CO2 σχετίζονται με το φορτίο 

και την ταχύτητα του οχήματος. Οι (Erdelić and Carić 2019) παρουσιάζουν μια έρευνα για το 

ΗΠΔΟ, εστιάζοντας στα μοντέλα κατανάλωσης και σε πρόσθετες παραλλαγές ΗΠΔΟ που 

προέκυψαν, όπως υβριδικά οχήματα, σταθμοί φόρτισης, λειτουργίες φόρτισης και δυναμικές 

συνθήκες κυκλοφορίας. Στην τρέχουσα έρευνα, υποτίθεται ότι η κατανάλωση και οι εκπομπές 

CO2 είναι σταθερές, ανεξάρτητα από το φορτίο και την ταχύτητα του οχήματος.  

Επιπλέον, οι περιπτώσεις διανομής που μελετώνται στην παρούσα υποενότητα, 

αντιμετωπίζονται από εταιρεία logistics στην πόλη της Αθήνας. Ωστόσο, τα δεδομένα και άλλα 

χαρακτηριστικά προσαρμόζονται στις απαιτήσεις της υπό μελέτη περίπτωσης. Ως εκ τούτου, 



 

30 

 

τα οχήματα θεωρούνται πανομοιότυπα σε όλες τις περιπτώσεις διανομής, ενώ στην πράξη, η 

εταιρεία διαθέτει διαφορετικούς τύπους οχημάτων. Λαμβάνοντας υπόψη τα πανομοιότυπα 

οχήματα, τρεις περιπτώσεις διακρίνονται ανάλογα με τον τύπο καυσίμου, (i) Βενζίνη, (ii) 

Ντίζελ και (iii) Ηλεκτρικά οχήματα. Ωστόσο, για να εξαχθούν αξιόπιστα συμπεράσματα από 

την έρευνα, τα οχήματα είναι της ίδιας μάρκας (Nissan) και του ίδιου μοντέλου (NV200). Κατά 

συνέπεια, οι περιπτώσεις διανομής ελέγχονται για τους τρεις διαφορετικούς τύπους οχημάτων. 

Σε κάθε περίπτωση, ο στόλος των οχημάτων αποτελείται μόνο από τον ίδιο τύπο οχημάτων. 

Επιπλέον, υπολογίστηκαν τα πάγια έξοδα, λαμβάνοντας υπόψη τον χρόνο απόσβεσης (10 έτη) 

και την ετήσια χρήση του οχήματος (250 εργάσιμες ημέρες ετησίως). Το αυξημένο πάγιο 

κόστος των ηλεκτρικών οχημάτων είναι τουλάχιστον αναμενόμενο αφού η τιμή αγοράς είναι 

υψηλότερη από τον άλλο τύπο οχημάτων. 

Από την άλλη πλευρά, το μεταβλητό κόστος είναι αντιστρόφως ανάλογο με το πάγιο κόστος, 

αφού εξαρτάται από την αξία του καυσίμου. Επιπλέον, η αυτονομία οδήγησης στα ηλεκτρικά 

οχήματα είναι σημαντικά χαμηλότερη, γεγονός που οδηγεί στην ανάγκη επαναφόρτισης της 

μπαταρίας, η οποία είναι επίσης χρονοβόρα (45 λεπτά για να επαναφορτιστεί πλήρως η άδεια 

μπαταρία).  

Τα υπολογιστικά αποτελέσματα της έρευνας, που περιέχουν τον αριθμό των οχημάτων που 

απαιτούνται (αριθμός διαδρομών) για την εκτέλεση του σχεδίου διαδρομών, τη συνολική 

απόσταση, τις εκπομπές CO2 και το κόστος (μεταβλητό, σταθερό και συνολικό), υπολογίζονται 

για κάθε τύπο οχήματος. Από τα αποτελέσματα παρατηρείται ότι τα βενζινοκίνητα οχήματα 

έχουν τις υψηλότερες εκπομπές CO2. Τα πετρελαιοκίνητα οχήματα έχουν επίσης αυξημένες 

εκπομπές ρύπων, αλλά κερδίζουν σημαντικό ενδιαφέρον λόγω του χαμηλού κόστους διανομής 

τους. Όσον αφορά τα ηλεκτρικά οχήματα, επιτυγχάνονται μηδενικές εκπομπές ρύπων, αλλά 

σε βάρος του υψηλού κόστους διανομής σε σύγκριση με άλλες περιπτώσεις οχημάτων. Ο 

κύριος παράγοντας που επηρεάζει τις παραδόσεις με ηλεκτρικά οχήματα, που οδηγεί σε 

αυξημένο κόστος, είναι ότι χρειάζονται περισσότερα οχήματα για την εκτέλεση των 

παραδόσεων σε σύγκριση με τους άλλους τύπους οχημάτων σε κάθε περίπτωση διανομής. 

Αυτό οφείλεται στην περιορισμένη χωρητικότητα των ηλεκτρικών οχημάτων, καθώς οι 

μπαταρίες έχουν αυξημένο βάρος και όγκο, γεγονός που τους εμποδίζει να έχουν την ίδια 

χωρητικότητα με άλλους τύπους οχημάτων. 

Η μείωση των εκπομπών και η αύξηση του κόστους στην περίπτωση των ηλεκτρικών 

οχημάτων μπορεί να είναι παραπλανητική. Και αυτό γιατί η παραγωγή ηλεκτρικής ενέργειας 

στην Ελλάδα βασίζεται, σε μεγάλο βαθμό, στη χρήση καυσίμων β’ κατηγορίας όπως ο λιγνίτης 

και λιγότερο σε ανανεώσιμες πηγές. Κατά συνέπεια, τα ηλεκτρικά οχήματα μπορεί να έχουν 

μηδενικές εκπομπές, ωστόσο η παραγωγή ηλεκτρικής ενέργειας έχει αυξήσει τις εκπομπές που 

μπορούν να ελαχιστοποιηθούν μόνο με τη χρήση ανανεώσιμων πηγών ενέργειας. Επιπλέον, 

είναι σαφές ότι το κόστος απόκτησης ηλεκτρικών οχημάτων είναι υψηλότερο σε σύγκριση με 

τη βενζίνη και το ντίζελ, όπως συνέβη με όλες τις νέες τεχνολογίες. Ωστόσο, με την πάροδο 



 

31 

 

των ετών, το κόστος κτήσης αναμένεται να μειωθεί και να είναι πιο αποδοτικό από πλευράς 

κόστους για τη διαδικασία διανομής. 

4.6 Συμπεράσματα 

Συνοψίζοντας, σε αυτό το Κεφάλαιο, εξετάστηκε το πρόβλημα δρομολόγησης οχημάτων με 

ταυτόχρονες παραλαβές και παραδόσεις και χρονικά παράθυρα, με στόχο την εύρεση μιας 

αποτελεσματικής λύσης στο πρόβλημα προτείνοντας έναν εξελικτικό αλγόριθμο  που λύνει το 

πολυαντικειμενικό ΠΔΟΤΠΠΧΠ. Το πρώτο βήμα για την επίλυση αυτού του προβλήματος 

ήταν η εφαρμογή ενός βελτιωμένου κατασκευαστικού αλγόριθμου ΠΓΠΧ για τη δημιουργία 

του αρχικού πληθυσμού λύσεων. Κατά συνέπεια, αυτές οι λύσεις ενσωματώθηκαν στον 

προτεινόμενο ΠΕΑ προκειμένου να βρεθεί το καλύτερο σχέδιο διαδρομών που ελαχιστοποιεί 

τις δύο αντικειμενικές συναρτήσεις: τον αριθμό των οχημάτων και τη συνολική απόσταση που 

διανύθηκε. Εκτός από την αντιμετώπιση του ΠΔΟΤΠΠΧΠ ως πολυαντικειμενικό, μια άλλη 

συμβολή του Κεφαλαίου αποδείχθηκε ότι είναι ο τελεστής διαστάυρωσης, ο οποίος επηρεάζει 

σημαντικά τα αποτελέσματα που λαμβάνονται από το ΠΑΕ. 

Η αποτελεσματικότητα του αλγορίθμου επικυρώθηκε χρησιμοποιώντας το σύνολο δεδομένων 

του Solomon για το ΠΔΟΧΠ και το σύνολο δεδομένων των Salhi και Nagy (1999) για το 

ΠΔΟΤΠΠ, και τα αποτελέσματα που προέκυψαν συγκρίθηκαν με τα καλύτερα δημοσιευμένα 

αποτελέσματα, υποδεικνύοντας την υψηλή απόδοση του αλγορίθμου.  

Ο αλγόριθμος δοκιμάστηκε σε διάφορες περιπτώσεις όπου ο στόλος αποτελείται από 

διαφορετικούς τύπους οχημάτων (βενζίνης, ντίζελ και ηλεκτρικού) ώστε να εκτιμηθεί ο 

οικονομικός και περιβαλλοντικός αντίκτυπος. Μεταξύ των ευρημάτων της έρευνας είναι ότι 

σε περιπτώσεις διανομής με αγαθά χαμηλού όγκου οι περιορισμοί των ηλεκτρικών οχημάτων 

(εμβέλεια οδήγησης) δεν επηρεάζουν πολύ το κόστος. Ωστόσο, καθώς αυξάνεται ο όγκος των 

εμπορευμάτων, απαιτούνται περισσότερα ηλεκτρικά οχήματα σε σύγκριση με άλλους τύπους 

οχημάτων, γεγονός που οδηγεί σε αυξημένο κόστος διανομής. Αυτό οφείλεται στη μειωμένη 

χωρητικότητα των ηλεκτρικών οχημάτων. Ανεξάρτητα από το κόστος, οι εκπομπές CO2 

εξαλείφονται με τη χρήση ηλεκτρικών οχημάτων.



32 

 

5. Πρόβλημα της Δρομολόγησης Οχημάτων με Ετερογενή Στόλο 
Οχημάτων, Ταυτόχρονες Περισυλλογές και Παραδόσεις και με 

Χρονικά Παράθυρα 

5.1 Εισαγωγή 

Στο τρέχον Κεφάλαιο, αναπτύσσεται ένας αλγόριθμος για την ενίσχυση των προσπαθειών των 

εταιρειών που δραστηριοποιούνται στον τομέα της διανομής εμπορευμάτων σε αστικές 

περιοχές. Σύμφωνα με την έρευνα που παρουσιάστηκε στο Κεφάλαιο 2, καθώς και με την 

έρευνα των Elshaer και Awad (2020) οι παραλλαγές του ΠΔΟ που αντιμετωπίζονται 

συχνότερα είναι (i) η ΠΔΟΧΠ, (ii) το ΠΔΟΕΣΟ και (iii) το ΠΔΟΤΠΠ. Οι παραλλαγές αυτές 

επομένως αντιμετωπίζονται και από τον προτεινόμενο αλγόριθμο. Οι προαναφερθείσες 

παράμετροι και περιορισμοί, όταν ληφθούν υπόψη ταυτόχρονα, καλύπτουν τις ανάγκες των 

περισσότερων εταιρειών διανομής και καλύπτουν το ΠΔΟ με Ετερογεννή Στόλο Οχημάτων, 

Ταυτόχρονες Περισυλλογές και Παραδόσεις και με Χρονικά Παράθυρα (ΠΔΟΕΣΟΤΠΠΧΠ). 

Επιπλέον, οι βάρδιες των οδηγών αποτελούν μια επιπλέον σημαντική παράμετρο τόσο στο 

τρέχον Κεφάλαιο όσο και στις πραγματικές περιπτώσεις, καθώς οι οδηγοί έχουν 

συγκεκριμένες ώρες εργασίας. Αυτός ο περιορισμός έχει κερδίσει έδαφος τα τελευταία χρόνια, 

(αυστηρότερη εργατική νομοθεσία), χωρίς ωστόσο να έχει προσελκύσει την κατάλληλη 

προσοχή από τους ερευνητές που μελετούν το ΠΔΟ. Στην τρέχουσα έρευνα, και για να 

απλοποιηθεί αυτός ο περιορισμός, κάθε βάρδια έχει μετατραπεί στον ενωρίτερο χρόνο 

εκκίνησης και τον τελευταίο χρόνο επιστροφής του οχήματος. 

Για την αντιμετώπιση αυτού του σύνθετου προβλήματος προτείνεται ένας μεταευρετικός 

αλγόριθμος Προσαρμοστικής Αναζήτησης Ευρείας Γειτονιάς (ΠΡΑΕΓ) ο οποίος μέσω 

τελεστών καταστροφής και επισκευής επιδιώκει στην ελαχιστοποίηση του συνολικού κόστους 

διανομής. Επιπλέον, ο αλγόριθμος ΠΡΑΕΓ εφαρμόζεται σε μια περίπτωση του Συνεργατικού 

ΠΔΟ, όπου τρεις εταιρείες 3PL που εδρεύουν και διανέμουν αγαθά στην ίδια περιοχή,. Αυτή 

η προσέγγιση μπορεί να φαίνεται δύσκολο να εφαρμοστεί στην Ελλάδα λόγω του εδάφους που 

δεν είναι ακόμη πρόσφορο για τέτοιες συνέργειες. Ωστόσο, τα οικονομικά και περιβαλλοντικά 

οφέλη αυτής της θεωρητικής προσέγγισης είναι αρκετά για να πείσουν τις εταιρείες να 

κινηθούν προς αυτή την κατεύθυνση στο μέλλον. 

Συνοψίζοντας, η έρευνα που διεξάγεται σε αυτό το Κεφάλαιο έρχεται να παρουσιάσει έναν 

μεταευρετικό αλγόριθμο που είναι αποθηκευμένος σε μια βάση δεδομένων έτσι ώστε να είναι 

προσβάσιμος από ένα cloud σύστημα δρομολόγησης, το οποίο παρουσιάζεται στο Κεφάλαιο 

6. Προκειμένου να ενισχυθεί αυτή η προσπάθεια και να παρασχεθούν τα επιθυμητά 

αποτελέσματα, οι μεταβλητές και οι περιορισμοί που εμπλέκονται στη διανομή εμπορευμάτων 

και η μαθηματική διατύπωση ορίζονται στη συνέχεια στην ενότητα 5.2. Στην ενότητα 5.3, 

παρουσιάζεται η αλγοριθμική προσέγγιση, η οποία περιλαμβάνει τον αλγόριθμο κατασκευής 

και τον μεταευρετικό ΠΡΑΕΓ. Τα υπολογιστικά αποτελέσματα που λαμβάνονται από τον 



 

33 

 

αλγόριθμο, όταν ελέγχονται σε σύνολα δεδομένων της βιβλιογραφίας για το HΠΔΟSPDTW, 

παρουσιάζονται στην ενότητα 5.4. Η ενότητα 5.5 περιγράφει το Συνεργατικό ΠΔΟ και πώς η 

εφαρμογή του αλγόριθμου ALNS μπορεί να συμβάλει οικονομικά και περιβαλλοντικά στις 

συνεργαζόμενες εταιρείες. Τέλος, οι καταληκτικές παρατηρήσεις του Κεφαλαίου 

παρουσιάζονται στην ενότητα 5.6. 

5.2 Περιγραφή Προβλήματος 

Από τη στιγμή που έχουν καθοριστεί οι παράμετροι του προβλήματος, πρέπει να διαμορφωθεί 

και το μαθηματικό μοντέλο του τελικού προβλήματος. Πιο συγκεκριμένα, το πρόβλημα 

καθορίζεται από ένα δίκτυο G (N, A), όπου Ν το σύνολο των κόμβων και and 𝐴 = (𝑖, 𝑗): 𝑖 ≠

𝑗, 𝑖, 𝑗 ∈ 𝑁 το σύνολο των τόξων (arcs). Ο κόμβος {0} αντιπροσωπεύει την αποθήκη, ενώ το 

σύνολο 𝑁∗ = {𝑁/0} περιγράφει το σύνολο των πελατών. Κάθε τόξο (𝑖, 𝑗), το οποίο είναι  η 

διαδρομή από τον κόμβο i προς τον κόμβο j, χαρακτηρίζεται από την απόσταση 𝑑𝑖𝑗, καθώς και 

από τον χρόνο μετακίνησης 𝑡𝑖𝑗. Επιπλέον, κάθε πελάτης χαρακτηρίζεται από τις ποσότητες 

προς παράδοση, 𝑞𝑖, οι οποίες ξεκινούν από την αποθήκη και καταλήγουν στους πελάτες, καθώς 

και από τις ποσότητες προς επιστροφή, 𝑟𝑖, οι οποίες φορτώνονται από τους πελάτες και 

επιστρέφουν στην κεντρική αποθήκη. Ακόμα, κάθε πελάτης ορίζει ένα χρονικό παράθυρο [𝑒𝑖 , 

𝑙𝑖], που αντιπροσωπεύει την ενωρίτερη και την αργότερη δυνατή έναρξη φόρτωσης/ 

εκφόρτωσης εμπορευμάτων στον πελάτη. Αντίστοιχα, χρονικό παράθυρο έχει και η κεντρική 

αποθήκη (η οποία συμβολίζεται με 0) είναι [𝑒0 , 𝑙0] = [E, L], και ουσιαστικά ορίζει το διάστημα 

στο οποίο μπορούν να φορτώνουν και να εκφορτώνουν εμπορεύματα από και προς την 

αποθήκη τα φορτηγά/ οχήματα. 

Ακόμα, το πρόβλημα που μελετάται, χαρακτηρίζεται από ένα σύνολο ετερογενών οχημάτων 

που συμβολίζεται με K, ενώ κάθε όχημα συμβολίζεται με k (όπου k∈K). Κάθε όχημα k 

αντιστοιχεί σε ένα μοναδικό τύπο οχήματος c∈C. Επομένως, προκειμένου να «συσχετίσουμε» 

μαθηματικά τα δύο σύνολα, θέτουμε το σύνολο 𝑆𝑐 το οποίο αναπαριστά το σύνολο των 

οχημάτων τύπου c. Επιπλέον, τα οχήματα που ανήκουν σε κάθε τύπο χαρακτηρίζονται από την 

χωρητικότητα Qc, το σταθερό κόστος 𝑓𝑐 , το μεταβλητό κόστος 𝑣𝑐, καθώς και τον αριθμό των 

διαθέσιμων οχημάτων κάθε τύπου, 𝑛𝑐. Όσον αφορά τους οδηγούς, αντιστοιχίζεται ένας οδηγός 

σε κάθε όχημα και επομένως η έναρξη της βάρδιας κάθε οδηγού, 𝑝𝑘, και η λήξη της βάρδιας 

κάθε οδηγού, 𝑚𝑘, αντιστοιχίζεται και «μεταφέρεται» σε κάθε όχημα k ξεχωριστά. 

Τέλος, το συγκεκριμένο πρόβλημα απαιτεί κάποιες επιπλέον μεταβλητές προκειμένου η 

μαθηματική μοντελοποίηση να είναι πλήρης. Ξεκινώντας με τη μεταβλητή απόφασης 𝑥𝑖𝑗
𝑘  η 

οποία ισούται με 1 αν το όχημα k εκτελεί τη διαδρομή από τον κόμβο i στον κόμβο j, και 0 σε 

διαφορετική περίπτωση, και συνεχίζοντας με την 𝑦𝑖𝑗
𝑘  η οποία αφορά την συνολική ποσότητα 

εντός του οχήματα κατά την μετακίνηση από τον κόμβο  i στον κόμβο j. Επιπλέον, οι χρονικές 

μεταβλητές περιλαμβάνουν i)  την 𝑎𝑖
𝑘  η οποία αναφέρεται στην ώρα άφιξης του οχήματος k 

στον κόμβο i, ii) την 𝑤𝑖
𝑘 η οποία αναφέρεται στον χρόνο αναμονής του οχήματος  k στον κόμβο 

i, και iii) την 𝑏𝑖
𝑘  η οποία αναφέρεται στην ώρα αναχώρησης του οχήματος k από τον κόμβο i.  

5.3 Μέθοδος Επίλυσης – Προσαρμοστική Αναζήτηση Ευρείας Γειτονιάς 



 

34 

 

Ο προτεινόμενος ΠΡΑΕΓ ενσωμετώνεται σε ένα σύστημα δρομολόγησης και ανήκει στην 

κατηγορία των μεταευρετικών τοπικής αναζήτησης . The algorithm is applied in a solution that 

is exploited by a construction heuristic algorithm that is analyzed in Section 5.3.1. 

Consequently, the individual pieces of the ALNS algorithm are presented in Section 5.3.2. 

5.3.1 Κατασκευαστική Διαδικασία 

Ο κατασκευαστικός ευρετικός αλγόριθμος που εφαρμόζεται για την παραγωγή της αρχικής 

λύσης είναι ο ίδιος με αυτόν που παρουσιάζεται στο Κεφάλαιο 4. Αφορά τον ΠΓΠΧ ο οποίος 

κανονικοποιεί όλα τα δεδομένα προτού εφαρμοστεί. 

5.3.2 Γενικό Πλαίσιο Αλγορίθμου 

Ο αλγόριθμος ΑΕΓ εξερευνά μια μεγάλη γειτονιά καταστρέφοντας και επισκευάζοντας λύσεις 

Shaw (1998). Ο αλγόριθμος ΠΡΑΕΓ είναι μια επέκταση που λειτουργεί επίσης με διάφορους 

τελεστές καταστροφής και επισκευής. Και οι δύο διαδικασίες χρειάζονται μια αρχική λύση, 

όπως αυτή που παράγεται από τον αλγόριθμο TONN, για να εφαρμοστούν και να 

λειτουργήσουν. Ωστόσο, η κύρια διαφορά τους παρατηρείται στην πιθανότητα να εφαρμοστεί 

ο κάθε τελεστής. Στο LNS, η πιθανότητα να εφαρμοστεί κάθε χειριστής καταστροφής (π^d) 

και κάθε χειριστή επισκευής (𝜋𝑟) είναι σταθερή και ορίζεται στην αρχή της διαδικασίας. 

Αντίθετα, στον αλγόριθμο ALNS, οι πιθανότητες κάθε χειριστή καταστροφής και επισκευής 

(𝜋𝑑 και 𝜋𝑟  αντίστοιχα) να επιλεγεί αυξάνονται όσο περισσότερο ο χειριστής έχει συμβάλει 

στη βελτίωση της λύσης. Σε κάθε επανάληψη του αλγορίθμου, μια νέα λύση κατασκευάζεται 

(𝑋′) μετά τον τελεστή καταστροφής και επισκευής, που συγκρίνεται με τη βέλτιστη μέχρι τώρα 

λύση (𝑋∗). Εάν η κατασκευασμένη λύση 𝑋′  είναι καλύτερη από τη βέλτιστη 𝑋∗, τότε η 

βέλτιστη λύση ανανεώνεται. 

5.3.3 Μηχανισμός Προσαρμοστικότητας 

Σε κάθε επανάληψη του αλγορίθμου ΠΡΑΕΓ, εφαρμόζεται ένας τελεστής καταστροφής και 

επισκευής. Για την προσαρμογή της πιθανότητας εφαρμογής κάθε τελεστή, η αναζήτηση 

χωρίζεται σε χρονικά τμήματα του υπολογιστικού χρόνου t. Η πιθανότητα κάθε χειριστή 

υπολογίζεται λαμβάνοντας υπόψη την απόδοση του χειριστή και τη βελτίωση που έχει 

προσφέρει στη λύση, κατά τη διάρκεια κάθε χρονικού διαστήματος. Πιο συγκεκριμένα, η 

πιθανότητα κάθε τελεστή καταστροφής για το επόμενο χρονικό διάστημα (t+1) υπολογίζεται 

με 𝜋𝑡+1
𝑑 = 𝜋𝑡

𝑑 (1 − 𝑤 𝑑) + 𝑤 𝑑 ∗ (𝑠𝑑

𝑖𝑑⁄ ),, όπου 𝜋𝑡
𝑑 είναι η πιθανότητα να εφαρμοστεί κάθε 

τελεστής στο προηγούμενο τμήμα (t), 𝑠𝑑 ο αριθμός των φορών που ο τελεστής εφαρμόστηκε 

και πρόσφερε βελτιωμένη λύση, 𝑖𝑑 ο αριθμός των φορών που οποιοσδήποτε χειριστής 

εφαρμόστηκε και προσέφερε βελτιωμένα αποτελέσματα και, τέλος,  𝑤 𝑑 το βάρος των 

επιτυχημένων βελτιώσεων στο συγκεκριμένο χρονικό τμήμα. Η αντίστοιχη εξίσωση για τους 

τελεστές επισκευής δίνεται από, 𝜋𝑡+1
𝑟 = 𝜋𝑡

𝑟(1 − 𝑤 𝑟) + 𝑤 𝑟 ∗ (𝑠𝑟

𝑖𝑟⁄ ). 



 

35 

 

5.3.4 Τελεστές Καταστροφής 

Στο τρέχον Κεφάλαιο, έξι τελεστές καταστροφής και τρεις επισκευής εφαρμόζονται για τη 

βελτίωση της αρχικά παραγόμενης λύσης. Μέσω αυτής της προσέγγισης, και δεδομένου ότι η 

πιθανότητα κάθε χειριστή υπολογίζεται ανάλογα με την επιτυχία του, η παραγόμενη λύση 

βελτιώνεται σημαντικά ενώ αποφεύγεται το «κόλλημα» στο τοπικό βέλτιστο. Επιπλέον, πριν 

από την επιλογή των τελεστών καταστροφής, δοκιμάστηκαν πολλαπλοί τελεστές της 

βιβλιογραφίας. Ωστόσο, επιλέχθηκαν αυτοί που προσφέρουν την καλύτερη ισορροπία μεταξύ 

της ταχύτητας υπολογισμού και των αποτελεσμάτων. Πιο συγκεκριμένα, οι χειριστές 

καταστροφής που εφαρμόστηκαν στην τρέχουσα έρευνα είναι οι i) τυχαίας επιλογής κόμβων, 

ii) μεμονωμένης διαδρομής, iii) δύο μεμονωμένων διαδρομών, iv) μακρινών κόμβων, v) 

αυξημένου χρόνου αναμονής και vi) λιγότερο ωφέλιμοι. Οι τελεστές ουσιαστικά αποτελούν 

κριτήρια μέσω των οποίων επιλέγονται οι πελάτες και αφαιρούνται από τις υπάρχουσες 

διαδρομές.  

5.3.5 Τελεστές Επισκευής 

Μετά την εφαρμογή ενός τελεστή καταστροφής, πρέπει να εφαρμοστεί μια μέθοδος επισκευής 

για την ανακατασκευή της λύσης. Στην τρέχουσα έρευνα, υλοποιούνται τρεις τελεστές 

επισκευής για να βρουν το καλύτερο σχέδιο δρομολογίων. Ένας που εισάγει τους πελάτες στο 

σημείο που ελαχιστοποιείται το κόστος, ένας που τοποθετεί τους πελάτες μόνο σε υπάρχοντα 

δρομολόγια και σε σημεία που ελαχιστοποιείται το κόστος, και ένας τελευταίος ο οποιος 

εισάγει τους πελάτες σε σημεία όπου ελαχιστοποιείται η συνολικά διανυόμενη απόσταση. 

Όπως και στην περίπτωση των τελεστών καταστροφής, έτσι και εδώ οι τελεστές έχουν 

πιθανότητες να εφαρμοστούν σύμφωνα με την επιτυχία τους για να βελτιώσουν τη λύση.  

5.4 Υπολογιστική Μελέτη – Μελέτες Περίπτωσης 

5.4.1 Δεδομένα της Βιβλιογραφίας 

Πριν από την ενσωμάτωση του μεταευρετικού αλγόριθμου στο σύστημα, ο αλγόριθμος 

δοκιμάστηκε σε σύνολα δεδομένων της βιβλιογραφίας. Το γεγονός ότι δεν υπάρχει σύνολο 

δεδομένων λαμβάνοντας υπόψη όλες τις παραλλαγές ΠΔΟ που μελετώνται στην τρέχουσα 

έρευνα ταυτόχρονα, μας οδήγησε να ασχοληθούμε με πολλαπλά σύνολα δεδομένων. 

Η μελέτη και η αξιολόγηση του αλγορίθμου ξεκινά με το ΠΔΟΕΣΟ το οποίο με τη σειρά του 

χωρίζεται σε δύο περιπτώσεις. Στην πρώτη ο στόλος των οχημάτων θεωρείται απεριόριστος, 

ενώ στη δεύτερη είναι περιορισμένος. Η πρώτη περίπτωση προτάθηκε από τους Golden et al. 

(1984), ενώ η δεύτερη από τον Taillard (1999). Και στις δύο περιπτώσεις ο στόχος είναι η 

ελαχιστοποίηση του κόστους διανομής το οποίο υπολογίζεται είτε μεμονωμένα από το 

σταθερό κόστος, είτε μεμονωμένα από το μεταβλητό κόστος, είτε από τον συνδυασμό των δύο.  

Με τα χρόνια, μόνο λίγοι ερευνητές προσπάθησαν να λύσουν το ΠΔΟΕΣΟ μαζί με το ΠΔΟΧΠ. 

Οι Liu και Shen (1999) ήταν οι πρώτοι που αντιμετώπισαν το ΠΔΟΕΣΟ με χρονικά παράθυρα 



 

36 

 

(ΠΔΟΕΣΟΧΠ), χρησιμοποιώντας τα δεδομένα αναφοράς του Solomon. Ωστόσο, αυτή η 

παραλλαγή λαμβάνει υπόψη μόνο διαφορετικές χωρητικότητες και σταθερό κόστος για κάθε 

τύπο οχήματος, δεν λαμβάνει υπόψη κανένα μεταβλητό κόστος ενώ ο αριθμός διαθέσιμων 

οχημάτων είναι απεριόριστος, απλοποιώντας σημαντικά το πρόβλημα. Με αυτή την ευκαιρία, 

οι Jiang et al. (2014) χρησιμοποίησαν τα δεδομένα αναφοράς του Solomon για τη δημιουργία 

ενός συνόλου δεδομένων για το ΠΔΟΕΣΟΧΠ με περιορισμένο αριθμό οχημάτων, ενώ το 

κόστος διαμορφώνεται και από το σταθερό και από το μεταβλητό κόστος . Στην τρέχουσα 

μελέτη, ο αλγόριθμος δοκιμάζεται σε όλα αυτά τα σύνολα δεδομένων και σε περιπτώσεις 

διανομής σε πραγματικό χρόνο για να αποκτήσει μια πιο ολοκληρωμένη άποψη του 

αλγορίθμου.  

Πρέπει να σημειωθεί ότι τα σύνολα δεδομένων που αναφέρονται παραπάνω καλύπτουν μόνο 

τις παραλλαγές του ΠΔΟΕΣΟ και του ΠΔΟΧΠ χωρίς να λαμβάνεται υπόψη το ΠΔΟΤΠΠ. 

Επομένως, για την επικύρωση του αλγόριθμου σε αυτήν την παραλλαγή, αξιοποιήθηκε το 

σύνολο δεδομένων των Salhi and Nagy (1999) που περιλαμβάνει 14 περιπτώσεις 

προβλημάτων. Με αυτόν τον τρόπο, η αποτελεσματικότητα του αλγορίθμου δοκιμάστηκε σε 

κάθε παραλλαγή που εξετάστηκε στην έρευνα. 

5.4.1.1 ΠΔΟΕΣΟ με Απεριόριστο Αριθμό Οχημάτων 

Ξεκινώντας από το ΠΔΟΕΣΟ με Απεριόριστο Αριθμό Οχημάτων (ΠΔΟΕΣΟΑΑΟ) λύθηκαν 

τρεις περιπτώσεις, μία που λαμβάνει υπόψιν μόνο μεταβλητό κόστος (V), μία που λαμβάνει 

μόνο σταθερό (F) και μία που λαμβάνει και σταθερό και μεταβλητό κόστος (FV). Ανεξάρτητα 

από την περίπτωση, ο αλγόριθμος παρουσιάζει παρόμοια αποτελέσματα καθώς η μέση 

απόκλιση μεταξύ των καλύτερα δημοσιευμένων και των καλύτερων αποτελεσμάτων στο 

ΠΔΟΕΣΟ-F είναι 2,02%, στο ΠΔΟΕΣΟ-FV είναι 3,18% και τέλος στο ΠΔΟΕΣΟ-V είναι 

1,90%. Τέλος, η απόκλιση σε οποιουδήποτε από τα παραδείγματα που επιλύονται δεν 

υπερβαίνει το 5,95%, το οποίο επιβεβαιώνει την αποτελεσματικότητα του αλγορίθμου σε αυτό 

το σύνολο δεδομένων. 

5.4.1.2 ΠΔΟΕΣΟ Απεριόριστο Αριθμό Οχημάτων και Χρονικά Παράθυρα 

Όπως έχει ήδη αναφερθεί, οι Liu και Shen (1999) αξιοποίησαν και συνδύασαν τα δεδομένα 

των Golden et al. (1984) για το ΠΔΟΕΣΟΑΑΟ, και το σύνολο δεδομένων του Solomon για το 

ΠΔΟΧΠ. Όπως και στο Κεφάλαιο 3 έτσι και εδώ  Οι ονομασίες των προβλημάτων ακολουθούν 

αυτές που περιγράφονται στο Κεφάλαιο 3 που σημαίνει ότι τα προβλήματα C1 και C2 έχουν 

γεωγραφικά συγκεντρωμένους πελάτες ενώ τα R1 και R2, τα γεωγραφικά διάσπαρτους 

πελάτες. Στα σύνολα δεδομένων RC1 και RC2, περιλαμβάνεται ένας συνδυασμός τυχαίων και 

ομαδοποιημένων πελατών. Τα σύνολα R1, C1 και RC1 έχουν μικρό χρονικό ορίζοντα 

προγραμματισμού, μικρού εύρους χρονικά παράθυρα και χαμηλή χωρητικότητα οχημάτων, 

ενώ τα σετ R2, C2 και RC2 έχουν μεγάλο χρονικό ορίζοντα προγραμματισμού, μεγάλου 



 

37 

 

εύρους χρονικά παράθυρα και μεγάλη χωρητικότητα οχημάτων, που καθορίζουν τον αριθμό 

των πελατών που εξυπηρετείται από το ίδιο όχημα. 

Τα αποτελέσματα του αλγορίθμου συγκρίνονται με αυτά που προέρχονται από αλγόριθμους 

που προσφέρουν τα βέλτιστα μέχρι στιγμής αποτελέσματα. Ο αναπτυγμένος ΠΡΑΕΓ 

αλγόριθμος είναι αποδοτικός σύμφωνα με τα αποτελέσματά του, καθώς η απόκλιση των 

αποτελεσμάτων του αλγορίθμου σε σχέση με τα βέλτιστα της βιβλιογραφίας, σε κάθε 

πρόβλημα, δεν ξεπερνά το 8.83%. Επιπλέον, στο σύνολο δεδομένων RC1B ο αλγόριθμος 

καταφέρνει να προσφέρει καλύτερα αποτελέσματα σε 6 περιπτώσεις προβλημάτων, ενώ στο 

σύνολο προβλημάτων R2B 1 από αυτά.  

5.4.2 ΠΔΟΕΣΟ με Περιορισμένο Αριθμό Οχημάτων 

5.4.2.1 ΠΔΟΕΣΟ 

Πολλοί ερευνητές θεωρούν ότι η αντιμετώπιση του ΠΔΟΕΣΟ με Περιορισμένο Αριθμό 

Οχημάτων (ΠΔΟΕΣΟΠΑΟ) είναι πιο ρεαλιστική περίπτωση στη διανομή. Για αυτόν τον λόγο, 

ο αλγόριθμος ΠΡΑΕΓ δοκιμάζεται και σε ένα τέτοιο σύνολο δεδομένων στο οποίο καταφέρνει 

να προσφέρει μία νέα βέλτιστη λύση καθώς μειώνει το κόστος διανομής κατά 0.06%. Στα 

υπόλοιπα προβλήματα ο αλγόριθμος αποδεικνύει  καλά αποτελέσματα με την απόκλιση να 

διακυμαίνεται από 1.34% μέχρι 7.85%, 

5.4.3 ΠΔΟΕΣΟ με Περιορισμένο Αριθμό Οχημάτων και Χρονικά Παράθυρα  

Το τελευταίο σύνολο δεδομένων που δοκιμάστηκε ο αλγόριθμος είναι των Jiang et al. (2014), 

χωρίς ωστόσο να έχει προσελκύσει το αναμενόμενο ενδιαφέρον των ερευνητών. Οι 

συγγραφείς άντλησαν το σύνολο δεδομένων του Solomon και δημιούργησαν διαφορετικούς 

τύπους οχημάτων που χαρακτηρίζονται από τη χωρητικότητά τους, το σταθερό και μεταβλητό 

κόστος, τον αριθμό των διαθέσιμων οχημάτων και τον αργότερο χρόνο επιστροφής στην 

αποθήκη. Ο προτεινόμενος αλγόριθμος αποδίδει εξαιρετικά αποτελεσματικά καθώς, σε 9 από 

τις 56 περιπτώσεις που υπάρχουν, προτείνοντας νέες βέλτιστες λύσεις. Η απόκλιση μεταξύ των 

λύσεων που προκύπτουν από τον προτεινόμενο αλγόριθμο και από τα βέλτιστα της 

βιβλιογραφίας κυμαίνεται από -5,64% έως 7,57, με τη μέση απόκλιση να είναι 2,19%. 

5.4.4 ΠΔΟΤΠΠ 

Η δοκιμή του αλγορίθμου στο ΠΔΟΤΠΠ αποτελεί ένα εξίσου σημαντικό στάδιο της 

επικύρωσης του αλγορίθμου. Το σύνολο δεδομένων των Salhi και Nagy (1999) είναι το μόνο 

από τα σύνολα δεδομένων που μελετήθηκαν που απευθύνονται στο ΠΔΟΤΠΠ. Τα 

αποτελέσματα που προκύπτουν από τον αλγόριθμο επικυρώνουν την αποτελεσματικότητά του, 

καθώς η μέση απόκλιση μεταξύ των λύσεων που λαμβάνονται και των βέλτιστων λύσεων της 

βιβλιογραφίας είναι μόλις 3,72%. Τέλος, σε όλες τις περιπτώσεις προβλημάτων, η απόκλιση 

μεταξύ της λύσης που προκύπτει από τον αλγόριθμο και των βέλτιστων της βιβλιογραφίας δεν 

υπερβαίνει το 6,18%. 



 

38 

 

5.5 Η Περίπτωση των Συνεργατικής Δρομολόγησης 

5.5.1 Οφέλη από την Εφαρμογή του ΠΡΑΕΓ στο Συνεργατικό ΠΔΟ 

Όπως αναφέρθηκε στο Κεφάλαιο 2, το ΠΔΟ με Πολλαπλές Αποθήκες (ΠΔΟΠΑ) και το 

Συνεργατικό ΠΔΟ (ΣΠΔΟ) είναι από τις πιο κοινές παραλλαγές. Αυτό οφείλεται κυρίως στο 

ότι οι εταιρείες διανομής κατέχουν και διαχειρίζονται περισσότερες από μία αποθήκες από τις 

οποίες εκτελείται η διανομή. Επίσης, στο Συνεργατικό ΠΔΟ (ΣΠΔΟ) οι εταιρείες 

συνεργάζονται και μοιράζονται τους πόρους τους, όπως τα οχήματά τους, για να μειώσουν το 

κόστος εφοδιαστικής και να ελαχιστοποιήσουν τις περιβαλλοντικές επιπτώσεις. Δεδομένης της 

συγκεκριμένης ανάγκης και των συνεχώς αυξανόμενων απαιτήσεων που αφαιρούν την μείωση 

του περιβαλλοντικού αντίκτυπου και  του κόστους μελετάται το  Συνεργατικό ΠΔΟ.  

Προϋπόθεση για να συνεργαστούν οι εταιρείες διανομής στη διαδικασία της δρομολόγησης 

είναι να εκτελούν παρόμοιες διαδικασίες και να λειτουργούν στο ίδιο επίπεδο της 

εφοδιαστικής αλυσίδας (Ferrell et al. 2020). Οι ερευνητές προσδιορίζουν αυτό το είδος 

συνεργασίας ως οριζόντια. Στο τρέχον Κεφάλαιο της διατριβής μελετάται η οριζόντια 

συνεργασία μεταξύ τριών εταιρειών 3PL στη διαδικασία δρομολόγησης και διανομής. Αυτό 

σημαίνει ότι τα αιτήματα των πελατών όλων των εταιρειών  που αντιπροσωπεύουν μια 

αποστολή είτε από το κέντρο διανομής της εταιρείας στον πελάτη είτε το αντίθετο μοιράζονται, 

μαζί με τους πόρους τους (οχήματα).  

Στην παρούσα διατριβή μελετώνται οι περιπτώσεις τριών 3PL εταιρειών που είτε λειτουργούν 

μεμονωμένα (στο AS-IS σενάριο) είτε συνεργατικά. Σε κάθε περίπτωση οι παραλλαγές του 

ΠΔΟ που λαμβάνονται υπόψιν είναι (i) το ΠΔΟΕΣΟ, (ii ) το ΠΔΟΧΠ και (iii) το ΠΔΟΤΠΠ. 

Στο Συνεργατικό ΠΔΟ η διαφορά είναι ότι οι πόροι των εταιρειών και τα οχήματα που 

συμμετέχουν στη διανομή προέρχονται από όλες τις εταιρείες 3PL και μπορεί να χρειαστεί να 

φορτώσουν εμπορεύματα από όλες τις αποθήκες πριν από την εκτέλεση των δρομολογίων.  

Επίσης το μαθηματικό μοντέλο διαφέρει όσον αφορά το σύνολο 𝐺 = (𝐷 ∪ 𝑁, 𝛢) όπου D το 

σύνολο των αποθηκών. Βάσει των δεδομένων και των περιπτώσεων εκτιμώνται τα οφέλη της 

μετάβασης από την τρέχουσα κατάσταση (οι εταιρείες λειτουργούν μεμονωμένα) στη 

συνεργατική δρομολόγησης που υπολογίζονται μέσω του μεταευρετικού  αλγόριθμου που 

παρουσιάστηκε στις προηγούμενες ενότητες του Κεφαλαίου 5. Ο στόχος και στις δύο 

περιπτώσεις είναι να ελαχιστοποιηθεί το συνολικό κόστος διανομής ενώ τηρούνται όλοι οι 

περιορισμοί. 

5.5.2 Μελέτη Περίπτωσης – Υπολογιστικά Αποτελέσματα 

Αρχικά, για κάθε εταιρεία και για πολυάριθμες ημερήσιες περιπτώσεις διανομής υπολογίζεται 

το κόστος διανομής και οι εκπομπές CO2. Ωστόσο, δεδομένου ότι οι τρεις εταιρείες διανέμουν 

αγαθά στην Αθήνα και εδρεύουν στην Μάνδρα Αττικής, οι ημερήσιες περιπτώσεις διανομής 

που αντιμετωπίζει κάθε εταιρεία, συνδυάζονται και παράγουν ένα ενιαίο καθημερινό σύνολο, 

με πολλαπλές αποθήκες, κοινά οχήματα και δεδομένα πελατών που προκύπτουν από όλες τις 

εταιρείες, προκειμένου να σχηματιστεί η υπόθεση της συνεργατικής δρομολόγησης. Το κόστος 



 

39 

 

διανομής και οι εκπομπές CO2 υπολογίζονται επιπρόσθετα και τα αποτελέσματα συγκρίνονται 

με εκείνα που αξιοποιήθηκαν από την πρώτη περίπτωση για να εκτιμηθούν τα οφέλη αυτής 

της στρατηγικής. 

Όσον αφορά τους πελάτες, ο καθένας ξεχωριστά χαρακτηρίζεται από τον αριθμό ταυτότητας 

(ID), τη διεύθυνση, την ποσότητα παράδοσης και παραλαβής και το χρονικό παράθυρο. Οι 

διευθύνσεις είναι απαραίτητες για την εξαγωγή όλων των απαραίτητων αποστάσεων και 

χρόνων μετακίνησης μεταξύ των πελατών. Όλα αυτά τα δεδομένα, μαζί με τις ποσότητες 

παράδοσης και παραλαβής, καθώς και με τα χρονικά παράθυρα, αξιοποιούνται περαιτέρω από 

τον μεταευρετικό αλγόριθμο ως μεταβλητές και περιορισμοί του προβλήματος για τη 

βελτιστοποίηση του πλάνου δρομολογίων. Πιο συγκεκριμένα, οι ποσότητες παράδοσης και 

παραλαβής λαμβάνονται υπόψη σε κάθε στάδιο της διαδικασίας διανομής, έτσι ώστε τα 

εμπορεύματα επί του σκάφους να μην υπερβαίνουν τη χωρητικότητα του οχήματος, ενώ τα 

χρονικά παράθυρα θεωρούνται για την αποφυγή καθυστερήσεων. Όσον αφορά τα οχήματα, το 

μεταβλητό (κατανάλωση καυσίμου) και το σταθερό κόστος  (αποσβέσεις, συντήρηση και 

επισκευές) έχουν υπολογιστεί με βάση τα δεδομένα που παρέχονται από κάθε μία από τις 

εταιρείες 3PL. 

Όσον αφορά τις εκπομπές CO2 λόγω της χρήσης των οχημάτων οι περισσότεροι 

κατασκευαστές προσφέρουν σχετικές πληροφορίες όπως τα γραμμάρια CO2 που εκπέμπονται 

για κάθε τόνο που μεταφέρεται για απόσταση ενός χιλιομέτρου. Συνεπώς , οι εκπομπές 

εξαρτώνται από τον παράγοντα 𝑐𝑘 (gr of CO2/tkm), το καθαρό βάρος του οχήματος 𝑤 𝑘, to το 

βάρος των εμπορευμάτων εντός του οχήματος σε κάθε τόξο  (i, j), 𝑢𝑖𝑗
𝑘 , καθώς και την απόσταση 

του τόξου, 𝑑𝑖𝑗. Η μαθηματική έκφραση που υπολογίζει τις εκπομπές CO2 είναι 

∑ [(𝑢𝑖𝑗
𝑘 + 𝑤 𝑘) ∙ 𝑐𝑘 ∙ 𝑑𝑖𝑗 ∙ 𝑥𝑖𝑗

𝑘 ](𝑖,𝑗)∈𝐴 , και είναι έγκυρο για κάθε όχημα 𝑘 ∈ 𝛫. Αυτή η μέθοδος 

προσφέρει ακριβή αποτελέσματα εκπομπών CO2 ακόμη κι αν η ταχύτητα, η ηλικία και άλλοι 

παράγοντες επηρεάζουν τις εκπομπές (Koç et al. 2014). 

Όσον αφορά τις εταιρείες, η πρώτη (3PL C1) εξυπηρετεί κατά μ.ο 137 πελάτες ημερησίως, η 

δεύτερη (3PL C2) 385  και η Τρίτη (3PL C3) 226. Στην περίπτωση που οι εταιρείες 

συνεργάζονται ο μέσος αριθμός εξυπηρετούμενων πελατών είναι 748 ενώ οι αποθήκες από τις 

οποίες τα οχήματα φορτώνουν τα εμπορεύματα είναι τρεις. Στη σύγκριση μεταξύ των 

αποτελεσμάτων που προέκυψαν από τις μεμονωμένες και συνεργατικές περιπτώσεις φαίνεται 

ότι η συνεργασία μεταξύ εταιρειών 3PL μπορεί να προσφέρει βελτιώσεις σε πολλαπλά 

επίπεδα. Η πρώτη πτυχή που βελτιώνεται σημαντικά και αποτελεί τον κύριο στόχο είναι το 

κόστος διανομής, στο οποίο παρατηρείται μείωση 3,28%. Επιπλέον, μειώνονται και οι 

εκπομπές (-1,75%), μειώνοντάς τες κατά 42,45 κιλά ημερησίως. Αν και η μείωση φαίνεται 

μικρή, και λαμβάνοντας υπόψη ότι οι εταιρείες λειτουργούν τουλάχιστον 300 ημέρες το χρόνο, 

ετησίως μπορούν να αποφευχθούν 12.735 τόνοι CO2. Αυτό θα ήταν δύσκολο να συμβεί χωρίς 

τη μείωση της συνολικής διανυθείσας απόστασης (-10,11%) και του αριθμού των 

απαιτούμενων οχημάτων (-5,71%). Τέλος, ο μόνος παράγοντας που επιδεινώνεται μέσω της 

συνεργασίας είναι ο συντελεστής φορτίου και πιο συγκεκριμένα, από 87,16%, ο συντελεστής 



 

40 

 

φορτίου μειώθηκε στο 83,38%, που σημαίνει ότι υπάρχει περισσότερος αχρησιμοποίητος 

χώρος στα οχήματα. 

Επιπρόσθετα, παρατηρείται σημαντική μείωση στο συνολικό κόστος διανομής, καθώς οι τρεις 

εταιρείες εξοικονομούν σωρευτικά 85,78 € καθημερινά, που αντιστοιχούν σε 25.725,00 € 

ετησίως. Διαφέρει όμως το μερίδιο της κάθε εταιρείας στο συνολικό κόστος διανομής και κατά 

συνέπεια η εξοικονόμηση. Πολλοί παράγοντες μπορεί να επηρεάσουν την κοινή χρήση κάθε 

εταιρείας, όπως ο αριθμός των πελατών και των οχημάτων που ανήκουν σε κάθε εταιρεία και 

η εμπλοκή στις συνεργατικές διαδικασίες δρομολόγησης και προγραμματισμού. Ως εκ τούτου, 

μια συμφωνία μεταξύ των συνεργαζόμενων εταιρειών που καθορίζει τον επιμερισμό της κάθε 

εταιρείας στο συνολικό κόστος είναι απαραίτητη. 

5.6 Συμπεράσματα 

Στο τρέχον Κεφάλαιο εξετάζονται πολλαπλές παραλλαγές του ΠΔΟ, που έχουν προκύψει από 

την έρευνα του Κεφαλαίου 2, καθώς και από την εμπειρία συνεργαζόμενων εταιρειών 

διανομής και ανάπτυξης λογισμικού. Ο στόχος είναι να εξεταστούν οι παραλλαγές που 

αντιμετωπίζονται πιο συχνά στη διανομή εμπορευμάτων. Επομένως, το ΠΔΟΧΠ, το ΠΔΟΤΠΠ 

και το ΠΔΟΕΣΟ επιλέγονται και αντιμετωπίζονται ταυτόχρονα.  

Ακολουθεί η μαθηματική μοντελοποίηση του προβλήματος η οποία αξιοποιείται για την 

ανάπτυξη του προτεινόμενου αλγόριθμου ΠΡΑΕΓ, ο οποίος προσφέρει αποτελέσματα υψηλής 

απόδοσης, όπως διαπιστώνεται από πολλαπλά σύνολα δεδομένων της βιβλιογραφίας στα 

οποία δοκιμάστηκε. Ο αλγόριθμος εφαρμόζεται επίσης, μετά από συγκεκριμένες 

τροποποιήσεις, σε μια ακόμη παραλλαγή, που είναι το Συνεργατικό ΠΔΟ. Στην περίπτωση 

αυτή, οι προηγούμενες παραλλαγές ΠΔΟ συνδυάζονται με τα χαρακτηριστικά  του 

Συνεργατικού ΠΔΟ. Στόχος, σε αυτή την περίπτωση, είναι να προσδιοριστούν τόσο οι 

οικονομικές όσο και οι περιβαλλοντικές επιπτώσεις από τη συνεργασία εταιρειών που 

βρίσκονται και δραστηριοποιούνται στις ίδιες περιοχές, στη διαδικασία διανομής. Τα 

αποτελέσματα εφαρμογής είναι ενθαρρυντικά, δίνοντας μεγάλο χώρο στις εταιρείες να 

μειώσουν τόσο το κόστος διανομής όσο και τις εκπομπές. 

Τέλος, ο προτεινόμενος αλγόριθμος ΠΡΑΕΓ μπορεί να χειριστεί μεγάλες ποσότητες 

δεδομένων και πολλαπλές μεταβλητές και περιορισμούς. Τα οφέλη από την εφαρμογή του σε 

πραγματικές περιπτώσεις μπορεί να είναι σημαντικά, λαμβάνοντας υπόψη τα αποτελεσματικά 

αποτελέσματα που επιτυγχάνονται, σε σύγκριση με τα καλύτερα δημοσιευμένα. Κατά 

συνέπεια, η ενσωμάτωσή του σε ένα πραγματικό σύστημα cloud θα μπορούσε να προσφέρει 

μεγάλα οφέλη στις εταιρείες logistics και διανομής. 



41 

 

6. Πρακτική Εφαρμογή των Αναπτυγμένων Αλγορίθμων σε Cloud 
Σύστημα Δρομολόγησης 

6.1 Εισαγωγή 

Από τότε που εισήχθη για πρώτη φορά το ΠΔΟ, οι ερευνητές και οι επαγγελματίες 

επικεντρώθηκαν στη λύση του. Όπως ήταν αναμενόμενο, λόγω των περιορισμένων μεθόδων 

και των τεχνολογικών περιορισμών, οι λύσεις επικεντρώθηκαν σε μη υπολογιστικές μεθόδους. 

Ωστόσο, με τα χρόνια, η πρόοδος στην τεχνολογία και οι μέθοδοι βελτιστοποίησης βοήθησαν 

τους ερευνητές να χειριστούν πολλαπλές παραλλαγές του ΠΔΟ και να αναπτύξουν 

προηγμένους αλγόριθμους για την αντιμετώπισή τους. Αν και οι μέθοδοι βελτιστοποίησης που 

προτείνονται από ερευνητές δοκιμάζονται σε σύνολα δεδομένων της βιβλιογραφίας, 

υποδεικνύοντας υψηλή απόδοση, σπάνια ενσωματώνονται σε πληροφοριακά συστήματα ή 

λογισμικό. Αυτό συμβαίνει επειδή οι ερευνητές επικεντρώνονται στην ανάπτυξη νέων 

αλγορίθμων και μαθηματικών μοντέλων που μπορούν να ενισχύσουν κυρίως το θεωρητικό 

μέρος της μελέτης.  

Αντίθετα, οι εταιρείες λογισμικού διαθέτουν την τεχνογνωσία και τα μέσα να αναπτύξουν 

προηγμένους αλγόριθμους που μπορούν να καλύψουν τις ανάγκες κάθε εταιρείας διανομής. 

Παρ’ όλα αυτά οι αλγόριθμοι που εντάσσονται σε αυτούς δεν είναι διαθέσιμοι καθώς είναι η 

«καρδιά» του συστήματος και επιφέρει έσοδα στην εταιρεία. Ωστόσο, στην συγκεκριμένη 

διατριβή οι αλγόριθμοι που προτείνονται στο Κεφάλαιο 3, 4 και 5 αξιοποιούνται από ένα cloud 

σύστημα δρομολόγησης, το οποίο στην τρέχουσα μορφή του επικοινωνεί μόνο με τον 

αλγόριθμο ΠΡΑΕΓ ο οποίος λαμβάνει υπόψιν του τις περισσότερες παραλλαγές του ΠΔΟ.  

Τέλος, η παρούσα διατριβή συνδυάζει μέρη και έννοιες που ενδιαφέρουν τόσο την έρευνα όσο 

και τη βιομηχανία, και παρουσιάζει τόσο τους αναπτυγμένους αλγόριθμους όσο και την 

ενσωμάτωσή τους στο cloud σύστημα. Στο υπόλοιπο Κεφάλαιο παρουσιάζονται αρχικά τα 

κύρια δεδομένα που τροφοδοτούνται στο σύστημα για να είναι λειτουργικό, στο Κεφάλαιο 6.2. 

Στο Κεφάλαιο 6.3 και 6.4 παρουσιάζονται η στατική και η δυναμική δρομολόγηση αντίστοιχα. 

Οι τεχνολογίες που αξιοποιεί το σύστημα και οι λειτουργίες του συστήματος παρουσιάζονται 

στο Κεφάλαιο 6.5. Τέλος, η αξιολόγηση και τα οφέλη του συστήματος παρουσιάζονται στο 

Κεφάλαιο 6.6, και ακολουθούν τα συμπεράσματα στο Κεφάλαιο 6.7. 

6.2 Στατικά Δεδομένα - Βασικά Αρχεία 

Το σύστημα, για να είναι αποτελεσματικό, χρειάζεται πρώτα να τροφοδοτηθεί με όλα τα 

απαραίτητα δεδομένα. Κατά συνέπεια, ο αλγόριθμος θα αξιοποιηθεί για τη δημιουργία του 

πλάνου δρομολογίων. Αρχικά, πρέπει να μεταφορτωθεί ένα αρχείο excel, που περιλαμβάνει τα 

δεδομένα των πελατών, και το οποίο έχει συγκεκριμένη δομή η οποία παρέχεται στην αρχική 

σελίδα του cloud συστήματος (http://smarttransplanner.azurewebsites.net/). 



 

42 

 

Επιπλέον, οι εταιρείες διανομής πρέπει να καθορίσουν ορισμένα στοιχεία τους, όπως η 

διεύθυνση της κεντρικής αποθήκης, τα διαθέσιμα οχήματα, οι χωρητικότητες τους (σε kg και 

m3), το σταθερό και μεταβλητό κόστος των  οχημάτων, οι διαθέσιμοι οδηγοί και οι βάρδιες 

του οδηγούς. Τα περισσότερα από αυτά τα δεδομένα αποτελούν είτε μεταβλητές είτε 

περιορισμούς του προβλήματος, χωρίς τα οποία ο αλγόριθμος δεν μπορεί να προσφέρει ένα 

πλάνο δρομολογίων. Στην ενότητα 6.3, αναλύεται διεξοδικά ο τρόπος εκμετάλλευσης των 

παραγγελιών των πελατών για την εξαγωγή των δεδομένων που απαιτούνται. 

6.3 Τεχνολογίες και Λειτουργικότητα Συστήματος  

Προκειμένου το σύστημα να είναι λειτουργικό, πολλές τεχνολογίες πρέπει να συνδυαστούν. 

Αρχικά, το σύστημα πρέπει να φιλοξενηθεί σε μια cloud πλατφόρμα, η οποία είναι το 

Microsoft Azure καθώς μπορεί να δημιουργήσει, να εκτελέσει, να διαχειριστεί και να 

υποστηρίξει μεγάλες και πολύπλοκες εφαρμογές, διασφαλίζοντας την ασφάλεια των 

εταιρειών. Επιπλέον, οι εταιρείες που αποκτούν πρόσβαση στις υπηρεσίες του συστήματος 

πρέπει πρώτα να ανεβάσουν τα κύρια δεδομένα τα οποία αποθηκεύονται, δομούνται και να 

διαχειρίζονται από την κατάλληλη βάση δεδομένων. Επιλέγεται η Oracle Database λόγω των 

πρόσθετων δυνατοτήτων διαχείρισης δεδομένων, εργαλείων μοντελοποίησης και 

οπτικοποίησης δεδομένων, καθώς και λόγω του περιβάλλοντος ανάπτυξης κώδικα.  

Επιπλέον, το σύστημα χρησιμοποιεί τις υπηρεσίες web που προσφέρει η εταιρεία HERE 

Global B. V. Πιο συγκεκριμένα, το σύστημα καλεί μέσω του Postman τα Azure REST API για 

να ζητήσει και να λάβει δεδομένα από τις υπηρεσίες HERE. Συγκεκριμένα, τα αιτήματα HTTP 

περιλαμβάνουν τις απαραίτητες πληροφορίες όπως το URL, το αναγνωριστικό, τη μέθοδο 

αιτήματος και το κλειδί API. Η απάντηση από την HERE περιλαμβάνει ένα αρχείο JSON με 

τα δεδομένα που ζητούνται. Τέτοια αιτήματα υποβάλλονται στην υπηρεσία HERE Geocoding 

& Search για εξαγωγή των συντεταγμένων των πελατών μέσω των διευθύνσεών τους.  

Ο αλγόριθμος που είναι επίσης αποθηκευμένος στο cloud έχει αναπτυχθεί σε γλώσσα 

προγραμματισμού Python είναι και αυτός προσβάσιμος μέσω αιτήματος HTTP. Τέλος, τα 

αποτελέσματα της διαδικασίας δρομολόγησης, που είναι συγκεκριμένες διαδρομές με 

συγκεκριμένη σειρά παραγγελιών, απεικονίζονται σε διαδικτυακό χάρτη, που παρέχεται για 

άλλη μια φορά από την HERE. 

6.4 Στατική-Αρχική Δρομολόγηση 

Για την αρχική δρομολόγηση, στην οποία τα δεδομένα που σχετίζονται με τους πελάτες είναι 

γνωστά πριν από την έναρξη της διανομής, πρέπει να ληφθούν οι χρόνοι μετακίνησης και οι 

αποστάσεις μεταξύ των σημείων παραγγελίας και των αποθηκών. Επομένως, ένα αίτημα 

HTTP που ακολουθεί το RESTful API και περιλαμβάνει τις διευθύνσεις των πελατών 

αποστέλλεται στην υπηρεσία HERE Geocoding & Search. Η απάντηση από την HERE 

περιλαμβάνει τις συντεταγμένες των πελατών. Σε περιπτώσεις όπου η διεύθυνση δεν 

δηλώνεται με σαφήνεια, η HERE δίνει τη δυνατότητα χειροκίνητης επιλογής της διεύθυνσης.  



 

43 

 

Μετά την ολοκλήρωση της πρώτης φάσης το σύστημα μπορεί να οπτικοποιήσει τα σημεία 

παράδοσης στον χάρτη. Επιπλέον, το σύστημα μπορεί να εκτελέσει τη διαδικασία 

δρομολόγησης αφού πρώτα λάβει τους χρόνους μετακίνησης και τις αποστάσεις μεταξύ των 

σημείων παράδοσης. Αυτά τα δεδομένα λαμβάνονται και πάλι μέσω της HERE Technologies, 

μέσω αιτήματος HTTP (HERE Matrix Routing API v8), το οποίο περιλαμβάνει τις 

συντεταγμένες των σημείων παράδοσης. Το αρχείο JSON επιστρέφει ως απάντηση στο αίτημα 

πίνακες αποστάσεων (M x M) και χρόνων μετακίνησης (M x M), όπου M είναι ο αριθμός των 

σημείων παράδοσης και των αποθηκών. Αυτοί οι πίνακες, μαζί με δεδομένα ποσοτήτων 

παράδοσης και παραλαβής (σε kg και m3), χρονικών παραθύρων, χωρητικότητας και το κόστος 

των οχημάτων κ.λπ., τροφοδοτούνται στον αλγόριθμο δρομολόγησης. Ένα άλλο αίτημα, 

συμπεριλαμβανομένων των προαναφερθέντων δεδομένων, υποβάλλεται για λήψη του σχεδίου 

διαδρομών και του χρονοδιαγράμματος των παραδόσεων μέσω του αλγόριθμου ALNS.  

Σαν αποτέλεσμα λαμβάνεται το πλάνο δρομολογίων, στο οποίο κάθε διαδρομή περιλαμβάνει 

συγκεκριμένα σημεία διανομής. Η ακολουθία των σημείων καθορίζει το συνολικό κόστος και 

τη διανυθείσα απόσταση. Το συνολικό κόστος διανομής προέρχεται από το σταθερό και το 

μεταβλητό κόστος κάθε διαδρομής. Επιπλέον, κάθε χρήστης επιλέγοντας μία διαδρομή μπορεί 

να την απομονώσει και να προβάλει αναλυτικά τα διάφορα δεδομένα που σχετίζονται με 

αυτήν. Πιο συγκεκριμένα, ο εκτιμώμενος χρόνος άφιξης σε κάθε πελάτη/σημείο παράδοσης, 

η ποσότητα που παραδόθηκε ή παραλήφθηκε, το χρονικό του παράθυρο, καθώς και η 

κατάσταση της παραγγελίας εμφανίζονται στο σύστημα. 

Επιπλέον, το σύστημα συνδέεται με ένα σύστημα απόδειξης παράδοσης (PoD), που βρίσκεται 

στα οχήματα των οδηγών και επιτρέπει τον εντοπισμό της κατάστασης των παραγγελιών σε 

κάθε βήμα της διαδικασίας διανομής. Ως αποτέλεσμα, ο οδηγός έχει τη δυνατότητα να προβεί 

σε ορισμένες ενέργειες με την ολοκλήρωση μιας παραγγελίας μέσω της εφαρμογής 

SMARTRANS PoD (https://aberon-pod.azurewebsites.net). 

6.5 Διαδικασία Επαναδρομολόγησης 

Όπως έχει ήδη αναφερθεί, μπορεί να χρειαστεί να τροποποιηθούν τα δρομολόγια ακόμη και 

αν το αρχικό σχέδιο διαδρομών έχει ήδη εξαχθεί. Κατά συνέπεια, το σύστημα δίνει στον 

χρήστη τη δυνατότητα να κάνει τέτοιες τροποποιήσεις στις διαδρομές. Αυτή η ενέργεια 

εκτελείται συχνά από εταιρείες διανομής, καθώς οι απαιτήσεις τους ενδέχεται να αλλάξουν 

μετά το αρχικό σχέδιο. Προκειμένου να επιτραπεί η προσθήκη μιας παραγγελίας σε μια 

υπάρχουσα διαδρομή, το σύστημα ελέγχει πρώτα ότι τηρούνται τα χρονικά παράθυρα και ότι 

η χωρητικότητα του οχήματος δεν παραβιάζεται. Εφόσον δεν παραβιάζεται κανένας 

περιορισμός, η σειρά εκτέλεσης και ο χρόνος άφιξης των παραγγελιών επαναϋπολογίζεται.  

Επιπλέον, κατά την εκτέλεση των παραδόσεων, οι εταιρείες ενδέχεται να χρειαστεί να 

τροποποιήσουν τη διαδρομή των οχημάτων, είτε λόγω ακυρώσεων παραγγελιών και αλλαγών 

στα χρονικά παράθυρα, είτε λόγω απροσδόκητων γεγονότων (κυκλοφοριακή συμφόρηση) που 

μπορεί να προκύψουν κατά την εκτέλεση των παραδόσεων. Σε τέτοιες περιπτώσεις, όταν είναι 

https://aberon-pod.azurewebsites.net/


 

44 

 

απαραίτητο, το σύστημα υλοποιεί εργασίες αναδρομολόγησης χρησιμοποιώντας ενημερωμένα 

δεδομένα πελατών και τα δεδομένα κίνησης σε πραγματικό χρόνο (ενημερωμένοι χρόνοι 

μετακίνησης μεταξύ πελατών) που επικρατούν εκείνη τη στιγμή, εκτελώντας ένα νέο αίτημα 

HTTP προς την HERE Technologies. Μέσω αυτής της προσέγγισης, η σειρά των παραδόσεων 

μπορεί να αλλάξει έτσι ώστε οι καθυστερήσεις να ελαχιστοποιηθούν.  

Όπως γίνεται σαφές, το σύστημα δρομολόγησης που παρέχεται μέσω του νέφους μπορεί να 

αντιμετωπίσει αποτελεσματικά το περίπλοκο πρόβλημα της δρομολόγησης  είτε αυτό αφορά 

την αρχική ή στατική δρομολόγηση, είτε την δυναμική.  

6.6 Αξιολόγηση και Οφέλη 

Όπως έχει ήδη αναφερθεί, οι αλγόριθμοι που παρουσιάζονται στα Κεφάλαια 3, 4 και 5 είναι 

ενσωματωμένοι στο παρουσιαζόμενο σύστημα, ενώ μόνο ο αλγόριθμος ΠΡΑΕΓ (Κεφάλαιο 5) 

επικοινωνεί αυτή τη στιγμή, με το σύστημα. Δεδομένου ότι το σύστημα είναι έτοιμο να 

χρησιμοποιηθεί από εταιρείες logistics για τη διευκόλυνση των εργασιών διανομής τους, 

αποφασίστηκε να δοκιμαστεί περαιτέρω σε πραγματικές περιπτώσεις διανομής, όπου μεγάλος 

όγκος δεδομένων διαχειρίζεται δυναμικά. Αυτό το βήμα αποφεύγεται στις περισσότερες 

ερευνητικές μελέτες, καθώς μόνο λίγοι αλγόριθμοι ενσωματώνονται σε πραγματικά 

συστήματα. Αυτό οφείλεται στο γεγονός ότι η ανάπτυξη ενός συστήματος δρομολόγησης είναι 

άρρηκτα συνδεδεμένη με την ανάπτυξη λογισμικού και σχετικές τεχνολογίες όπως το cloud 

computing, η διαχείριση βάσεων δεδομένων, οι διεπαφές προγραμματισμού εφαρμογών (API) 

και οι υπηρεσίες web που παρουσιάζονται στην ενότητα 6.3. 

Προκειμένου να αξιολογηθεί η αποτελεσματικότητα του αλγορίθμου και του συστήματος 

συνολικά, εξετάζονται τρεις διαφορετικές περιπτώσεις διανομής στην πραγματική ζωή. Η 

πρώτη υπόθεση διανομής αφορά την αναπλήρωση καταστημάτων αλυσίδας σούπερ μάρκετ 

και περιλαμβάνει 141 παραγγελίες μεγάλου μεγέθους. Η δεύτερη περίπτωση αφορά 

παραδόσεις ηλεκτρικών συσκευών σε καταναλωτές που περιλαμβάνει 195 παραγγελίες. 

Τέλος, η τρίτη περίπτωση αφορά τη διανομή αγαθών σε κανάλι ηλεκτρονικού εμπορίου που 

περιλαμβάνει 748 παραγγελίες. Σε κάθε περίπτωση το σχέδιο των διαδρομών που προκύπτει 

από τις υπάρχουσες προσεγγίσεις που χρησιμοποιούν οι εταιρείες, συγκρίθηκε με αυτό που 

προκύπτει από το σύστημα. Το γεγονός ότι οι υποθέσεις διανομής ανήκουν σε διαφορετικούς 

τομείς και ο αριθμός και το μέγεθος των παραγγελιών ποικίλλουν ενισχύουν  την έρευνα αφού 

μελετάται ένα ευρύτερο φάσμα λειτουργιών. 

Όσον αφορά τα αποτελέσματα, σε κάθε εταιρεία/περίπτωση η χρήση του συστήματος μπορεί 

να επιφέρει μείωση του κόστους διανομής. Ωστόσο, το κέρδος στην περίπτωση αναπλήρωσης 

καταστημάτων είναι μικρό καθώς μειώνεται μόνο κατά 6 € ημερησίως κατά μέσο όρο, ενώ ο 

αριθμός των δρομολογίων που δημιουργούνται είναι ίδιος. Αυτό οφείλεται κυρίως στο ότι οι 

δρομολογητές έχουν βελτιστοποιήσει τη διαδικασία και βασίζουν το σχέδιο των διαδρομών 

στην εμπειρία τους και τη σταθερότητα των παραγγελιών σε καθημερινή φάση, κάτι που τους 

επιτρέπει να κάνουν μερικές τροποποιήσεις πριν διαμορφώσουν το τελικό σχέδιο. Σε 



 

45 

 

περίπτωση παράδοσης συσκευών από πόρτα σε πόρτα, το κόστος διανομής μειώνεται κατά 

12,56 € με τη χρήση του συστήματος, ενώ τα δρομολόγια παραμένουν ίδια. Τέλος, η 

περίπτωση του ηλεκτρονικού εμπορίου παρουσιάζει τα πιο ενδιαφέροντα αποτελέσματα 

καθώς τόσο ο αριθμός των δρομολογίων όσο και το κόστος διανομής μειώνονται σημαντικά. 

Πιο συγκεκριμένα, ο αριθμός των δρομολογίων μειώνεται κατά 1, ενώ το κόστος κατά 102,08 

€ ημερησίως, που  αντιστοιχεί σε 35.728 € ετησίως (350 εργάσιμες ημέρες). Τα οικονομικά 

οφέλη φαίνονται σημαντικά, ειδικά στην αλυσίδα του ηλεκτρονικού εμπορίου όπου 

εξυπηρετούνται πολλαπλές παραγγελίες καθημερινά. Ωστόσο, για να αποφασιστεί εάν η 

χρήση του συστήματος είναι κερδοφόρα για μια εταιρεία, πρέπει να καθοριστεί το κόστος 

χρήσης. Στην τρέχουσα κατάσταση του συστήματος, όπου έχει οριστεί μόνο το μοντέλο 

υπηρεσιών (μοντέλο SaaS), το ακριβές οικονομικό κέρδος των εταιρειών δεν μπορεί να 

καθοριστεί με σαφήνεια. 

Ωστόσο, τα οφέλη που αποκομίζουν οι εταιρείες από τη χρήση του συστήματος δρομολόγησης 

δεν περιορίζονται στο μειωμένο κόστος διανομής και τον αριθμό των οχημάτων, αλλά 

επεκτείνονται και στην οπτικοποίηση των διαδρομών και στη δυνατότητα δυναμικής 

τροποποίησης τους ακόμη και κατά τη διάρκεια των εργασιών διανομής  όπως ήδη 

αναφέρθηκαν στα κεφάλαια 6.4 και 6.5. 

6.7 Συμπεράσματα 

Τα συστήματα δρομολόγησης είναι απαραίτητα για τις σημερινές απαιτητικές λειτουργίες 

διανομής, και ιδιαίτερα στα κέντρα των πόλεων όπου οι καθημερινές παραδόσεις και η 

κυκλοφοριακή συμφόρηση αυξάνονται δραματικά. Ο αλγόριθμος και το cloud σύστημα 

δρομολόγησης που αναπτύχθηκε στοχεύουν σε αυτήν ακριβώς την ανάγκη, καταφέρνοντας να 

καλύψει τις ανάγκες και τις απαιτήσεις των περισσότερων εταιρειών που δραστηριοποιούνται 

στις αστικές εμπορευματικές μεταφορές. Εκτός από τη δημιουργία αποτελεσματικών 

διαδρομών, το σύστημα διαθέτει επίσης πολλαπλές λειτουργίες για την υποστήριξη των 

εταιρειών και τη βελτίωση της διαδικασίας δρομολόγησης. Τέτοιες λειτουργίες είναι κυρίως η 

απεικόνιση των διαδρομών στο χάρτη και η παρουσίαση σχετικών με τις παραγγελίες 

πληροφοριών, καθώς και οι τροποποιήσεις και προσαρμογές που μπορούν να γίνουν στο πλάνο 

δρομολογίων, με βάση την εμπειρία των δρομολογητών. 

Προκειμένου να υποστηριχθούν όλες αυτές οι λειτουργίες και να δημιουργηθεί ένα τέτοιο 

λειτουργικό σύστημα, έχουν αξιοποιηθεί και συνδυαστεί πολλαπλές τεχνολογίες, όπως 

υπολογιστικό νέφος, διαχείριση βάσεων δεδομένων, API, υπηρεσίες web κ.λπ., ενώ 

ταυτόχρονα ο πυρήνας του συστήματος είναι ο αλγόριθμος ΠΡΑΕΓ που έχει αναπτυχθεί. Ο 

αλγόριθμος έχει δοκιμαστεί τόσο σε σύνολα δεδομένων της βιβλιογραφίας όσο και σε 

πραγματικές περιπτώσεις διανομής και αποδείχθηκε αποτελεσματικός τόσο από την άποψη 

των αποτελεσμάτων όσο και από τον υπολογιστικό χρόνο.



46 

 

7. Ερευνητικά Αποτελέσματα και Μελλοντικά Βήματα 

7.1 Ερευνητική Συνεισφορά 

Το ΠΔΟ, το οποίο αποτελεί ένα από τα πιο συχνά προβλήματα που αντιμετωπίζονται στην 

εφοδιαστική αλυσίδα, προτάθηκε για πρώτη φορά πριν από περισσότερα από 60 χρόνια. Με 

τα χρόνια, έχουν προταθεί πολλαπλές παραλλαγές, καθεμία από τις οποίες εστιάζει σε 

συγκεκριμένες πτυχές και μεταβλητές του προβλήματος, οδηγώντας σε συγκεκριμένες 

παραλλαγές στη γενική μαθηματική διατύπωση. Στις περισσότερες παραλλαγές του 

προβλήματος, ο στόχος είναι να βρεθούν οι πιο οικονομικές διαδρομές που εξυπηρετούν τη 

ζήτηση. Κατά συνέπεια, στις περισσότερες περιπτώσεις τίθεται η αντικειμενική συνάρτηση, η 

οποία είναι η ελαχιστοποίηση του κόστους διανομής. Ωστόσο, τα τελευταία χρόνια, ορισμένοι 

ερευνητές επικεντρώνονται στην ελαχιστοποίηση των εκπομπών αερίων του θερμοκηπίου 

λόγω της αυξημένης ανάγκης. 

Στην παρούσα διατριβή παρουσιάζεται, μελετάται και αντιμετωπίζεται μια κατηγορία 

προβλημάτων δρομολόγησης οχημάτων. Οι παραλλαγές που εξετάζονται έχουν προκύψει 

μέσα από μια ερευνητική μελέτη και τη συνεργασία με εταιρείες του κλάδου (εταιρείες 

διανομής και ανάπτυξης λογισμικού). Επιπλέον, το ΠΔΟ είναι ζωτικής σημασίας για τη 

βιομηχανία αφού επηρεάζει τα περιθώρια κέρδους των εταιρειών παραγωγής και διανομής. Το 

γεγονός αυτό τα έχει αναδείξει στα πιο δημοφιλή και ευρέως μελετημένα προβλήματα στην 

Εφοδιαστική Αλυσίδα. 

Το γεγονός ότι τόσα πολλά διαφορετικά πεδία ενδιαφέρονται για το ΠΔΟ και τις παραλλαγές 

του έχει οδηγήσει σε πολλαπλούς αλγόριθμους βελτιστοποίησης. Κάθε αλγόριθμος μπορεί να 

εστιάζει σε διαφορετικές παραλλαγές και πτυχές του προβλήματος. Στις περισσότερες 

περιπτώσεις, το ΠΔΟΧΠ αντιμετωπίζεται λόγω της σύνδεσής του με πραγματικές υποθέσεις. 

Ενώ αυτή η παραλλαγή έχει μελετηθεί ευρέως και αντιμετωπίζεται από ερευνητές και 

επαγγελματίες, οι ανεπτυγμένοι αλγόριθμοι ΠΑΕΓ και ΠΕΑ καταφέρνουν να είναι εξαιρετικά 

αποδοτικοί και προσφέρουν νέες βέλτιστες λύσεις μέχρι στιγμής. Αυτό δεν είναι εύκολο έργο, 

κυρίως όταν τόσοι πολλοί ερευνητές έχουν επικεντρωθεί γύρω από το θέμα.  

Το ίδιο ισχύει για το ΠΔΟΤΠΠ και το ΠΔΟΕΣΟ, τα οποία σχετίζονται επίσης σε μεγάλο βαθμό 

με τις πραγματικές περιπτώσεις διανομής. Αρχικά, η συλλογή αγαθών που μπορούν να 

ανακατασκευαστούν, να επισκευαστούν ή να ανακυκλωθούν, από λιανοπωλητές, τελικούς 

πελάτες και καταστήματα, είναι σημαντική και μπορεί να οδηγήσει σε οικονομικά και 

περιβαλλοντικά οφέλη τόσο για τους καταναλωτές όσο και για τις εταιρείες. Αυτός είναι ο 

λόγος για τον οποίο το ΠΔΟΤΠΠ είναι σημαντικό τόσο για την έρευνα όσο και για τη 

βιομηχανία. Όσον αφορά τους τύπους των οχημάτων, ορισμένοι πελάτες έχουν πανομοιότυπα 

οχήματα. Στις περισσότερες περιπτώσεις οι εταιρείες έχουν διαφορετικούς τύπους για να 

ικανοποιήσουν τις απαιτήσεις της διανομής. Αυτός είναι ο κύριος λόγος για την επιλογή του 

ΠΔΟΕΣΟ. Επιπλέον, η αντιμετώπιση του ΠΔΟΕΣΟ καλύπτει τις περιπτώσεις στις οποίες οι 



 

47 

 

εταιρείες διαθέτουν πανομοιότυπα οχήματα και κατά συνέπεια μπορούν να καλύψουν τις 

ανάγκες τους. Επιπρόσθετα, πέρα από τις παραλλαγές του ΠΔΟ που λαμβάνονται υπόψιν και 

αντιμετωπίζονται, στο μαθηματικό μοντέλο προστίθενται ορισμένες μεταβλητές και 

περιορισμοί προκειμένου το πρόβλημα να έρθει ακόμα πιο κοντά στην πραγματικότητα. 

Τέτοιες μεταβλητές και περιορισμοί είναι τα ωράρια των οδηγών καθώς και η αυτονομία των 

οχημάτων.  

Επιπλέον, ο αλγόριθμος ΠΡΑΕΓ εκτός από την προσφορά πολλαπλών νέων βέλτιστων λύσεων  

σε διάφορα σύνολα δεδομένων της βιβλιογραφίας, εξετάζει και αντιμετωπίζει πολλαπλές 

μεταβλητές και περιορισμούς, καθιστώντας τον προτεινόμενο αλγόριθμο την κατάλληλη 

μέθοδο για ενσωμάτωση στο σύστημα δρομολόγησης cloud. Όπως αναφέρθηκε ήδη, οι τρεις 

αλγόριθμοι είναι όλοι αποθηκευμένοι στη cloud βάση δεδομένων, που διαχειρίζεται η εταιρεία 

ανάπτυξης λογισμικού, αλλά το σύστημα στην τρέχουσα μορφή του μπορεί να επικοινωνήσει 

και να λάβει το σχέδιο των διαδρομών μόνο από τον αλγόριθμο ΠΡΑΕΓ. ο ΠΡΑΕΓ επιλέχθηκε 

σε αυτήν την αρχική μορφή του συστήματος cloud, καθώς μπορεί να αντιμετωπίσει 

περισσότερες παραλλαγές του ΠΔΟ σε σύγκριση με τους άλλους δύο αλγόριθμους.  

Ωστόσο, σε περιπτώσεις που ένας αλγόριθμος που είναι ο πυρήνας ενός συστήματος, η 

αποτελεσματικότητά και ο αριθμός των μεταβλητών που λαμβάνει υπόψιν δεν μπορούν να 

είναι τα μόνα που λαμβάνονται υπόψη. Ο υπολογιστικός χρόνος και ο αριθμός των 

παραγγελιών που μπορεί να χειριστεί το σύστημα είναι επίσης σημαντικοί. Γι’ αυτό και ο 

συγκεκριμένος αλγόριθμος είναι ενσωματωμένος στο cloud system. Ο ΠΡΑΕΓ έχει δοκιμαστεί 

σε πολλαπλά δεδομένα με τον αριθμό των παραγγελιών που κυμαίνεται από 100 έως 748. Σε 

όλες τις περιπτώσεις, συμπεριλαμβανομένων των συνόλων δεδομένων της βιβλιογραφίας και 

των περιπτώσεων διανομής στην πραγματική ζωή, ο αλγόριθμος μπορεί να δημιουργήσει μια 

λύση πολύ γρήγορα (λιγότερο από 80 δευτερόλεπτα) ενώ όσο περισσότερο εκτελείται, τόσο 

περισσότερο βελτιώνεται η λύση (μείωση του κόστους διανομής).  

Επιπρόσθετα, πέρα από την ποιότητα των αλγορίθμων που αναπτύσσονται και των 

αποτελεσμάτων που προσφέρονται, μεγάλη συνεισφορά της έρευνας είναι η αξιοποίηση 

πραγματικών δεδομένων αποστάσεων και χρόνων που καθιστούν τη δρομολόγηση και το 

πλάνο παραδόσεων ακόμα πιο αξιόπιστο τόσο σε θέμα εκτίμησης χρόνων άφιξης όσο και 

εκτίμησης κόστους. Τα δεδομένα χρόνων κατά τη στατική δρομολόγηση αποτελούν 

στατιστική εκτίμηση παρόχων χαρτογραφικών δεδομένων. Αντίθετα, κατά την δυναμική 

δρομολόγηση τα χρονικά δεδομένα προκύπτουν από την κίνηση που επικρατεί τη 

συγκεκριμένη στιγμή στο οδικό δίκτυο και επομένως οποιαδήποτε διαδικασία 

αναδρομολόγησης γίνεται με πολύ μεγάλη ακρίβεια.  

Πέραν των δεδομένων χρόνων μετακίνησης και αποστάσεων που αξιοποιούνται από τους 

κατάλληλους παρόχους, στην παρούσα διατριβή αξιοποιούνται και χάρτες στους οποίους 

γίνεται οπτικοποίηση των διαδρομών είτε μαζικά είτε μεμονωμένα. Επιπλέον, καθορίζεται 



 

48 

 

γραφικά η σειρά επίσκεψης και εκπλήρωσης των παραδόσεων, λειτουργία που μπορεί να 

βοηθήσει σημαντικά τους οδηγούς. 

7.2 Μελλοντικά Βήματα Έρευνας 

Οι στόχοι που τέθηκαν αρχικά, είναι (i) η μελέτη μιας κατηγορίας παραλλαγών ΠΔΟ, (ii) η 

μαθηματική τους διατύπωση, (iii) η ανάπτυξη μεταευρετικών αλγορίθμων που απευθύνονται 

στις υπό μελέτη παραλλαγές ΠΔΟ και (iv) η ενσωμάτωση των αλγορίθμων σε ένα cloud 

σύστημα δρομολόγησης, στόχοι που έχουν επιτευχθεί κατά τη διάρκεια των διδακτορικών 

σπουδών. Ωστόσο, αυτοί οι στόχοι και τα επιμέρους στοιχεία της μελέτης μπορούν να 

αποτελέσουν αφετηρία για μελλοντικές ερευνητικές δραστηριότητες. Στο υπόλοιπο τμήμα της 

ενότητας 7.2, δίνονται διάφορες κατευθύνσεις σχετικά με τις μελλοντικές μελέτες. 

Πρώτον, τα τελευταία χρόνια, οι ερευνητές επικεντρώνονται στους υβριδικούς αλγόριθμους. 

Αυτοί οι αλγόριθμοι συνδυάζουν το πλήρες δυναμικό πολλαπλών μεταευρετικών αλγορίθμων. 

Κάθε αλγόριθμος εστιάζει σε συγκεκριμένες πτυχές που περιέχουν πλεονεκτήματα και 

μειονεκτήματα. Από την άλλη πλευρά, ο συνδυασμός πολλαπλών μεταευρετικών αλγορίθμων 

στοχεύει στην εξάλειψη των αδύναμων στοιχείων κάθε μεθόδου ενώ παράλληλα ενισχύει τα 

δυνατά χαρακτηριστικά τους. Λαμβάνοντας υπόψη τα οφέλη, οι προτεινόμενοι αλγόριθμοι των 

κεφαλαίων 3, 4 και 5 θα αποτελέσουν τη βάση της νέας προτεινόμενης υβριδικής 

μεταευρετικής. Ωστόσο, θα μελετηθούν πρόσθετα μεταευρετικά στοιχεία προκειμένου να 

επιλεγεί η καταλληλότερη για κάθε περίπτωση. 

Μια άλλη ερευνητική κατεύθυνση αφορά την πτυχή των εκπομπών CO2 που θα ληφθούν 

υπόψη και στους τρεις προτεινόμενους αλγόριθμους. Στην περίπτωση των δύο 

πολυαντικειμενικών αλγορίθμων, δηλαδή του ΠΕΑ και του ΠΑΕΓ, οι εκπομπές CO2 θα 

εμπλέκονται ως μία από τις δύο αντικειμενικές συναρτήσεις. Πιο συγκεκριμένα, η 

ελαχιστοποίηση των εκπομπών CO2 θα είναι η μία αντικειμενική συνάρτηση, ενώ η δεύτερη 

το κόστος διανομής. Αυτό μπορεί να βοηθήσει τις εταιρείες που στη σημερινή απαιτητική 

αγορά πρέπει να ακολουθήσουν τους εθνικούς περιορισμούς σχετικά με τις εκπομπές αερίων 

του θερμοκηπίου. Όσον αφορά τον αλγόριθμο ΠΡΑΕΓ, αυτό το χαρακτηριστικό θα πρέπει να 

συμπεριληφθεί ως εκτίμηση. Με αυτόν τον τρόπο κάθε εταιρεία θα μπορεί να υπολογίζει με 

μεγάλη ακρίβεια τις εκπομπές που προκαλούνται από τη διαδικασία διανομής. 

Επιπλέον, κάθε μία από τις προτεινόμενες μεθόδους βελτιστοποίησης μπορεί να βελτιωθεί 

περαιτέρω προκειμένου να επιτευχθούν ακόμη καλύτερα αποτελέσματα. Όσον αφορά τον 

αλγόριθμο ΠΑΕΓ και τον αλγόριθμο ΠΡΑΕΓ που έχουν την ίδια βάση, δηλαδή τον αλγόριθμο 

ΑΕΓ, θα εξεταστούν και θα μελετηθούν νέοι και αποτελεσματικοί τελεστές καταστροφής και 

επισκευής. Όσον αφορά το ΠΕΑ, τα επόμενα βήματα της ερευνητικής προσέγγισης θα 

επικεντρωθούν στους τελεστές διασταύρωσης και μετάλλαξης. 

Παρά τα επόμενα βήματα της έρευνας που αφορούν τους αλγόριθμους, υπάρχουν αρκετές 

ενέργειες που μπορούν να γίνουν για τη μετατροπή του cloud συστήματος δρομολόγησης σε 



 

49 

 

εμπορικό προϊόν. Αρχικά, για να γίνει το σύστημα εμπορικό προϊόν που υποστηρίζει πλήρως 

τις εταιρείες logistics που δραστηριοποιούνται στη διανομή εμπορευμάτων, θα πρέπει επίσης 

να εξεταστούν περισσότερες παραλλαγές ΠΔΟ από τους προτεινόμενους αλγόριθμους και πιο 

συγκεκριμένα από τον αλγόριθμο ΠΡΑΕΓ που εφαρμόζεται στην τρέχουσα μορφή του 

συστήματος. Πιο συγκεκριμένα, μετά από δοκιμή του αλγόριθμου σε πραγματικές περιπτώσεις 

διανομής, διαπιστώθηκε ότι ένας περιορισμένος αριθμός διαδρομών, κυρίως λόγω του 

περιορισμού της χωρητικότητας του οχήματος, διαρκούν λιγότερο από τη μισή βάρδια του 

οδηγού. Αυτό σημαίνει ότι ο ίδιος οδηγός μπορεί να εκτελέσει άλλη διαδρομή πριν τελειώσει 

η βάρδια του. Αυτή η μεταβλητή αναγνωρίζεται ως η παραλλαγή ΠΔΟΠΔ. Η βελτίωση του 

αλγορίθμου λαμβάνοντας υπόψη αυτή την παραλλαγή θα οδηγήσει σε άριστη κάλυψη των 

αναγκών των εταιρειών logistics, ανεξάρτητα από το μέγεθός τους. 

Επιπλέον, δεδομένου ότι ο ΠΡΑΕΓ δοκιμάστηκε στο Συνεργατικό ΠΔΟ, το σύστημα ενδέχεται 

στο μέλλον να ενσωματώσει τη συγκεκριμένη παραλλαγή. Κατά συνέπεια, μια περαιτέρω 

ερευνητική μελέτη θα πρέπει να επικεντρωθεί στον μηχανισμό επιμερισμού των κερδών που 

πρέπει να καθορίσουν οι συνεργαζόμενες εταιρείες πριν συνεργαστούν. Σε κάθε περίπτωση 

συνεργασίας, η προσέγγιση του επιμερισμού των κερδών πρέπει να είναι δίκαιη για όλα τα 

μέρη, ενώ ταυτόχρονα είναι κερδοφόρα. Ωστόσο, το γεγονός ότι ο επιμερισμός των κερδών 

αποτελεί ένα άλλο ερευνητικό θέμα και έχουν ήδη προταθεί πολλαπλές προσεγγίσεις μας 

οδήγησε να μην το θεωρήσουμε ως μέρος της ερευνητικής μελέτης. Τέλος, το σύστημα πρέπει 

να χειρίζεται δεδομένα από πολλούς παρόχους logistics σε συμμόρφωση με την Προστασία 

Προσωπικών Δεδομένων (GDPR). Αυτό είναι απαραίτητο, καθώς οι πελάτες από διαφορετικές 

εταιρείες πρέπει να ανεβαίνουν σε μια κοινή πλατφόρμα για την αντιμετώπιση του 

Συνεργατικού ΠΔΟ. Αυτή η περαιτέρω έρευνα μπορεί να προσφέρει στις εταιρείες logistics 

ένα πολύτιμο εργαλείο για πιο αποτελεσματική διανομή του τελευταίου μιλίου.  

Επιπλέον, ενώ οι τρεις προτεινόμενοι αλγόριθμοι είναι αποθηκευμένοι στη βάση δεδομένων 

cloud της Oracle, όπως περιγράφεται στην ενότητα 6.3, μόνο ο αλγόριθμος ΠΡΑΕΓ συνδέεται 

με το σύστημα δρομολόγησης cloud μέσω των κατάλληλων αιτημάτων HTTP, προκειμένου 

να εξαχθεί το πλάνο δρομολογίων. Δεδομένου ότι ο αλγόριθμος ΠΡΑΕΓ δεν καλύπτει τις 

ανάγκες των εταιρειών που πρέπει να βελτιστοποιήσουν ταυτόχρονα δύο αντικειμενικές 

συναρτήσεις, ένα μελλοντικό βήμα της έρευνας είναι η ενσωμάτωση των υπαρχόντων 

αλγορίθμων με το cloud σύστημα δρομολόγησης. Συγκεκριμένα, μελλοντικός στόχος αυτής 

της μελέτης είναι να δώσει στους χρήστες τη δυνατότητα να επιλέξουν τον αλγόριθμο που  θα 

εφαρμοστεί και θα εξάγει το πλάνο δρομολογίων. Προκειμένου να επιτύχει αυτό το βήμα 

αποτελεσματικά, οι στόχοι που αφορούν περισσότερο τις εταιρείες διανομής πρέπει να 

καθοριστούν και επίσης να ενσωματωθούν στους αλγόριθμους πολλαπλών στόχων. Στην 

τρέχουσα μορφή τους, ο αλγόριθμος ΠΕΑ και ο ΠΑΕΓ δεν αντιμετωπίζουν εξίσου πολλές 

παραλλαγές του ΠΔΟ όπως ο αλγόριθμος ΠΡΑΕΓ. 

Καταλήγοντας, γίνεται σαφές ότι ο ανεπτυγμένος αλγόριθμος ΠΡΑΕΓ, ο οποίος υλοποιείται 

από το σύστημα δρομολόγησης cloud, μπορεί να προσφέρει σημαντικά οφέλη στις εταιρείες 



 

50 

 

διανομής. Το αποδοτικό σχέδιο διαδρομών που παράγεται από τον αλγόριθμο ΠΡΑΕΓ 

ενισχύεται από άλλες λειτουργίες του συστήματος, προσφέροντας μια ολοκληρωμένη λύση 

δρομολόγησης που υποστηρίζει σθεναρά τους σχεδιαστές. Ωστόσο, αυτό δεν σημαίνει ότι το 

σύστημα δεν μπορεί να βελτιωθεί περαιτέρω. Όπως ήδη αναφέρθηκε, η ενσωμάτωση 

περισσότερων μεταβλητών και περιορισμών στον αλγόριθμο, και στη συνέχεια στο σύστημα 

δρομολόγησης cloud, θα αυξήσει σημαντικά τη χρηστικότητα και την κάλυψη αναγκών, καθώς 

θα καλυφθούν περισσότερες απαιτήσεις και ανάγκες των χρηστών. 



51 

 

Βιβλιογραφία 

Abbatecola L, Fanti MP, Mangini AM, Ukovich W (2016) A Decision Support Approach for 

Postal Delivery and Waste Collection Services. IEEE Trans Autom Sci Eng 13:1458–

1470. https://doi.org/10.1109/TASE.2016.2570121 

César H, Oliveira B De (2010) A hybrid search method for the vehicle routing problem with 

time windows. Ann Oper Res 180:125–144. https://doi.org/10.1007/s10479-008-0487-y 

Clarke G, Wright JW (1964) Scheduling of Vehicles from a Central Depot to a Number of 

Delivery Points. Oper Res 12:568–581. https://doi.org/10.1287/opre.12.4.568 

Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manage Sci 6:80–91. 

https://doi.org/10.1287/mnsc.6.1.80 

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic 

algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. 

https://doi.org/10.1109/4235.996017 

EEL (2018) Logistics in Greece Today 

Ehrgott M (2005) Multicriteria optimization: Second edition 

El-Sherbeny NA (2010) Vehicle routing with time windows: An overview of exact, heuristic 

and metaheuristic methods. J King Saud Univ 22:123–131. 

https://doi.org/10.1016/j.jksus.2010.03.002 

Elshaer R, Awad H (2020) A taxonomic review of metaheuristic algorithms for solving the 

vehicle routing problem and its variants. Comput Ind Eng 140:106242. 

https://doi.org/https://doi.org/10.1016/j.cie.2019.106242 

Erdelić T, Carić T (2019) A Survey on the Electric Vehicle Routing Problem: Variants and 

Solution Approaches. J Adv Transp 2019:5075671. 

https://doi.org/10.1155/2019/5075671 

Erdelić T, Carić T, Erdelić M, Tišljarić L (2019) Electric vehicle routing problem with single 

or multiple recharges. Transp Res Procedia 40:217–224. 

https://doi.org/https://doi.org/10.1016/j.trpro.2019.07.033 

Erdoğan G (2017) An open source Spreadsheet Solver for Vehicle Routing Problems. Comput 

Oper Res 84:62–72. https://doi.org/10.1016/j.cor.2017.02.022 

Fanti MP, Laraspata R, Iacobellis G, et al (2014) A Decision Support System approach for the 

postal delivery operations. In: 2014 IEEE International Conference on Automation 

Science and Engineering (CASE). pp 588–593 

Ferrell W, Ellis K, Kaminsky P, Rainwater C (2020) Horizontal collaboration: opportunities 

for improved logistics planning. Int J Prod Res 58:4267–4284. 

https://doi.org/10.1080/00207543.2019.1651457 

Figliozzi MA (2012) The time dependent vehicle routing problem with time windows: 

Benchmark problems, an efficient solution algorithm, and solution characteristics. Transp 

Res Part E Logist Transp Rev 48:616–636. https://doi.org/10.1016/j.tre.2011.11.006 

Gambardella LM, Taillard É, Agazzi G (1999) Macs-vrptw: A multiple colony system for 

vehicle routing problems with time windows. In: New Ideas In Optimization. pp 63–76 

Gayialis SP, Tatsiopoulos IP (2004) Design of an IT-driven decision support system for vehicle 



 

52 

 

routing and scheduling. Eur J Oper Res 152:382–398. https://doi.org/10.1016/S0377-

2217(03)00031-6 

Gillett BE, Miller LR (1974) A Heuristic Algorithm for the Vehicle-Dispatch Problem. Oper 

Res 22:340–349. https://doi.org/10.1287/opre.22.2.340 

Glover F (1986) Future paths for integer programming and links to artificial intelligence. 

Comput Oper Res 13:533–549. https://doi.org/10.1016/0305-0548(86)90048-1 

Golden B, Assad A, Levy L, Gheysens F (1984) The fleet size and mix vehicle routing problem. 

Comput Oper Res 11:49–66. https://doi.org/10.1016/0305-0548(84)90007-8 

Gong G, Deng Q, Gong X, et al (2018) A Bee Evolutionary Algorithm for Multiobjective 

Vehicle Routing Problem with Simultaneous Pickup and Delivery. Math Probl Eng 

2018:2571380. https://doi.org/10.1155/2018/2571380 

Govindan K, Soleimani H, Kannan D (2015) Reverse logistics and closed-loop supply chain: 

A comprehensive review to explore the future. Eur J Oper Res 240:603–626. 

https://doi.org/10.1016/j.ejor.2014.07.012 

Grangier P, Gendreau M, Lehuédé F, Rousseau L-M (2016) An adaptive large neighborhood 

search for the two-echelon multiple-trip vehicle routing problem with satellite 

synchronization. Eur J Oper Res 254:80–91. 

https://doi.org/https://doi.org/10.1016/j.ejor.2016.03.040 

Hornstra RP, Silva A, Roodbergen KJ, Coelho LC (2020) The vehicle routing problem with 

simultaneous pickup and delivery and handling costs. Comput Oper Res 115:104858. 

https://doi.org/10.1016/j.cor.2019.104858 

Jiang J, Ng KM, Poh KL, Teo KM (2014) Vehicle routing problem with a heterogeneous fleet 

and time windows. Expert Syst Appl 41:3748–3760. 

https://doi.org/10.1016/j.eswa.2013.11.029 

Kalayci CB, Kaya C (2016) An ant colony system empowered variable neighborhood search 

algorithm for the vehicle routing problem with simultaneous pickup and delivery. Expert 

Syst Appl 66:163–175. https://doi.org/https://doi.org/10.1016/j.eswa.2016.09.017 

Kirkpatrick S, Gelatt CD, Vecchi MP, P. VM (1983) Optimization by Simulated Annealing. 

Science (80- ) 220:671 LP-680. https://doi.org/10.1126/science.220.4598.671 

Koç Ç, Bektaş T, Jabali O, Laporte G (2014) The fleet size and mix pollution-routing problem. 

Transp Res Part B Methodol 70:239–254. 

https://doi.org/https://doi.org/10.1016/j.trb.2014.09.008 

Labadie N, Prins C, Prodhon C, Prins C (2016) Metaheuristics for Vehicle Routing Problems. 

John Wiley and Sons 

Leyerer M, Sonneberg M-O, Heumann M, et al (2019) Individually Optimized Commercial 

Road Transport: A Decision Support System for Customizable Routing Problems. 

Sustainability 11:. https://doi.org/10.3390/su11205544 

Lin C, Choy KL, Ho GTS, et al (2014) Survey of Green Vehicle Routing Problem : Past and 

future trends. Expert Syst Appl 41:1118–1138 

Liu F-H, Shen S-Y (1999) The Fleet Size and Mix Vehicle Routing Problem with Time 

Windows. J Oper Res Soc 50:721–732. https://doi.org/10.2307/3010326 

Mancini S (2017) The Hybrid Vehicle Routing Problem. Transp Res Part C Emerg Technol 



 

53 

 

78:1–12. https://doi.org/10.1016/j.trc.2017.02.004 

Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–

1100. https://doi.org/https://doi.org/10.1016/S0305-0548(97)00031-2 

Nagy G, Salhi S (2005) Heuristic algorithms for single and multiple depot vehicle routing 

problems with pickups and deliveries. Eur J Oper Res 162:126–141. 

https://doi.org/https://doi.org/10.1016/j.ejor.2002.11.003 

Ombuki B, Ross BJ, Hanshar F (2006) Multi-objective genetic algorithms for vehicle routing 

problem with time windows. Appl Intell 24:17–30. https://doi.org/10.1007/s10489-006-

6926-z 

Pisinger D, Ropke S (2007) A general heuristic for vehicle routing problems. Comput Oper 

Res 34:2403–2435. https://doi.org/10.1016/j.cor.2005.09.012 

Prins C (2009) Two memetic algorithms for heterogeneous fleet vehicle routing problems. Eng 

Appl Artif Intell 22:916–928. https://doi.org/10.1016/j.engappai.2008.10.006 

Renaud J, Laporte G, Boctor FF (1996) A tabu search heuristic for the multi-depot vehicle 

routing problem. Comput Oper Res 23:229–235. https://doi.org/10.1016/0305-

0548(95)O0026-P 

Salhi S, Nagy G (1999) A cluster insertion heuristic for single and multiple depot vehicle 

routing problems with backhauling. J Oper Res Soc 50:1034–1042. 

https://doi.org/10.1057/palgrave.jors.2600808 

Silva MM, Subramanian A, Ochi LS, et al (2014) An iterated local search heuristic for the split 

delivery vehicle routing problem. Eur J Oper Res 53:454–464. 

https://doi.org/https://doi.org/10.1016/j.cor.2014.08.005 

Solomon MM (1987) Algorithms for the Vehicle Routing and Scheduling Problems with Time 

Window Constraints. Oper Res 35:254–265. https://doi.org/10.1287/opre.35.2.254 

Taillard ÉD (1999) A heuristic column generation method for the heterogeneous fleet VRP. 

RAIRO-Operations Res Opérationnelle 33:1–14. https://doi.org/10.1051/ro:1999101 

Tan KC, Chew YH, Lee LH (2006) A Hybrid Multiobjective Evolutionary Algorithm for 

Solving Vehicle Routing Problem. Comput Optim Appl 34:115–151. 

https://doi.org/10.1007/s10589-005-3070-3 

Tarantilis CD, Diakoulaki D, Kiranoudis CT (2004) Combination of geographical information 

system and efficient routing algorithms for real life distribution operations. Eur J Oper 

Res 152:437–453. https://doi.org/https://doi.org/10.1016/S0377-2217(03)00035-3 

Tarantilis CD, Kiranoudis CT (2007) A flexible adaptive memory-based algorithm for real-life 

transportation operations: Two case studies from dairy and construction sector. Eur J Oper 

Res 179:806–822. https://doi.org/https://doi.org/10.1016/j.ejor.2005.03.059 

Wang Y, Ma X, Li Z, et al (2017) Profit distribution in collaborative multiple centers vehicle 

routing problem. J Clean Prod 144:203–219. 

https://doi.org/https://doi.org/10.1016/j.jclepro.2017.01.001 

Zachariadis EE, Tarantilis CD, Kiranoudis CT (2016) The Vehicle Routing Problem with 

Simultaneous Pick-ups and Deliveries and Two-Dimensional Loading Constraints. Eur J 

Oper Res 251:369–386. https://doi.org/https://doi.org/10.1016/j.ejor.2015.11.018 

 


