

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ

Διπλωματική Εργασία

Ανάπτυξη μοντέλου υπολογισμού των παραμορφώσεων γάστρας πλοίου, με εφαρμογή στη βέλτιστη ευθυγράμμιση του αξονικού συστήματος

Δαρδαμάνης Αναστάσιος

Εξεταστική επιτροπή:

Επιβλέπων: Μέλη: Χ. Ι. Παπαδόπουλος, Αναπληρωτής Καθηγητής ΕΜΠ Κ. Ανυφαντής, Αναπληρωτής Καθηγητής ΕΜΠ Λ. Καϊκτσής, Καθηγητής ΕΜΠ

Αθήνα, Ιούλιος 2022

NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF NAVAL ARCHITECTURE & MARINE ENGINEERING DIVISION OF MARINE ENGINEERING

Diploma Thesis

Development of model for the calculation of ship hull deflection, with application to the optimal alignment of propulsion shafting system

Dardamanis Anastasios

Thesis Committee:

Supervisor: Members: C.I. Papadopoulos, Associate Professor NTUA K. Anyfantis, Associate Professor NTUA L. Kaiktsis, Professor NTUA

Athens, July 2022

Acknowledgements

After an intensive period, today is the finish line. It has been an amazing journey, with a lot of hard and great times. I would like to reflect on the people who have supported and helped me so much throughout this period.

Firstly, I would like to thank my thesis advisor, Associate Professor Christos Papadopoulos. Prof. Papadopoulos was always there to answer the hard questions and steer me in the right direction whenever I needed it. With his vast knowledge over a variety of engineering fields, he helped in delivering great results and acquiring the most of everything we did.

Special Thanks goes out to George Rossopoulos for the support and relentless dedication he showed in this diploma thesis. Always to the point and with his great engineering knowledge and programming skills, he helped on developing and executing great ideas. His presence was vital for this Diploma Thesis.

At this point, I would like to thank my friends and classmates for their friendship and assistance throughout our studies at NTUA. I cannot express how grateful I am towards my fellow classmates, Orfeas Bourchas and Nikos Papanikolaou for their assistance, and advice over the university years. Also, their everyday "roasting" motivated me to finish my thesis.

Last, but surely not least, I must express my deepest gratitude to my parents, my brother and sister and to my partner in crime. This journey would not have been possible without their support.

Table of Contents

Acknowledgements	3
Abstract	7
Σύνοψη	8
Nomenclature	8
List of Figures	11
List of Tables	13
1. Introduction	14
1.1 Historical – Literature review	14
1.2 Goals of Present Study	15
2. Finite Element - Beam theory	16
2.1 Hull Girder Deflections	16
2.1.1 Euler Bernoulli beam	16
2.1.2 Timoshenko beam	17
2.2 Loads	19
2.3 Second Moment of Area	21
2.3.1 Plating	22
2.3.2 Stiffeners	23
2.3.3 Rotated axis	25
2.3.4 Parallel Axes Theorem	25
2.4 Section Properties Calculator app	27
2.5 Compartmentation	
2.5.1 Stern Tube	28
2.5.2 Deck house	29
2.5.3 Hatch Covers	30
2.5.4 Web frames	
3 Finite Element Analysis	
3.1 Euler Bernoulli Beam FDM Analysis	32
3.2 Finite Element Method	
3.2.1 Euler Bernoulli FEM	
3.2.2 Timoshenko FEM	
3.3 Boundary Conditions	

4. Shaft Alignment	
4.1. Definition	
4.1.2 Importance of Proper Alignment	
4.2 Shaft Alignment plan implementation	
4.2.1. Design - Calculations	
4.2.2 Installation process	
5. Case Study	
5.1 General particular of the vessel	
5.1.1 General Particular and Dimensions	
5.1.2 Shafting System Particulars	
5.2. Finite Element Analysis of the Vessel	
5.2.1. FEM Generation	
5.2.2. FEM Validation	53
5.3. Shaft Alignment Calculations - Parameters	54
5.3.1 Operating Conditions	54
5.3.2 Compartments	54
5.3.3 Static shaft alignment plan – Reference condition	54
5.3.4 Comparison of 1d beam theory and 3d analysis	57
5.4 Shaft alignment 1D model results	59
5. 4.1 Loading condition "DOCK2"	59
5.4.2 Loading condition "BLD"	
5.4.3 Loading condition "BLD-S11.1"	65
5.4.4 Loading condition "BLD-PANAMA"	
5.4.5 Loading condition "BLM-PANAMA"	71
5.4.6 Loading condition "BLA-PANAMA"	74
5.4.7 Loading condition "TDD16"	77
5.4.8 Loading condition "TAD16"	
5.4.9 Loading condition "TDS11"	
5.4.10 Loading condition "TAS11"	
5.4.11 Loading condition "TDS16"	
5.4.12 Loading condition "TAS16"	92
5.4.13 Loading condition "MAX"	

5.4.14 Reaction Forces	
5.5 Parameters Affecting Shaft Alignment Calculations	
5.5.1 Voyage	
5.5.2 Deckhouse	
5.5.3 Proper Modeling – Hatch Covers	
6. Conclusion – Future Work	
6.1 Conclusion	
6.2 Future Work	
6.2.1 Image processing neural networks	
6.2.2 Development of Inertia Calculator GUI application	
6.2.3 Sea swell	
6.2.4 1D investigation of different sizes and types of vessels	
6.2.5 Estimation of hull corrosion	
7. Literature – References	
APPENDIX A	
APPENDIX B	
APPENDIX C	

Abstract

Proper shaft alignment is vital for the safe operation and efficient performance of a vessel. Until recently, hull deflections had been rarely considered in the calculations of shaft alignment, mainly due to the time-consuming task of creating a 3d finite element representation of the vessel, and solving for many different loading condition scenaria. However, for some loading conditions, the effect of hull deformation on bearings vertical displacement and corresponding loads is quite significant. Having the ability to account for hull deflections in an early design stage will lead to increased calculations quality, will aid in preventing bearing operation at very low / very high loads and increased possibility of failure, while it will minimize dependence on the experience of shipyard personnel, which could be of particular concern when implementing alignment on new hull designs. The addition of hull deflections in the alignment design allows bearing reactions to be accurately assessed and confirmed for every vessel loading condition. Recently, Classification Society ABS released rule notations concerning the shaft alignment procedure, and noted that the 1D beam theory finite element model can provide acceptable hull deflection estimates, in comparison to deflections obtained from complex 3D finite element analyses.

In the present work, the hull deflections of a typical 10K containership are being calculated with the use of 1d beam theories. In particular, the Euler- Bernoulli and Timoshenko beam theories have been used to determine the hull deflections of the vessel. A Graphical User Interface application was developed in the course of the present thesis to calculate the sectional properties, such as neutral axis, second moment of area and shear area, for several longitudinal transverse sections of the vessel must be taken into account in the procedure of shaft alignment calculations. Several parts of the vessel must be taken into account in the calculations to properly assess the vertical bearings' offsets. After the transverse bending, shear stiffness and load distribution for several frames has been used as input, the finite element method is utilized to calculate relative hull deflections for a series of representative loading conditions of the vessel. This method not only provides a robust early approximation of the hull deflection using the broadly available information, but also requires minimum pre-processing by the user.

The aforementioned vertical offsets due to hull deflections are used in combination with the vertical offsets from hydrodynamic lubrication characteristics (oil film thickness) and elastic bearing foundation to calculate the bearings' reaction forces. The proper investigation and assessment of the bearings' offsets leads to better efficiency of the propulsion system, less wearing down of the journal bearings and increased bearing reliability. Based on the above, conclusions are drawn regarding the errors that can be produced by both the 3d and 1d modeling of the vessel and important parameters that should be considered beforehand to create a more accurate model.

Additionally, a comparative analysis of the key parameters affecting the shaft alignment procedure is conducted and a review of those key factors, including but not limited to the ship voyage and the sea swell, but also the many parameters that should be considered beforehand. Finally, suggestions for future work are discussed, that would extend the work done in this thesis and broaden our knowledge about the parameters affecting the hull deflection.

Σύνοψη

Η σωστή ευθυγράμμιση του αξονικού συστήματος ενός πλοίου είναι ζωτικής σημασίας για την ασφαλή λειτουργία και απόδοση αυτού. Μέχρι προσφάτως, οι παραμορφώσεις της γάστρας δεν λαμβάνονταν υπόψη στους υπολογισμούς της ευθυγράμμισης του άξονα λόγω της χρονοβόρας διαδικασίας δημιουργίας της τρισδιάστατης αναπαράστασης του πλοίου, παρόλο που σε πολλές καταστάσεις φόρτωσης, η επίδραση των παραμορφώσεων της γάστρας στην κατακόρυφη θέση των εδράνων είναι υψίστης σημασίας. Η δυνατότητα υπολογισμού των παραμορφώσεων της γάστρας στην κατακόρυφη θέση των εδράνων είναι υψίστης σημασίας. Η δυνατότητα υπολογισμού των παραμορφώσεων της γάστρας στα πρώτα στάδια σχεδίασης του πλοίου ελαχιστοποιεί την εξάρτηση από ικανό προσωπικό με εμπειρία, και θα βοηθήσει ιδιαίτερα στην διαδικασία ευθυγράμμισης του άξονα σε νέα μοντέλα πλοίων. Η προσθήκη των παραμορφώσεων της γάστρας στους υπολογισμούς της ευθυγράμμισης επιτρέπει μια πιο ακριβή αξιολόγηση των δυνάμεων αντίδρασης των εδράνων για κάθε κατάσταση φόρτωσης. Πρόσφατα, ο αμερικανικός νηογνώμονας (ABS) εξέθεσε κανονισμούς που αφορούν την ευθυγράμμιση του άξονα, τονίζοντας ότι η εφαρμογή της μονοδιάστατης θεωρίας δοκού μπορεί να παράγει πολύ κοντινές παραμορφώσεις με αυτές του τρισδιάστατου μοντέλου πλοίου.

Στην παρούσα εργασία, η παραμορφώσεις της γάστρας για ένα τυπικό πλοίο μεταφοράς εμπορευματοκιβωτίων 10,000 TEU υπολογίζονται με τη χρήση της θεωρίας μονοδιάστατης δοκού. Η θεωρίες των Timoshenko και Euler-Bernoulli χρησιμοποιήθηκαν για τους υπολογισμούς των παραμορφώσεων. Μια εφαρμογή γραφικής διασύνδεσης χρήστη δημιουργήθηκε στα πλαίσια της παρούσας διπλωματικής για τον γρηγορότερο και πιο εύκολο υπολογισμό των ιδιοτήτων επιφανείας, όπως ο ουδέτερος άξονας, δεύτερη ροπή επιφανείας και η επιφάνεια διάτμησης, για πολλές εγκάρσιες τομές κατά το μήκος του πλοίου, καθώς και για την αυτοματοποίηση της διαδικασίας ευθυγράμμισης του άξονα. Διάφορα μέρη του πλοίου πρέπει να ληφθούν υπόψη στους υπολογισμούς, ώστε να αξιολογηθούν σωστά οι κατακόρυφες θέσεις των εδράνων. Αφού η καμπτική και διατμητική αντοχή πολλών εγκάρσιων τομών του πλοίου καθώς και η φόρτωση του πλοίου έχει υπολογισμό των σχετικών μετατοπίσεων της γάστρας σε σχέση με μια κατάσταση φόρτωσης αναφοράς . Οι εύκολα διαθέσιμες απαιτούμενες πληροφορίες σε συνδυασμό με τα εύκολα επεξεργάσιμα απαιτούμενα δεδομένα για αυτή την μέθοδο δίνουν μια επαρκή γρήγορη προσέγγιση των παραμορφώσεων της γάστρας.

Οι παραπάνω παραμορφώσεις χρησιμοποιούνται σε συνδυασμό με τις κατακόρυφες μετατοπίσεις των εδράνων που προκαλούνται από τα υδροδυναμικά χαρακτηριστικά λίπανσης και την ελαστική παραμόρφωση των εδράνων για τον υπολογισμό των δυνάμεων αντίδρασης των εδράνων. Η κατάλληλη αξιολόγηση των κατακόρυφων θέσεων των εδράνων οδηγεί σε μεγαλύτερη απόδοση της προωστήριας εγκατάστασης και επίσης σε μικρότερη διάβρωση των εδράνων ολίσθησης και ώσης. Με βάση τα παραπάνω, βγάζουμε συμπεράσματα για τα λάθη που μπορεί να παραχθούν και από τις δύο μεθόδους, τρισδιάστατη και μονοδιάστατη, και τις παραμέτρους που πρέπει να λάβουμε υπόψη εκ των προτέρων για να δημιουργήσουμε ένα ακριβές μοντέλο.

Επιπλέον γίνεται μια συγκριτική ανάλυση των κύριων παραμέτρων που επηρεάζουν τη διαδικασία ευθυγράμμισης του άξονα, όπως ο κυματισμός και οι απώλεια αναλωσίμων κατά τη διάρκεια του ταξιδιού, αλλά και τις πολλές παραμέτρους που πρέπει να ληφθούν υπόψη. Τέλος γίνονται προτάσεις για μελλοντική έρευνα που θα βοηθήσουν να αναπτυχθεί αυτή η δουλειά και συγχρόνως να διευρύνουμε τις γνώσεις μας σχετικά με τις παραμέτρους που επηρεάζουν τις παραμορφώσεις της γάστρας.

Nomenclature

- E: Young modulus of Elasticity (GPa)
- I: Second Moment of Area (m⁴)
- u(x): deflection of beam (m)
- q: load distribution (t/m)
- V: shear force (t)
- M: bending moment (tm)
- τ : Shear stress(N/m²)
- As: Shear Area (m²)
- A: Section Area (m²)
- G: Shear modulus (GPa)
- k: shear correction coefficient
- Π : Potential Energy
- Q: First Moment of Area (m³)
- TPC: Tones per Centimeter (t/cm)
- MCT: Moment to Change Trim (tm)
- ρ : water density (1.025 t/m³)
- LCG: longitudinal center of gravity for the vessel (m)
- A_{WL}: Waterline Area (m²)

List of Figures

Figure 1: Euler Bernoulli beam theory	. 16
Figure 2: (a) Euler Bernoulli beam theory – (b) Timoshenko beam theory	. 18
Figure 3: Shear Forces and Load Distribution at MAX condition for studied vessel	. 20
Figure 4: Transverse ship frame	. 22
Figure 5 : Various types of beam stiffeners	. 23
Figure 6: Angle bar	. 24
Figure 7: Inertia Calculator application environment	. 27
Figure 8: Stern tube of a vessel	. 28
Figure 9: Deckhouse	. 29
Figure 10: Containership hatch covers	. 30
Figure 11: Containership Midship Web Frame	. 31
Figure 12: Lightweight and Inertia distribution of studied vessel without Deckhouse	. 33
Figure 13: Element load to force vector	. 41
Figure 14: Beam representing the loading condition and boundary conditions	. 42
Figure 15: Full FE ship model boundary conditions	. 43
Figure 16: Marine Propulsion system components	. 44
Figure 17: Shaft alignment procedure, definition of reference line.	. 46
Figure 18: Piano wire method	. 47
Figure 19: Optical methods	. 48
Figure 20: Shaft of studied vessel	. 51
Figure 21: 1D beam theory process	. 52
Figure 22: Second moment of area for an 11400 TEU VLCS	. 53
Figure 23: Initial Offsets	. 56
Figure 24: Comparison of different FE models	. 57
Figure 25: Fore engine region	. 58
Figure 26: Aft engine region to flywheel	. 58
Figure 27: Dock2 load and shear force diagrams	. 59
Figure 28: Hull Deflection DOCK2	. 60
Figure 29: Absolute Offsets Dock2	. 60
Figure 30: BLD load and shear force diagrams	. 62
Figure 31: Hull Deflection BLD	. 63
Figure 32: Absolute Offsets BLD	. 63
Figure 33: BLD-S11.1 load and shear force diagrams	. 65
Figure 34: Hull Deflection BLD-S11 1	66
Figure 35: Absolute offsets BLD-S11 1	66
Figure 36: BLD-PANAMA load and shear force diagrams	68
Figure 37: Hull Deflection BLDPANAMA	69
Figure 38: Absolute offsets BLDPANAMA	69
Figure 39: RIM-PANAMA load and shear force diagrams	71
Figure 40: Hull Deflection BLMPANAMA	. 72
Figure 41: Absolute offsets BLMPANAMA	72
Figure 47: RIA-PANAMA load and shear force diagrams	. , 2
Figure 43: Hull Deflection RI APANAMA	75
1 igure 15. 11un Deficentin DL/11 /11/11/11	. 15

Figure 44: Absolute offsets BLAPANAMA	75
Figure 45: TDD16 load and shear force diagrams	77
Figure 46: Hull Deflection TDD16	78
Figure 47: Absolute offsets TDD16	78
Figure 48: TAD16 load and shear force diagrams	80
Figure 49: Hull Deflection TAD16	81
Figure 50: Absolute offsets TAD16	81
Figure 51: TDS11 load and shear force diagrams	83
Figure 52: Hull Deflection TDS11	84
Figure 53: Absolute offset TDS11	84
Figure 54: TAS11 load and shear force diagrams	86
Figure 55: Hull Deflection TAS11	87
Figure 56: Absolute Offsets TAS11	87
Figure 57: TDS16 load and shear force diagrams	89
Figure 58: Hull Deflection TDS16	90
Figure 59: Absolute offsets TDS16	90
Figure 60: TAS16 load and shear force diagrams	92
Figure 61: Hull Deflection TAS16	93
Figure 62: Absolute offsets TAS16	93
Figure 63: MAX load and shear force diagrams	95
Figure 64: Hull Deflection MAX	96
Figure 65: Absolute offsets MAX	96
Figure 66: Reaction Forces for all the conditions	99
Figure 67: Load and Deflection change through Voyage	101
Figure 68: Bearing Offsets change through Voyage	102
Figure 69: Effect of Hatch covers on Shear Area and Inertia	104
Figure 70: Effect of Hatch in Ballast condition bearing offsets	105
Figure 71: Effect of Hatch Covers in MAX condition	105
Figure 72: Shear Area Calculation	111

List of Tables

Table 2.1: Load distribution error for each load condition	20
Table 2.2: Bulb flat data from British Steels	
Table 5.1: Loading Conditions of studied vessel	54
Table 5.2: Initial shaft alignment plan - Reference condition	55
Table 5.3: Reaction Forces DOCK2	61
Table 5.4: Reaction Forces BLD	64
Table 5.5: Reaction Forces BLD-S11.1	67
Table 5.6: Reaction Forces BLD-PANAMA	70
Table 5.7: Reaction Forces BLM-PANAMA	73
Table 5.8: Reaction Forces BLA-PANAMA	76
Table 5.9: Reaction Forces TDD16	79
Table 5.10: Reaction Forces TAD16	82
Table 5.11: Reaction Forces TDS11	85
Table 5.12: Reaction Forces TAS11	88
Table 5.13: Reaction Forces TDS16	91
Table 5.14: Reaction Forces TAS16	
Table 5.15: Bearing Reactions MAX	98
Table 5.16: Reaction Forces for all Conditions	100
Table 5.17: Reaction Forces for all conditions (2)	100
Table 5.18: Ballast Panama Departure, Mid, Arrival Relative Bearings' Offsets	102

1. Introduction

1.1 Historical – Literature review

Nowadays, the constantly increasing ship size, in the pursuit for greater ship carrying capacity, has been found to cause shaft bearing damage due to an increase in hull deformation. This increase leads to a change of bearings' vertical position (also referred as bearing offset) that supports the propulsion shafting system. Therefore, classification societies, ship-owners and shipyards are trying to find a solution by conducting analysis and verification process for proper shaft alignment, which includes hull deformation effects.

At present, the shaft alignment calculation for hull deformation typically requires a detailed 3D finite element modeling of the vessel, in particular the stern tube part, the engine room and the propeller shaft system. While the 3D analytical method provides very accurate results, it is time consuming and expensive approach and at many situations not viable, since the essential data is missing. Having the ability to measure hull deflections in an early design stage minimizes dependence on the experience of personnel and allows bearing reactions to be quite accurately assessed and confirmed for all vessel service drafts.

The current study focuses in the development of an easy and fast 1D finite differences model to determine the relative bearings' offsets. Only primary stresses are taken into account so the model can't be absolutely accurate since secondary and tertiary won't be included, but the main objective is to have an early estimation to assess the shaft alignment process. As ABS propulsion shaft alignment guidance notes state, the global deformation of hull girder modeled as a 1D beam gives accurate results to determine the bearings' offsets.

In his paper Global hydroelastic analysis of ultra large container ships by improved beam structural model (2014), Ivo Senjanovic used a modified Timoshenko beam theory to calculate flexural vibrations for a ULCS of 20000 TEU subjected on bending and torsion and analyzed the coupled horizontal and torsional ship hull vibration with beam finite elements. Through STIFF program they acquired the longitudinal sectional geometrical properties of the vessel and compared the 1D FEM + 3D BEM hydroelastic model with the fully coupled 3D FEM + 3D BEM hydroelastic model. Although, very good agreement is achieved, especially in the high frequency range where springing influence is pronounced, some minor improvements in the low frequency domain could be done to increase the accuracy of damage calculation.

In recent guidance notes on propulsion shaft alignment by ABS (2019) concerning the shaft alignment procedure onboard large vessels, ABS states the an analytical method based on the 1D beam theory can also be used for hull deflection evaluation, if information about sectional modulus inertia and shear area are provided. The 1d model may produce high accuracy hull deflection results that match the 3D model. As mentioned in the notes, calibrations need to be made due to the abrupt change of inertia of the stern tube, so the coupling between the 1D and 3D model is necessary.

Finally, the diploma thesis Elastic Shaft Alignment of a Container Vessel by Stavros Siamantas was used as our rule of thumb. In his work, Siamantas developed a detailed finite element model of a typical 10,000 TEU container ship. The FE model was utilized to accurately calculate hull deflections for a series of representative loading conditions of the vessel. The aforementioned hull deflections are used for calculation of the additional vertical offsets of the bearings due to hull bending, and the corresponding effect on shaft equilibrium and bearing reactions. The same drawings and plans were used to acquire the input data for our thesis and the hull deformations we assessed are being compared with these calculated by the 3D finite element analysis conducted by Stavros Siamantas. In both thesis, hull deformations were calculated in still water loading conditions, where the marine diesel engine is cold and not running so deflections due to thermal expansion of the steel at the engine room area where excluded from this work.

1.2 Goals of Present Study

The main goal of this thesis is to develop a process to calculate, without much time and computing power, the bearing offsets caused by hull deformation without the need for 3D modeling. The purpose was to examine the hull deformation 1D problem and create and algorithm that will lead to close approximation of the bearing offsets for each loading condition, relative to those of a 3D Finite element analysis. The initial input in this algorithm are mainly information that every ship-owner can find in the loading manual (Shear Forces diagram, Moments diagram, Lightweight, Framespacing) and also input that requires a little bit of preprocessing from ship's drawings. Several tools were created to automate this process and make it as easy as possible even for engineers that don't have deep learning on bearing's offsets and shaft alignment process.

Secondary goals are:

- 1. Generation of a "relatively trustworthy" and simplified tool for non-expert engineers in order to quickly calculate the ship hull deflections at several loading conditions, without requiring much processing power.
- 2. Development of an application for fast calculation of transverse frame's second moment of area and shear area.
- 3. Determination of the least necessary data needed to solve the hull deflection problem.
- 4. Determination of the parts that need to be taken into consideration to achieve more precise and scientifically correct results.

2. Finite Element - Beam theory

2.1 Hull Girder Deflections

From the point of view of shaft alignment, the only hull deflections of interest are those manifested in the stern section and engine room of the ship, where the propulsion shafting is located.

The shaft bearings experience changes in their offset when the vessel's draft changes. This is caused by the varying load distribution on the vessel's hull. The measurement of bearing offset for various load conditions is crucial to minimize the possibility of shaft bearings and shaft damage.

According to ABS Guidance Notes on Propulsion Shafting Alignment an analytical method based on the 1D beam theory can be utilized for hull deflection evaluation. The structural response of the hull girder and the primary structural members under normal, shear, bending and torsional loads results in global (i. e. large area) deformations and stresses. In this case study, we will try to determine the bearing offsets due to hull girder deflections, as simple as possible and determine a simple and accurate method for their calculation. The Euler-Bernoulli and Timoshenko beam theory were used to determine hull deflections.

Before and during the evaluation, the results shall be examined for plausibility. This involves the visual presentation and checking of the deformations to see whether their magnitudes lie within the expected range and whether their distributions are meaningful with respect to the loads and boundary conditions or supports.

2.1.1 Euler Bernoulli beam

The Euler-Bernoulli beam theory is a model which provides a means of calculating the deflection of beams. It was developed around 1750 and is still the method that we most often use to analyze the behavior of bending elements.

The Bernoulli-Euler beam theory relies on a couple major assumptions:

- Plane sections perpendicular to the NA before deformation stay plane and perpendicular to the NA after deformation
- (2) The beam is essentially prismatic (no openings or discontinuities)
- (3) Other modes of response to the loads do not affect hull girder bending and may be treated separately
- (4) The material is homogenous and elastic
- (5) The deformations are small

Figure 1: Euler Bernoulli beam theory

Those assumptions can be validated in a ship, as the total deformation of a ship's hull is insignificant to its principal dimensions (Breadth, Depth and Length). There is a little opening to none in a ship's hull and throughout vessel's length the material is homogenous (naval steel) and elastic.

The Euler–Bernoulli static beam equation describes the relationship between the beam's deflection and the applied load:

$$\frac{d^2}{dx^2}(EI\frac{d^2u}{dx^2}) = q$$

E: Young modulus of Elasticity (GPa)

I: Second Moment of Area (m⁴)

w(x): deflection of beam at some position x

q: load distribution (t/m)

2.1.2 Timoshenko beam

The Timoshenko-Ehrenfest beam theory takes into account shear deformation and rotational bending effects. The resulting equations consist of a fourth order and second order partial derivatives. By taking into account the added shear deformation, the result is a larger deflection under a static load.

The assumptions of the formulation are:

- (1) The longitudinal axis of the unloaded unreformed beam is straight.
- (2) All loads applied to the beam act transverse to the longitudinal axis
- (3) The total slope (x) of the centerline results from the effects of bending deformation and shears deformation and can be expressed as the sum of the rotations due to shear deformation and the rotation due to bending deformation.
- (4) The material is considered linear elastic, homogeneous and isotropic. Hence, the generalized Hooke's stress-strain laws are valid.
- (5) The deformations and strains are considered so small, and the strain-displacement equations of infinitesimal elasticity are used.
- (6) Plane sections perpendicular to the neutral axis before deformation stay plane but not necessarily perpendicular to the neutral axis after deformation.

Figure 2: (a) Euler Bernoulli beam theory – (b) Timoshenko beam theory

The Timoshenko-Ehrenfest governing equations consist of a coupled system of ordinary differential equations:

$$\frac{d^2}{dx^2}(EI\frac{d\varphi}{dx}) = q$$
$$\frac{du}{dx} = \varphi - \frac{1}{G*As}\frac{d}{dx}(EI\frac{d\varphi}{dx})$$

As: Shear Area (m²)

Where $\varphi = \frac{\partial u}{\partial x} - \gamma$ and $\gamma(x) = -\frac{V(x)}{GA_s(x)}$

V: shear force (N)

As mentioned at the assumptions above the Timoshenko theory assumes the deformed cross-section planes remain plane but not normal to the middle axis. The second governing equation implies this assumption and slope $\gamma(x)$ is causing the warping of the section as shown on figure 2.

2.2 Loads

A ship is subjected to numerous loads, which can be divided into three major categories: (a) lightship weight, (b) deadweight and (c) buoyancy.

Lightship weight is the actual weight of a vessel when complete and ready for service but empty. It consists of: (a) hull weight, (b) superstructures weight, (c) machinery and (d) outfitting. Deadweight tonnage (DWT) is the displacement at any loaded condition minus the lightweight. Finally, buoyancy is the upward pressure applied at the hull underneath the waterline.

To acquire the ship's longitudinal load distribution in each load condition, we need firstly to obtain the shear forces for each condition from the loading manual. The rate of change of the shearing force through vessel's length is equal to the load:

$$q(x) = \frac{dV(x)}{dx}$$

V: shear force (t)

q: load distribution (t/m)

Since the data of shear forces in the loading manual contains only the frames from stern tube to front bulb (fr13 - fr378 studied vessel), forward and after frames lightweight must be added. This assumption is quite accurate, because there is no payload before the stern tube and after the front bulb and also buoyancy is little to none at those longitudinal positions. Another close approach would be to manually apply zero shear forces at the most fore and most aft length of the vessel.

Figure 3: Shear Forces and Load Distribution at MAX condition for studied vessel

To verify the assumption, the integral of load distribution for the total length of the vessel must be equal or close to zero. It is particularly important to check the sums of the forces. For static load cases, it is to be ensured that the residual forces and moments are negligible. The error for the loading distribution of the different conditions is shown on the table below.

Load condition	DOCK1	BLD	BLA	11TDS	11TAS	MAX
Residual weight (t)	-210.45	-112.21	-280.27	-66.04	-34.25	-284.42
Displacement (t)	49604.6	78298.8	67174.0	153101.0	151443.0	150756.0
Error (%)	-0.424	-0.143	-0.417	-0.043	-0.023	-0.189

Table 2.1: Load distribution error for each load condition

$$\int_{0}^{L} q(x) = reisdual \ weight \cong 0$$

$$Error(\%) = \frac{Residual \ weight}{Displacement}$$

2.3 Second Moment of Area

The second moment of area, also known as the area moment of inertia is a geometric property of an area, which reflects the efficiency of a shape to resist bending caused by a load condition. Objects tend to change shape when loaded. The second moment of area is a measure of a shape's resistance to change. Therefore, the area moment of inertia, or inertia, is necessary for the calculation of deflection due to primary stresses.

The second moment of area of ship's cross section depends on how its points are distributed about an arbitrary axis, which is called the Neutral Axis (NA). The points of the Neutral Axis have no longitudinal stresses or strains. Therefore, firstly we need to calculate the Neutral Axis. The cross section of a ship, also called frame, consists of the outer shell, inner shell, girders, platforms and stiffeners. Primarily, we calculate the area and the position above bottom line of the elements above. After this, the Neutral Axis derives from the equation:

$$NA = \frac{\sum_{i}^{n} A_{i} * y_{i}}{\sum_{i}^{n} A_{i}}$$

n = number of same elements

A = area of each element

y = vertical distance from Bottom Line

Finally, by using the parallel axis theorem (Steiner), the second moment of area of each element is calculated from the Neutral Axis and the inertial summary of all the elements provides the frame inertia.

Inertia = I =
$$\sum_{i}^{n} Ix_{i} + A_{i}d_{i}^{2}$$

Ix = inertia of element through its centroidal axis

A = area of element

d = perpendicular distance between element's centroidal axis and the Neutral Axis of the section

For the inertia of each element from its centroidal axis the calculations are shown below

2.3.1 Plating

The plating of the vessel contributes the most in the stiffness of the vessel. There several different shell plating throughout the vessel. Inner bottom, double bottom, side shell, bilge and deck plating are the most common, found in every vessel. Except from longitudinal, a ship has many transverse plating which contribute the web frame. All the longitudinal plating is taken into account in our thesis and an investigation is conducted to determine how the web frames contribute to the bending and shear stiffness of the vessel.

Figure 4: Transverse ship frame

 $ix = \frac{b * t^3}{12}, if element is parallel to neutral axis$ $ix = \frac{t * b^3}{12}, if element is vertical to neutral axis$ $ix = \frac{b * h^3}{12}, if plating is transverse (web frame)$

If the plating has a different angle the inertia is derived from the equation:

$$iu = \frac{ix + iy}{2} + \frac{ix - iy}{2} * \cos 2\varphi - ixy * \sin 2\varphi$$

 φ : the angle between the plating and axis parallel to NA

2.3.2 Stiffeners

Stiffeners are secondary plates or sections that are welded on plates to stiffen them against out of plane deformation. The most common types of stiffeners used on ships are flat bars, bulb flats, tee-bars and angle stiffeners.

Depending on the type of the stiffener, one must proceed with different calculations for the acquisition of the area, centroid points and inertia.

Figure 5 : Various types of beam stiffeners

2.3.2.1 Flat Bars

The moments of inertia of a flat bar with centroidal axis perpendicular to the Neutral Axis of the section can be found as this of plating:

$$ix = \frac{t*h^3}{12}$$
, where h, t the height and thickness of the flat bar
 $iy = \frac{h*t^3}{12}$

If the element is rotated by an angle φ , we apply the rotated axis as shown below. Also we apply the parallel axes theorem to its element.

2.3.2.2 Bulb flats

b	t	dx	dy	lx	ly	Zx	Zy	rx	ry	H	J
mm	mm	mm	mm	cm4	cm4	cm3	cm3	cm	cm	cm^6/10^3	cm4
160	7	96.7	6.5	371.1	5.85	38.4	9	5.05	0.63	1.11	3.65
180	9	107.4	7.7	661.09	10.92	61.6	14.1	5.66	0.73	2.47	7.57
200	9	121.3	8.4	939.14	15.75	77.4	18.8	6.3	0.82	4.76	10
200	10	119.7	8.7	1010.47	17.18	84.4	19.8	6.28	0.82	4.83	11.78
	b mm 160 180 200 200	b t mm mm 160 7 180 9 200 9 200 10	b t dx mm mm mm 160 7 96.7 180 9 107.4 200 9 121.3 200 10 119.7	b t dx dy mm mm mm mm 160 7 96.7 6.5 180 9 107.4 7.7 200 9 121.3 8.4 200 10 119.7 8.7	b t dx dy lx mm mm mm mm cm4 160 7 96.7 6.5 371.1 180 9 107.4 7.7 661.09 200 9 121.3 8.4 939.14 200 10 119.7 8.7 1010.47	b t dx dy lx ly mm mm mm mm cm4 cm4 160 7 96.7 6.5 371.1 5.85 180 9 107.4 7.7 661.09 10.92 200 9 121.3 8.4 939.14 15.75 200 10 119.7 8.7 1010.47 17.18	b t dx dy lx ly Zx mm mm mm mm cm4 cm4 cm3 160 7 96.7 6.5 371.1 5.85 38.4 180 9 107.4 7.7 661.09 10.92 61.6 200 9 121.3 8.4 939.14 15.75 77.4 200 10 119.7 8.7 1010.47 17.18 84.4	b t dx dy lx ly Zx Zy mm mm mm mm cm4 cm4 cm3 cm3 160 7 96.7 6.5 371.1 5.85 38.4 9 180 9 107.4 7.7 661.09 10.92 61.6 14.1 200 9 121.3 8.4 939.14 15.75 77.4 18.8 200 10 119.7 8.7 1010.47 17.18 84.4 19.8	b t dx dy lx ly Zx Zy rx mm mm mm mm cm4 cm4 cm3 cm3 cm3 160 7 96.7 6.5 371.1 5.85 38.4 9 5.05 180 9 107.4 7.7 661.09 10.92 61.6 14.1 5.66 200 9 121.3 8.4 939.14 15.75 77.4 18.8 6.3 200 10 119.7 8.7 1010.47 17.18 84.4 19.8 6.28	b t dx dy lx ly Zx Zy rx ry mm mm mm mm cm4 cm4 cm3 cm3 cm cm 160 7 96.7 6.5 371.1 5.85 38.4 9 5.05 0.63 180 9 107.4 7.7 661.09 10.92 61.6 14.1 5.66 0.73 200 9 121.3 8.4 939.14 15.75 77.4 18.8 6.3 0.82 200 10 119.7 8.7 1010.47 17.18 84.4 19.8 6.28 0.82	b t dx dy lx ly Zx Zy rx ry H mm mm mm mm mm mm cm4 cm3 cm3 cm cm cm^{^{0}/10^{^{3}}} 160 7 96.7 6.5 371.1 5.85 38.4 9 5.05 0.63 1.11 180 9 107.4 7.7 661.09 10.92 61.6 14.1 5.66 0.73 2.47 200 9 121.3 8.4 939.14 15.75 77.4 18.8 6.3 0.82 4.76 200 10 119.7 8.7 1010.47 17.18 84.4 19.8 6.28 0.82 4.83

All the necessary data for bulb flats, dimensions and section properties (Area, Inertia, center of gravity etc.) was obtained by British steels' brochure [3].

Table 2.2: Bulb flat data from British Steels

If the element is rotated by an angle φ , we apply the rotated axis as shown below. Also, we apply the parallel axes theorem to its element.

2.3.2.3 Angle bar

The moments of inertia of an angle can be found, if the total area is divided into three, smaller ones, A, B, C, as shown in figure below. The final area may be considered as the additive combination of A+B+C. However, the calculation is more straightforward if the combination (A+C) + (B+C) - C is adopted. Then, the moment of inertia I_{x0} of the angle, relative to axis x0 is determined like this:

$$I_{x0} = I_{x0}^{A+C} + I_{x0}^{B+C} - I_{x0}^{C}$$
$$I_{x0} = \frac{bt^{3}}{3} + \frac{th^{3}}{3} - \frac{t^{4}}{3}$$

Figure 6: Angle bar

Following the same procedure, the moment of inertia of the angle, relative to axis y0 is:

$$I_{y0} = \frac{ht^3}{3} + \frac{tb^3}{3} - \frac{t^4}{3}$$

Finally, the product of inertia of the angle, relative to axes x0,y0 is found:

$$I_{xy0} = \frac{t^2 h^2}{4} + \frac{t^2 b^2}{4} - \frac{t^4}{4}$$

The moments of inertia relative to centroidal axes x,y, can be found by application of the Parallel Axes Theorem, as shown below. The centroid position can be found by the equation below:

$$x_{c} = \frac{ht^{2} + tb^{2} - t^{3}}{2A}$$
$$y_{c} = \frac{bt^{2} + th^{2} - t^{3}}{2A}$$

Where A is the area of the shape

Tee bar: Tee bar calculations are similar as those of angle bar.

2.3.3 Rotated axis

For the transformation of the moments of inertia from one system of axes x,y to another one u,v, rotated by an angle φ , the following equations are used:

$$iu = \frac{ix + iy}{2} + \frac{ix - iy}{2} * \cos 2\varphi - ixy * \sin 2\varphi$$
$$iv = \frac{ix + iy}{2} - \frac{ix - iy}{2} * \cos 2\varphi + ixy * \sin 2\varphi$$
$$iuv = \frac{ix - iy}{2} - \frac{ix - iy}{2} * \cos 2\varphi + ixy * \sin 2\varphi$$

Where ix, iy the moments of inertia about the initial axes and ixy the product of inertia. iu, iv and iuv are the respective quantities for the rotated axes u,v. The product of inertia ixy for symmetrical elements is equal to zero and for non-symmetrical must be calculated from the equation below:

$$ixy = \iint y * x \, dxdy$$

2.3.4 Parallel Axes Theorem

The second moment of area of any shape, in respect to an arbitrary, non centroidal axis, can be found if its moment of inertia in respect to a centroidal axis, parallel to the first one, is known. The Parallel Axes Theorem (Steiner) is given by the following equation:

$$I_{NA} = I + A * y_{NA}^2$$

where I_{NA} is the moment of inertia in respect to transverse section's Neutral Axis, I the moment of inertia in respect to element's centroidal axis, parallel to the first one, y_{NA} the distance between the two parallel axes and A the area of the element.

For the product of inertia Ixy, the parallel axes theorem takes a similar form:

$$Ixy_{NA} = Ixy + A * y_{NA} * x_{NA}$$

Where Ixy_{NA} is the product of inertia, relative to centroidal axes x, y, and Ixy is the product of inertia, relative to axes that are parallel to element's centroidal x,y ones, having offsets from them y_{NA} and x_{NA} respectively.

2.4 Section Properties Calculator app

For the calculations of the ships' longitudinal inertia (second moment of area), a Graphic User Interface (GUI) application was developed in Python programming language with the use of Tkinter library. In a simple and efficient interface, a ship's frame can be imported over a canvas widget. After calibrating (scaling) the image to turn pixels into lengths, one can add up all the elements consisting the frame, like outer and inner shell plating, girders and platforms, and longitudinal stiffeners. By clicking the points of those elements, the application stores their position. As soon as the necessary section data (plate thickness, stiffener's height and type, etc.) is applied, the app calculates the Neutral Axis, Second moment of area and Shear Area and generates an excel file with all the data for possible future changes.

Figure 7: Inertia Calculator application environment

2.5 Compartmentation

The construction drawings are divided into four major sections; shell expansion, decks, buttocks and frames. Only elements that run through the ship's length were included. Transverse plates and stiffeners were excluded from the calculations since they do not contribute in the hull girder strength (primary stresses). The total steel structure of a containership contains several vital substructures, some of which are mentioned in the next paragraphs.

2.5.1 Stern Tube

The stern tube (Figure 2.) is a hollow tube which accommodates the bearings and the propeller shaft. It is located at the lower aft part of the ship and is usually equipped with two journal bearings which support the weight of the shaft passing through the tube and that of the propeller. This part is of high importance for the hull girder deflection due to its high stiffness. The stern tube consists of thick plates to support the weight of the shaft and the propeller. Except from the longitudinal plating, the stern tube consists of many web frames, more dense than the rest of the ship, leading to a higher stiffness capacity of the stern tube area. In his work Siamantas modeled the stern frame (faded part on the drawing) with a solid part which increases abruptly the sectional properties of the stern tube frames, as it will be discussed later.0

Figure 8: Stern tube of a vessel

2.5.2 Deck house

The deckhouse consists of the parts of the ship that project above the main deck. Deckhouse contains spaces available for accommodation of the crew and passengers. According to studies, since the length and breadth of the superstructure is small in proportion to those of the ship, the bending stiffness of the deckhouse does not contribute in the hull girder stiffness, thus it can be excluded. Although stiffness is not included the weight of the superstructure must be in the calculations of the load.

Figure 9: Deckhouse

2.5.3 Hatch Covers

Hatch covers are the vertical surfaces on a ship that close the hatch openings. In containerships, hatch covers aren't yielded on the deck, but they are hinged in many longitudinal points across the vessel. During loading and unloading the covers are rolling on and off the deck to add containers in the hatch. Generally, the hatch covers do not contribute in the hull bending and shear stiffness but since in the 3D FEA model they were included, we included them in the model as well. The hatch covers, consist of 30mm plating and 14 T-shaped longitudinal stiffeners. The exclusion of the hatch covers would lead to more actual results and would lower significantly the second moment of area and produce different hull deformations.

Figure 10: Containership hatch covers

As it is known, container ships are highly subjected to torsional moments because of their large hatch openings. This leads to even higher warping stresses at the corners of the openings due to lack of torsional rigidity. The upper part of the double hull in such ships is fitted with torsion box to deliver those stresses avoiding failure of the structure.

Therefore, while designing ships with large openings (like container ships) it must ensured that proper FEM analysis and model testing procedures are carried out. Proper strength analysis of the hull and deck plating should be done.

2.5.4 Web frames

In a typical vessel, except from the longitudinal elements there are also transverse elements supporting the structure. In ships they are called web frames and they are deep-section built-up frames which provide additional strength to the structure. After, testing the total deflection of the ship without the web frames we came to the conclusion that they must be inserted in order to achieve better results. In the figure 2.11 we can see a web frame of a containership midship section. For the distribution of web frame's stiffness in the rest of the vessel we assumed triangular distribution, where the whole stiffness of the web frame is divided triangularly in different nodes around the web frame (effective nodes).

Figure 11: Containership Midship Web Frame

3 Finite Element Analysis

3.1 Euler Bernoulli Beam FDM Analysis

As mentioned before, in order to measure the hull deflection, we firstly used the Euler-Bernoulli beam theory, due its simplicity. In a ship, the flexural rigidity varies throughout its length, which means that the term EI is not constant. The equation needed to calculate the deflection can be found by applying the Leibniz product rule in the EB beam equation. Young's elastic modulus (E) was considered constant and equal to 207GPa, as there is no way to determine the exact value for each steel section. This assumption is right, as the steel types used in studied vesse; are A grade naval steel (A, AH36).

Leibniz product rule:
$$\frac{d^2}{dx^2}(fg) = f''g + 2f'g' + fg''$$

$$\frac{d^2}{dx^2} \left(EI(x) \frac{d^2 u(x)}{dx^2} \right) = E * \left(I''(x) * \frac{d^2 u(x)}{dx^2} + 2 * I'(x) * \frac{d^3 u(x)}{dx^3} + I(x) * \frac{d^4 u(x)}{dx^4} \right) = q(x)$$

To measure u(x) from the equation we need to construct the global matrix A and B, and solve the linear equation:

$$A * u = B$$

A: global stiffness matrix

B: Load matrix

Firstly, the Second moment of Area was measured by the inertia calculator app. Several transverse sections were calculated to determine the inertia distribution through ship's length. After that, we interpolated the inertia data with a continuous, piecewise linear function throughout the length, with small step size (10cm), to construct the mesh. With a step size of 10cm and total length of studied vessel equal to 334.75m, our mesh is divided in 3347 nodes for simply supported beam and 975 nodes for cantilever beam analysis. The first and second derivatives of inertia can be obtained with numpy.grad command in Python.

Figure 12: Lightweight and Inertia distribution of studied vessel without Deckhouse

As can be noticed from Inertia distribution on the figure above, the stern area has a high inertia due to thick plating and solid parts of the stern tube. After this at the stern tube frames (fr13-fr17), we notice a second spike of inertia due to high stiffness of the stern tube area. Lastly, the third increase can be identified in the engine room frames below deckhouse (fr.83-107).

Central difference formula for the internal nodes, forward difference for the first 2 nodes and backward difference for the last 2 nodes, were used to develop the second, third and fourth derivative of u(x) and approximate the deflection. From Taylor series expansion for central differentiation:

$$\frac{d^2u(x)}{dx^2} = \frac{u(x - \Delta x) - 2u(x) + u(x + \Delta x)}{\Delta x^2}$$

$$\frac{d^{3}u(x)}{dx^{2}} = \frac{-\frac{1}{2}u(x - 2\Delta x) + u(x - \Delta x) - u(x + \Delta x) + \frac{1}{2}u(x + 2\Delta x)}{\Delta x^{3}}$$

$$\frac{d^4 u(x)}{dx^2} = \frac{u(x - 2\Delta x) - 4u(x - \Delta x) + 6u(x) - 4u(x + \Delta x) + u(x + 2\Delta x)}{\Delta x^2}$$

From Taylor series expansion for forward differentiation:

$$\frac{d^2u(x)}{dx^2} = \frac{2u(x) - 5u(x + \Delta x) + 4u(x + 2\Delta x) - u(x + 3\Delta x)}{\Delta x^2}$$
$$\frac{d^3u(x)}{dx^2} = \frac{-5u(x) + 18u(x + \Delta x) - 24u(x + 2\Delta x) + 14u(x + 3\Delta x) - 3u(x + 4\Delta x)}{\Delta x^3}$$
$$\frac{d^4u(x)}{dx^2} = \frac{3u(x) - 14u(x + \Delta x) + 26u(x + 2\Delta x) - 24u(x + 3\Delta x) + 11u(x + 4\Delta x) - 2u(x + 5\Delta x)}{\Delta x^4}$$

From Taylor series expansion for backward differentiation:

$$\frac{d^2u(x)}{dx^2} = \frac{2u(x) - 5u(x - \Delta x) + 4u(x - 2\Delta x) - u(x + 3\Delta x)}{\Delta x^2}$$
$$\frac{d^3u(x)}{dx^2} = \frac{-5u(x) + 18u(x - \Delta x) - 24u(x - 2\Delta x) + 14u(x - 3\Delta x) - 3u(x - 4\Delta x)}{\Delta x^3}$$

$$\frac{d^4u(x)}{dx^2} = \frac{3u(x) - 14u(x - \Delta x) + 26u(x - 2\Delta x) - 24u(x - 3\Delta x) + 11u(x - 4\Delta x) - 2u(x - 5\Delta x)}{\Delta x^4}$$

The resulting stiffness matrix A is a pentadiagonal matrix with 6 and 7 elements on first and last 2 rows, due to forward differentiation and backward differentiation.

a_1	b_1	c_1	d_1	e_1	f_1	0	•••	0	ך 0	Г	-u ₁		$[q_1]$	1
a_2	b_2	C_2	d_2	e_2	f_2	g_2	0		0		u_2		q_2	
<i>a</i> ₃	b_3	C_3	d_3	e_3	0	•••	•••		0		u_3		q_3	
0	a_4	b_4	C_4	d_4	e_4	0			0		u_4		q_4	
1:	۰.	۰.	۰.	۰.	۰.	•.	•.	•.	:	*	u_5	=	q_5	
0	•••	•••	0	a_{i-3}	b_{i-3}	C_{i-3}	d_{i-3}	e_{i-3}	0		:		1	
0	•••	•••	•••	0	a_{i-2}	b_{i-2}	c_{i-2}	d_{i-2}	e_{i-2}		:		:	
0	•••	•••	0	a_{i-1}	b_{i-1}	c_{i-1}	d_{i-1}	e_{i-1}	f_{i-1}		:		:	
L 0	•••	0	a_i	b_i	Ci	d_i	e_i	f_i	g_i]	L	u_i		Lq_i	1

3.2 Finite Element Method

3.2.1 Euler Bernoulli FEM

Except from Finite differences method, Finite Element Method (FEM) was used to test the results and apply boundary conditions. The Finite differences method was mainly used for validation of the model and the results of this thesis were produced by the Finite Element Method. The element stiffness matrix and force vector can be produced via the method mention on the Timoshenko Analysis chapter below. A reasonable assumption for the interpolation field would be at least a third order polynomial expression:

$$u(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
$$\Theta(x) = a_1 + 2a_2 x + 3a_3 x^2$$
$$\{u(x)\} = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \begin{cases} a_0 \\ a_1 \\ a_2 \\ a_3 \end{cases}$$

The above relation must hold for the arbitrary displacements at the nodal points of each element. Meaning at nodal boundaries: $u(0)=u_i$, $u(L)=u_{i+1}$, $\theta(0)=\theta_i$, $\theta(L)=\theta_{i+1}$

$$\begin{cases} u(0) = u_i \\ \theta(0) = \theta_i \\ u(L) = u_{i+1} \\ \theta(L) = \theta_{i+1} \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & l & l^2 & l^3 \\ 0 & 1 & 2l & 3l^2 \end{bmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

Therefore, by solving with reference to the polynomial coefficients:

$$\begin{pmatrix} \mathbf{u}(0) = u_i \\ \theta(0) = \theta_i \\ \mathbf{u}(\mathbf{L}) = u_{i+1} \\ \theta(\mathbf{L}) = \theta_{i+1} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{3}{l^2} & -\frac{2}{l} & \frac{3}{l^2} & -\frac{1}{l} \\ \frac{2}{l^3} & \frac{1}{l^2} & -\frac{2}{l^3} & \frac{1}{l^2} \end{bmatrix} \begin{pmatrix} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{pmatrix}$$

Now we can derive the 2-dimensional Euler/Bernoulli finite element interpolation scheme (i.e. a relation between the continuous displacement field and the beam nodal values):

$$\{u(x)\} = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{3}{l^2} & -\frac{2}{l} & \frac{3}{l^2} & -\frac{1}{l} \\ \frac{2}{l^3} & \frac{1}{l^2} & -\frac{2}{l^3} & \frac{1}{l^2} \end{bmatrix} \begin{cases} u_i \\ \theta_i \\ u_{i+1} \\ \theta_{i+1} \end{cases} = \begin{bmatrix} N \end{bmatrix} \begin{bmatrix} d \end{bmatrix}$$

Where $N1 = 1 - \frac{3x^2}{l^2} + \frac{2x^3}{l^3}$, $N2 = x - \frac{2x^2}{l} + \frac{x^3}{l^2}$, $N3 = \frac{3x^2}{l^2} - \frac{2x^3}{l^3}$, $N4 = -\frac{x^2}{l} + \frac{x^3}{l^2}$
The beam element stiffness matrix is readily derived as:

$$k^{e} = \int_{x} (B^{T}[EI(x)]B)dx$$
$$k^{e} = \frac{EI(x)}{l^{3}} \begin{bmatrix} 12 & 6l & -12 & 6l \\ 6l & 4l^{2} & -6l & 2l^{2} \\ -12 & -6l & 12 & -6l \\ 6l & 2l^{2} & -6l & 4l^{2} \end{bmatrix}$$

Before proceeding further let's consider the format for the element force vector for transverse loading. So for uniform distributed load q_i :

$$\vec{f_e} = \frac{q_e * l}{2} \begin{bmatrix} \frac{1}{6} \\ 1 \\ -\frac{l}{6} \end{bmatrix}$$

3.2.2 Timoshenko FEM

Except from Euler-Bernoulli beam analysis, the hull girder was investigated as a Timoshenko beam. The Timoshenko beam has two main differences from EB method, which is:

(a) Shear deformation is taken into account,

(b) Plane sections perpendicular to the neutral axis before deformation stay plane but not necessarily perpendicular to the neutral axis after deformation.

The transverse deformation of a beam with a shear and bending strains may be separated into a portion related to shear deformation and a portion related to bending deformation:

$$u(x) = u_b(x) + u_s(x)$$
$$u''_b(x) = \frac{M(x)}{EI(x)}$$
$$u'_s(x) = \frac{V(x)}{GA_s(x)}$$

An infinite Shear Area implies negligible effect of transverse shear deformation and the model degenerates to the classical theory of Euler-Bernoulli Beam. From the deflection equation above it is obvious that the precise calculation of bending and shear stiffness is of high importance. Overestimating or underestimating one of the above will lead to the other having a significantly higher or lower contribution to the total deflection of the vessel.

To acquire the shear deformations, one must find the longitudinal shear area of the vessel. The simplest estimate of the shear area is based on the assumption that the shear stress varies proportional to $\cos\theta$, where θ is the angle between the tangent to the thin walled members and the y-axis. So the shear area As is defined as:

$$As = \int_{A} \cos^2\theta dA$$

The method above overestimates the area of the section contributing in the shear stiffness. Rather than using this extremely simple approach, several authors have argued for a more consistent method, in which the shear stress distribution $\tau = \tau$ (z) due to a unit shear force is used. The reduction of the cross-sectional area results from different distribution of the material law and the cross-section equilibrium, which leads to a contradiction. This contradiction is due to the hypothesis that the cross-sections remain the same, although the cross-section would actually be subjected to warping when the shear force effect occurs. Therefore, the shear area is introduced into the strength of the materials. The derivation of this shear area is described below:

$$\int_{A} \frac{\tau^{2}(z)}{2G} dA = \int_{A} \frac{\tau_{m}^{2}(z)}{2G} dA_{s} = \frac{V^{2}}{2GA_{s}}$$

$$\frac{1}{2G} \int_{A} \left(\frac{VQ(z)}{It(z)}\right)^{2} dA = \frac{V^{2}}{2GA_{s}}$$
$$dA = t(z)dz$$
$$A_{s} = \frac{I^{2}}{\int_{z0}^{zu} \frac{Q^{2}(z)}{t(z)} dz}$$

The above although it consists of difficult area calculations creates more accurate results close to the ones generated by a 3d model. On APPENDIX B there is a calculation of shear area for a simple section to help engineers understand better the procedure.

The total potential energy of the beam considers both bending and shear contribution:

$$\Pi(u(x),\theta(x)) = \frac{1}{2} \int_{V} \sigma_{x} \varepsilon_{x} dV + \frac{1}{2} \int_{V} \tau_{xy} \gamma_{xy} dV - \int_{x_{i}}^{x_{j}} qu(x) dx$$

Where the normal stress is obtained by the Hooke's law as:

$$\sigma_x = E \varepsilon_x$$

While the transverse shear stress is obtained as

$$\tau_{xy} = kG\gamma_{xy}$$

Where G the shear modulus and k the shear correction factor. This factor is dependent on the crosssection. Considering dV = dAdx and integrating through the thickness, we obtain the potential energy in terms of the generalized displacements.

$$\Pi(u(x),\theta(x)) = \frac{1}{2} \int_{x} EI(x)(\theta'(x))^2 + \frac{1}{2} \int_{x} GA_s(x)(\frac{\partial u}{\partial x} - \theta(x))^2 dx - \int_{x_i}^{x_j} qu(x) dx$$

To turn in a more convenient form:

$$e = \begin{bmatrix} \theta'(x) \\ -\theta(x) + u'(x) \end{bmatrix}$$
$$\Pi = \frac{1}{2} \int_{x} \left(e^{T} \begin{bmatrix} EI(x) & 0 \\ 0 & GAs(x) \end{bmatrix} e \right) dx - \int_{x_{i}}^{x_{j}} qu(x) dx$$

The deflection w(x) and slope $\theta(x)$ of the hull girder can be expressed through third order polynomial shape functions as shown below:

$$\begin{cases} u(x)\\ \theta(x) \end{cases} = \begin{bmatrix} N1 & 0 & N2 & 0\\ 0 & N3 & 0 & N4 \end{bmatrix} \begin{cases} \nu_i\\ \theta_i\\ \nu_{i+1}\\ \theta_{i+1} \end{cases}$$

$$\begin{cases} u(x)\\ \theta(x) \end{cases} = \begin{bmatrix} 1 - \frac{3x^2}{l^2} + \frac{2x^3}{l^3} & 0 & x - \frac{2x^2}{l} + \frac{x^3}{l^2} & 0\\ 0 & \frac{3x^2}{l^2} - \frac{2x^3}{l^3} & 0 & -\frac{x^2}{l} + \frac{x^3}{l^2} \end{bmatrix} \begin{cases} \nu_i\\ \theta_i\\ \nu_{i+1}\\ \theta_{i+1} \end{cases} = Nd$$

$$e = \begin{bmatrix} \theta'(x)\\ -\theta(x) + w'(x) \end{bmatrix} = \begin{bmatrix} 0 & N1' & 0 & N2'\\ N1' & -N1 & N2' & -N2 \end{bmatrix} \begin{cases} \nu_i\\ \theta_i\\ \nu_{i+1}\\ \theta_{i+1} \end{cases} = Bd$$

$$\Pi = \frac{1}{2} \int_x \left(d^T B^T \begin{bmatrix} EI(x) & 0\\ 0 & GAs(x) \end{bmatrix} Bd \right) dx - \int_{x_i}^{x_j} qu(x) dx$$

Minimize the total potential energy with respect to the unknown nodal quantities:

$$\int_{x} \left(B^{T} \begin{bmatrix} EI(x) & 0\\ 0 & GAs(x) \end{bmatrix} B \right) dx d - \int_{x_{i}}^{x_{j}} qu(x) dx = 0$$

By solving the above for each different element we can produce the global stiffness matrix and the global force vector. For the hull girder, since the mesh is divided in many elements, we can assume that for each element the load distribution, second moment of area and shear area can be described by different uniform distributed functions. So for each element those values are fixed values.

 $\{f\} = [k] \{u\}$

For each element we acquire the below:

$$\begin{cases} f_{y1} \\ m_1 \\ f_{y2} \\ m_2 \end{cases} = \begin{bmatrix} k_{11} & k_{12} & k_{13} & k_{14} \\ k_{21} & k_{22} & k_{23} & k_{24} \\ k_{31} & k_{32} & k_{33} & k_{34} \\ k_{41} & k_{42} & k_{43} & k_{44} \end{bmatrix} \begin{pmatrix} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{pmatrix}$$
$$k^e = \frac{EI(x)}{l^3(1+\Phi)} \begin{bmatrix} 12 & 6l & -12 & 6l \\ 6l & (4+\Phi)l^2 & -6l & (2-\Phi)l^2 \\ -12 & -6l & 12 & -6l \\ 6l & (2-\Phi)l^2 & -6l & (4+\Phi)l^2 \end{bmatrix}$$

Where $\Phi = \frac{12EI(x)}{(GA_s(x)l^2)}$

Before proceeding further let's consider the format for the element force vector for transverse loading. So for uniform distributed load q_i:

Figure 13: Element load to force vector

On closer inspection of the results for the above two cases, one can see that the applied distributed load is in essence replaced with a statically equivalent set of nodal forces acting at the ends of the element.

From continuity the displacement and slope at the common node of two elements must be the same. So when we assemble the global stiffness matrix the terms in the element stiffness matrices corresponding to each node should be summed for each degree of freedom. The resulting global matrix is diagonal and symmetric. In the same way, the force vector can be produced. By solving the problem $\{F\} = [K]^* \{U\}$, we acquire the displacement and slope of the hull girder.

- K: Global Stiffness Matrix
- U: Nodal displacements and slopes
- F: Nodal forces

3.3 Boundary Conditions

The proper selection of boundary conditions is the most serious task when using finite element analysis. Incorrect boundary conditions can lead to considerable errors by suppressing or raising the deformation modes of the cross sections. Many different conditions were checked to define the most proper and realistic solution.

The modeling of the aft end structure, as in Siamantas thesis, can be expressed by a cantilever beam as shown in Figure below. The aft most end of the ship is a free edge (as shearing force and bending moment is zero, and displacement and slope are non-zero), therefore no boundary condition should be introduced. On the other hand, the foremost end of the engine room does not allow the section to translate vertically nor rotate in the vertical plane, thus shearing force and bending moments are non-zero.

Figure 14: Beam representing the loading condition and boundary conditions

When modeling the whole ship as hull girder, in order to predict the primary displacements of hull girder the boundary conditions should be such as to induce nodal forces and moments that, when summed, correspond to the hull girder shearing forces and bending moments. According to Indian Register of Shipping (IRS) guidelines on Structural Assessment of Ships based on Finite Element Method (2020), when simulating the full ship finite element model in static structural analysis the applied boundary conditions must prevent the rigid body motions without over-constraining the model. Location of boundary condition is to be far away from the area of interest. Generally, boundary conditions are typically applied at two locations, one in the aft and the other in the fore. The chosen aft position is the engine room front bulkhead and the fore is the collision bulkhead as shown in Figure 14 below. In our 1D model the aft support is pin and fore is roller.

Figure 15: Full FE ship model boundary conditions

The results on both boundary conditions, simply supported and cantilever were quite same so the results shown are for cantilever beam, since our area of interest is the shaft area.

4. Shaft Alignment

4.1. Definition

The ship propulsion system is usually composed of a two-stroke diesel engine and a shaft system, which transmits power from the engine to the propeller. If a four-stroke diesel engine is installed on the ship, a reduction gear is necessary to achieve the most efficient rotational speed for the shafting system. The shaft comprises three individual parts: (a) the crankshaft, (b) the intermediate shaft and (c) the propeller shaft. Each one of these parts is supported by different (amount and type) journal bearings according to the loads to be supported. (Propeller, flanges, pistons, flywheel, flanges etc.).

Figure 16: Marine Propulsion system components

Firstly, the crankshaft of the marine engine is supported and connected to the connecting rod via the crankshaft bearings whose main goal is to transmit the load without any contact between the rod and the crankshaft. The number of crankshaft bearings is equal to the number of cylinders of the main engine increased by one or two (one when the crankshaft comes as a single piece, and two if the crankshaft is divided into parts, usually on large engines). Next, the intermediate shaft is supported by at least one intermediate bearing. Vessels with lengthy shafting systems, like large containerships, are obliged to have more bearings, in order to endure the shaft weight. Finally the shaft in the stern tube is supported by two stern tube bearings (aft and fore stern tube bearing).

The propulsion shafting alignment is a process for the calculation, selection and proper arrangement of the bearings throughout the shaft, to achieve optimal operating conditions for the all the different service conditions of the vessel.

According to ABS Guidance notes on propulsion shafting alignment (2019) shaft alignment calculations and a shaft alignment procedure are to be submitted for the following alignment-sensitive type of installations:

a) Propulsion shafting of diameter larger than 400 mm,

- b) Propulsion shafting with reduction gears where the bull gear is driven by two or more ahead pinions,
- c) Propulsion shafting with power takeoff or with booster power arrangements, and
- d) Propulsion shafting for which the tail shaft bearings are to be bored sloped.

Propulsion shafting alignment is carried out so that:

- Bearing loads are within the acceptable limits specified by the bearing manufacturer under all vessel loading conditions
- Bearing reactions are always positive
- The number of bending points of the shaft is the minimum
- The operation of the propulsion system is the optimum for hot and cold main engine condition, in each different load condition and weather scenario.

4.1.2 Importance of Proper Alignment

The misalignment of the shaft may damage several parts (crankshaft, bearings, shaft etc.) and lead to an unplanned machine downtime. This failure not only causes costly delays in maintenance, but also increases the chance of personnel injury, change of bearings and even total failure of propulsion shafting system. Failing to carry a proper alignment also cause:

- Uneven loaded bearings; some bearings will have to support extra loads,
- Decrease of shafting system efficiency, due to extreme friction on the bearings,
- Excessive wear of bearings and shaft,
- Massive amplitudes of torsional and lateral vibration leading to imminent shaft and bearings failure,
- Fatigue failure, caused by over the limit bending stresses.

After the malfunction of the propulsion shafting system, the vessel must be immobilized to avoid further damage and a series of costly events must be initialized for the repair of the propulsion system.

4.2 Shaft Alignment plan implementation

4.2.1. Design - Calculations

The process of shaft system design, due to hull deflection, consists of specific steps. Firstly, one must choose the necessary number and longitudinal position of support points. After, we assure that propulsion shafting bearing; the engine and gearbox are on the required vertical position (zero vertical offsets) and calculate the reaction forces of each bearing, shaft deflections. At this point, the influence coefficients of the system are also calculated. Taking everything into consideration, we determine the vertical offsets of each bearing. This is an iterative process to optimize everything mentioned above. Lastly, we calculate SAG – GAP values for all shafts in decoupled state.

4.2.2 Installation process

After the design process, the next stage is the installation of the shafting system. As soon as, stern structure is in place the shaft alignment procedure should start.

At start, a reference line is established between the flywheel and the aft end of the stern tube (figure). The procedure is called bore sighting and can be achieved by three different methods: (a) Piano wire, (b) Optical telescope, (c) Laser. The proper definition of the reference line is of high importance, since the vertical offsets will be conducted by this reference line. So, the measurement of the vertical offsets of this reference condition must be accurate.

Figure 17: Shaft alignment procedure, definition of reference line.

4.2.2.1 The piano wire method

A thin steel wire (0.5-0.7mm diameter) is used to represent the reference line. The wire extends from the aft stern tube end to the flywheel or a temporary support that represents the M/E future location, if the engine has not been installed yet. This wire is threaded through centering spiders or a pulley positioned at the stern tube and is pre-tensioned with a known force using a weight.

Figure 18: Piano wire method

Although this method is dependable, low-cost, and easy to understand, special attention should be given by the worker conducting this procedure. Several problems may occur through this method, like wire vibration, surface irregularities or measurement errors if an analog micrometer is used and the deflections of the wire.

4.2.2.2 Optical Methods

This method employs the use of a precision telescope that projects an optical reference line (figure). The telescope is positioned on a base so that its vertical and lateral position is the same as that of a reference target, which is utilized to establish a reference line. Transparent targets, usually glass disks, are set at several longitudinal positions and with the exact vertical position of each support bearing center. The deviation of each target center is recorded relative to the reference line.

Although the optical methods are more expensive, they are extremely accurate and dependable. Nowadays, industry utilizes laser systems to facilitate the alignment procedure.

Figure 19: Optical methods

4.2.2.3 Laser

The laser instrument sighting is quite like the optical method mentioned above. The Laser instrument is positioned at one end (either M/E, either aft stern tube) and two reference targets are defined. Those targets are located inside the bearing in the specified by the shaft alignment calculations position and a reference reading is taken. Then the receiver is relocated to the next measuring point along the reference line and additional readings are taken. The results are digitally recorded. Although the laser method is the most expensive, the results are highly accurate (tolerance = 0.005 mm).

5. Case Study

5.1 General particular of the vessel

5.1.1 General Particular and Dimensions

In the present study, a typical 10,000 TEU containership is considered. The vessel under consideration, whose main particulars are listed in table 5.1, is shaft alignment sensitive taking into consideration the following facts:

- Shafting system length: Over 50 meters
- Number of intermediate bearings: Three (3)
- Power output: 51,000 kW x 84 RPM
- Propeller shaft diameter: 990 mm

TYPE	10,000 TEU CONTAINERSHIP
LENGTH BETW. PERP.	320.00 M
BREADTH	48.20 M
DEPTH	27.20 M
DESIGN DRAFT	13.00 M
SCANTLING DRAFT	15.20 M
SERVICE SPEED	23.80 KN
MAIN ENGINE	MAN B&W 10S90ME-C9.2-TII
POWER OUTPUT	51,000 kW x 84 RPM
KEEL LAID	2013

5.1.2 Shafting System Particulars

Figure 5.19 illustrates the shafting system model of the studied containership. The shafting system model comprises the propeller shaft, the intermediate shaft and part of the crankshaft. Two stern tube bearings support the propeller shaft, while the intermediate shaft is supported by three bearings. In our study, only the first six crankshaft bearings are taken into consideration. Bearing characteristics are presented below:

Aft Stern Tube Bearing (ASB)

- Outer shaft diameter 988 mm
- Effective bearing length 2174 mm
- Length over diameter 2.20
- Radial clearance 0.75 mm
- Max permissible load 0.8 MPa / 1718 kN
- Foundation stiffness 3.5E+10 N/m

Forward Stern Tube Bearings (FSB)

- Outer shaft diameter 990 mm
- Effective bearing length 990 mm
- Length over diameter 1.00
- Radial clearance 0.75 mm
- Max permissible load 0.8 MPa / 784 kN
- Foundation stiffness 2.0E+10 N/m

Intermediate Shaft Bearing (ISB)

- Outer shaft diameter 830 mm
- Effective bearing length 850 mm
- Length over diameter 1.02
- Radial clearance 0.40 mm
- Max permissible load 1.0 MPa / 705 kN
- Foundation stiffness 5.0E+10 N/m

General Considerations

- Shaft density 7850 kg/m 3
- Young's modulus 2.1x10 11 N/m 2
- Lubricant dynamic viscosity 0.1 Pa S

The shaft consists of 78 beam elements and a total of 79 nodes. The geometry characteristics and various loads of each beam are presented in **APPENDIX A**

On the figure below the exact shaft for the studied vessel is shown developed in National Technical University of Athens (NTUA) shaft alignment tool.

5.2. Finite Element Analysis of the Vessel

5.2.1. FEM Generation

The process for the 1D beam theory approach followed to determine the relative bearings' offsets due to hull deflection is shown below:

Figure 21: 1D beam theory process

5.2.2. FEM Validation

In our analysis, the best way to ensure the validity of the process and the results is to test every single parameter used in the finite element modeling. Firstly, the reaction forces calculated on each node were acquired through the loading manual of the vessel. The longitudinal load distribution for each condition was calculated by differentiating the Shear Forces from the loading manual. The validity of the coding of 1d Timoshenko and Euler-Bernoulli was tested with simple beam problems that can be calculated on paper. Lastly, the sectional properties deprived from the graphic user interface application that was developed in this thesis were calculated by hand and also were compared with sectional properties of containerships from other published papers, like 'an advanced theory of thin-walled girders with application to ship vibrations', by I. Senjanovic et al [], where ship vibrations coupling of 3d FEA and 1d beam theory for an 11400 TEU VLCS (Very Large Container Ship) was deducted. The sectional properties in the paper above were calculated on NASTRAN program.

Figure 22: Second moment of area for an 11400 TEU VLCS

5.3. Shaft Alignment Calculations - Parameters

5.3.1 Operating Conditions

Firstly, the considerations made in this study must be analyzed extensively to achieve precise results. For our static analysis of each condition, the main engine is cold and not running, so additional vertical offsets due to thermal expansion of the M/E have been neglected. Furthermore, the deflection of the hull girder occurred from static still water condition, since the results are been compared with the thesis of Stavros Siamantas []. Additional considerations should be taken to calculate the offsets done by sea swell. Considering sea waves would lead to closer to reality results. The change of the waterline causes a change in the buoyancy, and so changes the longitudinal load distribution.

#	Case	Description	Draft	Draft
			Aft	Fore
1	DOCK1	NORMAL DOCKING	6157	6168
2	DOCK2	DOCKING WITH 12000t CARGO(12T x 1000)	6610	6576
3	BLD	BALLAST DEP.	10854	6951
4	BLD-S11.1	BALLAST DEP(URS11.1)	11186	5575
5	BLD-PANAMA	BALLAST DEP PANAMA	9915	8649
6	BLM-PANAMA	BALLAST MID PANAMA	9450	8104
7	BLA-PANAMA	BALLAST ARR PANAMA	9054	7669
8	16TDD	16T/TEU DEP. AT DESIGN DRAFT (16T x 4676)	13326	12595
9	16TAD	16T/TEU ARR. AT DESIGN DRAFT (16T x 4676)	12803	11454
10	11TDS	11T/TEU DEP. AT SCANTLING DRAFT(11Tx 8984)	15431	14886
11	11TAS	11T/TEU ARR. AT SCANTLING DRAFT(11Tx8984)	15495	14511
12	16TDS	16T/TEU DEP. AT SCANTLING DRAFT(16Tx 6474)	15409	14916
13	16TAS	16T/TEU ARR. AT SCANTLING DRAFT(16Tx6474)	15122	14185
14	MAX	HOMO. AT 15.2m DRAFT FOR CLASS(14Tx7390)	15203	15194

 Table 5.1: Loading Conditions of studied vessel

5.3.2 Compartments

The proper choice of frames is really important for the generation of credible set of data with the least possible amount and effort. Later on, we test different sets of data to investigate which is the least set of data for a precise result. The most important ship block where the data must be dense to achieve valid results is the stern tube. The stern tube consists of high thickness steel plates and stiffeners in order to receive the oscillations and forces created by the propeller. Except from high thickness plating, the stern tube consists of a thick solid part which has a high contribution in the shear and bending stiffness.

5.3.3 Static shaft alignment plan – Reference condition

The line running through the center of the stern tube and the bearings at a docking condition is the reference line. The reference condition is DOCK1, while the vessel is afloat and deckhouse weight is included. The initial offsets were taken by the calculation of shaft alignment for cold and not running engine. In Table, initial vertical offsets of the bearings relative to the reference line, based on the shaft alignment plan of the vessel.

No.	Bearing	Bearing Foundation Stiffness(N/m)	L/D	Offsets(mm)
1	ASB	3.50E+09	0.988	0.75
2	FSB	3.50E+09	0.99	0.75
3	ISB3	2.00E+09	0.83	-2
4	ISB2	2.00E+09	0.83	-3
5	ISB1	2.00E+09	0.83	-4
6	MB13	5.00E+09	1.18	-5.59
7	MB12	5.00E+09	1.18	-5.59
8	MB11	5.00E+09	0.602	-5.59
9	MB10	5.00E+09	0.602	-5.59
10	MB9	5.00E+09	0.602	-5.59
11	MB8	5.00E+09	0.602	-5.59
		Table 5. 2. Initial chaft alignment play	Defense	andition

Table 5.2: Initial shaft alignment plan - Reference condition

The absolute bearings offsets are calculated by adding the initial offsets with the deformations due to relative hull deflections, bearings' elastic foundation and hydrodynamic lubrications. The last two were acquired from previous diploma thesis conducted by the division of marine engineering. The relative hull deflections for each condition are calculated by the hull deflections of each loading condition minus the hull deflections of reference condition (DOCK1). After calculating the relative hull deformations we use a transformation matrix. This approach is presently applied in large shipyards and recognized by the classification societies due to the fact that such a coordinate transformation method is useful not only for calculating the shaft alignment but also for understanding the analysis results. Relative and rotated hull deflection at each bearings' position can be acquired by the equation below:

$$\begin{cases} x' \\ y' \end{cases} = \begin{bmatrix} \cos a & \sin a \\ -\sin a & \cos a \end{bmatrix} \begin{cases} x - x_0 \\ y - y_0 \end{cases}$$

 $\begin{pmatrix} x \\ y \end{pmatrix}$ is the point coordinate system before conversion

 $\begin{pmatrix} x' \\ y' \end{pmatrix}$ is the point coordinate system converted by compensating with the original coordinate $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ so that the axis become 0 after the coordinate transformation

a, the angle between After Stern Bearing (ASB) and Fore Stern Bearing (FSB)

Relative hull deflection_i =
$$\begin{cases} y_1 \\ y_2 \\ \vdots \end{cases}_{condition i} - \begin{cases} y_1 \\ y_2 \\ \vdots \end{cases}_{Reference}$$

 $Absolute \ hull \ deflection_i \ = \begin{bmatrix} cosa & sina \\ -sina & cosa \end{bmatrix} * Relative \ hull \ deflection_i + Initial \ Offsets$

Figure 23: Initial Offsets

5.3.4 Comparison of 1d beam theory and 3d analysis

On this chapter, a comparison will be conducted between 1d and 3d model to comprehend the differences between the two methods and what can be achieved with each one of them. Additionally, notes will be given considering the parts that contribute on the stiffness of the vessel.

The plots generated on this chapter used the inertia calculated from the longitudinal plates and stiffeners with the GUI application. The web frames and deckhouse stiffness contribution is not taken into account. The **figure 5.23** shows the max condition for each different model.

Figure 24: Comparison of different FE models

The investigation of the models was conducted per region of interest and the results are shown below:

- Boundary region: All the models used clamped boundary condition in the engine room front bulkhead. In **figure 5.24** we notice the steep start of the deflection in the 3d finite element model, due to the high weight distribution of the deckhouse in this region. This cannot be achieved by any beam theory unless we force those points to achieve this slope. After the steep slope, the 3d model follows almost the same slope as the Timoshenko 1d beam. The Euler-Bernoulli neglects the shear deflections so it is impossible to create big differences between the elements' slopes. So when trying to calculate actual deflection Euler-Bernoulli will produce false results.
- Region 79-81 m: In **figure 5.24** inside the rectangle area, there can be noticed a zero slope of the deflection of the 3d model. At this longitudinal position is the fore end of the engine. The possible explanation for the slope is:
 - 1. The shear area of the shear is underestimated in the engine room sections.
 - 2. At this length there's a high thickness plate (80mm), where maybe the deformation travelling to this point cannot change the form of this plate.
- After the region discussed above we notice the Timoshenko descending faster than the 3d model, due to lower stiffness. That leads to the conclusion that the web frames must somehow be taken into consideration to achieve more accurate results. Accounting only for the longitudinal plates and stiffeners produces high shear deflections that don't correspond to the 3d model.

Figure 25: Fore engine region

- The previous assumption can be verified by **figure 5.25**, where the slopes of Bernoulli 1d beam and 3d FE model are quite similar and the Timoshenko deviates by having higher slope by the other two.
- Last but not least, on the marked area on **figure 5.23** we notice the same behavior as in region 79-81m. The slope is almost reaching zero due to the high stiffness of the stern tube (zero deformation and the solid part from frame 11 to frame 14 (2.4m). Unfortunately the beam theories cannot achieve a zero slope so a calibration may be needed to achieve more accurate results.

Figure 26: Aft engine region to flywheel

5.4 Shaft alignment 1D model results

5. 4.1 Loading condition "DOCK2"

Dock2 is a docking condition with 12000t cargo ($12t \ge 1000$) with displacement 53831.4 t, trim equal to - 0.033 m and draft 6.593 m. On the figures below are the loads and shear force distribution (figure...), the global deflection (figure...) and the absolute bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder and 3d finite element analysis (figure...).

Figure 27: Dock2 load and shear force diagrams

The results on all the conditions tested below followed the assumptions:

- 1. Hatch covers are included in the calculations of the bending and shear stiffness
- 2. Web frames contribute in the strength of the vessel via a triangular distribution of their total strength in effective nodes.
- 3. Load distribution consists of constant functions deriving from differentiation of linearly interpolated shear forces from loading manual. (the actual load distribution).
- 4. The stern frame consists of a solid part which raises abruptly the second moment of area and shear area of the aft stern tube frames.

Figure 28: Hull Deflection DOCK2

Figure 29: Absolute Offsets Dock2

DOCK2 loading condition is quite similar with DOCK1, with the difference that DOCK2 has cargo instead of ballast.

Bearing	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformati on (m)	Minimum Film Thickness(m)
ASB	1617.99	0.75329	5.86E-04	7.50E-04	0.00E+00	-4.41E-04	2.77E-04
FSB	188.921	0.08778	9.12E-04	7.50E-04	0.00E+00	-7.05E-05	2.32E-04
IS3	378.178	0.53604	-2.06E-03	-2.00E-03	-2.74E-06	-1.84E-04	1.27E-04
IS2	478.531	0.67829	-3.14E-03	-3.00E-03	-2.01E-05	-2.42E-04	1.19E-04
IS1	515.562	0.73078	-4.19E-03	-4.00E-03	-5.98E-05	-2.54E-04	1.19E-04
MB13	402.189	0.79534	-5.73E-03	-5.59E-03	-1.21E-04	-9.18E-05	7.42E-05
MB12	427.69	0.84577	-5.71E-03	-5.59E-03	-1.29E-04	-7.40E-05	8.14E-05
MB11	493	0.97492	-5.74E-03	-5.59E-03	-1.42E-04	-9.87E-05	8.65E-05
MB10	549.11	1.08588	-5.78E-03	-5.59E-03	-1.57E-04	-1.13E-04	8.34E-05
MB9	590.537	1.16781	-5.79E-03	-5.59E-03	-1.69E-04	-1.14E-04	8.30E-05
MB8	222.444	0.43989	-5.73E-03	-5.59E-03	-1.88E-04	-4.55E-05	9.05E-05

 Table 5.3: Reaction Forces DOCK2

5.4.2 Loading condition "BLD"

BLD is a ballast departure condition with full fuel and water tanks, displacement 78298.8 t, trim equal to - 3.903 m and draft 8.903 m. On the figures below are the loads and shear force distribution (figure...), the global deflection (figure...) and the absolute bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder and 3d finite element analysis (figure...).

Figure 30: BLD load and shear force diagrams

The ballast condition has a high difference between the 1d and 3d modeling. From the hull deflection offsets acquired from the shaft alignment calculations of the shipyard we can notice that on the 3d FEM the values are a little bit overvalued. Also, assuming that the shipyard doesn't account the hatch covers in the calculations of stiffness then we approach even more the results of the shipyard as seen in **figure 70**. The difference between 3d and 1d may resulted from differences in the loading of the vessel from the loading manual and the resulting load distribution created on the 3d FEM.

Figure 31: Hull Deflection BLD

Figure 32: Absolute Offsets BLD

Bearing	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformati on (m)	Minimum Film Thickness(m)	
ASB	1619.09	0.7538	6.07E-04	7.50E-04	0.00E+00	-4.27E-04	2.84E-04	
FSB	186.023	0.08643	9.11E-04	7.50E-04	0.00E+00	-7.22E-05	2.33E-04	
IS3	380.266	0.539	-2.07E-03	-2.00E-03	-1.82E-05	-1.85E-04	1.31E-04	
IS2	479.502	0.67966	-3.32E-03	-3.00E-03	-1.98E-04	-2.43E-04	1.23E-04	
IS1	509.022	0.72151	-4.70E-03	-4.00E-03	-5.84E-04	-2.47E-04	1.30E-04	
MB13	571.971	1.13109	-6.66E-03	-5.59E-03	-1.06E-03	-9.39E-05	8.73E-05	
MB12	136.584	0.2701	-6.71E-03	-5.59E-03	-1.12E-03	-9.75E-05	9.32E-05	
MB11	717.719	1.41931	-6.79E-03	-5.59E-03	-1.22E-03	-7.75E-05	1.02E-04	
MB10	348.909	0.68998	-6.94E-03	-5.59E-03	-1.33E-03	-1.18E-04	1.02E-04	
MB9	749.087	1.48135	-7.01E-03	-5.59E-03	-1.42E-03	-1.01E-04	9.86E-05	
MB8	165.976	0.32822	-7.11E-03	-5.59E-03	-1.56E-03	-5.25E-05	9.21E-05	
Table 5.4: Reaction Forces BLD								

5.4.3 Loading condition "BLD-S11.1"

BLD-S11.1 is a ballast departure (URS 11.1) condition with full fuel and water tanks, displacement 67174.0 t, trim equal to -5.611 m and draft 8.381 m. On the figures below are the loads and shear force distribution (figure...), the global deflection (figure...) and the absolute bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder and 3d finite element analysis (figure...).

Figure 33: BLD-S11.1 load and shear force diagrams

Figure 34: Hull Deflection BLD-S11.1

Figure 35: Absolute offsets BLD-S11.1

Bearing	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformati on (m)	Minimum Film Thickness(m)	
ASB	1619.08	0.75379	6.06E-04	7.50E-04	0.00E+00	-4.27E-04	2.83E-04	
FSB	186.021	0.08643	9.11E-04	7.50E-04	0.00E+00	-7.21E-05	2.33E-04	
IS3	380.149	0.53884	-2.07E-03	-2.00E-03	-1.93E-05	-1.85E-04	1.31E-04	
IS2	479.977	0.68034	-3.33E-03	-3.00E-03	-2.12E-04	-2.43E-04	1.23E-04	
IS1	507.455	0.71928	-4.74E-03	-4.00E-03	-6.28E-04	-2.47E-04	1.31E-04	
MB13	607.145	1.20065	-6.74E-03	-5.59E-03	-1.14E-03	-9.27E-05	8.76E-05	
MB12	85.6075	0.16929	-6.80E-03	-5.59E-03	-1.21E-03	-9.50E-05	9.50E-05	
MB11	732.367	1.44828	-6.88E-03	-5.59E-03	-1.32E-03	-8.58E-05	1.16E-04	
MB10	356.678	0.70534	-7.03E-03	-5.59E-03	-1.43E-03	-1.11E-04	1.00E-04	
MB9	742.793	1.4689	-7.11E-03	-5.59E-03	-1.52E-03	-1.03E-04	9.98E-05	
MB8	166.881	0.33001	-7.22E-03	-5.59E-03	-1.67E-03	-5.26E-05	9.25E-05	
Table 5.5: Reaction Forces BLD-S11.1								

5.4.4 Loading condition "BLD-PANAMA"

BLD-PANAMA is a ballast departure panama condition with full fuel and water tanks, displacement 81833.9 t, trim equal to -1.266 m and draft 9.282 m. On the figures below are the load and shear force distribution (figure...), the global deflection (figure...) and the absolute bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder and 3d finite element analysis (figure...).

Figure 36: BLD-PANAMA load and shear force diagrams

Figure 37: Hull Deflection BLDPANAMA

Figure 38: Absolute offsets BLDPANAMA

Bearing	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformati on (m)	Minimum Film Thickness(m)
ASB	1618.94	0.75373	6.07E-04	7.50E-04	0.00E+00	-4.27E-04	2.84E-04
FSB	186.519	0.08666	9.11E-04	7.50E-04	0.00E+00	-7.19E-05	2.33E-04
IS3	379.87	0.53844	-2.07E-03	-2.00E-03	-1.52E-05	-1.85E-04	1.30E-04
IS2	479.821	0.68011	-3.28E-03	-3.00E-03	-1.55E-04	-2.42E-04	1.22E-04
IS1	508.261	0.72043	-4.55E-03	-4.00E-03	-4.28E-04	-2.50E-04	1.27E-04
MB13	572.732	1.1326	-6.32E-03	-5.59E-03	-7.21E-04	-9.13E-05	8.53E-05
MB12	156.432	0.30935	-6.35E-03	-5.59E-03	-7.60E-04	-9.14E-05	9.05E-05
MB11	624.955	1.23587	-6.39E-03	-5.59E-03	-8.25E-04	-9.49E-05	1.16E-04
MB10	527.287	1.04273	-6.48E-03	-5.59E-03	-8.97E-04	-9.87E-05	1.02E-04
MB9	590.212	1.16717	-6.57E-03	-5.59E-03	-9.55E-04	-1.14E-04	9.19E-05
MB8	219.123	0.43332	-6.60E-03	-5.59E-03	-1.05E-03	-4.86E-05	9.04E-05

 Table 5.6: Reaction Forces BLD-PANAMA

5.4.5 Loading condition "BLM-PANAMA"

BLM-PANAMA is a ballast mid condition with half-filled fuel and water tanks, displacement 76405.9t, trim equal to -1.346m and draft 8.777m. On the figures below are the load and shear force distribution (figure...), the global deflection (figure...) and the absolute bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder and 3d finite element analysis (figure...).

Figure 39: BLM-PANAMA load and shear force diagrams

Figure 40: Hull Deflection BLMPANAMA

Figure 41: Absolute offsets BLMPANAMA
	Bearin g	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformati on (m)	Minimum Film Thickness(m)		
_	ASB	1618.73	0.75363	6.05E-04	7.50E-04	0.00E+00	-4.28E-04	2.83E-04		
	FSB	187.128	0.08694	9.11E-04	7.50E-04	0.00E+00	-7.21E-05	2.33E-04		
	IS3	379.159	0.53743	-2.07E-03	-2.00E-03	-1.33E-05	-1.85E-04	1.28E-04		
_	IS2	480.773	0.68146	-3.25E-03	-3.00E-03	-1.32E-04	-2.42E-04	1.21E-04		
_	IS1	506.306	0.71766	-4.46E-03	-4.00E-03	-3.37E-04	-2.50E-04	1.25E-04		
_	MB13	635.239	1.25621	-6.10E-03	-5.59E-03	-5.01E-04	-9.23E-05	8.01E-05		
_	MB12	28.6708	0.0567	-6.12E-03	-5.59E-03	-5.23E-04	-9.12E-05	8.81E-05		
_	MB11	756.312	1.49563	-6.12E-03	-5.59E-03	-5.60E-04	-8.60E-05	1.16E-04		
_	MB10	418.804	0.8282	-6.21E-03	-5.59E-03	-6.02E-04	-1.09E-04	9.53E-05		
-	MB9	645.18	1.27587	-6.25E-03	-5.59E-03	-6.37E-04	-1.14E-04	8.91E-05		
-	MB8	207.855	0.41104	-6.24E-03	-5.59E-03	-6.95E-04	-4.68E-05	8.95E-05		
	Table 5.7: Reaction Forces BLM-PANAMA									

5.4.6 Loading condition "BLA-PANAMA"

BLA-PANAMA is a ballast arrival panama condition with 10% filled fuel and water tanks, displacement 72002.8 t, trim equal to -1.385 m and draft 8.362 m. On the figures below are the loads and shear forces distribution (figure...), the global deflection (figure...) and the absolute bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder and 3d finite element analysis (figure...).

Figure 42: BLA-PANAMA load and shear force diagrams

Figure 43: Hull Deflection BLAPANAMA

Figure 44: Absolute offsets BLAPANAMA

Bearing	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformation (m)	Minimum Film Thickness (m)		
ASB	1618.63	0.75358	6.02E-04	7.50E-04	0.00E+00	-4.30E-04	2.82E-04		
FSB	187.305	0.08703	9.11E-04	7.50E-04	0.00E+00	-7.17E-05	2.33E-04		
IS3	379.303	0.53764	-2.07E-03	-2.00E-03	-1.23E-05	-1.85E-04	1.29E-04		
IS2	480.2	0.68065	-3.24E-03	-3.00E-03	-1.15E-04	-2.41E-04	1.21E-04		
IS1	508.336	0.72053	-4.40E-03	-4.00E-03	-2.69E-04	-2.51E-04	1.23E-04		
MB13	553.785	1.09513	-5.94E-03	-5.59E-03	-3.38E-04	-9.11E-05	7.73E-05		
MB12	180.71	0.35736	-5.94E-03	-5.59E-03	-3.48E-04	-9.05E-05	8.68E-05		
MB11	628.786	1.24345	-5.94E-03	-5.59E-03	-3.64E-04	-8.54E-05	9.75E-05		
MB10	511.7	1.0119	-5.99E-03	-5.59E-03	-3.84E-04	-1.11E-04	9.09E-05		
MB9	593.356	1.17338	-6.02E-03	-5.59E-03	-3.99E-04	-1.15E-04	8.73E-05		
MB8	222.039	0.43909	-5.98E-03	-5.59E-03	-4.29E-04	-4.61E-05	8.92E-05		
Table 5.8: Reaction Forces BLA-PANAMA									

5.4.7 Loading condition "TDD16"

TDD16 is a 16T/TEU departure condition at design draft (16T x 4676), displacement 124331.0t, trim equal to -0.731m and draft 12.96m. On the figures below are the load and shear force distribution (figure...), the global deflection (figure...) and the absolute bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder and 3d finite element analysis (figure...).

Figure 45: TDD16 load and shear force diagrams

Figure 46: Hull Deflection TDD16

Figure 47: Absolute offsets TDD16

	Bearin g	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformation (m)	Minimum Film Thickness (m)		
	ASB	1616.58	0.75263	6.14E-04	7.50E-04	0.00E+00	-4.26E-04	2.90E-04		
	FSB	191.896	0.08916	9.10E-04	7.50E-04	0.00E+00	-7.46E-05	2.35E-04		
	IS3	379.142	0.53741	-2.16E-03	-2.00E-03	-1.10E-04	-1.83E-04	1.32E-04		
_	IS2	471.863	0.66883	-3.16E-03	-3.00E-03	-3.79E-05	-2.42E-04	1.22E-04		
-	IS1	521.161	0.73871	-3.59E-03	-4.00E-03	5.29E-04	-2.42E-04	1.21E-04		
-	MB13	358.669	0.70928	-4.66E-03	-5.59E-03	9.70E-04	-1.13E-04	7.50E-05		
-	MB12	487.47	0.96399	-4.60E-03	-5.59E-03	9.80E-04	-6.71E-05	7.41E-05		
-	MB11	482.793	0.95474	-4.60E-03	-5.59E-03	9.84E-04	-8.86E-05	9.21E-05		
-	MB10	533.493	1.055	-4.64E-03	-5.59E-03	9.74E-04	-1.13E-04	8.86E-05		
-	MB9	607.867	1.20208	-4.66E-03	-5.59E-03	9.56E-04	-1.15E-04	8.75E-05		
-	MB8	213.217	0.42164	-4.63E-03	-5.59E-03	9.18E-04	-4.51E-05	8.75E-05		
	Table 5.9: Reaction Forces TDD16									

5.4.8 Loading condition "TAD16"

TAD16 is a 16T/TEU arrival condition at design draft (16T x 4676), displacement 114500.0 t, trim equal to -1.349 m and draft 12.129 m. On the figures below are the loads and shear force distribution (figure...), the global deflection (figure...) and the relative bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder (figure...).

Figure 48: TAD16 load and shear force diagrams

Figure 49: Hull Deflection TAD16

Figure 50: Absolute offsets TAD16

	Bearin g	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformation (m)	Minimum Film Thickness (m)		
	ASB	1616.71	0.75269	6.11E-04	7.50E-04	0.00E+00	-4.28E-04	2.89E-04		
	FSB	192.669	0.08952	9.12E-04	7.50E-04	-9.99E-19	-7.23E-05	2.34E-04		
_	IS3	377.627	0.53526	-2.11E-03	-2.00E-03	-5.42E-05	-1.85E-04	1.28E-04		
-	IS2	471.906	0.6689	-2.89E-03	-3.00E-03	2.33E-04	-2.43E-04	1.21E-04		
-	IS1	523.145	0.74152	-2.98E-03	-4.00E-03	1.14E-03	-2.43E-04	1.21E-04		
-	MB13	320.08	0.63297	-3.71E-03	-5.59E-03	1.92E-03	-1.12E-04	7.51E-05		
-	MB12	551.43	1.09047	-3.61E-03	-5.59E-03	1.97E-03	-6.50E-05	7.35E-05		
-	MB11	429.883	0.85011	-3.56E-03	-5.59E-03	2.03E-03	-9.08E-05	9.04E-05		
-	MB10	591.986	1.17067	-3.54E-03	-5.59E-03	2.08E-03	-1.13E-04	8.73E-05		
-	MB9	558.255	1.10397	-3.52E-03	-5.59E-03	2.10E-03	-1.15E-04	8.66E-05		
-	MB8	230.452	0.45573	-3.42E-03	-5.59E-03	2.13E-03	-4.48E-05	8.80E-05		
	Table 5.10: Reaction Forces TAD16									

5.4.9 Loading condition "TDS11"

TDS11 is an 11T/TEU departure condition at scantling draft (11T x 8984), displacement 153101.0t, trim equal to -0.545m and draft 15.158m. On the figures below are the loads and shear force distribution (figure...), the global deflection (figure...) and the relative bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder (figure...).

Figure 51: TDS11 load and shear force diagrams

Figure 52: Hull Deflection TDS11

Figure 53: Absolute offset TDS11

	Bearing	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformation (m)	Minimum Film Thickness(m)		
	ASB	1629.02	0.75842	6.06E-04	7.50E-04	0.00E+00	-4.36E-04	2.92E-04		
	FSB	174.599	0.08112	9.24E-04	7.50E-04	0.00E+00	-5.72E-05	2.31E-04		
-	IS3	376.196	0.53323	-1.34E-03	-2.00E-03	7.33E-04	-1.96E-04	1.22E-04		
	IS2	479.513	0.67968	-8.35E-04	-3.00E-03	2.29E-03	-2.46E-04	1.21E-04		
	IS1	526.575	0.74639	-4.71E-04	-4.00E-03	3.64E-03	-2.32E-04	1.21E-04		
	MB13	263.894	0.52186	-1.73E-03	-5.59E-03	3.92E-03	-1.35E-04	7.82E-05		
	MB12	637.453	1.26059	-1.70E-03	-5.59E-03	3.88E-03	-5.17E-05	6.58E-05		
	MB11	370.487	0.73265	-1.80E-03	-5.59E-03	3.78E-03	-8.52E-05	9.32E-05		
	MB10	664.678	1.31442	-1.96E-03	-5.59E-03	3.65E-03	-1.13E-04	8.96E-05		
	MB9	491.599	0.97215	-2.17E-03	-5.59E-03	3.45E-03	-1.15E-04	8.86E-05		
	MB8	250.136	0.49465	-2.27E-03	-5.59E-03	3.28E-03	-4.51E-05	8.68E-05		
	Table 5.11: Reaction Forces TDS11									

5.4.10 Loading condition "TAS11"

TAS11 is an 11T/TEU arrival condition at scantling draft (11T x 8984), displacement 151443.0 t, trim equal to -0.984m and draft 15.003m. On the figures below are the loads and shear force distribution (figure...), the global deflection (figure...) and the relative bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder (figure...).

Figure 54: TAS11 load and shear force diagrams

Figure 55: Hull Deflection TAS11

Figure 56: Absolute Offsets TAS11

	Bearing	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformation (m)	Minimum Film Thickness(m)		
_	ASB	1628.5	0.75818	6.05E-04	7.50E-04	0.00E+00	-4.36E-04	2.91E-04		
_	FSB	175.641	0.08161	9.24E-04	7.50E-04	0.00E+00	-5.75E-05	2.31E-04		
	IS3	375.419	0.53213	-1.36E-03	-2.00E-03	7.17E-04	-1.96E-04	1.22E-04		
	IS2	480.023	0.6804	-8.65E-04	-3.00E-03	2.26E-03	-2.46E-04	1.21E-04		
-	IS1	525.863	0.74538	-5.11E-04	-4.00E-03	3.60E-03	-2.32E-04	1.21E-04		
-	MB13	262.941	0.51998	-1.76E-03	-5.59E-03	3.89E-03	-1.35E-04	7.85E-05		
-	MB12	648.191	1.28182	-1.73E-03	-5.59E-03	3.85E-03	-5.15E-05	6.59E-05		
-	MB11	347.088	0.68638	-1.83E-03	-5.59E-03	3.75E-03	-8.57E-05	9.35E-05		
	MB10	692.288	1.36902	-1.98E-03	-5.59E-03	3.63E-03	-1.12E-04	9.01E-05		
-	MB9	471.85	0.9331	-2.19E-03	-5.59E-03	3.43E-03	-1.16E-04	8.85E-05		
-	MB8	256.343	0.50693	-2.28E-03	-5.59E-03	3.27E-03	-4.52E-05	8.68E-05		
	Table 5.12: Reaction Forces TAS11									

5.4.11 Loading condition "TDS16"

TDS16 is a 16T/TEU departure condition at scantling draft (16T x 6474), displacement 153099.0t, trim equal to -0.493 m and draft 15.163 m. On the figures below are the loads and shear force distribution (figure...), the global deflection (figure...) and the relative bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder (figure...).

Figure 57: TDS16 load and shear force diagrams

The TAS16 condition deviates a lot compared to the other conditions. The deviation of the Shear Forces and Bending Moments at the engine bulkhead on the 3d model is **7.19%** and **8.24%** respectively. It is possible that the deviation of the two methods derive from the different loadings applied, since in the 1d finite element model the shear forces and bending moments are the exact same with the loading manual.

Figure 58: Hull Deflection TDS16

Figure 59: Absolute offsets TDS16

	Bearing	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformation (m)	Minimum Film Thickness(m)		
-	ASB	1623.14	0.75568	6.11E-04	7.50E-04	0.00E+00	-4.28E-04	2.89E-04		
	FSB	185.564	0.08622	9.12E-04	7.50E-04	0.00E+00	-7.32E-05	2.35E-04		
	IS3	371.259	0.52624	-1.65E-03	-2.00E-03	4.00E-04	-1.82E-04	1.28E-04		
-	IS2	480.798	0.6815	-1.38E-03	-3.00E-03	1.74E-03	-2.45E-04	1.22E-04		
-	IS1	521.091	0.73861	-8.75E-04	-4.00E-03	3.24E-03	-2.36E-04	1.21E-04		
-	MB13	340.454	0.67326	-1.53E-03	-5.59E-03	4.11E-03	-1.22E-04	7.67E-05		
-	MB12	513.823	1.0161	-1.44E-03	-5.59E-03	4.14E-03	-6.64E-05	7.33E-05		
-	MB11	467.008	0.92352	-1.41E-03	-5.59E-03	4.17E-03	-8.37E-05	9.64E-05		
-	MB10	562.484	1.11233	-1.44E-03	-5.59E-03	4.17E-03	-1.11E-04	9.24E-05		
-	MB9	573.659	1.13443	-1.47E-03	-5.59E-03	4.15E-03	-1.15E-04	8.94E-05		
-	MB8	224.87	0.44469	-1.43E-03	-5.59E-03	4.12E-03	-4.56E-05	8.70E-05		
	Table 5.13: Reaction Forces TDS16									

5.4.12 Loading condition "TAS16"

TAS16 is a 16T/TEU arrival condition at scantling draft (16T x 6474), displacement 146639.0t, trim equal to -0.937m and draft 14.654 m. On the figures below are the loads and shear force distribution (figure...), the global deflection (figure...) and the relative bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder (figure...).

Figure 60: TAS16 load and shear force diagrams

The TAS16 condition deviates a lot compared to the other conditions. The deviation of the Shear Forces and Bending Moments at the engine bulkhead on the 3d model is **5.60%** and **6.65%** respectively. It is possible that the deviation of the two methods derive from the different loadings applied, since in the 1d finite element model the shear forces and bending moments are the exact same with the loading manual.

Figure 61: Hull Deflection TAS16

Figure 62: Absolute offsets TAS16

Bearing	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformation (m)	Minimum Film Thickness(m)
ASB	1624.31	0.75623	6.13E-04	7.50E-04	0.00E+00	-4.29E-04	2.92E-04
FSB	184.016	0.0855	9.15E-04	7.50E-04	-9.99E- 19	-7.01E-05	2.35E-04
IS3	371.2	0.52615	-1.57E-03	-2.00E-03	4.86E-04	-1.85E-04	1.26E-04
IS2	481.098	0.68192	-1.13E-03	-3.00E-03	2.00E-03	-2.46E-04	1.21E-04
IS1	520.823	0.73823	-4.34E-04	-4.00E-03	3.68E-03	-2.35E-04	1.21E-04
MB13	341.611	0.67555	-9.68E-04	-5.59E-03	4.67E-03	-1.25E-04	7.72E-05
MB12	524.865	1.03794	-8.71E-04	-5.59E-03	4.71E-03	-6.17E-05	7.12E-05
MB11	429.053	0.84847	-8.30E-04	-5.59E-03	4.75E-03	-8.45E-05	9.44E-05
MB10	622.167	1.23036	-8.40E-04	-5.59E-03	4.77E-03	-1.11E-04	9.12E-05
MB9	524.28	1.03678	-8.77E-04	-5.59E-03	4.74E-03	-1.16E-04	8.87E-05
MB8	240.724	0.47604	-8.18E-04	-5.59E-03	4.73E-03	-4.53E-05	8.70E-05

Table 5.14: Reaction Forces TAS16

5.4.13 Loading condition "MAX"

MAX is a homogenous at 15.2m draft (14T x 7390), displacement 153111.0t, trim equal to -0.009m and draft 15.2m. On the figures below are the loads and shear force distribution (figure...), the global deflection (figure...) and the relative bearing offsets for both Euler-Bernoulli beam and Timoshenko beam assumption of hull girder (figure...).

Figure 63: MAX load and shear force diagrams

The MAX condition deviates the most from all conditions from the one calculated by the 3d FEA model. The deviation of the Shear Forces and Bending Moments at the engine bulkhead on the 3d model is **6.69%** and **8.77%** respectively. It is possible that the deviation of the two methods derive from the different loadings applied, since in the 1d finite element model the shear forces and bending moments are the exact same with the loading manual. Another possible explanation is the small deviation in the calculated shear area. Small changes in the shear area may generate large differences of the deflection in the highly loaded conditions due to the high shear forces. A better investigation of the shear capacity of the vessel would lead to more proper results.

Figure 65: Absolute offsets MAX

Figure 66: Rotated Reference Hull Deflections MAX

Even though the difference between the 3d and 1d Finite elements models seems to be quite big as we can notice it actually isn't. From the figure above the 1d Timoshenko FE model follows the same tendency with the 3d FE model with small differences which may be contributed in the different loading distribution of those two models or on the differences on the stiffness of 3d and 1d model. 3d model can achieve the exact stiffness of the vessel since every single part can be modeled and contribute to the stiffness. On contrary on the 1d model a small amount of frames is taken into so the exact stiffness cannot be achieved. An automation of the calculation would create faster and better results. The approximation of reference hull deflections is quite close to the 3d model and we notice that the biggest difference is in the fore stern tube bearing. A possible explanation is the rigid bodies applied in 3d FEM. Rigid bodies can be described as zero deformation and produce a flat zero line on the deflection diagram.

	Bearing	Reaction(kN)	Mean Pressure(Pa)	Total Offsets(m)	Initial Offsets(m)	Hull Deform. (m)	Support Elastic Deformation (m)	Minimum Film Thickness(m)	
_	ASB	1621.24	0.7548	6.11E-04	7.50E-04	0.00E+00	-4.28E-04	2.89E-04	
	FSB	189.284	0.08795	9.13E-04	7.50E-04	0.00E+00	-7.16E-05	2.35E-04	
	IS3	370.173	0.5247	-1.73E-03	-2.00E-03	3.31E-04	-1.83E-04	1.27E-04	
	IS2	479.445	0.67958	-1.46E-03	-3.00E-03	1.66E-03	-2.45E-04	1.21E-04	
	IS1	521.548	0.73926	-6.77E-04	-4.00E-03	3.44E-03	-2.38E-04	1.21E-04	
	MB13	325.562	0.64381	-9.06E-04	-5.59E-03	4.73E-03	-1.22E-04	7.56E-05	
	MB12	553.319	1.09421	-7.70E-04	-5.59E-03	4.81E-03	-5.90E-05	6.91E-05	
	MB11	402.159	0.79528	-6.68E-04	-5.59E-03	4.92E-03	-9.02E-05	9.19E-05	
	MB10	647.552	1.28056	-6.02E-04	-5.59E-03	5.01E-03	-1.11E-04	8.93E-05	
	MB9	507.343	1.00329	-5.68E-04	-5.59E-03	5.05E-03	-1.16E-04	8.81E-05	
	MB8	246.526	0.48751	-4.28E-04	-5.59E-03	5.12E-03	-4.52E-05	8.69E-05	
	Table 5.15: Bearing Reactions MAX								

5.4.14 Reaction Forces

For the previous loading conditions the reaction forces were calculated in order to test the pressure applied on the bearings. For the total offsets we used the initial offsets calculated by the shipyard, the hull deflection we calculated in this thesis and the offsets due to hydrodynamic lubrications properties and elastic bearings' foundation. On the **figure 66** and table below the reaction forces calculated by the NTUA shaft alignment program are presented.

Figure 67: Reaction Forces for all the conditions

As we can see in **figure 66** the main engine bearing 12 (MB12) is not properly loaded. The alignment calculations are carried in order to achieve the things mentioned below.

- Bearing loads under all operating conditions are within the acceptable limits specified by the bearing manufacturer (Mean Pressure limits).
- Bearing reactions are always positive (i.e., supporting the shaft), except as determined acceptable in accordance with current ABS Rule requirements.
- Uniform load distribution at all bearings and conditions.

Another set of initial offsets would achieve better bearings' load distribution and would lead to better overall performance of the propulsion system and less wearing of the bearings.

			BLD-	BLD-	BLM-	BLA-		
Bearing	DOCK2	BLD	S11.1	PANAMA	PANAMA	PANAMA	16TDD	16TAD
ASB	1618	1619.1	1619.08	1618.94	1618.73	1618.63	1616.6	1617
FSB	188.92	186.02	186.021	186.519	187.128	187.305	191.9	192.7
IS3	378.18	380.27	380.149	379.87	379.159	379.303	379.14	377.6
IS2	478.53	479.5	479.977	479.821	480.773	480.2	471.86	471.9
IS1	515.56	509.02	507.455	508.261	506.306	508.336	521.16	523.1
MB13	402.19	571.97	607.145	572.732	635.239	553.785	358.67	320.1
MB12	427.69	136.58	85.6075	156.432	28.6708	180.71	487.47	551.4
MB11	493	717.72	732.367	624.955	756.312	628.786	482.79	429.9
MB10	549.11	348.91	356.678	527.287	418.804	511.7	533.49	592
MB9	590.54	749.09	742.793	590.212	645.18	593.356	607.87	558.3
MB8	222.44	165.98	166.881	219.123	207.855	222.039	213.22	230.5

Table 5.16: Reaction Forces for all Conditions

Bearing	11TDS	11TAS	16TDS	16TAS	MAX
ASB	1629.02	1628.5	1623.14	1624.31	1621.24
FSB	174.599	175.641	185.564	184.016	189.284
IS3	376.196	375.419	371.259	371.2	370.173
IS2	479.513	480.023	480.798	481.098	479.445
IS1	526.575	525.863	521.091	520.823	521.548
MB13	263.894	262.941	340.454	341.611	325.562
MB12	637.453	648.191	513.823	524.865	553.319
MB11	370.487	347.088	467.008	429.053	402.159
MB10	664.678	692.288	562.484	622.167	647.552
MB9	491.599	471.85	573.659	524.28	507.343
MB8	250 136	256 343	224 87	240 724	246 526

 MB8
 250.136
 256.343
 224.87
 240.724
 246.526

 Table 5.17: Reaction Forces for all conditions (2)

5.5 Parameters Affecting Shaft Alignment Calculations

5.5.1 Voyage

While the vessel is on-going from departure port to arrival port, consumables such as fuels and lubricants reduce in volume. It is reasonable to say that the loading distribution (payload and buoyancy) will change and lead to different hull deflection. Figure ... illustrates the difference of loads and hull deflection through a voyage.

Figure 68: Load and Deflection change through Voyage

As we can notice above the change of the deflection is quite significant throughout a journey from one port to another. The total loss of displacement due to the consumables is 9832 tones, which corresponds to **12% loss of displacement** for departure condition. So throughout the journey the change in the bearings' offsets and the force applied on the bearings is quite extensive and need to be taken into consideration for every condition, ballast and laden.

Bearing	Position(m)	BLD-PANAMA(mm)	BLM-PANAMA(mm)	BLA-PANAMA(mm)
ASB	8.432	7.50E-01	7.50E-01	7.50E-01
FSB	15.182	7.50E-01	7.50E-01	7.50E-01
ISE3	25.096	-2.02E+00	-2.01E+00	-2.01E+00
IS2	35.361	-3.16E+00	-3.13E+00	-3.12E+00
IS1	46.654	-4.43E+00	-4.34E+00	-4.27E+00
MB13	57.135	-6.31E+00	-6.09E+00	-5.93E+00
MB12	58.145	-6.35E+00	-6.11E+00	-5.94E+00
MB11	59.735	-6.41E+00	-6.15E+00	-5.95E+00
MB10	61.325	-6.49E+00	-6.19E+00	-5.97E+00
MB9	62.915	-6.55E+00	-6.23E+00	-5.99E+00
MB8	64.505	-6.64E+00	-6.29E+00	-6.02E+00

The change of bearings' offsets is show on the table and graphically on the figure below:

Table 5.18: Ballast Panama Departure, Mid, Arrival Relative Bearings' Offsets

Figure 69: Bearing Offsets change through Voyage

5.5.2 Deckhouse

The time the shaft alignment process takes place is really important. All the blocks and parts (except from shaft) must be placed to achieve accurate reference line's initial offsets. If the shaft alignment plan has started and the deckhouse is not placed some calculations must be done to provide us the actual reference line.

The subtraction of the deckhouse from the hull will cause change in trim and draft of the vessel in the reference condition. To find this change, data from the loading manual is necessary. For the given condition DOCK1, trim and draft are known. With the use of Bonjean curves, trim and draft we can calculate the buoyancy distribution for the reference condition with the deckhouse weight. We add up the buoyancy to the load distribution, calculated by the derivative of Shear Forces, which produces the deadweight load. Afterward, the change of draft and trim from the subtraction of the deckhouse will derive from the use of TPC and MCT correspondingly.

Change in draught =
$$\frac{w}{TPC}$$

Change in trim = $-\frac{w * (LCG - Xposition)}{TPC}$

w = weight load in tones (positive if adding weight or negative if subtracting)

LCG = longitudinal center of gravity for the vessel

Xposition = weight load longitudinal center of gravity

TPC = tonnes per centimeter

MCT = moment to change trim

In order to acquire the TPC and MCT one must go to the loading manual and for the given trim and draft, interpolate the data to find the values. The new buoyancy load can be obtained by using the new trim and draft value on the Bonjean curves. With known waterline area per frame, the buoyancy load is:

Buoyancy Load(x) =
$$\gamma * A_{wl}(x) * coef_{force} * coef_{percentage}\left(\frac{N}{m}\right)$$
$$\int_{0}^{L} Buoyancy Load(x)dx = Displacement_{i}$$

$$\gamma = \rho^* g$$

 $g = gravity acceleration (9.80665 m/s^2)$

 ρ = water density (1.025 t/m³)

Finally, extract the buoyancy load from the deadweight and we acquire the new distribution load for the reference condition. Then we feed the load distribution data in the Finite Differences Model.

5.5.3 Proper Modeling – Hatch Covers

In his 3d modeling, Stavros Siamantas modeled the hatch covers having the same stiffness k as the rest of the steel structure. According to studies, hatch covers are not welded with the hatches of the cargo holds, but the slide on and off when it is necessary to load and unload the containers. Moreover, they are pinned at certain points around the hatches, which do not allow the deformation of the hatch covers, so the stiffness contribution to the hull girder is small as well. On the figure below, it's the inertia difference if hatch covers are not included in the calculations.

Figure 70: Effect of Hatch covers on Shear Area and Inertia

The absolute differences for a dock, ballast and laden condition is shown on the figures below. The change of second moment of area and shear area with the exclusion of hatch covers and deckhouse stiffness leads to great changes in the absolute vertical offsets of the shaft. As mentioned before, when the shear stiffness is noticeably higher than the shear force applied, the slope created by the shear is neglected and Timoshenko theory approaches Euler-Bernoulli beam theory.

Figure 71: Effect of Hatch in Ballast condition bearing offsets

In figure 68 we can notice the small difference between the ballast condition with and without the effect of hatch covers. Since the ballast and dock1 conditions have relatively small deflections due to the little loading of the vessel, the differences are barely noticeable.

Figure 72: Effect of Hatch Covers in MAX condition

6. Conclusions – Future Work

6.1 Conclusions

In the present work, the shaft alignment of a typical 10,000 containership has been thoroughly investigated. A Graphical User Interface application was developed in this thesis to calculate the sectional properties, such as neutral axis, second moment of area and shear area, for several longitudinal transverse sections of the containership and automate the procedure of shaft alignment calculations. Several parts of the vessel must be taken into account in the calculations to properly assess the vertical bearings' offsets. The finite element method was used to calculate the deflections for each loading condition and DOCK1 was set as reference condition.

First, considering the afloat dock condition of the ship, a reference shaft alignment plan has been assumed, and a static equilibrium of the shaft has been calculated, yielding the reaction forces at the shaft bearings. Next, for thirteen (13) representative loading conditions of the vessel, corresponding to, ballast, design and scantling conditions hull deflections were calculated. The corresponding hull deflections have been computed, the offset of the bearings due to hull deflections have been determined. After the calculation of hull deflection offsets, we added the initial offsets and the oil film thickness and the offsets due to the stiffness of the bearing foundations to get the total offsets and generate the bearings' reaction forces.

The results demonstrate that in most conditions we can achieve a great early estimation of the hull deflections with the 1D beam Timoshenko theory. For most of the loading conditions, where the shear forces were quite similar the 1D model approached the 3D model. The accuracy of the 1D beam Timoshenko theory had a maximum deviation of 1.5mm. To the contrary, the 1D beam Bernoulli method showed a maximum deviation of up to 10mm. Thus, the Bernoulli method is considered insufficient for the specific vessel type.

The automation of the process and the minimum pre-processing by the user, improves significantly the amount of time required for the calculation of the hull deflections. The combination of low time and experience, but also the automation for the calculations of the sectional properties of each ship frame makes this method robust and an excellent tool to quickly assess the hull deflections and bearing offsets.

6.2 Future Work

The finite element method conducted in the present thesis creates a new path to extend our knowledge and comprehension of the various parameters affecting the shaft alignment calculations due to hull deflection. Future work is suggested below.

6.2.1 Neural Network for Image Processing

With digital image recognition and processing on each frame available of the ship, the calculation of the second moment of area would be much faster, more accurate and could produce a larger data of sections. This could lead to far greater results, since in our thesis we used 40 frames and we generated the results with the least possible frames. The development of an algorithm with the use of image processing neural networks would be a breakthrough and lead to better results.

6.2.2 Development of Inertia Calculator GUI application

The development of the GUI application created in this thesis for the calculation of sectional properties of transverse ship frames would be a great future work. By applying the shear stress distribution and torsional moment then we could not only get the deflections for the shaft alignment but also for every point of the vessel throughout its length. This could help not only in terms of deflection but also in strength assessment of the vessel and to define the vibration modes.

6.2.3 Sea swell

A probabilistic search on the waves and the sea, where the vessel travels, could lead to better overall assessment of the bearings' offsets. By conducting the dynamic analysis of the deflection of the vessel through time and different types of waves (wave length λ , significant wave height H, air speed etc.) one can achieve far better offsets that could decrease the power loss of the propulsion system.

6.2.4 1D investigation of different sizes and types of vessels

The investigation of different sizes and types of vessels would lead in a deeper understanding of the 1d method and how to properly use it to achieve more accurate results. The use of this method to different ships would generalize the process and maybe lead to calibration factors that would generate better results

6.2.5 Estimation of hull corrosion

An important future research task would be to calculate the corrosion of the vessel through time. Several parameters affect the corrosion of underwater plating, but also above the waterline, such as the sea where the ship travels (temperature, saltiness, significant waves at the area etc.), the vessel speed (Flow-accelerated corrosion), the type of coating etc. Plating corrosion leads to decrease of the sectional properties of the vessel, which cause change in the hull deflections. An early estimation of the hull deflections over time would help to assess the new reaction forces and the power loss caused by them. This could be a great asset for the ship-owners since they could program more precise the dry-dock of the vessel.

7. Literature – References

- [1] Paik, J. K. (2003). Ultimate Limit State Design of Steel-Plated Structures. American Bureau of Shipping (2019). Guidance notes on Propulsion Shafting Alignment
- [2] Chul-Oh Seo, Byongug Jeong , Jung-Ryul Kim , (2020). Determining the influence of ship hull deformations caused by draft change on shaft alignment application using FE analysis
- [3] <u>https://britishsteel.co.uk/media/40438/bulb-flats-brochure.pdf [3]</u>
- [4] Requirements concerning strength of ships, INTERNATIONAL ASSOCIATION OF CLASSIFICATION SOCIETIES (IACS)
- [5] Ship structural analysis and design, by Owen F. Hughes and Jeom Kee Paik with Dominique Béghin, John B. Caldwell, Hans G. Payer and Thomas E. Schellin
- [6] American Bureau of Shipping. (2019): Guidance notes on propulsion shafting alignment.
- [7] Elastic Shaft Alignment of a Container Vessel, Stavros Siamantas
- [8] Global hydroelastic analysis of ultra large container ships by improved beam structural model, Ivo Senjanovic, Nikola Vladimir
- [9] Theory of Structures, Second Edition, by S.P. Timoshenko, D.H. Young
- [10] Global Hull-Girder Response (Quasi-Static, Prismatic Beam Models), Petri Varsta, Heikki Remes, and Jani Romanoff
- [11] Analysis of Tapered Timoshenko and Euler–Bernoulli Beams on an Elastic Foundation with Moving Loads, W. Abbas , Omar K. bakr
- [12] The Effects of Shear Deformation in Rectangular and Wide Flange Sections, Hariharan Iyer
- [13] Determining the influence of ship hull deformations caused by draught change on shaft alignment application using FE analysis Chul-Oh Seo, Byongug Jeong, Jung-Ryul Kim, Myeongho Song, Jung-Ho Noh, Jaeung Lee
- [14] An advanced theory of thin-walled girders with application to ship vibrations, I. Senjanovic, S. Tomasevic, N. Vladimir
- [15] Effects of Hull Deformation on the Static Shaft Alignment Characteristics of VLCCs: A Case Study, George Kourbetis et al
- [16] Ελαστική Ευθυγράμμιση Αξονικού Συστήματος Πλοίου, Ορέστης Βλάχος
APPENDIX A

A/A	Name	Position	Length(m)	Diameter(m)
1	Shaft	0	0.57	0.695
2	Shaft	0.57	1.035	0.916
3	Propeller	1.605	0.925	0.965
4	Shaft	2.53	0.615	0.988
5	Bearing	3.145	1.087	0.988
6	ASB	4.232	1.087	0.988
7	Shaft	5.319	0.481	0.988
8	Shaft	5.8	0.1	0.957
9	Shaft	5.9	4.11	0.925
10	Shaft	10.01	0.1	0.958
11	Shaft	10.11	0.377	0.99
12	Bearing	10.487	0.495	0.99
13	FSB	10.982	0.495	0.99
14	Shaft	11.477	0.175	0.99
15	Shaft	11.652	0.558	0.99
16	Shaft	12.21	0.1	0.99
17	Shaft	12.31	1.23	0.898
18	Flange	13.54	0.17	1.66
19	Flange	13.71	0.17	1.66
20	Shaft	13.88	1.83	0.805
21	Shaft	15.71	4.33	0.805
22	Shaft	20.04	0.04	0.818
23	Shaft	20.08	0.391	0.83
24	Bearing	20.471	0.425	0.83
25	ISB3	20.896	0.425	0.83
26	Shaft	21.321	0.391	0.83
27	Shaft	21.712	0.04	0.818
28	Shaft	21.752	0.144	0.805
29	Shaft	21.896	4.444	0.805
30	Flange	26.34	0.17	1.66
31	Flange	26.51	0.17	1.66
32	Shaft	26.68	3.625	0.805
33	Shaft	30.305	0.04	0.818
34	Shaft	30.345	0.391	0.83
35	Bearing	30.736	0.425	0.83
36	ISB2	31.161	0.425	0.83
37	Shaft	31.586	0.391	0.83
38	Shaft	31.977	0.04	0.83
39	Shaft	32.017	0.144	0.805

41Shaft37.311.830.80542Flange39.140.171.6643Flange39.310.171.6644Shaft39.482.1180.80545Shaft41.5980.040.81846Shaft41.6380.3910.8347Bearing42.0290.4250.8348ISB142.4540.4250.8349Shaft42.8790.3910.8350Shaft43.270.040.81851Shaft43.270.040.81852Shaft43.310.1440.80553Shaft43.313.630.80554Flange51.940.171.8355Engine52.110.141.8356Flywheel52.250.12.1957Bearing52.350.5851.1858MB1352.9350.3251.1859Shaft53.260.092.2960Shaft53.530.092.2961Shaft53.530.420.60264Shaft54.3650.3750.60265Shaft54.3650.3750.60266Bearing55.1150.420.60266Bearing55.150.420.60266Bearing55.3550.3750.60267MB1155.5350.3750.60	40	Shaft	32.161	5.149	0.805
42Flange39.14 0.17 1.66 43Flange39.31 0.17 1.66 44Shaft39.48 2.118 0.805 45Shaft 41.598 0.04 0.818 46Shaft 41.638 0.391 0.83 47Bearing 42.029 0.425 0.83 48ISB1 42.454 0.425 0.83 49Shaft 42.879 0.391 0.83 50Shaft 43.27 0.04 0.818 51Shaft 43.31 0.144 0.805 52Shaft 43.454 4.856 0.805 53Shaft 48.31 3.63 0.805 54Flange 51.94 0.17 1.83 55Engine 52.11 0.14 1.83 56Flywheel 52.25 0.1 2.19 57Bearing 52.35 0.325 1.18 58MB13 52.935 0.325 1.18 59Shaft 53.62 0.325 1.18 61Shaft 53.53 0.09 2.29 62Bearing 55.115 0.42 0.602 64Shaft 54.74 0.375 0.602 65Shaft 55.755 0.375 0.602 66Bearing 55.115 0.42 0.602 67MB10 57.125 0.42 0.602 70Bearing 56.705 0.42 0.602 <td>41</td> <td>Shaft</td> <td>37.31</td> <td>1.83</td> <td>0.805</td>	41	Shaft	37.31	1.83	0.805
43 Flange 39.31 0.17 1.66 44 Shaft 39.48 2.118 0.805 45 Shaft 41.598 0.04 0.818 46 Shaft 41.638 0.391 0.83 47 Bearing 42.029 0.425 0.83 48 ISB1 42.454 0.425 0.83 49 Shaft 43.27 0.04 0.818 51 Shaft 43.31 0.144 0.805 52 Shaft 43.454 4.856 0.805 53 Shaft 48.31 3.63 0.805 54 Flarge 51.94 0.17 1.83 55 Engine 52.25 0.1 2.19 57 Bearing 52.35 0.585 1.18 58 MB13 52.935 0.325 1.18 59 Shaft 53.35 0.18 1.93 61 Shaft 54.365 <	42	Flange	39.14	0.17	1.66
44 Shaft 39.48 2.118 0.805 45 Shaft 41.598 0.04 0.818 46 Shaft 41.638 0.391 0.83 47 Bearing 42.029 0.425 0.83 48 ISB1 42.454 0.425 0.83 49 Shaft 42.879 0.391 0.83 50 Shaft 43.27 0.04 0.818 51 Shaft 43.454 4.856 0.805 52 Shaft 43.454 4.856 0.805 53 Shaft 43.31 0.144 0.805 54 Flange 51.94 0.17 1.83 55 Engine 52.11 0.14 1.83 56 Flywheel 52.25 0.1 2.19 57 Bearing 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 54.365	43	Flange	39.31	0.17	1.66
45 Shaft 41.598 0.04 0.818 46 Shaft 41.638 0.391 0.83 47 Bearing 42.029 0.425 0.83 48 ISB1 42.454 0.425 0.83 49 Shaft 42.879 0.391 0.83 50 Shaft 43.27 0.04 0.818 51 Shaft 43.31 0.144 0.805 52 Shaft 43.454 4.856 0.805 53 Shaft 48.31 3.63 0.805 54 Flange 51.94 0.17 1.83 55 Engine 52.11 0.14 1.83 56 Flywheel 52.25 0.1 2.19 57 Bearing 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 53.42 0.42 0.602 64 Shaft 54.365	44	Shaft	39.48	2.118	0.805
46Shaft 41.638 0.391 0.83 47 Bearing 42.029 0.425 0.83 48 ISB1 42.454 0.425 0.83 49 Shaft 42.879 0.391 0.83 50 Shaft 43.27 0.04 0.818 51 Shaft 43.31 0.144 0.805 52 Shaft 43.454 4.856 0.805 53 Shaft 48.31 3.63 0.805 54 Flange 51.94 0.17 1.83 55 Engine 52.11 0.14 1.83 56 Flywheel 52.25 0.1 2.19 57 Bearing 52.35 0.585 1.18 58 MB13 52.935 0.325 1.18 59 Shaft 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 53.35 0.42 0.602 64 Shaft 54.74 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.955 0.375 0.602 68 Shaft 56.735 0.375 0.602 70 Bearing 56.735 0.42 0.602 71 MB10 57.125 0.42 0.602 72 Shaft 57.92 0.375 0.602 73 Sha	45	Shaft	41.598	0.04	0.818
47Bearing 42.029 0.425 0.83 48ISB1 42.454 0.425 0.83 49Shaft 42.879 0.391 0.83 50Shaft 43.27 0.04 0.818 51Shaft 43.27 0.04 0.818 52Shaft 43.454 4.856 0.805 53Shaft $44.3.13$ 3.63 0.805 54Flange 51.94 0.17 1.83 55Engine 52.11 0.14 1.83 56Flywheel 52.25 0.1 2.19 57Bearing 52.35 0.585 1.18 58MB13 52.935 0.325 1.18 59Shaft 53.26 0.09 2.29 60Shaft 53.35 0.18 1.93 61Shaft 53.35 0.18 1.93 61Shaft 53.62 0.325 1.18 63MB12 53.945 0.42 0.602 64Shaft 54.74 0.375 0.602 65Shaft 54.74 0.375 0.602 66Bearing 55.115 0.42 0.602 67MB11 55.535 0.375 0.602 68Shaft 55.955 0.375 0.602 70Bearing 56.705 0.42 0.602 71MB10 57.125 0.42 0.602 72Shaft 57.545 0.375 0.602 <	46	Shaft	41.638	0.391	0.83
48ISB1 42.454 0.425 0.83 49Shaft 42.879 0.391 0.83 50Shaft 43.27 0.04 0.818 51Shaft 43.27 0.04 0.818 51Shaft 43.454 4.856 0.805 52Shaft 43.454 4.856 0.805 53Shaft 48.31 3.63 0.805 54Flange 51.94 0.17 1.83 55Engine 52.11 0.14 1.83 56Flywheel 52.25 0.1 2.19 57Bearing 52.35 0.585 1.18 58MB13 52.935 0.325 1.18 59Shaft 53.26 0.09 2.29 60Shaft 53.35 0.18 1.93 61Shaft 53.35 0.18 1.93 61Shaft 53.62 0.325 1.18 63MB12 53.945 0.42 0.602 64Shaft 54.74 0.375 0.602 65Shaft 55.115 0.42 0.602 66Bearing 55.115 0.42 0.602 67MB11 55.535 0.375 0.602 70Bearing 56.705 0.42 0.602 71MB10 57.125 0.42 0.602 72Shaft 57.92 0.375 0.602 73Shaft 57.95 0.375 0.602 <td>47</td> <td>Bearing</td> <td>42.029</td> <td>0.425</td> <td>0.83</td>	47	Bearing	42.029	0.425	0.83
49Shaft 42.879 0.391 0.83 50Shaft 43.27 0.04 0.818 51Shaft 43.31 0.144 0.805 52Shaft 43.454 4.856 0.805 53Shaft 43.454 4.856 0.805 54Flange 51.94 0.17 1.83 55Engine 52.11 0.14 1.83 56Flywheel 52.25 0.1 2.19 57Bearing 52.35 0.585 1.18 58MB13 52.935 0.325 1.18 59Shaft 53.26 0.09 2.29 60Shaft 53.35 0.18 1.93 61Shaft 53.35 0.18 1.93 61Shaft 53.45 0.42 0.602 62Bearing 53.62 0.325 1.18 63MB12 53.945 0.42 0.602 64Shaft 54.74 0.375 0.602 65Shaft 54.74 0.375 0.602 66Bearing 55.115 0.42 0.602 67MB11 55.535 0.375 0.602 68Shaft 55.955 0.375 0.602 70Bearing 56.705 0.42 0.602 71MB10 57.125 0.42 0.602 72Shaft 57.545 0.375 0.602 73Shaft 57.95 0.375 0.602	48	ISB1	42.454	0.425	0.83
50Shaft 43.27 0.04 0.818 51 Shaft 43.31 0.144 0.805 52 Shaft 43.454 4.856 0.805 53 Shaft 43.454 4.856 0.805 53 Shaft 43.454 4.856 0.805 54 Flange 51.94 0.17 1.83 55 Engine 52.11 0.14 1.83 56 Flywheel 52.25 0.1 2.19 57 Bearing 52.35 0.585 1.18 58 MB13 52.935 0.325 1.18 59 Shaft 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.375 0.602 68 Shaft 55.955 0.375 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 72 Shaft 57.95 0.375 0.602 73	49	Shaft	42.879	0.391	0.83
51Shaft 43.31 0.144 0.805 52 Shaft 43.454 4.856 0.805 53 Shaft 48.31 3.63 0.805 54 Flange 51.94 0.17 1.83 55 Engine 52.11 0.14 1.83 56 Flywheel 52.25 0.1 2.19 57 Bearing 52.35 0.585 1.18 58 MB13 52.935 0.325 1.18 59 Shaft 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.375 0.602 68 Shaft 56.705 0.42 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 72 Shaft 57.95 0.375 0.602 73 Shaft 57.95 0.375 0.602 74 Bearing 58.295 0.42 0.602 76 S	50	Shaft	43.27	0.04	0.818
52 Shaft 43.454 4.856 0.805 53 Shaft 48.31 3.63 0.805 54 Flange 51.94 0.17 1.83 55 Engine 52.11 0.14 1.83 56 Flywheel 52.25 0.1 2.19 57 Bearing 52.35 0.585 1.18 58 MB13 52.935 0.325 1.18 59 Shaft 53.35 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.15 0.42 0.602 67 MB11 55.555 0.375 0.602 68 Shaft 56.33	51	Shaft	43.31	0.144	0.805
53 Shaft 48.31 3.63 0.805 54 Flange 51.94 0.17 1.83 55 Engine 52.11 0.14 1.83 56 Flywheel 52.25 0.1 2.19 57 Bearing 52.35 0.585 1.18 58 MB13 52.935 0.325 1.18 59 Shaft 53.26 0.09 2.29 60 Shaft 53.53 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.375 0.602 68 Shaft 56.705 <	52	Shaft	43.454	4.856	0.805
54 Flange 51.94 0.17 1.83 55 Engine 52.11 0.14 1.83 56 Flywheel 52.25 0.1 2.19 57 Bearing 52.35 0.585 1.18 58 MB13 52.935 0.325 1.18 59 Shaft 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.375 0.602 68 Shaft 56.33 0.375 0.602 69 Shaft 57.92 <	53	Shaft	48.31	3.63	0.805
55 Engine 52.11 0.14 1.83 56 Flywheel 52.25 0.1 2.19 57 Bearing 52.35 0.585 1.18 58 MB13 52.935 0.325 1.18 59 Shaft 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.375 0.602 68 Shaft 56.33 0.375 0.602 70 Bearing 56.705	54	Flange	51.94	0.17	1.83
56 Flywheel 52.25 0.1 2.19 57 Bearing 52.35 0.585 1.18 58 MB13 52.935 0.325 1.18 59 Shaft 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.375 0.602 68 Shaft 56.33 0.375 0.602 69 Shaft 56.705 0.42 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.545	55	Engine	52.11	0.14	1.83
57 Bearing 52.35 0.585 1.18 58 MB13 52.935 0.325 1.18 59 Shaft 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.375 0.602 68 Shaft 56.33 0.375 0.602 69 Shaft 56.33 0.375 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 72 Shaft 57.92	56	Flywheel	52.25	0.1	2.19
58 MB13 52.935 0.325 1.18 59 Shaft 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.42 0.602 68 Shaft 55.955 0.375 0.602 69 Shaft 56.33 0.375 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 71 MB10 57.92 0.375 0.602 74 Bearing 58.295	57	Bearing	52.35	0.585	1.18
59 Shaft 53.26 0.09 2.29 60 Shaft 53.35 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.42 0.602 68 Shaft 55.955 0.375 0.602 69 Shaft 56.33 0.375 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 71 MB10 57.125 0.42 0.602 73 Shaft 57.92 0.375 0.602 74 Bearing 58.295	58	MB13	52.935	0.325	1.18
60 Shaft 53.35 0.18 1.93 61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.42 0.602 68 Shaft 55.955 0.375 0.602 69 Shaft 56.33 0.375 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 71 MB10 57.545 0.375 0.602 73 Shaft 57.92 0.375 0.602 74 Bearing 58.295 0.42 0.602 75 MB9 58.715	59	Shaft	53.26	0.09	2.29
61 Shaft 53.53 0.09 2.29 62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.42 0.602 68 Shaft 55.955 0.375 0.602 69 Shaft 56.33 0.375 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 71 MB10 57.125 0.42 0.602 71 MB10 57.125 0.42 0.602 73 Shaft 57.92 0.375 0.602 74 Bearing 58.295 0.42 0.602 75 MB9 58.715	60	Shaft	53.35	0.18	1.93
62 Bearing 53.62 0.325 1.18 63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.42 0.602 68 Shaft 55.955 0.375 0.602 69 Shaft 56.33 0.375 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 71 MB10 57.125 0.42 0.602 72 Shaft 57.92 0.375 0.602 73 Shaft 57.92 0.375 0.602 74 Bearing 58.295 0.42 0.602 75 MB9 58.715 0.42 0.602 76 Shaft 59.51	61	Shaft	53.53	0.09	2.29
63 MB12 53.945 0.42 0.602 64 Shaft 54.365 0.375 0.602 65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.42 0.602 68 Shaft 55.955 0.375 0.602 69 Shaft 56.33 0.375 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 71 MB10 57.545 0.375 0.602 73 Shaft 57.92 0.375 0.602 74 Bearing 58.295 0.42 0.602 75 MB9 58.715 0.42 0.602 76 Shaft 59.135 0.375 0.602 76 Shaft 59.51 0.375 0.602 77 Shaft 59.51	62	Bearing	53.62	0.325	1.18
64Shaft54.3650.3750.60265Shaft54.740.3750.60266Bearing55.1150.420.60267MB1155.5350.420.60268Shaft55.9550.3750.60269Shaft56.330.3750.60270Bearing56.7050.420.60271MB1057.1250.420.60272Shaft57.5450.3750.60273Shaft57.920.3750.60274Bearing58.2950.420.60275MB958.7150.420.60276Shaft59.1350.3750.60277Shaft59.510.3750.60278Bearing59.8850.420.60279MB860.3050.420.602	63	MB12	53.945	0.42	0.602
65 Shaft 54.74 0.375 0.602 66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.42 0.602 68 Shaft 55.955 0.375 0.602 69 Shaft 56.33 0.375 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 71 MB10 57.545 0.375 0.602 72 Shaft 57.92 0.375 0.602 73 Shaft 57.92 0.375 0.602 74 Bearing 58.295 0.42 0.602 75 MB9 58.715 0.42 0.602 76 Shaft 59.135 0.375 0.602 77 Shaft 59.51 0.375 0.602 78 Bearing 59.885 0.42 0.602 78 Bearing 59.885<	64	Shaft	54.365	0.375	0.602
66 Bearing 55.115 0.42 0.602 67 MB11 55.535 0.42 0.602 68 Shaft 55.955 0.375 0.602 69 Shaft 56.33 0.375 0.602 70 Bearing 56.705 0.42 0.602 70 Bearing 56.705 0.42 0.602 71 MB10 57.125 0.42 0.602 71 MB10 57.545 0.375 0.602 72 Shaft 57.92 0.375 0.602 73 Shaft 57.92 0.375 0.602 74 Bearing 58.295 0.42 0.602 75 MB9 58.715 0.42 0.602 76 Shaft 59.135 0.375 0.602 77 Shaft 59.51 0.375 0.602 78 Bearing 59.885 0.42 0.602 79 MB8 60.305 <td>65</td> <td>Shaft</td> <td>54.74</td> <td>0.375</td> <td>0.602</td>	65	Shaft	54.74	0.375	0.602
67MB1155.5350.420.60268Shaft55.9550.3750.60269Shaft56.330.3750.60270Bearing56.7050.420.60271MB1057.1250.420.60272Shaft57.5450.3750.60273Shaft57.920.3750.60274Bearing58.2950.420.60275MB958.7150.420.60276Shaft59.1350.3750.60277Shaft59.510.3750.60278Bearing59.8850.420.60279MB860.3050.420.602	66	Bearing	55.115	0.42	0.602
68Shaft55.9550.3750.60269Shaft56.330.3750.60270Bearing56.7050.420.60271MB1057.1250.420.60272Shaft57.5450.3750.60273Shaft57.920.3750.60274Bearing58.2950.420.60275MB958.7150.420.60276Shaft59.1350.3750.60277Shaft59.510.3750.60278Bearing59.8850.420.60279MB860.3050.420.602	67	MB11	55.535	0.42	0.602
69Shaft56.330.3750.60270Bearing56.7050.420.60271MB1057.1250.420.60272Shaft57.5450.3750.60273Shaft57.920.3750.60274Bearing58.2950.420.60275MB958.7150.420.60276Shaft59.1350.3750.60277Shaft59.510.3750.60278Bearing59.8850.420.60279MB860.3050.420.602	68	Shaft	55.955	0.375	0.602
70Bearing56.7050.420.60271MB1057.1250.420.60272Shaft57.5450.3750.60273Shaft57.920.3750.60274Bearing58.2950.420.60275MB958.7150.420.60276Shaft59.1350.3750.60277Shaft59.510.3750.60278Bearing59.8850.420.60279MB860.3050.420.602	69	Shaft	56.33	0.375	0.602
71MB1057.1250.420.60272Shaft57.5450.3750.60273Shaft57.920.3750.60274Bearing58.2950.420.60275MB958.7150.420.60276Shaft59.1350.3750.60277Shaft59.510.3750.60278Bearing59.8850.420.60279MB860.3050.420.602	70	Bearing	56.705	0.42	0.602
72Shaft57.5450.3750.60273Shaft57.920.3750.60274Bearing58.2950.420.60275MB958.7150.420.60276Shaft59.1350.3750.60277Shaft59.510.3750.60278Bearing59.8850.420.60279MB860.3050.420.602	71	MB10	57.125	0.42	0.602
73Shaft57.920.3750.60274Bearing58.2950.420.60275MB958.7150.420.60276Shaft59.1350.3750.60277Shaft59.510.3750.60278Bearing59.8850.420.60279MB860.3050.420.602	72	Shaft	57.545	0.375	0.602
74 Bearing 58.295 0.42 0.602 75 MB9 58.715 0.42 0.602 76 Shaft 59.135 0.375 0.602 77 Shaft 59.51 0.375 0.602 78 Bearing 59.885 0.42 0.602 79 MB8 60.305 0.42 0.602	73	Shaft	57.92	0.375	0.602
75 MB9 58.715 0.42 0.602 76 Shaft 59.135 0.375 0.602 77 Shaft 59.51 0.375 0.602 78 Bearing 59.885 0.42 0.602 79 MB8 60.305 0.42 0.602	74	Bearing	58.295	0.42	0.602
76Shaft59.1350.3750.60277Shaft59.510.3750.60278Bearing59.8850.420.60279MB860.3050.420.602	75	MB9	58.715	0.42	0.602
77 Shaft 59.51 0.375 0.602 78 Bearing 59.885 0.42 0.602 79 MB8 60.305 0.42 0.602	76	Shaft	59.135	0.375	0.602
78 Bearing 59.885 0.42 0.602 79 MB8 60.305 0.42 0.602	77	Shaft	59.51	0.375	0.602
79 MB8 60.305 0.42 0.602	78	Bearing	59.885	0.42	0.602
	79	MB8	60.305	0.42	0.602

APPENDIX B

This appendix was made to help understand the calculations of shear area. The calculations were made for the simple section shown on figure below.

Figure 73: Shear Area Calculation

$$z_{NA} = \frac{3tl^2 + 9tl^2}{9tl} = \frac{4}{3}l$$

$$I_y = 2 * \left([9tl^2 + 6tl * 2.25l^2] - 9tl\left(\frac{4}{3}l\right)^2 \right) = 13tl^3$$

$$A_{sz} = \frac{I_y^2}{\int_{z_0}^{z_u} \frac{Q^2(z)}{t(z)} dz} = \frac{I_y^2}{\sum \int_{z_0}^{z_u} \frac{t_i}{2} [(D - z_{NA})^2 - z^2]^2 dz}$$

Where z_u and z_o are the start and end of each plating element, D: Depth of vessel, z_{NA} : Neutral axis vertical position. The calculations must start from negative to positive. When starting from positive put an absolute in the value calculated per element. We divide the plating elements in parts of the same thickness. The horizontal plates can be neglected from the calculations of shear area, as they don't contribute much compared with a vertical plate.

$$\sum \int_{z_i}^{z_{i+1}} \frac{t_i}{2} [(D - z_{NA})^2 - z^2]^2 dz = \sum \frac{t_i}{2} \left[(D - z_{NA})^4 z - \frac{2z^3}{3} (D - z_{NA})^2 - \frac{z^5}{5} \right]_{z_i}^{z_{i+1}} A_{SZ} = \frac{(13tl^3)^2}{2 * \int_{3l-z_{NA}}^{-z_{NA}} \frac{t_i}{2} [(D - z_{NA})^2 - z^2]^2 dz} A_{SZ} = \frac{(13tl^3)^2}{\frac{2t}{2} \left[\left(\frac{5}{3} l \right)^4 * (-3l) - \frac{2}{3} (-z_{NA})^3 * \left(\frac{5}{3} l \right)^2 + \frac{2}{3} (3l - z_{NA})^3 * \left(\frac{5}{3} l \right)^2 + \left(\frac{-z_{NA}}{5} \right)^5 - \left(\frac{3l - z_{NA}}{5} \right)^5 \right]} A_{SZ} = \frac{169tl}{44.38}, \text{ assuming } t = 0.1 \text{m and } l = 7 \text{m then } A_{SZ} = \frac{169tl}{44.76} = 2.643m^2 = k * A \to k = 0.2433$$

This means that 24.33% of the total sectional area contributes to the shear stiffness. In an actual vessel, many of the plates are not horizontal or vertical so the angle of the plate must be taken into consideration.

In order to assess the denominator for elements with an angle, a simple approach is to transform the thickness in consider with the angle.

$$t_{transf} = \frac{t}{\sin\theta}$$

For very small angles (close to horizontal) the denominator of the element can be considered zero.

APPENDIX C

LOAD: DOCKI : NORMAL DOCKING

TMM	TMMX	REL	TORS	SHMN	SHMX	HREL	RELS	EMMN	BMMX	REL	BEND	MAJ	XE
t	tm	8	tm	τ	t	8	t	tm	tm	8	tm	+	m
-2243	22432	4.2	942	-801	4065	43.0	1749	-19086	45028	33.3	14993	13	10.40
-2243	22432	4.2	935	-1652	5861	42.1	2465	-39357	89337	32.1	28666	21	16.91
-2243	22432	4.1	921	-2448	7229	40.9	2957	-58310	138272	32.7	45218	29	23.00
-2243	22432	4.0	891	-4350	9569	40.3	3853	-103841	280510	34.0	95261	47	37.55
-2243	22432	3.9	866	-6063	11231	38.2	4291	-150045	440575	35.2	155175	65	52.10
-2243	22432	4.0	891	-6494	11464	39.8	4565	-168356	504815	35.7	180463	72	57.85
-2243	22432	3.3	729	-6848	11623	50.2	5838	-196327	599292	37.8	226495	83	56.65
-2243	22432	42.0	9426	-6962	11191	73.8	8260	-234032	713937	43.2	308116	96	78.50
-2243	22432	50.5	11318	-6962	11075	83.6	9264	-262669	791423	48.9	387365	106	37.50
-2243	22432	50,4	11316	-6887	10606	72.7	7708	-308632	878094	58.4	512522	124	102.0
-2243	22432	50.3	11286	-6550	8298	66.5	5522	-353413	915087	66.6	609234	142	116.6
-2243	22432	50.2	11254	-6223	6223	49.0	3050	-396375	950587	70.7	671863	160	31.1
-2243	22432	50.0	11218	-8086	6223	7.1	441	-396375	950587	73.4	697370	178	145.7
-2243	22432	49.8	11179	-8354	6223	26.1	-2177	-396375	945001	72.5	684698	196	160.2
-2243	22432	49.6	11136	-8397	6223	50.4	-4234	-396333	914398	69.8	637840	214	174.8
-2243	22432	49.5	11113	-8498	6237	60.9	-5174	-395751	871062	65.4	569371	232	189.3
-2243	22432	49.5	11110	-9102	6548	65.0	-5918	-394958	808296	60.5	488677	250	203.9
-2243	22432	49.5	11109	-10005	7012-	63.3	-6329	-362651	700417	56.9	398845	268	218.4
-2243	22432	49.5	11107	-10429	7230-	60.8	-6342	-310689	560467	54.7	306612	286	233.0
-2243	22432	49.5	11107	-9766	7230	62.4	-6098	-258730	419892	51.5	216057	304	247.6
-2243	22432	49.5	11106	-8664	7230	64.6	-5597	-206773	292602	44.7	130925	322	262.1
-2243	22432	20.2	4534	-6532	6618	55.1	-3601	-154818	193763	33.0	63854	340	276.7
-2243	22432	0.3	-57	-3999	4327	39.1	-1564	-99620	115648	23.5	27166	358	291.2
-2243	22432	0.2	-35	-1749	1901	44.9	-785	-45553	45089	15.5	6994	378	307.5

LOAD: DOCK2 : DOCKING WITH 12000t CARGO

TMMN	TMMX	REL	TORS	SHMN	SHMX	HREL	RELS	BMMN	BMMX	REL	BEND	RAM	XI
ta	tm	8	tm	t	t	8	t	tm	tm	8	tm	#	m
-22432	22432	3.8	855	-528	4019	43.5	1746	-238	30997	49.3	15270	13	10.40
-22432	22432	3.6	812	-1088	5633	43.4	2444	-490	60230	48.2	29022	21	16.91
-22432	22432	3.4	765	-1613	6813	42.1	2870	-725	95457	47.6	45397	29	23.00
-22432	22432	2.9	656	-2866	8656	37.9	3277	-1502	206184	44.5	91663	47	37.55
-22432	22432	2.5	550	-3919	9786	32.4	3173	-3009	335725	41.8	140401	65	52.10
-22432	22432	2.4	543	-4077	9786	30.5	2985	-3639	387938	40.7	158071	72	57.85
-22432	22432	1.5	334	-4077	9646	36.0	3468	-4605	463885	40.3	186948	83	66.65
-22432	22432	6.9	1553	-4077	9092	47.2	4291	-5906	552831	41.9	231534	96	78.50
-22432	22432	6.6	1491	-4077	8970	51.0	4575	-6894	610295	44.4	270758	106	37.50
-22432	22432	6.3	1410	-4077	8499	34.6	2944	-8142	662589	49.4	327422	124	102.0
-22432	22432	5.8	1300	-4077	6167	10.2	629	-8155	662589	53.5	354752	142	116.6
-22432	22432	5.3	1188	-4077	4077	43.2	-1760	-8155	662589	52.3	346676	160	131.1
-22432	22432	4.8	1072	-6038	4077	66.4	-4006	-8155	662589	46.0	304872	178	145.7
-22432	22432	4.2	953	-6320	4077	96.7	-6109	-8155	656706	35.2	231423	196	160.2
-22432	22432	3.7	831	-6365	4077	27.0	1102	-8111	62448.6	31.3	195264	214	174.8
-22432	22432	3.2	728	-6465	4077	7.3	-472	-7499	578875	34.5	199800	232	189.3
-22432	22432	2.9	646	-6962	4077	22.6	-1571	-6664	512809	36.0	184586	250	203.9
-22432	22432	2.5	564	-7705	4077	24.6	-1899	-5809	426647	37.2	158552	268	218.4
-22432	22432	2.2	483	-8053	4077	19.0	-1527	-4975	323839	41.1	133235	286	233.0
-22432	22432	1.8	403	-7355	4077	28.4	-2088	-4144	220372	48.5	106867	304	247.6
-22432	22432	1.4	323	-6195	4077	34.9	-2159	-3315	130890	58.0	75944	322	262.1
-22432	22432	1.1	243	-4199	3732	45.2	-1897	-2488	71356	64.7	46135	340	276.7
-22432	22432	0.7	164	-2493	2480	53.2	-1327	-1950	36697	62.1	22796	358	291.2
22402	22432	0.4	9.6	1072	1072	63.0	G04	1062	9370	59.6	5590	370	307.5

LOAD: BLD-S11.1 : BALLAST DEP. (URS11.1)

TMM	TMMX	REL	TORS	SHMN	SHMX	HREL	RELS	BMMN	BMMX	REL	BEND	RAM	XE
ti	tm	8	tm	t	t	-8	t	tm	tm	8	tm	ŧ	п.
-2243	22432	3.8	855	-528	4019	43.4	1746	-238	30997	49.7	15397	13	10.40
-2243	22432	3.6	812	-1088	5633	43.4	2443	-490	60230	48.5	29199	21	16.91
-2243	22432	3.4	765	-1613	6813	42.1	2865	-725	95457	47.8	45606	29	23.00
-2243	22432	2.9	656	-2866	8656	37.4	3235	-1502	206184	44.5	91715	47	37.55
-2243	22432	2.5	550	-3919	9786	31.5	3081	-3008	335725	41.6	139572	65	52.10
-2243	22432	2.4	543	-4077	9786	29.5	2884	-3639	387938	40.4	156731	72	57.85
-2243	22432	1.5	334	-4077	9646	34.9	3366	-4605	463885	39.8	184774	83	66.65
-2243	22432	6.9	1554	-4077	9092	46.4	4220	-5906	552831	41.3	228402	96	78.50
-2243	22432	6.6	1491	-4077	8970	50.7	4552	-6894	610295	43.8	267266	106	37.50
-2243	22432	6.3	1410	-4077	8499	35.8	3045	-8142	662589	49.0	324550	124	102.0
-2243	22432	5.8	1300	-4077	6167	14.8	911	-8155	662589	53.5	354718	142	116.6
-2243	22432	5.3	1188	-4077	4077	30.4	-1241	-8155	662589	53.2	352517	160	131.1
-2243	22432	4.8	1072	-6038	4077	52.9	-3196	-8155	662589	48.4	320438	178	145.7
-2243	22432	4.2	953	-6320	4077	78.3	-4950	-8155	656706	39.8	261377	196	160.2
-2243	22432	3.7	831	-6365	4077	65.4	2665	-8111	624486	39.3	245133	214	174.8
-2243.	22432	3.2	728	-6465	4077	11.0	447	-7499	578875	46.3	268029	232	189.3
-2243	22432	2.9	646	-6962	4077	19.7	-1369	-6664	512809	51.0	261437	250	203.9
-2243	22432	2.5	5.64	-7705	4077	33.7	-2600	-5809	426647	54.4	231939	268	218.4
-2243	22432	2.2	483	-8053	4077	39.6	-3188	-4975	323839	58.6	189916	286	233.0
-2243	22432	1.8	403	-7355	4077	45.0	-3306	-4144	220372	64.8	142798	304	247.6
-2243	22432	1.4	323	-6195	4077	48.5	-3002	-3315	130890	74.2	97097	322	262.1
-2243	22432	1.1	243	-4199	3732	58.1	-2441	-2488	71356	80.5	57421	340	276.7
-2243	22432	0.7	164	-2493	2480	66.4	-1655	-1950	36697	76.2	27955	358	291.2
-2243	22432	0.4	96	-1072	1072	79.1	-848	-1862	9378	74.2	6955	378	307.5

XI	FRAM	BEND	REL	BMMX	BMMN	REL	SHREL	SHMX	SHMN	TORS	REL	TMMX	TMM
m	#	tm	8	tm	tm	t	8	t	t	tm	8	tm	tn
10.40	13	15060	48.6	30997	-238	1747	43.5	4019	-528	855	3.8	22432	-22432
16.91	21	28729	47.7	60230	-490	2447	43.4	5633	-1088	812	3.6	22432	-22432
23.00	29	45069	47.2	95457	-725	2885	42.4	6813	-1613	765	3.4	22432	-22432
37.55	47	91987	44.6	206184	-1502	3409	39.4	8656	-2866	656	2.9	22432	-22432
52.10	65	144480	43.0	335725	-3008	3596	36.7	9786	-3919	550	2.5	22432	-22432
57.85	72	164850	42.5	387938	-3639	3528	36.0	9786	-4077	543	2.4	22432	-22433
66.65	83	199128	42.9	463885	-4605	4178	43.3	9646	-4077	334	1.5	22432	-22433
78.50	96	253137	45.8	552831	-5906	5191	57.1	9092	-4077	1553	6.9	22432	-2243
87,50	106	300856	49.3	610295	-6894	5585	62.3	8970	-4077	1491	6.6	22432	-22433
102.0	124	372945	56.3	662589	-8142	4067	47.9	8499	-4077	1410	6.3	22432	-22433
116.6	142	416720	62.9	662589	-8155	1780	28.9	6167	-4077	1300	5.8	22432	-2243:
131.1	160	424859	64.1	662589	-8155	-668	16.4	4077	-4077	1188	5.3	22432	-22433
145.7	178	397785	60.0	662589	-8155	-3060	50.7	4077	-6038	1072	4.8	22432	-22433
160.2	196	336325	51.2	656706	-8155	-5394	85.3	4077	-6320	953	4.2	22432	-22433
174.8	214	308077	49.3	624486	-8111	1500	36.8	4077	-6365	831	3.7	22432	-22433
189.3	232	315373	54.5	578875	-7499	-477	7.4	4077	-6465	728	3.2	22432	-22433
203.9	250	296504	57.8	512809	-6664	-2051	29.5	4077	-6962	646	2.9	22432	-22432
218.4	268	259494	60.8	426647	-5809	-2905	37.7	4077	-7705	564	2.5	22432	-22432
233.0	286	215448	66.5	323839	-4975	-3067	38.1	4077	-8053	483	2.2	22432	-22432
247.6	304	162735	73.8	220372	-4144	-4135	56.2	4077	-7355	403	1.8	22432	-22433
262.1	322	98496	75.3	130890	-3315	-4653	75.1	4077	-6195	323	1.4	22432	-22433
276.7	340	43041	60.3	71356	-2488	-2916	69.4	3732	-4199	243	1.1	22432	-2243
291.2	358	16258	44.3	36697	-1950	-920	36.9	2480	-2493	164	0.7	22432	-22432
307.5	378	3767	40.2	9378	-1862	-473	44.1	1072	-1072	96	0.4	22432	-22432

XH	FRAM	BEND	REL	BMMX	BMMN	REL	SHREL	SHMX	SHMN	TORS	REL	TMMX	TMMN
m	#	tm	£	tm	tm	t	8	t	t	t.m.	8	tm	tm
10.40	13	15068	48.6	30997	-238	1747	43.5	4019	-528	610	2.7	22432	-22432
16.91	21	28743	47.7	60230	-490	2449	43.5	5633	-1088	466	2.1	22432	-22432
23.00	29	45112	47.3	95457	-725	2894	42.5	6813	-1613	326	1.5	22432	-22432
37.55	47	92493	44.9	206184	-1502	3479	40.2	8656	-2866	-8	0.0	22432	-22432
52.10	65	147372	43.9	335725	-3008	3878	39.6	9786	-3919	-337	1.5	22432	-22432
57.85	72	169687	43.7	387938	-3639	3922	40.1	9786	-4077	-433	1.9	22432	-22432
66.65	83	208239	44.9	463885	-4605	4758	49.3	9646	-4077	-778	3.5	22432	-22432
78.50	96	269401	48.7	552831	-5906	5836	64.2	9092	-4077	4472	19.9	22432	-22432
87.50	106	322479	52.8	610295	-6894	6002	66.9	8970	-4077	5250	23.4	22432	-22432
102.0	124	403151	60.8	662589	-8142	4831	56.8	8499	-4077	4944	22.0	22432	-22432
116.6	142	460611	69.5	662589	-8155	2897	47.0	6167	-4077	4611	20.6	22432	-22432
131.1	160	487599	73.6	662589	-8155	806	19.8	4077	-4077	4274	19.1	22432	-22432
145.7	178	484580	73.1	662589	-8155	-1227	20.3	4077	-6038	3934	17.5	22432	-22432
160.2	196	452419	68.9	656706	-8155	-3200	50.6	4077	-6320	3591	16.0	22432	-22432
174.8	214	423884	67.9	624486	-8111	-732	11.5	4077	-6365	3245	14.5	22432	-22432
189.3	232	401369	69.3	578875	-7499	-2343	36.2	4077	-6465	2918	13.0	22432	-22432
203.9	250	357977	69.8	512809	-6664	-3558	51.1	4077	-6962	2611	11.6	22432	-22432
218.4	268	301555	70.7	426647	-5809	-4071	52.8	4077	-7705	2306	10.3	22432	-22432
233.0	286	242809	75.0	323839	-4975	-3929	48.8	4077	-8053	2001	8.9	22432	-22432
247.6	304	179505	81.5	220372	-4144	-4738	64.4	4077	-7355	1696	7.6	22432	-22432
262.1	322	108065	82.6	130890	-3315	-5049	81.5	4077	-6195	1392	6.2	22432	-22432
276.7	340	48036	67.3	71356	-2488	-3157	75.2	3732	-4199	1086	4.8	22432	-22432
291.2	358	18562	50.6	36697	-1950	-1057	42.4	2480	-2493	785	3.5	22432	-22432
307.5	378	4454	47.5	9378	-1862	-541	50.4	1072	-1072	465	2.1	22432	-22432

LOAD: BLA-PANAMA : BALLAST ARR.-PANAMA

TMM	TMMX	REL	TORS	SHMN	SHMX	HREL	RELS	BMMN	BMMX	REL	BEND	RAM	XI
	C.10	· · · · · ·						C.01					
-2243	22432	1.9	415	-528	4019	43.5	1748	-238	30997	48.6	15076	13	10.40
-2243	22432	0.9	192	-1088	5633	43.5	2450	-490	60230	47.7	28755	21	16.91
-2243	22432	0.1	-23	-1613	6813	42.6	2900	-725	95457	47.3	45146	29	23.00
-2243	22432	2.4	-535	-2866	8656	40.8	3532	-1502	206184	45.1	92888	47	37.55
-2243	22432	4.6	-1043	-3919	9786	41.7	4085	-3008	335725	44.5	149499	65	52.10
-2243	22432	5.4	-1208	-4077	9786	43.1	4219	-3639	387938	44.7	173262	72	57.85
-2243	22432	7.4	-1661	-4077	9646	54.0	5206	-4605	463885	46.4	215085	83	66.65
-2243	22432	29.6	6644	-4077	9092	69.8	6345	-5906	552831	51.0	281816	96	78.50
-2243	22432	36.7	8237	-4077	8970	70.4	6313	-6894	610295	55.6	339256	106	87.50
-2243	22432	34.6	7753	-4077	8499	63.9	5430	-8142	662589	64.4	426546	124	102.0
-2243	22432	32.3	7242	-4077	6167	61.4	3789	-8155	662589	74.7	494858	142	116.6
-2243	22432	30.0	6727	-4077	4077	48.9	1993	-8155	662589	81.0	536982	160	131.1
-2243	22432	27.7	6209	-6038	4077	6.3	257	-8155	662589	83.5	553402	178	145.7
-2243	22432	25.4	5688	-6320	4077	22.4	-1418	-8155	656706	83.0	545005	196	160.2
-2243	22432	23.0	5164	-6365	40.77	39.7	-2526	-8111	624486	82.7	516369	214	174.8
-2243	22432	20.8	4658	-6465	4077	59.4	-3838	-7499	578875	81.2	469941	232	189.3
-2243	22432	18.6	4174	-6962	4077	68.4	-4760	-6664	512809	79.4	406950	250	203.9
-2243	22432	16.4	3690	-7705	4077	64.9	-4999	-5809	426647	78.5	335064	268	218.4
-2243	22432	14.3	3207	-8053	4077	57.3	-4613	-4975	323839	81.7	264632	286	233.0
-2243	22432	12.1	2724	-7355	4077	70.9	-5217	-4144	220372	87.5	192915	304	247.6
-2243	22432	10.0	2241	-6195	4077	86.6	-5365	-3315	130890	88.4	115749	322	262.1
-2243	22432	7.8	1759	-4199	3732	79.8	-3351	-2488	71356	73.0	52070	340	276.7
-2243	22432	5.7	1278	-2493	2480	46.8	-1168	-1950	36697	55.7	20426	358	291.2
-2243	22432	3.4	758	-1072	1072	55.6	-596	-1862	9378	53.4	5004	378	307.5

TMMN	TMMX	REL	TORS	SHMN	SHMX	HREL	RELS	BMMN	BMMX	REL	BEND	TRAM	XI
tm	tm	8	tm	t	t	8	t	tm	tm	8	tm	+	m
-22432	22432	4.0	886	-528	4019	43.0	1730	-238	30997	48.5	15023	13	10.40
-22432	22432	3.8	857	-1088	5633	40.9	2306	-490	60230	46.9	28266	21	16.91
-22432	22432	3.7	822	-1613	6813	36.1	2460	-725	95457	45.0	42977	29	23.00
-22432	22432	3.3	742	-2866	8656	53.4	4622	-1502	206184	45.3	93406	47	37.55
-22432	22432	3.0	665	-3919	9786	54.0	5282	-3008	335725	48.9	164204	65	52.10
-22432	22432	3.0	670	-4077	9786	48.7	4762	-3639	387938	49.5	192176	72	57.85
-22432	22432	2.1	478	-4077	9646	54.5	5253	-4605	463885	51.1	236881	83	66.65
-22432	22432	7.7	1720	-4077	9092	46.7	4244	-5906	552831	52.8	291713	96	78.50
-22432	22432	7.5	1677	-4077	8970	34.3	3073	-6894	610295	53.1	323888	106	87.50
-22432	22432	7.2	1625	-4077	8499	26.9	2290	-8142	662589	54.2	359008	124	102.0
-22432	22432	6.9	1544	-4077	6167	16.3	1005	-8155	662589	57.0	377799	142	116.6
-22432	22432	6.5	1461	-4077	4077	10.6	-432	-8155	662589	56.8	376631	160	131.1
-22432	22432	6.1	1374	-6038	4077	32.9	-1984	-8155	662589	53.4	353542	178	145.7
-22432	22432	5.7	1284	-6320	4077	55.7	-3522	-8155	656706	46.9	307820	196	160.2
-22432	22432	5.3	1192	-6365	4077	24.4	993	-8111	624486	45.9	286722	214	174.8
-22432	22432	2.1	465	-6465	4077	3.7	-237	-7499	578875	49.5	286627	232	189.3
-22432	22432	1.7	391	-6962	4077	25.1	-1751	-6664	512809	52.0	266866	250	203.9
-22432	22432	1.5	338	-7705	4077	36.8	-2836	-5809	426647	53.5	228118	268	218.4
-22432	22432	1.3	286	-8053	4077	41.5	-3341	-4975	323839	55.0	178083	286	233.0
-22432	22432	1.0	235	-7355	4077	45.1	-3319	-4144	220372	56.7	124919	304	247.6
-22432	22432	0.8	184	-6195	4077	45.6	-2826	-3315	130890	58.1	76009	322	262.1
-22432	22432	0.6	133	-4199	3732	48.4	-2034	-2488	71356	52.6	37559	340	276.7
-22432	22432	0.4	83	-2493	2480	43.4	-1081	-1950	36697	34.1	12506	358	291.2
-22432	22432	0.2	48	-1072	1072	16.5	-177	-1862	9378	8.3	778	378	307.5

X	FRAM	BEND	REL	BMMX	BMMN	REL	SHREL	SHMX	SHMN	TORS	REL	TMMX	TMMN
m	#	tm	8	tm	tm	t	£	t	t	tm	8	tm	tm
10.40	13	15147	48.9	30997	-238	1745	43.4	4019	-528	447	2.0	22432	-22432
16.91	21	28797	47.8	60230	-490	2413	42.8	5633	-1088	237	1.1	22432	-22432
23.00	29	44567	46.7	95457	-725	2692	39.5	6813	-1613	34	0.2	22432	-22432
37.55	47	101008	49.0	206184	-1502	5216	60.3	8656	-2866	-449	2.0	22432	-22432
52.10	65	183507	54.7	335725	-3008	6290	64.3	9786	-3919	-928	4.1	22432	-22432
57.85	72	217813	56,1	387938	-3639	5944	60.7	9786	-4077	-1082	4.8	22432	-22432
66.65	83	274158	59.1	463885	-4605	6708	69.5	9646	-4077	-1517	6.8	22432	-22432
78.50	96	346265	62.6	552831	-5906	5725	63.0	9092	-4077	6811	30.4	22432	-22432
87.50	106	390803	64.0	610295	-6894	4049	45.1	8970	-4077	8423	37.6	22432	-22432
102.0	124	443864	67.0	662589	-8142	3771	44.4	8499	-4077	7968	35.5	22432	-22432
116.6	142	488104	73.7	662589	-8155	3013	48.9	6167	-4077	7486	33.4	22432	-22432
131.1	160	520186	78.5	662589	-8155	2122	52.1	4077	-4077	7000	31.2	22432	-22432
145.7	178	538447	81.3	662589	-8155	1136	27,9	4077	-6038	6511	29.0	22432	-22432
160.2	196	542471	82.6	656706	-8155	186	4.6	4077	-6320	6019	26.8	22432	-22432
174.8	214	516752	82.7	624486	-8111	-3357	52.7	4077	-6365	5524	24.6	22432	-22432
189.3	232	457997	79.1	578875	-7499	-3959	61.2	4077	-6465	4395	19.6	22432	-22432
203.9	250	388843	75.8	512809	-6664	-4829	69.4	4077	-6962	3919	17.5	22432	-22432
218.4	268	310114	72.7	426647	-5809	-5268	68.4	4077	-7705	3464	15.4	22432	-22432
233.0	286	229333	70.8	323839	-4975	-5155	64.0	4077	-8053	3010	13.4	22432	-22432
247.6	304	154014	69.9	220372	-4144	-4576	62.2	4077	-7355	2556	11.4	22432	-22432
262.1	322	90416	69.1	130890	-3315	-3617	58.4	4077	-6195	2103	9.4	22432	-22432
276.7	340	43307	60.7	71356	-2488	-2464	58.7	3732	-4199	1650	7.4	22432	-22432
291.2	358	14040	38.3	36697	-1950	-1262	50.6	2480	-2493	1197	5.3	22432	-22432
307.5	378	844	9.0	9378	-1862	-211	19,7	1072	-1072	711	3,2	22432	-22432

X	FRAM	BEND	REL	BMMX	BMMN	RELS	SHREL	SHMX	SHMN	TORS	REL	TMMX	TMMN
m	\$	tm	8	tm	tm	t	8	t	t	tm	8	tm	tm
10.40	13	22056	71.2	30997	-238	2448	60.9	4019	-528	965	4.3	22432	-22432
16.91	21	44794	74.4	60230	-490	4402	78.2	5633	-1088	967	4.3	22432	-22432
23.00	29	76333	80.0	95457	-725	5883	86.3	6813	-1613	962	4.3	22432	-22432
37.55	47	176614	85.7	206184	-1502	8140	94.0	8656	-2866	954	4.3	22432	-22432
52.10	65	297518	88.6	335725	-3008	8738	89.3	9786	-3919	949	4.2	22432	-22432
57.85	72	345123	89.0	387938	-3639	8240	84.2	9786	-4077	982	4.4	22432	-22432
66.65	83	420689	90.7	463885	-4605	8869	91.9	9646	-4077	834	3.7	22432	-22432
78.50	96	511468	92.5	552831	-5906	6643	73.1	9092	-4077	2134	9.5	22432	-22432
87.50	106	560976	91.9	610295	-6894	4513	50.3	8970	-4077	2136	9.5	22432	-22432
102.0	124	608199	91.8	662589	-8142	2562	30.1	8499	-4077	3341	14.9	22432	-22432
116.6	142	623980	94.2	662589	-8155	337	5.5	6167	-4077	4325	19.3	22432	-22432
131.1	160	606339	91.5	662589	-8155	-2029	49.8	4077	-4077	4313	19.2	22432	-22432
145.7	178	553223	83.5	662589	-8155	-4516	74.8	4077	-6038	4298	19.2	22432	-22432
160.2	196	474618	72.3	656706	-8155	-5518	87.3	4077	-6320	4280	19.1	22432	-22432
174.8	214	434585	69.6	624486	-8111	492	12.1	4077	-6365	4259	19.0	22432	-22432
189.3	232	424146	73.3	578875	-7499	-1166	18.0	4077	-6465	1998	8.9	22432	-22432
203.9	250	392095	76.5	512809	-6664	-2410	34.6	4077	-6962	-238	1.1	22432	-22432
218.4	268	339115	79.5	426647	-5809	-4076	52.9	4077	-7705	-219	1.0	22432	-22432
233.0	286	267468	82.6	323839	-4975	-4982	61.9	4077	-8053	-199	0.9	22432	-22432
247.6	304	188881	85.7	220372	-4144	-5049	68.6	4077	-7355	-179	0.8	22432	-22432
262.1	322	115413	88.2	130890	-3315	-4438	71.6	4077	-6195	-158	0.7	22432	-22432
276.7	340	55156	77.3	71356	-2488	-3260	77.6	3732	-4199	-137	0.6	22432	-22432
291.2	358	16036	43.7	36697	-1950	-1631	65.4	2480	-2493	-115	0.5	22432	-22432
307.5	378	366	3.9	9378	-1862	-113	10.5	1072	-1072	-70	0.3	22432	-22432

m		C.IR		C.m.	cm	5	- 1	E.	Ľ	C.III		LIE	CIII
10.40	13	21836	70.4	30997	-238	2405	59.8	4019	-528	856	3.8	22432	-22432
16.91	21	44303	73.6	60230	-490	4345	77.1	5633	-1088	813	3.6	22432	-22432
23.00	29	75511	79.1	95457	-725	5815	85.4	6813	-1613	767	3.4	22432	-22432
37.55	47	174785	84.8	206184	-1502	8055	93.1	8656	-2866	659	2.9	22432	-22432
52.10	65	294538	87.7	335725	-3008	8650	88.4	9786	-3919	554	2.5	22432	-22432
57.85	72	341693	88.1	387938	-3639	8155	83.3	9786	-4077	548	2.4	22432	-22432
66.65	83	416620	89.8	463885	-4605	8793	91.2	9646	-4077	339	1.5	22432	-22432
78.50	96	504405	91.2	552831	-5906	6229	68.5	9092	-4077	8972	40.0	22432	-22432
87.50	106	547978	89.8	610295	-6894	3313	36.9	8970	-4077	10815	48.2	22432	-22432
102.0	124	588181	88.8	662589	-8142	2716	32.0	8499	-4077	11922	53.1	22432	-22432
116.6	142	614239	92.7	662589	-8155	1478	24.0	6167	-4077	12805	57.1	22432	-22432
131.1	160	621530	93.8	662589	-8155	247	6.1	4077	-4077	12694	56.6	22432	-22432
145.7	178	610066	92.1	662589	-8155	-1080	17.9	4077	-6038	12579	56.1	22432	-22432
160.2	196	590116	89.9	656706	-8155	-906	14.3	4077	-6320	12461	55.6	22432	-22432
174.8	214	562867	90.1	624486	-8111	-2378	37.4	4077	-6365	12341	55.0	22432	-22432
189.3	232	513544	88.7	578875	-7499	-3655	56.5	4077	-6465	12238	54.6	22432	-22432
203.9	250	448269	87.4	512809	-6664	-4502	64.7	4077	-6962	12157	54.2	22432	-22432
218.4	268	370408	86.8	426647	-5809	-5401	70.1	4077	-7705	5747	25.6	22432	-22432
233.0	286	284754	87.9	323839	-4975	-5576	69.2	4077	-8053	476	2.1	22432	-22432
247.6	304	198834	90.2	220372	-4144	-5481	74.5	4077	-7355	397	1.8	22432	-22432
262.1	322	120301	91.9	130890	-3315	-4722	76.2	4077	-6195	317	1.4	22432	-22432
276.7	340	56963	79.8	71356	-2488	-3421	81.5	3732	-4199	239	1.1	22432	-22432
291.2	358	16335	44.5	36697	-1950	-1700	68.2	2480	-2493	161	0.7	22432	-22432
307.5	378	212	2.3	9378	-1862	-124	11.6	1072	-1072	95	0.4	22432	-22432

XI	FRAM	BEND	REL	BMMX	BMMN	REL	SHREL	SHMX	SHMN	TORS	REL	TMMX	TMMN
m	ŧ	tm	8	tm	tm	t	8	t	t	tm	÷	tm	tm
10.40	13	8886	28.7	30997	-238	821	20.4	4019	-528	911	4.1	22432	-22432
16.91	21	20881	34.7	60230	-490	2785	49.4	5633	-1088	891	4.0	22432	-22432
23.00	29	42604	44.6	95457	-725	4252	62.4	6813	-1613	866	3.9	22432	-22432
37,55	47	116751	56.6	206184	-1502	6196	71.6	8656	-2866	807	3.6	22432	-22432
52.10	65	207645	61.8	335725	-3008	6582	67.3	9786	-3919	753	3.4	22432	-22432
57.85	72	242309	62.5	387938	-3639	5885	60.1	9786	-4077	767	3.4	22432	-22432
66.65	83	296204	63.9	463885	-4605	6250	64.8	9646	-4077	588	2.6	22432	-22432
78.50	96	355714	64.3	552831	-5906	4009	44.1	9092	-4077	1849	8.2	22432	-22432
87.50	106	381516	62.5	610295	-6894	1884	21.0	8970	-4077	1819	8.1	22432	-22432
102.0	124	399611	60.3	662589	-8142	1346	15.8	8499	-4077	1789	8.0	22432	-22432
116.6	142	405310	61.2	662589	-8155	328	5.3	6167	-4077	1731	7.7	22432	-22432
131.1	160	394870	59.6	662589	-8155	-850	20.9	4077	-4077	1669	7.4	22432	-22432
145.7	178	366217	55.3	662589	-8155	-2152	35.6	4077	-6038	1605	7.2	22432	-22432
160.2	196	318526	48.5	656706	-8155	-3447	54.5	4077	-6320	1538	6.9	22432	-22432
174.8	214	298932	47.9	624486	-8111	1304	32.0	4077	-6365	1467	6.5	22432	-22432
189.3	232	302943	52.3	578875	-7499	38	0.9	4077	-6465	1415	6.3	22432	-22432
203.9	250	286688	55.9	512809	-6664	-1493	21.4	4077	-6962	233	1.0	22432	-22432
218.4	268	248170	58.2	426647	-5809	-2938	38.1	4077	-7705	166	0.7	22432	-22432
233.0	286	193597	59.8	323839	-4975	-3726	46.3	4077	-8053	136	0.6	22432	-22432
247.6	304	132788	60.3	220372	-4144	-3836	52.2	4077	-7355	107	0.5	22432	-22432
262.1	322	75845	57.9	130890	-3315	-3255	52.5	4077	-6195	78	0.3	22432	-22432
276.7	340	32466	45.5	71356	-2488	-2120	50.5	3732	-4199	49	0.2	22432	-22432
291.2	358	8618	23.5	36697	-1950	-681	27.3	2480	-2493	22	0.1	22432	-22432
307.5	378	429	4.6	9378	-1862	-112	10.4	1072	-1072	12	0.1	22432	-22432

X	FRAM	BEND	REL	BMMX	BMMN	REL	SHREL	SHMX	SHMN	TORS	REL	TMMX	TMMN
m	+	tm	8	tm	tm	τ	*	t	t	tm	8	tm	tm
10.40	13	10471	33.8	30997	-238	1015	25.3	4019	-528	933	4.2	22432	-22432
16.91	21	24070	40.0	60230	-490	3071	54.5	5633	-1088	922	4.1	22432	-22432
23.00	29	47845	50.1	95457	-725	4627	67.9	6813	-1613	905	4.0	22432	-22432
37.55	47	129212	62.7	206184	-1502	6802	78.6	8656	-2866	867	3.9	22432	-22432
52.10	65	230812	68.8	335725	-3008	7437	76.0	9786	-3919	833	3.7	22432	-22432
57.85	72	270730	69.8	387938	-3639	6843	69.9	9786	-4077	855	3.8	22432	-22432
66.65	83	333818	72.0	463885	-4605	7370	76.4	9646	-4077	689	3.1	22432	-22432
78.50	96	405720	73.4	552831	-5906	5000	55.0	9092	-4077	9379	41.8	22432	-22432
87.50	106	438915	71.9	610295	-6894	2245	25.0	8970	-4077	11266	50.2	22432	-22432
102.0	124	464538	70.1	662589	-8142	2009	23.6	8499	-4077	11256	50.2	22432	-22432
116.6	142	482256	72.8	662589	-8155	1307	21.2	6167	-4077	11219	50.0	22432	-22432
131.1	160	488538	73.7	662589	-8155	459	11.3	4077	-4077	11178	49.8	22432	-22432
145.7	178	481522	72.7	662589	-8155	-498	8.2	4077	-6038	11134	49.6	22432	-22432
160.2	196	472955	72.0	656706	-8155	260	6.4	4077	-6320	6135	27.3	22432	-22432
174.8	214	459274	73.5	624486	-8111	-1629	25.6	4077	-6365	1248	5.6	22432	-22432
189.3	232	423815	73.2	578875	-7499	-2484	38.4	4077	-6465	1216	5.4	22432	-22432
203.9	250	373872	72.9	512809	-6664	-3613	51.9	4077	-6962	55	0.2	22432	-22432
218.4	268	307598	72.1	426647	-5809	-4647	60.3	4077	-7705	8	0.0	22432	-22432
233.0	286	231231	71.4	323839	-4975	-5029	62.4	4077	-8053	-2	0.0	22432	-22432
247.6	304	154363	70.0	220372	-4144	-4760	64.7	4077	-7355	-11	0.0	22432	-22432
262.1	322	86548	66.1	130890	-3315	-3848	62.1	4077	-6195	-19	0.1	22432	-22432
276.7	340	36649	51.4	71356	-2488	-2448	58.3	3732	-4199	-27	0.1	22432	-22432
291.2	358	9609	26.2	36697	-1950	-818	32.8	2480	-2493	-35	0.2	22432	-22432
307.5	378	371	4.0	9378	-1862	-134	12.5	1072	-1072	-22	0.1	22432	-22432

XI	FRAM	BEND	REL	BMMX	BMMN	REL	SHREL	SHMX	SHMN	TORS	REL	TMMX	TMMN
m	+	tm	8	tm	tm	t	ß	t	t	tm	8	tm	tm
10.40	13	9832	31.7	30997	-238	954	23.7	4019	-528	915	4.1	22432	-22432
16.91	21	22020	36.6	60230	-490	2730	48.5	5633	-1088	896	4.0	22432	-22432
23.00	29	42791	44.8	95457	-725	4012	58.9	6813	-1613	873	3.9	22432	-22432
37.55	47	117529	57.0	206184	-1502	6580	76.0	8656	-2866	818	3.6	22432	-22432
52.10	65	217918	64.9	335725	-3008	7549	77.1	9786	-3919	768	3.4	22432	-22432
57.85	72	258711	66.7	387938	-3639	7104	72.6	9786	-4077	783	3.5	22432	-22432
66.65	83	324947	70.0	463885	-4605	7885	81.7	9646	-4077	606	2.7	22432	-22432
78.50	96	404248	73.1	552831	-5906	5715	62.9	9092	-4077	1870	8.3	22432	-22432
87.50	106	445494	73.0	610295	-6894	3625	40.4	8970	-4077	1843	8.2	22432	-22432
102.0	124	484032	73.1	662589	-8142	2455	28.9	8499	-4077	1816	8.1	22432	-22432
116.6	142	503369	76.0	662589	-8155	1039	16.8	6167	-4077	1762	7.9	22432	-22432
131.1	160	500530	75.5	662589	-8155	-570	14.0	4077	-4077	1704	7.6	22432	-22432
145.7	178	473101	71.4	662589	-8155	-2318	38.4	4077	-6038	1643	7.3	22432	-22432
160.2	196	420028	64.0	656706	-8155	-4074	64.5	4077	-6320	1579	7.0	22432	-22432
174.8	214	390720	62.6	624486	-8111	599	14.7	4077	-6365	1512	6.7	22432	-22432
189.3	232	382194	66.0	578875	-7499	-854	13.2	4077	-6465	1464	6.5	22432	-22432
203.9	250	353710	69.0	512809	-6664	-2280	32.8	4077	-6962	1437	6.4	22432	-22432
218.4	268	305605	71.6	426647	-5809	-3433	44.6	4077	-7705	1856	8.3	22432	-22432
233.0	286	245086	75.7	323839	-4975	-4160	51.7	4077	-8053	2191	9.8	22432	-22432
247.6	304	176395	80.0	220372	-4144	-4491	61.1	4077	-7355	2165	9.7	22432	-22432
262.1	322	108859	83.2	130890	-3315	-4052	65.4	4077	-6195	2140	9.5	22432	-22432
276.7	340	53317	74.7	71356	-2488	-2997	71.4	3732	-4199	1713	7.6	22432	-22432
291.2	358	16223	44.2	36697	-1950	-1605	64.4	2480	-2493	857	3.8	22432	-22432
307.5	378	583	6.2	9378	-1862	-103	9.6	1072	-1072	6	0.0	22432	-22432