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Functional Imaging of the Brain

Direct Imaging of the 
Neuronal Signals

Indirect Imaging of 
the hemodynamic 

response

Neurovascular Coupling 2



Brain Imaging Techniques
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Functional Magnetic Resonance Imaging

Based on the measurement of the BOLD signal

• Non-invasive
• Widely used in research and clinical applications

BUT:
• Very high values of magnetic field required for high spatial resolution
• Decrease in temporal resolution and SNR values in return
• Cannot be used during surgery due to the large size of MRI machines
• High cost
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Functional Ultrasound

Introductory work: "Functional ultrasound imaging of the brain"

(Macé et al. 2011)

• High spatio-temporal resolution

• Portability

• Low cost

• Novel approach to the functional

imaging of the brain
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FMRI analysis methods:
(Where does the ICA lie?)
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Purpose statement of the Thesis:

"Explorative study of the Independent Component 
Analysis method, with regards to the analysis of 

functional ultrasound data from the brain."
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Functional Ultrasound Imaging

Cerebral Blood Volume
(measured signal)

Power Doppler Image
+

Ultrafast imaging 
(μDoppler)

8



fUS: Conventional vs μDoppler imaging
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fUS: Power Doppler Image

Each pixel (x, z) of the PDI 
has an intensity value I:

N, number of time samples

s, compound b-mode image amplitude

, frame rate
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Independent Component Analysis

• Statistical, model-free, computational technique
• Main goal: To reveal hidden signal sources inside the data

ICA ambiguities: Signal sources ordering, Model order, Results ranking
Solution: Icasso clustering software
Stability measurement using Iq index

X
(input dataset)

ICA

A 
(mixing matrix)

S
(signal sources)

Additional limitations needed 
for convergence!
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ICA assumptions

• Statistical independence of signal sources (A and/or S matrix)

• Non gaussian signal sources
• Algorithmic approach: Informax principle of least mutual information, 

contrast function maximization

In our work we used the tanh contrast function due to its low rise-time 
which results in more robust estimators.
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ICA ambiguities

• Signal sources ordering

• Model order (user defined)

• Results ranking: cannot compare between different runs of the ICA 
algorithm

Solution: Icasso clustering software
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Experimental setup

• task-based fUS

• Ultrafast imaging device: VANTAGE 64-LE

• -5 to +5 degrees, 14 pulses per cycle, 8kHz pulse frequency

• 120 images per PDI => 4.76Hz time resolution
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Visual stimulation 
paradigm

• 5, 2D datasets from the same mouse

• 1143 PDI images in 240 sec

• Optical stimulation, on/off optical 
sequence
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PDI dataset preprocessing

• Removal of PDI dataset spatial border

• Gaussian smoothing (3D gaussian kernel)

• Removal of time limit values from the 3D dataset (proportional to the 
gaussian kernel size)

• Data normalization

----------------------------------------------------------------------------------------------

• PCA (research parameter)
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FastICA algorithm

• Calculates independent signal sources, from multidimensional inputs.

• Goal: Maximization of the contrast function, which measures non-
gaussianity.

Characteristics:

• Cubic (or quadratic) speed of convergence

• Easy to use

• Capability of calculating the independent sources in a specific order

• Optimizable and Scalable
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FastICA parameters

• Approach: Symmetric or Deflatory

• Number of independent components to be defined (numOfIC): user 
defined

• Non-linear contrast function: tanh

• PCA dimension (lastEig): user defined
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Icasso parameters

• Resampling strategy: Average Linkage Criterion

• Number of resampling cycles: user defined

• Maximum allowed number of iterations: user defined

Output: 

• Independent components matrix

• mixing matrix A

• demixing matrix W

• Iq component stability index
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Reference datasets

For each of the five fUS datasets we generated:

• A reference set of 20 independent components
oPCA dimension 20

o100 Icasso resampling cycles

• A reference set of 100 independent components
oPCA dimension 100

o100 Icasso resampling cycles
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Reference dataset example
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ICA research directions

• Effect of the input PCA dimension to the ICA output, with fixed # of ICs
• Icasso parameters: 20 Independent Components, PCA 20-200 (step 20), 100 resampling 

cycles, upper limit of iterations 300

• Noise tolerance: input with increasing added noise level
• Icasso parameters: 20 Independent Components, PCA 20, snr 5-30 (step 5), 100 resampling 

cycles, upper limit of iterations 1000

• Dynamic analysis
• Icasso parameters: 20 Independent Components, PCA 20, window length 200 samples 

(approx. 42sec), 30 resampling cycles
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Analysis tools

• The analysis of the 5 fUS dataset was performed in the Matlab 
coding environment (R2016b).

• The open-source software package Icasso 1.21 was used, for 
investigating the reliability of ICA estimates by clustering and 
visualization.

• The FastICA algorithm was used for the implementation of the ICA.

• The analysis was performed using an Intel Core i5-4210U CPU, 
1.70GHz to 2.40GHz processor frequency, 4GB RAM laptop.
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Analysis performance

• Varying PCA dimension: approx. 2,5h/dataset for 300 iterations max 
per Icasso resampling cycle (100 resampling cycles)

• Noise tolerance: approx. 3,5h/dataset for 1000 iterations 
max per Icasso resampling cycle (100 resampling cycles)

• Dynamic analysis: approx. 2,5h/dataset for 19 time steps (30 
resampling cycles)

• Total input size: 717MB

• Data size for each analysis direction: 12GB(PCA), 6,55GB(snr)
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Constant # of ICs, Varying PCA dimension
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Constant # of ICs, Varying PCA dimension
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Constant # of ICs, Varying PCA dimension

Retrosplenial Cortex (RSP v, d)
27



Constant # of ICs, Varying PCA dimension

Main Blood Supply (MBS)
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Constant # of ICs, Varying PCA dimension

primary Somatosensory area (SSp)
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Constant # of ICs, Varying PCA dimension

LGN (Lateral Geniculate Nucleus)
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Constant # of ICs, Varying PCA dimension

Hippocampus (Hip)
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Noise tolerance
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Noise tolerance
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Noise tolerance

Retrosplenial Cortex (RSP v, d)
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Noise tolerance

Main Blood Supply (MBS)
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Noise tolerance

primary Somatosensory area (SSp)
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Noise tolerance

Lateral Geniculate Nucleus (LGN)
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Noise tolerance

Hippocampus (Hip)
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Dynamic analysis
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Dynamic analysis

# of non-active components: 30-40 out of 100 40



Dynamic analysis

Most activated signal sources during the dynamic analysis experiment. 

The numbering of the ICs follows the reference set of 100 ICs for the dataset 
14_30_03.
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Dynamic analysis
Hippocampus (Hip) Retrosplenial Cortex (RSP v, d) primary Somatosensory area (SSp)

Main Blood Supply (MBS) 42



Observations and Conclusions

• Reduction of the PCA dimension of the input simplifies the ICA analysis (time and 
resource-wise) BUT it can result in the loss of briefly activated signal sources.

• A decrease of the snr of the input results in a decrease of the stability of the Icasso
results, as expected.

• Snr=5 appears to be a limit value for the convergence of the Icasso results.

• Each of the estimated signal sources, appears to have an individual "stability profile".

• The dynamic analysis appears to have great potential in discovering hidden relations and 
activation patterns in the dataset.

• The ICA can be used for profiling each of the spatial components in depth, using specific 
knowledge of the experimental fUS setup.
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Future directions
General directions:

• Expansion of the fUS dataset.

• Expansion of the processing resources.

• Dataset and analysis focus on specific analysis tasks (eg. tracking of specific brain 
anomalies).

Targeted approach:

• Increase of the ICA iterations using Icasso and explore its potential.

• Further analysis of all the ICs.

• Explore different kinds of added noise in the data.

• Further explore the dynamic analysis parameters (window size, step, # of iterations).

• Explore the activation sequences using a neuronal computational approach.

• Distinguish ICs based on the physiological system they belong to, and 
develop different analysis paths.
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