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Abstract

The study of functional con�guration of the brain and the nervous system of living or-
ganisms, has been the principal target as well as the biggest challenge of Neuroscience
and its corresponding scienti�c �elds. The structural complexity of the nervous system
and also the scale of its fundamental phenomena and interactions comprise some of the
biggest challenges related to this research area. In recent years there has been a surge
in hardware set-up and computational methods development in the �elds of Medical
Imaging and Computational Science, paving the way for rapid advancement in ap-
proaching these challenges. The increasing need for greater spatio-temporal resolution
and portability potential is the main reason that the functional ultrasound modality
was introduced as a novel approach in mapping the functional responce of the brain
through the dynamic quanti�cation of the cerebral blood volume. In the present study
we explore the potential of the ICA method with regard to the analysis and informa-
tion extraction from functional ultrasound data, regarding the cerebral functionality of
rats, in a visual stimulation experimental set-up. The exploration of the ICA modality
in combination with the analysis of the resulting fUS datasets, is quanti�ed using the
Icasso clustering software, and it revolves around three basic axis: Researching the
e�ect of di�erent preprocessing parameters of the functional ultrasound signal, in the
ICA results, research of the e�ect of added noise in the ICA output and exploration of
the ICA modality from a dynamic analysis perspective of the fUS data, with respect
to time. In addition, we performed an extensive review of the existing research in the
�eld of mapping the brain functionality using fUS, as well as in the area of brain func-
tional data analysis. The �ve datasets which we use in the present study have resulted
from 2D visual-stimulation conducted on mice at the Neuroscience department of the
Erasmus Medical Center in Rotterdam.
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Chapter 1

Introduction

The biological brain consists of a complex system of nerve cells and synapses, or-
ganized in topologies with basic common anatomical and physiological characteristics
per species, but also with a high degree of randomness per individual. The study of
the brain is one of the most fascinating �elds of modern research and has been largely
developed due to the technological development of methods for imaging and mapping
the interconnection of the various centers of the brain and their response to external
stimuli.

In the present study we are dealing with a relatively new method of brain functional
imaging, functional ultrasound, which presents signi�cant advantages over conventional
functional imaging methods and provides opportunities to cover and enhance key points
of the human nervous system research.

1.1 Statement of the problem

The imaging of the functional interconnections of the brain is usually approached
in two ways, one direct and one indirect. In the �rst case we are concerned with
the imaging of electrical neural signals, which are also the main focus of brain response
studies. The second case concerns methods of indirect imaging of nerve signals, through
the mapping of the hemodynamic response of the brain. The correlation between the
hemodynamic and neural signals is based on the coupling of the respective systems
which is expressed by the perfusion of the capillaries that surround the nerve cells, ev-
ery time they become activated. Direct imaging of the brain function can be performed
with the use of techniques such as the use of special dyes that are sensitive to the volt-
age level, calcium imaging, electroencephalography etc. On the other hand, regarding
the indirect imaging of the brain, techniques such as functional magnetic resonance
imaging (fMRI), Positron Emission Tomography (PET), internal optical imaging and
photoacoustic imaging are widely used. The present study focuses on the analysis of
the brain function using indirect imaging and as a result, we will refer to the corre-
sponding techniques in greater detail and in particular, to the functional ultrasound
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Chapter 1: Introduction

(fUS) method.

The best possible spatio-temporal sensitivity is achieved so far using optical imaging
methods (∼ 10µm, ∼ 10ms), which require opening or thinning of the skull in order to
acquire measurements. Furthermore, the range of light frequencies used does not allow
the imaging of the brain in great depth. In this �eld, photoacoustic imaging techniques
display greater penetration but with still low absolute values (∼ 1mm).

In-depth imaging of the brain with very good spatio-temporal resolution is achieved
(until recently) using the fMRI and PET techniques. The later achieves three-dimensional
imaging of the brain and its various processes, using radioactive elements which are de-
tected by special sensors. Due to its low spatial resolution, this method is usually
combined with some additional anatomical imaging modality such as Computed To-
mography (CT) scan or Magnetic Resonance Imaging (MRI). The fMRI method is the
most common functional imaging technique and is based on the Blood-Oxygen Level
Dependent (BOLD) signal measurement, the value of which at any given time depends
on the level of oxygenation of the blood. The detection of changes in this signal is based
on the spatial and temporal inhomogeneity of the detected magnetic �eld in the brain,
due to the di�erent magnetization values of deoxyhemoglobin (oxygen-free hemoglobin)
and oxyhemoglobin (oxygenated hemoglobin). Fmri is a non-invasive imaging method,
widely used in both research and clinical applications. However, achieving high spa-
tial imaging accuracy requires the application of a strong magnetic �eld and has the
downside of reducing the time resolution and the Signal-to-Noise Ratio (SNR) of the
resulting images [1]. As a result, it is di�cult to functionally visualize short-term tran-
sient phenomena. The size and cost of MRI machines also makes them unpro�table
and does not allow fMRI to be performed during surgeries.

The modality of functional ultrasound constitutes a novel proposal in the �eld of
functional imaging, with features that solve many of the problems of fMRI. The high
spatio-temporal resolution and portability of this method, make its application ideal for
imaging the brain, even without the use of contrast factors. In the introductory work
of Macé et al. (2011) [2], fUS was used to visualize the rat brain and map its activation
patterns with high accuracy and a high signal-to-noise ratio. The fUS method uses the
power Doppler technique in order to capture highly sensitive images, with the ability
to display very small vessels. The acquisition of μDoppler images at a high frame-rate
(ultrafast imaging), enables the visualization of the blood �ow in the vascular system,
which is shaped by the neuronal response.

The analysis of functional ultrasound data is mainly performed using the tecniques
and algorithms used in the fMRI data analysis. The fUS method being a relatively
new application of ultrasound, research into the analysis of the data produced is at
an early stage and borrows algorithms from fMRI, which is the golden rule of the
imaging techniques concerning the functionality of the brain. In the present work we will
approach the analysis of fUS data using the Independent Component Analysis (ICA)
algorithm, a model-free, data-driven approach to functional brain imaging, widely used
in the case of fMRI.

10



Chapter 1: Introduction

Figure 1.1: Comparative representation of brain imaging methods, in terms of their portability and
spatio-temporal resolution [3].

1.2 Purpose statement of the Thesis

The research purpose of my thesis consists of the exploration of the ICA modality
with regard to its potetial in the analysis of functional ultrasound data of the brain.
The research is based on the explorative study of the �ve functional ultrasound datasets
that were developed during experiments using mice as subjects, and were performed in
the Erasmus Medical Center in Rotterdam. Due to the fact that the imaging modality
of the functional ultrasound provides us with a limited scienti�c bibliography regarding
its application in brain imaging, the present study uses processing techniques that have
been applied succesfully with the much more popular fMRI imaging technique. Our
analysis is focused on the use of the ICA method in the analysis of fUS data, with the
use of the Icasso clustering software.

1.2.1 A few things about the ICA

The ICA technique is a statistical method for the analysis and decomposition of a
composite dataset in a number of independent subsets of data (decomposition-based
approach). The ICA does not make any a priori assumptions with regard to the dataset
it aims to analyze and does not consider a particular model for the signal sources
it is called upon to highlight (model-free). The set of problems which consider the
decomposition of compound information signals into source-signals, even in the case
where very limited information is available regarding these sources, is called Blind
Source Separation (BSS). The ICA method is one of the most popular algorithms
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Chapter 1: Introduction

which tackles problems of this particular set, eg. the classic coctail party problem. The
aim of this particular application is the detection and extraction of the voice signal of
a speci�c sound source inside an environment where di�erent voice sounds and noise
overlap.

The statistical independence and non gaussian distribution of the signal sources
it aims to disentangle, constitute the basic assumptions of the ICA method. There
are also some ambiguities and limitations which arise during the application of the
ICA method, regarding the interpretation of its results. We will refer to these points
analytically in Chapter 2.

1.2.2 Main research directions

In the present thesis we will research the ICA technique in three basic axis:
1. Preprocessing of the input dataset of the method
2. Noise tolerance
3. Dynamic analysis ot the results of the ICA method
In particular, regarding the �rst part of the analysis, we will explore the e�ect of

the input data dimension on the stability and repeatability of the independent signal
sources, de�ned as a result by the ICA. In the second part of the analysis we add
gaussian noise in the input of the algorithm, observing once again the robustness of
the results. In the third part of the analysis we research the ICA method with regard
to its results which correspond to consecutive subsets of the total input dataset, with
respect to time. We compare these results with the results yielding from the analysis
of the total input dataset in each case.

1.2.3 The fUS dataset

Our work handles functional ultrasound data, created during a series of optical
stimulation experiments dealing with the hemodynamic response of the mouse brain.
As a result, the ICA method in this particular case is called upon, to return a set of
independent sources for the hemodynamic responce signal. This particular set does not
necessarily have a clear correspondance with the known anatomical and physiological
brain regions of the mouse. We will refer to the the processing steps of the fUS data
and the interpretation of the ICA results, in more detail, during the rest of the thesis.

1.3 Thesis outline

In Chapter 2, the fUS and ICA techniques are presented in detail, with a special
focus on their theoretical principle, their operation and their various applications. In
Chapter 3 we present a literature review, of the research �eld that includes the func-
tional ultrasound modality and the analysis methods used for exploring its results. In
Chapter 4, the whole research course of our study is presented, starting from the acqui-
sition of the experimental results, to their preprocessing strategy and their feeding to
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Chapter 1: Introduction

the ICA implementation algorithm. The ICA algorithm and the Icasso software which
quanti�es the results of our research are presented in this chapter. The experimen-
tal results of the thesis and their scienti�c interpretation are displayed in Chapter 5.
Finally, the conlusions that arise from the present study are displayed in Chapter 6,
where we also propose some future research directions, regarding the use of the ICA
method in the analysis of functional ultrasound data from the brain.

13



Chapter 5

Experimental Results

In the present study, the stability of the independent signal components derived
by the ICA, is measured using the Iq stability index. The calculation of the mean of
the Iq indices for all of the independent components that emerge with the application
of the algorithm, is used to calculate the stability for the entire investigated system,
for a speci�c input set of parameters. Based on the a�orementioned assumptions, in
the rest of our study we consider as a reference set (reference combination of number
of independent components, total system stability and calculation running time) the
choice of 20 independent signal components with a PCA dimension of 20, and 100
resampling cycles (Icasso parameters). The result of this analysis is used in the rest of
the study as a reference frame for the comparison of the products of Icasso, but also
for matching the images of the independent components derived by the ICA, on the
output grid.

With respect to the image matching, it is realised using the munkres algorithm [4],
having as an input the matrix of correlations between the independent input compo-
nents and the reference frames. Establishing this correspondence is an essential step for
spatial classi�cation of the independent component images, in order to enable overview
and comparison of the results.

The �ve datasets used in this work, were processed in the same way in order to
establish the reliability of both the experimental measurements and the computational
processing. For each of the datasets, two grids of reference components were produced,
one with ICA dimension 20 and PCA dimension 20 and another with ICA dimension
100 and PCA dimension 100. Both the reference sets (for each input data set) were
calculated with 100 ICA resampling cycles. In �gures 5.1 to 5.5 we present the reference
results of 20 components, for each of the �ve datasets used in the present study. The
reference frames of 100 components are presented in the Appendix.

In addition to the presentation and commentary of the experimental results of the
present study, in this chapter we will also refer to the possibilities of their extension.
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Chapter 5: Experimental Results

Figure 5.1: Reference components of dataset 14_14_53.

Figure 5.2: Reference components of dataset 14_30_03.
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Chapter 5: Experimental Results

Figure 5.3: Reference components of dataset 14_39_20.

Figure 5.4: Reference components of dataset 14_43_46.
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Chapter 5: Experimental Results

Figure 5.5: Reference components of dataset 14_48_15.

5.1 Varying PCA dimension, with a �xed number

of independent signal sources

5.1.1 Experimental Results

The �rst analytic experiment we performed, concerns the e�ect of the PCA dimen-
sion applied to the input data, as one of the preprocessing steps before feeding it to
the ICA algorithm. Keeping constant the number of independent signal sources we ask
to be determined by ICA, we let the dimension of the PCA analysis to gradually vary
from 20, up to 200 with a step equal to 20. We use the component mapping function so
that any changes in the components are visually detected at each step of the analysis.

Because we do not want to use a large number of component vectors in the ICA
analysis (due to the computational complexity and large processing time requirements
of the Fastica algorithm), PCA produces the dominant components of the data set to
feed into the ICA. In this way, however, the reliability of the signal is reduced while
some phenomena of short duration - but possibly of great importance - are lost from
the analysis.

Figure 5.6 shows the result of using Icasso to apply the ICA in order to select the
20 most robust independent signal sources with varying PCA dimension from 20 to
200. This chart shows the average values of the �cluster� quality index Iq, for the fUS
experiments 1 to 5, as well as the percentages of Icasso results per Iq range, for each
of the data sets.

17



Chapter 5: Experimental Results

Figure 5.6: Stability index Iq for the clustering produced by Icasso with varying PCA, for each of
the �ve datasets.

Figure 5.7: Comparative visualization of the Iq-value histograms of the total results, with 100 points
per PCA dimension.
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Chapter 5: Experimental Results

We observe that the maximum Iq value for each data set and for each PCA dimen-
sion remains close to 1, while the minimum and maximum curves for all the experiments
are clearly depicted in the chart. These curves become more apparent in Figure 5.7
where they depict for each PCA dimension, the percentage concentration of the 100
points of the 5 datasets in total.

On the other hand, the median of Iq values decreases as the PCA dimension in-
creases with the relationship between the two quantities not necessarily being linear.
The median value also appears to show a fairly de�ned range of values for the �ve
datasets, with a maximum di�erence of 0.37 for 60 eigenvectors and a minimum of 0.07
for 160 eigenvectors.

Figure 5.7 is derived from combining the results of the 5 datasets, as mentioned
above. The histograms show a clear shift of the number of experimental points towards
lower Iq value,s as the PCA dimension of the analysis increases. In other words, the
distribution of independent components given by the ICA changes gradually as the
values move from around 1, to 0.

In the second part of the analysis, from the frames of the reference set (Figure
5.1), frames #3, #4, #5, #6 and #9 were selected for an indicative presentation of
the results. These speci�c components were chosen because they appear clearly in all
datasets (Figures 5.1 - 5.5 with red, yellow, green, blue and purple colors respectively)
and it is feasible to visually match them with de�ned anatomical regions of the mouse
brain. At this point, it is worth noting that of the remaining components, there were
some that appeared clearly in certain datasets' reference frames (such as component 14
of dataset 14_30_03 appearing in position 14 of the dataset 14_43_46 reference re-
sults) and others that corresponded to de�ned anatomical regions (such as components
7 and 8 of dataset 14_43_46), which are not clearly visible in all reference datasets,
and their behavior seems to be a consequence of the way the ICA selects the signal
components. It has already been mentioned that the ICA results in a series of inde-
pendent components that make up the input signal. However it is possible for some of
the actual signal sources to be separated during analysis, which appears (visually) to
be the case with components 7 and 8 of dataet 14_43_46.

For the �ve spatial signal components chosen to be presented, we attempted a
mapping of their images to anatomical regions of the mouse brain. Their numbering
hereafter follows the numbering of the reference set of 20 independent components and
PCA dimension 20, of the dataset 14_43_46 (Figure 5.1).

Component 3 (red) anatomically corresponds to two regions of the retrosplenial
cortex (Retrosplenial cortex (RSP) v and d), which are a key part of the brain's spa-
tial information processing network. These areas are also part of the brain's Default
Mode Network, which according to the literature shows low levels of activation when
performing a speci�c mental task and high levels of activation when the mental task is
not focused on a certain goal. From now on we will refer to this speci�c area with the
name RSP (Retrosplenial area).

Component 4 (yellow) corresponds to the main perfusion of the brain, as shown
in Figure 4.2. The speci�c component is not an anatomical region but a key part of
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Chapter 5: Experimental Results

the system of blood vessels that supply the brain and for this reason it was considered
noteworthy in the present analysis. In the rest of the work we will refer to the speci�c
component with the name Main Blood Supply (MBS).

Component 5 (green) corresponds to a part of the somatosensory area of the brain
and concerns the processing of the stimulus in the mouse's whiskers, which is one of
the main sources of spatial information and allows the animal to perceive and react to
the characteristics of its environment. Hereafter we will refer to this region as primary
Somatosensory area (SSp).

Component 6 (blue) corresponds to a part of the external (lateral) angular nucleus,
the primary processing center for visual information received from the retina of the
eye. It is part of the thalamus and we will refer to it as the LGN (Lateral Geniculate
Nucleus).

Finally, component 9 (purple) corresponds to the main two parts of the hippocam-
pus, which according to the anatomy of the mouse brain plays a key role in learning
and memory processes. We will refer to this component as Hippocampus (Hip).

Figures 5.8 - 5.12 show the values of the stability index Iq given by Icasso for the
�ve selected components, in each of the �ve data sets and for each value of the PCA
dimension, for a selected number of independent components equal to 20.

Here we should brie�y refer to the way in which Figures 5.8 to 5.12 were produced.
More speci�cally, for each of the �ve datasets we map the 20 components of the reference
set (Figures 5.1 - 5.5) to the 20-component reference set of the dataset 14_14_53
(Figure 5.1), ignoring matches with a convolution value below 100. The threshold
of 100 is empirical and was set with the aim of eliminating false matches as much as
possible, as we have assumed from the outset that not all data acquisitions give the same
independent spatial signal components. The convolution value given by the matching
function has no speci�c or reliable value limits. However, the threshold we de�ne cuts
o� the association of the most stochastic spatial components and for this reason it is
used at this stage of the analysis. Next, for each value of the PCA dimension, we map
the generated components to the reference set and from there, to the reference set of
dataset 14_14_53 (Figure 5.1), with the constraint we mentioned earlier. Finally, we
print the stability index values for all of the experiments and for each of the �ve selected
components.

Appendix A details the results of the varied PCA dimension and 20 independent
components experiments, for the 14_14_53 data set.

5.1.2 Observations and Conclusions

In this �rst experiment of the present study, we investigated the in�uence of the
PCA preprocessing dimension on the quality of ICA results. Using the stability index
Iq, we observe that the results of the Icasso iterations with an increasing value of the
PCA dimension, show a decrease in the overall stability for each of the �ve datasets
and a shift of the ICA estimates to lower stability values. This is something already
expected, based on the theory of data preprocessing with PCA. As we increase the
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Chapter 5: Experimental Results

Figure 5.8: Iq stability values for the RSP signal component, for the �ve input datasets of the ICA
with varying PCA dimension.

Figure 5.9: Iq stability values for the MBS signal component, for the �ve input datasets of the ICA
with varying PCA dimension.
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Figure 5.10: Iq stability values for the SSp signal component, for the �ve input datasets of the ICA
with varying PCA dimension.

Figure 5.11: Iq stability values for the LGN signal component, for the �ve input datasets of the ICA
with varying PCA dimension.
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Figure 5.12: Iq stability values for the Hip signal component, for the �ve input datasets of the ICA
with varying PCA dimension.

dimension of the input data set fed to the ICA algorithm, the dimension of the input
eigenvector matrix increases and the algorithm "struggles" to identify the same inde-
pendent signal components. Also of interest is the fact that, as the PCA dimension
increases, the maximum Iq value remains almost unchanged, while about one-tenth of
the twenty independent components maintain an Iq value above 0.7-0.75 for all values
of the input data dimension. In the plots depicting the stability of the individual sig-
nal components for each data set (Figures 5.8 - 5.12, Appendix Figures 15 - 16) we
notice that there is a stability pro�le for each of the independent components. This
means that not all components follow the same pro�le in terms of the Iq index, but
the speci�c results depend both on the choice of the component and on the given ex-
perimental detection of the input signal. Between di�erent PDI sequences, for most
of the independent components given by the ICA, large variations in the value of the
stability index appear, with some of the curves following a downward trend with in-
creasing PCA dimension (e.g., Figures 15b', 15g', 16a') and others displaying a more
complex behavior (eg Figures 15d', 15e', 15f', 15g'). The conclusion that emerges from
the above observations is that for the �nal selection of the meaningful fUS signal com-
ponents, and in general for the evaluation of the ICA results, a further delving into
the functional pro�le of the components resulting from the algorithm might be needed,
in combination with the parameters of the initial functional ultrasound experiment so
that the stability pro�le per component can be evaluated.

Regarding the interpretation and inference of conclusions for the brain areas #3,
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#4, #5, #6 and #9 (RSP, MBS, SSp, LGN and Hip respectively), we can say the
following:

From the stability pro�le of the RSP region (Figure 5.8) we see that it appears
in a consistent manner in every analytic experiment, with a drop in its stability (on
average) as the PCA dimension increases. This particular area plays an active role
in brain function, when it does not require concentration on a speci�c task. While
for PCA dimension equal to 20 it shows high stability, the di�culty in detecting it in
some of the datasets for larger values of that particular pre-processing dimension may
indicate that it does not play an essential role in brain function during this particular
visual activation experiment.

Looking now at the activation pro�le of the MBS region (Figure 5.9) we see that it
shows very high stability in almost all datasets and for all PCA dimensions (with the
exception of dataset 14_48_15). Because this particular area is a focal point of the
tree of vessels that supply the mouse brain with blood, it is safe to infer the reason for
its constant presence in the results. Regarding the exception of the data set 14_48_15,
one guess we could make is to suggest that in this particular experiment there was a
lower brain perfusion on average, related to certain parameters of the experimental
setup that were not available in the present work.

A similar stable activation pro�le is displayed by the SSp area (Figure 5.10) whose
function is linked to the spatial perception of the animal through its whisker. Because
the function of this region is (at least theoretically) indirectly linked to the visual acti-
vation underlying the experiment we are studying, additional experimental activation
data are needed to draw a �rm conclusion about why it exhibits such high stability. It
is possible, however, that its stability is due to the de facto signi�cance of the mouse's
whisker in each case, or even to the fact that, due to the projection of arbitrary and
spatially meaningless images into the animal's �eld of vision - a projection which hin-
ders its visual ability to navigate space-, the mouse relies heavily on its whisker sense
in order to perceive its environment, hence the intense activity of this particular brain
region.

Observing Figure 5.11 in which the stability of the LGN region during the experi-
ments is depicted, we observe high stability for low values of the PCA dimension, and
dual behavior of the estimates for PCA values of 100 and above. In half of the datasets,
this region shows consistently high stability, while in the rest we have a gradual while
the PCA dimension increases. Since, as mentioned above, we do not have a lot of data
on the parameters of the experimental setup for obtaining the functional ultrasound
measurements, it would be fallible to conclude on the di�erences regarding this param-
eter between the di�erent data sets, which may be due to the acquisition order of the
measurements, the animal's fatigue or even to its habituation to the visual stimulus. As
the LGN region is functionally involved in the processing of visual stimuli, its stability
during the experiments and following analysis is to be expected. The di�erence in the
behavior of the data sets during the analysis is therefore likely to lie in fundamental
di�erences regarding the way the measurements were taken.

Regarding the Hip region (Figure 5.12) which is associated with the learning and
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memory process, it shows a very wide range of values across the �ve data sets for each
PCA dimension. We also notice that three out of the �ve data sets maintain a constant
value of region-speci�c stability (sets 14_14_53, 14_39_20, 14_48_15) and the other
two (14_30_03, 14_43_46) show a constant decrease in its stability. This uniformity
of results - even in groups - is of great interest to the analysis of the functioning of the
speci�c area, and may in the future be able to provide safe conclusions regarding the
interpretation of its activation.

As a general conclusion in this particular analysis experiment, it can be taken that
the preprocessing of the input data of the ICA with PCA, reduces the complexity of
the problem of determining the main signal components while at the same time it car-
ries the risk of losing some sources with a short duration of activation, but possibly
of importance for the brain function. Each of the spatial components identi�ed by
the ICA, exhibits a distinct activation behavior, largely intertwined with both its the-
oretical functionality and its functional relationship to the given experimental setup
and its technical parameters. A more accurate interpretation of the results requires
knowledge of the functional characteristics of the spatial components in depth, as well
as the characteristics of the experimental setup for obtaining the functional ultrasound
measurements.

5.2 Data Analysis with Added Noise and a Fixed

Number of Signal Sources

5.2.1 Experimental Results

Here we applied ICA analysis with the number of independent signal components
being equal to 20, and a PCA dimension equal to 20. This particular combination
was chosen (as mentioned in section 4.4.3) as a reference system and is used in the
rest of the thesis in the total input data set of the algorithm. We add to each of the
analysis pipelines, Gaussian noise with snr values from 5 to 30 (with a step of 5) and
we use Icasso to calculate the stability indices of the results, the time courses of the
activation of the components and compare these results with the results that the ICA
gives without the extra noise.

The choice of the lower limit for the snr (snr=5) is justi�ed by the fact that, for lower
snr values the algorithm fails to detect a su�cient number of independent components.
In the case of snr=5, for the �ve data sets, four to �ve distinct components are detected.
On the other hand, the upper limit (snr=30) was chosen since the algorithm succesfully
detects almost all of the twenty main components.

It should also be mentioned that the upper limit of the iterations of the algorithm
by Icasso was increased from 300 to 1000, since the algorithm - especially for snr values
from 5 to 15 - does not su�ciently converge in the majority of the added noise cases.

Figure 5.13 shows the overall stability index for each of these analysis cases, for an
increasing snr value. As expected, we observe an overall increase in stability in parallel
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Figure 5.13: Iq stability index for the clustering produced by Icasso with varying snr value, for each
of the �ve datasets.

to noise reduction. We observe that for all the cases, the maximum Iq value remains
close to 1, with the minimum moving from 0.1 to higher values as the value of the
snr increases. On the other hand, the median increases steadily with the increasing
snr (with the exception of the third data set at snr 25 and the �fth data set at snr
30) and shows a small range of values at the extreme snr values (5-10 and 25-30) and
a greater range in the middle values (20-25). Of interest is the fact that the signal
components derived from the experiments mostly display extreme Iq values for low snr,
with the centimeter distances approaching - and the median moving towards 1 - as the
snr increases. This is most evident in �gure 5.14 where the histograms of the total
results of the �ve data sets are presented. The distribution has two centers: one near
Iq=1 and the second near the minimum Iq. This minimum increases and at the same
time it contains a lower percentage of the total energy of the distribution as the value of
the snr increases. This histogram form simulates the form of the corresponding images
5.6-5.7 for a variable number of eigenvectors, with the low peak of the distribution
increasing and containing a lower percentage of the total energy of the distribution as
the number of eigenvectors of the signal fed to the ICA decreases.

As in the previous part of the fUS data analysis (section 5.1), we present in Figures
5.15 - 5.19 the values of the stability index Iq for each of the spatial components RSP,
MBS, SSp, LGN and Hip of the dataset 14_14_53, as described in paragraph 5.1.
These images were produced in the manner described above for Figures 5.8 - 5.12.

Finally, in Figures 5.20 and 5.21, the spatial signal components for each of the
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Figure 5.14: Comparison of the Iq-value histograms of the total results, with 100 points per snr
value.

Figure 5.15: Iq stability values for the RSP signal component, for the �ve input datasets of the ICA
with varying snr.
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Figure 5.16: Iq stability values for the MBS signal component, for the �ve input datasets of the ICA
with varying snr.

Figure 5.17: Iq stability values for the SSp signal component, for the �ve input datasets of the ICA
with varying snr.
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Figure 5.18: Iq stability values for the LGN signal component, for the �ve input datasets of the ICA
with varying snr.

Figure 5.19: Iq stability values for the Hip signal component, for the �ve input datasets of the ICA
with varying snr.
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variable snr value analysis cases of the 14_14_53 data set are presented. In the �rst
column of Figures 5.20 and 5.21, the reference components of the speci�c data set
are presented (as shown in Figure 5.1) and then, in each of the next six columns, the
evolution of these components as produced by the ICA and Icasso is presented, with a
variable snr value of the input signal. The corresponding results for the remaining four
datasets are listed in Appendix A.

5.2.2 Observations and Conclusions

From the plot of the percentage distributions of the stability values for the results
of each data set (Figure 5.13) and also from the histograms of the stability values for
the entire data set (Figure 5.14), the negative e�ect of increasing the input noise on
the ICA results is evident , as the algorithm fails to detect all the stable independent
signal components. It is interesting to note that the minimum component stability
value detected by the ICA increases with an increasing snr, the maximum remains
constant at values between 0.9 and 1, while one tenth of the samples show stability
values above 0.9 for all datasets and for all snr values with the exception of snr=5.
This fact indicates the existence of a small number of independent signal components
that appear reliably, with high stability, in each data set. From Figures 5.15 to 5.19 and
from the Appendix Figures 17 and 18, we note indicatively that the RSP component
and the MBS, SSp and Hip signal components, have stability values above 0.9 for all
(RSP component) or most datasets, for all snr values except 5.

In general for all spatial components of the 14_14_53 dataset we observe an av-
erage increase in stability as the value of snr increases, which is obviously expected
theoretically. On the other hand, observing the evolution of the stability index of each
component separately for a given fUS experiment, an upward trend is not always fol-
lowed. This is likely due to a mismatch of the component of the given dataset with
some of the components of the reference set of 14_14_53.

From Figures 5.20 and 5.21, we notice that each spatial signal component has a
di�erent tolerance to noise. We observe that the RSP, MBS, SSp and Hip components
are distinct for all the di�erent snr values we considered, while the LGN component is
distinct for an snr value of 20 and over. We also observe that the ICA fails to detect the
majority of independent signal components for an snr value equal to 5, which justi�es
the choice of the lower bound for this part of the analysis. It is also worth commenting
that, while some signal components (e.g. component 10) are detected by the ICA
for the same snr values as some of the more clear anatomical brain regions (LGN
component), they do not show a solid anatomical form, which supports the theory
that the signal sources detected by the ICA do not necessarily correspond to distinct
anatomical regions of the brain but are part of a functional ensemble, without a clear
anatomical mapping. Another explanation is of course the fact that the ICA often
separates the main signal components into an unknown linear combination. However,
functional ultrasound mapping the perfusion of the brain, whose functional diagram
is related but not identical to the anatomical-physiological diagram of the brain, both
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Figure 5.20: Presentation of the evolution of the �rst 10 out of the 20 principal spatial components of the dataset
14_14_53, produced by Icasso for a varying snr value of the input signal. In the �rst column we present the
reference components, as obtained by Icasso with an input PCA dimension of 20, and in the following columns
we display the results of the ICA algorithm for the di�erent snr values of the input signal.
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Figure 5.21: Presentation of the evolution of the next 10 out of the 20 principal spatial components of the
dataset 14_14_53, produced by Icasso for a varying snr value of the input signal.
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hypotheses are likely to be valid to some extent.

5.3 Dynamic Data Analysis

5.3.1 Experimental Results

In the third part of the analysis of the functional ultrasound data, we used a dynamic
analysis approach. Taking the input signal after the preprocessing steps described
above, we repeat the analysis using Icasso, in time frames of 200 samples (∼ 42sec).
The parameters used for the ICA are: 20 signal components and a PCA dimension
equal to 20. The number of resampling cycles used is 30, due to the long duration of
the analytic experiments.

To match the components of the input signal, the reference frames of 100 compo-
nents that have been calculated separately for each dataset were used as main reference
components. In this way, the activation sequences were calculated for the �ve datasets,
namely in each of the 19 time frames of the dataset, it was determined which of the
100 reference components were activated. To enable a better comparison of the results
between the �ve datasets (derived from �ve independent repetitions of the same exper-
iment, in the same experimental animal) we mapped the reference frames of sets 1,3, 4
and 5 to the reference frames of set 2. In this way, the following �ve activation maps
were obtained where the "on" period is marked in yellow and the "o�" period in blue.
The numbering of the components on the y-axis corresponds to the numbering of the
100 reference components of the second data set (set 14_30_03), which are listed in
Appendix A.

Figure 5.27 shows the histograms of the �ve experimental PDI acquisitions, with the
number of independent components (out of the 100 reference components of the 14_-
30_03 dataset) activated per total number of activations, with the maximum being all of
the 19 frames of the dynamic analysis of the signal . From the shape of the histograms,
it is clear that the majority of components identi�ed through the ICA appear less
than 5 times in the dynamic analysis frames, while there is also a constant number of
components that appear almost throughout the duration of each experiment. Table 5.2
identi�es the components in order of an increasing number of activation frames.

Analyzing the results of the activation patterns, we determined the components with
the largest number of activation periods, as well as the number of components with
zero activation during the experiment. It is noteworthy that out of the 100 reference
components used to match the 20 components of each dynamic frame, the number of
inactive components for the four datasets are 41, 31, 36 and 34 respectively.
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Figure 5.22: Illustration of the "on" and "o�" periods of activation for the 100 spatial components
of the fUS signal, using a moving time frame, for the 14_14_53 dataset.

Figure 5.23: Illustration of the "on" and "o�" periods of activation for the 100 spatial components
of the fUS signal, using a moving time frame, for the 14_30_03 dataset.
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Figure 5.24: Illustration of the "on" and "o�" periods of activation for the 100 spatial components
of the fUS signal, using a moving time frame, for the 14_39_20 dataset.

Figure 5.25: Illustration of the "on" and "o�" periods of activation for the 100 spatial components
of the fUS signal, using a moving time frame, for the 14_43_46 dataset.

35



Chapter 5: Experimental Results

Figure 5.26: Illustration of the "on" and "o�" periods of activation for the 100 spatial components
of the fUS signal, using a moving time frame, for the 14_48_15 dataset.

Figure 5.27: Histogram presentation for the �ve functional ultrasound datasets, depicting the number
of activated components per total number of activations (number of activated time frames) during
the dynamic analysis with a moving time frame.
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(a) Signal component No4 (b) Signal component No1 (c) Signal component No19

(d) Signal component No62 (e) Signal component No5 (f) Signal component No2

Figure 5.28: Presentation of the six spatial signal components (numbered according to the set of 100 reference
components of dataset 14_30_03, Appendix Figures 1 - 5) with the largest number of activation frames during
the dynamic analysis of the �ve functional ultrasound datasets.

5.3.2 Observations and Conclusions

The dynamic analysis is performed in a moving time frame on the ICA input dataset.
In the present work, a window of length ∼ 42sec was chosen due to the long running
time of the algorithm, in order to identify the same components using a shorter time
frame. In this particular analysis step, we are mainly interested in investigating the
capabilities of the ICA in identifying principal signal components in subsets of the
data set, and the order of activation of the various components/regions during the
experiment.

Using the reference frames to match the ICA results, a set of 100 principal compo-
nents is indicated for each experiment. Out of these components, a number (about 30
to 40) did not appear at all in the dynamic analysis. This number of active components
gives us a rough idea of the size of the brain's actual set of activation regions that can
be identi�ed using the ICA of fUS data. Due to the error involved in the matching
algorithm, this number is less than 60 - 70 and also depends heavily on the size of the
time frame. However, it is encouraging that the number of active components does not
vary widely between the independent datasets.

The size of the time frame is a crucial parameter of the dynamic analysis, because it
de�nes the scale of the transient events we can observe in the brain. Table 5.2 shows the
results regarding the activeted regions of the brain, obtained from the dynamic analysis.
From these results, the �ve most active components are as follows (the numbering was
done based on the reference frames of the 14_30_03 dataset): 4, 1, 19, 62, 5, 2 (Figure
5.28).

Based on the anatomical atlas1 for the imaging of the mouse brain, we observe that
components 4, 1, 19, 5 correspond to distinct regions of the mouse neural network.
In particular, component #4, which shows the greatest temporal activation, roughly
corresponds to the anatomical region of the hippocampus, which according to literature

1https://portal.brain-map.org/
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plays a central role in the cognitive function of the brain. Component #1 corresponds
to the posterior splenial cortex of the brain, which is part of the Default Mode Network
(DMN). It has to do with the animal's spatial perception of its surroundings. Compo-
nent #19 is part of the somatosensory area of the brain and is related to the processing
of the stimulus in the mouse's whisker, which is a basic source of spatial information
and allows the animal to perceive and react to features of his environment. Component
#5 corresponds to the posterior parietal cortex areas, which - in the present work - are
related to eye movement and spatial perception. Their function is closely related to the
function of the hippocampus.

Components #62 and #2, at �rst glance, do not correspond to distinct anatomical
regions of the brain. However, we observe from the image of the total brain perfusion
that they exactly trace the vascular system in the center the posterior regions of the
cerebral cortex we are studying. This allows us to conclude that the processing of
functional ultrasound data using the ICA, results in activation centers both in the form
of distinct neuroanatomical regions and as parts of the brain perfusion network. This
element is of great interest as it gives the opportunity for further research on the results
of the ICA, taking into account that we are given the possibility to monitor the brain
function from the point of view of two di�erent biological systems: the nervous and the
circulatory.

Base on the histograms for each dataset in Figure 5.27 and on the tables that
follow, we notice that the �ve datasets show quantitatively similar behavior during the
dynamic analysis of their data. They also present a qualitative similarity in terms of
the components that are activated with greater frequency. But it is much more di�cult
to draw �rm conclusions as the frequency of activation decreases, for the relationship
between the sets ceases to be so clear. In Chapter 6 we will address some possible future
research directions regarding the dynamic analysis of functional ultrasound data.
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Total #frames = 19 19 frames on 18 frames on 17 frames on 16 frames on

Dataset 14_14_53 1, 4 - 19 66
Dataset 14_30_03 1, 4, 43 19 5, 56 2, 62
Dataset 14_39_20 1, 4, 28, 91 62 19 -
Dataset 14_43_46 4, 5 62 19 1
Dataset 14_48_15 12, 19 4 1, 2, 6 66

(a) Components with 16 to 19 activated time frames

Total #frames = 19 15 frames on 14 frames on 13 frames on 12 frames on

Dataset 14_14_53 84, 100 2, 62 6, 24 91
Dataset 14_30_03 - - - 6, 90
Dataset 14_39_20 2 23, 100 6, 51 -
Dataset 14_43_46 56 2, 41, 100 6, 34 84
Dataset 14_48_15 - - 62 5, 45

(b) Components with 12 to 15 activated time frames

Total #frames = 19 11 frames on 10 frames on 9 frames on 8 frames on

Dataset 14_14_53 7, 49 12, 52, 56, 94 -
5, 43, 92,

98

Dataset 14_30_03 84 11, 67, 100 3, 41, 73, 88 31, 54
Dataset 14_39_20 24 - 22, 34, 38, 95 41, 77
Dataset 14_43_46 27 52, 55 - 51, 64
Dataset 14_48_15 31, 84 29, 49, 71 24, 82, 96 73, 90

(c) Components with 8 to 11 activated time frames

Total #frames = 19 7 frames on 6 frames on 5 frames on

Dataset 14_14_53 69,95 51, 81 55, 70
Dataset 14_30_03 33, 39 46, 75, 92 12, 55, 65, 91
Dataset 14_39_20 5, 12, 28, 39, 56 53, 64, 69, 89 27, 46
Dataset 14_43_46 3, 13, 39, 44 68, 79, 94 7, 77, 81, 95
Dataset 14_48_15 21, 34, 63 30, 56, 69, 95 72, 94, 97

(d) Components with 5 to 7 activated time frames
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Total #frames = 19 4 frames on 3 frames on

Dataset 14_14_53
13, 20, 27, 32,

39, 53, 93, 97 3, 17, 33, 48, 60, 87

Dataset 14_30_03
32, 47, 72, 79,

94 23, 57, 69, 77, 78, 96, 97, 99

Dataset 14_39_20 3, 25, 78, 90 13, 14, 31, 47, 60, 65, 72
Dataset 14_43_46 20, 21, 82 15, 22, 30, 49, 54, 65, 69, 91, 92, 97
Dataset 14_48_15 22, 89 3, 14, 39, 53, 59, 60, 78, 100

(e) Components with 3 to 4 activated time frames

Total #frames = 19 2 frames on

Dataset 14_14_53 11, 14, 26, 30, 35, 38, 41, 54, 79, 90, 99
Dataset 14_30_03 7, 10, 21, 28, 48, 49, 68, 81, 93
Dataset 14_39_20 26, 33, 54, 57, 79, 82, 94
Dataset 14_43_46 12, 16, 17, 18, 24, 43, 53, 74, 76, 83, 96
Dataset 14_48_15 32, 33, 41, 42, 66, 75, 98

(f) Components with 2 activated time frames

Total #frames = 19 1 frame on

Dataset 14_14_53
21, 25, 45, 47, 50,

59, 64, 65, 76, 78, 80

Dataset 14_30_03
13, 20, 22, 24,

51, 63, 64, 89

Dataset 14_39_20
10, 15, 20, 21, 37, 40, 48, 52,

58, 59, 68, 74, 80, 81, 85, 91, 99

Dataset 14_43_46
8, 29, 31, 32, 35, 38, 40, 48,

57, 59, 72, 75, 85, 88, 90, 99

Dataset 14_48_15
8, 9, 11, 13, 23, 35, 36, 43, 44, 52,

55, 64, 70, 74, 80, 86, 87, 92, 99

(g) Components with 1 activated time frame

Table 5.2: Presentation of the spatial signal components per number of activation frames, during the dynamic
analysis experiment of the functional ultrasound data. Component numbering follows the reference set of 100
signal components of dataset 14_30_03, presented in Appendix A.
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