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AmaryopeveTal 1 avTypa®n, amofnkKevon Kot Slavour| TG mopovcas epyoaciog, €€ oAOKAN-
POV N TUNHOTOG OVTNG, Yo EUTOPIKd okomd. Emitpéneton n avatdnwon, amobrkevon Kot
SLOVOUT Y100 GKOTO [N KEPOOOKOTIKO, EKTOUOEVTIKNG 1 EPEVVNTIKNG PVONC, VIO TNV TPOLTO-
Beom va avaeépeTat 1) TYN TPoEAELONS KoL va dtatnpeitan To Tapodv unvopa. Epotipata
OV QLPOPOVV T1| YPNON TNG EPYOTING Y10 KEPOOGKOMIKO GKOTO TPEMEL VAL ATEVOVVOVTOL TPOG
TOV GUYYPOPEQ.

Ot amdYELS KO TO GUUTEPAGLOTOL TTOL TEPLEYOVTOL GE ALTO TO EYYPAPO EKPPALOVY TOV GLY-
YPOQEQ KOt OEV TPETEL VoL EpUNVEVDEL OTL avTITPOG®TEVOVY TIG EMionpeg BEoelg Tov EBvikon
MetaoBov [Torvteyveiov.



IHepiinyn

To povtéda dapdpemong droyns tpocsmtafodv vo KmOTKOTOMGOLY TO TG 01 AvOp®MTOot 10
HOPPAOVOLV TIG OTTOYELG TOVS OAANAETIOPOVTOG O £vog pe Tov dAilov. Ot avBpwmot avamapi-
OTOVTOL, €V YEVEL, MG KOUPOL G€ £val (KOVmVIKO) O1KTLO, 01 OKUES TOV OTTOIOL AVOTAPIGTOVV
T1G oyéoelg neta&y toug. Katom, kébe dropo vrotiBetor 01t Stopop@®@VEL TV ATOYN TOV
Bacilopevo og Kamolov €i00VGC HEGO OPO TV ATOYEMY TV GIAWMYV TOV.

Xe autn TV epyacia, peretdue Eva ToryviofempnTikd HOVTELD SAUOPPOONS AToyNg,
oL OVOUALETAL GLVEEEMKTIKG Oy VIO SIOUOPPOCNS ATOYNG, TO 0TT0i0 GNUaivEL OTL VTO TO
povtélo mpoomabei va teptlapet 1o 011 o1 oyéoelg eEedMocovtal poll e TiG amoyels. Avtd Ta
Talyvio, aviKOLV 6TV KAGOT T®V KOIA®V Tatyvimv, GUVETHS Exovv TdvTa 1coppomieg Nash.
O ot6y06 pog gival va T vroloyicovpe amodotikd. H mpocéyyion pog etvot va ypnoiLonot-
noovpe &va TPOGPATO ATOTELEGHO TV MepTikOTOvAoL Kot Zhou, oty Toun g Bewpiog
moyviov Kot g Kuptns PerTioTonoinong, To omoio, adpd, eyyvatal ypnyopn cOykiion evog
mirror descent aAyopiBuov (Dual Averaging) oe 1coppomia, o€ Koida maiyvia. 6mov 1GyvEL
n ovvOnkm diagonal strict concavity tov Rosen. Xvvendc, katd Bdon n owkn pog epyacio
NTav vo avalnTnoovpe EVOLOPEPOVGES VITOKATIYOPIES GUVEEEMKTIKMV TTatyvVimy Slpdpem-
OMG ATOYNG GTIC OTTOIEG VoL LoyvEL avTn 1 suvOnKkM. H epyacio pog yopiletor oe 600 Tpunpato.

Apyikd, kbmoto 0empnTIKA AmoTEAEGLOTO, OTTOV SEIYVOLLLE OTL TEPLOPICUEVE OTLYLULOTLTTOL
TV Toryviov autov givor diagonally strictly concave (cuykekpiuéva, 6tov n avtomenoifnon
/ 0OPAVELL TV TOKTMV EIVOL ETAPKDG LEYAAN).

Katomv, Aoym g avénpuévng dueKoAinG GTO Vo EKLOEVGOVIE TEPALTEP® BEPNTIKA
OTOTEAECUATO, LEAETAE TO HOVTEAO PHEG® TTPOGOUOIDCE®VY. Tpéyovtag tov alyopBpo Dual
Averaging g 0pKeTA OTLYLOTLTO GLVEEEMKTIK®OV Toy VIV Stopopemaong droyng, PAETove
OTL £l TOAD KOAY| €TIO00T, PTAVOVTAG GE 1GOPPOTIN LETA OO GYETIKA Alyoug yopovug. Emi-
one, Ppiokovpe kdmowo aplBunTKd avtimapadeiypoto tov diagonal strict concavity, aAld
moA0 Atya. To omoio Ba pmopovoe va dikatorhoyel 1o yiatl cuvavtipe BewpnTikég OVGKOAEG,
TapOAO OV 0 AAYOPOHOG delyVeEL VoL amodidel TOAD KOAG GE TUTMIKEG TEPUTTMGELC.

A&Ee1c KAhg101d

Awpopewon Amoyng, XvveEehktikd Movtéda, Ymoroyiouog Icoppomiwv, Kvpti BeAtioto-
noinomn, MéBooor Karomtpikrg KAiong






Abstract

Opinion formation models try to capture how people form their opinions through interacting
with each other. In general, people are represented as nodes in a (social) network, edges
represent the relationships between them. Then, each person is assumed to form their opinion
based on some kind of average of the opinions of their friends.

In this work, we study a game theoretic model of opinion formation, called asymmetric
coevolutionary opinion formation games, which means that this model tries to capture the fact
that relationships evolve together with opinions. These games belong in the class of concave
games, therefore always admit Nash equilibria; our goal is to compute them efficiently. Our
approach is to use a recent result by Mertikopoulos and Zhou, on the intersection of game
theory and convex optimization, which, crudely, guarantees fast convergence of a mirror de-
scent algorithm (Dual Averaging) to equilibrium, in concave games where Rosen’s diagonal
strict concavity condition holds. Thus, the bulk of our efforts goes to seeking interesting sub-
classes of asymmetric coevolutionary opinion formation games where this condition holds.
Our work can be separated into two main parts.

We begin with some theoretical results, where we show that restricted instances of asym-
metric coevolutionary opinion formation games are diagonally strictly concave (specifically,
when the self-confidence / stubborness of the players is sufficiently large).

Then, due to the increased difficulty in establishing theoretical results, we turn to studying
the model via simulations. By running Dual Averaging on several instances of asymmetric co-
evlutionary opinion formation games, we see that the algorithm performs very well, reaching
equilibrium in relatively few rounds. Moreover, we find some numerical counterexamples to
diagonal strict concavity, but very few; which could explain why one encounters theoretical
difficulties, while the algorithm runs very well in typical instances.

Key words

Opinion Formation, Coevolutionary Models, Equilibrium Computation, Convex Optimiza-
tion, Mirror Descent Methods






Evyoaprotieg

H ojloxApwon g STA®UATIKNG LoV €pYaciog ONUATOd0TEL TO TEAOG TNG TOPELNG LLOV GTN
oyoA HAektpordymv Mnyavikdv kot Mnyovikdv YToAoylotdv. e auTiv TV Topeia Kot
TNV OAOKANP®GN TNG SV NTOV Alyol avtol mov e Bordncav.

Katomv todtov, evyaptotd Oepud, kKatapyds, tov emPAEToOvIa Kabnynt avtig g ota-
TPPNG, K. Anuntpn CoTdKN, Yo Ty Kabodnynon Kot Ty EUTIeTOcHVI TOV LoV £JE1EE, OALY
KOLL Y100 TO EVOLOPEPOV TTOV OV EROVONGE €E apyNG Yo TNV BE@PNTIKT TANPOPOPIKT| LEGA OO
ta podnuata tov Atokpitov Madnpotikdv kot tov AAyopiOuov.

Eniong, evyoptotd tnv otkoyEveld pov, yopic v copmoapdotacn e omoiag dev Ha pro-
povca va giya TAcEL £d® TOL gipton oNUEP, KABMG Kot Tovg eilovg pov, Tov pe fondncoav
e&ioov.

Kovotavtivog A. Todmelog,

Abnva, 281 Tovviov 2022
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Kepaiaro 1

Extetapnévn EAAnvikn Hepiinyn

10 KePdAaro avto, o ekBEcoVE TEPIANTTIKA TO LOVTEAO KOl TOL KUPLOL ATOTEAEGLLOTOL
G EPYNCIOG LOG, TOPAAEITOVTOC OPKETEG AETTOUEPELEG, OTMG Y10, TOPAOELY O, ATOJEIEELG.

1.1 Ewoayoyn

O tpoémOg OV 01 AVOPOTOL SOUUOPPDOVOVY TIG OTOYELS TOVG UEAETATOL £6M KO OpKE-
1é¢ dekaetieg, amd TN OKOMLA SPOP®V EMICTNUOVIKOV TTESI®V (Y. WYLYOAOYid, TOMTIKEG
EMOTIHLES, KOWVOVIOAOYIN). AVTO TO EMCTNUOVIKO EVILAPEPOV EYEL KOPLP®OEL T TEAEVTAIN
xPOVIa, WaiTepa AGY® NG TPOAIOL TOL ALOSIKTUOV KOl TOV KOWMOVIKAOV SIKTO®V, TO. 0010
amd ™ pio peptd kdvoovv SafEcIa TPOS avaAVoT TP TOALL dEGOUEV GYETIKA LE OVOp®-
TWVEG OAANAETIOPAGELS, KOL OO TNV GAAN TPOGPEPOLV SLAPOPES EVKAPIES Yo KEPAOPOpia
pés® mpoPoAng (m.y. SpMUcELS), OOV 1] YVMOON TNG CLUTEPIPOPAS TOV ATOYEMY TOV KOl-
vou pmopel va petappactel og peyokvtepa kéPON. To yevikd mAaiclo TOv Hog evOlOQEPEL
epdg, Aomdv, eivar ot TpdTOL LoONUATIKNG HOVTEAOTOINGNG TS O1001KAGT0G SLUUOPPOCNC
AmOYMG, KOl TO TL VITOAOYIGTIKES 1O1OTNTES £XOVV OLTA T LOVTEAQL.

Mia ond T1c mo maMég epyacieg otnv KotevBovvon vty givon to poviéro tov Morris
Degroot [ ]. & avto, vapyet Evag memepacpévos apiudg N avBponwv (Tovg onoi-
0VG OVOUALOVLE Kot TPAKTOPES) TOV ATOTEAOVV TO VTOTIOEUEVO KOWVMOVIKO dikTLO, Kol KAOE
évag Toug dratnpet évav mpaypotikd opdpd (cuvibwog oto [0, 1]). Avtdg avaropiotd v
dmoym Tov, TNV 0moia 6T cLVEXELN avabewpel, Ge O1UKPITOVG YOPOLS, AaUPdvovTag LITOYN
T1G andOYELS OAOV TOV GAA®V TPaKTOpOV, HEGH VO Befapupévou HEGov Opov. ZvyKeKpL-
péva:

Tit41 = qijTjt

N N
Z] 1 WijLjt Z
Zj 1 wl] j=1

omov 10 z;; € [0, 1] avanopiotd TV droyn Tov TpdkTopa i 6To YOpo t. Ta Bapn w;; > 0
aVOTOPIGTOVV TNV PapdTNTa TOV £XEL Y10, TOV % 1] GO TOV j, TNV KPiGT| TOL Y10 TO 010G Omd

’ ) r r 7 7 I Wij
TOVG VITOAOITOVG £ivoart 0 mo EumioTog / oG / memepapévog KA. TéXog, pe g;; = S

cuppoArilovpe ta kavovikomompéva Bépn.

To povtélo DeGroot, 0ntmg Aéyeton ot BifAtoypaeio, mapd v arAoTnTd TOV, TAPOLGLE-
(el apketéc evolapEPovoeg 1010t TS (TT.Y. [ , 1), 0ALG aVTO TTOL G EVOLAPEPEL
Kupimg etvor 6t1 B€TEl TOALA amd To Oepéda Kot Yoo petémerta povtéda. To Ot ol amdyelg
avamopictavtol omd aplfpovg, to 0Tt kdbe TpdkTopag avtictolyel fapn o6& GAOLS TOVG GA-
AOVG, KOt TO OTL 1| S1ad1KAGT0 SLUUOPPMOOTG ATOWYNG GLVIGTOTOL OO SLAKPLTONS YOPOUG GTOVG
omoiovg kéBe mpdrTopog PETAKIVEL TNV AITOYT TOVL GE KATO0 HEGO OPO TV ATOYEMY TOV
VTOAOIT®V ATtd TOV TPONYOVUEVO YUPO, OAO 0VTA Alyo TOAD dtatnpohvtal o€ TOAAN omd Tal
HOVTELQ TTOV aKoAovOncay.
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‘Eva e&€yov mapdderypo eivan to povtédo tov Friedkin kot Johnsen [ ], piow emé-
Ktaon tov poviédAov DeGroot, otnv omoia kdBe mpdrtopog ¢ £xel emmAéov pio otabepn,
KPLOY|, ECOTEPIKY| Aoy, TNV omoia AapPdvel vtoyn Tov KAbe Popd Tov VIToAoYilel Evav
uéco 6po, kar v onoio cupPorifovpe pe s; € [0, 1]. Emmhéov, drabétet ko pio akopa oto-
Bepd v omola cvvnBwg ovopdlovpe mapdyovta “avtomenoifnong”, ™ cvpPoiilovpe pe
pi € [0, 1] kot avomaplotd To Tpog Ta ToH KAVEL 0 GUUBIRACUOG TOV VOl AVAYKAGUEVOG
VO KAVEL 0 TOIKTNG HETAED TNG ECOTEPIKNG TOV ATOYNG KOl TOV ATOYEMY TOV “@iAmV” TOV
(0 onuaiver 6TL TOV EVALOPEPEL LOVO 1 KOWVOVIKT] CURP®Via, 1 6Tl TOV eVOlapEPEL LOVO 1|
€0MTEPIKN cVUP®Via). Katdmy To0Tov, 0 Kavovag avavE®oNg TV ATOYE®Y 6TO LOVTEAO FJ
(Friedkin - Johnsen) gtvau:

N

Tir1 = (1 — pi) Z QijTjt + PiSi
=1

Ao, avoQEPOVULE EMLYPAUUATIKA OTLVTLAPYEL pio oEPE LOVTEA®V (Y. [ ,
ot0 omoia ta fapn TV aAANAETIOpAcE®V dev etvan TAEoV oTabepd, aAld peTafdAlovTat ava-
Aoya pe TNV amdoTaon HETAED TV ATOYEMY TMV ATOR®V. AVTH N 10£0 VIAPYEL KoL GTO OKO
poG Hovtéro, 6mmg o dovpe.

Mia o tpoécpatn Katevhuvon Epeuvag cLVOEEL TNV SLOOIKOGIO STAUOPPOCNC ATOYNG
pe ™ Oesmpia mworyviov. Ot Tpdktopeg yivovtor maiktes, kabévac ek Tov omoimv BEAEL va
EAOYIOTOTOGEL KATTO10 KOGTOG, TO OTOT0 £E0PTATOL OO TIG AMOYELS OAMV TOV TOUKTAOV KO
exQPALel T OLGOPESKELN TOV TTAUKTN LE TO €KAGTOTE TPOPIA amdyewv. Mia evdiapépovoa
Kol oXETIKY epyacia eivar avt tov Bindel, Kleinberg kot Oren [ ], ot omoiot opilouvv
Kol LEAETOUV €va ToyvioBempntikd povtédo mov avtiototyel oto povtéro FI, pe v évvola
otL M duvapkn BEATIOTNG amdkpiong (best response, dnAaom, kabe waiktng daAéyet T PEA-
Tt oy pe Péor Tov TponyoOUEVO YUPO) GE 0VTO TO TaiyVio TAVTICETAL [LE TNV OPYIKY
duvapukn tov FJ povtédov.

Yuykekpléva, To KO6ToG KO maiktn 010 moryviofewpntikd avtd povtEro ivol n Topa-
KAT®, TETPAYWOVIKT OTIS andyELS, cuvaptnon. [lapatnpeiote 6t1 10 KO6TOG LTO B PTOpOVGE
va epunvevdel mg £vag HEcog 600 OpmV, EVOG TOL “YPEDVEL’ TOV TTAIKTN OTAV 1) EKQEPOLEVN
GTOWYT| TOL ATOUOKPVVETOL OO TIG ATOYELS TOV VIOAOIT®YV, Kol EW01KA TOV TO “KOVIIVOV™
TOV, KO EVOG TTOV TOV YPEDVEL OTOV 1] EKPEPOLEVT] AITOYT] TOV OTOUAKPVVETOAL OO TNV EGM-
TEPIKT), TPAYLLOATIKT) TOV, KOTA pio epunveia, amoyn.

ci(z) = (1 —ps) Zqz'j(ivz' — ;) + pi(w; — 5)°

TNV Omoio UTOPOVUE VO TOPAYWYIGOVHE EVKOA Kol Vo, Bpodpe to onueio eloyictov g,
onAadmn ™ PEATIOT amdKpLon, TOV TPOKVTTEL id1a e TV e€icwon tov FJ poviédov.

AAMG dev etvar kot povo awtd. O 1810¢ kavovog pumopel Kavels, ywpig ToAd KOTOo, va deL
OTL GUUTINTEL [LE TO VO TPEYOVY OLO1 01 TaikTES KAB0J0 KAlomng (gradient descent, Oa tn dope
Ayo apyotepa) pe otabepo Prpa! EmmAéov, oto [ ] amodetkcvbeTon 4Tt (Y10 GUUUETPIKA
dikTvo, CLHHETPIKE PBapn oNAadn), To Taiyvio elvarl maiyvio dvvapkov, To omoio OTwe Oa
dovpe onpaivel 6Tt vapyel pio PabUOT CLVAPTNOT TNG OTOTNC TO EAGYIOTO OVTIGTOLOVV
tavtilovion pe ta onpeio 1oppomiog Tov maryviov. Onote, avTdS givar GALOG £vag TpdmOg va
dovpe v duvapkn tov FJ, cav va tpéyovpe kaBodo kAiong yuo tnv layiotomoinon piog
Babuwtg cuvéptnong.

To amdvyacpa €d® givar 6t vdpyel pio otevh oyéon petald Bewpiog Taryviov Ko BeA-
TI0TOTOINONG, TO omoio PEPata ev yével etvar yvwotd, aArld PAETOLLLE £ Kol TV GUYKALION
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TV 000 OVTAOV KATELOHVGE®MV GLYKEKPIUEVA GTO TAOIGLO TV LOVTEAWDV SLOUOPP®ONG Gto-
yme. Avto akpipog to Tpintuyo ivat mov Bo TpocTadcovLE Vo EKUETAAAEVTOVE KoL EULELS,
AmTAMG G€ £VaL Lo OTPLPVO ToyVIoOEmPNTIKO LOVTELD KO XPNCILOTOLOVTOG ALYO O TPOY®-
PNUEVES KOl TPOCPATES TEYVIKEC.

Keivovtag ovtd to PHEPog TS E10ay®YNG, AOUTOV, 0G 0pIGOLLLE TO LovTEAO paG. [Ipokeitat
Yo o apKETO PLGLOAOYIKT] ETEKTOGT TOV HOVTEAOL TOV [ ], n omoia ewoMyON and
toug Bhawalkar, Gollapudi ko Munagala cto | ]. H enéxraon eivan 61t ta éipn tov
OkTOOVL dev etvan TAEOV aTabepd, OAAG peTafaAlovTon oAANAoETNPEalOUEVA LE TIC ATOYELS
TOV TOUIKTOV. ZVYKEKPIUEVA, Ol GLVOPTNOELS KOGTOVG TMOV TOUKTOV 00 Eiva:

cil@) = (1= pi) D (@) - (w5 = 23)* + pils — 5:)?

J#
6mov o1 GuVapTAGELS Papdv vrotiBetar Tt TpokdmToLV WG ¢ij(T—;) = Fi(di, d";_;), pe
d; = |z; — 8| xou Fj pa ovveyn ovvaptnon ¢bivovca 6to mpdto Opiopa kot avovoa

oto vrorota. Me amAd Adyia, to BApog mov divel 0 ¢ otov J eEapTdtorl amd To TOGO KOVTA
BplokeTon 1 d&roym TOL j Ao TNV EGOTEPIKT| ATOYT TOV %, GE GYECT| OULMOG LE TO TOGO KOVTA
Bpiokovtotl avticToryo Kot TV VTOAOITOV TOIKTMV.

1.1.1 Kevrpwkd Epomipoata

Mia KevTpikn epmMTNGT, KO QLTI TOL OGS EVOLOPEPEL, Y10 OTOLOINTOTE LOVTEAOD OLapOp-
QMONG droyng etval To KoTd TOGO 01 TPAKTOPESG CLYKAIVOLV, TEAMKA, GE KATO10 oNUeio 160p-
pomiag, Lo moieg cLVONKES, AALA Kot OGO Ypiyopa cupPaivel avtod.

[N ta povtéda mov £xovpe ovaeEPEL, AVTA TO EPMTALATA EXOVV €V TOAAOIG amavTnOet.
"Hon amd 1o | ] etvar yvwotd 611 oto poviého DeGroot o1 mpdktopeg TEMKA GUYKAIL-
VoLV G€ OpoQ®Vvia, OnAadr 0Aot otny 1010 Aoy (To mota dmoyn e€aptdtal omd Ta Papn Kot
TIG apykég amdyelg). 1o poviého FJ, ot mpaktopeg kot mdAl GuykAivouv, avuti ) @opd o€
€va TOAD GUYKEKPIUEVO TPOPIA amdyewv (ONA. aveEapTNTOC TOV OPYIKOV TOVG ATOYEMV).
Kot ot1g 600 mepumtdoetg, peténerta 00vAeEg (m.y. [ 1) éxovv dei&etl 6T | cVYKAION
etvat ypryopn, cvykekpluéva Aoyoplpiky 6to % (6mov € M ATOCTUCN-GTOYOG OO TO TEAKO
op1o).

Metapaivovtog oto mAaicto g Bempiog moryvimv, mov givarl Kot 0vTo Tov Hog EVOlapE-
peL, avti Yoo amAmg otabepd onueio, pmopode v alomocove TNV KEVIPIKNY £VVOLa TNG
ooppomiog Nash. I'a mapaderypa, ot Bindel, Kleinberg kot Oren dgiyvovv oto [ 16T
T0 TOYVIoBemPNTIKO TOLG HOVTELD €xel pia Kot povadik iooppomio Nash, 1 omoia mpémet
va tavtileTon pe o onueio wwoppomiog Tov FJ apov cuykiivel e avtiv 1 duvapikn PEATL-
oG anoxkpione. Apa, yvopilovpe 0Tt 01 TAIKTEG GLYKAIVOUV GTNV 1GOPPOTia, Kot LAAMGTO
Ypyopa.

270 O1KO HOG HLOVTEAO, OL 1IO10TNTEG AVTEG OV €ival dLVATO VA ATOdEOOVV e TOV 1010
tpomo. [Hopdia avtd, ta mailyvia mov pog evolagépovy cuveyilovv va givar koida maiyvia.
Avt0, 6mwg Ba dovpe, onuaivel 6Tl TavTa £xovv ToLAdyoToV pia ooppomion Nash, o Tpod-
TOG VIOAOYIGHOV TNG, OULMC, KO 1] VTOAOYIGTIKT] TNG TOAVTAOKOTNTA £IVOL OVOIKTA TPOPAT-
pato. Yapyel, ®otdco, pia tpoceatrn epyosio tov MeptikémovAiov kot Zhou [ ],
OTNV OToi0 OOOEIKVVETOL OTL Yia, pia pLeydAN VoKt yopio KOIA®V Tonyviov (To aveTnpog
dryoving Koilo, CuYKEKPIUEVR) 1) 1GOPPOTLO UTOPEL VO VTOAOYLIOTEL ATOSOTIKA LECH EVOG
alyopiBpov kuptig PedtioTonoinong. Avtd akpi®g T0 ATOTEAEGA TPOGTOOOVILE VO EKLLE-
TAALEVTOVHE GTNV TTOPOVSA EPYACia, VIO TNV £vvola OTL, OV KOTOPEPOVUE VO OE1EOVUE Yo
Kdmolo wotyvio 0Tt €lval avoTNPOS doy®Vimg Koida, TOTE AUESHOS EXOVUE TNV €yyONoN OTL
OT0 TOLYVIOL AVTE UTOPEL VOL VTTOAOYIGTEL ATOOOTIKA 1 1IGOPPOTTLQL.
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1.1.2 Xvveispopa

Katapybs, amodetcvoovpe 0Tl 610 GUVEEEMKTIKA Ttatyvia Stopdpemong dmoyng 1 ov-
ompn Saymvia kothdtnTa (concavity) eivat 16odvvaun pe pio cuvOnKn opaAdTNTAG OTIG
angwovicelg BEATIOTG amoKkplong Tov Ttaktdv. Ot BEATIoTEG amokpioelg gival, Kot oA,
évag LEGOG 0POG TV ATOYEMY TOV VITOAOITOV TAUKTAOV, KOl 1] GLVONKN VTN, AEeL, adpd, OTL
OTOV 01 TOUKTEC LETAKIVOUVTOL, O1 LEGOL OPOL OEV TPEMEL VO, LETAKIVOUVTOL owBaipeTal TOAD.

To mapamdve £xel og cuvémetn kat pio cuvOnkm Lipschitz ) oroia ivat povo ucovn, oAAd
mo dlayelpioyn. EmmAéov, n cuvOnkm oot e€aptdrot amd Toug Tapdyovies anTonenoitnong
TV TokTOV. Mio ueon cuvéneio g cuvOnKng avtg etvat 0Tt €dv ot maiiktes efvat ETOPKOS
emipovol (aAAG Oyt povo yuw p; = 1, mov givar gvkoAo va derybet), T0Te T0 Tatyvio Ba sivar
avotnpd dlarydvia Koiio.

21 ovvéyeln, eEeTAlOVIE EAAPPDG T TEPLOPIGUEVES (AAAG Glyovpa Un TETPUUEVES)
VROKAQGELS TOV TOLYVIOV QUTOV KOl TOCOTIKOTOLOVUE TEPULTEP® TO TAPOUTAV® OTOTEAE-
OHOTO, QPACCOVTOS KATAAANAN TIC TOPAYDYOLS TV HECHV Op®V (G CLVAPTICEDV TOV
andyewv). Katdmv 1o0tov, KataAnyovue g Evay Tpomo amddeiéng tg avoTnpng O1oydviog
KOWAOTNTOG Y10 OTOLOONTOTE MO{YVIO GTO OTOI0 1) OWTOTENOIONON TOV TOUUKTOV EIval TAV®
and éva katdeAl. H tiun tov katoeAiov kabopiletar and ta gpdypota mov Ba katapépet
KaVeic vo Bpet Yo TIg uvapTAGELS Pap®dV Kot TIG TOPAyDYOVG TOVG,.

Omndte, TeEMKd, N 0LOTNPN SyOVIO KOIAOTNTO 1GYVEL GE OAEG AVTEG TIG TEPIMTAOGELS, TO
omoio pe TN ogpd Tov onpaivel 6Tt 0 ahyopBpoc and to [ ] mpdypott cuykiiver ypni-
YOPO. GTN LOVASIKT) IGOPPOTIOL VTMV TMV GLVEEEMKTIKMV TOLY VIOV SLUHOPP®ONS dmoyng, Ta
omoia, amAdc, elval KAT®S TEPLOPIGUEVA, DTTO TNV EVvola OTL 1] AVTOTENOIONON TOV TAKTOV
TpEMEL VAL gfvon 0pKeETA KOVTA 6T0 1.

To 0e0TEPO PEPOG TOV ATOTEAEGUATOV LOG OLPOPA TIG TOPATNPNOELS TOV KAVOUE OTAV
TPOCTAONGOLE VO, LEAETIGOVLE TO LOVTEAO LEG® TPOGOUOIDGEMY (AOY® TNG SLGKOALNG VoL
deiéovpe woyvpdtepa amoterécpara). Mio dueon mapotipnon Nrov Oti, 6 OA To T Vidlo
nov g&etdoape, o ahyoplBrog cuYKALvEL 6€ 1GOppoTia, Kol LAAMGTO apKETA Yp1iyopa. Evoet-
KTIKA, Tpocopolwoape moyviowa pe éog 10000 maiktec, kot n cOyKAoN EXAPKOG KOVTE GE
wooppomia giye mavra emrtevydel petd amd 200 yHpovg To TOAD.

"Eva evdiagépov évpnua nTav 0T, ¢ TPog TV Loy amdoTao, 1 TaOTNTe cVyKAong (o
aplOpog TV yYopwv, GUYKEKPIUEVA) TOL adyopiBuov oev épotale va eaptdtot amd To TAN00C
TOV TOKTOV. ANAadY], 0 ke Taikng pTove Kovid ot BEATIOTH TOL ATOKPIOT TAVE® KATM
o€ otabepd TANBoC YOp®V, aveEAPTNTO TOV TANOOLE TOV TUKTOV. ATO TNV GAAN, M| TOYV-
™t €E0PTATUL APKETE omd TNV EMAOYT TNG SLVAPTNONG Papdv, pe TNV TEMKT| amdoTOoN
and TV 1eppomia vo kupaivetar and ~ 1072 éog ~ 1074, 1o onoio, cuykpitikd, deiyvel 6Tt
Y10 KATOES GLVOPTNGELS BapdV amatteiton TEPIGCOTEPOS XPOVOS Yo T GVYKAGN. Alyo o
GLYKEKPIUEVO, OO TIG GLVOPTNGELS TOV EAEYEQE, AVTEG TOV YPEWCTNKAY TO TEPICGOTEPO
NTOV OVTEG TOV HETAPAAAOVTOL TTLO TTOAD LLE TNV OTOGTOON HETAED TOV amoOyemV. Aloonel-
®TO Og, OTL Y10 AVTEG TIG GLVOPTNGELG NTOV KO TTLO EDKOAO Vo BPOVLLE TOPASELYLOTO OTTOV M)
oA, Suvapukn BEATIOTNG AmOKPIoNG OEV TETVYOVE GUYKALOT).

Télog, eEléyyovtag aplOUNTIKA TV aVoTNPN SLoyMOVIO KOIAOTNTO, BprKape 0Tl VITAPYOLV
OTTOKAIGELS, OV KOl LIKPEG. ZVYKEKPLUEVA, OTOV Ta Bépn TG aAANAETIdOpao S LETAED T®V TToL-
KT®V TEQTOLV (mepinov) og 1/d og mpog v amdotaon d peta&d 500 TokTdVv, TOTE VIAPYOVV
ONUEINL GTOV YDPO TWV ATOYEWDV OTTOV 1] AVGTNPN OYDVIO. KOIAOTNTO OV 1GYVEL. ALTO Ti-
Bavotata givor cuvémewa g amdTopung petafoing tov 1/d kovtd oto 0.

Katomy todrov, oev ivar OAa o cuveEeMKTIKA TTotyvia S1apdpemong droyns avotnpd
Sy®dvia KotAa, Kot ovto eENyel, o kdmolo Paduod, kot Tic SVCKOMES TOV AVTIUETOTICANE
kabmg Tpoorabovoape va deiéovpe avarvtikd amoteléopato. Tavtdypova, ol aTOKAMGELS
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mov PBprkope givorl mhpa moAD piKpé, To omoio e&nyel ywoti o adyopBuog dovAeye TGO
KOAQ (TOLAGYIGTOV GTO TOAYVIO TTOV PEAETICOUE KO TPOGOUOIOGOE). Emeidn, mpaktikd, 1
ovvONK”M oYeddV 1oy VEL.

1.2 Ogopntiko Yropabpo

Yg autn TV TopAypaeo, Bo TAPOVGLACOVIE GTOV aVAYVOGTY Hio TOAD cOvIoun £oa-
Yoy o€ otolyeio ¢ Bempiog maryviov Kot g Kuptig PeAtioTonoinong, 6to fabud mov
VT £Vl ATAPOITNTO MOTE VAL £Ivail GO TO dSVVATOV OIKEIEG 01 EVVOLEG TTOL (PN GLULOTOLOVLLE.

1.2.1 Ozopio Horyviov kol Koira Haiyvia

Ag Eextvnoovpe pe TIG £VVOLEG TOV TTatyviov, TOV KOIAov moryviov Kot NG 160ppoTmiog
Nash. Ta maiyvia mov pog evolapépouvv arotedovvtal and Evav apfud touktdv N, kobévag
€K TV omoilov emAéyel o oTpatnyikn and Kamowo cvvoro X;, 10 omoio Bempolpe mhvta
ot gival KopTé Ko GVpTaYEG VITOGHVOLO Kamolov EvAeidion xdpov R? (umopodue v to
OKEPTOLOOTE WG KATO10 EAAELYOEIDES). O1 amOAUPEC TOV TTATKTI KOOUKOTOI0UVTOL LEG® Ui0G
cvvapmong képdovg u;: X — R, émov X' = [, ;. Anhadn, yo k4B mpo@ik = TV oTpo-
mywdV Tov Erovv drahé€el Ohot o1 Taikteg, o Taikng @ kepdilel u; ().

Koila maiyvia aroxariodpue avtd ot omoio 1 cuvapton u;(x;; z—;) lvor Koikn cuvap-
on g HeTaPANTAC 4, Y10 omowadymote cuykekpuévn Tipf tov z_; . Ta xoika maiyvia
amoteAolv, Katd Paon, pio mtpoordOela va enektabel n Evvola ¢ KoiAng cvuvdptnong (m
omoia, OTm¢ Ba dovpe, etvar KevIpikn| Yo TNV avdmtuén pebodwv PertioTonoinong) oto mot-
yvioBempntikd TAaicto.

Kevtpum, pvoikd, etvarn évvola g teoppomiag Nash, ) onoia opileton mg omotodnmote
TPOQIA GTPATNYIKOV GTO OTOI0 KOVEVOG TOUKTNG OV £XEL CUUPEPOV VAL OAAAEEL LOVOUEPMG
TNV 6TPATNYIKY TOV. ZVUPoAKd, To Tpoil z* € X eivar woopporic Nash av yia kd0e maiktn
1 1oY(VEL:

wi(z], ™) > wi(zy, ;) yiakébe x; € X;

‘Eva mpd1o Boacikd amotéhespa, AoV, Tov 0QeiAeTal 6T YVOOTH pyacia Tov Rosen
[ ], elvan 011 g€ kG Be Koilo maiyvio, vapyel TovAdyioTov uio 1opporio. Nash.

O Rosen opmg dev meplopiletar e avto, aArd PAEnEL To. Kofha Taiyvia Kot amd v
TAELPA NG KLPTNG PerTioTomoinong, katd kdmowov Tpomo. Opilel v évvoln TG aVETN-
PG OLAYAVIOG KOLAOTITAGS, 1 OTTO10L YEVIKEVEL TNV £VVOL0L TNG QVGTNPDG KOIANG GLVAPTNONG,
eMPAALOVTOG 0TO TTAYVIO VA AVTIGTOLXO TNG YVMOOTNG CLVONKNG KOIAOTNTOG TPMTNG TAENCS
(Vf(2) =V [f(x), 2 —x) < 0. Avtf Aéet, pe amhd Aoyia, 6Tt o1 katevhuvopeveg Tapdymyot
™G f KOt PAKOG OTOGONTOTE YPOUUNG Elval Yvnoimg eBivovceg. Avtd mov Aéet, Aomdv,
1 QVGTNPN SYDOVIE KOIAOTNTO Elval va 1oYVEL TO 1010 Yo TNV erovopalopevn YevdokAion
(pseudogradient) tov aityviov, Tov dev givat TimoTa AAAO TaPE TO S1AVLG O TOV “Oloyovioy”
KMOE®V TOV GLVOPTNGE®V KEPOOVS, ONANON:

v(x) = (Vyui(z), ..., Veyun(z))

Aniadn|, to maiyvio (1] o1 GVVAPTNGELS KEPOOVS TOV) AEYETOL ALGTNPAOS OYOVIMG KOTAO
OTav oyvEL:

Z(quz(x') — V,ui(z), 2 — x;) < 0y kb x # o’

(2

! Svppoifovpe pe (245 ;) T0 TPOPIA CTPOTNYIKGY T, ATAL Y10, TIG TEPUTTMOGELS OOV BELOVLLE VoL TOVIGOLUE
TNV OTPATNYIKN TOV EMAEYEL O © EVOVTL TV GTPOUTINYIKAOV TOL EMAEYOLV OAOL 01 GAAOL.
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1N, XPNOOTOLOVTOG TNV YELOOKAION:
(v(z') —v(z),2" — x) < 0y K60 = # 2

omov pe (-, -) cvpfoiilovpe T0 E6MTEPIKO YIVOLEVO.

€ oUTY| TV TEPINTOON, 610 [ ] amodeucvieTot Tt To TOLYVIO £XEL HOVOLOLKT) LGOP-
poria Nash. EmumAéov, vdpyel Suvopukn Tov GUYKAIVEL 6TV LOVOOIKT OVTH 1GOPPOTiaL,
XOPIC, ®GTOGO, VO EYOVUE KATOL £YYUNON Y10 TNV TAXVTNTO GOYKAIGNG.

1.2.2 Kvpt Bertiotomoinon

"Evag cuvnOng tpoémog mpocEyyiong yio To TpOBAN e TOV VITOAOYIoHOV 1ooppomiwv Nash
elval péow texviK®v amd tnv Kupt feAtiotonoinon (ko dueon - online - kupt feATioTONOL-
non). Avto oyvet kotd peilova A0Yo yia to Tailyvie, SUVAUIKOD, OOV 0 VITOAOYIGUOS 1G0p-
POTLAOV €lval €V TEALEL 1GOSVVANOG LE TV Evpeon PErTIOTOV oNUElDV Y10 KATO GLVAPTNON
duvapkov. Qotdc0, YPNOYLEG CLUVOIEGELS KOl GUUTEPAGLOTO LTOPOVV VAL TPOKVYOLV KoLl Y10,
O YEVIKEG KOt yopieg Taryvimv, 6mmg Oa dovpe apyotepa.

Kartapyds, ag Eexvrioovpe pe v €vvola tng kuptottag. [ToAd cvvropa, 600 Paocikég
évvoleg KuptotnTog VIapyovy. ‘Eva 6vvoro Adyetal kuptd dtav 10 EVOVYPOLIO TUHHO TTOV
EVAOVEL OVO OTOLONTOTE CTUELN TOL AVIKEL £ OAOKANPOL GTO GUVOLO (YOPUKTNPLIOTIKO TToL-
PAdELYLLOL KLPTOL GLVOLOVL eivar Eva EAAENYOELOEC). AN Kot piot 6VVAPTIION AEYETOL KUPTY|
otav 1 mpocéyyion (avantuyua Taylor) mpdtng T4ENG YOP® 0md 0TO0ONTOTE GNUEID TNG
Bpioketar €§ oAokANpoL KAT® amd TNV GCLVAPTNON.

e YEVIKEC YPOAUUES, 1 M YPNOUOTNTO TOV KUPTMOV GUVAPTICEDV EYKEITOL GTO OTL UITO-
POVUE VO VTTOAOYIGOVUE T EAGYIOTA TOVG OTOSOTIKE, KOOMS £yovv TV 1010TNTA OTL KAOE
TOTIKO EAGYIOTO £ivor Ko OAKO (§xete 610 PVakd cag ™V [|z||2 f TV TeTpayovikny ||z[|3).
Omndte, axorovBmvtag Kotd Bdon v avtiBe KatevBuvon and v kAion (to gradient) tng
cuvdptnong, mTov Onwg yvaopilovpe givor  katevBovon peyiomg peimwong e cuvapTNONG,
KaToAyoupe TEMKA oty Katafo0pa” mov givor To olkd g eAdyioto. H o amdn exdoym
g emovoualopevng kaBddov kiiong, oe daxpitd Prpata, ival n eENc:

T4l = T — %Vf(ft)

omov f elvar n (kvptn) cvvéptnon mov BEhovpe va grayioTonomcovpe, Kot v, > 0 eivon
TO UNKOG TOL PNHOTOG KATA TO OToio PETOKIVEITOL 0 aAYOP1OLOg KaTd TV Kotevhuven g
KAMong.

duokad, yperalovion KAmolEg TPOCUPUOYES Y10 TEPUTTAOGELS OTOV TO EMTPENTO GUVOAO
TOV T 0V €lvarl OAOG 0 YOPOGS, 0ALA 1 PactKY| 10€a eivan VTN, Kal, Topd TNV arAdTNTA TOV,
0 oAyOp1Ooc avTOG Umopet vor amodetyOel 0Tt yio LEYAAEG VITOKAGCELS TMV KVPTOV GUVOPTY-
CEMV, KO 0V TO UKOG TOV Prpatog emieyel KatdAAnia, uropei va ptdoet avbaipeto Kovtd
o€ EAAYIOTO TNG GLVAPTNONG, GE YPOVO TOAVMVULLIKO.

Na onpeiwcovpe £dm, emeldn {omg va vdpyel pio pkpr cOyyvon He T EVAAAAYES Le-
ta&h eAo16TOTOINONG KO LEYIGTOTOINONG, OTL AVTIGTOL(O LLE TNV £VVOLa TNG KVPTIG CLVAP-
ong opileTon ko 1 £vvola TG KOIANG cuvaptnomng, ONANON TPOKELTAL OVGLUGTIKA Yol o
ouvaptnomn mov 1 avtiBetn g etvar kupt. H avtictoyia, Aowmdv, and ekel ko mépa eivar
EAAYLOTOTOINGN - KLPTOTNTA - GLVAPTNOY KOGTOLG KOl LLEYIGTOTOINOT) - KOIAOTNTA - GUVAP-
on képdovg’.

2 Ev yévet, oty BipMoypagia mepi PEATIGTOMOINGNC TPOTIdVTAL TO KOGTN, EVA 6TN PifAtoypapio Tepi Oe-
opiog Toryviov ta KEPOT|, aALd e eE0ipeoT) QVTA TOL EIBULE KOt APOPOLV T1 SLOUOPPDGCT ATOYTG, OOV TAAL
ovvB®G etvat KOoTN. AVTG givat Kot 0 AGY0G TOV GTNV TAPOVGA EPYUCIH EVOAAAGGOLOCTE GLYVE LETAED TV
dvo.
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TéNog, va kGvovpe pio pkpn avaeopd Kot 6Ty Guect Kupt PeAtiotonoinon, 1 omoio
aQopd TAEOV TEPUTTAOGELS OTOV eV £xovpe pio pdvo cuvaptnon, aAld vtapyel o Stadt-
Kaoio mov amoteleiton omd dlokplTovg YOPOLS, Kol 6e Kabe yOpo pog divetar kot pio oto-
(POPETIKT GLVAPTNOT KOGTOVG, LE TEAIKO GTOYO VO TETVYOVUE OGO TO OLVATOV UIKPOTEPO
GLVOAKO KOGTOG Ge OAOVG ToLG YOpoug. Elvar mpopavég 61t avtd oe mAnpn yevikdtnta dev
pmopet va £xet VTEPPOAIKA KOAEG EYYUNGELS (TT.). GVYKPLOT UE TN PEATIOT €K TOV VOTEP®V
Adom), maporo avtd ivor aloonueiwto Otl, Yo KUPTEG CLVOPTNOELS, UTOopel var emtevyDel
pio avamdvteyn eyyomon, péow aryopiBumv avtiotoiywv pe v kdbodo kiiong. Zvykekpi-
péva, EYKETOL 0TI GUYKPIoN TOL KOGTOVG TOV OAYOpiOHov Hog pe 1o KOGTOG TG PEATIOTNG
€K TOV VOTEPMOV GTATIKNG AMOKPIONG, ONASY| TOL onueiov mov, av Eépape €€ apyns Tt ov-
vaptnoelg Ba pag Swbodv, ahdd NUacTaY VITOYPE®UEVOL VA ETAEEOVLE EVal KO LOVO oTueio,
avto Ba NBav 0 BEATIOTO. ALt M pEeTpkn ovopdleTon peTapéiera (regret) Kou opiletan ¢
aKpPdg 1 010popd HETAED TMV dVO GUVOAIK®OV (NUIDV:

T
R(T) = gleaé’)((; fe(zs) — filw)
omov 1T’ givan 0 ekdoToTE YPovikdg opilovtag g d10d1Kaciog.

Katomv todtov, évag adydpiBuog Bewpodpe 6Tt GUUTEPLPEPETOL KOAGL KOL TOV OITOKOL-
Aovpue yopic-petapéietn (no-regret), 6tav n péon petapérela kobmg 1o T° — oo teivel 610
0, | wodvvapa, R(T) = o(T).

"Evag adyopBpog mov €xel kaAég eyyunoelg vd mopOpHoleg TPpodmobEcELS e TNV ol
Kk@00d0 KAiong elval 1 aueon KaBodog KAIoNnG, Tov OV eivon TopdL:

Tp1 = 2 — %V fe(we)

T Tov akyopdpo avtd, amodeucvistot 6Tt R(T) = O(V/T) vid opiopéves mpoimodé-
OELG, KO K0T €MEKTAOT Elvan Yopis-petapéreia alyopifpog. O yopic-petapédieto ahyopOpnog
oL Ba pog evolapépet PG, woTdG0, etvarl AALOG, Kot Oa Tov do0UE oTNV ETOUEVT EVOTNTO.

Toco yia v Kupt PerticTomoinon, 6GO Kat yio TNV AUeS Kuptn PeAtioTonoinom, y
TEPLOCOTEPEG AETTOUEPELG TOPATEUTOVLE TOV OVOLYVDGTY| G KATOL0 0t TO, TOAAN TOLOTIKO-
TATO CLYYPAULOTO TTOL VTTAPYOVY otV PifAoypagia (w.y. [ , D.

1.2.3 Kvpt Berktiotomoinon ko IHaiyvia

Kleivovpe pe pio pkpr] avoeopd oty KAACT TGOV ToLyviov SUVOULKOV, LE GKOTO Vo
avadeifovpe TV 1oYLPY CHLVOEST OV VILAPYEL, G KATOIEG TEPUTTAOOCELS, LETAED NG PeATI-
otomoinong Kot g Bewpiog maryviov (GLYKEKPIEVA, TOV VITOAOYIGUO 1GOPPOTIDV).

Definition 1.1 (ITaiyvio Avvopkov). Eva maiyvio G(N, (X;)icny, (wi)ic[n]) Kaleitor maiyvio
ovvopukod (potential game) eav vmdpyet kamora ovvaptnon ¢: X — R téroia dote:
wi(Yi, v—i) — wilzi, 2-i) = P(yi, v—i) — P(zi,04)

Otav vadpyovv mapdywyol, o mapandve oplopds ivor 1600HVaOG Pe TV KAT®MG T
apeom oyéon:
Vo(z) = v(x)

onAaodn 1 yevdokAion tov matyviov TavtileTon pe v KAion g .
Katomy todtov, umopovpe va copmepdvoope 0Tt o1 1coppomieg Nash tov maryviov avti-
oTOLYOVV OTA TOTIKA LEYIOTA TNG CLVAPTNOTNG SLVOUIKOD (Y10l GUVAPTHOELS KOGTOVC, TOMTIKOL
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eldyrota). Omote, 10 TPOPAN LA VTOAOYIGHOV IGOPPOTUDY UETOTPENETAL GE TPOPANLAL LEYL-
otomoinong pog (Babumtng) cuvapTnong, Yo To 0moio PUOIKAE, oV VITAPYEL Ol KATOAANAES
TpovTobEsElC, Lmopohv va yxpnoipomoinfodv ot d1apopwv e10dV HEBodot KAlong mov yvopi-
Covpe amd v kvpTtn PelTioTomoinon.

"Eva epdtnpa, ooy, petd ivar to Tt 0o supPel av mape Kot EQapUOGOVLE TETOLO0VG OA-
YopiBpovg Kol 6€ Talyvio TOL dEV £Y0VV SLVAUIKO, ATANDG XPNCLOTOLOVTOS TNV WYEVOOKAION
ot Béon g KAhiong. Mia mBav andvinon ce avtd ivon o amoTEAEGHATA TOV [ 1
T omoia O SOVUE BTN GLVEKELD.

1.3 Koiia IHaiyvia kot 0 ALyopiOpog Dual Averaging

2V evotnta avtr, 0o cGuvoyicove To AmTOTEAEG AT TOV [ ]. ®vokd, to amote-
Aéopata etvot Tapo TOAAN, OTOTE EMKEVTIPMOVOLOGTE GE QLTE TO, OTTOT0L LOIG EVOLUPEPOLV KO
TOL YPNOLUOTOLOVE TNV OIKN HoG epyacio. Me Alya Adyia, avtd mov katd Baon pog evolaps-
pELEVOL OTL GE OA TO LG TNPOG SLAYOVIWS KOTA Taiyvia (LAMGOTA, £VO, VTEPGVVOLO QLTAOV),
vrdpyel Evag aAyOPOIOg TOV AVIKEL GTNV YEVIKY] oumpéAda TV mirror descent akyopiOumv
Kol cLyKAivel oty (Lovadikn) weoppomia Nash o moAvmvopukod ypovo.

EeKvape pe v meptypar Tov alyopifuov avtov. Ipdxettat yio Evay oyetikd omlod oh-
Y0p1Bp0, evpémg Yvooto ot Piloypapia mepi dpeons ertictomoinong (tpmtn epedvion
ot0 [ 1), o omolog mpocapudotnke and to [ ] oto maryvioBewpntikd TAiG1O.
Y7o opiopéveg yarapéc mpobmobioets, eivon ympic-petapéieta (m.y. [ , 1) ko,
eve 0ev aoyoindnkape wioitepa pe avtd otV epyacia pag, eivor pio onpavtikn ora,
N omoia £yyvatal KOAEC GUVOMKEG AOAOPES Yo TOV EKAGTOTE TOKTY KO, KOTG GUVETELD,
etvan pia taktikn mov gival oAb mbavov va Ty EpapuoOGoLV TPayUATIKOT EEVTVOL TOIKTEG.

O alyopBuog Aettovpyel wg e&nc. Kébe maiktng kpatdet 600 onueio avd tdco otrypn:
NV TPEXOVONU GTPUTNYIKY TOL Z;; € AXj, mov givarl 1 otpatnykn v omoio Oa maifer oe
KAa0e yvpo ¢ tov moryviov, kot évo GAAo onueto y; ¢ T0 omoio petaxiveitol eAevOepa GTOV
nepPdiiovta xmpo. e kéOe yOpo, vroroyilel 10 y; 111 KavovTag Eva ehedOepo Pripa oTnv
KatevBuvon g kKhiong V., u; () (xopig va Aappdvet vroyn av KotaAnyel LEGO 6TO GUVOAO
TV GTPOTNYIK®V TOL 1) O)L), KOl TO Z; ; TPoPdArovtag (vd pia yevikn £vvola) T y; ¢ GTO
GUVOAO TV GTPUTNYIKOV.

Me gl Aoy, Ba propovoape va movpe 6t 0 adyoplfpog potalet pe v mpoPePAnuévn
ka0060 kAiong (projected gradient descent), pe T d10popd OTLTO ¥; ¢ dEV TO Sroryplipel TEAeim
peTd omd kdbe P KpoTdvTag Hovo TNV TpoPforr, aArd To Kpatdel, Kol KAVEL TO ETOUEVO
Bruo pe opuntiplo awtd To onpueio.

Tomkd, Eexvavtag pe Kamolo avBaipeto v, T0 YeVIKO alyoplOuikd oynua TeptypaeeTon
and TG eE1I0DGEIC:

Tit = Willi
¢ = Qi(yiz) (DA)
Yitr1 = Yig + %Vziuz‘(ft)
Omov:
o Ta Q; etvan yevikevpéveg mpoPoiéc, mov ovopdlovion choice maps. I'a gpdg, Oa sivan
ot amiég eviheidiec TpoPoréc’, Snhadn:

Qi(y:) = argmin ||z; — |2

xr;, €EX;

3 Ot choice maps mov TEPLYPAPOVTOL 6TO [ ] etvor ToAD mo yevikég, kot facifoviol oe EVVoleg Tng Kup-
G aviivong 6mmg 1 kKupth cvluyng piog cuvaptnong. Ot Evideidieg mpoforég eival e1dtkn Toug mepintmon,
OALQ YLOL TOVG GKOTOVG LOG OLPKEL.
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e Ta v, tvor pia Bivovsa axolovdio pnkdv Tev Pyudtov, Tomkd mg popehg 1/t7 yio
kémowo 5 € (0, 1].

e To V,,u;(x;) givon 1 emovopalopevn “idrokiion” tov maiktn ¢ 610 Tpoeil oTparTnytl-
KOV Ty (Lepkég Popég iomg to cupforilovpe kot g v;(z;)). EmmAéov, cupporifovpe
V. = max,cy ||v(z)]«. Hopatmpnote 6TL ovTo TO HEYIGTO VIAPYEL TAVTOL, POV EXOVLLE
vroBéoetl 6t To X eivan cupmayés kat 1 wevdokion v(x) givar cvveyng cuvapTnon.

1.3.1 Xvykhon o€ Ilooppomia,

To Baockd amotéreopa 0@ glval To akOA0LOO:

Theorem 1.2. X¢ éva avotnpag diaywviwg koilo waiyvio, av 0A0l 01 TOIKTES EPOPUOLOVY TOV
aryopiQuo (DA), tote t0 Tpopil apatnyikwv x; Qo ovykiiver atn (Lovadikn) 1copporio Nash
70V TOIYVIOV (VIO YOAOPES TPODTOOETELS YIoL TOL UNKH PHUOTOS V).

To amotéleopa avtd eival, LOIKAE, TOAD eVOLAPEPOV Kot OmOTEAEL £val TpdTO Prua,
®WGTHGO OVTO TOL TPUYUATIKA Lo EVOLOQEPEL Elval GE TEMEPACUEVO XPOVO TL YiveTan. Mmo-
POVLE VO TETOYOVLE EYYVNGELS OVTIGTOLYES LE OVTEG TTOV LITAPYOLV Y10, TIG SLAPOPES LEBOOOVG
KkaB0d0v KAiong otV amAn Kvupt PerTioTonoinon (T.y. OTL PTAVOLUE £-KOVTH 6TO BEATIOTO
/ otV 16oppomia o€ ypdvo O(1/¢));

1.3.2 Toyvtmnro Xoykiong

Yndpyovv 600 HETPIKEG TTOV YPTCLLOTOLOVVTOL GTO [ ] Y1 va deryBei 1 amodoTiko-
ta tov aAyopiBuov Dual Averaging. H pia eivor | péon andotoon amd Ty 160ppomio Kot
N &AAn to running length.

H péon andotaon and v woppomio otov youpo t opiletar mg:

o= 25:1 %.H:L’T - x*HQ

t— t
Z‘r:l 77'

Amotelel, Lomdv, ToV PHEGO OPO TV ATOCTAGEMY KAOE onpeiov amd To 0moio mePVAEL O
aAyOpOLOG Ao TV 160pPoTia, GTNV 0Toi0 TEMKAE GUYKALVEL
A6 Vv dAAn, To running length oto yVpo ¢ opiletar wc:

t—1
gt - Z ||l’7—+1 - xT||2
T=1

Katé cvvénegia, TpoKeTor KUPLOAEKTIKE Y10t TO GUVOAKO “UNKOG” oV £xEL dlaypaweL N
TPOYL& TOV ahyopiBuov otov ydpo X £€wg Kot Tov yvpo t.

TéNog, Ba ypelactohv 600 aKOUO EVVOIEG Y10 VO LTTOPEGOVE VO SLULTLITMGOVUE TIC EYYV-
NoeLg Tov [ ]. Ev ovvtopia:

o Q= max,cy 1||z|3—mingex 5||z||3. H otobepd avth mpoxdntet amd Tov 1pomo pe tov
omoio opilovtat Ta yevikd choice maps (ko pe Tov omoio dev Ba acyoinbolpe £dM).
Etvon évag amd Toug 600 TopdyovieS TOL TEPLEXOLV TNV EMIOPACT] TNG OIUCTACNG GTO
TOPaKATO Qpayuata (o GAAog eival To L mov Bo dovpe apéowms HeTd).
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o Amouteiton pion ELOPPAOC TO 1OYLPT LOPPT TNG ALGTNPNG OOYDOVIOG KOIAOTN TGS, TNV
omoia ovopdalovpe 1oyvpn doymdvie koot Ta (strong diagonal concavity)?, kot Sev
elvarl Tapd M TPOGAPUOYN TNG AVTIGTOYYNG GLVONKNG Yo TIG 1oYVPd Koideg PabuwTtég
cuvaptnoels. 'Etot, 1o matyvio Aépe o6tt elval L 1oyvpmg dtoymving koilo av ioyvet:

(v(2') —v(x), 2 —2) < L||2’ — 2||3 yia xébe = # 2’

Agdopévav, Aomdv, QVTOV TOV OPICU®V, TO. GPAYUATO TOV UOG EYYLATOL TO [ ]
&xouv ¢ eENC:

Theorem 1.3. Tpéyovrag tov alyopiBuo (DA) ge éva 1oyvpd diaywvimg koilo moiyvio, ue

arofepod unrog Pruotog v = V%, / %, yio. 1" pruoza, Oa 1cyver oti:

L Ve 29
/r’ — —

T=LVrT

Theorem 1.4. Tpéyovrog tov alyopiBuo (DA) e évo tyvpd draywviwgs koilo maiyvio, pe tyv
Tpoimoleon Y o Vi < oo, Ba 1oyver oni:

V2 o0
< EQ + 5 Zt:l 'Ytz

b < L g2

omov t. = inf{t > 0: ||x; — z*||a < €} eivar 0 IparTog ydpog arov omoio to mpoil orpaznyi-
K@V PpICKETAL E-KOVTO. TNV 100PPOTIIC.

Ta dV0 avtd anoteréopato pmopode va To Bempnoovpe Kot dvikd, Kotd pio £vvola,
KaBmG T0 TPAOTO PPAGGEL ATOGTACT) OTO TNV 1GOPPOTIN CLVAPTHGEL TOL “TOGO £TPEEE™ O QM-
YOp100G, Kot TO 0eVTEPO PPACTEL KATL GOV TO “TTOCO £TPEEE” 0 AAYOPIOLOC GLVOPTNGEL TNG
amdGTAONG-0TOYOL amd TNV oopporia. EmmpocHitme, n tédEn peyébovg tov TpmdTov epdy-
patog eivor O(1/y/T), evéd tov devtepov O(1/£2). Kot’ avtiv mv £vvolo, evwoope TV Sv-
ikdmTa, Kabmg 6nms yvopilovpe omd avtiotoryeg teputdcels Pertiotonoinong, to 1/ VT
xar to 1/€% givan 500 Sragopeticol 1608HvapoL TpOTOL Vo ekPpacTel 1 TaydTTA GUYKAIGNG
evog T€1010 aAyopifpov.

Ag oNUEI®GOVLE, EMIONG, OTL TO TPMOTO OTOTEAECUO, EYEL TO UELOVEKTNLO OTL TPEMEL VO,
&xel amoaciotel €€ apyng to mAN0og TV YupwV Yo To omoio Oa TpéEet o adkydpBpoc, Kot
10 pNKog Prpatog e€aptdrar amd avtd. To pelovéktnua, BERata, Tov dgvTéPov givar 0 6pog
> 02, 2, 0 omoiog propet Suvntikd va givar peydhog (aAAd ko n eEgpnon omd T didotoon,
10 omoio Ba yivel Alyo mo gpeavég 0tav Bo ePAPUOCOVLLE TO OTOTEAECUATO OVTE GTO KA
HoG Todyvia).

1.3.3 Eg@appoyn ota XoveCemktika Haiyvia

KAetvoovpe v evotro avt epappoloviag tov yevikd aiyopifpo tov Meptikdmoviov
ka1 Zhou ota cUVEEEMKTIKG TTatyvia SUOPPMOONS Amoyngs, Kot Ypdpoviag pntd Tic avti-
otoyes eElomaoelc. O oKomdg etvar va dovpe TAOG Hotdlel 0 aAydptOpog avtds oTo Okd Hog

4 2V mpaypotikdéTa, 610 [ ] xpnoyomoteital pia o yevikny cuvONKN avTi ™G 1oYLPNG, AAAG Kot
NG VG TNPNG Sy DVING KOAOTNTOG, TOL AyeTon variational stability kot avtiotoyel oto unimodality Twv fad-
LOTOV CUVAPTNCEMV, TOL EIVOLTLO YEVIKO A0 TNV QUGTN PN TOVS KOAOTNTO. ['eviKd, eivat apkeTd evolopépovoa
ovvONKN, aAAd €00 dev yperdletat va UTOOLE GE TETOEG AETTOUEPELEC.
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malyvia, L OTAOTOMGELS UTOopovV duvnTikd vo yivouv kAm. Koatdmv, otnv enduevn Kot te-
Aevtoia evotnTa, EKOETOVUE TO OMOTEAECUATA LG, TTOL APOPOVY TO KATH TOGO UTOPOVLLE VO
TovuE OTL 0 ahyOP1OHOC VTTOAOYILEL ATOJOTIKG TNV 1GOPPOTIN GE AVTE TO TOLYVIOL.

Eekwvdpe vrevOupilovtag Tig GVVOPTNGELS KOGTOVE TOV TUKTOV GE VO, GUVEEEMKTIKO
Tatyvio Slapdpe®ONG ATOYNG, TIG OTOLES, EMTALOV, LETATPEMOVIE GE GLUVOPTNOELS KEPOOVG
AVTIGTPEPOVTOG TO TPOCT|ULO TOVG:

wi(a) = —(1—=pi) > ai(wi)(@; — 2;)* = pi(; — 5,)°
J#i
H «\ion, Tdpa, Tng cuvaptnong avtig dgv Ba givar Tapd 1 mopdywyog g:

Ou; ()
ém

= —2(x; — (1= pi) > qij(x—i)w; — pisi) = —2(x; — BRy(z))
i#i

OOV 0 GLVTEAESTNG TOV x; €ivol povada Ady®m Tov 0Tt To fapn Tov KAbe TaikTn ¢ Exovpe
vroBéaet €€ apyng Ot elval Kavovikomompéva, dniadn abpoilovv oto 1. Emong, supfo-
LiCovpe pe BR;(z_;) v moodtnto mov amotedel TV BEATIOTN 0tOKPLoT TOV TOIKTY @ OTIG
OTPOTNYIKES T_;, ONAON TOV BePapupévo p€co 6po mov Aéyape otnv elcaywyn. TomiKd:

BRi(x_;) = (1= pi) Y agij(z_i)a; + pis;
J#

EminAéov, 6mmg einape, n choice map mov ypnoiponolovue eivor | anAn Evkieidwa tpo-
Bon, nhady Q;(y;) = argmin, . [|y; — 24(|2. Am6 ™ oTryun mov A; = [0, 1], n mpoPon
Ba etvor amAdC:

0, avy, <0
Qilyi) =<1, oavy >1
Yi,  OLOPOPETIKA

Avtikabiotdvtag, Aomdv, Ta mapandve oty (DA), Ba mépovpe:
x;¢ = min{max{y;, 0}, 1}

Yirt1 = Yix — 27 (2ip — BRi(2_;))
=it + 2% (BR; () — x;4)

Téhog, yio va amlomocovpe Tepaltépm Tov alyopBpo, kdvovpe Vo (abdeg, amd 6Go
umopovpe va kataddfovpe) vrobéceig:

1. y;1 €10,1].
2. vy < 1/2. Apo? ta 7, eivar pBivovta, apkei v < 1/2.

Me avtég tig vtobécelg, kat amd ) otrypn mov BR;(z_;) € [0, 1], og kuptdg cuvdvaouog
TOV T_;, S;, 0&V £lvol 60GKOLO va dlamoT®cel Kovelg 0Tt kabe y; . Oo avrkel ciyovpa 6To
[0, 1]. Exopévag, o 1oy 0et TvTa x; ¢ = ;1 KoL 0 0AyOPLOHOG OVAYETOL GTOV TTLO Ot Kovovar:

Tipr1 = Tig + Y (BRi(x_it) — Tiy) (1.1)

OOV AVTIKOTOGTNCALUE Yy — 27; Y10 ATAOVGTEVOT).
Omnodre, ev kotakAeldl, o adyopBpog (DA) dev kdvel kTl T0 EOPEPO GTNV TEPITTMON
noc. AmAd, kabe maiktng, avti va emhéyet ke opd ) BéRTio tov andkpion BR;(z_; ),
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emAgyel éva evoldpeco onpeio petald g PEATIOTNG amdKPIoNG Kot TG GTPOTNYIKNG TOL
enéhele oTOV TPONYOOUEVO YVPO.

To mo onpavtikd Tov pog Tpocseépel  epyacio v MeptikdOmovAov kot Zhou, amod kel
Kot TEPa, €lvar o avaALTIKA epyaieio (1 LSNP SAYOVIE KOIAOTNTO MG KOV GLVONKN)
KOl TIG OVTIOTOUYEG £YYVNOELS Y10 TNV AtdO06T avToL ToL aAyopiBuov. Ondte, gueic Ba ap-
KOVGE, 100VIKA, Vo 0cyoAnBodue Hovo e To vo deiEovpe Yoo dmota Talyvia, fLog EVOLopEPOVY
OTL 1IGYVEL 1] QLGTNPY] OLALYDOVIO KOIAOTNTO.

1.4 O AlyopiOpog Dual Averaging oto XvveCeMKTIKG,
Hatyvia Avapopemonc Amoyng

Xe aqutn TV evotnTa, O SovE €V GuVTOUIN TO OTOTEAEGUOTO TG EPYOGIOG LLOG.

1.4.1 Ogopntikd Anoteréopato oty Avotnpni Aweyovie Kothotnta

Mia Kevtpikn Tpocéyyion oTnv d0vAELd pog NTav 1 Tpoomddeia va, Bpodie evolapEpov-
OEG VTOKATIYOPIEC TOV GUVEEEAMKTIKOV ToyVIOV SLUOPP®ONS Amoyng, Yo TIG OToieg va
WGYVEL N wWoYLPT Stydvio kothdtnta. Tote, dnwg eldape oTNV TPONYOVLEVN EVOTNTA, 1 SV~
pkn Dual Averaging 6o cuykAivel 6T LOVASIKN 1GO0PPOTLO GYETIKA YP1YOPO.

Mia tétola Ttpoomadeia n ool EPepe KATOM AMOTEAEGIATO NTAV VoL EEKIVIIGOVUE OO
TOV OPIGUO TNG LOYVPNG OOy OVIOG KOTAOTNTAG, VO OVTIKATOG TGOV UE TIG GUYKEKPIULEVES TTAT-
POPOPIES (TIG TOPAYMYOLS) TOV TPOKVTOVV Ot TO KOGTY TOV GUVEEEMKTIKAOV Ty ViV Kot
VO TPOY®PNOOVUE HE OTAEG TPAEEIS £ KATO10 TEMKO, TOUVADS EVOLUPEPOV OTOTEAEGHLA.
2uyKeKPUEVa, KATOPODOGOUE VO, PTAGOVUE GE Pitt OLVNTIKA EVIOPEPOVGO TKOVT] GLVONKT
Y0 TV QVGTNPN SLOYOVIN KOTAOTNTO VO GUVEEEMKTIKOD TOYVIOL O10UOpP®ONG Amoync.

Ag Eekivnoovpe e Tov opiopd pic vvolag Tov Hog GAVNKE OpPKETE YPNOLUN OTO. LE-
ténerta anotedécpara. [Ipodxerton yia 1o tunpa g PEATIOTNG 0mdKPIoNG TOL TOUKTN ¢ TOV
EUTAEKEL LOVO TIG OMOYELS TOV VITOAOITOV TOKT®V. AvTO TO KaAoLe centroid, kot To opi-

Covpe g eENg:

Definition 1.5 (Centroids). /ia kafe moixty i ko kdbe mpopil amdyewv x € X, opilovue 0
centroid TV YEITOVOV TOD T (OG:

ctr;(z) = Z% (x_i)x;

JF

Eminléov, ovufolilovue ue ctr: X — X v omeikovion mov coyKEVIPWVEL Ta. centroids
OV TV TOIKTWOV € EVO, OIGVOGUA, ONAAON:

ctr(x) = (ctry(x),. .., ctry(x))

H évvowa tov centroid mpwtogppaviotnke oto [ ], 6mov ypnoomoleiTal yio TV
€0DPECT TPOCEYYIGTIKAOV IGOPPOTIDV GTO GVVEEEAMKTIKA TTatyvia dtapdpemong dmoyng. Epeic
€00 TO TPOGOPUOLOVLE Y10 TOVG GKOTOVS LLOLG.

[Mapatnpeiote 611 T0 centroid evog maiktn givart amAid £vog Kuptdg GLVOLAGHOG (LE GAALL
Aoy, €vog Pefapupévog HEGOS OPOG) TOV ATOYE®MY TOL EKEPALOLY OAOL 01 GAAOL TOUKTEG,
Bepapvpévov pe ta idto fapn TOv AvaTapIGTOVY TV 101 TS CAANAETIOpOOoNC LETAED TOV
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1 Ko TV yertdvov 1ov. EmnpocBétme, ag Buunbovpe 611 n BEATIOT 0mdKpIon Tov TaikTn *
1GOVTOL LIE:

BRy(z ) = (1= pi) Y aij(wi)z; + pisi = (1 = pi) ctrs() + pis,
i#i

Omnore, 10 centroid avoamaploTd Eva HEGO GNUEID TOV ATOYEDYV OA®V TOV TUKTOV, EKTOC
TOV 7, TETOLOL MOTE O MOLKTNG ¢ OVGLAGTIKA EVOLAPEPETAL LOVO Yo avTd TO oMUElo, Kol o)L Yo
TO TANPEG TPOPIA TOV UTOYEDV TV VTOAOITOV TOKTMV. TOLAGYIGTOV, O TPOG TNV EMAOYY
™G PEATIOTNG OOKPIONG OEOOUEVOV TOV OTOYEMY TMV VITOAOITMV.

"Exovtog to mopamdve 610 HuaAd HOG, UTOPOVUE TOPO Vo arodsiéovpe 10 akdAovbo
AMupo, To 0moio TPocapUOlEL TOV OPICUO TNG ALGTPNG SLYDVING KOIAOTNTOG OTO GLVEEE-
MKt Tolyvia S1popeong droyng.

Lemma 1.6. Eva cvveleAikTiko maiyvio J10p0p@mons GTOWNS ivol avaTnpms o10ymvimg
KUPTO Qv KOl LLOVO QV:

> (1= p)(etr(a") = etry(@®) (] = 27) < [l — 2|3

i=1
na kéle ', x? € X = [0, 1]V,

Av, emmléov, dlor o1 maikteg Eyovy Tov id10 Topdyovia avtomeroifnons p; = p € [0,1),
TOTE TO TOPOTAV® EIVAL ETIONG LGOODVOLLO UE:

(ctr(a!) — ctr(2?), 2" — 2%) < 7 2! — 2|3

Ouunbeite 611, Yo pia pabuwt) cvvdpmon f: X — R, n cuvOnkn:
(Vi) =Vfy),z —y) < Kllz -y’ naxibe z,y € X

etvar wwodvvaun pe to 6Tt M f etvon pio K-Aeia cuvdptnon (GAia ovopata: 1oxvpa Asia,
Lipschitz Aeia). Ondte, 10 AMqppa avtd (aitepa to de0TEPO PEPOG) Aéet OTL 1 WeLdOKAioN
v(x) Tov moyviov potdlet pe v khion piog avotnpd Koilng (1 KupThg, Yo KOGTN) GUVAPTN-
ong (dNAad, 1oYVEL 1] CLGTNPT YD VIN KOTAOTNTO) OV Kol LOVO OV TO OVUGHATIKO TTEdI0
ctr: X — X powalet pe mv khion pilog G-Aelog cuvaptnong (Yo ETopKOS HKpN TN TOL
Q).

Y7o avt) v epunveia, dv to dtavuouatikd nedio ctr eivan Lipschitz, 10te Oa meppé-
vape 1 cuvOnkm va woydet, pa kot yuo Babumtéc cuvaptioelg to va givor Lipschitz n kiion
GLVETAYETOL TO Va. Eivor 1oyvpd Agia | cuvdptnon. Kat mpdypatt, avtd 1oyvetl kot 6M, OTMC
BAémovpe oto akdAovBo Bedpnua.

Theorem 1.7. Eqv 5 arneicévion ctr: [0, 1] — [0, 1]V efvar G-Lipschitz wg mpog v Ev-
Kleldta vopua, t0te T0 GVVECEMKTIKO TALYVIO OLOUOPPDOHS GTOWNS UE 10100 TOPIYOVTES O~
TOTETOIONGNS p Y10 OAODS TOVS TAIKTES EIVOL AVTTHPAS OLOYWVIWS KOIAO Y10 OAES TIS TIUES TOV
poto (1 — é, 1]. Eév G < 1, t6te 10 mAkyVIO €lvar TAVTo ovoTHpis d1aymving Koilo.

Mia Gueon cvvéneia Tov Tapamave ivol 0Tt TAVTo VITAPYEL KATO0 ETAPKDOS VYNAT TIUN
avtomenoidnong (aArd pkpdtepn amd 1) yio TV omoia To Talyvio YiveTal aveTnp®S dloym-
viog koiho. Movadikr mpobmdbeon eivar ta Bapn ¢;;(x_;) va givar cuvexdg Stapopictpeg
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ocvvaptoels. [lpaypatt, e avt v epintmon, ta ctr; Ba givar Kot avtd cuve®g d1Popi-
oeg ovvaptnoelc. ['vopilovpe, OPH®C, OTL o GLVEXDS S1APOPIGIUN CLVAPTNON LE GUUTO-
vé¢ medio opiopov (6nwg €36 to [0, 1)) eivar mévta Lipschitz, yia kdmota exapkdg peydn
otabepd. Omote, yio apketd peydro G M vrobeom Tov mopandve Oempnpatog tkavoroteitor!

Av10 d¢ev givor TeLelwg ampocsdOKNTO, amd TN OTIYUn Tov Yo p = 1 to maiyvio glvan
QVOTNPOS Sloy®VIMG KOTAO KaTd TETPYUHEVO TPOTO, OTOTE OV QUVTALEL TAPAAOYO QLT M
CLUTEPLPOPA VO £XEL pia, £0TM TOTIKY, “CLVEXEW”, Y10 TIUEG TOV p KOVTA 6To 1 dnAaon.

[No va kAeiocovpe avtn ) 6€1pd TOV anoteAecudtov, divovpe 10 Topakatw Bedpnua,
7ov elval pio amAn EQUPUOYT TWV OTOTEAECUATOV TOV [ ] o to O1kd pog matyvia,
OTNV TEPITTOOT TOV 1GYVOLY 01 TPODHTODEGEIS TOV GLVONKOV TOV SDOGALE O TAV® °.

Theorem 1.8. Eotw éva ovvieliktikd moiyvio o1oudppmons Growns, e KOIVOUS TOPAYOVTES
avtomenoiOnons p; = p, kar vwobérovrog, emmiéov, ot n ameikovion ctr: X — X eivaa
G-Lipschitz.

Ag vmobéoovue, twpa, 0Tt 01 TOiKTES TPEYOLY TOV alyopiBuo (DA) orws tov deiloue aro
TEAOG THS TIPONYOVUEVHS EVOTNTAS, ONAAON:

Tigp1 = Tig + (1 — p)ctry(x) + ps; — 14y)

Tote, o 6datop € (1— é, 1], ta x; ovyrLivovy oty povadikij icopporio. x* Tov Taryviov.
Emniéov, 1cydovv o1 axolovbeg eyyonoeis mov apopody v ToyvTHTO COYKAIGNG:
1. Av o alyopiBuog tpécer yio. T yopouvg ue otabepo Pruo v = #T TOTE Y10, TN [ETH ATO-
atacn amd v woppormio, Tr = > oy Vollr — 2|2/ Sob_, Vr Oot10ydeL

72 < N !
T 1-G-p) VT

2. Av Y 72 42 < 00, 0 running length uéypt to x, va gtdoel e-kovid atny 160ppoTio
(oma¢ oo opiotnke aro (1.4)) ppaocoetor wg:

, o NVE broyap
"= 1-G1-)p) g2

‘Eva gpotnpa mov mapopévet givor 1o Tdg 8o LTopovcay vo EQapUoGTOVY To OmOTEAE-
GLOTO TOL £YOVUE OAVOPEPEL UEYPL OTIYUNG, €ite YeVIKA (TO omoio HoldleEl apKETA VITEPOL-
61000£0), €1T€ Y10, O TEPLOPICUEVEG LITOKATNYOPIEG CLVEEEMKTIKMOV TOLYVIMV S1AUOPPOONC
dmoymc. Mia kou 1 teAevtaio cuvOnKn Tov dmoape, Adyov ybpn, eivar cuvOnkn Lipschitz,
€0UKOAN aVaPMOTIETAL Kavelg av B pmopovoe vo epapuooTtel fpiokovioag epayUoTo GTIG TTo-
paydyovs. Mia tétota avdAivor divovpe 6t cuvérela, Kot KAeivovpe e eQaployn o€ Eva
CLYKEKPLUEVO TOPASELY LA CUVAPTHCEWV Bapdv.

E&erdikevon yio Kavovikomompéve AveEaptnto Bapn

Ewdyovpe pio €101k xatnyopio cvvapticewv Papav (pe v omoia Oa acyoinbovpue
apKeETA), To. omoia ovopdlovpe “koavovikomompuéva avelaptnta Papn” kot dev elval timota

3 KoL OPIGUEVOV TPOGAPLOYMY TOVE Y10, THY TEPITTMOT TN ETOVORALOUEVIG 1GXVPTS SoydVING KON TOG
(strong diagonal concavity), pe Tig Aentopépeleg TV omoiv dev ypetdleTotl vo acyoinfovpe oty Tapovoa
mepiAnym.
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dAAo Tapd Bépn mov eEaptdvTal LOVO Ao TNV ATOGTACT TV TOKTOV ¢ KOL j, TO OTTO10 GTN
GUVEYELDL KOVOVIKOTTOLOVVTOL GT LOVAOX, OTTMC OTALTEL TO LOVTEAO LOG:

_ fild)
D ki fi(di)
omov d = |z; — s;| ko ot suvapmaelg f;: [0, 1] — R vmoBétovpe 6Tt sivan Beticég, cuvexeig

(Y1 va gtvon koiho To Taiyvio) kou pBivovoeg (Yo va mé@Touy o Bapn e TNV andcTtao).
Me avtd to dedoUEVa, KATOPEPALE VO 0T0dEIEOVE TO OKOAOVOO OTOTELEG LA,

¢ij(v) = Fy(dj, d_;_;)

—i—j

(1.2)

Theorem 1.9. 2t éva ovvelediktino maiyvio d1040p PGS GTOYNS UE KOVOVIKOTOIUEVA. OLVE-
Eaptnro fopn, eav mingepo 1) fi(d) = m > 0 kou maxgep 1) fi(d) + | f{(d)| = M, tote 70 ctr

’ _ M N o
evar G = /57 &

yia 6 Tig tipég tov p > 1 — 1/G.

% Lipschitz ka1, ovovenwg, to maiyvio gival 16Y0paS 010w VIS KOIAO

Qg éva telkd mopiopa, Tpocsappolovpe to Bedpnua (1.8) oe avty Vv Tepintoon:

Corollary 1.10. Xe évo ovveCeliktiko maiyvio O10UOPOWONG GTOYNS UE KAVOVIKOTOLUEVQ,
avelapria fopn, edv minge( 1) fi(d) = m > 0 kou maxqep 1) fi(d) + | f{(d)| = M, t6te yia

kGOe p > 1— 374/ %, o adyopiuog (1.1) ovkAiver ot povadikn icopporio Tov Taryviov, Kai
EYovue Ta 1010, PPAyUoTo. Tov Uag eyyvatol to Ocwpnuo. (1.8), Ta omoio uetd v aviikotootaon
G = %\ / % ~ % yivovrai:
72 < N L
T p) VT
0, < NV N %4’22;21%2
TT1-(1-pM g2

Noa onueimdel 6T1 TapOAO TOL TLTIKE O OPOG 4 / % ypedleTal, Tov EYovpe TopaAElYEL
v va givot Alyo mo kaBopd to amoteAéopato Kot enedn Kabmg to N HeyoA®VEL | GUVEL-
c@Opd TOL YiveTOL OUEANTEDL.

Hopaoerypa: exOetika Bapn  Kietvovue pe éva mapdderypo piog cuvaptmong fopdv mov
etvat apketd opain Oo pmopovoe va el Kaveig, omov f;(d) = e (10 TETPAYOVO Evat Yo
va opalomomBel mepattépm 1 GUVEAPTNON). XE AVTN TNV TEPIMTOGN:

d? -1

dm[in] fi(d) = drr}in] e =e"=m
€[o,1 €[0,1
max f;(d) + |f/(d)] = max e ® +2de " =142=3=M

del0,1] defo,1]
Omndte, epappolovtag to mapondve Bedpnua, to ctr eivon G-Lipschitz, émov:

M [N M

mVN—-1"m

G 3e
10 omoio etvan < 10 ywo kéBe N, ko < 9 yio N > 6.

Ye kGOe mepintmon, ovtd onuaivel OTL Yo OXeg TIG TEG TOV p peyaivtepecand 1 — 1/G
, T0 omoio glval kaTL Alyo pukpotepo amod 0.9, 1o maiyvio eival avotnp®dg dtorymving Koiho Kot
0 aAyoppog Dual Averaging cuykAvel 6TV 100ppOTio. GYETIKA YPIYOPOL.
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Hoapatnpioseg

Katapyds, pe ta amoteAéouato g evotntag avtig BEAovue va KatadeiEovpe, 660 avto
etvar duvatov, 0Tt 1o va deilel Kavelg v avotnpr| doy®dvio KOIAOTNTO Yo ovTd Ta Tepi-
TAOKOL, EEOUPETIKA U1 YPOUUIKE TTatyvia Ogv elvol TEAEIMS AMPOCTEANGTO, OKOLLOL KOL 0LV OV TO
aPOPE KATMS TEPLOPICUEVEG TEPITTMOCELS.

Ag\TEPOV, OVCIOCTIKA LE TO TOPATAVE EYOLUE KataAnéel og pio uéBodo yo v amod-
O€1EN TOPOUOIWV OTOTEAEGUATOV Y10 GAAEG GUVAPTNOELS: PpioKove KAT® GPAyLo Yio TNV
fi xau Gve epdaypo yoo v f; + | f7], ko avtopdtog AapPdvovpe va bpog Tipdv ™G ov-
Tonemoifnong p yuo T1g omoieg To maiyvio gival avoTPOS daymving koiho. Ducikd, avti M
dwdwacio 0ev etvar eyyvnpévo ot Ba dwaoet a&loonpeiwtn Ty yio 1o p, oAl etvar mbavov,
OT®G EIOOLE GTO TOPATAV®D TOPASELYLLOL.

Téhog, Ta TehevToia pog anoteAéopato o Lropovoe vo el Koveic 0Tl avtd Tov omoit-
TOUV €ivoil, OLGLUOTIKA, AVE Kol KAT® OPAYUN 6TV f;, To omoio va gival 66O Mo Kovtd
Kot 660 o YNAd yiveral, kot éva Gve @paypa oy | f7|, dnAadn otov pubud petaBorng
¢ f;. Katd cuvéneia, motevovpe 0Tt To OMOTEAEGLOTO OVTE LTOPOVV VO EPUNVEVLOOVY MG
pio TOGOTIKOTOINGM TOV OTL OV TO SUVAUIKO / EEEMGGOUEVO KOWVMVIKO OTKTVO TTOV EYOVLLE
dev petafaiieTor mold, oniadn ta Bapn eivor kovtd oto va givor otabepd, TOTE Kot TO po-
VIEAO TANGCLALEL OTO VO GUUTEPIPEPETOL OOV TO, GTOTIKA LOVTELQ, ONANOT OLVGLUCTIKA GOV
70 FJ (710 to omoio eivan yveotd 61t to avtictoryo maiyvio tov Bindel, Kleinberg kot Oren
[ ] etvar avompdg daywving Koido, 0TS amodelkvoETaL GTO [ ], evomta 4.2,
Y10 TOPAOELYLQL).

1.4.2 Ieawpapato ko Ilpocopordcerg

[Tépa amd to amoTeAEGHOTA TG TPONYOVUEVNS EVOTNTAG, TO Vo dgiéovpe Ao a&loon-
peloTo OempnTIiKd omoTEAECUOTO OTOdELYTNKE OPKETE OVGKOAO.

Agdopévng avtng ¢ dveKoAiag, Aoumdv, ival GUOIKO va YeVVNOOUV Oplouéva EpTY-
pata. loyvel mpaypatikd n avstpn dtydvia kotdtnta; Mnmog pmropodpie vo fpovpe avri-
napadelypata; Av TpéEovpe TPAYLOTIKA TOV OAYOPIOUO GE GTIYHOTUTTO GUVEEEAIKTIKMY TTOUL-
yviov, Tt Oa dodpe; Oa cuykAivel og 16oppomia, kKot TOGo cuyvd; Ko, yevikd, Oa 0élape va
KOTOVOTCOVE Alyo KaADTEPO OO, EIVOL 1] GLUTEPIPOPE TOV ahyopiBov e Tumikd TéTo0L
motyvia.

['o Tov A0yo awT0, aALAEUIE TV TPOGEYYIoN LG KO OPYICUIE VO LEAETALLE TO LLOVTEAO
LEG® TPOGOUOLDCEMV, IUE GKOTO VO, SIOTIGTMOGOLLE, Yo Evav aptBpud ond oTrydtuna, Tic
OTTOVTIGELS GTA TOPATAVE® EPWTILLATOL.

To mhaiclo 610 000 SoVAEYALLE NTOV Kot £6M TO GUVEEEMKTIKA TO{YVIKL LLE KOVOVIKOTTOL-
nuéva aveaptnta Papn, SnAadt, ta Bapn Tapdyoviol and cuvaptioelg g Lopeng (1.2).

['a va. ohokAnpdcovpe 10 Pacikd pog LOVTELD, TapaKAat® divovpe pio arapibunon tov
OCLYKEKPIEVMOV GUVOPTINCEDV PapdV TOV YPNCILOTOCOUE. AG CNUEIMGGOVUE E0M OTL GE
OA0VG ToVG TaikTeg d0ONKe, KABE Popd, M 101 cuvaptnon f; = f, Yo vo ATAOTOMGOLLLE
Alyo 10 pHovtéro pog.

1. Amhi exOetucn: f(d)) = e %,
2. Exbetikn mposappoopévn oto Stompa [0, 1]: f(dj) = e~20(d;=5),
3. Tpappuky povadioiog khiong: f(d}) = 1 — dj.
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4. Amh hoyopOuuy: f(di) = —Ind;.

dvoikd, n cvvaptnon avty Tapdyet fépn Tov dev tvan cuveyn, apod anelpilovtol 6To
0.

[Mapdia avtd, NTOV OO TN Hid LEPLA EVKOAO Vo TV EAEYEOLUE KO OTH Ko, oo
™MV GAAN, 6ev £TVYE VO GLUVAVTHCOVUE KATO0 TAOOAOYIKO onpeio (pe Kamow Tj, S;
akppag ioa).

5. AoyapBukn mpocappocpévn oto dtdotnua [0, 1):
. 999 . 1
d)=—In| —di 4 ——
J(d)) Il(1000 J*_looo)

‘ Ctioe £ 1
6. Mia logistic: f(d}) = —5=7-
1+e J

7. H avtiotpogn: f(d}) = .

Onwg ko o AoyapiBuog, dev givatl cuveyxns, OAAAL OTIG TPOCOUOUDGELS TNV GUUTEPIAA-
Bape.

8. Ilpocappoouévy avtictpoen: f(d:) = ——

- d§+10000
9. Tetpayovii piCo: f(d;) = —/d5.

Muwkpd Zrrypétona

EeKvape PE HEPIKEG OMAEC TPOGOUOIDCELS GE HKPE GTLYHOTUTO. GUVEEEAMKTIKMV oL~
yviov. Téco yia d1evkdAVVGeN TOL OVAYVAGTN, OGO KOl Y10 VO, EKUETOAAEVTOVLLE TO YEYOVOG
OTL Yl JUKPE GTIYULOTUTIOL UTOPOVLE VAL GXEOIACOVE TNV TANPN YPOVIKT EEMEN TOL aAyO-
piBLOV G GYETIKA EVOLAKPITES EIKOVEG. LNV €1KOVA 1.1, Aowmdv, Exovpe TpéLet Tov adyOpOpo
Yo Tpiot GTIYUIOTLTOL TOV Oy viov, Kabéva pe pio SlpopeTIKT cuvaptnon Poapav.

Av16 oL BAETOVUE GE AVTEG TIC TEPMTMOGELS, AoV, eivar OTL EmTLYYAvETAL GOYKAION
OPKETE YPYOPQ, LLE TOVG TOUKTEG VA “npepovy’” oty 1ooppoomia Nash péca oe 100 mepinov
frnata. Avtd potdlel va 1oydeL Yo OAES TIC OPYLIKOTOMGELS KOl TIC ECMTEPIKES OTOYELS TTOV
&yovpe dokudoel. EmmAéov, va onUeEldcovE OTL 08V £YOVUE GUVOVTNGEL GTIYHOTLTTO WE
v omd £va oplokd onueio (dnAadn, wwoppomio Nash).

Mia dAAN evdlapépovca mapatpnon aneikoviletor oty ekova 1.2, dmov Eyovpe Tpé-
&gl 1o 1010 Tatyvio 00O QOPES, pia pe TOVG TOUKTES VoL TPEXOLY amtAn duvaky BéAtiotng
Amoxpiong (best response) ko pio pe To Dual Averaging.

Edm, Brémovpe 6T1 1 BéATIoT| ATOKPIoN TapoLG1AlEl TOAUVIMGELS KOl OEV GUYKAIVEL
oe wooppomia’. Avtifeto, o Dual Averaging cuykAivel 6g 160ppomio, Kol LOAMGTO GYETIKG
Ypyopa.

Me avtd to Tapdderypo € ape va katadeifovpe 6Tt 0 alyopBpog Dual Averaging vrep-
tepel, oTo Tatyvia auTd, Evavtt amAov adyopiBuwv o0rtmg n Bédtiotn Anokpion.

6 v mpaypatikoémTa, eivor 18N Yvootd 6t Bédtio Amdkpion dev eyyvéton ) chyKAoN GE 160ppoTTia
Y yevikd acOppeTpo cuveEeAkTikd matyvia dtaupdpewong droyng (PA. [ )]
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Xype 1.1: O adyopiBpog Dual Averaging 6to cuveEeMKTIKO TTaiyvio pe 5 moikteg, mopd-
yovta avtonmenoidnong 0.5 yio OA0VG TOVG TOUKTEG, ECMTEPIKEG AMOYELS S =
(0.4,0.5,0.6,0.127,0.897) kon tpelg dapopetikés ovvaptioels Papmv. Kabe
YPOLO AVTUTPOGMOTEVEL ol O1OPOPETIKN TLYAIN OPYIKT OVAOEST] ATOYEMV.
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(a) Béltiot Anokpion ong)

Xympae 1.2: Zoykpion Béltiotg Anokpiong pe Dual Averaging: To maiyvio éxer N = 50
naikteg, mapdyovta avtonenoidnong 0.5 y dAovg kot yio cuvdptnon Papdv
mv avtictpoon: f (d;) = H;l Ol e6MTEPIKES OMOYELS S; TOV TOKTMV KoLl Ol
j ' 10000
APYIKEG TOVG Z; 1 EYOVV a—:misysi TUYOdaL.

Xvykion ywo Meyaio ITAN0n Howktov

O 61606 pag 6M NTAV VO OOVLE TMOG 1 GVYKALST] CUUTEPIPEPETOL Y10 LEYOAVTEPQ TATON
TOKTAOV, Kot ov ouveyilel n KoAn gwdvo mov giyape ot aniég mepurtooelg N Oxt. T 1o
oKomd avTtd, TPocopotdcape otrypotTuma pe o 10000 maikteg Ko mtpootadncape va a&lo-
AOYNGOLLE OV KO TOGO YPTYOPO GLUYKAIVOUV GE 1GOPPOTHaL.

Dduokd, avTEG 01 TAEELS PeyEB0VG TV TOUKTMV dgV ivor 1d10iTEPO LEYAAES, Ko TO TANO0C
TOV OTLYHOTOT®V oV TpECaE emiong dgv etvan eEavTAnTiKa peydiog. O Adyog eival o puot-
KOG TEPLOPIGOC TOV ¥POVOL EKTEAEOTG, Ll KOl KAOE YOPpOg Tov alyopifuov amortel xpovo
(%), yia va. vroroyiotovv Oha Ta Bapn. Ao Thv GAAN peptd, dev pag evEPEPE TG0 Va. Kd-
vovpe pio cofapn a&oAdynon NG TPUYUOTIKNAG, TPOKTIKNG EXI000NS TOL aAyopifuov 660
Vo 00VUE KATOLES EVOEIEEIC GYETIKA LLE TNV GUUTEPIPOPA. TOV.

To tpmto amotéAcpa wov Ba dciovpe €0d gival, yia Evav aplud otrypotiney (cuyke-
Kpéva, éva yio kdbe TAN00¢ TaKTMdV), TN O10popa LETAED TMV GLVAPTNCEMY KOGTOLG TMV
TOIKTOV Kol TOV Aa)IoTOV TOvg (dnAadn, ot BEATIOTN amodKplon KAOE Taiktr), TV amo-
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Time evolution of L, distance to minimum costs
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(a) Tehkn £y omdoTOOT OO TO EAG Lot KOt (b) EEEMEN e To Ypovo Tov 16iov peyéboug, Yo
petd amd 200 ybpovg tov aAdyopiduov. £€va EMAEYLEVO VTTOGVUVOLO TV GTLYULOTOT®V.

i

Yympe 1.3: Zoykhon tov adyopiBuov (DA) yia ekbBetikd Bapn: fz(dz) =e 4.

OTOOT TOV OTOIWV PETPAUE P TNV Lo VOpUO, peTd amd 200 yOpovg Tov akyopibuov. Tvmikd,
1 TOGOTNTO TOV LETPALE Elva:

12%(\/ ci(zy) — c;(BRy(—it), @i t)

oto t = 200.

Yty ewdva 1.3, PAémovpe éva mapddetypa evOg TETOL0L GLVOAOD TPOGOUOIDCEMY (Yo
exBetikd Bapm, cvyKekpLEVQ).

Ao T1C E1IKOVES AV TES, PAVETOL OTL O AAYOPIOLOG EXEL KOl TTAM OPKETE KAAY] GUUTEPLPOPAL,
aeoV péca og LoAg 200 Pripata o1 Taikteg Exovv 101 PTACEL APKETA KOVTE GE 1G0PpPOTTia, (Lo
T opdipatoc 1076 onuaiverl 611 k40e maiktng eivan To moAd 1072 paxpié omd ) BéATIoT
TOV amoKPLoN).

No onpetdcovpie 0Tt Egovpe Kavel To {10 e TaPATAV® Yot OAES TIG GLVAPTNGELS Papdv
OV OVOPEPALLE, KO OL avTioTOoKEG €KOVES (0Ta AyyAikd) Ppiokovtal oto mapdaptnpa B.

EmumAéov, ag onpeidoovpe aAleg 600 evolapépovoeg mapatnpnosts. [lpmtov, dnwg pmo-
povpe va dovpe Kot otV 1.3, Tépa amd Kamola Ty ioTUTTO e AMYOUG TOUKTES, KATA TO GALQ
dev paiveton va eEoptdtor 1o Lo, QAL 0o TO TAN00G TV TaKTOV. DVOIKA, oV Kot dgv TO
&xovpe 0gi&el dm, To £ KoL T0 £o avédvoviat pe o N OTIC TEPIGCOTEPES TEPIMTMGELC, OTMG
Oa epipeve kavelc. QoTdG0, Yo TO {4 OVTO GNUOIVEL OTL TO TOGO KOVIA TAVEL O KAOE £VOg
naiktng otn PEATIOT amdKplon Tov dev eaiveTol va eE0pTaTaL A TO TANOOS TOV TUKTOV,
0AAG LOVO Ao To TANOOG TV YOP®V OV TPEYEL O AlYOPLOLLOC.

Ag0tepov, 0 KOPLOG TOPAYOVTOG TOV QoiveTal vo, emnpedlel TV TeEMKN omdKAoN oo
wooppomia ivar ) cuvaptnon Papadv. And avtég Tov dokipdoape gpelg, PAETovpE va vTap-
YOLV, Kot PAom, TPES OUAOEG:

1. H avtiotpoen Kot 1 TPOGAPHOGUEVT] AVTIGTPOPN Elyay TNV XEPOTEPT ENIOOCT, LUE TNV
(+ amdoTac vo. “kheiver” 6to 1074 mepimov. Kt 6yt mopdroyo, apod mpodrertar yio
TIC O aKpoio LETAROAALOUEVES GLVOPTNGELS fapdV, a@oD divovy ToAD peydio Bapog
6€ AmMOYELG TOV EIVOL KOVTA GTNV ECMTEPIKT] TOV TOUKTY).

31



Running length until e-neighbourhood
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Yyqpae 1.4: Running length kot mAn0og yopwv péxpt ot maikteg vo @Tdcouy € KOVId otV
ooppomia. To maiyvio mov anewkovilovpe e6® £xet 8000 maikteg, o1 omoiot xpn-

cipomotody exbetikd Papn: fi(d:) = e~ %.

2. Atyo xoAVTepec NTaV M AOYoplOUIKY, N TPOGAPUOGUEVT) AOYAPIOLIKT] KoL 1] TPOCAp-
poopévn exdetuc] (Téén peyédovg 1076 — 1077), mov eivon eniong amdTopes, GAAE Oyt
TOGO OGO 01 TTPOTYOVLEVEG.

3. Téhog, n tetpaywvikn pila, N YPOUUKT, 1| omtAn ekOeTikn Kou 1 logistic, ®w¢ ot mo opo-
Még, elyov TNV KeADTEP emidoom, e To 6aAua vo eivar g TaEng Tov 1077,

Tayvtnra Xoykhong Kielvovpe 10 KOPUATL TOV TPOGOUOIOCEDV [E KATOEG EMTAEOV
LETPTOELS, LE TO OKENTIKO VAL KATAPEPOVUE {0MG Vo a&loAoYNGoLUE Aly0o KOADTEPO TNV TO-
YOTNTA GOYKAONG KOl VO, T GUYKPIVOLLLE LE TIC EYYVLNGELS TOL [ ].

Yvuykekpuéva, Yo ta it oTrypdtuma Kot o idwo tpegipata Tov akyopifuov dmmg kot
TPV, £YOVUE LTOAOYIoEL 0V0 HETPIKES, TO running length £éwg va pTdcovue € kovtd o€ 160p-
pomia (OTwG TO £YOVILE OPIGEL BTNV TPONYOVUEVT EVOTNTA), AALA Kot TO TAN00G TV UitV
TOV OmOLTEITOL Y10 TOV {010 GKOTO.

Amewcovifovpe éva TopAdELY O QVTAOV TV LETPTCEMV, KO TAA Y10, TNV EKOETIKN GLVAP-
mon Bopdv, oty ekova 1.4.

211 B€0m TG TPAYLOTIKNG 100PPOTIOS EYOVLLE YPNOLOTON|GEL TO TEMKO TPOPIA amdyemv
TOV TOIKTOV, 0Qov 101 ldape 0Tt Eival KOVTA 6€ 100ppoTia.

Mia a&loonueimt mapotpnon eivar 61t to running length gaivetot va givon ppaypévo.
Onwg £xel onueliwbet oto [ ], otV mapdypapo 6.2, To running length ce ekeivn v
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TEPINTOOT OEV TEPIUEVOVLE V. £fvol PpayEVO AGY® TNG TLYOOTNTAS TTOV VILAPYEL GTO TAT-
pEC LOVTELOD TOL [ ]. Ao ™ otiypun), OUMC, TOL £0M OEV EXOVUE TLXOOTNTA, OEV EIval
TOPAAOYO OV TO GLVOAKO running length eival epaypévo. To povo petovéktnua gival 0Tt
elval KATwg OOGKOAO VoL TO GUYKPIVOVUE LLE TO PPAYHO TTOV OivEL TO [ ].

Téhog, ag onueudooLvLEe OTL Kot amd avTég Tig petpnoelg Pydlovpe ta idio suumepAG LT
OGS KoL TPV, OTL 0 AAYOPIOLOG YEVIKG GUYKAIVEL YPIYOPO, Kot DTAPYEL 1 1d10L TEPImTOL d1di-
Kp1om petald TV eMOOGEMV Y10 TIG SIUPOPETIKEG GLVAPTNOELS Bapdv.

Avtimapaderypo otnv Avetnpn Aveyovie Kohotnta

Av M apykn pog eAmida iomg va NTav To. GLVEEEMKTIKG Talyvio, SIoUOPPOONS AToyNG
va €ivoit TAVTO dVGTNP®G SLOYOVIDS KOTA, SUGTLYMG KATL TETOL0 POIVETAL VO NV IOYVEL. X
QLT TNV TAPAYPUPO, OTVOVLE £VOL GYETIKA KPS VTITOPAOELY LA

E&etdlovpe to maiyvio pe T1g £NG TapapETPOLGS:

1. N = 5 naikrec.

2. p; = % Y 6hovg ToVG TaiKTES.

3. s=1(0.9,0.84,0.83,0.2,0.18)

4. kavovikomompéva aveldptmra Papn pe ekBeTikéc cuvapmoels Papdv, dnrodn:

1

fild) = 5 1 0.0001

Eminiéov, eEetdlovpe ta akdAovBa 500 TPoPid andyemv TOV TOUKTOV:

z' = (0.84,0.89,0.8,0.49,0.3)
r* = (0.83,0.87,0.8,0.49,0.3)

Téhog, yia va eléyEovpe Ypaeikd TV avoetnpr| dloy®dvio KOIAOTNTO, OVTi VO KOTOTLo-
OTOVE pe apOuNTIKEG TPAEELS, HEVEL VAL TAPOTNPTGOVLLE Yo AKOpO pio popd OTL 0 Oplopdg
™G etvan AUeESa 1600VVOLOG LE TO €ENG: 01 TPOPOAEG TNG YEVOOKAIONG TAVM GE OTOLOONTOTE
YPOULUT, OTTO100MTOTE ELOVYPAUUO TUNHO TOV YDPOL TV amOYemV gival Oivovoeg (av&ov-
0€G av Bewpnoovpie Ta KOGTN avTi Yo ToL KEPON).

Katd cuvéneta, pmopolpe vo EAEYEOVLE YPAPIKA TNV 0VGTIPN Sy DVIK KOILOTNTO OTEL-
kovifovtog v akdlovdn povodidotatn cuvdptnon:

g(t) = (' +t(a* —zh)), 2% — ')

ot € [0, 1].

Avtniv, Lomdv, akpifmg TV cuvapTNon £XOVLE oYedldoEL otV €KOVa 1.5a, Yo To mai-
YV10 Kol T 000 CMUELD TOL YOPOL TOV ATOYEWMY TOV dMCAUE TOPATAVE. Edd, £xovue xpn-
GULOTIOGEL TIG GLVOPTHGELS KOGTOVG T®V TOKTOV, 0mdte Béhovpe 1 g(t) va givar avéovoa.

Eivon epgoavéc, Opme, amd v ekova autr, 0Tt LETAED TV 0V0 CLYKEKPIUEVOV N UEi®V
n g(t) dev eivar adEoVGa, £ OV TO AVTITOPAdEY O 6TO O0Toio avapepbnkape. ['a TAnpoTnta,
EYoupLe KAvel kat pio avaivon pe apBuntikég Tpdéels, mov PpiokeTol 6To TOPApTNUA A, OV
Béhel 0 avayvaotng vo TNV O€t.

H enopevn mapatpnon mov Ba tpénet va Kavovpe, wotdco, ival OTL EVO GTNV EIKOVA,
1.5a @aiveton vo vTdpyel HEYAAN OTOKAMOT], OTNV TPAYLATIKOTNTO, OV €ival akpiac £Tot.
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(a) Eotioon oto evB0ypappd tufiua e dkpo (b) OA6KAN P M eLBEia, £0¢ 6YEdOV TO GHVOPO
o zt, 22, oL VIEPKLPOU.

Tympa 1.5: TIpoBoréc e yevdokiiong méve otn ypopuun zt-z2.

[Mopatnpnote v edva 1.5b, 6mov Exovpe enekteivel To eVBVYPOUUO TUNHO LETAED TOV
xl, 2% puéypr oyeddv 10 GHVOPo Tov VIEPKHPOL. TNV £IKOVA OVTH, EIVOL O EUPOVES OTL 1
g(t) eivar oxedov adbéovoa, 1 Tomikh AVt oTdKALoN ivot TOAD pKpn.

Eniong, 0o mpémel vo GNUELOGOVLE OTL, AV TOPATNPOEL KOvelc To s kot o 2t, 22, PAénet
OTL KATOEC GLVIGTMGES TOVG efvat oyeddv ioeg. Ondte, GTNV TPAYUATIKOTNTO, TO AVTLTAPG-
detypd pag Pacifetan kaipta 6To OTL 0 TOPOVOLAGTHG TG AVTIGTPOPNG Eival TOAD KOVTA GTO
0, dniaon Paciletor otnv cvopmepLpopd ™S avticTpoPns oo 0, dev ivar OTL KOTAPEPALLE VO
Bpobpe aviurapdoctypa Ge po TEPLOYY] OOV 1| GLVAPTNGN EIVAL TLO OLLOAY).

[Tapdia avtd, 1 GLYKEKPIUEVT GLVAPTNON Eival TAP®S GVUPTH LE TO LOVTELD paG (GV-
veyne, ebivovsa, mapaywyicyn), omwodTe, av un Tt GALO, TO CUYKEKPLUEVO OVTUTOPASELY LA,
0G0 0OpPLOKY| TEPIMTMOOT KL av givat, pog detyvel 0Tt ivor advvatov va amodei&el kamolog
amAd OTL OTO100NTOTE GLVEEEMKTIKO TO{yVIO SLOHOPP®ONG Amoyng eival 0voTNpOS dlorym-
viog koiho, yopic kapio emmAéov vTOOEST] OC TPOS TIC GLVAPTNGELS TOV Papdv.
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Chapter 2

Introduction

The way people form their opinions has been of interest since many decades ago, from the
perspective of several scientific fields. For example, psychologists may have been studying
how opinions affect and are affected by the state of a person’s psyche, while political scientists
may have been interested specifically in how political opinions propagate, while sociologists
were interested in the way opinions influence and are influenced by the interaction between
people or groups of people (e.g. cultural norms).

This interest has grown significantly in the last few years, particularly due to the advent
of the Internet and social networks. On one hand, the same phenomena of opinion formation
have taken on much larger proportions, since there are now thousands or even millions of
people forming some kind of connections, groups etc (interactions, in general) and, moreover,
this information is publicly available. This is unprecedented, and it means that we can now
observe how peoples’ behaviour, interaction and opinion formation translate to such large
scales, but also that there are much more data available to analyze and draw conclusions from.
On the other hand, with the use of social networks for advertising, political campaigns etc.,
there is a great deal of profit to be made by knowing how opinions are formed. Advertisers,
for example, are particularly interested in how consumer opinions are shaped, so that they
can, possibly, be swayed to allow for easier or more widespread adoption of products or
services.

One of the earliest works on opinion formation is the one by Morris DeGroot ([ D,
which studies a simple model, namely one where there are some people (a.k.a. agents) com-
prising a social network, and each one has a number. This represents the opinion of the
agent, which is then revised at discrete rounds, by taking into account the opinions of all
other agents, formally by taking a weighted average of all opinions:

S wiy
N
> j=1 Wij
where z;; € [0, 1] represents the opinion of agent 7 at round ¢. The weights w;; > 0 represent
the judgement of the agent, so to speak, as to who of the others is the most knowledgable /
experienced / trustworthy, etc.

Simple as it may seem, the DeGroot model has spawned a substantial amount of research.
A recent interesting example is on the so-called “social learning” line of work, where the opin-
ions are seen as the agent’s inexact perception of some ground truth about the world. Then,
the opinion formation process essentially represents the attempts of the people to combine
their incomplete knowledge with the incomplete knowledge of other people, in order to arrive
at a new perception, which is as close as possible to the truth.

On this subject, [ ] first showed that, in a setting where the agents’ initial opinions
are noisy samples of a ground truth number, the simple DeGroot dynamics lead to a consensus
which is very close to the actual number, when the network is large.

Tit+1 =
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Building on this, a more recent result by Amir et al. [ ] shows that, additionally,
weaknesses of the DeGroot model (sensitivity to “bots” and to specific types of miscommuni-
cations) can be overcome by simply discretizing the opinion space with sufficient granularity.
This means that, with a slight compromise with respect to precision, the dynamics is made
much more robust.

This is only an example of works related to the DeGroot model. And, after all, even
though it is a relatively simple model compared to others, it already lays much of the foun-
dation (the norms, if you will) as to how opinion formation models are constructed. Opin-
ions are, in general, represented by numbers, each agent assigns a weight to all other agents
(and herself, in some cases) and the way that the agents’ opinions evolve depends solely on
an interaction process between them. This interaction process amounts to repeated revision
rounds, where in each round, each agent updates their opinion to a function of the opinions of
all agents (including their own) from the previous round, in most cases some kind of weighted
average. All these aspects are more or less preserved by the models that followed afterwards.

A prominent example is the model of Friedkin and Johnsen, which extends the DeGroot
model by also assigning hidden, intrinsic opinions to the agents, who then take those into ac-
count whenever they perform an average. The models of Hegselmann and Krause ([ )]
and Deffuant and Weisbuch (| 1), on the other hand, first introduced the concept of dy-
namic (co-)evolution of interactions, with the strength of the interaction between two agents
changing dynamically, based on the proximity of their opinions.

A more recent line of work has connected the opinion formation procedure to game the-
ory. Under this light, the agents are now players, who incur a cost if, for example, their
expressed opinion is too far away from their peers’, or if it is too far away from their own
intrinsic, hidden opinion (a “cognitive dissonance” of sorts); all this information is encoded
in the players’ cost functions, which, in general, depend on the expressed opinions of all
players. The opinion formation procedure is, then, the repeated version of this game over
many discrete rounds; and the purpose of the agents is to update their opinions at each round
in such a way as to minimize their total cost across all rounds that the game is played.

An exemplary work is the one of Bindel, Kleinberg and Oren ([ 1), who formed
a game theoretic formulation for the FJ (Friedkin - Johnsen) model, by assigning quadratic
cost functions to the player, in such a way that their best response coincides with the update
rule of the original FJ model. In other words, the opinion dynamic of the FJ model is exactly
the simultaneous best-response dynamic in this game. [ ] focuses on the social cost
of disagreement of these games, proving bounds for the Price of Anarchy (introduced as a
concept in [ 1), which measures the worst-case social cost at a Nash equilibrium versus
the optimal social cost achievable. They also study how the edges of the social network can
be manipulated in order to reduce the social cost at equilibrium.

This has also spawned a number of works that extended the Proof of Anarchy bounds to
more general cases, for continuous but also for discrete binary opinions (usually in {0, 1})
[ , , , s ], which is also an interesting setting, since, de-
spite its seeming simplicity, it models some interesting scenarios, such as the choice of a
electoral candidate, or the choice between two social media platforms by a user.

2.1 Contributions

A central question for any opinion formation model is whether it eventually converges to a
stable point. Also, under what conditions and how fast does this happen.
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For example, it is already known even from [ ] that the DeGroot model eventually
settles on a consensus and, depending on the weights and the initial opinions, any opinion in
[0, 1] can be reached. Later works also showed that the convergence is fast [ ].

In the FJ model, on the other hand, agents do not reach consensus, due to their intrinsic
opinions. Rather, they converge to a specific, unique stable point, regardless of the initial
opinions. Moreover, | ] again shows that the convergence is linear.

As for the HK and DW models, they exhibit what can be called polarization, where the
agents converge (again, relatively fast) to clusters, where agents of the same cluster have the
same opinion, which is somewhat far away from the opinions of the other clusters.

Now, the opinion formation model that we are interested in is game theoretic, like the
one in [ 1'. In the context of games, instead of stable points, we can directly talk
about the central concept of Nash equilibriua. Many questions can be asked about the Nash
equilibria of a game (the following list is non exhaustive). Do they always exist? Do players
eventually converge to them? Under which dynamics? How quickly? How much worse is
the total social welfare at an equilibrium, compared to the centrally computed optimum (price
of anarchy)? Our main concern here is about the convergence to Nash equilibrium (i.e. the
computation of Nash equilibria), and its efficiency.

In general, the computation of Nash equilibria is a vast research domain, with overwhelm-
ing amount of works. There are negative, hardness results (e.g. a known early example is
that mixed equilibria in finite games are PPAD-complete [ , ]), but also several
positive ones (e.g. the widely known convergence of no-regret dynamics to coarse correlated
equilibria [ , , ]), even for classes of games where not only the compu-
tation of equilibria is plausible, but it can be achieved by the players themselves with very
simple, natural dynamics (e.g. best-response in congestion games | , ], and no-
regret we mentioned before).

The discipline that interests us the most, however, is the one intersecting with convex op-
timization. The research is again plentiful, especially in the area of no-regret algorithms and
their behaviour with respect to equilibria. For example, in [ ], it is shown that in a large
class of games, all no-regret dynamics converge ergodically to Nash equilibrium at the same
rate as the regret decay. In [ ], it is shown that, in finite games, a known no-regret
algorithmic scheme (FTRL) converges only to strict equilibria, and [ ] also gives con-
vergence rates. In potential games, which intersects heavily with convex optimization, as the
problem of equilibrium computation translates to an optimization problem, there are works
that make heavy use of optimization techniques such as mirror descent, extra-gradients, ac-
celeration etc. [ , , ].

In this work, we focus on the question of efficient equilibrium computation, for a spe-
cific game model of opinion formation, called asymmetric coevolutionary opinion formation
games. First introduced by Bhawalkar, Gollapudi and Munagala ([ 1), “coevolution-
ary” refers to the fact that, as the HK and DW models, the bond between two players is
dynamic, and it depends on the proximity of their opinions. It is also intrinsically asymmet-
ric, because each player possesses a hidden opinion, which affects the weight they assign to
other players. In other words, this whole model is the same as the FJ model, but with dynamic
weights, instead of static.

In these games, equilibria always exist, due to Rosen’s theorem [ ], because each
player’s cost is convex in her own opinion. However, the computational complexity of find-
ing such equilibria is still an open problem, and this is the motivation of our work. More

!"as a matter of fact, it is the same, but with the interaction weights changing depending on the players’

opinions
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specifically, we seek to find an algorithm which, if employed by the players of such a game,
will guarantee convergence to equilibrium, and in a reasonable number of steps.

To that end, our main approach is to employ the recent results by Mertikopoulos and Zhou
[ ]. Their work deals with a more general setting, that of concave games, and it says
that, under a slightly stronger version of concavity, there is a suitable algorithm that does
exactly what we want. The condition is called diagonal strict concavity, and the algorithm
is the well known in online optimization Dual Averaging. Thus, the main focus of our work
was to study if and how this result can be applied to the asymmetric coevolutionary opinion
formation games.

Our results First of all, we show, via straightforward calculations, that, in these games,
diagonal strict concavity is equivalent to a smoothness condition on the players’ best response
mappings’, which are, again, an average, in this case of the expressed opinions of all other
players and the player’s intrinsic opinion; crudely, this condition says that, when players
move, their averages shouldn’t move arbitrarily much.

This (as one may imagine), then, also translates to a (stronger) Lipschitzness condition
which is sufficient for diagonal strict concavity. Moreover, this condition is critically de-
pendent on the players’ so-called stubbornness / self-confidence factors, which are numbers
pi € 10, 1] that express what compromise the player is going to make between being close to
her intrinsic opinion and to the opinions of her “friends” (0 means she cares only about social
conformity, 1 that she cares only about cognitive dissonance). An immediate consequence
of this condition is that, basically, if players are stubborn enough (but not only for p; = 1,
which is easy to show), then the game will be diagonally strictly concave.

We are then able to go to slightly more specific, albeit nontrivial, subclasses of these
games and quantify this even further, by appropriately bounding the derivatives of the aver-
ages. Thus, we procure a way to show diagonal strict concavity for any game in which the
players’ self-confidence is above a threshold; this threshold is determined by the bounds one
may manage to work out for the weight functions and their derivatives.

So, in the end, diagonal strict concavity holds for those cases, which, in turn, means
that the algorithm from [ ] does indeed converge to the unique equilibrium of those
asymmetric coevolutionary opinion formation games, which, however, are a bit constrained,
in the sense that the players’ self-confidence needs to be somewhat close to 1.

The second part of our results concerns the observations we made when we tried to ex-
plore the games of our model via simulations (due to the difficulty in establishing stronger
results). An immediate observation was that, on all games we saw, the algorithm converges
to equilibrium, and somewhat fast at that. We simulated games with up to 10000 players, and
convergence sufficiently close to equilibrium was always achieved after at most 200 rounds.

An interesting find was that, with respect to the /., distance, the convergence speed (in
number of rounds) of the algorithm did not seem to depend on the number of players. In
other words, any given player reached close to her best response in more or less the same
number of rounds. On the other hand, the speed does seem to depend on the choice of the
weight functions, with the distance to equilibrium after the same number of steps ranging
from ~ 107 to ~ 10~%, which, comparatively, shows that for some weight functions it
takes much longer to converge. Specifically, from the functions we tested, those that took
the longest were the ones that changed the most extremely with the distance between the
players’ opinions. Interestingly, for these functions it was also easier to procure examples
where the simple best response dynamics failed to converge (and oscillated instead).

2 i.e. best response correspondences, but the best response is actually always unique
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Finally, by testing experimentally the diagonal strict concavity condition, we have found
that there are deviations, even if small ones. Specifically, when the interaction weights drop
(approximately) as 1/d with the distance d between two players, then there are points on the
opinion space where diagonal strict concavity fails. This most probably comes as a conse-
quence of 1/d being too aggressively changing. We should note that, as the reader may have
realized, this weight function was one of those that resulted in the slowest convergence, that
we mentioned before.

This, in turn, implies that not all coevolutionary games are diagonally strictly concave
and, up to some degree, explains the difficulties we have faced while trying to approach this
analytically. Atthe same time, the discrepancies we found are very small, which explains why
(at least in the games we studied and simulated) the algorihm performed so well; because,
practically, the condition does hold.

2.2 Related Work

There are a number of works which try to show convergence to either stable points or equi-
libria, and are tangential to our goals. For example, [ ] shows that there is a wide range
of opinion dynamics in which weights are dynamically changing, for which convergence to
polarized groups is guaranteed, as long as the self-confidence of the agents is high enough.
The crucial deviation from our model is that this does not have intrinsic opinions, i.e. it more
closely resembles the DeGroot model with dynamic weights, rather than the FJ model with
dynamic weights. This difference seems to be crucial, as, indicatively, one can see (both in
[ ] and [ ]) that the dominant term for convergence is the one that involves the
intrinsic opinions, the other simply vanishes. So, we do not expect the results of [ ] to
give any insight into our games, in general.

From another perspective, [ ] studies specifically the same games as us; the central
idea here is that, by slightly modifying the cost functions, he derives a new game, and it is
then shown that either a consensus or the vector of intrinsic opinions must be a 2-approximate
Nash equilibrium. Not only in the modified game, but also in the original. Here, the truth is
that we are interested in exact equilibria, but this is a very interesting result.

Finally, our work is in many ways a follow-up of | ], where diagonal strict concavity
again makes an appearance, as it is shown that a dynamic which coincides with both follow
the leader and a version of gradient descent does converge, if diagonal strict concavity holds.
The main difference here is that we now know from [ ] that a similar dynamic always
converges fast to the unique equilibrium of any diagonally strictly concave game, thus we
focus all our efforts into studying how diagonal strict concavity can or cannot be shown
for asymmetric coevolutionary opinion formation games, and then testing experimentally
whether the algorithm seems to indeed converge or not.

2.3 Overview of the chapters

In chapter 3, we begin by providing some background material needed for the sequel. There
are two main pillars: convex optimization and game theory (concave games, in particular).
We give a brief overview of central concepts from convex optimization and online convex
optimization. Then, we focus on the concept of games and Nash equilibrium, following with
some known results (mostly of Rosen - [ ]) for the special, generally well-behaved
class of concave games, in which all games we discuss lie.
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Then, in chapter 4, we give a more detailed account of various opinion formation models
that have been studied in the literature, while also underlying the connection between opinion
formation and optimization that is found in a lot of cases.

In chapter 5, we give an overview of the results of [ ]. We introduce the algorithm
of Dual Averaging, and prove that it converges to the unique equilibrium of any diagonally
strictly concave game. We also show that it does so in polynomial number of steps.

Finally, in chapter 6, we exhibit the results of our work. We start with our main theoretical
result, which shows diagonal strict concavity and, hence, convergence to equilibrium, albeit
for a limited subclass of coevolutionary opinion formation games. We then continue with the
results of our simulations, which provide some insight into the practical performance of the
algorithm for some characteristic weight functions, but also show that there are valid, even if
extreme, counterexamples to diagonal strict concavity, meaning that proving diagonal strict
concavity in full generality is unlikely to be possible.
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Chapter 3

Technical Background

3.1 Games

All the games we will study are finite-player, continuous-action games. Specifically, there
are N players (N € {1,2,3,...})and each playeri € [N] = {1,..., N} selects his strategy
/ action from a compact convex set X;, generally assumed to be a subset of some Euclidean
space R". The game’s (combined) action space is then denoted as X = Hf\il X;.

The payoff to each player is modeled by a payoft function dependent on all players’
chosen actions, i.e. u;: X — R, with u;(z) € R representing the payoff received by player
i when the players choose the profile x = (x1, ...,z y) of actions. Often, the action profile
x is denoted as (z;, _;), to highlight the action z; of player i against the actions z_; of all
other players.

One way to think of continuous-action games is as one possible generalization of the clas-
sical (continuous) optimization setting, where we have one function over some continuous
domain and we seek to find its extreme points, either maxima or minima. Then, continuous
games can be seen as a generalization of this to more than one (but finite) functions, but,
instead of regularization, Pareto optimality or other generalizations, here we associate each
function ¢ with a player who controls the component 7 of z € X" and seeks to optimize this
function.

All the above are the definitions of the basic concepts involved in a game. Below, we
define some more refined classes of games, which satisfy specific conditions, and which are
relevant for us.

Definition 3.1 (Continuous Games). We call a game continous when, for all players i € [N/,
u; Is continuous in xr € X.

Definition 3.2 (Concave Games). 4 continuous game is further called concave when, for all
players i € [N], ui(x;, ;) is concave in x; for every fixed value of v —; € X_; = [[,; X}

Definition 3.3 (Smooth Games). A game is called smooth when, for all players i € [N],
w;(x;, x_;) continuously differentiable in x; (for any fixed value of x_;), i.e. each players
payoff function is continuously differentiable in his own action.

In this case, we will denote by v;(x) = V ,,u;(x;, v_;) the individual gradient of player i,
and we will call the following ensemble:

v(x) = (vi(x),va(x),...,on(T))
the pseudo-gradient of the game at the action profile x € X.

Most of the games we will deal with will be concave and smooth (we may call them
simply concave for brevity). We will later look into concave games in more detail, as they
are of great interest.
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3.2 Nash Equilibrium

A central solution concept of game theory, first introduced by Nash ([ 10 D. A
(pure) Nash Equilibrium is any action profile in which no player has incentive to unilaterally
deviate from their individual action. Formally:

Definition 3.4 (Nash Equilibrium). A4n action profile x* € X is called a Nash equilibrium

if
wi(xl, 2" ) > wi(x, x*,), foralli € [N],z; € X;

Furthermore, since at equilibrium each player is maximizing their payoff, we get the
following first-order necessary condition for equilibrium:

(vi(xf,x*,),x; —xf) <0, foralli € [N] (3.1)

This is a well known generalization of simple stationarity (V f(z*) = 0) for extreme
points of functions, and it has a simple geometric interpretation.

Consider a differentiable function f: C' — R. Then, as we know, the gradient V f(z) €
(' is a vector that is perpendicular to the contour of f on x, and it points to the direction of
steepest ascent. Moreover, the directional derivative of f along any line starting from = and
parallel to, let’s say, the vector h, can be expressed as the inner product (V f(z), h).

Under this light, if, for any point = of the domain it holds that (V f(z*),z — 2*) > 0,
then this means that the directional derivative of f at z* towards x is positive, which means
that f is locally strictly increasing at x*, on the line from x* to x. But then, x* cannot be a
maximum point.

This is why this is always a necessary condition for optimality. Plus, it is also sufficient
if the function is concave (for more details on this, see, for example, [ ], theorem 3.14,
or [ ], section 4.2.3).

Applying this fact to the payoff function u; (-, z* ), which we know is maximized at the
Nash equilibrium strategy of player i, we conclude that (3.1) for every player i € [N], is
a necessary condition for a Nash equilibrium. Moreover, in the case of concave (or pseudo
concave) games, it is also sufficient.

Furthermore, it can be concisely encoded to the following proposition, encompassing all
players at once:

Theorem 3.5. If «* is a Nash equilibrium, then:
(v(z*),x — %) <0 (3.2)

forallx € X.
If the game is concave, then the reverse is also true.

Proof. 1f x* is a Nash equilibrium, then we can simply add (3.1) for all i € [N], and we get
(3.2).

For the converse, if (3.2) holds for all z € X, then we can substitute © = (z;, z* ), and
then all components of the inner product vanish, except for the i-th component, so we get:

(vi(z*), 2, — 7)) <0

which, since the game is concave, implies that player ¢ is best responding. This holds for any
1, o ¥ must be a Nash equilibrium. [
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3.3 Concave Games

Concave games are an especially interesting class of games. As is the case for concave
maximization, there are several results concerning Nash equilibria (properties, computation
etc.) of concave games or subclasses thereof.

A major part of our work concerns concave games or subclasses. Here, we begin the
journey by giving a brief overview of some interesting results from [ ], which is one
of the first works that pioneered the study of concave games.

We start with the existence of Nash equilibria, which is always guaranteed for any concave
game.

Theorem 3.6 (Rosen). In a concave game, a Nash equilibrium is guaranteed to exist.

We give a small proof for completeness, although we believe there are much better spec-
imens out there (see [ ] itself, for example).

Proof. Define the best response correspondence of player ¢ € [N] as the set of all best re-
sponses of player 7 to a profile z_; of all other players’ actions, i.e. the set of optimal actions
player ¢ can choose to play, actions that maximize her payoff, if she knows that all other
players will play x_;. Formally:

BR;: X_; — QXi
BR;(z_;) = {a} € X; r wi(x},2_;) > ui(z,x_;) forall z; € &}

Then, we define the combined best response correspondence as the ensemble of the
above:

CBR: X — 2%
CBR(ZL‘) = BRl(iC_l) X BR2($_2> X X BRN(ZE_N)

It is not difficult to see that a fixed point of the above correspondence, i.e. a x* € X such
that 2 € CBR(z*), has to consist, for each player i, of an action z that is best responding
against z* ;. But this means that 2* is a Nash equilibrium.

As such, the proof mainly comes down to an application of Kakutani’s fixed point theorem
{l ]) on the point-to-set correspondence CBR. The form of the theorem we use here
is as follows.

Suppose X’ is a nonempty, compact and convex subset of some Euclidean space and
¢: X — 2% is a point-to-set correspondence on X. Then, ¢ is guaranteed to have a fixed
point (i.e. € ¢(x)), if the following two conditions hold:

e ¢(x) is nonempty and convex for all z € X

e ¢ has a closed graph. This means that for all sequences {x, },en and {y, }nen such
that z,, — z, y, — y and y,, € ¢(x,,) for all n, it holds that y € ¢(z).

Here, the action space X’ is already assumed to be non-empty, compact and convex.

BR;(z) is always nonempty and convex as the set of maximizers of the function u; which
is continuous and concave. The same holds for CBR(z), as it is the cartesian product of such
sets.
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Finally, CBR has a closed graph, since for any sequences {x,, }nen, {¥n }nen such that
T, — T, Yy, — y and y, € CBR(z,,) it holds that:

Yni € BRi(71,—;)
=i (2, Tn—i) < Wi(Yn,i, Tn—;) forall z; € X,
=Vz € X wi(zi, voy) = limu, (25, 2y i) < Umw (Y, Tn—i) = wilys, —;)

=y; € BRi(z_;)

In other words, y € CBR(xz).
Thus, the conditions for Kakutani’s fixed point theorem are satisfied. [

3.3.1 Diagonal Strict Concavity

Moving on from simple concavity of the game, there is an additional condition which, when
imposed on a concave game, can give us guarantees regarding the computation of an equilib-
rium. [ ] calls this condition diagonal strict concavity and shows that, for a diagonally
strictly concave game, not only is the equilibrium unique, but there are also both continuous-
time and discrete-time dynamics that can be followed by each player and converge to that
equilibrium.

Formally, it is defined as follows.

Definition 3.7 (Diagonal Strict Concavity). A game is called diagonally strictly concave if
(v(z) —v(z), 2" —x) <0 (DSC)
holds for every x #+ .

In other words, a game is diagonally strictly concave if its pseudogradient “behaves”
like the gradient of a strictly concave function, in the sense of the first order condition
(Vf(x') — Vf(x),2’ —x) < 0, which says that the directional derivative of f along any
line is decreasing. So, here, it is something similar, but for the pseudogradient.

Lemma 3.8. 4 diagonally strictly concave game is a concave game.
Proof. In the above definition of diagonal strict concavity, let 2’ , = x_;. Then:
(v, 2 ;) —vi(mg, xy), 2 — x;) <0

which implies (strict) concavity of the function w; (-, x_;), which in turn means that the game
is concave. [

Theorem 3.9. Ifa game is diagonally strictly concave, then it has a unique Nash equilibrium.

Proof. Since the game is concave (from the above lemma), we already know that there is
some equilibrium, call it z* € X. Now, suppose that there is also another, ™ # x*. Since
the game is diagonally strictly concave, we have:

(v(x™) —v(x"), 2™ —2*) < 0= (v(x™), 2™ —2") < (v(z"), 2™ —2%) <0

where the last inequality comes from (3.2).
Thus, (v(z**), 2* — ™) > 0, which in turn violates the necessary condition (3.2) for x**,
so it cannot be an equilibrium. [
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As is the case for concave scalar functions, there is a sufficient second-order condition
for the diagonal strict concavity of a game, which involves the jacobian matrix of the game’s
pseudogradient; similarly to concave functions, where the matrix involved is the Hessian,
which coincides, as is known, with the jacobian of the function’s gradient.

The game’s Hessian G: X — R™*™, where m is the dimension of the ambient Euclidean
space of X' (equal to the sum of all dimensions of the players actions), is thus defined as the

. . . . a .
Jacobian of v(+), i.e. the j-th column of G(z) is %jv(:c), j=1,...,m.
Theorem 3.10. If the symmetric matrix G(z) + G(x)" is negative definite, then the game is
diagonally strictly concave.

For the proof, we defer the reader to [ ].

Finally, we state the following two theorems regarding dynamics that converge to equi-
librium. The proofs are omitted, as they are not so straightforward and of no great interest to
us. For details, see [ ].

Theorem 3.11. There is a continuous-time dynamical system, i.e. a system of differential
equations, of the form ©; = f;(x), for which:

1. There always exists a continuous solution x(t) which remains in X for all t > 0.

2. If G(x) + G(2)7 is negative definite, then, under these dynamics, the unique equilib-
rium x* is globally asymptotically stable.

Theorem 3.12. There is a discrete-time dynamical system under which the unique equilib-
rium of a diagonally strictly concave game (for which, specifically, G(x)+G(z)T is negative
definite) is globally asymptotically stable.

Specifically, the discrete-time system is the forward Euler discretization of the continuous-
time system, i.e. x;1 = x; + v f(x;), with the step size ~y; chosen appropriately.

The key takaway from this is that [ ] has shown that equilibria of diagonally strictly
concave games can be computed with some dynamics.

A natural following question is what is the complexity of computing these equilibria,
since [ ] does not address how long it takes these dynamics to approach the equilibrium.
This is addressed in [ ], which we will review later on.

3.4 Convex Optimization

One common way that equilibrium computation can be tackled is with techniques from (on-
line) convex optimization. This holds first and foremost for the class of potential games,
where equilibrium computation turns out to be equivalent to the optimization of some poten-
tial function. However, fruitful conclusions can be derived even for more general classes of
games, as we will later see.

In this section, we provide definitions for fundamental concepts of (online) convex anal-
ysis and we give a brief overview of some straightforward results from (online) convex op-
timization, to lay the groundwork for what is to come and to showcase the analysis of an
optimization method in simple cases.

We begin, as is the norm, with the definition of convexity. Take note that the term “con-
vex” is used to describe two things: convex sets and convex functions.
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Definition 3.13 (Convexity). A set C' C R" is called convex if for any two points x,y € C
the line segment connecting them is inside of C, i.e. v + Ny — x) € C forall X € [0, 1].

A function f: C — R is called convex if C' is convex and for any two points z,y € C' it
holds that f(Ax + (1 — N)y) < Af(x) + (1 = N f(y).

Intuitively, a function is convex if any line connecting two points on the graph of f lies
above the graph. There are, however, two equivalent, and perhaps more straightforward,
characterizations of differentiable convex functions.

The first is that they lie below their first-order (linear) approximation at any point. For-
mally, for all 2,y € dom(f), it holds that:

fly) > f(x) +(Vf(z),y —z)

The second is that the directional derivative of a convex function along any line is in-
creasing. Formally, for all x,y € dom(f), it holds that:

(Vf(z) =V f(y),r—y) >0

Of course, this should remind you of diagonal strict concavity. Indeed, diagonal strict
concavity is a generalization of the above condition to the pseudogradient of a game. As
a matter of fact, for a potential game, the game being diagonally strictly concave and its
potential being strictly (strict inequality in the above) concave are both the same as the above.

Finally, there is yet another characterization of convexity for twice differentiable func-
tions. This says that a function f: C' — R, where C' is convex and open, is convex if its
Hessian V2 f(x) is positive semidefinite for all z € C.

These are all fundamental properties, variations of which we will encounter in all of the
following work.

Now, the next concept we should mention is further conditions which guarantee the con-
vergence of convex optimization algorithms. Because, the truth is, convexity by itself is not
enough to prove convergence and efficiency for almost any optimization algorithm.

We start with strong convexity, which basically says that the function has a quadratic
lower bound. Formally:

Definition 3.14 (Strong Convexity). 4 differentiable function f: C' — R is called [-strongly
convex if:

F(w) > Fa)+ (VF()y — ) + e — ol
forall x,y € C.

In a similar manner to convexity, strong convexity of a twice differentiable function is
also equivalent to V2 f(z) = 1.

Next, we introduce Lipschitz continuity, which imposes a bound on the rate of change of
a function.

Definition 3.15 (Lipschitz Continuity). 4 function f : C' — R is called G-Lipschitz contin-
uous if:

[f(@) = fy)l < Gllz =yl
forall x,y € C.

which, for convex functions, is equivalent to |V f(z)||. < G.
Finally, when the gradient of a function is itself Lipschitz, the function is called smooth:
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Definition 3.16 (Smoothness). 4 function f : C' — R is called L-smooth if its gradient is
L-Lipschitz continuous, i.e.:

IVf(z) = VIl < Lljz -y
forall z,y € C.

Moreover, for convex functions, this condition can be proved equivalent to:

F) < F(@) + (VH@)y =)+ 5~ ol 63

forall z,y € C.

As such, it is also a somewhat dual property to strong convexity, in that it provides a
quadratic upper bound on the function.

Finally, we should mention the definition of concave functions:

Definition 3.17 (Concavity). A4 function f : C' — R is called concave if — f is convex.

Obviously, all concepts and results of convex analysis apply for concave functions too,
with trivial adjustments (e.g. reversing the direction of an inequality), and all subsequent
results of convex minimization also apply as-is for concave maximization. All one has to do
is reverse the sign and, thus, turn a payoff function to a cost function.

Gradient Descent A simple and rather archetypal (unconstrained) convex optimization
algorithm is gradient descent (GD). At each step, we follow the direction of the steepest
descent, which is, as is well known, the negative gradient. Specifically, the algorithm is:

T4l = X — ’thf(xt)

where ~; > 0 is the step size.

Here, we shall provide the convergence analysis for when the function is L-smooth and
the step size is constant, v, = 7.

From the equivalent formulation of smoothness (3.3), we get:

L
f(@epn) < f@e) + (V@) 201 — 20) + §||ft+1 — 2[5

L 2
= f(e) = VIVl + -1V F ()3

As a function of ~, the RHS of the above is minimized for step size v = +, for which we

get:

1
>

F(@) < F) = Sl VF@IE= Rt < R = 5195l

where R; = f(x;) — f(z*) denotes the distance of the current value to the optimal value.
Then, since f is convex, we get:

Ry = f(zy) — f(z") <(Vf(xy), m — 27)
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Combining the last two inequalities, we have:

Rivr < (V@m0 - a%) = o9 @)l
—%(HV}"‘(%)H% —2L(V f(x;),zy — x)) now, we can complete the square
- _%(va(g;t)ng — 2LV f(x), 2 — ") + L2||zy — 2*||5 — LP|Jz, — 2*|3)
= IV () ~ L~ a*) [~ Ll — 2*[3)

L2 1 * |12 * |12
= —57 Uz Vf(z) =@+ 275 = llae = 27)3)

L
= —5 (I =z + 275 =l = 27[2) = F ([l = 27[15 = llze0 — 27[13)

2

Thus, if we telescope the above:

T
Y Ri<
t=1

Finally, since R; is decreasing, we conclude that:

no| b

L
(lzo = 2"[l5 = llez — 27[13) < Zllwo — 2713

1 & L|zo — 2*||2 _ LD?
RTST;Rts < o
where D can be interpreted as either an upper bound on ||zg — 2*||2, which must be a starting
condition for the algorithm, or as an upper bound for the diameter of the feasible set. Of
course, in the latter case, gradient descend must be adapted to work for constrained optimiza-
tion. This is not difficult; for a demonstration of something along these lines, check out the
following section.

Here, the final result is that gradient descent reaches a point z7 with R; < ¢ in at most
2
O(£2=) steps.

3.4.1 Online Convex Optimization

In general, convex optimization by itself is enough only for the case of potential games,
where there is an underlying potential function and, whenever a player moves to improve his
payoff, the potential increases; through such arguments, convergence to Nash equilibria by,
e.g., gradient descent employed by all players can be shown.

However, for non potential games, convex optimization is no longer enough. Since we
have no underlying single function, here we must say that each player, whenever she plays,
sees a different payoff function, specifically u;(x;; _;), and what she wishes is to maximize
her cumulative gains along the whole play of the game, if the game will be played repeatedly.

This, as seen from the perspective of one player, is basically the setting of online convex
optimization. As a result, online convex optimization methods and algorithms are generally
regarded to be “natural” tactics, which an intelligent player of a game is highly likely to
employ; convergence results of such algorithms to equilibria are highly desirable, and, as a
matter of fact, it is one such algorithm that is employed in [ ] to compute equilibria in
diagonally strictly concave games, and which we will discuss in a later chapter.
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In this section, we will briefly introduce fundamental concepts and an algorithm from
online convex optimization, both to establish useful concepts (basically, the regret) and to
get a first feeling of the analysis of online convex optimization algorithms.

First of all, let us describe exactly the general setting, which is, as the name suggests, a
generalization of convex optimization to the online case:

Definition 3.18 (Online Convex Optimization). An online convex optimization problem is
an iterative process conducted between some agent and some (possibly adversarial) envi-
ronment, in which, at each step t € N:

1. The agent chooses an action x; € X, where X is a compact convex set, subset of some
Euclidean space.

2. The environment selects a (convex) cost function f, : X — R.
3. The agent incurs a loss of fi(x;).
4. The agent receives any feedback that is to be received.

One can easily understand that the above process is somewhat unfair, and that it is too
much to ask for guarantees comparing, for example, the effectiveness of the agent to the
optimal offline solution. For this reason, the merit of success here is taken to be the difference
between the cost that the agent manages to incur and the minimum cost that she could have
incurred by playing the same action on all rounds. This is called the agent’s (external) regret,
and it is defined below.

Definition 3.19 (Regret). In an online convex optimization problem, the agent’s regret is
defined as:

R(T) = maxy | fi(w) = fil)

where T is the horizon of play.
An algorithm is then called no-regret if it guarantees vanishing average regret for the
agent, or, equivalently, R(T) = o(T).

Online Gradient Descent One example of an algorithm that achieves no-regret (under suit-
able conditions) is the online version of gradient descent, appropriately called online gradient
descent (OGD). The algorithm is the following:

Tep1 = 2 — %V fir(Te)

We will also need the projected version of OGD, as we have to work with a bounded
action set X'. The only difference is that each new point given by the above recursion is
projected onto the action set:

zip1 = My (2 — %V filzr))

where Iy (z) = argmin,, ., ||z — 2’||2 is the projection mapping.
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Theorem 3.20 (OGD No Regret). Let X' (subset of some Euclidean space) be a compact
convex set with diameter D, i.e. max, yex ||z — y|l2 = D. Also, let (fi)ien be a sequence of
differentiable convex functions. Then, (projected) OGD enjoys the following regret bound.:

Z IV ()13

27 t=1

If, moreover, all f; are assumed to be L-Lipschitz and OGD is run with step size y; = %,
then:

R(T) < ;LD\/T

Proof. Firstly, we use the convexity of f; to bound the difference f;(x;) — fi(x) (for any
x € X):

f(w) = filw) + (V filwr), @ — )
= filw) = filx) <V filwi), 20 — )

Then, we will bound the quantity (V f;(z;), x; — x) using the update rule.

e = @ll3 = | Ma(z =%V fi(an)) —

Now, it is a well known fact and not hard to see geometrically that ||TIy(y) — x|2 <
|ly — |2, for any x € X. So, we can continue:

@41 — 2|3 < ||z — %V filze) — 2|3
= |lze — 3 + ¥V felz) |3 — 27V fil@), 2 — )

1
= 2Vfilw),z —x) < %(th — 2|3 = o — zllz + 7NV fel@)]2)

Now, we are ready to bound the regret (we use R,(T") to denote the regret with respect
to the specific fixed action x € X):

52



T T

=2) (filz) ) <2V filwr), x — x)
t=1 t=1
"1
<> E(th — 23 = e — 23 + 21V fula)|3)
t=1
T 2 2 T
Ty — X — || — T
:Z” t ”2 || t+1 ||2+Z/7t||vft(xt)|’§
—1 Vt
llzs — =)} | « 1
1 2 2
= + Ty — T —— — ) = —||lxrs1 — 2|5+ V fi(x
Sy (- 25 - Lol Vs
merT
1
< 3 ol (—— ) Sl
D? 11
<D (___) Ve
" Z o Z%H fi( t)||2
D? 1 1
:—+D2(——+—)+ Yl V fe(e) I3
- - ;m (w03

D?
=, + Z%vat )3

t=1
So, finally:
D* &
R(T) = max Ry(T) < 2—+ 3 2| Vfulao)|

zeX 2’7T —1

The second part of the theorem is derived easily from the first, if we substitute v, = %
and we use:

1. that a convex differentiable function is L-Lipschitz if and only if ||V f(z)| < L.

2. that -, & < 2VT.

3.4.2 Convex Optimization and Games

In this section, we utilize the example of potential games to showcase the strong connec-
tion that exists, in some cases, between optimization and games (specifically, equilibrium
computation).

Definition 3.21 (Potential Game). 4 game G(N, (X;)iciny, (4s)ic(ny) is called an (exact) po-
tential game if there exists some function ® : X — R such that:

wi(yi, i) — ui(zi,w—y) = P(ys, xi) — P25, ;)

53



For smooth games, an equivalent, more straightforward formulation is for the function ®
to hold that:
Vo(x) = v(x)

i.e. the gradient of & must be equal to the pseudogradient of the game.

Given this, it is easy to see that the Nash equilibria of the game correspond to the local
maxima of the potential function. If, specifically, the game is also concave, then the equilibria
and the local (which are also global) maxima coincide.

Thus, in a concave potential game, any concave optimization algorithm can be employed,
using the gradient of the potential or, equivalently, the pseudogradient of the game.

An idea, then, is what happens if we use the pseudogradient for such an algorithm / dy-
namic, but for general, and not only potential games. One possible answer are the results of
[ ], which we review later in this work.

3.5 Socially Concave Games

[ ] discusses another interesting subclass of concave games, with respect to equilib-
rium computation. The definition is the following:

Definition 3.22 (Socially Concave Games). 4 game is called socially concave if the following
two conditions hold:

1. there is some strict convex combination of the payoff functions which is concave. For-
mally, there are \; > 0 with 3., \; = 1, such that g(x) = S \u;(x) is a concave
function in x.

2. foreveryi € [N]and a; € X; (fixed), u;(a;, x_;) is convex in x_;.

It is not difficult to show that a socially concave game is always a concave game.

The main result here is that, for socially concave games, not only are equilibria com-
putable, but they can be approached in average whenever all players employ some no-regret
algorithm (not necessarily the same).

This is a considerable improvement compared to the aforementioned classes, as no-regret
algorithms are arguably simple, natural and generally viable to be employed by real, incentive-
driven players. Not only this, but the result does not constrain the players to use some specific
no-regret algorithm. On the contrary, they can use whatever algorithm / strategy they want,
as long as it is no-regret.

To state exactly this result of [ ], we first define an approximate notion of equilib-
rium:

Definition 3.23. An x; € & is an c-best response to x_; if player i can score no more than e
better against x_; than what she earns by playing x;, formally w;(x;,x_;) > w;(y;, x—;) — €
forall y; € X;.

Then, an c-equilibrium is simply any action profile where each player i is e-best respond-
ingto x_;.

Theorem 3.24. Suppose we have an N player concave game, which is also socially concave.
If each player acts in a way that guarantees a regret bound R;(T), then at any time stept > 0:

— t . 7. .
1. The average strategy vector T; = % > w1 Tk is an ,-Nash equilibrium, where ¢, =

1 N NRi(t) — i
oim Zz’:l - and )\mm = mll’lie[]\[} >\z
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2. The average payoff t;; = S, ui(zy) of each player is close to her payoff at &, in
the sense that:
X
|uz t uz )\_ z::

Proof. The proof basically comes down to properly rewriting the definitions for regret, con-
vexity of u; in z_; and concavity of g(z) = Zf\il Aiu;(x) in x, applied on the points z;.

1. R;(t) is an upper bound on the regret of player 4, thus, for every z; € A;:

1 ¢ 1
t) > Z[Uz(ﬂ%iﬂ—zk) — Ui( T, Toig)] = Wiy > 7 Zuz(ﬂfz,iﬂ—zk) - ;Ri(t)
k=1
(3.4)

2. wi(x;, x_;) is convex in x_;, thus, for any z; € X;:

ZL’Z, Zl‘ zk Zuz [EZ, zk; (35)

3. from the concavity of g(x):
) N
9(xy) > p kz g(xg) = Z i (T ; it ¢ (3.6)
By combining (3.4) and (3.5), we get:
1< 1 1
Uip > ui(w;, n Zﬂf—zk) — %Ri(t) = wi(2;, Toiy) — %Ri(t)
Finally, combining the above with (3.6), we get:

N N
Z A (Te) > Z ity (T4, T p) —
i—1 i=1

Now, almost all results can be derived from this inequality. Indeed, since z; can be freely
chosen, we can choose z; = 7, for all j # ¢ and keep z; free. Then, we get:

AiR;(t)
t

N
=1

=

i (Zy) + Z Ajui(Zy) > Nwi(x, T—iy) Z Ajwi(Zy) —

Jj=1,j#i J=1,j#i i=1
N\ Ri(1)
=N (Te) > N (24, T p) — - ;
=1
1 S MRt 1 ARt
=i (Ty) > (T, Toiy) — " ; ; > ui(Zy) > iz, T S ; ;

In other words, 7; is an £;,-Nash equilibrium.
For the proof of the second part, which is equally straightforward, we defer the reader to
[ ]. O
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Chapter 4

Opinion Formation

The topic of opinion formation is relatively large, with much research having been conducted
through the decades, in fields ranging from mathematical sociology to game theory. By no
means do we intend here to summarize the whole topic, but we give some brief overviews of
models and approaches that are relevant to our setting, and which our model stems from.

Network representation In general, the models we deal with represent the interacting,
opinion forming entities as nodes in a (social) network, using edges between them to represent
some kind of bond or interaction (e.g. Facebook friends). We generally denote this network as
a graph G(V, F) (following standard graph notation) or G(V, E', w) for the case of weighted
graphs. We generally deal with directed graphs, unless explicitly specified otherwise.

The agents’ opinions are represented as single numbers on the real line, usually assumed
to lie in [0, 1].

In addition to the above, each model specifies some opinion dynamics, i.e. update rules
which dictate how each agent’s opinion evolves over time, while interacting with the other
agents. There are many variations of those and, additionally, it is not uncommon for a network
or game model to specify and study several dynamics. This is not unusual; these should
be thought of as two perpendicular, albeit related, aspects of every model. On one hand,
we have the specifications for how agents are stationed in the world, what is their opinion,
what interests them and holds the most weight for them. On the other hand, we have the
specifications for how players think, decide and take action. We can think of it as a function
to be minimized and the optimization method that is used to minimize it (which is indeed the
case on many occasions, as we shall see).

4.1 DeGroot model

First specified in [ ], this model posits that, at each round, each agent updates their
opinion to some (fixed) convex combination of the others’ opinions. Formally:

Ty = Axy = Alay 4.1)

with A a stochastic matrix, i.e. it has nonnegative entries and all its rows sum to 1.

In[ ], it is shown that the agents’ opinions converge to a consensus (i.e. all agents
to the same opinion), under some mild assumptions on the Markov chain corresponding to
the stochastic transition probability matrix A (specifically, irreducibility and aperiodicity).

Furthermore, it is shown in [ ] that the time it takes for the agents to reach ¢ close to
the equilibrium is of order @(ﬁ log %), where p, is the second largest eigenvalue modulus
of A (the largest is 1, since A is a stochastic matrix).
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It is interesting to notice that in [ ], which otherwise does not refer to optimization
whatsoever, the way they resolve one case which does not converge under the simple best
response dynamics (specifically, bipartite graphs) is to utilize a variation of best response in
which, at each turn, each player chooses a point somewhere between their best response and
their previous point. They call it “noisy best response dynamics”, but it is not much different
than what a GD-like optimization algorithm would do.

4.2 Friedkin-Johnsen model

First studied in [ ], in this model, there are still no games, but only /N agents with opin-
ions who, again, at each step of an iterative process, update their opinion to some weighted
sum of all opinions (with fixed weights). The difference now is that an extra term is added,
that can be interpreted as their intrinsic, unchanging opinions ([ ] interprets it as the ef-
fect of exogenous variables on the opinions, but, as long as it’s static, there is no substantial
difference). Formally:

Ti41 = Axt + Bs (42)

where A is some matrix of interaction weights.

It is assumed that each agent updates their opinion to a weighted average of all agents’
opinions from the previous round and their own intrinsic opinion.

Thus, the matrix of interaction weights A is substochastic and the matrix B is a diagonal
matrix, whose entries b;; are linked to the agents’ “self-confidence”.

Moreover, assuming there is at least one agent for whom b;; > 0 (otherwise, we are back
in the DeGroot model), A has at least one row with sum strictly less than 1. Additionally, A
is assumed to be irreducible, which is equivalent to the graph of the agents being connected
(otherwise, one can work on each connected component independently).

Under these asumptions, the spectral radius of A, p(A) = max; |A\;(A)], is guaranteed to
be less than 1. But then, we know that A* behaves like a geometric progression with rate less
than 1, in the sense that:

lim AF =0

k—o0

iA’“ =({I-A)"

Moreover, from (4.2) we recursively get that:

¢
Ty = Alay + (Z A" Bs

k=0

As such, and as is shown also in [ ] (under some different but related conditions),
the opinion vector converges to:

Too = ([ —A)'Bs

As for the convergence speed, [ ] show that a similar result holds as in the DeGroot
model. Specifically, the time until an e-neighbourhood of the limit is reached is bounded by
O(1=,zy log(2)), where p(A) = max; \;(A) is the spectral radius of A.
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4.3 Game Theoretic viewpoint

In [ ] (and [ ], as a matter of fact), the above regime is reinterpreted in terms of

game theory. Specifically, the averaging by a player of other players’ opinions and their own

intrinsic opinion is seen as the player’s best response in a game with suitable quadratic costs.
Specifically, each player ¢ is assigned a cost function of the form:

ci(z) = Z w; j(x; — 25)* + (2 — 5;)

JEN(3)

where w; ; is the weight of the edge (¢, j) (in other words, the strength of their interaction)
and N (7) is the set of all direct neighbours of i in G(V, E).
The first term of this sum expresses the cost of disagreement with the player’s own intrin-
sic opinion, while the second term represents the cost of disagreement with their “friends”.
Now, given the above, it is easy to find the best-response correspondence of a player,
which, in this case, is a simple mapping, since the cost is a simple quadratic function and the
best response is unique. All we need to do is differentiate:

(902-
3@»

(27) = 2(x] — si) +2 > wiz(a} —a;) =0
JEN(4)
Si T 2 jen) WisT
L+ iene) Wig

—} = BR,(z) =

This quantity is a convex combination of s;, x; (for all j # 7) and, as such, it always lies
within [0, 1]. So, it is indeed always the best response of player ¢ (i.e. we do not have to
consider boundary cases; the quadratic function is constructed in such way that its minimum
point over R is always in [0, 1]).

In other words, a necessary and sufficient condition for z* to be (the) Nash equilibrium
in these games is v(z*) = 0. Now, if we try to iterate on that a little, the pseudo-gradient of
these games is:

v(z) =2Lx 4 2x —2s = 2(L + I)x — 2s

where L is the Laplacian matrix of the weighted graph, i.e. L; = > jeN() Wij and L;; =
— Wiy

This is simply the partial derivative we wrote above, but in matrix form.

Then, the condition v(z*) = 0 becomes:

(") =0 2La* + 22" —2s =0 (L+Na* =s < a* = (L+1)"'s

where L + [ is invertible, since it is strictly diagonally dominant (easily checked).

4.3.1 Best Response Dynamics

Given the above expression for the best response of a player, the best response dynamics for
this game 1is:
Si + D jen) WigTit

L+ e ng) Wiy

Tit+1 = BRi(It) =
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4.3.2 Opinion Dynamics

It is not difficult to see that the best response dynamics described above fall into the opinion

dynamics model of [ ] that we described, with:
w. .
A = ”
71+ ZjeN(i) Wij
By = E

1+ ZjeN(i) Wi

As aresult, all that we said previously still holds: the dynamics converge to (I — A) ™' Bs
and the convergence speed is bounded by the same quantity.

Moreover, since they coincide with the best response dynamics of the game, this unique
limit must also be the unique Nash equilibrium of the game (i.e. (L+1)"'s = (I — A)~!Bs).

4.3.3 Potential

For the case of undirected graphs, the above game is additionally a potential game, with the
potential function:

N
:Z i — Si) —i—xTLx

Vo(x) = Lx+2x—28—v()

[a0)
Since the graph is undirected, the Laplacian is symmetric. Moreover, L can be easily
seen to be positive semidefinite, as 27 Ly = (iyer Wij (T — z;)* > 0.

As a result, ¢ has a positive definite Hessian. Thus, it is strictly convex; and strongly
convex, for that matter, since L > 0 = L+ [ = I.

As a result, methods of convex optimization can be applied to obtain its minimum, or
equivalently, the Nash equilibrium of the game, in polynomial time.

But, if we write explicitly, let’s say, gradient descent for this problem, we get:

Tip1 = T — NVO(x) = 20 — 12((L + Dy — 8)
= Tit+1 = Tit — 2’715((]- + Z wij)l’i’t - Z Wiy — Si)

J JEN(3)

Si+ D jen() WigTi
=Ty — 27 (1 + wig) (i — <
zj: ’ L2 jene) Wi

=z — 2% (1 + Z wij) (i — BRy(74))

J

In other words, what we end up with again resembles a lot the “noisy” best response
dynamics of [ ], in the sense that a player does not go straight to their best response at
each step, but to an opinion between their best response and their previous opinion.

Furthermore, since all other stuff are constant, we can renormalize the step and say that:

e 21+ ) wyy)
j
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Then, z;;+1 = ;4 — 7(z;r — BR;(2¢)) and one can easily see that the best response
dynamics we already talked about coincide with gradient descent if we take a constant step
of 1.

4.3.4 Implications

What all the above tries to convey is that, for this class of games, there is a strong connection
between the game, the opinion dynamics and the optimization methods that can be performed
on them. Moreover, each perspective can be used in different ways to arrive at certain con-
clusions. An example here is that simultaneous best response dynamics converge, which, in
general, does not hold, but, in this case, it can be shown both via the opinion dynamics and
the potential function with gradient descent, because in both cases, the algorithms end up
being identical.

Another example, which also portrays some advantages of optimization methods, is the
case we discussed in DeGroot opinion dynamics, where simple best response dynamics do
not converge, but a slight modification to a more GD-like dynamic results in convergence.

This warms up the field and points us to the direction of using optimization methods for
equilibrium computation in not only those games, but maybe in generalizations of them.

4.4 Coevolution

The final consideration, and the one encompassing our model, is to consider that the network
is not static, but it co-evolves with the opinions. For every player, the players whom she
values the most, and whose opinions she will weigh more in her cost of disagreement, are
those whose opinions are closer to her, and to her intrinsic opinion in particular.

The first two models are classic in this line of work. The rest are taken (either verbatim
or slightly adjusted) from [ ].

4.4.1 Bounded Confidence - HK and DW

Hegselmann Krause One of the first approaches for this line of work was the one in
[ ]. In this opinion formation model, agents do not possess any hidden information
(such as the s; before), but each agent only “listens” to those other agents whose opinions are
close enough to hers.

Specifically, there is a threshold parameter ¢ > 0 (which represents how “open-minded”
the agents are) and each agent takes into account only the agents in the set:

I,2) ={1<j < N:|oi—a;] < &}
in the sense of the following update rule:

Zje](i,r) ()
|

J
T TG (1))

Obviously, the agent herself is always in /(7, z).

Moreover, notice that the HK model dynamic admits an infinite number of stable points,
namely any partition of the agents into groups, such that the opinions of agents from different
groups are more than ¢ apart.
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Finally, concerning convergence properties of the model, it has been shown that the HK
model dynamic converges to a stable opinion profile as described above in a finite number
of steps [ , , ]. Moreover, there are both upper [ , ] and
lower [ ] bounds on the number of rounds needed for this to happen.

Deffuant Weisbuch Another model which is on the same wavelength is the Deffuant Weis-
buch (DW) model [ , , ]. Here, at each round ¢, two agents ¢, j are chosen
at random to interact. If their opinions are closer than some threshold d, then they both update
their opinions to a middle point, using the same coefficients:

Tipp1 = Tig + (i — Tiy)
L1 = Tjp + @iy — Tj4)

where p is a convergence parameter in [0, 1/2].

This model seems to be more difficult, with results being more scarce, but still, it has been
shown that this opinion dynamic also converges to a stable point ([ ]) and relatively
fast at that ([ .

4.4.2 Asymmetric KNN Games

Going again into game theoretic models, here, each player again possesses an intrinsic opin-
ion s; € [0,1]. Then, she is connected, for any given profile z € X, only to the K other
players whose expressed opinions are closest to her intrinsic opinion s; (with ties broken
arbitrarily but consistently). Formally:

N(i) C [NJ\{i}, IN())| = K, s.t. Vj € N(i),Vj" & N(i) U{i}, |z; — si| < [zj — i
ci(x) = Y (wi— )" + pK (; — 5,)°
JEN(@)

where p is some number which represents the self-confidence of the player.

These games are, in general, difficult to work with. They are not concave and, as a matter
of fact, there are very simple examples of such games in which Nash equilibria do not even
exist.

Such an example is given in | ]. Let N = 3 players, with s; = 0,55 = 0.5,53 =1
and K = 1 and p = 1. Then, player i,i € {1, 2,3} has the cost function:

C,(J}) = (:L‘l — xa(i)>2 + ({L‘l — Si)Q
where o (i) = argmin;; |z; — s;|, and the best response of player 7 is:
Lo(i i
x; = Lot + Si
2

Given this, it is relatively easy to see that a Nash equilibrium x* must have 27 < x5 < 23,

since:

min{zy, v3} +0  min{zy, x3}

*_

< min{zy, 3}

! 2 2
max{zri, ro} + 1 . e .
Tk = (w1, 22} > max{xy, x5} (verifiable with simple calculations)
3 2 )
% _ Ty+s1 x5 « _ xy+s3y _ xy+1
So, then, 7] = =— = F and 23 = =~ = = —.

Finally, there are three cases for 3:
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1. 2} €[0,0.5): then, 7 € [0,0.25) and z € [0.5,0.75), so 0(2) = 3 and 2} should be
= BE% € 0.5, 23], which is a contradiction.

2. % € (0.5, 1]: completely symmetric, z; € (0.25,0.5], x5 € (0.75,1], so 0(2) = 1 and

x5 should be x5 = @ € [«7,0.5], which is a contradiction.

3. 25 = 0.5, in which case 27 = 0.25 and 2§ = 0.75, thus 1 and 3 are tied for o(2).
But, no matter which one we choose, the best response of player 2 cannot be 0.5, as it
should either be 22505 = (0.375 or &322 — 0.625.

So, this game does not have any Nash equilibria, and there isn’t much hope in terms of
equilibrium computation, at least in general.

4.4.3 Asymmetric Coevolutionary Opinion Formation Games

Finally, this is the model that we are mainly concerned with. First of all, we explicitly con-
strain the individual action space of each player to X; = [0, 1]. Further, each player is as-
signed a cost function of the form:

Ciwsw i) = (1= pi) Y ayj(wss ) (i — 5)° + pils — 1)
J#
—iysi) = (L= pi) Qi i (i si iSi
=z — 2B(x_s; 5;)x; + ¥(r_s; s;), with Blaiisi) = ( p)Z]#f]q](x i) +p;9
V(T _is;) = (1= ps) Zj;ﬁi quz‘j(f—z‘; 8i) + pis;
where
o qij(x_i;s) = Fi(dz-,di_i_j), with d‘g = |z; — s

e F; is a continuous function, nonincreasing in the first argument and nondecreasing in
all the rest.

o ¢ii(z_i;si) >0, Z#i ¢ij(x_;; s;) = 1, hence the equivalent form where ¢; is a quadratic
with unit coefficient in x;.

Here, ¢;; tries to capture the role of the (normalized) edge weights that we had before,
with the fundamental difference that these weights change dynamically depending on the
players’ opinions vector.

The second condition stems exactly from that. It basically says that if player j goes away
from player ¢ (and all other players stay in the same spot), then the weight of the edge (i, j)
is expected to decrease (or at least not increase).

Nash Equilibrium Existence It is easy to see that the above game is concave, since each
player’s cost is a continuous function and convex in the player’s action. As a result, the
existence of at least one Nash equilibrium is guaranteed by [ ].

Consequently, as noted in [ ] (section 4.3), it is an interesting open question to
decide the computational complexity of Nash equilibria in this case, and this is exactly the
ultimate goal of the current line of work.

To that end, in the following chapter we are going to discuss the Dual Averaging dy-
namics, which is a known algorithm in convex optimization, and which has been shown in
[ ] to converge fast to equilibria in a large subclass of concave games. And, basically,
as we will see, all we do is try to make the results of [ ] applicable on asymmetric
coevolutionary games.
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Properties We summarize here some properties of the above game that may be of use later.

Individual gradient / derivative

0

%Ci(xiax—i) =2(1—p;) Z(% — 25)qij (735 8i) + 2pi(Ti — i)
' J#i

= 2x; — 25@—@'; Si)

Best responses  Since the payoff of player 7 is a simple quadratic with respect to x;, we
can calculate the best response to a strategy profile of the other players in a straightforward
manner:

7 = argminci(y; i) = B@-iisi) = (1= pi) Y wia5(@-is ) + pus:
ves i#i

and the minimum cost that is attained by choosing this strategy is:

ci(xl,x_;) = —p(v_i; 5i>2 +v(z_i; s0)
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Chapter 5

Concave Games and Dual Averaging

In this chapter, we give an overview of the main results of [ ], that are also the most
relevant to our work.

If we had to summarize the most relevant and interesting results, it would be that for (a
superclass of) diagonally strictly concave games, as those were introduced in [ ], there
is an algorithm (as a matter of fact, a somewhat general algorithmic scheme) which converges
to the unique equilibrium in polynomial time.

5.1 Variational Stability

A notion used widely in [ ], one way to see it is as a generalization of unimodality.
Another way, if it seems more relevant to the reader, which is also how the author puts it, is
that it plays the same role for learning in games with continuous action spaces as evolutionary
stability (first introduced by [ ]) plays for evolution in games with a continuum of
players.
Formally, variational stability is defined with respect to an action profile':

Definition 5.1. An action profile x* € X is called (globally’) variationally stable state if-
(v(z),z —2") <0forallx € X\ {z"} (5.1)

We will often call a variationally stable state simply stable.

Geometrically, stability means that the pseudogradient vector at any point “points toward”
x*, in the sense that v(x) has positive inner product with the vector starting from x and
ending on x*. Thus, intuitively, we generally expect maximization algorithms that follow the
gradient to approach the equilibrium z*.

Two noteworthy properties concerning variational stability are the following:

1. A variationally stable point is the game’s unique Nash Equilibrium. We omit the formal
proof, but it is straightforward: the definition, on one hand, implies that on any line
from z; to x}, u(-, z*,) is increasing, thus x; is a maximizer, and, on the other hand,
(5.1) is an exact counterexample of the necessary condition (3.2) for x, so any x # z*
cannot be a Nash equilibrium.

! To encompass cases such as, for example, potential games whose potential is concave, but not strictly

concave (there is a plateau), [ ] also gives a more general definition that applies to sets of profiles. We
will not deal with stable sets in this work, as it did not seem to apply to our games.
2 The original definition of [ ] is even more general, defining locally stable states, in the sense that the

above inequality holds for  in some neighbourhood of z*. We will not deal with that either.
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2. Diagonal strict concavity implies variational stability, so that the (unique) Nash equi-
librium of a diagonally strictly concave game is always variationally stable. Unsur-
prising, since, essentially, variational stability is to diagonal strict concavity what uni-
modality is to strict concavity.

Formally, it follows directly from the definition (5.1) plus condition (3.2):

(v(x) —v(@"),z—2") < 0= (v(zr),r —2") < (v(z"),zr —2") <0

5.2 Dual Averaging

Dual averaging is a fairly simple, GD like algorithm, widely known in online optimization
literature (introduced in [ 1), adapted in [ ] to the game theoretic setting. It is
a well-known no-regret algorithm under mild assumptions (see for example [ ] and
[ 1), and, even though it is not exactly in our agenda to talk about this, it is an impor-
tant property, which guarantees a decent total payoff for the player and, thus, as we have
mentioned, it contitutes a strategy very likely to be employed by intelligent players.

The algorithm can be described as follows. Each player keeps track of two points: their
current action z;; € X;, which is essentially the action they choose to play at each round of
the game, and one point y; ; which moves freely in the ambient space’. Then, at each step,
yi++1 1s found by taking a free step along the gradient v;(z;) (with no regard as to whether
we end up in the action set or not), while z;; is found by projecting y; ; onto the action set.

In other words, it resembles projected GD, the difference being that y; , are “persistent”.
We don’t simply project an infeasible point onto the feasible set and keep the projection, but it
is the infeasible point from which we will take the next gradient step, in the following round.

Formally, starting with some arbitrary y;, the general algorithmic framework can be de-
scribed by the following update rule:

Tit = WilYi
it Q (y ,t) (DA)

Yirt1 = Yit + Yevi(xy)
where:

e (); is a generalized projection, called the choice map (we shall see the formal definition
later).

e 7, is a nonincreasing step sequence, typically of the form 1/¢” for some 3 € (0, 1] (one
typical choice is v, = 1/v/1).

e v;(z;) is the individual gradient, as we have already said. Furthermore, we denote
V. = max,cx ||v(x)]|«. Note that this maximum always exists, since we have already
imposed that X be compact and v(x) be continuous.

5.2.1 Choice Map

Later in this work, we will mainly utilize the Euclidean projection, that is, the minimum
distance projection of a point onto a (convex) set:

Q(y) = argmin ||y — |3

TeX

3 More accurately, the dual space of the ambient vector space. This makes [ ] very general, but, for
the purposes of this work, we decided that it was unnecessary algebraic bloating.
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Nevertheless, the more generic choice map we will present shortly gives useful insight
that is connected to concepts from convex analysis, that would perhaps not be as apparent if
we focused only on a specific choice map.

To start thinking about the choice map, consider the points y; ;. From (DA), it can be seen
that v, , aggregate gradient steps, in a similar way to a simple gradient descent. Ideally, we
would like to be able to choose y;; as the actual actions to be played; of course, y; are not
guaranteed to lie inside the action space, and it is the role of (); to project them back, as we
already said. For this reason, we want (); to choose an action that is as closely aligned as
possible with y; ;. Thus, an obvious choice would be Q;(y;) = argmax, . y. (Ui, T4).

The problem with this choice is that it is too aggresive and it cannot possibly converge to
interior points, because, generically, the maximizer will be on the boundary. As an example,
let’s try to apply the algorithm with this choice map to a simple 1-dimensional optimization
problem (i.e. single “player”) with:

u(z) = -2,z € [-1,1]
=u'(z) = 2z

Then, the algorithm will be:

1 yt>0

xy = Q(y) = argmax yyx = ¢ —1 Y <0
wel-L] arbitrary 1y, =0
Ytr1 = Yt — 22 = {yt_z% n=15u>0
Yt+2n v=—-1y<0

Let’s say, now, that y; is chosen to be some positive value (negative would be essentially
the same, but we do want to avoid 0; besides, it is only one out of infinite possible initial-
izations, so the generic case is the one we study). Then, on the next step, yo = y; — 27y;. If
Yo > 0, on the next y3 = yo — 272 = y1 — 2(71 + 72). As long as y, > 0, this will continue,
so that the next y will be ;.1 = y; — 2 Zizl Ve

Of course, this cannot continue forever, due to the requirement > _,~, 74 = oo. Eventually,
y; will either reach exactly 0 or pass over to the other side. Then, the same process will
continue, with y;11 =y, — 2 Z’;:to ~-, where t is the step when we passed through 0.

So, we can see that 3, will continuously move towards 0, bypassing it if the sums of ~,
do not equal 0 exactly, but then again moving immediately in the other direction, toward 0
again. By the way, > .~ 7 = oo means that there is no way that y, eventually remain on
any one side of 0 forever (because that would mean that ) ;- +, 18 finite).

Now, if y; and 7, are such, that the pathological case of y; = 0 is avoided for all ¢ (or,
more concretely, if one chose to use 1 or -1 as the arbitrary maximizer of the zero function,
since, let’s say, -1 and 1 are the results for the two other cases), then it is easy to see that x;
will continuously alternate between 1 and -1, never converging (or even going near, for that
matter) to the maximum point 0.

This is the reason (or, at least, one of the reasons) why, instead of a hard max, one must
take a soft max approach, in the sense of:

y; — argmax{ (y;, x;) — h;(x;)}
T, €X;

where h; is some strongly convex regularizer.
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Connection to FTRL  Actually, there is also one other interesting way to look at the Dual
Averaging algorithm that we know of, and that is as a linearized and weighted version of the
Follow The Regularized Leader (FTRL) algorithm. This is one of the fundamental algorithms
in online optimization. It works directly on the online maximization setting that we discussed
in the previous chapter, trying to minimize regret by selecting for the agent the best possible
action in hindsight, i.e.:

rin = argmax 3 £-(x) + h()

zEX =1

plus h(z), which is the regularization term again.
Then, the idea is to approximate the functions f; by their linear approximation around the
point chosen in the respective turn, i.e.:

fi(a) = filwe) +(V filwr), ¢ — 1)

If one then takes these approximations, puts weights 7, on them, and substitutes the func-
tions in FTRL with these approximations, the result is the update rule:

Ti41 = argmaXZVT(fT(xT) + <Vf7_(l’.,_), T — xt>) + h(]?)

zeX —1

t
= argmax(z vV f-(z.),x) + h(x) (the other terms are independent of z)
reX T

Now, modulo the initialization, this is exactly (DA) for each player 7, since:
t
Yitt1 = Yir + 1evi(2e) = yip + Z Yrvi ()
=1

Tit41 = Qi(yi,tJrl) = argmax<yi,t+1> x;) — hi(z;)
xr; €X;

t

= argmax(y; 1 + Z Vrvi(xr), ) — hi(z;)

z, €X; =1

For more details on FTRL, see, for example, [ ] (section 2.3) and [ ] (chapter
5).
We now continue with the formal definitions of a regularizer function and the choice map.

Definition 5.2 (Regularizer). A4 function h: C' — R, where C' is compact and convex, is
called a regularizer (or penalty function) if it is continuous and K -strongly convex (for some
K > 0).

Notice that this will not only solve the issue of sticking to the boundary, but also the
equally annoying issue of poorly defined argmax, since (y;, x;) — h;(x;) is strongly concave,
and strongly concave functions have unique maximum points.

Now, the choice map () is defined as follows:

Definition 5.3. Suppose we have a convex (action) set C' and a regularizer h : C' — R.
Then, the choice map Q: Y — C'induced by h is defined as:

Q(y) = argmax{(y, x) — h(w)}

zeC

One can already see the correlation between (Q(y) and the convex conjugate h* of h, even
formally, since h*(y) = max,cc{(y, ) — h(x)}.
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Example As an example, the simple Euclidean projection can be derived as the choice map
induced by the squared Euclidean norm, h(x) = 3||z|[3, since:

1 .
argmax{(y, z) — §H$H§} = argmax{2(y, x) — [|z[j3} = — argmin{|[z[5 — 2(y, )}
zeC zeC zeC

= — argmin{||y||3 + ||z||3 — 2(y, )} (adding a constant makes no difference)
zeC

= —argmin{(y — z,y — )} = —argmin{||y — =[5}
zeC zeC

= — argmin{||y — z||2} since square is increasing
xeC

Finally, some interesting results can be derived, which are, in fact, difficult to see in some
cases for specific functions. There is no reason to dig deeper into these results for the current
work, since we do not play around with choice maps ourselves, but we list some of these
facts here, as they are needed for the discussion on convergence.

l. 2 = Q(y) ifand only if y € Oh(z) < h(z') — h(x) > (y,2’ — z),Vz' € C; in
particular, im () = dom Oh.

2. h* is differentiable on y and VA*(y) = Q(y) for all y.
3. @ is (1/ K)-Lipschitz continuous.

These three points are quite well known in convex analysis; for proofs, see, for example,

[ 1.

Adaptation to Games Up until this point, we basically discussed choice maps in a convex
optimization context, with no mention of multiple players.

The adaptation is straightforward: each playeri € [IN] will be endowed with an individual
regularizer h; which is K; strongly convex and induces a choice map @);.

One thing to note, however, is that we will often need to refer to the players as an en-
semble, with one choice map, i.e. * € X and Q(z). This is done by considering h(z) =
>, hi(z;) as the aggregate penalty function, which is K -strongly convex, where ' = min; K.
The induced choice map in this case is simply Q(z) = (Q1(x1),...,Qn(xN))-

5.3 Potential: Fenchel Coupling

The quantity that is used as a potential in order to show convergence is the Fenchel cou-
pling, a relatively known primal-dual measure of distance which can be used to measure the
divergence between a primal and a dual point (by dual we mean the points Y; ,,). As a demon-
strative example, the Fenchel coupling for the entropic regularizer, which is the one used in
the case of simplex strategy sets, is exactly the KL-divergence.

For one action profile z € X and one point in the dual space y, the Fenchel coupling tries
to measure their distance in terms of the defining characteristics of the choice map, i.e. the
convex conjugate of h:

F(z,vy) as defined above collects all the terms of Fenchel inequality, hence the name (first
used in [ ]). This means that F'(z, y) is always nonnegative.
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There are two basic properties of the Fenchel coupling which will be of use to us. The
first one captures the fact that we can use it as a potential function, in the sense that if it goes
to 0, then the dynamics converge to equilibrium. Formally:

1
Fla,y) 2 SKQ() — all
This is a direct consequence of the strong convexity of h, since:

F(r.) = B*(5) + h(e) ~ {3.) = {3, Q) ~ H(Q()) + h(z) (3,2
= h(a) ~ h(Q)) ~ (7 — Q) > 5 Q) — P

and this inequality is equivalent to h being strongly convex (see [ ] for a proof of this),
because y € Oh(Q(y)) as we said before.

The second property is an inequality, which is the basic bound used to show that the
Fenchel coupling under dual averaging dynamics goes to 0. Formally:

Fleyf) < P(e.y) + 0 —0.Q0) — ) + 5l — il

This, on the other hand, is a direct consequence of the duality between strong convex-
ity and smoothness (or lipschitz continuous gradient), showcased in [ ], for example,
which implies that, for a K-strongly convex h, h* will be 1/K-smooth. Because of this, we
get:

F(z,y') = h*(y') + h(z) = (y, z)
« N 1
<Y+ =9, VW) + =l =yl + h(@) = (', 2)
. 1
= (Y) + ' =y, QW) + 55l = ylZ + h(z) = (v, 2)
. 1
= ("(y) + h(@) = (g 2)) + (y,0) = (¢, 2) + (¥ =4, QW) + 55z 19 — vl
1
— F I _ T I 2
(z,9) + (@ —v.Qy) —z) + 5K 1y — yll:

As a final note, if this inequality by itself seems a bit stiff, try and look at its application
on (DA) below. It may seem much more intuitive.

5.4 Convergence
With regard to convergence, the basic result which we are interested in is the following:

Theorem 5.4. If the (necessarily unique) Nash equilibrium of a game is variationally stable,
then (DA) converges to it.

We will try to give an outline of the proof here, which we went to great lengths to make
as simple and easy as possible. It is not an easy result (and, as a matter of fact, the results of
[ ] that encompass local stability and noise are even harder).
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Intuition from continuous time Firstly, let us examine the much simpler case of the con-
tinuous time dynamics, to see that the Fenchel coupling is indeed a suitable potential function
and that (DA) indeed tends to converge to the stable equilibrium.

A mean field approximation of (DA) is be the following:

v(z)
Qy)

From this, we can take the time derivative of the Fenchel coupling:

Y
T

%F(x*jy) = %[h*(y) +h(z") = (y,27)]
= (4, VA" (y)) — (9, 2")

= (v(2), Qy) — ") = (v(z(t)), 2(t) —2") <0

where the last inequality stems from the fact that 2 is stable.
So, by Lyapunov’s second method, we know the above system is (globally) asymptoti-
cally stable, which means that F'(z*, y(¢)) — 0 and, as a result, z(t) — z*.

The Proof The proof tries to recreate the above Lyapunov argument in the discrete time.
To do so, the pivotal property it uses is the final Fenchel inequality we mentioned, applied to
the current and the next step of the algorithm, i.e.:

2

e, yer1) < P 90) +ulvlen), o — a*) + S u(e) |2

V2

< F(a", y) + ve(v(ae), 2 — 27) + 2K

Since x* is variationally stable, the second term is, as in continuous time, always negative;
if we only had that, then we would immediately get F'(z*, y¢41) < F'(z*, y;) and convergence
of F'(z*, y;) to 0 would follow instantly.

Alas, in discrete time, arises the extra final term, which is the hurdle that must be over-
come to show convergence. So, to overcome this, the proof tries to control all three terms, so
that, in the end, their sum always remains (eventually) in acceptable levels, in the sense that
if F(z*,y;) < e, then F(z*,y;41) < . For this, there are two cases.

If x, is sufficiently far from z*, then the directional derivative from x; towards x* (which
is always positive, by variational stability) is big enough to push us in the right direction,
despite the extra positive term in the above. In this case, we get F'(z*, y;.1) < F(z*,y;), and
we are good to go.

If, on the other hand, z; is close to the equilibrium, then, unfortunately, we cannot guar-
antee F'(z*,y;11) < F(x*,y,). Nevertheless, the variational stability is still enough to keep
it from straying too far, because something else favorable happens; F'(z*,y;) is itself very
small. Thus, we can still control F(z*,y;,1) so that it remains within a (arbitrarily small)
neighbourhood of 0, and convergence will still hold.

More formally, we distinguish the two cases as follows:

1. § < F(z*y,) < e. For this case, we rewrite the above inequality as:

* " N ‘/;(2
F(x*, yi1) < F(2, y) + 7 ((v(xt),wt —z*) + %)
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Now, since F'(z*,1,) > 5, x; is bounded away from x**, so the variational stability

quantity, as a continuous function, has a maximum, which is now strictly negative. As
a result:

(v(xy),xp — ") < —c(e) <0

* * ’Yt‘/*Q
=", Y1) < F(x",y) + 7 | —cle) + oK

If, for the moment, we assume that the step 7, is small enough (specifically, 7, <
c(s)%), then we have indeed managed to make the parenthesized quantity negative,
and we get:

F(‘T*vyt—&-l) < F(‘r*vyt) <é

2. F(z*,y;) < 5. For this case, we can immediately use the variational stability and

rewrite the above inequality as:

2v2 c 2v2
,yt * < _+7t *

F(x* < F(z*
(‘r 7yt+1) _— (I Jyt) + 2K 2 2K

Again, if, for the moment, we assume that the step ~; is small enough (specifically,
77 < £2K), then we indeed get:

. £ €
F(x,yt+1)<§+§:6

Consequently, even if F'(z*,y,) are not monotonically decreasing, it is still guaranteed
that, for any € > 0, if some F'(z*, ;) < ¢, then all subsequent ones will also be < «.

The proof is basically over here. There is only one loose end to be tied: guarantee that
for every ¢ there will come a time when F'(z*,y;) < € and -, is sufficiently small.

To that end, [ ] shows something slightly more general: that every neighbourhood
of x* is recurrent under (DA), i.e. x; will reach the neighbourhood from any starting point;
then it may walk away for a while, but it will again visit the neighbourhood eventually, and
this will go on indefinitely. In other words, and more concisely, what he shows here is
liminf, ., F(z*,y;) = 0.

Due to this, we are sure to eventually find ourselves in any neighbourhood of =* with step
size sufficiently small.

Moreover, this is not difficult to show. All we need to do is take the same inequality, this
time telescoping it:

t t
* * * ‘/*2
F($7yt+1)SF(I',y1)+;’77—<1)(x7—),$7——1’>+2K;’}/72_

Now, if some neighbourhood of z* is not recurrent, then x; must, eventually, stay per-
manently outside of it, so, the same way as in the first case above, the variational stability

4 for more accurate details, see the respective proof of [ ]
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quantity must be bounded:

(v(z;), 2, —a") < —c
2
*

t t
* * V.
=F(x", yry1) < F(z*, 1) _CE :77+ 2K Z’Yz
T7=1 T=1

t t
Ve
— F(x*ayl) — Vr (C _ L#)
; 2K Zj’:l ’y‘r

for all considered step sizes, >0, 72/ > _, 7, — 0, so in the end we get:

F(x*, y141) = —00

which is a contradiction, since F'(x,y) > 0.
Thus, we have proved that z; visit every neighbourhood of x* an infinite number of times.
Our proof is now complete.

5.5 Convergence Speed

[ ] uses two different, albeit similar, approaches / measures to bound the convergence
speed of (DA) to equilibrium.

5.5.1 Equlibrium gap function

Consider a stable equilibrium z* € X'. Then, the equilibrium gap function is defined as:
e(z) = (v(z),z" — z)

By the definition of variational stability, e(z) > 0, with equality iff x = z*.

Consequently, the equilibrium gap function can be viewed as a distance measure from =™,
even if not quite as good as the Euclidean distance itself.

Moreover, we call an z* € X strongly stable if, for some L > 0:

(v(@),2 —2") < —Lllz —2*|* & e(2) > Ll|lz — 2"

i.e. the equilibrium gap function grows at least quadratically with the distance between x*
and x.

Now, denoting with & = >_'_, v,e(x,)/ S . _, 7, the average equilibrium gap, [ ]
proves the following bounds.

Theorem 5.5. For the average equilibrium gap it holds that:

__R+V2RK)Y 2
€t S t
ZTII ,77'

where Fy = F(z*,y1).
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Proof. The proof comes as a result of the fundamental inequality for Fenchel coupling, the
same one we also used to show convergence:

V2
oK

. o V2
F([E ,y1)+Z’YT<U(IT),IT—ZL‘ >+2K —

t
- Z’Y‘F@}(l})’ > < F 7y1 Z’}/T
=1
Zizl Vo (v(z,), % — 17) F(z*,y1) + ﬁ 27:1 ’Yz

- = Et S t
27':1 Vr

Zi:1 Vr

0 S F<x*7yt+1) S F(x*vyt) + ’Yt<v(l’t)7$t - ilf*> +

]

For concreteness, if we choose, for example, a step size policy of v, = % (which as
described in [ ], is optimal out of all ), then we get St 2= ~ logt

T= 1
(harmonic series), Zi 1Y = Zi 1 f R \/_ t (by integration), and, as a result, the average
equilibrium gap €, is O(l‘\)ﬁt) Which is pretty nice!
As a small corollary of the above, if z* is strongly stable, then:

t t _aex||2 t — r* 2
. zgt ) Lzﬂgtnm . (Egﬂm 1Y
=11 =17 =17
and thus ,
« V2t
2 < lF(m Y1) + ﬁZT:ﬂZ
PSS z
L Z‘r:l Yr

where 7, = S0 v, ||z, — 2%/ Y.L _, 7~ is the average distance to equilibrium.

(5.2)

Corollary 5.6. If (DA) is run for T iterations with y, = 0 and constant step size v =
V1 /2KQ/T, where Q) = max h — min h, then:

ér < Vi/2Q/KT

If, further, x* is L-strongly stable, then

212  \"*
P < * 00
= ( L2 KT)

is again the average distance to equilibrium.

St el el

where 7, = ST
e

Proof. First of all, we note that:

F(a®,y1) = F(2",0) = h*(0) + h(z") = (0,27)
rglea)ii{<0,x> h(z)} + h(z*) = —min h(x) + h(z")

zeX

< —minh(z) + max h(z) = Q
zeX reX
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Then, we use directly the previous theorem, plugging in v; = ~:

F(x* V*2T2 2
g < (x7y1)+2}(7 <Q+V*’7

= T~ =Ty T oK

Now, it is not hard to see, analytically, that the above quantity is minimized for v =
V. 1\/2KQ/T, for which the average equilibrium gap bound becomes:

20

er < Vi T

Finally, similarly as before, 72 < L~ 'ér and, as such:
Lo V2 2Q
"T=NTI2KT

We should note that the advantage of this last result over the previous theorem is that it
is more straightforward, and the error guarantee is more tight, since here it is actually O(\/%)
(without the log factor).

The downside, of course, is that, here, the error goal needs to be known from the begin-
ning, and the number of iterations is predetermined, based on that goal. This means that the
process is not cumulative, in the sense that if one wants to improve an already calculated
equilibrium, they must start the whole process anew.

O

5.5.2 Running length

The second measure is the running length of (DA), which is defined as:

t—1
L |
T=1

Now, if x; converges to some z*, then a shorter length signifies less oscillations of x;
around z*. Thus, in a certain way, ¢; is a more refined convergence criterion than the equi-
librium gap function.

The main result here is that the running length of (DA) until players reach an e-neighbourhood
of a strongly stable state is at most O(1/e?). Formally:

Theorem 5.7. Suppose (DA) is run with step size such thaty ;- v} < coandy ;o v = <.
Also, let t. = inf{t > 0 : ||z* — x| < e} be the stopping time until an e-neighbourhood is
reached, and (. = {;_ denote the respective running length. If x* is L-strongly stable, then:

0 < Vi F1+(2K)_1V£Z§i17t2
g = KL 52

Proof. We will utilize results from the previous section, and specifically the bound on the
average distance to equilibrium. Since for all ¢ < t., ||x; — 2*|| > ¢, the average distance to
equilibrium up to that point cannot be less than ¢, i.e. 7;._; > . Combining this with (5.2),
we get:

2 te—1 _o V2 e 2
1Fy+ 5% > Fi+4=3%
<t <= L+ 35 D2ret Vr 1 < 25 Doret Vr (5.3)
13T _— ; Le?
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Finally, we use the fact that the choice map @) is 1/ K -Lipschitz continuous:

te—1 te—1 te—1 tE 1

e = Z |wr — 2| < — Z [Yr41 = yr s = I Z'VTHU )| < K Z'VT = Tts—l
=1

The original claim follows by combining the last two inequalities. O

The above is already a more than sufficient argument as to the time efficiency of dual
averaging. Nevertheless, we found it a nice testament to the above that even concrete bounds
on the stopping time itself can be calculated for specific step size sequences. For this reason,
we give an example of such a bound below:

Corollary 5.8. If (DA) is run with step size v, = 1/t5 then t, = O(1/&5).

Proof. Y72, 7 of course diverges, and 77 = 1/ £5, 50 Y2 i < 00, and it is equal to some
constant ¢ > 0. So, first of all, the requirements of the theorem are satisfied.

Moreover, given the explicit form of ~,, we can now calculate an explicit formula for
7; as a function of ¢. Specifically, skipping minor details, we can approximate the sum by
integrals, which yields the inequality:

“dr 5 5 2
Z—>/ =5l = (e i - )
5

T1T5

which we can now combine with (5.3) to receive:

5 2 F+ e : 1
QE 1) <7< TSy <[ Fi+ ge —o(=
5 ) ST S ( T e &5

which may not be as small, but it is comparably efficient to the original E%

5.6 Application on Coevolutionary Games

We close the chapter by introducing the application of the (DA) algorithm on asymmetric co-
evolutionary opinion formation games and writing explicitly the respective formulas. Then,
the main purpose of the following chapter will be to exhibit our results toward establishing
that the Dual Averaging algorithm converges to equilibrium on these games.

We first recall (DA):

Tip = Qz(yzt)
Yitr1 = Yir + nvi(ze)

Since ¢; are cost functions, the payoff functions will be —¢;. As a result:

0
Ui(xt) - _8[E Ci (xt) = 2(xzt - 1 - pz Z%] —ity S ‘r]t stz)
’ J#i

= —2(zp — B(x_i4;8:))
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Furthermore, as we said previously, the choice map we will use will be the Euclidean
projection, i.e. Q;(y;) = argming,cx, [|y; — x;||3. Since X; = [0, 1], the projection will
simply be:

0, ify; <0
Qi(y)) =41, ify; >1
yi, otherwise

Substituting the above on (DA), we get:

z;; = min{max{y;,0}, 1}
Yig+1 = Yit — Q’Yt(xi,t - 5(1’71,1&; Sz))
= Yir + 27(B(2_ig: 5i) — ®ig)

Finally, to simplify things even more, we make two (innocent, as far as we can tell)
assumtions:

1. y;1 €10,1].

2. 7 < 1/2. This is easy, since the step sequence ~; is decreasing anyway, so all we need
to do is make sure that 4, < 1/2. After all, the results of [ ] are independent of
the initialization of the run.

Under these assumptions, and since 3(z_;; s;) € [0, 1], as a convex combination of z_;; s;
which are all in [0, 1], it is not difficult to see, recursively, that every y;, will be a convex
combination of the previous point and 5 which will both be in [0, 1].

As a result, y;; will always be in [0,1], so z;; = y;; and the (DA) dynamics can be
reduced to the following:

Tigp1 = Tig + %(B(T_is; i) — Tiy) (5.4)

where we have substituted v, <— 2, for clarification purposes.

So, after all, the (DA) dynamics, in our case, does not do something particularly fancy,
it’s easily understandable: at each step, player ¢ does not play her best response, but some
suitable compromise between her best response and her previous opinion’.

3 Not to be confused with the soft maximization in ). By now, we have done away with (). Here, essentially,
we have a (discrete-time) gradient descent algorithm.

77






Chapter 6

Dual Averaging on Coevolutionary Opinion
Formation Games

As we saw, the results of [ ] seem very promising for the efficient computation of
equilibria in a very broad class of (concave) games, in games that satisty (DSC), for example,
wherein, as a matter of fact, lies our particular interest. Moreover, we know for a fact that
asymmetric coevolutionary games are concave and, seemingly, they are fairly well behaved;
for example, the cost functions are a simple quadratic in z;. That is to say, they seem highly
eligible to satisfy these slightly stricter requirements of [ ].

This is why, with our main goal being equilibrium computation on asymmetric coevo-
lutionary opinion formation games, our main approach was to try and apply the results of

[ ] to these games, by showing that they (or interesting subclasses) satisfy the needed
requirements, mainly diagonal strict concavity.
Moreover, we should point out that the Dual Averaging algorithm studied in [ ] has

several other desirable properties. For one, it is decentralized, which means that the players
can be thought of as being pitted against each other in a repeated iteration of the game in
question, and (given sufficient feedback) each player employs the algorithm independently
of others, to select their action at each round of the game. In other words, from the player’s
perspective, the setting conforms to that of online optimization. Additionally, Dual Averaging
is a well known no-regret algorithm, hence it is arguably “compatible” with the incentive of
the players, which is to minimize their total cost.

Thus, if we manage to satisfy the requirements, we immediately get a simple, decentral-
ized, natural, incentive-compatible algorithm / dynamic that converges to equilibrium fast.
Hence our motivation for exploring how this can be achieved, and for what subclasses of
asymmetric coevolutionary games.

6.1 Theoretical Results on Diagonal Strict Concavity

A central approach in our work was to try and find interesting subclasses of asymmetric
coevolutionary opinion formation games, for which diagonal strict concavity holds. Then,
as we saw in the previous chapter, any dual averaging dynamic will converge to the unique
equilibrium of those games relatively quickly.

One such endeavor that bore some fruit theoretically was to start from the definition of
diagonal strict concavity, substitute the specifics of asymmetric coevolutionary games and
work our way until some interesting conclusion is reached. Specifically, we reach a po-
tentially interesting sufficient condition for the diagonal strict concavity of an asymmetric
coevolutionary opinion formation game.

First of all, a concept that will be of use is the part of the best response of a player that
involves only the z; of the other players. We call that the centroid, defined formally as:
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Definition 6.1 (Centroids). For any player © and any opinion profile x € X, we define the
centroid of i s neighbours as:

ctri(:z:) = Z Qij (.I'_i)l’j
JFi
Furthermore, we denote by ctr: X — X the mapping which is the ensemble of these
centroids, and can also be written in matrix notation as below.

ctr(z) = (ctry(z), ..., ctry(z)) = Q(z) - x
where Q(x) = {q;;(x)} is the matrix of all interaction weights (assigning g;;(x) = 0).

The concept of the centroid has been taken from [ ], which uses it to find approx-
imate equilibria of coevolutionary opinion formation games, and adapted for our purposes
below.

Notice that the centroid of a player is simply a convex combination (in other words,
a weighted average) of the expressed opinions of all other players, weighted by the same
weights that represent the strength of the interaction between ¢ and her neighbours. Further-
more, we recall that player i’s best response is equal to:

Bi(r—i) = (1 —p;) Z%(Jij(ﬂf—i) + pisi = (1 — pi) ctry(z) + p;s;
J#

So, the centroid represents an aggregation of the players’ opinions, except ¢’s, such that
player i is essentially only interested in this point, rather than the full profile x_; of the other
players; with respect to selecting the best possible action, of course.

With this in mind, we can now prove the following lemma, which essentially adapts
the definition of diagonal strict concavity to the specific case of asymmetric cevolutionary
opinion formation games.

Lemma 6.2. An asymmetric coevolutionary opinion formation game is diagonally strictly
concave if and only if:

N
> (1= p)etr(a!) = ctry(a?))(x] — o) < |la" = 2%3
i=1
forall x' 2* € X = [0,1]V.
If, further, all players share the same self confidence factor p; = p € [0, 1), then this is
also equivalent to the following:

(ctr(z') — ctr(2?), 2" — 2%) < 2! — 2|5

1—p

Proof. Recall the definition of diagonal strict concavity, which, here, we adapt for the case
of cost functions, so all signs are reversed:

(v(x) —v(2?),z' —2*) >0 (6.1)

In asymmetric coevolutionary opinion formation games, starting with the cost of player

ci(a) = (1= p) > (2 — ;) i (w—s) + pila: — 51)°
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we can calculate the individual gradient (here, derivative) of player : as:

801‘

o &) = 2(1 = pi) > (@i — 35)qii(w—i) + 2pi(wi — 53)
! J#i
=2(1 — py)z; Zqz‘j(ﬂf—i) —2(1 = py) Z%’%’j(f—i) + 2pi; — 2p;8;
i i

J# J#
N
=2 (90@ —(1—=pi) Z%’j(x—i)mj - pisi)
j=1
= 2(z; — (1 = p;) etri(z) — pisi)

Note that ¢;;(z_;) is independent of x;, therefore it is treated as a constant.
Gathering the above for all players, we can write the pseudogradient of the game at any
z € 0,1} in matrix notation, as:

v(z) = 2(z — diag{1 — p;} ctr(x) — diag{p;}s)
Thus, we can compute the LHS of the definition (6.1):
(v(z") —v(2?),2" —27)
=2(x" — diag{1 — p;} ctr(x') — diag{p;}s — 2 + diag{1 — p;} ctr(2?) + diag{p;}s, 2* — 2?)
=2(x' — diag{1 — p;} ctr(z') — 2% + diag{1 — p;} ctr(2?), 2" — 2?)
—2)lat — 2?2 — 2(diag{1 — pi} ete(e!) — diag{1 — p;} otr(z?), =" — %)
N
=2’ — 2%5 —2) (1 = pi)(etri(!) - ctri(a?)) (2] — o)

=1
=2||z' — 2?2 — 2(1 — p){ctr(z') — ctr(x?), z* — 2?), if self confidence is uniform

From the two final equalities, combined with the definition, the two parts of the lemma
follow immediately:

(v(@") —v(a?),2" —27)

N
=2|lz" — 2?3 —2) (1 — po)(etry(a) — etry(a?)) (2} —af) > 0
=1
N
&Y (1= p)(etri(a!) = ctri(2?)) (2] —2F) < |l — 2?13
i=1

and for uniform self-confidence:

(v(@') —v(a?),2" —2%)

=2zt — 2?5 — 2(1 — p){ctr(z') — ctr(z?),2* — 2%) >0

a{ctr(z!) — ctr(2?), 2" — 2%) < 2! — 2|5

1—p
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Recall that, for a function f: X — R, the condition:
(Vi) = Vf(y),z—y) < K|z —y|forallz,y € X

is equivalent to f being K-smooth (e.g. [ ]). So, the above lemma (the second part,
in particular) tells us that the pseudogradient v(z) of the game resembles the gradient of a
strictly concave (convex) function (i.e. diagonal strict concavity holds) if and only if the
vector field ctr: X — X resembles the gradient of a G-smooth function (for a sufficiently
small value of (7).

As a small note, should the reader be interested in complete accuracy, the equivalence of
those two conditions is not absolutely true (the “if” part, specifically for G = 1%/)). There is
the small complication of < in the definition of (DSC), which, in the definition of smooth-
ness, is a <. So, if we want to be accurate, it holds that:

1. If diagonal strict concavity holds, then ctr does satisfy the same inequality as the gra-
dient of a 1%p-smooth function.

2. Ifctr is like the gradient of a G-smooth function, for any G' < fp, then diagonal strict
concavity holds for self-confidence level p.

3. What does not necessarily hold is that if ctr is like the gradient of a 1%p—smooth func-
tion, then diagonal strict concavity holds.

This makes a small appearance in the following results, where the value 1 — é is excluded,
but it is, still, a very minor detail.

One thing to note is that it is one of those annoying complications / asymmetries that ap-
pear when one talks about “strict” convexity / concavity properties. These, however, usually
do not appear when we move on to “strong” properties, and this is also the case here, as we
will see in the results for strong stability, in which this issue vanishes.

Now, it is easy to prove the following sufficient condition, which, under the same light,
says nothing more than that if the vector field ctr is G-Lipschitz, then it does indeed resemble
the gradient of a G-smooth function; two concepts that, as we know, are indeed very close
in the scalar case, where, for a convex function, smoothness and having a Lipschitz gradient
are equivalent.

Theorem 6.3. If the mapping ctr: [0,1]Y — [0, 1]V is G-Lipschitz continuous with respect
to the Euclidean norm, then the asymmetric coevolutionary opinion formation game with
uniform self confidence levels p is diagonally strictly concave for all values of p in (1 — é, 1].
If G < 1, then, evidently, the game is always diagonally strictly concave.

Proof. From Cauchy-Schwartz inequality, it holds that:
(ctr(x') — ctr(2?), 2t — %) < || ctr(z?) — ctr(z?) ||2]|z" — 22|z
and, since ctr is G-Lipschitz:
letr(a") — ctr(a?)[|l2 < Gllat — 2|2 (6.2)

Finally, combining the above:

(ctr(z!) — ctr(2?), 2' — 2%) < Gla* — 2?2 < ] |zt — 22|
—-p
for all values of p such that G < fp & p > 1 — &; which, given the previous lemma,
implies that the game is diagonally strictly concave. [
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What we have established so far is not as difficult as it may seem at first. In more plain
words, we have begun with a vector field (v(x)) which, for our specific games, is equal to
another vector field (ctr) plus an affine term. Then, we say that v is diagonally strictly concave
if ctr is Lipschitz. But, given that DSC means (v ( 1) —v(2?), 2! —2?) < 0and Lipschitzness
implies almost immediately (ctr(z') — ctr(2?), z! — 2?) < G||z' — 2?||3, this conclusion is
not hard to reach.

One immediate consequence is the following. It is well known that continuously differ-
entiable functions over a compact domain are always Lipschitz, for a large enough constant.
If ¢;; are continuously differentiable, it is easy to see that the same holds for ctr;. Conse-
quently, for continuously differentiable weights, there always exists some large enough (but
less than 1) level of self confidence for which the game is diagonally strictly concave.

This is not entirely unexpected, since for p = 1 the game is trivially diagonally strictly
concave, plus, we have already acquired some intuition from other opinion formation models
which says that players’ self-confidence / stubbornness “helps” convergence, more or less.

We close this analysis by adapting the above results to account for strong variational
stability (as described in the previous chapter). Now, strong variational stability is a only a
slight reinforcement of the concept of variational stability, but, as we saw, it is necessary for
some of the results with regard to the convergence speed of Dual Averaging, and this is why
we study it here.

Lemma 6.4. The unique equilibrium of a diagonally strictly concave asymmetric coevolu-
tionary opinion formation game is also L-strongly stable if:

N

D (1= pi)(etri(at) = etry(@®))(x) — aF) < (1 - g)Hxl — 2|3
i—1
forall 2%, 2% € X = [0, 1]V.

If, further, all players have the same self confidence factor p; = p € [0, 1), then this is
equivalent to the following:

L
2

Y

(ctr(z') — ctr(2?), 2! — 2?) <

Proof. First of all, notice that the correlation between diagonal strict concavity and varia-
tional stability can be extended to strong stability and “strong” diagonal convexity, by which
we mean:

(v(z') —v(@?),2' —2®) > L|jz" — 273
Indeed, if the above holds, then we have:

") > Lz —2*|3
(@%),2 —2") + L]z — 2”3 = Lz — 2|3
L

lz = 2|13

(v(z) —v(z*),z -
S(u(z),z —z%) > (v
=(-v(z), 2" —z) =
where we used the necessary condition (3.2) (with reversed sign, for the case of cost func-
tions). Thus, z* is L-strongly stable.

Given this, it is easy to treat the above inequality the same way we did with (6.1) in the
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previous lemma:

(v(@') —v(?),2' —2%) > Lo’ —27||3
N
2t = 2?5 -2 (1 - pi)(et(x!) = etry(@®) (2} — o) = Ll|=" — 2|3
i=1

N
L
&> (1= pi)(etr(a') — ctry(2?)) (z] —27) < (1 - 5)!\371 el
=1
And, of course, if p; = p, this becomes:

L
(1= p)etr(a’) —ctr(a?), 2! —2%) < (1= )|z’ — 2%
1-4

I—p

&etr(at) — ctr(2?), 7t — 2?) < |zt — 223

]

Theorem 6.5. If the mapping ctr: [0,1]Y — [0, 1]V is G-Lipschitz continuous with respect
to the Euclidean norm, then the asymmetric coevolutionary opinion formation game with
uniform self confidence levels p is diagonally strictly concave and its unique equilibrium is
L-strongly stable for all values of p € [0,1),L € [0,2) such that p > 1 — (1 — £)/G. If
G<1- % then, evidently, this holds for all p € [0, 1).

Proof. The proof follows the same line of thought. From Cauchy-Schwartz and Lipschitz-
ness we get:
1-L
(otr(a”) —ctr(a?), 2" — %) < Glla’ —2?[5 < T2l — 2713
P
1_L

2
a -

1—-L

L
where the final inequality holds for any values of p, L such that G' < 5 /2) Sp>1-—

L
So, according to the previous lemma, if p > 1 — 172, the game is diagonally strictly
concave and its unique equilibrium is L-strongly stable. [

These two results could be seen as a compromise between the values of p and L, in that
the larger the value of L, the closer p needs to be to 1 in order to guarantee L-strong stability.

A surprising implication here is that, for this class of games, one can get strong stability
almost for free; in the sense that, if we know some coevolutionary game is diagonally strictly
concave, then all we need to do is increase the self-confidence ever so slightly, and it will
now surely be strongly diagonally concave, for some suitable L.

Finally, to tie in with equilibrium computation, we combine the above results with the
results of [ ] (specifically, theorems 6.2 and 6.4) into the following theorem.

Theorem 6.6. Consider an asymmetric coevolutionary opinion formation game, with uni-
form self-confidence factors p; = p, and assume that the mapping ctr: X — X is G-
Lipschitz.

Suppose, now, that the players run the (DA) algorithm with Euclidean projections and
v < 1/2, i.e. their opinions evolve according to the update rule:

Tipp1 = Tig + (1 — p) ctry(xy) + ps; — xi4)

Then, for all p € (1 — é, 1], z; converges to the unique equilibrium x* of the game.
Moreover, we have the following results with regard to convergence speed. Note that x* is
L-strongly stable, where L = 2(1 — G(1 — p)).
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23:1 e {v(@r),zr—a*

Zi:l YT

1. The average equilibrium gap €; = ) decays as:

NG H2Y )
€t S t
ZTZI 77—

2. The average distance to the equilibrium, 7 = > " _ v, ||z, — 2*|l2/ S0 _, 7> decays
as:
t
,FtQ < 1 N(zll +t27’=1 ’}/72')
_1_(1_p)G 2721,-)/7_

3. Define the running length ; = >_"_ ||2++1 — 2. ||2 and the stopping time t. = inf{t >
0: ||zy — x*||2 < €}, as in theorem 5.7.

Then, the running length until x; reaches an e-neighbourhood of x* is bounded as:

f<NVE 3oy
“=1-(1-pG €2

(6.3)

In a sense, the first and third convergence speed bounds could be seen as dual statements.
If, for example, one chooses a step size 7, o 1/+/, then the equilibrium gap decays as

O(l"%), which is almost the same as O(\/ii) On the other hand, the running length until an

e-neighbourhood of the equilibrium is reached is on the order of % So, the “distance” to
equilibrium decays as 1/+/t and the steps until we reach distance ¢ are 1/2; as one would
expect.

Now, the next thing one may ask how can the conditions we have given so far be satisfied,
either generally (which seems a bit far fetched) or for more specific subclasses of the general
asymmetric coevolutionary opinion formation game. Since the condition is, after all, that ctr
be Lipschitz, what one could do is, roughly, give concrete bounds on the derivatives of the
centroid mapping. We give such an analysis in the next section.

6.1.1 Specialization for Normalized Independent Weights

Here, we introduce a special class of weight generating functions F; which will be our main
focus for a significant part of the rest of this work, and we apply the results of the previous
section on this class of weights.

We call the class in question “normalized independent weights”, and it is the following:

o fi(dE)
G(x) = Fi(dj,d’; ) = =— "~ (6.4)
! T Y fildy)
where, as we have said previously, d; = |z; — 5], and the functions f;: [0,1] — R are

assumed to be:
1. Positive, mostly for simplicity.

2. Continuous, so that the weights are continuous functions, and, thus, we have a valid
concave game and the guarantee that Nash equilibria always exist, by [ ]

3. Nonincreasing, to fulfil the requirement that F;(-) is nonincreasing in the first argument
and nondecreasing in the rest.
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Furthermore, for this section, we will assume that the function g;(z;) = fi(d}) = fi(|z;—
si|) is continuous and differentiable on [0, 1]. In other words, f; is required to be differentiable
and f/(0) = 0; so that, when it is mirrored and translated by f;(|z; — s;|), there is no corner
at T; = .

Given this assumption, we will fulfil the Lipschitzness condition (6.2) by bounding the
derivatives of the mapping ctr.

Theorem 6.7. In an asymmetric coevolutionary opinion formation game with normalized
independent weights, if fi(d) > m > 0 and f;(d) + | f/(d)| < M, forall d € [0, 1], then the

centroid mapping ctr is G = %, / % Lipschitz, and, consequently, the game is diagonally
strictly concave for all uniform p > 1 —1/G.

Proof. We begin by rewriting the centroids:

gi(xr) Zk;ﬁi r1.gi (k)
ctr;(x Trqir(x =
Z Z Zk;ﬁz 9i(zk) D i 9i(Tn)

k#i k#i

where g;: [0,1] = R, g;(z;) = fi(|x; — s4|), as we mentioned before.
Now, we can calculate their partial derivatives (of course, ; does not appear in any g¢;;(z),
so this partial derivative is 0).

i o) — Zk# xkgz(xk)
O i) = Oz ( 2 ki 9i(Tr) )
9i( x] na(z 9i(z;) + x;9:(x)
(Zk;éz 9i(wy)) Z 1i(e) Zk;éi 9i(w)
9i(z;) Zk;ﬁz‘ xkgi(gﬁk) N 9i(x;) + z;9:(x;)
Zk;ﬁz gi(zr) Zk;ﬁz’ gi(zr) Ek;ﬁz’ gi(zy)
)

_gilmy) 9i(z;) + x;9:(x))

N Zk;ﬁz gi(zr) ctri(z) + Zk;ﬁi gi(zr)
- mmm + aygl(ay) — i) etri(z))
- m@i(%) + gl() (x5 — otry(2))

Since z; and ctr; () are both in [0, 1], z; — ctr;(z) € [—1, 1] and we get:

9i(x;) + gi(x;) (z; — ctri(x)) € [gi(x;) — 1gi(x;)], 9i(w;) + |gi(;)]]
=|gi(x;) + gi(w;) (x; — ctry(2))] < gi(w;) + |gi(;)]

because g;(x;) > 0 and, thus, g;(z;) + |g;(x;)| must be greater than |g;(x;) — |g;(x;)||-
Now, g; is nothing more than a reflection and translation of f;, so they share the same
derivative bounds (in absolute value). Thus, g;(z;) + |g;(z;)| < M.
Moreover, g;(x;) > m = >, ; gi(xx) > (N — 1)m
Combining all the above, we can bound the partial derivatives of the centroid by:

M
<

0
—ctr;(x)| < m

Oz

86



The remaining steps are straightforward. First, use this to bound the gradient of ctr;:

IV ctri(a)l> = Zg%mm§g¢w_nGﬁ%%f:%%%

J#

Since bounded gradient implies Lipschitzness with respect to the same norm (see, for
example, [ ], section 6.2.2), ctr; is \]/M%-Lipschitz.

Finally, we show that if all ctr; are G-Lipschitz, then ctr is G VN -Lipschitz:

| etr(z!) — ctr(z?) ||y = v/(ctry(x1) — ctry(22))2 + - - - + (ctry () — ctry(22))?
< VG =2+ + (Gl — o)

= GVN||z! — 2%
Consequently, ctr will be \]/W—ml\/ﬁ = M, /3 Lipschitz. O

As a final corollary, let us apply theorem 6.6 to this case:
Corollary 6.8. In an asymmetric coevolutionary opinion formation game with normalized
independent weights, if f;(d) > m > 0 and f;(d) + |f/(d)| < M, for all d € [0, 1], then, for
all p > 1 — 314/ % the algorithm (5.4) converges to the unique equilibrium of the game,
and we have the same bounds on €, 1, and {;_ as in theorem 6.6, which, after substituting

_ M /N .
G = =1/ w5, become.

_ N(% + 223:1 73)
€t S t
Z’r 17’7’
_2 _+ZT 177’

Ty <
1—(1-p M./ D DAy

Et < N\/_ §+227’=177'
1-(1-p /[ &

Example: exponential weights As an example, let us consider the case where f;(d) =
e~®, thus g;(z;) = e~ @) and ¢}(x;) = —2(x; — s;)e" )" Then:

glz;) =e @ > et =

—(xj—s:)? —
g9(wj) + 19 (z;)] = e (14 205 — 55) <3 =M

forall z; € [0, 1].
Thus, applying the above theorem, we get that ctr is G-Lipschitz, where:

M [N [N
“ VNI TV N T

which is < 10 for all N, and < 9 for N > 6.

In any case, this means that, for all values of p greater than 1 — é < 0.9, the game is
guaranteed to be diagonally strictly concave, and the adapted Dual Averaging algorithm (5.4)
converges to equilibrium with the speed guarantees of the above corollary.
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6.1.2 Remarks

First of all, this section wants to demonstrate that showing diagonal strict concavity for these
complex games is not completely unapproachable, even if for somewhat constrained settings.

Secondly, the two theorems demonstrate a method for showing similar results for other
functions: find a lower bound of ¢ and an upper bound of g(x;) + |¢'(z;)|, and we have
automatically a set of values for p for which the game is diagonally strictly concave. Of
course, this procedure is not guaranteed to yield a decent value for Gz, but it may do so.

Thirdly, since we are talking about a lower bound on g and (something like) an upper
bound on |¢'(x)|, we believe that this can intuitively be interpreted as a quantification of the
fact that if our coevolving network changes relatively little, i.e. the weights are close to being
constant, then it basically behaves like the static models, e.g. the FJ model (in which case
the game is known to be diagonally strictly concave, as shown in [ ], section 4.2, for
example).

6.2 Simulations

Apart from the results of the previous section, obtaining other significant theoretical results
proved to be rather difficult. In general terms, bounding the derivative of the weights gave us
the bounds we have talked about so far, but, other than that, the highly nonlinear nature of the
weights made it difficult to analyze, for example, the Hessian matrix of the game, to prove
diagonal strict concavity for broader classes of games, variational stability or, more directly,
that the Dual Averaging algorithm converges to equilibrium.

It was for this reason that we then shifted our approach to exploring the model by means
of simulation, in order to ascertain, for a number of instances, whether the facts that we are
aiming for seem to hold or not and, in general, to get a more direct intuition of the way the
(DA) algorithm evolves in these games.

6.2.1 Choice of Functions

We have implemented and run the (DA) algorithm on several instances of asymmetric co-
evolutionary opinion formation games with normalized independent weights. The setup is as
we previously discussed, i.e. weights are generated by functions of the form:
o fi(d)
4 (@) = Fidy, ') = =
! T s fildy)

where f;: [0, 1] — R are positive, continuous and nonincreasing.

Here, we give a roundup of the weight functions f; we used. We have tried, as far as pos-
sible, to choose functions that are simple but also representative of many ways a continuous,
differentiable function over [0, 1] could look like.

We should also note that all players were given the same weight function f; = f for any
given run, to keep it simple.

1. A simple exponential: f(d}) = e %

2. Exponential, but adjusted to the interval [0, 1]: f(d) = e~20(%-5) (pecause the simple
one actually closely resembles a linear function in [0, 1]).
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3. A unit slope linear function: f(d}) =1 — dj.

4. A simple logarithm: f(d}) = —Ind.

Of course, this function produces weights that are not continuous, since they go to
infinity at distance 0.

Nevertheless, on one hand, it was easy to check and, on the other, while running the
algorithm we did not seem to hit any pathological points (z;, s; exactly equal). Thus,
we include it.

5. A valid logarithmic function, adjusted to the interval [0, 1]:

| 999 . 1
d) = —In( g4
J(dj) = ~In (1000 it 1000)

which, of course, now does not diverge at 0.

6. A logistic function: f(d}) = W

7. The reciprocal: f(d}) = .
J

Just like the logarithm, it is not continuous, but we include it.

8. An adjusted reciprocal: f(d}) = —

-
dj + 10000

9. The square root function: f(d}) = —,/d..

Now, we can provide the specific results of our simulations.

6.2.2 Convergence in Small Instances

Our first endeavor was to verify experimentally that the (DA) algorithm does indeed con-
verge to equilibrium; or, if luck has it, to find counterexamples. Moreover, by simulating
specific examples, we hoped to gain further insight on the actual practical performance of
the algorithm on real instances.

To that end, we start with some simple small simulations, both to ease the reader into the
process and to take advantage of the fact that, for small numbers of players, the time progress
of the algorithm can be seen directly.

In figure 6.1, we have run the algorithm for three instances of the game, each with a
different weight function.

In these cases, we can see that convergence is achieved somewhat fast, since the players
settle to equilibrium in a matter of about 100 steps. This seems to hold for all initializations
and intrinsic opinions we have tried so far. Convergence is achieved to an equilibrium rela-
tively fast, and, moreover, we should note that we have not encountered any instances with
multiple limit points (i.e. equilibria).

These things could further suggest that diagonal strict concavity may hold, at least in
some cases.

Another interesting observation is depicted in figure 6.2, where we have run the same
game twice, once with all players running simple Best Response Dynamics (i.e. z;;+1 =
Bi(x;)) and once with Dual Averaging.
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Figure 6.1: Dual Averaging on the coevolutionary opinion formation game with 5
players, self-confidence 0.5 for all players, intrinsic opinions s =
(0.4,0.5,0.6,0.127,0.897), and three different weight functions. Each color rep-
resents a different, randomly chosen initialization.
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Figure 6.2: Best Response VS Dual Averaging: The game has N = 50 players, self-
confidence 0.5 for all players and as weight generating the adjusted reciprocal

f (dz) = ﬁ Both the intrinsic opinions vector and the initialization have
j ' 10000

been chosen randomly.

Here, we see that the Best Response dynamics constantly fluctuate, never converging to
equilibrium'. On the contrary, the Dual Averaging dynamics converge to equilibrium, and
relatively fast at that.

We have picked this experiment as a demonstration that Dual Averaging is indeed more
powerful than simple algorithms such as Best Response. Moreover, the choice of the weight
generating function (the reciprocal) is not completely arbitrary. As we shall later see, we
have found games, with reciprocal weight functions, which fail to satisfy the diagonal strict
concavity condition everywhere; a strong suggestion that these games are not so well be-
haved. In spite of that, we see that the Dual Averaging algorithm still manages to converge
to equilibrium.

! As a matter of fact, Best Response is already known to not guarantee convergence for general asymmetric
coevolutionary opinion formation games. See, for example, [ ]

90



Time evolution of L, distance to minimum costs
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Figure 6.3: Convergence of (DA) algorithm for exponential weights fz(dz) =%,

6.2.3 Convergence to Equilibrium for Large Numbers of Players

Our goal here was primarily to see how the convergence behaviour scales with the number of
players. To that end, we simulated games with up to almost 10000 players, and we wanted to
assess whether they converge to equilibrium and, if so, how fast they reach it, estimate their
convergence speed.

First of all, let us comment on the computational complexity of the simulations. Note
that it takes O(N?) time to compute all the interaction weights ¢;; between the players at a
given opinion profile. As a result, a single step of the algorithm takes quadratic time in V.

This means that we are somewhat restricted, computationally, for numbers of players that
reach the thousands. The first consequence is, of course, that we went up to 10000 players
and not more. However, we also needed to restrict our exploration, varying only the weight
function; while choosing, for each simulation, only one initialization at random, and, as usual,
s; are chosen at random and the self confidence p; is set to 0.5.

Now, firstly, we plot the difference / error between the actual costs and the minimum costs
of all players (i.e. at their best responses), as measured by the [, norm, after 200 steps of the
algorithm. Formally, we plot the quantity:

lfgnzﬁgv Ci(xt) - Ci(ﬁi(x—z‘,t), x—i,t)
at ¢ = 200 (the absence of absolute value is because the quantity is always non negative).

In figure 6.3, we see an example of such a group of runs. Moreover, to showcase a bit the
full evolution of the error as the algorithm progresses, we have also plotted the time sequence
of those errors, for a select few of the games.

It is already somewhat visible that, in all these games, the algorithm gets in very close to
equilibrium. The final errors are somewhat small, considering that ¢;(+; z_;) is a simple, unit
quadratic, and thus we know that it increases around its minimum as x?; which means that,
for example, an error in objective value of 107% of a player translates directly to a distance
to equilibrium of 1073 and vice versa. Additionally, it is evident from the time series of the
errors that they continuously decrease towards 0.
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Plus, after all, 200 steps are not very much. Moreover, we should note that for a few
games that we selected at random throughout this process and run for more steps, the error
continues to decrease for as long as the algorithm keeps going. Remember, for example, the
run we showed in figure 6.2, where the algorithm clearly converged, but needed more than
200 steps. So, overall, given our settings, we believe that the performance of the algorithm
is highly satisfactory.

We have also done the same for all the other weight function in our pool. All the respective
diagrams can be seen in B.

Another interesting observation is that there does not seem to exist a significant corre-
lation between the number of players and the /., objective-value error to equilibrium. Of
course, although we have not shown it here, the ¢, error, which sums all the players’ errors,
does, as expected, increase with N in most cases. However, this means that how close any
single player gets to their best response seems to be dependent only on the number of rounds
that have been run, and not on the number of players.

Another thing that seems to affect the final proximity to equilibrium is, of course, the
choice of weight function. Out of the functions that we have chosen here, we have been able
to make out basically three tiers, based on how large is the error at the end of the algorithm:

1. The reciprocal and adjusted reciprocal functions performed the worst out of all, with
an /., error on the order of 1074.

2. Slightly better performance was demonstrated by the logarithm, the adjusted logarithm,
and the adjusted exponential function, which are on the order of 1076 — 1077,

3. Finally, the square root, the linear (unit slope), the simple exponential and the logistic
function performed the best, with the distance to best response being on the order of
1079,

Most of these are not unexpected, or at least can be given plausible explanations.

The reciprocal and the adjusted reciprocal were expected to be “difficult” cases from the
beginning. They are very aggressive, they explode at 0 and the interaction weights resulting
from them probably change too abruptly.

The same arguments hold for the two logarithms, albeit slightly less here, since the loga-
rithm is less aggressive; consider, for example, that the adjusted logarithm at 0 gives a value
of ~ 6.9, while the reciprocal 10000. ‘

The adjusted exponential ( fz(d;) = ¢~ 0;=05)) may surprise at first, but, after all, even
though it does not become infinite, it, too, is too aggressive. Consider that f;(0) ~ 22000
and f;(1) &~ 4-107°. So, it also changes too fiercely.

Finally, the rest are all much smaller and change less aggressively, so their good behaviour
is not unexpected.

Measuring Convergence Speed Now, since, in the above runs, the algorithm seems to
converge, the next thing was to measure the convergence speed with a little more precision.

We focused on two measures. First, the running length metric, which is also used in
[ ] and we can compare the respective results. Secondly, the number of steps needed
until the algorithm reaches an e-neighbourhood of the equilibrium, which is more straight-
forward. We remind the definitions:

1. Running length at step ¢: ¢; = 22;11 |xkr1 — zxl|2- Of special interest is the running
length until an e-neighbourhood is reached: /. = ¢;_ (see below).
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Running length until e-neighbourhood

=
o
=
L 20
f=}
-
=
g 0 B T T T T T T T T T
> 0 500 1000 1500 2000 2500 3000 3500 4000
1/e
a Number of steps until e-neighbourhood
Y 200 A
u
[
[=]
b
18]
=}
g 0- T T T T T T T T T
= 1] 500 1000 1500 2000 2500 3000 3500 4000
1/e
le7 1/&? for comparison
r\:u l —
=
0 B T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
1/e

Figure 6.4: Running length and number of steps until an e-neighbourhood of the equilibrium
is reached. The game used has 8000 players, who employ exponential weights

fild) = e,

2. Number of steps until a e-neighbourhood is reached: t. = inf{¢t > 0 : ||z, —z*||s < €}.

We use the same runs of the algorithm as previously, but now we keep track of these two
measures. Specifically, for each game, we have plotted /. and t. as a function of 1/. An
example of such a plot is given in figure 6.4.

Of course, in the place of the exact equilibrium, which is unknown, we have used the
opinion profile on which the algorithm ended, since, as we already saw, it is very close to
being a Nash equilibrium.

One observation is that the total running length of the algorithm seems to be bounded.
This is even more apparent if we plot /; directly as a sequence over the step variable ¢, shown
in figure 6.5 for the same game.

[ ] notes, in section 6.2, that the running length of the (DA) algorithm cannot be
expected to be bounded, in general, but this is due to the stochastic nature of the setting of
[ ], in which the noise does not vanish even near an equilibrium.

But, here, our setting is significantly more constrained, there is no noise and, as it seems
by the experiments, the running length does, in fact, turn out to be bounded.

This, in turn, however, makes it somewhat difficult to compare the running length covered
by our algorithm to the theoretical guarantees given in [ ], since these bounds (e.g.
(6.3)) are of the form O(1/&?) and thus, if tight, the running length /. should be increasing
towards oo.

More plots such as these, for other weight functions and numbers of players, can be found
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Figure 6.5: Running length at all steps of the algorithm run on the game with 8000 players
and exponential weights.

in B.

From there, we can see again that weight functions such as the reciprocal are at a clear
disadvantage with respect to convergence speed, while it can also be seen that /. as well as
te generally increase with the number of players; something not unexpected, since here the
norm used is ¢y and not ¢, as before.

6.2.4 Diagonal Strict Concavity counterexample

As we have said, our first hope would be for the asymmetric coevolutionary opinion forma-
tion games to always be diagonally strictly concave (3.7).

Sadly, that does not seem to be the case, at least in general. In this section, we shall
provide a (relatively) small counterexample.

We consider the game with the following parameters:

e N = 5 players

pi = % for all 7

o s =(0.9,0.84,0.83,0.2,0.18)

normalized independent weights with reciprocal generating functions, i.e.:

1

fild) = 5 1 0.0001

Furthermore, we consider the following two points of the opinion space:

rt = (0.84,0.89,0.8,0.49,0.3)
2? = (0.83,0.87,0.8,0.49,0.3)

Now, notice that diagonal strict concavity is equivalent to the following R — R function
being monotone increasing over [0, 1] > ¢:

g(t) = (w(zt +t(2® — 21)), 2% — 2')
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Figure 6.6: Pseudogradient projections along the line connecting -2

forall z!, 2% € X.

Indeed, sufficiency is trivial, since for¢t; = 0 and t, = 1 we retrieve the original definition
of diagonal strict concavity. The fact that diagonal strict concavity implies the monotonicity
of g is also not difficult to see, since monotonicity is equivalent to:

g(t1) — g(t2))(ty — ta) > 0 for all ¢; # to, of course

(v(z' 4+t (2? — 21)), 2% — 2') — (v(a' + ta(2® — 2")),2* —2"))(ts —t2) > 0
v(a' 4+t (2® — 2Y)) — vt + ta(2? — 2Y)), 2 — 2t — 1) > 0

st +t(2? —2Y) —v(at + t(2® — 2h), (b — t2)(2* — 2')) > 0

If we denote z;, = x' + t;(2? — 2') and 2, = a' + ty(x? — 21), then 2, — 2, =
at +ty (2% — b)) — 2t — ty(2? — 2!) = (t; — to)(2? — 21) and the above becomes:

<U<xt1) - U<xt2)7xt1 - xt2> >0

which is true, because of diagonal strict concavity. Therefore, the original is true as well,
which means g is strictly increasing.

Now, to return back to the example, if we plot g(¢) for the two x! and 2? we specified
above, then we get figure 6.6a.

It is evident that g() is not increasing between these two points. Thus, our counterexam-
ple. For completeness, we point the reader to appendix A, should the reader be interested in
seeing the exact arithmetic calculations of (v(z!) —v(2?), 2! — 2?) between those two points.

Something else we should note is that, although in figure 6.6a it appears that the deviation
is significant, in fact it is not. See, for example, figure 6.6b, where we have drawn the same
graph, but for two points further apart on the line between z! and 22, i.e. for two points
x1 + t(xe — x1), one with ¢t < 0 and one with ¢ > 1.

With this extension, it can be seen that the discrepancy of z! and z? is only a minor
perturbation of ¢(t), which is otherwise very clearly increasing.

Moreover, we should note that, by taking a closer look at s and x!, 22, the reader can
notice that some z-components and some s components are almost equal. This means that
the denominator of 1/ d; would be zero or very close to zero, and the only reason this does
not happen is due to the adjustment we implemented on the reciprocal, so that it does not
become infinite at 0. Thus, the example relies somewhat on the fact that the weight function
almost “explodes” at 0, and, by this perspective, could be seen as an edge case.
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Nevertheless, the weight function remains fully legitimate (continuous, nonincreasing,
differentiable), so, at the very least, this counterexample, however crude, shows that it is
impossible to simply prove that the game is diagonally strictly concave, with no further as-
sumptions at all with regard to the weight functions.

6.3 Social Concavity

Since we know that, for all socially concave games, no-regret learning converges to Nash
equilibrium, one of our first approaches was to try and connect socially concave games to
our setting; mostly by trying to find interesting subclasses or specific instances of asymmetric
coevolutionary games that are socially concave.

We did not draw decisive conclusions on this direction, however it seems highly chal-
lenging to find such a connection, so we thought that, as a final note, it would be interesting
to record some of the difficulties.

First of all, notice that even in the (4.2) model, where the interaction weights are taken to
be constant (i.e., in the FJ model), and which is a special case of asymmetric coevolutionary
games, the cost functions are convex, and specifically quadratic, in all arguments. So, they
are very far from being concave in x_;.

Nevertheless, one could search beyond constant weights, in the hope of finding other
classes of weight functions that make the game socially concave. To that end, let us examine
the two conditions needed for social concavity.

Firstly, since in opinion formation games we have costs, but in socially concave games we
have payoffs, we turn costs into payoffs by simply reversing the sign. Thus, in coevolutionary
opinion formation games, each player : is assigned the payoff function:

ui(z) = —ci(w) = (L= p;) > (@ — 2;)°q5(x) — il — 5:)°

i#i

Thus, for the game to be socially concave, we need one, to find some strict convex combi-
nation of the payoffs which is concave (equivalently, a combination of costs which is convex),
and two, to assert that the payoff of each player ¢ is convex in x_; (equivalently, player i’s
cost is concave in x_;).

For the first, we want the sum:

g(z) = Z Aici(z) = Z Nipi(i — 5:)* + > (1= pi) (5 — 7) qi5(x)

,5=1

to be convex in « (where we have taken ¢;;(z) = 0).

It is obvious that, if ¢;j(x) are convex in z, then this requirement is satisfied. Indeed,
this is true, however, in such a case, costs are convex in all opinions (as was the case for
FJ), therefore the second requirement for social concavity cannot possibly hold. But, even if
we ignore the second requirement, there are two important conflicts with the model we have
given for asymmetric coevolutionary opinion formation games:

1. >, ¢ij(x) = 1forall z € X. This normalization of weights makes it, of course,

impossible for all weights to be convex, unless linear, since ¢;;(z) = 1—3_, ; ; gir()
must be concave if all other weights are convex.
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2. qj(x) = E(d;, d ;)» as we have said, so ¢; ; actually needs to depend only on the
absolute differences between the player’s intrinsic opinion and other players’ public
opinions. Moreover, F; should be nonincreasing in the first argument and nondecreas-
ing in the rest. As a result, ¢;;(z;,z_;_;), as a function of z;, will most probably have

a strict maximum at s; and, therefore, not be convex.

Of course, forfeiting these conditions is not at all out of the question, but, in this work,
this is the model we studied.

As for the second condition, for which we need each ¢;(x;, z_;) to be concave in z_;,
we already mentioned a prominent counterexample, which is the constant weights of the FJ
model.

These are the main reasons why we decided that this direction will probably not be very
fruitful.
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Hopaptnuo A

Omitted Proofs and Calculations

Arithmetic counterexample (from section 6.2.4) We begin by reminding the parameters

of the game:

e N = 5 players

1

e p; =5 forall:

o 5= (0.9,0.84,0.83,0.2,0.18)

e normalized independent weights with reciprocal generating functions, i.e.:

fi(

d)

1

~ d+0.0001

Furthermore, we consider the following two points of the opinion space:

z' = (0.84,0.89,0.8,0.49, 0.3)
2% = (0.83,0.87,0.8,0.49,0.3)

We start by computing the weight matrix Q(z) = {¢;;(x) }1<;j<n on both of these points,
and from that calculate the pseudogradient of the game on these points, which we write in

matrix form as:

v(z) = 2(x — diag{1 — p1,

So, we have:

0
0.997044213
0.82182545
0.1065098
0.19520722

Q(z")

and

0
0.769574434
0.997032393
0.107700542
0.196585808

ooy L= pn}Q(x)x — diag{p1, ..., pN}S)
0.8753825 0.08832531 0.02155904 0.01473315
0 0.00248639455 0.000284788407 0.000184603631
0.13811043 0 0.02440587 0.01565825
0.09879281  0.11360927 0 0.68108812
0.18146217  0.20779921 0.4155314 0

0.702121785
0
0.00248636507
0.101271618
0.185191181

0.211127530
0.193832962
0
0.113084671
0.206096491

0.0515334449 0.0352172400
0.0222013761 0.0143912272
0.000293158598 0.000188083832

0 0.677943169
0.412126520 0
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from which we get:

0.86473455
0.83970118
0.82990801
0.47260768
0.69532515

Q(zha' = and Q(2%)2* =

so, finally, with p; = % for all 7, we get:

0.84 0.86473455 0.9
0.89 1 0.83970118 1 0.84
v(ml) =2 0.8 | — 3 0.82990801 | — 3 0.83
0.49 0.47260768 0.2
0.3 0.69532515 0.18
and
0.83 0.81556454 0.9
0.87 1 0.80900919 1 0.84
v(xQ) =2 0.8 | — 3 0.8299001 | — 3 0.83
0.49 0.47134844 0.2
0.3 0.69110174 0.18

0.81556454
0.80900919
0.8299001
0.47134844
0.69110174

—0.08473455
0.10029882

= | —0.05990801
0.30739232

—0.27532515

—0.05556454
0.09099081

= | —0.0599001
0.30865156

—0.27110174

which can now use to determine if diagonal strict concavity holds:

—0.0291700099
0.00930801053
—0.00000791657539
—0.00125923916
—0.00422341428

Y

(v(z') —v(a?), 2! —27) = <

0.01
0.02
0 > = —0.00010554 < 0
0
0

which means that the definition of diagonal strict concavity does not hold for those two

opinion profiles.
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Hapapnpo B

Simulation Plots

B.1 Convergence to Equilibrium for Large Numbers of
Players

In this section, we present all graphical results from the simulations we conducted on
games with up to several thousands of players, in order to keep the main body of the text
decluttered, since we simulated a lot of games.

We have gathered here both the plots that focus on the convergence of the algorithm and
those that focus on the speed of convergence.

Specifically, for each weight function we tried, we first show the distance to minimum
costs at the end of the algorithm and the whole time evolution of that distance, for a select
subset of the games run. Then, we show both the number of steps and the running length that
the algorithm needed before reaching an e-neighbourhood of the equilibrium, as a function
of 1/¢; again, for a select subset of games, of course.

Time evolution of L. distance to minimum costs
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Running length until e-neighbourhood

Running length until e-neighbourhood
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1e—g L= distance to minimum costs after 200 steps

Time evolution of L.. distance to minimum costs
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Xyfqpa B.5: Convergence for linear weights
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Yympa B.6: Linear weights, convergence speed
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Xynpoe B.8: Logarithmic weights, convergence speed
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Yympoa B.9: Convergence for adjusted logarithmic weights
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1le—9 Lw distance to minimum costs after 200 steps

Time evolution of L.. distance to minimum costs
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Xyfqpa B.11: Convergence for logistic weights
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Yympoa B.12: Logistic weights, convergence speed

5
4
8 34
=
T
i
=l
424
14
oA
T T T T T T
0 2000 4000 6000 8000 10000
Number of players
5 Running length until e-neighbourhcod
2
< 10
o
£
=
S 0- i + T ; ; + ; ;
= 0 500 1000 1500 2000 2500 3000 3500 4000
1/e
a Number of steps until e-neighbourhood
o
£ 200
z f-
P
I
=]
E 0+ T T T T T T T T
z 0 500 1000 1500 2000 2500 3000 3500 4000
e
1e7 1/e2 for comparison
& 11
=
0" i T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
Ve
(a) 2000 players
L. distance to minimum costs after 200 steps
0.000175
0.000150
p
0.000125 , !
p p >
v
£ 0.000100 A
%
5
5 0.000075 -
4
0.000050
0.000025
0.000000 -
T T T T T T
0 2000 4000 6000 8000 10000

Number of players

Time evolution of L. distance to minimum costs

0.5 1 — 100
0.0 T T T 7 7 7 T T T
0.5 L — 700
0.0 T T T 7 7 7 T T T
0.5 1 L —— 2000
0.0 +— T T T T
1
— 4000
0-+— T T T T
4 L —— 6000
0.0 +— T T T T
1
— 9000
0- T T 7 T

75 100 125 150 175 200
Step

o
]
w
w
=}

Yympoa B.13: Convergence for reciprocal weights
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Xyqpoe B.14: Reciprocal weights, convergence speed
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Yympoa B.15: Convergence for adjusted reciprocal weights
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Yympa B.16: Adjusted reciprocal weights, convergence speed
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L. distance to minimum costs after 200 steps

Time evolution of L. distance to minimum costs
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Xyfqpna B.17: Convergence for square root weights
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Yympoa B.18: Square root weights, convergence speed
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