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ITepiindn

Yty napodoa Aimhopotixr] Epyacio yehetidnxe n avanapdotoon Sedouévmv »wg Yedpwy o n
xwdonolnon touc ye Badd Nevpwvixd Alxtua, pe oxond ) yehon toug Yo 10 TedBAnua tou
Ontixol Awidyou. Tt Ty enitevén avTayWVIGTIXGY ATOTEAECUATLY EYLVOY TELRUOTA TTeog 500

xateLVOVoELC:

e Médodor Xoppeine TeonuxothAtwyv. To v enfhvon evéc peydiou cuvélou mpo-
BAnudtwy mou cuvevivouv toug Topelc e Enelepyaciac Puoinic I'hdoouc xan e ‘Opaong
Trohoyio o, 1 uédodog Tou Jua yenowwomoinlel Yio TN CUYYWVEUOT) TV SLapdenY EWBGY dedO-
Hévwy tou TpoPArfuartog anoteAel plo oand Tic Booixdtepec oy EBLIC TIXES ETLAOYES GTNY XATAOXELY
TOU JOVTEAOU XalL €Voy amd TOUC Xafploug TopdyovTeg mou dhvatal Vo 0dnyRoouy oe xahbTepa
anoteréopata. o v neplntworn tou Ontixol Alddyou, Tpaypatomoldnxay TEWIUATA WS

Tpoc 1 aOVTNEY TwV 800 BDAPOPETIXMY TROTUXOTATKVY , EXOVOC Xl XEWEVOL.

o Evowpdtwon E§wtepixnc I'voong. To npdéBinua tou ontixod Swhdyou dev amantel
EX TWY TROYUATOV xdnola eEwteps) YVKor. 201600, 1 eloaywy T eEwTtepxr Yvoong telvel va
odnyel oe xohbTEpa amoTEAESUOTA OE TOAG TRofAnuaTa 6T0 Yweo tng Mnyovixic Mddnong xo
oG TEPLOGOTERO GE TEOBAAUATA TTOL AVXOLY 6TO Ypeo TtNg Enelepyacioc Puouic I'Adooag.
INo t0 AoYo autd YeheTdTon CUY VA amd EQEVVNTESC 1) ETUCTEATEVCY] TNC O TOMAEC BLAPOPETIXEC
EQaPUOYEC XL OTNY TapoLoa epyaoio emLyelpolUe xaL eUElC Vol EXUETAAAEUTOUUE TNV ETUTAEOY

nAnpogopla Tou Vo HaC TEOCPEREL.

Yo TEPAUATE YOS YENOWOTOWUHE TIC HEY6D0UE CUUUEIENS TPOTUXOTHTWY TOU apyLXol UoC Uo-
VTENOU, TIPOXELEVOU VO GUVOUGGOUNE TIC TEELC TPOTUXOTNTES TOU UOVTEAOU UOC. LT CUVEYEL, TELOU-
patillépaoTe Ye TNV xwdxonomon e e€WTepXnc YVOONG. LUYXEXPWEVA, EPEUVAUE TN Yeron eVoc
1} TOAATAGDY TOTWY OXUGY TOU YEAPOU YVMOONG Xl UEAETAUE BLopopeTXoVg TPOTOUS CUANOYNS NG
eEWTEPUAS YVOOTNG.

Ipaypoatonolwvtog éva gOvolo and TELPUATO UTOPOVUE VoL eEGYOUUE GUUTERACUOTA Yiol TNV €-
nidpaon e eloaywYc eEWTepXNc YVMOONE 6TO HOVTERD. Luyxexpluéva, EemepvivTag pe 800 Blapo-
peTég YePOB0UC Tal AMOTEAEGUATO TOU UAOTIOINUEVOL amd EUSE apy X0l LOVTEAOU, ATOBEXVOOUUE TNV
evepyeTxn enidpoon authc 0Ty cuvokxy enidoon tou povtéhou. Emmpbdoldeta, anodewxvioupe tnv
en{Bpaon AUTYH TEYUATOTOLIVTOS TELGUATO YENOLLOTOLOVTISC 800 BLaQOPETIXOVUE ATOXWOLXOTONTES.
H cuvénelo otal anotehéopata TwV LOVTEAWY YENCUOTOLOVTAC X0l TOUS 800 anoxwdixonointég tovilel

v enidpoor TwV SLPORETIXDY XWOLXOTOTWY GT1 GUVOAXY AndBOCT TOU HOVTENOL.

AéEeic Khedid
Bardid Mddnon, Enegepyaotia Puowrc ['hdooog, Onuxde Awdhoyoc Graph Neural Networks, Knowl-
edge Graphs, Multimodal Fusion,






Abstract

In this Diploma Thesis, we study the effectiveness of Graph Neural Networks on the task of
Visual Dialog. Towards achieving interesting architectures and great results, we experiment on

two axes:

e Fusion Methods. In a wide range of Machine Learning problems, we encounter the problem
of combining different types of information extracted from various sources. The fusion method
used to combine the different modalities is a fundamental design choice of the model and a
crucial factor towards the achievement of better results. We experimented on a few sets of

different methods and selected the best one for our model.

e External Knowledge The task of Visual Dialog doesn’t require by itself the use of external
knowledge. Nevertheless, introducing external knowledge has been proved effective in many
tasks of Machine Learning and especially in the field of Natural Language Processing. As
a result it has drawn a lot research interest through the last years and has been applied to
a wide variety of similar tasks. Hence we attempt to introduce external knowledge to our

approach and experiment with a few ways of exploiting the extra information.

In our experiments we adapt the fusion methods of our baseline and utilize them for fusing the
three modalities of our model. We further experiment on the encoding of the External Knowledge.
Specifically, we examine the use of one or multiple types of relations of the knowledge graph as
well as different methods of aggregating the external information.

By conducting a number of experiments, we are able to draw interesting conclusions about
the impact of introducing External Knowledge to our model. Specifically, by surpassing the im-
plemented baseline using two different methods, we conclude that it is beneficial for the overall
performance. Moreover, we demonstrate this impact by using two types of decoders. The consis-
tency of the results using both decoders highlights the impact of the different encoders. Finally,
from our results, we come to the conclusion that the simplest models with less parameters were
able to perform better towards encoding the External Knowledge Graph.

Keywords

Deep Learning, Natural Language Processing, Graph Neural Networks, Knowledge Graphs,
Visual Dialog












Euyoeiotisg

Yric npwteg oehidbec auThc TNG SIMAUATIXNC epyaciog VEAW Vo EUYURIOTACE Xol VoL EXPEATEL) TNV
ELY VROV YO GE 0plopévous avlp®noug, Tou o xadévag e Tov Teéno tou unheée dpwyds 16c0
OTNV EXTOVNOT QUTAS, OG0 XAl OTY) CUVOAXOTERT eEENET WOV XATA T1) BLEEXELY TV QOLTNTIXDY LoV
XEOVWY, EVOC anuavTixol xe@ahaiov e {efg LOL TOU OAOXANPMVETAUL UECA OO AUTHY TNV EpYasia.

Avaug{Bola, 0 peyollTERO ELYUPIOT TO 0Peihw oTov emPBAénovta xadnyNnTy Tng mopoloog Ue-
Mg, tov xodnynth AAéEavdpo Iotopidvo. Méoo amd tar godiuotd tou pe wonoe oto avtixelyevéd
TOU X0l GTOV XOOUO TNS ERELVAS, EVE PEoa amd TN cuvepyaoia pag GAoug auTolE TOU UAVES LoV YdpLoE
mhdoc epethoudtwy yvoong xou udinong. Ol tohdTAeupeg YVAOOELS TOU xou oL xolpleg SUUBOVAES Tou
unip€av xodoploTixrc onpacioc.

Ytn ouvéyeta, HéAw va euyoploThHow WlaiTeEpa Xou TOUg BB Top00E EPELVNTES TNG OUAdAC TOU
xuplou IMotauidvou xou eldxdtepa tov Eudiun I'ewpylov, o onolog elye mdvta tn diddeon va ye
xateLdOVEL XL Tou omolou 1) cLYBOAY ftay xooploTiXY Yia TNV EXTOVNOY TNE TUEOUGIC BITAOUATIXAC
epyaoiog.

Puowd, oeihw €va UEYHAO ELYUPLOTH TNV OLXOYEVELL HOU, TN UNTEEO YOU XoL TNV odep®r] LOou.
Xwplg ™y auépiotn othell)| Toug Oha auTd Ta YEdVLaL, Be Vo Tar elyor xaTopEpEL.

Téhog, Féhw va evyaplothow Padid Ghoug Toug pihoug pou Tou Rtay dladéotpol yio xdde eldouc
Bordetor %o 6 TN BdpHELR TWV GTIOUBY KO Xal TKV OToiwWY 1) Topoucio onuddede autd To xe@dhoto

e Lwhc povu.

Kahoyeponouhog Iwdvvne

Adva, Todhog 2022
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Chapter 0

Extetapévn EXAnvixn Tepiindn

0.1 Ewooywyn

Sy mopovoo Simhwpatixf aoyoloVuacte e to TpdPAinua tou Onuxod Awdyou (Visual Di-
alog). To mpdfhnua autd datépver ta nedla tne Enelepyooioc Puowhc T'hdooac xou tne ‘Opoaone
Troloylo v, nedio Tou €xouv Yvwpeloel UeYdAn ovdnTun to TEASUTAlO YPOVLaL XolL €YOUYV EQUPUOYES
oe TAnddpa dAhwv tpoPAnudtev. To npéAnua tou Ontixold Alahdyou mpobrnolétel évay medxtopo
(AT agent) vo suvouhioet e éva ypRoTn o PO YAMCOoR oYETIXS YE Evor omTind avTxeiyevo. o
CUYXEXPWEVA, 0 GXOTOC Hog lvol TopEyovTag pior euxdva xou pla Teplypopt authg o éva Wovtélo, To
HOVTENO auTO va glvan txavd var Tpayatomolel ouolaoTixd didhoyo ue Tov yenotn. O yenotne mapa-
Vétel epwTROEC 0TO YOVTERD, TO 0Tol0 XOAElTAL VO GUVBUAGEL TNV TEEYOUCA ERMOTNOT YE TO LG TOPLXO
Tou BlahdYou, v evIoT{oel GTNY elxova ToL avTLXelUeVa Tor omtolal APopd 1 TEEYOUC EPOTNOY) XAl VO
xaTohhEel oe plot XaUTIAANAY andvTnon.

O Budhoyoc evoc yeotn pe €vayv unohoyloty elvon €va medfBAnua mou €yel mpooeyylotel omd
apxeTO0C EPELVNTEC Tal TEAEUTOLA YPOVLAL XAl ATOXTY OMOEVY o TeptocdTteen dnpoguiio e€antiog tne
TANOOeag TwY eQappoYdy Tou. Tap’ bha autd To ueyYahbTEPo XOUUATL AUTAC TNE EPELVAC €YEL EOTIAOEL
oe YAwoowolg HOVO BlahGYOoUg, OTou 0 YENOTNS o O UTOAOYIOTASC GUUUETEYOLY ot uio "amAn"
ouvouthla, emTuYYdvovTag EVIuTwotaxd anotehéopata 6nwe ol teplpnuol etxovixol Bondol Alexa, Siri
x.o.. H elooywyr plag exdvag xou n avdntuln diahdyou yopw amd autr) amotehel uio evdiagpépouca
EMEXTACT] TOU XAACOLX0U Blahdyou 1) omolo dUvaTal vor €xel TOAES EVOLAPEPOUCES EQUPUOYES, OTLC 1)
BleLXOAUVOY) ATOUWY PE TROPBAAATA dpaong 6TO Vo avTiAngdoly xahltepa to epBdAlov Toug 1 uia
xatdotooT mou aneixoviletar ot plor EOVa Xl 1) AVATTUEN TLO YENOHIWY XAl EAXUCTIXOV ELXOVIXOY
Bondov.

H npocéyylon tou mpoPAfuatoc otny napoloa epyocia anoteAel pio tohveninedn Siepyaoio, 1
omolol TEUYUXTOTOLE(TOL UE YENHOY TEYVOAOYLWV olyUNS ol TOUG TOUELS TNG UNYOVIXAC Uddnong xau
TOV VELPWVIXWY BTUWY. H avamapdso taor Twv otoiyelny dlahdyou yiveton ot eminedo ypdpwy, 1660
YLl TOUC YUPOUS TOU BLlahdYou 660 xou yia o avTixelueva tng ewdvag. Emnpdoieta, neipopoatilod-
HUOTE UE TNV ELOAYWYT) EEWTEPIXAC YVOONC, TNV Omola Avandplo TaUe Elong YENOoULOTOLMVTAS Evay
axopa Ypdpo. EmAéyovtag we opyixd HOVTIEND pio TEOCEYYLOT TOU EMTUYYAVEL XOpUpILd ATOTEAED-
LOTOL X0 Y PNOYLOTIOLEL TPOTOTUTY OEYLTEXTOVIXY, TO EMEXTEVOUUE SOXUELOVTAC THY EVOWUATKON NS
eEWTEPNE YVWONS GE T X0l TOXIAOUS TROTIOUC Yol TO GUVBUIOUS TGV BLIPORETIXEY TNYDY TANRO-
poplag, exova, ddhoyog xou eEwtep] Yvwon. To anotehéouatd pog UTOBEVOOLY OTL 1) EVOWUATKON
e eEWTEPIXAC YVWOTG ETLTEENEL TO YOVTEAO Vo emLTOYEL XohUtepa amotehéopota, Bonddviag to vo

avTikngdel xohbtepa 1 YEVIXT £vvola Tou xGUe avTIXEWWEVOL ToU avapépidnxe GToV BIGAOYO.
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Chapter 0. Extetopévn ENnvixd Ilepiindn

0.2 OBOeswpntxd YnoBadeo

Ye authv TNy evoTnTa Yo XAVOUUE Piol GUVOTITIXT ETLOXOTNOY TWY XUELWY TEYVOAOYLWOY TOU YETOL-

pomotobvToL Gty mopovoa epyacta.

0.2.1 Nevpwvixd Aixtua I'pdpwy

Ou yvpdopol elvor éva TOmMOC doprc BEBOUEVWY TOU YENOLLOTOLETOL Yiol TNV OVOTOQRAGC TUCT| ov-
TIXEWEVWY PESK xOUPBwv xon oxuwy. To tekevtaio ypovia n avdiuor Yedpwy HEow NG UNYAVIXAC
uddnone €yel xeviploel Wlodtepa TO EVOLAPEROV TNS ETUCTNULOVIXY XOWOTNTAS, VPl AOYw® TN ex-
PEACTIXAC BUVOUNG TV YEdPwY, oARd Xou TNg TANYWEUS TWV TOUEWY GTOUEC OToloug UTopoly Vo
EQOPUOCTONY, OTWE 1) ovdhUOT XOWVWVIXGY Sxtlwy [13], [14], ou guoixée emothues [15], [16], 1 pov-
tehomoinom xat 1 IAMNAeTdpaom UETED TwV TeoTevY [17]), 1 avorapdo taon yvaong [18] xaw toihol
&\ ot Topelc [19].

Baoloyévo ato cuvEAXTING VEUR®VIXE BixTud, Ta VELPWVIXA BixTUA YEdPLY poledlovTal Ue ouTd
OEXETA XOLVE onueid, OTWS TNV TOTUXOTATA, Ta X0Wvd Bdpn XL T1 XeNoT TOANATAGY ETUNEDKY, £Y0UV
woT6o0 xa éva Wiaitepo yopoxtneloTxd to omolo Ta Eeywellel and to undloito eldn VELPWVIXHOY
OTOWY. DUYXEXPWEVA, VEVPWVIXA BiXTUN YRdPwY GUAAEYOLY TANnpogopia and évav Ypdgo, ue T€Tolo
1e6m0 €10l WoTe To anotéheoya vo elvar ave€dptnto g ddtodne Twv xouPwyv péoa oe autdv. H
WBLOTATA QUTH OE CUVBUAOUS PE TNV IXOVOTNTA OUTOY TWV BXTOWY Vo avamoplotody Ty e&dptnon
peTal 800 YELTOVIXWY XOUPBwY, Tol xardloTd Wdavixd Yo TANU e TpoBANUATEY TNE Unyavixhc uddnone.

To tehevtala ypovia €xouv mpotoel dpXeTd LOVTERS VEVPWVIXDY BIXTOWY YpdpwY, Tapouctdlov-
TG ONUOVTIXES DLopopES OTOV TEOTO ToU CUAAEYETAL 1) TANpogopia and Ttoug dldgopous xduBoug,
o €080 UTONOYLOUOU TOV UVAVEWUEVGY OVOTIOROC TACEWY TWV XOUB®Y, oTa BlapopeTixd elBn Twv
HOUBWV How axpeY Tou QEREL 0 YPAYos, o onolog TapéyeTal we elco80¢ GTO BiXTUO XU GTOV TEOTO
pe tov omolo o dixtuo auto yewpileton auth T SlapopeTixdtnTa. e xdle mepintwon, wotéco, Ta
VELPWVIXG auTa dixTua axoAhoBolv uia xotvn Bladlxacior Ylol TOV UTOAOYLOUS TWVY OVUTEACTAGEWY TWV

%x0uPwv, N omolo cuvonTnd unopel va Teptypapel we: Kdde xduBog
1. Kataoxeudlet to "ufvupa tou yio v tpéyouvca xatdotacy| Tou

2. Zukkéyer minpogoplec ("unvipata) omo Toug yeltovée Tou (ue Tpéro aveZdetnTo e SdTadng

TOV YELTOVWV TOU)
3. Trohoyilet tn véa Tou xatdotaon ye Bdon tic mhnpogoplec mou €haf3e

Ytn ouvéyela, Votepo and évav aprdud emavahiPewy e Topandve TANEogopiag, oL TENXES ovo-
TUPAC TAOELS TWV XOUPwV urnopoly va yenouwlonodolv elte yio v elaywyy| uloag cuvolxhc ovao-
TUPAOTACTE TOU YEAPoU, UE TEOTo TAA aveédptnto e didtadne Twv xouPwy, elte yia v tok-
woéunom tv xouBwv, Ty TeéBredr axuoy elte yio omoto GAAY dadixacio amontel To TEOBANUA TOU

avTeTWlouyE.

0.3 Xyetxr BiAoypapia

‘Onwe npotddnxe xou and toug dnuovpyols Tou TpoPiiuatoc, [11] tov Ontixod Awhdyou, pla
XUTAAANAY, TEOGEY IO 0TO TEOBANUA EVOL YE TNV OPYLTEXTOVIXT] XWOXOTONTY - AMOXWOXOTONTH.
Suyxexpyéva, o tewtoc avolopfdvel vo petotpédel Ty elcodo Tou wovtéhou e Eval BLVUCUATIXG
YOEO0, UOVIEAOTOLOVTAS XATIAANAL T TANEOQYORLEC XAl O BEVTEPOC VO UETATEEYEL TO DLdvuoua OE
plor xotdh Ak é€odo tou povtéhou. Ou [11] mpdtewvay 2 €idn amoxwdixomomntdy, évav o onolog

avahapBdver vo to€tvopnioel €val oOVORo omd maVES AmAVTHOELS OTNY TREYOUCT ERMTNOT Xl VIS
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0.4 Awtidnwon IMpolAfuatoc

o omolog mopdyel anavthoelc emthéyovtog v mo mdavr oxoloudia Aé€ewyv. Amotéheopo autold
elvan oL neplocbTepeg MpooeyYioel 6To TEOBANUN TOU OTTX0) SLHAGYOU Vol apopOUY TO XOUPATL TOU
AHWOUOTONTH.

O [11] ouvéddevoay to TedPinua tou Ontixod Awhdyou ue tpia Poowxd poviéde: 1) Mio anhi
TpocéYYLon EEYmPLOTASC XwdoToinone TNe EmdVaS, ToU BIAGYOU XU TNG TPEYOUOUS EPMTNONG XAl
OTN GLVEYELL O GUVBUOOUOS AUTAY, 2) éva povTtého o Slatneel évog eibog uviune yio v teheutaio
gpWTNOT, €ToL WoTe Unopel vor avaxtd TohUTIHES TANEOQOpieS Xt 3) évol LOVTERO TIOU TRoYUATOTOLEL
LEPUEY XY XWOXOTOMOY TOU Lo TOoEXOL TOU BLHAGYOU. XTN CUVEYELN, 1) EPELVA TEOYWENCE And Gh-
Noug epeuvntéc. Avagopd, o [20] mtpdteve pla omtixy avéiuon cuvavagopds (co-reference), o [21]
ouvdlaoe €vo HovTENO Yot va mapdEouy mlovée amovtioel xou éva yia vo emhéEouy TN owoTy,
EVR YPNOWOTOACE ENioNE UNYAVIoUS Teocoy g TV GTO L6 Topixd Tou dlahdyou, o onolog AdufBave
untodNY TNV EXOVAL.

Eyetwnd pe tic npoceyyioelg mou yenoonoinoay veupmvixd dixtua Ypdeoy, o [22] npocéyyioe To
TpdPAnua eotidlovtag oty xataoxeur piag Sourfc Tou Swkdyou, eved ot [23] xou [24] emixevtpddnray
og o Bahd avanopdotan Tne eévac, TNy onola avanapdotnoay uéow evoc ypdpov. Axdua, o [25]
EQAPUOCE UNYAVIOUO TEocoy e Tvw ot xdde otolyelo tou Blahdyou. OL mapandve mpoceyyioele
drapépouy, enlong, oTo THOC LOVIENOTOWOUY TO TROPANUA e Ypdpo (Hbvo évac Ypdpoc yio 6o To
TEOPANUaL, 1 évae Ydpos yio x&de TNy TAnpogopiag), oTo Tt enéheZay vor avamoptotd o xdde x6uBog
(tov x8de YOpo tou dtahdyou, éva avuxeluevo Tng eévac 1 o yaunhotepo eninedo xdde ototyeio Tou
drohdyou A&/ avtixeluevo [25]). Emnpbodeta, diapépouy apxetd oto nidg enéhe&ay vo cUAAEEOLY TNV
nhnpogopla amd Toug Yeltoveg Tou xdde xOuPou xaL TS vor UTohoYIoOUV TN VEd TOU AVATOEIoTACT).
Téhoc, o [26] npdewve ) yprion e€wtepxfic YVWoNg oto tedfAnue tou Ontxold Awhéyou.

0.4 AwtOnwon [TooBArjuatocg

1o npoBAnua Tou onTXol SLHAdYOU, 0 UTOAOYLOTHC Xaheltal Vo cuVBUdoEL TNy ewxdva I, Ty nept-
yeopy) Tne C, to 1ot0pd tou Swhéyou Hy = {C, (Q1, A1), ..., (Qe1, A1) pron v tpéyouca epdtnom
Q¢ oe x&de yOpo t. O xbplog oxonde eivan vo todvopioet pio Aloto 100 unodhpiwy anavificewy
A ={A1, As, ..., A1o0} xan vo emioteéder v xahltepn andvinon A, yio xdde epdtnom Q.

0.5 IlIpotsiwvopevo Movtéro

H xOpta 8o tne mpooéyylone pog ebvan 1 mpootixn wlo teltne mnyhc mAnpogopioc, tne ew-
TEPMC YVWOONE %ol 0 TPOTOG GUVBLACHOL TNS e Ta dhha BVo eldn mAnpogoplac. Xuvontixd, 1 OAn
Braduxaoto gatveton otny exdva 1 ywplletan oe tplo pépn: xwdixonolnom eviog e xdde minpogoplag,
eumiouTiouds e mAnpogopioc and Ewdva xon Awdhoyo and tig dhhec mnyéc mAnpogoplag xan o

TeAixdg oUVBLAOUOE ALTGY TELY eloaydel TO ATOTEAECUO OTOV AMOXWBLXOTOLNTY).
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Chapter 0. Extetopévn ENnvixd Ilepiindn

Dialogue History Hy ...
Current Grounded
Question C: A black and white photo of a

uestiol man on a horse by stacks of crates
Do you see any Q1: What color is horse?
buildings? AL: brown, but it's black and white photo

i
[N
[ Concepts
1y
(N

2: TIs this outdoors? '
[
1y
[
[

man, yes, stack, see,
building, brown, color,
outdoors, white,
photo, crate, fence,
black, horse

yes
03: Do you see any horses?
1

i yes,
Q4: How about fences?

Intra Modality Encoding
>
l T' l E'
Modality Enrichment
—
+T'l l +E' T+ l lT'+E'
> Information Selection

|

Decoder

Figure 1. Yuvortikn amewxorvion tov npotewduerov povtélov

ITio avaAuTixd, apyixd xotaoxeLdloVe TEEC Yedpoug, évav yia xdde Ty mhnpogopiag. O
Yedpog mou avtioTtolyel oty ewdva elvar €vac TATIeNS Yedpoc pe xOufoug mou avTioTolyolyv oTa
avTIXe(Ueva IOV UTdpYoLY oTNY edva xal oxués Tig Yetadd toug omtixés oyéoelc. O ypdgog mou
avTiotolyel atov didhoyo elvan enlong évag TANeNC Yedpoc pe xouBoug Ty xdlde AEEN Tou Blakdyou
(cuumepthopPdvovTac GAoUS TOUS YUPOUS TOU LETOPXOY) Xall UXUES T CUVEVKLOT PETAE) TWY XOUBLY.
Téhog, o ypdpog mou elodyel e€wtepr] YVOOT 0To YovTENo elvon €vag dpxeTd apaldg YEAPos Ue
TOMETAG €007 oxUdV.

Mio aipxetd mo avaAUTLIXY) OTELXOVICT) TOU TROTELVOUEVOU UOVTEAOU QaiveTol GTNY EXXOVA 2:

H opywr) xwdixomoinon evtde e xdde mnyric mAnpogopioc yivetan ave&dptnta xou eivor 1 (B
Bladixaciar Yot TOUC TOUC YRAPOUS TNG ELXOVOC KOl TOU XELWEVOU Xall SLOPORETIXY| Yial TOV TplTo YEdpo.
I Toug mpwToug 800 apyLxd TEOTOLOVUE TNV XEVE axyr| ELGEYOVTAS TANEOQopla and TNV TEEYOUCH
gpOTNON xou 6T oLVEYELX UTToAoY(Coupe TNy avavewpévn Ty xdde xéuBou we o otaduiouévo ddpo-
opoL TWV xOUBwY Ue Bden mou tpoxinTouy amd Tic axpéc. LuuPBolilovtas we v Tou xéufous Tou xdie

YEAPOU HoU (G € TG oXUES, OL POt eELGMOELS TEPLYRAPOUY TNV XwdxoTolnoT:

a;j = softmax(We.(W1Qy o Wae;;)) (1)
€ij = Qijei; (2)
Bij = softmax(Wy,(Qr o Wa[uy, é;5])) (3)
N
b= Biju; (4)
i=1

INo tov yedypo mou avomaplotd Ty ewteptnt| Yvoorn doxiudlovpe plo oelpd omd TELPUOT, UE

oxom6 v Bpolue ToV XahOTERO TEOTO VO TOV 0ELOTOCOUME. LUYXEXPWEVA, TEAYUOTOTOLOVUE To
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0.5 Ilpotewvépevo Movtélo

Modality Enrichment
TV

ofe ,
OOE p(\j\ap oty e — ot onrched)
o\ 78 )
Cee ©°
O . Image Knowledge
Q o) Q,O . e
o \QQ ooy @ ;\3 U
d WL‘ O -//—w,:,
S ] %vo/' ©© '

€5 A black and uhite photo of

Knowlodgo
‘Soloction

Toxt Knowledge
(image enriched) !

nnnnnnn
02! 1" outdnors?
A2: yes

03: Do you see any horses?
A3 yes, 1

Q4: How about fences?

Ad: no

Dislogue History Hy

Grounded
Concepts
Tox KMM-M- '

Figure 2. H apyitektovikr) Tov mpotewvopevouv uovtélou

TOEOXATE TELEGUATA:

e GCN [14] As Graph Convolution Networks do not take into account multiple types of
relations, this layer considers only one type. The relationship related to was selected for this

purpose.

Eméyovtoac pévo évav t0mo axpnc and tov apyixd Yedpo, Ol OVOVEWUEVES UVATOQUCTACELS
%&0e xOUPou TEOXVTTOUY €Va XUVOVIXOTIOLNUEVO GTUHULOUEVO GUPOLOUO TWY AVATUPUCTAGEWY

TV xouPov. Hpoxelévou vo evowpaTOoouue TNy ep@tnon dlaxpivouue Tic 800 TEPITTOOELS:
— An\f ouvévwon pe TV epwtno:
[hzk):_17 Qt]

hk :U(W’“ZW) (5>

— Tpomononon Twv yelrtovxoy xouBwyv ey to ddpolopa, LToAoY({ovTag GUVTEAECTEC UT-

e0uvoug va BKooUY EUPACT) TN OYETIXY PE TNV EPWTNCT TANEoQopla
hEot = softmaz(Wa(Qp o Wikl 1))+ hE™! (6)
hk 1
o (Wi Z deg (7)
o R-GCN]J27] O mo diodedoyévoc tp6mog yior xwdixonolnon yedeony e TOMATAG eldn ouddv:

K =303 - L won® + wynn ®)

reR jeN[ Cir
I vo avtipeTwnicoupe Tov xivduvo mou eEANOYEVEL TO WOVTENO VoL UNY EXTLDEUTEl WO T AdYW

TOV TOAD BLAPOPETIXWY CLUYVOTATOY EUPAVLOTNC TWV BLOPORLY TUTWY AXUDY, OTKOC PAUiVETOL GTNY

umoevén o 7.2.2, ypnowomolobue 6nwe mpdTetve o [27], xowd Bdprn yio To xdde eidog axurc,
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Chapter 0. Extetopévn ENnvixd Ilepiindn

To omolo TPOXVTTOUY OIS PUlVETOL THUPAXETW:
B
M — URYAO)
Wr - Qrp ‘/b (9)
b=1
Me autdV TOV TEOTO EMUTUYYEVOUUE TOCO UEIDOY TWV TUPUUETEMY 6CO0 Kol XOLVY| AVAVENTT) TGV
TUPUUETEWY Yol OAAL Tot €0 AUV,

o GAT[4] 1o ouyxexpiuévo nepapa eqapuéloupe Unyoviowd mpocoyhc:

~ exp(LeakyReLU (a™ [Wh; || Wh;]))
N > ken, €xp(LeakyReLU (a™[Wh; || Why]))

aij

Wy =0o(Y ai;Wh;) (11)

JjeN;

omou a;; elvon 0 cuvTEAEoTNC TpocoyNc Tou xéuPBou j otov x6uPo ¢ xou h; elvon ol TEMxEC

AVATHPACTACELS TOU XOUPou V;.

‘Onewe mpbdterve xau o [4] yenotponowotye ToANdmAn uédodo npocoyfic. Luyxexpyléva, eapusd-
Coupe K (K=8) ave&dptnroug pnyaviopois mpocoyic we Bdon tig napondve eElowoels xou e€4-
YOUUE TIC TEAXES avamapao Tdoels xdide xouPou urohoyllovtos Tov u€co 6po and To AnoTERECU

Tou xd&ie unyaviool:

K
h, = 0(% SO akwkny) (12)

k=1 jeN;

Emmpéoieta, mpoxeiuévou vo xenouonot\COVUE TNV TeEYOUTH ERWTNOT YLol VAl Xotod Ny ioOUUE
v AN dadixacior, SOXWAGTNAE 1) CUVEVKLOT TNG TEEYOVGUE EPMOTNONE (Qy UE TG AVAUTOPAUCTICELG

TV x0uPuv. ‘Etol ol napandve e€lodoel xoTaAfyouy:

exp(LeakyReLU (o [WThi || Qi) || WTh; || Q)

T = S cap(LeakyReLU( Wik, | Q2 || Wihe | Q) (13)
W= o ayWihy | Qi) (14)
jeN;
1 K
W= o 32 S a W, | Q) (15)
k=1jeN;

e MéBodog npowInoneg punvopatog Téhog, nepapatildpacte e Evay BlaQopeTind Tpdmo
xwdxomolnone eunveuouévo and tov [28]. TLuyxexpyéva, xataoxeLdloupe TIC axUés ToU Ypd-

POU WS TN CUVEVKGT UETAZ) TV 800 YELTOVIXWY XOuPwv:

eij = [vi,vj] (16)

émou 1o “[-, |7 Snhddvel T cuvévwon.

211 OUVEYELL OVAVEDVOUUE TNV OVOTOEACTUCY, TWV OXUOY YENOWOTOLOVTAC TNV TeEYouod

€eWOTNON (Qt, TEOXEWEVOU VoL XATACHEVATOVUE TEAXE TOUC CUVTEAEGTEC a:
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0.5 Ilpotewvdbuevo Movtélo

aij = softmax(We(W1Qy o Wae;;)) (17)
€ij = aijei (18)

Tehxd, epapudlovue éva atoduiopévo ddpoloua oe xdie xdufo:

Bi; = softmax(Wy,(Qr o Waluj, é;5])) (19)
N

@i = Zﬁijuj (20)
j=1

‘Exovtag xwdixomoioel tnv mAnpogopla and xdde mnyy) Eexwelotd otn cuvéyela eunioutilouvye
TAnpogopla Tou tpoépyeton and Ty Ewdva xou tov Awdhoyo e dhec Tic dhheg mnyéc mhnpopoplag.

Oewpwvtag 6Tt Véhouye va eumhouticovpe Ty tpomxdTnTo M1 nou avanapiotdton and Tov Yedpo
G': (V1 E) pe tnv tpomxdtnra M2, nou avanaplotdrton and tov yedeo G2 : (V2 E?), axohouddue

NV TopaxdTe Stodixacto:

1. Kataoxeuh tou M2-to-M1 ypdpou, émou xdde xevipixde x6ufoc v} cuvdéeton ue Ghoug Toug
L 2]

xouPouc Tou ouvérov V? = v7 ue axuéc B, mou mpoxtmtouy ye tn ouvévwon: By = v}, v;
2. Evnuépwon tov ooy pe v xadodiynor tne teéyxouvcos ep®dtnong Gy
Yij = softmaz(Wy (W) Q, 0 W5 Bjj)) (21)
Bilj = ’Yisz'lj (22)

3. Evnuépwon twv xevipodv xoufuv:

51'1]' = softmax(W(Q; o W [U?; leg])) (23)

Cross Modality Update
= T,

©

Figure 3. Evnuépwon twv kevtpikdy kéufov V1 (kape) adpoilovtas oddug touvs ylpw kdpfous
V2 (umke).

N2
of = 00} (24)
j=1

4. Eq@apuoyt) pnyaviogol TUAGY HETOED TV apyLXOY AVATURICTAGEWY TV XEVIPIXMY XOUBWY %o
AUTGY TTou PO uToAoyicoue b7 :

gate}" = a(W" [v},0})) (25)

o}t = Wi (gate?! o [v},9}]) (26)
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Chapter 0. Extetopévn ENnvixd Ilepiindn

5. Tnoloylopde avanapdoTacng Tou Yed@ou Tou Tpoéxude and TNy apyix)) xwdlxonoinon:

77;.’1 = softTrLax(VVé)1 (Qt © (Wslf)zl))) (27)
A Nl 1
V= (28)
=1

6. TToloyiopog avamapdoTaong TOU YRapou Tou TpoéxuEe and TOV EUTAOUTIOUO TN TROTIXOTNTOC

M1 ané v tpomxdTnTA M2:

Mfl = softmax(W,;)l (Q¢ o (Wyi}1))) (29)
N N 1
A @0
i=1

7. Téhog, unoloyiloude TN CUVOAXHAC YVOOoNE Yiat TNV TeouxdTnTa M1 eumhoutiouévrn and tny M2

epapuélovTag Unyaviops TOANG oTiC 800 aVITUpUCTAOELS YEAPOU Tou eEQYUUE TEONYOUUEVWS:
gate; = oWV, V;]]) (31)

V= Wig(gatel o [V}, V1)) (32)

Enriched Information

% ]
G T
_
Final Enriched Modality
Initial Information oY Extract Graph —
=1
ﬁD

Figure 4. Egapuoyn unyxaviopol tiAng apyikd o€ eninedo kopfwy kar otn ovvéxea o€ eninedo
ypdpwy.

— =

Xernotponololue auTHY 1 Slodixacior TROXEWEVOL VAL TN YENOLLOTOLCOVUE GTa Topoxdtey Ceuydpla

TEOTUXOTHTWY:

1. Euymhovtioude  tpomixdtnrac(Ewmdvae, Adhoyoc), yio 1oV UTAOVTIONS TNG TROTUXOTNTAC TNG

Ewdvag ye mhnpogopla and tnyv tpomixdtnta T0ou Aloddyou.

2. Epmhoutiopde_ tpomuxdtntoc(Eméva, EEotepind Tvdon), Yo Tov eumhoutiond e 1pomixstn-
tag e Ewxodvoc ye mhnpogopla and v tpomuxdtnro tne EEwtepunc I'vidone

3. Euymhoutiopde_ tpomudtnrac(Awdhoyos, Exdva), yiot ToV EUTAOUTIONS TNG TROTUXOTNTAS TOU
Alohéyou pe mhnpogopio and TNy TpomixdtTnTa Tng Eudvag

4. Eumhouvtiopde_tpomubtnrac(Adroyog, EEwtepind T'védon), yiol Tov eUTAOLTIONS TS TROTXOTY-
Tag Tou Alahoyou pe mAnpogopia and tny tpomxdtnTa e E€wtepinic I'vdong

H mopomdve Sladixactio odnyel oe téooepelc SlapopeTixéc YVHOOELS, ol onolec Yo anotehécouy TNy

elco80 Yot TO TENEUTOLO UEPOS TOU XWOXOTOLNTY) TOU UOVTEAOU HOC.
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0.6 Ilewpdpata

‘Eyovtoac dnuovpyfioel 2 eldn yvdoeny yia tic tpomxétntee tne Bwdvac (IT 1) xou tou Aw
aréyou (T, TF), unoloyiloupe ) ouvohid| YvéHom yio xadepio omd Tic 80 TpomxdTTES %ot TENX
Tic ouvdudloupe wall xon pe TV TEEXOUGH EpGTNON Yol va eEdyoupe Ty TeAxT avamapdotaon K,

OTWC PALVETOL OTLC TOEOXATR EELOWOELS:

gate; = o(W,[IT, IF)) (33)

K1 =Wy (gate, o [IT, 7)) (34)
gater = o(W,[TT,TF)) (35)
Kp = Wia(gate, o [TI,TE]) (36)
gate, = o(W,[Q¢, K1, Kr)) (37)
K = Wis(gate, o [Qr, K1, Kr)) (38)

Ta mapandve anexoviovial cUVOTTIXG TNV Exdva 5.

Image Knowledge
(Text enriched)

Global
Image Knowledge

¢ — R

Image Knowledge

(Ext Knowledge

enriched)
Question
Embedding A Final
Text Knowledge Embedding
(Image enriched)
Global
Text Knowledge
¢ —

Text Knowledge
(Ext Knowledge
enriched)

Figure 5. Egappoyn unxaviopdy TuAdy yia tov UTOAOYITUG TwV OUVOAKQY YYHTEQY Ya TNV
kd0e tpomkéTnta ka1 oTn ovréyela Yia Tov ourduaoud auTwy.

0.6 Ilewpdpata

Aoxdlovde Ta TELPUUOT LoC ot Pe Toug B0 anoxmdxorotntéc tou npotdinxay and tov [11]

0.6.1 Aaxpivey anoxwdixonoinTyic

O Awpivev anoxwdixorointhc taéivouel dheg tig midavég anavtioelc and o ahvoro twv 100 un-
oripuwy anavtioewy A. ot to oxond autédy unoroylet yio xdde miovh andvinon To ecwTepxd Y-
HEVO PETOED TNV XWOXOTOMUEVNS TANEOQOElaC Xt TNE XWBXOTOINUEVNE UE éva avadpopnd Neupwmvixd
Alxtvo, to LSTM, andvtnong. Ta ywdueva otn cuvéyeia dloyetebovial oe pla softmax cuvdptnon
npoxelwévou va vroloyiotel 1 mbavotnta xdle andvinone. Katd tn didpxela tng exnaldevong tou

MOVTEAOU PEYLOTOTOLOUUE TNV TUAVOTNTU TN CWOTAHC AMAVINOTNE, EVK XUTA TNV eXTiUNoN oL emAoYEC
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ta€vopolvtal anhde e Bdon tic miavétntes nou npoéxuday.

Arnoteléopota oto VisDial v1.0 dataset:

Arnoteléopota oto test split

MRR 1 R@1 1 R@5 1 R@10 1 Mean | NDCG 1
KBGN 64.13 50.47 80.70 90.16 4.08 57.60
KBGN-Impl 62.82 48.95 80.33 89.23 4.28 56.62
KBGN-Numb 62.59 48.42 80.23 89.16 4.98 56.19
KBGN-Ext-GCN-CON-Q 63.25 49.43 80.05 89.63 4.21 55.79
KBGN-Ext-GCN-5-Q 62.78 48.95 79.48 89.0 4.32 55.57
KBGN-Ext-GAT 55.69 42.7 70.18 79.73 7.87 51.87
KBGN-Ext-GAT-Q 56.21 43.04 70.85 80.02 7.79 51.98
KBGN-Ext-RGCN 62.873 49.2 79.35 89.15 4.33 55.78
KBGN-MessagePassing 62.71 48.93 80.32 89.21 4.11 56.58
Table 1. ArnoteAéopara oo test split xpnoiponowdveas toy Awakpivwy anokwdikoront).
Results on validation split
MRR 1 Ra@1 1 R@5 1 R@10 1 Mean | NDCG 1
KBGN 64.86 51.37 81.71 90.54 4.00 59.08
KBGN-Impl* 63.84 50.04 80.87 90.02 4.104 57.056
KBGN-Numb 63.61 49.69 80.68 89.93 4.11 56.64
KBGN-Ext-GCN-CON-Q 64.04 50.38 81.16 89.92 4.15 56.58
KBGN-Ext-GCN-5-Q 63.60 49.73 80.66 89.97 41.15 55.74
KBGN-Ext-GAT 69.41 56.07 86.3 93.84 3.16 53.42
KBGN-Ext-GAT-Q 70.68 57.31 87.23 94.29 3.10 54.57
KBGN-Ext-RGCN 63.7 49.93 80.59 89.95 4.12 55.63
KBGN-MessagePassing 63.91 50.09 80.90 89.95 4.1 56.52

Table 2. AnoteAéopara oo val split xpnoponowdvtas tov Awakpivwr anokwdikotontris.

Ytoug nopandve mivaxeg ouvyBolilovpe ye KBGN-Ezt-GCN-CON-Q xouw KBGN-Ext-GCN-S5-Q

To. pOoVTERX TOU TEpLypdpovTal and T oyéoeg 0.5.

To npwto epopudler cLVEVKOT UeTAED TwV

OVOTIOROLC TACEWY TNE EEWTNONS %ol XOUBWY, VG To BeOTEPO YENOWOTOLEL TNV EPATNON YL TOV UTOA-
oyloud cuvtereo Ty Yo xdde x6uPo. Ta poviého KBGN-Ext-GAT won KBGN-Ext-GAT-Q oe autd
TIOL TIEPLYPAPOVTAL ATt TO UOVTERO 5.5.2, e xou Ywelc vo hauBdvouue unddmy tny epetnom avtio totya.
Me KBGN-Ext-RGCN ouufoiilovye t0 poviéro 5.5.2, evdd ye KBGN-MessagePassing 10 povtého
5.5.2. Téhog, 10 poviého KBGN-Numb avagpépetar axp3¢ 6TO UOVTEAO TOU YENOULOTONCOUE WG
agetnela 5.4, adkd yenotwomodvtoag ta Numberbatch embeddings avti yia 9 cuvévwon twv GloVe
xou ELMo.

0.6.2 TevvnTtixdg AToxwdxonoNTYS

O anoxwdixononthc autd unoroyiler Ty mbavétnta xdde Aé€ng Tou Ae€hoyiou oe xdde Prua
tou. To Bidvuopa NG (WBXOTOMNUEVNS TANEOPORIIE aTo TOV XWAXOTONTY anoTelel TV apyLxn
Tou xatdo ooy evog avadpouxol Nevpwvixol Awxtiou, LSTM. Kotd tn Sidpexeior tng exnaldeuong
peylotonoolpe Ty mdavotnta e axorovdog AMgewv e owotic andvinone. Kotd v extiunon,
ta€vopolue Tic umoPipleg amavtioels, yenowlonotwvtae T mdavétntes mou e€dyel To povtélo.
AZ(Ter va onueiwdel agold 6t autde o anoxwdixonointic de to€vouel Tdavég anavthoelg xatd Ty
eXTAUBEVOY), TO YOVTEAO TOU TOV Yenowlonotel dev unopel va exgetahheutel TuydvV bias mou dUvorton

vor UTdpYEL OTIC TOVES EpWTAHOELS TNE Xdde epdTNONS oL Yot aUTO TOV AOYO Telvel va mopouotdlel
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0.7 Yyohoouds amote\eoudTmv

yewpdTeEN anddoaon. Iap’ dha autd TETOLOL EBOUC ATOXWBLXOTONTES EVOL TILO YEHOLUOL, xordeds dUvortal

va. yenotponondoly oe peahloTinég eQapUoYE, 6mou dev Ho utdpyel TdvTa éval chvoho umodripLey

ATAVTACEWY.
Results on validation split
MRR 1 R@1 1 R@5 1 R@10 1 Mean | NDCG 1
KBGN 50.05 40.40 60.11 66.82 17.54 60.42
KBGN-Impl 48.09 39.04 56.97 62.58 20.82 56.94
KBGN-Numb 47.88 38.74 56.62 62.03 20.95 56.42
KBGN-Ext-GCN-CON-Q 48.23 39.05 57.39 63.35 20.72 57.31
KBGN-Ext-GCN-S-Q 48.01 38.98 56.91 62.53 20.96 56.84
KBGN-Ext-GAT 51.01 41.73 60.75 66.58 19.18 55.46
KBGN-Ext-GAT-Q 51.36 42.03 61.38 66.97 19.06 55.58
KBGN-Ext-RGCN 48.15 39.03 57.01 62.89 20.78 56.27
KBGN-MessagePassing 48.12 38.93 56.95 63.19 21.78 57.25

Table 3. AnoteAéoparta oo val split xpnoponoidvtas tov I'evyntiké anokwodikomoinTr).

0.7 Xy ONACUOG ATOTEAECUATWV

Yav €val TeKTO YEVIXO OY OO AV OTO ANOTEAECUITA, TOQATNEOVUE OTL WOVTEAA IOV ETUTUY Y S-
VOUV XUAG ATOTEAECUOTA YENOULOTOLOVTOS TOV EVOY OTOXMOBXOTOMNTY, Taeouctdlouy xohég emdOoELS
xaL oTov dhho. O yepdtepr anddoot Tou YEVWNTIXO) amoxwdixoToinTy| elval Onwe avapépaue oTny
neptypopr Tou avauevopevr. Ilapdro mou xou or 800 amoxwdononTég elyav mpotadel and Toug
dnuovpyoie Tou Ontixol Awhéyou [11], 1 mhetodnpior TV EPELYNTEOY AVOXOLVGDY ATOTERESUATA UGVO
YioL TOV Blaxplvwy amoxwdIXoTowTY.

Baolouevol ota VOUUERD T0V TELRAUATRY 6TOUS Tivaxeg 5.4 xau 5.5 Topatneolue 6Tl Ta anoTeéo-
patd pog etvar ouyxplowa pe o anoteAéopata NG dxrg Woc uhomolnone tou opyxol uoviélou,
WOTO00 UOVO XAmold amd qUTA XATAPEEVOLY VoL TO Eenepdoouy. Duyxexpéva, to woviého KBGN-
Ext-GCN-CON-Q, mapbéro mou elvon to mo anhd and 600 doXEoTNXAY, EMLTUYYAVEL T XAADTEQX
AMOTEAEGUATA XOU XATAUPEPVEL VoL EETERATEL TO alpyixb poc povtého xatd 0.43% oo test-split. Enlong,
1o yovtého KBGN-Ext-RGCN emituyydvel xouw autd Alyo xohltepo anoteAéopata and To apyixod.
Mio mdoavr) €€ynon yia 1o 6Tl Bev xatopépvel xohlTepa amotehéopota elvol 1 UEYAAT Slopopd oTLC
GUYVOTNTES EUPAVIONG TWV BLapopev TUTWY oxu®y otov Ypdpo Efwtepiniic I'vione. Onwe @aive-
Tou ota ypaghuota 7.3, 7.4 xou 7.5 o tinog axunc related to elvou pe diapopd xuplapyoc o awtdV
T0 yedgo. lapdho mou oTo cUYXEXPWEVO TElpopo anoxAelcope Tor eEUEETIXG oTdvLaL €0 oY,
n avicoppornio nopauéver toré évtovn. To poviého KBGN-MessagePassing av xan oxohoudel plo
TEOGEYYIOT TOPOUOLA UE AUTHY OTY XWIXOTOMNON TV YEdPwY TwV GAAwY 800 TpomxoTATwY, Eixdvee
xou Kewévou, Sev xotagépvel va enitdyet xad amoteléopota. Mio nidavh e€iynon elvou etvan 6tL awtol
oL YRApOL EYOUV EVIEADC DLopORETIXY dou.

0.8 Xvurnepdopato

Yty napoloa epyocio uehetdue To meoBinua tou Ontixod Awahdyou. H mpocéyyiot| pac yenot-
porotel Nevpwvixd Alxtua I'edpwy, évay 10no ixtiny mou éyel anodety Vel Wloitepa anotekeopatinde
o€ peydho gpdoua npoBinudtwy. Iepopatilopacte ue Ty eloaywyn EEWTEPXNAC YVMONS OTO HOVTELO
XL UE TOV TEOTO Tou Vol TNV XWOXOTOLCOUUE TPOXEWEVOL Vo BEATIOOEL Ta anoteréopata. [l to
oxond autod, xataoxeudloupe Teelc Ypdpoug, évav yio xdde TpomxdTNTA XKoL TpAypaToToloVuE Telo

o8B xwdxoTolinoNg xot GOUUEENS AUTEV.
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AZlohoyolpe Tol LOVTERD oG YPNOWOTOLOVTOS BUO0 £(87 AmoXWOXOTOMNTOY, TOV dlaxplivey XL TOV
yevwnuxd. Iopoatnpodue ue Bdon ta anotehéoyata otoug mvaxeg 5.4, 5.5 xau 5.6 611 yovtéha mou
ETUTUY YEVOUV XA OMOTEAEGUOTA YENOWLOTOLOVTIS TOV VALY ATOXWOIXOTOWNTY, £Y0UV XOAEC Amods-
OELS YPNOLLOTIOLOVTOS Xat ToV GAho. H cuvénelo autr peta€ld Twv xoADTECKY Xl YELEOTERKY HOVTENWY
tovilel TV eniBpoom TWV BLAPORETIXWY XWBIXOTONTHOY GTN GLUVOAXT ATOB0GY TOU LOVTEROU.

Me Bdorn to anoteAéoUoT, PTOPOVUE Vo EEGYOUUE CUUTERGOUATO OYETIXA UE TN onuaocia e
Omopéng TOL YPAPOL EEWTEPIXNG YVWONE OAAS X0 TWV BLUPORETIXWY TEOTWY XwdilxoTonong Tne.
SUYHEXPULEVOL, XATAPEOVOUPE VO EETERAGOVIUE T ATOTERECUATO TOU UAOTIOINUEVOL altd EUAS opyLtXol
povtéhou, yenowonovtog Tic pedodouc KBGN-Ext-GCN-CON-Q xon KBGN-Ezt-RGCN. H npotn
hoPBdver umdPny wévo Tov Tono oxprc related to, eved m Sevtepn molhamiole ToOmoug axuwy. Ot
pédodol mou eqopudlouv Auto-llpocoyy| mdvw otoug xouBous, KBGN-Ext-GAT xa. KBGN-Eut-
GAT-Q, tou Ypdpou e€wTepXnc YVOONGC EMTUY YAVOLY X0Ad anotehéopota wévo oto validation split,
yeyovog mou umopel vo ogeiheton oe Addoc plduior twv unepnapauétony. H pédodoc KBGN-Ext-
MessagePassing av xou 1 mo cOvietn Sev emttuyydver xohd anoteAéopato xot oUEGVEL ONUAVTIXG
Tov optiud twv nopopétewy. Téhog, n pédodoc KBGN-Numb, mou elvon 1o opyixd UOVTENO AAAS
XETOUHLOTIOUIVTOG AVATHPOC TAGELC AEEEWY TOU TEOXVTTOUY antd TOV YRAPO YVOGTE TOU EYOUUE XENOL-
HOTIOLACEL ETULTUY YAVEL Tl YElpOTERA amoteréopota. Autd emdetxviel T onuasia OopEne Tou Yedpou
eEWTEPUAC YVOOTNG, 0 OTOlOS ELGEYEL TOAY| TEPLOGOTERY TANEOPOEaL.

Yupnepaopotind, Unopolpe va eE8youUe To cuunépacud 4Tl 1) ELoAY WY EEWTEPLXAS YVWONS GTO
povtélo odnyel oe xahbtepa amoteréopata. Ou pédodol mou xatdpepay XOAITERES ETUBOTELS HTAV Ol
KBGN-Ezt-GCN-CON-Q xa. KBGN-Ezt-RGCN. Ta anoteAéoparto autd elvar Aoyixd. Avagpopixd pe
™V RN, avtioTolyn uédodog xwdonolnong eEwtepnhc Yvwong €yel yenowonoindel oe napduoLo
np6PBAnua e tov onuxd ddhoyo, dnwe oto [29]. Emnpbodeta, n deltepn pédodoc nov métuye
Ayo xohOtepa amoteréopato anotehel pio amd Tig mo dnuoglhel TEXYVIXES Yol TNV Xwdxornoinom
vedpwy pe moAamhd eldn axpdv. Téhog, mpénel va tovicoupe T onuaocio e npoeneiepyacioc tou
yedgpou yvoorne ConceptNet, o onolog yenotwomoijinxe yio t dnuiovpyia tou External Knowledge
Graph ylo x&0e didhoyo. O oyedlootixég emAoyéc Tou ahyoplduou xan 1 emduuntn Asttovpyio Tou
elvon xadoplotinée yiot T emitevdn evoc ypovixd amodotixol ohyoplduou, ahhd xat yiol TNV ETAOYT
yehowne mhnpopopiag amd Tov YedPo YVOOoNC.
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Chapter 1

Introduction

1.1 What is Artificial Intelligence?

Artificial Intelligence is the ability of a digital computer to perform tasks commonly associated
with intelligent beings. These tasks vary from visual perception, speech recognition and translation
between languages to decision-making and taking actions in a given environment. Hence, the term
Artificial Intelligence can be considered as a more general field, that contains a lot of sub-fields
that emerged through the years, such as Machine Learning, Deep Learning and Reinforcement
Learning.

One of the first approaches to artificial intelligence is the Knowledge-Based approach,
which differs a lot to some of the newer developments in Al. Specifically, a knowledge-based sys-
tem is comprised of a knowledge base, contains a collection of information in a given field, and
an inference engine, which deduces insights from the information stored in the knowledge base.
These approaches, however, suffer from the complexity and difficulty to sufficiently describe all the
knowledge regarding the given task.

These problems were tackled by another field of Artificial Intelligence, Machine Learning. In
this approach, the system tries to recognize patterns from the raw data and make decisions with
minimal human intervention. Various types of models have been used and researched for machine

learning systems, some of which are:

e Artificial neural networks, which are inspired by the biological neural networks and
"learn" to perform tasks by considering examples, generally without being programmed with

any task-specific rules,

e Decision trees, where learning uses a decision tree as a predictive model to go from obser-
vations about an item (branches) to conclusions about the item’s target value (leaves)

e Support-vector machines (SVMs), where given a set of training examples, each marked as
belonging to one of two categories, an SVM training algorithm builds a model that predicts

whether a new example falls into one category or the other.

e Bayesian network a probabilistic graphical model that represents a set of random variables

and their conditional independence with a directed acyclic graph (DAG).

The performance of these machine learning algorithms depends directly on the representation and
the amount of the given data. One of the most important drawbacks of these algorithms is the

difficulty to extract high-level features from the input raw data.
Deep Learning comes to address this crucial problem in representation learning by introduc-

ing representations that are expressed in terms of other simpler representations. This approach

manages to build complex concepts out of simpler concepts, but demands enormous data.
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Chapter 1. Introduction

1.2 Motivation

Dialog has always been the most effective way for humans to exchange information. Due to this
significance, it is an important research goal to develop artificial intelligence based agents capable of
conducting human-computer conversation. However, during a human conversation, subtle details
and nuances are often very important. This importance of subtle details and nuances makes the
development of agents for visual dialog a challenging endeavor. Recent efforts to facilitate human-
computer conversation about images, focus on image captioning, visual question answering, visual
question generation and, lastly, also visual dialog. These tasks have been using a set of very general
datasets, that attempt to imitate the human conversation on images. To this end, Das et al. [11]
has collected, curated and provided to the general public an impressive dataset, which enables to
design virtual assistants that can converse.

Most tasks related to Natural Language Processing have been approached with classical meth-
ods, studying the fusion of the current question, dialogue history and image via using attention
mechanism [30]. In this paper we examine the use of Graph Neural Networks, which the last years
have achieved state-of-the-art results in many tasks and have more recently been introduced to
Natural Language Processing. In addition, a realistic dialogue between two humans would nec-
essarily contain some common knowledge from the external world. Towards this direction, we

experiment on equipping our model with external knowledge, from a Knowledge Graph.

1.3 Research Contributions

In this study, we examine a number of multimodal fusion methods using Graph Neural Net-
works. Visual dialog is an on-going conversation about the image, and the relations among visual
objects are dynamically altered with conversational contexts. As a result, retrieving information
from both vision (image) and text modality (dialogue history) is required. [11]. Between these two
modalities, however, there exists a heterogeneous semantic gap of implicit referring relations cross
modalities. The modeling of which can be crucial to our task and not only. Fusing therefore the
two modalities in a proper way can unlock way better results.

Moreover, equipping the model with external knowledge, which we will be using as a third
modality will lead not only to a numerous of possible fusion methods, but also to conclusions on
whether the knowledge of the external world is crucial in order to imitate a human to human
conversation on an image.

Finally, the use of Graph Neural Networks, additionally, provides a whole new approach on the
ways to implement the encoding and fusion steps. GNNs are attracting more and more research
attention on a vast variety of machine learning problems. Employing them on a task that does not
necessarily demand a graph approach, demonstrates the how well these networks can adapt and

model various types of problems.

1.4 Thesis Outline

The structure of the rest of the thesis is as follows:

Chapter 2: Machine Learning, provides a theoretical background knowledge that will be
needed for the following chapters. First, we give an overview of technical information, that is
relevant to the basics concepts of Machine Learning. Then we provide a swift description of the
different types of learning and a detailed introduction to more complex Deep Learning methods.

Finally we dig in the concepts that are primarily used in this thesis.
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1.4 Thesis Outline

Chapter 3: Graph Neural Networks, provides a detailed introduction into Graph Neural
Networks, which are widely used in this thesis. After analyzing the motivation behind using these
neural networks and their advantages, we describe the original Graph Neural Network as it was
initially proposed and enumerate its limitations on a set of tasks. Then we move on presenting
a few general Graph Neural Networks frameworks and then describing the most popular models
that were introduced through the years. Finally, a brief presentation of Graph Knowledge Bases
is provided.

Chapter 4: Introduction to NLP and Visual Dialog, provides a detailed presentation of
our task and an overview of the related fields; natural language processing, computer vision and
multimodal fusion as well as the background information needed to comprehend this thesis.

Chapter 5: Proposed Model, firstly provides a detailed dataset description and then a brief
survey on the related to the task work. Subsequently, a detailed presentation of our approach is
analyzed. We experiment with different methods of utilizing the external knowledge and fusing it
with the image and text modality. We then demonstrate the impact that the external knowledge
has on this specific task.

Chapter 6: Conclusions, contains our conclusion, summarizing our findings and providing an

outlook into the future work.
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Chapter 2

Machine Learning

2.1 Introduction

Because of the huge and rapid steps that have been on the field through the last years, the
terms Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are usually
confused. Artificial Intelligence can be defined as the ability of a digital computer to perform tasks
commonly associated with intelligent beings. These tasks vary from visual perception, speech
recognition and translation between languages to decision-making and taking actions in a given
environment. Hence, the term Artificial Intelligence can be considered as a more general field,
sub-fields of which are AI, ML, and DL, and the distinction is based on the technique in which the
computer systems can mimic human intelligence.

Machine Learning is the area of research that studies algorithms that are able to improve on
a given task without being explicitly programmed. Machine learning algorithms leverage huge
amounts of data and extract patterns in order to "learn" how to perform on a given problem.
This approach goes beyond traditional AT methods, which used to extract new knowledge and
reason about statements, through logical inference rules and suffered from the difficulty of formally
describing all the knowledge based on the given task. Machine Learning algorithms have been
proven effective against a vast variety of problems, where an explicit deterministic algorithm was
to difficult to be developed. Tasks such as speech recognition and computer vision have seen
unprecedented progress through the last years, while solutions to problems from other sciences,
such as medicine have also been boosted using machine learning techniques.

In general most Machine Learning algorithms attempt to extract a mapping representation
from the representation space to the output space, while others intend to learn the representation
itself. The field the last ones belong to is called representation learning. Nevertheless, extracting
high-level features from data can be very challenging depending on the dataset and also on various

factors such as noise.

Artificial Intelligence

A Deep Learning S

Figure 2.1. Artificial Intelligence, Machine Learning and Deep Learning Domains
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Chapter 2. Machine Learning

2.2 Learning Categories

The most modern definition of (machine) learning was provided by Tom Mitchell. According
to this definition: “A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.”. In other words, when providing input data to our model, we expect
after the training procedure, that its capability of completing a given task will be increased.

There exists various different types of learning, which can be grouped in four main categories:

Types of Learning

Supervised Leamning Semi-Supervised Learning
Unsupervised Learning Self-Supervised Learning
Reinforcement Learning Multi-Instance Learning
| statstcaiinterence | [ Leaming Tectniques |
Inductive Learning Multi-Task Learning
Deductive Inference Active Learning
Transductive Learning Online Learning
Transfer Learning
Ensemble Learning

Figure 2.2. Types of Learning

The most common types of learning are being presented in the following subsections.

2.2.1 Supervised Learning

Supervised Learning describes a class of problems, where the model aims to learn a mapping
between input examples and the target variable. To formally model the above, the goal of this
type of learning is to learn a mapping function that will map the input variables X of the model
to the output variable Y:

Y = f(X) (2.1)

In supervised learning the training data are labeled. Specifically, the training procedure consists
of supplying the model both with X and their corresponding Y. Subsequently, the model makes
predictions on test sets where only the inputs are provided and the outputs from the model are
compared to the groundtruth target variables and used to estimate the skill of the model. During
inference, we expect that the mapping function can successfully predict the output for every given
X provided from the same distribution as the training sample.

There are two main types of supervised learning problems, distinguished by the nature of the

output Y:

1. Classification: Supervised learning problem that involves predicting a class label, the label
of the input data X.

2. Regression: Supervised learning problem that involves predicting a numerical value.
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2.2.2 Unsupervised Learning

2.2.2 Unsupervised Learning

As opposed to supervised machine learning problems, where the data consists of input vectors
and their labels, there a lot of problems that don’t provide any target value. Unsupervised learning
is a type of algorithm that intends to extract patterns from these kinds of datasets. Based on these
patterns the model is expected to assign the samples to a class or a value.

One important subclass of unsupervised tasks is the problem clustering. Clustering is the
process of categorizing a population or set of data points into a number of groups, so that similar
data points will belong to the same group and will be different from data points of other groups.

Generative modeling is another intriguing category of unsupervised tasks. Models that emulate
the process of generating the training data are known generative models. A good generative model
will produce new data that is similar to the training data in some way. Because the mechanism
that generates the data is not clearly observable, this sort of learning is considered unsupervised.

2.2.3 Semi-Supervised Learning

Semi-Supervised Learning is a machine learning technique that involves training with a small
amount of labeled data and a large number of unlabeled data. This method is a combination
of Supervised and Unsupervised learning and belongs to the category of the Hybrid Learning
Problems. It is used for datasets that it is impossible to label every sample, so the model approaches
the problem by firstly using the existing labeled samples to generate pseudo-labels for the unlabeled

samples and then utilizes the whole dataset combined.

2.3 Supervised Machine Learning Algorithms

In this work, as it will be discussed in detail in Section 5.9, we employ Supervised learning to
train our model to cope effectively with the given task. Consequently, the following sections will
provide background primarily on supervised learning methods. Below is a more formal definition
of Supervised learning;:

Definition: Given a dataset of N training examples D = {(x,,yn),n = 1,--- , N}, the task is
to learn a function f : X — Y mapping the input X to the output space Y . How well the function
f fits the training data, i.e. how accurately it maps X to Y , is quantified by a loss function
L:Y xY — Ryq . For instance, given a training example (z;, ;) the loss of predicting the value

9; = f(x;) is computed by L(¥i,yi)-

2.3.1 Activation Function

In artificial neural networks, the activation function refers to the equation that determines the
output of each neuron given its input. In other words, it defines how the weighted sum of the input
is transformed into an output. Each neuron in a neural network can be equipped with a different
activation function, the selection of which can be very crucial. There has been used a wide variety
of different activation functions through the years, that can be grouped into different categories.
The simplest activation function can be defined as a binary function that "activates" the neuron,
based on its input and outputs "0" or "1". Activation functions can be classified either as linear or
as non-linear. Each category and the most widely used activation functions are presented below:

Linear Activation Function: A linear function is defined as a straight line, where the activa-
tion is proportional to the input i.e. the weighted sum from neurons. Hence, it is mathematically
defined as:

flx)=ax+c (2.2)
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Linear activation function has a lot of drawbacks and are not usually used in modern artificial
neural networks. Specifically, applying this function in all the nodes makes the activation function
work like linear regression. The final layer of the Neural Network will be acting as a linear function
of the first layer. Another issue is that the output can not be limited in a specific range.
Non-Linear Activation Functions: Modern artificial neural networks mostly use Non-Linear

Activation Functions, the most popular of which are the following:

e Sigmoid Activation Functions: This function takes as an input a real value ranged in
(—00,00) and outputs another value between 0 and 1. It is used mostly when the output has

to be a probability and is defined as:

(2.3)
Sigmoid Activation Function
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Figure 2.3. The sigmoid function

e Tanh Activation Functions: This function maps values between -1 and 1. Similar to the
sigmoid function, the derivative of tanh can be expressed in terms of the function itself. It is
defined as the ratio of the hyperbolic sine and hyperbolic cosine functions and can therefore
be defined as:

T _ =T

tanh(zr) = ——— (2.4)

ete™*

¢ Rectified Linear Unit (ReLU) Activation Functions: ReLU is a non-linear function and
is the most commonly used activation function in neural networks. It returns the value of

the input, or 0, if the input value is negative. Hence, its mathematical definition is:

f(x) = maz(z,0) (2.5)

ReLlU activation function has also a few variants that alleviate some of its problems:

— Leaky ReLU: This function is a linear variant of ReLU. Instead of being 0 when z<0,

a leaky ReLU allows a small, non-zero, constant gradient o (usually, «=0.01). Leaky
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Tanh Activation Function
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Figure 2.4. The tanh function

RelU Activation Function
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Figure 2.5. The ReLU function

ReLUs attempt to fix the “dying ReLU” problem. It is defined as:

x if x >0,
f(z) = , (2.6)
0.01x otherwise.

— ELU: Exponential linear units try to make the mean activations closer to zero, which
speeds up learning. It has been shown that ELUs can obtain higher classification accu-

racy than ReLUs. This activation function is defined as:

fa) = x if x >0, 27)

afe* —1) otherwise.

2.3.2 Loss Function

As described above, every Supervised Learning algorithm aims to create a mapping function
f(), that corresponds an input to the appropriate label. In order the model to be able to learn this
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RelU Activation Function
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Figure 2.6. The Leaky ReLU function
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Figure 2.7. The ELU function

function, a method is needed to compute the distance (loss) between the output of the algorithm
after each epoch and the expected output. To compute the loss of the model, a Cost Function
L(y,y) is defined , where ¢ is the predicted label and y the actual label. The goal is to minimize
this function during the training.

Given a train set (1., Y1.n), & cost function L per sample and a function f(x;6), the total loss
is defined as the average loss on all training data:

N
£0) =~ YL (w:0).9) (28)
i=1

The goal is to find the optimal parameters 6 that minimize the total error:
N
0 = arg, min £(0) = arg miniZE(f(m' 0),v:) (2.9)
6 6 N — sV )y Y .

Depending on the task or the dataset, a different loss function should be selected, since classifi-
cation models (binary or multi-label) and regression ones should use a different method to calculate

the loss. A few standard cost functions are presented below:

38



2.3.3 Gradient descent

Mean Squared Error (MSE): MSE calculates the mean squared prediction error:

n

J0)= -3 (i~ P’ (210)

n -

i=1
Where the prediction error is the difference between the true value (Y;) and the predicted value
(P;) for an instance, and O is the parameter vector of the network. MSE is used with regression

models.

Mean Absolute Error (M AE): MAE calculates the mean of the absolute prediction error:

1 n
J(O) =— Y,—F; 2.11
) == i~ P (211)

i=1
Where Y; is the true value and P; is the predicted value for an instance, and 0 is the parameter
vector of the network.

Cross Entropy: Cross-entropy loss function uses the concept of cross-entropy. Cross-entropy

is mathematically defined as:
H(p,q) ==Y prlogq (2.12)
k

Where p and ¢ are the true and the predicted probability distributions, respectively, the more
the two distributions differ, the higher the value of the cross-entropy. The cross-entropy loss
function is mostly utilized in classification problems. Using this function, the model aims to
minimize the cross-entropy between the model’s distribution and the distribution of the given
data.

2.3.3 Gradient descent

After defining the loss function, a method is needed to minimize it. Gradient-based methods
have been used for this purpose, as they utilize gradients’ property to point to the direction of the
most significant increase of the given function. These methods minimize the objective function £(6)
by repeatedly computing an estimate of the loss £ over the training set, computing the gradients
of the parameters 6 of the model concerning the loss estimate and updating the parameters in the
opposite direction of the gradient.

The most popular gradient-based algorithms are:

Gradient descent (GD), which computes the gradient of the cost function concerning the pa-
rameters 6 for the entire dataset. GD’s most important hyperparameter is the learning rate (n)
as it controls the extent to which the model parameters are adjusted concerning the loss gradient.
GD is formally defined as:

0=60—nVyJ(0) (2.13)

Stochastic Gradient Descent (SGD), which instead of computing the gradients using the entire

dataset, it performs a parameter update for each training example x; and label y; :
0 =0—-nVeJ (0;%i;yi) (2.14)

A significant advantage of the Stochastic Gradient Descent against the Gradient descent is
that it is usually much faster, since the latter performs redundant computations for large datasets,
as it recomputes gradients for similar examples before each parameter update, while the former
performs one update at a time.

The selection of the learning rate hyperparameter is also a crucial point. Opting for a small

value may lead to slow convergence, while selecting a very large one might cause the model to fail
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to converge or even diverge.

2.3.4 Backpropagation

Towards minimizing the cost function in an artificial neural network, using an optimum set
of values for the parameters 9 (weights), we have to compute the gradient. This procedure ends
up very complex and innefficient when using bigger and mor ecomplicated networks, even if the
the chain rule is used for the computation. To tackle this problem, [31], [32] suggested computing
the gradients through backpropagation algorithm . Backpropagation computes the derivatives of
a complex mathematical relation, using the chain rule and saving the results in the interim. The
goal is to update the weights of the network in the optimal way after each computation of the loss
function. The computation is performed for one layer of the network at a time, starting from the
last layer and iterating backwards. The gradients computed can help us understand how quickly
the loss function changes when the weights change and thus how well the network is performing.
In this way, it is easier to fine tune the weights so as to further minimize the model’s loss and

improve the overall performance.

2.3.5 (Generalization

A machine learning algorithm is expected to train a model not only to perform well on data
seen during the training process, but also to be able to handle new, unseen data. This is due to
the fact that the data that has been collected and used for the training is only a sample of all
the possible inputs, hence it is incomplete and probably noisy. Generalization is a crucial concept
in machine learning and refers to a model’s ability to adapt properly and handle new, previously
unseen data, drawn from the same distribution as the one used to create the model. In other words,
generalization evaluates a model’s ability to process new data and generate accurate predictions
after being trained on a fixed training set.

During the training process, the model computes an error based on how it performed on the
training set, called training error and reduces this error while the training continues. Instead of
just optimizing the model’s behaviour only the training set, we have to take into account the test
(generalization) error. Typically this error is estimated by measuring the model’s performance on
a test set of examples that were collected separately from the training set.

Determining if a machine learning algorithm is successful can be based on how the model
handles data seen during the training process as well as how it adopts to unseen data. Based on
the above paragraph the two factors can be expressed as how small is the training error and how
small is the gap between training and test error respectively and represent two key concepts of
machine learning;

Underfitting, which occurs when the model was not able to learn the training data nor generalize
to new data, thus leading to sufficiently low error value on the training set.

Overfitting, which occurs when the model has learned the training data too well. This means
that the model learns every detail and even noise present in the training data to the extent that
it negatively impacts the performance of the model on new data, since it can not adapt properly,
searching for very specific patterns in the new data. Overfitting will lead to a significant gap
between the training error and test error.

A crucial goal while training a machine learning model is to find a good trade-off of training
error and the gap between training and test error. This way the model will have learned sufficiently

well the training data, but will still be flexible to handle unseen data.
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2.3.6 Tackling overfitting

The problem of overfitting is one of the most crucial challenges, while training a model. There
have been proposed, although, a few techniques that have been proven effective and have been

widely used through the years, improving the generalization.

Regularization is the most common technique to alleviate the problem of overfitting. In order
to enforce generalization, restrictions are imposed on the form of the solution by forcing the model
to choose the smallest - in order of parameters- solution. This is done by implying a term in the
loss equation and then penalizing the size of the model. Thus, the loss function takes the following

form:

N
0 = argminL() = arg mimi Z L(f(xi;0),y:) + AR(0) (2.15)
0 o N3

The regularization term considers the parameter values and scores their complexity. Regu-
larization inherently aims to penalize complex models and favor simpler ones, looking for values
that have both a low loss and low complexity. An important hyperparameter that comes with this
method is \; a value that is set manually, based on the classification performance on a development
set. In the above equation, R stands for the regularizer. Regularizers measure the norms of the
parameter matrices and opt for solutions with low norms. The two most common regularization

norms are Lo and L.

L, regularization. The L regularizer, also called a sparse prior or lasso, encourages sparse
solutions or models with many parameters with a zero value. To do so, it punishes uniformly low

and high values and intends to decrease all non-zero parameter values towards zero.

Rp, (W) = W]y = Z Wil (2.16)
i,

Ly regularization. R takes the form of the standard Euclidean norm (Ls-norm) of the
parameters, trying to keep the sum of the squares of the parameter values low. Large model
weights W(; ;1 will be penalized, since they are considered "unlikely". Lj is often referred to as
weight decay. As one can observe, high weights are severely penalized, but weights with small

values are only negligibly affected.

R, (W)= [W[3=Y" (W} ;)° (2.17)

,J

Dropout: This method is designed to prevent the network from learning to rely on specific
weights. It randomly sets to zero (drops) a percentage of the neurons in the network in each
training example, during the stochastic-gradient training. This technique is one of the key factors

contributing to robust results of neural networks.

Pruning Pruning is the technique of removing connections between neurons or entire neurons,
channels, or filters from a trained network, which is done by zeroing out values in its weights matrix

or removing groups of weights entirely.

2.3.7 Machine Learning Models

In this section a few basic machine learning classification models will be presented.
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Logistic Regression

Logistic regression (LR) is a linear classification model, which computes the probabilities for a
classification problems with two possible outcomes by applying the logistic function to the output
of a linear function f . The logistic function, also known as the sigmoid function, squeezes a vector
into a range of (0, 1). For a binary classification problem, the probability of one of the classes for
a feature vector zeR? is defined as:

1
Py =1Jx) = The 7o (2.18)
where f is a linear function with wy parameters:
f(x) =wo +wizy + -+ + wazy (2.19)

Since we examine problems with only two classes, the probability of the other class can be
computed as:
Ply=0|x)=1- Py =1|x) (2.20)

The parameters of the linear function are computed by minimizing the cross-entropy loss J,
which is defined as:

J(w) = =[ylog(P(y = 1|x)) + (1 — y)log(P(y = 1|x))] (2.21)

Support Vector Machines

Support Vector Machines (SVMs) are a set of linear supervised learning methods used for
classification, regression and outliers detection. An SVM is an algorithm for maximizing a par-
ticular mathematical function with respect to a given collection of data. Assuming a two-class

classification problem using a linear model of the form:
fx=wlp(x)+b (2.22)

where ¢(x) denotes a fixed feature-space transformation and b is a bias parameter. Addition-
ally, we assume for the moment that the training data set is linearly separable in feature space.
The training dataset consists of N input vectors x1,x2, -+ , N, with corresponding target values
(classes) y1,y2, - ,yn, where y;e{—1,1}. The new data points z are classified according to the
sign of f(x), for which based on the assumption of the linearly separable dataset, there exists
at least one choice of the parameters w and b such that a function of the above form satisfies
f(x) > 0 for points having y; = +1 and f(x) < 0 for points having y; = —1, so that y;f(x) > 0
for all training points.

The separating hyperplane is a hyperplane that separates the classes of our problem. In the
case of the two classes, the separating hyperplane is a linear function that distinguishes the two
classes. As shown in Fig. 2.8 there can exist numerous (infinite) seperating hyperplanes in a
problem, thus SVM’s purpose is to find the optimal hyperplane for which the minimum distance
between the classes is as wide as possible. This final hyperline is depicted by the maximum-margin
hyperplane.

2.4 Deep Learning Models

The research on field of Artificial Intelligence through the last years has mostly focused on Deep

Learning models and has achieved unprecedented results in a wide variety of problems paving the
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Figure 2.8. Classification of data by support vector machine (SVM). Source: [1]

road for fields such as natural language processing, computer vision and bioinformatics as well as
reasoning and artificial general intelligence (AGI). Deep Learning models are consisted of neural
networks stacked together in multiple levels. Their primary goal is to extract high-level features
from raw data by propagating the input through the consecutive levels of such architectures, each
of those transforms the input into a different representation.

2.4.1 Feedforward Neural Networks

An Artificial Neural Network (ANN) is a computational model inspired by the network
of neurons present in the human brain. Each neuron, brain’s computational unit, receives input
signals from its dendrites and produces output signals along its (single) axon. The axon connects
to the dendrites of other neurons using synapses. The core idea is that all the signals that travel
along the axon interact with the dendrites of the other neurons based on the learnable synaptic
strength (weight) at that synapse, which controls the impact one neuron has on another one. The
signal is transferred, through the dendrites, to the cell body, where the summation takes place.
This final sum will determine whether the specific neuron will be activated. Specifically, if a certain
threshold is surpassed, then the neuron fires sending a spike along its axon. (In the below figure,
a biological neuron and its mathematical notation is presented:)

A Feed Forward Neural Network is an artificial neural network in which the connections between
nodes do not form a cycle. In these architectures, also often called Multilayer Perceptrons (MLPs),
the information is only processed in one direction from the input nodes, through the hidden nodes
to the output nodes. In each node of an FFNN the weighted sum of its’ inputs is usually computed
, followed by a non-linear activation function. In its simplest form, the network consists of three
layers: the input layer, the hidden layer, and the output layer. This type of network is called

single-layer perceptron network and it is shown below:
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Input Hidden Output

layer layer layer

Multilayer Perceptrons are constructed by stacking multiple FFNNs together. In each layer, all
neurons have directed connections to the neurons of the subsequent layer. The multiple layers and
the non-linear activation give MLPs the ability to distinguish data that is not linearly separable.

More specifically, MLPs are composed of the following layers:

e Input layer: Accepts the input data and passes it to the hidden layer without any further

computation.

e Hidden layer(s): At least one hidden layer preprocesses the inputs obtained by the previous
layer, extracting the required features from the input data. Higher hidden layers extract

higher-level features.

e Output layer: The last layer that receives the processed data, generating output in order

to conclude to a decision (e.g. output logits for classification)

An example of Multilayer Perceptron structure with 3 hidden layers is:

Input Hidden Hidden Hidden Output
layer layer 1 layer 2 layer 3 layer
4 h?’ 4 hf’)
® @
B A
WA

2.4.2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks [33] were proposed as a regularized versions of multilayer per-
ceptrons and gained a lot of research attention, since they were proven very successful on a wide
variety of applications, especially when used on images. Motivated by the connectivity pattern be-
tween neurons in animal’s visual cortex [34], neurons in CNNs receive input from a corresponding
neighborhood of the previous layer, while they share weights in each layer. These architectures
were able to alleviate major multilayer perceptron’s problems: (i) prone to overfitting, (i) compu-

tationally intensive.
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Figure 2.9. Typical CNN architecture. Source: researchgate.net

The core idea of Convolutional Neural Networks is to exploit hierarchical patterns in data and
assemble more complex patterns using smaller and simpler patterns. The building blocks of CNNs

are:

e Convolutional layer: Consists of a set of learnable filters , which have a small receptive
field, but extend through the full depth of the input volume. During the forward pass,
each filter is convolved across the both dimensions of the input, computing the dot product
between the filter entries and the input and generating a 2-dimensional activation map of
that filter. Subsequently, the network is able to learns filters that activate, when it detects

some specific type of feature at some spatial position in the input.

e Pooling layer: A form of non-linear down-sampling. Its purpose it to progressively reduce
the spatial size of the representation and as a result the number of parameters, while it also
controls overfitting. There exist several pooling functions, with the most popular to be the
max pooling, which splits the the input into a set of rectangles and, for each such sub-region,

outputs the maximum.

e Fully connected layer: The final classification is done via fully connected layers, in order

to learn non-linear combinations of the high-level features.

2.4.3 Recurrent Neural Networks

Recurrent Neural Networks came to address one significant disadvantage of Feedforward Neural
Networks, which prevent them from achieving great results mostly in sequential data. Specifically,
in FFNNs each part of an input sequence is processed independently, hence it is impossible for the
model to consider the context in which every part is found. A recurrent neural network (RNN) [35],
proposed in the 1980s, is a type of artificial neural network where connections between units form a
directed cycle. This characteristic of RNNs creates an internal state of the network, which enables
it to exhibit dynamic behavior. Unlike feedforward neural networks, RNNs are able to utilize their
internal memory to process and work on arbitrary sequences of inputs. This advantage has proven
RNNs very effective against tasks such as speech recognition, Natural Language Processing and
Machine Translation.

RNNSs are especially useful with sequential data because each neuron can use its internal memory
to maintain information about the previous input. Specifically, they store the context, up to step
t, in a hidden state vector, denoted with s; . At each new time-step, this state vector gets updated

to also reflect the latest part of the input sequence. The output o; for the RNN is a function of
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it’s input x; and the previous state s;1. As shown in Fig. 2.10, a recurrent neural network can be
described as multiple copies of the same network, each passing a message to a successor.

A vanilla RNN first recieves the xg from the sequence of input, and outputs the hidden state
hg. The hidden state hg along with the next input z; is the input for the next step. Accordingly,
hy along with zs is the input for the next step and so on. Using this method, the RNN is able
to "remember" the context of the input it has already seen while training. This characteristic
allows RNN to distinguish between two sentences containing the same words, but with different
order, which gives the sentence a total different meaning. For example RNN is able to grasp the
differences between the sentences "I had my hair cut" and "I had cut my hair”.

Formally, at each time step ¢ a vanilla Recurrent Neural Network is defined as follows:
hy = ah(thxt + Winhi—1 + bh) (223)

Yt = O'y(Wyhht + by) (224)

where h; is the hidden state at time step t, x; is the input vector at time step t, y; is the output
vector at time step t, by is the bias for h, b, is the bias for y and o, and oy are activation
functions. Lastly, the weights are three separate matrices: Wp, (input-to-hidden weights), W
(hidden-to-hidden), and W, (hidden-to-output).

® ®
1

Figure 2.10. A recurrent neural network unfolded for a sequence of length t. Source: data-
science. ey

While RNNs were very promising in handling sequential data, in practice they fall short when
it comes to large contexts. For example, RNNs may perform efficiently predicting a masked word
in a small sequence of words, such as: "It is a sunny summer day and the temperature is [MASK]",
but as the sequence gets bigger and the number of words after the most important ones grow, it

becomes impossible for the RNN to "remember" all that.

Long Short Term Memory (LSTM) Networks

The incapability of RNNs to capture long-range dependencies has motivated a lot of research
towards this direction, with the Long Short Term Memory Networks [36] being maybe the most
successful approach. LSTMs are a special kind of RNN, designed for and capable of learning long-
term dependencies. As they are derived from conventional RNNs, they preserve the concept of
hidden states while also add one more concept; the cell state. These networks have the ability to
add or remove information to the cell state, utilizing mechanisms called LSTM gates. In Fig. ??
a visualization of the LSTM network is shown:

Formally, assuming a sequence x1, X2, - ,Z¢, - , T, of vectors of an input sequence of length
n, for a vector x; , with inputs hs; and ¢;1, the hidden-state h; and cell state with C; for time-step

t are computed as follows:
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Figure 2.11. The repeating module in an LSTM. Source: colah.github.io

fi =0 (Wyx¢ +Ush,_ + by)

i; =0 (W;x; + Uh; 1 + by)

o, =0 (Wyx; + Uyh;_1 +b,)

u; = tanh (Wx; + U,hy_1 + by)
=01+, 0w

h; = o; ® tanh (c;)

(2.25)

The functions of the three gates and of the cell state are described below:

Forget gate (f;). This gate determines which information should be preserved or discarded.
Information from the previous hidden state h;_; together with information from the current input
x; is passed through a sigmoid activation function, which squeezes the values between 0 and 1.
Since the result is then being used as a coefficient, the closer to 0 means to forget, and the closer
to 1 means to keep.

Input gate (i;). The previous hidden state together with the current input is passed into
a sigmoid function, to squeeze the values between 0 and 1 and determine which values will be
updated (0 means unimportant and 1 means important). The hidden state and current input are
also passed to the tanh function to squish values between —1 and 1 (uy). Finally, the tanh output is
multiplied with the sigmoid output (i; ® wu), so that the latter will filter the important information
of the former.

Cell state (c;). To compute the next cell state, firstly the current cell state ¢; gets pointwise
multiplied by the result of the forget gate. This results in dropping information from the cell state
that is not that important. Then, a pointwise addition is applied between previous result and the
output from the input gate, that updates the cell state to new values that the neural network finds
relevant.

Output gate (0;). The output gate determines the next hidden state. As the hidden state
contains information from previous inputs, it is also used for predictions. After, passing the
previous hidden state and the current input into a sigmoid function, the newly modified cell state
is passed to the tanh function. We multiply the tanh output with the sigmoid output (o;®tanh (c;))
to decide what information the hidden state should carry. The output is the hidden state. The

new cell state and the new hidden is then carried over to the next time step.
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Chapter 3

Graph Neural Networks

3.1 Introduction

Graphs are a type of data structure, which is used to model a set of objects, represented as the
nodes of the graph, and their relationships, the graph edges. Through the last years, researches
of analyzing graphs with machine learning have been receiving increasing attention because of the
great expressive power of graphs. Specifically, graphs can be used to represent a large number of
systems across various areas, including social science (social networks) [13], [14], natural science
(physical systems [15], [16] and protein-protein interaction networks [17]), knowledge graphs [18]
and many other research areas [19]. Graph neural networks [37] are deep learning based methods
that operate on graph domain. Because of their impressive performance and high interpretability,
GNNs have seen through the last years increasing popularity and have been widely applied for
graph analysis methods, which focus among others on node classification, link prediction, and

clustering.
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Figure 3.1. Some applications where the information is represented by graphs: (a) a chemical
compound (adrenaline), (b) an image, and (c) a subset of the web. Source: [2]

The motivation behind Graph Neural Networks originates from convolutional neural networks
(CNNs)[38]. CNNs achieved exceptional results and led to breakthroughs in almost all machine
learning areas, thanks to their ability to extract multi-scale localized spatial features and compose
them to construct highly expressive representations. CNNs have some key features, that are also of
crucial importance in facing problems of graph domain. These features are 1)local connections 2)
shared weights and 3) the use of multi-layer. However, CNNs are by definition designed to handle
single-dimensional (text) or two-dimensional data (images). This led to the need of having a more

generalized model, that can handle data that are represented in non-Euclidean domain. Another
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factor that also motivated the generation of Graph Neural Networks, were the graph embeddings
[39], [40], that enable learning to represent graph nodes, edges or subgraphs in low-dimensional
vectors.

Based on CNNs and graph embedding, graph neural networks (GNNs) are proposed to collec-
tively aggregate information from graph structure. The aggregation that takes place is invariant of
the order of the graph nodes. In contrast to standard neural networks, such as CNNs and RNNs,
which stack the feature nodes by a specific order, GNNs respect the fact that there isn’t a natural
order of the nodes in the graph. To achieve an traverse invariant aggregation the traditional neural
networks should traverse the input nodes in all possible ways, something that would be lead to
very inefficient training. Another significant advantage of GNNs is that the graph edges represent
the dependency between two nodes. The network can then perform the propagation guided by
the graph structure. Lastly, GNNs have the potential to lead to breakthrough achievements on
reasoning, which is a very crucial research topic for high-level artificial intelligence and a task that
standard neural networks fall short. GNNs generate the graph from non-structural data, such as

pictures and documents, which can then be utilized for the reasoning.

3.2 Characteristics of GNNs

3.2.1 Permutation invariance and equivariance

One core principle of Graph Neural Networks is that they do not depend on the order of the
input graph’s nodes. As a result, we can say that they do not operate on a list of nodes, rather
on a set of nodes. Assuming a graph G containing only nodes x (ignoring the edges for now) and

defining z;¢R* as the features of node i, we can get the node feature matrix of shape n as:
X =[xy, x,)" (3.1)

Stacking, however, the nodes’ features defines inevitably a node ordering. As a result, the goal is to
learn a function that will not depend on that order, hence it will be invariant to any permutation on
these nodes. In linear algebra, permutation matrices are nxn matrices that apply a permutation
of the rows of the matrix they are left-multiplied with. These matrices have exactly one 1 in
every row and column, and zeros everywhere else. A typical example of a permutation matrix P

left-multiplied with a matrix X is shown below:

01 0 0] |[——21—— —— Ty — —
P {00 0 1) |—=2z2——|  |——®a——
CALD TN 0 0 0] [——as——| |——a1—-—
0 01 0] [——x4—— - — T3 — —

In order to ensure that the result will not depend to the order of the nodes, the concept of
permutation invariance should apply.Specifically, a function f should be applied to the input
features X, such that f(X) will be permutation invariant. f(X) is permutation invariant if, for all

permutation matrices P:
f(PX)=F(X) (3.3)

The notion of permutation invariance, however, destroys any node-level information, since the
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nodes are all grouped together. Hence, permutation-invariant models are a sufficient way to obtain
only set-level outputs. Nevertheless, in practice node outputs are in many cases very valuable,
which leads to the need of using functions that do not change the node order, but do return the
same result if the permutation happens before or after the function. The above lead us to the
concept of permutation equivariance. Accordingly, {(X) is permutation equivariant if, for all

permutation matrices P:

f(PX) = Pf(X) (3-4)

After defining the above for simple graphs, containing only nodes, we now have to extend the above

equations for actual graphs, taking into account the edges connecting the graph’s nodes.

Figure 3.2. Permutation invariance

Specifically, in order to augment the set of nodes V with edges, we consider a set of edges

E C VaV and represent them using a simple adjacency matrix A, such that:

1 if (i, j)eE,
Qi =
0 otherwise.

(3.5)

A permutation to the adjacency matrix A using a permutation matrix P can be achieved as PAPT.
Finally, the suitable functions f(X,A) to be applied over the graphs, satisfying the permutation

invariance and equivariance respectively are shown below:
invariance: f(PX,PAPT) = f(X, A) (3.6)

equivariance: f(PX,PAPT) = Pf(X,A) (3.7

3.2.2 Locality on graphs

One core characteristic of graphs is that they express locality, through the concept of the
neighbourhood. Specifically, given a graph G = (V, E) we can define for each node i its (1-hop)
neighbourhood as:

N;=j7:(i,5)eEV (j,i)eE (3.8)

The above definition ignores the direction of the edges. Typically, it is also assumed that ieN;.

Based on the above, a multiset of features within each node i’s neighbourhood can be obtained as:
XN,L =Ty : j€Ni (39)
A local result for each output can be obtained by applying a local function g over each mutliset:

G(LUZ',XNi)

Finally, by appropriately applying the local function, g, over all neighbourhoods, we can con-
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struct permutation equivariant function, f(X, A) as:

— =gz, Xn,) — —

- g(x27XN2) -

F(X,A) = (3.10)

- _g(xanNn) -

Based on all of the above for the functions f and g, a permutation equivariant function and a

permutation invariant one should be respectively selected.

In the next sections we present a set of general Graph Neural Network frameworks, as well as

popular models that are being widely used for a lot of tasks.

3.3 Models

In this section we review various popular graph neural network models. We first present the
original framework and its limitations and then its variations. Before digging into the details, we
provide the notations that will be used in the rest of the thesis, regarding the GNNs.

3.3.1 Graph Neural Networks

Here the original Graph Neural Network framework is presented as it was proposed in [2], which
enabled to feed in a neural network non-Euclidean structures, represented as graphs. As defined in
graph theory, a graph is composed by as set of nodes V and a set of edges E. Each node is described
by its features and its neighbouring nodes, i.e. the information contained in its neighbourhood.
GNNs aim to learn a state embedding h,eIR® for each node, which will contain the information
of its neighbourhood. This state embedding , h, of the node v can later be used to compute an
output o,.

In all GNN frameworks exist two main functions:

1. fi, parametric function, called local transition function that expresses the dependence of a
node on its neighborhood. This function updates the node state, according to each neigh-

bourhood, as:

h, = f(XV) Xco[v]» hne[v]a Xne[v])a (311)

where y, Zeo[u], Pnefv]s Tne[s] are the features of v, the features of its edges, the states, and

the features of the nodes in the neighborhood of v , respectively.

2. gw, called local output function that describes how the output is produced:

oy = g(hy, xy), (3.12)
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By stacking all the states, all the outputs, all the features, and all the node features respectively,

we get H, O, X, X and conclude to the compact form:

H = F(H,X), (3.13)
O = G(H,Xn) (3.14)

For the (t-+1)-th iteration the states are computed as:
H' = F(H*, X) (3.15)

In supervised learning, the parameters of f and ¢ are learned, according to target information

(t, for node v) based on the loss:
P

loss = Z(tz —0;) (3.16)
i=1
where p is the number of supervised nodes.
Based on the gradient-descent strategy, the learning algorithm can be described in three steps:
1) Iteratively update the states h!, by Eq. 1 until a time T, when they approach the fixed point
solution of Eq. 3: H(T)H, 2) Compute the gradient of weights W, using the loss, 3) Update the
weights W according to the gradient computed in the last step.

The original GNN suffers from several limitations:

1. Original GNNs are unable to effectively model informative features, that might be present
in the edges of the graph.

2. Unlike most popular neural networks, which use different parameters in each iteration, GNN

uses the same parameters.

3. It is inefficient to update the hidden states of nodes iteratively for the fixed point. If re-
laxing the assumption of the fixed point, we can design a multi-layer GNN to get a stable

representation of node and its neighborhood.

4. Tt is unsuitable to use the fixed points, if we focus on the representation of nodes instead of
graphs because the distribution of representation in the fixed point will be much smooth in

value and less informative for distinguishing each node.

5. Lastly, the update of node hidden states is a sequential process, which can benefit from RNN
based frameworks, like GRU and LSTM[41].

3.3.2 General Graph Neural Network Frameworks

In addition to several graph neural networks variants that will be discussed later, a few general

frameworks have been proposed intending to integrate different models into one single framework.

Message Passing Neural Networks

[28] introduced a general framework, to be used for supervised learning on graphs called Message
Passing Neural Networks (MPNNs). This framework provides an abstract model that preserves
the common characteristics between major successful GNN models for graph structured data.

The framework is consisted of two phases; the message passing phase and a readout phase. The
former’s purpose is to aggregate the information (messages) from each node’s neighbourhood and

update its hidden state. Specifically, two functions, the message function M; and vertex update
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function Uy are defined and the messages m! and the updated hidden states h*! are computed as

follows:
mitt =" My(hl, bl ew) (3.17)
weN,
hitt = Ui(hi,, mytt) (3.18)

where e,,, are the features of the edge from node v to node w.
The readout phase aims to generate a graph feature vector using a readout function R, as it is
described below:
9= R({hy[veG}) (3.19)

The definition of the three functions used in the above equations, M;, U; and R could have dif-
ferent specific settings and given the abstract profile of the framework, the MPNN could generalize
several different models via different function settings.

Non-local Neural Networks

Tomasi et al. [42] introduced Non-local Neural Networks (NLNN), intending to capture
long-range dependencies. Inspired by non-local mean operation [43], the non-local operation cal-
culates the response at a position computing the weighted sum of the features at all positions,
hence the NLNN can be considered as a combination of different “self-attention”™style methods

[30]. Buades et al. [43] defined the non-local operation as:
1
hi= == > f(hi,h;)g(h;) (3.20)
C(h) VZ] J J

In the above equation f(h;,h;) generates a scalar between 4, the index of an output position,
and j, all possible positions, which represents the relation between them. g(h;) transforms the
input h;, while ﬁ applies normalization. As discussed above for the MPNL, the two functions f
and ¢ can be defined with different settings, resulting to a variety of different models. For the latter,
[42] for simplicity reasons only considered using a simple linear transformation, g(h;) = Wyh; ,

while for the former, function f, proposed a set of various functions:

1. Gaussian: The Gaussian function was proposed as a natural choice of f, following the non-
local mean [43] and bilateral filters [44]. Considering k! h; as the dot-product similarity:

Flhiyhy) = et (3.21)
C(h) =Y f(hihy) (3.22)
Vj

2. Embedded Gaussian: Extending the Gaussian function, the similarity is now calculated
in an embedding space:
0(h;) = Wyh; (3.23

¢(h;) = Wsh; (3.24

(R, hy) = fha) (ko) (3.25

C(h) = f(hi,hj) (3.26
vy

A noteworthy remark at this point is that the self-attention module [49] introduced for ma-

chine translation is a special case of non-local operations in the embedded Gaussian version.
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Specifically, for a given 4, %h) f(hi, hj) becomes the softmax computation along the dimen-

sion j. As a result b’ is calculated as:

h' = softmaz(h" Wi Wyh)g(h) (3.27)

3. Dot product:The function f can also be defined as the dot-product similarity:
f(hishy) = 0(hi)" ¢(hy) (3.28)
C(h)y=N (3.29)
with N being the number of positions in h.

4. Concatenation: The function f can also be implemented as using concatenation:
f(hish;) = ReLU (wi [6(hs) || ¢(hy)]) (3.30)

C(h) =N (3.31)

Graph Networks

Battaglia et al. [3] introduced Graph Networks, a more abstract framework that generalizes
the above approaches. Specifically, the authors defined the graph as 3-tuple G = (u, H, F), with
u being a global attribute, H = {h;};—1.n» being a set of NV nodes and h; the attributes of i-th
node, F = {(ex, 'k, Sk) }k=1.n being a set of N¢ edges and e, the edge attributes, r the index of
the receiver node and sj the index of the sender node. A Graph Network is described by the GN
block, the Computation Steps and the Design Principles described below:

GN block. A GN block is consisted of three update functions, denoted as ¢ and three aggre-

gation functions, denoted as p:

e = 6 (er, Py, hsy y ) (3.32) e = p*ME]) (3.35)
B, = " (&, hi,u) (3.33) e = p7YE") (3.36)
u = ¢ (@, h,u) (3.34) B = phu(H') (3.37)

where E! = {(€},, 7k, Sk) }rp=ik=1:n¢, H = {h}iz1.nv and E' = U, E] = {(e},, rk, Sk) }k=1:N¢

Functions ¢¢ and ¢¥ compute per-edge and per-node updates respectively, while ¢V is applied
only once as the global update. The p functions receive a set as an input and return the aggregated
information as a single element, satisfying the constraints of input permutation invariant and
variable numbers of arguments.

Computation steps. The computation steps taking place in a GN block are described below:

1. Apply ¢° on the edges, providing (eg, hr, hs,, ), to obtain ej. As defined above, the set of
resulting per-edge outputs for each node will be E., while the set of all per-edge outputs will
be the union of the above sets E/ = U, E].

2. Apply p¢" to E!, to aggregate the edge updates for edges that project to vertex i represented
by é.

3. Apply ¢" to each node 4, to extract the updated node attribute h} and obtain the set of the

resulting per-node outputs H’, defined above.
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4. Apply pe7* to E’, to aggregate all edge updates into é'.
5. Apply p" " to H’, to aggregate all node updates into A/, to be used in the global update.

6. Apply ¢“ once per graph and compute the global updated attribute u'.

(a) Edge update (b) Node update (c) Global update

Figure 3.3. Updates in a GN block. Blue indicates the element that is being updated, and black
indicates other elements which are involved in the update. Source: [3]

Design Principles. The design of the Graph Network framework is based on satisfying the

below three basic principles:

e Flexible representations: The GN framework is able not only to support flexible repre-
sentations of the attributes, but also handle different graph structures. Specifically, the node,
edge and global attributes can have arbitrary representational formats, while the output of
the GN block can be appropriately modified to satisfy the demands of a specific task. As
of the graph structures, the GN framework can by used to structural scenarios where the
graph structure is explicitly defined as well as to non-structural scenarios, where the model

is expected to infer or assume the relational structure.

e Configurable within-block structure: All the functions taking place within the GN
block, as well as their inputs can have different settings so that the GN framework can

support flexibility in within-block structure configuration.

e Composable multi-block architectures: The GN blocks can be considered as "units" to
be composed resulting to more complex architectures, using a various number of GN blocks

with shared or unshared variables.

3.3.3 Variants of Graph Neural Networks

The limitations described in section 3.2.1 have been tackled by a lot of variants of Graph Neural
Networks, while research through the years has paved the road not only for even better node and
graph representation, but also for handing different types of graphs. These variants can be divided

into several categories, which are described in the following subsections:

Propagation Step

Although all different GNN variants are equipped with a propagation and output step, both
of them are of crucial importance in extracting the nodes’ and/or edges’ hidden states, with the
former varying significantly between the variants and the latter being usually a feed-forward neural
network. In other words, as described below, the variants employ different ways of aggregating the
information of the node’s neighbourhood and methods to update nodes’ hidden states. The major

Graph Neural Networks variants are described below:
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e Convolution: These methods are divided in two different approaches.

Spectral approaches, which utilize a spectral representation of the graphs. These ap-
proaches, however, are inadequate to handle graphs with a different structure than the one
used in training, since the learned filters depend on the Laplacian eigenbasis, which depends

on the graph structure. The most important ones are:

— Spectral Network][45]: applies convolution in the Fourier domain by computing the
eigendecomposition of the graph Laplacian. For a signal xzeRY with a filter go = diag()
parameterized by 0eRY: gy ® x = U,,(A\)UTx

— ChebNet[46], which utilizes a K-localized convolution to define a convolutional neural
network which could remove the need to compute the eigenvectors of the Laplacian.

— GCN|[14], which by limiting the layer-wise convolution operation to K = 1 to alleviate
the problem of overfitting on local neighborhood structures for graphs with very wide
node degree distributions by applying a set of approximations, generalized the definition

to a signal XeRN*C with C input channels and F filters for feature maps as:

Z=D"3AD"3X0 (3.38)

This model proved itself very efficient on a wide variety of tasks and paved the road for
a lot of GNN models that followed.

Non-spectral approaches, which apply convolutions directly on the graph, aggregating
information from each node’s neighbours. Handling neighborhoods of various sizes and main-

taining the local invariance of CNNs, below are the most successful models:

— Neural FP [47], applying different weights for nodes with different degrees:

| Nl

z=hi""+ > KT (3.39)
=1

b = o (W)™l (3.40)

where Wt‘N"‘ is the weight that corresponds to nodes with degree |V, |

— Diffusion-Convolutional Neural Networks (DCNNSs)[48], where transition matri-
ces are used to define the neighborhood of the nodes. With X being the input features
of shape N x F', where N is the number of nodes and F the number of features, P
being the degree-normalized transition matrix from the graph’s adjacency matrix and
P* being an (N x K x N) tensor that contains the power series P, P2, ..., PX of matrix
P, the defusion representation H of each node is defined as:

H=fW°eoPxX) (3.41)
The graph embedding, usually used for graph classification, can be acquired as:
H=f(Wco1LPX/N) (3.42)

— Dual Graph Convolutional Network (DGCN)[49] employs two convolutional net-
works to capture the both local and global consistency and then uses an unsupervised
loss to ensemble them. The first convolutional network is as proposed in GCN[14], while

the second one utilizes a positive pointwise mutual information (PPMI) matrix instead
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o8

of the adjacency matrix. With Xp being the PPMI matrix and Dp the diagonal degree
matrix of Xp:

H' = p(D,? X,D,? HO) (3.43)

— GraphSAGE [50] computes the embeddings by uniformly sampling a certain number

of neighbours and then aggregating their features, through the below equations:
Wy, = AGGREGATE(h! ', VueN,) (3.44)
B, = o (WTRS | ) (3.45)

Hamilton et al. [50] Suggested three different aggregation methods:

1. Mean aggregator:
ht = o(W « MEAN (b, " U R, YueN,) (3.46)

The mean aggregator is also the only one that doesn’t apply the concatenation in

the general equation and hence it could be viewed as a "skip connection" [51]

2. LSTM aggregator: By using an LSTM-based aggregator, a better expressive
capability is achieved, but in order to satisfy the permutation invariant constraint,
[50] permutes each node’s neighbours to be able to apply the LSTM on an unordered
set.

3. Pooling aggregator: Neighbours’ hidden states are fed through a fully connected
layer and then a max-pooling operation is applied:

hly, = maz(o(Wpoothly ™ +b), VueN,) (3.47)

e Gate: In order to enhance the long-term propagation of information across the graph, there
have been attempts to employ gate mechanisms in the propagation step. Specifically, [52]
proposed the Gated Graph Neural Network (GGNN), where Gated Recurrent Unit is
employed in the propagation step applyin the recurrence for T steps. In the below equations,
after aggregating information from its neighbours, present in A,,, node u updates its hidden
state with a GRU-like update function that operates on the aggregated information and the
previous hidden state. a aggregates the neighbours’ messages, z is the update and r is the
reset gate:

al = AT[Rt R T b (3.48)
2t =o(W?a! +U*hi™t) (3.49)

ri =o(Wral, + Uhi™1) (3.50)

ht = tanh(Wa', + U(rf © hi1)) (3.51)
ht=(1—z)yoht ™ + 2t o ht (3.52)

e Attention: [4] proposed Graph Attention Network, which adopts a self-attention strat-
egy in the propagation step, generating the hidden states of each node by attending its
neighbours. Specifically, an arbitrary graph attention network is constructed by stacking

building block layer, defined as shown below:
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~exp(LeakyReLU (a® [Wh; | Wh]))
~ Ciew, cap(LeakyReLU (™ [Wh [| Whi]))

(3.53)

Qi

Wy =o(_ a;Wh;) (3.54)
jeN;
ai; is the attention coefficient of node j to node i, while h; is the output features of each

node.

In addition, [4] also proposed the use of multi-head attention, where K independent attention
mechanisms are applied to compute the hidden states. The final output features can then be
extracted by either concatenating the K different features or by employing averaging, if we
perform multi-head attention on the final layer of the network, as shown respectively below:

h =iy o (> aliWwkhy) (3.55)
JjeN;

K
Rl = a(% SO alwkhy) (3.56)

k=1 jeN;

where afj is the normalized attention coefficient computed by the k-th attention mechanism.

concat/avg /7
> h)

Figure 3.4. Left: The attention mechanism a(Wﬁ)i, Wﬁ]) employed by GAT, parametrized by
a weight vector 76R2F', applying a LeakyReLU activation. Right: An illustration of multihead
attention (with K = 8 heads) by node 1 on its neighborhood. Different arrow styles and colors denote
independent attention computations. The aggregated features from each head are concatenated or
averaged to obtain hi. Source: [4]

Types of Graphs

Unlike the graphs that can be considered as input for the original GNN, which are comprised of
informative labeled nodes and undirected edges, there are also many other types of graphs, which

can be grouped in the following categories:

e Directed Graphs: Directed edges may carry more valuable information than undirected.

The most representative example of such graphs are the knowledge graphs. [53], in order to
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address the problem of handling directed graphs, suggested two types of weight matrix W

and W¢. The propagation rule is shown as follows:
H'=0(D'Apo(DPAH "W W), (3.57)

where D, YA,, D71 A, c are the normalized adjacency matrix for parents and children respec-

tively.

e Heterogenous Graphs In an Heterogenous Graph there exist different types of nodes.
While a straightforward way to handle these graphs is converting the type of each node
to a one-hot feature vector and concatenating it with the original feature, Graphlnception
[54] proposed grouping the neighbors according to their node types and distances. Each
neighbourhood group is then treated as sub-graph in an homogeneous graph and then all
propagation results from the homogeneous graphs are concatenated. Lastly, heterogeneous
graph attention network (HAN) was introduced by [55] which utilizes node level and semantic-

level attentions.

e Graphs with Edge Information To properly encode graphs with valuable edge informa-
tion, [55] proposed converting the graph to a bipartite graph where the original edges also
become nodes and one original edge is split into two new edges which means there are two
new edges between the edge node and begin/end nodes. Another solution was introduced
with r-GCN [5], which adapts different weight matrices for the propagation on different kinds
of edges and introduces two kinds of regularization to reduce the number of parameters for
modeling amounts of relations: basis- and block-diagonal-decomposition. This model or
variants of it is being usually applied to Knowledge Graphs, which are graphs with multiple
types of relations, which carry significant information. It is also being used in some of our

experiments in this work.

—rel_1(n) —

reI 1(out)

relN (in) ﬁ

rel_1

G |

—rel. N —
_ rel_N(out) .A;.
self loop — self-loop —

Figure 3.5. Diagram for computing the update of a single graph node/entity (red) in the R-GCN
model. Activations (d-dimensional vectors) from neighboring nodes (dark blue) are gathered and
then transformed for each relation type individually (for both in- and outgoing edges). The resulting
representation (green) is accumulated in a (normalized) sum and passed through an activation
function. This per-node update can be computed in parallel with shared parameters across the
whole graph. Source: [5]

e Dynamic Graph, which has static graph structure and dynamic input signals. [56] and
[57] managed to capture both kinds of information, by firstly collecting spatial information

utilizing GNNs, then feeding the outputs into a sequence model like sequence-to-sequence
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model or CNNs. Both models were employed for the task of traffic prediction on graph
roads. On the other hand, [58] and [59] followed a different approach, by collecting spatial
and temporal messages simultaneously. These models extend static graph structure with

temporal connections so they can apply traditional GNNs on the extended graphs.

3.3.4 How to use GNNs?

After applying a number k of GNN layers, the latent h¥ features for each node i are generated.
These features can then be used for a variety of different tasks. Some of the most common practices
is to use the final node states for:

e Node Classification, to classify the nodes in a set of categories

e Graph Classification, to classify the whole graph, by aggregating all the latent node fea-
tures of the graph to extract a graph embedding

e Link Prediction, in order to infer the existence or the type of an edge between a pair of
nodes.

. Node classification
(2 z-ith)
\ 4

X
/ \ GNN Grapfh élassi;ication
/ S zG = f(®icvhi)
| pe— Link prediction
zy ) Zi=f(hi hj e
Inputs Latents \
(X,A) (X.A) ~_

Figure 3.6. Common use cases of GNNs

All the above methods have various applications in fields not limited to social science (social
networks) [13], [14], natural science (physical systems [15], [16] and protein-protein interaction
networks [17]).

3.3.5 Knowledge Graphs - ConceptNet

Machine learning on tasks relevant to language can be significantly boosted by enriching it with
specific knowledge and sources of external information. The concept of knowledge graph was first
introduced by Google in 2012. It is defined as a large-scale knowledge base composed of a large
number of entities and relationships between them. Through the years, knowledge graph, used as
a semantic network, has drawn a lot of attention and has been proved effective in natural language
processing and tasks such as intelligent question answering system, intelligent recommendation
system and so on. Combined with big data and deep learning, knowledge graphs now have become
one of the core driving power for the development of artificial intelligence.

One popular general knowledge graph is ConceptNet, proposed by [60]. ConceptNet utilizes la-
beled edges to connect words and phrases of natural language. The information within ConceptNet
was gathered from sources such as include crowd-sourcing, games with a purpose and expert-created

resources. The motivation behind it was to represent the general knowledge involved in language,
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Query Representation [31]
Document Representation [32-33]
Ranking [34-35]

3. Information Retrieval

Semantic Parsing Based [11, 13]
T — Deep Learning [36]
Information Retrieval Based [14] L —r— ">

Embedding Based [15-16] i )
——— | 1. Question Answering
Deep Learning Based [17-20]

More Complex Tasks [21-22]

Medical [37-40]
— Cyber Security [41-42]
Application of - — Financial [43-46]
Knowledge Graph 4. Domain-Specific jo——————
Embedding Based [23-26] | Mows(23.47:45]
Path Based [27-28]
A 2.Recommender System
Other Methods [29-30]

Education [50-51]

Social Network [52]

ion [53-54]
Geoscience [55]
Other Applications [56-58]

5. Other Applications

Figure 3.7. Application fields of Knowledge Graphs. Source: [6]

in order to enable models to better comprehend the meanings behind the words used in natural
language by humans and to pave the road not only to better performances on various tasks, but
also to new exciting tasks that require external knowledge and would otherwise standard models

would perform poorly.

P
=
=2
o
I8}
]
=3
o
>

Figure 3.8. An example sub-graph of a Knowledge Graph. Source: [7]

The construction of ConceptNet, a Multilingual Graph, was completed gathering information

from the below sources:

Facts acquired from Open Mind Common Sense (OMCS) [61] and sister projects in other

languages

Information extracted from parsing Wiktionary, in multiple languages, with a custom parser
(“Wikiparsec”)

e “Games with a purpose” designed to collect common knowledge [62]

Open Multilingual WordNet [63], a linked-data representation of WordNet [64] and its parallel

projects in multiple languages

e JMDict [65], a Japanese-multilingual dictionary

e OpenCyec, a hierarchy of hypernyms provided by Cyc, a system that represents common sense

knowledge in predicate logic
e A subset of DBPedia [66], a network of facts extracted from Wikipedia infoboxes.

ConceptNet employs a defined set of relations (e.g. IsA, UsedFor, CapableOf) in order the
representation of the relationships to be independent of the language or the source of the terms it
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connects. The knowledge graph is as a result a directed graph, while it also has a few relations
designated as symmetric, such as SimilarTo. As also observed by [60], relations with specific
semantics, such as UsedFor and HasPrerequisite, tend to connect common words and phrases,
while rarer words are connected by more general relations such as Synonym and RelatedTo. An
analysis on the frequency of each relation in the extracted subgraphs of ConceptNet for our task

will be presented in the next sections.
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Chapter 4

Introduction to NLP and Visual Dialog

4.1 What is Visual Dialog?

The task of Visual Dialog, as proposed by [11], requires an Al agent to hold a meaningful
dialog with humans in natural, conversational language about visual content. Given as an input
an image, a dialog history and a question referring to the image, the desired model is expected to
combine the question with the scene shown in the image, extract any useful information from the
dialog history and come up with the an accurate response.

As a lot of research has been conducted towards the direction of language-only dialog, achieving
remarkable results (e.g. Alexa, Siri, etc), the ability to engage in meaningful conversation about
visual content in natural language with people will be a requirement for the next generation
of visual intelligence systems. The applications of such systems would be beneficial in various

domains, including:

e Aid visually impaired people towards understanding their surrounding environment, or a

given situation shown in an image, which fits exactly to the task of Visual Dialog

e Achieve a more useful, interesting and engaging interaction with Al assistants, as the user

could ask questions about a situation the device has access to.

Furthermore, as current works focusing on language-only dialog distinguish two types inter-
action: goal-driven dialog and goal-free dialog, Visual Dialog resembles a lot the the latter
category, while it can also be proven very helpful for the former category. Specifically, goal-driven
dialog is evaluated on task-completion rate or on the time needed to achieve the completion of the
task. For example, a user could use a bot to get informed about the availability and book a flight
ticket. Similarly, in Visual Dialog the user can use the agent to retrieve all the information they
need for a specific task. In the other hand, goal-free dialogues resemble to casual conversations
with chat-bots, hence the longer the user engagement and interaction, the better. Visual Dialog
is a good approach for this kind of conversations referring to visual content. As stated by [11], it
is disentangled enough from a specific downstream task so as to serve as a general test of machine
intelligence, while being grounded enough in vision to allow objective evaluation of individual re-
sponses and benchmark progress. The former discourages task engineered bots for ‘slot filling’
[67] and the latter discourages bots that put on a personality to avoid answering questions while
keeping the user engaged.

Consider the Visual Dialog example shown in Fig 4.1. The first question ’Is motorcycle moving
or still?’ requires the machine to selectively focus and direct attention to a relevant region of
the image where the motorcycle is shown. The same stands for the next question 'What kind of
dog is it?’, while the model is also required to understand the the dog refers to the one present

in the caption and the image. The third question "What kind of dog is it?’ requires co-reference
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C: A dog with gogglesisina
motorcycle side car.
: |s motorcycle moving or still?
. It's parked Dialog history —= — Answer

Q
A
Q: What kind of dog is it?
A: Looks like beautiful pit bull mix f
, Visual Dialo
Q: | Question 9

. What color is it?
model

A: Light tan with white patch that
runs up to bottom of his chin

Figure 4.1. An example dialog of the Visual Dialog task. Source: visualdialog.org

resolution (whom does the pronoun ‘it’ refer to?) and the model should be able to infer which
object the question refers to by examining the dialog history.

In order a trained model to address effectively the task and respond with meaningful and
accurate responses, it should to be able to recognize the image’s main objects and the environment
they are in, infer context from history to capture any relation between the current question and
a previous one, combine the two sources of information and draw a conclusion to generate a
response. As a result an effective model architecture should be equipped with Natural Language
Processing and Computer Vision methods and utilize Multimodal Fusion techniques to
combine the two modalities (Vision and Text). In the next sections we present the basic concepts

of the above fields and focus on the methods that are being used in the current work.

4.2 Natural Language Processing

The field of Natural Language Processing (NLP) covers a wide range of topics, which involve
computational processing and understanding of human language. It has gained a lot of research
interest through the last years, as its applications vary from speech recognition to extracting infor-
mation and question answering and are becoming an increasing part of every day’s life. Although
the field initially relied mostly on statistics and probability [68], today’s artificial neural networks
assembling complex and vast deep learning models have paved the road for incredible results in
every Natural Language Processing task. Moreover, the training of such deep architectures was
made possible by the abundance of data in massive datasets, constructed by sophisticated data
collection procedures.

The core areas of Natural Language Processing tackle underlying problems such as:

e Language Modeling, which underscores quantifying associations among naturally occurring

words

e Morphological Processing, which handles segmentation of meaningful components of words
and identifies the true parts of speech of words as used

e Syntactic Processing, which generates sentence diagrams as possible precursors to semantic

processing

e Semantic Processing, which attempts to distill meaning of words, phrases, and higher level

components in text.
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4.2.1 Applications

Natural Language Processing and its applications have been present in our lives for the last
few years. From changing the way we interact with most of our daily used devices, to shaping
flexible and complex search engines and to giving life to personalized voice assistants, NLP has
affected more aspects of our lives than most people realise. The applications of Natural Language

Processing vary a lot and a few representatives are presented below:

e Information extraction: The automated retrieval of relevant to a selected topic informa-
tion from a text or a set of texts. More formally, IE is the process of extracting structured in-
formation from unstructured and/or semi-structured documents and other machine-readable

sources of information.

e Information Retrieval: The task of searching for documents or information and metadata
within them, as well as searching databases and the World Wide Web.

e Machine Translation: The process creating a machine capable of translating text between

and among natural languanges languages.

e Text Summarization: The technique for generating a brief and accurate summary of vast
texts, preserving the general meaning as well as locating the most important parts and

distilling the essential information.
e Document Classification: The task of assigning a document to one or more categories.

e Document Clustering: The task of cluster analysis to textual documents, e.g. dividing
a set of document collections into different number of groups based on Document contents-

similarity

e Question Answering: The process of automatically generating answers to questions posed
by humans in natural language. The desired model has to be able to comprehend the question

and answer properly.

e Text Generation: The task of receiving keywords or a sentence as input and generating
text indistinguishable to human-written text. Interesting use cases are Code generation and

Stories generation.

e Speech Recognition and Synthesis: the task of extracting textual representations of a

spoken utterance.

4.2.2 Earlier Approaches

As Natural Language Processing is shaped today, it is mainly a data-driven field using statistical
and probabilistic computations along with machine learning. In the past however, machine learning
methods such as naive Bayes, k-nearest neighbors, hidden Markov models, conditional random
fields, decision trees, random forests, and support vector machines were the dominant approaches.
However, during the past several years, there has been a wholesale transformation, and these
approaches have been entirely replaced, or at least enhanced, by neural models, as discussed in the

next sections.
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4.2.3 Word Embeddings

In Natural Language Processing, word embedding stands for the way words are represented.
The input of NLP models can not be the words as in the given natural language, rather numbers
that represent the words’ meaning. The ideal word representation would include the word meaning,
or the concept that this word expresses, as well as some attributes such as the concept of word
similarity and difference, and the ability to distinguish between polysemous words, that have
various meanings depending on the context they are used. These word representations have been
proven to be crucial in order to achieve further achievements in the field of NLP.

Research through the years has been made towards two different approaches, when representing
a word. On the one hand Denotational Representation suggests representing a word as a symbol,
while on the other hand Distributional Semantics is the method of representing a word based on
the context in which it usually appears, following the Distributional hypothesis, which states that

linguistic items with similar distributions have similar meanings.

4.2.4 Denotational Representation

This method of representing a given vocabulary’s words suggests assigning a value to each word.
This value can either be a scalar value or a vector.

The simplest approach of mapping all words of a vocabulary V to a symbol is by using Vocab-
ulary IDs. Specifically, each word is assigned to a unique word ID, which is usually an increasing

integer value. Given a vocabulary V' = {wy, ws, ..., w)y|} each word w; is assigned to the integer i:
et =1,e"2=2...,e"IVI =|N| (4.1)

As it is shown above, this approach requires the use of |V| different word IDs, which lead to
computational inefficiency. More importantly, this approach does not effectively represent the
word’s meaning and is also not able to capture the similarities and difference between words as
well as deal with the ambiguity problem.

A more popular approach is the use of One-Hot-Encoding. This method suggests the use
of RIVIZ1 vectors to represent each word. By increasing the dimensionality further improvements
can be accomplished using compression techniques. For a vocabulary V' = {wy,ws, ..., w)y|} the
One-Hot-Encoding of its words would be:

1 0 0
0 1 0

Wl — : W2 — : e, eV = : (4.2)
0 0 1

This method, however, also fails to capture the similarities and differences between words, while

the ambiguity problem also remains unsolved.

4.2.5 Distributional Semantics

Approaches that follow the Distributional hypothesis, generating word embeddings in a way
that words with similar meanings are represented in a similar way, were proved to be much more
efficient, tackling all the above problems. Denotational Semantics word vectors can be categorized

as sparse or as dense word vectors.
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Sparse word vectors

While there have been introduced several Sparse word vectors, we present one of the most
popular ones:

Term Frequency—Inverse Document Frequency (TF-IDF) Representation: It is a
numerical statistic method that is utilized to calculate the importance of a word for a document in
a collection or corpus. Usually used as a weighting factor, the tf-idf value increases proportionally
to the number of times a word appears in the document and is restricted by the number of
documents in the corpus that contain the word, which contributes to capture the fact that some
words appear more frequently in general.

The td-idf values utilizes two terms: The term frequency (tf) and the inverse document fre-
quency (idf). The TF term is used to express that words that occur more frequently are usually
more important than the less frequent ones. The term IDF, however, aims to shape the weights so
as to follow the intuition that too frequent words (determiners, pronouns etc) are more likely to
be less important. Hence, the tf-idf product tries to find the trade-off between the tf and the idf

term.

Dense word vectors

In many use cases sparse word vectors are not selected for representing words, due to their high
dimensionality, as they are very long vectors, with a size of approximately around 50,000. This
characteristic renders sparse representations computationally expensive. In contrast, dense word
vectors are much sorter with a dimensionality, around 300-1200. This difference makes them much
more efficient, as now the classifiers have to learn much fewer weights. Moreover, models trained
using dense word vectors tend to perform better than using sparse vectors. This phenomenon could
be possibly explained by the fact that lower dimensionality helps boost generalization and avoid
overfitting. In addition, the dense representations generally achieve a better understanding of the
meaning of the word.

While a lot of research has been conducted towards generating dense word representations, with
notable approaches utilizing feedforward neural networks ([69]) or Recurrent Neural Networks,
significant breakthrough was made when Mikolov proposed the famous Word2Vev [8]. Word2Vec
is a shallow, two-layer neural network that is trained to reconstruct linguistic contexts of words.
Given an input of a large corpus of words, it produces a vector space, typically of some hundred
dimensions, with each word in the corpus being assigned a corresponding vector in the space. An
important property of that space is that words that share similar contexts in the corpus are located
close to one another in that space. Word2Vec has two forms, the Continuous Bag Of Words
(CBOW) model and the Skip-Gram model as depicted in Fig. ??. In the CBOW model the
distributed representations of context are combined to predict the word in the middle. All words
get projected into the same position, by averaging their vectors and as a result the order of words
does not influence the projection. Hence, the name Bag Of Words.In the Skip-gram model, the
distributed representation of the input word is used to predict the context.

GloVe Embeddings One of the most popular word embeddings today that has been proved very
efficient in Natural Language Processing is GloVe [70]. It is an unsupervised learning algorithm and
the training is performed on aggregated global word-word co-occurrence statistics from a corpus,
while the resulting representations have interesting linear substructures of the word vector space.
The training objective of GloVe is to learn word vectors such that their dot product equals the
logarithm of the words’ probability of co-occurrence. The central intuition behind the model is the
phenomenon that ratios of word-word co-occurrence probabilities can encode some form of meaning.

The GloVe model is trained on a global word-word co-occurrence matrix, which demonstrates how
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INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT
w(t-2) w(t-2)
w(t-1) w(t-1)

\SUM /
— w(t) w(t) — -
w(t+1) 7 X w(t+1)
w(t+2) w(t+2)
CBOW Skip-gram

Figure 4.2. The CBOW architecture predicts the current word based on the context, and the
Skip-gram predicts surrounding words given the current word. Source: [8]

frequently words co-occur with one another in a given corpus.

4.2.6 Embeddings from Language Models (ELMo)

ELMo embeddings [71] are deep contextualized word representations that offer high-quality
representations for language, modeling both complex characteristics of word use and adjusting
them in different linguistic contexts. The vectors are generated by a bi-directional LSTM trained
with a coupled language model (LM) objective on a large text corpus. ELMo representations are
a function of all the internal layers of the bi-directional language model. Lastly, one drawback of

ELMo is the need for tunning for every different task.

4.3 Computer Vision

Computer vision is the field, which works to help computers gain high-level understanding from
digital images or videos. Tasks of this field include methods for acquiring, processing, analyzing and
understanding digital images, and extraction of high-dimensional data from the real world in order
to produce numerical or symbolic information, while some popular sub-domains of computer vision
include scene reconstruction, object/event detection, object recognition and 3D pose estimation.

In general, in computer vision the image data can take many forms, from simple images to video
sequences, views from multiple cameras, multi-dimensional data from a 3D scanner and medical
scanning device. In our task, however, the image data is limited to a single image, as it is detailed
described in Section 5.2.

Images are usually represented as 3-dimensional volumes HW C', with H being the image height,
W the width and C the number of channels. Having three channels for defining the red, green,
and blue color components of each individual pixel, RBG images are described with very high
dimensional representations. As a result, feeding to a fully-connected network an image of typical

size 224x224. leads to a number of weights for a single neuron in the input layer equal to 224 224
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3 = 150.528. Hence, sparse connectivity and parameter sharing are the main advantages of CNNs
the render them ideal for Computer Vision tasks.

Convolutional Neural Networks were briefly presented in Section 2.4.2, but here we will focus
on CNN architectures for object detection. These architectures have a few differences compared to
original CNNs, that enable them to model the localization of the objects in the image. Specifically,
instead of producing only scores for candidate labels, an object detection system must output a
tuple for each detected object: the class scores and the bounding box coordinates. Since each
image contains an arbitrary number of objects, most models determine a group of region proposals
and then use a classifier to compute the probability of an object being present in that region. The
regions proposals are generated by applying multiple anchor boxes at different positions of the

image, which are bounding boxes of various shapes and sizes.

4.3.1 Faster R-CNN

One of the most efficient models for object detection that has met an increasing popularity over
the years is the Faster R-CNN [9], depicted in Fig. 4.3:

classifier

Rol pooling

P

proposals

Region Proposal Network

feature maps

conv layers /

Figure 4.3. An overview of the Faster R-CNN architecture. The RPN module serves as the
‘attention’ of the unified network. Source: [9]

In a Faster R-CNN model the input image is firstly passed through a set of convolutional
layers to obtain the feature map of the image. On this feature map a [9] proposed to apply a
Regional Proposal Network (RPN), which utilizes the features of each anchor box to compute to
probability of an object being present in the region specified by the anchor, which is often called
as “objectness” score. Since the regions proposed by the RPN have varying sizes, the same stands
for the feature maps corresponding to these regions. In order to generate representations of a fixed
size, [9] proposed to apply a Region of Interest (Rol) pooling layer to the feature maps, which,
unlike a Max-Pooling layer, splits the feature map into a fixed number of regions, and keeps the
maximum value in every region. As a result, the size of the output is the same regardless of the
size of input. Lastly, to obtain the desired output, the features of the proposals are passed to

a classifier that outputs class label probabilities and to a linear regression layer that refines the
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coordinates of the bounding box.
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Chapter 5

Proposed Model

5.1 Introduction

Dialog is an efficient way for humans to communicate, exchange information and share emotions.
Due to this effectiveness it is an important research goal to develop artificial intelligence based
agents capable of conducting conversation with humans. When humans converse, however, subtle
details and nuances are often crucial. The significance of recognizing fine details and nuances, is
what makes creating agents for visual dialog a challenging endeavor. Research through the years,
seeking methods to facilitate human-computer conversation about images, has introduced and made
progress on tasks such as image captioning, visual question answering, visual question generation
and very recently also visual dialog. Visual Dialog has drawn increasing research interest. In this
task, an image is provided as context input, accompanied with a summarizing caption and a dialog
history of question-answer pairs. The goal is to answer questions posed in natural language about

the image.

5.2 Dataset

The task of visual dialog and the corresponding dataset, which is being used for the next
experiments was proposed by [72]. The challenge of this task is to train a model to be able to answer
follow up questions, given an image, a dialog history, and a question about the image. Specifically,
the agent has to combine the current question with the image, infer context from history, and answer
the question appropriately. Being decoupled enough from a specific downstream task, Visual Dialog
functions as a general test of machine intelligence, while it is also sufficiently anchored in vision
allowing impartial evaluation of individual responses and progress benchmarking.

The images corresponding to a different dialog are collected from the Common Objects in
Context (COCO) [73] dataset, which depicts various objects in everyday scenes. The visual com-
plexity of these images enables the progress of engaging and diverse conversations. As stated by
[73], good data for the Visual Dialog task should include dialogs that have (1) temporal conti-
nuity, (2) grounding in the image, and (3) mimic natural ‘conversational’ exchanges. In order to
satisfy these constraints, the dialogs were generated by two paired workers on AMT to chat with
each other in real-time. The one worker is assigned to the ’questioner’ role and the other to the
"answerer’ role. The former has access only to the caption of the image, without seeing the actual
COCO image, and their task is to ask questions that will enable them to 'imagine the scene better’.
The latter, the ’aswerer’ has access to both the image and its caption and their task is to answer
questions asked by their chat partner. The workers were encouraged to reply as naturally and
‘conversationally’ as possible, instead of providing short or concise answers. Each dialog ended
after the exchange of a total of 20 messages, which results to 10 pairs of questions and answers.

The VisDial dataset is consisted of 123,287 images, with one dialog of 10 rounds for each
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image, resulting on total of 1,232,870 QA pairs, on the training split, while the validation split is
composed of 2,064 images x 10 rounds and the test split of 8,000 images x 1 round. All the images
are collected from the famous MSCOCO [10] dataset. Both training and validation splits have
complete dialogues of 10 rounds, while the test split has a random number of answered rounds

(between 1 and 9) and one round to be answered by the model.

Figure 5.1. Ezamples of COCO images [10]

Comparing with the VQA dataset One could compare the visual dialog task, with the
popular Visual Question Answering dataset (VQA)[74], which describes the task of providing an
image to the model and asking one question. Additional similar datasets are Visual TW [75]
and Baidu mQA [76], but a brief search on publications is enough to conclude that the VQA is
much more popular and studied dataset, with numerous scientific publications achieving impressive
results. However, the concept of the dialog, having 10 rounds instead of just one and therefore
expecting that the model will also take into account the history of the dialog, is not the only
significant difference between the VisDial and the above datasets. One key differentiation is that
in all previous datasets, subjects saw an image while asking questions about it. As suggested by
[77], [78] and [79] this tends to introduce a bias, when generating the dataset. Specifically, a vast
amount of questions is questioning the existence of objects that are actually found in the picture.
This allows language-only models to perform remarkably well on VQA. Interestingly, for a specific
type of questions in the VQA dataset starting with ‘Do you see a . . . ’, blindly answering ‘yes’
without reading the rest of the question or looking at the associated image results in an average
VQA accuracy of 87%. In VisDial, questioners have not access to the image and, as a result, this
bias is reduced. Finally, another significant difference between Visual Dialog and VQA is that in
the former the agent is primed with a caption for the image and questions often refer to objects
referenced in it, while in the latter task there is no image caption. As a result, the two tasks are
not similar even on the first round of the dialog.

In Fig. 5.2 two examples of the two datasets are shown to demostrate the differences between
them. On the left, for the same image two questions from the VQA datasets are shown (in VQA an
image may be used in more than one example) and one dialog from the Visual Dialog dataset. As
one can easily discern, besides the number of questions per example (only one question vs a dialog
of 10 rounds), there are significant differences in the questions themselves. Specifically, while VQA
questions are simple and complete, Visual Dialogue’s questions depend on one another, as they
carry pronouns referring to objects of previous questions. This nature of the questions not only
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resembles a real dialog, but also requires the model to be able to infer the object each pronoun
refers to. Finally, for the same COCO image the desired result of the task of image captioning is
shown, which is the task of annotating images with natural language at the scene level. On the

right, another example dialog of the Visual Dialog dataset is depicted.

i

Captioning
Two people are in a
wheelchair and one is
holding a racket.

\

Visual Dialog : :
: How many people are on Visual Dialog

Q
B: B man‘;/%gople wheelchairs ? Q: What is the gender of the
on wheelchairs ? A: Two ' : one {n the white shirt ?
A Two Q: What are their genders ? : A: She is a woman
' A: One male and one female : Q: What is she doing ?
) ) Q: Which one is holding a :A: Playing a Wii game
S: g(;: Ay racket ? Q: Is that a man to her right
‘ A: The woman A: No, it's a woman

Figure 5.2. Differences between image captioning, Visual Question Answering (VQA) and Visual
Dialog [11]

The common points the Visual Dialog and VQA share, as well as their differences are grouped
in the below tables:

Common points ‘

Question over an Image
Agent has to combine image and text modalities
Images from COCO dataset [10]

Table 5.1. Common points between Visual Dialog and Visual Question Answering

Different Points
Visual Dialog ‘ Visual Question Answering
Image and Caption as initial input Image as input
10 rounds of questions Only one question
Questioners do not see the image Questioners see the image

Table 5.2. Differences between Visual Dialog and Visual Question Answering

One final comment on the differences between Visual Dialog and VQA is the amount of research
conducted in these two tasks. Specifically, as noted above, the latter has drawn the interest of
many researchers, resulting in a vast amount of publications undertaking the specific task, while
it is also a few years older than the former. On the other hand, Visual Dialog dataset has been
less popular and there could be more space for insightful future work. A detailed overview of the

related work conducted on the Visual Dialog dataset is presented in the next section.

Problem Formulation

As proposed by [11], in the visual dialogue task, an agent is required to reason based on a given
image I, caption C, dialogue history H; = {C, (Q1, A1), ..., (Qt1, A1)}, and the current question
Q: at round t. The task is to rank a list of 100 candidate answers A = {41, As, ..., A190} and

return the best answer A; for each question Q.

75



Chapter 5. Proposed Model

Evaluation Metrics

For the evaluation of response performance, a set of different metrics is used, which are suggested
in [80]. Specifically, the model is required to return a sorting of 100 candidate answer options and

gets evaluated on the following retrieved metrics:

1. Existence of the human response in top k responses, i.e. Recall@k (R@k, k = 1,
5, 10). As stated above, the model ranks the 100 candidate answers from the set of possible
answers A = {A;,7 = 0,---,99}. Recall@k metric depicts if the ground truth answer was
between the first k£ answers in the sorted list of possible answers. The lower of value of k, the
better score the model assigned to the correct answer, the closest it was to understanding the
question and returning the correct answer. Clearly, Recall@1 depicts the number of examples

the model actually returned the correct answer.

2. Mean rank of human response (Mean). As the name suggests it is the mean rank of the
correct answer in the sorted list of possible answers. Since the list is sorted from the answer
with the higher probability the answer with the lowest, the lower the value of this metric,
the better.

3. Mean Reciprocal Rank (MRR). It is defined as:

I
MRR=—%" (5.1)
i=1

@ rank;

where rank; is the rank of the human response and @ the set of all questions. To achieve
the perfect score, M RR = 1, the model has to rank consistently the correct response as the

first answer.

4. Normalized Discounted Cumulative Gain (NDCG), for a more comprehensive perfor-
mance study. It uses dense annotations, i.e., the entire set of candidate answers is annotated
as true or wrong. The metric penalizes low ranking correct answers, a method which ad-

dresses the issue when the set of answers contains more than one plausible result.

5.3 Related Work

As proposed by [72], a suitable model could follow the encoder-decoder framework. Specifically,
the model consists of an encoder that maps the input (I, H, Qt) into a vector space, and a decoder
that converts the embedded vector into an output.

Along with the VisDial dataset, Das et al. [72] proposed three baseline encoders. Late Fusion
(LF) Encoder, which deals the dialog history as a concatenation of all the dialog rounds. Two
different LSTMs[36] are used in order to encode the current question and the history. The indi-
vidual representations of participating inputs (Image, History, current Question) are concatenated
and linearly transformed to a desired size of joint representation. Hierarchical Recurrent En-
coder (HRE), which introduces a hierarchical encoding approach to capture the history. Lastly,
Memory Network (MN) Encoder, maintains each previous question and answer as a ‘fact’ in
its memory bank and learns to refer to the stored facts and image, in order to answer the question.

Apart from the aforementioned baselines, [81] utilizes recursive visual attention, inferring the
co-reference through recursively inspecting the history dialog and improving the visual attention.
[82] propose an EM-style inference algorithm to obtain the latent relations among history dialogs.
MCA [83] focuses on an iterative question-conditioned context-aware graph, including both fine-

grained visual and history semantics. DualVD [84] constructs a scene graph to represent the
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image, which emphasizes the essential role of vision for the referred visual content may change
remarkably. DMRM [85] adopts multi-step reasoning based on dual attention to iteratively update
related visual objects for a more relevant response. DAM [86] designs an adaptive decoder with
memory to store the state of dialog history and visual information. Lastly, impressive results have
been, also, achieved by pretrained models. Specifically, VisualBERT [87] and VDBERT [88] exploit

large extra datasets to explore in visual dialog via pretraining language models.

Visual Dialog with Graph Neural Networks: Apart from the above approaches, there have
been also several attempts to approach the visual dialog task using graph-based works. Specifically,
[22] approaches the problem by focusing on the dialogue structure recovering, [23] and [24] on deep
visual understanding and [25] on answer information revolving. The above works experiment on
how the problem is modeled as a graph, e.g. only one graph for the whole dialog, or two graphs,
one for each modality, what each graph node represents, e.g. a dialog round, a visual object, or
on a lower level a token of each dialog round [25], as well as one the aggregation and propagation
step the Graph Neural Network utilized. Finally, [26] suggests the use of ConceptNet to supply

external knowledge and boost the model’s performance.

5.4 Baseline model

As a baseline model we select the approach proposed in [12]. This approach suggests an inter-
esting fusion of the two modalities and results to promising, announced by the authors, results.
The model, Knowledge-Bridge Graph Network (KBGN) attempts to bridge the cross-modal se-
mantic relations between vision and text modality, as well as to retrieve useful information via an
adaptive information selection mode. Additionally, the reasoning clues can be clearly drawn from
intra-modal entities and inter-modal bridges.

The KBGN framework consists of two graphs; The vision knowledge graph and the vision
knowledge graph. The vision knowledge graph is a fully connected graph where the nodes V =
{v;|ie{0, N —1}} are the visual entities, which are detected by a pre-trained Faster-RCNN [9] where
N is the number of the detected in the image objects. The edges E = {e;;|i, je{0, N — 1}} are
the visual relationships between nodes, extracted by a visual relationship encoder [89]. The text
knowledge graph is also a fully connected graph, whose nodes S = {s;]ie{0,T — 1}} represent each
question-answer pair of the dialog history H;, where t is the round number. For the text knowledge
graph the initial node states are extracted by an bidirectional LSTM, which takes as input the
concatenation of GloVe [70] and ELMo [71] word embeddings. The edges R = {r;;|%, je{0,T —1}}
represent the context dependence between the nodes and are computed by simply concatenating
the two nodes, i.e. 7;; = [s;, 55

KBGN model consists of three main modules:

¢ Knowledge Encoding, which is applied independently to both modalities. By encoding the
visual and textual information from the input using the current question as a guidance, this
module aims to capture the text and the vision relations within each modality. To achieve

that, it firstly applies a Query-Guided Relation Selection:
aij = softmax(We(W1Q; o Waey;)) (5.2)
€ij = Gije; (5.3)

Then updates the states of each node applying a Query-Guided Graph Convolution:

Bij = softmax(W,(Q: o Wsvj, é;5])) (5.4)
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Figure 5.3. Our main baseline: Knowledge-Bridge Graph Network [12]

Query Embedding

Figure 5.4. Knowledge Encoding module in Knowledge-Bridge Graph Network [12]

¢ Knowledge Storage, which aims to construct a bridging relation between image and text
modality. Towards this goal, this module enriches the text modality with image and vice
versa, the image modality with text information. Each node (center node) from each modal-
ity, is enriched by every node (cross node) of the other modality. For enriching the vision

modality with the text information, the below procedure is followed.

1. Construct Text to Vision GNN, where each intra-modal center node v; is connected with

all the inter-modal cross nodes S = 5! by t edges B}, t being the number of rounds.

The edges capture underlying semantic dependence from each entity of text knowledge
to vision knowledge, which is provided as B}; = [0, 5}]

2. Update the edges (bridges), under the guidance of the question:
Yij = softmax(Wy (WaQy o W5 Bj})) (5.6)
3. Update the vision nodes (center nodes) as:

0ij = softmazx (W7, (Qr o Wsls;, Efj])) (5.8)

t
0= 6ij8; (5.9)
j=1
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Query Embedding

Figure 5.5. Knowledge Storage’s steps 2 and 3, where the edges between a vision node (blue) and
the text nodes (green) are updated and then the each vision node is updated through a Query-Guided
Cross Graph Convolution resulting in the updated visual nodes (purple). Source: [12]

4. Apply a gate operation between the updated nodes of the knowledge encoding module,
intra-dependence-aware local knowledge v; and the updated nodes of the Text-to-Vision
graph obtained in the previous step, inter-dependence-aware local knowledge o5:

gate] = o(W[[o;,05]) (5.10)

ob = Wr(gate? o [0, 7)) (5.11)

1
5. Obtain a global intra-modal knowledge information, by extracting a graph embedding

of the updated graph produced in the knowledge encoding module:

ny = softmax(W2(Q: o (Wgd;))) (5.12)

N

Io =" "nli; (5.13)

=1

6. Obtain the cross global intra-modal knowledge I.,, by extracting a graph embedding
of the updated Text-to-Vision graph, with the guidance of the current question:

Y = softmaz(Wy(Q: o (Wyih)) (5.14)
N

=" il (5.15)
=1

gate? = o(W7[I,, I.]) (5.16)

I = Wio(gatel o [I,,1,]) (5.17)

The above procedure will be the same for the enrichment of the text modality using the visual

information. Specifically, a Vision to Text GNN will be constructed, where each intra-modal
fj7
defined as Bj; = [$i,U;]. The above steps are then applied using the appropriate center and

center node §; is connected with all the inter-modal cross nodes V = N by N edges B

cross nodes, resulting in the global text knowledge information H;, t being the current round

number.

e Knowledge Retrieval module adaptively selects relative information from vision and text

79



Chapter 5. Proposed Model

Global Knowledge Storage

~

Figure 5.6. Knowledge Storage’s steps 4, 5, 6 and 7, where the "G" represents a gate operation.
Source: [12]

knowledge for the final answer:

gate, = o(W,[Qr, I, Hy]) (5.18)
K = Wi (gate, o [Qr, I, Hy]) (5.19)
Vision Knowledge
1
Knowledge Infa ti -
Query Embedding nowledge Information G];Ielzgzt::e
O, K
——1(G
Discriminative
Text Knowledge Decoder
t

é—/
Figure 5.7. Knowledge Retrieval module with multi-type decoders. “G” represents gate operation.
Source: [12]

The results of various models, as well as of the selected baseline, are shown in the below

table:
Results on test split
MRR 1 R@1 1 R@5 1 R@10 1 Mean | NDCG 1
LF[72] 55.42 40.95 72.45 82.83 5.95 45.31
HRE|[72] 54.16 39.93 70.47 81.50 6.41 45.46
MN]|72] 55.49 40.98 72.30 83.30 5.92 47.50
VGNN [22] 61.37 47.33 77.98 87.83 4.57 52.82
FGA [25] 63.70 49.58 80.98 88.55 4.51 52.10
DualVD [84] 63.23 49.25 80.23 89.70 4.11 56.32
CAG [23] 63.49 49.85 80.63 90.15 4.11 56.64
KBGN 64.13 50.47 80.70 90.16 4.08 57.60

Table 5.3. Results of baseline and various successful models on test-standard set of VisDial v1.0
on discriminative method.
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5.5 Proposed Method

Utilizing the fusion methods of the two modalities described in the above section, we attempt
to exploit external knowledge gathered from the popular knowledge graph Concept-Net [60]. For
this purpose a third graph, called External Knowledge Graph, was introduced in the model. Ex-
periments were conducted on both how to better exploit the External Knowledge Graph and on
the final fusion of the three modalities. In the below subsections the details of the implemented

model are presented.

5.5.1 Core Architecture

The core idea of our approach is the introduction of a third modality, the Ezternal Knowledge
modality and the fusion of it with the other two modalities, Vision and Text. The core procedure
can be decomposed into three main modules, similarly to the baseline. Specifically, after encod-
ing the information within each of the modalities, we enrich the Vision and the Text utilizing
information derived from all the others. The result of it is two types of enriched information for
the Vision and for the Text modality. Then, we combine the two enriched knowledges for each
modality resulting in a complete knowledge for each modality. Finally, we combine the current
Question with the Vision and the Text knowledge and feed the result to the decoder. An abstract
scheme of our model is shown below, in Fig. 5.8:

Dialogue History Hy
Current 5

Questi C: A black and white photo of a '
uestion man on a horse by stacks of crates '
Do you see any Q1: What color is horse? 1
buildings? AL: brown, but it's black and white photo 1
9 2: Is this outdoors? '
'
'
'
'

Grounded
Concepts
1 [ man, yes, stack, see,
i | building, brown, color,
outdoors, white,
photo, crate, fence,
black, horse

:yes
03: Do you see any horses?
:yes, 1
Q4: How about fences?

Intra Modality Encoding

E .

Modality Enrichment

| [ree rer |ree

> Information Selection

l

Decoder

Figure 5.8. Abstract visualisation of the proposed model

Inspired by the baseline’s architecture, we propose a model as shown in fig 5.9. Specifically,
the model now has three different graphs, the visual, the text and the external knowledge graph.
Each of these graphs represents a different modality and is encoded by the modules shown in the
abstract figure.

The Vision and Text graph are constructed as described in the baseline section. The Vision
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Graph is a fully connected graph:

Gy = (V,E) (5.20)
V = {v;]ie{0, N — 1}} (5.21)
E= {61‘j|i,j6{0,N — 1}} (522)

where v;eR™, €;;¢R™, m is the image features dimensions, n is the dimensions of the visual relations

extractor and N is the number of the detected in the image objects.

The Text Graph is also a fully connected graph as follows:

Gr = (S, R) (5.23)
S = {s;]ie{0, T — 1}} (5.24)
R = {ryli,je{0,T - 1}} (5.25)

where s;eRK, rijeRzk, k is the dimension of the LSTM hidden state and T is the number of
rounds.

The External Knowledge graph has significant differences with the Vision and Text graphs, that
lead to the need of a different encoding. Specifically, as a subset of the Concept-Net knowledge
graph, it is a highly sparse graph in contrast to the vision and text graphs, which are fully connected.
Moreover, each node in the External Knowledge represents a concept of the dialog and is initialized
with the corresponding numberbatch embeddings. Finally, as described later in the preprocessing
of the ConceptNet in section 7.2.2, there are multiple types of relationships present in the External
Knowledge graph and taking all of them into account or not is a crucial decision, as shown by the

experiments that followed.

Figure 5.9. The proposed model

Intra-modal encoding

For the vision and text graph encoding as in the baseline is applied independently for the two

modalities. Using the question as a guidance for the encoding, we are able to capture the text and
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the vision relations within each modality. As described above, the encoding of the Vision Graph

is as follows:

1. Relation update:

aij = softmax(We(W1Q: 0 Waei;)) (5.26)
€ij = Qijeij (5.27)
2. Node update:
Bi; = softmax(Wy,(Q o Waluj, é;5])) (5.28)
N
0 = Zﬂz‘juj (5.29)
j=1

For the resulted Vision Graph node representation: 9;eR™. The above equations are applied the
same way for the Text Graph, obtaining the updated Text Graph node representations: $;eRX.
For the intra-modal encoding of the External Knowledge graph we experimented with various
popular GNN layers. Specifically, several experiments were conducted, that demonstrated the
effect of taking into account the relation types as well as applying self attention to the nodes. All
these approaches are further discussed in Subsection 5.5.2.
The encoding of the External Knowledge Graph will result in the external knowledge informa-

tion that together with the vision and text knowledge will be fed into the next modules.

Modality enrichment

The modality enrichment module was derived from the Knowledge Storage module of the
baseline model. Specifically, we introduce an abstract of the specific module, using center and
cross nodes. The former belong to the modality that is being enriched, while the latter to the
modality that is used to enrich the former.

Assuming we want to enrich modality M1, represented by graph G : (Vi, E1) with modality
M2, represented by graph Gs : (Va, E5), the following procedure is followed:

1. Construct M2-to-M1 GNN, where each intra-modal center node v, is connected with all the
inter-modal cross nodes vseVs by edges Bilj,

and je0, |Va| — 1

provided as B;; = [v1,,v2,], where i€0,|Vi| — 1

2. Update the edges (bridges), under the guidance of the current question Q:
Yij = softmax(Ws(W1Q¢ 0 W2 Bij)) (5.30)

Bij = vijBij (5.31)

3. Update the center nodes as:

8ij = softmaz(Ws(Q o Ws[va,, Bij))) (5.32)
[Va|

B} = 0ijva, (5.33)
=1

As shown in Fig. 5.10, the nodes of G5 graph (brown nodes) are used to enrich the information
of G1’s nodes (blue).
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Cross Modality Update

o

Figure 5.10. Update of the center nodes Vi (brown) by summing all the cross nodes Va (blue).

4. Apply a gate operation between the input center nodes and the updated center nodes obtained

in the previous step, inter-dependence-aware local knowledge o}
gate; = o(Wrlvy,, 91,)) (5.34)
o} = Ws(gate; o [v1,, 01,]) (5.35)

5. Obtain a global intra-modal knowledge information, by extracting a graph embedding of the
updated graph produced in the knowledge encoding module:

n; = softmax(Wo(Q o (Wiot1,))) (5.36)
. Vil

Wi, = Z it (5.37)
i=1

6. Obtain the cross global intra-modal knowledge fc, , by extracting a graph embedding of the
updated M2-to-M1 graph, with the guidance of the current question:

Wi = softmax(Wi1(Q: o (ngvlli))) (5.38)
. [Vi]

Vi, =) iy, (5.39)
i=1

7. Finally, obtain the global knowledge, using by a gate operation:
gatezl = O’(ng[f/lo, Vlc]) (540)

Vi = Waa(gatel o [V1,. Vi) (5.41)

By the end of the above procedure we will have obtained the knowledge relevant to the M1 modality
enriched by the M2 modality, which is represented by V1.
Using the above procedure, we employ four Modality enrichment modules:

1. Modality _enrichment(Vision, Text), to enrich the vision modality with information from the
text modality. Results in ITeRk
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Enriched Information

G— — el Envichd ocl
} Final Enriched Modality

Initial Information Extract Graph G — R

Embeddings

1

Figure 5.11. Apply gate operations firstly one node level and then on graph level to acquire the
final enriched information.

2. Modality enrichment(Vision, External Knowledge), to enrich the vision modality with in-

formation from the External Knowledge modality. Results in TERX

3. Modality enrichment(Text, Vision), to enrich the text modality with information from the

vision modality. Results in 77 eRX

4. Modality enrichment(Text, External Knowledge), to enrich the text modality with informa-
tion from the External Knowledge modality. Results in TEeRk

The above result into four different sources of knowledge, that will be fed into the Knowledge

Retrieval module.

Knowledge Selection

The Knowledge Selection module is the original module from the baseline, modified in order
to adaptively select relative information from the four sources of knowledge; vision enriched by
text I7 | vision enriched by external knowledge I text enriched by vision 17, text enriched by
external knowledge TE. Specifically, we extract a global vision knowledge, enriched by the text
and the external knowledge modality and a global text knowledge, enriched by the vision and the
external knowledge modality. Finally, we select the relevant information, with a method similar to

the one in the baseline model:

gate; = o(W,[IT, I7]) (5.42)

K = Wis(gate, o [IT, 1)) (5.43)
gater = o(W,[T!, TF)) (5.44)
Kr = Wig(gate, o [T, TF]) (5.45)
gate, = o(W,[Qy, K1, Kr)) (5.46)
K = Wiz (gate, o [Qy, K1, K1) (5.47)

For the above results: K[eRk, K’TeRk, KeRE. The Knowledge Selection is shown in Fig. 5.12.

5.5.2 GNNs for external Graph

The below GNN variants will be used to encode the External Knowledge Graph:
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Image Knowledge
(Text enriched)

Global
Image Knowledge
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Image Knowledge
(Ext Knowledge
enriched)
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Text Knowledge
(Image enriched)

Global
Text Knowledge

¢ —
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Figure 5.12. Apply gate operations on the two types of knowledge for each modality and then one
final gate operation between the two modalities to extract the final embedding.

GCN [14]

As Graph Convolution Networks do not take into account multiple types of relations, this layer

considers only one type. The relationship related to was selected for this purpose.

man, yes, stack,
see, building,
brown, color,
outdoors, white,
photo, crate,
fence, black,
horse

Grounded
Concepts

Figure 5.13. GCN for encoding the External Knowledge Graph.
In order to guide the GCN using the current question, two different methods where used:

e Concatenating the question:

W =o(Wi > M) (5.48)

e Modifying the neighbouring nodes before the aggregation, by computing coefficients respon-

sible for emphasizing only to relevant with the question information:

h’;;l = softmaz(Wa(Q; o WihE=1)) x BF-1 (5.49)
A hE-1
hy = vd )
L= (W }( j) i) (5.50)
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R-GCN[27]

The typical layer for encoding knowledge graphs is R-GCN, as this type of GNN respects the
types of the relations:
1
R =030 NT —wOnY + wPr") (5.51)

C;
reR jeN] wT

man, yes, stack,
see, building,
brown, color,
outdoors, white,
photo, crate,
fence, black,
horse

Grounded
Concepts

Figure 5.14. R-GCN for encoding the Ezxternal Knowledge Graph.

To address the issue very varying frequency for the different relations, explained in Section
7.2.2, we employ basis-decomposition as proposed by [27], defining each weight W,. as:

B
W =% alv," (5.52)
b=1

This suggests that the weights are computed as a linear combination of basis transformations
Vb(l)eRd(Hl)””d(l)7 with coefficients ayb) such that only the coefficients depend on the relation r. Basis
decomposition is in practice a weight sharing between different relation types, which significantly
reduces the parameters needed to learned multi-relational data, such as a knowledge graph. This
weight sharing also helps tackling overfitting on rare relations, since parameters updates are shared

between all relations.

GAT[4]

Graph Attention Network applies self-attention between all the nodes. Like GCN, it is able
to consider only one kind of relation. As also shown in a previous section, the updated node

embeddings are computed as:

exp(LeakyReLU (a™ [Wh; || Wh;]))

= ZkﬁNi €$p(L€akyReLU(aT[Whi || th])) (553)

CLij

hy=o(Y ai;Why) (5.54)

jeN;
a;; is the attention coefficient of node j to node i, while h; is the output features of each node.
As proposed in the paper, we employ multi-head attention. Specifically, K (K=8) indepen-

dent attention mechanisms execute the above equation and then their features are concatenated,

resulting in the following output feature representation:

K
1
hi=o(4 S O> afwkhy) (5.55)
k=1jeN;

Finally, in order to use the current question @; to guide the procedure, we concatenating the
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question embedding with the embeddings of the nodes. As a result the above equations became:

exp(LeakyReLU (a” [Wh; || Q¢] || WTh; || Q¢]]))

i = S cup(LeakyReLU (T (Wi, || Qo) | Wik | Q) (5:56)
Wy =o(>_ ayWih; || Qi) (5.57)
jeN;
1 K
W= o 30 S al W, | Q) (5.58)
k=1jeN;

Custom message passing method

We also experimented with a method to update the node embeddings of the External Knowledge
Graph inspired from the Message Passing Framework [28]. Specifically, considering again only one
type of relations, the related to type, we represent the edges of the graph as the concatenation of
the neighbouring nodes:

67;]‘ = [UZ',’U]'} (559)
where “[-, -]” denotes concatenation.

We then update the edges using the current question @Q; to construct the coefficients a:

a;; = softmax(We(W1Qy 0 Wae;;)) (5.60)
éij = Q;5€45 (561)

Finally, we apply a weighted sum on each node’s neighbourhood similar to a GCN layer with

coefficients defined as:

Bij = softmax(Wy,(Q 0o Waluj, é;5])) (5.62)
N

b=y Bijuy (5.63)
=1

5.6 Experiments

Implementation details for the experiments described in the following subsections, as well as
details on the preprocessing of the ConceptNet [60] Knowledge Graph, used as the source of the
External Knowledge, are presented in the Appendix 7.

5.6.1 Discriminative Decoder

Discriminative decoder ranks all the answers in the answer candidates A.The decoder computes
dot product similarity between the input encoding and an LSTM encoding of each of the answer
options. These dot products are fed into a softmax to compute the posterior probability over the
options. During training, we maximize the log- likelihood of the correct option. During evaluation,
options are simply ranked based on their posterior probabilities.

Results on VisDial v1.0 dataset:

In the above tables we denote by KBGN-Ezt-GCN-CON-Q and KBGN-Ext-GCN-S-Q the

models described in 5.5.2. The former concatenates the question with the node embeddings, while
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5.6.2 Generative Decoder

Results on test split
MRR 1 R@1 1 RQ@5 1 R@10 1 Mean | NDCG 7t
KBGN 64.13 50.47 80.70 90.16 4.08 57.60
KBGN-Impl 62.82 48.95 80.33 89.23 4.28 56.62
KBGN-Numb 62.59 48.42 80.23 89.16 4.28 56.19
KBGN-Ext-GCN-CON-Q 63.25 49.43 80.05 89.63 4.21 55.79
KBGN-Ext-GCN-S-Q 62.78 48.95 79.48 89.0 4.32 55.57
KBGN-Ext-GAT 55.69 42.7 70.18 79.73 7.87 51.87
KBGN-Ext-GAT-Q 56.21 43.04 70.85 80.02 7.79 51.98
KBGN-Ext-RGCN 62.873 49.2 79.35 89.15 4.33 55.78
KBGN-Ext-MessagePassing 62.71 48.93 80.32 89.21 4.11 56.58
Table 5.4. Result comparison on test-standard set of VisDial v1.0 on discriminative method.
Results on validation split
MRR T RQ@1 1 RQ5 1 R@10 1 Mean | NDCG 1t

KBGN 64.86 51.37 81.71 90.54 4.00 59.08
KBGN-Impl* 63.84 50.04 80.87 90.02 4.104 57.056
KBGN-Numb 63.61 49.69 80.68 89.93 4.11 56.64
KBGN-Ext-GCN-CON-Q 64.04 50.38 81.16 89.92 4.15 56.58
KBGN-Ext-GCN-S-Q 63.60 49.73 80.66 89.97 41.15 55.74
KBGN-Ext-GAT 69.41 56.07 86.3 93.84 3.16 53.42
KBGN-Ext-GAT-Q 70.68 57.31 87.23 94.29 3.10 54.57
KBGN-Ext-RGCN 63.7 49.93 80.59 89.95 4.12 55.63
KBGN-Ext-MessagePassing 63.91 50.09 80.90 89.95 4.1 56.52

Table 5.5. Result comparison on validation set of VisDial v1.0 on discriminative method.

the latter uses the question to generate coefficients for the nodes of the graph. The models KBGN-
Ezt-GAT and KBGN-Ext-GAT-Q correspond to the models described in 5.5.2 without and with
the question respectively. By KBGN-FExt-RGCN we denote the model described in 5.5.2 and by
KBGN-Ezxt-MessagePassing the one in 5.5.2. Finally, KBGN-Numb refers to a model exactly as
the baseline, but using the Numberbatch embeddings instead of the concatenation of GloVe and
ELMo embeddings.

5.6.2 Generative Decoder

Generative decoder outputs probability distribution over the vocabulary at each decoding step.
The encoded vector is set as the initial state of the Long Short-Term Memory (LSTM) RNN
language model. During training, we maximize the log-likelihood of the ground truth answer
sequence given its corresponding encoded representation (trained end-to-end). To evaluate, we
use the model’s log-likelihood scores and rank candidate answers. Since this decoder does not
score options during training, models utilizing it do not take advantage of the biases in option
creation and tend to underperform models that do. On the other hand, generative decoders are
more practical in that they can actually be deployed in realistic applications, since in those cases

there will not be a list of candidate answers.

5.6.3 Results Discussion

As a first general comment on the results, we can see that models that perform well with the one
decoder, perform also well using the other one. The poorer results using the generative decoder,

compared with the discriminative one, are expected since the former does not score options during
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Results on validation split
MRR 1 R@1 1 R@5 1 R@10 1 Mean | NDCG 1
KBGN 50.05 40.40 60.11 66.82 17.54 60.42
KBGN-Impl 48.09 39.04 56.97 62.58 20.82 56.94
KBGN-Numb 47.88 38.74 56.62 62.03 20.95 56.42
KBGN-Ext-GCN-CON-Q 48.23 39.05 57.39 63.35 20.72 57.31
KBGN-Ext-GCN-S-Q 48.01 38.98 56.91 62.53 20.96 56.84
KBGN-Ext-GAT 51.01 41.73 60.75 66.58 19.18 55.46
KBGN-Ext-GAT-Q 51.36 42.03 61.38 66.97 19.06 55.58
KBGN-Ext-RGCN 48.15 39.03 57.01 62.89 20.78 56.27
KBGN-Ext-MessagePassing 48.12 38.93 56.95 63.19 21.78 57.25

Table 5.6. Result comparison on val-standard set of VisDial v1.0 on generative method.

training and as a result does not exploit the biases in option creation and typically underperform
models that do, such as the latter. Although both decoders where proposed by the creators of the
task of Visual Dialog [11], the majority of research works only evaluates on the discriminative one.

Based on the above tables 5.4 and 5.5 we can see that our results are comparable to the imple-
mented baseline, but only a few manage to surpass it. Specifically, the model KBGN-Ext-GCN-
CON-Q, while the simplest one, seems to achieve the best results and surpasses the implemented
baseline by 0.43% on the test set. KBGN-Ext-RGCN also performs slightly better than the imple-
mented baseline. One possible reason this model does not achieve better results is the very different
frequencies of the types of relations. As shown in tables 7.3, 7.4 and 7.5 the relation related to
is by far dominant in the External Knowledge Graph. During our experiments we excluded the
more rare relations and used the relations of the second column in Table 7.2, but the imbalance is
still very obvious. The KBGN-Ext-MessagePassing model, although it follows an approach similar
to the encoding of the other two graphs of the Image and Text modality, does not achieve good

results. This is possibly due to the fact that these graphs have very different structure.
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Conclusions

6.1 Discussion

In this work we investigate different methods, in order to deal with the task of Visual Dialog.
Visual Dialog, along with other similar tasks that combine Natural Language Processing and
Computer Vision, has benefited greatly from progress in these fields. More and more sophisticated
methods contribute towards improved performances. While AT has still a lot of progress to make
to create models comparable to humans in these kind of tasks, state-of-the-art results are being
constantly surpassed by a lot researchers setting the bar even higher. Our approach utilizes Graph
Neural Networks. This type of networks has been proved until now very promising in a vast variety
of fields. Hence, it is gaining a lot of attention by the research community, as it is considered to have
a lot to offer in the future. We, also, employed an External Knowledge Graph, the ConceptNet[60].
Towards introducing more information to the model and boost its performance, we treated the
external information as a third modality in our model. We utilize three different graphs one for
each modality and employ three stages of encoding and fusing them, while we mainly experimented
with encoding of the External Knowledge Graph.

We evaluate our models using two different decoders, the discriminative and the generative
decoder. By comparing the two decoders we conclude that models that perform well using the
the one decoder, perform also well employing the other one. As explained in subsection 5.6.2, the
generative decoder does not match the performance of the discriminative. This result is expected,
since the former does not score options during training and as a result does not exploit the biases
in option creation. Meanwhile, the consistent results of our models, using both decoders, highlights
the impact of the different encoders.

Based on the results of our experiments we are able to draw some conclusions about the impact
of the External Knowledge, as well as the methods of encoding it. Specifically, we manage to
surpass the implemented by us baseline’s results using the methods KBGN-FExt-GCN-CON-@Q and
KBGN-Ezt-RGCN, as shown in tables 5.4, 5.5 and 5.6. The former approach took into account only
the relation related to, while the latter multiple types of relations. This second method surpassed
the results only with a slight difference, but we believe that a better tuning of the various hyper-
parameters of this model could also lead to even better results. The methods applying self-attention
on the External Graph’s nodes, namely KBGN-Ext-GAT and KBGN-Ext-GAT-(Q), achieve better
results on the validation set, but very poor performance on the test split. This behaviour may
indicate false tuning of some hyperparameters. The custom method KBGN-FExt-MessagePassing,
which is a more generic model with many more parameters could not achieve great results, while it
led to increased number of parameters. Finally, KBGN-Numb, which is just the baseline using only
Numberbatch embeddings achieved the worst results of all the experiments. The poor performance
of the last experiment demonstrates that these embeddings alone, which are constructed from the

ConceptNet, were inadequate to lead to better results and an External Knowledge Graph was
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necessary in order to introduce and exploit external information.

All in all, we conclude that the introduction of the External Knowledge was beneficial for the
overall performance of the model. The best methods to encode the External Knowledge Graph
were KBGN-Ezxt-GCN-CON-@Q and KBGN-FExt-RGCN. These conclusions were highly expected.
The former method is the one used for encoding the a graphs of external knowledge in tasks similar
to ours, such as in [29]. The latter is a GNN layer designed for handling mutli-relational Graphs,
such as Knowledge Graphs and as a result was expected to boost the model’s preformance. As
final note on the External Knowledge Graph, we have to emphasize the importance of a necessary
preprocessing to the ConceptNet knowledge graph. The design choices of the algorithm as well as
the desired functionality were crucial for creating a time efficient preprocessing and for fetching

relevant to the dialog information respectively.

6.2 Future Work

By the end of this thesis, we desire to suggest some new paths towards more complex and
interesting methods of modeling the data using graphs and fusing the modalities of our task.
Comparing the various approaches against the Visual Dialog task, that employed Graph Neural
Networks, we can see that these types of models enable us to handle the problem in many different
ways. Starting with how we model the components of the task, almost each approach follows a
different path. One could model the whole dataset into one big graph or into two, one for each
modality. The nodes of the graph may represent tokens from the dialogue’s sentences or even whole
rounds of the dialog. Moreover, given a method of modeling the dataset, there exist a few different
ways of fusing the two modalities. From a simple concatenation of the final representations, the
graph embeddings of the two modalities (late fusion), which has been widely used as a fusion
method, to more complex fusion techniques combining the graphs representing the modalities.

We encourage the following points be explored in future work:

e Use embeddings to represent edges of the Knowledge Graph: Instead of grouping
all the r-neighbours for each different relation type r, as in R-GCN, one could experiment
representing each relation type utilizing TransE [90] embeddings. By doing so, the model
could have a better understanding of what are the relations connecting a node with different

sets of other nodes.

e Use LSTM for encoding the Knowledge Graph: A very simple and straightforward
way of encoding a Knowledge Graph is by using a Recurrent Neural Network, such as an
LSTM, to encode the sequence: "subject relation object”, generated from the triplet <subject,
relation, object> of the Knowledge Graph.

e Design more sparse graphs: As described in Section 5.5.1, the graphs that represent the
Image and Text modality are fully connected. Utilizing the question to only connect relevant
tokens from the dialog and image objects in the two graphs would increase the sparsity of
those, result to a more meaningful representation of the modalities and decrease number of
parameters. In the current work we used coefficients for each node, generated using a softmax
function. In this way we filtered the irrelevant nodes, instead of not taking them at all into

account (assigning them a coefficient equal to zero).

e Multi-Step Reasoning This method of computing attention weights more than once to
focus even better on relevant information, was used for the task of Visual Dialog by [91]
and achieved state-of-the-art results. Using a similar method together with Graph Neural

Networks could be an insightful future work.
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6.2 Future Work

e Temporal Graph Neural Networks ([56], [57]) These types of GNNs are able to handle
graphs that change over time. Although they are currently being used mostly in traffic
systems and social networks, they could be adapted to the Visual Dialog task, since the
dialog is also a concept that alters over time. One approach could model the whole dialog
using a big dynamic graph, that changes as the rounds of the dialog continue.
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Embeddings from Language Models

Graph Attention Network

Graph Convolutional Network

Graph Network

Graph Neural Network

Gated Recurrent Unit

Long short-term memory

Machine Learning

Neural Machine Translation

Multilayer Perceptron

The Multi-Genre Natural Language Inference
The Microsoft Research Paraphrase Corpus
Neural Architecture Search

Natural Language Inference

Natural Language Generation

Natural Language Processing

Natural Language Understanding

Neural Network Language Model

Question Answering

Question-answering Natural Language Inference
Relational Graph Convolutional Network
Recurrent Neural Network

Recognizing Textual Entailment

Visual Dialog

Winograd Natural Language Inference

Explainable Artificial Intelligence
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Appendix

7.1 Implementation Details

To extract the features for the Visual Knowledge Graph, we utilize Faster-RCNN [9] with the
ResNet-101 to pick up top 36 object regions (i.e. N = 36) and produce the 2048-dimension region
features. The maximum sentence length of the dialogue history and the current question are set
to 20. The hidden state size of LSTM blocks is all set to 512. This is the dimension of each node
in the Text Knowledge Graph. The dimension of each edge in the graph is all set to 512. For
the External Knowledge Graph, we use the Numberbatch embeddings, with dimension equal to
300. The maximum number of original nodes int the External Knowledge Graph is set to 45, while
each original node can have up to 45 neighbours. We use Adam [92] optimizer to train our model,
utilizing cross entropy loss. As in the baseline, we first conduct warm-up strategy, which trains the
model with initial learning rate le-3 and warm-up factor 0.2 for 2 epochs and then utilizes cosine
annealing learning strategy with initial learning rate le-3 and final learning rate 3.4e-4 for the rest
of epochs. The mini-batch size is 4, the drop ratio of the External Knowledge Encoding is set to
0.1, while for the rest of the model to 0.5.

7.2 Preprocessing

7.2.1 Dataset preprocessing

As stated in the baseline description, the initialization both of the vision and the text nodes
is done with pre-extracted embeddings. Specifically, for the vision nodes, Faster-RCNN [9] was
utilized with the ResNet-101 to pick up top 36 object regions (i.e. N = 36) and produce the 2048-
dimension region features. In addition, for the edges of the vision graph the visual relationships
were extracted by a visual relationship encoder [89]. For the text graph, each round of each dialog
was properly preprocessed, as in every Natural Language Processing problem. After selecting only
the words that occurred at least 5 times in the whole dataset, the maximum length of the dialogue

history and the one of the current question was set to 20, in order to ensure fixed sized inputs.

7.2.2 Preprocess of ConceptNet

Fetching the relevant external information is crucial, in order to achieve better results. To
avoid querying the whole Concept-Net graph during training, a preprocessing of the Concept-
Net is necessary, resulting in a subgraph of the knowledge graph, for each round of each dialog.
Specifically, we take into account all of the concepts present in the caption, the dialog history and

the current question of each round. The concepts that correspond to the objects that are visible
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in the image could be also taken into account, but experiments showed that every object detected
by the Faster-RCNN was already present as a concept, as it was mentioned in the caption.

The subgraph for each round of each dialog is populated by the original nodes that correspond
to concepts already present in the dialog history or in the current question, as well as by nodes that
correspond to concepts related to the original ones. Formally, we define the External Knowledge
Graph as the directed graph:

G=(Veuvecvenet E) (7.1)

where VPt is the set of nodes of the whole ConceptNet Knowledge Graph, V° is the set of the
original nodes and V¢ the set of the extra nodes. The set of the edges can then be defined as:

E = {eij = (’Ui,’l)j)|(’l)i, ”Uj)GV2 AN T'(’Ui,’l)j)GR} (72)

where R is the set of relation types that we take into account and r a function that assigns each
edge to its type. The set of all the relation types that were taken into account for the current work
are presented in Table 7.2.

One approach to select the extra nodes that will be added to V¢ is to choose the ones that are
present in a path of maximum length K > 1 between two original nodes, regardless the relation
type they are involved to. A simple visualization of such paths is shown in Fig. 7.1. We depict
the original nodes as the blue ones. Paths with length greater than K will not be accepted, hence
the red nodes will not be added to V*.

Figure 7.1. Blue nodes represent the original nodes, green the nodes that are selected for the V¢
set, while in the red ones the nodes that are not.

Due to computational reasons, we limited in taking into account only paths of length equal to
two, K = 2. This implies that V¢ will be populated with nodes that are the common neighbours
of the original nodes, regardless the relation type. A simple visualization is once again shown in
Fig. 7.2.

The algorithm implemented for the preprocessing of ConceptNet is shown below:

For each round r of the dialog:

1. Initialize the sets V" and V" as empty sets.
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Figure 7.2. Only the green node will be added to V¢ and the red ones will be discarded.

2. Pair dialog entities (tokens) with concepts of the ConceptNet. The dialog entities are gathered
from the current question, as well as the dialog history. Add these concepts to the set of the

original nodes V.

3. If in the current round the number of concepts exceeds a fixed limit keep only last max_nodes

nodes, which means the concepts that were more recently referenced in the dialog.

4. For each pair of concepts the find paths, whose length is shorter or equel to 2 and add the

in between extra nodes that were visited to the set V.

5. For each node in V] and V', initialize 17 * 2 + 1 empty lists of neighbours, each list corre-

sponding to a different relation type and add the node to the last relation type (self relation)

6. Using TransE [90], score all the edges and select those with score above a fixed threshold. The
score is computed as the cosine similarity between the TransE embeddings of the examined

nodes.
7. For every node:

(a) Sort all of its neighbours, based on the TransE score.

(b) Keep only the first maz_edges edges and the involved nodes.
8. For every selected node v:

(a) For every node’s neighbour ueN,:
i. If node is original, veV, ', and edge limit for the specific relation type is not exceeded,
add neighbour u to node’s list of neighbours.

ii. Else if the neighbour node is an original node, ueV,, and edge limit for the inverse
relation type is not exceeded, add node to neigbour’s list of neighbours (inverse

relation).

9. While creating the above adj list for each round, a list of the mentioned concepts is being

kept. By iterating all the dialogs’ last round we get a set of all the mentioned concepts
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in VisDial dataset. This set is used to extract a concepts vocabulary to be used for the

numberbatch embeddings.

By the end of the above procedure there will be a graph for every round of all the dialogs.
The graph will have a total of 17 * 2 + 1 types of relations (listed below). Each node will be
represented by the Numberbatch embedding, which will be used for the initialization of the node
embedding in the GNN. Numberbatch embeddings are built using an ensemble that combines data
from ConceptNet, word2vec, GloVe, and OpenSubtitles 2016.

As mentioned above, we take into account 17 relation types, the corresponding inversed ones

and a self relation. These relation types are listed below, in table 7.2:
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H All relations H Common relations H
antonym antonym
atlocation atlocation
capableof capableof

causes causes
createdby isa
isa desires
desires hassubevent
hassubevent partof
partof hasproperty
hascontext relatedto
hasproperty usedfor
madeof inv_antonym
notcapableof inv_ atlocation
notdesires inv_ capableof
receivesaction inv_ causes
relatedto inv_isa
usedfor inv_ desires
inv_antonym inv_hassubevent
inv_ atlocation inv_ partof
inv__capableof inv_hasproperty
inv_ causes inv_relatedto
inv_ createdby inv_ usedfor
inv_isa self relation
inv_ desires
inv_hassubevent
inv_ partof
inv_hascontext
inv_hasproperty
inv_ madeof
inv_ notcapableof
inv_notdesires
inv_receivesaction
inv_relatedto
inv_usedfor
selfrelation

Table 7.2. The relation types used for creating the subgraphs of ConceptNet.

Preprocessing results analysis

For each split of the dataset, a barplot showing the number of relations present in each dialog
is shown in diagrams 7.3, 7.4 and 7.5.

We can see that the relation related to is the most common one. This is expected, as every node
in the Concept-Net knowledge graph is very likely to be connected with many more nodes through
the related to relation, than any other relation mentioned above. This imbalance in the frequency
of each relation type may lead to less impressive results, if we treat each type independently and in
the same way. As [27] suggested the use of common weights for all different relation types, through
basis decomposition of the weights and this is the method that we used, as described in Section
5.5.2
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Figure 7.3. Frequency of relations in train split.
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Figure 7.4. Frequency of relations in val split.
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Figure 7.5. Frequency of relations in test split.
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