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MEPINHWH

H mapovoa SMAwUATIKA TpaypateleTal Ty BeAtiotonoinon tng epodlactikng alucidog
TIPOCWTIOTIOLNUEVWY Bepamelwv Kotd Tou Kapkivou pe xprion CAR-T kuttdpwv. Ot
TIPOCWTIOTIOINUEVEG KUTTOPLKEG Oeparmeieg dailvovtal MOANA UTMOOXOUEVEG yld TNV
KOTamoAEunon oAl coPapwv acBevelwy, OTWG 0 KAPKivog. Mo ouykekpLpéva ol Bepameieg
pe CAR-T kUttapa €xouv Seifel TOAU evBappuUVTIKA amoteAéopata 660 adopd TOUG KAPKIVoUg
TOU aipatog Kol HAAloTto UTtapyxouv NN eykekpluéveg amo tov FDA  Bepamneieg mou
XPNOLLOTIOOUVTAL OE TIEPLOPLOEVO aplOUo acBevwy. Méoa ota endueva Xpovia, n {ntnon
yla TETolou eidoug Bepameieg avapéveral nwg Ba auénBel ekOeTIKA KoL Ol ETALPELEC
TIAPAYWYNG TOUG , EKTOG OO TIG TPOKANOELG TTapaywyng tne Beparmneiog avtn¢ kad’ autng Ba
£XOUV VO OQVTYETWNIoOUV Kol TIPOBAAMATO OXETIKA HE TNV aUENOn TNG TIAPAYWYLKNG
Spaotnplotntag. OAa ta mapandavw umoypauuilouv TV avaykn yla th XpHon TPonyuEVWY
UTtoAOYLOTIKWV epyaleiwy ou Ba BonBrAoouv TIg OXeTIKEG eTatpeieg otn ANPn anoddcewy
KOlL 0TOV KAAUTEPO oXeSLAOUO TNS Tapaywyng aAAd Kat Tng SLavoung Twy mpoidviwy toug. Ot
punxavikoi mapadoolokd £xouv cupBAarAeL tn dappakoflopnyavia os BEpata mouv adopolv
TO CUCTHMOTA SLEPYAOLWVY KoL TO oXeSL0oUO Toug Kal Ba avtamokplBolv Kal otnv mapoloo
TMPOKANON TWV VEWV BLodopUAKEUTIKWY TPoiovTwy. Ou KuTtaplkég Bepameieg pe CAR T
KUTTapa eivol akopa oAU akplBEG yio va mopoxBouv pallkd yla TPELG Kuplwg Adyoug: (1)
elvat autoloyec Bepaneieg kat n mpwtn VAN sival dtadopetikn yla kabe Bepaneia, (2) £xouv
uPnAd kbotn dlavoung, KaBweg amattolv 0K LETAXELPLON KATA T peTadopd TOUG Kal Ta
SlaBéoua  epyaotipla mopaywyng Oev elval mAvta KOvid ota vVoookopeia (3) n
XWPNTIKOTNTO TWV UTIAPXOVIWY HOVASWY Tapaywyng lval oAU TEPLOPLOUEVN. ZUVETTWG, n
Snuoupyia kat xprion evog MILP povtélou kavol va mpoteivel éva PéAtioto Siktuo
edodlaotikig alucidag Ba emtpéPel TNV KALWAKWON TNG apaywyng Kot tn pelwon tou
KOOTOUG Twv Beparmelwy. Eva akOpa MPOPANUO OXETIKA WE TIC Beparmeleg aUTEG Kal ToV
oxeblaopod tne epodlactikig toug aluaidag eival otL n Intnon dev gival poBAEPLUN, KOOWC
n ayopd eivat oAU KavoUpLo KoL TWPA AVATTTUOOETOL. JUVETIWG, T IPOTELVOpEvVa Siktua Ba
TIPETEL VA €lval EUPWOTO KOL VO UITOPOUV VoL SLOXELPLOTOUV SLOKUPAVOELC atn {ATtnon. 2tn
CUVEXELX TIOPOUOLATOVTAL E TN OELPA OL gpeuvnTKoL oToxol, oxedidlovtal to KatdAAnAa
MILP povtéla yla tov Kabéva kal rapouatalovtol to avtiotoa omoteAéopata. Ot TPELG
KUploL afoveg otoug omoiouc egotlalel n Tapovoa epyacia eivol: TOAU-TIAPAYOVTLKH
BeAtiotomoinon yia kaBoplopod tou BEATIoTOU SIKTUOU, LEYLOTOTIOINON TOU aplOpol acBevwv
TIOU Mmopel va efumnpetnosl To KABe SIKTUO av ETUTPEMETAL N PBEATLOTN KATOVOUN TWV

aoBevwy ota kévtpa Aeukadalpeong Kal eLoaywyr] TG SUVATOTNTAG AVOLOVAC O TTEPIMTWON
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KOPEOHOU Tou SLKTUOU, YEYOVOG TIOU KAVEL TO LOVIEAO TILO PEOALOTIKO GE CUYKPLON UE TO
mponyoUueva oOmou Ntav Beatd, xwpi¢ kabBolou kabuoteproslc. Ta TAPATIAVW
TipaypaTonolouvtal yla tpia Stadopetikd UPn {ATtnong Kat peyéboug SIKTUwV Kat adopolv

T CAR T KuTTtOpLKEG Bepameiec kal tn Slavopr Toug otnv AyyAia.
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ABSTRACT

Personalized Cell Therapies form a novel class of biologic therapeutics which pave the way to
treatment of life-threatening diseases, such as cancer. CAR-T cells are currently at the
forefront of cell therapies targeting blood cancers and there already are FDA approved
therapies being used in a small number of patients; the demand for CAR-T cell therapies is
continuously increasing and manufacturers must tackle difficulties concerning the engineering
of product and the production process, while scaling up their production. This highlights the
need for sophisticated decision-making tools, which enable effective manufacturing and
distribution planning throughout product lifetimes. Process systems engineering (PSE) has
traditionally assisted the pharmaceutical industry in the development of such tools. CAR-T
cell therapies at present are very expensive due to the following reasons: (1) they are
autologous therapies and raw materials are different for each therapy, (2) they have increased
logistic costs due to the need of special handling during transportation and because
manufacturing sites are not always close to hospitals (3) capacity of existing manufacturing
facilities is limited. As a result, the optimization of their supply chain using a MILP model can
indicate optimal network structures that can be established and will enable up-scaling of their
production while reducing manufacturing and logistics costs. Computational challenges also
emerge due to the demand uncertainty that characterizes this new industry that is still
developing. Subsequently, the development of robust supply chain networks able to absorb
shocks in the demand is imperative. A series of research objectives is proposed, followed by
the design of different MILP models for each of them and the presentation of relevant results.
The three focus areas of this thesis are: multi-objective optimization for an optimal network
determination, demand maximization and supply chain robustness when network is fixed and
optimal allocation of patients in the leukapheresis site is allowed and introduction of waiting
time to an otherwise ideal supply chain without delays. The design focuses on the UK CAR-T
cell therapies supply chain and evaluates three different demand levels and network sizes.
This thesis is conducted in the Industrial Process Systems Engineering Unit (IPSEN) of NTUA
directed by Professor Kokossis and in collaboration with Professor Papathanasiou from Centre
for Process Systems Engineering (CPSE) of Imperial College London. The project is conducted
under the umbrella of the UK Engineering & Physical Sciences Research Council (EPSRC) for

the Future Targeted Healthcare Manufacturing Hub.
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2YNOWH

Q¢ edpodlaotikn alucida opiletal Eva SIKTUO EYKATOOTACEWV TIOU €KTEAEL TIG AELTOUPYIEG
TMPOUNROELAC UALKWY, LETATPOTING OUTWY TWV UALKWV 0€ eVSLAECO KOl TEALKA TpoidvTa Kal
SLVOUAG QUTWY TV TIPOoidVTWY otoug meAdrteg’. H opydvwon tng epodlactikic ahuoidag
glval pa amod Tig Paotkég Aettoupyieg piag emiyeipnong, eneldn dtachaiilel otL ta mpolovia
Ba Pptacouv otouc TeEAIKkOUC TeAATEG Kal cuvenwg Ba emtteuxBel kepdodopla. Mia TuTKN
oAvoiba  edpoblaocpol  meplhapPavel  TPOUNOEUTEG,  EYKATAOTACELC  TOPAYWYNC,
EYKOTOOTACELG amoBbrkeuong Kal meAAtes. Qotdo0, N SLaXELPLON TETOLWV CUCTNHATWY Eival
OPKETA TePIMAOKN AOYW TNC TIOAAQTMAOTNTAG TWV POWV UAIKWV Kal TIANPodopLwyv, Twv
SLadopPOTIOINUEVWY  XAPAKTNPLOTIKWY TWV  OVIOTATWYV KoL TWV OCUXVA  TIAPOVIWY

QVTLKPOUOHEVWY OTOXWV.!

OL kUploL otoxoL TOU OXeSLAOUOU MlaG ammoTEAECUATIKAG aAucidag edoblaouou
nephappavouv: (i) eAayiotonoilnon tou KOOTOUC, TwV KaBuoteproswv mapadoong Kol Twv
amnoBepdrwy, (ii) peylotomoinon tou képdoug, tng anddoaong enévdéuang (ROI), Tou emumédou
€EUTNPETNONG MEAATWYV KL TN Tapaywyne. Na va enteuxBouv autol oL oTtoxoL, TPEMEL Va

AndBolv anoddoelg tonobeoiog, mapaywync, anoypadrc Kot petadopdg. 2

Ta mpoPAnuata mou agpopolv TNV £podlactiky alucida Umopolv va XwpPLoTOUV OE TPELG
katnyopleg: (i) Zxedlaopog umodoung epodlaotikng aluoidag (diktuo). (ii) avaluon tng
edodlaotikic aAucidag kat Slapopdpwon TOALTIKAC. (iii) TpoypaaTIoNSC TG EHOSLAOTLKNAG

aluoibag, wote va avtanokpivetatl KaAUTtepa oe eEwyeveic mapdyovteg enidpaonc. ¢

H Swaxelpion tng edodlactikng aAucibag eival TMOAU omaltnTk KoL N avaykn yla

umtoAoyloTika epyaleia tkavd va Bonbrioouv otn Andn anoddoswv Gpaivetal EMITAKTIKA.

OL QmaLTAOELS TNC 0YOPAC KOL TNE Kowwviag ouveyilouv va aufdvovtal Kal w¢ €K ToUTOU oL
oUYXPOVEG aAUGLOEC £DOSLAOUOU TIPETEL VAL AVTLLETWITIOOUV VEEC TIPOKANOELG (ULKPOTEPOUG
KUKAoUC Lwn¢ MPOoToVTIWY, Lallkr TTPOCAPUOYH, EE0TOULKEUEVA TTPOTOVTA KAL QVAYKN YL TILO

Buwolpeg Stadikaoiec kat poidvta).

Juvenwg armouteitat n  avantuén umoloyloTikwy epyodeiwv Tou efacdoAilouv TNV

amattoupevn sveliéia tng epodlaotikng ahuoidag.
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Ta €(6n povtelomoinong petafd alwyv nepthapfavouv:

(1)Eupetikoug alyopiBuoug (Heuristic-based approaches), (2) ypap ko mpoypoppotioptod (LP,
ovTLUETWIi{ovTal TPOPAAUATA HE YPOUMLKY OVTLKELUEVIKI) OUVAPTNON KOL YPOAUULKA
SLOTUMIWUEVOUG  TIEPLOPLOMOUC.  3TOV  YPOMMULKO  TIPOYPAUUATIONO  8ev  UTAp)eL
XOPAKTNPLOTIKOG AVAAUTLKOG TUTIOG OAAQL UTTAPXEL Mo TToWKIA Lo peBodwv onweg n uéBodog
Simplex kot ol péBodol ecwtepikol onpeiou), (3) MpoypAUUATIONO UIKTWV akepaiwv (MILP,
MEAETA YPOUULIKA TIpOypAUUATO oTa omola oplopéveg petaPAntég meplopilovral va
AapBavouv pHOvo aképaleg TIUEC. 2 TTIOANEG TiepuTTwOoelG MILP oL aképaleg petaBAnTEG ival
Suadikég (0-1 petaBAntec). Na kabe ocuvbuaoud Suadlkwy, TPOKUTITEL Eva SLaOPETIKO
npoPAnua BeAtiotomoinong. OL o cuvnBlopévol alyoplBuol yla tTnv avtlpetwrion MILP
npoPAnuatwy sivat: n pEBodog StakAadwong kot d€opevang, n LEBoSo¢ tou emmeéSou KOTAG,
Sladopol péBodol amoolvBeong kot pEBodol Baolopéveg otn Aoyikn), (4) uUn YPAUULKO
TIPOYPOAUUOTIONO (LEAETATAL N YEVLKN TIEPIMTTWON KOTA TNV OTIOLAL N AVTIKELUEVIKI) CUVAPTNON
1 ol meploplopol N kal ta Vo amoteAoVVTAL Ao YN YPAUUIKA oTolXela), (5) TETPAYWVIKO
Tpoypappatiopo (QP) (s€etalel mpoBARUATA TWV OMOLWY N OVTLKELLEVIKE] OUVAPTNON €XEL
TETPOYWVIKOUG Opoug, evw TO £bIKTO oUVOAO Kabopiletal HE YPOUULIKEG LOOTNTEG Kol
oviootnTeg), (6) Suvaplkd TTPOYPOUUATIONO (£va cUVOETO TPOPBANUA LETATPEMETAL OE HLa
okohouBia amlovotepwv TPOPANUATWY), (7) OTOXAOTIKO TIPOYPAUMOTIONO (TETOola

npoBARUATA £XOUV EPLOPLOHOUG I TTAPAUETPOUC AVAAOYA UE TUXALEG LETABANTEG).

Mapatnpeital otL ta meploocdtepa mpoPAnuata mou adopolv £dpodlacTikéG aAuoideg
Slotumwvovtal w¢ povtéda MILP, adoul n nepypadr toug Paoiletal os peydro Babuo oe
OMAQ HOVTEAQ ELOPOWV-EKPOWV. EMUTAL0V, evw QpPXLKA Ta HOVTEAQ SLATUTTWVOVTOL WG
VIETEPULVIOTIKA, OUXVA UTIAPXEL N avaykn va AapBavovtal umodn ot afeBaldtnteg, mou
ekTelvovtal amo tnv apepatdtnta tng INtnong Kat tn Stabeciudtnto Tou £E0MALOHOU WG TIG

PUBUILOELC TPOYPAUUATIONOU KoL TLG TIHEC. °

Eva GA\O0 oONUaVTIKO OTOWKEL0 TIOU €UMAEKETAL OTN HABnUOTIK povtelomoinon Kot
ipoypoppatiopd eival ot emAlTeG (solvers) tou xpnotpomololvTaL. X€ AUt T SUTAWHATLKA
xpnotpomoteitot o CPLEX tng IBM. O CPLEX eival nyétng otnv emihuon mpoPAnuatwy

YPOUULKOU TIPOYPOUUATIOHOU, OTIWG O TIPOYPOUUATIONOG LELKTWY OKEPALWV.
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H Bepancio pe kOttapa CAR-T eival pla véa Kol LoXupn TeXVIK Tou PBaoiletat otnv
avoooBepaneia, pe evBappuVTIKA amoteAéopata otn Bepameia Tou Kapkivou. TEToleg
Beparmeieg XpNOLUOTOOUV TO OVOCOTOLNTIKO olOTNUA Tou iSlou Tou aoBevolg yla va

OTOXEVOOUV KOl VA KATATIOAELAOOUV ToV Kapkivo. 1

Ta avoookUTttapa UropoUlv va mapaxbolv OTo €pyacTApLlO UTIO aUOoTNPA €AEYXOUEVEG
OUVBNKEC KOl OTN CUVEXELD va xopnynBolv oe acBeveic yla tn Bepameia Tou Kapkivou.
Apketol TUToL avoooBepamnelwy eite £(ouv eykplOel yLa xprion eite Bplokovral UTO HeAETN O
KAWVIKEG SOKLUEC YLO va TTPOGSLOPLOTEL N AMOTEAECUATIKOTNTA TOUG oTh Bepaneia Sladopwy

UMWV Kapkivou. 2

Ta T-kOTTapA, OV KOL QIOTEAECHOTIKA OTNV KOTATIOAEUNON TWV Aoluwewv, dev pmopolv
gUKoAa va avayvwploouv Ta KAapKLWIKG KUTTopa Kal £€Tol Ta televutaia amodelyouv thv
0VOOOAOYLKH OmOKpLon KAl cuvexilouv vo avamtlooouv Tov Kapkivo. Ol €MLOTAUOVEC
gpyalovtal ylo TV £L0AYywWYrn TOU XLHALplkoU umodoxéa avtlyovou ota T KUTTapa yLo vol
£VIOXUOOUV TN OTOXEUGH TOUG OTO KOPKLWVIKA KUuTtapa. Ta kUuTtapa pe tov urtodoxéa CAR
umopouv va avayvwpi{ouv Kal vo 0TOXEUOUV HLO. GUYKEKPLUEVN TIPWTEIVN OTA KAPKLVIKA

KUTTOpO.

To mpwto BAua otn dadikaoia mapaywyng KUTToplkwy Bepanslwv sival n Aevkadaipson,
omnou ta T-kuttapa e€dyovtat amno To aipa tou aocbevoug. H aoBévela, n mpoxwpnuévn nALkia,
n mponyoUlevn Beparmeia Kol Ta XOPOAKTNPLOTIKA TOU MepLdepkol ailpatog (Aepdonevia,
uPnAo poptio epldepLkiG VOOOU) UMopEl vao 08NYHOOUV OE HELWMEVN TTOLOTNTA 1) TOCOTNTA
KuTtapwv CAR-T oT0 TEALKO TIPOIOV. AKOAOUBEL 0 EUMAOUTIONOC TWV KUTTAPWV. AUTO pmopet
va YIVEL XpNOLLOTIOLWVTAG TEXVIKEG amopdkpuvong (Babuida nukvotntag, EkAouon avtiBetng
PONG, TEXVIKEC TPOOKOAANONG LAANG) 1 TEXVIKEG emAoyng Kuttapwv (oulelypata
$OoploXpWHATWY AVTIOWHOTOG, ouluyn QAVIIOWUATOG-HayvnTikol odatpldiov, pébBodotl
omopovwaong pe Baon to emtopepec). To tpito BApa eival n evepyomoinon KUTTAPwWY ToOU
g€aptatal ormd Tov TUTIO TWV SLEYEPTIKWY avTLiSpactnplwv Kot tn SLAPKELD TNG EvepyoToinong.
AkolouBei n petadopd tou yovidiou CAR. Autd pmopel va cUpBEL XPNOLLOTIOLWVTAG LKA
cuotnuara (y-petpoitkoi dopeic, dakoikol popeig) A KN UKk cuotrpota (nAektpodidtpnon,
OTOXEUUEVEG OTPATNYLKEG ELCOYWYNC OwE VoukAedon SaktuAou Peudapylpou, VOUKAEADEC
tedectwv ToOU poldlouv He evepyomolntég petaypodrg, CRISPR-CAS9). AkolouBel o
TIOAAQITAQCLOOMOG TwV KUTApwVY. Katd tn Stdpkela autol tou otadiou to Bpemtikd pEcO
CUMTANPWVETAL LE KUTOKIVEG yLaL TNV €VIOXUON TOU eX-Vivo TOANOTAQOLOCHOU TWV KUTTAPWY

CAR-T. O TUTOC Kol Ol 8O0ELG TWV KUTOKLWVWV UITOPEL val EMNpedoouv cofapd TtV moLotnTa
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ToU Tpolovroc. Emiong, n didpkela tng KaAALEpyeLog Ba mpémel va mapakoAouBeital Kabwg
TEPLOOOTEPEG NUEPEG KaAALEpyeLlag odnyouv oe peyoAltepn Sladopomoinon kat Ayotepn
KovoTnTta BavAatwong Tou KOPKWVIKOU Oykou. H eméktoon umopel vo ekteheotel oe
Broavtidpaotrpeg | MAATPOPHUES KAANLEPYELAG. ZUYKEKPLUEVQ, UTTOPOUV VA Xpnalponolnfolv
ocuotnuata ¢LaAwyv, oakol KAELOTOU CUOTHMATOC, MEPLKWE KOl TAHPWG CUTOUATOTOLNUEVOL
ovotnuata (CliniMACs prodigy, Cocoon). To Tteleutaio PApa mepAapBavel tnv
Kpuoauvtnpnaon kot tnv andoPuén tou TeAkol TPoidvTog, OMoU MPETEL VA KOBOoPLOTEL 0 TUTTOG
KOL N OUYKEVIPWON TOU KPUOTIPOOTOTEUTIKOU, N HEBoSo¢ katauéng, oL ouvlnkeg

amoBnkeuong kat n pEBodoc, n Slapkela Kat o pubuog anoPpuéng.

O Opyaviouog Tpodipwv kat Qappdakwv twv HMAOA (FDA) to 2017 kal o Eupwnaikog
Opyaviopog Qapudkwy (EMA) to 2018 evékpvav to KYMRIAHTM tng Novartis, tTnv mpwtn
autohoyn Bepamneia pe CAR T kUTTapa. Xtn ouveéxela, to YESCARTATM tng Kite Pharma ftav
n deutepn Bepameia pe CAR T kUTTapa OV £yKpiBnke amod tov FDA kat tov EMA 10 2017 kat
T0 2018 avtiotowa. Télog, to TECARTUSTM, pwo dAAn avoocoBepaneia pe Baon ta kKUTTOpQ
amnod tnyv Kite Pharma, kat n BREYANZITM amo tn Bristol Myers Squibb mtipav €ykplon amo tov

FDA tov loUAto tou 2020 kat tov OeBpoudplo tou 2021 avtiotoya.?

H tiuf kataloyou twv HIMA yla T eykekplueveg Bepamneisg kupaivetat petaft $373.000 kat
$475.000. Ot uPnAég THEG auTwv Twv Bepamewwv avikatontpilouv to 6¢peNOg TOU
npoodEpouv KaBwWE Kal To KOOTOG TOU OXETIIETAL E TNV KATAOKEUN, TN Slavour Kal T

X0oprnynon tou mpoiovroc.

Ta kUpla BrAupata evog turikoU KUkAou Twng Bepameiag pe kuttapa CAR T esivat (a)
avayvwplon tou acBevoug, (B) Asukadaipeon, (y) mapaywyn, (6) molotikog €Aeyxog, (g)

xopnynon Bepaneiag.

H avayvwplon tou aoBevolg mepAapPfdavel tnv mopokoAoUONon Kol Tov £AEyXo TOU
Tpoiovtog kdBe acBevoug amod tn Asukadaipson £wg tnv €yxuon, Slaocdahiilovrag tnv
aodarf tapddoon TN owotrg Beparmneiag otov KatdAAnAo acBevh. ¢ To mpwto BAua eivat n
oUALOYH HovoTUpNVWY KUTTApWV Ttepldepkol aipatog (PBMC) and tov acBevr) (autoioya)
1 66tn (aAAoyevn)) e Aeukadaipeon, pla péBodog mou Slaxwpilel ta AeukokUTIAPA ATO TO
aipo. * H Stadwaotio autr yivetal oe e€l8IKEVHEVO KAVIKA KEVTPOL. TN CUVEXEL, EVTOC 24
WPWV UETA TN cUAAoyH, TO UALKO Asukadaipeong urtoBaiAstal o Stadikaoia kataPuéng Kot
amnootéNetal, eite ppéoko otoug -80 °C eite kpuoouvtnpnuévo otoug -120 °C, otov TOmo
TIopaywync, Omou pmnopel va amodnkeutel pv untoPAnBel oe mepattépw enefepyaoia. 23> H

Sladkaoia Kataokeung akohouBel Omwg neplypadetal napandavw. Metd tnv ohokAnpwaon

(8]



NG Mopaywylkng Sladikaoiog mpayUoTomoLleital 0 MoLoTIKOG £AeyxoC. To TeAKO Tpoidv
UTIOBAAAETAL 0 SOKLUEG KPLOLLWV TIOLOTIKWY XapaKTnpLloTkwv (CQAS), oL omoieg pumopolv va
Sle€axbouv eite oTO £pynoThplo MOPAYWYNG €ite o SladopeTikn eykatdotacn. TEAOG, N
Kpuoouvtnpnuévn Bepamneia pe CAR T kuTtapa petadépetal otnv KA. Mpwv amo tn
xopnynon tng Bepamnciag, o acBevig mpeénel va umoBAnBel oe xnuewoBepameia. MOALG
oAokAnpwbBei n mpoetolpacia, mou pmopel va Slapkéoel €wg Kal 1 eBdopada, ta kKUTTAPQA
armoPpUyovtal Kot eyxéovtal apéowc otov aoBevr). ® Metd tn xopriynon, oL acBeveig
TapakoAouBoUvTalL OTEVA YLO TTOPEVEPYELEC TTOU OXETI{ovTaL e T Bepareia, Onwg cuvSpouo

amneAeuBépwonc Kutokivng Kat veupotofkotnta.

EKTOG amo tnv eAayLloTomnoinon Tou KOOTOUG, 0 XpOVOC MapAadoong Twv Bepamelwy eivat €vog
TILEOTIKOC TOPAYOVTOC TIou TIPEMEL va Aapfadvetat umodPn Katd To OXeSLAOUO TNG
£podlaotikng aAuaoidag. ITIC EUMOPLKEC Bepareieg, 0 XpOVOCG MAPAS00NC KU IVETAL HETOED

15-24 nuepwv. %8

And ta mapamavw eivat mpodaveég OtL Pndlakd epyodsia OmMwg N paABnuaTikn
povtelomnoinon popoLv va BonBrcouv otn ANPn amodpAcEwV Kal GTOV EVIOTILOUO BEATIOTWY
Soupwv Siktuou mou Ba sfaodalicouv elaylotomoinon Tou KOOTOUG KOl TOU XPOVOU

napadoong Twv Beparmnelwy.

H BeAtlotomoilnon otoxeUel otnv elpeocn tnNg BEATIOTNG AUONG TOU €AQXLOTOTOLEL TNV
OVTLKELUEVIKN) ouvdptnon oAAGloviag TiG HETOPANTEG OXESLOOMOU KOL LKOVOTIOLWVTOG
TOUTOXPOVOL OPLOPEVOUC TIEPLOPLOMOUC. Katd tn PeAtiotonmoinon oxeSlOopoU TPEMEL va
Aappavovtal umodn Tautoxpova MOAAG KpLtpla oXeSLOOUOU Kal TIOANATTAEG QVTIKELUEVLKEC
ouvaptnoeLS. MNa mapddelypa, otnv nepintwon twv Bepanelwv pe CAR-T KUTTAPA, TO KOOTOG
KOL O XpOvoG¢ emotpodn TPEMeL va  ehaxlwotomolnBouv. Otav PeAtiotomnololvrol
neplocdtepol amd £vag otoxol, n BeAtiotomoinon yivetal MOAATAWY OTOXWV, OMOTE Sev

uropel va xpnotpomnotnOei n ouvrdng BeAtiotomoinon oxediaong. (Kim and de Weck)

H moAukputnplakn PeAtiotonoinon eival  avamoomooto HEPOG TwV  TPOPANUATWY
BeAtlotomoinong kot €xeL tepaotieg edapuoyég, kabwg oxedov OAa Ta MpoPAnuata
BeAtiotomoinong tng mpayuatikng {wng meplypadovtal amd MoAAoUC OVILKPOUOUEVOUG

oTOXOUG.

To yeviko mpoBAnua BeAtiotonoinong mMoAAAMAWY oTOXWV TiBeTal wg €€NG:
Min/max fm(x) , m=1,2,3...m
Subject to gj(x) 20, j=1,2,3...j
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hk(x) = 0, k=1,2,3...k

OTIoU M £{vaL 0 ApLOPOG TWV AVTLKELEVIKWY CUVOPTACEWY, j Elval 0 apLlBOG TWV MEPLOPLOUWY

aviootntag kat k eivatl o aplBpoc Twv MePLOPLOUWVY LOOTNTAC.

Ye avtiBeon pe tn PeAtiotomnoinon evog otoxou, otn PBeAtiotomnoinon mMoAAMAwWY OTOXWV
ouvnBwg, Sev umtdpxel eviaia cuvoAlkr AUGN Kal Eival cuxva amapaitnTo va KaBopLoTel Eva
ouvolo onueiwv mou tawplalouv o évav TPOoKABOPLoUEVO oplopd yla £va BéAtioto. H
Kuplapxn €vvola otov oplopd evog BEATioTou onpelou eival auth tou Pareto BEATioToU, N
omola opiletal we €€ng: Pareto Optimal eival éva onuelo, x* € X, eav &ev umapxel aAAo

onueio, x € X, étot wote F ( x) £ F (xx), kot Fi (x) < Fi (x*) yta TovAdylotov pia ouvéptnon. *°

Me mio amAd Aoyla, oto poPAnua BeAtiotomoinong evog otdxou, n UTEPOXN ULlag Avong
£vavtl GAwv Aboewv Tipocdlopiletal eUKOAO CUYKPIVOVTOC TIC TIMEG TNG QVTLKELMEVLKAG
ouvaptnong. 2to mpoPAnua BeAtiotomoinong mMoAAAMAWY OTOXWVY, N KATOAANAOTNTA HLOG
AUong kaBopiletal amno tnv kuplapyio. Mo mapddstypa, to x1 Kuplapxel oto x2, €dv n Avon
x1 Sev elval xelpotepn amo tn X2 og GAOUG TOUG 0TOXOUC N N AUon X1 eival auotnpd KaAUTepn

armno T X2 o€ TouldyLotov évav otdyo. ¥

Aedopévou evog cuVOAOU AUCEWY, TO GUVOAO N KUPLAPXOUHEVWY AUCEWV ival To cUVoAo
OAwv Twv AVoswv ou Sev Kuplapyxouvtal anod Koveva PEAOG Tou cuvolou AUoswv. To pUn
KUpPLOPXOUEVO GUVOAO OAOKANPOU Tou e£dLKTOU Xwpou amodacng ovopdletal PEATIOTO
cuvolo Pareto. To 6plo mou opiletal and to cUVoAo OAWV TwWV onueiwv Tou amelkovilovral

omo to BEATIoTo cuvolo Pareto ovopdletal BéAtioto cUvopo Pareto.

To povtédo mou efetaletal O OUTH TNV gpyacia eivol €va HOVIEAO YPAUULKOU
T(POYPOUUATIOHOU HEKTWY akepaiwv (MILP) mou nepypadet tnv edpodlaotikn ahuoida Twv
kuttdpwv CAR T Kot xpnolpomoleital ya tov mpoodloplopd tng PEATiotne Sopng Siktuou
edodlaotikic alucoidoc yla tnv aodaln kot éykalpn mapadoon twv Bepamelwy. To apxKo
povtédo avarmtuxdnke amd To gpyactnplo tng kadnyntplag Mamaboavaciov oto Imperial
College London.®® To Siktuo tn¢ edpodiaoctikic aluoidac mepthapBdvel 4 kKOUBOUC: KEVTPO

Aeukadaipeong, EpyooTAcLo MOPAYWYNG, TIOLOTIKO EAEYXO KOL VOOOKOUELO.

Mo cuykekplpéva, €vag ooBevic tomobeteital os e€eldikeUPEVO KEVTPO Asukadaipeong,
ormou ta T KUTTOPA QIMOMOVWVOVTOL 0md TNV KUKAodopila Tou aipatog. ITn CUVEXELD, Ta
KUTTOPA KPUOCUVTNPOUVTAL KOL HETOPEPOVTOL OTNV EYKOTACTAON TOPOywYnc. Metd tnv
enefepyacio Kal TNV EMEKTACN TWV KUTTAPWY, N TeAKr Bepamneio umofdarletal oe €Aeyxo

TOLOTNTAG. XTO MOVIEAO TOU €0TLAleL N TopoUod SUTAWHATIKN, O TIOLOTLKOG EAEYXOG
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ocuoteyaletal e TNV gykatdotoon mapaywyns. Eav ta kottapa CAR-T MeEpACOUV ETILTUXWCE
TOV £A€YX0, KPUOCUVTNPOUVTAL KAl LETAdEPOVTAL TILOW OTO VOOOKOELD 6mou Ba xopnynBouv
€ava otov a.oBevn. AKOUN, TO VOOOKOUELO cuateyaletal e To onueio tng Asukadaipeong. O
OTOXOC TOU MOVTEAOU €lvol va €AQXLOTOTIOLOEL TO GUVOALKO KOOTOG TwV Bepamelwv umo

oplopévoug SedopEvoug MepLOPLOOUC.

210 apxlKO HoVTEAO, n amodoaon Tou SiktUou aflodoyeital yia SladopeTikd oevapla Itnong
(20, 50, 125 aoBeveic ava 130 nuépec) kat dtadopeTikolg xpovoug apadoong (17, 18 kat 19
NUEPEC). 2 AUTO TO ohpelo, Ta PodiA {Atnong SnuLloupyolvTaL TUXOia Ao €vav ECWTEPLKO
oAyOplOUO KOL Ol OUVTEAECTEG KOOTOUG elval otaBepol. H peAétn AapPavel umoyn 4
tonoBeoiec Asukadaipeong Kal 4 voookopeia 0to Hvwpévo BaciAelo kal 6 eyKATAOTACELG
mapaywyng oto Hvwuévo BaaiAelo, Tnv Eupwrn kat tnv Apepikr). O XpOVOG KATAOKEUNC EXEL
oplotel va elval 7 nuépsc.

OL eioobol yla To povtédo mepldapPBavouy, éva ocuvolo acBevwv, €va cUvolo Béceswv

Aeukadaipeong, €va oluvolo mBavwyv TomoBeowwv Tapaywyng, £va cUVOAO TPOTIWV
petadopdg Kal Eva cUVOAO XPOVIKWVY TIEPLOSwWV.

Avtiotola To povtélo kabopilet:
® TOV apLBUO Kal TNV TOMoBEeCLa TWV EYKATAOTACEWY TOpaywyn¢ mou Ba Snutoupynbolv.

* TNV avaBeon Kal OeElpd OePAMELWV OTIL( EYKATAOTAOELS TIOPOAYWYNG OE KABE Xpovikn
nepiodo.

® TOV TIPOYPOUHATIONO OTA EPYQOTHPLA.

® TOUG TPOTOUG HeTadOPAC yla Tn oUVOEON TWV XWPWV TOPAYWYNAC UE TOUG XWPOUG
Aeukadaipeong kot Ta voookopeia avtiotolya.

To MPWTO HEPOC TNG MOPOUCOC SUTAWUOTIKNG E0TLALEL 0TNV TOAUKPLTNPLOKA BeATIoTOMOlNGN
™m¢ edoblaotikig oAucidag twv Bepamewwv pe CAR-T kUTtOpa. 2TO HOVTIEAO TIOU
TEPLYPADETAL TTAPATIAVW UTIAPXOUV SUO QVTIKPOUOHEVOL OTOXOL, N ehaxlotomoinon tou
KOOTOUG KOl N gAoylotomoinon tou Xpovou emiotpodnc Twv Bepamelwv. IUVENwE, elvol
onNUavtiko va aflohoynBel n avtiotabuion petafl Twv dVo otoxwv. Ao Tn pia MAEUpad, n
ghaylotomnoinon tou kd6oToug elval MOAU onuavtikn, adou ol Bepaneieg pe kUTtapa CAR-T
elvat oAU akplféc. Amod tnv AAAN TAEUPd, O XPOVOC ETLOTPOPNG TPEMEL €Miong va
ghaylotomolnBei, yloti autég ol Beparneieg ameuBUvovTal o AoOeVELG UE KAPKIVO OTO TEAKO
otadLo mou 6oo o yprnyopa AdBouv tn Beparneia Toug 1600 T0 KaAUTEPO. O 0TOXOG TOU VEOU
povtélou eivat va ekdpacel TI¢ BavEG AUOELG WG Eva oUVOAO BEATIOTWY pareto onueiwv. MNa

va yivel auto, Ba aflodoynbolv Vo peéBobdol. H pia gival n péBodog tou otabuiopévou
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aBpolopatog, 6mou oL SUo otoxol ekdpAlovTal O ULO EVIOLA AVTLKELUEVIKI) CUVAPTNGON Kol
KaBévag amd autouc moAamAaolaletal e €vav mapayovta Bdpoug. H deltepn eival n
UEBoSoG epsilon constraint, 6mou pOvo 0 €vag otoxoC ekPPAleTOl OTNV OVILKELUEVIKA
ouvaptnon Kot o GAAog meplopiletal Katw amd tnv TR €éPlov. Ta amoteAéopota KAbe

uebodou Ba cuykplBoUV yLa va EVIOTILOTEL N TILO ATTOTEAECATIKI).

Akoun, oe évav kKAado onwg autdg twv CAR T Bepamewwyv, n {Atnon pmopel va eival
anpooboKNTh, EMOUEVWE lval TTOAD onUAvTikO va eheyxBel n kavotnta kabevog anod ta

TPOTELVOUEVA SiKTua va amoppodd pn avapevopevn Intnon.

Eniong, onuavtiko sival va StepeuvnBei n peylotonoinon tng aflomoinong kabe povadag
napaywyns. MNpwtov, ta Tpla SikTuo TIOU TIPOKUTITOUV ATIO TO LOVIEAO TTOAUKPLTNPLOKAG
BeAtiotomoinong Ba Sokipaotolv umod aféBatn Intnon yla va eAeyxBel n uPpniotepn Intnon
oTnV orola prmopouv va avtanokplBolv. MNa va yivel autod avoarmtUoosTaL €va VEO HOVTEAD
omou Tto diktuo sival Sedopévo kat otabepd arla dev divetal to tpodil Intnong. O xprotng
£l0AyeL TN ouvoAlkn {Atnon (m.X. 50 acBeveic) Kal To LOVTENO TIPEMEL VA TOUG KATAVEILEL UE
Tov BEATLOTO TPOTO yla va €EUTTNPETAOEL OAOUG Il TOUG TIEPLOCOTEPOUC Ao autolg. Etol,
eAéyyovtal Sladopetikol Oykol INtnong ya kabes S6iktuo, €wg OTOU TO HOVTIEAO KOTOOTEL

aAuTo.

Otav Bpebel n péylotn ATnon, eAéyxetal molog and toug kKOopUPoug Ba Kopeotel mMpwTog,
YEYOVOC TTIOU GNUALVEL OTL QUTOG 0 KOUPBOG HmAokdapel oAdkAnpo to Siktuo. MNvetal n unmobeon
OTL UTtNPXE €va TteplBwplo aodadeiog 25% mou elxe emBANBel otnv TpEYouoa XwPNTIKOTNTA,
1o onoio Ba aneheuBepwOel oTIg akdAOUBEG epuUTTWOoELS. Ta anoteAéopata Ba avadépouv
e €va TETOLo MePLBWPLO HeTadPAlETAL OTNV KAVOTNTA TWV SIKTUWVY VO QVTLLETWITIOOUV
ouvoAlkd unAotepn Zntnon. Enlong, Ba davel moleg povadeg npémnel va eivat yivouv over-

designed ywa va amoppodolv toug kpadaopoug otn {Atnon.

Akoun, e ouvAdng Swadlkacio otn Plopnxavio eival n  evolkiaon HEPOUC TWV
EYKATOOTACEWV GAAWV KATOOKEUOOTWY avTl TNG Snuoupyiag véwv. Elval moAl xpriowo va
aflohoynBel mwg éva SIKTUO e CUVOALKA TNV 8LA XWPNTIKOTNTA XWPLOUEVN O SLOAPOPETLKEG

EYKATOOTAOELG TTapaywyng Ba avtanokplBel o Sladopetikd enineda {HTnong.

TéAog, oxedlaletal €va o PeaALOTIKO PovtéAo e kabuoteproel. O teleutaiog yupog
TELPAUATWY TEPAAUPBAVEL LA TILO PEOALOTLKN) TIPOCEYYLON, OTMoU oL acBeveic pmopel va
OVTLUETWITIOOUV KOBUOTEPHOELG KOl XPOVO OVAOVHG TIpLV amo KaBe dladikaoia. 2 OAa Ta

TIAPATIAVW OEVAPLA OTav £vag 0.oBevng elo€p)ETaL 0TO Voookouelo yla tn Asukadaipeon,
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gfunnpeteital apéowc. AuTo onuaivel 0TLedv dTAcEL Evog aoBevig Kal n povada mopoaywyng
elval mAnpng, To povtého avaykaletol va WSpuosl pia véa. Autd odnyel os avénon tou
OUVOALKOU KOOTOUC TNnG Oepameiag. Qotoco, otnv mpayupatiky {wn, eival mbavég
KoBuotepnoelg Kal eav 0 aoBevrg dtaocel otav dev UTIAPYEL XwpPog Yl va dhofevnBel, Ba
TPEMEL VOl UTIEL 0€ AloTol avapovAg PEXPL va avolfel pia B€on. Auto To BrRpa sivol oAU
ONUOVTLKO VO OTIELKOVIOTEL OTO HOVTEAOD, KABWE Ba HELWOEL ONUAVTIKA TO KOOTOC, KATL TTIOU
gival o kOpLo¢ TPEXWV otoxog. O xpovoc avauovig Ba AndBei umdoPn peta tnv eicodo tou
aoBevolg oto voookopeio NG Asukadaipeong kat mpwv amd tn Sadkacia TNG
Aeuvkadaipeong. Me autov Tov Tpomo, anodelyovral poPAnuata dtapkelag {wng. Qotooo,
£vag HEYLOTOG XpOVOC avapoving Ba epappootel wg meploplopds, MELS oL KAPKIVOTIOOE(G

ota teAsutaio otadia Sev pnopolv va avte€ouv oAU LeydAeg AloTeg avapovig.

ZTn OUVEXELD TTAPOUCLATOVTOL TO ATOTEAECHATA VLA KAOE évav ard Toug apaAvw 0TOX0UG.
‘Ooov adopd tnv oAukpLtnplakr BeAtiotonoinon, cuykpivovtog Tig Vo pebodoug, n epsilon
constraint ¢aivetal va eival mo anotedecpatiky adol n Katavour Twv AVCEwV gival Mo
opolopopdn Kkat urtohoyilovtal oA eplocotepa BEATIOTO onpeia pareto og oclyKpLON UE
™ HEBobdo tou otabulopévou abpoioparog. H teAeutala, av Kot ToAU amAn, Sivel afloniota
amoteAéopata, aAAd ot AUoelc opadomololvTal yUpw amo oplopéva onpela Kol Oev
KOTAVEUOVTAL opolopopda o OAOKANPO TOV Xwpo Twv mibovwv amodpdcewv. Autd TO
MPOPAnUa eival eyyevég otn péBodo tou otabulopévou abpolopartog, kabwg Teivel va
Bplokel BEATIOTEG AUOELG CUYKEVIPWHEVEG YUPW ATO OPLOUEVA Onpeia. AN PELOVEKTAMATO
™G nebodou mephapBavouv: (1) To opolopopda KatavepnueEVo cUVoAo Bapwy dev eyyudtat
€va opolopopda katavepnévo cuvolo Pareto-BéATiotwy AUoswy, (2) AUo SlapopeTIKA OET

Bapwv dev 0dnyouv anapaitnta oe dUo StadopeTikég Pareto-BEATLIOTEG AUCELG.

21N &eltepn evotnNTa AMOSELKVUETOL TTOCO ONUAVTIKO £lval va peylotomnolnBel n alomoinon
KABe povadoag mapaywyng yla va glaxlotonolnfel To KOOToG. AUTO EMITUYXAVETOL UE TNV
KOTAVOUN ME PBEATIOTO TPOTIO TWV ELOEPXOUEVWV aoBevwv oTa OLoOoPETIKA KEVIPA
Aeukadaipeong, yla va emitpaneil KAAUTEPOC TPOYPOUHUATIOUOC A0DEVWY OTLG EYKATAOTAOELG
napaywyns. Kat ota tpla dtadopetikd diktua mou Sokipdotnkav yla ta tpia emnineda
{Ntnonc, anodeixBnke OtTL To HECO KOOTOG ava Bepareia pewwbnke meplocotepo amno 40% oe
oUYKPLON LE T amoTeAEoUATA TOU apXkoU povtélou. Ma 50 aoBevelg To ap)Llkd LOVTEAO
TPOTELVEL TN Snuloupyla Twv gykatactdoswv ml kot m4 kot n Ogpaneio £xel HECO KOGTOC
142,7 K$18, evw TO VEO HOVTENO XPNOLUOTIOLEL LOVO TNV eykatdotoon ml Kal To KOoTog eival
82,6 KS. Ma 125 aoBeveic To apXIkd HOVTEAO ETUAEYEL TIC EYKATAOTAOELC M3 KAl M6 LE LECO

Kooto¢ avd Bepameia ota 143,7kS 18, evw) TO0 BEATIWHEVO HOVIENO XPNOLUOTIOLEL ELTE TIG
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EYKATOOTAOEL M1 Kot m4 gite TRV m3 povo pe kootog nepimou 80,1kS. Avadépetal OtL 0
HECOC XpOVoC emiotpodng os OAa Ta oevapla eival mepinmou 18 nuépeg. Emiong, amd tnv
ovaAuon Twv SIKTUWV mopatnpndnke OTL 0 MPWTOC KOPPBog Tou Ba Kopeotel eival ol
EYKATOOTAOELG OpaywyNne. Emeldn n ayopd twv Bepanewwv pe kuttapa CAR-T elval véa Kall
n {Atnon Umopet va ivat armpoodoknth, mpoTteiveTal £vag oxeSlaouog achaleiag 25% autng
™T¢ povadag waote va eival og B£on va anoppodad mBaveg Stakupavoelg ntnong. Me tov
£\eyx0o aUTAG TNG UTOBEONC, TTapaTNPELTAL OTL N XWPENTLKOTNTA TOU PULIKPOU SIKTUOU GUVOALKA
au€nOnke katd 17% Kal n XwpnTKOTNTA TOU SIKTUOU PecAiov peyEBoug katd 30%. EmutAgoy,
Sdokipaotnkav evaAlaktika Siktua (Slag xwpntikotnTag yia va atlohoynBei n duvatotnta
gvolkioong HEPOUG GAAWV UDLOTAPEVWY EYKATAOTACEWV. AUTA UIOpel va eival
BpaxumpoBeoun Auon mpLv armodaoLloTEL TTOLEG EYKATAOTAOELS Oa SnpoupynBouv Kal e TtoLa
XWPNTIKOTNTA 1 HLo LoKpoTipoBeopn AUaon otav Ba xpelaoTel eméktoon Tou SIKTUou Aoyw
vPnAotepwy amattioswv. MNapatnpnbnke otL Tl dikTud UE pia povada mapaywyng He
peyaAUTEPN XWPNTLKOTNTA amodidouv eAadpwg kaAUutepa amd ta 1o nepimhoka Siktua pe
600 1 TPELC EYKATOOTACELG LE HUIKPOTEPN XWPNTLIKOTNTA. AUTO CUUBALVEL ETIELSN UTTOAOYLOTLIKA

To MPOPAnUa yivetat rio SUokoAo 6oo o mepimAoko sival to Siktuo.

T€Aog, n mpocoBnKn Tou XPOVOU AVA OV OTO LOVTEAO ATOV €va TTIOAU onUAVTIKO Brua, Kadbwg
KAVeL TO OIKTUO TILO PEAALOTIKO KOl TIOAU TILO OLKOVOULKO, E€LOAYOVTAG TNV £vvold TNG
cuoowpevont. Elval aAnBela 6tL n BEATIOTN KATAVOUN TwWV 0.00evwy pmopel va pnv eivort
navta Suvartr, Kabwg oL Beparmeieg ameuBUvVovTaL g aoBeVeig e KAPKiVo 0TO TEALKO oTadlo
mou Sev Ba pmopouv va talldéPouv. Mo to Adyo auto, £xel eloayBel xpdvoc avapovrng oto
povtého. Otav n povada mapaywyng YeULoel Kol GTacel €vag véog acBevrg, umaivel
autopota oe Alota avapovng €wg OTOU avolfel pia ypaupn mapaywyns Kal o aoBevig
npoxwpnoesLotn Aeukadaipeon. Katyia ta Vo npodiA Intnong mou SoKIUACTNKOY TO KOGTOG
nrav oxedov 40% xapnAotepo o oUYKPLON LLE TO OPXLKO HOVTEAD, KABWG OL UTIAPXOUOEG
EYKATOOTACELG TTAPAYWYNG XPNOoLomoL)Bnkayv oAU armodotikotepa. To KOOTOG LelwBnKe og
81,6KS$ kat 82,5KS$ yia ta mpodil Zitnong 50 kat 125 acBevwv avtictoya. Autd mou ival
eniong moAU onuavtikd eivatl 0tL o xpovog mapadoong Tng Bepamneiag dev auénBnke MoAL yla
™ ouvrputtikn mMAsoPndia tTwv acbevwv. Autd ta supnpota urtodnAwvouv OTL TO VEO

MOVTEAO £ival onUAVTIKA BEATIWUEVO O GUYKPLON LIE TO APXLKO.
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CHAPTER 1: LITERATURE REVIEW

1.1 SUPPLY CHAIN OPTIMIZATION

1.1.1 WHAT IS A SUPPLY CHAIN?

A supply chain is defined as a network of facilities that performs the functions of procurement
of materials, transformation of these materials into intermediate and finished products, and
distribution of these products to customers?’. Supply chain organization is one of the core
functions of a business because it ensures that products will reach final costumers and
subsequently profitability will be achieved. A typical supply chain involves suppliers,
production sites, storage facilities, and customers. Nevertheless, the management of such
systems is quite complex due to the multiplicity of material and information flows, diversified

characteristics of entities, and often-present contradicting objectives.!

The main objectives of designing an efficient supply chain include: (i) minimization of costs,
delivery delays, inventories, and investment, (ii) maximization of deliveries, profit, return on
investment (ROI), customer service level, and production. To succeed in these goals, location,
production, inventory and transportation decisions need to be made. These involve: the
number, size, and physical location of production plants, warehouses, and distribution
centers, the products to be produced at each plant and the allocation of suppliers to plants,
of plants to distribution centers, and of distribution centers to customers. The detailed
production scheduling at each plant must also be decided. Moreover, management of the

inventory levels and the transportation media to be used must be defined. ?

In typical SCM problemes, it is assumed that capacity, demand, and cost are known parameters.
However, this is not the case in reality, as there are uncertainties arising from variations in
customers’ demand, supplies transportation, organizational risks and lead times. Demand
uncertainties, in particular, has the greatest influence on SC performance with widespread

effects on production scheduling, inventory planning, and transportation.?

Typical supply chain problems Supply chain problems may be divided into three categories: (i)
supply chain infrastructure (network) design; (ii) supply chain analysis and policy formulation;
(iii) supply chain planning and scheduling. The last involves deciding how to operate the

network to respond best to the external conditions faced by the supply chain.*
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1.1.2 WHY IS PROCESS SYSTEMS ENGINEERING IMPORTANT?

It is observed from paragraph 1.1.2 that supply chain management is very challenging and

demanding and the need for computational tools able to assist decision making seems

imperative.

Market and societal demands continue to increase and as a result modern supply chains must

face new challenges. Some of them include shorter product life cycles, mass customization,

personalized products and the need for more sustainable processes and products. 4,

The Process Systems Engineering (PSE) community can make an important contribution to

address the challenges above through the development of tools that support the required

process supply chain flexibility. Such contributions already exist and span from to tactical and

operational problems. 1 The following table represents some of the milestone-papers as far as

scheduling in chemical engineering is concerned.

Table 1: Representative papers on the evolution of scheduling in chemical engineering

Reference

Reklaitis, G.V., 1978. 32

Mauderli, A.M., Rippin, D.W.T., 1979, 3

Shah, N., 1998. 3

Kallrath, J., 2002. 3

(20]

Output

Review of scheduling of process
operations

They search for alternative ways of
producing one batch of each of the
various products, choose alternative
production lines to be constructed and
set in parallel production lines of the
same, or different products to form
alternative campaign candidates

He gives an overview of single- and
multisite planning and scheduling
Kallrath focuses on different types of

scheduling problems and presents some



Floudas, C.A., Lin, X., 2004. 3¢

Maravelias, C.T., Sung, C., 2009. ¥’

Wassick, J., 2009. 38

Grossmann, |.E., 2012. 3°

[21]

solution approaches especially those
applied to a benchmark problem.

They classify existing approaches in
scheduling based on the time
representation and discuss important
characteristics of chemical processes
that pose challenges to the scheduling
problem.

They review the integration of medium-
term production planning and short-
term scheduling and explain why
integration with scheduling leads to
better solutions.

He discusses the nature of an integrated
chemical production site to identify the
opportunities  for  enterprise-wide
optimization. He shows how the site is
composed of sub-systems, which
present several planning and
operational challenges that can be
optimized. Also, waste disposal
scheduling is presented in detail.

He provides an overview of EWO in
terms of a mathematical programming
framework (mixed-integer linear and
nonlinear optimization methods), as
well as decomposition methods,
stochastic programming and modeling
systems. He also addresses some of the
major issues involved in the modeling
and solution of these problems and
describe several applications to show

the potential of this area.



Harjunkoski, I., Maravelias, C., Bongers, P.,
Castro, P.M., Engell, S., Grossmann, |.E., Hooker,

J., Méndez, C., Sand, G., Wassick, J., 2014 *°

Baldea, M., Harjunkoski, I., 2014. **

Dias, L.S., lerapetritou, M., 2016. #?
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They review scheduling methodologies
developed for process industries. Above
all, the aim of the paper is to focus on
the industrial aspects of scheduling and
discuss the main characteristics,
including strengths and weaknesses of
the presented approaches. Moreover,
usability, interfacing and integration are
discussed.

They dentify key elements of control
and scheduling, and carry out a
systematic investigation of their use as
building blocks for the formulation and
solution of the integrated
scheduling/control problem.

They analyze uncertainties in process
scheduling and control, and describe
the different mathematical approaches
to describe and optimize problems
under uncertainty.



1.3.3 MODEL-BASED METHODOLOGIES

Heuristic-Based Approaches. Williams ° presents seven heuristic algorithms for scheduling
production and distribution operations in supply chain networks, comparing them with each
other and with a dynamic programming model. The objective is to determine a minimum cost
production and product distribution schedule, satisfying the product demand, in a given
distribution network. It is assumed that the demand rate is constant, and that processing is

instantaneous, with no delivery lags between facilities. °

Mathematical Programming-Based Approaches. The alternative to heuristics is the use of
mathematical models of supply chains. Optimization problems can be classified into the

following categories:

Least-squares problems: A least squares problem is an optimization problem with no

constraints and an objective which is a sum of squares of terms. The solution of least-squares
problem can be reduced to analytically solving a set of linear equations. For least-squares
problems there are good algorithms and software implementations for solving the problem
to high accuracy, with very high reliability. Least-squares problems are the formulation of
regression analysis, optimal control and many parameters estimation and data fitting

methods such as clustering techniques. ©

Linear programming (LP) is a type of convex programming and addresses problems with linear

objective function and linearly formulated constraints. For LP there is not a characteristic
analytical formula but there is a variety of methods such as Simplex method and interior point
methods. LP is commonly examined in operations research for a variety of problems such as

planning, routing, scheduling, assignment, and design.®

Mixed Integer programming (MILP) studies linear programs in which some variables are

constrained to take only integer values. This type of programming is more difficult than regular
linear programming. In many MILP cases integer variables are binary (0-1 variables). For every
combination of binaries, a different optimization problem arises. The most common

algorithms to address MILP are:

e Branch and bound methods, a binary tree is employed for the representation of
the 0 — 1 combination, the feasible region is partitioned into subdomains
systematically, and valid upper and lower bounds are generated at different levels

of the binary tree.
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e Cutting plane methods, the feasible region is not divided into subdomains but
instead new constraints, denoted as cuts, are generated and added which reduce
the feasible region until a 0 — 1 optimal solution is obtained.

e Decomposition methods, the mathematical structure of the models is exploited
via variable partitioning, duality, and relaxation methods.

e logic- based methods, disjunctive constraints or symbolic inference techniques

are utilized which can be expressed in terms of binary variables

Non-Linear Programming studies the general case in which the objective function or the

constraints or both are composed of nonlinear elements. This may or may not be a convex
program. Pivoting and other algebraic procedures are commonly used by NLP algorithms to
replace the original problem by an approximating linear one, these nonlinear algorithms

renew the approximations of each iteration based on the solution of the last one. ’

Quadratic programming (QP) examines problems whose objective function has quadratic

terms, while the feasible set is specified with linear equalities and inequalities. Quadratic

programming is the simplest case of NLP. ’

Dynamic Programming is an optimization approach that transforms a complex problem into a

sequence of simpler problems; its essential characteristic is the multistage nature of the

optimization procedure.®

Stochastic programming problems have constraints or parameters depending on random

variables. In contrast to deterministic optimization, real world problems almost invariably
include parameters which are unknown at the time a decision should be made. When the
parameters are uncertain but assumed to lie in some given set of possible values, one might
seek a solution that is feasible for all possible parameter choices and optimizes a given

objective function.

Robust optimization is, like stochastic programming, an attempt to capture uncertainty in the

data underlying the optimization problem. Robust optimization aims to find solutions that are

valid under all possible realizations of the uncertainties defined by an uncertainty set.
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Table 2: Representative papers on the models used for supply chain scheduling

Reference

Geoffrion and Graves 2°

Williams %

Brown et al. 2

Cohen and Lee %

Newhart et al. %

Pooley %

Model

MILP, which is solved using

Benders decomposition

Dynamic programming

algorithm

Optimization-based

algorithm

MINLP

Combination of
mathematical programming

and heuristic models

MILP

[25]

Goal

Design of a distribution
system with optimal
location of the intermediate
distribution facilities
between plants and
customers, while minimizing
the total distribution cost
Determination of
production and distribution
batch sizes at each node
within a supply chain
network, while minimizing
average cost

Decision support system to
manage complex problems
involving facility selection,
equipment location and
utilization, and manufacture
and distribution of products
Maximization of the total
after-tax profit for the
manufacturing facilities and
distribution centers
Minimization of the number
of product types held in
inventory throughout the
supply chain

Minimization of the total
operating cost of a
production and distribution

network.



Pirkul and Jayarama 2¢ MILP, use of lagrangian Study of a tri-echelon
relaxation multicommodity system
concerning production,
transportation, and
distribution planning, while
minimizing establishing and

operating cost.

It is observed that the majority of the supply chain problems are formulated as MILP models,
since the description of supply chains relies largely on simple input-output models.
Furthermore, while initially models are formulated as being deterministic, there often exists
the need to account for uncertainties, ranging from demand uncertainty and equipment
availability in scheduling settings to prices. Problems of the former type are often addressed
through robust optimization techniques, since their goal is to ensure feasibility over a range
of possible realization for the near-term future. In contrast, for long-term strategic problems,
stochastic programming is often used because of its probabilistic view of the future and its
focus on optimizing outcomes in expectation. Finally, it is worth recognizing that such
problems are also often posed as multi-objective optimization problems, given potential

conflicting objectives such as economics and customer satisfaction.’
Global Optimality

When talking about optimization models, a very important concept that arises is that of
optimality. Ideally, global optimality is expected. Global optimality refers to an operating point
which is the best possible over the entire domain with respect to some objective. It is true
that not all problems can be addressed to optimality. The effectiveness of algorithms to reach
global optimality varies with the form of the objective and constraints, the number of
variables and constraints, and special structure of the problem, such as sparsity (the objective
function depends on a small number of variables). Even if the objective function and
constraints are smooth functions, e.g., polynomials, the optimization problem can be still
difficult to solve not guarantying an optimum and requiring long computational time. Famous
optimization problems such as the traveling salesman problem, the knapsack problem,
scheduling problems, protein folding, and chemical equilibrium problems are global
optimization problems. 1° If globally optimality cannot be reached, it is possible that local

optimality can be achieved. A local optimum of an optimization problem is a solution that is
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optimal within a neighboring set of candidate solutions. This is in contrast to a global
optimum, which is the optimal solution among all possible solutions, not just those in a

particular neighborhood of values.®
Solvers

Another important element involved in mathematical modelling and programming is the
solvers that are used. In this thesis CPLEX is used. The name CPLEX itself is a word game built
on the concept of a simplex algorithm written in C. CPLEX has evolved over time to adopt and
become a leader in linear programming categories, such as integer programming, mixed
integer programming and quadratic programming. In general optimization solvers help
improve decision-making around planning, allocating and scheduling scarce resources. They
embed powerful algorithms that can solve mathematical programming models, constraint

programming and constraint-based scheduling models.
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1.2 CAR-T CELL THERAPIES

1.2.1 WHAT ARE THEY, HOW ARE THEY PRODUCED?
CAR-T cell therapy is a novel and potent immunotherapy-based technique with encouraging

results in the treatment of cancer. Such therapies utilize the patients own immune system to

target and fight cancer. 1!

The immune system is the body’s defense against infection and cancer. It is made up of billions
of cells that are divided into several different types. Lymphocytes, a subtype of white blood

cells, comprise a major portion of the immune system. There are three types of lymphocytes:

e B lymphocytes (B cells) make antibodies to fight infection.
e T lymphocytes (T cells) have several functions, including helping B lymphocytes to
make antibodies to fight infection, and directly killing infected cells in the body.

e Natural killer cells also attack infected cells and eliminate viruses.

Immune cells or antibodies can be produced in the laboratory under tightly controlled
conditions and then given to patients to treat cancer. Several types of immunotherapies are
either approved for use or are under study in clinical trials to determine their effectiveness in

treating various types of cancer. *2

T-cells although efficient in fighting infection, cannot easily recognize cancer cells and
thus the latter evade immune response and continue to develop the cancer. Scientist
are working towards the introduction of the Chimeric Antigen Receptor to the T cells to
enhance their targeting at cancer cells. These CAR T-cells are designed to recognize and

target a specific protein on the cancer cells. 13

1. Normal T cell
WAy,
The cancer cell y} “(
is hiding from v “
the T cell 1 Cancer
Cell A
A
TR LAY
Proteins on
the cell
2. After changing
into a CAR T-cell Hidg,,
4 Z]

v
J  Cancer ¢
4 Cel A

»
The CAR T-cell can now *f v (‘
recognise and kill the cancer cell i
Cancer Research UK

Figure 1: Normal T-Cells vs Engineered T-Cell??
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Chimeric antigen receptor CAR structure. A CAR molecule comprises an extracellular MHC-

independent antigen-binding ectodomain derived from a monoclonal antibody, including a

single chain variable fragment (scFV), a linker, and a spacer/hinge region, a transmembrane

domain, and an intracellular T cell signaling endodomain.

Single chain Llnkor

g
Ectodomaln : variable fragment (scFv)
Spacer ,

Transmembrane ! ! !Tmnsmcmbnne ! ! ! ! ! ! !

Costimulatory domain

Endodomain ‘

CD 3 Zeta
L
Figure 2: Chimeric Antigen Receptor Structure®

Autologous CAR-T cell manufacturing

The first step in the process is the leukapheresis, where T-cells are extracted from patient’s
blood. Disease, advanced age, prior therapy, and peripheral blood characteristics
(lymphopenia, high peripheral disease burden) can lead to compromised quality or quantity
of CAR-T cells in the final product. Cell enrichment follows. This can be done using elimination
techniques (density gradient, counter flow elutriation, flask adherence techniques) or cell
selection techniques (antibody fluorochrome conjugates, antibody-magnetic bead
conjugates, heptamer-based isolation methods). The third step is cell simulation and
activation which depends on the type of stimulatory reagents and the duration of activation.
After that CAR gene transfer occurs. This can happen using viral systems (y-retroviral vectors,
lentiviral vectors) or non-viral systems (electroporation, targeted insertion strategies such as
zinc finger nuclease, transcription activator-like effector nucleases, CRISPR-CAS9). Cell
expansion follows. During this step reagents, supplemented with cytokines to enhance ex-vivo
CAR-T cell proliferation, are used in the culture media. Cytokines type and doses can severely

affect product quality. Also, duration of culture should be monitored as more culture days
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lead to more differentiation and less tumor killing capacity. Expansion can be executed in
bioreactors or culture platforms. Specifically, flask systems, closed system bags, partially and
fully automated systems (CliniMACs prodigy, Cocoon). The last step involves cryopreservation
and thawing of the final product, where the type and concentration of cryoprotectant, the
method of freezing, the storage conditions and the method, duration and rate of thawing

must be determined.

including T cells, are

( )
IN THE CLINIC \
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Figure 3: Autologous CAR-T cell process?’?

FDA Approved therapies

The US Food and Drug Administration (FDA) in 2017 and the European Medicines Agency
(EMA) in 2018 approved KYMRIAHTM of Novartis, the first autologous CD19- specific CAR T
cell therapy. Subsequently, YESCARTATM of Kite Pharma was the second CAR T cell therapy
to be approved by FDA and EMA in 2017 and 2018 respectively. Finally, TECARTUSTM, another
cell-based immunotherapy from Kite Pharma, and BREYANZITM from Bristol Myers Squibb
granted approval from FDA in July 2020 and February 2021 respectively.?®
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Critical quality attributes

e Safety: negative sterility test and lack of oncogenic or viral replicative potential
e  Purity: High concentration of CAR-T cells minimal contaminating cells

e Consistency: Meet lot release criteria time after time

e Potency: Capability to eliminate tumor cells

e Durability: Persistence in circulation, ability to maintain its anti-tumor effects

CAR-T cell therapies price

The US list price for the approved therapies varies between $373,000 and $475,000. The high
prices of these therapies reflect the benefit they deliver as well as the impact associated with
manufacturing, distribution and product administration.3® Time-intensive manufacturing
processes, in-time delivery under hospital admission and daily monitoring of the patient for

side effects are among the factors that increase the cost.
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1.2.2 SUPPLY CHAIN OF CAR-T CELL THERAPIES

The main steps of a typical CAR T cell therapy lifecycle are: (a) patient identification, (b)
leukapheresis, (c) manufacturing, (d) Quality Control, (e) therapy administration.

=1day

Patient

leukapheresis Cell processing
identification

(cryopreservation)

Manufacturing HHHE =7 days

Treatment Cell processing
administration (prepare for infusion) =1-2 days

ﬁ . & b QE. @ =7 days

Figure 4: Supply Chain of CAR-T cell therapies

Patient identification involves tracking and control of each patient’'s product from
leukapheresis to infusion, ensuring the safe delivery of the right therapy to the right patient?.
The first step to the CAR T cell treatment is the collection of peripheral blood mononuclear
cells (PBMC) from the patient (autologous) or a donor (allogeneic) by leukapheresis, a method
that separates the leukocytes from the blood. 4. This process takes place in specialized clinical
centers. Next, within 24h after collection, the leukapheresis material undergoes a freezing
process and it is shipped, either fresh at -80 °C or cryopreserved at -120 °C, to the
manufacturing site, where it might be stored before it is further processed 25,35
Cryopreserved. ?° leukapheresis is preferred over fresh because it offers maximum flexibility
in the supply chain management, as it enables extended storage in case of manufacturing
delays and time flexibility for patients undergoing the procedure ®?°. The manufacturing
process follows as described above. After the completion of the manufacturing process,
Quality Control takes place. The final product undergoes testing of critical quality attributes
(CQAs), which can be conducted either in the manufacturing site or in a different facility.
Finally, the cryopreserved CAR T cell therapy is transported to the clinical site. Before the
administration of the CAR T cell therapy, the patient must be treated with lymphodepleting
chemotherapy. Once the pre-conditioning that can last up to 1-week finishes, the cells are
thawed and immediately infused to the patient °. After the administration, patients are
closely monitored for side effects related to the therapy such as cytokine release syndrome

and neurotoxicity 4.
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It is evident that CAR T cell therapy targets are expanding rapidly, with scientific interest and
clinical trials in autoimmune diseases, viral infections (HIV and SARSCoV-2), allergies, and
asthma. Currently, there are 6,581 active and ongoing clinical trials regarding CAR T cell
treatments, with most of them being autologous, while their allogeneic counterpart is

progressing as well.

Apart from cost minimization, delivery time of therapies is a pressing factor that must be taken
into consideration when designing the supply chain. In commercial treatments turnaround

time varies between 15-24 days %,

From the above it is obvious that digital tools such as mathematical modelling can assist in
decision making and identification of optimal network structures that will ensure minimized

cost and delivery time of the therapies.
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1.3 MULTI-OBJECTIVE OPTIMIZATION

Optimization aims to find the best solution that minimizes the objective function by changing
design variables while satisfying certain constraints. During design optimization several design
criteria and multiple objective functions have to be considered at the same time. For example,
in the case of CAR-T cel therapies, cost must and return time must be minimized. When more
than one objective is optimized, the optimization becomes multiobjective, in which case the

usual design optimization for a scalar objective function cannot be used.(Kim and de Weck)

Multi-objective optimization is an integral part of optimization problems and has vast
applications, since almost all real-life optimization problems are described by numerous
conflicting objectives. The process of optimizing systematically and simultaneously a

collection of objective functions is called multi-objective optimization (MOO), 8
The general multi-objective optimization problem is posed as follows:
Min/max fm(x) , m=1,2,3...m
Subject to gj(x) 2 0, j=1,2,3...j
h«(x) =0, k=1,2,3..k

where m is the number of objective functions, j is the number of inequality constraints, and k

is the number of equality constraints.

In contrast to single-objective optimization, in multi-objective optimization typically, there is
no single global solution, and it is often necessary to determine a set of points that all fit a
predetermined definition for an optimum. The predominant concept in defining an optimal
point is that of Pareto optimality, which is defined as follows: Pareto Optimal: A point, x* € X,
is Pareto optimal if there does not exist another point, x € X, such that F (x) < F (xx), and Fi (x)

< Fi (xx) for at least one function. *°

In simpler words, in the single-objective optimization problem, the superiority of a solution
over other solutions is easily determined by comparing their objective function values. In
multi-objective optimization problem, the suitability of a solution is determined by the
dominance. For example, x; dominates x,, if Solution x1 is no worse than x; in all objectives or
Solution x; is strictly better than x; in at least one objective. 2° Koski 2! applied the weighted
sum method to structural optimization. Marglin developed the € -constraint method, and Lin
developed the equality constraint method. Heuristic methods are also used for multiobjective

optimization: Suppapitnarm applied simulated annealing to multiobjective optimization, and
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multiobjective optimization by Genetic Algorithms can be found in Goldberg, and Fonseca and

Fleming among others.

1.3.1 PARETO FRONTIER

Given a set of solutions, the non-dominated solution set is a set of all the solutions that are
not dominated by any member of the solution set. The non-dominated set of the entire
feasible decision space is called the Pareto-optimal set. The boundary defined by the set of all

point mapped from the Pareto optimal set is called the Pareto optimal frontier.
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Figure 5: The pareto Optimal Frontier
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1.3.2 WEIGHTED SUM METHOD

Stadler applied the notion of Pareto optimality to the fields of engineering and science in the
1970s. The most widely-used method for multiobjective optimization is the weighted sum
method. The method transforms multiple objectives into an aggregated objective function by
multiplying each objective function by a weighting factor and summing up all weighted
objective functions. If X%, w; = 1 and 0 <w; < 1, the weighted sum is said to be a convex
combination of objectives. Each single objective optimization determines one particular
optimal solution point on the Pareto front. The weighted sum method then changes weights
systemically, and each different single objective optimization determines a different optimal

solution. The solutions obtained approximate the Pareto front. ¥’.

The weighted-sum method, as it is already mentioned, scalarizes a set of objectives into a
single objective by pre-multiplying each objective with a user-supplied weight. This method
is the simplest approach and is probably the most widely used classical approach. *°
Although the idea is simple, it poses the burden of choosing the suitable weights. Of course,
there is not a unique answer, but rather it depends on the importance of each objective in
the context of the problem. Generally, the relative value of the weights reflects the relative
importance of the objectives. ¥ By changing the weight vector, a different Pareto-optimal

point can be obtained.
The weighted sum method is defined as follows:
Minimize ¥M_ wy, fin (%)
Subject to gj(x) 2 0, j=1,2,3...j
h«(x) =0, k=1,2,3...k
XW<x <x¥ , i=1,2,3..n

The most prominent advantage of this method is that it is quite simple. However, it also
presents a series of disadvantages: first, It is difficult to set the weight vectors to obtain a
Pareto-optimal solution in a desired region in the objective space. Second, it cannot find
certain Pareto-optimal solutions in the case of a nonconvex objective space. Third, varying the
weights consistently and continuously may not necessarily result in an even distribution of

Pareto optimal points and an accurate, complete representation of the Pareto optimal set. 2
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1.3.3 e-CONSTRAINT METHOD
In the epsilon constraint method, only one of the objectives is considered, while the rest are

restricted within user-specified values. The modified problem is as follows:
Minimize fy(x)
Subject to fm(x) £ €m M=1,2,3...m and m#u
g(x)=0,j=1,2,3...]
h(x) = 0, k=1,2,3...k
XM <X <, i=1,2,3..n

In the above formulation, the parameter € ,represents an upper bound of the value

of f mand need not necessarily mean a small value close to zero. ®

One advantage of the method is that it is applicable to either convex or non-convex problems.
One of the difficulties of this method is that the solution to the problem largely depends on
the chosen € vector. Also, the € vector must be chosen carefully so that it is within the

minimum or maximum values of the individual objective function. 2°
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CHAPTER 2: PROBLEM DISCRIPTION AND BACKGROUND

2.1 OVERVIEW OF THE SUPPLY CHAIN NETWORK

The model examined in this work is a mixed integer linear programming (MILP) model that
describes the CAR T cell supply chain, and it is used for the identification of the optimal supply
chain network structure for the safe and in-time delivery of the therapies. The original model
was developed by the lab of Professor Papathanasiou at Imperial College London®® . The
supply chain network includes 4 nodes: leukapheresis site, manufacturing site, Quality

Control, and hospital.
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Figure 6: Overview of CAR-T cell therapy supply chain network

More specifically, a patient is allocated to a specialized leukapheresis site, where T cells are
isolated from the bloodstream. Then, the cells are cryopreserved and transferred to the
manufacturing facility. After cell processing and expansion, the final therapy undergoes a
quality control check. In the model discussed quality control site is co-located with the

manufacturing facility. If CAR-T cell successfully pass the control they are cryopreserved and

(38]



are transferred back to the hospital where they will be administered back to the patient. It
should be mentioned that the hospital is co-located with the leukapheresis site. The objective

of the model is to minimize the total cost of the therapies under certain given constraints.

In the single objective model®®, the network’s performance is assessed for different demand
scenarios (20,50,125 patients per 130 days) and different delivery times (17, 18, and 19 days).
At this point, demand profiles are generated by an in-house algorithm and cost coefficients
are assumed to be deterministic. Because the market of CAR-T cell is very new cost
parameters have a 20% uncertainty. The study takes into account 4 leukapheresis sites and 4
hospitals in the UK and 6 manufacturing sites in the UK and Europe. The capacity and the
location of the different manufacturing facilities are shown in the table below. Manufacturing

time has been set to be 7 days.

Table 3: Capacity and location of manufacturing facilities

Manufacturing # Panel Lines Location
Facility

M1 4 Stevenage (UK)
M2 31 Glasgow

M3 10 Berlin

M4 4 Belgium

M5 31 Pennsylvania
M6 10 Virginia

Inputs for the model include:
¢ A set of patients, P.
* A set of leukapheresis sites, C.
¢ A set of potential manufacturing sites, M.
¢ A set of transport modes, J.
¢ A set of time periods, T.
The model determines the:

¢ number and the location of the manufacturing facilities to be established.
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¢ assignment and sequence of therapies to the manufacturing facilities at each time

period.
¢ scheduling in the manufacturing sites.

e transport modes for the connection of the manufacturing sites with the

leukapheresis sites and hospitals respectively.

2.2 DESCRIPTION OF THE ORIGINAL SINGLE-OBJECTIVE MODEL

The original mathematical model, on which this thesis is based, was developed by Professor

Papathanasiou and her lab at Imperial College London?.

The initial mathematical model of the CAR T cell supply chain and the corresponding

nomenclature are displayed below.

Table 4: Nomenclature

Nomenclature

Indices

c Leukapheresis sites

h Hospitals

j Transport modes

m Manufacturing sites

p Patients

t Time points Parameters

TOTCOST Total cost of all the therapies p

cMly, Capital investment for manufacturing
facility m

coc, QC cost when in house

cVMy, Fixed variable cost for manufacturing facility
m

771, Transport time from leukapheresis to
manufacturing site via transport mode j

772, Transport time from manufacturing site m to
hospital h via transport mode j
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Unit transport cost from leukapheresis site ¢
to manufacturing site m via transport mode
J

Unit transport cost from manufacturing site
m to hospital h via transport mode j

Total capacity of manufacturing facility m
Demand therapy p arriving for leukapheresis
cattimet

Minimum flow

Maximum flow

Number of therapies

Number of time points

Duration of leukapheresis

Duration of manufacturing excluding QC
Duration of administration Variables

Total manufacturing cost of therapy p

Total transport cost per therapy p

Therapy p leaving leukapheresis site c at
time t

Therapy p that is leaving leukapheresis site ¢
and is transported to manufacturing site m
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timet
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Final therapy that left from manufacturing
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therapy p is manufactured in facility m
Percentage of utilization of manufacturing
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Capacity of manufacturing facility m at time
t

Starting time of treatment for patient p
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Total return time of therapy p

Average return time of all the therapies p
Binary variable to denote if manufacturing
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jattimet

Binary variable to denote if sample p is
transferred from manufacturing facility m to

hospital h via transport mode j at time t
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Objective function.

The objective function of the single objective model minimizes the total cumulative cost of all

manufactured CAR T cell therapies (Eg. A.1).
o minTOTCOST =%, CTM,+ 5, TTCp+ 3, CQC,(A.1)

Equation (A.2) gives the manufacturing cost per therapy p.
o C(CTMp=NTx3u(Elnx(CIMy+CVMy)) /NP, V¥ p (A.2)

Equation (A.3) calculates the percentage of utilization of facility m at time t.
o RATIOm:=3p DURMp ;i FCAPy , ¥V m,t (A.3)

The total cost for the transport of all therapies p from leukapheresis to manufacturing and

from manufacturing to hospital is given by Equation (A.4).

o TTCp = ZClmlj'[ Ylplclm'j'[x Ulclmlj"' Zm'hlj,t sz,m,h,j,tx UZmlh’j, V p (A.4)

Material balances

Equation (A.5) represents the patient samples p collected at the leukapheresis site c at time t
that are ready to be shipped to the manufacturing site m after the completion of the

leukapheresis procedure:
° INCp,C,t: OUTCp,C,t+TLS ’ Vp, C,t (A.S)

The patient samples p collected at the leukapheresis site ¢ and are being shipped to
manufacturing site m via transport mode j at time t will enter manufacturing after the duration

of the transport (Eq. A.6).
L4 LSRp,c,m,j,t: LSAp,c,m,j,t+TT1j, VP, c, m;j;t (A6)

Equation (A.7) displays the samples leaving leukapheresis site c at time t that are equal to

patient samples p sent to all manufacturing sites m under transport mode j at time t.
o OUTCpct=3miLSRp,cmjimj, VD, C,t (A7)

Patient sample p entering manufacturing site m at time t is equal to patient samples p shipped

from all leukapheresis sites ¢ to manufacturing facility m (Eq. A.8).

[ ] INMp,m,L'= ZC‘jLSAp‘C‘m,j,t (;‘j, Vp, m,t (A.S)
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The outgoing therapy p of manufacturing site m at time t will be ready to be shipped after the

manufacturing process and quality control have finished (Eg. A.9).
o INMpumt= OUTMpmesrurestoc, VP, m,t (A.9)

The therapy p leaving manufacturing site m at time t is equal to the therapy ready to be

transferred to a hospital h via transport mode j (Eq. A.10).
[ ] OUTMplmlt = zh,] MSOp,m,hlj,[, Vp, m,t (A.lO)

Therapy p that has left manufacturing site m enters hospital h under transport mode j at time

t after the duration of transport under transport mode j (Eq. A.11).
o  FTDpmhjt= MSOpmpjestr2, V0, m, h,j,t (A.11)

Equation (A.12) gives the therapy p that arrives at hospital h at time t.
o INHpnt=3mjFTDpmnje, Vp, h,t (A.12)

Capacity constraints.

Equation (A.13) gives the capacity of each manufacturing site m at every time t, whilst
Equation (A.14) makes sure that the therapies do not exceed the available capacity of each

manufacturing site.

o CAPpi=FCAPm-5, INMym,:, Vp, m,t (A.13)
° Zp INMp,m,t_ ZP OUTMp,m”tS CAPm,t, Vp, m,t (A.14)

Network structure constraints.

Equations (A.15)-(A.16) ensure that matches are only made with existing manufacturing

facilities.

o Xlem<Eln, Ve, m(A.15)

o X2.,<El, Vc,m(A.16)

Equations (A.17)-(A.18) ensure that only one transport mode j can be selected for each

therapy p at every journey.

° ZC,m,j,t Ylp,c,m,j,t < 1/ vp; c, m/j/t (A'17)
[ ] Zm,hlj,t sz:m:h:j:t S 1, Vp, m, h,j,t (A.18)
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Equations (A.19)-(A.22) make sure that a match is only made between a leukapheresis site ¢

and its corresponding co-located hospital h.

o SmtY2pmn1jtS St INCperex t , Vp (A.19)
®  SmitY2pmn2eS St INCpeaex t, Vp (A.20)
o SmtY2pmn3tS St INCpeaex t,Vp (A.21)
o St Y2pmhaji S St INCpearx t, Vp (A.22)

Demand satisfaction.

Equation (A.23) ensures that the total rate of flow of every therapy p arriving at hospital h is

equal to the corresponding demand. Logical constraints for transportation flows.
° Zp’hlt INlehlt= NP, Vp, h,t (A.23)

Inequalities (A.24) and (A.25) state that a therapy p can be transferred from a leukapheresis
site ¢ to a manufacturing site m and from a manufacturing site m to a hospital h if and only if

a match between the corresponding facilities has been previously made.

L4 Ylp,c,m,j,t < ch,m, Vp, c, m,j,t (A24)

° sz,m,h,j,t S sz,h; Vp, m, q,j,t (A.25)

Equations (A.26)-(A.29) confirm that a minimum and maximum flow of material exists for a

transportation link to be established.

o LSRpcmjt2 Y1y emjex FMIN, Vp, c, m,j,t (A.26)
o LSRycmjt<Y1pemjex FMAX, Vp, c, m,j,t (A.27)
o MSOpmpji=Y2pmnjex FMIN, Vp, m, h,j,t (A.28)
o MSOpmnjt<Y2pmnjcx FMAX, Vp, m, h,j,t (A.29)

Time constraints.
Equation (A.30) calculates the manufacturing time t of therapy p in facility m.
o DURMpm:=3: INMpmi-1—3:OUTMpmi+ OUTMpm:, ¥ p, m,t (A.30)
Equation (A.31) gives the time point when a patient checks into a leukapheresis site c.
o STTp=% ctINCpcext, Vp (A.31)

Equation (A.32) displays the time point, when therapy p is delivered to the hospital h.
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o CTT,=Sh:INH,n:xt ,Vp(A.32)

Constraint (A.33) makes sure that the time point a patient checks into a leukapheresis site c
chronologically precedes the time point the corresponding therapy p is delivered to the

hospital h.
o STT,<CTT,, Vp (A.33)

Equation (A.34) presents the total time for a therapy p from the time point the patient checks
into a leukapheresis site ¢ until the time point that the therapy is safely delivered to the

hospital h.
e TRT,=CTT,-STT,, Vp (A.34)

Inequality (A.35) ensures that the turnaround of a therapy p is less than or equal to 18 days.

This constraint can change to 17, 18, or 19 days depending on the specific case examined.
e TRT,<18(A.35)

Equation (A.36) calculates the average return time of all the therapies p.
o ATRT,=3%,TRT,/NP (A.36)

Equation (A.37) calculates the total cost per therapy

e TCPTp=CTMp+TTCp+10476+9312 (A.37)
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2.3 ORIGINAL SINGLE OBJECTIVE MODEL - RESULTS

In this section the results of the single objective optimization will be presented. They consist
base scenarios developed by the lab of Professor Papathanasioiu to which future results and

analysis will be compared to, in order to identify improvements®®,

Three different demand scenarios (20, 50, 125 patients/ 130 days) and three turnaround times

(17, 18 and 19 days) are evaluated:

Table 5: Established facilities, total cost and total return time — single objective model —

demand levels (20, 50,125)

# SCENARIO | Demand Delivery time Total Cost Cost/ Established
profiles (MS) therapy (K$) manufacturing
facilities

1 17 3,48 1741 m1
2 20 patients 18 3,45 172,6 m1
3 19 3,43 171,6 m1l
4 17 7,22 1444 m1, m4
5 50 patients 18 7,14 142,7 m1, m4
6 19 7,09 141,8 m1, m4
7 17 18,23 145,8 m3, m6
8 125 patients 18 17,97 143,7 m3, m6
9 19 17,83 142,6 m3, m6

As it was expected, for all three demand profiles the total cost of therapies increases as the
delivery time decreases. This is because the fastest and most expensive transportation mode
is employed. To better depict this tradeoff between time and cost, it is useful to design a new

model able to optimize the two objectives simultaneously. This is presented in paragraph 4.2.

Moreover, it is observed that the cost per therapy decreases when the number of patients
goes from 20 to 50 but increases a bit when the number increases to 125 from 50.
Personalized therapies are not typically economies of scale, so the fact that the cost/ per
therapy increases as the number of patients increases it is not surprising at a first glance.

However, the capacity utilization must be checked for each scenario to ensure that the
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proposed network is fully utilized, and the cost is minimized. It is true that if the ratio of
utilization is high, the variable cost of production decreases, and this is reflected on the total

price.

Table 6: Capacity Utilization — Scenaria 1-9

# SCENARIO Demand profiles Delivery time AVERAGE
UTILIZATION RATIO
(%)
1 17 m1: 26.9%
2 20 patients 18 m1l:26.9%
3 19 m1: 26.9%
m1:53.9%
4 17
m4: 13.5%
m1l: 56.5%
5 50 patients 18
m4: 10.8%
m1:55.2%
6 19
m4:12.1%
m3: 58.2%
7 17
m6: 9.2%
m3:57.6%
8 125 patients 18
m6: 9.7%
m3:57.6%
9 19
m6: 9.7%
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Figure 7: Capacity utilization of m1 for 20 patients
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Figure 8: Capacity utilization of m1 and m4 for 50 patients
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Figure 9: Capacity utilization of m3 and mé6 for 125 patients

It is observed that all the three proposed networks are not fully utilized, although there are
chosen by the model as the cost minimizing networks for each scenario. For the demand level
of 20 patients, facility m1 is the smallest that can be established but it is still only utilized
around 25%. So, another interesting aspect is to consider maximizing the number of patients

that an established network can accommodate. This will be presented in paragraph 5.2.

As far as the demand profile of 50 patients is concerned, facility m1 is utilized at around 55%
and facility m4 only 10-12% depending on delivery time. The same applies for the 125 patients,
where mé6 is very little utilized. The fact that the model choses to establish a new facility even
though the first one is not fully utilized can be explained by the fact that no delays are
considered in this simplified model. This signifies that if a new patient arrives and the
manufacturing facility is full, a new one is automatically established. So, it is imperative to
investigate what will happen if delays and waiting time is allowed, to minimize the investment

costs and as a result the total cost of the therapies. This will be discussed in paragraph 4.2.
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CHAPTER 3: RESEARCH CHALLENGES AND THESIS OBJECTIVE

3.1 THE MULTI-OBJECTIVE OPTIMIZATION MODEL

In the model described above there are two conflicting objectives, minimization of cost and
minimization of return time of therapies. As a result, it is essential to evaluate the trade-off
between the two objectives. On the one hand, cost minimization is very important, since CAR-
T cell therapies are very expensive. On the other hand, return time must be minimized too,
because these therapies are addressed to terminally ill cancer patients that the sooner, they
get their therapy the better. The aim of the new model is to express the possible solutions as
a set of pareto optima, representing optimal trade-offs between given criteria. To do that, two
methods will be assessed. One is the weighted sum method, where the two objectives are
expressed into a single objective function and each of them is multiplied by a weight factor.
The second one is the epsilon constraint method, where only one objective is expressed in the
objective function, and the other one is constraint under the epsilon value. Results of each

method will be compared to identify the most efficient one.

3.2 ROBUSTNESS OF THE SUPPLY CHAIN

In an industry such as the one with the CAR T cell therapies, demand can be unexpected, so it
is very important to represent the ability of each of the proposed networks to absorb

unexpected demand.

3.2.1 MAXIMUM CAPACITY OF EACH OF THE PROPOSED NETWORKS

First, the three networks proposed by the multi-objective model will be tested under
uncertain demand to check the highest demand that they can accommodate. The method to
do that is by developing a new model where the network is fixed but the demand profile is
not given (like it was before). The user inputs the total demand (e.g. 50 patients) and the
model must allocate them in an optimal way to accommodate all or most of them. So,

different volumes of demand are tested for each network, until the model becomes infeasible.
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3.2.2 NEED TO OVER-DESIGN

When the maximum demand is reached, it is checked which one of the nodes becomes
saturated first, meaning that this node blocks the whole network. Saturation as a concept will
compare the static model to a dynamic one. It is assumed that there is a leeway of 25%
imposed in the current capacity, which will be set free in the following cases. The results will
report how such a leeway translate into the networks ability to cope as a whole. Also, it will

be seen which units must be over-designed to absorb shocks in the demand.

3.2.3 ALTERNATIVE NETWORKS

A usual procedure in industry is to rent part of other manufacturers’ facilities instead of
establishing new ones. It is very useful to evaluate how a network with overall the same

capacity split into different manufacturing facilities will respond at different demand levels.

3.2.4 REALISTIC SCENARIO WITH DELAYS

The last round of experiments involves a more realistic approach, where patients may face
delays and waiting time before each procedure. In all the above scenaria when a patient
entered the leukapheresis site, he/she was immediately served and the procedure for the
manufacturing of the therapy started instantly. This means that if a patient arrives and the
manufacturing facility is full, a new one is established. This leads to augmentation of the total
cost of the therapy. However, in real life, delays are possible and if the patient arrives when
there is no room for him/her to be accommodated, he/she will have to get in a waiting list
until a spot opens. This step is very important to be depicted in the model since, it will
significantly decrease the costs, which is a main goal at this point. Waiting time will be
considered after the patient enter the leukapheresis site and before the leukapheresis
procedure. In that way, shelf-life problems are avoided. However, a maximum time of waiting
time will be applied as a constraint, because cancer patients in the last stages cannot afford

very long waiting lists.
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CHAPTER 4: METHODOLOGY

The modifications made to the original model to accommodate the new research objectives
will be analyzed in this chapter. The new variables and equations that were employed, as well
as the new objective function for each scenario are presented. First, the methodology for the
multi-objective optimization, both the weighted sum and the e-constraint, is depicted. The
necessary changes to allow optimal allocation of patients follow and lastly the nomenclature

and equations needed for the more realistic model with delays are displayed.

4.1 MULTI-OBJECTIVE MODEL

4.1.1 WEIGHTED SUM METHOD
There were some necessary changes that were made in the above model to allow the multi-

objective optimization, using the weighted sum method.

First of all, the objective function changes so that apart from the total cost it will also include

the return time. Time is no longer a constrained variable.
The new objective function:
e OBJECTIVE=min(a*Y,NORMTC,+(1-a) *5,NORMTRT)) (A.38)

It should be mentioned that cost and return time are on different numerical scales, cost is in
millions, whereas time is only in days 17-19. As a result, they should be normalized before
being used in a single objective function. Otherwise, cost will always prevail the impact of time

on the objective.

TCPT,—min (TCPTy)
max(TCPTy,)—min (TCPTy) ’

e NORMTC, = where min and max TCPT, (total cost per

therapy) are calculated for each scenario using the single objective model. (A.39)

TRT,—min (TRTy)
max(TRT,)—min (TRTy)’

e NORMRT, = where min and max TRT}, (total return time per

therapy) are calculated for each scenario using the single objective model. (A.40)

Moreover, the time constraint is deleted from the model, as time is now an objective.

o TRT,<18
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4.1.2 EPSILON CONSTRAINT METHOD

In this case the objective function that it is used is the same as the single objective model.
min TOTCOST =Yp CTMp + Yp TTCp + Yp CQCp
However, there is a new time constraint:

e ATRTZ< epsilon, where epsilon is from 17 to 19 changing by 0.1.

4.2 DEMAND MAXIMIZATION AND ROBUSTNESS OF SUPPLY CHAIN

4.2.1 OPTIMAL ALLOCATION OF PATIENTS

In this version, the network is fixed and the goal is to maximize the number of patients that it

can accommodate.

The new variables that are added:

Nomenclature

Indices

CAPC Capacity of leukapheresis site

CAPL; capacity of leukapheresis site c at time t

First of all, since the manufacturing facilities and the links between nodes are established, the
binary variables E1, X1 and X3 are eliminated from the model and inputs for them are given

as parameters. Along with them, the following constraints are deleted:

— X1 .<El. . Vem
X2 < EL Mo m

Moreover, the time constraint is also removed as to allow the maximum number of patients

that can be accommodated.
o TRT, <18

Also, a new objective function is employed:
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o OBJECTIVE=Np-Spn¢INHpp: (A.41)

The aim is to minimize the difference between incoming patients and treated patients, which
practically means maximize the number of served patients. It should be mentioned here that
INH (number of patients that get the therapy) is used in the objective function and not INC
(number of patients that come to the leukapheresis site). This helps to ensure that there are
not patients that enter the leukapheresis site but cannot be accommodated in time by the

manufacturing facility.

Also, new equations are inserted to control the new challenges associated with the unknown

demand profile.

Equation (A.42) ensures that each patient is entered in only one leukapheresis site and only

once.
o S INCpee =1 (A.42)

Equation (A.43) ensures that no more than 8 patients are entered each day in total.
e 3,INCpce <8(A.43)

Equation (A.44) gives the capacity of each leukapheresis site c at every time t, whilst Equation
(A.45) makes sure that the therapies do not exceed the available capacity of each

leukapheresis site site.

° CAPC,t = FCAC - ZP INCp,clt, Vp, C,t (A.44)
e 5,INCyei-S5,0UTCpe< CAPLey, Vp, C,t (A.45)
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4.2.2 WAITING TIME

In this set of scenarios, it is known from 4.2.1 the maximum number of patients that each
network can accommodate if we allow optimal allocation in leukapheresis sites. However, this
is something very difficult to happen in real life as these therapies are addressed to terminally
ill cancer patients that will not be able to travel. So, having this in mind, given demand profiles
(the same that were used in the single objective model) are used and it is evaluated how the

cost and return time for each therapy will change if waiting time is allowed.

The new variables that are employed:

Nomenclature

Indices

d Possible waiting time

twaity Days waiting in the leukapheresis site

Maxwait Maximum waiting time

Wo,cat 1 if patient waits

INW,,c.4,t Therapy p getting in waiting list at
leukapheresis site c at time t

OUTW,p,c4.t Therapy p getting out of waiting list at
leukapheresis site ¢ at time

INC2,, .t Patient getting out of waiting and getting in
for the leukapheresis

Again, in this model, the time constraint is removed.
o TRT, <18

The objective function is the following the goal is to minimize the total cost by increasing

delivery time.
. min TOTCOST =Yp CTMp + Yp TTCp + Y.p CQCp+X.p CWAITp
Equation (A.46) calculates the total cost for each patient.

o CWAIT=3¢atW1l, 4 twaits*100, V p (A.46)

Equation (A.47) ensures that all incoming patients are considered for waiting time
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° INCp,clt = zd INWP,C,d,tI Vp, C,t (A.47)

Equation (A.48) ensures that all patients in the waiting list eventually come out and
(A.49) ensures that everyone that comes out of the waiting list get into the leukapheresis

procedure.

° INWp,c,d,t = OUTWp,c,d,t+twait (A48)
o INC2pcc=Sa OUTW, ey (A.48)

Equation (A.49) ensures that all patients get out of the leukapheresis site after the

leukapheresis procedure.
o INCZplc,t - OUTC p'c”t+1 (A.49)

Equations (A.50)-(A.51) confirm that a minimum and maximum flow of material exists for a

transportation link to be established.

o INW,cqe>Wlpea* FMIN (A.50)
[ ] INWZI,C,d,t S Wlp,c,d,t* FMAX (A.Sl)

Equation (A.52) ensures that each patient is only assigned once in the waiting list.

° ZC,d,t Wlp,c,d,t =1 (A.52)

4.3 IMPLEMENTATION

All the models have been implemented in GAMS Release 24.8.5 r61358 WEX-WEI x86
64bit/MS Windows and solved with CPLEX 12.9.0. All computational experiments were
performed in a core i-5 Toshiba SATELLITE PROA50-EC-139 machine with 8GB of RAM running
the 64bit/MS Windows. The data for all the cases examined in this thesis, as well as the GAMS

code, can be made available upon request.
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CHAPTER 5: RESULTS AND DISCUSSION

5.1 MULTI-OBJECTIVE OPTIMIZATION

5.1.1 WEIGHTED SUM METHOD

The first multi-objective optimization method to be evaluated is the weighted sum method,
where, as explained in paragraphs 1 and 3, the two objectives are expressed into a single

objective function, each multiplied by a weight factor.

e  OBJECTIVE=min(a*35,NORMTC,+(1-a) *5,NORMTRT,) (A.38)

TCPT,—min (TCPTy)
max(TCPTy)—min (TCPTy) ’

e NORMTC, = where min and max TCPT, (total cost per

therapy) are calculated for each scenario using the single objective model. (A.39)

TRT,—min (TRTy)
max(TRT,)—min (TRTy)’

e NORMRT, =

where min and max TRT, (total return time per

therapy) are calculated for each scenario using the single objective model. (A.40)

The alpha factor is progressively increased from 0 to 1 by a step of 0,05. When the
alpha equals 0 it means that the cost is not considered in the minimization process,

while when alpha equals 1, time is not considered as an objective.
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For the different values of alpha the following results are obtained:

5.1.1.1 20 PATIENTS

Table 7: Weighted sum method for 20 patients

NUMBER OF PATIENTS: 20

Established alpha Total Cost (M Cost Average Return | Optimality
Facilities $) per Time (days) gap
Therapy
(K'$)
m1, m5 0 26,063 1303.2 17.00 0%
0.05 3,48 174.0 17 0%
0.1 3,48 174.0 17 0%
0.15 3,48 174.0 17 0%
0.2 3,48 174.0 17 0%
0.25 3,48 174.0 17 0%
0.3 3,48 174.0 17 0%
0.35 3,48 174.0 17 0%
0.4 3,48 174.0 17 0%
0.45 3,46 173.1 17.45 0%
mi 0.5 3,46 173.1 17.45 0%
0.55 3,45 172.7 17.75 0%
0.6 3,44 172.5 18 0%
0.65 3,43 171.8 18.70 0%
0.7 3,43 171.8 18.70 0%
0.75 3,43 171.8 18.70 0%
0.8 3,43 171.6 19 0%
0.85 3,43 171.6 19 0%
0.9 3,43 171.6 19 0%
1 3,43 171.6 19 0%
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Table 8: Single objective model for 20 patients'®

SINGLE OBJECTIVE MODEL
Average Return Time (days) Total Cost (M $) Cost per Therapy (K $)
17 3,48 174,1
18 3,45 172,6
19 3,43 171,6

Comparing the results from the single objective model and the multi-objective, it is stated that
the multi objective model reproduces and verifies the results of the single objective model.
As far as the return times of 17 and 19 days the total cost by the two models is the same.
However, at the 18 days the multi-objective model calculates a slightly lower total cost. This
can be explained by the fact that this model uses the average return time as the optimizing
objective. So, some patients might have return times of 19 days, some of 17 days and some
of 18 days but the average equals 18. In contrast, in the single objective model all patients

have a return time of 18 days, because this is given as a constraint by the user.
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Figure 10: return time of therapies — 20 patients

Another point worth mentioning is the results when alpha equals 0. At this point cost is
omitted from the objective function and as a result the algorithm stops when it finds the first
solution minimizing delivery time. Thus, the depicted cost is not realistic and should not be

taken under consideration.
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As it has been mentioned before, the prices present an uncertainty at around 20%, because

the market of CAR-T cell therapies is very new and there are not enough data available.

The pareto curve that depicts the above results is the following:

PARETO-20 PATIENTS
3.49E+06
3.48E+06
3.47E+06
3.46E+06
3.45E+06

3.44E+06

TOTAL COST (3)

3.43E+06

3.42E+06
16.50 17.00 17.50 18.00 18.50 19.00 19.50

Average Return Time (days) —@—alpha method

® single objective

Figure 11: Pareto curve for 20 patients with the weighted sum method
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5.1.1.2 50 PATIENTS

The same analysis is done for the demand profile of 50 patients.

Table 9: Weighted sum method for 50 patients

NUMBER OF PATIENTS: 50
Established alpha Total Cost (M Cost Average Return | Optimality
Facilities $) per Time (days) gap
Therapy
(K'$)
m1, m2 0 26.73 534.5 17 0%
0.05 7.22 144.4 17 0%
0.1 7.22 144.4 17 0%
0.15 7.22 144.4 17 0%
0.2 7.22 144.4 17 0%
0.25 7.22 144.4 17 0%
0.3 7.22 144.4 17 0%
0.35 7.22 144.4 17 0%
0.4 7.22 144.4 17 0%
0.45 7.21 144.2 17.06 0%
ml, m4 0.5 7.21 144.2 17.06 0%
0.55 7.16 143.2 17.58 0%
0.6 7.16 143.2 17.58 0%
0.65 7.14 142.9 17.8 0%
0.7 7.10 141.9 18.7 0%
0.75 7.09 141.9 18.76 0%
0.8 7.09 141.9 18.8 0%
0.85 7.09 141.8 18.98 0%
0.9 7.09 141.8 18.98 0%
1 7.09 141.8 18.98 0%
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Table 10: Single objective model for 50 patients

SINGLE OBJECTIVE MODEL

Average Return Time (days) Total Cost (M $) Cost per Therapy (K $)
17 7,22 144,4
18 7,14 142,7
19 7,09 141,8

And the pareto curve:

PARETO-50 PATIENTS
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Figure 12: Pareto curve for 50 patients with the weighted sum method
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5.1.1.3 125 PATIENTS

The results for 125 patients follow:

Table 11: Weighted sum method for 125 patients

NUMBER OF PATIENTS: 125
Established alpha Total Cost (M Cost Average Return | Optimality
Facilities $) per Time (days) gap
Therapy
(K'$)
m2, m6 0 33.14 265.1 17 0%
0.05 18.23 145.8 17 0%
0.1 18.23 145.8 17 0%
0.15 18.23 145.8 17 0%
0.2 18.23 145.8 17 0%
0.25 18.23 145.8 17 0%
0.3 18.23 145.8 17 0%
0.35 18.23 145.8 17 0%
0.4 18.23 145.8 17 0%
0.45 18.22 145.7 17 0%
m3, m6 0.5 18.07 144.6 17.568 0%
0.55 17.97 143.8 17.992 0%
0.6 17.97 143.7 18 0%
0.65 17.84 142.8 18.856 0%
0.7 17.83 142.6 19 0%
0.75 17.83 142.6 19 0%
0.8 17.83 142.6 19 0%
0.85 17.83 142.6 19 0%
0.9 17.83 142.6 19 0%
1 17.83 142.6 19 0%

(64]




Table 12: Single objective model for 125 patients 8

SINGLE OBJECTIVE MODEL
Average Return Time (days) Total Cost (M $) Cost per Therapy (K $)
17 18,23 145,8
18 17,97 143,7
19 17,83 142,6

The pareto curve for 125 patients:
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Figure 13: Pareto curve for 125 patients with the weighted sum method

The same comments, as the demand profile of 20 patients, apply for the profiles of 50 and
125 patients. To conclude, the weighted sum method produces reasonable results similar to
the single objective model. However, even though the alpha is discretized a lot, the model
produces result at a very few time points. For this reason, it is necessary to evaluate another

method, the epsilon constraint to see if more pareto points can be obtained.
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5.1.2 Epsilon Constraint method

In this case the objective function that it is used is the same as the single objective model and

the return time is constraint under the epsilon value:

e minTOTCOST =5, CTM, + 3, TTC, + 5, CQC,

o ATRTZ< epsilon, where epsilon is from 17 to 19 changing by 0.1.

5.1.2.1 20 PATIENTS

Table 13: Epsilon-constraint method for 20 patients

NUMBER OF PATIENTS: 20

Established epsilon  Total Cost (M  Cost Average Return | Optimality
Facilities $) per Time (days) gap
Therapy
(K'$)
17 3.48 174.0 17 0%
17.1 3.48 173.8 17.1 0%
17.2 3.47 173.6 17.2 0%
17.3 3.47 173.4 17.3 0%
17.4 3.46 173.2 17.4 0%
17.5 3.46 173.1 17.5 0%
17.6 3.46 172.9 17.6 0%
17.7 3.46 172.8 17.7 0%
17.8 3.45 172.7 17.8 0%
17.9 3.45 172.6 17.9 0%
ml 18 3.45 172.5 18 0%
18.1 3.45 172.4 18.1 0%
18.2 3.45 1723 18.2 0%
18.3 3.44 172.2 18.3 0%
18.4 3.44 172.1 18.4 0%
18.5 3.44 172.0 18.5 0%
18.6 3.44 171.9 18.6 0%
18.7 3.44 171.8 18.7 0%
18.8 3.43 171.7 18.8 0%
18.9 3.43 171.7 18.9 0%
19 3.43 171.6 19 0%
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Table 11: Single objective model for 20 patients'®

SINGLE OBJECTIVE MODEL

Average Return Time (days) Total Cost (M $) Cost per Therapy (K $)
17 3,48 174,1
18 3,45 172,6
19 3,43 171,6

PARETO-20 PATIENTS

3.49
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Figure 14: Pareto curve for 20 patients with the epsilon-constraint method

In this case the cost is equal between the single objective model and the multi-objective model
for return times Of 17 and 19 days. However, for the 18 days there is a slight difference
between them because in the multi objective model the return time of each therapy is

different, and the average is calculated at 18 days.
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Figure 15: return time of therapies — 20 patients

It should be mentioned that the distribution of patients to different return times in the same

as the solution from the weighted sum method. This is expected since both solutions are

globally optimal.
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5.1.2.2 50 PATIENTS

Table 15: Epsilon-constraint method for 50 patients

NUMBER OF PATIENTS: 50

Established epsilon  Total Cost(M  Cost Average Return | Optimality
Facilities $) per Time (days) gap
Therapy
(K'$)
17 7.22 144.4 17 0%
17.1 7.21 1441 17.1 0%
17.2 7.20 143.9 17.2 0%
17.3 7.19 143.7 17.3 0%
17.4 7.18 143.5 174 0%
17.5 7.17 143.3 17.5 0%
17.6 7.16 143.2 17.6 0%
17.7 7.15 143.0 17.7 0%
17.8 7.14 142.9 17.8 0%
17.9 7.14 142.8 17.9 0%
ml, m4 18 7.13 142.7 18 0%
18.1 7.13 142.5 18.1 0%
18.2 7.12 142.4 18.2 0%
18.3 7.12 142.3 18.3 0%
18.4 7.11 142.2 18.4 0%
18.5 7.11 142.1 18.5 0%
18.6 7.10 142.0 18.6 0%
18.7 7.10 141.9 18.7 0%
18.8 7.09 141.9 18.8 0%
18.9 7.09 141.8 18.9 0%
19 7.09 141.8 19 0%
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Figure 16: Pareto curve for 50 patients with the epsilon-constraint method
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Figure 17: return time of therapies — 50 patients
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5.1.2.3 125 PATIENTS

Table 16: Epsilon-constraint method for 125 patients

NUMBER OF PATIENTS: 125

Established epsilon  Total Cost(M  Cost Average Return | Optimality
Facilities $) per Time (days) gap
Therapy
(K'$)
17 18.23 145.8 17 0%
17.1 18.20 145.6 17.1 0%
17.2 18.17 145.4 17.2 0%
17.3 18.14 145.2 17.3 0%
17.4 18.12 144.9 174 0%
17.5 18.09 144.7 17.5 0%
17.6 18.07 1445 17.6 0%
17.7 18.04 1443 17.7 0%
17.8 18.02 1441 17.8 0%
17.9 17.99 143.9 17.9 0%
m3, m6 18 17.97 143.7 18 0%
18.1 17.95 143.6 18.1 0%
18.2 17.94 143.5 18.2 0%
18.3 17.93 143.4 18.3 0%
18.4 17.91 143.3 18.4 0%
18.5 17.90 143.2 18.5 0%
18.6 17.88 143.1 18.6 0%
18.7 17.87 142.9 18.7 0%
18.8 17.85 142.8 18.8 0%
18.9 17.84 142.7 18.9 0%
19 17.83 142.6 19 0%
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Figure 18: Pareto curve for 125 patients with the epsilon-constraint method

For all three different turnaround times (17, 18 and 19 days) the calculated cost is the same
across the two models. In this scenario the optimal solution for an average of 18 days is when

all patients get their therapies at 18 days.

5.1.3 COMPARISON

In the weighted sum method, the solution distribution is not uniform, whereas in the epsilon
constraint method many more pareto optimal points can be obtained by changing the epsilon
value. This problem is intrinsic to the weighted sum method, as it tends to find optimal
solutions gathered around certain points. Other disadvantages of the method include: (1)
uniformly distributed set of weights does not guarantee a uniformly distributed set of Pareto-
optimal solutions, (2) Two different set of weights not necessarily lead to two different Pareto-
optimal solutions. Both methods are easy to apply and produce results comparable to each

other and to the single objective model.
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5.2 DEMAND MAXIMIZATION

In paragraph 3.2 it was discovered that the proposed networks for each demand profile are
not fully utilized, although they are the optimal solution for each scenario. This finding leads
to consider alternative ways to maximize the utilization of the network and thus reduce the
cost per therapy. One way to do this is by allowing optimal allocation of patients in the
different leukapheresis sites, which will be dictated by the capacity of the manufacturing
facility at each time point. So, instead of having determined demand profiles, the model will
be responsible for allocating a given number of patients in the optimal way. The time

constraint will also be omitted.

5.2.1 SMALLEST NETWORK

In the first scenario the smallest network (only one manufacturing facility) was chosen for the
demand profile of 20 patients. However, the utilization was only around 27%. To begin with,
the network was fixed with only ml being established and demand was progressively

increased from 20 to 70 patients, where the model became infeasible.
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Figure 19: Smallest supply chain network

Network characteristics:
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There are 9 nodes in the model.

Nodes in the 1% step are 4 leukapheresis sites. In each unit there is one incoming current (INC)
and one that exits (OUTC). Each leukapheresis site is linked with the one established

manufacturing facility.

The only node in the 2™ step is 1 manufacturing site. In that, 4 currents get in (INM) and 4 get

out (OUTM). The manufacturing facility is linked with 4 leukapheresis sites and 4 hospitals.

Nodes in the 3™ step are 4 hospitals. In each unit there is one incoming current (INH). Each

hospital is only linked with the one manufacturing facility.

It is obvious that the node with the most links is the manufacturing facility and as a result it is

expected that it will get saturated first.

All the currents are of similar size, there is not much variation in the number of patients that

enter or exit each node daily.
The results that were obtained are presented in the following table:

Table 17: Total cost per therapy, average return time and capacity utilization for each

demand level — small network

Demand Maximization

Established Number of = Total Cost per Average Return Average
Facilities Patients Therapy (K S) Time utilization (%)
m1 =4 lines 20 172.7 18.2 30%

30 122.4 18.3 44%

40 97.8 17.95 59%

50 82.6 18.06 74%

60 72.4 18.1 89%
m1=5 lines 70 65.4 17.94 days 83%

It is noted that the average of the percentage of utilization is calculated for days t4-t122,

because t1-t3 leukapheresis and transportation to the manufacturing facility is executed and
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t123-t130 quality control and transportation to the leukapheresis site is done. As a result, it is

obvious that during this time manufacturing is not possible by default.

In the following diagrams, the percentage of utilization for each day and for each demand

level is depicted.
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Figure 20: Smallest network — Capacity utilization for different demand levels

Also, there was constructed a diagram showing the relationship between the level of demand,

percentage of capacity utilization and the cost per therapy.
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Figure 21: Capacity utilization and cost per therapy in relation to demand level

—small network

From all the above, it is concluded that as the number of patient increases, the % of utilization

also increases linearly and the cost per therapy decreases.

Subsequently, if the number of patients increased from 20 to 60 utilizing the existing m1
facility, while allowing optimal allocation of patients, the cost per therapy would decrease
from 172.7kS ® to 72.4k S. This is a very important decrease of 100k$ that must be taken into

consideration when designing a product and its supply chain for commercial use.

As far as the robustness of the supply chain and its ability to absorb unexpected shocks in the
demand are concerned, it is observed that the first node to get saturated is the second one
(manufacturing facility). So, it is suggested that this unit will be over designed to be able to
accommodate fluctuations in the demand. We assume there was a 25% leeway in the design,
that is set free now and the actual manufacturing facility will have a capacity of 5 lines instead
of 4. With this modification then demand that the network can accommodate increases from

60to 70, a 16,7% increase.

Also, it is observed that average return time of therapies does not have a certain relationship
compared to the number of patients, although it was suspected that the higher the demand
the higher the return time. For all demand levels, return time is around 18 days with some

fluctuations.

[76]



AVERAGE RETURN TIME

19
18.8
18.6
18.4
182 @
18 °®
17.8
17.6
17.4
17.2

17
20 30 40 50 60 70

AVERAGE RETURN TIME (days)

# OF PATIENTS

Figure 22: average return time in relation to demand level — small network
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5.2.1.1 ALTERNATIVE NETWORKS

In industry it is usual to rent part of existing facilities instead of establishing new ones as it can
be more cost effective. It is useful to investigate if a supply chain network with overall the
same capacity (4 lines) but more manufacturing facilities being employed can perform equally

well.

In this case it is assumed that facilities m1 and m4 are already established and half of each
(m1=2 lines, m4=2lines) is rented. It is noted that the cost is not depicted here, since new cost

data of renting a facility instead of “building it” are not introduced in the model at this point.

The new network will be:
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INC ﬁ Q A
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INC ﬁg S~ /\a
Leukapheresis site Manufacturing site Hospital
(model input) (model input) (model input)

Figure 23: Smallest network — alternative with 2 units

Now each leukapheresis site has two currents that exit, and each hospital has two incoming
currents. M1 is located in Stevenage (UK) and m4 in Belgium, while all leukapheresis sites are
within the UK, so it is expected that this network has more complex logistics both as return

time and transportation costs are concerned.
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Table 18: Average return time and capacity utilization for each demand level — alternative

small network

Established Number of = Average Return Average
Facilities Patients Time utilization (%)
m1 =4 lines 20 18.2 30%
30 18.3 44%
40 17.95 59%
50 18.06 74%
60 18.1 89%
20 18.2 36%
24%
30 18.23 39%
m1=2 lines
50%
40 18 56%
m4=2 lines
62%
50 18.18 71%
77%
20 18.2 36%
30%
24%
30 17.97 59%
36%
m1=1 line
47%
m2=2 lines
40 18.1 59%
m3 =1 line
59%
59%
50 18.08 71%
77%
71%
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For each demand level return time and capacity utilization are similar between the two
networks. However, the simple network with one manufacturing facility can accommodate 60
patients while the more complex one can only accommodate 50. This is because by opening
more facilities the network becomes more complex, binary variables and constraints increase,

thus rendering the model infeasible sooner due to solver running out of memory.

A scenario with three manufacturing facilities is also checked. Specifically, 1 line in

manufacturing facility m1, one line in m3 and 2 lines in m2.
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Figure 24: Smallest network — alternative with 3 units

Now each leukapheresis site has three currents that exit, and each hospital has three incoming

currents.

The results are similar with the one with 2 manufacturing facilities. Again, the maximum

number of patients that can be accommodated are 50 and the average return time 18.08days.

The diagram below depicts the average return time in relation to demand level for the three
alternative networks. There is not much variation in the values and all of them are around 18

days.
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Figure 25: average return time in relation to demand level for the alternative

small networks

Since there are no data considering the renting of the facilities, only the transportation cost

can be compared between the different networks.
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Figure 26: average transport cost in relation to demand level for the alternative

small networks

It is observed that the smallest network in almost all demand levels has lower transportation
cost. This is reasonable since m1 is located within the uk. Then follows the network with 3
units and the costliest is the network with m1 and m4 because the transportation cost to

Belgium is higher.
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The above results signify that the alternative networks tested can potentially and theoretically
be as efficient as the simpler one. However, because computational difficulty increases with
network complexity, the model gives results for demand level of 60 patients only for the
simple network. Furthermore, this tactic is usually followed by other businesses, but it is not
very suitable for personalized therapies because materials transferred need specific handling
and temperature monitoring and the manufacturing facility must be the closest possible to
the leukapheresis site and the hospital to eliminate logistic costs and avoid deterioration of

the therapies due to multiple transportations.
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5.2.2 MEDIUM-SIZED NETWORK

The same steps as in paragraph 4.3.1 will be followed for the bigger network, which includes
manufacturing facilities m1 and m4 and was chosen as the optimal for the given demand
profile of 50 patients. Again, this network was not fully utilized (m1 around 55%, m4 around
10%). In this paragraph the maximum number of patients that can be accommodated by this

network will be evaluated.

Table 19: Total Cost per therapy, average return time and capacity utilization for each

demand level — medium-sized network

Demand Maximization

Established Number of = Total Cost per Average Return Average

Facilities Patients Therapy (K S) Time utilization (%)

70 109.2 18.04 46%

58%

80 98.4 18.03 53%

m1 =4 lines 65%

m4=4lines 90 89.8 18.30 64%

70%

100 83.4 17.98 77%

71%

110 77.9 17.98 71%

59%

ml=5lines 120 73.0 18.18 77%

m4=75 lines 65%

130 69.3 18.18 78%

76%

It is noted that the average of the percentage of utilization is calculated for days t4-t122,
because t1-t3 leukapheresis and transportation to the manufacturing facility is executed and
t123-t130 quality control and transportation to the leukapheresis site is done. As a result, it is

obvious that during this time manufacturing is not possible by default.
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In the following diagrams, the percentage of utilization of each manufacturing facility for each

day and for each demand level is depicted.
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Figure 27: Medium-sized network — Capacity utilization for different demand

levels

Also, there was constructed a diagram showing the relationship between the level of demand,

percentage of capacity utilization and the cost per therapy.
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Figure 28: Capacity utilization and cost per therapy in relation to demand level

— medium-sized network

From all the above, it is concluded that as the number of patient increases, the % of utilization

also increases linearly and the cost per therapy decreases.

Subsequently, if the number of patients increased from 50 to 100 utilizing the existing m1 and
m4 facilities, while allowing optimal allocation of patients, the cost per therapy would
decrease from 142.7kS$ 8to 83.4k S. This is a very important decrease around 42% that must

be taken into consideration when designing a product and its supply chain for commercial use.

Itis suggested that the manufacturing facility will be over designed to be able to accommodate
fluctuations in the demand. We assume there was a 25% leeway in the design, that is set free
now and the actual manufacturing facility will have a capacity of 10 lines instead of 8. With
this modification the demand that the network can accommodate increases from 100 to 130,

a 30% increase.

Also, it is observed that average return time of therapies does not have a certain relationship
compared to the number of patients, although it was suspected that the higher the demand
the higher the return time. For all demand levels, return time is around 18 days with some

fluctuations.
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network
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5.2.2.1 ALTERNATIVE NETWORKS
In this case it is assumed that facilities m3 and m4 are already established and part of each
(m3=5 lines, m4=3lines) is rented. It is noted that the cost is not depicted here, since new cost

data of renting a facility instead of “building it” are not introduced in the model at this point.

Table 20: Average return time and capacity utilization for each demand level — alternative

medium-sized network

Established Number of = Average Return Average
Facilities Patients Time utilization (%)
70 18.04 46%
58%
80 18.03 53%
m1l=4lines 65%
m4 =4lines 90 17.30 64%
70%
100 17.98 77%
71%
70 18.13 52%
51%
80 18.19 59%
m3=5 lines
59%
423 lines 90 18.08 64%
71%
100 18.07 71%
79%
70 18.19 52%
80 18.21 59%
m3=8 lines 90 18.14 67%
100 17.94 74%
110 18.07 82%
120 18.11 89%
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For each demand level return time and capacity utilization are similar between the two
networks. However, for the simpler network with one manufacturing facility there is a solution
up to 120 patients while for the more complex one only up to 100. This is because by opening
more facilities the network becomes more complex, binary variables and constraints increase,

thus rendering the model infeasible sooner due to solver running out of memory.

A scenario with three manufacturing facilities is also checked. Specifically, 2 lines in

manufacturing facility m1, 4 lines in m3 and 2 lines in m4.

The results are similar with the one with 2 manufacturing facilities. Again, the maximum

number of patients that can be accommodated are 50 and the average return time 18.08days.

The diagram below depicts the average return time in relation to demand level for the three
alternative networks. There is not much variation in the values and all of them are around 18

days.
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Figure 30: Average return time in relation to demand level for the alternative

medium-sized networks

The above results signify that the alternative networks tested can potentially and theoretically
be as efficient as the simpler one. However, because computational difficulty increases with
network complexity, the model gives results for demand level of 120 patients only for the
simple network. But also, this usual tactic followed by other businesses is not very suitable for
personalized therapies because materials transferred need very specific handling and
temperature monitoring and the manufacturing facility must be the closest possible to the

leukapheresis site and the hospital to eliminate logistic costs and avoid deterioration of the

(88]



therapies due to multiple transportations. These alternative networks could be short-term
solutions for the near future because during this time it is supposed that the “new”

manufacturing facilities will be under construction.
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Figure 31: average transport cost in relation to demand level for the alternative

medium sized networks

In this case, the network with m1 and m4 has the lowest transportation cost and it is followed

by the network with m3 and lastly be the one with m3 and m4
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5.2.3 LARGE NETWORK

The same steps as in paragraph 4.3.1 will be followed for the bigger network, which includes
manufacturing facilities m3 and m6 and was chosen as the optimal for the given demand
profile of 125 patients. Again, this network was not fully utilized (m3 around 50%, m4 around
10%). In this paragraph the maximum number of patients that can be accommodated by this

network will be evaluated.

Table 21: Total Cost per therapy, average return time and capacity utilization for each

demand level — medium-sized network

Demand Maximization

Established Number of = Total Cost per Average Return Average
Facilities Patients Therapy (K S) Time utilization (%)
100 174.5 18.12 25%
34%
110 160.7 18.14 35%
30%
120 149.3 18.08 34%
37%
130 139.5 18.23 38%
39%
140 131.6 18.06 36%
m3 =10 lines
47%
m6 = 10 lines
150 124.3 18.11 49%
40%
160 117.9 18.15 45%
50%
170 112.3 18.21 48%
53%
180 107.5 18.10 54%
53%
190 103.1 18.14 59%
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53%

200 99.1 18.17 57%

62%

210 95.5 18.09 68%

56%

220 92.3 18.13 66%

65%

230 89.4 18.10 68%

68%

240 86.5 18.19 69%

74%

250 84.1 18.10 74%

74%

m3 =12 lines 260 81.8 18.10 61%
m6 = 13 lines 62%

It should be mentioned that solver run out of memory after 250 patients in the network with
m3 (10 lines) and m6 (10 lines) and after 260 patients in the network with m3 (12 lines) and
m6 (13 lines)

In the following diagrams, the percentage of utilization of each manufacturing facility for each

day and for each demand level is depicted.
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Figure 32: Bigger network — Capacity utilization for different demand levels
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Also, there was constructed a diagram showing the relationship between the level of demand,

percentage of capacity utilization and the cost per therapy.
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Figure 33: Capacity utilization and cost per therapy in relation to demand level

— Bigger network

Again, it is observed that as the number of patient increases, the % of utilization also increases

linearly and the cost per therapy decreases.

Subsequently, if the number of patients increased from 125 to 250 utilizing the existing m3
and m6 facilities, while allowing optimal allocation of patients, the cost per therapy would

decrease from 143.7k$ *® to 84.1k $. This is a very important decrease around 42%.

Itis suggested that the manufacturing facility will be over designed to be able to accommodate
fluctuations in the demand. We assume there was a 25% leeway in the design, that is set free
now and the actual manufacturing facilities will have a capacity of 25 lines instead of 20. With
this modification the maximum demand that the network can accommodate was not
calculated because the solver run out of memory. There was only one solution for 260

patients.

Also, it is observed that average return time of therapies does not have a certain relationship
compared to the number of patients, although it was suspected that the higher the demand
the higher the return time. For all demand levels, return time is around 18 days with some

fluctuations.

(93]



AVERAGE RETURN TIME

19.00

18.80

18.60

18.40

18.20 ° e ©® ®

18.00

17.80

17.60

17.40

17.20

17.00
100 120 140 160 180 200 220 240 260 280

# OF PATIENTS

AVERAGE RETURN TIME (DAYS)

Figure 34: average return time in relation to demand level — bigger network
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5.2.3.1 ALTERNATIVE NETWORKS
In this case it is assumed that facility m2 is already established and 20 lines of it are rented. It
is noted that the cost is not depicted here, since new cost data of renting a facility instead of

“building it” are not introduced in the model at this point.

Table 22: Average return time and capacity utilization for each demand level — alternative

bigger network

Established Number of = Average Return Average
Facilities Patients Time utilization (%)

110 18.14 35%

30%

120 18.08 34%

37%

130 18.23 38%

39%

140 18.06 36%

47%

150 18.11 49%

40%

160 18.15 45%

m3=10 lines 50%
m6=10 lines 170 18.21 48%
53%

180 18.10 54%

53%

190 18.14 59%

53%

200 18.17 57%

62%

210 18.09 68%

56%

220 18.13 66%

65%
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230 18.10 68%

68%

240 18.19 69%
74%

250 18.10 74%
74%

110 17.99 36%
120 17.99 36%
130 18.09 39%
140 18.03 42%
150 18.11 44%
160 18.11 47%
170 18.11 50%
180 18.18 53%
190 18.11 56%
m2 =20 lines 200 18.12 59%
210 18.10 62%
220 18.13 65%
230 18.06 68%
240 18.00 71%
250 18.05 74%
260 18.11 77%
270 18.08 80%
280 18.10 83%
290 18.14 86%

For each demand level return time and capacity utilization are similar between the two
networks. However, the simple network with one manufacturing facility provides a solution
for up to 290 patients while the more complex one can only up to 250. This is because by
opening more facilities the network becomes more complex, binary variables and constraints

increase, thus rendering the model infeasible sooner due to solver running out of memory.
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The diagram below depicts the average return time in relation to demand level for the two
alternative networks. There is not much variation in the values and all of them are around 18

days.
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Figure 35: Average return time in relation to demand level for the alternative

bigger networks
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Figure 36: average transport cost in relation to demand level for the alternative

medium sized networks

In this case, the network with only facility m2 has the lowest transportation cost. This was

expected since facilities m3 and m6 have higher unit transport costs.
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5.2.4 COMMENTS

In this section it has been proven how important it is to maximize the utilization of each
manufacturing facility to minimize the cost. In all three different networks that were tested
for the three demand levels it was proven that average cost per therapy was decreased by
more than 40% compared to the results of the original model. Also, by analyzing the networks
it was observed that the first node to get saturated is the manufacturing facilities. Because
the market of CAR-T cell therapies is new and demand can be unexpected it is suggested to
overdesign this unit to be able to absorb possible demand shocks. For this reason, it was
assumed that in the nominal cases there was a 25% leeway that was set free in the rest of the
scenaria. By testing this hypothesis, it is observed that capacity of the small network as a
whole was increased by 17% and the capacity of the medium sized network by 30%. It was not
possible to test this in the bigger network since solver run out of memory and could only

produce results up to 260 patients.

Table 23: Average cost per therapy calculated by the original model, the demand maximization

model with and without the leeway

Number of patients  Original model Demand Demand
maximization maximization model
Model -25% leeway - no leeway

20 172.6 172.7 172.7

50 142.7 82.6 82.6

125 143.7 142.6 71.3
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These findings are depicted in the following diagrams.
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Figure 37: Average cost per therapy in relation to demand level in each supply

chain network with 25% leeway
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Figure 38: Average cost per therapy in relation to demand level in each supply

chain network without the leeway
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Furthermore, alternative networks with same capacity were tested to evaluate the possibility
of renting part of other existing facilities. This can be a short-term solution before deciding
which facilities to establish and with what capacity or a long term solution when expansion of
the network will be needed due to higher demands. It was observed that networks with one
manufacturing facility with larger capacity perform slightly better than more complicated
networks with two or three facilities with smaller capacity. This is because computationally

the problem becomes more difficult the more complex the network is.
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5.3 WAITING TIME

All the above scenaria allocate the patients in an optimal way to the different leukapheresis
sites. This might not be possible though, as these therapies are addressed to terminally ill
cancer patients that will not be capable of travelling. In real life it would be more reasonable
to have the patients wait in the hospital they originally arrive until a facility has free capacity

to manufacture their therapies.

5.3.1 50 PATIENTS

Cost-wise as the usage ration of a facility increases the cost of the therapy is reduced, as it is
proved. So, it has been seen that facility ml can accommodate up to 60 patients
(72,392.295/therapy), but when the scenario with a randomized demand profile of 50 patients
is tested, the model chooses to establish facilities m1 and m4, which almost doubles the cost
of the therapy (142.736,456) 8. This is because it is assumed that every patient is treated
immediately and there are no delays between the processes. So, the moment a new patient
arrives, and the manufacturing facility is full, a second one is established. In the following
scenario it is assumed that patients can get in a “waiting list” for up to 14 days to reduce the
cost. The waiting time will be before the leukapheresis procedure, so shelf-life problems are
avoided. More specifically the arrival day of each patient is given by the randomized demand
profile. Then, the algorithm calculates capacity in the manufacturing facility and if there is not
available free line, the patient does not proceed to the leukapheresis procedure but remains
in a waiting list. When a space opens up the patient get in for the leukapheresis and the rest
of the supply chain is the same as the original model. In the scenario of 50 patients it is
expected that model will choose to establish only m1 and indeed it does. The results are the

following:
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Table 24: Total Cost per Therapy and average return time if waiting time is allowed —

randomized demand of 50 patients

MODEL Established Number Total Cost per Average return time Average
facilities of Therapy (K S) (days) utilization
Patients (%)

WAITING m1 50 81.6 21.48 74%
TIME

OPTIMIZED m1 50 82.6 18.06 74%
ALLOCATION

SINGLE - m1, m4 50 141.8 19.00 55%

OBJECTIVE 12%

First of all, the main variable that must be checked is the total return time of therapies to
ensure that it remains within a reasonable range. The average return time (21.48 days) is
reasonable since some patients will need to wait and there will be a delay in their therapies.

In the following diagram the total return time for each patient is depicted.
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Figure 39: Total return time per patient if waiting time is allowed — randomized

demand of 50 patients

It is observed that almost 54% of the therapies will be administered at 19 days, 34% will need

to wait a week or less and 12% will delay from 7 to 14 days.
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Figure 40: Total waiting time per patient— randomized demand of 50 patients

As far as the total cost per therapy is concerned, it is reduced from 142.8 k S (single objective
model without waiting time, ) to 81.6 K S (single objective model with waiting time). These
are very promising results since cost minimization is imperative if these therapies are to be

produced commercially.
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Figure 41: 50 incoming patients, randomized profile, and optimal allocation
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5.3.2 125 PATIENTS

The same steps as in 4.4.1 were repeated for the randomized demand profile of 125 patient.
The original model had chosen the establishment of m3 and m6 for this demand level,
however utilization of the first facility was around 60% and of the second only 10%. The cost
per therapy was as high as 142,6K $ . The results from the new model are presented

below:

Table 25: Total Cost per Therapy and average return time if waiting time is allowed —

randomized demand of 125 patients

MODEL Established = Number Total Cost per Average return time Average
facilities of Therapy (K S) (days) utilization
Patients (%)
WAITING m3 125 82.5 19.56 74%
TIME
SINGLE - m3, m6 125 142.6 19.00 57%
OBJECTIVE 10%
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Figure 42: Total return time per patient if waiting time is allowed — randomized

demand of 125 patients
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It is observed that almost 78.4% of the therapies will be administered at 19 days, 16.8% will

need to wait a 3 days or less and 4.8% will delay from 4 to 5 days.
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Figure 43: Total waiting time per patient— randomized demand of 125 patients

As far as the total cost per therapy is concerned, it is reduced from 142.6 k S (single objective
model without waiting time 8) to 82.5 K $ (single objective model with waiting time). These
are very promising results since cost minimization is imperative if these therapies are to be

produced commercially.

5.3.3 COMMENTS

The addition of the waiting time in the model was a very important step, since it makes the
network more realistic and a lot more cost-efficient. For both demand profiles that were
tested the cost was almost 40% lowered compared to the original model and as the
established manufacturing facilities were utilized at a higher ratio. What is also very important
is that turnaround time of the therapy was not increased much for the vast majority of the
patients. These findings suggest that the new model is significantly improved compared to the

original one.
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CHAPTER 6: CONCLUSIONS AND FURTHER RESEARCH

This thesis has addressed the increasing demand in CART cell therapies by improving a novel
MILP model that optimizes the supply chain of their production and distribution. The scope of
the analysis involves two main areas: multi-objective optimization for the selection of
manufacturing facilities to be established and efficiency maximization of the proposed

networks.

As far as the multi-objective optimization is concerned, the aim is to evaluate the trade-off
between minimizing the cost and minimizing delivery time of the therapies. There are two
methods evaluated: the weighted sum and the epsilon constraint. By comparing the two the
epsilon constraint seems to be more efficient since the solution distribution is more uniform
and many more pareto optimal points are calculated compared to the weighted sum method.
The latter one, although very simple, gives reliable results but solutions are grouped around

certain points and are not evenly distributed in the whole decision space.

The second part of the thesis aims to maximize utilization of each network to decrease cost
by two different ways. The first one is by allocating in an optimal way the incoming patients
to the different leukapheresis sites, to allow better patient scheduling in the manufacturing
facilities. In that case, the user does not input a randomized demand profile to the model,
rather only the total number of patients is given, and the model is responsible to allocate
them. The new model is proved very efficient since average cost per therapy is reduced by
almost 40% compared to the results of the original model. For 50 patients the original model
suggests the establishment of m1 and m4 and the therapy has an average cost of 142.7 K$%,
while the new model utilizes only facility m1 and the cost is 82.6 KS. For 125 patients the
original model establishes facilities m3 and m6 with an average cost per therapy at 143.7kS$
18 when the improved model uses facilities m1 and m4 or m3 alone with a cost around 80.1kS.
It is mentioned that average return time in all the scenaria are around 18 days. The second
method is by incorporating delays in the original model. It is true that optimal allocation of
patients might not be always possible since the therapies are addressed to terminally ill cancer
patients that will not be able to travel. For this reason, a waiting time has been introduced to
the model. When the manufacturing facility is full and a new patient arrives, he/she is
automatically put into a waiting list until an open spot opens and the patient proceed to the
leukapheresis. With this procedure, the cost is again reduced significantly to 81.6K$S and

82.5KS for the demand profiles of 50 and 125 patients respectively. All the above are very
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promising results and since cost reduction is imperative if these therapies are to be produced

commercially.

To conclude, the proposed approach is proven to be very efficient, however the model is not
capable to produce results for bigger sized problems with much higher demand. Thus, the
effect of combining it with a decomposition algorithm should be examined. Additionally,
transition from the static model to a dynamic one should also be evaluated. Lastly, machine
learning techniques used to forecast peak and off-peak times can also be helpful in rendering

the model more realistic.
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