EONIKO METzOBIO [MOAYTEXNEIO

2 XOAH HAEKTPOAOTON MHXANIKON
KAI MHXANIKON YTIOAOTIETON

TOMEAX TEXNOAOTIAY [IAHPO®OPIKHE KAI
YTIOAOTIETON

k4
o
O

Y

<EX
Sy B

5>
g
55

3

\p:

o ‘4,
K
’ g‘
OMHOEVS
=
AVPPopos

\

Ay

IIpocaproGTIKOS OLONOLPAGHUOC TOP®V GE VTOAOYIOTIKGA VEQT
RE YPNON TEPLEKTAOV Kal BaBrdg evioyvTiKg padnong

AITIAQMATKH EPTAZIA

Miltiadng B. Xpvcsomovrog

Emprénov: Nextdprog Koldpng
Koabnynmg E.M.IL

AbBnva, lodvAog, 2022

E®GNIKO METZOBIO IIOAYTEXNEIO

> XOAH HAEKTPOAOTON MHXANIKON
KAI MHXANIKON YTIOAOTIZTON

TOMEAX TEXNOAOTIAY [IAHPO®OPIKHE KAI
YTIOAOTTETON

§

. C
Lﬂ%}:‘- 2
SN
gy
CPOMHOEVS o
NShi=
NVPPOPos

Ay

IIpocapproGTIKOS OLANOLPAGHOC TOP®V GE VTOAOYLOTIKA VEQT
LE YPNON TEPLEKTAOV Kal BaOLdg evioyvTiKS nadnong

AITIAQMATIKH EPT'AXIA

Miitidong B. Xpvodmovirog

EmBiénov : Nextdprog Koldpng
Kobnynmce E.M.IL.

EykpiOnke amd v tpuein eEetaotikn emtponny v 25" Avyodvotov 2022.
ABMva, lodiiog 2022

Nektaprog Koloprg T'edpyrog I'covpag loavvne Kovortavrivov
Kafnynmge E.M.IL Avominpotg Kabnynmg Emikovpog Kabnynrrg
E.M.IL. Naveniotiuo Osooaliog

MiAt166n¢ B. Xpvoomoviog

Aumhopatodyoc Hiektpoldyog Mrnyavikog kot Mnyovikdg Yroroyiotdv E.MLIT.

Copyright © M1At1401nG¢ Xpvodmoviog, 2022,
Me empOraén Tavtoc dwaimdpartog. All rights reserved.

Amayopebetal 1) avItypoen], amofnKevoT Kot Slovopr g mapovoag epyasiog, & oAokApov
N TUAHATOS OVTNG, Yo EUToPtkd okomd. Emitpémetol 1 avatdnmon), amobnKevon Kot dlavoun
Y. OKOTO PN KEPOOCKOMIKO, EKTALOEVTIKNG 1| EPEVVNTIKNG PVONC, VIO TNV Tpobmdbeon va
OVOQEPETOL 1 TTNYN TPOEAEVONG Kol Vo dlatnpeitol to mapdv ufvoua. Epotiuato mov
apOPOVY TN YPNON TNG EPYOACING Y10 KEPOOOKOMIKO OKOTO TPEMEL VO AMELBVVOVTOL TPOG TOV
GLYYPOPEQ.

Ot amOWYEIg KOl TO. CLUTEPAGUOTO TTOV TEPLEYOVTAL GE OVTO TO Eyypapo ekepdlovv Tov
oLYYPOQPEN Kot Ogv TPEMEL VO, EPUNVELOEL OTL AVIIIIPOCOTEVOVY TIC €mionpeg Béoelg Tov
EBvikov Metoofiov IoAivteyveiov.

MNeplAndn

H ehaotikn Slaxeiplon mopwv ivat pa oAU emiBupntr AeltoupyLlkotnTa o €GAPOYEC TTOU
oxedLalovtal Kal eKTEAOUVTAL O UTTOAOYLOTLKA VEPN KABwWG TTOAAEC CUVNOLOUEVEC TTOALTLKES
TILOAOYNONG KOOTOAOYOUV e BAON TNV KATAVAAWGH TwV OpwV. Eival Aourov apketa
onUavTikn N BEATLOTN XPNOLLOTONGN TWV TTIOPWVY WOTE TO KOGTN VA £vVaL TETOLA TTOU VAl
SikatoAoyouv Tn petadopd edappoywy og UTIOAOYLOTIKA VEDN. H Xxprion TepLeKTwY
(containers) yla to oxeblaopo kat TV petadopd epapUoywV o€ UTIOAOYLOTIKA VEDN elval
MLOL TILO ATtOSOTLKI TIPOCEYYLON OE OXECN LE TNV OUVNBLOPEVN TAKTIKI TNG XPNONC ELKOVLKWV
MNXOVWV. AUTO YLOTL OL ELKOVLKEG INXAVEG ELOAYOUV £Va ONUAVTIKO KOOTOC O€ XPOVO KOl O
TIOPOUG ahoU KABE pnxovr TPEMEL VA TPEXEL SIKO TNG AELTOUPYLKO oUOTNUA, O€ avtiBeon pe
TOUG TIEPLEKTEG TIOU SLapolpalovTal ToUG TIOPOUC TNG ELKOVLKNG N GUGCLKAG Unxavne. H xprion
TIEPLEKTWYV CUVOPAUEL OTNV AVATITUEN EPOpUOYWY LE TO TTPOTUTIO TWV Microservices Omou n
epappoyn xwplletol e MOAAEG LILKPOTEPEG AVEEAPTNTEG OVTOTNTEC OL OTIOLEG UIOPOUV VOl
TpEXouV avefdptnTta. AUTO TO TPATUTIO EVLOXUEL TLG SUVATOTNTEC TNG EAAOTLKAG Slaxeiplong
TopwVv adou n KABe ovtotnTa UMOoPEL va ekTeAeital e SLadOopETIKO apLOO TIEPLEKTWV
QVAAOYQ LLE TLG AVAYKEC.

H xprion neplektwy Snuolpynoe ypnyopa aVAYKEG CUCTNULKNAG OpYyAvVWong Kal
OGUVTOVLOHOU Toug KaBw¢ auéavetal to MANBog Kal n SLadopeTIKOTNTA AUTWY OTO MAALOLO
pLag eviaiag epappoyns. To cuotnua Kubernetes sivat €va cbotnua ou e€unnpetel
aKpLBWC auTo Tov oKomo. Evw elval oAU amodotikd og {NTHUATA GUVTOVIOHOU TWV
TEPLEKTWV TTACYEL 0€ {nTrHata Stoxeiplong mopwv adou mPoodhEPeL LOVO OTTAOIKEG
TPOOEYYLOELG, OL OTtOLEC elval avemapkelg yia cuvBeTeg edappoyEg Omwe pa NoSQL Baon
TIOU XpnoLomoLnBnke ota mAailola Tn¢ epyaciag.

MNa to AOyo auTO MPOTEIVOULE £va LOVTEAO BaBLAC EVIOXUTIKNG LABnong To omoio
AeLtoupyel CUUMANPWHATIKA OE €va CUMMAEYUa pnxavwy Kubernetes yla tov éAeyyo kat tn
Suvautkn Slaxeiplon Twv mepLeKTwY TG epappoyns. Mo va Eenepdoou e BepeAlwdeLg
SUOKOALEC OXETIKA e TNV EKTTOLSEVON TETOLWV LOVTEAWVY OE PEAALOTIKEG GUVONKEC KOl Vol
HELWOOULE TO XPOVO KAl TOV aplOpo Twv oAANAETILOpACEWY TOU OVTEAOU LE TO CUOTNUA,
XPNOLLOTIOLOUE TEXVIKEG BEATLOTOTIONONG TNC EKMAideUONG amo TN ouyxpovn BBAloypadia
KOBWC¢ Kal aAyopiBUouG aoUyXpovNnG EVICXUTIKAG LABnong. Asixvoupe OTL TO TIPOTELWVOUEVO
oUOTNUA €XEL CUCTNUOTLKN BeATiWON TNG anddoong og 0XECN LE TO AVTLOTOLO CUCTNHA
ouyxpovng ekmaideuong Kal mw¢ KatadEpvel va e€ayel BEATIWUEVEC TTOALTIKES ANPNG
amopACEWV AKOUA KaL 0€ XAUNANG ToLOTNTAG SESOUEVWVY.

Négerg KAewdia: EAaotikdtnta, Alaxeipion Mopwy, Mepléktng, YroAoylotiko Nédog, Babia
Evioxutikry MdaBnon, AcUyxpovn Evioxutikn MaBnon, CQL, Kubernetes, NoSQL

Abstract

Elastic resource allocation is a highly desirable functionality in cloud native applications
because many common pricing policies of cloud vendors are based on resource allocation.
Consequently, optimal utilization of computational resources is important so that a
migration of an application from on-premises to the cloud is reasonable pricewise. Using
containerized applications for cloud deployment is a more promising alternative to the usual
deployment with virtual machines, in terms of resource allocation. The reason is that every
virtual machine must run its own operating system kernel, a fact that introduces significant
time and resource overhead. Containers on the other hand, share the resources of the
hosting machine and take less time to initiate and terminate their execution. Additionally,
containerization promotes the microservices paradigm, where the application is divided in
discrete and independent components. This enhances the elasticity capabilities, since every
component can be scaled independently according to the needs of the application at
different times.

Containerization rapidly creates needs for systematic orchestration and coordination of the
containers, as application comprise of containers that increase in number and complexity.
The Kubernetes system is an orchestration system for containerized applications that fulfills
this exact need. Although it is very effective in terms of container coordination it lacks in
resource administration because it offers only simplistic threshold-based approaches that
are inadequate for complex application components, such as a NoSQL database that was
used for the scope of this work.

To address this issue, we propose a Deep Reinforcement Learning model that is
complementary to a Kubernetes cluster and its role is to monitor and automatically scale the
containers of the application according to incoming workload. To overcome core obstacles
that are involved in training such models in realistic scenarios and reduce the training time
as well as the number of interactions between the model and the system, we use training
optimization techniques from contemporary literature as well as offline Reinforcement
Learning algorithms. We provide empirical results that show that our model achieves
systematic improvement compared to its online equivalent for a given number of
experiences and that it is able to extract improved decision-making policies even from data
of lower quality.

Keywords: Elasticity, Resource Management, Container, Cloud Computing, Deep
Reinforcement Learning, Offline Reinforcement Learning, CQL, Kubernetes, NoSQL

Table of Contents

T D AN N ettt ettt ettt e e e e et e e e s abee e tae e e abe e e beeeeabeeebaeeabaeeetraeeataeeetbeeebaeeareeearaean 5
ADSTIACE ..ttt b et b e eh e st be b b e e nres 6
I o B S = {0 LSRR 9

L ELGOYOVI] e e ettteee ettt e e ettt e e ettt e e e et eeeeeeteeeeeeabeeeeetaaseeeaaseeaeeassaaeeassassaannsaeaeeassaseeanseeaesnnaaenan 10
1.1 KIVNTDO ottt ettt et e e et e e e e et b e e e e eabae e e e e abee e e atbaeeeebbeeaennnteeeeerres 10
1.2 IXETLKEG EPYOIOLEG c.vveeivreeetieeeiee ettt ettt ettt et e e e e e et e e etee e eteeesbaeesabeeeabeeessresenbeean 11
1.3 TTPOTELVOHEVI AAUOT ceeveicerieeiiee ettt et et e et e et estae e ateesateeesaeeesabeeeeaseesnbeeesaeesssesenseen 12
1.4 TEXVOAOYLKO YTTOBOBPO ...ttt ettt ettt ettt e et e e s aae e e e earae e e naeeaean 13
TEDLEKTEG . uveeeeiutreeeeeeteeeeeeitteeeeeetaeeeeeeateeeessssaeeeaasaesaassbaeeeassesaeaasnbeaasassssseeannseseeanssaeasasrns 13
KUDBINELES ...ttt et st e e st e e b e s ar e e s e s nreesareean 14
BOGLKA ZTOLXELOL TOU KUDBINELES. .. .eiivveeiteieitiectee et ettt et ete e et e et eeereeeeareeeavae s 15
BOOIKECG IGEEC TOU KUDBINETES. . uvviiiivreiieiiieie ettt ettt e e e eabre e e e eneee s eennrees 16

L0 [T o To [- PSPPSR PSTOPPROTPR 18
MOVTEAD AECOHEVIIV ..eeeneteeeeeiiieeeeeteeeeeetteeeeettaeeeeeaeeeeeestbaeeeeseeaesansbeeeeassesaeanteeaeasrees 19
ADPXLITEKTOVIKI] GUHTIAEYLOTOG «veeeuvreeeureeerreesureeeesseessseesasaeessseessseesssesesssessssesessesessssenseeenns 20
KBSSANAIA ..ttt ettt st s b e 21
EVLOXUTLKI) LABNOM . c.ttieiitieetie et e eeieeeeeeeeteeeeteeeetteeeabe e e tbeeeabae e saeesnbeeensseesasaesnsaeeenseesaseeas 23
BOOELGA EVIOXUTIKI LB O coeeteieeeciieeeeeiitee e ettt e e e e e e ettee e e e eae e e e eeasbeeeeeareeesennraeeeensenes 24
DEEP Q LEAINING ..o, 24
Double DEEP Q LEAININGveeieiiiieeecciieeeeccte e etee et e e e rre e e e s e e e e s abe e e e sabaaeeesnreesennnreas 25
N0 g T o =TT I Yot | o= PSR 26
AGUYXPOVN EVIGXUTIKI) MOBNON .ttt ettt e et tae e e estra e e e e aneea e 27

1.5 MELPOUOTIKA OTIOTEAEGLLOTOL o .vvveeeeeurvreeeeureeeesasreeeeaseeeeeanreeeeassseseeasnsesesassseeesensens 29
MEPLYPOPT TNC YAOTIOUNONG ceeeerrieeecitiieeeereee ettt e e e ettt e e et e e e e eatb e e e e et e e e enabaeeeebeeeaeennreas 29
ATIOTEAEGIOTO .. veeueveeeetreeeureeeteeesreesteeesseeeeseeeaseeesseesasasestaeesssessssesanssessnsssensssesnsesenssennns 29
FUTTEDOIOLLOTO «vevvveeeuvreeenreeeetreeeteeeaseeeesaeasseseasseesssssenssssansesassssenssesessaesnsaesseessnseessseeesns 37

P2 13N oo [UTot o] o AR USRS POPTOVRROTRPION 39
B R 1Y o) {1V =] IO PP PPPR PRSP 39
2.2 RelAted WOIK . .ee ettt re e e re e sans 41
PG oY o Yo T =Te Yol [V o] o [PPSR 42
3. Theoretical Preliminaries. it 43
O R Oo T =1 0 1=T 4= Y o o [P RPPSPPRTPN 43
3.2 KUDBINEEES ...ttt sttt st esare e e be e e s e e s b e e e reesneeeans 45
3.3.1 COre COMPONENTS...ciiiiiiiiiiieiiitittieeeteeteereeeerererreeereeertreereteettrestareeerrreterreersreeremeeerreee 46

R T A 0o - €0 T s [l o 1 £ TP PPPPPPRPPPPPRPPPRE 49

N 0= LYY= 1 0 [[IR 55

3.4.1Data MOTEN ... s 56
3.4.2 CluSter ArChitECTUIEeei ettt 56
3.5 KBSSANAIA ..eeeeeieeiiie ettt st e s it e s e e st e e s bt e e bt e e shre e e b e e e areeeareeeanreeereeeans 59
R W0 R 0] 1] o T] a =T o | K- PP PPPPPPPPPPPPPPRE 60
3.6 ReiNfOrceMENt LEAIMING ...ccicueieieciiie ettt et e e st e s e re e e s abae e s etaaeeesnaeeaeas 65
3.6, 1 INtrOAUCEION ...eeitie ettt ettt st e s s e s nre e sanes 65
3.6.2 MAChiNg LEAININEGvvviieieieee ettt e etrre e e e e e e e e abr e e e ee e e e e e nnraaaaeaaeenaas 65
3.6.3 Reinforcement LEAarNiNguuviiiiii ettt e e e serrre e e e e e e e rr e e e e e 66
3.6.4 Markov DECISION PrOCESS.....ccutrvuirriieiieiieeiee sttt ettt sttt sree e 67
3.6.5 EXPlOration Strat@gYcceevcuieei ettt et e e e 68
3.6.6 Learning an Optimal POLICYuuiiiiiiiieeec ettt e 69
ST A O T =Y T o oY1 oV - NS 69
3.7 Deep Reinforcement LEArNiNG. icecciiiiieee et eeeetre e e e e e e e e e srnnree e e e e e e e esannnes 71
3.7 . 1 NEUIal NETWOIKS. .. ettt ettt st sttt b e sreesne e 71
3.7.2 Artificial NEUron MOdelcc.uiiiiiiieieieee e e 72
3.7.3 Activation FUNCLIONScooiimiiiiiiee e e 72
3.7.4 Weight INitializationceeo oot e 74
A N -1 011 o T - PP PPPPPPPPPPPPPPRE 76
3.8 DEEP QL LEAMMING cettiiiiiiiiiiiiiiiiitiietttieetteet ettt tteeeetteeerteeeteteetareetareeeertereaeearreeereeeerreesseeeseree 79
3.8.1 Deep Q Learning (DQN)cuueei ettt erte et e e e ebee e e e aae e e e e e e e e ennres 79
3.8.2 Double Deep Q Learning (DDQN)uveeeieciiieeeeiie e et et eetree e et e e e e 80
3.8.3 RetUrn Based SCaliNgceeee et e 81
3.9 Offline Reinforcement LearNingocccvveiiecieiee ettt ertree e e saae e e sevaee s 83
3.9, L INErOAUCTION ..ottt sttt et sae sttt esbe e sreesanesaneens 83

R I 0] o 1= VY VT @ e ==Y 11 o = 83
4, EXPerimental RESUILSvuiiiiee et e e e e e e e e taee e e e e e e e e ennnnns 85
Y = U N 85
B2 RESUILS ..ottt ettt st s st et e sr e st e st st e e b e sh e st e eabeereeareen 87
4.3 CONCIUSION ettt ettt b et ettt be b et eae e e et e bt e bt e st enmeeemeeeeeennees 95
L0 - {10 o PRSP 97

List of Figures

Figure 1: DDQN UTIO NULITOVOELSEG DOPTIO...ueiicureicrieciieeitreeeireeereeetreeebeeeteeeeabeesbeeeeareesanas 31
Figure 2 CQL agent UTIO NUUITOVOELSEG POPTIO wuveeeeuviiieeiiiee ettt 32
Figure 4: DDQN UTtO NULTOVOELSEC POPTIO VLA TO ULIKPO dataSet.....cccveeecreeeireeeeieeeree e 32
Figure 5: CQL uttd nULTOVOELSEC POPTIO YL TO LIKPO datasetl......ccceeeeecivieeeecreeeeciree e, 33
Figure 6: DDQN umo nuitovoeldeg dpoptio yla dataset 1800 EUTELPLIV ..eeeeerrereeecrreeeeenneennn. 33
Figure 7: CQL uno nuitovoeldég dpoptio yia dataset 1800 EUTIELDLWV..cuereererreerrreeereeeeereenne 34
Figure 8: DDQN umo nNuIToVoEeLlSEG GOPTLO VLA TO PEYAAD datasetcccveeeeceveeeeecneeeeecineenn. 34
Figure 9: CQL umo nuLtovoelS£C GopTio yLo TO PEYAAO dataset.......coveecveeeveeecreeccree e 35
Figure 10 CQL UTTO OTADEPO DOPTIO .. ueiiiiieeieeeetieecree ettt ettt ettt ree e tae e eabe e e teeeeaneeeanas 36
Figure 11 CQL um6 petafarlopeva Goptia He SLADOPETIKA UWPN ..vveeeeerieeeeiiieeeeireeeeecneenen 36
Figurel2 : Application Deployment HiStorycccoccuiviiieiiiee et 44
Figure 13: KUDEINEtES LOGO. .. .uuuiiiieieeeciiitie e ettt e e eeeeetterte e e e e e e e s sabtaaae e e e e e e eesnasaeeasaesensnnes 45
Figure 14: Overview of a Kubernetes Cluster and its core components........ccccceeevvvveeeccnneennn. 48
Figure 15: Virtual Node Distribution EXample........ccveeiiciieeiciiiie e e e 57
Figure 16: Logical Representation of a Cassandra CIUStErceceeveciiiieeiiee e e 58
Figure 17: K8SSANAra LOZO.....cuueeiiiiiieeieciieeeecieee e eiteeeeeire e e eetttaee s s aaeee e asaessenssaeeesnnsneessnsaneean 59
Figure 18: KBSSANAIra OVEIVIEW....ccccceeccuuiiiiiiee e e e ccciteteeee e e e etiteeeee e e e esnabaaaeeeeseessnnsasaeeaeesannnnes 60
Figure 19: K8ssandra ClUSTEr OVEIVIEW......ccuiieieeiiiiiiiieeeeecciiiieeee e e e e e ennraeee e e e s e eennnreeeeeseesesnnnnns 61
Figure 20: Cassandra POdueiiiiiiiei ettt ettt e e st e e e rae s e e saa e e e e s nte e e s eannaeeean 62
Figure 21: Monitoring Stack OVEIVIEWcueii ittt eeeecctteree e e e s ee e craee e e e e e e e eanees 64
Figure 22 : Example of a Fully Connected NNcc.uviiiiiiiiieciiee e 71
Figure 23: Artificial Neuron using sgn(x) as activation function...........cccccceveviiiieiniiieeencieennn. 72
Figure 24: signum function and sigmoid function............cccciiiiiii i 73
Figure 25: RELU fUNCLION ..eeii ittt st e et ae s s et e e e st be e e e nnnaeeean 73
Figure 26: CQL behavior under sinusoidal load (minimal dataset)ccccceeevieeeecvieeeccneennn. 89
Figure 27: DDQN agent behavior under sinusoidal load (minimal dataset)cccccceeuuneee.. 89
Figure 28: DDQN agent performance under a sinusoidal load (small dataset)............c......... 90
Figure 29: CQL agent behavior under a sinusoidal load (small dataset)cccccceeeeveeeeenneen.. 91
Figure 30: DDQN agent behavior under sinusoidal load (medium dataset)cccceeeeunneen.. 91
Figure 31: CQL agent behavior under sinusoidal load (medium dataset).........ccccccvveeeeinneenn. 92
Figure 32: DDQN agent behavior under sinusoidal load (final dataset).......ccccceeeeevveeeennnennn. 92
Figure 33: CQL agent behavior under sinusoidal load (final dataset)ccccccvvvevecveeeccnnnennn. 93
Figure 34 CQL agent behavior under a constant [0ad...........ccceeeeeeeecciiieec e 94
Figure 35 CQL agent behavior under sinusoidal loads of different aptitudes..........c.cc......... 94

1.Elcaywyn

1.1 Kivntpo

OL eyyeveic edappoyeg cloud eivatl éva amo ta kUpLa onuela eoTiaong TG AvVATTTuUEng
€TALPLKOU AoyLopikoU. To 2021 niepimou to 30% Tou véou Pnodlakol poptou epyaciag mou
Snuloupyeital avantioostal o€ eyyeveic MAathoppeg cloud Kal eKTIUATAL OTL TO TOCOOTO
QUTO Uopel va avéABeL oe Tteplocotepo amo 90% £wg to 2025. H SUVALLKI KAl EMEKTACLLN
dUon Twv eyyevwy epappoywv cloud eivat pia moAAG utooxopevn evallakTiki AUon o€
avantuén epappoywv eneldn amaAAAoeL LEPIKWG EVOV OPYAVIOUO ATO TO KOOTOG KL TOV
kivbuvo Slatripnong damavnpng UTTOSOUNE YLa TNV UTTOOTAPLEN TWV AEITOUPYLWV AOYLOULKOU
Tou. EmunmAéov, n EMEKTACN TWV CUCTNUATWY yla TNV KAAL YN VEWV avayKwy gival
TLEPLOPLOUEVN, XPOVOROpa KAl aKOUN Kol adUvVaTh O OpLOUEVA OEVAPLAL.

To Containerization gvioxUeL TIG SUVATOTNTEG TWV EYYEVWV edapuoywy cloud emeldn
nipoodEpeL pia Alyotepo kKooToBopa eVOAAAKTIKY) AUCH O ELKOVLKEG UNXAVEC TIOU TIPETIEL VAL
TPEXOUV AELTOUPYLKO GUOTNUA YLOL VO EKTEAECTOUV. XpNOLUOTIOLWVTOG contianers, Ta oTOLXEla
MLOG EPOPHOYNC UITOPOUV VAL EKTEAOUVTOL UE ONUOVTLKA LLKPOTEPO KOOTOG UALKOU Kol
XPOVoU. AELOTIOLWVTAC QUTEG TLG LOLOTNTEC, oL epappoyES cloud pmopolv va opyavwBolv og
oTolxela TTou ekTEAOUV OTOWLKEG AELTOUPYIEG TNG EDAPPOYAG, AVTL VA EKTEAOUV LOVOALBLKA
OTLYULOTUTIA TNG EGAPUOYAC. AUTO TO TPATUTIO AVATTTUENG AOYLOULKOU ovopaleTol
microservices kal mpoodEpel avnuévn eveliéia 6oov adopd TNV EAACTIKOTNTA, EMELON
KABe otolyeio pumopel va ekteleital pe Sltadopetikd aplBUo containers ta onola
auopELWVOVTAL AVEEAPTNTA AVAAOYA LE TLG OVAYKEG.

KaBwg ot containerized edappoyeg yivovral mio nepimAokeg Kot mpootiBevtal mio cuvBeta
otolxeia, n avamtuén, n mopakoAouObnon, N KAWAKWoN Kol N cUvSeon TwV oTolxelwv TNG
epappoyng yivetal pa enimovn dtadikaoia. H taxeia avénon tng moAumAokotntag DevOps
TWV €PAPUOYWV LE KOVTELVEP TIEPLOPLOE TNV ULOOETNON TOUG KOl SNULOUPYNOE TNV avAykn
yla LLNXOVLOUOUG CUCTNUATLKOU GUVTOVIOHUOU Kol opyavwor¢ Toug. To Kubernetes sivat éva
oUOTNUA AOYLOMLKOU TIOU ETUAUEL OTTOTEAECUATLKA TO TTPOPBANO QUTO, YEYOVOC TIOU £(XE WG
QIMOTEAESHA TNV AUENUEVN ULOBETNON TOU Omd TLG ETXELPHOELG OO TNV KUKAOdopia Tou To
2014. To Kubernetes mpoodépel eniong Asttoupyieg avtopatou scaling BAosL mOpwv, OMwWG
to Horizontal Pod Autoscaler (HPA). Autr n Aettoupyla xpnotpomnolel katwdAta xpriong CPU
KOL LVALNG YLOL VOl EKTLUAOEL ToV BEATLIOTO aplBud containers mou Ba ekteAeotouv. Oplopévol
napoxol urtnpecLwv cloud mpoodEpouv MAPOUOLEG AELTOUPYIKOTNEG aQUTOUATOU scaling
Bdaoel katwdAiou mou aufavouv Tov aplBpo Twv mapoucLwy edappoywy Kabwc avEavetal
N €LOEPXOUEVN Kivnon. AUTEC oL pEBoSOL eival UTIEPATIAOUCTEUTIKEG KA ITOPOUV VOl
TIAPEXOUV LLOVO TIEPLOPLOHEVEG EYYUNOELG Amodoong.

Mta evaAAQKTLKH TTPOCEYYLON yla TNV autopatn KAlwakwaon Bacel katwdAiov elval n xpnon
oAyopiBuwv amd to nedio tng Evioxutikng Mabnong (RL). H Evioxutik Mabnon
gMLonNUomoLel TNV L6 EVOC LOVTEAOU TOU PaBaivel AMOTEAECUATLKEG TTOALTIKEG ARYPNG
anodacewv ekteAwvtag aAAnAenidpaocelg trial and error pe éva cUotnua. H faba
EVIOYUTLKN LABNonN evioxVel TIG Suvatotnteg Tou RL XpnOLUOTIOLWVTAC VEUPWVLKA SIKTUA WG
KN YPOUULKOUG TIPOCEYYLOTEG ouVaPTNoewY UPNANG TAENG. Me auTov Tov TPOTO,
npoBAfuata rou neplypddovtal amnod mo cUVOETOUE XWPOUC KATAOTACEWY KOl SV

10

propoloav va AuBoUv e apxtkoug aiyoplBuoug RL, eival mAéov emAUoLpa. Qotooo,
UTTAPYEL VG BOOIKOG TTEPLOPLOMOC otnV edapuoyn Tng Ekuadnong Babiag Evioyuong oto
TPOBANUA TNG AUTOUATNG SECEVCN TTOPWV. ITO TUTUKA TtPoPARaTa padnong Babidg
evioyuong mou avadépovrat otn BLPAloypadia, o aplBudc Twv Bnudtwy eknaibsuong nmou
armoLTouvTaL yla TNV emiteuén pLog BEATIoTnG Avong elval tng Ta€Ng TwV EKOTOUHUPLWY. X
TUTIKA OgvVApLa auTtopatou scaling, o xpovog mou amatteital yla va epapuootet pia
evépyela glval n ¢ Taéng Twv Aemtwv. EmumAéov, n aAAnAenidpacon e TV epapuoyn HE
TUXOLO TPOTIO SV ElvalL O OPLOUEVEC TTEPLTTTWOELG EMLBUNTH EMELSN UTTOPEL VA TIPOKOAECEL
SLOKOTIEG N val TNV 08NYNOEL 0 KATAOTPODLKEG KAaTAoTAOELS. AapuBdavovtag umodn ta
mapanavw, elval mpodaveg otL yia va e€oxBet pia ediktiy AUon yia to mpoBAna Tng
QUTOMOTNG KALLAKWONG 0 aplBOG TwV aAANAETIIOPACEWY E TO CUOTNA TIPETEL VA LELWOEL
ONUAVTLKA 1} eVOAAQKTIKA va peyLotornolnBel to k€pdog mAnpodoplwy amnd Kabe
aAAnAenidpaon.

1.2 ZxeTikeC Epyaoieg

O 1o cuvNBLoPEVOC TPOTIOC AVTILETWITLONG TOU TPOBARATOG TNG EAACTIKOTNTAC ELVOL TO
auto-scaling. O pnxaviopog auto-scaling Tng Amazon yla mapadelypo auEAVEL 1) LELWVEL
SUVAULKA TOUG TOPOUC EVOG XPNOTH UE Bacn ta opla Tou £happolovial OTIG CUYKEKPLIEVEG
UETPNOELC TOU CUUIAEYATOG Xpnotwv. To Azure tng Microsoft kal to Celar xpnotpomnotouv
™V 8La texvikr. QoTO00 AUTEC oL Ipoosyyioelg eival SUokoAo va BabuovounBoulv kat va
BeAtiotomotnBouv.

Ot ouyypadeig tou (R. Taft, 2018) xpnouomnololv £vav aAyopLlduo Suvapikol
TIPOYPAUUATIOMOU TIoU TtpooTtaOel va mPoodLlopioel HECW ULOC OELPAC TIPONYOUUEVWV
EUMELPLWY TN BEATLOTN cupMEPLDOPA VLA TNV EMOWPEVN KATACTOON TOU cuothuatog. Ot
MapkoBLaveg Alakaaoieg Amodacswv (MDPs) kat ol ahyoplBuol Evioxuong pabnong €xouv
XpnotomnotnBel yLa TNV aviyeTwion Tou {nTRUaAToc yla tnv poPAedn pLlag Kataotaong
VEPOUG KaL TNV Ttapo)r MOopwv. QoTO00, N AMOTEAECUATIKOTNTA OUTWV TWV TIPOCEYYLOEWV
MELWVETAL, KABwWC auvfavetal o aplBuog Twy MBavwy KOTaoTaoewv. OL TAPAUETPOL EL0OS0U
TOU CUOTNMOTOG (UETPLKEG TOU CUUTIAEYHATOC) elval ouvexeic LeTaBANTEC. TUVENWG, O
0pLOUOC TWV SLAKPLTWY KATOOTACEWV UMOPEL va auénBel ekBeTIKA.

Mo tn Stoyxeiplon autou Tou Intrpatog oto (K. Lolos, 2017) ot ouyypadeic mpoteivouv pia
npoogyylon RL g cuvbuaouod e alyoplBuouc 6evEpwv amodAcewy, TPOKELLEVOU val
Xwploouv TI¢ mapapéTpout el06dou pe Bacn oplopéva kpLtipla Staxwplopou. Auti n
TPooEyylon KatadEpvel va yevikeUoel Ta SeSopéva eloddou Kal va eKTTALSeVCEL TOV
TPAKTOPA £TCL WOTE VA UTTOPEL va avakaAUPEL LOVOG TOU TIOLEG TTAPAUETPOL KATAOTOONG
£€Youv onuacia yLo To emBLUNTO AnMoTEAECUO KaL TTOLEG OXL. QOTOCO, QUTH N TPOCEyYLon
OVTLUETWITIEL ETONG LEYAAO XWPO KOTAOTACEWV Kol XPELAeTaL eMioNG €va PUeyAAo oUVOAO
Sebopévwy yla va Seifel TIg SuvatotnTeg yevikeuonc.

Ot ouyypadeic Tou (Kwvotavtivog Mmitodkog, 2018) mpdtewvay éva LOVTEAO LABnong
BaBLdg evioxuong yLa TNV QVTLLETWITLON TOU TIPOPRANUATOC TNG EAAOTLIKOTNTAS O
nieptBaArlovra tou cloud. To povtélo ival og B€on va cUYKALVEL € pla AUGN KoL VoL TIOPEXEL
au&nuéveg avtapolBEG o cUYKPLON E TTPONYOUUEVEC TTPOOEYYLOELG TTOU eV

11

Xpnollomnolovoayv Veupwviko Siktuo. To kUpLo Zntnua e€akolouBel va elval To yeyovog OTL o
aplOpog Twy detypatwy ekmaideuong eival cnUAVTIKA PLEYAAOG.

Ot ouyypadeic tou (Lucia Schuler, 2021) xpnotponoloUv aAyoplBuoug pabnong Evioxuong
yla VOl OVTLUETWITLOOUV TO TPOBANUA TOU TTPOCAPUOCTIKOU auto-scaling yia serverless
edappoyég. H mpoogyylon toug adopd tnv Katavopr tou Slabéoiou poptou epyaciag o
container kat tnv mapakoAoUBnaon tng anddoong Tou CUCTLATOG 600V adopA TOV TO
throughput kal tou latency BAoeL Twv TAUTOXPOVWY ALTNUATWY TIOU TIPETEL VA EEUTTNPETAOEL
KABe KOVTELVEP. 2TN OUVEXELD, SNELLOUPYOUV HLa TIOALTLKNA XPNOLLOTOLWVTOC EVIoXUTIKA
MaBnaon yla va ekteAégouy Tn BEATLOTN KATOVOWN Tou dOpToU epyaciag. H mpoagyylon Toug
eival mapopola pe T Sk pag, av kot epoapudletal o serverless epappoyég. Qotodaoo, ol
KOTAOTACELG TIEPLYPAdOVTAL XPNOLLOTIOLWVTAC LOVO TPELG TTAPAUETPOUC, YEYOVOC TTOU
KaBLoTa Tov Ywpo €epelivnong MOAU LLKPOTEPO KOl EUKOAOTEPO VA CUYKALVEL TTPOC L
Aoon.

1.3 Mpotewopevn Avon

H npotewvopuevn AUon autrg TnG SUMAWUATIKAG epyaciag eivat n dnuoupyia evog
CUOTHLOTOC ToU TtapakoAouBel Lo containerized ebappoyn Kot QUEOUELWVEL SUVAULKA TLG
TO eKTEAOUEVA containers Kal KOTA CUVETELN TOUG UTTOAOYLOTLKOUG TTOPOUG TIOU
KatavoAwvovtal. MNa va avantiEou e autdv To PoVTEAD, SnLoupyoU e SU0 VEUPWVLKA
Slktua ou ekmaldevovtal XPNOLUOTOLWVTACS CUYXPOVOUC KAl acUYXpovous oAyopLBoug
EVIOXUTLKAG padnong. Yrapyxouv 800 KUPLEC TTPOKANGELG TIOU TIPETIEL VO AVTIUETWITLOTOUV
amo TNV MPOTEVOUEVN AUoN.

¢ O apLBUOC TWV MOPOUETPWY TIOU ATTALTOUVTAL LA TNV TTEPLypadr) TNG KOTAOTACNG TOU
CUOTHHATOC popel va auénBel, avaloya pe TV MOAUTTAOKOTNTA TNG OVATITUGGOUEVNG
edpappuoyng. Emiong, ol mapdpetpol Sev elval SLOKPLTEG. AUTO KABLOTA AVATIOTEAECOTLKEG
TLG TILVALKOTIOLNUEVEG EDOAPUOYEC TNG EVIOXUTLKAG MABNGoNG KAl KATA CUVETTELA
Sikaloloyeital n xprion evog veupwvikol SIKTUouU.

* O XpOVOG HETAEL TWV SLASOXLKWV EVEPYELWV £vVaL TNC TAENG TWV AemTwy. AUTO meplopilel
ToV pUBUO cuyKEVTpwaong Sedopévwy, TPAYLLO TTOU ONLOIVEL OTL TO LOVTEAD TIPEMEL VAl
e€ayel 600 To duvatov nMeplocotepeg MANpodopieg amno ta Stabéaipa Sedopéva.

Ma va aVTLUETWITIOOUE QUTEC TLG TTPOKANCELG, TIPOTEIVOULE VOl LOVTEAO TIOU amoTeAE(TOL
amo SUo veupwvikd Siktua. To mPwTo HOVIEAOD eKTALSEVETAL LE CUYXPOVO TPOTIO,
xpnotpomnolwvtag tov aAyoplBuo Double Deep Q Learning. To SeUtepo ekmaldevetal LE Eval
ouvolo dedopuévwy xpnolponolwvtac tov alyoptBuo Conservative Q Learning xwplg va
oAANAeTEPA e To cUoTNUa. To oUVoAo edopévwy amoTeAE(TAL ATIO TIG EKTTALOEUTIKEG
EUMELpleG TOU SnULoupyoLVTAL ATTO TO CUYXPOVO LOVTEAO KATA T SLAPKELD TNG EKTTALSEVONG
Tou. OUCLOOTIKA, TO LOVTEAOD €KTOC cUVSeonC Aappavel Ta SeSopéva ou apayovtal amno
TNV MOALTIKA TOU cUYXPOVOU LOVTEAOU Kal ekalSeVeTaL Xwpig mepattépw aAAnAenidpaon
L€ TO cuoTnUa. MNa va LEWOOULE TOV XPOVO TIOU QTTOLTELTAL YLOL TNV EKTEAECT TWV EVEPYELWV
KALLAKWONG, avamtUoooUE TNV ebapUoyn MOC LECA OE €va Katavepnuévo cluster
Kubernetes yLo va a€LOTIOL|COUE T AUTOUOTOTOLNUEVEG SUVOTOTNTEG CUVTOVIOHOU Kall
SlapolpacpoU Twy containers otoug worker nodes Tou Kol TOUG EAEYKTEG AVOLXTOU KwOLKa
ToU Xelpilovtal TIG anapaitnTeg Asltoupyleg, HeTA and avénon n peiwon Tou aplOpol Twy

12

containers tn¢ avamtuypévng edpappoyr. H ebappoyn mou emi\é€ape va
napakoAouBrjoou e eival éva cluster Cassandra. H emiAdoyn autnc tng edpappoyng Baciletat
OTO YEYOVOG OTL N amodoor] TNG e€aPTATAL Ao APKETEC TTAPAUETPOUC , YEYOVOG TIOU
QVOSELKVUEL TNV QMOTEAECHUATIKOTNTA TOU LOVTEAOU LOG.

Aokyaloupe kat ta SUo povieha og ToAAA onpela TG ekmaibeuong katl Sixvoupe OTLTO
0.oUYXPOVO EEMEPVA CUOTNUATLKA TLG EMLSOOELS TNG oUYXPOVNG ekaiSeuonc HEXPL Eva
OUYKEKPLUEVO HEYEDOG SebopEVWY. MAPEXOUE EMICNG EUTIELPLKA OMOTEAECUATA TTOU
UTtOSELKVUOUVY OTL amd TO ONELD KAl PETA OToU N oUyxpovn eknaidsuon Eemepva TV
aclYpovn, Ta KEPON amodoong HELWVOVTOL SPOUATLKA O CUYKPLON HE TO BRpata
ekmaideuong mou amaltouVTal yLo TV MiteuEn autng tng BeAtiwong.

1.4Texvoloyko YnoBabpo

MepLEKTEC

OL texvoloyleg elkoVIKOTIOINONG ATOTEAOUV OUCLAOTLKO LEPOG TNG OLYXPOVNG UTTOSOUNAG
cloud, eme1dn dleukoAUVOUV TNV ATIOTEAECUATLKA XPNON TWV MOPWV TWV GUOLKWV LNXOVWV
TIou GLAOEEVOUV ELKOVIKEG UNXOAVEG (VM). EMLITAE0V, QITOLOVWVOUV ELKOVLKEG NXOVEG, KATL
TOU €lvail onuavtiko yla T Stacdalion tng achalelag. Qotdoo, N ELKOVIKOTIOLNOoN
ouvoSeUEeTaL Ao oNUAVTLIKA emBdpuvon UALKoU, kabBwg kaBe VM TipEmel va £XEL TOV
OTTOKAELOTIKO TIUPR VA TOU, KATL TTIoU 0dnyel og auénuévn xpron mopwv. Eniong, o
hypervisor, To mpoypappo ou givatl urtevBuvo yla T dnuloupylia kat tn Asttoupyia VM oe
gL GUGLKA HNXovH, KOTAVOAWVEL oMo HOVOC TOU €Va APKETA PEYAAO KAAOUO TTIOPWVY
(Scheepers, 2014).

OL ePLEKTEG METPLATOUV QUTO TO TIPOPBANUA TTapEXovVTaG L «EAadPLA» EVOAAAKTLKI YLt TNV
EKTEAEON HEUOVWHEVWY EDAPLOYWY, EVW UOLPAloVTaL TOV (510 TTUprva TOU KEVIPLKOU
Aettoupykol cuaotnuatog (OS). To Containerization e€eAixBnke amod tic cgroups Linux
(citrix.com, 2022), ot omoieg €ywvav Linux containers(LXC). Ot opddeg C amopovwvouy Kat
€AEyXOUV TOUG MOPOUC IOV UTIopEL va ekxwproel omoladnmote dedouvn Siepyaoia, yla
MapAadeLya Tov aplBpod vipatog Kat tn xprnon tng CPU) tng uvnung RAM. To LXC mapéyet
MPOOBETN AMOUOVWON XPNOLLOMOLWVTOG XWPOUG OVOUATWY. OL XWwpOoL OVOUATWY
QUTTOLOVWVOUV TIEPOLTEPW TOUG TIEPLEKTEC, TTOU ONMALVEL OTL KABE TEPLEKTNC EXEL TO
QMOKAELOTIKO TOU cUoTnUA apxeiwy, tn otolfa SiKkTUoU, T Slaxeiplon XpnoTwv Kal to
OVOYVWPLOTLIKA SLEpYyaCLWY. XPNOLUOTOLWVTOC AUThHV TNV adaipeon, KABE mepPLEKTNG UTTOpEL
va EKTEAEDEL TN S1KI) TOU SLaVOLI AELTOUPYLKOU CUOTAUATOC aveEAPTNTA ATO TO AELTOUPYLKO
cUOoTNUA TNG KNXavAG dhogeviag, SeSopévou OTL N UTIOKEiEVN Slavor) ekteAel Evav
nupnva Linux (Scheepers, 2014). Me autov ToV TPOTO, N EKKLVNGCN EVOC TTIEPLEKTN EXEL WG
anotéAeopa tnv idla epnelpia aveEaptnta ammod To UTIOAOYLOTIKO TtepLBAAlov. Auth N
oupBatotnta petaf mAatdopuwy lval amopaitntn ya ta onpepva neplpailovra cloud,
TO omola ocuvnBwce amoteAoUvTal and ETEPOYEVA CUOTILATA KAl AELTOUPYLKA CUCTALOTAL.

OL edaplUOYEC LECO OE TIEPLEKTEG £XOUV LELWOEL ONUAVTIKA TOUG XpOVOUC €KKivnong, kabwg
Sev UTIAPXEL AVAYKN EKKIVNONG EVOG AELTOUPYLKOU CUCTALATOC, EKTOG OO OPLOHEVA
Suadika apyela mou mephapPAvovTal 0To apxelo TOU MEPLEKTN. AUTO ONUALVEL OTL N
QVATITUEN KAl N KATAoTpodr) MEPLEKTWV £lval TOAU $BNvaTepn amo anodn mopwv Kal

13

Xpovou. Ta mpoavadepBEVTa XAPAKTNPLOTIKA EMITPEMOUV LeYaAUTepn eueALEla KATA TNV
KAlpakwon Twv edpappoywv cloud. Av AdBoupe eniong untdyn To Yyeyovog OTL N TILO KOLVN
T(POCEYYLON YLO TNV avantuén eyyevwy edappoywv cloud eival ot pikpolnnpeaieg, 6mou n
edappoyn xwpiletal o EEXWPLOTA TEXVOUPYHHATA AOYLOULKOU, Ta oTtola AettoupyoUlV Kall
KALLOKWVOVTAL aveapTNTA KAl EMIKOLVWVOUV UOVo HEow API, eival mpodaveg otLn
amoBrkevon sival

N 1o KOTAAANAN TEXVLKNA OMOPOVWONG yla TN SLEUKOAUVON AUToU TOU MAPASElYUOTOG
QVATTUENG AOYLOULKOU.

Kubernetes

To Docker mapéxet £va Aaiolo yia tn Snuloupyia KOVIELVEP TTOU £lval avarapaywyLpa Kat
AeltoupyoUv pe tov i6lo TpOTo, avetdptnTa amd TNV UTTOKEIEVN OPXLITEKTOVLKN. Emtiong,
TLOPEXOVTAC ATIOTEAECHATIKOUG TPOTIOUG AMOBNKEUONG KL EKTEAECNG TWV KOVTELVEP,
npowBel kaL urootnpilel To mMapAdelypa avanTuEéng AOYLOUIKOU TwV ULKPOUTINPECLWV. ITNV
Woavikn nepintwon, KABe KOVTELVEP eKTEAEL Eva LOVO oTOLKELO AoYLOULKOU TNG EPOPUOYNS
TIoU eKTeAslTaL KAl pumopel va kKALpakwBOel avefaptnta. Qotdoo, kabwg ol ebapUOYEG
yivovtal mio mepimAokeg Kal Ta oTolXelo AoyLoUIKOU audvovtal o€ aplBuo kat molkiAia, n
ektéAeon DevOps ylvetal pLa emimovn epyaocio KoL n EKTEAECT EVNUEPWOEWV Kal
KALLAKWOoNG 8ev gival TeTplupévn Stadikacia. Ol mapandvw gpyacieg Snuloupynoav thv
VAYKN yla EVOV UNXOVIOUO GUVTOVIOHOU TNG aVATTUENG, TG mapakoAouBbnong, Tng
ouVTNPNONG KoL TNV KALLAKWONG TwV Epappoywy og Kovtévep. To Kubernetes, mou
KukAodoOpnoe apxka to 2014, eival pLa poomaBeta Snuoupylag Vo TETOLOU UNXAVLOUOU.

Mepikd and ta Pacikd Bondntikd mpoypdppata tou Kubernetes ivat:

¢ AvakaAun unnpeoiag kat e€loopponnon poptiou: To Kubernetes pumopel va amokaAU et
£V0L KOVTELVEP XpNoLomolwvTag to évopa DNS f xpnotponowwvtag tn Sk Tou dievBuvon
IP. Eav n emiokepLluotnTa o €va Kovtélvep eival upnAn, to Kubernetes pnopet va poptwoet
emumA€ov avtiypada tou (6lou KoVTELVEP Kal va SLaVELUEL TNV Kivnon Tou SIKTUOU £T0L WOTE
n Aettoupyla va eival otaBepn.

* Evopynotpwaon anoBrikeuong: To Kubernetes odg enttpénel va npocaptnBel autopata
£€va cuotnua anobrkeuong, OMwCE TOTLKOUC amoBnKEUTIKOUG XWPOUGC, LOVLIO
amoBnNKeUTIKOG XWPOG Snuodcloug mapoyouc cloud kot GAAaL.

¢ Autopatomnolnpévn dlaxeiplon Kovtélvep: Mmopeite va eplypaete tnv emBuUUNTN
KOTAOTOON YLO TO KOVTELVEP TIOU €XOUV avamtuxBel xpnowuonowwvrtag to Kubernetes kalt
propel va aAAGEEL TNV MTPAYUOTLKI) KATAOTOON 0TV EMBUUNTH KATAOTOON LE EAEYXOUEVO
puBuo. MNa mapadelypa, pnopeite va autopatonolnoste to Kubernetes yia va
ONULOUPYNOETE VEX KOVTELVEP YLOL TNV OVATITUER 0aG, Va adOaLPETETE UTTAPYXOVTO KOVTELVEP
KOlL va ULoBeTAOETE OAOUG TOUG TTOPOUG TOUG OTO VEO KOVTELVEP.

o Autopatn avadlavoun kovtélvep: To Kubernetes d€xetal éva oUUMAgya KOUBWY TTOU
UTopEl va XpnOLUOTIOLNOEL YLa TNV EKTEAECT EPYACLWYV UE KOVTELVEP. Alvtovag oTo
Kubernetes moon CPU kat pvAun (RAM) xpetaletal kaBe kovtélvep, To Kubernetes pmopei va
TOTIOBETAOEL KOVTELVEP GTOUC KOUBOUG yLa val KAVEL TNV KOAUTEPN XProN TWV TOPWV.

14

¢ To ato-Bepaneudpevo Kubernetes emavekKLVEL TAL KOVTELVEP TIOU ATTOTUYXAVOUV,
OVTLKOOLOTA TA KOVTELVEP, OKOTWVEL TA KOVTELVEP TIOU SEV AVTOTTOKPIVOVTAL OTOV
KoBoplopEvo amod tov xpriotn €Aeyyxo uyelog kal ev ta Stadnuilel otoug MeEAATEG LEXPL VA
elvat €touol va e€umnpetnBouv.

YuvoAikd, To Kubernetes mapéyel epyaleia yia tn StachaAion TG avOEKTIKOTNTAG KAl TNG
avoxng oe odaApata tng epappoyng, Kabwe Kat eAdxLoto f KaBoAou Xpovo SLAKOTNG
AelToupylog KOTA TN SLAPKELX EVNEPWOEWY O€ TiEpLBAAAovTa mopaywyng.

Baowka 2tolxela tou Kubernetes

Kube-apiserver: Eival to frontend tou Kubernetes cluster. Emikupwvel dedopéva Kol ekBETEL
TNV Kolvoxpnotn kataotoon Tou cluster og 6Aa Ta AAAQ OTOLXELO TOU , YLO TTAPASELY O
opadeg, unnpeoieg kat eAeykTEC. Mapéxel emiong €va APl mou o Staxelplotng tou cluster
UTopel va XxpnoLUoTmoLioeL TRV 086vn Kal va TPy OTOTOL|OEL [N AUTOUATEG AAAQYEG OTN
Slapopodwon tou. Mmopet va kKALlpakwBOel oplovtia yla va mpoodEpeL LeyaAUTEPN
SlaBeouotnta otav avgavetal n kivnon.

Etcd: Eivat pia pévipn Baon Sedopévwy KAELSLOU-TLUNG Ttou Xpnaotuomolel to Kubernetes yla
va amoBnKkeVoEL TNV KOTAOTAON Tou cluster kaBwg Kal TLG TPONYOUEVES KATOOTAOELS. KABe
kAeldi mou dnuoupyeital otn Baon dedopévwy eival apetaBAnto. Autd onpaivel OtL ot
EMOKOAOUBOEC EVNUEPWOELG TNV TLUH TOU KAELSLOU SnpLoupyouyv vEeg ekSOOELG TOU KAELSLOU
avTi va petaAldoccovtal ta dedopéva Tou umdpyxovtog kKAeldlou. Toutou AexBévtog, ival
npodaveég OTL oL ekdOOELC KABE KAELSL0U aufavovtal povotova o OAo Tov KUKAO {wng Tou
cluster. Mo Adyoug amodoTikoTnTag amoBrKeLonG, oL TAAALOTEPES EKSOOELG glval
ocupmnayeic. Otav dtaypadetal Eva (elyog KAESLOU-TIUNG, N €kdoaon Tou emavadEpetal oto 0
KOLL TN CUVEXELO OTNV EMOLEVN CUUTiESN OAa To KAELSLA pe TNV €kSoaon 0 Sev
neplAapfavovtal otn cupnukvwon. Ocov adopd tnv uAomoinon, To etcd XpnOLUOTOLEL Eva
povipo 6évtpo b+ yia tnv anobrikeuon mAnpodoplwy. Ta KAEWSLA Tou SEVTPOU OTN UVAUN
Seixvouv tnv mio npoodatn petdAhafn Twv Sedopévwy. Katd tn SLapkela cupmieong, n
Sour evnUEPWVETAL KOl oL VEKpol Seikteg apatpouvral (https://etcd.io/, 2022).

Kube-scheduler: Onwg dnAwvetat and to ovopa, o scheduler elvat umelBuvog yla tnv
napakoAouBnon véwv Pods mou &gv £xouv ekxwpnBel oe €vav KOUPBO TTPOG EKTEAEDT KalL,
OTn CUVEXELQ, ETIIAEYEL TOV KOUPO oTov omoio Ba ekteAeotoUv. MNa va eTUAEEEL TOV
KotaAAnAotepo KOUPoO yLa kaBe Pod, o scheduler ektelel 800 Aettoupyleg o€ UTIAPXOVTEG
KOUBoug, dlAtpaplopa kat BabuoAoynaon.

KaBe pod £pyetal pe éva oUVOAO amALTHOEWV. AUTEC OL QTTALTAOELG UIMOPEL va apopouy
oTolXela OTwG Toug amapaitnToug Mopout. MNa napadelyua, Eva pod Tou eKTEAEL Eva
OTOLXE(O AOYLOULKOU TIOU TIPETEL VOL AIOBNKEVEL KATAOTOON, TIPETEL VO EKTEAELTAL OE Eva
KOWMBO TOU TIEPLEXEL TIG CWOTEG MANPOdOPLEC KATAOTACNG O ULt ePAEPN 1 LOVLUN Hopdh.
Emtiong, oL Kavoveg MPoypPaAUATIOUOU cuvadeLag 1 avil-cuvadeLog mou meplhapfavovral
otnv npodilaypadr pod, SnAwvouv pntd toug KOUPBoUC f/KaL TLG OUASEC E TOUG OTOloUC
propel) 6ev pnopel va yivel ektéAeon tou véou pod oto i8lo punxdavnua. Aappavovtag
uToYn Toug apamAvVwW TepLloplopol, o scheduler dnuloupyel pia Alota pe 6Aoug Toug
£dLKTOUC KOUPBOUC, TOUG KOPBOUC OTOUC OToloug UTopel va mmpoypappotiotel to pod xwplc
va opafLaletal Kavevag amo Toug neploplopol. Eav n Alota twv ediktwy KOUPBwWV elvat
Kevn, TOTe To Pod mopapével € U TPOYPAUUATIOHEVN KATAOTAON HLEXPL VO TtapatnpnOel

15

€vag KaTaAnAog KOpBoG. AuTog Umopel va eival eite évag véog KOUBoG elte Evag umapxwv
KOUBog, Tou omoiou o dopTog epyaciag ahdate. Adou SnuoupynBel n Alota TwV epLKTWV
KOUB WV, oL kop oL taglvopouvtal e Baon Tig ouvapthoelg BabuoAoynong. H BabuoAoynon
Slaodalilel Eva Tomikd BEATLIOTO oV eival Bavo va odnynoet og KOAUTEPN KATAOTAGON
ouumAéypatog SladoxLkeg avaBéaelg pod os kOPBOUG. YItapxouv OAAOL TOpAYOVTEG TTIOU
Aappavovtal umoyn katd tn BabuoAoynon koppou. MNa napadelypa, sivat Atlyotepo nibavo
va emheyel €vag KOUPBOG TTou TTPOKELTAL VO GTACEL TNV MARPN XWPNTIKOTNTA TOPWV TOU
adoU Tou ekxwpnOel to véo pod. Elval o mbavo va emiheyel Evag kOpBog rou £xeL nén
amoBnkeupévn tnv elkova tou docker. Emiong, o scheduler katatdooel Toug KOUBOUG, OV
Nén eKTEAOUV KOVTELVEPG TTOU OVHKOUV oTnV (8la umnpeaoia, xapnAotepa yla va e€acdaliost
MLOL TILO OOLOMOPdN KATAVOLL Tou GpOPTOoU epyaciag tTng unnpeoiag evidg Tou
CUMTAEYUOTOG. Me auTOV ToV TPOTOo, €dv €vag Se5ouEvog KOUPBOC amotuyel, elval Alyotepo
mBavo va mpokaAéoel Stakomn otnv unnpeaia. Adou o scheduler umtoAoyloel Tig
BaBuoloyieg kaBe koUPOUL, EMAEYETAL O KOUBOC e ThV UPNAOTEPN KaTATAEN Kal o To pod
avaTtiBetal og auTov Tov KOUPO Kal evnUeEPWVEL ToV SlakopLotr kube-apiserver.

Baowkeg 16ée¢ Tou Kubernetes

Pods: Ta Pods eivat n pLkpotepn povada UTIOAOYLOOU TTOU UMOopEL va avarntuxBet oto
olkooUotnua Kubernetes. To pod eival pio opado KovtELvep Tou ipoypappatilovral mavto
otov (610 kOpPo Kat polpalovral Toug (5loug UTIOAOYLOTLKOUG TTOPOUC, CUCTNHA apXelwv Kot
amnoBnkevuaon. To kowvoxpnaoto eplBaAAov og éva pod amoteAsital and £va Koo cUVOAO
CEroups Kol WpwV OVOUATWY, avAAOYOo LE Lo pUBLoN amouovwong kovtélvep Docker. Ta
Pods avTimpoowneouV ULa CUVEKTIKH povada eEumnpETnong TnG ebapUoyng Lag Kol auTtd
TOL KOVTELVEP TIPETEL TAVTA VA AELTOUPYOUV KaL va KALpakwvovtol pali. Ta Pod onavia
SnuLloupyolVTAL WG AUTOVOUA avTLKelpeva emeldn éva Pod eival pla edrpepn dour, mou
onuaivel otL eav 6ev SnAwBolV MPOCOETA AVTLKELEVA TTOU XPNOLLOTIOLOUV £vVal
OUYKEKPLUEVO Pod, TOTE 0 KUKAOC {wHG TOU UIMOPEL VO TEPULATLOTEL YWwplg Mepaltépw
gldomnoinaon, Aoyw EAAeLPNG TIOPWV YLd TAPASELYUAL.

Deployments: Eival avtikelpeva TOU ETULTPEMOUV TNV EKTEAECH KUALOEVWY EVNLEPWOEWV N
enavadopag oe untdpyxouoes opadeg Pods) tn Snuoupyia véwv. Elval éva onuavtikod
XQPOKTNPLOTLKO Tou Kubernetes emeldn éva amo to GNUAVIKOTEPA {NTAUATA TTOU
Loxupiletal otL pmopel va to AUoEL, To INTHUOTO 0VOEKTIKOTNTOG KOL TOV EAAXLOTO XPOVO
Slakomng Asttoupylag Kotd tn SLAPKELD TWV EVNEPWOEWVY. KaTd Tn SLApKELA LG
KUALOPEVNG EVNUEPWONG, OL OUASEC TTOU eKTEAOUV TNV TiLo Tpdodatn Slapopdwaon Twy
apexOUeEVWY TipodLaypadwy, mpoypappatifovral otadlakd 6Toug KOUBOoUG Kal EEKLVOUV.
KaBwg neploootepeg opadeg mou ekTeAOUV TV Mo poadartn £kdoon ptavouy oe
KOTAOTOON ETOLUOTNTAC, OL OUASEC TTOU eKTEAOUV TNV TtaALd £kSoon oTadlakd Teppati{ovtal
KoL avtikaBiotavral. Amo npoemhoyn, ol avamntielg Staohaiilovv otL Ba eival Stabéotpo
TEPLOOOTEPO aTtd TO 25% Tou €MBUUNTOU apLlBUOU opAdwy ava TACA OTLYMI Kol OXL
TePLooOTEPO amd To 125% tou emBupnTou aptBuol opddwy mou Eekvolv Tautdxpova.
QuOoLKA, AUTEG OL TTAPARETPOL UITOPOUV va StapopdwBouv. Edv yia kamolo Adyo mpokueL
pLa evtoAn aAAayng tou aplBpol Twv eKTEAOUUEVWV KOVTELVEP KOTA TN SLAPKEL LLOG
KUALOMEVNG EVNUEPWONG, VLA TTOPASELYA €AV ELVOL EVEPYOTIOLNUEVN N OPL{OVTLA AUTOUATN

16

KALLAKWO, TOTE To CUUTMAEYA eKTEAEL avaloyn KAlpaka. Autd onuaivel OTL To CUUTTAEYUO
Snuoupyel opadeg mou ekteholv TV TLo Tpoadatn €ékdoon kKabwg Kal opadeg ou
ekTeEAOUV TNV AALd, o€ avahoyia mou Slatnpel tnv avaloyia pv EEKVAOEL N KALLAKWON.
Me autdv tov Tporo Slacdaiiletal OTL N KALLAKwWOon gival Alydtepo mibavo va Slatapatel
Stadkaoio KUALOUEVNG EVNUEPWONC.

ReplicaSets: Eva ReplicaSet eivatl éva avtikeipevo Kubernetes mou mapakohouBei ta Pods
TIOU QVAKOUV O€ HLo. opada mou £xel SnAwOel otig mpodiaypadEg Tou Kal mpoomnabel va
SlaodaAiosl OTL ava Ao oTLyUn 0 EMBUUNTOG apLlBUOC auTwY TwV pods ekTeAe(tal oTo
cluster. Ztnv npodiaypadr ReplicaSet pmopouv va oploBouv MpOcBETEC MOPAUETPOL, YLOL TOV
kKaBoplouo tng dadikaaoiag emdoyng koppou. Otav epapuolovral alhayeg TOTE TO
ReplicaSet Staodalilel otL Ta maAld pods teppatilovral Kat ekteAouvTal véa, Tou
CUHHOPpdWVOVTAL UE TIG EVNUEPWUEVEG TTPOSLaypadEC. AUTO TO AVTLKElEVO glval
KataAAnAo yla otolxeia edpappoyng ¢poptou epyaciag xwpls katdaotaon, eNeldn otav pLa
napouoia teppatiletal N avtikadiotatat, dev Slatnpouvtat mAnpodopieg katdotaong.

StatefulSets: Apxa to Kubernetes avamntixBnke pe okomo va untootnpifel kupiwg
edappuoyeg serverless. Qotd00, KABWE N SNUOTIKOTNTA Tou aufavotay Kat n embupia yla
UTtOOTAPLEN TTLO TIEpIMAOKWVY edappoywv aunbnke, NTav avamnodeukto va umootnpxbouv
Kot aAot Tumol dpopTou epyaciag. Ta StatefulSets ekmAnpwvouv autdv Tov okomo. Onwg
O\ Ta TponyoUEeva avtikeipeva, ta StatefulSets mapakoAouBoUV pLa OUASO AVTIKELUEVWV
kot Stacdalilouv OtL 0 eMBUUNTOC aplBUOG ekTeAeital 0TO oUUMAEyUa. Qotdoo, o
avtiBeon UE TIC TPONYOUUEVEC KATNYOPLEC, KABE opada mou SnULoupyEiTaL WG LEPOC EVOG
StatefulSets £xel pLol LOVLUN TOUTOTNTA TTOU TTAPAPEVEL OO O APLBUOC TWV AVILYPAd WV TOU
oUVOAOU 8ev £xel aAAGEEL. AUTO ONUALVEL OTL OKOWA KL 0V €va pod TepUatLoTEL I anooupbei,
META TN Snuioupyla piag véag mapouoiag Ba Statnproet To (8lo avayvwploTiko. Eniong, to
pod AapBadvel Eva povadiko kot otabepd avayvwpLoTKo SIKTUoU.

H Statrpnon tng Katdotaong Twv pod LCAYEL ETIONC OPLOUEVOUG TEPLOPLOUOUG OTNV
avamntuén kat tnv KAakwon twv StatefulSets. Kata tn didpkela tng avénong n g Heiwong
Twv pod, pévo €vac ouyKkekpLEVOC aplBuog Pod pmopel va SnuovpynBel i va TeppatioTed
Tautoxpova. And npoemihoyn, dnuLoupyeital) teppatiletal povo éva kaBe dopd, KTOC Qv
To StatefulSet ywplotel og uMOOUASEC. 2 AUTHV TNV MEpiMTWon Snuoupyeital n
TeppaTileTal Lovo éva ava urtoopdda. e epappoyEG mou Slatnpolv KATAoTAoh, KOTA T
Slapkela TG avénong n Tng pelwong tng KAHakag, oplopéveg TANpodopieg MpeNeL va
petadidovral petafy Twv Pods Tou ouvolou, yla va evnuepwBoUV oL KATAOTACELG TOUG
OXETIKA e TNV aAAayn TIOU TIPOKELTOL VoL CUMPEL, £TOL WOTE N KATAOTAGCH TOU PpopTiou
gpyaoiag va eival cuvennc. Mo autov Tov Adyo, €va Véo pod TTou avAKEL 0TO cUVOAO UIopEL
va EEKLVAOEL LOVO €AV OAOL oL TtpokAToxoL Bplokovtal og katdotaon Asttoupyiag Kat éva
pod pmopel va tepuatiotel edv 6Aot oL Stadoyol tou €xouv nén teppatiotel. OL meploplopol
TIOU ELOAYOVTAL UITOPOUV VO SNULOUPYNOOUV KABUGTEPNOELG I aKOUA Kol va epumodicouv Tn
Sladkaoia KALAKwoNG eav éva amnod ta pod amotuyel Kol dev pmopet va ¢tacel Eava otnv
KOTAOTAON AELTOU pYLOG. AUTO SNLOUPYEL TNV AVAYKN VLA TILO TTPONYUEVOUG EAEYKTEG TIOU
glval ouykekpLuévol yla tnv edpapuoyn, yla va xelpilovral avaloya eocwTtepLlka ohaApara,
woTte Ta pods va Unopolv va avakapouv amno Ty anotuyia.

17

Ta StatefulSets mapéyouv tn Baon yia tnv epapuoyn stateful ebappoywv, alla ta pod
e€akohouBouv va mapapévouy epruepa. Eav n ebappoyn amattel tn dtatripnon tng
KOTAOTAONG KoL 8V UMopel 1} Sev MPEMeL va avakTnBOel MANPpwE amo AAAEC OUASEG, TOTE TO
StatefulSet mpémel va xpnoLUOTIOINOEL KATIOLA. Lopdr) LOVIUNG artoBAKeUOoNG yLa val
amoBnkeloEL LovIUa TIG armapaitnTteg mAnpodoplec.

Cassandra

H Cassandra eilval éva katavepnuévo ouotnua Staxeiplong facswv SeSopévwy avolytou
Kwdka. Exel oxedlaotel yla va xelpiletol moAU pPeyAAeG MOCOTNTEG SESOUEVWV TTIOU
KaTovéuovtal o€ TIoAAOUC SLOKOULOTEG, MpoodEpovtag UPnAn SlaBeouotnTa Kal Kaveva
povadiko onpeio amotuyiog. Eival pta Abon NoSQL kat avamntuxBnke apxka ano 1o
Facebook yla va unootnpi€et tn Suvatotnta Avalntnong Eloepxopévwy péxpL to 2010
(Avinash Lakshman, 2014). Ta kUpLO XOpAKTNPLOTLKA TOU Elval:

ATIOKEVTPWUEVN:

KaBe kOuPBoG oto cUUMAEYUA £XEL TOV 1810 pOAO. Aev UTtApXEL Kavéva onpelo anotuyiag. Ta
Sebopéva katavepovtal og OAO To CUUTAEYUA (apa KABe KOUPOC epLéXeL SLadopETIKA
6ebopéva), alhd ev umdpyel KUPLOG KaBwG KABe KOUPOG Umopel va e§unnpeTnosL
OTOLOSNTIOTE altnua.

Yrootnpilel avanapaywyn Kal avamapaywyr ToAAATMAWY KEVTPWY SeSoUEVWVY:

OL oTpaTtnyLKEG avanapaywyng eival dtapopdpwotpes. To Cassandra €xel oxedlaotel wg Eva
KOTAVEUNUEVO GUOTNUA, YL TNV avATITUEN pLeyalou aplBpol KOUBwWVY og MOANAMAG KEVTpa
Sebopévwy. Ta BaoLKA XOPOKTNPLOTLKA TNC KATAVEUNUEVNC APXLITEKTOVIKAG Ttn¢ Cassandra
glval e161KA TPOCAPUOCHEVA VLA AVATITUEN KEVTPWVY TTOAATAWY SedopEVwy, yla
TIAEOVAOUO, VLA avoKaTeUBuvon Kol avAKTNon KOTaoTpodwy.

EnektaoipotnTa:

H anédoon avayvwaong Kal eyypadn augavetal ypoupuLka kabwg mpootiBevtal véa
pnxavnuata, xwpic Sltakomég Asttoupylag i SLaKOMEG oTIG EDAPOYEG.

AVEKTIKO o€ odAApara:

Ta Sebopéva avamopayovtal autopata o€ TOAAOUC KOUBOUG yLa avoX) oPaApdTwy.
Yrnootnpiletal n avamnapaywyn o€ moAAA kKEvtpa deSopévwy. OL n amokpioipol kopBot
MmopoUV va avtikataotabouv xwpig xpovo Slakomng Asttoupyiag.

Juvtovl{OEVN CUVETELAL:

O eyypadég Kal oL avayvwoelg TpoodEpouv eva pubuioo eninedo cuvemelag, anod To
"writes never fail" €wg to "block for all replicas to be readable", pe to eninedo concensus
otn UEon.

YrootnpEn MapReduce:

H Cassandra &laB¢tel evowpatwon Hadoop, pe umootrplEn MapReduce. Yrdpyel emiong
umootiplEn yla to Apache Pig kal to Apache Hive.

18

Mwooa epwTNUATOC:

Av kot gival n Baon Sedopévwv NoSQL otov mupnva tng, etonxdn n CQL (Cassandra Query
Language), pLo evaAAaKTIKN) AUon Tou potddet pe SQL otnv napadootakn Siemadn RPC.

Movtélo AeSopévwy

ITAAN:

Elvat n atopikn povada minpodoplwv otnv Cassandra Kal avarmnapiotatal pe tn popdn
OVOLLOLTLUN.

Ynep-otnAn:

Ot unep-oTANAEC opadomoLloUV TIG OTNAEG KAl TTOPEXOUV €va KOO ovopa. Me autov Tov
TPOTO UImopoUuV va povtehonolnBouv 1o cUVOEeTeG SopEG SeSoPEVWVY HECA OTNV
Kacoavépa.

IelpEc:

O oelp£g eival ta povadika avayvwpiola dedopéva mou amobnkevovtal otnv Kaoodavdpa.
OpadomololV TI¢ TIEC OTNAWY KOl UTIEPOTAAWY KL TLG CUVEEOUV UE £va HoVadIKO KAeLSL. H
Cassandra ektelel epwtiuata pe Baon autd To povadikod KAELSL.

OLKoy£éveleg oTNAWV:

Ol olKOY£VELEG OTNAWV Elval avaAoyeg e Evay TIiVaKa oXeoLaKkwV Bacswv SeSouévwvy.
Opadomolouyv oelpEG e KAELSL Tou amoteAolvTal and MAPOUOLEG OTHAECG KAl UTtEPOTAAEG. H
Baowkn dltadopd pe TIG oXeoLOKEC Baoelg SedopEVwY elval wWoTOO0 OTL SV MPOKELTAL yLa
LOXUPO TIEPLOPLOUO KAl OTL TO OO TWV OLKOYEVELWV oTNAWV Sev elval tpokaboplopévo N
auotnpa to dLo. O xprotng sival eAeBepoC va cUUTEPIAAPBEL O0EC OTNAEG KAl TLUEG
umepoTAAwV eTLBUHEL yla KABe oglpd. OL OLKOYEVELEG OTNAWVY ATAWG TTAPEXOUV LA
adaipeon yla va opadonoljoouv oeLpEg mou sival mibavo va umoBAnBouv os epwTtruata
padl, TpokeLEVoL va BeATtiwBel n amodoon.

Keyspaces:

Ta Keyspaces eival to unAotepo eninedo avamnapdotaocng mAnpodoplwy os Eva
ouumAeypa Cassandra. KaBe owkoy£velo oTnAwv aviKeL akplpwg og Evav XwpPo KAELSLwV.
Eniong, Ta emineda CUVETELAC KAL O TTOPAYOVTAC QVATIOPAYWYNG opilovTal povasika yLa
XWPO KAELSLWY, TPAYUA TTIOU onUaivel OTL SladopeTikol Xwpol KAELSLWV UImopouv va £Xouv
SladopeTika emineda CUVETTELOG KOL OTPATNYLKEC AVATIOPAYWYNC LECA OTO 810 GUUTAEYUAL.

19

APXLTEKTOVIKI) OULTAEYLATOC

‘Eva ouumAeypa Cassandra Aeltoupyel pe pLa apxLtektovikn Peer to Peer (P2P), mou onpaivet
OTL KGOt KOUPOC ouvdéetal e 6AoUG Toug AAAoug kKOpPouc. Emiong, kaBe kOUPoC yvwpilel
TV Katavoun dedopévwy og 6Aoug Toug aAoug kopBoug. Q¢ amotéAeopa, KABe KOUBOG
glval tkavog va e€untnpetel MeAATEC Kal vo eKTEAEL OAEG TIG AeLToupyieg TNG BAong
Sebopévwy. DA Ta mapanavw cuBAAAOUV OTO YEYOVOC OTL eV UTIAPXEL KAVEVA ONUELD
aotoxlag og éva cupmAeypa Cassandra Kol 0UTO TTPOAYEL TNV aUENUEVN avo)r oDaAUATWY.
Eniong, n anddoon KALLAKWVETOL OXESOV YPOUULKA LE TNV TOCOTNTA TwV SLoBECIUWY
KOUBWV 0TO GUUMAEYUA.

To oUumAeyua Cassandra sival emiong Aoylkd opyavwévo ot rack kat datacenters. Ita
duoika kévtpa Sedopévwy, éva rack ivatl pia opada GuoIKwY UNXovnUATWY TToU
polpalovtal mopoug onwe tpododoaoia, Siktvwaon KA. Otav moAla rack sivat StaBéoiua oe
€va cUUTMAeyUa, n Cassandra emiAéyel va Slavepel avtiypada dedopévwy o SLadopeTika
rack. Me autov tov Tpomo, eyyuatal upnAotepn dtaBsopdtnta Kat avoxy opaApdtwy,
eneldn elvat BEPaLo OTL Ba epwTWVTAL TTEPLOGOTEPOL Ao £vag KOUPBOL KABe popd Kat OTL
OAec oL MAnpodopleg avanapdyovtal o€ MEPLOCOTEPOUS aTd Evav GuaLkoUg KOpBoug. Mia
opada racks pmopei va opadomnownBei yia va oxnuatiost £va kévipo dedopévwy. H Staipeon
TOU CUUMAEYUATOC O KEVTPO SE60UEVWV CUUBAAAEL OTOV LETPLACKO TWV ETUTTWOEWV
Sladopetikwy dopTwy epyaciag petaf Toug, ekxwpwvtag Sedopéva Sladopetikov hpopToU
epyaociag oe SLadopetika KEvTpa dedouévwy. Ta KEVTPA SESOUEVWV UITOPOUV VO EXOUV
SladopeTika emineda GUVETELOC KL UITOPOUV VA KALLAKWBOoUV avetdptnta Kol TeutoXpova,
QUTTOLOVWVOVTOG TIEPALTEPW TNV TapeUPOAN anddoong.

H Cassandra mpoodépel puBuLlopeva emntineda cuveénelag. OL eTAOYEG ETULIMTESOU CUVETELOC
glval pla avriotaduion petafl Juvenelag kot AlaBeolpdtnTag cupdwva Le To Bewpnua
CAP (Simon, 2000). Oco uPnAotepa eival Ta eTUAEYUEVA ETMES O CUVETELAG, TOOO
TIEPLOCOTEPEG EMIBEPALWOELG ALTNUATWY TIPETEL va AndBoLV yLa va ohokAnpwBel éva
gpwtnua ou odnyel og uPnAdtepo AavBavovta xpovo Kal neplopilel Tn StabeoipotTnta.
Fevikd, ol AslToupyleg avayvwaong €Xouv onUavtika VPnAdtepo AavBavovta Xpovo amo Tig
Aettoupyieg eyypadng. O Adyog miow armod autd sival o TPOMOC LE TOV OMoio UAomoleital n
anoBrkevon SeSopévwy.

‘Eva teAeuTtaio oUVOAO AELTOUPYLWY TIOU £ival KPLOLUEG yLa TN CUVENELX TwV Sedopévwy gival
oL unxaviopol katd ¢ eviporiag. Onwg avadEpaple TPONYOUUEVWCE, OL AVOYVWOELG
EKTEAOUV OPLOPEVEG LEPLKEG AELTOUPYLEG avTL-evIpoTtiog. QOTOCO, ElVOL EUKOLPLAKEG,
T(PAYUO TTOU onUaivel OTL Sev eKTEAOUV OAEC OL AELTOUPYLEG avAyVWOoNG EAEYXOUC KATA TNG
eviporiag yia va anodeuyBel n peiwon tng anodoonc. Evag AANOC UNXAVIOUOE KOTA TNG
evtporniag eivat ol umovooupeveg petafiBaoceig(hinted handoffs). Otav évag kouBog dev
elvat StaBéopog yla Aiyo, OAeg oL MAnpodopleg avamapaywyrg ou MPETEL val
anoBnKeuTOUV oToV KOUPOo, armoBnkelovtal o€ £vav OpOTIHO KOUBo. Otav o pn Stabéotuog
KOUPOG elogpyetal Eava oTo cUPTMAeyUa, AapPBavel auteg Tig mAnpodopieg (mou ovopalovral
"unatviypol") anod Tov opoTLHO KOUBO KAl avTamokpilveTal oTny TEAEUTALO KATACTOON TOU
ouumAgypatog. Mpodavwe, UTIAPYOUV TTEPLOPLOUOL XpOVOU Kol LeYEBOUC YLOL UTIOVOOULEVEG
MeTOBIBATELS KaL KATA CUVETTELD OV UTTOPEL va BewpnBEel MPpWTAPXLKOC LNXOVIOMOC KATA
NG eviportiag. To Mo aglomnioto pyaAelo yLa TNV QVTLEVIPOTILA lval oL eTLOKEVEG. OL
ETILOKEVEG SnULoupyolV eL6IKEG SouEG SeSopuévwy mou ovopalovral Merkel-trees mou

20

KOTAKEPLATI{OUV TLG UTIAPXOUOEC eyYpadEC Sedopevwy o £va avtiypado Kol oTn CUVEXELD
Slavépovtal oe AAAOUG KOUPBOUG YL TOV EVIOTILOUO AOUVETTELWV. TEAOG, N TeAeuTala £€kdoon
OAWV TWV Kataxwpnoswv petadidetal petafd kKOUBwvY. MapOAo MoU, LEPLKEC ETILOKEVUEG
ekTeEAOUVTAL OTIOPadIKA KATA TN SLdpKela epLOS WV XaNANG EMLOKEPLUOTNTAG, HLa TTARPNG
ETILOKEUN TIPETIEL VA TIPOYPAUUATIOTEL XELpOKIVNTA, EMELSH E(VAL LLLAL UTTOAOYLOTLKA EVTATIKH
AELTOUPYLA TTOU UIMOPEL VO KATOOTHOEL TO CUUTTAEYO IPOCWPLVA 1N SLaBEaLo.

K8ssandra

Otav kukAodopnoe apyikd to Kubernetes, n kUpla e0tiocn Tou NTav n umootnpLEn stateless
epappoywv. Av Kal 0PKETOL 0pyaVLIOUOL £XOUV HETEYKATAOTHOEL TIG EdappoyEC cloud Toug
oto olkooUotnua Kubernetes, n apylka meploplopévn umoothpLén yla stateful epappoyég
elye we anotéAeopa TV WPLHAVON TNEG UTTOAOYLOTLKNAG UTTOSOUNG LE LEYAAUTEPO PUBUO amo
v urtodopr dedopévwy HECO OE QUTO TO olkoouatnua. Mptv amod to K8ssandra, n mio kowvn
T(POKTLKNA ATAV N AVATTTUEN UTTIOAOYLOTIKWY TOPpWV HEoa oTo cUUMAsyUa Kubernetes kat n
avantuén pag eEwteptkng Bdong Sedopévwy Kal n oUVEEoN TNG e TO CUMIMAEYUO. AUTH N
npocoéyylon Sev eival n BEATLoTn eneldn analtouvral TouAdyLloTtov 2 oTtoiBeg
napakoAouBnong yla tn Staodpaiion Tng opalng Aettoupylog tng edappoyng, n
TIOPOYWYLKOTNTA QVATTTUENG ELVaL TIEPLOPLOUEVN ETIELSH ATIALTETAL LKOVOTNTA OE
TouAdylotov SU0 TepLBAAAovTa Kot To KaBEva UMopel va amoTeAEoeL eUMOSLo yla To AAAO
KoL TeAka n urtodopn cloud dev eivat aflomolouvral BEAtioTa odnywvtag o PeyaAUTEPO
kootog (K8ssandra, 2022).

H npodavrg Auon elval n petadopd n tng umtodopung dedouévwy HEoa O0To CUUMAEyUa. Me
QlUTOV TOV TPOTIO N ePAPHOYH UMOPEL va TTAPOKOAOUBELTAL TILO ATIOTEAECUOTIKA KAl VOl
KALLOKWVETAL LE LELWHEVO KOOTOC. H K8ssandra mpood£pel pLa eUEALKTN avATTTtuEn evog
ouumAéypatog Cassandra péoa oto Kubernetes mou sival katdAAnAo toco yLo
TIPOYPAUUATIOTEG TTOU avalnTtolV pLa emekTaoiun AVon dedouévwy 6060 Kal yLa
TIPOYPOUHUATIOTEG TIOU avalnToUV [La armAn Kot ETOLUN TPoG eKTEAESN AUon
XPNOLLOTIOLWVTAG TPOPUBOULOUEVES TTAPAUETPOUC.

Cass Operator: ApylKd, 0 cass-operator Tav £€va AUTOVOO £PYO0 TIOU XPNOLUOTIOLRONKE yla
™V avamntuén evog ocuumAgypatog Cassandra péoa os éva oUumAeypa Kubernetes. Mapeixe
TLEPLOPLOUEVEC SuvaTOTNTEG TapakoAoUBnaong kat emiong éAeyxe To bootstrapping KOUBwv
KOL TNV KALLAKWON SUMIMAEYLaToC. Alyo LeTd Tnv KukAodopia tou €pyou K8ssandra, o Cass-
operator petadEpBnke HECA O€ AUTO KOL TWPA N VATITUEN KAl N UVTAPNOH TOU £X0UV
avateBel otnv kowotnta TnG K8ssandra.

‘Ooov adopd Toug Mopoug tou Kubernetes, o cass-operator gival £évag mpooapuooUEVOS
€\eyKTNG ToU MapakoAouBel GAouG Toug TOPOUC TTOU XPNOLUOTIOLOUVTAL YLa TNV AlToupyia
Tou cupmAéypatog Cassandra. Katd tnv eykataotaon, AappBavel éva apxelo yaml mou
TIEPLEXEL TLIAPOAUETPOUC OXETLKA E TO cUUTAeyUa Cassandra. AuTr N TPOCEYYLON ETUTPETEL
MEYAAN euelitia 6oov adopd tn Slapopdworn, eMeLdr KAOe OTOLXELO TOU CUUTIAEYATOG
Cassandra pmnopei va StapopdwBel og peydho Pabuod. MNa mapdadelyuo, Umopoue va
oplooupe pntd Opla TOPWV yla KABe HepoVWLEVO OTOoLXELD, Vo SLapopdWOOUE TIG
ouvbEoelg SIKTUOU HEeTaEL TwV oTolxelwv Kal emiong va SnuLloupyrcou e puBUILoELS

21

QTOPPINTOU YLO VO AUENCOULE TNV AoPAAELD TOU CUUTAEYHATOC. MTopoUE emtiong va
ETUAEEOU UE VAL LNV EYKOTOOTICOUE VO CUYKEKPLUEVO OTOLXELO TNG TIPOETUAEYUEVNG
gykataotacng tou K8ssandra edv &ev Talplalel oTig avaykeg TnG ebapuoyng Log. Metd tnv
avantuén Tou opou, o TeAeOTNG cass dnuloupyet Eva StatefulSet pe péyebog ioo pe to
SnAwpévo péyebog Tou cupmAéypartog Cassandra paG. 2Tn CUVEXELX TTAPOKOAOUBEL TNV
gkkivnon Twv Koupwv, Staodaliloviag OtL Lovo Evag KOUPBOC ELOEPXETAL OTO CUUMAEY A
KaBe popa yla va dtacdaliosl otabepr avamtuén. AeSopévou OTL 0 XELPLOTHG YVwpilel TV
TomoAoyia Tou SIKTUOU WC POG Toug TOpoug tou Kubernetes, opyavwvel koupoug o rack
LE TpoTo Tou Stacodalilel 6TL UTIApXEL N eAdyLotn mBavoTtnTa anwAelag SeSouévwy Aoyw
amotuxiag kKopBou. Mo cuyKekpLUEVQA, ETIAEYEL VO OPYOVWVEL KOUPBOUG TTOU TPEXOUV OTOV
1610 kOpPo Kubernetes oto i61o rack. Me autdv Tov Tpomo, €AV 0 KOUBOG KATAOTEL 1N
SlaBéaotpog, ta dedopéva Sev YAvovTal EQV 0O GUVIEAECTHG avamapaywyng ivat
peyalUTtepog amo éva, Adyw Tou MPwTokOAAoU avamapaywyng tng Cassandra ylo
anoBrkevon avilypadwv o dtadopetikd rack.

O Cass-operator Snuloupyel eniong MOAAEC UTINPEGLEG yLa va EMITPEMEL CUVOETELG SIKTUOU
peTagy KOpPwv Cassandra. Mpwta SnuLloupyel pLa SIKTUaKK untnpeoia €ToL wWoTe oL Ko pol
TIOU ELOEPXOVTAL OTO CUMITAEYLLO VO UTtopoUV va Bpouv seed nodes yla va kavouv bootstrap.
Anpoupyel eniong pLa untnpeoia all-pod mou emnttpénel otoug kOUPouc Cassandra va
cuvSEovtal HeTaE TouG LOALG LoéABouV oTo cUUAeya. Kal maAl, ta endpoints
EVNUEPWVOVTOL OTTO TOV cass-operator kabwg oL KOUPBoL eLoEpyovTal) e€€pxovTal amo To
CUMTTAEY QL.

JUVOALKQ, 0 TEAEOTNG cass £ival To TLo afLOTILOTO CNUELD TAPATPNONG TOU CUUITAEYLLOTOG
Cassandra. H KOTAOoToON TOU CUUTIAEYUATOC UMOPEL va TtapakoAouBnBel and to apyeio yaml
json mou umopet va mapaxBei and tnv Kubernetes ava maca oTlypin KoL mepLypadeL TnV
TPEXOUOA KATAOTAON TOU TTOPOU cass-operator Kol KATA CUVETTELD TOU CUUMAEYUATOC. ATtO
OUTO TO HEPOG TNG EYKOTACTACNG, O LNXOVLOMOG TToU Snuloupynoape Sivel eVToAEg yla
oANayEC 0To CUUTIAEY A KOL AQUBAVEL EVNUEPWOELG OXETLKA LLE TO TOTE £EPOPUOTOVTAL AUTEG
oL aA\ayEg.

Cassandra Pods: AmoteloUvtal amo tpia containers. Eva container Cassandra mou ekteAel
Tov nmnyaio kwdika tng Cassandra, €éva Kovtélvep Kataypadnig mou anodnkevel mAnpodopieg
OXETIKA He TN Aettoupyia tng Cassandra eviog tou pod Kot lval XprioLuo yla thv
QVTLHETWTTLON POoBANUATWY Kal éva init-container Tou xelpiletal TLg pubuioelg
Slapopdwonc mou Aappavovtal ano to Cass-operator 6tav To cUUMAEyAa EKKlveital. To
Onwc avadépape, Ta pods Cassandra amotehoUv HEpog evoc StatefulSet mou mapakohouBel
0AOkANpo to cLumAsypa Cassandra. Me autov Tov Tpomo, kabe pod sival povadiko kal ov
amoTUXEL €éva pod, EMaVeKKLVELTAL He Ta (Sla avayvwpLoTika. Emiong, edopévou OTL UTTAp)EL
n npodavng avaykn yLo poviun anobrkeuan, Snuouvpyeital éva PersistentVolumeClaim
otav dnuloupyeital to pod mou cuvdEel To pod o€ Evav povipo Sloko amoBbnkeuong mou
elvat StaBéopog oto olumAeyua Kubernetes. Eva pod pnopel va Eekiviioel va ekteAeital
HOvVo £av sival ouvdedepévog Evag kataAAnAog 6iokog og aUTO.

Stargate: MmopoUpe va TToUHE OTL N eykatdotacn K8ssandra dgv elval pia ot avilypodn
TN¢ eykataotaong Cassandra kal ta pods Stargate eival o Aoyog yla auto. To €pyo Stargate

22

elvat pa moAn Sedopévwy avolyTou KwoLKO TTou TapEXEL €va eninedo adaipeong petafl
pLag Baong SeSopévwy Kol TWV ALTNUATWY EAATwY. ME aUTOV TOV TPOTIO, TO ALTNA TIEAATN
propel va dlapopdwbel wote va Talplalel ot avaykeg TnG eGAPUOYNG KAl OTN CUVEXELA Val
MEeTaoxnUaTLOoTEL WOoTe va Ttatplalel otn Sienadr g Bacng dedopévwy.

To kivntpo Tiow amod Thv EVoOWHATWOoN Tou stargate oto £€pyo K8ssandra odeiletal og dU0
Baokoug Adyouc. To mpwTo ivat OtL apoAo mou n Cassandra mpoodEpel Tn Siemadr CQL
yla tn dSnuloupyla epwtnuatwy tUTou SQL, pla Tétola mpoogyylon Ba Atav KatdAAnAn povo
yla epappoyEG TTou Xxpnotponolovoay \dn pia Abon Cassandra. ITn yevikn neplmtwon,
el61ka og meplBArlov HKpo UTINPECLWY, N KOLVH TIPOCEYYLoN £ival OTL S1adopETIKA OTOLXELQ
aAAnAemnidpouv xpnolpomnolwvtag atthuota API. To Stargate Lkavomolel auth TNV avaykn yLo
£va TILO OPOLOUOPdO TPOTIO aAANAETiSpaonG e To cUUMAeya Kaoodvdpag.

‘Evag aANo¢ okomog ou e€unnpetolV oL KOUPoL Stargate eival va eKTeAECOUV €va LEPOC TOU
GUVTOVLOHOU TWV OLTNUATWY S£60UEVWVY TTIPOC To cUUMAeypa. KaBe pod stargate ekteAel pla
serverless eykatactaon tng Cassandra. Auto onpaivel 6TL 6tav dSnuloupyeital to pod,
Bewpeltal pépog tou Saktuliou, aAld Sev AapPavel Sedopéva. Aapupavel kal Slatnpel povo
mAnpodopieg Stavoung Twv KAEWSLWV Kal Tng TomoAoylag, £ToL waote va yvwpllel tn
Kotovoun twv dedopévwy. Otav ¢ptavouv attiuata, ivatl umevBuvo va ta mpowbnoeL
otoug katdAAnAouc kopBoug Cassandra kat emiong va emaAnBeUoeL TIG ETULOTPEPOEVEC
AMOVTNOELG CUUGWVA UE TA TPWTOKOAAA cuvEmeLlag tng Cassandra. Me autov Tov Tpomo, ta
pods Stargate petplalouv KATIOLA OO TNV UTIOAOYLOTLKN Tileon amo tnv Cassandra, kabwg ot
UTtoAoYLopOL yLa TNV €EUTNPETNON TWV ALTNUATWY Slaxwpilovtal amd Toug UTIOAOYLOHOUG
yla tnv avaktnon dedopévwy. Ta U0 Pépn Twv cuoTtadwyv UopoLV Vol KALLOKwBOoUv
aveédptnta.

Av kol To Stargate Bewpeital Baoiko otolxeio Tou cuumAgyuatog K8ssandra kat £xeL
SlopopdwOel yia BEATLIOTN amodoaon, Sev elval UTIOXPEWTLKO va cupmneplAndOel otnv
gykataotaon. Mia evieAwg Blwolpn eVvaAAaKTIKN elval va anevepyomolnBouv ta pods
Stargate KOTA TNV EYKOATAOTOON KoL VO EKTEAECTOUV LOVO Ta pods Cassandra. £ quTnVv TNV
TepiMTWOon, WoTOo0, 0 XPNOTNG TIPETEL VO SNLLOU PYHOEL XELPOKIVNTA O TIPOCHETN
umnpeoia yla va ekBéael tnv Cassandra oto UTIOAOLTIO CUUITAEY O 1 £€W OO TO CUUTAEY LA,
QVAAOYQ LLE TLG AVAYKEC.

EvioxuTikr pabnon
Tumika pa dtadikacia eviouTLkng Labnong opiletal amno:

e ’'Eva 6UVOAO KOTAOTACEWV S

e ‘Eva oUvolo Kvnoswv A

e Mua ouvaptnon avtpolBncR : SXA4A - R

e Mua ouvaptnon petafaoncS X A X S - I1(S)

Enionc opiloupe BEATLOTN TLUN HLOL KATAOTAONG TNV LECT AVAUEVOUEVN ATIOUELWUEVN
avtapolpn mou Ba AdBeL To HovTEAD av EKLVAOEL OO TNV KOTAOTAON S KOL EKTEAETEL TNV
kivnon a kat ano ekel kot épa AaPeL anodpaoelg pe tn BEATIOTN TOALTIKA ARG

anopAcewv.
Vis) = maxE(ytrt>

t=0

23

Q Learning:

H pnéBobdog Tou Q Learning sival pLa EUPEWC XPNOLUOTIOLOUUEVH LEBOSOC EVIOXUTIKNG
pHaBnong Adyw tng eukoAiog UAoToLlNGN G TNG O oxéon pe AAAeg peBodouc. MNa tnv
edappoyn NG opiletal wg cuvaptnon Q@ TWV KATACTACEWVY KOL TWV KWvoswv. To Q
QVOTIOPLOTA TN WECH AMOUELOVUEVN avTapolBr av eKTEAECTEL n Kivnon o 0T KATAoTaon S
KoL otn ouveéxela AndBouv BEATLOTEG AMODACELG OTLG EMOUEVES KATOOTACELS

Me Bdon ta mapamavw Kot e TNV npoinobeon otL ekteAoU e BEATIOTEG amodACELG Ao TO
MpWTo Bripa n Q cuvaptnon opiletal avadpouLKa:

Q*(s,a) = R(s,a) + yE T(s,a,s") max Q*(s’,a")

SES

Q”* (s, a) pag uroAoyilel kot T BEATLOTN TTOALTIKN nfs) we nE‘S) =argmaxQ*(s,a). H
avadpouikn ¢uan TNG cUVAPTNONG KAl N SuvatotnTa va UTIOAOYLIETAL LOVOCHLOVTO O
KAaBe Brua n BEATIOTN Kivnon ETLTPEMEL VA UTTOAOYL{OVTOL EKTLUNOEL YL TLG TLUEG KOl
TOUTOXPOVO VO TNC XPNOLUOTIOLOUE yla ThV e€aywyh TnG BEATIOTNG TOALTIKAG. O Kavovag
HABNoNg Twv TIHWY TG oUVAPTNONG Eival:

Qs,a) = Q(s,a) +a(r +ymaxQ(s’,a’) — (s, a))

onou (s,a,r,s’) eival pia epmnepia.

BaBbia evioyutikn pabnon:

Deep Q Learning

Onwc avadépape oto kepdlatlo Tou Q Learning, autdg o ahyoplBuog enyelpel va BpeL tnv
oKoAouBia eVEPYELWV TIOU EYLOTOMOLOUV TLG GUVOALKEG OVTOUOLBEC LE EKTTTWON
npoomnabwvtag va urtoAoyioel To Q yla kaBe Sedopévo (elyog KataoTaong-6pAong Kat oth
CUVEXELD VO KAVEL ATIANOTEG EMIAOYEG ETUAEYOVTAC TNV EVEPYELA TTOU £XEL TNV UPNAOTEPN
T Q kaBe dopa. Eival mpodaveg 6tL 600 kaAUTepn elval n ekTipnon Twv TIHwv Q, T0co
IO KOVTA ot BEATiotn Ba elval n akoAouBia evepyslwv. H mpoomnabela emiluong evog
TIPOPBANUATOC XPNOLUOTIOLWVTAG TOV OpLopd Tou Q Learning ivol avamoteAECUATLIKY, EMELON
oUpdwWva HE ToV apXLko adyoplBuo kaBe akohouBia afloloyeital aveédptnta Kot dev
prnopel va npaypoatonownBel kapia popdn yevikevonc. MNa va UTtapEet yevikeuon,
XPNOLLOTIOLE(TAL L0 TIAPOUETPOTIONEVN cuvaptnon Q Q(s,a;0)= Q * (s,a), omou 6 eival
£€val 0UVOAO kTS EVOLUWY TTAPAPETPpWY. 2To Deep Q Learning, o EKTLNTAC TNG OUVAPNTONG
glval éva veupwviko SikTuo mou poomaBbel va ekTIUROEL TIG BEATIOTEG TIUEG Q yLa OAEC TLG
0KOAOUBIEC evepyeLWV XpnoLUoToLWVTAG TNV (la cuvaptnaon.

To povtéla Deep Q Learning ekmatdeloviat XpnOLHOTOLWVIOG EUMELPLEC (s,a,r,s")
(katactacon, dpacn, avtopolpn, emopevn katdaotaon). H Stadopd otnv uAomoinon oe
oUYKpPLON LE TOV apXLKO aAyoplBpo Kal AAAeG uAomolnoelg Evioxutikig Madnong eivat otL ot
TAeLabeg Sev xpnipomololvtal yla eknaideuon pe tnv dla oglpd nou Tig mapatnpel o

24

npaktopag. Xto DQL xpnolgomnoleitat pia Sopn yvwotr wg replay memory. Elval pla
TPOCWPLV VNN otaBepou peyEBoug mou amodnkevel Ti¢ N 1o mpoodateg MAELASEG TOU
napatnpendnkav amno 1o PoviéAo. e KABe Brua MpwTta YIVETAL TApATAPNCN TNG
KOTAOTAONG. 2TN CUVEXELO ETIAEYETOL L0l EVEPYELA UE BACH TNV TTOPATNPOULEVN
kataotoon. TEAog, mapatnpeital n katdotaon otnv onoia odnyei n pdacon kat umtoAoyiletal
n avtopolPn. H véa eumelpia amoBnkeVETAL OTN UVALN KOL 0T CUVEXELA ETUAEYOVTAL M
TUXOLEG TTAELASEC A0 TN VAN VL0 TNV EKMALSEVON TOU TIPAKTOPA. ITN CUVEXELD N
Stadkaoia emavalapBavetal.

H xpron piag pvnung emavaindng avti tng am\ig xpnong twy Selypdtwyv Kabwg
AapBadavovtal yla eknaidevon napéxel Tpla onUavTika MAgovekTipata. To mpwTo gival otL
autn n LEBobdog ekmaideuong odnyel oe o amoteAeopatikn xprion Tou delypatog. Kabe
Selyua xpnolpomnoleital oxebov olyoupa mepLocOTEPEC Ao pia POPEC yLa EVNUEPWOELS
Bapoug. e cuvbuACUO LLE TO YEYOVOC OTL TOL VEUPWVIKA SIKTU O omaitouv Pikpoug puBpoug
pHabnong yla va cuykAivouv, ival moAU miBavo OtL n xpron Kiag mAsladag eknaibeuong
Hovo pia ¢popa yla TNV evnuépwaon Tou Bdpouc tou Siktuou Sev apkel yla va amoktnBouv
OAec oL Bavég mAnpodopieg amod auto to Seiypa eknaideuong. To SeUTtepo TTAEOVEKTNUA
elval OTL AUTN N TEXVLKN EKTTALSEVGNG OTIAEL TOUG LOXUPOUG CUCYXETIOHOUG UETOED
Stadoykwv delypatwy. Auto elval onUavtiko emeldn Ta avadlotaypéva Selypato LELWVOUV
™ SlakVOVon TWV EVNLEPWOEWY, YEYOVOC TTou 0dnyel o€ TaxUtepn oUYKALON. ETiAgoy, N
EKLAONON OXETIKA LIE TNV TIOALTLKH €lval ETPPETNC va KOANOEL oTa TOTLKA gAdytlota. O
AOyoc¢ gival otL o€ kaBe Brpa To SiKTUO KAVEL pLa €AoY UE BACN TIC TOPAPETPOUG TOU Kall
META ekmatdevetal Ye Baon tnv emloyn mou €kave. EAv n emtiloyn ival Tomikad BEATLOTN, TO
Siktuo mpokettal va emavalaBeL Tnv emAoyn Kal vo oyvor ol GAAEG EMIAOYEC TTOU SUVNTIKA
o6nyoulv og peyaAltepn ouvoAlkn avtauolpn (Martin, 2013).

Double Deep Q Learning

O apxkog aAyoplBuog Q Learning eival yvwotd OTL UTEPEKTLUA TG TIMEG Q TOU HOVTEAOU.
AuTO to patvopevo Sev eival anapaitnta emiBAaBEG yia tnv anodoon tou alyopiBuou Kat
TNV MOALTIKA TIoU Ba €Xel w¢ amotédeopa. MLa Ko TEXVLKN e€epelivnong Tou ovopaleTal
awolodoéia pnpootd otnv afeBaldotnta, Baciletal o autnv TNV WOEa. e KABe aveEepelvntn
TR Q ekywpeital plo uPnAn apBUNTIKN TN, £T0L WOTE 0 AAYOpLBUOC Va £XEL KivnTpa val
€€EPEVVNOEL EMOPKWG TOV XWPO KATACTACNC TPLV KAVEL ATIANOTEG TOTILKA BEATLOTEG
evépyelec. EMuTAéov, Qv N UTEPEKTIUNGN TWV TLUWV £lval opolopopdn, Tote Slatnpeital n
SUVOHLKN TWV TPOTIUACEWY 8pAcng, odnywvtog otn BEATLOTN TTOALTIKN. ZTNV €pyaoia TOUG
woTo0o0, ol Hado et al. (Hado van Hasselt, 2016) woxupilovtal OTL o€ ApKETEC EPAPHOYEC TOU
DQN n unepektipnon dev sival opolopopdn Katl Oviwg PAATTEL TNV anodoaon.

JTNV €pyaoia Toug, TPOTEIVOUV L TTPOCapoYH OTo apxko poviédo DQN, onou éva
SeUTepO povtelo pootiBetal otov mpaktopa. H uhomoinor toug ovoudletal Double Deep
Q Learning. H 6€a gival OTL £vag amo Toug KUPLOUG AOYOUG UTIEPEKTINGNG ELVOL TO YEYOVOG
OTL To (610 SikTUO XpNOoLUOTOLE(TAL YLa TNV EMLAOYH TNG BEATLOTNC EVEPYELAC KAL OTN CUVEXELD
yla Tnv a€loAoynon tng aiag tng. Autd dnuioupyel évav averuBounto Bpoxo avadpacng,
omou pa eAadpwc avénuévn T Q eival o miBavo va eniheyet Eava oto péAovV Ywpig va
glvat n BéAtiotn AUonN OTNV MPAYHUATIKOTNTA, AUEAVOVTAG TN LOKPOTIPOBEoUN utepekTipunaon.
AUTO to TPOPANUA elval Lo TBAVO va TOPOUCLACTEL OTAV O TIPOCEYYLOTAG lval éva
VEUPWVLKO SikTuo emeldn ota apylka otadla tng ekmaideuong ol THEG Q elval auBaipeteg

25

AOYW TNC TUXALOTIOLNUEVNG APXLKOTIOINONG BAPOUG. AKOUN KOl ULKPEG APXLKEG
UTTEPEKTIUNOELG, UMOpel va 0dnyrfoouv o€ alobntr pakpompoBeoun anokAlon amo Tn
BéAtiotn moAwtikn (Hado van Hasselt, 2016).

Ma va LETPLOCTEL N UTIEPEKTLUNGN, OL GUYYPADdELG TIPOTEIVOUV TNV ATOCUVEEDN TNG ETLAOYNC
Spaong ano tnv afloAoynon tne. Ta Vo Siktua Tou poviehoug kahouvtal online kal target
networks avtiotolyo. To VEUPWVIKO EVNUEPWVETAL KOVOVLKA XPNOLLOTIOLWVTAG Ta Selypata
ekmaidevonc. To target network givat éva avtiypado tou Stadiktuakol SiKTUou Ue
koBuotépnaon, mou onuaivel otL kaBe N Bripata, oL ToPApETPOL Tou Sladiktuakol SIKTUoU
avtypadovtal oto Siktuo mpooplopou. H amAnotn moAtikn 1 n emthoyn Spaong
afloloyeital xpnowomnolwvtag To online network. ¥tn cuvéyela, to target network
XPNOLUOTIOLELTOL YLOL TNV EKTIUNON TNG TIUAS Q Tou {eUyOUG EVEPYELWV KATAOTAONG KAl N
evnuépwaon Bapoug tou SLadiktuakoU SIKTUOU TIPAYLLATOTIOLE(TAL XPNOLUOTIOLWVTAG QUTAY
v ektipnon. O kavovag ektipnong Q yio to DDQN daivetal mapakdtw:

VPPV = Ryys +7Q (Sess, argmax Q(Se, a;6,); 6"
a

omov 6, ot mapdauetpotl Tov online network

0'; ot mapbuetpol Tov target network

Return based scaling

Ta {nTpata Kavovikomoinong ota poviéAa EvioxuTikng Ekpddnong elval pio KoupaoTikn
epyaoia aAAG kol amapaitntn, S1OTL 0Tty oL KALHAKES Twv opaApdTwy TolkiAouv og
Sladopetika otadla ekmaibevong, unopet va epnodiost f va epnodioel tn oUyKALon Tou
povtélou. ELSIka og aAyoplBoug Xwpig LOVTEAD, OTIOU O TIPAKTOPAG MIPETEL VAL EKTLUNOEL UE
aKkpiBeLla TG TLHESG TNG ouvaptnong Q mou TepLyPAdOoUV TNV UTTOKELEVN SUVALKA TOU
npoPAnuartoc, ta {nTHpata Kavovikomnoinong eivatl akoun mo cofoapd.

Ynapyxouv S1adopol TapdyovTeC TOU UIOPOUV VOl EMNPEACOUV TLG KALLOKEG TWV OPAAUATWY
KOTA TNV ekTaidevuon Kal kaBévag and autoug Unopet va ivat emuLog yLo tTn oUyKALon
ToU povtélou. H 1o kowvn) ival n cuvaptnon avtapolPng. Kabe tipn Q eivat to

OTOUELOV LEVO ABPOLOUO TWV TPEXOUCWVY KOl LEAAOVTLKWV QVTAUOLBWY TIOU TO LLOVTEAO
OVOUEVEL VOl OUYKEVTPpWOEL Oco peyaAuTtepn ival n StakUavon Twy avtapolBwy, T0oo
peyaAUtepn pumopel va gival n dtadopd Twv TIHwY Q Katd tn SLdpkeLa TN ekmaideuonc.
AUTO pmopel va 06nynoeL og KALHaKkeg opAALATOC TTOU TOLKIAAOUV O€ TIOAAEC TAEELS
peyEBoUC AOyw NG aBpoloTikng puoNg TwV TIHWY Q. AKOUN KAl av N cUVAPTNCN OVTOUOLBAC
Sev gpdaviel uPnAn Stakvpaveon, eival TBavo KoTd Tn SLAPKELD LG EVNUEPWONG N
EKTILWHEVN KoL TTapatneol evn T Q va motkiAAel ToAU, odnywvtag o€ uPnAn aplBuntikn
TLUA 0bAApaToC. H Xpron LLoG TETOLAG TLUNG YLOL ULOL EVILEPWOT UTOPEL va Slatapagel T
oUYKALON TwV BapwV EMELSH TA VEUPWVIKA SIKTUO ElVOL TIPOCEYYLOTEG OULOAWY
ouvaptAoewv. AUuTo To Gatvopevo eival o mibavo va cuPel KOTA Ta TPWTO OTASLA TNG
eKTIALSEVONG, OTIOU O TIPAKTOPAS EEEPEUVA TOV XWPO KATACTAONG Kot lval TiBavo otL Sev
gixe evepynoel BEATIOTA yUPW ATIO £V CUYKEKPLUEVO HEPOC TOU XWPOU KATACTAONG LEXPL
€Kelvo To onpeio. Elvat emiong miBavo va cupuPet 6tav KAmola oTlyun otnv eknaideuvon o
TIPAKTOPAC AVAKOAUTITEL VEEC SUVATOTNTES Yo UPNAOTEPEG AVIAUOLBEG TTOU EyLvay
SlaBéoipeg adou n moAttiki apxloe va aAlhalel Aoyw tng ekmaidevong. TENog, o
OUVTEAECTINC EKMITWONG EMNPEALEL eTiONG 0 LeyAAO BABUO TIC APLOUNTIKEG TIUEG TWV TLUWY

Q.

26

Mo TNV QVTLUETWTTILON auToU Tou TtpoPAnuatoc £xet mpotadel n e€ng uéBodoc. Mpoteivetal o
UTTOAOYLOUOG EVOC OUVTEAEDTH & LLE TOV OTIOLO KOWVOVIKOTIOLELTAL TO O AApa TNG ekmaideuong
og KAaBe otadlo ekpudadnong. O cuvteleotrg untodoyiletal wg e€NG:

=R +yV'i— Ve
omov R; elvaun avtauolfM ato fua t
kat Vy n ektiuouevn Q value oto fuat

lNa va mpooeyyiooupe to 6 mpémnel va untoAoyiooupe to V[§]. Zra npwta otadia
ekmaideuong Ta LovTEAd eKTEAOUVTAL TUXALEG KIVAOELG oToTe To Q pmopel va BswpnBel
ave&aptnto tou R. YNo autn tnv unobeon to V[§] ypadetal:

VIs] = VIR +VIy(V' =]+ V[- y)V]
=VIR] + y?V[V' =VI+ VIYIE[(V' = V)?] + (1 = y®)V[V] + VIY]IE[V?]

Te kaBe BApa oL TIpEG urtohoyilovtal we Q = R + yQ' kaw ta Q ekTLOVV TO KEPSOC TOU
MOVTEAOU. MTopoUE AOUTOV VA OVTLKATAOTHOOUME V e G KOL YLOL TNV TIOKALON EVOG
BAuotocG' - G = R + (1 —y)G. Eniong G = Y y'R; so E[G] = (1 — y)E[R]. Ondte:

V[8] = VIR + (1 —¥)?VIG] + VIy]E[G?]

0 6pog (1 — y)2V[G] unopei va ayvonBei yiati eivat apehntéog o oxéon pe Toug GANoug 2.
Otav to y elavt otaBepd A v xpnoonoloU e enslcodlakh eknaiSeuon o dpog VI[y]E[G?]
ayvoeitat ondte V[8] = V[R]. O ouvteheotric kavovikomoinong ivat o émou a2 = V[§].

AcUyxpovn Evioxutikry Madnon

H aouyyxpovn evioxuTikn pabnon ival éva mpooododpopo epeuvnTikd medio mou tpaPact
TNV poooyr ta teAeutaia xpovia. O Aoyog eival 0TL BewpnTIKA, UMopel va afLomoLnoeL Ta
TEPAOTLA OUVOAX SESOUEVWVY TTIOU UTTAPXOUV KOL VA EKTIALOEVOEL ATTOTEAECUOTLKA LOVTEAQ
nou Baoilovtal og aUTA T OTATIKA cUVOAa Sedopévwy Xwplg mepaltépw aAAnAenidpaon.
Emi Tou mapovtoc, n eVICXUTIKA Labnon eival pa evepyn dtadikaoia pabnong, 6mou to
MOVTENO EKTEAEL LLOL EVEPYELO TIAPATNPEL TOL ATMOTEAEGUATA KOL OTH CUVEXELQ
enavalappavel. Autr n MPooEyyLon €XEL TIEPLOPLOUEVN edappoyn eMeldA MpwTa ar 'éAa ot
noootnteg SedopEvwy TIou UmopoLV va dSnutoupynBolv eival MeEPLOPLOUEVEG O GUYKPLON
LE TNV aclyyxpovn ekmaibeuon. EKTOG amod toug mepLoplopous Twy SeSopévwy, oL
oANnAemdpaosLg e o TiepLBaAlov propei va eival Samavnpeg /Kol KAtaoTpopLKES O
TIOAAEG £DAPUOYEG OTIWE N POUTIOTLKN N OL LATPLKEC EaPOYEC. Na Toug Adyoug ou
avad£pBnkav MopaAmAavw, N AMOTEAECUATLKA £hAPUOYR ACUYXPOVNG EVICXUTIKNG LABnong
elval pa Baoikn mpokANGn yla TV UL0BETNON TNG EVICXUTIKAC LABNGONG 08 pEAALOTIKA
nepLBaiAovra.

O kUpLoG AOYoG mepLlopLlopéEVNC amddoong AUTWY TWV LOVTEAWY ELval OL UTLEPTIPOCAPUOYES
KOlL OL EVEPYELEC EKTOC Katavopng (O0D). Auta ta mpoBAfpota cuviBwg ekSNAWvVoVTaL WG
£0DANUEVEC UTIEPEKTIUNOELG TNG CUVAPTNONG aflaC O OPLOUEVEG KATAOTACELS. Mo
OUYKEKPLUEVQ, TO TIPOPBANLO EYKELTAL OTO YEYOVOG OTL 0 aAyopLlBpog BeAtiotomnoinong
Bellman mpoomnaBel va eKTEAETEL EVEPYELEC ATIO TNV TOALTIKA EKUABONONG ou SnuLoupyeitat
KOBW¢ ekmalSeVEeTAL TO LOVTEAD, AAAG OL TIHEC Q UMOPOUV VA EKTTALSEUTOUV LOVO OE TUIEC
Ttou ANdOnKav aroé tnv MOALTIKE TTou SNLoUPYNOoE To GUVOAD SES0UEVWY EKTOG oUVSEDNG.
Aedopévou OTL 0 alyopLBuog £xel dnpLoupynBel yla va XpnoLUOTOoLEL TNV TTOALTIKY ToU £XEL
MaBeL, ouxva odnyel og evépyeleg OOD. Otav aUTEG oL eVEPYELEG €xouv AavBacopéva uPnAEég

27

avtapolBEg, odnyouv oe UTEPEKTIUNOELG. TUTIKEG edappoyEg Evioxuong EkpaBnong ektog
ouvdeong HETPLAlOLV QUTO TO ATOTEAECUA TtEpLOPL{ovTaGg TOV aAyOpLlOpo amo to vo eTUAEEEL
LN TapaTNPOUUEVEG KOTAOTACELS. QOTOO0O0, QUTEG OL TPOOTIABELEG KATOANYOUV O€
UTLEPBOALKA TIEPLOPLOTIKEG TTOALTIKEG TIOU TtEPLOPiouV TNV amddoaon ToU LOVTEAOU.

Zuvtnpntiko Q Learning:

O otd)0¢ Tou givat o umohoylopog tou V™ (s) piag moAtikng m(s) dedopévou otatikol
ouvoAou Sedopévwy D mou mapdyetat and moAtikA g (als) . Ma va yivel suvtnpntikA n
gkpabnon, mpootiBetal £vag emimAéov 6pog Simha and tnv cuvaptnon kootoug Bellman. H
16€a Ttiow amod aUTOV ToV 0po elval OTL KOBwWE AOKAVOULE aTtO TNV APXLKA KOTOVOUN TWV
KLVNOEWV LELWVETAL N BEBALOTNTA POC VLA TNV EKTILNGCN TWV TLUWV Kal 0 eTUTAEOV O0po¢g Spa
W¢ TIHWPLla AUTWY TWV KWYNOEWV. H aVTIKELPEVIKT guvapTtnon Aownov opiletal wg:

QF*l = inn a- (Es~D,a~u(a|S) [Q(s, D] = Es~p,a~mp(als)[QCs, a)]) + %L (1)

ornou L eivat n ouvdptnon kootoug Bellman kat p(a|s) n katavoun action-states tn otyun
™G ekmaidevong. OL ouyypadelg Tou PoTEVOUV TOV aAyOpLBOo amodelkvUouVY OTL YL U =
T OL TIHEG Q LKOVOTIOLOUV TN OX£0N

V™(s) < V*(s)Vs €D

Apa Ol EKTLIHWUEVES TIEC ppalovTol Ao TIC TPAYUATIKEG Apa ETUAUETAL TO TIPOPRANUA TNG
UTLEPEKTINONG.

MNapatnpwvrtag to (1) eival mpodavég OTL n ehoylotonoinon mepAapBAVEL EK TWV TIPOTEPWV
YVWon tTng Katavoung p(a|s). Qotooo, To W eival uEpog tng ekmaibeuong Kal LETA amo
gnapkn aplOuo Bnuatwv BéAoupe p = . Epooov to W elval HEPog Tou TtPoBANRUaATOC
BeAtiotomnoinong, UOPOULE VO CUUTEPIAABOUUE LA LEYLOTOTIONGN EVAVTL TOU U OTOV OpOo
CUVTNPNTIKNG LABNOoNG £T0L WOTe 0g KABe emavaAnyn n AVIIKEWEVIKA cuvapTnon va eivat:

. 1
Qk+1 = mén mﬁlx a: (ES~D,a~u(a’|S) [Q(s,a)] — ES~D,a~7Tﬁ(a|S) [QCs, a)]) + EL + R(u)

omou To R(W) elvat 6pog kavovikomoinong. Mo Aoyikr emthoyr) tou R(U) eivat n amokAon
Kullback-Liebler (KL). KL-amokAlon D_KL (P| | Q) eival évag TUMOG OTATLOTIKAG ArOcTAoNG TToU
ekppalel TNV MPOoBeTn €kmANEN 1 aBefaldotnta mMou elodyetal AOyw TNG EMIAOYAG HLaG Vol
XPNOLLOTIOL)COUUE WC LOVTEAO HLa KaTtavoun Q otav n mpoypotikiy Katavoun eivat P. Ztnv
nepintwor pag P=p kat To Q gival pia mponyoupevn amo Kowou Katavoun state-action.
‘Otav n KATovoun Twv eVepYELWV elval oxedov opolopopdn oe kABe kataotaoh, TOTE N
LLEYLOTOTIOLNON £VAVTL TOU W €XEL WG OMOTEAECUA £va soft-max Twv TIHwv Q os onoladrmote
6£60UEVN KATAOTOON KOL N AVIIKELUEVIK CUVAPTNON UETATPEMETAL OF:

Q" =min a-Es.p (log Taexp (Q(s,0)) = Es-pa-ng(ais)[Q(s O)]) +3L (2)

Metatpémnovag tn (2) o cuvaptnon KOGTOUCG UIMOPOULE VA UTIOAOYLOOU UE TO ahaAapa yLo
™V evnuépwaon Twv Bapwv Tou SiKTUou.

28

L=a- ES~D (log Za exp (Q (S, a)) - Es~D,a~71:3(a|S) [Q(S, a)]) + %L

1.5Mepapatikd anoteAéopata

Mepypadr tng YAomoinong

Y€ QUTH TNV EVOTNTO MEPLYPADOUE EV CUVTOULA TOV TPOTIO LE TOV OTOLO CUVTOVIoAE TO
Sladopa oToLXEla TTOU XPNOLUOMOLABNKAY VLA TNV EKTEAECH TWV MELPAUATWY HLOGC.
XpnoLUomolnoape pia eykataotaon thg K8ssandra mou ekteleltal péoa oe Eva
KOTAVEUNUEVO cUUMAeyUa Kubernetes. OL meAdteg tou dnuLolpynoayv tov GpopTio epyaciag
£tpetav Vv uttnpeoia YCSB kal £va amopakpuopEVo script mapakoAouBouaoe tov aplBuo
KoL TN dUon Twv artnUAtwy. Mo T cUAAoYN LETPROEWY, XpNOLUOTIOLNoauE pia Bdon
Prometheus mou eykataotdBnke kal péoa oto cUUmAeypa Kubernetes. Ta VM
dlogevnBnkav oto neptfairlov cloud tou Okeanos.

To oUuumAeypa Kubernetes amoteAeital ano 10 VMs, éva amo autd AeltoupyoUos wg master
node kal ot urtdAounol w¢ worker nodes. KaBévag anod toug koppoug epyaciag eixe 4 GB
pvnung RAM, 30 GB amoBnkeuTtikol Xwpou Kat 2 elkovikoU¢ tupnveg CPU. O kUpLog Koupog
gixe 8 GB pvung RAM, 30 GB amoBnkeutikol xwpou Kal 4 elkovikoug mupnveg CPU. Ano ta
30 GB dLaB£co1ou amobnkeuTtikoU xwpou Kabe kopPBou, Ta 15 GB SLatédnkav wg ELKOVIKOG
6lokog kat mapaywpnbnkav oto cuumAeyua Kubernetes. KaBe worker node £tpexe éva pod
arné to Daemonset tou static provisioner tou Kubernetes. O pdAog Tou eival va Staxelpiletal
Tov kKUKAo {wn¢ Tou PersistentVolume yLa umtdpxpovteg Siokoug, avixveuovtag Kat
Snuoupywvrag PersistentVolumes yla KABe TOTLKO 8i0KO OTOV KEVTPLKO UTIOAOYLOTH Kall
kaBapilovtag Toug diokoug otav aneleuBepwBolv. Kabe koppog K8ssandra xpeldletal
TouAdylotov 2 GB RAM yLa va Asttoupyel xwpl oddApata. Mo autov Tov Adyo, Hovo Evag
KOUPog K8ssandra pumopouloe va ekteleital kaBe popa ava koppo epyalopévou. Ta opla
MOPWV ToU anédwaoav KaAUTepa oTLg pubuioelg pag nrav n xprnon 2 GB pvaung RAM kat 1
nupnva CPU ava koppo K8ssandra. Emitpéape eniong otoug kOpPBoug va umepBouv tn
xprnon RAM péxpt éva neplBwpto 0,5 GB. Auto enétpee oto ouumAsyua K8ssandra va
ekteAel Aettoupyleg KALLAKWONG KON KAl KATw ard tnv uPnAn kivnon kat uPnAo mocootd
xpnotormnoinong mopwv. TéEAog, eykataotroape 3 pod Stargate yLa Tov GUVTOVIOUO TwV
ELOEPXOUEVWV ALTNUATWV.

AmoteAéopata
Ma tnv eknaidguon Twv POVIEAWVY XpNoLUomoLnoape 17 mapaeéTpou g yia Thy eplypadn
NG KATAOTACNG TOU CUUTIAEYLLOTOC:

e To péyeBog ToU CUTTAEYATOG

e To péoo latency yLa to 98% Twv AUTNUATWY

e To péoo latency yla to 99% Twv ALTNUATWY

e To péoo latency yla to 999% Twv aLTNUATWY

e To H€OO puBUO €€UTINPETNONG TWV OLTNUATWY

e To Yéoo pubuo e€UTINPETNONG TWV OLTNUATWY OTO TiponyoU eVO BAua

e Tn ouvoALKN eAeVBEPN UVAN WE TTOGOOTO TNG CUVOALKNG HVANG TOU CUUTAEYLATOG
e Tn ouvoAwkn cached pvAn WG TOGOOTO TNG GUVOALKNG MVANG

29

e Tn uéon xpnotwomototpevn CPU amo to cUumAeyua

e Tnv ehaylotn xpnotwuomotolpevn CPU amod kamolov KOUPBo ToU CUUTIAEYLATOG
e Tn péylotn xpnotpomnoloUpevn CPU amd KamoLov KOUPBO ToU CUUTIAEYLATOC

e Tn pnéon aepyn CPU TOU CUUTMAEYUATOG

e To péoo xpovo nou n CPU ftav oe avapovn ya accruata 1/0.

e To péoo aplBuo IOPS oto cUUMAEyUQ

e To péoo pubuo e€umnpéTnong aLlTNUATWY avayvwaong oto Sioko

o To péoo pubuo e€umnpéTnong altnUatwy eyypadng oto Sioko

e ToMOOOOTO TWV ALTNUATWY OVAYVWONG

H ouvdaptnon avtapolBrg mou xpnotpomnolnonke sivat:

R = 0.01 * throughput — (vims — B) 6mov B 10 eAd 1070 Ueyebog To CUUTAEY UATOS

IXETIKA LLE TNV APXLTEKTOVIKA TOU OUYXPOVOU LLOVTEAOU XPNOLUOTIOL|COE EVa
TANPWC¢ ouvdedepévo SiKTUO UE 2 KPUDA OTPWHATO VEUPWVWYV. To TPWTo Kpudo oTpwua
anoteAdouvrav amno 48 kOpPBoug kal to deUtepo oTpWHA amoteAouvtay amno 24 kéupoug. O
replay memory buffer opiotnke va amoBnkelel T teheutaieg 300 eunelpieg kot ta Bapn
evnuepwOnKav pe puBUo ekpabnong a=0,001. O cuvteAeotn¢ EkMTwong oplotnke og y=0,99.
Mo va anopUyou e VNUEPWOELS Bapouc Ttou Ba propolcay va 08nyrioouV o€ artoKALoN
TOU CUGOTHATOC, XPNOLLOTIOLNCAE TNV TEXVLIKN return based scaling mou nepleypddnke oto
T(PONYOUUEVO KEDAAALO YLO VOL OOAOTIOL|COUE TNV AMWAELA 0 KABE Bra eVNUEPWONG
cUUPWVA e TNV TPEXOUCA SLOKUUAVOT TWV AVTOUOLBWY TWV PONYoUEVWY EUMELPLWV. H
ekmaidevon ekva pe pa pvnun emoavainyng 300 Tuxaiwy EUMELPLWV. 2T CUVEXELD, O
napayovrag ekteAel 500 Bripata avomtnong, e To EPLAov va PElwVETal amno to 1 oto 0,1
VPOUULIKA Katd T Slapkela Twv 500 Bnudtwy. AlatnpoUpe pia pikpn agia edlov otnv
uTtoAoLnn ekmaibeuon yla va Slatnpriooupe Tn SuvatoTNTA TOU MPAKTOPO VA EEEPEUVHOEL
UPNAOTEPEC KATAOTACELG AVTAOLBNG O PETAYEVESTEPA OTASLA TNG KTtAidevonG. To
HOVTEND o€ KABE Brpa TTAPATNPEL TNV TPEXOUCA KATAOTOON TOU CUMTTAEYUATOG KOl ETUAEYEL
avapeoa os 3 evEpyeLleg. AUENGON TOU HeyEBOUG TOU CUUTIAEYUATOC KATA 1, Heiwaon Tou
pey£Boug Tou cupMAEYaTog kata 1 1 kapia aAAayn. ZTIC MTEPUTTWOELG TTou GAAale To
MEYEDOC TOU CUUTTAEYLATOC, O TIPAKTOPAG TAPATNPOUCE TEPLOSIKA TNV KATAOTAOHN TOU
CUMITAEYLOTOG OTWG Tieplypddetal amd tn LetaBAnth status.cassandraOperatorProgress.
Otav n TN autng tng LetaPAnThg opiotnke anod "Evnuépwaon" og "ETolpo", o mpakTopag
TLEPLUEVE yLa 5 AEMTA KAl 0T CUVEXELX GUAAEYE TIG LETPNOELG Ao Tov Prometheus yla va
EKTEAECEL TNV EMOEVN eVEPYELA. OTAV TO CUMUMAEY O TIAPEUELVE AUETABANTO, O TIPAKTOPAS
TLEPLUEVE 2 AETITA KAL OTN CUVEXELOL CUYKEVTPWOE TLG UETPNOELC YLO VOL EKTEAECEL TNV
enouevn evépyela. To batch sized yia tnv exnaidsuon petd anod kabe anddacn oplotnke ot
32 tuyaia deiypoata avapvioswy anod to buffer emavainyng.

o TNV OPXLTEKTOVLKN SLKTUOU TOU MPAKTOPO EKTOG OUVEEDNG, XPNOLLOTIOLOAUE
Eava £va mAnpwg ouvdedepévo diktuo pe 2 kpuda emineda. AsSopEVou ToOU YEYOVOTOG OTL
eiyape npooPacn os éva cUVOAO SedopEVwy EKTOC GUVEEDNC KalL N ekmtaibeuon pmopel va
TipayoTomnoLnBel og AoyLko Xpovo, eixape peyoAUtepn eAeuBepia va CUVTOVICOULE TIG
UTTEPTIOPAUETPOUG TOU HOVTEAOU. MNa KABe onuelo EAEYXOU TTOU GUYKPIVOUUE TOUG
TIPAKTOPEG LOLG, XPNOLUOTIOLOUE SLaPOPETLKO aplBLo KOUPBwWV yLa Ta kpuda emtineda yia va

30

BeAtioTomolcou e TNV anddoon Tou pHovtélou. Emiong, n UTIEPTIAPALETPOC a TNC
ouvaptnong anwAetag CQL kupalveTal amo 5 yla To UIKPOTEPO cUVOAO Sedopévwy £wg 1 yla
TO HeyaAUTEPO oUVOAO SeSOUEVWV.

TEAOG, XPNOLUOTIOLNCAE Lo TtPOoBEeTn BeATIOTOMOINON TTOU TEPLYpADETAL OTN
BBAoypadia wg petatonion apxlkng TG (Schaul, 2021). Av Kal n oMOTEAECUATIKOTNTA
QUTNG TNG LEBOBOU bev £xel amodelyBel OewpnTIKA, TA EUMELPLKA amoTeEAEopata Seiyvouv
OTL O€ OPLOUEVEC TIEPLTTTWOELCG EMITAXVUVEL SpAPATIKA TN oUYKALon. H StaloBnon miow amno
autr ™) HéBodo eivat otL oto eninedo £660u Tou aAyopibuou oto Deep Q Learning
TPOOTOOEL va EKTLUACEL TNV ApLlOUNTLKA TN TG ouvaptnong Q yia €va {evyog Spaong
kataotaong. Otav n duon tnNg ouvaptnong avrapolBng elval tétola mou petatomnileTal
ONUAVTLIKA amo To 0, TOTe n apxlkomoinon twv biases Tou enutédou e€660u ato 0, OTwG
ouvnBwg, umopet va eivat mpoPAnpuatikr). O Adyog sival 0TL o mpaktopag Ba adlepwoel
TIOAU XpOvo ekmaideuong yla va au€nosl aplBuntika ta bias yla va ¢ptaoet otnv Taén
pey£Boucg Tng ocuvaptnong Q, edopévou OTL oL TLUEG Q elval amopeloUpeva abpoiopata
TWV MOPATNPOUUEVWVY TIHWV avTapolBng, mpotol apxiosl vo pabaivel amoTEAECUATIKA TN
Suvapkn tou poBARuartog. MNa va Eemepaotel autn n kabBuotépnon otn padnon,
UTTOPOULE VO OPXLKOTIOLCOUE Ta bias pe pLa ekTipnon tng HEong TUAG TOU GUVOALKOU
KEPSoug Tou mpdktopa E[G] pe BAon oplopéva apXIkd OTATLOTIKA oTolyela. Ta melpapotd
pog €xouv Sei€el OTL auTr n ekkivnon pe mpokatdAnyn mpdaypoatt fonba tnv eknmaidevon va
EekLvnoeL vwpltepa oo TNV MPOCEYYLoN UNSEVIKNG TTposTOLHaciag.

Mapouoldou e TWPA TN CUYKPLTIK amodoon Tou Stadiktuakou kat Ttou offline
TIPAKTOPA OE CUYKEKPLUEVA onpela eAéyyou ekmaideuonc.

EAdxoto dataset(300 tuxaieg epmneipiscg):

DDQN

1700 - -9
1600 -
1500 -
1400
1300 A -8
1200 -
1100
1000 -
900 -
800 -
700
600 - L5
500
400
300
200 -

throughput
M
size

incoming load
cluster size L 5

0 100 200 300 400
min

Figure 1: DDQN urto nuttovoeLSc poptio

31

throughput

cQL

1700 A
1600 A
1500 A
1400 A
1300 A
1200 A
1100 A
1000 A
900 A
800 +
700 A
600 +
500 A
400 A
300 +
200 1

9
-8
L7 8
@
- 6
—— incoming load
—— cluster size L 5

100 200 300 400
min

Figure 2 CQL agent umod NULTOVOELSEG PopPTiO

Muwpo Dataset(800 suneipieg):

Y€ 0UTO TO ONUELO KAVOULE GUYKPLON TWV LOVTEAWV LOALG £XEL TEAELWOEL TO KOUUATL TG
€vtovng eepeuvnTikng dtadikaoiag SnAadn otav mAov To € £xel pewwbel oto 0.1.

throughput

DDQN

1700 A
1600 4
1500 A
1400 +
1300 A
1200 A
1100 H
1000 A
900 A
800 A
700 A
600 A
500 A
400 +
300 A
200 A

size

-9
-8
- 7)
-6
—— incoming load
—— cluser size L 5

T

0

100 200 300 400
min

Figure 3: DDQN umo nuttovoetbg poptio yLa to Uikpo dataset

32

throughput

CcQL

1700 -
1600 -
1500 -
1400 -
1300 -
1200 -
1100 -
1000 -
900 -
800 -
700 A
600 -
500 A
400 -
300 A
200 A

—— incoming load
—— cluster size

o

T T

100 200 300 400
min

Figure 4: CQL uTto NULTOVOELSEG POPTIO yLa TO ULkPO dataset

Dataset 1800 sunsiplwv:

throughput

DDQN

1700 A
1600 A
1500 A
1400 -
1300 -
1200 -
1100 -
1000 A
900 -
800 A
700 A
600 A
500 A
400 A
300 A
200 A

—— incoming load
—— cluster size

o

100 200 300 400
min

Figure 5: DDQN umd nuttovoetdég poptio yia dataset 1800 eumelplwv

33

throughput

CcQL

1700 A
1600 -
1500 -
1400 -
1300 A
1200 A
1100 -
1000 A
900 -
800 -
700 A
600 A
500 A
400 A
300 A
200 A

—— incoming load
_Z —— cluster size

0

100 200 300 400
min

Figure 6: CQL umo nuitovoeldeg poptio yia dataset 1800 suneiplwv

TeAwko Dataset(3300 suneipieg):

throughput

DDQN

1700 -
1600 -
1500 -
1400 -
1300 -
1200 -
1100 -
1000 -
900 -
800 -
700 A
600 -
500 A
400 A
300 A
200 A

—— incoming load
—— cluster size

o

100 200 300 400
min

Figure 7: DDQN umd nuitovoetdég poptio yLa to ueyado dataset

34

CQL

1700 A
1600 A
1500 A
1400 A
1300 A
1200 A
1100 A
1000 A
900 A
800 A
700 +
600 +
500 +
400 A
300 +
200 1

throughput

—— incoming load
—— cluster size

L
~
size

Wl

100

200 300

min

400

Figure 8: CQL umto nuttovoeld€g poptio yia to peyaldo dataset

ATO aUTO TO ONUELD Kal HETA Sev uTIAPXEL afloonpelwtn BeATiwaon yla To acUyXpovo
povtélo kat n ekmaidevon teppatiletal. To olyxpovo HovtéAo cuveyilel va BeATLWVEL TNV
anodoon Tou aAAd e TTOAU TtLo apyo pubuo.

Dataset DDQN caL Improvement
Minimal (300 exp) 581.43 642.73 10.5%

Small (800 exp) 601.74 670.05 11.3%
Medium (1800 exp) 659.71 698.36 6.1%

Final (3300 exp) 690.42 714.62 3.5%

TEANOC KAVOU LLE MEPLKA TIElpApaTa Vi dopTia ota omoia ev €xel ekmaldeutel pnta
TO aoUyXpovo SiKTuo yLa va eAEyEoupe av £xel SuvatoTnTeG Yevikeuong.

35

throughput

throughput

cQL

1000 A

900 A

800 A

700 A

600 -

500 A

400 -

300 A

200 A

—— incoming load
—— cluster size

100 200 300 400
min

Figure 9 CQL unto otadepo poptio

CQL

1700 A
1600 -
1500 A
1400 -
1300 A
1200 A
1100 -
1000 A
900 A
800 A
700 A
600 A
500 -
400 -
300 A
200 A

—— incoming load
—— cluster size

200 400 600 800
min

Figure 10 CQL umo petaBarAdueva poptia e Stapopetikd UYn

size

36

Jupnepdopata

Kata tn dtapkelo auticg tng SUTAWUATIKNG epyaciag, elyope Tnv eukalpla va
TIELPOLATIOTOULE E CUYXPOVEC TEXVIKEG LABnong BabLag evioxuong yLa vo EVIoXUOOU UE TLG
SuvaToTNTEG £VOG 6N LoxupoL gpyaleiou yia containerized epappoyEg. To MPOTELVOUEVO
MOVTENOD Lag TapEXEL Eva gUOTNHA TTOPaKOAOUONGO NG TTOU UMOPEL OMOTEAECUATIKA VAl
KALLOKWOEL AUTOUATO OUVOETEC EDAPLOYEC TIPOKELUEVOU VA LEYLOTOTIOLOEL TN XPoN TWV
OPpWV Xwpig va BAaYeL Tnv anddoaon. EmMutA£ov, o mpdktopag elval os B€on va avakaAUel
TN SUVALKA TOU GUCTAHATOG MaPAKoAoUBNGNC aKOUN Kal aro oAU PIKpA cUVOAQ
Sebopgvwv.

H xpnon ptag containerized €ékdoong tng epappoyng BeAtiwoe tn dadikacia ekmaidevong
eneldn enétpee TN CUCOWPELON AUENUEVOU apLlBLOU SLadOPETIKWY EUTELPLWY OTO (810
XPOVIKO SLACTNA 08 CUYKPLON LE TTPONYOULEVEC TPooTABeLeC Tou Bacilovtav og
gykatootdoelg pe VM. H Stabikaoia pnopel va emitayuvOel mepattépw eav emAEEOU UE VOl
LELWOOULE TN XPNOLUOTIONON TWV MOPWVY, WOTE VA UIopouV va adlepwboulv eplocotepol
TLOPOL YLA. TIG EPYAOIEG KALLAKWONG aVTL yla TNV eKTEAECn Tou $OpToU gpyaciag. Noapoia
auta, n epappoyn pag £6e€e uPnAo emninedo avBeKTIKOTNTAC KaL NTAv g B£on va ektelel
AElToUpYLEC KALLAKWONG KON Kal UTIO coBapr Tieon mMopwv. AuTto odelleTal oToUG
amoteAeopatikoU¢ alyoplBuoug scheduling tou Kubernetes, oL onolol avadlopyavwvouyv tTa
ekteAoUeva container yla va e€acdaAioouv eAdxLOTEG SLAKOTIEC.

Ta mMelpapaTa Pe Toug oclYXPovouc alyoplBuouc Babldg eVIOXUTIKAG LABnong tovioay TLg
TIPOKTLKEC TIPOKANOELG TIOU epdavilovtal Katd TNV ebopoy AUTWY TWV LOVIEAWY O
PEOALOTIKA oevApLA. TO TILO GNUAVTLKO E(VAL TO YEYOVOC OTL OUTA TA HLOVTEAX XpeLalovTal
ouveyn Kal ekteTapévn oAAnAemnidpaon e to meptBarlov mou mapakoAouBouv. Auto
onuaivel OTL yLo va TTpayUatonolnBel emituxng ekmaideuon, To cUOTNUA TIPETIEL VA
Slapopdwbel oxohaotikd, wote va anopeuxBolv anpoadoknTeg cuUTEPLDOPEC AOYW TWV
amopACEWVY TOU HOVTEAOU TIOU UMOPEL va 06NnNyricouV To GUCTNO O KATAOTPOPLKES
KOTOOTAOELS. H SeUTEPN MPOKANGH €lval 0 TIEPLOPLOUOG OTIG CUCCWPEULEVEG EUTIELPLEC. H
TuTKA edappoyn BabLdg eVIoXUTIKAG LABNoNC amaltel ekaTtoppUpLa EUTMELPLEG KL AUTO
propel va ivat avédIKTo yla peaALoTIKEG edapUOYEC. TEAOG, AOYyw TOU MEPLOPLOUOU OTLC
EUnEeLlpieg, N ektéleon BeAtioTonoinong unepmapapETpwy gival pia ToAu xpovoBopa
gpyaocia.

To 0.oUXPOVO LOVTEAD TTOU TTPOTEIVOUE QVTIUETWITI{EL OAEC AUTEG TLG TIPOKANOELC
anoteAeopatikd. Mpwta arn '6Aa, SeSouévou OTL TO MPOBANUO LETATPENETAL OUCLOOTIKA O
€va poPAnua pabnong xwplic eniBAen, sipaote og BEon va ekteAécoupe BeATioTomnoinon
TWV UTIEPTIOPOUETPWY YLa VA EAYAYOULE TO BEATLOTO HOVTEAO yLa TO POBANUa. EmmAéoy,
Sebopévou OtL To povtélo ekmatdeletal Xwpic kapia aAAnAenidpaacn pe To meplBaiiov Tou,
glval moAU Ayotepo miBavo Peta TV avamtuén va odnyroeL To cUCTNO O€ KOTAOTPODLIKEG
KOTAOTACELG, £QV TO TPOPANUA oplotel cwotd. To aclyxpovo PoviElo sival os Béon va
€€AYEL ONUAVTLKA TIEPLOCOTEPEG TTANPOdOpPLeg amod To MapeXOUEVO oUVOAO SeSOUEVWY, OF
oUYKPLON HE Tov oUYXpOoVo Mpaktopa. Q¢ anotéAeopa, eival og B€on va cuykAivel og pLa
AUon oAU 1o ypryopa. TEAOG, MOpaTNPOUE OTL o€ KABE onueio eAéyxou NG ekmaideuong,
TO LOVTEAO £KTOG oUVEEONG glval og BEan va LETPLACEL TNV TipoKaTtaAnyn cUyxpovou
HMOVTEAOU TIPOC KATOOTACELG UPNASTEPOU PeYEBOUG CUUMAEYUATOC, YEYOVOC TTIOU

37

umootnpllel Tov LOXUPLOUO OTL TO HOVTEAO LOG lval o B€on va aVTAEL CUCTNUATIKA
KoAUTepn AP amodAoewV TTOALTLKA OO AUTH TIOU TIOPEXETOL OO TO 0UVOAO SeSOUEVWV.

Av Kal teploploTNKE O€ OPLOPEVEG TIEPUTTWOELG, TO OVTEAO LG £SELEE KATIOLEG SUVATOTNTES
vevikeuong oe dopToug epyaciag mou Sev eixe yivel eknaideuon. H ekTeETAUEVN YEVIKEUON LE
™ Babid Evioyutik MaBnon mapapével akopn éva aluto {ntnua. Qotoco, autd Ta
anoteAéopata ival evOappUVTLKA YLO TIEPALTEPW TIELPOUATIOUO, ELOLKA UE TEXVLKEC
acLyxpovng Evioxutikic Madnong mou avtipetwrni{ouv apeoa to npoBAnua yevikeuong.

38

2 Introduction

2.1 Motivation

Cloud native applications are one of the main focus points of enterprise software
development. In 2021 about 30% of new generated digital workload is deployed on cloud
native platforms and it is estimated that this figure can climb up to more than 90% by 2025.
The dynamic and scalable nature of cloud native applications is a promising alternative to
on-premises development because it alleviates an organization from the costs and risk of
maintaining costly infrastructure to support its software operations. Moreover, scaling is
limited, time consuming and even impossible in certain scenarios.

Containerization enhances the potential of cloud native applications because it
offers a lightweight alternative to virtual machines that need to boot an OS instance to run.
Using containerization, the components of an application can run with a significantly smaller
hardware and time overhead. Capitalizing on these properties, cloud applications can be
organized in components that execute atomic functions of the application, rather then
running monolithic instances of the application. This software development paradigm is
called microservices and it offers increased flexibility in terms of scaling because each
component can be scaled independently.

As containerized applications become more complex and more distinct components
are added to the deployment, monitoring, scaling and connecting the components of the
application becomes a tedious task. The rapid increase in DevOps complexity of
containerized applications limited their adoption and created the need for orchestration
mechanisms. Kubernetes is a software solution that solves the orchestration problem
effectively, a fact that resulted in its increased adoption by enterprises since its release in
2014. Kubernetes also offers resource-based autoscaling features such as the Horizontal Pod
Autoscaler (HPA). This auto-scaling feature uses CPU and memory utilization thresholds to
estimate the optimal number of instances to run. Some cloud services vendors offer
threshold based autoscalers that increase the number of application instances as the
incoming traffic increases. These methods are oversimplistic and can only provide limited
performance guarantees.

An alternative approach to threshold based autoscaling, is to utilize algorithms from
the domain of Reinforcement Learning (RL). Reinforcement Learning formalizes the idea of
an agent that learns effective decision-making policies by performing trial and error
interactions with a system. Deep Reinforcement Learning enhances the capabilities of RL by
utilizing neural networks as high order non-linear function approximators. In that way,
problems that are described by more complex state spaces and could not be solved by
original RL algorithms, are now solvable. However, there is a key limitation to applying Deep
Reinforcement Learning to the resource auto-scaling problem. In typical Deep
Reinforcement Learning problems mentioned in literature, the number of training steps
required to reach an optimal solution is in the order of millions. In typical auto-scaling
scenarios the time it takes for an action to take effect is in the order or minutes.
Additionally, interacting with the application in a random manner is in some cases not
desirable because it can cause disruptions or lead it to destructive states. Considering the

39

above, it is evident that in order to derive a feasible solution for the auto-scaling problem
the number of interactions with the system must be reduced significantly or alternatively
the information gain from each interaction must be maximized.

40

2.2 Related Work

The most common way to deal with the issue of elasticity is auto-scaling. Amazon’s
auto-scaling (AWS, Amazon Autoscaling) for instance dynamically increases or decreases a
user’s resources based on thresholds applied on user cluster’s specific metrics. Microsoft’s
Azure (Microsoft’s Azure) and Celar (I. Giannakopoulos, 2014) use the same technique. Yet,
as shown in (K. Lolos, 2017)these approaches are difficult to calibrate and optimize.

The authors of (R. Taft, 2018) use a dynamic programming algorithm that tries to
determine through a series of past experiences the optimal behavior for the system’s next-
state. Markov Decision Processes (MDPs) and Reinforcement learning algorithms have been
used in (D. Tsoumakos, 2013) to address issue, as well as an approach involving wavelets for
prediction of a cloud state and resource provisioning. However, the efficiency of those
approaches decreases, as the number of possible states increases. The input parameters of
the system (metrics of the cluster) are continuous variables; therefore the number of
discrete states can grow exponentially.

To manage this issue in (K. Lolos, 2017) the authors propose an RL approach
combined with decision-trees algorithms, in order to split the input parameters based on
some split criteria. This approach manages to generalize over the input and to train the
agent so that it can find out on its own which state parameters matter to the desired
outcome and which not. Nevertheless, this approach also struggles with large space of states
and also need a large dataset to show generalization capabilities.

The authors of (Constantinos Bitsakos, 2018) proposed a Deep Reinforcement
Learning model to address the problem of elasticity in cloud native environments. The
model is able to converge to a solution and provide increased rewards compared to previous
approaches that did not utilize neural network. The main issue still is the fact that the
number of training samples is significantly large.

The authors of (Lucia Schuler, 2021) utilize Reinforcement learning algorithms to
address the problem of adaptive auto-scaling for serverless applications. Their approach
concerns the distribution of available workload to application containers and monitoring the
performance of the system in terms of latency and throughput based on the concurrent
requests each container has to serve. They then generate a policy using Reinforcement
Learning to perform optimal distribution of workload. Their approach is similar to ours
although it only applies to serverless applications. However, the states are described using
only three parameters, a fact that makes the exploration space much smaller and easier to
converge to a solution.

41

2.3 Proposed Solution

The proposed solution of this thesis is to create an agent that monitors a
containerized application and dynamically scales the deployed instances and consequently
the consumed computational resources. To develop this agent, we create two neural
networks that are trained using online and offline Reinforcement learning algorithms. There
are two main challenges that need to be tackled by the proposed solution.

e The number of parameters needed to describe the state of the system are can
increase, depending on the complexity of the deployed application. Also, the
parameters are not discrete. This makes tabular applications of Reinforcement
Learning ineffective and consequently the utilization of a neural network is justified.

e The time between consecutive actions is in the order of minutes. This limits the rate
of data accumulation, meaning that the model must extract as much information as
possible from available data points.

To address these challenges, we propose a model that consists of two neural
networks. The first model is trained in an online manner, using the Double Deep Q Learning
algorithm. The second is trained with an offline dataset using the Conservative Q Learning
algorithm. The offline dataset consists of the training experiences that are generated by the
online model during its training. Essentially, the offline model receives the data generated by
policy of the online agent and trains without further interacting with the system. To
decrease the time it takes to perform the scaling actions we deploy our application inside a
distributed Kubernetes cluster to leverage its automated scheduling features and the open-
source controllers that handle the operations necessary, after an increase of decrease in the
number of instances of the deployed application. The application we chose to monitor is a
Cassandra cluster. The choice of this application is based on the fact that its performance
depends on serval parameters, a fact that highlights the effectiveness of our model.

We test both models at several checkpoints of the training and show that the offline
model outperforms online training up to a certain size of dataset. We also provide empirical
results that indicate that from the point onwards where online training outperforms offline
training, performance gains diminish dramatically in comparison with the training steps
required to achieve this improvement.

42

3. Theoretical Preliminaries

3.1 Containerization

Virtualization technologies are an essential part of modern cloud infrastructure
because they facilitate efficient utilization of the physical machines’ resources that host
virtual machines (VMs). Additionally, they isolate virtual machines which is important to
ensure security. Virtualization however, comes with a significant hardware overhead, since
every VM needs to have its dedicated kernel which results in increased resource usage. Also,
the hypervisor, the program responsible for creating and running VMs on a physical
machine, consumes a rather large fraction of resources by itself (Scheepers, 2014).

Containers alleviate this problem by providing a “lightweight” alternative for running
isolated applications, while sharing the same kernel of the host Operating System (OS).
Containerization evolved from Linux cgroups (citrix.com, 2022), which became Linux
containers (LXC). Cgroups isolate and control the resources any given process can allocate,
for example thread number and CPU or RAM usage. LXC provide additional isolation using
namespaces. Namespaces further isolate containers, meaning every container has its
dedicated filesystem, network stack, user management and process ids. Using this
abstraction every container can run its own OS distribution regardless the OS of the hosting
machine given that the underlying distribution runs a Linux Kernel (Scheepers, 2014). In that
way, the booting a container results in the same experience regardless of the computing
environment. This cross-platform compatibility is essential to today’s cloud environments,
that usually consist of heterogenous systems and operating systems.

Containerized applications have significantly reduced booting times, since there is
no need to boot an operating system, except for some binaries which are included in the
container image. This means that deploying and destroying containers on demand, is much
cheaper in terms of resources and elapsed time. The aforementioned characteristics allow
for greater flexibility, when scaling cloud applications. If we also consider the fact that the
most common approach to cloud native application development is microservices, where
the application is divided in distinct software artifacts, that operate and are scaled
independently and communicate only through APIs, it is apparent that containerization is
the most suitable isolation technique to facilitate this software development paradigm.

43

App App App
| owiorn

Traditional Deployment Virtualized Deployment

Figurell : Application Deployment History

Container Deployment

44

3.2 Kubernetes

I kubernetes

Figure 12: Kubernetes Logo

Docker provides a framework to create containers that are reproducible and run in
the same way regardless of the underlying architecture. Also, by providing efficient ways of
storing and executing the containers, it promotes and supports the software development
paradigm of microservices. Ideally, each container runs a single software component of the
application that runs and can be scaled independently. However, as applications become
more complex and software components increase in number and variety, performing
DevOps becomes a tedious task and performing rolling updates, rollbacks and scaling is not a
trite procedure. The above tasks created the necessity for an orchestration mechanism to
deploy, monitor, maintain and scale containerized applications. Kubernetes, initially
launched in 2014 is an attempt to create such a mechanism.

Some of the core utilities of Kubernetes are:

e Service discovery and load balancing Kubernetes can expose a container using the
DNS name or using their own IP address. If traffic to a container is high, Kubernetes
is able to load balance and distribute the network traffic so that the deployment is
stable.

e Storage orchestration Kubernetes allows you to automatically mount a storage
system of your choice, such as local storages, public cloud providers, and more.

e Automated rollouts and rollbacks You can describe the desired state for your
deployed containers using Kubernetes, and it can change the actual state to the
desired state at a controlled rate. For example, you can automate Kubernetes to
create new containers for your deployment, remove existing containers and adopt
all their resources to the new container.

e Automatic bin packing You provide Kubernetes with a cluster of nodes that it can
use to run containerized tasks. You tell Kubernetes how much CPU and memory
(RAM) each container needs. Kubernetes can fit containers onto your nodes to make
the best use of your resources.

o Self-healing Kubernetes restarts containers that fail, replaces containers, kills
containers that don't respond to your user-defined health check, and doesn't
advertise them to clients until they are ready to serve.

e Secret and configuration management Kubernetes lets you store and manage
sensitive information, such as passwords, OAuth tokens, and SSH keys. You can
deploy and update secrets and application configuration without rebuilding your
container images, and without exposing secrets in your stack configuration.
(https://kubernetes.io/, 2022)

Overall Kubernetes provides tools to ensure resilience and fault tolerance of the application
and also minimum or no downtime at all during updates in production environments.

45

3.3.1 Core Components

Kubernetes consists of two types of nodes, worker nodes and master nodes.
Kubernetes nodes can reside in the same physical or virtual machine, for example when
deploying a vanilla cluster using Minikube, or in separate machines for larger deployments.

Worker nodes host the Pods of the application (Pods encapsulate the containers used by
Kubernetes and is the smallest piece of software Kubrnetes can execute). Master nodes run
the control-plane, which monitors and controls the application Pods as well as the worker
nodes of the cluster. In production environments, usually more than one master nodes run
the control-plane for fault tolerance and high availability.

The software components of the control plain are:

e Kube-apiserver

e Etcd

e Kube-scheduler

o Kube-controller-manager
e Cloud-controller-manager

Kube-apiserver: It is the frontend of the Kubernetes cluster. It validates data and exposes
the cluster’s shared state to all the other components of the cluster, for example pods,
services and controllers. It also provides an API that the manager of the cluster can use
monitor and perform manual changes to the cluster configuration. It can be scaled
horizontally to offer higher availability when traffic is increased.

Etcd: It is a persistent key-value database that the Kubernetes uses to store the cluster state
as well as the previous states. Every key created in the database is immutable. This means
that subsequent updates to the value of the key create new versions of the key rather than
mutating the data of the existing key. That said, it is apparent that the versions of every key
increase monotonically throughout the lifecycle of the cluster. For storage efficiency
reasons, older versions are compacted. When a key-value pair is deleted, its version is reset
to 0 and then in the next compaction all keys with version 0 are not included in the
compaction. In terms of implementation, etcd uses a persistent b+ tree to store information.
It also preserves an in-memory b+ tree index to speed up range queries over the keys. The
keys of the in-memory tree point to the most recent mutation of the data. During
compactions, the structure is updated and dead pointers are removed (https://etcd.io/,
2022).

Kube-scheduler: As stated by the name, the scheduler is responsible for watching for new
Pods that are not assigned to a worker node and then choose the node to run them on. To
chose the most appropriate node for each Pod the scheduler performs two operations on

existing nodes, filtering and scoring.

Every pod comes with a set of requirements. These requirements can be in terms of
hardware resources available, workload interference, data locality or node/pod affinity/anti-
affinity. For example, a pod that runs a stateful software component must run on a node
that contains the correct state information on an ephemeral or persistent storage. Also,
affinity or anti-affinity scheduling rules that are included in the pod specification, explicitly
declare the nodes and/or pods that the new pod can or cannot be paired with. By

46

considering the above restrictions the scheduler creates a list of all the feasible nodes, the
nodes that the pod can be scheduled on without violating any of the restrictions. If the list of
feasible nodes is empty then the Pod remains in the unscheduled state until an appropriate
node is observed. This can be either a new node or an existing node, whose workload was
changed. After the list of feasible nodes is created, the nodes are sorted based on scoring
functions. Scoring ensures a local optimum that is likely to lead to a better cluster state
consecutive pod assignments to nodes. There are many factors that are considered during
node scoring. For instance, a node that is going to reach its full resource capacity after
assigned the new pod is less likely to be chosen. A node that already has the docker image
stored is more likely to be chosen. Also, the scheduler ranks nodes, that already run
instances of pods that belong to the same service, lower to ensure a more uniform
distribution of the workload of service within the cluster. In that way, if a given node fails it
is less likely to cause disruption to the service. After the scheduler calculates the scores of
each node the highest ranked node is chosen and the scheduler binds the pod to that node
and updates the kube-apiserver.

Kube-scheduler is highly configurable in different ways. First of all, there are a
plethora of options to restrict scheduling in order to optimize scheduling performance and
decision latency. The parameters of the algorithm can also be configured to tune
performance. For example, in large cluster that many nodes are feasible it is beneficial in
terms of performance to do a partial rather than an exhaustive search of the available
nodes, so the scheduler can be parametrized to only search for a fixed number of feasible
nodes. Scoring can also be set so that all nodes above a threshold are considered optimal
and the scoring procedures terminates prematurely when such a node is discovered
(https://kubernetes.io/, 2022). Finally, Kubernetes offers the flexibility to replace the default
scheduler with a custom controller.

Kube-controller-manager: The kube-controller-manager is the “heart” of the Kubernetes
cluster. It is a non-terminating loop that communicates with the kube-apiserver and
monitors the shared state of the cluster. When the current state is not the same as the
desired state it periodically performs action to attempt approaching the desired state. The
desired state is such that all the pods are scheduled and healthy, all replicasets, statefullsets
and deployments deployed have the number of pods specified in their —replicas attribute in
running state and all jobs are in completed state (the above terms will be covered in more
detail in the following sections).

The kube-controller-manager consists of several controllers that monitor smaller
parts of the cluster independently but they are integrated in a single process for efficiency.
Some of the controllers inside the kube-controller-manager are:

e Node controller: Monitors nodes and when a node stops responding waits for a
grace period and then evicts pods from the non-responding node and reschedules
them.

e Replica controller: It monitors existing replicasets and ensures that a sufficient
number of pods run for each deployment.

e Service Account & Token controller: Create accounts and API access tokens for new
namespaces. In that way more than one applications can reside in the same cluster
and be isolated from one another.

47

Cloud-controller-manager: Kubernetes is created with the intent to be integrated with
the cloud infrastructure of major cloud service providers. When the cluster is deployed
using one of the supported cloud vendors then the cloud manager is deployed and runs
some controls to provide additional functionalities. For example, the cloud manager can
understand if a non-responding node is deleted or temporarily not responding and act
accordingly. The controller can also leverage the load balancing functionalities of the
vendor. In bare-metal or local machine installations the cloud-controller-manager does
not exist.

Except for the components that run on the master node there are some components
that must run on every worker node to enable cluster functionality. The first is the kube-
proxy. The kube-proxy is responsible for the low-level implementation of the services
created in a Kubernetes cluster. Services, are a way to create static connections between
groups of pods with each or expose a group of pods outside the cluster. This is not
trivial, since every pod created is assigned a new IP address that persists for the entirety
of its lifecycle. As pods are created and destroyed, the IP addresses of a group of pods
changes over time. Services provide an immutable way to connect to these pods
regardless of their IP addresses at any given time. The kube-proxy implements this
functionality by monitoring the nodes running on the node and updating the iptables of
the hosting machine when changes occur.

The second component is the kubelet. The kubelet is a container manager and its
responsibility is to start the execution of Pods as well as monitor their state and try to
ensure that they are healthy. To know which Pods to run it receives a PodSpec yaml file
from the kube-apiserver. It also interacts with the etcd database to update information
about the state of the pods. It also periodically checks the liveness(the pod is running)
and the readiness(the pod is set up and ready to execute its function).

N
|(| API server
"’] Cloud
| rr\\ ! > prosrder Cloud controller
| | “ AP| manager @i!’
I = H-m I (optional) com
I E | Controller
I ' | manager @
r S I
I ' :l:lli et .
I @ ,_'_ Node Node Node (persns(encestor:)C
ap
I
| | kubelet
| I ubel
|) G 2)
. (\ | ubele kubele Kubele kube-proxy
| etcd (@ | Kprox
AN
| \ sched
| I @ @ @ Scheduler @
—)
l Control Plane cpro -proy v
)
& Control plane ———--—-

Node

Figure 13: Overview of a Kubernetes Cluster and its core components

48

3.3.2 Core Concepts

The workload we wish to execute in a Kubernetes cluster is described by a collection
of objects. There are three different ways to declare an object to Kubernetes. The first is by
using imperative commands. This type of declaration is suitable for development purposes
and offers a quick way to create a new object. However, it provides no template to create
similar objects in the future and also it creates no trail of the changes applied to the object,
only the live state is preserved. The second and third declaration techniques use yaml files
(Yet Another Markup Language) to create new objects or update existing ones. Imperative
object declaration uses a .yaml file and executes an action explicitly stated (create, delete,
update) using that file. The main advantage is that the file acts as a reference point for
future deployments of instances of the same object. However, a .yaml file has to be created
which requires a certain level of knowledge. Also, if an update is executed, changes must be
merged in the new version of the configuration file or they will be lost during the next
replacement. Declarative object configuration uses .yaml files and the apply command of
kube-controller. Kubernetes then detects all objects to be created or updated and
automatically performs the appropriate actions to every object declared in the yaml files.
This way of declaration makes changes persistent even if they are not explicitly merged and
is also suitable to perform on directories of yaml files. However, it can create a complex
sequence of changes to the objects, which makes the procedure less transparent and harder
to debug in cases of unexpected behaviour.

Kubernetes objects act as a “record of intent” for the cluster. This means that from
the moment an object is declared the cluster will continuously perform actions to ensure
that the object exists. Essentially objects, describe how we want our cluster workload to look
like, so the collection of the declared objects represents the desired state of the cluster.
Kubernetes includes a plethora of available objects in its documentation that offer very
complex and expressive ways of workload orchestration. Describing all of them is out of the
scope of this thesis, so we will only mention the objects that are used for the deployment of
our application.

Pods:

Pods are the smallest unit of computing that can be deployed in the Kubernetes
ecosystem. A pod is a group of containers that are always co-scheduled on the same node
and share the same computational resources, filesystem and storage. The shared
environment within a pod consists of a shared set of cgroups and namespaces, analogous to
a Docker container isolation setting. Pods represent a cohesive unit of service of our
application and these containers must always be run and scaled together. Pods are rarely
created as standalone objects because a Pod is an ephemeral structure, meaning that if no
additional objects are declared that use a certain Pod then its lifecycle can be terminated
without further notice, due to lack of resources for example.

49

Deployments:

Deployments are objects that enable to perform rolling updates or rollbacks to
existing groups of pods or create new ones. It is an important feature of Kubernetes because
one of the major issues that it claims it can solve it the durability issues and minimal
downtime during updates. During a rolling update, pods that run the latest configuration of
the provided specs, are gradually scheduled to the nodes and are started. As more pods
running the latest version are reaching the Ready state, pods running the old version are
gradually terminated and replaced. By default, deployments ensure that no more than 25%
of the desired number of pods are unavailable at any given time and no more than 125% of
the desired number of pods are started simultaneously. Of course, these parameters are
configurable. If for some reason a scale operation occurs during a rolling update, for instance
if horizontal autoscaling is enabled, then the cluster performs proportionate scaling. This
means that the cluster creates pods running the latest version as well as pods running the
old one, at a proportion that preserves the ratio before the scaling started. In that way it
ensures that scaling is less likely to disrupt the rolling update procedure.

ReplicaSets:

A ReplicaSet is a Kubernetes object that monitors Pods belonging to a group
declared in its specs and tries to ensure that at any given time the desired number of these
pods run on the cluster. In the ReplicaSet specification additional parameters can be
configured, to specify the node selection process and the image the pods must run. When
changes are applied to the ReplicaSet manifest (by declarative of imperative configuration)
then the ReplicaSet ensures that the old pods are terminated and new ones, complying with
the updated specifications are running. This object is suitable for stateless workload
application components because when an instance is terminated or replaced no state
information is preserved.

DaemonSets:

DeamonSets are similar to ReplicaSets but they ensure that an instance of the pods
defined in their specification are running on every node of the cluster or on every one of the
nodes explicitly or implicitly declared in the specification. Pods controlled by DaemonSets
are not scheduled by the kube-scheduler but instead use a dedicated controller that deploys
these pods to nodes independently. In some cases, this can cause scheduling problems
especially when the workload running on a node is close to its resource limit. In such cases it
is possible to disable the dedicated controller and force daemonset pods to follow the
normal scheduling process. This object is suitable for pods that perform node specific
functionalities for example log or metric scraping and exposing them to the cluster, node
monitoring or persistent storage handling.

50

StatefulSets:

Originally Kubernetes was developed with intent to support stateless applications
primarily. However, as its popularity grew and the desire to support more complex
applications rose, it was inevitable that statefullness of workloads had to be supported.
StatefulSets fulfill this purpose. As all previous objects, StatefulSets monitor a group of
objects and ensure that the desired number is running on the cluster. Unlike the previous
categories however, every pod created as part of a StatefulSets has a sticky identity that
persists as long as the number of replicas of the set is not changed. This means that even if a
pod is terminated or evicted, after a new instance is recreated it will preserve the same
identifier. Also, the pod receives a unique and stable network identifier.

Preserving the state of the pods also introduces some restrictions in the deployment
and scaling of StatefulSets. During scale up or scale down, only a certain number of pods can
be created or terminated simultaneously. By default, only one at a time is created or
terminated unless the StatefulSet is divided in subgroups. In that case only one per subgroup
is created or terminated. In stateful applications, during scale up or scale down some
information must be transmitted between the Pods of the set, to update their states about
the change that is about to happen, so that the state of workload is consistent. For this
reason, a new pod belonging to the set can only start if all the predecessors are in running
state and a pod can be terminated if all of its successors have already been terminated. The
restrictions introduced can create delays or even block the scaling procedure if one of the
pods fails and cannot reach the running state again. This creates the need for more
advanced controllers that are application specific, to handle internal errors accordingly so
that pods can recover from failure.

StatefulSets provide the basis for implementing stateful applications but the pods
still remain ephemeral. If the application demands that the state is preserved and cannot or
should not be recovered completely by other pods, then the StatefulSet must use some form
of persistent storage to permanently store the necessary information.

PodDisruptionBudget:

Kubernetes runs on a distributed infrastructure and in order to ensure robustness of
the system to faults, it must account for unexpected failures and perform actions to mitigate
their impact on the workload. So far, we covered how Kubernetes handles rolling updates on
sets of pods to ensure robustness. Other reasons of disruption can be the draining of a node
(removing all running pods from a node) to perform upgrades, repairs or scale down the
cluster and removing a pod from a node to change the scheduling configuration of the
cluster for optimal performance. These types of pod disruptions are called voluntary,
whereas disruptions called from nodes becoming unavailable either due to physical system
failure or VMs being destroyed (by the cloud provider for example) or network partitioning,
are called involuntary.

Kubernetes offers an object that provides an additional layer of durability when
voluntary and involuntary disruptions occur simultaneously. They are called
PodDisruptionBudgets and they state the minimum number of pods of a deployment that

51

must be running at any given time. It can be an absolute number or a percentage of the
replicas available. So, if during a rolling update an involuntary disruption occurs, leading to
the number of available pods dropping under the defined PodDisruptionBudget threshold,
then the update process will be paused until a sufficient number of pods reach the ready
and running state, to prevent application downtime.

Services:

As we mentioned before every pod on creation is assigned a unique IP address so it
can be accessed from inside the cluster. Pods however, are ephemeral and a group of pods
performing a certain function does not have static IP addresses. To support the
microservices software paradigm there must be a mechanism that allows pods to
communicate with each other while their IP addresses alter over time. Services are this exact
mechanism. In essence a service is an abstraction that defines a set of pods and a policy on
how to forward traffic to the pods. The most common way to define the group of pods is
using a pod selector. A pod selector is just a key-value label that is stored in the pod
template when it is created. The service then uses this key-value selector to monitor which
IP addresses belong in the group and updates the endpoints.

Services can also be used to forward traffic to or from external addresses for
example to query an external database or to make the running application available outside
the cluster. If the Kubernetes cluster is deployed using on of the major cloud services
vendors (AWS, Azure, GKE etc.) then services can leverage the load balancing features they
provide. By setting the type of the service as LoadBalancer the service is connected to a load
balancing resource of the cloud provider so that traffic can be balanced between nodes.

Whenever a new service is created, it allocates a port of the node in the range
30000-32767. In large scale deployments where multiple users create services, potentially
from different namespaces, there is the risk for overlapping node assignments. Kubernetes
solves this problem by preserving a persistent data structure that stores all existing
assignments and updates its mapping prior to every new service creation. It also
automatically collects IP addresses that are no longer used by any service.

Volumes:

On-disk files in a container are ephemeral so during crashes the files are lost. This
creates problems since for Kubernetes the smallest computing unit is the pod, which can
potentially consist from multiple containers and when one of them crashes the pod should
not crash as well, so data should be preserved. Also, the filesystem should be accessible to
all containers inside a pod if required. That is why Kubernetes defines the volume objects
that extend the functionality of volumes defined by Docker to support the need for
ephemeral or persistent storage in pods. Ephemeral volumes are deleted once a pod is
terminated but persistent volumes are not cleared unless explicitly declared so. Both
ephemeral and persistent volumes are preserved during container restarts. At its core, a

52

volume is a directory, with or without data that can be accessed by containers inside a pod.
The content of the directory, the medium that supports the directory and how this directory
is created, depend on the type of volume used. Kubernetes offers a plethora of volume
types that create volumes using the volume features of most major cloud services vendors.

Persistent Volumes:

Persistent volumes are used to store data that are preserved between pod
terminations until the user decides to delete them. Volumes can be backed by various cloud
infrastructure technologies, each with its own features and implementation details.
Kubernetes however, aims to separate dev from ops in cloud applications. In the same way
that users deploy their application components without concerning themselves with
allocating computing resources, they should be able to provide persistent storage to them
without concerning themselves with the implementation specifics of each backing
technology. That is why Kubernetes offers an additional level of abstraction for persistent
volumes to separate how volumes are provided from how they are consumed. To achieve
this, it uses three additional resources, PersistentVolumes, PersistentVVolumeClaims and
StorageClasses.

PersistentVolumes (PV) is the resource that represents a persistent volume that is available
in the cluster. In other words, it’s a volume that has already been configured by a cluster
administrator and is ready to be used. To use available volumes, pods create
PersistentVolumeClaims (PVC) before they initiate the execution of their containers. These
are claims for a persistent volume that complies with a set of specifications explicitly
described inside the claim. When a new PVC is created, a controller inspects its
specifications and if it finds a PV that satisfies them, it binds the PVC with the PV in a one-to-
one relation. The pod then receives information about the location of the bound PV and
starts its execution using the PV. To match a PVC with a PV, the volume must provide at least
the requested specifications, for example storage size and access writes, or an excess of the
requested specifications. If a suitable PV does not exist, the PVC remains unbound and the
pod stuck until an appropriate PV is provided to the cluster.

StorageClasses are used for two reasons. First to relieve application developers from
explicitly stating all the characteristics of a PV or PVs they want to request for a pod. We
could say that StrorageClasses describe different profiles of volumes and each
PersistentVolume is an instance of a StorageClass (a PV that is not explicitly declared as an
instance of a StorageClass is an instance of the DefaultStorageClass). In that way, developers
can request for a specific StorageClass and then the controller will try to allocate an
appropriate volume instance. The second reason is to facilitate dynamic provisioning. When
the underlying technology supports such a feature, Kubernetes can dynamically provision
volumes on demand. To do so, the pod must request a StorageClass instance that supports
this feature. Then when the controller inspects the created PVC and finds no matching
volumes, it notifies the cloud-controller-manager to request a new volume from the
specified endpoint. The new PersistentVolume is automatically created and bound with the
PVC. In that way the available persistent storage in the cluster can grow or shrink according
to the demands of the application at different times, leading to more efficient pricing.

53

Ephemeral Volumes:

Ephemeral volumes support the need of some applications to store temporary data
before or during execution without the need to preserve them across restarts. For example,
some applications need some read only data that provide initialization parameters
(ConfigMaps). Other application might need to store temporary results during intensive
computations to alleviate memory pressure and reduce the risk of being terminated because
of exceeding resource limits. Kubernetes provides this type of volumes to simplify
deployment and management in these cases, since there is no concern for data
perseverance.

CustomResources:

Kubernetes offers several resources like the ones described above but in some scenarios
there might be a need for additional monitoring of resources. For this purpose, Kubernetes
allows to define custom resources that provide additional layers of control and extend the
standard installation. The most common custom resource are custom controllers. Just like
built-in controllers, they monitor the state of a part of the cluster and periodically perform
actions to help the cluster reach the desired state in term of the resources monitored by the
custom resource. This can be useful in cases where the application demands monitoring that
cannot be done from inside the pod because the state of the cluster is not visible. For
instance, when a pod or a resource goes through different states there might be the need to
execute additional actions inside some pods to ensure the proper function of the application
as a whole.

54

3.4 Cassandra

Cassandra is a distributed open-source database management system. It is designed to
handle very large amounts of data spread across many servers, offering high availability and
no single point of failure. It is a NoSQL solution and was initially developed by Facebook to
support the Inbox Search feature until 2010 (Avinash Lakshman, 2014). Its main features are:

Decentralized:

Every node in the cluster has the same role. There is no single point of failure. Data is
distributed across the cluster (so each node contains different data), but there is no master
as every node can service any request.

Supports replication and multi data center replication:

Replication strategies are configurable. Cassandra is designed as a distributed system, for
deployment of large numbers of nodes across multiple data centers. Key features of
Cassandra’s distributed architecture are specifically tailored for multiple-data center
deployment, for redundancy, for failover and disaster recovery.

Scalability:

Read and write throughput both increase linearly as new machines are added, with no
downtime or interruption to applications.

Fault-tolerant:

Data is automatically replicated to multiple nodes for fault-tolerance. Replication across
multiple data centers is supported. Failed nodes can be replaced with no downtime.

Tunable consistency:

Writes and reads offer a tunable level of consistency, all the way from "writes never fail" to
"block for all replicas to be readable", with the quorum level in the middle.

MapReduce support:

Cassandra has Hadoop integration, with MapReduce support. There is support also for
Apache Pig and Apache Hive.

Query language:

Although it is NoSQL database at its core, CQL (Cassandra Query Language) was introduced,
an SQL-like alternative to the traditional RPC interface.

55

3.4.1 Data Model

Column:
It is the atomic unit of information in Cassandra and is represented in the form name: value.
Super Column:

Super Columns group together columns and provide a common name. In that way more
complex data structures can be modeled inside Cassandra.

Rows:

Rows are the uniquely identifiable data stored inside Cassandra. They group together
column and super column values and link them with a unique key. Cassandra performs
queries based on this unique key.

Column Families:

Column Families are analogous with a Relational Database Table. They group together keyed
rows that consist of similar columns and super columns. The core difference with relational
databases is however, that this is not a strong restriction and the schema of column families
is not predefined or strictly the same. The user is free to include as many of the columns and
super column values as they wish for each row. Column families just provide an abstraction
to group together rows that are likely to be queried together, in order to improve
performance.

Keyspaces:

Keyspaces are the highest level of information representation in a Cassandra cluster. Each
column family belongs to exactly one keyspace. Also, the consistency levels and replication
factor are defined on a per keyspace basis, meaning that different keyspaces can have
varying consistency levels and replication strategies inside the same cluster.

(Featherston, 2010)

3.4.2 Cluster Architecture

A Cassandra cluster works with a Peer to Peer (P2P) architecture, meaning that
every node is connected to all other nodes. Also, every node is aware of the data
distribution on all other nodes. As a result, every node is capable of serving clients and
perform all database operations. All of the above contribute to the fact that there is no
single point of failure in a Cassandra cluster and this promotes increased fault tolerance.
Also, performance scales almost linearly with the amount of nodes available in the cluster.

When we use the terminology of nodes, we refer to the physical of virtual machines
that the cluster comprises of. In Cassandra there is also the term of virtual nodes. According
to the data model of Cassandra, all data rows are uniquely identified by a key. The keys are
hashed in order to form tokens, that are integer values in the range [-2%% +1, 2%%-1]. The
resulting token range offers a one-to-many mapping of the data rows to the tokens. We can
conceptualize the range of tokens as an ordered ring. In the case of a single physical node all
of the information (token range) is stored in the same node, but as more nodes are added

56

the token range has to be distributed among nodes, so that each node is responsible for a
part of the cluster data. To simplify token calculation and data distribution challenges,
Cassandra divides the token range to a large number of virtual nodes. Then each physical
node is assigned an equal number of virtual nodes at random, to ensure uniform data
distribution. When new nodes enter or existing nodes exit the cluster, the virtual nodes are
redistributed among the new set of physical nodes, instead of recalculating the token range
for each physical node.

V1:0-10

v2: 11-21
V3:22-32
V4; 33-43
V5: 44-54
VE: 55-65
V7:66-76
va: 77-87
V9: 88-99

Vi1vawvy
L Al
[] b

|/ g
v2vsve Um?® viveve

Figure 14: Virtual Node Distribution Example

The Cassandra cluster is also logically organized in racks and datacenters. In physical
datacenters a rack is a group bare-metal servers sharing resources like power supply,
networking etc. In the same manner racks inside the Cassandra cluster form a group of
nodes that potentially can fail altogether. When multiple racks are available in a cluster,
Cassandra opts to distribute data replicas to different racks. In that way, it guarantees higher
availability and fault tolerance, because it is certain that more than one nodes will be
queried each time and that all information is replicated in more than one physical nodes. A
group of racks can be grouped to form a datacenter. Dividing the cluster to datacenters
helps mitigate the impact of different workloads to one another, by assigning data of
different workloads to reside inside different datacenters. Datacenters can have different
consistency levels and can be scaled independently and simultaneously, further isolating the
performance interference.

Cassandra offers tunable consistency levels. The consistency level options are a
tradeoff between Consistency and Availability in accordance with the CAP theorem (Simon,
2000). The higher the consistency levels chosen, the more request acknowledgments have
to be received to complete a query which leads to higher latency and limits availability. In
general, read operations have significantly higher latency than write operations. The reason
behind this is how data storage is implemented. Writes in Cassandra are immutable. Every
new record is written in a read-ahead log. The on-disk structure is called SSTable. Updates or
deletes on an existing record, create additional entries to the log with new version of the
record. When Cassandra performs a write operation, it only waits for confirmation that the
record has been committed from the nodes responsible for the key, whereas during read
operations the node must consolidate all versions of a stored record and retrieve the most
recent. Read operations also perform minor compactions and consistency checks, by
removing deleted entries if they encounter them during version control and updating
inconsistent entries with the latest value of a record.

57

Cluster

ﬁ)atacenter

~

>

),

////I)atacenter

//‘
Rack ‘\\ Rack ‘\\
Node
Node Node
Node Node Node Node
Node Node
Rack ‘\\ Rack ‘\\
Node Node
Node Node
Node Node
Node Node
Node Node

>

d

Figure 15: Logical Representation of a Cassandra Cluster

One final set of operations that are crucial for the consistency of data are anti-
entropy mechanisms. As we mentioned before, reads perform some partial anti-entropy
functions. They are however opportunistic, meaning that not all read operations perform
anti-entropy checks to avoid performance decrease. Another anti-entropy mechanism is
hinted handoffs. When a node becomes briefly unavailable, all replication information that
should be stored in the node, is stored in a peer node instead. When the unavailable node
reenters the cluster, it receives this information (called “hints”) from the peer node and
catches up with the latest state of the cluster. Obviously, there are time and size limitations
for hinted handoffs and consequently it cannot be considered a primary anti-entropy
mechanism. The most reliable tool for anti-entropy are repairs. Repairs create special data
structures called Merkel-trees that hash existing data entries in a replica and are then
distributed to other nodes to detect inconsistencies. Finally, the latest version of all entries is
streamed between nodes. Although, partial repairs are performed sporadically during low
traffic periods, a full repair has to be scheduled manually because it is a computationally
intensive operation that might make the cluster temporarily unavailable.

58

3.5 K8ssandra

¥

K8SSANDRA

Figure 16: K8ssandra Logo

When Kubernetes was initially launched, its primary focus was to support stateless
applications. Although, several organizations have migrated their cloud applications in the
Kubernetes ecosystem, the initially limited support for stateful applications resulted in
computing infrastructure to mature at a greater rate than data infrastructure inside this
ecosystem. Before K8ssandra, the most common practice was to deploy computing
resources inside the Kubernetes cluster and deploy an external database and connect it with
the cluster. This approach is suboptimal because at least to stacks of monitoring are needed
to ensure the health of the application, development productivity is limited because
competency is needed in at least two environments and each one can be a bottleneck for
the other and finally cloud infrastructure is not utilized optimally leading to greater costs
(K8ssandra, 2022).

The obvious solution is to migrate the data infrastructure inside the cluster. In that
way the application can be monitored more effectively and scaled with reduced cost.
K8ssandra offers a flexible deployment of a Cassandra cluster inside Kubernetes that is
suitable both for developers looking for a scalable data solution as well as developers
looking for a simple and ready to run solution using preconfigured parameters. The
K8ssandra deployment provides additional tools for monitoring, repairing and restoring data
except for the Cassandra implementation. The core components of a K8ssandra installation
are the k8ssandra-operator, stargate, cass-operator, medusa, reaper and a monitoring
service that uses Prometheus. For the scope of this thesis, we will only use and analyze the
components used for deploying and monitoring a single Cassandra cluster, namely cass-
operator, stargate and Prometheus.

59

K8s Cluster 0
L —— o mmem——— b O ———— b
' o o e ' '
| ossClusor?) |} (kes Closer D | § KessandraCiuser
' o ' ' '
L......l L.......) \....._].-.A.J
k8ssandra-operator
(control-plane)
e :1"— .:: SSe
— = < <
B Tare N e
K8s Clyster I’ 50 SR == ~es Cluster 2
e - New Bl
| it "_'__ﬁ grmemmm- A‘“““'\ l’____~S _____ o | ."____‘" _____ e]
E Stargate E i Ca»and(;l);;(acemev i E Stargate i E Cﬂshand(l(::Dz-;lacenlel E
- prosse I Mmsaws g J CR— — 9 Caswes o= J
k8ssandra-operator cass-eperatbr k8ssandra-operator cass-epéraior
ata-plane ata-plane
data-pl P daiti-p p
e 5 s S S J T S g J
| 1 i 1
1 i
1 1
1 1
1 ’@' dclO] [@‘ dcll] [_f_@' dclz] 1 [@' ch-O] [@' dc2-1] [@' dcz-zl
1 1
1 1
1 1
1 H
1 — 1 ”
> \éj’\ sg-0 > \:’C;\ sg-0

Routable network connectivity between clusters

Figure 17: K8ssandra overview

3.5.1 Components
Cass-operator:

Initially, the cass-operator was a standalone project that was used to deploy a Cassandra
cluster inside a Kubernetes cluster. It provided limited monitoring capabilities and also
orchestrated node bootstrapping and cluster scaling. Soon after the release of the K8ssandra
project the cass-operator was migrated inside of it and now its development and
maintenance are transferred to the K8ssandra community.

In terms of Kubernetes resources cass-operator is a custom controller that monitors
all the resources that are used to deploy the Cassandra cluster. On deployment, it receives a
yaml file that contains parameters about the Cassandra cluster. This approach allows for
great flexibility in terms of configuration, because every component of the Cassandra cluster
can be configured to great extends. For example, we can explicitly define resource limits for
each individual component, configure networking connections between components and
also create privacy settings to increase security of the cluster. We can also opt to not install
a specific component of K8ssandra default installation if it does not suit the needs of our
application. After deploying the resource, cass-operator creates a StatefulSet with size equal
to the declared size of our Cassandra cluster. It then monitors the bootstrapping of nodes,
ensuring that only one node enters the cluster at a time to ensure stable deployment. Since
the operator is aware of the network topology in term of Kubernetes resources, it organizes
nodes on racks in a way that ensures that there is the least probability if any at all, of data
being lost due to node failure. More specifically, it opts to organize nodes running on the
same Kubernetes node in the same rack. In that way if the node becomes unavailable, data
are not lost if the replication factor is greater than one, due to the replication protocol of
Cassandra to store replicas in different racks.

60

Cass-operator also creates several services to allow network connections between
Cassandra nodes. First it creates a seed service so that nodes entering the cluster can finds
seed nodes in order to bootstrap. The amount of seed nodes varies, from three per
datacenter to one per logical rack and seed nodes are automatically replaced by cass-
operator in case a seed node is removed from the cluster or becomes unavailable. It also
creates an all-pod service that allows Cassandra nodes to connect with each other once they
have entered the cluster. Again, endpoints are updated by cass-operator as nodes enter or
leave the cluster.

Overall, the cass-operator is the most reliable point of observation of the Cassandra
cluster. The clustered state can be monitored by the yaml of json file that can be produced
by Kubernetes at any time and describes the current state of the cass-operator resource and
consequently the cluster. This is the part of the deployment that the agent we created uses
to make changes to the cluster and receive updates on when these changes are applied.

Cluster

Failure Zone A Failure Zone B Failure Zone C
Worker Node Worker Node ‘ Worker Node
Namespace — ———— =y A £
Rack 1 = Rack 2 = Rack 3 =
StatefylSet @ StatefylSet @ StatefylSet
e e e e e
cass-operator Node 1 DC Nodes Node 2 DC Nodes Node 3
orker Node Worker Node Worker Node
Seeds 6 Seeds e Seeds e
@ Node 4 @ Node 5 @ Node 6
DC Nodes DC Nodes DC Nodes

Figure 18: K8ssandra Cluster Overview

Cassandra Pods:

Cassandra pods consist of three containers. A Cassandra container that runs the
Cassandra image, a logger container that stores log information about Cassandra operation
within the pod and is useful for troubleshooting and an init-container that handles
configuration settings received from cass-operator as the pod is initialized. The Cassandra
container does not start the Cassandra JVM process immediately. It only starts a
management REST API used by cass-operator to send lifecycle operations to the container
(Start, Drain, Stop etc.). Then when the cass-operator decides it is safe it triggers the
initialization of Cassandra and the container starts running. As we mentioned, Cassandra
pods are part of a StatefulSet monitoring the whole Cassandra cluster. In that way, every
pod is unique and if a pod fails it is restarted with the same identifiers. Also, since there is
the obvious need for persistent storage, a PersistentVolumeClaim is made when the pod is
created that binds the pod to a persistent volume. A pod can only start running if a suitable
volume is bound to it. The specifications about the volume features are declared in the

61

values of the cass-operator and transferred to the StatefulSet and each individual pod
(K8ssandra, 2022).

REST HTTP calls

Cassandra Container
\
Management API

« Super user account management
+ Bridge to JMX functions

> Status

= Configuration

o Start/ Stop / Drain
+ Keyspace management

Unix Socket

Cassandra Daemon

Figure 19: Cassandra Pod

Stargate:

We can say that the K8ssandra installation is not a pure form of Cassandra
installation, as it would be deployed in a set of virtual machines and the Stargate pods are
the reason for this. The stargate project is an open-source data gateway that provides a
layer of abstraction between a database and client requests. In that way, client request can
be configured to suit the application needs and then be transformed to fit the database
interface.

The motivation behind the integration of stargate to the K8ssandra project is due to
two main reasons. The first is that although Cassandra offers the CQL interface to create
SQL-like queries, such an approach would be suitable only for applications that already used
a Cassandra solution. In the general case, especially in a microservices environment, the
common approach is that different components interact using APl requests. Stargate
satisfies this need for a more uniform way to interact with the Cassandra cluster.

Another purpose served by Stargate nodes is to perform a part of the coordination
of data requests towards the cluster. Each stargate pod runs a stateless instance of
Cassandra inside it. This means that when a new instance is created it bootstraps in the
cluster and considered a part of the ring but it does not receive any data. It only receives and
preserves keyspace distribution and topology information, so that it is aware of the data
distribution. When requests arrive, it is responsible for forwarding them to the appropriate
Cassandra nodes and also verify the returned responses according to the consistency
protocols of Cassandra. In that way, Stargate pods alleviate some of the computational
pressure from Cassandra since the computations for serving requests is distinguished from
computations to retrieve data. The two parts of the clusters can be scaled independently
which leads to additional robustness.

Although Stargate is considered a core component of the K8ssandra cluster and is
configured for optimal performance it is not mandatory to include it in the installation. A
completely viable alternative is to disable the Stargate pods during installation and deploy

62

only the Cassandra pods. In that case however, the user must manually create an additional
service to expose Cassandra to the rest or the cluster or outside of the cluster, depending on
the business needs.

Monitoring:

The monitoring stack that is installed with K8ssandra is based on two components,
Prometheus and Grafana. Prometheus consists of a database and a server. The server
periodically scrapes metrics from available resources (pods or nodes) by making API requests
to the endpoints provided to it and then stores the data locally in the form of time series.
Grafana is used to visualize the data stored in Prometheus by performing queries on them
and then presenting them in diagrams via a web browser. For the scope of this thesis, we
will only analyze Prometheus, which is used by our agent to extract metrics that describe the
state of the cluster.

Prometheus stores all data in a key-value time series format. This means that all raw
information is stored as a pair of value and the timestamp that this value was observed.
Then data are organized in metrics using distinct names as keys. Prometheus also allows
data to have dimensionality by using additional labels. In that way, datapoints belonging to
the same metric can be distinguished further, by using the set of labels each one has. This
allows for a more expressive representation of information when performing queries on
data. Although all information is stored as pairs of values and timestamps, Prometheus
offers some additional metric types through the client libraries that are installed to
application interacting with Prometheus. These are counts, gauges, histograms and
summaries. Counts are used for metrics that are monotonically increasing, for example the
requests served by an http server. Gauges are used to represent values that can increase or
decrease over time, for example memory or CPU usage. Histograms, samples observed
values during a configurable timeframe and then counts them in configurable buckets. Then
the user can query on that metric based on quantile percentages. This can be useful for
metrics like latency where we are usually interested for the latency experienced by a specific
percentage of users. The summary metric is similar to a histogram but it also sums values
instead of counting them and offers the functionality of querying this metric using
percentiles. This additional metrics extend the queries we can perform on these metrics,
increasing the information we can extract from source information (Prometheus, 2022).

As we mentioned, Prometheus supports its own query language PromQL. PromQL
can support 4 types of queries. The first two are string and numeric literals that offer
additional functionality when creating complex queries, for example to subtract a constant
from a value. Instant vectors return a set of values from a metric, that correspond to the
latest timestamped recorded. Although only one metric is queried, more than one values
can be returned based on the filter o labels applied. It is useful to note that PromQL
supports this application of regular expressions on labels so that a more generic matching
can be created. Finally range vectors support the same functionality as instant vectors but
also a range is defined and all values with timestamps in range [present -range, present] are
returned. The user can also apply aggregation functions on the returned values (sum, avg,
rate etc.) and numeric operators. Using the above language, the raw data can be

63

transformed to very expressive timeseries that can describe metrics ranging from resource
usage observation to very complex and application specific metrics.

Prometheus can discover the endpoints to scrape metrics from either by being
provided the endpoints explicitly or by being provided a service endpoint and then
discovering all endpoints that are connected to this service. This is very similar to the pod
connectivity in Kubernetes which makes the integration of Prometheus inside the
Kubernetes cluster very natural. We have to mention here that Prometheus have some
disadvantages too. It provides no shared storage architecture, meaning each Prometheus
server is autonomous. This of course allows increased availability and shorter query latency
but provides no fault tolerance in case a server becomes permanently unavailable. For this
reason, Prometheus is more suitable for short term monitoring in order to create graphs or
alerts based on present observations and also provides a very expressive query language. If
the primary goal is to create long-term event-logging then it is better to seek an alternative.
That said, in our case Prometheus perfectly suits our needs because it provides low latency
and high availability, so our agent has negligible downtime waiting for metrics.

So far, we only described how Prometheus handles metrics once they are exported
by the various components of an application. This implies that each component is
responsible for exporting a set of metrics at a specific interval. In the case of K8ssandra, each
pod of the Cassandra includes a container that runs Metrics Collector for Apache Cassandra
as a Java agent. This is an open-source metrics collector built on the collectd, a well known
and supported metrics collector for Unix systems. Every metrics agent then exposes the
metrics at the 9103 port to be collected by Prometheus.

@ Prometheus @ Grafana

"-'-." -'.-.}
Cassandra Data Center = @
Q| 1O
pod pod

| Service | Service
Prometheus Grafana
Cassandra

Daemon

e (| O O 0 |0 €
sl

Collector Service Data Dashboard

(Java Agent) Monitor | Source | definitions

Prometheus

Operator

Figure 20: Monitoring Stack Overview

64

3.6 Reinforcement Learning

3.6.1 Introduction

Artificial Intelligence refers to the development of machines that imitate human
intelligence. In that way, machines can perform functions as learning and problem solving in
a similar manner as the human brain performs these tasks. Artificial intelligence can be
divided in two main domains, Artificial General Intelligence (AGI) and Artificial Narrow
Intelligence (ANI). AGI describes the theoretical of a single agent being able to apply artificial
intelligence to any domain and solve any problem. ANI describes any agent that is able to
perform a single task that is narrowly defined and structured task. These systems are
designed to perform a single task and outperform humans in that task using a set of rules,
parameters and contexts to be trained with. This type of Artificial Intelligence is also referred
as “weak Al”. Although AGI agents are still not achievable by current research, narrow Al
agents have been created for a plethora of tasks.

ANI agents are becoming increasingly popular because as mentioned before, they
can outperform humans in certain tasks and consequently increase efficiency but also
Artificial Intelligence systems have been able to solve problems that traditional algorithmic
methods have not been able to due to their complexity. It is one of the main reasons that
Artificial Intelligence is becoming increasingly popular, because it is a promising alternative
to problem solving.

3.6.2 Machine Learning

Machine Learning (ML) is a subdomain of Artificial Intelligence that has been gaining
increased attention since 2010. This domain studies algorithms and models that are able to
learn from data in order to solve problems, similarly to humans learning through examples.
The most commonly accepted definition of Machine Learning was given by Tom M. Michell:
“A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks T, as measured by P, improves with
experience” (Michell, 1997). From the above definition, we can understand that ML aims to
create algorithms that focus on providing the way to utilize experiences efficiently to reach
the problem solution, rather than providing strictly defined instructions on how to solve a
problem.

Machine Learning can be categorized, according to the tasks it is implemented to and the
nature of data used as experiences, in three categories:

Supervised Learning:

In this category the agent is provided with a dataset of labeled data, where each label
represents the class that each datapoint belongs to. Then the agent, processes the data and
learns the correlations between datapoint features and labels. After sufficient training has
taken place, the agent then can classify unseen datapoints belonging to the classes
represented by the labels and classify them correctly. Of course, for a successful training the
data must be correctly labeled and the dataset must provide a complete and unbiased
representation of the distribution of data points.

65

Unsupervised Learning:

In this category the agent takes unlabeled data as input. Its task is to cluster data to groups
that display similarities, without the human intervention of labeling the data. After the data
has been processed the agent can be used to either produce imaginative datapoints that
reflect the distribution of the experience data or categorize unseen data to one of the
categories it produced during training.

Reinforcement Learning:

This type of agents takes as input a vector the represents a state in the environment it is
deployed to interact with, a set of actions and a reward function that provides a numerical
value to each state. The agent then performs actions and observes the rewards of the states
its actions lead to. Gradually it tries to converge to a policy and choose actions that
maximize the overall reward it is expected to gain. These types of agents are useful for
playing games and robotics applications.

3.6.3 Reinforcement Learning

As we mentioned before the goal of Reinforcement learning is to maximize the
overall rewards an agent can gain by interacting with an environment. The maximization
infers the need for an optimality criterion. More specifically, we must define how the agent
evaluates the rewards in order to modify its behavior. There are three approaches that are
most commonly used for this purpose.

The finite-horizon model, where the agent is expected to maximize the expected
rewards for a finite number of steps h.
h
>
t=0

E

This approach is suitable when the agent can only perform a fixed number of steps in the
environment, for example in a game that ends after a fixed number of turns. For this
approach we can either opt for a fixed or receding horizon. Fixed horizon means that the
agent does not have a stationary policy. On the first step it is going to choose the h-step
optimal action. On the second step the (h-1)-step optional action and so on. In the receding
horizon case, the agent has a fixed policy and it just alters the h number of steps ahead it will
look to decide on an action. This approach can be problematic since it limits the number of
steps ahead the agent must consider and this information is not always known beforehand.

Another approach is the average-reward model, in which the agent is supposed to maximize
the long-term average reward:

66

h

_ 1
i E()

t=0

Again, this approach is problematic because it does not distinguish between a policy that
prioritizes short term large rewards to and agent that prioritizes long term larger rewards.
To avoid these two problematic cases, an alternative form of reward model is used the
infinite-horizon discounted model. The equation to maximize is (where 0 <y < 1):

()

In this case, the long-term rewards are considered but they are discounted by a factor y for
each additional step it takes to receive them. The discount factor serves more than one
purposes. First of all, it is effectively setting a frame of effective rewards. The smaller the
discount factor is, the faster future rewards diminish to zero and are not affecting the result.
It also conveniently ensures that the sum will converge to a finite number given that the
rewards are themselves a finite number. This mathematical tractability is the dominant
reason this type of reward is has received the most attention (L. P. Kaelbling, 1996).

3.6.4 Markov Decision Process

Markov Models are stochastic models created to describe non deterministic
processes. Markov models are described by a number of states and a transition probability
between states. One of the properties that make them widely adopted, is that they are
memoryless, meaning that the behavior of the system only depends on the current state. If
our problem can be transformed into a Markov Model, then by observing the current state
we have sufficient information to decide on the next states. A Markov decision process is an
extension of the Markov chain, where actions are added to each state and rewards for
executing these actions. These processes a suitable to describe reinforcement learning
problems because they are expressive enough to describe the process of an agent taking
deliberate actions and not only transition to states stochastically and also receive rewards.
Using these models, we can calculate optimal policies for agents.

A Markovian Decision Process consists of the following:

e Asetof states S

e Asetofactions A

e ArewardfunctionR: SXA—- R

e Atransition function S X A X § - I1(S)

Before discussing algorithms for finding MDP models, we will first explore techniques for
finding an optimal policy, given that we already have the MDP model available. We call
optimal value of a state, the expected infinite discounted reward the agent will gain if it
starts from this state and executes the optimal policy.

67

V(s) = maxE (Z ytrt>

t=0

This optimal value is unique and is the solution to the equations:
Vis) = max(R(s,a) +y XsT(s,a,s)V* (s’)) (D

nz‘s) = arg max(R(s, a)+yXT(s,a,s)V* (s’)) (2)

The optimal values can be calculated using the value iteration algorithm. At every step of
the algorithm, we iterate over all states and all actions and calculate the next estimation
about function V. Then we update our next step estimation as the max calculated value for
each state. This algorithm is shown to converge to the optimal policy (Bellman, 1957). There
is no obvious termination criterion of the algorithm. It has been proven however, that if the
difference between two successive value functions is less than € then value of the greedy
policy differs from the optimal value by no more than 2ey / (1 — y). This provides an
effective stopping criterion for the algorithm. By greedy policy we mean taking the max
value at each iteration as an update for the value function. It is apparent that the policy can
be arbitrarily close to the optimal, depending on the value of € we choose.

3.6.5 Exploration Strategy

In a reinforcement learning context, since the only way the agent learns the
environment is by performing actions, it is necessary that a strategy is implemented that
forces the agent to perform all actions available. If that is not the case, the agent can get
locked in attempting the first action that yielded a positive result again and again, missing
out on opportunities to obtain better rewards. It is no surprise therefore that the greedy
strategy of always choosing the most optimistic option is not very effective in practice.

To overcome this difficulty, a number of techniques have been proposed. One such useful
heuristic is known as optimism in the face of uncertainty, in which actions are selected
greedily, but strongly optimistic prior beliefs are put on their payoffs so that strong negative
evidence is needed to eliminate an action from consideration. Of course, using this
technique it is still possible to eliminate an optimal but unlucky action, but the risk can be
made arbitrarily small.

Another simple approach to exploration strategies is to not always perform the best
available action, but instead with a probability e perform an action at random. This
probability can easily be adjusted throughout the life of the agent, so that at the start of the
training where little is known about the system and a lot of exploration opportunities are
available the probability of random actions is high, while as the agent learns the world and
becomes more certain about its behavior the probability to perform random actions
diminishes. This is strategy is known as e-greedy strategy.

68

3.6.6 Learning an Optimal Policy

In the previous chapter when we started describing an MDP and how to calculate
the optimal value function of a model, we assumed that we already had the model
parameters available to us. This is not always the case though. In many problems we do not
have prior knowledge of the model that describes the system the agent interacts with.
Moreover, even if we do have such knowledge, it is not always desirable to provide this
knowledge to the agent because it inserts some form of bias based on our perception of this
system. It is preferable that the agent is able to learn the dynamics of the system on its own
and still be able to find an optimal policy.

The agent interacts with the environment and observes the states these actions lead
to and the rewards it receives. This is the only means by which the agent can observe and
consequently gain information about the environment. There are two approaches to reach
an optimal policy:

e Model Free Systems: Learn the action controller without learning a model of the
environment.

e Model Based Systems: Learn a model of the environment and then derive the
controller.

(L. P. Kaelbling, 1996)

The question of which approach is better still remains a bone of contention in the
academic community. The only thing that is certain is that both approaches have been used
to provide optimal solutions for different problems. For the scope of this thesis, we will
attempt to solve the proposed problem using model free systems and specifically Q Learning
so we are not going to analyze the model based methods further.

3.6.7 Q Learning

Q Learning is a widely adopted method that has been able to solve many
reinforcement learning problems due to the ease of implementation compared to other
methods. To understand Q Learning we must define the function Q* as a function of states
and actions. Q represents the expected discounted reinforcement of taking action a in state
s and then continuing to make optimal options of action for the successive states.
Considering the above V(*S) is the value of s assuming we perform the optimal action from

step one so essentially V*(s) = max Q*(s, a) . Using this equation along with equation (1)
a

the Q function can be written recursively as:

Q*(s,a) = R(s,a) + yE T(s,a,s") max Q*(s',a")

SES

Q* (s, a) also provides us with the optimal policy nfs) as nE‘S) = argmax Q*(s, a) using
equation (2) and substituting Q for V. The recursive definition of Q and the fact that it
provides an explicit way of deciding on an action on each step allows us to estimate Q values

69

online and also use them to define the optimal policy, by taking the maximum Q value for
the current state at each step. The Q Learning rule is:

Q(s,a) = Q(s,a) + a(r +ymaxQ(s’, a’) = (s, a))

Where (s,a,7,s') is an experience tuple. It is proven that if every action is executed an
infinite number of times in each state and «a is decayed appropriately then the Q values will
converge with probability 1 to Q*. The only problem of trading an agent with this method is
that there is not clear exploitation vs exploration strategy. In practical applications the &-
greedy strategy is adopted where € decreases sufficiently slow so that the agent can
experience all state-action pairs enough times to be able to converge (L. P. Kaelbling, 1996).

70

3.7 Deep Reinforcement Learning

Reinforcement learning algorithms have existed more than two decades in academic
literature. Nevertheless, their applications were limited. The main problem is that every
reinforcement learning algorithm needs at some point an approximator function to estimate
the value function of the policy distribution of the actions it performs. Explicitly defining
such a function is impossible and using simple approximators, like linear ones, greatly
impacts performance and limits the scope of the problems it can be applied to. Deep neural
networks provided an effective non linear approximator that is able to fit to very high
dimensionality non-linear functions given enough samples and time to converge. The
increase in attention neural networks have received since 2010 has also revitalized
Reinforcement Learning applications that leverage this new powerful tool to learn the
estimators they need.

3.7.1 Neural Networks

Neural Networks imitate the function of brain neurons. Each neuron receives a
number of input electrical signals by other neurons it is connected to and outputs an
activation signal. The intensity of the output signal depends on the mixture of the input
signals but not in a linear way. Artificial Neural Networks (ANN) work in the same manner. In
their simplest form ANNs consist of multiple layers of neurons. The output of the neurons of
each layer is then forwarded as input to each layer. The initial layer takes as input the
datapoints of the dataset and is called input layer. Similarly, the final layer produces the
output that is task specific and is called output layer. The rest layers are called hidden layers.

[oqoyoyoyoyoyoye;
OO0V

A QQQ QOO0 DI D

Input Layer & &* Hidden Layer & K" Hidden Layer & &* Output Layer & &'

Figure 21 : Example of a Fully Connected NN

The fully connected ANN is the simplest form of neural network architecture. Its
approximation capabilities extending greatly. However, as the layers increase, so do the
learnable parameters and this introduces instability in the problem and the need for

71

exponentially more samples, for the network to approximate the desired function. In his
study Hughes proved that for a fixed number of training samples, the performance of a
model initially improves with the addition of trainable parameters but after a threshold it
rapidly deteriorates. The curse of dimensionality is also known as the Hughes phenomenon
(Hughes, 1968).

3.7.2 Artificial Neuron Model

As we mentioned, Artificial Neural Networks consist of several neurons that are
organized in layers. Each layer receives the outputs of the previous layers as input and each
neuron creates a new output using them. In essence, the neuron is the atomic
computational unit of an ANN. In its generic form an artificial neuron takes m input signals
from the previous layer. Each signal — called synapse — is multiplied by a weight and then all
the multiplied synapses are summed. The result is modified by a non-linear function and the
result of the function is the output of the neuron. In most applications, it is also useful to
add an additional constant to the sum of the weights, called bias.

sy(t)

s)(t)

N
si(t+1)= sgn(Zw,,s,(rk (),)
> j=1

s3(t)

snit) WiN

Figure 22: Artificial Neuron using sgn(x) as activation function

The learnable parameters of each neuron are the weights and the bias. The set of all
learnable parameters of all the neurons, are the learnable parameters of the network.

3.7.3 Activation Functions

Activation functions are the components of the network that introduce non-linearity
and are thus vital for the approximation abilities of an ANN. The simplest activation function
is the sgn(x). Its range is [—1,1] and essentially works as a threshold of activation.

72

Although, this function can be useful in some applications it is problematic for two reasons.
Firstly, due to the sudden change happening around 0, it can introduce fluctuations to the
output of the neuron when the sum of the inputs takes values around 0. Secondly, the
derivative of sgn(x) with respect to any of the input signals is § (x). This function, is not
ideal for applying the training algorithms that update the weights of the network. That is
because these algorithms need to first order derivative of the activation function and §(x) is
mostly useful for theoretical calculations, not arithmetic. A better approach is to use the
tanh(x) function instead. It is very similar to the sgn(x) but it is a continuous function and
so is its derivative, which leads to better weight training.

sgn(b) g(b)
A

'I_

+1

1 1

-1 +1 b -10 +10 b

A 4

Figure 23: signum function and sigmoid function

Although tanh(x) solves the problem of values around 0, it still is problematic in
terms of weight updating. The reason is that the first order derivative of tanh(x) is
tanh’(x) = tanh (x)(1 — tanh(x)). We can observe that for any value of x that tanh(x) is
less than 1, so does the derivative. As a result, as values less than 1 are propagated
throughout the network the resulting gradients are diminishing rapidly to O, leading to
negligible updates of the weight parameters. This problem is known as vanishing gradients
and is quite severe as the size of the network grows, because bigger networks require
training with smaller arithmetic values to ensure training stability.

max{0,b} (b)

“3b

Figure 24: ReLU function

An alternative choice of activation function, is the rectified linear units or ReLU
function. This function is defined as r(x) = max(0, x) and solves the diminishing gradients
problem while still remaining a continuous function. Deep neural networks using this
activation function have been able to reach better training performance levels and for that
reason it is the most commonly used activation function in modern applications. ReLU NNs
are useful for RBMs (Nair, 2010) (Maas, 2013), outperformed sigmoidal activation functions

73

in deep NNs (Glorot X. B., 2011), and helped to obtain best results on several benchmark
problems across multiple domains (Krizhevsky, 2012) (Dahl, 2012).

3.7.4 Weight Initialization

A topic in Deep Neural Network training that receives less attention than it should is
weight initialization. The authors Boris Hanin and David Rolnick provide rigorous proof about
how the variance of the distribution from which the initial weights are drawn from,
determines whether a network will be able to train on a dataset and also provide criteria on
if a deeper architecture will still be able to train on the same data compared to a shallower
one, again regarding the initial weight distribution (Rolnick, 2018). Analyzing the paper’s
findings further is out of the scope of this thesis but they provide evidence that weight
initialization is crucial for successful training and its impact increases with network depth.

For the needs of this thesis let us consider the most common cases in weight
initialization. First let us assume that all weights are initialized to 0 or any arbitrary constant.
In that case, the derivative of the activation function with respect to any weight in the
network is identical. Since the learning algorithms use the derivative of the activation
function to calculate the update of each parameter, all updates will be identical as well. This
will continue to happen for every iteration of learning, leading to a symmetric hidden
architecture. This makes the network degrade to a linear approximator.

A better approach is to randomly initialize the values of the weights. In that way, the
symmetry in the weight updates is broken. However, this approach although it works for
shallow networks can still be problematic depending on the distribution and scale of the
features. If initialized with high values, it is possible that the activation function will be
saturated (meaning it will reach either the -1 or 1 state for bounded activation functions or
very high numeric values in unbounded cases). If this happens, then the gradients provide no
effective training for the neuron and no learning can occur for this neuron from that point
onward. If we opt to initialize with values close to 0, then we can avoid saturation but the
updates are very small arithmetic values, which decreases the convergence speed
significantly.

To account for the problems of saturation and also provide faster convergence,
more advanced initialization techniques were introduced. These techniques are driven by
the observation that as an input is propagated through the hidden layers of the network, the
impact of initial weights on the output is magnified with each additional layer. To avoid this
phenomenon, it must be ensured that the variance of the input weights is the same for all
layers of the network. This idea was used first for the Xavier initialization (Glorot X. B., 2010),
were the variance of the weights is set in order to satisfy the uniform distribution:

V6 V6

\/le +nj+1'_\/nj +le+1

wW~U |- where n; is the number of neurons of the j thlayer

74

This choice of initialization is not activation function agnostic and consequently the proof of
constant weight variance is based on the assumption that the sigmoid activation function is
used. In the case of ReLU activation function, a slightly different initialization satisfies the
constraint for constant variance across layers, called He initialization (K. He, 2015):

2
W~ N [0, ﬁ] where n! is the number of neurons of the I*" layer

The proof of this initialization choice is straight forward. For a layer of the network:

yi = Wix; + b;

where y; is the input to the activation funtionn at layer i,
W, is the weight matrix of the layer at layer i,

X; is the output of the previous layer x; = f(y;_1)

b; is the bias matrix of the layer i

We assume that the weights are mutually independent random variables with 0 mean and
that the variances of x; is constant so we can write that:

Varly;] = Var[Wix;] = Var[W;]Var([x;] + E[W;]*Var[x;] + Var[W;]E[x;]?
=n % VaT'[Wi]E[xiz]

When the activation function is the ReLU then E[xl-z] = %Var[yi_l] because:

E[x?] = f+oox2P(x)dx =

— 00

j " max(0,9)? P()dy =

+o0o 1 +oo 1
| vpoiay =3[yPody = SvarD
0

— 00

When we consider the above the variance of a single layer is:
1
Varly;] = EniVaT[Wi]VaT[Yi—ﬂ

Finally, since the output of any layer is the input to the next the total variance of the
network outputs is:

L
Varly,] = Var[y,] <n%anar[Wl]>

=2

The requirement for constant variance can be satisfied if the product does not magnify or
diminish the total variance. In other words, if every term of the product equals to 1 then we
can satisfy our requirement. Setting every term of the product to 1 provides the weight
distribution of He initialization.

75

3.7.4 Training

Parameter Updates/Optimization:

The goal of an ANN is to approximate the desired output for all training samples. To
achieve that the agent is provided with a loss function [(y, y) that measures the cost of
predicting ¥ when the output is y. The aim is to minimize the function f that minimizes
I(fw(x),y) averaged on all samples x. Ideally, we would like to average over the whole
distribution z that is the underlying distribution of the samples x. But realistically we must
settle for an average over the samples, since the distribution is unknown in the common

case. The empirical risk E,,(f) = %Zf L(f (x;),y;) is the measure of the training set

performance and E(f) = [I(f(x),y)dP(z) is the generalization performance, meaning
the expected performance on future unknown samples deriving from the same distribution.
When f is sufficiently restrictive then it is justifiable to minimize the empirical instead of the
expected risk (Vapnik, 1971).

A common approach to minimize the empirical risk is using Gradient Decent. Each
iteration updates the weights of the network using the following rule.

Werr = We — ¥ 2y Vi Q(zi we) where Q(zi, we) = 1(fy, (),)

The y parameter is called learning rate and is a very important hyperparameter of machine
learning as different values impact convergence times and overall convergence of a model
greatly. Applying Gradient Decent using the above equation as is, is computationally
inefficient in ANN applications because each data point is used individually leading to many
calculations that must be executed sequentially. Also, the algorithm needs to preserve
information about the datapoints already used and pick the next sample accordingly, a fact
that makes this approach inapplicable for certain datasets. A better approach is to use
Stochastic Gradient Decent. In this case at every iteration only a randomly selected subset of
the samples is used to update the weights. It is proven that if the learning rate satisfies the
conditions Y, y? < oo and Y, ¥ = oo then stochastic gradient decent is converging with
almost 1 probability (Bottou, 2022).

Although stochastic gradient decent indeed is applicable to ANNs there have been
even more sophisticated learning algorithms that provide increased speed of convergence
and also are able to overcome problems that arise when the objective function is noise and
the data sparse, both of which often are true in deep neural network problems. The one that
is most commonly utilized for state-of-the-art models is the Adam optimizer. Adam stands
for Adaptive Moment Estimation and uses properties of two other popular optimizers,
RMSProp (Tieleman, 2012) and Adadelta (Duchi, 2011). The algorithm works as presented
below:

76

Adam Algorithm

1 Require: a: Step size or learning rate

2 Require: 1,3, € [0,1] : Exponential decay rates for the moment estimates

3 Require: f(8): Stochastic objective function with parameters 6

4 Require: 6,: Initial parameter vector

5 my < 0

6 Ug < 0

7 While 9 not converged do:

8 t—t+1

9 gt < Vofi:(0:-1) (Get gradients with respect to the stochastic obj fun)
10 my < By me_1 + (1 — B;1) * g¢(Update biased first moment estimate)
11 up < By up_q + (1 — B,) - g?(Update biased second moment estimate)
12 M, « m,/(1 — B})(Compute bias corrected first moment estimation)
13 G, < u./(1 — L) (Compute bias corrected second moment estimation)
14 0, « 0,_y —a-m,/(J@; + €) (Update parameters)

15 End while

16 return

Except for the abilities to converge is sparse spaces, another desirable property is the fact
that the updates are invariant of the scale of gradients. This is a very important property
that limits the possibility of exploding gradients, a severe problem in ANN training. We can
see that if the gradients are scaled by any constant ¢ then due to the fact that the update
factoris ﬁt/(\/ﬁ_t +e€)< T’flt/\/ﬁ_t the contribution of the scaling factor is canceled out
(Diederik P. Kingma, 2015).

Backpropagation:

Backpropagation is an efficient algorithm for adjusting the weights of an ANN, in
order to gradually minimize the difference between the network output and the desired
output for a given sample. The idea was formally introduced in 1986 by (David E. Rumelhart,
1986). This algorithm can calculate the gradient with respect to each parameter of
weight of then network, so one of the optimization methods like the ones mentioned
before, can be applied to update the weights.

For any given unit of the network the total input x; is equal to the sum of outputs y;
of the previous layer units that are connected to it, multiplied by their corresponding
weights.

xj = X yiwji (1)

The output of each neuron is a non-linear function that is known beforehand and so is its
derivative with respect to its input. The total error in performance can be measured in
several ways according to the task but let us assume that in this case we are using the Mean
Squared Error that is the loss function that we are going to use for our agent.

77

J

E =353~ 4e) @)

d; . is the desired output for the given sample. The partial derivatives we need to calculate

can be calculated with one forward and one backward pass of the network. The calculations

are shown below:

0E

a, = YT

OE 9E 0y;j 9yj

— = ——= where —— is the derivative of the activation function and

6xj ayj 6xj 6xj

its analytical formula is known beforehand.

The contribution of the output of unitito 0E/dy; fromthe effect of ionjis
0E 0x; OE

ax]' ayl ax] Jt

; L . . . OE)34
Finally taking into account all connections from unit i: Eoie ZjaWji
i j

Using the partial derivatives for every y; we can proceed with the optimization. Since during
the backward pass the gradients of every layer depend only on the gradients of the previous
layer, each gradient needs to be calculated only once and also the calculations for every
layer can be executed in parallel. These properties make the algorithm very efficient and
also allow for increased parallelism that is the norm in modern ANN training.

78

3.8 Deep Q Learning

3.8.1 Deep Q Learning (DQN)

As we mentioned in the chapter of Q Learning, this algorithm attempts to find the
sequence of actions that maximize total discounted rewards by trying to estimate the Q for
any given pair of state-action and then make greedy choices by opting for the action that has
the highest Q value every time. It is apparent, that the better the estimation of the Q values,
the closer the action sequence to the optimal will be. Attempting to solve a problem using
the definition of Q Learning is inefficient, because according to the original algorithm every
sequence is evaluated independently and no form of generalization can take place. To
enable generalization, a parametrized Q function is used Q(s,a; 8) = Q*(s,a), where 6 is a
set of trainable parameters. In deep Q Learning the approximator is a neural network that
attempts to estimate optimal Q values for all action sequences using the same function.

Deep Q Learning models are trained using tuples of (s, a, , s} (state, action, reward,
next state). The difference in implementation compared to the original algorithm and other
Reinforcement Learning implementations is that the tuples are not used for training in the
same order as the agent observes them. In DQL a structure known as replay memory is used.
The replay memory is a fixed size buffer that stores the N latest tuples observed by the
agent. At every step first an observation of the state is made. Then an action is chosen based
on the observed state. Finally, the state that the action leads to is observed and the reward
is calculated. The new tuple is stored in the memory and then m random tuples are chosen
from the memory to train the agent. The process is then repeated.

Using a replay memory instead of just using the samples as they are received for
training provides three important advantages. The first is that this method of training leads
to more efficient sample utilization. Every sample is almost certainly used more than once
for weight updates. Combined with the fact that neural networks demand small learning
rates to converge it is very likely that using a training tuple only once to update the network
weight is not sufficient to gain all the information possible from this training sample. This
method increased the chances that a tuple will be used more than once so that more
information can be extracted from the sample. The second advantage is that this training
technique breaks the strong correlations between successive samples. This is important
because randomized samples reduce the variance of the updates, which leads to faster
convergence. Additionally, learning on-policy is prone to get stuck in local minima. The
reason is that at every step the network makes a choice based on its parameters and then
trains based on the choice it made. If the choice is locally optimal, the network is going to
repeat the choice and ignore other options that potentially lead to greater overall reward
(Martin, 2013).

79

3.8.2 Double Deep Q Learning (DDQN)

The original Q Learning algorithm is known to overestimate the Q values of the
model. This phenomenon is not necessarily harmful for the performance of the algorithm
and the policy it will result to. A common exploration technique called optimism in the face
of uncertainty, is bases on this idea. Every unexplored Q value is assigned a high numeric
value, so that the algorithm is incentivized to sufficiently explore the state space before
making greedy locally optimal actions. Moreover, if the overestimation of the values is
uniform then the dynamics of the action preferences are preserved, leading to the optimal
policy. In their paper however, Hado et al. (Hado van Hasselt, 2016) claim that in several
applications of DQN the overestimation is not uniform and it indeed harms performance.

In their paper, they propose an adaptation to the original DQN model, where a
second model is added to the agent. Their implementation is named Double Deep Q
Learning. The idea is that one of the main reasons of overestimation is the fact that the
same network is used to select the optimal action and then evaluate its value. This creates
an unwanted feedback loop, where a slightly increased Q value is more likely to be chosen
again in the future without being the optimal solution in reality, increasing long term
overestimation. This problem is more likely to occur when the approximator is a neural
network because at the early stages of training Q values are arbitrary due to randomized
weight initialization. Even slight initial overestimations, can lead to noticeable long-term
deviation from the optimal policy (Hado van Hasselt, 2016).

To alleviate the overestimation, the authors propose to decouple the action
selection from the action evaluation. The two networks of the agent are called online and
target network accordingly. The online network is updated normally using the training
samples. The target network is a lagging copy of the online network, meaning that every
N steps, the parameters of the online network are copied to the target network. The greedy
policy or action selection is evaluated using the online network. Then the target network is
used to estimate the Q value of the state action pair and the weight update of the online
network is performed using this estimation. The Q estimation rule for DDQN is shown below:

LPPON = Ry +7vQ (5t+1; arng?XQ(St, a; 0¢); 9’t)

where 0, are the parameters of the online network and
0'; the parameters of the target network

The frequency of synchronization between target and online network is not specific
and in reality, is a tunable hyperparameter. Small values degrade the model to a simple DQN
agent and introduce overestimation. Large values slow down learning because the updated
Q values are not known to the evaluator for longer timeframes. According to state-of-the-art
implementations, it seems that a reasonable decision is to synchronize the weights after
every episode. DDQN indeed solves the overestimation problem and leads to higher
performance in most tasks and for that reason DDQN has become the default
implementation for solving problems using the Q Learning algorithm.

80

3.8.3 Return Based Scaling

Scaling issues in Reinforcement Learning models is a tedious task but also a
necessary one because when errors scales vary across different stages of training, it can
hinder or obstruct the convergence of the model. Especially in model-free algorithms, where
the agent has to accurately estimate the value function that describes the underlying
dynamics of the problem, scaling issues are even more severe.

There are various factors that can affect the error scales during training and each
one of them can be detrimental for the convergence of the model. The most common is the
reward function. Every Q value is the discounted sum of the current and future rewards the
agent expects to accumulate. The greater the variance of the rewards is, the greater the
disparity of the Q values can be during training. This can lead to error scales that vary in
many orders of magnitude due to the cumulative nature of the Q values. Even if the reward
function does not display high variance, it is possible that during an update the estimated
and observed Q value vary greatly, leading to a high numeric value of error. Using such a
value for an update can distort the convergence of the weights because neural networks are
smooth function approximators. This phenomenon is more likely to happen during the early
stages of training, where the agent explores the state space and it possible that it had not
acted optimally around a specific part of the state space until that point. It is also possible to
happen when at some point in the training the agent discovers new possibilities for higher
rewards that became available after the policy started to change due to the training. Finally,
the discount factor also greatly affects the arithmetic values of Q values. Trying different
discount factors for the same problem may demand different scaling of the rewards, adding
to the struggles, reinforcement learning practitioners face when they try to parametrize
their models.

To overcome the aforementioned problems, reinforcement learning practitioners
resorted to empirical solutions. These solutions may be efficient depending on the dynamics
of a specific problem and the distribution of the reward function but they are not widely
applicable and also not supported by academic literature. Some examples are reward
clipping and reward or return normalization. These methods can effectively address the
scaling problem but they are problematic because they hide certain aspects of the dynamics
of the problem, that are expressed by the variance in the values of the reward function. As a
result, these methods can make it impossible for an agent to reach the optimal policy due to
the distortion introduced. Tom et al. (Schaul, 2021) propose an alternative approach, to the
scaling problem that preserves the dynamics of the problem while alleviating the numerical
fluctuations between updates of the Q values and consequently the weights. They propose
to apply the scaling directly in the temporal difference, meaning the input of the loss
function of the neural network. The scaling factor is adaptive and is updated during each
training step. The scaling problem of the updates is more noticeable during the early stages
of the training because as the model approaches convergence, errors should approach 0
asymptotically. The derivation of the scaling factor is shown below:

=R +yV'in— Ve
where R, is the reward observed at step t
and V, the estimatedQ value of the model at step t

81

To find an approximation of the scaling factor we must estimate V[§]. At the early stages of
training, we can assume that the rewards are independent from the Q values since the agent
performs random actions almost always. Using this assumption, we can express V[J] as:

VIs] =VIRI +VIy(V' =W+ VA -y)V]
= VIRl + y?VIV' = VI+ VIYIEI(V' = V)?] + A —y*)VIV] + VIYIE[V?]

At every step the Q values are updated with the rule Q = R + yQ' and Q values estimate the
overall gain of the agent. It is reasonable to substitute V for G and for the one step
difference G- G = R + (1 —y)G.AlsoG = Y;¥'R; so E[G] = (1 — y)E[R]. Using these
equations and substituting in V[&] we can write:

VIs] = VIRl + (1 —n?VIG] + VIYIE[G?]

The term (1 — ¥)2V[G] can be neglected because it is dominated by the other two. Also,
when vy is constant or when the training is continuous and not divided in episodes, the term
VIy]E[G?]is also neglected leading to V[§] = V[R]. The scaling factor is o where g2 =
V[8]. The difference between this method is that V[&] is calculated online at every step of
the training. The authors also account for some edge cases that can occur during training.
The most notable is the case where batch training is used and the variance of the rewards of
the batch is greater than the overall variance. To avoid detrimental updates the scaling

factor must be altered to 62 = max (V[5], V[paecnl)

82

3.9 Offline Reinforcement Learning
3.9.1 Introduction

Offline Reinforcement Learning is a lucrative research field that has been drawing
increasing attention over the latest years. The reason is that in theory, offline reinforcement
learning can leverage the immense datasets that exist and effectively train agents based on
these static datasets without further interaction. Currently, reinforcement learning is an
active learning process, where the agent performs an action observes the results and then
reiterates. This approach has limited applicability because first of all the quantities of data
that can be generated are limited compared to offline training. State-of-the-art models of
machine learning owe a major part of their success to the immense amounts of the training
datasets they are presented. Except for the dataset limitations, interactions with the
environment can be costly and/or catastrophic in several applications such as robotics or
medical applications. For the reasons stated above, effectively applying offline
reinforcement learning is a key challenge for the adoption of reinforcement learning in real-
world environments.

The problem of most value based off-policy offline Reinforcement Learning methods
is that they display poor performance in reality. The main reasons of failure are overfitting
and out-of-distribution actions (OOD). These problems usually manifest themselves as
erroneous overestimations of the value function at certain states. More specifically, the
problem lies in the fact that the Bellman optimization algorithm tries to sample actions from
the learned policy that is created as the model is trained but the Q values can only be
trained on values sampled from the policy that generated the offline dataset. Since the
algorithm is created to use the learned policy, it often leads to OOD actions. When these
actions have erroneously high values, they lead to overestimations. Typical offline
Reinforcement Learning applications mitigate this effect by restraining the algorithm from
opting for unobserved states. These attempts however result in over-restrictive policies that
limit the performance of the agent during testing.

3.9.2 Conservative Q-Learning

The aim of Conservative Q-Learning is to estimate the value function V™(s) of a
target policy (s) given a static dataset D that is generated by a behavior policy g (als).
Ideally, the target policy is identical to the optimal policy. To learn in a conservative manner,
an additional term is added to the minimization equation alongside the standard Bellman
objective that is used in online Reinforcement Learning. The intuition behind this additional
term is that since the values of the dataset D are generating by the behavior policy mg (als),
actions that are more likely according to this policy are more likely to be overestimated and
so this additional term acts as a penalty for these actions. The objective function of
conservative Q- Learning is provided by the equation:

Qk+1 = inn a: (ES~D,a~u(CZ|S) [Q(S, a)] - Es~D,a~71:3(a|S) [Q(S, a)]) + %L (1)

83

where L is the standard Bellman objective function and p(a|s) is the desired distribution
action-states after training. The authors that propose the solution prove that for u = m the
resulting estimation of the value function and the Q values satisfies the restriction

V™(s) < V*(s)Vs €D

Meaning that every Q value that can be estimated using the static dataset, is bounded by
the actual value of the Value function, so overestimation is eliminated. The constant a is a
hyperparameter of the optimization problem. In reality this constant needs to be sufficiently
big for a dataset of fixed size. In other words, the larger the size of the dataset, the smaller a
can be. Asymptotically, for a large enough dataset a can take very small numeric values and
the objective function is dominated by the Bellman objective term.

Observing (1) it is apparent that the minimization involves a priori knowledge of the
distribution p(a|s). However, u is a part of the training process and after a sufficient
number of training steps we want u = 7t. Since u is a part of the optimization problem we can
include a maximization over u in the conservative-learning term so that at every iteration
the objective function is:

. 1
Q' = min max - (Es-pauais)|Q(s O] = Es-p amnyiais) (s) + 5L + R

where R() is a regularizer term. A reasonable choice of R(u) is the Kullback-Liebler
divergence (KL). KL-divergence Dg; (P||Q) is a type of statistical distance that expresses the
additional surprise or uncertainty introduced because of our choice to use as a model a
distribution Q when the actual distribution is P. In our case P=u and Q_is a prior distribution
of action-states. When the distribution of actions is almost uniform at every state, then the
maximization over u results in a soft-max of the Q-values at any given state and the
objective function is transformed to:

Q" =min a-Es.p (log Taexp (Q(s,0)) = Es-pa-ny(ais)[Q(s, O)]) +3L (2)

Transforming equation (2) to a Loss function that can be used to calculate gradients for a
neural network is straightforward:

L=a-E;.p (lOg Za exp (Q(S, a)) - Es~D,a~n/3(a|5) [Q(S, a)]) + %L

At every step of the training we randomly pick a subset of the dataset and calculate L and
then update the parameters of the network using the chosen optimizer (Aviral Kumar,
2020).

84

4. Experimental Results

4.1 Setup

In this section we briefly describe the way we coordinated the different components
used to perform our experiments. We used a K8ssandra deployment that runs inside a
distributed Kubernetes cluster. The clients that generated the traffic load ran an instance of
the YCSB service and a remote script monitored the number and nature of the generated
requests. For the collection of metrics, we used a Prometheus instance that was deployed
inside the Kubernetes cluster as well. The VMs were hosted in the Okeanos cloud
environment.

The Kubernetes cluster consists of 10 VMs, one of them acted as a Master Node and
the rest as Worker Nodes. Each of the worker nodes had 4GB of RAM, 30GB of storage space
and 2 virtual CPU cores. The master node had 8GB of RAM, 30GB of storage space and 4
virtual CPU cores. From the 30GB of available storage of every node, 15GB were allocated as
a virtual disk and provided to the Kubernetes cluster as a Persistent Volume. Every worker
node had an instance of the Kubernetes local volume static provisioner running on it. Its role
is to manage the PersistentVolume lifecycle for pre-allocated disks by detecting and creating
PVs for each local disk on the host, and cleaning up the disks when released. Every K8ssandra
node needs at least 2GB of RAM to operate flawlessly. For this reason, only one K8ssandra
node could run at a time per worker node. The resource limits that performed best in our
setup were to use 2GB of RAM and 1 CPU core per K8ssandra node. We also allowed the
nodes to exceed RAM usage to a margin of 0.5GB. This allowed the K8ssandra cluster to
perform scaling operations even under head traffic and high percentage of resource
utilization. Finally, we deployed 3 instances of Stargate nodes to coordinate incoming
requests.

The role of the client generating the queries against our database was carried out by
the YCSB framework. YCSB is a benchmark tool written in Java that can generate traffic for
several database systems. The workloads can be configured in terms of target loads (in
requests per second), the number of operations to be executed, time limits of total execution
time and the percentage of reads and writes among others. To generate the traffic needed
we created 4 additional VMs with the YCSB installed in them. The generated traffic was
monitored by a remote script that sent commands to the VMs to execute partitions of the
total workload and ensured that the total workload was evenly distributed among client
machines.

In our setup all of the monitoring was performed on the server-side. The metrics
were periodically scraped by the Prometheus instance and stored in its database. Then the
script that executed the monitoring agent, performed PromQL queries against the database
over HTTP to collect the metrics. After that the metrics were normalized and formatted as a
numpy array and finally provided as input to the decision-making module.

85

86

4.2 Results

For the training of our models we used 17 parameters to describe the state of the
cluster:

e The size of the cluster

e The average 98" percentile latency measured by the stargate nodes

e The average 99" percentile latency measured by the stargate nodes

e The average 999" percentile latency measured by the stargate nodes

e The throughput or requests per second measured

o The throughput measured at the previous decision step

o The total free memory of the cluster as a percentage of the total available memory

e The total cached memory of the cluster as a percentage of the total available
memory

e The average CPU utilization of the cluster

e The minimum CPU utilization of the cluster

e The maximum CPU utilization of the cluster

e The average CPU that is idle in the cluster

e The average CPU time spent waiting for 10

e The average IOPS in the cluster

e The average disk read throughput of the nodes in the cluster

e The average disk write throughput of the nodes in the cluster

e The percentage of reads in the incoming load

All the metrics are scraped by Prometheus every 10 seconds and the measurements are
averaged over a 5 minutes interval.

The reward function used to evaluate every state is:

R = 0.01 * throughput — (vins — B) where B is the minimun cluster size

Regarding the network architecture of the online agent, we used a fully connected
network with 2 hidden layers. The first hidden consisted of 48 nodes and the second layer
consisted of 24 nodes. The replay memory buffer was set to store the last 300 experiences
and the weights were updated with a learning rate of a=0.001. The discount factor was set
to y=0.99. To avoid weight updates that could lead to the divergence of the system, we used
the return-based scaling technique described in the previous chapter to normalize the loss at
every update step according to the running variance of the rewards of the past experiences.
The training starts with a replay memory of 300 random experiences. The agent then
performs 500 annealing steps, with epsilon decaying from 1 to 0.1 linearly over the course of
the 500 steps. We preserve a small epsilon value over the rest of the training to preserve the
potential of the agent to explore higher reward states at later stages of the training. The
agent at every step observes the current state of the cluster and chooses between 3 actions.
Increment the cluster size by 1, decrement the cluster size by 1 or do nothing. In the cases
where the size of the cluster changed, the agent periodically observed the state of the

87

cluster as described by the variable status.cassandraOperatorProgress. When the value of
this variable was set from “Updating” to “Ready” the agent waited for 5 minutes and then
collected the metrics from Prometheus to perform the next action. When the cluster
remained unchanged, the agent waited for 2 minutes and then collected the metrics to
perform the next action. The batch size for the training after every decision was set to 32
randomly sampled memories from the replay buffer.

For the network architecture of the offline agent, we again used a fully connected
network with 2 hidden layers. Given the fact that we had access to an offline dataset and
training can be performed in a matter of minutes or hours, we had greater freedom to tune
the hyperparameters of the model. For every checkpoint that we compare our agents, we
use a different number of nodes for the hidden layers to optimize the performance of the
model. Also, the hyperparameter a of the CQL loss function ranges from 5 for the smallest
dataset to 1 for the largest dataset.

Finally, we utilized an additional optimization that is described in literature as initial
value offset (Schaul, 2021). Although the effectiveness of this method is not proven
theoretically, empirical results show that in certain cases it speeds up convergence
dramatically. The intuition behind this method is that in the output layer of the algorithm in
Deep Q Learning tries to estimate the numeric value of the Q function for a pair of state-
action. When the nature of the reward function is such that it is significantly offset from O,
then initializing the biases of the output layer to 0 as per usual, can be problematic. The
reason is that the agent will spend a great amount of training time to increment the biases
to reach the order of magnitude of the Q function, given that the Q values are discounted
sums of the observed reward values, before it can start to effectively learn the dynamics of
the problem. To overcome this delay in learning we can initialize biases with an estimation
of the mean value of the overall gain of the agent E[G] based on some initial statistics. Our
experiments have shown that this bias initialization indeed helps the training to take off
sooner than the zero initialization approach.

We now present the comparative performance of the online and offline agent at
specific training checkpoints.

88

Minimal Dataset(300 random experiences):

DDQN
1700 A -9
1600 -
1500 A
1400 -
1300 - 8
1200 A
£ 1100 A
c; 1000 - g
2 900 - @
g 800 A
700 A
600 - L 6
500 -
400 -
300 - —— incoming load
200 4 —— cluster size L 5
(I) 10'0 2(I)O 3(')0 4(I)0
min
Figure 25: CQL behavior under sinusoidal load (minimal dataset)
CQL
1700 A -9
1600 -
1500 A
1400 -
1300 A 8
1200 A
‘é_ 1100 -
< 1000 A [, 9
5 900 A @
= 800 A
700 +
600 - L 6
500 4
400 A
300 - —— incoming load
200 - —— cluster size L 5
(') 1(')0 260 360 460
min

Figure 26: DDQN agent behavior under sinusoidal load (minimal dataset)

Observing the behavior of the two models it is apparent that the CQL agent can already

extract some knowledge from the minimal dataset of 300 observations about the dynamics

89

of the problem. On the contrary, the DDQN agent has only learned that higher cluster sizes
can potentially lead to higher rewards.

Small Dataset (800 experiences):

Next, we compare the performance of the two models after the DDQN agent has completed
the annealing steps, meaning the part of the training that the agent performs mainly
exploratory actions. Again, we can observe that the offline agent is able to scale the cluster
more drastically. The DDQN agent is still biased toward higher cluster size states.

DDQN

1700 A -9
1600 -
1500 A
1400 -
1300 - 8
1200 A
1100 -
1000 A
900 A
800 A
700 A
600 A
500 -1
400 A
300 4 —— incoming load
200 — cluser size L 5

throughput
<
size

0 100 200 300 400
min

Figure 27: DDQN agent performance under a sinusoidal load (small dataset)

90

throughput

CcQL

1700 -
1600 -
1500 -
1400 -
1300 -
1200 A
1100 -
1000 -
900 -
800 -
700 A
600 -
500 A
400 -
300 A
200 A

—— incoming load
—— cluster size

o

T T

100 200 300 400
min

Figure 28: CQL agent behavior under a sinusoidal load (small dataset)

Medium Dataset (1800 experiences):

throughput

DDQN

1700 A
1600 -
1500 A
1400 -
1300 A
1200 A
1100 -
1000 -
900 A
800 A
700 A
600 A
500 A
400 A
300 A
200 A

—— incoming load
—— cluster size

o

100 200 300 400
min

Figure 29: DDQN agent behavior under sinusoidal load (medium dataset)

91

throughput

CcQL

1700 A
1600 -
1500 -
1400 -
1300 A
1200 A
1100 -
1000 A
900 -
800 -
700 A
600 A
500 A
400 A
300 A
200 A

—— incoming load
_Z —— cluster size

0

100 200 300 400
min

Figure 30: CQL agent behavior under sinusoidal load (medium dataset)

Final Dataset (3300 experiences):

throughput

DDQN

1700 -
1600 -
1500 -
1400 -
1300 -
1200 -
1100 -
1000 -
900 -
800 -
700 A
600 -
500 A
400 A
300 A
200 A

—— incoming load
—— cluster size

o

100 200 300 400
min

Figure 31: DDQN agent behavior under sinusoidal load (final dataset)

92

CQL

1700 -9
1600
1500
1400
1300
1200
1100
1000
900 -
800
700
600 L 6

500 A
400 A
—— incoming load

300 A
200 - —— cluster size L 5

throughput
<
size

0 100 200 300 400
min

Figure 32: CQL agent behavior under sinusoidal load (final dataset)

Increasing the size of the dataset from that point onwards has shown no significant
improvement for the offline agent and as a result we terminate the training at this point.
The online agent continues to improve as it interacts with the environment but the progress
slows down greatly.

Dataset DDQN caL Improvement
Minimal (300 exp) 581.43 642.73 10.5%

Small (800 exp) 601.74 670.05 11.3%
Medium (1800 exp) 659.71 698.36 6.1%

Final (3300 exp) 690.42 714.62 3.5%

As a final benchmark of our model, we monitor our best offline agent performance
over some unseen workloads to observe its generalization capabilities.

93

throughput

throughput

cQL

1000 A

900 A

800 A

700 A

600 -

500 A

400 -

300 A

200 A

—— incoming load
—— cluster size

100 200 300 400
min

Figure 33 CQL agent behavior under a constant load

CQL

1700 A
1600 -
1500 A
1400 -
1300 A
1200 A
1100 -
1000 A
900 A
800 A
700 A
600 A
500 -
400 -
300 A
200 A

—— incoming load
—— cluster size

200 400 600 800
min

Figure 34 CQL agent behavior under sinusoidal loads of different aptitudes

size

94

4.3 Conclusion

During this thesis, we had the opportunity to experiment with contemporary deep
reinforcement learning techniques to enhance the capabilities of an already powerful tool
for containerized applications. Our proposed model provides a monitoring agent that can
effectively auto-scale complex applications in order to maximize resource utilization without
compromising performance. Moreover, the agent is capable of discovering they dynamics of
the monitored system even from very small datasets.

Using a containerized version of the application enhanced the training process
because it allowed to accumulate an increased number of diverse experiences in the same
amount of time compared to previous attempts that relied on VMs setups. The process can
be accelerated further if we opt to compromise resource utilization, so more resources can
be dedicated for the scaling tasks rather than executing the workloads. Nevertheless, our
deployed application showed high level of resilience and was able to perform scaling
operations even under severe resource pressure. This is due to the efficient scheduling
algorithms of the Kubernetes, that reorganize the deployed resources to ensure minimum
interruptions to the deployed workloads.

The experiments with online Deep Reinforcement Learning algorithms highlighted
the practical challenges that occur when applying these models to realistic scenarios. The
most important is the fact that these models need constant and extensive interaction with
the environment they monitor. This means that in order to perform successful training, the
system must be configured meticulously, to avoid unexpected behaviors due to the agent’s
actions that may lead the system towards destructive states. The second challenge is the
limitation in accumulated experiences. Typical Deep Reinforcement Learning application
require millions of experiences and this may be unfeasible is realistic applications. Finally,
due to the limitation in experiences, performing hyperparameter tuning is a very time-
consuming task.

The offline model we propose tackles all these challenges effectively. First of all,
since the problem is essentially transformed to an unsupervised learning problem, we are
able to perform hyperparameter tuning to derive the optimal model for the problem.
Moreover, since the model is trained without any interaction with its environment, it is
much less probable that after deployment it will lead the system to destructive states, if the
problem is defined correctly. The offline agent is able to extract significantly more
information from the provided dataset, compared to the online agent. As a result, it is able
to converge to a solution much faster than the online equivalent. Finally, we observe that at
every checkpoint of the training, the offline model is able to mitigate the bias of the online
agent towards higher cluster size states, a fact that supports the claim that our agent is able
to systematically derive a better decision-making policy than the one provided by the
dataset.

Although limited to certain cases, our offline agent showed some capabilities of
generalization over unseen workloads. Extensive generalization with Deep Reinforcement
Learning still remains an unsolved issue. Nevertheless, these results are encouraging for
further experimentation, especially with offline Reinforcement Learning techniques that
tackle the generalization problem directly.

95

96

Citations

Avinash Lakshman, P. M. (2014). Retrieved from http://planetcassandra. org/what-is-
apache-cassandra.

Aviral Kumar, A. Z. (2020). Conservative g-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33, pp. 1179-1191.

AWS, Amazon Autoscaling. (n.d.). Retrieved from ”
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scale-based-on-
demand.html

Bellman, R. (1957). Dynamic Programming. Princeton, NJ.: Princeton University Press.

Bottou, L. (2022, 7 5). Large-Scale Machine Learning. Retrieved from
https://leon.bottou.org/publications/pdf/compstat-2010.pdf

citrix.com. (2022, 6 26). Retrieved from citrix.com/solutions/app-delivery-and-security/what-
is-containerization.html

Constantinos Bitsakos, I. K. (2018). DERP: A Deep Reinforcement Learning Cloud System for
Elastic Resource Provisioning. 2018 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom).

D. Tsoumakos, I. K. (2013). Automated, Elastic Resource Provisioning for NoSQL Clusters
Using TIRAMOLA. Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium (pp. 34-41). IEEE.

Dahl, G.Y. (2012). Context-dependent pre-trained deep neural networks for large-
vocabulary speech recognition. Audio, Speech, and Language Processing, IEEE (20),
pp. 30-42.

David E. Rumelhart, G. E. (1986). Learning Representations by back-propagating errors.
Nature 323, pp. 533-536.

Diederik P. Kingma, J. B. (2015). Adam: A Method for Stochastic Optimization. International
Conference for Learning Representations.

Dirk, M. (2014). Docker:lightweight linux containers for consistent development and
deployment. Linux j .

Duchi, J. H. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning Research, pp. 12:2121-2159.

Featherston, D. (2010). Cassandra: Principles and Application.

Glorot, X. B. (2010). Understanding the difficulty of training deep feedforward neural
networks. Retrieved from http://proceedings.mlr.press/v9/glorot10a.html

Glorot, X. B. (2011). Deep sparse rectifier networks. AISTATS, volume 15, pp. 315-323.

Hado van Hasselt, A. G. (2016). Deep reinforcement learning with double Q-Learning.
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI'16), (pp.
2094-2100).

https.//etcd.io/. (2022, 6 1). Retrieved from https://etcd.io/docs/v3.4/learning/data_model/

97

https.//kubernetes.io/. (2022, 6 1). Retrieved from
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

https.//kubernetes.io/. (2022, 6 2). Retrieved from
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduler-perf-tuning/

Hughes, G. (1968, January). On the mean accuracy of statistical pattern recognizers. IEEE
Transactions on Information Theory, pp. 55—-63.

I. Giannakopoulos, N. P. (2014, 10). Celar: Automated application elasticity platform. 2014
IEEE International Conference on Big Data, pp. 23—-25.

K. He, X. Z. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification. IEEE International Conference on Computer Vision (ICCV),
pp. 1026-1034.

K. Lolos, I. K. (2017). Elasitc management of cloud applications using adaptive reinforcement
learning. 2017 IEEE International Conference , (pp. 203—-212).

K8ssandra. (2022, 7 4). Retrieved from https://k8ssandra.io/blog/articles/why-k8ssandra/

K8ssandra. (2022, 7 5). Retrieved from https://docs.k8ssandra.io/components/cass-
operator/

Krizhevsky, A. S. (2012). Imagenet classification with deep convolutional neural networks.
Advances in Neural Information Processing Systems (NIPS 2012), p. 4.

L. P. Kaelbling, M. L. (1996). Reinforcement learning: A survey. Journal of Articial Intelligence
Research 4, pp. 237-285.

Lucia Schuler, S. J. (2021). Al-based Resource Allocation: Reinforcement Learning for
Adaptive Auto-scaling in Serverless Environments. 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid) (pp. 804-811). IEEE.

Maas, A. L. (2013). Rectifier nonlinearities improve neural network. In International
Conference on Machine Learning (ICML).

Martin, M. V. (2013). Playing Atari with Deep Reinforcement Learning. NIPS Deep Learning
Workshop.

Michell, T. M. (1997). Machine Learning p2. McGraw-Hill.

Microsoft’s Azure. (n.d.). Retrieved from https://docs.microsoft.com/en-
us/azure/monitoring-and-diagnostics/insights-autoscale-common-metrics

Nair, V. a. (2010). Rectified linear units improve restricted Boltzmann machines.
International Conference on Machine Learning (ICML).

Prometheus. (2022, 7 6). Retrieved from
https://prometheus.io/docs/concepts/metric_types/

R. Taft, N. E.-S. (2018). P-Store: An Elastic Database System with Predictive Provisioning.
Proceedings of the 2018 International, (pp. 205-219). New York.

Rolnick, B. H. (2018). How to Start Training: The Effect of Initialization and Architecture. 32nd
Conference on Neural Information Processing Systems .

98

Schaul, T. O. (2021). Return-based Scaling: Yet Another Normalisation Trick for Deep RL.
Retrieved from ArXiv: https://arxiv.org/abs/2105.05347

Scheepers, M. J. (2014). Virtualization and Containerization of Application Infrastucture: A
Comparison. 21st twente student conference on IT, (p. Vol 21).

Simon, S. (2000). Brewer’s CAP Theorem. Symposium on Principles of Distributed Computing,
(p. 2).

Tieleman, T. a. (2012). Lecture 6.5 - RMSProp. Retrieved from
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Turnbull, J. (2019). The Docker Book: Containerization Is the New Virtualization.

Vapnik, V. N. (1971). On the Uniform Convergence of Relative Frequencies of Events to Their
Probabilities. Theory of Probability and its Applications, pp. 264-280.

99

