
National Technical University of Athens

School of Naval Architecture and Marine Engineering

Laboratory of Marine Engineering

Diploma Thesis

Prediction of Peak Cylinder Pressure of a Four-Stroke

Marine Diesel Engine using Neural Networks

Galliakis Iakovos

Athens, February 2022



Acknowledgments

This diploma thesis has been carried out at the Laboratory of Marine Engi-
neering (LME) at the School of Naval Architecture and Marine Engineering
of the National Technical University of Athens, under the supervision of As-
sociate Professor George Papalambrou.

I would first like to thank Associate Professor George Papalambrou for
accepting me to conduct this thesis at the LME and by doing so, allowing me
to work on the ever growing and exceptionally interesting field of machine
learning. I would also like to sincerely thank him for his patience, support
and his knowledge and experience that shared with me.

I would like to thank Doctoral Student Vasileios Karystinos for his invalu-
able assistance, as well as his patience and understanding. His immediate
responses and supportive attitude helped me greatly through the develop-
ment of this diploma thesis.

I would also like to express my gratitude to Professor Lambros Kaikt-
sis and Professor Gregory Grigoropoulos for evaluating my work and being
members of my supervisors committee.

Finally, I would like to thank all my friends and family for being there for
me, for their unending motivation and support throughout all these years of
studies. I wouldn’t be here without them, and for that I am deeply grateful.

1



Abstract

In recent years, the demand for more efficient operation of engines has lead
to an increase in the need for inexpensive and reliable monitoring tools. One
parameter that is of great importance to the work producing process of an
internal combustion engine is the in-cylinder pressure. The most common
method for measuring such a parameter is through a piezoelectric pressure
sensor; this solution however is quite expensive and the installation imprac-
tical and time-consuming. Others, more complex indirect methods include
prediction of the pressure waveforms via utilisation of the acoustic emis-
sions of the engine, or through the momentary crankshaft speed. A different
approach to this task is explored through this thesis; the utilization of arti-
ficial neural networks, a machine learning model, that by processing easy to
acquire data, namely the engine Speed, Torque, Lambda and Specific Fuel
Consumption (BSFC), aims to make accurate predictions of the peak cylin-
der pressure. By using datasets from two different engines, both however
being of the four-stroke, diesel type, two model groups were created; each
grouped housed a large amount of different neural network architectures, in
order to deduce the best hyperparameters for this task. After training and
testing, it was concluded that the models were successful in predicting the
peak pressure, as accuracy of 99.32% and 97.04% was reached by Model Set
A and Set B respectively; it was also discovered that using the BSFC pa-
rameter as input worsened the performance of the models, leaving the engine
Speed-Torque-Lambda as the optimal input vector. All the calculations and
model building utilized the Julia programming language, and specifically the
Flux machine learning package.

2



List of Figures

2.1 A Machine Learning model during the training stage . . . . . 15
2.2 A Machine Learning model after the training stage, during the

validation stage . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 The Perceptron, as designed by Rosenblatt. . . . . . . . . . . 16
2.4 The NETtalk system schematic. . . . . . . . . . . . . . . . . . 17
2.5 Venn diagram of the machine learning related fields of science. 19
2.6 A neural network diagram. . . . . . . . . . . . . . . . . . . . . 24
2.7 Analysis of a singular neuron. . . . . . . . . . . . . . . . . . . 24
2.8 Example of a support vector machine creating the optimal

hyperplane between two distinct groups of data. . . . . . . . . 25
2.9 Example of a decision tree. . . . . . . . . . . . . . . . . . . . . 26
2.10 Example of a Bayesian network. . . . . . . . . . . . . . . . . . 27
2.11 Outline of a typical neural network with a singular hidden layer. 32
2.12 Depiction of a two-layered neural network prediction, in four

different target functions:(a) f(x) = x2, (b) f(x) = sin(x), (c)
f(x) = |x| and (d) f(x) = H(x), where H(x) is the Heaviside
step function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.13 Geometrical depiction of the error function above the weight
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.14 Depiction of the input and error information flow in a network. 40
2.15 Depiction of the four-stroke operating cycle. . . . . . . . . . . 42

3.1 The schematic of the engine of Dataset A. . . . . . . . . . . . 47
3.2 Torque-Speed diagram of the 9 operating states of Dataset A. 48
3.3 Engine Power-Speed diagram of the 9 operating states of Dataset

A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Lambda-Speed diagram of the 9 operating states of Dataset A. 49
3.5 BSFC-Speed diagram of the 9 operating states of Dataset A. . 49
3.6 Peak Pressure measurements per engine cycles, for Dataset A. 50
3.7 Peak Pressure-Speed diagram of Dataset A. . . . . . . . . . . 50
3.8 Peak Pressure-Engine Power diagram of Dataset A. . . . . . . 51

3



LIST OF FIGURES 4

3.9 A picture of the engine of Dataset B. . . . . . . . . . . . . . . 52
3.10 Torque-Speed diagram of the operating states of Dataset B. . 53
3.11 Engine Power-Speed diagram of the operating states of Dataset

B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.12 Lambda-Speed diagram of the operating states of Dataset B. . 54
3.13 Peak Pressure measurements per engine cycles, for Dataset B. 55
3.14 Peak Pressure-Speed diagram of Dataset B. . . . . . . . . . . 55
3.15 Peak Pressure-Engine Power diagram of Dataset B. . . . . . . 56
3.16 Peak Pressure-Engine Power diagram of both Dataset A and

Dataset B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.17 Peak Pressure-Lambda diagram of both Dataset A and Dataset

B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.18 The training and testing groups. . . . . . . . . . . . . . . . . . 59
3.19 Depiction of the sigmoid activation function. . . . . . . . . . . 63
3.20 Depiction of the hyperbolic tangent function. . . . . . . . . . . 64
3.21 Depiction of the Rectifier Linear Unit function. . . . . . . . . 65
3.22 Depiction of the Leaky Rectifier Linear Unit function. . . . . . 66
3.23 Depiction of the effect of the learning rate parameter on the

model training, in three different scenarios. . . . . . . . . . . . 68
3.24 Example of a trained model name. . . . . . . . . . . . . . . . 70
3.25 Analysis of the above model name. . . . . . . . . . . . . . . . 70

4.1 The zero-error-line diagram of the best performing model of
Set A, with Speed-Torque as input. . . . . . . . . . . . . . . . 73

4.2 The zero-error-line diagram of the best performing model of
Set A, with Speed-Torque-Lambda as input. . . . . . . . . . . 74

4.3 The zero-error-line diagram of the best performing model of
Set A, with Speed-Torque-BSFC as input. . . . . . . . . . . . 75

4.4 The zero-error-line diagram of the best performing model of
Set A, with Speed-Torque-Lambda-BSFC as input. . . . . . . 77

4.5 The MAPE of the best model of the Set A with the Descent
optimizer, for various epochs and batchsizes. . . . . . . . . . . 79

4.6 The MAPE of the best model of Set A with the ADAM opti-
mizer, for various epochs and batchsizes. . . . . . . . . . . . . 79

4.7 Comparison of the Descent and ADAM optimizer of the best
Set A model, for various batchsizes. . . . . . . . . . . . . . . . 80

4.8 Comparison of variations to the number of hidden layers and
neurons for the best model of Set A. . . . . . . . . . . . . . . 81

4.9 Comparison of different learning rates for the best model of
Set A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



LIST OF FIGURES 5

4.10 Evaluation of different activation functions for the best model
of Set A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 Comparison of different training epochs for the best model of
Set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.12 The zero-error-line diagram of the best performing model of
Set B, with Speed-Torque as input. . . . . . . . . . . . . . . . 85

4.13 The zero-error-line diagram of the best performing model of
Set A, with Speed-Torque-Lambda as input. . . . . . . . . . . 86

4.14 The MAPE of the best model of Set B with the ADAM opti-
mizer, for various batchsizes. . . . . . . . . . . . . . . . . . . . 88

4.15 Comparison of variations to the number of hidden layers and
neurons for the best model of Set B. . . . . . . . . . . . . . . 89

4.16 Comparison of different training epochs for the best model of
Set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.1 The MAPE of the best ST model of the Set A with the Descent
optimizer, for various epochs and batchsizes. . . . . . . . . . . 102

A.2 The MAPE of the best ST model of Set A with the ADAM
optimizer, for various epochs and batchsizes. . . . . . . . . . . 103

A.3 Comparison of the Descent and ADAM optimizer of the best
ST model, for various batchsizes. . . . . . . . . . . . . . . . . 103

A.4 Comparison of variations to the number of hidden layers and
neurons for the best ST model of Set A. . . . . . . . . . . . . 104

A.5 Comparison of different learning rates for the best ST model
of Set A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.6 Evaluation of different activation functions for the best ST
model of Set A. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.7 Comparison of different training epochs for the best ST model
of Set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.8 The MAPE of the best STB model of the Set A with the
Descent optimizer, for various epochs and batchsizes. . . . . . 106

A.9 The MAPE of the best STB model of Set A with the ADAM
optimizer, for various epochs and batchsizes. . . . . . . . . . . 106

A.10 Comparison of the Descent and ADAM optimizer of the best
STB model, for various batchsizes. . . . . . . . . . . . . . . . 107

A.11 Comparison of variations to the number of hidden layers and
neurons for the best STB model of Set A. . . . . . . . . . . . 107

A.12 Comparison of different learning rates for the best STB model
of Set A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.13 Evaluation of different activation functions for the best STB
model of Set A. . . . . . . . . . . . . . . . . . . . . . . . . . . 108



LIST OF FIGURES 6

A.14 Comparison of different training epochs for the best STBmodel
of Set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.15 The MAPE of the best STLB model of the Set A with the
Descent optimizer, for various epochs and batchsizes. . . . . . 109

A.16 The MAPE of the best STLB model of Set A with the ADAM
optimizer, for various epochs and batchsizes. . . . . . . . . . . 110

A.17 Comparison of the Descent and ADAM optimizer of the best
STLB model, for various batchsizes. . . . . . . . . . . . . . . . 110

A.18 Comparison of variations to the number of hidden layers and
neurons for the best STLB model of Set A. . . . . . . . . . . . 111

A.19 Comparison of different learning rates for the best STLBmodel
of Set A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.20 Evaluation of different activation functions for the best STLB
model of Set A. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.21 Comparison of different training epochs for the best STLB
model of Set A . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.1 The MAPE of the best ST model of Set B with the ADAM
optimizer, for various batchsizes. . . . . . . . . . . . . . . . . . 113

B.2 Comparison of variations to the number of hidden layers and
neurons for the best ST model of Set B. . . . . . . . . . . . . 114

B.3 Comparison of different training epochs for the best ST model
of Set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



List of Tables

3.1 Parameters of the 9 Steady States . . . . . . . . . . . . . . . . 47
3.2 Engine Specifications . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Comparison of the best models for each combination of input
variables - Set A . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Hyperparameters of the best model, for ST input - Set A . . . 73
4.3 Error metrics of the best model, for ST input - Set A . . . . . 73
4.4 Hyperparameters of the best model, for STL input - Set A . . 74
4.5 Error metrics of the best model, for STL input - Set A . . . . 75
4.6 Hyperparameters of the best model, for STB input - Set A . . 76
4.7 Error metrics of the best model, for STB input - Set A . . . . 76
4.8 Hyperparameters of the best model, for STLB input - Set A . 77
4.9 Error metrics of the best model, for STLB input - Set A . . . 77
4.10 Comparison of the best models for each combination of input

variables - Set B . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.11 Hyperparameters of the best model, for ST input - Set B . . . 85
4.12 Error metrics of the best model, for ST input - Set B . . . . . 85
4.13 Hyperparameters of the best model, for STL input - Set B . . 86
4.14 Error metrics of the best model, for STL input - Set B . . . . 87

7



Contents

1 Introduction 10
1.1 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Theoretical Background 14
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 History of Machine Learning . . . . . . . . . . . . . . . 15
2.1.2 Related Fields . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Categories of Machine Learning . . . . . . . . . . . . . 21
2.1.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Neural Networks Overview . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Linear Basis Function Models . . . . . . . . . . . . . . 28
2.2.2 Feed-Forward Neural Networks . . . . . . . . . . . . . 30
2.2.3 Neural Network Training . . . . . . . . . . . . . . . . . 33

2.3 Four-Stroke Diesel Engine Operating Parameters . . . . . . . . 41
2.3.1 Brake-specific Fuel Consumption - BSFC . . . . . . . . 42
2.3.2 Air-fuel Equivalence Ratio - Lambda (λ) . . . . . . . . 43

2.4 Programming Tools . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Model Design 45
3.1 Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 First Set of Data - Dataset A . . . . . . . . . . . . . . 46
3.1.2 Second Set of Data - Dataset B . . . . . . . . . . . . . 51
3.1.3 Datasets Comparison . . . . . . . . . . . . . . . . . . . 56

3.2 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Model Hyperparameters . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Number of Hidden Layers . . . . . . . . . . . . . . . . 61
3.4.2 Number of Neurons per Layer . . . . . . . . . . . . . . 61
3.4.3 Activation Functions . . . . . . . . . . . . . . . . . . . 62

8



CONTENTS 9

3.4.4 Optimization Algorithms . . . . . . . . . . . . . . . . . 66
3.4.5 Error Function . . . . . . . . . . . . . . . . . . . . . . 67
3.4.6 Learning Rate . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.7 Batch size and Epochs . . . . . . . . . . . . . . . . . . 68
3.4.8 Model Accuracy Metrics . . . . . . . . . . . . . . . . . 69
3.4.9 Model Nomenclature . . . . . . . . . . . . . . . . . . . 70

4 Results and Discussion 71
4.1 Model Set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Best performing networks, per Set of Inputs . . . . . . 72
4.1.2 Model Set A Summary . . . . . . . . . . . . . . . . . . 78

4.2 Model Set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.1 Best performing networks, per Set of Inputs . . . . . . 84
4.2.2 Model Set B Summary . . . . . . . . . . . . . . . . . . 87

5 Conclusions and Future Work 91
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A Model Set A Diagrams 102
A.1 Speed-Torque (ST) Models . . . . . . . . . . . . . . . . . . . . 102
A.2 Speed-Torque-BSFC (STB) Models . . . . . . . . . . . . . . . 106
A.3 Speed-Torque-Lambda-BSFC (STLB) Models . . . . . . . . . 109

B Model Set B Diagrams 113
B.1 Speed-Torque (ST) Models . . . . . . . . . . . . . . . . . . . . 113



Chapter 1

Introduction

1.1 Thesis Objective

In recent years, the great strides in the fields of engineering and computer
science has allowed for more complex, sophisticated tools for controlling the
various parameters during the power producing cycles of an internal combus-
tion engine. The need for more environmentally conscious and productive en-
gines has lead to the search for ways of measuring the in-cylinder conditions,
for better control over the combustion process and for general evaluation of
the engine operation. However, most of the methods that deal with hard
to measure parameters, like the in-cylinder pressure or temperature, end up
being not practical or economically feasible.

This thesis aims to tackle the issue of accurate in-cylinder pressure pre-
diction, and more specifically of the peak cylinder pressure, of a four-stroke
marine diesel engine. Pressure in general is an important factor in the oper-
ation of an internal combustion engine, as the fundamental concept of such
engines is the production of work via the burning of air and fuel mixture and
the subsequent high-pressure released gases that act upon the piston. Peak
pressure, additionally, is a significant factor that contributes to the stress
of several mechanical components, including the cylinder head, the piston
crown and the piston rings.

Measurement of pressure by conventional means is usually carried out by
piezoelectric pressure sensors, strong enough to withstand the extreme tem-
peratures and pressures, which are installed inside the cylinder, on its head.
Its installation, thus, entails the drilling of the cylinder; a quite expensive
and often impractical process, as it requires the engine to be taken out of
commission until the sensor is placed.

Other, indirect, measurement methods have also been developed to assess

10



CHAPTER 1. INTRODUCTION 11

the in-cylinder pressure. One method uses the acoustic emissions produced
during the combustion phase to construct the engine cylinder pressure wave-
form [1], while a different one recreates the pressure waveform by processing
the engine speed signals, taking advantage of the experimentally proven lin-
ear correlation between these two signals [2].

Having taken into consideration the advances in the area of artificial in-
telligence and machine learning over the last years, this thesis proposes an
alternative solution; artificial neural networks could be utilized in order to
make accurate predictions of the requested pressure. These models would
make their predictions by taking as input other, easy and inexpensive to
measure parameters, like the engine working speed or lambda coefficient.

So, in the premises of this thesis, the feasibility of such models is ex-
plored. Multiple types of neural networks with varying hyperparameters are
constructed and consequently trained on experimental data from two differ-
ent engines, both being of four-stroke, diesel type, and then their efficiency
of prediction is tested against new sets of input data.

1.2 Literature Review

Before the development and training of the neural networks could be set into
motion, a solid understanding of the fundamentals was required. Firstly,
the basics of internal combustion engines and the various parameters that
affect the power production cycle were revisited, as presented by [3]. Then,
a thorough study of the intricacies of machine learning was carried out, with
emphasis on artificial neural networks and deep learning models, both in
theoretical level and in practical applications. The bulk of the information
concerning the theoretical approach and mathematics groundwork of the net-
works stemmed from [4], as well as [5] and [6]. Regarding the practical ap-
plications of neural networks in the context of engine parameters prediction,
a number of scientific papers were examined. One paper [7] dealt with the
prediction of the maximum piston temperature in a dual-fuel engine using
Support Vector Regression, a machine learning technique. For input, the
engine speed, the NOx emissions, and the excess air coefficient were used
in various combinations; after testing, it was determined that the models
that utilized all of the above parameters had the superior accuracy. The
outcome was an algorithm that predicted the requested peak temperature
with an average absolute error of 1.98oC and a maximum error of 6.63oC.
Another study [8] aimed to predict the brake specific fuel consumption, ef-
fective power and exhaust temperature of a gasoline engine through three
different artificial neural network models. For all three models, the engine



CHAPTER 1. INTRODUCTION 12

speed, engine torque, fuel flow rate, intake manifold mean temperature and
cooling water inlet temperature were used as the input parameters. The net-
works had a singular hidden layer; for the deduction of the best number of
neurons, values of 3 to 15 were tested, while two different learning algorithms
were employed: the scaled conjugate gradient (SCG) algorithm and the Lev-
enberg–Marquardt (LM) algorithm. The results indicated that the better of
the two algorithms was the SCG one. In regards to the number of neurons,
the ideal number for the BSFC and the exhaust temperature models was 7,
with the one for the effective power model being 5. In any case, all models
when evaluated against the test data, presented an average error of less than
2.7% and a coefficient of determination greater than 0.99, proving that the
training was indeed successful. A similar paper [9] used yet again a single
hidden layered artificial neural network, to produce the break specific fuel
consumption (BSFC), carbon monoxide (CO) and unburned hydrocarbon
(HC) exhaust emissions, and AFR air-fuel ratio (AFR) of a four stroke spark
ignition engine that operated using two different fuels: methanol and gaso-
line. As inputs, the fuel type, engine speed, engine torque, and fuel flow was
used; regarding the fuel type, for methanol the arbitrary value of 1 was given
and for gasoline the value of 2. The logistic sigmoid function was chosen as
the activation function, while for the number of neurons of the hidden layer
yet again multiple values were tested, from 5 to 15. Similarly, four different
learning algorithms were tested: Quasi-Newton back propagation (BFGS),
Levenberge-Marquardt (LM) learning algorithm, the resilient back propaga-
tion (RP) and scaled conjugate gradient learning algorithm (SCG). For each
of the four distinct models, the outcomes showed that different parameters
were optimal: for the CO model the LM algorithm and 4-7-1 neurons, for the
HC model the RP algorithm and 4-14-1 neurons, for the BSFC model the
SCG algorithm and 4-7-1 neurons, and finally for the AFR model the BFGS
algorithm and 4-11-1 neurons. The networks that predicted the BSFC, HC
and AFR parameters gave a coefficient of determination greater than 0.99;
the model that predicted the carbon monoxide emissions on the other hand
gave a smaller coefficient of 0.978.

Regarding studies that focused on pressure prediction, one of them [10]
utilized Extreme Learning Machine (ELM) models for predicting two types
of pressure: the pressure inside the combustion chamber and the pressure at
the exit of the intake chamber of a spark ignition engine. An ELM model
is a type of feed forward artificial neural network with a single hidden layer,
the input weights and hidden biases of which are assigned arbitrarily and
subsequently never updated, unlike in most other standard machine learning
algorithms, having as a result significantly faster training times. Inputs for
the models consisted of the crankshaft angle and engine speed; they included



CHAPTER 1. INTRODUCTION 13

five different engine speeds and crankshaft angles from −360o to 360o. The
optimal model hyperparameters were determined through a Biogeography-
based optimization (BBO) algorithm, a metaheuristic optimizer of functions
that is based on the spread of a population of living creatures in an en-
vironment. The results for the in-cylinder pressure predictions produced
a R2 value of greater than 0.993, indicating that the model had adequate
accuracy and good consistency with the experimental values. Finally, a dif-
ferent, and more closely related to the methods and objective of this thesis,
paper [11], was one that aimed to predict the in-cylinder pressure of a Ho-
mogeneous Charge Compression Ignition (HCCI) engine using deep neural
networks. The architecture of the network consisted of 4 hidden layers with
the number of neurons being 100, 150, 120 and 120 respectively and having
the rectified linear unit (ReLU) as activation function, while for input the
crank angle and air excess coefficient values were used. The resulted model
achieved prediction of 99.84% accuracy, which faired better in comparison to
”shallow” neural networks. The methodology, through which the type and
hyperparameters of the networks of this thesis were chosen, was influenced
by the conclusions of the aforementioned paper; of course many other designs
and options were explored during the process of model building and training.

1.3 Thesis Structure

In Chapter 2 the theoretical groundwork of this thesis is laid; that includes
a synopsis of the machine learning as a whole, the mathematical theory of
the neural networks and a brief description of a four stroke diesel engine.
In Chapter 3 the analysis of the model design process takes place, including
an overview of the acquired training datasets. In Chapter 4 the results are
presented and the trained networks are evaluated, while finally in Chapter 5
the conclusions of this thesis are presented and some ideas for future studies
are propositioned.



Chapter 2

Theoretical Background

2.1 Machine Learning

In the context of machines, learning is considered when a machine changes
its structure, program, or data, based on external information, in a way that
enhances its performance[12]. More specifically, the term Machine Learning
describes a series of computational methods that, through experience, im-
prove themselves, providing better and more accurate results[13]. The afore-
mentioned experience is being provided through a set of data, typically called
the training data, which they use to train on and build a prediction model.
After sufficient training, such algorithms are tested against new datasets,
called test data, and the results are evaluated; should they have learned from
the given example dataset, they will perform with high accuracy. This abil-
ity is known as generalization and is broadly regarded as the fundamental
objective of any prediction algorithm[13] [4].

An outline of the learning process is shown in the following diagrams 2.1
and 2.2 [14]. Note that the model in not known before the training stage,
but instead is developed through the introduction of the training data.

14



CHAPTER 2. THEORETICAL BACKGROUND 15

Figure 2.1: A Machine Learning model during the training stage

Figure 2.2: A Machine Learning model after the training stage, during the
validation stage

2.1.1 History of Machine Learning

In 1950, Alan Mathison Turing, a British mathematician and logician[15], in
his paper ”Computing Machinery and Intelligence”[16] introduced the Im-
itation Game, nowadays referred to as the Turing test, a test which aimed
to challenge a machine’s ability to think and judge whether it can become
indistinguishable from a human person[17]. In the same paper, he also pre-
sented the concept of a learning machine. He proposed that instead of trying



CHAPTER 2. THEORETICAL BACKGROUND 16

to create a machine that imitates an adult human mind, a long and time-
consuming process due to the complexity of the matter, it would be more
fruitful to produce a program that simulates a child mind, a far simpler and
easier task. Then, the child-programme would have to be properly educated
and allowed to gain experience in order to grow into the the final machine,
with intellectual power that can compete with humans[16].

Later, in 1952, the term Machine Learning formally appeared; it was first
introduced by Arthur Samuel, an American pioneer in the field of artificial
intelligence[18][19]. He developed a computer algorithm for playing checkers
that, in a relatively short period of time and with minimal input and direc-
tions, not only learned how to play the game, but also outperformed any
average person[19]. In the same paper, Samuel recognized and pointed out
that the basic principles and approach behind the checkers algorithm could
be utilized to build more complex programs for solving real life issues.

Samuel’s program used what later evolved into the minimax algorithm,
alongside an alpha-beta pruning optimization[20]. The minimax algorithm
ensured that the action taken by the computer would be the optimal one, by
minimizing the potential loss of the worst case scenario, while the alpha-beta
pruning sped up the process by eliminating any move that had been found
to be worse than a previously examined one[21].

In 1957 Frank Rosenblatt, an American psychologist with contributions
to the field of artificial intelligence, created the first artificial neural network;
an algorithm that himself called the Perceptron[22]. Similar to its biological
counterpart, it received through a series of input neurons a set of data, and
via weighted connections it activated an output neuron[23]. It started as a
computer program, but later a hardware prototype named Mark I Perceptron
was built and tested[4]. In 1961 Rosenblatt published a paper titled ”Princi-
ples of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms”,
where he presented multilayer and cross-coupled perceptrons[24]. One such
design is depicted in Figure 2.3[22].

Figure 2.3: The Perceptron, as designed by Rosenblatt.



CHAPTER 2. THEORETICAL BACKGROUND 17

In 1967 two Ukrainian soviet scientists Alexey Ivakhnenko and Valentin
Lapa developed what is considered the first feedforward multilayer percep-
tron, by training neural networks with the Group Method of Data Handling[25],
an inductive learning algorithm suited for complex models[26]. The cre-
ation of the 8-layered neural network was marked as the first Deep Learning
network[25] and as such, Ivakhnenko was widely regarded as the father of
Deep Learning.

In spite of the progress of the previous years, the following decades
saw heavy fluctuations in the interest of the scientific community in ma-
chine learning, as the focus shifted more towards artificial intelligence, which
caused a schism between the two fields[27]. Machine learning returned reju-
venated, as a separate branch in 1990[27].

During the years of recession, however, several achievements in the field
were made, leading to a significant milestone in 1997 with the Deep Blue, a
chess playing supercomputer.

In 1979 at the Stanford University, an autonomously moving vehicle, the
Stanford Cart, successfully navigated an obstacle-filled room on its own. It
had been in development since 1960 and initially started as a remote operated
vehicle[28].

In 1987 the NETtalk, a parallel neural network system that could pro-
nounce English text, was developed by Terrence J. Sejnowski and Charles R.
Rosenberg[29]. The neural network utilized 3 layers of processing nodes; the
input information was fed to the first layer, then moved through weighted
connections to the second layer and finally reached the third and final output
layer. A depiction of the NETtalk system is presented in Figure 2.4 [29].

Figure 2.4: The NETtalk system schematic.



CHAPTER 2. THEORETICAL BACKGROUND 18

Finally in 1997, the Deep Blue computer, developed by IBM, managed
to win a game of chess against the then reigning world champion Garry
Kasparov[30]. Kasparov had previously beaten Deep Thought, a predecessor
to the winning super-computer in 1994, as well as Deep Blue itself two years
later in 1996[31]. This victory was of great importance, not only for the com-
puter science, but for several other fields as well, because it helped push the
processing abilities of computers and contributed to the better understanding
of the complexity of massively parallel computations[32].

In the 21st century, due to the advance of computer hardware technology,
more complex neural networks were feasible, leading to a boom in artificial
intelligence and machine learning.

In 2006 Fei-Fei Li, an American computer scientist, started working on
ImageNet, a large scale visual database used for training complex object
recognition models[33]. The dataset was presented publicly in 2009 at the
Conference on Computer Vision and Pattern Recognition in Florida[34]. The
motivation behind ImageNet was twofold; it aimed to offer both a large
amount of image data for training sets and a high quality evaluation bench-
mark for object recognition and categorization.[33].

In 2010 Microsoft released Kinect for the Xbox 360 gaming console, a
sensor that allowed players to operate the machine without a controller, but
instead with hand gestures and body movement. It was equipped with RGB
cameras and infrared sensors that allowed it to construct a depth image of a
person via triangulation and subsequently detect and categorize the person’s
limbs using a decision tree[35].

One year later, in 2011, Google founded Google Brain, a research team
that focuses on projects in the fields of artificial intelligence and machine
learning. Within a year, the team had developed a software for visual recog-
nition, that could identify images of cats[36]

In 2014 Facebook made a breakthrough in the area of facial recognition
with its deep learning system called Deep Face. The software could ver-
ify whether a picture showed the same person, regardless of differentiations
in position or lighting, with 97.25% accuracy, performance comparable to a
human’s[37]. The process of identification included a forward-facing recon-
struction of the input image using a generic 3D face model and the subse-
quent numerical analysis of the correctly oriented image using deep neural
networks[37].

In 2016, DeepMind Technologies, a British artificial intelligence company-
subsidiary of Google and later of Alphabet Inc., using its computer software
AlphaGo beat Lee Sedol, a 9-dan professional player, in a game of Go[38], a
feat viewed as a decade ahead of its time[39]. Go is a board game that was
considered as the biggest challenge for board gaming artificial intelligence,



CHAPTER 2. THEORETICAL BACKGROUND 19

due to its massive pool of legal board positions and difficulty in evaluating
moves, despite its relatively simple set of rules[40].

The software contained deep neural networks that were trained by a com-
bination of supervised learning from human expert games and reinforcement
learning from thousands of self-play games, which the program simulated via
a Monte-Carlo tree search algorithm[40].

2.1.2 Related Fields

Machine learning is often associated with the fields of artificial intelligence,
deep learning and statistical science. While they all share common areas,with
some being subfields of others, they are still considered as distinct entities
with different goals and tools. It is therefore important that clear definitions
of these terms are to be presented and their differences highlighted, so as to
avoid any confusion.

Figure 2.5 [41] presents the relations between these four fields.

Figure 2.5: Venn diagram of the machine learning related fields of science.

Artificial Intelligence

Regarding artificial intelligence, machine learning in its conception started as
branch of that field[27]. However, during the decades of 1970-80, new trends
in the scientific community caused a rift between the two fields[6]. People
started focusing more on intelligent systems, developing programs aimed at



CHAPTER 2. THEORETICAL BACKGROUND 20

tackling more complex problems related with human cognitive abilities like
multi-step reasoning, heuristic problem solving and language understanding
while at that point, the machine learning community emphasized their work
on classification and regression[27]. The field later re-emerged as a sepa-
rate area of study, with its objective shifting towards the development of
probabilistic models from data[6].

The key difference between the two concepts lies in their definition. Arti-
ficial intelligence is described as the ability of a system to accurately interpret
external stimuli, learn from them and then use this information to adapt ap-
propriately, in order to achieve its goals[42]. Therefore, it is inferred that the
system interacts with its environment while trying to follow its objective. In
contrast, machine learning, as previously defined, is generally restricted to
passive analysis of information and construction of a model that fits the in-
put data, with the purpose of utilizing the model to accurately predict future
datasets.

It is generally regarded that machine learning is a subset of artificial
intelligence[43][5][44].

Deep Learning

Deep Learning is a sub field of machine learning that passes information
through multiple intermediate processing layers. The defining characteristic
that distinguishes deep from ”shallow” learning is the number of hidden
layers, however the exact amount differs from definition to definition; some
argue that at least two hidden layers are required[43], while others three or
more[45][46].

These extra levels enable the model to better handle complex data struc-
tures with multiple levels of abstraction[46], making deep learning an advan-
tageous option for handling image, speech and text recognition.

Data Science - Data Mining

The term data science describes the entire process of data handling, from
acquisition and analysis, to interpretation and utilization[41]. Since machine
learning algorithms depend strongly upon the quality of the input dataset,
this field of study is tied to the fields of data science and computational
statistics[13], at the same time borrowing from and lending to them tools and
techniques. Of course, each of these fields share a different objective; statis-
tics, for instance, focus on inference, by building a project-specific probability
model, while machine learning concentrates on prediction, by applying and
training general-purpose learning algorithms on datasets of considerable size



CHAPTER 2. THEORETICAL BACKGROUND 21

and complexity, in order to find generalizable patterns[47].
Data mining constitutes a part of the broader family of data science. This

procedure specifically involves combing sets of data for useful patterns, often
unearthing hidden pieces of information[41]. As a result, data mining relies
heavily on machine learning algorithms[41].

2.1.3 Categories of Machine Learning

Machine learning can generally be divided in three types; supervised learn-
ing, unsupervised learning and reinforcement learning. In practise, different
techniques that don’t fall under the aforementioned categories are sometimes
implemented as well; these will be briefly touched upon towards the end of
this section.

Supervised learning

In supervised training, the training dataset consists of variables which are
labelled and with corresponding target values; in essence they are examples
of the desired correlation that the model is tasked to learn[6]. The algorithm
then analyses the input-output pairs, finds the relation between the two and
formulates an appropriate function that fits the data.

Subtypes of supervised learning include classification and regression; the
former is used for problems where the objective is to categorize the input
data into a finite amount of different classes and the latter for ones that
predict continuous variables[4].

Examples of this type of machine learning include recognition of numerical
characters from hand-drawn digits[4], estimation of the price of a house using
as input data its area, number of rooms and floors, whether it is equipped
with furnitures or appliances, etc.[43], or weather prediction by examining
data like the temperature, humidity, wind and so forth.

Unsupervised learning

While in supervised learning the train data included the corresponding out-
put values, in unsupervised learning there are no such values; only the input
variables are given[4]. In these types of learning process, the objective is
for the algorithm to find the regularities in the data and uncover hidden
patterns[5].

Generally, two subtypes of unsupervised learning can be discerned, den-
sity estimation and data clustering. Data estimation is used to discover the



CHAPTER 2. THEORETICAL BACKGROUND 22

distribution of the input data, while clustering to detect useful groups of
variables, that share similar characteristics[4].

Typical uses of unsupervised learning consist of finding communities of
people with similar interests in a social media algorithm example, or for
creating statistics of past clients for a company[5].

This category is also used for projecting a high-dimension data set to one
with fewer dimensions, while retaining some of its characteristics, a process
called dimensionality reduction[13]. It is usually applied in image compres-
sion problems, were the goal is to reduce the amount of pixels in order to save
storage space, while keeping the image as close to the original as possible[5].

Reinforcement learning

Lastly, by the method of reinforcement learning, the algorithm learns to
decide which action is the most profitable one, in order to receive the best
outcome[4]. Like unsupervised learning, the training dataset does not include
the desired output, instead the algorithm is tasked with figuring out the
optimal course of action through a process of reward and punishment[6].
This technique is unique in that, in some of it stages, the algorithm interacts
with its environment[4].

Reinforcement learning is commonly associated with theMarkov Decision
Processes, a method of environment simulation. Based on this system, the
environment is being represented by a number of states that can be interacted
with and altered; changes to these states affect the simulated space[48]. The
algorithm can utilize this simulation to hone its decision-making, by running
trials and self-test.

One of the more well-known application of this particular subtype is in
game playing[4]. Backgammon, chess and checkers are examples of boardgames
that lend themselves to this kind of machine learning, due to their varying de-
grees of strategical complexity, in spite of having simple rules. Another area
that takes advantage of reinforcement learning is automated navigation[5].

Other types

Bellow, a few more different types of machine learning are listed. These ones
do not quite fit in the three previous general categories, thus the need to be
presented separately. The list should not be considered all-inclusive.

� Semi-supervised learning. This type falls in between supervised and
unsupervised learning. The training dataset consists of mostly unla-
belled data, with a few labelled examples, which are used to categorize
the unlabelled ones, before fitting a model[43].



CHAPTER 2. THEORETICAL BACKGROUND 23

� Transductive inference. Similarly to the semi-supervised learning, the
algorithm receives a mix of labelled and unlabelled data, with the spe-
cific objective of only predicting the missing labels[13].

� Representation learning. It is mostly used for intermediate process of
data. Its purpose is to extract useful information from a series of raw
data, later used for building other prediction algorithms[49].

� On-line learning. In this type of learning, the input data is being
provided sequentially, while the algorithm passes through a number
of train and test loops. The general aim of such process is to either
minimize the total loss across all rounds of evaluation, or minimize
the difference between the cumulated past loss and best theoretical
result[13].

� Active learning. Here, the algorithm begins the learning process with
a small amount of labelled data, and later requests for more labelled
points by submitting a query to an oracle, like a human user for ex-
ample. This unique algorithm is utilized for instances were unlabelled
data is abundant, but labelling it is expensive or time-consuming[50].

2.1.4 Models

For the implementation of a machine learning system, a number of distinct
models are at one’s disposal. No specific method provides the best all around
results; each algorithm has its strength and weaknesses, and different tasks
require different approaches. Below, an enumeration of the most notable
machine learning models is presented; once again, this list should not be
considered comprehensive.

Artificial Neural Networks

Artificial neural networks are mathematical models that, by mimicking the
behaviour of a real, biological neural system (i.e. a brain), uncover patterns
between a set of input and output data[51]. They consist of at least 2 layers
of processing units, the input and output ones, and a number of intermediate,
hidden layers. These processing units are called neurons.

Each neuron receives input data from a singular or multiple previous
neurons; each information stream is first multiplied with a weight, afterwards
all of them are aggregated together and the end result is passed through an
activation function. This function allows the network to work non-linearities
that may exist in the task into the model[52] and has a significant impact



CHAPTER 2. THEORETICAL BACKGROUND 24

on the accuracy and effectiveness of its prediction. The processed data then
exits the neuron as its output and proceeds to the next layers.

A depiction of a typical neural network is shown in Figure 2.6[53], while
the data flow through a processing unit of a network is depicted in Figure
2.7[52].

Figure 2.6: A neural network diagram.

Figure 2.7: Analysis of a singular neuron.

During the training phase of the network, the weights are being constantly
updated in order to reduce the prediction error of the model to a desired level.
The type of optimiser that is being used for such purpose, as well as the
learning rate, meaning the speed with which the optimisation takes place,
are important model-dependant and task-specific parameters that greatly
affect the success of the trained network.



CHAPTER 2. THEORETICAL BACKGROUND 25

Since neural networks were the chosen machine learning model for the
purpose of engine parameters prediction of this diploma thesis. To this end,
the underlying mathematics of the networks, the specific activation functions
and optimizers used, as well as any other important aspect of the algorithm
are discussed in greater detail in the following Section 2.2.

Support Vector Machines

Support vector machines (SVMs) are a type of non-probabilistic linear algo-
rithm [54], used mainly for problems of classification and linear regression[55].

Given two sets of data, the SVM is tasked to produce the optimal hyper-
plane that successfully separates them. Since there is an infinite number of
planes that achieve the same result, the extra notation ”optimal” implies the
existence of a best one. Indeed, the algorithm predicts the hyperplane that
bisects with the biggest margin the space between two parallel hyperplanes
that are marginally close to the two sets of points, without splitting any
number of objects from its corresponding group[54]. The model then uses
that plane to correctly categorize any new points to one of the two groups.

This procedure is presented in Figure 2.8[56].

Figure 2.8: Example of a support vector machine creating the optimal hy-
perplane between two distinct groups of data.

The above process works for linearly separable sets of data; if the objects
are non-linearly separable, then they have to first be transformed to a higher
dimension space using the kernel trick[54].



CHAPTER 2. THEORETICAL BACKGROUND 26

Decision Trees

Decision trees are classifier-type models[57] that receive an input data, pro-
cess it through a series of internal assessments and finally make an appropri-
ate decision, in essence producing a singular result[6].

They consist of the first node, from which the algorithm begins, called
the root, a number of intermediate nodes that evaluate the information while
it passes through them and split the out-coming paths, called decision nodes
and the end-nodes that release the output, called leaves. The structures that
connect the nodes are called branches.

An example of a decision tree structure is provided in Figure 2.9 [58].

Figure 2.9: Example of a decision tree.

Bayesian Networks

A Bayesian network as a structure describes and presents graphically the
probabilistic relationship of a group of dependent or independent variables[59],
in essence being a combination of graph theory and the Bayesian inference
Theorem[60].

The variables are depicted through a directed acyclic graph in the form
of nodes; should a pair of variables be dependant of one another, then the
graph includes a connecting path with an appropriate direction that links
them, otherwise the nodes are separated. Each node is also equipped with a
corresponding conditional probability distribution, that covers every possible
scenario regarding the outcome of the earlier nodes.



CHAPTER 2. THEORETICAL BACKGROUND 27

In the following Figure 2.10 [60] the ”wet grass problem” is being analysed
via a Bayesian network.

Figure 2.10: Example of a Bayesian network.



CHAPTER 2. THEORETICAL BACKGROUND 28

2.2 Neural Networks Overview

In this section, a brief synopsis of the mathematics behind neural network
models is given. A linear model in a regression example is firstly presented, so
as to introduce some basic definitions in a simple environment. Afterwards,
the concepts are extended into a neural network of feed forward type, which,
being the core of this thesis, is further analysed. This section is based on
the relevant chapter of the book Pattern recognition and Machine Learning
of C. Bishop [4].

2.2.1 Linear Basis Function Models

For describing a simple model that has linear basis functions, terms that
will be explained further in the section, the basic problem of regression is
introduced. In this type of task, the objective is to predict the target value t
given a D-sized input vector x. The model receives a data set that comprises
of N observations {xn}, where xn = x1, ..., xN and their corresponding target
values {tn}, again with tn = t1, ..., tN . It then uses this dataset to train,
meaning that it constructs a mathematical formula that fits the input data,
in order to then predict the t value of a new x input.

The most basic linear regression model can be described as

y(x,w) = w0 + w1x1 + ...+ wDxD (2.1)

where x = (x1, ..., xD)
T are the input variables and w = (w1, ..., wD) the

model parameters. The important aspect of this model is that, not only is
it a linear function of the parameters wi, but also of the input variables xi.
This linear relation with the input is however problematic, as it limits its
capabilities. This is overcome by utilizing a linear combination of non-linear
functions of the input variables, as in

y(x,w) = w0 +
M−1∑
j=1

wjϕj(x) (2.2)

where the ϕj(x) are called the basis functions. With the maximum value of
the j being M−1, the total number of parameters are M . The w0 parameter
is called a bias parameter and helps introduce to the model any fixed offset in
the data. By defining a dummy basis function ϕ0(x) = 1, the above equation
2.2 can be neatly written as

y(x,w) =
M−1∑
j=0

wjϕj(x) = wTϕ(x) (2.3)



CHAPTER 2. THEORETICAL BACKGROUND 29

where w = (w0, ..., wM−1)
T and ϕ = (ϕ0, ..., ϕM−1)

T .
Thus, the input data given via the vector x is beforehand transformed

through the basis functions into terms of ϕj(x), consequently allowing the
y(x,w) function to develop a non-linear relation to x. However, such models
are still regarded as linear, due to them being a linear function of the w
parameters.

Regarding the basis functions, a number of different types are at ones
disposal, each with varying degrees of competency and limitations.

One example is the polynomial basis function, defined as

ϕj(x) = xj (2.4)

where the function consists of powers of the input variable x. Here, the
main issue that arises is that they are global functions of the x and as a
result changing one area of the input has an effect on all the others. This
can be overcome by splitting the input space into different regions, each with
their own separate polynomial function, thus producing basis functions called
spline functions.

A different example is the Gaussian function

ϕj(x) = exp

{
−(x− µj)

2

2s2

}
(2.5)

where the locations and spatial scales of the basis functions are dependant on
the µj and s parameters respectively. Despite their naming, these functions
do not have to be necessarily connected to any form of probability.

Finally, another common choice for basis functions are functions that are
related to the logistic sigmoid one, given by the equation

σ(a) =
1

1 + exp(−a)
. (2.6)

This group includes the sigmoidal basis function, as defined

ϕj(x) = σ
(
x− µj

s

)
(2.7)

as well as the tanh function, which is related to the logistic sigmoidal one
through the equation

tanh(a) = 2σ(a)− 1. (2.8)

While the parameter linearity of this type of models helps in making their
analysis considerably simpler, it also greatly limits their capabilities. More
specifically, the basis functions ϕj(x) are selected before the observation of the



CHAPTER 2. THEORETICAL BACKGROUND 30

input data, thus they do not adapt to it appropriately. Moreover, when the
dimension D of the input data increases, the number of basis function needed
also increases but with a significantly steeper rate, often exponentially. This
issue is known as the curse of dimensionality. As a result, different, non-
linear models are needed for practical problem-solving tasks; one of these
complex models are the neural networks.

2.2.2 Feed-Forward Neural Networks

The above discussed linear models, as given by the equation 2.3, is now
written as

y(x,w) = f

 M∑
j=1

wjϕj(x)

 (2.9)

where f(·) is a non-linear activation function. In order to circumvent the
short-comings of the linearity of this model, the basis functions ϕj(x) are to be
made dependant on adjustable coefficients that, alongside the wj parameters,
are adapted during the training phase of the model.

This process is used for the basis functions of a typical neural networks;
their functions are a non-linear function of a linear combination of the inputs,
with the linear combination having adjustable parameters.

Having a D-sized input vector x1, ..., XD, we produce M linear combina-
tions of them, as in

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 (2.10)

where j = 1, ...,M and the (1) superscript denotes that the above calculations
belong to the first ( layer) of the neural network. The wji parameters are from
here on referred to as weights and the wj0 as biases.

The aj quantities, known as activations, are then passed through a non-
linear, differentiable function h(·), called activation function, producing the
output of the basis functions of 2.9

zj = h(aj). (2.11)

The zj are called hidden units. As for the activation function, sigmoidal func-
tions like the logistic sigmoid or the tanh function are common candidates.

The hidden units are then, in turn, linearly combined to produce the K
output unit activations



CHAPTER 2. THEORETICAL BACKGROUND 31

ak =
M∑
j=1

w
(2)
kj xj + w

(2)
k0 (2.12)

where k = 1, ..., K, with K being the total number of outputs. The (2)
superscript denotes that the above process takes place after the one in 2.10,
in the second layer of the neural network.

Lastly, in order to get the output values yk, the output unit activations
are transformed via an appropriate activation function. As previously dis-
cussed, a number of different activation functions are available, with the most
suitable one being task-dependant.

By combining the above processes, and assuming that the network utilizes
a logistic sigmoid function for its output, as defined in 2.6, the model can be
described as

yk(x,w) = σ

 M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

 (2.13)

where with the term w all the weight and bias parameters are included. As
before, by defining a dummy input variable x0 = 1 we can absorb the biases
of the first layer to the sum, as

aj =
D∑
i=0

w
(1)
ji xi (2.14)

and then, subsequently, the second layer biases can also be combined, to
produce a more compact writing of the model

yk(x,w) = σ

 M∑
j=0

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xi

) . (2.15)

Figure 2.11[4] depicts the architecture of the example neural network, as
described by the equations 2.13 or 2.15.



CHAPTER 2. THEORETICAL BACKGROUND 32

Figure 2.11: Outline of a typical neural network with a singular hidden layer.

One important characteristic of this type of neural network is the fact
that the information flow is strictly directed, in that there are no closed
loops between the processing units, as shown by the green arrows in Figure
2.11.This type of network is therefore called a feed-forward neural network.

At this point in the Chapter, a convention regarding the number of layers
that a neural networks has, will be agreed upon. There is often confusion
in expressing the amount of layers; the network depicted in Figure 2.11, for
example, can be both described as having three layers, amounting to the
three distinct rows of processing units, counting the input one as well, but
also as having a singular one, counting only the hidden processing units.

From here on, the terminology that will be adhered to is the one that
describes the neural network of Figure 2.11 as a two-layered model; number
that occurred after counting the number of layers with adjustable weights.

In Figure 2.12 an example of the capabilities of a two-layered network
that has three different hidden processing units with the tanh activation
function, is presented. The model was given as a prediction target four
different functions: (a) f(x) = x2, (b) f(x) = sin(x), (c) f(x) = |x| and (d)
f(x) = H(x), where H(x) is the Heaviside step function. The input vector
consisted of 50 different data points in the (-1,1) interval, marked as blue
dots on the diagram, while the model prediction is marked with a continuous



CHAPTER 2. THEORETICAL BACKGROUND 33

red line. The three dashed lines represent the three hidden units, exhibiting
how the model output is produced by their sum.

Figure 2.12: Depiction of a two-layered neural network prediction, in four
different target functions:(a) f(x) = x2, (b) f(x) = sin(x), (c) f(x) = |x|
and (d) f(x) = H(x), where H(x) is the Heaviside step function.

2.2.3 Neural Network Training

The process of training for the neural network corresponds to the process
of adapting the network parameters. In order to calculate these weights, a
general error function is to be defined and subsequently minimized.

Given the input vector xn = {x1, ..., N}, complemented by their own
target values tn, we choose as the error function the sum of least squares
one, which is defined as

E(w) =
1

2

N∑
n=1

||y(xn, w)− tn||2. (2.16)

At this point, in order to provide a more general approach to the notion
of network training, it is fruitful to give a probabilistic view of the network
and its output.



CHAPTER 2. THEORETICAL BACKGROUND 34

Limiting the scope of this section to problems of regression, we consider a
single target variable t that has a Gaussian distribution with an x-dependent
mean, which is produced by the neural network, so that

p(t|x,w) = N (t|y(x,w), β−1) (2.17)

where β is the precision (inverse variance) of the Gaussian noise. For the
above conditional distribution, we can assume that the output unit activation
function of the neural network is the identity, constructing in this way a
network that can predict any continuous function.

Given that X = {x1, ..., xN} is a set of independent, identically dis-
tributed observations, and that tN = {t1, ...tN} is their target values, the
corresponding likelihood function can be calculated as

p(t|X,w, β) =
N∏

n=1

p(tn|xn, w, β). (2.18)

Subsequently, the error function can be produced by taking the negative
logarithm

β

2

N∑
n=1

{y(xn, w)− tn}2 −
N

2
lnβ +

N

2
ln(2π) (2.19)

which can be utilized in finding the w and β parameters in the following
manner:

First the error function E(w) is being produced, by discarding all the
additive and multiplicative constants

E(w) =
1

2

N∑
n=1

{y(xn, w)− tn}2. (2.20)

Then, the w parameters are being determined by minimizing the E(w)
function; since they correspond to the maximum likelihood solution they are
denoted as wML.

Finally, with the wML known, the β parameters are obtained through the
following equation

1

βML

=
1

N

N∑
n=1

{y(xn, wML)− tn}2. (2.21)

Regarding the output unit activation function, there is a natural pairing
between it and the error function. Specifically for regression problems, where
the identity function is taken as the output activation, the sum of squares
error function has the following property



CHAPTER 2. THEORETICAL BACKGROUND 35

∂E

∂ak
= yk − tk (2.22)

which will be utilized later in the Error Backpropagation paragraph.

Parameters Optimization

In order to obtain the best possible model parameters, the weights w have
to be selected so that the chosen error function E(w) is minimized.

This task is made easier to understand by depicting the error function as
a continuous surface above the 2D weight space, as shown in Figure 2.13.

Figure 2.13: Geometrical depiction of the error function above the weight
space.

By moving on the weight space by a value of δw, from w to w + δw, a
point on the error function will move from the E(w) to the E(w)+δE, where
δE ≃ δwT∇E(w), with the ∇E(w) being directed towards the greatest rate
of increase of the error function.

Since is the E(w) is a smooth continuous function of w, the point in which
it receives its minimum value is a point where the w eliminates the gradient
of the error function, meaning

∇E(w) = 0 (2.23)

as should its value be different than zero, then a point on the E(w) could
have been found where the error is smaller, by moving by ∇E(w). These



CHAPTER 2. THEORETICAL BACKGROUND 36

points where the above condition is satisfied are called stationary points, and
can be categorized in maxima,minima and saddle points.

Note that while the objective is to find the w where the error function
takes its smallest value, be it zero or otherwise a value adequately close to
zero, it is not important to find the global minimum of the function. There
are multiple points on the E(w) which have a value that is the smallest
compared to all the other points of the surrounding area, but do not have
the absolute smallest value of the entire error function. These points are
known as local minima and consist a potentially equally acceptable solution
to the minimization problem.

Since the analytical solution of the 2.23 equation has been proven to be
difficult and complex, iterative numerical processes are preferred. The most
common one dictates that an initial value w(0) of the weight vector is to
be arbitrarily chosen, and then the vector is to be updated in a number of
iterations following the rule

w(τ+1) = w(τ) +∆w(τ) (2.24)

where τ are the iteration steps and ∆w(τ) the weight update, a term that,
depending on the selected technique, takes different values.

A common choice is utilizing for the weight update the error gradient
∇E(w), evaluated at the new τ + 1 step. In a technique known as the
gradient descent optimization, the weight vector is updated each iteration by

w(τ+1) = w(τ) − η∇E(w(τ)) (2.25)

where the η > 0 parameter is known as the learning rate. When the entire
dataset is used to calculate the ∇E(w) term at each step, then this method
is known as the batch method. Conversely, if the ∇E(w) term is calculated
and the weights are updated by using smaller batches of the dataset, then
the method is called mini-batch; should the batch size be one, meaning that
the updates happen after every point of the set, then the technique is known
as stochastic gradient descent. In this way, the weight vector is updated by
the rule

w(τ+1) = w(τ) − η∇En(w
(τ)) (2.26)

where the En(w) error terms are segments of the error function calculated
for each data point, as shown in equation 2.27

E(w) =
N∑

n=1

En(w). (2.27)

A different, more complex approach comes in the form of the Adam op-
timization technique [61], whose name derives form the initials of adaptive



CHAPTER 2. THEORETICAL BACKGROUND 37

moment estimation. Following this method, the weights are adapted through
the first and second moment of the gradient of the error function E(w).

Given an initial value for the first and second moment of the gradient,m(0)
w

and v(0)w respectively, the two moments are calculated at each step with the
formulae

m(τ+1)
w = β1m

(τ)
w + (1− β1)∇wE

(τ) (2.28)

v(τ+1)
w = β2v

(τ)
w + (1− β2)(∇wE

(τ))2 (2.29)

where the β1 and β2 parameters are called the exponential decay rates of the
first and second moment respectively. They receive values in the [0, 1) range,
typically close to 1.

Afterwards, the two bias-corrected moments are calculated

m̂w
(τ+1) =

m(τ+1)
w

1− βτ
1

(2.30)

and

v̂w
(τ+1) =

v(τ+1)
w

1− βτ
2

. (2.31)

Finally, the weight vector is updated through the equation 2.32

w(τ+1) = w(τ) − η
m̂w

(τ+1)√
v̂w

(τ+1) + ϵ
. (2.32)

where η is once again the learning rate parameter and ϵ a really small scalar,
typically having a magnitude of 10−8, that helps avoid division by zero prob-
lems.

Error Backpropagation

As shown in the previous paragraph, while trying to optimize the weights of a
network, the need to evaluate the gradient of the error function E(w) arises.
This is achieved through the utilization of a local message passing scheme,
where information is alternately passed forwards and backwards through the
network, called error backpropagation.

Specifically in the context of neural networks, the term error backprop-
agation is used to describe the evaluation of the error function derivatives,
before they are used to optimize the weights. The reasoning behind this



CHAPTER 2. THEORETICAL BACKGROUND 38

naming convention is the fact that, at this specific point of the iterative pro-
cess of network training, the derivatives are transmitted backwards in the
network in order to compute the updated model parameters.

Equation 2.27 shows that the type of error function that is currently
discussed in this section can be described as a sum of partial error terms,
calculated for each data point. In the following paragraphs, the derivative
of one of these terms, ∇En(w) will be analysed, first in a linear model and
secondly in a feed forward network.

In an example of a simple linear model, whose output yk is given by

yk =
∑
i

wkixi (2.33)

and whose error function, computed for an n point in the input dataset, is
the following one

En =
1

2

∑
k

(ynk − tnk)
2, (2.34)

where ynk = yk(xn, w), the error function gradient with respect to the weight
parameters is calculated as

∂En

∂wji

= (ynj − tnj)xni. (2.35)

Thus, each partial gradient can be described as a product of an input stimuli
term, xni, and an error signal term, ynj − tnj, which is related to the output,
wji.

Next, a neural network exampled will be discussed; the network will be
considered as a feed forward type, with arbitrary differentiable non-linear
activation functions and a generic error function.

The activation of a j unit is given by

zj = h(aj) (2.36)

where h(·) is a non-linear activation function and the aj term is the weighted
sum of the previous i unit, as in

aj =
∑
i

wjizi (2.37)

Before the calculation of the error terms that will be propagated backwards
in the network takes place, it is assumed that the input information has
already passed forward through the entire network and the activations of all



CHAPTER 2. THEORETICAL BACKGROUND 39

the units, hidden and output ones, are calculated via the equations 2.36 and
2.37. This process is known as forward propagation.

Once again, the partial gradient of the error function, with respect to
the weight parameters, is calculated, by applying the chain rule. Since the
computation is regarding an n input point, every variable in the equation
should include an appropriate subscript, but is omitted for reading clarity.

∂En

∂wji

=
∂En

∂aj

∂aj
∂wji

. (2.38)

From 2.37 we get

∂aj
∂wji

= zi (2.39)

and by introducing the δ’s parameters, terms known simply as errors, which
are defined by

δj ≡
∂En

∂aj
, (2.40)

the 2.38 equation can be compactly written as

∂En

∂wji

= δjzi (2.41)

an equation that bears resemblance to the one of the linear model example,
equation 2.35.

Thus, in order to obtain the error function derivatives, the δ parame-
ters, for the hidden and output units, are to be calculated and then used in
equation 2.41.

For the output units, as discussed in a previous paragraph, as per equation
2.22, the δk are given by

δk ≡
∂E

∂ak
= yk − tk (2.42)

while for the hidden units, the δj parameters are calculated using the chain
rule

δj ≡
∂En

∂aj
=
∑
k

∂En

∂ak

∂ak
∂aj

. (2.43)

Finally, by applying the definition of δ from equation 2.40 into 2.43 we
get a general backpropagation algorithm

δj = h′(aj)
∑

wkjδk (2.44)



CHAPTER 2. THEORETICAL BACKGROUND 40

The above equation shows that the δ values of a j hidden unit can be obtain
by propagating backwards the δ values of k units further up the network.

A graphical depiction of this process is shown in Figure 2.14; with a
blue arrow the forward propagation of information through the network is
illustrated, while the red arrows represent the backpropagation of the error
information.

Figure 2.14: Depiction of the input and error information flow in a network.



CHAPTER 2. THEORETICAL BACKGROUND 41

2.3 Four-Stroke Diesel Engine Operating Pa-

rameters

The engine that the neural network models have been fitted on belongs to
the category of internal combustion engines. The general purpose of such
engines is the production of mechanical power through the chemical reaction
of oxidization, or simply put, burning of fuel, a process that releases and
utilizes its contained chemical energy. In internal combustion engines, this
reaction takes place in specially built chambers inside the machine; this sets
them apart from their external combustion counterpart, as in the case of the
latter, the combustion happens from an outside factor.

Regarding the way the combustion process is initialized in the chamber,
there are two categories of engines: Spark Ignition (SI) engines, also known
as Otto engines, and Compression Ignition (CI) engines, also known as Diesel
engines. In the first type, the fuel is mixed with the air before the insertion to
the combustion chamber and the following burning of the mixture starts with
the introduction of a spark. In the second type, the one that corresponds to
the engine type of this thesis, air is inducted first in the combustion cham-
ber and compressed, with the fuel being injected before the desired ignition
point. Then, due to the significant increase in pressure and temperature in
the chamber, the mixtures reaches the combustion point and auto-ignition
occurs.

Finally, when referring to the operation cycles, two distinct groups exist:
the two-stroke (2X) engines, which produce one power stroke for every revo-
lution of the crankshaft, or two strokes of the piston, and the four-stroke (4X)
engines, that produce one power stroke for every four piston strokes. The
engine that is being modelled belongs to the latter subcategory of four-stroke
engines; their four-part operating cycle is presented in Figure 2.15 [3].



CHAPTER 2. THEORETICAL BACKGROUND 42

Figure 2.15: Depiction of the four-stroke operating cycle.

2.3.1 Brake-specific Fuel Consumption - BSFC

For an engine to produce work, a sufficient quantity of fuel needs to be
provided and subsequently burned inside the cylinder. Since the generated
power comes from the released chemical energy of the fuel matter, it can be
generally implied that an increase to the fuel corresponds to an increase in
the produced work.

A useful measurement of the fuel consumption in regards to the produced
engine power is the Brake-specific Fuel Consumption, defined as

bsfc =
ṁf

P
(2.45)

where ṁf is the fuel mass flow rate per unit time, usually measured in gr/sec
or gr/h, and P the engine power output.

Since this parameter is not dependant on the size of the engine, but rather
takes into consideration only their power production, its regarded as a good
assessment of the engine efficiency and can be used to compare different ones
directly. Between two bsfc values, the smaller one is the optimal, as for the
same amount of fuel consumed, higher levels of work are outputted by the
machine.



CHAPTER 2. THEORETICAL BACKGROUND 43

2.3.2 Air-fuel Equivalence Ratio - Lambda (λ)

In order for an internal combustion engine to initiate the power production
cycles, an appropriate mixture of air and fuel is required to be introduced in
the combustion chamber. The ratio between the two is an important charac-
teristic of the engine operation, as it controls the completeness of combustion
process, and consequently the amount of energy produced, as well as the type
and quantity of the created pollutants, like COx and NOx. This parameter
is known as the Air-fuel ratio, or AFR, and is defined as

AFR =
ma

mf

(2.46)

wherema is the air mass andmf the fuel mass. A different, less used approach
to this parameter, is the Fuel-air ratio, or FAR, defined as the inverse of the
AFR parameter

FAR =
mf

ma

=
1

AFR
(2.47)

If the provided mass of air is exactly enough for a complete combustion of the
entire mass of fuel, then this ratio is called stoichiometric. If the fuel mass
is more than the required for a 1-1 combustion with the air mass, then the
mixture is characterized as rich; on the other hand, if the mixture contains
a greater amount of air that fuel, then it is known as lean.

In practise, most engines run on a different that the stoichiometric air-
fuel analogy. The ratio between the actual mass of air and the ideal for a
complete combustion mass of air is known as the Air-fuel Equivalence Ratio,
or Lambda (λ). Using the above definition of the AFR, the λ is formally
defined as

λ =
AFRactual

AFRstoich

. (2.48)

Consequently, for λ = 1 the combustion is stoichiometric, while for λ < 1
and λ > 1 the mixture is considered rich and lean respectively.

Given their combustion method, all compression ignition engines operate
on lean mixture; meaning that the λ parameter is always greater than 1.



CHAPTER 2. THEORETICAL BACKGROUND 44

2.4 Programming Tools

The programming language through which the construction, training and
testing of the neural networks took place was Julia[62], a high-level, dynamic
language. It combines several strengths of other existing programming tools,
namely the speed of C/C++, the accessibility and readability of Python,
the mathematical prowess of Matlab and the dymamism of Ruby, among
others[63][64][65]. It is generally regarded as a powerful tool for numerical
computing and analysis, thus it lends itself well for machine learning pur-
poses. The development started in 2009, with the first public announcement
taking place in 2012 through a blog post of the developers[63]; nevertheless
the first official 1.0.0 build was released in 2018.

The main package used in the premises of this thesis was Flux [66], a
machine learning library that had built-in tools and specialized functions,
which streamlined significantly the process of neural network building and
training. Other packages included the CUDA package[67], which allowed
GPU utilization for quicker processing time, the BSON package[68], for sav-
ing and loading the trained models and the CSV package for working with
delimited files.



Chapter 3

Model Design

In this chapter, firstly a description of the utilized data on which the models
of this thesis were trained, is presented. In total two different sets of data were
collected, corresponding to two different engines and operations parameters:
Dataset A and Dataset B. Dataset A was a small in size set, consisting of
900 data points; in contrast, Dataset B was vastly bigger in comparison,
comprising of roughly 25000 data points.

Afterwards, due to the fact that two different datasets were available, two
sets of models were constructed and trained: Model Set A and Model Set B.

The first group, Model Set A, was trained on the Dataset A. The small
quantity of data points that were used as train input meant that the training
stage required less time, therefore a substantial number of model hyperpa-
rameters combination could be tested.

The second set of models, Model Set B, was to be trained with data
from the vastly bigger Dataset B. Having taken into consideration the size of
training set, a few, specific model hyperparameters were chosen to be utilized
in the model building, reducing the training time considerably. The selection
of the hyperparameters was based on the evaluation of the Model Set A; any
combination of model parameters that produced poor results was discarded.

45



CHAPTER 3. MODEL DESIGN 46

3.1 Data Overview

A total of two distinct datasets were compiled for the purpose of this thesis.
The sets corresponded to two different engines operated at various states in
order to ensure that a broad input vector was collected.

3.1.1 First Set of Data - Dataset A

The first training dataset, Dataset A, was collected from a 13 litres 6-cylinder
heavy duty diesel engine[69][70], whose schematic is depicted in Figure 3.1[69].

The engine is equipped with an electrically actuated Exhaust Gas Re-
circulation (EGR) valve, that introduces through the intake manifold in the
combustion chambers part of the exhaust gases. The purpose of such systems
is to decrease the NOx emissions by lowering the in-cylinder temperature and
by diluting the combustible mixture with inert gases. For this system to di-
vert and recirculate the appropriate amount of exhaust gases, adequate back
pressure is required.

The use of EGR systems, however, contrasts the requirements for engine
operation without the production of visible smoke. The introduction of inert,
burned gas inside the cylinder leads to a lowered AFR parameter, while the
diversion of a fraction of the exhaust gas away from the turbine results in
decreased turbine power, which in turn further restricts the intake of fresh
air[71].

To amend this issue, an asymmetric twin-scroll architecture has been im-
plemented to the turbine. The exhaust manifold is not uniform, but instead
it separates the exhaust flow in two, diverting the gases from three of the
cylinders in the small turbine scroll, while the rest of the flow is being lead to
the large scroll turbine. The small scroll provides the high pressure needed
for the EGR system to operate optimally and feeds through a cooler the
gases into the intake manifold. The large scroll, on the other hand, has lower
pressure and therefore tasked with helping the engine meet the AFR require-
ments. The end result of such a construction is lessened fuel consumption.

The engine also comes with a built-in pneumatically actuated wastegate
valve that bypasses the large scroll, leading to over-boosting avoidance and
pumping loss reduction.



CHAPTER 3. MODEL DESIGN 47

Figure 3.1: The schematic of the engine of Dataset A.

This engine was operated in 9 different steady states, covering 3 speed
configurations, specifically 750, 1100 and 1400 RPM and a torque range of
roughly 300 to 1600 Nm. The parameters of these states are presented in
Table 3.1 bellow, as well in Figures 3.2 to 3.5. These parameters, namely
Speed in RPM, Torque in Nm, Lambda and BSFC in gr/kWh were the input
data for the training and testing phases of the neural networks.

Steady States Parameters

Index Speed [RPM] Torque [Nm] Lambda BSFC [gr/kWh]

1 750 1289.6 1.37 192.81

2 750 815.4 1.76 191.75

3 750 343.6 3.12 207.18

4 1100 314.2 2.88 223.88

5 1100 1008.2 1.53 187.57

6 1100 1708 1.35 186.04

7 1400 1651.1 1.47 187.44

8 1400 1093.1 1.66 190.76

9 1400 341.9 2.45 232.93

Table 3.1: Parameters of the 9 Steady States



CHAPTER 3. MODEL DESIGN 48

Figure 3.2: Torque-Speed diagram of the 9 operating states of Dataset A.

Figure 3.3: Engine Power-Speed diagram of the 9 operating states of Dataset
A.



CHAPTER 3. MODEL DESIGN 49

Figure 3.4: Lambda-Speed diagram of the 9 operating states of Dataset A.

Figure 3.5: BSFC-Speed diagram of the 9 operating states of Dataset A.

For each state, in-cylinder pressure data was collected every 0.1 crankshaft
deg, with the tests lasting two full rotations of the crankshaft, or one oper-
ating cycle, taking into consideration the type of the engine. The tests were
repeated a total of 100 times for every operating state.

Out of all the available pressure measurements, the ones that corre-
sponded to the peak cylinder pressure were singled-out and collated; thus



CHAPTER 3. MODEL DESIGN 50

the final dataset comprised of the 100 maximum pressure values of each of
the 9 states, adding up to a total of 900 points.

These data points are depicted in Figure 3.6 for each engine cycle, and
in Figures 3.7 & 3.8 with regards to the engine speed and power.

Figure 3.6: Peak Pressure measurements per engine cycles, for Dataset A.

Figure 3.7: Peak Pressure-Speed diagram of Dataset A.



CHAPTER 3. MODEL DESIGN 51

Figure 3.8: Peak Pressure-Engine Power diagram of Dataset A.

3.1.2 Second Set of Data - Dataset B

The second set of training data, Dataset B, consisted of measurements taken
from the MAN© 5L16/24 diesel generator [72] of the Laboratory of Marine
Engineering, whose main characteristics are presented in Table 3.2.

The engine is coupled with an AEG electric dynamometer via a shaft and
an elastic coupling, resembling as a result a ship’s propulsion power train. It
operates at a maximum of 500 kW and 1200 RPM. One important attribute
of this engine is its ability to use as fuel both Heavy Fuel Oil (HFO) as well
as Marine Diesel Oil (MDO)[73].

The engine is showcased in Figure 3.9[74].



CHAPTER 3. MODEL DESIGN 52

Figure 3.9: A picture of the engine of Dataset B.



CHAPTER 3. MODEL DESIGN 53

Engine Specifications

Bore [mm] 160

Stroke [mm] 240

Cycle Four-stroke

Cylinders 5

Speed [RPM] 1200

Power [kW] 500

Compr. Ratio 16.2:1

Dry Mass [t] 9.5

Configuration In-line

Aspiration Turbocharged

Table 3.2: Engine Specifications

The available data from the test runs of this engine were considerably
more numerous comparatively to Dataset A. In total, 25320 operating cycles
were carried out and data was recorded every 1 deg of crankshaft angle. The
input parameters for the models that were extracted from these measure-
ments were Speed in RPM, Torque in Nm and Lambda, and are presented
in the following figures 3.10 to 3.12.

Figure 3.10: Torque-Speed diagram of the operating states of Dataset B.



CHAPTER 3. MODEL DESIGN 54

Figure 3.11: Engine Power-Speed diagram of the operating states of Dataset
B.

Figure 3.12: Lambda-Speed diagram of the operating states of Dataset B.

Once again, since the focus of the models were the prediction of the peak
cylinder pressure, the maximum pressure values of each cycle were selected
and concatenated into a singular dataset with 25320 data points. Figure 3.13
presents the peak pressure measurements for each engine cycle, while 3.14



CHAPTER 3. MODEL DESIGN 55

and 3.15 depicts the pressure data in conjunction with the various engine
speed configurations and power profiles.

Figure 3.13: Peak Pressure measurements per engine cycles, for Dataset B.

Figure 3.14: Peak Pressure-Speed diagram of Dataset B.



CHAPTER 3. MODEL DESIGN 56

Figure 3.15: Peak Pressure-Engine Power diagram of Dataset B.

3.1.3 Datasets Comparison

The following figures 3.16 and 3.17 present both Dataset A and B in the same
plot, for easier comparison and better understanding of their differences.

Figure 3.16: Peak Pressure-Engine Power diagram of both Dataset A and
Dataset B.



CHAPTER 3. MODEL DESIGN 57

Figure 3.17: Peak Pressure-Lambda diagram of both Dataset A and Dataset
B.

As is plainly depicted, the two sets of data contrast each other not only
in their length, with Dataset B being roughly 30 times the size of A, but
also in their parameters range. Set A lies in a much narrower area, for both
Engine Power and Lambda, with little variation to its data points; on the
other hand, Set B spans for the most part a different parameter range, while
at the same time providing a much more expansive spectrum of data points.



CHAPTER 3. MODEL DESIGN 58

3.2 Input Parameters

As mentioned in Section 3.1, Dataset A provided information regarding the
Speed, Torque, Lambda and Specific Fuel Consumption of the various engine
operating cycles, while Dataset B included data only for Speed, Torque and
Lambda. All these parameters were used for the training of the respective
model sets, however a few combinations were tried in order to investigate
whether better results are produced with specific input pairs.

For Dataset A, four different input scenarios were tested: using only
Speed and Torque as input, using Speed, Torque and Lambda, using Speed,
Torque and BSFC and finally using all of them in conjunction, Speed, Torque,
Lambda and BSFC.

For Dataset B, two combinations were tried: one with Speed and Torque
and one with Speed, Torque and Lambda.



CHAPTER 3. MODEL DESIGN 59

3.3 Data Preparation

Before the training sets could be utilized by the neural networks, they needed
to undertake some initial pre-processing.

Firstly, the data points were split into two distinct groups: one used for
the actual training purposes and the other one for testing the accuracy of
the models afterwards. The train group consisted of 70% of the total points,
while the rest 30% was used for testing. The train/test data points were
randomly allocated to their respective sets, but the groups themselves were
kept unchanged between the different models, in order to ensure that the
exact same conditions were implemented during the training of the networks.

Figure 3.18: The training and testing groups.

Afterwards, the train set was normalized via the formula

x̂i =
xi −max(xi)

max(xi)−min(xi)
(3.1)

where xi is an i point if the dataset, x̂i is the normalized point and max(xi),
min(xi) are the maximum and minimum values of the set respectively. By
this type of normalization, the entire information range is converted into a
[0, 1] range.

The reasoning behind the normalization of the data stems from the fact
that the process of network training has been proven to be enhanced when
the data is confined in a relatively smaller range. Namely, the calculated
model error is significantly reduced, while at the same time the duration of
the training phase is also reduced by a non-neglectable amount[75].

This process took place for every column of the input set, including the
target values used for the error estimation, with every type of input having,
naturally, different maximum and minimum values. These normalization
parameters were saved even after the conclusion of the network training,
since they consist a defining characteristic of the models; if the models were
to be utilized to acquire further results with an unknown input vector, or
during the testing phase, any information fed to them would have to be
normalized by these same parameters. If, instead, different maximum and
minimum values were arbitrarily chosen, perhaps based on the range of data
that was to be processed by the networks, then the risk of incorrect use of



CHAPTER 3. MODEL DESIGN 60

the models would arise, as different input condition would be implemented.
Note that a normalized ”0” input, based on specific maximum and minimum
parameters, would not be equal to a ”0” input procured by using different
normalization parameters.



CHAPTER 3. MODEL DESIGN 61

3.4 Model Hyperparameters

As presented in the previous Chapter, a number of distinct neural network
architectures have been designed, each bearing its own merits and used for
tackling different tasks.

Both the number of hidden layers and the number of neurons per layer are
variables that factor in the successful training of a model. Too few neurons
or layers hinder the process of learning and disallow a network to correctly
adapt to the training data; conversely too many neurons or layers may cause
the known issue of overfitting[4], leading to bad generalization of the model
to a new, unknown input vector. The general consensus is that complex
problems with vast training sets tend to require a large amount of neurons
with many layers to efficiently fit the data, and vice versa.

Moreover, several different other hyperparameters, example being the ac-
tivation function, the optimization algorithm, the learning rate and so forth,
influence the end result of a neural network. Once again, the optimal choice
is not definite, rather it depends on the type of problem and the size and
complexity of the input dataset.

For obtaining the best performing model, a number of varying neural
networks with numerous combinations of model parameters were constructed,
tested and evaluated. The exact types of hyperparameters that were tested
are detailed in the following sections.

3.4.1 Number of Hidden Layers

For the problem that this thesis aims to tackle, it is generally expected that
a small number of hidden layers should suffice, since it can be considered as
being relatively simple. However, for completeness of the parameter investi-
gation, models with higher-level structures were implemented.

Thus, three different sets of architectures were tested for both Model Set
A and Set B: one with three, one with four and one with five hidden layers.
As a result, according to the definition given in Chapter 2, the networks that
were being trained can be considered as Deep Neural Networks.

As a note, the layers that were used in all models were of the Dense type,
meaning that every neuron in a layer is linked through weighted connections
to every neuron in the proceeding and preceding layer[76].

3.4.2 Number of Neurons per Layer

Similarly to the number of hidden layers, due to the nature of the prediction
task, a small number of neurons were expected to be needed to accurately fit



CHAPTER 3. MODEL DESIGN 62

the training subset of Dataset A. Nevertheless, in order to verify the degree of
model adaptation and to confirm that overfitting has been avoided, varying
numbers of neurons were tested.

Considering a model with three hidden layers, the chosen number of hid-
den neurons were 15-18-17. For every extra hidden layer, the chosen number
of neurons were 17. Hence, for four hidden layers the neurons sequence was
15-18-17-17, and for five 15-18-17-17-17. Two more variations to the number
of neurons were tested; in one version the number was tripled, while in the
second one it was increased tenfold.

Summarizing, the three different architectures in regards to the amount
of neurons that were created once again for both model Set A and B are the
following:

� Four Layered Network

Hidden neurons: 15-18-17, 45-54-51, 150-180-170

� Five Layered Network :

Hidden neurons 15-18-17-17, 45-54-51-51, 150-180-170-170

� Six Layered Network :

Hidden neurons 15-18-17-17-17, 45-54-51-51-51, 150-180-170-170-170

3.4.3 Activation Functions

The activation function, as discussed in greater detail in Chapter 2, is a
method that is tasked with receiving the information as passed from a previ-
ous layer, transform it according to its rule, and then direct it into the next
layer. A common choice of activation functions are non-linear ones; linear
activations are sometimes used as well, but they greatly hinder the learning
abilities of models, especially when faced with highly non-linear data, so their
use is limited.

Three different, non-linear activation functions were tested for the neural
networks of Set A: sigmoid, tanh and leakyReLU activation function. For
Model Set B only leakyReLU was used.

� Sigmoid activation function, as given by the formula:

σ(x) =
1

1 + e−x
. (3.2)

The sigmoid function, also known as logistic function, takes any value
from (-∞, ∞) and returns them in the (0, 1) range, so as a result, it is



CHAPTER 3. MODEL DESIGN 63

especially utilized in problems that have probabilities as an outcome.
Large positive values are returned as 1, while large negative values are
returned as 0. Its main advantage lies in that it is continuous and
differentiable everywhere; however, its derivative produces very small
gradients, as a result hindering significantly the training process. This
issue is known as the vanishing gradient problem[77].

The sigmoid function is depicted in Figure 3.19[78].

Figure 3.19: Depiction of the sigmoid activation function.

� Tanh activation function, as given by the formula:

tanh(x) =
ex − e−x

ex + e−x
. (3.3)

The hyperbolic tangent, or tanh, function can be considered as being
very similar to the sigmoid one; they are both S-shaped, bounded,
continuous and differentiable functions. Its chief difference, however, is
its boundaries. In contrast to the sigmoid function, that exists in the
(0, 1) range, the tanh function is zero-centred, and spans the (−1, 1)
range. This symmetry is generally regarded to help the algorithm learn
faster[79]. Of course, the problem of vanishing gradient is also present
in this case, albeit to a slightly lesser degree.

The tanh function is depicted in Figure 3.20[80].



CHAPTER 3. MODEL DESIGN 64

Figure 3.20: Depiction of the hyperbolic tangent function.

While both the hyperbolic tangent and the sigmoid function have been
deemed as mediocre choices for activations, due to their tendency of
highly positive or negative values saturation and their weak derivative,
the former is generally preferred, if a choice were to be made between
the two[81].

� ReLU /LeakyReLU activation function.

The Rectifier Linear Unit, or ReLU, activation function is a two-branched
function, given by the following equation:

relu(x) =

{
0 x < 0
x x ≥ 0

, (3.4)

which can also be compactly written as:

relu(x) = max(0, x). (3.5)

The above equation entails that negative values ar returned as 0, while
positive ones are returned as-is. This attribute grants the ReLU func-
tion the property of being a non-linear function, while also retaining
the ”useful” qualities of a linear function. It is computationally easier
to implement than the sigmoidal ones, at the same time succeeding in
mitigating to a satisfactory degree the vanishing gradient and satura-
tion issues.

The ReLU function is depicted in Figure 3.21[82] bellow.



CHAPTER 3. MODEL DESIGN 65

Figure 3.21: Depiction of the Rectifier Linear Unit function.

Naturally, issues that come with the use of this particular activation
function do exist; namely, the fact that it is not differentiable at 0 and
it not being zero centred. A notable one is the Dying ReLU problem:
the optimization algorithm doesn’t update the weights of those units
that have a 0 gradient, thus any initially not activated neuron will often
remain inactive for the entire course of training. Since there isn’t any
way for the unit to recover from the inactivity, this effectively leads to
a ”neuron necrosis”.

One way to overcome the Dying ReLU issue is through variations to the
original function algorithm. Such a variation takes the form of a two-
branched function that doesn’t return the negative values to zero, but
instead returns them multiplied by a relatively small variable; this type
of ReLU is called LeakyReLU, as it allows some negative information
to ”leak” through to the function output. Its formula is presented in
Equation 3.6

leakyrelu(x) =

{
αx x < 0
x x ≥ 0

, (3.6)

where the α variable is any small, positive number. A common choice
is α = 0.01.

The LeakyReLU function, with α = 0.02, is presented in figure 3.22[83].



CHAPTER 3. MODEL DESIGN 66

Figure 3.22: Depiction of the Leaky Rectifier Linear Unit function.

During the training stage, most of the designed models that used
ReLU as their activation functions produced zero-value outputs, re-
sults that indicated the existence of the dying ReLU problem. Con-
sequently, all the networks that were used and evaluated incorporated
the LeakyReLU counterpart of the function, with the α variable being
equal to 0.01.

3.4.4 Optimization Algorithms

The chosen optimization technique’s task is to update the model’s weight,
according to the training data provided, in order to minimize the deviation
between the model output and the desired target value. This is achieved
by backpropagating the error information through the model, usually in the
form of the gradient of the chosen error function, by following a specific rule.
This update rule is dependant on the particular selected algorithm.

For the constructed models of Set A, two different algorithms were tested:
Gradient Descent and ADAM. For Model Set B, however, only the ADAM
optimizer was used.

� Gradient Descent, which is the simplest form of optimization. The
weight update rule, as given by the Equation 2.26, takes the form of

w(τ+1) = w(τ) − η∇En(w
(τ)), (3.7)

where w are the weight coefficients, τ is the step of the iterative process,
η is the learning rate parameter and ∇En(w) the gradient of the error
function, calculated in an n-batch of the dataset.



CHAPTER 3. MODEL DESIGN 67

� ADAM Optimizer, a more complex optimization method that utilizes
the first and second moment of the gradient of the error. The weight
update, given by the Equation 2.32, is the

w(τ+1) = w(τ) − η
m̂w

(τ+1)√
v̂w

(τ+1) + ϵ
, (3.8)

where η is once again the learning rate parameter and ϵ a small scalar.
The m̂w and v̂w parameters are factors that introduce the first and
second moment of the ∇E to the update rule respectively, given by
Equations 2.30 and 2.31.

Both of the aforementioned techniques are presented in greater detail in
Chapter 2, in Section 2.2.3.

3.4.5 Error Function

The error, or loss, function is the function through which the model accuracy
is evaluated and by whose gradient the optimization, and consequent weight
coefficients update, takes place. The choice of an appropriate function is
deeply influenced by the nature of the task and the used activation function;
for categorization problems the cross-entropy error function is used, while
for regression tasks the mean squared error function is employed.

Consequently, for all the trained models. the mean squared error function
was the chosen loss function, as given by the following equation

MSE =
1

N

N∑
i

(ŷi − yi)
2 (3.9)

where N is the total number of points, ŷi is the predicted output and yi the
desired outcome, both values referring to the training dataset.

3.4.6 Learning Rate

The success of the chosen optimization algorithm is highly affected by the
learning rate, η. This parameter controls the size of the step that is taken
every iteration, towards the loss function minimization. Too big of a step,
and the algorithm transitions to new values sharply, causing it to converge
to suboptimal solutions or completely diverge altogether. Conversely, if the
learning rate is not sufficiently large, the number of steps needed for conver-
gence is drastically increased, slowing down the training process significantly.



CHAPTER 3. MODEL DESIGN 68

The optimal size of the η is usually model and optimizer dependant; it is
sometimes chosen through a trial-and-error approach [81].

The model convergence with regards to the choice of the learning rate is
presented in Figure 3.23[84]. Three different cases are illustrated: one with
too large η, one with too small η and one with an optimal η parameter.

Figure 3.23: Depiction of the effect of the learning rate parameter on the
model training, in three different scenarios.

For the premises of this thesis, three different learning rate values were
tested during the training of Set A models: η = 0.1, η = 0.01 and η = 0.001.
The last, smallest value of η = 0.001 was chosen for the Set B models.

3.4.7 Batch size and Epochs

Batch size refers to the number of elements that comprise the fragmented
parts of the initial dataset. As mentioned before, the optimization techniques
update the model weights after evaluating a portion of the dataset. If the
size of the portion is equal to the size of the dataset, then the entire set is
processed before updating the coefficients, while should the size be equal to
1, then the weights are updated after the evaluation of the error function
on each element of the set. It has been proven that using the entire set
during each step of the optimization yields worse results than using smaller
batches of data [4]. Consequently, it could be surmised that the smallest
sized batches produce the best result, albeit taking longer time to train; this
line of thinking can be considered true in some cases, however the optimal
batch size is yet again deeply case specific.

In any case, a total of eight different batch sizes were studied: 1, 2, 4, 8,
16, 32, 64 and 128, with only the values of 8 to 128 being used in Set B.

Epochs are the total rounds of weight updates that the optimizer iter-
ates over, in order to reach the loss function minimization point. Broadly
speaking, larger learning rates require fewer iterations, thus smaller epoch



CHAPTER 3. MODEL DESIGN 69

values, to reach the convergence, while on the other hand, smaller learning
rates need a greater amount of training cycles to reach the error function
minimum. Having said that, incorrect selection of the number of epochs can
be a detriment to the model. If the epochs are lacking, then the weights are
not updated sufficiently and the network finishes the training stage without
actually learning from the input data. Similarly, if the number is too steep,
then the danger of overfitting the training data is further exasperated.

All the models were trained in three different epochs scenarios: with 100,
500 and 1000 epochs.

3.4.8 Model Accuracy Metrics

In order to assess the effectiveness of the trained models, via utilization of
the test dataset, the deviation between the predicted output and the actual
value had to be calculated.

To this end, three different metrics were implemented:

� Mean Absolute Error, or MAE, as given by the formula

MAE =
1

N

N∑
i

|ŷi − yi| (3.10)

where N is the total number of points, ŷi the estimated by the model
output and yi the actual value. The MAE formula takes the average
of all the differences between the two values, therefore it comes with
its own unit of measurement, that being equal to the one the predicted
values have.

� Mean Absolute Percentage Error, or MAPE, as given by the formula

MAPE =
1

N

N∑
i

|ŷi − yi|
yi

(3.11)

where the parameters are similarly defined as the ones in the MAE
Equation 3.10 above. Since the the MAPE formula deals not with the
absolute differences between the estimated and desired outcome, but
with the relative to the actual value percentile deviation, it produces
easier to evaluate results; a 0.2 MAPE, for example, indicates a 20%
divergence of the network output with regards to the real value. Its
chief disadvantage, however, is the fact that it cannot be used for data
that includes a zero-value target value, as division with zero issues arise.
As a result, the MAPEmetric is unusable when dealing with normalized
data, making the utilization of the MAE or a similar metric a necessity.



CHAPTER 3. MODEL DESIGN 70

� R-Squared, or R2, as given by the formula

R2 =

∑N
i (ŷi − yi)

2∑N
i (yi − ȳi)2

(3.12)

where once again the parameters N , ŷi and yi are defined as in the
MAPE and MAE description, and ȳi is the average value of yi. The
R-squared, also known as coefficient of determination, is a form of
measurement of how well a mathematical model fits a set of data. It
takes values in the [0,1] range; the closer the coefficient lies to 1, the
more accurate the fitting of the model is, and vice-versa.

3.4.9 Model Nomenclature

Due to the seer size of the different model hyperparameters combinations
that were explored in this thesis, a proper naming convention had to be
established during the network training and saving process. Thus, it was
decided that the parameters that defined each model were to be reflected in
its file name.

Figure 3.24 presents an example name of a trained network, and Figure
3.25 bellow explains the content of each coded parameter.

Figure 3.24: Example of a trained model name.

Figure 3.25: Analysis of the above model name.



Chapter 4

Results and Discussion

In this chapter, the evaluation of the trained models takes place. The test
subset of the two datasets, consisting of 30% of the total points that were not
applied for the training process, was used to produce predictions of the peak
cylinder pressure. Out of the entire spectrum of models, only the best one
for each set of inputs are being presented; in total four different ones for the
Dataset A and two for Dataset B. After the showcase of the best performing
networks, a brief summary of the observations regarding the effect of the
various model hyperparameters on the outcome takes place.

71



CHAPTER 4. RESULTS AND DISCUSSION 72

4.1 Model Set A

In this model set, as Section 3.2 explained, four combinations of inputs were
employed: models that used Speed and Torque (ST) as input, models that
used Speed, Torque and Lambda (STL), models that used Speed, Torque
and BSFC (STB) and finally models that used all of them in conjunction,
Speed, Torque, Lambda and BSFC (STLB).

The best model of each input group is presented in Table 4.1, while the
following section gives more details on them.

Model Name Inputs Accuracy

Act leakyrelu-Lr0.001-Opt Descent-H.Layers 5-
ST 99.31%

Neurons 150 180 170 170 170-VarST-Ep500-Btch4

Act leakyrelu-Lr0.001-Opt Descent-H.Layers 4-
STL 99.32%

Neurons 15 18 17 17-VarSTL-Ep500-Btch2

Act leakyrelu-Lr0.001-Opt Descent-H.Layers 3-
STB 99.25%

Neurons 15 18 17-VarSTB-Ep1000-Btch4

Act leakyrelu-Lr0.001-Opt Descent-H.Layers 3-
STLB 99.29%

Neurons 45 54 51-VarSTLB-Ep500-Btch1

Table 4.1: Comparison of the best models for each combination of input
variables - Set A

4.1.1 Best performing networks, per Set of Inputs

Speed-Torque (ST) Models

For networks that used the Speed-Torque vector as training input, error of
less than 1 bar was achieved, as shown in 4.3, amounting to an accuracy of
99.31%. The hyperparameters of this model are presented in Table 4.2.



CHAPTER 4. RESULTS AND DISCUSSION 73

Figure 4.1: The zero-error-line diagram of the best performing model of Set
A, with Speed-Torque as input.

Model Parameters

Hidden Layers 5

Number of Neurons 150 180 170 170 170

Optimizer Descent

Learning Rate 0.001

Activation function leakyReLU

Epochs 500

Batchsize 4

Table 4.2: Hyperparameters of the best model, for ST input - Set A

Model Accuracy

Mean Absolute Error, MAE [bar] 0.8184

Mean Absolute Percentage Error, MAPE [%] 0.6898

R2 0.999175

Table 4.3: Error metrics of the best model, for ST input - Set A



CHAPTER 4. RESULTS AND DISCUSSION 74

Speed-Torque-Lambda (STL) Models

Regarding networks that used the Speed-Torque-Lambda vector as training
input, the model accuracy was 99.32%; making it the best overall model. In
Table 4.5 the error metrics are presented, and the model parameters in Table
4.4.

Figure 4.2: The zero-error-line diagram of the best performing model of Set
A, with Speed-Torque-Lambda as input.

Model Parameters

Hidden Layers 4

Number of Neurons 15 18 17 17

Optimizer Descent

Learning Rate 0.001

Activation function leakyReLU

Epochs 500

Batchsize 2

Table 4.4: Hyperparameters of the best model, for STL input - Set A



CHAPTER 4. RESULTS AND DISCUSSION 75

Model Error Metrics

Mean Absolute Error, MAE [bar] 0.8303

Mean Absolute Percentage Error, MAPE [%] 0.6820

R2 0.999219

Table 4.5: Error metrics of the best model, for STL input - Set A

Speed-Torque-BSFC (STB) Models

Models that instead of the Lambda input variable used the Brake Specific
Fuel Consumption one, the input vector thus being Speed-Torque-BSFC, an
accuracy value of 99.25% was achieved, with the Mean Absolute Error being
0.88 bar, as shown in Table 4.7. The hyperparameters of this model are once
again presented in Table 4.6.

Figure 4.3: The zero-error-line diagram of the best performing model of Set
A, with Speed-Torque-BSFC as input.



CHAPTER 4. RESULTS AND DISCUSSION 76

Model Parameters

Hidden Layers 3

Number of Neurons 15 18 17

Optimizer Descent

Learning Rate 0.001

Activation function leakyReLU

Epochs 1000

Batchsize 4

Table 4.6: Hyperparameters of the best model, for STB input - Set A

Model Error Metrics

Mean Absolute Error, MAE [bar] 0.8830

Mean Absolute Percentage Error, MAPE [%] 0.7480

R2 0.999120

Table 4.7: Error metrics of the best model, for STB input - Set A

Speed-Torque-Lambda-BSFC (STLB) Models

Finally, for networks that used every available input data, specifically Speed-
Torque-Lambda-BSFC, an accuracy value of 99.29% was reached. The error
metrics and parameters are shown in Table 4.9 and 4.8 respectively.



CHAPTER 4. RESULTS AND DISCUSSION 77

Figure 4.4: The zero-error-line diagram of the best performing model of Set
A, with Speed-Torque-Lambda-BSFC as input.

Model Parameters

Hidden Layers 3

Number of Neurons 45 54 51

Optimizer Descent

Learning Rate 0.001

Activation function leakyReLU

Epochs 500

Batchsize 4

Table 4.8: Hyperparameters of the best model, for STLB input - Set A

Model Error Metrics

Mean Absolute Error, MAE [bar] 0.8502

Mean Absolute Percentage Error, MAPE [%] 0.7074

R2 0.999147

Table 4.9: Error metrics of the best model, for STLB input - Set A



CHAPTER 4. RESULTS AND DISCUSSION 78

4.1.2 Model Set A Summary

This particular model set achieved quite high accuracy values; this was to
be expected since the training dataset was both small in size and narrow in
range. As a result, most models fitted to these data points faired better at
predicting the target values of the test subset.

Between the best models of the four separate input variable combinations,
as presented in Table 4.1, the one that performed the best was the Speed-
Torque-Lambda group, with the Speed-Torque one taking the second place
by just 0.01% lower accuracy. On the other hand, the most proficient model
of the Speed-Torque-BSFC category scored the lowest, albeit having just
under 0.07% lower prediction accuracy comparatively to the Speed-Torque-
Lambda one. This indicates that the Specific Fuel Consumption parameter
shares a weak relation to the in-cylinder peak pressure, or at the very least
weaker than the one between the peak pressure and Lambda coefficient.

Models of this group that utilized a small batchsize, equal to 1, 2 or 4
for example, in conjunction with the Descent optimizer produced the best
results; as the batchsize increased, the effectiveness of the optimizer rapidly
deteriorated. On the other hand, similarly good predictions were also made
with models that combined the larger batchsizes of 16, 32 or 64 with the
ADAM optimizer. This behaviour of the two optimizers is depicted in figures
4.5 to 4.7; the model parameters that were used for these figures were the
ones presented in Table 4.4, since it was the most accurate of this group,
however similar outcomes are received for most other models.



CHAPTER 4. RESULTS AND DISCUSSION 79

Figure 4.5: The MAPE of the best model of the Set A with the Descent
optimizer, for various epochs and batchsizes.

Figure 4.6: The MAPE of the best model of Set A with the ADAM optimizer,
for various epochs and batchsizes.



CHAPTER 4. RESULTS AND DISCUSSION 80

Figure 4.7: Comparison of the Descent and ADAM optimizer of the best Set
A model, for various batchsizes.

In addition, while some of the top models of this group were ones with
4 or 5 layers and a large number of neurons, smaller in depth models scored
equally well; this is further proof that due to the simplicity of Dataset A,
lighter networks were sufficient for precise mapping of the data. For example,
Figure 4.8 depicts the variation of the MAPE of the best group A model, as
described in Table 4.4.



CHAPTER 4. RESULTS AND DISCUSSION 81

Figure 4.8: Comparison of variations to the number of hidden layers and
neurons for the best model of Set A.

Note that in the above Figure 4.8, for the model with 4 and 5 hidden
layers, the number of neurons is the one shown in the legend, but with the
last number repeated once and twice respectively. For example, for a set
of neurons equal to 15 18 17, the 4-hidden layered model has 15 18 17 17
neurons and the 5-hidden layered model 15 18 17 17 17.

On the other hand, varying the learning rate from 0.001 to 0.01 and 0.1
yields increasingly poorer results, as shown in Figure 4.9. Similarly, any other
option of activation function, specifically sigmoid (σ) or tanh, also produced
models with less predictive power, indicating that the leakyReLU function is
the optimal choice, which is highlighted in Figure 4.10.



CHAPTER 4. RESULTS AND DISCUSSION 82

Figure 4.9: Comparison of different learning rates for the best model of Set
A.

Figure 4.10: Evaluation of different activation functions for the best model
of Set A.

Finally, when examining the different training epochs options, its becomes
clear that 100 epochs were not enough for any network to fit the data input.
However, there aren’t any significant discrepancies 500 and 1000 iterations,



CHAPTER 4. RESULTS AND DISCUSSION 83

both of which producing mostly equally acceptable results, as is highlighted
by Figure 4.11.

Figure 4.11: Comparison of different training epochs for the best model of
Set A

To sum up, the best model of this group is the one that used the Speed-
Torque-Lambda input vector and is defined by the hyperparameters of Table
4.4. It is important to note, however, that for someone to receive subjective
and accurate predictions using this model, the input data provided will have
to fall inside the range on which the training process took place, as described
by Table 3.1. Any input that deviates too far from the aforementioned table
will produce poor outcomes.

The rest of the diagrams that show the effect of variations to the hyper-
parameters of the models on the prediction accuracy are in Appendix A.



CHAPTER 4. RESULTS AND DISCUSSION 84

4.2 Model Set B

In this Model Set B, as opposed to the Set A, models were trained with two
variations of the input parameters: one group used Speed and Torque (ST)
as input, while the other Speed, Torque and Lambda (STL).

Table 4.10 contains the best models of the two groups, while the following
section gives more details on their error metrics and parameters.

Model Name Inputs Accuracy

Act leakyrelu-Lr0.001-Opt ADAM-H.Layers 5-
ST 95.21%

Neurons 150 180 170 170 170-VarST-Ep1000-Btch128

Act leakyrelu-Lr0.001-Opt ADAM-H.Layers 5-
STL 97.04%

Neurons 150 180 170 170 170-VarSTL-Ep1000-Btch64

Table 4.10: Comparison of the best models for each combination of input
variables - Set B

4.2.1 Best performing networks, per Set of Inputs

Speed-Torque (ST) Models

For Set B models that used the Speed-Torque vector as training input, an
accuracy of 95.21% was reached. The error metrics are presented in 4.12,
while its hyperparameters in Table 4.11.



CHAPTER 4. RESULTS AND DISCUSSION 85

Figure 4.12: The zero-error-line diagram of the best performing model of Set
B, with Speed-Torque as input.

Model Parameters

Hidden Layers 5

Number of Neurons 150 180 170 170 170

Optimizer ADAM

Learning Rate 0.001

Activation function leakyReLU

Epochs 1000

Batchsize 128

Table 4.11: Hyperparameters of the best model, for ST input - Set B

Model Error Metrics

Mean Absolute Error, MAE [bar] 4.984

Mean Absolute Percentage Error, MAPE [%] 4.7930

R2 0.962679

Table 4.12: Error metrics of the best model, for ST input - Set B



CHAPTER 4. RESULTS AND DISCUSSION 86

Speed-Torque-Lambda (STL) Models

Regarding networks that used the Speed-Torque-Lambda vector as training
input, the model accuracy was 97.04%; making it the best overall model
of this Set. In Table 4.14 the error metrics are presented, and the model
parameters in Table 4.13.

Figure 4.13: The zero-error-line diagram of the best performing model of Set
A, with Speed-Torque-Lambda as input.

Model Parameters

Hidden Layers 5

Number of Neurons 150 180 170 170 170

Optimizer ADAM

Learning Rate 0.001

Activation function leakyReLU

Epochs 1000

Batchsize 64

Table 4.13: Hyperparameters of the best model, for STL input - Set B



CHAPTER 4. RESULTS AND DISCUSSION 87

Model Error Metrics

Mean Absolute Error, MAE [bar] 2.8221

Mean Absolute Percentage Error, MAPE [%] 2.9602

R2 0.985495

Table 4.14: Error metrics of the best model, for STL input - Set B

4.2.2 Model Set B Summary

In contrast to Model Set A, this group of models reached a lower peak ac-
curacy; nevertheless, with the mean percentage error being less that 3%,
the results can undoubtedly be considered satisfactory. The cause behind
the lowered accuracy when compared to Set A is the characteristics of the
Dataset B; as explained in Section 3.1.2 of Chapter 2, the data spectrum is
extensive and the points are spread out considerably. As a result, it is harder
for the network to fit the data with extremely high precision, but at the same
time the produced model will certainly boast superior robustness, as it has
been exposed to a varied input range and thus can react better for a larger
test subset.

Out of the two different input variables combinations, the Speed-Torque-
Lambda one scored the lowest average error, as shown in Table 4.10; the
one that used only the Speed-Torque inputs fell behind by almost 2%. This
yet again shows the strong relation between the lambda coefficient with the
peak internal pressure, a conclusion that was reached with the previous Set
A. Also, based on the results of the previous group, the lack of Specific Fuel
Consumption values most probably didn’t impact negatively the prediction
power of the models, as it was shown that the inclusion of BSFC worsened
the outcome.

This model set used only the ADAM optimizer; similarly to the Set A,
models with higher batchsize values produced more accurate prediction than
their smaller-batchsize counterparts. Figure 4.14 demonstrates this property
for the best performing model described in Table 4.13.



CHAPTER 4. RESULTS AND DISCUSSION 88

Figure 4.14: The MAPE of the best model of Set B with the ADAM opti-
mizer, for various batchsizes.

Regarding the number of hidden layers and neurons per layer, contrary
to the previous set of models, the upper echelon of Set A was populated
almost exclusively with ”heavier” networks. The best performing networks
incorporated in their design a large amount of neurons, while most of them
also leaned towards the 4 or 5 hidden layers. Once again, due to the extensive
size of the Dataset B, numerous processing units are required to correctly map
the input data. This behaviour is showcased in the following Figure 4.15.



CHAPTER 4. RESULTS AND DISCUSSION 89

Figure 4.15: Comparison of variations to the number of hidden layers and
neurons for the best model of Set B.

Lastly, the number of training epochs had a significant impact on the
predictive capabilities of the models; the higher the epochs count, the more
accurate the predictions became. The best results were almost always re-
ceived at the highest epochs number: 1000, as the figure bellow shows.

Figure 4.16: Comparison of different training epochs for the best model of
Set B



CHAPTER 4. RESULTS AND DISCUSSION 90

Summing up for the Model Set B, the highest accuracy reached was
97.04%, which belonged to the Speed-Torque-Lambda input subset of mod-
els, with the best overall being the one as defined by the hyperparameters
of Table 4.13. The average error values of this group were higher than the
ones in Model Set A, something that can be ascribed to the complexity of
Dataset B, however the results are still well within the acceptable error area.
As mentioned for the previous set, it is once again important to note that for
the model to make good predictions in a possible requested task, the input
variables must be inside, or adequately close, to the range on which it was
trained, shown by the diagrams 3.10 to 3.12.

Once again, the rest of the diagrams are presented in Appendix B.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The ever-increasing interest in the fields of engineering for optimized opera-
tion of internal combustion engines has inevitably lead to the search for better
engine control methods. In order to ensure that optimal performance is fol-
lowed, more and more sophisticated measuring tools are being developed; the
ideal method being one that combines inexpensive procedures with accurate
and trustworthy results.

To this end, this thesis took on the task of predicting the in-cylinder peak
pressure, an important parameter of the combustion process and structural
stress of an working engine, of a four-stroke marine diesel engine. Specifi-
cally, the viability of utilizing the latest trends in machine learning, in order
to produce algorithms that can be further put to use for such predictive
endeavours, was investigated.

Thus, artificial neural networks were employed; models that were tasked
to effectively predict the aforementioned pressure based on other, easy to
acquire engine operating parameters; in essence, the engine Speed, Torque,
Lambda and Brake-Specific Fuel Consumption (BSFC) were the used input
variables.

Two groups of artificial neural networks were created and trained on two
distinct datasets, extracted from experimental operations of two different
four-stroke diesel engines: Model Set A and Model Set B. The outcome
showed that both groups managed to reach the designated goal: group A
achieved pressure prediction with accuracy of 99.32% and mean absolute
error of 0.83 bar, while the second group B reached a comparatively lower,
but nonetheless satisfactory, score of 97.04% and mean absolute error of 2.8
bar.

91



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 92

Between the input variables combinations that were tested, it was re-
marked that by using as input the engine Speed, Torque and Lambda, the
most precise predictions were produced; on the other hand, incorporating
the Specific Fuel Consumption parameter as input not only didn’t improve
the model accuracy, but it also hindered the learning process.

Regarding the hyperparameters of the models, during their training stage
several trends were observed. Models that used the ADAM optimizer in
conjunction with a large batchsize produced the best results; additionally
the optimal learning rate was found to be equal to 0.001. Large numbers
of neurons and multiple hidden layers were deemed necessary when dealing
with expansive datasets, similar to Dataset B, while smaller in size models
were acceptably good in cases of smaller datasets, like Dataset A; likewise,
a sufficiently large number of epochs is needed to correctly fit broad sets of
data. Lastly, out of the three activation function that were investigated, the
leakyReLU counterpart of the ReLU function faired the best.

Consequently, by the successful results of the models of this thesis, it has
been proven that artificial neural networks lend themselves to be utilized
as a cheap alternative for in-cylinder peak pressure prediction in internal
combustion engines.



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 93

5.2 Future Work

In this thesis a number of artificial neural networks that fell into the category
of deep learning were used to predict in-cylinder peak pressure; the same
concept behind these networks could be used to build models for predicting
different engine parameters, like peak cylinder temperature, for instance.

Furthermore, different types of machine learning models could be investi-
gated for use in similar tasks; Support Vector Regressors, for example, could
be one of such models.

Finally, developing models for pure transient loads could also be a possible
subject of research. For this type of tasks, were predictions of continuous
signals is required, recurrent neural networks could be a suitable network
type, as they keep the information of previous states and use it to predict
subsequent ones.



Bibliography

[1] M. El-Ghamry, J. Steel, R. Reuben, and T. Fog, “Indirect measure-
ment of cylinder pressure from diesel engines using acoustic emission,”
Mechanical Systems and Signal Processing, vol. 19, no. 4, pp. 751–765,
2005.

[2] D. Moro, N. Cavina, and F. Ponti, “In-Cylinder Pressure Reconstruction
Based on Instantaneous Engine Speed Signal ,” Journal of Engineering
for Gas Turbines and Power, vol. 124, pp. 220–225, 03 2001.

[3] J. Heywood, Internal Combustion Engine Fundamentals 2E. McGraw-
Hill Education, 2018.

[4] C. Bishop, Pattern Recognition and Machine Learning, ch. 1,3,4,5. New
York, NY: Springer, 2006.

[5] E. Alpaydın, Introduction to Machine Learning, Third Edition. MIT
Press, 2014.

[6] S. J. Russell and P. Norvig, Artificial Intelligence a Modern Approach,
Third Edition, ch. 20.4. Pearson, 2010.

[7] Y. Fu and B. Xiao, “Online prediction of the piston maximum temper-
ature in dual-fuel engine,” Advances in Mechanical Engineering, vol. 9,
no. 2, 2017.

[8] Y. Çay, “Prediction of a gasoline engine performance with artificial neu-
ral network,” Fuel, vol. 111, p. 324–331, 09 2013.

[9] Y. Çay, I. Korkmaz, A. Çiçek, and F. Kara, “Prediction of engine perfor-
mance and exhaust emissions for gasoline and methanol using artificial
neural network,” Energy, vol. 50, no. C, pp. 177–186, 2013.

[10] V. Cocco Mariani, S. Hennings Och, L. dos Santos Coelho, and
E. Domingues, “Pressure prediction of a spark ignition single cylinder

94



BIBLIOGRAPHY 95

engine using optimized extreme learning machine models,” Applied En-
ergy, vol. 249, pp. 204–221, 2019.

[11] H. Yaşar, G. Çağıl, O. Torkul, and M. Şişci, “Cylinder pressure predic-
tion of an hcci engine using deep learning,” Chinese Journal of Mechan-
ical Engineering, vol. 34, January 2021.

[12] N. J. Nilsson, Introduction to Machine Learning, pp. 1–3. Stanford,
CA: Robotics Laboratory Department of Computer Science Stanford
University, 1998.

[13] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning, second edition. Adaptive Computation and Machine Learning
series, MIT Press, 2018.

[14] Vortarus Technologies LLC, “Simulation vs. machine learning.”
https://vortarus.com/simulation-vs-machine-learning/. Ac-
cessed: 2021-12-10.

[15] Copeland, B.J , “Alan Turing,” Encyclopedia Britannica, 2021. Ac-
cessed: 2021-12-10.

[16] A. M. Turing, “I.—COMPUTING MACHINERY AND INTELLI-
GENCE,” Mind, vol. LIX, no. 236, pp. 433–460, 1950.

[17] The Editors of Encyclopaedia Britannica, “Turing test,” Encyclopedia
Britannica, 2020. Accessed: 2021-12-11.

[18] J. McCarthy and E. A. Feigenbaum, “In memoriam: Arthur samuel:
Pioneer in machine learning,” AI Magazine, vol. 11, no. 3, 1990.

[19] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, pp. 71–105, 1959.

[20] Foote, Keith D. , “A brief history of machine learning.” https://www.

dataversity.net/a-brief-history-of-machine-learning/. Ac-
cessed: 2021-12-10.

[21] B. Swaminathan, R. Vaishali, and T. S. R. subashri, Analysis of Mini-
max Algorithm Using Tic-Tac-Toe, pp. 528–532. IOS Press, 2020.

[22] F. Rosenblatt, “THE PERCEPTRON: A PROBABILISTIC MODEL
FOR INFORMATION STORAGE AND ORGANIZATION IN THE
BRAIN,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

https://vortarus.com/simulation-vs-machine-learning/
https://www.dataversity.net/a-brief-history-of-machine-learning/
https://www.dataversity.net/a-brief-history-of-machine-learning/


BIBLIOGRAPHY 96

[23] G. B. Ronsivalle, S. Carta, V. Metus, and M. Orlando, “Artificial neu-
ral networks, evaluation and complexity: Information technology and
nonlinear algorithms to measure knowledge systems,” in INTED2014
Proceedings, pp. 4175–4185, IATED, 2014.

[24] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms. Buffalo 21, New York: Spartan Books, 1961.

[25] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neu-
ral Networks, vol. 61, p. 85–117, Jan 2015.

[26] M. Hema R and I. Alexy G, Inductive Learning Algorithms for Complex
Systems Modeling. Boca Raton, Florida: CRC Press, Inc, 1994.

[27] Langley, Pat, “The changing science of machine learning,” Machine
Learning, vol. 82, no. 3, p. 275, 2011.

[28] Les Earnest , “Stanford cart.” https://web.stanford.edu/

~learnest/sail/oldcart.html. Accessed: 2021-12-11.

[29] Sejnowski, Terrence J. and Rosenberg, Charles R. , “Parallel networks
that learn to pronounce english text,” Complex Systems, no. 1, pp. 145–
168, 1967.

[30] Greenemeier, Larry , “20 Years after Deep Blue: How AI Has Ad-
vanced Since Conquering Chess.” https://www.scientificamerican.

com/article/20-years-after-deep-blue-how-ai-has-advanced-

since-conquering-chess/. Accessed: 2021-12-11.

[31] IBM, “The first meeting between kasparov and deep blue made chess his-
tory.” https://web.archive.org/web/20081212043535/http://www.
research.ibm.com/deepblue/watch/html/c.10.html. Accessed:
2021-12-12.

[32] IBM, “Deep blue.” https://www.ibm.com/ibm/history/ibm100/us/

en/icons/deepblue/. Accessed: 2021-12-12.

[33] “About imagenet.” https://www.image-net.org/about.php. Ac-
cessed: 2021-12-12.

[34] Gershgorn, Dave, “The data that transformed ai research—and possibly
the world.” https://qz.com/1034972/the-data-that-changed-the-

direction-of-ai-research-and-possibly-the-world/, 2017. Ac-
cessed: 2021-12-12.

https://web.stanford.edu/~learnest/sail/oldcart.html
https://web.stanford.edu/~learnest/sail/oldcart.html
https://www.scientificamerican.com/article/20-years-after-deep-blue-how-ai-has-advanced-since-conquering-chess/
https://www.scientificamerican.com/article/20-years-after-deep-blue-how-ai-has-advanced-since-conquering-chess/
https://www.scientificamerican.com/article/20-years-after-deep-blue-how-ai-has-advanced-since-conquering-chess/
https://web.archive.org/web/20081212043535/http://www.research.ibm.com/deepblue/watch/html/c.10.html
https://web.archive.org/web/20081212043535/http://www.research.ibm.com/deepblue/watch/html/c.10.html
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://www.image-net.org/about.php
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/


BIBLIOGRAPHY 97

[35] Rodriguez, Raul V. , “Kinect sensor: The ai tool you did not
know you had.” https://analyticsindiamag.com/kinect-sensor-

the-ai-tool-you-did-not-know-you-had/, 2020. Accessed: 2021-12-
12.

[36] Nath, Aditya, “What is google brain?.” https://www.geeksforgeeks.

org/what-is-google-brain/, 2021. Accessed: 2021-12-12.

[37] Simonite, Tom, “Facebook creates software that matches faces almost
as well as you do.” https://www.technologyreview.com/2014/

03/17/13822/facebook-creates-software-that-matches-faces-

almost-as-well-as-you-do/, 2014. Accessed: 2021-12-12.

[38] Nath, Aditya, “Google achieves ai ’breakthrough’ by beating go cham-
pion.” https://www.bbc.com/news/technology-35420579, 2016. Ac-
cessed: 2021-12-13.

[39] “Deepmind.” https://deepmind.com/about. ”Accessed: 2021-12-13”.

[40] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lill-
icrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Master-
ing the game of go with deep neural networks and tree search,” Nature,
vol. 529, pp. 484–489, 2016.

[41] M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter, “A survey on
machine learning-based performance improvement of wireless networks:
Phy, mac and network layer,” Electronics, p. 63, 2020.

[42] M. Haenlein and A. Kaplan, “A brief history of artificial intelligence:
On the past, present, and future of artificial intelligence,” California
Management Review, vol. 61, 2019.

[43] O. Campesato, Artificial Intelligence Machine Learning and Deep Leran-
ing. Mercury Learning and Information LLC, 2020.

[44] V. Sindhu, S. Nivedha, and M. Prakash, “An empirical science research
on bioinformatics in machine learning,” JOURNAL OF MECHANICS
OF CONTINUA AND MATHEMATICAL SCIENCES, pp. 86–94, 2020.

[45] IBM Cloud Education, “Deep learning.” https://www.ibm.com/cloud/
learn/deep-learning. Accessed: 2021-12-13.

https://analyticsindiamag.com/kinect-sensor-the-ai-tool-you-did-not-know-you-had/
https://analyticsindiamag.com/kinect-sensor-the-ai-tool-you-did-not-know-you-had/
https://www.geeksforgeeks.org/what-is-google-brain/
https://www.geeksforgeeks.org/what-is-google-brain/
https://www.technologyreview.com/2014/03/17/13822/facebook-creates-software-that-matches-faces-almost-as-well-as-you-do/
https://www.technologyreview.com/2014/03/17/13822/facebook-creates-software-that-matches-faces-almost-as-well-as-you-do/
https://www.technologyreview.com/2014/03/17/13822/facebook-creates-software-that-matches-faces-almost-as-well-as-you-do/
https://www.bbc.com/news/technology-35420579
https://deepmind.com/about
https://www.ibm.com/cloud/learn/deep-learning
https://www.ibm.com/cloud/learn/deep-learning


BIBLIOGRAPHY 98

[46] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 2015.

[47] D. Bzdok, N. Altman, and M. Krzywinski, “Statistics versus machine
learning,” Nature Methods, vol. 15, no. 4, pp. 233–234, 2018.

[48] M. Otterlo and M. Wiering, “Reinforcement learning and markov de-
cision processes,” Reinforcement Learning: State of the Art, pp. 3–42,
2012.

[49] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” 2014.

[50] B. Settles, “Active learning literature survey,” University of Wisconsin,
Madison, vol. 52, p. 67, 07 2010.

[51] C. Gallo, Artificial Neural Networks: tutorial, vol. 10, ch. Neural Ne-
torks, pp. 179–189. IGI Global, 2015.

[52] S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial
neural network (ann) modeling and its application in pharmaceutical
research,” Journal of Pharmaceutical and Biomedical Analysis, vol. 22,
no. 5, pp. 717–727, 2000.

[53] TIBCO, “What is a Neural Network?.” https://www.tibco.com/

reference-center/what-is-a-neural-network. Accessed: 2021-12-
24.

[54] R. Bridgelall, “Lecture notes, introduction to support vector machines.”
https://www.ugpti.org/smartse/resources/downloads/support-

vector-machines.pdf, 2017. Accessed: 2021-12-21.

[55] V. Jakkula, “Tutorial on support vector machine (svm),” School of
EECS, Washington State University, vol. 37, 2006.

[56] P. P. Ippolito, “SVM: Feature Selection and Kernels.”
https://towardsdatascience.com/svm-feature-selection-and-

kernels-840781cc1a6c, 2019. Accessed: 2021-12-22.

[57] L. Rokach and O. Maimon, Decision Trees, vol. 6, pp. 165–192. Springer,
Boston, MA, 2005.

[58] B. Jijo and A. Mohsin Abdulazeez, “Classification based on decision
tree algorithm for machine learning,” Journal of Applied Science and
Technology Trends, vol. 2, pp. 20–28, 2021.

https://www.tibco.com/reference-center/what-is-a-neural-network
https://www.tibco.com/reference-center/what-is-a-neural-network
https://www.ugpti.org/smartse/resources/downloads/support-vector-machines.pdf
https://www.ugpti.org/smartse/resources/downloads/support-vector-machines.pdf
https://towardsdatascience.com/svm-feature-selection-and-kernels-840781cc1a6c
https://towardsdatascience.com/svm-feature-selection-and-kernels-840781cc1a6c


BIBLIOGRAPHY 99

[59] M. Hornỳ, “Bayesian networks,” Boston University School of Public
Health, vol. 17, 2014.

[60] A. N. of Loc Nguyen, “Overview of bayesian network,” Science Journal
of Mathematics & Statistics, vol. 2013, pp. 1–99, 07 2013.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[62] “The Julia Programming Language.” https://julialang.org/.

[63] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Learn Julia
For Beginners – The Future Programming Language of Data Science and
Machine Learning Explained.” https://julialang.org/blog/2012/

02/why-we-created-julia/, 2012. Accessed: 2022-6-2.

[64] L. Kilpatrikc, “Learn Julia For Beginners – The Future Program-
ming Language of Data Science and Machine Learning Explained.”
https://www.freecodecamp.org/news/learn-julia-programming-

language/, 2021. Accessed: 2022-6-2.

[65] V. Singh Rao, “Julia Programming Language – A True Python
Alternative.” https://www.technotification.com/2018/08/julia-

programming-language.html, 2018. Accessed: 2022-6-2.

[66] “Flux: The Julia Machine Learning Library.” https://fluxml.ai/

Flux.jl/stable/. Accessed: 2022-6-2.

[67] “CUDA.jl.” https://juliagpu.gitlab.io/CUDA.jl/. Accessed: 2022-
6-2.

[68] “BSON.” https://github.com/JuliaIO/BSON.jl. Accessed: 2022-6-
2.

[69] R. Salehi and A. Stefanopoulou, “Effective component tuning in a diesel
engine model using sensitivity analysis,” p. 8, 10 2015.

[70] I. Hand, Mike J., E. Hellström, D. Kim, A. Stefanopoulou, J. Kol-
lien, and C. Savonen, “Model and Calibration of a Diesel Engine Air
Path With an Asymmetric Twin Scroll Turbine,” vol. Volume 1: Large
Bore Engines; Advanced Combustion; Emissions Control Systems; In-
strumentation, Controls, and Hybrids of Internal Combustion Engine
Division Fall Technical Conference, 10 2013.

https://julialang.org/
https://julialang.org/blog/2012/02/why-we-created-julia/
https://julialang.org/blog/2012/02/why-we-created-julia/
https://www.freecodecamp.org/news/learn-julia-programming-language/
https://www.freecodecamp.org/news/learn-julia-programming-language/
https://www.technotification.com/2018/08/julia-programming-language.html
https://www.technotification.com/2018/08/julia-programming-language.html
https://fluxml.ai/Flux.jl/stable/
https://fluxml.ai/Flux.jl/stable/
https://juliagpu.gitlab.io/CUDA.jl/
https://github.com/JuliaIO/BSON.jl


BIBLIOGRAPHY 100

[71] A. Stefanopoulou, I. Kolmanovsky, and J. Freudenberg, “Control of vari-
able geometry turbocharged diesel engines for reduced emissions,” IEEE
Transactions on Control Systems Technology, vol. 8, no. 4, pp. 733–745,
2000.

[72] M. D. . Turbo, “L16/24 Project Guide - Marine Four-stroke GenSet
compliant with IMO Tier II.”

[73] “Test Cell.” https://www.lme.ntua.gr/facilities-1/test-cell-

1/test-cell. Accessed: 2022-26-2.

[74] “Engine Room.” https://www.lme.ntua.gr/testcell2.jpg/view.
Accessed: 2022-26-2.

[75] J. Sola and J. Sevilla, “Importance of input data normalization for the
application of neural networks to complex industrial problems,” Nuclear
Science, IEEE Transactions on, vol. 44, pp. 1464 – 1468, 07 1997.

[76] Y. Verma, “A Complete Understanding of Dense Layers in
Neural Networks.” https://analyticsindiamag.com/a-complete-

understanding-of-dense-layers-in-neural-networks/, 2021. Ac-
cessed: 2022-1-9.

[77] C.-F. Wang, “The Vanishing Gradient Problem.” https:

//towardsdatascience.com/the-vanishing-gradient-problem-

69bf08b15484, 2019. Accessed: 2022-1-11.

[78] S. Sharma, “Activation Functions in Neural Networks.”
https://towardsdatascience.com/activation-functions-neural-

networks-1cbd9f8d91d6, 2017. Accessed: 2022-1-11.

[79] P. Baheti, “12 Types of Neural Network Activation Functions:
How to Choose?.” https://www.v7labs.com/blog/neural-networks-
activation-functions, 2022. Accessed: 2022-1-11.

[80] keshav, “Hyperbolic Tangent (tanh) Activation Function [with python
code].” https://vidyasheela.com/post/hyperbolic-tangent-

tanh-activation-function-with-python-code. Accessed: 2022-1-
11.

[81] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

https://www.lme.ntua.gr/facilities-1/test-cell-1/test-cell
https://www.lme.ntua.gr/facilities-1/test-cell-1/test-cell
https://www.lme.ntua.gr/testcell2.jpg/view
https://analyticsindiamag.com/a-complete-understanding-of-dense-layers-in-neural-networks/
https://analyticsindiamag.com/a-complete-understanding-of-dense-layers-in-neural-networks/
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://vidyasheela.com/post/hyperbolic-tangent-tanh-activation-function-with-python-code
https://vidyasheela.com/post/hyperbolic-tangent-tanh-activation-function-with-python-code
http://www.deeplearningbook.org


BIBLIOGRAPHY 101

[82] Y. LeCun, “Activation and loss functions (part 1).” https://atcold.

github.io/pytorch-Deep-Learning/en/week11/11-1/, 2020. Ac-
cessed: 2022-1-11.

[83] “Build a simple Neural Network with TensorFlow.js — Deep Learning
for JavaScript Hackers (Part III).” https://curiousily.com/posts/

build-a-simple-neural-network-with-tensorflow-js/, 2019. Ac-
cessed: 2022-1-12.

[84] S. Do, K. D. Song, and J. W. Chung, “Basics of deep learning: A
radiologist’s guide to understanding published radiology articles on deep
learning,” Korean J Radio, vol. 21, 2020.

https://atcold.github.io/pytorch-Deep-Learning/en/week11/11-1/
https://atcold.github.io/pytorch-Deep-Learning/en/week11/11-1/
https://curiousily.com/posts/build-a-simple-neural-network-with-tensorflow-js/
https://curiousily.com/posts/build-a-simple-neural-network-with-tensorflow-js/


Appendix A

Model Set A Diagrams

In this Appendix, diagrams depicting the rest of the four best per input mod-
els of Set A are presented. They include variations to the model optimizer,
batchsize, learning rate, activation function and epochs. This section pro-
vides the complimentary to Section 4.1 of Chapter 4 figures of the best ST,
STB and STLB models of Set A.

A.1 Speed-Torque (ST) Models

Figure A.1: The MAPE of the best ST model of the Set A with the Descent
optimizer, for various epochs and batchsizes.

102



APPENDIX A. MODEL SET A DIAGRAMS 103

Figure A.2: The MAPE of the best ST model of Set A with the ADAM
optimizer, for various epochs and batchsizes.

Figure A.3: Comparison of the Descent and ADAM optimizer of the best ST
model, for various batchsizes.



APPENDIX A. MODEL SET A DIAGRAMS 104

Figure A.4: Comparison of variations to the number of hidden layers and
neurons for the best ST model of Set A.

Figure A.5: Comparison of different learning rates for the best ST model of
Set A.



APPENDIX A. MODEL SET A DIAGRAMS 105

Figure A.6: Evaluation of different activation functions for the best ST model
of Set A.

Figure A.7: Comparison of different training epochs for the best ST model
of Set A



APPENDIX A. MODEL SET A DIAGRAMS 106

A.2 Speed-Torque-BSFC (STB) Models

Figure A.8: The MAPE of the best STB model of the Set A with the Descent
optimizer, for various epochs and batchsizes.

Figure A.9: The MAPE of the best STB model of Set A with the ADAM
optimizer, for various epochs and batchsizes.



APPENDIX A. MODEL SET A DIAGRAMS 107

Figure A.10: Comparison of the Descent and ADAM optimizer of the best
STB model, for various batchsizes.

Figure A.11: Comparison of variations to the number of hidden layers and
neurons for the best STB model of Set A.



APPENDIX A. MODEL SET A DIAGRAMS 108

Figure A.12: Comparison of different learning rates for the best STB model
of Set A.

Figure A.13: Evaluation of different activation functions for the best STB
model of Set A.



APPENDIX A. MODEL SET A DIAGRAMS 109

Figure A.14: Comparison of different training epochs for the best STB model
of Set A

A.3 Speed-Torque-Lambda-BSFC (STLB) Mod-

els

Figure A.15: The MAPE of the best STLB model of the Set A with the
Descent optimizer, for various epochs and batchsizes.



APPENDIX A. MODEL SET A DIAGRAMS 110

Figure A.16: The MAPE of the best STLB model of Set A with the ADAM
optimizer, for various epochs and batchsizes.

Figure A.17: Comparison of the Descent and ADAM optimizer of the best
STLB model, for various batchsizes.



APPENDIX A. MODEL SET A DIAGRAMS 111

Figure A.18: Comparison of variations to the number of hidden layers and
neurons for the best STLB model of Set A.

Figure A.19: Comparison of different learning rates for the best STLB model
of Set A.



APPENDIX A. MODEL SET A DIAGRAMS 112

Figure A.20: Evaluation of different activation functions for the best STLB
model of Set A.

Figure A.21: Comparison of different training epochs for the best STLB
model of Set A



Appendix B

Model Set B Diagrams

Following Appendix A, this Appendix presents the rest of the diagrams of
Section 4.2, that belong to the best ST model of group B.

B.1 Speed-Torque (ST) Models

Figure B.1: The MAPE of the best ST model of Set B with the ADAM
optimizer, for various batchsizes.

113



APPENDIX B. MODEL SET B DIAGRAMS 114

Figure B.2: Comparison of variations to the number of hidden layers and
neurons for the best ST model of Set B.

Figure B.3: Comparison of different training epochs for the best ST model
of Set B


	Introduction
	Thesis Objective
	Literature Review
	Thesis Structure

	Theoretical Background
	Machine Learning
	History of Machine Learning
	Related Fields
	Categories of Machine Learning
	Models

	Neural Networks Overview
	Linear Basis Function Models
	Feed-Forward Neural Networks
	Neural Network Training

	Four-Stroke Diesel Engine Operating Parameters
	Brake-specific Fuel Consumption - BSFC
	Air-fuel Equivalence Ratio - Lambda ()

	Programming Tools

	Model Design
	Data Overview
	First Set of Data - Dataset A
	Second Set of Data - Dataset B
	Datasets Comparison

	Input Parameters
	Data Preparation
	Model Hyperparameters
	Number of Hidden Layers
	Number of Neurons per Layer
	Activation Functions
	Optimization Algorithms
	Error Function
	Learning Rate
	Batch size and Epochs
	Model Accuracy Metrics
	Model Nomenclature


	Results and Discussion
	Model Set A
	Best performing networks, per Set of Inputs
	Model Set A Summary

	Model Set B
	Best performing networks, per Set of Inputs
	Model Set B Summary


	Conclusions and Future Work
	Conclusions
	Future Work

	Model Set A Diagrams
	Speed-Torque (ST) Models
	Speed-Torque-BSFC (STB) Models
	Speed-Torque-Lambda-BSFC (STLB) Models

	Model Set B Diagrams
	Speed-Torque (ST) Models


