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ABSTRACT 

This thesis investigates the quality of bifurcations presented in a dynamic system consisting of 

a balanced or unbalanced elastic Jeffcott rotor mounted on gas-foil bearings, and assesses the 

stability of limit cycle motions for specific values of operating parameters and key design 

properties of the system, like rotor stiffness, foil stiffness and damping. The study aims to the 

design optimization of gas bearings in order to eliminate bifurcations, as they may compromise 

the operability of rotating systems, or increase noise level. This work applies the pseudo arc 

length continuation in combination with collocation method for the evaluation of limit cycles 

(periodic motions) as the bifurcation parameter changes (this being operating parameter or 

design property) of the non-autonomous system.  

The energy flow among the components of the system is evaluated for various design sets of 

bump foil properties, rotor stiffness and unbalance magnitude. The project presents a 

methodology to retain the dissipating work at positive values during the periodic limit cycle 

motions caused by unbalance. An optimization technique is embedded in the pseudo arc length 

continuation of limit cycles, those evaluated (when exist) utilizing an orthogonal collocation 

method. The optimization scheme considers the bump foil stiffness and damping as the 

variables for which bifurcations do not appear in a certain speed range. It is found that 

secondary Hopf (Neimark-Sacker) bifurcations, which trigger large limit cycle motions, do not 

exist in the unbalanced rotors when bump foil properties follow the optimization pattern. Period 

doubling (flip) bifurcations are possible to occur, without driving the rotor in high response 

amplitude. Different design sets of rotor stiffness and unbalance magnitude are investigated for 

the efficiency of the method to eliminate bifurcations. Aiming to adjustable gas bearings as a 

future technology, the quality of the optimization pattern allows real time optimization, and in 

this way gas foil properties may shift values during operation, eliminating bifurcations and 

allowing operation in higher speed margins. The present study is considered as precursor for 

smart gas bearing applications under development. 

 

 

 

 

  



3 

 

Panagiotis V. Papafragkos, MSc Thesis 

 

ACKNOWLEDGEMENTS 

Throughout my Master Thesis, I have received a great deal of support and assistance. I was 

very lucky because I worked with a great team, which did this Master Thesis a pleasant 

experience for me and helped me achieve my goals.  

For this reason, I would like to express my special appreciation and gratitude to my thesis 

supervisor, Prof. Athanasios Chasalevris, for the guidance, the support, and the trust that he 

showed me, which have been my motivation for my continuous effort and improvement. He 

gave me the opportunity to work at a higher level and his door office was always open whenever 

I ran into a trouble spot or had a question about my research. This thesis would never been so 

great without his contribution.  

I am also grateful to my colleagues, Ioannis Gavalas and Ioannis Raptopoulos. Their research 

work helped me a lot, so I would like to thank them too. Morever, I feel obligated to thank Prof. 

Antoniadis and Prof. Spitas for participating in the evaluation of this thesis. 

Getting through my Master Thesis required more than academic support. None of these would 

happen without the support of my family. Their unfailing support and continuous 

encouragement throughout these years of study gave me courage to continue pursuing my 

dreams. So, I would like to express my appreciation, my love and gratitude to them because 

this accomplishment would not have been possible without them. 

Last but not least, I would like to thank my friends. They stood by me and supported me when 

I was having a hard time. They offered their encouragement through phone calls and meetings 

and, of course, made this journey more joyable with all the good experiences that we shared 

together. 

 

Panagiotis V. Papafragkos 

Athens, February 2022  



4 

 

Panagiotis V. Papafragkos, MSc Thesis 

 

NOMENCLATURE AND ABBREVIATIONS 

Hellenic letters 

f  : dimensionless compliance of the bump foil per area, ( ) ( ) ( )
3 2

0 0 02 / 1 /f b rp l t v s c E = −  

,a a  : dimensioned and dimensionless angular acceleration ( )2 4 2 4

036 / ra R a p c=  

         : loss factor in the bump foil structure 
  : dynamic viscosity of gas 
v  : Poisson's ratio of the bump foil material 

  : dimensionless time ( )2 2

0 6rp c t R =  

r  : journal’s angle of rotation  

0  : angle of foil fixation point  

,   : angular velocity of the rotor, dimensionless ( )2 2

06 rR p c =   

Latin Letters 

rc  : bearing clearance 

D  : bearing diameter 2D R=  

,ue   : absolute and relative unbalance eccentricity 
u re c =  

E  : Young's modulus of the bump foil material 

, ,,B X B YF F  : resulting gas forces in x and y directions 

, ,,U X U YF F  : unbalance force components in x and y directions 

,h h  : absolute and relative gas film thickness 
rh h c=  

,f fk k  : foil stiffness coefficient per area. ( ) 3

0f f rk p c N m  =   , 1f fk =  

,s sk k  : absolute and relative shaft lateral stiffness ( )2 4 2 4

0 36s s d rk k m p c R=  

L  : length of the bearing 

sL  : length of the rotor (bearing span) 

0l  : bump half-length 

jm  : journal mass 

dm  : disc mass 

0p  : ambient pressure 

,p p  : absolute and relative gas pressure 
0p p p=  

,q q  : absolute and relative foil deflection, 
rq q c=  

sR  : radius of the rotor 

bt  : bump foil thickness 

cfW  : work produced by the foil damping forces 

fW  : work produced by the forces acting from the gas to the top foil 

gW  : work produced by the gas forces 
,B XF and ,B YF  

kfW  : work produced by the foil spring forces 

, , ,j j j jx y x y  : absolute and relative journal displacement in x and y  direction, ,j j r j j rx x c y y c= =  

, , ,d d d dx y x y  : absolute and relative disc displacement in x and y  direction, ,d d r d d rx x c y y c= =  

,x x  : absolute and relative spatial coordinate in x  direction, x x R=  

,z z  : spatial coordinate in z direction, /z z L=  

Abbreviations:  

AI: Artificial Intelligence FFT: Fast Fourier Transform ODE: Ordinary Diff. Equation 

AH: Andronov-Hopf bifurcation GFB: Gas Foil Bearing PD: Period Doubling bif. 

DoF: Degree of Freedom LPC: Limit Point of Cycles SN: Saddle Node bifurcation 

FDM: Finite Difference Method NS: Neimark-Sacker bif. STFT: Short Time Fourier Tr. 



5 

 

Panagiotis V. Papafragkos, MSc Thesis 

 

1. INTRODUCTION 

1.1. Gas Foil Bearings Development 

Gas foil bearings (GFBs) are an upcoming and promising oil-free technology in modern high-

speed rotating machinery [1]. Relying on a thin gas film building up an aerodynamic, load-

carrying lubrication wedge, such bearings are self-acting and do not require any external 

pressurization. Most notably, due to the absence of solid-to-solid contact between the airborne 

rotor journal and the bearing sleeve, excessively low wear and power loss can be achieved [2]. 

During the last few decades, the potential of GFBs has been widely confirmed by a great number 

of successful applications in air cycle machines of commercial aircraft [3]. Lately, in particular 

as a result of insurmountable speed, temperature, and weight limitations of conventional rolling-

element bearings, novel concepts of oil-free turbochargers [4] and oil-free rotorcraft propulsion 

engines [5] are gaining more and more interest. 

Foil air bearings are similar to conventional oil-lubricated bearings in size, shape, and in that the 

fluid film pressure is developed via the hydrodynamic effect. Unlike conventional bearings, foil 

air bearings use air as their working fluid and the bearing surface is compliant rather than rigid 

[6]. This compliant inner or top foil surface is supported by a spring pack or bump foil layer which 

allows the bearing to accommodate shaft misalignment, thermal and centrifugal distortion, the 

presence of wear debris and also allows the designer to tailor the operational foil shape to enhance 

film pressure and hence bearing load capacity [7].  

 

                      (a)                                                  (b)                                                 (c) 
 

Fig. 1.1.1: Schematic example of typical Generation I foil bearings with axially and circumferentially uniform 

elastic support elements: a) tape-type foil bearings b) leaf-type foil bearing and c) bump-type foil bearing [8] 

 

 
[1] T. Leister, C. Baum, W. Seemann (2017) On the Importance of Frictional Energy Dissipation in the Prevention of Undesirable 

Self-Excited Vibrations in Gas Foil Bearing Rotor Systems. TECHNISCHE MECHANIK, 37, 2-5, (2017), 280 – 290 

[2] Heshmat, H.; Walowit, J. A.; Pinkus, O. (1983) Analysis of gas-lubricated foil journal bearings. Journal of Lubrication Technology, 

105, 4, 647–655. 

[3] Howard, S. A.; Bruckner, R. J.; DellaCorte, C.; Radil, K. C. (2007) Gas foil bearing technology advancements for closed Brayton 

cycle turbines. Tech. Rep. NASA TM-214470, National Aeronautics and Space Administration, United States of America. 

[4] Howard, S. A. (1999) Rotordynamics and design methods of an oil-free turbocharger. Tech. Rep. NASA CR-208689, National 

Aeronautics and Space Administration, United States of America. 

[5] Howard, S. A.; Bruckner, R. J.; Radil, K. C. (2010) Advancements toward oil-free rotorcraft propulsion. Tech. Rep. NASA TM-

216094, National Aeronautics and Space Administration, United States of America. 

[6] DellaCorte C., Zaldana, A., and Radil, K. (2004) A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free 

Turbomachinery. STLE/ASME Joint International Tribology Conference, FL Oct. 2003 

[7] Gross, W. A. (1962) Gas Film Lubrication, John Wiley and Sons, Inc. 

[8] H. Ming Chen, Roy Howarth, Bernard Geren, Jay C. Theilacker, William M. Soyars, (2001), “Application of foil bearings to 

      helium turbocompressor”, Proceedings of the 30th turbomachinery symposioum. 
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Fig. 1.1.1 schematically shows some gas foil bearing designs. In multiple overleaf and tape GFBs, 

the compliance to bending from staggered structural foils and the dry-friction at the contact lines 

define their operational characteristics [9]. In corrugated bump GFBs, bump-strip layers 

supporting a top foil render a tunable bearing stiffness with nonlinear elastic deformation 

characteristics. In this type of bearing, dry-friction effects arising between the bumps and top foil 

and the bumps and the bearing inner surface provide the energy dissipation or damping 

characteristics [10,11]. 

Since foil bearings do not use oil as their working fluid they can and are routinely used over an 

extremely wide temperature range, from cryogenic to over 650°C, not possible with oil 

lubrication. Foil air bearings, however, do require solid lubrication to prevent wear and reduce 

friction at very low speeds encountered during start-up and shut-down prior to the development 

of the hydrodynamic gas film and also during momentary bearing overloads such as high speed 

rubs [12]. Traditionally, this solid lubrication is provided by applying a thin polymer film or 

coating to the foil surface, see Fig. 1.1.2. 

 

(a)                                                                           (b) 

Fig. 1.1.2: Schematic representation of systems approach to bearing lubrication a) conventional oil 

lubricated bearing, and b) multilevel solid/gas lubricated foil air bearing [6] 

 
[9] Heshmat, C. A., Heshmat, H., (1995), “An Analysis of Gas-Lubricated, Multileaf  Foil Journal Bearings with Backing Springs,” 

J. Tribol., 117, pp. 437-443. 

[10] Braun, M. J., Choy, F. K., Dzodzo, M., and Hsu, J., (1996), “Two-Dimensional Dynamic Simulation of a Continuous Foil 

        Bearing”, Tribol. Intl., 29(1), pp. 61-68. 

[11] Heshmat, H., Shapiro, W., and Gray,S., (1982), “Development of Foil Journal Bearings for High Load Capacity and High 

Speed Whirl Stability”, ASME J. Lubr. Technol., 104, pp. 149–156. 

[12] DellaCorte, C., and Wood, J. C. (1994),  “High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat 

Engines”, NASA TM-106570. 
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Fig 1.1.3 Generation II foil air bearing. [17] Fig 1.1.4 Generation III foil air bearing [17] 

Blok and Van Rossum published the first paper on foil bearings in 1953 [13]. Although they 

coined the term ‘‘foil bearing’’, their work actually concerned an oil lubricated shaft running 

against an acetate film or ‘‘foil’’. The concept of a flexible bearing surface and its implications to 

and potential for improved capabilities was quickly adapted by other technologists and papers on 

air lubricated foil bearings began to appear in the open literature in the following decade [14,15]. 

Foil bearing load capacity is expressed in relation to a bearing’s load capacity coefficient, D . This 

coefficient, defined fully in [16], is an empirically established performance parameter which 

relates bearing size and speed to the load that a bearing can support. Mathematically, it is defined 

as follows [6, 17]: 

( ) ( )krpmW D L d d=    
 

where, 

W  is the maximum steady load that can be supported, N                                                                                        

D is the bearing load capacity coefficient, 
3/N mm krpm                                                                                         

L  is the bearing axial length, mm                                                                                                                                        

d  is the shaft diameter, mm                                                                                                      

krpm  is the shaft rotational speed in thousands of revolutions per minute.  

These first generation designs are characterized by having a uniform simple elastic foundation 

with uniform stiffness properties. Generation I foil bearings, see Fig. 1.1.1c, exhibit load 

capacities approximately equal to rigid gas bearings of similar size and they used in air cycle 

machines. Second generation foil bearings, see Fig. 1.1.3, have a more complex elastic foundation 

in which the stiffness is tailored in one direction, for example axially, to accommodate some 

environmental phenomena such as shaft misalignment or leakage of hydrodynamic fluid from the 

foil edges. These Generation II foil bearings exhibit load capacities approximately twice that of 

Generation I bearings and they have been used successfully in turbocompressors and small 

microturbines. Third Generation bearings, see Fig. 1.1.4, with very complex elastic foundations, 

have stiffness that is tailored in two directions, often axial and radial. This level of design 

flexibility enables accommodation of edge effects and the ability to optimize bearing stiffness for 

 
[13] Blok H., and van Rossum J. J., (1953) “The Foil Bearing-A New Departure in Hydrodynamic Lubrication”, ASLE J. Lubr. Eng., 

9, pp. 316–330. 

[14] Ma, J. T. S., 1965, ‘‘An Investigation of Self-Acting Foil Bearings,’’ASME J. Basic Eng., 87, pp. 837–846. 

[15] Barnett, M. A., and Silver, A. (1970) ‘‘Application of Air Bearings to High Speed Turbomachinery’’, SAE Paper 700720. 

[16] DellaCorte, C., and Valco, M. J. (2000) “Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery 

Applications”, STLE Tribol. Trans., 43, pp. 795–801. 

[17] Krzysztof Nalepa, Paweł Pietkiewicz , Grzegorz Żywica, (2009),“Development of the foil bearing Technology”, Technical 

        Siences, Abbrev.: Techn. Sc., No 12, Y 2009  
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varying loads. Generation III foil bearings have been shown to have load capacities three to four 

times greater than primitive Generation I bearings and they will be used in aircraft engine 

applications, see Fig 1.1.5. [18] 

 

Fig. 1.1.5: Bearing Load Capacity, Gen. I, II, III [11] 

Foil bearings have been successfully used in high-speed turbomachines, and they present a 

remarkable reliability. For aircraft turbo-compressors, the mean-time-between failure is typically 

over 60000 h [19,20]. The operational mechanism of foil bearings is similar to that of fluid-film 

bearings. At the start-up stage, the rotor journal and the bearing bore are contacting each other 

directly. Once the rotational speed crosses the lift off speed, the rotor will be suspended by the 

generated pressure fluid film. As the stiffness of the foils is much smaller than that of the fluid 

film, the foil bearings can adapt to various working conditions through foil deformations. 

Specially, the range between the second and third critical speeds of the foil bearing-rotor system 

is very large, which means that the foil bearings can suspend the rotor at a very high speed stably. 

Owing to these advantages, foil bearings are identified as a potential alternative for REBs. If 

properly designed and operated, foil bearings would incur very slight wear and have a long service 

life [21]. 

1.2. Gas Foil Bearings and Rotor Dynamics 

The bump type foil bearing is simple in construction and more efficient compared to the other 

types of foil bearing. It is superior to conventional gas bearing and has higher load capacity, lower 

power loss, good stability, and endurance to high temperature, misalignment and foreign particles 

in the gas [2]. Because of these good dynamic characteristics, an important amount of research 

work on bump type foil bearing dynamics has been carried out in the past three. First, Heshmat 

et al. [2] developed a so-called simple elastic foundation model for foil journal bearing and 

compliant thrust bearing, in which the bump foil was built as separated springs. The structural 

stiffness was assumed to be linear, equally distributed and independent of loads. And the static 

 

[18] Christopher DellaCorte, Kevin C. Radil, Robert J. Bruckner, S. Adam Howard, (2007), “Design, Fabrication and Performance of 

Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings”, NASA/TM—2007-214691 

[19] Y. Hou, Z. H Zhu, C. Z. Chen (2004) Comparative test on two kinds of new compliant foil bearing for small cryogenic turbo-

expander. Cryogenics, 44: 69-72. 

[20] Z. Y. Guo, K. Feng, T. Y. Liu (2018) et al. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: effects of 

gas film and foil structure on subsynchronous vibration. Mechanical Systems and Signal Processing, 107: 549-566. 

[21] H Heshmat H. (1991) A feasibility study on the use of foil bearings in cryogenic turbopumps. 27th AIAA/SAE/ASME/ASEE 

Joint Conference, California, USA, June 24-26: AIAA-91-2103. 
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Reynolds equation was solved to obtain the pressure distribution. This model has been widely 

adopted in many other works due to simplicity, but it predicts low structural stiffness because the 

interactions between the bumps are neglected. Later, Ku and Heshmat [22] presented a more 

elaborate structural deflection model, which incorporated the interaction forces between bumps, 

Coulomb friction at the contact surfaces and geometric parameters of the foils, using shell theory 

to calculate the stiffness of an entire bump strip. In addition, synchronous stiffness and damping 

coefficients of the foil structure were predicted. Peng and Carpino [23,24] presented linear 

stiffness and damping coefficients of bump foil bearing considering elastic effect of bump foil 

and foil bearing dynamic coefficients using finite element method. Iordanoff [25] proposed 

another formulation for the static stiffness of the bump considering the friction at contact surfaces, 

and the local bump compliance of the welded and free bumps were calculated separately using 

different boundary conditions.  

  

Fig. 1.2.1: Application of Compliant GFBs in Aircraft Air-Cycle Machines [26] 

FSan Andres and Kim [27] developed a numerical model in which both 1D and 2D finite element 

(FE) structural models were introduced to calculate the local deflection of the top foil. They also 

obtained bearing characteristics for heavily loaded foil bearing and validated with test results and 

they presented frequency dependent dynamic coefficients [28]. Moreover, they presented 

nonlinear response of rotor supported by gas foil bearing. The nonlinear nature of stiffness 

characteristics of foil bearing is modelled using experimental data. They have shown that the 

linear force coefficients are not reliable to represent the dynamic behavior of rotor supported on 

gas foil bearing [29]. Kim [30] conducted a parametric study on the static and dynamic 

characteristics of bump type foil bearings with different top foil geometries (circular and three 

 
[22] C. P. Ku, H. Heshmat (1992) Compliant foil bearing structural stiffness analysis: part1-theoretical model including strip and 

variable bump foil geometry, Journal of Tribology 114 (2): 394–400. 

[23] Peng, J.-P.; Carpino, M. (1993) Calculation of stiffness and damping coefficients for elastically supported gas foil bearings. 

Journal of Tribology, 115, 1, 20–27. 

[24] J. P. Peng, M. Carpino (1997) Finite element approach to the prediction of foil bearing rotor dynamic coefficients, Journal of 

Tribology 119 (1): 85–90. 

[25] I. Iordanoff (1997) Analysis of an aerodynamic compliant foil thrust bearing: method for a rapid design. Journal of Tribology 

121 (4) 1996 816-822 

[26] H. Heshmat., P. Hermel, (1993), Compliant Foil Bearings Technology and Their Application to HighSpeed Turbomachinery, 
Journal of Tribology 25: 559-575 

[27] L. San Andres, T. H. Kim (2007), Improvements to the analysis of gas foil bearings: Integration of top foil 1D and 2D structural 

models. In: ASME turbo expo 2007: Power for land, sea, and air, pp. 779789. New York: ASME. 

[28] T. H. Kim, L. San Andres (2008), Heavily loaded gas foil bearings: a model anchored to test data, Journal Engineering for Gas 

Turbines and Power 130 (1) 012504–012508. 

[29] L. San Andres, T. H. Kim (2008), Forced nonlinear response of gas foil bearing supported rotors, Tribol. Intern. 41 704–715. 

[30] D. Kim (2007) Parametric studies on static and dynamic performance of air foil bearings with different top foil geometries and 

bump stiffness distributions, Journal of Tribology 129 (2) 354–364. 
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pad configurations) and bump stiffness distributions. He presented a mathematical model of the 

bump foil bearing with equivalent viscous damping. The comparison of the static and dynamic 

performance of the bearing with linear perturbation based dynamic coefficients and a time domain 

orbit simulation is carried out. He found that there is a significant difference in the estimated onset 

speeds of instability from the set of approaches.   

  

Fig. 1.2.2: Construction of a Turbo Blower using GFBs; taken from AERZEN 

Le Lez et al. [31] developed a new structural model for bump-type foil bearings using an 

analytical method considering the interaction between bumps. The elasticity of the bump and 

friction forces was also considered. They have also studied the nonlinear behavior of the foil 

bearing with stability and unbalance responses [32]. Carpino and Talmage [33,34] presented a 

fully coupled FE formulation considering the membrane and bending effects of the top foil, bump 

foil deflections and Coulomb friction between contact surfaces. Lee et al. [35] presented a FE 

model for the foil structure with consideration of the hysteretic behavior of friction. Unlike the 

previous models that assumed the direction of friction to be opposed to the horizontal 

displacement, this model related the direction of friction to the path of displacement. Various 

deflections of the foil structure are obtained for the same load in different loading/unloading cases. 

The effect of friction and the energy dissipation properties were investigated. Feng and Kaneko 

[36] proposed a link-spring model for the bump foil and the top foil was treated as a shell. Each 

bump was simplified to two rigid links and a horizontal spring. These two links are connected by 

a joint at the summit and by the spring at the bottom. The stiffness of bump foil, interactions 

between bumps, friction and deflection of top foil were taken into account. Significant work has 

been conducted in solving the compressible Reynolds equation numerically. Lez et al. [37], as 

well as Kim [38] and Zhang et al. [39], used the Finite Difference Method (FDM) to substitute 

the time derivatives /dp dt  and /dh dt  included in Reynolds equation by backward-difference 

 
[31] S. Le Lez, M. Arghir, J. Frene (2007) A new bump-type foil bearing structure analytical model, Journal of Engineering for Gas 

Turbines and Power 129 (4) 1047–1057. 

[32] S. Le Lez, M. Arghir, J. Frene (2009) Nonlinear numerical prediction of gas foil bearing stability and unbalanced response, 

Journal of Engineering for Gas Turbines and Power 131:012503–012512. 

[33] Carpino M. and Talmage G. (2006), “Prediction of rotor dynamic coefficients in gas lubricated foil journal bearings with 

corrugated sub-foils”, Tribol. Trans, 49: 400–409. 

[34] Carpino M. and Talmage G. (2003), “A fully coupled finite element formulation for elastically supported foil journal bearings”, 

Tribol Trans, 46: 560–565. 

[35] Lee Y-B, Park D-J, Kim C-H, et al. Operating characteristics of the bump foil journal bearings with top foil bending phenomenon 

and correlation among bump foils. Tribol Int 2008; 41: 221–233 

[36] K. Feng, S. Kaneko (2010) Analytical model of bump-type foil bearings using a link spring structure and a finite element shell 

model, Journal of Tribology 132 (2) 1–11. 

[37] S. LeLez, M. Arghir, J. Frêne (2009) Nonlinear numerical prediction of gas foil bearing stability and unbalanced response, Journal 

of Engineering for Gas Turbines and Power 131:012503. 

[38] D. Kim (2007) Parametric studies on static and dynamic performance of air foil bearings with different top foil geometries and 

bump stiffness distributions, Journal of Tribology 129: 354–364. 

[39] J.  Zhang, W. Kang, Y. Liu (2009) Numerical method and bifurcation analysis of Jeffcott rotor system supported in gas journal 

bearings, Journal of Computational and Nonlinear Dynamics 4 011007. 
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approximations. Later, Bonello and Pham [40,41], and Larsen and Santos [42] introduced a state 

variable p h =   in order to solve the Reynolds equation and simultaneously acquire results for 

other state variables, at the same time step. In parallel, FDM and Galerkin reduction method were 

used in order to perform the spatial discretization. Baum et al. [43] presented a slightly different 

approach by using the FDM method and Galerkin reduction method without inserting the state 

variable  . Instead, they used backward-differences approximations for the spatial 

differentiation of the pressure and fluid film variables and solved the Reynolds equation for the 

time derivative /dp dt . 

Nevertheless, it is far from enough to just perform the linear analysis of GFB-rotor systems. Due 

to the nonlinear hydrodynamic film, experiments and simulations of the rotors supported on the 

bump-type GFBs show significant subsynchronous vibrations and frequency-locking behaviors 

[44,44,45]. Similar subsynchronous vibration phenomena were also widely observed in rotor 

systems supported by other types of gas bearings [46,47]. The first study to attempt to explain the 

nonlinear vibrations was presented by San Andrés and Kim [28] using a reduced numerical model 

that neglected the gas film under the assumption of a very stiff gas film. They suggested the cause 

of the subsynchronous vibrations as a forced nonlinearity under high unbalanced levels rather 

than typical hydrodynamic bearing instability. Inspired by the work of Andrés and Kim [28], 

Hoffmann et al. [43] investigated the effect of the nonlinear fluid film forces on the 

subsynchronous vibrations and found that the system may be self-excited by the gas film forces 

with a frequency related to the system’s natural frequency. Their results also indicated that the 

speed range of the subsynchronous vibrations, which characterize stable Hopf bifurcation 

behavior, decreases and finally disappears with the increase in the static load. A coincident 

conclusion could be drawn from the simulation results of Gu et al. [45] in which no 

subsynchronous vibrations existed before the film failure. A more systematic investigation was 

conducted by Hoffmann and Liebich [46] experimentally and numerically. The two causes of 

subsynchronous vibrations were studied individually, and one of the findings was that a higher 

unbalanced value would result in a lower onset speed of subsynchronous vibrations.  

Except for the subsynchronous vibrations, another noteworthy nonlinear topic is the existence of 

stable and unstable periodic solutions. On the one hand, Pham and Bonello [40] noticed that there 

was no stable limit cycle in a GFB-rotor system with the most commonly used parameters, while 

a stable limit cycle was obtained with a very stiff foil structure and a small bearing clearance. 

Bonello and Pham [39] gave a specific explanation that attributed this to the compliance of the 

foil structure, in view of the fact that limit cycles have been numerically obtained in rotors 

supported by rigid gas bearings in [47,48]. On the other hand, an unstable limit cycle was found 

 
[40] P. Bonello, H. M. Pham (2014) The efficient computation of the nonlinear dynamic response of a foil–air bearing rotor system, 

Journal of Sound and Vibration 333:3459–3478. 

[41] H. M. Pham, P. Bonello (2013) Efficient techniques for the computation of the nonlinear dynamics of a foil–air bearing rotor 

system, ASME TurboExpo2013: Turbine Technical Conference and Exposition, p.7. 
[42] J. S. Larsen, I. F. Santos (2014) Efficient solution of the non-linear Reynolds equation for compressible fluid using the finite 

element method, Journal of the Brazilian Society of Mechanical Sciences and Engineering 1–13. 

[43] Baum C., Hetzler H., Schröders S., Leister T., Seemann W. (2020) A computationally efficient nonlinear foil air bearing model 

for fully coupled, transient rotor dynamic investigations. Tribol. Int. doi: https://doi.org/10.1016/j.triboint.2020.106434 

[44] Heshmat, H (1994).: Advancements in the performance of aerodynamic foil journal bearings: High speed and load capability. J. 

Tribol. 116(2), 287–294 

[45] Gu, Y., Ma, Y., Ren, G.: Stability and vibration characteristics of a rotor-gas foil bearings system with high static low dynamic 

stiffness supports. J. Sound Vib. 397, 152–170 (2017) 

[46] Hoffmann, R., Pronobis, T., Liebich, R.: Non-linear stability analysis of a modified gas foil bearing structure, In: Proceedings of 

the 9th IFToMM International Conference on Rotor Dynamics, Springer, pp. 1259–1276 (2015) 

[47] Wang, C.-C., Chen, C.-K.: Bifurcation analysis of selfacting gas journal bearings. J. Trib. 123(4), 755–767 (2001) 

[48] Zhang, J., Kang, W., Liu, Y.: Numerical method and bifurcation analysis of Jeffcott rotor system supported in gas journal 

bearings, J. Comput. Nonlinear Dynam. 4(1) 



12 

 

Panagiotis V. Papafragkos, MSc Thesis 

 

by Yang et al. [49] in rigid gas bearings, which results in a shock instability phenomenon; in other 

words, the nonlinear stability of the system is determined by the amplitude of the disturbance.  

In fact, the disagreements about the existence of subsynchronous vibrations and stable or unstable 

periodic solutions come from different Hopf bifurcation behaviors (i.e., supercritical Hopf 

bifurcation and subcritical Hopf bifurcation) [50]. The investigations of different Hopf bifurcation 

behaviors are very common in oil journal bearings. Although most of them were based on 

analytical formulas for an infinitely long or an infinitely short journal bearing, the investigation 

carried out by Chasalevris [51] greatly highlighted the significance of the prediction of the Hopf 

bifurcation behaviors and the actual available speed range in oil journal bearing-rotor systems. 

 

Fig. 1.2.3: The configuration of the GFBs-Jeffcott Rotor system [52] 

In this Master Thesis, a rather simplistic model for bump foil properties of linearized stiffness and 

damping coefficients is utilized, taken directly from literature, and the first two design parameters 

are introduced as foil compliance and foil loss factor. The rotor model follows the Jeffcott rotor 

model and the third design parameter of shaft stiffness is introduced in the modelling, see 

Fig.1.2.3. The nonlinear dynamic characteristics of the system are investigated evaluating its time 

domain response for several sets of the key design properties of the system, like rotor stiffness, 

foil stiffness and damping and a study is performed on the quality of stability and of feasible 

motions experiencing bifurcations. The study of the work portions dissipated in the damping 

sources of gas and bump foil presents a correlation of the energy flow to the respective bifurcation 

developed, in another approach than Leister et al. [1] followed so as to achieve the reduction of 

undesired self-excited vibrations which affect instantly the stability of the system. A real system 

consisting of a high-speed centrifugal compressor rotor on gas foil bearings is also included in 

the simulations. 

1.3. Quality of motion and stability 

Regarding the rotating speed, which is the bifurcation parameter, and the design properties, which 

are the foil and shaft properties, the system may develop four types of motions. In the autonomous 

system there are two types of motion, the asymptotically stable motion and the unstable motion 

around a fixed-point equilibrium. If the system is non-autonomous (unbalanced system), there are 

also two types of motion, the orbital asymptotically stable and the unstable motion around a limit 

cycle. In this project, we study mostly the non-autonomous system, which is characterized like 

that due to the presence of the unbalance forces. In general, periodic, quasi-periodic and chaotic 

motions are expected to be generated by the system studied. 

 
[49] Yang, P., Zhu, K.Q., Wang, X.L.: On the nonlinear stability of selfacting gas journal bearings. Tribol. Int. 42(1), 71–76 (2009) 

[50] Seydel, R.: Practical Bifurcation and Stability Analysis, vol. 5. Springer Science & Business Media, Berlin (2009) 

[51] Chasalevris, A.: Stability and Hopf bifurcations in rotor-bearing-foundation systems of turbines and generators. Tribol. Int. 145, 

106154 (2020) 

[52] Zhang, J., Kang, W., and Liu, Y. (2008). "Numerical Method and Bifurcation Analysis of Jeffcott Rotor System Supported in 

Gas Journal Bearings." ASME. J. Comput. Nonlinear Dynam. 4(1): 011007 
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Fig. 1.3.1: Periodic solution with 2 /T  =   Fig. 1.3.2: Periodic solution with 4 /T  =   

A periodic solution is called a limit cycle if there are no other periodic solutions sufficiently close 

to it. In other words, a limit cycle is an isolated periodic solution and corresponds to an isolated 

closed orbit in the state space. 

When a Floquet multiplier leaves the unit circle through -1, a period-doubling bifurcation takes 

place and the branch of stable periodic solutions that exists before the bifurcation continues as an 

unstable branch of periodic solutions after the bifurcation, a branch of stable period-doubled 

solutions is created if the bifurcation is supercritical, while a branch of unstable period-doubled 

solutions is destroyed if the bifurcation is subcritical [53]. 

In Fig. 1.3.1, we show a periodic orbit of a continuous-time system and its intersection with a 

one-sided Poincare section. The scenario after this periodic orbit undergoes a period-doubling 

bifurcation is depicted in Figure 1.3.2. The period-doubled orbit intersects the Poincare section 

two times, once at the point labeled 1 and another time at the point labeled 2. During the course 

of evolution on the period-doubled orbit, we successively flip between points 1 and 2 on the 

Poincare section. Therefore, a period-doubling bifurcation is also called a flip bifurcation. After 

k successive period-doubling bifurcations, we would have 2k points on the corresponding 

Poincare section. 

  

Fig. 1.3.3: Quasiperiodic solution Fig. 1.3.4: Chaotic solution 

 
[53] A. Nayfeh, B. Balachandran, (1995), “Applied nonlinear dynamics : analytical, computational, and experimental methods” 
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A quasiperiodic solution, see Fig. 1.3.3, is a dynamic solution characterized by two or more 

incommensurate frequencies. It is also called a k-period quasiperiodic solution if it is 

characterized by k incommensurate frequencies. Although the waveform of a quasiperiodic signal 

may look complex because of the presence of many sinusoids in it, calculating its spectrum would 

reveal its simplicity. In principle, one can use the spectrum to distinguish a quasiperiodic function 

from a periodic function in that the spikes in the spectrum of a quasiperiodic function are not 

spaced at integer multiples of a particular frequency. However, in practice, due to the difficulty 

of determining whether the ratio of two measured values is rational or irrational, a spectrum that 

appears to be that of a quasiperiodic function may be that of a periodic function with a very long 

period.[53] 

Chaotic solutions, see Fig. 1.3.4, are also bounded like equilibrium, periodic, and quasiperiodic 

solutions. There is no precise definition for a chaotic solution because it cannot be represented 

through standard mathematical functions. However, a chaotic solution is an aperiodic solution, 

which is endowed with some special identifiable characteristics. From a practical point of view, 

chaos can be defined as a bounded steady-state behaviour that is not an equilibrium solution or a 

periodic solution or a quasiperiodic solution. The attractor associated with a chaotic motion in 

state space is not a simple geometrical object like a finite number of points, a closed curve, or a 

torus. In fact, it is not even a smooth surface; that is, it is not a manifold. Chaotic attractors are 

complicated geometrical objects that possess fractal dimensions. In contrast with the spectra of 

periodic and quasiperiodic attractors, which consist of a number of sharp spikes, the spectrum of 

a chaotic signal has a continuous broadband character. In addition to the broadband component, 

the spectrum of a chaotic signal often contains spikes that indicate the predominant frequencies 

of the signal. A chaotic motion is the superposition of a very large number of unstable periodic 

motions. Thus, a chaotic system may dwell for a brief time on a motion that is very nearly periodic 

and then may change to another periodic motion with a period that is k times that of the preceding 

motion. This constant evolution from one periodic motion to another produces a long-time 

impression of randomness while showing short term glimpses of order. Chaotic systems are also 

characterized by sensitivity to initial conditions; that is, tiny differences in the input can be quickly 

amplified to create overwhelming differences in the output. This is the so-called butterfly 

effect.[53] 

 

Fig. 1.3.4: Schematics of the geometry of misaligned gas foil bearing (a) The journal foil bearing      

(b) the misalignment condition [54] 

 
[54] Li, H., Geng, H. and Lin, H. (2021), "Thermo-elastohydrodynamic analysis of the inhomogeneous foil bearing with 

misalignment", Industrial Lubrication and Tribology, Vol. 73 No. 6, pp. 891-896. 
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1.4. Design Optimization 

Most of the considered rotating machinery is supposed to reach and to maintain a stable operating 

point after completing the run-up. However, as a result of the highly nonlinear bearing forces 

induced by the pressurized fluid, the existing equilibrium points of GFB rotor systems tend to 

become unstable for higher rotational speeds [1]. Subsequently, undesirable self-excited 

vibrations with comparatively large amplitudes may occur [55,56,57]. For this reason, an 

optimization scheme is applied in order to define such values for bump foil properties (stiffness 

and damping) that bifurcations become eliminated. 

In the literature, few articles are reported showing the use of few optimization techniques for 

different types of bearings and most of the relevant literatures among those are summarized here. 

Choi and Yoon [58] optimized design variables for double row angular contact ball bearings of 

an automobile wheel-bearing unit using genetic algorithm (GA). Chakraborty et al. [59] presented 

an optimization problem on ball bearings. The design was established with five design variables, 

eight inequality constraints and the dynamic capacity as objective function. The problem was 

solved for the longest fatigue life by genetic algorithms; however, certain conditions like 

assembly angle was kept constant for all pairs of solutions. Rao and Tiwari [60] attempted a 

parametric study on the design variables specified by Chakraborty et al. [55] and applied bounds 

to the five constant variables involved in the constraints. The maximization of fatigue life is taken 

as objective function, and the genetic algorithm was used. Gupta et al. [61] applied Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) to optimize the ball bearing for three 

objective functions, i.e. the static capacity, dynamic capacity and elasto-hydrodynamic minimum 

film thickness, separately and pair-wise and parametric study was carried out. Ganesan and 

Mohankumar [62] shown application potential of NSGA-II to different domain of research. [67] 

Kumar et al. [63] applied Genetic Algorithm (GA) to a constrained nonlinear design problem of 

cylindrical roller bearings (CRB) and chosen four design variables for optimization. In another 

study, Kumar et al. [64] applied GA for design optimization of CRB with the logarithmic profile 

crowning. NSGA-II on design optimization of high-speed angular contact ball bearing by 

considering two objective functions; spin frictional power loss and rating life on 7007AC bearing 

used by Wei and Chengzu [65]. Subsequently, Kumar et al. [59] attempted for design optimization 

 

[55] Bonello, P.; Pham, H. M. (2014) The efficient computation of the nonlinear dynamic response of a foil-air bearing rotor system. 

Journal of Sound and Vibration, 333, 15, 3459–3478. 

[56] Hoffmann, R.; Pronobis, T.; Liebich, R. (2014) Non-linear stability analysis of a modified gas foil bearing structure. In: 

Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, Milan, Italy. 

[57] Baum, C.; Hetzler, H.; Seemann, W. (2015) On the stability of balanced rigid rotors in air foil bearings. In: Proceedings of the 

SIRM 2015, Magdeburg, Germany(2015a). 
[58] Choi, D.H.; Yoon, K.C.: A design method of an automotive wheel-bearing unit with discrete design variables using genetic 

algorithms. J. Tribol. 123, 181–187 (2001) 

[59] Chakraborty, I.; Kumar, V.; Nair, S.B.; Tiwari, R.: Rolling element bearing design through genetic algorithms. Eng. Optim. 35(6), 

649–659 (2003) 

[60] Rao, B.R.; Tiwari, R.: Optimum design of rolling element bearings using genetic algorithms. Mech. Mach. Theory 42, 233–250 

(2007) 

[61] Gupta, S.; Tiwari, R.; Nair, S.B.: Multi-objective design optimization of rolling bearings using genetic algorithm. Mech. Mach. 

Theory 42, 1418–1443 (2007) 

[62] Ganesan, H.; Mohankumar, G.: Optimization of machining techniques in CNC turning centre using genetic algorithm. Arab. J. 

Sci. Eng. 38, 1529–1538 (2013) 

[63]Kumar, K.S.; Tiwari, R.; Reddy, R.S.: “Development of an optimum design methodology of cylindrical roller bearings using 

genetic algorithms. Int. J. Comput. Methods Eng. Sci. Mech. 9(6), 321–341 (2008) 

[64] Kumar, K.S.; Tiwari, R.; Prasad, P.V.V.N.: An Optimum design of crowned cylindrical roller bearings using genetic algorithms. 

J. Mech. Des. 131(5), 051011 (2009) 

[65] Wei, Y., Chengzu, R.: Optimal design of high speed angular contact ball bearing using a multi-objective evolution algorithm. In: 

Paper presented at the International Conference on Computing. Control and Industrial Engineering. IEEE, Wuhan, June 5–6 

(2010) 
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on a tapered roller bearing. Waghole and Tiwari [66] successfully formulated nonlinear problem 

of needle roller bearing and optimized by using hybrid method which involved artificial bee 

colony algorithm (ABC) algorithm, differential search algorithm and grid search method. In 

another study, Tiwari and Waghole [67] presented the SOO of SRBs by considering the 

maximization of dynamic capacity as objective function, eight design parameters and twenty 

constraints. Using the artificial bee colony algorithm (ABCA), differential search algorithm 

(DSA), grid search method (GSM) and hybrid method (HM), the optimization problem was 

solved. The hybrid method gave the optimum solution. The constraint violation study and the 

sensitivity analysis were also carried out. [67] 

It is observed from the above literature that relatively no work is done on the design optimization 

of the GFBs. Many deterministic optimization techniques can be applied for the nonlinear 

optimization problem of bearings, however the problem arises when numbers of design variables 

are more. With continuous research in the field of optimization techniques, nature-inspired 

heuristic optimization methods provide a better solution instead of classical optimization method. 

There are many nature-inspired well known and recently developed optimization algorithms such 

as Genetic Algorithm (GA), Artificial Bee Colony (ABC), artificial neural network (ANN), 

particle swarm optimization (PSO), Harmony Search (HS), water cycle algorithm (WCA), mine 

blast algorithm (MBA), etc. and many of those proved their suitability to many engineering 

optimization problems. However, some of these advanced optimization techniques have some 

limitations due to algorithm specific parameters. [68] 

In the present work, an attempt has been made to implement Generalized Pattern Search (GPS) 

algorithm for optimization of the bump foil stiffness and damping of the gas foil bearing to 

minimize the inverse of dissipated energy in the gas film. The GPS algorithm were defined and 

analyzed by Torczon [69], for derivative-free unconstrained optimization on continuously 

differentiable functions using positive spanning directions. Lewis and Torczon [70] introduced 

the idea of using positive spanning directions with GPS. In [71], they showed that if the objective 

is continuously differentiable and if the set of directions that define the local search is chosen 

properly with respect to the boundary of the feasible region, then the GPS framework and 

convergence theory extend to bound constrained optimization. In [72], they show the same results 

for problems with a finite number of linear constraints. Both these extensions use the appealing 

“barrier” strategy of declaring any infeasible point to be unacceptable as a next iterate. 

 

 

 

 

 

 

  

 
[66] Waghole, V.; Tiwari, R.: Optimization of needle roller bearing design using novel hybrid methods. Mech. Mach. Theory 72, 71–

85 (2014) 

[67] Tiwari, R.; Waghole, V.: Optimization of spherical roller bearing design using artificial bee colony algorithm and grid search 

method. Int. J. Comput. Methods Eng. Sci. Mech. 16(4), 221–233 (2015) 
[68] Dandagwhal, R.D., Kalyankar, V.D. Design Optimization of Rolling Element Bearings Using Advanced Optimization 

Technique. Arab J Sci Eng 44, 7407–7422 (2019). 

[69] Torczon V. (1997), “On the Convergence of Pattern Search Algorithms,” SIAM Journal on Optimization Vol.7 No.1, 1–25. 

[70] Lewis R.M., Torczon V. (1996), “Rank ordering and positive basis in pattern search algorithms,” ICASE NASA Langley 

Research Center TR 96-71. 

[71] Lewis R.M., Torczon V. (1999), “Pattern search algorithms for bound constrained minimization,” SIAM Journal on Optimization, 

Vol.9, 1082-1099. 

[72] Lewis R.M., Torczon V. (2000), “Pattern search methods for linearly constrained minimization,” SIAM Journal on Optimization, 

Vol.10 No.3, 917–941. 
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2. MODELLING AND FORMULATION OF THE NONLINEAR DYNAMIC SYSTEM  

Gas foil bearings are compliant-surface hydrodynamic bearings that use ambient air as the 

lubricating fluid. A hydrodynamic pressure builds up within the small gap or film between the 

rotating shaft and the smooth top foil. Fig. 2.2 shows the configuration of a bump type GFB [73]. 

In Fig. 2.1 all the parts of which GFB consists. These parts are; the rigid part (housing), a thin top 

foil and a series of corrugated bump-strip supports. The leading edge of the thin foil is free, and 

the foil trailing edge is welded to the bearing housing. Beneath the top foil, a bump structure is 

laid on the inner surface of the bearing. The top foil of smooth surface is supported by a series of 

bumps acting as springs, thus making the bearing compliant. The bump strip provides a tunable 

structural stiffness [74]. Damping arises due to material hysteresis and dry-friction between the 

bumps and top foil, and between the bumps and the bearing inner surface [75]. 

 
Fig. 2.2 Representation of a gas foil bearing cross section, key geometry and operating parameters 

 
[73] DellaCorte, C., and Valco, M. J., 2000, “Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery 

Applications,” NASA/TM—2000- 209782. 

[74] Heshmat, H., Walowit, J. A., and Pinkus, O., 1983, “Analysis of Gas-Lubricated Foil Journal Bearings,” J. Lubr. Tech., 105, pp. 

647-655 
[75] San Andrés, L., 1995, “Turbulent Flow Foil Bearings for Cryogenic Applications,” J. Tribol., 117, pp. 185-195 

 

 

 

 

 

 

 

Fig. 2.1 Parts of the gas foil bearings at various stages of manufacturing process [10] 
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Also, the journal’s and bearing’s rotational axes are considered parallel and their geometrical 

centers are denoted by ( ),j j jO x y  and ( ),d d dO x y   respectively. Their nominal radiuses are 

defined as R , 
rR c+  , where rc is the nominal radial clearance. 

The distance between jO  and bO  is the eccentricity 
2 2

j je x y= + . Coordinate   is measured 

from the horizontal positive semi-axis of the bearing, as shown in Fig.2.2. The top foil 

deformation in radial direction is denoted by ( , )q t , considered positive when it is developed to 

the outer side of the bearing. The deflection of the foil is provoked by the pressure distribution 𝒑 

of the compressible gas flowing in the gap between journal and top foil and the bearing forces 

BF  induced by the latter. The pressure ( , , )p x z t  is dependent on time   in dynamic problem 

(whirling motion of the journal) and the spatial coordinates; the circumferential x R =   and the 

axial one z . The location of foil starting and ending angle is denoted by the angular coordinate 

 and in this project / 2 = in which the foil is considered without any deformation q . 

2.1. Elastoaerodynamic lubrication problem and resulting gas forces 

The assumptions introduced in the lubrication problem are quite common: a) isothermal gas film, 

b) laminar flow, c) no-slip boundary conditions, d) continuum flow, e) negligible fluid inertia, f) 

ideal isothermal gas law ( )constantp  = , g) negligible entrance and exit effects, and h) negligible 

curvature ( )rR R c + . In general, solving the dimensional (DM) form of a problem can be 

computationally expensive. Thus, a dimensionless (DL) expression of the equations of the model 

can be a decisive factor in order to enhance time and memory efficiency, and additionally generic 

approach for the model and the results. The following transformations take place in order to define 

the dimensionless equations describing the problem. The Reynolds equation for compressible gas 

flow is given in Eq. (1), and it is an implicit function of time and of journal and foil kinematics. 

 
 

Fig.2.1.1 Finite difference grid x zN N  used  for  the   

evaluation   of pressure distribution. 

Fig.2.1.2 Modelling of gas pressures and forces 

acting on the rotating journal and the compliant  

foil structure. 
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( ) ( )3 2 3 2
p p

ph ph ph ph
x x z z x




        
+ =  +   

        
   (1) 

The dimensionless parameters of gas pressure p , gas film thickness h , spatial coordinates 

(circumferential and axial respectively)   and z , time , rotating speed  , and ratio / bR L =

are included in the elastoaerodynamic lubrication problem of Eq. (1). 

Analytical solution for Eq.(1) cannot be defined, so we made an approach to evaluate the pressure 

distribution with the Finite Difference Method  (FDM). The pressure domain is converted into a 

grid of 1, , 1Xi N= +  and 1, , 1Zj N= +  points, where i and j are the indexes in the 

circumferential and axial direction, see Fig. 2.2.1 and Fig. 2.2.2. 

Concluding remarks on the current study should highlight that the geometry of a specific bearing 

type and the relative properties of foundation with respect to the rotor, have major influence in 

the type of bifurcation of rotor-bearing-foundation systems. The turbine and generator rotors may 

have the potential to render subcritical bifurcations. At this case, instability occurs at rotating 

speeds lower than the threshold speed of instability. 

The Reynolds equation is first rewritten defining the first time derivative of the pressure in Eq. 

(2a) and after some math in Eq. (2b). Then the discrete Reynolds equation is defined in the grid 

points expressing the partial derivatives with finite differences. 

( ) ( )
2

3 31

2 2 2

p p
ph ph ph ph

x x z z x





         
= + −   

        
   (2a) 

( )
2

3 31

2 2 2

p p ph
p ph ph ph

x x z z xh h h h

        
= + − −   

       
   (2b) 

The gas film thickness as shown in Fig.2.1 is defined in Eq. (3) for the continuous and the discrete 

pressure domain (finite difference grid) where ( )q q =  is the foil deformation in radial direction. 

1 cos sin , 1 cos sinj j i j i j i ih x y q h x y q   = − − + = − − +    (3) 

Boundary and initial conditions of the problem are defined in continue. Ambient pressure is 

assumed at the starting and ending angle of the foil (periodic boundary condition) in Eq. (4) (in 

the continuous and the discrete pressure domain): 

( ) ( ) 1, 1,, , , 2 , 1, 1
X0 0 j N jp z p z p p     += + = = =    (4) 

Taking into account the symmetry of the problem, instead of assuming the gas pressure equal to 

the ambient op  at the axial ends, ( ) ( )0 1 1p z p z= = = = , the boundary condition can be written in 

Eq. (5) (for the continuous and the discrete pressure domain). In this way the lubrication problem 

is solved in the half domain, reducing the evaluation cost severely. 

, / 2 , /2 1

1/2

0, 0Z Zi N i N

z

p pp

z z

−

=

−
= =

 
    (5) 



20 

 

Panagiotis V. Papafragkos, MSc Thesis 

 

Last, the initial conditions for the dimensionless form of the problem are defined in Eq. (6) (in 

the continuous and the discrete pressure domain). 

( )
0

,0, , 1, 1
t

i jp z p = = =  and ( )
0

0, 0, 0
t

iq q = = =    (6) 

The nonlinear gas forces, after evaluating pressure p (as ,i jp ), can be determined in Eq. (7) where

Xx = 2 / N and 
Zz = 1 / N . 

( ) ( )( )
2 1

, ,

2 20 0

1 cos 1 cos
X ZN N

B X i j i

i j

F p dzd p x z



  
= =

= − − = − −       (7a) 

( ) ( )( )
2 1

, ,

2 20 0

1 sin 1 sin
X ZN N

B Y i j i

i j

F p dzd p x z



  
= =

= − − = − −       (7b) 

In this way the aerodynamic problem renders 
X ZN N  ODEs of 1st order with respect to the time 

derivative of the point pressure in Eq. (8) 

  ( ), , , , ,i j Bp= =p f p x x q q      (8) 

The vectors x  and q  may be perceived as  
T

j j d dx y x y=x representing the journal motion 

(coupled to the disc motion through the rotor’s equations of motion) and  
T

1 1 XNq q q=q

representing the foil motion (coupled to the journal motion through the Reynolds equation due to 

the gas film thickness function). 

It is important to mention that it’s quite common in GFBs for sub-ambient pressures to arise. 

These sub-ambient pressures can cause the top foil to separate from the bumps into a position in 

which the pressure on both sides of the pad is equalized. Heshmat et al. [76-77] introduced a set 

of boundary conditions accounting for this separation effect. More specifically, a simple Gümbel 

[78]  boundary condition is imposed, meaning that sub-ambient pressures are discarded when 

integrating the pressure in Eq. (7) to obtain the bearing force components ,B XF ,
,B YF  essentially 

leaving the sub-ambient regions ineffective. In terms of numerical calculations, the assumption 

made by Heshmat [2-3] can be simply explained as following: in case fluid pressure p  is lower 

than the ambient
0p , then the former should be considered equal to

0p and the foil deformation at 

these points will be zero ( )0for 1i iq p=  . 

The simplified model for the bump foil structure is depicted at Fig. 2.1.3. The structure consists 

of 2XN − linear massless elements of stiffness fk (compliance f fa = 1 / k ) and damping fc . The 

springs and dampers mount the corresponding 1XN − top foil stripes of area bx L  (or 

dimensionless area 1x  ), see Fig.2.1.2. The top foil of the bearing is not covering a complete 

 
[76] H. Heshmat, J.A. Walowit, O. Pinkus (1983) Analysis of gas lubricated compliant thrust bearings, Journal of Lubrication 

Technology 105: 638–646. 

[77] H. Heshmat, J.A. Walowit, O. Pinkus (1983) Analysis of gas-lubricated foil journal bearings, Journal of Lubrication Technology 

10: 647–655. 

[78] B.J. Hamrock (1994) Fundamentals of Fluid Film Lubrication, McGraw-Hill Series in Mechanical Engineering, McGraw-Hill 

Inc., NewYork. 
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cylinder; a single gap can be found at 0 =  , see Fig.2.2, where foil is clamped to the bearing 

housing. Therefore, the moving top foil stripes are 1XN − , see Fig.2.1.2.  

 
Fig. 2.1.3 Representation of the simulation model; Bump foil 

structure is modeled by springs and dampers 

The top foil stripes are assumed to remain parallel to the bearing surface during their motion, 

therefore no axial coordinate is required for the top foil motion. The geometry of the foil structure 

and its properties, shown in Fig.2.2 and Fig.2.1.2, render the dimensionless compliance 

( ) ( ) ( )
3 2

0 0 02 / 1 /f b rp l t v s c E = −  [79]. The motion of each of the top foil stripe is excited by the mean 

gas pressure
,m ip  acting on the top of it, creating the gas force ( )BF i , see Figs. 2.1.2 and Fig.2.1.3. 

The mean gas pressure ,m ip  is defined in Eq. (9) (in the continuous and discrete pressure domain), 

for dimensioned and dimensionless form. 

( ) ( ) ( ) ( ) ( ), , , , ,
0

2 2 2

1 1 1 1
, ,

1

Z Z Z
b

N N N
L

m m i i j m i i j i j

j j jb b Z

p p dz p p z p p z p
L L N

 
= = =

= =  =  =          (9) 

The foil stiffness and damping coefficient are given as 1/f fk =  and f fc k= for foil motion 

synchronous to the excitation. The 1XN −  ODEs that describe the top foil radial displacement
iq

of the stripe i  are defined in Eq. (10). 

, , 2,3,...,f i f i m i Xc q k q p i N+ = =     (10) 

The ODEs in Eq. (10) may be written as in Eq. (11) to be used in continue. 

  ( ), , ,i Fq= =q f q p x x      (11) 

 
[79] Bhore S.P., Darpe A.K. (2013) Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings. J. of Sound and 

Vib. 332:5135-5150 



22 

 

Panagiotis V. Papafragkos, MSc Thesis 

 

2.2. Model of the flexible rotor 

The equations of motion for the Jeffcott rotor shown in Fig. 2.2.1 are defined in Eqs. (12) for the 

journal and the disc, in the two main directions. 

( ) ,
2

d

j s d j B X

j

m
x k x x F

m
= − +  , ( ) ,

2

d

j s d j B Y

j

m
y k y y F

m
 = − +  −                         (12a) 

( ) ,d s d j U Xx k x x F= − − + ,  ( ) ,d s d j U Yy k y y F = − − + −          (12b) 

The ODEs in Eqs. (12) may be written as in Eq. (13) in the state space representation to be used 

in continue. 

( ), , , ,R=x f p x x q q      (13) 

 

Fig. 2.2.1. Representation of a Jeffcott (Laval) rotor of length 
sL and radious 

sR  with a mass 
dm  at its 

center, mounted on two GFBs of equal radius
b rR R c R= +  and length

bL , carrying two masses
jm at its 

ends. 

In Eqs. (12) 
sk  is the dimensionless shaft stiffness coefficient,   and   are dimensionless 

parameters defined in Eq. (14). 

2 5

5

0

36
,

j r

LR

m p c


 =          

2 2

2 5

0

36

r

R g

p c


 =     (14) 

In addition, in Eq. (12), ,U XF , 
,U YF  are the dimensionless unbalance forces defined in Eq. (15a) 

for constant rotating speed  , and in Eq. (15b) for linearly varying rotating speed a  =  with 

constant acceleration a . 

2

, cosU X rF  =  , 2

, sinU Y rF  =  , r =    (15a) 

( )2

, cos sinU X r rF a  =  + , ( )2

, sin cosU Y r rF a  =  − , 2 / 2r a =  (15b) 

Dimensionless unbalance eccentricity /u re c = follows in this paper the ISO unbalance grades 

(G-grades) for low, medium, and high unbalance as G1, G2.5 and G6.3 correspondingly. The 

unbalance located in the disc is of magnitude ( )2d j uu m m e= +  at each case, and the corresponding 



23 

 

Panagiotis V. Papafragkos, MSc Thesis 

 

eccentricity
ue is given in Eq. (16), where the service speed of the system is selected at

2500rad/sr = .  

[mm] , 1, 2.5, 6.3
[rad/s]

u

r

G
e G= =


     (16) 

For instance, the notation ( )2.5u G used in continue refers to the unbalance eccentricity of

( ) 62.5 9.55 10 [m]ue G −= =  . 

 

2.3. Composition and solution of the dynamic system 

The Eqs. (8), (11), and (13) compose a coupled ODE system which is separately defined by the 

discretized Reynolds equation in the
Bf equations, the foil motion in

Ff equations, and the rotor 

motion in
Rf equations. The coupled nonlinear ODE system can be defined in Eq. (17) expressing 

a non-autonomous dynamic system which will be studied with respect to the bifurcation parameter

 . The ODE system is characterized as non-autonomous due to the explicit time presence in the 

equations of unbalance forces, see Eq. (15). The state vector s and the respective functions f are 

defined in Eq. (18). 

( ), ,= s f s        (17) 

   
T T

, B F R= =s p q x f f f f      (18) 

The total number of equations in Eq. (17) (size of vector function f ) is ( ) ( )1 8X Z XN N N N=  + − +

with the first term coming from the pressure equations, the second term coming from the foil 

equations, and the third term from the rotor equations in state space.  

The ODE system in Eq. (17) renders the time response of the physical system when time 

integration is applied. The system is characterized as stiff and special algorithms may be applied 

for time integration [80]. Furthermore, the Reynolds equation can be reduced in size applying an 

order reduction method [43], improving the computational cost. The time integration can handle 

both cases of unbalance equations, for constant rotating speed or for run-up, see Eq. (15). 

An orthogonal collocation method [81] is applied for the computation of limit cycle motions 

produced by the ODE system in Eq. (17) at a constant ; Eqs. (15a) apply for unbalance forces. 

Numerical continuation of limit cycles has been programmed by the authors according to pseudo 

arc length continuation method [82,83,84,85] with embedded collocation scheme [82]. The 

 
[80]  Shampine, L. F. and M. W. Reichelt, (1997), "The MATLAB ODE Suite," SIAM Journal on Scientific Computing, Vol. 18, 

pp. 1–22. 

[81] Doedel, E.J.: Lecture Notes on Numerical Analysis of Nonlinear Equations, Department of Computer Science, Concordia 

University, Montreal, Canada 

[82] Doedel, E.J., Keller, H.B., Kernevez, J.P. (1991): Numerical analysis and control of bifurcation problems (II): Bifurcation in 

infinite dimensions. International Journal of Bifurcation and Chaos 1(3), 745-772. 

[83] Ascher, U.M., Mattheij, R.M.M, Russell, R.D., (1995): Numerical Solution of Boundary Value Problems for Ordinary 

Differential Equations. SIAM Classics in Applied Mathematics ser. 13 1st ed.. 

[84] Meijer H., Dercole, F., Olderman, B., (2009): Numerical bifurcation analysis. Encyclopedia of Complexity and Systems 

Science, R. A. Meyers Ed., Springer New York, 6329-6352. 

[85] Allgower, E. L., Georg, K., (2003): Introduction to Numerical Continuation Methods. Society for Industrial and Applied 

Mathematics. 
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formulation of the method is defined also in the following section. As the collocation method 

cannot handle non-autonomous ODE systems, Eq. (17) has to be converted to autonomous. This 

is achieved by coupling the ODE system of Eq. (17) with a two DoF oscillator, see Eq. (19), 

whose unique solution is a harmonic motion of frequency  , see Eq. (20) [82]. 

( )1

2 2

N+1 N N+1 N+2 N+1 N+1 N+2s f s s s s s+= = + −  +     (19a) 

( )2

2 2

N+2 N N+1 N+2 N+2 N+1 N+2s  f = s s s s s+= − + −  +    (19b) 

( ) ( )cos , sinN+1 N+2s s  = =                                           (20) 

The final autonomous ODE system is of size 2N +  and is defined in Eq. (21) with the unbalance 

forces are defined for constant rotating speed, as in Eq. (22). 

( ),= s f s       (21a) 

   
T T

T T

1 2 1 2,N N N Ns s f f+ + + += =s s f f     (21b) 

2

,U X N+1F s=  , 2

, 2U Y N+F s=       (22) 
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3. APPLICATION OF NUMERICAL CONTINUATION 

3.1. Time Integration 

In an initial value problem, the ODE is solved by starting from an initial state. Using the initial 

condition, 0y  , as well as a period of time over which the answer is to be obtained, 0( , )ft t , the 

solution is obtained iteratively. At each step the solver applies a particular algorithm to the results 

of previous steps. At the first such step, the initial condition provides the necessary information 

that allows the integration to proceed. The final result is that the ODE solver returns a vector of 

time steps 0 1 2[ , , ,..., ]ft t t t t=  as well as the corresponding solution at each 

0 1 2[ , , ,..., ]fy y y y y= . [86] 

For some ODE problems, the step size taken by the solver is forced down to an unreasonably 

small level in comparison to the interval of integration, even in a region where the solution curve 

is smooth. These step sizes can be so small that traversing a short time interval might require 

millions of evaluations. This can lead to the solver failing the integration, but even if it succeeds 

it will take a very long time to do so. Equations that cause this behavior in ODE solvers are said 

to be stiff. Solvers that are designed for stiff ODEs, known as stiff solvers, typically do more work 

per step. The pay-off is that they are able to take much larger steps, and have improved numerical 

stability compared to the non-stiff solvers. [87] 

Our system can be very stiff, depending on the shaft properties and bump foil properties, so we 

use a stiff solver. The solver that we chose is ode15s, which is a variable-step, variable-order 

(VSVO) solver based on the numerical differentiation formulas (NDFs) of orders 1 to 5. 

Optionally, it can use the backward differentiation formulas (BDFs, also known as Gear's method) 

that are usually less efficient. Also, it has the best accuracy compared with the other stiff solvers, 

like ode23s, ode23t and ode23tb [80,88]. 

3.2. Numerical Continuation and Collocation 

 

Fig. 1.1.1: Example of One Step of Pseudo-Arc Length Continuation [89] 

 
[86] The MathWorks, Inc., “Choose an ODE solver”, https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html 

[87] The MathWorks, Inc., “Solve stiff ODEs”, https://www.mathworks.com/help/matlab/math/solve-stiff-odes.html 
[88] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, (1999), “Solving Index-1 DAEs in MATLAB and Simulink”, SIAM 

Review, Vol. 41, pp. 538–552. 

[89] Matthew S. Lasater, Carl Tim Kelley, Andrew G. Salinger, Dwight L. Woolard, and Peiji Zhao, (2004), "Enhancement of 

numerical computations of the Wigner-Poisson equations for application to the simulation of THz-frequency RTD oscillators", 

Proc. SPIE 5584, Chemical and Biological Standoff Detection II 
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Pseudo-arclength continuation is a well-established method for constructing a numerical curve 

comprising solutions of a system of nonlinear equations. In many complicated high-dimensional 

systems, the corrector steps within pseudo-arclength continuation are extremely costly to 

compute; as a result, the step-length of the preceding prediction step must be adapted carefully to 

avoid prohibitively many failed steps. [90] 

The authors programmed the collocation method embedded to a pseudo arc length continuation 

method for the evaluation of limit cycles as the bifurcation parameter (rotating speed  ) 

changes at discrete values. The methodology is similar to this presented in [81]. The problem is 

to find the solution branches ( ), ,t 
0

x ξ  for the following Boundary Value Problem: 

( ),= x f x ,  ( ) ( ),0, , ,T = 
0 0

x ξ x ξ     (23-24) 

The ODE system in Eq. (23) in identical to the ODE system in Eq. (21a) and is the continuation 

parameter (bifurcation parameter) expressing the rotating speed of the shaft,
0ξ is an initial state 

vector that belongs to the solution curve x and T is the period of the solution. If time t is rescaled 

to [0,1] , Eqs. (23) and (24) become 

( ),T=  x f x , ( ) ( ),0, ,1, = 
0 0

x ξ x ξ     (25-26) 

The periodT is unknown so an additional equation (phase condition) is required 

 
1

0
0

, 0dt = = x x      (27) 

where 0,x x  denotes the scalar product and 0x is the time derivative of the previous solution. If 

the pseudo arc length is used as a continuation parameter, then   also becomes an unknown and 

an additional equation is required (pseudo arc length condition), 

( ) ( )
1

0 0 0 0
0

, 0dt T T T s   = + − + −  − = x - x x    (28) 

where ( )  denotes the derivative with respect to arc length ( ) /d ds . Setting ( ), ,T= u x   and 

writing Eq. (25) and (26) as ( )  =F 0u  the system to solve becomes 

( )

( )

( )

( )

0

0





   
  

= =   
     

F 0

H

u

u x

u

     (29) 

and Newton’s method for solving (29) is 

( ) ( )
1

1i i i i
−

+  = −
 
A Hu u u u     (30) 

where  

( ) 0 0

T

T



   
   
 
 =
 
 

   
  

F F F

A

x

u
x

x

     (31) 

 
[90] D. A. Aruliah, L. van Veen and A. Dubitski, (2012), “A parallel adaptive method for pseudo-arclength continuation”, J. Phys.: 

Conf. Ser. 385 012008 
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which is iterated until a suitable convergence criterion is satisfied. The arc length derivatives

/d dsu  can be calculated either by backwards differences or by solving 

 
T

0 0 1
d

ds
=A

u
      (32) 

The final step is to discretize in time and calculate A . To this end the method of orthogonal 

collocation at Gauss points with piece-wise polynomials was used. An overview of the method 

applied to nonlinear BVPs with periodicity boundary conditions with unknown period is given 

below. 

The time interval [0,1]  is discretized into N sub-intervals. For the thi  sub-interval the collocation 

equations must be assembled at the required time nodes 

, 1,2, , , 1,2, ,ij i i jt t h i N j m= + = =     (33) 

Where
1i i ih t t+= − the length of the time sub-interval i and 

j  are chosen as the zeroes of an thm

order Legendre polynomial. At the above time nodes, an initial solution
ijx must be provided along 

with the function evaluation ( ),ijT  f x (abbreviated henceforth as
ijf ), Jacobian ( ),ij






f
x

x
, and 

parameter derivative (for the case of pseudo arc length continuation) ( ),ij






f
x . Equivalently, 

the values
ijx can be extracted from the solutions at the global time nodes 

it as  

1

1 1

,
m m

ij i i jl il i i i il

l l

x x h a f x x h f+

= =

= + = +      (34-35) 

Where
1 2, , ,j j jka a a are the quadrature weights. Then the quasi linearized two point BVP 

(equivalent to Newton’s method) can be written as shown below 

( ) ( ) ( ), , ,ij ij ij ij ij ijx T x x x T T x
x

 
 =   +   +  +

 

f f
f r    (36) 

1 1 0N+ − =x x      (37) 

where ( ),ij ij ijT x=  −r f x . Applying parameter condensation to eliminate the local unknowns
ijx at 

every time interval 
it  we can write the derivatives  

T

1 2i i i imf f f=f for the local unknowns 

as a function of the global unknowns
ix  . Substituting (34) in (35) yields 

         ( ) ( ) ( ) ( )
1 1

, , , ,
m m

i i i jl il ij ij ij i jl il ij ij ij

l l

x h a f T x x T x h a f x T T x
x x= =

   
= + =   +  +   +  + 

   
 

f f f
f f f r    (38) 

The above can be rewritten as 

1 1 1 1

i i i i i i i i ix T− − − −=  +  + +W V W U W S Wf r     (39) 

where 

( ) ( )

( ) ( )

11 1 1 1

1

, ,

, ,

i m i

i i

m im mm ik

a T a T
x x

h

a T a T
x x

  
   

 
= −  

  
  

  

W I

f f
x x

f f
x x

   (40) 
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( )

( )

1,

,

i

i

im

T
x

T
x

 
 

 
=  
 
 

 

V

f
x

f
x

, 

( )

( )

1,

,

i

i

im

T

T

 
 

 
=  
 
 

 

S

f
x

f
x

, 

( )

( )

1 1

1

,

,

i i

i

i im

T

T

 − 
 

=  
  − 

f x f

r

f x f

   (41) 

Substituting (39) to (35) yields a set of n N linear equations 

          1 1 1 1

1 1

1

m

i i l il i m i i i i i i i i

l

h h T   − − − −

+

=

  =  + =  +  +  + +  I I W V W U W S Wx x f x x r   (42) 

1i i i i i iT+ =  +  + +Γ Λ Σx x r      (43) 

where 

  1

1

1 1 1

, ,

, ,

m i i i i

i i i i i i i i i i i i

h

h h h

  −

− − −

= = +

= = =

D I I Γ I DW V

Λ DW U Σ DW S DWr q
    (44) 

The linear algebraic system for the combined collocation-pseudo arc length continuation method 

is finally expressed in Eq. (45). 

1

21 1 1 1

2 2 2 2

1 1

01

1 11 1 2 2

0 0 0 0 0

1 2

0 0

0 0 0

0 0

0 0 0 0
,

0 0 0

0

N

NN N N N

N m
N

ij ij ij

i jN N

N

ij ij

a
h x h x h x T

x x x T
a

+

+

= =

    

− − −    
   − − − 
   
   
   

−− − − =  
  − 
  
  

      −



Γ I Λ Σ

Γ I Λ Σ

Γ I Λ Σ

I I

r

rx

x

r

x xx

x
x x

x( ) ( ) ( )0

0 0 0

1 1

N m

ij ij

i j

T T T s
= =

 
 
 
 
 
 
 
 
 
 
 
 
   + − + −  −
  
 x x

 (45) 

where
ija are the quadrature weights for the time intervals  1i it t− .  

The solution of the linear system can be achieved by various methods. Iterative methods are 

applied in this work. Floquet multipliers are evaluated as the eigenvalues of the matrix 
1 2 NΓ Γ Γ  

when the iterative solution of the n N system is achieved (right hand side less than a maximum). 

Calculating the Floquet multipliers in this way severely reduces the evaluation time compared to 

other methods (e.g. shooting method). The normal form coefficient is calculated with different 

method for the different type of bifurcation occurring. For more detailed information, the reader 

may refer to [84,85,91]. 

 

3.3. Poincaré Map 

Poincaré map characterizing the intersection of a periodic orbit in the state space of a continuous 

dynamical systems with a lower-dimensional, and transverse to the flow, subspace called the 

Poincaré section. The Poincaré map produces a discrete dynamical system with a state space one 

dimension lower than the original continuous dynamical system. The dynamics on the Poincaré 

map preserves many of the periodic, quasi-periodic and chaotic orbits of the original system, and 

due to its dimensionality reduced form, it is often simpler to analyze than the original system.[92]  

 
[91] Gavalas I., Chasalevris A., (2022), “Nonlinear Dynamics of Turbine Generator Shaft Trains: evaluation of bifurcation sets 

applying numerical continuation”, ASME Journal of Engineering for Gas Turbine and Power. Accepted for publication 

[92] H. Poincaré, (1899), “Les Methodes Nouvelles de la Méchanique Céleste”, Gauthier-Villars, Paris. 
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Fig. 1.2.1: Example for (a) periodic and (b) quasi-periodic state [93] 

Poincaré maps provide a timescale separation by producing snapshots of the dynamics on the 

sampling scale of the map period. The Poincaré Map is produced by placing a plane normal to the 

path of the orbits and collect the points of intersection each time the orbit crosses the plane. The 

resulting discrete map of discrete points may be used to analyze the dynamics to great effect. The 

Poincaré maps that are depicted in this project, consider the last 100 periods of the response 

evaluated for 500 periods applying time intergration.[94] 

 
Fig. 1.2.2: Quasi-periodic and chaotic orbits [88] 

In fig.1.2.2, the point “z” is mapped to P(z) by following the trajectory’s next intersection of the 

plane. The closed circles represent quasi-periodic orbits on tori within the islands of stable orbits. 

 
[93] P. Stumpf, Z. Sütő, I. Nagy, (2011), “Research in Nonlinear Dynamics Triggered by R&D Experiences”, Conference: AACS'11, 

At: Budapest, Hungary 

[94]  Martin W. Lo, (2002), “The InterPlanetary Superhighway and the Origins Program”, NASA, Conference: Aerospace Conference 

Proceedings, IEEEVolume: 7 
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The sea of dots are the chaotic orbits. Such patterns are difficult if not impossible to detect by 

observing the orbits themselves. [88] 

3.4. Fast Fourier Transform 

The "Fast Fourier Transform" (FFT) is one of the most useful tools and is widely used in the 

signal processing. It converts a signal into individual spectral components and thereby provides 

frequency information about the signal. FFTs are used for fault analysis, quality control, and 

condition monitoring of machines or systems.  

The FFT is an optimized algorithm for the implementation of the "Discrete Fourier 

Transformation" (DFT). A signal is sampled over a period of time and divided into its frequency 

components. These components are single sinusoidal oscillations at distinct frequencies each with 

their own amplitude and phase.  

 
Fig. 3.4.1 View of a signal in the time and frequency 

domain; [taken from nti-audio.com] 

The FFT operates by decomposing an N point time domain signal into N time domain signals 

each composed of a single point. The second step is to calculate the N frequency spectra 

corresponding to these N time domain signals. Lastly, the N spectra are synthesized into a single 

frequency spectrum. [95] 

There are Log2N stages required in this decomposition. The decomposition is nothing more than 

a reordering of the samples in the signal. The FFT time domain decomposition is usually carried 

out by a bit reversal sorting algorithm. This involves rearranging the order of the N time domain 

samples by counting in binary with the bits flipped left-for-right. The next step in the FFT 

algorithm is to find the frequency spectra of the 1-point time domain signals. The frequency 

spectrum of a 1-point signal is equal to itself. This means that nothing is required to do this step. 

Although there is no work involved, it’s very important to remember that each of the 1-point 

signals is now a frequency spectrum, and not a time domain signal. The last step in the FFT is to 

combine the N frequency spectra in the exact reverse order that the time domain decomposition 

took place. [89] 

In fig.1.4.2, the frequency domain synthesis requires three loops. The outer loop runs through 

the Log2N stages. The middle loop moves through each of the individual frequency spectra in the 

stage being worked on. The innermost loop uses the butterfly to calculate the points in each 

frequency spectra. The butterfly is the basic computational element of the FFT, transforming two 

complex points into two other complex points. The overhead boxes determine the beginning and 

ending indexes for the loops, as well as calculating the sinusoids needed in the butterflies.[89] 

 
[95] Steven W. Smith, Ph.D., (1997), “The Scientist and Engineer's Guide to Digital Signal Processing”, Chapter 12: The Fast Fourier 

Transform 
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Fig. 3.4.2: Flow diagram of the FFT [11] 

 

3.5. Short Time Fourier Transform 

The STFT, also called the windowed Fourier transform or the sliding Fourier transform, partitions 

the time-domain input signal into several disjointed or overlapped blocks by multiplying the 

signal with a window function and then applies the discrete Fourier transform to each block. 

Window functions, also called sliding windows, are functions in which the amplitude tapers 

gradually and smoothly toward zero at the edges. Because each block occupies different time 

periods, the resulting STFT indicates the spectral content of the signal at each corresponding time 

period. When you move the sliding window, you obtain the spectral content of the signal over 

different time intervals. Therefore, the STFT is a function of time and frequency that indicates 

how the spectral content of a signal evolves over time. A complex-valued, 2-D array called the 

STFT coefficients stores the results of windowed Fourier transforms. The magnitudes of the STFT 

coefficients form a magnitude time-frequency spectrum, and the phases of the STFT coefficients 

form a phase time-frequency spectrum. The STFT is one of the most straightforward approaches 

for performing time-frequency analysis. The STFT is computationally efficient because it uses 

the fast Fourier transform (FFT).[96] 

Several parameters must be chosen: 

• Block length  

• The type of window. 

• Amount of overlap between blocks. 

 
[96] LabVIEW 2010 Advanced Signal Processing Toolkit Help, (2010), “Short-Time Fourier Transform” 
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The STFT workflow for time-frequency distribution is mainly described as follows [91]:  

Step 1: Extract samples weighted by a window function centered at a time ti.  

Step 2: Compute the Fourier transform of the samples.  

Step 3: Shift the window and repeat steps 1–2 until the end of the input waveform.  

The window length controls the time and frequency resolution of the STFT. Using a short window 

length in the computation of STFT yields high time resolution and low frequency resolution 

whereas a longer window length increases the frequency resolution and decreases the time 

resolution. This explains the absence of temporal information on the Fourier transform computed 

over the entire length of the input waveform (amplitude spectrum). Because of the fixed window 

length, the STFT can only achieve uniform resolution in time and frequency. This drawback limits 

the ability of STFT to process signals with inconsistent dominant frequencies [97]. 

The best window length depends on the characteristics of the signal you want to analyze. The 

window length should be small enough so that the windowed signal block is essentially stationary 

over the window interval and large enough so that the Fourier transform of the windowed signal 

block provides a reasonable frequency resolution. If the spectral content of the signal evolves over 

time slowly, which does not require a fine time resolution, set the window length large. If the 

spectral content of the signal changes relatively quickly, which requires a fine time resolution, set 

the window length small [90]. The size of the window that we used in this project is 
122w = and 

the chosen window is Hamming.    

The step size of the sliding window determines if overlap exists. If the step size is smaller than 

the window length, overlap exists. If the step size is greater than the window length, no overlap 

exists. Overlap of the sliding window makes the STFT smoother along the time axis. However, 

overlap requires more computation time and memory. If the signal length is large and the spectral 

content evolves slowly, it is not necessary to overlap the sliding window. If the signal length is 

small, overlap the sliding window to obtain a smoother STFT [90]. For making our STFT 

diagrams, we used overlap. The number of the overlap points in adjoining sections arises from 

the nearest integer of the following math operation /10w w− . 

 

3.6. Design Optimization 

Patternsearch [98] finds a sequence of points, 
0 1 2, , ,...,x x x  that approach an optimal point. The 

value of the objective function either decreases or remains the same from each point in the 

sequence to the next. 

The pattern search begins at the initial point 0x  that you provide. 

Iteration 1 

At the first iteration, the mesh size is 1 and the Generalized pattern search (GPS) algorithm adds 

the pattern vectors to the initial point 0x  to compute the following mesh points: 

  01,0 x+             00,1 x+             01,0 x− +             00, 1 x− +  

 
[97] Jubran Akram, (2020), “Understanding Downhole Microseismic Data Analysis”, Springer 

[98] The MathWorks, Inc., “How Pattern Search Polling Works”, https://www.mathworks.com/help/gads/how-pattern-search-

polling-works.html 
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The algorithm computes the objective function at the mesh points in the order shown above. The 

algorithm polls the mesh points by computing their objective function values until it finds one 

whose value is smaller the value at 0x . If it finds that value then, the poll at iteration 1 

is successful and the algorithm sets the next point in the sequence equal to 1x . 

Iteration 2 

After a successful poll, the algorithm multiplies the current mesh size by 2. Because the initial 

mesh size is 1, at the second iteration the mesh size is 2. The mesh at iteration 2 contains the 

following points: 

  12 1,0 x +             12 0,1 x +             12 1,0 x − +             12 0, 1 x − +  

The algorithm polls the mesh points until finds one whose value is smaller than the value at 1x . 

If it finds that value then, the poll at iteration 2 is again successful. The algorithm sets the second 

point in the sequence equal to 2x . 

Because the poll is successful, the algorithm multiplies the current mesh size by 2 to get a mesh 

size of 4 at the third iteration. 

An Unsuccessful Poll 

By the fourth iteration, the current point is 3x  and the mesh size is 8, so the mesh consists of the 

points: 

  38 1,0 x +             38 0,1 x +             38 1,0 x − +             38 0, 1 x − +  

At this iteration, none of the mesh points has a smaller objective function value than the value 

at x3, so the poll is unsuccessful. In this case, the algorithm does not change the current point at 

the next iteration. That is 4x  = 3x . 

At the next iteration, the algorithm multiplies the current mesh size by 0.5, so that the mesh size 

at the next iteration is 4. The algorithm then polls with a smaller mesh size. 

Boundaries 

Patternsearch modifies poll points to be feasible at every iteration, meaning to satisfy all bounds 

and linear constraints. In our project, the boundaries that we used to implement the optimization 

for the 
f  and the   : 

35 10 2f−    

410 10−    

Stopping Conditions for the Pattern Search 

The algorithm stops when any of the following conditions occurs: 

• The mesh size is less than the MeshTolerance option which was set at 
610−

 

• The number of iterations performed by the algorithm reaches the value of 

the MaxIterations option which was set at 300. 
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• The total number of objective function evaluations performed by the algorithm reaches 

the value of the MaxFunctionEvaluations option. 

• The time, in seconds, the algorithm runs until it reaches the value of 

the MaxTime option. In our optimization that was free. 

• After a successful poll, the distance between the point found in the previous two 

iterations and the mesh size are both less than the StepTolerance option. 

• After a successful poll, the change in the objective function in the previous two 

iterations is less than the FunctionTolerance option and the mesh size is less than 

the StepTolerance option. 

 

 
Fig. 1.6.1: Flow diagram of the Patternsearch 
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4. RESULTS AND DISCUSSION 

4.1. Static performance of the gas bearing 

 The nonlinear feature of gas forces is presented in this Section. The vertical displacement of each 

journal (equal at both journals due to symmetry) when load W is applied vertically at each journal, 

further to the gravity load, is depicted in Fig. 4.1.1 for low, moderate, and high bump foil 

compliance, and for different design and operating conditions. In Fig. 4.1.2, the corresponding 

equilibrium locus of the journal inside the radial clearance is depicted for the various cases 

mentioned. One may notice that the nonlinear feature of the gas forces becomes strong or weak 

depending to the design configuration of the bearing and the respective operating speed  . The 

gas foil bearings configured for the results in Figs. 4.1.1 and 4.1.2 are of length to diameter ratio 

equal to 1, while the ratio of the radial clearance to the journal radius differs among the cases 

/ 500,750,1000rR c =  to produce different Sommerfeld number S . The dynamic viscosity  of the 

gas equals to this of the ambient air at 20o C , 0.018mPa s =  , and the ambient pressure is set at 

0 100kPap = . Radial clearance follows / 500rR c = in the results produced at all next Sections 

while all other parameters are retained as defined hereby. 

 

(a) 

 

(b) 

 

(c) 

Fig. 2.1: Displacement 𝒚
𝒋
 over load; (a) 0.01f = , (b) 0.1f = , (c) 1f =  
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(a) 

 

(b) 

 

(c) 

Fig. 2.2: Representation of journal’s locus, foil deformation 𝒒̅ and pressure distribution 𝒑;                                

(a) 0.01f = , (b) 0.1f = , (c) 1f =  

In these figures we use × for  𝛀 =  𝟏  , □ for 𝛀 =  𝟒 and ○ for 𝛀 =  𝟖. We also use the thick 

black line to denote the Clearance circle (▬ Clearance circle), the dashed line for the Foil 

deformation (--- Foil deformation) and the thin line for the pressure (⸺ Pressure)                                                                                 

4.2. Quality of motion of the dynamic system 

The dynamic system defined by Eq. (19) for autonomous and in Eq. (20) for non-autonomous 

version is investigated on its potential to develop a variety of bifurcation sets with respect to the 

key design parameters, namely rotor stiffness
sk , foil compliance 

fa , foil loss factor , and 

unbalance magnitude u . In this paper, the key design parameters are defined within specific 

intervals, composing the case studies which are presented in the following. The design parameters 

follow a variation of “low”, “reference”, and “high”. This is interpreted to the rotor stiffness 

values 0.3,1,3sk =  (flexible to rigid rotor), foil compliance values 0.01,0.1,1fa = (stiff to flexible 

foil), foil loss factor 0.005,0.05,0.5 = (low to high foil damping), and unbalance magnitude 

( ) ( ) ( )1 , 2.5 , 6.3u G u G u G (low to high unbalance). Therefore, a reference system is defined with the 

design parameters 1sk = , 0.1fa = , 0.05 = , and ( 6.3)u G .  
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(a)     (b) 

  
      (c)            (d) 

Fig. 4.2.1 Reference system: system of 1sk = , 0.1fa = , 0.05 = , and ( )6.3u G . Transient response 

and continuation of limit cycles during run-up in a) vertical direction, and b) horizontal direction. c) 

STFT of the response time history, c) Floquet multipliers of the corresponding limit cycles. 

  
      (a)               (b) 
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         (c)     (d) 

Fig. 4.2.2 System of ,s sk k− +  0.1fa = , 0.05 = , ( )6.3u G . a) Continuation of limit cycles, b) STFT of 

the response time history
sk + , c) trajectory, Poincare map, and FFT at 0.4 = , d) Floquet multipliers 

of the corresponding limit cycles
sk + . 

The time transient response of the reference system is evaluated applying time integration in Eq. 

(20) defined for variable rotating speed (run-up) and constant rotating acceleration. The ODE 

system is subjected to numerical continuation algorithm which evaluates limit cycles at the 

different rotating speeds (bifurcation parameter). In Fig. 4.2.1.a the time history of the journal 

motion in the vertical plane is presented together with the maximum and minimum limit cycle 

points at each rotating speed. It has to be clarified that the rotating speed is retained constant when 

limit cycles are evaluated, and the unbalance forces are applied with different formulas in the 

ODE system in the transient run-up and in the ODE system for constant rotating speed, see Eqs. 

(15a). Thus, slight discrepancies are noticed in the response of the two methods in Fig. 4.2.1.a.  A 

reference bifurcation set is established in Fig. 4.2.1.a with PD, SN, and NS bifurcations to be 

presented. The frequency content of the time history obtained for the run-up is depicted in Fig. 

4.2.1.b where time-frequency decomposition is applied (STFT). The journal trajectory at a 

selected rotating speed is depicted in Fig. 4.2.1.c together with the respective limit cycles 

evaluated with the collocation method. The transient response and the Poincaré map depicted also 

in Fig. 4.2.1.c consider the last 100 periods of the response evaluated for 500 periods applying 

time integration. The Floquet multipliers in Fig. 4.2.1.d provide information regarding the quality 

of bifurcations mentioned before at the respective speeds.  

In general, periodic, quasi-periodic and chaotic motions are expected to be generated by the 

system studied in this paper. A drawback of the current continuation scheme programmed by the 

authors is that only periodic motions can be evaluated by the collocation method. The quasi-

periodic motions can only be evaluated by time integration in this paper and depicted as transient 

response. For quasi-periodic limit cycles, the reader may consider the recent work in [99]. 

 
[99] Fiedler, R.: Numerical Analysis of Invariant Manifolds Characterized by Quasi-Periodic Oscillations of Nonlinear Systems. 

PhD Thesis, Kassel University Press, Germany (2021). 
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(a) (b) 

  
(c) (d) 

Fig. 4.2.3 System of 1sk = , ,f fa a− + , 0.05 = , ( )6.3u G . a) Continuation of limit cycles, b) STFT of 

the response time history for fa + , c) trajectory, Poincare map, and FFT at 0.9 = , d) Floquet 

multipliers of the corresponding limit cycles for fa + . 

Further bifurcation sets for the respective design sets are presented in continue in order to study 

the system motion for the various combinations of design parameters and to reveal the types of 

motions and of bifurcations which may occur. These are defined considering one design 

parameter, changing each time, to the next higher and lower value of the respective design 

variable. Fig. 4.2.2 considers a system with changed rotor stiffness compared to the reference 

system, and therefore two cases are presented in Fig. 4.2.2.a and Fig. 4.2.2.d, for 3sk + =  (rigid 

rotor) and 0.3sk − =  (flexible rotor). One may notice the different bifurcation sets compared to the 

reference case. Period doubling bifurcation is not noticed in this case. 

In Fig. 4.2.3.a system with different foil compliance is considered, and therefore two cases are 

presented in Fig. 4.2.3.a and Fig. 4.2.3.d, for 1fa + = (flexible foil) and 0.01fa − = (rigid foil). One 

may notice the different bifurcation sets compared to the reference case, and the previous case 
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(Fig. 4.2.2). The type of bifurcations are same to this at the reference case, but the speed in which 

they appear is different. 

In Fig. 4.2.4 a system with different foil damping is considered, and two cases are presented in 

Fig. 4.2.4.a and Fig. 4.2.4.d, for 0.5+ = (high foil damping) and 0.005− = (low foil damping). 

The influence of foil damping in the bifurcation set is not severe, compared to the reference design 

(Figs. 4.2.1). 

  
(a) (b) 

  
(c) (d) 

Fig. 4.2.4 System of 1sk =  0.1fa = , − + , ( )6.3u G . a) Continuation of limit cycles, b) STFT of the 

response time history for  + , c) trajectory, Poincare map, and FFT at 0.57 = , d) Floquet multipliers 

of the corresponding limit cycles for  + . 

In Fig. 4.2.5 systems of different unbalance are considered, and three cases are presented in Fig. 

10a, for ( )0u G (balanced rotor – autonomous system), ( )1u G (low unbalance), and ( )2.5u G  

(medium unbalance). It is worth noticing that the autonomous system of ( )0u G loses local stability 

of fixed point equilibria through an Andronov-Hopf bifurcation, at similar speed where the 

unbalanced systems lose local stability through secondary Hopf (Neimark-Sacker bifurcations). 

Further to that, in the unbalanced systems, the higher the unbalance is, the lower the speed of NS 
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bifurcations is. Stable limit cycles close to radial clearance occur with higher amplitude in the 

balanced system, than in the unbalanced systems. In the balanced system the limit cycles of 

amplitude close to radial clearance will lose stability through a NS bifurcation at high speeds. 

  
(a) (b) 

  
  (c)  (d) 

Fig. 4.2.5 System of 1sk = , 0.1fa = , 0.05 = , ( 0)u G , ( 1)u G , ( 2.5)u G . a) Continuation of limit 

cycles, b) STFT of the response time history for ( 2.5)u G , c) trajectory, Poincare map, and FFT at 

0.97 = for ( 2.5)u G , d) Floquet multipliers of the corresponding limit cycles for ( 2.5)u G . 

In the figures above, Poincaré maps are constructed at selected speeds to depict the different 

quality of motions (periodicity), and the respective frequency content can be considered 

through the FFT and the STFT in each figure. At lower speeds, the system oscillates 

periodically with 1period at all cases ( 2 / =  is the driving period hereby). This renders 

one point in Poincaré map, and additional harmonics of integer multiple in the FFT, see Fig. 

4.2.2c. This status remains till a periodic doubling occurs at some cases, e.g. Fig. 4.2.4c, and 

the system oscillates with period 2 immediately after; this renders two points in Poincaré map. 

At the highest speeds investigated, only quasi-periodic or chaotic motions where evaluated, 

these through time integration. The respective quality and frequency content is depicted in Figs. 

4.2.3c and 4.2.5c, where Poincaré map is constructed with several points without forming a 

shape. The frequency content at such speeds includes higher and lower harmonics of 

synchronous response without integer multiple. 
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4.3. Energy flow and optimization for bifurcation elimination 

The energy flow among the components of the system is evaluated in this section for each of the 

limit cycle motions evaluated in the previous Section. Potential energy storage occurs in the 

stiffness elements in the system, these being the flexible rotor of lateral stiffness
sk , and the 

flexible bump foil consisting of 
xN  elements of stiffness 

fk . Note that
fk expresses the stiffness 

coefficient per area. The gas film possesses also an unknown stiffness property and therefore 

potential energy is considered to be stored in the gas through the work of the conservative part of 

the gas forces. Kinetic energy storage occurs in the three masses of the system, these being the 

disc mass
dm and the two journal masses

jm ; note that bump foil is considered massless and no 

inertia effects are considered in the gas flow inside the gas bearings. Dissipation of energy occurs 

in the gas film forces and in the bump foil damping elements of damping coefficient per area
fc . 

The system executes planar motions with the energy offered through the work of the unbalance 

forces. The unbalance force is a result of rotation, and a motor is supposed to retain the rotating 

speed constant, while the lateral vibrations are uncoupled to the energy offered by the motor. 

In a closed trajectory (limit cycle) of the three rotor masses and the bump foil elements, the 

solution method offers all values of the state vector s while s can be easily found by Eq. (21a). Let 

the time intervals during a limit cycle motion be
tN , defining 1tN + discrete time points. The 

corresponding gas forces at each discrete time point are evaluated by the state vector s and its time 

derivative s using Eq. (7), these being ( ),B XF i and ( ),B YF i , for 1,2,... 1ti N= + . Similarly, the bump 

foil forces are evaluated in the radial direction as ( ),f jF i for the thj element of the
xN in total, see 

Fig. 2.1.2 and Fig. 2.1.3, as ( ) ( ) ( ),f j f j f jF i k q i c q i= + , with ,j jq q to be contained in the known s

and s . The unbalance forces are defined as ( ),U XF i and ( ),U YF i from Eq. (15a). The work of the 

bearing forces is evaluated in Eq. (46a), the work of the bump foil forces is evaluated in Eq. (46b), 

and the work of unbalance forces in evaluated in Eq. (46c). 

( ) ( ) ( ) ( )( ), ,

1

2
tN

B B X j B Y j cb kb

i

W F i x i F i y i W W 
=

=  +  = +     (46a) 

( ) ( )
1 1

0

2
t xN N

f f, j j cf kf

i j

W F i q i W W
= =

=

 
=  = + 

 
      (46b) 

( ) ( ) ( ) ( )( ), ,

1

tN

fu U X d U Y d

i

W F i x i F i y i 
=

=  +     (46c) 

In Eq. (46a) the portions 
cbW and

kbW cannot be evaluated separately, but only as sum. However, it 

is expected that 0kbW  as this is the work of the conservative portion of the bearing forces in the 

closed trajectory. In Eq. (46b) cfW is evaluated as cf fW W= since it is found that 0kfW = as it is the 

work of conservative forces in a closed trajectory. In a closed trajectory, the kinetic energy 1T and

2T of the system at the beginning and at the end of the trajectory respectively must equal the work 

of the non-conservative forces plus the work offered to the system. Therefore, Eq. (47) holds, 

with 1 2T T= (periodic motion). [100] 

 
[100] Meirovitch, L.: Methods of Analytical Dynamics. McGraw Hill, NY (1970) 
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2 1 fu cf cbT T W W W− + = +      (47) 

Eq. (47) renders 
cbW as 

fuW is known by Eq. (46c) and 
cfW is known by Eq. (46b). The value of

cbW  

is also validated by Eq (46a). The work of the non-conservative forces 
cbW and

cfW is depicted in 

Fig. 11 for some of the design sets of the previous Section, together with the work of the unbalance 

force 
fuW .  

  
      (a)       (b) 

  
     (c)       (d) 

Fig. 4.3.1 Evaluation of energy flow at the respective limit cycles for a) 3sk = , 0.1fa = , 0.05 = , 

( )6.3u G , b) 1sk = , 0.01fa = , 0.05 = , ( )6.3u G , c) 1sk = , 0.1fa = , 0.5 = , ( )6.3u G , and d) 

1sk = , 0.1fa = , 0.05 = , ( )2.5u G .  

In Figs. 4.3.1.a-d, both stable and unstable limit cycles are considered with the respective notation. 

At all cases, it is found that Neimark-Sacker bifurcations are triggered simultaneously to the 

reverse (from positive values to negative) of the dissipating work in the gas film cbW , meaning that 

energy is not dissipated in the gas film (when 0cbW  ) and self-excitation is triggered. In Figs. 

4.3.1.a-d, the arrows depict the path along which the solution is developed during the run-up. 
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 (a) 

 

 (b) 

 

(c) 

Fig. 4.3.2 Dissipated energy in the gas film in one limit cycle for various values of foil compliance
fa

and foil loss factor , at a) 0.2 = , b) 0.4 = , c) 0.6 = . 

The work 
cbW  is plotted in Fig. 4.3.2 for the respective cases of bump foil design and for the 

reference system regarding rotor stiffness and unbalance magnitude. Fig. 4.3.2 depicts the 

sensitivity of 
cbW in regards to foil properties. It is worth noticing that at the lowest rotating speed 

0.2 = the dissipated energy has a maximum for specific value of foil compliance 1fa  and for 

low values of loss factor . This is not the case at the higher speed 0.4 = , where
cbW has a 

maximum still for 1fa  , but for high values of loss factor , see Fig. 4.3.2b. Increasing the speed 

further at 0.6 = , cbW  has the highest values for several pairs of fa and  , the former receiving 

the lower values, and the latter at higher values, see Fig. 4.3.2c. The conclusion made from Fig. 

4.3.2 is that the dissipated energy in the gas film has completely different quality of progress 

(related to the design of the foil) as the rotating speed changes. Therefore, retaining the dissipated 

energy in the gas film at highest values requires a continuous adaptation of foil properties in 

regards to the rotating speed. Rotor designs and unbalance magnitudes were checked with 

relatively similar conclusion on the sensitivity of dissipated energy to design characteristics. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.3.3 Dissipated energy in the bump foil damper for various values of foil compliance
fa

and foil loss factor , at a) 0.2 = , b) 0.4 = , c) 0.6 = . 

Specific values of bump foil properties which render the highest dissipation energy in the gas film 

are sought applying the optimization pattern of successive poles. The optimization scheme is 

implemented in various speeds. The optimization requires the minimization of an objective 

function OBJ , which is defined as the inverse of dissipated energy in the gas film, 1/ cbOBJ W= . 

Starting from random input values for foil compliance 
fa and foil loss factor  , the optimization 

pattern renders after some iterations of successive poles the values of 
fa and   that maximize 

cbW  at every speed  . The related progress of cbW during optimization is depicted in Fig. 4.3.4 at 

selected speeds. The optimization pattern works in the following sequence:  

a) a low rotating speed (in which local stability is guaranteed) is selected for the system and 

random foil properties are assigned to the model, as 
0

fa and
0

 ; an initial limit cycle is 

evaluated as
0

s , and the initial dissipation energy 
0

cbW in the gas film is computed. 

b) Successive poles are performed for the input variables as
1

fa and
1

 , and the limit cycle 
1

s is 

computed with initial value to be
0

s ; the respective dissipated work is then obtained as
1

cbW . 

This is iteration 1i =   
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c) For each pair of 
i

fa  and 
i

 , the limit cycle 
i

s  is computed given 
1i−

s as initialization. 

d) Steps (b) and (c) are repeated till
1 2 0

max , ,...
n n n

cb cb cb cbW W W W
− − 

  
 

; 
n

s is achieved. The procedure 

may require 10 200n = iterations depending to the feature of OBJ at each speed, see Fig. 14. 

e) A prediction for the limit cycle at the next speed, say + , is computed by pseudo arc 

length continuation, given the limit cycle 
n

s , 
n

fa  and 
n

 , as initialization. 

f) Steps (b) to (e) are repeated till  reaches a desired (high) value. 

It has to be clarified that each of the Figs. 14a-c depicts the values 
i

cbW ,
i

fa and
i

 at all n iterations, 

at selected speeds. 

 

(a) 

 

(b) 

 

(c) 

Fig. 4.3.4 Optimization of the dissipated energy in the gas film of the reference system with 1sk =   

and ( )6.3u G with respect to the foil compliance 
fa and the foil loss factor  , at                                                   

a) 0.2 = , b) 0.4 = , c) 0.6 =  

The limit cycle
n

s is plotted in Figs. 15 and 16 with the respective values
n

fa and
n

 at each speed, 

for various design cases. Different rotor stiffness is considered in Fig. 4.3.5, and different 
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unbalance magnitude applies in Fig. 4.3.6; where the efficiency of the methodology to suppress 

bifurcations at a desired speed range is depicted. The operating speed range is limited by the limit 

values for the foil compliance
fa and the foil loss factor , here defined as 0.01 2fa  and

0.0005 5  . These values may be considered differently according to the design limitations in 

each application of the rotating system. Considering the bifurcations sets evaluated in Section 4.2 

for various designs, Fig. 4.3.5 and Fig. 4.3.6 depict elimination of bifurcations in approximately 

double speed range. It is also worth noticing that the bifurcation-free speed range is limited by a 

secondary Hopf (Neimark-Sacker) bifurcation at all cases of design. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Fig. 4.3.5 Elimination of bifurcations at a speed range for the system of ( )2.5u G and 0.3sk − = , 1sk = , 3sk + = ,   

a) journal motion limit cycles, b) corresponding values of compliance
fa  c) corresponding values for loss factor , 

d) Floquet multipliers of the corresponding limit cycles e) Energy flow in the gas film 

In Fig. 16 one may notice the expected displacement of the limit cycles in vertical direction (see 

Fig. 15a) as the foil compliance receives higher and lower values (see Fig. 16b). The Floquet 

multipliers in Fig. 16d are retained within the unit circle as the rotating speed increases, changing 

the path of progress as the optimization takes place. The Floquet multipliers tend to cross the unit 

circle at the points ( )0.9, 0.25− 
but they turn to a new direction continuing along the path of the 

unity circle, still inside the circle, up to the points ( )0.2, 0.9− 
where the optimization cannot retain 

their values inside the circle anymore, as the rotating speed increases (resulting in Neimark-

Sacker bifurcation). 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Fig. 4.3.6 Elimination of bifurcations at a speed range for the system of 1sk =  and ( )1u G , ( )2.5u G , ( )6.3u G a) 

journal motion limit cycles b) corresponding values for compliance
fa c) corresponding values for loss factor ,     

d) Floquet multipliers of the corresponding limit cycles e) Energy flow in the gas film 
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5. CONCLUSION 

The bifurcation set of a rotating shaft on gas foil bearings is presented in this paper for various 

design cases of rotor stiffness and gas bearing properties, in a certain range of rotating speed 

which acts as the bifurcation parameter. The periodic limit cycle motions are evaluated applying 

a pseudo arc length continuation method with embedded orthogonal collocation. The work of the 

non-conservative and nonlinear damping force of the gas film is evaluated at each limit cycle 

motion, even when unstable, as the collocation method allows for this possibility. The dissipative 

work of the gas film forces is found to be affiliated to the self-exciting mechanism which triggers 

bifurcations of the solution branches which have been earlier defined by the unbalance force and 

the elastic rotor properties (stable motion). The loss of this local stability (through Neimark-

Sacker bifurcation or Period Doubling bifurcation) occurs simultaneously with the reversal in the 

energy flow in the gas film, meaning that the dissipative work changes sign when the NS 

bifurcation takes place. At each limit cycle, an optimization pattern utilizing successive polls is 

applied to maximize the dissipated work in the gas, defining the values of bump foil stiffness and 

damping, to avoid bifurcation according to the previous notation. The optimization pattern reveals 

that bifurcations are avoided when reducing the foil stiffness, doubling (at least) the operating 

speed range without bifurcations to take place. The procedure is repeated for several design 

scenarios of rotor stiffness and unbalance magnitude, and similar efficiency is noticed regarding 

bifurcation elimination. Research on design solutions to implement the change of foil damping 

and stiffness in a real system belongs to ongoing work. 
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