

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Εργαστήριο Υπολογιστικών Συστημάτων

Έγκαιρη Προανάκτηση Δεδομένων στην Κρυφή Μνήμη με Χρήση Τεχνικών Μηχανικής Μάθησης

Διπλωματική Εργασία

Δημήτριος Στυλιαράς

Summary

- **Prefetching**: Reduction in CPU idling from memory stalls
- Study of **traditional prefetchers** for different benchmark suites shows **no universal solution** to the prefetching problem for varying memory access patterns
- Neural Networks are a promising solution to pattern prediction that could be used in memory prefetching
- We implement an **LSTM** model and experiment with complementary use of traditional prefetchers in the **Last Level Cache**.
- An important factor in our model is **timeliness**, where our analysis shows the significant impact in the **performance** of Prefetchers
- Experimentation shows promising use of **Neural Networks in Computer Architecture** alongside **traditional techniques**.
- Further study of similar methods and techniques with more **exploration** in model parameters is needed.

Contents

Prefetching

Machine Learning

Prefetching Techniques

Methodology

Results

Conclusion

Prefetching

- Prediction and transfer of data to faster memory levels before their use
- Data and Instruction Prefetching
- Software and Hardware

Characteristics:

- Prefetch Data
- Timing of Prefetches
- Operation Level and Placement
- Prediction Model

Challenges:

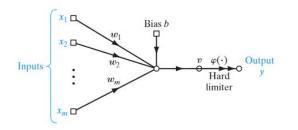
- Cache Pollution
- Efficiency issues
- Implementation factors

Machine Learning

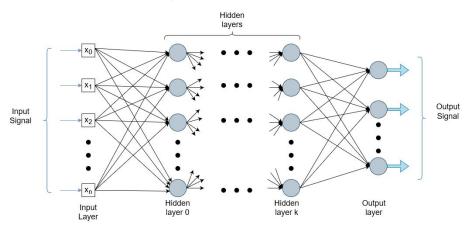
- Supervised
 - Regression
 - Classification
- Unsupervised
- Reinforcement

Neural Networks

Perceptron



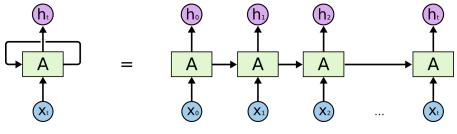
Multilayer Perceptron



Key components

- Activation Function
- Loss Function
- Training Algorithm
 - Backward Propagation
 - Iterative Algorithms(Gradient Descent)

Recurrent Neural Networks



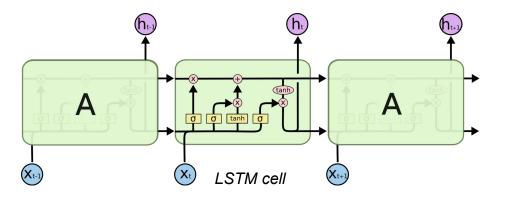
RNN unrolled over time

Types

- Vanilla RNNs
- Long Short-Term Memory RNNs
- Gated Recurrent Units
- Bidirectional RNNs

Sequential Data

- Time Series Prediction
- Machine Translation
- NLP Next Word Prediction

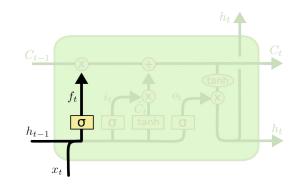


Advantages

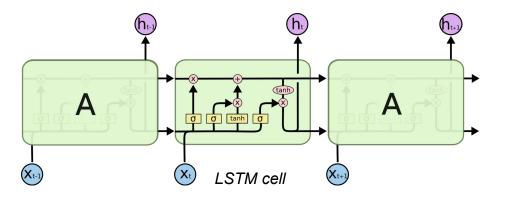
- Counter Vanishing Gradient
- Keep dependance in large sequences

Components

• Forget Gate



$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

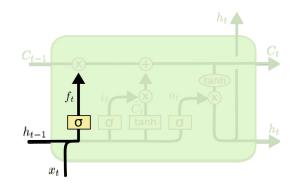


Advantages

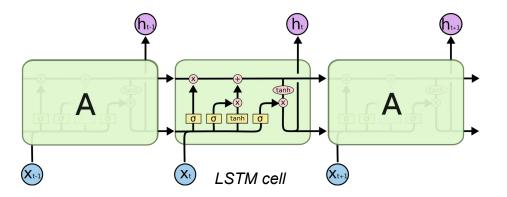
- Counter Vanishing Gradient
- Keep dependance in large sequences

Components

- Forget Gate
- Update Gate



 $i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$ $f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$ $C_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$

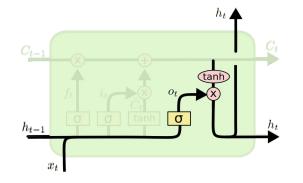


Advantages

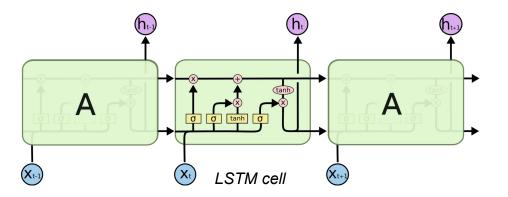
- Counter Vanishing Gradient
- Keep dependance in large sequences

Components

- Forget Gate
- Update Gate
- Output Gate



$$\begin{split} \dot{a}_t &= \sigma \left(W_{\dot{o}} \cdot \left[h_{tt-11}, x_{tt} \right] \right] + b_0 \right) \\ \tilde{E}_t &= \operatorname{transl}(AM_C(E_{tt})_{-1}, x_t] + b_C) \end{split}$$

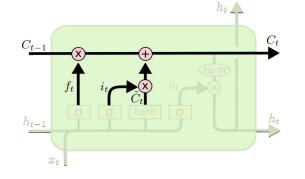


Advantages

- Counter Vanishing Gradient
- Keep dependance in large sequences

Components

- Forget Gate
- Update Gate
- Output Gate



Cell State

 $o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$ $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$ $h_t = o_t * \tanh(C_t)$

Non Machine Learning Prefetchers

Next Line Prefetcher: Simple prediction of next address prediction

Best Offset Prefetcher

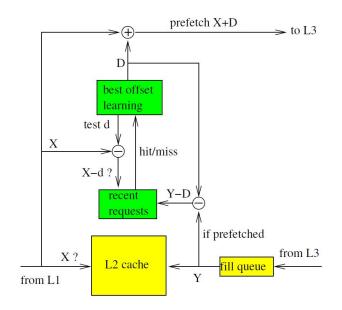
[HPCA '16] Focuses on timeliness

Recent prefetch addresses Table

Offset List and Score Tables

Dynamic offset selection for prefetching

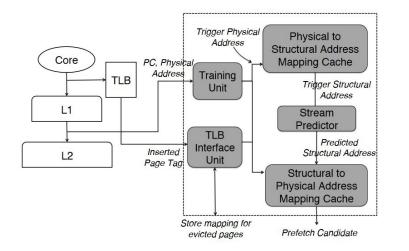
Scoring offsets by testing prefetch timing on recent history



Irregular Stream Buffer [MICRO '13]

Maps physical addresses

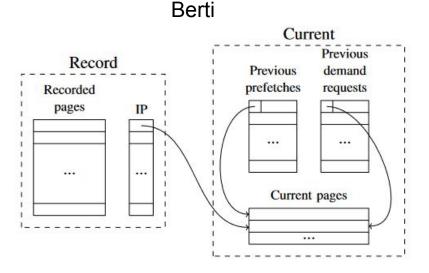
Learns address temporal correlation



BLUE [ISCA'21]

Focus on Timeliness

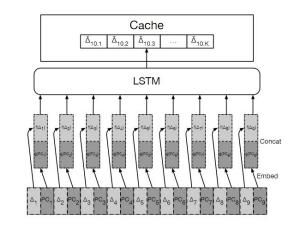
Extension of Berti for across page prediction Entangling Prefetcher and Next Line



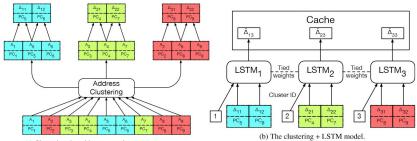
ML-based Prefetchers

Learning Memory Access Patterns [ICML '18]

- Vocabulary of most common memory address deltas
- One hot encoded
- PC + deltas inputs
- LSTM Model
- Prefetching Degree of 10
- Only Accuracy
- Two models



Embedding LSTM

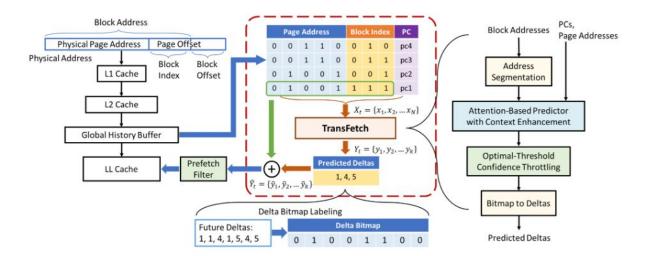


(a) Clustering the address space into separate streams.

Clustering and multiple LSTMs for each cluster

Transfetch

[CF '22]



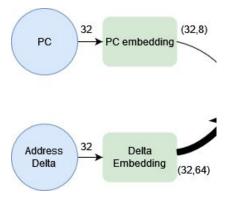
Address segmentation

Transformer

Attention Mechanism

PCs and Page distances as Context

Our proposed LSTM Prefetcher Model



PC Embedding Size = 8 Delta Embedding Size = 64

Sequence Size = 32

Two layer LSTM

LSTM Size = 64

Linear Layer Size = 30000

Using the Model

- **Offline** Training and Generation
- Training Dataset **randomly sampled** from the run
- ADAM optimizer
- Data Organization with **pandas** and custom **Dataloader** of **Pytorch**
- Prediction Labels derived from statistical analysis of the 30000 most common Deltas
- Use of the model as **Stateless LSTM** between batches
- Experimentation with additional simultaneous prefetching from non ML prefetchers

Methodology

- Oracle Prefetching
- Delta Analysis
- Parameter Tuning

Tools

- Pytorch framework
- ChampSim Simulator
- SPEC06, SPEC17 and GAP benchmark suites

Prefetcher Characteristics

- Last Level Cache traces
- PC-Based
- Address Deltas and PCs as features
- Static Distance in Prefetches
- Across Page Physical Address
- 2 Degree Prefetching
- Main Metric is IPC

Prefetcher Setups

Individual prefetchers

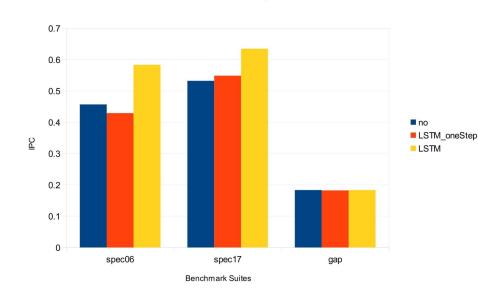
- Baseline (no)
- Next Line (next_line)
- Best Offset Prefetcher (bo)
- Irregular Stream Buffer (sisb)
- TransFetch
- Our model (LSTM)

Combined Prefetchers

- Irregular Stream Buffer with Best Offset Prefetcher (sisb_bo)
- Our model with Next Line (LSTM_next)
- Our model with Best Offset Prefetcher (LSTM_bo)
- Our model with Irregular Stream Buffer (LSTM_sisb)

The evaluation of the above setups was mainly based on IPC and IPC Improvement, with other metrics being for assistance in the designing process

Distance Results



Distance Comparison

Comparison of baseline(no), our model with prediction distance 1(LSTM_oneStep), and our model with optimal Step prediction(LSTM) on Geometric Means of IPCs on SPEC06, SPEC17, GAP OneStep Model is worse in all Benchmark Suites.

SPEC06: one Step hurts performance, while LSTM improves LSTM over baseline

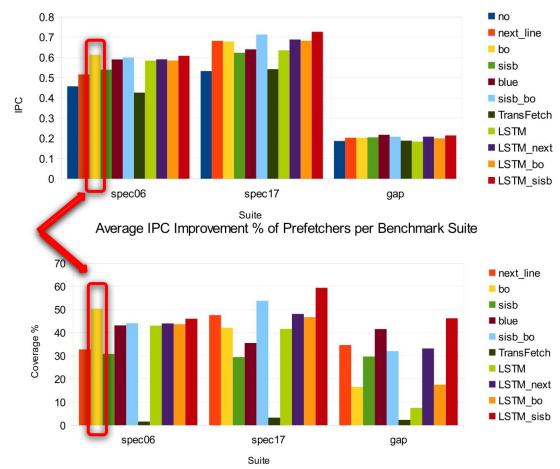
SPEC17: both improve the baseline, but LSTM has significant advantage

GAP: both slightly hurt the performance with LSTM being a bit better

Results

SPEC06 we have the BOP performing the best with our LSTM_sisb being second and TransFetch is the worst

Geometric Mean IPC of Prefetchers per Benchmark Suite

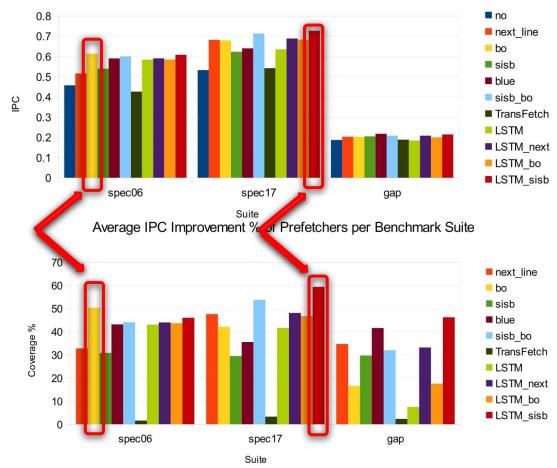


Results

SPEC06 we have the BOP performing the best with our LSTM_sisb being second and TransFetch is the worst

SPEC17 we have the LSTM_sisb performing the best followed by sisb_bo and TransFetch being the worst

Geometric Mean IPC of Prefetchers per Benchmark Suite



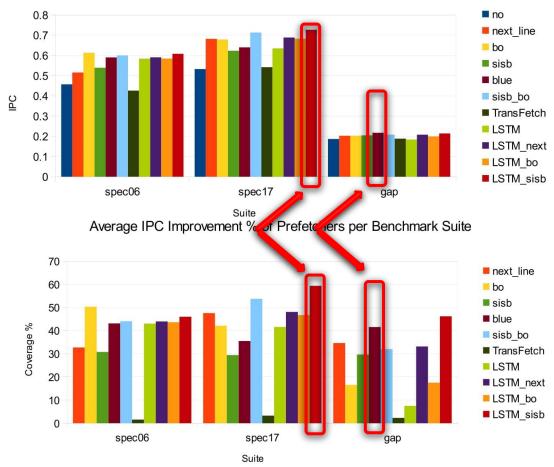
Results IPC

SPEC06 we have the BOP performing the best with our LSTM_sisb being second and TransFetch is the worst

SPEC17 we have the LSTM_sisb performing the best followed by sisb_bo and TransFetch being the worst

GAP we have the blue is performing the best followed by LSTM_sisb and LSTM being the worst.

Geometric Mean IPC of Prefetchers per Benchmark Suite

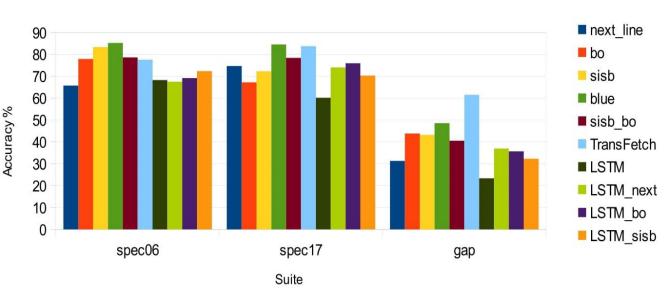


Results Accuracy

SPEC Generally high accuracy

LSTM Lowest Accuracy

Blue and TransFetch Higher Everywhere



Average Accuracy of Prefetchers per Benchmark Suite

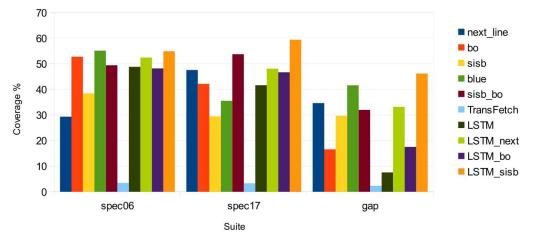
Results Coverage

TransFetch way lower Coverage

LSTM_sisb consistently high

coverage everywhere

Blue better in SPEC06 and second in GAP but low coverage in SPEC17 Average Coverage % of Prefetchers per Benchmark Suite

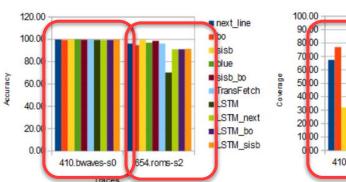


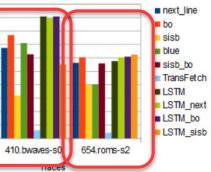
Best cases

410.bwaves-s0 has plain LSTM and LSTM_bo as the best performance even with higher coverage and reduction of misses by a large number

Best Cases IPC Best Cases MPKI 25.00 no no 1.6 no no next line next line 1.4 20.0 bo bo 1.2 sisb sisb 15. blue blue sisb bo sisb bo MPKI 0.8 PC TransFetch 10 TransFetch 06 LSTM LSTM 0.4 LSTM next LSTM next 0.2 LSTM bo LSTM bo LSTM sisb LSTM sisb 410.bwaves-s0 654.roms-s2 410.bwaves-s0 654.roms-s2 Traces races Best Cases Accuracy % Best Cases Coverage % 120.00 100.00 next line next line 90

654.roms-s2 has similar characteristics with the difference that LSTM_sisb is better than just the LSTM





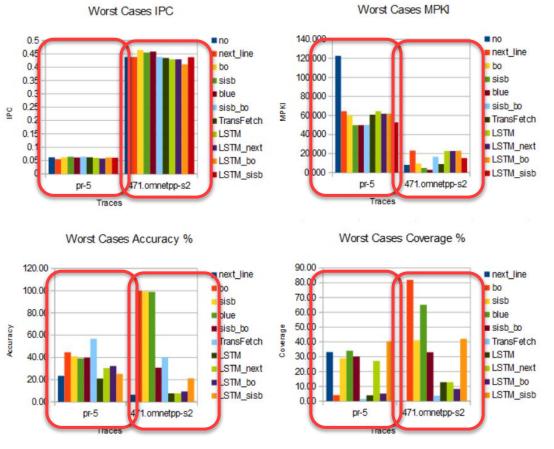
Worst cases

pr-5 has low accuracy, coverage and IPC in general only sisb performs positively.

It has a large number of different deltas with the most common covering lower percentage compared to other benchmarks.

471.omnetpp-s2 has BOP as the best with blue following. Our models suffer in accuracy compared to the other ones.

Here all LSTMs except LSTM_sisb, increase the number of misses.



Conclusion

- **Prefetching** counters CPU **idle time** waiting for memory
- Simple and complex algorithms based on application and resources work as prefetchers
- Neural Networks and Machine Learning seem promising to a better and more universal solution
- Address sequence prediction similar to NLP Next word prediction
- PC-based, address delta classicification on Last Level Cache in physical address space
- Results show better performance with **combined** use of **traditional** prefetchers and our **LSTM** model

Future Work

- Online training and generation
- **Sampling** Method or adaptation for training in the beginning
- Different Delta encoding
- Experimentation with **additional features** as input
- Virtual Address application

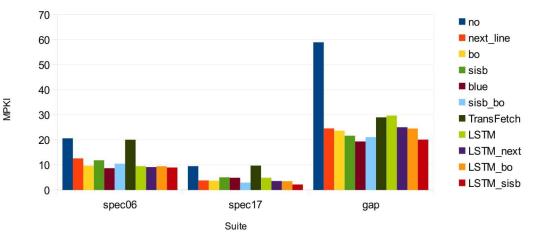
Questions?

Results MPKI

SPEC06 TransFetch worst, blue lowering number of misses

SPEC17 LSTM_sisb and sisb_bo are the best and TransFetch the worst

GAP has high number of MPKI, with the greater reduction from blue and LSTM_sisb με χειρότερη το LSTM Geometric Mean MPKI of Prefetchers per Benchmark Suite



Oracle Stats

Suite	Global Distance			Per PC distance		
	Step	IPC	IPC Improvemen t %	Step	IPC	IPC Improvemen t %
SPEC06	13.48	0.72899697 48	73.86	7.29	0.72619988 86	73.26
SPEC17	-	-	-	4.51	0.74538252 65	45.72
GAP	24.26	0.33602179 18	71.11	8.05	0.27594964 78	40.32

Delta Label and Coverage

Suite	Global Delta Calculation			Per PC Delta Calculation		
	Step	No of Deltas	Filter Coverage %	Step	No of Deltas	Filter Coverage %
SPEC06	13.48	3415580.4 8	71.32	7.29	482760.86	87.31
SPEC17	-	-	-	4.51	2351659.7 0	80.51
GAP	24.26	3386725.1 6	62.40	8.05	724414.00	86.39

Machine Learning Prefetchers

