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ITepiindn

Me tov 1epdoTIO 6YX0 BEBOUEVLY GUVOULALLY TIOU BNUOCLOTOLOUVTOL XANUERVE OE TAXTQOPUES
6nwe to Twitter, to Reddit xou to Facebook, n autépatn avéluoy| toug ye otoyo tnyv e€6pulrn amdde-
WY X0 TNV XATOVONOT TNS avlp@Tvng cUUTERLPORAS YVweilel ueydin {Atnon. Emnkéoyv, n xatavénon
NG CUVALOUNUATIXAG XATAO TOONS TOU ovlp@Tvou GUVOULANTY elvon amopod Tt Yo TNy avdmtuén mpa-
%TOpwY oL BlardéTouy evouvaioUnon xo uTopolV Vo AAANAETLBEOUY UE TOUG oVUPMTOUE UE TEOTO
puowd yia Toug tekevtalous. Tétoleg xou ke mbavés eQupuoyéc €xouv odnyYHoeL o AUEAVOUEVO
epeLYNTIXG EVDLaPEPOY Lo To TEOBANua Tne Avayvoplone Suvaotuetoc oe Lulnthioe (Emotion
Recognition in Conversation - ERC), 1o ornoio anooxonel otov nposdloptopd tou suvarcdfpatoc tou
exppdlel xdle expivnon oe évay dedouévo Bidhoyo.

IToAréc mponyolueveg mpooeyyioelc 6ToV Topéd YENOWOTOOUY TEO-EXTUDEUMEVA YAWCOIXA o~
viéla, 6nwe T BERT xou RoBERTa, ta onola npocapuélovv oto ERC npdfBinua péow e pedddou
fine-tuning. Qotéo0, napd TNV anoteAeoUATIXOTNTA NG, N TeAeuTala elvon Wlktepa Samavner and
dmodm UTOROYIo TIXWY Kol ATOYNAEVTINWDY TOPWY, EVE GUYVE UTtopel Vo 00Ny OEL GE UTEPTROGUEUOYN
(overfitting). Mo evahhaxtixd, mo ehageid pédodoc mpocapuoyric mou éxel npotadel ta teleuTala
¥eovia etvat 1) udinon Bdoel prompt, 1 onola Siatnpel Ty OUEVES TIC TEO-EXTALBEVUEVES TIOROUETEOUC
T0U YAWOOWOU HOVTEAOU %ol TEOGYETEL VOl UXpd CUVONO VEWY, eEXTULOEDCLUWY TOPOUETEWY OTO €-
ninedo ewwddov avtol, Tou amoteholV to ovopalduevo prompt. Kadode mpdxerton oxdun yio pio
oAU Véa pévodo, 1 dlodéaiun BiBhoypapia, Wiwe otov Toyéa tng Beitiotonoinone e pedddou yia
SUYXEXQIIEVA TIEOBAAUOTA, Elvol TEPLOPLOUEVT.

Yt napoloo SITAWUTIXY, GTOYEVDOUUE oTN UEAETN TNne pddnone Bdoel prompt w¢ wédodo mpo-
COPUOYNC TRPO-EXTIUBEVUEVWY YAWGOIXWY HOVTEAWY oTo €pyo Tou ERC. Axoloutolue 800 npooey-
vioelc xan exTENOVUE EXTETOPEVD TELRGUATO Xl Yiat Tig SVO.

YTV TEWTN YOS TEOCEYYLON), GTOXEVOUNE VoL UEAETHOOUNE TNV EQUPUOCLUOTNTA TNS uddinong Bdoet
prompt oe clOyxpion pe to fine-tuning xow va Yécovpe éva Boaoixd pétpo olyxplone (baseline) yio
T uddnon Bdoer prompt yi to ERC. Ilewpopoatiloyoacte pe éva anhéd Baoxd poviého xadode xau
HE YovTéda Tou yenowonololy dnuogihelc uetddoug mou €youv yenowonowndel Tponyouuévene oTny
BiBhoypapla yio TNV EVOOUATWOT TANEOPOELY TOU 0PoEOVLY TOV OUANTYH. LUUTEQUVOUNE TENXS
6T 1 pdinon Bdoel prompt unopel mpdyuatl vor GUUBEAEL GTNY TEOGUPUOYT TOU TEO-EXTIUOEUUEVOU
YAWOOWOV UOVTEAOU oG, ETULTUYYAVOVTo WdhioTa emddoelc ouyxplowes pe to fine-tuning yia éva
an6 To dVo clvola dedopévewy ota omofo elpooTillOpaoTE, Ye THY anddoot| e vor e€opTdtan amd To
cUvolo dedopévwy, to uéyetog Tou prompt, TNV aEYITEXTOVIXY Xl TN YEYod0o exmaldevong.

Ytn deltepn TEOCEY YO Hag, Tpoteivouue Wwa p€Hodo yio TNV EVOWUATOOY TeOcUETwY TANPOQO-
PLOY, YPNOIIWY YL TNV Avay VOpLoY cuvatcUiuatog o o culhtnon, anevdeiog yéow twv prompts,
¥0plc tepontépwy ahAaYEC OTNY AEYITEXTOVIXY Xl TNV El00B0 TWV TREO-EXTUBEVUEVWY YAOCOIXDY [HO-
viéhwyv. Iepopatilopacte ye v Tpoctinrn TANEOPOELOY CUYXEXPUEVLY Yo Xdde owAnty xon Véua
oulATnomng xou TapaTNEOVUE avENoT NG anddoong o€ TOAAES TEPLNTAOGELS, o€ GUYXELON UE To baseline
povtého pac. H pédodoc poc unopel ebxora vo enextadel xau o€ dAhouc TOUTOUG TANEOPORLEY, EXTOC

and TNV TAUTOTHTA TOL OULANTY ot To Vépa culHTnong, oaxohoudodvtag TNy (Bla Aoyixy.
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Abstract

With the vast amount of conversational data that is made publicly available daily on platforms
such as Twitter, Reddit, Facebook etc., its automatic analysis for the aim of mining opinions and
understanding human behavior is in high demand. Additionally, a full grasp of the emotional state
of the human interlocutor is necessary for the development of empathetic agents that can interact
with humans in a manner natural to the latter. Such and other potential applications have lead to
an increasing research interest on the task of Emotion Recognition in Conversation (ERC), which
aims at determining the emotion each utterance in a given dialogue expresses.

A lot of previous approaches in the field utilize pre-trained language models such as BERT and
RoBERTa as part of their proposed architecture, which they adapt to the specific task using the
traditional fine-tuning method. However, despite its effectiveness, fine-tuning is very expensive in
terms of computational and storage resources, while it can often lead to overfitting. An alternative,
more lightweight method for the adaptation of pre-trained language models to downstream tasks
that has been proposed in the recent years and aims at mitigating these issues, is prompt-based
learning, which keeps the language model’s pre-trained parameters frozen and adds a small set of
new parameters in the mode’s input level, called a prompt. Nevertheless, because it is still a very
new method, there is limited work available, especially in the field of optimizing the method for a
specific task.

In our work, we aim to study prompt-based learning as an adaptation method for the task of
ERC. We follow two approaches and perform extensive experiments on both.

In our first approach, we aim to study the applicability of prompt-based learning in comparison
to fine-tuning and set a baseline for prompt-based learning for Emotion Recognition in Conver-
sation. We experiment with a simple baseline model as well as models utilizing popular methods
previously used in related work for integrating speaker-specific information. We conclude that
prompt-based learning can indeed contribute to the adaptation of our pre-trained language model,
even yielding a performance comparable to fine-tuning for one of the two datasets we experiment
on, with its performance depending on the dataset, prompt-size, architecture and training method.

In our second approach, we propose a method for integrating additional information, useful for
recognizing emotion in a conversation, directly through the prompts, without further changes to the
pre-trained language model’s architecture and input. We experiment with adding speaker-specific
and topic-specific information and observe an increase in performance in many cases, compared to
our baseline. Our method may easily be extended to other types of information, besides speaker

identity and topic, following the same logic.

Keywords

Machine Learning, Deep Learning, Natural Language Processing, Emotion Recognition in Con-
versation, Prompt-Based Learning, Transformers, Pre-trained Language Models, BERT, Information-

Specific Prompts






Euyoeiotisg

Me v ohoxAfipeon NG SIMAWUATIXAC HOU ERYUCIAS ONUATOBOTETOL TO TENOC TV TREOTTUYLAXY
omoLdWY pou oto Edvixdé Metodfio Ilohuteyvelo. Ou Hdela oto mhaioio autd vo exppdow Tic Yepuéc
pou euydplotiec otoug avidpnnoug Tou pe BoRinoay Yo TV TERATWOY) TOU TAEOVTOS €pYOu.

Apyxd, ogelhw évo peydho Evyaplotd otov xadnyntr xou enBAénovtd pov, AréEavdpo Iloto-
wévo. H mpoduplo xou 1 cuveyhc xadodAynor tou, 10 opeiwTo EVOLIPEROY TOU Xl Ol TOAVTIIES
TOPATNENOELS TOU, GLUVTEAEGAY 1000 aTny Yeuehinwon Tne Topoloag epyaciag, 660 o OTNY EMC TN
povixn pou welyavon xo Siopdppwor. Iapdhinia, ot mhoboleg YVHoeS Tou, ol BlaAé€elg Tou oe
pordiuato oyeTlldUEVa UE TNV UNYOVIX UEUNOoT Xou 1) oYdmn TOU Yot TNV EPEUVOL AMOTENECHY OT)-
pavTxd epediopata mou pe evEmVEUsOV xadOAN TNV BldpxeEld TNG EXTOVNONG TNG DIMAWUATIXAS LoV
epyaoiog.

Oa Hdeha enlong va euyoploTow Tov Sdoxtopixd epeuvnth oty ouddo tou x.Ilotauidvou, I'ideyo
IMopaoxeuémovho, ol cuPBoUAES xau 1 xododrynon Tou omolou unhApgay Waltepo TOAOTIUES Yiol TNV
Topelol Xol OAOXAHPWOY| TOU THPOVTOS ERYOU.

Télog, Yo Hieha va euyoploTAow TOUg xOVTVOUC UouU avip®OToUg, TNV OLXOYEVELS oL Xardddg xou
Toug 6TEVOUC oL @lhoug, oL onolol pe oThpLEay xord” OAN TG SLdEXELN TOU EYYEIRHHATOS OV %ol TiTay

navta dlardéoipol Yo vo oulnthocouy yali you, va ye ouyfouietoouy xou va pe fondricouv.

Iohutiun-Avva I'réton

Adhva, Xentéufploc 2022
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the number of embeddings corresponding to our text input, k£ is the number of
past utterances used as context and ¢ is the index of the current utterance to be
classified. "|" symbolizes concatenation. The modules in blue color are kept frozen
during training, while the modules in yellow are trainable. Note that the prompt
embeddings block has trainable parts, but is not trainable as a whole: See Figure

6.1 for a detailed overview. . . . . . ...
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Chapter 0

Extetouevn EAAnvixy Ieplindmn

0.1 Ewooywyn

To cuvaloinpa eivon €uputo otov avipwno xaL arotehel GNUUVTIXO TTaEdYOVTA TOV ENNEELEL TNV
aviponivy cuuneplpopd. H avayvodplon tou avipodnivou cuvatotiuatoc anotehel enopévwe Pooind
H€poc TNE xaTavonong Tou avipdnou. XTo mAaolo evog Blahdyou, o axpl3ric Teocbloplouds Tou
cuvoncUpatog umopel va etvor xotoplo Tindg yia TNV epunvelol TNG CLUUTIERLPORAS Xxou NG Tpddeong
%l cuVOUANTY, %M XoL TOU VORUATOC TWV AEYOUEVDY Tou. Me v dvodo Twv BladlxTuaxmy
TAATPOPUMY XAl TV HECKY xoWWVIXNSE dxTOwaong, énwg To Facebook, to Reddit, to Twitter ».Am.
évag ouVTELTTIXGE 6YX0C BedoPévmy cuvolthiog xad{otaton xadnuepvd dlardéoipog Snudota xou 1) aUTo-
Lo oVEAUGT] TOUG PE oX0To TNV E6PLEN andPewy xou TN HEAETY TNE avp®TVNG GUUTEPLPORAS Elva
nepllmnn. Emmiéov, n emdiwin e dnplovpyiog dlahoyixdv npaxtépwy xan Bonddv mou diadétouy
TEYVNTH vonuoolvy mou yotdlel ue tny avlpdmivn xau elvar o Y€om Vo GUVORAOLUY pE ToV dvilpwro
HE TPOTO PUOLXS TEoG AUTOY, amoutel TNy eic Bddoc xatavdnoT NS CUVALCUNUATIXTE XATAC TACTS TOU
avp®OTIVOU GUVOIANTY. Xe €val TOAU BlAPORETIXG TAACLO, 1) AVarY VOPELOT) TOU CUVALGUHUITOS 6TaY Ol
Svidpwrol cuvopholy pnopel va Bonifoel oty avdmtudn epyaheinwy Puyoroyxrc avdAuong yio TV
unoforinon tev ylatedy xou unopel €tol vo unoatnel€el Ty uyetovouixy) tepldoddm.

H avayvapeion ouvaodnudrtoc oe oulntioec (Emotion Recognition in Conversation - ERC)
unogel vo 0ploTel ¢ TO TMEOPBANUA TOL TEOGBLOPLOUOY TOU CUVACVAUNTOC XEVE eExPOYNONS, Oc-
Bopévne o oelpde expuvicewy mou anoTteAolv évay didhoyo uetald B00 1) MEQLOGOTEPWV ov-
Yeodmvewv oANTOY. AdYw TwV TEoavapepUEVTHDY SUVITIXOY EQUOUOYOY TNG, EYEL ATOXTHCEL GNUAV-
T SNUOTXOTNHTA T TEAEUTAlL YEOVLAL, UE OAO XoU TIEPLOCOTEPOUS EPEVVNTES VOl BEATILVOUV GUVEYOC
TOL TPONYOUPEVA CLCTHUATA Xat Vo TeoTelvouy véeg apyttextovixés. To mpotevoueva Lovtéla cuy v
agomololy v ToutéthTa Tou owhnth [11] [13] [14] [15], 0 poviedonoinor touv Yéuatoc oulhtnong
[16], xou Ty xwdixomoinon tne evdoeZdptnone xou tne adnheddptnone owhntov [17], tpoxeiwévou
vo cUMGBouv anotekeopatixd to cuvaioUnua, xou cuvidng Bactlovta oe pio and dbo xlpleg npoo-
eyyloeig: H mpodtn ypnowomoiel veupmvixd dixtua Yedpwy, XwOXOTOIWVTIS TIC EXPWVACELS Xl TS
OYECELS TOUG WS XOUBOUC Xol AXUES EVOC YEAPOU %Ol LOVIEAOTIOLMVTAS TIS Sldpopes e€apTHOELS HEOW
e ouvddpolone TAnpooply and yeltovinolc xouBous. H deltepn alonotel tn axoloudiony @ion
TWY GUVOLALLY, YENOWOTOLOVTAS LOVTERN TOU ATOTUTIVOLY pNTE Tig axXOAOUHOXEC OYETELS, OIS TA
Enavohopfovéueva Nevpwvixd Aixtua (Recurrent Neural Networks - RNNs) xau tat tpo-exmoudeupévo
Yhwoowd poviéla nov Bacilovton o transformers (6mwe to poviého BERT [18], RoBERTa [19],
BART [20] ».Ax.), xou ebvon {owe 1 o cuvphopévn oto cvothuata ERC teleutaioc teyvoloyiog.

To npo-exmoudeuuéva YAWSOIXE HOVTEN EMLTEENOUY GTOUS EPEUVINTES VA ETUTUY X AVOUY TOAY XOAES
emdooEC OTaY TPooTadolV VoL avary Viploouy cuvarcYiuata o GUVOMLMES, AOY® TNG EXTETOMEVNC
xatavdnong e avipdmivng YAOGGCOC oL £Y0UY AOXTHOEL XATE T1) QACT| TNG TEO-EXTUBEVCTE TOUG.
I v mpooapuoyn toug oto mepfdihov Tou ERC yenoiwonoieiton cuviidwe fine-tuning, uédodog n

omola TpomoTolel OAEC TIC TUPAUUETEOUS TOU TRO-EXTAULOEVUEVOU YAWOGLXOU LOVTEAOL YENOULOTOLOVTAC
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éva. alvoho dedopévewy oyedlaouévo yia to teoBinua tou ERC. Qotéco, hauBdvovtac unddn to
YEYOVOS OTL Ta €V AOYW POVTERA AmOTEAOUVTOL 06 EXUTOPUOPLOL )Xol DLOEXATOUUDELA THPUUETEOUC,
1o fine-tuning avt®v ynopel vo anotehel plor mohd domavney| Swodixacio: H exnaidevon onoutel tdéoo
TOAD Yedvo 660 xot TOAAOUE UTOAOYLOTIXOUE TOPOUS, EVE) TA LOVTEAN TTOU TROXVUTTOUY XoTaAdufdvouy
peydho anotdnxeutixd yoeo [21]. Emnhéov, enedn to odvoha dedopévev ou elvon dradéotua yio to
neofinua ERC elvan oyetind yuxpd oe oOyxpion ue tov aptiud Twv Tapauétewy Tou diadétouy to
TPO-EXTIUSEVPEVA YAWOOIXE HovTéha, Ta exmoudevuéva e fine-tuning povtéha cuyvd unogépouy and
unepnpocopuoYt (overfitting) [22].

T var opProviody autd ta mpoPhuata, éyer npotadel n uddnon Bdoel prompt (npotpondyv),
e W yevr] uédodog Yol TNV TEOoUpUoYY| TEO-EXTUDEUIEVWY YAWOOXDY UOVTEAWY OF ETUEPOUC
npoPhfuata. Avtl vo Tpomonolel TIC TUPAUETPOUE TOU TRO-eXTAOELUEVOL HoVTELOU, 1) wdinon Bdoet
prompt Tic dtatnpeel Ty wUEveS xot TEocVETEL Eval GUVORO VEWY TUPUUETEWY, YVWOTO UE TNV opohoyia
prompt, oto eninedo €l0680L TOL YOVTELOU, TIC OTOlEC GTY cuvEyELd BehTioTonolel, TPOXEWEVOL Vo
EMNEEGOEL TOV TEOTO PE TOV 0Tolo To Hovtého yetpiletoan TV elcodo, MoTE va TpocaplooTel xahlTEP
070 empépoug mEOPAnua. Emeidr) o aprludc TV VEOY EICUYOUEVWY TUPUUETEWY TOU EXTOUDEVOVTAL
anotelel évol TOAD Wxpd T0G0GTO ToL APLIUO) TV TEO-EXTIUSELUEVLV TOEOUETPWY OV 1) LEédodog
tou fine-tuning napadooioxd Beitiotonolel, 1 udinon Bdoel prompt elvon onpavTixd To ehapELd X
AYOTERO EMPEETAC OTNY TEdXATOY UTepTpocdpuoyc. Eyel étol npoceixdoel To eVOLopépoY TOANDY
EPEUVITV, OL OTIoloL €Y 0LY TPOTEIVEL BLaPORETIXES apYITEXTOVIXES Xai Ued6Boug exnaldeuorng. 20T600,
Topd To AUEAVOUEVO EVOLPEROY TNG EPELVNTIXAC XOWVOTNTAS, 1) Wdinon Bdoel prompt e&oxoloudel va
anotehel wa TOAD véa uédodo xau cuvendde 1 dardéoiun BiBhoypoapia elvar eploptopévn, Wiwe otov
Topéa g Beltiotonoinong tng uetddou yia Eva cuyxexplwévo tedBAnua. Iditepa otov Toyéa Tou
ERC, xatd ) neplodo Twv ElpaudTtwy Yo, dev xatapépoue vo Bpolue xauia epyacio mou va yenol-
pornotel xadapd wa mtpocéyyion udinone Bdoel prompt, 1 omola var exmoudeel uévo TIC TUPUPETEOUS
TOL prompt, SLATNEOVTIG TO TEO-EXTOUOEUHEVO LOVTERD TOYWHEVO X0l TORUUEVOVTIC ETOL TEAYUOTIXG
ehapld and dnodn ndpwv.

Yty moapodoa SimAwpatiny epyacia oTOXEOOUPE OTNV UEAETN TN BUVITOTNTAUC EQPUPUOYAC TNG
uddnong Bdoel prompt yio THY TEOCUPUOYY| EVOC UEYIAOU TRO-EXTUDEUPEVOL YAWOGIXO) LOVTEAOU
oto épyo e Avoyvoplone Luvaodfiuatog oe Lulntioec (ERC). Xto mpdto yépoc g epyoaoiug
o, Vétouye éva Baoixd poviého olyxplone (baseline) yio to Baolépevo oe prompts ERC xou netpo-
potiloyacte Ye Yetddoug oL YenoulonotoivIal cUVATKC G TEONYOUUEVA EQYA VIO TNV EVOWUATWOT)
TANPOYORLAY TOU aopoVY TOV OWANT ot Tn povtelonolinon tng evboeldptnone xat TS ohhm-
heZdptnong owAnTdy. Xuyxplvoupe to Jovtéha pag Ue poviéla mou yenoiponotoly fine-tuning xou
ueTEdue TN dlapopd oY amo6dooy UETAED TV BU0 PedddwY TEOCUPUOYHC. LT CUVEYELL TUPOUGLA:-
Coupe yla debtepn mpooéyyion, N onola anooxonel TNy xwdxonolnon mtpdcletwy, YeNowny Yio T0
npoPhnua tou ERC minpogopidyv, 6mwe 1 toutdtnto Tou owhnth 1 to Yéua oculhtnone, aneudeiog
H€ow TwV prompts, ywpeic tepantépw ahhayéC 0TO HOPPOTUTO ELGODOU 1) GTNV UPYLTEXTOVIXT TOU |LOV-
t€hou. lpoyuatonowolye extevy telpduata xou Yo Ti¢ 800 mpooeyyloel, xadde xan pla oulrtnon

OYETIXA YE TNV EQAPUOCLUOTNTA TNS Wdinone Bdoel prompt oto npdBinua tou ERC.

0.2 Oeswpntixd vrofadpo

0.2.1 Ilpo-exmoudeLUEVA YAWOOLXA LOVTEAN

Toa yiwoowxd povtéha ebvor poviéda mou avodétouy mdavdtntec oe axohoudee Aéewv [23].
Amoteholyv 1o depého tne Enelepyacioc Puoic I'hdooag, xadde npocpépouy wa pédodo petort-
POTAC TOLOTIXAY TTANEOPORLIY XEWEVOU GE XATAVONTE Amd TN Uny vy tocotxd dedopéva. Koatd tnv

TAPOBO TV ETAY, €youv mpotadel didpopa YAwoowd wovtéia. Me v mpdodo tne Padide wdinong,
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0.2.2 MéYodolL TpocapUoYHEC TWV TEO-EXTAUIEVLEVLY YAWGGIXMOY LoVTEAWY O EMLUEPOUS TROBARUATAL

Tol TapadocLoxd YAwooxd poviéha mou Poaoctlovial 0T oTATo TXY avTxatao Tdnxay ond YAOooxd,
MOVTERA TIOU YENOLLOTOLO0Y VELPWVIXE BixTud, Tal omola Tehxd 0BRYNoUY GTU ONUEPIVA UEYHANL TPO-
exnoudevpéva Yhwooxd poviéha, énwe 1o BERT [18] o to GPT-3 [24]. Ta npo-exmoudeupévo
YAWOOWXS povTtéha a€lonolody TG TERACTIES TOCOTNTES DEBOUEVHV XEWEVOL Ywelg ETIXETES YLOL VOL EX-
TondeuTolY, H€ow U EMBAETOUEVNS 1} AUTO-EMPBAETOUEVNE YAINONC, TEOXEWEVOU VoL ATOXTHCOLY (Lol
YEVIXTH XATavONoN TN PuUOLXAC YAWooug. Metd Ty exnaldeuoy| Toug, unopoly Vo TpOCHpUOGTOUY OF
EMUEPOLE TEOPBANUATO TEPVAOVTOG A HEELXOUS axbun YUpous exnaldeuone, Ue epappoyn tne uedddou

fine-tuning, yenowwomnoldvtog puxpdtepa GOVOAXL BESOUEVRDY UE ETIXETES.

0.2.2 MEeED0d0L TRPOCAPUOYHE TWY MEO-EXTIOUOEVEVWY YAWCOIX®Y [(LOV-
TEAWY Ot ENMUEPOVG TEOBANUATH

Topadootaxd, ylor TNV TEOCUSUOYN TWV TEO-EXTAUBEVUEVWY YAWOOIXMY UOVTEAWY OF ETUUEPOUC
npofAfuata, yenowonolelton fine-tuning. Qotéco, To fine-tuning dev elvon mdvta BéATiotn pédodoc:
Mrnopel Vo TpOXUAECEL UTEPTEOCUPUOYT] TOU TPO-EXTUUOEVHEVOU HOVTEAOU, EVE) TPOTOTOLOVTOS TIC
TPAUETEOUE TOL TEReUTaoU UTopel Vo To odNyHoel oto va Eexdoel oNUaVTIXES YAWoOXéS OYETELS
X0l AVOTOEAOTACELS, TIG OTOlEG aUTO BB TNXE XATd TO OTAdL0 TN mpo-exmaidevone. Emniéov, to
augavouevo péyedoc Twv TEO-eXTAUBEVUEVKY HOVTEAWY ofuepa onpalvel 6Tl to fine-tuning outodv
TV HOVTEAWY Umopel va elvon oyeTixd damavned xat Oyt TEvVTo 1) o anodoTxy| and dnodm moewv
evadhaxtin). T toug Adyoug autole, ta tedeutaio yedvio €xouy mpotadel SLdpopec eVOMAUXTIXES
AN)OELC YIoL TNV TEOCUPUOYY| TWV TEO-EXTAUDEVUEVRDY YAWCOXDY LOVTEAWY, 0plouéveg and Ti¢ onoleg

elvoun:

Agaipeorn nopapétpwy Tou woviélou Ilpoxewévou va yeiwdel To amotimwua ot uviun
and TNV TEOCUPUOYY TPO-EXTAUSEVHEVLV YAWCGIXWOY LOVTEAWY, OPLOPEVOL EQELYNTES EYOLV TEOTEIVEL
v agaipeon nopouéTeny Tou povtélou [25] [26]: Avtl va tpomonotioel TiC TopoHETEOUC TOU HOV-
TENOL, AUTH 1N Ypouur epydociag exmandelel Suadnég udoxec mou xadopllouv mola Bden Tou pov-
éhov Yo agarpedoiv [21] yio xdde TpdBinua. Xenowonowdvrag auth T wédodo, o epeuvntéc éxouv
napatneroel anotehéopota ouyxplowa ye Ty pédodo tou fine-tuning, av xou ye ula tdon vo etvan
Ayo younhdtepa o Tohhég Tepintwoelc. To yeydho mheovéxtnua tne pedodou agaipeong TapaéTewy
elvar o wxpdtepog anantoluevog anodnxeutinde yheog: Katd to fine-tuning yio tnv enfhuon noi-
hamAody TpoPAnudtey Tautdypova, ohéxAneo to fine-tuned povtého npénel vo amodnxeutel yio xdde
TeoBANUe. Ao TNV GANN TAEURd, UE TN XeNoT BLUBIX®Y Haox®Y, Yeetdleton vo anovnxeutel uévo €va
avTlypapo OAGXANEOU TOU TEO-EXTAULOEVIEVOU LOVTEROU, XS X0t EVal GOVOAO BUABIXOY IOV Yol

x&e mpdPAnua, uetdvovtog €tol oe yeydho Badud tov anapaitnto anodnxeutixd yopeo [25].

Adapter-tuning Xtn yédodo tou adapter-tuning, povédeg mouv Pocilovton o uToleypoTixd Six-
toa (residual networks) ewwdyovton péou otic Tpo-exnudevuévee povddec-transformer tou yAwo-
ool wovtéhou. Ot véec povddec, tou ovopdloviar vrorewpatixol tpocappoyeic (residual adapters),
elofydnoav apyd and touc Rebuffi et al. [27] xou exmoudedovion ypnoponoudviag To cOvolo de-
BOUEVLY TOU EMUEEOUC TEOPBANUITOSC, EVE Ol TUPGUETEOL TOU dEYIX0) TEO-EXTAULOEUUEVOU UOVTEAOU
Slatnpolvton morywuéves. O dladxaoia eloaywyRc xat EXTAUBEVCTC UTONELUUOTIXGY TPOCUPUOYEWY
VTl TV TOPUUETEOY TWV TEO-EXTUSEUUEVKY HOVTERWY avopépeTal ouyvd we adapter-tuning [21].
Juvoluxd, n pédodoc Tou adapter-tuning éyel emtdyel emddoelc cuyxpiowes ye To fine-tuning, evdd
TUESAANACL UELWVEL ONUAVTIXG TLC EXTIOUOEVOLIES TOROUETPOUS TOU LOVTEAOU X0, (C UTOTEAECUA, TOV
amoUToUPEVO anodnxeuTnd yweo. Emmiéov, ol mpocupuoyelc emitpémouy Ty e0XOAT X0t AnOTEAES-

portix) v ToA Aoy 1 TANEOQOELOY UETAE) BLUPOPETIXGY TPOBANUATKY, BEATIOVOVTAC GUYVE TNV anddoon.
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Md&Onor Bdoet prompt H uddnon Bdoel prompt diatneel 1o tpo-exmoudeuuévo Hovtéro aueTdBA-
NTo xou elodyel évay ped optdud mapauétenv, mou arnotehoby To ovoyalduyevo prompt, elte oto
eninedo tne xewevixrc ewoddou eite aneudelog oto eninedo embedding (evowpdtwong) Tou poviélou.
Me 10 péyedoc Twv cUYYPOVWY TEO-EXTUBEVUEVOY YAWOOXOY UOVTEAWY VoL AUEAVETOL GUVEYQC, M)
uddnomn Bdoer prompt gpeuvdTon XUPlE AOYW TOV YUUNAOTECWY AMUUTACEWY TNS 600V aPopd TOUg
népoug exnaideuong xou anodfixeuong, o clYXelon PE TNV Tapadooiaxy uédodo tou fine-tuning. Mo
exTeEVHC avdhuor tne wdinone Pdoet prompt mopéyeton oe endpevn evotnta (Evotnra 0.3).

0.2.3 BERT

To BERT, nou onpoivel Bidirectional Encoder Representations from Transformers (Augidpouec
Avanopaotdoeic Kwdixornomth yio Transformers), npotddnxe to 2018 and v Google oto [18]. To
BERT etvon éva opplSpopo povtélo, to omolo yenowonolel 1660 ta aplotepd 660 xan Ta deld ouy-
pealdueva Yo vo dnuoupyioel avanapactdoeic Aélewyv. Baolletan otov transformer, 6mwe autog
TopoucldoTnxe and toue Vaswani et al. o7o [7] xou amotehel évay oppiBEoUo XwIIXOTOMNTH oEYITEX-
Tovixic transformer mohhanAcyv emnédwy. H wxpdteen éxdoon tou BERT, to bert-base, anoteAel-
Ton and 110 exatoupdpta eXTUdEUOUIES TUPAUETEOUS, EVE 1) UEYUAUTERT €xBoCT Tou, To bert-large,
anoteheltan and 340 exatoppdpeia exnardedole napapétpous. To BERT nétuye xopugala anoteréo-
ool yior tohhd tpofBAfpata Eneepyacioc Puoiic Ihooouc xatd tnv dnuiovpyia Tou xau €yel €xtote
yenotponondel e TOAAS CUCTAUATA YioL et LeYShn mowdAlo tpofAnudtwy. Me Bdon to BERT xou
UE TPOTOTOWACELC OTNY VEYLTEXTOVIXT TOU 1| OTN Qdon mpo-exmaldeuong, €xouy drnuovpyniel ToAd
TPO-EXTIAUBEVUEVA YAWTOWXE povTéla VPNAHc anddoone, 6mwe T RoOBERTa [19], ELECTRA [28] xou
XLNet [29].

Eninedo e106d0uL xou evowpdtwone H eiocddoc nou déxetar to BERT pnopel vo anoteheiton
elte and éva eite and d0o TuAuata xewwévou (mov avagépovial oto [7] we Tpotdoel), To onola
ywetlovtar and éva eldixd obuforo ([SEP]). Emniéov, éva edixd ovuoro ([CLS]) npootiVeton
TévTa TNV dpy | TNE elo6dou. H tehinn xpueh avomapdotaon autold tou cuuyBdlou yenoionoleitos
WS OVITARAGTACY YLoL OAOXATIEN TNV oxoloudio oe Teofifuata Tagivéunong.

Extéc ané ) yefon evowpotwpdtoy (embeddings) mou avtiotolyody ota cUuPoha ota onola
avuototy{letan To xelpevo ewoédou ("token embeddings" - evowupatdpota cuuBoiwv), to BERT
yenowonolel 800 emnAéov TOTOUG EXTUOEVOUOY EVOWUATOUATOV: EVOWUATOUNTA TOU 0VOUdlovTol
evowpotopata tuiuatos ("segment embeddings") xou yenoronoovvion yia T didxplorn petadl Tev
CLUBOAWY TOL AVAXOUY OTO TEWTO TUAUA ELGOBOL ol TV GLUUBOAKY TOU aviXoLY GTo BelTERO TUAUA
elo6dov, xou evowpotduata Yéone ("position embeddings"), ta omola xwdxomolody TV amdAuTy
Véomn xdde cuufBdrou oty eloodo. O tehixéc avanapaso tdoelc eloddou tou daPBdlovtal oTa oTEw-
ool Tou xwdxonownty tou BERT, etvou éva dlpotopa twv evenuatoudtey cUBOAmY, TURULATOS XL

Véomng.

3tddio mpo-exnaidevong H exnaldevon tou BERT anotehelton and 80o otddia, €va oTddio
npo-exnoldeuone xou éva otddlo fine-tuning. 3to 6TdBO TNG MEO-EXTAUBEVCTNS, YENOULOTOLOUVTAL
000 un emPBrendueve TEOBAAUATY, TEOXEWEVOU VO EXTIULOEUTOUV Ol TUPGUETEOL TOU HOVTEAOU YENol-
HOTIOLOVTOG [T ETONUAoHEVA dedopéva, xau cuyxexpyéva ta Masked Language Modeling (Masked
LM) xou Next Sentence Prediction (NSP):

e Masked LM: Kotd 1 Sidpxeia Tou Masked Language Modeling (Masked LM), eniéyeton
TOyoua xou amoxpVnTeEToL T0 15% AV Twv cuuBéiny ot xdle tpdTaom ElGGBOU XU TO LOVTENO
xohelton va mpofAédel Tic owotég Aé€elg mou amoxplEinxay. Ilpoxewévou va npo-exmoudeutel

TO HOVTENO UE TEOTO TOU Va dlatnpeelton 660 To BuvVATOY TLo XoVTd oTlc cuvirixec oTiC onoleg
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0.3 Mdédnon Bdoel prompt

Yo mparypatonoindel To fine-tuning, ot Delvin et al. enéheav var avtixataothoouv o cUUBoOA
mou Yo amoxpuplolv pe éva eldixd ovuforo ([MASK]) oto 80% twv nepintdoewy, xou éva
&Aho, Tuyaio cOuBoro oto 10% twv nepittdoeny. Nto undhono 10% Twv TEPTTOoEWY TO

obpPoio mou éyel emhey Vel yia andxpudr datnpeiton opetdBAnTo.

e Next Sentence Prediction (NSP): Y& avtd to mpdPinua, mopovoidlovion dvo npotdoels
OTO HOVTENO ot auTO xoheltan va mpoPBAédel av 1 Seltepn mpdtaoy axohoudel Ty mpdTn 6TO
xelyevo. T to oxomd autd ol cuyypageic enérelav (ebdyn npotdoewy oto onola 1 devtepn
TpdTacT mpdyuatt axohoudoloe Ty Ted T oto 50% Tev TEpITTOoEWY X ota ontola 1) dedtepn

TpdTacT Aoy pio Tuyaio TEdTAoT and To GOUA XEWEVKY 6T0 LTOAOLTO 50% TWV TEPLTTMOOENY.

3tddio Fine-tuning Metd tnv npo-exnaidevon Tou govtélou, ta npo-exmoudeupéva e uropoly
VoL popTwdoly xaL To wovtélo pnopel vo utooTel fine-tuning yio Ty mpooapuoYn Tou ot emuépoug
TeoPMuata (6TWE 1) ANEVINOY EPOTACEWY, 1) AVOYVOELST, CUVACUAUATOS, 1 EE0YWYY] CUUTEQRUC-
pdtwv x.Am.) T to oxond autd, to xelyevo ewobddou petooynuatiletar, Mote vo Touptdlel Ue to
npotumo ewo6dou tou BERT. T mopddelyya, yio mpoBAfuata mou oyetilovial pe v andvinom
gpwThoEwY, to Lebyog 300 Tpotdoewy Tou déyeta we elcodo to BERT avtiotoryiletan oto {ebdyoc
gptdTNONG-oLUPEalouévey avapopds, eV Yo epyacies ofuavone axohovddy (sequence tagging) xou
Tawounone (classification) yenowonoteiton wbvo 1 npdtn npdtact ewddou toou BERT xou 1) 8ettepn
TEOTUOT) TOPAUUEVEL XEVA, EVE 1) TEAXH Xpun avanapdotaoT Tou cupgPdrov ([CLS]) petoPiBdleton ot
wLoL xe@oht) TaEvounong.

0.3 Moadadnon Baoel prompt

‘Onwg €youpe e&nyfoel vwpitepa, 1 udldnon Bdoet prompt amoteAel yia uédodo mpocupuoyic
YO TEO-EXTOUBEVHEVO YAWOOWXE povTtéla 1 omola, avtl Vo TPOTOTOLEl TS TAUPUUETPOUS TOU TRO-
eXTUBELUEVOL LOVTENOU, TPOCVETEL Eval VEO, xpd 6UVOAO TopopéTewY, Tou ovoudleTtal prompt, oTtny
eloodo tou povtérou [30] [31]. O mapdpetpor autéc tpootidevton elte oto eninedo tng xewwevinic
elo6dov, we Wwa oelpd and cluBola prompt, eite ancudelag 610 YWOEO EVOLUITWONG, KOS Uit GELRE
and evowpatdpate prompt. O TapdueTEOL TOU TEO-EXTAUSEVHEVOU HOVTEAOL BlatnpolvTal cuvilng
TAYWPEVES, YEYOVOS TTOU UELWVEL ONUOVTLXE TOV optiUd TwV eXTOOENOIUWY TUPUUETEMY, XOO TOVTAC

™ pddnon Bdoet prompt pla ehageid and drnodn LTOAOYIE TGOV TORMY XL YDEOU EVOANICTIXY.

0.3.1 Opiopog Medbédou

Iapadootaxd, ot TEoBAAoTe THEVOUNONG, TO TEO-EXTOUDEVUEVO HoVTELD uTohoyilel Ty mdavoTnTo:
Py(Y]X)

6mou Y elvou ot axohoudio amd cOUfora TOL AVTITEOCWTELOUY TNV ETIXETA TNE XAdong, X elvor To xel-
HEVO EL66B0U Xt To ¥ avTiTpoonneVeL Tic tapauéteous (Bden) Tou woviéhov, o otoles PelTio TonoloVV-
Ton péow fine-tuning.

Xenotponolwdvtog prompts, npootidetar éva cOVOro TapUUETEWY B, EVEH OL dpYIXEC TOPAUETEOL
Tou povtéhou U TUPAUEVOLUY CUVATWE TOYWUEVES ol TO HOVTEAO TEEMEL TWEA Vo UTOAOYioEL TNV

mdovoTnToL:
PH;Gp (Y|X§ P)

6mou P etvon ta oOuPola prompt, mopopetponomuéva and to clvoro mapauéTewy B, Tol omolo

TOPEYOVTOL GTO HOVTENO ¢ TpbdadeTy elcodog [31].
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Chapter 0. Extetopévn ENnvixd Ilepiindn

0.3.2 Koatnyopieg tng Medddou

Aioaxpitd prompts

Tao prompts mou npotdinxay yia et Qopd otn BiBMoypapia xou Yenoylonotobvior Tok) cuyvd
elvow BloxpLtd, dnAady| amotehobvton and éva alvoro cuUBoAwy Tou avtioTotyiCovton anevdeiog oe pla
uTdipyovoa hEN oo heZhbyio Tou povtélou [32], [33], [34]. Ltnv nepintwon auty, o napduetpol 6,
Tou prompt anoTeAoVY UTOGOVORO TWV TUPAUETEMY  TOU LOVTEAOU, X0 CUYXEXPUIEV TWYV TUROUETEWY
TOV EVOOUATOUETWY AEEEWY TOU LOVTEROU Oemp (0 C Oemp C 0). Me Suaxprtd prompt 1 elcodog tou

povtéhou €yel ouvidwe T popen:
Py Py ... Py [X]| Piy1 ... Pj [Z] Pj41 ... Py,

onov Pj,i = 1,2,...,n elvor to obyPora prompt mou to xodévo avtiotoiyel oe ula AéEn and o
Ae&ihby1o Tou poviéhou, [X] elvon tor cUYPola elobdou ou Tpoépyovion and To XelUevo elo6dou xa
[Z] elvon éva Yy mepiocdtepa amoxpupéve ovpBola (mask-tokens), to onolo TpENEL VoL CUUTANPMOOEL TO

povTélo, ue To TpOPBAnua TEdBAedng va Slatunwvetal we tedfAinua Masked Language Modeling.
Soft prompts

Eneidy] n Swodixaoio emioync tou BéATiotou Sloxpttod prompt yia xdde npdBAnua propel va ebvou
BUOXOAY xou LTo-BERTIOTN Xan xodwg, o avtideoT e Toug avlpdTouE, To TEO-EXTIUSEVUEV LOVTEAN
UTOEOLY Vi XOTUYONCOUY CLVEYE(C TOEOUETEOUE TOU BEV AVTIOTOLYOLY GUECA OE QUOLXY YADGCGQ,
oL gpeuvnTég €youv avantiEel éva deltepo eldoc prompts, mou ovoudlovton soft prompts [31] [35]
[31]. Ta teheutaio amotehodvton and cuveyeic Topauétpous, ol otolee unopolyv va Bertic totonoldy
uéow back-propagation aneudeloc 610 ¥heo EVOLUATWONG, YEYOVOS TOL TG XorhoTd €0xONL Ex-
Tode0OWES XA TAHPWS TEOCUPUOoWES o xdle TEOBANUa xat YAwoouxd poviého. BOo umopoloay
var ewendodv we "soft" (wohaxéc) Aéelc, pe Ta evowpotduate prompt va Beloxovion YeTal Temv
EVOWUOTWUETWY Toryuatix®y Aé&ewv tou heduhoyiou (68, 2 6). H apyixonoinor| toug urnogel va yivel
e BLdPopoug TEOTOUE, OTKC 1) TUY LA AEYIXOTOINCT TWV TAEUUETEWY TOUC, 1) dpylxoTolnan ue to Bden
TOV EVOWUATOPRATOY TuyadwV AEEEWY amd To AeEAGYI0 TOU YAWOOXOU LOVTEAOU 1 1] 0oy XOTOiNoY) UE
o Bdipn TOV EVOOUATOUATWY TWV ETIXETWV TOU AVTIO TOLY 0LV GE DLapopeTixéC XAAOELS, OTIC Tep(nTwo

npoPAnudtwy tadvéunonc [31]

0.3.3 Xyetuxn Bifhoypapia

Ytov Topéa Tng udinone Bdoel prompt ye i ypnon soft prompts, €youv npotadel noAAég Blapope-
Txée mopahhayéc tor teheutaio ypdvia. O Lester el al. [31], yenoworootv pla axohoudia prompts
nou Beloxovton ancudelag 0To YWEO EVOWUITWONE TOU UOVTEAOU XAl CUVEVVOVTOL UE T EVOWUITO-
potar TV AEEEWY oL TapdyovTon and TNV XeeVixr lcodo Tou povtélou. And to amoTEAEGUATA TOUC
napatneoly 6Tl 1 uEYodoC Toug umopel Vo elvon TOAD AMOTEAEGUATIXNT VLol HOVTERN BLOEXUTOUHLEIWY
TAPAUETEWY, dAAd Vo TEREL o amdboor o oyéon e To fine-tuning, étav to YAwooxd yoviéro etvan
wxpbtepo (m.y. 100 exatouplpla topdueteol). Lo 1o Aoyo autd, Tpotddnxe apydtepa and toug Vu et
al. 1 petopopd uddnone (transfer learning) [36]: Ta prompts exmoudedtnxay apyixd oe BlaPopeTnd
npofAuaTa, TapduoLs Ue TO TEOBANUa-oToY0 1) ot mpolAfuata Tou anaitolv cuAAoYloud udmAod
EMNEDOU OYETIXA UE TIC ONUACLONOYIXEC OYECELC HETAED TV MPOTAGEWY ol Yenoulonotinxay ot
CUVEYELX YLl TNV opyixononor Twv prompts tou npofAiuatoc-ctéyou. ‘Onwe nopatneodv ol cuy-
yeapeic, n pédodog autr unopel vo emitpédel Ty amotelecyotixy uddnon Bdoelr prompt oxoun xou
yiot LOVTERD pxpoTEENS XAlonag.

‘Aot epeuvntéc €youv melpauaTioTel Ue YLol TpoTonoUEVT exdoy T TS pddnone Bdoel prompt,
Yenowonouwdsvtac prompts 6yt uévo oto eminedo €10680u oAkd xou Poditepa 6To poviého. T
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0.4 Avoayvdeion cuvauodfpatog oe culnthocelc

nopddetypa, ot Li xou Liang [21], yenouoroolv evepyonomioeic tpodépatoc (prefix activations) mou
TPOTACCOLY GE XGVE GTEMUN GTOV XWBXOTOINTY) TOU LOVTENOU, GUUTERLAAUBAVOUEVOU TOU G TEMUATOS
elo6dov, epyalduevol oe mpofhiuata Topaywyhc Adyou (language generation). Ou Liu et al. [37]
¥enowonololy enione prompts o€ SLPOPETINE G TEOUATA TOU TEO-EXTABEVUEVOU UovTélou, Tpodé-
TOVTaC Tar w¢ meovéuata, xan enextelvouv TN uédodo twv Li xou Liang o mpofiuata xotavénong
puowfic YAdooac (Natural Language Understanding - NLU). Hopatneolv enlong étt, 6tav ypnot-
pomololvTol TAYjen GUVOAN BEBOUEVWY, TOCO Wia XEPAAT| YAWCOWNE poviehonolnong 660 xau a Tuyado
apyixoTmoinuévn XeQOAT TaEvounong Uropoly vo yenouwlonotndoly yio TNy TeoBAEd TwV TEAXMY
ETXETAOV Tagvounome, otny nepintwon tne wdinone Bdoel prompt.

Télog, optopévol gpeuvnTég €xouv TMEOTEVEL TN CLVBLAOTIXY YEHoT dlaxELTdY xou soft prompts,
ue otdyo ) yeylotonoinomn e anddoong. o napdderyua, ot Liu et al. [35], npdtevay tyv uédodo
"P-tuning", n omnola yenowonolel cuveyr prompts nou anotehodv TNy €€0d0 evdg exmaudelollou
xwdononty yia prompts. O xwdixomointhc yia prompts yenowdonoieiton yio Tn poviehonolnom e
e€dpTnone HETOEY TV TUNUATWY TOU Prompt Xou Yiol TNV AmoQuUYT| TOTXGOY ehoyiGTLY ot aroTelelton
ané éva augpidpopo LSTM, axolouvdoluevo amd éva MLP ue evepyonoinon ReLU. Evtég tou pop@o-
Tumou Tou prompt, ot Liu x.&. npoc¥étouv enlone opiopéva Sloxpltd cOuBoa-dyxupec nou oyetilovta
UE TO oLYXEXELEVO x&DE popd TedBANua (Yia Tapddetypa to ovpBoro "?" yia to tpdfinua RTE [38]).

0.4 Avayvopion cuvoncdruatog o culnTtnoeLg

H avayvopeion cuvaothjuoatoc oe culntioelg anotekel évo medBinua to onolo €yel AmoxTroeL
AUEAVOUEVT] DNUOTIXOTNTA T TEAEUTOLA YPOVLOL AOY W TWY EQUPUOYMY TOU OE TOUELS OTWC 1) UYELOVOULXT
neplBahn, N avdntuln mpoxtdpwy mou diadétouy evouvalodnor, xadae xaw 1 e€6puEn anddewy ond
TOV UEYEAO bY%0 cuVOLALGY PETaZ) Yenotdv (oe xelyevo 1 Bivieo) mou elvon ofjuepa Swrdéoues ota

UECU XOLVWVIXTG DX TOWOTG.

0.4.1 Oplopodg npofAfuatog

Aedouévne urog axohoudiag EXPWVACENY Ui, Uz, ..., UN, KoL TOL OANTA p; xdde expdvone u;, i =
1,2..., N, n Avayvopion Zuvaodfpotoc oe Yulnthoec (Emotion Recognition in Conversation -
ERC) opiletan w¢ 10 TeBAnua Tng avaryvidptong g xhdomng tou cuvorodiuatos xdde expmvnong,
and éva ovolo npoxadoplouévwy xhdoewy (dtwe yapd, eviovolaouds, Yuude, anoyorteuon, Ao,
oudetepbTnTa x.AT.) [39][40].

0.4.2 Xyetuxr] BiBAioypapio

Ta tehevtaia ypdvia To mEOBANUa Tng avayvapelong ocuvaodiuatoc oe oculntroelc €yel Adfet
6o xaL UEYUAUTERT, TpocoY T xou €youv avantuydel tolhamiéc pédodol yioo Ty enfiucy) tou. M
yvoaupn epyaoiac, mo xovtd otn di pog, yenowonotel axohovdioxéc pedddoue, avtipetwnilovtac
Tig expwvhoelg oto ERC w¢ o axoroudio yéoa oto yedvo.

MeéOodol Baociopéveg oe RNN xouw LSTM

O npdyteg pédodol oe autdy tov touéa yenowonowly LSTMs xaw GRUs yia tnv xwdixomoinon
poxpoypdviae TAnpogopiac. T topdderypo, oo Majumder N. et al., ye to DialogueRNN [39], yenot-
porotolv évae GRU yiot Ty xwdixonoinon e yevhic minpogoplog and tar cUUPealOUEV, EVE Ol
xpupéc xataotdoelc tou GRU nepvoly péou and éva eninedo npocoyrc (attention layer), npoxeypévou
VoL Anpioly avamopao TEoELS TwV oLUPEAloUEvwY, ol otoleg, woll U TIC EXPOVATELC EVOC GUYXEXPLUE-

vou oA, TeoodoToly éva GRU edd avd opAnty, yia vor AngUolv avamopao TUoELS EXPOVACEWY
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Chapter 0. Extetopévn ENnvixd Ilepiindn

eWdixéc avd owinth. Emmhéov, ou ouyypagelc yenotwomowoly éva tpito GRU vyio var AdfBouv unddn
TOUC TLC TPONYOUUEVES GUVALCUNUATIXEC XUTUCTACELS TWV OWANT®Y, TELY TEAXE TagvourRcouy Ty
TEEYOLUOA EXPWVNOT).

Avtl va povtehomololv Slapopetixols opAntég ye dopopetind GRUS xan vo evowpatdvouy ta
ouuppalopeva xou TNV TANEoYopla oL aopd TNV ahAnhelapThoelc oANTOY pe éva yevixé GRU
6nwe to DialogueRNN, ot Zhang H. xou Chai Y., Soukebovtag pe duadixéc cuvoulhieg, mpdtelvoy
wa o dpeor adknhenidpaon petald twv ophntdv pe to COIN [41]: Xe autd yproyomolody éva
bi-GRU mou xwdonolel ¢ expwvroelc avd outhntr) oxoloutaxd, oAld tpormonotel v €086 tou
oe xdde xotedduvorn (mpoc Ta eunpdc xou TPOg To Tow) e Bdon Ty xpueh xotdoTact, Tou bi-
GRU tou dhhou owhntd. [ v xwdixomolnomn twv yevixwy cudgealouévmy Yenotlonolelton yia
axohovdio otpwudtev bi-GRU oe cuvduaoud pe éva eninedo npocoyng, npoxeluévou va cuAANPHoLY

oL oNuavTXdTepeS aAANAEEopTHOELS.
Me39obo. Baciouéveg oe transformers

Av xau e€axoroudolv va mpotelvovton pédodol mou Pooilovtar oe RNN, avoryvewelleton ouyvd
OTL M XaVOTNTA TOUS VoL BLatneoly oNUaVTIXES TANEoPopieg Yiot ToAD peydheg axoloudieg elvon me-
ptoplopévn: Kadde mpootidevto nepiocdtepes exgpdoeic, ol paxponpdieoues e€apthoelg telvouy va
Eeyaotoly [17]. Auté unopel va eivor TpoPAnuaTixd oty TEPITTWOT TNS VoY VOPLONE GLYLGIAUATOS
oe ou{nTioeLs, xoog To O YaxpELvd upPEalOUEVO UTOEOUY GUYVE VoL TUEEYOUY XAToL TocHTNTA
(v xon Oyt 1600 PeYEAN 660 To o TPboPaTa CUUPEILOUEVE) TANPOPOPLOY CYETXE UE TO cuvaloUnua
evoc opintd [39]. Emmhéov, o pédodor mou Pacilovton oe RNN Posilovtou ot e€wtepind poviéha
elaywyhic evowpatopdtoy (t.y. Glove [42], word2vec [8]), 1o onolo dev houfdvouy unddr ta cuy-
pealoueva, eXTEAGVTAS €ToL TNV eEaywYY EVOWUATOUETWY XaL T1 goviehomoinon tne axohoudiog
avedptnta [13], xdt Tou unopel va uny givar névta Bértioto. o toug Adyoug autolc €xouv elooy-
Vel ol transformers oto npdBinuo tou ERC. Iapaxivoluevee and tnv avdyxn xaibtepng dotripenong
TV yaxponpddeouny eapthoewy, and Ty xavotnto Twv transformers va yelpllovto Tautodyeova
TNV eE0YWYT) EVOOUATWVUATOY XAl T LOVIEAOTOMOT axoAoU GV Xal omd TIC HEYAAES BEATIOOELS IOV
EMLPEPOLY T TPO-EXTAUDEVPEVA YAwooLxd YovTéla pe Bdor Toug transformers oe moAAES mpoSAfpaTa
Tou Toyfa tng enedepyaciog uoic YADooog, utheéay, To TEAEUTAlO YEOVLYL, ULl GELRE SNUOCLEVGEWY
nou npoonotolv var afloToLcoUY YEYSAA TRO-EXTOUSELUEVE YAWOOWXE LovTéla Ye Bdorn Toug trans-
formers yio TV anoteAeopaTX Avay VOELOY cuvalothuotog ot culnTHoELC.

e autd To WoVTéAQ, OL EXPWVACELS dlvovTal cuvitng wg elcodog ue axohovthoxy| oelpd. o Ty
TEOGOPUOYY TOU UOVTEAOU GTO TERLBIANOY TOU BLOAGYOU, YENOLOTOLOUVTOL GTN GUVEYELL TpdcVeTa
OTEMUATA N/ X0l EVOOUATOUATO 1 TPOTOTOLOUYTOL TOL UTHPYOVTO OTEMUATY, DGTE Vo GUUTERLANPYOUY
TAneooplec oNUAVTIXES Y TO TEOBANUN TNS avaryvapelong cuvanothiuotoc. Mo dAAn Snuo@uiic
xerion npo-exnaudeupévey povtérwy tou Bacilovtor oe transformers elvon 1 e€ayw Y evowpatwudtenv
7oL ®WOXOTOLOVY GE XamoLo Bardud T CUUPEACOUEVA, XaL 1) PO OUTWY (¢ OVATUPUCTAUCELS TLV
EXPWVACEWY, oL OTolEC UTOPOUV OTN GUVEYELDL Vo Yenotuorotnioly oe uia dedtept, x0plor povdda, eite
oxovhouthone] eite Bactlopévn ot YpAPoug. YLl TNV TEALXT) AVOY VLT TOU GUVOLGUAUITOC.

T topdderypo, pe to Hitrans, ou Li, J. et al. [11] ypnowonolobv évay npo-exnoandevpévo trans-
former xwdixomonty, yior var AGBouUY ovamapao TEOELS TOU XWOLXOTOLOUY Tl TOTUXE GUUPEALOUEV ol
npocvétouy évay deltepo transformer oe udnidtepo eninedo, yio va cupmepAdBouy Tol O HaxELVA
oupgeoaldueva, o onoloc hopfdvel we elcodo Tic Tomxég avanapactdoels. Xenotdonotoly enlong ex-
pédnon nolamhdv epyaotdy (multitask learning) yia va cuunepihdBouy thnpogopiec oyetind pe
Tov oAnTy, npociétovtag éva deltepo mpdBinua, To omolo ovoudlouv Pairwise Utterance Speaker
Verification (tautonoinon opdntddyv avd Ledyn), (o otdéyog tou eivon vo amogoavdel to povtého av dbo

EXPOVAOELC AVAXOUV OTOV (Blo ophnth), ot Yenotponowdvtog évay biaffine tadvounts pe eloodo tic
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0.5 Tlpotewdyevec npoceyyicelg

avanopactdoelc Tou transformer vPniod emnédou.

O Shen W.et al., ye to DialogXL [43], npoonadoiy va Sltneicouy o amhodoTep apyLTEXTOVIXA
aELoTOLOVTAC €va TIPOo-EXTALBEVUEVO LovTELD Pootopévo oe transformer xou xwdxomoldvtog dAeC TiC
YENOWES TANPOYOpIES Uéow TNS AUTO-TPOCOYASC TOMNAUTAGY xepohmy (multi-head self-attention) oe
x&de eninedo. Eqopuélouv Sagpopetinole unyoviopois andxpudne (masking) xou yenoyonotodyv tny
yvevx, auto-tpoooyt| (global self-attention) yiu eZopthoeic peyding euBéAelas, TNV TOTUXYH AUTO-
npocoyt, (local self-attention) yio to cuupealbUeva O XOVTE GTNV TEEYOLCU EXPHVNGT, (SeBopévou
6Tt autd elvar cUVABWC TO CMUAVTIXG Vil TOV TPOGBLOPIOUS TOU TPEYOVTOS CUVALCOAUATOS), Xou
TENOS Lol aUTO-TPocoy Y| owAnty (speaker self-attention) xou pla avto-npocoyn axpoaty| (listener
self-attention) yio v xatorypagn TV EE0PTAOEWY EVTOC XU HETAUED TWV OUANTOV.

XpnowomoldvTag xaL oA €va TEo-eXTUOELPEVO YAWGOIXS povtélo PBooiouévo oe transformer,
ot Kim T. xou Vossen P. [13] Snuiodpynoov éva axdpo arholotepo poviého, to EMOBERTa, tono-
VeThvToc To Gvopd TOU OWANTY Tely amd xdde ex@ovnon xo VETovtag To TEoxONTOV XEUEVO ©C
eloodo oe éva povtého nou Baoileton oto BERT, npociétovtag wévo éva tuyola opyixomotnuévo
yYoopuwé eninedo (linear layer) we eninedo e£630u tou povtéhou touc.

Téhoc, ot Zhu, L. et al. [16], pe to TODKAT, ypnotponoody we Bdor Toug éva Tpo-exnudeuuévo
YAwooxo6 poviého Boaocioyévo oe transformer, eved evowuatdvouv mhnpogopia yio to Héua tne oulntnomng
OTNV OPYLTEXTOVIXY TOUS, UECW EVOC GTEMUITOC EWBLXOU i To Yépa xou mpayotonoudvtos fine-
tuning. Ilpoteivouy eniong v evowpdtwon e Yvoone xowhc Aoyixfc (commonsense knowledge),
AofBdvovTog TG TILO TOROUOLES OVATUPAC TACELS Yo XGVE expOYNoT and pia WeYdAn Bdon yvodong xou

epapudlovtog Tov unyaviodd TpocoyC Yia TNY EVOWUAT®ON TG o YeNoWng YVOoTG.

0.5 Ilpoteiwvdbpeveg npooeyyloelg

0.5.1 XvuyxpivovTag tn wddnor Pdoel prompt xow to fine-tuning oo
ERC

Ewcoayoy

Av xou €youv mpotadel moAhomAéc mopodhayég Yot T yeXon prompts, 1 TEOCUQUOYY QUTWV TWV
pedddwv yio cuyxexpléva tpoBAfuata dev €yel epeuvridel 160 TOAD xou UTdEyEL Teploptouévn PiB-
Aoypagla mou yenowwonolel prompts oe wovtéla eldxd Yo xdmowo medBinue. H mpocéyyior pac
AnooXOTEL ENOYEVWE OTN UEAETYN TNE BUVATOHTNTAC EQAPUOYTE TNS WdInome Bdoet prompt 6To TedBAnu
tou ERC, ouyxpitixd pe to fine-tuning xou otnv Yepehinon evic pétpou obdyxpione (baseline) yio
™ wddnon Bdoel prompt yio v Avaryvépeion Zuvaodfuotoc ot Lulnticec (ERC). T tov oxond
auto, melpapoti{ouacTe Ue Wiar TohD amhn, Baocuxy) agyitextovixy, xoddg xou pe pedédouc Tou yenol-
pomololvTal cuvidwg oe TponyoLueva épya otov topéa Tou ERC, dnwe 1 evonudtwon mineogopuidy
TIOL APOEOVY TOV OUANTH, UEoW TNS €l06d0L 1 péow evde Bondntixol npoiiuatog nou oyetileta pe
Tov owhnt). A&omololue €val TpO-eXTIUBEVUEVO YAWOOIXO UOVTENO 0L TEOTOTIOLOVUE TNV AEYLTEX-
TOVIXY) TOU Yl VoL TO TROGOPUOCOUUE T000 ot éva TepBdihov udidnong Bdoel prompt 600 xau oe €va
nep3dihov fine-tuning, yio To mpdBinua tou ERC.

Apynd ouyxpivouye Tig 800 uedédouc tpocopuoytc (fine-tuning xon uddnon Bdoet prompt) yenot-
HOTIOLVTOS €Val TOAY amhd povtélo, Vétovtac €tol To Baowd pac pétpo ovyxplone (baseline), xou
pehetdue tnv enidpoor tng yenone evog prompt, xodode xar tou peyédouc autol. 3T CuVEXEL
nelpoaTllOpaoTE e TNV TEGCVEST TV OVOUSTWY TWV OMANTOV oty elcodo ety and Tig avtio-
Tolyeg exuwvhoelc. Tlpdxeitar yior ot TEYVLXY TOU YENOWOTOLEITAL GUY VA O TEONYOUUEVA LOVTEAN
yioo ERC [13] [14], xodcde emitpéner Ty evowudtwon mAnpogoplas mou agopd toug othntéc xou Po-

NYd to yovtéro va avayvepilel euxoldtepa tig evdoe&apthoelc xou aAAnielapthoels outhntodv. Otay
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OUWE TEOC THIEVTOL TOL OVOUATA OUIANTOY OTLC EXPWVATELS, 1) LOPPT TNG ELGGB0L TOU LoVTENOL oAAGLEL:
oev anotelel TAEoV pia cuveYY) axohoL o TEOTACEWY, APO AUTH) DIAXOTTETOL UG OVOUUTA OULANTEY.
Kodog auth n poppt| eloodou elvar dlapopetint| amd exelvn mou yenoylonoiinxe oTo oTddlo Tpo-
EXTAUBEVONS TOV YAWOOIXOU YIS LOVTEAOU, TO TPO-EXTAULOEUUEVO LOVTERO TIRETEL VAL TTROCUPUOC TEL OE
Ty TROXELWEVOL VoL a€LOTOLACEL Tig TpdoveTeS TANpopopiec. Katd to fine-tuning, to yovtého unogel
VO TPOTIOTIOLACEL TIG TOEUUETEOUS TOU AVIAOYX %ol €TOL VoL TPOooproc Tel anoteheopatixd. (2otéoo,
otay 10 PovTélo elvan Torywuévo, omwg ouuBaivel cuviiwg ot udinorn Bdoer prompt, outd Sev el
vou duvato. To povtého umopel vo ahhdEel uévo tov Tpdmo Ue tov onolo epunvelel tny é€odo tou
Boool TUAUATOS TOL TPO-EXTAUBEVUEVOL HoVTEROL (GTay Ypnotponotelton pio exmoudedoun povida
£E600L), 1, UECW TWV TOPUUETEWY TOU prompt, Tov 1péTo pe tov omolo cAAnAemdpolv Ta didpopa
pépn tne ewwddou Tou. Enouéves, o TElpauaTiopog HE TNV TEOGUHXY TV OVOUATWY OUANTGY Unopel
VO JoG TPOO@EREL Lol Xoh0Tepn ex6va Yl To Bodud TEocUpUOCTIXOTNTUC TOU UTOopOVY VO TEOC-
@pépouv Ta prompts yio éva obvieto nedBinua énwe to ERC. Téhog, newpopoatiloyacte ye tn xenon
evée Pondntixod meoBMiuatos avoryvodptong olinTh, uéow exuddnone tolhamiodv epyaotay (multi-
task learning). H evowpdtwon mAnpogpopiddv mov ogpopoly Tov okt péow expdinone TOMNImAGY
gpyoolv €xel mpotadel oe épya 6mwe o [11] [15] xou €xer Swmotewdel 6t elvon amoteheopotind
oe éva mepdihov fine-tuning. Qotdoo, oe éva nepBdhhov 6mou oL exnoudelolues TapdUETEOL Efval
neploplopévee xan Bploxovton oto eninedo eic6d0u xan byt 0TO Baoxd TUHUA TOU POVTENOUL, OTKC
oupfaiver otny mepintwon g wdinong Bdoel prompt, 1 xavéTNnTA TEOCUPUOYNC TOU YOVTENOL Ylo

N ouvduas Ty entAuon 800 TeofAnudtwy Bev eivon eupavic xou agilet va Siepeuvniet.
MéSodoc

Xernowonololue 1o MEo-exTaldeLPévo YAwoouxd poviého BERT w¢ 1o Baowd yog poviého. H
Baown apyitextovix] Tou YovTéNou pac Umopel vo ywetoTel ot Teelg x0pleg UOVADES, TNV UovAda
evowpdtwong (embedding), T povéda xwdomomth xou Ty Lovdde eZ6dou. H povdde evowudtwong
elvon 1 wévn mou dlapépel uetall tng exudinone Bdoel prompt xar tou fine-tuning. I ) pddnon
Bdoel prompt, oxolouvdolyue Ty opyttexTovixy Tou Tpoteiveton oto [31], xwdixonowdviag To prompts
aneudelag GTOV YOEO EVOWUATMONS TOU HOVTEAOU UOG XL YENOWLOTOWIVTOS Lol GELRE amd EVOWUOTE-
potar prompt (prompt embeddings), to ool CUVEVEOVOUUE UE T EVOOUATOUAT ToL UTohoyilovtou
and TO TUHUO EVOWUATWONG TOU TRO-EXTOULOEVUEVOU HOVTEAOU WO XAl AVTIO TOLY 00V OTO XElUEVO EIGO-
dou. Xy neplntworn tou fine-tuning, T0 oTEOUA EVOWUATWONE TOU TEO-EXTUOELPEVOU LOVTEAOU
poc yenotponoteiton auetdBAnTo, 0noTe UTOMOYILOUUE HOVO TO EVOWUATWOUATO TTOU AVTLOTOLYOVY GTNY
eloodo xewévou, xou oyt ta evowpoatopata prompt. H povdda xwduworomntd xan 1 povddo e€6dou
TEOEVOLY oETEBANTO X Yot Tig BUo pedodoug mpooupuoync: H npdtn anoteheitoan and 12 mpo-
exnawdeupéva otpoduate transformer xwduonomnt (ntpdxeitan yia Tov xwdixoronth BERT), eved yia
n deltepn Ypnowomololyue dUo ypouwxd enineda (linear layers) pe évo eninedo dropout petall Toug,
TPOXEWEVOL VL avTioToLylooupe Ty avanapdotacn e€680u Tou xwdixononty ot wio etxéta (label).
Extelolye ta mepdpotd yag oe 800 ohvoha dedouévev yia ERC, to MELD xau to IEMOCAP.
IMpoxewévou vo peAetioouue Ty anddoon g yerone prompt ce cUyxplor pe to fine-tuning,
oUYXPVOUPE TO HOVTEND Uog e €va Topdpolo fine-tuned poviého ywplc Taywuéves TapauéTpous, Tou
omolou 1 uévr dapopd elvan Twe dev dlardétel prompt 0To OTEWUA EVowUdTwons. Emniéov, avantio-
OOUUE €val BEVTEPO HOVTENOD Yia AOYoug olyxplong, (Blo ye to fine-tuned povtélo, adAd ye dheg Tig
TOPOPETPOUS TOU TOYWUEVES, EXTOC amtd TLC TopOPETEOUS TNS XePahic Todvounone (Lovadag e€680v).
Ytoyog yoc elvon vor xatovofiooude TAewS TN cUPBOAY Twv prompts oTnv TopATNEOUHEYY anddooT)
TOV TPOTEWOUEVLY HOVTEAWY Uag, dloywpllovtde Ty and 11 LYoy Tne xepolfic Tagvounong.
Y1ic endpeves mapaypdpous TopOUCLALOUPE Lol ETULOXOTNOY TNG OPYLTEXTOVIXNAG TV TROTEWVO-

peEVeY and euds wovtélwy tou Pacilovton oe prompt. M oynuotiny| emoxéTnon Tou oviéhou Tou
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0.5.1 Xuyxpivovtag tn wddnon Bdoet prompt xou to fine-tuning oto ERC

yernowonolel prompt, otny anhy| Tteplntwon ywelc TAnpoopiec yia Tov opANTY, unopel va et xavelc
oto Yynua 1.

Emotion class for u;

L | Frozen

Trainable

Classification head

BERT encoder

Prompt Text embeddings
embeddings (t*d) (n*d)

[CLS]| u;y | Ujgeq |- U4 | [SEP]| y; | [MASK] | [SEP]

Figure 1. I'eviké Sidypappa tov povtédov pag mov xpnoiuomnolel prompt oTny mepinTwon Tov
Oev mpootilevtal ovoudta opuAntdy. t eivar o apiduds twv cuuPorwy prompt, d elvar n didotaon
evowudtwons tov BERT (768), n eivar o apiduds twv evoouatwpdtor mov avtiotoyody oTo
keluevo ewddov uag, k evar o apuds twy mponyoluerwy ekgwvroewy mov Xpnotponoiotvtal
ws ovugpaldueva kar i o SelkTng TS TPéxovoas ekpadvnong nov npéner va tabwoundel. To " |"
ovupodiler tn ovvévwon. Or povddes pe umle xpopa datnpovvtar maywuéves katd tn didpkela
NS €KTaidevons, €ve o1 HovddeS e KiTpvo ypoua eivar eknaideloues. Xnueidvetal 6t n povdda
evowudtoong prompt (prompt embedding) Sadéver exnaibevoiua puépn, aAld dev efvar exnaibevonun
oto oUvodd tng: BA. Eakéva 2 ya pia Aentouepr) emorénnon.

Mop@béTtuno xelwévou elcdd0ou

Xpnouomololpe To Hop@oTuTo ELg6d0L V0 potdoewy Tou BERT. Q¢ npdtn npdtacm, cuvevivoupe
T k TO TPOCQUTEC EXPWOVACELS TELY OO TNV TEEYOUCH EXPOVNOT TOU TEOXELTOL Vol Tagvopnlel,
OOTE TO POVTELD Vo TIC 0EloTooEL WS oupgealdpeva. ¢ deltepn tpdtaon opllouye TNV TeEyouca
exQOVoT Tpog tadvéunom, axohoudolpevn and éva oUpPoro [MASK]. H petatponi tou npoPi-
patog tagwounong oe nedPinue Masked LM @épvel tn pop@n tng €10680u mo %ovtd 6to GTddio
TPO-EXTAUBEVGNE TOU YAWGGIXOU UAS UOVTEROU ol Bl TOoUUE 6Tl BeATidvel Ty anddoor. Al
aywpiloupe Tic dVo npotdoelc e To ovuBolo [SEP] xa mpocdétovye éva cvpBoro [CLS] otny apxh
e oxohoudiog elo6dou pag xou éva olpPoro [SEP] oto téloc.

Yy nepintwon e mpocdiung Tou ovopatog opinth, oAhdloupe eAapedS TN HopYT ELG6B0L,
avtiotolyiCovtag xdle owhnty Tou cUVOLOL BeBoUEVLV Uag oE €val amd Ta aypnotuonointa cupfola
(tokens) tou BERT xaw mpocdétovioc to avtiotoryo obufolo (token) tou omhnth metv and xdle
expoOvNon Tou. Oewpolue 6Tl auTd anotekel o xaAbTERY EVolhoxTixr AOom and To Vo TeocHEGouUE
TOL TEALY AT OVOUOLTA TGV OUANTAY, xodde auTd unopel vo unyv utdpyouy oto Ae&ldyio tou BERT,

unopel va ywetotolv oe mtolamhd tokens and tov tokenizer tou BERT, eve) umopel axdun xon vor unv
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UTdipY 0oLV 6T0 GUVOAO dedouévemv (Yio Ttapddelypa, oL olhntéc dev éyouv ovépata oto IEMOCAP).
Me v avuiotolyton v opAntdy ot ayenoiponointo cUPBola, emtuyydvouue wo avtiotoiyton 1 —1
HETAUED OUANTOY X0l GUUBOAWY, EQUOUOCULY] Yo GAA TOL OVOUOTO OUANTAV Xal GOVOAX BEBOUEVKV.
Téhog, YpnoyonotoUue Evo EAAPEOS SLUPORETIXG LOPPOTUTO ELGGBOU GTNY TEpINTWoT expdinong
TOAATAGY EpYAoLOY, Yo Ta Teofiuata ERC xou avayvoplone owdnty): Eneldy| n tpéyovoa expnvnon
elvat oLy VE TOAD GOvTOUN 1) YEVIXT X0 Tot GUUPEOLOUEVO TOU SLHAGYOU amoTEAOUVTAL and EXPLVATELS
TOAAGY OANTAY, YeNotwonolovye dVo and Tt aypnotponoimta oduBoia tou BERT, avtiotouylovtog
70 éva omd autd (to cupPoliloupe we "ung") otov Tpéyovta owAnTA xat To dAho (to cuuBoiilouye we
"unq") oe 6Ghoug Toug dAAoUS oANTES Tou Blohdyou. Me auTéY TOV TEOTO EMITEENOVUE OTO LOVTENO

Vo TpooBLopioel OREC TIC EXPWVACELS TOU oWANTH Tou mpoonodel va avayvwploet. Ilpotdooouue

! |

10 "up" oe dheg g ExpuVNoell Tou TEExovToC oANTA xou To "un," oe dheg T dhhec. Emmiéoy,
npoc¥étoupe éva dedtepo olufoho [MASK] oto téhog Tng etoddou pog, yio vo NPoupe Ty npdBiedn
TOU JOVTENOUL YioL TNV TAUTOTNTO TOU OWANTH.

Yt ouvéyela, 1 eloodoc xewévou petatpénetar o oluBola (tokens) pe tn yefon tou BertTok-
enizer xou tot cOPPola 060U (N GUVOALXE) TEEVOUY Amd TO TPO-EXTUDEVUEVO GTPOUN EVOWUATWONG
tou BERT, ye anotéheopo va tpoxintouy n evopatouate (embeddings). Enueidvoupe 6t o aprdude
k tov exgpuvioewy tou Ya yenoiwornointolv we cuppealouevo voloyileton €tol kote o aptiuds n
TWV EVOWUATWUATWY TOU TPOXONTEL Vo EYel TN Uéylotn tr 512 — ¢, 6mov 512 elvon to péyloto
péyedoc ewwédouv tou BERT xou t elvon o aprdpdc twv ouuBéiev prompt (prompt tokens) mou Yo

xenowwonomdoly, 6mwg eEnyeiton otny enduevn napdypEapo.
Y OpuBoia prompt (prompt tokens)

Axorovddvtog to [31], yenowonowolue piot axohovdia and cUuPora prompt (prompt tokens) mou
Beloxovta anevdeiog oTo Yhpo evowudtwone (ta ovoudloude eEVowpaTdUoTe cLUBOAwY prompt -
prompt token embeddings), odnydvtoc oe évo prompt dlactdoewy t * d, 6ToL To ¢ aVTITPOoWTEVEL
Tov aptipd Twv cUPBOAKWY prompt ot To d AVTTEOCWTEVEL TN SLEO TAUCT TWY EVOWUATOUITWY (768 yia
70 bert-base). ApyxomololUe To EVOOUATORATO GUUBOAWY prompt Ye To Bépr TWY EVOOUATOUITOV
TV SUUPOAKY TIOU AVTIGTOLYOUY OTIC ETXETEC XAEoEWY TOU GUVOLoU dedopévwy (T.y. yopd, Aomn
). Kadog ta Bden twv evonyatoudtoy cupfoioy prompt ahhdlouy xatd T didpxela Tne ex-
nafdevone ye tn yefion back-propagation, 8ev avtiotoyolv Théov ot mporypatixd cluBola (tokens)
an6 to Ae€ihoylo tou BERT, adhd Yo unopoloav va Yewpndolv o éva eidog "soft" cupforwy, mou
Beloxovton Bértiota petadd twv Aé&ewv Tou BERT.

ITeocU¥xn EVOOUATOUATOY FEONS KO TUARATOS

‘Onoe avohdbdnxe mponyoupévee (BA. utoevétnta 0.2.3), e€etdlovTag THY aPYLTEXTOVIXY TOU GTPMMUO-
1o¢ evowudtworng tou BERT, unogolue vo 8o0ue 6Tl yeNnollonolodvTol TEElS TUTOL EVOWHATOUATOV:
evowpatouate cuuPorny (token embeddings), evowpatduata Véone (position embeddings) xou
evowpotouata tuiuatoc (segment embeddings). Enopévee, oto eninedo evowudtwong, npocdé-
TOUME TOL TTRO-EXTIOUOELUEVA EVowpatmduata Yéone xou tunuatos tou BERT ota evowyotduate ouy-
Bohwv prompt. Ta evowuotodpata Yéong xo Tunuatog tpootidevton enione oTo EVOWUATOUNTI GUU-
BOAwV MOU AVTIOTOLYOVY OTNV E(COBO XEWEVOU IS, MO TO TEO-EXTIUDEVPEVO CTEMUN EVOWUATWONS
tou BERT. Yt endyevee napoaypdpoug Yo avapepduocte otny TeAixn €£080 EVoUdTWwong HETE omd
outh Ty ddpolon we evowuatoduate prompt (prompt embeddings) oty neplntwon tov prompt xau

evowpatopate xelwévou (text embeddings) oty mepinTtwon e €L0680L XEWEVOUL.

28



0.5.1 Xuyxpivovtag tn wddnon Bdoet prompt xou to fine-tuning oto ERC

Telx? €080 CTEOUATOG EVOORATWONG

‘Exovtag AMPel 1600 ta eVowPaTdUoTa prompt 660 X0l ToL EVOWUOTMOUATO XEWEVOU, TO CUVEVMVOUUE,
ue anotéAeopa Vo AGBOVUE t + 1 EVOWUATOUOT, X0l TEPVOUE TIC CUVEVOUEVES QUTES OVOTUPAO TACELS
¢ eloodo otn povdda xwdxormownty BERT. To Yyfuo 2 mopé€yel po oynuatixy emoxonnoy e

€Z680U TOU CTPWHATOS EVOWUATWONG.

Prompt embeddings Text embeddings
Frozen
Position embeddings Position embeddings
| Trainable
L
o

Segment embeddings Segment embeddings ‘

0 i

Prompt token embeddings Token embeddings

Figure 2. Emoxénnon tov otpipatog evowpudtoons ya tny nepintwon pdinong Bdoer prompt. H
TeAikt) €£000¢ TOU TTPAOUATOS €VOwHATWONS €lval Hia ovrérwon Twy evoouatoudtwy prompt ka
keyuévov. Or povdOe§ e umhe ypaopa datnpolvtar naywuéves katd tn didpkela tng eknaidevong,
€Ve) 01 HoVADES € KITPIVO Xpia €lvar eKTadeUoUeES.

Kegporh tagivoéunong

Iot vae AdPBouye par etixéto talvépnone yio xde delyua, YeNOoULOTOLOUUE ULol XEQUAT] TaEvounons we
povédo e£68ou, Tou anoteheiton and dvo ypouuxd eninedo (linear layers) xou éva eninedo dropout
HETOEY TOUC, XoU TERVAUE 0¢ (0080 oty el TovouNncng TNV TEAEUTALO XEUPY| AvaTapdo TaoT
Tou ouufBéhou [MASK] tne ewoddou tou poviéhou. H xepodh tavounone evepyel enopéves o
ouvdpTnon avtistolyone (mapping function), avtiotoyiloviag Ty TEMXA AVATAPdoTIOY TOU UOV-
Téhov Y To cUuPoro [MASK] o pio and Tic euxétec cuvaucYAOTOC TOU GUVOROU SEBOPEVHV HOC.
‘Eva oynuatind didypapua tne xepaiic togvouncng nou neplypdpnxe unopel xavelc va del ato Lyfua
3, 6mou mapouctdlovTon enlong oL Blac TACEIC XGUE GTEMUATOC. LNUEUIVOUUE OTL OTNY TERINTWOT EX-
uddnone todhamhady epyactedv (multitask learning), yenowwonowolye wio devtepr) xepahh Todvounone
Y1t TO TEOBATUOL ovary VORLOTG OUANTY, (Bl Ue ot Tou Teptypdpope péypt TR

Classification Head

Linear layer
(input size:768, output size: c)

Dropout

Linear layer
(input size:768, output size: 768)

Figure 3. Adypappa keparng ta&ivéunons, érov to ¢ ovpPorile tov apidud kAdoewr ato ovvolo
dedouévwy pag.
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IMTaywpéva xol eXTodeVoUR TUHUATR

I vae pehetriooupe Ty enldpaor tng pdinong Bdoel prompt ywelc xovéva fine-tuning, moaydvouue
ONEC TIC TMOPAUUETEOUC TOU UOVTEAOU, EXTOC Mo TIC MOPAUUETEOUS TNG XEQUANG TAELVOUNOTC Xol TOU
prompt, tic onolec exnadebouye péow back-propagation. Ilpénel vo onpetdoovpe 6Tl xpoTdue Tory-
WUEVES TIC TTUPUUETEOUC TWY EVOOUATOUITWY TUAUATOS Xo V€GN TO0O0 Yiol TNV XEWEVIXY| €l00d0 G0
%ol yloo o prompts, eved enlong dev exnoaudedoupe to evowpatdpota cuUfoiwy tou BERT, to omola

YENOWOTOOLYTOL Yiot TNV UETAPoOT TG XEWEVIXAS ELGOBOL GTO YPO EVOWHUATWONS.
3Uvoho BedopEvmy

Yty meplntwon Tou anhol povtélou mou yenowonelel prompt, ywelc TAnpogoplec oyeTIXd Ue TOV
oANTY, %xaddS Xl TOU HOVTEAOU TOU YENoWoTolel prompt ue mapdhAnin meocixrn Tou ovouATOg
Tou owhnty, mewpopatiloyacte 16c0 6to MELD 600 xa oto IEMOCAP. Yty neplntwon tne ex-
pdinone ToAATAGY epYaotdY e To Bonintind npdBinua TNS avay vodplong olAnty telpopotill{opasc te
u6vo oto MELD: 'Onwe avolleton otny unoevétnta 5.5, oto MELD undpyouv €€ xOplol ohntée,
e neplocdtepeg and 60 expuwvioeic o xodévag, xou GAoL oL dhhol oANTES €xouv TOAD AYEC EXPLVT-
oelc. Emopévec, dnpiovpyolue entd xhdoelc yia To TpOBANUa avary VOELoMS OUknNToY, pio yio xdde
%x0pLlo opANTH xou plo ue tov yapaxtnewopd "Other", otnv onolo xatatdocovtal 6Aol oL UTOAOLTOL
oUtANTEC TOL GUVONOL BeBOPEVMV. AUTO HETATEETEL TO TROBANUO Avay VOELONG OMANTY 08 TEdBANU
tagvounone entd xhdoewyv. Aev doxwdlouvpe ) wéYodd woc oto IEMOCAP, xodog autd anotehel
évat oOVoho Bedopévwy Ue Ueydho Uépog Ttou Poaclopévo oe CEVEQLY, UE TOUC ORLANTES Vo unv dlo-
Yé€touv pla cuyxexplévn TEocwWTXOTNTA, AR va etvar ndomolol mou natlouv BlaopeTixole pdhoug
oe dwpopetind oevdpia. Emmhéov, dhot o owhntéc Tou cuvdlou eléyyou (test) efvan SapopeTtixol
o autole Tou cuvohou exnaidevong (train), To onoio onuaivel Twe To Povtélo dev umopel vor pdde
oTolyelo Yoo CUYXEXELEVOUS OANTES amd To cUvoho exmafdeuong. o to Aéyo autd, moTebouue
WG OeV £EL VONUA VoL TpocTorooupE VoL avary vwpiooupe xdde cuyxexpiuévo opinty oto IEMOCAP

X0, WG EX TOUTOU, BV EXTEAOVUE EXUAUNOY TOMAATADY EQYIUOLOV GE AUTO.
AnoteAéopata xow culATNOoN

O TIlivaxoc 1 omewcoviler to otadwopévo (weighted) Fl-score yia to MELD xau to IEMOCAP
ony Teplntwon ou dev yenotponolelton 1 TpooUxy Tou ovéuatog opAnT. ‘Ola ta anoteAéopatd

o €youy mpoxiPel we 0 HEGOS 6pOC TELDY EXTENETEWY.

Table 1. Xtaluiopévo F1 score (%) ya ta otvola debouévowr exéyxov MELD kai IEMOCAP

y Movtého | MELD | IEMOCAP |

Fine-tuned baseline 57.06 64.44
Baseline pe uévo xepohn taglvéunong 54.90 56.46
Me ypefon prompt, 7 (cto MELD) / 56.23 58.95

6 (ot0o IEMOCAP) oOufolo prompt
Me yeYion prompt, 30 oOufola prompt || 56.70 59.94
Me yeYion prompt, 40 cOyBola prompt 56.94 59.21
Me ypnon prompt, 60 cdyfoiro prompt 56.53 59.24

Iopatnedvtac tov Iivoxa 1 propodue vo dolue 6T, yia to MELD, to baseline yovtého mou
xenowomnotel fine-tuning odnyel oe Fl-score {co pe 57,06%, eved to xahltepo amd To LOVTENR TOU
Baotlovtar oe prompts, 1o povtéro pe 40 obuBola prompt, odnyel oe Fl-score {co ye 56,94%.

Avté onpaivel 611, Yo to abvoro dedouévwy MELD, to yovtého pe yprion prompt elvon cuyxplowo
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ue to fine-tuned povtéro. Qotéoo, yio To glvoro dedopévwy IEMOCAP, to baseline povtéro pe
fine-tuning emtuyydvel uPnidtepo Fl-score and exelvo tou poviéhou pe v xoAUTepn enldoon Tou
yenowonotel prompt (xou cuyxexpyéva 30 cOuBola prompt), xatd 4,50%, yeYovoc mouv TOSNAGOVEL
v unepoyY| e Uedodou fine-tuning oe ot v nepintwon.

‘Evag héyoc yio T Slapopd petald twv 800 cuvolwy dedouévwy Jo unopoloe va eivat 1 TpoéAeuoy
touc: Evad ov exguviioeic tou IEMOCAP éyouv oyediactel ye oxond vo mpoxorécouy éva ouy-
XEXPWEVO cuvaloUnua xou expuvolvTal ot éva oevdplo pe 80o opintéc, to MELD npoépyeton amd
gLt TNAEOTTIXNY OElpd, 6Tou WAoUY Tohhol opAnTéc xou To cuvaloUnua xdle expdvnone unopel vo
elvon o Ao 1 vor expdleton Pe TOAD BlaQopETIXOUE TEOTOUS ONd BLOPOPETIXOVS OULANTES Xou O
BapopeTixég xataotdoelg. O apriude Twv owhntedyv Tou MELD elvon eniong onuovtixd peyohdtepog
an6 autdv tou IEMOCAP. Oo unopoloope enopéveg va uvnodécoupe 6Tl to fine-tuning, to omolo
TEOTOTOLEl EXATOUUUELY TOPUUETEOUS CUUPWVOL UE TOL DEBOUEVIL XAl ETLTEENEL GTO UOVTEAO Vo TIEOGUR-
uoletan mo otevd ota dedopéva, €yel mheovéxtnua oto IEMOCAP, oe olyxplon ye v hydtepo
Tpocoploo X wdinorn Bdoet prompt. And v dAAn mhevpd, oto MELD, Aéyw tng peyahltepne
TowLhoop@lag xal BUOXOAUE TOV, 1) CTEVOTERT] TPOCUPUOYT TOU HOVTEAOU 0T BEBOUEVA EXTIlBEVOTC
Bev odnyel anapaitnTa oe xahltepn xavdTNTA YEViXEUoNE Xat, eEnouévwe, To fine-tuning dev €yel to
{8Lo LoyvEd TheovéxTnua.

ITpooc9Mxn cLUBOA®Y OoULANTH
O Tivoxoag 2 topouctdlet to otaduopévo (weighted) Fl-score yia to MELD o to IEMOCAP, otnv
nepintwon nou yenoylonoieiton 1) tpoodrixn cuuBéiny owinty. ‘Oha to amoteréopatd wog anoteAody

UETCO OpO TEUDV EXTEAECEWV.

Table 2. XrtaOuopévo Fl-score (%) ya ta obvora debouévwv eAéyxyov MELD kai IEMOCAP

] Movtélo | MELD | IEMOCAP |
Me ypforn prompt, 7 (cto MELD) / 56.23 58.95
6 (oo IEMOCAP) cOpPolo prompt
Me ypevion prompt, 30 cOuora prompt 56.70 59.94
Fine-tuned, pe oUyfoia outhnty 56.14 64.99
Moévo xeoain tagvéunong, pue cLYBoAa ouhnTy 54.90 56.16
Me ypfion prompt xou cOuBora opdntd, 7 (oto MELD) / || 56.64 59.04
6 (oto IEMOCAP) cOuPolo prompt
Me yerion prompt xar oOufora opAnTy, 57.63 59.12
30 obufoha prompt

JuyxelvovTag T OTOTEAECUITA TWV OTAMY UOVTEAWY UE Yeron prompt ol Twv HOVTEAwY Ue
¥efion prompt mou yenouwonotoly emmiéov TNy neocthxr cuBOAY olANTY, BAEroUE OTL 1) TEAEL-
tafar Telver vo Behtidver Ty anddoon (ue elolpeon TNV TeEpINTWOY TOU UOVTENOU TOU YENOULOTOLEL
30 oclppora prompt vy To IEMOCAP, 6nou mapotnpeiton o yixpr) nteon e anddoone). Xuy-
xexpyéva Yoo to MELD, unogolue va Solpe and tov Ilivoxa 2 6711, 6tav yenotponoteiton 1 tpotixn
TV oLEBOAwY oudnty, To Fl-score au&dvetan xatd 0,41% otnv nepintwon twv 6 cuuBéiwy prompt
xou xatd 0,93% oty nepintwon towv 30 cuuBoéiny prompt, YeyYovos mou LTOdNAGVEL §TL 0 peyahlTe-
pog aprduode Topauéteny oto oOUBoAo prompt ETLTEENEL GTO HOVTENO VO TPOGUEHOCTEL GT1] VEO Lop®N
EL0GBOU XAl VO EVOWOUUTWOEL TILO UMOTEAECUATIXG TIC TANPOPOEiES TOL aPopolV ToV oANTY. 2oTtdoo,
yioe o IEMOCAP, unopotye v Solue dtt, av xou to povtélo pe 30 obyfole prompt mou yenoiwonotel
Teoc¥1xn cLUBOAWY ouhnTy amodidel xohltepa o obyxplon Ue excivo ye 6 obuPfola prompt mou
xenotponotel cOuBola ouknTy, N Ttpoc¥hxn cUUBOAWY OWANTH ExEl GUVOMXA aEYNTXT ENidpaoT, Ue
to baseline yovtéio pe 30 oluBola prompt xou ywelc TAnpopopla opANTH var emtuyydvel uPniotepn

anddoon xatd 0,90%. Iapoyoine, tapatnpolue 6Tt yio 1o Bovtého Tou yenotponel 6 cOpfola prompt,
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N Tpoc¥ixn TV cLUPBOAwY oAnT enlong dev odrynoe o afloonuelwtn Behtinon TV emdOCEMY.
E&etdlovtoc ta fine-tuned povtéha we oUyxpton (Hivaxee 1 xau 2), n tpocdfxn cuyPéhwy owints
oty nepintwon tou MELD odnyel oe ntdon e anédoong xatd 0,92%, evedd oty nepintwon tou
IEMOCAP ougdver tnv anddoor 0,55%.

Ta mopandve amoTeEAECUUTA UTOBNAWMYOLY OTL 1] XWOXOTOINOT TANEOPORLOY Yl TOV EXAOTOTE
oANnTY unopel medypatt va elvon yenoudn yio To tpoinua tou ERC, 6mwe mpotelivetan xou otnyv Bi-
hoypagpio. 261600, 1 emTUYNC A€LOTOMOT QUTWY TKVY TANEOPOELOY e&apTtdtal and Tn uédodo Tpocap-
HOYTNC TOU TRO-EXTIOUSEVUEVOL YAWOGLXOU LOVTEAOU XoL TNV OPYLTEXTOVIXY] TOU UOVIEAOU TOU YeNol-
pornotelton. XNy mepintwon tou MELD, 1 uddnon Bdoel prompt goiveton va efvon mo emituyhc otny
a€lomoinom twv tpdoletwv ThAnpoopldy ot alyxpelon ue To fine-tuning, yeyovog mou umodnidver ot
To prompts €youv TNV XavOTNTA VoL Tpocoprolouy TO HOVTEAD OTN VEA Uop@n] ELlG6BO0U, EVE) UnopEl
vor elvol oxOUT xou To amoteheouaTixd and To fine-tuning otny adlonolnon twv tpdcdetwv TANpo-
gpopldv. T To IEMOCAP, 1o fine-tuning emupépel xalbtepa anoteAéopata, eved 1 wdinor Bdoet
prompt (ofveTon Vo amoTuyydvel oty o&loToinom TV TUPEYOUEVKY TANPOQPOPLOY TOL dpopoUY TOV
outAnty. Enopévng, umopolue Vo GUUTERAVOUPE OTL, XUTA TNV EVOWUATWOY| TWY TANPOPORLOY TOU
APOPOUV CUYEXPULEVOUSC OUANTES XOlL ToPEYOVTOL UETW TNG ARy TOU Lop@oTUTIOU 10680V, 0VUTE
1 pddnon Pdoet prompt obte To fine-tuning elvon avodtepa xou to mola pédodoc npocupuoyic eltvon

Béhtiotn e€optdton oe peydho Bodud and o cOVORo Bedouévwy.

Exupddnon moAAanAov cpyaciedy Ue To Bonintixd medlBAnua Tng avayvoeLlong
OWLANTY

Ot napaxdite mivaxeg tapovotdlouy ta anoteAéopata yiot to MELD, yia to mpotevéuevo povtého nou
Baoilleton oc prompt xou Yenotdomolel TNy avaryvetor olAnt we Bondntind npéfinua. Iapovoid-
Coupe ernione ta anoteréopata yia To avtiotowo fine-tuned povtého, xadde xou to amhd poviého
poag pe Bdorn prompt mou amoteheitan and 30 prompt tokens xou dev diardétel mANEOPOplEC Yiol TOV
oAnTy xau to avtioTtolyo tou fine-tuned povtélo, v Adyoug oiyxplong. To otaduicuévo Fl-score

napovoldleton otov Iivaxa 3. ‘Olat tot anoTeAéoUATS oS ATOTEAOUY TOV PEGO GO TELWY EXTEAEGEWV.

Table 3. XtaOuopévo Fl-score (%) ya to oUvolo dedopévwr edéyyov MELD

’ Model || F1 score (Test) |
Fine-tuned baseline 57.06
Me ye¥ion prompt, 30 cOufora prompt 56.70
Exudinon moramhdy epyactidv 56.79
yior ouvaioUnua-+outhnty, fine-tuned
Exudinon moAamhdy epyaotidv 54.65
yio cuvaioUnuo-ouAnTy, UE Yoy prompt

Ané tov Iivoxa 3 unopolue vo dolpe 6Tt 1 yeron expddnone TOMATAGY EQYUCLMY YLoL TNV
OVOLY VPLOT) CUVOLCUUATOC XAl TNV oVoLY VIELOY) ORANTY) 8ev BEATIOVEL TNV ambdoo yia To fine-tuned
novtého xan odnyel o onuoavtixy elwon g anddoone Yo To YoviéAo mou yenoiwomolel prompt.
Avutéd Yo umopoloe v LTOBNAGYVEL OTL 1] AVaYVOELST, OWANTY, énwe oplletar otn wéYodsd pog, dev
elvor xatdAANAn ¢ Bondntind nedPinua yia ) Bedtiowon tng anddoone yia to ERC. Emniéov,
ouYXplvovTog Tol anoTEAESUOTO TOU HOVTEAOL TIOU Yenotponolel prompts xou tou fine-tuned povtérov,
To omolo exmoudebTNXAY PE TN YpNoN EXUEUNONE TOMAATADY EPYUCLLY, TO Yauniotepo Fl-score tou
povtéhou mou Pooileton oe prompts (xatd 2,14%) vmodnhdver bt M wavéTNTAL TV prompts vo
npocapuéoouy to BERT oe éva mo olhvieto nepiBdiioy, énwe to nepBdAloy expdinone torhamiody
EQYOOLDYV, BEV ELVOL AEXETT| XU EVOEYOUEVWS AMOUTOOVTOL EXTULOEUCILES TUPAUETEOL X0l GTO ECWTEPIXO

TOL POVTENOUL, WoTE Vo elvar duvaty plo peyaAlTtepn Tpomonolnon Tou Lovtélou.
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Yuvoiuxr, culATnon
e H enidpaocn tou pweyédoug tTou prompt:

And to anoTEAEOUOTO TOU TUPOUGLICTAXAY UTOPOUPE VA GUUTERAVOUME OTL To uéyedog Tou
prompt pnopel va ennpedoetl v anddooy. Téco yw to MELD éoo xau vy to IEMOCAP,
napatneolue 6Tt Ta povtéha nou BaciCovtow oe prompt tetvouv vo amodibouv younidtepa F1-
score Lot ToOA) pixpd aptdud cuuBéiwy prompt (6-7 cOuBoha). Ta anoteléopota BEATIOVOVTOL
pe Y adEnom TV YpNoteonoloVUeEVwY cuUBohwy prompt, ue 30 ovyBora yia to IEMOCAP
xou 40 obpPolra v to MELD vo 08nyolv otn BEATOTN andBoaT), Xl GT GUVEYELL UELDVOV-
Tou oTadlaxd xou aht dtay auldvéton mepantépw 0 apliuds cuuBéiwy prompt (o€ 40 xou o
ouvéyeta oe 60 yio to IEMOCAP, oe 60 yio to MELD). Auty| i tdom unopel va tapotnendel
yior T povtéra mov Bacilovton oe prompt ywelc v tpoodixn TAnpoopioc oyYeTUXAC UE TOV
oAnTy, xorddg xon yior tor povtéda mou Pooilovton oe prompt xal YeNoYomoody Teocdixm
oLUBONwY oA (6Tou Tor povtéha pe 6-7 cOuBola prompt odnyolv ot yewpdtepes emdOoELS

oe oUyxplon pe exelva pe 30 ocVpPola prompt).

Avtéc ol mopatnenoel LTOdNAKVOLY 6Tl LTdEYEL €vag apliudg ouufdiwy prompt Tou eivon
BEATIOTOC Yol €VOL CUYXEXPUIEVO TPO-EXTIOUDEUMEVO YAWOOIXG HOVTEAO OE €Vl GUYXEXPWEVO
npoPinua. Ilhioteboupe 6Tl N younhotepn anddoon 6tav yenolgonoiolvtal Tohd Alya cOpfola
prompt pnopel va anododel 0To YeYOVOS 6T BEV UTdPYOLY UPXETES EXTIAUOEUCLUES TTUPAUETEOL VLo
VO XWOXOTIOCOLY OAY) TNV TANEOoQopla TOL amauTelToL Yiot TNV ENoEXY TpocapuoyT Tou BERT
oto épyo tou ERC, eved ta ndpa moAAd clpBoAia prompt odnyolv oto avtideto mpdBAnua, e
TdEa. TOMAEG TIOPOUETEOUG IOV TEETEL VoL EXTALBELTOUY omd Ta Blodéaio Bedopéva, odNYHVTIS
evdeyouévee ot ueyolitepo npdPinua uteprpocopuoyfc (overfitting).

e T\ uépog tnc mapatneoLpevne enidoone wnopel va anodovdel otnv yeron
prompts;
Yy apyLtextovixi mou meplypdlope yenolonotoode wio extaudelolun xepahy tofivéunone
yioo vou ovtiototyioouvye v avamapdotaon tou cupPorou [MASK] tou BERT oe ulo and
T xhdoelg ouvanoUnudtwy. Koadog n xepokn tadivounong elvan exmoudedoudr, eivon Aoyixo
vor UoU€couUe OTL GUUBAAAEL XU QUTH GTNY TEOGUQUOYT] TOU TEO-EXTULOEVUEVOU YAWOOLXOU
povtéhou oto mpdPinua tou ERC. Ilpoxewévou va diaywpicovue 0 ouuBoln tne xe@oinc
Tagvounong and tn cuUBolr] Tou prompt, UTOEOVUE VoL GUYXEIVOUUE TNY AmdBOOY) TWV LOVTERWY
pog mou PBoaoilovtar oe prompt ye exelvn twv Yoviéhwy to onola mepAauBdvouy povo €vay
Ty wpévo xwdononth BERT xau wa exmoudetoiun xegait| to€vounone xou 8ev yenolonototy

prompts oUte fine-tuning yia tic UTOAOLTES TUPOPETEOUS TOUC.

Ané toug ITivaxeg 1 xou 2 umopolye va mopatnericovpe 6tL, téco yia 1o MELD 660 xou yia to
IEMOCAP, ta yovtéla nou Boaotlovtan oe prompts telvouv va emtuyydvouv udpmidtepo F1-
score xotd 2%-3%, oe clyxplon UE T HOVTENA UE HOVO Wiol EXTTUdENOLUT XEPANT TaEvOUNoNC,
YeYOVOE Tou Yo odnyel oto cuumépaoua 6Tl To. prompts medyuatt cLUBAAROLY GTNY TEOCUE-
HOYT €VOC TPO-EXTAUBEVHEVOL YAWOOWOU HovTélou ot empépouc TtpoPAfuata. Emmiéov, ofilet
va onueldel 6T, 6tay oty xewevxy elcodo yenowwomoleiton 1 TEocUrxn GUUBOAWY OWANTY,
Ta HOVTEAA IOV YENOLOTOLO0Y UOVO piot extondedoun xe@okt) tagvounong dev pmopolv vou ag-
lOTOL ooV TNV TEo6cUeTr TANPOQOpRia xo OL ETIBOCELS TURUUEVOLY OL (Bleg 1 TEQTOUY oE GUYXELOT
HE TN WN yeNon meootixng cuUBoiwy ouknty). Autd uToBNAGVEL &TL, XUTd TNV TEOCUPUOYY
TOU TPO-EXTOUOEVUEVOL YAWOOIXOU UOVTEAOU GTO VEO LOP(POTUTIO ELGODOU TOU YENOLLOTOLE(TOL
yioo TNV Teoo¥xrn Twv cuUBOAMY OULANTY xou Sopépel amd eXEVO TNG QPAONE TEo-EXTAldEUONC
tou BERT, 1 cupfolr} twv prompts dwdpoppatilel tov x0pto pdro. Mia e€hynon yi’ avtod da
unopoloe va efvar 6TL Tae prompts enneedlouy TIC aVTapc TACELS Tou dntovpYel To HovTélo,
péow Twv oudppalouévwy, oM and to younhotepo eninedo tou xwdixomomt BERT, v 7
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xepahy) Tagvépunone umopel vor ahAGEeL LOVO TNV avTIo TOlYLoN TNG Avanapdo TaonE ToU GUUBOA0UL
[MASK] otic xhdoeic cuvatoUnudtoy xou dev Unopel val ETNEEAOEL TS XPUPES AVOTAUPC TAGELS

TOU JOVTEAOU Ol TIC OAANAETILORAOELC TouC ot eTinedal Tou xwdixorownth BERT.
M N P N

0.5.2 Prompts eduxd avd tAnpogopioc: Mic evaAAaxTixy] TeocEYYLO
YL TNV EVOWRATWON EMREOcUETNS TANPopOopiag

Ewaywyh

H povtehonoinon tou Yépatoc culhtnone xadde xou 1 ToutdTNTo TOU OANTY €YOULY YenouLoroindel
ouyvé oty BBhoypapia Yl va Bedtidoouy Ty enidoon oto mpdBinua e Avayvoeiong Xuvaci-
potog ot Yulnticec (Emotion Recognition in Conversation - ERC). O Adyoc vy autd eivon dtu
Ta Sapopetind Yépata culitnone yopaxtneilovion cuyvd and Swupopetind yYAwoowxd potifo [44] xou
HTOPOLY £€TGL VO ETNEEGGOLY TOGO TO VONUO TNG EXPOVNONG 0G0 Xl TO cuvalcUNUa ToU EXPEALOLY
OCUYXEXPWEVES EXPEACELS, EVE SlapopeTixol outhntég unopel eniong va Yenoylomoloiy dBLapopeTnég
Ae&ewc ) exppdoelc Yo vor exgpdoouy to (Blo ouvalotnuo. H povtehomoinom tou Yépatog culhtnong
XOL 7] YVOOY TNG TAUTOTNTOS TOU oWt unopolv €tol va Bondocouv éva Wovtého vo epunvel-
OEL OMOTEAEOUATIXOTERA XATVE EXPOVNOT), TEOXEWEVOU VO ATOXWOIXOTOMoEL To cuvalodnud tng. H
EVOOUATOON TNE TANEOPoRldg VLol TOV EXACTOTE OULANTH) EMTUYYAVETAL CLUYVE PECW TNS TEOCUHXNG
TWY OVOUATOV OWANTOV 0TI avTioToles expuvhoels otny eloodo xewwévou [13] [14], evdd n yerion
evoc Bonidntixol teoBAiuato avayvapelone olhnty €xel enlong yenotwonoiniel oe nponyolbueva épya
[11] [15]. Xtnv nepintwon tne poviehomoinone tov Yépatoc oultnomg, éva YAWoowd Hoviélo pe
éva tpoodeTo otpmua eEEWBXELPEVO Yot TNV aviyveuon Yepdtwv éyel tpotael and toug Zhu x.4. 6T0
[16].

[apooavoiyevol and tn Vet enldpoaom mou galvetan va éyxouy yia to ERC 1600 1 mAnpogoplo yia
TOV oUIANTY] 650 %o 1) TANEogopla Yo To Vépa culhtnone, tpotelvouue éva wovtého Tou Baciletal oe
€Vol TPO-EXTIAUOEVPEVO YAWOOXO HovTéNO xat mpocappuoletar oto tedlinue tou ERC péow udidnone
Bdoel prompt, 6to omolo 1 TAnEopopio Yo Tov oWANTA N Yl To Yéua umopel vor TopéyETAL AMEL-
Velog uéow tev prompts (to omola ovopdlovye ewdixa avd Thnpogopic prompts (information-specific
prompts)), ywelc va amoute{ton odhayf 6T0 LopPGTUTO ELGGB0L 1| Yehon Tedoletwy oTpwUdtwy oTo
povtého. H uédoddc pog etvon aveldptntn and tov TUMO TANPOpoplag, TEdYHA TOU ONUAlVEL OTL
unopel va e@aprocTel yio SlopopeTind eldn TAnpogopiog, cuutepthauBavouévmy, Yetafd dhhwy, e
TAUTOTNTAS TOU OULANTH xou Tou Yéuatog.

MéOBobdoc¢

Yty evétnra 0.5.1, yenowonololye to mpo-exnandeuuévo yAwoowd poviého BERT w¢ to xOplo
uépog tou povtéhou uog. To povtéro mou dnuovpyolue amoteAe(ton and TEELG XVPLEC LOVABES, TO
otpwpa evowudtwone (embedding), tny povéda xwdixoromth xa Ty povdda e£6dou. To otpdpa
evowpdtwone (embedding) anoteleitan and tpio yépn: To mpdrto pépoc elvon évor prompt eldnd
v o mpdBinua (task-specific prompt): Iopdyer evowpatdpota prompt pe tov Blo tpdno dmwe
otny evétnta 0.5.1, ta onola exnandedouvye oe 0hdxANEo T0 GUVOAO BEBOPEVWY Xal EYEL WE OXOTO
TNV TPOCUPUOYT] TOU YAwootxol povtéhou oto npofinua tou ERC. To debtepo pépoc elvar edind
v To Ve 1 Yot TOV OANTY, avdAoyo PE TO oV epYolOUAOTE PUE TAVTOTNTEC OWANTOVY 1| Véuata
oulimone: Trodétovtag dtt epyalduacte e s odhntéc 1 s Vépata culnone ota dedopéva ex-
nafdevong, exnoudelovpe s dlapopeTind prompts, xadévo and tor omolo avTIGTOLYEL OE €vary OMANTH
1 oe évo Fépa xou exnandedeton wbvo pe to dedopéva autol Tou opAnTh ¥ Yéuatoc. Autd to tuiua
e povadac evowudtwong elvon hoiméy ureduvo yio TNy emhoyn Tou evog and to § prompt mou
avTiotolyel xdde Qopd OTOV CLUYXEXPWEVO OWANTYH 1} OTO cUYXEXEWEVO Véua, Yio va Ypnoulonotndel
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aut6 ol pe o ewdind Yy o mpdBinua (task-specific) prompt. Exonde autod Tou dedTEPOL UEPOUS
NS HOVABAG EVOWUETWONG Elval TEAXE VoL ETNEEJTEL TOV TEOTO UE TOV 0TO{0 TO UOVTENO avTieTwn(lel
v eloodo xewpévou, avdhoya pe to Yéuo g culhTnong 1 Tov owknTh g expwvnong. Ihoteboupe
WS x4TL TETOo elval ENWPEAES, xoddS TOGO0 1) TOUTAHTNTA TOL OWANTY 600 xaL To Vépa culnTnong
UTOPOLY VoL ETNEEGCOUY TOV TEOTO UE Tov omoio exgpdlovtal Ta cuvato¥riuata YEow NG YADoouC,
onwe e€nyhinxe mponyouuévwe. To tplto pépog tng povddos evowudtnong eivon uneduvo yio Tov
UTTOAOYLOUS TOV EVOOUATWUATWY TOU avTIoTol o0V otny lcodo xewwévou tou povtéiov. H povdda
AWOXOTONTY X0 1) Lovdda e€6B0U TOU LOVTEAOU UoC SLaTneolvToL To (Blol OTWE Xl GTNY UTOEVHTN T
0.5.1: O xwdixomontAc anoteelton and 12 npo-exmondevpéva otpwyata transformer xwdxonownty
(mpdxerton yia Tov xwdixonowmnth BERT), eved we povada e£680u ypnotuonoloue dUo ypouuxd enineda
(linear layers) pe éva eninedo dropout puetafd ToUE, TEOXEWEVOL Vo AVTIOTOLYICOUUE TNV ovamopdo-
taom €€600u Tou xwdwonot) BERT oe plo etxéta ouvatodfpatog. Xnuewdvouye 6Tt epyalduaoTe
ue prompts mou aopolv cuyxexpldévo Vépa 1 owinTh, xodde autéd to eldog TAnpogopioc elvon HoN
Blardéowo oo cUVoAa Bedopévev pag 1 urnopel ebxoha vo e€oydel yio to mpdBinua tou ERC, ahkd n
(B Aoy Yo umopoloe va eqappoctel xar oe dAAoug TOToUE TANpoPoplac.

Mepapotiloyaocte ota d0o clvora dedopévwv ERC nou mepiypdgovtar otny evotnta 5.5, MELD
xat IEMOCAP xat nopouctdlouye ol anoTeAEGUATE HoG YL T XeHoN TO0O0 EWBIXMY Yia TO TEoBAnU
prompts (task-specific prompts) o0 xou ey avd Yéua/ophnth prompts (speaker-/topic-specific
prompts), eved telpopotilouacte enione pe ™ yerfion uévo ey avd owhnth/ Véua prompts xou
%xadOMoU EWBIXGY YLol TO TEOBANUN prompts. XuyxeiVouUe Tal AmOTEAECUATE Hog Ue eXelva EVOg omhol
povtélou Baotopévou oe prompts, ywelc prompts eWdxd avd Yéua,/ouhnTty|, TEOXEWEVOL Va TpoadLopi-
GOULUE XUTY TOoOV 1) TEochxr prompts cUYXEXPWEVWY avd OANTYH 1) Vépa UTOpEl Vol EVOWHATHOOEL
e emtuyla Ty yeRowun npdodetn TAnpogopia (oyetxd ue Tov owdnth 1 to Vépa culhtnong), dote
va Bedtiwdel 1) enldoon Tou yovtéiou.

YITIC EMOUEVES THPAYPAPOUE TIUREYOVUE Lot AETTOUERT] TIEQLYPAPY| TNG VRYLTEXTOVIXTC TOU TROTEWVS-
HEVOU PovTéhou pag xadog xat Tne Yedodou Tou yenouonotolue yia Ty e€arywyt) Tou Yéuatog xdie
expavnone. Mo oyxnuatiny) EnoxoTNoT TOL TEOTEWOUEVOU HOVTEAOU pog aneixovileTton 6To Lyfua
5.

Mop@oTuno XEWEVOL ELCGS0L

Xenowonololye To (BLo pop@oTUTO XeWEVOU EL06BOL dTwe oTNy evotnta 6.1, exteddvtog Masked LM
X0 YENOLIOTOLOVTIS (Lot El00B0 800 TEOTACEWY, OTOV 1) TEWTY TEOTACT ATOTEAEL o CUVEVLOT) TRO-
NYOUUEVOY EXPVNCEWY, oL Vo Ypnotporowdoly and 1o YovTERo w¢ ouppealoueva, xal 1 delbtepn
npoTaoy elvon 1 Tpéyouoa EXPOVNOT ToL TEETel Vo Tagvounvel, axoloudoluevn and évo cUfolo

[MASK]. To tehnd xeipevo eio6dou diapoppivetal o eEhc:
[CLSH’LQ,}C‘UZ,]CJFH|’U,1,1|[SEP]|UZ|[MASK]|[SEP]

6mou ¢ elval 0 BelxTN TN TEEYOVCUS EXPOYNONC Teog To&vounan, k elvar o apriude twv tponyov-
UEVOV EXPOVACEMY TOU YPNOULOTOO0VTOL G oUUQEaloueva, u; eivon 1 expdvnon ue delxtn i xou |
elvan To obuPolo e ocuvévworng.

H eloodog auty| mepvdel 6T0 TUHUR TOU CTEOUATOS EVOWUITWONS TOU UHOVTEAOU Uo¢ Tou elvon
uTEOYUVO YLl TOV UTONOYLIOUS TWV EVOWUATOUETWY TOU avTioTolyoly ota oUpfora (tokens) tng
XEWEVIXAG ELo6B0ou xou Tou ovopdlovye evonpatopata xewwévou (text embeddings). T to oxond
QAUTO, YENOWOTOLEITOL AUETIBANTO TO TPO-EXTAUBEVUEVO GTpWUA Evowpdtwone tou BERT, to onolo
avtiotoly (et Ta oUpPBola oty €lcodo GTa AVTIOTOLYO TEO-EXTUBEUPEVOL EVOOUATOROTA XEWEVOU Xl
OTN CLVEYELN TEOCYETEL OE QT TAL TPO-EXTIUBEVUEVO. EVOWPOTMUATO TAuatos xat Véone (segment

xou position embeddings), divovtog oty é£080 T TEMXA EVowpaTOUaT XeWWEVoL (text embeddings).
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Ewduxd yia To npdBAnua oLuBoio prompt

Xenowonololpe ¢ evopatdpoto cupBoiwy prompt (prompt token embeddings) to onola exnoudedov-
Tl UE YPNOT GAOU TOU GUVOAOU BESOUEVGWY Xal £YOLY S GTOHYO TNV TPOCUPUOYT) TOU TRO-EXTOUOEVUEVOU
povtélou oto npdfBinua tov ERC. Autd elvan to (Bior e tor eveoportdpota cuB6hwy prompt mou yenot-
pomotolue oty voevotnta 0.5.1, ta onola Beloxovton anevdeloag otov Ywpo evowudtwone tou BERT
%o 081 yoly ot TeEhxd evowpatduato prompt (prompt embeddings), petd v ddpolon Toug pe Ta

evowuotepate tuiuatog xou Yéone tou BERT.
Ewduxd avd nAnpogopio cOuBoia prompt

Extéc ond o t ewdind yio to npdPBinua (task-specific) oOufolo prompt mou meptypdpnxay mopandve,
xenowwonolotue m oxoua clpfoha prompt, to omola eivon ewdxd avd TNV TEOGUETN TNYT TANEOPOELLY
70U TpooTAOUUE VO EVOOUATOOOUPE (Bnhady| eldixd avd omhntd i Vépo oulhtnone) xou ta onola
ovoudloupe cluBolo prompt eldd avd thnpogopio (information-specific prompt tokens).

Koddg autd elvon eldxd avd Fépa oulitnong 1 owhnty, dev exnawdedovion 6to GOvoro Ttwv de-
Souévwyv: Trodétovtog ot Slordétoupe s Véporto oulAtnong B s owAntés (1 opddes oANTOY, YE TOUS
opAntéc péoa ot xde oudda poviehonotolvton 6hot pall), Vo ExouUe § OUADES amd M EVOWUUTOUOTA
ouuf6hwy prompt (prompt token embeddings) n xodepio, ye anotélecpo évay TEAxS mivoxo ond
EvowpoTOuata cuEBoAny prompt Swotdoewy (s + m) * d, émou d elvon 1 SdoTooN EVOLUATWONS
tou BERT (768 vy to bert-base). T xdlde tpéyouvon expidvnon mov mpdxeiton va to&ivoundet,
npocdlopilouye ToV oANTH 1 To FEUaL TNS EXPOVNONG Xol ETUAEYOUUE TA M EVOWUATOUNTA CUUBOALY
prompt mou avTioToLoUY GE QUTOY ToV oANTH/Véua. AuTd tTa m evowpatduata cUPBOAWY prompt
xenotgonolovvtar otr cuvéyeto woli pe to t eldind yiot To TpdBANUa EVOLUUTOUNTE GUUBOANY prompt
(task-specific prompt token embeddings) yia v Ta&voUNoT TNG TEEXOVOUS EXPMYNONG, APOV TEMTA

npoctedolv to evonuatduota 9éong xou tuiuoatog tou BERT.
Telxr) €€050¢ ENLNESOV EVOWUATWONS

Do v ta€vounon wlog expadvnong, ool AHBOUYE Ta EVOWUATOUAT XEWEVOU, To X Yl TO
TEOPBANUA EVoLUATOUaTa prompt xou Tor edixd avd ohnth/Yéua evomUaTdUaTo prompt, GuVEVE-
Voupe tol Tplo, YE ATMOTEAECUA VO TPOXUTTOLY ¢ + m + n evowpatopata (6mou n o aptdude Tev
EVOWUATOUETOY TOU AvTIOTOL 00V 0TO XEUEVO ELGODOV, ETUAEYHEVOS €TOL OOTE 0 GUVORIXOS apldude
TWV EVOWUATOUET®Y Vo unv unepPoivel to péyioto péyedoc ewwddou tou BERT: t 4+ m + n < 512),
o omolo otn cuvéyeta daPBBdlovton TNV TEO-eEXTUSELEVY povdda xwdixorowth BERT. M oyr-
potiey) ovamapdo oo e TeAxnE €680V TOU TPOTEVOUEVOU UOVTENOU OTO EMUNEDO EVOWUATWONG

anewxoviletan oto Lyhua 4.
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Task-specific prompt ings -I Topic-specific prompt ings Text ings —‘
Frozen
Position embeddings Position embeddings Position embeddings
Trainable
o] =] k
Segment embeddings Segment embeddings Segment embeddings ‘
& &
Task-specific prompt Speaker-/Topic-specific Token embeddings
token embeddings prompt token embeddings

Figure 4. Emoxdénnon tov otpdpatos evooudtwons yia tny wepintwon udinong Pfdoer prompt.
H tehikn ébodog oto eminedo evowudtwong mpokUntel amndé T ouvévwon twy €0lKdy Yia To
TpdPANUa evowuatwudtwy prompt (task-specific prompt embeddings), Tov eibikdv avd mAnpogopia
evowuatoudtoy prompt (information-specific prompt-embeddings) ( eidikcdy avd opAnti 1 %éua)
Kal Twv evoouatopdtor keipévou (text embeddings). Or povddes pe umie ypdua datnpolvtar tay-
wHéves katd Tn didpkela NG ekmaidevons, evd o1 HovddeS e KITPIYo XPpdHa €ival eKTaldeVoes.

Kwdwonowntric BERT xou xe@ain tagivounong

Xenowornololue tov npo-exmaudevpévo xwdonownty BERT xou npoc¥étouye ndvew and autdv plo
%ePahY) TAgVOUNONG, TROXELEVOL VoL AVTLO TOLY(COLUE TNV TEAXY XpUQT| oVaTaEdo TOoY) TOU GUUBOAOU
[MASK] tnc ewoéBou tou poviéhou oe plo and tic xhdoeic tou cuvélou dedopévemyv poac. Xenot-
ponotolue TNy Blar xepahy) tagvounone pe v uro evotnta 0.5.1, amoteloduevn and dVo ypouuLxd
enineda (linear layers) pe évo eninedo dropout avduecd touc. (BA. IyhAua 3 yio pio Aemtopept|

AVATAPEC TAGT)).
IMoaywuéva ko eXTAUdEVoLAL TUALTE

ITaryddvouue dheg TIC TORAUUETEOUS TOU HOVTEAOU, EXTOC OO TLE TUROPETEOUS TNG XEPUANE TaEWVOUNONC
xou tou prompt (t6c0 Ta eldxd Yo To npdBhnua (task-specific) éoo xan To B avd TAnpogopia
(information-specific) evowpotduata cuuBoAwy prompt ToEUUEVOLY ExTUdEVOA), TIC OTOlES EX-
naudevouye péow back-propagation. Lnueldvoupe xou TdAL 6TL SLUTNEOVUE Ty WUEVES TLS TIORUUETEOUS
TOV EVOWUTWOUATWY TUUatog xat ¥éong 1600 Yo T0 xelyevo elcddou 650 xal yio Ta cUuBoAa prompt,
xou entione dev exnoudedovye To EvowpoTdpota ouuBéhwy (token embeddings) tou BERT, ta onola

XENOWOTOLOUYTOL YL TNV AVTIo TOlYLOT TwV SUUPBOAWY TOU XEWEVOU ELGOBOU GTO YWEO EVOWHUATWONS.
Medobog efaywyng YEpatog

Eve n tautotnta tou opinth nagéyetan toc0 ato IEMOCAP 660 xou oto MELD, autd dev toydel
v to Véua xdde expovnone. Ilpoxewévou va yenowonojoovpe prompts ewdixd avd éuo, ex-
teholue hotndy mpwta poviehonolnorn Yuatog, wote va e€dyoupe to oo Yéua xdlde exphdvnong.
Xpnowonowotye v uédodo Latent Dirichlet Allocation (LDA) [45] yio vor eXTENEGOUYE TN UOV-
telonoinon Véuartog [46]. Enueidvoupe 6Tl Yo xdde expmdVNoT, YENOWOTOLOOUE oUTAY xodde Xa
o oupgealdpevd e (tic k mponyolueves expuvioeic tou Slohdyou mou divovtan we elcodog ato
povtého pall e TNV TpEYOLCH EXPOVNOY) K évay eviaio clvolo (w¢ éyypago Yo poviehomoinom
Yéuartoc), npoxeyévou va elpacte ot Yéon va npoodloplooupe To TpEYov Ve TN cuvophiog o
anotekeopatixd. Auto elvan amopaitnTo, Xl oL expuvioels o€ évay BdhoYo elvor GUY VS UxEES o
vevixée (v mopddetypor "Now." 4 "Aev Zépw!"), ondte Sev elvon Suvatédv va npoodloplotel to Vépa
XENOWOTOLOVTIS HOVO TNV TEEYOUCH EXPHOYNON.

‘Etot, dewpdvtag xdie expavnon xan ta cuppealduevd tng wg €va £yypapo, unoloyilouvue tov

Tivoxa 6pwv tou eyypdpou (Document Term Matrix - DTM) yio to oOvoho exoideuong Tov cuvéiou
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dedopévwy, o omolog elvor évag mivaxag Tou TEpLYpdpeL T cuyvoThTa Xdde AéENg ot xdie Eva and Ta
Eyypago xou yenouomoolpe ty uédodo LDA yia va exteldécoupe v pwovtehonoinon Yépatoc. H
LDA vunotétel po cuhhoyy and k Géuata, 6mou to k npénel va elvan tpoxadoplopévo. Oewpel xdie
EYYPUPO WS Uiot SUNAOYY Vepdtov xou xdde Féuo we wa cUANOYT AEEEWY Xalt, UECWL WAC OTATLOTIXAS
diadixactog, utohoyilel to pelypo Yepdtwv and to omolo arnoteheiton xdle éyypagpo. Autd unopel va
Yewpnel we o Ao (soft) xatnyoptonoinom xdde eyypdpou ota didgopa Véuata. ot vo AdBoupe to
x0pLo Véua xdde eyypdpou, emhéyoupe to Véua e To yeyolltepo Bdpog. XnUeudvouue 6Tl ExTENOVUE
v avdivon LDA yenowonouwdvtoc uévo ta dedopéva g exnaidevonc poc. Katd tn Sidpxeia tou
testing, amhoe taivouolue xdie €yypapo ota UTdpyovTa Yéuata, yenowonowdvtag To poviého LDA

eV dedoPéVwY eXTaidEVOTC.
Juvddpoior prompt

‘Otav mpoypotonolobpe goviehonoinon Yéuatog yio vo AdBouue to xdpto Féua xdde expwvnong,
uropolpe vo unodécoupe pio auotney| (hard) talwvéunon, avadétoviac éva Vépa oe xdde expidvnom
(to Yépa pe ™ péyiotn mdavdtnta) xou enAéyoviac tor m avtiototya ovuBola prompt, B uropolye
va unodéooupe Wwo Ama (soft) ta&wounon petalld twv Yeydtov, yenoiwonowdviag ¢ mdovdtneg
nou unohoy(lovton amd T wédodo e€aywyre Vépatog. Ltnv teleutaia neplntwor, unodétoupe dtL
xdde expovnon avixel o xdde Vépa pe mdavotnta p. Avti T6TE Vo yenolonolotye To prompt mou
avuototyel 6To wdplo Vépo e expdVNoNe xatd T ddpxelo Tou eEAéyyou (testing), pmopolue vo
unoloyioouye pia cuvddpolon (ensemble) and prompts, hoPdvovtag tov otaduopévo péco 6o Twv
TPOPETPWY OAWY TWY § prompts mou avtiotololv ota s Vépata (xddeva and o onola amotehel-
tou and m prompt tokens), yenowonowdviac Tic mdavéTnTES TV Yepdtwy we Bden. Ovoudlovue
auth TV eV "ouvddpolon prompt" (prompt-ensembling). Teipopatilbuacte pe TNy TEXVXA
¢ ouvddpolone prompt xou mopéyouue Ta anotehéopata otny evotnta 0.5.2. Xnuewdvouue 6TL M)
ouvédpolon meayuotonolelton u6vo xotd T didpxela Tou ehéyyou (testing), eved eEoxoloudolye vo
uno¥éTouue plat auaTNEY| TaEvounoT xatd Tn SidpXeta TNS EXTUBEVOTC, TEOXEWEVOU VAL EXTUDEUGOUUE

o g ava Yé€uo prompts.
30volo Bedouévemy

H pedodde pag Pooileton otny exnaldevon evog edixol avd owhnty| ) Géua prompt yenoiponoidvrog
10 0OVOAO EXTABEVCTC XaL, GTN CUVEYELN, OTN XproT auTo) TOU TRO-EXTOUSEUUEVOL prompt xatd
didpxetor Tou testing. Autd onuaiver dti unodétel 6Tl 0 opnTAc # To Vépa mou epgaviletan xatd
T dudpxela Tou eAéyyou (testing) umdpyel xou 6To cUVoho exmaidevone. ‘Otav epyalduacte ye 0
Vépa oulitnong, autd dev anotelel mpoBAinua, xadde xdde expmvnon uropel vo avtiotoyndel oto
Yéua Tou cuvdlou exnaidevong oto omolo elvar o xovtd. Qotéo0, dtav Peedel Evoc dyvwoToc opLA-
NtAc oTo obvoho test, o omolog Bev undpyel oTo cUVOLo exmaldeuong, dev Slotétoupe exmaudeuUévo
prompt yio autdV T0ov opANTA. Tt To Adyo awtd, oty nepinTwon TwY prompt eWBXOY avd OANTA,
doxdloupe 0 u€Vodo o oto MELD xou 6yl oto IEMOCAP, xadde oto IEMOCAP undeyouv
drapopetixol owhntéc oe xdde éva and Ta chvola exnaidevone (train), avdntuine (validation) xou
eNéyyou (testing). And tnv dAhn mhevpd, oto MELD, ol éZ1 x0ptol ophntéc eivar nopdvTes xou otol
tpla pépn dedouévwy (train, validation xou test). Enouévee, yenowonowolue m oOpfora prompt
vt xdde évay and autols xou opoadonololue 6Aoug Toug umdholnoug owAntég tou MELD oe évav,

XEMOUWOTOUVTAG M X0V, EWBXE avd okt cbuPBoAa prompt yia owTtolg.
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Emotion class for u;

Frozen

Trainable

Classification head

BERT encoder
Task-specific Speaker-Topic- )
prompt specific prompt Text er{lrgzddlngs

embeddings (t°d) | lembeddings (m*d)
A

Choose Speaker/Topic embeddings L
based on speaker/topic index [CLSTI upp | upepq .ol uyq [ [SEP] | u; | [MASK] | [SEP]

Speaker/Topic 0: embedding 0

Speaker/Topic 0: embedding 1

s*m || Speaker/Topic 0: embedding m-1

Speaker/Topic 0: embedding 0

Figure 5. I'eviké didypaupa tov povtédouv pag pe fdon ta prompts, émov t efvar o apidudés
Ty adikdy yia to mpdéPAnua ouufidwy prompt, m efvar o aprduds twy abikdy avd TAnpogopia
(information-specific) ovuBéAwr prompt, s elvar o aprOuds Ty opAntdy /Beudrwr, d eivar n dido-
taon evooudtwons tov BERT (768), n elvar o apiduds twv ouuPédwv prompt mov avtiotonoly
0To Keluevo ewédov pag, k eivair o apiuds twv mponyoUuevwy ekQwyioewy ToU XPnoiHoToolyTal
wS ouugpaldpeva kar i eivai o OelkTng TnNg TEéxoVTas ekpavnons, n onoia mpémrer va tabounOel.
TIa s opiAntés/Oépata exnadedovpe s prompts mov anotelodvar and m oUpBoda prompt to Ka-
Uéva, omdte éxovpe ouvolikd s * m ekmadeloiua evowuatopata prompt, ané ta omoia emAéyovue
m kdJe gopd, avdloya ue tov opkntij 1j to %épa. Or povddes pe umke xpdua datnpolvtar tay-
wuéves katd tn didpkela TS ekmaidevons, €ve o1 UovddeS ue KiTpvo xpoua €ival eknaidevoies.
Ynueadvetar 6t ta adikd ya to mpofAnua kar ta adikd avd mAnpogopia evowuatduata prompt
éxovy extaidevoiua Tunipata, aAdd dev eivar extaidevoiua ato oVvodd tovs: BA. Eiwkéva 4 ya jia
Aemtopepn emokdénnon.

ArnoteAéopata xo cuiNTNON
O ITivoxeg 4 xou 5 nopovotdlovv to otapouévo Fl-score yio to MELD xaw IEMOCAP, vy o

TPOTEWVOUEVO b EUAS LOVTENO Xadmd¢ xou Yo To baseline povtéda poc. ‘Ol ta anoteréopata £Youv

UTIOAOYLOTEL WS 0 U€60C 6POC TELWOY TEEEWETWY.
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Table 4. Xtalpiopévo Fi-score (%) ya to ovvoro dedopévwy MELD

’ Model | F1 score (Test) |
Me ype¥on prompt, 30 cOufora prompt 56.70
Me yerion prompt, 40 cbufora prompt 56.94
Mévo speaker-specific prompts, 55.68
40 speaker-specific oOyoia prompt
Task- + Speaker-specific prompts, 57.08
30 task-/10 speaker-specific cOyfola prompt
Moévo topic-specific prompts, auotney| ta€ivounon 54.96
40 topic-specific oOyfoia prompt
Task- + Topic-specific prompts, avotner tavéuncn 56.63
30 task-/10 topic-specific cOpfoia prompt
Task- + Topic-specific prompts, cuvddpolor prompt 56.82

30 task-/10 topic-specific oOpfoha prompt

Table 5. XtaOuopévo Fi-score (%) ya to ovvolo dedopévwv IEMOCAP

’ Model || F1 score (Test) |

Me yerion prompt, 30 cbufora prompt 59.94

Me yprion prompt, 40 cOuBoia prompt 59.21

Moévo topic-specific prompts, auotney| tadivounon 58.69

40 topic-specific cOyfoha prompt

Task- + Topic-specific prompts, avotner tavéuncn 61.13
30 task-/10 topic-specific cOpfola prompt

Task- + Topic-specific prompts, cuvddpolon prompt 61.12
30 task-/10 topic-specific oOpfoha prompt

Ewduxd avd optAnty) prompts

‘Ocov agopd 11 yerion prompts eWdixwy avd ok, Tewpopatio Thxaue wévo pe To MELD, emouéveg
TOL AMOTEAEGUATE oG TiEpLEyovToL oToV Tivoxa 4. Meta€l twv goviélwy Tou yenouylonotoly prompts
eWBd avéd owdnth, 1 Bértiotn anddoor (Fl-score (oo pe 57,08%) emtuyydveton and To Loviélo Tou
yenowonotel 30 task-specific ocbyfoha prompt mou mapauévouv Bia yiar 6Gho To cUVOAO BeBoPEvev
xot 10 cOpPolo prompt eldind avé opdnth (speaker-specific prompt tokens) mou ahhdlouv avéroya
pe Tov owhnth. Autd To yovtého emituyydvel enlong xahbtepo Fl-score oe cUyxplon ue ta baseline
povtéha mou Bacilovtow oe prompts xau yenoiwomnoolyv t6co 30 600 xou 40 task-specific cOuBora
prompt xor xadéhou information-specific cOuBoia prompt, yeyovéc mou unodnicver 6Tt 1 TANEO-
qoplol YLot TOV OUANTY UTopel Tpdrypatt va xwdixomoindel anoteAeouatind Yéow e xerone prompts

EWOLXWY Ve OULANTH.

Ew8u1xd avd 9€épa prompts

Xenowonowdvtag eldnd avd Yéua (topic-specific) prompts, tepapatiotixope 16co oto MELD éc0
xat oto IEMOCAP. T to MELD, 7o povtélo nou afionotel to Yépa e g xahitepes emdboele
elvar to poviého nou yenowomotel 30 edxd yia To TEdPAnue (task-sepcific) cduBole prompt xat 10
ewdd avd Vépo oVPBora prompt, pe to prompt yia To Yéua va unoroyiletan we cuvddpolon Twv
OLapopwV WOV Yia To Véua prompts, cOPEwVA Ye Ta Bdpn twv Yepdtenv mou unoloy(let n uédodog
LDA. Qotéc0, autd to poviého emtuyydvel Fl-score oyeddv (bio ue to yovtélo pe Bdon prompt mou
yenowonotel uévo 40 ewdnd v to medBinuo obuBola prompt xan xovéva eWdixd avd Vépa cbuforo
prompt. Auté onuaivel 6ti, i to MELD, 1 npoodrpn mhnpogoplag yio to Vépa uéow prompts dev

polveTan var elvan ETWPERTC.
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0.5.2 Prompts edixd avd nAnpopopia: Mio evolhaxTtiny TpocéyyLon yia TV Evowpdtnot entnpdodetne Thnpogpoplog

Ta anotehéopatd pog eivon Slapopetind otny nepintwon tou IEMOCAP: Ye obyxpion pe to pov-
Tého mou PBaoiletar oe prompts xan ypnotponotel uévo 30 ewdixd yio To npdBinua cluBoia prompt, ta
povtéha mou yenotponowly 30 ewdixd Yl To mEdBAnua xou 10 eldixd avd éuo cbyPora prompt
emtuyydvouv Fl-score peyahltepo xatd 1,19% otnv mepintworn Tou goviéhou Tou yenoulonotel
avotnet) (hard) ta&wvéunom xou xatd 1,18% otnyv neplntwon tou poviélou nou yenotponotel cuvddpolon
prompt (prompt-ensembling). Xe olyxpion pe to poviédo mou yenowornotel 40 eldxd v to
TpoPBAnua cbuBola prompt xou xadohou edind avd Héua cbuBolo prompt, 1 Slopopd auth elvan axdun
HEYUAUTERY. XUVETKC, Ol TANPOPoplec oL apopoly To Véua cLlATNoNG GolveTal Vo lvor oNUOVTIXES
v 1o IEMOCAP xou afionotodvton pe emtuyio uéow edixdv avd Véua prompts.

"Evag Moyoc mou e€nyel ) dopopd oTic emdioelc Twv edindv avd Yéuo prompts ota 500 chvolo
dedopévwy Yo unopoloe va elval To YEYOVOS OTL UTEEY0UY UEYUADTERES SLOPOPES GTNY XATAVOUY TLV
ouvatoUnudtwy getald tewv dlapopwy Yeudtowy oto IEMOCAP, napd oto MELD, 6w nopotneriooyue
avahDOVTOS TNV XATOVOUY TwY cLVGIMUdTLY avd Yépa yia x&de civolo dedopévewy. (O evdiapep-
OUeEvVOS avoryvootne unopel vo pehetioet toug Ilivaxee 6.15, 6.16. 6.17 xo 6.18). "Evoc deltepoc
napdryovtae Yo uropovoe va eivar éti 1 poviehonoinon Yéuoatoc oto IEMOCAP xwdwxonotel nepio-
o6TERT TANEOYOopEld, UE Tol BLAPOPETIXG VEUATAL VoL (PEPOLY OPLOUEVA DlapopeTXd YAWooxd wotiBa mou
eMNEEGLOUV TO VONUA TWV EXPOVHCEMY X0l TOV TEOTO YETABOCNC TOU GUVILCUAUATOC, EVE Ta VEuaTo
oto MELD elvor mo nopduota 1) YEVIXA %ol CUVETKC O PTwyd o Thnpogopia. To ioyvploud autd
eMPEBAUMOUPE TOPATNEWVTACS TLS TLO XOLVES MéEels Yo xdde éva amd tor Véparta mou ey dnoay and to
oUvoho exnaldevong, Yo to MELD xau yio to IEMOCAP, an’ émou Swomie thoope 6ti, otny nepintwon
tou MELD, nohAéc and tig mo ouyvég Aéelc yio xdide Vépa etvon Aé&elc mou ypnotgonolodval oTov
Tpogopxd xodmuepwvd Adyo ("uhh", "ah", "huh" x.Ax.), evéd undpyouv enione TOMEC xOLvEC NEE-
el peTodl Ty dpdpwy Vepdtwy. Autd Jo unopoloe vo onpalvel 6T, AOYw TNG TEOEAEUGNC TOU
MELD, mou eivar xodnuepivéc cuvophieg amd pio Tnheontiny) oelpd, ol dldAoyol dev elvon 1650 GUV-
Hetol xou dev €youv mdvto €va Ttpogoveg YEUa 1 oxomb xo EMOPEVLE 1) Lovielonolnoy Yépatoc dev
napéyel yeriowes TAnpogopiec. Amd tnv dAAN mhevpd, to IEMOCAP, éyovtoac oyediaotel pntd yio
T0 TEOBANUA avayvoplong cuvaotiuotog, Yo unogoloe vo nepthaufdvel xelevo o xaTdAANAo Yo

povtehomoinor YEUaTog, UE TAOUCLOTERES OYETIXES TATPOPORIES.

Xpnon wovo elBix®wy avd TANepopopia prompts EvavIi TnNg XENHomn EWBIXOV YIX To
TEOLANUa xot EWBLX®Y avd TANpogopio prompts

Meletdhvtag To SLopopeTINd HOVTIENN TTOU YENOWOTOLoUY prompts mou apopoly Tov oWAnty xal To
Yéua, uropolpe va dodyue 6L, 660 v to MELD 600 xou yiot to IEMOCAP, 1 yerion 40 cuyfoiwy
prompt mou ahkdlouv Aot avdhoyo Ye Tov olhnTh ) To Vépa xou xadohou cuuBéiwy prompt lddv
Y10l TO TPOBANUA TTOU TORUUEVOLY (Lol YLt 6A0 TO GUVORO eXTABEVGTG, amod(BEL YouNhOTERES EBOTELS
and QUTEG OV ETULTUYYAVOUY TA UOVTERX TOU YENOLOTOL00V EWBIXE Yiot TO TEOPBANUa xorddS xat eldixd
avé opinth/Yéua prompt. Autd Yo unopoloe vo UTOBINAGYVEL TL 1) YpHoN OAGXANEOL TOL CUVHAOU
BedopEVLV, dpa TEPLOCOTERWY DEDOUEVLV, LG EMLTRENEL VoL XorJ0plCOVUE TIC THPUUETEOUS TwY prompt
TULO UTOTEAECUATIXG., TPOXEWEVOU Vil TROCUPUOCOUNE TO TTEO-EXTIUOEUUEVO YAWOGIXS LOVTEAD YOG OTO
npoPBAnua tou ERC, xou to emmAéov obufola prompt mou eivan eldixd yiot Tov opuhnt/Vépa unopolv
oTN oLVEYELD Vo Yenolponondoly yia Ty npdcdetn xwdlxonolnon tne mpdoletne mhnpogopiag mou
oyetileton pe tov owhnth/Fpa.  Avtideta, 6tav yenowonowolviar pdévo prompts edixd yo Tov
ouAnth/Véua, to dedopéva avd owAnth B Véuo Bev emopxolY Yol THY AMOTENEOUOTIXY EXTA(dEVOT

OAY TV TUPUUETPWY TOU prompt.
Avotne Tagivounon Evavti cuvddpoiong prompt

Onweg avarbdnxe vopitepa, oty meplntwon tou Véuatog, Telpopati{OUacTe UE TNV EMAOYT EVOC

CLUYXEXPWEVOL prompt yio X8V expadvnon Tou GuVERoL doxuu®y (test), Tou prompt Tou avtioTouyEl
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Chapter 0. Extetopévn ENnvixd Ilepiindn

oto Yéua oTO OMOlo M EXPWOYNOY AVAXEL UE TN HEYaAUTEEN midavotnTa, xodde ol PE TN YoM
e mbavotnrog xde Yéuoatog va elvon o Véua TG EXPOVNONG, TEOXEWEVOL Vol UTOAOYLOTEL €vag
otaduiopévoc HEcog 6pOC TWV TUPUUETEKWY TV Prompts mou avIloTolyolV oTa dlapopetind Yéuota
(ouvddporomn prompt). Tuyxpivovtog to anoteléopota Yo Ti¢ dVo uedddoug, mopatnpolue 4Tt 1
ouvadpotor prompt odnyel oe (on anédoon v 1o IEMOCAP xou og avdtepn anddoon yia to MELD,
av xou p6vo xotd 0,19%, yeyovoc nov pog odnyel oto cupnépacpa 6Tl 1 cuvddpolon prompt unopet
vo elvon enwperric, ohhd dev ennpedlel oe peydro Podud tnv anddoon oTiC Topovoeg cLVITXES TWVY

TELPAUATWY OGS,
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Chapter 1

Introduction

1.1 Motivation

Emotion is innate to humans and it constitutes a major factor affecting human behaviour.
Understanding human emotion is therefore a key part of understanding humans. In a conversational
context, accurately determining emotion can be vital to interpreting each speaker’s conduct, intent
and conveyed meaning. With the rise of online platforms and social media, such as Facebook,
Reddit, Twitter etc. an overwhelming amount of conversational data becomes publicly available
daily and its automatic analysis for the purpose of mining opinions and studying human behaviour
is widely sought after. In addition, the pursuit of the creation of conversational agents and Al
assistants that possess human-like artificial intelligence and are able to converse in a human-native
way, demands a thorough understanding of the human interlocutor’s emotional state. In a much
different context, recognizing emotion when human’s are conversing can aid the development of
psychological analysis tools for assisting doctors and can thus support health-care.

Emotion Recognition in Conversation (ERC) is defined as the task of determining the emotion
of each utterance, given a series of utterances that constitute a dialogue between two or more
human speakers. Due to its aforementioned potential applications, it has gained significant popu-
larity in the recent years, with an increasing amount of researchers constantly improving previous
systems and suggesting new architectures that can aid the task. Suggested models often leverage
speaker-identity [11] [13] [14] [15], topic modeling [16], intra-dependency and inter-dependency
encoding [17], in order to effectively capture emotion, and they are usually based in one of two
main approaches. The first uses graph neural networks, encoding utterances and their relations
as nodes and edges of a graph and modeling dependencies through the aggregation of information
from neighbouring nodes. The second leverages the sequential nature of conversations, utilizing
models that capture sequential relationships explicitly, such as Recurrent Neural Networks (RNNs)
and transformer-based pre-trained language models (such as BERT [18], RoBERTa [19], BART
[20] etc.), and is perhaps the most common in the latest state of the art works.

Pre-trained language models allow researchers to achieve very good performance when attempt-
ing to recognize emotion in conversations, due to the extensive understanding of human language
they have obtained during their pre-training phase. To adapt them to the ERC setting, fine-tuning
is usually employed, which tunes all of the pre-trained language model’s parameters using a dataset
designed for the task of ERC. However, considering the fact that such models consist of millions
or even billions of parameters, fine-tuning can be very expensive. The training is both time- and
space-demanding, while the resulting models also occupy a large storage space [21]. In addition,
because the datasets available for the ERC task are relatively small in comparison to the number
of parameters pre-trained language models possess, the trained models often suffer from overfitting
[22].

To mitigate these problems, prompt-based learning has been proposed as a general method
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Chapter 1. Introduction

for adapting pre-trained language models to downstream tasks. Instead of tuning the pre-trained
model’s parameters, prompt-based learning keeps them frozen, and adds a set of new parameters,
known as a prompt, in the input level of the model, which it then optimizes, in order to influence
the way the model handles input, to better accommodate the downstream task. Because the
number of trainable parameters introduced constitutes a very small percentage of the number of
pre-trained parameters fine-tuning traditionally optimizes, prompt-based learning is significantly
more lightweight and less prone to cause overfitting. It has thus captured the interest of multiple
researchers, that have suggested different prompt architectures and training methods. However,
despite the increasing interest of the research community, prompt-based learning is still a very new
method and there is thus limited work available, especially in the field of optimizing the method
for a specific task. Particularly in the field of Emotion Recognition in Conversation, at the time
of our experiments, we managed to find no work utilizing a pure prompt-based learning approach,
that only trains the prompt parameters, keeping the model frozen and remaining truly lightweight.

In this thesis we aim to study the applicability of prompt-based learning to the adaptation of
a large pre-trained language model to the task of Emotion Recognition of Conversation. In the
first part of our work, we set a baseline for prompt-based ERC and experiment with methods
commonly used in previous work for integrating speaker-specific information and modeling inter-
and intra-dependencies. We compare our models to fine-tuned models, and measure the difference
in performance between the two adaptation methods. We then provide as second approach, which
aims at encoding additional, useful for the ERC task information, such as speaker identity or topic,
directly through prompts, without any further changes to the input format or model architecture.
We perform extensive experiments for both approaches and provide a discussion on the applicability
of prompt-based learning to the task of ERC.

1.2 Contributions

Through our work we contribute the following:

e We provide a baseline for the task of Emotion Recognition in Conversation using a purely

prompt-based approach with no tuning of the pre-trained model’s parameters.

e We employ previous methods for integrating speaker-specific information and encoding inter-
and intra-dependencies that are commonly utilized in the fine-tuning setting, and study
whether a language model adapted through prompt-based learning can still benefit from

such methods, or a different approach is needed.

e We compare the performance of prompt-based and fine-tuned models in the ERC task and
determine that prompt-based learning can indeed prove an effective alternative adaptation

approach for the specific task, and as such is worth investigating further.

e We propose an approach for integrating additional information to the task of ERC directly
through prompts, with no additional changes to the model’s architecture or input format.
Our approach is information-agnostic, in the sense that, while we experiement with speaker-
identity and topic, it can easily be extended to other types of information that are deemed
to be beneficial for ERC, following the logic presented in this work.

1.3 Thesis Outline

In Chapter 2, Machine Learning and Deep Learning, we provide the theoretical background to

prepare the reader for the next chapters, familiarizing them with the concepts of machine learning
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1.3 Thesis Outline

and deep learning and presenting the basic machine learning types. We explain some fundamental
notions related to the training of machine learning models, and present some commonly used
methods and models both in the field of traditional machine learning and in the field of deep
learning.

In Chapter 3, Word Representation Methods and Language Models, we provide an overview of
the field of Natural Language Processing, presenting different representation methods and language
models that have been developed throughout the years to model and understand human language.
We then delve into pre-trained language models, presenting some of the most popular architectures
and the different methods that have been proposed for adapting them to downstream tasks .

In Chapter 4, Prompt-based Learning, we analyze the adaptation method called prompt-based
learning, which we utilize in this work, providing details regarding its architecture and benefits
and presenting an overview of previous work related to our usage of prompt-based learning.

In Chapter 5, Emotion Recognition in Conversation, we define the problem of Emotion Recogni-
tion in Conversation (ERC), which we tackle in the following chapter. We also provide an overview
of the most important variables for identifying emotion in a conversational setting and present the
main approaches followed in previous work. Finally, we present two datasets created for the task,
which we use to perform our experiments.

In Chapter 6, Proposed Approaches, we analyze the two approaches our work follows, explaining
their purpose, as well as our method and presenting the results obtained from our experiments.
We also provide a discussion over our results, explaining our conclusions.

In Chapter 7, Conclusions, we provide a summary of our methods and findings and suggest

some potential approaches for future work.
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Chapter 2

Machine Learning and Deep Learning

2.1 Introduction

Artificial intelligence (AI), the creation of machines that can "think", has been an exciting
concept for humanity for many years. Even in ancient Greece, people devised the existence of
creatures such as Talos and Pandora, which may be considered as artificially intelligent machines
[47]. The development of Artificial Intelligence however ultimately depended on the development
of computer systems. The earlier efforts in Al usually evolved around formal tasks, where formal
languages where used to express statements, about which the computer could reason using logical
inference rules. However, the success of such systems was limited, due to the difficulty of sufficiently
describing all possible knowledge for a given task, especially in the case of more intuitive to humans
tasks, such as the recognition of a voice or an image.

This led to the idea of designing Al systems that will be capable of recognizing patterns from
the data on their own, in order to learn through experience and extract knowledge that will be
useful to them, for the purpose of solving specific tasks. This is known as Machine Learning (ML).
Many machine learning algorithms attempt to extract a mapping from the representation of the
data to the output, learning how each piece of information included in a representation (feature)
correlates with various outputs [47]. For this purpose, a set of features can be extracted and
provided to the machine learning algorithm. A problem with this approach is that it is not always
easy to know what the best features that will provide the most useful information for the solution
of each task are. To solve this, machine learning can be used not only to learn the mapping between
a representation and an output, but also to learn the representation itself (an approach known as
representation learning).

Representation learning algorithms have the ability to identify the set of features best suited
for each task from the raw data provided (training data) and can lead to very high performance
for various applications. However, extracting high-level, abstract features from raw data can
be challenging, due to data complexity and to the many different factors influencing the data’s
variation [47]. For this reason, deep model architectures are used, that build representations based
on order, expressing the more complex representations of higher model layers with the use of
simpler representations of lower layers. This technique, called Deep Learning (DL), allows the
solution of many complex tasks nowadays, from image segmentation and machine translation to
emotion recognition and the creation of conversational agents. It is researched extensively and it
is utilized in an increasing number of applications, both of research and commercial nature.

In the following sections we first define the four main types of machine learning. We then
analyze the two most popular machine learning types, supervised and unsupervised learning, and
present some of the most well-known traditional algorithms in each category. We consequently
provide an analysis of some basic parts of the neural network architecture and training, before

moving on to an analysis of some additional basic concepts in the field of machine learning and
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Chapter 2. Machine Learning and Deep Learning

deep learning. Finally, we present some of the most commonly used deep learning models.

2.2 Types of machine learning

Based on the setting used for training a machine learning algorithm, we can define four main

types of machine learning:
e Supervised learning
e Unsupervised learning
e Semi-Supervised learning
e Reinforcement learning

In the following sub-sections we explain the basic attributes that characterize each of the above

learning categories.

2.2.1 Supervised learning

In supervised learning, the machine learning algorithm is trained using labeled data, in other
words data for which the correct output is determined. The machine is provided with a dataset
which includes both the inputs and the desired outputs and the algorithm uses this data to deter-
mine how to predict the correct outputs, based on the inputs provided.

More formally, in supervised learning, given a set of input variables x and output variables y,
an algorithm is used in order to learn a mapping function f from the input X to the output Y,
such that:

Y = f(X) (2.1)

wherein both the labeled data X and their corresponding outputs Y are provided and used in the
learning process.

Due to the fact that the data needs to be labeled, usually by a human agent, supervised learning
datasets are often small or medium in size, which can pose a limitation for the performance of

supervised learning models.

2.2.2 Unsupervised learning

In unsupervised learning, all of the data is unlabeled (only the input X and not the output YV’
is available). The unsupervised learning algorithms’ goal is to learn the underlying structure or
distribution in the data.

Because unsupervised learning’s data is unlabeled, no human labor is required to create the
datasets, which are thus often substantially larger compared to datasets used for supervised learn-
ing. In addition, unsupervised learning algorithms can more easily adapt to new data, by dynam-
ically shifting the underlying data structures they have learned.

2.2.3 Semi-supervised learning

In semi-supervised learning, a large amount of input data is available, but only some of this
data is labeled. It is a combination of supervised and unsupervised learning and it is used in

situations where only few labeled training samples but a large number of unlabeled training data
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2.2.4 Reinforcement learning

are available [48]. Semi-supervised learning trains an initial model on the few labeled examples and
uses the additional unlabeled data to better estimate the shape of the underlying data distribution

and generalize better to new samples.

2.2.4 Reinforcement learning

Reinforcement learning provides the machine learning algorithm with a work environment that
contains a set of actions, rewards and end values. The machine learning algorithm attempts to
explore different options, while evaluating each result to decide on the best action. When the
algorithm finds a correct solution a reward is provided, while in the case of a non positive outcome
the algorithm iterates again, searching for a better result. The reward provided may not be an
absolute value; it may depend on the effectiveness of the result. The program thus learns to adapt

its approach in order to achieve the best possible reward in the environment provided.

2.3 Supervised learning

Supervised learning algorithms can be separated into two types, based on the type of value

they predict: regression and classification:

2.3.1 Regression

Regression is the task of determining a mapping function from independent (input) variables
to dependent (output) variables. The output values which the regression algorithm attempts
to predict are continuous. Common regression problems include weather prediction, stock price

prediction, house price prediction etc. A simple model used for regression tasks is linear regression:
Linear Regression

Let x € R™ be an input vector and y € R be a scalar value to be predicted as its output. In
linear regression, y is considered to be a linear function of the input x. We define § as the value

approximating y that the linear regression model predicts. We can then express g as:

j=w'x (2.2)

where w € R is a vector of parameters [47].

The vector w may be considered as a set of weights, each determining how the corresponding
feature x; with which it is multiplied ultimately affects the output. The larger the absolute value
of the i-th weight w; is, the bigger an effect the x; has for ¢, while a weight equal to zero means
that the corresponding feature does not influence the model’s prediction.

In order to determine the optimal parameters w for the linear regression model, we must first

determine a measure for its performance. We can define the mean squeared error (MSE) as:

MSE = 35— v)? (2:3)

%

where y are the predictions of the model for out data, y are the correct outputs and m is the

number of samples we have. The goal is thus to minimize the MSE, with an MSE equal to zero
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meaning that all our models predictions are accurate (¥ = y). A simple way of minimizing the

MSE is to solve for where its gradient is zero:

VwMSE =0 (2.4)

which leads to the solution:

w=(X"X)"'Xy (2.5)

where X is the matrix consisting of all input vectors x and y is the vector consisting of the

corresponding outputs.

2.3.2 Classification

Classification is the task of determining a mapping function from independent (input) variables
to discrete output variables. The output variables are usually called labels. In other words,
classification is the task where the computer program is asked to specify to which class from a
set of classes each input belongs to. Common classification problems include image recognition,
sentiment analysis, spam email detection, etc. In the following paragraphs we present some of the

most popular traditional machine learning models, used for classification:
Logistic Regression
In the case where we perform classification between only two classes, the problem is called bi-

nary classification. For binary classification, we can model the probability of a data sample with

a feature vector ¢ belonging to class C; as:

p(Cilep) = y(9) = a(w' o) (2.6)

where w is a vector of parameters and:

1

1+ exp(—a) 2.7)

ola) =

is the logistic sigmoid function.
The probability of the data sample belonging to the second class Cy, can then be calculated as:

p(Calep) =1 —p(Cilep) (2.8)

To determine the parameters of the logistic regression model we can use maximum likelihood:

We can write the likelihood function as:

N
p(tw) = [ p(Cilen)™ (1 = p(Ciln))' " (2.9)
n=1
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2.3.2 Classification

where N is the number of training samples, ¢, € {0,1} is the class label for sample n, ¢, is the
feature vector for the sample n and t = (t1,...ty)" is the vector of labels for all samples. By
taking the negative logarithm of the likelihood function, we can then define the error function to

be minimized as:

N
E(w) = =lnp(t|w) = = > {talnp(Cilpn) + (1 = t)In(1 = p(Cilen))} (2.10)

n=1

which is called the crossenteropy error function.

The logistic regression model described can only be used for binary classification. However
logistic regression can be extended to more than two classes: One way for achieving that is using
the one-to-rest approach, which trains a logistic regression model for each class, modeling the
probabilty of a sample belonging to this class versus the probability of the sample beloning to any
of the other classes. The predicted class is then the class whose logistic regression model yields
the highest probability. A second approach is multinomial logistic regression, a simple extension

of the binary logistic regression, which, instead of the logistic sigmoid function, uses the softmax

function:
exp{ax}
p(Crle) = =7~ (2.11)
> explas}
with:
ar = wy ¢ (2.12)

where wy, is the parameter vector for class k and p(Cy|¢p) is the probability of a sample with a

feature vector ¢ belonging to class k [49].
Naive Bayes classifier
The Naive Bayes classifier is a probabilistic machine learning model used for classification, which

is based on the Bayes Theorem. For a class y and a feature vector x = (21, x2, ..., T, ), the Bayes

Theorem can be expressed as:

_ Pxly)
P(y|x) = P (2.13)
Assuming conditional independence for the features of x , we can then write:
P(x P(x .Plx,|ly)P
P(y|x) = P(ylz1, 22, ..., x5) = (@|9) Plazly). - Plealy) Ply) (2.14)

P(x1)P(x2)...P(xy)

Considering that the demoninator of the above fraction remains the same for all values of y (for

all classes), we can classify each sample to the class § where:

51



Chapter 2. Machine Learning and Deep Learning

n

y = argmaz,(P(y) H P(z;ly)) (2.15)
i=1

When the input variables are continuous, we can assume that the features are sampled from a
Gaussian distribution. We then model the probability P(x;|y) as:

Pladly) = erp(~ T ), (2.16)

and obtain the Gaussian Naive Bayes classifier.
The Naive Bayes classifier is often used because of its speed and simplicity. However, because
it assumes a conditional independence of the input features, it often leads to inferior performance,

as this assumption is not valid in most real-world problems.
K-Nearest Neighbours

The K-Nearest Neighbours (KNN) algorithm is a non-parametric classifier, which makes predic-
tions about the grouping of a data point based on its proximity to other data points. The algorithm
calculates the distance of a test sample from all the training points and selects the K points that
are the closest to the test point. It then classifies the test point to the class which has the most
training data points, from the K points previously selected.

While different distance measures can be used, the most common is the Euclidean distance,

which, for two points © = (z1, z2, ..., ) and y = (y1,¥2, .-, Yn) can be defined as:

d(z,y) = V(x1 = y1)? + (22 — 12)2 + . + (Tn — Yn)? (2.17)

We must note that, while the KNN algorithm is most commonly used for classification, it may
also be applied to regression tasks, in which case the predicted value can be calculated as the mean

of the K nearest training data points.
Support Vector Machines

Support vector machines (SVM) can be used for both classification and regression problems, how-
ever the algorithm is most commonly used for classification. Let x;,7 = 1,2,..., N be the feature
vectors of the training set, for a binary classification problem with two linearly separable classes,
wy and wse. (We call two classes linearly separable if we can separate the data belonging to each
class using a linear function. In the 2-d dimension, this corresponds to a straight line). The goal
of SVM is to calculate the optimal hyperplane:

9(x) = W ep(x) +wy = 0 (2.18)

that correctly classifies all training samples, were ¢(x) is a feature-space transformation [49][50].

The optimal hyperplane is the hyperplane with the biggest margin, where we define the margin
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as the smallest distance between the decision boundary and any of the samples. The location of
the optimal hyperplane is calculated using a subset of the training data points. The data points
of this subset are called support vectors, which is were the name of the algorithm originates from.

In the above definition we have assumed that the two classes are linearly separable. We note
that this assumption is valid, as it can be proven that, using an appropriate mapping ¢() to a
sufficiently high dimension, data belonging to one of two classes can always be separated by a
hyperplane (is linearly separable in the higher dimension space) [51].

The SVM algorithm discussed above can be used for binary classification problems. In the case
of multiple classes, we can extend SVM using the one-to-one or the one-to-rest approach. The first
approach uses W SVMs for m classes, calculating a hyperplane to separate between every two
classes, without taking into account the data of all the other classes. The second approach uses m

SVMs for m classes, each separating the data of one class from the data of all the other classes.

2.4 Unsupervised learning

Two of the main tasks unsupervised learning algorithms are utilized for are clustering and

dimensionality reduction:

2.4.1 Clustering

Clustering can be defined as the task of grouping unlabeled data, based on their similarities.
It is often used in applications such as social media analysis, anomaly detection, search result
grouping etc. Clustering algorithms can be separated into multiple different types, based on the

method used to group data. Some of the most prominent are:

e Hierarchical clustering:

Hierarchical clustering algorithms are divided into Agglomerative and Divisive clustering
algorithms. The first follow a bottom-up approach, initially considering each data point as a
different cluster and iteratively merging similar clusters, until the desired number of clusters
is reached. The second follow a top-down approach: They begin with all the data in the

same cluster and split a cluster into two in each iteration, based on dissimilarity.

e Centroid-based or Partition clustering:

In this type of algorithms, the data points are divided into a predefined number of clusters,
and a vector is calculated, which represents each cluster. The distance of each data point to
each of the vectors representing the clusters is calculated, and the data point is assigned to
the cluster with the minimal distance. Distance measures often used are the Euclidean, the
Manhattan and the Minkowski distance. One of the most popular algorithms of this category

is the K-Means algorithm, which will be described later in this sub-section.

e Density-based clustering:

Density-based clustering algorithms prioritize density over distance. Data is organized into
regions with high concentrations of data objects that are surrounded by low concentration

regions.

e Probabilistic clustering:

In probabilistic clustering algorithms, data are clustered based on the probability that they
belong to the same distribution, with each data point beeing assigned to the cluster to

whose distribution it belongs with the biggest probability. These probabilities are estimated
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through the use of a suitably formulated optimization problem. The most commonly used
distributions are the Normal and Gaussian distributions.

Based on the type of grouping the clustering algorithms calculate for each data point, they can
additionally be divided into two categories:

e Hard clustering:

Hard clustering algorithms group data, assigning only one cluster to each data point: Each
data point either belongs to a cluster or it does not.

e Soft clustering:

Soft clustering algorithms group data using probability: They calculate the likelihood for
each data point to belong to each cluster.

K-Means

K-Means is an unsupervised clustering algorithm that partitions the data into K pre-defined,
non-overlapping clusters, with each data point belonging to only one cluster (hard clustering).

Considering N data points X1, X2, ..., Xy, and K clusters, it assigns a vector @, to each cluster.
Its goal is then to minimize the objective function:

K
TnchXn - “’k”Q (219)
=1

N
I=2
n=1k
where, for each data point x,,,n = 1,2, ..., N and cluster k,k = 1,2, ..., K, 75, = 1 if x,, is assigned
to cluster k and r,; = 0 otherwise. The objective function J thus represents the sum of the
distances of each data point to the vector w, of its assigned cluster [49].

The algorithm calculates the values for 7, and pj which minimize J. For this purpose, after
choosing some starting values for uyg, is follows an iterative process, during which, in each step it
first minimizes J with respect to 7,4, keeping W, fixed and then minimizes J with respect to @,
keeping r,j fixed. Ultimately, in the first phase, for a data point x,,, . is set to 1 for the index
k of the cluster with the smallest value ||x, — @, ||? and is set to 0 for all other cluster indexes. In

the second phase, the new value of @, for each cluster % is calculated as:

_ Zn TnkXn

By = S (2.20)

The iterative process continues, until the values r,; remain the same, so until the assignment of
each data point to a cluster does not change.

2.4.2 Dimensionality reduction

Dimensionality reduction is the task of reducing the dimension of a set of data features. In
machine learning, data can often contain hundreds of columns (features), increasing the difficulty
of both visualizing the training data and training a model on it and leading to a set of problems
that occur when working with very-high dimensional data, known as the Curse of Dimensionality.

One of those problems, is data sparsity: When the dimension of the data is very high, the
combinations of values between each sample’s attributes that occur in the training set and from
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which the machine learning model learns to predict the output, becomes a small subset of the
combinations of values between attributes that can occur. Training a machine learning model
on such sparse data can lead to overfitting, as the model may learn according to the values of
attributes in the train set and achieve a high performance during training, but will not be able
to generalize effectively on the test set, if many new, largely different combinations of attribute
values occur in it.

A second problem is that, as the dimensionality of the data increases, the distances between
different data points in the feature space may converge to the same value. This renders the distance-
based measures that many machine learning algorithms (like KNN or K-Means) use trivial and
unable to encode similarity in a meaningful way.

The purpose of dimensionality reduction techniques is thus to reduce the dimension of data fea-
ture vectors, while maintaining the data’s integrity as much as possible. In the following paragraph

we present one of the most common techniques used for dimensionality reduction, PCA:
PCA

The Principal Component Analysis (PCA) technique performs an orthogonal projection of the
data to a lower dimensional linear space, in such a way as to maximize the variance of the low-
dimensional data, encoding as much information of the high dimensional representations as pos-
sible. Using statistical analysis, PCA calculates the first principle component as the direction at
which the projections of the data present the biggest variance. The rest of the principal com-
ponents can be defined incrementally, each as the next direction to maximize variance, with the
restraint that it is orthogonal to the components already specified. To obtain a lower dimensional
representation of our data we can then only keep the projections of the data to the M first principal

components, were M is the desired dimensionality.

2.5 Artificial Neural Networks

The Artificial Neural Networks (ANNs) lie at the basis of deep learning. Their structure is
inspired by the human brain’s biological neuron’s, which is the reason for their name. Traditionally,
ANNSs consist of nodes (neurons) which are organized in layers. Specifically, ANNs are comprised
of an input and an output layer and, between those, one or more hidden layers. Each node may be
connected to one or more other nodes, and each connection is associated with a weight. To obtain
the output of each node, the sum of the output of the nodes of the previous layers with which it
is connected is calculated. However, this calculation is a linear function of the outputs of previous
layers. If we consider this as the output of the node, then all operations in the neural network
will be linear, thus reducing the output of the neural network to a linear function of the input and
a single layer. To be able to stack multiple layers of neurons and learn complex relations from
the data of each task, we thus need to use a non-linear function to calculate the neuron output,
which is called an activation function. In addition, when training the neural network, we need to
define a metric which will allow us to calculate the error between our model’s predictions and the
true labels for our dataset. This is called a loss function, and the neural network’s objective is to
minimize it during training. For this, an algorithm able to compute the necessary gradients is used,
which is called back-propagation. In the following subsections we analyze the notions mentioned

above, namely the activation function, the loss function and back-propagation.
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2.5.1 Activation function

As analyzed, the activation function is a non-linear function that takes as input the weighted
sum of the outputs of previous nodes (or the input data in the first layer) and calculates the output
of a neural network’s node. Activation functions are usually differentiable, in order to be able to be
used with the back-propagation algorithm (back-propagation is analyzed in following paragraphs)
and they typically differ between the input and hidden layers of the neural network and the output
layer of the neural network.

Some of the most popular activation functions are:

e Linear/Identity activation function:

The linear activation function is defined as:

flx)=2x (2.21)

Becasue this activation function is linear, it is not commonly used in neural networks, as it
does not provide the needed non-linearity, leading to all network layers being equivalent to
one layer, as the output layer becomes a linear function of the input layer. A second problem
with this function is that is cannot be used with back-propagation, as is has a constant

derivative, which does not depend on the input.

e Sigmoid/Logistic activation function:

The sigmoid activation function is defined as:

1
fla) = T (2.22)
It is most suitable for models that predict a probability, as it has an output range of (0, 1).
It provides a smooth gradient when differentiated and does not lead to abrupt changes in
the output. However, because of the fact that its gradient’s values tend to be very small for
the biggest range of input z, it suffers from the vanishing gradient problem. (This problem
occurs when gradients become very small and as a result the neural network’s weights are
prevented for changing their value during back-propagation). In addition, it is not symmetric
around zero, a property important for the stability of the training of neural networks. Finally
it is computationally expensive. For these reasons, it is not often used for neural networks

today.

e Tanh (Hyperbolic tangent) activation function:

The tahn activation function is defined as:

(2.23)

56



2.5.2  Loss function

It is very similar to the sigmoid activation function, but it is zero-centered. It is mostly used
in the hidden layers of neural networks, as its values have a range of (—1,1( and the mean
hidden layer output is thus close to zero, which makes the neural network’s training easier.
However, as the sigmoid function, the tanh activation function suffers from the vanishing

gradient problem.

e Rectified Linear Unit (ReLU) activation function:

The Rectified Linear Unit (ReLU) activation function is defined as:

f(z) = maz(0,x) (2.24)

The ReLU activation function is very efficient computationally, and it does not lead to
saturation or cause the vanishing gradient problem. However, because it has a zero gradient
for all negative inputs, some of the neural network’s neurons are not updated during back-
propagation, which can lead to dead neurons which are never activated during the training

process. This is known as "the dying ReLU problem".

e Leaky ReLU activation function:

The Leaky ReLU activation function is defined as:

Fla) = z forxz>0 (2.25)

ar forx <0

where a is a small, non-zero constant, ususally around 0.01.

The leaky ReLU actication function has the same benefits as ReLU, while it allows the usage
of back-propagation for negative inputs as well.

2.5.2 Loss function

The loss function can be defined as an overall measure of the loss associated with specific
decisions or actions. When training a model in supervised learning, we need a metric to be able
to calculate the distance between our model’s predictions and the true labels. We can thus use a
loss function that maps the set of predicted labels § and the set of true labels y to an real number,
representing the total loss (error) of our model. The goal of the training then becomes to minimize
this loss function.

We present some of the most widely used loss functions in the following paragraphs. In the
equations below, w represents the vector of parameters of the model, y; represents the model’s
prediction for sample ¢ and y; represents the actual label for sample i, where we make predictions

for N samples.

Loss functions used for regression problems:

e Mean Squared Error (MSE):

The Mean Squared Error (MSE) loss function is defined as:
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L(w) = W (2.26)

Due to the usage of squares in the MSE loss function, predictions that are further from the
true labels contribute much more to the total error compared to predictions that are less
deviated. In addition, the sign of the difference does not affect the result (again due to

squaring) and only the magnitude is considered.

e Mean Absolute Error (MAE):

The Mean Absolute Error (MAE) is defined as:

N ~
L(w) = Lz lvi =] KJ, . (2.27)

Like the MSE loss, the MAE loss only considers the magnitude and not the direction of the
difference between the true and predicted label. Due to the fact that it does not use squaring,
it does not penalize bigger differences as heavily as the MSE loss, and is thus more robust to
outliers.

Loss functions used for classification problems:

e Kullback-Leibler Divergence:

The Kullback-Leibler divergence is defined as:

KL(P,Q)=-)_ P(x)logggzi (2.28)

where P(x) and Q(x) are the true and predicted distributions for the input x respectively.

e Cross-entropy loss:

The cross-entropy loss function can be defined as:

H(P,Q) == P(x)logQ(x) (2.29)

where P(x) and Q(x) are the true and predicted distributions for the input x respectively.
The cross-entropy loss function is the most commonly used loss function for classification
problems.

2.5.3 Back-propagation

When working with neural networks, we use a loss function to measure the loss (error) of our
network, which we attempt to minimize during training. For this purpose, we need to compute the

gradient of the loss function, with respect to the neural network’s weights. In the hidden layers of
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a neural network, the input to every node is determined by the previous layers, while the output of
the node affects the final model predictions and thus the value of the loss function. This leads to a
coupling of the parameters between layers and makes the calculation of gradients with respect to
each parameter very complex. Therefore, we need a method to efficiently compute the gradients.
The method we use is the back-propagation algorithm, popularized by Rumelhart et al. in [52],
although, as a method, it was introduced as early as the 1960s.

After each forward pass in the neural network, the back-propagation algorithm performs a back-
ward pass, working with one layer of the network at a time, from the last layer to the starting layer
and using the chain rule to compute the gradient of the loss function with respect to each model
weight, leveraging the results of the previous layers. An important advantage of this algorithm is
that is offers an understanding of the effect that a change in a model weight can have to the loss

function and overall model behaviour.

2.6 Additional machine learning concepts

In the following sub-sections we analyze some of the most basic concepts related to machine

learning and the training of machine learning models.

2.6.1 Generalization, overfitting and underfitting

Machine learing models are trained using a train set. During training, the training error is
calculated and the objective is the minimization of this training error, so the achievement of the
best possible performance on the train data. However, ultimately, the success of a trained machine
learning model is evaluated not only based on its performance on the data seen during its training,
but also based on its performance on new, previously unseen data, which are called test data.
The ability of a machine learning model to achieve accurate predictions for unseen data is called
generalization, and the error obtained on this data is called the generalization or test error [47].

To understand why generalization is important, we must consider that training data may often
not be representative of all possible cases for a specific problem, consisting only a subset of the
possible input, especially in cases of noisy or sparse data and small datasets. Test data may thus
present new, unseen by the model values and relations between features. In such cases, the machine
learning model can have a small training error, but be unable to handle the unseen data effectively,
obtaining a bigger test error.

Ultimately, the machine learning model can face two problems, affecting its overall performance:

e Underfitting:

It occurs when the model is not able to capture the relation between the input features
and the output and thus sufficiently model the training data. In this case, both the training

error and the test error will not be sufficiently small.

e Overfitting:

In this case the model can adapt to the training data well, but cannot generalize, mean-
ing that, while it is able to achieve a small tranining error, the test error is substantially
larger. Overfitting often occurs when the model learns the training data two closely, model-
ing properties of the training set such as noise that do not occur in the test set, instead of

modeling the general data distribution.
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Preventing overfitting

Overfitting is a problem that occurs very often while training machine learning models, espe-
cially deep learning models that can have millions of trainable parameters and are thus capable
of fitting the training data too closely. To prevent it, a variety of methods have been developed.
Some of the most widely used methods that are utilized to prevent overfitting are regularization,
dropout and early stopping. We present these methods in the following paragraphs:

Regularization: Regularization aims at reducing overftting by forcing the model to learn smaller
weights and thus leading to a less flexible model, that does not adapt to the training data too closely.
It does so by adding a norm penalty term (regularization term) to the loss function, which imposes
a bigger penalty for a bigger norm of the parameter values. For a model with parameters w and

a loss function L(w), the loss function after regularization is defined as:

L(w) = L(w) + aQ(w) (2.30)

where Q(w) is the norm penalty term and a is a hyperparameter that determines the contribution
of the penalty term to the final value of the loss function.
Based on the norm used by the norm penalty term, different regularization methods can be

defined. Two of the most popular are:

e L1 Regularization:

The L1 norm penalty, also known as Lasso regression, uses the L1 norm (also called Man-

hattan distance), and is thus defined as:

N
Qw) =3 fw (2.31)

where w;,7 = 1,2, ..., N are the model’s parameters.

e L2 Regularization:

The L2 norm penalty, also known as weight decay or ridge regression, uses the L2 or Euclidean

norm, and is thus defined as:

Q(w) = wa (2.32)

where w;,i = 1,2, ..., N are the model’s parameters.

Comparing the two regulation methods, we can conclude the following: Due to squaring, L2
regularization penalizes parameters with bigger values much more strongly, while it only affects
smaller values lightly. It can therefore reduce overfitting by decreasing model complexity, but,
since it does not lead any parameters to become equal to zero and only decreases them, it does not

reduce the total parameter number. On the other hand, L1 regularization affects all values equally,
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decreasing all non zero parameters and leading some of them to assume an optimal value of zero.
For this reason, L1 regularization often leads to more sparse models than L2 regularization and, in
addition to overfitting, it may also be used for feature selection, with the features that are passed

through zero-valued weights being discarded [47].

Dropout: Dropout is a regularization method widely used for preventing overfitting in neural
networks. During training, for each training example, it ignores (sets to zero) a number of neuron
outputs, each randomly chosen with a probability of p. Dropout can be thought of as training
an ensemble of networks, the networks that occur after the random neurons are "dropped". In
this way, the final output does not rely too much on a specific neuron connection. A schematic

presentation of the dropout method is depicted in Figure 2.1.
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a) Standard Neural Net (b) After applying dropout.

Figure 2.1. The dropout method for a simple neural network with two hidden layers. Left: The
neural network before dropout. Right: The neural network after applying dropout. Image obtained

from: [1]

Early stopping: While training a machine learning model, up to a point, both the training
error and the validation error (the test error on the validation set) tend to decrease in each epoch.
However, as the training continues and the model is learning the training data more and more
closely, the validation error begins to rise again (this is a sign that overfitting is starting to occur).
For this reason, we use early stopping: We keep a copy of the model every time the validation
error improves, and choose these and not the latest parameters as our final model. In most cases,
we also keep track of the validation error and if it has not decreased for a predefined number of

epochs we stop the training completely.

2.6.2 Evaluation metrics

When training a machine learning model, we need to be able to measure its performance. We
have already discussed the usage of loss functions for this purpose. However, when evaluating
model performance for a specific application, we may need to prioritize different criteria, other
than the total training or validation error. For example, when training a model to detect cancer
from images, it is more important for the model to identify all cancer cases, than identify all
non-cancer cases correctly, as misdiagnosing a healthy person will only lead him to perform a

check-up, while misdiagnosing a cancer patient could lead to his cancer remaining undetected for a
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longer period of time, with life-threatening consequences. In addition, when working with a largely
imbalanced dataset, a model that learns to always predict the majority class could appear to obtain
a good total performance. However, it would fail to identify any class, other than the majority
class. Therefore, a variety of evaluation metrics are used for evaluating machine learning model
performance, depending on the dataset and application. We present some of the most popular
evaluation metrics used in classification problems in the following paragraphs.

In a binary classification problem, we can define the class that the classifier’s purpose is to
identify as "positive" and the other as "negative". For example, a classifier that recognizes photos
of people, would then classify them as positive and it would classify all other photos as negative.
We call "True Positive (TP)" the number of predictions where both the true and the predicted
class are "positve" and "True Negative (TN)" the number of predictions where both the true and
the predicted class are "negative". We call "False Positive (FP)" the number of predictions where
the predicted class is "positive", but the true class is "negative" and "False Negative (FN)" the
number of predictions where the predicted class is "negative", but the true class is "positive".

Based on these definitions, we can then define the following evaluation metrics, for the binary

classification case:
Accuracy

Accuracy is defined as:

TP+TN
TP+FP+TN+FN

Accuary = (2.33)

It is the ratio of the number of correct predictions to the total number of data instances. Accuracy
measures our model’s overall performance. As it treats both classes in the same way, it is not
suitable for cases where we consider the accurate prediction of one class to be more important.
In addition, accuracy does not take into account data imbalance, so it can be misleading in such

cases.
Precision

Precision is defined as:

TP
P 1S10N = ————— 2.34
recision TPLFP (2.34)

For the class we want to identify ("positive" class) precision is a measure of how many of the

instances the model classified as "positive" were truly "positive".
Recall

Recall is defined as:

RBCQ” = m (235)
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For the class we want to identify ("positive" class) recall is a measure of how many of the "positive"

instances of our data the model identified correctly as "positive".
F1-score

F1-score is defined as:

Precision * Recall
F1- =2 2.36
seore ¥ Precision + Recall ( )

or in terms of the TP, FP, FN values:

TP
Fl-score = 2 x T (2.37)
TP+ 1+ (FP+FN)

F1-score’s purpose is to provide a unified metric that combines precision and recall, requiring both
of them to be high, for it to have a high value as well.

We have defined the above metrics for the binary classification case. In the case of multiple
classes, accuracy can easily be extended as the ratio of the number of instances classified correctly
to the total number of instances in our data. However, precision, recall and F1-score measure the
model’s performance for a "positive" class against the other "negative" class. We can define all
classes except from the class for which we want to evaluate the model’s performance as "negative",
which will allow as to measure the model’s performance for the "positive" class. However, this will
provide us with a metric value for each class instead of a unified metric value for all classes, able
to measure our model’s total performance. To obtain the latter we can use one of the following

averaging techniques:
Macro-average

The macro-average computes each per-class metric independently and then averages them, treating
all classes equally to obtain the final result. In the case of three classes, A, B, C, it is defined as:

M+ Mp + Mc
3

Macro-Avg = (2.38)

where M; the metric value (precision, recall or fl-score) for class i. Its extension to more classes
is considered to be straightforward. Because macro-average treats each class as equally important
for the final result, it is often used in cases of imbalanced datasets, were we want our model to

perform well on all classes, regardless of the class distribution.
Micro-average

The micro-average aggregates the predictions of all classes in order to calculate the average metric.
We provide its definition for precision, recall and fl-score in the case of three classes, A, B,C. Its

extension to more classes is considered to be straightforward.

e For precision:
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TP4y+ TP+ TPo

M -Precision = 2.
acro-Precision TPy 1 TPy £ TPo t FPs 1 FPy 1 FPo (2.39)
e For recall:
TP4s+TPp+TPs
M - Il = 2.4

acro-Recall = o B TPy + FNa = FNp + FNG (240)

e For Fl-score:

TP

Micro-F1l-score = (2.41)

TP+ 1+ (FP+FN)

where TP, FP, F'N are the total number of true positives, false positives and false negatives,

for all classes.

Because micro-average treats all data instances as equally important, in the case of a largely
imbalanced dataset, the classes with more instances will have a bigger effect on the final score. It

is thus not suitable as a metric in such cases, if we care about per-class performance.
Weighted-average
The weighted average is simply a weighted mean of the metric values for each class, were the

weight for each class is calculated as the fraction of instances in the data that belong to this class
to the total number of instances. In the case of three classes A, B, C it is thus defined as:

Weighted-Avg = wa * My +wp x Mg + we * Mg (2.42)

where M; the metric value (precision, recall or fl-score) for class 7 and:

number of instances that belong to class 4
w; = - (2.43)
total number of instances

The extension to more classes is considered to be straightforward.

2.6.3 Transfer learning

Transfer learning is a machine learning method that aims to leverage the knowledge obtained
from one task to improve performance in a different, usually relevant problem. In transfer learning,
a model or a part of a model trained on a specific task is reused as a starting point for the training
of a model for a second task. This is particularly useful in cases where the data available for a
target task is few, but there is a related task with significantly more data. In such a case, the
representations learned from the first task may be useful for the target task as well, helping it

generalize better or faster, even if there are limited example instances for the target task.
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2.6.4 Multitask learning

Multitask learning is a method that aims to improve generalization, by training a machine
learning model to solve multiple tasks at the same time. In multitask learning, part of the model
is shared among multiple tasks (usually the lower layers of the model), learning from all training
examples, while part of the model is task-specific, learning from only the specific task’s examples
(usually the higher layers of the model). This often achieves better generalization, as the part of
the model that is shared across tasks can learn shared representations that improve performance

on the individual tasks (assuming that the combination of tasks is chosen appropriately) [47].

2.7 Deep learning models

In this section we present some of the most popular types of deep learning models, that have
since their creation contributed to the rise of deep learning and the achievement of high performance

in multiple problems.

2.7.1 Feed-forward neural networks

Feed-forward neural networks (FFNN) are artificial neural networks (ANNs) in which the con-
nections between nodes do not form a cycle. In feed-forward neural networks, the information is
processed in one direction only, from the input layer to the hidden layers and then to the output
layer. They were the first kind of ANNs to be proposed and are primarily utilized in supervised
learning problems, with non-sequential, independent data.

The simplest type of feed-forward neural network is the perceptron. The perceptron has no
hidden units. It consists of only one node, which calculates the weighted sum of the input features
and then passes the sum through an activation function. For N input features, N weights w;,7 =

1,2,...,N, and an activation function f, the perceptron’s output can be calculated as:

N
y=fO_ wiz;+0) (2.44)
i=1

where b is a bias term added to the weighted sum of input features.

The perceptron is a linear model, and it is able to classify linearly separable data. In the case
of non-linearly separable data, we need to be able to learn more complex, non-linear functions,
using models that consist of more neurons. One of those, and a direct extension of the perceptron
is the multi-layer perceptron (MLP).

The multi-layer perceptron is an artificial neural network consisting of multiple perceptrons.
It is organized in an input layer, at least one hidden layer and an output layer, with each layer
including multiple perceptrons. An example of an MLP can be seen in Figure 2.2. The MLP is
able to learn non-linear functions and can be used for both supervised regression and supervised

classification problems.
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Figure 2.2. An MLP with three input units, one output unit, and two hidden layers, each con-
sisting of four perceptrons. Image obtained from: [2]

2.7.2 Convolutional neural networks

Convolutional Neural Networks (CNNs), originally introduced by LeCun et al. [53] are a
type of artificial neural network that operates on image input, using convolution. They have an
architecture that resembles that of the human visual cortex, in the sense that each of their neurons
processes only a specific region of the input, with different such regions overlapping to create the
complete input image. The layer of CNNs that performs convolution is similar to a perceptron
layer, where each neuron is only connected to a fixed-size input image region, and all neurons of the
layer share the same weights. Convolutional neural networks operate in a hierarchical way, with
the first layers extracting simpler low-level features from the input (such as lines), and the patterns
becoming more complex and related to bigger parts of the image (such as shapes or objects), as
we move towards the layers deeper in the network. There are three types of layers that neural
networks consist of, convolutional, pooling and fully-connected. The main network is made up of a
repetition of convolutional layers, often followed by pooling layers, while the fully-connected layer

is applied at the end of the network. In more detail:

e Convolutional layer: The convolutional layer contains a set of filters with learnable pa-
rameters. Each of the filters is convolved with the image, by being slid across it, with the
dot-product between each filter and input element being calculated for every position. The
result of this process is the generation of an activation map for each filter. Convolutional
layers are often followed by the application of a non-linear activation function to their output,
usually a ReLU.

e Pooling layer: The polling layer performs a downsampling of its input, reducing its param-
eters. It uses a kernel which performs an aggregation over the input region it is applied to
and is slid ac cross the whole input. By performing a dimensionality reduction, the pooling
layer improves the efficiency and reduces the complexity of the network, often also limiting
overfitting. The two main types of aggregation performed are max pooling, where the ker-
nel selects the pixel with the maximum value from every input region it is applied on, and

average pooling, where the kernel calculates the average value of all pixels of each region.

e Fully-connected layer: This layer is the final layer of the convolutional neural network and
it is responsible for performing the final classification, using the high level features calculated

by the previous CNN layers.

An example of a CNN is presented in Figure 2.3.
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Figure 2.3. A CNN ezample. Image obtained from: [3]

2.7.3 Recurrent neural networks

Feed-forward neural networks perform well on independent data: They process the input in-
dependently and do not take into account sequential or temporal relationships between different
data points. However, when the data is sequential or is a time series, information about previous
inputs is important to the next. For example, the order of words in a sentence can be crucial to
its meaning. To model such data, Recurrent Neural Networks (RNNs) are used.

Originally proposed as early as the 1980s [54] [55], an RNN is an artificial neural network that
has a feedback loop, which allows data from previous input to be passed back into the node. RNNs
can thus be considered as having some sort of "internal memory" called a hidden state, which is
continuously updated from the new input and holds past information which it uses in order to
influence the new output. Unrolling the feed-back loop of an RNN through time, we can think of
RNNs as multiple copies of the same network, one for each input point, each passing information
to the next, in a sequential order. We can see both the rolled and the unrolled version of the RNN
architecture in Figure 2.4. Because of their ability to model sequential and time series data, RNNs
are widely used in applications such as language translation, natural language processing, speech
recognition, and image captioning.

Rolled RNN Unrolled RNN

Output layer

Hidden layers

Input layer

ofefe
ofefe
ofete

Time

Figure 2.4. An RNN, where X; is the input vector and Y; is the output vector for time step t.
Image obtained from: [4]
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Mathematically, we can describe the vanilla RNN architecture using the following equations:

he = fr(Whaxt + Whnhi—1 + bp) (2.45)

Ye = fy(Wynhe + by) (2.46)

where x; is the input vector, h; is the hidden state and y; is the output for time step ¢, by is a bias
term for the hidden state, b, is a bias term for the output and f;, and f, are activation functions.
Wha, Whn and Wy, are weight matrices (input-to-hidden, hidden-to-hidden and hidden-to-output
respectively). Note that we consider time in terms of input points: Each new input leads to a new
time step.

Long Short-Term Memory networks

While RNN’s can work with sequential data, they cannot remember long-term dependencies. The
reason for this, is that they suffer from the vanishing gradient problem: During back-propagation,
a repeated multiplication of gradients occurs, as we back-propagate through layers in time. This
can lead to a term that tends to become zero exponentially fast, making it difficult to maintain
information from layers further in the past. In addition, it can lead to a term that tends to become
infinite, making the network unstable (exploding gradient problem).

For this reason, Long Short-Term Memory (LSTM) networks have been proposed [56]. In
LSTMs, in addition to the hidden state, a cell state is added, which runs through all network
layers (through), changed only by some minor linear interactions, and able to easily maintain
past information. In order to determine the information that should be added or removed from
the cell state, the LSTM uses structures, called gates. Mathematically, we can define the LSTM
architecture using the following equations, where x; is the input vector, ¢; is the cell state and
hy is the hidden state for time step ¢, Wy, Uy, Wy, Uy, W,,,U,, W, and U, are weight matrices and

by, bi, b, and b. are bias terms:

Ji=oWyxy +Ushy—1 +by) (2.47)
it = o(Wizy + Uhy—q + b;) (2.48)
oy = o(Woxy + Ughi—1 + b,) (2.49)
é = tanh(Weay + Ughy—1 + be) (2.50)
c=[ftOa1+1 O (2.51)

hi = o © tanh(cy) (2.52)

A schematic overview of the LSTM unit’s architecture can be seen in Figure 2.5. We describe the

function of the above equations below:

Updating the cell state ¢;: The forget gate f; is responsible for determining which information
should be kept and which should be discarded from the cell state. The current input x; and hidden
state of the previous time step h;_; are multiplied with the appropriate weight matrices, added
together with a bias term and passed through a sigmoid function, which limits the result f; to the
range of (0,1) (Equation 2.47). The calculated value f; is afterwards multiplied with the cell state,
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with values close to zero meaning to forget and values close to one meaning to remember all past
information in the cell state (Equation 2.51).

While the forget state determines the information to be forgotten, the input gate i; determines
the information to be stored in the cell state. To produce its result, the current input x; and the
hidden state of the previous time step h;_; are passed together with a bias term through a sigmoid
function, after being multiplied by the appropriate weight matrices. Again, the sigmoid function
limits the input gate’s values to the range of (0,1) (Equation 2.48). The input gate determines
which information will be kept from a vector of candidate values, ¢, which is created by passing
the input and hidden state as well as a bias term through a tanh function, after multiplying them
with the corresponding weight matrices (Equation 2.50).

The final cell state ¢; for time step t, is calculated by adding the information to be remembered
from the past cell state, determined by the forget gate, and the new information to be stored,

determined by the input gate (Equation 2.51).

Updating the hidden state h;: The information from the cell state ¢; to be contained in
the hidden state h; is determined by the output gate o;. The output gate’s value is calculated
using a sigmoid function, which accepts the input z; and hidden state h;_1, multiplied by the
corresponding matrices, together with a bias term, and limits the final value to the range of (0,1)
(Equation 2.49). Its output is then multiplied with the newly updated cell state ¢;, after the latter
is passed though a tanh function, in order to determine the parts of the cell state that will be
passed into the next hidden state (Equation 2.52). The hidden state h; is also the LSTM model’s
output.

A

;
A E%’%ﬁ, A

&) © &
Figure 2.5. The basic LSTM wunit, where X; is the input vector and hy is the hidden state for
time step t. Image obtained from: [5]

® ® 01}9

2.7.4 Attention mechanisms

Despite the additional control LSTM networks provide regarding the abilty to determine the
information to be remembered compared to the vanilla RNN, the encoding of the entire sequence
into one vector (the last hidden state) still leads to the forgetting of information further in the
past, in the case of very long sequences. A mechanism that provides a solution to this problem,
called attention, was proposed by Bahdanau et al in [6], initially for the task of neural machine
translation, in order to deal with the need for an effective translation of very long sentences. Since
then, attention has been used widely, in multiple fields of machine learning, such as computer
vision and natural language processing, as well as in multimodal problems that combine the two
fields. Specifically in the field of NLP, the attention mechanism gave rise to the creation of the
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transformer [7], which enabled researchers to achieve state of the art performance in multiple tasks
and is the basis of today’s large pre-trained language models.

Attention refers to focusing more or less on different parts of an input. For an encoder-decoder
architecture, considering an RNN encoder and decoder, where the decoder receives an input context
vector ¢; for time step t, ¢; can be calculated as:

co =Y ayh; (2.53)
J

where h; is the encoder’s hidden state for time step ¢ and a;; are the attention weights, that
determine the importance of each of the encoder’s outputs through time, for the calculation of the
decoder’s input context vector. The attention weights are calculated as:

agj = Softmax(etj) = % (2-54)
etj = f(si-1,h;) (2.55)

where f is an alignment function, often learned by a trainable model, such as a small FFNN. Some
examples of alignment functions are:

e Additive [6]: f(s¢, hi) = v, tanh(Wq[se; hi))
e Dot-Product [57]: f(s¢, hi) = s/ by

e Scaled Dot-Product [7]: f(s¢, hi) = S:T/Z

e General [57]: f(s¢, hi) = s] Wah;

An illustration of the encoder-decoder architecture using attention, as proposed in [6] and described
in the above equations, is provided in Figure 2.6.

X, X X pa

Figure 2.6. The encoder-decoder architecture using attention, as proposed by Bahdanau et al. in
[6]. Image obtained from: [6]

Since the creation of the first attention mechanism, different attention types have been proposed

and employed for different models and problems. One popular type of attention is self-attention
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or intra-attention, which relates different parts within a sequence, in order to compute its rep-
resentation, thus allowing the sequence to "attend" to itself. Another popular attention type is
multi-head attention, which consists of multiple independent attention outputs, calculated from

an attention mechanism that runs multiple times in parallel.

2.7.5 Transformers

The creation of the attention mechanism lead to the proposal of multiple model architectures,
the most well known of which is the transformer. Before the transformer, models able to handle
sequences effectively were based on complex recurrent and convolutional networks with an encoder-
decoder structure and with many of them utilizing attention. In contrast to such approaches,
Vaswani et al. in [7] suggested a new type of model, based fully on attention and without any
recurrence or convolution mechanism, more parallelizable and faster to train. They called this

model the transformer and with it they achieved state of the art results in translation tasks.
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Figure 2.7. The transformer encoder and decoder modules, as proposed by Vaswani et al. in [7].
Image obtained from: [7]

Encoder and decoder architecture

The transformer model introduced by Vaswani et al. uses an autoregressive encoder-decoder struc-
ture, where the encoder maps an input sequence x to a sequential representation z, and the decoder
uses z to generate an output sequence y. A graphical representation of the transformer encoder-
decoder module is provided in Figure 2.7.

Encoder: The encoder part of the transformer consists of repeating layers of encoder modules.
Each such module includes two sub-layers, the first of which is a multi-head self-attention mecha-

nism and the second a fully connected feed-forward neural network. Both sub-layers are followed

71



Chapter 2. Machine Learning and Deep Learning

by layer normalization, while a residual connection from the input to the output of each layer is

used.

Decoder: The decoder again consists of repeating decoder modules. Each decoder module has
three parts: The first is a multi-head self-attention layer, which uses masking in order to prevent
every position from attending to following parts of the sequence. The second is an multi-head
attention layer, which attends over the encoder’s output. Finally, the third layer is a fully connected
feed-forward neural network. As is the case for the encoder, all three layers are followed by a layer

normalization.

We note that the fully connected feed-forward network in both the encoder and decoder mod-

ules, consists of two linear layers, with a ReLU activation function between them.
Positional encoding

As mentioned earlier, the transformer does not use recurrence or convolution to encode the se-
quential order of the input sequence. In order to achieve that, is uses positional encodings, which
leverage the sine and cosine functions, in order to calculate a representation of dimension d,,, equal
to the model’s representations, summed together with the latter. For a position pos and dimension

i, the sine and cosine functions are defined as:

PE(pos, 2i) = sin(pos /1000007 ) (2.56)
PEpos,2i+1) = cos(pos/l()OOO()dLv;) (2.57)
Attention

We can define attention as an operation on a set of keys K, queries (Q and values V, where
the alignment function calculates the attention weights for the keys, based on the queries, using
softmax, and the attention weights are then used to attend over the set of values, in order to com-
pute the final output of the attention mechanism. As an alignment function, the authors introduce

the scaled dot-product, thus computing the final output as:

KT
Attention(Q, K, V) = softmax( @

Vdy,

W (2.58)

where dj, is the keys’ dimension.

In each attention layer, the transformer uses multi-head attention, performing attention in
parallel multiple times and concatenating the output representations, before projecting them to
the model’s embedding dimension d,,,. For each of the multiple parallel attention mechanisms, the
keys, queries and values of dimension d,, are projected to dimensions dj, dx and d,,, using a different

learnable projection matrix every time. The multi-head attention’s output is thus calculated as:

MultiHead(Q, K, V) = Concat(heady, ...., head), )W ©° (2.59)
where

72



2.7.5 Transformers

head; = Attention(QW2, KWK, vwY) (2.60)

where WZ-Q, WHE WY and WO are the projection matrices for the attention head i and h is the
number of attention heads.

As analyzed earlier, the authors use attention in three different types of sub-layers:

e In the encoder self-attention sub-layers, the keys, queries and values are set as equal to the

output of the previous transformer encoder module.

e In the decoder self-attention sub-layer, the keys, queries and values originate from the pre-
vious decoder module’s output, but a masking mechanism is used, in order to prevent the
queries at each position from interacting with the keys from positions later in the sequence.
This is achieved by setting the softmax input values that we do not wish to be attended to

equal to —oo.

e In the decoder attention layers that attend to the encoder output, the queries originate from
the previous decoder module’s output, while the keys and values come from the encoder

output.

Since its creation, the transformer model has been used in different variations, either as a whole
or with only the encoder part, for multiple applications in the field of computer vision and natural
language processing. In addition, it is the basis of today’s large pre-trained language models, such
as BERT [18] and GPT-3 [24], which are widely used to yield state of the art results in multiple
problems.
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Chapter 3

Word Representation Methods and Language Models

3.1 Introduction

Natural language Processing (NLP) is the field of Computer Science which aims to help com-
puters process, analyze and generate natural language text or speech, with the goal of achieving a
human-like understanding [58]. For this purpose, NLP uses computational logistics, statistics and
machine learning.

With the rise of the Internet and social media, bigger and bigger amounts of natural language
text are made available everyday, regarding user preferences, sales, politics, community matters,
economics etc. This creates the need for effective ways to automatically process text and extract
information, thus increasing the demand for efficient NLP methods and maximizing the research
and industrial interest in NLP tasks. At the same time, the development and increasing usage of
virtual assistants, human-like agents etc. creates a need for computers to be able to understand
the semantics of human language, as well as human intents and emotions, and be able to generate
human-like speech, in order to effectively communicate with humans in natural language.

Natural language text consists of words, which in turn consist of characters. When using words
as input for computations however, this natural representation of words can be very ineffective,
firstly because of the different lengths words possess, which makes it hard for machine leaning
models to process them, and secondly because of the sparsity of such a representation, with most
sequences of characters not forming an existing word [59]. Words are therefore first converted to
numerical representations, before being passed as input to machine learning models.

However, words do not occur independently in natural language: They make up sentences,
which in turn are combined into paragraphs etc. The syntactic position of a word as well as its
previous or following words in a sentence can largely affect its meaning in each specific context and
the understanding of the semantic and syntactic relationships between words is essential for the
extraction of the intended message. For this reason, representing words is not enough for Natural
Language Processing: Language Models (LMs) must be developed to encode and understand word
sequences.

In the following sections we first provide an overview of the most important word representa-
tion methods throughout the history of Natural Language Processing. We then analyze language
models, explaining the basics of more traditional to more modern architectures. Finally, we present
the most popular methods used for adapting modern pre-trained language models to different NLP
tasks.
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3.2 Word representation methods

Converting words to numerical representations is not an easy task, considering the fact that
each language can consist of hundreds of thousands of words, with many occurring with different
meanings in different contexts, or with different variations: The word representation methods ought
to be as computationally efficient as possible, while at the same time being able to handle large
numbers of different, even unknown words, and they ought to encode as much useful information
as possible, regarding the semantic meaning of words.

In the following subsections we present some of the most common word representation methods,
from traditional methods such as one-hot encoding to more modern ones, based on distributional
semantics (see Section 3.2.2), such as GloVe and ELMo.

3.2.1 Traditional word representation

Some of the first, more traditional word representation methods include categorical word rep-

resentations (label encoding, one-hot encoding) and TF-IDF:
Categorical word representation

Categorical word representation methods map each word to a simple representation, such as a
numerical value or a vector. Two common methods in this category are Label encoding (Section
3.2.1) and One-hot encoding (Section 3.2.1).

Label encoding In label encoding [60], a numerical value is assigned to every word of the used
vocabulary, let this be denoted as V. For example, assuming a vocabulary:

” N %N

V = {"mountain”,” sea”,” valley” },

then the values 0, 1, 2 could be assigned to the words respectively. The words would thus be

represented as:

mountain __ sea __ valley __
w =0, w** =1, w Y =2

While label encoding could be considered as the most simple and straightforward technique to
represent text, is does not generally yield good performance. The reason for that is that, when
the data is not naturally ordinal, it introduces an artificial ordering among the words, defining
a random "ranking". This can be rather problematic when the word representations are used
for neural network architectures, as larger values could affect the model’s weights more during
training [60], while the numerical distance between word values does not encode useful, semantic

or syntactic, information.

One-hot encoding Considering a vocabulary V of size |V|, one-hot encoding maps each word
w of V' to a vector w = [wy, ws, .., w,|| of dimension V|, where each element w;,i = 1,...,n has
a value of either 0 or 1. Specifically, each word w of the vocabulary is mapped to an index ¢, and
only the i-th element of w is equal to 1, with all other elements being zero [61]. For example,
assuming again a vocabulary:

”» o ” N

V = {"mountain”,” sea”,” valley” },
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its words could be represented as:

0

valley _ 0

1
w mountain _ 0 W
0

1

While the computation of the one-hot encoding representations is highly efficient, the one-hot
encoding method presents some major disadvantages. Firstly, it does not encode word similarity,
as all words have the same distance from each other, resulting in representations with poor se-
mantic and syntactic information [59] [60]. In addition, when the vocabulary size is large, which
is most often the case, the one hot vectors have a very high dimension. This leads to expensive
computations when the one hot vectors are used in neural network architectures, as well as an
increased complexity, as a large input size means that a large number of model parameters must

be trained, which can lead to overfitting.

TF-IDF

TF-IDF (Term Frequency - Inverse Document Frequency) is a measure of the importance of a
term to a document, in a collection of documents. It is a combination of two numerical statistics,
TF (term frequency) and IDF (Inverse Document Frequency).

TF (term frequency), credited to Hans Peter Luhn’s research on term frequency [62], measures
how often the occurrence of a word happens in a document. There are different ways in which
term frequency is defined, some of which are:

e The fraction of the total number of occurrences of a word w in a document d to the total

number of words in the document (with each occurrence of a word counted separately):

fw,d

tf(w,d) = m
w’'e w,

where f,, 4 the number of occurrences of a word w in the document d.

e The total number of occurrences of a word w in the document d:

tf(w,d) = fuw.a (3.2)

e The logarithmically scaled frequency of occurrence of a word w in the document d::

tf(w,d) = log(1 + fu,a) (3.3)

IDF (inverse document frequency), originally proposed by Karen Spérck Jones in [63], is a
measure of how common a word is in a collection of documents D. It is defined as the logarithm
of the fraction of the total number of documents, divided by the number of documents containing
the word w [61]:
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D]

ifd(w,D) = S i
deD "w,

(3.4)
where 4,, 4 = 1 if the word w appears in the document d and 4, 4 = O if the word w does not
appear in the document d.

Combining TF and IDF, we obtain TF-IDF, which, for a word w, a collection of documents D
and a document d within that collection is defined as:

tf-idf (w, d, D) = t f(w, d) * idf (w, D) (3.5)

The higher the tf-idf value is for a word, the more important this word is in the document collection,
while the lower the value is, the word is considered less relevant.

TF-IDF is simple to understand and very efficient to calculate. However, it does not capture
the semantic meaning or the syntactic features of words, and it ignores the order of words in the
document, resulting often in less meaningful representations [61]. In addition, since a different
tf-idf value is calculated for each pair of word and document, it is a very high dimensional rep-
resentation, resulting in la ack of storage efficiency, and making computations using tf-idf vectors

more expensive.

3.2.2 Distributional word representation

Distributional representation methods are derived from the research area of distributional se-
mantics, which is based on the idea that the words that occur in similar contexts (i.e. have similar
distributions) have a similar meaning [64]. Based on word co-occurrences [65], they map words to

vectors that encode information about the context in which each word tends to appear.
Non-contextual word embeddings

Based on distributional semantics, word embeddings provided an important breakthrough for per-
formance in NLP tasks. Word embeddings are dense, low-dimensional vectors that are learned
based on the context in which words occur. They encode word similarity, while maintaining ef-
ficiency, due to their lower dimension compared to sparse word representations (such as one-hot
encoding or TF-IDF) [61].

Different methods for the calculation of word embeddings have been proposed, employing deep
learning models. Bengio et al. [66] created a NNLM model consiting of a one-layer feed-forward
neural network, which learned word representations through the training of the language model,
using the previous words to calculate the representation of the next.. While other approaches have
been proposed as well, the most popular and perhaps the most effective, have been Word2Vec |[§]
and GloVe [42].

Word2Vec Word2Vec, proposed by Mikolov et al. in [8], is a shallow neural network model
with two hidden layers, which is trained on a large corpus and uses the words’ context in order to
calculate a dense word vector to represent each word. The word representations computed encode
linguistic patterns of words [8] and the resulting vector space unfolds the similarity between tokens
[64], with words that occur in similar contexts corresponding to vectors that are located closer to

one another.
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Two similar models can be used to calculate Word2Vec representations, the Continuous Bag
of Words (CBOW) model and the Skip-gram model. Both models use a window whose length is
predefined, which is slided along the corpus, and are trained with the words inside that window in
each step [67].

e Continuous Bag of Words (CBOW): In the CBOW model the center word is predicted
based on its context, within the window. Much like a feed-forward neural network, the model
consists of an input layer, a hidden layer and an output (softmax) layer, with the difference
that the hidden layer does not feature a non-linearity, and is simple a projection / averaging
layer, which combines the distributed representations of all context words, in order to predict
the middle word.

e Skip-gram: The Skip-Gram model predicts the context of a given word, based on that
word [68]. It consists of an input layer which corresponds to the target word, a hidden
layer without a non-linearity and an output layer that uses softmax and corresponds to the
predicted context words. It uses back-propagation to adjust its representation based on the

correlation between the model’s output and the context words [64] [69].

Comparing the two models, Skip-gram is more effective when the amount of training data is
smaller and can calculate better representations for rare words, while CBOW is a lot faster, and
has better performance for words that are more common [64]. The architecture of Skip-gram and
CBOW is depicted in Figure 3.1:

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2) w(t-2)

w(t-1) w(t-1)

SUM
F—% w(t) w(t) —
w(t+1) \JW(M)
w(t+2) w(t+2)
cBOw Skip-gram

Figure 3.1. The Skip-gram and CBOW models. Image obtained from: [8]

GloVe GloVe was proposed by Pennington et al. in [42] and is an unsupervised learning algorithm
for obtaining vector representations for words. Training is performed on aggregated global word-
word co-occurrence statistics from a corpus and the resulting representations showcase interesting
linear substructures of the word vector space. In contrast to Word2Vec which is based on the usage
of a sliding window in the corpus, GloVe can capture global statistics in the corpus, by leveraging
global information. It is based on the idea that the co-occurrence ratios of words can encode some
meaning about these words, and the training objective is the calculation of word vectors, such that

their dot product is equal to the logarithm of the words’ probability of co-occurrence. Considering
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the fact that the logarithm of a ratio is equal to the difference of logarithms, the co-occurrence

information is ultimately encoded through vector differences in the vector space [70].
Contextual word representations

While representations such as Word2Vec and GloVe use context to calculate word representations,
the resulting word vectors are static, always the same for one word, regardless of the context in
which the word occurs and the semantic and syntactic features of the word in the specific context.
To tackle these challenges, Peters et al. proposed ELMO [71].

ELMO ELMO consists of three modules, a CNN, a bidirectional LSTM and the embedding
module. It accepts character based input, with character embeddings passed to the CNN layers,
which extract statistical, temporal and spatial information. The CNN representations are then
forwarded to a bidirectional two-layer LSTM, which encodes sequential information through time in
its hidden states, considering the input sequence from both directions. The final word embeddings
are composed by obtaining a linear combination of all hidden states of the bidirectional LSTM, in
order to encode the different types of information that the different layers of the LSTM capture
[71]. The weight of each hidden state for the final embeddings is task specific. This can improve
task performance, as for different tasks the information captured by higher or lower levels may
differ in significance, but it also means that a different tuning for the model is needed for each
task.

By using the entire input sentence as input [71] instead of a fixed length window, ELMO can
successfully leverage the whole context, in order to compute context-dependent representations for
both common and very rare words. For this reason, it achieved state of the art performance in

most NLP benchmarks at the time of its creation.

3.3 Language models

Language models are models that assign probabilities to sequences of words [23]. They make
up the foundation of Natural Language Processing as they offer a method for converting qualita-
tive textual information into machine-understandable quantitative data. Throughout the years,
different language models have been proposed. With the advancement of deep learning, traditional
language models based on statistics where replaced by language models utilizing neural networks,
which finally gave rise to the large pre-trained language models that are used today, such as BERT
[18] and GPT-3 [24].

In this section we provide an analysis of the most popular traditional and modern language
models, as well as the most common methods used nowadays for the adaptation of language models
to specific NLP tasks.

3.3.1 Traditional language models

Traditional language models are count-based: They used a statistics to construct the joint

probability distribution of a word sequence. One such model is the n-gram model.
N-gram

A sequence of n words is called an n-gram (a sequence of 2 words is called a 2-gram, a sequence
of 3 words is called a 3-gram etc). By extension, in literature, the language model calculating the

probability of an n-gram is also called an n-gram [23].
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Given a large corpus, one could estimate the probability of a word occurring after a sequence
of words by counting: In the sequence "the wolf ate the =" the probability of one word
"sheep" being the missing word, could be calculated as the fraction of the number of times the
word sequence "the word ate the sheep" was seen in the corpus to the number of times the word
sequence "the wolf ate the" was seen. Formally, we could calculate the probability of a word w;

being the next word in a sequence as:

count(wy...w;)

P(wi|w1...wi,1) = (36)

count(wy...w;—1)

While this method could provide good results for a large enough corpus and a common enough
word sequence, it is not efficient in cases of rare sequences that do not often occur.

To model the probability of a word sequence more effectively, the n-gram model uses the
Markov condition, assuming that the probability of a word only depends on its n-1 previous words.
Mathematically, the n-gram language model calculates the probability:

n

P(wy,ws, ...,wi) = p(w1) H P(w;|wi—pt1...wi—1) (3.7)
=2

which is the probability of the words wy,ws, ..., w; appearing in a sequence, for example in a

sentence.

2-gram For example, when n = 2, the probability of a word sequence with k& words can be

calculated as:

Pwr, ws, .y wn) = plwr) [ Plwilwi_1) (3.8)

=2

where the assumption is made that each word only depends one the word occurring before it.

3.3.2 Neural language models

Neural language models are language models based on neural networks. They obtain better
results than the classical statistical models, as they are able to consider larger context sizes with a
linear only increase in their parameters [72], and they learn dense word representations that help

overcome the curse of dimensionality [73].
Feed-forward neural network language models

Two of the first researchers to propose the usage of neural networks for language modeling where
Xu and Rudnicky. In [74], they proposed a single-layer neural network (with no hidden layers)
with an input and output size equal to the vocabulary size, where the i-th input unit is equal to 1
if the input word is w;. They achieved better results that their baseline N-gram, but their model
lacked a good generalization ability and the ability to capture context-dependent features [75].

A more popular work using feed-forward neural networks was published a few years later by
Bengio et al. [9]. In their model, words are represented by learnable word vectors that exist

in a look-up matrix of dimensions |V| * m, where |V| is the vocabulary size and m is the word
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embedding dimension. The model takes as input the previous words within a specified window
from the current word, uses the look-up matrix to obtain the word representations and then passes
the concatenated representation through a hidden layer, before the final softmax output layer. The

model’s architecture is presented in Figure 3.2.
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Figure 3.2. The architecture of the FENNLM proposed by Bengio et al. in [9]. Image obtained
from: [9]

While the FFNNLM proposed by Bengio et al. in [9] achieved a significant increase in perfor-
mance, it has significant limitations. It uses a fixed context size, specified in training time and it

must learn a large number of parameters, because of its feed-forward architecture.

RNN-LSTM language models

Recurrent neural network language models (RNNLMs) where later proposed as an alternative
to feed-forward neural network language models (FFNNLM). In contrast to the latter, RNN lan-
guage models can model sequential information such as word sequences of arbitrary length and
do not require a fixed window size. In addition, because of parameter sharing, they have less
parameters that need to be learned through training.

The first RNNLM was proposed by Mikolov et al. in [76] and was extended in [77]. The model
consists of an input layer, a hidden layer and an output layer and receives as input at time ¢ the
concatenation of the vector representing the current word w(t), and the output from the neurons
in the hidden layer at time ¢ — 1.

Although the results obtained suggest the model’s superiority to feed-forward neural network
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language models and n-gram models, the model’s ability to encode long-range sequences is lim-
ited, as is a common problem with RNN models. For this reason, LSTM language models were
later proposed, which, using the larger control of LSTMs over the storing and forgetting of past
information, obtained better performance.

3.3.3 Large-scale pre-trained language models

With the rise of deep learning, enabled by the advancement in computing power, deeper model
architectures have shown their superiority in machine learning applications such as computer vision.
Such deep models, having a very large number of trainable parameters, require a large amount of
data in order to be trained efficiently. However, for most supervised NLP tasks, datasets are rather
small, due to the expensive annotation costs, especially for syntax and semantically related tasks
[78]. Large-scale unlabeled corpora, however, are simpler to create. They may thus first be utilized
to teach the model a sufficient language representation and understanding, which can then be used
for other downstream tasks. Because the corpora is unlabeled, supervised learning cannot be used
to train the language models. For this reason, new tasks must be devised, that allow the model to
learn in an unsupervised or self-supervised setting. Such tasks include Language Modeling, where
the model attempts to maximize the maximum likelihood of the probability of tokens appearing in
a given context window, Masked Language Modeling, where a number of input tokens is masked an
the model must determine the correct token for that position using the context and Next Sentence
Prediction, where the model is given two sentences and must determine whether the second follows
the first in the original corpora. Using such tasks, the language model can develop a general
understanding of natural language and learn to extract meaningful representations from its input.
It may then adapted to the supervised setting of each downstream task using a second training
stage, this time in the tasks supervised setting.

This idea, together with the creation of the attention mechanism and the transformer, gave
rise to the large-scale pre-trained language models, which are first trained using unsupervised or
self-supervised objectives on text consisting of billions of words and are then adapted to each
specific task using supervised training with the smaller task-specific dataset (See Section 3.4 for
an overview of different adaptation methods). Two of the most popular language models that have
become the predecessor of multiple other successful language models are the GPT [79] and BERT
[18]:

GPT

GPT-1 The first Generative Pre-trained Transformer (GPT-1) was created by OpenAl in 2018
and presented in [79]. In this paper, the authors proposed using unlabeled data to learn a generative
language model, which can then be fine-tuned for downstream NLP tasks, such as sentiment
analysis or textual entailment. GPT-1 consists of a 12-layer transformer decoder with masked
self-attention so as to prevent the access of the language model to context words to the right of
the current word. It was trained on an enormous BooksCorpus dataset and was able to learn long
range dependencies and gain extensive knowledge from a variety of contiguous text corpora.
According to [79], in the pre-training stage, GPT was trained using gradient descend, with a

standard language modeling objective, to maximize the likelihood:

Li(U) = ZZOQ(P(W|Ui—k,...,u,;_1;@)) (3.9)
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where k is the size of the context window size, P is the conditional probability, modeled using the
transformer decoder with parameters © and U is the unlabeled corpus used as the training dataset.

During fine-tuning, to adapt the model to the supervised setting of a downstream task, a labeled
dataset C is used, with each sample consisting of input tokens z?,...,2™ and a label y. The input
tokens are fed into the model’s decoder layers, and the output A" of the final layer is passed to a

linear classification layer with parameters W, which calculates the probability:

P(y|z!,...,2™) = softmaz(h]"W,) (3.10)

The goal is thus to maximize the objective:

Ly(C) =) logP(yla’, ..., a™) (3.11)

The above objective is used together with the language modeling objective L1, as the authors
found that this improves the models generalization ability and accelerates convergence. The final

training objective for the finetuning stage is thus formulated as:

where ) is set to 0.5.

GPT-2 In 2019, OpenAl proposed GPT-2 [80]. In comparison to GPT-1, GPT-2 counsists of
more parameters (1.5 billion instead of 117 million), and was trained in a larger and very diverse

dataset, surpassing the performance of GPT-1 in language understanding and zero-shot settings.

GPT-3 The third version of the Generative Pre-trained Transformer, GPT-3, [24] was created
by OpenAl in 2020. The motivation for the creation of GPT-3 was the construction of a powerful
and fast language model that would be able to understand and solve tasks without the need for
fine-tuning, after only seeing a few examples. GPT-3 is even larger than its predecessors, consisting
of 175 billion parameters and 96 transformer decoder layers (instead of 12 for GPT-1 and 48 for
GPT-2). It was trained on a massive dataset collected from the internet and it is known for its
ability to create human-like text, as well as solve tasks on which it was not specifically trained,

including solving simple arithmetic problems and writing code pieces.
BERT

BERT, meaning Bidirectional Encoder Representations from Transformers, was introduced in 2018
by Google with [18]. In contrast to the unidirectional GPT, which allows every token to attend
only to its previous ones, BERT is bidirectional, using both left and right context to obtain word
representations. It is based on the transformer as presented by Vaswani et al. in [7] and it is a
multi-layer bidirectional transformer encoder. The authors created two versions of BERT, bert-
base, with 12 transformer encoder layers, 12 attention heads and a hidden size of dimension equal
to 768, and bert-large, with 24 transformer encoder layers, 16 attention heads and a hidden size of
dimension equal to 1024. In total, bert-base consists of 110 million and bert-large consists of 340

million trainable parameters.
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Input and embedding layer BERT’s input format can consist of either one or two text seg-
ments (refered to in [7] as sentences), separated by a special ([SEP]) token. In addition, a special
token ([CLS]) is always added to the beginning of the input. The final hidden representation of
this token is used as an aggregate for the whole sequence in classification tasks.

BERT uses WordPiece embeddings [81], wherein rare words are split into meaningful subwords,
with a total vocabulary of 30.000 tokens. In addition to the word embeddings that correspond to the
tokens the input text is mapped to, BERT uses two additional embedding types: To differentiate
between the tokens belonging to the first input segment and the tokens belonging to the second
input segment, a learned embedding called "segment embedding" is added to each work embedding.
Finally, position embeddings are added too, whihch encode the absolute position of each token in
the input. Thus, the final input representations that are passed to the transformer encoder layers,
are a sum of token embeddings, segment embeddings and position embeddings, as presented in

Figure 3.3.
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Figure 3.3. BERT input representations: The input is a sum of token embeddings, segment
embeddings and position embeddings. Image obtained from [7].

Pre-training phase As presented in Figure 3.4, BERT’s training consists of two stages, a pre-
training and a fine-tuning stage. In the pre-training phase, two unsupervised tasks are used, in
order to train the model’s parameters using unlabeled data, namely Masked Language Modeling
(Masked LM) and Next Sentence Prediction (NSP). The datasets used for pre-training are the
BookCorpus, which consists of 800 million words and the English Wikepedia from which only text
pieces were extracted and 2.500 million words were used. In the following paragraphs we provide
further details about BERTs two pre-training tasks, Masked LM and NSP:

e Masked LM: To train the bidirectional model, Devlin et al. could not use bidirectional
conditioning without reducing the prediction task to a trivial one (as the word to be predicted
would indirectly already be seen by the model). For this reason they proposed a different
pre-training task, Masked Language Modeling (Masked LM). During Masked LM, 15% of all
tokens in each input sentence are chosen and masked randomly and the model is asked to
predict the correct words that were masked. In order to pre-train the model in a way that
will keep in as close to the fine-tuning settings as possible, Delvin et al. choose to replace
the masked words with a special ([M ASK]) token 80% of the time, a random token 10% of
the time and the token to be masked, unchanged, the rest 10% of the time.

e Next Sentence Prediction (NSP): The motivation for the NSP task, was the importance
of the undertanding of the relationship between two sentences by the model, for tasks such
as Question Answering (QA) or Natural Language Inference (NLI). In this task, the model is
presented with two sentences and is asked to predict whether the second sentence follows the

first sentence in the text. For this purpose the authors chose pairs of sentences in which the
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second sentence was the sentence following the first 50% of the time, and the second sentence

was a random dentence from the corpus the rest 50% of the time.

Fine-tuning phase After the model is pre-trained the pre-trained weights can be loaded and
the model can be fine-tuned for downstream tasks (such as question answering, sentiment analysis,
natural language inference etc.). For this purpose, the text input is transformed, in order to match
the input template of BERT. For example, for question answering tasks, the two sentence pair that
BERT accepts as input is mapped to a question-reference context pair, while for sequence tagging
and classification tasks only the first input sentence of BERT is used and the second sentence is
kept empty, while the final hidden representation of the ([C'LS]) token is passed to a classification
head.

BERT’s fine-tuning can be performed effectively using much smaller datasets than those used
in the pre-training stage and it demands less computation resources that BERT’s pretraining,

rendering it a process easily repeatable for different tasks and in different settings.

NSP Mask LM Mask LM \ /m MAD Start/End Span\
P &*

BERT

BERT

Masked Sentence A - Masked Sentence B Question ~ Paragraph
Unlabeled Sentence A and B Pair / Question Answer Pair

Pre-training Fine-Tuning

Figure 3.4. The pre-training and fine-tuning procedures of BERT. Image obtained from [7].

The importance of BERT At the time of its release BERT achived state of the art results
for multiple NLP tasks and it has since been used by many researches for a large variety of tasks
and settings. Based on BERT and with modifications in its architecture or pre-training phase,

many high performing pre-trained language models have been created since, such as RoBERTa
[19], ELECTRA [28] and XLNet [29].

3.4 Adapting pre-trained language models

As analyzed so far in this chapter, pre-trained language models are trained on a vast amount of
unlabeled data, with unsupervised or self-supervised objectives, using high computational resources
and with a training time lasting for multiple days. As the datasets for most downstream NLP tasks
are not large enough to train the language models such as BERT or GPT from start and most
research labs do not possess the hardware resources needed for such training, these models are not
trained separately for each task. Instead, the language understanding they have obtained through
the pre-training phase is leveraged and the pre-trained weights are loaded into the models, which
are then adapted to particular tasks using the smaller downstream task datasets.

Traditionally, to adapt the pre-trained language models to downstream tasks, fine-tuning has

been used. However, fine-tuning is not always optimal: It can cause the model to overfit and by
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modifying the pre-trained models parameters it can lead the model to forget important language
relationships and representations learned though the pre-training phase. In addition, the increas-
ing size of pre-trained models today means that even fine-tuning these models can be relatively
expensive and not always the most computationally efficient alternative. For this reasons, in the
recent years, a variety of different alternatives to fine-tuning have been proposed to adapt pre-
trained language models, with the purpose of tackling the problems that occur when fine-tuning
is used.

In the following sections we analyze some of the most popular methods used for adapting

pre-trained language models to different tasks.

3.4.1 Fine-tuning

Fine-tuning is the most popular method for adapting pre-trained language models to down-
stream tasks, and the method proposed during the creation of language models such as GPT [79]
and BERT [18]. During fine-tuning, the pretrained model weights are loaded and the model is
trained for some additional epochs, using a dataset of the desired task. Usually, all of the language
model’s parameters are re-trained and optimized during training, in order to minimize the task
loss.

Fine-tuning is very straightforward to perform and it has been used extensively in the literature
so far, yielding good results. Some of the disadvantages it poses and have already been mentioned
are, that fine-tuned models are prone to overfit the data, as well as the fact that it is a demanding
procedure, both in computational and storage resources: Due to the very large size of modern pre-
trained language models, tuning all of their parameters requires a lot of memory during training

and can be time consuming, while storing the fine-tuned language models can also be expensive.

3.4.2 Model parameter ablation

In order to reduce the memory footprint of adapting pre-trained language models, some re-
searchers have proposed ablating (removing) model parameters [25] [26]: Instead of modifying
model parameters, this line of work trains binary masks that determine which model weights will
be ablated [21] for each task.

Using this method, researchers have observed results comparable to fine-tuning, although with
a tendency to be a little lower in many tasks. The large advantage of this method is memory
efficiency: When solving multiple tasks, the whole fine-tuned model needs to be stored for each
task. On the other hand, with masking, only one copy of the whole pre-trained model and a set of
binary masks for each task need to be stored, thus largely decreasing the necessary storage space
[25].

3.4.3 Adapter-tuning

Instead of removing model parameters, another line of work focuses on inserting a small number
of new parameters. In NLP small modules based on residual networks are inserted inside the
transformer layers of pre-trained modules. These models, called residual adapters, were originally
introduced by Rebuffi et al. [27] and are trained using the downstream task’s dataset, while the
initial pre-trained model’s parameters are kept frozen. The processes of inserting and training
residual adapters instead of the pre-trained models parameters is often referred to as adapter-
tuning [21].

The exact placement and architecture of the adapter modules inside the transformer layer
can differ in the literature and may affect task performance [82]. For example, Houlsby et al. [10]

suggested using an adapter module consisting of two feed forward layers separated by a nonlinearity,
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with an internal skip-connection and a bottleneck (a projection of the initial features to a smaller
dimension and then back to the original dimension). They proposed inserting this module twice in
each transformer layer, once after the multihead attention sub-layer and one after the feed-forward
sub-layer of the transformer block. Their proposed module architecture and placement is presented
in Figure 3.5. While an adapter module architecture similar to the one described is common in
the literature, the placement of the module often differs from [10]. For example, Pfeiffer et al. [83]

only place an adapter module after the feed-forward sub-layer of the transformer blocks.
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Figure 3.5. Right: Architecture of the adapter module. Left: The integration of the adapter
module with the transformer. Image obtained from: [10].

Overall, adapter-tuning has achieved performance comparable to fine-tuning, while significantly
reducing trainable model parameters and as a result storage space for language models trained on
downstream tasks. In addition, adapters allow an easy and effective information sharing between
tasks. In contrast to multitask learning which can often lead to catastrophic forgetting (the forget-
ting of information learned at the early stages of training) or catastrophic inference (the decrease
of task performance when adding new tasks), adapters can be learned separately for different tasks
and then combined using attention [83]. The separation of the task-specific information learning
and the information combination, alleviates the aforementioned problems of multitask learning

[82], improving task performance.

3.4.4 Prompt-based learning

All methods described so far perform changes inside the pre-trained language model, by tuning

all of its parameters, removing some of them or inserting a small amount of new parameters.
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However, in the latest years an alternative approach has been proposed, which instead changes the
pre-trained language model’s input. This method keeps the whole pre-trained model unchanged
and inserts a small number of parameters, called a prompt, either in the level of the text input
or directly in the embedding level of the model. With the size of modern pre-trained language
models constantly increasing, prompt-based learning, as this approach is often referred to, is mostly
researched because of its inexpensiveness in terms of training and storage resources, compared to
the traditional fine-tuning. An extensive analysis of prompt-based learning is provided in the

following chapter (Chapter 4).
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Chapter 4

Prompt-based Learning

4.1 Introduction

For years the paradigm for adapting pre-trained language models to downstream tasks has
been fine-tuning the pre-trained model on the downstream data [84] [30]. However, fine-tuning
requires the training of all of the millions or even billions of parameters that pre-trained language
models (GPT-3 [24], T5 [85] etc.) consist of nowadays. This requires a vast amount of resources
for training, as well as storage of the task-specific fine-tuned models [21]. In addition, to efficiently
fine-tune the model, achieving generalizability, a big amount of downstream data is needed in order
to prevent overfitting [22], which is not always available for the downstream task.

To tackle these issues, prompt-based learning has been proposed as an alternative. Instead
of modyfing the pre-trained model’s parameters, prompt-based learning adds a new, small set of
parameters, called a prompt, to the model’s input [30] [31]. These are added either to the text
input, as a series of prompt tokens, or directly in the embedding space, as a series of prompt
embeddings. The pre-trained model’s parameters are usually kept frozen, which rapidly decreases

the number of trainable parameters, making prompt-based learning a lightweight alternative.

4.2 Definition

Traditionally, in classification tasks, the pre-trained model calculates the probability:
Py (Y]X)

where Y is a sequence of tokens representing the class label, X is the text input and 4 represents
the parameters (weights) of the model, which are tuned using fine-tuning.
Using prompts, a set of parameters 6,, is added, while the initial model parameters ¥ usually

remain frozen, and the model must now calculate the probability:
P, (Y|X; P)
where P are the prompt tokens, parameterized by 6, which are passed into the model as additional

input [31].

4.3 Prompt engineering

4.3.1 Determining prompts

As mentioned, prompts are comprised by a set of prompt tokens, parameterized by 6,. These

tokens can be determined either manually [86] [32], using predefined prompts, usually intuitive to
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the way humans understand the task, or learned automatically using a variety of methods [30].

Examples of such methods are:

e Paraphrasing-based methods: These methods take a predefined prompt and paraphrase it
into multiple, semantically similar prompts, out of which the one achieving the best perfor-
mance is selected

e Mining-based methods: Such methods search a large text corpus (e.g. Wikipedia) for strings
containing the training inputs = and the training outputs y, and find either the middle words
or dependency paths between the inputs and outputs [30] [33].

4.3.2 Prompt types

Discrete (hard) prompts

The prompts first proposed in the bibliography and very often used are discrete prompts (also
called hard prompts), i.e. prompts consisting of tokens that are directly mapped to an existing
word in the model’s vocabulary [32], [33], [34]. The prompt parameters 6, in this case are a subset
of the pre-trained language model’s parameters 0, and specifically of the model’s word embedding

parameters Gemp (0p C Oemp € 0). With discrete prompts the input format usually has the form:
Py Py ... P [X]| Piy1 ... Pj [Z] P41 ... Py,

where P;,7 = 1,2, ..,n are the prompt tokens each corresponding to a word in the model’s vocabu-
lary, [X] are the input tokens (derived from the input text) and [Z] is one ore more missing tokens
that the model must fill (mask-tokens), with the task being formulated as a language modeling
task.

For example, for an emotion recognition task, the template could be: "In the sentence [X]
the speaker is feeling [Z]", where [X] would be the words of the speaker whose emotion is to be

recognized and [Z] would be filled with the model’s prediction.
Soft prompts

Discrete prompts offer explainability, as humans can easily understand their meaning. However, the
process of choosing the optimal template for each task can be difficult and sub-optimal. Motivated
by the challenges hard prompts pose as well as the fact that, in contrast to humans, pre-trained
models can understand continuous parameters that do not directly correspond to natural language,
researchers have developed a second type of prompts, called soft prompts [31] [35] [31]. These con-
sist of continuous parameters, which can be optimized through back-propagation directly in the
embedding space, making them easily trainable and fully adaptable to each task and language
model. They could be thought of as "soft" words, with the prompt-embeddings lying between the
vocabulary’s actual word embeddings (6, 2 0).

The initialization of soft prompts can be performed in different ways: The most straightforward,
is a random initialization of their parameters. However, over the years, other methods have been
proposed as well, such as the initialization with embeddings of random words from the language
model’s vocabulary, or with the embeddings of the labels corresponding to different classes, in
classification tasks [31].

Mixture of hard and soft prompts

Instead of choosing between discrete and soft prompts, some researchers [35] [87] have suggested
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merging the aforementioned two types, in order to improve performance, using some tunable soft
prompts, whose parameters can be optimized to maximize performance, but adding also some
hard prompt tokens, corresponding directly to words of the model’s vocabulary and determined

specifically for each task.

4.4 Prompt-based learning and finetuning

Prompt-based learning is often used as a lightweight alternative to fine-tuning, keeping the
pre-trained language model’s parameters frozen. However, this is not necessary. Prompts can also
be used additionally to finetuning, with the purpose of simply improving performance. In the

following paragraphs we present the alternative usages of prompt-based learning;:
Alternative to finetuning

As mentioned, in prompt-based learning, the pre-trained model parameters, 6, are usually kept
frozen, especially in the case of very large pre-trained language models (such as GPT-3 [24] and
T5 [85]), and the prompt parameters 6, are optimized, either through back-propagation when
working with soft-prompts, or with other manual or automatic methods, when working with dis-
crete prompts. This reduces the number of parameters to be trained rapidly in comparison to
finetuning, making prompt-based learning a much more efficient alternative, in terms of compu-
tational and storage resources. In addition, since the parameters learned during the pre-training
stage of the model are not altered, the language understanding that the model has obtained from
the pre-training stage remains unchanged. This can be beneficial, as finetuning the pre-trained
model’s parameters using an insufficient amount of data could damage the ability of the model to

understand language in a broader way, resulting in a worse generalization ability.
Aditionally to finetuning

While the pre-trained lagnuage model’s parameters 6 are often kept frozen, especially when ex-
tremely large pre-trained language models are used, this is not always the case: Some researchers
use prompts as additional information that boosts performance, but finetune all or some of the
model’s parameters at the same time [34] [35] [88], especially when using smaller models (for ex-
ample bert-base), where finetuning is not as demanding in terms of resources and space. The final
choice, which parameters to freeze or not, ultimately depends on the task, the available data and

resources, etc.

4.5 Previous work using soft prompts

In the field of prompt-based learning using soft prompts, many different variations have been
proposed in the latest years. Lester et al. [31], use a sequence of prompts that lie directly in the
embedding space of the model and are concatenated with the word embeddings that are produced
from the text input that is given to the model. From their results they observe that their method
can be very effective for billion parameter models, but lacks in performance in comparison to
finetuning, when the language model is smaller (i.e. 100 million parameters). For this reason,
transfer learning was later proposed by Vu et al. [36]: Prompts where first trained on different
tasks similar to the downstream task or tasks that involve high level reasoning about semantic

relationships among sentences. The pre-trained prompts were then used to initialize the prompts
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for the target task. As the authors observe, this method can allow prompt-based learning to be
effective even for smaller scale models.

Other researchers have experimented with a modified version of prompt-based learning, using
prompts not just at the input layer but also deeper in the model. For example, Li and Liang [21],
used prefix activations prepended to each layer in the encoder of the model, including the input
layer, working on language generation tasks. Liu et al. [37] also used prompts in different layers
of the pre-trained model, prepending them as prefixes, and extended Li and Liangs method to
natural language understanding (NLU) tasks. They also observed that, in full-data settings, both
a language modeling head and a randomly initialized classification head can be used to predict the
final classification labels, in the case of prompt-based learning.

Finally, as mentioned earlier, some researchers have proposed the combined usage of hard and
soft prompts, with the aim of maximizing performance. For example, Liu et al. [35], proposed
"P-tuning", which uses continuous prompts that are the output of a trainable prompt encoder.
The prompt encoder is used to model the dependency between the prompt embeddings and to
avoid local minima and it consists of a bidirectional LSTM, followed by a RELU activated MLP.
Within the prompt template, Liu et al. also added some task-related anchor tokens (for example
the token "?" for the RTE task [38]).
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Chapter 5

Emotion Recognition in Conversation

5.1 Introduction

Emotion recognition is a task that has gained increasing popularity in the recent past years
due to its applications in fields such health-care, the development of empathetic agents, as well
as opinion mining based on the big amount of conversations between users (in text or video)
that are nowadays available in the social media. Many architectures utilizing different types of
deep learning models have been proposed, with researchers experimenting with different datasets,
information sources (speaker-identity, external knowledge, topic etc). and constantly improving
the performance achieved on the task. In the current chapter we provide an overview of the task
of Emotion Recognition in Conversation: its definition, the most important information modelled

for the task, previous work, and the datasets used.

5.2 Definition

Given a sequence of utterances ui,us,...,uy, and the speaker p; of each utterance u;,7 =
1,2..., N, Emotion Recognition in Conversation (ERC) is the task of identifying the emotion label
of each utterance from a set of predefined labels (such as happy, excited, angry, frustrated, sad,
neutral etc.) [39][40].

And then for forgetting to

Phoebe! Rachel! It's
mvite you to it. [Neutral]

Monica! | wonder ... [Joy]

Well, we called everyone
in ... [Neutral]

‘ For what? [Joy] ’

Rachel Rachel Monica

Monica 3 Monica 3 Pheobe : Pheobe

You al-you already had it?

Oh Monica, we are so
[Surprise]

(Well first, for forgetting to
sorry. [ ]

throw you ... [ ]

Figure 5.1. An example of a conversation for emotion recognition. Image obtained from: [11] .

5.3 An overview of important variables in identifying emo-

tion in conversation

When attempting to identify the emotional state of a speaker uttering a phrase in a conversation,

various sources of information can be taken into account:
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5.3.1 Context

In contrast to traditional emotion recognition, when transferring to a conversational setting, the
utterance whose emotion one attempts to identify is often very short and does not include a lot of
information when isolated. Therefore, in order to identify the emotion it represents, the utterance’s
context must be taken into account [11] [89]. For example, the utterance “Yeah”, could show any
emotion, from happiness to anger or sadness, depending on the dialogue that has occurred before
[17], and so the context is an important source of information.

When looking at context, there are two options: Either to consider both future and past
utterances or to only take into account past utterances. The first option can sometimes improve
performance [13] by allowing a better understanding of the whole conversation and of the speaker’s
general emotional state or by helping the model fill in information that is part of the speaker’s
backround knowledge and explicitly appears later in the conversation [17]. However, it is not always
a realistic option. For example, while in the task of opinion mining all utterances are available,
when dealing with real-time emotion recognition, as is the case with an empathetic agent, it is not
possible to have knowledge of future utterances.

Another question that arises when handling context is, how far in the past (or future) one
should look. As a conversation progresses and its sub-topic gradually changes, the emotional state
of the speaker can also change, and it is usually a response to the last few utterances exchanged.
Therefore, it is natural to expect that the utterances closer to the current utterance are more
important for identifying its emotional label. However, utterances further in the past can also
contribute to the current utterance’s emotion [39] and should therefore be considered. One possible
cause for this could be that people tend to keep their current emotional state, if not affected strongly
by an external factor [17] [90], and so clues from utterances further away could carry some helpful

information.

5.3.2 Inter- and intra-speaker dependencies

During a dialogue, there are two dependencies one may model [17]. The first is intra-speaker
dependency (or self-dependency [17]) and it refers to the effect speakers have on their own emotion,
and specifically to their tendency to remain in one emotional state and resist to changes from
external factors. The second dependency, inter-speaker dependency, refers to the changes caused
to a speaker’s emotion, due to their interaction with other speakers. Both of these dependencies

can largely affect a speaker’s emotion and should thus be modeled appropriately.

5.3.3 Emotional consistency

Due to the fact that speakers tend to maintain their emotional state, one can observe that
neighboring utterances of a speaker often express the same or a similar emotion [17] [90]. This has
sometimes been explicitly modeled. For example Wang, Y. et al. [90] used a CRF (Conditional
Random Field) as the top layer of their model, in order to take into account emotional consistency,
and treated the ERC task as a sequence tagging problem. In general, even when not modeling
emotional consistency explicitly, it is always taken into account through the context, which is why
models often have a higher performance in identifying the emotion of a utterance in cases where
the same speaker’s previous utterance expresses the same emotion [39], rather than in cases of

abrupt emotional changes.
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5.3.4 Speaker personality

It is natural that different speakers in a conversation will have different personalities, causing
them to react differently in the same situation. For example, the same joke about someone could
be found funny by the person towards whom it was intended, but may cause a different recipient
to take offence. Another example is that some people tend to avoid conflict by responding calmly
in challenging situations, while others may be more irritable, stressful or impatient [91]. Acquiring
knowledge about different speaker’s personalities could therefore be beneficial in understanding

their emotional states.

5.3.5 Topic

While the topic of the conversation does not directly influence the speakers’ emotions, it can be
indicative to some point: Topics tend to carry certain language patterns [44] and can thus affect
both the utterance’s meaning and the particular emotion conveyed by specific expressions. Topic
modeling has therefore sometimes been used as an additional source of information to enrich the
model’s representations [16].

5.4 Previous work

5.4.1 Sequence-based methods

In the last few years the task of emotion recognition has received an increasing amount of
attention and multiple methods have been developed to solve this task. One line of work, closer

to ours, uses sequence based methods, treating the ERC data as a sequence through time.
RNN- and LSTM-based methods

The first methods in this field used LSTMs and GRUs to encode long term information. For
example, Majumder N. et al., with DialogueRNN [39], used a GRU to encode global context
information, while the hidden states of this GRU were passed through an attention layer to obtain
context representations that, together with the utterances of a specific speaker were fed into a
speaker-specific GRU to obtain speaker specific representations of utterances. Finally, the authors
used a third GRU to take into account the speakers’ previous emotional states, before finally
classifying the emotion of the current user.

Instead of modeling different speakers by different GRUs and integrating the global context and
intra-speaker information with the global GRU like DialogueRNN, Zhang H. and Chai Y., working
with dyadic conversations, proposed a more direct interaction between speakers with COIN [41]:
They used a bi-GRU that encodes utterances per speaker sequentially, but regulated its output
in each direction (forward and backward GRU) with the hidden state of the bi-GRU of the other
speaker. For encoding global context they used a sequence of bi-GRU layers combined with an

attention layer, in order to capture the most important inter-dependencies.
Transformer-based methods

While RNN-based methods are still proposed, is is often recognized that their ability to maintain
important information for very long sequences is limited: As more utterances are added, long-term

dependencies tend to be forgotten [17]. This can be problematic in the case of emotion recognition

in conversations, as further away context can often provide some amount (although not as big
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as more recent context) of information about a speaker’s emotion [39]. In addition RNN-based
methods rely on external word embedding extractors (e.g. Glove [42], word2vec [8]) that do not
take context into account, thus performing word embedding extraction and sequence modeling
independently [13], which may not always be optimal. For these reasons Transformers have been
introduced to the ERC task. Motivated by the need to better maintain long-term dependencies, by
the ability of transformers to handle embedding extraction and sequence modeling at once and by
the large improvements transformer-based pre-trained language models bring to many downstream
tasks in NLP, there have been, in the last years, a series of works attempting to leverage large
pre-trained transformer-based language models to effectively classify emotion in conversations.

In these models, utterances are usually given as input in sequential order . To adapt the
model to the dialogue setting, extra layers or/and embeddings are then used or existing layers are
manipulated, to include information important to the emotion recognition task. Another popular
use of pre-trained transformer-based models is to extract embeddings that encode context to some
degree as utterance representations, which can then be used in a second, main module, either
sequential or graph based.

For example, with Hitrans, Li, J. et al. [11] used a pre-trained transformer encoder to obtain
representations that include local context and added a second higher-level transformer to include
global context by taking as input the local representations. They also used multitask learning
to include speaker-specific information, by adding a second task of Pairwise Utterance Speaker
Verification (the objective is to classify whether two utterances belong to the same speaker), using
a biaffine classifier with the high-level transformer’s representations as input.

Shen W.et al., with DialogXL [43], attempted to maintain a simpler architecture by leveraging
a transformer-based pre-trained model and encoding all useful information through multi-headed
self-attention in each layer. They applied different masking mechanisms and used global self-
attention for long range dependencies, local self-attention for capturing context closer to the current
utterance, as this is usually more important in determining the current emotion, and finally a
speaker self-attention and a listener self-attention to capture intra- and inter-speaker dependencies.

Using again a transformer-based pre-trained language model, Kim T. and Vossen P. [13] created
an even simpler model, EMOBERTa, by prepending speaker names to the utterances and giving
them as input to a BERT-like model, adding only a randomly initialized linear layer as the output
layer of their model.

Finally, Zhu, L. et al. [16], with TODKAT, utilized a transformer-based pre-trained language
model which they fine-tuned, as their basis, but integrated topic information to their architecture
with the usage of a topic modeling layer. They also proposed the incorporation of commonsense
knowledge by obtaining the most similar to each utterance representations from a large knowledge

base and applying attention to integrate the most useful knowledge.

5.4.2 Graph-based methods

Graph based methods model utterances and their relations using nodes and edges of graphs
and aggregate information from neighboring nodes to model context and speaker dependencies.

One of the first popular models in this field is DialogueGCN [17]. Its authors attempted
to model speaker-level context using neighborhood based convolution, with a Graph Convolution
Network (GCN). To model the sequential nature of conversations they firstly used GRUs, obtaining
a context-aware sequential representation for each utterance. Using these representations, they
constructed a graph, where each utterance is a node and edges connect utterances within a window
of specified length from the utterance of each node. Edge weights were calculated using attention
and different relationships for each edge were defined, based on the speakers of the utterances

(nodes) that the edge connects and the temporal relationship between those utterances, thus
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modeling both speaker and sequential dependencies between utterances. Finally, a two level,
relation-aware convolution was performed to obtain the final representations, enriched with both
sequential and speaker information, which, together with the representations obtained by the
GRUs, were used for emotion classification.

Inspired by DialogueGCN, Hu J. et al. [92], adapted a similar model to a multimodal setting,
using again utterances as nodes of the graph, but this time representing each utterance with
three nodes, one for each modality (text, audio, visual) and creating edges between nodes of the
same utterance but of different modality, and edges between utterances of the same modality.
Instead of using relation types to model speaker dependencies, they encoded speaker information
by concatenating speaker embeddings with sequential representations obtained by LSTMs and
using the concatenated representations as the representations of the utterances in the graph.

Following a different approach from the latter two models, another team of researchers [40]
introduced more refined edges to their graph, using four types of relations: influences of intent from
the speaker’s own future utterances, influences of action from the same and other speakers’ past
utterances and self-influences within each utterance. To obtain representations for the different
types of relations they used external commonsense knowledge, as they observed that training

embeddings did not perform as well.

5.5 Datasets

Throughout our research we perform our experiements on two datasets for Emotion Recognition
in Conversation, MELD and IEMOCAP. In the following sub-sections we perform a short analysis
on these datasets.

5.5.1 MELD

General information

Multimodal Emotion-Lines Dataset (MELD) [12] is a multimodal dataset for Emotion Recognition
in Conversation, containing multi-party conversations in text, audio and visual modalities. It is
an extension of the EmotionLines dataset, which contains dialogues from the TV series Friends.
MELD was annotated using all three modalities and its utterances where classified as one of the
seven emotions: anger, disgust, fear, joy, neutral, sadness. It is separated in train, development
and test splits.
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Figure 5.2. An example dialogue in MELD, between two speakers. Source: [12]

General dataset statistics

MELD is organized in dialogues, each of which contains a number of utterances. In total, there are
more than 13000 utterances in MELD, making it a quite large dataset compared to others in the
field of ERC. The following table shows some general statistics regarding dialogues and utterances

for the training, development and test split in MELD, as provided by [12] or calculated by us:

Table 5.1. General statistics for MELD.

] H train \development\ test ‘

# dialogues 1039 114 280

# utterances 9989 1109 2610
Average/Max utterance length 8.0/69 7.9/37 8.2/45

# speakers 260 47 100

Average # of utterances per dialogue 9.6 9.7 9.3

Average # of emotions per dialogue 3.3 3.3 3.2
Average/Max # of speakers per dialogue || 2.7/9 3.0/8 2.6/8

From the above table we an see that MELD follows a 73%-8%-19% analogy for the train-
development-test split. Its utterances are rather short and there are often more that two speakers
in each conversation.

Emotion class distribution statisitcs

The following table depicts the Emotion class distribution for MELD, for each of the train, devel-

opment and test splits:
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Table 5.2. Class distribution (%) for MELD.

’ H train \ development \ test ‘

anger 11.10 13.80 13.22
disgust 2.71 1.98 2.61
fear 2.68 3.61 1.92
joy 17.45 14.70 15.40
neutral || 47.15 42.38 48.12
sadness 6.84 10.00 7.97
surprise || 12.06 13.53 10.77

As the above table shows, MELD is very imbalanced, with the majority of utterances belonging
to the neutral emotion class, and the classes of disgust and fear having the smallest number of
samples. This imbalance is natural to the emotions people usually feel (it is the most common
for a person to be in a neutral state when having a conversation) but it can make the training of
our model more difficult, making it harder for it to distinguish the minority classes and biasing it
towards the majority class.

Comparing the distribution of emotions between the train, development and test split, we can

see that it is very similar for the three splits.
Speaker distribution and statistics

As seen in Table 5.1, there are hundreds of speakers in MELD. However, only six of them have
more than 60 utterances each. These are the six main characters of the Friends TV show, namely
Chandler, Joey, Monica, Phoebe, Rachel and Ross. Considering these six speakers as the main
speakers of our dataset, we can label all others as "Other". The following table depicts the number

of utterances for each of the six main speakers and for all the other speakers grouped together:

Table 5.3. # Utterances per speaker in MELD.

] H train \ development \ test \

Chandler || 1283 101 379
Joey 1510 149 411
Monica 1299 137 346
Phoebe 1321 185 291
Rachel 1435 164 356
Ross 1458 217 373
Other 1683 156 454

From the above table we can see that the six main speakers have a similar number of utterances
with each other, which is around the same as the total of utterances from all other speakers. This
means, that, regarding speaker distribution, considering seven groups of speakers (the six main
speakers and the all others as a seventh group), MELD is almost balanced.

In the following tables, we present the distribution of emotion for each of the six main speakers
and all other speakers grouped together:

101



Chapter 5. Emotion Recognition in Conversation

Table 5.4. Emotion distribution per speaker for MELD dataset, for train data.

’ Speaker H Joy \ Surprise \ Fear \ Anger \ Disgust \ Sadness \ Neutral

Chandler || 0.156 0.113 0.042 | 0.102 0.035 0.051 0.500
Joey 0.185 0.132 0.025 | 0.112 0.026 0.054 0.467
Monica 0.184 0.137 0.020 | 0.123 0.042 0.063 0.431
Phoebe 0.171 0.123 0.017 | 0.130 0.029 0.079 0.451
Rachel 0.169 0.144 0.030 | 0.111 0.025 0.104 0.417
Ross 0.180 0.098 0.029 | 0.111 0.016 0.071 0.493
Other 0.175 0.102 0.025 | 0.092 0.021 0.057 0.529

Table 5.5. Emotion distribution per speaker for MELD dataset, for validation data.

’ Speaker H Joy \ Surprise \ Fear \ Anger \ Disgust \ Sadness \ Neutral

Chandler || 0.168 0.178 0.069 | 0.099 0.000 0.079 0.406
Joey 0.114 0.107 0.047 | 0.134 0.007 0.101 0.490
Monica 0.175 0.146 0.036 | 0.124 0.015 0.095 0.409
Phoebe 0.130 0.119 0.022 | 0.200 0.005 0.097 0.427
Rachel 0.176 0.189 0.067 | 0.091 0.030 0.110 0.335
Ross 0.106 0.101 0.018 | 0.189 0.055 0.106 0.424
Other 0.186 0.135 0.013 | 0.083 0.006 0.103 0.474

Table 5.6. Emotion distribution per speaker for MELD dataset, for test data.

’ Speaker H Joy \ Surprise \ Fear \ Anger \ Disgust \ Sadness \ Neutral

Chandler || 0.090 0.113 0.034 | 0.142 0.037 0.074 0.509
Joey 0.180 0.097 0.017 | 0.119 0.022 0.068 0.496
Monica 0.162 0.118 0.020 | 0.191 0.038 0.058 0.413
Phoebe 0.172 0.131 0.031 | 0.082 0.038 0.069 0.450
Rachel 0.188 0.107 0.008 | 0.160 0.022 0.115 0.400
Ross 0.150 0.102 0.019 | 0.142 0.027 0.075 0.485
Other 0.143 0.095 0.009 | 0.093 0.007 0.077 0.577

Observing the above tables we can see that the train and test data are more similar in terms
of the distribution of emotions per speaker, compared to the validation data. A reason for this
could be the smaller size of the validation set. We can also see that each speaker’s distribution of
emotions is largely affected by the fact that the dataset is imbalanced, with the prevalent emotion

being that of neutrality, which is that the of majority class.

5.5.2 IEMOCAP

General information

TEMOCAP [93] is a multimodal dataset containing dyadic conversations between actors. It is sep-
arated in five sessions, in each of which a different male and female actor take part, and it contains
scripted scenarios, which the actors where asked to memorize beforehand, as well as improvised
conversations, based on hypothetical scenarios, designed to elicit specific emotions. It contains all
three modalities (visual, audio, text) and its utterances elicit the emotions of happiness, sadness,

anger, surprise, fear, disgust, frustration, excitement and neutrality.
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We note that, following the literature for the task of Emotion Recognition in Conversations [39]
[17], we take only six of the aforementioned emotions into account: neutrality, sadness, happiness,
anger, frustration and excitement.

IEMOCAP is not originally separated into clear training, development and test sets, but for
ERC the last two speakers, (meaning all of the the fifth session) are used as the test set [17] [11].
Regarding the split of the training set into training and validation, we choose to keep the first three
sessions for training and the fourth for validation, thus ensuring that the training and validation

set do not have common speakers, as is the case for the training and test set.
General dataset statistics

The following table shows some general statistics regarding dialogues and utterances for the train-

ing, development and test split (as chosen by us, following previous works):

Table 5.7. General statistics for IEMOCAP.

’ H train \ development \ test ‘

# sessions 3 1 1

# dialogues 90 30 31

# utterances 4246 1512 1622

Average/Max utterance length 12.0/89 12.9/90 13.3/107

# speakers 6 2 2

Average # of utterances per dialogue 47.2 50.4 52.3
Average # of emotions per dialogue 3.4 3.4 3.4

Average/Max # of speakers per dialogue 2/2 2/2 2/2

From the above table we an see that the chosen split for IEMOCAP follows a 57.5%-20.5%-
22.0% analogy for the train-development-test set. The dataset is strictly dyadic and its utterances
are usually quite short (although longer than those of MELD), but there are exceptions of very

long utterances.
Emotion class distribution statistics

The following table depicts the Emotion class distribution for IEMOCAP, for each of the train,

development and test splits:

Table 5.8. Class distribution (%) for IEMOCAP.

] H train \ development \ test \

anger 14.27 21.63 10.48
excitement || 11.87 15.74 18.43
frustration || 23.25 31.81 23.49
happiness 9.11 4.30 8.81

neutral 25.11 17.06 23.67
sadness 16.39 9.46 15.10

As we can see from the above table, the emotion distribution demonstrates strong similarities
between the train, development and test split (for example happiness is the most rare emotion), but
there are also differences in the distributions (for example the neutral emotion is more prevalent
in the train and test set and not in the validation set). In addition, we notice that the dataset is
unbalanced, although not as largely as MELD (see Table 5.2).
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Speaker distribution and statistics

As analyzed earlier, IEMOCAP includes ten speakers, six of which belong to our train set, and two
to each of the development and test sets. The following table depicts the number of utterances for
each of the speakers. As the speakers in IEMOCAP do not have names, we label them as F_i and
M i, where i the session number and F/M are used to annotate the female of male speaker of the

conversation.

Table 5.9. # Utterances per speaker in IEMOCAP.

’ speaker H # utterances ‘

F 0 635
M_0 730
F 1 646
M 1 702
F 2 721
M_2 812
F 3 716
M_3 796
F 4 751
M 4 871

From the above table we can see that ten speakers have a similar number of utterances making
IEMOCAP relatively balanced with regard to speaker distribution.

Finally, in the following table, we present the distribution of emotion for each of the ten speakers
for the train (F_0-F_2), validation (F_3-M _3) and test (F_4 - M _4) data:

Table 5.10. Emotion distribution per speaker for IEMOCAP dataset.

’ Speaker H Anger \ Excitement \ Frustration \ Happiness \ Neutral \ Sadness ‘

F O 0.231 0.099 0.169 0.109 0.269 0.123
M 0 0.112 0.110 0.237 0.090 0.292 0.159
F 1 0.104 0.149 0.255 0.108 0.209 0.175
M 1 0.100 0.162 0.228 0.067 0.323 0.120
F 2 0.128 0.067 0.276 0.111 0.180 0.239
M 2 0.182 0.127 0.225 0.068 0.234 0.164
F 3 0.286 0.215 0.263 0.043 0.106 0.087
M 3 0.153 0.106 0.368 0.043 0.229 0.102
F 4 0.104 0.109 0.214 0.103 0.294 0.176
M 4 0.106 0.249 0.253 0.076 0.187 0.130

We can see that the distribution of emotions follows some similar patters for different speakers,

however there are also many differences between speakers.
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Proposed Approaches

6.1 Comparing prompt-tuning and fine-tuning for ERC

6.1.1 Introduction

Following our analysis so far, we recognize the potential of using prompts, as an alternative to
fine-tuning, as well as an additional bias to adapt a pre-trained language model to a downstream
task. However, while multiple variations for using prompts have been proposed, the adaptation
of such methods for individual downstream tasks has not been researched as much and there is
limited work using prompts in task-specific models. Our approach is thus aimed to study the
applicability of prompt-based learning to the task of ERC in comparison to fine-tuning and set
a baseline for prompt-based learning for Emotion Recognition in Conversation. For this purpose,
we experiment with a very simple, baseline architecture, as well as commonly used methods in
previous works on ERC, such as the integration of speaker-specific information through the input
or through an auxiliary speaker-related task. We leverage a pre-trained language model and modify
its architecture to adapt it to both a prompt-based learning and a fine-tuning setting, for the task
of ERC.

We first compare the two adaptation methods using a very simple model, thus setting our
baseline, and study the effect of prompt usage and prompt size. We then experiment with the
prepending of speaker names in the input. This is a technique commonly used in previous work
for ERC [13] [14], as it allows the integration of speaker information and helps the model recognize
inter- and intra-dependencies more easily. When prepending speaker names to utterances, the
input format of the model is changed: The context is no longer a sequence of continuous sentences;
it is interrupted by speaker names. This input format is different from that used in the pre-training
phase of our language model, which means that the pre-trained model must be adapted to the new
input format in order to leverage the additional information. When fine-tuning, as in previous
work using this method, the model can shift its parameters accordingly, and thus adapt effectively.
However, when the model is frozen, as is usually the case with prompt-based learning, this is not
possible. The model can only change the way the main language model’s output is interpreted
at the top level (when using a trainable output layer), or the way different parts of the input
interact, through the prompt parameters. Experimenting with speaker prepending can therefore
provide insight into the degree of adaptability prompts can offer for a more complex task, such
as Emotion Recognition in Conversations. Finally, we experiment with the usage of an auxiliary
speaker-identification task and multitask training. The integration of speaker-specific information
through such a task has been proposed in works such as [11] [15] and has been found to be effective
in a fine-tuning setting. However, in a setting where the trainable parameters are limited and
confined only to the input level of the model, as is the case of prompt-based learning, the capacity

for adaptation of the model for the combined solution of two tasks is not apparent and is worth
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investigating.

6.1.2 Method

We utilize the pre-trained BERT language model as our backbone model. The core architecture
of our model can be broken down into three main modules, the embedding layer, the encoder
module and the output layer. The embedding layer is the only one that differs between the
prompt-based learning and the fine-tuning setting. For prompt-based learning, we follow the
architecture proposed by [31], encoding our prompts directly in the embedding space of our model
and using a series of prompt-embeddings which we prepend to the embeddings calculated by
our pre-trained model’s embedding layer, that correspond to the text input. In the case of fine-
tuning, the embedding layer of our pre-trained model is used unchanged, so it only calculates the
embeddings that correspond to the text input. The encoder module and the output layer remain
unchanged for both adaptation methods: The first consists of 12 pre-trained transformer encoder
layers (this is the BERT encoder), while for the second we employ two linear layers with a dropout
layer between them, in order to map the encoder’s output representation to a label. We perform
our experiments on the two ERC datasets described in 5.5, MELD and IEMOCAP.

In the following paragraphs we present an analytical overview of our proposed prompt-based
models’ architecture, while in sub-section 6.1.3 we present the models we employ for comparison:
the fine-tuned model as well as a model with only a trainable output layer. A schematic overview
of our prompt-based model can be seen in Figure 6.3 for the task of ERC and in Figure 6.4 for the

case of multitask training.
Text input format

We use the two-sentence input format of BERT. As the first sentence, we concatenate the k most
recent utterances before the current utterance to be classified, in order for the model to leverage
those as context. We set the current utterance to be classified as the second sentence, followed
by a [M ASK] token. Reformulating the classification task into a language modeling task brings
the input format closer to our language model’s pre-training phase, and we found that it improves
performance. We separate the two sentences with as [SEP] token and add a [C'LS] token at the
beginning of our input sequence and a [SFEP] token at the end. The final text input is formulated

as following:
[CLS)|wi—g|ti—gi1]---|wi—1|[SEP]|u; | [ M ASK]|[SEP]

where i is the index of current utterance to be classified, & is the number of previous utterances

used as context, u; is the utterance with index ¢ and | is the symbol for concatenation.

In the case of speaker information prepending, the described input format is slightly changed:
Instead of prepending the speaker’s name to each utterance of the text input, as is usually the case
in previous work, we choose to map each speaker of our dataset to one of BERT’s unused tokens
and prepend the speaker’s corresponding token before each of the speaker’s utterances. (There
are 994 unused tokens in BERT’s vocabulary). We consider this to be a better alternative than
prepending the speaker’s actual names, as these may not exist in BERT’s vocabulary, they may
be split into multiple tokens by BERT’s tokenizer, and they may even not exist in the dataset (for
example, speakers do not have names in IEMOCAP). By mapping speakers to unused tokens, we
achieve a 1 — 1 mapping between speakers and tokens, applicable to all speaker names and datasets.

We must note that we use the same mapping for speakers in the train, validation and test set, so

the same speaker is mapped to the same token in validation and test time, as the one to which the
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speaker was mapped during train time. This allows the model to use speaker-specific information
learned in train time during testing too, in the case of datasets that have the same speakers in the
train and test set, like MELD. In IEMOCARP, as the test speakers are different than those of the
train set, this has no effect.

The final text input is formulated as:

[C LS wng|w;— | wnm |wi— k41| |une|u;—1 | [SE P |uny|u; | [M ASK]|[SEP]

where 7 is the index of current utterance to be classified, k is the number of previous utterances
used as context, u; is the utterance with index ¢, un; represents BERT’s unused token with index

j and I, m, 0,p are example token indexes. Concatenation is represented by the symbol |.

Finally, we use a slightly different input format in the case of multitask training for the tasks
of ERC and Speaker Identification: As we attempt to identify the speaker of each utterance, it is
important to provide the model with the information of which utterances of the context (the first
sentence of our input) belong to the current utterance’s speaker. This will help the model identify
the speaker, as the current utterance on its own is often too short or generic, and the dialog context
consists of multiple speakers’ utterances, so if we do not specify the change in turns, the model
will not be able to discriminate between the different speakers easily. For this reason, we use two
of BERT’s unused tokens, mapping one of them (we symbolize it as "ung") to the current speaker
and the other (we symbolize it as "un;") to all other speakers in the dialog. We prepend "up" to
all utterances of the current utterance’s speaker and "uni" to all other utterances. In addition, we
add a second [M ASK] token at the end of our input, to represent the model’s prediction for the

speaker identity. The final input is formulated as following;:
[CLS|ung|wi—g|ung |u;— g1 |ung |ui—1|[SEP]|ung|u; | [ M ASK]|[M ASK]|[SEP)

(where the particular utterances that belong to the current speaker as chosen randomly for the

context utterances.)

The text input is then tokenized using BertTokenizer and the input tokens (n in total) are
passed through BERT’s pre-trained embedding layer, resulting in n embeddings. We note that
the number k of utterances to be used as context is calculated so that the resulting number n of
embeddings has the maximum value of 512 — ¢, where 512 is BERT’s maximum input size and ¢ is

the number of prompt tokens to be used, as explained in the following paragraph.
Prompt tokens

Following [31], we use a sequence of prompt tokens that lie directly in the embedding space (we
call them prompt token embeddings), leading to a prompt of dimensions ¢ x d, where ¢ represents
the number of prompt tokens and d represents the embedding dimension (768 for bert-base).

By writing that the prompt tokens lie in the embedding space we mean that these are created
in the embedding level of the model and not the text token / input level, by initializing an embed-
ding matrix of dimensions ¢ *d, using the embedding weights that token embeddings of words from
the BERT’s vocabulary have. The initialization can either be random, so using random words
from BERT’s vocabulary, or specified, for example using the token embeddings of the words cor-
responding to the labels of the classification task [31]. We choose to follow the second approach,
initializing the prompt token embeddings with the weights of the token embeddings corresponding
to the dataset’s class labels (i.e joy, sadness etc.). As the prompt token embedding weights are
changed during training using back-propagation, they no longer correspond to actual tokens from
BERT'’s vocabulary, but they could be considered as some kind of "soft" tokens, lying optimally
in between BERT’s words.
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Position and segment embeddings addition

As analyzed earlier (see sub-section 3.3.3), looking into BERT’s embedding layer architecture,
we can see that three types of embeddings are used: token embeddings, position embeddings, and
token type embeddings. Therefore, in the embedding level, we add BERT’s pre-trained position
and segment embeddings to the prompt token embeddings. The position and segment embed-
dings are also added to the token embeddings that correspond to our text input, using BERT’s
pre-trained embedding layer. We will refer to the final embedding output after this summation as

prompt embeddings and text embeddings in the following paragraphs.
Final embedding-level output

Having obtained both prompt and text embeddings, we then concatenate them, resulting in ¢t +n
embedding representations, and pass the concatenated representations as input to the BERT en-

coder’s layers. Figure 6.1 provides an schematic overview of the embedding layer’s output.

Prompt embeddings Text embeddings
Frozen

Position embeddings Position embeddings

| Trainable

JL
¥ oy

Segment embeddings Segment embeddings

R lij||

Prompt token embeddings Token embeddings

Figure 6.1. Embedding layer overview for the prompt-based learning case. The final embedding
output is a concatenation of the prompt and text embeddings. The modules in blue color are kept
frozen during training, while the modules in yellow are trainable.

Classification head

To obtain a classification label for each sample we use a classification head as our output layer,
consisting of two linear layers and a dropout layer between them, and pass as input to the classi-
fication head the last hidden representation of our input’s [MASK] token. The classification head
therefore acts as a mapping function, mapping the model’s output for the [MASK] token to one
of the class labels of our classification task. We note that the lower linear layer has an input and
output shape of 768 (BERT’s hidden representation dimension) and the upper linear layer has an
input shape of 768 and an output shape of ¢, where ¢ is the number of classes in our dataset. A
schematic diagram of the classification head described can be seen in Figure 6.2.

In the case of multitask training, we use a second classification head for the speaker-identification
task, which consists again of two linear layers and a dropout layer between them. The lower linear
layer has an input and an output dimension of d, where d is the size of BERT’s hidden represen-
tations (768). The upper linear layer has an input size of d, and an output size of s where s is the

number of speaker classes.
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Classification Head

Linear layer
(input size:768, output size: c)

Dropout

Linear layer
(input size:768, output size: 768)

Figure 6.2. Classification head diagram, where ¢ represents the number of classes of the dataset.

Frozen and trainable parts

To study the effect of prompt-based learning as an alternative to fine-tuning, we freeze all model
parameters, except from the classification head’s and the prompt’s parameters, which we train
through back-propagation. We must note that we keep the segment and position embeddings’
parameters frozed for both the text input and the prompt tokens, and we also do not train BERT’s

token embeddings which are used to map the text input to the embedding space.
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Figure 6.3.

Emotion class for u;

\_ Frozen

U | Trainable

Classification head

BERT encoder

Prompt Text embeddings
embeddings (t*d) (n*d)

[CLST| Uiy | Uiyuq || Ui | [SEP] | u; | [MASK] | [SEP]

General diagram of our prompt-based model in the case where no speaker-token
prepending is used. t is the number of prompt tokens, d is BERT’s embedding dimension (768), n
is the number of embeddings corresponding to our text input, k is the number of past utterances used
as context and i the index of the current utterance to be classified. "|" symbolizes concatenation.
The modules in blue color are kept frozen during training, while the modules in yellow are trainable.
The modules in blue color are kept frozen during training, while the modules in yellow are trainable
for the prompt-based learning case. Note that the prompt embeddings block has trainable parts, but

is not trainable as a whole: See Figure 6.1 for a detailed overview.
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Emaotion class for u; Speaker class for u;
| | Frozen

| Trainable

Classification head

BERT encoder

Prompt Text embeddings
embeddings (t*d) (n*d)

[CLS] | ung | ugy lung | gy q | ung|u_,|[SEP]|ung|u, | [MASK] | [MASK] | [SEP]

Figure 6.4. General diagram of our prompt-based model used for multitask training, where t is the
number of prompt tokens, d is BERT’s embedding dimension (768), n the number of embeddings
corresponding to our text input, k is the number of past utterances used as context and i is the index
of the current utterance to be classified. "|" symbolizes concatenation. The modules in blue color
are kept frozen during training, while the modules in yellow are trainable. Note that the prompt
embeddings block has trainable parts, but is not trainable as a whole: See Figure 6.1 for a detailed
overview.

6.1.3 Baselines

Fine-tuned model

To study the performance of the usage of prompts in comparison to fine-tuning, we use a model
similar to the prompt-based model described so far, but with a different embedding layer, which
only consists of the text embeddings module. We use the same input format with the prompt-based
learning case for our text input, both in the simple case and in the cases of speaker-token prepend-
ing and speaker-identification. As we do not use prompt tokens, we choose the number of k past,
context-utterances so that the maximum value of the embeddings that correspond to the input n
is no bigger that 512 (BERT’s maximum input size). We also employ the same classification head
as the one described for our prompt-based model. We train this model using fine-tuning, so we
do not freeze any parameters during training. Figure 6.5 depicts the general architecture of the

model used for fine-tuning in the simple case, with no speaker-specific information.

111



Chapter 6. Proposed Approaches

Emotion class for u; ]

Frozen

1/ Trainable

Classification head

BERT encoder

Text embeddings (n*d)

L
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Figure 6.5. General diagram of our fine-tuned baseline model, in the case where no speaker-
token prepending is used. d is BERT’s embedding dimension (768), n is the number of embeddings
corresponding to our text input, k is the number of past utterances used as context and i is the
index of the current utterance to be classified. "|" symbolizes concatenation. The modules in blue
color are kept frozen during training, while the modules in yellow are trainable.

Model with trainable classification head

In order to be able to fully understand the contribution of prompts to the observed performance of
our proposed models, we must also separate the prompt embeddings’ from the classification head’s
contribution. For this reason, we deploy as second model as our baseline, same as the fine-tuned
model, but we keep all of this model’s parameters frozen, except from the classification head’s

parameters. Figure 6.6 depicts the general model architecture.
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Emotion class for u; I:
Frozen

Trainable

Classification head

BERT encoder

Text embeddings (n*d)
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Figure 6.6. General diagram of our baseline model with only a trainable classification head, where
d is BERT’s embedding dimension (768), n is the number of embeddings corresponding to our text
iput, k is the number of past utterances used as context and i is the index of the current utterance
to be classified. "|" symbolizes concatenation. The modules in blue color are kept frozen during
training, while the modules in yellow are trainable.

6.1.4 Experimental setup

Dataset

In the case of the simple prompt-based model with no speaker-specific information and the prompt-
based model with speaker-token prepending we experiment on both MELD and IEMOCAP. In the
case of multitask training with the auxiliary task of speaker-identification we experiment only on
MELD: As analyzed in sub-section 5.5, there are six main speakers in MELD, with more than 60
utterances each, and all other speakers have very few utterances. We therefore create seven classes
for the speaker identification task, one for each main speaker and one annotated as "Other", in
which all other speakers of the dataset are classified. This transforms the speaker identification task
to a seven-class classification task. We do not test our method on IEMOCAP, as this dataset is for
the most part a scripted, acted dataset, with different scenarios. This means that the speakers do
not have a specific personality, but are actors playing different roles in different scripts. In addition,
all speakers of the test set are unseen, so the model cannot learn speaker-specific clues about them
from the train set. For this reason, we believe that there is no point in attempting to identify each
particular speaker, and therefore do not perform multitask training using speaker-identification as

an auxiliary task.
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Loss function

For our simple prompt-based model and our prompt-based model using speaker-token prepending
we use crossentropy loss as our loss function, which is defined in sub-section 2.3.2. In the case
of multitask training we use a multitask loss function following the method of homoscedastic
uncertainty [94], as in [11]. The loss is calculated as:

1 1
L= 2(01)2Le + 2(02)2LS +log(o102) (6-1)

where o1 and o, are trainable noise parameters.

Training setup

We experiment with different learning rates for each of the models and keep the ones that achieve
the best results, that is, a learning rate of 1le~* for the prompt-based model and the model with
only a trainable classification head and a learning rate of le™> for the fine-tuned model, except
from its classification head and the multitask loss (in the case of multitask training), for which we
use a learning rate of le™*. We train for a maximum of 30 epochs for the prompt based model
and the model with only a trainable classification head and for a maximum of 5 epochs for the
fine-tuned model, and keep the model version of the epoch that achieved the highest weighted
F1-score.

Prompt token number

For the prompt-based model, we experiment with different numbers of prompt tokens to determine
the best value for t. Our experiment results are presented in Section 6.1.5. Specifically we experi-
ment with using ¢ = ¢ prompt tokens, where ¢ the number of classes in each dataset, so ¢ = 7 for
MELD and ¢ = 6 for IEMOCAP, as well as using ¢ = 30, 40 and 60 prompt tokens for the simple
case and t = 30 prompt tokens for the case of speaker-token prepending. In the case of multitask
training we use ¢ = 30 prompt tokens. We initialize each of the prompt tokens with the embedding
of the label of one of the ¢ classes. (When ¢ > ¢, multiple prompt tokens will be initialized with
the same embedding).

6.1.5 Results and discussion

The bellow Tables present the results for our experiments on MELD and IEMOCAP, in the
case where no speaker-token prepending is used. Tables 6.1 and 6.2 depict the weighted F1-score
for MELD and IEMOCAP, while Tables 6.3 and 6.4 depict the per-class Fl-score for MELD and

IEMOCAP respectively. All our results are an average of three runs.

Table 6.1. Weighted F1-score (%) for MELD dataset

] Model H MELD \
Fine-tuned baseline 57.06
Class. head only baseline 54.90

Prompt-based, 7 prompt tokens 56.23
Prompt-based, 30 prompt tokens 56.70
Prompt-based, 40 prompt tokens 56.94
Prompt-based, 60 prompt tokens 56.53
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Table 6.2. Weighted F1-score (%) for IEMOCAP dataset

y Model | ITEMOCAP |
Fine-tuned baseline 64.44
Class. head only baseline 56.46
Prompt-based, 6 prompt tokens 58.95
Prompt-based, 30 prompt token 59.94
Prompt-based, 40 prompt tokens 59.21
Prompt-based, 60 prompt tokens 59.24

Table 6.3. FlI-score (%) per class for MELD test dataset

’ Model H Anger \ Disgust \ Fear \ Joy \ Neutral \ Sadness \ Surprise ‘

Fine-tuned baseline 41.33 15.66 17.66 | 51.33 72.00 31.67 53.33
Class. head only baseline || 39.00 13.33 10.67 | 44.00 72.00 25.33 52.33
Prompt-based, 40.00 15.67 9.00 | 46.33 73.00 32.33 52.00

7 prompt tokens
Prompt-based, 40.33 20.67 14.33 | 47.0 72.67 33.67 52.00

30 prompt tokens
Prompt-based, 40.33 20.67 16.00 | 46.67 73.00 35.00 51.67

40 prompt tokens
Prompt-based, 41.33 17.33 14.0 | 47.00 72.00 34.33 52.00

60 prompt tokens

Table 6.4. FI1-score (%) per class for IEMOCAP test dataset

’ Model H Anger \ Excitement \ Frustration \ Happiness | Neutral \ Sadness ‘

Fine-tuned baseline 62.00 69.00 59.33 54.00 63.37 75.67
Class. head only baseline || 55.33 58.33 57.00 33.33 56.33 67.33
Prompt-based, 56.67 62.00 59.67 35.00 58.67 69.67

6 prompt tokens
Prompt-based, 54.33 64.67 62.00 39.00 57.67 71.33

30 prompt tokens
Prompt-based, 54.00 62.00 60.33 40.67 58.00 70.67

40 prompt tokens
Prompt-based, 54.33 62.33 60.00 40.67 57.67 71.33

60 prompt tokens

Observing Table 6.1 we can see that, for MELD, the fine-tuned baseline model yields an F1-score
of 57.06%, while the best of the prompt-based models, the model with 40 prompt tokens, leads to an
Fl-score of 56.94%. This means that for the MELD dataset, the prompt based model is comparable
to the fine-tuned model. However, from Table 6.2 we see that for the IEMOCAP dataset, the fine-
tuned baseline achieves a F1-score higher than that of the best performing prompt-based model
(that uses 30 prompt tokens), by 4.50%), suggesting the fine-tuning adaptation method’s superiority
in this case.

One reason for the difference between the two datasets could be their origin: While IEMOCAP
utterances have been designed with the purpose of eliciting a specific emotion and are uttered in a
two-speaker scenario, MELD is derived from a TV-series, where multiple speakers are talking and
the emotion of each utterance could be more subtle or expressed in very different ways by different
speakers and in different situations. The number of speakers in MELD is also substantially larger
than that in IEMOCAP. We could therefore assume that fine-tuning, which tunes millions of

parameters according the data and allows the model to fit the data more closely has an advantage
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in IEMOCAP, compared to the less adaptive prompt-based learning. On the other hand, in MELD,
because of the bigger diversity and difficulty of the dataset, a closer fitting of the model to the
training data does not necessarily lead to a better generalization ability, and fine-tuning is thus
not as advantageous.

Speaker-token prepending

The bellow Tables present the results for MELD and IEMOCAP, in the case where speaker-token
prepending is used. Tables 6.5 and 6.6 depict the weighted F1-score for MELD and IEMOCAP,
while Tables 6.7 and 6.8 depict the per-class Fl-score for MELD and IEMOCAP respectively. We
also include some of the results from Tables 6.1 and 6.2, for easier comparison. All our results are
an average of three runs.

Table 6.5. Weighted F1-score (%) for MELD dataset

] Model || Fl-score (Test) |
Prompt-based, 7 prompt tokens 56.23
Prompt-based, 30 prompt tokens 56.70

Fine-tuned speaker-token prepending 56.14

Class. head only speaker-token prepending 54.90

Prompt-based speaker-token prepending, 56.64
7 prompt tokens

Prompt-based speaker-token prepending, 57.63
30 prompt tokens

Table 6.6. Weighted F1-score (%) for IEMOCAP dataset

’ Model H F1-score (Test) ‘
Prompt-based, 6 prompt tokens 58.95
Prompt-based, 30 prompt tokens 59.94

Fine-tuned speaker-token prepending 64.99

Class. head only speaker-token prepending 56.16

Prompt-based speaker-token prepending, 59.04
6 prompt tokens

Prompt-based speaker-token prepending, 59.12
30 prompt tokens

Table 6.7. F1-score (%) per class for MELD test dataset

Model H Anger \ Disgust \ Fear \ Joy \ Neutral \ Sadness \ Surprise ‘
Prompt-based, 40.00 15.67 9.00 | 46.33 | 73.00 32.33 52.00
7 prompt tokens
Prompt-based, 40.33 20.67 | 14.33 | 47.0 72.67 33.67 52.00
30 prompt tokens
Fine-tuned speaker 43.00 24.33 17.67 | 48.33 | 70.33 34.00 52.00
prepending
Class. head only speaker 40.67 9.67 11.00 | 43.67 | 72.00 28.00 50.00
prepending
Prompt-based speaker-token 38.00 16.67 11.00 | 47.67 73.00 32.67 55.00
prepending, 7 prompt tokens
Prompt-based speaker-token 40.67 25.00 15.67 | 48.67 73.00 34.67 54.33
prepending, 30 prompt tokens
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Table 6.8. FI-score (%) per class for IEMOCAP test dataset

Model H Anger \ Excitement \ Frustration \ Happiness | Neutral \ Sadness ‘
Prompt-based, 56.67 62.00 59.67 35.00 58.67 69.67
6 prompt tokens
Prompt-based, 54.33 64.67 62.00 39.00 57.67 71.33
30 prompt tokens
Fine-tuned speaker 63.33 69.00 61.67 50.67 63.33 77.00
prepending
Class. head only speaker 50.67 56.33 55.67 35.67 59.00 67.67
prepending
Prompt-based speaker-token 52.00 62.67 59.33 42.00 58.33 70.67
prepending, 6 prompt tokens
Prompt-based speaker-token 55.67 61.33 60.67 41.33 57.67 69.67
prepending, 30 prompt tokens

Comparing the results of the simple prompt-based models and those of the prompt-based
models using speaker-token prepending, we can see that speaker-token prepending tends to improve
performance (with the exception of the case of the prompt-based model with 30 prompt tokens for
IEMOCAP, in Table 6.6, where a slight drop in performance is observed). Specifically for MELD,
we can see from Table 6.5 that, when using speaker-token prepending, the F1-score rises by 0.41%
in the case of 6 prompt tokens and by 0.93% in the case of 30 prompt tokens, suggesting that a
larger number of prompt token parameters allows the model to adapt to the new input format and
integrate the speaker-specific information more effectively. However, for IEMOCAP, we can see in
Table 6.6 that, while the 30 prompt token model that uses speaker-token prepending yields a better
performance compared to the one with 6 prompt tokens, the prepending of prompt tokens has an
overall negative effect, with the baseline prompt-based model with 30 prompt tokens achieving
a higher performance by 0.90% compared to the one using speaker-token prepending. Similarly,
we observe that for the prompt-based model with 6 prompt tokens, speaker-token prepending did
not lead to notable improvement in performance either. Looking into the fine-tuned models as a
comparison (Tables 6.1, 6.2, 6.5 and 6.6), in the case of MELD, speaker-token prepending actually
leads to a 0.92% drop in performance, while in the case of IEMOCAP the performance increased
by 0.55%.

The above results suggest that encoding speaker-specific information can indeed be helpful for
the ERC task, as previous work suggests. However, the successful utilization of this information
depends on the adaptation method and model architecture used. In the case of MELD, prompt-
based learning seems to be more successful in leveraging the additional information compared to
fine-tuning, suggesting that prompts do have the capacity to adapt the model to the new input
format and can even be more effective than fine-tuning in leveraging the additional information.
For IEMOCAP, fine-tuning is more effective, while prompt-based learning seems to fail in utilizing
the speaker-specific information provided. We can therefore conclude that, in integrating speaker-
specific information provided through our changed input format, neither prompt-based learning

nor fine-tuning is superior, and the optimal method largely depends on the dataset.

Multitask training with the auxiliary task of speaker-identification

The bellow Tables present the results for MELD, for our proposed prompt-based model that
uses speaker-identification as an auxiliary task. We also show the results for the corresponding

fine-tuned model as well as our simple prompt-based model with 30 prompt tokens and no speaker-
specific information and its corresponding fine-tuned model, for comparison purposes. Table 6.9
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presents the weighted F1-score, while Table 6.10 depicts the per-class Fl-score. All our results are

an average of three runs.

Table 6.9. Weighted F1-score (%) for MELD dataset

] Model || Fl-score (Test) |
Fine-tuned baseline 57.06
Prompt-based, 30 prompt tokens 56.70
Emotion+Speaker multitask, fine-tuned 56.79
Emotion+Speaker multitask, prompt-based 54.65

Table 6.10. FI1-score (%) per class for MELD test dataset

] Model H Anger \ Disgust \ Fear \ Joy \ Neutral \ Sadness \ Surprise ‘
Fine-tuned baseline 41.33 15.66 17.66 | 51.33 72.00 31.67 53.33
Prompt-based, 40.33 20.67 | 14.33 | 47.00 | 72.67 33.67 52.00

30 prompt tokens

Emotion-+Speaker multitask, || 40.67 24.00 | 15.33 | 48.33 | T71.67 36.66 53.33
fine-tuned
Emotion+Speaker multitask, || 37.33 12.33 11.67 | 44.00 71.67 32.67 48.67
prompt-based

From Table 6.9 we can see that using multitask training for emotion recognition and speaker
identification does not improve performance for the fine-tuned model and leads to an important
decrease in performance for the prompt-based model. This could suggest that speaker identifica-
tion, as defined in our method, is not very suitable as an auxiliary task to improve performance
for Emotion Recognition in Conversation. In addition, comparing the results of the prompt-based
and the fine-tuned model, both trained with the multitask objective, the lower Fl-score of the
prompt-based model (by 2.14%) suggests that the capacity of prompts to adapt BERT to a more
complex setting, such as the multitask setting, is not enough, and trainable parameters inside the

model may be needed for a more in-depth tuning.

6.1.6 Additional discussion

The effect of prompt size

From the presented results we can conclude that prompt size can impact performance. Both for
MELD and IEMOCAP, we observe that the prompt-based models tend to yield lower F1-scores for
a very small number of prompt tokens (6-7 prompt tokens). The results improve by increasing the
prompt tokens used, with 30 prompt tokens for IEMOCAP and 40 prompt tokens for MELD lead-
ing to the optimal performance, and then gradually decline again when further increasing prompt
tokens (to 40 and then 60 for IEMOCAP, to 60 for MELD). This trend can be observed for the
simple prompt-based models, as well as the prompt-based models using speaker-token prepending
(where the models with 6-7 prompt tokens lead to inferior performance compared to those with 30
prompt tokens).

These observations suggest that there is a prompt token number optimal for a specific language
model in a specific task. We believe that the lower performance when using very few prompt
tokens can be attributed to the fact that there are not enough trainable parameters to encode all
the information needed to sufficiently adapt BERT to the task of ERC, while too many prompt
tokens lead to the opposite problem, with too many parameters to be trained from the available

data, possibly leading to a bigger overfitting problem.
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How much of the observed performance can be attributed to the usage of prompts?

In our described architecture we have used a trainable classification head to map the represen-
tation of BERT’s [M ASK] token to one of the emotion classes. Because the classification head
is trainable, it is reasonable to assume that is contributes to the pre-trained language model’s
adaptation to the ERC task. In order to separate the classification head’s from the prompt’s con-
tribution, we can compare the performance of our prompt-based models with that of the models
we have employed that only include a frozen BERT encoder and a trainable classification head,
and neither use prompts nor are fine-tuned.

From Tables 6.1, 6.2, 6.5 and 6.6 we can observe that, for both MELD and IEMOCAP, the
prompt-based models tend to obtain a Fl-score higher by 2%-3%, compared to the models with
only a classification head, which leads us to the conclusion that prompts do indeed contribute to
a pre-trained language model’s adaptation to downstream tasks. In addition, it is worth noticing
that, when speaker-token prepending is used in the text input, the models using a classification
head fail to leverage the additional information, and the performance remains the same or drops
compared to not using speaker-token prepending. This suggests that, in adapting the language
model to the new input format used for speaker-token prepending, which differs from that of
BERT’s pre-training phase, the prompts’ contribution plays the major role. An explanation for
this could be that the prompts influence the model’s representations through context as early as
the lowest level of the BERT encoder, while the classification head can only change the [M ASK]
token’s representation’s mapping to the emotion classes, and cannot affect the model’s hidden

representations and their interactions throughout the encoder layers.
Comparing per class performance

We can see from Tabels 6.3 and 6.7 that, in the case of MELD, the performance for each class
largely depends on the emotion distribution of the dataset, with the minority classes having the
lowest performance. In IEMOCAP (Tables 6.4, 6.8), which is not as unbalanced as MELD, the
differences in performance among different classes are not as large and they do not depend on
the class distribution as strongly. The emotion more easily recognized in IEMOCAP seems to be
sadness. A reason for that could be that it is more different from the rest of the emotions (we
could consider excitement to be closer to happiness and anger to frustration, while sadness does

not have as strong similarities with the rest of the emotions).

6.2 Information-specific prompts: An alternative approach

for integrating additional information

6.2.1 Introduction

For the task of Emotion Recognition in Conversations (ERC), topic modeling as well as speaker
identity have previously been used to help the model predict emotions. The reason for that is
that topics tend to carry certain language patterns [44] and can thus affect both the utterance’s
meaning and the particular emotion conveyed by specific expressions, while different speakers
may also use different words or expressions to convey emotion. The modeling of topic and the
knowledge of speaker identity can thus help a model interpret each utterance more effectively to
decode its emotion. The integration of speaker-specific information is usually achieved through
the prepending of speaker names to the corresponding utterances in the text input [13] [14], while

the usage of an auxiliary speaker-identification task has also been utilized in previous work [11]
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[15]. In the case of topic modeling, a topic-augmented language model with an additional layer
specialized for topic detection has been proposed by Zhu et al. in [16]. Motivated by the positive
effect both speaker-specific and topic-specific information seems to have for Emotion Recognition in
Conversation, we propose a model based on a pre-trained language model and adapted to the ERC
task through prompt-based learning, in which speaker-specific or topic-specific information can be
provided directly through the prompts (which we call information-specific prompts), without the
need for a change in the input format or a usage of additional layers. Our method is information-
type agnostic, meaning that it can be implemented for different types of information, including

but not limited to speaker identity and topic.

6.2.2 Method

As in Section 6.1, we use the pre-trained BERT language model as our backbone. Our model
consists of three main modules, the embedding layer, the encoder module and the output module.
The embedding layer is made up of three parts: The first part is a task-specific prompt: It outputs
prompt embeddings in the same way as in Section 6.1, which we train on the whole train set and
have the purpose of adapting the language model to the ERC task. The second part is topic- or
speaker-specific, depending on whether we are working with speaker identities or topic: Assuming
that we are working with s speakers or s topics in our training data, we train s different prompts,
each corresponding to one speaker or topic and trained only using that speaker’s or topic’s data.
This part of the embedding module is responsible for choosing one of the s speaker- or topic-
specific prompts every time, and outputing it to be used together with the task-specific prompt.
The purpose of this second part of the embedding module is to influence the way the model treats
the text input according to the conversation’s topic or the utterance’s speaker. We believe this
to be beneficial, as both the identity of the speaker as well as the topic may influence the way
in which emotions are expressed through language, as explained earlier. The third part of the
embedding module is responsible for calculating the embeddings that correspond to the model’s
text input. The encoder module and output layer of our module, are kept the same as in 6.1: The
encoder consists of 12 pre-trained transformer encoder layers (this is the BERT encoder), while, as
an output module we use two linear layers with a dropout layer between them, in order to map the
encoder’s output representation to a label. We experiment on the two ERC datasets described in
5.5, MELD and IEMOCAP. We note that we work with topic-specific and speaker-specific prompts,
as this type of information is already available in our datasets or can easily be extracted for the
task of ERC, but the same logic could be applied to other types of information.

In the following paragraphs we provide an in-depth description of our proposed model’s archi-
tecture as well as the method we use to extract the topic of each utterance. A schematic overview

of our proposed model is depicted in Figure 6.8.
Text input format

We use the same text input format as in 6.1, performing masked language modeling and using
a two sentence input, where the first sentence is a concatenation of past utterances, to be used by
the model as context, and the second utterance is the current utterance to be classified, followed
by a [M ASK] token. The final text input is formulated as following:

[CLS][ts g tti— g1 |- ui—1|[SEP)|ui| [MASK]|[SEP]

where 7 is the index of current utterance to be classified, k is the number of previous utterances

used as context, u; is the utterance with index ¢ and | the symbol for concatenation.
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This input is passed into the part our model’s embedding layer responsible for calculating the
embeddings that correspond to the text input tokens, which we call text embeddings. For this
purpose, BERT’s pre-trained embedding layer is used unchanged, which maps the input tokens to
the corresponding pre-trained token embeddings, and then adds to them the pre-trained segment
and position embeddings, outputing the final text embeddings.

Task specific prompt tokens

We use t prompt token embeddings that are trained using the whole dataset, with the purpose
of adapting the model to the ERC task. These are the same as the prompt token embeddings
used in 6.1, lying directly in the embedding space and resulting in the final prompt embeddings,
after the summation of the trainable prompt token embeddings with BERT’s position and segment
embeddings.

Information-specific prompt tokens

In addition to the ¢ task-specific prompt tokens described above, we use m more prompt tokens,
that are specific to the additional source of information we attempt to integrate (i.e. speaker- or
topic-specific). We call these information-specific prompt tokens.

As these prompt tokens are topic- or speaker-specific, they are not trained on the whole dataset:
Assuming that we have s speakers (or speaker groups, the speakers within each are modeled
together) or s topics, we keep s groups of m prompt token embeddings each, resulting in a total
embedding array of dimensions (s+ m) *d, where d is BERT’s embedding dimension (768 for bert-
base). For each current utterance to be classified, we determine the utterance’s speaker or topic
and choose the m prompt token embeddings corresponding to this speaker/topic. These m prompt
token embeddings are then used together with the ¢ task-specific prompt token embeddings for
the current utterance’s classification, after BERT’s position and segment embeddings are summed
with them.

Final embedding-level output

To classify an utterance, having obtained the text embeddings, the task-specific prompt embed-
dings and the speaker-/topic-specific prompt embeddings for it, we concatenate the three, resulting
in ¢ + m + n embeddings (where n the number of embeddings coressponding to the text input,
chosen so as the total number of embeddings does not surpass BERT’s maximum input size:
t +m 4+ n < 512), which are then passed to the pre-trained BERT encoder module. A schematic

representation of our proposed model’s final embedding-level output is depicted in Figure 6.7.

Task-specific prompt ings F -/ Topic-specific prompt ings Text “
Frozen

T ing
Position embeddings Position embeddings Position embeddings
Trainable
o 1
U r

Segment embeddings Segment embeddings Segment embeddings

h ¢ &

9] Lr

Task-specific prompt Speaker-/Topic-specific Token embeddings
token embeddings prompt token embeddings

Figure 6.7. Embedding layer overview for the prompt-based learning case. The final embedding-
level output consists of the concatenation of the task-specific prompt embeddings, the information-
specific (speaker- or topic-specific) prompt embeddings and the text embeddings. The modules in
blue color are kept frozen during training, while the modules in yellow are trainable.
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BERT encoder and classification head

We use the pre-trained BERT encoder and add a classification head on top, in order to map
the final hidden representation of our input’s MASK token to one of the classes. We use the same
classification head, consisting of two linear layers with a dropout layer between them, as in 6.1.
(See Figure 6.2 for a detailed representation).

Frozen and trainable parts

We freeze all model parameters, except from the classification head’s and the prompt’s param-
eters (both the task-specific prompt token embeddings and the information-specific prompt token
embeddings remain trainable), which we train through back-propagation. We note again that we
keep the segment and position embeddings’ parameters frozen for both the text input and the
prompt tokens, and we also do not train BERT’s token embeddings which are used to map the
text input tokens to the embedding space.
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Figure 6.8. General diagram of our prompt-based model, where t is the number of task specific
prompt tokens, m is the number of information-specific (speaker-specific or topic-specific) prompt
tokens, s is the number of speakers/topics, d is BERT’s embedding dimension (768), n is the
number of embeddings corresponding to our text input, k is the number of past utterances used as
context and i is the index of the current utterance to be classified."|" symbolizes concatenation.
For s speakers/topics we train s information-specific prompts consisting of m prompt tokens, so we
have a total of s+ m trainable prompt embeddings, of which m are chosen every time, according to
the speaker or topic. The modules in blue color are kept frozen during training, while the modules
in yellow are trainable. Note that the task-specific and speaker-/topic-specific embedding blocks
have trainable parts, but are not trainable as a whole: See Figure 6.7 for a detailed overview.

Topic extraction method

While the speaker identity is provided in both IEMOCAP and MELD, this is not the case for
the topic of each utterance. In order to use topic-specific prompts, we thus first perform topic
modeling to extract each utterance’s main topic.

We use Latent Dirichlet Allocation (LDA) [45] to perform topic modeling [46]. We note that for
each utterance, we use this utterance and its context (the k previous utterances in the dialog that
are given as input to the model together with the current utterance) as a whole (as a document for

our topic modeling analysis), in order to be able to identify the conversation’s current topic more
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effectively. This is necessary, as utterances in a dialog are often small and general (for example:
"Yeah." or "I don’t know!"), so it is not possible to determine the topic using only the current
utterance.

Thus, considering each utterance and its context as a document, we calculate the Document
Term Matrix (DTM) for the dataset’s train set. The DTM is a matrix that describes the frequency
of each word in each of the documents, having a shape of a *b, where a is the number of documents
and b is the number of words. The number b of words may be equal the total amount of words
found in the documents, or it can be smaller, when criteria are applied, based on the appearance
frequency of a word. For example, words appearing in less than a specified percentage of all
documents are often not included.

After obtaining the DTM matrix, we can then use LDA to perform topic clustering. LDA
assumes a collection of k topics, where k£ must be predefined. Each topic is considered as a collection
of words and is assumed to have been drawn from a Dirichlet distribution 3j ~ Dirichlet(n) over
the vocabulary, where 7 is a parameter controlling the distribution of words per topic. Lower values
of 7 mean that the topics will likely have fewer words and higher values mean that topics will likely
have more words. Given the topics, LDA assumes a generative process for each document d.
During this process, each document is assumed to be a collection of topics and for each document
a distribution over topics is drawn 9_:1 ~ Dirichlet(&@). a controls the number of topics expected
in the document, with lower values leading to fewer topics and higher values to more topics in
the document. Then, for each word n in the document d a topic assignment zq, ~ Mult(04) €
{1,...,K} is drawn and the observed word wg, ~ Mult(f.,,) is drawn for the selected topic
(Mult represents the Multivariate distribution) [95] [96]. In short, the LDA algorithm begins with
a random initialization of the word distribution for each topic, and follows an iterative process
with two repeating steps for document: In the first step, for each document d, first 6; and then
zq,n for all words n in d are updated iteratively, until convergence. Then, in the second step, the
word distribution [ for each topic is updated. The process repeats itself, until convergence.

LDA thus calculates the mixture of topics of which each document consists. This can be seen
as a soft clustering of each document between each of the topics. To obtain the main topic of
each document, we choose the topic with the biggest weight. We note that we perform the LDA
analysis using only our train data. During test time, we simply classify each document to the

existing topics, using the training data’s LDA model.
Prompt ensembles

When performing topic clustering to obtain each utterance’s main topic, we can assume a hard
clustering, assigning one topic to each utterance (the topic with the maximum probability) and
choosing the m corresponding topic-specific prompt tokens, or we can assume a soft clustering be-
tween topics, using the probabilities calculated by our topic extraction method. In the latter case,
we assume that each utterance belongs to each topic with a probability p. Instead of then using
one topic-specific prompt for the utterance during test time, we can calculate a prompt ensemble,
by obtaining the weighted average of all s topic-specific prompts (each consisting of m prompt
tokens), using the topic probabilities as weights. We call this technique prompt-ensembling. We
experiment with this alternative as well and provide the results in 6.2.5. We note that the averag-
ing is only performed during test time, while we still assume a hard clustering during training, in

order to train the topic-specific prompts.
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6.2.3 Baselines

Simple prompt-based model

We compare our results with those of the simple prompt-based model of 6.1, with ' = 30 prompt
tokens, in order to determine whether the addition of speaker- or topic-specific prompts can success-
fully integrate useful additional speaker-/topic-specific information, in order to boost performance.
To be certain whether the impovement we see in performance (if we see any) is achieved due to the
successful integration of speaker-/topic-specific information and not solely because of the addition
of m extra prompt tokens, we also compare our results to those of the prompt-based model of 6.1,
with ¢ = 40(= t + m) prompt tokens.

6.2.4 Experimental setup

Dataset

Our method is based on training a speaker- or topic- specific prompt using the train set, and then
using this pre-trained prompt during test time. This means that it assumes that the speaker or
the topic seen during test time also exists in the train set. When working with topic, this does not
present a problem, as any utterance can be mapped to the topic of the train set that it is closer
to. However, when an unknown speaker is found in the test set that does not exist in the train set,
there is no trained prompt for this speaker.

For this reason, in the case of speaker-specific prompts, we test our method on MELD and
not IEMOCAP, as in IEMOCARP there are different speakers in each of the train, validation and
test set. On the other hand, in MELD, the six main speakers are present in all three data parts
(train, validation and test). We therefore use m speaker-specific prompt tokens for each of these
six speakers. We group all other speakers of MELD into one, using m common speaker-specific
prompt tokens for them. We thus keep only s = 7 different groups of prompt tokens. We choose to
perform this grouping for two reasons: The first is that there are hundreds of speakers in MELD,
so using m prompts for each of the speakers separately would demand a much bigger memory and
would result in a lot more parameters. The second reason is that, as all speakers in MELD other
than the six main ones have very few utterances, there would not be enough data to train the
prompts correctly. With this approach, we thus train prompts to help the model treat each of the
six main speakers differently, and we let the model treat all other speakers in a more general way.
When working with topic-specific prompts we experiment on both MELD and IEMOCAP.

Training and testing setup

After experimenting with different learning rates to obtain the best results, we choose a learning
rate of le~* for the classification head and the task specific prompt tokens of our model and a
learning rate of 3e~* for the topic-/speaker-specific prompt tokens. We train for a maximum of 30
epochs and keep the model version of the epoch that achieved the highest weighted F1-score. We
use crossentropy loss as our loss function (defined in sub-section 2.3.2).

We must note that the clustering to one of the training topics for the samples of the development
and the test set in the case of topic-specific prompts can easily be performed during test time,
using the LDA model which we obtained in the training phase. However we choose to perform the
clustering beforehand and keep the topic (or topic distribution in the case of prompt-ensembling)

as additional preprocessed information, for bigger speed during our experiments.

Prompt token number
We use t = 30 task-specific prompt tokens and initialize each of them with the embedding of the
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label of one of the ¢ classes of our dataset. We also use m = 10 topic-/speaker-specific prompt
tokens, for which we perform random initialization. The value of m was chosen after experimenting
with multiple values, in order to achieve optimum performance. In addition, as mentioned earlier,
we use s = 7 different groups of m speaker-specific prompt tokens, while, in the case of topic-
specific prompt tokens, we use s = 7 different groups of m topic-specific prompt tokens for MELD
and s = 4 different groups of m topic-specific prompt tokens for [IEMOCAP, as these numbers were
found to achieve the best performance.

We additionally experiment with using ¢ = 0 task-specific prompt tokens and m = 40 topic-
/speaker-specific prompt tokens, for which we perform random initialization. This means that we

convert all 40 prompt tokens of our model to speaker-/topic-specific.

6.2.5 Results and discussion

The bellow Tables present the results for our proposed model as well as our baseline models as
described in sub-section 6.2.3, for MELD and IEMOCAP. Tables 6.11 and 6.12 present the weighted
Fl-score for MELD and IEMOCAP, while Tables 6.13 and 6.14 depict the per-class Fl-score for
MELD and IEMOCAP respectively. All our results are an average of three runs.

Table 6.11. Weighted F1-score (%) for MELD dataset

’ Model || Fl-score (Test) |
Prompt-based, 30 prompt tokens 56.70
Prompt-based, 40 prompt tokens 56.94

Only speaker-specific prompts, 55.68
40 speaker-specific prompt tokens
Task- + Speaker-specific prompts, 57.08
30 task-/10 speaker-specific prompt tokens
Only topic-specific prompts, hard class. 54.96
40 topic-specific prompt tokens
Task- + Topic-specific prompts, hard class. 56.63
30 task-/10 topic-specific prompt tokens
Task- + Topic-specific prompts, prompt-ensembling 56.82

30 task-/10 topic-specific prompt tokens

Table 6.12. Weighted F1-score (%) for IEMOCAP dataset

] Model || Fl-score (Test) |
Prompt-based, 30 prompt tokens 59.94
Prompt-based, 40 prompt tokens 59.21

Only topic-specific prompts, hard class. 58.69
40 topic-specific prompt tokens
Task- + Topic-specific prompts, hard class. 61.13
30 task-/10 topic-specific prompt tokens
Task- + Topic-specific prompts, prompt-ensembling 61.12
30 task-/10 topic-specific prompt tokens
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Table 6.13. F1-score (%) per class for MELD test dataset

Model H Anger \ Disgust \ Fear \ Joy \ Neutral \ Sadness \ Surprise ‘
Prompt-based, 40.33 20.67 14.33 | 47.0 72.67 33.67 52.00
30 prompt tokens
Prompt-based, 40.33 20.67 | 16.00 | 46.67 | 73.00 35.00 51.67
40 prompt tokens
Only speaker-specific prompts, 39.67 10.33 12.00 | 46.67 | T72.67 27.67 52.33

40 speaker-specific prompt tokens
Task- + Speaker-specific
prompts, 40.00 19.33 | 17.00 | 48.67 | 73.67 33.00 52.00
30 task-/10 speaker-specific
prompt tokens

Only topic-specific prompts,
hard class. 40 topic-specific 38.67 10.67 12.67 | 43.33 72.67 31.67 51.67
prompt tokens
Task- + Topic-specific
prompts, hard class. 38.67 18.00 14.67 | 47.33 73.33 32.67 51.00
30 task-/10 topic-specific
prompt tokens
Task- + Topic-specific
prompts, prompt-ensembling 39.33 16.00 15.33 | 49.33 73.33 32.33 51.00
30 task-/10 topic-specific
prompt tokens

Table 6.14. F1-score (%) per class for IEMOCAP test dataset

Model H Anger \ Excitement \ Frustration \ Happiness \ Neutral \ Sadness \
Prompt-based, 54.33 64.67 62.00 39.00 57.67 71.33
30 prompt tokens
Prompt-based, 54.00 62.00 60.33 40.67 58.00 70.67

40 prompt tokens

Only topic-specific prompts,
hard class. 40 topic-specific 55.33 60.33 60.33 39.67 57.67 69.33
prompt tokens
Task- + Topic-specific
prompts, hard class. 57.33 61.33 61.33 42.67 61.33 73.33
30 task-/10 topic-specific
prompt tokens
Task- + Topic-specific
prompts, prompt-ensembling || 58.33 63.00 62.33 41.00 60.67 72.33
30 task-/10 topic-specific
prompt tokens

Speaker-specific prompts

Regarding the usage of speaker-specific prompts, we have only experimented on MELD, so our
results are contained in Tables 6.11 and 6.13. Between the models using speaker-specific prompts,
the optimum performance (F1-score equal to 57.08%) is achieved by the model using 30 task-specific
prompt tokens that remain the same for the whole dataset, and 10-speaker specific prompt tokens
that change according to the speaker. This model also achieves a better F1-score compared to the
baseline prompt-based models, both using 30 and 40 task-specific prompt tokens, thus suggesting
that speaker information can indeed be encoded effectively using prompts.
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In order to obtain a better understanding of the information speaker identity may provide in
MELD, we can study the emotion class distribution for each of the six main speakers, as well as the
group of the rest of the speakers, as these are presented in Tables 5.4 and 5.6. We can see that the
emotion class distribution for each speaker often presents similarities in the train and in the test
set, which could allow the model to use an emotional bias learned for every speaker during training
in test time too. Comparing the emotion class distribution between different speakers, we can see
that the different speakers have a similar emotion distribution. This is partly due to the fact the
MELD is very imbalanced, meaning we cannot see big percentages in minority classes, and we are
more likely to see large percentages in the majority class. For this reason, while learning different
speaker’s tendencies towards some particular emotion may provide some benefit, we do not expect
it to be a major factor in determining emotion, in most cases. We note however that the are some
cases were some emotional clues can be extracted: For example Joey tends to be happy very often
(compared to the others) in both the train and the test set, Rachel is sad more often that the other
speakers etc. Overall, considering all of the above, we believe that the performance gain achieved
through the usage of speaker-specific prompts may be based less on learning different emotion
distributions for different speakers, and more on learning to interpret each utterance differently

according to its speaker, with different speakers using different words and ways of expression.
Topic-specific prompts

Using topic-specific prompts, we have experimented on both MELD and IEMOCAP. For MELD,
the topic-enriched model with the best performance is the model using 30 task-specific and 10
topic-specific prompt tokens, with the topic-specific prompt being calculated as an ensemble of the
different topic-specific prompts, according to the topic clustering weights. However, this model
achieves an Fl-score, almost the same as the prompt-based model that uses only 40 task-specific
prompt tokens and no topic-specific prompt tokens. This means that, for MELD, the addition of
topic-specific information through prompts does not seem to be beneficial.

Our results are different in the case of IEMOCAP: Compared to the prompt based model us-
ing only 30 task-specifc prompt tokens, the models utilizing 30 task-specific and 10 topic-specific
prompt tokens achieve a Fl-score larger by 1.19% in the case of the model using hard classification
and by 1.18% in the case of the model using prompt ensembles. Compared to the 40 task-specific
prompt token model, this difference is even larger. Topic-specific information thus seems to be

important for IEMOCAP, and is successfully utilized through topic-specific prompts.

To understand why the usage of topic-specific prompts yields such different results for MELD
and IEMOCAP, we provide an overview of the distribution of emotions per topic for the MELD
and IEMOCAP train and test data, in Tables 6.15, 6.16. 6.17 and 6.18. From Tables 6.15 6.16
we can see that the different topics in MELD have a similar distribution of emotions, partly due
to the imbalance of our dataset. This largely decreases the emotional clues that could potentially
be extracted when performing topic clustering. Observing Tables 6.17 6.18 we can see that in
IEMOCAP the differences in the distribution of emotions between the different topics are bigger
and occur more often than in MELD, so the knowledge of topic may carry a bigger significance for
identifying emotion.

We can thus conclude that the bigger differences in the distribution of emotions between the
different topics in IEMOCAP, rather than in MELD, could be one factor explaining the difference
in the performance of topic-specific prompts in the two datasets. A second factor could be that
topic-modeling in IEMOCAP encodes more meaning, with different topics carrying certain different

language patterns that affect the utterances meaning and way of conveying emotion, while topics
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in MELD are more similar or generic and thus poor on information. To support this claim, we
present the 20 most common words for each of the topics extracted from the train set, for MELD
and for IEMOCAP:

In the case of MELD:

e Topic 1:

"place", "need", "guy", "took", "bob", "umm", "listen", "morning", "big", "make", "mon-

ica", "ok", "said", "time", "rachel", "little", "thank", "whoa", "chandler", "yes"
e Topic 2:

"thinking", "ah", "ow", "believe", "say", "sure", "happy", "time", "actually", "went",

lldayll’ lldatell’ llplace"’ "Wanna", llguyll’ llpeoplell, llbye", lllittlell, Hhuhll, llmonica"

e Topic 3:

"iss", "little", "phoebe", "actually", "quit", "whoa'", "listen", "maybe", "umm", "ac", "ok",

llguy

ll7 "Stupid", Hnlake", llnigl,ltll7 lltimell’ "Wait", "eeH’ "bS", llphll
e Topic 4:

"people", "stuff", "chandler", "remember", "stop", "love", "fine", "need", "talk", "wow",

n n

"sure", "hello", "man", "thing", "monica", "yes", "thought", "dr", "0o", "umm
e Topic 5:
"man", "stop", "huh", "chandler", "gotta", "somebody", "money", "minutes", "coming",

lldull, "WOI‘k", Hummﬂ’ "thank", ”Sa,y", lljanicell’ "time”, erelll7 chingll’ lllove"’ "Wanna”

e Topic 6:

n n n

"play", "people", "thank", "wow", "ben", "knows", "man", "maybe", "say", "umm", "be-

heVe”, "phoebe”, Hokll7 ”Chandler", Hg.uy,ll7 lllovell7 llhall, lllittle!l7 llyesll’ llahll

e Topic 7:
"I.OSS"’ ”hoursll’ "thing", "guy”’ ”Wait”, Hra", "Ch"7 "big"7 "thank"’ "ra’chelll’ "gottall, "huh"’

"kneW", Illail7 Htimell, lllovell, "Ok”, Ilphoebeﬂ’ "Say", llumll

In the case of IEMOCAP:

e Topic 1:
"child", "man", "tell", "thing", "lot", "drunk", "point", "okay", "people", "time", "flash-

hght"7 "Sllap", lljobll7 llyesll’ "I‘eally", ”think”, Hgoodll, llgotll7 Hlittlell’ llyeahll

e Topic 2:
"phOne”, ”yeah”7 ”newﬂ’ "tellll7 llline", Ulet", llthingll’ "help"’ "id‘ll7 Hlook”’ ”WOI‘k", ”yeS"’

n n

"got", "maybe", "uh", "sir", "sorry", "need", "um", "okay"

e Topic 3:

"killd", lllarryll7 "Care”, "a,Sk", Ugoo(ill7 llgotll7 llgodll7 "10ng", Ugirlll7 llfatherﬂ7 lllaughterll’

n !

"years", "annie", "marry", "really", "time", "yes", "business", "think", "yeah"

e Topic 4:
"think", "years", "supposed", "let", "champagne", "thing", "guess", "feel", "ask", "thought",

"remember", "things", "come", "got", "okay", "time", "look", "yeah", "said", "fish"

We observe that in the case of MELD, a lot of the most common words for each topic are

words used in oral everyday speech ("uhh", "ah", "huh" etc.), while there are also a lot of common
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words between the different topics. This could mean that, because of the origin of MELD, which is
everyday conversations from a TV series, the dialogues are not as sophisticated and do not always
have an apparent topic or purpose and therefore topic modeling does not provide useful information.
IEMOCAP, on the other hand, having been explicitly designed for the emotion recognition task,

could include text more suitable for topic classification, with richer topic-specific information.

Table 6.15. Emotion distribution per topic for MELD dataset, for train data.

’ Topic H Joy \ Surprise \ Fear \ Anger \ Disgust \ Sadness \ Neutral ‘
1 0.169 0.121 0.025 | 0.117 0.022 0.056 0.490
0.168 0.115 0.023 | 0.149 0.032 0.066 0.447
0.192 0.108 0.031 | 0.110 0.029 0.084 0.446
0.143 0.123 0.035 | 0.102 0.027 0.070 0.498
0.178 0.114 0.023 | 0.109 0.026 0.079 0.470
0.195 0.138 0.028 | 0.082 0.036 0.056 0.466
0.179 0.120 0.021 | 0.112 0.016 0.074 0.479

| O T | W DN

Table 6.16. Emotion distribution per topic for MELD dataset, for test data.

’ Topic H Joy \ Surprise \ Fear \ Anger \ Disgust \ Sadness \ Neutral ‘
1 0.194 0.103 0.043 | 0.100 0.026 0.057 0.479
0.154 0.123 0.045 | 0.123 0.031 0.062 0.462
0.190 0.130 0.030 | 0.083 0.035 0.073 0.459
0.202 0.122 0.025 | 0.082 0.032 0.038 0.500
0.118 0.131 0.032 | 0.163 0.036 0.072 0.448
0.168 0.106 0.033 | 0.121 0.035 0.067 0.470
0.189 0.158 0.031 | 0.119 0.025 0.033 0.444

| O T | WD

Table 6.17. Emotion distribution per topic for IEMOCAP dataset, for train data.

| Topic || Anger [ Excitement | Frustration | Happiness | Neutral [ Sadness |

1 0.192 0.220 0.177 0.048 0.231 0.132
2 0.196 0.007 0.329 0.030 0.315 0.123
3 0.089 0.216 0.180 0.199 0.217 0.099
4 0.048 0.063 0.220 0.153 0.221 0.296

Table 6.18. Emotion distribution per topic for IEMOCAP dataset, for test data.

’ Topic H Anger \ Excitement | Frustration \ Happiness \ Neutral \ Sadness ‘

1 0.168 0.005 0.298 0.040 0.366 0.123
2 0.152 0.157 0.165 0.161 0.249 0.116
3 0.118 0.101 0.320 0.024 0.195 0.243
4 0.190 0.120 0.158 0.088 0.301 0.143

Using only information-specific prompts versus using both task-specific and informa-
tion-specific prompts

Studying the different models employed with speaker- and topic-specific prompts, we can see
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that, for both MELD and IEMOCAP, using 40 prompt tokens that all change according to the
speaker or topic and no task-specific prompt tokens that remain the same for the whole train
set, yields inferior performance to that achieved by the models which use both task-specific and
speaker- /topic-specific prompts. This could suggest that utilizing the whole dataset, thus more
data, allows us to tune our prompt’s parameters more efficiently, in order to adapt our pre-trained
language model to the ERC task, and the extra information-specific prompt tokens can then be
used to additionally encode the extra speaker-/topic-related information, whereas when using only
speaker- /topic-specific prompts, the data per speaker or topic is not enough to train all of the
prompt parameters efficiently.

Hard classification versus prompt-ensembling

As analyzed in sub-section 6.2.2, in the case of topic, we experiment with choosing one topic-
specific prompt for each test utterance, the prompt corresponding to the topic to which the ut-
terance belongs with the biggest probability, and with using the probability of each topic being
the topic of the utterance, in order to perform a weighted averaging of the prompt weights of the
different topic-specific prompts (prompt-ensembling). Comparing the results for both methods, we
observe that prompt ensembling leads to equal performance for IEMOCAP and superior perfor-
mance for MELD, although only by 0.19%, leading us to the conclusion that prompt-ensembling
can be beneficial, but does not largely affect performance in the current setting.
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Chapter 7

Conclusions

7.1 Discussion

In this work, we explore the potential of prompt-based learning for the adaptation of a pre-
trained language model to the task of Emotion Recognition in Conversation (ERC). Prompt-based
learning has been proposed as an alternative to fine-tuning in the recent years, with the purpose of
reducing the training and storage resources needed for the very large pre-trained language models
(which consist of millions or billions of parameters) and has given rise to an increasing amount of
related research. There is still however limited work on the utilization of prompt-based learning
in specific tasks. We follow two approaches, performing extensive experiments on two popular
datasets in the field of ERC, namely IEMOCAP and MELD. To the best of our knowledge, at the
time of this thesis, there are no previous works in the field of ERC following a purely prompt-based
learning approach, with no tuning of the language model’s pre-trained parameters.

In our first approach, we aim to to study the applicability of prompt-based learning in compar-
ison to fine-tuning for the task of ERC and set a baseline for prompt-based learning for Emotion
Recognition in Conversation. For this purpose, we create a model which is based on a frozen
pre-trained language model and uses a trainable soft prompt, consisting of prompt tokens encoded
and optimized directly in the embedding space of the model. Using different prompt sizes, we
experiment with a simple model, whose only input is the dataset’s utterances. We also experiment
with commonly used methods in earlier work in ERC that aim to improve model performance
by encoding speaker-specific information, such as the prepending of speaker identity to the input
utterances as well as a multitask training with an auxiliary task of speaker-identification. We
compare our models with similar models that use fine-tuning instead of prompt-based learning, as
well as models with only a trainable output module. We conclude that prompt-based learning can
indeed be an effective method to adapt a pre-trained language model to the task of ERC, even
in cases where the input format is very different from that of the pre-training phase, such as the
case where the speaker identity is prepended to the utterances. A factor affecting performance
seems to be the prompt size, with prompts of size neither too big nor too small leading to a better
performance. We see that neither prompt-based learning nor fine-tuning is always preferable, with
each method’s performance depending on the dataset and specific model architecture or input
format. In addition, we can confirm that prompts do help the model predict emotion correctly,
with our prompt-based models prevailing over the models with only a trainable output module.
Finally, regarding the usage of multitask learning with the additional speaker-identification task,
we conclude that it does not seem to benefit our models neither in the case of fine-tuning nor in
the case of prompt-based learning, with the latter leading to substantially worse results.

Our second approach aims at integrating additional information, useful to the task of ERC,
directly through prompts, which we call information-specific, and not through changes in the

input format or pre-trained model architecture. We create again a prompt-based model based on
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a frozen pre-trained language model, which uses trainable soft prompts, but this time we use two
prompts: The first is task-specific, aimed at adapting our model to the ERC task and trained on
the whole dataset, while the second is information specific and changes according to the additional
information for each current utterance. We experiment with topic-specific and speaker-specific
prompts each trained for a different speaker or topic. A benefit of our approach is that it is
information-agnostic, in the sense that it can be used with different kinds of information that
may be deemed useful, by directly extending the logic presented in the current work for speaker
and topic information. Through our experiments we conclude that prompts can indeed encode
additional, useful to a task information, improving model performance. We can also infer that the
combined use of a task-specific and an information-specific prompt is beneficial, as including only
the latter leads to a drop in performance. We attribute this to the fact that task-specific prompts,
trained on the whole dataset and thus having "seen" more training data, are important for the
effective adaptation of our model to the ERC task.

Overall, we conclude that there is potential in using prompt-based learning for the task of
Emotion Recogntion in Conversation, especially considering the fact that it is more leightweight
than fine-tuning. We therefore believe prompt-based learning for ERC to be a field worth being
further researched, in order to determine the optimal architecture and pre-trained model that will

allow prompt-based models to reach a state of the art performance in the task.

7.2 Future work

With the end of this thesis, we wish to provide an overview of some potential directions that
we believe to be worth exploring, regarding prompt-based learning for Emotion Recognition in

Conversation. We would like to suggest the following aspects:

e Combination of different information-specific prompts: In our work, we use only a
speaker-specific or only a topic-specific prompt, together with a task-specific prompt. A dif-
ferent approach would be to combine both the speaker-specific and the topic-specific prompts.
The optimal way to combine the prompts (through weighted sum, concatenation, etc.) could

also be investigated.

e Sound-based speaker-clustering: In our work we train prompts for some pre-determined
speakers that are present in both the training and the test set and group the rest of the
speakers into only one speaker-group. We then use this pre-determined grouping in order to
determine the speaker-specific prompt to be used in test-time. However, this means that we
cannot handle unseen speakers in the test set effectively. An interesting approach would be
to cluster unseen speakers to one of the speakers or speaker groups for which we have trained
a prompt, based on the audio that corresponds to the speaker’s utterance. We can utilize
this audio to extract speaker-specific embeddings and then use these embeddings to perform
the desired clustering.

e Combination of prompt-based learning and fine-tuning: While we have followed the
approach of keeping the pre-trained part of our model frozen in order to keep our method
lightweight, the usage of a prompt and the tuning of the pre-trained model’s parameters
combined is often used in some tasks, and found to improve performance. The potential
of the combination of the two adaptation methods with the purpose of achieving optimal

performance could thus be attempted.

e Transfer learning for prompts: Previous work in the field of prompt-based learning has

used transfer learning for prompt initialization, reporting beneficial results [36]. An approach
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7.2 Future work

could thus be to train our model on a related task, and then use the trained prompt as the
initial task-specific prompt embeddings for the task of ERC. The speaker-specific prompts

could also be pre-trained in a speaker-related task such as speaker-identification.

Experimentation with different pre-trained language models: While we have worked
with BERT, many approaches in ERC work with RoBERTa, BART, or other language mod-
els. To obtain a better insight of the effect of prompt-based learning for the adaptation of
pre-trained language models for ERC, a variety of language models, with different architec-

tures and sizes could replace BERT in our work and more experiments could be performed.
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FFNN
FFNNLM
FN
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GPT
KNN
LDA
LM
LSTM
ML
MAE
MLP
MSE
NLI
NLP
NSP
PCA
ReLU
RNN
RNNLM
RTE
TF-IDF
TN

TP

QA

Artifical Intelligence

Bidirectional Encoder Representations from Transformers
Convolutional Neural Network

Deep Learning

Document Term Matrix

Emotion Recognition in Conversation
Feed-Forward Neural Network

Feed-Forward Neural Network Language Model
False Negative

False Positive

Generative Pre-trained Transformer

K-Nearest Neighbours

Latent Dirichlet Allocation

Language Model / Language Modeling

Long Short-Term Memory

Machine Learning

Mean Absolute Error

Multi-Layer Perceptron

Mean Squared Error

Natural Language Inference

Natural Language Processing

Next Sentence Prediction

Principal Component Analysis

Rectified Linear Unit

Recurrent Neural Network

Recurrent Neural Network Language Model
Recognizing Textual Entailment

Term Frequency - Inverse Document Frequency
True Negative

True Positive

Question Answering
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