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Abstract

Image-based 3D reconstruction addresses the problem of generating 3D repre-
sentations of 3D scenes given overlapping 2D images as observations. It is one
of the fundamental topics in photogrammetry and computer vision, counting
many decades of research. In recent decades, many robust algorithms have been
introduced for pixel depth estimation and 3D reconstruction, achieving great
results in various applications. However, there are still several open challenges and
space for improvement toward efficient, complete, and accurate 3D reconstruction
in real-world scenarios. Geometric 3D reconstruction is closely related to scene
understanding, another hot topic in computer vision research that has seen tremen-
dous growth due to the recently developed deep learning algorithms. Indeed,
advanced scene prior cues can potentially support efficient 3D reconstruction and
vice versa. However, semantic reasoning directly in the 3D space is non-trivial
mainly due to the limited availability of training data and the computational
complexity; on the contrary, algorithms for 2D semantic segmentation are mature
enough to obtain robust results, and the existence of large-scale datasets facilitates
the generalization of the trained models. In this dissertation, both 3D recon-
struction and semantic segmentation are comprehensively studied and interlinked;
the main open challenges and limitations are identified, while innovative and
easy-to-implement solutions in real-world scenarios are proposed.

In the field of semantic segmentation, a new benchmark with GT semantic maps
of pixel-level accuracy for historic building facades is introduced, 3DOM Semantic
Facade, acknowledging the lack of existing, high-resolution benchmarks for similar
purposes. Using this benchmark, a straightforward pipeline for model training
based on state-of-the-art learning algorithms is proposed, and the inference results
are experimentally evaluated on unseen data. Moreover, a new functionality is
built upon the open-source and broadly-used MVS pipeline OpenMVS to enable
label transfer from 2D to 3D, yielding semantically enriched dense point clouds.
At the same time, selective (class-specific) reconstruction is made possible based
on the semantic label of each scene pixel; in this way, the reconstruction of only
the areas of interest is enabled according to the needs of each application. These
functionalities are domain-independent and can, thus, be generalized in every
MYVS scenario for which semantic segmentation maps are available.

Regarding depth estimation and reconstruction, this thesis focuses on the multi-
view stereo (MVS) part of the 3D reconstruction; it proposes methods to integrate
advanced scene priors in the process in order to obtain high-quality and complete
3D point clouds. Depth estimation typically relies on correspondence search based
on visual appearance between image pixels and is commonly measured using
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photometric consistency metrics. A variety of robust algorithms exist for efficient
correspondence search and subsequent depth reconstruction for both stereo (two-
view) and multi-view scenarios. Yet, certain limitations regarding the geometry of
the scene (slanted surfaces, occlusions), material properties (repetitive patterns,
textureless, reflective, or transparent surfaces), and acquisition conditions remain
challenging. The main goal and objectives of the thesis refer to the development of
novel practical approaches toward confronting the inevitable matching ambiguities
in large, non-Lambertian surfaces due to the nature of the photometric consistency
costs.

The first proposed method exploits semantic priors to indicate important cues for
the 3D scene structure. Thus, a novel strategy is proposed to guide the depth
propagation in such challenging surfaces under a PatchMatch-based scenario
using RANSAC-based plane hypotheses in the 3D space. Then, a novel, adaptive
cost function is introduced to leverage the prior hypotheses with the standard
photometric cost and adaptively promote more reliable depth estimates across the
image. During the experimental evaluation on the ETH3D benchmark as well as
on custom scenes, the proposed algorithm achieved constantly better results than
the baseline method in point cloud completeness while not sacrificing accuracy.
Given the growing availability of semantically segmented data, this approach
can be implemented in a variety of scenarios, indoor and outdoor. However, in
real-world applications, it is not always trivial to obtain such semantic cues for
every scene; a large amount of additional GT data may be required, and model
training or fine-tuning is often a laborious task. Thus, an alternative, generic and
domain-independent solution is also proposed, guided only by local structure and
textureness cues. Based on quadtree decomposition on the image, groups of pixels
with similar color attributes are grouped together. Similar to the previous method,
planar hypotheses are extracted in 3D and guided by the quadtree blocks. The
adaptive cost function is also used here to support PatchMatch depth propagation.
Results on the entire training and test set of the ETH3D dataset demonstrate
the effectiveness of the proposed approach and show a clear improvement in
performance scores with respect to the baseline method while being competitive
with other state-of-the-art algorithms. To further prove the applicability of the
new method under varying scenarios, two more custom datasets were considered,
on which similar improvements were achieved. The proposed methodologies are
integrated into the well-established, open-source framework OpenMVS to promote
usability and reproducibility.



Extetopevn Ilepiindmn

H tpiodidototn (3A) amotinwon tou yheou anotehel éva anuovTind epeuvnTind
AVTIXEIUEVO TOCO GTNY EMCTAUN TS POTOYPUUUETEIIC OGO XaL TNV OEAUCT) UTOAO-
YotV (computer vision), mou Bploxer TAndea epappoy®dy dnwe 1 TEXUNPiwon
uvnuetwy, n onuovpyla 3A yoeTtdv xan ngloxmy Swluwy digital twins, n autéyo-
TN TAOHYNOT, O EVIOTUOUOS, 1) ELXOVIXT XU EMOUENUEVT TEAYHATIXOTNTA, UETOEY
dhhwyv. T tedeutaleg Bexoetieg, €youy avamtuylel didpopol acUNnTAPES Yiol TO
o%OTH AUTO, OTLS Yl TopddEeLy U oL oapwTéc laser (laser scanners), wotdoo, n 3A
avaxataoxevy| and Pnpraxée exdvee (image-based 3D reconstruction) mopopéver
ULOL ATOTEAEOUATIXY), EVEEMS OLUBESOUEVT X YounAol xo6ctoug uédodoc. T o
AOYO auTO, TIC TEAELTAUlES dexaETieg €youv mpotadel ToAOl ahydpLiuol Tou GToyE-
bouv oTn OnuoupYio 3A HOVTEAWY amd EMXAAUTITOUEVES EXOVES, ELTE UE TN HOPYY
VEQWY onuelwy elte wg Oyxot 1) empdveleg. llap'dha autd, 1 TAYeng xou axpBhg
OVOXATOOHEVY| TIORUUEVEL EVOL HEPLXWE GAUTO TROPBANUA, EWBIXE OTNV TEPITTWOT TOU
TAL TPOG ATOTUTWON AVTLXEIUEVA TEQLAAUBAVOUY ETLPAVELES UE LOLUTEQO YEWUETELXS,
EAOLOUETEIXG 1) PO YopoxTNELo Tixd xou ot ouvdfixec AMidme (A.y. potioude, Y-
vieg Mdme) Bev elvan Wovixés. Lty 3A avoxotaoxeur] dtoaxpivoviar 800 Pooixég
dadixaoies, n Aopty and Kivnon (Structure from Motion, SfM) xou 1 ITohueixovixn
Yuvtadtion (Multiple View Stereo, MVS). Ov ahyédprduor SIM mpoteivouv Aoelg
Y10 TNV QUTOUATY) €0y WYT| X0 GUYTOUTION YUEAUXTNRLO TV GNUEDY PETAE) TWV EL-
XOVWYV UE TOUTOYEOVT] OVOXATAOXELY) TOUG GTOV 3A Y(OP0, UE GXOTO TOV UTOANOYIOUO
TWV TEOGAVATOMOUNDY TWV EXOVKY, TOU OE AUTH TNV TEPInT®on unopel vo eltmiel
OTL looBUVOEL PE ToV ayyYAwd Opo camera poses. H Swdicocia MVS, and tny
GANT), 0pOREd GTNY TUXVT| OVAXUTOGKELY) TOU 3A Y MPOU Xal GUVETKOS GTY) dNULOUE-
Yiot 3A povtéhwy, cuvtautilovtag, av eivor e@uxtd, xdie exovootolyeio (pixel) xou
Aopfdvovtog TGP OAEC TIC ETUXAAUTITOUEVES EXOVEC.

Toautdypova Ue TNV 3A AVOXATACHELT|, TO EVOLAPEROV TNG ETUC TNUOVIXAC XOWVOTNTAS
€yEL TpboPaTa TPOCENXVOEL X0t 1) «<xatavonomy tou 3A yweou (3D scene under-
standing) eite péow exdvov elte aneudelag oe 3A povtéha. Méhota, to tTedeuTala
Yeovia, 1 3A avaxataoxeur cuy v cuvdEsTo oTnY PiBAloypapio ue To scene under-
standing, xou mo cUYXEXPWEVY UE TN oNUActohOY X XaTdTunon (semantic segmen-
tation) xau aviyveuon (object detection) twv avTixeyévwy xou avtpetwrilovio ot
%06 mhaicto. Mehéteg Belyvouv OTL 1) ONUAGLOAOYIXY| GUGYETION TWV OAVTIXEWEVKY
TOU YWEoL uropel va fondrioet TNV 3A aVaXATACHELT| OE TEQITTWOELS TOU 1) YEWUE-
TEWX X PUBLOUETEIXT| TANEOGOpla Bev elvor opxeTr. Axdua, Yo TETold GUCYETION,
umopel vo dnutovpynoet, Tehixd, 3A povtéla mou Yo eUnEpIEYOuY AUTH Tr CNUAGCLO-
Aoyt mAnpeogoplo xon Yo avolyel To Bpdpo, pe autd Tov TeOTOo, Teog To 3D scene
understanding. Koatd tn Sudpxeio tng teheutaiog dexaetiog, €youv yivel onuovtixd
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Briwoto o€ auTH TOV EPELVNTIXG TopEd, XaHDC 1 TEYVOAOYIXT| TEOOBOS XAl 1) ONOEVOL
au&avouevn UTOAOYIOTIXY Loy UC €xel empépel onuavTixéc eeAielc oty unyavixy
udinon (machine learning), xou mo cuyxexpwéva otn Snuovpyio wovtéAwy Bod-
g unyavixhc pdinone (deep learning). Qotdoo, n edpeon evéc alyoplduou mou
o elvon eloou anoteleopatinde oe dapopeTind nedia epopuoydvy (domains) etvou
OXOUAL UL OVOLXTT| TEOXANOT).

H rapotoo Statpdr) pehetd Sie€odind 1o mpdBinua tne molvewovixfc (multi-view)
GUVTAOTIONG XL XT EMEXTAGT], TOU UTOAOYIOHOU Tou BEoug Xal TNG AVaUXATAOHEUTG
(depth estimation and reconstruction) ye pedédouc MVS. Ilapddinia, mporypa-
TEVETOL TN ONUUCIONOYIXT] XATATUNOT] EXOVWY Xl TEOTEIVEL TpwToTUTEG PEVOOOUG
yioe TV o&lomoinom auThS TNG TANEOPOEIAS XATd T OLEIEXELX TNG TOAUELXOVEIXAC O-
voxataoxevic.  ‘Oheg ou pédodol mou meprypdpovton otn Swteld) otneilovion oe
open-source aAyoplduoug, SlEVPLVOVTAC TIC AELTOURYIEC TOUC ol ETMEXTEVOVTUC TIC
duvatotntéc Touc. To elooywyd xepdhono (Kegpdhao 1) teprypdpet cuvontixd to
mhadolo TNe BlatelBhc xon Tar xivnTea Yiol TNV CLUYXEXEWEVY €peuva xou Topouctalel
TOUC EMPEEOUC GTOYOUS X0l TIC TEWTOTUTIES TNG.

YyeTxd Ue ToV UTOAOYIGUO Tou Bddoug, apyixd, YiveTon extevAc PiAtoypapixy| €peu-
va 010 TEdlo TNg ouvtadTiong emdvwy, Zextvavtoc and T dewxovixt| (two-view)
TeplnTwon, dnhadn evog xou Yovo otepeolelyous, xou ETEXTEVOVTAS TO TEOBATUO
otnv todvexovixt| (Kepdhowo 2). Etot, neprypdgpovton Paoéc Yewpntinéc évvoleg
X0l TEOUGLELOVTaL GUVOTITIXG OL TIO BLABEBOUEVOL OAYORLIUOL, Xol THUTOY POV EVTO-
miCovton Ta faocixnd Toug Gpta xou oL teploplolol. AuTy| 1), 660 TO BUVATOV TANEEC TERN,
BiBAoypapuxr Epeuva amoTeEAE] TAUTO POV XL EVOLY ATO TOUS GTOYOUS TNG OLATEBNS,
HE OXOTO TNV XATAVONOT| TOU TEOBANUITOC, TWV LOLUTEROTATWY X0k TWOV SLIPORKY
peTOE) TwV oAyoplduwy, 1000 TwV TUAMOTERWY OGO Yol TwV OUYYEOVWY, Tou Ba-
otlovtan eite oe ouufoatixéc uedodoug eite oe uetddoug Pardide unyavixng pudinong.
LNy Teaty HaTiXOTNTA, To TROBANUA TNE TOAUEXOVIXTE cuvTalTong otnelleTton oTig
(Bleg Yepelmdelc apyéc pe To avtioTolyo tng diexovixic. ‘Eva Pacind xowod yopo-
XTNELOTIXG XU 0TI B0 TEPITTWOoELS elvor avou@Boia 1 xadouth cuvTadTIoN TWV
pixel, mtouv cuvAdwe Tpayyotonoeitar ue Bdon Ty onTier eupdvion (visual appear-
ance) evoc nopoipou cLYXEXPWEVOU PeYEdouc YUpw and To mpog eétao pixel
TNV EMOVA AVIPORAC Yol TOU avTioTolyou atny ewxéva avalrtnong. o tov umo-
AoYIoUO TNS opotoTNTAC UETAdD TwV 800 TopadlpmY YENOLLOTOLOUVTOL TUPUUETELXS
1 Un mopaueTeid uétpa ogotdtTnTos pe Bdomn xuping Tt padlouetpla (photometric
consistency), 6nwe 1o ddpotopa Twv andhutwy Swpopwy (Sum of Absolute Dif-
ferences - SAD), 1o dlpoiopa TV TETPAYWGVOY TV omoAITwV Sapopdy (Sum of
Squared Differences - SSD), o cuvteheotic ouoyétione (Normalized Cross Cor-
relation - NCC), peto€0 dAhwv. Autd to uétpo ogotdtTntag cUVADKLS elval apxeTd
ATOTEAECUATIXG O ETULPAVEIES UE LPT| xou YeVxd near-Lambertian meployée, ahhd
aBuVaTOLY Vo Bpouy aLOTIOTEC AUGELS OE TEPLOYES UE OUOLOYEVN UGT| 1) OVOXAAO T
AEC Ao OLUPAVELS ETLPAVELEG AOYW TV TOANATAGY TOTUXDY ENAYICTLY TOU 001 YOLY
oe oodpeec ouvtaTione (matching ambiguities). Tic tehevtaiec dexoetiec, yia
TN Swodxacio cuvtadTiong Ye Bdorn autd To uétea, €youy avamtuyVel TOAAOL oh-
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YopLipor Tomxrc ouvtadtione (local algorithms), xadohixic ouvtadtione (global
algorithms) émwe xou nui-xodohxfc cuvtadtione (semi-global). H xdde pédodoc
€YEL TAEOVEXTAUATO X0l UELOVEXTHUOTA, OUWS OAEC XAVOUV CUYXEXPHIEVES TOQOO-
YEC Yo TOTUXT| OUOAOTNTA, Xat €T0L, GLVHYWS aBUVATOUY Vo UTOAOYICOLY GWOTA
10 Bddoc oe mepntoec xeEXAévey empavelwy (fronto-parallel surfaces). Ilo-
edAANAa, ol TeptocdTepeg uédodol atnellovtal ot dnuovpyio TN emovoualouevng
<EOVOC TOU YOEoL TV Pn@laxmy tapodidiewyvy (Disparity Space Image, DSI),
YLor ToV EREY Y0 OAWV TeV TIovKY TGOV TopdAiaing (Bdouc) yio xde pixel, plo
OLadaolar TOLU AmMAUTEL PEYSAY) UTOAOYLO TIXY| UVAU).

‘Ouwg, 1 mohuexoviny| avaxotaoxeur] dev uropel va Yewpniel amhn yevixevon tng
detxovixic dladixactog, xadog undpyouy xdnoteg onuavtixég dlagopéc. H neplntw-
omn evog xou uovo Lelyoug exovey, cuvidwe mepthopfdvel yewuetpieg Adng ue
Uxeod pnxog BAomg, EVE 1) TOAVEXOVIXT| TERITTWOT 0TS OUYYPOVES EPUPUOYES CU-
Y V3 apopd GE TO ATAXTY YEWUETEIO UE UEYIAES BLopopéc ot Ywvia Adng 1 oxdua
xan oty xhipaxo.  Ov akyoprduor MVS elvar Aoimdy oyedIaouévol Vo AV TIIETw-
Tlouy TETOLEG TEPLTTOOELC XU ATAUTOUY TNV TREOCEXTIXY ETAOYT TWV XUAVTEQWY
ouvatev miavey Ceuydy, wa dwdxacta tou ot diedvh BifAloypapio avapépeTo
xat w¢ visibility reasoning. Axéun, n Unopdn theovalovohy TapaTnEHoewy, xadng
70 {010 onueio Tou yweou cuvlng TEOBIAAETAUL OE TEPLOCOTERES amd BVO EIXOVEC,
Telvel va Behtiwdvel v axplBela utoloylopol tou Bddouc. Tautdypova, ol cly-
xpovol ahyoprduor MVS, éyouv tn duvatdtnta vo unoroyilouy o Badoc ywelc va
€yel mponynUel EMTOAXY ENOVICUCTACT TWV EMOVKY, Wa Bladixacio Tou cuviiwg
anoteAel avaryxalo tpobnddeon otn dietxoviny| TepinTwon.

Méow authc g uerétng, ool eetdotnxay Slelodixd ol Swndéatuol ahyodpripol
xon olohoyinxay T TASOVEXTHUOTO XAl TO UELOVEXTAUATA TOUG, ETMAEYUNXE Vo
yenowornomndel o ahyopriuoc PatchMatch, w¢ uio olyypovn xou amoteheoyotiny
Moo mou otn oiedvr Bihoypagio Yewpeiton state-of-the-art xou epopuoletan oe
Ttodéc BBhotixec ehedepou hoytouxol (open-source libraries) (Kegdhouo 3).
O olyoprduoc PatchMatch Bacileton otnv mohd amhy napadoyr| Tng TomuxAc cuvo-
yhc (local coherency) tng eévac xou €yer anodewyVel Wiaitepa anoteleopatinde
1600 ot axpifela 600 %Al GE YPOVO UTOAOYIOUOUD To TEAEUTOLO YEOVIAL ZEXVOVTOG
amd tuyoles Tée, urtohoyilet to Bddoc xou Tov TpocavatoMoud (normal) tou xde
onueiou 67O YWOEO YeNoyLoToWVTUS ToTXd epantdueva Topddupa (local tangent
windows). XOpgwvo pe v nopadoyh e tomxic cuvoyhic, Yertovxd pixel Yo
Telvouv va BiEmovTon amd opakég peTaforéc Bddoug, xau €tot, ue Bdorn xdmoto wotifo
petddoone (propagation scheme), ofiémiotec TWée, 1600 Bddouc 6oo xon Tpocava-
TohMopol (normal) Siabidovtar otar yertovind pixel. Auti 1) Soduxacio, av o oAy,
€yel amodetydel 6Tl AelToupYel ATOTEAECUATIXG X0 OE TRUXTIXES EQUPUOYES, ELOLXA
ue eodveg uPnirc avdhuong. O akydprduog PatchMatch eivon €€ opiopol amah-
Aarypévog and to fronto-parallel bias Aoyw tng yerjong twv local tangent planes
xat amogedyel Tr dnutovpyia DSI, 800 yopoxtneioTixd mou tov xahotolv Wialtepa
AVTAYWVIG TIXO OE TEOS TIC UTOAOLTES UEVOB0UC TOU avapeépUnxay TopATAve.
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LYETUNE UE TN ONUACIONOYIXT XUTATUNOT), dpey xS UeAeTRONXE 1 oYeTNY PUBAoYEO-
pla, divovtag walteprn Bdorn otoug olyypovoug akyopliuoug Pordide umnyovixhc udin-
one. To Yewpntind undBadpo yhpw and to vevpwvixd dixtua (neural networks) mo-
eouUGLALETaL GUVOTTIXG, BIVOVTOC EUPATT] OTIC APYITEXTOVIXES TIOU Efval OYEBIUOUEVES
YL ONUACLOAOYLXY) XUTATUNOY OE EOVeC xan oTa dladéotua benchmark cdvoha
dedouévwy (datasets) yio QOTOYPUUUETEMES EQUPUOYES Xou EQUPUOYES bpaong u-
rohoyiotwyv. Katdmy, evtonilovtag ty énhewn otn obyypovn BiBhoypapia evog
benchmark upninc avdluone yia onuaciohoyixh xatdTunon o TeocdPElC Lo TopL-
%WV xTnplov, tpotelvetan éva véo benchmark dataset, to SDOM Semantic Facade,
Tou TepLEYEL 227 edvec LYMAAC avdhuong pe avticTolyoug oindeic onuacloloyi-
%8 xatateTunuévous ydetes (segmentation maps). Xto 3DOM Semantic Facade
droywpilovtar ot e€hc xatnyopiec (classes): tolyoc, mapddupo, tépTa, oLEAVHS xou
EUTOdlo. XTn cLVEYEL, TEptypdgpeTal W state-of-the-art dwdixacio faciopévn otny
apyrtextovixt) U-Net yio tnv exmaldeucn evog alyopituou mou unopel vo tpoBAénet
™V xatnyopta Tou xde pixel oxdun xou oe dyvwota (unseen) dedopévo. H mpotet-
vouevr dadicacto aflohoyeiton ¢ Teog Tor ahnir) dedouévar xou ETTUYYAVEL UPNAL
nocootd emtuylac (precision, recall, IoU score etc.). Iapddhnia, avarntiooeton
xan mpotetvetan Wior p€Yodog yior TNV a€loToINoN TWV XATATETUNUEVOY EXOVWY GTNY
3A avaxataoxeuy| (semantic photogrammetry). Ilpdyuatt, yenowonowdvrog, Tou-
TOYPOVAL UE TIC TEAYMATIXES ELXOVEC X0 TI AVTIOTOLYEC XATATETUNUEVES, OlveTon 1)
BUVTOTNTAL VoL UTOAOYLO TOUY ameuTelog XATATETUNUEVA TUXVE VEPT OTElwY, dNAadY
vépn ToL omolo eunepLEyouy, uall ue T YEOUETElO, Xou TN ONUACIONOYIXY) TANEOYOpEio
yioe Tov 3A ywpeo. Auth 1 onuactoloyixy| TAnpogopia utopel vo yenotportondel xo
YL TNV ETAEXTIXT] AVOXUTAOHEUT] UOVO TWV TEQLOY WV EVOLAPEROVTOS, amoXAeloVTIC,
Ay amd TN dladuaota avaxataoxeunc Ol ta pixel Tou avAixouv otV xatnyopia
«ovpavogy. H pédodoc auth| Pacictnxe otn BiSAodrixn avoixtold xwmdwxa Open-
MVS, avanticcovtag xal EVoWUATOVOVTIG o auTy pio emrAéoy Asttovpyia yio To
OXOTO QUTO.

Avanoégeuxta, TEoxUTTEL 0 TEOBANUATIOUOS YOR® OO TO EAV XUk WS AUTH 1) ONUd-
crohoyr) Thnpogopia uropel va utofoninoet Tov xadautd unoloyioud Tou Bddoug,
WLodtepa 0TIC TROBANUATIXES TEQLOYES oL avapépinxay mapandve. Ipdyuatt, téco
%ot TN Owdpxela TG PUBAOYEUPIXAC EEEUVIC, GAAS XL TWV TEMTWY TELQUUATIXGDY
EQPAPUOYWY, DL TWINXE OTL EVal A TOL O OTUAVTIXG Xak GAUTOL TROBAAUTA OTOV
umoloylopd tou Bédoug ebvor 1 Uopdn acageldy ot cuvtation (matching ambi-
guities). To mpdfinuo autd, nopouctdleton TON) CLUY VA GE TEAXTIXES EQUPUOYECS,
xou 1 Thetonpla Twv state-of-the-art uedodwyv dev xatagpépvel va utohoyicel agLomi-
oteg TéS Badouc oe TEPLOYES Ywplc VPN 1) AVOXAACTIXES ETLPAVEIES, TEQITTWOOELS
TIOL TOA) GUY VA GUVAVTOVTOL OE EQUQUOYES ETUYELWY ATOTUTOCEWY, EGWTERLXWY Xl
e€wTepAY Ywewv. O ahydprluog PatchMatch, mou uviodetelton €8¢ yior Tnv moAu-
eLoVIXn avaxotaoxeun, 8¢ dlapépet amd Tic undloiteg state-of-the-art yedodoug oe
auTO, xS 0 UTONOYIoUOE Tou x6oToug otneiletar xan €6 oe cuvidn visual ap-
pearance metrics. 't 10 Adyo autd, 6T0 TAAloL0 AUTAS TNS LB TOPIXAC SlaTEBhC,
TpotelveTol Wal TEWTOTUTY u€V0od0g XaTd TNV omold, 1 oNUAcIohoYIXT] TAnpogopia
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YENOWOTOLEITOL YO TOV UTOAOYIOUO YEWUETEIXWY DECUEVCEWY, UE OXOTO VO OV TL-
ueTwmoTovy Tor matching ambiguities xau vo uTtoloyioTOUV MO AELOTICTES TUES
Bdoug xou Tpocavatolopol ot autéc Tic TpoPAnuatixéc nepoyéc (Kegpdhowo 5).
ITo cuyxexpéva, EMAEYOVTOL Ol GNUACLONOYIXES XATTYORlEC TTou elvon To Tdavo
VO TIEPLEYOUV ETLPAVELEC TOU UTOPOLY VoL TEPLYRAPOVY UE YEWUETEXE GYNUUTA GTO
YWEO, OTWS Yo ToEABEY A 1 xaTnyopia «Ttolyogy elvon mOA) movd vo umopel va
neptypagel pe 3A eninedo. AouPdvovtag ur'od udvo Tic TeoPforéc Twv pixel au-
TV TOV XATNYoRLOY oTov 3A ypeo, aviyvebovto eninedo ye tnyv yédodo Efficient
RANSAC. "Totepa, npotelveton pior véa, oOveTn cuvdpTnon x6GTOUS, TOU Ao-
Bdver uT'ddy OGO TNV LPLOTAPEVT TANPOPOpElo Yo Tol ETTEd, OGO Xou TNV TOTLXY
vy, wall pe 1o ovvniec xbotog cuvtavtione (photometric cost). O nepapatinég
eopuoyéc t6oo o benchmark datasets (ETH3D) 6co xou o€ custom dedoyéva,
amodeviouv o 6Tt 1 TpoTEWVOUEYY pédodog (semantic PatchMatch) unohoyilet o
a&Lomo e TWES Bddoug oTic TEOBANUATIXES TERLOYES, Ywpelc Vo uToleineTon oxpl3e-
lag oTic meployég e mholowa ugr. H uédodog cuyxplvetar ye tnv uédodo avagpopds
OpenMVS xodoc xou ye dhhoug state-of-the-art ahyopldpouc xou mapouscialet a-
VTAY WVIC TXT) AmOO00,.

[Topdho mou 1 mopomdve uédodog amodelydnxe anoteheoyotiny, unopel vo eQop-
HOCTEl UOVO OE TEQIMTOOELS TOU 1) GNUactohoyx| TAnpogopia elte elvon ex Twv
Tpotépwy Oladéoiun elte ymopel va e€ayvel edxola.  Autéd elvan apxetd mdavo
YU XATOLEG CUYXEXPWEVES €QUpUOYES, Waltepa yior exelveg yia Tic omoleg umdip-
yel Thdog dradéoiuwy dedouévwy Y exmaideuon. Me oxomd T yevixeuvon tng
ped6d0ou xou oe GAAES EQUPUOYES, TEOTElVETAL Lol BEVTERT), TEWTOTUTY Xal xadohxT
uédodog mou etvar ave&dptnTy amd TN onuactohoyixy ThAnpogopla, ahhd otneileton
oe unoVéoelc yia Ty tomuxy| dour| (local structure assumptions) (Kegdhowo 6).
ITio cuyxexpyéva, vroloyilovtar quadtree dopéc ndve otic ewxdvec. H edva yw-
pileton, dnhady, oe utoovvola (block) ue Bdon tnv tomxh ugh. To block autd
OLapépouv 6To UEyeog, xadg Uia TEPLOY T Y welg LPT TEpLYpdpETOL amd Eval UEYEAO
block evd meployéc pe mholota LY Vo elval «XATOHEQUATIOUEVESY OE TOMAGL ULxpd
quadtree block. Ilopduola pe moty, aviyvedovtow enineda otov 3A yoeo e T pédo-
oo Efficient RANSAC xou mpoteiveton tor Tomxd enineda var petodidovtan pe Bdorn to
quadtree block (quadtree-guided plane propagation), xdvovtog tnv nopadoyr| ot
yertovixd block mou €youv mapduol €T THY YEOUATOS eivon THoVG VoL avAXOLY
070 (80 Tomxd eninedo. Kou €6w, yenowonoteitan 1 odvietn cuvdptnorn x6GToug
Tou TEOTAUNXE TNV TEoNYolueVr uédodo e oxomd vo unofoninoel Tny uetddoon
aELOTO TV TV Bddoug xal tpocavatohlouol xotd tn didpxela Tou PatchMatch.
H npotewdbpevn pédodoc afiohoyeitan oe dhec i oxnvée (scenes) tou benchmark
dataset (ETH3D) (13 training xou 12 testing) xou oe custom dedoyéva, dmou no-
pouotdlel otadepr| Bedtiwon g uedodou avapopds, ol AVTAYWVIOTIXY amddoo
oe oyéon ue dAheg state-of-the-art uedoédoug, 1600 cuuBatinéc doo xou unyovixnc
udinong.

Or mopomdve yédodol npotelvouv xouvotoueg hooelc xau state-of-the-art otpotnyt-
XEC YLOL TNV EXUETAAAEVGT) TNS ONUACLOAOYIXTC TANEOYORINC GTNY 3A AVIXATACKELT
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xaL €ENEXTEVOLY TO TESIO EQUPUOYOY AXOUA XU OE TEQITTWOELC TOU QUTY 1) TANEO-
qoplo dev elvon drardéoiun. Egopuoctnray téco oc benchmark éco xo oe custom
OEBOUEVI TTRAYHATIXDY POTOYEAUUUETEIXOY EQUQUOYROY UE UTOCYOUEVA ATOTEAEGUO-
To. Amotelolv amAég, aAAd OmOTEAECUATIXES GUUBATIXES AUCELC TOU UTOEOUV Vol
€QapuocTolV o€ YeYdho eVpog eqapuoywy. H teheutaior yevixeupévn uédodog dev
e€opTdTan and To TES{O EQUPUOYTC OTKE GLY VA cupPaivel Ue Tig LEBdBOUS Unyovixig
udinong, etvon dnhadr domain-independent. Ov avertépw ahyodprduol avarntdydn-
XAV YENOLOTOLWVTAS AUGELS VoL TOU XMOOXA X0l EVELUATOUNXaY oTny BiAodrixm
OpenMVS xou eivan Slod€cuec 0TNY EMOTNUOVIXT] XOWOTNTA VLol TEQUTERPW UEAETT)
xan Pertiwoeic. Ta yevind cuumepdouato xou ot UEAAOVTIXES TROEXTACELS TTUPOUGH-
dlovton oto Kegpdhowo 7, pall ue 1o YeVixOTERO TAAGLO TG EPELVAS XOU TIC OYETIXES
ONUOCLEVTELC TNG CUYYEAPERS.
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Obtaining 3D representations of the physical world is a fundamental research topic
with numerous application fields spanning from mapping, autonomous navigation,
and localization to cultural heritage documentation and augmented or virtual
reality. Indeed, various research fields such as photogrammetry, computer vision,
robotics, and other engineering sectors aim to obtain realistic, precise, complete,
and visually pleasing 3D representations of scenes. A plethora of specially designed
sensors for this scope, both active and passive, have been developed in recent years,
such as specially designed camera systems, laser and structured light scanners,
which, mounted on diverse platforms, can be used to obtain data of various scales,
ranging from close-range laboratory measurements to airborne acquisitions.

3D reconstruction of scenes using multiple, overlapping images, often called
image-based modeling, is currently one of the most widely used and cost-effective
techniques to obtain such 3D representations. It has been a well-studied problem
and has seen tremendous evolution in recent years. Given the popularity of
camera sensors and the recently developed user-friendly software implementations,
image-based 3D reconstruction enables potentially everyone to generate realistic
3D digital replicas of scenes and objects.

Image-based 3D reconstruction aims to recover the structure of scenes given
overlapping projections of the 3D space on 2D images as observations. It typically
relies on correspondence search based on visual appearance between the images
and subsequent depth estimation and reconstruction of the matches. In principle,
it is inspired by the human vision system, observing the same scene from two
different viewing points, with the camera being the hardware equivalent of the
human eye. Humans are capable of perceiving effortlessly spatial information,
depth, and semantic cues for every observed scene, even if seen for the first time,
and subsequently employ knowledge interpretation. However, this straightfor-
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ward cognitive process of the human brain cannot be easily abstracted in a way
interpretable by computers.

Hence, extensive research has been conducted in the last decades for robust 3D
reconstruction from RGB images, in both photogrammetry and computer vision,
independently in the beginning, yet continuously converging recently. Researchers
have been trying first to understand the underlying theoretical geometric prin-
ciples in-depth and then implement robust algorithms to enable such a process.
Undoubtedly, some of the greatest problems have been undertaken accordingly,
and algorithms are now mature enough to provide reliable reconstructions even
in extreme scenarios, e.g., by exploiting the vast amount of unorganized images
available in the cloud and thus generating quality 3D reconstructions using crowd-
sourced images. Nonetheless, image-based 3D reconstruction is an inherently hard
and, by definition, ill-posed problem due to the information loss during the inverse
mapping from 3D to 2D. Indeed, various 3D scenes may result in the same set of
images; for instance, objects of arbitrary scales may be projected in the same way
on the images. Prior knowledge about the scene and the image acquisition would
be needed to fully pose the problem. Therefore, it can be said that despite the
great evolution of the methods, so far, among the developed solutions, there is no
general-purpose system, either based on conventional or learning-based methods,
that can efficiently and simultaneously tackle all challenges in 3D reconstruction
for real-world scenarios.

In fact, the problem of geometric 3D reconstruction is highly related to the broader
field of 3D scene understanding, i.e., the analysis of the important features of
the scene and its semantic reasoning using images or directly in the 3D space.
Extensive research has been recently conducted in computer vision regarding
scene understanding, mainly due to the advancements in artificial intelligence and
particularly in semantic segmentation using deep learning. Semantic segmentation
refers to assigning a semantically meaningful label (i.e., class) to each pixel or 3D
point of the scene, and numerous robust algorithms have been recently introduced
to the literature. Such high-level scene priors can potentially support image-based
3D reconstruction, especially in cases where plain geometric and visual appearance
information is not enough. Moreover, semantically segmented 3D models can
facilitate scene understanding; nonetheless, despite the recent advancements,
semantic reasoning directly in the 3D space is still a non-trivial problem because
of the computational complexity and the limited generalization ability of the
algorithms.

In the context of this doctoral dissertation, multi-view 3D reconstruction is
comprehensively discussed, acknowledging the open challenges and proposing
efficient and easy-to-implement methodologies to address them based on the
recent advances in the field. Advanced scene priors, semantic or structure-based,
are exploited in this direction.
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Figure 1.1: Overview of the image-based 3D reconstruction pipeline. Incremental
StM and MVS with depth fusion. Inspired by: [Schonberger and Frahm, 2016], data:
Fountain-P11 dataset, [Strecha et al., 2008].

1.1 Overview of image-based 3D reconstruction

Correspondence search and depth estimation have been thoroughly studied for
the stereo scenario (also called binocular or two-view), i.e., given only two images
of the same scene [Hannah, 1974; Yang et al., 1993; Kanade and Okutomi, 1994].
Consequently, the earlier approaches for 3D reconstruction referred to the two-view
scenario, e.g., [Longuet-Higgins, 1981]. Later on, the benefits of the redundancy
in the multi-view scenario have also been exploited for efficient and robust 3D
reconstruction [Szeliski and Kang, 1994; Beardsley et al., 1997], exploring also self-
calibration |Fitzgibbon and Zisserman, 1998; Pollefeys, 1999]. This progress led to
the development of algorithms able to process a massive amount of unstructured
data harvested from the internet [Snavely et al., 2006; Frahm et al., 2010; Agarwal
et al., 2011; Wu, 2013]. In the past decade, several non-commercial or open-
source solutions have been released to the public such as Bundler [Snavely et al.,
2006, VisualSfM [Wu et al., 2011; Wu, 2013], MVE [Fuhrmann et al., 2014],
OpenMVG [Moulon et al., 2016|, Colmap [Schonberger and Frahm, 2016] along
with commercial software implementations.

Efficient dense 3D reconstruction of rigid scenes can be divided into two well-
established workflows, namely Structure from Motion (SfM) and Multiple View
Stereo (MVS) (Figure 1.1). SfM searches the best image pairs based on the network
geometry and the scene structure and performs feature detection, description,
and matching among the images. Using abundant features and epipolar geometry
constraints, the relative camera poses, meaning the rotation and position in the
3D space, equivalent to the camera external and internal parameters, can be
estimated along with the projection of these points in the 3D space and be jointly
optimized using bundle adjustment. Given the camera poses and calibration,
MVS techniques aim to reconstruct, if possible, pixel by pixel correspondences in
the 3D space resulting in richer scene representations, i.e., dense point clouds or
3D surfaces/meshes. Each sub-step of this pipeline is undoubtedly a standalone
research field, and scientists are working towards optimizing each of them to
enhance the robustness of the results.
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1.1.1 Structure from Motion

Equivalent to the traditional image orientation process for an image block in
photogrammetry, SfM mainly aims to calculate the camera poses in the 3D space,
while recovering also a sparse scene structure. It tries to solve the correspon-
dence problem and identify invariant features across the potential overlapping
images, resulting in a scene graph to express the relationship between images and
scene points. Feature detection and description are commonly performed with
algorithms such as SIFT [Lowe, 2004], SURF |Bay et al., 2006], ORB [Rublee
et al., 2011], and AKAZE [Alcantarilla and Solutions, 2011|, or more recently with
learned descriptors [DeTone et al., 2018; Ono et al., 2018]. Once the features are
extracted, feature matching can be performed naively by searching all potential
correspondences exhaustively, following a standard brute-force approach or based
on techniques such as kd-trees [Muja and Lowe, 2009] and cascade hashing [Cheng
et al., 2014|. Good potential image pairs are considered the ones that have a suffi-
cient amount of common features between the two images. For image matching,
sophisticated solutions are based on vocabulary trees, e.g., [Nister and Stewenius,
2006 and global image descriptors to identify the most visually similar images on
a global level and even enable efficient processing of large-scale datasets |Agarwal
et al., 2011; Wu, 2013; Moulon et al., 2016]. Typically a geometric verification step
is needed to evaluate the putative feature matches and filter the non-overlapping
image pairs based on a geometric multi-view model, e.g., the homography or
the fundamental matrix models [Hartley and Zisserman, 2003] and robust fitting
methods such as RANSAC |Fischler and Bolles, 1981]. A valid transformation is
sought to map a sufficient amount of features between the images.

Images passing the geometric verification step are inserted into the scene graph;
given this graph, the reconstruction step can be performed in an incremental,
i.e., initializing from a two-view [Moulon et al., 2012; Wu, 2013; Schénberger and
Frahm, 2016] or global, i.e., as a joint optimization, fashion [Moulon et al., 2013;
Sweeney et al., 2015b|. Incremental reconstruction tends to be more robust in
practical applications [Stathopoulou et al., 2019] and is therefore often preferred
over global optimization |Schénberger and Frahm, 2016]. In an incremental
paradigm, starting from an initial pair, images are registered repeatedly to the
scene solving the Perspective-n-Point (PnP) problem using 2D-3D correspondences
of the previously registered images and calculating thus the camera poses, i.e.,
position in the 3D space and calibration, of the new images; minimal solvers
[Lepetit et al., 2009] RANSAC-based approaches are typically used here for outlier
removal. Once the camera poses are recovered, point triangulation [Hartley and
Zisserman, 2003| takes place, reconstructing the points visible by each view. New
images should have common points in the 3D space with the already existing ones.
New points are triangulated from each newly registered image. Finally, bundle
adjustment |[Triggs et al., 1999], performing linear refinement and minimizing the
reprojection error of the reconstructed 3D points on the images and is a core
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module of SfM pipelines for extra robustness, is commonly performed by the
widely-used Ceres solver [Agarwal et al., 2012]. For an extensive review on the
SfM algorithms, the reader is referred to [Schonberger and Frahm, 2016].

1.1.2 Multiple view stereo

StM typically yields an abstract representation of the scene consisting of few,
high-fidelity 3D points along with the camera poses. Multiple (or multi-) view
stereo (MVS) algorithms aim to generate a rich, dense 3D model of the scene in
the form of a dense point cloud or a triangulated mesh. A rough categorization
of the existing methods would cluster them into two large groups; some works
parameterize the problem in the image space, recovering the depth for every pixel,
e.g., |Goesele et al., 2007; Gallup et al., 2007; Campbell et al., 2008]. Other works
perform directly in the scene space, e.g., [Furukawa and Ponce, 2009; Héne et al.,
2013; Ulusoy et al., 2015; Zach, 2008|. That being said, this section is introductory
and does not aim to present a comprehensive taxonomy of the methods; the reader
is referred to Chapter 2 (Section 2.5) of this dissertation for a detailed review of
the algorithms and the respective challenges and limitations.

In a typical MVS pipeline, the robust estimations for the camera poses along with
the sparse points obtained during the reconstruction step are used as input. During
this process, the depth of, if possible, every pixel of the scene is to be calculated. In
the two-view scenario, epipolar geometry constraints simplify the correspondence
search by restricting the search space along one dimension. Several methods
have been developed for solving this correspondence search problem, either local
[Scharstein, 1994; Hosni et al., 2012; Bleyer et al., 2011], global [Faugeras and
Keriven, 1998; Strecha et al., 2004] or hybrid semi-global [Hirschmuller, 2008|
methods. Nonetheless, multi-view reconstruction is a more complicated problem
than the classic two-view approach due to the ray redundancy resulting from
the multiple observations and the strong occlusions. Many specially designed
algorithms have been developed to efficiently solve multi-view reconstruction in
recent years, achieving impressive results [Strecha et al., 2006; Galliani et al.,
2015; Schonberger et al., 2016]. In the last decade, the PatchMatch algorithm
[Bleyer et al., 2011] has been established as the standard MVS approach for its
robustness, efficiency, and scalability, and the most widely-used implementations
are based on it [Schénberger et al., 2016; Cernea, 2020; Xu and Tao, 2019]. The
PatchMatch algorithm, being a core part of this thesis, is extensively discussed in
Chapter 3.

1.2 Motivation and current challenges

Despite the widespread evolution of the algorithms, yielding complete, accurate,
and aesthetically pleasing 3D representations of a scene remains an open issue
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in real-world and large-scale applications. Although SfM pipelines typically give
robust solutions for pose estimation and sparse clouds, especially for proper image
networks acquired for the scope of 3D reconstruction, dense scene reconstruction
is still a great challenge. Indeed, finding dense pixel correspondences and robustly
reconstructing the depth in the 3D space depends on a sequence of variables; thus,
finding a solution that will simultaneously undertake all challenges is not trivial.
Research has been active in the field of depth estimation in both stereo and
multi-view scenarios in the last decades, with MVS being particularly interesting
also for practical, real-world applications in photogrammetry and computer vision.
Commonly, such image-based 3D reconstruction projects have high standards in
completeness, accuracy, and overall visual representation of the results.

MVS methods certainly provide more robust depth estimations than the two-
view scenario, given the redundant observations from the overlapping images,
resulting in generally robust reconstructions. At the same time, occlusions are
mostly handled properly based on several developed strategies. However, scene
and image acquisition properties can be critical; image network geometry should
sufficiently cover the scene of interest, minimizing the occlusions and optimizing
the intersection angles and the perspective differences between the images. As a
matter of fact, dense and properly acquired image networks tend to yield more
robust 3D representations. Image acquisition conditions such as illumination
changes can also negatively affect the quality of the results. Moreover, the
nature of the scene itself also plays an important role in the quality of the
reconstruction. MVS solutions work by definition with static scenes; thus, moving
objects cannot be reconstructed properly and typically result in noisy point clouds.
Traditional MVS methods [Strecha et al., 2006; Hirschmuller, 2008; Rothermel
et al., 2012] rely on global or local smoothness assumptions to establish pixel
correspondences and recover the scene depth. Hence, drastic depth discrepancies
and surface discontinuities are challenging, making it harder to estimate reliable
depth values around the crease edges. Such smoothness formulations often also
imply fronto-parallel surfaces (i.e. surfaces parallel to the camera baseline) and
fail to reconstruct slanted surfaces without additional cues (see Chapter 2 for more
details). Moreover, they typically construct memory-consuming cost volumes
since they evaluate the matching cost in every possible disparity and often require
depth range priors. The high memory requirements cause a severe scalability
problem since large-scale scenes are prohibiting in such scenarios. Plane-sweep
[Gallup et al., 2007] was the first approach to efficiently tackle the fronto-parallel
bias, yet global cost volumes were still computed. PatchMatch [Bleyer et al.,
2011] is a robust alternative to these limitations of the standard approaches; using
local planes, the depth can be recovered even for slanted scene surfaces. Reliable
depth estimates are propagated to their neighboring pixels based on the natural
spatial coherence of the images, skipping the computationally expensive global
cost volumes and the requirement for a pre-defined scene depth range. Chapter 3
provides a comprehensive review of the principles of the PatchMatch algorithm for
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depth estimation and the immense progress that the field has seen. Nonetheless,
the greatest limitations nowadays in MVS are the ones related to the nature of
the surface; large textureless areas, reflective or transparent materials, also known
as non-Lambertian surfaces!, are challenging due to the high degree of visual
similarity and, thus, inevitable matching ambiguities.

The advent of deep learning techniques has pushed forward the research into
tackling these challenges and brought new perspectives to solving the problem by
incorporating semantic cues into the depth estimation problem; however, MVS
remains a deeply geometric task. Up to now, learning-based algorithms have
not demonstrated the capability to process high-resolution images. Therefore,
depth maps are typically calculated on lower resolution images and upsampled in
a post-processing step, but this inevitably implies detail loss and a compromise
in accuracy with respect to conventional, handcrafted methods. Such detail loss
is prohibitive in real-world scenarios, especially in photogrammetric applications
with high-quality requirements. Moreover, most CNN-based methods, e.g., [Yao
et al., 2018; Xu and Tao, 2020c|, are based on plane sweeps and construct global
cost volumes, adding a computational burden, especially during regularization. A
more detailed survey of the recent learning-based methods for depth estimation is
provided in Chapter 2.

Acknowledging the aforementioned observations, this dissertation aims, on the
one hand, to better understand and investigate the underlying concepts and
challenges in image-based 3D reconstruction and, more particularly, the depth
estimation in real-world multi-view scenarios. Instead of more traditional methods,
a PatchMatch-based approach is followed as the most efficient and robust state-
of-the-art solution. However, PatchMatch is, in practice, a local cost computation
method relying only on standard similarity metrics that have proven to be sensitive
in the presence of matching ambiguities. Focusing particularly on this limitation,
this work explicitly addresses one of the major, real-world failure cases, the non-
Lambertian surfaces. Such problematic regions commonly occur in man-made
scenes with large textureless surfaces or highly reflective materials; they tend
to be problematic in 3D reconstruction pipelines, as the ambiguity of matches
does not facilitate depth estimation. This problem has recently been of high
interest to the research community with conventional [Romanoni and Matteucci,
2019; Xu and Tao, 2020b| and learning-based methods [Wang et al., 2020b]. In
earlier approaches |Furukawa et al., 2010; Shen, 2013; Schonberger et al., 2016],
such surfaces were commonly reconstructed with few, sparse points that could
be filtered out similarly to noise. In practical image-based 3D reconstruction
applications with high-quality requirements, such problematic surfaces are often
reconstructed using hardware assistance, i.e., laser scanners that may operate
in a complementary manner. The observation that additional higher-level scene

1 As “Lambertian” are defined surfaces that follow the Lambertian Law and exhibit, thus,
Lambertian reflectance; in other words, perfectly “matte” surfaces with diffuse reflectance. On
the contrary, non-Lambertian surfaces have a different appearance depending on the viewpoint.
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understanding information (e.g., from object detection and segmentation) is
needed to tackle this problem, as stated in Schops et al. [2017], being investigated
mostly in the volumetric reconstruction domain [Héne et al., 2016], led to the
motivation to use advanced scene cues to guide the depth reconstruction process.

1.3 Overall goal, objectives and contributions

1.3.1 Overall goal

The overall goal of this dissertation, apart from comprehensively studying the
nature of the depth estimation problem in both the stereo and the MVS case, is to
identify the open challenges on a theoretical basis yet also in practical, real-world
applications. The particular challenges should be critically investigated, and
innovative methodologies should be proposed to address them in a constructive
way. Although having a strong theoretical background, the novel methodologies
should be functional and aim to be easily adopted and further developed by other
researchers for similar applications. Accordingly, the proposed improvements
should be integrated into an open-source and well-known MVS framework to
enable reproducibility. Such a framework should rather be domain-independent,
robust, and adequately scalable for arbitrary large, real-world datasets. Overall,
it can be said that the proposed approaches intend to generate more reliable
depth estimates, especially under challenging scenarios, and thus, more complete,
accurate, and visually appealing 3D point clouds.

1.3.2 Objectives

Considering the above, the following research question summarizes the aim of the
thesis adequately:

Research question: “Can advanced scene priors such as semantic cues be
leveraged in the multi-view scenarios, enrich the delivered data and support
the depth estimation and 3D reconstruction on particularly challenging areas
where matching ambiguities occur? Can this approach generalize to a method
independent from semantic reasoning and undertake the matching ambiguities in
an unsupervised, non-data-driven way?”

To undertake the arisen issues of these questions, the following objectives have

been defined:

Objective 1. Exploit the recent advances in deep learning for efficient semantic
segmentation on images using data acquired with high-resolution cameras. Con-
tribute with a new dataset, targeting the specific problem of facade segmentation
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and employ a straightforward pipeline producing satisfying results for real-world
and high-resolution scenarios.

Objective 2. Propose a functional image-based 3D reconstruction pipeline
with the additional module for generating semantically enriched point clouds
using label transfer from pixels to 3D points. Within this module, class-specific
reconstruction should be enabled in such a way to selectively reconstruct the
depth for only the pixels that are semantically meaningful for each application.

Objective 3. Leverage the semantic cues deriving from 2D semantic masks to the
MVS reconstruction to tackle matching ambiguities and improve depth estimation
in challenging scene surfaces, and derive complete and visually appealing 3D dense
clouds.

Objective 4. Develop an adaptable, generic, non-data-driven strategy to ef-
ficiently target the same problem of matching ambiguities in cases where no
semantic information for the scene can be obtained. The proposed method has to
fulfill certain scalability requirements, i.e., it should be able to process arbitrary
large datasets efficiently.

Objective 5. Integrate the proposed methodologies of Objectives 2, 3, and
4 in an end-to-end framework in such a way to make it easily adopted by the
research community and facilitate reproducibility. Opt for a non-learning-based
pipeline to ease the requirement for the enormous amount of training data and
be domain-independent and thus enable easy generalization. The functionalities
should be employed in a robust, widely-used and open-source library.

1.3.3 Original contributions

The major contributions of this dissertation can be summarized:

e A comprehensive overview of the depth estimation concept under both
stereo and multi-view scenarios. To this end, state-of-the-art algorithms are
discussed in detail to better understand their principles and impact, along
with their major open challenges. Practical experience in this field has been
gained recently, among others, during the research works of [Stathopoulou
et al., 2019] for the dense reconstruction and [Nocerino et al., 2020| for mesh
reconstruction under the MVS scenario. Both aforementioned publications
presented a throughout experimental evaluation of various state-of-the-art
algorithms under diverse scenarios and provided the ground for the further
developments discussed in this dissertation.
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e The integration of two fundamental research pillars in photogrammetry and
computer vision: image-based 3D reconstruction and semantic segmentation.
Motivated by the recent advancements in deep learning, a robust pipeline is
proposed for efficient semantic segmentation on images; such segmentation
masks can be used to generate semantically enriched 3D point clouds and
enable class-specific 3D reconstruction. Within this context:

— a new benchmark for facade semantic segmentation on historic building
images 3DOM Semantic Facade has been introduced in [Stathopoulou
and Remondino, 2019a]. 3DOM Semantic Facade is used in an effective
semantic segmentation pipeline based on deep learning to train a
model for semantic segmentation of building facades that can be easily
generalized on unseen data. Detailed experiments and evaluations are
presented. This contribution is relevant to Objective 1.

— after the generation of the segmentation masks, label transfer from
2D to 3D is proposed to enable the direct and efficient generation
of enriched 3D outputs, rather than following a semantic segmenta-
tion strategy in the 3D space [Stathopoulou and Remondino, 2019a;
Stathopoulou et al., 2021b]. Similarly, experiments on class-specific 3D
reconstruction demonstrate the effectiveness of the proposed approach,
as presented in [Stathopoulou and Remondino, 2019b|. Although the
conceptualization of this idea initially referred to the building facade
scenario, it is demonstrated that the method can be employed in a large
variety of applications, either airborne or terrestrial. This contribution
is relevant to Objective 2.

e The potential of semantic reasoning is exploited to improve the quality of
the 3D reconstruction. Therefore, a method for leveraging a priory obtained
semantic cues into the standard PatchMatch-based MVS is proposed in
Stathopoulou et al. [2021b]. The novel pipeline specifically targets the
matching ambiguities problem in the presence of textureless, reflective, and
generally non-Lambertian surfaces in order to yield, with respect to the
standard approach, more complete and accurate 3D point clouds. Within
this context and relevant to Objectives 3 and 5:

— the ETH3D MVS benchmark has been extended by semantic equiva-
lents on three of its sets (courtyard, terrace, pipes), including outdoor
and indoor scenarios;

— a class-specific prior generation in the 3D space method is proposed. A
RANSAC-based approach is followed and the semantic masks are used
to guide the plane search and define dominant planar areas, commonly
consisting of large textureless surfaces;

— a novel adaptive cost function is introduced to seamlessly leverage the
planar priors deriving from the semantic cues and according to the
local textureness information;
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— evaluations of diverse scenarios on benchmark and custom datasets
demonstrate the efficiency of the proposed method.

e The above method is generalized to undertake cases where semantic cues
are not available or hard to obtain; a novel approach based solely on local
structure and textureness information and quadtree structures guidance is
proposed [Stathopoulou et al., 2022] to improve the completeness and the
accuracy of the results. Within this context and relevant to Objectives 4
and 5:

— local structure information as described by a quadtree-based image
decomposition is used as guidance for the plane prior generation and
the depth hypothesis in the 3D space. Large areas of uniform color
are potentially more probable to be described by local planes. The
adaptive cost function is also adopted here to seamlessly integrate the
prior hypotheses and the photometric cost.

— experiments have been made on the large-scale benchmark dataset
ETHS3D [Schops et al., 2017] and custom datasets, demonstrating state-
of-the-art performance in line with the high-performing state-of-the-art
conventional and learned methods.

e the deployment of the aforementioned improvements in a well-established
and broadly-used open-source library for image-based 3D reconstruction in
an end-to-end fashion. The OpenMVS [Cernea, 2020| library was chosen
as a representative example of a robust framework for image-based 3D
reconstruction.

1.4 Thesis outline

This dissertation can be roughly divided in two parts; the first part provides
an introduction to the topic, describes the theoretical background and discusses
the state-of-the-art methods divided in two chapters for depth estimation and
reconstruction (Chapter 2) and the PatchMatch algorithm in particular (Chapter
3). The second part presents the proposed methodologies and improvements, as
well as the relative experiments and evaluations on semantic segmentation and 2D
to 3D label transfer (Chapter 4), integration of semantic priors in MVS (Chapter
5) and the use of solely structure priors for improving MVS depth estimation and
reconstruction (Chapter 6).

Chapter 2. Theoretical background and literature review on depth estimation
and reconstruction in stereo and multi-view scenarios is discussed. Fundamental
concepts are explained along with an in-depth categorization of the available
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methods, both conventional and learning-based. The main challenges and limita-
tions are comprehensively discussed, along with improvement proposed in related
work. Finally, the available benchmarks are introduced.

Chapter 3. The PatchMatch algorithm is comprehensively presented. Its
applicability in depth estimation is outlined in stereo and multi-view cases. An
exhaustive literature review on the state of the art methods is presented and related
works are categorized. The advantages of using PatchMatch over traditional
methods are highlighted, and the remaining open challenges are discussed.

Chapter 4. Semantic segmentation toward scene understanding is briefly dis-
cussed, and the basic principles of deep learning methods are outlined in a
constructive fashion. A short literature review on facade segmentation methods
is presented. The 3DOM Semantic Facade benchmark is introduced along with a
working pipeline for efficient generation of 2D semantic maps for historic building
facades. Finally, the integrated 3D reconstruction pipeline is introduced with
respective experimental results, yielding semantically augmented point clouds and
enabling class-specific reconstruction.

Chapter 5. A novel MVS framework is proposed for integrating semantic
reasoning in multi-view stereo reconstruction and achieving more complete point
clouds in problematic regions. Semantically-guided plane hypotheses are generated
to support the PatchMatch algorithm and propagate reliable depth estimates
in textureless and reflective areas where typically matching ambiguities occur.
Experimental results on benchmark (ETH3D) and custom datasets are presented
and evaluated.

Chapter 6. In cases where no semantic information is available, the method
proposed in Chapter 5 is generalized to rely only on local structure and textureness
information. Quadtree image decomposition is used to guide the 3D plane
hypotheses and support PatchMatch depth estimation in challenging scene areas.
Experimental results on benchmark (ETHS3D) and custom datasets are presented
and evaluated.

Chapter 7. The final chapter summarizes the work presented in this dissertation.
The main contributions are recapped, and future directions are given. Finally,
the publications leading to this dissertation are listed along with other relevant
publications by the author.
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The complete image-based 3D reconstruction of a scene requires estimating the
depth, i.e., the distance from the camera in the 3D space, for potentially every
pixel. To this end, pixel correspondences are established between two or multiple
images. Several computer vision and image processing problems are based on

13
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pixel correspondences such as stereo matching [Scharstein and Szeliski, 2002],
optical flow [Bailer et al., 2015] and computational photography applications such
as deblurring [Hacohen et al., 2013|, and inpainting |Guillemot and Le Meur,
2013] to name but a few.

Depth estimation from RGB images is one of the fundamental problems in
photogrammetry and computer vision; it has been an active research topic for
decades with high-level applications in robotics [Samadi and Othman, 2013],
autonomous driving |Geiger et al., 2012], medical imaging [Nam et al., 2012],
augmented reality [Baricevi¢ et al., 2014|, among others, under binocular, i.e.,
two-view, multi-view or even monocular scenarios. In the past decades, several
algorithms and techniques have been developed for automated depth estimation
and, consequently, 3D reconstruction from images. Various other active or passive
methods for 3D scene recording also exist, such as structured light scanning,
triangulation laser scanning, shape from silhouette, as well as shape from shading
methods, or photometric stereo. However, image-based 3D reconstruction is a
widely used technique as, apart from its robustness, it is also time and cost-
effective.

Stereo matching has been one of the dominant methods for depth estimation due
to its strong connection with the human vision system. It relies on matching
corresponding pixels across two or multiple images, for which the relative geometry
is known, also called the correspondence problem. Depth estimation from pixel
correspondences is an inverse, hence ill-posed, problem given the large ambiguities
introduced by potential occlusions and surface appearance variations across
different views. The fundamental cue for stereo matching is the surface’s visual
appearance, represented by the pixel color as a function of object material,
scene illumination, and the 3D geometry of the scene being captured. In other
words, the rays observing the same scene point should convey similar photometric
information or be ‘“photometrically consistent”. The photometric consistency,
or photo-consistency measure, is used to quantify this similarity. Once valid
pixel correspondences are found, the depth of every pixel can be calculated,
making, thus, its reprojection into the 3D space possible. Despite the extensive
relative research in the last decades, accurate depth estimation and complete
reconstruction remain an open challenge due to de facto unsolved issues such as
illumination changes, occlusions, textureless areas, and non-Lambertian surfaces.
Eventually, the developed algorithms often fail to find reliable correspondences and
correctly reconstruct the depth in the areas of low texture, as photo-consistency
measures alone are not robust enough to deal with depth inconsistencies and,
consequently, the matching ambiguities.

In this chapter, some basic principles and notation on depth estimation from
RGB images will be given. First, the basics of camera geometry will be shortly
discussed, followed by an extensive overview of the stereo and multi-view methods
for depth estimation and scene reconstruction with a critical view of the open
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3D world

Figure 2.1: Abstract representation of the pinhole camera model. Points of the
3D world are mapped to the sensor plane via the pinhole.

challenges and limitations. Learning-based depth estimation approaches will also
be reviewed, and finally, the most commonly used benchmarks in the field will be
presented.

2.1 Camera geometry basics

A camera is essentially a many-to-one mapping between the real 3D world and a
2D image. Precise depth estimation from RGB images requires reliable information
about the camera geometry, i.e., the shape of the bundle of rays connecting the
object in the 3D space and its traces on the image. Accordingly, some basic
background in camera geometry will be introduced to describe the fundamental
concepts and notation relevant to this thesis; the reader is referred to [Hartley
and Zisserman, 2003; Forstner and Wrobel, 2016; Szeliski, 2010] for a more
comprehensive understanding of these geometric concepts.

2.1.1 Camera models

Camera models describe the association between observation rays and pixels
in an abstract mathematical way. During the calibration process, the exact
parameters of this model are defined, known as intrinsic parameters of the camera
or parameters of the interior orientation |[McGlone, 2004; Forstner and Wrobel,
2016]. Instead of modeling the rays for every pixel, camera models make certain
assumptions to reduce the number of the parameters.

A widely used model is the pinhole camera; it is an ideal, abstract model assuming
that all light rays from the scene forming the image on the camera sensor pass
without deviation through the same 3D point, as shown in Figure 2.1. This point
is commonly called optical center, camera (lens) center, perspective center, center
of projection, or simply pinhole. Assuming a viewing image plane in front of the
pinhole C (Figure 2.2), the projection of the pinhole, i.e., the perspective center
on the image plane, is called the principal point ¢(cg, ¢y). The distance from C to
the image plane is called focal length f, or principal distance. In an ideal pinhole
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camera center

principal axis z

image plane 3D world

Figure 2.2: Geometry of a camera. The camera center C is the origin of a cartesian
coordinates system. A 3D point scene X, its trace on the 2D image x and the camera
center C are collinear.

camera with a planar sensor, the pinhole C is the origin of the coordinate system,
and thus the camera is described only by the focal length f. If the principal point
deviates from the origin of the coordinate system, the a camera model would
be described by the three parameters ¢, ¢, and f (Euclidean camera). A more
generalized version of this model is the perspective camera or camera with affine
sensor, including a skew value s for non-square pixels, and/or scale difference
(aspect ratio) a. For a more detailed overview of the commonly used models,
the interested reader is referred to [Hartley and Zisserman, 2003; Forstner and

Wrobel, 2016].

Camera models are commonly described with the camera calibration matrix K,
a 3 X 3 matrix that transforms the rays into homogeneous image coordinates;
homogeneous representations are typically used in this geometric context as they
are convenient for linear algebra calculations [Forstner and Wrobel, 2016]. Hence,
K encodes the transformation from the normalized image coordinates, measured
on an ideal plane, to image coordinates. The general form of this matrix refers to
the perspective camera model; it expresses the affine transformation containing
the focal length f expressed by two components f, and f, differing by an aspect
ratio a, the principal point coordinates c(cg, ¢,) and a skewness parameter (shear)
s for the pixels:

fo 5 co
K= |0 f, cf- (2.1)
0 0 1

The above models assume a linear projection according to which straight lines
in the 3D world are mapped as straight lines in the image (ideal perspective
models) [Forstner and Wrobel, 2016]. In the real world, lenses are characterized
by de facto imperfections, causing, among others, distortion effects like radial
distortion. To compensate for systematic errors, the estimation of the distortion
coefficients is required for the correct mapping between object points and pixels,
and the camera model is generalized to the perspective camera with nonlinear
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distortions. Distortion compensation is commonly performed according to the
model introduced by Brown [1965]. Typically, 1-3 radial distortion coefficients
(k1, ko, k3) are accounted for, along with two tangential coefficients p; and po.

Let the center of projection C be the origin of a cartesian coordinate system, with
the z-axis being the axis perpendicular to the image plane (principal axis). A 3D
point X(X,Y, Z)T its trace on the 2D image x and the camera center C lie on
the same line (Figure 2.2). The point X from the Euclidean space R? is mapped
on the Euclidean space R? (image plane) by similar triangles as:

X Yo

Sl 22)

(XY, 2)" = (f
Using homogeneous coordinates for x, the matrix describing this mapping is a
3 X 4 homogeneous matrix known as the projection matrix P. It includes all
information about the camera parameters, intrinsic and extrinsic, and is equivalent
to the collinearity equations used in photogrammetry [Das, 1949]. It is given by:

P = K]I|0], (2.3)

with K being the camera calibration matrix and I the identity matrix. Considering
general rotation R and translation t:

P = K[R|t]. (2.4)

Therefore, a point on the image x is connected with a point X in 3D by:

x ~ PX, (2.5)

where ~ indicates equality up to scale; P is homogeneous as its scale can be
arbitrarily chosen. It has 11 degrees of freedom DOF, 5 of the intrinsic and 6
of the extrinsic geometry of the bundle. The mapping between x and X can
be solved via the direct linear transformation (DLT) algorithm [Abdel-Aziz and
Karara, 1971; Hartley and Zisserman, 2003].

2.1.2 Two-view geometry

Similar to the human vision system, to obtain 3D measurements from 2D images,
two (at least) overlapping views of the same scene are needed; such systems are
known as two-view or binocular. The intrinsic projective geometry between two
camera views that relates the cameras, the points in 3D, and the observations in
2D is described by the epipolar geometry [McGlone, 2004; Hartley and Zisserman,
2003; Forstner and Wrobel, 2016]. Let two images taken from camera centers C
and C’, related by a rotation matrix R and a translation vector t, and let X be a
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~—

Rt

Figure 2.3: Epipolar geometry. For two images with centers C and C’ and relative
pose transformation defined by R, t. The epipolar plane 7 is defined by the 3D point X,
and the two image centers C and C’.

point in the 3D object space (Figure 2.3). Then x and x’ will be the projections of
this point onto the left and right image planes, respectively. The plane 7 defined
by X and the two camera centers C and C’ is called the epipolar plane. The
line that joins the two camera centers C and C’ corresponds to the baseline B.
The traces of m on the image planes are called epipolar lines [, and I/, and the
intersections of these lines with the baseline are the epipoles e and €. All epipolar
lines go through the camera’s epipole. The coplanarity constraint implies that
the viewing rays through corresponding points are coplanar.

Corresponding points x and x’ of a stereo pair must lie on corresponding epipolar
lines [ and . Therefore, there is a mapping relationship between a point and a
line, also known as epipolar constraint:

x>l (2.6)

which represents a singular (and thus not proper) correlation. Indeed, this mapping
is singular because, for every point of the first image, an epipolar line on the
second one exists. There is no inverse mapping; that is, to every epipolar line of
the second image corresponds a line on the first image. The mapping between each
point and its corresponding epipolar line is described for the general uncalibrated
camera case by the fundamental matrix F':

I'=Fx. (2.7)
Similarly, I = FTx’. In other words, F is the algebraic representation of the

epipolar geometry [Hartley and Zisserman, 2003|. For any pair of correspondences
x and x/, F must satisfy the condition:

XTFx =0. (2.8)
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It is a 3 x 3 matrix with zero determinant (det F = 0) and rank=2 such that:

Fe = FT¢ = 0. (2.9)

F has 7 DOF and can be computed by a set of corresponding points with
homogeneous coordinates. Commonly, the 8-point algorithm or the 7-point
algorithm are used for its estimation, typically refined with RANSAC-based
model fitting methods [Zhang, 1998; Faugeras and Luong, 2001; Hartley and
Zisserman, 2003]. F refers to the general case where no information about the
camera intrinsics is available, i.e., to uncalibrated cameras. Therefore, just a
projectively distorted model of the scene can be computed, or, in other words,
F contains a projective ambiguity. If the intrinsic parameters are known, the
fundamental matrix F is equivalent to the essential matrix E. Introduced by
Longuet-Higgins [1981], it is given by:

E = [t/xR, (2.10)

where R is the 3 x 3 rotation matrix and [t]x is the skew-symmetric (cross-product)
matrix of the translation vector t:

0 —t, t
tle=|t. 0 —tuf. (2.11)
—ty, ty 0

Equation 2.8 will be in case of the essential matrix:

XTEx = 0. (2.12)

Alternatively, with the use of camera model K:

E = K'TFK, (2.13)

where K is the camera matrix that includes the intrinsic parameters of the camera
model. Distortion (radial and tangential) is assumed to be zero. Similar to the
fundamental matrix, E has rank=2. However, the essential matrix has 5 DOF and
can be computed by only 5 points [Nistér, 2004]. With given intrinsic parameters,
a Euclidean 3D model of the scene can be estimated.

2.1.3 Stereo rectification

Once the relative poses of the two images are estimated, the epipolar constraint
can be used to limit the search space for corresponding pixels in the other image.
An efficient way can be to first rectify, i.e., warp, the input images so that
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image plane

C/ rectified plane ~

Figure 2.4: Epipolar rectification. Image planes become parallel and epipoles are
located at infinity.

the horizontal scanlines are aligned and correspond to the epipolar lines while
minimizing distortions, a process known as stereo or epipolar rectification [Loop
and Zhang, 1999; Hartley and Zisserman, 2003]. Stereo rectification generates
coplanar images and ensures that potential correspondences are located in the
same row of pixels in the reference and source image. In other words, rectified
images will be transformed such that R = R/, i.e., the baseline will be parallel
to the z-axis. Therefore, a projective transformation H needs to be found such
that the epipoles e and ¢’ in the two images are mapped to the infinite point
1,0, O]T. Evidently, such a configuration represents the “stereo normal case” in
photogrammetry performed on calibrated cameras.

Various approaches for different camera configurations have been proposed for this
scope, trying to minimize the image distortion |Pollefeys et al., 1999; Fusiello et al.,
2000; Abraham and Forstner, 2005; Fusiello and Irsara, 2008|. In the widely used
method of Fusiello et al. [2000] a linear way to rectify the two images of known
poses is proposed, by first rotating both cameras so that they are perpendicular to
the baseline and subsequent rotation of the two images to the coordinate system
of their baseline B. A quasi-Euclidean rectification is implemented for general
uncalibrated cases in [Fusiello and Irsara, 2008].

Stereo rectified images fulfill two conditions: (1) all epipolar lines should be
parallel to the horizontal axis, and thus the baseline (2) corresponding points have
identical vertical coordinates 7, so the disparity, i.e., the coordinate difference, in
y-direction will be equal to zero.

2.2 Stereo matching

Stereo matching, also known as binocular stereo, relies on the same principles as
the human vision system; the two cameras, (equivalent to the eyes) observing the
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same scene space have the ability to perceive depth information. Nonetheless,
while the human brain can effortlessly create such associations, designing an
algorithm to simulate this task is not trivial.

The basic principle of stereo matching can be explained as follows: given two
stereo-rectified images I and I’ of known relative poses (R, t), with the I being
the reference (left) image and I’ the source (right) image, optimal pixel correspon-
dences, i.e., matches, are to be established. Matching pixels represent the same
point of the 3D scene projected onto both images. Thus, the depth d of, if possible,
every pixel p of the reference image can be calculated. In other words, the aim is
to find pairs of 2D pixels that correspond to the same 3D point X. From these
correspondences, the 3D coordinates can be estimated via triangulation.

Stereo methods typically refer to small baselines and use stereo rectified images,
although solutions for not rectified images also exist. For establishing reliable pixel
correspondences, the epipolar constraint is exploited; according to this constraint,
corresponding pixels should lie on the same scan line, which is parallel to the
baseline and the horizontal axis for stereo rectified images. Hence, the problem
has only one degree of freedom (DOF), the offset of the z-axis, also known as
x-parallax, and the search space is reduced to a 1D horizontal line compared to
the standard 2D optical flow case. The apparent horizontal shift or displacement
d in the z-direction between corresponding pixels p and p’ on the reference and
source images is called disparity:

p(z,y) < p'(z+d,y) (2.14)

Consequently, the problem can be reformulated by finding the disparity d = 2’ — z
for each pixel correspondence. Inversely proportional to the disparity, the depth
Z of each pixel is calculated by similar triangles (Figure 2.5) Z = f g, where f is
the camera’s focal length and B is the baseline, i.e., the distance between the two
optical centers.

During stereo matching, corresponding disparity and depth maps are typically
generated for each view, storing the disparity or depth values of each pixel for a
stereo pair. Considering precisely known relative poses and camera calibration
parameters, the depth reconstruction accuracy in the 3D space is directly related
to the quality of the matches; consequently, depth refinement methods and sub-
pixel interpolation crucial for an accurate 3D reconstruction. Many algorithms in
this direction have been introduced in the latest decades. According to Scharstein
and Szeliski [2002], a typical stereo matching pipeline can be described by (1)
matching cost computation (2) cost aggregation (3) disparity estimation (4)
disparity refinement.

This sequence of steps is the most prominent one, yet other combinations are

also possible. Generally, stereo matching algorithms can be roughly divided
into local and global methods. Local methods consider support windows around



22 Depth estimation and reconstruction

Figure 2.5: Stereo correspondences. Two cameras with centers C, C’ and baseline B.
Matching pixels p and p’ correspond to the same 3D point X.

each pixel and make implicit constant smoothness assumptions over this window
during cost aggregation. On the other hand, global methods model explicit
smoothness assumptions based on surface priors and try to solve an energy
minimization problem, commonly skipping the cost aggregation step. In the
following paragraphs, an overview of the stereo matching procedure is given, along
with a survey of the related work in the field in the past decades and the current
open challenges and limitations of the methods.

2.2.1 Matching cost computation

The human vision system has the ability to locate corresponding patterns between
two images simply by studying their visual appearance, even if certain geometric
or radiometric transformations are present. Moreover, humans can perceive
contextual information of the overall scene, which tends to be helpful while
making these associations. In the natural world, surfaces are piecewise smooth
and continuous; therefore, the 2D projections of these regions on the images will
inherit this property. Stereo matching algorithms aim to simulate this principle,
using appearance relationships and natural coherency.

The matching cost is a measure to quantify dissimilarity or distance between
general queries (in this case pixels or patches). Visual appearance is the most
commonly used criterion for stereo matching, also known as photometric or photo
consistency. Photometric consistency assumes that the corresponding pixels
have the same visual appearance across different views. In the most simplified
case, the matching cost for a certain disparity d can be assumed as the absolute
difference (AD) |Kanade et al., 1995] of the gray values between of corresponding
pixels p(z,y) and p’(x + d, y) in the reference image I and the source image I’
respectively:
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AD(p) = |I(p) — I'(p')- (2.15)

A low matching cost value implies high visual similarity and vice versa. In stereo
matching, the correspondence with the highest similarity and thus lowest matching
cost is sought. Similarly, the squared differences (SD) can be assumed [Hannah,
1974] instead of simply the absolute difference.

In practice, the difference of the gray values alone is insufficient due to appearance
differences between the images, even if they are sequential in time and space.
Indeed, deciding if two pixels are corresponding, i.e., photometrically consistent,
is a quite challenging task as many factors may affect the final appearance of an
image, like viewpoint changes, variations in the overall illumination of a scene,
occlusions, shading, reflections, noise, and differences in the camera settings.
Accordingly, patches, i.e., small pixel windows n X n, are used to consider the
close neighborhood and enforce distinctiveness. Since there is no guarantee that
the visual appearance of every single pixel is unique across the search space, larger
patch size is more likely to lead to unique correspondences. A variety of similarity
measures has been proposed in the literature, either parametric or non-parametric,
including:

Sum of absolute differences (SAD). It is a simple measure based on the L1
norm of all pixels ¢ in a local window n x n around a pixel p(z,y) [Kanade and
Okutomi, 1994] between the reference image and the source image:

SAD() = 37 |(a) — I'(d). (2.16)

q€[nxn]

SAD is typically truncated to become more robust to outliers. Yet, it is still
sensitive to gain and bias (equivalent to contrast and brightness, respectively)
and, therefore, to illumination changes. However, SAD is a fast measure and can
be used in real-time applications where capturing conditions are similar across
the images.

Sum of squared differences (SSD). It computes the difference of intensities
between two local windows q and ¢’ by first calculating the squared distance
pixelwise and subsequently summing them (L2 norm) [Hannah, 1974; Matthies
et al., 1989; Okutomi and Kanade, 1993|:

SSD(p) = Y (a) = I'(d))* (2.17)

q€nxn]

It is sensitive to outliers and gain and bias. By definition, it is not bounded yet is
often truncated to exclude outliers or mapped through an exponential function,
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becoming bounded to [0, 1]. SSD is sensitive to radiometric changes, especially
while unbounded, since the squared difference L2 norm may take particularly
large values.

Normalized cross-correlation (NCC). The cross-correlation operation is
similar to convolution, applying a filter (kernel) across the image; hence this
metric is also known as “normalized sliding dot product” [Hannah, 1974]. NCC
measures the differences in a normalized way to compensate for gain and bias,
increasing, in this manner, the robustness in linear illumination changes that can
be beneficial in stereo matching. Statistically, it is the optimal metric for cases
where Gaussian noise is present [Hirschmuller and Scharstein, 2008]. It encourages
the matching of underlying patterns rather than raw intensity values. Since it
is normalized by the product of the standard deviation of the two patches, it
calculates a correlation value bounded between [—1,1]. An NCC cost equal to
1 means that the potential correspondences are identical, while —1 means that
they are totally irrelevant. Although it is well-suited for perspective differences,
it often fails on low-textured surface cases and repetitive patterns. To increase
robustness, a zero-mean NCC (ZNCC) is commonly preferred since, due to the
subtraction of the zero mean p of the neighboring intensities, it can also handle
affine intensity changes:

>2 (@) = pal - [1(d) = pr]

q€[nxn|

> ) -2 [ () - )

q€[nxn] q€[nxn]

NCC(p) = (2.18)

Rank transform (RT). Non-parametric measures apply some ordering trans-
formation to the data and use this information instead of the original data values
|Zabih and Woodfill, 1994|. Rank transform, introduced by Zabih and Woodfill
[1994] is a non-parametric measure applied to both images before the matching
cost computation to enhance the edges and reduce the noise. To do so, pixel
intensities are sorted, i.e., ranked, within a local window, and their scalar rank
substitutes the actual intensity. Accordingly, RT is defined as the number of
pixels q whose intensities are smaller than the one of the current pixel p:

RT(p)= > T(p,a), (2.19)

q€[nxn]

where the function T expresses the relationship between the pixel intensities p
and q:
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0, if I(p) < I(q)

. (2.20)
1, if I(p) > I(q).

T(p,q) = {

For a window n x n, the pixel intensities are replaced with values between [0, (n X
n) — 1]; thus, the chosen window size is fundamental. After this transformation,
common metrics such as SAD can be used for cost computation. RT is invariant
to changes in gain and bias and hence more robust to global radiometric changes
since it depends only on the ordering of the methods and not their original
intensities. However, similar to other visual similarity metrics, is still sensitive to
local radiometric changes and thus to matching ambiguities commonly occurring
in textureless areas. To increase robustness, Hirschmuller and Scharstein [2008]
used the Soft Rank Transform by defining a linear, soft transition zone between 0
and 1 for values that are close together.

Census transform (CT). Another non-parametric image transformation is
Census Transform (CT) [Zabih and Woodfill, 1994]. For CT, a binary descriptor
vector (bitstring) is assigned to each pixel based on intensity differences of every
pixel q in a patch neighborhood n x n around pixel p(z,y). Using the same
definition of T" as before, CT is finally expressed as:

CT(p) = ®T(p,q), (2.21)

with ® denoting concatenation.

Compared with RT, CT also encodes the spatial relation of the pixels apart from
their intensities. CT is robust against changes in gain and bias, and thus global
radiometric/illumination changes [Hirschmuller and Scharstein, 2008]. Moreover,
since the actual pixel intensities affect only partially the binary descriptors, CT is
more robust to outliers and can achieve better results on textureless areas than
other metrics. The robustness increases by increasing the mask size, yet a larger
mask implies higher computational time. Nevertheless, it is still sensitive to strong
perspective changes, as it is based on fixed geometry of the compared pixels. CT is
less discriminative than NCC, leading to more ambiguous matches, yet it handles
better depth discontinuities in object boundaries. In stereo normal cases, CT has
become popular since it often outperforms NCC, yet in MVS scenarios commonly
strong perspective changes exist [Ruf et al., 2021] has limited performance. The
final matching cost is calculated as the Hamming distance between the two binary
vectors in the query.

Mutual information (MI). Often used in information theory, mutual infor-
mation cost proposed by Viola and Wells IIT [1997| measures the amount of
information contained in one pattern about the other as a joint probability. In
other words, it measures how dependent two patterns are. Operating on full
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images and with a given initial disparity estimation, it considers the entropy of
the probability distributions H; and H;s in two images I and I’ as well as the
entropy of the joint probability distribution Hy ;- of pixel-wise correspondences of
both images, using a Parzen window method [Parzen, 1962].

MI=H;+Hp — Hp . (2.22)

The probability distributions are calculated from the histograms of the intensities
of the two images. Typically, high-fidelity image poses imply low joint entropy
Hip pr, as one image can be predicted by the other. Lower joint entropy means
higher MI. It favors finding the most complex regions (maximizing individual
entropies) that explain each other as well as possible (minimizing the joint entropy).
It typically operates better when a large, more representative support region is
provided, yet such operations are time-expensive and often cause blurring effects.
MI, typically insensitive to radiometric changes along with gain and bias [Kim
et al., 2003], can be adopted in both global and local methods and has been used
in the literature [Hirschmuller and Scharstein, 2008; Kim et al., 2003; Campbell
et al., 2008], although it is not a common measure.

Matching, in the broader context, may refer to establishing correspondence
between salient points, also known as feature matching, using descriptors such as
SIFT |Lowe, 2004], SURF [Bay et al., 2006], ORB [Rublee et al., 2011] etc. Such
methods generally demonstrate geometric and photometric resilience in finding
good correspondences but typically lead to abstract, sparse representations of
the scene. Therefore, they find applicability in sparse matching scenarios, e.g.,
in Structure from Motion (SfM) as briefly explained in Chapter 1. However,
specialized descriptors have been used in the past for finding dense or semi-dense
correspondences in the MVS scenario |Tola et al., 2009, 2012|, but such methods
are beyond the scope of this dissertation.

Local methods use support windows (patches) for cost computation and aggrega-
tion, while global methods calculate the cost pixelwise and do explicitly perform
cost aggregation. The matching costs may refer to grayscale or color images or
their respective gradients to increase robustness in radiometric changes [Scharstein,
1994], or a combination of both [Hosni et al., 2012]. Pre-processed versions of
images have also been used in the literature |[Di Stefano et al., 2004; Hirschmuller
and Scharstein, 2008|.

2.2.2 Cost aggregation

The disparity space image (DSI) [Yang et al., 1993; Scharstein and Szeliski,
2002], often also referred to as cost volume, is the representation of the per-pixel
disparity cost over all possible disparities in [dimin, dmaz]- It is a 3D array of size:
W x H X dpaz, where H is the image height, W the image width, and d,,4; the
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maximum value of the disparity range.

In local methods, the cost aggregation step connects the costs within a certain
neighborhood in the DSI [Scharstein and Szeliski, 2002], i.e., a local window or
patch for regularization and refinement purposes, and improves performance when
matching ambiguities are present. For local methods, based on the assumption
that neighboring pixels share the same disparity, matching costs are summed
over a 2D support region, commonly a window n x n, around each image pixel
p [Mithlmann et al., 2002; Di Stefano et al., 2004|. So, the aggregated cost of a
pixel ¢(p) is the sum of the costs of all pixels q in its neighborhood:

cp)= Y ca) (2.23)

q€[nxn]

A major challenge is the definition of the optimal window size; it should be large
enough to consider distinguishable enough disparities but also not too large to
avoid edge fattening and oversmoothing, and detail loss. Although rectangular
windows are mostly used because of their efficiency and ease of implementation,
aggregation schemes with adaptive support windows have also been introduced
|[Kanade and Okutomi, 1994; Fusiello et al., 1997; Yang et al., 2008| particularly
to avoid edge fattening. In fact, a simple summation of the costs within a local
window implies a fronto-parallel surface and may result in oversmoothing as edges
are not taken into consideration; thus, bilateral filters [Tomasi and Manduchi,
1998; Richardt et al., 2010] or guided filters [He et al., 2010; Hosni et al., 2012]
have also been employed for edge preservation. Other methods adopt weights
attributed to window pixels based on color similarity or geometric proximity
between reference and neighbor pixels [Yoon and Kweon, 2006; Bleyer et al., 2011;
Hosni et al., 2013, or histogram-based aggregation schemes for weights [Min et al.,
2011], yet these approaches are usually computationally slow. Shiftable windows
[Kang et al., 2001 and linearly expanded cross-skeleton windows [Stentoumis
et al., 2014] have also been suggested in the literature. Cost aggregation can
generally be performed using 2D windows or 3D convolutions (box filters in the
case of square windows).

2.2.3 Disparity estimation

Disparity estimation methods can be roughly divided into local and global methods,
with the latter being referred also as disparity optimization algorithms. Early
disparity estimation methods were local, based on the “winner takes all” (WTA)
rule, where the correspondence with the minimum cost is selected among the
matching candidates. On the other hand, global methods are optimization methods
that use energy function minimization for all image pixels, commonly expressed
with a data term and a smoothness term, representing the summation of pixel
costs and the local smoothness support, respectively.
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Local methods. Local methods are based on correlation and use support
windows to estimate the best correspondences in a limited local neighborhood,
sliding across the image or search area till the best score is achieved. A DSI or
cost volume S is typically built to store the information of all possible disparity
values. The disparity estimation itself is straightforward since they follow the
WTA approach, i.e., for each pixel p the disparity d with the lowest matching
cost is selected:

~

d = argmin S(p, d). (2.24)

The neighborhood information is not considered until the cost aggregation step.
However, they model an implicit smoothness assumption within the support
window, which often leads to blurry object boundaries [Hirschmuller, 2006]. That
being said, and if no support window is used, the problem becomes a pixelwise
matching one [Birchfield and Tomasi, 1998| that consequently has to deal with
stronger matching ambiguities. Local methods are generally fast but typically
provide inferior quality results than the global methods. Yet, the quality can be
significantly improved by using an elaborated cost aggregation step.

Local algorithms vary from simple correlation-based methods [Faugeras et al.,
1993; Scharstein and Szeliski, 2002; Hu and Mordohai, 2012| to more sophisticated
approaches aiming to confront limitations such as fronto-parallel bias. Such
methods refer to using predefined planes like the plane-sweep method [Collins,
1996; Gallup et al., 2007| or using local adaptive planes for each window |Bleyer
et al., 2011; Hosni et al., 2012]. In order to achieve sub-pixel accuracy, least-square
methods have also been proposed already since the early years [Griin, 1985].

Global methods. Global methods typically skip the cost aggregation step
and form, instead, an energy function for the whole image, enforcing spatial
consistency between neighboring pixels. This global cost function is defined with
a unary and a pairwise term, and the best disparity value that minimizes it is
sought. Let d be a possible disparity solution:

E(d) = EData(d) + )‘ESmooth(d)- (225)

EDatq is the data or unary term expressed as a photo-consistency metric (e.g., AD,
NCC, etc.) and practically indicates how well the solution agrees with both images.
Esmootn is the smoothness term, incorporating the smoothness assumptions of
each algorithm. The unary term alone simulates nearest neighbor (NN) search
like in local methods, yet is performed pixelwise. The first order smoothness
term or pairwise (i.e., implying pixel interaction) term Eg;,o0tp, €ncourages similar
disparity values between neighboring pixels, enforcing spatial consistency, and A
controls the influence of Egpo0tn Over the data term Epgy,. This 2D optimization
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problem is considered NP-hard! for computing the exact minimum, and various
global approximation algorithms have been proposed to minimize the energy
function, typically based on a Markov Random Fields? (MRF) formulation. Early
methods used simulated annealing [Barnard, 1989] or tried to solve the problem
as independent scanline optimization [Birchfield and Tomasi, 1998|, reducing
the complexity to 1D or using dynamic programming and imposing a piecewise
smoothness constraint along the scanline [Ohta and Kanade, 1985|. Yet, since
spatial consistency in the 2D space is disregarded, such methods inevitably suffer
from lack of coherence, the so-called “stair-case” effects.

The energy minimization problem was extended by adding 2D smoothness con-
straints, implying local smoothness and penalizing discrepancies [Scharstein and
Szeliski, 1998|. Graph cut methods for stereo or multi-view [Boykov et al., 2001;
Kolmogorov and Zabih, 2002; Wei and Quan, 2005] employ a min/max cut 2D op-
timization, with the nodes of the graph representing the pixels and the edges their
connections with the neighbors. The multi-labeling problem, where each “label” is
actually a disparity value, is solved iteratively by a-expansion. Yet, the solution
is often limited to integer disparities, and the method is computationally costly.
Other approaches were based on belief propagation (BF) [Pearl, 1988| to employ
2D optimization on a graph [Sun et al., 2003; Felzenszwalb and Huttenlocher,
2006; Klaus et al., 2006; Besse, 2013|. BF solves the labeling issue by iteratively
passing messages between neighboring pixels to find the optimal surface. Sun
et al. [2003] formulate the stereo matching problem using MRFs and estimate
the optimal solution using BF. Acknowledging the inefficiency of the problem,
some BF methods aim at improving the computational time [Yang et al., 2008;
Felzenszwalb and Huttenlocher, 2006]. According to Tappen and Freeman [2003],
both graph cut and BF demonstrate comparable performances while solving the
same MRF. Different from discrete labels in probabilistic methods, variational
approaches form the problem in the continuous space; for instance, partial dif-
ferential equations (PDE) have been used in the past in the multi-view scenario
[Faugeras and Keriven, 1998; Strecha et al., 2004]. Inspired by optical flow, Ranftl
et al. [2012] adopted a variational inference model for energy minimization in
stereo matching. Later dynamic programming methods try to solve the problem
with both vertical and horizontal scanlines applied on a tree structure to reduce
the stair-case artifacts (also referred to as streaking artifacts) [Veksler, 2005|. In
general, global methods are more computationally costly, but the quality is typi-
cally superior to the local methods as they perform relatively better in textureless
areas due to the incorporated smoothness prior to the smoothness term.

IStates for non-deterministic polynomial time. NP-hard problems are at least as hard as any
NP one.

2In stereo matching, each pixel is represented by a graph node. Neighboring pixels are expected
to have similar disparities. This assumption is modeled using the conditional relationships
between proximate nodes to enforce the smoothness. The problem is modeled as an indirect
graph, and there is no guarantee for convergence.
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2.2.4 Disparity refinement and filtering

Depth maps for each reference image are the final outcomes of the depth estimation
process, assigning the chosen disparity to each pixel. In a typical stereo matching
pipeline, disparity refinement is performed as a post-processing step to improve
the quality of the estimated depth values. Disparity refinement generally may refer
to sub-pixel refinement, outlier removal, occlusion handling, left-right consistency
check, gap interpolation, or confidence check. Most stereo methods operate in
discrete space, and correspondences are located at integer pixel locations. To
obtain floating-point sub-pixel accuracy, quadratic functions, i.e., curves, are
used for interpolation over the cost volumes [Di Stefano et al., 2004; Mizukami
et al., 2012| or least-squares correlation |Griin, 1985| should be performed. Depth
filtering, also known as speckle filtering, is also commonly applied during the
refinement step to exclude outliers. Simple techniques such as median filter
[Birchfield and Tomasi, 1999; Hosni et al., 2012|, mean filter, Gauss filter, or
Difference of Gaussians (DoG) filter are applied. A rather challenging issue
refers to occlusion handling, i.e., detecting the areas that are not visible in both
views, which tend to be assigned with erroneous, over-smoothed estimates |Egnal
and Wildes, 2002; Sun et al., 2003; Yang et al., 2008|, yet this problem is more
extensively studied under the multi-view scenario (see Section 2.5.2). Another
common refinement step is the left-right consistency check, which, as implied by
the name, enforces constant disparity values between the depth maps for both the
left and right image to filter out inconsistent depth values and limit the erroneous
estimates. Gap filling is also commonly employed by interpolation [Hirschmuller,
2008]. Finally, confidence checks can improve the quality of the depth maps,
filtering out the depth estimates with low confidence [Hu and Mordohai, 2012]. A
representative approach to successfully incorporating the various refinement steps
into the same pipeline can be found in Hosni et al. [2011].

2.2.5 Limitations and challenges in stereo matching

Stereo matching is a highly ill-posed problem and therefore relies on several con-
straints for its efficient implementation. First and foremost, the epipolar constraint
is taken into consideration as it limits the search space for the correspondence prob-
lem. Consequently, errors in the camera geometry are inherited from the stereo
correspondences; some works have tried to evaluate this influence [Scharstein et al.,
2014|, although, in most scenarios, the geometry is considered to be known with
high fidelity. The visual similarity constraint is a basic underlying assumption
of stereo matching, implying that two correspondences appear similarly across
the two views. Surface properties and scene conditions may cause corresponding
pixels to be dissimilar or, in contrast, matching ambiguities may occur. Indeed,
in the ideal scenario, the uniqueness constraint requires that a point in one image
would have at most one correspondence in the other one. The continuity constraint
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assumes that disparity values are piecewise smooth. Local methods model this
constraint by using a constant disparity window while global methods incorporate
it in an energy function; however, this does not model sufficiently the underlying
geometry as it does not hold in the presence of slanted surfaces or in the case
that the window falls within surface boundaries. The visibility constraint is used
to avoid physically impossible matches due to occlusions; a pixel in the left image
should be visible in both images if it has at least one match in the right image.
The visibility constraint is more flexible than the uniqueness constraint as it allows
many-to-one matching [Sun et al., 2005]. Finally, the ordering constraint assumes
surface continuity and preserves the relative ordering of pixels along corresponding
epipolar lines, particularly useful in dynamic programming approaches [Ohta and
Kanade, 1985]. In an ideal stereo case, all the aforementioned constraints should
be fulfilled. Nevertheless, in real-world scenarios, inevitably, some of them cannot
be satisfied. In the following paragraphs, the most common issues and challenges
are discussed.

Challenging surfaces. The fundamental underlying assumption in conventional
stereo matching is that a point in the 3D space will visually appear similar in the
two images (or more, in the multi-view case), i.e., they will be photometrically
consistent. This hypothesis is satisfied for Lambertian or near-Lambetrian surfaces
where, indeed, good results are typically achieved. Yet, visual similarity generally
cannot be fulfilled in cases of specular, reflective, or transparent objects; the same
holds for textureless surfaces and repetitive patterns, since multiple ambiguous
local minima may occur, resulting in noisy estimates or information gaps. Local
methods, in particular, rely on photometric consistency metrics alone and therefore
tend to be uninformative and inadequate on such challenging surfaces where
matching ambiguities occur. Indeed, photometric consistency is ambiguous in
such surface scenarios since large depth variations may lead to small cost changes
due to appearance similarity. The consequences of this assumption are more
evident in the 3D reconstruction result rather than in the quality of the depth
maps. Generally speaking, an optimal stereo matching algorithm would take into
consideration not only the photometric consistency among the images but also the
natural coherence, typically described by local surface smoothness. Designing such
a robust metric that will encapsulate the above constraints is a non-trivial task,
and thus, typically, regularization approaches or cost volume filtering [Hosni et al.,
2011, 2012] are required thereafter to optimize the results. Global and semi-global
methods, on the other hand, formulate the problem as an MRF optimization and
adopt a smoothness term to enforce spatial consistency and reassure smoothness
by penalizing disparity changes [Kolmogorov and Zabih, 2002; Sun et al., 2003;
Hirschmuller, 2008]. Although achieving satisfying results, even these methods are
still generally incompetent in textureless areas. In fact, despite being an active
research field for decades, algorithms still struggle with challenging surfaces and
generally yield inaccurate depth estimates and incomplete reconstructed point
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clouds in these areas. A research direction proposed adaptive support windows to
cope with this problem in the stereo case |[Kanade and Okutomi, 1994; Fusiello
et al., 1997; Yang et al., 2008; Stentoumis et al., 2014].

Fronto-parallel bias. In conventional local matching approaches, the principal
implicit assumption is made on constant disparity within the same window around
a pixel. In other words, all pixels within a support window should have the same
distance from the camera, i.e., they would lie on a fronto-parallel surface, that
is, a surface parallel to the sensor plane and the epipolar lines. In practice, this
assumption is unlikely to hold; the window may contain pixels that belong to
a different surface than the center pixel in the case of physical surface edges.
Besides, the window may lie on a slanted scene surface and, thus, not fronto-
parallel. Hence, such solutions cannot perform efficiently in real-world scenarios
as they are prone to errors. Most local methods try to tackle this issue during
the cost aggregation [Zhang et al., 2008; Hosni et al., 2012|. In global and semi-
global optimization techniques, on the other hand, the cost is measured on a
pixel basis, yet the fronto-parallel assumption underlies the first-order smoothness
term, introducing again fronto-parallel bias. Generally, slanted surfaces are
not supported under these scenarios of stereo matching, as they are mapped
and sampled differently across the views. Therefore, most methods based on
smoothness assumptions and other fronto-parallel shape priors such as scanline
optimization and semi-global methods [Hirschmuller, 2008]| (see Section 2.3) also
suffer from this problem. To compensate for this challenge, least-squares methods
(LSM) based on affine transformations |Griin, 1985| have been proposed. Second-
order smoothness terms have also been suggested in the literature [Ishikawa and
Geiger, 2006; Woodford et al., 2009]; however, using such a complex pairwise
model adds a significant computational expense. In the same line of thought,
some works have also considered curved surfaces [Lin and Tomasi, 2003; Li and
Zucker, 2008]. Segmentation-based approaches have also been implemented,
approximating second-order priors with segmented image parts that are piecewise
smooth, yet typically hard constraints are applied, leading to rough results [Hong
and Chen, 2004]. Adaptive support weights can help to manage the different
disparity values included in every window [Yoon and Kweon, 2006; Bleyer et al.,
2011|. However, the most efficient methods for tackling the fronto-parallel bias
are plane sweeping, based on direct wrapping of the image to one common plane
[Collins, 1996; Gallup et al., 2007], discussed in Section 2.4, and local plane fitting
based on the PatchMatch algorithm [Barnes et al., 2009], extensively explained in
Chapter 3.

Occlusions. Occlusion detection and handling is yet another particularly chal-
lenging task in stereo correspondences, either in two-view or multi-view scenarios;
it aims to avoid the establishment of false correspondences due to occlusions.
Occluded pixels are the ones visible only in one image, whose depth inevitably
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cannot be reconstructed due to the violation of the visibility constraint. This
can commonly occur around natural object edges, where background pixels are
occluded by the foreground ones. Depending on the algorithm and the extent of
the occluded area, artifacts, erroneous depth estimates, or information gaps may
appear in such regions. Approaches have been proposed to confront this issue
mainly globally but also locally [Sun et al., 2005; Hu and Mordohai, 2012; Hosni
et al., 2012|. This topic has been thoroughly studied also under the multi-view
scenario with the formulation of visibility models (see Section 2.5.2 for details).

Other challenges. Apart from the aforementioned challenges and limitations,
other open issues in stereo matching are more relevant to the implementation of
the algorithms and their performance. For instance, computational complexity
is a problem encountered mostly in global methods since local methods are, by
definition, cheaper. This is mainly due to the expensive global cost volumes and
the need to search throughout the whole disparity range. Indeed, a pre-defined
range [dpin, dmaz] should be rigorously selected and adaptively tuned for each
application, e.g., as in [Wenzel, 2016; Rothermel et al., 2012]. To cope with
the computational burden of global cost volumes, hierarchical approaches have
been proposed in the literature applying Gaussian scale-space image pyramids
[Quam, 1987]. Such methods work in multi-resolution schemes to guide the search
from coarse to fine scales and consequently reduce the search space and thus
the computational cost [Hirschmuller, 2006; Rothermel et al., 2012]. Dynamic
cost structures have also been exploited [Rothermel et al., 2012]. Finally, most
conventional stereo algorithms operate in the discrete disparity space and account
for full integer (quantized) disparity values only; consequently, they do not achieve
sub-pixel accuracy without further refinement and interpolation step [Yang et al.,
2008].

2.3 Semi global matching

In the seminal work of Hirschmuller [2006, 2008], semi-global matching (SGM) was
introduced as a hybrid solution between global and local methods. It approximates
a global optimization inspired by scanline optimization (NP-hard 2D graph
partitioning) [Ohta and Kanade, 1985] and dynamic programming [Veksler, 2005]
at a lower computational cost. The pixelwise matching cost and the smoothness
assumptions are formulated similarly to the global methods into one energy
function E(D) as a 2D MRF problem. This MRF is approximated; using up to 16
independent cardinal directions r = {(0,1), (0, —1), (1,0),... } along 1D scanlines.
Optimized by dynamic programming to minimize the energy function and enforce
smoothness, it provides a trade-off between computational complexity and quality.

The original SGM proposes to use the MI metric [Viola and Wells III, 1997]
for initial matching cost computation due to its robustness to gain and bias
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and radiometric changes. For disparity estimation, as most standard global
minimization approaches, SGM defines the energy function for the disparity image
D:

E(D)=> c)+ Y _T(pq). (226)

The first term is the sum of the photometric consistency costs ¢ at all pixel
locations p for a disparity d € D = {dpin, - - - ,dmaz}. Nonetheless, the second
term in SGM represents the smoothness as a combination of two linear truncated
penalty terms:

0, if[Dp— Dyl =0
T(p,q) =4 P, if |Dp— Dyl =1 (2.27)
P, if ‘Dp—Dq| > 1.

This pairwise term aims to penalize disparity changes between neighboring pixels.
P is a constant penalty for locations q in the neighborhood of p if they have
small disparity discontinuities |D, — Dq| = 1. P> adds a larger constant penalty
for all larger disparity changes |D, — Dq| > 1.

The computation of the optimal disparities is done in two steps. A disparity
space image is first constructed, which is actually a cost volume (cubic cost
structure), with d being a discrete value in a constant range D defining the
potential correspondences along the epipolar line. For k discrete levels of disparity,
the matching cost forms a 3D disparity volume of size W x H x D. In a second
step, all costs along several image paths, typically 8 or 16 (Figure 2.6), are
accumulated and stored in another 3D volume of the same dimensions. This cost
volume also contains noisy depth estimates as wrong hypotheses can potentially
have better scores than the correct ones, especially in the presence of textureless
surfaces. Therefore, additional prior information about the scene surface should
be considered, like local smoothness in the same fashion as in the global methods.
However, in SGM, the smoothness constraint is approximated by the recursive
aggregation on multiple linear path directions (cost aggregation) that can be
horizontal, vertical, and diagonal. It is enforced by adding penalties for high
disparity differences (jumps) for each path and aggregating them recursively for
each direction. As expected, the more the paths are, the better the cost function
approximation, yet typically eight paths are chosen. The aggregated costs are
summed for each pixel, resulting in an aggregated cost volume S,4,. The per-pixel
minimum cost in the aggregated cost volume is finally chosen as the winning
disparity value d based on the Equation 2.24.

In Hirschmuller [2006, 2008], sub-pixel accuracy is achieved by cost approximation
using a second-order function. A second-order function is fitted to the minimum
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Figure 2.6: Cost aggregation in SGM. Left: minimum cost path, right: the 16
considered paths for cost aggregation. Source: [Hirschmuller, 2008].
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cost and the costs of two neighboring disparities (limited approximation). Ad-
ditional methods like LSM could be potentially applied for better results. A
left-right consistency check is also commonly performed so that for the same pixel,
the disparity difference between the left and right disparity images does not exceed
a certain threshold. Disparity values that exceed this threshold are removed from
the final depth map. Originally, SGM was developed to process image pairs; for
multiple view scenarios, the algorithm can be extended by calculating matching
costs across multiple images. To efficiently treat the occlusions issue, however,
in multi-view SGM scenarios, it is preferred to fuse the pairwise disparity maps
after a pairwise occlusion filtering. Further disparity filtering, e.g., using median
filtered, is commonly performed.

2.3.1 Limitations of SGM and further improvements

Optimization via SGM is a robust solution for accurate depth estimates and has
been widely used in applications like mapping |[Hirschmuller, 2008; Rothermel
et al., 2012], assisted driving |Gehrig et al., 2009] or robot navigation [Schmid et al.,
2013| while being particularly famous within the photogrammetric community.
However, as a global method, the implication via the first-order smoothness term
of a fronto-parallel shape prior limits the applicability of the algorithm when
strongly slanted surfaces are present. Although this is not the case for nadir
airborne images, it is particularly true in close-range applications with wide
baselines. Similarly, matching ambiguities due to multiple local cost minima may
occur in large, low-textured areas, repetitive patterns or generally non-Lambertian
surfaces. In the original SGM scenario, such ambiguities are partially handled by
the smoothness term interpolating depth values by the neighboring pixels, yet,
often, various inconsistencies occur. Moreover, cost aggregation from the different
paths and the WTA-fashioned depth estimation may be problematic when costs
along the various paths are inconsistent [Schonberger et al., 2018|. Summing
the costs over the various paths was originally introduced to avoid the stair-case
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effect [Hirschmuller, 2006], but it has proven inefficient for handling matching
ambiguities and slanted surfaces. Indeed, as explained in Schonberger et al. [2018],
when the photometric cost is unreliable, the smoothness term tends to propagate
equally likely depth estimates along the propagation direction. Especially in the
case of slanted textureless areas, there is no clear outlier, and cost summation
leads to a biased estimate and consequently to noisy depth maps. Also, during
occlusion handling, the smoothness constraint is likely to propagate correct depth
hypotheses only when the occluded region is fronto-parallel. Several methods have
been proposed in the literature to efficiently tackle the stair-case effects, like using
BP and truncated smoothness terms [Facciolo et al., 2015], individually weighted
penalties for each path [Michael et al., 2013], or weights based on surface priors
[Spangenberg et al., 2013]. More recently, random forests are used to predict
per-pixel weights for each path [Poggi and Mattoccia, 2016| or for the efficient
fusion of disparity proposals [Schonberger et al., 2018|.

The original SGM implementation suggested using a constant P» penalty value or
defining it as a function of the gradient of the image between the current and the
previous pixel. Zhu et al. [2011], based on this formula, also introduced a weight
to adjust the penalty value. Banz et al. [2012] further elaborated on this idea and
introduced three more parameters for P,. Other works extended the approach by
incorporating second-order terms [Hermann et al., 2009; Ni et al., 2018]. Explicit
priors have been used to confront matching ambiguities, either in a simple plane
fitting fashion [Humenberger et al., 2010; Sinha et al., 2014] or by incorporating
surface normals as soft constraints by penalizing the deviation of the calculated
surface orientation from the assumed prior [Scharstein et al., 2017].

SGM requires a disparity range prior [dymaz — dmin] and is, consequently, computa-
tionally expensive when large-scale variations are present in the scene since every
disparity in the cost volume needs to be evaluated for each pixel. That being said,
the assumption of constant disparity range for the entire scene may not be an issue
for airborne nadir images, yet it is not the case for close-range high-resolution
images with large disparity ranges. Hirschmuller [2008] suggested processing the
large images in tiles for a more efficient implementation in a coarse-to-fine scheme
to initialize and update the matching cost. Later, Hirschmiiller et al. [2012]
suggested a quite simplified yet memory-efficient version of SGM, storing only the
minimum costs for each pixel. Related literature has also proposed approaches to
ease the memory requirements, like dividing the image into stripes [Humenberger
et al., 2010; Spangenberg et al., 2014]. Calculating disparities in lower resolution
and using them as a prior has also been popular for reducing the search space and
easing the memory requirements |Gehrig et al., 2009; Hermann and Klette, 2012].
Similar to other methods, also in SGM hierarchical approaches have proven to be
efficient for complexity reduction. Image pyramids are used in a coarse-to-fine
scheme, and disparity ranges from lower resolution levels are passed to the higher
ones to narrow down the search space. The works of Rothermel et al. [2012]
and Wenzel et al. [2013| proposed an extension by a hierarchical strategy that
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allows for arbitrary depth variation and resolution in a more efficient way; the cost
volume has a dynamic structure with an individual range for each pixel rather
than fixed dimensions. Toward the same goal, Sinha et al. [2014] combined local
plane sweeping (see Section 2.4) and SGM to confine the disparity ranges and
reduce the computational complexity. Bethmann and Luhmann [2014] performed
cost calculation and optimization in the object space using a voxel structure and
facilitating the computational process in multi-view scenarios.

2.4 Plane sweeping

The plane sweeping algorithm was originally introduced by Collins [1996] as a
method to sparsely match multiple images that are not required to be stereo
rectified. For each depth, the source images are projected onto fronto-parallel
planes upon the camera frustum of the reference image. Yang and Pollefeys [2003]
further elaborated on this approach for dense depth estimation using the GPU,
but the method gained particular popularity when Gallup et al. [2007] extended
the approach to explicitly handle multiple slanted planes; they demonstrated that
robustness is improved when the sweeping plane is aligned with the predominant
directions of the scene in multi-view scenarios. Plane sweeping is, in principle,
a local stereo method. Yet, in the approach of Gallup et al. [2007], the fronto-
parallel bias, commonly present in stereo methods, is undertaken since, for each
pixel, a different plane direction may be assigned. In more detail, first, the
scene’s principal plane orientations, i.e., the surface normals, are identified using
the priorly calculated sparse points, then it estimates the depth by sweeping a
family of planes along each normal direction generating multiple depth hypotheses
for each pixel. The best depth and normal values combination is selected as
the correct plane hypothesis. Multiple plane sweeps are performed in order to
reconstruct planar surfaces having a particular normal. Sweeping through a
series of disparity hypotheses corresponds to warping or projecting each input
image onto the virtual planes. Photo-consistency values are evaluated for each
plane. For cost computation, standard photo-consistency measures are applied
like absolute differences (AD), sum of absolute differences (SAD), and normalized
cross-correlation (NCC). Instead of building a cost volume by matching patches
across epipolar lines like in other stereo methods, plane sweep-based methods
build a cost volume for a sampled set of plane hypotheses of the 3D scene.
However, plane hypothesis direction is important; its normal should match the
actual surface direction to minimize distortions on the resulting warped image
and support reliable and photo-consistent matches. Among the strengths of
the algorithm is the real-time performance, yet inaccurate results may occur
in general camera configurations. It works well in urban scene reconstructions,
where dominant plane directions are present in the scene. However, plane-sweep
is computationally consuming in multi-view and high-resolution scenarios and
typically relies on GPU optimization for time-efficiency.
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Figure 2.7: Sweeping planes. Fronto-parallel (left) and slanted sweeping planes (right)
extracted from the sparse point cloud for the reference image I,..f, as introduced in
[Gallup et al., 2007]. Source: [Furukawa and Hernandez, 2015].

Plane sweeping is an efficient solution and sufficiently recovers the depth of
rich textured areas; however, in problematic textureless areas, other engineered
optimization solutions like graph cuts [Kolmogorov and Zabih, 2002|, belief
propagation [Sun et al., 2003 or cost filtering [Hosni et al., 2012] can obtain better
results. Dominant plane orientation is used to assist stereo reconstruction in the
literature, like [Pollefeys et al., 2008| or using the Manhattan World assumption,
i.e., scenes that consist of piecewise planar surfaces with dominant directions
|[Furukawa et al., 2009] or focused on architectural scenes [Cornelis et al., 2008].
Sinha et al. [2009] combined plane candidates and 3D line segments and computed
piecewise planar depth maps using energy minimization.

2.5 Multiple view stereo

Multiple (or multi-) view stereo (MVS) algorithms address the problem of gener-
ating a dense and complete 3D representation of the scene, using multiple (i > 3)
overlapping images of known viewpoints simultaneously, generalizing the standard
stereo case for more than two views. In the last decade, MVS methods have
demonstrated a great potential to efficiently reconstruct complex and large scenes
and hence have been a hot research topic in photogrammetry and computer vision.

MVS basically relies on the same principles as classic binocular stereo; however, the
problem cannot be extended directly from the two-view to the multi-view scenario
since, for the estimating the depth of one reference image, correspondences across
multiple source images should be considered simultaneously, enforcing photo-
consistency between them (multi-photo-consistency). This redundancy is an
essential part of the several MVS methods, as it is utilized for more efficient cost
aggregation, tackling the commonly occurring matching ambiguities of two-view
scenarios and yielding more robust depth estimates. Trivial stereo matching for
all possible pairs with a subsequent fusion of disparities or 3D points can be
followed, yet the multi-view redundancy will not be fully exploited. Indeed, early
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approaches try to solve the problem as multiple pairwise matching in order to
utilize the well-known epipolar constraints from the standard stereo case [Griin
and Baltsavias, 1988; Okutomi and Kanade, 1993; Kanade et al., 1995] while
similar constraints can be used based on the trifocal tensor for image triplets
[Fitzgibbon and Zisserman, 1998; Hartley and Zisserman, 2003|. In recent years,
enforcing the consistency across multiple images simultaneously is one of the open
challenges in MVS research and is typically evaluated in sophisticated ways as a
function of scene geometry, viewpoints, materials, and illumination.

Classic stereo approaches typically handle small baselines; on the contrary, one
fundamental property of MVS algorithms is their ability to handle arbitrary
varying viewpoints, i.e., drastic angle and scale changes that inevitably cause
geometric and radiometric distortions and, thus, increase the difficulty to find
corresponding patches. However, such strongly variant viewpoints also inherit
occlusions that need, in turn, to be identified based on visibility reasoning, i.e.,
visibility models and suitable neighboring view selection for optimal appearance
consistency, also considering the scene complexity. MVS methods typically can
handle images that are not stereo rectified; in fact, in multi-view cases, searching
for correspondences along aligned epipolar lines can be performed successfully
only in some special camera configurations to avoid excessive deformations, e.g.,
aligned cameras centers [Nozick, 2011]|. Actually, in multi-view camera networks,
often the camera network geometry is such that the epipoles lie within or are
particularly close to the image borders, where epipolar rectification typically fails
[Héne et al., 2014].

In multi-view scenarios, for the image set Z the camera poses (R,t) along with a
sparse representation of the scene are obtained by priory performed Structure from
Motion (SfM) pipelines [Snavely et al., 2006; Agarwal et al., 2011; Schonberger
and Frahm, 2016]. Thus, the relative geometry for every camera in the 3D space
is known R, t, while a different calibration matrix K for each camera may also be
considered. Additional scene cues such as lighting [Langguth et al., 2016], color
|Gallup et al., 2010], scene structure |[Furukawa et al., 2009, and semantics [Héne
et al., 2013; Blaha et al., 2017| have been incorporated to improve the quality of
the multi-view 3D reconstruction; yet, the joint use of all of them is non-trivial
and remains an open challenge.

2.5.1 Taxonomy in MVS

Seitz et al. [2006] proposed a taxonomy based on six criteria to categorize the MVS
algorithms according to: scene representation, photo-consistency measure, visibil-
ity model, shape prior, reconstruction algorithm, and initialization requirements.
Scene representation may be described by depth maps, level sets, triangulated
meshes, or voxels. Depth maps are considered point-wise representations since
depth reprojection leads to the 3D point cloud equivalent [Galliani et al., 2015].
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Figure 2.8: An example MVS reconstruction pipeline, where a 3D model of the
scene is reconstructed using multiple overlapping images of known poses. Data: Ignatius,
Tanks and Temples benchmark [Knapitsch et al., 2017].

Photo-consistency measures refer to the choice of the matching cost metric, e.g.,
NCC, SAD, MI (see also Section 2.2.1), and can be enforced in the image space or
the object space. The visibility model connects each point with the cameras; it is
the way the occlusions are handled and is used accordingly to select appropriate
stereo pairs. Shape priors or assumptions about the surface geometry can be used
in cases of limited redundancy and to support local planarity in case of ambiguities
(e.g., due to the lack of texture). The reconstruction algorithm is the series of
steps followed for depth estimation and geometry retrieval. Finally, initialization
requirements represent the necessary initial information for the reconstruction,
such as the bounding box, a pre-defined disparity range, or other scene priors.

Since this taxonomy was introduced, algorithms have significantly evolved, and
the vast literature on MVS reconstruction has grown rapidly, and keeping clear
boundaries between methods is tough. Other categorization schemes exist, such
as the one proposed by Aanges et al. [2016], who divided MVS algorithms into
three main categories: point cloud-based, volume-based, and mesh-based methods.
However, within this dissertation, the popular categorization based on their
reconstruction algorithm is adopted, according to which MVS algorithms may
refer to (1) voxel-based methods, (2) surface evolution-based methods, (3) feature
point growing-based methods, and (4) depth map-based methods. Some methods,
combining different steps and procedures, can potentially fit into more than one
category.

Volumetric reconstruction. Volumetric mesh reconstruction in multi-view,
introduced in the seminal work of Curless and Levoy [1996], was first applied
in the computer graphics field; it may have as input 3D information deriving
from different sources such as 3D volumes, depth maps, or point clouds. The
general underlying idea is to leverage ray visibility information, connecting the 3D
space with the camera poses, to understand which part of the scene is free-space
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and which part is matter, i.e., occupied. Among the first approaches to recover
the object geometry from arbitrary cameras were methods assigning occupancy
information to each voxel while considering photo-consistency like space carving
[Kutulakos and Seitz, 2000] and voxel coloring [Seitz and Dyer, 1999].

Volumetric approaches first compute a bounding box, then divide the 3D space into
a regular voxel grid and compute a cost function, typically based on photometric
consistency metrics |[Zach et al., 2007; Zach, 2008] or also exploiting silhouette
constraints |Cremers and Kolev, 2010]. Image visibility information is kept
and inherited, and costs represent the possibility of the voxel being part of the
surface. A 3D volume is calculated from which the optimal surface will be
extracted using, e.g., graph cuts [Hornung and Kobbelt, 2006; Vogiatzis et al.,
2007; Hernandez et al., 2007; Sinha et al., 2007] or the signed distance function
will be calculated [Newcombe et al., 2011b; Werner et al., 2014| posing the surface
reconstruction as zero iso-surface extraction problem [Curless and Levoy, 1996;
Zach et al., 2007|. Some works extend this approach by modeling the visibility
along the full viewing ray for each pixel, using an MRF formulation [Liu and
Cooper, 2010; Savinov et al., 2016; Ulusoy et al., 2015, 2016]. Ray potentials
efficiently model occlusions and enforce consistency; however, higher-order ray
potentials are formed per pixel and increase the memory consumption. Further
regularization in volumetric integration has also been investigated using the Total
Variation norm (TV-L1) [Zach, 2008; Hane et al., 2012| to suppress noise and
reject outliers. Multi-scale extensions have been proposed to handle varying scale
depth maps using hierarchical signed distance fields [Fuhrmann and Goesele,
2011] or independent subsets [Kuhn et al., 2013|. For real-time applications,
low-resolution RGB-D images of the Kinect sensor have been used [Newcombe
et al., 2011b]. Nonetheless, volumetric methods have the drawback that space
discretization per se is memory-consuming. Moreover, the reconstruction accuracy
is restricted to the voxel size; hence scalability issues occur for large-scale scenes
with high accuracy requirements. In order to skip the requirement for predefined
scene extent, other approaches deviate from the regular partitioning of the volume
using voxels; they first reconstruct a sparse point cloud that will be converted to
an irregular mesh via Delaunay Tetrahedralization by solving a volumetric MRF
[Labatut et al., 2007; Sugiura et al., 2013]. The tetrahedrons are then labeled
empty or occupied, typically formulated as a graph-cut problem. The idea was
extended by [Jancosek and Pajdla, 2011, 2014|, starting from an input point
cloud and exploiting visibility to also recover the so-called “weakly-supported”
objects. These methods are inherently more scalable than the voxel-based ones
since Delaunay triangulation adapts its density according to the point cloud.

Final surfaces are produced from volumetric representations using Poisson trian-
gulation from oriented point clouds [Kazhdan et al., 2006; Kazhdan and Hoppe,
2013] or the marching-cubes algorithm [Lorensen and Cline, 1987|. However, such
approaches usually generate a rough surface which can be further refined by using
photo-consistency metrics on the images to recover scene details [Jancosek and
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Pajdla, 2011]. Optimization in volumetric approaches works in object space and
can be limited by the memory availability, also restricting its applicability in
large-scale and high-resolution scenes. More recently, other methods have tried
to incorporate semantic cues in volumetric reconstruction, treating it as a joint
problem of reconstruction and semantic segmentation [Héne et al., 2013; Savinov
et al., 2016; Blaha et al., 2017|. Recent deep-learning methods also adopt such
scene representations [Paschalidou et al., 2018], as discussed in Section 2.6.

Surface evolution. Surface evolution-based methods require a good initial
guess to initialize the surface evolution and iteratively improve it guided by multi-
view photometric consistency in image space. The initial surface guess can be as
rough as a triangulated version of a sparse point cloud [Hiep et al., 2009 or a
visual hull [Furukawa and Ponce, 2006], but also a dense point cloud or a mesh
generated with volumetric methods. Hence, surface evolution can potentially be
added as a final step in any MVS pipeline to refine the mesh representation and
recover details. The images are again involved in this step to guide the refinement
based on photo-consistency, and the vertex positions are optimized to minimize
the reprojection error.

Visual hulls, introduced by Laurentini [1994] were one of the first approaches to
infer shapes from images, separating the background objects relying on silhouettes,
i.e., contours. Level-set methods were also initially used in the early steps of
these approaches for variational refinement [Faugeras and Keriven, 1998; Pons
et al., 2007], employing partial differential equations (PDEs) but had a prohibitive
computational and memory cost. Space carving can also be considered a surface
evolution method since it progressively eliminates inconsistent voxels from an
initially reconstructed volume [Kutulakos and Seitz, 2000]. Silhouettes defining a
visual hull have been integrated with texture in a deformable model by Hernédndez
and Schmitt [2004] and Furukawa and Ponce [2006] yet these methods have limited
applicability. In other methods, s —t cut global optimization is used for a visibility
consistent initial volume, and details are recovered via variational mesh refinement
[Labatut et al., 2007; Hiep et al., 2009]. Jancosek and Pajdla [2011] added a
visual hull component to recover challenging surfaces, starting from a given point
cloud. Delaunoy and Prados [2011] also considered visibility constraints combined
with gradient flows, and Delaunoy and Pollefeys [2014] formulated the problem in
a geometric bundle adjustment. [Li et al., 2016| divided the scene into significant
and insignificant regions to recover details adaptively. More recently, Romanoni
et al. [2017] optimized camera view selection to treat occlusions during model
refinement. Variational multi-view mesh refinement formalizes the disagreement
between the triangulated mesh and the image data in an energy function. This
energy is typically minimized with gradient descent and produces highly detailed
results [Vu et al., 2011; Li et al., 2016; Heise et al., 2015]. A drawback of surface
evolution methods is the requirement of a reliable enough initial surface which is
usually not feasible for real-world outdoor scenarios. In this regard, Cremers and
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Kolev [2010] define a convex functional minimization problem that does not need
initialization.

Feature point growing. Another research branch casts the refinement on
patches, i.e., pairs of normal and depth, instead of surfaces via mesh evolution.
Feature point growing methods, also known as patch-based algorithms, initially
parse point clouds based on discriminative features on highly textured areas and
subsequently expand them to reconstruct the whole scene instead of reconstructing
each point independently. PMVS is a seminal patch-based approach introduced by
[Furukawa and Ponce, 2009], achieving groundbreaking results in its time, further
developing on the idea of Lhuillier and Quan [2005], who introduced a quasi-dense
approach. Small rectangular patches (i.e., points with local region support) are
used as local approximations of a tangent plane, generated by sparse feature
correspondences, and are grown repeatedly in a region-growing fashion. Sparse
features are matched, then expanded, creating a dense set of patches, and finally
filtered iteratively while enforcing local photometric consistency across multiple
views and global visibility constraints. Patches and correspondences are stored
in a grid structure, consisting of grid cells, for every image. With this seed-and-
expand scheme, the patches are densified until each grid cell is full. No explicit
regularization is applied, yet patches are reconstructed sufficiently complete and
smooth. Oriented point clouds are generated, and, optionally, a surface can
be reconstructed with standard methods such as Poisson reconstruction and
refined using energy minimization with geometric smoothness and photometric
consistency terms. In PMVS, no surface initialization is required, and normals
are also considered to avoid fronto-parallel bias. A drawback of such an approach
is the scalability problems, as they tend to reconstruct the complete scene at once.
In order to handle the high memory consumption of this method, CMVS was
proposed |Furukawa et al., 2010] as a follow-up method using clusters. Other works
have been proposed inspired by PMVS [Wu et al., 2010; Locher et al., 2016], also
incorporating scene priors to overcome the textureless areas’ problem [Furukawa
et al., 2009]. However, among the limitations of these methods is the inefficient
spread of points in textureless regions. It is to be noted that patch-based PMVS
should not be confused with PatchMatch-based approaches, which are based on
similar patches yet operate diversely since they generate depth maps; PatchMatch
will be extensively discussed in Chapter 3, as it is a core part of this thesis.

Depth map fusion. Depth map fusion algorithms have been widely used in
recent years under large-scale, high-resolution applications with high accuracy
requirements due to their overall efficiency and scalability and are, thus, typically
preferred over the other methods. Indeed, voxel-based methods are constrained by
the predefined resolution and are thus not applicable in large-scale reconstructions,
e.g., outdoor scenarios in photogrammetric applications; surface-evolution methods
depend on a reliable surface initialization, and feature-based methods rely on seed
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points, limiting their completeness. On the contrary, depth map fusion methods
decouple the complex MVS problem into per-view depth estimation tasks and
subsequent fusion. They infer the depth map for each reference image considering
several source images as input, simultaneously or individual pairs, enabling
scalability while also yielding more robust depth estimates and 3D reconstructions
in the form of point clouds [Merrell et al., 2007| or mesh representations [Curless
and Levoy, 1996; Newcombe et al., 2011a; Vu et al., 2011; Heise et al., 2015].
However, depth map fusion has particular challenges, such as view selection,
occlusion handling, object boundaries, and depth discontinuities.

Depth maps, containing the disparity values of the scene points and are typically
derived by stereo matching methods described in Section 2.2 [Hirschmuller, 2008;
Gallup et al., 2007; Bleyer et al., 2011]. For each generated depth map, given the
camera poses, the 3D scene geometry can be generated by projecting the depth
in the 3D space. For complex scenes, a proper depth sampling scheme needs to
be adapted to maintain constant depth accuracy along with efficiency |Gallup
et al., 2008] since accuracy is typically inversely proportional to the distance to
the surface. Considering that for each view, one depth map is generated, and
the views are overlapping, depth maps inherently also overlap. Redundancy is
exploited to optimize the accuracy and completeness of the final fused point cloud.
Undoubtedly, using more than two intersecting rays for each point will increase
the quality of the reconstruction. Depth maps are fused together in order to derive
the optimal surface representation while taking into consideration geometric or
visibility criteria, e.g., intersection angles, image scale [Merrell et al., 2007; Hu and
Mordohai, 2012 but also radiometric or image criteria, e.g., quality of the texture,
image blur [Vu et al., 2011] to select the best viewpoints. Algorithms proposing
WTA depth estimation [Herndndez and Schmitt, 2004; Hu and Mordohai, 2012],
truncated costs |[Goesele et al., 2006], or using more robust photo-consistency
metrics based on Parzen windows [Vogiatzis et al., 2007|. Enforcing consistency
simultaneously across multiple views is actually a large optimization problem, while
outliers and noise also need to be considered, along with smoothness. A standard
approach would be to solve a linear system AX = 0 to calculate the optimal
point X in the 3D space while considering redundant depth estimates |Li et al.,
2010]. Outliers are subsequently treated statistically; thresholds in reprojection
errors are set to exclude erroneous measurements, improving accuracy. However,
this solution is efficient only if the number of correct estimates is significantly
smaller than the number of outliers. Global optimization methods use an MRF
formulation and optimize via graph cuts [Kolmogorov and Zabih, 2002; Campbell
et al., 2008] of belief propagation [Strecha et al., 2006], similarly to the ones
discussed in Section 2.2. Such methods combine multiple hypotheses to improve
the depth maps for multiple view stereo; first, depth labels are extracted and
then assigned to the pixels with MRF optimization. Expectation maximization
(EM) for joint depth and occlusion estimation has also been applied [Strecha
et al., 2006; Tola et al., 2009], but such implementations generally suffer from
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high complexity and are accordingly limited to a small number of images. Tola
et al. [2012] relied on dense DAISY features to generate pairwise depth maps in an
efficient manner; redundant depth maps are merged by consistency checks among
neighboring views, working on the full resolution of high-resolution images. Such
dense descriptors were, at the time, a good solution to avoid matching windows
and increase robustness to distortions. Depth maps can be finally combined in
volumetric representations [Goesele et al., 2006; Zach et al., 2007; Fuhrmann and
Goesele, 2011; Kuhn et al., 2013, 2017].

Other methods focused on processing extremely large, internet-scale collections,
also exploiting GPU implementations that were revolutionary in their time [Goesele
et al., 2007; Furukawa et al., 2010; Frahm et al., 2010|. Plane sweeping MVS
algorithms [Gallup et al., 2007] are also depth map fusion methods (see also
Section 2.4). Similarly, PatchMatch-based MVS approaches [Shen, 2013; Galliani
et al., 2015; Schonberger et al., 2016; Xu and Tao, 2019], discussed in detail in
Chapter 3, exploit multi-view redundancy for the computation of each depth
map and perform subsequent fusion; they have been proven to work efficiently,
especially when it comes to accurate depth estimation of slanted surfaces due to
the usage of support windows to eliminate fronto-parallel bias.

In photogrammetric applications, traditional methods followed least-squares mini-
mization approaches for multi-view scenarios |Griin, 1985; Helava, 1988; Griin
and Baltsavias, 1988]. Recently, SGM-based approaches are typically performed
for all overlapping image pairs separately, with subsequent consistency checks
to eliminate outliers and fusion in the 3D space [Hirschmuller, 2008; Rothermel
et al., 2012; Wenzel et al., 2013]; however such approaches, although having lower
computational complexity, do not fully exploit multi-view redundancy as they
enforce photo-consistency only within each pair. Another approach performing
SGM directly in the object space using voxel grids has been proposed [Bethmann
and Luhmann, 2014], relaxing the requirement for stereo rectified images. Po-
tentially, the point clouds can subsequently converted to meshed surfaces with
Poisson reconstruction |[Kazhdan et al., 2006, e.g., in [Furukawa and Ponce, 2009|
or Delaunay Tetrahedralization [Vu et al., 2011; Tola et al., 2012; Jancosek and
Pajdla, 2014]. Delaunay Tetrahedralization is commonly preferred since it adapts
to point density and is, thus, more scalable. Although their great applicability,
depth map fusion methods commonly suffer from the inherited deficiencies of
stereo matching and fail to recover information in weakly-supported regions of
the scene.

2.5.2 Visibility models

Visibility models in MVS define physically impossible surface states, i.e., surfaces
violating the visibility constraint, and are thus designed to identify and handle
occlusions. As aforementioned, additional ray redundancy in multi-view methods
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is used to resolve, to some extent, the inherited occlusions of the two-view methods.
However, a robust selection of the subset of best neighboring views Z,,;45 of the
image set Z for each reference image I,y is a crucial step for occlusion handling
and distortion minimization between corresponding image patches; at the same
time, appearance similarity should be reassured, and suitable baselines should
be chosen for accurate triangulation. Photo-consistency measures assume prior
knowledge of the camera geometry but are agnostic to the captured 3D scene,
creating a dependency loop (Figure 2.9); for this reason, some approaches make
the initial assumption of no occlusions and re-estimate visibilities and depth
iteratively [Kang et al., 2001].

In some methods, an initial surface reconstruction is used to estimate the visibility,
as commonly done in surface evolution algorithms [Hiep et al., 2009; Faugeras
and Keriven, 2002|. Space carving [Seitz and Dyer, 1999; Kutulakos and Seitz,
2000] also starts from an initial volume that is iteratively carved out by removing
voxels that are not photometrically consistent, meaning that textureless surfaces
will not be recovered. According to this model, constraints on the camera centers
are imposed such that it is guaranteed that occluder voxels are visited before
their potential occluded voxels, a method commonly named visibility reasoning.
Other methods use simple heuristics to select the best views for every reference
image, like minimum photometric costs [Kang et al., 2001; Gallup et al., 2008;
Galliani et al., 2015] or viewing angles, scale differences, and baseline length
criteria to restrict the number of “good” image pairs [Tola et al., 2012; Shen, 2013].
In some cases, SfM points are often used to support the visibility information
[Goesele et al., 2007; Vu et al., 2011; Furukawa et al., 2010]. However, since
matched images during SfM do not always imply also “good” image pairs for depth
estimation, the visibility information needs to be further exploited here. Defining
the best views can be formulated as a problem as such or jointly exclude the most
improbable views with a clustering process to handle a vast number of images, e.g.,
in crowdsourced collections [Goesele et al., 2007; Furukawa et al., 2010]. Global
approaches often cast the problem into an energy function considering jointly
photometric and geometric consistency, and thus solving depth and visibility, for
every pixel [Kolmogorov and Zabih, 2002; Strecha et al., 2006; Campbell et al.,
2008; Tola et al., 2009; Savinov et al., 2016; Romanoni and Matteucci, 2021]. More
sophisticated recent approaches reformulate the problem as a joint optimization
for depth, normal and pixelwise view selection in a probabilistic framework based
on PatchMatch MVS [Zheng et al., 2014; Schonberger et al., 2016]. More details
on such approaches are given in Chapter 3.

2.5.3 Open-source implementations for MVS reconstruction

Among the pioneer works that revolutionized the field of image-based 3D recon-
struction, Snavely et al. [2006] introduced Photo Tourism, later known as Bundler,
an interface to sparsely reconstruct random community photos. VisualSfM was
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Figure 2.9: Visibility problem. Depth estimation algorithms assume known camera
poses and visibility information, however, the scene surface is not known beforehand.
Here, a specific 3D point in the object visible by the reference camera I,..s is seen by the
Tneigh set of cameras (in orange), but is occluded for the gray ones. Data: DTU Robotics
[Aanaes et al., 2016].

one of the first widely used GUI solutions [Wu et al., 2011; Wu, 2013] integrating
the PMVS/CMVS algorithms for dense reconstruction |[Furukawa and Ponce,
2009; Furukawa et al., 2010]. Another end-to-end solution offering a user interface
for SfM, MVS and surface reconstruction is MVE [Fuhrmann et al., 2014].

More recently, Schonberger and Frahm [2016] and Schonberger et al. [2016] intro-
duced two frameworks for SfM and MVS reconstructions respectively, integrated
in the all-in-one solution COLMAP, which is still considered as the state-of-the-art
for conventional methods, due to its high accuracy results. It encapsulates efficient
implementations for global and incremental SfM reconstruction and PatchMatch
stereo for MV'S, while allowing for a high level of flexibility also for the interme-
diate tasks such as feature detection and description. However, the frameworks
OpenMVG [Moulon et al., 2016] for SfM reconstruction and OpenMVS [Cernea,
2020] for MVS are also widely used and often combined together for 3D reconstruc-
tion applications [Stathopoulou et al., 2019] and have become the baselines for
further research. Several other libraries offering robust SfM implementations exist,
such as Theia [Sweeney et al., 2015a| or the OpenSfM library [Adorjan, 2016] and
other for MVS, such as HPMVS |[Locher et al., 2016, Gipuma |Galliani et al.,
2016] and CMPMVS [Jancosek and Pajdla, 2011]. ACMP is a recently released
open-source implementation with promising results for MVS reconstruction [Xu
and Tao, 2019, 2020b)].

More adjacent to the needs of the photogrammetric community, MicMac [Pierrot-
Deseilligny and Paparoditis, 2006; Rupnik et al., 2017| is an open-source pipeline for
SfM and MVS reconstruction enabling GCPs usage in the bundle adjustment and
camera constraints. Robust commercial software solutions for photogrammetric
applications also exist in the market, yet they typically rely on black-box solutions,
and on that account, are not further discussed in this dissertation.
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2.5.4 Limitation and challenges in MVS

Despite the overall success of the MVS algorithms, there are still some open
challenges regarding the complete and accurate 3D reconstruction of a scene. The
challenges of establishing dense correspondences using photometric consistency
are mostly equivalent to those discussed in stereo matching (Section 2.2), as the
limitations of the algorithms are naturally inherited from the two-view to the
multi-view problem. However, the ray redundancy in multi-view cases gener-
ally enables a most efficient scene recovery. That being said, MVS faces other
particular challenges regarding the efficient analysis of large-scale data, heteroge-
neous illumination conditions, varying viewpoints, etc. Moreover, potential image
misalignments due to inaccurate pose estimation during SfM would inevitably
deteriorate the results affecting consistency check and fusion. Apart from the
scene nature and acquisition conditions, the particular limitations also depend on
the adopted reconstruction algorithm and principally on how the correspondence
problem is formulated. Some of the most broadly discussed limitations in the
literature refer to:

Occlusions and slanted surfaces. The occlusions, as well as the information
gaps typically encountered in the stereo cases, in MVS are mostly treated via the
visibility models exploiting the multiple observations and achieving more complete
scene reconstructions, as discussed in Section 2.5.2. The assumption of constant
depth across the support region commonly decreases the efficiency of the algorithm
in the presence of slanted surfaces. This limitation can be undertaken with the
use of more advanced algorithms also considering the local normal information
|Zabulis and Daniilidis, 2004; Bleyer et al., 2010; Gallup et al., 2007].

Challenging surfaces. Nonetheless, the major failure cases are due to the
presence of challenging, non-Lambertian surfaces. Similar to stereo matching,
photometric consistency measures are the basis for finding correspondences in
the vast majority of MVS methods. Photometric consistency is based on the
assumption of diffuse or Lambertian reflectance on the surfaces; as a matter of
fact, in cases of near-Lambertian surfaces with rich textures, MVS algorithms
have achieved impressive 3D reconstruction results |[Furukawa et al., 2010; Tola
et al., 2012; Fuhrmann et al., 2014; Schonberger et al., 2016]. However, in most
real-world scenes, surfaces that variate from this standard are often encountered,
such as large textured areas, specular, transparent, or reflective surface materials,
and thin structures like wires. For instance, in most indoor scenes, there are several
walls of uniform color or reflective metallic structures, thus “weakly-supported”
[Jancosek and Pajdla, 2011]. These surfaces are still an unsolved problem in MVS
reconstruction as the photometric consistency metric alone typically cannot provide
reliable depth estimates due to matching ambiguities. Again, unlike the two-view
case, the redundant hypotheses in MVS may be beneficial to partially recover
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depth estimates in these problematic areas by enforcing multi-view consistency,
yet in practice, the presence of such areas remains an open challenge.

Scalability. MVS algorithms are often used to reconstruct large-scale datasets
consisting of a vast amount of high-resolution images. This inevitably creates a
scalability and runtime performance problem due to the huge cost volumes and
the need to compare all possible disparities and the pre-defined search ranges
that are often required. Most standard methods become impractical, and several
engineering solutions like hierarchical approaches have been proposed in the
literature [Rothermel et al., 2012; Wenzel et al., 2013].

Due to the aforementioned limitations, the reformulation of the MVS problem
has become implicit; indeed, one of the most efficient state-of-the-art method to
tackle this problem is the PatchMatch algorithm |Bleyer et al., 2011; Shen, 2013;
Schonberger et al., 2016], discussed in detail in Chapter 3.

2.6 Learning-based methods

Deep neural networks have been recently used in several high-level visual recogni-
tion tasks such as image classification [Krizhevsky et al., 2012; He et al., 2016,
object detection [Girshick et al., 2014; He et al., 2017], and semantic segmentation
[Long et al., 2015; Chen et al., 2017; Badrinarayanan et al., 2017], as well as
low-level visual tasks such as optical flow prediction [Dosovitskiy et al., 2015; Sun
et al., 2018|. This success has fostered the exploitation of such architectures also in
the field of depth estimation and 3D reconstruction. Under this concept, learning
algorithms try to infer a depth map from the set of input images. Conventional
methods for depth estimation, either binocular or multi-view, highly depend on
the handcrafted features used in their cost functions, particularly the photometric
consistency. Learning methods try to reformulate the problem while also lever-
aging semantic cues of the scene, closer to the human vision system. Indeed,
they learn more complex feature representations, combining photoconsistency and
context, that tend to be robust, as they are commonly able to incorporate global
semantic context. Particularly in depth estimation, these cues could potentially be
useful in case of sparse image signal, which tends to cause matching ambiguities,
i.e., weakly supported textureless surfaces, or even facilitate occlusion reasoning
[Dai et al., 2019; Khot et al., 2019]. In fact, correspondence matching and depth
estimation may benefit from the global semantic context instead of relying solely
on local visual appearance and geometry information.

Generally speaking, learning methods can be supervised, that is, providing ground
truth data, and unsupervised, where no ground truth data is available. In
supervised methods, the loss function in the training process tries to minimize
the discrepancy between the ground truth and the estimated depth along with a
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regularization smoothness term while taking into consideration the supervision
cues, i.e., the ground truth data. Particularly for depth inference problems,
ground truth data are commonly captured with depth sensors. Unsupervised or
self-supervised methods do not rely on ground truth data and use other cues for
training. Additional cues for training, used both in supervised and unsupervised
methods, may be smoothness constraints, left-right consistency, maximum depth,
or scale-invariant gradient loss. Other works incorporate auxiliary semantic cues
such as normal, segmentation labels, or edge maps [Eigen and Fergus, 2015].
Finally, depth map inference is typically achieved by direct regression of the
depth values or by treating the problem as an inverse depth classification [Xu and
Tao, 2020a; Peng et al., 2022|. Direct depth regression samples uniform depth
hypotheses achieving sub-pixel estimation but lacks robustness. On the other
hand, inverse depth classification is prone to stair-case noise, so further refinement
in a post-processing step is commonly performed. Another commonly adopted
categorization scheme, tailored for multi-step problems such as depth estimation,
relies on whether the process is formed as an end-to-end or a non-end-to-end
pipeline |Zhou et al., 2020].

In this section, the most prominent methods of the recent literature are discussed,
either supervised and unsupervised depth estimation for stereo, MVS and monoc-
ular depth estimation; a brief overview on depth refinement and completion using
neural networks is also given. For an exhaustive review on learning-based depth
estimation, the interested reader is referred to the relative review articles [Zhou
et al., 2020; Laga et al., 2020]. It is to be noted that, while this section covers the
related work in the field, an introduction to the basic concepts and background of
neural networks is given in Chapter 4.

2.6.1 Supervised stereo

The first learning approach for stereo treated the problem as a Conditional Random
Field (CRF) training task in order to model the relationship between penalty
terms and local gradients [Scharstein and Pal, 2007|. In the early applications of
deep learning, CNNs were introduced to substitute one or more components of
the legacy stereo pipeline in a non-end-to-end manner. The pioneers in the field
used robust CNN features to calculate the matching cost between image patches
instead of using loose handcrafted photoconsistency metrics, implementing a
two-stream Siamese network [Zbontar et al., 2016; Han et al., 2015] or exploring
the efficiency of varying architectures |Zagoruyko and Komodakis, 2015]. Unary
features are extracted for left and right image patches and then concatenated
and passed through fully connection layers to predict matching scores. In a
similar way of thought, Chen et al. [2015] introduced multiscaled features for the
matching cost, while Luo et al. [2016] used unary features to learn a probability
distribution for faster cost computation, but instead of concatenation, they used an
inner product layer for direct correlation via photometric similarity, accelerating
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computational efficiency. Depth inference is treated as multi-label classification.
A further regularization step is applied in CNN-based depth estimation as in the
conventional counterparts to deliver the final depth maps. MRF-based methods
have been used, either handcrafted [Zbontar and LeCun, 2015; Chen et al., 2015;
Luo et al., 2016] or learned [Seki and Pollefeys, 2017; Schonberger et al., 2018]
to predict the penalties for cost regularization and disparity refinement in an
SGM fashion. Knobelreiter et al. [2017] proposed a method to learn smoothness
penalties by combining CNNs with CRF optimization in a hybrid representation
to avoid post-processing. |Gidaris and Komodakis, 2017| confront stereo matching
as a pixel labeling and refinement problem; instead of handcrafted disparity
refinement functions, they use a three-stage network that detects, replaces, and
refines erroneous label estimations embedded in the same architecture.

The aforementioned methods were robust enough with respect to the baseline
conventional ones, yet they were limited by their computational deficiency due
to the multiple forward passes for every disparity value. Parts of the pipeline
were still hand-engineered functions and limitations similar to the conventional
methods, such as the matching ambiguities problem, were, even so, present. For
this reason, exploiting the incorporation of contextual information via end-to-
end approaches was crucial. The end-to-end methods refer to procedures that
seamlessly integrate all steps of the stereo pipeline; they actually divide the
pipeline into sub-steps of differential blocks, allowing end-to-end training. A
plethora of such algorithms with a more powerful representation ability has been
developed and became popular after large benchmark datasets [Mayer et al., 2016].
The early works use the 2D encoder-decoder architecture to directly regress the
disparity maps [Mayer et al., 2016; Yang et al., 2018] from cost volumes without
requiring an explicit feature matching module. To improve the performance,
Pang et al. [2017] suggested a cascade residual learning (CRL) framework with a
stacked hourglass aggregation network. Nevertheless, the seminal work of Kendall
et al. [2017] was the first to incorporate feature extraction, cost aggregation, and
disparity estimation in an end-to-end deep architecture based on a plane sweep
volume. Multi-scale 3D convolutions were used to regularize the cost volume, and
the best disparity values were directly regressed out of a stereo pair using a soft
argmin operation. Chang and Chen [2018| further improved the accuracy using
spatial pyramid pooling to construct the cost volume in a multi-scale concept and
employ 3D CNNs for regularization. To substitute the expensive 3D convolutions
and increase the efficiency, Zhang et al. [2019a| proposed two new layers, a semi-
global and a local, for guided cost aggregation. Khamis et al. [2018|, aiming at
sub-pixel precision, used a coarse-to-fine approach based on Siamese networks
and a hierarchical refinement for edge preservation. Guo et al. [2019] construct
the cost volume using group-wise correlation to better measure similarities across
features while reducing memory consumption by modifying the refinement step.

Learning-based methods based on cost volumes are particularly expensive and,
therefore, often applied to downsampled images to compensate for the cost
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with an extra interpolation module to recover the required resolution. Cascade
formulations have been exploited to improve the efficiency |Gu et al., 2020].
However, end-to-end learning-based methods have outperformed the conventional
ones in the KITTY benchmark [Menze and Geiger, 2015] already since the earlier
works [Mayer et al., 2016; Kendall et al., 2017].

2.6.2 Supervised MVS

Learning-based stereo methods cannot be easily generalized to multi-view for
basically (1) applying pair-wise rectification and fusion of the 3D result would
not fully utilize the redundancy of MVS (2) arbitrary camera geometries add
extra complexity for learning [Yao et al., 2018]. The pioneer learning methods
in the MVS field, considering the aforementioned limitations were based on
volumetric scene representations, i.e., learning voxel occupancy, typically either
by surface fusion [Ji et al., 2017] or by fusing the feature grids [Kar et al.,
2017]. Such architectures encode camera parameters implicitly by mapping the
image appearance on the 3D voxels or unproject image features into 3D grids
by perspective geometry. Paschalidou et al. [2018] combined a CNN that learns
surface appearance variations with an MRF in order to consider also the physical
properties and occlusion models, along with the perspective projection. However,
as in their conventional voxel-based counterparts, the learning-based algorithms
for volumetric reconstruction with regular grids are computationally expensive,
limiting, thus, the applicability of such approaches with high-resolution, real-world
images.

To address this issue and enable better scalability, plane-sweep volumes (PSV)
were introduced to infer depth maps per view, using planes at different depth
values. One of the first approaches, directly learned a multi-patch similarity
metric using an average pooling layer in a Siamese network architecture to replace
the traditional cost metric and then reconstructed the depth maps by a standard
plane-sweep stereo |[Hartmann et al., 2017|. Huang et al. [2018]| introduced
an approach using pre-computed plane-sweep volumes similar to Kendall et al.
[2017| but generalized to an arbitrary number of views with an encoder-decoder
architecture. The system pre-warps the images in the 3D space and treats the
depth reconstruction as a multi-class classification problem using CRFs to refine
the raw predictions. In the first end-to-end method for learning depth map
inference in MVS, Yao et al. [2018] extracted deep features and built the 3D cost
volumes upon the reference camera viewing frustum instead of the regular 3D
FEuclidean space as in the volumetric methods using the plane-sweep algorithm.
The differentiable homography mapping operation, which implicitly encodes the
camera geometry, is used to warp features from multiple views; the built cost
volumes are further regularized with 3D CNNs to finally either regress the depth or
use inverse multi-label classification for depth inference. MVSNet indeed became
influential, and most subsequent end-to-end approaches inherited these steps.
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To explicitly define the smoothness constraints, [Xue et al., 2019] incorporated
CRFs in the pipeline. Im et al. [2019] construct the plane sweep volumes within
the network and regress the depth maps in an end-to-end manner. Similar to
stereo methods, cost volume regularization is an essential step before depth map
inference, particularly useful for noisy data. Cost volumes are computationally
costly and therefore often used in a fixed downsampled resolution with a subsequent
upsampling or post-refinement module [Yao et al., 2018; Im et al., 2019; Chen
et al., 2019; Luo et al., 2019] for the final output.

To overcome the high memory requirements of direct cost volume filtering, which is
cubic to the image resolution due to the use of 3D CNNs, recurrent networks with
gated recurrent units (GRUs) were adopted for the cost volume regularization |Yao
et al., 2019]. In this way, instead of 3D convolutions, 2D cost maps are sequentially
regularized along the depth direction, reducing the memory requirements to
quadratic. To improve accuracy, a variational refinement is performed in a post-
processing step. However, this method cannot efficiently leverage global contextual
information and consequently has inferior performance than the standard MVSNet
[Yao et al., 2018]. To efficiently capture long-range dependencies apart from the
adjacent ones considered in GRU and LSTM methods, and thus global context
information, Xu et al. [2021b] employs a non-local RNN for cost regularization.
Yet, RNN approaches generally suffer from extensive computational times in
exchange for memory performance.

Recent works proposed strategies to reduce the memory requirements and com-
putational times, exploiting feature pyramids to extract multi-scale features and
allow the applicability of learning methods in higher resolution datasets. Such
coarse-to-fine approaches typically build the cost volume in the early layers of the
networks using sparse sampling and combine them adaptively with the denser cost
volumes of the finer resolution layers. Yang et al. [2020], introduced a cost volume
pyramid to implement a coarse-to-fine approach for depth inference via thin cost
volumes. Chen et al. [2019] suggested a coarse-to-fine method that starts from
a rough depth map and iteratively corrects the 3D point cloud predicting the
residual along visual rays using edge convolutions. In the same line of thought,
Gu et al. [2020] and Cheng et al. [2020] proposed cascade cost volume representa-
tions for coarse-to-fine approaches. Uniform sampling of fronto-parallel planes is
implemented to build the cost volume, followed by iterative depth map refinement,
sharing insight with Chen et al. [2019]. Similarly, Yi et al. [2020], proposed a
multi-scale method along with self-adaptive view aggregation to guide depth esti-
mation. However, coarse-to-fine methods rely mainly on coarse-scale estimation,
leading to detail information loss. Luo et al. [2019], based on MVSNet, proposed
an end-to-end network for learning patch-wise matching confidence aggregation
for MVS, using isotropic and anisotropic plane-sweep volumes in a hybrid 3D
U-Net. In order to propose a more lightweight cost volume representation, Xu
and Tao [2020a] used a group-wise correlation similarity measure in a similar
fashion as in the stereo methods [Guo et al., 2019]. A cascade 3D U-Net was used
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for regularization achieving better scalability and depth inference is treated as an
inverse depth regression task for robustness. After getting unary features for left
and right image patches, these features are concatenated and passed through fully
connected layers to predict matching scores. To adaptively consider pixelwise
visibility and be more robust in strong viewpoint variations, Xu and Tao [2020c¢|
proposed a network to learn the neighbors for each source image. Cost aggregation
is performed using this information via 2D visibility maps and depth is inferred
with 3D CNNs. Focusing on time efficiency, Yu and Gao [2020], in a lightweight
architecture, learn sparse depth estimates using a sparse cost volume, which is
further densified using joint bilateral upsampling propagation.

Transformer architectures have also been recently proposed for more efficient
incorporation of the global context [Zhu et al., 2021; Ding et al., 2021]; similarly,
attention-based mechanisms have been adopted to capture long-range dependencies
|Zhang et al., 2021].

Nevertheless, learning methods for the multi-view scenario remain an open chal-
lenge in the cases of large-scale scenes with high-resolution images, as they have
limited scalability due to the high computational costs. As a matter of fact,
they have high memory requirements due to the use of 3D CNNs for cost vol-
ume representation and typically need further refinement and postprocessing.
Therefore, such methods typically are evaluated over low or medium resolution
datasets [Yang et al., 2021b; Yu et al., 2021; Sormann et al., 2020] and it was
not till recently that they were tested in higher resolution [Xu and Tao, 2020c;
Ma et al., 2021]. Moreover, learning for depth reconstruction has a large number
of parameters and in order to generalize appropriately needs a lot of GT depth
maps for training, which are tedious to obtain, therefore commonly provided by
synthetic datasets, e.g., Yao et al. [2020]. However, methods trained only on
synthetic data inevitably suffer from domain differences with real-world scenarios.
For this reason, the combination of large synthetic and small real-world scenarios
of the target domain for fine-tuning has also been investigated. These methods
are trained on publicly available data, commonly synthetic or real-world scenarios
with calibrated cameras, and have, thus, a poor generalization ability in complex,
real-world scenes.

2.6.3 Unsupervised stereo and MVS

To surpass the requirement of GT depth maps for training, research has begun
to exploit unsupervised and self-supervised methods. Originally used for depth
estimation in optical flow problems |[Jason et al., 2016], some works focus on
monocular reconstruction [Garg et al., 2016; Zhou et al., 2017; Luo et al., 2018],
however, the scale ambiguity problem introduces errors in the process. As in the
supervised methods, introducing constraints such as left-right consistency has
been proven to improve the results and be comparable to, or even outperform the



2.6. LEARNING-BASED METHODS 95

supervised methods [Godard et al., 2017]. In binocular and MVS scenarios, the loss
typically aims to minimize the photometric consistency error across the views in an
unsupervised way while considering occlusions. Zhong et al. [2017] combined two
GC-Nets for disparity estimation directly from stereo inputs, learning to minimize
the warping error. Related literature proposed novel view synthesis where the
input image and the predicted map are used to reconstruct another view [Flynn
et al., 2016; Xie et al., 2016; Luo et al., 2018]. In the MVS case, Khot et al. [2019],
relying only on the available images, dynamically aggregates informative clues from
selected nearby views to train a photoconsistency loss. Dai et al. [2019] predict
the depth maps in a symmetric way, enforcing cross-view consistency and filter
the occluded regions. Huang et al. [2021] implement a multi-metric loss function
also considering object features, i.e., keeping both photometric and geometric
consistency for improvement. Since most of these training strategies heavily rely
only on photometric consistency cues that commonly cause matching ambiguities,
Xu et al. [2021a] used clustered maps to guide the semantic consistency and data
augmentation, and Yang et al. [2021a] introduced a self-supervised network to
infer depth maps as pseudo labels to overcome the matching ambiguities problem.
However, these methods still underperform in the presence of large textureless
areas.

Certain works focus rather on weak supervision, i.e., providing few supervision
cues. These can be sparsely estimated depth maps, for instance, from conventional
stereo matching techniques [Tonioni et al., 2017], sparse ground truth depth maps
[Kuznietsov et al., 2017|, priorly predicted depth values in an iterative fashion as
self-guidance [Zhou et al., 2017], or using GT LiDaR data [Smolyanskiy et al.,
2018]. Nevertheless, unsupervised methods, although not requiring ground-truth
data for supervision, are generally memory-consuming and thus evaluated over
low-resolution datasets.

2.6.4 Learning for monocular depth estimation

Monocular depth estimation methods aim to recover distances between scene
objects and camera parameters from a single image; it is, by definition, an ill-posed
problem since redundant 3D scenes can be projected to the same 2D image. Indeed,
an efficient depth map recovering from a single image would require rich scene
prior cues, commonly used in conventional methods. Early methods for monocular
depth estimation relied on handcrafted features and used complementary cues
in an MRF formulation to recover the depth since limited information about
the scene geometry can be directly extracted from a single image [Saxena et al.,
2008]. In the deep learning era, monocular depth prediction refers to the single
image inference during test time and is typically formulated either as a regression
or a classification problem. The seminal work of Eigen et al. [2014] proposed
a scale-invariant loss function in a coarse-to-fine context using a VGG network
[Simonyan and Zisserman, 2014[; as a follow-up, Eigen and Fergus [2015] also
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predicted surface normals and semantic maps in a similar framework. Since then,
the problem has been studied in the literature as a supervised |Laina et al., 2016;
Xu et al., 2018; Fu et al., 2018] or unsupervised problem |Garg et al., 2016; Godard
et al., 2017; Tosi et al., 2019]. In supervised methods, GT is often obtained by
sparse depth maps generated using LiDaR point clouds, since rich GT depth
annotations are costly to obtain for every pixel. For unsupervised methods, on the
other hand, binocular cues such as left-right consistency are used to circumvent
the need for GT data. Loss functions are formed either based on pixel-wise
photometric loss, either L1 or L2, [Garg et al., 2016|, or by combining more
sophisticated cues such as structural information [Godard et al., 2017; Watson
et al., 2019]. Conditional Random Fields (CRFs) have also been used to exploit
neighbor relations and include a more global context [Liu et al., 2015a]. Skip
connections in a ResNet fashion are used to preserve the fine-grained features
of the first layers |Laina et al., 2016]. Depending on the available training data,
the scene depth can be estimated as ordinal, i.e., relative [Fu et al., 2018] or
Euclidean [Eigen et al., 2014; Yin et al., 2019]. Local planar priors have also been
incorporated as guidance [Lee et al., 2019].

Even though achieving excellent results in depth map prediction, the respective
reconstructions in the 3D space suffer from significant distortions and the presence
of artifacts. Only recently, few works have tried incorporating 3D awareness
into the methods. Since most man-made scenes can be decomposed in planar
structures, plane detection can be used as a prior for monocular depth estimation
[Lee et al., 2019]. However, the 3D structure was not explicitly considered until
recently; Yin et al. [2019] formulated a joint loss function using virtual normals
to enforce high-order geometric consistency between surface patches in a large
range. The work was further extended by considering affine-invariant depth [Yin
et al., 2020] and adding an extra training module for scene 3D reconstruction [Yin
et al., 2021]. These state-of-the-art methods, although promising, still suffer from
generalization limitations in diverse scenarios. In a recent method, the potential of
monocular depth estimation for 3D reconstruction showed limited generalization
ability [Welponer et al., 2022].

2.6.5 Learning for refinement and completion

Removing unreliable depth estimates during filtering can lead to sparse depth
maps and, therefore, incomplete 3D reconstructions. To improve the completeness,
regularization approaches are commonly used on the cost volume in conventional
[Kolmogorov and Zabih, 2002; Hirschmuller, 2008; Sun et al., 2003| or learning
approaches [Huang et al., 2018; Yao et al., 2018; Guo et al., 2019]. However,
such regularization techniques are memory-consuming for high-resolution datasets.
Depth completion methods aim to improve the completeness of the depth maps
while guided by RGB images. Thus, pixels with unknown depth need to be
assigned a depth estimate using the neighboring estimates and the original color
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images. Straightforward interpolation or other handcrafted methods can be
trivial in this case, as they may result in undesired artifacts, oversmoothing, and
unreliable estimates in depth discontinuities. Image inpainting methods with deep
learning have been investigated for color images [Pathak et al., 2016] however, such
approaches are not suitable for depth maps as they lack robust features [Zhang
and Funkhouser, 2018|. Hence, deep learning architectures specifically designed
for this scope have been developed, starting from sparse depth estimations derived
by depth sensors [Chen et al., 2018b; Ma and Karaman, 2018| or MVS [Liu et al.,
2020a]. A more sophisticated approach to respect depth discontinuities in object
boundaries was introduced by Imran et al. [2019] based on the so-called depth
coefficients. Following a different approach, [Kuhn et al., 2019] proposed plane
primitive fitting followed by filtering in a post-processing step on high-resolution
datasets. However, as in all supervised learning tasks, the lack of complete GT
depth maps for training such models remains an open challenge.

2.6.6 Confidence map prediction

Confidence or uncertainty estimation of the pixel correspondences is a crucial step
of 3D reconstruction. In conventional methods, confidence values can be used to
detect unreliable depth estimates and therefore remove potential noise from the
depth maps; in fact, erroneous depth estimates are characterized by low confidence
values [Hu and Mordohai, 2012|. In local methods, confidence represents the
matching cost of each pixel, calculated by the chosen photo-consistency metric such
as NCC. Similarly, in global methods, the confidence is derived from the globally
optimized cost volume and takes into account global smoothness. |[Hirschmuller,
2008| and [Hu and Mordohai, 2012| provide an analysis of the influence of diverse
confidence metrics on the final cost.

Recent deep learning methods have incorporated confidence maps in their pipelines
[Seki and Pollefeys, 2017; Gidaris and Komodakis, 2017; Jie et al., 2018]. Con-
fidence prediction aims to calculate the probability that a depth estimate lies
within a reasonable noise range. Methods calculate the confidence from left-right
confidence checks [Seki and Pollefeys, 2017; Jie et al., 2018] or pose a regression
problem to estimate confidence from raw disparity maps [Poggi and Mattoccia,
2016]. To consider a larger receptive field, Tosi et al. [2018] implemented both a
local and a global network in ConfNet, and Kim et al. [2019] used a combined
adaptive network with an attention module to include the information of the
entire cost volume. Extending the applicability of confidence prediction to the
MVS scenario, Kuhn et al. [2020] introduced DeepC-MVS for depth map filtering
and refinement, avoiding global cost volumes.
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2.6.7 Open issues in depth inference

Depth inference in monocular, two-view, and multi-view methods is typically
solved as a regression or classification problem. Both problem formulations have
recently achieved satisfying results, yet they still suffer from certain limitations;
regression methods tend to overfit the training data due to the indirect learning
cost volume, and classification methods, being discrete, cannot directly infer the
exact depth values [Xu and Tao, 2020a; Peng et al., 2022].

Recent research in depth estimation has moved toward learning-based methods
mainly due to their capability to consider global semantic context; trainable photo-
metric costs and cost volume regularization is employed, typically outperforming
the conventional methods in dense camera networks with small depth ranges
[Lee et al., 2021], especially in confronting the matching ambiguities problem in
challenging areas. However, deep learning methods generally have high memory
requirements due to their high dimensional cost volumes. Consequently, they can-
not directly handle high-resolution images and they are usually either evaluated
on lower resolution scenarios like DTU |Aanes et al., 2016| or Tanks and Temples
datasets [Knapitsch et al., 2017 for instance [Yang et al., 2021b; Yu et al., 2021;
Sormann et al., 2020] or use strongly downsampled versions of high-resolution
datasets like ETHS3D [Schops et al., 2017] [Xu and Tao, 2020c; Wang et al.,
2021], often accompanied with an additional spatial upsampling module [Wang
et al., 2022| compromising detail recovery. In fact, the inefficient reconstruction
of details and thin structures may limit the applicability of learning methods in
real-world applications of high accuracy requirements. Similarly, scenes with large
depth ranges are often prohibiting due to memory limitations. Moreover, learning
methods are data-driven, i.e., they heavily depend on training data for supervision,
thus limiting their applicability and generalization in real-world high-resolution
scenarios. These ground truth data are commonly acquired using depth sensors,
a fact that restricts the applicability of the methods to scenarios where depth
sensors can easily collect reliable data, such as close-range indoor scenarios. Hence,
domain adaptation is a non-trivial challenge. Ground truth depth maps can also
be generated with standard photogrammetric workflows, inheriting, however, the
limitations of the method while requiring considerable computational time for
data preparation. To relax the requirement of ground truth (GT) training data,
unsupervised and self-supervised methods have also been developed, employing
self-supervision with left-right consistency [Godard et al., 2017] or novel view
synthesis [Dai et al., 2019; Huang et al., 2021]. Still, memory consumption and
high-resolution images are a real challenge for these methods. On the contrary,
the second approach proposed in this dissertation relies on local textureness cues,
and therefore it can easily generalize to indoor and outdoor scenarios and does
not require training data.
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2.7 Benchmarking in MVS

Toward the evaluation of the image-based 3D reconstruction algorithms on a
common framework, several benchmark datasets have been released to the public
in the last decades, gradually inspiring the research community to achieve efficient
depth estimation and 3D reconstruction. Benchmarks may vary based on the
purpose, the nature of input data, the available ground truth (GT) as well as the
evaluation metrics used.

Middlebury sequences was a pioneer benchmark, released, and served to evaluate
two-view stereo [Scharstein and Szeliski, 2002; Scharstein et al., 2014] and multi-
view stereo algorithms [Seitz et al., 2006]. In a dedicated platform, they invited
submissions of results from reconstruction algorithms which were publicly ranked
against each other. Their early releases contain low resolution for today’s standards
scenes under controlled laboratory conditions along with GT depth maps. While
the stereo dataset consists of real-world scenes, the optical flow dataset is a
mixture of real-world scenes and rendered scenes. Later, a new, higher resolution
version from Scharstein et al. [2014] was made available (6 MPixels).

EPFL dataset release followed [Strecha et al., 2008|, containing few real-world
outdoor scenes for MVS purposes. GT mesh models are available, deriving from
laser scans. The sequences are characterized by small camera networks and simple
camera configurations of mostly well-textured surfaces in medium resolution,
hence not particularly challenging for today’s algorithms. FPFL datasets are still
widely used, however, the support is deprecated.

The KITTI dataset [Geiger et al., 2012; Menze and Geiger, 2015] is still a widely
used multi-purpose benchmark for binocular stereo, optical flow, visual odometry,
tracking and semantics. It contains stereo videos of road scenes from a mobile
platform, i.e., a calibrated pair of cameras and a laser scanner mounted on a
car. While the dataset contains real data, the application scenarios are limited to
read-like scenes, and the acquisition method restricts the ground truth only to
static parts. The ground truth data is sparse and up to a certain distance and
height. In the most recent version, 3D models of cars were fitted to the point
clouds to obtain denser ground truth.

DTU robotics dataset [Aanaes et al., 2016] is a laboratory-made MVS evaluation
dataset of relatively low resolution images. Various image sequences are acquired
from the same poses under different illumination conditions. GT data from a
structured light scanner are available.

Tanks and Temples is a modern 3D reconstruction dataset providing a variety
of training and testing sequences of indoor and outdoor scenes [Knapitsch et al.,
2017]. The dataset aims to provide ground for evaluating both SfM and MVS
algorithms. The acquired data are video sequences, but the extracted frames are
also provided. Thus, viewpoint chances are small, demonstrating great overlap.
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Table 2.1: Widely-used benchmarks for depth estimation and 3D reconstruction.

Dataset Year Purpose Resolution  Scene Type GT data
2001, 2003, stereo
Middlebury 2005, 2016, ’ varying laboratory depth maps

optical flow

2014, 2021
Middlebury 2006 MVS 640 x 480 laboratory 3D mesh
EPFL 2008 MVS 3072 x 2048 outdoor 3D mesh
stereo,
2012, LOreo, 1240 x 376,
KITTY 2015 . optical flow 1242 x 375 outdoor depth maps
visual odometry
KITTY 2015 MVS 1242 x 375 outdoor depth maps
DTU 2014 MVS 1600 x 1200 laboratory 3D point cloud
Tanks and Temples 2017 MVS 1920 x 1080 0}1td00r, 3D point cloud
indoor
ETH3D 2017 MVS 6048 x 4032 °M°T 3 Loing cloud
indoor

ETH3D [Schops et al., 2017] is a widely used MVS reconstruction benchmark
with high resolution scenes of real-world scenarios, indoor and outdoor. It is
characterized by strong viewpoint variations and the presence of many challenging
surfaces (non-Lambertian) and thin objects. A summary of the properties of the
aforementioned benchmarks can be found in Table 2.1.

In recent years, a growing body of benchmarks providing data for deep learning
purposes is also being released. For such purposes, also RGBD benchmarks
[Silberman et al., 2012; Sturm et al., 2012| acquired by commodity sensors like
Kinect have also been widely used, however, they commonly do not scale well on
high-resolution real-world scenarios. However, in deep learning, using synthetic
data for training is a common strategy. Rendered views of urban scenes from
3D CAD models or from video games [Huang et al., 2018| have been introduced,
typically of low or medium resolution. A more recent large-scale synthetic dataset
is BlendedMVS [Yao et al., 2020]. Considering real-world scenes and originally
designed for single view estimation, yet also applied in the MVS case, MegaDepth
|Li and Snavely, 2018| is a generic dataset containing scenes from highly varying
scenarios.
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MVS algorithms aim to establish valid pixel correspondences across multiple,
overlapping views and estimate thus the scene depth based on local or global
assumptions. The underlying principle of depth estimation is the local smoothness,
expressed either using a support window of constant disparity or based on pairwise
smoothness terms while penalizing depth discrepancies. These smoothness for-
mulations assume fronto-parallel surfaces and, hence, fail to robustly reconstruct
the depth in areas where slanted surfaces are present (Chapter 2). Besides, these
algorithms are typically computationally costly due to the resulting enormous 3D
cost volumes, making them impractical in large-scale and high-resolution scenarios.
At the same time, they mainly depend on depth range priors as they generate
candidates with equal intervals in a specific, predefined depth range, impairing
their scalability.

Notable alternatives to these approaches have been proposed in the literature,
considering surface normals [Furukawa et al., 2010] or second-order smoothness
terms [Woodford et al., 2009] to avoid the fronto-parallel bias. To reduce the
search space and improve efficiency, coarse-to-fine schemes have also been applied
[Rothermel et al., 2012; Wenzel et al., 2013|. The plane-sweep method [Gallup
et al., 2007] was certainly a breakthrough; nevertheless, it was not until the
proposal of the PatchMatch stereo algorithm [Bleyer et al., 2011] that these
limitations were simultaneously and robustly circumvented. Indeed, PatchMatch
tackles the problem of matching ambiguities in the presence of slanted surfaces by
fitting a local support patch to every pixel. A patch 7 is essentially a tangent 3D
plane, locally approximating the surface. Both pixel depth d and normal n of this
plane patch are taken into consideration for the algorithm convergence. Given such
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a function definition, reconstructing a patch is simply achieved by maximizing the
photo-consistency function with respect to those parameters. Global cost volumes,
either classic, i.e., for each patch along epipolar lines, or plane-sweep-based (PSV),
i.e., for each set of plane hypotheses, are computationally expensive. PatchMatch
discards the idea of global cost volumes and reduces the computational and
memory cost by propagating the depth hypotheses across the image; it provides
an alternative to examining all possible disparities, pruning out the search space
by exploiting the natural spatial coherence of the images. Pre-defined disparity
ranges are also avoided since a stochastic search over the continuous depth
space is adopted. Considering these advantages in robustness and performance,
PatchMatch-based algorithms gradually have replaced the standard ones in the
latest years in state-of-the-art implementations [Galliani et al., 2016; Schonberger
et al., 2016; Cernea, 2020]. The proposed method in this dissertation also relies
on PatchMatch and builds upon its functionalities; accordingly, in this chapter,
the details of the original algorithm and its variants will be discussed.

3.1 The PatchMatch algorithm

The original PatchMatch [Barnes et al., 2009] algorithm was introduced to establish
valid matches between patches as a randomized and iterative method. The term
“matches” here is more general and not constrained to the correspondence search;
originally, it referred to image editing purposes, including inpainting, image
denoising, and object detection.

The valid matches were calculated by performing an efficient nearest neighbor (NN)
search. Actually, the core idea was based on random initialization, performed once,
and spatial propagation followed by random refinement, running iteratively until
convergence. Although a random choice would not probably be a good guess, the
intuition is that a large number of random initial assignments is likely to converge
to at least one good match; this is particularly true in the case of high-resolution
images, as there is a higher possibility that one reliable guess is made. That being
said, if prior knowledge is available about the NN, it can be used to guide the
initialization. Regarding spatial propagation, the underlying assumption is that
due to the natural local consistency of the images, good matches can be propagated
to the neighboring pixels, spreading best estimates across the whole image. In fact,
the algorithm starts with an initial guess and propagates the best-scored values
to neighboring pixels. Finally, in the random refinement step, randomly sampled
values, both far different and closely similar to the current match, are tested
against the current match to define an optimal solution and escape from local
minima. Spatial propagation and random refinement are performed iteratively
for a certain number of iterations or until a predefined criterion is met, e.g., the
total error over the image. PatchMatch, although simple, has been proven to
perform surprisingly well [Barnes et al., 2009]. Generally, with such a sequence
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of steps, PatchMatch is a high-performance algorithm, and, especially in GPU
implementations, the performance is almost real-time.

More particularly, for patch correspondences, Barnes et al. [2009] define a nearest-
neighbor (NN) field as such: let a function f : I+ R? of random “offsets” over the
range of image I, for some distance function of two patches. For a patch center
coordinate a in reference image I and its potential corresponding NN patch center
b in source image I', f(a) = b — a; all possible values of f are the correspondence
vectors, or “offsets”, defining the NN field. The Generalized PatchMatch [Barnes
et al., 2010] extended the approach across k nearest neighbors, instead of finding
only the nearest one, using a heap data structure!. Varying scales and rotations
are also considered and calculated on the fly, while arbitrary similarity measures
can also be used.

3.1.1 Overview of PatchMatch for depth estimation

Tailoring the idea of PatchMatch in the context of stereo matching, the seminal
work of Bleyer et al. [2011] used photometric consistency measures and slanted
support windows, i.e., 3D oriented planes, instead of single disparity values
assigned to every pixel p. In other words, surfaces are modeled with local planes,
and the 1D search is replaced by a more complete geometric model; the nearest
neighbor on the epipolar line according to a plane is calculated, avoiding global cost
volumes. Thus, it allows for a quick solution without browsing through all possible
solutions. As a matter of fact, using PatchMatch stereo has been proven more
efficient than local methods or semi-global matching approaches since both require
evaluating the full disparity space image (DSI), i.e., computing matching costs at
each pixel for all disparities under consideration. PatchMatch stereo, on the other
hand, avoids exploring the full disparity space by propagating good disparities
from an initial set of guesses to neighbors, resulting in low-memory requirements.
Consequently, scalability and runtime performance are both improved, especially
with large sets of high-resolution images. Besides, sub-pixel depth accuracy is
de facto obtained since the operations are made in the continuous space and do
not use discrete values like in more traditional global and local methods (see
also Chapter 2). The initial plane assignments, although random, quickly lead to
convergence since, for high-resolution images, there are good chances that at least
one random hypothesis will be close to the correct one. Even a single acceptably
good guess is enough to spread the correct estimates to all pixels that belong
to the same plane through propagation. In [Bleyer et al., 2011|, propagation is
performed iteratively, starting from the top-left to the bottom-right pixel for odd
iterations and vice versa for even ones.

LA heap data structure in computer science is a complete binary tree structure. Each node
must satisfy a heap property, either max-heap or min-heap, i.e., that the max (or min) always is
always in the root node.
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Figure 3.1: Fronto parallel and slanted windows. (a) standard local methods assume
fronto-parallel support windows at integer disparities (in red) while (b) the PatchMatch-
based approach of Bleyer et al. [2011] introduced slanted 3D support windows in the
continuous space. Source: [Bleyer et al., 2011].

One of the most substantial properties of the algorithm is its robustness in the
presence of slanted surfaces, a feature that established PatchMatch as a state-
of-the-art practice in recent years. As discussed in Chapter 2, local and global
methods typically suffer from the fronto-parallel bias as they imply constant
disparity in the pixel neighborhood; yet, this assumption does not hold in real-
world scenarios due to the presence of discontinuities or inclined surfaces. In
PatchMatch, this limitation was undertaken using oriented support windows;
the object’s surface is approximated locally with oriented patches, allowing for
efficient depth estimation even in the presence of slanted surfaces (Figure 3.1).
Plane refinement is performed by assigning random values iteratively and checking
if these values are better estimates than the current one. Occlusion handling is
performed via left-right consistency checks at a post-processing step, which is a
common practice in local stereo methods. Although efficient against fronto-parallel
bias, PatchMatch is essentially a local method, inheriting the limitations of such
algorithms. In fact, energy minimization consists only of a unary term measuring
the photometric consistency; hence, smoothness is not modeled explicitly. Indeed,
in Bleyer et al. [2011], refinement is performed only for the pixels that did not pass
the left /right consistency check in a post-processing step by plane extrapolation
to consider also slanted surfaces, followed by filtering to reduce artifacts.

Due to its effectiveness in treating slanted surfaces and reducing the search
space, PatchMatch has drawn the attention of the research community. Several
improvements followed the original greedy? PatchMatch algorithm introducing
regularization. To achieve sub-pixel accuracy for stereo depth estimation and
optical flow, while explicitly introducing smoothness constraints, Besse et al. [2014]
used belief propagation (BP) [Pearl, 1988; Yedidia et al., 2005] and PatchMatch
in a joint fashion. BP is a message-passing algorithm used for graph optimization
and, therefore, energy minimization; in the approach of Besse et al. [2014], the
pairwise terms, in the form of penalties, encourage smoothness in the field of
the 3D planes that the PatchMatch optimizes considering both the normal and
the disparity value. As a deduction, PatchMatch is extended to a continuous

2A greedy algorithm is a simple, heuristic algorithm that estimates the best choice at each
step, disregarding global information.
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MREF inference formulation; in the absence of the pairwise term, the algorithm
reduces to standard PatchMatch. Li et al. [2015] also modeled a continuous
MRF, approximated with BP, and added a cost aggregation module. They
proposed an accelerated scheme based on superpixel-level graphs to handle critical
computational bottlenecks. Rather than using BP, Heise et al. [2015] integrated
PatchMatch in an explicit variational smoothing formulation; a data term and a
regularization term are combined to alleviate the problems occurring from the
implicit smoothing model of the standard algorithm.

Eventually, PatchMatch quickly became standard practice for stereo matching
and was consequently also adopted in the multi-view scenario. The pioneering
works introduced such an extension by selecting the best neighboring views for
every reference image based on geometric criteria [Bailer et al., 2012; Shen, 2013].
These best views are considered for depth map computation and filtering for
outlier removal. Wei et al. [2014] extended the work of Bailer et al. [2012],
employing cross-view filtering based on depth variance to enforce consistency
across different views for outlier removal. Later works rather focused on more
efficient view selection; Zheng et al. [2014] proposed an Expectation-Maximization
(EM) probabilistic graphical model to solve the joint pixel-level view selection
problem and simultaneously perform depth estimation, yet it suffered from fronto-
parallel bias. In the seminal work of Schonberger et al. [2016], this approach
was extended to exploit normal guidance in the photometric cost and work
efficiently also in slanted surfaces. Indeed, additional geometric consistency
constraints were imposed, also considering the normals for the matching cost
guidance, resulting in high accuracy dense clouds in rich texture regions. Galliani
et al. [2015], sharing insight with Shen [2013], formulated the PatchMatch in the
scene space and adjusted the cost aggregation for the multi-view scenario. The
propagation scheme was modified following a red-black checkerboard pattern to
achieve computational efficiency. After these groundbreaking works, PatchMatch
became the state-of-the-art method for MVS implementations. Toward efficient
view selection, adaptive checkerboard sampling propagation and multi-hypothesis
have also been investigated, along with multi-scale feature guidance to solve
matching ambiguities [Xu and Tao, 2019]. Similarly, Wei et al. [2014] employed
cross-view consistency in a hierarchical coarse-to-fine scheme, while the multi-
scale approach of Xu et al. [2020] estimated the optimal scale for every pixel
guided by the epipolar constraint. Multi-scale approaches can better alleviate the
ambiguities since, in coarser scales, texture information is more discriminative,
and reliable depth values are propagated in the finer scales. However, these
approaches are limited to pre-defined scales and may lead to information loss,
especially the fine details.

Romanoni and Matteucci [2019] assumed piecewise planarity on image superpixels
[Van den Bergh et al., 2015| while Xu and Tao [2020b] added direct planar priors to
assist PatchMatch with planar compatibility constraints for the matching cost. In
a similar fashion, Kuhn et al. [2019] used superpixels to perform depth completion
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where textureless areas are treated with multi-scale geometric consistency guidance,
yet as a post-processing step. Later, a trainable post-processing module for
regularization based on confidence prediction was proposed by Kuhn et al. [2020].
Recently, plane hypothesis inference using MRF was also proposed as a post-
processing step after initial depth estimation and filtering [Sun et al., 2021].
Except for standard stereo matching and MVS, PatchMatch was also efficiently
exploited in optical flow tasks [Besse et al., 2014; Bao et al., 2014; Li et al., 2015;
Hu et al., 2016].

Support plane parametrization. Generally, 3D support patches 7 are de-
scribed by two components; the point X(X,Y,d) with d being the disparity value
and the corresponding normal vector n. Bleyer et al. [2011] define the support
plane in image coordinates. The first MVS frameworks proposed strategies that
use one depth and two spherical coordinates, i.e., angles, to model the 3D support
plane in the object space [Shen, 2013; Bailer et al., 2012]. Later, a strategy
proposed by Galliani et al. [2015] and also adopted by Schonberger et al. [2016]
used a local 3D plane with normal n and depth d in the Euclidean space as the
support domain for the corresponding pixels. They define a tangent plane for every
scene point; such an explicit formulation of 3D planes represents plane-induced
homographies [Hartley and Zisserman, 2003]. Accordingly, the epipolar rectifi-
cation is skipped, as well as the tracing of epipolar lines during correspondence
search, allowing for efficient cost aggregation in the MVS scenario. Zheng et al.
[2014] used single-oriented planes, i.e., planes oriented in one direction instead
of multiple oriented ones |Bailer et al., 2012] to reduce the search space; hence,
they applied fronto-parallel homographies to map patches across images, a fact
that inevitably leads to artifacts in slanted surfaces. Zhu et al. [2015] adopted a
support plane described by one depth and two depth offsets.

Random initialization. Original PatchMatch stereo is based on random ini-
tialization, i.e., a random 3D plane normal n and a random depth value d are
assigned to each pixel [Bleyer et al., 2011]. Still, these values should be selected
carefully, especially while working in the object space |Galliani et al., 2015]. If
sparse depth estimates and point normals are available, e.g., from the SfM sparse
cloud, they are used for faster convergence.

3.2 PatchMatch MVS

The multi-view depth estimation requires robust handling of significant viewpoint
variations concerning angles and baselines; thus, spatial propagation must be
carefully designed. Generally, multi-view reconstruction with PatchMatch relies on
efficient view selection and propagation scheme, depth computation and refinement,
and fusion.
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Figure 3.2: Sequential propagation schemes in PatchMatch. Sampling (blue
arrows) and propagation direction (black arrows). Bleyer et al. [2011] (left), Bailer et al.
[2012] (middle), Zheng et al. [2014] (right). Source: [Zheng et al., 2014].

3.2.1 Propagation schemes

The propagation scheme and the view selection are crucial for an accurate,
complete, and time-efficient 3D reconstruction. Two main approaches exist for
propagation schemes in PatchMatch MVS scenarios, sequential and diffuse-like.

Sequential propagation. In the standard implementation |Bleyer et al., 2011],
depth propagation is performed sequentially, propagating information diagonally
across the image (Figure 3.2, left). In particular, starting from the top left corner,
odd-numbered iterations propagate diagonally good support plane estimates to
the lower and right neighbors of the current pixel if the lower cost criterion is
fulfilled. Once all pixels of the images are processed, even-numbered iterations do
the same process with reverse iteration direction, i.e., starting from the bottom-
right pixel of the image and working upwards. In such propagation schemes,
every pixel depends on the previous one(s), and good estimates can propagate
arbitrarily far in only one pass. Apart from the original approach, several works
have adopted this practice [Heise et al., 2013; Shen, 2013; Wei et al., 2014]. Zheng
et al. [2014] considered only one previous neighbor and applied upward /downward
and leftward /rightward propagation (Figure 3.2, right). Typically, two or three
iterations are enough for the algorithm to converge. Such schemes are more
sensitive to textureless regions, as only pixels in the close neighborhood of the
current one are considered for depth propagation. Parallelization attempts have
also been performed, yet a sequential scheme cannot take full advantage of the
GPU architecture, as it can be parallelized only at the row or column level. For
instance, Bailer et al. [2012| implemented a sequential scheme that used only
horizontal and vertical scan lines to partially exploit GPU usage; three previous
neighbors are considered in downward /upward and leftward /rightward directions
for odd and even iterations, respectively (Figure 3.2, middle).

Diffusion-like propagation. Galliani et al. [2015] proposed a new scheme to
enable the full use of GPU computation. It simultaneously updates half of the
pixels of the image with a checkerboard, red-black pattern. In more detail, image
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Figure 3.3: Diffusion-like propagation schemes in PatchMatch. (a) red-black
pattern (b), (c) standard and fast checkerboard propagation scheme with the current
pixel in black and the considered neighbors in red Galliani et al. [2015], asymmetric
checkerboard propagation with the V-shaped neighbors in different colors [Xu et al.,
2017|. Source: [Xu et al., 2017].

pixels are divided into a red and black grid (Figure 3.3a); in every iteration, the
red or the black pixels are updated simultaneously based on the hypothesis of their
black and red neighbors, respectively, achieving better efficiency in parallelization.
In the original implementation, a total of 20-pixel neighbors are considered as
candidates to update the current pixel, while a fast version using eight neighbors
is also proposed (Figure 3.3b). This scheme is inspired by a common practice
in message-passing algorithms [Felzenszwalb and Huttenlocher, 2006]. The used
local neighborhood is broad enough, and consequently, information is diffused
relatively far, achieving convergence within a few iterations; however, given
that the propagation is regular and symmetric, reliable depth estimates will
expand to a certain degree. As reported in Xu and Tao [2019], checkerboard
propagation may lead to inferior results in challenging areas due to ineffective
view selection, i.e., they do not consider that the good hypotheses should have
priority in propagation and employ a simple heuristic scheme instead. This fact
inspired further improvements by using asymmetric and adaptive checkerboard
propagation to spread, in the continuous regions, the good hypothesis even beyond
[Xu and Tao, 2019] based on the message-passing scheme of Sun et al. [2003]. In
this adaptive scheme, neighboring pixels are grouped into close-region (V-shaped)
pixels, representing the possibility for depth continuity, and distant-region pixels
(linear), representing the possibility for depth variation (Figure 3.3d). Adopting
such a propagation scheme has proven to be more efficient for large homogeneous
regions and has inspired further developments; e.g., Zhou et al. [2021] substituted
the V-shaped areas with long strips to better recover thin foreground objects.

3.2.2 View selection

In MVS, robust depth estimation for a given pixel in a reference image I,.r
demands the selection of a subset of neighboring views Z,c;q, C Z that will
contribute to the most effective cost calculation. A carefully designed view
selection scheme is needed, especially for unordered images, as it is a way to enforce
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photometric consistency between neighboring views and handle occlusions. It is
commonly treated with simple rules on visibility information, such as keeping the
50% best views [Kang et al., 2001] or excluding the most improbable neighboring
views based on global criteria and photometric cost [Goesele et al., 2007; Furukawa
et al., 2010]. If such selection generates huge image subsets, commonly, only the
best views will be considered for a more robust solution. In the Patchmatch MVS
scenario, views were originally pre-selected, relying on simple heuristics based on
global viewing angles and baselines. For instance, Bailer et al. [2012] extended the
heuristic view selection approach of Goesele et al. [2007], while Shen [2013] selected
a fixed number of best neighboring views for each reference image by setting
thresholds for the viewing angles and baselines; Galliani et al. [2015] followed a
similar idea. More sophisticated approaches jointly implement pixel-wise view
selection and depth estimation based on robust probabilistic graphical models;
in other words, a subset of good neighboring images is selected for each pixel
individually and not globally for every view [Zheng et al., 2014; Schonberger et al.,
2016]. Good neighboring views are selected based on visual similarity metrics, i.e.,
the per-pixel photometric cost [Zheng et al., 2014]. However, considering only this
metric inevitably favors short baselines and small viewing angle variations, which
may be less informative. Thus, geometric priors and temporal smoothness have
also been introduced to sample from diverse viewpoints and increase robustness
[Schonberger et al., 2016].

It is worth noting that the propagation scheme, either sequential or diffuse-like,
can be potentially combined with both pixel-wise probabilistic or simple global
heuristic models for view selection. Some methods use straightforward sequential
propagation schemes combined with a sophisticated probabilistic model for view
selection [Zheng et al., 2014; Schénberger et al., 2016]. Others use simple heuristic
schemes to pre-select global aggregation view subsets with minimal matching
costs combined with parallelized diffuse-like propagation [Galliani et al., 2015].
An advanced recent method combined adaptive checkerboard patterns with a
multi-hypothesis strategy for pixel-wise view selection to improve the results [Xu
and Tao, 2019]. In this way, they avoid the bias due to different aggregation view
subsets for different hypotheses; the best views are selected for each pixel via a
voting decision scheme based on matching cost and confidence considering the
pixel’s neighborhood. The best estimate is the hypothesis with the minimum
multi-view aggregated cost. Although this scheme has been proven robust enough,
view selection may not be reliable for datasets with particularly strong viewpoint
variations.

3.2.3 Cost computation

In most local methods, the cost for every pixel is typically calculated by a
similarity measure based on photometric consistency accumulated across the
support window. Generally, the squared differences or absolute differences of
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color values often were used in some real-time multi-view stereo [Hosni et al.,
2011], while the normalized cross-correlation and census transform were adopted
to consider the bias and gain changes across multiple images on a window basis
[Shen, 2013; Zheng et al., 2014; Li et al., 2015; Zhu et al., 2015]. To achieve a
reliable correspondence, aggregation of the image similarities was often necessary,
i.e., applying a smooth filter over the image similarity space [Hosni et al., 2013].
The adaptive support-weight approaches improved the robustness of the similarity
metric and achieved structure-preserving property [Yoon and Kweon, 2006; Hosni
et al., 2011, 2013|.

In the context of PatchMatch stereo, the original work of Bleyer et al. [2011]
accumulates the cost across an adaptive weight window around each pixel [Yoon
and Kweon, 2006|. The weights control the influence of the window pixels according
to their proximity to the central one and overcome the edge-fattening problem.
They represent the likelihood of the two pixels to lie on the same plane based on
color similarity. In the cost function, absolute color differences and differences
in magnitude are combined. Galliani et al. [2015] substituted the color values
with intensity differences and used a sparse census transform [Zinner et al., 2008],
evaluating every other row and column in the window for speed. However, the
normalized cross-correlation (NCC) and its variants have been proven competent
enough in PatchMatch scenarios for high-resolution images regarding performance
and computational efficiency. The standard NCC has been successfully used in
the MVS scenarios [Bailer et al., 2012; Zheng et al., 2014|, while Shen [2013]
employed the zero-mean version of it (ZNCC). Schénberger et al. [2016] and Xu
and Tao [2019] applied a bilaterally weighted NCC to treat depth discontinuities
efficiently.

Shen [2013| formulated the PatchMatch in the scene space in contrast to previous
works that run in the disparity space, enabling efficient cost aggregation across
different views without rectified images; the approach was further adopted also
by Galliani et al. [2015], Schénberger et al. [2016] and subsequent works.

3.2.4 Refinement

Random refinement is necessary to help the result avoid local minima and,
consequently, filter noisy depth and normal estimates. For each pair of hypotheses,
three possibilities exist: both normal and depth are correct, one of them is
correct, or neither of the two is correct [Schonberger et al., 2016; Xu and Tao,
2019]. An extra set of hypotheses is generated to be compared with the current
estimate; thus, for every PatchMatch iteration, the latter is not only compared
with the estimates of the pixel neighbors but with the extra hypotheses as well,
completely random or perturbed by the current one. Finally, the hypothesis with
the minimum cost across all comparisons is selected.
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3.2.5 Depth fusion

Since a depth map is calculated for every reference view, a subsequent fusion
of the overlapping projected depth estimates is required to generate a final,
merged 3D point cloud. During depth fusion, outliers are eliminated, and the
noise is reduced; points with an insufficient number of supporting views are
excluded. Generally, an inlier value should be photometrically stable across
multiple views; therefore, consistency checks are performed. Consistency checks
often include the reprojection of a view’s 3D points to the overlapping views and
the subsequent check for constant disparity values; normal consistency is also
taken into consideration [Shen, 2013; Galliani et al., 2015; Xu and Tao, 2019|.
A recent method additionally performed cross-checking with neighboring pixels,
assuming local coherency [Xu et al., 2020]. Finally, average depth values of the
remaining inlier points across the consistent views are calculated to avoid artifacts
and reduce noise. Typically, depth fusion is, indeed, an engineered part of the
pipeline, as many handcrafted heuristics, e.g., thresholds, are applied for outlier
removal and noise reduction. That being said, the methods generally aim to
generate the best possible depth maps to enable straightforward fusion [Galliani
et al., 2015]. Schonberger et al. [2016] formulated depth fusion as a graph-based
problem, considering both depth and normal maps recursively; the reprojection
error, indicating geometric consistency, as well as the photometric consistency,
are considered.

3.3 A PatchMatch MVS algorithm explained

In this section, the PatchMatch MVS method proposed by Shen [2013] is discussed
in detail to introduce basic notation and context since the proposed methods
in this dissertation build upon these principles. This algorithm is based on the
standard PatchMatch approach for stereo, yet it is particularly tailored to the
multi-view cost aggregation problem, defining the support planes in the 3D space.
Given a set of i = {1,2,...,n} overlapping images Z of known camera poses, the
pipeline can be summarized in the following steps:

Propagation and view selection. Depth propagation follows a simple se-
quential scheme similar to the one of Bleyer et al. [2011]. Candidate neighboring
(source) views for every reference image are chosen based on global visibility
criteria. For the sake of robustness, a good potential pair should fulfill the dual
criterion of similar viewing direction and adequate baseline length. As a mat-
ter of fact, views with long baselines typically suffer from insufficient overlap
as well as considerable perspective and radiometric differences; on the other
hand, views with a short baseline may have a similar appearance yet involve
unfavorable intersection angles. The best angles between the principal viewing
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Figure 3.4: Slanted 3D tangent planes. To each pixel p a 3D plane is assigned,
described by its center coordinates X in the camera reference system and its normal
vector n. Adapted from [Shen, 2013].

directions of reference and neighboring views are selected using the visibility of
the already available sparse 3D points, commonly calculated during the SfM step.
An acceptable such angle 6 is between 5° and 60°. For the images that meet
this requirement, the median distance b between neighboring optical centers is
computed, and acceptable distances are considered the ones whose b < 2b or
b > 0.05b. The final set of pairs is sorted in ascending order, and the best k
neighboring images are considered.

Depth map computation. For every image I; of the input set Z with camera
parameters K;, R;, C;, a rough depth map is approximated by interpolating the
3D sparse point cloud resulting from SfM. To each pixel p with homogeneous
coordinates p = [z,y, 1]T slanted support plane m with normal n and center
coordinates X are randomly assigned, aiming to find the best support plane that
corresponds to the minimal aggregated photometric cost (Figure 3.4). The 3D
world point X lies on the viewing ray of p. Given the camera calibration matrix
K, for any randomly selected depth value d in the range [dmin, dmaz], the 3D
coordinates of X are computed in the camera coordinate system:

X = dK; 'p, (3.1)

and a random plane normal n is assigned to it. According to the basic principle
of PatchMatch, this random initialization is likely to have at least one good
hypothesis for each depth value. In the case of high-resolution images, this is even
more robust since every scene plane contains more pixels and thus more guesses.

Since the homography mapping between the images is already known from the
pose estimation, potential pixel correspondences are established for all image pairs.
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The aggregated matching cost is calculated using NCC, particularly a weighted
zero-mean version of it (ZNCC) as given in Equation 2.18, which integrates the
subtraction of the local mean p to the NCC and tends thus to be more robust
to illumination changes and depth discontinuities. This measure is considered
reliable enough, especially for high-resolution images, and in this way, more
complex aggregation costs are avoided for time efficiency.

Accordingly, every pixel p is associated with a rough 3D plane that is to be further
refined during the PatchMatch iterations. Two procedures are performed during
each PatchMatch iteration on each image pixel, namely spatial propagation and
refinement. Spatial propagation is based on the idea that the neighboring pixels
pn are likely to belong to the same plane with p and have a similar depth value.
Therefore, during the iterations, the assigned planes between neighboring pixels
are compared to ensure depth smoothness among them and propagate correct
estimates; the (d,77) combination with the highest photometric score (meaning
the lowest cost in the cost function) is kept and propagated, as it is considered
to be a better estimate. To further refine these values, random assignment is
performed, i.e., several randomly assigned planes are iteratively compared with
the current estimate to potentially reduce the matching cost. In such a way, the
search range is progressively reduced, and pixels with high aggregated matching
costs are removed.

Depth map filtering. During the filtering step, consistency between neighbor-
ing views is enforced for every depth map to refine the depth values and remove
potential outliers. To this end, for each pixel p, a point X is reconstructed in
3D using the assigned depth value cZ, the camera intrinsic parameters K;, the
rotation matrix R;, and the projection center C; :

X = dRTK;'p + C.. (3.2)

Subsequently, X is back-projected to all neighboring k& views and is considered as a
valid estimate only if its depth d is consistent across the views, that is, only if the
depth difference between d and dj, is small enough. In [Shen, 2013|, a minimum
number of consistent views is set to m = 2 and the threshold for closeness is
defined as:

d—d

d-dd (3.3)
dp,

where 7 is a constant. Otherwise, if X does not fulfill this consistency criterion,

it gets discarded. This refinement process handles occlusions and significantly

reduces the errors in the final, filtered depth map for each view.
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Figure 3.5: Neighboring depth map test for depth map merging, as proposed by
[Shen, 2013]. Depth redundancy is treated by merging points that are close enough or
removing occluded points. Adapted from [Shen, 2013].

Depth map merging. The various depth maps referring to overlapping parts
of the scene are fused together to remove redundant depth values for every 3D
point X back-projected using in Equation 3.2. X is then reprojected to all Z,¢igp
neighboring views. Redundant points are merged together or are eliminated
accordingly, based on the neighboring depth map test. Let a reference camera
I,.c; with center C; have m = 4 neighboring views as shown in Figure 3.5 and d
be the depth with respect to the reference camera. Values d,, are computed for
X based on the depth maps of the neighboring views I,,,. The depth valued d4
from view I, is close enough to (i, so these points are considered identical and
merged. On the contrary, if d < d.m, as for instance for d3 and dy, the point X is
considered occluded on the respective neighboring views and gets discarded from
their depth maps. Lastly, all depth maps are projected to the 3D space resulting
into a single, fused dense cloud.

3.4 Learning-based PatchMatch

Learning-based methods for depth estimation and reconstruction have been
gradually introduced in the literature and achieved promising results, often out-
performing standard handcrafted approaches by employing trainable photometric
costs and cost-volume regularization (Chapter 2). Most methods typically rely on
frontal plane sweeps [Huang et al., 2018; Yao et al., 2018; Guo et al., 2019; Luo
et al., 2019; Xu and Tao, 2020a|; however, the inevitable cost volume regularization
using 3D CNNs adds a computational burden, limiting the applicability of the
methods in low-resolution applications and small depth ranges. To overcome this
scalability barrier, some of these methods downsample the input and compute
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the cost volume in low-resolution [Yao et al., 2018; Xu and Tao, 2020a], often
using an additional spatial upsampling module later [Wang et al., 2022]. Other
works employed recurrent 2D cost map regularization [Yao et al., 2019], attention
architectures [Luo et al., 2020] for refinement and regularization or coarse-to-fine
schemes for efficiency [Yu and Gao, 2020; Cheng et al., 2020; Gu et al., 2020].
More recent solutions aim to exploit the PatchMatch algorithm, in stereo [Duggal
et al., 2019] or multi-view scenarios [Wang et al., 2021; Lee et al., 2021].

Nonetheless, it is to be noted that the iterative and sampling part of PatchMatch
is non-differentiable and thus not trivial to be incorporated into an end-to-end
pipeline. In the first such approach for stereo matching, Duggal et al. [2019]
reduce the search space by using differentiable PatchMatch to obtain a lightweight
cost volume that is further refined by a 3D CNN. In multi-view, some PatchMatch-
based methods use extra training modules for confidence prediction alone [Kuhn
et al., 2020] or combined with mesh guidance [Wang et al., 2020b|. The first end-to-
end cascade formulation of PatchMatch in the MVS scenario was PatchMatchNet,
minimizing the sum of per-iteration losses [Wang et al., 2021]; no cost volume
regularization is applied. However, this approach is still not competitive in high-
resolution datasets. Recently, Lee et al. [2021]| used a reinforcement learning
technique for the PatchMatch algorithm, predicting depths, normals, and visibility
information while applying pixel-wise regularization. Yet, the implementation is
limited to downsampled images compared to the respective handcrafted methods,
demonstrating reduced performance. As a matter of fact, accuracy and fine
detail recovery remain a challenge in such methods. Finally, similar to other
learning depth estimation approaches, the ones relying on PatchMatch are heavily
data-driven and suffer from generalization and domain adaptation, apart from
the computational complexity problems.

3.5 Discussion

PatchMatch is a robust algorithm for efficient processing of high-resolution images
in large-scale MVS scenarios; indeed, many of the state-of-the-art frameworks rely
on PatchMatch principles and provide efficient, open-source solutions in image-
based 3D reconstruction. Accordingly, it has gradually replaced other depth
estimation methods in research scenarios in the past decade. Despite the great
success of PatchMatch-based MV S reconstructions, conventional photogrammetric
methods with high precision requirements often prefer to follow semi-global (SGM)
approaches [Hirschmuller, 2008|. This choice is debatable, yet, our intuition is
that PatchMatch has great potential for efficient depth estimation.

In terms of memory and time efficiency, PatchMatch is beneficial for high-resolution
datasets and well-suited for memory-constrained environments, as its runtime
complexity increases linearly with the image resolution (W x H) and is indepen-
dent of the disparity range. On the other hand, semi-global approaches have
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a polynomial complexity (O(W x H x D)) considering the additional disparity
dimension D in the cost volume calculation. That being said, SGM does not
rely on pixel-wise propagation in an iterative fashion, a fact that compensates for
the computational cost up to some extent. Regarding the reconstruction quality,
the unbiased oriented tangent planes in PatchMatch typically result in higher
quality and more complete reconstructions in case of slanted surfaces, as they
disregard the fronto-parallel assumption [Bleyer et al., 2011; Galliani et al., 2015;
Schonberger, 2018]. Thus, slanted scene areas are efficiently reconstructed, while
traditional local and SGM methods still struggle with this challenge. On the
other hand, PatchMatch lacks an explicit smoothness term and imposes implicit
constraints based on plane propagation.

The major open challenge for PatchMatch remains the inefficiency of the similarity
measures to deal with matching ambiguities, a common problem in all depth
estimation approaches based on visual appearance similarity, either two-view or
multi-view. In large textureless areas and non-Lambertian surfaces, photometric
consistency measures alone often struggle to recover reliable depth estimates.
Nevertheless, due to its robust optimization scheme, PatchMatch performs better
in such areas than most global algorithms, as the latter can easily get trapped
into local minima. Unfortunately, reliable depth estimates cannot be efficiently
calculated in particularly low discriminative areas, even with such a robust
propagation. Many efforts have been made in this direction, either by using more
efficient propagation and sampling patterns [Xu and Tao, 2019] or coarse-to-fine
approaches [Wei et al., 2014; Xu and Tao, 2019; Xu et al., 2020]. However, it is not
guaranteed that matching ambiguities will be efficiently tackled even with these
improvements. Therefore, current research focuses on incorporating higher-level
semantic or structure priors for the scene in conventional or learning approaches.
Incorporating such information through hand-crafted cost functions is non-trivial,
yet, in this dissertation, two frameworks are introduced in this direction (Chapters
5 and 6).
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Semantic segmentation is a key topic in computer vision and a fundamental
component towards visual scene understanding. The term scene understanding
refers to the broad research field that attempts to perceive and analyze a 3D scene
on different levels of abstraction, directly in 3D space or using images. Often
performed in a dynamic way, the scene is analyzed with respect to its geometric
structure, functional and spatial relationships between objects as well as their
semantic reasoning. By definition, it is a non-trivial problem, and it may combine
image-based 3D reconstruction with classification, semantic segmentation, and
object detection. Along these lines, scene understanding refers not only to the
detection of visual and geometric features of a specific scene but also to their
enhancement with information about the physical world in a humanly meaningful
way; in other words, scene understanding aims to resemble, up to some extent,
the human perception system.

7
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Different from image classification, where typically a dominant object present in
the scene is recognized and the respective single label is assigned to the entire
image (e.g., “cat”, “dog”, “building”), semantic segmentation is defined as the
fine-grained process of assigning a semantically meaningful label to every single
pixel of the scene; also known as pixel-wise classification. That is, each pixel
may have a different label, categorizing it in a separate semantic class. In this
way, semantic segmentation can separate, group, highlight, and extract clusters of
pixels with similar attributes across an image. It has a vast field of applications
spreading from medical imaging to autonomous navigation, city mapping, and
localization. Early methods included simple techniques relying on low-level vision
cues, such as thresholding [Otsu, 1979]; region-growing [Nock and Nielsen, 2004],
and clustering [Dhanachandra et al., 2015] methods have also been used, while
more sophisticated approaches formed the problem as a Markov Random Field
minimization [Plath et al., 2009]. Handcrafted features and flat classifiers have
also been widely used in the past for semantic segmentation [Shotton et al., 2009,
2008; Fulkerson et al., 2009]. However, in recent years, the rise of deep learning has
revolutionized the field; robust algorithms have been generated that can efficiently
segment images [Long et al., 2015] as well as point clouds [Qi et al., 2017]. Closely
related to semantic segmentation are the research fields of object detection, where
the goal is to identify each scene object and typically localize it with a bounding
box |Girshick et al., 2014; Ren et al., 2015|, and instance segmentation, where
all the entities of the semantic class are identified with a separate mask |Dai
et al., 2016; He et al., 2017]. More recently, panoptic segmentation has also been
introduced, combining both semantic and instance segmentation [Kirillov et al.,
2019|.

Higher-level semantic cues are considered essential for various computer vision
applications, where plain geometric and visual appearance information is not
enough. In the concept of 3D reconstruction from images, semantically segmented
3D models would enable better scene understanding. Indeed, a semantic 3D
scene reconstruction can allow for further analysis and re-utilization, for instance,
class-specific operations or semantic completion of parts of the scene that are not
captured. Yet, semantic segmentation directly in the 3D space typically requires
an independent post-processing module, which is rather computationally costly
as it typically involves complex mathematical operations.

In this chapter, based on previous work [Stathopoulou and Remondino, 2019a,b|,
an integrated image-based 3D reconstruction pipeline is proposed, exploiting
semantic information to generate semantically enriched point clouds and thus,
facilitate scene understanding. Towards this end, rather than working in the
3D space, semantic segmentation is performed on the image level; during 3D
reconstruction, each input image is accompanied by its semantic equivalent.
Image semantic segmentation can be achieved using standard supervised learning
techniques, yet the large amount of training data needed is considered a burden.
In that respect, a high-resolution benchmark dataset with rich annotations is
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developed and introduced in this thesis, particularly aided to historic building
facade segmentation, to enable efficient segmentation in similar scenarios. The
3D reconstruction is performed with a combination of open-source StM and MVS
practices that have been proven to achieve high-quality results [Stathopoulou
et al., 2019|. In the integrated pipeline, for every image, the semantic information
of each pixel is carried along with the whole reconstruction procedure. At the time
of reconstruction, based on the label of each pixel, rules can be applied, enabling
selective reconstruction of any semantic class by demand. In this way, the resulting
3D models are free of the classes that typically add noise and are uninformative,
such as the sky. Meanwhile, class-specific reconstruction of particular areas of
interest is enabled, e.g., only the building openings. Finally, the label of each
pixel can be projected on the reconstructed 3D points, resulting in semantically
enhanced point clouds. Although using facade segmentation as a proof of concept,
the proposed semantic 3D reconstruction approach can be generalized in diverse
scenarios, spanning from building modeling to urban mapping, and hence adequate
for terrestrial or airborne applications.

4.1 Semantic segmentation on images

The implementation proposed in this chapter uses pixel-wise semantic labels
for each input image of the 3D reconstruction. To generate these semantic
equivalents, a deep learning segmentation pipeline on images of building facades
is proposed. Therefore, in the next paragraphs, the basic functionalities of such
learning architectures in general as well as specifically for semantic segmentation
purposes are briefly described. For a more comprehensive study on deep learning
in computer vision, the reader is referred to a plethora of high-valued textbooks
and publications in the field [Goodfellow et al., 2014; Zeiler and Fergus, 2014].

4.1.1 Neural networks

Deep learning methods based on artificial neural networks (ANNs) have gained
popularity in recent years due to the increase in computer power together with
the expanded availability of training sets and have, consequently, been applied in
different fields of data science. Particularly while undertaking visual recognition
problems such as image classification and segmentation, as well as object detection
and localization, the use of ANNs has become common practice and generally
outperforms conventional methods or even the standard supervised machine
learning ones. An ANN is a group of interconnected neurons, also called nodes,
that have been observed to simulate, in a loose analogy, the neurons in the human
brain; in fact, they aim to mimic the way humans perceive signals. Learning
methods have been developed based on such stacked, densely connected groups
of nodes, also known as architectures. A minimal architecture would include an
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input hidden layers output

Figure 4.1: An example neural network with two hidden layers.

input layer X, an output layer, and some (at least one) hidden layers in between
(Figure 4.1). Hidden layers represent mathematical operations z based on weights
W and a bias b and have an activation function a(z); these intermediate layers
are at the same time input and output layers. Input layers are the input features,
and the final output layers provide the prediction result. Activation functions
in practice decide if a node will be activated or not, based on thresholds. The
primary network form, having a single hidden layer, is conceptualized in the
oldest neural network, the perceptron model [Rosenblatt, 1958|. Networks with
few hidden layers are called shallow networks, in contrast to the deep ones that
include a large number of hidden layers and are thus used for solving more complex
problems. Neural networks are commonly used in supervised scenarios and are,
hence, data-driven; that is, the algorithm observes the training data in order to
learn. A forward propagation step and a backward propagation step are performed
during the training procedure, interdependent on each other. Forward propagation
is the sequence of mathematical operations from the input to the output and
storage of intermediate variables; backward propagation refers to the calculation
of the gradients of the variables, traversing the network in reverse order, based
on gradient descent. ANNs have been proven robust, even with noisy training
samples, and have thus been widely applied for prediction and analyses in various
data science fields, spanning from speech recognition to computer vision. The
timeline of some of the architectures mostly used in computer vision, along with
their basic ideas, is briefly outlined in the next paragraphs.

Convolutional neural networks (CNNs) are a specific class of ANNs, based on
convolutional operations with different filters, i.e., kernels, of weights between the
network layers. They typically contain several convolutional blocks and non-linear
activation function layers, alternating with pooling layers to reduce the size of
the representations. After a sequence of convolutional and pooling layers, at the
end of the architecture typically some dense layers follow. During these steps,
the multidimensional layers are flattened into a single vector; dense layers are
fully connected, i.e., not convolutional layers, and the output is derived by a final
classifier.
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CNN architectures, mainly due to parameter sharing and sparse connections, have
by definition fewer parameters than plain, fully connected ANNs, providing a
computational advantage and are hence commonly preferred for efficiency. They
especially target image problems and have enjoyed great success as they tend to
outperform other hand-crafted methods in efficiency and accuracy |Zeiler and
Fergus, 2014; LeCun et al., 2015]. The idea of CNNs was originally introduced
in the scientific community in the 1980s [Fukushima and Miyake, 1982|, and
was partially explored in, e.g., document recognition in the LeNet-5 architecture
[LeCun et al., 1998|, using few convolutional layers combined with average pooling
layers, and a small total number of parameters (60K). However, CNNs did not gain
popularity till the technological advances and the use of high-performance systems
allowed the, for that time, very deep architecture AlexNet with around 60M
parameters [Krizhevsky et al., 2012|. AlexNet was the first architecture to achieve
considerable accuracy, over 80%, and win the famous ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) challenge, a pioneer effort to collect an extensive
image dataset harvested from the web and generate respective annotations to
enable training for image classification purposes [Deng et al., 2009; Russakovsky
et al., 2015]. Compared to LeNet-5 [LeCun et al., 1998], AlexNet is a relatively
complex architecture containing more layers of subsequent convolutions combined
with max-pooling layers. A more simplified yet effective, deep architecture is
VGG [Simonyan and Zisserman, 2014|, with over 130M parameters and fixed
kernel sizes; multiple variants of the VGG network exist, e.g., containing 16 or
19 layers. However, very deep networks containing many layers are typically
difficult to train due to vanishing gradients caused by the small derivative values
during back-propagation [He et al., 2016|. To address this problem, ResNet was
introduced [He et al., 2016], where residual blocks, or “shortcut connections”, allow
for training very deep networks (over 100 layers) without losing performance. In a
more complicated, deeper architecture, the GoogleNet /Inception family networks
are based on the concatenation of many operations, i.e., convolutions with various
filter sizes, max pooling, etc., in the same block, the “inception module”; the high
computational cost of such an increased network width is compensated using
one-by-one convolutions and reducing, in this way, the number of parameters
[Szegedy et al., 2015, 2016, 2017|. In a different line of thought, DenseNet [Huang
et al., 2017] connects each layer with all the others exploiting feature re-use
throughout the network resulting in a condensed model with a relatively low
number of parameters and is easy to train. More recently, the demand for reducing
the computational cost led to the design of lightweight networks such as MobileNet
[Howard et al., 2017| that appoint depth-wise separable convolutions to reduce
the number of parameters. To meet the need to deploy standard architectures
in low compute environments, EfficientNet allows for uniform scaling of network
dimensions based on the available resources [Tan and Le, 2019].

CNN architectures have evolved rapidly across the years and have employed
different techniques to optimize their performance, including (1) testing different
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activation functions, i.e., tanh, sigmoid, or ReLU, to solve the vanishing gradients
problem (2) experimenting with the number of stacked layers, (3) applying diverse
pooling operations, i.e., average or max pooling, (4) using appropriate classifiers,
i.e., softmax for multi-categorical tasks or sigmoid for binary classification. During
training, state-of-the-art methods also experiment with various regularization
techniques, especially in very deep architectures, to prevent overfitting. Such
approaches include L2-regularization of the parameters or the incorporation of
dropout layers [Hinton et al., 2012] to set to zero the activation functions of some
randomly chosen hidden units in each training step, based on a probability. With
such a regularization, the total number of parameters decreases, simulating a
smaller network. Data augmentation is a rather engineering solution that is also
commonly applied to increase the training set size. Batch normalization has also
been introduced [Ioffe and Szegedy, 2015] to normalize the values of the hidden
units and speed up, thus, the learning procedure while also bringing a slight
normalization effect. Independent of the complexity of the architecture, training
per se remains relatively simple, as it mostly relies on stochastic gradient descent
as an optimization method with a chosen learning rate. Adaptive optimization
algorithms have been introduced to adapt the learning rate and achieve faster
convergence, like RMSProp |Tieleman and Hinton, 2012| and Adam optimizer
|[Kingma and Ba, 2014].

4.1.2 Semantic segmentation using CNNs

Directly applying such deep CNN architectures designed for image classification
to semantic segmentation would yield coarse results due to the repeatedly reduced
feature map resolution through the recurrent convolutional and pooling operations.
Yet, semantic segmentation is a particular task that needs to provide pixel-wise
prediction labels as an output; these segmentation maps must be of the same
size as the input image, while arbitrary-sized images are often used. One of the
challenges of semantic segmentation is the combination of global and local context;
global information is used to decide the label (“what”) while local information
helps define the location (“where”). CNNs, by definition, have a limited receptive
field; that is, layer nodes are only locally connected through the weights, inevitably
missing the global context.

Early works in the field typically used handcrafted features and flat classifiers
such as Random Forest [Shotton et al., 2008], Boosting [Shotton et al., 2009;
Ladicky et al., 2010] or Support Vector Machines [Fulkerson et al., 2009] to predict
class probabilities, often combined with Conditional Random Fields for smoother
results [Ladicky et al., 2010], yet the performance of such methods was constrained
by the limited representation ability of the features.

In the deep learning era, semantic segmentation was typically addressed as a
joint task with object detection and its bounding box proposals [Girshick et al.,
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Figure 4.2: The original FCN network design. Only convolutional layers are used.
Source: [Long et al., 2015].

2014; Gupta et al., 2014] or superpixel segmentation [Mostajabi et al., 2015]
followed by region based-classification (R-CNN). Eigen et al. [2014] discarded
the image segmentation step and implemented a coarse-to-fine approach using
two different networks, transforming the fully connected layers with convolutional
ones. The revolutionary work of Long et al. [2015] proposed the use of a Fully
Convolutional Network (FCN) architecture particularly designed for semantic
segmentation, starting from image classification and exploiting transfer learning.
Such architectures contain only convolutional layers and can manage arbitrary-
sized images and directly output segmentation maps in an end-to-end manner.
Hence, there are no fully connected (dense) layers but are rather replaced by
1 x 1 (depth-wise) convolutions. FCNs have a downsampling part (encoder), an
upsampling part (decoder) of typically one layer, and lateral (skip) connections
(Figure 4.2). A standard part similar to VGG [Simonyan and Zisserman, 2014|
can be adopted without its last fully connected layers; since such an architecture
drastically reduces the feature map size, an upsampling part must be added to map
the downscaled feature representations to pixel-wise predictions in the original
image resolution. Upsampling is typically performed using deconvolution, i.e., an
inverse convolutional operation, to upscale the spatial resolution. However, since
the last downscaled layers have limited spatial resolution, details will inevitably
be lost during the upscaling; to address this issue, skip connections are introduced.
Skip connections concatenate encoder feature maps with their corresponding
decoder ones, allowing the combination of high-level information from the deep
layers and the appearance information of the shallow layers. Several works based
on symmetric encoder-decoder architectures have been proposed in the literature
to increase performance of FCNs; U-Net [Ronneberger et al., 2015] uses skip
connections with symmetric and direct feature map concatenation, while SegNet
[Badrinarayanan et al., 2017| proposes the re-use of pooling indices instead.

Other methods focus on incorporating global context information by integrating
Conditional Random Fields (CRFs) into FCN architectures |Zheng et al., 2015,
using global average pooling vector across the image [Liu et al., 2015b]. Spatial
pyramid pooling structure [Lin et al., 2017a| for multi-scale analysis has also
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been introduced; PSPNet [Zhao et al., 2017| uses a pyramid pooling module with
four pyramid levels to exploit multi-scale feature information and, thus, global
context. In the same line of thought, DeepLab [Chen et al., 2017| proposed the
“atrous convolution”, i.e., convolution with upsampled features, to extract features
in various scales while also incorporating CRF's for more accurate boundaries
between the classes.

Semantic segmentation can also be solved by using Generative Adversarial Net-
works (GANSs) [Goodfellow et al., 2014], e.g. [Luc et al., 2016; Isola et al., 2017,
Hung et al., 2018] or by adopting attention mechanisms [Chen et al., 2016; Li
et al., 2018; Fu et al., 2019]|. Recurrent Networks (RNNs) |[Byeon et al., 2015;
Liang et al., 2016] have also been explored, although they are typically more
appropriate for sequence models and applied, therefore, in problems such as
natural language understanding. Weakly supervised approaches have also been
studied using bounding box annotations or image-level annotations [Papandreou
et al., 2015; Dai et al., 2015], and a few fully unsupervised methods also exist
applied in small-scale datasets [Ji et al., 2019|. Since an extensive review of all
the proposed architectures in the literature is out of scope for this thesis, for a
more detailed overview, the interested reader is referred to Minaee et al. [2020].

4.1.3 The U-Net architecture

Initially proposed for biomedical imaging applications, the U-Net [Ronneberger
et al., 2015| architecture has become a common practice for semantic segmentation
in various domains due to its efficiency. U-Net improves upon the fully convolu-
tional architecture and contains two symmetric encoding-decoding parts (Figure
4.3), and is commonly referred as “hourglass architecture”; the first part captures
low-level, i.e., detailed, contextual information but has low spatial resolution due
to the repetitive downsampling of the images during the convolutional operations.
The second part uses inverse convolutions for upsampling the feature maps reach-
ing high resolutions, up to the original image size, and thus precise localization
while encoding high-level, i.e., rough, contextual information. Each layer contains
a block of consecutive convolutional operations and activation functions with
some max-pooling layers, along with depthwise convolutions. One drawback of
the standard encoder-decoder architecture is the loss of fine-grained information
about the image through the encoding process. To overcome this limitation, a
fundamental part of U-Net architecture is the usage of skip connections which
connect the early layers with the latest ones and concatenate these specific sets of
activations. By doing this, they leverage the fine-grained spatial information of the
low-level features from the encoder layers with the high-resolution and high-level
contextual information of the decoder ones. Finally, a one-by-one convolution
layer outputs a segmentation map with the original input image width and height
and channels equal to the number of classes. Given its good performance in
many applications [Zhou et al., 2018; Zhang et al., 2018|, even with relatively few
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Figure 4.3: The original U-Net network design. U-Net is a symmetric-shape
architecture with skip connections. Source: [Ronneberger et al., 2015].

samples, in the experiments within this research work, the U-Net architecture is
employed for model training.

4.1.4 Semantic segmentation benchmarks

Semantic segmentation has been investigated as a standalone research task or as
an auxiliary module for other pipelines such as navigation and obstacle avoidance.
Commonly, pre-trained models on generic image classification or semantic segmen-
tation tasks are used to enable easier convergence and are especially benefiting
when limited training data is available. Such models are trained on large-scale
image recognition milestone datasets such as the ImageNet [Deng et al., 2009;
Russakovsky et al., 2015], the PASCAL Visual Object Classes (VOC) dataset
|[Everingham et al., 2010], the MS COCO dataset |Lin et al., 2014] and so on.

In recent years, many semantic segmentation algorithms have been developed
toward scene understanding for autonomous driving. Accordingly, several bench-
mark datasets with ground-truth 2D data for semantics of urban street-level scene
analysis have been introduced, often accompanied by relevant depth maps or 3D
information. Among the most prominent efforts are CamVid [Brostow et al.,
2009], CityScapes |Cordts et al., 2016] datasets offering a variety of street scenes
and semantic classes, while the KITTI road estimation [Fritsch et al., 2013| has
also been used for road segmentation. The Mapillary Vistas [Neuhold et al., 2017]
dataset is a larger scale dataset of this category in terms of the number of images
and respective classes. Such datasets are specific to urban scene understanding
and have, thus, limited scene variation while certain classes are considered. Other
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than street scenes, considerable work has also been done on semantic RGB-D
datasets from indoor scenarios, which are more complex and include a larger
spectrum of semantic classes. RGB-D scenes refer to video sequences acquired
using commercial sensors like the pioneer NYU Depth v2 [Silberman et al., 2012]
on depth estimation and 2D semantics that bootstrapped progress on the topic.
However, the continuously growing demand for more training data with their
respective ground truth annotations led to the release of larger-scale datasets. For
instance, the SUN RGB-D [Song et al., 2015| or the more recent Stanford 2D-3D
semantics dataset [Armeni et al., 2017], the ScanNet dataset [Dai et al., 2017|
and the synthetic SceneNet RGB-D [McCormac et al., 2017|, are more complete
initiatives towards this end, since they provide ground truth 2D, 2.5D, and 3D
data. However, these datasets are limited to indoor scenarios restricted by the
capabilities of RGB-D sensors, have mostly low-resolution data, and are rather
acquired with SLAM-like trajectories, hence typically cannot be used for MVS
purposes.

The photogrammetric community provides semantic airborne image datasets for
geospatial scenarios; the UDDS [Chen et al., 2018a| and the UAVid |Lyu et al.,
2020b]| series focus on drone image sets, while the ISPRS 2D semantic labeling
dataset provides very high-resolution orthophotos with semantic classes for remote
sensing applications |[Rottensteiner et al., 2012; Niemeyer et al., 2014] and has
been widely used by the community. More recently, benchmark datasets shifted
the attention towards 3D point cloud segmentation deriving from image sets [Hu
et al., 2021] or acquired by LiDaR sensors in street-level [Hackel et al., 2017| or
airborne |[Zolanvari et al., 2019; Kolle et al., 2021].

Undoubtedly, benchmarking plays a fundamental role in computer vision tasks
as they offer a challenge that drives the research towards novel directions and
establishes a common baseline on which new algorithms are evaluated. Moreover,
model training relies on massive amounts of annotated ground-truth data; using
sparse or mislabeled data samples typically leads to domain-dependent models
that may not generalize well to diverse scenarios.

4.2 The 3DOM Semantic Facade benchmark

In photogrammetry and remote sensing applications, research has focused primarily
on the semantic segmentation of airborne and satellite images, often accompanied
by Digital Surface Models (DSM) or airborne laser scanning data for urban-level
mapping and land cover purposes. Earlier methods used handcrafted features,
simple classifiers [Volpi et al., 2013], or shallow networks [Bischof et al., 1992]
for semantic segmentation of images. In more recent years, challenged by the
introduced benchmarks, the photogrammetric community proposed methods
tailored for object detection and building extraction [Marmanis et al., 2016;
Cheng et al., 2016]. Segmentation of 3D point clouds derived by photogrammetry
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or acquired by laser scanning has also been recently investigated [Ozdemir et al.,
2021; Can et al., 2021]. Such large-scale applications are challenging, mainly
because of the need to manage a massive amount of 2D or 3D data and potentially
extreme class imbalance. This fact is particularly true when dealing with satellite
images where related research has focused mainly on building extraction and
change detection [Vakalopoulou et al., 2015; Huang et al., 2016; Zhang et al.,
2019b] or land cover applications |[Helber et al., 2019]. Within the context of
this dissertation, a new benchmark for facade segmentation is proposed. In this
chapter, rather than using airborne data for city-scale mapping, terrestrial images
are used for semantic segmentation and building-scale 3D reconstruction. Indeed,
even with oblique images, the reconstruction of the facade surfaces is challenging
in airborne applications, hence street-level acquisitions are often used for complete
reconstructions of urban scenarios. To this end, $DOM Semantic Facade, a novel
facade segmentation benchmark is introduced.

4.2.1 Motivation and overview

Automatic facade segmentation and parsing is an important research topic in
scene understanding with applications in street scene reconstruction, urban-scale
modeling, and building analysis. In such a process, each pixel is assigned to a
semantically meaningful class for the specific application. For instance, structural
components, such as windows and doors, commonly should be identified to enable
further analysis. For historic building facades, in particular, semantic segmentation
is also important for identifying specific characteristics of architectural styles.
In general, building facades provide a rich test bed for evaluating semantic
segmentation methods as they can be highly variant in architectural styles and
feature different characteristics. That being said, and especially due to this
variability, facade segmentation is considered a non-trivial task.

Building facades, like the vast majority of man-made architectures, are highly
structured scenes. Hence, prior knowledge cues about facade appearance and
layout can be used for semantic segmentation. Facades are mostly regular and
symmetric and follow a “Manhattan world” layout assumption; that is, they are
characterized by structural regularities and dominant directions. Moreover, in
such scenes humans easily perceive other semantic cues; for instance, the sky is
expected to be in the upper part of the image, the street level is in the lower part,
and windows are typically placed in repetitive patterns in grid-like arrangements,
etc. Earlier works typically used such a priori knowledge using shape grammar
and symmetry for facade parsing and predicting the structure in unseen data with
procedural modeling [Miiller et al., 2007; Zhang et al., 2013]. Random forests and
CRF classifiers have also been implemented with or without grammars [Teboul
et al., 2010; Riemenschneider et al., 2012; Martinovic et al., 2015; Mathias et al.,
2016; Rahmani et al., 2017]. However, the design of hand-crafted features and
shape grammar rules limit the applicability of such traditional approaches in



88 Semantic segmentation in 3D reconstruction

Table 4.1: Available benchmarks for semantic segmentation on building facades.

dataset year #images image resolution #classes

eTrims 2009 60 512 x 768 4,8
LabelMe 2010 945 varying, max dim: 703 8

ECP 2010 104 varying, max dim: 646 8

Graz50 2012 50 2590 x 1715 4

CMP 2013 400 varying, max dim: 1024 12
RueMonge 2014 428 800 x 1067 8
3DOM Semantic Facade 2019 428 varying, max dim: 6048 5

more complex scenarios and architectural styles. Recent works employ facade
segmentation with deep learning features, either utilizing the structure knowledge
rules for regularization [Liu et al., 2017| or exploiting full automation for easier
generalization |[Jampani et al., 2015; Schmitz and Mayer, 2016; Liu et al., 2020b;
Ma et al., 2020], achieving improved results. Alternatively, other works, use object
detection approaches to identify facade openings [Hensel et al., 2019].

Given the interest of the community, several facade segmentation benchmarks
have been proposed in the literature in the past decades. One of the pioneer
efforts, the eTRIMS dataset [Korc and Forstner, 2009], consists of 60 images
depicting facades of simple architectural styles and considers eight semantic classes
along with their instances. Adopting a similar nomenclature, Frohlich et al. [2010]
proposed the LabelMe dataset that contains a significantly larger amount of facade
images. The Ecole Centrale Paris (ECP) dataset |Teboul et al., 2010| provides
rectified images of facades in Paris with eight defined classes. Riemenschneider
et al. [2012] introduced the Graz50 dataset consisting of 50 facade images of
various architectures from buildings in Graz, Austria, while four semantic classes
are defined. The CMP facade dataset |Tylecek and Sara, 2013] contains around
400 rectified facades from different cities featuring diverse styles and 12 semantic
classes. Towards combined 2D and 3D segmentation, the RueMonge2014 dataset
[Riemenschneider et al., 2014| provides semantic labels on 428 images, along with
the reconstructed 3D point cloud and mesh. The details of these datasets are
summarized in Table 4.1.

During the research work leading to this thesis, the 3DOM Semantic Facade®
dataset was introduced in Stathopoulou and Remondino [2019a] as a new real-
world, densely-annotated, semantic segmentation benchmark for building facades.
The dataset has been publicly released and updated since then. It contains a
selection of 227 previously collected high-resolution images across various cities in
Italy. They depict historic building facades from the street level. The buildings,
although of similar height, feature a significant diversity in architectural styles

"https://github.com/3DOM-FBK /3DOM-Semantic-Facade
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Table 4.2: Acquisition details of the 3DOM Semantic Facade benchmark.

scene #images  resolution camera model
Palazzo Albergati 21 4608 x 3072  Nikon D3100
Bologna Portici 55 4608 x 3072  Nikon D3100
Piazza del Campidoglio 52 4416 x 3312 Canon PS G10
Palazzo Chigi 20 4416 x 3312 Canon PS G10
Lecce Teatini 12 6000 x 4000  Nikon D5300
Lecce Duomo 9 6000 x 4000  Nikon D5300
Piazza Navona 15 4000 x 3000 Samsung ST45
Piazza Duomo-Trento 43 6048 x 4032 Nikon D3X

and structural characteristics spreading from traditional historic center buildings
to cathedrals, which was one of the prime motivations for creating such a dataset.
The 8DOM Semantic Facade dataset is the first public benchmark for such a
purpose using high-resolution images and pixel-level annotations.

The images were carefully selected based on a predefined rationale, fulfilling
some basic criteria. First, they should be of high resolution to be suitable for
3D reconstruction purposes of high requirements. To this end, they also should
demonstrate enough overlap for dense reconstruction purposes. Moreover, they
should be diverse enough to cover a wide variety of building structures in typical
historic city centers of Italy and similar style cities across Europe as well as
acquisition conditions, such as lighting, weather conditions, distance to the object,
camera sensor, etc. Each image needs to contain objects belonging to different
semantic classes for balance. The details of the acquired data are presented in
Table 4.2.

4.2.2 Classes and nomenclature

The dataset aims at a generic facade segmentation and identification of the basic
components; each class should have a clear and unambiguous semantic meaning,
while all classes should be unique with respect to their geometric characteristics
and visual appearance. Therefore, five semantic classes were defined, namely
“wall”, “sky”, “obstacle”, “window”, and “door”; the class “obstacle” includes all
parts of the scene that are typically unwanted in photogrammetric scenarios, e.g.,
moving objects such as cars, bikes, and pedestrians, but also trees, vegetation,
traffic signs, and the street itself. Such a nomenclature facilitates the isolation of
objects considered noise, e.g., the sky and obstacles, while enabling the selective
reconstruction of specific semantic classes of interest such as the facade walls or
the openings “window” and “door”. In the 3DOM Semantic Facade benchmark,

the sky is considered a separate class and the background is not classified. Images
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were selected in such a way to include all semantic classes if possible; that being
said, classes are inevitably imbalanced since the number of pixels for every class
varies a lot.

4.2.3 Ground truth annotation

Rich data annotation is essential for any supervised learning problem, as the
training algorithms heavily rely on accurate ground truth labels for training. In
semantic segmentation, data annotation refers to the manual assignment of a
semantic label to each pixel, whereas in object detection, typically, each object is
annotated by a box. It is an indispensable, although laborious and time-consuming
stage that cannot be fully automated yet. Labeling should be performed with
caution to avoid gross errors that would affect the training quality. Common
image processing software can be used for manual annotation; however, specially
designed interfaces also exist, e.g., Labelbox?, LabelMe?. Recently, the high
demand for data labeling led to the launching of specialized services that perform
this task by demand, or even dedicated crowdsourcing platforms.

For 3DOM Semantic Facade dataset, image annotation was performed manually
in-house using image processing software*. A custom coloring policy is employed,
as shown in Figure 4.4. Ground truth (GT) data were manually annotated in
a fine-grained way by selecting and grouping together pixels that are visually
identified to share the same properties and, thus, belong to the same semantic class.
All labeled images have been manually cross-checked, guaranteeing consistency
and high quality of the annotations. Pixels along class borders, commonly assigned
with ambiguous labels, were further refined and finally assigned to either a class.

4.3 Network architecture and results

Deep learning methods have demonstrated great success and remarkable perfor-
mance in semantic segmentation. However, in practice, there are some limitations
due to the excessive computational time, the high requirement for memory re-
sources as well as the demand for a large amount of training data in order to
generalize well in diverse scenarios. In this section, a deep learning pipeline for an
efficient generation of segmentation maps for building facades is presented, using
the proposed benchmark. Due to the architectural complexity of the facades,
symmetry rules are not considered in the scenario presented in this thesis; instead,
following a deep learning approach, a generic semantic segmentation method
is applied without any prior cue. In this way, the potential of the proposed

https:/ /labelbox.com/
3https://github.com /wkentaro,/labelme
*https://www.gimp.org/, https://www.adobe.com/products/photoshop.html
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window [ door M obstacle

Figure 4.4: The 3DOM Semantic Facade benchmark. RGB images and respective
ground truth labels. From letf to right: Lecce Teatini, Piazza Duomo - Trento (Duomo),
Piazza Duomo (other buildings), Piazza Navona.

benchmark in the facade segmentation of heritage building facades is explored.
In particular, a standard U-Net network combining an encoder and a decoder
part is exploited. The U-Net architecture was chosen as it has been proven to
perform efficiently for similar semantic segmentation tasks; indeed, one of its most
important properties is that output images can have the same resolution as the
input images since the deconvolution operations restore the output feature maps
to the original input resolution, resulting in a class label corresponding to each
pixel. The network is trained as a multi-categorical classification problem in a
supervised way using the ground truth manually annotated labels. It is to be
noted that multi-categorical classification stands for the procedure when each
pixel can belong to only one of the considered classes, while binary classification
refers to a problem with only two classes, commonly one class of interest and one
background class.

Some images, depticing close-up views of the facades and thus containing mostly
one dominated class, were excluded from the set. The dataset considered finally
contains 211 images, from which 14 images are kept for the test set and the remain-
ing images are split into training (90%) and validation (10%); these operations
are performed with a random shuffling approach to keep the data distribution rel-
atively homogeneous. Given the memory constraints, the original high-resolution
images must either be downsampled or divided into tiles. Severe downsampling
would inevitably cause detail loss; on the contrary, tiling preserves the fine de-
tails but can be ambiguous due to limited global context. A combination of the
two strategies could potentially provide a compromise between both downsides.
Following this strategy, in this experiment the images were first downsampled
by a factor of four to each dimension. Subsequently, crops of 256x256 pixels
were extracted with horizontal and vertical stride of 128, creating a total of 9120
samples. A pseudo-class “background” is also used, containing possible unassigned
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Figure 4.5: Input RGB image crops and the respective classes. Each class is
shown as binary segmentation maps, where yellow indicates the respective label and
purple indicates everything else.

pixels, yet in our dataset, this case was rare (less than 1% of the total number of
pixels). The training procedure is based on Tensorflow (version 1.15.0); the used
models are as implemented in the open-source library segmentation_models®. The
particular library is chosen as a standard, broadly-used and open-source library
for semantic segmentation on Tensorflow, but other libraries can be used as well.

4.3.1 Data augmentation

Data augmentation, already used in early neural network applications [LeCun
et al., 1998| can be considered as a regularization method such as L2 regularization
or dropout. It is applied to increase the number of training samples, performing a
set of simple transformations to the already existing ones. Standard data augmen-
tation practices include geometric transformations such as translation, rotation,
flipping, cropping, scaling, warping, or even affine and perspective transformations.
Radiometric manipulation refers to brightness and contrast manipulations, color
space shifting, noise application, image blurring, and sharpening, among others.
Data augmentation has proven to improve algorithm performance and reduce
overfitting [Perez and Wang, 2017; Shorten and Khoshgoftaar, 2019], especially

Shttps://github.com/qubvel /segmentation models
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Figure 4.6: Data augmentation examples. Original RGB image samples (upper)
undertaking random combinations of data augmentation techniques (lower).

for applications in domains where large datasets are inaccessible or unexisting, for
instance in the medical imaging field. In fact, this effectiveness has also launched
research towards learning data augmentation, e.g. by augmenting the feature
space |DeVries and Taylor, 2017] or GAN-based augmentation |Frid-Adar et al.,
2018|, particularly used for unbalanced data. For a comprehensive taxonomy of
current data augmentation techniques, the interested reader is referred to the
detailed review article of Shorten and Khoshgoftaar [2019].

In the experiment presented in this chapter, data augmentation was applied to
decrease overfitting and achieve faster training convergence and better general-
ization in unseen datasets (Figure 4.6). The applied data augmentation strategy
includes randomly applied horizontal flips, affine transformation, perspective
transformation, random crops, brightness, gamma, contrast, hue manipulations,
image sharpening and blurring, and, Gaussian noise. To be noted that geometric
transformations are applied to both RGB images and their respective masks,
whereas radiometric manipulation is performed only on the RGB image.

4.3.2 Training

The proposed dataset containing RGB images and their corresponding ground
truth segmentation maps are used to train the network based on stochastic



94 Semantic segmentation in 3D reconstruction

| “
’W/ mﬁmﬁwmmﬂ”‘”‘kﬂ‘"ﬂ ] e o e O e a1 o ———amr (] /fm

inputtayer fffiConvz0 i Activation JDepthwiseConv2DfiGio! gePoolingzD w20 ffc:

Figure 4.7: The employed architecture EfficientNet-B2 for the proposed
pipeline. Dimensions are scaled to 512 x 512 input size for better visualization.

gradient descent optimization in Tensorflow (version 1.15.0).

Architecture. Training a deep convolutional neural network (CNN) from
scratch is challenging, since extremely large datasets should be used for efficient
learning and generalization. An alternative to full training is transfer learning,
commonly also named domain adaptation [Weiss et al., 2016; Zhuang et al., 2020|;
in transfer learning, a network that has been trained on large datasets such as Im-
ageNet |[Deng et al., 2009; Russakovsky et al., 2015] or Microsoft COCO [Lin et al.,
2014] is fine-tuned for another application or another domain. This technique
is effective and standard practice in visual recognition tasks since they mostly
share the low-level image features that are better learned with large datasets;
the knowledge is then transferred from one task, e.g., image classification to a
similar one, e.g., semantic segmentation. There are various techniques for transfer
learning, such as feature representation transfer, fine-tuning, and pre-training. In
this experiment, a pre-trained EfficientNet-B2 [Tan and Le, 2019| was used as
a backbone (Figure 4.7). This model was chosen as a compromise between the
available resources and performance for the given crop size. In fact, EfficientNet
is a family of models BO-B7; the basic model BO was introduced as a clean
network architecture with a compound scalable strategy of all three dimensions of
the network based on the available resources achieving computational efficiency.
Models B1-B7 are increasingly scaled up from the base model BO using different
compound coefficients. The top layers are retrained instead of being frozen, thus
weights are updated. The total number of parameters for EfficientNet-B2 is
14K. As commonly performed in semantic segmentation tasks, U-Net architecture
|[Ronneberger et al., 2015] is followed, enabling prediction map generation in the
same resolution as the input images. A softmax classifier is chosen, appropriate
for such multi-categorical tasks. Since softmax is between [0, 1], all probabilities
add up to 1.

Loss function. In learning tasks, the choice of an appropriate loss/objective
function is of utmost importance for efficient training convergence. Various
domain-specific loss functions have been proposed in the literature. In semantic
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segmentation, the loss function should measure the difference between the pre-
dicted label § and the ground truth label ygr during training. Popular strategies
include using distribution-based losses examining the similarity between two
distributions, like the binary cross-entropy loss [Yi-de et al., 2004], or its weighted
equivalent [Pihur et al., 2007]| or the focal loss [Lin et al., 2017b|. Region-based
losses are also very common in segmentation tasks measuring the overlap between
the training samples, as for instance the dice loss [Sudre et al., 2017] and its
generalized weighted version Tversky loss Salehi et al. [2017] as well as the focal
Tversky loss [Abraham and Khan, 2019]. Boundary-based losses like the Haudorff
distance loss have also been used recently [Karimi and Salcudean, 2019]. An
extensive survey on the state-of-the-art loss functions in semantic segmentation
can be found in [Jadon, 2020]. In the proposed approach of this dissertation, the
specific semantic segmentation task is considered a multi-categorical classification
problem; that is, each pixel can belong to only one out of many possible classes.
A custom joint loss function £ is used, combining categorical cross-entropy loss
Lcg and the Jaccard index Lja¢:

L=Lcg+wWLjac, (4.1)

where w is a weight factor, here set to 0.1. The categorical cross-entropy loss is
defined as:

Lop=—) (yorlog(d)). (4.2)

And the L j4¢ loss based on the Jaccard index, is similar to dice loss, is calculated
as the ratio between the overlap of the positive instances between two sets:

AUB
ANB’

Ljac=1-— (4.3)

Cross entropy is a pixel-wise loss function. The Jaccard loss is a global function that
provides better perceptual quality. Dice loss is particularly useful for segmentation
problems where there is class imbalance. Softmax is used as an activation function,
appropriate for multi-categorical classification problems.

Hyperparameter settings. The adaptive moment estimator (Adam) optimizer
[Kingma and Ba, 2014] with a learning rate « reduction strategy was used in this
experiment. Initial learning rate was set to o = 0.0001 with a decay factor of 0.2.
A mini-batch size of 8 was followed, as a compromise between GPU resources and
fast convergence. Training is performed for 25 epochs.
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4.3.3 Results and evaluation

Evaluation Metrics. Apart from the visual quality of the results, based on
human perception, quantitative metrics are also used for evaluating a trained
model. The predicted labels are divided into true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN). Common evaluation metrics
are the overall accuracy, the precision, recall, and the F} score. Precision actually
gives the percentage of correct predictions, while recall depicts the percentage of
the correctly predicted positives. The overall accuracy is the ratio of the correct
predictions to the total predicted labels, both correct and incorrect.

TP+ TN
A = : 4.4
Overall _Accuracy TPITN+ FP L FN (4.4)
Precision actually gives the percentage of correct predictions
TP
Precision = ———— 4.
recision = oo (4.5)
while recall depicts the percentage of the correctly predicted positives:
TP
l=———. 4.
Reca TP FP (4.6)
And their harmonic mean:
P - 2(Precision x Recall) (47)

Precision + recall

Intersection over Union (IoU), also called Jaccard Index, is one of the most
commonly used metrics in visual recognition tasks. In semantic segmentation, it
is defined as the area of intersection between the predicted segmentation map
and the ground truth label, divided by the area of their union. The confusion
matrix, showing a combination of predicted and actual values is an effective way
to visualize the prediction performance.

Prediction on the test set. The model is evaluated on the test image tiles;
this images come from the same distribution as the training and the validation
sets, however, the exact images have been excluded from the training procedure
and are, thus, unseen. The achieved mean loU and F} scores are satisfying high,
90.3% and 92.1% respectively 4.3. In Figure 4.8 shows some indicative results
on the test tiles. It can be observed that the model fits on the most dominant
classes (e.g., wall, window, sky) but fails to learn efficiently the features of minor
categories that are not well represented in the data (i.e., obstacle, door).
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Table 4.3: Prediction metrics on the image tiles.

loss 0.069
mean IoU (%) | 90.30
mean Fy (%) | 92.01

Prediction on the test set - full sized images. Full sized images are the
ones from which the test set tiles have been generated, e.g., the downsampled
by four original sized images; a tiling procedure is followed with certain overlaps
for optimal results. Predictions are performed for 512 x 512 crops and different
strides. The results are shown in Figure 4.8 and the respective metrics for each
semantic class are summarized in Table 4.4, while the normalized confusion matrix
in Figure 4.9 summarizes in a graphical way the recall for each semantic class. It
can be observed that the highest scores are achieved for the major classes wall,
window, sky, while the underrepresented classes door and obstacle show lower
performance. The good performance on the facade class is expected since it well
represented in any building-related semantic segmentation.

Table 4.4: Per-class metrics (%) for the full images.

wall  window obstacle sky  door

pixel accuracy 96.89  98.35 98.65  99.87 99.02
precision 96.91  94.49 96.72 99.43 73.23

recall 97.55  92.78 95.06 99.52 78.44
F score 97.23  93.63 95.88 99.47 75.75
IoU 94.61 88.02 92.09 98.95 60.96
overall acc. 96.39

Prediction on data from different distributions. In order to test the
generalization ability of the proposed method and the effectiveness of the 3DOM
Semantic Facade benchmark, the trained model is used for prediction on unseen
images from different distributions without any additional fine tuning. In this
experiment, test images of historic building facades from the city of Limassol,
Cyprus were used®. The original images have slightly different resolutions (6720 x
4480 and 6016 x 4016 pixels). They are downsampled by four as the training
and test images for a fair comparison. Although the buildings feature varying
architectural styles that are highly variant from the ones used for the model
training, the predicted masks identify most classes of the scene overall in a
satisfactory level. For these images, no ground truth labels are available, allowing

5Data acquired in the acquisition campaign of the Periscope project in June 2021, Limassol,
Cyprus.
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wall window door obstacle sky

RGB tile GT mask prediction

Figure 4.8: Label prediction results on test set samples. RGB images, ground
truth masks, and prediction masks.

only for qualitative evaluation of the results. The best results are achieved for the
sky and wall classes, whereas windows and doors are often interchangeable. This
can be explained by the highly different architectural components of the openings.
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(a) RGB image (b) GT mask (c) predicted mask

Figure 4.8: Predicted labels on the images of the test set.

4.4 Semantic photogrammetry

Motivated by the increased demand for semantically enriched 3D data in various
application domains, within the context of this dissertation, the standard image-
based 3D reconstruction pipeline is enhanced with semantic information. The
proposed approach aims to generate semantically enriched point clouds while
enabling, at the same time, the selective reconstruction of semantically meaningful
classes for the various applications. Apart from the methodologies discussed in
this Chapter, the derived semantic information can also be integrated in the
depth estimation algorithm to improve the completeness and overall quality of
the derived 3D point cloud, a concept explained in detail in Chapter 5.

4.4.1 Rationale on 2D segmentation

Semantic segmentation algorithms on 2D images has been proven robust enough
in recent years, with high-performance scores using machine and deep learning
techniques [Plath et al., 2009; Long et al., 2015; Chen et al., 2015]; however, the
respective algorithms for 3D data are still an open challenge. As a matter of fact,
semantic segmentation of point clouds requires complex mathematical operations
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Confusion Matrix (Normalized)
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Figure 4.9: The calculated confusion matrix for the all classes on the test images.

and huge computational power due to the 3D nature of the data. Moreover,
the available GT labels needed for supervision are expensive to obtain and have
consequently limited availability with respect to their 2D equivalents. State-of-
the art 3D semantic segmentation methods can be roughly categorized into 2D
projection-based [Kalogerakis et al., 2017; Wang et al., 2020a; Lyu et al., 2020a),
voxel-based [Tchapmi et al., 2017; Liu et al., 2019], and point-based methods
[Qi et al., 2017; Thomas et al., 2019; Guo et al., 2021]. Point-based methods
tend to be more computationally efficient and deliver accurate point-wise labels,
yet they typically suffer from domain dependence and cannot, thus, generalize
well in unseen scenarios [Hu et al., 2021]. Moreover, due to the unavoidable
noise in the 3D space, deciding the correct label for each pixel is in general
non-trivial. Recently, weakly supervised methods have also been proposed to
relax the requirement for dense point annotations [Wei et al., 2020].

To circumvent these problems, researchers have been exploiting the massive amount
of 2D labels for label propagation in 3D already some years now [Wang et al., 2013].
Particularly for facade segmentation, most works perform segmentation in the
image domain, however, few approaches exploit also the 3D domain towards facade
modeling [Martinovic et al., 2015]. In photogrammetric applications, semantic
segmentation in the 3D space is commonly applied to urban scenarios and the
proposed methods are typically tested on the few existing benchmarks, hence
having limited generalization ability [Kélle et al., 2021].

In the following paragraphs, an alternative strategy is proposed for label prop-
agation from 2D to 3D and enhancing, thus, 3D reconstruction with semantic
labels; semantically segmented images obtained by procedures similar to the one
described in Section 4.3 are used.
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(a) RGB image (b) predicted mask

Figure 4.10: Inference results on unseen images of different distributions. The
RGB images (left) and the predicted semantic maps (right). Images of cases study
buildings in Limassol, Cyprus, acquired during the Periscope project campaign (July
2021).
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4.4.2 Image-based 3D reconstruction pipeline

Multi-view 3D reconstruction has achieved impressive results in recent years and
several methods have been proposed in the literature as described in Chapters
2 and 3. In an application level, a dense 3D reconstruction of a scene requires
a set of images Z as an input along with the respective metadata, whereas
GCP points may be also used for scaling and georeferencing the model. The
image network should be properly acquired, with sufficient overlap to guarantee
redundancy in pixel correspondences and proper intersection angles and enable,
thus, a robust reconstruction in the 3D space. For details and guidelines on
proper image acquisition, the reader is referred to relative literature [Wenzel et al.,
2013; Furukawa and Hernandez, 2015]. A typical dense 3D reconstruction pipeline
consists of two distinct, yet highly linked, workflows, Structure from Motion (SfM)
and Multiple View Stereo (MVS), as outlined in Chapter 1.

In this work, a 3D reconstruction pipeline combining an SfM and an MVS module
based on open-source libraries [Moulon et al., 2016; Schonberger and Frahm, 2016;
Cernea, 2020| is implemented, inspired by previous work [Stathopoulou et al.,
2019]. Sparse reconstruction and camera pose estimation is calculated using the
incremental method of [Moulon et al., 2012] followed by bundle adjustment using
the Ceres solver [Agarwal et al., 2012]. Given these, a PatchMatch-based approach
is adopted for multi-view stereo reconstruction as implemented in the OpenMVS
framework [Cernea, 2020].

4.4.3 Semantically enriched point clouds

Efficient segmentation with direct methods in the 3D space cannot be easily
applied due to computational complexity and the lack of large GT training 3D
datasets. Given these limitations, a straightforward solution would be to exploit
the robust 2D segmentation results and transfer the labels on the 3D point cloud
in the context of multi-view reconstruction. Thus, the final point clouds, apart
from their real RGB color, are enhanced with semantic attributes, enabling 3D
semantic segmentation. The proposed method takes as input only the images for
3D reconstruction and their corresponding segmentation masks. The aim is to
obtain high-quality dense reconstructions of the scene enhanced by the semantic
information.

To achieve this goal, a system has been developed, using the open-source library
OpenMVS [Cernea, 2020] as the baseline method. Standard PatchMatch-based
MVS reconstruction is performed, but an extra module is added to load and keep
in memory the corresponding semantic segmentation map for every input image.
Once the final 3D point cloud is fused, the labels are retrieved and every 3D
point is assigned to a semantic class. In an MVS scenario, there are redundant
ray intersections and hence redundant label information available for each pixel.
Therefore, the “best” image across overlapping views needs to be selected to inherit
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(a) RGB image (b) GT labels (¢) semantically enriched point
cloud

Figure 4.11: Semantically enriched point cloud of the UDD5 benchmark using
GT 2D labels.

the appropriate label to each pixel. In this study an approach inspired by the
color information assignment in standard texturing procedures is followed [Cernea,
2020].

Recently, a method motivated by the present work proposed a similar semantic
photogrammetry approach using orthophotos [Murtiyoso et al., 2021 or the
acquired images [Murtiyoso et al., 2022| for class-specific reconstruction and
automatic masking purposes, yet their implementation differs from ours.

The experiments discussed in this section refer mainly to semantic segmentation
applications for facade segmentation and street-level mapping. In the case of
facade segmentation, such semantically enriched results enable the direct iden-
tification and segmentation of areas of interest, e.g., building openings, and, at
the same time the identification of undesired areas such as the sky. For urban
mapping scenarios, a variety of applications exist, such such building or vegetation
extraction. However, the proposed method, being easily scalable since the labels
do not add a computational burden in the 3D reconstruction process, can be
extended also in larger scale scenarios such as urban mapping applications. For
example, in Figure 4.11 results on the UDDS dataset are also presented, using
the GT labels of [Chen et al., 2018a] that include the semantic classes “vegetation”
(green), “road” (magenta), “building” (purple), “vehicle” (blue) and “other” (black).

Meanwhile, three selected sequences of the ETHSD benchmark were manually
annotated, namely courtyard, terrace, and pipes to proof the applicability of
the proposed semantic photogrammetry method in indoor and outdoor scenarios
(Figure 4.12). The annotated images were further used for the method proposed in
Chapter 5 and are to be publicly release to enable further research on the topic. A
similar nomenclature as the one decided for $DOM Semantic Facade was followed
for the sequences courtyard and terrace. For the indoor sequence pipes, ad-hoc
classes were defined: “wall” (blue), “floor” (orange), “door” (pink), “wardrobe”
(grey) and “other” (red). Figures 4.13 and 4.14 show the output semantically
segmented point clouds for 83DOM Semantic Facade and ETHS3D benchmarks
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respectively.

(a) courtyard (b) terrace (c) pipes

Figure 4.12: GT annotations for ETH3D sequences. Outdoor and indoor scenarios
are included. The outdoor scenarios follow the same nomenclature as the 3DOM Semantic
Facade benchmark; the for indoor sequence pipes, ad-hoc classes were defined: “wall”
(blue), “floor” (orange), “door” (pink), “wardrobe” (grey) and “other” (red).

4.4.4 Class-specific reconstruction

Class-specific reconstruction implies the selective reconstruction of particular
semantic classes that are of interest for each application scenario while excluding
(i.e., filtering) undesired or poorly defined and fuzzy parts of the scene, e.g., the sky,
obstacles and trees, improving, in this way, the overall quality of the reconstruction.
The proposed strategy takes as input the corresponding segmentation maps and
their link to the original images with a direct pixel-to-pixel mapping. During
depth fusion, the semantic criterion is taken into account, selectively generating
point clouds based on their semantic label (Figure 4.15). In the proposed approach,
the available semantic information is used directly, different from explicitly using
masks, an approach commonly followed in the literature [Murtiyoso et al., 2022].

4.5 Discussion

In this chapter, two fundamental research tasks of photogrammetry and computer
vision are studied and interlinked; semantic segmentation and image-based 3D
reconstruction. First, a new benchmark, 8DOM Semantic Facade is introduced
for facade segmentation on historic buildings. The generalization ability of this
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PiazzaDuomo

Figure 4.13: Semantically enriched point clouds for facade segmentation appli-
cations (3DOM Semantic Facade). Left: standard dense cloud right: dense cloud
with assigned labels to each pixel.

dataset is proven by implementing a standard deep learning pipeline for model
training, achieving high performance scores in label inference. Moreover, a novel
functionality is proposed for label transfer from 2D to 3D, generating semantically
enhanced point clouds and enabling class-specific reconstruction, built on the
open-source library OpenMVS [Cernea, 2020].

Deep learning algorithms for semantic segmentation on 2D images are considered
mature enough and have achieved impressive results in recent years. However,
although the great development, as most deep learning methods, they still are
highly dependent on the training data and have, thus, limitations on domain
generalization. Indeed, most approaches achieve high performance on public
benchmarks, yet precise inference in diverse, real-world scenes is still an open
challenge. Toward the expansion of the available data and the ease of generalization
in real-world photogrammetric applications, in the context of this work a new
benchmark dataset for facade segmentation, the 3DOM Semantic Facade, has been
presented. The benchmark includes 227 high-resolution images of historic building
facades of diverse architectural styles. To prove the usability of the introduced
benchmark, a straightforward and time- and memory-efficient training procedure
is followed, based on EfficientNet |Tan and Le, 2019| and a U-Net architecture
[Ronneberger et al., 2015]. The trained model is used to infer semantic labels
on data from the same distribution (test set) as well as on completely unseen
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images from different distributions. The proposed method, as shown in Table 4.4,
achieves high scores in terms of pixel accuracy, recall, completeness, F; score and
IoU, and can be followed as an example procedure for similar problems also in
other domains.

The obtained semantic masks are then used for label transfer in 3D yielding seman-
tically segmented point clouds. A novel, ready-to-use MVS pipeline is introduced
based on the open-source library OpenMVS [Cernea, 2020]. The developed system
takes as input the RGB images along with their respective semantic maps and
results dense 3D point clouds enhanced with semantic attributes. The proposed
framework is scalable and domain independent; providing a priory calculated
semantic labels for any input set of images Z, the labels can be transfer from
the 2D space to 3D and enabling semantic segmentation in the 3D space even
for large scenes, with minimal additional computational cost. This method can
be particularly beneficial for cases where semantically enhanced 3D point clouds
are needed, but direct segmentation in the 3D space is prohibiting due to lack of
computational resources or the inability to gather a big amount of 3D GT data
for training.
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Figure 4.14: Semantically enriched point clouds for the ETH3D benchmark
sequences (indoor and outdoor). Left: standard dense cloud. Right: dense cloud
with assigned semantic labels to each pixel.
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Figure 4.15: Selective 3D reconstruction based on the semantic label on the
2D images. Upper and middle, from right to left: all classes, wall, windows. Lower,
from right to left: all classes, windows, obstacles.
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This chapter focuses on the MVS reconstruction part and proposes a solution to
confront the often occurring matching ambiguities problem in man-made indoor
and outdoor scenarios. The main motivation is the potential of the advanced scene
priors, and in particular semantic reasoning, in supporting the depth estimation
process when pure geometric and radiometric information is not enough. Based on
this insight, a new methodology is introduced for leveraging explicit semantic cues
into MVS under a PatchMatch scenario, as originally introduced in [Stathopoulou
et al., 2021b].

Semantic segmentation has become increasingly popular in recent years, and
algorithms have demonstrated great potential in generating semantic maps on
images, especially in well-studied contexts such as airborne mapping, street scenes,
and indoor spaces for navigation and mapping. Hence, semantic masks can be
generated relatively easily for similar real-world tasks, particularly when few and
well-represented classes are defined. In the presented approach, a priori generated
semantic segmentation masks, obtained with methods similar to those presented
in Chapter 4, are used to support the depth estimation process and improve,
thus, 3D point cloud completeness and overall quality, particularly in challenging
areas where commonly matching ambiguities exist. This is achieved by exploiting
constraints derived from the semantically cues to imply additional class-specific
shape priors during matching cost computation in PatchMatch MVS (Figure
5.1). The idea is based on the fact that semantics can often successfully indicate
textureless and other non-Lambertian areas derived by the class label of the scene
area (e.g., “wall”); in such regions, frequently, depth miscalculations occur due to
matching ambiguities. To confront this limitation, geometric constraints can be

111
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standard MVS

RGB estimated depth map

L
semantic labels plane priors semantic 3D

proposed: semantic MVS

Figure 5.1: Overview of the proposed semantic PatchMatch MVS pipeline. A
priory obtained semantic cues for the scene are integrated into the MVS reconstruction
to promote reliable depth estimates in challenging areas and generate more complete
point clouds with respect to the standard method. A semantically enhanced point cloud
can be generated as described in Chapter 4.

implied to yield more reliable depth values and, therefore, more complete in the
final 3D point cloud while object boundaries and depth details are preserved.

Standard PatchMatch approaches, as most local methods, make, however, a priori
regularization assumptions to ensure smoothness within the local window (see
also Chapters 2 and 3), yet the matching ambiguities in textureless and other
non-Lambertian surfaces severely decrease the quality of the reconstructed point
cloud, resulting in outliers and information gaps. Hence, additional geometric
constraints have been implied directly in the recent literature to support depth
estimation, e.g., local surface planarity [Romanoni and Matteucci, 2019; Xu and
Tao, 2019, 2020b|. In the same line of thought, the method proposed in this
chapter formulates geometric constraints based on semantic priors and benefits
from the class-specific geometric properties. RANSAC 3D planes are detected
for all dominant surfaces presented in the scene, e.g., under “wall”, “floor”, etc.
labels which are assumed to be planar. Then a new, adaptive cost function is
introduced to integrate depth prior hypotheses and texture information of pixel
neighborhood to the standard photometric cost. Regarding its implementation,
the developed algorithm builds upon the open-source MVS library OpenMVS
[Cernea, 2020] and extends its functionality by adding the semantic PatchMatch
module. Finally, the effectiveness of the framework is evaluated over selected
scenes of the ETH3D benchmark dataset [Schops et al., 2017] and other custom
sequences.
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5.1 Semantic reasoning and 3D reconstruction

Algorithms for semantic segmentation on images have become increasingly popular
in recent years, achieving robust results in various fields of applications as discussed
in Chapter 4. Meanwhile, it has been observed that advanced scene priors can
potentially help to overcome certain deficiencies in image-based 3D reconstruction.
As a matter of fact, in recent years, several works couple 3D reconstruction and
semantics; they either refer to joint segmentation and reconstruction optimization
for multi-view [Ladicky et al., 2012; Schneider et al., 2016] and monocular setups
using conditional random fields (CRFs) [Kundu et al., 2014] or to the use of
depth maps to support 2D segmentation [Zhang et al., 2010|. In the volumetric
representation domain, Héane et al. [2013, 2016] proposed a rigorous solution
to jointly confront volumetric 3D with semantics in multi-view scenarios with
variational optimization, while Savinov et al. [2016] applied a ray potential
computation method in a semantic context. Blaha et al. [2016, 2017], inspired by
[Héne et al., 2013|, enabled semantic segmentation and volumetric reconstruction
jointly for surface refinement of large-scale scenes, updating shapes and labels
simultaneously. Similarly, Romanoni et al. [2017] implemented joint optimization
of mesh refinement and semantic segmentation, also combining the photometric
consistency. Cherabier et al. [2018] learned semantic priors for TSDF volumetric
reconstruction and joint optimization, while Yingze Bao et al. [2013] and Ulusoy
et al. [2017] used learned data-driven geometric shape priors for volumetric
reconstruction without aiming for a semantically enhanced output.

Closer to the present work, regarding the optimization of the depth estimates,
research has been shifted towards introducing priors in MVS. Assumptions may
vary among the studies, yet a great part of them implicitly impose geometric
constraints along with semantics. Man-made objects usually conform to clearly
defined geometric shapes and belong to certain semantic classes. Introduced as
“object knowledge information constraints”, common semantic labels indicate the
sharing of geometric properties along with local smoothness and can therefore
facilitate 3D reconstruction. Indeed, some studies adopt the hypothesis that scene
objects are piecewise planar [Furukawa et al., 2009; Gallup et al., 2010] or that
all pixels belonging to the same semantic label must necessarily share also the
same disparity value to guide depth computation for challenging, poorly textured
surfaces [Chen et al., 2014|. Similarly, other works use a group representation of
pixels with common properties, the so-called semantic stixels [Schneider et al.,
2016] or 2.5D shape samples known as displets [Guney and Geiger, 2015] to boost
efficiency in depth calculation.

The problem of weakly-supported, textureless areas under PatchMatch MVS
scenarios has been recently undertaken in the literature towards large-scale appli-
cations with a high overlapping percentage. TAPA-MVS [Romanoni and Matteucci,
2019] assumed piecewise planarity on image superpixels for joint PatchMatch and
view selection. Kuhn et al. [2019] extended this framework and achieved depth
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completion as a post-processing step using hierarchical superpixel clustering. On
the contrary, the method introduced in this chapter considers depth estimation
optimization as an integrated problem, while plane hypotheses are detected in the
3D space. Other recent works handle textureless areas with multi-scale geometric
consistency guidance [Xu and Tao, 2019| or consider direct planar priors based on
the sparse reconstruction [Xu and Tao, 2020b]. Recent deep learning methods
tackle this problem with coarse-to-fine schemes, often requiring additional detail
restorer modules [Wang et al., 2020b]. A more detailed overview of these methods
particularly designed to solve the matching ambiguities problem based solely on
structure cues is presented in Chapter 6.

5.2 Proposed methodology: semantic PatchMatch

The proposed approach for semantically-guided PatchMatch MVS links the input
images with their semantic mask equivalent using a direct pixel-to-pixel mapping
(Figure 5.1). Following a PatchMatch MVS approach based on [Shen, 2013],
it extends the initial idea presented in Section 3.3 by imposing class-specific
geometric constraints during the depth map computation step. These geometric
constraints are used in the matching cost computation, supporting the propagation
of reliable depth estimates in textureless areas while preserving the fine details on
the resulting point cloud. As a matter of fact, semantic information can generally
imply geometric constraints, and pixels belonging to the same class often have
common geometric properties. Other recent works assume local planarity in the
form of triangles [Xu and Tao, 2020b| or superpixels [Romanoni and Matteucci,
2019], yet in this chapter, semantic info is explicitly used to derive geometric
constraints by assuming planarity for larger, dominant planar areas of the scene.
For instance, semantically segmented images in urban scene scenarios can provide
structure hypotheses for building facades. Planar walls are assumed to be more
likely textureless areas, commonly made of flat surfaces of the homogeneous color.
However, the method is potentially extendable to other shape priors as well, such
as cylinders, spheres etc. A priori labels are generated as described in Chapter 4
and in [Stathopoulou and Remondino, 2019a,b|.

Typically, the input of each MVS process is a sequence Z = {ly, ..., I,} of RGB
images of known camera poses (R,t) and the sparse point cloud, previously
calculated with standard SfM techniques. In the extended semantic PatchMatch
approach, priorly calculated semantic maps for each input image £ = {Lg, ..., L}
are also required to leverage the semantic cues into the MVS depth calculation

(Figure 5.1). All images share the same intrinsics given by the calibration matrix
K.

View selection. As explained in Section 3.3, the first step of PatchMatch MVS
is stereo pair selection; in the proposed method, a heuristic approach is followed
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(a) RGB image (b) depth map (¢) normal map

Figure 5.2: Depth and normal map initialization example. RGB image, initial
depth and normal maps generated by interpolating the sparse SfM points.

as implemented in the OpenMVS library [Cernea, 2020|. The best neighboring
views are selected and sorted for each reference image based on visibility criteria,
i.e., baseline, intersection angle, scale, similarly to [Goesele et al., 2007]. Then,
the scene graph is generated; the views are vertices connected with their neighbors
with edges, and the best pairs are selected globally.

Depth map initialization. After the selection of the best neighboring views for
each reference image, depth map initialization follows. Here, instead of completely
random values, initial depth and normal estimates are assigned to each pixel using
the sparse cloud derived in the SfM process and interpolating the depth for all
pixels. The resulting depth and normal maps are rough but provide a generally
good initial estimate for the PatchMatch iterations (Figure 5.2).

Depth map estimation. The coarse values from the initialization step are then
refined using PatchMatch spatial propagation iteratively. First, the matching cost
for each pixel is calculated based solely on the photo-consistency metric, in this case,
zero-mean cross-correlation (ZNCC). The window size is of utmost importance in
such metrics; typically, a window radius of 5 or 7 pixels is experimentally proven
to be efficient for high-resolution images. Subsequently, spatial propagation and
refinement follow.

Spatial Propagation. The current estimates for depth and normal are compared
to those of the neighboring pixels and, if the latter have lower photometric cost,
are considered more reliable and replace the current estimates; otherwise, the
current estimate is kept as such. Since a sequential propagation scheme is followed,
neighbors are considered the adjacent pixels top, bottom, right, and left pixels
and the propagation direction is top left to bottom right for the odd iterations
and bottom right to top left for the even ones.

Random refinement. At the end of every iteration, the estimates are compared
with random values in a pre-defined range (as calculated in the initialization
step), and the ones with the best scores are kept to further refine the results and
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(a) RGB image (b) depth map (¢) normal map

Figure 5.3: Depth and normal map computation example. RGB image, depth
and normal maps after the first PatchMatch iteration.

eliminate potential outliers. Figure 5.3 shows the respective depth and normal
maps for an image after the first PatchMatch iteration.

This process will most probably converge after 2-3 iterations to reliable depth
estimates in near-Lambertian, rich-texture areas, especially for high-resolution
images [Shen, 2013|. However, in weakly-supported, textureless regions, the pho-
tometric cost alone is sensitive to local minima, resulting in matching ambiguities
and, consequently, in wrongly reconstructed 3D points. For instance, in Figure 5.3
it can be observed that even for only one PatchMatch iteration, rich texture areas
generate mostly reliable depth and normal estimates. Still, areas with particularly
weak texture (white part of the column on the right) or reflective regions (floor)
are dominated by noise.

5.2.1 Semantically-guided 3D plane prior hypotheses

Standard PatchMatch iterations, as explained above, estimate the depth values d
and assign normal vectors n to each pixel p, generating a depth Dy,,,;, and a normal
map Ny, for every view. These maps contain some outliers and noise that can
be partially refined in the following steps or filtering and fusion. In the proposed
semantic PatchMatch method, these depth estimates, although relatively noisy,
are used to generate depth dpior and normal n,.;,r hypotheses in the 3D space
for a pixel that belongs in a dominant plane of the scene and the respective Do
and Npyior maps for each view. Planar surfaces are adopted here, yet the approach
is extendable also to other primitives; planes are commonly encountered in the
majority of man-made scenes, indoor or outdoor. For instance, in indoor scenarios,
commonly, planar walls, floors or ceilings are present. Outdoor scenarios, either
close-range or airborne, also typically contain several man-made structures, i.e.,
buildings with dominant planar features such as facades and roofs.

Point cloud filtering. After the computation of the depth maps, depth es-
timates are calculated in the 3D space using the camera projection matrix P
(Equation 2.4) and generating intermediate point clouds for each view. In the
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proposed approach, instead of projecting all scene pixels, a “semantic label check”
is performed at the beginning of the prior hypotheses generation algorithm. That
is, the semantic segmentation maps are used to constrain the area and project in
3D only the subset of pixels under specific labels that are more likely to include
planes (i.e., “wall”, “floor”), adjusted to the needs of each application (Figure
5.4b,c). As a first rough filtering step, for the semantic labels of interest, only
depth values of high confidence are projected in the 3D space. Confidence, in this
context, directly corresponds to the photometric cost value; low photometric cost
implies high confidence. Naturally, the most reliable points are the ones around
the crease edges. More details on confidence measures for stereo matching can be
found in [Hu and Mordohai, 2012].

Although the 3D points of the most reliable depth estimates are reconstructed,
the estimated point clouds are still evidently noisy. To confront this problem, a
two-step filtering strategy is applied before plane detection to eliminate outliers
and keep the more reliable points that can potentially belong to planar surfaces.

First, the covariance features derived from the covariance matrix of the 3D point
coordinates in a given local neighborhood are exploited, as they are proven
robust to directly classify points with certain geometric characteristics. For
instance, linear parts of the scene will generally have high linearity values, and
planar regions will include points with high planarity values. These covariance
features are expressed as combinations of the eigenvalues and eigenvectors of
the covariance matrix for each point and commonly include planarity, surface
variation, sphericity, omnivariance, anisotropy, and linearity as formulated in
[Hackel et al., 2016]. Using the eigenvalues A1, A2, A3, in a local neighborhood of
k = 10 points, point planarity p is calculated as:

A2 — A3
p=——.

. (5.1)

The points with low planarity values (p < threshold) are eliminated since they
most probably do not belong to representative dominant planes of the scene and
are considered outliers. Planarity filtering has proven particularly robust and has
increased the robustness of the shape extraction method in the experiments.

Finally, an additional filtering method is applied based on the average point
spacing s in a close 3D neighborhood (e.g., & = 10 or 24 points). In this way,
remaining sparse or isolated points are removed from the final point cloud. An
overview of the prior generation algorithm is presented in Algorithm 1.

RANSAC plane detection. Subsequently, 3D planes in every view are de-
tected using a RANSAC-based method. RANSAC [Fischler and Bolles, 1981] is
a popular, model-fitting method that starts from a random minimal paradigm
set, i.e., the smallest set of observations required for a solution. Being robust,
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Algorithm 1 Point cloud filtering and RANSAC shape detection

Input: depth and normal map Dyyyp, Nimp, semantic map L
Output: set of m RANSAC shapes S = {S1,...,Sn}

for all pixel p in Dy, do
if semantic label check OK AND conf > threshold then
project point in 3D
else
skip pixel
end if
end for
for all 3D points do
calculate planarity p for k£ neighbors
if planarity p > threshold AND point average spacing check OK then
keep point
else if then
discard point
end if
end for
find best-fitting RANSAC shapes & = {S1,...,S,,} for the filtered point set
following [Schnabel et al., 2007] given ¢, ¢, ne, Mpin
return S={5,...,5.}

it is applied in a wide range of applications and is commonly used as a shape
extraction method for primitives, e.g., planes, cylinders, spheres, cones, and tori.
Hence, starting from a randomly selected point set, it tests the remaining points
against the model to determine whether the model represents efficiently the set of
points. Being an iterative method, it converges to the model that approximates
the best the set of points and continues with the rest of the data.

In the proposed approach, the remaining 3D points after the filtering procedures
described above are used as input to the RANSAC algorithm. In particular, the
Efficient RANSAC solution [Schnabel et al., 2007| as enfolded in CGAL library
[The CGAL Project, 2021] is used for the experiments. RANSAC parameters are
adjusted accordingly based on the average spacing of every point cloud so that only
significantly large planes are considered valid and avoid, thus, over-segmentation
(Figure 5.4d). In more detail, the maximum tolerance for Euclidean distance
between a point and a shape € and the connectivity measure c, are calculated as
a function of the average spacing § for scalability, while the normal deviation n,
is set to a constant value. The minimum number of points M,,;, needed to form
a shape is defined based on the total number of 3D points for that view. In such
manner, the most dominant planes of the scene are detected.

Prior depth and normal map generation. For every detected plane hypoth-
esis the weighted 3D centroid Cgr and the normal ng is calculated. The

plane plane

boundaries of each plane in 3D are defined using the minimum bounding rectangle
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Figure 5.4: Plane prior estimation with semantic guidance. Input image (5.4a);
respective labels (5.4b) for semantic classes: sky (yellow), wall (blue), window (green),
door (purple), other (red); binary mask for planar classes (5.4c); the estimated normal
prior map for the RANSAC planes detected in 3D (5.4d) and their respective depth
priors in color scale (5.4e) with blue being the closest and red the farthest.

(extent) of each point set belonging to the same RANSAC plane based on the
max and min coordinates of the set. Each image pixel that passes the semantic
label check (i.e., belongs to a class with a potentially planar shape) is projected
in 3D and assigned to the closest 3D plane id, e.g. the plane with the minimum
absolute distance. Pixels that belong to non-planar classes are not considered.
Then, for each eligible pixel, its depth prior dp,ior is calculated using ray-plane
intersection; starting from the camera origin, a ray is casted through every pixel
of the view to the 3D space, until it intersects with the assigned 3D plane prior.
The nypjor of each pixel is the normal of its assigned 3D plane hypothesis ng .-

Eventually, prior hypotheses are generated only for the semantic classes that are
considered locally planar, e.g., facade walls. Both dpyior and np,;o, of each planar
region pixel are stored (Figure 5.4d, 5.4e) in corresponding maps Dpyjor and /\/pm-or;
these hypotheses are further used to adaptively guide the cost computation in the
next step. All the aforementioned steps for point cloud filtering and planar prior
generation are visualised in Figure 5.5.

5.2.2 Adaptive cost calculation

PatchMatch highly relies on the photometric consistency measure to correctly se-
lect the value from the random estimates that represents the best hypothesis. The
proposed method starts from the mostly good depth and normal estimates (dmp,
Ny calculated by the first iterations of the standard PatchMatch (commonly set
to 2 — 4 iterations) and refines the results using the plane prior hypotheses during
spatial propagation while doing a couple of additional PatchMatch iterations. The
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Figure 5.5: The proposed semantically-guided prior hypotheses generation
strategy. For each view, the intermediate point clouds from PatchMatch iterations are
used (5.5a). Only the points that belong to potentially planar classes (here class “wall”)
are considered. Points are first filtered based on their confidence value; points of high
confidence (low photometric cost) are considered as more reliable points (5.5b). Points
are color-coded, with blue being the points of low, i.e. robust photometric cost (high
confidence) and red being the less reliable points. Planarity and outlier filtering based
on average spacing follow (5.5¢). Following Efficient RANSAC, the most dominant scene
planes are detected (5.5d); here, only three planes are shown for better visualization.
The corresponding points of each plane are color-coded based on the assigned plane id
(5.5e). Finally, the plane priors are generated with ray-plane intersection and guided by
the semantic label (5.5f).
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matching cost of the PatchMatch estimates of the baseline approach relies simply
on the photometric consistency measure, in this case, the zero-mean normalized
cross-correlation ZNCC as defined in Equation 2.18. ZNCC is used as a common
robust metric that performs well in cases of Gaussian noise, perspective and
intensity changes. In particular, the photometric cost ¢, for a pixel p is defined:

¢on=1—ZNCC. (5.2)

For high ZNCC values, the cost will tend to zero since —1 < ZNCC <1. On
the contrary, the higher the cost, the lower the photometric consistency, resulting
in erroneous and ambiguous depth estimates.

Even though the simple photometric cost produces generally accurate results
in near-Lambertian surfaces, in textureless and highly reflective areas, it often
causes matching ambiguities and promotes, thus, the propagation of wrong depth
estimates. Omne possible solution for this would be to directly substitute the
estimated depth and normal values [dimp, Nymp| in problematic areas with the
depth and normal values of the plane hypotheses [dprior, Dprior] calculated in the
previous step. However, this would again result in unreliable outcomes, as it
would completely disregard the photometric matching cost in planar areas, forcing
planarity and smoothing out fine details. Instead, it is proposed to introduce a
novel, adaptive cost function that leverages the plane prior hypotheses, if previously
generated for this area, with the standard photometric cost. It introduces two
additional coefficients and integrates them in the cost function as additional terms
in a combined formulation. The first one is a pixel-wise coefficient v? based on the
local textureness, defined as the variance of the intensity values I(q) in a n x n
pixel neighborhood:

> (I(a) =)’

g€[nxn]
v? =

5.3
— (53)
where p the mean local intensity. In the presence of evenly colored surfaces, the
local variance will have very small values. The textureness coefficient will have
the following formulation based on a Gaussian kernel as in Stathopoulou et al.
[2021Db]:

2

t=e20%

, (5.4)

where o, a constant. Likewise, for a smooth integration of the depth hypotheses
derived by the semantically-guided plane priors a second coefficient is defined:

g2
s =e205 (5.5)
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Figure 5.6: Cost function behavior. The combined cost ¢ given a standard photometric
cost cpp, = 0.4 (relatively low confidence) with respect to: (a) the depth difference ¢ for
v? = 0.001 (textureless area) and {oy = 0.03, 05 = 0.05,7 = 0.1}; (b) the variance v? for
6 =0.01 and {0 = 0.03,05 = 0.05,7 = 0.1}.

where o is a constant fixed experimentally. § is given as the percentage of
difference between the depth prior hypothesis dpyior and the current PatchMatch
estimate dp,p:

d 70T _dm
§ = Mprior = dimp| (5.6)

dprior

The cost function should seamlessly leverage the terms, i.e., integrate the prior
depth hypotheses with the ZNCC metric and result in more reliable depth estimates
that will subsequently be spread across the image and generate more complete
3D point clouds in cases where matching ambiguities occur. Thus, s (Equation
5.5) and the textureness coefficient ¢ (Equation 5.4) with the original photometric
matching cost ¢,;, (Equation 5.2) are combined to give the total cost c:

c=cpn(1—1t) +7(1—s)t, (5.7)

where 7y is a weight factor.

Large, textureless regions are very likely to have been assigned with high photomet-
ric cost values during the standard PatchMatch iterations due to the presence of
matching ambiguities. In such regions, the variance v? of the intensity of the pixel
neighborhood will probably be close to zero since color similarity is maximized.
In the proposed approach, textureless regions will be most probably assigned with
plane prior hypotheses. For these planar regions with high scores, the new cost
function will prioritize the prior hypotheses [dprior, Dprior]. On the contrary, for
the regions where the original photometric cost is calculated reliably enough (i.e.
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low photometric cost), the standard PatchMatch depth and normal estimates
[dtmp, Nemp) Will be trusted more. In such a way, plane priors are alleviated with
the photometric consistency, and erroneous estimates tend to vanish, resulting in
more reliable depth maps. In other words, when the surface deviates from the
plane but has a significant texture variance, the photometric cost is trusted more.
Possible outliers will be filtered out from PatchMatch because of no coherence
with the neighborhood, and in the worst-case scenario, it will degenerate to the
standard case. Example behavior of the cost function with respect to ¢ and v?
variations are shown in Figure 5.6.

Recent methods have proposed analogous priors in varying formulations; for
instance, Romanoni and Matteucci [2019] proposed another textureness metric as
a weight for the hypotheses during the cost calculation under a probabilistic frame-
work. Xu and Tao [2020b] used planar prior constraints by triangulating sparse
points without explicitly considering the local textureness. The proposed approach
leverages planar priors, textureness information and photometric consistency in a
simple, yet efficient way.

The cost function affects directly not only the depth maps but also the normal
and confidence ones as shown also in Figures 5.1, 5.3. Noisy regions of the normal
maps are also smoothed, and information gaps are filled in since estimated normals
are leveraged with the normal prior information. The same holds for confidence
maps that reflect the depth estimate reliability of every pixel (i.e., the cost). In the
performed experiments, it was demonstrated that only two additional PatchMatch
iterations with the proposed adaptive cost function were enough to significantly
improve the depth and normal map quality, as well as the confidence of every pixel
and, finally, the generated dense 3D point cloud. Indeed, the proposed solution
converges relatively fast.

5.3 Experiments and results

5.3.1 Datasets

Benchmark datasets of high-resolution images for accurate 3D reconstruction
using MVS techniques providing GT pixel-level semantic masks are not publicly
available. Hence, the proposed method cannot be directly evaluated with respect
to common benchmarks such as ETH3D [Schops et al., 2017 or Tanks and Temples
[Knapitsch et al., 2017| as other state-of-the-art MVS algorithms typically do [Xu
and Tao, 2019; Romanoni and Matteucci, 2019; Kuhn et al., 2019], due to the fact
that these datasets lack accompanied labeled data. However, to be in line and
comparable with the other state-of-the-art techniques, three representative ETHSD
datasets are used for which the GT labels were manually annotated (Chapter 4).
Along with the ETH3D sequences, the proposed algorithm is evaluated on two
custom datasets obtained from the 3DOM Semantic Facade dataset Stathopoulou
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and Remondino [2019a,b] and the airborne benchmark dataset UDD5 [Chen et al.,
2018al.

ETH3D. Three sequences from the high-resolution (6048 x 4032) datasets
for which GT 3D data is available were chosen for these experiments: ETHSD-
courtyard (38 images) and ETH3D-terrace (23 images) as typical outdoor scenarios
and ETH3D-pipes (13 images) for the indoor one. Manual labeling is performed
for the building facades in order to extract planar regions, (Figure 5.4). Class
nomenclature is the same with the one followed in [Stathopoulou and Remondino,
2019a,b| for the ETHS3D-courtyard and ETH3D-terrace datasets while for the
interior scenario ETHS3D-pipes the semantic labels “wall”, “floor”, “door”, “closet”
and “other” are introduced. In this specific dataset, plane estimation is performed
within the classes “wall”, “floor” and “closet”, whereas for ETH3D-courtyard and
ETH3D-terrace only “wall” is considered as a class with potentially planar instances.
To be comparable with the publicly available results of the other state of the art
methods tested on the benchmark, images are resampled to 3200 pixels as in Xu
and Tao [2019]. This is a common practice in order to reduce the computational
cost and handle large-scale datasets, and although dense cloud density is, as
expected, partially affected it is considered to be enough for such datasets. For
these datasets qualitative comparisons for depth maps (Figure 5.7) and confidence
maps (Figure 5.8) are performed. The resulting 3D dense clouds are evaluated
qualitatively (Figure 5.9) and quantitatively (Table 5.1). Results derived with the
proposed method are compared against the baseline OpenMVS [Cernea, 2020,
as well as COLMAP [Schonberger et al., 2016] and four recent methods that
use geometric prior-assisted PatchMatch: TAPA-MVS [Romanoni et al., 2017],
ACMM [Xu and Tao, 2019], ACMP [Xu and Tao, 2020b] and PCF-MVS |Kuhn
et al., 2019].

Custom datasets. Two more scenarios are used for evaluation, namely Piazza
Duomo (12 high resolution images, 6048 x 4032 px) and Piazza Navona (5 high
resolution images, 4000 x 3000 px). Again, images are resampled to 3200 pixels.
Ground truth semantic labels are available from the previous work presented in
Chapter 4 and [Stathopoulou and Remondino, 2019a| and “wall” is considered
a class with potential planar areas. For the dataset Piazza Duomo, a ground
truth 3D point cloud from terrestrial laser scanning is also available. In this
scenario, results are compared with COLMAP [Schonberger et al., 2016], TAPA-
MVS [Romanoni et al., 2017], ACMM [Xu and Tao, 2019] and ACMP [Xu and
Tao, 2020b] (Table 5.2, Figure 5.10)!. Qualitative comparison for the dense and
confidence maps is also presented (Figure 5.11).

'"Process run by Andrea Romanoni (TAPA-MVS) and Qingshan Xu (ACMM/ACMP) in
November 2021, when the respective implementations were not open-source.
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UDDS5. UrbanDrone Dataset (UDD5) [Chen et al., 2018a] is a large scale
benchmark dataset for segmentation of airborne urban scenarios. The training
data for which the images labels are given as ground truth are used. UDDJ§ labels
are defined as “vegetation”, “building”, “vehicle”, “road” and “other”. Plane priors
are estimated for the class “building” (which includes roofs and facades). Since 3D
ground truth data are not available for this dataset, it is used only for qualitative
evaluation (Figure 5.11). For computational efficiency, depth maps are generated

in 1/4 of the original resolution, i.e., 2000 x 1500 pixels.

5.3.2 Implementation details

The evaluation tests are performed on an AMD Ryzen 2950X CPU running on
3.5GHz. For a fair comparison with the baseline PatchMatch MVS approach
as implemented in OpenMVS [Cernea, 2020| following [Shen, 2013], the same
parameter configuration is kept. The combined total cost is computed using a pixel
window size N = 7 and {7y = 0.1, 05 = 0.05 and o, = 0.03} that experimentally
were proven to be the best trade-off values across the datasets. Following the
baseline implementation of OpenMVS [Cernea, 2020|, Ngoyrce = 8 source images
for each reference image are used for the ETH3D dataset. The confidence measure
as implemented in the baseline method [Cernea, 2020] is actually an inverse
metric that directly corresponds to the photometric cost and is defined in the
interval [0, 2] with 0 being the lower cost (totally correlated patterns). Hence,
low values on this measure actually correspond to robust photometric costs (high
confidence); threshold is set to conf > 0.18. During the planarity filtering, points
with p < 0.3 (loose threshold) are excluded. RANSAC parameters {¢,c.} are,
as aforementioned, calculated adaptively based on the average spacing s, in this
case set to {€ = 58, ¢ = 85}, while the normal deviation is set to n. = 0.92. The
minimum number of points needed to form a shape is a function of the total
number of points for each view M,;, = %.

The depth map filtering step is skipped for the reconstruction of this experimental
setup, and it is substituted with point cloud filtering, following the OpenMVS
parameter settings for the published results available in the ETH3D website for
a fair comparison with the baseline method. Depth map fusion is then used as
enfolded in OpenMVS library [Cernea, 2020].

5.3.3 Evaluation metrics

According to [Schops et al., 2017; Knapitsch et al., 2017], completeness, or recall,
is calculated as the amount of GT points for which the distance to the MVS
reconstructed points are below a certain threshold 7. On the contrary, accuracy, or
precision, refers to the ratio of reconstructed points which are within the threshold
distance 7 from the ground truth points without taking into consideration the
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Figure 5.7: Qualitative depth map comparison of the proposed method with
other state-of-the-art algorithms for the ETH3D benchmark sequences. GT
depth maps look sparse as they contain empty pixels [Schops et al., 2017]. All other
depth maps are scaled to the GT color scale.

GT information gaps. Both accuracy and completeness are considered important
for the effectiveness of the methods, while F} score their harmonic mean, defined
as Fy = 2(precision * recall) /(precision + recall).

5.3.4 Evaluation on the ETH3D benchmark

Experimental results on both ETH3D sequences show the potential of the proposed
approach in handling efficiently textureless areas and generating more complete
point clouds. It is to be noted that ETH3D-courtyard and ETH3D-terrace are
generally complete sequences acquired with dense image networks of high overlap
where no particularly problematic textureless areas are present. Indeed, most
state-of-the-art algorithms perform well on them, as shown in Table 5.1. Even in
this case, the proposed approach performs in a competitive way. On the other
hand, ETHS3D-pipes is one challenging sequence, featuring lower overlap, strong
viewpoint changes, and large textureless areas or reflective surfaces. The presented
method outperforms the other algorithms in completeness and F} score in this
particular sequence. Overall, the proposed method generates more complete
depth maps (Figure 5.7) and higher confidence values (Figure 5.8) for the ETH3D
datasets with respect to other MVS methods and the respective point clouds
contain less gaps (Figure 5.9). As shown in Table 5.1, better completeness results
are achieved with respect to all other methods in all three FTH3D datasets
for 7 = 2 cm and for 7 = 10 c¢m except for ETHSD-courtyard in 7 = 10 c¢cm
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Figure 5.8: Qualitative confidence map comparison of the proposed method
with respect to the baseline OpenMVS on the ETH3D datasets. Scale black to
white, where black means lower confidence (high photometric cost). It is evident that the
plane priors increase the confidence, and this is particularly important where textureless
areas are present in ETH3D-terrace (ceiling) and ETH3D-pipes (orange panel, closet).
For ETH3D-courtyard where the not evident textureless areas exist, the confidence maps
remain mostly the same.

where semantic PatchMatch is ranked second. Accuracy and Fj score values are
significantly higher than the baseline OpenMVS for ETHS3D-pipes, marginally
better for ETHS3D-terrace, and slightly lower for ETHS3D-courtyard for both
= 2 cm and 7 = 10 m. However, in terms of F} score, the proposed method is
always among the best ones: other methods that perform well in accuracy (such
as COLMAP [Schonberger et al., 2016]) suffer in completeness since they generate
significantly sparser point clouds. ACMM [Xu and Tao, 2019] and ACMP [Xu
and Tao, 2020b], following the COLMAP framework, typically have similar high
accuracy values. The qualitative comparisons of the depth and confidence maps,
where available, show that the proposed semantic PatchMatch method delivers
more complete depth maps and higher confidence values even in textureless areas
where other algorithms fail (Figures 5.7 and 5.8).
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Figure 5.9: Qualitative point cloud comparison of the proposed method with
other state-of-the-art algorithms for the FTH3D benchmark sequences terrace,
courtyard and pipes. Dense reconstructions for the state of the art methods are as in
ETH3D evaluation site.

Ablation study. As an ablation study, the input labels are removed to evaluate
the performance of the method in the absence of semantic guidance; hence, the
search for valid dominant planes is extended across all image regions (proposed-
w/o labels). The results show similar performance with the semantic PatchMatch
method for the ETHSD-courtyard and ETH3D-terrace sequences with typically
marginally lower accuracy, completeness and Fj score values (Table 5.1). For
the ETHS3D-pipes sequence, more evident improvement is proven while using the
labels (proposed), especially in completeness (2 — 4%) and Fy score (1 — 2%)
with respect to the variant without the labels (proposed-w/o labels) as well as
compared with the baseline OpenMVS.

5.3.5 Evaluation on custom datasets and the UDDS5 dataset

For Piazza Duomo and Piazza Navona datasets, the proposed approach generates
more complete point clouds with respect to the baseline and other MVS methods.
Especially in the low textured regions, satisfying results in gap-filling in the depth
maps and higher confidence values are achieved (Figure 5.11, first two rows), while
the 3D point clouds lack less information in textureless areas (Figure 5.10). This
is also proven by the completeness score, which outperforms all other methods; the
proposed method has the second-best accuracy after COLMAP (Table 5.2) that,
however, produces very sparse results (Figure 5.10a). The Piazza Duomo and
Piazza Navona datasets have been proven to be challenging, as they were acquired
with sparse image networks and feature, thus, relatively small overlap with respect
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Table 5.1: Accuracy, completeness and F; score (%) comparisons for 7 = 2em and
7 = 10em for the ETH3D benchmark datasets (the higher the better). Values for
the other methods are taken from the ETHS3D evaluation site. Best values in bold.
Second-best values are underlined.

‘ T =2cm 7 = 10cm
Method | Acc. + Compl. + Fy 1 | Ace. + Compl. + Fy 1
COLMAP 96.79  75.67  84.94 | 99.29  93.83  96.48
TAPA-MVS 94.00 82.37  87.80 | 98.45 98.15  98.30
, - ACMM 96.19 84.13  89.76 | 99.13 96.16  97.62
ETH3D - terrace ACMP 9614 8445  89.92 | 99.14 9642  97.76
PCF-MVS 92.72 84.75  88.56 | 98.09 97.46  97.78
OpenMVS 88.72 87.52  88.12 | 98.00 98.53  98.27
proposed 80.81  88.83  89.32 | 98.28  98.98  98.63
proposed-w/o labels | 89.77 88.65 89.21 | 98.26 98.94 98.60
COLMAP 88.98 7347  80.49 | 99.14 9220  95.54
TAPA-MVS 84.69 77.04  80.68 | 97.64 96.14  96.89
. ACMM 91.35 82.85 86.89 | 99.51  91.90  95.56
ETHSD - courtyard ACMP 90.83  80.96  85.61 | 99.43  90.80  94.92
PCF-MVS 86.12 83.67  84.88 | 98.43 9444  96.39
OpenMVS 80.46 90.10  85.01 | 97.85  97.63 97.74
proposed 79.66 90.58 84.77 | 97.61 97.22 97.41
proposed-w/o labels | 79.69 90.43 84.72 | 97.60 97.04 97.32
COLMAP 97.77 3424  50.72 | 99.18 62.75  176.86
TAPA-MVS 93.71 63.80  75.91 | 97.90 86.70  91.96
; ‘ ACMM 96.63 53.97  69.26 | 98.89 66.25  79.34
ETH3D - pipes ACMP 97.65  53.54  69.16 | 99.20  65.80  79.12
PCF-MVS 90.40 69.18  78.38 | 98.48 88.47  93.21
OpenMVS 82.33 64.55  72.36 | 95.95 85.42  90.38
proposed 85.33  73.50 78.97 | 96.89  93.63  95.23
proposed-w/o labels | 84.19 69.88 76.37 | 97.32 91.08 94.10

to FTH3D datasets. Moreover, the scenes include large textureless regions, as
they depict building facades with walls of mostly homogeneous color (Figure
5.10). UDDJ5 dataset [Chen et al., 2018al, on the other hand, is a generally dense
sequence of 200 images of high overlap. The standard OpenMVS reconstruction
in this case was not particularly problematic since the scene was generally well-
textured. Small gaps in depth maps still exist, though they are mainly caused by
occlusions. In such cases, the proposed algorithm performs equally well as the
standard approach (Figure 5.11, lower row).

5.4 Discussion

Coupling semantic reasoning and image-based 3D reconstruction has caught the
attention of the research community in recent years since it has been observed
that higher-level scene semantics can potentially help to overcome problems
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Table 5.2: Accuracy, completeness and Fj score (%) comparisons of the Piazza Duomo
dataset for 7 = 10cm (the higher the better). Best values in bold. Second-best values
are underlined.

Method Acc. t Compl. + F 7

COLMAP  88.89 38.00 52.24

TAPA-MVS  25.56 23.74 24.62

Piazza Duomo ACMM 50.87 50.51 50.69
ACMP 40.92 25.93 31.75

OpenMVS 70.53 68.55 69.52

proposed 71.08 69.38 70.22
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Figure 5.10: Qualitative point cloud comparison for the custom datasets.
Overview and detailed views of Piazza Duomo (first two rows) and Piazza Navona (last
two rows): state-of-the-art results versus the proposed method.

that plain image information, either visual appearance or geometric, cannot
solve. Indeed, conventional MVS approaches based solely on photo-consistency
measures are generally robust yet often fail in calculating valid depth pixel
estimates due to matching ambiguities in non-Lambertian parts of the scene.
Real-world applications often face this problem, as in several man-made scenarios
containing building facades, indoor scenes, or airborne (mostly oblique) datasets,
such challenging areas are present.

In this chapter, a novel approach is proposed to specifically undertake this challenge
by leveraging semantic priors into a PatchMatch-based MVS, targeting high-
resolution and real-world photogrammetric applications, semantic PatchMatch.
Semantic reasoning is used in the form of a priory-generated semantic labels for
each pixel of the scene. Such cues are used to impose class-specific geometric
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Figure 5.11: Qualitative depth and confidence map comparison of the proposed
method with respect to the baseline OpenMVS on custom datasets and the
UDD5 dataset. The proposed method improves depth estimations and achieve higher
confidence scores in problematic planar areas for PiazzaDuomo and PiazzaNavona. In
UDDS5, where no evident textureless areas exist, it performs like standard OpenMVS.

constraints during multi-view stereo, optimizing the depth estimation on weakly
supported, textureless areas. Guided by the segmentation masks, dominant shapes,
e.g., planes, are detected directly in 3D with RANSAC-based techniques. A new,
adapted cost function is introduced that combines and weights both photometric
cost and plane prior hypotheses for each pixel, propagating, thus, more accurate
depth estimates across the image. Being adaptive, it fills in apparent information
gaps and smooths local roughness in problematic regions while at the same time
preserving important geometric details. Experiments on the ETH3D benchmark
and custom datasets demonstrate the effectiveness of the presented approach.
The experiments were designed as such to include real-world and high-resolution
scenarios, typically the case for various photogrammetric applications. Although
the good performance scores and the potential of the proposed method, there some
limitations; in the following paragraphs, such challenges are critically discussed.

Semantic guidance. Semantic reasoning is used in the presented approach to
guide the prior generation. Indeed, plane fitting is guided by the semantic labels,
making class-specific assumptions and restricting the search to the regions where it
is more probably to find dominant planar structures. However, the detected planes
in the 3D space have no clearly-defined boundaries and the semantic guidance
may not be always effective. That is, plane boundaries are limited by the pixel
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label, yet, multiple planes within the potentially planar classes may intersect with
each other in the 3D space. This problem is solved in the proposed approach
by using the closest plane in 3D, but this criterion may not always assign the
correct plane to the point and is considered a limitation of the method. The
semantic masks, even roughly estimated, are considered to be obtained a priory
and be given as input to the integrated MVS pipeline. Nowadays, semantically
segmented data become increasingly more available, and the generation of such
masks is feasible for a variety of real-world scenarios; however, the method is
highly dependent on this prerequisite, and its applicability may be restricted in
cases where no such cues cannot be obtained. Nonetheless, the ablation study
showed promising results for the robustness of the method even in absence of
semantic guidance. Toward the generalization of the presented approach also in
case where semantic segmentation masks are not available or cannot be easily
generated, a more powerful approach is presented in Chapter 6, based only in
local textureness and structure priors.

RANSAC performance. The proposed approach extracts RANSAC shapes
to support depth estimation in problematic areas. RANSAC is typically sensitive
to its parameters and often requires fine-tuning based on the application, yet in
this approach, an adaptive tuning of the parameters based on the average point
spacing § is proposed to enhance robustness and generalization. Given appropriate
parameter tuning, RANSAC is generally a robust model-fitting algorithm and
can yield satisfying results in the presence of some outliers. The proposed
method estimates planar priors in the 3D space on the intermediate point clouds
generated by the roughly estimated depth maps after a few standard PatchMatch
iterations. However, regions with matching ambiguities result in outliers in 3D,
and, consequently, the plane fitting procedure is less robust. Indeed, even with the
semantic guidance and the proposed point filtering strategy, in particularly noisy
point clouds, RANSAC is not able to cope with these errors. Hence, plane prior
hypotheses cannot be accurately generated, and wrong depth estimations will still
exist in a similar way as the standard PatchMatch approach of OpenMVS.

Cost function. The proposed combined cost function has an adaptive formu-
lation and gives priority to the standard photometric cost in rich-texture areas,
while trusting more the prior hypotheses in the textureless one. It has proven
efficient enough under different scenarios in the experiments and yields promising
results. However, highly reflective areas, such as some surfaces in the ETH3D-pipes
dataset, seem to be very difficult to treat since the matching ambiguities there
cause erroneous depth and normal estimates over large areas and even such an
adaptive formulation struggles to propagate reliable values to the neighboring
pixels. An intuition about this problem could be that the normal inconsistencies
are not tackled efficiently, or that in the implementation, RANSAC fails to assign
always correct normals to its plane hypotheses.
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Runtime performance. The proposed method behaves similar to standard
OpenMVS;, as the semantic map loading and the two additional PatchMatch
iterations add little extra computational cost to the entire MVS procedure.
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This chapter introduces a novel, generic and robust method to support depth
estimation under a PatchMatch-based MVS scenario and generate more complete
dense representations using high-resolution images in real-world scenarios. The
framework is similar to the semantic PatchMatch method presented in Chapter
5, yet it is extended by introducing texture-guided structure/shape priors. The
new approach goes beyond semantic reasoning, acknowledging that in several real-
world applications, such cues are not easy to obtain, although the vast training
data availability and the robustness of the state-of-the-art algorithms, as discussed
in Chapter 4.

The basic insight for this method is the fact that textureless areas commonly
belong to local planar structures, which is particularly true in the case of man-
made environments; indeed, similar priors have been used in the past for depth
reconstruction in stereo or MVS scenarios [Furukawa et al., 2009; Romanoni and
Matteucci, 2019]. Unlike previous works, the proposed method adopts a quadtree
structure to organize the input image according to the local texture so that pixels
with similar intensities are grouped together under the same quadtree block. The
hypothesis is made that pixels within a block belong to the same local plane
rather than making the strong assumption that they share a constant depth value.
A clear advantage of this method is that the block size is adaptive to local texture;
thus, textureless areas are grouped in large blocks, while rich textured areas are
represented by smaller block sizes down to the size of one pixel. Moreover, a
quadtree structure allows exploiting neighbors in an efficient way differently than

135



136 Quadtree-guided priors in depth estimation

decomposition !

COST FUNCTION

PATCHMATCH MVS

initial PatchMatch ! quadtree blocks

iterations

output depth map

PLANE PRIOR GENERATION

Figure 6.1: The proposed pipeline based on quadtree-guided priors. First, some
initial standard PatchMatch iterations are performed to generate rough depth estimates.
Plane prior generation follows using quadtree block guidance. Plane and normal priors
are then taken into consideration in a combined cost function to generate more complete
and accurate final depth maps.

standard image segmentation techniques such as superpixels [Van den Bergh et al.,
2015]. Dominant plane priors are detected in 3D using a RANSAC-based approach,
and for each pixel of the block, a plane prior hypothesis is made. The proposed
approach does not rely on training data and is, thus, domain-independent, i.e., it
can generalize in diverse scenarios. In contrast to recent learning approaches that
try to solve this issue [Yang et al., 2021b; Wang et al., 2021], this method can
directly handle high-resolution images and is computationally efficient.

6.1 Prior-assisted PatchMatch

Despite the recent advances in conventional and learning-based algorithms, most
methods lack completeness in textureless areas due to matching ambiguities and
imply, thus, the need for advanced scene cues along with the standard photometric
consistency measures. Piecewise planar constraints have been used in traditional
stereo scenarios in the past [Gallup et al., 2010; Furukawa et al., 2009]. Recently,
Romanoni and Matteucci [2019], acknowledging the challenge of textureless regions,
especially under large-scale applications, assumed piecewise planarity on image
superpixels [Van den Bergh et al., 2015] for joint PatchMatch and view selection.
Superpixels were derived in multi-scale resolution for preserving depth details, and
a textureness term was added to the cost function. Similarly, Kuhn et al. [2019]
extended this framework, achieving depth completion where textureless areas are
treated with multi-scale geometric consistency guidance, yet as a post-processing
step. Close to these works, rather than superpixels, in the presented method,
quadtree-based image decomposition is used. The basic intuition for this choice is
that quadtree blocks are robust in aggregating pixels of similar intensities, and,
most importantly, their size is adaptive to the local texture. Moreover, quadtree
structures allow for the exploitation of neighboring relations among blocks. Xu
and Tao [2020b] added direct planar priors to assist PatchMatch with planar
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compatibility constraints for the matching cost. Their approach is adjacent to
the idea presented in this chapter, yet the priors are triangular primitives derived
by sparse correspondences without explicit textureness constraints. Wang et al.
[2020b] used a pyramid architecture for coarse-to-fine MVS with mesh guidance and
a confidence prediction network for depth refinement as an extra module. However,
although efficient for large textureless areas, such multi-scale schemes are limited
by the predefined scales and often fail to preserve fine details. Recently, plane
hypothesis inference using Markov Random Fields (MRFs) is proposed in [Sun
et al., 2021] as a post-processing step after initial depth estimation and filtering.
The work presented in Chapter 5 exploits semantic reasoning to detect dominant
plane priors in the object space and improve depth reconstruction in textureless
areas as in [Stathopoulou et al., 2021b|. This formulation has promising results
but heavily relies on semantic priors that are not always available or easy to obtain,
especially in real-world application public datasets designed for evaluating MV'S
algorithms. Building upon this work, this chapter proposes a more generic, robust
scheme that can be implemented independently from semantic label guidance,
as it relies only on local structure information and can be therefore generalized
under diverse scenarios.

6.2 Proposed methodology: quadtree-guided Patch-
Match

Given a set of input images Z = {Iy,..., I} with known camera poses along
with a sparse point cloud, typically derived via standard SfM methods, MVS
algorithms aim to estimate a reliable depth value for almost every pixel and
generate, thus, a complete dense 3D reconstruction of the scene. A standard
procedure for depth estimation using the PatchMatch algorithm under a multi-
view scenario, as described in detail in Sections 3.3 and 5.2 can be outlined in
four steps: (1) view selection and initialization for selecting the best-overlapping
pairs and initialize the depth and normal estimations for each pixel (2) depth
estimation based on photometric consistency, depth propagation, and random
refinement, (3) depth map filtering and (4) fusion of the individuals 3D point
clouds into one. Each step is crucial for the quality of the 3D reconstruction, and
multiple works have been proposed to improve them. Yet, depth estimation itself
is commonly based on simple photometric consistency measures to calculate the
matching costs between two corresponding pixels. Such a common measure is
the normalized cross-correlation (NCC) and, in particular, one of its variants, the
zero-mean NCC (ZNCC) as defined in Equation 2.18, which is typically robust to
illumination changes, as the mean intensity of the neighborhood is subtracted.
As explained in the previous chapter, in highly textured areas, pixel estimates are
propagated from the neighboring pixels to the current one if their matching cost
is lower than the current one, and in this way, more reliable depth estimates are
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spread using spatial propagation. Nonetheless, in textureless areas, multiple local
minima may exist; in such challenging regions, standard photometric consistency
measures fail to discriminate patches since, for a certain patch, an ambiguous
number of good candidate matches may exist, resulting in noisy depth estimations
or information gaps.

The proposed approach specifically tackles the matching ambiguities challenge in
depth estimation using depth hypotheses derived by structure/shape priors (Figure
6.1). Different from standard PatchMatch approaches that make a priori planar
assumptions to ensure local smoothness, in this method, plane priors are detected
in the object space for dominant planes of the scene. To assign a plane prior to each
pixel, a quadtree scheme is adopted to organize the image pixels in groups, based
on the intuition that similar intensity pixels are likely to belong to the same plane.
Thus, in the case of highly textured areas, local planes are degenerated to the
standard support planes of PatchMatch, preserving the curvature and fine details.
Each quadtree block is assigned to its corresponding 3D plane, i.e., all pixels among
a quadtree block are set to a common normal value ng,,q. By leveraging the depth
prior hypotheses in the standard matching cost function in a similar fashion as in
Chapter 5, more reliable depth estimates are propagated in textureless regions
from the rich textured ones, which commonly occur near the natural crease edges.
The proposed method significantly increases the completeness of the depth maps,
achieving similar results with depth completion techniques [Kuhn et al., 2019|
which, however, act as depth map refinement step in post-processing.

As in Chapter 5, also this pipeline builds upon the standard PatchMatch MVS
approach following [Shen, 2013| as implemented in OpenMVS library [Cernea,
2020|, which is considered the baseline method. View selection is performed
using visibility criteria, i.e., baseline and angles between images, and depth maps
are initialized by triangulating the sparse SfM point cloud. A simple sequential
PatchMatch propagation scheme is followed as in [Cernea, 2020]. However, the
proposed approach can be easily integrated into other algorithms employing
different view selection and propagation schemes, e.g., checkerboard or red-black
propagation [Xu and Tao, 2020b].

6.2.1 Quadtree-guided 3D plane prior hypotheses

A set of input images Z = {ly,..., L} is provided, with known camera poses
(R,t), sharing the same calibration matrix K along with the sparse point cloud
of the scene. In a similar line of thought as in Chapter 5, it is assumed that at
least a couple of PatchMatch iterations have been executed in such a way that a
depth dy,p and normal ny,,, estimation are available for (if possible) all scene
pixels. Among these depth estimations, generally, some correspond to high-fidelity
matches and are already reliable, at least for the highly textured areas and the
areas near the crease edges. Plane prior hypotheses are generated in the object
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(a) input point cloud (b) after confidence criterion (c) after planarity criterion and
outlier removal

Figure 6.2: The proposed point cloud filtering strategy. The intermediate point
clouds for each view are filtered to generate more robust plane priors. First, points of
high confidence, e.g., low photometric cost, are considered; then, the points are further
filtered based on their planarity value, to distinguish the points that are more likely to
belong to a planar neighborhood.

space, i.e., in the individual 3D point clouds for each view; these clouds are the
3D equivalents of the intermediate depth maps Dy, computed by the first few
PatchMatch iterations. Also here, a RANSAC-based technique is used as an
effective method to detect dominant plane structures in the scene. Inevitably,
the point clouds also include a vast number of outliers and erroneously estimated
points, especially in the textureless areas that inevitably affect the robustness of
the algorithm. A filtering strategy is followed, in the same line of thought with
the semantic PatchMatch method, yet applied to all pixels of each view since
no semantic guidance is considered in this method. Then, plane hypotheses are
detected, guided by the quadtree blocks on the images.

Point cloud filtering. An analogous strategy to the one presented in Chapter
5 is followed. However, in the absence of semantic guidance, all image pixels are
initially considered and projected in the 3D space (Figure 6.2a). To select only the
most reliable depth estimates out of all scene pixels, a confidence criterion is set;
the term confidence here is equivalent to the matching cost. A low matching cost
implies highly correlated pixels and thus reliable correspondences (i.e., of high
confidence). Hence, based on this criterion, only estimates of low photometric cost
qualify for being inliers. In the experiments we use the matching cost definition
of the baseline method OpenMVS |Cernea, 2020| defined between [0, 2] where 2
indicates uncorrelated patches and 0 indicates highly correlated ones. To exclude
unreliable correspondences, we consider only 3D points that correspond to matches
with cost < 0.20. Given that the most reliable points are the ones around the
crease edges, these points are more likely to be kept after the confidence criterion
(Figure 6.2b). Then, similar to the semantically-guided prior generation (Chapter
5), the points with low planarity value as defined in Equation 5.1 are excluded;
finally, gross outlier removal is performed based on the average point spacing
within a k& = 20 point neighborhood (Figure 6.2¢).
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Quadtree decomposition. A quadtree data structure is generated to guide
the plane hypothesis; the input images are decomposed based on the standard de-
viation of the pixel intensities, where each “parent” has four “children”. Quadtrees
are selected as an efficient, regular data structure to group the image pixels into
groups of similar intensities while exploiting the neighboring relations rigorously.
Region splitting stops when the desired minimum standard deviation (here is used
std = 1) or the minimum block size (here, the minimum dimension corresponds
to 3 pixels) is reached, and this process is repeated recursively until all blocks
meet one of the two criteria. Generally, the deeper the quadtrees are, the more
details are kept in the final structure. For each block, its adjacent neighbors
can be identified and stored in memory. The generated quadtree blocks are used
as guidance regions of interest (ROIs) during the prior generation, making the
assumption that pixels within the same block approximately belong to the same
3D plane. Experimentally, this method was found to be superior to using image
clustering methods such as, e.g., superpixels [Van den Bergh et al., 2015] used in
the literature for similar cases [Romanoni and Matteucci, 2019; Kuhn et al., 2019].
The intuition for this is that originally, superpixel areas are mostly of similar
size, whereas quadtree block size is highly irregular and adaptive based on the
textureness of the pixel neighborhood (Figure 6.3). In this way, highly textured
areas with harsh intensity changes are represented by dense blocks of smaller size,
while extended low-textured regions are grouped under the larger, sparser blocks
(Figure 6.3). Adaptive superpixel segmentation has recently been introduced in
the literature [Uziel et al., 2019], yet tree structures have the strong advantage of
efficiently storing the information of neighbor relations, thus enabling the robust
propagation in the block neighborhood.

RANSAC plane detection. RANSAC plane detection is performed subse-
quently, using the Efficient RANSAC optimization algorithm [Schnabel et al.,
2007] as implemented in the CGAL library [The CGAL Project, 2021]. In a similar
fashion as in the semantic PatchMatch approach (Chapter 5), adaptive parameter
setting is used based on average spacing § for the Euclidean distance between a
point and a shape € and the connectivity measure c., while the minimum number
of points M,,;, needed to form a valid shape is also adaptively set based on the
total number of 3D points for each view.

Depth and normal prior generation. Prior generation exploits quadtree
guidance to robustly propagate the plane prior hypothesis to the textureless
areas of the scene. To do so, the quadtree blocks that include inlier RANSAC
points are assigned to their corresponding 3D plane, and a depth hypothesis is
assigned to each block center via ray-plane intersection as a prior. The normal
prior hypothesis nyior is given by the assigned normal of the 3D plane ng .,
under the constraint that the direction should point towards the camera to avoid
impossible normal directions (i.e., flipped normals). Each assigned block @ is
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Figure 6.3: Superpixel segmentation and quadtree decomposition. Example
images from ETH3D datasets (left) with the calculated superpixels following Van den
Bergh et al. [2015] and our proposed quadtree decomposition (right). Using quadtrees,
block size is adaptive based on the textureness of the area while neighbor relations are
kept and inherited, supporting the depth propagation in neighboring blocks with high
color similarity.

compared to its adjacent neighboring blocks in 4 directions (top, down, left, and
right), and, if they have a high color similarity ..o, the 3D plane hypothesis
is propagated to the neighbors (Figure 6.4). The similarity metric scoor is the
absolute distance of the a and b channels of the mean pixel intensities of each
block in the CIE-Lab color space. CIE-Lab is preferred over RGB as it is tuned to
human perception and is more robust in illumination changes and shadow effects
[Wang et al., 1981; Tomasi and Manduchi, 1998|. In this way, blocks with no inlier
RANSAC plane points will be assigned the plane hypothesis of their adjacent
blocks if they have similar color appearance. Accordingly, the 3D planes will be
expanded using 2D guidance based on the local textureness (Figures 6.5, 6.6).
However, handling the hypotheses propagation is a crucial step since blocks with
similar appearance may belong to different planes. Since this commonly happens
around crease edges, all neighboring blocks except those of maximum level, i.e., the
small blocks generated in highly textured areas or near the edges, are considered
eligible for propagation. The propagation should start from the smallest blocks
towards the bigger ones since the bigger blocks, inevitably corresponding to large,
textureless areas, are more likely to contain noisier points and be assigned with
less reliable plane hypotheses. If plane propagation is performed efficiently, all
image pixels that belong to quadtree blocks with similar appearance will be
assigned to the respective depth prior dp,ior via ray-plane intersection, while the
pixel normal prior nyior is the normal of the plane ng . (Figure 6.6b). For
unassigned pixels, no prior hypothesis will be generated. An overview of this
quadtree-guided propagation is shown in Algorithm 2. Both dp,ior and nyor for
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Algorithm 2 Quadtree-guided RANSAC plane propagation

Input: RANSAC 3D shapes S = {S1,...,S,} for each view I € 7
Output: Dp,ior, Nprior for each view

for all RANSAC shapes S = {S1,...,Sn} do
get assigned set of points S
assert plane normal direction ng,,,,,.
if consistent with camera viewing direction then
keep normal
else
invert normal
end if
for all assigned points to planes do
get the block in which they belong
if color similarity is high AND block size is big then
propagate to neighboring block
else if then
stop propagation
end if
end for
for all assigned blocks to planes do
calculate dp;or With ray-plane intersection
assign plane normal ng_,, .. as Dypior
end for
end for
return Dprior7 Nprior

each pixel are stored in corresponding maps D.jor and Npm'or.

It is to be noted that the propagation scheme is defined in such a way that is
unlikely to infinitely expand the plane boundaries. Each quadtree block is directly
assigned to the corresponding 3D plane, in such a way that no closest plane
criterion, as implemented in Chapter 5, is needed (Figure 6.6).

6.2.2 Adaptive cost calculation

In the same line of thought as in the semantic PatchMatch method described in
Chapter 5, rather than implying hard constraints and forcing planarity by directly
assigning the plane hypothesis [dprior, Dprior] to every pixel p of a particularly high
cost, the plane prior is leveraged into the standard photometric matching cost
given in Equation 5.2 in an adaptive fashion also considering the local textureness
described by the coefficient given in Equation 5.4. Similar to the definition of the
semantic coefficient s in Equation 5.5, a quadtree-guided plane prior coefficient g
is defined as:
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Figure 6.4: Quadtree-guided plane propagation scheme. A quadtree block @
with inlier RANSAC points (in dark red) is assigned to a plane prior; this hypothesis is
propagated to its adjacent neighbors across 4 directions (in light red), if the latter have
similar color appearance with () and no inlier RANSAC points. If a block is assigned to
a plane, prior hypotheses are generated for all pixels belonging to the block.

(a) seed points (b) plane hypothesis propagation

Figure 6.5: Example of plane propagation in a textureless area. Inlier RANSAC
points (in blue) belonging to the same RANSAC plane (6.5a), and plane hypothesis
propagation to neighboring blocks (in cyan) of similar appearance that have no inlier
points (6.5b).

=5
g=e?, (6.1)
where o is a constant fixed experimentally. Also here, J is given as the percentage
of difference between the quadtree-guided depth prior hypothesis dpior and the
current PatchMatch estimate dyp,:

drior_dm
5=|pd ' tmp] (6.2)
prior

Finally, the cost function is defined in an adaptive formulation similar to Equation
5.7:
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(a) 3D point sets assigned to RANSAC (b) plane priors in 3D
planes

Figure 6.6: Example of plane prior generation in 3D. Points assigned to the detected
3D planes with RANSAC; point sets are color-coded where each color corresponds to a
plane id (6.6a). Final plane priors in 3D after the quadtree guidance (6.6b).

c=cpn(l—1)+(1—g)t, (6.3)

where v being a weight factor.

As discussed in Section 5.2.2, this cost function formulation encourages the
propagated depth estimation to be close to the plane prior. The goal is to favor
the hypotheses deriving from the plane prior in the textureless areas. However,
it has to be underlined that the photometric cost remains the main term of the
cost function in such a way that photometric consistency will be trusted, and
[dtmp, Nemp) Will be prioritized under highly textured regions. On the contrary,
the variance would tend to zero for low textured areas with high cost, and the
prior depth hypothesis [dprior, Dprior] Will be favored.

Depth propagation is performed from top-left to bottom-right and vice versa in
a sequential propagation scheme [Shen, 2013; Cernea, 2020|. The PatchMatch
proceeds with random refinement circles, assigning random depth values and
comparing them to the current estimate to avoid the convergence to local minima.
In the proposed method, this set of hypotheses is extended by also including
[dprior, Tprior] values in the sample. Such a combination of random and prior
values increases the possibility of sampling a correct estimate and reduces the
outliers.

Increasing the completeness of the depth maps is a crucial step in an MVS scenario
as, if a pixel is visible in enough views, there are more chances the point will fulfill
the consistency checks and thus be correctly reconstructed in 3D during depth map
fusion. Depth map filtering within a post-processing step is commonly applied in
MVS methods to remove inconsistent depth values between neighboring views,
typically based on the re-projection error and the photometric consistency. While
this increases the accuracy of the final point cloud, it can significantly reduce



6.3. EXPERIMENTS AND RESULTS 145

Figure 6.7: Generated plane prior hypotheses. Example images from EFTH3D
dataset (up) and the corresponding 3D plane hypothesis detected using the proposed
RANSAC-based approach (bottom). Prior planes are color-coded by normal vector.
Black regions refer to pixels with no assigned prior hypothesis.

its completeness. In the implementation of the proposed method, since most of
the inconsistent depth estimates have already been refined by the integration of
the plane priors, the depth map filtering step is skipped; point cloud filtering
is rather performed based on visibility criteria on the fused 3D point cloud to
remove the outliers directly in the 3D space in a post-processing step. Regarding
depth map fusion, the scheme of [Shen, 2013] is adopted, where overlapping depth
maps are merged together, comparing the depth values across the neighboring
views using back projection. For both depth map fusion and point cloud filtering,
the baseline implementation of [Cernea, 2020 is followed for a fair comparison
between the methods. It is to be noted that the proposed approach leverages the
prior information in the cost computation and hence significantly deviates from
depth completion and refinement techniques that assign the new depth hypothesis
directly at the pixel [Kuhn et al., 2019].

6.3 Experiments and results

6.3.1 Datasets

The proposed method of this chapter is evaluated on the complete ETHSD high-
resolution (6048 x 4032 pixels) MVS benchmark dataset and on two additional
custom datasets of real-world photogrammetric scenarios.

ETH3D. It contains 13 and 12 sequences in the training and test sets respec-
tively of real-world indoor and outdoor scenarios. Most ETHS3D sequences are
particularly challenging due to the image network geometry, as strong viewpoint
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variations exist, and the presence of large textureless areas and reflective surfaces.
Typically, state-of-the-art MVS methods struggle to generate complete and accu-
rate point clouds in such challenging scenarios, making it thus a suitable dataset
to evaluate the performance of our method. For this reason, in this study ETH3D
scenarios are considered the most challenging ones and suitable to evaluate such
methods. Other datasets exist, such as the DTU robotic dataset [Aanzes et al.,
2016| or the Tanks and Temples dataset [Knapitsch et al., 2017], but they are of
lower resolution (1920 x 1080 pixels for Tanks and Temples and 1600 x 1200 for
DTU), with less challenging image network while the majority of their scenes do
not contain evidently textureless regions. ETHS3D, on the contrary, consisting of
real-world and high-resolution scenes, is closer to common photogrammetric 3D
reconstruction scenarios. For ETH3D, camera extrinsic and intrinsic parameters,
as well as the sparse point clouds derived from standard SfM [Schénberger and
Frahm, 2016| are provided as GT in a scaled reference system. For the training
datasets, GT 3D data acquired by laser scanning are publicly available for eval-
uation, while the GT data for the test set are not publicly available to prevent
overfitting. For depth estimation, images are resampled to 3200 pixels keeping the
aspect ratio in accordance with previous works [Xu and Tao, 2019; Schénberger
et al., 2016] for a fair score comparison. The obtained 3D point clouds with the
presented method are compared against the baseline method OpenMVS [Cernea,
2020|, COLMAP [Schénberger et al., 2016] and other state-of-the-art algorithms
that use prior-assisted PatchMatch, namely TAPA-MVS |Romanoni and Mat-
teucci, 2019], ACMP [Xu and Tao, 2020b|] and MAR-MVS [Xu et al., 2020] as
well as the depth completion method of PCF-MVS [Kuhn et al., 2019]. Both
conventional approaches and learning-based methods are considered, although
state-of-the-art learning methods are typically applied in resized versions (lower
than the 3200 used here and in the other conventional algorithms) of the ETH3D
high-resolution images [Xu and Tao, 2020c; Wang et al., 2021].

Custom Datasets. To prove the generalization ability of the presented quadtree-
guided method in other real-world photogrammetric applications, two additional
custom scenes of building facades are considered, featuring evident large, tex-
tureless areas, House 1 and House 2. The two sequences contain 22 and 10
high-resolution (6016 x 4016 pixels) images respectively (Figure 6.8). The camera
extrinsic and intrinsic parameters are calculated using the SfM approach of Moulon
et al. [2016]. The GT 3D point cloud was acquired using terrestrial laser scanning®.
For consistency with the ETH3D experiments, during depth estimation, images
are resampled to 3200 pixels keeping the aspect ratio.

'Data acquired in the acquisition campaign of the Periscope project in June 2021, Limassol,
Cyprus.
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Figure 6.8: The custom datasets used in the experiments. Image acquisition
network with the sparse point cloud for the two custom datasets, House I (top) and
House 2 (bottom).

6.3.2 Implementation details

Experiments are executed on an AMD Ryzen 2950X CPU running on 3.5GHz
and 48GB of RAM. The proposed method is implemented in C++ and executed
in 32 parallel threads on the CPU. The parameters used for the cost function
are {7, 0, 0p, Scolor } = {0.1,0.08,0.15,1.5} that experimentally were proven to
be the best trade-off values. The combined total cost is computed using a
pixel window size N = 7. Following the baseline implementation of OpenMVS
[Cernea, 2020], Nsource = 8 source images for each reference image are used. The
confidence threshold value is set to threshold is set to conf < 0.20. During the
planarity filtering, points with p < 0.75 were excluded (strict threshold). Quadtree
propagation starts from the smallest quadtree blocks towards the largest, as they
typically correspond to highly textured areas and crease edges. In the presented
experiments, the 4 deeper quadtree levels that include points assigned to a
RANSAC plane are considered and propagated toward their neighbors of equal
or larger size. RANSAC parameters in this case are set to {e = 1.55, ¢ = §},
while the normal deviation is set to n, = 0.92. The minimum number of points
needed to form a shape is a function of the total number of points for each view
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Table 6.1: Completeness scores for tolerance 7 = 2¢m and 7 = 10cm for the benchmark
high-resolution training set. Values from website. Higher scores are better. Best values
in bold, second-best values are underlined. The proposed approach outperforms the other
methods in several datasets.

indoor outdoor

method avg.  deliv.  kick. off. pipes rel. rel.2 terr.  court. elec. fac.  mead. playgr. terr.
COLMAP  55.13 67.21 4783 31.6 34.24 63.88 6252 63.02 7347 62.13 55.82 34.39 44.9 75.67
TAPA-MVS 7145 80.78 80.8 6091 63.8 7459 7242 8097 77.04 7381 62.1 51.28 67.98 82.37

g ACMP 72.15  80.87 69.29 64.04 5354 7374 7527 8898 80.96 7793 64.13 60.79 6391 84.45
& PCF-MVS 7573 88.04 6924 60.59 69.18 77.11 77.65 94.01 83.67 81.47 70.62 57.52 70.65 84.75
MAR-MVS 77.19 90.58 77.62 59.24 67.98 82.37 83.12 87.67 89.87 79.33 65.56 5833 74.83 86.95
OpenMVS 7492 90.38 66.09 46.33 64.55 79.92 80.88  89.2 90.1 78.01 66.35 62.8 7177 87.52
proposed  77.51 92.00 66.22 54.7 71.79 82.46 82.04 92.79 91.52 8141 70.63 58.05 74.49 89.46
COLMAP 7947 90.53 7827 5826 62.75 8241 8213 83.98 922 85.3  83.69 6147 7828  93.83
TAPA-MVS 9098 97.66 94.74 80.22 86.7 91.65 90.17 93.83 96.14 948 89.00 7742 9227 98.15

§ ACMP 87.15 9445 89.15 86.35 658 8845 87.52 97.56 90.8 89.41 83.09 76.98 86.94 96.42
S PCF-MVS 9042 9818 84.55 7584 8847 90.37 90.66 98.88 94.44 9435 94.33 76.61 9129 97.46
MAR-MVS 9044 9792 95.07 80.83 79.1 93.16 9446 97.63 9748 9096 79.8 77.03 94.68 97.59
OpenMVS  89.84 9851 88.14 65.06 8542 93.06 93.7 9837 97.63 94.64 8547 78.39 91.04 98.53
proposed  91.68 98.72 90.86 76.07 90.35 94.10 94.6 99.09 97.86 95.60 85.72 77.14 92.69 99.04

6.3.3 Evaluation metrics

Following the established protocol by Schops et al. [2017], accuracy, completeness,
and Fj score are used to evaluate the obtained 3D reconstruction results. The
description of these metrics can be found in Section 5.3.3.

6.3.4 Evaluation on the ETH3D benchmark

The proposed method aims at improving the completeness and overall 3D recon-
struction quality of challenging scenes with evident textureless surfaces. Thus, it
is compared against state-of-the-art algorithms with similar principles to enable
a direct and fair comparison. Our method uses relatively low computational
cost using only CPU implementation, achieving competitive results. Ideally, an
efficient MVS algorithm would achieve a high score in both accuracy and com-
pleteness, so F} score is a good approximation of the efficiency of the algorithm.
The improvement in the depth estimates is shown in Figure 6.9; the depth maps
deriving from the standard PatchMatch are compared with the resulting ones
of our method after the integration of the priors in the cost calculation. It is
evident that for the low textured areas such as the walls or the metallic/reflective
surfaces like the table in the terrace2 dataset, the closet in pipes, etc., the standard
PatchMatch cannot propagate reliable estimates (Figure 6.9b). However, after
the integration of the generated prior hypothesis in the cost calculation (Figure
6.9¢), the final depth maps have been significantly improved in these problematic
regions (Figure 6.9d). For the regions where no priors were generated, typically
non-planar surfaces, the proposed approach behaves like the standard PatchMatch
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terrace

(a) RGB image (b) depth map (stan- (c) depth priors (d) depth map (pro-
dard PatchMatch iter- posed approach)
ations)

Figure 6.9: Qualitative depth map comparison of the baseline and the proposed
method. RGB images (6.9a), the intermediate depth maps after a couple of PatchMatch
iterations (6.9b), the prior depth hypotheses (6.9¢) and the improved depth maps using
the proposed method (6.9d). Sequences from both training and test ETHS3D sets.

method, relying only on the photometric cost.

To quantify the efficiency of the proposed method, the achieved completeness
scores are compared to the other state-of-the-art methods, as reported in Table
6.1. It is observed that for 7 = 2¢m in many scenarios, the proposed method
either outperforms other algorithms or comes second for a small margin (delivery
room, pipes, relief, courtyard, electro, facade, playground, terrace2). The average
completeness score considering both indoor and outdoor sequences ranks first,
outperforming recent algorithms such as ACMP, MAR-MVS, or PCF-MVS. It
is to be noted that PCF-MVS is a depth completion method, performing depth
refinement as a post-processing step; on the contrary, the quadtree-guided method
integrates the priors during depth estimation in an end-to-end way. It is worth un-
derlying that for the majority of the sequences, the proposed approach significantly
improves (average improvement of about 2.5%) the completeness scores of the
baseline method OpenMVS, which were anyway among the highest. For 7 = 10cm,
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(a) RGB image (b) depth map (stan-  (c) depth priors (d) depth map (pro-
dard PatchMatch iter- posed approach)
ations)

Figure 6.10: Qualitative normal map comparison of the baseline and the
proposed method. RGB images (6.10a), the intermediate normal maps after a couple
of PatchMatch iterations (6.10b), the prior normal hypotheses (6.10c) and the improved
normal maps using the proposed method (6.10d). Sequences from both training and test
ETH3D sets.

the proposed method again achieves the best average score across all training
sequences. Similarly, the Fj score, reflecting both accuracy and completeness,
is constantly superior to the baseline while achieving competitive results with
respect to other methods across most datasets of the training set (Figure 6.11).
This explicitly reflects the fact that the proposed method improves completeness
without compromising accuracy and hence detail loss. The most challenging
sequences for the quadtree-guided method are kicker, office, and meadow; the
lower performance scores in these particular scenes seem to be in line with the
general tendency of most state-of-the-art algorithms and the baseline method.

To further evaluate the robustness of the proposed approach, experiments are
performed on the test set for which GT data are not publicly available; therefore,
it does not allow for parameter tuning and thus prevents overfitting. Table
6.2 demonstrates that the quadtree-guided PatchMatch approach achieves the
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Figure 6.11: F} scores for tolerance 7 = 2cm for the high-resolution training
datasets of the ETH3D benchmark. The scores of the proposed approach is shown
with a dash line.

second-best I} score for both indoor and outdoor scenarios. Also, in the test set,
the completeness scores rank among the highest in the majority of the scenarios
(Figure 6.12) while typically outperforming the baseline method. The presented
approach is a non-data-driven, end-to-end pipeline; current data-driven methods
for depth estimation in the MVS scenario perform plane-sweeps and construct
global cost volumes |Yang et al., 2021b; Xu and Tao, 2020c| and thus struggle to
handle high-resolution images and operate on lower resolutions. The proposed
method, instead, can efficiently handle high-resolution images as it follows the
PatchMatch algorithm and avoids the explicit construction of cost volumes. For a
more complete evaluation, the results of the proposed method in comparison with
recent deep learning approaches based on the PatchMatch algorithm [Lee et al.,
2021; Wang et al., 2021| are briefly reported. In Table 6.3 the performance in
accuracy, completeness, and F} scores are presented for both training and testing
ETHSD datasets; the proposed method, working on higher resolution images,
outperforms both learning-based approaches.

Figure 6.13 shows the point clouds of some sample sequences from the training
and test sets generated by the quadtree-guided method and other state-of-the-
art approaches. By visually comparing the results, it can be observed that the
proposed method achieves to generate depth estimates on challenging areas of the
scene while keeping the noise level low and yields visually pleasing results, even
in the case that its scores are relatively lower than the other methods, i.e., for the
office dataset. A good balance between noise level and completeness is particularly

COLMAP
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PCF-MVS
MAR-MVS
opentMys
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Table 6.2: Accuracy, completeness and F; scores (%) for tolerance 7 = 2¢m for the
ETHS3D test benchmark. Values from ETHS3D website. Best values in bold, second-best
values are underlined.

Method Accuracy T Completeness T F} T

COLMAP 91.95 59.65 70.41
TAPA-MVS 84.83 73.53 77.94

ACMP 90.60 74.23 80.57

indoor PCF-MVS 80.92 77.63 78.84
MAR-MVS 78.74 83.43 80.70
OpenMVS 82.00 75.92 78.33

proposed 82.59 77.39 79.50

COLMAP 92.04 72.98 80.81
TAPA-MVS 88.37 79.17 82.79

ACMP 90.35 79.62 84.36

outdoor PCF-MVS 85.84 84.29 85.01
MAR-MVS 84.73 86.44 85.27
OpenMVS 81.93 86.41 84.09

proposed 82.58 87.64 85.03

important since most methods struggle in this regard. Indeed, an exceptionally
performing MVS algorithm would achieve a good trade-off between completeness
and accuracy, thus high F} scores. The proposed method yields more complete
point clouds than the baseline OpenMVS, for example, in the whiteboard region
of the office scene, the reflective closet in the pipes dataset, or the columns of the
old computer room. At the same time, it typically generates fewer noisy points
than MAR-MVS for most datasets. Compared to TAPA-MVS and ACMP, the
visual results are similar in various scenes, for instance, terrace2 and lecture room.
In the presence of large, metallic surfaces, e.g., in delivery room and pipes, the
quadtree-guided method yields more complete and visually appealing results.

6.3.5 Evaluation on custom datasets

Additionally, two scenes from real-world applications consisting of high-resolution
images with sufficient overlap are considered. The performance of the quadtree-
guided PatchMatch algorithm is compared with the baseline method [Cernea,
2020]. As shown in Table 6.4 for both scenes, the proposed approach outperforms
the baseline method in Fi-score. The clear improvements of the proposed method
in the problematic, textureless areas can be further studied in Figure 6.14; indeed,
information gaps are filled in with reliably reconstructed points, resulting in point
clouds with improved accuracy and completeness.
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Table 6.3: Accuracy, completeness and F score (%) comparison of the proposed approach
with the recent PatchMatch-based deep learning methods PatchMatchNet [Wang et al.,
2021] and PatchMatch-RL [Lee et al., 2021] for the ETHSD training and test sequences
for 7 = 2c¢m. Note that the deep learning methods work on lower resolution images.
Values from FTHS3D website. Best values in bold.

Indoor Outdoor
Method Resolution ~ Acc./ Compl./F; T Acc./ Compl./F; 1
ceainin PatchMatchNet 2688x1792  63.74/67.71/64.65  66.06/62.78/63.69
& PatchMatch-RL ~ 1920x 1280 76.64,/60.69/66.65 75.36/64.01/69.10
proposed 3200x2132 84.34/77.43/80.22 74.87/77.59/76.43
testing PatchMatchNet  2688x1792  68.83/74.63/71.33 72.33/85.96/78.49

PatchMatch-RL  1920x1280  73.22/69.98/70.90  78.27/78.28/76.80
proposed 3200x2132 82.59/77.39/79.50 82.58/87.64/85.03
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Figure 6.12: Completeness scores (%) for tolerance 7 = 2c¢m for the high-
resolution test datasets of the ETH3D benchmark. The proposed method is
shown in dash red line.

Table 6.4: Performance scores (%) of the proposed approach with respect to the baseline
method [Cernea, 2020] for the two custom scenes. Best values in bold.

7=5cm 7= 10cm

Ft F 1

OpenMVS 70.67 74.11

House I posed  T1.60 75.83
House 2 OpenMVS 87.02 86.09

proposed 87.61 87.30
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Figure 6.13: Qualitative point cloud comparison of our method with the state
of the art baselines for the ETH3D training and test sets. Dense models for the
state of the art methods are as in ETH3D evaluation site.
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Figure 6.14: Evaluation of the proposed approach with respect to the baseline
method on custom datasets House 1 and House 2. From left to right: dense
point clouds, accuracy and completeness for 7 = 5¢m. The most evidently improved
areas are highlighted in red and blue boxes.

6.4 Discussion

In this chapter, an extended PatchMatch-based MVS approach is presented to
generate more complete 3D representations of indoor and outdoor scenarios using
high-resolution images. Conventional MVS reconstruction algorithms rely solely
on photometric consistency measures and thus fail to generate correct depth
estimates in the presence of matching ambiguities, commonly occurring under
non-Lambertian surfaces like textureless or highly reflective regions. Given that
in man-made scenarios, textureless surfaces generally belong to planar structures,
plane priors are generated to support depth reconstruction. Using adaptive
quadtree blocks based on local texture, pixels with similar intensities are grouped
together and considered to be part of the same local planar surface. The dominant
planes of the scene are detected with a RANSAC-based sampling method on the
initial rough 3D point clouds of each view. The final matching cost is calculated
within an adaptive formulation in a way that the depth prior hypothesis is leveraged
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with the initial photometric cost, spreading more reliable depth estimates in the
problematic areas. Experiments were performed on the high-resolution ETH3D
benchmark dataset, a particularly challenging dataset featuring large textureless
areas in indoor and outdoor scenes. The results prove the efficiency of the proposed
method, outperforming in completeness other methods in various scenarios and
achieving competitive reconstruction results both qualitatively and quantitatively.
Additional experiments on custom scenes demonstrate the generalization ability of
our method in real-world photogrammetric applications featuring such problematic
areas. The approach is easily employable on standard machines, even for high-
resolution images.

The proposed strategy is built upon the widely used open-source library OpenMVS
[Cernea, 2020]; yet the presented ideas are easily transferable in other frameworks,
extending thus their functionality and enabling further research. Experiments on
high-resolution benchmark images demonstrate that the proposed method tackles
the problem of incomplete reconstructions, achieving competitive completeness
scores. Especially when large, textureless areas or reflective surfaces are present in
the scene, it efficiently alleviates matching ambiguities, achieving high complete-
ness scores in the final 3D point clouds, competitive with the state-of-the-art. In
this section, the challenges and limitations of the presented method are discussed,
and potential future work is outlined.

RANSAC performance. The quality of the plane hypotheses and thus the
depth priors highly depend on the performance of the RANSAC algorithm. The
random initialization of the algorithm may affect the generated hypotheses,
although generally, it tends to converge similarly. RANSAC can be sensitive
to the parameter setting, often implying fine-tuning for each case study for
optimal results. Hence, in the experiments an adaptive parameter setting is
proposed, relative to the average spacing s and total number of 3D points for each
view, to compensate for the individual properties across the various sequences
(e = 1.55,¢c = §,n. = 092, M = %) For a fair comparison, the same
parameters are kept for the complete ETH3D dataset (indoor and outdoor), as
well as for the custom scenes, and were proven to work efficiently across different
scenarios.

Quadtree guidance performance. Plane priors are propagated across the
quadtree blocks based on their color similarity. The absolute distance in CIE-Lab
color space and, in particular, the one between the values of the channels a and
b have been chosen as a robust metric to propagate the planar prior hypothesis.
Indeed, it was observed that the plane priors were propagated efficiently; yet,
similar to the semantic PatchMatch method (Chapter 5), intense reflections
would not be overcome, causing errors in prior plane propagation and ambiguous
normal directions, especially under particularly large areas. During preliminary
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experiments, the Bhattacharyya distance of the histograms was also used as
a similarity metric for plane propagation across the quadtree blocks, but its
performance was found to be similar to the absolute distance of the values a and b
while the time efficientcy decreased significantly (ca 5 times slower). Nonetheless,
other perception-related similarity metrics can also be considered in the future
for more robust plane propagation and illumination invariance.

Compared to the semantic PatchMatch, in the quadtree-based method each
quadtree block is assigned directly to its corresponding 3D plane and no closest
plane criterion needs to be used. That being said, the semantic guidance excludes
in an early step the non-planar regions and potentially achieves more reliable
RANSAC hypothesis, while also it efficiently restricts the plane expansion. On the
other hand, the quadtree plane expansion relies on the block size to avoid infinite
plane expansion and erroneous assignment of blocks with similar appearance that
belong to different planes, a case that is often encountered over crease edges
where inevitably small size blocks will be generated. As a matter of fact, the
independence of the a-priori known semantic labels for the scene lead to a more
generic method that can be applied across various domains.

Furthermore, the plane hypotheses generation is performed per single view; a
future direction could be to work toward multi-view plane detection to enforce
hypothesis consistency across the views and potentially generate more reliable
planes.

Runtime performance. For a reference image of 3200 x 2132 pixels, the
processing time for depth map generation is approximately 450 seconds in a
single CPU thread running on 3.5GHz. Given that no GPU optimization is used,
this performance is considered satisfying and feasible to be also implemented
on low computational power devices, although further improvements are to be
investigated.
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This final chapter concludes the work presented in this dissertation by first
presenting a summary of the material discussed previously, followed by a discussion
on the conclusions of the thesis; remarks and future outlook are also briefly
presented. Finally, the overall research framework is introduced along with the
most relevant publications of the author on the topics related to this dissertation.

7.1 Summary

This dissertation focuses on the image-based 3D reconstruction process and
particularly on the multiple view stereo (MVS) part, during which dense 3D
representations of the world are reconstructed. It proposes innovative methods to
integrate prior scene cues in the reconstruction pipeline and confront the challenge
of matching ambiguities that commonly occur in large non-Lambertian surfaces.
The main goal and objectives of the thesis, as defined in Chapter 1, refer to
the development of novel practical approaches toward this end. The proposed
methodologies are integrated into a well-established, open-source framework to
promote usability and reproducibility.

The 3D reconstruction pipeline can be roughly divided into two main parts as
briefly explained in Chapter 1; Structure from Motion (SfM) where the camera
poses and a sparse scene representation are obtained, and Multiple View Stereo
(MVS), which aims to generate dense 3D representations of the scene. Therefore,
this thesis focuses on depth estimation under the MVS scenario. Comprehensive
theoretical background and relative literature review on depth estimation for both
stereo and multi-view scenarios are provided (Chapter 2), whereas an in-depth
survey of the PatchMatch-based methods for depth estimation is also presented
(Chapter 3).

Nonetheless, geometric 3D reconstruction is closely related to scene understanding,
another hot topic in the computer vision research field. Indeed, advanced scene
prior cues can potentially support the efficiency of image-based 3D reconstruction
and vice versa. Semantic reasoning directly in the 3D space is non-trivial mainly
due to the limited availability of training data and the computational complexity;
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on the contrary, algorithms for 2D semantic segmentation are mature enough
to obtain robust results, and the existence of large-scale datasets facilitates the
generalization of the trained models. However, there are few available large-
scale and high-resolution benchmarks. This work introduces a new benchmark
for semantic segmentation for historic building facades, $DOM Semantic Facade,
acknowledging the lack of existing, high-resolution benchmarks for similar purposes.
A straightforward pipeline for training is proposed, and the inference results are
evaluated. Moreover, a new functionality is built upon the open-source MVS
pipeline OpenMVS [Cernea, 2020] to enable label transfer from 2D to 3D, yielding
semantically enhanced point clouds (Chapter 4).

Toward confronting the inevitable matching ambiguities in large, non-Lambertian
surfaces, the obtained semantic maps in the 2D space can be leveraged into
the MVS reconstruction as guidance for more reliable depth estimation. In
particular, such advanced scene priors can indicate important cues for the 3D
scene structure. For instance, parts of the scene with the label “wall” commonly
imply textureless, planar structures. PatchMatch-based algorithms for depth
estimation, although efficient and robust in the presence of slanted surfaces, highly
depend on visual similarity measures that typically fail to reliably recover the
depth due to matching ambiguities. A novel strategy is proposed to guide the
depth propagation in such challenging surfaces; after a few standard PatchMatch
iterations, RANSAC-based plane hypotheses in the 3D space are calculated
from the rough scene reconstruction. Then, a novel, combined cost function is
introduced to adaptively promote more reliable depth estimates across the image
in the subsequent PatchMatch iterations (Chapter 5).

Semantic segmentation on the 2D images has recently been very popular, and a
large variety of benchmark datasets exist for various applications, either indoor,
outdoor, or airborne. However, in real-world applications it is non-trivial to obtain
such semantic cues for every scene; a large amount of additional GT data may
be required, and model training or fine-tuning is often a laborious task. Thus,
an alternative, generic and domain-independent solution is also proposed, guided
only by local textureness cues. Based on quadtree structures, groups of pixels
with similar color attributes are grouped together. Similar to the previous method,
planar hypotheses are extracted and guided by the quadtree blocks, assuming
that such blocks, grouping together large areas of pixels of the same color, belong
roughly to the same plane. The adaptive cost function is also used here to support
PatchMatch propagation (Chapter 6).

7.2 Contributions and concluding remarks

Motivated by the current open challenges in the MV S reconstruction field, the main
goal of this thesis was to answer the research question formed in the introduction
(Chapter 1) regarding integrating advanced scene priors in the MVS process toward
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more complete and accurate 3D reconstruction. To this end, first the necessary
theoretical background was comprehensively studied and the relative research
was exhaustively surveyed. Subsequently, the open challenges were identified and
new practical strategies were proposed. In this direction, several objectives were
defined and successfully undertaken by the respective contributions as outlined in
Section 1.3. The most important contributions along with concluding remarks on
the results are outlined below:

Introduction of a novel benchmark for semantic segmentation of historic
building facades and proposal of an efficient strategy for network train-
ing. The 8DOM semantic Facade, a new high-resolution benchmark for facade
segmentation for historic buildings, was proposed and released to the community;
the benchmark consists of 227 images with respective GT segmentation masks
and defining 5 classes: wall, window, door, sky and obstacle. It is hoped that
this benchmark will further push the limits of research in semantic segmentation
based on deep-learning techniques. To prove the effectiveness and generalization
capability of the benchmark, a straightforward learning process was engineered
based on a U-Net architecture [Ronneberger et al., 2015]. Practical insights
on data preparation and hyperparameter tuning were given, which can also be
useful in solving similar semantic segmentation problems. During inference, the
segmented maps achieved high-score performance metrics as shown in Table 4.4
on the test set and show satisfying generalization on data of different distributions
as shown in Figure 4.10.

Development a new module for robust label transfer and selective
image-based 3D reconstruction integrated in a well-established and
open-source MVS framework. Building upon the OpenMVS library [Cernea,
2020], a new module was developed that integrates the semantic information into
the standard PatchMatch-based 3D reconstruction pipeline. The new functionality
takes as input the corresponding semantic masks for every input image; the
semantic information in inherited in the generated 3D point cloud via label transfer,
directly yielding semantically enhanced 3D point clouds (Figure 4.13,4.14). At
the same time, selective (class-specific) reconstruction is made possible based on
the semantic label of each scene pixel; in this way, the user can reconstruct only
the areas of interest of the scene according to the needs of each application. This
functionality can be generalized in every MVS scenario for which semantic masks
are available.

Proposal of an innovative method to exploit semantic scene cues to
confront the matching ambiguities and improve the overall quality
of the dense point cloud in challenging areas. Employ and integrate
the proposed algorithm in a well-established and open-source MVS
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framework. A novel approach was developed that leverages semantic priors
into the MVS depth estimation; semantically derived planar priors are estimated
and taken into consideration during matching cost calculation in the PatchMatch
iterations. In this way, more reliable depth estimates are spread across the areas
where the matching ambiguities occur, and the final dense point clouds achieve
higher completeness. The new algorithm is integrated in the open-source library
OpenMVS [Cernea, 2020] as an additional functionality. During the experiments
on the ETHS3D benchmark as well as on custom scenes, the proposed algorithm
achieved constantly better results than the baseline method in completeness
as shown in Table 5.1 and 5.2. Given the growing availability on semantically
segmented data, this approach can be implemented in a variety of scenarios,
indoor and outdoor.

Implementation of a non-data-driven, generalized approach based solely
on local structure and texture information to undertake matching am-
biguities and improve the overall quality of the dense point cloud
in challenging areas. Employ and integrate the proposed algorithm
in a well-established and open-source MVS framework. The semantic
PatchMatch approach was further extended to provide robust solutions also in
the absence of explicit semantic cues; instead, guidance based on local texture-
ness information is proposed. Image pixels are organized into groups based on
neighborhood and color similarity using quadtree structures. Quadtree blocks of
similar color are assumed to lie approximately on the same plane. Planar priors
in the 3D space are calculated and leveraged into the score function to promote
more reliable depth estimates. Results on the entire training and test set of the
ETHSD dataset demonstrate the effectiveness of the proposed approach show a
clear improvement in completeness scores with respect to the baseline method as
shown in Tables 6.1 and 6.2 and visually demonstrated in Figure 6.14. To further
prove the applicability of the new method to different scenarios, two additional
custom datasets were considered, on which, similar improvements were achieved
(Table 6.4 and Figure 6.14).

7.3 Outlook

The work of this thesis considers the challenges in multiple view stereo recon-
struction and proposes some novel methodologies for integrating advanced scene
priors in the procedure. First, the generation of semantic scene priors in the 2D
space is investigated using state-of-the-art deep learning approaches (Chapter
4) and proposing a novel benchmark dataset for facade segmentation of historic
buildings. Such priors can be used to generate semantically enriched dense 3D
point clouds (Chapter 4) or to undertake the matching ambiguities problem during
depth estimation (Chapter 5) and obtain accurate, complete, and visually pleasing
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results. A second, more generalized approach was also proposed toward the same
goal, based solely on local structure and texture information and being thus
easily applicable also in case where no semantic masks are available (Chapter 6).
During the latest few years of research for this thesis, several innovative ideas
have been defined, employed and investigated, yet the strategies presented in this
dissertation are the ones that have proven more effective and practical.

3DOM Semantic Facade benchmark. Model training using the proposed
benchmark has demonstrated robustness and generalization ability. However,
a possible extension of the benchmark by adding more GT data and possibly
expand the semantic classes to consider also, e.g., architectural details, pedestrians,
cars, etc. would enable the generalization of the benchmark in a broader field of
application scenarios.

Semantic segmentation strategy. A state-of-the-art network is used for
semantic segmentation, obtaining satisfying results. Recently developed and
upcoming architectures, could, however, achieve higher performance scores and
should thus be investigated for further research.

Label transfer and selective reconstruction. An efficient, straightforward
approach is presented built upon the well-established, open-source library Open-
MVS Cernea [2020]. Following a similar strategy, other state-of-the-art frameworks
may be considered for further research.

Matching ambiguities.

Plane hypotheses in the 3D space. In both proposed methods for treating matching
ambiguities, plane hypotheses are estimated in the 3D space in a RANSAC-based
fashion. First, the rough dense point clouds generated by the initial PatchMatch
iterations are filtered to exclude outliers. Then, an Efficient RANSAC approach is
followed [Schnabel et al., 2007], with adaptive parameters based on the local point
density. The proposed adaptive strategy appears to work efficiently across diverse
datasets and extracted planes are generally robust; however, noisy points may
affect the quality of the resulting prior hypotheses. Moreover, plane detection in
a multi-view formulation instead of independently for each view could potentially
improve the quality of the resulting hypotheses.

PatchMatch propagation scheme. In the proposed approaches for PatchMatch
depth estimation, a sequential propagation scheme is adopted following the baseline
implementation of OpenMVS [Cernea, 2020]. Sequential PatchMatch schemes
are simple to implement and have proven efficient enough for most applications.
However, adaptive checkerboard patterns similar to those proposed in |Galliani



164 Conclusion and outlook

et al., 2015; Xu and Tao, 2019; Zhou et al., 2021] can also be employed to achieve
more robust propagation across larger regions.

Cost function. The proposed compound cost function consists of the basic pho-
tometric consistency term, a textureness coeflicient, and the geometric prior
coefficient; all these terms are combined adaptively to promote reliable depth
and normal estimates and undertake the matching ambiguities in the regions
where the photometric cost alone is not enough. This formulation has proven
robust enough during the experiments, although particularly large and reflective
surfaces cannot always be undertaken efficiently. The integration of additional
terms enforcing geometric consistency can also be beneficial, yielding more reliable
depth estimates and thus less noisy point clouds with higher performance in
accuracy.

Depth filtering and completion. The presented strategies directly integrate scene
priors in the PatchMatch depth estimation. After the first couple of PatchMatch
iterations, plane priors are generated in the 3D space, and the depth and normal
hypotheses for these planes are leveraged into a compound cost function in an
adaptive way to confront the matching ambiguities problem in large textureless or
reflective surfaces. Additional post-processing modules aiming for depth comple-
tion [Kuhn et al., 2019] or extra speckle filtering [Romanoni and Matteucci, 2019|
could also be applied, potentially increasing the performance of 3D reconstruction
in both accuracy and completeness.

Time efficiency.

Semantic segmentation. The proposed strategy for semantic segmentation on
images is time efficient and scalable to the available computational resources,
given that the backbone is EfficientNet |[Tan and Le, 2019]|, a model specifically
designed for efficiency scalability.

2D to 8D label transfer. The integrated module for label transfer from 2D to 3D
and the generation of semantically enhanced point clouds adds practically no
additional computational cost to the standard OpenMVS [Cernea, 2020]| pipeline.

Leveraging scene priors in PatchMatch depth estimation. For the first presented
approach relying on the semantic cues, given that the segmentation masks are
calculated a priory, the additional computational cost refers mainly to the 3D plane
hypotheses estimation. RANSAC is a quite efficient solution, yet the filtering in
the 3D space inevitably adds some extra cost. Similarly, for the quadtree-assisted
plane generation, the calculation of the quadtree structures is straightforward and
efficient; the necessary 3D point filtering, though, is more time-consuming. For
both approaches, a couple of extra PatchMatch iterations are implemented with
the new cost function; yet, PatchMatch converges generally fast adding no severe
cost in the procedure.
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Deep learning methods. In recent years, the tremendous development of
learning-based methods has brought new perspectives to the field of depth es-
timation and reconstruction. The interest of the research community has been
shifted toward such methods; however, for real-world applications, especially in
the photogrammetry domain where typically high accuracy requirements are set,
learning-based methods have limited applicability mainly due to the lack of a
large amount of G'T data for training, their difficulty in generalization and the un-
bearable computational cost. As a matter of fact, current state-of-the-art learning
methods typically employ severe downsampling and have limited performance in
comparison with conventional ones (see also Table 6.3). In the future, considering
the continuous increase of the computational power and the data availability, it
will be more feasible to exploit the applicability of such learning-based methods
in real-world scenarios.

7.4 Research overview

This doctoral dissertation is the result of years of efforts in research on the broader
topic of 3D reconstruction in the fields of photogrammetry and computer vision.
Various methods and algorithms for efficient image-based 3D reconstruction have
been investigated, focusing on the main challenges and potential improvements,
taking advantage of the recent advances in computer vision and machine learn-
ing. An in-depth study of the individual steps of the 3D reconstruction pipeline
has been performed in the past years resulting in several pertinent publications.
In more detail, during the early steps of this thesis, a survey on the available
3D recording techniques has been made [Georgopoulos and Stathopoulou, 2017].
Various capturing techniques combing different sensors and platforms have been
investigated, i.e., using High Dynamic Range Images (HDR) over standard ones
[Kontogianni et al., 2015; Suma et al., 2016] or experimenting with depth sensors
on UAV platforms [Deris et al., 2017]. The efficiency of commercial software imple-
mentations [Stathopoulou et al., 2015; Georgopoulos et al., 2016] and open-source
frameworks [Stathopoulou et al., 2019] in real-world 3D reconstruction scenarios
has been exploited and experimentally evaluated. Moreover, exhaustive research
has been conducted on the state-of-the-art feature detectors and descriptors in
the concept of sparse image matching, experimenting with their applicability and
efficiency over various datasets, e.g., terrestrial or fused airborne and terrestrial
data [Stathopoulou et al., 2019; Gonzalez-Aguilera et al., 2020] using open-source
implementations. That being said, such open-source methods have been of par-
ticular interest for this research work, and the interchangeability between their
file formats and standards has been investigated, aiming for a straightforward
execution of experiments in a combined pipeline on a large scale [Stathopoulou
et al., 2019]. At the same time, an extensive investigation of state-of-the-art
surface reconstruction methods under photogrammetric scenarios has been done,
considering the meshing procedure as a joint part of the image-based 3D recon-
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struction pipeline imposing visibility constraints or as an independent, subsequent
step |Nocerino et al., 2020]. More recently, 3D edge extraction methods have been
explored for enhancing edge details in mesh representations derived from MVS
methods [Stathopoulou et al., 2021a]. Currently, deep learning algorithms for
depth estimation and reconstruction are being investigated, considering monocular
systems [Welponer et al., 2022]. These activities are considered relevant to the
broader topic of 3D reconstruction and have contributed to narrowing down the
problem and set the main objectives of the work, yet are not included directly in
this dissertation.

Eventually, the author’s research has mainly focused on depth estimation in
the MVS scenario. Depth estimation and subsequent reconstruction, both in
stereo and MVS, is a fundamental problem in computer vision and counts many
decades of research since it is a core component of numerous applications. In
the framework of this work, an exhaustive investigation of the existing methods
has been made, and comparative experiments have been performed with well-
known open-source 3D reconstruction frameworks and libraries, mainly the ones
using PatchMatch-based approaches for depth estimation. PatchMatch has been
proven to be more efficient in MVS reconstruction for practical applications
than traditional Markov Random Field (MRF') optimization problems such as
semi-global matching (SGM) and has, therefore, been preferred as a baseline
for this study. Toward optimizing the depth estimation step and the 3D final
output, the leverage of a priori known semantic information into the image-
based 3D reconstruction pipeline has been investigated. In its initial steps, this
research has elaborated on the generation of the a priori data (i.e., the semantic
maps) using learning-based methods for semantic segmentation to improve the
feature matching results and the generation of semantically enriched point clouds
[Stathopoulou and Remondino, 2019a|. Later, the semantic priors have been used
to enable the selective reconstruction of the desired regions and the exclusion of
the unwanted ones [Stathopoulou and Remondino, 2019b|. Finally, an innovative
framework has been introduced to support depth estimation under challenging
scenarios, particularly large textureless and non-Lambertian surfaces, where
commonly matching ambiguities occur. Using high-level scene semantics on
the 2D images, geometric priors are generated to support depth estimation and
reconstruction and promote correct depth hypothesis in such problematic regions.
At the same time, semantic label transfer from 2D to 3D has also been enabled in
the same integrated framework to generate semantically augmented 3D outputs
Stathopoulou et al. [2021b]. Generalizing this idea to generate geometric prior
information independently from the semantic information for the scene, a novel
approach has been proposed based solely on the local textureness. Priors in the
3D space are guided by adaptive quadtree structures on the image to support
depth estimation and reconstruction on large non-Lambertian areas of the scene
Stathopoulou et al. [2022].

The main contributions and the content of this dissertation are primarily based
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on the material published and the expertise gained in the following peer-reviewed
journal articles and conference proceedings:

Confronting matching ambiguities
Journal articles:
e Stathopoulou, E. K., Battisti, R., Cernea, D., Remondino, F., and Geor-

gopoulos, A. Multi view stereo with quadtree-guided priors. ISPRS Journal
of Photogrammetry and Remote Sensing (under review), 2022.

e Stathopoulou, E. K., Battisti, R., Cernea, D., Remondino, F., and Geor-
gopoulos, A. Semantically derived geometric constraints for MVS recon-
struction of textureless areas. Remote Sensing, 13(6):1053, 2021.

3D reconstruction with open-source frameworks

Journal articles:

e Nocerino, E., Stathopoulou, E. K., Rigon, S., and Remondino, F. Sur-
face reconstruction assessment in photogrammetric applications. Sensors,
20(20):5863, 2020.

Conference proceedings:

e Stathopoulou, E. K., Rigon, S., Battisti, R., and Remondino, F. Enhancing
geometric edge details in MVS reconstruction. The International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-
B2-2021:391-398, 2021.

e Stathopoulou, E. K., Welponer, M., and Remondino, F. Open-source image-
based 3D reconstruction pipelines: review, comparison and evaluation. The
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLII-2/W17:331-338, 2019.

Semantic segmentation, label transfer and selective reconstruction
Conference proceedings:
e Stathopoulou, E. K. and Remondino, F. Multi-view stereo with semantic

priors. The International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLI1-2/W15:1135-1140, 2019.
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e Stathopoulou, E. K. and Remondino, F. Semantic photogrammetry — boost-
ing image-based 3D reconstruction with semantic labelling. The Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLII-2/W9:685-690, 2019.

Apart from the aforementioned publications closely related to the topic of this
dissertation, the author has a long publication record in the broader fields of
photogrammetry and computer vision. The following list includes selected publi-
cations mostly relative to data acquisition, sensor fusion, 3D reconstruction and
semantic segmentation:

Journal articles:

e Wang Y., James S., Stathopoulou E. K., Beltran-Gonzalez C., Konishi Y.,
del Bue A. Autonomous 3-D reconstruction, mapping, and exploration of

indoor environments with a robotic arm. IEEE Robotics and Automation
Letters, 4(4):3340-7, 2019.

e Suma R., Stavropoulou G., Stathopoulou E. K., Van Gool L., Georgopoulos
A., Chalmers A. Evaluation of the effectiveness of HDR tone-mapping
operators for photogrammetric applications. Virtual Archaeology Review,
7(15):54-66, 2016.

Conference proceedings

e Welponer, M., Stathopoulou, E. K., and Remondino, F. Monocular depth
prediction in photogrammetric applications. The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLIII-B2-2022:469-476, 2022.

e Remondino, F., Morelli, L., Stathopoulou, E. K., Elhashash, M., and Qin,
R. Aerial triangulation with learning-based tie points, The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLITI-B2-2022:77-84, 2022 (best poster paper award).

e Kyriakaki-Grammatikaki, S., Stathopoulou, E. K., Grilli, E., Remondino,
F., and Georgopoulos, A. Geometric primitive extraction from semantically
enriched point clouds, The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLVI-2/W1-2022:291-298,
2022.

e Gonzéalez-Aguilera, D., Ruiz de Ona, E., Lopez-Fernandez, L., Farella, E. M.,
Stathopoulou, E. K., Toschi, I., Remondino, F., Rodriguez-Gonzalvez, P.,
Hernéndez-Lopez, D., Fusiello, A., and Nex, F. PhotoMatch: An open-source
multi-view and multi-modal feature matching tool for photogrammetric ap-
plications, The International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLIII-B5-2020:213-219, 2020.
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e Deris, A., Trigonis, I., Aravanis, A., and Stathopoulou, E. K. Depth cameras
on UAVs: a first approach, The International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLII-2/W3:231-236,
2017.

e Stathopoulou, E. K., Georgopoulos, A., Panagiotopoulos, G., and Kaliampakos,
D. Crowdsourcing Lost Cultural Heritage, ISPRS Annals of Photogramme-
try, Remote Sensing and Spatial Information Sciences, 11-5/W3:295-300,
2015.

e Kontogianni, G., Stathopoulou, E. K., Georgopoulos, A., and Doulamis, A.
HDR imaging for feature detection on detailed architectural scenes, The
International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL-5/W4:325-330, 2015.

Book chapters

e Georgopoulos, A. and Stathopoulou, E. K. Data acquisition for 3D geo-
metric recording: state of the art and recent innovations. Heritage and
archaeology in the digital age, pages 1-26, 2017.
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