A N
: -,.b(};h
£

QMNE 3
A
\
.
s OPOMHOEVS -
=
VP POpoOs

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScuooL oF ELECcTRICAL AND COMPUTER ENGINEERING

Di1visioN OF INFORMATICS AND COMPUTER TECHNOLOGY

Accelerating Irregular Applications
via Efficient Synchronization

and Data Access Techniques

Doctoral Dissertation

CHRISTINA GIANNOULA

Athens, September 2022

ca 4

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHooL OF ELecTricAL AND COMPUTER ENGINEERING
DiviSION OF INFORMATICS AND COMPUTER TECHNOLOGY

Accelerating Irregular Applications
via Efficient Synchronization
and Data Access Techniques

Doctoral Dissertation

CHRISTINA GIANNOULA

Advisory Committee: Georgios Goumas
Nectarios Koziris
Onur Mutlu

Accepted by the seven-member committee on 27/09/2022.

Onur Mutlu

Gevrgios Goumas ~Nectarios Koziris

ﬁ§§0§i&fe Professor NTUA Profefsor NTUA Professor ETH Zurich
e Zf;,. N :
2

i ‘D’s’?ﬁlﬁv .‘kat{))s"
meigsar NTUA T

" 2
§ Vasileios Papaefstathiou

sor University of Athens Assistant Professor University of
Crete

Athens, September 2022

CHRISTINA GIANNOULA
Doctor of Electrical and Computer Engineer, NTUA

Copyright © CHRISTINA GIANNOULA, 2022
All rights reserved.

Copying, storage and distribution of this work, in whole or part of it, is prohibited for commercial purposes.
Reproduction, storage and distribution for the purpose of non-profit, educational or research nature, is allowed
provided that the source of origin is mentioned and the copyright message is maintained. Questions concerning

the use of this work for commercial purposes should be addressed to the author.

The views and conclusions contained in this document reflect the author and should not be interpreted as

representing the official position of the National technical University of Athens.

To my loving parents, Maria and Christoforos.

2 Touvg ayamnuévovg pov yoveig, Mapia xou Xpiotépopo.

Acknowledgments

This doctoral thesis is the culmination of five and half years of hard work throughout my PhD studies.
My PhD journey was a significant source of learning and growth for me both professionally and
personally. There have been many who have supported me and contributed in different ways. These

acknowledgments comprise a brief and humble attempt to thank their invaluable contributions.

First and foremost, I wholeheartedly thank my advisors, Prof. Georgios Goumas, Prof. Nectarios
Koziris, and Prof. Onur Mutlu. I am very grateful to Prof. Georgios Goumas for helping me to find and
follow a very interesting research direction for me, supporting and advising me with great patience
and tolerance, motivating me to work on the fields of high-performance computing and computer
architecture and providing me a very comfortable, safe and stimulating environment to grow. I also
thank him for being open to my collaborations with researchers from other institutions. I am ex-
tremely grateful to Prof. Onur Mutlu for his generous guidance, resources and opportunities which
constitute the key to my professional growth, success and research achievements. I thank him for
giving me the invaluable opportunity to work with him and his research group, providing rigorous
feedback to my paper submissions and talks, teaching me how to think critically, write comprehen-
sively, and perform impactful research. His motivation for top-notch research and his passion for
excellence were a constant source of inspiration and have significantly shaped my research mindset
and personality. I am grateful to Prof. Nectarios Koziris for giving the opportunity to be a member
of his research laboratory, inspiring me with his incredible passion for teaching and working in the
field of computer architecture, as well as his continuous support and the encouraging environment
he has provided. My advisors’ influence and constant encouragement provided real-life lessons and

shaped my personality as a researcher, scientist and engineer.

I thank my committee members, Dionisios Pnevmatikatos, Stefanos Kaxiras, Dimitris Gizopoulos,
and Vasileios Papaefstathiou for supervising this thesis. Their feedback and suggestions were valuable

to improving my doctoral thesis and its constituent works.

I am grateful to Nandita Vijaykumar for being a great mentor and encouraging me to become a
strong and independent researcher. During my visit at the SAFARI research group of ETH Zurich,
Nandita helped me to stay motivated, taught me how to find the right research problem to work on
and how to perform quality research. I also wholeheartedly thank Athena Elafrou, Foteini Strati,
Ivan Fernandez and Thomas Lagos for being my closest collaborators and friends throughout PhD
studies and the many long hours of brainstorming and stimulating discussions. I am very grateful
for their endless support, valuable feedback, kindness, positivity, and confidence in myself, as well as
our invaluable synergy and friendship.

Furthermore, I thank all the CSLab group members for being great colleagues, supporting my
research and enabling a productive working environment. I want to especially thank Kostis Nikas,
Vasileios Karakostas, Nikela Papadopoulou and Dimitris Siakavaras for providing significant intel-
lectual and technical support in my research contributions and willingly sharing their expertise with
me. I am grateful to all the students and mentees who worked closely: Foteini Strati, Athanasios
Peppas, and Thrasyvoulos-Fivos Iliadis. Their work significantly helped me in completing my PhD
thesis.

I am immensely grateful to all the members of the SAFARI research group for creating a rich, stim-
ulating and highly motivating research environment. During my visit at the SAFARI research group,
I realized that innovative research can vastly benefit from close collaboration among the group mem-
bers. The valuable advice of the SAFARI group members, consisting of concrete guidelines and useful
methodologies, helped me to work effectively and efficiently and stay focused in tackling my research
obstacles. I want to especially thank Juan Gomez-Luna, Lois Orosa, Konstantinos Kanellopoulos and
Nika Mansouri-Ghiasi for their rigorous feedback and criticism on my progress and research, their
friendship, their technical and intellectual suggestions, as well as for generously sharing their deep
knowledge on the field of computer architecture with me.

I gratefully acknowledge financial support from my PhD scholarships. Specifically, it was a great
honor for me to receive a PhD Fellowship (October 2017 - March 2020) from the General Secretariat for
Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI)
and a PhD award (September 2021 - October 2022) funded by the Foundation for Education and
European Culture (IPEP).

I am immensely grateful to my friends for their support, companionship and patience. I want to
particularly thank Katerina Bogiatzoglou, Konstantina Kada, Vicky Routsi, Orestis Alpos, Stamatios
Kourkoutas, Stamatios Anoustis, Artemis Zografou, Marina Gourgioti, Katerina Tsesmeli, Isidora
Tourni, Athina Kyriakou, Foteini Strati, and Thomas Lagos for our endless conversations, countless
laughs, fun nights out and beautiful trips and excursions that were the best discharge from the hard
work that I did during my PhD studies.

Last but not least, I am tremendously blessed and would like to express my profound gratitude to
my parents, Maria and Christoforos, and my sister, Chara, for their unconditional love and endless
encouragement throughout my PhD journey, as well as their valuable support to pursue my academic
dreams. I thank my mother for continuously supporting each and every step of this journey. I thank

my father for always believing in myself and for helping me with his optimism to pursue my dreams.

I thank my sister for her valuable support and patience throughout my PhD studies. This dissertation
would not be possible without them. I will be forever grateful to my loving family for the dedication,

support, patience, love and opportunities they have given me.

[IepiAnym

Ot pn-*avoviréG ePapPHOYEG, OIS OL EPOPHOYESG emeEepyaoiog YpaPwV, TUPAAANA®Y Sopdv de-
SOHEVOV HaL ETIALONG APALOV YPOAPIIUOV CUCTNHATOVY, ATTOTEAOVV Hid OTO TIG TILO OTHOAVTIXEG
OLUOYEVELEG LTTOAOYLOTIUOV EPUPHOYDV OTLG HEPES HOG. UG ATOTEAEGHN, TTOAAOL EPELVNTEG EXOLV
peAetrioel xou Tpoteivel TexVinég PEATIOONG TNG ETIO0ONG KAL TNG EVEPYELOUNG HATAVAAWDGCNG TV
H1-XOVOVIXOV EPUPHOYDOV G GUYXPOVEG TTOAVTTUPTVEG OPYLTEUTOVIHES. € ALTNV TNV SLdanTopLKN
dratpiPn evromifovpe d0O GNHAVTIKEG TTPOMANCELS G€ ALTH TNV OKoYEvela epappoyav. Ilpatov,
OL TTOLPAAANAES HI-HAVOVIHEG EQAPHOYES elval SVGHOAD VAL HALLOUDGTOUVV Y PTCLHOTOLOVTAS EVX E-
YOAO apldpd VNHATOV AOY® TOL LYNAOD XOGTOVG GUYXPOVIGHOD HETRED TV VUATWV. AgbTtepov,
OL H1-KOVOVIUEG EQOUPHOYES epPavilovy ToAVTAOKa poTifa TpdoPacng Twv dedopévwy T Pvhpn,
HOL XOUNAT] DVTTOAOYLOTIXT) ILOVOTNTAL, e ATTOTEAETHA €TTLO0CT) TOVUG TTEPLOPLLETOL CNHAVTIUA ATTO TLG

damavnpég mpocPacelg dedopévav ot Pvrpn.
Avtr 1 ddantopny dwaxtplPr) mpaypartomotel pio 1 PAdog avaAvon TG HAHOHOOIHOTNTOG

TWV HI-XAVOVIUOV EPUPHOYDOV KoL AVadEUVDEL T KLUPLOTEPXL TTPOPANHOTA £TTEOOOTC TOVS. e ALTHV
Vv ddontopur) datpiPr) vtosTNPIlovpe OTL ATOJOTINEG TEXVINEG GUYXPOVIGHOD TV TAPIAANAWV
VATV ce cuvepyaoio pe PeATioTomolnpéveg Texvinég dloxeiplong dedopévwv 1060 oe enimedo
AOYLOHIHOD OGO Ko G€ €ined0 LAKOD TPOGPEPOLY VYNAT HALLOUWSIHOTNTO KL CHOVTIHT ETid0-
OT OTIG UIN-XOVOVIXEG EPAPHOYES. QG ex TOUTOU, TTPOTELVOUpE 4 SLAPOPETIUEG TPOCEYYICELS YLt
TNV EMLTAYVVOT] HI-KOVOVIUOV EQPUPHOYDV € SlopopeTind mepifarlovta, cupmeptAopPovopévav
TV ®OW®V TOALTOPN VOV CPU apyLTEXTOVIHOV KoL TOV OPXLTEXTOVIXGV e emeepyacio *OVTR OTN)
pvApn (Processing-In-Memory): (a) ColorTM: "Evag véog mopdAAnAog adyopidpog xpwpatiopot
ypapwv yiox molvmvpnveg CPU apyitextovinég mov mpoteivel pior amodotinn texviur dioxeipiong
dedopévwv, 1 omoiot cLVSLALETUL APHOVIXA HE TO HNYAVIORO GLYXPOVIOROV oe emimedo LAWoU, (B)
SmartPQ: Mia mtop&AANAn ovpd mpotepaldTNTAS TOL evaAldooetor duvopud peta€d dvo alyo-

PLIHIKOV CYXNHATOV, o expeTaAAeDeTOL TNV TOTUOTN T deSOPEVWV pe GHOTTO va emiTevyJel LYNAT

ar6docT LTTO SLAPOPETIUA GEVAPLAL CUHPOPTOTG O OPYLTELTOVIMEG HE OALVOHOLOPOPYT) TTPpocPao
otn pviun (NUMA), (y) SynCron: "Evag mpontindg pnxoviopog cuyxpoviopot ot eninedov vAkol
YLot LpXLTEXTOVIKEG e emeEepyaaio XOVTA GTH pvipn, xat (O) SparseP: Mia BipAtodrinn adyopidpwv
TOL LTTOAOYLGTIXOV TLPTVA TOV TOAAATAXCLAGHOD apaloD Tivoua pe SLEVLUCHX, 1) oTTolo TePLAL-
Bovel pio peyddn mowidior roTeEAECPATIHGOV TEXVIHOV JLopEPLOTG OESOUEVHOV KAl GUYXPOVIGHOD YLot
OPYLTELTOVIHEG HE ETTEEEPYNT IO HOVTA GTT) PLVIILT).

JvvoAwd, otnv mapovca didoutopnn] daTpiPr] amodeuvOoupe OTL 1) EXTEAECT] HI-HOVOVIHADV
LITOAOYLOTKOV TTUPHVLV o€ TTOALTTOPNVEG CPU apyLTEXTOVINEG KOl PYLTEXTOVINEG He emeEepyaaia
XOVTQ OTI VI PITopel var emToyLVIEL e TO GUV-CXESLAGHO ATTOJOTIHMOV UNXOVICH®OV GUYXPOVL-
opo0 pe PeAtiotomotnpéveg texvinég tpooPaong ot Stayeipiong dedopévav, tapéxovtag EToL LYNAG
entimeda mopoaAAnAopo?, xapnho xdotog tpocPacng ot dedopéva uat YapnAd ®0GTOG GLYXPOVL-
OHOU yloe TNV VYNAT emtidoot) xo T XopnAT) evepyeloun xatavalwor tov cvotnpatos. EAmilovpe
otL 1 Tapovoa StatpiPr) Yo epmtvedoeL HLEAAOVTIXT €PELVAL GTO GUV-OYESIAGHO [T)-KAVOVIXOV VITOAO-
YIOTIXOV TTUPHVWV Pe GOYXPOVEG LITOAOYLOTINEG TAATPOPHES YIO VA eTTLTELY el LYMAT) enidoon xa

XOUNAT) EVEPYELOUT) HATAVAAWGCT] € AVUOVOUEVES EPOAPLOYEC.

AgEerg-Kherdrd: Mn-Kavovuég Epappoyég, Zvyypoviopog, BeAtiotomonpéveg Texvinég IpocPa-

ong ota Aedopéva, IoAvmopnva Zvotnpata, Apyitextovinég pe Eme€epyacio Kovta otn Mviun

10

Abstract

Irregular applications comprise an increasingly important workload domain for many fields, includ-
ing bioinformatics, chemistry, graph analytics, physics, social sciences and machine learning. There-
fore, achieving high performance and energy efficiency in the execution of emerging irregular appli-
cations is of vital importance. While there is abundant research on accelerating irregular applications,
in this thesis, we identify two critical challenges. First, irregular applications are hard to scale to a
high number of parallel threads due to high synchronization overheads. Second, irregular applica-
tions have complex memory access patterns and exhibit low operational intensity, and thus they are

bottlenecked by expensive data access costs.

This doctoral thesis studies the root causes of inefficiency of irregular applications in modern com-
puting systems, and aims to fundamentally address such inefficiencies, by 1) proposing low-overhead
synchronization techniques among parallel threads in cooperation with 2) well-crafted data access
policies. Our approach leads to high system performance and energy efficiency on the execution
of irregular applications in modern computing platforms, both processor-centric CPU systems and

memory-centric Processing-In-Memory (PIM) systems.

We make four major contributions to accelerating irregular applications in different contexts in-
cluding CPU and Near-Data-Processing (NDP) (or Processing-In-Memory (PIM)) systems. First, we
design ColorTM, a novel parallel graph coloring algorithm for CPU systems that trades off using
synchronization with lower data access costs. ColorTM proposes an efficient data management tech-
nique co-designed with a speculative synchronization scheme implemented on Hardware Transac-
tional Memory, and significantly outperforms prior state-of-the-art graph coloring algorithms across
a wide range of real-world graphs. Second, we propose SmartPQ, an adaptive priority queue that
achieves high performance under all various contention scenarios in Non-Uniform Memory Access
(NUMA) CPU systems. SmartPQ tunes itself by dynamically switching between a NUMA-oblivious

and a NUMA-aware algorithmic mode, thus providing low data access costs in high contention sce-

11

narios, and high levels of parallelism in low contention scenarios. Our evaluations show that SmartPQ
achieves the highest throughput over prior state-of-the-art NUMA-aware and NUMA-oblivious con-
current priority queues under various contention scenarios and even when contention varies during
runtime. Third, we introduce SynCron, the first practical and lightweight hardware synchronization
mechanism tailored for NDP systems. SynCron minimizes synchronization overheads in NDP sys-
tems by (i) adding low-cost hardware support near memory for synchronization acceleration, (ii)
directly buffering the synchronization variables in a specialized cache memory structure, (ii) imple-
menting a hierarchical message-passing communication scheme, and (iv) integrating a hardware-only
overflow management scheme to avoid performance degradation when hardware resources for syn-
chronization tracking are exceeded. We demonstrate that SynCron outperforms prior state-of-the-art
approaches both in performance and energy consumption using a wide range of irregular applica-
tions, and has low hardware area and power overheads. Fourth, we design SparseP, the first library for
high-performance Sparse Matrix Vector Multiplication (SpMV) on real Processing-In-Memory (PIM)
systems. SparseP is publicly-available and includes a wide range of data partitioning, load balancing,
compression and synchronization techniques to accelerate this irregular kernel in current and future
PIM systems. We also extensively characterize the widely used SpMV kernel on a real PIM archi-
tecture, and provide recommendations for software, system and hardware designers of future PIM
systems.

Overall, we demonstrate that the execution of irregular applications in CPU and NDP/PIM ar-
chitectures can be significantly accelerated by co-designing lightweight synchronization approaches
along with well-crafted data access policies. This dissertation shows that efficient synchronization
and data access techniques can provide a high amount of parallelism, low-overhead inter-thread com-
munication and low data access and data movement costs in emerging irregular applications, thus sig-
nificantly improving system performance and system energy. This doctoral thesis also bridges the gap
between processor-centric CPU systems and memory-centric PIM systems in the critically-important
area of irregular applications. We hope that this dissertation inspires future work in co-designing
software algorithms with cutting-edge computing platforms to significantly accelerate emerging ir-

regular applications.

Keywords: Irregular Applications, Synchronization, Efficient Data Access Techniques, Multicore

Systems, Processing-In-Memory Architectures

12

Contents

(1 Extetapevn llepiAnyn

| otnv EAAnvien 'l\wooof 29
(1.1 YynAa Kootn 2vyyxpovicpov kot Ilpocfacewv atn Mvnun IlepiopiCovv tnv Emtidoon |

| twv Mn-Kavovirwv Egoppoyoy| . . . o o o oo 31
(1.2 HIIpocéyyion Mag: Amodotineg Texviuneg Xvyyxpoviopoo xat IIpospacng ota Aedo- |

| peva Emitoydvoov |
| Tic Mn-Kavovueg Epappoyeg) o o oL 33
(1.3 ©éon tng Awdotopuenc AtotptPngl. Lo 35
(1.4 Xvveiopopa Tng Awontopwng Alatping oo oo oo 35
[1.4.1 ColorTM [1-3]: "Evac HapdAAniog Alydpwipoc Xpwpotiopot Ipdowy pe |

| YynAn KApoxwopotnta oe IloAvmtopnveg ApYLTEXTOVIHES 35
(1.4.2 SmartPQ [4]: Mioe Avvopixn HoparAnAn Ovpa Ilpotepatotntag yio Apyite- |

| ntovieg pe Avopolopopon IlposPaon otn Mvigun (NUMA) 38
[1.4.3 SynCron [5]: "Evag Amodotinds Mnyoviopog Xuyxpoviopov yiow ApYLTEXTO- |

| vireg pe Eme€epyacio Kovta ot Mviun (Near-Data Processing)| 41
[1.4.4 SparseP [6-10]: Mio BipAtodnxn AAyopldpwv Tov YroAoyiotikoo [upnva |

| tov IToAAamAaciocpot Apatot Ilivoxa pe Aluvoopo yiow ApYLTEXTOVIKEG e |
| Eneepyoacia Kovta otn Mvnun (Processing-In-Memory)[. 44
(1.5 TeAwa Svpmepacpata Tng Atdortopng AlxTpipigl. « . . o o o oo 49

2 Introductionl 51

[2.1 Motivation: Excessive Synchronization and High Memory Intensity Degrade the Ex-

ecution of Irregular Applications|.o oo

[2.2 Our Approach: Efficient Synchronization and Data Access Techniques for Irregular |

| Applications| 55
221 Thesis Statementl 57

23 Overviewof QurResearchl 57
[2.3.1 ColorTM [[153]: High-Performance and Balanced Parallel Graph Coloring on |

| Multicore CPU Platforms (Chapter3)[. 57
[2.3.2 SmartPQ [4f]: An Adaptive Concurrent Priority Queue for NUMA CPU Archi- |

| tectures (Chapter)(. 58
[2.3.3 SynCron [5]: Efficient Synchronization Support for NDP Architectures (Chap- |

| ter|B)] e e 59
[2.3.4 SparseP [6-9,11]]: Towards Efficient Sparse Matrix Vector Multiplication on |

| Real PIM Architectures (Chapterf6)] 60
2.4 Contributions| 61
5 Outling 63

3 ColorT™M 65
BI _Overviewl. e 65
[3.2 Prior Graph Coloring Algorithms| 0 L. 68
[3.2.1 The Greedy Algorithm| 68

[3.2.2 Prior Parallel Graph Coloring Algorithms| 68

[Ihe SeqSolve Algorithm| 0 L. 69

[Ihe IterSolve Algorithm| o 0 L. 70

[Ihe IterSolveR Algorithm| 71

[3.2.3 Prior Balanced Graph Coloring Algorithms| 72

[Ihe Color-Centric (CLU) Algorithm|. 73

[Ihe Vertex-Centric (VFF) Algorithm| 74

[Ihe Recoloring Algorithm|0 .. 75

3.3 ColorTM: OVeIVIEW] o v v v v v i it e e e e e e e e e e e 77
[3.3.1 Speculative Computation and Synchronization| 77

[3.3.2 Eager Coloring Contlict Detection and Resolution|. 78

[3.4 ColorTM: Detailed Design|. 79
[3.4.1 Speculative Synchronization viaHTM| 79

[3.4.2 Critical Adjacent Vertices| 82

[3.4.3 Implementation Details| 83

[3.4.4 Progress and Correctness| 85

[3.4.5 The BalColorTM Algorithm| 87

[3.5 Evaluation Methodology| 88
B.6_Evaluationl 88
[3.6.1 Analysis of Parallel Graph Coloring Algorithms| 88
[Analysis of the Coloring Quality| 89

14

[Performance Comparison|, 90

[Analysis of ColorIM Execution| 93

[3.6.2 Analysis of Balanced Graph Coloring Algorithms| 96
[Analysis of Color Balancing Quality] 96
[Performance Comparison| 97

[Analysis of BalColorTM Execution| 101

[3.6.3 Analysis of a Real-World Scenario|. 101
B.7_Recommendations| 105
B.8 RelatedWorkl. 106
[3.9 Summary|. 108
4 SmartPQ 109
41 OVEIVIEW! o v o it et e e e e e 109
[4.2 NUMA Node Delegation (Nuddle)| 112
421 OVEIVIEW] v v vttt e e e e e e e e e e 112

{4.2.2 Implementation Details| 113

[4.3 SmartPQ| 116
[4.3.1 Selecting the AlgorithmicMode|. 117

[Ihe Need for a Machine Learning Approach| 117
Decision Tree Classified 118

{4.3.2 Implementation Details| 119

[4.4 Experimental Evaluation| o 121
{4.4.1 Throughputof Nuddle] 122

{4.4.2 Throughput of SmartPQ| 124
[Classifier Accuracy| 124

[Varying the Contention Workload] 124

4.5 Discussion and Future Work|o oo oo oo 127
4.6 Recommendations| 127
47 RelatedWorkl. 128
[4.8 Summary|. 129
5 nCro 131
Bl OVErVIEW] o o o e e e e e 131
[5.2 Background and Motivation| o Lo 134
.21 Baseline Architecturel. L 134

[5.2.2 The Solution Space for Synchronization| 135
[Synchronization via Shared Memory| 135
[Message-passing Synchronization|. 136

[5.3 SynCron: Overview| e 137
[5.3.1 Overview of SynCron 137

[5.3.2 SynCrom’s Operation| 138

[5.4 SynCron: Detailed Design| 139
[5.4.1 Programming Interface and ISA Extensions| 139
emory ConsIStency|. L. 140
Memory Yl
essage Encoding| 141
Messag g
5.4.2 Synchronization Engine (SE)[. o L. 142
y g
[Synchronization Processing Unit (SPU)|. 142
[Synchronization Table (ST)[. 142
[[ndexing Counters| 143
[Control Flow in SEl 143
[5.4.3 Overflow Management| 143
[SynCron’s Synchronization Variable| 144
(Communication Protocol between SEs| 144
5.44 SynCron Enhancements| 145
Y
[RMW Operations| 145
LockFairness o oo vt 145
4. omparison with Prior Worklo 1
545 Compari ith Prior W 46
4. se of S5ynCron in Conventional Systems|
5.4.6 Use of SynCronin C ional S 146
. ethodology|.
5.5 Methodolog 147
bG.6_Evaluationl 150
[5.6.1 Performancel. 150
[Synchronization Primitives| 150
[Pointer-Chasing Data Structures| 150
[Real Applications| 152
[5.6.2 Energy Consumption|. L oL 153
063 DataMovementl. L L 153
.6. on-Uniformity o stems| 1
5.6.4 Non-Uniformity of NDP Sy 54
1 ontention| Lo e 1
igh C 1 54
Low Contentionl. 154
[5.6.5 ~Memory Technologies| 155
b.6.6 EffectofDataPlacementl L L. 156
[5.6.7 SynCron’s Design Choices| 156
terarchical Design|lo o o 156
H g
ST Sizel. . . . o e 158
[Overtlow Management| 158
[5.6.8 SynCron’'s Area and Power Overhead| 159
5.7 Recommendations| 160
6.8 Related WorKl. 161
[5.9 Summary|. e 162

0.1 OVEIrVIEW] o o e e e e e 163
[6.2 Background and Motivation| oo o oL 167
[6.2.1 Sparse Matrix Vector Multiplication (SpMV)| 167
[Compressed Matrix Storage Formats| 167

[SpMV 1 Processor-Centric Systems| 168

[6.2.2 Near-Bank PIM Systems| 169

(Ihe UPMEM PIM Architecturel 169

[6.3 The SparseP Library| 170
[6.3.1 SpMV Execution ona PIM System| 170

[6.3.2 Overview of Data Partitioning Techniques| 171

[6.3.3 Parallelization Techniques Across PIM Cores| 172

(1D Partitioning Technique| o Lo 172

[2D Partitioning Technique| 173

[6.3.4 Parallelization Techniques Across Threads within a PIM Core| 174
[Load Balancing Approaches| 175
[Synchronization Approaches| 0 . 176

[6.3.5 Kernel Implementation|.o oo 176

[6.4 Evaluation Methodology| L. 178
[6.5 Analysis of SpMV Execution on One DPU| 179
[6.5.1 Load Balancing Schemes Across Tasklets of One DPU| 179

[6.5.2 Analysis of Compressed Matrix Formats on One DPU| 181

[6.6 Analysis of SpMV Execution on Multiple DPUs| 183
[6.6.1 Analysis of SpMV Execution Using 1D Partitioning Techniques| 183
[Analysis of Kernel Time| 183

[Analysis of End-To-End SpMV Execution| 187

[6.6.2 Analysis of SpMV Execution Using 2D Partitioning Techniques| 189
[Sensitivity Studies on 2D Partitioning Techniques|. 189

[Analysis of Compressed Formats| 194

[Comparison of 2D Partitioning Techniques| 195

[6.6.3 Comparison of 1D and 2D Partitioning Techniques| 196

[6.7 Comparison with CPUsand GPUs| 198
[6.7.1 Performance Comparison| 198

[6.7.2 Energy Comparison| 200
073 Discussionl. oL 201

[6.8 Key Takeaways and Recommendations| 201
6.9 RelatedWorkl. 203
[6.10 Summary|. e e e e e 205

[7.1.1 Accelerating Irregular Applications in Unconventional Systems| 209

[7.1.2 Adaptive Algorithmic, System-Level and Hardware-Based Approaches for Ir-

| regular Applications| oo o 212
(7.2 Concluding Remarks| 214
8__Other Works of the Author] 215
9 Appendix Al 217
[9.1 Extended Results for SparseP| 217
[9.1.1 Synchronization Approaches in Block-Based Compressed Matrix Formats| . . 217

[9.1.2 Fine-Grained Data Transfers in 2D Partitioning Techniques| 218

[9.1.3 Effect of the Number of Vertical Partitions Using Two Difterent UPMEM PIM |

Systems| e 219

[9.1.4 Performance of Compressed Matrix Formats Using 2D Partitioning Techniques|219
[9.1.5 Analysis of 1D- and 2D-Partitioned Kernels in Two UPMEM PIM Systems| . . 221

[9.2 Arithmetic Throughput of One DPU for the Multiplication Operation| 223
[9.3 The SparseP Software Package| 225
[9.4 Large Matrix Dataset| 226
10 Glossary 227

18

List of Figures

[2.1 (a) Dense Matrix Vector Multiplication using three parallel threads. (b) Sparse Matrix |
| Vector Multiplication with a coarse-grained parallelization strategy among three par- |
| allel threads. (c) Sparse Matrix Vector Multiplication with a fine-grained paralleliza- |
| tion strategy among three parallel threads. The colored cells of each matrix represent |
| non-zero elements) L 53

[2.2 An example SpMV execution on the first four rows of a sparse 9 X9 matrix with only |
| 10 non-zero elements. The execution steps are performed at a row granularity. The |
| colored cells of the matrix with purple color represent non-zero elements, and the |
| colored cells of the input vector represent the elements of the input vector that are |
| processed/accessed at each executionstep.| L. 54

[3.1 The Greedy algorithm| o o o 68

[3.2 The SeqSolve algorithm.|. 69

[3.3 The IterSolve algorithm/.o 70

[3.4 'The IterSolveR algorithm.. oo 72

(3.5 The CLU algorithm, 73

[3.6 'The VFF algorithm. 74

[3.7 The Recoloring algorithm.| 0 ... 76

[3.8 A Naive Approach. 77

B9 __ColorTM: Overviewl] 78

[3.10 An example execution scenario in which threads 7’1 and 7™ attempt to concurrently

find colors for the vertices v and z, respectively, using a) HTM and b) fine-grained

locking for synchronization. The white circles represent uncolored vertices, and the

colortul circles represent vertices that have already obtained a color|. 80

19

B11

An example execution scenario in which threads /'l and 12 attempt to concurrently |

update the colors of the vertices v and u respectively, using two different transactions, |

circles represent uncolored vertices, and the colorful circles represent vertices that |

have already obtainedacolor| 81

B12

An example execution scenario in which the graph is partitioned across two parallel

sent vertices that have already obtained a color. When the threads /'l and 12 attempt

|
threads. The white circles represent uncolored vertices, and the colortul circles repre- |
|
|

to color the vertices v and u, respectively, the critical adjacent vertices that need to be

validated within the critical section (HTM) are only the vertices u and v, respectively| 83

B13

The ColorTM algorithm,. 84

3.14

‘The BalColorTM algorithm.| 86

315

Scalability achieved by all parallel graph coloring implementations in large real-world |

graphs. [. 91

B.16

Speedup achieved by all parallel graph coloring implementations over the sequential |

Greedy scheme in large real-world graphs using all cores of one socket (14 threads), |

all cores of two sockets (28 threads), and the maximum hardware thread capacity of |

our machine with hyperthreading enabled (56 threads).|. 92

317

Speedup achieved by all parallel graph coloring implementations over the sequen- |

tial Greedy scheme in large real-world graphs using the maximum hardware thread |

capacity of an Intel Broadwell server with hyperthreading enabled (88 threads)| . . . 93

[3.18

Abort ratio exhibited by ColorTM in all large real-world graphs.|. 94

3.19

Breakdown of different types of aborts exhibited by ColorTM in real-world graphs.|. . 95

3.20

Distribution of color class sizes produced by ColorTM and all our evaluated balanced |

graph coloring schemes. Note that small color class sizes result in reduced parallelism |

in the real-world end-application|o oL 98

B.21

Scalability achieved by all balanced graph coloring implementations in large real- |

world graphs| 99

3.22

Speedup achieved by all balanced graph coloring implementations over the CLU scheme |

in large real-world graphs using all cores of one socket (14 threads), all cores of two |

sockets (28 threads), and the maximum hardware thread capacity of our machine with |

hyperthreading enabled (56 threads). | 100

323

Speedup achieved by all balanced graph coloring implementations over the CLU scheme |

in large real-world graphs using the maximum hardware thread capacity of an Intel |

Broadwell server with hyperthreading enabled (88 threads)| 100

.24

Abort ratio exhibited by BalColorTM in all large real-world graphs.| 101

20

3.25

Scalability of the end-to-end Community Detection execution achieved by (i) the

Grappolo [12] parallelization approach of the Louvain method (SimplCD) and (ii) the

chromatic scheduling parallelization approach with ColorTM (ColorTMCD) and (iii)

the chromatic scheduling parallelization approach with both ColorTM and BalCol-

orTM (BalColorTMCD) in large real-world graphs.|

103

3.26

Speedup of the actual kernel of the Community Detection execution achieved by (i)

SimpleCD (D), (i1) ColorTMCD (C) and (ii1) BalColorTMCD (B) in large real-world

graphs using all cores of one socket (14 threads), all cores of two sockets (28 threads),

and the maximum hardware thread capacity of our machine with hyperthreading en-

abled (56 threads).|

327

Speedup breakdown of the end-to-end Community Detection execution achieved by

(1) SimpleCD (D), (ii) ColorTMCD (C) and (iii) BalColorTMCD (B) in large real-world

graphs using all cores of one socket (14 threads), all cores of two sockets (28 threads),

and the maximum hardware thread capacity of our machine with hyperthreading

enabled (56 threads).|

A1

‘Throughput achieved by a NUMA-oblivious [13}/14| and a NUMA-aware [15] priority

queue, both initialized with 1024 keys. We use 64 threads that perform a mix of insert

and deleteMin operations in parallel, and the key range is set to 2048 keys. We use all

NUMA nodes of a 4-node NUMA system, the characteristics of which are presented

2

High-level overview of SmartPQ. SmartPQ dynamically adapts its algorithm to the

contention levels of the workload based on the prediction of a simple classifier|. . . .

43

High-level design of ffwd [15|]] and Nuddle. Nuddle locates all server threads at the

same NUMA node to design a NUMA-aware scheme, and associates each of them to

multiple client thread groups. Nuddle uses the communication protocol proposed in

FWATITT] - o o o o e

A4

Helper structures of Nuddle|

A6

113

Functions used by server threads and client threads to perform operations using Nuddle.|116

%

‘Throughput achieved by Nuddle (using 8 server threads) and its underlying NUMA-

oblivious base algorithm, i.e., alistarh_herlihy [13,|14], when we vary (a) the number

of threads that perform operations in the shared data structure, and (b) the key range

| of theworkloadl 117
[4.7a Varying the number of threads,| 117

[4.7b Varying thekeyrange|.o 117

[4.8 'The modified code of Nuddle with the decision-making mechanism to implement |
SmartPOQJ 120

21

22

[4.9 Throughput of concurrent priority queue implementations. The columns show dif- |
ferent priority queue sizes using the key range of double the elements of each size. |

‘The rows show different operation workloads. The vertical line in each plot shows |

the point after which we oversubscribe software threads to hardware contexts.|. . . . 123

[4.10 Throughput achieved by SmartPQ, Nuddle and its underlying base algorithm (alis- |
tarh_herlihy), in synthetic benchmarks, in which we vary a) the key range, b) the |
number of threads that perform operations in the data structure, and c) the percent- |

age of insert/deleteMin operations in the workload.| 125
[4.10a Varying the keyrange|. o oo 125
[4.10b Varying the number of threads,| 125
[4.10c Varying the operation workload,| 000, 125

[4.11 Throughput achieved by SmartPQ, Nuddle and its underlying base algorithm (alis- |
tarh_herlihy), in synthetic benchmarks, in which we vary multiple features in the |

| contention workload) 126
[>5.1 High-level organization of an NDP architecture.| 134
[5.2 Slowdown of a stack data structure using a coherence-based lock over using an ideal |
zero-cost lock, when varying (a) the NDP cores within a single NDP unit and (b) the |
number of NDP units while keeping core count constantat 60, 136

[5.3 High-level overview of SynCron| L. 138
[5.4 An example execution scenario for a lock requested by all NDP cores.|. 139
[5.5 Message encoding of SynCron.| oo o 141
[5.6 The Synchronization Engine (SE).| 142
[5.7 Synchronization Table (ST) entry| o o L. 142
6.8 ControlflowinSEl 143
[5.9 Synchronization variable of SynCron (syncronVar),|. 144
[5.10 Speedup of difterent synchronization primitives.| 150
[5.11 Throughput of pointer-chasing using data structures| 151
[5.12° Speedup in real applications normalized to Central| 152
[5.13 Scalability of real applications using SynCron| 152
[5.14 Energy breakdown in real applications tor C: Central, H: Hier, SC: SynCron and I: Ideal|153
[5.15 Data movement in real applications for C: Central, H: Hier, SC: SynCron and I: Ideal|. 154
[5.16 Performance sensitivity to the transfer latency of the interconnection links used to |
| connectthe NDP units) 154
[5.17 Performance sensitivity to the transfer latency of the interconnection links used to |
connect the NDP units. All data is normalized to Ideal (lower is better)| 155

[5.18 Speedup with different memory technologies| L. 155
[5.19 Performance sensitivity to a better graph partitioning and maximum ST occupancy |
of SynCron.. 156

[5.21 Speedup of SynCronnormalized to flat, as we vary the transter latency of the intercon- |
| nection links used to connect NDP units, under (a) a low-contention and synchronization- |
| intensive scenario using 4 NDP units, and (b) a high-contention scenario using 2 and |
I 4NDPunits] 0o 157

[5.20 Speedup of SynCron normalized to flat with 40 ns link latency between NDP units, |
| under a low-contention and synchronization non-intensive scenario. 157

[5.22 Slowdown with varying ST size (normalized to 64-entry ST). Numbers on top of bars |
| show the percentage of overtflowed requests.| 158

[5.23 Throughput achieved by BST_FG using different overflow schemes and varying the |
| ST size. The reported numbers show to the percentage of overflowed requests| 159

[6.1 (a) CSR representation of a sparse matrix. (b) CSR-based SpMV implementation. | 167

[6.2 (a) SpMV with a dense matrix representation, and (b) CSR, (c) COO, (d) BCSR, (e) |
| BCOO formats). 167

[6.3 High-level organization of a near-bank PIM architecture| 169

[6.4 Execution of the SpMV kernel on a real PIM system.|. 171

[6.5 Data partitioning techniques of the SparseP package| 171

[6.6 Load balancing schemes across PIM cores for the CSR (left) and COO (right) formats |
| with the 1D partitioning technique. The colored cells of the matrix represent non-zero |
| elements) 173

[6.7 Load balancing schemes across PIM cores for the BCSR (lett) and BCOO (left) formats |
| with the 1D partitioning technique. The cells of the matrix represent sub-blocks of size |
| 4x4. The colored cells of the matrix represent non-zero sub-blocks, and the number |
| inside a colored cell describes the number of non-zero elements of the corresponding |
| sub-blockl] 173

[6.8 The 2D partitioning techniques of SparseP package assuming 4 PIM cores and 2 ver- |
| tical partitions.|. 174

[6.9 Execution time achieved by various load balancing schemes of each compressed ma- |
| trix format using 16 tasklets of a single DPUJ 180

[6.10 Scalability of all compressed formats for the int8 (top graphs) and fp64 (bottom graphs) |
| data types as the number of tasklets of a single DPU increases.|. 182

[6.11 Performance comparison of load balancing techniques for each particular compressed |
| format using 2048 DPUs and the int32 data type|. 184

[6.12 Performance comparison of load balancing techniques for each data type using 2048 |
I DPUs]. . . 186

[6.13 Throughput of various compressed formats using 2048 DPUs and the int32 data type| 186

[6.14 Performance comparison of various compressed formats using 2048 DPUs and the |
| int32 data type. Performance is normalized to that of CSR.nnz| 186

[6.15 Total execution time when using 2048 DPUs and the int32 data type for CR: CSR. nnz, |
| CO: COO.nnz-1f, BR: BCSR.block and BO: BCOO.block kernels,| 187

23

[6.16 End-to-end execution time breakdown achieved by COO.nnz-1f when varying (a)

| the data type using 2048 DPUs (normalized to the experiment for the int8 data type),

| and (b) the number of DPUs for the int32 data type (normalized to 64 DPUs)|.

188

[6.17 Performance comparison of RC: RBDCOO with coarse-grained transfers, RY: RBDCOO

with fine-grained transfers in the output vector, BC: BDCOO with coarse-grained

transters, BY: BDCOO with fine-grained transters only in the output vector, and BT:

BDCOO with fine-grained transfers in both the input and the output vector using

the int32 data type, 2048 DPUs and having 2 (left) and 32 (right) vertical partitions.

[6.18 Execution time breakdown of equally-sized partitioning technique of the COO format

| using 4 (lett) and 16 (right) vertical partitions when varying the number of DPUs used

| for the int32 data type. Performance is normalized to that with 256 DPUs|

[6.19 Execution time breakdown of equally-wide partitioning technique of the COO format

| using 4 (lett) and 16 (right) vertical partitions when varying the number of DPUs used

| for the int32 data type. Performance is normalized to that with 256 DPUs|

[6.20 Execution time breakdown of variable-sized partitioning technique of the COO format

| using 4 (lett) and 16 (right) vertical partitions when varying the number of DPUs used

| for the int32 data type. Performance is normalized to that with 256 DPUs|

[6.21 Execution time breakdown of 2D partitioning schemes using the COO format and

| 2048 DPUs when varying the number of vertical partitions from 1 to 32 for the int8

| and fp64 data types. Performance is normalized to the performance of the experiment

| with 1 vertical partition.|

[6.22 End-to-end execution time breakdown of the equally-sized 2D partitioning technique

| for CR: DCSR, CO: DCOO, BR: DBCSR and BO: DBCOO schemes using 4 vertical

| partitions and the int32 data type. Performance is normalized to that of DCSR,. . . .

[6.23 End-to-end execution time breakdown of the equally-wide 2D partitioning technique

| for CR: RBDCSR, CO: RBDCOO, BR: RBDBCSR and BO: RBDBCOO schemes using

| 4 vertical partitions and the int32 data type. Performance is normalized to that of

[6.24 End-to-end execution time breakdown of the variable-sized 2D partitioning technique

| for CR: BDCSR, CO: BDCOO, BR: BDBCSR and BO: BDBCOO schemes using 4 ver-

| tical partitions and the int32 data type. Performance is normalized to that of BDCSR| 195

[6.25 Throughput of 2D partitioning techniques using the COO and BCOO formats, 2048

| DPUsand theint32type| 196
[6.26 Performance comparison of 2D partitioning techniques using the COO and BCOO |
| formats, 2048 DPUs and the int32 type. Performance is normalized to that of DCOO.. 196
[6.27 Throughput of the best-performing 1D- and 2D-partitioned kernels for the fp32 data |
... 197
[6.28 Performance comparison of the best-performing 1D- and 2D-partitioned kernels for |
| the fp32 data type. Performance is normalized to that of COO.nnz-1£|. 197

24

[6.29

Performance comparison between the UPMEM PIM system, Intel Xeon CPU and Tesla

V100 GPU on SpMV executionf. oo oL

199

[6.30

Energy comparison between the UPMEM PIM system, Intel Xeon CPU and Tesla V100

GPUon SpMV execution|. o o

201

1

Performance of the BCOO format with various load balancing schemes and synchro-

nization approaches for all the data types and small matrices using 16 tasklets of one

DPUS e

0.2

Performance comparison of RC: RBDCOO with coarse-grained transfers, RY: RBDCOO

with fine-grained transfers in the output vector, BC: BDCOO with coarse-grained

transters, BY: BDCOO with fine-grained transters only in the output vector, and BT:

BDCOO with fine-grained transters in both the input and the output vector using the

int32 data type, 2048 DPUs and having 2 vertical partitions. Performance is normal-

Performance comparison of RC: RBDCOO with coarse-grained transfers, RY: RBDCOO

with fine-grained transfers in the output vector, BC: BDCOO with coarse-grained

transfers, BY: BDCOO with fine-grained transfers only in the output vector, and BT:

BDCOO with fine-grained transfers in both the input and the output vector using the

int32 data type, 2048 DPUs and having 32 vertical partitions. Performance is normal-

04

Execution time breakdown of DCOO using 2048 DPUs when varying the number of

vertical partitions from 1 to 32 for the int32 (lett) and fp64 (right) data types on two

different UPMEM PIM systems|

05

Execution time breakdown of RBDCOO using 2048 DPUs when varying the number

of vertical partitions from 1 to 32 for the int32 (lett) and tp64 (right) data types on two

different UPMEM PIM systems|

06

Execution time breakdown of BDCOO using 2048 DPUs when varying the number of

vertical partitions from 1 to 32 for the int32 (left) and fp64 (right) data types on two

different UPMEM PIM systems|

0.7

End-to-end execution time breakdown of the equally-sized 2D partitioning technique

for CR: DCSR, CO: DCOO, BR: DBCSR and BO: DBCOO schemes using 4 vertical

partitions and the int32 data type. Performance is normalized to that of DCSR,. . . .

03

End-to-end execution time breakdown of the equally-wide 2D partitioning technique

for CR: RBDCSR, CO: RBDCOO, BR: RBDBCSR and BO: RBDBCOO schemes using

4 vertical partitions and the int32 data type. Performance is normalized to that of

RBDCOSRI. . . o o

0.9

End-to-end execution time breakdown of the variable-sized 2D partitioning technique

for CR: BDCOO, CO: BDCOO, BR: BDBCSR and BO: BDBCOO schemes using 4 ver-

tical partitions and the int32 data type. Performance is normalized to that of BDCSR/| 221

25

[9.10 Throughput of 1D- and 2D-partitioned kernels for the fp32 data type using two dif- |
ferent UPMEM PIM systems.| 221
[9.11 Performance comparison of 1D- and 2D-partitioned kernels for the fp32 data type us- |
ing two different UPMEM PIM systems. Performance is normalized to that of COO.nnz- 11
@ 2 P 222
[9.12 Throughput of the MUL operation on one DPU at 350 MHz for all the data types,| . . 223
[9.13 Throughput of the MUL operation on one DPU at 425 MHz for all the data types| . . 224

26

List of Tables

[3.1 Large Real-World Graph Dataset.|, 89

[3.2 'The geometric mean on the number of colors produced across all large real-world |

| graphs (lower is better) for each parallel graph coloring implementation using one |
| core (1 thread), all cores of one socket (14 threads), all cores of two sockets (28 threads), |
| and the maximum hardware thread capacity of our machine with hyperthreading |
| enabled (56 threads).| 90
[3.3 Color balancing quality achieved by ColorTM and all balanced graph coloring imple- |

| mentations in the large real-world graphs. We present the relative standard deviation |
| (in %) on the sizes of the color classes obtained by each scheme (lower is better). |
| In ColorTM and Recoloring, we provide inside the parentheses the number of color |
| classes produced. The CLU, VFF and BalColorTM produce the same number ot color |
| classes with the initial coloring scheme 00 97
4.1 The features of the contention workload which are used for classification.. 119
[4.2 Features of the contention workload for benchmarks evaluated in Figure[4.10, We use |

| bold font on the features that change in each execution phase| 125
[4.2a Varying the key range in the workload| 125

[4.2b Varying the number of threads that perform operations in the data structure| 125

[4.2c Varying the percentage of insert/deleteMin operations.| 125

[4.3 Features of the contention workload for benchmarks evaluated in Figure[4.11] We use |

| bold font on the features that change in each execution phase.| 126
[5.1 Throughput of two coherence-based lock algorithms on an Intel Xeon Gold server |

| using the libslock library [16].| oo 136
[5.2 SynCron’s Programming Interface (i.e, API)| 140

27

Kegpdaharo 0

[5.3 Message opcodes of SynCron.|. 141
[5.4 Comparison of SynCron with prior mechanisms.| 147
[5.5 Configuration of our simulated system.| 0 0 L 148
[5.6 Summary of all workloads used in our evaluation| 149
[5.7 ST occupancy in real applications.| o o000 L. 158
[5.8 Comparison of SE with a simple general-purpose in-order core, ARM Cortex A7. . . 159

[6.1 Parallelization techniques across PIM cores of the SparseP library. *: row-granularity, |

": block-row-granularity] 175

*

6.2 Parallelization schemes across threads of a PIM core. *: row-granularity, ': block- |

row-granularity| 177
6.3 Small Matrix Dataset] 178
[6.4 Large Matrix Dataset. Matrices are sorted by NNZ-r-std, i.e., based on their irregular |
pattern. The highlighted matrices with red color exhibit block pattern [17,18][| 179
[6.5 Evaluated CPU, GPU, and UPMEM PIM Systems.[. 198
[9.1 Evaluated UPMEM PIM Systems.|. 219

[9.2 The SparseP library. *: row-granularity, ": block-row-granularity, *: (only for 8-bit |

integer and small block sizes)[. oo 225

[9.3 Large Matrix Dataset. Matrices are sorted by NNZ-r-std, i.e., based on their irregular |

pattern. |o e 226

KE®AAAIO 1

Extetapévn IlepiAnymn

otnv EAAnvun I'wooa

Ot pn-uovovirég eQoppOYEG OTTWG OL EPAPHOYEG emeEepyaciog YPAP®Y, Ol apatol LITOAOYLOTIXOL
TUPTVES YPOHMKNG GAyePpag xon oL mapdAAnieg dopég dedopévmv amoteAobv évov TOAD onpo-
VTIKO EPEVVITIXO TOHEX, YLOTL XPTOLHOTTOLO0VTAL EVPEWS oTa Padid vevpwvd dintva [[19,120], oe
EMLOTNHOVIKEG TTpOcopoLdoelg [21422], otnv ixtpun [18] kot otnv owovopia [[18]. Emopévwg, n Pe-
TIOTOTOLNGT) TNG EMISOONG TV UN-KAVOVIXOV EPAPHOYDV GE GUYXPOVA VITOAOYLOTIXA GUCTHHATO
elval (TG onpaoiog, xot ylor auto évar HeYdAo GOVOAO TTPOTYOUREVWVY EPELVITIUOV EPYOCLOV
TPOTELVEL ATTOJOTHOVS PN AVIGHOUG o€ emtimedo Aoylopunov (software) [[14|13H15418}23-131] xou oe

eniedo vAwoo (hardware) [517,/20,22,|108,/132H278] yiax v emitev€n onpoavtiig PeAticoong g

29

30 Kepdhowo 1

emid00NG TOV HI-HAVOVIHDV EPAPHOYDV.

Stnv mapovoa didaxtopiur] datpLPr], eVTOTILOVHE TPt XOPOUTIPLOTIHA TWV UI-KOVOVIHOV €-
QoPHOYOV TOL emnpedlovv onpavtkd tnv enidoon Touvg. IIpdTov, oL PNn-*aAvVOVIKES eQOPHOYEG
TopovoLalovy eyyeviy avicopportio eEontiog Tov cLVOAoL dedopévwv eladdov: T StanpLTd KO-
HOTLO TV DITOXEIPEVWV JOPDV deSOPEVOV TTOV Y PTCLHOTOLODVTOL GTLG HI-KAVOVIXEG EQAPHOYES JeV
éxouv To dto péyedog. T mapdderypa, oL mivoreg eLlGOSOL TOL Y PNGLLOTOLODVTAL GTOVS VITOAO-
YLOTWOUG TTUPTVES YPapKAG GAyePpag eivar oAl apatol, SnAadn 1 peyodOtepn mAetoymgio twv
otolyelwv Toug eivor pndevind [181)814129,276,[279-283], kot 6TOLG 7O TTOAAODG TPAYHATIHOVG TV
XEG O AUPLIHOG TV UM UNOEVIX®OV GTOLXELWV TNG HAVE YPOUHUNG/CTAANG epPavilel PHEYAAT avicOTnTA
1oL avicopportior HeTaED TV YPOUHOV/GTNAGVY Tov Ttivaxa [284)]. Emopévwg, pio amAn mapoarinio-
TOLNGT) TOV HI-HOVOVIXDV EQXPROYDOV X PT|CLHOTTOLOVTOG £V HEYAAO aptIpd TapaAANAwy VpaTtwy
Yo Tpoxalooe LYNAT avicoppoTTiar TOL POPTOL epYATiag PETAED TV TAPAAANAWY VIUATWV, KoL
LYNAN avieOTNTA 6TO TANTOG TWV LITOAOYLOHOV XAl TWV TPOCPAGEWV GTN LV TTOL exTEAODVTOL
HETOED TV TApEAANAwV VAPHOTOVY. Ae0TEPOV, OL UN-KOVOVIKES EQPOPHOYEG TTapovaLdlovy Tuyaic
potipa mpocPacng atn pvipn, dniadn ot tpocPhoelg mov exteAOLVTOL GTH PV eV elva o0Te
Sradoyuég (streaming), ovte avotnpag Prpatég (strided), aAld e€aptdvTal otd Ta YoporTnpt-
ot TV dedopévwv mov divovtal wg eilcodog oTov vtodoytoTnd muprva. Ta mepinmAoxa potifa
TPOGPACTG OTN PVIIN TOV HN-XOVOVIXADV EQUPHOYDV elvat TOAD dVorolo va TpofArepdoiv. Qg asro-
TENEGOL, OL PUN-HAVOVIKEG EQUPUOYES ep@avilouv epimAoneg e€aptroelg dedopévwv xal Tporalovv
VYNA& 100t peTonivong OedOpEVEOV HETOED TNG HVIHNG KoL TV eEEEPYOOTOV TV LITOAOYLOTL-
%OV GLOTNHATWV. TplTov, Ol TEPLOGATEPES HUN-HAVOVIUEG EQPUPHOYES £XOLV YaunAl LTTOAOYLOTIXN
wowvotnta (operational intensity), dnAadn o apldpog TV XpHoIH®V apLIPNTIKOVY TPAEEDV TTOU &-
UTEAODVTOL OO TOVG eTeEEPYAOTEG GE CUYXPLOT] HE TOV OYHO TV deSOUEVOV TTOL Y PELAlOVTIL Yl
Vo exteAecTOOV aLTEG OL TTPAEeLg elvat TOAD ppdg. O 6pog TG LITOAOYLOTIKAG LKAVOTNTOG XPNOL-
HOTIOLELTOL YO VO LETPTOEL TO XACHX TOXVTNTAG HETAED TOV emeEePYATTI) AL TOV LITOGVGTHHATOG
pvipng. ‘Oco xopnAotepn ival 1 LITOAOYLOTIXY KAVOTNTA EVOG DITOAOYLOTIXOD TUPHVA, TOCO TTE-
plocotepo meplopiletal 1 emidoot aLTOL TOL LITOAOYLETIXOD TTUPTVAL ATTO TO LITOGVGTNHA PVIUNG.
Emopévwg, oL TeplocOTEPEG PN-KOVOVINESG EPAPHOYEG TTEPLOPLLOVTOL CTHAVTIXA QIO TO LITOGVO TN
HVIIUNG TWV GUYXPOVOV VTTOAOYLOTIUOV CUGTNHATOVY e£0LTIOG TNG XOUNANG TOVS LITOAOYLOTIXNG L-
HOVOTNTOG. XUYKEUPLLEV, OL HI-KOVOVIXEG EPAPHOYES LPLoTAVTAL VYNAX KOoTH TPdSPacng o1
pvApn xou epropilovron onpavtind omtd 1o dixdécipo evpog {dvNg pvrpung (memory bandwidth)

TOV GUGTHHATOG,.

SUVOTTTING, LTTOOTNPLLOVE OTL OL PN-KOVOVIHEG EPUPHOYES OLTTOTEAODV €Vay TTOAD GTHOVTINO €-
PELVNTINO TOPEN, EVD TOLTOX POV elval TOAD dvorolo va emitevydel LYNAN emtidoon ko YopnAn
EVEPYELONT] HOATAVAAWGT] GTNV EXTEAECT] AVTOV TOV EPAPHOYDV GE GUYXPOVA LITOAOYLOTIUA GL-
otnpata. Ot pn-xavovirég ePopPHOYEG £XOLV aPUETA LOLXITEPX XOLPOUTTPLOTING, TOL OTTOLOL ALTTALTODV
véeg mpooeyyloelg T000 o€ eninedo Aoylopion, dnAadn amatteital 1) oxedlaon véwv TapdAAniov
alyopLipwv, 660 xal ot enimedo LAWOL, SnAadn amtouteital o emavacyedlopog TV faciudv GToL-

XELWV TOL LAKOD TV GVYXPOVOV OPYLTELTOVIXOV, YLO TNV ETLTEVEN LYNATG eMIS0GTG CLGTHRATOC.

Kegpahaio 1 31

1.1 Yynida Kootn Tuyypoviepot rat IIpocfdoewv otn Mviun
ITepropiCovv tnv Exmidoon tov Mn-Kavovirov E@appo-
YOV

To cOYYPOVA LTTOAOYLG TG CUGTHHATO KAl OL LITAPYOVTES ToPAAANAoL alydpidpol éxovv dvo Po-
oW XOPOUTIPLOTIHA TTOL XATLGTOVV TNV OITOTEAECUATIUY EXTENECT] TWV UN-HAVOVIUOV EQPUPHOYDV
pioe onpovTen tpouAnon:

Xopoxtnprotino 1: YPnio Kootog Tvyypoviopoo. o v entitevEn vynAng emidoong cvotrpo-
TOG G€ TOAVVNHOTIKEG eEUTEAETELS, auaTelTal LVYNAT e€looppomnon Tov Poptov epyaciog (load bal-
ance) HeTOED TOV TAPAAANAWY VIpdTwV. QoTdo0, Yo TV entitevén vymAng e€lcoppomnong popTov
epyaciog HeTaED TV VIHATOV aalteitol 1) Xprion R PEATIOTOTONHEVIG CTPATNYIXNG TXPOA-
AnAomoinong. Ta mapddelypa, 6TOV LITOAOYLOTIHO TLPHVA TTOAAXTAAGLAGHOD APALOD TTIVOXUAL e
Sivvopa (Sparse Matrix Vector Multiplication), av xpnoomowndei n otpatnywmr] mopariniomroin-
ONG GTNV OTTOLaL Ol YPOHHEG TOV TTEVOUA HATOUVEPLOVTOL €ELCOV HETOED TV TAPIAANAOV VHATOV, 1)
emid0on oL TOL TOL LITOAOYLETIHOD TLPTVA VAL XOUNAT), YIXTL LITAPYEL LYNAT] AVIGOPPOTTIAL GTOV
apLIPo TV PN-PndevinmV oTolYelwV HeETOED TOV VIHATOV, XL ETOHEVOS LYNAT OVIGOPPOTIX GTOV
OY*O TWV LITOAOYLOH®OV TTOV eXTEAOVVTOL HETOED TV VNHATOVY. QG QTOTEAECH, X PTOLHLOTOLELTOL
oLVIYWG poe PEATIGTOTOLNHEVT) GTPATNYIXT TAPAAANAOTOINGCTG TNV ool T PN-pndevind GToL-
xelow Tov mivaxo xotavépovton eicov petafd TV TopdAAniwy vipateyv. Ou feAtioTomoinpéveg
oTPATNYWEG TAPAAANAOTOLNGNG YL TNV ELGOPPOTNGT) TOL POPTOL EPYATLOG HETAED TWV VIHATWV,
woTOG0, 00NYOUV GTNV avAyxn GUYVODL xol axpLBol GLYXPOVIGHOD HETRED TwV TOPAAANAWY Vi)
HATWV. XTOV LTTOAOYLOTIXO TUPTVA TOAAATAAGIXGHOD apatol Tivaxa pe SIVusHa, 1) XPHon NG
oTpPATNYWNG TOHPAAANAOTOINONG HATA TNV oTola Ta Pn-pndevixd otolyeior xatovépovrol e€locov
HETOED TV VNHATwV 08nYel ae GLYVO Ko axpLlPo GLYYXPOVIOHO HETOED TV TAPAAANAWY VUATOV
mov ene€epydlovton pn-pndevind otolyeio T omoiot avrovv otV i Ypopun tov mivare. Qg
QTTOTEAEGHA, EVOG HEYOAOG aPLIHOC HOHAWV OTOV emelepyaatr) E08eDETOL GTNV EMLUOLVOVIAL KL GTO
OUYXPOVIOHO HETOED TWV VIHATOV, HELOVOVTAS ETOL GTUAVTIXA TNV €TLS00T] TNG TOALVIHATIKAG
eQappoynge.

Ye eminedo epappoydV, oL LILEPYOVTEG TAPAAANAOL adyoprdporl (.. [13L[37-46,/55.56]) dev Sia-
J€touv oLVNIWG TOTEAECUATIHES VAOTIOLGELS GUYXPOVIOHOD, ol dev TPocappolovy To oynpa
OULYXPOVIGHOD GTO TPEXOV POPTIO KL GTA TPEXOVTA ETTLTESA GUHPOPTONG TOV GUOTHHATOG GE Hial
dedopévn Ypovirr) GTLYHN HOT& TNV EXTEAEGT), 1] GTO XOPAXTPLOTIUA TNG APXLTEXTOVIXNG TTOV GTO-
xevovv. Ilpdopateg epevvntnég epyaoieg [[164123,285,1286] amodeuviouvv 6Tt (a) 1 xprion otAodv
OXNHATWV GUYXPOVICHOD OTLG HI-KAVOVIXEG ePAPHOYEG TTpoxadel LYNAN xivnon dedopévwv oTo
LITOCVGTNHO PVIHNG He LYNAG x0T TpoOGPaong, xo (P) To KXADTEPO GYTHA GLYXPOVIGHOV TTOLKIA-
A€l VAAOYX [LE TO TPEXOV POPTLO CULPOPTOTNG KL T XOPOUTNPLOTIUA DAKOD TNG VITOAOYLOTINTG
TAXTPOPHAG. e eTITEdO APYLTELTOVIHNG, OV KOl EXOLV TTpoTadel TOoAAOL dlorpopeTinol pnyaviopol
ovyyxpoviopot otn BipAoypapio [287-305], oL mepiocdTEPOL AITd ALTOVG Yo CLVETAYOTAV LYNAO

%00TOG LALKOU, Ja aalToDGaV GTHAVTIXEG TPOTTOTOLNOELS O OAQ TO eMIEdX TNG LITOAOYLOTINIG

32 Kepdhowo 1

otoifog Twv cOYXPOVOV GLGTNHATOV 1) StadéTovy pia SOGYPNOTN SLETAPT] TPOYPAPHATIGHOD, KoL

ETMOPEVWG elval SVOHOAO VA EVEOPATOIODV GTX GTHEPLVY DTTOAOYLGTIXA GUGTHHATA.

Xapantnprotno 2: YPnAo KootogIlpooPaongotn Mvipun. Ot pn-kovovinég epappoyég extelo-
0V Tuyaia potifa tpodcPocng ot PR, £XOLV XAUNAT] LITOAOYLGTIXY WAVOTHTA XAl TTepLopilovTor
OTHaVTA ard To LTocvoTNHX pvipng [18L814|136,/142,281,306]. Qg awoTéAecpa, Ol PN-KOVOVIXEG
eQPapPHOYEG Exouv LYNAL xOoTn TPdcPacng oTn VNN, Kol éva peYGAo TTOGOGTO TOL XPOVOL &-
UTENEOTG TNG EPAPHOYNG E00eVETAL OTIG TPOCPATELS HVIHNG KL GTNV VAPOVT] TNG HETAPOPAS TOV
dedopévwv amd TN pviun otovg emefepyactés. Emiong, to tedevtaio xpovie vidpxel GTHAVTL-
n1) avEnomn oto péyedog Twv dedopévwvy LGOS0V KL TV eVOLApEcWOY SeQOUEVOVY TTOL TapAyovTaL
naTd TN dudpuela eXTEAEONG TOV eQPAPPOYDV. ETopévmg, ol pn-ravovixés epappoyég xpetdlovtal
vo ene€epyocTolv oAoéva xat peyalitepo oyuo dedopévwv (ta dedopéva elocddov eiva denddeg 1

exatovtadeg GBs [24,307]), xow va xelplotodv amotedecpatind tnv vynAn {tnomn dedopévwv.

[N Top&deLypa, GTOV LITOAOYLOTIXO TUPTVA TOAAATAACLOAGHOD XPALOD TTIVOKa [e SLAVLGHLL, OL
npocPacelc ot oToLYEl TOV dLtVOGHATOG LGOS0V elval Tuyaieg xorl e€opTedVTL otd TO potifo Twv
HN-pNdevindv otolyeiwv otov mivoua elc6dov. AvTEG 0L OHaVOVIGTEG TPOGPACELS GTO GTOLYEL TOV
dravdopatog elc6dov eivar dVororo va mpofArepdodv, xal GLYVA eXTEAODVTOL XPTCILOTOLOVTOG
TNV ®OpLaL PVIUN TOV LITOAOYLOTIXOV GLOTNHATWV. Emopévwg, n extélecn Tov LTOAOYLGTLIKOD
TUPHVA TTOAMXTAAGLAOHOD apatoD Trivaro pe SIAVLoHX TEPLOPLLETOL GTHAVTING OItO TLG oxpPLPEg
PO PACELS 6T GTOLYEL) TOV SLAVOGHATOG ELGOSOL KL Tt LYNAX KOG TT HETAPOPASG TV GTOLYELWV
TOL JLtVOGHATOG ELGOOOV, TTOV TTPOXAAODY CTHAVTIXA KOG T GTNV ETLO0CT) ALTOV TOL LITOAOYLGTLXOD

TLPTVAL.

Emniong, piae mpoéopatn epevvntny epyacia [308]] deiyver 6TL Tar ®OGTN GTNV EvEpyELOMNT] HATO-
VOAWGOT TOL GLOTHHATOG e€ottiog TNG peTaxiviong dedopévwv peTafd TG Lepapylag LVHHNG TwV
LITOAOYLOTIXOV CUGTNUATOV elval TOAD Lo LYNAG kot axplPd od Ta ®OGTH eTLOOONC, HATA TNV €-
HTENECT) HI-HOVOVIUOV EQAPHOYDV. Emopévag, ol axplPég mpooPicelg ot PV GTLG HI-KOVOVIXEG
EPUPHOYES TTPOUANOVY LYNAG *OGTN TOCO OTNV eTLS0GT) OGO KO GTNV EVEPYELOUT] HATAVAAWGT) TOV

GUCTNHATOG.

Ye emtinedo epappoywv, moAhoi mapaAiniot alyopidpor dev dioyetpilovror To dedopéva amotede-
opotwed (r.y. [13427,31H34137,38./55,/56]]), 1] dev Tpocappdlovy Tig oTpatnynéc Topalinlonoinong
no xatavopng dedopévov ota Wiaitepa yopoutnplotind xat potipa mtpoécPoong twv dedopévawv
7oL divovtal wg elcodog. [Ipdopateg epevvnTnég epyacieg [309-313] deixvouv 6Tt SrapopeTind wop-
HOTLO OEQOPEVOV HLOG EPAPHOYNG EHPAVILOLV SLOPOPETUA XopouTNPLOTIG emtidoons. Emopévmg, o
oTpatNywég TopaAAnlomoinong mov de AapPBavouv LITOYLY Ta XOPOUTTPLOTIUA TWV deSOHEVOV TNG
eQPPPOYNG, 08N YOOV oe yapéveg evnapieg PeAtiotomoinong tng enidoong.Ilapopoing, oe eninedo
QPYLTELTOVIXNG, OL LTTAPYXOVTEG HrYoviopol VAoV (m.x. [314-317]) éxouvv oxediaotel xwpig va
AopPavouvv vtoYy Ta potifa TpocPacng Twv deSOUEVOV TNG EPAPHOYNS OTI) VLT KoL TNV LITEP-
BoAwr) {ftnon dedopévmv, Kot ETOPUEVWS TTPOXAAOVY LY VY KoL oxpLPT) peTaxivnon Twv dedopévwy

o€ 0AOXANPO TO GVOTNHA Kot LYNAG ®OoTN TPOSPacng ota dedopéva.

Kegpahaio 1 33

1.2 H IIpoocéyyion Mag: Amodotinég Texvinég Tvyypoviopov
wat [IpocPaong ota Aedopéva Exitaydvoov
T1g Mn-Kavovinég EQoappoyég

Ye avtiv t ddoctopnr] dratpiPr), avadvovpe dte€odind pioe peydAn TowAior amd pn-*ovovIrEG
EPAPHOYEG, CUUTTEPLAXUPAVOHEVOV EPAPROYOV eTTeEEPYATLAG YPAPWV, AVAALOTG dedOHEVOV, YPOrjL-
pwng aAyePpoag not TapaAiniwv dopmv dedopévwv. Emiong, peletape tnv enidoon touvg oe dvo ovY-
Xpova vIToAoyloTKd cvoThpata: (a) ToAvmvpnveg apyttextovinég CPU pe avopolopopen mpocPo-
on ot pvrpun (Non-Uniform Memory Access (NUMA) CPU) xau (B) apyitextovinég pe ene€epyoacia
rovta otn pvnun (Near-Data-Processing (NDP) / Processing-In-Memory (PIM)). Ov apyitextovirég
HE OLVOLOLOHOP®N TPOGPAGT GTN PUVIHN aoTEAODV TNV XUpLop)T) LITOAOYLOTIXY TAATPOPHA TV
oVYXPOVWV DITOAOYLOTIK®OV GUGTNHATOV KoL £€X0UV PeATiwdel apueTd T TEAELTALX XPOVIOL HE TNV
EVOOPATWOT enteepyacTdV pe LPNAT vtoAoylotinn avotnTo. O apyltextovinég pe enefepyoacia
UOVTQ GTI) PV €xOLV TTpOcPaTa epmopevpatomondet [136|137,(1411(142,318], ko avtipocwite-
VoLV pict TOAAG LITOOYOUEVT) VITOAOYLOTINT] TTAATOOPHOL YLOL TNV EMLTEVEN GNUAVTIUNG HELWOTG TOV
106G TOUG peTonivnong 0edopEVWY 0TO VTTOGUO TN HVIUNG. Ot apyLtextovinég pe eneepyacio xovTa
ot pvipn e€omAllouv TIG CLOKEVES PVIUNG He Eva HEYOAO apLIpO emteEepyaoTOV XAUNATG EVEPYELQ-
UG HATAVOAWGTG HOL HE XOAUNAT VITOAOYLOTINT] IXAVOTNTA, KOl HELOVOUV TO XOGTOG HETOXUIVIIONG
TV dedopEVV exTeAOVTAG enelepyacio KOVTA otV Tomodesia mov Ppiorovtar Ta dedopéva Tng
EPUPHOYNG. DUVOALKA, OL APYLTEXTOVIHEG HE ETTEEEPYAT IO XOVTR TN PV TTAPEXOLV LYNAK eTtimeda
TOUPOAANALGHOD HaL TTOAD peyaAo e0pog {OVNG HVARNG.

Yrootnpilovpe 6TL TOGO OL P OVIGHOL LALKOD 0G0 1ol oL TapdAAnAol adyopLdpol xpetdlovtal
vor Aapfvouy LITOYLY TIG aVAyreG GUYXPOVIOHOD Kot Tar HOTLa TpOGPaong 0T PV TWV Ui)-
HOVOVIXODV EQUPHOYDOV OOV TIG VO L0 CTHAVTIHEG TPOTEPALOTNTEG YLt TNV emiteLEN ONHOVTIHIG
BeAtiwong Tng emidoong TOL GUOTHHATOG KAL TNG EVEPYELOUNG HATAVAAWGCNG, OTOV Y PTOLHLOTTOLO-
OvTOL exatovtadeg o YIAddeg mapdAAnia vipata eme€epyaciog. Svyuenplpéva, oL Tpoceyyioelg
1660 o¢ eminedo AoYLopoD OGO KoL Ge eMUTESO VALKOD YL TLG HI)-HAVOVIXEG EPAPHOYES TIPETEL VAL
apéxoLvV S0 TOTTOLG TeX VKWV PeATioTomoinonG: (1) XapnAod x66TOG GLYYXPOVIGHOD, Kot (2) XapunAo
106710G TpOSPacng oto dedopéva.

Texvinég Xapnrot Koostovg Svyypoviopod. Yrootnpilovpe 0Tt yioo feAtiwdel onpavtind 1 e-
TLO0CT) TV HN-KOVOVIHOV EPUPHOYDV, OL GOYXPOVES DTTOAOYLOTIKEG TAATPOPUES TTPETEL VO VITOGTT)-
pilovv TPAKTIHOVG PNXAVIGHODG GUYXPOVIGHOD Ge emimedo LAWOD, Kot ot TapdAAniol adyopidpol
TPETLEL VOL TTALPEYOLY X OUNAOD KOG TOVGS ETTHOLVOVIN #AlL SUVOULKA GYTIHATA GLYYPOVIGHOV HETAED TV
TOUPOAANA®Y VATV, XoOpPNAoD #OGTOVG TEXVIHEG GUYXPOVIOHOD €LVOL OPHETA ATTOTEAECHATINEG
OTNV EXTENECT) TWV HN-KOVOVIXOV EPAPHOY®V, Yot PBeAdTidvouy v emidoon kol Tnv evepyela-
nf HOTOVAA®GT (1) HELOVOVTOG TX KOGTI HETOUIVIONG OTO TPWTOXOANO GUVOXNG XPLPNG UVIHNG
(cache coherence protocols), kot (2) mapéyovrag peydho 6yro TopoAANAopol petald TV VPATOV
enefepyonciac. T mapaderypa, oe enimedo Aoylopinon, oxedidlovpe pioe “mpodIvpn” oTpatnyn

GUYXPOVLGHOD YLot TOV LITOAOYLE T TTVPTVEL X pwHATIoHOD Yphewv (KepddowoB), n omola extelet v-

34 Kepdhowo 1

ToJeTInd LTTOAOYLGPOVG KoL TPocPacelg ota dedopéva exTOG TOL xpioipov THMpaTog (critical section),
1oL QelYVOUE OTL 1) TTPOTELVOUEVT] XAYOPLIULKT TEXVIUT] HELOVEL CTHOVTIUA T XOGTI) GLYXPOVIGHOD
HETOED TV TAPAAANAWY VIHATWV KoL Ttopéxel VYNAG entimeda TapoaAANALOHOD PECW TNG EXTENECTIC
HIXPAOV 0L GOVTOH®V UPLCIHOV TUNHATWV. e eminedo vAOD, Seiyvoupe OTL évag YoaUNAOD XOGTOVG
HOLL TTPOUTIHOG UNXOVIGHOG GUYXPOVIGHOD OXESLAGHEVOG YL P LTEUXTOVIKEG pe emeEepyacio HOVTA
otn pvipn (Kepddowo 5) BeAtiovel onpovtind tnv emidoot Kot TNV eVePYELOK HATAVAAWOT) GE
EVOL HEYGAO €0POG HN-HAVOVIUDOV EQPAPHOYDOV OTIWG EPAPHOYDOV eeEePYATLAS YPAP®VY, tVAALGTG

XPOVOGELP®OV KoL TTULPAAANA®Y SOP®V dedOPEVWDV.

Anotedeopatinég Texvunég IIpooPfaong ota Aedopéva. Ymootnpilovpe OTL TPOKEPEVOL VO
HELWTODV GTHAVTIHA T XOG TN TTPOGPACTG OT deSOPEVA TNV ELTEAECT) TV HI-HAVOVILDOV EQOAPHO-
YOV, TO 60y POV DTTOAOYLOTIUX GUOTHHATO TPETTEL VAL HELWOGOLV TA XOGTT) peTonivong dedopévav
OTO LITOCVGTNHA PVIHNG, XKoL OL TTPAAANAOL aAYOPLIpOL TTPETEL VA TTAPEXOLV HAAOCY ESLCHEVEG
TEXVIHEG HATAVOUTG OEQOHEVOV KL GTPATNYIHEG TTOPAAANAOTTOLNONG, OL 0TToleg expeTaAAeDOVTOL
QITOTEAEGHATIUA TIG LOLOTNTEG TV JeOHEVWV TNG EPAPUOYNG, HOTWDG ETLONC KL VO DAOTTOLODV dU-
VOULKES TEXVIHEG OLOLYELPLOTG TNG UPLYPTIG HAL TNG HVPLOG HVIHNG TWV DITOAOYLOTIX®OV GUOTNHATOV,
Aapavovtoag vTOYLY T XaparTNPLETKA TOL VALKOL. TTapaAAniot adyOpLipoL Kot opyLTEXTOVINEG
70V doxelpilovTal amoTeAeGpATIHG Tt deSOPEV PHTTOPOUV Vo BEATIOCOLVY GHAVTIXG TNV emtidooT
TWV PUN-KOVOVIXGOV EQaPROYDV (1) petdvovTtag To x6oTtog TpdcPaong ota dedopéva, (2) PeAtidrvovtog
v e€looppodmnomn tov poptiov epyaciog peTaEd TV TApdAANAwy VNRHATOV, xot (3) a€LlomolovTag
wodbtepa To dradésipo evpog {ovng pviung. Ia mapdderypa, deiyvovpe 6TL piot TapdAANAn ovpd
npotepandtnrag (Kepdhaio [4), n onota AapPéver vedoYv v avopoldpopen xatavopr] dedopévwv
O€ HLOL APYLTELTOVIXT] HE QLVOHOLOHOP®ON TTPOcPact oTn HVARN, emLTUYXAveL LYNAOTEPT emidoom
(perdvovtoag Ta xootn mpocPacng ot dedopéva) oe ceEvapLa LYNATG CUHPOPTONG CUYHPLTIHA JLE
TOUPAAANAEG OVPEC TTPOTEPALOTNTOG TTOV ALYVOOUV TNV GLVOHOLOHOPQPT] KOLTAVOWT TNG LITOXEIHEVNG
dopng dedopévwv o pict apLTELTOVIXT e OVOROLOpOPYT) TTpOSPact otn pviun. Emiong, deixyvoupe
oL pia Svvapsj toapdAAnAn ovpé mpotepondtnTag (Kepdhao[d) n omoio evoadddooer Suvopund tn
oTpATNYKN TOPAAANAOTOINGNG TNG HETAED VO SLPOPETIH®OY AAYOPLIPIUDOV VAOTOLNGEWDY ACtj-
Bavovtoag voYy Ta emineda CUPPOPN GG TNG KATE XPOVIHNG GTLYHNG, ETLTUYXAVEL TNV LYNASTEPT
enidoon oe OAa Ta SLPOPETIHE TEVAPLX GUHPOPNONG, OHOPX AL OTAV To ETieda GLHPOPTONG
allalovv xatd tn diprelx extéheong. Iapopoing, deiyvovpe 6TL 1) exTéAeoT) TOL LITOAOYLOTIXOD
TUPTVA TOAAXTTAAGLULGHOD 0POLOD TTIVOUOL LE DLAVUGHO GE€ LPYLTELTOVIKEG JIE ETEEEPYATLO HOVTA OTN)
pviipn (Kegadowol6)), n omoio eivon pice apyirextovinr mov poogépel xapnid xd6ctog tpdoPacng otn
HVARN %o TOAD peyaAo e0pog {OVNG VKNG, ETTLTUYXAVEL VYNAT] EVEPYELAXT] ATTOSOTIXOTITO XAL TTO-
AU peyodOTEPO TOG00TO TNG SLOTECIUNG LITOAOYLOTIXNG IXOVOTITAG TOV GUOTHHATOS GUYKPLTIHA e
TO avTioTOLY0 TOC0GTO IOV emitVuY)dveTon oTLg apyitextovinés CPU xou GPU. Aeiyvoupe emiong ot
N VYNAOTEPT ETTLOOCT) GTOV LITOAOYLGTIKO TTUPTVA TOAAXTAXGLAGHOD OPOLOD TTEVOKA e SIAVVOHX GE
pioe oprtextovuy pe enelepyooio xovra otn pvipn (Kepddowo [6) emitvyydveton xpnopomotdvtag
BeAtiotomownpéveg texvinég drayeipiong towv dedopévwv mou (a) dvordlovy v e€looppdmnor Tov
LITOAOYLGTKOD POPTIOL YL VO TTPOGPEPOLV XOUNAOTEPA HOOTH HETAPOPAS deSOUEVWV PEGH GTO

LITOGVGTNHO PVIHNG, xoL (B) eMAEYOUV TIG GTPATNYINEG TTOUPAAANAOTOINGTG TOV LITOAOYLOTIXOV

Kegpahaio 1 35

TUPNVA KA TOV SLOHOLPAGHOD dedopévwy Aapfdvovtag vty To potiffo apatdTNTAg TOL TivaKa

€Lo0d0V, dNAOOT] EXPETAAEVOHEVES TOV LOLOTNTWV TV dedOPEVWY ELGOJOV.

1.3 O¢éon tng Ardaxtopixng Atarpipng

Stv nopovoa Sdoutopnn) detpiPr] poteivovpe TexVIrEG TapaAAnlomoinong kol TopdAAnAovg
alyopidpoug, nadwg emiong ko pnyoviopovg vAwov (hardware), mov mopéxyovv YopnAd x6GTOG
OLYXPOVIOHOU HETOED TV TAPAAANA®V VIHATOV, XAUNAO ®¥00TOG TpOSPacng ota dedopéva, xor
amoteleopotinn dixyeipion twv dedopévwv e moAvmvpnveg CPU apyLtexTovinég Ko o€ apyLTeERTO-
viég pe emeEepyacio vovta otn pvnun (Near-Data-Processing). Zvyxexpipéva, mpoteivovpe amote-
Aeopatuég texvinég droyeipliong dedopévwv otnv xpuen pvrun (cache memory) ko Tnv xOpLor pvipn
(main memory) cuv-cxeSlacpéveg pe XapNAOD ®*OGTOVG TEXVIXWDV GUYXPOVIGHOD yia T PeAtionon
NG emid0oNG EQAPROYDV eTeEEPYATLAG YPAPWV, TAPIAANAWV SOP®V SeSOPEVWV KOl VTTOAOYLOTIHOV
TUPHVOV YPOUIKNG GAYEPpas.
Qg ex TovToL, 1 Tapovoa draTpLPr) arodewevoeL TNV oandAovdn déon:

Texvixég xaunAot »06tovg VY XPOVIOUOU UETAED TOV TAPEAANA®Y vi)-
UtV o€ ovvepyaoia pue Pedtiororoinuéveg texvirég mpooPoong ota dedo-
péva fedAtiovovv onuoviixd tnv exidoorn, Tov rapaiiniioud, to x66tog pE-

TOXIVIONG TOWV SESOUEVOV 1AL TNV EVEPYELAKT] XTOOOOT]) TV UN-KAVOVIXDV

£QapUOYOV.

1.4 Svveropopd tng Atdoxtopirng Atatpifng

Sy mapotoa dtatpLPr) TPoTelvoupe 4 SLAPOPETIHEG TTPOCEYYLOELS EMLTAYLVONG TNG EMTLOOCNC TV
HI-HOVOVIUDV EQPUPHOYDV HECW OTTOTEAECHATIXMOV TEXVIXOV GLYXPOVIGHOV xot dloxeipiong dedo-

HEVWV, TLG OTOLEG TTEPLYPAPOVHE GUVOTTTIUA GTN) GLVEXELX KoL orvahbovpe dteodind ota Kepdhona

kig @k

1.4.1 ColorTM [1-3]]: 'Evag HapdAiiniog AAyopdpog Xpopatiopot Fpdeowv
pe YYnAn Khyporoowpotnta oe IloAvnvpnveg ApXLTeRTOVIREG

O alyOopLIpog XPOHATIOHOD YPAP®VY XPWHATI(EL TOLG KOPPOLG EVOG YPAPOUL, £TGL (YGTE OTOLOLOT|TTO-
te Vo yertovirol xopfor va €xovv droopeTind xpopata. O aAyOoplIpog XPOHATIGHOD YPAP®V
XPTOLLOTOLELTOL EVPEWG O TTOANEG OTHAVTIHES EQUPHOYES CUUTTEPLAXUPAVOHEVOV TNG XPOVOIPOLLO-
AOynong epyactodv [26,319-322], tng Siayeipiong xatoxwpntov [323H327]], tng ypoppig diye-
Bpoag [328-331]], Tng pnyoarvinng padnong, kot NG XPWHATIXAG XPOVOSPOHOAOYNONG TWV EPUPHOYDOV
ene€epyooiag ypapwv. T mopddetypa, n xpoHaTIKr XpovodpopoAOYNoT) ePAPHOYDV exTEAELTL
WG €€Ng: OeSOPHEVOL TOVL XPWHATIGHOD €VOG YPAPOU, 1) XPWHATKY Xpovodpopoloynon extehel N

Brpata T omoia exteAovvTon oelpland, 6mov N elval 0 apldpog XPWHATWY TOL X PICLHLOTOLODVTOL

36 Kepdhowo 1

OTO XPWHATIORO TOL YPAPOU, Kol oe x&de Pripa oL xOpPoL Tov €YoV XPWHATIGTEL pe TO (D10 YPOH
eme€epyalovtal TapdAinda, avTITPOCHOTEVOVTAG £TCL EPYNCIES TTOV EXTEAODVTL TALTOYPOVAL.

[N vae emitevydel vPNAY enidoon oTIG TPOAVAPEPIEVTEG TPAYHATIUEG EPAPHOYES, OL OYEDLX-
OTEG AOYLOMHOD TIPETTEL VOl PEATLOGOVV TPLa PAGIUA XOPAKTPLOTIUA GTOV XAYOPLIHO X POHATIGHOD
ypopwv. Ilpdtov, mpémel va eAXYXLOTOTOLGOVY TOV OPLIHO TOV XPWHATWV TTOL XPNOLUOTOLO-
VVTOL YLt VO XPWHATIOTEL O YPAYog 1ov diveton wg eloodog. Ta mapdderypa, otnv e@oppoyn
NG XPWHATIXNG XPOVOSPOHOAOYNONG 1) EACXLGTOTOINGT) TOV apLIPOD TV XPWHATWYV TTOL X PTCLHO-
TOLOVVTOL HELWVEL TOV APLIPO TV ddoxndV, GEPLOU®OV PNHATOV TOL EXTEAOVVTAL GTNV TEALKN
TOUPAAANAN epappoyn. QoTdO00, 1) EAAYLOTOTOINGT TOV APLIPOD TV XPOHATOV GTOV XAYOPLIHO
XPWHATIOHOV Ypaypwv eivor NP-complete tpofAnpa [332]], xo éToL Tponyolpeveg epevvnTinég epyo-
oleg [135,364320,321,328l333-337,337]] tpoteivovv amoteAeGHATIHEG EVPLOTINEG SLATOENS TV HOUPwV
TOVL YPAYOU, OL 0TToleG PTOPOLV VI ToPAEOLY PIKPO APLIHO XPWUATOV GTOV XAYOPLIHO Y POHTL-
ool ypapwv. Aebtepov, dedopévou OTL 0 XPOVOG EXTEAEGTIG TOL OAYOPLIHOL XPWHATIOHOD YPAPWV
TPOCTITETAL GTO GUVOAUO XPOVO TNG TEAKNG TAPAAANANG TPAYHATINNAG EQPOPHOYNG, OL HIXOVL-
xol AoylopLoD mpémel va oXedoOoLV ToPAAANAOLG aAyopldpovg XPWOHATIGHOD YPAPwVY LYNANG
enidoong yioe oVyXpova TOALTTOPN VA LITOAOYLOTIKG CLGTAHRAT. TPITOV, O ATOTEAECUATINOG X PWHA-
TIOHOG EVOG YPAPOUL OTTALTEL L LTOPPOTHUEVH HOTOVOHUT] TV XOPPB®V TOL YPAPOL GTIG XPWHOATIHEG
opadec, dNAadT T PHeYEDT TV XPOHATIUOV OHAOWV TTOV THPAYOVTOL VoL elva toct. AloupopeTind,
av T HEYEDT TOV XPOHATIKOV OHAd®V éxovv LYNATY atdxALlon peTaEd Tovg, dnAadn peydAn avi-
oOTNTA 6TOV OPLIPO TV HOUPWV TOL HATAVEROVTOL HETOED TOV X POHATIXOV OPAd®V, TTpoxaAeito
LYNAT AVIGOPPOTTLAL TOL POPTOL EPYACLAG KL XOUNAN XPHIOT) TWV TOPWV GTLG TEAUES TTPALYHATINEG
epappoyés. Emopévag, ol oxedlactég Aoylopuol mpémel v oxeddllovy 100ppornuévous Topa-
ANAovg aAYOPIIHOUG XPOHATIOHOD YPAPWVY YL TTOALTOPN VO DITOAOYLOTIXA GUGTHHATY. XTOXOG
QUTNG TNG EPEVVITIUNG EpYATiag elval Vo BEATIOCOVHE Tat VO TEAELTALAL XOXPAKTIPLOTIHX GTOV OA-
YOPLIHO XPWHATIOHOD Ypapwv, dnAadn va oxedidoovpe LYNARG KAPOUUOGIHOTNTAS, ATTOdOTLIKOVG
1O LEOPPOTTNHEVOLG TTAPAAANAOVG XAYOPLIHOUG YPWHATIOHOD YPAP®VY Yla GUYX POV TTOALTTUPT VAL
LTTOAOYLO T GUGTHHATAL.

Me pioc amAn TopoAAnAomoino) Tov aAyopldpou XpOHATIGHOD YPAP®V eVOEXETL VO TTPOX DYoLV
aoLVEémeleg OTay d00 TapdAAnAa eme€epyao TN VARHATO X PWHATILOVV HE TO (510 X POHO YELTOVIXODG
uOpPoLG TOL Ypaou. T'al TNV AVTIHETOTLON TOV XPOHATIXOV ACVVETELDV, TPOCPATEG EPEVVITIHEG
epyaoieg [27,31H34]] extedovv dvo emutAéov Pripator: To Pripa aviyvevong G LVETELDV, XATA TO 0TTOL0
Swxoyilovtal 6Aot oL xOpPoL TOL YPAPOU YL VO EVTOTLGTOVY TILHAVEG X POHATIHES NG UVETTELES, KL TO
Prpo eidvong Twv acvvemel®dy, xatd to omoio diacyilovtal oL xOpPolL GTOVG 0ToloVG EVTOTIoTY-
HOLV X POHATIUEG AOVVETIELEG HOLL ETLAVOLY POHATILOVTOL EX VEOU HE KalvoLpyLa Xpopato. Q26T060, oL
TOPAAANAOL QAYOPLIHOL XPOHATIOHOD YPAPWY TTOL €XOLV TPOTadel Oe TPONYOOHEVES EPEVVITINEG
epyacieg otn PipAoypapia [27,31-34] éxovv xapunAn enidoon, 6nwg amodewvibovpe oto Kepaato
3, emedn () xperdlovton va dtaeoicovy 0A6xAnpo to ypapo TovAdyxlotov V0 Popeg (Hict pop& yia
VO XPOHATIGOVLY TOVG KOPPOVG TOL YPAPOUL KAl Pt POPA YLOL VOL EVTOTLOOUV X PWOHOTIHES XCVVETTELEG
peTa€0 TV ®OPPwv), ko (B) evromilovy kot eAVOLY TIG XPWHATIMEG ACUVETELEG He pia “onvnpn”

TPOGEYYLOT), SNAXST] eVTOMILOLV KoL ETAVOLV TIG XPWHATIUEG XGVVETELEG TTOAD ApYOTEPX GTN) PO

Kegpahaio 1 37

EXTENECTG TOV QAYOPLUHOUL Ge GUYXPLON HE TN YPOVIXY) GTLYHN 7OV eROAVI{OVTOL Ol XPOHATIHEG
QO LVETIELEG GTOVG YELTOVIXOUG HOUPovg. Qg amoTéleopa, oL Tpornyolpevol alyopLdpoL Tov éxouvv
npotadel ot PpAtoypapio Stocyilovy Toug KOPPOLG HE X PWHATIHEG AGVVETELEG TTOAAEG POPES, X PT)-
CLHOTOLOVTAG WOTOGO Ta TeEAeLTala enimeda oTnV Lepapyio TNG PVUNG (LY. TNV xOpLo HVHHN) TV
TOAVTTOPTIVOV OPYLTELTOVIHADV, TTPOHAADVTOG ETGL TTOAD LYNAO KO0 TOC TpdcPacng oo dedopéva.

e autnv TNV epevvnTNn epyacio Tapovsialovpe tov ColorTM [2] adyopiipo: évav mapdAinio
AAYOPLIHO XPOHATIGHOD YPAP®V TTOL eMLTUYXAVEL LYNAN Tid00T) KOl HALLAKWOOLLOTNTA GE TOAL-
nopnva vtoloyloTid cvatrpate. O ColorTM alydpidpog éxel oxedlaotel OOTE Vo TOPEXEL XOUUNAO
UOGTOG GLYXPOVIOHOV KoL XapnAo xk66Tog mpocPacng ot dedopéva. O mapaAAniog alyoplipog
7oL oxedidoope Tpoteivel (o) Lo "TPOJLHN” TPOGEYYLOT] EVIOMLIGHOD KO ETIAVOTG TV X POHOTL-
HOV ACLVETEL®OV, ONAadY) dueon aviyvevoTn KoL eTLAVOT TV XPOHATILOV AXCVLVETELOV TN XPOVIXN
oTLYpr) 7ov ep@avilovTol GTn por eXTEAECTS TOL alyopldpov, €ToL (dote va ehayloTomotndel To
100T0G TPOGPacng ot dedopéva HEGK TNG dLAoYLONG TwV XOUPWV XPNGHOTOLOVTOG TIG XOXHUNAOD
ndoTOoUG *PLPEG PVTpeS (cache memory) TwV ToOALVTOPNVLVY apyLTERTOVIK®V, Kot (B) éva vTodeTind
OXNHO LTTOAOYLOROV KO CLYXPOVIGHOU, dNAadn pe xpnon tng texvoroyiag Hardware Transactional
Memory yla To GLYYPOVICHO TV TAPAAANAWY ETEEEPYACTIUDOV VIUATWV HOL HE TNV ELTENECT] V-
TOAOYLOH®OV %Ol TTPOGPACEWV PVIUNG EXTOS TOL XPLOLHOL THHHATOG TOL AYOPLIHOV, £TOL OOTE VO
emitevyJoiv VYNAGL emimeda ToPUAANALGHOD KAl XAUNAO #OGTOG GLYYPOVIGHOV. ZVYHEXPEVA, O
ColorTM olyopidpog amotedeital amd tpia Pripata, yio xade xopfo tov ypagov (o) Pplonel éva
LTTOYNPLO X PR YLt TOV TPEXWV KOPUPO APPEVOVTIS LITOYLY T X POUATA TTOV £XOVV atvaTeEDEL GTOVG
YELTOVIXOUG TOUL *OPPoug, (B) emuup@veL notL EVIIHEPDVEL TO XPOHO TOL TPEXOVTOS KOPUPoL eAéyyo-
VTOG TO XPOHATO TOV XPLGIHOV YeLTovir®v xOpPov péca oe pioe Hardware Transactional Memory
ovvolayr), ko (y) emavahopPaver Ta Pripata (o) xon (B) pe pio “mpodIvpn” mTpoceyylon peExpL va
mpoypotonolndel Evag éyrvpog XpWHATIOROG 6TOV TPEX®V KOpoO.

Qo1000, 0 ColorTM alyOopLIpog Sev TapéeL LOOPPOTNHEVT) HATOVOUT TOV XOPPWV TOL YPAPOL
OTIG XPOHATIUEG OPADEG TTOL TOPAYOVTOL. G ATTOTEAEGHA, Ol X PWHATIHES OPADES TTOV ToPAyovTLL
EXOLV HEYAAEC ATTOUALOELG AVAHET L OTA PHEYEDT) TOVG, TPOUAADVTAS ETGL LVLGOPPOTTLXL POPTOUL €p-
YOO LOG KOl XOUNAT) XPTOT) TOPWV GTLS TPAYHATINEG TEAKES EQaPHOYES. EMopévwg, emexteivoupe tov
ColorTM oAyopLIpo yior vor oXeOLACOVHE EVAV LGOPPOTNHEVO TTAPAAANIAO XAYOPLIHO X PWHATIOHOD
YPapwv, tov ovopdletot BalColorTM. O BalColorTM alyopidpog mopdyel eExtpetind Looppomnpéveg
XPWHATIHEG OPAdES, ONAOdT OAEG OL XPWHATIHEG OHGdEG €xOLV oxedOV TOV idlo aplip®V KOpPPwv,
oToXebOVTAG £TGL GTNV TTApPOoXN LYNANG XPHIONG TWV TOPWV TOL LALKOV Ko LYNANG LooppoTioG TOV
(POPTOL €PYATLNG OE TPAYHATINEG TEALHES EPAPHOYES.

Ymnv epyacio pog a€toloyovpe tovg ColorTM non BalColorTM odyopidpovg oe évar cOyxpovo
moAvmpnvo vroloylotind cvotnua (Intel Haswell), xpnowyonowdvtog pice peyddn mouwthiar atd
TPAYHATIHOVG YPapovg e dtapopeTind xoportnplotind. O ColorTM olydpidpog Peltiodver tnv
emid0on TOL GUOTAHATOG KATA 12.98X XPNOOTOLOVTOG 56 TaAPAAANAX eme€epyacTind vijpata
OUYXPLTIUA JE TPONYOVHEVOUG QAYOPLIHOUG XPOHATIOHOD YPAP®V oL éxouvv mpotadel otn Pi-
BAoypagio. O BalColorTM alyopiipog Pedticdvel Tnv enidoon Tov cuothpatog kot 1.91X ypn-

OLHLOTTOLOVTAG 56 TOUPAAANAX VAROTO XoL TToLpEXEL TNV UAADTEPT TOLOTNTO €ELCOPPOTNONG TWOV

38 Kepdhowo 1

XPOHATIHOV OPAOWV TTOL TAPAYOVTOL GE GUYKPLOT] HE TPONYOUHEVOUG LGOPPOTTNHEVOLG QAYOpid-
HOUG X PWHATLOHOD YPAP®V TTov éxovv tpotadel otn PipAtoypagio. Eriong, n epyacio pog peletiel
TNV aoTeAecPaTKOTNTA TV TpoTelvopevwv ColorTM no BalColorTM olyopidpwv xatd tov mo-
POAANAGHO HIOG TIPOYHATIXNG TEAUNG eQappoyng, TNG epappoynig Community Detection [338]].
Ot ColorTM wou BalColorTM alydprdpor eivan dnpocing diodéopol [2] otov axdlovdo ovvdeoyo:
github.com/cgiannoula/ColorTM.

SUVOTTINA, QUTY) 1) EPEVVITIKT EPYACLA TAPEYEL TLG OHOAOVIES GUVELGPOPEG:
o 2xedialovpe 300 VEOLG TUPAAANAOVG AYOPLIHOVS XPOHATIGHOD YPAPwV LVYNANG emtidoong

1oL KA OO PO TN TOG, TToL ovopdlovtar ColorTM non BalColorTM, yio o0y pova toAvmdpnva

VITOAOYLO T CUGTHHATA.
« Afilomolotpe v texvoloyioe Hardware Transactional Memory yio vor evtomilovpe amotede-

OHOTWHA XPOHATINEG AOLVETTELEG PETAED YELTOVIK®V HOPUPwV TOL Yp&@ov pe YopnAd x6oTog
ocvyxpovicpov. Ilpoteivovpe pioe "mTpodvpn” TPOcEYYLOT EMIALONG TWV XPWHATIHOV OGLVE-
TELOV GE TTOAVVIHOTINEG EUTEAEGELG TOV OAYOPLIHOL YPOHATIGHOD YPAP®V, 1] OTTOLOL TTapEXEL
TOAD YopnA6 #6610G TPOSPaong ota dedopéva.

« A€oloyoope touvg mpotevopevovg ColorTM wow BalColorTM alyopidpovg oe pioe cOyxpovn
LITOAOYLOTIXT) TTAATQOPHA Y PTCLLOTOLDOVTAS P PHeYGAN oAl TPAYHATIUOV YPAPwV. A-
T0SEWVVOUE OTL OL TPOTELVOHEVOL XAYOPLIpOL TTapEXOUV ONHAVTIHEG PEATIOCELS emTidOOTC TOV
CUGTHHOTOG GUYKPLTIXA He TTPOTYOUpHEVOLG aAyopidpovg ov éxovv Tpotadel otn PifAloypa-

¢lot, xot PITopovV va PEATIOGOVY GTHOVTIUA TNV eTLOCT) TTPAYHATIHOV TEAUDV EQOPUOYDOV.

1.4.2 SmartPQ [4]: Mix Avvapwn HapdAinAin Ovpa Ilpoteparotnrog yio
Apxitentovinég pe Avoporopopen lpocPaon otn Mvijun (NUMA)

O mopaAAnAeg dopég dedopEVWY X PG LHOTOLOVVTAL EVPEWS oe PLPALOTTHEG AOYLOHLXOD KO TLPOALYHO-
Tnég epappoyés. Iipdopateg epevvnrinég epyaoieg [[15439,64,339]] pedetodv tnv avéyxrn oxedioopot
ATTOSOTIUADV KL HAHOHOG WV TTPAIAANADV SOHDOV dESOHEVOV YLOL P LTEUTOVIHES [LE XVOHOLOHOPPT)
npocPocn otn pvipun (NUMA). HapaAinAeg Sopég dedopévwv 0mwg ovvdedepéveg AMoteg nat Sévtpa
avalntnong eppavifovv xapunAn copeopnor, eneldr) oL Aettovpyieg Tovg dtxayilouv pun otodepd o-
PLIPO SetodV yioe vt ohoxAnpwiovv. Ilpdcparteg epevvntinég epyaoieg (64,340,341 mapovoialovv
oapdAAniovg adyopidpoug yio cuvdedepéveg Aoteg nan dévrpa avalntnong [48,342-346] mov xAt-
HOUOVOLY GE eEXOTOVTAdES VijHaTa. AVTIIETOC, TopdAAnAeg dopég dedopévv OTTWG oL OLPEG KoL
ot otoifeg eppavifovv VYA cuopopnon. e avtég Tig dopég dedopévwv, Ta TapdAAnio vijpata
avtayovilovtol yio Tig dieg YEGELg HVARNG, TPOUOADVTOG LYNAT xivion dedopévwy 6To GOOTNHA
noL oupiféc mpooPaoelc dedopEvwv TN HVIHN TOV DITOAOYLOTIXOV GUOTNHATOV HE 0LVOLOLOPOP®N)
npocPacn ot Hviun.

Y& vtV TNV epyacic, e0TIAlOVHE OTLS TUPAAANAES OVPEG TTPOTEPALOTITOG, OL OTTOLES X PT|CLHO-
TOLOVVTOUL OE EPAPHOYES XpOovodpopoAdynong [347], tpocopotwaoelg Stanpitev cupPavtwv [348,349]
nou e@oppoyég eme€epyosiog ypapwv [350H352)], 6mtwg yia mapddetypa o adyopLtipog edpeong twv
oLVTOpOTEPWV povorartiov (Single Source Shortest Path) [353]]. ITopopoing pe ta dévrpo avalrtn-

ong, otn Aettovpyia elocaywyng (insert), oL TpAAANAEG OLPEG TPOTEPALOTNTAG ERPOVICOLY LYNAL

https://github.com/cgiannoula/ColorTM

Kegpahaio 1 39

entimedo mapoaAANAopol Kol YA GUHEOPN O], YlaTl Ta THPAAANAX Vijpata dovAebovy ce dia-
QopeTd TPNpota TG dopng dedopévav. Emopévag, otn Aettovpyla eloaywync, oL VAOTTOLCELG TTO-
POAANA®OV OLPOV TTPOTEPALOTITAS TTOL AYVOOUV TNV CLVOHOLOHOPPT] XALTAVOLLT) TNG KUPLOG VNG OTOL
oUYXPOVa LTTOAOYLOTIXA GUGTHHATA, GTO eENG avapépovtal wg NUMA-oblivious, ¥Apax@vouy péxpl
EVOL HEYOAO apLIpO TTOPAAANAWY VPATOVY. AvTIdéTwg, oTn Aettovpyia Stoypagrg (t.x. deleteMin),
OAo Tor TopAAANA vijpata avToywvilovtor yio va Staypdovv to otolyxeio pe tnv vPnAotepn
TPOTEPALOTNTA, AL ETOUEVWSG VTAYWVILOVTOL Yo TIG idleg V€GeS VNG, Xe Gevapla pe PeydAo
apLIPo AeLToLpYLOV Loty pagpr|G, oL TapAAANAES 0VPEG TTPOTEPALOTNTOG CUVHIWG epPavilovy LYNAR
OLHEOPNOT KoL XOUNAL emtimeda TapaAAnAiopon. Eta tapamdve cevapia, NUMA-oblivious ovpég
TPOTEPALOTNTAG EPPAVILOLY YOoUNAT KApoUwopoTTo ot emtidooT). Emopévac, yio v Bedtiwdel
1 €800 TOL CLGTHHATOG G APYLTEXTOVIXEG HE XVOROLOHOPPT) TPOGPAGT) GTN PVHLT, TPOCPATEG
epyaoieg [15,/64] mpoteivouv LAOTOLOELS VPOV TPOTEPALOTNTAS TTOL AapPdvovy LITOYLV TV a-
VOHOLOHOPPT] HATOVOUT TNG KVOPLOG PVIHNG OTO GUYXPOVA VITOAOYLOTIXG GLGTHHATA, *oL 6TO €E1G
avagpépovtal wg NUMA-aware ovpég mpotepatoTnTag.

MeAetotpe NUMA-oblivious kot NUMA-aware TopdAAnAeg DAOTOLGELS OLPOV TPOTEPALOTNTOG
o€ TTOAMG SLoLPOPETIUA TEVAPLX CUHPOPTIOTG GE APYLTEXTOVIHES HE CLVOHOLOpOPYPT TpdGPact o1
HVIHT, X0 TAPALT pOUHE OTL 1) €MLS00T) LG TTXPAAANANG OLPAG TTPOTEPALOTNTAG EEXPTATAL TOCO O
710 TOV OYXO GUHPOPNOTG TOL EXAGTOTE GEVUPLOL OGO KO AITO TOL YALPAXTIPLOTIUA TNG VITOAOYLOTIXNG
mAat@oppag (Kepddato 4). Ilapdho mov oe éva 6eVAPLO pe HEYRAO OPLIUO AELTOLPYLOV ELCAYWOYNC,
m.X. Otav extelovvtal 100% Aettovpyleg eloaywyng, pice NUMA-oblivious vAomoinon pmopet va
BeAtidvel onpovTind tnv enidoon tov cvaTHpaTog cuyrpLTind pe pio NUMA-aware vAomoinor, oe
oevapla pe vYNAOTEPT GUHPOPNGT], ONAXdY OTTOL TO TOGOCTO TWV AELTOLPYLOV dlaypoPng elvort
vPnAo, oo NUMA-aware vAomoujoelg eppavifovv xaditepeg emdocelg amd tig NUMA-oblivious
vAomotoelg. Apa, cupmepaivouvpe OTL xopio vitdpyovoa TaPAAANAN LAOTOINGT 0VPAG TTpOTEPAL-
otnrog dev eppavilel Tnv vYMAOTEPT emid0oT) o€ O T TLIAVA SLOUPOPETIUR TEVAPLA CUHPOPTICTG.

O 010Y0G pag o€ ALTAV TNV epyasio eivat va oxedLAGOVE Pict TOPAAANAT OLPA TPOTEPALOTNTAG
IOV ETMLTLYXAVEL TNV VYNAOTEPT €TTLOOCT) G€ OAX T SLOUPOPETIHA TEVAPLX CUUPOPTONG, HorL ATodideL
BéATIoTA 0O MO OTAV 0 OYHOG GUHPOPTOTG TOL POPTOL EPYAGLAS TOLKIAEL HXTA TT) SLAPHELX TOV
XPOVOL EXTEANEDTC.

H cvvelopopa avtng g epyaciog eivor SutAn. IIpotov, mpoteivovpe pior yeviur adyoplopxr)
Texvwn] yue tnv vAomoinon NUMA-aware Sopov dedopévwv, mov ovopdletor Nuddle. H Nuddle
texvwn petatpénel omoiadrrore NUMA-oblivious map&AAnAn Sopr dedopévov otnv avtiotolyn
NUMA-aware vAomoinon g H Nuddle texviur) emexteiver v ffwd [15] teyxvunn, emtpémovtog
TOAAaTAG vipoto-Stonoplotég (server threads), avti yio povo éva vipo-OLaMOULOTY), VO EXTENO-
Vv Tautéypova hertovpyieg otr Sopr] dedopévwv yio Aoyoploopd GAAo®v vnpuatwv-rtedatodv (client
threads).

AeVtepov, mpoteivoupe pio Suvapusxt TopdAANAN OLPA TPOTEPALOTNTAG, TTOL OVORALeTon SmartPQ,
xoL 1 omolo emLITUYXAVEL TNV LYNAOGTEPT emidoon oe Ol Ta Tdavd SLaPopeTind cevapla GUH-
POPNONG, HECW® TNG SLVALKNG TTPOCAPHOYNG HATA TN SLAPHELX TOV YPOVOL exTéAEOTG PeTAED eVOg

NUMA-oblivious ko evog NUMA-aware adyoptdpiot oxnpatog. H SmartPQ ovpd mpotepatdtntog

40 Kepdhowo 1

evoopatovel (o) tnv texvun Nuddle yio va evadddocetal petad Twv Vo aAYOPLIPIKOY CYXNHUATOV
He XopUnAo6 x6otog, kot (B) éva a6 dévtpo amopdoewv (decision tree classifier), to omoio pofAémel
TO XOADTEPO AAYOPLIPIHO oYU ©OG TPOG TNV etidoon Aapfavovtag vToYLy Tov YKo GLHPOPNONG
TOL eXAOTOTE POPTOL EPYATLNG.

[Tio ocvyxexpyéva, n SmartPQ ovpd mpotepondtnTag Pacileton oe Tpelg Paonég déeg. IlpaTov,
ta vripata-reldteg (client threads) pmopoov va extelobv Aeitovpyieg XprOHOTOLOVTAS €LTE TN
NUMA-aware Nuddle vhomoinon eite tnv vmoxeipevy NUMA-oblivious vAomoinen mov evewpa-
Tovel eowtepnd 1) Nuddle vhomoinon. Aegbtepov, n SmartPQ ovpd TPOTEPOLOTNTAS EVOWOHATOVEL
EVOL HNXOVIGHO AYNG amopAcemV yia vor amro@acilel Suvopind oxeTnd pe Tig petafacelg petakd
TV 800 alyoppwmav oxnpatov (NUMA-aware xor NUMA-oblivious). Tpitov, n SmartPQ ovpa&
TPOTEPALOTNTOG EXPETOAAEDETOL TO YeYOovOg OTL 1) vitoxeipevy NUMA-oblivious vAomoine, ov ev-
ocwpatovetal ecwteped ot Nuddle vhomoinon, eivon pioe mapdAinin dopr dedopévwv, ko O6TL T
vipato-edareg (client threads) diaoyiCovv n dopn dedopévwv pe tov idio axplPdg TpoOTO KoL oTaL
dvo aryopiipwmd oxnpoata (NUMA-aware xot NUMA-oblivious), dnAadn xwpig xopio aAloyr) otov
TpOTO pe Tov omolo yivetan n mpocsPact ot dedopéva. Emopévwg, 1 SmartPQ ovpd mpotepotdTh)-
tag propel vo petofaivel Suvopind amd to Eva aAyopLdpind oxnpa 6To GAAO dAYopLIpKd oxnpa
(NUMA-aware xow NUMA-oblivious) ywpig tn xprion cvyxpovicopot petad TV petafaoemy.

A&loloyolpe TOAAG SLapopeTind cevapla cLPPOPNONG xaL cuyrpivovpe tn Nuddle vAomoinon
xo T SmartPQ ovpd mPoTEPALOTNTAG He TAPAAANAES VAOTOLNOELS OLPWV TTPOTEPALOTNTAS TOV
gxovv mpotadeil otn PipAoypagpio [13/15,[55]. AEioloyolpe emiong cevapla 6T omoicr 0 OY®OG
OLHEOPNONG TTOLKIAEL HaTA TN Stdprela TOL YpOvoL extéleons. H akloloynon pag omodencviel 4TL)
SmartPQ ovpd mpoTepaLOTNTAS TPOCAPHOLETOL SVVOPUA HETOED TV SVO AAYOPLIHIKOV GXNHATWV
HE OPEAT TEO HOGTOG GLYYPOVIGHOV, XOIL ETLTUYXAVEL TNV LYNAOTEPT) eTTidOCT) GE SLoUPOPETING TEVAPLAL
OUHPOPNONG HOL GE OTOLXONTTOTE XPOVIKT OTLYHH Xt TN dLdpuela extéleong pe 87.9% mocooTod
emLTuYloG.

SUVOTTINA, QUTY 1) EPEVVITIUT EPYACLA TAPEYEL TLG OHOAOVIEG GUVELGPOPEG:

« IIpoteivoupe pioe yeviun adyoptdpinn texvinr, mov ovopaletor Nuddle, no 1) omoio xpnoyto-

moleiton yiox tnv vAomoinon NUMA-aware mapdAAnAov dopov dedopévov vning enidoong.

o Zxedialovpe Evay amhO PNYoVIopo AYnG amo@icewy o 0oiog pe dedOpHEVO TO GEVAPLO GUN-
@opnong mpofAémel Tnv xaAlTepn vAoTOLNGCN ©G TPOg TNV emidoon petald proag NUMA-

oblivious kot NUMA-aware ovp&g TpoTepaLtOTnToG.

« IIpoteivoupe pior Suvaynr ovpd TPOTEPALOTNTAC, TTOL OVopdleto SmartPQ, won emiTuyyxdvel
Vv LYNAOTEPY €midOOT) AUOHA KL OV O OYHOG GUHPOPTIONG TTOIAEL XOTA T SLAPHEL TOV

XPOVOL EXTENECTC.

« Afioloyoope tn Nuddle texviun wou tn SmartPQ ovpd mpotepatdTNTAS € TOAAK dLorpopeTind
CEVAPLO GUHPOPNONG, KoL Tt0devOOLPE OTL 1] SmartPQ emitvyydvel Tnv xalbtepn enidoon

o€ oUyuplon pe TapaAAnAeg ovpEC TPOTEPALOTNTAG TTOL €XoLV TTpoTadel ot PipAtoypapia.

Kegpahaio 1 41

1.4.3 SynCron[5]: 'Evag Amodotindg Mnyaviepog Tuyxpoviopot yio Apxt-

tentovinég pe Exe€epyoacioa Kovrd otn Mvijun (Near-Data Processing)

Ou mpdogarteg eEelifelg oe 3D texvoloyieg pviung [354-359] éxovv avavewoel To eviiapépov yia
ene€epyacia dedopévwv xovtda otn pvrun (Near-Data-Processing) [135,1914258,360]]. H ee€epyacia
dedopévav novta otn pvnun [[1354138,139,{188,/189,191-193,1961197,2004201,2031204,206,207,254-257,
308,360-369]] eptAopavel TV eXTELEGT) LITOAOYLOUMOV KOVTA GTNV ®VPLA Pvijun 6TT0VL Pplorovtal ta
dedopéva NG QapPROYNG. AUTH 1) TPOGEYYLOT) HELOVEL TNV oxpLPT) petonivnom Tewv dedopévwv petakd
TOU €MEEEPYATTI) UAL TNG HVIHNG X0l PEATLOVEL TNV EVEPYELOUT) HATOVAAWGT] TTOAAGOV TAPEAAN AWV
epappoyov. Ov apyLTextovinég pe eme€epyooio XOvT& oTn PvhUn vTooTnpilovy TOAAEG GUOKEVEG
HVARNG ouvdedepéveg petaEd Tovg, xadepion ad Tig omoieg meptAapPfavel TOAATTAODG XapnAo
1060 TOVG enmefepyacTeég TOMOdeTNHEVOLG TTOAD HOVTA GTOVG Trivaeg pvipng (memory arrays) (135,
206,207}3081/362,368,369]. ETOpEV®G, OL APYLTEXTOVINEG [lE eTTEEEPYXTLOL HOVTA GTT) LVIJIT] TTAPEYOLY
vPNAG entinedo TaPOAANALGHOD, XOUHNAO ¥OGTOG TTpOcPacng dedopévwv GTh PV KoL HEYRAO DPOG
CovNg pviipng.

[Ipdoarteg epevVNTKEG epYTieg TAPOLOLALOLV T OPEAT TNG APYLTEXTOVIXNG He emeEepyooia
XOVTA GTN HVARN € TOPAAANAEG EQAPHOYES, GUHITTEPLACUPAVOUEVWVY EYAPHOYDOV LVAAVGTC TOV YO-
vidiov [189,201], eme&epyaciag ypapwv [[1354191-193,203,206,207], Pacewv dedopévav [193}204],
acpdeiag [[198], ko vevpwvindv dixtdwv [256,308,363,364]. Tevud, avtég oL epappoyég mopou-
owlovv LYNAG emimedo TAPAAANALOHOD, XAUNAT) DITOAOYLOTIXG IXOVOTNTA, KoL CXETUA XOUNAN
TomWOTNTA GTNV ®pLPN pvApn [141,370-373]], xopouTnpLloTind mov TG X TOOV KATAAANAEG Yia

OLPYLTEUTOVIKEG [LE ETTEEEPYNTLOL HOVTA GTT) LVTILT).

[Iponyovpeveg epyacieg peAetoOV TNV atviyun oXeSLOGHOD ATOSOTIHMV EPYUAELWV GLYYPOVIGHOD
YLOL ALPXLTEULTOVIXEG [le eTTeEEPYATIOt KOVTA TN HVTUN, OTtwG eivan Ta xAewdopata (locks) [54374] xoun
ta eprtodua (barriers) [135,(1964206,207]. Ov pnyoviopol cuyxpoviGHOD XPTCLHOTOLODVTOL EVPEWG
oe mapadAinieg epappoyég [1414;163,[8811202,375-379], nou mpémel va ovv-oxedidlovTon TPocenTIHd
HE TOL LTTOXELHEVAL XOPOAXTNPLOTIUA TNG VITOAOYLOTINNG TAXTPOpHAG o€ entimedo VAo (hardware)
TPOKEHEVOL v emitevydel LYNAN enidoot cvotpatog. Emopévog, yio va a€lomondodv TAnpwg
TOL OQEAT) TNG TEXVIUNG TNG ETEEEPYNTLOG HOVTX GTT) HVAIN HOTX TNV EXTEAECT) TAPAAANAWY eParp-
HOYQV, ¥piveTal amopaitnTo vo oxedloctel pioe armodotinr) Ao GUYXPOVIGHOD YO XPYLTELTOVIHES
pe emeEepyacio KOVI& GTN PVApN.

Ou mpooeyyioelg yia tnv vrootplen cLYXPOVIGHOL PITtopolV va Tavopndoiv oe dvo xatnyo-
pieg [3801381]]. IIpcdTOV, GXNHATO GLYYPOVIGHOD HITOPOVY VoL LAOTTONTOUV HECW TNG *OLVHG HVHING,
oLVNIWG XPNOLHOTOLOVTAS TIG ATOHIHEG EVTOAEG (atomic operations) mov mapéyovtol oe eminedo v-
Awo0. Ze mtoAvmbpnva CPU cuetripata, oL atopinég evIoAEG LAOTTOLOVVTL GLUVATWG GTO LITOKELEVO
TPWTOXOAAO cLVOYXTG TNG XpLYNG PvruNG (cache coherence protocol), wGTOG0 OL TEPLOGOTEPES OUp-
XLTEXTOVINEG e emeEepyaaian KOVTA G TN PVApN deV LITOGTNPLLOVLY TPWTOKOAAX GLVOYTG TNG HVIHNG
(t.x. [11354139,206,207,369]). Ze¢ GPU cvothipata xar cuotripata polinig TtoapdAAnAng enekepyaciog
(Massively Parallel Processing Systems), ot atopxég evToAéC HTopotv v LAOTTONIOUV G€ ATOUIHES

povadeg LAWOU, Tov ovopdlovtal remote atomics. Q6TOG0, 0 GLYYPOVIGHOG e XprjoT) remote atom-

42 Kepdhowo 1

ics éxeL amodelydel avamoTeAeopATINOG, HODOG 1) EXTENEST) TNG HATE EYYPAPTG OE P CUYHEUPLHEVT)
otadepr tomodecio 6To cOOTHA dnpLovpyel LYNAR xivon koL GUHEOPNGT 6T dinTLO dlooVVEESTG
oL cvoThpatog [132,382-385]. AebTepov, 0 GLYXPOVIGHOG HITopel vor LAOTTOIEL HEG® TOL GXHA-
TOG HEeTAOOONG HNVURAT®VY (message-passing) eite o¢ eninedo AoyLlopio0 eite o€ eminedo VALKOV, 6TO
o7olo oL eneEepynoTéG AVTAAAGGOLY UNVOHATA TIPOKELHEVOL Vo EpJouv oe cuppwvia. [Ipdoparteg
EPYOCLEG YO XPYLTEXTOVINEG e emeEepyaoia xovTd ot pvhpn (.. [1354/196}207,386]) tpoteivovv
OXNHATO GUYXPOVIOHOD HECKW HETASOGTG HNVUHATOV HETOED TV eMEEEPYNGTOV TOV GUGTHHATOC.
Qo1600, To TPOTELVOPEVA ALTA GXNHOT eEoxoAovdovy va €xovy yapnAn enidoor, 0mtwg orodel-
wvboupe oto Kepdhowo[5 xan entiong vootnpiouv éva puepd apitdpud epyadeinv cuyxpoviopo.

Mnyxoawviopol vAWOD oL dev LAOTOLOVVTAL HEC® TWV TPWTOXOAAWY GULVOXNG HVNAHNG 1)/xon
TV ATOULKOV EVIOA®V éxouv mpotadel atn PifAloypagia yioo cbyxpova ToAvTOpnva GLOTHHO-
ta [287H2894291H293}295,/296]. QoTd00, LTOL OL P XOVIGHOL GLYXPOVIGHOD €xOoLV oxedlaoTel yia
T LI TEPO YOLPOUTNPLOTINA DALKOD TOV EXAGTOTE GLOTHHATOG, XaL deV elval ArtodoTIHOL 1) KOTAAAN-
AoLyla cUGTHROTY pe eteepyaaion KOVTA GTN PVIHN (Kapéc}\ouo. I opadetypar, To LTOAOYLETIND
ovotnpo CM5 [296] vAoTolel cuYXpPOVIGHO PECW EVOG ATOXAELGTIHOD PLGLKOV dieThOL StoehVdEDTG,
To omoio dou cuvermaydTay OAD VYNAO ®KOGTOG var LAoTodel oe apyLTertovinég pe emefepyacia
wovtd ot pvpn. O LCU [295] pnxavicpog cuyxpovicpod eVOWHATOVEL ot povado eAEyyov o xade
CPU eme€epyaotr) TOL GLUOTAHATOG, XL 1] oTTola emtiong Yo elye LYNAO ¥OGTOG Vo LAOTOLTel GTOVG
antAolg eme€epyacsTéG TOL LITOCTNPLLOVTAL OTLS APYLTEXTOVINEG e emteepyacio xovTd ot pvpn. O
SSB [288]] pnyaviopog cuyxpoviopov mepthAapavel pio piupr Lovado armoduevong o€ xdde eEAeYnTN
NG ¥PLENG HVAUNG Tov TeAevtaiov emurtédov (Last Level Cache) wow o MiSAR [287] pnyowviopog cuy-
XPOVLOHOU EVOOHATOVEL EVOLY ETTLTOYVVTH GTOVS TLVAKES HVIHNG TNG XPLONG HVIHNG TOL TeAevTaiov
emuédov (Last Level Cache). Ko o1 800 mpoavagpepiévreg pnyaviopol vAomotovvtat oto enimedo
1PLPTG VNG TV ToALTTOPNVEOV CPU ap)LTEXTOVIXGV, TO OTTOLO OL TTEPLECOTEPEG AUPYLTEXTOVINEG
pe emeEepyooia xovtd otn pvnpn dev dradétovv. Emiong, oL apyitentovinég pe eme€epyacio xovid
OTI HVARUN €XOLV CVOHOLOHOP®PT] HOLTAVOUT] HVIIHNG, HOL OL TTEPLOGOTEPOL OTO TOVLG TTPOTYOUHEVOUG
HNXOVIGHOUG LYY POVIoHOV [287H28941291-293,1295,296] Do eiyorv xopnAr ewidoon GLGTHHATOG e
oevapla VYNANG cLPPOPNoNG. Avtod cupPaivel emeldr] ALTOL OL UNYAVIGHOL GUYXPOVIGHOD OLYVOO-
0OV TO YOAPOXTNPLOTIUO TNG LVOHOLOHOPPTG HATAVOUNG HVIHNG TOV OXPYLTEXTOVIXOV He eTeEepyncio
UOVTA OTI HVHAHN, Ol ETOHEVOG GE GEVAPLA VYNANG GUPPOpNENG do Tpoxadovoay LYNAT xivion
070 8ixTLO dLaoVVIEGNC HETOED TWV GLUOHELOV HVIUNG TWV GUCTNUATOV e eTeepyacion HOVTX GTN)
pvp).

SUVOAKA, OL XPYLTEUTOVINEG |LE ETTEEEPYATLO HOVTA GTT) LVIIUT £XOVV ALPUETA CTILOVTIHA X OLPOHTT-
PLOTIHA O€ eTimedo VAKOD TTOL ATTALTOVV it VEX TTPOCEYYLOT) YL TNV LITOGTHPLEN €VOG oT0dOTIHOD
HUNYaVIGpoU cuyXpoviopov. IIpdTov, oL TeplocOTEPES aPXLTEXTOVINEG e emeEepyaoian XOVTQ OTN)
pvipn [54,(1354|1381139,/188,/196,(1974{200L 204, 206, 207,(255-2574(308 360,361,363, 386]] dev Siadétovv
#01va eTUTEdN UPLPNG HVIING TTOVL Ja PITOPODoaV VoL EMLTPEYOLY XOUNAOD XOGTOVG ETLHOLVWVIK
%Ol GUYXPOVIOHO HETOED TV eMeEEPYNTTOV TOV CUOTHHATOG. AgVTEPOV, OL APXLTEXTOVIUES |LE ETTE-
Eepyaoia xovtd ot pvipn dev vtootnpilovv TPWTOKOAAX cuvoxng Hvhung [54,/1351|138,/188,/196,
197,200,204, 206},207,[255L{2561/308,/361,363,364,386], Adoyw vYmnAod owovopLxod ®x0GTOVG Kot VYNATG

Kegpahaio 1 43

xivnong oto dixtvo Stacvvdeong [1394369]. Tpitov, oL apyltentovinég pe emeepyacio XOVTA 6T
HVIHT €XOUV OLVOHOLOPOPPT) KOTOVOLLT) VARG, XOL 1) ETHOLVOVIN HETOED TWV GUOHEVOV HVIUNG TOV
OLOTARATOG elval TTOAD o axpiPr] (tdco o€ emidoot 660 KoL Ge evepyeLanT] XATAVAAWGT)) atd TNV
eMmoLVOVia €VTOg TNG cvoxevng Pviung [[135,/192,(1931(196,204,2061207,368]].

Y& autnv TV epyocia, mpoteivovpe to SynCron, évav ommodoTind PNYAVIGHO GLYXPOVIGHOV
yla apyLtextovinég pe ene€epyooia xovtd otn pviun. O SynCron pnyoviopog ocLYXPOVIGHOU €xeL
oxedlaoTel ylo voe Tpocpépel LYNAN eid0GT CLOTNHATOC, XOUNAO *OGTOG LAOTTOLNGNG, TPOYPOLjL-
HOTLO TN eLXOALO HorL pior peYGAn oAl epyadeiwV GLYYXPOVIOHOD, EVOWIATOVOVTAS TEGOEPLS
Boaowég texvinég. IIpdTov, LAOTOLOVHE TO CLYXPOVICHO HETOED TV eMEEEPYACTOV GE XAUNAOD
%0GTOVG HOVASWV VAU, Tov ovopdlovtor Synchronization Engines. Avtn 1 texviur ocuvpfdaider
OTO VO TTOPUYOUHE TNV VAYHT] YA LTTOOTHPLEN TTPOTOXOAA®Y GUVOXTG HVAING Kot oaxpL®V ato-
HIX®V EVTOA®V O¢ eminedo VAKOD GTIG APYLTEUTOVIXEG [le eTTeEePYATiaL XOVTA G TN PVHpT. AgbTepov,
amodnrebovpe TIG HETUPANTEG cLYXPOVIGHOD G plor pinpr] e€elSLKeVPEVT) HOVAdX PVIUNG Yol va
ao@OYyovpe TNV extéleot axplpov TpocPhoewv dedopévwv otnv xOpla pvhun. Tpitov, o SynCron
HXOVIOHOG GUVTOVILEL TO GUYXPOVIGHO HeTaED TV eeepyaaTOV pe Eva Lepapind GYTHO OVTOA-
AOyNG HNVURAT®V: OL eMeEEPYAOTEG EMUOLVOVOVY POVO pe TO Tomed Synchronization Engine mov
Bpiloxeton otnv dloe cLuoKELT] PVAUNG PE AVTOVG. XTO €TTOHEVO ETITESO TNG EMUOLVWVIAG, O TOL
o Synchronization Engines emioivwvoiv peta€d Toug ylo va topéxovv GUYXPOVIOHO oe xado-
Ao eminedo. Méow TOL Lepap ol GYXNHATOG eMOLVOVinG, 0 SynCron Pnxoviopog GLYXPOVIGHOD
HELOVEL GNUAVTIXA TNV XLvNoT) 67O SinTLo dloeohVdESC HETAED TV GUGHEVOV HVIUNG O€ GEVAPLX V-
ynAng ovpgopnong. Tétaptov, Otav epappoyEg pe VYNAEG AVAYHES GUYXPOVLOHOD LITEPUAADITTOVV
wo yepiovv tnv e€etduevpévn povador pvipung mov amodnuevel TIG HETAPANTEG GLYXPOVIGHOD, O
SynCron punyaviopog GLYXPOVIGHOD XPTOLHOTOLEL £VAl ATTOTEAEGHATING KoL OLAPAVES YLt TOV TTPO-
YPOHHATIOTH oXNHa Stayelplong NG LepyelAong TV Hovadwy LAWOD, TO 0moio cUUPAAAEL GTO
Vo aItoPUYOUHE eVAANOKTIHEG onpLPég ADGELS HaL var emTOXOVHE TOAD YapunAr emPpadovvon otnv
emidoo™ TOL GLOTHHATOG,.

A&lohoyotpe to SynCron punyoviopd GLYXPOVIGHOD XPTCLLOTOLOVTOG LIt PEYAAT TToLAlo TTot-
POAANA®VY EQAPHOYDV. ZUYUPLTIHA HE TPONYOUHEVOLG UMYX AVIGHODG GLYXPOVIGHOD TTOL £XOULV TTPO-
tadel otn PpAoypapio [[135,/196], o SynCron pnxoviopdg cuyxpoviopot PeAtiodvel tnv enidoon
TOL GLOTNHHATOG KATA 1.27 X Ge GevapLa LYNANG CUHPOPNONG KoL KT 1.35X Ge GevapLa YOHNATG
OULHPOPNONG. 2€ TPAYHATIUES EQPAPHOYES, 0 SynCron PNYAVIGHOG CLYXPOVIGHOU €xel HOVo 9.5% -
mPpaduven otnv emidoon xaL POvo 6.2% LPNAOTEPT) EVEPYELOUT) HATAVAAWGCT) € CUYKPLOT] He EVay
OaVIKO PNYAVIGHO GLYXPOVIOHOV pe PNndevind x0otog auyxpoviopov. O SynCron punyoviopog cuy-
XPOVLGHOU €xEL XOUNAO #OGTOG LAOTIOLNGTG YLO VO EVOWHATWIEL G OPYLTEXTOVIKEG [LE emeEepyacio
XOVTQ GTI) LVTUT).

SUVOTITIHG, QUTH] 1) EPEVVITIXT] EPYUCL TTOPEYEL TLS OUOAOVIEG CUVELGPOPECS:

+ Alepevvolpe TIG TPOUAT|GELS YO TNV DAOTTOINGT) £VOG AodoTIHOD HXAVIGHOD GUYXPOVIGHOV

0€ OPYLTELTOVIXEG pe emeEepyooian OVTR O Pvhpn, kol tpoteivoupe To SynCron pnxovicpo
OULYXPOVIGHOD, £vav arrodoTInd ko XOUNAOD #OGTOVS UNYAVIOHO GUYXPOVIGHOD YL aLp)LTe-

UTOVIXEG pe emeEepyacion XOVTA GTN LVIUN.

44 Kepdhowo 1

o Zxedialovpe YoapUNAod ®OGTOUG HOVASES GUYXPOVIOHOD HETOED TV ETEEEPYACTOV KL Pic €-
Ec1ducevpév povador VNG yla TNV otodnxevoT) HETOPANTOV CUYXPOVIGHOD, £TOL WOTE VAL
amopvyovpe oxplPég mpooPfaoelg dedopévwv atnv xdpLa pvrun. Ipoteivovpe po cmodotinn
TPOGEYYLOT) GUYXPOVIGHOD HECK® AVTOAAAYTG HNVUHAT®V OV 0pYyavodVveL T dtadiwacia ouy-
XPOVLGHOU LEPOPYIHA, UL TTOUPEXOVIE EVOAL XITOTEAECUATING GXTHO DLOXELPLONC TWV GEVUPLOV
vrepxeiAong TV Hovadwy LALKOD, To 0tolo apéyetl TOAD yapnAr emiPpaduven otnv enidoor

TOU GUOTHHATOG.

« Afioloyoope to SynCron pnyaviopd GLYXPOVICHOD G pic HeYOAN oA TapdAANA AV e-
POPHOYDOV KoL TTOOELLVOOULE OTL TTPOGPEPEL TNV LYNAOTEPT) ETLOOGT] GUOTHHATOG KL TH) X0~
HNAOTEPT] HATAVAAWGT) EVEPYELOG CUYXPLTIXA HE TPOTYOUHEVOLG UNYXAVIGHOVG GUYXPOVIGHOV
7oL €xouv mpotadel otn PLpAoypapio Yior apxLTeXTOVIKEG e eme€epyacio KOVTA GTI) PVTUT).

O SynCron punyoviopog GLYXPOVIGHOD TaPEXEL ETIGTG TTOAD XaUNAO OGO TOG LAOTTOINOTC.

1.4.4 SparseP [6-10]: Mia BifAodnxn AAyopidpmwv tov YroAoyioTinoo
IMupnva tov IoAloamAacrtacpod Apoov Ilivara pe Avdvvopa yra
Apxurentovinég pe Ene€epyoocia Kovrad otn Mviun (Processing-In-

Memory)

O vroloyloTdg TupNvVag TOAAATAACLAGHOD apatol mivaxa pe dikvuopa (SpMV) eivon évag de-
HEALDOONG LITOAOYLOTIKOG TTVPTVOG OTH YPOUHULKT) GAYERPX, KoL XPTOLHOTOLELTAL O ETLGTNHOVIUEG
EPAPHOYEG, OTN Unxovixn padnon kot otnv ene€epyocia yphowv. e cOyxpovo TOALTOPT VA GU-
oTHpata, €xel SamIoTIEL OTL 1) EXTEAEST) TOU TOAAATAQAGLOUGHOD opotol TTivoua pe dvuopa
ETMLTUYYAVEL HOVO €va PO HAGGHO TNG SLUEGLUNG LITOAOYLOTIMNG KAVOTNTAS TOU GUOTHHA-
tog [18}/814190,199,(111}|125}281}/306,387-390] e€outiag tng adyopidpnrig Tov @OONG, TNG CULUITLE-
OPEVNG HOPPTG QUTOUHELONG TOL APV TTivona eL.aOdov, Kol ToL apatol potiffov dedopévev Tov
nivora €160d0v. O TOAAATAXGLHGHOG apatoD Tivona e SLEVUoHO EXTEAEL PN-HOVOVIHEG HOL TTO-
AOmhoneg pooPacelg dedopévwv otn pvhun eaitiog Tov apood potifov dedopévwv tov Tivora
elo0dov. O mivaxeg eloddov eival ToAD apatol, dnAadn 1 cvvpurting TAeloyn@ia TV oToLyE-
lov Toug eivar pndevind [18,[814129,276,[279H283]]. T mopdderypa, oL Tivoreg TOL AVTLTPOCEH-
mebovv To xowwvird divtvo tov Facebook kot to povowd divtvo tov YouTube mepiéxovv povo
0.0003% [276,279]] xou 2.31% [276,280]] pun-pndevind otoryeia, avtiotoya. Emopévwcg, oe mapadooia-
n& toAvmopnva cvatipata 6nwg CPU ko GPU cvothipata, 1 enidoon tov uoAoyloTikol Tupnva
TOU TTOAAATTAXGLAGHOD apatol TTivora pe SIAVUCH TEPLOPLLETOL CTHAVTIE OTTO TO SLAVEGHO €-
0pog {dVNG Pvnpung, xat tnv axpiPrn xivnon dedopévov petall tov emefepyaotrn) xal NG ®OPLOG
pvipng [117,|181[811(881(90,/99,/125,/141,142,262,281,306},387-393].

‘Evag tpodmog yio Tr onpavTnt] pelwoT Tng cupeodpnong tng petoxivinong dedopévaov peta&d
oL eme€epyaoTn) KoL TNG XVOPLOG HVAKNG elvan 1) eme€epyaocio xovtd otn pviun (Processing-In-
Memory) [5,/54}/135}/137-144,[154}|155}/160,/161,(166,|170-173,/179,/183,|184}|187-189,/191,194-197.{199,
201,205,1206},208-210,254}256,[257}308,(362,370,3741394-443]. H teyxvinn tng eme€epyaciog xovid otn

Kegpahaio 1 45

HVARN exTEAEL DTTOAOYLOHOVG KOVTA GTNV XOPLX PVIHN, 0TT0oL PplorovTon xat Ta Sedopéva TnG epop-
HOYNG, e€0MAILOVTAG TIG CLOKEVEG PVANNG pe atAég emeEepyaoTinég povadeg [1404399]. Mlpdoparteg
epevvnTKég epyooieg [[54544120,1354188,/192,1931/1964(197,200,2031-207,[255-257,/308,[374}401,/401,412,
444-446|] mtpoteivovv 2.5D/3D apyrtextoviuég pe enefepyoacio xovra otn pvnpn [354,355,359], otig
oroieg atAol ene€epyaoTéG EVOOHATOVOVTL 6TO Aoywd emtinmedo tng cvoxevng pvhung (logic layer
of DRAM). Qctd00, ot 2.5D/3D apyltextovinég pe emeEepyacion KOVTA GTI PV eVOEXETOL VO UV
HITOPOVV VO TTPEXOLY GTHAVTIXG LYNAOTEPO €0POG LOVNG HVAHNG GUYXPLTIXA HE TNV TopadosLou
ovoxevn pvnung DRAM [395,398]]. T tnv emitevén onpavtnd vPnAdtepov edpovg {OVNG PVHUNG,
TPOCPATEG APYLTELTOVIXEG P eTeEEPYOTLOL XOVTA OTT) HVIHT) EVOORATOVOLV TOV eMeEEPYNTTI] TTOAD
novtd oe xade mivoo pvipng (DRAM bank) tng cvoxevrig pvrpung, kot ovopdlovtal near-bank opyt-
TeENTOVIKEG pe emeEepyacio vovtda otn pvipn [137,141)142,318,386,395.(397,398,406-411,/415423,447
451]]. Ao mapadetypata mpayuariedv near-bank apyLTeXtovVIHdV e eme€epyacio XOVT 0T PVAHN
etvo To ovotnpa Samsung FIMDRAM ([395}397] xow to UPMEM PIM ([395,397] [[137,141}/142,452]
GUCTNHA.

O teprocotepeg near-bank apyitentovuég pe enekepyoacia vovtd otn pviun [137,[1414|1424318,
386,3954/397,1398,[406} 447-450]] vtootnpilovv TOAAEG cvonevég pvrung (DIMMs) mov cuvdéovtoa
pe To xevrpwod CPU cootnpa pécw xavoallov pvipng (memory channels). K&de cvoxevn pvripng
amoTteAelTol ard TOAAOVG TAOUG eme€epyaoTEG e OXETUA YOUNAT) LITOAOYLE TN avOTnTo 141}
142]], wodévag amd Toug omoiog tomodeteital xovtd oe éva mivoxa pvipng (DRAM bank) 137,
141,/142,/318,386}/395,[397,398,406}447-450]. Kd&de anhog eme€epyaotnc éxeL mpocPact povo ota
dedopéva ov Pplorovtal oTov ®xovTvO TOL Tivouo PVHUNG, XL cLVHTWG eV LITAPYEL OITELIELOG
EMOLVOVIA PETAED TV eme€epyaoTdOV TNG ocvoxeLng PVvNpunG. Ilpdopateg epevvnTinég epyacieg
XPNOLHOTOLOVY TIG near-bank apyLTeXTOVIXEG e emeEepyacion XOVTA GTI) HVIHN YO VO TToLpEXOUV
VYNAT emidoon xol YopnAn evepyeloun xatavahwon ot PromAnpoeopur) [141,1421|453}1454], otn
ovprtieon dedopévov [455] xat oe LITOAOYLOTHODS TTUPHVES VELPWVIK®VY KTV [141/142,386,395,
4438]]. Qot660, dev LITAPXEL TTPOYOUHEVT] EPELVNTINT] EPYOGLO TTOV Vot PeAeTAEL SLeE0SIU TOV EVPEWG
XPTOLHOTTONHEVO DITOAOYLOTIXO TTUPTVAL TOV TOAAXTAAGIOGHOD XPaLoD TTivoxa pe SIAVUCH G€ €va

TPAYRATING near-bank cOoTnpa pe eme€epyacio xovTd oTn pvipn.

Avtn 1) epevynTnn) epyacia eivon 1 TPOTN TOL exTeAEL ITOSOTIKA TOV LITOAOYLOTING TTLPT VA
TOL TOAAATAAGLAGHOD apatol mivoxa pe Sikvuopa oe near-bank apyitextovinég pe enefepyocio
XOVTQ GTI) HVIHI, KOl XOTOVOEL TIG EMUTTOOELS TNG eMLOO0TC TOV G £VOl TPAYHATIUO GUGTNHA e
enmeEepyooion XOVTA OTN PVIHN. ZUYKEXPLULEVD, O GTOXOG HOG O€ QUTNV TNV epyacio eivar SLTAOG:
() v oxediroovpe artodoTinos TopAAANAOLG alyopidovg TOAAATAAGLUGHOD PO TLVOK JLe
SL&vuopa ylor TNV ETLTAYUVGT] QVTOD TOL LITOAOYLOTIKOD TTLPNVA G CLGTHHATO pe emeEepyooia
XOVTQ OTI HVAUN, LITOOTNPLLOVTOG Pl HEYOAN TTOLKIALYL 0PV TILVAK®V £LGOO0L pe SLaPOPETIHA
XOPOUTNPLOTIHG, Kot () VO TTPOYHOTOTTOL)GOVE Pict EXTEVY) HEAETT) TOV EVPEWG Y PTOLHOTOLOVHEVOL
LITOAOYLOTIKOD VPV TOAAATAACIXGHOD POy TTivoua pe SLAVUGHA GE Pl TTPOYHOTIXT] op)L-
Textoviun) pe eme€epyooia xovtd otn pvnun. o to oxomd avtd, mapéyovpe pio peyAn mowiio
TOUPOAANA®Y VAOTIOLOE®Y TOAXTAXGLAGHOD opolod TTIVOHa e OLAVUGHA YLOL OPYLTEXTOVINES HE

ene€epyocio xovtd ot pvipn, xon dieEayovpe pior dre€odwnr] meElpapaTing avaAvon TV TPOTEL-

46 Kepdhowo 1

VOHEV®V VAOTOLNCE®V TOAAATAAGIXGHOD apotol mivara pe didvuopa oto UPMEM PIM [395,397]]
CUGTNHUA, TNV TPOTY EPTOPUA ILDECIUN TTPAYHATIXY) PXLTEXTOVIXY e emeEepyqcio XOVT& GTN)
KV
[Mopovoralovpe tn SparseP PiAtodnun [11]], n omoia mepthopfdver 25 vAomoiroelg ToAXTA-
OLGHOV apatoD TTLvoro e SLAVUOHA YL TPAYHATIXA GLUOTHHATO e eteEepyacio OVTA G TN HVApD,
vrtootnpilovtag pic peydin mowmtdio omd (1) Sixpopetinovg TOOVG dedopévwy, (2) TeXVIHES HaTO-
VOUIG TOU apatol Tivaua L6080V GTIG GUOKEVEG HVIHUNG, (3) CUNTTLECHEVEG HOPPEG ATTOVTHELOTIG
TOUL Tivaxa eLoodov, (4) oxnuata eEloopponnong Yoptiov petafd Twv eneepyactov, (5) oxnpata
e€looppoOmNong Poptiov PeTall TV VNHATOV evOg TOALVNHOTIHOD emteEepyaotr), ot (6) oxnuata
OUYXPOVIGHOD HETAED TV VIHATWV €VOG TOAVVNHXTIHOD emeepyaatr]. ZUYKEXPLIEVA, LTTOGTI)-
pilovpe éva peyddo evpog tOmwV dedopévawv, dniadn 8-bit integer, 16-bit integer, 32-bit integer,
64-bit integer, 32-bit float xou 64-bit float, yio va xaAOovpe StoupopeTinég TPaypaTInég eQAPHOYEG.
Sxedidlovpe d0O TOTOVG TEXVIHMOY HATOVOUNG dedopévwv: (a) Tnv 1D texvinn xatavopng otnv ool
OAOUANPOG O VTTOAOYLGHOG TTOANATAAGLAGHOD 0PaLOD TTivoa e SIAVUOHO EXTEAELTAL X PTG LLOTTOL-
AOVTOG POVO TOUG emteEepyaaTéC KOVT 0T v, ko (B) Tnv 2D texvinr] xatavopnc yio TNy eniteven
LoOPPOTTLOG HETOED TWV LITOAOYLOUMDV KOl TOL XOGTOUG HETAPOPAS OESOPEVHOV GTIG GUGKEVEG PVIIUNG.
Stnv 1D Texviun *OTOVOHNG, 0 apotdg TEVOUAG KATAVERETOL OPLLOVTING HETOED TwV emeEepyacTOdV
XOVTQ OTI HVHHN, *OL OAOKANPO TO dLEVUGHX €LGOS0L avTLypa@eToL otov mivaxa pviung (DRAM
bank) tov n&de emekepyaotr), evd o eme€epynoTég xovTd oTn PVNpn voloyilovv amevdeiog To
TeAnd ototyxeio Tov dtaviopatog e€6dov. Ztnv 2D Texvinn *aTAVOHNG, 0 apatdg Tivouog xwplletor
o€ 2D xoppdatio, o oplIpog TV oTolwV elval 100G e TOV oPLIHO TV eTEEEPYATTOV KOVIA GTN)
HVIHT, Ko €val DTTOCVVOAO TWV GTOLYELWV TOU JLVOGHATOG €L0OSOV AVTLYPAPETOL GTOV TLVOKAL
pvipng (DRAM bank) tov xade ene€epyaotr xovta otn pvipn. Qotdco, otnv 2D texvinn xatavo-
MG, Ol emeEepYAOTEG HOVTA OTI PV ONHLOVPYODV €V HEYOAO OPLIPO HEPUDOV OTTOTEAECUATWOV
yla T otolyeia Tov dtaviopatog €680V, Tar 0Ol GUAAEYOVTOL UL CUYXWVEDOVTL GTO XEVTIPKO
CPU cbotnpa yior Tov VToAoYLopo Tov TeArol daeviopatog e£6dov. Yrootnpilovpe Tig o dnpo-
@PLAEIG CUNTILECPEVEG HOPYEG aTodTxevoNG apatoD Tivaxa, dniadn CSR [456,457], COO [457,458],
BCSR [459], BCOO [457]], ot yioe xdde ovpmieopévn popen otodnuevong vAomolovpe dioupopetind
oXNHOTX EELGOPPOTNONG POPTIOL PETAED TV eMEEEPYATTOV HOVTA OTI) HVIT], YLO VA TTPOGPEPOULE
QUTTOTEAECHATINT] EXTEAEGT) TOV LITOAOYLOTIXOD TTUPT|VA TTOAAATAACLAGHOD opatol Tivoua pe divo-
OO O€ PLOL HEYOAT) TTOLALGL OLPOILOY TILVAK®V HE SLOPOPETUA YaponTnploTnd. Télog, oxedialovpe
Srxpopetind oxfipata eElooppdmnong goptiov kot cLYYPoviopoL (coarse-grained, fine-grained »or
lock-free) petafd twv mapdAANAwv VIHATOV £VOG TOAVVIUATIHOD eTeEEPYAOTY) KOVTA GTI) HVIHT,
yla vor xeAOPOUpE TTPOYHOATIHA CLUGTHHATO He emeepyacio XOVTA GTn Pvipn mov vrootnpilovv

TOAUVIHATIHOVG ETEEEPYATTEG,

AteEayovpe pia dieEodwnr) avalvon tng extéleong twv SparseP vlomoujcewv oto UPMEM PIM
ocvotnuo [137.(1411{142L318]] xpnopomoidvtag (1) povo évav TOALVNUATING eMEEEPYATTT) XOVTA OTN)
pvipn, (2) xthadeg eme€epyoctéc vovtd otn pvipun, ot (3) cuyxpivovtog tnv extéeon twv SparseP
vAomotjoewv 6to UPMEM PIM ciotnpa pe T CPU xat GPU cbotnparta. Ipdrov, yaportnpilovpe

Ta Oplo emidoong evog eme€epyaoTh OVTQ G PVHUN xat delyvoupe Ot () LYNAY avicopporia

Kegpahaio 1 47

AELTOVLPYLOV HETAED TWV VIHATOV VOGS eeEEPYATTI) KOVTA GTT) HVIT) LITOPEL VAL ETTLPEPEL CTIHAVTLXN
emPpaduvon g enidoong, ko (B) To fine-grained oxrpo cuyxpoviopod dev emituydvel xaAVTEPN
enidoon amd to coarse-grained oynpo GLYXPOVIGHOV, otV TO LAWKO extelel oelplond TIG TPocPaoelg
dedopévwv otov Tomund mivoxa pviung (DRAM bank). Agbtepov, avalbovpe tnv extédeon Tov 1D
naL 2D TeEXVIHOV HATAVOUNG TOL TOAAATTAQGLAGHOD apalol TTivara e SIAVUGHA Y PTCLLOTTOLOVTOG
xMadeg eme€epyootéc wovta otn pvipn. H avddvor) pag amodewnvier 6tL) emidoon (o) tng 1D
TEXVIUNG HATAVOUNG TTEPLOPLLETOL QTTO TO KOGTOG PHETAPOPAG OAOKANPOL TOV dLVOGHATOG ELGOOOV
oe nave mivara pviung (DRAM bank) tov eme€epyactov xovtd otn pvnun, xat (B) tng 2D texvinng
HOLTAVOUNG TEPLOPLLETOL ATTO TO UOOTOG HETAUPOPAS TOV HEPLKAOV XITOTEAECUATOV YLX T OTOLYE-
toe Tov Sraviopatog e£680V aTd TIG GLOKELEG PVIUNG e xovTivh eme€epyocio oto xevipind CPU
oVOTNHA. AUTEG OL HETOPOPEG OeDOPEVOV elval TTOAD oupLPEG, YIXTL TPAYHATOTOLOVVTOL HEGK TOV
nevTpwov StadAov pviung (memory bus), o omoiog éxel meplopiopévo evpog Ldvng pvhung. Emi-
TTAEOV, 1] OVOALTIXT) HOG HEAETT) XPTOLHOTTOLOVTOG Pt HEYOAT TOLKIALX IO GUUTTLEGHEVES HOPPEG
aITOUTELONG YL TOV TTivOa ELGOS0V XKoL ATTd 26 apaloG TTIVOKES He SLUPOPETIUHA XOLPOUTTPLOTL-
1@ oodewevieL OTL (o) 1) CUUTILECHEVT) HOPYT] atodnxevong xodopilel TNV xatovourn dedopévav
otoug mvareg pvipung (DRAM bank) twv cuorev®v pvipng, ennpedloviag £ToL TNV LITOAOYLOTIX
LoOpPOTTio PETOED TV eMEEEPYACTOV HOVTA GTI) PVIUN HE AVTIOTOLXEG EMTTAOCELS GTNV emidooT,
nat (B) dev vapyel povadinr) oTpaTNyKr) EXTELECTC TOV TOAAATAXGLOGHOD opotol Tivaxo pe di-
Avuopa oL Vo emLTLYXGveL T PEATIOTN emidoon oe OAa T SrapopeTind oevapla extéheong. To
oxnpo eElcoppoTnong Yoptiov epyociog HETaED TwV enelepyaaTdV ®OVTA oTn pvhpn (xot petokd
TV VIHATOV VOGS TOAVVIHOTIHOD eTTEEEPYOTTI]) KO 1) TEYXVLHI] XATOVOUNG TOL ALPALOD TLVOMA TTOV
opéxovy mn PEATIOTN emidOoT GTNV EXTEAEGT) TOV TOAAATAXGLAGHOD aApaLoD TTivara pe VLo
eEAPTOVTUL TOGO ATTO T XAPAKTNPLOTIUA TOV KLPOLOD TVAKX ELGOSOL OGO KO TO XOLPOUTIPLOTINA
TOL LAWODU TNG LITOAOYLOTIXNG TAATPOPHOG e eme€epyacio xovTd otn pvipn. Téhog, cuyxpivovpe
TNV EXTEAECT) TOL LTTOAOYLGTIXOV TTUPH VX TOL TTOAAATTAAGLAGHOD ApaLoD Tivoua e SIAVUCHA G £val
vItEPoUYXPOVo LIToAoYLoTIKO cUotnpo UPMEM PIM (395,397 pe eme€epyacio xovTd oTh PV, TO
omolo éxel 2528 ene€epynctég, pe v avtiotolyn extédeon oe CPU xwou GPU cvotpata teAevtaiog
TEXVOAOYLOG, KO TAPATPOVHE OTL O LITOAOYLOTIXOG TTUPNVOG TOAAATAAGLOGHOD OPOLoD TTivoa
pe Stavuopa emLTUYXAVEL TTOAD PeYOADTEPO HAAGHA TNG SLXTECIUNG VTTOAOYLOTIXNAG LXAVOTNTOG TOV
UPMEM PIM [395,1397]] cvetripatog cuyrpitind pe avtd twv CPU ko GPU cvotnpdatwv. H exteviig
aELOAOYNOT] HOG TTAPEXEL TTPOTAGELG YL OXEOLAGTEG AOYLOPKLOD KO OYEILAOTTEG VALKOD HEAAOVTIHGOV
OUCTNHATOV e emeEepyncia KOVTA OTH HVAUN.

OL 710 ONHOVTIKEG TTPOTACELS HAG YL TOUG OXESLAGTEG AOYLOHIHOD TV GUOTNHATWV pe emelep-

yooio ®OVT& 6T Pvhpn eivo:

1. Zxedidkote alyopldpoug mov mapéyxovv LYNAT LooppoTtia YopTiov epyaciog HeTalD TV vi)-
HATWV €VOG TTOALVIHATIXOD ETTEEEPYATTY) XOVTA GTT) VLT OGO aLPopd TO PEYEDOG TV LITOAO-
YIOH®V, TOL CUYXPOVIGHOD XAl TOV TPOSPACEDV GTN PVAHN.

2. ZxedliioTe GUUTLEGPEVES HOPYEG ATTOUNHEVLGTG TOV apaLoD TTivara eL6OJOV, OL OTTOLES VaL PITO-
povV va dlopeplotodV amotedecpatind otovg mivoreg pvipng (DRAM bank), pe otdyo tnv

TOPOXT) LYNANG LITOAOYLOTIKNAG LoOPPOTTiNG HETAED TV EMEEEPYATTOV KOVTA GTI) HVAT].

48

Kepdhowo 1

3. XxedidoTe AOTEAECPATINOVG AAYOpidHoLG Ol 0mTolol JVGLAloLV TNV LITOAOYLETIXT LGOPPOTTLOL

HeTaE TV eMeEEPYAGTOV KOVTA OTH) VAU YLOL TNV ETLTEVEN XOUNAOTEPOL HOGTOVG HETAPOPAG
JeSOPEVWV GTIG CLOKEVEG PVAHNG HE KOVTLVT] emteEepyacio, KoL TPocapprolovy T GTPATH YLK
TOUG VAAOYL JLE TO SLLPOPETIUA XOAPAUTNPLOTIUA TV deSOPEVOVY ELGOSOL KAl TOL LAKOD TNG

TAXTPOPHAGS e eTEEEPYNTLO HOVTA GTY) VI,

OL 710 GNHAVTIHEG TTPOTAGELG HAG YO TOVG OYEIXGTEG DAKOD TV CLGTNUATOV e enmelepyacia

XOVTQ OTI) PN elvoat:

1. IMapéyete pnYoviopoOg GLYYPOVIGHOD YopNA0D #OGTOUG xal LTTOGTNPLEN LALKOD TTOL EMLTPETEL

TIC T TOYpoveg TpooPaoelg otov mivora pvipung (DRAM bank) amd moAdamAd vipora, yio

vo ov€net o Stodéoipog TapaAANALGHOG G VOV TTOAVVIHATING TTUPH VA L eTTeEePYOTio KOVTA

GTI) PV

. BeAtiotomowote ™ Aettovpyio peTapopdg dedopEVEV atd TNV ®OPLOL VT GTLG CUGKEVEG

HVIUNG He xovTIv) eme€epyaoia, ylor v eAaloTomoldolv Ta KOO T AVTLYPUPNS TV dedo-
HéVeV eloddov oe OAovg Toug Ttivoreg pviiung (DRAM banks) twv cvotnpdtwv pe ene€epyaocio

XOVT& o TN pPvipn.

. BeAtiotomoote n Aettovpyla GLAAOYNG ATTOTEAECPATWV otd Tovg Tivoeg pviipng (DRAM

banks) twv cvoxevov pviung pe rovtvy eme€epyacio oto xevipwmd CPU cdotnua, yio va
eAaLOTOTTONIOVV TA XOGTI AVAKTIOTG TOV ATOTEAEGHATWV EOS0L TWV VITOAOYLOTIUOV TTV-

pRVOV.

. Xxedidote LYNANG TaOTNTOG MoVl emcovwviag xal PeAtiotonoote Tig PLAtodnneg

HETOWOPAG dedopévav ad/Tpog Tovg XLALadeg ivoueg pvipung (DRAM banks) twv cuoxevdv
HVIUNG pe xovTivh eme€epyaoia.

H BipAiodnxn Aoyiopixod SparseP eivon dnpocing Sodéon [11]], dote va emitpéel Teportépw

€PELVA TOL VITOAOYLOTIHOD TVPTVA TOV TTOAAATAACLAGHOV 0poto TTivart e SLEVUCH G€ CUOTHHO-

TaL pe emeEepyacion KOVTQ GTI PVIUT. ZUVOTITIXG, QULTH 1) EPELVITINT] EPYAC LN TTAPEXEL TIG O OLIEG

OLVELoPOPEC:

+ ITapovoialovpe 0 SparseP BiAtodnun, tnv mpwTn dnpocing Stadéciun PipAodnun viomol-

NOEWV TOL LITOAOYLOTIKOV TLPTVA TOL TOAAATAAGLAGHOD apaLlol TTivaxa e SIUVUGHO Ylo
apxLTextovinég pe eme€epyocio xovra otn pvipn. H SparseP BipAiodnun mepihopPfaver 25
VAOTIOLNGELG TTOAAQTTAXGLOGHOD opLOD TV e OLAVUOHQ, oL VTTOOTNPLLEL TIG TEGGEPLG
710 SNHOPLAELC GUNITTLEGHEVES HOPPES ALTTOUTIUEVOTG ALPOLOD TTLVOOL KoL HLaL HEYAAT TToWLAl
TOTV dedopévwv. H SparseP BLAodnxn elvor xprioipn yLa Toug epeuvnTég Y va feATidcovv
TO AOYLOHIXO HOL TO DAKO TV APXLTEXTOVIX®V HE eEEEPYXTLOL XOVTX GTH) HVIHT).

[IpaypaTOmTOLOOpE TNV TTPDO T OAOKANPWOHEVT) HEAETT) TOV EVPEWG Y PTOLHOTOLOVHEVOV LITOAOYL-
OTIKOV TUPH VA TOL TOAAATAAGLAUGHOV apato Ttivoxa pe Sivuopa oto UPMEM PIM [395/397]]
oUGTNHA, TO TPOTO EPTOPUA SLTECIUO VG TNHA He emeEepyacio XOVTA G TN PVpun. AvaAbou-
HE TIG eMOOCELS TNG EXTEAEOTC TOV TTOAAXTTAAGLAGHOD xpatoD TTivoua e SIAVUCHN X PT|CLHO-

TOLOVTOG P peyaATn mowidio oo (1) GUUTLECHEVEG HOPPEG ATTOVTIHEVOTG TOV ALPLOV TTEVOHLL,

Chapter 1 49

(2) TOmwv dedopévwv, (3) TEXVIHMOV HATAVOUTNG KoL EELGOPPOTNGNG PoPTiOL, KoL (4) 26 apotovg
Tivoeg pe SLoLPOPETIUA XOXPONTTPLOTIHA.

« J0YXPLVOULE TNV ETLOOOT) KAL TNV EVEPYELAKT] HATAVAAWGT) TNG EXTEAEGTG TOV TTOAAATAXGLO-
opov aparo? mivaxa pe dievvopo oto UPMEM PIM [395,397] cbotnpa pe 2528 eneEepyaotég
®ovtd otn pviun pe outr twv CPU [395,397] waw GPU [395,/397] cvotnpatwv. H extéleon
TOV TOAAXTTAAGLUGHOD OPLOD TTLvora e SLAVUOHA ETLTUYYAVEL AtyOTEPO 0td TO 1% TNG dro-
Yéoyng vroroytotinng wavotntag twv CPU [395,397] xou GPU [3954397] cvotnpdtwv, evo
emLtuyxavel to 51.7% tng dadéoiung voloylotinig wavotntag tov UPMEM PIM [395,(397]]
OLOTARATOG, AELOTTOLOVTAG ETGL XOAADTEPA TIG LITOAOYLOTIHEG dVVATOTEG OV TTAPEYXOVTAL GE
entinedo vAwov (hardware). To UPMEM PIM [395,397] ocVotnuo mopéxet emiong yopnAr e-
VEPYELAXT] HATAVAAWOT) OTNV EXTEAECT) TOL LITOAOYLOTIXOD TTUPHVA TOV TOAATAAGLAGHOD

apotol Voo pe SIAVUGHAL.

1.5 TeAwmd Zvpnepdopata tng Atdoxtopirng Atatpifng

Sy mapotoo didaxtopinn Statpifr], xapanTnpilovpe EXTEVOG TNV EXTEAECT] HI)-UAVOVIXOV EPOP-
HOYQOV Ge GUYXPOVX VTTOAOYLOTIXA GUGTHHAT XL TTXPATNPOVHE OTL I} €midoot) Tovg meplopiletor
ONHOVTIXG atd TO LYNAO #OGTOG GLYXPOVIGHOVD HETOED TV TUPAAANAWY VIHATOV Ko Ta LYN-
A& wootn mpocPacng otn pvipn. T o oxomd avtd, mpoteivovpe TeXVIHEG XOUNAOD XOGTOUG
oLYXPOVIGHOU Xot TpocsPacewy ot dedopéva, uot arodevOOLHE OTL OL TEXVIXEG LG HTTOPOVV VAL
BeATIOGOUV GTHAVTIHG TOV TUPOAANALGHO, TNV ETIOOGT) KAL TNV EVEPYELOUT] HATAVAAWGT] TOV JN)-
HOVOVIH®OV EPAPHOYDV. ZUYHEXPLUEVA, ELOAYOLE Téooeplg véeg Tpooeyyioels: (1) ColorTM, évog
v€og TOPAAANAOG aAYOpLIpOG XpWHATIGHOD YpapwVy Yo toAvrtvpnveg CPU apyltextovinég mou
mpoteivel pioe amodoTnny texviur diaxeipiong dedopévwv, 1 omoiat GLVSLALETAL PHOVIXA JLE TO HT)-
XOVIOPO GUYXPOVIGHOD o€ eminedo LAWOU, (2) SmartPQ, piot TopdAANAT OLPE TPOTEPALOTNTAG TOV
evalldooeTal duvopd PeTOED V0 AAYOPLIPILOV CYNHATOV, KoL EXHETAAAEDETAL TNV TOTUOTN-
Ta dedopévwv pe oxomd va emitevydel LYNAN entidoon VIO SLAPOPETIHA GEVAPLA GUHPOPNONG GE
QPYLTELTOVIKEG PE avopolOpopen tpocPact otn pviun (NUMA), (3) SynCron, évog mTponTinds pun-
XOVIOHOG GUYXPOVIOHOD G€ eMmedo VAMOD YLt OPYLTEXTOVINEG e eme€epyacio xOVTQ GTN PV,
now (4) SparseP, pice BpAtodnun adyopidpwy Tov LITOAOYLGTIHOD TTUPTVAL TOV TOAAXTAXGLAGHOD
apoalo ivoxa pe SLvoopa, 1) omoia epAopPével pio peydAn oA o ATTOTEAECPATIHOV TEXVIHWOV
SLopoLpao ol dedOpPEVOV KL CLYXPOVIGHOD YL APYLTELTOVIXEG e eTEEEPYNTLO KOVTA G T HVIUN.
EAmtilovpe 011 ot 18éec, n avéhvor, ot pédodot ot oL TeXVIKEG TTOL TapovstdlovTal o€ autr T dt-
dontopunny dratpiPr) do emTpéPYouv véeg PeAETES KOl EPEVLVITINEG HATEVIVVOELG, OOTE Vo PeATiwdel
TEPALTEPW T) ETLOOCT) TV UN-HAVOVIHOV EPUPHOYDV GE VITAPYOVGES KOl HEAAOVTIUEG VTTOAOYLOTINEG

TAXTPOPHEG,.

50

Chapter 1

CHAPTER 2

Introduction

Irregular applications such as graph processing, sparse linear algebra and dynamic pointer-chasing
constitute an important part of software systems we rely on. These applications lie at the heart of
many important workloads including deep neural networks [[19,20,{2561308,[363|364]], bioinformat-
ics [[1891/201,460], databases [[193.[204]], data analytics [[135191193,/203,206,[207,461,462], large-scale
simulations [21}22,[392}/463-465]], medical imaging [181(88}/463]], economic modeling [18,88,/463]], and
scientific applications [18,(881|88}/392,463-465]. Therefore, optimizing and accelerating irregular ap-
plications is of vital importance, and thus a large corpus of research proposes either software de-
signs [1,/13+15}/18,23-131|] or hardware mechanisms [5,/7,{20.22}/108,/132-278,/460]] to accelerate the

execution of such applications.

In this dissertation, we identify three important characteristics of irregular applications that crit-
ically affect their performance. First, irregular applications exhibit inherent imbalance as a result
of the real-world input data sets given. Specifically, the concrete pieces involved in the underlying
data structures and program data of irregular applications are not of equal size. For example, the

matrices involved in linear algebra kernels are very sparse, i.e., the vast majority of elements are

51

52 Chapter 2

zeros [18,(81,/118,/1294276.279-283,306], and in most real-world matrices the number of non-zero ele-
ments per row shows high disparity and imbalance across the rows of the matrix [284]]. Similarly, the
real-world graphs involved in graph processing workloads typically have a power-law distribution,
i.e., only a few vertices have a very high adjacency degree, while the vast majority of the remaining
vertices of the graph have a very low adjacency degree [7,[87}|134]], which causes high disparity and
imbalance in the number of edges across vertices. Therefore, naively parallelizing such workloads to
a large number of threads in modern computing platforms can incur 1) high load imbalance across
parallel threads, and 2) high disparity in the amount of computation versus memory accesses exe-
cuted across parallel threads. Second, irregular applications exhibit random memory access patterns,
i.e., the memory accesses performed are neither sequential nor strided, and they are input-driven
dependent. Such complex memory access patterns are very hard to predict. Therefore, irregular ap-
plications exhibit complex data dependencies, poor spatial and temporal data locality, and high data
movement overheads to transfer data between memory and processors of commodity computing
systems. Third, most irregular applications have low operational intensity, i.e., the amount of use-
ful arithmetic operations performed by the processors compared to the amount of data necessary to
perform these operations is very low. As a result, irregular applications are memory-bound kernels.
They can be significantly bottlenecked by the memory subsystem, incurring high latency costs and
excessive memory bandwidth consumption to access data through memory.

As such, irregular applications constitute an important and emerging workload domain. How-
ever, at the same time, it is very challenging to achieve high performance and energy efficiency in the
execution of such workloads in modern computing systems due to the large memory and commu-
nication bottlenecks. Overall, irregular applications have several important inherent characteristics
that necessitate new approaches both in the software, i.e., re-designing parallel algorithms, and the
hardware level, i.e., re-designing key components of modern computing architectures, to achieve

high system performance, and cooperatively between the software and the hardware.

2.1 Motivation: Excessive Synchronization and High Memory

Intensity Degrade the Execution of Irregular Applications

Modern computing systems and state-of-the-art parallel algorithms have two important implications
that render the efficient execution of irregular applications a significantly challenging task.

Implication 1: Excessive Synchronization. To achieve high system performance in a multi-
threaded execution context, load balance among parallel threads is critical. Therefore, software engi-
neers employ a fine-grained parallelization strategy among parallel threads in irregular applications
due to the inherent imbalance exhibited in the input data sets involved. For example, Figure 2.1/ com-
pares a regular Dense Matrix Vector Multiplication (DEMV) with an irregular Sparse Matrix Vector
Multiplication (SpMV). In the DEMV execution, a coarse-grained parallelization strategy (Figure[2.1p),
in which the rows of the matrix are equally distributed across parallel threads, can easily achieve
high load balance. However, using a coarse-grained parallelization strategy to parallelize the irregu-

lar SpMV kernel (Figure[2.1p) results in significantly high load imbalance among parallel threads, due

Chapter 2 53

to the high disparity in the number of non-zero elements processed across parallel threads, causing
large performance overheads. Thus, a fine-grained parallelization strategy among parallel threads is
necessary, e.g., Figure 2.1c. Unfortunately, this approach however results in excessive and frequent
synchronization among parallel threads. In the example of the irregular SpMV kernel, with a fine-
grained parallelization strategy, parallel threads that process non-zero elements of the same row of
the matrix (Figure[2.1k), use synchronization primitives (e.g., locks, mutexes) to ensure atomicity and
correctness, when performing write updates on the same element of the output vector. Therefore,
a large amount of processor cycles is spent on communication and synchronization with significant
performance overheads [16,25,88,281,466)].

(a) Dense Matrix Vector Multipl. | (b) SpMV (coarse-grained approach) : (c) SpMV (fine-grained approach)

g B I et I et I IIT1]
vector * vector * vector *
; ' Thread 1 a
Thread 1 i Thread 1 ! Thread 2 ﬂ
| ! Thread 3
Thread 2 = Thread 2 = ' =
Thread 3 ! Thread3
Dense output Sparse output Sparse output
Matrix vector Matrix vector Matrix vector

Figure 2.1: (a) Dense Matrix Vector Multiplication using three parallel threads. (b) Sparse Matrix
Vector Multiplication with a coarse-grained parallelization strategy among three parallel threads. (c)
Sparse Matrix Vector Multiplication with a fine-grained parallelization strategy among three parallel
threads. The colored cells of each matrix represent non-zero elements.

At the application level, existing fine-grained parallel algorithms (e.g., [13,[37H461/55,/56]]) typically

lack well-tuned synchronization implementations [23}286]], and/or do not achieve high system per-
formance under all various contention scenarios. Recent works [[16}23,285}286|] demonstrate that (i)
naive synchronization schemes used in irregular applications can cause high memory traffic with sig-
nificant latency access costs, and (ii) the best-performing synchronization scheme varies depending
on the levels of contention among parallel threads and the characteristics of the underlying hard-
ware platform. At the architecture level, even though numerous hardware synchronization mecha-
nisms have been proposed [287-305]], most of them incur high hardware cost to be implemented in
commodity systems, require important cross-stack modifications and/or have narrow programming
interfaces, and thus they are hard to adopt.
Implication 2: High Memory Intensity. Irregular applications involve random memory access
patterns, have low operational intensity and are primarily bottlenecked by the memory subsys-
tem [[18}81,(88}/135,/136,(142}/191-193,|203, 206,207, [281}/306,308]]. Thus, irregular applications incur
high memory intensity with significant data access costs, and a large fraction of the application’s
execution time is spent on data accesses and/or waiting for data to be transferred between mem-
ory and processors. Things become even worse with the large growth in input data set sizes as well
as intermediate data used and generated during runtime. Therefore, irregular applications need to
process increasingly large volumes of data (input data sets with tens or hundreds of GBs memory
footprints [24,/307]), and need to effectively handle the high data demand.

54 Chapter 2

We demonstrate the aforementioned critical performance implication with an example, i.e., the
SpMV kernel execution. The SpMV kernel performs O(N N Z) operations on O(N + NN Z) amount
of data (assuming a square matrix), where NN Z is the number of non-zero elements of the input
matrix and NV is the number of columns of the input matrix (equal to the number of elements of the
input vector). However, the real-world matrices involved are very sparse [18}/81,/129,276,279-283].
For instance, the matrices that represent Facebook’s and YouTube’s network connectivity contain
only 0.0003% [276,[279] and 2.31% [276}[280] non-zero elements, respectively. Figure [2.2] presents
an example SpMV execution on the first four rows of a sparse 9x9 matrix with only 10 non-zero
elements, i.e., having ~0.17 operational intensity when assuming single precision non-zero elements
(i.e., integers). As shown in Figure the accesses to the elements of the input vector are random
and irregular, and they depend on the sparsity pattern of the matrix that is given as input. The
data accesses to the elements of the input vector are very hard to predict, since they are affected
by the particular characteristics of the input matrix, and are typically performed using the main
memory of commodity systems, which often has high latency and low bandwidth [233,{467]]. Thus,
SpMV execution is highly limited by the irregular data accesses to the elements of the input vector
and the data movement costs of accessing the elements of the input vector, which cause significant
performance overheads in the total execution time [[18,/81}/90,/99.(111}{118L276L[282}3061[387H390]].

Execution of the 1st row | Execution of the 2nd row | Execution of the 3rd row | Execution of the 4th row

Ll BN EEEE Bl EEEEE B dnput T T T T T
vector ! vector i vector L | [1] ! vector

[*]: * ' * : *
Sparse ! Sparse | Sparse ! Sparse |]

Matrix i Matrix i Matrix i Matrix

Figure 2.2: An example SpMV execution on the first four rows of a sparse 9x9 matrix with only
10 non-zero elements. The execution steps are performed at a row granularity. The colored cells of
the matrix with purple color represent non-zero elements, and the colored cells of the input vector
represent the elements of the input vector that are processed/accessed at each execution step.

Two recent works [[308,/405] explain that the energy overheads of data movement across the
memory hierarchy of commodity systems can be significantly higher than that of computation in
irregular applications. First, Boroumand et al. [308] show that moving data between memory and
processors causes more than 60% of the total system energy efficiency in several irregular Google’s
consumer workloads. Second, Boroumand et al. [[405] demonstrate that the commercial Google Edge
TPU unit [468] spends 50.3% of its total energy on off-chip memory accesses across a wide range of
irregular machine learning applications, including convolutional neural networks, transducers and
recurrent neural networks. Multiple other works (e.g., [[400,469]) provide analysis of data movement
bottlenecks in a variety of irregular workloads. Therefore, we conclude that the high memory inten-
sity of irregular applications causes significant bottlenecks and high overheads both in performance
and energy consumption.

At the application level, many parallel applications and software packages do not handle data well

Chapter 2 55

(e.g., [13[27,31-4341/37,38./55}/56]]), and/or do not adapt their parallelization strategies to the particular
characteristics of the input data given. Recent works [309-313,470] highlight that different pieces of
program data have different performance characteristics (latency/bandwidth/parallelism sensitivity),
and inherent properties. Consequently, data-oblivious policies, i.e., policies that are designed without
taking into consideration the properties of the application data they handle, result in lost performance
optimization opportunities, which could be achieved by exploiting data properties. Similarly, at the
architecture level, existing hardware mechanisms (e.g., [314-317]) are designed without considering
modern applications’ memory access patterns and overwhelming data demand, and as such, they

cause frequent data movement across the entire system and significant data access costs.

2.2 Our Approach: Efficient Synchronization and Data Access
Techniques for Irregular Applications

In this dissertation, we study a wide range of irregular applications, including graph processing,
data analytics, pointer-chasing and sparse linear algebra, and explore their performance implications
on two modern computing platforms: (i) the processor-centric Non-Uniform Memory Access (NUMA)
CPU architectures, and (ii) the memory-centric Processing-In-Memory (PIM) (or Near-Data-Processing
(NDP)) architectures. The NUMA CPU architectures constitute the dominant hardware platform in
today’s computing systems, and have been significantly optimized over decades to integrate general-
purpose cores with high computation capability. The PIM/NDP architectures have been recently
commercialized [[136-138}/141,/142,318,395,/397,/398]], and represent a promising disruptive paradigm
to alleviate the costs of data movement across the memory hierarchy. PIM/NDP architectures equip
memory chips with a large number of low-area and low-power cores with relatively low computation
capability, and alleviate data movement overheads by performing computation close to where the
application data resides. Therefore, PIM/NDP architectures provide high levels of parallelism and
very large memory bandwidth.

We posit that, moving forward, both hardware mechanisms and parallel algorithms need to con-
sider the synchronization needs and memory access patterns of irregular applications as the two
major priorities to significantly improve system performance and system energy efficiency, when
employing hundreds or thousands of parallel threads. In particular, modern software and hardware
designs for irregular applications should provide two major types of optimization approaches: (1)
efficient synchronization, and (2) efficient data access techniques.

Efficient Synchronization Techniques. Modern computing platforms need to support low-cost
and practical hardware synchronization mechanisms, while parallel algorithmic designs need to pro-
vide fine-grained communication and adaptive synchronization approaches among parallel threads
to significantly accelerate the execution of irregular applications. Lightweight synchronization tech-
niques are highly effective at execution of irregular applications, since they improve system perfor-
mance and energy efficiency by (1) mitigating coherence/communication traffic overheads caused
when synchronizing hundreds or thousands of parallel threads, and (2) exposing high levels of fine-

grained parallelism thanks to enabling low-cost communication and coordination among parallel

56 Chapter 2

threads. We demonstrate the benefits of efficient synchronization in four different contexts. First, we
design a speculative synchronization scheme for the widely used graph coloring kernel [26] (Chap-
ter|3), which speculatively performs most computations and data accesses outside the critical section,
and thus effectively minimizes synchronization costs and provides high levels of parallelism on the
graph coloring kernel by enabling short critical sections with small memory footprints. Second, we
propose an adaptive concurrent priority queue (Chapter [4), which dynamically tunes its paralleliza-
tion strategy between two algorithmic modes (a NUMA-aware and a NUMA-oblivious mode) without
using barrier synchronization, and thus achieving negligible synchronization costs upon transitions.
Third, we introduce a low-cost and practical hardware synchronization mechanism tailored for NDP
architectures (Chapter |5), which significantly improves system performance and system energy effi-
ciency in a wide variety of irregular parallel applications including pointer chasing, graph process-
ing, and time series analysis. Fourth, we implement three synchronization schemes among parallel
threads of a multithreaded PIM core (Chapter|[6), and show that the lock-free synchronization scheme
provides significant performance benefits over the lock-based synchronization schemes in a real PIM

system, by providing higher amount of parallelism among parallel threads.

Efficient Data Access Techniques. Modern computing systems need to eliminate data movement
overheads, while parallel algorithmic designs need to provide well-crafted data distribution and data-
aware parallelization strategies (by exploiting properties of data), as well as adaptive cache and mem-
ory management techniques (by leveraging characteristics of the underlying hardware), in order to
minimize data access costs in the execution of irregular applications. Data-aware parallel algorithms
and memory-centric architectures can significantly improve performance and energy efficiency in the
execution of irregular applications by (1) reducing data access and communication costs, and (2) bet-
ter leveraging the available memory bandwidth of the underlying hardware to increase the efficiency
of the application execution. We demonstrate the benefits of efficient data access techniques in four
different contexts. First, we propose an eager coloring conflict policy to detect and resolve coloring
inconsistencies arised among parallel threads in the graph coloring kernel [26] (Chapter [3), which
effectively reduces data access costs by accessing conflicted vertices immediately using the low-cost
lower levels of the memory hierarchy (e.g., on-chip caches) of multicore CPU platforms. Second, we
design (i) a concurrent priority queue (Chapter 4) having a parallelization strategy that is aware of
the non-uniform distribution (NUMA-aware) of the underlying data structure in a NUMA CPU ar-
chitecture, and thus achieves higher performance benefits (by minimizing data access costs) in high-
contention scenarios over state-of-the-art concurrent priority queues [13,55] which are oblivious to
the non-uniform distribution (NUMA-oblivious) of the underlying data structure in a NUMA CPU
architecture, and (ii) an adaptive concurrent priority queue (Chapter[4), which dynamically tunes its
parallelization strategy between a NUMA-aware and a NUMA-oblivious algorithmic mode depend-
ing on the contention levels of the current workload, and provides high throughput in NUMA CPU
systems under all various contention scenarios (by reducing data access costs and achieving high
amount of parallelism). Third, we add a specialized low-cost cache memory structure inside synchro-
nization accelerators for NDP systems (Chapter |5) to directly buffer synchronization variables, and

thus minimize latency accosts costs by avoiding costly memory accesses for synchronization. Fourth,

Chapter 2 57

we introduce various data partitioning techniques to efficiently map the irregular SpMV execution
kernel on near-bank PIM systems [[137/318|395] (Chapter[6), and show that the best-performing SpMV
execution on a near-bank PIM system [[137,[318] (Chapter|6) is achieved using intelligent data-aware
algorithmic designs that (i) trade off computation for lower data movement overheads, and (ii) se-
lect their parallelization strategy and data partitioning policy based on the particular sparsity pattern
of the input matrix, i.e., by exploiting properties of the input data. We also observe that the SpMV
on a state-of-the-art memory-centric PIM system achieves a much higher fraction of the machine’s
peak performance compared to that on the state-of-the-art processor-centric CPU and GPU systems

(Chapter [6).

2.2.1 Thesis Statement

In this dissertation, we propose parallelization techniques and algorithmic designs, along with hard-
ware mechanisms that enable lightweight synchronization and low-cost data accesses in emerging
irregular applications running in processor-centric CPU and memory-centric PIM/NDP architectures.
Specifically, we propose (1) a novel parallel algorithm that minimizes synchronization and data ac-
cess costs in the graph coloring kernel execution on CPU systems, (2) an adaptive concurrent priority
queue that provides high amount of parallelism and minimizes memory traffic in NUMA CPU sys-
tems, (3) an end-to-end hardware mechanism that enables low-cost synchronization in NDP systems,
and (4) several efficient algorithmic designs that provide low synchronization and data transfer costs
in the SpMV kernel execution on real near-bank PIM systems.

This dissertation, hence, provides substantial evidence for the following thesis statement:

Low-overhead synchronization approaches in cooperation with well-crafted data
access techniques can significantly improve performance and energy efficiency of

important data-intensive irregular applications.

2.3 Overview of Our Research

We propose four new approaches to accelerate irregular applications in CPU and PIM/NDP architec-
tures via efficient synchronization and data access techniques, which we briefly describe next. We
also put our contributions in the context of relevant prior work and provide detailed discussions of

and comparisons to prior work in Chapters[3}-[g]

2.3.1 ColorTM [1-3]: High-Performance and Balanced Parallel Graph Col-
oring on Multicore CPU Platforms (Chapter

Graph coloring is an important graph processing kernel, and it is widely used in many real-world
end-applications including the conflicting job scheduling [26319-322]], register allocation [323-327]
and sparse linear algebra [328-331]. The total runtime of the graph coloring kernel typically adds to
the overall parallel overhead of the real-world end-application, and thus a high-performance parallel

graph coloring algorithm for modern multicore platforms is necessary. Prior works [27,31-34] that

58 Chapter 2

parallelize the graph coloring kernel are still inefficient (as we demonstrate in Chapter[3), because they
detect and resolve the coloring inconsistencies arised among parallel threads with a lazy approach:
they detect and resolve the coloring inconsistencies much later in the runtime compared to the time
that the coloring inconsistencies appeared. As a result, prior approaches access the conflicted vertices
of the graph multiple times, mainly using the expensive last levels of the memory hierarchy (e.g., main
memory) of commodity multicore platforms, thus incurring high data access costs.

To this end, we design ColorTM [1-3]], a high-performance parallel graph coloring algorithm for
multicore platforms. ColorTM is designed to provide both low synchronization overheads and low
data access costs via two key techniques. First, we introduce an eager conflict detection and resolu-
tion approach of the coloring inconsistencies arised among parallel threads: coloring inconsistencies
are immediately detected and resolved at the time they appear. This way in ColorTM, the conflicted
vertices are accessed multiple times, using the low-cost lower levels of the memory hierarchy of mul-
ticore platforms, thus achieving low data access costs. Second, we design a speculative computation
and synchronization scheme, in which parallel threads speculatively perform computations and data
accesses outside the critical section to enable short critical sections with small memory footprints.
This key technique provides high levels of parallelism and low synchronization costs by executing
multiple small and short critical sections in parallel. Next, we extend our algorithmic design to pro-
pose a balanced parallel graph coloring algorithm, named BalColorTM [2], in which the vertices of
the graph are almost equally distributed across the color classes produced. Enabling color classes
with almost equal sizes can provide high hardware resource utilization and high load balance among
parallel threads in the real-world end-applications of graph coloring.

We evaluate ColorTM and BalColorTM on a modern multicore platform using a wide variety of
large real-world graphs with diverse characteristics. In Chapter[3} we show that ColorTM and BalCol-
orTM significantly outperform prior state-of-the-art graph coloring algorithms [27,31~34]], while also
achieving high coloring quality. We also demonstrate that ColorTM and BalColorTM can provide sig-
nificant performance improvements in real-world end-applications, e.g., Community Detection [338]].
ColorTM and BalColorTM are freely and publicly available [2]] at github.com/cgiannoula/ColorTM to

enable further research on the graph coloring kernel in modern multicore systems.

2.3.2 SmartPQ[4]: An Adaptive Concurrent Priority Queue for NUMA CPU
Architectures (Chapter EI)

Concurrent priority queues lie at the heart of many important applications including graph process-
ing [|350H353l471] and discrete event simulations [[347-349]]. Prior works [13}/15,37,38,40-43,55.561/64,
472] have designed concurrent priority queues for modern NUMA architectures. These implementa-
tions for concurrent priority queues are typically of two types: (i) NUMA-oblivious concurrent prior-
ity queues [[13}/37,38{40-43}/55,/56,472], in which the parallelization strategy implemented is oblivious
to the non-uniform memory access costs of the underlying memory subsystem, and (ii) NUMA-aware
concurrent priority queues [[15,64], in which the parallelization strategy implemented takes into con-
sideration the non-uniform memory access costs of the underlying memory subsystem. We examine

prior state-of-the-art concurrent priority queues [13,(15,/55] on a NUMA CPU system using a wide

https://github.com/cgiannoula/ColorTM

Chapter 2 59

variety of contention scenarios, and find that none of the prior state-of-the-art concurrent priority
queues performs best across all various contention scenarios. Specifically, NUMA-oblivious concur-
rent priority queues provide high levels of parallelism, low data access costs, and high performance
in insert-dominated scenarios, which typically exhibit low-contention, since parallel threads may
work on different parts of the underlying data structure. In contrast, NUMA-oblivious concurrent
priority queues cause high data movement traffic in the memory subsystem of a NUMA architecture,
and incur significant performance slowdowns over the NUMA-aware concurrent priority queues in
deleteMin-dominated workloads, which exhibit very high contention, since parallel threads highly
compete to remove the first few elements of the underlying data structure.

To this end, we propose SmartPQ [4], an adaptive concurrent priority queue for NUMA archi-
tectures that achieves the highest performance in all different contention scenarios, and even when
the contention of the workload varies over time. SmartPQ is designed to provide high levels of par-
allelism and low data access and data movement costs under all various contention scenarios. To
achieve this, SmartPQ dynamically adapts itself over time between a NUMA-oblivious and a NUMA-
aware algorithmic mode depending on the contention levels of the workload. SmartPQ integrates (i)
NUMA Node Delegation (Nuddle), a generic framework to wrap any arbitrary NUMA-oblivious con-
current data structure, and transform it into its NUMA-aware counterpart, and (ii) a simple decision
tree classifier, which predicts the best-performing algorithmic mode (between a NUMA-oblivious
and a NUMA-aware algorithmic mode) given the current contention levels of the workload. This
way SmartPQ uses the NUMA-aware Nuddle priority queue in deleteMin-dominated workloads, and
switches to directly using the Nuddle’s underlying NUMA-oblivious concurrent priority queue in
insert-dominated scenarios, thus enabling low data access costs in all various contention scenarios.

We evaluate SmartPQ in a modern NUMA CPU system using a wide range of contention scenarios,
and also using synthetic benchmarks that dynamically vary the contention of the workload over
time. In Chapter[d] we demonstrate that SmartPQ achieves the highest performance over prior state-
of-the-art NUMA-oblivious and NUMA-aware concurrent priority queues [13,15,/55] in all various

contention scenarios and at any point in time with 87.9% success rate.

2.3.3 SynCron [5]: Efficient Synchronization Support for NDP Architec-
tures (Chapter

NDP architectures [135,138,140}/191,/258,/473|] alleviate the expensive data movement between pro-
cessors and memory by performing computation close to where the application data resides. Typical
NDP architectures support several NDP units connected to each other, with each unit comprising
multiple NDP cores close to memory [[135, 206, (207,308, |362,/368, 369]. Therefore, NDP architec-
tures provide high levels of parallelism, low memory access latency, and large aggregate memory
bandwidth, thereby being a very good fit to accelerate irregular applications such as genome anal-
ysis [189,/201]], graph processing [135,{191-193} 203,206, 207]], databases [[193}/204], pointer-chasing
workloads [54,/199,200,374], and sparse neural networks [[256}308,363,364]. However, to fully lever-
age the benefits of NDP architectures for these irregular parallel applications, an effective synchro-

nization solution for NDP systems is necessary.

60 Chapter 2

Numerous prior works [287-296,303-305,384,/385,/474-482] propose synchronization solutions
for processor-centric CPU, GPU and Massively Parallel Processing (MPP) systems. However, these syn-
chronization solutions are not efficient or suitable for the memory-centric NDP systems (Chapter [5),
which are fundamentally different from commodity processor-centric systems. First, synchronization
approaches for CPU systems are typically implemented upon the underlying hardware cache coher-
ence protocols, but most NDP systems do not support hardware cache coherence (e.g., [[135}{139}206,
207,[369]]). Second, synchronization in GPUs and MPPs is implemented in dedicated hardware atomic
units, known as remote atomics. However, synchronization using remote atomics has been shown to
be inefficient, since it causes high global traffic and hotspots [132,382-385]. Finally, prior hardware
synchronization mechanisms [287-289,[291-293}295} 296] tailored for commodity processor-centric
systems are not suitable for memory-centric NDP systems, because they would either incur high
hardware costs to be implemented in large-scale NDP systems (e.g., [289,[291-293]]) or cause exces-
sive network traffic across the NDP units of the system with significant performance overheads upon
contention (e.g., [[287.[288L[295L296])).

To this end, we design SynCron [5]], alow-overhead hardware synchronization mechanism tailored
for memory-centric NDP architectures. SynCron consists of four key techniques. First, we offload syn-
chronization among NDP cores to dedicated low-cost hardware units to avoid the need for complex
coherence protocols and expensive atomic operations. Second, we directly buffer the synchronization
variables in a specialized cache memory structure to avoid costly memory accesses for synchroniza-
tion. Third, we coordinate synchronization among NDP cores of several NDP units via a hierarchical
message-passing scheme to minimize synchronization traffic across NDP units of the system under
high-contention scenarios. Fourth, when applications with frequent synchronization oversubscribe
the hardware synchronization resources, we use an efficient and programmer-transparent overflow
management scheme to avoid costly fallback solutions and minimize overheads.

In Chapter[5| we demonstrate that SynCron achieves the goals of performance, cost, programming
ease, and generality by covering a wide range of synchronization primitives. In addition, we show
that SynCron significantly improves system performance and energy efficiency across a wide range of
irregular applications including pointer-chasing, graph applications, and time series analysis, while

also has low area and power overheads to be integrated into the compute die of NDP units.

2.3.4 SparseP [6-9,11]: Towards Efficient Sparse Matrix Vector Multiplica-
tion on Real PIM Architectures (Chapter IEI)

The SpMV kernel has been characterized as one of the most thoroughly studied scientific computation
kernels [[18[281f], and is a fundamental linear algebra kernel for important applications from the
scientific computing, machine learning, graph analytics and high performance computing domains.
In commodity processor-centric systems like CPU and GPU systems, SpMV is a memory-bandwidth-
bound kernel for the majority of real sparse matrices, and is bottlenecked by data movement between
memory and processors [17,/18,|81,(88}/90,199,1125, 141,142, {262, 281,306, 387-393]. To alleviate the
data movement bottleneck, several manufacturers have already started to commercialize near-bank
PIM architectures [137,/141,|142,1318,(386,1395,(397,1398}|406-411, 415|423, 447-451]], after decades of

Chapter 2 61

research efforts. Near-bank PIM designs tightly couple a PIM core with each DRAM bank, exploiting
bank-level parallelism to expose high on-chip memory bandwidth of standard DRAM to processors.
Two real near-bank PIM architectures are Samsung’s FIMDRAM [395,[397|] and the UPMEM PIM
system [137,{141,/142,452]].

Recent works leverage near-bank PIM architectures to provide high performance and energy ben-
efits on bioinformatics [141,/142,453,454], skyline computation [[483]], compression [[455]] and neural
network [|141,|142}3861395}/448] kernels. A recent study [141,/142] provides PrIM benchmarks [484],
which are a collection of 16 kernels for evaluating near-bank PIM architectures, like the UPMEM
PIM system. Similarly, a recent work [485] implements several machine learning kernels, i.e., linear
regression, logistic regression, decision tree, k-means clustering, on the UPMEM PIM system to un-
derstand the potential of a modern general-purpose PIM architecture to accelerate machine learning
training. However, there is no prior work to efficiently map the SpMV execution kernel on near-bank
PIM systems, and thoroughly study the widely used, memory-bound SpMV kernel on a real PIM
system.

To this end, we design efficient SpMV algorithms tailored for current and future real PIM sys-
tems, which are publicly available in the SparseP software package [6-9,[11]. The SparseP software
package includes 25 SpMV kernels for real PIM systems, which are designed to provide high levels of
parallelism, low synchronization costs, low data movement overheads, as well as to effectively lever-
age the immense memory bandwidth supported in near-bank PIM architectures. Specifically, SparseP
supports (1) the four most popular compressed matrix formats, (2) a wide range of data types, (3) two
types of well-crafted data partitioning techniques of the sparse matrix to DRAM banks of PIM-enabled
memory modules, (4) various load balancing schemes across thousands of PIM cores, (5) various load
balancing schemes across several threads of a multithreaded PIM core, and (6) three synchronization
approaches among threads within multithreaded PIM core.

We conduct an extensive and comprehensive study of SparseP kernels on the memory-centric UP-
MEM PIM system [[136/{137/141,142], the first publicly-available real-world PIM architecture. In Chap-
ter [6] we analyze the SpMV execution (1) using one single multithreaded PIM core, (2) using thou-
sands of PIM cores, and (3) comparing its performance and energy consumption with that achieved
on processor-centric CPU and GPU systems. Based on our rigorous experimental results and ob-
servations, we provide programming recommendations for software designers and suggestions for
hardware and system designers of future PIM systems. Our SparseP software package is freely and
publicly available at https://github.com/CMU-SAFARI/SparseP| to enable further research on the ir-

regular SpMV kernel in current and future PIM systems.

2.4 Contributions

This dissertation explores lightweight synchronization approaches in cooperation with efficient data
access techniques to accelerate irregular applications both in processor-centric CPU systems and
memory-centric NDP/PIM systems. This doctoral thesis aims to bridge the gap between processor-
centric CPU systems and memory-centric PIM systems in the critically-important area of irregular

applications. Based on our rigorous experimental results and observations, we provide programming

https://github.com/CMU-SAFARI/SparseP

62 Chapter 2

recommendations for software designers and suggestions for hardware and system designers of CPU
and NDP/PIM systems in Chapters 3} [| In summary, this dissertation makes the following major

contributions:
« We introduce ColorTM, a novel algorithmic design to accelerate the widely used irregular graph

coloring kernel on modern multicore CPU platforms. We introduce a speculative synchroniza-
tion and computation approach on graph coloring to mitigate synchronization overheads. We
propose an eager detection and resolution policy of the coloring inconsistencies arised among
parallel threads to minimize data access costs. We extend our algorithmic design to present
BalColorTM, an efficient balanced graph coloring kernel, which produces color classes with
almost equal sizes. We demonstrate the effectiveness of ColorTM and BalColorTM at signifi-
cantly outperforming prior state-of-the-art parallel graph coloring algorithms, and providing
high performance benefits on a real-world end-application using a wide variety of large real-
world graphs with diverse characteristics. Chapter [3| describes ColorTM and BalColorTM and

their evaluations in detail.

« We propose SmartPQ, an adaptive concurrent priority queue for NUMA CPU architectures. We
introduce Nuddle, a generic technique to obtain efficient NUMA-aware concurrent data struc-
tures by wrapping any arbitrary NUMA-oblivious concurrent data structure. We design the
adaptive SmartPQ that uses the NUMA-aware Nuddle concurrent priority queue under high-
contention scenarios, and switches to directly using the Nuddle’s underlying NUMA-oblivious
concurrent priority queue under low-contention scenarios. This way SmartPQ provides high
levels of parallelism, low data access costs, and significant performance benefits in modern
NUMA CPU systems under all various contention scenarios, and even when the contention of
the workload varies over time. We show the effectiveness of SmartPQ at providing significant
performance benefits over prior state-of-the-art NUMA-aware and NUMA-oblivious concur-
rent priority queues under various contention scenarios. Chapter [4 describes SmartPQ and its

evaluations in detail.

« We introduce SynCron, the first end-to-end hardware synchronization mechanism for NDP ar-
chitectures. SynCron provides low-overhead synchronization in the execution of irregular ap-
plications on NDP systems, has low hardware costs, supports many synchronization primitives,
and implements an easy-to-use high-level synchronization interface. We design low-cost syn-
chronization units that coordinate synchronization across NDP cores, and directly buffer syn-
chronization variables in a specialized cache memory to avoid costly memory accesses to them.
We integrate an efficient hierarchical message-passing synchronization scheme, and hardware-
only programmer-transparent overflow management to mitigate performance overheads when
hardware resources are exceeded. We demonstrate the effectiveness of SynCron at significantly
improving system performance and system energy efficiency using a wide range of irregular
parallel applications, including pointer-chasing, graph processing, and time series analysis, and

under various contention scenarios. Chapter [5|describes SynCron and its evaluations in detail.

« We propose SparseP, the first open-source software package of 25 efficient SpMV kernels tai-

lored for real near-bank PIM architectures. We support several well-crafted data partitioning

Chapter 2 63

techniques of the sparse matrix to PIM-enabled memory and various load balancing schemes
across PIM cores and across threads of a multithreaded PIM core to trade off computation bal-
ance across PIM cores for lower data transfer costs to PIM-enabled memory. We include three
different synchronization approaches among several threads within a multithreaded PIM core
to minimize synchronization overheads and achieve high levels of parallelism. We perform the
first comprehensive study of the widely used irregular SpMV kernel on the UPMEM PIM archi-
tecture, the first real commercial PIM architecture, using various compressed matrix storage
formats, many data types, and 26 sparse matrices with diverse sparsity patterns. We demon-
strate that the SpMV execution on the memory-centric UPMEM PIM system with 2528 PIM
cores achieves a much higher fraction of the machine’s peak performance compared to that
on the state-of-the-art processor-centric CPU and GPU systems, and also provides high energy

efficiency. Chapter [describes SparseP and its evaluations in detail.

2.5 OQutline

This dissertation is organized into 8 chapters. Chapter [1] presents the extended summary of this dis-
sertation in Greek. Chapter [2| describes and motivates the thesis statement of this dissertation, and
also briefly describes the research contributions of this dissertation. Chapter [3| introduces ColorTM,
a new algorithmic design to accelerate the irregular graph coloring kernel in modern CPU architec-
tures, and presents its experimental study on a modern multicore platform. Chapter |4 introduces
SmartPQ, an adaptive concurrent priority queue that achieves high performance in NUMA CPU ar-
chitectures under all various contention scenarios, and presents its respective evaluations. Chapter 5|
introduces SynCron, an end-to-end hardware mechanism to support efficient and low-cost synchro-
nization in NDP systems, and presents its evaluations across a wide variety of irregular applications
including graph processing, pointer-chasing and time series analysis. Chapter [6| introduces SparseP,
the first open-source library of 25 algorithms to efficiently execute the irregular SpMV kernel on real
PIM architectures, and presents a comprehensive experimental study of these SpMV kernels on the
first real commercial PIM architecture. Chapter[7] presents future research directions and concluding
remarks of this dissertation. Chapter [8 presents several other research works of the author of this
dissertation. Chapter [9|presents additional experimental results and descriptions for the SparseP con-
tribution (Chapter[6). Chapter|[10|contains a dictionary table of the main keyword terms from Greek
to English.

64

Chapter 2

CHAPTER 3

ColorTM

3.1 Overview

Graph coloring assigns colors to the vertices of a graph such that any two adjacent vertices have
different colors. Graph coloring kernel is widely used in many important real-world applications
including the conflicting job scheduling [26,319-322], register allocation [323-327], sparse linear al-
gebra [328-331]], machine learning (e.g., to select non-similar samples that form an effective training
set), and chromatic scheduling of graph processing applications [486,487]. For instance, the chro-
matic scheduling execution is as follows: given the vertex coloring of a graph, chromatic scheduling
performs N steps that are executed serially, where NV is the number of colors used to color the graph,
and at each step the vertices assigned to the same color are processed in parallel, i.e., representing
independent tasks that are executed concurrently. In addition, it is of vital importance that program-
mers manage the registers of modern CPUs effectively, and thus compilers [326,327] optimize the
register allocation problem via graph coloring: compilers construct undirected graphs, named reg-

ister inference graphs (RIGs), with vertices representing the variables used in the source code and

65

66 Chapter 3

edges between vertices representing variables that are simultaneously active at some point in the
program execution, and then compilers leverage the graph coloring kernel to identify independent
variables that can be allocated on the same registers, i.e., if there no edge in the RIG connecting the

associated vertices of the variables.

To achieve high system performance in the aforementioned real-world scenarios, software de-
signers need to improve three key aspects of the graph coloring kernel. First, they need to minimize
the number of colors used to color the input graph. For example, in the chromatic scheduling scheme
minimizing the number of colors used to color the graph reduces the number of the sequential steps
performed in the multithreaded end-application. However, minimizing the number of colors in graph
coloring is an NP-hard problem [332], and thus prior works [35,36,/320,321,328,]333-337|] introduce
ordering heuristics that generate effective graph colorings with a relatively small number of colors.
Second, given that the execution time of the graph coloring kernel adds to the overall parallel over-
head of the real-world end-application, software engineers need to design high-performance graph
coloring algorithms for modern multicore computing systems. Third, an effective graph coloring for a
real-world end-application necessitates a balanced distribution of the vertices across the color classes,
i.e., the sizes of the color classes to be almost the same. Producing color classes with high skew in
their sizes, i.e., high disparity in the number of vertices distributed across color classes, typically
causes load imbalance and low resource utilization in real-world end-application. For example, in the
register allocation scenario high disparity in the sizes of the color classes results to a large number
of registers needed (high financial costs), equal to the size of the largest color class produced, while a
large portion of the registers remains idle (unused) for a long time during the program execution (i.e.,
in time periods corresponding to many color classes with small sizes), thus causing low hardware
resource utilization. Therefore, software designers need to propose balanced and fast graph coloring
algorithms for commodity computing systems. Our goal in this work is to improve the last two key
aspects of the graph coloring kernel by introducing high-performance and balanced multithreaded
graph coloring algorithms for modern multicore platforms.

With a straightforward parallelization of graph coloring, coloring conflicts may arise when two
parallel threads assign the same color to adjacent vertices. To deal with this problematic case, re-
cent works [27,31-34] perform two additional phases: a conflict detection phase, which iterates
over the vertices of the graph to detect coloring inconsistencies between adjacent vertices, and a
conflict resolution phase, which iterates over the detected conflicted vertices to resolve the coloring
inconsistencies via recoloring. Nevertheless, these prior works [27,[31-34] are still inefficient, as we
demonstrate in Section [3.6] because they need to traverse the whole graph at least two times (one for
coloring the vertices and one for detecting coloring conflicts), and also detect and resolve coloring
conflicts with a lazy approach, i.e., much later in the runtime compared to the time that the coloring
conflicts appeared. As a result, prior approaches access the conflicted vertices of the graph multiple
times, however mainly using the expensive last levels of the memory hierarchy (e.g., main memory)
of commodity multicore platforms, thus incurring high data access costs.

In this work, we present ColorTM [2], a high-performance graph coloring algorithm for multicore

platforms. ColorTM is designed to provide low synchronization and data access costs. Our algorithm

Chapter 3 67

proposes (a) an eager conflict detection and resolution approach, i.e., immediately detecting and re-
solving coloring inconsistencies when they arise, such that to minimize data access costs by accessing
conflicted vertices immediately using the low-cost lower levels of the memory hierarchy of multicore
platforms, and (b) a speculative computation and synchronization scheme, i.e., leveraging Hardware
Transactional Memory (HTM) and speculatively performing computations and data accesses outside
the critical section, such that to provide high levels of parallelism and low synchronization costs by
executing multiple small and short critical sections in parallel. Specifically, ColorTM consists of three
steps: for each vertex on the graph, it (i) speculatively finds a candidate legal color by recording the
colors of the adjacent vertices, (ii) validates and updates the color of the current vertex by checking
the colors of the critical adjacent vertices within an HTM transaction to detect potential coloring
conflicts, and (iii) eagerly repeats steps (i) and (ii) for the current vertex multiple times until a valid
coloring is found.

However, ColorTM does not provide any guarantee on the sizes of the color classes relative to
each other. As we demonstrate in our evaluation (Section[3.6), the color classes produced by ColorTM
for a real-world graphs have high disparity in the number of vertices across them, thus causing load
imbalance and low resource utilization in real-world end-applications. Therefore, we extend our algo-
rithmic design to propose a balanced graph coloring algorithm, named BalColorTM [?2]]. BalColorTM
achieves high system performance and produces highly balanced color classes, i.e., having almost the
same number of vertices across color classes, targeting to provide high hardware resource utilization
and load balance in the real-world end-applications of graph coloring.

We evaluate ColorTM and BalColorTM on a dual socket Intel Haswell server using a wide variety
of large real-world graphs with diverse characteristics. ColorTM improves performance by 12.98x
on average using 56 parallel threads compared to state-of-the-art graph coloring algorithms, while
providing similar coloring quality. BalColorTM outperforms prior state-of-the-art balanced graph
coloring algorithms by 1.78 X on average using 56 parallel threads, and provides the best color bal-
ancing quality over prior schemes (See Section[3.6). Finally, we study the effectiveness of our proposed
ColorTM and BalColorTM in parallelizing a widely used real-world end-application, i.e., Community
Detection [338], and demonstrate that our proposed algorithmic designs can provide significant per-
formance improvements in real-world scenarios. ColorTM and BalColorTM are publicly available [2]
at github.com/cgiannoula/ColorTM.

The main contributions of this work are:

« We design high-performance and balanced graph coloring algorithms, named ColorTM and

BalColorTM, for modern multicore platforms.

« We leverage HTM to efficiently detect coloring inconsistencies between adjacent vertices (pro-
cessed by different parallel threads) with low synchronization costs. We propose an eager con-
flict resolution approach to efficiently resolve coloring inconsistencies in multithreaded execu-

tions by minimizing data access costs.

« We evaluate ColorTM and BalColorTM using a wide variety of large real-world graphs and

demonstrate that they provide significant performance improvements over prior state-of-the-

https://github.com/cgiannoula/ColorTM

68 Chapter 3

art graph coloring algorithms. Our proposed algorithmic designs significantly improve perfor-

mance in multithreaded executions of real-world end-applications.

3.2 Prior Graph Coloring Algorithms

In this section, we describe prior state-of-the-art graph coloring algorithms [27[31-34]. Section [3.2.1]
presents the sequential graph coloring algorithm. Section [3.2.2] describes prior parallel (no guarantee
on the sizes of color classes) graph coloring algorithms proposed in the literature, while Section [3.2.3]
presents prior balanced (color classes are highly balanced) graph coloring algorithms proposed in the

literature.

3.2.1 The Greedy Algorithm

Figure [3.1| presents the sequential graph coloring algorithm, called Greedy [26]]. Consider an undi-
rected graph G = (V, F), and the neighborhood N (v) of a vertex v € V definedas N(v) = {u € V :
(v,u) € E}. For each vertex v of the graph, Greedy records the colors of v's adjacent vertices in a
forbidden set of colors, and assigns the minimum legal color to the vertex v based on the forbidden

set of colors.

Input: Graph G=(V,E)
Let N(v) be the adjacent vertices of the vertex v
for each veV do
forbidColors = 0
for each ue N(v) do
forbidColors = forbidColors U {u.color}
v.color = minLegalColor(forbidColors)

N NG W=

Figure 3.1: The Greedy algorithm.

The Greedy approach produces at most A + 1 colors [26], where A is the degree of the graph G.
The degree of the graph is defined as A = max,cy{deg(v)}, where deg(v) is the degree of a vertex v,
which is the number of its adjacent vertices deg(v) = | N (v)|. However, finding the minimum number
of colors to color a graph G is an NP-hard problem [488]. In this work, we have experimented with
the first-fit ordering heuristic [26], in which the vertices of the graph are processed and colored in the
order they appear in the input graph representation G, since this heuristic can provide high coloring
quality based on prior works [26,/35,(489]]. We leave the exploration of other ordering heuristics for

future work.

3.2.2 Prior Parallel Graph Coloring Algorithms

To parallelize the graph coloring problem, the vertices of the graph are distributed among parallel
threads. However, due to crossing edges, the coloring subproblems assigned to parallel threads are not
independent, and the parallel algorithm may terminate with an invalid coloring. Specifically, a race

condition arises when two parallel threads assign the same color to adjacent vertices. The algorithm

Chapter 3 69

implies that when a parallel thread updates the color of a vertex, the forbidden set of colors of the
adjacent vertices has not been changed. Thus, the nature of this algorithm imposes that the reads to
the colors of the adjacent vertices of a vertex v have to be executed atomically with the write-update

to the color of the vertex v.

The SeqSolve Algorithm

Figure|3.2|presents the parallel graph coloring algorithm proposed by Gebremedhin et al. [31]], hence-
forth referred to as SeqSolve. This algorithm consists of three steps: (i) multiple parallel threads iterate
over the whole graph and speculatively color the vertices of the graph with no synchronization (lines
3-6), (ii) multiple parallel threads iterate over the whole graph and detect coloring inconsistencies
that appeared in the (i) step (lines 7-13), and (iii) only one single thread resolves the detected coloring
inconsistencies by re-coloring the conflicted vertices (lines 14-16). Since the (iii) step is executed by
only a single thread, no coloring inconsistencies appear after this step. Note that when a coloring
conflict arises between two adjacent vertices, only one of the involved adjacent vertices needs to be

re-colored, e.g., using a simple order heuristic among the vertices (line 11).

1 Input: Graph G=(V,E)

2 Let N(v) be the adjacent vertices of the vertex v
3 // Speculative Coloring - Step (i)

4 for each v€V do in parallel

5 Assign the minimum legal color to the vertex v
6 __barrier__

7 // Detection of Coloring Inconsistencies - Step (ii)

8 R =0 // Set of Conflicted Vertices

9 for each veV do in parallel

10 for each we N(v) do

11 if ((v.color == wu.color) && (v < u))

12 R=RUWV

13 __barrier__

14 // Sequential Resolution of Coloring Conflicts - Step (iii)
15 for each v€ R do

16 Assign the minimum legal color to the vertex v

Figure 3.2: The SeqSolve algorithm.

In the SeqSolve algorithm, we make three key observations. First, if the number of coloring
conflicts arised in a multithreaded execution is low, the algorithm might scale well [31]. However,
as the number of parallel threads increases and the graph becomes denser, i.e., the vertices of the
graph have a large number of adjacent vertices, many more coloring conflicts arise in multithreaded
executions. In such scenarios, a large number of coloring inconsistencies is resolved sequentially, i.e.,
by only one single thread, thus achieving limited parallelism. Second, we note SeqSolve traverses the
whole graph at least two times, i.e., step (i) and step (ii). Assuming large real-world graphs that do not
typically fit in the Last Level Cache (LLC) of contemporary multicore platforms, the whole graph is
traversed twice using the main memory, thus incurring high data access costs. Third, we observe that
SeqSolve detects and resolves the coloring conflicts lazily, i.e., much later in the runtime compared

to the time that the coloring conflicts appears. Specifically, a coloring inconsistency in a vertex v

70 Chapter 3

might appear in step (i). However, SeqSolve detects the coloring inconsistency in vertex v in step
(ii), i.e., after first coloring all the remaining vertices of the graph. Similarly, SeqSolve resolves the
coloring inconsistency of the vertex v in step (iii), i.e., after first detecting if coloring inconsistencies
exist in all the remaining vertices of the graph (step (ii)). As a result, many conflicted vertices are
accessed multiple times in the runtime, however with a lazy approach, i.e., accessing them through
the expensive last levels of the memory hierarchy of commodity platforms, thus incurring high data

access costs.

The IterSolve Algorithm

Figure[3.3|presents the parallel graph coloring algorithm proposed by Boman et al. [[32,33]], henceforth
referred to as IterSolve. This algorithm consists of two repeated steps: (i) multiple parallel threads
iterate over the uncolored vertices of the graph and speculatively color the uncolored vertices of
the graph with no synchronization (lines 5-8), (ii) multiple parallel threads iterate over the recently-
colored vertices of the graph and detect coloring inconsistencies appeared in the (i) step (lines 9-15).
The steps (i) and (ii) are iteratively repeated until there are no coloring inconsistencies in any adjacent

vertices of the graph.

1 Input: Graph G=(V,E)
2 Let N(v) be the adjacent vertices of the vertex v

3 0=V

4 while U #0

5 // Speculative Coloring - Step (i)

6 for each v € U do in parallel

7 Assign the minimum legal color to the vertex v
8 _barrier__

9 // Detection of Coloring Inconsistencies - Step (ii)
10 R = 0 // Set of Conflicted Vertices
11 for each v€ U do in parallel

12 for each uwe N(v) do

13 if ((v.color == w.color) && (v < w))
14 R=RUWw

15 __barrier__

16 U=R

Figure 3.3: The IterSolve algorithm.

In the IterSolve algorithm, we make four key observations. First, the programmer needs to explic-
itly define forward progress in the source code, so that the IterSolve algorithm terminates. Specifi-
cally, to ensure forward progress when a coloring inconsistency appears between two adjacent ver-
tices, the programmer needs to explicitly define only one of them to be re-colored (line 13), e.g., based
on the vertices’ ids. Otherwise, the two adjacent vertices may always obtain the same color, if they
are always being processed by different threads. Second, similarly to SeqSolve, IterSolve traverses
the whole graph at least two times (steps (i) and (ii)), i.e., in the first iteration of the while loop in line
4, where the set U is equal to the set V' (line 3). In the first iteration of the while loop, the whole large
real-world graph is accessed through the main memory twice, thus incurring high data access costs.

Third, similarly to SeqSolve, IterSolve detects and resolves the coloring conflicts lazily. Specifically,

Chapter 3 71

a coloring inconsistency in a vertex v might appear in step (i) (line 7), it is detected in step (ii) (line
13), i.e., after first coloring all the remaining uncolored vertices of the graph. Moreover, IterSolve
resolves the coloring inconsistency of a vertex v in step (i) (with re-coloring), i.e., after first detect-
ing if coloring inconsistencies exist in all the remaining recently-colored vertices of the graph (step
(ii)). Thus, IterSolve incurs high data access costs on the many conflicted vertices, which are accessed
multiple times in the runtime with lazy approach, through the last levels of the memory hierarchy
of commodity platforms. Fourth, the iterative process of resolving coloring conflicts may introduce
new conflicts, and thus, IterSove might need additional iterations to fix them. This scenario may
happen when adjacent vertices are assigned to the same thread and incur coloring inconsistencies,
they will be assigned and processed by different parallel threads in the next iteration. The authors of
the original IterSolve papers [32l/33] empirically observe that a few iterations of IterSolve are needed
to produce a valid coloring. However, the authors used synthetic and not real-world graphs in their
evaluation. In addition, the more iterations are needed, the more lazy traversals on the conflicted

vertices of the graph are performed, which can significantly degrade performance.

The IterSolveR Algorithm

Figure[3.4presents the parallel graph coloring algorithm proposed by Rokos et al. [34], henceforth re-
ferred to as IterSolveR. Rokos et al. observed that the IterSolve algorithm (Figure 3.3) can be improved
by merging the steps (i) and (ii) into a single detect-and-re-color step, thus eliminating one of the two
barrier synchronizations of IterSolve (lines 8 and 15 in Figure 3.3). When a coloring inconsistency on
a vertex v is found, the vertex v can be immediately re-colored (line 18 in Figure 3.4). However, the
new re-coloring on the vertex v may again introduce a coloring inconsistency in multithreaded execu-
tions, since re-colorings are performed concurrently by multiple parallel threads (line 11). Therefore,
the vertex v is marked as recently-re-colored vertex (line 19), and needs to be re-validated in the next
iteration of IterSolveR. Overall, IterSolverR (Figure 3.4) first speculatively colors all the vertices of the
graph and marks them as recenlty-colored vertices (lines 3- 6). Then, it executes one single repeated
step (lines 8-21): multiple parallel threads iterate over the recently-colored vertices of the graph, and
detect if coloring inconsistencies have appeared, which in that case are immediately resolved via re-
coloring. This step is repeated until there are no recently-re-colored vertices: in one single iteration
of this step, there are no coloring inconsistencies detected in any adjacent vertices of the graph.

In the IterSolveR algorithm, even though one barrier synchronization is eliminated compared
to IterSolve, we observe that IterSolveR still traverses the whole graph at least twice: (i) in Step 0
(lines 4-5), and (ii) in the first iteration of the while loop in line 8, where the set U is equal to the
set V (line 7), including all the vertices of the graph. Thus, IterSolveR traverses the large real-world
graph twice through the main memory, incurring high data access costs. In addition, we find that
similarly to SeqSolve and IterSolve, the IterSolveR algorithm also detects the coloring inconsistencies
lazily. Specifically, a coloring inconsistency on a vertex v might appear in the re-coloring process of
lines 17-19, since the re-coloring process is concurrently executed on multiple conflicted vertices by

multiple parallel threads. However, re-coloring inconsistencies of lines 17-19 are detected in the next

72 Chapter 3

1 Input: Graph G=(V,E)

2 Let N(v) be the adjacent vertices of the vertex v
3 // Speculative Coloring (Step 0)

4 for each v €V do in parallel

5 Assign the minimum legal color to the vertex v
6 __barrier__

7 U=V // Mark all Vertices as Recently-Colored

8 while U # ()

9 R = 0 // Set of Recently-Colored Vertices

10 // Conflict Detection and Resolution (Step (i))

11 for each ve€ U do in parallel

12 bool conflict-detected = false

13 for each uwe N(v) do

14 if ((v.color == u.color) && (v < w))

15 conflict-detected = true

16 break

17 if (conflict-detected == true)

18 Assign the minimum legal color to vertex v
19 R = R U v // Mark vertex v as Recently-Colored
20 _barrier__

21 U=R

Figure 3.4: The IterSolveR algorithm.

iteration of the step (i) in lines 13-16, i.e., after first processing all the remaining vertices of the set U
(line 11). Therefore, as we demonstrate in our evaluation (Section (3.6.1)), IterSolveR is still inefficient,
incurring high data access costs on multiple conflicted vertices which are accessed multiple times in

the runtime with a lazy approach.

3.2.3 Prior Balanced Graph Coloring Algorithms

To provide a balanced coloring on a graph in which the color classes produced include almost the
same number of vertices, a two-step process is typically used: (i) obtain an initial graph coloring
using a balanced-oblivious algorithm (e.g., Section [3.2.2), and (ii) obtain a balanced graph coloring
using a balanced-aware (henceforth referred to as balanced for simplicity) graph coloring algorithm,
as we describe next. Specifically, given a graph G = (V, E), we can assume that the number of colors
produced by the initial coloring step (i) is C'. A strictly balanced graph coloring results in the size
of each color class being b = V/C' E| Therefore, we refer to the color classes whose sizes are greater
than b as over-full classes, and those whose sizes are less than b as under-full classes. Balanced graph
coloring algorithms leverage the quantity of b, which can be extracted by first executing an initial

balanced-oblivious graph coloring on the graph, in order to provide balanced color classes on a graph.

!Please note that in our work we make the following assumption: in a real-world end-application, the vertices of the
graph represent sub-tasks that have almost equal load/weights of computation. If the vertices of the input graph have
different load/weights of computation, a pre-processing step needs to be applied in the original graph: vertices with large
computation weights/load are split into multiple smaller vertices, each of them has one weight/load unit of computation.

Chapter 3 73

The Color-Centric (CLU) Algorithm

Figure [3.5| presents the color-centric balanced graph coloring algorithm proposed by Lu et al. [27],
henceforth referred to as CLU. In this scheme, vertices belonging in the same color class are processed
concurrently, and a subset of vertices from each over-full color class is moved to under-full color
classes in order to achieve high color balance. Only vertices belonging in over-full color classes are
considered for re-coloring, while graph coloring balance is achieved without increasing the number

of color classes produced by the initial graph coloring.

1 Input: Graph G=(V,E)

2 Obtain an initial coloring on G

3 Let C be the number of colors produced

4 Let b=V/C be the perfect balance

5 Let @ be the set of vertices of the over-full color classes
6 for each c€ (@ do // Process the Over-Full Color Classes

7 Let R(c) be the set of vertices with color ¢

8§ for each v € R(c) do in parallel

9 if (the size of the color class ¢ <= b)

10 continue // Color Class is Balanced

11 Let k£ be the index of the minimum under-full color class that is
permissible to vertex w

12 if (k exists) // Re-Coloring

13 v.color = Kk

14 Atomically decrease the size of the color class c

15 Atomically increase the size of the color class k

16 _barrier__

Figure 3.5: The CLU algorithm.

The CLU algorithm (Figure processes the over-full color classes sequentially (lines 6 and 16),
while vertices belonging at the same over-full color class are processed concurrently (line 8). CLU
iterates over each vertex v of an over-full color class, and finds the minimum color of an under-full
color class that is permissible to be assigned at the vertex v (line 11). If such a color exists, the vertex v
is re-colored with a color of an under-full color class (lines 12-15). The CLU algorithm iterates over the
vertices of each over-full color class until that particular over-full class becomes balanced at a certain
point in the execution, i.e., until when its size becomes smaller or equal to b (lines 9-10). Then, the
vertices belonging on that color class are no longer considered for re-coloring (line 10). Thus, this
algorithm terminates when either vertex-balance across color classes is achieved or vertex-balance
across color classes is no longer available, i.e., there are no more permissible re-colorings for any
vertex belonging in an over-full color class.

In the CLU algorithm, we make two key observations. First, parallel threads always process ver-
tices of the same color, thus no coloring inconsistencies are produced: since vertices had the same
color in the initial coloring, they are not adjacent vertices, and thus they can be re-colored with the
same color of an under-full color class without violating correctness. This way CLU requires only one
iteration over the vertices of all the over-full color classes. Second, the parallel performance of CLU
depends on the number of the over-full color classes produced in the initial coloring. CLU requires
F steps, where F’ is the number of over-full color classes produced in the initial coloring. At each of

these steps, i.e., for each over-full color class on the initial coloring, CLU introduces a barrier syn-

74 Chapter 3

chronization among parallel threads (line 16). This way it increases the synchronization costs, which

might significantly degrade scalability in multithreaded executions.

The Vertex-Centric (VFF) Algorithm

Figure [3.6| presents the vertex-centric balanced graph coloring algorithm proposed by Lu et al. [27],
henceforth referred to as VFF. The VFF algorithm is the balanced graph coloring counterpart of the
IterSolve algorithm (Figure [3.3). In this scheme, vertices from different color classes are processed
concurrently by parallel threads. Thus, in contrast to CLU, VFF introduces coloring inconsistencies.
However, similarly to CLU, in VFF only vertices belonging in over-full color classes are considered for
re-coloring, i.e., to be moved to under-full color classes, while graph coloring balance is also achieved

without increasing the number of color classes produced by the initial graph coloring.

1 Input: Graph G=(V,E)

2 Let N(v) be the adjacent vertices of the vertex v

3 Obtain an initial coloring on G

4 Let C be the number of colors produced

5 Let b=V/C be the perfect balance

6 Let @ be the set of vertices of the over-full color classes

7 while Q # () // Process the Over-Full Color Classes

8 // Speculative Re-Coloring - Step (i)

9 for each v € (@ do in parallel

10 Let ¢ be the current color of the vertex w

11 if ((c !'= -1) && (the size of the color class ¢ <= b))

12 continue// Color Class is Balanced

13 Let k£ be the index of the minimum under-full color class that is
permissible to vertex v

14 if (k exists)// Re-Coloring

15 v.color = k

16 Atomically decrease the size of the color class c

17 Atomically increase the size of the color class k

18 _barrier__

19 // Detection of Coloring Inconsistencies - Step (ii)
20 R = () // Conflicted Vertices of Over-Full Color Classes
21 for each ve (@ do in parallel

22 for each uwe N(v) do

23 if ((v.color == w.color) && (v < w))
24 R=RUWw

25 v.color = -1

26 _barrier__

27 Q=R

Figure 3.6: The VFF algorithm.

Similarly to IterSolve, VFF (Figure consists of two repeated steps: (i) multiple parallel threads
iterate over vertices of over-full color classes and speculatively re-color them with permissible colors
of under-full color classes, if possible (lines 8-18), and (ii) multiple parallel threads iterate over the
recently re-colored vertices and detect coloring inconsistencies that appeared in the (i) step (lines
19-26). Similarly to CLU, VFF iterates over the vertices of an over-full color class until that particular
over-full class becomes balanced at a certain point in the execution, i.e., until when its size becomes

smaller or equal to b (lines 11-12). Then, the vertices belonging on that particular color class are no

Chapter 3 75

longer considered for re-coloring (line 12). The steps (i) and (ii) are iteratively repeated until there
are no coloring inconsistencies in any adjacent vertices of the graph, and the algorithm terminates
when either vertex-balance across color classes is achieved or vertex-balance across color classes is
no longer available, i.e., there are no more permissible re-colorings for any vertex belonging in an

over-full color class.

Since VFF is the balanced graph coloring counterpart of IterSolve, we report similar key obser-
vations for them. First, VFF detects and resolves the coloring conflicts lazily. Specifically, a coloring
inconsistency in a vertex v might appear in step (i), while it is detected in step (ii), i.e., after first iter-
ating over all the remaining vertices of over-full color classes. Moreover, VFF resolves the coloring
inconsistency in a vertex v in step (i) (re-coloring), i.e., after first detecting if coloring inconsistencies
exist in all the remaining recently re-colored vertices (in step (ii) of the previous iteration). Thus, VFF
incurs high data access costs due to accessing multiple conflicted vertices in the runtime through the
last levels of the memory hierarchy of commodity platforms. Second, the iterative process of resolv-
ing coloring conflicts may introduce new conflicts, and thus, VFF might need additional iterations to
fix them. This scenario may happen when adjacent vertices are assigned to the same thread and incur
coloring inconsistencies, they will be assigned and processed by different parallel threads in the next
iteration. Note that the more iterations are needed, the more lazy traversals on the conflicted vertices

of the graph are performed, which might significantly degrade performance.

The Recoloring Algorithm

Figure presents the re-coloring balanced graph coloring algorithm proposed by Lu et al. [27]],
henceforth referred to as Recoloring. Recoloring is similar to the VFF (Figure [3.6) and IterSolve (Fig-
ure[3.3) schemes. The key idea of this algorithm is that after performing an initial graph coloring with
C colors, all the vertices of the graph are re-colored, having an additional condition on the color se-
lection in order to achieve better vertex balance across color classes compared to that produced by
the initial graph coloring. Specifically, Recoloring leverages the perfect balance b = V/C known
from the initial graph coloring, and keeps track the sizes of the color classes during the execution in
order to improve vertex balance across color classes as follows: each vertex is re-colored using the

minimum permissible color £ such that the size of the color class £ is less than b.

Similarly to IterSolve and VFF, Recoloring (Figure[3.7) consists of two repeated steps: (i) multiple
parallel threads iterate over all the vertices of the graph and speculatively re-color them with a new
permissible color k, that satisfies the condition that the size of the color class & is less than b (lines 12-
17), and (ii) multiple parallel threads iterate over the recently re-colored vertices and detect coloring
inconsistencies that appeared in the (i) step (lines 18-25). The steps (i) and (ii) are iteratively repeated
until there are no coloring inconsistencies in any adjacent vertices of the graph. In contrast to VFF
and CLU, Recoloring does not guarantee that the graph color balance achieved uses the same number
of colors with the initial graph coloring. To avoid producing a large number of color classes, the
Recoloring scheme [27]] (Figure re-colors the vertices of the graph with the following order:

assuming that the vertices of the graph are ordered such that the vertices of the same color class are

76 Chapter 3

listed consecutively (line 6), Recoloring iterates over the vertex sets of the color classes in the reverse
order compared to that produced in the initial graph coloring, i.e., starting from the vertices assigned
to the color class with the largest index (See line 8). The rationale behind this heuristic is that the
vertices that are "difficult” to color, i.e., in the initial graph coloring they are assigned to a color class
with large index, will be processed early, thus aiming to produce a small number of color classes. For

more details, we refer the reader to [27].

1 Input: Graph G=(V,E)

2 Let N(v) be the adjacent vertices of the vertex v
3 Obtain an initial coloring on G

4 Let C be the number of colors produced

5 Let b=V/C be the perfect balance

6 Let K(j) be the set of vertices u with color j

7 // K(j) ={u € V,u.color = j}

8 Construct the order set W ={K(C),K(C-1),..,K(1),K(0)}
9 Initialize the sizes of the C color classes to 0
10 Q=W

11 while Q #0 // Re-Color the Whole Graph

12 // Speculative Coloring - Step (i)

13 for each v€ (@ do in parallel

14 Let k be the minimum color that is permissible to the vertex v such that
the size of the color class k is less than b // Balanced Color
Classes

15 v.color =k

16 Atomically increase the size of the color class k

17 _barrier__

18 // Detection of Coloring Inconsistencies - Step (ii)
19 R = 0 // Set of Conflicted Vertices
20 for each v € @ do in parallel

21 for each uwe N(v) do

22 if ((v.color == u.color) && (v < w))

23 Atomically decrease the size of the color class w.color
24 R=RUwv

25 _barrier__

26 Q=R

Figure 3.7: The Recoloring algorithm.

In Recoloring, we make three key observations. First, Recoloring traverses the whole graph, i.e.,
it re-colors all the vertices of the graph, while CLU and VFF re-color only a subset of the vertices
of over-full color classes. As a result, Recoloring performs a much larger number of computations
and memory accesses compared to VFF and CLU. Second, similarly to IterSolve and VFF, Recoloring
detects and resolves coloring inconsistencies with a lazy approach, thus incurring high data access
costs. Recoloring may also introduce new conflicts, thus resulting in additional iterations to fix them.
Third, even though Recoloring employs a different vertex ordering heuristic to re-color vertices com-
pared to that used in the initial graph coloring (vertices are colored with the order they appear in
the input graph), there is no guarantee on the number of color classes that will be produced. As we
demonstrate in our evaluation (Section [3.6.2), Recoloring might significantly increase the number of

color classes produced compared to that produced in the initial graph coloring.

Chapter 3 77

3.3 ColorTM: Overview

Our proposed algorithmic design is a high-performance graph coloring algorithm for multicore plat-
forms. ColorTM provides low synchronization and data access costs by relying on two key techniques,

that we describe in detail next.

3.3.1 Speculative Computation and Synchronization

As already discussed, the graph coloring kernel implies that the reads to the colors of the adjacent
vertices of a vertex v have to be executed atomically with the write-update to the color of the vertex v.
Figure 3.8 presents a straightforward parallelization scheme of the graph coloring problem. A naive
parallelization approach would be to distributed the vertices of the graph across parallel threads, and
for each vertex to include within a critical section the whole block of code that computes and assigns
a permissible color to that vertex. However, this approach results in large critical sections with large
data access footprints and long duration, and significantly limits the amount of parallelism and the

scalability to a large number of threads.

1 Input: Graph G=(V,E)

2 for each veV do in parallel

3 // Atomic Coloring Step (i)

begin_critical_section

Compute and assign the minimum legal color to the vertex v
end_critical_section

AN U1 W

Figure 3.8: A Naive Approach.

We observe that it is not necessary to include inside the critical section (i) the computations per-
formed to find a permissible color for a vertex v, and (ii) the accesses to all the adjacent vertices
of the vertex v. Figure [3.9 presents an overview of ColorTM. For each vertex v, we design ColorTM
to implement a speculative computation scheme through two sub-steps: (i) speculatively compute a
permissible color £ for the vertex v (line 5) without using synchronization and track the set of critical
adjacent vertices (line 6), i.e., a subset of v’s adjacent vertices that can cause coloring inconsistencies
with the vertex v (See Section for more details), and (ii) execute a critical section (using syn-
chronization) that validates the speculative color £ computed in step (i) over the colors of the critical
adjacent vertices (lines 8-9) and assigns the color £ to the vertex v, if the validation succeeds (lines
10-14). With the proposed speculative computation scheme, we provide small critical sections, i.e.,
having small data access footprints and short duration, thus achieving high amount of parallelism
and high scalability to a large number of threads.

In addition, we leverage Hardware Transactional Memory (HTM) to implement synchronization
on critical sections (lines 7, 12, and 14 of Figure . HTM enables a speculative synchronization
mechanism: multiple critical sections of parallel threads are executed concurrently with an optimistic
approach that they will not cause any data inconsistency, even though their data access sets might

overlap. In contrast, fine-grained locking with software-based locks (e.g., provided by the pthread

78 Chapter 3

1 Input: Graph G=(V,E)

2 for each veV do in parallel

RETRY:

// Speculative Computation

Compute a speculative minimum color k£ that is permissible to the vertex v
Keep track the critical adjacent vertices of the vertex v

begin_critical _section

// Validate Coloring

9 Compare k£ with the colors of the critical adjacent vertices

10 if (no coloring conflict)

11 v.color = k

12 end critical_section

13 else

14 end_critical_section

15 goto RETRY // Eager Resolution

Figure 3.9: ColorTM: Overview.

library) constitutes a more conservative synchronization approach: multiple critical sections of par-
allel threads are executed concurrently, only if their data access sets do not overlap. Therefore, HTM
can enable a higher number of critical sections to be executed in parallel compared to that enabled
with the fine-grained locking scheme. We provide more details in Section[3.4.1] With the speculative
synchronization approach of HTM, ColorTM further minimizes synchronization costs and provides

high amount of parallelism.

3.3.2 Eager Coloring Conflict Detection and Resolution

We design ColorTM to detect and resolve coloring inconsistencies eagerly, i.e., immediately detecting
and resolving coloring inconsistencies at the time that the coloring conflicts appear. This way, the
conflicted vertices are accessed multiple times, however within a short time during runtime. There-
fore, application data corresponding to conflicted vertices can remain and be located in the first levels
of the memory hierarchy of commodity platforms (i.e., in the low-cost cache memories), thus enabling
ColorTM to improve performance by achieving low data access costs.

In Figure parallel threads concurrently compute speculative colors for multiple vertices of
the graph (lines 4-6), and at that time coloring inconsistencies may appear. Then, parallel threads
immediately detect possible coloring conflict inconsistencies for the current vertices using synchro-
nization (lines 7-14). This way, parallel threads detect conflicts by accessing application data with low
access latencies, since the data accessed in lines 7-14 has just been accessed within a short time, i.e.,
in lines 4-6. Next, if coloring conflicts arise (line 13), parallel threads immediately resolve the coloring
conflicts by directly retrying to find new colors for the current vertices (goto RETRY inline 15)
(without proceeding to process new vertices). This way, parallel threads resolve conflict inconsisten-
cies by accessing application data with low access latencies, since the data accessed in lines 4-6 after
the execution of goto RETRY has just been accessed within a short time, i.e., in lines 7-14 of the
previous iteration.

In ColorTM, we highlight two important key design choices. First, ColorTM executes only one sin-
gle parallel step (line 2). In contrast to prior state-of-the-art parallel graph coloring algorithms [27,

Chapter 3 79

31-34], ColorTM completely avoids barrier synchronization among parallel threads: multiple parallel
threads repeatedly iterate over each vertex of the graph until a valid coloring is found. By completely
avoiding barrier synchronization, ColorTM can provide high scability. Second, ColorTM does not per-
form re-colorings to vertices: once a vertex is assigned a permissible color, it will not be re-colored
again during the runtime. This way, colored vertices will not introduce coloring inconsistencies with
vertices that will be processed next. Prior lazy iterative graph coloring schemes including IterSolve,
IterSolveR, VFF and Recoloring do not use data synchronization when they assign permissible col-
ors to vertices. This way, many vertices are re-colored multiple times with different colors during
runtime, and thus new additional coloring inconsistencies might be introduced due to re-colorings.
Instead, ColorTM employs HTM synchronization (lines 7, 12 and 14 of Figure[3.9) when it assigns per-
missible colors to vertices (line 11 of Figure [3.9). This way, vertices are assigned only one final color

during the runtime, thus avoiding introducing new coloring inconsistencies due to re-colorings.

3.4 ColorTM: Detailed Design

ColorTM [1] is a high-performance graph coloring algorithm that leverages HTM to implement syn-
chronization among parallel threads, and performs speculative computations outside the critical sec-
tion in order to minimize the memory footprint and computations executed inside the critical sec-
tion. In the section, we describe the detailed design and correctness of ColorTM. We also extend our
proposed design to introduce a new balanced graph coloring algorithm, named BalColorTM, which

evenly distributes the vertices of the graph across color classes.

3.4.1 Speculative Synchronization via HTM

ColorTM leverages HTM to implement synchronization among parallel threads instead of using fine-
grained locking. As already discussed, HTM is a more optimistic synchronization approach and can
provide higher levels of parallelism compared to the fine-grained locking scheme. Specifically, mul-
tiple critical sections with overlapped data access sets can be executed in parallel with HTM, while
they need to be executed sequentially with fine-grained locking.

Figure provides an example of the aforementioned scenario in graph coloring. Consider the
scenario where thread 7'1 attempts to assign a color to the vertex v, and thread 72 attempts to assign
a color to the vertex x. Thread 7T'1 needs to atomically read the colors of the adjacent vertices of the
vertex v, i.e., u, r, z vertices, and write the corresponding color to the vertex v. Similarly, Thread 72
needs to atomically read the colors of the adjacent vertices of the vertex z, i.e., u vertex, and write
the corresponding color to the vertex x. With HTM (Figure[3.10p), 7'1’s and 7'2’s transactions can be
executed and committed concurrently: neither the write-set of 7'1’s transaction does not conflict with
the read-set of 7'2’s transaction, nor the write-set of 17'2’s transaction does not conflict with the read-
set of T'1’s transaction. Therefore, even though 7'1’s and 7'2’s critical sections have overlapped data
access sets, i.e., both of them include the color of the vertex u in their read-sets, they can be executed

concurrently with HTM. In contrast, with fine-grained locking, 7'1’s and 7'2’s critical sections are

80 Chapter 3

executed sequentially (Figure [3.10b): threads 7’1 and T2 compete to acquire the same lock, i.e., the
lock associated with the vertex u, in order to execute their critical sections. Thus, only one of threads
T'1 and T2 will acquire the lock, and will proceed. Given that 7'1’s and 72’s critical sections have
overlapped data access sets, i.e., both of them include the color of the vertex u in their read-sets, they
will be executed sequentially when using the fine-grained locking scheme for synchronization. As a
result, we conclude that in graph coloring HTM can provide higher levels of parallelism compared to

fine-grained locking.

b) Fine-Grained Locking

T1
6y @°
o9

g Xg

Thread T1: read-set={u,r, z} write-set={v}

Thread 72: read-set={u} write-set={x}
Figure 3.10: An example execution scenario in which threads 7'1 and 7'2 attempt to concurrently find
colors for the vertices v and z, respectively, using a) HTM and b) fine-grained locking for synchro-

nization. The white circles represent uncolored vertices, and the colorful circles represent vertices
that have already obtained a color.

To this end, ColorTM employs HTM to deal with race conditions that arise when parallel threads
concurrently process adjacent vertices. HTM can detect and resolve coloring inconsistencies among
parallel threads as follows:

— HTM can detect coloring conflicts: HTM detects coloring conflicts that arise due to crossing
edges. For a vertex v to be colored, we enclose within the transaction (i) the memory location that
stores the color of the current vertex v (the transaction’s write-set), and (ii) the memory locations
that store the colors of the critical adjacent vertices of the vertex v (the transaction’s read-set).
When parallel threads attempt to concurrently update-write the colors of adjacent vertices us-
ing different transactions, the HTM mechanism detects read-write conflicts across the running
transactions: a running transaction attempts to write the read-set of another running transaction.
Figure[3.11|provides an example scenario on how HTM detects coloring inconsistencies among two
parallel threads. When the thread 7'1 attempts to color the vertex v using HTM, the correspond-
ing running transaction includes the memory location of the color of the vertex v in its write-set,
and the memory locations of the colors of the v’s adjacent vertices, i.e., u, r and z vertices, in its
read-set. Similarly, when the thread 72 attempts to color the vertex u using HTM, the correspond-
ing running transaction includes the memory location of the color of the vertex w in its write-set,
and the memory locations of the colors of the u’s adjacent vertices, i.e., v and z vertices, in its

read-set. When T'1's and T'2's transactions are executed concurrently, HTM detects a read-write

Chapter 3 81

conflict either on the color of the vertex v or the color of the vertex u: either 7'1’s transaction at-
tempts to write the read-set of 7'2s transaction or 72’s transaction attempts to write the read-set
of T'1's transaction. Therefore, one of the two running transactions will be aborted by the HTM

mechanism, and the other one will be committed.

Thread T1:
read-set={u, r, z}
write-set={v}

Thread 72:
read-set={v, x}
write-set={u}

Figure 3.11: An example execution scenario in which threads 71 and 72 attempt to concurrently
update the colors of the vertices v and u respectively, using two different transactions, and the HTM
mechanism detects read-write conflicts to their data sets. The white circles represent uncolored ver-
tices, and the colorful circles represent vertices that have already obtained a color.

- HTM can resolve coloring conflicts: In case of n conflicting running transactions (read-write
conflicts explained in Figure[3.11)), the HTM mechanism aborts n— 1 running transactions and com-
mits only one of them. In prior graph coloring schemes such as SeqSolve (line 11 of Figure [3.2),
IterSolve (line 13 of Figure [3.3), VFF (line 23 of Figure and Recoloring (line 22 of Figure [3.7),
the programmer explicitly defines a coloring conflict resolution policy among conflicted vertices
to guarantee forward progress, i.e., the programmer explicitly defines which of the conflicted ver-
tices will be re-colored next. In contrast, in ColorTM when coloring conflicts arise among multiple
running transactions, the programmer does not need to explicitly define a conflict resolution pol-
icy: the HTM mechanism itself commits one of the multiple conflicted transactions and aborts the
remaining running transactions. Thus, the conflict resolution policy implemented in the under-
lying hardware mechanism of HTM determines which vertices will continue to be processed for
coloring.

However, currently available HTM systems [316,317,490,491] are best-effort HTM implementa-
tions that do not guarantee forward progress: a transaction may always fail to commit and thus, a
non-transactional execution path (fallback path) needs to be implemented. The most common fall-
back path is to implement a coarse-grained locking solution: each transaction can be retried up to a
predefined number of times (pre-determined threshold), and if it exceeds this threshold, it fall backs
to the acquisition of global lock, which allows only one single thread to execute its critical section.
To implement this, the global lock is added to the transactions’ read sets: inside the transaction the
thread always reads the value of the global lock variable. During the multithreaded execution, when
the transaction of a parallel thread exceeds the predefined threshold of retries, the parallel thread

acquires the global lock by writing to the value of the global lock variable, and then the concurrent

82 Chapter 3

running transactions of the remaining threads are aborted (read-write conflict) and wait until the

global lock is released.

3.4.2 Critical Adjacent Vertices

ColorTM implements a speculative computation approach to achieve high performance. Specifically,
for each vertex v, all necessary computations to find a permissible color k are performed outside the
critical section (line 5 in Figure[3.9) such that avoid unnecessary computations inside the critical sec-
tions. Within the critical section, ColorTM only validates the speculative color % (line 9 in Figure
by comparing it with the colors of the adjacent vertices of vertex v. However, the speculative color
k for a vertex v does not need to be validated with the colors of all the adjacent vertices of vertex
v: we observe that some adjacent vertices can be omitted from the validation process of the critical
section, because they do not cause any coloring inconsistency with the vertex v. Specifically, we can
omit from the validation step performed within the critical section the following adjacent vertices of
vertex v:

1. The adjacent vertices that are assigned to be processed by the same thread with the vertex
v. Given that the vertices of the graph are distributed across multiple threads, coloring conflicts
cannot arise between adjacent vertices that are assigned to the same parallel thread. Therefore, we
omit from the validation step of the critical section the adjacent vertices assigned to the same thread
as the current vertex v.

2. The adjacent vertices that have already obtained a color. As already explained, ColorTM does
not perform re-colorings to the vertices of the graph: once a vertex is assigned a permissible color
within the critical section (using synchronization), it will not be re-colored again during runtime.
Multiple parallel threads repeatedly iterate over a vertex until a valid coloring is found, which is
assigned to it using data synchronization, and then proceed to the remaining vertices. Therefore, in
ColorTM coloring conflicts do not arise between adjacent vertices that have already obtained a color:
the colors assigned to adjacent vertices are taken into consideration in the computations performed
outside the critical section (line 5 in Figure to find a speculative color for the current vertex, and
will not be modified when the critical section is executed (lines 7-15 in Figure , since ColorTM
does not perform re-colorings. Therefore, adjacent vertices of a vertex v that have already obtained a
color when the speculative coloring computation step (line 5 in Figure is executed, do not cause
any coloring inconsistency when critical section is executed (lines 7-15 in Figure[3.9). Hence, we can
safely omit from the validation step of the critical section the adjacent vertices that have already been
assigned a color.

Figure presents an example execution scenario of a graph partitioned across two parallel
threads 7'1 and 72. In Figure the white vertices represent uncolored vertices and the color-
ful vertices represent vertices that have already obtained a color during runtime. In this scenario,
threads 7'1 and 72 attempt to color the vertices v and u, respectively. According to our described
optimizations, the adjacent vertices that need to be validated inside the critical sections (via HTM) of

the vertices v and u are only the vertices u and v, respectively.

Chapter 3 83

Thread T1:
current-vertex={v}
critical-adj={u}

Thread 72:
current-vertex={u}
critical-adj={v}

Figure 3.12: An example execution scenario in which the graph is partitioned across two parallel
threads. The white circles represent uncolored vertices, and the colorful circles represent vertices
that have already obtained a color. When the threads 71 and 72 attempt to color the vertices v
and u, respectively, the critical adjacent vertices that need to be validated within the critical section
(HTM) are only the vertices u and v, respectively.

Overall, for the current vertex v to be colored, the necessary adjacent vertices that need to be
validated inside the critical section, referred to as critical adjacent vertices, are the uncolored adja-
cent vertices assigned to different parallel threads compared to the thread to which the vertex v is
assigned to. By accessing inside the critical section only a few data needed to ensure correctness,
ColorTM provides short critical sections and small transaction footprints, and achieves high levels of
parallelism and low synchronization costs, i.e., low abort ratio in hardware transactions of HTM (See
Figure [3.18). Note that having large transactions footprints in HTM transactions can cause three im-
portant problems: (i) if the transaction read- and write-sets are large, the available hardware buffers
of HTM may be oversubscribed (hardware overflow), and in that case the HTM mechanism will abort
the running transactions due to capacity aborts, (ii) if the duration of a running transaction is long
(e.g., due to expensive data accesses), the running transactions may be aborted due to a time interrupt
(when the duration of a transaction exceeds the time scheduling quantum, the OS scheduler sched-
ules out the software thread from the hardware thread and the transaction is aborted), and (iii) the
longer the transactions last and the larger their data sets are, the greater the probability that running

transactions are aborted due to (read-write) data conflicts among them.

3.4.3 Implementation Details

Figure presents ColorTM in detail. ColorTM distributes the vertices of the graph across multiple
threads, which color the vertices of the graph through one single parallel step (lines 4-29): multiple
parallel threads repeatedly iterate over each vertex of the graph until a valid coloring on each vertex
is performed.

For each vertex v, there are two sub-steps. In the first sub-step (lines 6-13), the parallel thread
keeps track (i) the forbidden set of colors assigned to the adjacent vertices of the vertex v (line 10),
and (ii) the critical adjacent vertices of the vertex v (lines 11-12), which are the uncolored adjacent
vertices assigned to different parallel threads (line 11), and then computes a speculative color k that is

permissible for the vertex v using the compute_speculative_color () function (line 13). In

84 Chapter 3

1 Input: Graph G=(V,E)

2 Let N(v) be the adjacent vertices of the vertex v
3 Let tid be the unique id of each parallel thread
4 for each v €V do in parallel

5 RETRY:

6 // Speculative Computation

7 R =0 // Track Forbidden Colors

8 C =0 // Track Critical Adjacent Vertices

9 for each we N(v) do

10 R = R U u.color

11 if ((hasColor(u) == false) && (get_threadID(u) != tid))

12 C =CUu // Critical Adjacent Vertices Are the Uncolored Vertices Assigned to

Another Thread

13 k = compute_speculative_color(R) // Compute a Speculative Color k for the Vertex
v

14 // Validate Coloring

15 if (C == () // Skip the Validation Step, If There Are No Critical Adjacent Vertices

16 v.color = k

17 else

18 begin_transaction

19 bool valid = true

20 for each we€ C do // Validate the Colors of the Critical Adjacent Vertices Over the
Speculative Color

21 if (u.color == k)

22 valid = false

23 break

24 if (valid == true) // If the Validation Succeeded, Assign the Speculative Color to
the Vertex v

25 v.color = k

26 end_transaction

27 else // If the Validation Failed, Immediately Retry to Find a New Color for the
Vertex v

28 end_transaction

29 goto RETRY // Eager Resolution

Figure 3.13: The ColorTM algorithm.

the second sub-step (lines 14-29), the parallel thread validates and assigns (if allowed) the speculative
color k to the vertex v using data synchronization via HTM (lines 18-29). Specifically, the colors of the
critical adjacent vertices are compared to the speculative color k£ within a hardware transaction (lines
20-23) to ensure that the color £ is still permissible to be assigned to the vertex v. If the validation
succeeds (line 24), the color £ is assigned to the vertex v within the same transaction (line 25) to
ensure correctness: recall that the reads on the colors of the critical adjacent vertices need to be
executed atomically with the write-update on the color of the vertex v. Instead, if the validation step
fails due to a coloring inconsistency appearing during runtime (line 27), the parallel thread repeatedly
and eagerly retries to find a new permissible color for the current vertex v (line 29). Note that if there
are no critical adjacent vertices to be validated (line 15), the speculative color £ is directly assigned

to the vertex v without using synchronization (line 16).

Note that in the second sub-step (lines 14-29), ColorTM does not check if the colors of the critical
adjacent vertices have not been modified since the first sub-step (lines 6-13). Instead, the validation of

the second sub-step only checks that the colors of the critical adjacent vertices are different from the

Chapter 3 85

speculative color £ computed in the first sub-step (line 13). In the meantime, different parallel threads
may have just assigned new colors to critical adjacent vertices, which however are different from the
color k, and thus causing no coloring inconsistencies. In that scenario, the validation of the second
sub-step succeeds. This way, ColorTM provides high levels of parallelism: multiple parallel threads
that have just assigned different colors than the color £ to critical adjacent vertices of the vertex v will
not cause any validation failure in the critical section of the vertex v, and the corresponding running

transaction will be safely committed.

3.4.4 Progress and Correctness

We clarify in detail how ColorTM resolves the race conditions that may arise during runtime. There are
two race conditions that may cause coloring inconsistencies in multithreaded executions. First, while
a parallel thread computes a speculative color k for the vertex v (lines 9-13 of Figure [3.13), different
parallel threads may have just assigned the color £ to one or more adjacent vertices of the vertex v. In
that scenario, the validation step of lines 20-23 of Figure [3.13| fails (line 22, 27), since the speculative
color k has been assigned to at least one critical adjacent vertex (line 21). Then, the corresponding
parallel thread will retry to find a new permissible color for the vertex v (line 29). Second, a race
condition arises when n parallel threads (assuming n ; 1) attempt to write-update the same color k
to n adjacent vertices (fully connected adjacent vertices) within n different running transactions. In
that scenario, the HTM mechanism detects read-write data conflicts on running transactions, because
one (or more) running transaction attempts to write to the read-sets of another running transactions.
Recall that the colors of the critical adjacent vertices are included in the read-set of each running
transaction (lines 21 of Figure . Then, the HTM mechanism aborts n — 1 running transactions,
and commits only one of them. When the aborted n — 1 transactions retry (each transaction can retry
up to a predefined number of times), the validation step of lines 20-23 fails (lines 27 of Figure [3.13),
since at that time the n — 1 parallel threads observe that there is one critical adjacent vertex that has
just been assigned to the color k (the committed transaction). Afterwards, since the validation failed,
the n — 1 parallel threads will retry to find new permissible colors for their current vertices (lines
27-29 of Figure[3.13).

Finally, we clarify that ColorTM provides forward progress and eventually terminates: each par-
allel thread retries to find a new permissible color for a current vertex v (line 29 of Figure[3.13) up to
a limited number of retries. Specifically, a parallel thread retries to find a new color for a vertex v,
when the validation step of lines 20-23 of Figure [3.13|fails. However, for each vertex v the validation
step can fail up to a bounded number of times: the validation step fails when one (or more) critical
adjacent vertex has been assigned to the same color £’ with the speculative color k£ computed for
the vertex v. Therefore, in the worst case, the validation step might fail up to deg(v) times, where
deg(v) is the adjacency degree of the vertex v. When all v’s adjacent vertices have obtained a color,
there are no critical adjacent vertices to be validated (line 15 of Figure[3.13), and thus, the speculative
color k is directly assigned to the vertex v (line 16 of Figure [3.13), and the validation step is omitted.

As a result, each parallel thread retries to find a color for each vertex v of the graph at most deg(v)

86

Chapter 3

times. However, in our evaluation, we find that the validation step fails only for a few times: across

all our evaluated large real-world graphs (Table 3.1) and using a large number of parallel threads (up

to 56 threads) the validation step failures are less than 0.01%. Overall, we conclude that ColorTM cor-

rectly handles all the race conditions that may arise in multithreaded executions of the graph coloring

kernel, and effectively terminates with a valid coloring.

19
20

21
22
23
24
25
26
27
28
29

30
31
32
33

34
35
36
37
38

39
40
41
42

Input: Graph G=(V,E)
Let N(v) be the adjacent vertices of the vertex v
Obtain an initial coloring on G
Let C be the number of colors produced
Let b=V/C be the perfect balance
Let (Q be the set of vertices of the over-full color classes
for each v € (@ do in parallel
Let ¢ be the current color of the vertex w
if (the size of the color class ¢ <= b)
continue// Color Class is Balanced
RETRY:
// Speculative Computation
R = 0 // Track Forbidden Colors
C = ¢ // Track Critical Adjacent Vertices
for each ue€ N(v) do
R = R U wu.color
if ((isOverFull(u.color) == true) && (get_threadID(u) != tid))
C =CUwu // Critical Adjacent Vertices Are the Vertices of Over-Full Color
Classes That Are Assigned to Another Thread
k = compute_speculative_color (R)
Let k be the index of the minimum under-full color class that is permissible
to the vertex v
if (k exists) // Validate Coloring
if (C == 0) // Skip the Validation Step, If There Are No Critical Adjacent Vertices
v.color = k
Atomically decrease the size of the color class c
Atomically increase the size of the color class k
else
begin_transaction
bool valid = true
for each uw € C do // Validate the Colors of the Critical Adjacent Vertices Over
the Speculative Color

if (u.color == k)
valid = false
break
if (valid == true) // If the Validation Succeeded, Set the Speculative Color to

the Vertex v
v.color = k
end_transaction
Atomically decrease the size of the color class ¢
Atomically increase the size of the color class k
else // If the Validation Failed, Immediately Retry to Find a New Color for the
Vertex v

end_transaction
goto RETRY // Eager Resolution
else
continue

Figure 3.14: The BalColorTM algorithm.

Chapter 3 87

3.4.5 'The BalColorTM Algorithm

Figure[3.14presents the balanced counterpart of ColorTM, named as BalColorTM. Similarly to CLU and
VFF, in BalColorTM (i) only the vertices of the over-full color classes are considered for re-coloring,
i.e., to be moved from over-full to under-full color classes in order to achieve high vertex-balance
across color classes, and (ii) graph coloring balance is achieved without increasing the number of

color classes produced by the initial graph coloring (e.g., using ColorTM).
Similarly to ColorTM, BalColorTM (Figure has one single parallel step (lines 7-42): multiple

parallel threads repeatedly iterate over each vertex of the over-full color classes until either a valid
re-coloring to an under-full class is performed, or there is no permissible re-coloring for this vertex
to an under-full color class (line 42). For each vertex of an over-full color class ¢, there are two sub-
steps. In the first sub-step (lines 8-20), the parallel thread keeps track the forbidden set of colors
assigned to the adjacent vertices of the vertex v (line 16), and the set of the critical adjacent vertices
(lines 17-18) of the vertex v. In BalColorTM, note that the critical adjacent vertices of a vertex v (line
17) are the adjacent vertices that (i) belong to over-full color classes (recall that the vertices assigned
under-full color classes are not considered to be re-colored/moved, and thus they do not cause any
coloring inconsistency during runtime), and (ii) are assigned to different threads compared to the
parallel thread in which the vertex v is assigned to. Then, the parallel thread speculatively computes
a color k of an under-full color class that is permissible to be assigned to the vertex v (lines 19-20).
If a permissible color k exists (without increasing the number of color classes produced by the initial
graph coloring), the parallel thread attempts to assign the speculative color k to the vertex v in the
second sub-step (lines 21-42). If there is no permissible color k& of an under-full color class (line 41),
the parallel threads continue to process the next vertices (line 42). In the second sub-step, if there
are critical adjacent vertices that need to be validated, the parallel thread validates the speculative
color £ over the colors of the critical adjacent vertices within an HTM transaction (lines 27-39). If the
validation succeeds (line 33), the parallel thread moves the vertex v from the color class ¢ to the color
class k by re-coloring it (line 34), and atomically updates the sizes of the color classes c and k (lines 36-
37) accordingly. If the validation step fails due to a coloring inconsistency appearing during runtime
(line 38), the parallel thread eagerly retries to find a new permissible color of an under-full color class
for the vertex v (line 40). Finally, note that BalColorTM iterates over the vertices of each over-full
color class until that particular over-full class becomes balanced at a certain point in the execution
(lines 9-10), i.e., until the size of the particular color class becomes smaller or equal to b = V/C. Then,
the vertices belonging to that color class are no longer considered for re-coloring (line 10). Overall,
BalColorTM terminates when either vertex-balance across color classes is achieved or vertex-balance
across color classes is no longer available, i.e., there are no more permissible re-colorings for any

vertex belonging to an over-full color class.

Similarly to ColorTM, BalColorTM completely avoids barrier synchronization, since it includes only
one single parallel step, thus minimizing synchronization costs. Moreover, it also integrates an eager
approach to detect and resolve coloring conflicts appearing during runtime among parallel threads,

that concurrently move vertices from over-full to under-full color classes. With the eager color-

88 Chapter 3

ing policy, BalColorTM provides high performance by minimizing access latency costs to application
data. Finally, BalColorTM effectively implements short critical sections (short running transactions
with small transaction footprints) by (i) speculatively performing the computations to find permis-
sible colors for the vertices of the over-full color classes outside the critical section (lines 9-13), and
(ii) accessing inside the critical sections only the necessary data to ensure correctness, i.e., for each
vertex v BalColorTM only accesses the colors of a small subset of v’s adjacent vertices (critical adja-
cent vertices). Via short running transactions, BalColorTM achieves low synchronization costs and

provides high amount of parallelism.

3.5 Evaluation Methodology

We conduct our evaluation using a 2-socket Intel Haswell server with an Intel Xeon E5-2697 v3 pro-
cessor with 28 physical cores and 56 hardware threads. The processor runs at 2.6 GHz and each
physical core has its own L1 and L2 caches of sizes 32 KB and 256 KB, respectively. Each socket
includes a shared 35 MB L3 cache. We statically pin each software thread to a hardware thread,
and enable hyperthreading only on 56-thread executions, unless otherwise stated. In our evaluation
(Section [3.6), the numbers reported are averaged across 5 runs of each experiment.

Table[3.1]shows the characteristics of the large real-world graphs used in our evaluation. We select
18 representative graphs from the Suite Matrix Collection that vary in vertex and graph degrees, and
are used in different application domains. For each graph, Table 3.1 presents the number of vertices
(#vertices), the number of edges (#edges), the maximum (deg,,.,) degree, the average (deg,,,) degree

and the standard deviation of the vertices’ degrees (degs:q), and the last column of this table shows

degstd)

the ratio of the standard deviation of the vertices’ degrees to the average degree (doo
avg

3.6 Evaluation

This section evaluates the proposed ColorTM and BalColorTM algorithms. First, we compare the
coloring quality and the performance over prior state-of-the-art graph coloring algorithms, as well
as the execution behavior of ColorTM (Section[3.6.1). Second, we compare the color balancing quality
and the performance of BalColorTM over prior state-of-the-art balanced graph coloring algorithms,
as well as the execution behavior of BalColorTM (Section . Finally, we evaluate the performance
of Community Detection [338] by parallelizing it using ColorTM and BalColorTM (Section [3.6.3) via

chromatic scheduling.

3.6.1 Analysis of Parallel Graph Coloring Algorithms

We compare the following parallel graph coloring implementations:
+ The sequential Greedy algorithm presented in Figure
+ The SeqSolve algorithm presented in Figure
+ The IterSolve algorithm presented in Figure
+ The IterSolveR algorithm presented in Figure

Chapter 3 89
Graph Name #Vertices #Edges | degmax | degave | degsia ge%:f;
Queen 4147 (qun) 4147110 | 329499284 81 79.45 6.34 0.080
Geo_1438 (geo) 1437960 63156690 57 43.92 4.39 0.100
Flan_1565 (fln) 1564794 | 117406044 81 75.03 11.43 0.152
Bump 2911 (bum) 2911419 | 127729899 195 43.87 6.96 0.159
Serena (ser) 1391349 64531701 249 46.38 9.24 0.199
delaunay_n24 (del) 16777216 | 100663202 26 5.99 1.34 0.222
rgg_n_2_23_s0 (rgg) 8388608 | 127002786 40 | 15.14 389 | 0.257
kmer_A2a (kmr) 170728175 | 360585172 40 2.11 0.57 0.267
cagel5 (cag) 5154859 99199551 47 19.24 5.73 0.298
road_usa (usa) 23947347 57708624 9 2.41 0.93 0.386
dielFilterV3real (dIf) 1102824 89306020 270 80.98 36.56 0.451
audikw_1 (aud) 943695 77651847 345 82.29 42.44 0.516
vas_stokes_2M (vas) 2146677 65129037 637 30.34 37.18 1.226
stokes (stk) 11449533 | 349321980 720 30.51 41.44 1.358
uk-2002 (uk) 18520486 | 298113762 2450 16.10 27.53 1.710
soc-LiveJournall (soc) 4847571 68993773 20293 14.23 36.08 2.535
arabic-2005 (arb) 22744080 | 639999458 9905 28.14 78.84 2.802
FullChip (fch) 2987012 26621990 | 2312481 8.91 | 1806.80 | 202.725

Table 3.1: Large Real-World Graph Dataset.

« A variant of our proposed algorithm (Figure [3.13) that uses fine-grained locking instead of

HTM, henceforth referred to as ColorLock. Specifically, each vertex of the graph is associated
with a software-based lock. In the beginning of the critical section (line 18 in Figure[3.13), paral-

lel threads acquire the corresponding locks of both the current vertex v and the critical adjacent
vertices of the vertex v. Then, when the critical section ends (lines 26 and 28 in Figure [3.13),

parallel threads release the acquired locks. To avoid deadlocks, we impose a global order when

acquiring/releasing locks based on the vertices’ id: parallel threads acquire/release locks of

multiple vertices starting from the lock associated with the vertex with the smallest vertex id,

iterating via an increasing order of the vertices’ ids, and finishing to the lock associated with

the vertex with the highest vertex id.

+ Our proposed ColorTM algorithm (Figure [3.13) that leverages HTM. Each transaction can retry

up to 50 times, before resorting to a non-transactional fallback path. The non-transactional

path is a coarse-grained locking solution for the critical section (lines 18-28 in Figure [3.13).

For a fair comparison, in all graph coloring schemes we color the vertices in the order they appear in

the input graph representation (first-fit ordering heuristic [[35]]).

Analysis of the Coloring Quality

Table compares the coloring quality of all parallel graph coloring implementations in single-

threaded and multithreaded executions.

90 Chapter 3

Coloring 1 14 28 56
Scheme thread | threads | threads | threads
Greedy 42.58 - - -

SeqSolve 42.58 42.34 42.33 42.18
IterSolve 42.58 44.05 43.94 44.04
IterSolveR 42.58 43.61 43.88 44.58
ColorLock 42.58 45.75 45.67 46.14
ColorTM 42.58 46.20 45.77 46.28

Table 3.2: The geometric mean on the number of colors produced across all large real-world graphs
(lower is better) for each parallel graph coloring implementation using one core (1 thread), all cores
of one socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware thread
capacity of our machine with hyperthreading enabled (56 threads).

We make two key observations. First, there is low variability on the number of colors used across
the different graph coloring schemes. The parallel graph coloring schemes provide similar graph
coloring quality, because the number of colors produced is primarily determined by the order in which
the vertices are colored [35,[36]. In this work, we use the first-fit ordering heuristic in all schemes,
i.e., coloring the vertices in the order they appear in the input graph representation, and we leave the
experimentation of other ordering heuristics for future work. Second, we find that in most schemes
the coloring quality becomes slightly worse as the number of threads increases. As the number of
threads increases, the number of coloring conflicts that arise during runtime typically increases, and
thus parallel threads might resolve coloring inconsistencies by introducing a few additional color
classes. The SeqSolve scheme does not typically increase the number of colors used in multithreaded
executions, because the coloring inconsistencies are resolved using one single thread. Overall, we
conclude that since all graph coloring schemes employ the same ordering heuristic, they provide

similar coloring quality.

Performance Comparison

Figure evaluates the scalability achieved by all parallel graph coloring implementations in our
large real-world graphs, when increasing the number of threads from 1 to 56, i.e., the maximum
available hardware thread capacity of our machine.

We draw three findings. First, ColorTM and ColorLock achieve the lowest execution time across
all schemes in single-threaded executions. Using one single thread, ColorTM and ColorLock on aver-
age outperform SeqSolve by 1.55x and 1.42 X, respectively, and they on average outperform IterSolve
by 1.17x and 1.06 X, respectively. With only one thread, ColorTM and ColorLock have identical ex-
ecutions to the sequential Greedy algorithm (Figure [3.1): thanks to the optimizations proposed in
Section [3.4.2] the list of critical adjacent vertices that need to be validated inside the critical section
is empty, and thus ColorTM and ColorLock completely eliminate using synchronization (either HTM
of fine-grained locking). Second, we find that IterSolveR exhibits the lowest scalability across all
schemes. IterSolveR merges two parallel for-loops into a single parallel for-loop in order to eliminate

one of the two barriers used in IterSolve. Even though IterSolveR reduces the barrier synchronization

Chapter 3 91

—e— SeqSolve —4+— |terSolve IterSolveR —*— ColorLock —¢— ColorTM
5 qun 5 0.6 geo Zo Fln
2 2.0 v 0.5 v 0.6
Es \ E o4 £ 05
. 0.4 i
c y c 0.3 S
6104 7= S :>‘\,. S 0.3
] N T——e—» |5 02 —~,— o 302 ——a—e
o 0.5 Y 0.1 [v] 0'1
2 0.0 2 0.0 2o
1 2 4 7 14 28 56 1 2 4 7 14 28 56 1 2 4 7 14 28 56
#Threads #Threads #Threads
bum ser del
= 1.0 Z 0.6 Z 2.5
Iy gos g 20
= - 0. =
S 0.6~ < 0.3 .>* g1
Rl ~© o— P~ = 1.0
S 0.4 S 0.2 e ¢ =
§ 0.2 § 0.1 E 0.5
0.0
WoO 2 7 12 28 56 %9 2 4 7 12 28 56 “%%% 2 4 7 14 28 56
#Threads #Threads #Threads
- rgg - kmr - cag
225 ¥ 20.0 z
o v 17.5 v 2.0
E 20 £ 15.0 E)
F 45 F 125 = 15
S S 10.0 S
,g 1.0 f_: 75 2 1.0 —_——
205 S 50 05
& 0.0 & 3(5; & 0.0
1 2 4 7 14 28 56 0734 14 28 56 Y1 2 4 7 14 28 56
#Threads #Threads #Threads
usa dlf aud
2 3.0 Z o7 =
[2.5 (/] 0:6 () 0.5
E 2.0 E 0.5 % E 0.4 .
F 9 = i
c 1.5 c 0.4 c 0.3
=} 2 0.3 —e—p |0 ——e
< 1.0 S 0.2 5 0.2
§ 0.5 § 0.1 E 0.1
W05 4 7 1 28 se " %05 12 28 56 “%%9 2 4 7 14 28 s6
#Threads #Threads #Threads
% 14 vas - stk %8 uk
@ 1. = =
212 e ¥
£ 1.0° E 2 E
Y T 20 T 2 >
S 0.6 g 15 83
S 0.4 35 1.0 35 >
g 02 gos — i
W00 54 7 14 28 56~ 7 14 28 56" 1 2 4 7 14 28 56
#Threads #Threads #Threads
socC i arb fch
= Z 14 206
2 20 el £ 05 a
F 15 [12 - F 04
2 1.0 S 6 £ 03
E % 02
g 0.5 § 2 $ 0.1
w w w

2 4 7 14 28 56 2 4 7 14 28 56 2 4 7 14 28 56
#Threads #Threads #Threads

-
-

Figure 3.15: Scalability achieved by all parallel graph coloring implementations in large real-world
graphs.

costs, it increases the load imbalance among parallel threads, thus causing significant performance
overheads. Third, we observe that the scalability of SeqSolve, IterSolve, and IterSolveR is highly af-
fected by the NUMA effect, i.e., the non-uniform memory access latencies to the application data. For

example, when increasing the number of threads from 7 to 14 (only one NUMA socket is used) the

92 Chapter 3

performance of SeqSolve, IterSolve, IterSolveR, ColorLock and ColorTM improves by 1.24x, 1.75X,
1.06 %, 1.62x and 1.65X, respectively, averaged across all large graphs. However, when increasing
the number of threads from 14 to 28, i.e., using both NUMA sockets of our machine, the performance
of SeqSolve and IterSolve only improves by 1.03x and 1.26 X, respectively, while the performance of
and IterSolveR decreases by 2.13x, averaged across all large graphs. In contrast, when increasing
the number of threads from 14 to 28, the performance of ColorLock and ColorTM significantly im-
proves by 1.77x and 1.97 X, respectively, averaged across all graphs. This is because our proposed
algorithmic design implemented in ColorLock and ColorTM leverages better the deep memory hier-
archy of commodity multicore platforms thanks to its eager conflict detection and resolution policy,
thus achieving lower data access costs. Overall, we conclude that our proposed algorithmic design
achieves the best scalability in modern multicore platforms.

Figure compares the speedup achieved by all schemes over the sequential Greedy scheme,

when varying the number of hardware threads used in all large real-world graphs.

El SeqSolve I IterSolve [IterSolveR I ColorLock El ColorTM
14 Threads

28 Threads
[~ %
=2
O
(]
(]
Q.
" ,li
o 2® O G oo 8 (o « @20 & o8 @ o ¢ b ® ™
20.0 56 Threads
17.5
= 1%.0
o 12.5
$ 100
& 5.0
2.5 i i i
o.o - 1 1 1 1 1 - - - - 1 H - 1 1 1 1 1 1 -

o 90 Qe ‘06‘ 2 a2 (0% « @® \,3 &N o8 @5 ¢ o 0 o® & o

Figure 3.16: Speedup achieved by all parallel graph coloring implementations over the sequential
Greedy scheme in large real-world graphs using all cores of one socket (14 threads), all cores of two
sockets (28 threads), and the maximum hardware thread capacity of our machine with hyperthreading
enabled (56 threads).

We make two key observations. First, all parallel graph coloring schemes achieve lower speedup
in very irregular graphs including the soc, arb and fch graphs, compared to all the remaining
real-world graphs. In very irregular graphs, the number of edges per vertex significantly vary across
vertices [7,/87,/134]: typically only a few vertices have a much larger number of edges over the vast
majority of the remaining vertices of the graph. Therefore, in irregular graphs parallel threads typ-

ically cause more coloring inconsistencies than regular graphs, which are resolved during runtime,

Chapter 3 93

increasing the execution time. Second, we find that ColorTM achieves significant performance im-
provements over all the prior state-of-the-art graph coloring schemes. ColorTM outperforms Seq-
Solve, IterSolve, and IterSolveR by 3.43x, 1.71x and 5.83x respectively, when using 14 threads, and
by 8.46x, 2.84x and 27.66x respectively, when using the maximum hardware thread capacity of our
machine (56 threads). This is because SeqSolve, IterSolve, and IterSolveR traverse all the vertices of
the graph at least twice, and employ a lazy conflict resolution policy, thus incurring high data access
costs. Instead, ColorTM traverses more than once only the conflicted vertices, and resolves coloring
inconsistencies with an eager approach, thus better leveraging the deep memory hierarchy of multi-
core platforms and reducing data access costs. In addition, ColorTM outperforms ColorLock by 1.34x
and 1.67 X when using 14 and 56 threads, respectively. As explained, HTM is a speculative hardware-
based synchronization mechanism, and thus ColorTM provides high performance improvements over
ColorLock thanks to significantly minimizing data access and synchronization costs. Note that in the
fine-grained locking approach of ColorLock, for each adjacent vertex accessed inside the critical sec-
tion, the parallel thread needs to acquire and release the corresponding software-based lock, thus
performing additional memory accesses in the memory hierarchy for accessing the lock variable.
Overall, we conclude that ColorTM significantly outperforms all prior state-of-the-art parallel graph
coloring algorithms across a wide variety of large real-world graphs.

To confirm the performance benefits of ColorTM across multiple computing platforms, we evalu-
ate all schemes on a 2-socket Intel Broadwell server with an Intel Xeon E5-2699 v4 processor at 2.2
GHz having 44 physical cores and 88 hardware threads. Figure[3.17/compares the speedup achieved by
all schemes over the sequential Greedy scheme in all large real-world graphs using 88 threads, i.e., the
maximum hardware thread capacity of the Intel Broadwell server. We find that ColorTM provides sig-
nificant performance benefits over prior state-of-the-art graph coloring algorithms, achieving 11.98 ¥,
4.33x and 22.06 x better performance over SeqSolve, IterSolve, and IterSolveR, respectively.

HEl SeqSolve I IterSolve [IterSolveR I ColorLock Il ColorTM
88 Threads

ouuouviown

Speedup

Q\)(\ ge° (\‘\ v\)\‘\ (,e‘ 63\ ‘Q *6\‘ (}Q \)3 6\& a\)é q@" c}y“ \)\" ¢,0<' 3‘“ ﬁ(:‘\ 0\‘\

Figure 3.17: Speedup achieved by all parallel graph coloring implementations over the sequential
Greedy scheme in large real-world graphs using the maximum hardware thread capacity of an Intel
Broadwell server with hyperthreading enabled (88 threads).

Analysis of ColorTM Execution

We further analyze the HTM-related execution behavior of our proposed ColorTM and BalColorTM
algorithms. Figure presents the abort ratio of ColorTM, i.e., the number of transactional aborts
divided by the number of attempted transactions, in all real-world graphs, as the number of threads
increases. In the 14-thread execution, we pin all thread on one single NUMA socket. In the 28-thread
execution, we pin threads on both NUMA sockets of our machine with hyperthreading disabled. In

94 Chapter 3

the (14+14)-thread execution, we pin all 28 threads on the same single socket with hyperthreading

enabled. In the 56-thread execution, we use the maximum hardware thread capacity of our machine.

[14 threads @ 28threads I 14+14 threads B 56 threads r. «

g. : < O

.9%’

2 3.

mc

@ 2.

té-

5 1

2-
Y~ - S L& > 6 A O A L D v ¥ ¥ v 0 X
S T F I LT FF&FTEPLES

Figure 3.18: Abort ratio exhibited by ColorTM in all large real-world graphs.

We make three key observations. First, we find that the abort ratio becomes high in real-world
graphs which have high maximum degree and high standard deviation of the vertices’ degrees, e.g.,
d1lf, aud, vas, stk, uk, soc and arb graphs. In graphs with high vertex degree, the transaction
data access footprint is large and parallel threads compete for the same adjacent vertices with a
high probability, thus causing aborts in HTM. Second, we observe that when using both sockets
of our machine, the transactional aborts in ColorTM significantly increase due to the NUMA effect.
Specifically, averaged across all graphs the (14+14)-thread execution of ColorTM exhibits 2.97 x lower
abort ratio compared to the 28-thread execution of ColorTM. Due to the NUMA effect, the memory
accesses to the application data are very expensive. As a result, the duration of the transactions
increases, thus increasing the probability of conflict aborts among running transactions (See more
details in the next experiment). Third, we observe that ColorTM exhibits a very low abort ratio.
ColorTM has only 1.08% abort ratio on average across all real-world graphs, when using the maximum
hardware thread capacity (56 threads) of our machine. Our proposed speculative algorithmic design
effectively reduces the amount of computations and data accesses performed inside the critical section
(inside the HTM transaction), thus effectively decreasing the transaction’s footprint and duration. As
a result, ColorTM provides high amount of parallelism and low interference among parallel threads.
We conclude that ColorTM has low synchronization and interference costs among a large number of
parallel threads, even in real-world graphs with high vertex degree.

Figure presents the breakdown of different types of aborts exhibited by ColorTM in a rep-
resentative subset of real-world graphs. We break down the transactional aborts into four types: (i)
conflict aborts: they appear when a running transaction executed by a parallel thread attempts to
write the read-set of another running transaction executed by a different thread, (ii) capacity aborts:
they appear when the memory footprint of a running transaction exceeds the size of the hardware
transactional buffers, (iii) lock aborts: current HTM implementations [316,[317,{490,491] provide no
guarantee that any transaction will eventually commit inside the transactional path, and thus the pro-
grammer provides an alternative non-transactional fallback path, i.e., falling back to the acquisition
of coarse-grained lock that allows only a single thread to enter the critical section, and forces aborts

to the transactions of all the remaining threads EI, and (iv) other aborts: they appear when a transac-

2To achieve this, the lock is added to each transaction’s read set, so that when the lock is acquired by a thread (write
to the lock variable), the remaining threads are aborted and wait until the lock is released.

Chapter 3 95

tion fails due to other reasons such as cache line evictions, interrupts and/or when the duration of a
transaction exceeds the scheduling quantum and the OS scheduler schedules out the software thread
from the hardware thread, aborting the transaction. Note that since the fallback path lock is just a
variable in the source code, some conflict aborts are caused by the writes in this lock variable. Thus,

a part of the lock aborts is counted as conflict aborts in our measurements.

1 conFlict [capacity BN lock Bl other

bum kmr usa
0000
w 3000 i «» 400000
o 2500 = 150 o
S 2000 6 12500 & 300000
2 1500 2 1000¢ K 200000 H
3* 3* -4 *
5000 100000
508 2500 : - mm . . ﬂ
voE Ay S ;3» & vor A RS :v & VoA e ?v o
g g g
#Threads #Threads #Threads
aud uk arb
20000 50000 140000
17500
£ 15000 £ 40000 £ 130000
o 12500 © 30000 © 80000
2 10000 o e
< 7500 < 20000 < 60000
#5000 * 10000 * 40000 ﬂ H
v ALY B N v AR N v AR N2
¥ ¥ ¥
#Threads #Threads #Threads

Figure 3.19: Breakdown of different types of aborts exhibited by ColorTM in real-world graphs.

We draw three findings. First, we find that the conflict aborts significantly increase across all
graphs when using both sockets of our machine due to the NUMA effect. For example, the number
of conflicts aborts in the 28-thread executions is 3.32 x higher compared to that in the 14-thread exe-
cutions. As already mentioned, the NUMA effect significantly increases the duration of the running
transactions, and thus the probability of causing conflict aborts among running transactions is high.
Second, as number of threads increases, e.g., when comparing the 56-thread execution over the 28-
thread execution, the number of conflict aborts increases by 1.05x. This is because partitioning the
graph to a higher number of threads results in a higher number of crossing edges among parallel
threads, which in turn results in a larger list of critical adjacent vertices that is validated inside the
HTM transactions. Therefore, the transaction footprint increases, thus increasing the probability of
causing conflict aborts. Third, we find that in graphs with very high maximum degree, e.g., uk and
arb graphs, the capacity aborts constitute a large portion of total aborts. In such graphs, the data
access footprint of the transactions is large, resulting to a high probability of exceeding the hardware
buffers. Overall, our analysis demonstrates that current HTM implementations are severely limited
by the NUMA effect [315], and incur high performance costs when using more than one NUMA
socket on the machine. To this end, we recommend hardware designers to improve the HTM imple-
mentations in NUMA machines, and suggest software designers to propose intelligent algorithmic
schemes and data partitioning approaches that minimize the expensive memory accesses to remote
NUMA sockets inside the HTM transactions.

96 Chapter 3

3.6.2 Analysis of Balanced Graph Coloring Algorithms

We compare the following balanced graph coloring implementations:

+ The CLU algorithm presented in Figure

+ The VFF algorithm presented in Figure

+ The Recoloring algorithm presented in Figure

+ Our proposed BalColorTM algorithm (Figure that leverages HTM. Each transaction is re-
tried up to 50 times, before resorting to a non-transactional fallback path. The non-transactional
path is a coarse-grained lock scheme for the critical section (lines 27-39 in Figure [3.14).

For a fair comparison, in all graph coloring schemes we color the vertices in the order they appear

in the color classes produced by the initial coloring.

Analysis of Color Balancing Quality

Table |3.3[compares the quality of balance in the color class sizes produced by the balanced-oblivious
ColorTM and all our evaluated balanced graph coloring implementations. Similarly to [27], we evalu-
ate the color balancing quality using the relative standard deviation of the color class sizes expressed
in %, which is defined as the ratio of the standard deviation of the color class sizes to the average
color class size. The closer the value of this metric is to 0.00, the better is the color balance. For the
ColorTM and Recoloring schemes, we also include in parentheses the number of color classes pro-
duced. As already explained in Section the CLU, VFF, and BalColorTM schemes produce the
same number of color classes with the initial coloring. In this experiment, we evaluate all algorithms
using the maximum hardware thread capacity of our machine, i.e., 56 threads, in order to evaluate
the color balancing quality of all schemes using the maximum available parallelism provided by the
underlying hardware platform.

We draw three findings from Table First, we observe that the balanced-oblivious ColorTM
scheme incurs very high disparity in the sizes of the color classes produced. Specifically, the color
balancing quality of ColorTM is 1887.01x, 287.70x, 10.32%, and 4266.03 X worse than that of CLU,
VFF, Recoloring and BalColorTM, respectively. Second, even though Recoloring is effective over Col-
orTM by providing better color balancing quality, its color balancing quality is the worst compared
to all the remaining balanced graph coloring schemes. In addition, in highly irregular graphs (graphs
with high maximum degree and high standard deviation in the vertices’ degrees) such as uk, soc
and arb, Recoloring significantly increases the number of color classes produced over the initial col-
oring. Recoloring re-colors the vertices of the graph with a different order compared to that used in
the initial graph coloring scheme, which in turn may introduce new additional color classes. Third,
we find that BalColorTM provides the best color balancing quality compared to all prior state-of-
the-art balanced graph coloring schemes. Specifically, the color balancing quality of BalColorTM is
2.26x, 14.82x and 413.31x better compared to that of CLU, VFF and Recoloring, respectively. Over-
all, we conclude that our proposed BalColorTM provides the best color balancing quality over prior
state-of-the-art schemes in all large real-world graphs.

To better illustrate the effect of balancing the vertices across color classes, we present in Fig-

Chapter 3 97

Input | Initial Coloring Balanced Graph Coloring Schemes

Graph ColorTM CLU | VFF | Recoloring | BalColorTM
qun 63.62 (48) | 0.212 | 1.669 | 14.739 (48) 0.009
geo 70.28 (36) | 0321 | 0.635 | 17.664 (34) 0.020
fln 65.42 (45) | 0576 | 0.611 | 20384 (51) 0.044
bum 64.32 (36) | 0.179 | 0.647 | 17.950 (33) 0.009
ser 73.64 (39) | 0.405 | 0.751 | 16.651 (38) 0.024
del 100.06 (9) | 0.002 | 0013] 35.136 (10) 0.001
rgg 115.30 (22) | 0.018 | 3.783 | 21.799 (23) 0.003
kmr 189.79 (11) | 0.0003 | 0.0002 | 31.492 (12) 0.0004
cag 122.89 (19) | 0.014 | 0.649 | 34.197 (20) 0.005
usa 105.09 (5) | 0.001 | 0.024 | 0.0005 (5) 0.0005
dif 57.95 (54) | 258 | 25322551 (57) 3.01
aud 84.02 (60) | 5.243 | 2.780 | 19.498 (54) 3.575
vas 144.18 (38) | 0.084 | 18.527 | 25.373 (34) 0.016
stk 141.41 (35) | 0.016 | 17.684 | 25.375 (34) 0.003
uk 1882.66 (944) | 0.437 | 0.237 | 65.994 (1355) 1.732
soc 945.35 (324) | 1.136 | 1.466 | 58.190 (459) 1.886
arb 3351.79 (3248) | 0.681 1.499 | 68.521 (4772) 3.410
fch 125.70 (9) | 0.012 | 0.271 | 33.854 (10) 0.451

Table 3.3: Color balancing quality achieved by ColorTM and all balanced graph coloring implementa-
tions in the large real-world graphs. We present the relative standard deviation (in %) on the sizes of
the color classes obtained by each scheme (lower is better). In ColorTM and Recoloring, we provide
inside the parentheses the number of color classes produced. The CLU, VFF and BalColorTM produce
the same number of color classes with the initial coloring scheme.

ure the sizes of all the color classes produced by ColorTM, CLU, VFF, Recoloring and BalColorTM
for a representative subset of our evaluated real-world graphs. The uk, soc and arb graphs are
web social networks [492]] with a highly power-law distribution [7}87,{134]]: only a few vertices have
avery high degree, while the vast majority of the remaining vertices of the graph has very low degree.
In such graphs, ColorTM inserts the vast majority of the vertices in the first few color classes, and
the remaining few vertices are assigned to different separate color classes. Moreover, as explained,

Recoloring introduces a large number of new additional color classes in such real-world graphs.

Performance Comparison

Figure evaluates the scalability achieved by all balanced graph coloring implementations in a
representative subset of our evaluated large real-world graphs, as the number of threads increases
from 1 to 56, i.e., up to the maximum available hardware thread capacity of our machine. We present
the execution time of only the kernel that balances the vertices across color classes (excluding the

execution time of the initial graph coloring).

98 Chapter 3

.
—— ColorTM —a— CLU —+— VFF Recoloring —— BalColorTM
qun geo fln
140000 70000 60000
120000 60000 50000
g 1:2222 5 :3(;:2 reveTTeTRTe — § 40000
g 60000 :g 30000 :g 30009
> > >
* 40000 #* 20000 # 20000
20000 10000 10000
0| 0 0
[}] 6 12 18 24 30 36 42 48 [] 4 8 12 16 20 24 28 32 36 [] 6 12 18 24 30 36 42 48
Color Class Index Color Class Index Color Class Index
bum 7000 ser 1e del
175000 4
150000
§ 125000 ﬁ § 3
S 100000 s T g
9 g G 2
S 75000 S S
* 50000 * *
25000
o 2000 0 > 0
0 4 8 12 16 20 24 28 32 36 0 5 10 15 20 25 30 35 9
Color Class Index Color Class Index Color Class Index
15126 rag 17 kmr cag
7 800000
1.0 6
% 08 25 w 600000
2 £ 4 8
- 0'5 - -
o o & 400000
g g5 g
0. ®, *
200000
0.2 1
0.0 0 0 >
0 3 6 9 12 15 18 21 0 2 4 6 8 10 0 3 6 9 12 15 18
Color Class Index Color Class Index Color Class Index
1e7 usa dlf aud
1.0 30000 35000
0.8 25000 30000
o o @ 25000
£ 06 & 20000 S 20000
S 04 g 15000 < 15000
#* #* 10000 #* 10000
0.2 5000 5000
0.0| 0 0
0 1 2 3 4 0 8 16 24 32 40 48 56 0 8 16 24 32 40 48 56
Color Class Index Color Class Index Color Class Index
vas 1e6 stk 1e7
200000 . 1.0
§ 150000 § : § 08
£ 100000 2o £ 0
o 1 o 0. 7]
2 2o Z 04
50000 . 0.2
o 9000000000000 . 2 000a X ¢ o 0.0
0 5 10 15 20 25 30 35 0 4 8 12 16 20 24 28 32 0 150 300 450 600 750 900 105012001350
Color Class Index Color Class Index Color Class Index
soc 1e7 arb fch
1.2 1.0
2.0
" " 1.0 " 0.8
g5 g o8 S os
e £ 0.6 e
3 1.0 g ™ g
S Z 04 7 04
0.5 0.2 0.2 \
0.0 0.0 0.0
60 120 180 240 300 360 420 480 0 600 1200 1800 2400 3000 3600 4200 4800 [} 1
Color Class Index Color Class Index Color Class Index

Figure 3.20: Distribution of color class sizes produced by ColorTM and all our evaluated balanced
graph coloring schemes. Note that small color class sizes result in reduced parallelism in the real-
world end-application.

We draw three findings. First, we observe that Recoloring achieves the worst performance over
all balanced graph coloring schemes. Even in the single-threaded executions, Recoloring performs
by 3.21x, 2.26x and 3.69x worse than CLU, VFF and BalColorTM, respectively, because it executes a

much larger amount of computation, memory accesses and synchronization. Recall that Recoloring

Chapter 3 99

—a— CLU —— VFF Recoloring —%— BalColorTM

5 25 bum 5 kmr) cag

o o 80 o 3.5

£ 2.0 £ 70 £ 3.0

[= 60 F 25

= 1.5 c 50 € 2.0

2 1.0 3 40 215 S

3 /\ 3 30 —_ 3 1.0

9 05 9 20 W % 005

X X 10 x U.

w 1 2 4 7 14 28 56 4 1 2 4 7 14 28 56 4 1 2 4 7 14 28 56
#Threads #Threads #Threads

- aud - uk - arb

o 12 © ocl & < 140

g 1.0 g 25 g 120

- 0.8 20 = 100

S 06 s 15 s

% 3-2 —=%| 2 5 ¢ 20 ———

w 0.0 1 2 4 7 14 28 56 Y 1 2 4 7 14 28 56 Y 1 2 4 7 14 28 56
#Threads #Threads #Threads

Figure 3.21: Scalability achieved by all balanced graph coloring implementations in large real-world
graphs.

processes and re-colors all the vertices of the graph, while the remaining balanced graph coloring
schemes re-color only a subset of the vertices of the graph. Note that in uk and arb graphs, all
balanced graph coloring schemes need to re-color a large portion of the graph’s vertices, thus per-
forming closely to each other. Second, we find that the scalability of all schemes is affected by the
NUMA effect, however BalColorTM on average scales well even when using all available hardware
threads and both NUMA sockets of our machine. When increasing the number of threads from 28
to 56, the performance of BalColorTM improves by 1.55x averaged across all large graphs. Third, we
find that in contrast to the graph coloring kernel, in many real-world graphs the performance of the
balanced graph coloring kernel scales up to 14 threads, and degrades when using 56 threads. This
is because the balanced graph coloring kernel has a lower amount of parallelism (a small subset of
the vertices of the graph are re-colored by parallel threads) than the graph coloring kernel. Thus,
our analysis demonstrates that when a kernel has low levels of parallelism, the best performance
is achieved using a smaller number of parallel threads than the available hardware threads on the
multicore platform. To this end, we suggest software designers of real-world end-applications to
on-the-fly adjust the number of parallel threads used to parallelize each different sub-kernel of the
end-application based on the parallelization needs of each particular sub-kernel.

Figure compares the speedup achieved by all balanced graph coloring schemes normalized
to the CLU scheme in all large real-world graphs. We compare the actual kernel time that balances
the vertices across color classes.

We observe that BalColorTM outperforms all prior state-of-the-art balanced graph coloring schemes
across all various large real-world graphs with a large number of parallel threads used. BalColorTM
outperforms CLU, VFF and Recoloring by on average 1.89%, 1.33x and 2.06 X respectively, when us-
ing 14 threads. Moreover, BalColorTM outperforms CLU, VFF and Recoloring by on average 2.61x,
1.05x and 1.68 X respectively, when using 56 threads, i.e., the maximum hardware thread capacity of
our machine. Overall, BalColorTM performs best over all prior schemes in all large real-world graphs.

Therefore, considering the fact that BalColorTM also provides the best color balancing quality over

100 Chapter 3

N CLU BN VFF 1 Recoloring HEl BalColorTMm

14 Threads

0
O 20 O o et a0 (o @0 ¢ & W8 @@ g ¢ of ™ N

Figure 3.22: Speedup achieved by all balanced graph coloring implementations over the CLU scheme
in large real-world graphs using all cores of one socket (14 threads), all cores of two sockets (28
threads), and the maximum hardware thread capacity of our machine with hyperthreading enabled
(56 threads).

prior schemes, we conclude that our proposed algorithmic design is a highly efficient and effective
parallel graph coloring algorithm for modern mutlicore platforms.

To confirm the performance benefits of BalColorTM across multiple computing platforms, we
evaluate all schemes on a 2-socket Intel Broadwell server with an Intel Xeon E5-2699 v4 processor
at 2.2 GHz having 44 physical cores and 88 hardware threads. Figure compares the speedup
achieved by all balanced graph coloring schemes normalized to the CLU scheme in all large real-
world graphs using 88 threads, i.e., the maximum hardware thread capacity of the Intel Broadwell
server. We find that BalColorTM provides significant performance benefits over prior state-of-the-art
graph coloring algorithms, achieving 1.82, 1.22x and 1.84x better performance over CLU, VFF, and

Recoloring, respectively.

N CLU EN VFF [Recoloring HEl BalColorTM
88 Threads

Speedup
O=NWLHUI\~N0

]
R ge° &\“ ‘0\;\“ «,e‘ e ‘g‘) « @ \,93 6\‘ 3\)6 ?° ¢ ¢ of O ™

Figure 3.23: Speedup achieved by all balanced graph coloring implementations over the CLU scheme
in large real-world graphs using the maximum hardware thread capacity of an Intel Broadwell server
with hyperthreading enabled (88 threads).

Chapter 3 101

Analysis of BalColorTM Execution

Figurepresents the abort ratio of BalColorTM, i.e., the number of transactional aborts divided by
the number of attempted transactions, in all real-world graphs, as the number of threads increases.
In the 14-thread execution, we pin all thread on one single socket. In the 28-thread execution, we
pin threads on both NUMA sockets of our machine with hyperthreading disabled. In the (14+14)-
thread execution, we pin all 28 threads on the same single socket with hyperthreading enabled. In

the 56-thread execution, we use the maximum hardware thread capacity of our machine.

[1 14 threads [28threads I 14+14 threads Il 56 threads

Abort Ratio (%)
N DA OO®
(e N-N-N-X-)

Figure 3.24: Abort ratio exhibited by BalColorTM in all large real-world graphs.

We make two key observations. First, we observe that BalColorTM on average incurs higher abort
ratio over ColorTM, reaching up to 80% abort ratio in some multithreaded executions. Specifically,
BalColorTM incurs 68.55%, 64.35x%, 55.83x and 25.91x higher abort ratio (averaged across all real-
world graphs) over ColorTM, when using 14, 28, (14+14), and 56 threads, respectively. This is because
BalColorTM processes and re-colors a much smaller number of vertices (a small subset of the ver-
tices of the graph) compared to ColorTM, which instead processes and colors all the vertices of the
graph. As a result, parallel threads compete for the same data and memory locations with a much
higher probability in BalColorTM compared to ColorTM, thus incurring higher abort ratio and syn-
chronization costs. Second, we find that in all real-world graphs the vast majority of transactional
aborts are conflict aborts. Specifically, the portion of conflict aborts is more than 95% in all real-world
graphs for all multithreaded executions. Typically, the lower parallelization needs a parallel kernel
has, the higher data contention among parallel threads it incurs. Overall, our analysis demonstrates
that using a high number of parallel threads results in high contention on shared data due to low
amount of parallelism of the balanced graph coloring kernel. The aforementioned high contention
causes high synchronization overheads. To this end, we recommend software designers of real-world
end-applications to design adaptive parallelization schemes that trade off the amount of parallelism

provided for lower synchronization costs.

3.6.3 Analysis of a Real-World Scenario

In this section, we study the performance benefits of our proposed graph coloring schemes, i.e.,
ColorTM and BalColorTM, when parallelizing a widely used real-world end-application, i.e., Commu-
nity Detection, via chromatic scheduling. Specifically, we compare the following parallel implemen-

tations to execute the Community Detection application:

102 Chapter 3

+ The parallelization scheme for the Louvain method [[493-495]] provided by Grappolo suite [12],
henceforth referred to as SimpleCD, in which the vertices are processed as they appear in the
input graph representation. The algorithm consists of multiple iterations. First, each vertex is
placed in a community of its own. Then, multiple iterations are performed until a convergence
criterion is met. Within each iteration, all vertices are processed concurrently by multiple
parallel threads, and a greedy decision is made to decide whether each vertex should be moved
to a different community (selected from one of its adjacent vertices) or should remain in its
current community, targeting to maximize the net modularity gain. For more details, we refer
the reader to [4931/496-498].

+ The chromatic scheduling parallelization approach using ColorTM to color the vertices of the
graph, henceforth referred to as ColorTMCD, in which the vertices are processed in the order
they are distributed in the color classes. The end-to-end Community Detection execution can
be broken down in two steps: (i) the time to color the vertices of the graph with ColorTM,
and (ii) the time to classify the vertices of the graph into communities via chromatic schedul-
ing parallelization approach. The (ii) step processes the color classes produced by the (i) step
sequentially, and all vertices of the same color class are processed in parallel.

+ The chromatic scheduling parallelization approach using ColorTM to color the vertices of the
graph and BalColorTM to balance the vertices across color classes produced, henceforth referred
to as BalColorTMCD, in which the vertices are processed in the order they are distributed in
the color classes. The end-to-end Community Detection execution can be broken down in three
steps: (i) the time to color the vertices of the graph with ColorTM, (ii) the time to balance the
vertices of the graph across color classes, and (iii) the time to classify the vertices of the graph
into communities via chromatic scheduling parallelization approach. The (iii) step processes
the color classes produced by the (ii) step sequentially, and all vertices of the same color class

are processed in parallel.

Figure evaluates the scalability of all the end-to-end Community Detection parallel imple-
mentations in a representative subset of large real-world graphs, as the number of parallel threads
increases. We present the total end-to-end execution time, i.e., in ColorTMCD we account for the time
to color the vertices of the graph (coloring step), and in BalColorTMCD we account for the time to
color the vertices of the graph (coloring step), and the time to balance the vertices across color classes

(balancing step).
We draw two findings. First, we find that ColorTMCD and BalColorTMCD scale well in large

real-world graphs. For example, when increasing the number of threads from 1 to 56, ColorTMCD
improves performance by 12.34x and 3.44x in bum and arb graphs, respectively. Similarly, when
increasing the number of threads from 1 to 56, BalColorTMCD improves performance by 11.38x and
3.63x in bum and arb graphs, respectively. However, we observe that in uk and arb graphs,
SimpleCD outperforms both ColorTMCD and BalColorTMCD. In these two graphs, ColorTM and Bal-
ColorTM produce the largest number of color classes compared to all the remaining real-world graphs
(See Table B.3), i.e., they produce 944 and 3248 colors for the uk and arb graphs, respectively. As
a result, in uk and arb graphs the chromatic scheduling parallelization approach of ColorTMCD

Chapter 3 103

—4— SimpleCD ——— ColorTMCD —¥— BalColorTMCD

bum kmr cag
_. 250 - = 700
w w v
< 200 < 1000 5 600
F F 600 F 499
= 100 = = 300
z S 400 £ 200
2 50 200 e 108
1 2 4 7 14 28 56 1 2 4 7 14 28 56 1 2 4 7 14 28 56
#Threads #Threads #Threads
aud 70 uk arb

Z 80 2 600 & 2500
g @ 500 o 2000
E 60 E 200 £ 1500

40 — 300 - 1000
n n n
2 20 g5 200 8 500
e 2 100 2

1 2 4 7 14 28 56 0 1 2 4 7 14 28 56 1 2 4 7 14 28 56
#Threads #Threads #Threads

Figure 3.25: Scalability of the end-to-end Community Detection execution achieved by (i) the Grap-
polo [12] parallelization approach of the Louvain method (SimplCD) and (ii) the chromatic scheduling
parallelization approach with ColorTM (ColorTMCD) and (iii) the chromatic scheduling parallelization
approach with both ColorTM and BalColorTM (BalColorTMCD) in large real-world graphs.

and BalColorTMCD executes 944 and 3248 times of barrier synchronization among parallel threads,
respectively, thus incurring higher synchronization costs over SimpleCD. Second, the scalability of
BalColorTMCD is affected more by the NUMA effect compared to that of ColorTMCD. Specifically,
when increasing the number of threads from 14 to 28, the performance of ColorTMCD improves by
1.63x averaged across all real-world graphs, while the performance of BalColorTMCD only improves
by 1.22x. Similarly, when increasing the number of threads from 14 to 56, the performance of Col-
orTMCD improves by 1.98 x, while the performance of BalColorTMCD improves by 1.50x. We find
that even though balancing the sizes of color classes provides higher load balance across parallel
threads of real-world end-applications, it might because more remote expensive memory accesses

across NUMA sockets of modern multicore machines.

Figure shows the actual kernel time (without accounting for performance overheads intro-
duced by the coloring and balancing steps) of Community Detection by comparing the speedup of
ColorTMCD and BalColorTMCD over SimpleCD in all our evaluated large real-world graphs.

We draw two key findings. First, BalColorTM can on average outperform ColorTM, when consid-
ering only the actual kernel time of Community Detection, by providing better load balance among
parallel threads. When only the actual kernel time of Community Detection is considered (exclud-
ing the performance overheads introduced by the coloring and balancing steps), BalColorTMCD on
average outperforms ColorTMCD by 1.27x, 1.01x and 1.12x when using 14, 28, and 56 threads,
respectively. Second, parallelizing the Community Detection using ColorTM and BalColorTM pro-
vides significant performance speedups over SimpleCD, the state-of-the-art paralellization approach
of Louvain method of Community Detection [[12,493-495]]. Specifically, ColorTMCD improves the
performance of the actual kernel time of Community Detection compared to SimpleCD by 1.40x,
1.34x, and 1.20x, when using 14, 28, and 56 threads, respectively. In addition, BalColorTMCD im-

proves the performance of the actual kernel time of Community Detection compared to SimpleCD

104 Chapter 3

I SimpleCD B ColorTMCD] BalColQrTMCD
14 Threads? < P am

Speedup

DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB
o™ 2% O (o e aet (o® @9 os? & 0 (2% ¢ O oC 4O ¢

28 Threads 33 el
Q.
=
O
()]
(]
Q.
w
DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB
oS 2% O o o 0% (O (29 (P &F 08 (B g B¢ o (O (™
L]
56 Threads < 6T
.4
=
O
()]
(]
Q.
wv)

DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB
o™ 20 O (o oo aet (o® « @9 ? O o8 (25 o OF o 40 (O N

Figure 3.26: Speedup of the actual kernel of the Community Detection execution achieved by (i)
SimpleCD (D), (ii) ColorTMCD (C) and (iii) BalColorTMCD (B) in large real-world graphs using all
cores of one socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware
thread capacity of our machine with hyperthreading enabled (56 threads).

by 1.77x, 1.34x, and 1.34x, when using 14, 28, and 56 threads, respectively. We conclude that our
proposed graph coloring algorithmic designs can provide high performance benefits in real-world

end-applications which are parallelized using coloring.

Figure presents the speedup breakdown of ColorTMCD and BalColorTMCD over SimpleCD
in all our evaluated large real-world graphs. The performance is broken down in three steps: (i)
the coloring step to color the vertices of the graph (Coloring), (ii) the balancing step to balance
the vertices across color classes (Balancing), and (iii) the actual Community Detection kernel time

(CommunityDetection).

We make two key observations. First, BalColorTMCD on average outperforms ColorTMCD when
using up to 14 threads (using one single NUMA socket). When considering the end-to-end execution
including the performance overheads introduced by the coloring and balancing steps, BalColorTMCD
outperforms ColorTMCD by 1.19x when using 14 threads, while it performs on average 1.18 x and
1.10x worse over ColorTMCD, when using 28 and 56 threads, respectively. We find that the perfor-
mance overhead introduced in the balancing step of BalColorTMCD is not compensated in the runtime
of the actual kernel time of Community Detection when using both NUMA sockets of our machine.

Second, we observe that both ColorTMCD and BalColorTMCD can provide high performance in Com-

Chapter 3 105

EEl Coloring [Balancing [1 CommunityDetection

14 Threads? @8 o

a 3. a —

= . M

O m ml -

9 - - il i

a AR T T T -
DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB
o™ 2% O (o oo aet (o® « 2% s? N 0 (2% ¢ O 0C 4O ¢
28 Threads 53 PR

a 3.

= . - -

O . _

o 7 - o || -

9 T8 — - . _

Do M e e e g e e e (LB L

. DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB
Q\)“ geo (\‘\ b\)“\ se‘ 63\' ‘gg *ﬁ‘ Cag \)93 6\& 3\36 q@"’ 9“ \)‘ 90" a‘b (C\\ o‘r\

<

56 Threads b ae

LD LR T e L L L g L [T

DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB DCB
oS® 20 O (et A% (03 (2% y5? & 08 (28 o O oC O (&

Speedup
]
|
|
]
|

Figure 3.27: Speedup breakdown of the end-to-end Community Detection execution achieved by (i)
SimpleCD (D), (ii) ColorTMCD (C) and (iii) BalColorTMCD (B) in large real-world graphs using all
cores of one socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware
thread capacity of our machine with hyperthreading enabled (56 threads).

munity Detection. ColorTMCD on average outperforms SimpleCD by 1.38 %, 1.33x and 1.19x, when
using 14, 28 and 56 threads, respectively. BalColorTMCD on average outperforms SimpleCD by 1.64 %,
1.10x and 1.08 X, when using 14, 28 and 56 threads, respectively. In addition, we observe that BalCol-
orTMCD provides significant performance speedups over Simple CD in many graphs such as f1n,
del, cag, aud, soc and fch, reaching up to 10.36 x with 56 threads. Overall, we conclude that
our proposed parallel graph coloring algorithms can provide significant performance improvements
in real-world end-applications, e.g., parallelizing Community Detection with chromatic scheduling,

across a wide variety of input data sets with diverse characteristics.

3.7 Recommendations

This section presents our key takeaways in the form of recommendations for software and hardware
designers.

Recommendation #1. Optimize the Hardware Transactional Memory implementation on NUMA mul-
ticore systems. Figures[3.18 and demonstrate the number of transactional aborts significantly

increases when using both NUMA sockets of our machine. Accessing data of remote NUMA sockets

106 Chapter 3

within HTM transactions increases the duration of the transactions, thus potentially causing trans-
actional aborts: long-running HTM transactions increase the probability of incurring read-write
conflicts among them, while they might suffer from time interrupt aborts when the OS scheduler
schedules out the software threads from the hardware threads. Overall, we find that current HTM
implementations are severely limited by the NUMA effect [315]], which degrades the benefits of HTM
on synchronization among parallel threads. To this end, we suggest that hardware designers of mul-
ticore systems provide a NUMA-aware HTM implementation for modern multicore systems.
Recommendation #2. Design intelligent data partitioning techniques of real-world graphs across
NUMA sockets of modern systems. Figure shows that the number of conflicts (read-write) aborts
among running HTM transactions significantly increases when using both sockets of our evaluated
machine. This is because expensive accesses to remote data increase the duration of the HTM transac-
tions, and thus the probability of causing conflicts aborts among long-running transactions becomes
very high. Thus, we conclude that the performance of parallel algorithms might significantly degrade
when accessing application data from remote NUMA sockets within the critical section. Therefore,
we recommend that software designers of parallel graph processing kernels design effective data
partitioning techniques of real-world graphs across NUMA sockets of modern systems to minimize
contention and synchronization overheads among parallel threads.

Recommendation #3. Design adaptive parallel applications that on-the-fly adjust the number of par-
allel threads used to parallelize their sub-kernels based on the parallelization needs of each particular
sub-kernel. Figure shows that all parallel graph coloring schemes scale up to 56 threads, i.e., all
available hardware threads of our machine. However, Figure shows that balanced graph col-
oring schemes typically scale up 14 threads, thus achieving the best performance with 14 parallel
threads, while their performance degrades when using all available hardware threads of our ma-
chine (56 threads). The graph coloring kernel has high parallelization needs, since all the vertices of
the large real-world graph need to be processed (colored) by parallel threads. Instead, the balance
coloring kernel has lower parallelization needs, since typically a small subset of the vertices of the
graph need to be processed (re-colored) by parallel threads. We demonstrate in Section that
the execution times of the graph coloring and balance coloring kernels add to the overall execution
time of the real-world end-application. Thus, we conclude that to achieve high system performance
in the end-to-end execution of real-world applications, we need to dynamically tune the number of
parallel threads used to parallelize the sub-kernels of the end-applications depending on the paral-
lelization needs of each particular sub-kernel. To this end, we recommend that software designers
provide adaptive parallel applications that on-the-fly adjust the number of parallel threads used to
parallelize each sub-kernel of the end-applications based on the parallelization needs of the particular

sub-kernel.

3.8 Related Work

A handful of prior works [1,26-30.[30-36] has examined the graph coloring kernel in modern multi-
core platforms. Welsh and Powell [26] propose the original sequential Greedy algorithm that colors

Chapter 3 107

the vertices of the graph using the first-fit heuristic. Recent prior works [31-34] parallelize Greedy
by proposing the SeqSolve, IterSolve and IterSolveR schemes described in Section We com-
pare ColorTM with these prior schemes in Section[3.6.1} and demonstrate that our proposed ColorTM
outperforms these state-of-the-art schemes across a wide variety of real-world graphs. Jones and
Plassmann [28] design an algorithm, named JP, that colors the vertices of the graph by identifying
independent sets of vertices: in each iteration, the algorithm finds and selects an independent set of
vertices that can be colored concurrently. However, JP is a recursive algorithm that typically runs
longer than the original Greedy [1}/35,36], since it performs more computations and needs more
synchronization points, i.e., parallel threads need to synchronize at each iteration of processing inde-
pendent sets of vertices. Moreover, the original paper [28] shows that JP provides good performance
mostly in O(1)-degree graphs. In contrast, our work efficiently parallelizes the original and widely
used Greedy algorithm for graph coloring, and our proposed parallel algorithms achieve significant
performance improvements across a wide variety of real-world graphs and using a large number of

parallel threads.

Deveci et al. [29] present an edge-centric parallelization scheme for graph coloring which is better
suited for GPUs. ColorTM and BalColorTM can be straightforwardly extended to color the vertices
of a graph by equally distributing the edges of the graph among parallel threads. We leave the ex-
ploration of edge-centric graph coloring schemes for future work. Future work also comprises the
experimentation of the graph coloring kernel on multicore computing platforms such as modern
GPUs [499-502] and Processing-In-Memory systems [5}|7,/134-136}/141,|188,{1961203}207]. Maciej et
al. [36] and Hasenplaugh et al. [35] propose new vertex ordering heuristics for graph coloring. Order-
ing heuristics define the order in which Greedy colors the vertices of the graph in order to improve
the coloring quality by minimizing the number of colors used. Instead, our work aims to improve
system performance by proposing efficient parallelization schemes. For a fair comparison, we employ

the first-fit ordering heuristic (the vertices of the graph are colored in the order they appear in the

input graph representation) in all parallel algorithms evaluated in Sections[3.6.1]and [3.6.1} ColorTM
and BalColorTM can support various ordering heuristics [35}36,320,(321}/328,333-337,/503|] by assign-

ing the vertices of the graph to parallel threads with a particular order. We leave the evaluation of

various vertex ordering heuristics for future work.

Lu et al. [27] design balanced graph coloring algorithms to efficiently balance the vertices across
the color classes. We compare BalColorTM with their proposed algorithms, i.e., CLU, VFF, Recoloring,
in Section [3.2.3] and demonstrate that our proposed BalColorTM scheme on average performs best
across all large real-world graphs. Tas et al. [30] propose balanced graph coloring algorithms for
bitpartie graphs, i.e., graphs whose vertices can be divided into two disjoint and independent sets
U and V, and every edge (u,v) either connects a vertex from U to V or a vertex from V to U. In
contrast, ColorTM and BalColorTM are designed to be general, and efficiently color any arbitrary
real-world graph using a large number of parallel threads. In addition, Tas et al. [30] also explore the
distance-2 graph coloring kernel on multicore architectures, in which any two vertices © and v with an
edge-distance at most 2 are assigned with different colors. Instead, our work efficiently parallelizes

the distance-1 graph coloring kernel on multicore platforms, in which any two adjacent vertices

108 Chapter 3

of the graph connected with a direct edge are assigned with different colors. Finally, prior works
propose algorithms for edge coloring [504]], dynamic or streaming coloring [505-510], k-distance
coloring [511,/512] and sequential exact coloring [513-515]. All these works are not closely related
to our work, since we focus on designing high-performance parallel algorithms for the distance-1

vertex graph coloring kernel.

3.9 Summary

In this work, we explore the graph coloring kernel on multicore platforms, and propose ColorTM and
BalColorTM, two novel algorithmic designs for high performance and balanced graph coloring on
modern computing platforms. ColorTM and BalColorTM achieve high system performance through
two key techniques: (i) eager conflict detection and resolution of the coloring inconsistencies that
arise when adjacent vertices are concurrently processed by different parallel threads, and (ii) specula-
tive computation and synchronization among parallel threads by leveraging Hardware Transactional
Memory. Via the eager coloring conflict detection and resolution policy, ColorTM and BalColorTM
effectively leverage the deep memory hierarchy of modern multicore platforms and minimize access
costs to application data. Via the speculative computation and synchronization approach, ColorTM
and BalColorTM minimize synchronization costs among parallel threads and provide high amount of
parallelism. Our evaluations demonstrate that our proposed parallel graph coloring algorithms out-
perform prior state-of-the-art approaches across a wide range of large real-world graphs. ColorTM
and BalColorTM can also provide significant performance improvements in real-world scenarios. We
conclude that ColorTM and BalColorTM are highly efficient graph coloring algorithms for modern
multicore systems, and hope that this work encourages further studies of the graph coloring kernel

in modern computing platforms.

CHAPTER 4

SmartPQ

4.1 Overview

Concurrent data structures are widely used in the software stack, i.e., kernel, libraries and appli-
cations. Prior works [15, 39,64} 339] discuss the need for efficient and scalable concurrent data
structures for commodity Non-Uniform Memory Access (NUMA) architectures. Pointer chasing
data structures such as linked lists, skip lists and search trees have inherently low-contention, since
their operations need to de-reference a non-constant number of pointers before completing. Recent
works [[64,340,341] have shown that lock-free algorithms [[48}[342+346] of such data structures can
scale to hundreds of threads. On the other hand, data structures such as queues and stacks typically
incur high-contention, when accessed by many threads. In these data structures, concurrent threads
compete for the same memory locations, incurring excessive traffic and non-uniform memory ac-
cesses between nodes of a NUMA system.

In this work, we focus on priority queues, which are widely used in a variety of applications,

including task scheduling in real-time and computing systems [347], discrete event simulations [348,

109

110 Chapter 4

Initial Size = 1024, Key Range = 2048, Running Threads = 64
214.2

W
o

I NUMA-oblivious
"""""""""""""""""""""""""" [T NUMA-aware —

N
[,

N
(=)

-
w1

Y
o

Throughput (Mops/sec)
(V,]

o

100-0 70-30 50-50 30-70 0-100
Insert - DeleteMin (%)

Figure 4.1: Throughput achieved by a NUMA-oblivious [13,|14] and a NUMA-aware [15] priority
queue, both initialized with 1024 keys. We use 64 threads that perform a mix of insert and deleteMin
operations in parallel, and the key range is set to 2048 keys. We use all NUMA nodes of a 4-node
NUMA system, the characteristics of which are presented in Section

349] and graph applications [[350-352], e.g., Single Source Shortest Path [353] and Minimum Spanning
Tree [471]]. Similarly to skip-lists and search trees, in insert operation, concurrent priority queues typ-
ically have high levels of parallelism and low-contention, since threads may work on different parts
of the data structure. Therefore, concurrent NUMA-oblivious implementations [37,[38}40-43.|55,/56]
can scale up to a high number of threads. In contrast, in deleteMin operation, all threads compete
for deleting the highest-priority element of the queue, thus competing for the same memory loca-
tions (similarly to queues and stacks), and creating a contention spot. In deleteMin-dominated work-
loads, concurrent priority queues typically incur high-contention and low parallelism. To achieve
higher parallelism, relaxed priority queues have been proposed in the literature [[13,/472], in which
deleteMin operation returns an element among the first few (high-priority) elements of the priority
queue. However, such NUMA-oblivious implementations are still inefficient in NUMA architectures,
as we demonstrate in Section Therefore, to improve performance in NUMA systems, NUMA-

aware implementations have been proposed [15,64].

We examine NUMA-aware and NUMA-oblivious concurrent priority queues with a wide variety
of contention scenarios in NUMA architectures, and find that the performance of a priority queue
implementation is becoming increasingly dependent on both the contention levels of the workload
and the underlying computing platform. This is illustrated in Figure[4.1] which shows the throughput
achieved by a NUMA-oblivious and a NUMA-aware priority queue using a 4-node NUMA system.
Even though in a insert-dominated scenario, e.g., when having 100% insert operations, the NUMA-
oblivious implementation achieves significant performance gains over the NUMA-aware one, when
contention increases, i.e., the percentage of deleteMin operations increases, the NUMA-oblivious im-
plementation incurs non-negligible performance slowdowns over the NUMA-aware priority queue.

We conclude that none of the priority queues performs best across all contention workloads.

Our goal in this work is to design a concurrent priority queue that (i) achieves the highest perfor-
mance under all various contention scenarios, and (ii) performs best even when the contention of the

workload varies over time.

Chapter 4 111

NUMA-aware
Mode

Nuddle
e

/ N / N
| Base \ | Base
\ Algorithm / \ Algorithm /

/ \ /

-
classifier

Figure 4.2: High-level overview of SmartPQ. SmartPQ dynamically adapts its algorithm to the con-
tention levels of the workload based on the prediction of a simple classifier.

To this end, our contribution is twofold. First, we introduce NUMA Node Delegation (Nuddle), a
generic technique to obtain NUMA-aware data structures, by effectively transforming any concur-
rent NUMA-oblivious data structure into the corresponding NUMA-aware implementation. In other
words, Nuddle is a framework to wrap any concurrent NUMA-oblivious data structure and transform
it into an efficient NUMA-aware one. Nuddle extends ffwd [15] by enabling multiple server threads,
instead of only one, to execute operations in parallel on behalf of client threads. In contrast to ffwd,
which aims to provide single threaded data structure performance, Nuddle targets data structures

which are able to scale up to a number of threads such as priority queues.

Second, we propose SmartPQ, an adaptive concurrent priority queue that achieves the highest per-
formance under all contention workloads and dynamically adapts itself over time between a NUMA-
oblivious and a NUMA-aware algorithmic mode. SmartPQ integrates (i) Nuddle to efficiently switch
between the two algorithmic modes with very low overhead, and (ii) a simple decision tree classi-
fier, which predicts the best-performing algorithmic mode given the expected contention levels of a

workload.

Figure [4.2] presents an overview of SmartPQ, where we use the term base algorithm to denote any
arbitrary concurrent NUMA-oblivious data structure. SmartPQ relies on three key ideas. First, client
threads can execute operations using either Nuddle (NUMA-aware mode) or its underlying NUMA-
oblivious base algorithm (NUMA-oblivious mode). Second, SmartPQ incorporates a decision-making
mechanism to decide upon transitions between the two modes. Third, SmartPQ exploits the fact
that the actual underlying implementation of Nuddle is a concurrent NUMA-oblivious data structure.
Client threads in both algorithmic modes access the data structure in the same way, i.e., with no
actual change in the way data is accessed. Therefore, SmartPQ switches from one mode to another

with no synchronization points between transitions.

We evaluate a wide range of contention scenarios and compare Nuddle and SmartPQ with state-
of-the-art NUMA-oblivious [13,/55] and NUMA-aware [15] concurrent priority queues. We also eval-
uate SmartPQ using synthetic benchmarks that dynamically vary their contention workload over
time. Our evaluation shows that SmartPQ adapts between its two algorithmic modes with negligible
performance overheads, and achieves the highest performance in all contention workloads and at

any point in time with 87.9% success rate.

112 Chapter 4

The main contributions of this work are:
« We propose Nuddle, a generic technique to obtain NUMA-aware concurrent data structures.
« We design a simple classifier to predict the best-performing implementation among NUMA-

oblivious and NUMA-aware priority queues given the contention levels of a workload.

« We propose SmartPQ, an adaptive concurrent priority queue that achieves the highest perfor-

mance, even when contention varies over time.

« We evaluate Nuddle and SmartPQ with a wide variety of contention scenarios, and demonstrate

that SmartPQ performs best over prior state-of-the-art concurrent priority queues.

4.2 NUMA Node Delegation (Nuddle)

4.2.1 Overview

NUMA Node Delegation (Nuddle) is a generic technique to obtain NUMA-aware data structures by
automatically transforming any concurrent NUMA-oblivious data structure into an efficient NUMA-
aware implementation. Nuddle extends ffwd [15], a client-server software mechanism which is based
on the delegation technique [59-63].

Figure left shows the high-level overview of ffwd, which has three key design characteris-
tics. First, all operations performed by multiple client threads are delegated to one single dedicated
thread, called server thread. The server thread performs operations in the data structure on behalf of
its client threads. This way, the data structure remains in the memory hierarchy of a single NUMA
node, avoiding non-uniform memory accesses to remote data. Second, ffwd eliminates the need for
synchronization, since the shared data structure is no longer accessed by multiple threads: only a sin-
gle server thread directly modifies the data structure, and therefore, ffwd uses a serial asynchronized
implementation of the underlying data structure. Third, ffwd provides an efficient communication
protocol between the server thread and client threads that minimizes cache coherence overheads.
Specifically, ffwd reserves dedicated cache lines to exchange request and response messages between
the client threads and sever thread. Multiple client threads are grouped together to minimize the
response messages from the server thread: one response cache line is shared among multiple client
threads belonging to the same client thread group. For more details, we refer the reader to the original
paper [15].

Figure [4.3| right presents the high-level overview of Nuddle, which is based on three key ideas.
First, Nuddle deploys multiple servers to perform operations on behalf of multiple client threads.
Specifically, client threads are grouped in client thread groups, and each sever thread serves multiple
client thread groups. This way, multiple server threads concurrently perform operations on the data
structure, achieving high levels of parallelism up to a number of server threads. Second, Nuddle lo-
cates all server threads to the same NUMA node to keep the data structure in the memory hierarchy of
one single NUMA node, and propose a NUMA-aware approach. Client threads can be located at any
NUMA node. Third, since multiple servers can concurrently update the shared data structure, Nuddle

uses a concurrent NUMA-oblivious implementation (i.e., which includes synchronization primitives

Chapter 4 113

ffwd Nuddle
Client Client Client Client Client Client Client Client
Thread Thread Thread Thread Thread Thread Thread Thread
“._/ server Server Server
Thread Thread Thread

NUMA Node NUMA Node

Serial Concurrent

Data Data
Structure E:D: Structure
Figure 4.3: High-level design of ffwd [15] and Nuddle. Nuddle locates all server threads at the same

NUMA node to design a NUMA-aware scheme, and associates each of them to multiple client thread
groups. Nuddle uses the communication protocol proposed in ffwd [15]].

when accessing the shared data) of the underlying data structure to ensure correctness. Third, Nud-
dle employs the same client-server communication protocol with ffwdto carefully manage memory
accesses and minimize cache coherence traffic and latency.

ffwd targets inherently serial data structures, whose concurrent performance cannot be better
than that of single threaded performance. In contrast, Nuddle targets data structures that can scale
up to a number of concurrent threads. Priority queue is a typical example of such a data structure.
In insert operation, priority queue can scale up to multiple threads, which can concurrently update
the shared data. In contrast, deleteMin operation is inherently serial: at each time only one thread
can update the shared data, since all threads compete for the highest-priority element of the queue.
However, as we mentioned, in relaxed priority queues (e.g., SprayList [13]]), even deleteMin operation

can be parallelized to some extent.

4.2.2 Implementation Details

Figures and [4.6| present the code of a priority queue implementation using Nuddle. We denote
with red color the core operations of the base algorithm, which is used as the underlying concurrent
NUMA-oblivious implementation of Nuddle. Note that even though in this work we focus on priority
queues, Nuddle is a generic framework for any type of concurrent data structure.

Helper Structures. Nuddle includes three helper structures (Figure [4.4), which are needed for
client-server communication. First, the main structure of Nuddle, called struct nuddle_pq, wraps
the base algorithm (nm_oblv_set), and includes a few additional fields, which are used to associate
client thread groups to server threads in the initialization step. Second, each client thread has its
own struct client structure with a dedicated request and a dedicated response cache line. The
request cache line is exclusively written by the client thread and read by the associated server thread,
while the response cache line is exclusively written by the server thread and read by all client threads
that belong to the same client thread group. Third, each server thread has its own struct server

structure that includes an array of requests (my_clients), each of them is shared with a client thread,

114 Chapter 4

43 #define cache_line_size 128

44 typedef char cache_line[cache_line_size];
45

46 struct nuddle_pq {

47 nm_oblv_set *base_pq;

48 int servers, groups, clnt_per_group;

49 int server_cnt, clients_cnt, group._cnt;
50 cache_line =»requests[groups][clnt_per_group];
51 cache_line =»responses[groups];

52 lock =global_lock;

53 };

54

55 struct client {

56 cache_line =*request, *response;

57 int clnt_pos;

58 };

59

60 struct server {

61 nm_oblv_set *base_pq;

62 cache_line *my_clients[], *my_responses[];
63 int my_groups, clnt_per_group;
64 };

Figure 4.4: Helper structures of Nuddle.

and an array of responses (my_responses), each of them is shared with all client threads of the same
client thread group.

Initialization Step. Figure[4.5|describes the initialization functions of Nuddle. in4tPQ() initial-
izes (i) the underlying data structure using the corresponding function of the base algorithm (line 25),
and (ii) the additional fields of struct nuddle_pq. For this function, programmers need to specify
the number of server threads and the maximum number of client threads to properly allocate cache
lines needed for communication among them. Programmers also specify the size of the client thread
group (line 27), which is typically 7 or 15, if the cache line is 64 or 128 bytes, respectively. As ex-
plained in ffwd [15], assuming 8-byte return values, a dedicated 64-byte (or 128-byte) response cache
line can be shared between up to 7 (or 15) client threads, because it also has to include one additional
toggle bit for each client thread. After initializing struct nuddle_pgq, each running thread calls ei-
ther initClient () or initServer() depending on its role. Each thread initializes its own helper
structure (struct client or struct server) with request and response cache lines of the corre-
sponding shared arrays of struct nuddle_pgq. Server threads undertake client thread groups with
a round-robin fashion, such that the load associated with client threads is balanced among them.
In function ¢nitServer(), it is the programmer’s responsibility to properly pin software server
threads to hardware contexts (line 56), such that server threads are located in the same NUMA node,
and the programmer fully benefits from the Nuddle technique. Moreover, given that client threads
of the same client thread group share the same response cache line, the programmer could pin client
threads of the same client thread group to hardware contexts of the same NUMA node to minimize
cache coherence overheads. Finally, since the request and response arrays of struct nuddle_pq
are shared between all threads, a global lock is used when updating them to ensure mutual exclusion.

Main API. Figure shows the core functions of Nuddle, where we omit the corresponding

Chapter 4 115

65 struct nuddle_pq =initPQ(int servers, int max.clients) {

66
67
68
69
70
71
72
73
74
75
76
77
78
79 }
80

struct nuddle_pq *pq = allocate_nuddle_pgq(Q);
__base_init(pg->base_pq);

pg->servers = Sservers;
pa->clnt_per_group = client_group(cache_line_size);
pg->groups = (max_clients +

pg->clnt_per_group-1) / pg->clnt_per_group;
pg->server_cnt = 0;

pg->client_cnt = 0;

pa->group_cnt = 0;

pg->requests = malloc(groups * clnt_per_group);
pg->responses = malloc(groups);
init_lock(pg->global_lock);

return pq;

81 struct client =initClient(struct nuddle_pq =pq) {

82
83
84
85
86
87
88
89
90
91
92
93
94 }
95

struct client =*cl = allocate_client();

acquire_lock (pg->global_lock);

cl->request = &(pg->requests[group_cnt][clients_cnt]);

cl->response = &(pg->responses[group_cnt]);

cl->pos = pg->client_cnt;

pg->client_cnt++;

if (pg->client_cnt % pg->clnt_per_group == 0) {
pg->clients_cnt = 0;
pg->group_cnt++;

}
release_lock (pg->global_lock);
return cl;

96 struct server =initServer(struct nuddle_pg =*pq, int core)

97 {
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114 }

set_affinity(core);

struct server =srv = allocate_server();
srv->base_pq = pq->base_pq;
srv->my_groups = 0;

srv->clnt_per_group = pgq->clnt_per_group;
acquire_lock(pg->global_lock);

int j = 0;
for(i = 0; i < pg->groups; i++)
if(i % pg->servers == pg->server_cnt) {
srv->my_clients[j] = pg->requests[i][0..gr_clnt];
srv->my_responses[j++] = pg->responses[i];
Srv->my_groups++;
}

pg->server_cnt++;
release_lock(pg->global_lock);
return srv;

Figure 4.5: Initialization functions of Nuddle.

functions for deleteMin operation, since they are very similar to that of insert operation. Both insert

and deleteMin operations of Nuddle have similar API with the classic API of prior state-of-the-art

priority queue implementations [13,37,55,/56]]. However, we separate the corresponding functions

for client threads and server threads. A client thread writes its request to a dedicated request cache

116 Chapter 4

line (line 75) and then waits for the server thread’s response. In contrast, a server thread directly
executes operations in the data structure using the core functions of the base algorithm (line 82).
Moreover, a server thread can serve client threads using the serve_requests() function. A server
thread iterates over its own client thread groups and executes the requested operations in the data
structure. The server thread buffers individual return values for clients to a local cache line (resp
in lines 92 and 94) until it finishes processing all requests for the current client thread group. Then,
it writes all responses to the shared response cache line of that client thread group (line 96), and

proceeds to its next client thread group.

115 int insert_client(struct client =cl, int key, int64t value)

116 {

117 cl->request = write_req("insert", key, value);
118 while (cl->response[cl->pos] == 0) ;

119 return cl->response[cl->pos];

120 }

121

122 int insert_server (struct server =*srv, int key, int64t value)
123 {

124 return __base_insrt(srv->base_pq, key, value);
125 }

126

127 void serve_requests(struct server =srv) {
128 for(i = 0; i < srv->mygroups; i++) {

129 cache_line resp;

130 for(j = 0; j < srv->clnt_per_group; j++) {

131 key = srv->my_clients[i][j].key;

132 value = srv->my_clients[i][j].value;

133 if (srv->my_clients[i][j].op == "insert")

134 resp[j] = __base_insrt(srv->base_pqg, key, value);
135 else if (srv->my_clients[i][j].op == "deleteMin")
136 resp[j] = __base_delMin(srv->base_pq);

137 }

138 srv->my_responses[i] = resp;

139}

140 }

Figure 4.6: Functions used by server threads and client threads to perform operations using Nuddle.

4.3 SmartPQ

We propose SmartPQ, an adaptive concurrent priority queue which tunes itself by dynamically switch-
ing between NUMA-oblivious and NUMA-aware algorithmic modes, in order to perform best in all
contention workloads and at any point in time, even when contention varies over time.

Designing an adaptive priority queue involves addressing two major challenges: (i) how to switch
from one algorithmic mode to the other with low overhead, and (ii) when to switch from one algorith-
mic mode to the other.

To address the first challenge, we exploit the fact that the actual underlying implementation of
Nuddle is a concurrent NUMA-oblivious implementation. We select Nuddle, as the NUMA-aware
algorithmic mode of SmartPQ, and its underlying base algorithm, as the NUMA-oblivious algorithmic

Chapter 4 117

mode of SmartPQ. Threads can perform operations in the data structure using either Nuddle or its
underlying base algorithm, with no actual change in the way data is accessed. As a result, SmartPQ
can switch between the two algorithmic modes without needing a synchronization point between
transitions, and without violating correctness.

To address the second challenge, we design a simple decision tree classifier (Section , and
train it to select the best-performing algorithmic mode between Nuddle, as the NUMA-aware algorith-
mic mode of SmartPQ, and its underlying base algorithm, as the NUMA-oblivious mode of SmartPQ.
Finally, we add a lightweight decision-making mechanism in SmartPQ (Section [4.3.2) to dynamically

tune itself over time between the two algorithmic modes. We describe more details in next sections.

4.3.1 Selecting the Algorithmic Mode

The Need for a Machine Learning Approach

Selecting the best-performing algorithmic mode can be solved in various ways. For instance, one
could take an empirical exhaustive approach: measure the throughput achieved by the two algorith-
mic modes for all various contention scenarios on the target NUMA system, and then use the algo-
rithmic mode that achieves the highest throughput on future runs of the same contention workload
on the target NUMA system. Even though this is the most accurate method, it (i) incurs substan-
tial overhead and effort to sweep over all various contention workloads, and (ii) would need a large
amount of memory to store the best-performing algorithmic mode for all various scenarios. Fur-
thermore, it is not trivial to construct a statistical model to predict the best-performing algorithmic
mode, since the performance of an algorithm is also affected by the characteristics of the underlying
computing platform. Figure [4.7| summarizes these observations by comparing Nuddle with its un-
derlying base algorithm in a 4-node NUMA system. For the base algorithm, we use alistarh_herlihy
priority queue [[13|[14], since this is the NUMA-oblivious implementation that achieves the highest

performance, according to our evaluation (Section [4.4).

Initial Size = 10K, Key Range = 1M Initial Size = 100K, Number of Threads = 50

Insert - DeleteMin (%) = 80-20 Insert - DeleteMin (%) = 70-30
o Il alistarh_herlihy o Il alistarh_herlihy
2 16/ B Nuddle & 20/ B Nuddle
> >
3 S 46
: :
2 =2
Q Q
(=] (=]
=2 2
o ° 4.
o= =
= =

15 29 0 2K 10K

Number of Threads Key Range
(a) Varying the number of threads. (b) Varying the key range.

Figure 4.7: Throughput achieved by Nuddle (using 8 server threads) and its underlying NUMA-
oblivious base algorithm, i.e., alistarh_herlihy , when we vary (a) the number of threads that
perform operations in the shared data structure, and (b) the key range of the workload.

Figure demonstrates that the best-performing algorithmic mode depends on multiple pa-

118 Chapter 4

rameters, such as the number of threads that perform operations in the shared data structure, the
size of the data structure, the operation workload, i.e., the percentage of insert/deleteMin opera-
tions. Specifically, when the number of threads increases, we may expect that the performance of
the NUMA-oblivious alistarh_herlihy degrades due to higher contention. In contrast, with 80% insert
operations when increasing the number of threads to 29, alistarh_herlihy outperforms Nuddle. This is
because the size of the priority queue and the range of keys used in the workload are relatively large,
while the percentage of deleteMin operations is low. In this scenario, threads may not compete for
the same elements, working on different parts of the data structure, and thus, the NUMA-oblivious
alistarh_herlihy achieves higher throughput compared to the NUMA-aware Nuddle.

Figure[4.7p demonstrates that the best-performing algorithmic mode cannot be straightforwardly
predicted, and also depends on the characteristics of underlying hardware [4]. In insert-dominated
workloads, as the key range increases, threads may update different parts of the shared data structure.
We might, thus, expect that after a certain point of increasing the key range, the NUMA-oblivious
alistarh_herlihy will always outperform Nuddle, since the contention decreases. However, we note
that, even though the performance of Nuddle remains constant, as expected, the performance of al-
istarh_herlihy highly varies as the key range increases due to the hyperthreading effect. When using
more than 32 threads, hyperthreading is enabled in our NUMA system (Section[4.4). The hyperthread-
ing pair of threads shares the L1 and L2 caches, and thus, these threads may either thrash or benefit
from each other depending on the characteristics of L1 and L2 caches (e.g., size, eviction policy), and
the elements accessed in each operation.

Considering the aforementioned non-straightforward behavior, we resort to a machine learning

approach as the basis of our prediction mechanism.

Decision Tree Classifier

We formulate the selection of the algorithmic mode as a classification problem, and leverage super-
vised learning techniques to train a simple classifier to predict the best-performing algorithmic mode
for each contention workload. For our classifier, we select decision trees, since they are commonly
used in classification models for multithreaded workloads [66,74-77,516-518]], and incur low train-
ing and inference overhead. Moreover, they are easy to interpret and thus, be incorporated to our
proposed priority queue (Section[4.3.2). We generate the decision tree classifier using the scikit-learn
machine learning toolkit [519].

1) Class Definition: We define the following classes: (a) the NUMA-oblivious class that stands
for the NUMA-oblivious algorithmic mode, (b) the NUMA-aware class that stands for the NUMA-
aware algorithmic mode, and (c) the neutral class that stands for a tie, meaning that either a NUMA-
aware or a NUMA-oblivious implementation can be selected, since they achieve similar performance.
We include a neutral class for two reasons: (i) when using only one socket of a NUMA system, NUMA-
aware implementations deliver similar throughput with NUMA-oblivious implementations, and (ii)
in an adaptive data structure, which dynamically switches between the two algorithmic modes, we

want to configure a transition from one algorithmic mode to another to occur when the difference

Chapter 4 119

Feature Definition

The number of active threads

#Threads .

that perform operations in the data structure
Size The current size of the priority queue
Key_range The range of keys used in the workload

% insert/deleteMin The percentage of insert/deleteMin operations

Table 4.1: The features of the contention workload which are used for classification.

in their throughput is relatively high, i.e., greater than a certain threshold. Otherwise, the adaptive
data structure might continuously oscillate between the two modes, without delivering significant
performance improvements or even causing performance degradation.

2) Extracted Features: Table [4.1|explains the four features of the contention workload which are
used in our classifier targeting priority queues. We assume that the contention workload is known
a priori, and thus, we can easily extract the features needed for classification. Section discusses
how to on-the-fly extract these features.

3) Generation of Training Data: To train our classifier, we develop microbenchmarks, in which
threads repeatedly execute random operations on the priority queue for 5 seconds. We select Nuddle,
as the NUMA-aware implementation, and alistarh_herlihy, as its underlying NUMA-oblivious imple-
mentation, since this is the best-performing NUMA-oblivious priority queue (Section[4.4). We use a
variety of values for the features needed for classification (Table [4.1). Our training data set consists
of 5525 different contention workloads. Finally, we pin software threads to hardware contexts of the
evaluated NUMA system in a round-robin fashion, and thus, the classifier is trained with this thread
placement. We leave the exploration of the thread placement policy for future work.

4) Labeling of Training Data: Regarding the labeling of our training data set, we set the thresh-
old for tie between the two algorithmic modes to an empirical value of 1.5 Million operations per
second. When the difference in throughput between the two algorithmic modes is less than this
threshold, the neutral class is selected as label. Otherwise, we select the class that corresponds to the
algorithmic mode that achieves the highest throughput.

The final decision tree classifier has only 180 nodes, half of which are leaves. It has a very low
depth of 8, that is the length of the longest path in the tree, and thus, a very low traversal cost (2-4

ms in our evaluated NUMA system).

4.3.2 Implementation Details

Figure |4.8| presents the modified code of Nuddle adding the decision-making mechanism (using
green color) to implement SmartPQ. We extend the main structure of Nuddle, renamed to struct
smartpq, by adding an additional field, called algo, to keep track the current algorithmic mode,
(either NUMA-oblivious or NUMA-aware). Similarly, struct client and struct server struc-
tures are extended with an additional algo field (e.g., line 111), which is a pointer to the algo

field of struct smartpq. Each active thread initializes this pointer either in ¢nitClient () or

120 Chapter 4

141 struct smartpq {

142 nm oblv_set x*base_pq;

143 int servers, groups, clnt_per_group;

144 int server_cnt, clients_cnt, group_cnt;

145 cache_line =»requests[groups][clnt_per_group];
146 cache_line =*responses[groups];

147 lock xglobal_lock;

148 int *algo; // 1: NUMA-oblivious (default), 2: NUMA-aware
149 };

150

151 struct client {

152 nm_oblv_set *base_pq;

153 int *algo;

154 cache_line =*request, *response;

155 int clnt_pos;

156 };

157

158 struct client =initClient(struct smartpq #pq) {
159 ... lines 40-49 of Fig. 5

160 cl->base_pq = pg->base_pq;

161 cl->algo = &(pg->algo);

162 release_lock (pg->global_lock);

163 return cl;

164 }

165

166 int insert_client(struct client =cl, int key, float value) {
167 if(*(cl-»algo) == 1) {

168 return _base_insert(cl->base_pq,key,value);
¢ 169 } else { // *(cl->algo) ==

170 ... lines 75-77 of Fig. 6

171}

172 '}

173

174 void serve_requests(struct server =srv) {
175 if(*(srv->algo) == 2){

176 for(i = 0; i < srv->mygroups; i++) {

177 cache_line resp;

178 for(j = 0; j < srv->clnt_per_group; j++) {

179 key = srv->my_clients[i][j].key;

180 value = srv->my_clients[i][j].value;

181 if (srv->my_clients[i][j].op == "insert")

182 resp[j] = _base insrt(srv->base_pq, key, value);
183 else if (srv->my_clients[i][j].op == "deleteMin")
184 resp[j] = __base_delMin(srv->base_pq);

185 }

186 srv->my_responses[i] = resp;

187 }

188 } else

189 return;

190 }

191

192 void decisionTree(struct server struct client =str, int nthreads,
int size, int key_range, double insert)\._deleteMin) {
193 int algo = 0;

194 ... code for decision tree classifier ...
195 if (algo '=0) // 0: neutral

196 *(str->algo) = algo;

197 }

Figure 4.8: The modified code of Nuddle with the decision-making mechanism to implement SmartPQ.

Chapter 4 121

initServer() depending on its role (e.g., line 119). This way, all threads share the same algorith-
mic mode at any point in time. In struct client, we also add a pointer to the shared data struc-
ture (line 110), which is used by client threads to directly perform operations in the data structure
in case of NUMA-oblivious mode. Specifically, we modify the core functions of client threads, i.e.,
insert_client () and deleteMin_client (), such that client threads either directly execute their
operations in the data structure (e.g., line 126), or delegate them to server threads (e.g., line 127-128),
with respect to the current algorithmic mode. In contrast, the core functions of server threads do
not need any modification. Finally, we wrap the code of serve_requests function, i.e., the lines
86-97 of Figure [4.6] with an if/else statement on the algo field (lines 133, 146 in Fig. [4.8), such that
server threads poll at client threads’ requests only in NUMA-aware mode. In NUMA-oblivious mode,
serve_requests function returns without doing nothing. This way, programmers do not need to
take care of calls on this function in their code, when the NUMA-oblivious mode is selected.

The decisionTree () function describes the interface with our proposed decision tree classifier,
where the input arguments are associated with its features. In frequent time lapses, one or more
threads may call this function to check if a transition to another algorithmic mode is needed. If this is
the case, the algo field of struct smartpq is updated (line 154 in Fig.[4.8), and SmartPQ switches
algorithmic mode, i.e., all active threads start executing their operations using the new algorithmic
mode. If the classifier predicts the neutral class (line 153), the algo field is not updated, and thus

SmartPQ remains at the currently selected algorithmic mode.

4.4 Experimental Evaluation

In our experimental evaluation, we use a 4-socket Intel Sandy Bridge-EP server equipped with 8-core

Intel Xeon CPU E5-4620 processors providing a total of 32 physical cores and 64 hardware contexts.

The processor runs at 2.2GHz and each physical core has its own L1 and L2 cache of sizes 64KB and

256KB, respectively. A 16 MB L3 cache is shared by all cores in a NUMA socket and the RAM is 256GB.

We use GCC 4.9.2 with -O3 optimization flag enabled to compile all implementations.

Our evaluation includes the following concurrent priority queue implementations:

— alistarh_fraser [[13,48]: A NUMA-oblivious, relaxed priority queue [13] based on Fraser’s skip-
list [48]] available at ASCYLIB library [340].

— alistarh_herlihy [13//14]: A NUMA-oblivious, relaxed priority queue [13] based on Herlihy’s skip-
list [14] available at ASCYLIB library [340].

— lotan_shavit [55]: A NUMA-oblivious priority queue available at ASCYLIB library [[340]].

- ffwd [15]: A NUMA-aware priority queue based on the delegation technique [59-63]], which in-
cludes only one server thread to perform operations on behalf of all client threads.

— Nuddle: Our proposed NUMA-aware priority queue, which uses alistarh_herlihy as the underlying
base algorithm.

— SmartPQ: Our proposed adaptive priority queue, which uses Nuddle as the NUMA-aware mode,
and alistarh_herlihy as the NUMA-oblivious base algorithm.

We evaluate the concurrent priority queue implementations in the following way:

122 Chapter 4

— Each execution lasts 5 seconds, during which each thread performs randomly chosen operations.
We also tried longer durations and got similar results.

- Between consecutive operations in the data structure each thread executes a delay loop of 25 pause
instructions. This delay is intentionally added in our benchmarks to better simulate a real-life
application, where operations in the data structure are intermingled with other instructions in the
application.

— At the beginning of each run, the priority queue is initialized with elements the number of which
is described at each figure.

— Each software thread is pinned to a hardware context. Hyperthreading is enabled when using
more than 32 software threads. When exceeding the number of available hardware contexts of the
system, we oversubscribe software threads to hardware contexts.

— We pin the first 8 threads to the first NUMA node, and consecutive client thread groups of 7 client
threads each, to NUMA nodes in a round-robin fashion.

- In NUMA-oblivious implementations, any allocation needed in the operation is executed on de-
mand, and memory affinity is determined by the first touch policy.

— In NUMA-aware implementations, since our NUMA system has 64-byte cache lines, the response
cache line is shared between up to 7 client threads, using 8-byte return values.

— In Nuddle, the first 8 threads represent server threads. Server threads repeatedly execute the
serve_requests function, and then a randomly chosen operation until time is up.

— We have disabled the automatic Linux Balancing [520] to get consistent and stable results.

— All reported results are the average of 10 independent executions with no significant variance.

4.4.1 'Throughput of Nuddle

Figure |4.9| presents the throughput achieved by concurrent priority queue implementations for var-
ious sizes and operation workloads. NUMA-aware priority queue implementations, i.e., ffwd and
Nuddle, achieve high throughput in deleteMin-dominated workloads: Nuddle performs best in all
deleteMin-dominated workloads, while ffwd outperforms NUMA-oblivious implementations in the
small-sized priority queues (e.g., 100K elements). In large-sized priority queues, insert operations
have a larger impact on the total execution time (due to a longer traversal), and thus Nuddle and
NUMA-oblivious implementations perform better than ffwd, since they provide higher thread-level
parallelism. Note that ffwd has single-threaded performance, since at any point in time only one
(server) thread performs operations in the data structure. Moreover, as it is expected, the perfor-
mance of both ffwd and Nuddle saturates at the number of server threads used (e.g., 8 server threads
for Nuddle) to perform operations in the data structure. Finally, we note that the communication
between server and client threads used in NUMA-aware implementations has negligible overhead;
when the number of client threads increases, even though the communication traffic over the in-
terconnect increases, there is no performance drop. Overall, we conclude that Nuddle achieves the
highest throughput in all deleteMin-dominated workloads, and is the most efficient NUMA-aware

approach, since it provides high thread-level parallelism.

Chapter 4 123

alistarh_fraser ~ —%— alistarh_herlihy = —e— lotan_shavit FFWD —&— Nuddle
g 10 100K elements 10 5M elements 10 10M elements
(=]
T8 /‘ 8 8
VAR
s 6 f*‘“- e S —— 6 Wﬁ-’ 6 -
% A\l A‘M
S 4+— | 4 4 _,_‘_fﬁ |
s 4
g \\._'_'_v—‘q—ll—v_ I\
' 2 2 \ 7 v 2 \ i 4
5 CS——————— L ——— —— — N
- 0 i 0 i 0 i
- 2 4 8 15 22 29 36 43 50 57 106155 2 4 8 15 22 29 36 43 50 57 106155 2 4 8 15 22 29 36 43 50 57 106155
3Y 10 10 10
g8
n a 8 8 8
] y
=2 6 6 B e N — —t
s W(’ﬂ
o a 4 4 = 'Y 4 =
35 \ N N\
23 2f \ = 2 2
¢ £ &ﬂ—!-—v—u# b SDUDDUDNED WA | U -t
2F 0 0 i 0 i
- 2 4 8 15 22 29 36 43 50 57 106155 2 4 8 15 22 29 36 43 50 57 106155 2 4 8 15 22 29 36 43 50 57 106155
S 30 30 30
°I
A1 / 25 ¥ 25
g 20]
£
§ 15 sy
% 10|
a
o 5 pa—
7
g

Number of Threads

Figure 4.9: Throughput of concurrent priority queue implementations. The columns show different
priority queue sizes using the key range of double the elements of each size. The rows show different
operation workloads. The vertical line in each plot shows the point after which we oversubscribe
software threads to hardware contexts.

On the other hand, NUMA-oblivious implementations incur high performance degradation in
high-contention scenarios, such as deleteMin-dominated workloads, when using more than one NUMA
node (i.e., after 8 threads). As already discussed in prior works [5,16,/61,521-523], the non-uniformity
in memory accesses and cache line invalidation traffic significantly affects performance in high-
contention scenarios. In insert-dominated workloads, which incur lower contention, even though
lotan_shavit priority queue still incurs performance degradation when using more than one NUMA
nodes of the system, the relaxed NUMA-oblivious implementations, i.e., alistarh_fraser and alis-
tarh_herlihy priority queues, achieve high scalability. This is because relaxed priority queues decrease
both (i) the contention among threads, and (ii) the cache line invalidation traffic: the deleteMin op-
eration returns (with a high probability) an element among the first few (high-priority) elements of
the queue, and thus, threads do not frequently compete for the same elements. Finally, we observe
that alistarh_herlihy priority queue achieves higher performance benefits over alistarh_fraser prior-
ity queue, when we oversubscribe software threads to the available hardware contexts of our system.
Overall, we find that in insert-dominated workloads, the relaxed NUMA-oblivious implementations

significantly outperform the NUMA-aware ones.

To sum up, we conclude that there is no one-size-fits-all solution, since none of the priority queues

performs best across all contention workloads. Nuddle achieves the highest throughput in high con-

124 Chapter 4

tention scenarios, while alistarh_herlihy performs best in low and medium contention scenarios. It
is thus desirable to design a new approach for a concurrent priority queue to perform best under all

various contention scenarios.

4.4.2 Throughput of SmartPQ

Classifier Accuracy

We evaluate the efficiency of our proposed classifier (Section [4.3.1) using two metrics: (i) accuracy,
and (ii) misprediction cost. First, we define the accuracy of the classifier as the percentage of correct
predictions, where a prediction is considered correct, if the classifier predicts the algorithmic mode
(either the NUMA-aware Nuddle or the NUMA-oblivious alistarh_herlihy) that achieves the best per-
formance between the two. We use a test set of 10780 different contention workloads, where we ran-
domly select the values of the features in each workload. In the above test set, our classifier has 87.9%
accuracy, i.e., it mispredicts 1300 times in 10780 different contention workloads. Second, we define
the misprediction cost as the performance difference between the correct (best-performing) algorith-
mic mode and the wrong predicted mode, normalized to the performance of the wrong predicted
mode. Specifically, assuming the throughput of the wrong predicted and correct (best-performing)
algorithmic mode is Y and X respectively, the misprediction cost is defined as ((X —Y)/Y") x 100%.
In 1300 mispredicted workloads, the geometric mean of misprediction cost for our classifier is 30.2%.
We conclude that the proposed classifier has high accuracy, and in case of misprediction, incurs low

performance degradation.

Varying the Contention Workload

We present the performance benefit of SmartPQ in synthetic benchmarks, in which we vary the
contention workload over time, and compare it with Nuddle and its underlying base algorithm, i.e.,
alistarh_herlihy priority queue. In all benchmarks, we change the contention workload every 25
seconds. In SmartPQ, we set one dedicated sever thread to call the decision tree classifier every second,
in order to check if a transition to another algorithmic mode is needed. Figure and Figure
show the throughput achieved by all three schemes, when we vary one and multiple features in the
contention workload, respectively. Table [4.2]and Table [4.3|show the features of the workload as they
vary during the execution for the benchmarks evaluated in Figure and Figure respectively.
Note that the current size of the priority queue changes during the execution due to successful insert
and deleteMin operations.

We make three observations. First, as already shown in Section there is no one-size-fits-
all solution, since neither Nuddle nor alistarh_herlihy performs best across all various contention
workloads. For instance, in Figure even though the performance of Nuddle remains constant,
it outperforms alistarh_herlihy, when having 15 running threads, i.e., using 2 NUMA nodes of the
system. Second, we observe that SmartPQ successfully adapts to the best-performing algorithmic

mode, and performs best in all contention scenarios. In Figure|4.11} even when multiple features in the

Chapter 4 125

Time (sec) Current Size Key Range Number of Threads Insert- DeleteMin (%)

0 1149 100K 50 75-25
25 812 2K 50 75-25
50 485 1M 50 75-25
75 2860 10K 50 75-25

100 2256 50M 50 75-25

(a) Varying the key range in the workload.

Time (sec) Current Size Key Range Number of Threads Insert- DeleteMin (%)

0 1166 20M 57 65-35
25 15567 20M 29 65-35
50 15417 20M 15 65-35
75 15297 20M 43 65-35

100 15346 20M 15 65-35

(b) Varying the number of threads that perform operations in the data structure.

Time (sec) Current Size Key Range Number of Threads Insert - DeleteMin (%)

0 M 5M 22 50-50
25 140 5M 22 100-0
50 7403 5M 22 30-70
75 962 5M 22 100-0

100 8236 5M 22 0-100

(c) Varying the percentage of insert/deleteMin operations.

Table 4.2: Features of the contention workload for benchmarks evaluated in Figure We use bold
font on the features that change in each execution phase.

Number of Threads = 50, Insert (%) - DeleteMin (%) = 75-25 Key Range = 20M, Insert (%) - DeleteMin (%) = 65-35 Key Range = 5M, Number of Threads = 22
17.5 i
20 [40—
~ i i
- ,‘;15"’ s 357 —— alistarh_herlihy —e— Nuddle ~—#— SmartPQ |
& s 2125 2 30 l\
@ @ P
a a a
3 210.0 S 25
2 = Nt Y| =
5 10 J g 75 8 20
£ s £ £ 15 f 1
o o o
g 2 50 3 10l me
£ £ = 'Y
F F =]
—%— alistarh_herlihy ~—e— Nuddle ~—#— SmartPQ 257 —— alistarh_herlihy ~ —e— Nuddle —m— smartPQ | 5 /"—
i i i i o " Ty ‘
L N A A P L Y o L S A P . L Y o T omomomomounmomomMomomomomonon
FFNNMMQ?MV\\DOI\FNGO\MES::‘N_P: FFNNMI‘!QQIAIA\D‘DFV‘NNV\G?_Q::ﬁ?_‘ FFNNMMQQMM\DWFFNQ@O?_&::‘Q‘F—I
Time (sec) Time (sec) Time (sec)
(a) Varying the key range. (b) Varying the number of threads. (c) Varying the operation
workload.

Figure 4.10: Throughput achieved by SmartPQ, Nuddle and its underlying base algorithm (alis-
tarh_herlihy), in synthetic benchmarks, in which we vary a) the key range, b) the number of threads
that perform operations in the data structure, and c) the percentage of insert/deleteMin operations in
the workload.

contention workload vary during the execution, SmartPQ outperforms alistarh_herlihy and Nuddle
by 1.87x and 1.38 X on average, respectively. Note that any of the contention workloads evaluated in
Figures and belongs in the training data set used for training our classifier. Third, we note

that the decision-making mechanism of SmartPQ has very low performance overheads. Across all

126 Chapter 4

evaluated benchmarks, SmartPQ achieves only up to 5.3% performance slowdown (i.e., when using a
range of 50M keys in Figure over the corresponding baseline implementation (alistarh_herlihy
priority queue). Note that since the proposed decision tree classifier has very low traversal cost
(Section , we intentionally set a frequent time interval (i.e., one second) for calling the classifier,
such that SmartPQ detects the contention workload change on time, and quickly adapts itself to the
best-performing algorithmic mode. We also tried large time intervals, and observed that SmartPQ
slightly delays to detect the contention workload change, thus achieving lower throughput in the

transition points.

Overall, we conclude that SmartPQ performs best across all contention workloads and at any
point in time, and incurs negligible performance overheads over the corresponding baseline imple-

mentation.

Time (sec) Current Size Key Range Number of Threads Insert - DeleteMin (%)

0 M 10M 57 50-50
25 26 10M 36 70-30
50 12 20M 36 50-50
75 79 20M 36 80-20

100 29K 20M 50 80-20
125 319K 100M 50 50-50
150 13 100M 57 50-50
175 524K 100M 22 100-0
200 524K 100M 22 50-50
225 1142 100M 22 50-50
250 463 200M 57 0-100
275 253 200M 57 100-0
300 33K 20M 57 0-100
325 142 20M 29 80-20
350 25K 20M 29 50-50

Table 4.3: Features of the contention workload for benchmarks evaluated in Figure We use bold
font on the features that change in each execution phase.

—— alistarh_herlihy —e— Nuddle —a— SmartPQ Harmonic Mean
-

60 —~ 107
@
S 50 k

v w 87
? a
a 40 o

s 26
= o
< 30]

E pru-a-u-g £ 4
2 2 &
E) \ 3
2)—H—.—- =

S 10\ ptas g2
£ \-o—o—o—/(Norvra O

a]

vomomomomomomomomomomomomomolnomomomomomomomomomomomomoInomomomomomomomomomomom R ,’ \e Q
FENANMMTTNNOVOONNOONAOCO " " ANMMNMITITNNOONNONNNOCO " ANMMITNNOVOONNOONANOCO T =AINMMIETTINNOONN \\\‘ é& ‘_?
FFFFFFFFFFFFFFFFFFFF NANANANANNANNNNNNNNNNNNNNMMMMmMMmMMmMmMMmMmMmMmmMmmMmmnmm \\9‘ ‘\\\ $®$‘
. -
Time (sec) a®

Figure 4.11: Throughput achieved by SmartPQ, Nuddle and its underlying base algorithm (alis-

tarh_herlihy), in synthetic benchmarks, in which we vary multiple features in the contention work-
load.

Chapter 4 127

4.5 Discussion and Future Work

In Section we assume that the contention workload is known a priori to extract the features
needed for classification. To on-the-fly extract these features, and dynamically detect when con-
tention changes, the main structure of SmartPQ, i.e., struct smartpq, needs to be enriched with
additional fields to keep track of workload statistics (e.g., the number of completed insert/deleteMin
operations, the number of active threads that perform operations on the data structure, the minimum
and/or maximum key that has been requested so far). Active threads that perform operations on the
data structure could atomically update these statistics. In frequent time lapses, either a background
thread or an active thread could extract the features needed for classification based on the work-
load statistics, and call the classifier to predict if a transition to another algorithmic mode is needed.
Finally, an additional parameter could be also added in SmartPQ to configure how often to collect
workload statistics.

In our experimental evaluation, we pin server threads on a single NUMA node and client threads
on all nodes. We have chosen to do so (i) for simplicity, given that this approach fits well with our
microbenchmark-based evaluation, and (ii) because this is par with prior works on concurrent data
structures [13,15}(37,[39, 45,52, 54, 64,314,339, 340, 344, 524-527]. In a real-world scenario, where
SmartPQ is used as a part of a high-level application, client threads do not need to be pinned in
hardware contexts, and they can be allowed to run in any core of the system. However, for our
approach to be meaningful server threads need to be limited on a single NUMA node. This can easily
be done by creating the server threads when SmartPQ is initialized, and pinning them to hardware
contexts that are located at the same NUMA node. In this case, server threads are background threads
that only accept and serve requests from various client threads, which are part of the high-level
application.

Finally, even though we focus on a microbenchmark-based evaluation to cover a wide variety
of contention scenarios, it is one of our future directions to explore the efficiency of SmartPQ in
real-world applications, such as web servers [528,|529]], graph traversal applications [37,353] and
scheduling in operating systems [530]]. As future work, we also aim to investigate the applicability of
our approach in other data structures, that may have similar behavior with priority queues (e.g., skip
lists, search trees), and extend our proposed classifier (e.g., adding more features) to cover a variety

of NUMA CPU-centric systems with different architectural characteristics.

4.6 Recommendations

Recommendation. Design adaptive parallel algorithms and concurrent data structures that on-the-fly
adjust their parallelization approach and synchronization scheme depending on the dynamic workload
demands and contention.

Our work demonstrates (Figures |4.1|and that there is no one-size-fits-all algorithmic mode (be-
tween NUMA-oblivious and NUMA-aware) for a concurrent priority queue in modern computing

systems: the best-performing algorithmic mode depends on multiple characteristics, including the

128 Chapter 4

contention/operation workload, the size of the data structure and the underlying hardware plat-
form [4]. Such characteristics can dynamically change during runtime, when performing various
operations (e.g., insert, deleteMin) in the data structures used. Therefore, we conclude that to achieve
high system performance in real-world scenarios, we need to dynamically tune the configuration of
parallel kernels based on the characteristics of the current load at each time. To this end, we recom-
mend that software designers propose adaptive parallel algorithms and concurrent data structures
that dynamically adjust their parallelization technique and synchronization approach depending on
the dynamic contention and workload demands. For example, machine learning, dynamic profiling

and statistical approaches [4,285//531]] could be integrated in parallel kernels to improve performance.

4.7 Related Work

To our knowledge, this is the first work to propose an adaptive priority queue for NUMA systems,
which performs best under all various contention workloads, and even when contention varies over
time. We briefly discuss prior work.

Concurrent Priority Queues. A large corpus of work proposes concurrent algorithms for pri-
ority queues [13}37-46,55,/56], or generally for skip lists [[14,{47-54]]. Recent works [55,56] designed
lock-free priority queues that separate the logical and the physical deletion of an element to increase
parallelism. Alistarh et al. [[13]] design a relaxed priority queue, called SprayList, in which deleteMin
operation returns with a high probability, an element among the first O(plog 3p) elements of the
priority queue, where p is the number of threads. Sagonas et al [[45] design a contention avoiding
technique, in which deleteMin operation returns the highest-priority element of the priority queue
under low contention, while it enables relaxed semantics when high contention is detected. Specif-
ically, under high-contention a few deleteMin operations are queued, and later several elements are
deleted from the head of the queue at once via a combined deletion operation. Heidarshenas et al. [472]
design a novel architecture for relaxed priority queues. These prior approaches are NUMA-oblivious
implementations. Thus, in NUMA systems, they incur significant performance degradation in high-
contention scenarios (e.g., deleteMin-dominated workloads in Section . In contrast, Calciu et
al. [39] propose a NUMA-friendly priority queue employing the combining and elimination tech-
niques. Elimination allows the complementary operations, i.e., insert with deleteMin, to complete
without updating the data structure, while combining is a technique similar to the delegation tech-
nique [59-63]] of Nuddle and ffwd [15]. Finally, Daly et al. [339] propose an efficient technique to
obtain NUMA-aware skip lists, which however, can only be applied to skip list-based data structures.
In contrast, Nuddle is a generic technique to obtain NUMA-aware data structures.

Black-Box Approaches. Researchers have also proposed black-box approaches: any data struc-
ture can be made wait-free or NUMA-aware without effort or knowledge on parallel programming or
NUMA architectures. Herlihy [532] provides a universal method to design wait-free implementations
of any sequential object. However, this method remains impractical due to high overheads. Hendler
et al. [57]] propose flat combining; a technique to reduce synchronization overheads by executing mul-

tiple client threads’ requests at once. Despite significant improvements [58], this technique provides

Chapter 4 129

high performance only for a few data structures (e.g., synchronous queues). ffwd [15] is black-box ap-
proach, which uses the delegation technique [59-63] to eliminate cache line invalidation traffic over
the interconnect. However, ffwd is limited to single threaded performance. Calciu et al. [64] propose
a black-box technique, named Node Replication, to obtain concurrent NUMA-aware data structures.
In Node Replication, every NUMA node has replicas of the shared data structure, which are syn-
chronized via a shared log. Even though ffwd and Node Replication are generic techniques to obtain
NUMA-aware data structures, similarly to Nuddle, both of them use a serial asynchronized implemen-
tation as the underlying base algorithm. Therefore, if they are used as the NUMA-aware algorithmic
mode in an adaptive data structure, which dynamically tunes itself between a NUMA-oblivious and
a NUMA-aware mode, both ffwd and Node Replication need a synchronization point between tran-
sitions to ensure correctness. Consequently, they would incur high performance overheads, when
transitions between algorithmic modes happen at a non-negligible frequency.

Machine Learning in Data Structures. Even though machine learning is widely used to im-
prove performance in many emerging applications [66-78]], there are a handful of works [65]79] that
leverage machine learning to design highly-efficient concurrent data structures. Recently, Eastep
et al. [79] use reinforcement learning to on-the-fly tune a parameter in the flat combining tech-
nique [57,/58], which is used in skip lists and priority queues. Kraska et al. [65] demonstrate that
machine learning models can be trained to predict the position or existence of elements in key-value
lookup sets, and discuss under which conditions learned index models can outperform the traditional

indexed data structures (e.g., B-trees).

4.8 Summary

We propose SmartPQ, an adaptive concurrent priority queue for NUMA architectures, which performs
best under all various contention scenarios, and even when contention varies over time. SmartPQ has
two key components. First, it is built on top of Nuddle; a generic low-overhead technique to obtain
efficient NUMA-aware data structures using any concurrent NUMA-oblivious implementation as its
backbone. Second, SmartPQ integrates a lightweight decision-making mechanism, which is based
on a simple decision tree classifier, to decide when to switch between Nuddle, i.e., a NUMA-aware
algorithmic mode, and its underlying base algorithm, i.e., a NUMA-oblivious algorithmic mode. Our
evaluation over a wide range of contention scenarios demonstrates that SmartPQ switches between
the two algorithmic modes with negligible overheads, and significantly outperforms prior schemes,
even when contention varies over time. We conclude that SmartPQ is an efficient concurrent priority
queue for NUMA systems, and hope that this work encourages further study on adaptive concurrent

data structures for NUMA architectures.

130 Chapter 4

CHAPTER 5

SynCron

5.1 Overview

Recent advances in 3D-stacked memories [354-359]] have renewed interest in Near-Data Process-
ing (NDP) [[135}/191,1258,360]. NDP involves performing computation close to where the applica-
tion data resides. This alleviates the expensive data movement between processors and memory,
yielding significant performance improvements and energy savings in parallel applications. Plac-
ing low-power cores or special-purpose accelerators (hereafter called NDP cores) close to the mem-
ory dies of high-bandwidth 3D-stacked memories is a commonly-proposed design for NDP sys-
tems [[1354/138}(1391/188,(189,191-193}(196,/197,2001201},203,[204}206,{207,254-257,(3081360-369]. Typical
NDP architectures support several NDP units connected to each other, with each unit comprising
multiple NDP cores close to memory [135}/206,207,308.362,368,369]]. Therefore, NDP architectures
provide high levels of parallelism, low memory access latency, and large aggregate memory band-
width.

Recent research demonstrates the benefits of NDP for parallel applications, e.g., for genome anal-

131

132 Chapter 5

ysis [189,1201], graph processing [135}/191-193} 203, 206, 207], databases [193,204], security [198],
pointer-chasing workloads [54,{199}/200}/374], and neural networks [256,(308}/363,/364]. In general,
these applications exhibit high parallelism, low operational intensity, and relatively low cache local-
ity [141,[370-373]], which make them suitable for NDP.

Prior works discuss the need for efficient synchronization primitives in NDP systems, such as
locks [54,[374]] and barriers [[13511961206,207]]. Synchronization primitives are widely used by multi-
threaded applications [1,4,/63,88,202,375-379]], and must be carefully designed to fit the underlying
hardware requirements to achieve high performance. Therefore, to fully leverage the benefits of NDP
for parallel applications, an effective synchronization solution for NDP systems is necessary.

Approaches to support synchronization are typically of two types [380,[381]]. First, synchroniza-
tion primitives can be built through shared memory, most commonly using the atomic read-modify-
write (rmw) operations provided by hardware. In CPU systems, atomic rmw operations are typi-
cally implemented upon the underlying hardware cache coherence protocols, but many NDP sys-
tems do not support hardware cache coherence (e.g., [135,/139,206,207,369]). In GPUs and Mas-
sively Parallel Processing systems (MPPs), atomic rmw operations can be implemented in dedicated
hardware atomic units, known as remote atomics. However, synchronization using remote atomics
has been shown to be inefficient, since sending every update to a fixed location creates high global
traffic and hotspots [132,[382-385]. Second, synchronization can be implemented via a message-
passing scheme, where cores exchange messages to reach an agreement. Some recent NDP works
(e.g., [135196,(207,(386]]) propose message-passing barrier primitives among NDP cores of the system.
However, these synchronization schemes are still inefficient, as we demonstrate in Section and
also lack support for lock, semaphore and condition variable synchronization primitives.

Hardware synchronization techniques that do not rely on hardware coherence protocols and
atomic rmw operations have been proposed for multicore systems [287-289,[291-293,295,296]]. How-
ever, such synchronization schemes are tailored for the specific architecture of each system, and are
not efficient or suitable for NDP systems (Section [5.8). For instance, CM5 [296] provides a barrier
primitive via a dedicated physical network, which would incur high hardware cost to be supported
in large-scale NDP systems. LCU [295]] adds a control unit to each CPU core and a buffer to each
memory controller, which would also incur high cost to implement in area-constrained NDP cores
and controllers. SSB [288] includes a small buffer attached to each controller of the last level cache
(LLC) and MiSAR [287|] introduces an accelerator distributed at the LLC. Both schemes are built on
the shared cache level in CPU systems, which most NDP systems do not have. Moreover, in NDP
systems with non-uniform memory access times, most of these prior schemes would incur significant
performance overheads under high-contention scenarios. This is because they are oblivious to the
non-uniformity of NDP, and thus would cause excessive traffic across NDP units of the system upon
contention (Section [5.6.7).

Overall, NDP architectures have several important characteristics that necessitate a new approach
to support efficient synchronization. First, most NDP architectures [54,/135}/138/139,/188,196/197,{200,
204, 206,207, 2552571308, |360,/361,363,[386]] lack shared caches that can enable low-cost commu-

nication and synchronization among NDP cores of the system. Second, hardware cache coherence

Chapter 5 133

protocols are typically not supported in NDP systems [54;|135}(138}/188,/196,|197,{200} {204} 206,207,
255,(256,308,|361} /363,364, |386|], due to high area and traffic overheads associated with such proto-
cols [139,[369]. Third, NDP systems are non-uniform, distributed architectures, in which inter-unit
communication is more expensive (both in performance and energy) than intra-unit communica-
tion [[135}[192}(193}[196L{204}[2061[207,368]].

In this work, we present SynCron, an efficient synchronization mechanism for NDP architectures.
SynCron is designed to achieve the goals of performance, cost, programming ease, and generality to
cover a wide range of synchronization primitives through four key techniques. First, we offload syn-
chronization among NDP cores to dedicated low-cost hardware units, called Synchronization Engines
(SEs). This approach avoids the need for complex coherence protocols and expensive rmw operations,
at low hardware cost. Second, we directly buffer the synchronization variables in a specialized cache
memory structure to avoid costly memory accesses for synchronization. Third, SynCron coordinates
synchronization with a hierarchical message-passing scheme: NDP cores only communicate with
their local SE that is located in the same NDP unit. At the next level of communication, all local SEs
of the system’s NDP units communicate with each other to coordinate synchronization at a global
level. Via its hierarchical communication protocol, SynCron significantly reduces synchronization
traffic across NDP units under high-contention scenarios. Fourth, when applications with frequent
synchronization oversubscribe the hardware synchronization resources, SynCron uses an efficient
and programmer-transparent overflow management scheme that avoids costly fallback solutions and

minimizes overheads.

We evaluate SynCron using a wide range of parallel workloads including pointer-chasing, graph
applications, and time series analysis. Over prior approaches (similar to [135,196]), SynCron improves
performance by 1.27x on average (up to 1.78 x) under high-contention scenarios, and by 1.35x on
average (up to 2.29x) under low-contention scenarios. In real applications with fine-grained syn-
chronization, SynCron comes within 9.5% of the performance and 6.2% of the energy of an ideal
zero-overhead synchronization mechanism. Our proposed hardware unit incurs very modest area

and power overheads (Section 5.6.8) when integrated into the compute die of an NDP unit.

The main contributions of this work are:

« We investigate the challenges of providing efficient synchronization in Near-Data-Processing

architectures, and propose an end-to-end mechanism, SynCron, for such systems.

« We design low-cost synchronization units that coordinate synchronization across NDP cores,
and directly buffer synchronization variables to avoid costly memory accesses to them. We pro-
pose an efficient message-passing synchronization approach that organizes the process hierar-
chically, and provide a hardware-only programmer-transparent overflow management scheme

to alleviate performance overheads when hardware synchronization resources are exceeded.

« We evaluate SynCron using a wide range of parallel workloads and demonstrate that it signif-
icantly outperforms prior approaches both in performance and energy consumption. SynCron

also has low hardware area and power overheads.

134 Chapter 5

5.2 Background and Motivation

5.2.1 Baseline Architecture

Numerous works [54,/135}/191+193}196,/198|200,203}{204, /206,207, 256,276,308, 364,369,374} 386,418|]
show the potential benefit of NDP for parallel, irregular applications. These proposals focus on the
design of the compute logic that is placed close to or within memory, and in many cases provide
special-purpose near-data accelerators for specific applications. Figure 5.1/ shows the baseline orga-
nization of the NDP architecture we assume in this work, which includes several NDP units connected
with each other via serial interconnection links to share the same physical address space. Each NDP
unit includes the memory arrays and a compute die with multiple low-power programmable cores
or fixed-function accelerators, which we henceforth refer to as NDP cores. NDP cores execute the
offloaded NDP kernel and access the various memory locations across NDP units with non-uniform
access times [135}(192}/193,204,[206}/207,369]. We assume that there is no OS running in the NDP
system. In our evaluation, we use programmable in-order NDP cores, each including small private
L1 I/D caches. However, SynCron can be used with any programmable, fixed-function or reconfig-
urable NDP accelerator. We assume software-assisted cache-coherence (provided by the operating
system or the programmer), similar to [196,369]: data can be either thread-private, shared read-only,
or shared read-write. Thread-private and shared read-only data can be cached by NDP cores, while

shared read-write data is uncacheable.

NDP NDP Unit
Architecture Y g N

l I I f: Compute Die —

W) NDP Core :

I, Memory
N

JI,

|
|
|
|

NDP Core el
" Arrays

NDP Core [Jjuihiieters uiu L
=/ “Fe

et “\\ y —\
AN /| (Programmable) |
Ixzﬁ_IXIN\ ~~~~~~~~~~~

/1 Interconnection Link Tl Y,

—_—_— e, e e ==

Figure 5.1: High-level organization of an NDP architecture.

We focus on three characteristics of NDP architectures that are of particular importance in the
synchronization context. First, NDP architectures typically do not have a shared level of cache
memory [54,/135,/138,/139}(188,(196,|197, 200, 204, 206,207, 255257308, 360,361} 363, [386], since the
NDP-suited workloads usually do not benefit from deep cache hierarchies due to their poor local-
ity [[19611369,(370,373]. Second, NDP architectures do not typically support conventional hardware
cache coherence protocols [54;/135,/138.(188,/196,/197,2004204, 206, 207,{255}/256,308L36 1,363, 3641386]],
because they would add area and traffic overheads [[139,369]], and would incur high complexity and
latency [[133], limiting the benefits of NDP. Third, communication across NDP units is expensive,

because NDP systems are non-uniform distributed architectures. The energy and performance costs

Chapter 5 135

of inter-unit communication are typically orders of magnitude greater than the costs of intra-unit
communication [[135}/192,/193}/196,204, 206,207, |368|], and thus inter-unit communication may slow
down the execution of NDP cores [[206].

5.2.2 The Solution Space for Synchronization

Approaches to support synchronization are typically either via shared memory or message-passing

schemes.

Synchronization via Shared Memory

In this case, cores coordinate via a consistent view of shared memory locations, using atomic read-
/write operations or atomic read-modify-write (rmw) operations. If rmw operations are not sup-
ported by hardware, Lamport’s bakery algorithm [533] can provide synchronization to N partici-
pating cores, assuming sequential consistency [534]]. However, this scheme scales poorly, as a core
accesses O(N) memory locations at each synchronization retry. In contrast, commodity systems
(CPUs, GPUs, MPPs) typically support rmw operations in hardware.

GPUs and MPPs support rmw operations in specialized hardware units (known as remote atomics),
located in each bank of the shared cache [535,536]], or the memory controllers [303,/474]. Remote
atomics are also supported by an NDP work [[196] at the vault controllers of Hybrid Memory Cube
(HMC) [355,/357]]. Implementing synchronization primitives using remote atomics requires a spin-
wait scheme, i.e., executing consecutive rmw retries. However, performing and sending every rmw
operation to a shared, fixed location can cause high global traffic and create hotspots [[132}[382-385].
In NDP systems, consecutive rmw operations to a remote NDP unit would incur high traffic across
NDP units, with high performance and energy overheads.

Commodity CPU architectures support rmw operations either by locking the bus (or equiva-
lent link), or by relying on the hardware cache coherence protocol [537,538]], which many NDP
architectures do not support. Therefore, coherence-based synchronization [522,539-549] cannot
be directly implemented in NDP architectures. Moreover, based on prior works on synchroniza-
tion [[16/375,/521,/523}|5504/551]], coherence-based synchronization would exhibit low scalability on
NDP systems for two reasons. First, it performs poorly with a large number of cores, due to low
scalability of conventional hardware coherence protocols [[537,552-554]]. Most NDP systems include
several NDP units [135}206}/207,[368]], each typically supporting hundreds of small, area-constrained
cores [135}/206,207,{308]]. Second, the non-uniformity in memory accesses significantly affects the
scalability of coherence-based synchronization [16,521-523|]. Prior work on coherence-based syn-
chronization [[16] observes that the latency of a lock acquisition that needs to transfer the lock across
NUMA sockets can be up to 12.5x higher than that within a socket. We expect such effects to be
aggravated in NDP systems, since they are by nature non-uniform and distributed [135,192,193,/196,
204,206,207,[368]] with very low memory access latency within an NDP unit.

We validate these observations on both a real CPU and our simulated NDP system. On an In-

tel Xeon Gold server, we evaluate the operation throughput achieved by two coherence-based lock

136 Chapter 5

2 threads 2 threads
same-socket different-socket

1 thread 14 threads
single-socket single-socket

Million Operations
per Second

TTAS lock [540] 8.92 2.28 9.91 4.32

Hierarchical Ticket lock [|542] 8.06 2.91 9.01 6.79

Table 5.1: Throughput of two coherence-based lock algorithms on an Intel Xeon Gold server using
the libslock library [[16]].

algorithms (Table[5.1), i.e., TTAS [540] and Hierarchical Ticket Lock (HTL) [542], using a microbench-
mark taken from the libslock library [[16]]. When increasing the number of threads from 1 to 14 within
a single socket, throughput drops by 3.91x and 2.77x for TTAS and HTL, respectively. Moreover,
when pinning two threads on different NUMA sockets, throughput drops by up to 2.29x over when

pinning them on the same socket, due to non-uniform memory access times of lock variables.

In our simulated NDP system, we evaluate the performance achieved by a stack data structure
protected with a coarse-grained lock. Figure shows the slowdown of the stack when using a
coherence-based lock [[380]] (mesi-lock), implemented upon a MESI directory coherence protocol, over
using an ideal lock with zero cost for synchronization (ideal-lock). First, we observe that the high
contention for the cache line containing the mesi-lock and the resulting coherence traffic inside the
network significantly limit scalability of the stack as the number of cores increases. With 60 NDP
cores within a single NDP unit (Figure [5.2p), the stack with mesi-lock incurs 2.03x slowdown over
ideal-lock. Second, we notice that the non-uniform memory accesses to the cache line containing
the mesi-lock also impact the scalability of the stack. When increasing the number of NDP units
while keeping total core count constant at 60 (Figure[5.2b), the slowdown of the stack with mesi-lock
increases to 2.66x (using 4 NDP units) over ideal-lock. In non-uniform NDP systems, the scalability of
coherence-based synchronization is severely limited by the long transfer latency and low bandwidth

of the interconnect used between the NDP units.

[ideal-lock EEE mesi-lock c 7 ideal-lock ~ EEE mesi-lock
€ L, (a) £ 250} L
3 2.0\ 3 20
o S
313 2 15
2 10 2 1.0
“oos- M- B - “ 05
0.0
00745 30 45 60 1 2 3
NDP cores NDP units

Figure 5.2: Slowdown of a stack data structure using a coherence-based lock over using an ideal zero-
cost lock, when varying (a) the NDP cores within a single NDP unit and (b) the number of NDP units
while keeping core count constant at 60.

Message-passing Synchronization

In this approach, cores coordinate with each other by exchanging messages (either in software or
hardware) in order to reach an agreement. For instance, a recent NDP work [[135] implements a

barrier primitive via hardware message-passing communication among NDP cores, i.e., one core of

Chapter 5 137

the system works as a master core to collect the synchronization status of the rest. To improve
system performance in non-uniform HMC-based NDP systems, Gao et al. [[196]] propose a tree-style
barrier primitive, where cores exchange messages to first synchronize within a vault, then across
the vaults of an HMC cube, and finally across HMC cubes. In general, optimized message-passing
synchronization schemes proposed in the literature [196,/291,381}/555-557]] aim to minimize (i) the
number of messages sent among cores, and (ii) expensive network traffic. To avoid the major issues
of synchronization via shared memory described above, we design our approach building on the

message-passing synchronization concept.

5.3 SynCron: Overview

SynCron is an end-to-end solution for synchronization in NDP architectures that improves perfor-
mance, has low cost, eases programmability, and supports multiple synchronization primitives. Syn-
Cron relies on the following key techniques:

1. Hardware support for synchronization acceleration: We design low-cost hardware units,
called Synchronization Engines (SEs), to coordinate the synchronization among NDP cores of the
system. SEs eliminate the need for complex cache coherence protocols and expensive rmw operations,
and incur modest hardware cost.

2. Direct buffering of synchronization variables: We add a specialized cache structure, the
Synchronization Table (ST), inside an SE to keep synchronization information. Such direct buffer-
ing avoids costly memory accesses for synchronization, and enables high performance under low-
contention scenarios.

3. Hierarchical message-passing communication: We organize the communication hierarchi-
cally, with each NDP unit including an SE. NDP cores communicate with their local SE that is lo-
cated in the same NDP unit. SEs communicate with each other to coordinate synchronization at a
global level. Hierarchical communication minimizes expensive communication across NDP units, and
achieves high performance under high-contention scenarios.

4. Integrated hardware-only overflow management: We incorporate a hardware-only overflow
management scheme to efficiently handle scenarios when ST is fully occupied. This programmer-

transparent technique effectively limits performance degradation under overflow scenarios.

5.3.1 Overview of SynCron

Figure [5.3| provides an overview of our approach. SynCron exposes a simple programming interface
such that programmers can easily use a variety of synchronization primitives in their multithreaded
applications when writing them for NDP systems. The interface is implemented using two new in-
structions that are used by NDP cores to communicate synchronization requests to SEs. These are
general enough to cover all semantics for the most widely used synchronization primitives.

We add one SE in the compute die of each NDP unit. For a particular synchronization variable

allocated in an NDP unit, the SE that is physically located in the same NDP unit is considered the

138 Chapter 5

SynCron’s
k Rrogamming J Compute Die | Compute Die| |

Interface
. : NDP Core NDP Core
Memory NDP core TR Memory

'/ synCron’s) NDP Core | (Il Arrave i
ISA Extension = NDP Core SRR (% NDP Core

= ~

. AN

_.‘*" > o _

— AN
—_— —— \

Master SE

-~

SN Lo

Figure 5.3: High-level overview of SynCron.

Master SE. In other words, the Master SE is defined by the address of the synchronization variable. It
is responsible for the global coordination of synchronization on that variable, i.e., among all SEs of
the system. All other SEs are responsible only for the local coordination of synchronization among
the cores in the same NDP unit with them.

NDP cores act as clients that send requests to SEs via hardware message-passing. SEs act as
servers that process synchronization requests. In the proposed hierarchical communication, NDP
cores send requests to their local SEs, while SEs of different NDP units communicate with the Master
SE of the specific variable, to coordinate the process at a global level, i.e., among all NDP units.

When an SE receives a request from an NDP core for a synchronization variable, it directly buffers
the variable in its ST, keeping all the information needed for synchronization in the ST. If the ST is
full, we use the main memory as a fallback solution. To hierarchically coordinate synchronization via
main memory in ST overflow cases, we design (i) a generic structure, called syncronVar, to keep track
of required synchronization information, and (ii) specialized overflow messages to be sent among SEs.
The hierarchical communication among SEs is implemented via corresponding support in message

encoding, the ST, and syncronVar structure.

5.3.2 SynCron’s Operation

SynCron supports locks, barriers, semaphores, and condition variables. Here, we present SynCron’s
operation for locks. SynCron has similar behavior for the other three primitives.

Lock Synchronization Primitive: Figure[5.4]shows a system composed of two NDP units with two
NDP cores each. In this example, all cores request and compete for the same lock. First, all NDP cores
send local lock acquire messages to their SEs @. After receiving these messages, each SE keeps track
of its requesting cores by reserving one new entry in its ST, i.e., directly buffering the lock variable
in ST. Each ST entry includes a local waiting list (i.e., a hardware bit queue with one bit for each
local NDP core), and a global waiting list (i.e., a bit queue with one bit for each SE of the system). To
keep track of the requesting cores, each SE sets the bits corresponding to the requesting cores in the
local waiting list of the ST entry. When the local SE receives a request for a synchronization variable
for the first time, it sends a global lock acquire message to the Master SE @, which in turn sets the
corresponding bit in the global waiting list in its ST. This way, the Master SE keeps track of all requests

to a particular variable coming from an SE, and can arbitrate between different SEs. The local SE can

Chapter 5 139

NDP Unit 0 NDP Unit 1

¥ NDP Core 0
[
DP Corel [

NDP Core 0

Figure 5.4: An example execution scenario for a lock requested by all NDP cores.

then serve successive local requests to the same variable until there are no other local requests. By
using the proposed hierarchical communication protocol, the cores send local messages to their local
SE, and the SE needs to send only one aggregated message, on behalf of all its local waiting cores,
to the Master SE. As a result, we reduce the need for communication through the narrow, expensive
links that connect different NDP units.

The Master SE first prioritizes the local waiting list, granting the lock to its own local NDP cores
in sequence (e.g., to NDP Core 0 first @, and to NDP Core 1 next @ in Figure . At the end of the
critical section, each local lock owner sends a lock release message to its SE in order to release the
lock. When there are no other local requests, the Master SE transfers the control of the lock to the SE
of another NDP unit based on its global waiting list @. Then, the local SE grants the lock to its local
NDP cores in sequence (e.g., @, @). After all local cores release the lock, the SE sends an aggregated
global lock release message to the Master SE @ and releases its ST entry. When the message arrives
at the Master SE, if there are no other pending requests to the same variable, the Master SE releases
its ST entry. In this example, SEs directly buffer the lock variable in their STs. If an ST is full, the
Master SE globally coordinates synchronization by keeping track of all required information in main

memory @, via our proposed overflow management scheme (Section [5.4.3).

5.4 SynCron: Detailed Design

SynCron leverages the key observation that all synchronization primitives fundamentally communi-
cate the same information, i.e., a waiting list of cores that participate in the synchronization process,
and a condition to be met to notify one or more cores. Based on this observation, we design SynCron
to cover the four most widely used synchronization primitives. Without loss of generality, we assume
that each NDP core represents a hardware thread context with a unique ID. To support multiple hard-
ware thread contexts per NDP core, the corresponding hardware structures of SynCron need to be

augmented to include 1-bit per hardware thread context.

5.4.1 Programming Interface and ISA Extensions

SynCron provides lock, barrier, semaphore and condition variable synchronization primitives, sup-

porting two types of barriers: within cores of the same NDP unit and within cores across different

140 Chapter 5

NDP units of the system. SynCron’s programming interface (Table implements the synchro-
nization semantics with two new ISA instructions, which are rich and general enough to express all
supported primitives. NDP cores use these instructions to assemble messages for synchronization

requests, which are issued through the network to SEs.

SynCron Programming Interface

syncronVar *create_syncvar ();

void destroy_syncvar (syncronVar *svar);

void lock_acquire (syncronVar *lock);

void lock release (syncronVar *lock);

void barrier_wait_within_unit (syncronVar *bar, int initialCores);
void barrier_wait_across_units (syncronVar *bar, int initialCores);
void sem_wait (syncronVar *sem, int initialResources);

void sem_post (syncronVar *sem);

void cond_wait (syncronVar *cond, syncronVar *lock);

void cond_signal (syncronVar *cond);

void cond_broadcast (syncronVar *cond);

Table 5.2: SynCron’s Programming Interface (i.e., API).

req_sync addr, opcode, info: This instruction creates a message and commits when a response
message is received back. The addr register has the address of a synchronization variable, the opcode
register has the message opcode of a particular semantic of a synchronization primitive (Table [5.3),
and the info register has specific information needed for the primitive (Messagelnfo in message en-
coding of Fig. [5.5).

req_async addr, opcode: This instruction creates a message and after the message is issued to the
network, the instruction commits. The registers addr, opcode have the same semantics as in req_sync

instruction.

Memory Consistency

We design SynCron assuming a relaxed consistency memory model. The proposed ISA extensions
act as memory fences. First, req_sync, commits once a message (ACK) is received (from the local
SE to the core), which ensures that all following instructions will be issued after req_sync has been
completed. Its semantics is similar to those of the SYNC and ACQUIRE operations of Weak Ordering
(WO) [558]] and Release Consistency (RC) [558] models, respectively. Second, req_async, does not
require a return message (ACK). It is issued once all previous instructions are completed. Its seman-
tics is similar to that of the RELEASE operation of RC [558]. In the case of WO, req_sync is suffi-
cient. In the case of RC, the req_sync instruction is used for acquire-type semantics, i.e., lock_acquire,
barrier_wait, semaphore_wait and condition_variable_wait, while the req_async instruction is used
for release-type semantics, i.e., lock_release, semaphore_post, condition_variable_signal, and condi-

tion_variable_broadcast.

Chapter 5 141

Message Encoding

Figure [5.5| describes the encoding of the message used for communication between NDP cores and
the SE. Each message includes: (i) the 64-bit address of the synchronization variable, (ii) the mes-
sage opcode that implements the semantics of the different synchronization primitives (6 bits cover
all message opcodes), (iii) the unique ID number of the NDP core (6 bits are sufficient for our sim-
ulated NDP system in Section [5.5), and (iv) a 64-bit field (Messagelnfo) that communicates specific
information needed for each different synchronization primitive, i.e., the number of the cores that
participate in a barrier, the initial value of a semaphore, the address of the lock associated with a

condition variable.

64 bits 6 bits 6 bits 64 bits Lt :
| Address | Opcode | CorelD | Messagelnfo | Sl IR EAees
Message Encoding Semaphore Initial #Resources
Condition Variable Lock Address

Figure 5.5: Message encoding of SynCron.
Hierarchical Message Opcodes. SynCron enables a hierarchical scheme, where the SEs of NDP

units communicate with each other to coordinate synchronization at a global level. Therefore, we
support two types of messages (Table [5.3): (i) local, which are used by NDP cores to communicate
with their local SE, and (ii) global, which are used by SEs to communicate with the Master SE, and
vice versa. Since we support two types of barriers (Table [5.2), we design two message opcodes for
a local barrier_wait message sent by an NDP core to its local SE: (i) barrier_wait_local_within_unit is
used when cores of a single NDP unit participate in the barrier, and (ii) barrier_wait_local_across_units
is used when cores from different NDP units participate in the barrier. In the latter case, if a smaller
number of cores than the total available cores of the NDP system participate in the barrier, SynCron
supports one-level communication: local SEs re-direct all messages (received from their local NDP
cores) to the Master SE, which globally coordinates the barrier among all participating cores. This
design choice is a trade-off between performance (more remote messages) and hardware/ISA complex-
ity, since the number of participating cores of each NDP unit would need to be communicated to the

hardware through additional registers in ISA, and message opcodes (higher complexity).

Primitives SynCron Message Opcodes

lock_acquire_global, lock_acquire_local, lock_release_global
Locks lock_release_local, lock_grant_global, lock_grant local
lock_acquire_overflow, lock_release_overflow, lock_grant_overflow
barrier_wait_global, barrier_wait_local_within_unit
Barriers barrier_wait_local _across_units, barrier_depart_global, barrier_depart_local
barrier_wait_overflow, barrier_departure_overflow
sem_wait_global, sem_wait_local, sem_grant_global
Semaphores sem_grant_local, sem_post_global, sem_post_local
sem_wait_overflow, sem_grant_overflow, sem_post_overflow
cond_wait_global, cond_wait_local, cond_signal_global

Condition cond_signal local, cond_broad_global, cond_broad_local
Variables cond_grant_global, cond_grant_local, cond_wait_overflow
cond_signal_overflow, cond_broad_overflow, cond_grant_overflow
Other decrease_indexing_counter

Table 5.3: Message opcodes of SynCron.

142 Chapter 5

5.4.2 Synchronization Engine (SE)

Each SE module (Figure is integrated into the compute die of each NDP unit. An SE consists of

three components:

Synchronization Processing Unit (SPU)

The SPU is the logic that handles the messages, updates the ST, and issues requests to memory as
needed. The SPU includes the control unit, a buffer, and a few registers. The buffer is a small SRAM
queue for temporarily storing messages that arrive at the SE. The control unit implements custom

logic with simple logical bitwise operators (and, or, xor, zero) and multiplexers.

INDEX

Contr0| READ/WRITE

N\SG : | Logic 1z;\bns
140 bits Indexing
& -« Counters

Figure 5.6: The Synchronization Engine (SE).

Synchronization Table (ST)

ST keeps track of all the information needed to coordinate synchronization. Each ST has 64 entries.
Figure|5.7|shows an ST entry, which includes: (i) the 64-bit address of a synchronization variable, (ii)
the global waiting list used by the Master SE for global synchronization among SEs, i.e., a hardware
bit queue including one bit for each SE of the system, (iii) the local waiting list used by all SEs for
synchronization among the NDP cores of an NDP unit, i.e., a hardware bit queue including one bit for
each NDP core within the unit, (iv) the state of the ST entry, which can be either free or occupied, and
(v) a 64-bit field (Tablelnfo) to track specific information needed for each synchronization primitive.
For the lock primitive, the Tablelnfo field is used to indicate the lock owner that is either an SE of an
NDP unit (Global ID represented by the most significant bits) or a local NDP core (Local ID represented
by the least significant bits). We assume that all NDP cores of an NDP unit have a unique local ID
within the NDP unit, while all SEs of the system have a unique global ID within the system. The
number of bits in the global and local waiting lists of Figure|[5.7is specific for the configuration of our
evaluated system (Section [5.5), which includes 16 NDP cores per NDP unit and 4 SEs (one per NDP

unit), and has to be extended accordingly, if the system supports more NDP cores or SEs.

64 bits 4 bits 16 bits 1bits 64bits . Lock Global ID | Local ID
Global Local Barrier Current #Cores
Address Waitlist | Waitlist State | TableInfo :
. Semaphore Available #Resources
Synchronization Table Entry .
“...| Condition Variable Lock Address

Figure 5.7: Synchronization Table (ST) entry.

Chapter 5 143

Indexing Counters

If an ST is full, i.e., all its entries are in occupied state, SynCron cannot keep track of information for
a new synchronization variable in ST. We use the main memory as a fallback solution for such ST
overflow (Section|[5.4.3). The SE keeps track of which synchronization variables are currently serviced
via main memory: similar to MiSAR [287]], we include a small set of counters (indexing counters), 256
in current implementation, indexed by the least significant bits of the address of a synchronization
variable, as extracted from the message that arrives at an SE. When an SE receives a message with
acquire-type semantics for a synchronization variable and there is no corresponding entry in the
fully-occupied ST, the indexing counter for that synchronization variable increases. When an SE
receives a message with release-type semantics for a synchronization variable that is currently ser-
viced using main memory, the corresponding indexing counter decreases. A synchronization variable
is currently serviced via main memory, when the corresponding indexing counter is larger than zero.
Note that different variables may alias to the same indexing counter. This aliasing does not affect
correctness, but it does affect performance, since a variable may unnecessarily be serviced via main

memory, while the ST is not full.

Control Flow in SE

Figure [5.8| describes the control flow in SE. When an SE receives a message, it decodes the message
@ and accesses the ST @B. If there is an ST entry for the specific variable (depending on its address),
the SE processes the waiting lists €, updates the ST @, and encodes return message(s) @, if needed.
If there is not an ST entry for the specific variable, the SE checks the value of the corresponding
indexing counter @1): (i) if the indexing counter is zero and the ST is not full, the SE reserves a new
ST entry and continues with step €, otherwise (ii) if the indexing counter is larger than zero or the
ST is full, there is an overflow. In that case, if the SE is the Master SE for the specific variable, it reads
the synchronization variable from local memory arrays @, processes the waiting lists €, updates the
variable in main memory @, and encodes return message(s) @, if needed. If the SE is not the Master

SE for the specific variable, it encodes an overflow message to the Master SE to handle overflow.

Decode
Access ST
Ovi. @) e
STEntry ’------------------"""""""""". """" N
I Not Found Zero Counter (sﬁ eRead Local Process @erte Local)}
. && ST Not-Full 16" Memory altlng Lists Memory '
Access Indexing Non-Zero Counter ' H
€@ Counters || ST Full - Encode Overflow '
Message N

Process
Waiting Lists

Figure 5.8: Control flow in SE.

5.4.3 Overflow Management

SynCron integrates a hardware-only overflow management scheme that provides very modest per-

formance degradation (Section [5.6.7) and is programmer-transparent. To handle ST overflow cases,

144 Chapter 5

we need to address two issues: (i) where to keep track of required information to coordinate synchro-
nization, and (ii) how to coordinate ST overflow cases between SEs. For the former issue, we design
a generic structure allocated in main memory. For the latter issue, we propose a hierarchical overflow

communication protocol between SEs.

SynCron’s Synchronization Variable

We design a generic structure (Figure [5.9), called syncronVar, which is used to coordinate synchro-
nization for all supported primitives in ST overflow cases. syncronVar is defined in the driver of
the NDP system, which handles the allocation of the synchronization variables: programmers use
create_syncvar() (Table to create a new synchronization variable, the driver allocates the bytes
needed for syncronVar in main memory, and returns an opaque pointer that points to the address of
the variable. Programmers should not de-reference the opaque pointer and its content can only be
accessed via SynCron’s API (Table[5.2).

" g Lock Lock Owner

Barrier Current #Cores

Semaphore Available #Resources
Condition Variable Lock Address

} Lock Overflow IDs |Lock State
typedef struct syncronVar_t siihcr,anar; Barrier Overflow IDs
- Semaphore Overflow IDs
SynCron’s Synchronization Variable Condition Variable Overflow IDs

Figure 5.9: Synchronization variable of SynCron (syncronVar).

syncronVar structure includes one waiting list for each SE of the system, which has one bit for
each NDP core within the NDP unit, and two additional fields (VarInfo, OverflowInfo) needed to hier-

archically handle ST overflows for all primitives.

Communication Protocol between SEs

To ensure correctness, only the Master SE updates the syncronVar variable: in ST overflow, the SPU of
the Master SE issues read or write requests to its local memory to globally coordinate synchronization
via the syncronVar variable. In our proposed hierarchical design, there are two overflow scenarios:
(i) the ST of the Master SE overflows, and (ii) the ST of a local SE overflows or STs of multiple local
SEs overflow.

The ST of the Master SE overflows. The other SEs of the system have not overflowed for a specific
synchronization variable. Thus, they can still directly buffer this variable in their local STs, and serve
their local cores themselves, implementing a hierarchical (two-level) communication with Master SE.
The Master SE receives global messages from SEs, and serves a local SE of an NDP unit using all bits in
the waiting list of the syncronVar variable associated with that local SE. Specifically, when it receives
a global acquire-type message from a local SE, it sets all bits in the corresponding waiting list of the
syncronVar variable. When it receives a global release-type message from a local SE, it resets all bits

in the corresponding waiting list of the syncronVar variable.

Chapter 5 145

The ST of a local SE overflows. In this scenario, there are local SEs that have overflowed for a
specific variable, and local SEs that have not overflowed. Without loss of generality, we assume that
only one SE of the system has overflowed. The local SEs that have not overflowed serve their local
cores themselves via their STs, implementing a hierarchical (two-level) communication with Master
SE. When the Master SE receives a global message from a local SE (that has not overflowed), it (i)
sets (or resets) all bits in the waiting list of the syncronVar variable associated with that SE, and (ii)
responds with a global message to the local SE, if needed.

The overflowed SE needs to notify the Master SE to handle local synchronization requests of
NDP cores located at another NDP unit via main memory. We design overflow message opcodes
(Table to be sent from the local overflowed SE to the Master SE and back. The overflowed SE re-
directs all messages (sent from its local NDP cores) for a specific variable to the Master SE using the
overflow message opcodes, and both the overflowed SE and the Master SE increase their corresponding
indexing counters to indicate that this variable is currently serviced via memory. When the Master SE
receives an overflow message, it (i) sets (or resets) in the waiting list (associated with the overflowed
SE) of the syncronVar variable, the bit that corresponds to the local ID of the NDP core within the NDP
unit, (ii) sets (or resets) in the OverflowInfo field of the syncronVar variable the bit that corresponds
to the global ID of the overflowed SE to keep track of which SE (or SEs) of the system has overflowed,
and (iii) responds with an overflow message to that SE, if needed. The local ID of the NDP core, and the
global ID of the overflowed SE are encoded in the CorelD field of the message (Figure[5.5). When all bits
in the waiting lists of the syncronVar variable become zero (upon receiving a release-type message),
the Master SE decrements the corresponding indexing counter. Then, it sends a decrease_index_counter
message (Table[5.3) to the overflowed SE (based on the set bit that is tracked in the OverflowInfo field),

which decrements its corresponding indexing counter.

5.4.4 SynCron Enhancements

RMW Operations

It is straightforward to extend SynCron to support simple atomic rmw operations inside the SE (by
adding a lightweight ALU). The Master SE could be responsible for executing atomic rmw operations

on a variable depending on its address. We leave that for future work.

Lock Fairness

When local cores of an NDP unit repeatedly request a lock from their local SE, the SE repeatedly grants
the lock within its unit, potentially causing unfairness and delay to other NDP units. To prevent this,
an extra field of a local grant counter could be added to the ST entry. The counter increases every
time the SE grants the lock to a local core. If the counter exceeds a predefined threshold, then when
the SE receives a lock release, it transfers the lock to another SE (assuming other SEs request the
lock). The host OS or the user could dynamically set this threshold via a dedicated register. We leave

the exploration of such fairness mechanisms to future work.

146 Chapter 5

5.4.5 Comparison with Prior Work

SynCron’s design shares some of its design concepts with SSB [288], LCU [295], and MiSAR [[287]].
However, SynCron is more general, supporting the four most widely used synchronization primitives,
and easy-to-use thanks to its high-level programming interface.

Table [5.4] qualitatively compares SynCron with these schemes. SSB and LCU support only lock
semantics, thus they introduce two ISA extensions for a simple lock. MiSAR introduces seven ISA
extensions to support three primitives and handle overflow scenarios. SynCron includes two ISA
extensions for four supported primitives. A spin-wait approach performs consecutive synchronization
retries, typically incurring high energy consumption. A direct notification scheme sends a direct
message to only one waiting core when the synchronization variable becomes available, minimizing
the traffic involved upon a release operation. SSB, LCU and MiSAR are tailored for uniform memory
systems. In contrast, SynCron is the only hardware synchronization mechanism that targets NDP
systems as well as non-uniform memory systems.

SSB and LCU handle overflow in hardware synchronization resources using a pre-allocated table
in main memory, and if it overflows, they switch to software exception handlers (handled by the pro-
grammer), which typically incur large overheads (due to OS intervention) when overflows happen at
a non-negligible frequency. To avoid falling back to main memory, which has high latency, and using
expensive software exception handlers, MiSAR requires the programmer to handle overflow scenar-
ios using alternative software synchronization libraries (e.g., pthread library provided by the OS).
This approach can provide performance benefits in CPU systems, since alternative synchronization
solutions can exploit low-cost accesses to caches and hardware cache coherence. However, in NDP
systems alternative solutions would by default use main memory due to the absence of shared caches
and hardware cache coherence support. Moreover, when overflow occurs, MiSAR’s accelerator sends
abort messages to all participating CPU cores notifying them to use the alternative solution, and when
the cores finish synchronizing via the alternative solution, they notify MiSAR’s accelerator to switch
back to hardware synchronization. This scheme introduces additional hardware/ISA complexity, and
communication between the cores and the accelerator, thus incurring high network traffic and com-
munication costs, as we show in Section[5.6.7} In contrast, SynCron directly falls back to memory via a
fully-integrated hardware-only overflow scheme, which provides graceful performance degradation
(Section[5.6.7), and is completely transparent to the programmer: programmers only use SynCron’s

high-level API, similarly to how software libraries are in charge of synchronization.

5.4.6 Use of SynCron in Conventional Systems

The baseline NDP architecture [135}/196,[206,207,/369] we assume in this work shares key design
principles with conventional NUMA systems. However, unlike NDP systems, NUMA CPU systems
(i) have a shared level of cache (within a NUMA socket and/or across NUMA sockets), (ii) run multiple
multi-threaded applications, i.e., a high number of software threads executed in hardware thread con-

texts, and (iii) the OS migrates software threads between hardware thread contexts to improve system

Chapter 5 147

SSB [288] LCU [295] MiSAR [287] SynCron

Supported Primitives 1 1 3

ISA Extensions 2 2 7 2
Spin-Wait Approach yes yes no no
Direct Notification no yes yes yes
Target System uniform uniform uniform non-uniform
Overflow partially partially handled by fully
Management integrated integrated programmer integrated

Table 5.4: Comparison of SynCron with prior mechanisms.

performance. Therefore, although SynCron could be implemented in such commodity systems, our
proposed hardware design would need extensions. First, SynCron could exploit the low-cost accesses
to shared caches in conventional CPUs, e.g., including an additional level in SynCron’s hierarchical
design to use the shared cache for efficient synchronization within a NUMA socket, and/or handling
overflow scenarios by falling back to the low-latency cache instead of main memory. Second, Syn-
Cron needs to support use cases (ii) and (iii) listed above in such systems, i.e., including larger STs and
waiting lists to satisfy the needs of multiple multithreaded applications, handling the OS thread mi-
gration scenarios across hardware thread contexts, and handling multiple synchronization requests
sent from different software threads with the same hardware ID to SEs, when different software
threads are executed on the same hardware thread context. We leave the optimization of SynCron’s

design for conventional systems to future work.

5.5 Methodology

Simulation Methodology. We use an in-house simulator that integrates ZSim [559]] and Ramula-
tor [356]. We model 4 NDP units (Table [5.5), each with 16 in-order cores. The cores issue a memory
operation after the previous one has completed, i.e., there are no overlapping operations issued by
the same core. Any write operation is completed (and the latency is accounted for in our simulations)
before executing the next instruction. To ensure memory consistency, compiler support [560] guar-
antees that there is no reordering around the sync instructions and a read is inserted after a write
inside a critical section.

We evaluate three NDP configurations for different memory technologies, namely 2D, 2.5D, 3D
NDP. The 2D NDP configuration uses a DDR4 memory model and resembles recent 2D NDP sys-
tems [137,(142,/318,/454]. In the 2.5D NDP configuration, each compute die of NDP units (16 NDP
cores) is connected to an HBM stack via an interposer, similar to current GPUs [568,/569] and FP-
GAs [367,/570]. For the 3D NDP configuration, we use the HMC memory model, where the compute
die of the NDP unit is located in the logic layer of the memory stack, as in prior works [135}[206}207,
308]. Due to space limitations, we present detailed evaluation results for the 2.5D NDP configuration,
and provide a sensitivity study for the different NDP configurations in Section [5.6.5|

148 Chapter 5

NDP Cores 16 in-order cores @2.5 GHz per NDP unit

L1 Data + Inst. Cache private, 16KB, 2-way, 4-cycle; 64 B line; 23/47 p] per hit/miss [[561]
NDP Unit buffered crossbar network with packet flow control; 1-cycle arbiter;
Local Network 1-cycle per hop [562]; 0.4 pJ/bit per hop [563];

M/D/1 model [|564] for queueing latency;
4 stacks; 4GB HBM 1.0 [[358[359]; 500MHz with 8 channels;

DRAM HBM nRCDR/nRCDW/nRAS/nWR 7/6/17/8 ns [356l565]; 7 pJ/bit [|566]
4 stacks; 4GB HMC 2.1; 1250MHz; 32 vaults per stack;

DRAM HMC nRCD/nRAS/nWR 17/34/19 ns [356/565]

DRAM DDR4 4 DIMMs; 4GB each DIMM DDR4 2400MHz;

nRCD/nRAS/nWR 16/39/18 ns [356//565]

Interconnection Links 12.8GB/s per direction; 40 ns per cache line;

Across NDP Units 20-cycle; 4 p]J/bit
Synchronization SPU @1GHz clock frequency [567]; 8 x 64-bit registers;
Engine buffer: 280B; ST: 1192B, 64 entries, 1-cycle [561];

indexing counters: 2304B, 256 entries (8 LSB of the address), 2-cycle [561]

Table 5.5: Configuration of our simulated system.

We model a crossbar network within each NDP unit, simulating queuing latency using the M/D/1
model [[564]. We count in ZSim-Ramulator all events for caches, i.e., number of hits/misses, network,
i.e., number of bits transferred inside/across NDP units, and memory, i.e., number of total memory
accesses, and use CACTI [561]] and parameters reported in prior works [[369}/563,/566] to calculate
energy. To estimate the latency in SE, we use CACTI for ST and indexing counters, and Aladdin [567]
for the SPU with 1GHz at 40nm. Each message is served in 12 cycles, corresponding to the message

(barrier_depart_global) that takes the longest time.

Workloads. We evaluate workloads with both (i) coarse-grained synchronization, i.e., including
only a few synchronization variables to protect shared data, leading to cores highly contending for
them (high-contention), and (ii) fine-grained synchronization, i.e., including a large number of syn-
chronization variables, each of them protecting a small granularity of shared data, leading to cores
not frequently contending for the same variables at the same time (low-contention). We use the term
synchronization intensity to refer to the ratio of synchronization operations over other computation
in the workload. As this ratio increases, synchronization latency affects the total execution time of

the workload more.

We study three classes of applications (Table [5.6), all well suited for NDP. First, we evaluate
pointer-chasing workloads, i.e., lock-based concurrent data structures from the ASCYLIB library [571]],
used as key-value sets. In ASCYLIB’s Binary Search Tree (BST) [572]], the lock memory requests are
only 0.1% of the total memory requests, so we also evaluate an external fine-grained locking BST
from [314]. Data structures are initialized with a fixed size and statically partitioned across NDP
units, except for BSTs, which are distributed randomly. In these benchmarks, each core performs a
fixed number of operations. We use lookup operations for data structures that support it, deletion for
the rest, and push and pop operations for stack and queue. Second, we evaluate graph applications

with fine-grained synchronization from Crono [573}[574] (push version), where the output array has

Chapter 5 149

read-write data. All real-world graphs [575] used are undirected and statically partitioned across
NDP units, where the vertex data is equally distributed across cores. Third, we evaluate time series
analysis [576], using SCRIMP, and real data sets from Matrix Profile [577]. We replicate the input

data in each NDP unit and partition the output array (read-write data) across NDP units.

Data Structure Configuration
Stack [571] 100K - 100% push
Queue [571)578] 100K - 100% pop
Array Map [525/571] 10 - 100% lookup
Priority Queue [571/579./580] 20K - 100% deleteMin
Skip List [571/579] 5K - 100% deletion
Hash Table [380)571] 1K - 100% lookup
Linked List [380./571] 20K - 100% lookup
Binary Search Tree Fine-Grained (BST_FG) [314] 20K - 100% lookup

Binary Search Tree Drachsler (BST Drachsler) [571/572] 10K - 100% deletion

Real Application Locks Barriers Real Application Input Data Set
Breadth First Search (bfs) [573] v v wikipedia
Connected Components (cc) [573] v v -20051105 (wk)
Single Source Shortest Paths (sssp) [573] v v bfs, cc, sssp, soc-LiveJournall (sl)
Pagerank (pr) [573] v v pr, tf, tc sx-stackoverflow (sx)
Teenage Followers (tf) [574] v - com-Orkut (co)
Triangle Counting (tc) [573] v v B air quality (air)
Time Series Analysis (ts) [577] v v energy consumption (pow)

Table 5.6: Summary of all workloads used in our evaluation.

Comparison Points. We compare SynCron with three schemes: (i) Central: a message-passing
scheme that supports all primitives by extending the barrier primitive of Tesseract [135]], i.e., one
dedicated NDP core in the entire NDP system acts as server and coordinates synchronization among
all NDP cores of the system by issuing memory requests to synchronization variables via its mem-
ory hierarchy, while the remaining client cores communicate with it via hardware message-passing;
(i) Hier: a hierarchical message-passing scheme that supports all primitives, similar to the barrier
primitive of [196] (or hierarchical lock of [555])), i.e., one NDP core per NDP unit acts as server and
coordinates synchronization by issuing memory requests to synchronization variables via its mem-
ory hierarchy (including caches), and communicates with other servers and local client cores (located
at the same NDP unit with it) via hardware message-passing; (iii) Ideal: an ideal scheme with zero
performance overhead for synchronization. In our evaluation, each NDP core runs one thread. For
fair comparison, we use the same number of client cores, i.e., 15 per NDP unit, that execute the main
workload for all schemes. For synchronization, we add one server core for the entire system in Cen-
tral, one server core per NDP unit for Hier, and one SE per NDP unit for SynCron. For SynCron, we
disable one core per NDP unit to match the same number of client cores as the previous schemes.
Maintaining the same thread-level parallelism for executing the main kernel is consistent with prior

works on message-passing synchronization [287,/555].

150 Chapter 5

5.6 Evaluation

5.6.1 Performance
Synchronization Primitives

Figure[5.10|evaluates all supported primitives using 60 cores, varying the interval (in terms of instruc-
tions) between two synchronization points. We devise simple benchmarks, where cores repeatedly
request a single synchronization variable. For lock, the critical section is empty, i.e., it does not include
any instruction. For semaphore and condition variable, half of the cores execute sem_wait/cond_wait,
while the rest execute sem_post/cond_signal, respectively. As the interval between synchronization
points becomes smaller, SynCron’s performance benefit increases. For an interval of 200 instruc-
tions, SynCron outperforms Central and Hier by 3.05x and 1.40 X respectively, averaged across all
primitives. SynCron outperforms Hier due to directly buffering synchronization variables in low-
latency STs, and achieves the highest benefits in the condition variable primitive (by 1.61x), since
this benchmark has higher synchronization intensity compared to the rest: cores coordinate for both
the condition variable and the lock associated with it. When the interval between synchronization
operations becomes larger, synchronization requests become less dominant in the main workload,
and thus all schemes perform similarly. Overall, SynCron outperforms prior schemes for all different

synchronization primitives.

[Central I Hier Il SynCron [Ideal

5 _ 8 — "
a4 Lock ag Barrier
] -]
O3 o
] o4
w2 v
a Q,
01 0
0750 100 200 400 1K 2K 5K 0720 50 100 200 500 1K 2K
Instructions between Instructions between
critical sections barrier synchronization
3 15 = - "
a Semaphore a12 — Condition Variable
22 2 _
© O 9
0 Q6
al a
4 s
0 100 200 400 1K 2K 5K 10K 0 200 400 1K 2K 5K 10K 50K
Instructions between Instructions between
semaphore synchronization condition variable synchronization

Figure 5.10: Speedup of different synchronization primitives.
Pointer-Chasing Data Structures

Figure shows the throughput for all schemes in pointer-chasing varying the NDP cores in steps
of 15, each time adding one NDP unit.

We observe four different patterns. First, stack, queue, array map, and priority queue incur high
contention, as all cores heavily contend for a few variables. Array map has the lowest scalability

due to a larger critical section. In high-contention scenarios, hierarchical schemes (Hier, SynCron)

Chapter 5 151

Central === Hier === SynCron Ideal
Stack Queue Array Map
w
= 12.5
c
Lo 10
‘a ;——*_‘
= 10— -
¢ 75— 6y~
(o)
5 5 5

15 30 45 60 15 30 45 60 15 30 45 60
Number of NDP cores

Priority Queue Skip List 30 Hash Table
10 | 24 -
3 25
= 9
S s 20
)
S o7
S 15—
(= 1§
O 5 10
4 4 5

15 30 45 60 15 30 45 60 15 30 45 60
Number of NDP cores

Linked List BST_FG BST _Drachsler

10 =
2 12 N * /
e ° 20 /
g9
S 6
.E 15
qn’. 6 4 10
o /

3
15 30 45 60 2 15 30 45 60 3 15 30 45 60
Number of NDP cores

Figure 5.11: Throughput of pointer-chasing using data structures.

perform better by reducing the expensive traffic across NDP units. SynCron outperforms Hier, since
the latency cost of using SEs that update small STs is lower than using NDP cores as servers that
update larger caches. Second, skip list and hash table incur medium contention, as different cores
may work on different parts of the data structure. For these data structures, hierarchical schemes
perform better, as they minimize the expensive traffic, and multiple server cores concurrently serve
requests to their local memory. SynCron retains most of the performance benefits of Ideal, incurring
only 19.9% overhead with 60 cores, and outperforms Hier by 9.8%. Third, linked list and BST_FG exhibit
low contention and high synchronization demand, as each core requests multiple locks concurrently.
These data structures cause higher synchronization-related traffic inside the network compared to
skip list and hash table, and thus SynCron further outperforms Hier by 1.19x due to directly buffering
synchronization variables in STs. Fourth, in BST_Drachsler lock requests constitute only 0.1% of the
total requests, and all schemes perform similarly. Overall, we conclude that SynCron achieves higher

throughput than prior mechanisms under different scenarios with diverse conditions.

152 Chapter 5

Real Applications

Figure shows the performance of all schemes with real applications using all NDP units, normal-
ized to Central. Averaged across 26 application-input combinations, SynCron outperforms Central by

1.47 x and Hier by 1.23 X, and performs within 9.5% of Ideal.

[Central I Hier BN SynCron [Ideal =0 N©Y

Speedup

Figure 5.12: Speedup in real applications normalized to Central.

Our real applications exhibit low contention, as two cores rarely contend for the same synchro-
nization variable, and high synchronization demand, as several synchronization variables are active
during execution. We observe that Hier and SynCron increase parallelism, because the per-NDP-unit
servers service different synchronization requests concurrently, and avoid remote synchronization
messages across NDP units. Even though Hier performs 1.19x better than Central, on average, its
performance is still 1.33x worse than Ideal. SynCron provides most of the performance benefits of
Ideal (with only 9.5% overhead on average), and outperforms Hier due to directly buffering the syn-
chronization variables in STs, thereby completely avoiding the memory accesses for synchronization
requests. Specifically, we find that time series analysis has high synchronization intensity, since the
ratio of synchronization over other computation of the workload is higher compared to graph work-
loads. For this application, Hier and SynCron outperform Central by 1.64x and 2.22 %, as they serve
multiple synchronization requests concurrently. SynCron further outperforms Hier by 1.35x due to
directly buffering the synchronization variables in STs. We conclude that SynCron performs best
across all real application-input combinations and approaches the Ideal scheme with no synchro-
nization overhead.

Scalability. Figure shows the scalability of real applications using SynCron from 1 to 4 NDP
units. Due to space limitations, we present a subset of our workloads, but we report average values for
all 26 application-input combinations. This also applies for all figures presented henceforth. Across
all workloads, SynCron enables performance scaling by at least 1.32 X, on average 2.03x, and up to

3.03x, when using 4 NDP units (60 NDP cores) over 1 NDP unit (15 NDP cores).
1 1 NDP unit [2 NDP units I 3 NDP units Il 4 NDP units

3.0
525
9 2.0
130 o
“ 1-() \ [1 \ \ F_IIII \ [1

\
bfs.sl cc.sx sssp.co prwk tfsl tcsx ts.air ts.pow AVG

Figure 5.13: Scalability of real applications using SynCron.

Chapter 5 153

5.6.2 Energy Consumption

Figure shows the energy breakdown for cache, network, and memory in our real applications
when using all cores. SynCron reduces the network and memory energy thanks to its hierarchical
design and direct buffering. On average, SynCron reduces energy consumption by 2.22x over Central

and 1.94x over Hier, and incurs only 6.2% energy overhead over Ideal.

s . 0 BN cache W network [] memory

o . - I
%08 | |

o 0.6/ | |

[H
SE =
u‘i 0.0 CHSCI CHSCI CHSCI CHSCI CHSCI CHSCI CHSCI CHSCI CHSCI

bfs.sl cc.sx sssp.co pr.wk tfsl tc.sx ts.air ts.pow AVG

Figure 5.14: Energy breakdown in real applications for C: Central, H: Hier, SC: SynCron and I: Ideal.

We observe that 1) cache energy consumption constitutes a small portion of the total energy, since
these applications have irregular access patterns. NDP cores that act as servers for Central and Hier
increase the cache energy only by 5.1% and 4.8% over Ideal. 2) Central generates a larger amount
of expensive traffic across NDP units compared to hierarchical schemes, resulting in 2.68x higher
network energy over SynCron. SynCron also has less network energy (1.21x) than Hier, because it
avoids transferring synchronization variables from memory to SEs due to directly buffering them. 3)
Hier and Central have approximately the same memory energy consumption, because they issue a
similar number of requests to memory. In contrast, SynCron’s memory energy consumption is similar
to that of Ideal. We note that SynCron provides higher energy reductions in applications with high
synchronization intensity, such as time series analysis, since it avoids a higher number of memory

accesses for synchronization due to its direct buffering capability.

5.6.3 Data Movement

Figure shows normalized data movement, i.e., bytes transferred between NDP cores and memory,
for all schemes using four NDP units. SynCron reduces data movement across all workloads by 2.08 x
and 2.04x over Central and Hier, respectively, on average, and incurs only 13.8% more data movement
than Ideal. Central generates high data movement across NDP units, particularly when running time
series analysis that has high synchronization intensity. Hier reduces the traffic across NDP units;
however, it may increase the traffic inside an NDP unit, occasionally leading to slightly higher total
data movement (e.g., ts.air). This is because when an NDP core requests a synchronization variable
that is physically located in another NDP unit, it first sends a message inside the NDP unit to its local
server, which in turns sends a message to the global server. In contrast, SynCron reduces the traffic
inside an NDP unit due to directly buffering synchronization variables, and across NDP units due to

its hierarchical design.

154 Chapter 5

r 1 inside NDP units I across NDP units

g 1.0 ;

o 0.8 :

3 o2 | S0 e il
5 02 1 i Bl O LT
fa CHSCI CHSCI CHSCI CHSCI CHSCI CHSCI CHSCI CHSCI CHSCI

bfs.sl cc.sx sssp.co pr.wk tf.sl tc.sx ts.air ts.pow AVG

Figure 5.15: Data movement in real applications for C: Central, H: Hier, SC: SynCron and I: Ideal.
5.6.4 Non-Uniformity of NDP Systems

High Contention

Hierarchical schemes provide high benefit under high contention, as they prioritize local requests
inside each NDP unit. We study their performance benefit in stack and priority queue (Figure
when varying the transfer latency of the interconnection links used across four NDP units. Central
is significantly affected by the interconnect latency across NDP units, as it is oblivious to the non-
uniform nature of the NDP system. Observing Ideal, which reflects the actual behavior of the main
workload, we notice that after a certain point (vertical line), the cost of remote memory accesses
across NDP units become high enough to dominate performance. SynCron and Hier tend to follow
the actual behavior of the workload, as local synchronization messages within NDP units are much
less expensive than remote messages of Central. SynCron outperforms Hier by 1.06x and 1.04x for
stack and priority queue. We conclude that SynCron is the best at hiding the latency of slow links

across NDP units.

Central =i Hier =%= SynCron Ideal
Stack Priority Queue
o 14 I w 12 i
312 =10 I
10 D
c c 8 -~ —
L2 8 2
§ s g S |
o 4 o 4 = S U —
Q. Q. |
o 2 o 2
O (. oL =
0.040.10205 1 2 45 9 0.040.10205 1 2 45 9
Transfer latency (us) Transfer latency (us)

Figure 5.16: Performance sensitivity to the transfer latency of the interconnection links used to con-
nect the NDP units.

Low Contention

We also study the effect of interconnection links used across the NDP units in a low-contention graph
application (Figure [5.17). Observing Ideal, with 500 ns transfer latency per cache line, we note that

the workload experiences 2.46 x slowdown over the default latency of 40 ns, as 24.1% of its memory

Chapter 5 155

accesses are to remote NDP units. As the transfer latency increases, Central incurs significant slow-
down over Ideal, since all NDP cores of the system communicate with one single server, generating
expensive traffic across NDP units. In contrast, the slowdown of hierarchical schemes over Ideal is
smaller, as these schemes generate less remote traffic by distributing the synchronization requests
across multiple local servers. SynCron outperforms Hier due to its direct buffering capabilities. Over-
all, SynCron outperforms prior high-performance schemes even when the network delay across NDP

units is large.

c pr.wk 2.67

3 2.5 773 1 Ideal
'8 2.0 1.87] EEE SynCron
3 . 1.61 I Hier
o 1.5 1.29 1.33 1.36 1.37

“ 1.0

40 100 200

Transfer latency in ns For each cache line

500

Figure 5.17: Performance sensitivity to the transfer latency of the interconnection links used to con-
nect the NDP units. All data is normalized to Ideal (lower is better).

5.6.5 Memory Technologies

We study three memory technologies, which provide different memory access latencies and band-
width. We evaluate (i) 2.5D NDP using HBM, (ii) 3D NDP using HMC, and (iii) 2D NDP using DDR4.
Figure shows the performance of all schemes normalized to Central of each memory. The re-
ported values show the speedup of SynCron over Central and Hier. SynCron’s benefit is independent
of the memory used: its performance versus Ideal only slightly varies (£1.4%) across different mem-
ory technologies, since STs never overflow. Moreover, SynCron’s performance improvement over
prior schemes increases as the memory access latency becomes higher thanks to direct buffering,
which avoids expensive memory accesses for synchronization. For example, in ts.pow, SynCron out-
performs Hier by 1.41x and 2.49x with HBM and DDR4, respectively, as the latter incurs higher

access latency. Overall, SynCron is orthogonal to the memory technology used.

] Central I Hier EEE SynCron 1 Ideal

3.5]
a
_g 3.0 141 1.55 m
o %3 121131 153 | 459 132 123 @ 'm ' -
a. 1.48 1.52 1.08 1.49 1.58 :
w 1.5

1.0

HBM HMC DDR4 HBM HMC DDR4 HBM HMC DDR4
cc.wk pr.wk ts.pow

Figure 5.18: Speedup with different memory technologies.

156 Chapter 5

5.6.6 Effect of Data Placement

Figure[5.19evaluates the effect of better data placement on SynCron’s benefits. We use Metis [581]] to
obtain a 4-way graph partitioning to minimize the crossing edges between the 4 NDP units. All data
values are normalized to Central without Metis. For SynCron, we define ST occupancy as the average
fraction of ST entries that are occupied in each cycle.

A™=ANM

AN NMLN H
Ny Central I Hier HEE SynCron [Ideal

—

4 1 1

No Metis Metis No Metis Metis No Metis Metis No Metis Metis
pr.wk pr.sl pr.sx pr.co

woNvhoO®O
|
|
]

Speedup
O=dddaN)

Max ST Occupancy (%) pr.wk prsl prsx pr.co

No Metis 62 51 33 43
Metis 39 29 38 34

Figure 5.19: Performance sensitivity to a better graph partitioning and maximum ST occupancy of
SynCron.

We make three observations. First, Ideal, which reflects the actual behavior of the main kernel
(i.e., with zero synchronization overhead), improves performance by 1.47x across the four graphs.
Second, with a better graph partitioning, SynCron still outperforms both Central and Hier. Third, we
find that ST occupancy is lower with a better graph partitioning. When a local SE receives a request
for a synchronization variable of another NDP unit, both the local SE and the Master SE reserve a
new entry in their STs. With a better graph partitioning, NDP cores send requests to their local SE,
which is also the Master SE for the requested variable. Thus, only one SE of the system reserves a new
entry, resulting in a lower ST occupancy. We conclude that, with better data placement SynCron still

performs the best while achieving even lower ST occupancy.

5.6.7 SynCron’s Design Choices

Hierarchical Design

To demonstrate the effectiveness of SynCron’s hierarchical design in non-uniform NDP systems, we
compare it with SynCron’s flat variant. Each core in flat directly sends all its synchronization requests
to the Master SE of each variable. In contrast, each core in SynCron sends all its synchronization
requests to the local SE. If the local SE is not the Master SE for the requested variable, the local SE
sends a message across NDP units to the Master SE.

We evaluate three synchronization scenarios: (i) low-contention and synchronization non-intensive
(e.g., graph applications), (ii) low-contention and synchronization-intensive (e.g., time series analy-

sis), and (iii) high-contention (e.g., queue data structure).

Chapter 5 157

[] 40ns [100 ns B 200 ns Il 500 ns

1.00 2’2
a (a) a2.0 (b
2 0.95 2 1.8
.- o,
v 0.90 o 1.6
g 214
v 0.85 w12 |

080 % 1.0

s.air ts.pow Queue.30cores Queue.60cores

Figure 5.21: Speedup of SynCron normalized to flat, as we vary the transfer latency of the intercon-
nection links used to connect NDP units, under (a) a low-contention and synchronization-intensive
scenario using 4 NDP units, and (b) a high-contention scenario using 2 and 4 NDP units.

Low-contention and synchronization non-intensive. Figure evaluates this scenario using
several graph processing workloads with 40 ns link latency between NDP units. SynCron is 1.1%
worse than flat, on average. We conclude that SynCron performs only slightly worse than flat for

low-contention and synchronization non-intensive scenarios.

1.0 — - —

Speedup

0.9
RS

Figure 5.20: Speedup of SynCron normalized to flat with 40 ns link latency between NDP units, under
a low-contention and synchronization non-intensive scenario.

Low-contention and synchronization-intensive. Figure evaluates this scenario using time
series analysis with four different link latency values between NDP units. SynCron performs 7.3%
worse than flat with a 40 ns inter-NDP-unit latency. With a 500 ns inter-NDP-unit latency, SynCron
performs only 3.6% worse than flat, since remote traffic has a larger impact on the total execution time.
We conclude that SynCron performs modestly worse than flat, and SynCron’s slowdown decreases as

non-uniformity, i.e., the latency between NDP units, increases.

High-contention. Figure evaluates this scenario using a queue data structure with four dif-
ferent link latency values between NDP units, for 30 and 60 NDP cores. SynCron with 30 NDP cores
outperforms flat from 1.23x to 1.76 X, as the inter-NDP-unit latency increases from 40 ns to 500 ns
(i.e., with increasing non-uniformity in the system). In a scenario with high non-uniformity in the
system and large number of contended cores, e.g., using a 500 ns inter-NDP-unit latency and 60 NDP
cores, SynCron’s benefit increases to a 2.14x speedup over flat. We conclude that SynCron performs

significantly better than flat under high-contention.

Overall, we conclude that in non-uniform, distributed NDP systems, only a hierarchical hardware

synchronization design can achieve high performance under all various scenarios.

158 Chapter 5

ST Size

We show the effectiveness of the proposed 64-entry ST (per NDP unit) using real applications. Ta-
ble[5.7| shows the measured occupancy across all STs. Figure shows the performance sensitivity
to ST size. In graph applications, the average ST occupancy is low (2.8%), and the 64-entry ST never
overflows: maximum occupancy is 63% (cc.wk). In contrast, time series analysis has higher ST oc-
cupancy (reaching up to 89% in ts.pow) due to the high synchronization intensity, but there are no
ST overflows. Even a 48-entry ST overflows for only 0.01% of synchronization requests, and incurs
2.1% slowdown over a 64-entry ST. We conclude that the proposed 64-entry ST meets the needs of

applications that have high synchronization intensity.

1 ST_64 [ST_48 BN ST_32 B ST_16 HEN ST_8

il Tl

cc.wk pr.wk ts.air ts.pow

Slowdown
OO =mdddd

Figure 5.22: Slowdown with varying ST size (normalized to 64-entry ST). Numbers on top of bars
show the percentage of overflowed requests.

Overflow Management

The linked list and BST_FG data structures are the only cases where the proposed 64-entry ST over-
flows, when using 60 cores, for 3.1% and 30.5% of the requests, respectively. This is because each
core requests at least two locks at the same time during the execution. Note that these synthetic

benchmarks represent extreme scenarios, where all cores repeatedly perform key-value operations.

ST Occupancy Max (%) Avg (%) ST Occupancy Max (%) Avg (%)
bfs.wk 51 1.33 pr.sl 51 2.27
bfs.sl 59 1.49 pr.sx 53 2.46
bfs.sx 51 3.24 pr.co 48 4.72
bfs.co 55 6.09 tf.wk 62 1.44
cc.wk 63 1.27 tf.sl 53 2.21
cc.sl 61 2.16 tf.sx 50 2.99
cC.SX 48 2.43 tf.co 48 4.61
cc.co 46 4.53 te.wk 62 1.26
sssp.wk 62 1.18 te.sl 48 2.08
sssp.sl 54 2.08 te.sx 50 2.77
SSSp.sx 50 2.20 tc.co 51 4.52
sssp.co 48 5.23 ts.air 84 44.20
pr.wk 62 4.27 ts.pow 89 4351

Table 5.7: ST occupancy in real applications.

Chapter 5 159

BST_FG
2 8.0 2.3% 0%
- 75 =N SynCron
_E ’ SynCron_CentralOvrfl
E 7.0 === SynCron_DistribOvrfl
o 6.5
a
O 6.0

ST 16 ST 32 ST 48 ST 64 ST 128 ST 256

Figure 5.23: Throughput achieved by BST_FG using different overflow schemes and varying the ST
size. The reported numbers show to the percentage of overflowed requests.

Figure [5.23| compares BST_FG’s performance with SynCron’s integrated overflow scheme versus
with a non-integrated scheme as in MiSAR. When overflow occurs, MiSAR’s accelerator aborts all
participating cores notifying them to use an alternative synchronization library, and when the cores
finish synchronizing via an alternative solution, they notify MiSAR’s accelerator to switch back to
hardware synchronization. We adapt this scheme to SynCron for comparison purposes: when an
ST overflows, SEs send abort messages to NDP cores with a hierarchical protocol, notifying them
to use an alternative synchronization solution, and after finishing synchronization they notify SEs
to decrease their indexing counters and switch to hardware. We evaluate two alternative solutions:
(i) SynCron_CentralOvrfl, where one dedicated NDP core handles all synchronization variables, and
(if) SynCron_DistribOvrfl, where one NDP core per NDP unit handles variables located in the same
NDP unit. With 30.5% overflowed requests (i.e., with a 64-entry ST), SynCron_CentralOvrfl and Syn-
Cron_DistribOvrfl incur 12.3% and 10.4% performance slowdown compared to with no ST overflow,
due to high network traffic and communication costs between NDP cores and SEs. In contrast, Syn-
Cron affects performance by only 3.2% compared to with no ST overflow. We conclude that SynCron’s

integrated hardware-only overflow scheme enables very small performance overhead.

5.6.8 SynCron’s Area and Power Overhead

Table compares an SE with the ARM Cortex A7 core [582]. We estimate the SPU using Al-
addin [567], and the ST and indexing counters using CACTI [561]. We conclude that our proposed

hardware unit incurs very modest area and power costs to be integrated into the compute die of an
NDP unit.

SE (Synchronization Engine) ARM Cortex A7 [582]

Technology 40nm 28nm
SPU: 0.0141mm?, ST: 0.0112mm?
' 32KB L1 Cache
Area Indexing Counters: 0.0208mm?
Total: 0.0461mm? Total: 0.45mm?
Power 2.7 mW 100mW

Table 5.8: Comparison of SE with a simple general-purpose in-order core, ARM Cortex A7.

160 Chapter 5

5.7 Recommendations

This section presents our key takeaways in the form of recommendations for software and hardware
designers.

Recommendation #1. Provide hardware synchronization support for NDP architectures. Figures5.10]
and demonstrate that SynCron significantly outperforms software-based synchronization
schemes, e.g., Central and Hier, across various contention scenarios and workload demands. In addi-
tion, Tables[5.7|and show that SynCron has modest area and power costs for NDP architectures.
In contrast to commodity CPU and GPU systems that run multiple software threads executed at each
hardware thread context, NDP architectures [[135}/138,/139,/188,/189,/191-193,/196,|197,|200} (201,203,
204,206,207, [254H257,308,|318L360-369] typically support a only fixed number of hardware thread
contexts, and thus in such computing platforms synchronization can be effectively implemented in
hardware with low cost. Therefore, we suggest that hardware designers of NDP architectures provide
low-cost synchronization mechanisms implemented in hardware.

Recommendation #2. Design hierarchical, non-uniform aware synchronization schemes for non-
uniform NDP systems. NDP systems are typically non-uniform, distributed architectures, in which
inter-unit communication is more expensive (both in performance and energy) than intra-unit com-
munication [[135][192,[1931[196,[204,[2061[207,[368]. Our evaluations presented in Figures[5.16|and
show that the hierarchical schemes, i.e., Hier and SynCron, provide significant performance ben-
efits over Central, since Central is oblivious to the non-uniform nature of NDP systems. Under
high-contention scenarios (Figure [5.16), the hierarchical (non-uniform aware) schemes achieve high
system performance by minimizing the expensive traffic across NDP units of the system. Under
low-contention scenarios (Figure [5.17), the hierarchical schemes provide high system performance,
because they (i) generate less remote traffic by distributing the synchronization requests across multi-
ple local synchronization units, and (ii) increase parallelism, since the per-NDP-unit synchronization
units service different synchronization requests concurrently. To this end, we recommend that hard-
ware architects design non-uniform aware synchronization mechanisms for NDP systems.
Recommendation #3. Design effective data placement schemes of the input data and the associated
synchronization variables across multiple NDP units of the NDP system. In many real-world appli-
cations (e.g., graph processing applications), the large input data set given (e.g., real-world graphs
with a large number of vertices and edges) is shared among multiple cores, and thus a fine-grained
synchronization scheme (i.e., including a large number of synchronization variables, each of them
protects a small granularity of shared data) is typically used. Figure demonstrates that a better
graph partitioning in graph processing workloads significantly improves performance of the main
kernel and reduces the synchronization costs among NDP cores. Specifically, with a better graph
partitioning SynCron (i) reduces the remote synchronization messages sent across the NDP units of
the system through the expensive interconnection links, and (ii) has lower ST occupancy, thus hav-
ing lower ST sizes (with lower area and power costs) can be sufficient to meet the synchronization
needs of real-world applications without never overflowing. Therefore, we suggest that software en-

gineers of real-world applications with fine-grained synchronization schemes design intelligent data

Chapter 5 161

placement schemes of the input data and the associated synchronization variables across multiple
NDP units of NDP architectures to achieve high system performance and minimize synchronization

costs.

5.8 Related Work

To our knowledge, our work is the first one to (i) comprehensively analyze and evaluate synchro-
nization primitives in NDP systems, and (ii) propose an end-to-end hardware-based synchronization
mechanism for efficient execution of such primitives. We briefly discuss prior work.

Synchronization on NDP. Ahn et al. [[135] include a message-passing barrier similar to our Cen-
tral baseline. Gao et al. [[196] implement a hierarchical tree-based barrier for HMC [355]], where cores
first synchronize inside the vault, then across vaults, and finally across HMC stacks. Section
shows that SynCron outperforms such schemes. Gao et al. [[196]] also provide remote atomics at the
vault controllers of HMC. However, synchronization using remote atomics creates high global traffic
and hotspots [[132}[382H385].

Synchronization on CPUs. A range of hardware synchronization mechanisms have been pro-
posed for commodity CPU systems [289-294]]. These are not suitable for NDP systems because they
either (i) rely on the underlying cache coherence system [290,294], (ii) are tailored for the 2D-mesh
network topology to connect all cores [[289,]291]], or (iii) use transmission-line technology [292] or
on-chip wireless technology [293]]. Callbacks [583]] includes a directory cache structure close to the
LLC of a CPU system built on self-invalidation coherence protocols [297-302]. Although it has low
area cost, it would be oblivious to the non-uniformity of NDP, thereby incurring high performance
overheads under high contention (Section [5.6.7). Callbacks improves performance of spin-wait in
hardware, on top of which high-level primitives (locks/barriers) are implemented in software. In
contrast, SynCron directly supports high-level primitives in hardware, and is tailored to all salient
characteristics of NDP systems.

The closest works to ours are SSB [288], LCU [295], and MiSAR [287]]. SSB, a shared memory
scheme, includes a small buffer attached to each controller of LLC to provide lock semantics for a
given data address. LCU, a message-passing scheme, incorporates a control unit into each core and
a reservation table into each memory controller to provide reader-writer locks. MiSAR is a message-
passing synchronization accelerator distributed at each LLC slice of tile-based many-core chips. These
schemes provide efficient synchronization for CPU systems without relying on hardware coherence
protocols. As shown in Table[5.4] compared to these works, SynCron is a more effective, general and
easy-to-use solution for NDP systems. These works have two major shortcomings. First, they are
designed for uniform architectures, and would incur high performance overheads in non-uniform,
distributed NDP systems under high-contetion scenarios, similarly to flat in Figure [5.21p. Second,
SSB and LCU handle overflow cases using software exception handlers that typically incur large
performance overheads, while MiSAR’s overflow scheme would incur high performance degradation
due to high network traffic and communication costs between the cores and the synchronization

accelerator (Section [5.6.7). In contrast, SynCron is a non-uniformity aware, hardware-only, end-to-

162 Chapter 5

end solution designed to handle key characteristics of NDP systems.

Synchronization on GPUs. GPUs support remote atomic units at the shared cache and hard-
ware barriers among threads of the same block [584]], while inter-block barrier synchronization is
inefficiently implemented via the host CPU [584]. The closest work to ours is HQL [[384]], which mod-
ifies the tag arrays of L1 and L2 caches to support the lock primitive. This scheme incurs high area
cost [|385], and is tailored to the GPU architecture that includes a shared L2 cache, while most NDP
systems do not have shared caches.

Synchronization on MPPs. The Cray T3D/T3E [474,|475]], SGI Origin [303], and AMOs [476]
include remote atomics at the memory controller, while NYU Ultracomputer [305]] provides fetch&and
remote atomics in each network switch. As discussed in Section synchronization via remote
atomics incurs high performance overheads due to high global traffic [132,382,[384}385]. Cray T3E
supports a barrier using physical wires, but it is designed specifically for 3D torus interconnect. Tera
MTA [304], HEP [477,478], J- and M-machines [[4791480], and Alewife [585]] provide synchronization
using hardware bits (full/empty bits) as tags in each memory word. This scheme can incur high area
cost [295]. QOLB [[481]] associates one cache line for every lock to track a pointer to the next waiting
core, and one cache line for local spinning using bits (syncbits). QOLB is built on the underlying
cache coherence protocol. Similarly, DASH [[482] keeps a queue of waiting cores for a lock in the
directory used for coherence to notify caches when the lock is released. CM5 [296|] supports remote
atomics and a barrier among cores via a dedicated physical control network (organized as a binary

tree), which would incur high hardware cost to be supported in NDP systems.

5.9 Summary

SynCron is the first end-to-end synchronization solution for NDP systems. SynCron avoids the need
for complex coherence protocols and expensive rmw operations, incurs very modest hardware cost,
generally supports many synchronization primitives and is easy-to-use. Our evaluations show that
it outperforms prior designs under various conditions, providing high performance both under high-
contention (due to reduction of expensive traffic across NDP units) and low-contention scenarios
(due to direct buffering of synchronization variables and high execution parallelism). We conclude
that SynCron is an efficient synchronization mechanism for NDP systems, and hope that this work
encourages further comprehensive studies of the synchronization problem in heterogeneous systems,

including NDP systems.

CHAPTER O

SparseP

6.1 Overview

Sparse Matrix Vector Multiplication (SpMV) is a fundamental linear algebra kernel for important
applications from the scientific computing, machine learning, and graph analytics domains. In com-
modity systems, it has been repeatedly reported to achieve only a small fraction of the peak perfor-
mance [18,81,90,99,111,125281}306,387-390]] due to its algorithmic nature, the employed compressed
matrix storage format, and the sparsity pattern of the input matrix. SpMV performs indirect memory
references as a result of storing the matrix in a compressed format, and irregular memory accesses
to the input vector due to sparsity. The matrices involved are very sparse, i.e., the vast majority of
elements are zeros [[18,811/129,2761279-283]]. For example, the matrices that represent Facebook’s and
YouTube’s network connectivity contain 0.0003% [276,279|] and 2.31% [276L280] non-zero elements,
respectively. Therefore, in processor-centric systems, SpMV is a memory-bandwidth-bound kernel
for the majority of real sparse matrices, and is bottlenecked by data movement between memory and
processors [17,/18,81,884904991|1251|1411|142}|262,281,/306,387-393].

163

164 Chapter 6

One promising way to alleviate the data movement bottleneck is the Processing-In-Memory (PIM)
paradigm [5,/54}|135}/137-144,/154,(155L|160}/161}/166,170-173,{179}/183}/184,/187-189,{1914/194-197,/199,
201,1205,/206,[208-210} 254, 256,257,308}, 362,/370,3741[394-443]]. PIM moves computation close to ap-
plication data by equipping memory chips with processing capabilities [140,/399]. Prior works [5,
54,/120,/135,/188,/192,|1931|1961{197,200, 203207, 255-257,308}374}/401}/401} 412, 444-446]] propose PIM
architectures wherein a processor logic layer is tightly integrated with DRAM memory layers us-
ing 2.5D/3D-stacking technologies [354,355,359]. Nonetheless, the 2.5D/3D integration itself might
not always be able to provide significantly higher memory bandwidth for processors than standard
DRAM [395,/398]. To provide even higher bandwidth for the in-memory processors, near-bank PIM
designs have been explored [137,[141}/142,[318l/386,(3951397,(398/406-411,/415,423,/447-451]]. Near-bank
PIM designs tightly couple a PIM core with each DRAM bank, exploiting bank-level parallelism to
expose high on-chip memory bandwidth of standard DRAM to processors. Moreover, manufactur-
ers of near-bank PIM architectures avoid disturbing the key components (i.e., subarray and bank)
of commodity DRAM to provide a cost-efficient and practical way for silicon materialization. Two
real near-bank PIM architectures are Samsung’s FIMDRAM [395,397] and the UPMEM PIM sys-
tem [[137}[141,/142,452]].

Most near-bank PIM architectures [[137}141142/318/3861,395,397,398,406,447-450] support several
PIM-enabled memory chips connected to a host CPU via memory channels. Each memory chip com-
prises multiple PIM cores, which are low-area and low-power cores with relatively low computation
capability [141,142]], and each of them is located close to a DRAM bank [[137}/1411{142,318)3861{395,397,
398,406,1447-450]]. Each PIM core can access data located on their local DRAM banks, and typically
there is no direct communication channel among PIM cores. Overall, near-bank PIM architectures
provide high levels of parallelism and very large memory bandwidth, thereby being a very promis-
ing computing platform to accelerate memory-bound kernels. Recent works leverage near-bank PIM
architectures to provide high performance and energy benefits on bioinformatics [[141}{142}{453.{454]],
skyline computation [483]], compression [455] and neural network [141,/142,[386}/395,448] kernels.
A recent study [141,/142] provides PrIM benchmarks [484], which are a collection of 16 kernels for
evaluating near-bank PIM architectures, like the UPMEM PIM system. However, there is no prior
work to thoroughly study the widely used, memory-bound SpMV kernel on a real PIM system.

Our work is the first to efficiently map the SpMV execution kernel on near-bank PIM systems,
and understand its performance implications on a real PIM system. Specifically, our goal in this
work is twofold: (i) design efficient SpMV algorithms to accelerate this kernel in current and future
PIM systems, while covering a wide variety of sparse matrices with diverse sparsity patterns, and (ii)
provide an extensive characterization analysis of the widely used SpMV kernel on a real PIM archi-
tecture. To this end, we provide a wide variety of SpMV implementations for real PIM architectures,
and conduct a rigorous experimental analysis of SpMV kernels in the UPMEM PIM system, the first
publicly-available real-world PIM architecture.

We present the SparseP library [11] that includes 25 SpMV kernels for real PIM systems, sup-
porting various (1) data types, (2) data partitioning techniques of the sparse matrix to PIM-enabled

memory, (3) compressed matrix formats, (4) load balancing schemes across PIM cores, (5) load balanc-

Chapter 6 165

ing schemes across threads of a multithreaded PIM core, and (6) synchronization approaches among
threads within PIM core. We support a wide range of data types, i.e., 8-bit integer, 16-bit integer, 32-
bit integer, 64-bit integer, 32-bit float and 64-bit float data types to cover a wide variety of real-world
applications that employ SpMV as their underlying kernel. We design two types of well-crafted data
partitioning techniques: (i) the 1D partitioning technique to perform the complete SpMV computation
only using PIM cores, and (ii) the 2D partitioning technique to strive a balance between computation
and data transfer costs to PIM-enabled memory. In the 1D partitioning technique, the matrix is hor-
izontally partitioned across PIM cores, and the whole input vector is copied into the DRAM bank of
each PIM core, while PIM cores directly compute the elements of the final output vector. In the 2D
partitioning technique, the matrix is split in 2D tiles, the number of which is equal to the number of
PIM cores, and a subset of the elements of the input vector is copied into the DRAM bank of each PIM
core. However, in the 2D partitioning technique, PIM cores create a large number of partial results for
the elements of the output vector which are gathered and merged by the host CPU cores to assemble
the final output vector. We support the most popular compressed matrix formats, i.e., CSR [456,457],
COO [457,1458]], BCSR [459], BCOO [457], and for each compressed format we implement various
load balancing schemes across PIM cores to provide efficient SpMV execution for a wide variety of
sparse matrices with diverse sparsity patterns. Finally, we design several load balancing schemes and
synchronization approaches among parallel threads within a PIM core to cover a variety of real PIM

systems that provide multithreaded PIM cores.

We conduct an extensive characterization analysis of SparseP kernels on the UPMEM PIM sys-
tem [|137)/141}/142/[318|] analyzing the SpMV execution using (1) one single multithreaded PIM core, (2)
thousands of PIM cores, and (3) comparing it with that achieved on conventional processor-centric
CPU and GPU systems. First, we characterize the limits of a single multithreaded PIM core, and show
that (i) high operation imbalance across threads of a PIM core can impose high overhead in the core
pipeline, and (ii) fine-grained synchronization approaches to increase parallelism cannot outperform
a coarse-grained approach, if PIM hardware serializes accesses to the local DRAM bank. Second, we
analyze the end-to-end SpMV execution of 1D and 2D partitioning techniques using thousands of
PIM cores. Our study indicates that the performance (i) of the 1D partitioning technique is limited
by data transfer costs to broadcast the whole input vector into each DRAM bank of PIM cores, and
(ii) of the 2D partitioning technique is limited by data transfer costs to gather partial results for the
elements of the output vector from PIM-enabled memory to the host CPU. Such data transfers incur
high overheads, because they take place via the narrow memory bus. In addition, our detailed study
across a wide variety of compressed matrix formats and sparse matrices with diverse sparsity pat-
terns demonstrates that (i) the compressed matrix format determines the data partitioning strategy
across DRAM banks of PIM-enabled memory, thereby affecting the computation balance across PIM
cores with corresponding performance implications, and (ii) there is no one-size-fits-all solution. The
load balancing scheme across PIM cores (and across threads within a PIM core) and data partitioning
technique that provides the best-performing SpMV execution depends on the characteristics of the
input matrix and the underlying PIM hardware. Finally, we compare the SpMV execution on a state-
of-the-art UPMEM PIM system with 2528 PIM cores to state-of-the-art CPU and GPU systems, and

166

Chapter 6

observe that SpMV on the UPMEM PIM system achieves a much higher fraction of the machine’s peak

performance compared to that on the state-of-the-art CPU and GPU systems. Our extensive evalua-

tion provides programming recommendations for software designers, and suggestions and hints for

hardware and system designers of future PIM systems.

Our most significant recommendations for PIM software designers are:

1.

Design algorithms that provide high load balance across threads of PIM core in terms of com-
putations, loop control iterations, synchronization points and memory accesses.
Design compressed data structures that can be effectively partitioned across DRAM banks, with

the goal of providing high computation balance across PIM cores.

. Design adaptive algorithms that trade off computation balance across PIM cores for lower data

transfer costs to PIM-enabled memory, and adapt their configuration to the particular patterns

of each input given, as well as the characteristics of the PIM hardware.

Our most significant suggestions for PIM hardware and system designers are:

1.

Provide low-cost synchronization support and hardware support to enable concurrent memory
accesses by multiple threads to the local DRAM bank to increase parallelism in a multithreaded
PIM core.

Optimize the broadcast collective operation in data transfers from main memory to PIM-enabled
memory to minimize overheads of copying the input data into all DRAM banks in the PIM sys-
tem.

Optimize the gather collective operation at DRAM bank granularity for data transfers from
PIM-enabled memory to the host CPU to minimize overheads of retrieving the output results.
Design high-speed communication channels and optimized libraries for data transfers to/from
thousands of DRAM banks of PIM-enabled memory.

Our SparseP software package is freely and publicly available [11] to enable further research on

SpMV in current and future PIM systems. The main contributions of this work are as follows:
« We present SparseP, the first open-source SpMV software package for real PIM architectures.

SparseP includes 25 SpMV kernels, supporting the four most widely used compressed matrix
formats and a wide range of data types. SparseP is publicly available at [11], and can be useful
for researchers to improve multiple aspects of future PIM hardware and software.

We perform the first comprehensive study of the widely used SpMV kernel on the UPMEM PIM
architecture, the first real commercial PIM architecture. We analyze performance implications
of SpMV PIM execution using a wide variety of (1) compressed matrix formats, (2) data types,
(3) data partitioning and load balancing techniques, and (4) 26 sparse matrices with diverse
sparsity patterns.

We compare the performance and energy of SpMV on the state-of-the-art UPMEM PIM system
with 2528 PIM cores to state-of-the-art CPU and GPU systems. SpMV execution achieves less
than 1% of the peak performance on processor-centric CPU and GPU systems, while it achieves
on average 51.7% of the peak performance on the UPMEM PIM system, thus better leveraging
the computation capabilities of underlying hardware. The UPMEM PIM system also provides
high energy efficiency on the SpMV kernel.

Chapter 6 167

6.2 Background and Motivation

6.2.1 Sparse Matrix Vector Multiplication (SpMV)

The SpMV kernel multiples a sparse matrix of size M x N with a dense input vector of size 1 x N
to compute an output vector of size M x 1. The SpMV kernel is widely used in a variety of appli-
cations including graph processing [1,{2761[5861/587]], neural networks [265,/588-590], machine learn-
ing [261}/591-595], and high performance computing [90}392,/447./596-599]. These applications in-
volve matrices with very high sparsity [181/811/129,276,279-283], i.e., a large fraction of zero elements.
Thus, using a compression scheme is a straightforward approach to avoid unnecessarily storing zero
elements and performing computations on them. For general sparse matrices, the most widely used
storage format is the Compressed Sparse Row (CSR) format [456[457]]. Figure [6.1] presents an exam-
ple of a compressed matrix using the CSR format (left), and the CSR-based SpMV execution (right),

assuming an input vector x and an output vector y.

. (a) CSR 3 (b) CSR-based SpMV
Matrix ;
rowptr :
[O[1T1T1T112]3][3]3] | For (i=0;i< M;i++)
colind | for (j = rowptrl[i]; j < rowptr[i+1]; j++)
! '

8 values y[i] += valueslj] * x[colind[j]]

Figure 6.1: (a) CSR representation of a sparse matrix. (b) CSR-based SpMV implementation.
Compressed Matrix Storage Formats

Several prior works [17,/95,(96}/99,/111}[393}1456-459,600-613] propose compressed storage formats
for sparse matrices, which are typically of two types [276]. The first approach is to design general
purpose compressed formats, such as CSR [456,457], CSR5 [601]], COO [457,458]], BCSR [459], and
BCOO [457]]. Such encodings are general in applicability and are highly-efficient in storage. The sec-
ond approach is to leverage a certain known structure in a given type of sparse matrix. For example,
the DIA format [[603] is effective in matrices where the non-zero elements are concentrated along the
diagonals of the matrix. Such encodings aim to improve performance of sparse matrix computations
by specializing to particular matrix patterns, but they sacrifice generality. In this work, we explore
with the four most widely used general compressed formats (Figure [6.2), which we describe in more

detail next.

(a) SpMV (b) CSR (c) COO (d) BCSR (e) BCOO
:::::ct)r CITTTTTT] output rowptr tuples browptr browind
* vector | RIAAA[1[2[3]33] [0]a]5] [o[12]
ax4 | colind 356 peolind beolind
0 i
= values bvalues bvalues
Matrix |:|:|:| 1 e Y N I I

Figure 6.2: (a) SpMV with a dense matrix representation, and (b) CSR, (c) COO, (d) BCSR, (e) BCOO
formats.

168 Chapter 6

Compressed Sparse Row (CSR) [[456,457|]. The CSR format (Figure) sequentially stores values
in a row-wise order. A column index array (colind[]) and a value array (values|[]) store the
column index and value of each non-zero element, respectively. An array, named rowptxr[], stores
the location of the first non-zero element of each row within the values [] array. The values of an
adjacent pair of the rowptr [] array,i.e, rowptr[i, i+1],representasliceofthecolind][]
and values|[] arrays. The corresponding slice of the colind[] and values|[] arrays stores
the column indices and the values of the non-zero elements, respectively, for the i-th row of the
original matrix.

Coordinate Format (COO) [457,458]. The COO format (Figure) stores the non-zero elements
as a series of tuples (tuples [] array). Each tuple includes the row index, column index, and value
of the non-zero element.

Block Compressed Sparse Row (BCSR) [[459]]. The BCSR format (Figure [6.2d) is a block repre-
sentation of CSR. Instead of storing and indexing single non-zero elements, BCSR stores and indexes
r X c sub-blocks with at least one non-zero element. The original matrix is split into 7 X ¢ sub-blocks.
Figure[6.2[d shows an example of BCSR assuming 4 x 4 sub-blocks. The original matrix of Figure[6.2h
is split into four sub-blocks, and two of them (highlighted with red color) contain at least one non-
zero element. The bvalues [] array stores the values of all the non-zero sub-blocks of the original
matrix. Each non-zero sub-block is stored in the bvalues [] array with a dense representation, i.e.,
padding with zero values when needed. The bcolind[] array stores the block-column index of
each non-zero sub-block. The browptxr[] array stores the location of the first non-zero sub-block
of each block row within the bcolind[] array, assuming a block row represents r consecutive
rows of the original matrix, where 7 is the vertical dimension of the sub-block.

Block Coordinate Format (BCOO) [[457]]. The BCOO format is the block counterpart of COO. The
browind[], bcolind[] and bvalues|[] arrays store the row indices, column indices and
values of the non-zero sub-blocks, respectively. Figure shows an example of BCOO, assuming
4 x 4 sub-blocks.

SpMV in Processor-Centric Systems

Many prior works [[181/81}/90,99,111,1181282}306,387-390]] generally show that SpMV performs poorly
on commodity CPU and GPU systems, and achieves a small fraction of the peak performance (e.g.,
10% of the peak performance [389]) due to its algorithmic nature, the employed compressed matrix
storage format and the sparsity pattern of the matrix.

The SpMV kernel is highly bottlenecked by the memory subsystem in processor-centric CPU and
GPU systems due to three reasons. First, due to its algorithmic nature there is no temporal locality in
the input matrix. Unlike traditional algebra kernels like Matrix Matrix Multiplication or LU decom-
position, the elements of the matrix in SpMV are used only once [[2811306]. Second, due to the sparsity
of the matrix, the matrix is stored in a compressed format (e.g., CSR) to avoid unnecessary computa-
tions and data accesses. Specifically, the non-zero elements of the matrix are stored contiguously in

memory, while additional data structures assist in the proper traversal of the matrix, i.e., to discover

Chapter 6 169

the positions of the non-zero elements. For example, CSR uses the rowptr[] and colind[] ar-
rays to discover the positions of the non-zero elements of the matrix. These additional data structures
cause additional memory access operations, memory bandwidth pressure and contention with other
requests in the memory subsystem. Third, due to the sparsity of the input matrix, SpMV causes irreg-
ular memory accesses to the elements of the input vector x. The memory accesses to the elements of
the input vector are input driven, i.e., they follow the sparsity pattern of the input matrix. This irreg-
ularity results to poor data locality on the elements of the input vector and expensive data accesses,
because it increases the average access latency due to a high number of cache misses on commodity
systems with deep cache hierarchies [281,306]]. As a result, memory-centric near-bank PIM systems
constitute a better fit for the widely used SpMV kernel, because they provide high levels of parallelism,
large aggregate memory bandwidth and low memory access latency [141}/142,318,/395}398].

6.2.2 Near-Bank PIM Systems

Figure [6.3| shows the baseline organization of a near-bank PIM system that we assume in this work.
The PIM system consists of a host CPU, standard DRAM memory modules, and PIM-enabled memory
modules. PIM-enabled modules are connected to the host CPU using one or more memory channels,
and include multiple PIM chips. A PIM chip (Figure [6.3| right) tightly integrates a low-area PIM core
with a DRAM bank. We assume that each PIM core can additionally include a small private instruction
memory and a small data (scratchpad or cache) memory. PIM cores can access data located on their
local DRAM bank, and typically there is no direct communication channel among PIM cores. The
DRAM banks of PIM chips are accessible by the host CPU for copying input data and retrieving

results via the memory bus.

Main Memory PIM Chip
/
’ (]
bus ' Geam| [pRAM| [DRAM| [DRAM / £ I i
— p = | nstruction|
Bank | | Bank | | Bank | | Bank , g ~ Memory |
Host) = DRAM
CPU PIM-enabled Memory ,’ P
7 = Bank
4 O |, Data |
{ Memor
bus ' (poim] (Pm] [PM] [PIM = L/
Chip Chip Chip Chip o
______ — - @

Figure 6.3: High-level organization of a near-bank PIM architecture.

The UPMEM PIM Architecture

The UPMEM PIM system [[137,|141}/142] includes the host CPU with standard main memory, and
UPMEM PIM modules. An UPMEM PIM module is a standard DDR4-2400 DIMM [614]] with 2 ranks.
Each rank contains 64 PIM cores, which are called DRAM Processing Units (DPUs). In the current
UPMEM PIM system, there are 20 double-rank PIM DIMMs with 2560 DPUSE'

There are thirty two faulty DPUs in the system where we run our experiments. They cannot be used and do not affect
the correctness of our results, but take away from the system’s full computational power of 2560 DPUs.

170 Chapter 6

DPU Architecture and Interface. Each DPU has exclusive access to a 24-KB instruction mem-
ory, called IRAM, a 64-KB scratchpad memory, called WRAM, and a 64-MB DRAM bank, called
MRAM. A DPU is a multithreaded in-order 32-bit RISC core that can potentially reach 500 MHz [318]].
The DPU has 24 hardware threads, each of which has 24 32-bit general purpose registers. The DPU
pipeline has 14 stages, and supports a single cycle 8x8-bit multiplier. Multiplications on 64-bit inte-
gers, 32-bit floats and 64-bit floats are not supported in hardware, and require longer routines with a
large number of operations [141,/142,318|]. Threads share the IRAM and WRAM, and can access the
MRAM by executing transactions at 64-bit granularity via a DMA engine, i.e., data can be accessed
from/to MRAM as a multiple of 8 bytes, up to 2048 bytes. MRAM transactions are serialized in the
DMA engine. The ISA provides DMA instructions to move instructions from MRAM to IRAM, or data
between MRAM and WRAM. The DPU accesses the WRAM through 8-, 16-, 32- and 64-bit load/s-
tore instructions. DPUs use the Single Program Multiple Data programming model, where software
threads, called tasklets, execute the same code, but operate in different pieces of data, and can exe-
cute different control-flow paths during runtime. Tasklets can synchronize using mutexes, barriers,
handshakes and semaphores provided by the UPMEM runtime library.

CPU-DPU Data Transfers. Standard main memory and PIM-enabled memory have different data
layouts. The UPMEM SDK [615] has a transposition library to execute necessary data shuffling
when moving data between main memory and MRAM banks of PIM-enabled memory modules via
a programmer-transparent way. The CPU-DPU and DPU-CPU data transfers can be performed in
parallel, i.e., concurrently across multiple MRAM banks, with the limitation that the transfer sizes
from/to all MRAM banks need to be the same. The UPMEM SDK provides two options: (i) perform
parallel transfers to all MRAM banks of all ranks, or (ii) iterate over each rank to perform parallel

transfers to MRAM banks of the same rank, and serialize data transfers across ranks.

6.3 'The SparseP Library

This section describes the parallelization techniques that we explore for Sp)MV on real PIM archi-
tectures, and presents the SpMV implementations of our SparseP package. Section describes
SpMV execution on a real PIM system. Section presents an overview of the data partitioning
techniques that we explore. Section [6.3.3and Section [6.3.4]describe in detail the parallelization tech-
niques across PIM cores, and across threads within a PIM core, respectively. Section describes

the kernel implementation for all compressed matrix storage formats.

6.3.1 SpMYV Execution on a PIM System

Figure [6.4 shows the SpMV execution on a real PIM system, which is broken down in four steps: (1)
the time to load the input vector into DRAM banks of PIM-enabled memory (load), (2) the time
to execute the SpMV kernel on PIM cores (kernel), (3) the time to retrieve from DRAM banks to
the host CPU results for the output vector (retriewve), and (4) the time to merge partial results

and assemble the final output vector on the host CPU (mexrge). In our analysis, we omit the time

Chapter 6 171

to load the matrix into PIM-enabled memory, since this step can typically be hidden in real-world

applications (it can be overlapped with other computation performed by the application or amortized

if the application performs multiple SpMV iterations on the same matrix).

@ load the

input vector ([.

&

9 execute the kernel

N

N

[PIM Core]

[PIM Core]

[PIM Core]

[PIM Core]

DRAM Bank

DRAM Bank

DRAM Bank

DRAM Bank

9 retrieve th

=

for output vector

eresults o merge the
partial results

Host CPU

\

bus bus

=
g

output vector

=
g

PIM-enabled Memory

T

J \ J U

.@&

Figure 6.4: Execution of the SpMV kernel on a real PIM system.

6.3.2 Overview of Data Partitioning Techniques

To parallelize the SpMV kernel, we implement well-crafted data partitioning schemes to split the
matrix across multiple DRAM banks of PIM cores. SparseP supports two general types of data parti-
tioning techniques, shown in Figure

(a) 1D ! (b) 2D
input vector input vector
|-|'|1 | I [[111 I/ i CLT 1) L]
i ——— b; E L /q,
<8 + g x4 xa ¥

B2
i B

IIIIIIlllIIIII

output
vector

sparse
matrix

output
vector !

sparse
matrix

Figure 6.5: Data partitioning techniques of the SparseP package.

First, we provide an 1D partitioning technique (Figure [6.5p), where the matrix is horizontally
partitioned across PIM cores, and the whole input vector is copied into the DRAM bank of each
PIM core. With the 1D partitioning technique, almost the entire SpMV computation is performed
using only PIM cores, since the merge step in the host CPU is negligible: a very small number of
partial results is created, i.e., only for a few rows that are split across neighboring PIM cores. Thus,
the number of partial elements of the output vector is at most equal to the number of PIM cores
used. Second, we provide a 2D partitioning technique (Figure [6.5b), where the matrix is partitioned
into 2D tiles, the number of which is equal to the number of PIM cores. With the 2D partitioning
technique, we aim to strive a balance between computation and data transfer costs, since only a subset
of the elements of the input vector is copied into the DRAM bank of each PIM core. However, PIM

cores assigned to tiles that horizontally overlap, i.e., tiles that share the same rows of the original

172 Chapter 6

matrix (rows that are split across multiple tiles), produce many partial results for the elements of the
output vector. These partial results are transferred to the host CPU, and merged by CPU cores, which
assemble the final output vector. In the SparseP library, the merge step performed by the CPU cores
is parallelized using the OpenMP API [616]].

In both data partitioning schemes, matrices are stored in a row-sorted way, i.e., the non-zero
elements are sorted in increasing order of their row indices. Therefore, each PIM core computes
results for a continuous subset of elements of the output vector. This way we minimize data transfer
costs, since we only transfer necessary data to the host CPU, i.e., the values of the elements of the
output vector produced at PIM cores. If each PIM core instead computed results for a non-continuous
subset of elements of the output vector, an additional array per core, which would store the indices of
the non-continuous elements within the output vector, would need to be transferred to the host CPU,

causing additional data transfer overheads.

6.3.3 Parallelization Techniques Across PIM Cores

To parallelize SpMV across multiple PIM cores SparseP supports various parallelization schemes for

both 1D and 2D partitioning techniques.

1D Partitioning Technique

To efficiently parallelize SpMV across multiple PIM cores via the 1D partitioning technique, SparseP
provides various load balancing schemes for each supported compressed matrix format. Figure
presents an example of parallelizing SpMV across multiple PIM cores using load balancing schemes
for the CSR and COO formats. For the CSR and COO formats, we balance either the rows, such
that each PIM core processes almost the same number of rows, or the non-zero elements, such that
each PIM core processes almost the same number of non-zero elements. In the CSR format, since the
matrix is stored in row-order, i.e., the rowptxr[] array stores the index pointers of the non-zero
elements of each row, and thus balancing the non-zero elements across PIM cores is performed at
row granularity. In the COO format, the matrix is stored in non-zero order using the tuples/[]
array, and thus balancing the non-zero elements can be performed either at row granularity, or by
splitting a row across two neighboring PIM cores to provide a near-perfect non-zero element balance
across cores. In the latter case, as mentioned, a small number of partial results for the output vector is
merged by the host CPU: if the row is split between two neighboring PIM cores at most one element
needs to be accumulated at the host CPU cores.

Figure[6.7|presents an example of parallelizing SpMV across multiple PIM cores using load balanc-
ing schemes of the BCSR and BCOO formats. In Figure[6.7} the cells of the matrix represent sub-blocks
of size 4x4: the grey cells represent sub-blocks that do not have any non-zero element, and the colored
cells represent sub-blocks that have £ non-zero elements, where k& is the number shown inside the
colored cell. In the BCSR and BCOO formats, since the matrix is stored in sub-blocks of non-zero
elements, we balance either the blocks, such that each PIM core processes almost the same number

of blocks, or the non-zero elements, such that each PIM core processes almost the same number of

Chapter 6 173
CSR coo
(i) Balance Rows (ii) Balance NNz (i) Balance Rows (ii) Balance NNZ (iii) Balance NNz
(Row Granularity) (Row Granularity)
Core 1 Core1 ! Core 1 Core 1 Core 1
: Core 2 Core 2
Core 2 Core 2 ! Core 2
: Core 3
Core3 Core3 | Core3 Core 3
[0[1]3]5]7[7[8[8[9] [o[1]3[5[7[7[8[8[9] L [O[2[233[5]7 o[1]1]2[2[3]3[5]7 0[1[1]2[2[3[3[5]7
rowptr rowptr i |0/2[5[3]|5/3]6(4|4 0|2(5(3|5|3/6/4|4 0/2(5(3|5(3/6|4|4
i 2]1]8[3]6/9|3|4]7 2(1/8(316/9|3/4|7 2(1/8(36(9|3/4|7
OZIS3530614d OlZIsB53061414 tunles
colind colind tuples tuples P
[2[1]8[3[6]9][3]4[7] 2[1]8]3]6[9[3[4[7]
values values

Figure 6.6: Load balancing schemes across PIM cores for the CSR (left) and COO (right) formats with
the 1D partitioning technique. The colored cells of the matrix represent non-zero elements.

BCSR BCOO
(i) Balance Blocks (ii) Balance NNz (i) Balance Blocks (ii) Balance NNz
(Block-Row Granularity) (Block-Row Granularity) :
4 4 Core 1 4 Core 1 4 £ : Core 1 4 Core 1
1 !
4l [12 STz core2 | 1 Core2 21— Core 2
Core 2 :‘
Core 3
Core 3 Core 3 Core 3
[0[1]2]4]6]6[7]7]8] [0[1]2]4]6]6[7]7]8] [0[1]2[2[3[3]5[7] [0[1]2[2[3[3]5[7]
browptr browptr browind browind
[0[2[3]5[3[6]4]4] [0[2[3[5[3]6[4[4] [0[2[3[5[3]6[4[4] [0[2[3]5[3]6]4[4]
bcolind bcolind bcolind bcolind
[o[1]o[0]0]9[0]0]-- [0]1]o[o]o[9]0]0] --- [0]1]0]o]o[9]0]0]--- [o[1]o[0[o][9[0]0] -
bvalues bvalues bvalues bvalues

Figure 6.7: Load balancing schemes across PIM cores for the BCSR (left) and BCOO (left) formats with
the 1D partitioning technique. The cells of the matrix represent sub-blocks of size 4x4. The colored
cells of the matrix represent non-zero sub-blocks, and the number inside a colored cell describes the
number of non-zero elements of the corresponding sub-block.

non-zero elements. Similarly to CSR, in the BCSR format, the matrix is stored in block-row-order, i.e.,
the browptr[] array stores the index pointers of the non-zero blocks of each block row (recall that
a block row represents r consecutive rows of the original matrix, where r is the vertical dimension
of the sub-block), and thus balancing the blocks or the non-zero elements across cores is limited to
be performed at block-row granularity. In the BCOO format, given that a block-row might be split
across two PIM cores, a small number of partial results for the output vector is merged by the host
CPU: between two neighboring PIM cores at most block size r elements (r is the vertical dimension

of the block size) might need to be accumulated at the host CPU cores.

2D Partitioning Technique

SparseP includes three 2D partitioning techniques, shown in Figure
1. equally-sized (Figure [6.8p): The 2D tiles are statically created to have the same height and

width. This way the subsets of the elements for the input and output vectors have the same

sizes across all PIM cores.

174 Chapter 6

2. equally-wide (Figure [6.8b): The 2D tiles have the same width and variable height. This way
the subset of the elements for the input vector has the same size across PIM cores, while the
subset of the elements for the output vector varies across PIM cores. We balance the non-zero
elements across the tiles of the same vertical partition, such that we can provide high non-zero
element balance across PIM cores assigned to the same vertical partition.

3. variable-sized (Figure[6.8f): The 2D tiles have both variable width and height. We balance the
non-zero elements both across the vertical partitions and across the tiles of the same vertical

partition. This way we can provide high non-zero element balance across all PIM cores.

(a) 2D - ® 2D - © 2D
equally-sized § equally-wide ; variable-sized
input vector input vector input vector
nllllnllll/,‘, rIIIIIrIIIII/,.v rIIIIﬂIIIII/L,\'
x4 ; x4 x4 x3 x5
Core 3 E Core1 ﬁ
Core1 Core3 E E) i Cor E Core3 . E_
Core 2 Core4 Core 4 E § Core2
E E i Core 2 % Core4 E
sparse output i sparse output sparse output
matrix vector : matrix vector : matrix vector

Figure 6.8: The 2D partitioning techniques of SparseP package assuming 4 PIM cores and 2 vertical
partitions.

SparseP provides various load balancing schemes across PIM cores in the equally-wide and variable-
sized techniques. In the equally-wide technique, for the CSR and COO formats, we balance the non-
zero elements across the tiles of the same vertical partition. Load balancing in the CSR format is
performed at row-granularity, i.e., splitting the rowptr[] array across PIM cores. For the BCSR
and BCOO formats, we balance either the blocks or the non-zero elements across the tiles of the
same vertical partition. Load balancing in the BCSR format is performed at block-row granularity,
i.e., splitting the browptr [] array across PIM cores. In the variable-sized technique, we first bal-
ance the non-zero elements across the vertical partitions, such that the vertical partitions include the
same number of non-zero elements. Then, across the tiles of the same vertical partition, we balance
the non-zero elements for the CSR (at row-granularity) and COO formats, and either the blocks or
the non-zero elements for the BCSR (at block-row granularity) and BCOO formats.

Table[6.1]summarizes the parallelization approaches across PIM cores. Please also see Appendix|[9.3]
for all SpMV kernels provided by the SparseP software package. All kernels support a wide range of
data types, i.e., 8-bit integer (int8), 16-bit integer (int16), 32-bit integer (int32), 64-bit integer (int64),
32-bit float (fp32), and 64-bit float (fp64) data types.

6.3.4 Parallelization Techniques Across Threads within a PIM Core

PIM cores can support multiple hardware threads to exploit high memory bank bandwidth [[141}/142].
To parallelize SpMV across multiple threads within a multithreaded PIM core SparseP supports var-
ious load balancing schemes for each compressed matrix format, and three synchronization ap-

proaches to ensure correctness among threads of a PIM core.

Chapter 6 175

Partitioning | Compressed Load Balancing
Technique Format Across PIM Cores
rows (CSR.row)
CSR nnz* (CSR.nnz)
rows (COO.row)
COO nnz* (COO.nnz-rgrn)
1D nnz (COO.nnz)
blocks’ (BCSR.block)
BESR nnz' (BCSR.nnz)
blocks (BCOO.block)
BCOO nnz (BCOO.nnz)
CSR (DCSR) -
2D COO (DCOO0) -

equally-sized [BCSR (DBCSR) | -
BCOO (DBCOO) | -
CSR (RBDCSR) | nnz*

COO (RBDCOO) | nnz

2D blocks’ (RBDBCSR)

equally-wide BCSR nnzt
BCOO blocks (RBDBCOO)
nnz

CSR (BDCSR) nnz*
COO (BDCOO) | nnz
2D blocks" (BDBCSR)

variable-sized | BESR nnzt
BCOO blocks (BDBCOO)
nnz

Table 6.1: Parallelization techniques across PIM cores of the SparseP library. *: row-granularity, '
block-row-granularity

Load Balancing Approaches
In a similar way as explained in Figure[6.6] for the CSR and COO formats, we balance either the rows,

such that each thread processes almost the same number of rows, or the non-zero elements, such
that each thread processes almost the same number of non-zero elements. In the CSR format, matrix
is stored in row-order, and thus load balancing across threads is performed at row granularity. In
the UPMEM PIM system, elements of the output vector are accessed at 64-bit granularity in DRAM
memory. Thus, when balancing is performed at row granularity, we assign rows to threads in chunks
of 8/sizeof(data_type) to ensure 8-byte alignment on the elements of the output vector. In the COO
format, balancing the non-zero elements can be performed either at row granularity or by splitting
the row between threads, i.e., providing an almost perfect non-zero balance across threads. In the
latter case, synchronization among threads for write accesses on the elements of the output vector
can be implemented with three synchronization approaches described in Section [6.3.4]

For the BCSR and BCOO formats, we balance either the blocks, such that each thread processes

almost the same number of blocks, or the non-zero elements, such that each thread processes almost

176 Chapter 6

the same number of non-zero elements. In the BCSR format, the matrix is stored in block-row order,
and thus load balancing across threads is performed at block row granularity. For both formats, the
block sizes are configurable in SparseP. In our evaluation, we use block sizes of 4x4, since these are
the most common dimensions to cover various sparse matrices [18,387,/617]. In the UPMEM PIM
architecture, elements of the output vector are accessed at 64-bit granularity. Therefore, for the BCSR
format, with an 8-bit integer data type and small block sizes (4x4 or smaller), threads use synchroniza-
tion primitives to ensure correctness when writing the elements of the output vector. This is because
different threads may write to the same 64-bit-aligned DRAM memory location. Synchronization
among threads for writes to the elements of the output vector is necessary for all configurations of

the BCOO format, and can be implemented with three approaches described next.

Synchronization Approaches

SparseP provides three synchronization approaches.

1. Coarse-Grained Locking (Ib-cg). One global mutex protects the elements of the entire output
vector.

2. Fine-Grained Locking (Ib-fg). Multiple mutexes protect the elements of the output vector.
SparseP associates mutexes to the elements of the output vector in a round-robin manner. The
UPMEM API supports up to 56 mutexes [615]]. In our evaluation, we use 32 mutexes such that
we can find the corresponding mutex for a particular element of the output vector only with a
shift operation on the MRAM address, avoiding costly division operations.

3. Lock-Free (If). Since the formats are row-sorted or block-row-sorted, race conditions in the
elements of the output vector arise only in a few elements, i.e., either when a row (or a block
row for BCSR/BCOO) is split across threads, or when continuous elements of the output vector
processed by different threads belong to the same 64-bit-aligned DRAM location in the UPMEM
PIM system. In our proposed lock-free approach, threads temporarily store partial results for
these few elements in the data (scratchpad) memory (i.e., WRAM in the UPMEM PIM system),
and later one single thread merges the partial results, and writes the final result for the corre-

sponding element of the output vector to the DRAM bank.

Table summarizes the parallelization techniques across threads of a PIM core. All kernels
support a wide range of data types, i.e., 8-bit integer (int8), 16-bit integer (int16), 32-bit integer
(int32), 64-bit integer (int64), 32-bit float (fp32), and 64-bit float (fp64) data types.

6.3.5 Kernel Implementation

We briefly describe the SparseP implementations for all compressed matrix formats, i.e., the way
that threads access data involved in the kernel from/to the local DRAM bank. The SpMV kernels
include three types of data structures: (i) the arrays that store the non-zero elements, i.e., the val-
ues (values|[]) and the positions of the non-zero elements (rowptr[], colind[] for CSR,
tuples|[] forCOO,browptr[],bcolind[] forBCSR,browind[],bcolind[] for BCOO),

Chapter 6 177

Compressed | Load Balancing Synchronization
Format Across Threads Approach
rows (CSR.row) -
CSR nnz* (CSR.nnz) -
rows (COO.row) -
COO nnz* (COO.nnz-rgrn) | -
nnz (CO0.nnz) lIb-cg / Ib-fg / 1f
BCSR blocks’ (BCSR.block) | Ib-cg / Ib-fg (only for int8 and small block sizes)
nnz' (BCSR.nnz) lb-cg / 1b-fg (only for int8 and small block sizes)
BCOO blocks (BCOO.block) | Ib-cg / Ib-fg / If
nnz (BCOO.nnz) lb-cg / Ib-fg / 1f

Table 6.2: Parallelization schemes across threads of a PIM core. *

granularity

: row-granularity, ": block-row-

(ii) the array that stores the elements of the input vector, and (iii) the array that stores the partial re-

sults created for the elements of the output vector.

First, SpMV performs streaming memory accesses to the arrays that store the non-zero elements
and their positions. Therefore, to exploit spatial locality and immense bandwidth in data (scratch-
pad or cache) memory, each thread reads the non-zero elements by fetching large chunks of bytes
in a coarse-grained manner from DRAM to data memory (i.e., WRAM in the UPMEM PIM system).
Then, it accesses elements through data memory in a fine-grained manner. In the UPMEM PIM sys-
tem, we fetch chunks of 256-byte data to discover the non-zero elements, as suggested by the UP-
MEM API [615], since 256-byte transfer sizes highly exploit the available local bandwidth of DRAM
bank [141}/142]]. For the BCSR and BCOO formats, only for the array that stores the values of the
non-zero elements (i.e., bvalues|[]), we fetch from DRAM to data memory block size chunks, i.e.,

chunks of r X ¢ x sizeof(data_type) bytes, assuming that the matrix is stored in blocks of size r X c.

Second, SpMV causes irregular memory accesses to the elements of the input vector. Specifically,
the accesses to the elements of the input vector are input-driven, i.e., they are determined by the
column positions (column indexes) of the non-zero elements of each particular matrix. Given that
matrices involved in SpMV are very sparse [18,/81,129,[276,[279-H283], i.e., the column indexes of the
non-zero elements significantly vary, memory accesses to the input vector incur poor data locality.
Thus, in our SpMV implementations, threads of a PIM core directly access elements of the input vector
through DRAM bank at fine-granularity [141}/142,/615], i.e., using the smallest possible granularity:
for the CSR and COO formats at 64-bit granularity, and for the BCSR and BCOO formats at the

granularity of ¢ X sizeof(data_type) bytes, where c is the horizontal dimension of the block size.

Third, regarding the output vector, threads temporarily store partial results for the same elements
of the output vector in data (scratchpad or cache) memory to exploit data locality, until all the non-
zero elements of the same row or the same block row have been traversed (recall matrices are stored
in a row-sorted way). Then, the produced results are written to DRAM bank at fine-granularity [[141,
142,615]: for the CSR and COO formats at 64-bit granularity, and for the BCSR and BCOO formats at

the granularity of r x sizeof(data_type) bytes, where r is the vertical dimension of the block size.

178 Chapter 6

6.4 Evaluation Methodology

We conduct our evaluation on an UPMEM PIM system that includes a 2-socket Intel Xeon Silver 4110
CPU [618] at 2.10 GHz (host CPU), standard main memory (DDR4-2400) [614] of 128 GB, and 20
UPMEM PIM DIMMs with 160 GB PIM-capable memory and 2560 DPUsEl

First, we evaluate SpMV execution using one single DPU and multiple tasklets (Section [6.5). Ta-
ble|6.3| shows our evaluated small matrices that fit in the 64 MB DRAM memory of a single DPU. The
evaluated matrices vary in sparsity (i.e., NNZ / (rows x columns)), standard deviation of non-zero
elements among rows (NNZ-r-std) and columns (NNZ-c-std). The highlighted matrices in Table
with red color exhibit block pattern [17,[18]], i.e., they include a lot of dense sub-blocks (almost all

their non-zero elements fit in dense sub-blocks).

Matrix Name || Sparsity | NNZ-r-std | NNZ-c-std
delaunay n13 7.32e-04 1.343 1.343
wing_nodal 1.26e-03 2.861 2.861
raefsky4 3.396e-03 15.956 15.956
pkustk08 0.006542 61.537 61.537

Table 6.3: Small Matrix Dataset.

Second, we evaluate SpMV execution using multiple DPUs of the UPMEM PIM system (Sec-
tion [6.6). We evaluate SpMV execution using both 1D (Section and 2D (Section parti-
tioning techniques, and compare them (Section using a wide variety of sparse matrices with
diverse sparsity patterns. We select 22 representative sparse matrices from the Sparse Suite Collec-
tion [575]], the characteristics of which are shown in Table As the values of the last two metrics
increase (i.e., NNZ-r-std and NNZ-c-std), the matrix becomes very irregular [[86,87]], and is referred
to as scale-free matrix. In our evaluation, we refer to all matrices between hgc to bns matrices of
Table as regular matrices. The matrices in which NNZ-r-std is larger than 25, i.e., all matrices
between wbs to ask in Table we refer to as scale-free matrices. Please see Appendix (9.4 for a

complete description of our dataset of large sparse matrices.

Third, we compare the performance and energy consumption of SpMV execution on the UPMEM
PIM system to those on the Intel Xeon Silver 4110 CPU [618] and the NVIDIA Tesla V100 GPU [619]
(Section [6.7).

In Section we summarize our key takeaways and provide programming recommendations
for software designers, and suggestions and hints for hardware and system designers of future PIM

systems.

“There are thirty two faulty DPUs in the system where we run our experiments. They cannot be used and do not affect
the correctness of our results, but take away from the system’s full computational power of 2560 DPUs.

Chapter 6 179

’ Matrix Name H Sparsity | NNZ-r-std | NNZ-c-std
hugetric-00020 (hgc) 4.21e-07 0.031 0.031
mc2depi (mc2) 7.59e-06 0.076 0.076
parabolic_fem (pfm) 1.33e-05 0.153 0.153
roadNet-TX (rtn) 1.98e-06 1.037 1.037
rajat31 (rjt) 9.24e-07 1.106 1.106
af _shelll (ash) 6.90e-05 1.275 1.275
delaunay n19 (del) 1.14e-05 1.338 1.338
thermomech _dK (tdk) 6.81e-05 1.431 1.431
memchip (mem) 2.02e-06 2.062 1.173
amazon0601 (amz) 2.08e-05 2.79 15.29
FEM_3D_thermal2 (fth) 1.59%e-04 4.481 4.481
web-Google (wbg) 6.08e-06 6.557 38.366
ldoor (1dr) 5.13e-05 11.951 11.951
poisson3Db (psb) 3.24e-04 14.712 14.712
boneS10 (bns) 6.63e-05 20.374 20.374
webbase-1M (wbs) 3.106e-06 25.345 36.890
in-2004 (in) 8.846e-06 37.230 144.062
pkustk14 (pks) 6.428e-04 46.508 46.508
com-Youtube (cmb) 4.639¢-06 50.754 50.754
as-Skitter (skt) 7.71e-06 136.861 136.861
sx-stackoverflow (sxw) || 5.352e-06 137.849 65.367
ASIC_680k (ask) 8.303e-06 659.807 659.807

Table 6.4: Large Matrix Dataset. Matrices are sorted by NNZ-r-std, i.e., based on their irregular
pattern. The highlighted matrices with red color exhibit block pattern [[17.[18].

6.5 Analysis of SpMV Execution on One DPU

This section characterizes SpMV performance with various load balancing schemes and compressed
matrix formats using multiple tasklets in a single DPU. Section compares load balancing schemes
of each compressed matrix format, and Section compares the scalability of various compressed

matrix formats.

6.5.1 Load Balancing Schemes Across Tasklets of One DPU

We compare the parallelization schemes of each compressed matrix format supported by SparseP
library (presented in Table across multiple threads of a multithreaded PIM core. Figure[6.9 com-
pares the load balancing schemes of each compressed matrix format using 16 tasklets in a single
DPU. For the BCSR and BCOO formats, we omit results for the fine-grained locking approach, since
it performs similarly with the coarse-grained locking approach: as we explain in Appendix
fine-grained locking does not increase parallelism over coarse-grained, since in the UPMEM PIM
hardware, DRAM memory accesses of the critical section are serialized in the DMA engine of the
DPU [[141l[142l/615].

180 Chapter 6

Té :Ichw- delaunay_n13 'g CSR - wing_nodal = CSR - raefsky4 = CSR - pkustk08

< 40 o < 175 1 row £ 1300 = row E 5000 = row

.E3o B nnz £ }gg EEN nnz .E 1000 HEE nnz E 4000 m nnz

< 20 '; 100 800 ~ 3000

2 1 s s S 2000

£ % m o [l ﬂ g 2 g 200 g %%

X X X X

B 7. ® A0 it LAl oh ® A6 ol N, Al b S A6 A bl o> S A6 A bl o>
X \(\‘\ \(\‘?" \(\‘6 @« Y o -\o‘-\ \o‘:’" -\‘\‘6 @ WV P \‘\‘6 @ Y WV \0‘6 W@ «e°

) COO - delaunay_n13 > COO - wing_nodal - =

E 50T T row £ 175 T Tow _E. 1400 rw(IIOO raefsky4 .é_‘, 5000-— r':.SIOO pkustk08

g 40/ 1 nnz-rgrn g 150 =3 nnz-rgrn E }%gg 3 nnz-rgrn E 4000 1 nnz-rgrn

= 30 I nnz-lb-cg I~ }%g B nnz-lb-cg F goo I nnz-lb-cg = 3000 B nnz-lb-cg

S 20 == nnz-lb-fg § 75 EEE nnz-lb-fg S 600 EEE nnz-lb-fg S 2000 M nnz-lb-fg

5 nnz-1f S 50 mEm nnz-if ‘S 400 mmm nnz-If s BN nnz-lf

210 2 2 200 2 1000

% 0 X 0 £ o £ 0

B 0 @ A6 vl o ol od & 0 ® A6 vl b ol ch S A6 ol b, o b S A6 ol b Al b
W (@0 (@8 (X6 (9> «e® WP @@ (@@ (o T @@ @@ Y e (O @O (P o

w BCSR - delaunay_n13 a BCSR - wing_nodal —_ R —_ R

E 70— block £ 250 block é 1400 blBocciR raefsky4 é 3500 bﬁiiR pkustk08

2 80 mmm nnz @ 200 3 1200 < 3000

E 50 E EE nnz £ 1000/ HE nnz € 2500 HEE nnz

£ 40 F 150 F 800 E 2000

s 30 100 S 600 £ 1500

S 20 Z 5 T 400 S 1000

P I | $ g 200 2 500

X 4 X o X o

w XD © A U] A (] L& © 1 & al L} D © Y3 & ol O w D (J Y3 & 2l (]
W G @O @7 (@ o® W @ P (@ e W@ (@ of W @7 @2 (@ o®

w BCOO - delaunay_n13 = BCOO - win dal

g_noda @ B - fsky4 @ B - pkustk

£ 79— blockb-cg E 250 block-Ib-cg € 1400 piociebca € 3500 plociibay =%

E 503 nnz-lb-cg E 200 nnz-lb-cg g }(2388: nnz-lb-cg g gggg:l nnz-lb-cg

=4 block-f = 150mmm block-lf F 800mmm block-f ¥ 2000mmm block-IF

2 2 2 100w nnz-If S 500 e nnz-If 8 1500 e ninz-IF

= = S 400 S 1000

21 2 2 3 500

% % g o g o

0
® A6 Al bl b
W -\o‘\ \0‘3 \‘\‘6 @ °

) © YA (Y YA (Y
W V0O -\x\‘e @ «°

D A6 Wl b Al o
WG 0P (O (P (e©

Figure 6.9: Execution time achieved by various load balancing schemes of each compressed matrix
format using 16 tasklets of a single DPU.

We draw four findings from Figure First, we find that SpMV execution using int8, int16, and
int32 data types achieves similar execution times across them. This is because the multiplication
operation of these data types is sufficiently supported by hardware [[142]. In contrast, execution time
sharply increases when using more heavyweight data types, i.e., int64 and floating point data types,

in which multiplication is emulated in software using the 8x8-bit multiplier of the DPU [[141,{142./615].

Second, we observe that balancing the non-zero elements across tasklets typically outperforms
balancing the rows for the CSR/COO formats or blocks for the BCSR/BCOO formats, since the non-
zero element multiplications are computationally very expensive and can significantly affect load
balance across tasklets. However, in delaunay n13 matrix, balancing the non-zero elements
causes high row/block imbalance across tasklets, since one tasklet processes a significantly higher
number of rows/blocks over the rest, thereby causing high operation imbalance across tasklets within
the DPU core pipeline. As a result, balancing the rows/blocks outperforms balancing the non-zero
elements due to the particular pattern of delaunay n13 matrix. Inaddition, performance ben-
efits of balancing the blocks over balancing the non-zero elements are significant in the BCSR/BCOO

formats, because they operate at block granularity and incur high loop control costs.

Third, we observe that the lock-free approach (COO.nnz-1f) outperforms the lock-based ap-
proaches (COO.nnz-1b-cgand COO.nnz-1b-fg)indelaunay n13 matrix, especially
in data types where the multiplication operation is supported directly in hardware. Indelaunay n13
matrix, one tasklet processes a much larger number of rows than the rest, i.e., it performs a much
larger number of critical sections than the rest. In other words, one tasklet performs a much larger
number of lock acquisitions/releases and memory instructions than the rest. Thus, lock-based ap-

proaches cause high operation imbalance in the DPU core pipeline with significant performance

Chapter 6 181

costs. Instead, lock-free and lock-based approaches in the BCOO format perform similarly, since lock
acquisition/release costs can be hidden due to BCOO’s higher loop control costs and larger critical
sections. Overall, based on the second and the third findings, we conclude that in matrices and for-
mats, where the load balancing and/or the synchronization scheme used cause high disparity in the
number of non-zero elements/blocks/rows processed across tasklets or the number of lock acqui-
sitions/lock releases/memory accesses performed across tasklets, the DPU core pipeline can incur

significant performance overheads.

-

OBSERVATION 1:
High operation imbalance in computation, control, synchronization, or mem-
ory instructions executed by multiple threads of a PIM core can cause high

performance overheads in the compute-bound and area-limited PIM cores.

Fourth, we find that the fine-grained locking approach (COO . nnz-1b-fg) performs similarly
with the coarse-grained locking approach (COO.nnz-1b-cg). This is because the critical section
includes memory accesses to the local DRAM bank, which, in the UPMEM PIM hardware, are serial-
ized in the DMA engine of the DPU. Therefore, fine-grained locking does not increase execution par-
allelism over coarse-grained locking, since concurrent accesses to MRAM bank are not supported in
the UPMEM PIM hardware. Fine-grained locking does not improve performance over coarse-grained
locking, also when using block-based formats (e.g., BCSR/BCOO formats), as we demonstrate in Ap-
pendix[9.1.1] Therefore, we recommend PIM hardware designers to provide lightweight synchroniza-
tion mechanisms [5] for PIM cores, and/or enable concurrent accesses to local DRAM memory, e.g.,
supporting sub-array level parallelism [160,414,418,421,425,620-622] or multiple DRAM banks per
PIM core.

-

OBSERVATION 2:
Fine-grained locking approaches to parallelizing critical sections that
perform memory accesses to different DRAM memory locations can-
not improve performance over coarse-grained locking, when the

PIM hardware does not support concurrent accesses to a DRAM bank.

6.5.2 Analysis of Compressed Matrix Formats on One DPU

We compare the scalability and the performance achieved by various compressed matrix formats.
Figure compares the supported compressed formats for the int8 (top graphs) and fp64 (bottom
graphs) data types when balancing the non-zero elementsacross tasklets of a DPU.

We draw three findings. First, we find that even though a DPU supports 24 tasklets, SpMV exe-
cution typically scales up to 16 tasklets, since the DPU pipeline is fully utilized. In delaunay n13
matrix, CSR . nnz scales up to 24 tasklets. In this matrix, when using 16 tasklets, performance of the

CSR.nnz scheme is limited by memory accesses: only one tasklet processes 6 X more rows than the

182 Chapter 6

=@-= CSR.nnz COO0.nnz-lb-cg =N COO.nnz-IF BCSR.nnz == BCOO.nnz
% delaunay_n13 wing_nodal raefsky4 pkustk08
— 120
1:20\ 220
£\ , \
)
g 160\ 400
: - ¥
€10
) 40 e
'_g . 100 300 \ﬁ
s 200 —
a5 4 8 16 24 4 8 16 24 4 8 16 24 4 8 16 24
Number of Tasklets
=8 CSR.nnz COO0.nnz-lb-cg =N COO.nnz-IF BCSR.nnz === BCOO.nnz
<
‘g_ delaunay_n13 wing_nodal raefsky4 pkustk08
- 200 >\ >\
@ >\ 600 3000 8000%
£
:150
6000
E \ 400
- 100\ \ 2000
c 4000
.9 _X
— 200
=
S 5°¥ﬂ 1000 2000
|.|>j 4 8 16 24 4 8 16 24 4 8 16 24 4 8 16 24

Number of Tasklets

Figure 6.10: Scalability of all compressed formats for the int8 (top graphs) and fp64 (bottom graphs)
data types as the number of tasklets of a single DPU increases.

rest, i.e., it performs 6 X more memory accesses to fetch elements from the rowptr[] array. Thus,
as we increase the number of tasklets from 16 to 24, the disparity in the number of rows across tasklets
decreases, and the performance of the CSR . nnz scheme improves.Second, we observe that for the
data types with hardware-supported multiplication operation (e.g., int8 data type), CSR achieves the
highest scalability, since it provides a better balance between memory access and computation. In
contrast, in the floating point data types (e.g., fp64 data type), the DPU is significantly bottlenecked
by the expensive software-emulated multiplication operations, and thus all formats scale similarly.
Third, we observe that the BCSR and BCOO formats outperform the CSR and COO formats in matri-
ces that exhibit block pattern (i.e., raefsky4 and pkustkO08 matrices), only when multiplication
is supported by hardware (e.g., int8 data type). This is because they exploit spatial and temporal lo-
cality in data memory (i.e., WRAM) in the accesses of the elements of the input vector. Instead, in the
fp64 data type, performance is severely bottlenecked by computation, thus the BCSR/BCOO formats
perform worse than the CSR/COO formats, since they incur higher indexing costs to discover the

positions of the non-zero elements [[276L/617]].

OBSERVATION 3:
Block-based formats (e.g., BCSR/BCOO) and can provide high performance gains
over non-block-based formats (e.g., CSR/COO) in matrices that exhibit block pat-
tern, if the multiplication operation is supported by hardware. Otherwise, the state-

of-the-art CSR and COO formats can provide high performance and scalability.

Chapter 6 183

6.6 Analysis of SpMV Execution on Multiple DPUs

This section analyzes SpMV execution using multiple DPUs in the UPMEM PIM system using the
large matrix data set of Table

Section evaluates the 1D partitioning schemes. Section evaluates the actual kernel
time of SpMV by comparing (a) all load balancing schemes of each compressed matrix format, and
(b) the performance of all compressed matrix formats. Section characterizes end-to-end SpMV
execution time of the 1D partitioning technique including the data transfer costs for the input and
output vectors.

Section evaluates the 2D partitioning techniques. Section presents three character-
ization studies on (a) performing fine-grained data transfers to transfer the elements of the input
and output vectors to/from PIM-enabled memory, (b) the scalability of 2D partitioning techniques to
thousands of DPUs, and (c) the number of vertical partitions to perform on the matrix. Section [6.6.2
compares the end-to-end performance of all compressed matrix formats for each of the three types
of 2D partitioning techniques. Section[6.6.2 compares the best-performing SpMV implementations of
all three types of 2D partitioning techniques.

Section|[6.6.3| compares the best-performing (on average across all matrices and data types) SpMV

implementations of the 1D and 2D partitioning techniques.

6.6.1 Analysis of SpMV Execution Using 1D Partitioning Techniques

We evaluate the 1D partitioning schemes highlighted in bold in Table[6.1} Specifically, for COO . nnz,
we present the coarse-grained locking (COO . nnz-1b) and lock-free (COO . nnz-1f£) approaches,
since the fine-grained locking approach performs similarly with the coarse-grained locking approach,
as shown in the previous section (Section [6.5.1). Similarly, for the BCSR (int8 data type) and BCOO
formats, we present only the coarse-grained locking approach, since all synchronization approaches
perform similarly (Section[6.5.1). Finally, in all experiments presented henceforth, we use 16 tasklets
and load-balance the non-zero elements across tasklets within the DPU, since this load balancing
scheme provides the highest performance benefits on average across all matrices and data types,

according to our evaluation shown in Section

Analysis of Kernel Time

We compare the kernel time of SpMV achieved by various load balancing schemes for each par-
ticular compressed matrix format, and then we compare the kernel time of the compressed matrix
formats.
Analysis of Load Balancing Schemes Across DPUs. Figure compares load balancing tech-
niques for each compressed matrix format using 2048 DPUs and the int32 data type.

We draw four findings. First, we observe that CSR.nnz and COO.nnz-rgrn, i.e., balancing
the non-zero elements across DPUs (at row granularity), either outperform or perform similarly to

CSR. row and COO. row, respectively, i.e., balancing the rows across DPUs, except for hgc and

184 Chapter 6

N N
2.00(2) CSR - int32 - 2048 DPUs @ o
a 1-75 [0 row EEE nnz
5 1.50
- 1.25
g 1.00
245
025
0.00
Ne oS o oG
6(b) COO -int32 - 2048 DPUs .“:‘h" g o EGI
as 1 row B nnz-lb |
§ ‘3‘ 0 nnz-rgrn B nnz-lf |
Q.
v 1
0 I

(d) BCOO -int32 - 2048 DPU

"]

Speedup

OOO00O= ==
oNhowoih

SNV ES NS TSNS OO0 L LS N0 2L Y
SEFETFITSFEEFIFSETEFsTFS

Figure 6.11: Performance comparison of load balancing techniques for each particular compressed
format using 2048 DPUs and the int32 data type.

del matrices. In these two matrices, CSR.nnz and COO.nnz-rowgrn incur a high disparity
in rows assigned to DPUs, i.e., only one DPU processes 4x and 11x more rows than the rest, for
hgc and del matrices, respectively. This in turn creates a high disparity in the elements of the
output vector processed across DPUs, causing performance to be limited by the DPU that processes
the largest number of rows. Thus, we find that adaptive load balancing approaches and selection
methods based on the characteristics of each input matrix need to be developed to achieve high

performance across all matrices.

OBSERVATION 4:
Adaptive load balancing schemes and selection methods for the balancing scheme
on rows/blocks/non-zero elements based on the characteristics of each input

matrix need to be developed to provide best performance across all matrices.

Chapter 6 185

Second, we find that COO.nnz-1b and COO.nnz-1f, which provide an almost perfect non-
zero element balance across DPUs, significantly outperform COO.row and COO.nnz-rgrn in
scale-free matrices (i.e., from wbs to ask matrices) by on average 6.73x. Scale-free matrices have
only a few rows, that include a much larger number of non-zero elements compared to the remaining
rows of the matrix. Therefore, perfectly balancing the non-zero elements across DPUs provides high

performance gains.

OBSERVATION 5:
Perfectly balancing the non-zero elements across PIM cores can provide

significant performance benefits in highly irregular, scale-free matrices.

Third, we find that the lock-free COO . nnz - 1 f scheme outperforms the lock-based COO.nnz-1b
scheme by 1.34x on average, and provides high performance benefits when there is a high row im-
balance across tasklets within the DPU. When one tasklet processes a much larger number of rows
versus the rest, it executes a much larger number of critical sections. As a result, the core pipeline
incurs high imbalance in lock acquisitions/releases, causing the lock-based approach to incur high

performance overheads in relatively compute-bound DPUs [141,/142].

OBSERVATION é6:
Lock-free approaches can provide high performance benefits over lock-based approaches

in PIM architectures, because they minimize synchronization overheads in PIM cores.

Finally, in the BCSR and BCOO formats, balancing the blocks across DPUs performs similarly (on

average across all matrices) to balancing the non-zero elements across DPUs.

To further investigate the performance of the various load balancing schemes, Figure [6.12] com-
pares them using all the data types. We present the geometric mean of all matrices using 2048 DPUs.
In the CSR and COO formats, balancing the non-zero elements across DPUs on average outperforms
balancing the rows across DPUs by 1.18 x and 1.20x, respectively. We observe that in the COO for-
mat almost perfectly balancing the non-zero elements across DPUs provides significant performance
benefits (2.55 %, averaged across all the data types), compared to balancing the rows, especially when
multiplication is not supported by hardware (e.g., for the floating point data types). In contrast, in
the BCSR and BCOO formats, balancing the blocks across DPUs performs only slightly better (on

average 2.7% across all the data types) than balancing the non-zero elements.

Comparison of Compressed Matrix Formats. Figures and compare the throughput (in
GOperations per second) and the performance, respectively, achieved by various compressed for-
mats using 2048 DPUs and the int32 data type. For the CSR and COO formats, we select balancing
the non-zero elements across DPUs, and for the BCSR and BCOO formats, we select balancing the
blocks across DPUs, since these are the best-performing schemes for each format averaged across all
matrices and data types (Figure [6.12).

186 Chapter 6

(b) COO - 2048 DPUs

(a) CSR - 2048 DPUs 5 -
12 TOW BN nnz T row B nnz-lb
& 15 o 4 0 nnz-rgrn BB nnz-lf
B 08 o3
o 0.6 g2
& 0.4 0
0.2 1
02 TN Tl T T T
““int8 int16 int32 int64 fp32 Fp64 GM int8 int16 int32 int64 fp32 Fp64 GM
1.2 (c) BCSR - 2048 DPUs 1.2 (d) BCOO - 2048 DPUs
£ [block M nnz . [block MEE nnz
o 1 o 1
2 0.8 2 0.8
O
® 0.6 g 0.6
o 0.4 o 0.4
0.2 0.2
0.0 int8 int16 int32 int64 fp32 fp64 GM 0.0 int8 int16 int32 int64 fp32 fp64 GM

Figure 6.12: Performance comparison of load balancing techniques for each data type using 2048
DPUs.

2048 DPUs [CSR.nnz [COO.nnz-If [BCSR.block HEE BCOO.block

25
J
52
(@)
o 10
0 adl 'MM.mM
0
(B SN QN Ny £ 0 9 9.8 © Oy X QDA
SEFETFITFEEFIFSIESFFTsFEZ
regular (1) scale-free (2) © o

Figure 6.13: Throughput of various compressed formats using 2048 DPUs and the int32 data type.

(1 CSR.nnz [COO.nnz-If I BCSR.block [| Bcgap.block
2048 DPUs | 28

Speedup
O=NWLAUVIO\~N

regular (1) scale-free (2)

Figure 6.14: Performance comparison of various compressed formats using 2048 DPUs and the int32
data type. Performance is normalized to that of CSR. nnz.

We draw four findings. First, matrices that exhibit block pattern (almost all non-zero elements of
the matrix fit in dense sub-blocks), i.e., ash, 1dr, bns, pks matrices, have the highest throughput,
since they leverage higher data locality compared to matrices with non-block pattern. Second, in
scale-free matrices, the COO and BCOO formats significantly outperform the CSR and BCSR formats

by 6.94x and 13.90x, respectively. This is because they provide better non-zero element balance

Chapter 6 187

across DPUs. In the CSR and BCSR formats, the non-zero element balance is limited to be performed
at row and block-row granularity, respectively, causing performance to be limited by the DPU that
processes the largest number of non-zero elements. Third, we observe that the BCOO format can
outperform the CSR format even in non-blocked scale-free matrices. Fourth, we find that when the
CSR and BCSR formats provide sufficient non-zero element balance across DPUs, i.e., in many regular
matrices such as rtn, tdk, amz, and fth, they can outperform the COO and BCOO formats,

respectively.

OBSERVATION 7:
In scale-free matrices, the COO and BCOO formats significantly outperform the CSR and

BCSR formats, because they provide higher non-zero element balance across PIM cores.

Analysis of End-To-End SpMV Execution

Figure shows the end-to-end execution time of 1D-partitioned kernels using 2048 DPUs and the
int32 data type. The times are broken down into (i) the time for CPU to DPU transfer to load the input
vector into DRAM banks (1oad), (ii) the kernel time on DPUs (kernel), (iii) the time for DPU to
CPU transfer to retrieve the results for the output vector (retrieve), and (iv) the time to merge
partial results on the host CPU cores (merge).

v 2048 DPUs - int32

£ }ggg 0 load Bl kernel [retrieve I merge

“E’ 1000

i 800

c 600

2 400

=2

g 200l oo e o | 1] R oo O A O

x B0%2 3052 8052 3052 3052 5052 50%2 5052 5952 3052 8052 3052 3052 5952 30%2 3052 5052 0% 5052 8952 3052 59&2
w hgc mc2 pfm rtn rjt ash del tdk memamz fth wbg ldr psb bns wbs in pks cmb skt sxw ask

Figure 6.15: Total execution time when using 2048 DPUs and the int32 data type for CR: CSR. nnz,
CO: COO.nnz-1f,BR: BCSR.block and BO: BCOO.block kernels.

We draw four findings. First, the 1oad data transfers constitute more than 90% of the total
execution time, because the input vector is replicated and broadcast into each DPU, causing a large
number of bytes to be transferred through the narrow off-chip memory bus. An exception is in the
CSR and BCSR formats for sxw, ask matrices, which include one very dense row, and thus kernel
time is highly bottlenecked by one DPU that processes a significantly larger number of non-zero
elements than the rest. Second, the kernel time constitutes on average only 4.3% of the total
execution time, since SpMV is effectively parallelized to thousands of DPUs. Third, the retrieve
data transfers constitute on average 3.4% of the total execution time, because the output vector is
split across DPUs. Fourth, the merge time on the host CPU is negligible (less than 1% of the total
execution time), since only a few partial results for the elements of the output vector are merged by

the host CPU cores in the 1D partitioning techniques.

188 Chapter 6

s N

OBSERVATION 8:
The end-to-end performance of the 1D partitioning techniques is severely bottlenecked
by the data transfer costs to replicate and broadcast the whole input vector into each

DRAM bank of PIM cores, which takes place through the narrow off-chip memory bus.

. J

To further investigate on the costs to the load input vector into all DRAM banks of PIM-enabled
memory, we present in Figure[6.16]the total execution time achieved by COO . nnz - 1f when varying
(a) the data type using 2048 DPUs (normalized to the experiment for the int8 data type), and (b) the
number of DPUs for the int32 data type (normalized to 64 DPUs).

[load Il kernel [retrieve Bl merge
COO.nnz-IF - 2048 DPUs

c 10 T T i

o - !

© 6 | = -1 = =
24 0 nlm L — A=
w 2. = [= = [—

GI [[1 [1 [1 [1 HE
2CHENY SCUENY SCOENT SCOENY SCOBNT sCOBNT
CEECELL ECcccll E€€ccPlf cccclp ccccll ccccas

hgc rjt dr SXW ask AVG
Matrices - Datatypes
7 load Bl kernel 1 retrieve Il merge
COO.nnz-If - int32
c] _ i
s 4 _ i
o3 _| — - _
) - — |1 -
22 s = b
7 I =TT B =nB NN}

TNIN~OO TANN~OO TTANIN~OO TTANIN~OO TTANIN~OO TANIN~OO

O™ NN ™AN O™ NN ™AN O™ ANIN™AN O™ ANIN™AN O™ ANwIN™AN O™ ANwWIN™AN
hgc rjt ldr SXW ask AVG

Matrices - DPUs

Figure 6.16: End-to-end execution time breakdown achieved by COO . nnz-1f when varying (a) the
data type using 2048 DPUs (normalized to the experiment for the int8 data type), and (b) the number
of DPUs for the int32 data type (normalized to 64 DPUs).

We draw two conclusions. First, the 1oad data transfer costs increase proportionally to the
number of bytes of the data type, and still dominate performance even for the data type with the
smallest memory footprint (int8). Second, the 1oad data transfer costs and the associated memory
footprint for the input vector increase proportionally to the number of DPUs used, and thus the best

end-to-end performance is achieved using only a small portion of the available DPUs on the system.

-

OBSERVATION 9:
SpMV execution of the 1D-partitioned schemes cannot scale up to

a large number of PIM cores due to high data transfer overheads to

copy the input vector into each DRAM bank of PIM-enabled memory.

Chapter 6 189

6.6.2 Analysis of SpMV Execution Using 2D Partitioning Techniques

We evaluate the 2D-partitioned kernels highlighted in bold in Table Specifically, for the COO
format we use the lock-free approach, and for the BCSR (in the int8 data type) and BCOO formats
we use the coarse-grained locking approach. In the equally-wide and variable-sized techniques, for
the BCSR and BCOO formats we balance the blocks across DPUs of the same vertical partition, since
doing so performs slightly better than balancing the non-zero elements, as explained in Section[6.6.1}

In all experiments, we balance the non-zero elements across 16 tasklets within a single DPU.

Sensitivity Studies on 2D Partitioning Techniques

We present three characterization studies on the 2D partitioning techniques. First, we evaluate the
performance of fine-grained data transfers from/to PIM-enabled memory for the input and output
vectors. Second, we evaluate the scalability of the 2D partitioning techniques to thousands of DPUs.
Finally, we explore performance implications on the number of vertical partitions used in the 2D-
partitioned kernels.

Analysis of Fine-Grained Data Transfers. The UPMEM API [615] has the limitation that the
transfer sizes from/to all DRAM banks involved in the same parallel transfer need to be the same. The
UPMEM API provides parallel data transfers either to all DPUs of all ranks (henceforth referred to as
coarse-grained transfers), or at rank granularity, i.e., to 64 DPUs of the same rank (henceforth referred
to as fine-grained transfers). In the first case, parallel data transfers are performed to all DPUs used at
once, padding with empty bytes at the granularity of all DPUs used, e.g., 2048 DPUs in Figure[6.17} In
the latter case, programmers iterate over the ranks of PIM-enabled DIMMs, and for each rank perform
parallel data transfers to the 64 DPUs of the same rank padding with empty bytes at the granularity
of 64 DPUs.

In SpMV execution, for the equally-wide and variable-sized techniques the heights and widths of
2D tiles vary, and thus padding with empty bytes is necessary for the 1oad and retrieve data
transfers of the elements of the input and output vector, respectively. Figure compares coarse-
grained data transfers, i.e., performing parallel transfers to all 2048 DPUs at once, with fine-grained
data transfers, i.e., iterating over the ranks and for each rank performing parallel transfers to the 64
DPUs of the same rank. We evaluate both the equally-wide and variable-sized techniques using the
COO format and with 2 and 32 vertical partitions. Please see Appendix[9.1.2for all matrices.

We draw two findings. First, when the number of vertical partitions is small, e.g., 2 vertical
partitions, the disparity in widths across tiles in the variable-sized scheme is low. Thus, BT only
slightly outperforms BY by 1% on average, since in BY only a small amount of padding is added
on the 1oad data transfers of the input vector. In contrast, the disparity in heights across tiles
in the equally-wide and variable-sized schemes is high. Thus, RY and BY significantly outperform
RC and BC by an average of 1.68x and 1.60%, respectively. This is because fine-grained transfers
to retrieve the elements of the output vector significantly decrease the amount of bytes transferred
from PIM-enabled memory to host CPU over coarse-grained transfers. Second, when the number

of vertical partitions is large, e.g., 32 vertical partitions, the disparity in heights across tiles in the

190 Chapter 6

1 load Bl kernel [1 retrieve B merge
(a) 2048 DPUs - 2 Vertical Partitions - int32

10 — .)
; 0.8 !
S0.6 . - i e
304 e i
v 0.2 !
0'Gu>-u>-|- U>U>E U>U>E UX>U>EFE U>U>E UX>U>
Xxommm XxXxOmMO XXOONO Xxmomm Xxmoom Xxomm
pfm ash ldr in ask AVG
1 load Bl kernel 1 retrieve B merge
(b) 2048 DPUs - 32 Vertical Partitions - int32 .
c1.2 i
£10 a
S0 i
204 i
V0.2 i
0-0 >0 > > U > >l U>U >k
%@ % b %@ % b oM xxoom
pfm ash ldr in ask AVG

Figure 6.17: Performance comparison of RC: RBDCOO with coarse-grained transfers, RY: RBDCOO
with fine-grained transfers in the output vector, BC: BDCOO with coarse-grained transfers, BY:
BDCOO with fine-grained transfers only in the output vector, and BT: BDCOO with fine-grained
transfers in both the input and the output vector using the int32 data type, 2048 DPUs and having 2
(left) and 32 (right) vertical partitions. Performance is normalized to that of the RC scheme.

equally-wide and variable-sized schemes is lower compared to when the number of vertical partitions
is small. Thus, RY and BY provide smaller performance benefits over RC and BC (on average 1.24x
and 1.22 X, respectively), respectively, compared to a small number of vertical partitions. In contrast,
the disparity in heights across tiles in the equally-wide and variable-sized schemes is higher compared
to when the number of vertical partitions is small. Thus, BT outperforms BY by 4.7% on average.
Overall, we conclude that fine-grained data transfers (i.e., at rank granularity in the UPMEM PIM

system) can significantly improve performance in the equally-wide and variable-sized schemes.

-

OBSERVATION 10:
Fine-grained parallel transfers in the equally-wide and variable-sized 2D partition-
ing techniques, i.e., minimizing the amount of padding with empty bytes in parallel

data transfers to/from PIM-enabled memory, can provide large performance gains.

.

Scalability of the 2D Partitioning Techniques. We analyze scalability with the number of DPUs

for the 2D partitioning techniques. Figures[6.18] [6.19and [6.20| compare the performance of the

equally-sized, equally-wide and variable-sized schemes, respectively, using the COO format and the
int32 data type, as the number of DPUs increases.

We draw two findings. First, the equally-sized scheme (i.e., DCOO) achieves high scalability with
a large number of vertical partitions. The kernel time of equally-sized scheme is mainly limited by

the DPU (or a few DPUs) that processes the largest number of non-zero elements. With a large num-

Chapter 6 191

load B kernel [retrieve WM merge [load M kernel [retrieve [merge

==]
DCOO - int32 DCOO - int32
1.75 = = c 9
E}igg F: $08
2 1.0 — 206
2 0.75 2 0.4
@ 932 % 0.2
o'o < < 0 <T 0 T 0 T 0 T 0 o'c < T 0 <T 0 T 0 T 0 <T 0
AeS3 BES3 82088 BKNS8S3 BEs3S 2¢ad RE8S BN 8088 BY83 BY8S3 8883
NN~~~ Nl-h\.-N NIN™=AN NINT™N ANINvT-~N NINnveN NN~~~ Nl-n‘.—N ANIN™AN ANINT=AN ANIN~N NinvedN
hgc rjt ldr sxw ask AVG hgc rjt ldr sxw ask AVG
Matrices - DPUs Matrices - DPUs

Figure 6.18: Execution time breakdown of equally-sized partitioning technique of the COO format
using 4 (left) and 16 (right) vertical partitions when varying the number of DPUs used for the int32
data type. Performance is normalized to that with 256 DPUs.

0 load Il kernel [retrieve Il merge = load B kernel [retrieve W merge

RBDCOO - int32 RBDCOO - int32
c 14 =
3 1.2 ';: = ——
° 1.0 o
'§0.8 °
b :
"85 i
T ond® ondf ondE ondE VadE ondE onNE ndE Vad® VAR S OnNE
N~xO0 WNr@O0 INy@OO0 NYWOO0O WNr@oOo0 WNvr@oo N=~-O00 MNrYrO0 NY@yO00 NY@OO0 KNTY@~O0O0 IN-OO
hgc rjt ldr sxw ask AVG hgc rjt ldr sxw ask AVG
Matrices - DPUs Matrices - DPUs

Figure 6.19: Execution time breakdown of equally-wide partitioning technique of the COO format
using 4 (left) and 16 (right) vertical partitions when varying the number of DPUs used for the int32
data type. Performance is normalized to that with 256 DPUs.

@ load Il kernel [retrieve Il merge I load Bl kernel [retrieve BN merge

BDCOO - int32 BDCOO - int32
c c -
(=] (=]
28 S
89 - &
w o | — 7
. < T < T T < < 0 < 0 < 0 v‘ecn‘ < 0 < 0
ANeS B883 BE8S NS BFE8d B/Ted Ares BESd BFE8S BTSS BN8d BSed
ANWNn~N N~ NN~~~ NWNne~N N ™~ NN ~N NWN~—N NN~ N NN~ NN~ NN~ NI ~N
hgc rjt ldr sxw ask AVG hgc rjt ldr sxw ask AVG
Matrices - DPUs Matrices - DPUs

Figure 6.20: Execution time breakdown of variable-sized partitioning technique of the COO format
using 4 (left) and 16 (right) vertical partitions when varying the number of DPUs used for the int32
data type. Performance is normalized to that with 256 DPUs.

ber of static vertical partitions, the non-zero element disparity across DPUs is high, i.e., the kernel
time is highly bottlenecked by the DPU that processes the largest number of non-zero elements. As
a result, increasing the number of DPUs improves performance by decreasing the kernel time via

better non-zero element balance across DPUs.

OBSERVATION 11:
The kernel time in the equally-sized schemes is limited by the PIM core (or a few

PIM cores) assigned to the 2D tile with the largest number of non-zero elements.

Second, we observe that the equally-wide and variable-sized schemes (i.e., RBDCOO and BDCOO)
are severely bottlenecked by retrieve data transfer costs (a large number of partial results is

created on PIM cores), and thus they are difficult to scale up to thousands of DPUs. Moreover, when

192 Chapter 6

the number of vertical partitions is high, the disparity in heights of the tiles is high. Thus, as the
number of DPUs increases, the amount of padding needed in retrieve data transfers becomes

very large, causing significant performance degradation.

-

OBSERVATION 12:
The scalability of the equally-wide and variable-sized schemes to a large num-
ber of PIM cores is severely limited by large data transfer overheads to re-
trieve partial results for the elements of the output vector from the DRAM

banks of PIM-enabled memory to the host CPU via the narrow memory bus.

- J

Effect of the Number of Vertical Partitions. In all experiments presented henceforth, we perform
fine-grained data transfers (at rank granularity, i.e., 64 DPUs in the UPMEM PIM system) in the
2D partitioning schemes. Figure evaluates performance implications on the number of vertical
partitions performed in 2D-partitioned kernels. We use the COO format and vary the number of

vertical partitions from 1 to 32, in steps of multiple of 2. We draw four findings.

0 load Il kernel 1 retrieve I merge
(a) equally-sized - DCOO

c 1.0= :
% 0.8 !
S 0.6 |
2 04 i
LRy || P
7 124816321248163212481632124816321248163212481632
hgc-int8 rjit-int8 mem-int8 hgc-fp64 rjt-Fp64 mem-fp64
0 load Il kernel [retrieve I merge
(b) equally-wide - RBDCOO
€6 i
35 l
[) 4 i —
© 1 —
33 | —
i == = - | |
1248163212481632124816321248163212481632 12 4 81632
hgc-int8 rjit-int8 mem-int8 hgc-fp64 rjt-fp64 mem-fp64
1 load Bl kernel] retrieve I merge
(c) variable-sized - BDCOO
c6 i
25 |
[) 4 :.l p—
-U ! = [
33 : —
v = — p== i ==mmm) p==il

12481632124816321 2 4;1632 124 8163_2 1248163212 4 81632
hgc-int8 rjit-int8 mem-int8 hgc-fp64 rjt-Fp64 mem-Fp64

Figure 6.21: Execution time breakdown of 2D partitioning schemes using the COO format and 2048
DPUs when varying the number of vertical partitions from 1 to 32 for the int8 and fp64 data types.
Performance is normalized to the performance of the experiment with 1 vertical partition.

First, in the equally-sized scheme, as the number of vertical partitions increases, kernel time

increases, if there is no dense row in the matrix. This is because the disparity in the non-zero elements

Chapter 6 193

across 2D tiles increases as the number of vertical partitions increases. Thus, performance is limited

by one DPU or a few DPUs that process the largest number of non-zero elements.

e 2

OBSERVATION 13:
As the number of vertical partitions increases, the equally-sized 2D partitioning
scheme typically increases the non-zero element disparity across PIM cores (un-

less there is one dense row on the matrix), thereby increasing the kernel time.

L J

Second, as the number of vertical partitions increases, ret rieve data transfer costsand merge
time increase. This is because the partial results created for the output vector increase proportionally
with the number of vertical partitions. The performance overheads of retrieve data transfer costs
are highly affected by the characteristics of the underlying hardware (e.g., the bandwidth provided
on I/O channels of the memory bus between host CPU and PIM-enabled DIMMs). Similarly, the
performance cost of the merge step depends on the hardware characteristics of the host CPU (e.g.,
the number of the CPU cores, the available hardware threads, microarchitecture of CPU cores). We
refer the reader to Appendix [9.1.3|for a comparison of SpMV execution using two different UPMEM
PIM systems with different hardware characteristics (Table [9.1).

Third, we find that in the equally-wide and variable-sized schemes, there is high disparity in
heights of 2D tiles, and as a result on the number of partial results created across DPUs. Even with
fine-grained parallel retrieve data transfers at rank granularity, the amount of padding needed
in the equally-wide and variable-sized schemes is at 88.6% and 88.0%, respectively, causing high bot-
tlenecks in the narrow memory bus. Therefore, in PIM systems that do not support very fine-grained
parallel transfers to gather results from PIM-enabled memory to the host CPU at DRAM bank granu-
larity, execution is highly limited by the amount of padding performed in ret rieve data transfers,
which can be very large in irregular workloads [1,{4]/181/81}/129,141,142,{276,{279-283,[392,{4001/401}/587]]
like the SpMV kernel.

-

OBSERVATION 14:
The equally-wide and variable-sized 2D partitioning schemes require fine-
grained parallel transfers at DRAM bank granularity to be supported by
the PIM system, i.e., zero padding in parallel retrieve data transfers

from PIM-enabled memory to the host CPU, to achieve high performance.

Fourth, we find that the number of vertical partitions that provides the best performance depends
on the sparsity pattern of the input matrix, the data type, and the underlying hardware parameters
(e.g., number of PIM cores, off-chip memory bus bandwidth, transfer latency costs between main
memory and PIM-enabled memory, characteristics and microarchitecture of the host CPU cores that
perform the merge step). For example, with the int8 data type, DCOO performs best for hgc and
mem matrices with 8 and 4 vertical partitions, respectively. Instead, with the fp64 data type, DCOO

performs best for hgc and mem matrices with 16 and 8 vertical partitions, respectively. We refer the

194 Chapter 6

reader to Appendix [9.1.3|for a characterization study on the number of vertical partitions to perform
in the 2D-partitioned kernels using two UPMEM PIM systems with different hardware character-
istics. As we demonstrate in Appendix the number of vertical partitions that provides best
performance on SpMV varies across the two different UPMEM PIM platforms. In this work, we leave
for future work the exploration of selection methods for the number of vertical partitions that provide
best SpMV execution. Overall, based on our analysis we conclude that the parallelization scheme that
achieves the best performance in SpMV depends on both the input sparse matrix and the hardware

characteristics of the PIM system.

s N

OBSERVATION 15:
There is no one-size-fits-all parallelization approach for SpMV in PIM sys-
tems, since the performance of each parallelization scheme depends on

the characteristics of the input matrix and the underlying PIM hardware.

Analysis of Compressed Formats

We compare the performance achieved by various compressed matrix formats for each of the three

types of the 2D partitioning technique. The goal of this experiment is to find the best-performing

compressed format for each 2D partitioning technique. Figures [6.22] 6.23] and [6.24] compare the

performance of compressed matrix formats for the equally-sized, equally-wide and variable-sized 2D
partitioning techniques, respectively. We use 2048 DPUs and the int32 data type having 4 vertical
partitions. See Appendix [9.1.4]for the complete evaluation on all large sparse matrices.

We draw two findings. First, as already explained, kernel time of the equally-sized scheme
is limited by the DPU (or a few DPUs) assigned to the 2D tile with the largest number of non-zero
elements. In scale-free matrices (e.g., in and ask), the disparity in the non-zero elements across
2D tiles is higher than in regular matrices (e.g., pfg and bns), causing kernel time to be a larger
portion of the total execution time. Second, we find that the CSR and BCSR formats perform worse
than the COO and BCOO formats, especially in the equally-wide and variable-sized schemes, due to
higher kernel times. In the CSR and BCSR formats, data partitioning across DPUs and/or across

[load B kernel [retrieve I merge
equally-sized

Slowdown
o000
ONDILANOOOND

bns in skt ask AVG

Figure 6.22: End-to-end execution time breakdown of the equally-sized 2D partitioning technique for
CR: DCSR, CO: DCOO, BR: DBCSR and BO: DBCOO schemes using 4 vertical partitions and the int32
data type. Performance is normalized to that of DCSR.

Chapter 6 195

1 load B kernel [] retrieve B merge
equally-wide

Slowdown
00000
ONLANOON

CR

bns in skt ask AVG

Figure 6.23: End-to-end execution time breakdown of the equally-wide 2D partitioning technique for
CR: RBDCSR, CO: RBDCOO, BR: RBDBCSR and BO: RBDBCOO schemes using 4 vertical partitions
and the int32 data type. Performance is normalized to that of RBDCSR.

1 load Bl kernel [retrieve I merge
variable-sized

TATATa Tt

xO
(OO Naa)] o m k.J mm 8 om
hgc pfm bns in skt ask AVG
Figure 6.24: End-to-end execution time breakdown of the variable-sized 2D partitioning technique
for CR: BDCSR, CO: BDCOO, BR: BDBCSR and BO: BDBCOO schemes using 4 vertical partitions
and the int32 data type. Performance is normalized to that of BDCSR.

Slowdown
=Y=Y-Y-T-F PN
ONIDANAOOON

tasklets within a DPU is performed at row and block-row granularity, respectively. Thus, the CSR and
BCSR formats can cause higher non-zero element imbalance across processing units compared to the
COO and BCOO formats. Overall, the COO and BCOO formats outperform the CSR and BCSR formats
by 1.59 X and 1.53 x (averaged across all three types of 2D partitioning techniques), respectively.

e 2

OBSERVATION 16:

The compressed matrix format used to store the input matrix determines the
data partitioning across DRAM banks of PIM-enabled memory. Thus, it affects
the load balance across PIM cores with corresponding performance implica-
tions. Overall, the COO and BCOO formats outperform the CSR and BCSR for-

mats, because they provide higher non-zero element balance across PIM cores.

Comparison of 2D Partitioning Techniques

We compare the best-performing SpMV implementations of all 2D partitioning schemes, i.e., using
the COO and BCOO formats. Figures[6.25|and [6.26]compare the throughput (in GOperations per sec-
ond) and the performance, respectively, of DCOO, DBCOO, R