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Περίληψη

Οι µη-ϰανονιϰές εφαρµογές, όπως οι εφαρµογές επεξεργασίας γράφων, παράλληλων δοµών δε-

δοµένων ϰαι επίλυσης αραιών γραµµιϰών συστηµάτων, αποτελούν µία από τις πιο σηµαντιϰές

οιϰογένειες υπολογιστιϰών εφαρµογών στις µέρες µας. Ως αποτέλεσµα, πολλοί ερευνητές έχουν

µελετήσει ϰαι προτείνει τεχνιϰές βελτίωσης της επίδοσης ϰαι της ενεργειαϰής ϰατανάλωσης των

µη-ϰανονιϰών εφαρµογών σε σύγχρονες πολυπύρηνες αρχιτεϰτονιϰές. Σε αυτήν την διδαϰτοριϰή

διατριβή εντοπίζουµε δύο σηµαντιϰές προϰλήσεις σε αυτή την οιϰογένεια εφαρµογών. Πρώτον,

οι παράλληλες µη-ϰανονιϰές εφαρµογές είναι δύσϰολο να ϰλιµαϰώσουν χρησιµοποιώντας ένα µε-

γάλο αριϑµό νηµάτων λόγω του υψηλού ϰόστους συγχρονισµού µεταξύ των νηµάτων. ∆εύτερον,

οι µη-ϰανονιϰές εφαρµογές εµφανίζουν πολύπλοϰα µοτίβα πρόσβασης των δεδοµένων στη µνήµη,

ϰαι χαµηλή υπολογιστιϰή ιϰανότητα, µε αποτέλεσµα επίδοσή τους περιορίζεται σηµαντιϰά από τις

δαπανηρές προσβάσεις δεδοµένων στη µνήµη.

Αυτή η διδαϰτοριϰή διατριβή πραγµατοποιεί µία εις βάϑος ανάλυση της ϰλιµαϰωσιµότητας

των µη-ϰανονιϰών εφαρµογών ϰαι αναδειϰνύει τα ϰυριότερα προβλήµατα επίδοσής τους. Σε αυτήν

την διδαϰτοριϰή διατριβή υποστηρίζουµε ότι αποδοτιϰές τεχνιϰές συγχρονισµού των παράλληλων

νηµάτων σε συνεργασία µε βελτιστοποιηµένες τεχνιϰές διαχείρισης δεδοµένων τόσο σε επίπεδο

λογισµιϰού όσο ϰαι σε επίπεδο υλιϰού προσφέρουν υψηλή ϰλιµαϰωσιµότητα ϰαι σηµαντιϰή επίδο-

ση στις µη-ϰανονιϰές εφαρµογές. Ως εϰ τούτου, προτείνουµε 4 διαφορετιϰές προσεγγίσεις για

την επιτάχυνση µη-ϰανονιϰών εφαρµογών σε διαφορετιϰά περιβάλλοντα, συµπεριλαµβανοµένων

των ϰοινών πολυπύρηνων CPU αρχιτεϰτονιϰών ϰαι των αρχιτεϰτονιϰών µε επεξεργασία ϰοντά στη

µνήµη (Processing-In-Memory): (α) ColorTM: ΄Ενας νέος παράλληλος αλγόριϑµος χρωµατισµού

γράφων για πολυπύρηνες CPU αρχιτεϰτονιϰές που προτείνει µία αποδοτιϰή τεχνιϰή διαχείρισης

δεδοµένων, η οποία συνδυάζεται αρµονιϰά µε το µηχανισµό συγχρονισµού σε επίπεδο υλιϰού, (β)

SmartPQ: Μία παράλληλη ουρά προτεραιότητας που εναλλάσσεται δυναµιϰά µεταξύ δύο αλγο-

ριϑµιϰών σχηµάτων, ϰαι εϰµεταλλεύεται την τοπιϰότητα δεδοµένων µε σϰοπό να επιτευχϑεί υψηλή
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απόδοση υπό διαφορετιϰά σενάρια συµφόρησης σε αρχιτεϰτονιϰές µε ανοµοιόµορφη πρόσβαση

στη µνήµη (NUMA), (γ) SynCron: ΄Ενας πραϰτιϰός µηχανισµός συγχρονισµού σε επίπεδου υλιϰού

για αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη, ϰαι (δ) SparseP : Μία βιβλιοϑήϰη αλγορίϑµων

του υπολογιστιϰού πυρήνα του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα, η οποία περιλαµ-

βάνει µία µεγάλη ποιϰιλία αποτελεσµατιϰών τεχνιϰών διαµέρισης δεδοµένων ϰαι συγχρονισµού για

αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη.

Συνολιϰά, στην παρούσα διδαϰτοριϰή διατριβή αποδειϰνύουµε ότι η εϰτέλεση µη-ϰανονιϰών

υπολογιστιϰών πυρήνων σε πολυπύρηνες CPU αρχιτεϰτονιϰές ϰαι αρχιτεϰτονιϰές µε επεξεργασία

ϰοντά στη µνήµη µπορεί να επιταχυνϑεί µε το συν-σχεδιασµό αποδοτιϰών µηχανισµών συγχρονι-

σµού µε βελτιστοποιηµένες τεχνιϰές πρόσβασης ϰαι διαχείρισης δεδοµένων, παρέχοντας έτσι υψηλά

επίπεδα παραλληλισµού, χαµηλό ϰόστος πρόσβασης στα δεδοµένα ϰαι χαµηλό ϰόστος συγχρονι-

σµού για την υψηλή επίδοση ϰαι τη χαµηλή ενεργειαϰή ϰατανάλωση του συστήµατος. Ελπίζουµε

ότι η παρούσα διατριβή ϑα εµπνεύσει µελλοντιϰή έρευνα στο συν-σχεδιασµό µη-ϰανονιϰών υπολο-

γιστιϰών πυρήνων µε σύγχρονες υπολογιστιϰές πλατφόρµες για να επιτευχϑεί υψηλή επίδοση ϰαι

χαµηλή ενεργειαϰή ϰατανάλωση σε αναδυόµενες εφαρµογές.

Λέξεις-Κλειδιά: Μη-Κανονιϰές Εφαρµογές, Συγχρονισµός, Βελτιστοποιηµένες Τεχνιϰές Πρόσβα-

σης στα ∆εδοµένα, Πολυπύρηνα Συστήµατα, Αρχιτεϰτονιϰές µε Επεξεργασία Κοντά στη Μνήµη
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Abstract

Irregular applications comprise an increasingly important workload domain for many fields, includ-

ing bioinformatics, chemistry, graph analytics, physics, social sciences and machine learning. There-

fore, achieving high performance and energy efficiency in the execution of emerging irregular appli-

cations is of vital importance. While there is abundant research on accelerating irregular applications,

in this thesis, we identify two critical challenges. First, irregular applications are hard to scale to a

high number of parallel threads due to high synchronization overheads. Second, irregular applica-

tions have complex memory access patterns and exhibit low operational intensity, and thus they are

bottlenecked by expensive data access costs.

This doctoral thesis studies the root causes of inefficiency of irregular applications in modern com-

puting systems, and aims to fundamentally address such inefficiencies, by 1) proposing low-overhead

synchronization techniques among parallel threads in cooperation with 2) well-crafted data access

policies. Our approach leads to high system performance and energy efficiency on the execution

of irregular applications in modern computing platforms, both processor-centric CPU systems and

memory-centric Processing-In-Memory (PIM) systems.

We make four major contributions to accelerating irregular applications in different contexts in-

cluding CPU and Near-Data-Processing (NDP) (or Processing-In-Memory (PIM)) systems. First, we

design ColorTM , a novel parallel graph coloring algorithm for CPU systems that trades off using

synchronization with lower data access costs. ColorTM proposes an efficient data management tech-

nique co-designed with a speculative synchronization scheme implemented on Hardware Transac-

tional Memory, and significantly outperforms prior state-of-the-art graph coloring algorithms across

a wide range of real-world graphs. Second, we propose SmartPQ, an adaptive priority queue that

achieves high performance under all various contention scenarios in Non-Uniform Memory Access

(NUMA) CPU systems. SmartPQ tunes itself by dynamically switching between a NUMA-oblivious

and a NUMA-aware algorithmic mode, thus providing low data access costs in high contention sce-
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narios, and high levels of parallelism in low contention scenarios. Our evaluations show that SmartPQ

achieves the highest throughput over prior state-of-the-art NUMA-aware and NUMA-oblivious con-

current priority queues under various contention scenarios and even when contention varies during

runtime. Third, we introduce SynCron, the first practical and lightweight hardware synchronization

mechanism tailored for NDP systems. SynCron minimizes synchronization overheads in NDP sys-

tems by (i) adding low-cost hardware support near memory for synchronization acceleration, (ii)

directly buffering the synchronization variables in a specialized cache memory structure, (ii) imple-

menting a hierarchical message-passing communication scheme, and (iv) integrating a hardware-only

overflow management scheme to avoid performance degradation when hardware resources for syn-

chronization tracking are exceeded. We demonstrate that SynCron outperforms prior state-of-the-art

approaches both in performance and energy consumption using a wide range of irregular applica-

tions, and has low hardware area and power overheads. Fourth, we design SparseP, the first library for

high-performance Sparse Matrix Vector Multiplication (SpMV) on real Processing-In-Memory (PIM)

systems. SparseP is publicly-available and includes a wide range of data partitioning, load balancing,

compression and synchronization techniques to accelerate this irregular kernel in current and future

PIM systems. We also extensively characterize the widely used SpMV kernel on a real PIM archi-

tecture, and provide recommendations for software, system and hardware designers of future PIM

systems.

Overall, we demonstrate that the execution of irregular applications in CPU and NDP/PIM ar-

chitectures can be significantly accelerated by co-designing lightweight synchronization approaches

along with well-crafted data access policies. This dissertation shows that efficient synchronization

and data access techniques can provide a high amount of parallelism, low-overhead inter-thread com-

munication and low data access and data movement costs in emerging irregular applications, thus sig-

nificantly improving system performance and system energy. This doctoral thesis also bridges the gap

between processor-centric CPU systems and memory-centric PIM systems in the critically-important

area of irregular applications. We hope that this dissertation inspires future work in co-designing

software algorithms with cutting-edge computing platforms to significantly accelerate emerging ir-

regular applications.

Keywords: Irregular Applications, Synchronization, Efficient Data Access Techniques, Multicore

Systems, Processing-In-Memory Architectures
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ΚΕΦΑΛΑΙΟ1

Εϰτεταµένη Περίληψη

στην Ελληνιϰή Γλώσσα

Οι µη-ϰανονιϰές εφαρµογές όπως οι εφαρµογές επεξεργασίας γράφων, οι αραιοί υπολογιστιϰοί

πυρήνες γραµµιϰής άλγεβρας ϰαι οι παράλληλες δοµές δεδοµένων αποτελούν έναν πολύ σηµα-

ντιϰό ερευνητιϰό τοµέα, γιατί χρησιµοποιούνται ευρέως στα βαϑιά νευρωνιϰά δίϰτυα [19, 20], σε

επιστηµονιϰές προσοµοιώσεις [21,22], στην ιατριϰή [18] ϰαι στην οιϰονοµία [18]. Εποµένως, η βελ-

τιστοποίηση της επίδοσης των µη-ϰανονιϰών εφαρµογών σε σύγχρονα υπολογιστιϰά συστήµατα

είναι ζωτιϰής σηµασίας, ϰαι για αυτό ένα µεγάλο σύνολο προηγούµενων ερευνητιϰών εργασιών

προτείνει αποδοτιϰούς µηχανισµούς σε επίπεδο λογισµιϰού (software) [1, 13–15, 18, 23–131] ϰαι σε

επίπεδο υλιϰού (hardware) [5, 7, 20, 22, 108, 132–278] για την επίτευξη σηµαντιϰής βελτίωσης της

29



30 Κεφάλαιο 1

επίδοσης των µη-ϰανονιϰών εφαρµογών.

Στην παρούσα διδαϰτοριϰή διατριβή, εντοπίζουµε τρία χαραϰτηριστιϰά των µη-ϰανονιϰών ε-

φαρµογών που επηρεάζουν σηµαντιϰά την επίδοσή τους. Πρώτον, οι µη-ϰανονιϰές εφαρµογές

παρουσιάζουν εγγενή ανισορροπία εξαιτίας του συνόλου δεδοµένων εισόδου: τα διαϰριτά ϰοµ-

µάτια των υποϰείµενων δοµών δεδοµένων που χρησιµοποιούνται στις µη-ϰανονιϰές εφαρµογές δεν

έχουν το ίδιο µέγεϑος. Για παράδειγµα, οι πίναϰες εισόδου που χρησιµοποιούνται στους υπολο-

γιστιϰούς πυρήνες γραµµιϰής άλγεβρας είναι πολύ αραιοί, δηλαδή η µεγαλύτερη πλειοψηφία των

στοιχείων τους είναι µηδενιϰά [18,81,129,276,279–283], ϰαι στους πιο πολλούς πραγµατιϰούς πίνα-

ϰες ο αριϑµός των µη µηδενιϰών στοιχείων της ϰάϑε γραµµής/στήλης εµφανίζει µεγάλη ανισότητα

ϰαι ανισορροπία µεταξύ των γραµµών/στηλών του πίναϰα [284]. Εποµένως, µία απλή παραλληλο-

ποίηση των µη-ϰανονιϰών εφαρµογών χρησιµοποιώντας ένα µεγάλο αριϑµό παράλληλων νηµάτων

ϑα προϰαλούσε υψηλή ανισορροπία του φόρτου εργασίας µεταξύ των παράλληλων νηµάτων, ϰαι

υψηλή ανισότητα στο πλήϑος των υπολογισµών ϰαι των προσβάσεων στη µνήµη που εϰτελούνται

µεταξύ των παράλληλων νήµατων. ∆εύτερον, οι µη-ϰανονιϰές εφαρµογές παρουσιάζουν τυχαία

µοτίβα πρόσβασης στη µνήµη, δηλαδή οι προσβάσεις που εϰτελούνται στη µνήµη δεν είναι ούτε

διαδοχιϰές (streaming), ούτε αυστηρώς βηµατιϰές (strided), αλλά εξαρτώνται από τα χαραϰτηρι-

στιϰά των δεδοµένων που δίνονται ως είσοδος στον υπολογιστιϰό πυρήνα. Τα περίπλοϰα µοτίβα

πρόσβασης στη µνήµη των µη-ϰανονιϰών εφαρµογών είναι πολύ δύσϰολο να προβλεφϑούν. Ως απο-

τέλεσµα, οι µη-ϰανονιϰές εφαρµογές εµφανίζουν περίπλοϰες εξαρτήσεις δεδοµένων ϰαι προϰαλούν

υψηλά ϰόστη µεταϰίνησης δεδοµένων µεταξύ της µνήµης ϰαι των επεξεργαστών των υπολογιστι-

ϰών συστηµάτων. Τρίτον, οι περισσότερες µη-ϰανονιϰές εφαρµογές έχουν χαµηλή υπολογιστιϰή

ιϰανότητα (operational intensity), δηλαδή ο αριϑµός των χρήσιµων αριϑµητιϰών πράξεων που ε-

ϰτελούνται από τους επεξεργαστές σε σύγϰριση µε τον όγϰο των δεδοµένων που χρειάζονται για

να εϰτελεστούν αυτές οι πράξεις είναι πολύ µιϰρός. Ο όρος της υπολογιστιϰής ιϰανότητας χρησι-

µοποιείται για να µετρήσει το χάσµα ταχύτητας µεταξύ του επεξεργαστή ϰαι του υποσυστήµατος

µνήµης. ΄Οσο χαµηλότερη είναι η υπολογιστιϰή ιϰανότητα ενός υπολογιστιϰού πυρήνα, τόσο πε-

ρισσότερο περιορίζεται η επίδοση αυτόυ του υπολογιστιϰού πυρήνα από το υποσύστηµα µνήµης.

Εποµένως, οι περισσότερες µη-ϰανονιϰές εφαρµογές περιορίζονται σηµαντιϰά από το υποσύστηµα

µνήµης των σύγχρονων υπολογιστιϰών συστηµάτων εξαιτίας της χαµηλής τους υπολογιστιϰής ι-

ϰανότητας. Συγϰεϰριµένα, οι µη-ϰανονιϰές εφαρµογές υφίστανται υψηλά ϰόστη πρόσβασης στη

µνήµη ϰαι περιορίζονται σηµαντιϰά από το διαϑέσιµο εύρος ζώνης µνήµης (memory bandwidth)

του συστήµατος.

Συνοπτιϰά, υποστηρίζουµε ότι οι µη-ϰανονιϰές εφαρµογές αποτελούν έναν πολύ σηµαντιϰό ε-

ρευνητιϰό τοµέα, ενώ ταυτόχρονα είναι πολύ δύσϰολο να επιτευχϑεί υψηλή επίδοση ϰαι χαµηλή

ενεργειαϰή ϰατανάλωση στην εϰτέλεση αυτών των εφαρµογών σε σύγχρονα υπολογιστιϰά συ-

στήµατα. Οι µη-ϰανονιϰές εφαρµογές έχουν αρϰετά ιδιαίτερα χαραϰτηριστιϰά, τα οποία απαιτούν

νέες προσεγγίσεις τόσο σε επίπεδο λογισµιϰού, δηλαδή απαιτείται η σχεδίαση νέων παράλληλων

αλγόριϑµων, όσο ϰαι σε επίπεδο υλιϰού, δηλαδή απαιτείται ο επανασχεδιασµός των βασιϰών στοι-

χείων του υλιϰού των σύγχρονων αρχιτεϰτονιϰών, για την επίτευξη υψηλής επίδοσης συστήµατος.
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1.1 ΥψηλάΚόστηΣυγχρονισµού ϰαιΠροσβάσεωνστηΜνήµη

Περιορίζουν την Επίδοση των Μη-Κανονιϰών Εφαρµο-

γών

Τα σύγχρονα υπολογιστιϰά συστήµατα ϰαι οι υπάρχοντες παράλληλοι αλγόριϑµοι έχουν δύο βα-

σιϰά χαραϰτηριστιϰά που ϰαϑιστούν την αποτελεσµατιϰή εϰτέλεση των µη-ϰανονιϰών εφαρµογών

µία σηµαντιϰή πρόϰληση:

Χαραϰτηριστιϰό 1: Υψηλό Κόστος Συγχρονισµού. Για την επίτευξη υψηλής επίδοσης συστήµα-

τος σε πολυνηµατιϰές εϰτελέσεις, απαιτείται υψηλή εξισορρόπηση του φόρτου εργασίας (load bal-

ance) µεταξύ των παράλληλων νηµάτων. Ωστόσο, για την επίτευξη υψηλής εξισορρόπησης φόρτου

εργασίας µεταξύ των νηµάτων απαιτείται η χρήση µιας βελτιστοποιηµένης στρατηγιϰής παραλ-

ληλοποίησης. Για παράδειγµα, στον υπολογιστιϰό πυρήνα πολλαπλασιασµού αραιού πίναϰα µε

διάνυσµα (Sparse Matrix Vector Multiplication), αν χρησιµοποιηϑεί η στρατηγιϰή παραλληλοποίη-

σης στην οποία οι γραµµές του πίναϰα ϰατανέµονται εξίσου µεταξύ των παράλληλων νηµάτων, η

επίδοση αυτού του υπολογιστιϰού πυρήνα είναι χαµηλή, γιατί υπάρχει υψηλή ανισορροπία στον

αριϑµό των µη-µηδενιϰών στοιχείων µεταξύ των νηµάτων, ϰαι εποµένως υψηλή ανισορροπία στον

όγϰο των υπολογισµών που εϰτελούνται µεταξύ των νηµάτων. Ως αποτέλεσµα, χρησιµοποιείται

συνήϑως µια βελτιστοποιηµένη στρατηγιϰή παραλληλοποίησης στην οποία τα µη-µηδενιϰά στοι-

χεία του πίναϰα ϰατανέµονται εξίσου µεταξύ των παράλληλων νηµάτων. Οι βελτιστοποιηµένες

στρατηγιϰές παραλληλοποίησης για την εξισορρόπηση του φόρτου εργασίας µεταξύ των νηµάτων,

ωστόσο, οδηγούν στην ανάγϰη συχνού ϰαι αϰριβού συγχρονισµού µεταξύ των παράλληλων νη-

µάτων. Στον υπολογιστιϰό πυρήνα πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα, η χρήση της

στρατηγιϰής παραλληλοποίησης ϰατά την οποία τα µη-µηδενιϰά στοιχεία ϰατανέµονται εξίσου

µεταξύ των νηµάτων οδηγεί σε συχνό ϰαι αϰριβό συγχρονισµό µεταξύ των παράλληλων νηµάτων

που επεξεργάζονται µη-µηδενιϰά στοιχεία τα οποία ανήϰουν στην ίδια γραµµή του πίναϰα. Ως

αποτέλεσµα, ένας µεγάλος αριϑµός ϰύϰλων στον επεξεργαστή ξοδεύεται στην επιϰοινωνία ϰαι στο

συγχρονισµό µεταξύ των νηµάτων, µειώνοντας έτσι σηµαντιϰά την επίδοση της πολυνηµατιϰής

εφαρµογής.

Σε επίπεδο εφαρµογών, οι υπάρχοντες παράλληλοι αλγόριϑµοι (π.χ. [13, 37–46, 55, 56]) δεν δια-

ϑέτουν συνήϑως αποτελεσµατιϰές υλοποιήσεις συγχρονισµού, ϰαι δεν προσαρµόζουν το σχήµα

συγχρονισµού στο τρέχον φορτίο ϰαι στα τρέχοντα επίπεδα συµφόρησης του συστήµατος σε µία

δεδοµένη χρονιϰή στιγµή ϰατά την εϰτέλεση, ή στα χαραϰτηριστιϰά της αρχιτεϰτονιϰής που στο-

χεύουν. Πρόσφατες ερευνητιϰές εργασίες [16, 23, 285, 286] αποδειϰνύουν ότι (α) η χρήση απλών

σχηµάτων συγχρονισµού στις µη-ϰανονιϰές εφαρµογές προϰαλεί υψηλή ϰίνηση δεδοµένων στο

υποσύστηµα µνήµης µε υψηλά ϰόστη πρόσβασης, ϰαι (β) το ϰαλύτερο σχήµα συγχρονισµού ποιϰίλ-

λει ανάλογα µε το τρέχον φορτίο συµφόρησης ϰαι τα χαραϰτηριστιϰά υλιϰού της υπολογιστιϰής

πλατφόρµας. Σε επίπεδο αρχιτεϰτονιϰής, αν ϰαι έχουν προταϑεί πολλοί διαφορετιϰοί µηχανισµοί

συγχρονισµού στη βιβλιογραφία [287–305], οι περισσότεροι από αυτούς ϑα συνεπαγόταν υψηλό

ϰόστος υλιϰού, ϑα απαιτούσαν σηµαντιϰές τροποποιήσεις σε όλα τα επίπεδα της υπολογιστιϰής
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στοίβας των σύγχρονων συστηµάτων ή διαϑέτουν µια δύσχρηστη διεπαφή προγραµµατισµού, ϰαι

εποµένως είναι δύσϰολο να ενσωµατωϑούν στα σηµερινά υπολογιστιϰά συστήµατα.

Χαραϰτηριστιϰό2: ΥψηλόΚόστοςΠρόσβασηςστηΜνήµη. Οι µη-ϰανονιϰές εφαρµογές εϰτελο-

ύν τυχαία µοτίβα πρόσβασης στη µνήµη, έχουν χαµηλή υπολογιστιϰή ιϰανότητα ϰαι περιορίζονται

σηµαντιϰά από το υποσύστηµα µνήµης [18, 81, 136, 142, 281, 306]. Ως αποτέλεσµα, οι µη-ϰανονιϰές

εφαρµογές έχουν υψηλά ϰόστη πρόσβασης στη µνήµη, ϰαι ένα µεγάλο ποσοστό του χρόνου ε-

ϰτέλεσης της εφαρµογής ξοδεύεται στις προσβάσεις µνήµης ϰαι στην αναµονή της µεταφοράς των

δεδοµένων από τη µνήµη στους επεξεργαστές. Επίσης, τα τελευταία χρόνια υπάρχει σηµαντι-

ϰή αύξηση στο µέγεϑος των δεδοµένων εισόδου ϰαι των ενδιάµεσων δεδοµένων που παράγονται

ϰατά τη διάρϰεια εϰτέλεσης των εφαρµογών. Εποµένως, οι µη-ϰανονιϰές εφαρµογές χρειάζονται

να επεξεργαστούν ολοένα ϰαι µεγαλύτερο όγϰο δεδοµένων (τα δεδοµένα εισόδου είναι δεϰάδες ή

εϰατοντάδες GBs [24, 307]), ϰαι να χειριστούν αποτελεσµατιϰά την υψηλή ζήτηση δεδοµένων.

Για παράδειγµα, στον υπολογιστιϰό πυρήνα πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα, οι

προσβάσεις στα στοιχεία του διανύσµατος εισόδου είναι τυχαίες ϰαι εξαρτώνται από το µοτίβο των

µη-µηδενιϰών στοιχείων στον πίναϰα εισόδου. Αυτές οι αϰανόνιστες προσβάσεις στα στοιχεία του

διανύσµατος εισόδου είναι δύσϰολο να προβλεφϑούν, ϰαι συχνά εϰτελούνται χρησιµοποιώντας

την ϰύρια µνήµη των υπολογιστιϰών συστηµάτων. Εποµένως, η εϰτέλεση του υπολογιστιϰού

πυρήνα πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα περιορίζεται σηµαντιϰά από τις αϰριβές

προσβάσεις στα στοιχεία του διανύσµατος εισόδου ϰαι τα υψηλά ϰόστη µεταφοράς των στοιχείων

του διανύσµατος εισόδου, που προϰαλούν σηµαντιϰά ϰόστη στην επίδοση αυτού του υπολογιστιϰού

πυρήνα.

Επίσης, µία πρόσφατη ερευνητιϰή εργασία [308] δείχνει ότι τα ϰόστη στην ενεργειαϰή ϰατα-

νάλωση του συστήµατος εξαιτίας της µεταϰίνησης δεδοµένων µεταξύ της ιεραρχίας µνήµης των

υπολογιστιϰών συστηµάτων είναι πολύ πιο υψηλά ϰαι αϰριβά από τα ϰόστη επίδοσης, ϰατά την ε-

ϰτέλεση µη-ϰανονιϰών εφαρµογών. Εποµένως, οι αϰριβές προσβάσεις στη µνήµη στις µη-ϰανονιϰές

εφαρµογές προϰαλούν υψηλά ϰόστη τόσο στην επίδοση όσο ϰαι στην ενεργειαϰή ϰατανάλωση του

συστήµατος.

Σε επίπεδο εφαρµογών, πολλοί παράλληλοι αλγόριϑµοι δεν διαχειρίζονται τα δεδοµένααποτελε-

σµατιϰά (π.χ. [13,27,31–34,37,38,55,56]), ή δεν προσαρµόζουν τις στρατηγιϰές παραλληλοποίησης

ϰαι ϰατανοµής δεδοµένων στα ιδιαίτερα χαραϰτηριστιϰά ϰαι µοτίβα πρόσβασης των δεδοµένων

που δίνονται ως είσοδος. Πρόσφατες ερευνητιϰές εργασίες [309–313] δείχνουν ότι διαφορετιϰά ϰοµ-

µάτια δεδοµένων µιας εφαρµογής εµφανίζουν διαφορετιϰά χαραϰτηριστιϰά επίδοσης. Εποµένως, οι

στρατηγιϰές παραλληλοποίησης που δε λαµβάνουν υπόψιν τα χαραϰτηριστιϰά των δεδοµένων της

εφαρµογής, οδηγούν σε χαµένες ευϰαιρίες βελτιστοποίησης της επίδοσης.Παροµοίως, σε επίπεδο

αρχιτεϰτονιϰής, οι υπάρχοντες µηχανισµοί υλιϰού (π.χ. [314–317]) έχουν σχεδιαστεί χωρίς να

λαµβάνουν υπόψιν τα µοτίβα πρόσβασης των δεδοµένων της εφαρµογής στη µνήµη ϰαι την υπερ-

βολιϰή ζήτηση δεδοµένων, ϰαι εποµένως προϰαλούν συχνή ϰαι αϰριβή µεταϰίνηση των δεδοµένων

σε ολόϰληρο το σύστηµα ϰαι υψηλά ϰόστη πρόσβασης στα δεδοµένα.
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1.2 Η Προσέγγισή Μας: Αποδοτιϰές Τεχνιϰές Συγχρονισµού

ϰαι Πρόσβασης στα ∆εδοµένα Επιταχύνουν

τις Μη-Κανονιϰές Εφαρµογές

Σε αυτήν τη διδαϰτοριϰή διατριβή, αναλύουµε διεξοδιϰά µία µεγάλη ποιϰιλία από µη-ϰανονιϰές

εφαρµογές, συµπεριλαµβανοµένων εφαρµογών επεξεργασίας γράφων, ανάλυσης δεδοµένων, γραµ-

µιϰής άλγεβρας ϰαι παράλληλων δοµών δεδοµένων. Επίσης, µελετάµε την επίδοσή τους σε δύο σύγ-

χρονα υπολογιστιϰά συστήµατα: (α) πολυπύρηνες αρχιτεϰτονιϰές CPU µε ανοµοιόµορφη πρόσβα-

ση στη µνήµη (Non-Uniform Memory Access (NUMA) CPU) ϰαι (β) αρχιτεϰτονιϰές µε επεξεργασία

ϰοντά στη µνήµη (Near-Data-Processing (NDP) / Processing-In-Memory (PIM)). Οι αρχιτεϰτονιϰές

µε ανοµοιόµορφη πρόσβαση στη µνήµη αποτελούν την ϰυρίαρχη υπολογιστιϰή πλατφόρµα των

σύγχρονων υπολογιστιϰών συστηµάτων ϰαι έχουν βελτιωϑεί αρϰετά τα τελευταία χρόνια µε την

ενσωµάτωση επεξεργαστών µε υψηλή υπολογιστιϰή ιϰανότητα. Οι αρχιτεϰτονιϰές µε επεξεργασία

ϰοντά στη µνήµη έχουν πρόσφατα εµπορευµατοποιηϑεί [136, 137, 141, 142, 318], ϰαι αντιπροσωπε-

ύουν µία πολλά υποσχόµενη υπολογιστιϰή πλατφόρµα για την επίτευξη σηµαντιϰής µείωσης του

ϰόστους µεταϰίνησης δεδοµένων στο υποσύστηµα µνήµης. Οι αρχιτεϰτονιϰές µε επεξεργασία ϰοντά

στη µνήµη εξοπλίζουν τις συσϰευές µνήµης µε ένα µεγάλο αριϑµό επεξεργαστών χαµηλής ενεργεια-

ϰής ϰατανάλωσης ϰαι µε χαµηλή υπολογιστιϰή ιϰανότητα, ϰαι µειώνουν το ϰόστος µεταϰίνησης

των δεδοµένων εϰτελώντας επεξεργασία ϰοντά στην τοποϑεσία που βρίσϰονται τα δεδοµένα της

εφαρµογής. Συνολιϰά, οι αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη παρέχουν υψηλά επίπεδα

παραλληλισµού ϰαι πολύ µεγάλο εύρος ζώνης µνήµης.

Υποστηρίζουµε ότι τόσο οι µηχανισµοί υλιϰού όσο ϰαι οι παράλληλοι αλγόριϑµοι χρειάζονται

να λαµβάνουν υπόψιν τις ανάγϰες συγχρονισµού ϰαι τα µοτίβα πρόσβασης στη µνήµη των µη-

ϰανονιϰών εφαρµογών σαν τις δύο πιο σηµαντιϰές προτεραιότητες για την επίτευξη σηµαντιϰής

βελτίωσης της επίδοσης του συστήµατος ϰαι της ενεργειαϰής ϰατανάλωσης, όταν χρησιµοποιο-

ύνται εϰατοντάδες ϰαι χιλιάδες παράλληλα νήµατα επεξεργασίας. Συγϰεϰριµένα, οι προσεγγίσεις

τόσο σε επίπεδο λογισµιϰού όσο ϰαι σε επίπεδο υλιϰού για τις µη-ϰανονιϰές εφαρµογές πρέπει να

παρέχουν δύο τύπους τεχνιϰών βελτιστοποίησης: (1) χαµηλό ϰόστος συγχρονισµού, ϰαι (2) χαµηλό

ϰόστος πρόσβασης στα δεδοµένα.

Τεχνιϰές Χαµηλού Κόστους Συγχρονισµού. Υποστηρίζουµε ότι για βελτιωϑεί σηµαντιϰά η ε-

πίδοση των µη-ϰανονιϰών εφαρµογών, οι σύγχρονες υπολογιστιϰές πλατφόρµες πρέπει να υποστη-

ρίζουν πραϰτιϰούς µηχανισµούς συγχρονισµού σε επίπεδο υλιϰού, ϰαι οι παράλληλοι αλγόριϑµοι

πρέπει να παρέχουν χαµηλού ϰόστους επιϰοινωνία ϰαι δυναµιϰά σχήµατασυγχρονισµού µεταξύ των

παράλληλων νηµάτων. Χαµηλού ϰόστους τεχνιϰές συγχρονισµού είναι αρϰετά αποτελεσµατιϰές

στην εϰτέλεση των µη-ϰανονιϰών εφαρµογών, γιατί βελτιώνουν την επίδοση ϰαι την ενεργεια-

ϰή ϰατανάλωση (1) µειώνοντας τα ϰόστη µεταϰίνησης στο πρωτόϰολλο συνοχής ϰρυφής µνήµης

(cache coherence protocols), ϰαι (2) παρέχοντας µεγάλο όγϰο παραλληλισµού µεταξύ των νηµάτων

επεξεργασίας. Για παράδειγµα, σε επίπεδο λογισµιϰού, σχεδιάζουµε µία ¨πρόϑυµη¨ στρατηγιϰή

συγχρονισµού για τον υπολογιστιϰό πυρήνα χρωµατισµού γράφων (Κεφάλαιο 3), η οποία εϰτελεί υ-
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ποϑετιϰά υπολογισµούς ϰαι προσβάσεις στα δεδοµένα εϰτός του ϰρίσιµου τµήµατος (critical section),

ϰαι δείχνουµε ότι η προτεινόµενη αλγοριϑµιϰή τεχνιϰή µειώνει σηµαντιϰά τα ϰόστη συγχρονισµού

µεταξύ των παράλληλων νηµάτων ϰαι παρέχει υψηλά επίπεδα παραλληλισµού µέσω της εϰτέλεσης

µιϰρών ϰαι σύντοµων ϰρίσιµων τµηµάτων. Σε επίπεδο υλιϰού, δείχνουµε ότι ένας χαµηλού ϰόστους

ϰαι πραϰτιϰός µηχανισµός συγχρονισµού σχεδιασµένος για αρχιτεϰτονιϰές µε επεξεργασία ϰοντά

στη µνήµη (Κεφάλαιο 5) βελτιώνει σηµαντιϰά την επίδοση ϰαι την ενεργειαϰή ϰατανάλωση σε

ένα µεγάλο εύρος µη-ϰανονιϰών εφαρµογών όπως εφαρµογών επεξεργασίας γράφων, ανάλυσης

χρονοσειρών ϰαι παράλληλων δοµών δεδοµένων.

Αποτελεσµατιϰές Τεχνιϰές Πρόσβασης στα ∆εδοµένα. Υποστηρίζουµε ότι προϰειµένου να

µειωϑούν σηµαντιϰά τα ϰόστη πρόσβασης στα δεδοµένα στην εϰτέλεση των µη-ϰανονιϰών εφαρµο-

γών, τα σύγχρονα υπολογιστιϰά συστήµατα πρέπει να µειώσουν τα ϰόστη µεταϰίνησης δεδοµένων

στο υποσύστηµα µνήµης, ϰαι οι παράλληλοι αλγόριϑµοι πρέπει να παρέχουν ϰαλοσχεδιασµένες

τεχνιϰές ϰατανοµής δεδοµένων ϰαι στρατηγιϰές παραλληλοποίησης, οι οποίες εϰµεταλλεύονται

αποτελεσµατιϰά τις ιδιότητες των δεδοµένων της εφαρµογής, ϰαϑώς επίσης ϰαι να υλοποιούν δυ-

ναµιϰές τεχνιϰές διαχείρισης της ϰρυφής ϰαι της ϰύριας µνήµης των υπολογιστιϰών συστηµάτων,

λαµβάνοντας υπόψιν τα χαραϰτηριστιϰά του υλιϰού. Παράλληλοι αλγόριϑµοι ϰαι αρχιτεϰτονιϰές

που διαχειρίζονται αποτελεσµατιϰά τα δεδοµένα µπορούν να βελτιώσουν σηµαντιϰά την επίδοση

των µη-ϰανονιϰών εφαρµογών (1) µειώνοντας το ϰόστος πρόσβασης στα δεδοµένα, (2) βελτιώνοντας

την εξισορρόπηση του φορτίου εργασίας µεταξύ των παράλληλων νηµάτων, ϰαι (3) αξιοποιώντας

ϰαλύτερα το διαϑέσιµο εύρος ζώνης µνήµης. Για παράδειγµα, δείχνουµε ότι µία παράλληλη ουρά

προτεραιότητας (Κεφάλαιο 4), η οποία λαµβάνει υπόψιν την ανοµοιόµορφη ϰατανοµή δεδοµένων

σε µια αρχιτεϰτονιϰή µε ανοµοιόµορφη πρόσβαση στη µνήµη, επιτυγχάνει υψηλότερη επίδοση

(µειώνοντας τα ϰόστη πρόσβασης στα δεδοµένα) σε σενάρια υψηλής συµφόρησης συγϰριτιϰά µε

παράλληλες ουρές προτεραιότητας που αγνοούν την ανοµοιόµορφη ϰατανοµή της υποϰείµενης

δοµής δεδοµένων σε µία αρχιτεϰτονιϰή µε ανοµοιόµορφη πρόσβαση στη µνήµη. Επίσης, δείχνουµε

ότι µία δυναµιϰή παράλληλη ουρά προτεραιότητας (Κεφάλαιο 4) η οποία εναλλάσσει δυναµιϰά τη

στρατηγιϰή παραλληλοποίησής της µεταξύ δύο διαφορετιϰών αλγοριϑµιϰών υλοποιήσεων λαµ-

βάνοντας υπόψιν τα επίπεδα συµφόρησης της ϰάϑε χρονιϰής στιγµής, επιτυγχάνει την υψηλότερη

επίδοση σε όλα τα διαφορετιϰά σενάρια συµφόρησης, αϰόµα ϰαι όταν τα επίπεδα συµφόρησης

αλλάζουν ϰατά τη διάρϰεια εϰτέλεσης. Παροµοίως, δείχνουµε ότι η εϰτέλεση του υπολογιστιϰού

πυρήνα πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα σε αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη

µνήµη (Κεφάλαιο 6), η οποία είναι µία αρχιτεϰτονιϰή που προσφέρει χαµηλό ϰόστος πρόσβασης στη

µνήµη ϰαι πολύ µεγάλο εύρος ζώνης µνήµης, επιτυγχάνει υψηλή ενεργειαϰή αποδοτιϰότητα ϰαι πο-

λύ µεγαλύτερο ποσοστό της διαϑέσιµης υπολογιστιϰής ιϰανότητας του συστήµατος συγϰριτιϰά µε

το αντίστοιχο ποσοστό που επιτυγχάνεται στις αρχιτεϰτονιϰές CPU ϰαι GPU. ∆είχνουµε επίσης ότι

η υψηλότερη επίδοση στον υπολογιστιϰό πυρήνα πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα σε

µία αρχιτεϰτονιϰή µε επεξεργασία ϰοντά στη µνήµη (Κεφάλαιο 6) επιτυγχάνεται χρησιµοποιώντας

βελτιστοποιηµένες τεχνιϰές διαχείρισης των δεδοµένων που (α) ϑυσιάζουν την εξισορρόπηση του

υπολογιστιϰού φορτίου για να προσφέρουν χαµηλότερα ϰόστη µεταφοράς δεδοµένων µέσα στο

υποσύστηµα µνήµης, ϰαι (β) επιλέγουν τις στρατηγιϰές παραλληλοποίησης του υπολογιστιϰού
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πυρήνα ϰαι του διαµοιρασµού δεδοµένων λαµβάνοντας υπόψιν το µοτίβο αραιότητας του πίναϰα

εισόδου, δηλαδή εϰµεταλευόµενες των ιδιοτήτων των δεδοµένων εισόδου.

1.3 Θέση της ∆ιδαϰτοριϰής ∆ιατριβής

Στην παρούσα διδαϰτοριϰή διατριβή προτείνουµε τεχνιϰές παραλληλοποίησης ϰαι παράλληλους

αλγορίϑµους, ϰαϑώς επίσης ϰαι µηχανισµούς υλιϰού (hardware), που παρέχουν χαµηλό ϰόστος

συγχρονισµού µεταξύ των παράλληλων νηµάτων, χαµηλό ϰόστος πρόσβασης στα δεδοµένα, ϰαι

αποτελεσµατιϰή διαχείριση των δεδοµένων σε πολυπύρηνες CPU αρχιτεϰτονιϰές ϰαι σε αρχιτεϰτο-

νιϰές µε επεξεργασία ϰοντά στη µνήµη (Near-Data-Processing). Συγϰεϰριµένα, προτείνουµε αποτε-

λεσµατιϰές τεχνιϰές διαχείρισης δεδοµένων στην ϰρυφή µνήµη (cache memory) ϰαι την ϰύρια µνήµη

(main memory) συν-σχεδιασµένες µε χαµηλού ϰόστους τεχνιϰών συγχρονισµού για τη βελτίωση

της επίδοσης εφαρµογών επεξεργασίας γράφων, παράλληλων δοµών δεδοµένων ϰαι υπολογιστιϰών

πυρήνων γραµµιϰής άλγεβρας.

Ως εϰ τούτου, η παρούσα διατριβή αποδειϰνύει την αϰόλουϑη ϑέση:

Τεχνιϰές χαµηλού ϰόστους συγχρονισµού µεταξύ των παράλληλων νη-

µάτων σε συνεργασία µε βελτιστοποιηµένες τεχνιϰές πρόσβασης στα δεδο-

µένα βελτιώνουν σηµαντιϰά την επίδοση, τον παραλληλισµό, το ϰόστος µε-

ταϰίνησης των δεδοµένων ϰαι την ενεργειαϰή απόδοση των µη-ϰανονιϰών

εφαρµογών.

1.4 Συνεισφορά της ∆ιδαϰτοριϰής ∆ιατριβής

Στην παρούσα διατριβή προτείνουµε 4 διαφορετιϰές προσεγγίσεις επιτάχυνσης της επίδοσης των

µη-ϰανονιϰών εφαρµογών µέσω αποτελεσµατιϰών τεχνιϰών συγχρονισµού ϰαι διαχείρισης δεδο-

µένων, τις οποίες περιγράφουµε συνοπτιϰά στη συνέχεια ϰαι αναλύουµε διεξοδιϰά στα Κεφάλαια

3- 6.

1.4.1 ColorTM [1–3]: ΄ΕναςΠαράλληλοςΑλγόριϑµοςΧρωµατισµούΓράφων

µε Υψηλή Κλιµαϰωσιµότητα σε Πολυπύρηνες Αρχιτεϰτονιϰές

Ο αλγόριϑµος χρωµατισµού γράφων χρωµατίζει τους ϰόµβους ενός γράφου, έτσι ώστε οποιοιδήπο-

τε δύο γειτονιϰοί ϰόµβοι να έχουν διαφορετιϰά χρώµατα. Ο αλγόριϑµος χρωµατισµού γράφων

χρησιµοποιείται ευρέως σε πολλές σηµαντιϰές εφαρµογές συµπεριλαµβανοµένων της χρονοδροµο-

λόγησης εργασιών [26, 319–322], της διαχείρισης ϰαταχωρητών [323–327], της γραµµιϰής άλγε-

βρας [328–331], της µηχανιϰής µάϑησης, ϰαι της χρωµατιϰής χρονοδροµολόγησης των εφαρµογών

επεξεργασίας γράφων. Για παράδειγµα, η χρωµατιϰή χρονοδροµολόγηση εφαρµογών εϰτελείται

ως εξής: δεδοµένου του χρωµατισµού ενός γράφου, η χρωµατιϰή χρονοδροµολόγηση εϰτελεί N

βήµατα τα οποία εϰτελούνται σειριαϰά, όπου N είναι ο αριϑµός χρωµάτων που χρησιµοποιούνται
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στο χρωµατισµό του γράφου, ϰαι σε ϰάϑε βήµα οι ϰόµβοι που έχουν χρωµατιστεί µε το ίδιο χρώµα

επεξεργάζονται παράλληλα, αντιπροσωπεύοντας έτσι εργασίες που εϰτελούνται ταυτόχρονα.

Για να επιτευχϑεί υψηλή επίδοση στις προαναφερϑέντες πραγµατιϰές εφαρµογές, οι σχεδια-

στές λογισµιϰού πρέπει να βελτιώσουν τρία βασιϰά χαραϰτηριστιϰά στον αλγόριϑµο χρωµατισµού

γράφων. Πρώτον, πρέπει να ελαχιστοποιήσουν τον αριϑµό των χρωµάτων που χρησιµοποιο-

ύνται για να χρωµατιστεί ο γράφος που δίνεται ως είσοδος. Για παράδειγµα, στην εφαρµογή

της χρωµατιϰής χρονοδροµολόγησης η ελαχιστοποίηση του αριϑµού των χρωµάτων που χρησιµο-

ποιούνται µειώνει τον αριϑµό των διαδοχιϰών, σειριαϰών βηµάτων που εϰτελούνται στην τελιϰή

παράλληλη εφαρµογή. Ωστόσο, η ελαχιστοποίηση του αριϑµού των χρωµάτων στον αλγόριϑµο

χρωµατισµού γράφων είναι NP-complete πρόβληµα [332], ϰαι έτσι προηγούµενες ερευνητιϰές εργα-

σίες [35,36,320,321,328,333–337,337] προτείνουν αποτελεσµατιϰές ευριστιϰές διάταξης των ϰόµβων

του γράφου, οι οποίες µπορούν να παράξουν µιϰρό αριϑµό χρωµάτων στον αλγόριϑµο χρωµατι-

σµού γράφων. ∆εύτερον, δεδοµένου ότι ο χρόνος εϰτέλεσης του αλγορίϑµου χρωµατισµού γράφων

προστίϑεται στο συνολιϰό χρόνο της τελιϰής παράλληλης πραγµατιϰής εφαρµογής, οι µηχανι-

ϰοί λογισµιϰού πρέπει να σχεδιάσουν παράλληλους αλγορίϑµους χρωµατισµού γράφων υψηλής

επίδοσης για σύγχρονα πολυπύρηνα υπολογιστιϰά συστήµατα. Τρίτον, ο αποτελεσµατιϰός χρωµα-

τισµός ενός γράφου απαιτεί µια ισορροπηµένη ϰατανοµή των ϰόµβων του γράφου στις χρωµατιϰές

οµάδες, δηλαδή τα µεγέϑη των χρωµατιϰών οµάδων που παράγονται να είναι ίσα. ∆ιαφορετιϰά,

αν τα µεγέϑη των χρωµατιϰών οµάδων έχουν υψηλή απόϰλιση µεταξύ τους, δηλαδή µεγάλη ανι-

σότητα στον αριϑµό των ϰόµβων που ϰατανέµονται µεταξύ των χρωµατιϰών οµάδων, προϰαλείται

υψηλή ανισορροπία του φόρτου εργασίας ϰαι χαµηλή χρήση των πόρων στις τελιϰές πραγµατιϰές

εφαρµογές. Εποµένως, οι σχεδιαστές λογισµιϰού πρέπει να σχεδιάζουν ισορροπηµένους παράλ-

ληλους αλγορίϑµους χρωµατισµού γράφων για πολυπύρηνα υπολογιστιϰά συστήµατα. Στόχος

αυτής της ερευνητιϰής εργασίας είναι να βελτιώσουµε τα δυο τελευταία χαραϰτηριστιϰά στον αλ-

γόριϑµο χρωµατισµού γράφων, δηλαδή να σχεδιάσουµε υψηλής ϰλιµαϰωσιµότητας, αποδοτιϰούς

ϰαι ισορροπηµένους παράλληλους αλγορίϑµους χρωµατισµού γράφων για σύγχρονα πολυπύρηνα

υπολογιστιϰά συστήµατα.

Με µια απλή παραλληλοποίηση του αλγορίϑµου χρωµατισµού γράφων ενδέχεται να προϰύψουν

ασυνέπειες όταν δύο παράλληλα επεξεργαστιϰά νήµατα χρωµατίζουν µε το ίδιο χρώµα γειτονιϰούς

ϰόµβους του γράφου. Για την αντιµετώπιση των χρωµατιϰών ασυνεπειών, πρόσφατες ερευνητιϰές

εργασίες [27,31–34] εϰτελούν δύο επιπλέον βήµατα: το βήµα ανίχνευσης ασυνεπειών, ϰατά το οποίο

διασχίζονται όλοι οι ϰόµβοι του γράφου για να εντοπιστούν πιϑανές χρωµατιϰές ασυνέπειες, ϰαι το

βήµα επίλυσης των ασυνεπειών, ϰατά το οποίο διασχίζονται οι ϰόµβοι στους οποίους εντοπίστη-

ϰαν χρωµατιϰές ασυνέπειες ϰαι επαναχρωµατίζονται εϰ νέου µε ϰαινούργια χρώµατα. Ωστόσο, οι

παράλληλοι αλγόριϑµοι χρωµατισµού γράφων που έχουν προταϑεί σε προηγούµενες ερευνητιϰές

εργασίες στη βιβλιογραφία [27, 31–34] έχουν χαµηλή επίδοση, όπως αποδειϰνύουµε στο Κεφάλαιο

3, επειδή (α) χρειάζονται να διασχίσουν ολόϰληρο το γράφο τουλάχιστον δύο φόρες (µία φορά για

να χρωµατίσουν τους ϰόµβους του γράφου ϰαι µία φορά για να εντοπίσουν χρωµατιϰές ασυνέπειες

µεταξύ των ϰόµβων), ϰαι (β) εντοπίζουν ϰαι επιλύουν τις χρωµατιϰές ασυνέπειες µε µία ¨οϰνηρή¨

προσέγγιση, δηλαδή εντοπίζουν ϰαι επιλύουν τις χρωµατιϰές ασυνέπειες πολύ αργότερα στη ροή
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εϰτέλεσης του αλγορίϑµου σε σύγϰριση µε τη χρονιϰή στιγµή που εµφανίζονται οι χρωµατιϰές

ασυνέπειες στους γειτονιϰούς ϰόµβους. Ως αποτέλεσµα, οι προηγούµενοι αλγόριϑµοι που έχουν

προταϑεί στη βιβλιογραφία διασχίζουν τους ϰόµβους µε χρωµατιϰές ασυνέπειες πολλές φορές, χρη-

σιµοποιώντας ωστόσο τα τελευταία επίπεδα στην ιεραρχία της µνήµης (π.χ. την ϰύρια µνήµη) των

πολυπύρηνων αρχιτεϰτονιϰών, προϰαλώντας έτσι πολύ υψηλό ϰόστος πρόσβασης στα δεδοµένα.

Σε αυτήν την ερευνητιϰή εργασία παρουσιάζουµε τον ColorTM [2] αλγόριϑµο: έναν παράλληλο

αλγόριϑµο χρωµατισµού γράφων που επιτυγχάνει υψηλή επίδοση ϰαι ϰλιµαϰωσιµότητα σε πολυ-

πύρηνα υπολογιστιϰά συστήµατα. Ο ColorTM αλγόριϑµος έχει σχεδιαστεί ώστε να παρέχει χαµηλό

ϰόστος συγχρονισµού ϰαι χαµηλό ϰόστος πρόσβασης στα δεδοµένα. Ο παράλληλος αλγόριϑµος

που σχεδιάσαµε προτείνει (α) µια ¨πρόϑυµη¨ προσέγγιση εντοπισµού ϰαι επίλυσης των χρωµατι-

ϰών ασυνεπειών, δηλαδή άµεση ανίχνευση ϰαι επίλυση των χρωµατιϰών ασυνεπειών τη χρονιϰή

στιγµή που εµφανίζονται στη ροή εϰτέλεσης του αλγορίϑµου, έτσι ώστε να ελαχιστοποιηϑεί το

ϰόστος πρόσβασης στα δεδοµένα µέσω της διάσχισης των ϰόµβων χρησιµοποιώντας τις χαµηλού

ϰόστους ϰρυφές µνήµες (cache memory) των πολυπύρηνων αρχιτεϰτονιϰών, ϰαι (β) ένα υποϑετιϰό

σχήµα υπολογισµού ϰαι συγχρονισµού, δηλαδή µε χρήση της τεχνολογίας Hardware Transactional

Memory για το συγχρονισµό των παράλληλων επεξεργαστιϰών νηµάτων ϰαι µε την εϰτέλεση υ-

πολογισµών ϰαι προσβάσεων µνήµης εϰτός του ϰρίσιµου τµήµατος του αλγορίϑµου, έτσι ώστε να

επιτευχϑούν υψηλά επίπεδα παραλληλισµού ϰαι χαµηλό ϰόστος συγχρονισµού. Συγϰεϰριµένα, ο

ColorTM αλγόριϑµος αποτελείται από τρία βήµατα, για ϰάϑε ϰόµβο του γράφου (α) βρίσϰει ένα

υποψήφιο χρώµα για τον τρέχων ϰόµβο λαµβάνοντας υπόψιν τα χρώµατα που έχουν ανατεϑεί στους

γειτονιϰούς του ϰόµβους, (β) επιϰυρώνει ϰαι ενηµερώνει το χρώµα του τρέχοντος ϰόµβου ελέγχο-

ντας τα χρώµατα των ϰρίσιµων γειτονιϰών ϰόµβων µέσα σε µία Hardware Transactional Memory

συναλλαγή, ϰαι (γ) επαναλαµβάνει τα βήµατα (α) ϰαι (β) µε µία ¨πρόϑυµη¨ προσέγγιση µέχρι να

πραγµατοποιηϑεί ένας έγϰυρος χρωµατισµός στον τρέχων ϰόµβο.

Ωστόσο, ο ColorTM αλγόριϑµος δεν παρέχει ισορροπηµένη ϰατανοµή των ϰόµβων του γράφου

στις χρωµατιϰές οµάδες που παράγονται. Ως αποτέλεσµα, οι χρωµατιϰές οµάδες που παράγονται

έχουν µεγάλες αποϰλίσεις ανάµεσα στα µεγέϑη τους, προϰαλώντας έτσι ανισορροπία φόρτου ερ-

γασίας ϰαι χαµηλή χρήση πόρων στις πραγµατιϰές τελιϰές εφαρµογές. Εποµένως, επεϰτείνουµε τον

ColorTM αλγόριϑµο για να σχεδιάσουµε έναν ισορροπηµένο παράλληλο αλγόριϑµο χρωµατισµού

γράφων, που ονοµάζεται BalColorTM . Ο BalColorTM αλγόριϑµος παράγει εξαιρετιϰά ισορροπηµένες

χρωµατιϰές οµάδες, δηλαδή όλες οι χρωµατιϰές οµάδες έχουν σχεδόν τον ίδιο αριϑµών ϰόµβων,

στοχεύοντας έτσι στην παροχή υψηλής χρήσης των πόρων του υλιϰού ϰαι υψηλής ισορροπίας του

φόρτου εργασίας σε πραγµατιϰές τελιϰές εφαρµογές.

Στην εργασία µας αξιολογούµε τους ColorTM ϰαι BalColorTM αλγορίϑµους σε ένα σύγχρονο

πολυπύρηνο υπολογιστιϰό σύστηµα (Intel Haswell), χρησιµοποιώντας µία µεγάλη ποιϰιλία από

πραγµατιϰούς γράφους µε διαφορετιϰά χαραϰτηριστιϰά. Ο ColorTM αλγόριϑµος βελτιώνει την

επίδοση του συστήµατος ϰατά 12.98× χρησιµοποιώντας 56 παράλληλα επεξεργαστιϰά νήµατα

συγϰριτιϰά µε προηγούµενους αλγορίϑµους χρωµατισµού γράφων που έχουν προταϑεί στη βι-

βλιογραφία. Ο BalColorTM αλγόριϑµος βελτιώνει την επίδοση του συστήµατος ϰατά 1.91× χρη-

σιµοποιώντας 56 παράλληλα νήµατα ϰαι παρέχει την ϰαλύτερη ποιότητα εξισορρόπησης των
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χρωµατιϰών οµάδων που παράγονται σε σύγϰριση µε προηγούµενους ισορροπηµένους αλγορίϑ-

µους χρωµατισµού γράφων που έχουν προταϑεί στη βιβλιογραφία. Επίσης, η εργασία µας µελετάει

την αποτελεσµατιϰότητα των προτεινόµενων ColorTM ϰαι BalColorTM αλγορίϑµων ϰατά τον πα-

ραλληλισµό µιας πραγµατιϰής τελιϰής εφαρµογής, της εφαρµογής Community Detection [338].

Οι ColorTM ϰαι BalColorTM αλγόριϑµοι είναι δηµοσίως διαϑέσιµοι [2] στον αϰόλουϑο σύνδεσµο:

github.com/cgiannoula/ColorTM.

Συνοπτιϰά, αυτή η ερευνητιϰή εργασία παρέχει τις αϰόλουϑες συνεισφορές:

• Σχεδιάζουµε δύο νέους παράλληλους αλγορίϑµους χρωµατισµού γράφων υψηλής επίδοσης

ϰαι ϰλιµαϰωσιµότητας, που ονοµάζονταιColorTM ϰαι BalColorTM , για σύγχρονα πολυπύρηνα

υπολογιστιϰά συστήµατα.

• Αξιοποιούµε την τεχνολογία Hardware Transactional Memory για να εντοπίζουµε αποτελε-

σµατιϰά χρωµατιϰές ασυνέπειες µεταξύ γειτονιϰών ϰόµβων του γράφου µε χαµηλό ϰόστος

συγχρονισµού. Προτείνουµε µία ¨πρόϑυµη¨ προσέγγιση επίλυσης των χρωµατιϰών ασυνε-

πειών σε πολυνηµατιϰές εϰτελέσεις του αλγόριϑµου χρωµατισµού γράφων, η οποία παρέχει

πολύ χαµηλό ϰόστος πρόσβασης στα δεδοµένα.

• Αξιολογούµε τους προτεινόµενους ColorTM ϰαι BalColorTM αλγορίϑµους σε µία σύγχρονη

υπολογιστιϰή πλατφόρµα χρησιµοποιώντας µία µεγάλη ποιϰιλία πραγµατιϰών γράφων. Α-

ποδειϰνύουµε ότι οι προτεινόµενοι αλγόριϑµοι παρέχουν σηµαντιϰές βελτιώσεις επίδοσης του

συστήµατος συγϰριτιϰά µε προηγούµενους αλγορίϑµους που έχουν προταϑεί στη βιβλιογρα-

φία, ϰαι µπορούν να βελτιώσουν σηµαντιϰά την επίδοση πραγµατιϰών τελιϰών εφαρµογών.

1.4.2 SmartPQ [4]: Μία ∆υναµιϰή Παράλληλη Ουρά Προτεραιότητας για

Αρχιτεϰτονιϰές µε Ανοµοιόµορφη Πρόσβαση στη Μνήµη (NUMA)

Οι παράλληλες δοµές δεδοµένων χρησιµοποιούνται ευρέως σε βιβλιοϑήϰες λογισµιϰού ϰαι πραγµα-

τιϰές εφαρµογές. Πρόσφατες ερευνητιϰές εργασίες [15,39,64,339] µελετούν την ανάγϰη σχεδιασµού

αποδοτιϰών ϰαι ϰλιµαϰώσιµων παράλληλων δοµών δεδοµένων για αρχιτεϰτονιϰές µε ανοµοιόµορφη

πρόσβαση στη µνήµη (NUMA). Παράλληλες δοµές δεδοµένων όπως συνδεδεµένες λίστες ϰαι δέντρα

αναζήτησης εµφανίζουν χαµηλή συµφόρηση, επειδή οι λειτουργίες τους διασχίζουν µη σταϑερό α-

ριϑµό δειϰτών για να ολοϰληρωϑούν. Πρόσφατες ερευνητιϰές εργασίες [64,340,341] παρουσιάζουν

παράλληλους αλγορίϑµους για συνδεδεµένες λίστες ϰαι δέντρα αναζήτησης [48,342–346] που ϰλι-

µαϰώνουν σε εϰατοντάδες νήµατα. Αντιϑέτως, παράλληλες δοµές δεδοµένων όπως οι ουρές ϰαι

οι στοίβες εµφανίζουν υψηλή συµφόρηση. Σε αυτές τις δοµές δεδοµένων, τα παράλληλα νήµατα

ανταγωνίζονται για τις ίδιες ϑέσεις µνήµης, προϰαλώντας υψηλή ϰίνηση δεδοµένων στο σύστηµα

ϰαι αϰριβές προσβάσεις δεδοµένων στη µνήµη των υπολογιστιϰών συστηµάτων µε ανοµοιόµορφη

πρόσβαση στη µνήµη.

Σε αυτήν την εργασία, εστιάζουµε στις παράλληλες ουρές προτεραιότητας, οι οποίες χρησιµο-

ποιούνται σε εφαρµογές χρονοδροµολόγησης [347], προσοµοιώσεις διαϰριτών συµβάντων [348,349]

ϰαι εφαρµογές επεξεργασίας γράφων [350–352], όπως για παράδειγµα ο αλγόριϑµος εύρεσης των

συντοµότερων µονοπατιών (Single Source Shortest Path) [353]. Παροµοίως µε τα δέντρα αναζήτη-

σης, στη λειτουργία εισαγωγής (insert), οι παράλληλες ουρές προτεραιότητας εµφανίζουν υψηλά

https://github.com/cgiannoula/ColorTM
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επίπεδα παραλληλισµού ϰαι χαµηλή συµφόρηση, γιατί τα παράλληλα νήµατα δουλεύουν σε δια-

φορετιϰά τµήµατα της δοµής δεδοµένων. Εποµένως, στη λειτουργία εισαγωγής, οι υλοποιήσεις πα-

ράλληλων ουρών προτεραιότητας που αγνοούν την ανοµοιόµορφη ϰατανοµή της ϰυρίας µνήµης στα

σύγχρονα υπολογιστιϰάσυστήµατα, στο εξής αναφέρονταιωςNUMA-oblivious, ϰλιµαϰώνουν µέχρι

ένα µεγάλο αριϑµό παράλληλων νηµάτων. Αντιϑέτως, στη λειτουργία διαγραφής (π.χ. deleteMin),

όλα τα παράλληλα νήµατα ανταγωνίζονται για να διαγράψουν το στοιχείο µε την υψηλότερη

προτεραιότητα, ϰαι εποµένως ανταγωνίζονται για τις ίδιες ϑέσεις µνήµης. Σε σενάρια µε µεγάλο

αριϑµό λειτουργιών διαγραφής, οι παράλληλες ουρές προτεραιότητας συνήϑως εµφανίζουν υψηλή

συµφόρηση ϰαι χαµηλά επίπεδα παραλληλισµού. Στα παραπάνω σενάρια, NUMA-oblivious ουρές

προτεραιότητας εµφανίζουν χαµηλή ϰλιµαϰωσιµότητα ϰαι επίδοση. Εποµένως, για να βελτιωϑεί

η επίδοση του συστήµατος σε αρχιτεϰτονιϰές µε ανοµοιόµορφη πρόσβαση στη µνήµη, πρόσφατες

εργασίες [15, 64] προτείνουν υλοποιήσεις ουρών προτεραιότητας που λαµβάνουν υπόψιν την α-

νοµοιόµορφη ϰατανοµή της ϰύριας µνήµης στα σύγχρονα υπολογιστιϰά συστήµατα, ϰαι στο εξής

αναφέρονται ως NUMA-aware ουρές προτεραιότητας.

ΜελετούµεNUMA-oblivious ϰαι NUMA-aware παράλληλες υλοποιήσεις ουρών προτεραιότητας

σε πολλά διαφορετιϰά σενάρια συµφόρησης σε αρχιτεϰτονιϰές µε ανοµοιόµορφη πρόσβαση στη

µνήµη, ϰαι παρατηρούµε ότι η επίδοση µιας παράλληλης ουράς προτεραιότητας εξαρτάται τόσο α-

πό τον όγϰο συµφόρησης του εϰάστοτε σεναρίου όσο ϰαι από τα χαραϰτηριστιϰά της υπολογιστιϰής

πλατφόρµας (Κεφάλαιο 4). Παρόλο που σε ένα σενάριο µε µεγάλο αριϑµό λειτουργιών εισαγωγής,

π.χ. όταν εϰτελούνται 100% λειτουργίες εισαγωγής, µία NUMA-oblivious υλοποίηση µπορεί να

βελτιώνει σηµαντιϰά την επίδοση του συστήµατος συγϰριτιϰά µε µία NUMA-aware υλοποίηση, σε

σενάρια µε υψηλότερη συµφόρηση, δηλαδή όπου το ποσοστό των λειτουργιών διαγραφής είναι

υψηλό, οι NUMA-aware υλοποιήσεις εµφανίζουν ϰαλύτερες επιδόσεις από τις NUMA-oblivious

υλοποιήσεις. ΄Αρα, συµπεραίνουµε ότι ϰαµία υπάρχουσα παράλληλη υλοποίηση ουράς προτεραι-

ότητας δεν εµφανίζει την υψηλότερη επίδοση σε όλα τα πιϑανά διαφορετιϰά σενάρια συµφόρησης.

Ο στόχος µας σε αυτήν την εργασία είναι να σχεδιάσουµε µία παράλληλη ουρά προτεραιότητας

που επιτυγχάνει την υψηλότερη επίδοση σε όλα τα διαφορετιϰά σενάρια συµφόρησης, ϰαι αποδίδει

βέλτιστα αϰόµη ϰαι όταν ο όγϰος συµφόρησης του φόρτου εργασίας ποιϰίλει ϰατά τη διάρϰεια του

χρόνου εϰτέλεσης.

Η συνεισφορά αυτής της εργασίας είναι διπλή. Πρώτον, προτείνουµε µια γενιϰή αλγοριϑµιϰή

τεχνιϰή για την υλοποίηση NUMA-aware δοµών δεδοµένων, που ονοµάζεται Nuddle. Η Nuddle

τεχνιϰή µετατρέπει οποιαδήποτε NUMA-oblivious παράλληλη δοµή δεδοµένων στην αντίστοιχη

NUMA-aware υλοποίησή της. Η Nuddle τεχνιϰή επεϰτείνει την ffwd [15] τεχνιϰή, επιτρέποντας

πολλλαπλά νήµατα-διαϰοµιστές (server threads), αντί για µόνο ένα νήµα-διαϰοµιστή, να εϰτελο-

ύν ταυτόχρονα λειτουργίες στη δοµή δεδοµένων για λογαριασµό άλλων νηµάτων-πελατών (client

threads).

∆εύτερον, προτείνουµε µία δυναµιϰήπαράλληληουράπροτεραιότητας, που ονοµάζεται SmartPQ,

ϰαι η οποία επιτυγχάνει την υψηλότερη επίδοση σε όλα τα πιϑανά διαφορετιϰά σενάρια συµ-

φόρησης, µέσω της δυναµιϰής προσαρµογής ϰατά τη διάρϰεια του χρόνου εϰτέλεσης µεταξύ ενός

NUMA-oblivious ϰαι ενός NUMA-aware αλγοριϑµιϰού σχήµατος. Η SmartPQ ουρά προτεραιότητας
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ενσωµατώνει (α) την τεχνιϰή Nuddle για να εναλλάσσεται µεταξύ των δυο αλγοριϑµιϰών σχηµάτων

µε χαµηλό ϰόστος, ϰαι (β) ένα απλό δέντρο αποφάσεων (decision tree classifier), το οποίο προβλέπει

το ϰαλύτερο αλγοριϑµιϰό σχήµα ως προς την επίδοση λαµβάνοντας υπόψιν τον όγϰο συµφόρησης

του εϰάστοτε φόρτου εργασίας.

Πιο συγϰεϰριµένα, η SmartPQ ουρά προτεραιότητας βασίζεται σε τρεις βασιϰές ιδέες. Πρώτον,

τα νήµατα-πελάτες (client threads) µπορούν να εϰτελούν λειτουργίες χρησιµοποιώντας είτε τη

NUMA-aware Nuddle υλοποίηση είτε την υποϰείµενη NUMA-oblivious υλοποίηση που ενσωµα-

τώνει εσωτεριϰά η Nuddle υλοποίηση. ∆εύτερον, η SmartPQ ουρά προτεραιότητας ενσωµατώνει

ένα µηχανισµό λήψης αποφάσεων για να αποφασίζει δυναµιϰά σχετιϰά µε τις µεταβάσεις µεταξύ

των δύο αλγοριϑµιϰών σχηµάτων (NUMA-aware ϰαι NUMA-oblivious). Τρίτον, η SmartPQ ουρά

προτεραιότητας εϰµεταλλεύεται το γεγονός ότι η υποϰείµενη NUMA-oblivious υλοποίηση, που εν-

σωµατώνεται εσωτεριϰά στη Nuddle υλοποίηση, είναι µία παράλληλη δοµή δεδοµένων, ϰαι ότι τα

νήµατα-πελάτες (client threads) διασχίζουν τη δοµή δεδοµένων µε τον ίδιο αϰριβώς τρόπο ϰαι στα

δύο αλγοριϑµιϰά σχήµατα (NUMA-aware ϰαι NUMA-oblivious), δηλαδή χωρίς ϰαµία αλλαγή στον

τρόπο µε τον οποίο γίνεται η πρόσβαση στα δεδοµένα. Εποµένως, η SmartPQ ουρά προτεραιότη-

τας µπορεί να µεταβαίνει δυναµιϰά από το ένα αλγοριϑµιϰό σχήµα στο άλλο αλγοριϑµιϰό σχήµα

(NUMA-aware ϰαι NUMA-oblivious) χωρίς τη χρήση συγχρονισµού µεταξύ των µεταβάσεων.

Αξιολογούµε πολλά διαφορετιϰά σενάρια συµφόρησης ϰαι συγϰρίνουµε τη Nuddle υλοποίηση

ϰαι τη SmartPQ ουρά προτεραιότητας µε παράλληλες υλοποιήσεις ουρών προτεραιότητας που

έχουν προταϑεί στη βιβλιογραφία [13, 15, 55]. Αξιολογούµε επίσης σενάρια στα οποία ο όγϰος

συµφόρησης ποιϰίλει ϰατά τη διάρϰεια του χρόνου εϰτέλεσης. Η αξιολόγησή µας αποδειϰνύει ότι η

SmartPQ ουρά προτεραιότητας προσαρµόζεται δυναµιϰά µεταξύ των δύο αλγοριϑµιϰών σχηµάτων

µε αµελητέο ϰόστος συγχρονισµού, ϰαι επιτυγχάνει την υψηλότερη επίδοση σε διαφορετιϰά σενάρια

συµφόρησης ϰαι σε οποιαδήποτε χρονιϰή στιγµή ϰατά τη διάρϰεια εϰτέλεσης µε 87.9% ποσοστό

επιτυχίας.

Συνοπτιϰά, αυτή η ερευνητιϰή εργασία παρέχει τις αϰόλουϑες συνεισφορές:

• Προτείνουµε µια γενιϰή αλγοριϑµιϰή τεχνιϰή, που ονοµάζεται Nuddle, ϰαι η οποία χρησιµο-

ποιείται για την υλοποίηση NUMA-aware παράλληλων δοµών δεδοµένων υψηλής επίδοσης.

• Σχεδιάζουµε έναν απλό µηχανισµό λήψης αποφάσεων ο οποίος µε δεδοµένο το σενάριο συµ-

φόρησης προβλέπει την ϰαλύτερη υλοποίηση ως προς την επίδοση µεταξύ µιας NUMA-

oblivious ϰαι NUMA-aware ουράς προτεραιότητας.

• Προτείνουµε µία δυναµιϰή ουρά προτεραιότητας, που ονοµάζεται SmartPQ, ϰαι επιτυγχάνει

την υψηλότερη επίδοση αϰόµα ϰαι αν ο όγϰος συµφόρησης ποιϰίλει ϰατά τη διάρϰεια του

χρόνου εϰτέλεσης.

• Αξιολογούµε τη Nuddle τεχνιϰή ϰαι τη SmartPQ ουρά προτεραιότητας σε πολλά διαφορετιϰά

σενάρια συµφόρησης, ϰαι αποδειϰνύουµε ότι η SmartPQ επιτυγχάνει την ϰαλύτερη επίδοση

σε σύγϰριση µε παράλληλες ουρές προτεραιότητας που έχουν προταϑεί στη βιβλιογραφία.
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1.4.3 SynCron [5]: ΄ΕναςΑποδοτιϰόςΜηχανισµόςΣυγχρονισµούγιαΑρχι-

τεϰτονιϰές µε Επεξεργασία Κοντά στηΜνήµη (Near-Data Processing)

Οι πρόσφατες εξελίξεις σε 3D τεχνολογίες µνήµης [354–359] έχουν ανανεώσει το ενδιαφέρον για

επεξεργασία δεδοµένων ϰοντά στη µνήµη (Near-Data-Processing) [135,191,258,360]. Η επεξεργασία

δεδοµένων ϰοντά στη µνήµη [135,138,139,188,189,191–193,196,197,200,201,203,204,206,207,254–257,

308,360–369] περιλαµβάνει την εϰτέλεση υπολογισµών ϰοντά στην ϰύρια µνήµη όπου βρίσϰονται τα

δεδοµένα της εφαρµογής. Αυτή η προσέγγιση µειώνει την αϰριβή µεταϰίνηση των δεδοµένων µεταξύ

του επεξεργαστή ϰαι της µνήµης ϰαι βελτιώνει την ενεργειαϰή ϰατανάλωση πολλών παράλληλων

εφαρµογών. Οι αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη υποστηρίζουν πολλές συσϰευές

µνήµης συνδεδεµένες µεταξύ τους, ϰαϑεµία από τις οποίες περιλαµβάνει πολλαπλούς χαµηλού

ϰόστους επεξεργαστές τοποϑετηµένους πολύ ϰοντά στους πίναϰες µνήµης (memory arrays) [135,

206,207,308,362,368,369]. Εποµένως, οι αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη παρέχουν

υψηλά επίπεδα παραλληλισµού, χαµηλό ϰόστος πρόσβασης δεδοµένων στη µνήµη ϰαι µεγάλο εύρος

ζώνης µνήµης.

Πρόσφατες ερευνητιϰές εργασίες παρουσιάζουν τα οφέλη της αρχιτεϰτονιϰής µε επεξεργασία

ϰοντά στη µνήµη σε παράλληλες εφαρµογές, συµπεριλαµβανοµένων εφαρµογών ανάλυσης του γο-

νιδίου [189, 201], επεξεργασίας γράφων [135, 191–193, 203, 206, 207], βάσεων δεδοµένων [193, 204],

ασφάλειας [198], ϰαι νευρωνιϰών διϰτύων [256, 308, 363, 364]. Γενιϰά, αυτές οι εφαρµογές παρου-

σιάζουν υψηλά επίπεδα παραλληλισµού, χαµηλή υπολογιστιϰή ιϰανότητα, ϰαι σχετιϰά χαµηλή

τοπιϰότητα στην ϰρυφή µνήµη [141, 370–373], χαραϰτηριστιϰά που τις ϰαϑιστούν ϰατάλληλες για

αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη.

Προηγούµενες εργασίες µελετούν την ανάγϰη σχεδιασµού αποδοτιϰών εργαλείων συγχρονισµού

για αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη, όπως είναι τα ϰλειδώµατα (locks) [54,374] ϰαι

τα εµπόδια (barriers) [135, 196, 206, 207]. Οι µηχανισµοί συγχρονισµού χρησιµοποιούνται ευρέως

σε παράλληλες εφαρµογές [1, 4, 63, 88, 202, 375–379], ϰαι πρέπει να συν-σχεδιάζονται προσεϰτιϰά

µε τα υποϰείµενα χαραϰτηριστιϰά της υπολογιστιϰής πλατφόρµας σε επίπεδο υλιϰού (hardware)

προϰειµένου να επιτευχϑεί υψηλή επίδοση συστήµατος. Εποµένως, για να αξιοποιηϑούν πλήρως

τα οφέλη της τεχνιϰής της επεξεργασίας ϰοντά στη µνήµη ϰατά την εϰτέλεση παράλληλων εφαρ-

µογών, ϰρίνεται απαραίτητο να σχεδιαστεί µία αποδοτιϰή λύση συγχρονισµού για αρχιτεϰτονιϰές

µε επεξεργασία ϰοντά στη µνήµη.

Οι προσεγγίσεις για την υποστήριξη συγχρονισµού µπορούν να ταξινοµηϑούν σε δύο ϰατηγο-

ρίες [380, 381]. Πρώτον, σχήµατα συγχρονισµού µπορούν να υλοποιηϑούν µέσω της ϰοινής µνήµης,

συνήϑως χρησιµοποιώντας τις ατοµιϰές εντολές (atomic operations) που παρέχονται σε επίπεδο υ-

λιϰού. Σε πολυπύρηνα CPU συστήµατα, οι ατοµιϰές εντολές υλοποιούνται συνήϑως στο υποϰείµενο

πρωτόϰολλο συνοχής της ϰρυφής µνήµης (cache coherence protocol), ωστόσο οι περισσότερες αρ-

χιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη δεν υποστηρίζουν πρωτόϰολλα συνοχής της µνήµης

(π.χ. [135,139,206,207,369]). Σε GPU συστήµατα ϰαι συστήµατα µαζιϰής παράλληλης επεξεργασίας

(Massively Parallel Processing Systems), οι ατοµιϰές εντολές µπορούν να υλοποιηϑούν σε ατοµιϰές

µονάδες υλιϰού, που ονοµάζονται remote atomics. Ωστόσο, ο συγχρονισµός µε χρήση remote atom-
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ics έχει αποδειχϑεί αναποτελεσµατιϰός, ϰαϑώς η εϰτέλεση της ϰάϑε εγγραφής σε µία συγϰεϰριµένη

σταϑερή τοποϑεσία στο σύστηµα δηµιουργεί υψηλή ϰίνηση ϰαι συµφόρηση στο δίϰτυο διασύνδεσης

του συστήµατος [132, 382–385]. ∆εύτερον, ο συγχρονισµός µπορεί να υλοποιηϑεί µέσω του σχήµα-

τος µετάδοσης µηνυµάτων (message-passing) είτε σε επίπεδο λογισµιϰού είτε σε επίπεδο υλιϰού, στο

οποίο οι επεξεργαστές ανταλάσσουν µηνύµατα προϰειµένου να έρϑουν σε συµφωνία. Πρόσφατες

εργασίες για αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη (π.χ. [135, 196, 207, 386]) προτείνουν

σχήµατα συγχρονισµού µέσω µετάδοσης µηνυµάτων µεταξύ των επεξεργαστών του συστήµατος.

Ωστόσο, τα προτεινόµενα αυτά σχήµατα εξαϰολουϑούν να έχουν χαµηλή επίδοση, όπως αποδει-

ϰνύουµε στο Κεφάλαιο 5, ϰαι επίσης υποστηρίζουν ένα µιϰρό αριϑµό εργαλείων συγχρονισµού.

Μηχανισµοί υλιϰού που δεν υλοποιούνται µέσω των πρωτοϰόλλων συνοχής µνήµης ή/ϰαι

των ατοµιϰών εντολών έχουν προταϑεί στη βιβλιογραφία για σύγχρονα πολυπύρηνα συστήµα-

τα [287–289, 291–293, 295, 296]. Ωστόσο, αυτοί οι µηχανισµοί συγχρονισµού έχουν σχεδιαστεί για

τα ιδιαίτερα χαραϰτηριστιϰά υλιϰού του εϰάστοτε συστήµατος, ϰαι δεν είναι αποδοτιϰοί ή ϰατάλλη-

λοι για συστήµατα µε επεξεργασία ϰοντά στη µνήµη (Κεφάλαιο 5). Για παράδειγµα, το υπολογιστιϰό

σύστηµα CM5 [296] υλοποιεί συγχρονισµό µέσω ενός αποϰλειστιϰού φυσιϰού διϰτύου διασύνδεσης,

το οποίο ϑα συνεπαγόταν πολύ υψηλό ϰόστος να υλοποιηϑεί σε αρχιτεϰτονιϰές µε επεξεργασία

ϰοντά στη µνήµη. Ο LCU [295] µηχανισµός συγχρονισµού ενσωµατώνει µία µονάδα ελέγχου σε ϰάϑε

CPU επεξεργαστή του συστήµατος, ϰαι η οποία επίσης ϑα είχε υψηλό ϰόστος να υλοποιηϑεί στους

απλούς επεξεργαστές που υποστηρίζονται στις αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη. Ο

SSB [288] µηχανισµός συγχρονισµού περιλαµβάνει µία µιϰρή µονάδα αποϑήϰευσης σε ϰάϑε ελεγϰτή

της ϰρυφής µνήµης του τελευταίου επιπέδου (Last Level Cache) ϰαι ο MiSAR [287] µηχανισµός συγ-

χρονισµού ενσωµατώνει έναν επιταχυντή στους πίναϰες µνήµης της ϰρυφής µνήµης του τελευταίου

επιπέδου (Last Level Cache). Και οι δύο προαναφερϑέντες µηχανισµοί υλοποιούνται στο επίπεδο

ϰρυφής µνήµης των πολυπύρηνων CPU αρχιτεϰτονιϰών, το οποίο οι περισσότερες αρχιτεϰτονιϰές

µε επεξεργασία ϰοντά στη µνήµη δεν διαϑέτουν. Επίσης, οι αρχιτεϰτονιϰές µε επεξεργασία ϰοντά

στη µνήµη έχουν ανοµοιόµορφη ϰατανοµή µνήµης, ϰαι οι περισσότεροι από τους προηγούµενους

µηχανισµούς συγχρονισµού [287–289, 291–293, 295, 296] ϑα είχαν χαµηλή επίδοση συστήµατος σε

σενάρια υψηλής συµφόρησης. Αυτό συµβαίνει επειδή αυτοί οι µηχανισµοί συγχρονισµού αγνοο-

ύν το χαραϰτηριστιϰό της ανοµοιόµορφης ϰατανοµής µνήµης των αρχιτεϰτονιϰών µε επεξεργασία

ϰοντά στη µνήµη, ϰαι εποµένως σε σενάρια υψηλής συµφόρησης ϑα προϰαλούσαν υψηλή ϰίνηση

στο δίϰτυο διασύνδεσης µεταξύ των συσϰευών µνήµης των συστηµάτων µε επεξεργασία ϰοντά στη

µνήµη.

Συνολιϰά, οι αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη έχουν αρϰετά σηµαντιϰά χαραϰτη-

ριστιϰά σε επίπεδο υλιϰού που απαιτούν µία νέα προσέγγιση για την υποστήριξη ενός αποδοτιϰού

µηχανισµού συγχρονισµού. Πρώτον, οι περισσότερες αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη

µνήµη [54, 135, 138, 139, 188, 196, 197, 200, 204, 206, 207, 255–257, 308, 360, 361, 363, 386] δεν διαϑέτουν

ϰοινά επίπεδα ϰρυφής µνήµης που ϑα µπορούσαν να επιτρέψουν χαµηλού ϰόστους επιϰοινωνία

ϰαι συγχρονισµό µεταξύ των επεξεργαστών του συστήµατος. ∆εύτερον, οι αρχιτεϰτονιϰές µε επε-

ξεργασία ϰοντά στη µνήµη δεν υποστηρίζουν πρωτόϰολλα συνοχής µνήµης [54, 135, 138, 188, 196,

197, 200,204, 206, 207,255, 256, 308,361, 363, 364,386], λόγω υψηλού οιϰονοµιϰού ϰόστους ϰαι υψηλής
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ϰίνησης στο δίϰτυο διασύνδεσης [139, 369]. Τρίτον, οι αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη

µνήµη έχουν ανοµοιόµορφη ϰατανοµή µνήµης, ϰαι η επιϰοινωνία µεταξύ των συσϰευών µνήµης του

συστήµατος είναι πολύ πιο αϰριβή (τόσο σε επίδοση όσο ϰαι σε ενεργειαϰή ϰατανάλωση) από την

επιϰοινωνία εντός της συσϰευής µνήµης [135, 192, 193, 196, 204, 206, 207, 368].

Σε αυτήν την εργασία, προτείνουµε το SynCron, έναν αποδοτιϰό µηχανισµό συγχρονισµού

για αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη. Ο SynCron µηχανισµός συγχρονισµού έχει

σχεδιαστεί για να προσφέρει υψηλή επίδοση συστήµατος, χαµηλό ϰόστος υλοποίησης, προγραµ-

µατιστιϰή ευϰολία ϰαι µία µεγάλη ποιϰιλία εργαλείων συγχρονισµού, ενσωµατώνοντας τέσσερις

βασιϰές τεχνιϰές. Πρώτον, υλοποιούµε το συγχρονισµό µεταξύ των επεξεργαστών σε χαµηλού

ϰόστους µονάδων υλιϰού, που ονοµάζονται Synchronization Engines. Αυτή η τεχνιϰή συµβάλλει

στο να αποφύγουµε την ανάγϰη για υποστήριξη πρωτοϰόλλων συνοχής µνήµης ϰαι αϰριβών ατο-

µιϰών εντολών σε επίπεδο υλιϰού στις αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη. ∆εύτερον,

αποϑηϰεύουµε τις µεταβλητές συγχρονισµού σε µία µιϰρή εξειδιϰευµένη µονάδα µνήµης για να

αποφύγουµε την εϰτέλεση αϰριβών προσβάσεων δεδοµένων στην ϰύρια µνήµη. Τρίτον, ο SynCron

µηχανισµός συντονίζει το συγχρονισµό µεταξύ των επεξεργαστών µε ένα ιεραρχιϰό σχήµα ανταλ-

λαγής µηνυµάτων: οι επεξεργαστές επιϰοινωνούν µόνο µε το τοπιϰό Synchronization Engine που

βρίσϰεται στην ίδια συσϰευή µνήµης µε αυτούς. Στο επόµενο επίπεδο της επιϰοινωνίας, όλα τα

τοπιϰά Synchronization Engines επιϰοινωνούν µεταξύ τους για να παρέχουν συγχρονισµό σε ϰαϑο-

λιϰό επίπεδο. Μέσω του ιεραρχιϰού σχήµατος επιϰοινωνίας, ο SynCron µηχανισµός συγχρονισµού

µειώνει σηµαντιϰά την ϰίνηση στο δίϰτυο διασύνδεσης µεταξύ των συσϰευών µνήµης σε σενάρια υ-

ψηλής συµφόρησης. Τέταρτον, όταν εφαρµογές µε υψηλές ανάγϰες συγχρονισµού υπερϰαλύπτουν

ϰαι γεµίζουν την εξειδιϰευµένη µονάδα µνήµης που αποϑηϰεύει τις µεταβλητές συγχρονισµού, ο

SynCron µηχανισµός συγχρονισµού χρησιµοποιεί ένα αποτελεσµατιϰό ϰαι διαφανές για τον προ-

γραµµατιστή σχήµα διαχείρισης της υπερχείλισης των µονάδων υλιϰού, το οποίο συµβάλλει στο

να αποφύγουµε εναλλαϰτιϰές αϰριβές λύσεις ϰαι να επιτύχουµε πολύ χαµηλή επιβράδυνση στην

επίδοση του συστήµατος.

Αξιολογούµε το SynCron µηχανισµό συγχρονισµού χρησιµοποιώντας µια µεγάλη ποιϰιλία πα-

ράλληλων εφαρµογών. Συγϰριτιϰά µε προηγούµενους µηχανισµούς συγχρονισµού που έχουν προ-

ταϑεί στη βιβλιογραφία [135, 196], ο SynCron µηχανισµός συγχρονισµού βελτιώνει την επίδοση

του συστήµατος ϰατά 1.27× σε σενάρια υψηλής συµφόρησης ϰαι ϰατά 1.35× σε σενάρια χαµηλής

συµφόρησης. Σε πραγµατιϰές εφαρµογές, ο SynCron µηχανισµός συγχρονισµού έχει µόνο 9.5% ε-

πιβράδυνση στην επίδοση ϰαι µόνο 6.2% υψηλότερη ενεργειαϰή ϰατανάλωση σε σύγϰριση µε έναν

ιδανιϰό µηχανισµό συγχρονισµού µε µηδενιϰό ϰόστος συγχρονισµού. Ο SynCron µηχανισµός συγ-

χρονισµού έχει χαµηλό ϰόστος υλοποίησης για να ενσωµατωϑεί σε αρχιτεϰτονιϰές µε επεξεργασία

ϰοντά στη µνήµη.

Συνοπτιϰά, αυτή η ερευνητιϰή εργασία παρέχει τις αϰόλουϑες συνεισφορές:

• ∆ιερευνούµε τις προϰλήσεις για την υλοποίηση ενός αποδοτιϰού µηχανισµού συγχρονισµού

σε αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη, ϰαι προτείνουµε το SynCron µηχανισµό

συγχρονισµού, έναν αποδοτιϰό ϰαι χαµηλού ϰόστους µηχανισµό συγχρονισµού για αρχιτε-

ϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη.
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• Σχεδιάζουµε χαµηλού ϰόστους µονάδες συγχρονισµού µεταξύ των επεξεργαστών ϰαι µία ε-

ξειδιϰευµένη µονάδα µνήµης για την αποϑήϰευση µεταβλητών συγχρονισµού, έτσι ώστε να

αποφύγουµε αϰριβές προσβάσεις δεδοµένων στην ϰύρια µνήµη. Προτείνουµε µια αποδοτιϰή

προσέγγιση συγχρονισµού µέσω ανταλλαγής µηνυµάτων που οργανώνει τη διαδιϰασία συγ-

χρονισµού ιεραρχιϰά, ϰαι παρέχουµε ένα αποτελεσµατιϰό σχήµα διαχείρισης των σεναρίων

υπερχείλισης των µονάδων υλιϰού, το οποίο παρέχει πολύ χαµηλή επιβράδυνση στην επίδοση

του συστήµατος.

• Αξιολογούµε το SynCron µηχανισµό συγχρονισµού σε µία µεγάλη ποιϰιλία παράλληλων ε-

φαρµογών ϰαι αποδειϰνύουµε ότι προσφέρει την υψηλότερη επίδοση συστήµατος ϰαι τη χα-

µηλότερη ϰατανάλωση ενέργειας συγϰριτιϰά µε προηγούµενους µηχανισµούς συγχρονισµού

που έχουν προταϑεί στη βιβλιογραφία για αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη.

Ο SynCron µηχανισµός συγχρονισµού παρέχει επίσης πολύ χαµηλό ϰόστος υλοποίησης.

1.4.4 SparseP [6–10]: Μία Βιβλιοϑήϰη Αλγορίϑµων του Υπολογιστιϰού

Πυρήνα του Πολλαπλασιασµού Αραιού Πίναϰα µε ∆ιάνυσµα για

Αρχιτεϰτονιϰές µε Επεξεργασία Κοντά στη Μνήµη (Processing-In-

Memory)

Ο υπολογιστιϰός πυρήνας πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα (SpMV) είναι ένας ϑε-

µελιώδης υπολογιστιϰός πυρήνας στη γραµµιϰή άλγεβρα, ϰαι χρησιµοποιείται σε επιστηµονιϰές

εφαρµογές, στη µηχανιϰή µάϑηση ϰαι στην επεξεργασία γράφων. Σε σύγχρονα πολυπύρηνα συ-

στήµατα, έχει διαπιστωϑεί ότι η εϰτέλεση του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα

επιτυγχάνει µόνο ένα µιϰρό ϰλάσµα της διαϑέσιµης υπολογιστιϰής ιϰανότητας του συστήµα-

τος [18, 81, 90, 99, 111, 125, 281, 306, 387–390] εξαιτίας της αλγοριϑµιϰής του φύσης, της συµπιε-

σµένης µορφής αποϑήϰευσης του αραιού πίναϰα εισόδου, ϰαι του αραιού µοτίβου δεδοµένων του

πίναϰα εισόδου. Ο πολλαπλασιασµός αραιού πίναϰα µε διάνυσµα εϰτελεί µη-ϰανονιϰές ϰαι πο-

λύπλοϰες προσβάσεις δεδοµένων στη µνήµη εξαιτίας του αραιού µοτίβου δεδοµένων του πίναϰα

εισόδου. Οι πίναϰες εισόδου είναι πολύ αραιοί, δηλαδή η συντριπτιϰή πλειοψηφία των στοιχε-

ίων τους είναι µηδενιϰά [18, 81, 129, 276, 279–283]. Για παράδειγµα, οι πίναϰες που αντιπροσω-

πεύουν το ϰοινωνιϰό δίϰτυο του Facebook ϰαι το µουσιϰό δίϰτυο του YouTube περιέχουν µόνο

0.0003% [276,279] ϰαι 2.31% [276,280] µη-µηδενιϰά στοιχεία, αντίστοιχα. Εποµένως, σε παραδοσια-

ϰά πολυπύρηνα συστήµατα όπως CPU ϰαι GPU συστήµατα, η επίδοση του υπολογιστιϰού πυρήνα

του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα περιορίζεται σηµαντιϰά από το διαϑέσιµο ε-

ύρος ζώνης µνήµης, ϰαι την αϰριβή ϰίνηση δεδοµένων µεταξύ του επεξεργαστή ϰαι της ϰύριας

µνήµης [17, 18, 81, 88, 90, 99, 125, 141, 142, 262, 281, 306, 387–393].

΄Ενας τρόπος για τη σηµαντιϰή µείωση της συµφόρησης της µεταϰίνησης δεδοµένων µεταξύ

του επεξεργαστή ϰαι της ϰύριας µνήµης είναι η επεξεργασία ϰοντά στη µνήµη (Processing-In-

Memory) [5, 54, 135, 137–144, 154, 155, 160, 161, 166, 170–173, 179, 183, 184, 187–189, 191, 194–197, 199,

201,205,206,208–210,254,256,257,308,362,370,374,394–443]. Η τεχνιϰή της επεξεργασίας ϰοντά στη
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µνήµη εϰτελεί υπολογισµούς ϰοντά στην ϰύρια µνήµη, όπου βρίσϰονται ϰαι τα δεδοµένα της εφαρ-

µογής, εξοπλίζοντας τις συσϰευές µνήµης µε απλές επεξεργαστιϰές µονάδες [140, 399]. Πρόσφατες

ερευνητιϰές εργασίες [5,54,120,135,188,192,193,196,197,200,203–207,255–257,308,374,401,401,412,

444–446] προτείνουν 2.5D/3D αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη [354, 355, 359], στις

οποίες απλοί επεξεργαστές ενσωµατώνονται στο λογιϰό επίπεδο της συσϰευής µνήµης (logic layer

of DRAM). Ωστόσο, οι 2.5D/3D αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη ενδέχεται να µην

µπορούν να παρέχουν σηµαντιϰά υψηλότερο εύρος ζώνης µνήµης συγϰριτιϰά µε την παραδοσιαϰή

συσϰευή µνήµης DRAM [395, 398]. Για την επίτευξη σηµαντιϰά υψηλότερου εύρους ζώνης µνήµης,

πρόσφατες αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη ενσωµατώνουν τον επεξεργαστή πολύ

ϰοντά σε ϰάϑε πίναϰα µνήµης (DRAM bank) της συσϰευής µνήµης, ϰαι ονοµάζονται near-bank αρχι-

τεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη [137,141,142,318,386,395,397,398,406–411,415,423,447–

451]. ∆ύο παραδείγµατα πραγµατιϰών near-bank αρχιτεϰτονιϰών µε επεξεργασία ϰοντά στη µνήµη

είναι το σύστηµα Samsung FIMDRAM [395, 397] ϰαι το UPMEM PIM [395, 397] [137, 141, 142, 452]

σύστηµα.

Οι περισσότερες near-bank αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη [137, 141, 142, 318,

386, 395, 397, 398, 406, 447–450] υποστηρίζουν πολλές συσϰευές µνήµης (DIMMs) που συνδέονται

µε το ϰεντριϰό CPU σύστηµα µέσω ϰαναλιών µνήµης (memory channels). Κάϑε συσϰευή µνήµης

αποτελείται από πολλούς απλούς επεξεργαστές µε σχετιϰά χαµηλή υπολογιστιϰή ιϰανότητα [141,

142], ϰαϑένας από τους οποίος τοποϑετείται ϰοντά σε ένα πίναϰα µνήµης (DRAM bank) [137,

141, 142, 318, 386, 395, 397, 398, 406, 447–450]. Κάϑε απλός επεξεργαστής έχει πρόσβαση µόνο στα

δεδοµένα που βρίσϰονται στον ϰοντινό του πίναϰα µνήµης, ϰαι συνήϑως δεν υπάρχει απευϑείας

επιϰοινωνία µεταξύ των επεξεργαστών της συσϰευής µνήµης. Πρόσφατες ερευνητιϰές εργασίες

χρησιµοποιούν τις near-bank αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη για να παρέχουν

υψηλή επίδοση ϰαι χαµηλή ενεργειαϰή ϰατανάλωση στη βιοπληροφοριϰή [141, 142, 453, 454], στη

συµπίεση δεδοµένων [455] ϰαι σε υπολογιστιϰούς πυρήνες νευρωνιϰών διϰτύων [141, 142, 386, 395,

448]. Ωστόσο, δεν υπάρχει προηγούµενη ερευνητιϰή εργασία που να µελετάει διεξοδιϰά τον ευρέως

χρησιµοποιηµένο υπολογιστιϰό πυρήνα του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα σε ένα

πραγµατιϰό near-bank σύστηµα µε επεξεργασία ϰοντά στη µνήµη.

Αυτή η ερευνητιϰή εργασία είναι η πρώτη που εϰτελεί αποδοτιϰά τον υπολογιστιϰό πυρήνα

του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα σε near-bank αρχιτεϰτονιϰές µε επεξεργασία

ϰοντά στη µνήµη, ϰαι ϰατανοεί τις επιπτώσεις της επίδοσής του σε ένα πραγµατιϰό σύστηµα µε

επεξεργασία ϰοντά στη µνήµη. Συγϰεϰριµένα, ο στόχος µας σε αυτήν την εργασία είναι διπλός:

(α) να σχεδιάσουµε αποδοτιϰούς παράλληλους αλγορίϑµους πολλαπλασιασµού αραιού πίναϰα µε

διάνυσµα για την επιτάχυνση αυτού του υπολογιστιϰού πυρήνα σε συστήµατα µε επεξεργασία

ϰοντά στη µνήµη, υποστηρίζοντας µια µεγάλη ποιϰιλία αραιών πινάϰων εισόδου µε διαφορετιϰά

χαραϰτηριστιϰά, ϰαι (β) να πραγµατοποιήσουµε µία εϰτενή µελέτη του ευρέως χρησιµοποιουµένου

υπολογιστιϰού πυρήνα πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα σε µια πραγµατιϰή αρχι-

τεϰτονιϰή µε επεξεργασία ϰοντά στη µνήµη. Για το σϰοπό αυτό, παρέχουµε µία µεγάλη ποιϰιλία

παράλληλων υλοποιήσεων πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα για αρχιτεϰτονιϰές µε

επεξεργασία ϰοντά στη µνήµη, ϰαι διεξάγουµε µία διεξοδιϰή πειραµατιϰή ανάλυση των προτει-
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νόµενων υλοποιήσεων πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα στο UPMEM PIM [395, 397]

σύστηµα, την πρώτη εµποριϰά διαϑέσιµη πραγµατιϰή αρχιτεϰτονιϰή µε επεξεργασία ϰοντά στη

µνήµη.

Παρουσιάζουµε τη SparseP βιβλιοϑήϰη [11], η οποία περιλαµβάνει 25 υλοποιήσεις πολλαπλα-

σιασµού αραιού πίναϰα µε διάνυσµα για πραγµατιϰά συστήµατα µε επεξεργασία ϰοντά στη µνήµη,

υποστηρίζοντας µία µεγάλη ποιϰιλία από (1) διαφορετιϰούς τύπους δεδοµένων, (2) τεχνιϰές ϰατα-

νοµής του αραιού πίναϰα εισόδου στις συσϰευές µνήµης, (3) συµπιεσµένες µορφές αποϑήϰευσης

του πίναϰα εισόδου, (4) σχήµατα εξισορρόπησης φορτίου µεταξύ των επεξεργαστών, (5) σχήµατα

εξισορρόπησης φορτίου µεταξύ των νηµάτων ενός πολυνηµατιϰού επεξεργαστή, ϰαι (6) σχήµατα

συγχρονισµού µεταξύ των νηµάτων ενός πολυνηµατιϰού επεξεργαστή. Συγϰεϰριµένα, υποστη-

ρίζουµε ένα µεγάλο εύρος τύπων δεδοµένων, δηλαδή 8-bit integer, 16-bit integer, 32-bit integer,

64-bit integer, 32-bit float ϰαι 64-bit float, για να ϰαλύψουµε διαφορετιϰές πραγµατιϰές εφαρµογές.

Σχεδιάζουµε δύο τύπους τεχνιϰών ϰατανοµής δεδοµένων: (α) την 1D τεχνιϰή ϰατανοµής στην οποία

ολόϰληρος ο υπολογισµός πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα εϰτελείται χρησιµοποι-

ώντας µόνο τους επεξεργαστές ϰοντά στη µνήµη, ϰαι (β) την 2D τεχνιϰή ϰατανοµής για την επίτευξη

ισορροπίας µεταξύ των υπολογισµών ϰαι του ϰόστους µεταφοράς δεδοµένων στις συσϰευές µνήµης.

Στην 1D τεχνιϰή ϰατανοµής, ο αραιός πίναϰας ϰατανέµεται οριζοντίως µεταξύ των επεξεργαστών

ϰοντά στη µνήµη, ϰαι ολόϰληρο το διάνυσµα εισόδου αντιγράφεται στον πίναϰα µνήµης (DRAM

bank) του ϰάϑε επεξεργαστή, ενώ οι επεξεργαστές ϰοντά στη µνήµη υπολογίζουν απευϑείας τα

τελιϰά στοιχεία του διανύσµατος εξόδου. Στην 2D τεχνιϰή ϰατανοµής, ο αραιός πίναϰας χωρίζεται

σε 2D ϰοµµάτια, ο αριϑµός των οποίων είναι ίσος µε τον αριϑµό των επεξεργαστών ϰοντά στη

µνήµη, ϰαι ένα υποσύνολο των στοιχείων του διανύσµατος εισόδου αντιγράφεται στον πίναϰα

µνήµης (DRAM bank) του ϰάϑε επεξεργαστή ϰοντά στη µνήµη. Ωστόσο, στην 2D τεχνιϰή ϰατανο-

µής, οι επεξεργαστές ϰοντά στη µνήµη δηµιουργούν ένα µεγάλο αριϑµό µεριϰών αποτελεσµάτων

για τα στοιχεία του διανύσµατος εξόδου, τα οποία συλλέγονται ϰαι συγχωνεύονται στο ϰεντριϰό

CPU σύστηµα για τον υπολογισµό του τελιϰού διανύσµατος εξόδου. Υποστηρίζουµε τις πιο δηµο-

φιλείς συµπιεσµένες µορφές αποϑήϰευσης αραιού πίναϰα, δηλαδή CSR [456, 457], COO [457, 458],

BCSR [459], BCOO [457], ϰαι για ϰάϑε συµπιεσµένη µορφή αποϑήϰευσης υλοποιούµε διαφορετιϰά

σχήµατα εξισορρόπησης φορτίου µεταξύ των επεξεργαστών ϰοντά στη µνήµη, για να προσφέρουµε

αποτελεσµατιϰή εϰτέλεση του υπολογιστιϰού πυρήνα πολλαπλασιασµού αραιού πίναϰα µε διάνυ-

σµα σε µια µεγάλη ποιϰιλία αραιών πινάϰων µε διαφορετιϰά χαραϰτηριστιϰά. Τέλος, σχεδιάζουµε

διαφορετιϰά σχήµατα εξισορρόπησης φορτίου ϰαι συγχρονισµού (coarse-grained, fine-grained ϰαι

lock-free) µεταξύ των παράλληλων νηµάτων ενός πολυνηµατιϰού επεξεργαστή ϰοντά στη µνήµη,

για να ϰαλύψουµε πραγµατιϰά συστήµατα µε επεξεργασία ϰοντά στη µνήµη που υποστηρίζουν

πολυνηµατιϰούς επεξεργαστές.

∆ιεξάγουµε µία διεξοδιϰή ανάλυση της εϰτέλεσης των SparseP υλοποιήσεων στο UPMEM PIM

σύστηµα [137, 141, 142, 318] χρησιµοποιώντας (1) µόνο έναν πολυνηµατιϰό επεξεργαστή ϰοντά στη

µνήµη, (2) χιλιάδες επεξεργαστές ϰοντά στη µνήµη, ϰαι (3) συγϰρίνοντας την εϰτέλεση των SparseP

υλοποιήσεων στο UPMEM PIM σύστηµα µε τα CPU ϰαι GPU σύστηµατα. Πρώτον, χαραϰτηρίζουµε

τα όρια επίδοσης ενός επεξεργαστή ϰοντά στη µνήµη ϰαι δείχνουµε ότι (α) υψηλή ανισορροπία
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λειτουργιών µεταξύ των νηµάτων ενός επεξεργαστή ϰοντά στη µνήµη µπορεί να επιφέρει σηµαντιϰή

επιβράδυνση της επίδοσης, ϰαι (β) το fine-grained σχήµα συγχρονισµού δεν επιτυγχάνει ϰαλύτερη

επίδοση από το coarse-grained σχήµα συγχρονισµού, αν το υλιϰό εϰτελεί σειριαϰά τις προσβάσεις

δεδοµένων στον τοπιϰό πίναϰα µνήµης (DRAM bank). ∆εύτερον, αναλύουµε την εϰτέλεση των 1D

ϰαι 2D τεχνιϰών ϰατανοµής του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα χρησιµοποιώντας

χιλιάδες επεξεργαστές ϰοντά στη µνήµη. Η ανάλυσή µας αποδειϰνύει ότι η επίδοση (α) της 1D

τεχνιϰής ϰατανοµής περιορίζεται από το ϰόστος µεταφοράς ολόϰληρου του διανύσµατος εισόδου

σε ϰάϑε πίναϰα µνήµης (DRAM bank) των επεξεργαστών ϰοντά στη µνήµη, ϰαι (β) της 2D τεχνιϰής

ϰατανοµής περιορίζεται από το ϰόστος µεταφοράς των µεριϰών αποτελεσµάτων για τα στοιχε-

ία του διανύσµατος εξόδου από τις συσϰευές µνήµης µε ϰοντινή επεξεργασία στο ϰεντριϰό CPU

σύστηµα. Αυτές οι µεταφορές δεδοµένων είναι πολύ αϰριβές, γιατί πραγµατοποιούνται µέσω του

ϰεντριϰού διαύλου µνήµης (memory bus), ο οποίος έχει περιορισµένο εύρος ζώνης µνήµης. Επι-

πλέον, η αναλυτιϰή µας µελέτη χρησιµοποιώντας µία µεγάλη ποιϰιλία από συµπιεσµένες µορφές

αποϑήϰευσης για τον πίναϰα εισόδου ϰαι από 26 αραιούς πίναϰες µε διαφορετιϰά χαραϰτηριστι-

ϰά αποδειϰνύει ότι (α) η συµπιεσµένη µορφή αποϑήϰευσης ϰαϑορίζει την ϰατανοµή δεδοµένων

στους πινάϰες µνήµης (DRAM bank) των συσϰευών µνήµης, επηρεάζοντας έτσι την υπολογιστιϰή

ισορροπία µεταξύ των επεξεργαστών ϰοντά στη µνήµη µε αντίστοιχες επιπτώσεις στην επίδοση,

ϰαι (β) δεν υπάρχει µοναδιϰή στρατηγιϰή εϰτέλεσης του πολλαπλασιασµού αραιού πίναϰα µε δι-

άνυσµα που να επιτυγχάνει τη βέλτιστη επίδοση σε όλα τα διαφορετιϰά σενάρια εϰτέλεσης. Το

σχήµα εξισορρόπησης φορτίου εργασίας µεταξύ των επεξεργαστών ϰοντά στη µνήµη (ϰαι µεταξύ

των νηµάτων ενός πολυνηµατιϰού επεξεργαστή) ϰαι η τεχνιϰή ϰατανοµής του αραιού πίναϰα που

παρέχουν τη βέλτιστη επίδοση στην εϰτέλεση του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα

εξαρτώνται τόσο από τα χαραϰτηριστιϰά του αραιού πίναϰα εισόδου όσο ϰαι τα χαραϰτηριστιϰά

του υλιϰού της υπολογιστιϰής πλατφόρµας µε επεξεργασία ϰοντά στη µνήµη. Τέλος, συγϰρίνουµε

την εϰτέλεση του υπολογιστιϰού πυρήνα του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα σε ένα

υπερσύγχρονο υπολογιστιϰό σύστηµα UPMEM PIM [395, 397] µε επεξεργασία ϰοντά στη µνήµη, το

οποίο έχει 2528 επεξεργαστές, µε την αντίστοιχη εϰτέλεση σε CPU ϰαι GPU συστήµατα τελευταίας

τεχνολογίας, ϰαι παρατηρούµε ότι ο υπολογιστιϰός πυρήνας πολλαπλασιασµού αραιού πίναϰα

µε διάνυσµα επιτυγχάνει πολύ µεγαλύτερο ϰλάσµα της διαϑέσιµης υπολογιστιϰής ιϰανότητας του

UPMEM PIM [395,397] συστήµατος συγϰριτιϰά µε αυτά των CPU ϰαι GPU συστηµάτων. Η εϰτενής

αξιολόγησή µας παρέχει προτάσεις για σχεδιαστές λογισµιϰού ϰαι σχεδιαστές υλιϰού µελλοντιϰών

συστηµάτων µε επεξεργασία ϰοντά στη µνήµη.

Οι πιο σηµαντιϰές προτάσεις µας για τους σχεδιαστές λογισµιϰού των συστηµάτων µε επεξερ-

γασία ϰοντά στη µνήµη είναι:

1. Σχεδιάστε αλγορίϑµους που παρέχουν υψηλή ισορροπία φορτίου εργασίας µεταξύ των νη-

µάτων ενός πολυνηµατιϰού επεξεργαστή ϰοντά στη µνήµη όσο αφορά το µέγεϑος των υπολο-

γισµών, του συγχρονισµού ϰαι των προσβάσεων στη µνήµη.

2. Σχεδιάστε συµπιεσµένες µορφές αποϑήϰευσης του αραιού πίναϰα εισόδου, οι οποίες να µπο-

ρούν να διαµεριστούν αποτελεσµατιϰά στους πίναϰες µνήµης (DRAM bank), µε στόχο την

παροχή υψηλής υπολογιστιϰής ισορροπίας µεταξύ των επεξεργαστών ϰοντά στη µνήµη.
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3. Σχεδιάστε αποτελεσµατιϰούς αλγορίϑµους οι οποίοι ϑυσιάζουν την υπολογιστιϰή ισορροπία

µεταξύ των επεξεργαστών ϰοντάστη µνήµη για την επίτευξη χαµηλότερου ϰόστους µεταφοράς

δεδοµένων στις συσϰευές µνήµης µε ϰοντινή επεξεργασία, ϰαι προσαρµόζουν τη στρατηγιϰή

τους ανάλογα µε τα διαφορετιϰά χαραϰτηριστιϰά των δεδοµένων εισόδου ϰαι του υλιϰού της

πλατφόρµας µε επεξεργασία ϰοντά στη µνήµη.

Οι πιο σηµαντιϰές προτάσεις µας για τους σχεδιαστές υλιϰού των συστηµάτων µε επεξεργασία

ϰοντά στη µνήµη είναι:

1. Παρέχετε µηχανισµούς συγχρονισµού χαµηλού ϰόστους ϰαι υποστήριξη υλιϰού που επιτρέπει

τις ταυτόχρονες προσβάσεις στον πίναϰα µνήµης (DRAM bank) από πολλαπλά νήµατα, για

να αυξηϑεί ο διαϑέσιµος παραλληλισµός σε έναν πολυνηµατιϰό πυρήνα µε επεξεργασία ϰοντά

στη µνήµη.

2. Βελτιστοποιήστε τη λειτουργία µεταφοράς δεδοµένων από την ϰύρια µνήµη στις συσϰευές

µνήµης µε ϰοντινή επεξεργασία, για να ελαχιστοποιηϑούν τα ϰόστη αντιγραφής των δεδο-

µένων εισόδου σε όλους τους πίναϰες µνήµης (DRAM banks) των συστηµάτων µε επεξεργασία

ϰοντά στη µνήµη.

3. Βελτιστοποιήστε τη λειτουργία συλλογής αποτελεσµάτων από τους πίναϰες µνήµης (DRAM

banks) των συσϰευών µνήµης µε ϰοντινή επεξεργασία στο ϰεντριϰό CPU σύστηµα, για να

ελαχιστοποιηϑούν τα ϰόστη ανάϰτησης των αποτελεσµάτων εξόδου των υπολογιστιϰών πυ-

ρήνων.

4. Σχεδιάστε υψηλής ταχύτητας ϰανάλια επιϰοινωνίας ϰαι βελτιστοποιήστε τις βιβλιοϑήϰες

µεταφοράς δεδοµένων από/προς τους χιλιάδες πίναϰες µνήµης (DRAM banks) των συσϰευών

µνήµης µε ϰοντινή επεξεργασία.

Η βιβλιοϑήϰη λογισµιϰού SparseP είναι δηµοσίως διαϑέσιµη [11], ώστε να επιτρέψει περαιτέρω

έρευνα του υπολογιστιϰού πυρήνα του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα σε συστήµα-

τα µε επεξεργασία ϰοντά στη µνήµη. Συνοπτιϰά, αυτή η ερευνητιϰή εργασία παρέχει τις αϰόλουϑες

συνεισφορές:

• Παρουσιάζουµε τη SparseP βιβλιοϑήϰη, την πρώτη δηµοσίως διαϑέσιµη βιβλιοϑήϰη υλοποι-

ήσεων του υπολογιστιϰού πυρήνα του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα για

αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη. Η SparseP βιβλιοϑήϰη περιλαµβάνει 25

υλοποιήσεις πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα, ϰαι υποστηρίζει τις τέσσερις

πιο δηµοφιλείς συµπιεσµένες µορφές αποϑήϰευσης αραιού πίναϰα ϰαι µια µεγάλη ποιϰιλία

τύπων δεδοµένων. Η SparseP βιβλιοϑήϰη είναι χρήσιµη για τους ερευνητές για να βελτιώσουν

το λογισµιϰό ϰαι το υλιϰό των αρχιτεϰτονιϰών µε επεξεργασία ϰοντά στη µνήµη.

• Πραγµατοποιούµε την πρώτη ολοϰληρωµένη µελέτη του ευρέως χρησιµοποιούµενου υπολογι-

στιϰού πυρήνα του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα στο UPMEM PIM [395,397]

σύστηµα, το πρώτο εµποριϰά διαϑέσιµο σύστηµα µε επεξεργασία ϰοντά στη µνήµη. Αναλύου-

µε τις επιδόσεις της εϰτέλεσης του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα χρησιµο-

ποιώντας µία µεγάλη ποιϰιλία από (1) συµπιεσµένες µορφές αποϑήϰευσης του αραιού πίναϰα,
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(2) τύπων δεδοµένων, (3) τεχνιϰών ϰατανοµής ϰαι εξισορρόπησης φορτίου, ϰαι (4) 26 αραιούς

πίναϰες µε διαφορετιϰά χαραϰτηριστιϰά.

• Συγϰρίνουµε την επίδοση ϰαι την ενεργειαϰή ϰατανάλωση της εϰτέλεσης του πολλαπλασια-

σµού αραιού πίναϰα µε διάνυσµα στο UPMEM PIM [395, 397] σύστηµα µε 2528 επεξεργαστές

ϰοντά στη µνήµη µε αυτή των CPU [395, 397] ϰαι GPU [395, 397] συστηµάτων. Η εϰτέλεση

του πολλαπλασιασµού αραιού πίναϰα µε διάνυσµα επιτυγχάνει λιγότερο από το 1% της δια-

ϑέσιµης υπολογιστιϰής ιϰανότητας των CPU [395, 397] ϰαι GPU [395, 397] συστηµάτων, ενώ

επιτυγχάνει το 51.7% της διαϑέσιµης υπολογιστιϰής ιϰανότητας του UPMEM PIM [395, 397]

συστήµατος, αξιοποιώντας έτσι ϰαλύτερα τις υπολογιστιϰές δυνατότες που παρέχονται σε

επίπεδο υλιϰού (hardware). Το UPMEM PIM [395, 397] σύστηµα παρέχει επίσης χαµηλή ε-

νεργειαϰή ϰατανάλωση στην εϰτέλεση του υπολογιστιϰού πυρήνα του πολλαπλασιασµού

αραιού πίναϰα µε διάνυσµα.

1.5 Τελιϰά Συµπεράσµατα της ∆ιδαϰτοριϰής ∆ιατριβής

Στην παρούσα διδαϰτοριϰή διατριβή, χαραϰτηρίζουµε εϰτενώς την εϰτέλεση µη-ϰανονιϰών εφαρ-

µογών σε σύγχρονα υπολογιστιϰά συστήµατα ϰαι παρατηρούµε ότι η επίδοσή τους περιορίζεται

σηµαντιϰά από το υψηλό ϰόστος συγχρονισµού µεταξύ των παράλληλων νηµάτων ϰαι τα υψη-

λά ϰόστη πρόσβασης στη µνήµη. Για το σϰοπό αυτό, προτείνουµε τεχνιϰές χαµηλού ϰόστους

συγχρονισµού ϰαι προσβάσεων στα δεδοµένα, ϰαι αποδειϰνύουµε ότι οι τεχνιϰές µας µπορούν να

βελτιώσουν σηµαντιϰά τον παραλληλισµό, την επίδοση ϰαι την ενεργειαϰή ϰατανάλωση των µη-

ϰανονιϰών εφαρµογών. Συγϰεϰριµένα, εισάγουµε τέσσερις νέες προσεγγίσεις: (1) ColorTM , ένας

νέος παράλληλος αλγόριϑµος χρωµατισµού γράφων για πολυπύρηνες CPU αρχιτεϰτονιϰές που

προτείνει µία αποδοτιϰή τεχνιϰή διαχείρισης δεδοµένων, η οποία συνδυάζεται αρµονιϰά µε το µη-

χανισµό συγχρονισµού σε επίπεδο υλιϰού, (2) SmartPQ, µία παράλληλη ουρά προτεραιότητας που

εναλλάσσεται δυναµιϰά µεταξύ δύο αλγοριϑµιϰών σχηµάτων, ϰαι εϰµεταλλεύεται την τοπιϰότη-

τα δεδοµένων µε σϰοπό να επιτευχϑεί υψηλή επίδοση υπό διαφορετιϰά σενάρια συµφόρησης σε

αρχιτεϰτονιϰές µε ανοµοιόµορφη πρόσβαση στη µνήµη (NUMA), (3) SynCron, ένας πραϰτιϰός µη-

χανισµός συγχρονισµού σε επίπεδο υλιϰού για αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη,

ϰαι (4) SparseP , µία βιβλιοϑήϰη αλγορίϑµων του υπολογιστιϰού πυρήνα του πολλαπλασιασµού

αραιού πίναϰα µε διάνυσµα, η οποία περιλαµβάνει µία µεγάλη ποιϰιλία αποτελεσµατιϰών τεχνιϰών

διαµοιρασµού δεδοµένων ϰαι συγχρονισµού για αρχιτεϰτονιϰές µε επεξεργασία ϰοντά στη µνήµη.

Ελπίζουµε ότι οι ιδέες, η ανάλυση, οι µέϑοδοι ϰαι οι τεχνιϰές που παρουσιάζονται σε αυτή τη δι-

δαϰτοριϰή διατριβή ϑα επιτρέψουν νέες µελέτες ϰαι ερευνητιϰές ϰατευϑύνσεις, ώστε να βελτιωϑεί

περαιτέρω η επίδοση των µη-ϰανονιϰών εφαρµογών σε υπάρχουσες ϰαι µελλοντιϰές υπολογιστιϰές

πλατφόρµες.
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CHAPTER2

Introduction

Irregular applications such as graph processing, sparse linear algebra and dynamic pointer-chasing

constitute an important part of software systems we rely on. These applications lie at the heart of

many important workloads including deep neural networks [19, 20, 256, 308, 363, 364], bioinformat-

ics [189,201,460], databases [193,204], data analytics [135,191–193,203,206,207,461,462], large-scale

simulations [21, 22, 392, 463–465], medical imaging [18, 88, 463], economic modeling [18, 88, 463], and

scientific applications [18, 88, 88, 392, 463–465]. Therefore, optimizing and accelerating irregular ap-

plications is of vital importance, and thus a large corpus of research proposes either software de-

signs [1, 13–15, 18, 23–131] or hardware mechanisms [5, 7, 20, 22, 108, 132–278, 460] to accelerate the

execution of such applications.

In this dissertation, we identify three important characteristics of irregular applications that crit-

ically affect their performance. First, irregular applications exhibit inherent imbalance as a result

of the real-world input data sets given. Specifically, the concrete pieces involved in the underlying

data structures and program data of irregular applications are not of equal size. For example, the

matrices involved in linear algebra kernels are very sparse, i.e., the vast majority of elements are
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zeros [18,81,118,129,276,279–283,306], and in most real-world matrices the number of non-zero ele-

ments per row shows high disparity and imbalance across the rows of the matrix [284]. Similarly, the

real-world graphs involved in graph processing workloads typically have a power-law distribution,

i.e., only a few vertices have a very high adjacency degree, while the vast majority of the remaining

vertices of the graph have a very low adjacency degree [7, 87, 134], which causes high disparity and

imbalance in the number of edges across vertices. Therefore, naively parallelizing such workloads to

a large number of threads in modern computing platforms can incur 1) high load imbalance across

parallel threads, and 2) high disparity in the amount of computation versus memory accesses exe-

cuted across parallel threads. Second, irregular applications exhibit random memory access patterns,

i.e., the memory accesses performed are neither sequential nor strided, and they are input-driven

dependent. Such complex memory access patterns are very hard to predict. Therefore, irregular ap-

plications exhibit complex data dependencies, poor spatial and temporal data locality, and high data

movement overheads to transfer data between memory and processors of commodity computing

systems. Third, most irregular applications have low operational intensity, i.e., the amount of use-

ful arithmetic operations performed by the processors compared to the amount of data necessary to

perform these operations is very low. As a result, irregular applications are memory-bound kernels.

They can be significantly bottlenecked by the memory subsystem, incurring high latency costs and

excessive memory bandwidth consumption to access data through memory.

As such, irregular applications constitute an important and emerging workload domain. How-

ever, at the same time, it is very challenging to achieve high performance and energy efficiency in the

execution of such workloads in modern computing systems due to the large memory and commu-

nication bottlenecks. Overall, irregular applications have several important inherent characteristics

that necessitate new approaches both in the software, i.e., re-designing parallel algorithms, and the

hardware level, i.e., re-designing key components of modern computing architectures, to achieve

high system performance, and cooperatively between the software and the hardware.

2.1 Motivation: Excessive Synchronization and High Memory

Intensity Degrade the Execution of Irregular Applications

Modern computing systems and state-of-the-art parallel algorithms have two important implications

that render the efficient execution of irregular applications a significantly challenging task.

Implication 1: Excessive Synchronization. To achieve high system performance in a multi-

threaded execution context, load balance among parallel threads is critical. Therefore, software engi-

neers employ a fine-grained parallelization strategy among parallel threads in irregular applications

due to the inherent imbalance exhibited in the input data sets involved. For example, Figure 2.1 com-

pares a regular Dense Matrix Vector Multiplication (DEMV) with an irregular Sparse Matrix Vector

Multiplication (SpMV). In the DEMV execution, a coarse-grained parallelization strategy (Figure 2.1a),

in which the rows of the matrix are equally distributed across parallel threads, can easily achieve

high load balance. However, using a coarse-grained parallelization strategy to parallelize the irregu-

lar SpMV kernel (Figure 2.1b) results in significantly high load imbalance among parallel threads, due
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to the high disparity in the number of non-zero elements processed across parallel threads, causing

large performance overheads. Thus, a fine-grained parallelization strategy among parallel threads is

necessary, e.g., Figure 2.1c. Unfortunately, this approach however results in excessive and frequent

synchronization among parallel threads. In the example of the irregular SpMV kernel, with a fine-

grained parallelization strategy, parallel threads that process non-zero elements of the same row of

the matrix (Figure 2.1c), use synchronization primitives (e.g., locks, mutexes) to ensure atomicity and

correctness, when performing write updates on the same element of the output vector. Therefore,

a large amount of processor cycles is spent on communication and synchronization with significant

performance overheads [16, 25, 88, 281, 466].

(a) Dense Matrix Vector Multipl.

*

Dense
Matrix

input 
vector

(b) SpMV (coarse-grained approach) (c) SpMV (fine-grained approach)

Thread 1
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Thread 3
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Figure 2.1: (a) Dense Matrix Vector Multiplication using three parallel threads. (b) Sparse Matrix

Vector Multiplication with a coarse-grained parallelization strategy among three parallel threads. (c)

Sparse Matrix Vector Multiplication with a fine-grained parallelization strategy among three parallel

threads. The colored cells of each matrix represent non-zero elements.

At the application level, existing fine-grained parallel algorithms (e.g., [13,37–46,55,56]) typically

lack well-tuned synchronization implementations [23, 286], and/or do not achieve high system per-

formance under all various contention scenarios. Recent works [16, 23, 285, 286] demonstrate that (i)

naive synchronization schemes used in irregular applications can cause high memory traffic with sig-

nificant latency access costs, and (ii) the best-performing synchronization scheme varies depending

on the levels of contention among parallel threads and the characteristics of the underlying hard-

ware platform. At the architecture level, even though numerous hardware synchronization mecha-

nisms have been proposed [287–305], most of them incur high hardware cost to be implemented in

commodity systems, require important cross-stack modifications and/or have narrow programming

interfaces, and thus they are hard to adopt.

Implication 2: High Memory Intensity. Irregular applications involve random memory access

patterns, have low operational intensity and are primarily bottlenecked by the memory subsys-

tem [18, 81, 88, 135, 136, 142, 191–193, 203, 206, 207, 281, 306, 308]. Thus, irregular applications incur

high memory intensity with significant data access costs, and a large fraction of the application’s

execution time is spent on data accesses and/or waiting for data to be transferred between mem-

ory and processors. Things become even worse with the large growth in input data set sizes as well

as intermediate data used and generated during runtime. Therefore, irregular applications need to

process increasingly large volumes of data (input data sets with tens or hundreds of GBs memory

footprints [24, 307]), and need to effectively handle the high data demand.
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We demonstrate the aforementioned critical performance implication with an example, i.e., the

SpMV kernel execution. The SpMV kernel performs O(NNZ) operations on O(N +NNZ) amount

of data (assuming a square matrix), where NNZ is the number of non-zero elements of the input

matrix and N is the number of columns of the input matrix (equal to the number of elements of the

input vector). However, the real-world matrices involved are very sparse [18, 81, 129, 276, 279–283].

For instance, the matrices that represent Facebook’s and YouTube’s network connectivity contain

only 0.0003% [276, 279] and 2.31% [276, 280] non-zero elements, respectively. Figure 2.2 presents

an example SpMV execution on the first four rows of a sparse 9×9 matrix with only 10 non-zero

elements, i.e., having ∼0.17 operational intensity when assuming single precision non-zero elements

(i.e., integers). As shown in Figure 2.2, the accesses to the elements of the input vector are random

and irregular, and they depend on the sparsity pattern of the matrix that is given as input. The

data accesses to the elements of the input vector are very hard to predict, since they are affected

by the particular characteristics of the input matrix, and are typically performed using the main

memory of commodity systems, which often has high latency and low bandwidth [233, 467]. Thus,

SpMV execution is highly limited by the irregular data accesses to the elements of the input vector

and the data movement costs of accessing the elements of the input vector, which cause significant

performance overheads in the total execution time [18, 81, 90, 99, 111, 118, 276, 282, 306, 387–390].

Execution of the 1st row

*

Sparse
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Figure 2.2: An example SpMV execution on the first four rows of a sparse 9×9 matrix with only

10 non-zero elements. The execution steps are performed at a row granularity. The colored cells of

the matrix with purple color represent non-zero elements, and the colored cells of the input vector

represent the elements of the input vector that are processed/accessed at each execution step.

Two recent works [308, 405] explain that the energy overheads of data movement across the

memory hierarchy of commodity systems can be significantly higher than that of computation in

irregular applications. First, Boroumand et al. [308] show that moving data between memory and

processors causes more than 60% of the total system energy efficiency in several irregular Google’s

consumer workloads. Second, Boroumand et al. [405] demonstrate that the commercial Google Edge

TPU unit [468] spends 50.3% of its total energy on off-chip memory accesses across a wide range of

irregular machine learning applications, including convolutional neural networks, transducers and

recurrent neural networks. Multiple other works (e.g., [400,469]) provide analysis of data movement

bottlenecks in a variety of irregular workloads. Therefore, we conclude that the high memory inten-

sity of irregular applications causes significant bottlenecks and high overheads both in performance

and energy consumption.

At the application level, many parallel applications and software packages do not handle data well
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(e.g., [13,27,31–34,37,38,55,56]), and/or do not adapt their parallelization strategies to the particular

characteristics of the input data given. Recent works [309–313,470] highlight that different pieces of

program data have different performance characteristics (latency/bandwidth/parallelism sensitivity),

and inherent properties. Consequently, data-oblivious policies, i.e., policies that are designed without

taking into consideration the properties of the application data they handle, result in lost performance

optimization opportunities, which could be achieved by exploiting data properties. Similarly, at the

architecture level, existing hardware mechanisms (e.g., [314–317]) are designed without considering

modern applications’ memory access patterns and overwhelming data demand, and as such, they

cause frequent data movement across the entire system and significant data access costs.

2.2 Our Approach: Efficient Synchronization and Data Access

Techniques for Irregular Applications

In this dissertation, we study a wide range of irregular applications, including graph processing,

data analytics, pointer-chasing and sparse linear algebra, and explore their performance implications

on two modern computing platforms: (i) the processor-centric Non-Uniform Memory Access (NUMA)

CPU architectures, and (ii) the memory-centric Processing-In-Memory (PIM) (or Near-Data-Processing

(NDP)) architectures. The NUMA CPU architectures constitute the dominant hardware platform in

today’s computing systems, and have been significantly optimized over decades to integrate general-

purpose cores with high computation capability. The PIM/NDP architectures have been recently

commercialized [136–138, 141, 142, 318, 395, 397, 398], and represent a promising disruptive paradigm

to alleviate the costs of data movement across the memory hierarchy. PIM/NDP architectures equip

memory chips with a large number of low-area and low-power cores with relatively low computation

capability, and alleviate data movement overheads by performing computation close to where the

application data resides. Therefore, PIM/NDP architectures provide high levels of parallelism and

very large memory bandwidth.

We posit that, moving forward, both hardware mechanisms and parallel algorithms need to con-

sider the synchronization needs and memory access patterns of irregular applications as the two

major priorities to significantly improve system performance and system energy efficiency, when

employing hundreds or thousands of parallel threads. In particular, modern software and hardware

designs for irregular applications should provide two major types of optimization approaches: (1)

efficient synchronization, and (2) efficient data access techniques.

Efficient Synchronization Techniques. Modern computing platforms need to support low-cost

and practical hardware synchronization mechanisms, while parallel algorithmic designs need to pro-

vide fine-grained communication and adaptive synchronization approaches among parallel threads

to significantly accelerate the execution of irregular applications. Lightweight synchronization tech-

niques are highly effective at execution of irregular applications, since they improve system perfor-

mance and energy efficiency by (1) mitigating coherence/communication traffic overheads caused

when synchronizing hundreds or thousands of parallel threads, and (2) exposing high levels of fine-

grained parallelism thanks to enabling low-cost communication and coordination among parallel
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threads. We demonstrate the benefits of efficient synchronization in four different contexts. First, we

design a speculative synchronization scheme for the widely used graph coloring kernel [26] (Chap-

ter 3), which speculatively performs most computations and data accesses outside the critical section,

and thus effectively minimizes synchronization costs and provides high levels of parallelism on the

graph coloring kernel by enabling short critical sections with small memory footprints. Second, we

propose an adaptive concurrent priority queue (Chapter 4), which dynamically tunes its paralleliza-

tion strategy between two algorithmic modes (a NUMA-aware and a NUMA-oblivious mode) without

using barrier synchronization, and thus achieving negligible synchronization costs upon transitions.

Third, we introduce a low-cost and practical hardware synchronization mechanism tailored for NDP

architectures (Chapter 5), which significantly improves system performance and system energy effi-

ciency in a wide variety of irregular parallel applications including pointer chasing, graph process-

ing, and time series analysis. Fourth, we implement three synchronization schemes among parallel

threads of a multithreaded PIM core (Chapter 6), and show that the lock-free synchronization scheme

provides significant performance benefits over the lock-based synchronization schemes in a real PIM

system, by providing higher amount of parallelism among parallel threads.

Efficient Data Access Techniques. Modern computing systems need to eliminate data movement

overheads, while parallel algorithmic designs need to provide well-crafted data distribution and data-

aware parallelization strategies (by exploiting properties of data), as well as adaptive cache and mem-

ory management techniques (by leveraging characteristics of the underlying hardware), in order to

minimize data access costs in the execution of irregular applications. Data-aware parallel algorithms

and memory-centric architectures can significantly improve performance and energy efficiency in the

execution of irregular applications by (1) reducing data access and communication costs, and (2) bet-

ter leveraging the available memory bandwidth of the underlying hardware to increase the efficiency

of the application execution. We demonstrate the benefits of efficient data access techniques in four

different contexts. First, we propose an eager coloring conflict policy to detect and resolve coloring

inconsistencies arised among parallel threads in the graph coloring kernel [26] (Chapter 3), which

effectively reduces data access costs by accessing conflicted vertices immediately using the low-cost

lower levels of the memory hierarchy (e.g., on-chip caches) of multicore CPU platforms. Second, we

design (i) a concurrent priority queue (Chapter 4) having a parallelization strategy that is aware of

the non-uniform distribution (NUMA-aware) of the underlying data structure in a NUMA CPU ar-

chitecture, and thus achieves higher performance benefits (by minimizing data access costs) in high-

contention scenarios over state-of-the-art concurrent priority queues [13, 55] which are oblivious to

the non-uniform distribution (NUMA-oblivious) of the underlying data structure in a NUMA CPU

architecture, and (ii) an adaptive concurrent priority queue (Chapter 4), which dynamically tunes its

parallelization strategy between a NUMA-aware and a NUMA-oblivious algorithmic mode depend-

ing on the contention levels of the current workload, and provides high throughput in NUMA CPU

systems under all various contention scenarios (by reducing data access costs and achieving high

amount of parallelism). Third, we add a specialized low-cost cache memory structure inside synchro-

nization accelerators for NDP systems (Chapter 5) to directly buffer synchronization variables, and

thus minimize latency accosts costs by avoiding costly memory accesses for synchronization. Fourth,
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we introduce various data partitioning techniques to efficiently map the irregular SpMV execution

kernel on near-bank PIM systems [137,318,395] (Chapter 6), and show that the best-performing SpMV

execution on a near-bank PIM system [137, 318] (Chapter 6) is achieved using intelligent data-aware

algorithmic designs that (i) trade off computation for lower data movement overheads, and (ii) se-

lect their parallelization strategy and data partitioning policy based on the particular sparsity pattern

of the input matrix, i.e., by exploiting properties of the input data. We also observe that the SpMV

on a state-of-the-art memory-centric PIM system achieves a much higher fraction of the machine’s

peak performance compared to that on the state-of-the-art processor-centric CPU and GPU systems

(Chapter 6).

2.2.1 Thesis Statement

In this dissertation, we propose parallelization techniques and algorithmic designs, along with hard-

ware mechanisms that enable lightweight synchronization and low-cost data accesses in emerging

irregular applications running in processor-centric CPU and memory-centric PIM/NDP architectures.

Specifically, we propose (1) a novel parallel algorithm that minimizes synchronization and data ac-

cess costs in the graph coloring kernel execution on CPU systems, (2) an adaptive concurrent priority

queue that provides high amount of parallelism and minimizes memory traffic in NUMA CPU sys-

tems, (3) an end-to-end hardware mechanism that enables low-cost synchronization in NDP systems,

and (4) several efficient algorithmic designs that provide low synchronization and data transfer costs

in the SpMV kernel execution on real near-bank PIM systems.

This dissertation, hence, provides substantial evidence for the following thesis statement:

Low-overhead synchronization approaches in cooperation with well-crafted data
access techniques can significantly improve performance and energy efficiency of
important data-intensive irregular applications.

2.3 Overview of Our Research

We propose four new approaches to accelerate irregular applications in CPU and PIM/NDP architec-

tures via efficient synchronization and data access techniques, which we briefly describe next. We

also put our contributions in the context of relevant prior work and provide detailed discussions of

and comparisons to prior work in Chapters 3- 6.

2.3.1 ColorTM [1–3]: High-Performance and Balanced Parallel Graph Col-

oring on Multicore CPU Platforms (Chapter 3)

Graph coloring is an important graph processing kernel, and it is widely used in many real-world

end-applications including the conflicting job scheduling [26,319–322], register allocation [323–327]

and sparse linear algebra [328–331]. The total runtime of the graph coloring kernel typically adds to

the overall parallel overhead of the real-world end-application, and thus a high-performance parallel

graph coloring algorithm for modern multicore platforms is necessary. Prior works [27, 31–34] that
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parallelize the graph coloring kernel are still inefficient (as we demonstrate in Chapter 3), because they

detect and resolve the coloring inconsistencies arised among parallel threads with a lazy approach:

they detect and resolve the coloring inconsistencies much later in the runtime compared to the time

that the coloring inconsistencies appeared. As a result, prior approaches access the conflicted vertices

of the graph multiple times, mainly using the expensive last levels of the memory hierarchy (e.g., main

memory) of commodity multicore platforms, thus incurring high data access costs.

To this end, we design ColorTM [1–3], a high-performance parallel graph coloring algorithm for

multicore platforms. ColorTM is designed to provide both low synchronization overheads and low

data access costs via two key techniques. First, we introduce an eager conflict detection and resolu-

tion approach of the coloring inconsistencies arised among parallel threads: coloring inconsistencies

are immediately detected and resolved at the time they appear. This way in ColorTM , the conflicted

vertices are accessed multiple times, using the low-cost lower levels of the memory hierarchy of mul-

ticore platforms, thus achieving low data access costs. Second, we design a speculative computation

and synchronization scheme, in which parallel threads speculatively perform computations and data

accesses outside the critical section to enable short critical sections with small memory footprints.

This key technique provides high levels of parallelism and low synchronization costs by executing

multiple small and short critical sections in parallel. Next, we extend our algorithmic design to pro-

pose a balanced parallel graph coloring algorithm, named BalColorTM [2], in which the vertices of

the graph are almost equally distributed across the color classes produced. Enabling color classes

with almost equal sizes can provide high hardware resource utilization and high load balance among

parallel threads in the real-world end-applications of graph coloring.

We evaluate ColorTM and BalColorTM on a modern multicore platform using a wide variety of

large real-world graphs with diverse characteristics. In Chapter 3, we show that ColorTM and BalCol-

orTM significantly outperform prior state-of-the-art graph coloring algorithms [27,31–34], while also

achieving high coloring quality. We also demonstrate that ColorTM and BalColorTM can provide sig-

nificant performance improvements in real-world end-applications, e.g., Community Detection [338].

ColorTM and BalColorTM are freely and publicly available [2] at github.com/cgiannoula/ColorTM to

enable further research on the graph coloring kernel in modern multicore systems.

2.3.2 SmartPQ [4]: AnAdaptiveConcurrent PriorityQueue forNUMACPU

Architectures (Chapter 4)

Concurrent priority queues lie at the heart of many important applications including graph process-

ing [350–353,471] and discrete event simulations [347–349]. Prior works [13,15,37,38,40–43,55,56,64,

472] have designed concurrent priority queues for modern NUMA architectures. These implementa-

tions for concurrent priority queues are typically of two types: (i) NUMA-oblivious concurrent prior-

ity queues [13,37,38,40–43,55,56,472], in which the parallelization strategy implemented is oblivious

to the non-uniform memory access costs of the underlying memory subsystem, and (ii) NUMA-aware

concurrent priority queues [15,64], in which the parallelization strategy implemented takes into con-

sideration the non-uniform memory access costs of the underlying memory subsystem. We examine

prior state-of-the-art concurrent priority queues [13, 15, 55] on a NUMA CPU system using a wide

https://github.com/cgiannoula/ColorTM
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variety of contention scenarios, and find that none of the prior state-of-the-art concurrent priority

queues performs best across all various contention scenarios. Specifically, NUMA-oblivious concur-

rent priority queues provide high levels of parallelism, low data access costs, and high performance

in insert-dominated scenarios, which typically exhibit low-contention, since parallel threads may

work on different parts of the underlying data structure. In contrast, NUMA-oblivious concurrent

priority queues cause high data movement traffic in the memory subsystem of a NUMA architecture,

and incur significant performance slowdowns over the NUMA-aware concurrent priority queues in

deleteMin-dominated workloads, which exhibit very high contention, since parallel threads highly

compete to remove the first few elements of the underlying data structure.

To this end, we propose SmartPQ [4], an adaptive concurrent priority queue for NUMA archi-

tectures that achieves the highest performance in all different contention scenarios, and even when

the contention of the workload varies over time. SmartPQ is designed to provide high levels of par-

allelism and low data access and data movement costs under all various contention scenarios. To

achieve this, SmartPQ dynamically adapts itself over time between a NUMA-oblivious and a NUMA-

aware algorithmic mode depending on the contention levels of the workload. SmartPQ integrates (i)

NUMA Node Delegation (Nuddle), a generic framework to wrap any arbitrary NUMA-oblivious con-

current data structure, and transform it into its NUMA-aware counterpart, and (ii) a simple decision

tree classifier, which predicts the best-performing algorithmic mode (between a NUMA-oblivious

and a NUMA-aware algorithmic mode) given the current contention levels of the workload. This

way SmartPQ uses the NUMA-aware Nuddle priority queue in deleteMin-dominated workloads, and

switches to directly using the Nuddle’s underlying NUMA-oblivious concurrent priority queue in

insert-dominated scenarios, thus enabling low data access costs in all various contention scenarios.

We evaluate SmartPQ in a modern NUMA CPU system using a wide range of contention scenarios,

and also using synthetic benchmarks that dynamically vary the contention of the workload over

time. In Chapter 4, we demonstrate that SmartPQ achieves the highest performance over prior state-

of-the-art NUMA-oblivious and NUMA-aware concurrent priority queues [13, 15, 55] in all various

contention scenarios and at any point in time with 87.9% success rate.

2.3.3 SynCron [5]: Efficient Synchronization Support for NDP Architec-

tures (Chapter 5)

NDP architectures [135, 138, 140, 191, 258, 473] alleviate the expensive data movement between pro-

cessors and memory by performing computation close to where the application data resides. Typical

NDP architectures support several NDP units connected to each other, with each unit comprising

multiple NDP cores close to memory [135, 206, 207, 308, 362, 368, 369]. Therefore, NDP architec-

tures provide high levels of parallelism, low memory access latency, and large aggregate memory

bandwidth, thereby being a very good fit to accelerate irregular applications such as genome anal-

ysis [189, 201], graph processing [135, 191–193, 203, 206, 207], databases [193, 204], pointer-chasing

workloads [54, 199, 200, 374], and sparse neural networks [256,308, 363, 364]. However, to fully lever-

age the benefits of NDP architectures for these irregular parallel applications, an effective synchro-

nization solution for NDP systems is necessary.
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Numerous prior works [287–296, 303–305, 384, 385, 474–482] propose synchronization solutions

for processor-centric CPU, GPU and Massively Parallel Processing (MPP) systems. However, these syn-

chronization solutions are not efficient or suitable for the memory-centric NDP systems (Chapter 5),

which are fundamentally different from commodity processor-centric systems. First, synchronization

approaches for CPU systems are typically implemented upon the underlying hardware cache coher-

ence protocols, but most NDP systems do not support hardware cache coherence (e.g., [135, 139, 206,

207,369]). Second, synchronization in GPUs and MPPs is implemented in dedicated hardware atomic

units, known as remote atomics. However, synchronization using remote atomics has been shown to

be inefficient, since it causes high global traffic and hotspots [132, 382–385]. Finally, prior hardware

synchronization mechanisms [287–289, 291–293, 295, 296] tailored for commodity processor-centric

systems are not suitable for memory-centric NDP systems, because they would either incur high

hardware costs to be implemented in large-scale NDP systems (e.g., [289, 291–293]) or cause exces-

sive network traffic across the NDP units of the system with significant performance overheads upon

contention (e.g., [287, 288, 295, 296]).

To this end, we design SynCron [5], a low-overhead hardware synchronization mechanism tailored

for memory-centric NDP architectures. SynCron consists of four key techniques. First, we offload syn-

chronization among NDP cores to dedicated low-cost hardware units to avoid the need for complex

coherence protocols and expensive atomic operations. Second, we directly buffer the synchronization

variables in a specialized cache memory structure to avoid costly memory accesses for synchroniza-

tion. Third, we coordinate synchronization among NDP cores of several NDP units via a hierarchical

message-passing scheme to minimize synchronization traffic across NDP units of the system under

high-contention scenarios. Fourth, when applications with frequent synchronization oversubscribe

the hardware synchronization resources, we use an efficient and programmer-transparent overflow

management scheme to avoid costly fallback solutions and minimize overheads.

In Chapter 5, we demonstrate that SynCron achieves the goals of performance, cost, programming

ease, and generality by covering a wide range of synchronization primitives. In addition, we show

that SynCron significantly improves system performance and energy efficiency across a wide range of

irregular applications including pointer-chasing, graph applications, and time series analysis, while

also has low area and power overheads to be integrated into the compute die of NDP units.

2.3.4 SparseP [6–9,11]: Towards Efficient Sparse Matrix Vector Multiplica-

tion on Real PIM Architectures (Chapter 6)

The SpMV kernel has been characterized as one of the most thoroughly studied scientific computation

kernels [18, 281], and is a fundamental linear algebra kernel for important applications from the

scientific computing, machine learning, graph analytics and high performance computing domains.

In commodity processor-centric systems like CPU and GPU systems, SpMV is a memory-bandwidth-

bound kernel for the majority of real sparse matrices, and is bottlenecked by data movement between

memory and processors [17, 18, 81, 88, 90, 99, 125, 141, 142, 262, 281, 306, 387–393]. To alleviate the

data movement bottleneck, several manufacturers have already started to commercialize near-bank

PIM architectures [137, 141, 142, 318, 386, 395, 397, 398, 406–411, 415, 423, 447–451], after decades of
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research efforts. Near-bank PIM designs tightly couple a PIM core with each DRAM bank, exploiting

bank-level parallelism to expose high on-chip memory bandwidth of standard DRAM to processors.

Two real near-bank PIM architectures are Samsung’s FIMDRAM [395, 397] and the UPMEM PIM

system [137, 141, 142, 452].

Recent works leverage near-bank PIM architectures to provide high performance and energy ben-

efits on bioinformatics [141, 142, 453, 454], skyline computation [483], compression [455] and neural

network [141, 142, 386, 395, 448] kernels. A recent study [141, 142] provides PrIM benchmarks [484],

which are a collection of 16 kernels for evaluating near-bank PIM architectures, like the UPMEM

PIM system. Similarly, a recent work [485] implements several machine learning kernels, i.e., linear

regression, logistic regression, decision tree, k-means clustering, on the UPMEM PIM system to un-

derstand the potential of a modern general-purpose PIM architecture to accelerate machine learning

training. However, there is no prior work to efficiently map the SpMV execution kernel on near-bank

PIM systems, and thoroughly study the widely used, memory-bound SpMV kernel on a real PIM

system.

To this end, we design efficient SpMV algorithms tailored for current and future real PIM sys-

tems, which are publicly available in the SparseP software package [6–9, 11]. The SparseP software

package includes 25 SpMV kernels for real PIM systems, which are designed to provide high levels of

parallelism, low synchronization costs, low data movement overheads, as well as to effectively lever-

age the immense memory bandwidth supported in near-bank PIM architectures. Specifically, SparseP

supports (1) the four most popular compressed matrix formats, (2) a wide range of data types, (3) two

types of well-crafted data partitioning techniques of the sparse matrix to DRAM banks of PIM-enabled

memory modules, (4) various load balancing schemes across thousands of PIM cores, (5) various load

balancing schemes across several threads of a multithreaded PIM core, and (6) three synchronization

approaches among threads within multithreaded PIM core.

We conduct an extensive and comprehensive study of SparseP kernels on the memory-centric UP-

MEM PIM system [136,137,141,142], the first publicly-available real-world PIM architecture. In Chap-

ter 6, we analyze the SpMV execution (1) using one single multithreaded PIM core, (2) using thou-

sands of PIM cores, and (3) comparing its performance and energy consumption with that achieved

on processor-centric CPU and GPU systems. Based on our rigorous experimental results and ob-

servations, we provide programming recommendations for software designers and suggestions for

hardware and system designers of future PIM systems. Our SparseP software package is freely and

publicly available at https://github.com/CMU-SAFARI/SparseP to enable further research on the ir-

regular SpMV kernel in current and future PIM systems.

2.4 Contributions

This dissertation explores lightweight synchronization approaches in cooperation with efficient data

access techniques to accelerate irregular applications both in processor-centric CPU systems and

memory-centric NDP/PIM systems. This doctoral thesis aims to bridge the gap between processor-

centric CPU systems and memory-centric PIM systems in the critically-important area of irregular

applications. Based on our rigorous experimental results and observations, we provide programming

https://github.com/CMU-SAFARI/SparseP
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recommendations for software designers and suggestions for hardware and system designers of CPU

and NDP/PIM systems in Chapters 3- 6. In summary, this dissertation makes the following major

contributions:

• We introduce ColorTM , a novel algorithmic design to accelerate the widely used irregular graph

coloring kernel on modern multicore CPU platforms. We introduce a speculative synchroniza-

tion and computation approach on graph coloring to mitigate synchronization overheads. We

propose an eager detection and resolution policy of the coloring inconsistencies arised among

parallel threads to minimize data access costs. We extend our algorithmic design to present

BalColorTM , an efficient balanced graph coloring kernel, which produces color classes with

almost equal sizes. We demonstrate the effectiveness of ColorTM and BalColorTM at signifi-

cantly outperforming prior state-of-the-art parallel graph coloring algorithms, and providing

high performance benefits on a real-world end-application using a wide variety of large real-

world graphs with diverse characteristics. Chapter 3 describes ColorTM and BalColorTM and

their evaluations in detail.

• We propose SmartPQ, an adaptive concurrent priority queue for NUMA CPU architectures. We

introduce Nuddle, a generic technique to obtain efficient NUMA-aware concurrent data struc-

tures by wrapping any arbitrary NUMA-oblivious concurrent data structure. We design the

adaptive SmartPQ that uses the NUMA-aware Nuddle concurrent priority queue under high-

contention scenarios, and switches to directly using the Nuddle’s underlying NUMA-oblivious

concurrent priority queue under low-contention scenarios. This way SmartPQ provides high

levels of parallelism, low data access costs, and significant performance benefits in modern

NUMA CPU systems under all various contention scenarios, and even when the contention of

the workload varies over time. We show the effectiveness of SmartPQ at providing significant

performance benefits over prior state-of-the-art NUMA-aware and NUMA-oblivious concur-

rent priority queues under various contention scenarios. Chapter 4 describes SmartPQ and its

evaluations in detail.

• We introduce SynCron, the first end-to-end hardware synchronization mechanism for NDP ar-

chitectures. SynCron provides low-overhead synchronization in the execution of irregular ap-

plications on NDP systems, has low hardware costs, supports many synchronization primitives,

and implements an easy-to-use high-level synchronization interface. We design low-cost syn-

chronization units that coordinate synchronization across NDP cores, and directly buffer syn-

chronization variables in a specialized cache memory to avoid costly memory accesses to them.

We integrate an efficient hierarchical message-passing synchronization scheme, and hardware-

only programmer-transparent overflow management to mitigate performance overheads when

hardware resources are exceeded. We demonstrate the effectiveness of SynCron at significantly

improving system performance and system energy efficiency using a wide range of irregular

parallel applications, including pointer-chasing, graph processing, and time series analysis, and

under various contention scenarios. Chapter 5 describes SynCron and its evaluations in detail.

• We propose SparseP , the first open-source software package of 25 efficient SpMV kernels tai-

lored for real near-bank PIM architectures. We support several well-crafted data partitioning
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techniques of the sparse matrix to PIM-enabled memory and various load balancing schemes

across PIM cores and across threads of a multithreaded PIM core to trade off computation bal-

ance across PIM cores for lower data transfer costs to PIM-enabled memory. We include three

different synchronization approaches among several threads within a multithreaded PIM core

to minimize synchronization overheads and achieve high levels of parallelism. We perform the

first comprehensive study of the widely used irregular SpMV kernel on the UPMEM PIM archi-

tecture, the first real commercial PIM architecture, using various compressed matrix storage

formats, many data types, and 26 sparse matrices with diverse sparsity patterns. We demon-

strate that the SpMV execution on the memory-centric UPMEM PIM system with 2528 PIM

cores achieves a much higher fraction of the machine’s peak performance compared to that

on the state-of-the-art processor-centric CPU and GPU systems, and also provides high energy

efficiency. Chapter 6 describes SparseP and its evaluations in detail.

2.5 Outline

This dissertation is organized into 8 chapters. Chapter 1 presents the extended summary of this dis-

sertation in Greek. Chapter 2 describes and motivates the thesis statement of this dissertation, and

also briefly describes the research contributions of this dissertation. Chapter 3 introduces ColorTM ,

a new algorithmic design to accelerate the irregular graph coloring kernel in modern CPU architec-

tures, and presents its experimental study on a modern multicore platform. Chapter 4 introduces

SmartPQ, an adaptive concurrent priority queue that achieves high performance in NUMA CPU ar-

chitectures under all various contention scenarios, and presents its respective evaluations. Chapter 5

introduces SynCron, an end-to-end hardware mechanism to support efficient and low-cost synchro-

nization in NDP systems, and presents its evaluations across a wide variety of irregular applications

including graph processing, pointer-chasing and time series analysis. Chapter 6 introduces SparseP ,

the first open-source library of 25 algorithms to efficiently execute the irregular SpMV kernel on real

PIM architectures, and presents a comprehensive experimental study of these SpMV kernels on the

first real commercial PIM architecture. Chapter 7 presents future research directions and concluding

remarks of this dissertation. Chapter 8 presents several other research works of the author of this

dissertation. Chapter 9 presents additional experimental results and descriptions for the SparseP con-

tribution ( Chapter 6). Chapter 10 contains a dictionary table of the main keyword terms from Greek

to English.
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CHAPTER3

ColorTM

3.1 Overview

Graph coloring assigns colors to the vertices of a graph such that any two adjacent vertices have

different colors. Graph coloring kernel is widely used in many important real-world applications

including the conflicting job scheduling [26,319–322], register allocation [323–327], sparse linear al-

gebra [328–331], machine learning (e.g., to select non-similar samples that form an effective training

set), and chromatic scheduling of graph processing applications [486, 487]. For instance, the chro-

matic scheduling execution is as follows: given the vertex coloring of a graph, chromatic scheduling

performs N steps that are executed serially, where N is the number of colors used to color the graph,

and at each step the vertices assigned to the same color are processed in parallel, i.e., representing

independent tasks that are executed concurrently. In addition, it is of vital importance that program-

mers manage the registers of modern CPUs effectively, and thus compilers [326, 327] optimize the

register allocation problem via graph coloring: compilers construct undirected graphs, named reg-

ister inference graphs (RIGs), with vertices representing the variables used in the source code and

65
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edges between vertices representing variables that are simultaneously active at some point in the

program execution, and then compilers leverage the graph coloring kernel to identify independent

variables that can be allocated on the same registers, i.e., if there no edge in the RIG connecting the

associated vertices of the variables.

To achieve high system performance in the aforementioned real-world scenarios, software de-

signers need to improve three key aspects of the graph coloring kernel. First, they need to minimize

the number of colors used to color the input graph. For example, in the chromatic scheduling scheme

minimizing the number of colors used to color the graph reduces the number of the sequential steps

performed in the multithreaded end-application. However, minimizing the number of colors in graph

coloring is an NP-hard problem [332], and thus prior works [35, 36, 320, 321, 328, 333–337] introduce

ordering heuristics that generate effective graph colorings with a relatively small number of colors.

Second, given that the execution time of the graph coloring kernel adds to the overall parallel over-

head of the real-world end-application, software engineers need to design high-performance graph

coloring algorithms for modern multicore computing systems. Third, an effective graph coloring for a

real-world end-application necessitates a balanced distribution of the vertices across the color classes,

i.e., the sizes of the color classes to be almost the same. Producing color classes with high skew in

their sizes, i.e., high disparity in the number of vertices distributed across color classes, typically

causes load imbalance and low resource utilization in real-world end-application. For example, in the

register allocation scenario high disparity in the sizes of the color classes results to a large number

of registers needed (high financial costs), equal to the size of the largest color class produced, while a

large portion of the registers remains idle (unused) for a long time during the program execution (i.e.,

in time periods corresponding to many color classes with small sizes), thus causing low hardware

resource utilization. Therefore, software designers need to propose balanced and fast graph coloring

algorithms for commodity computing systems. Our goal in this work is to improve the last two key

aspects of the graph coloring kernel by introducing high-performance and balanced multithreaded

graph coloring algorithms for modern multicore platforms.

With a straightforward parallelization of graph coloring, coloring conflicts may arise when two

parallel threads assign the same color to adjacent vertices. To deal with this problematic case, re-

cent works [27, 31–34] perform two additional phases: a conflict detection phase, which iterates

over the vertices of the graph to detect coloring inconsistencies between adjacent vertices, and a

conflict resolution phase, which iterates over the detected conflicted vertices to resolve the coloring

inconsistencies via recoloring. Nevertheless, these prior works [27, 31–34] are still inefficient, as we

demonstrate in Section 3.6, because they need to traverse the whole graph at least two times (one for

coloring the vertices and one for detecting coloring conflicts), and also detect and resolve coloring

conflicts with a lazy approach, i.e., much later in the runtime compared to the time that the coloring

conflicts appeared. As a result, prior approaches access the conflicted vertices of the graph multiple

times, however mainly using the expensive last levels of the memory hierarchy (e.g., main memory)

of commodity multicore platforms, thus incurring high data access costs.

In this work, we present ColorTM [2], a high-performance graph coloring algorithm for multicore

platforms. ColorTM is designed to provide low synchronization and data access costs. Our algorithm
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proposes (a) an eager conflict detection and resolution approach, i.e., immediately detecting and re-

solving coloring inconsistencies when they arise, such that to minimize data access costs by accessing

conflicted vertices immediately using the low-cost lower levels of the memory hierarchy of multicore

platforms, and (b) a speculative computation and synchronization scheme, i.e., leveraging Hardware

Transactional Memory (HTM) and speculatively performing computations and data accesses outside

the critical section, such that to provide high levels of parallelism and low synchronization costs by

executing multiple small and short critical sections in parallel. Specifically, ColorTM consists of three

steps: for each vertex on the graph, it (i) speculatively finds a candidate legal color by recording the

colors of the adjacent vertices, (ii) validates and updates the color of the current vertex by checking

the colors of the critical adjacent vertices within an HTM transaction to detect potential coloring

conflicts, and (iii) eagerly repeats steps (i) and (ii) for the current vertex multiple times until a valid

coloring is found.

However, ColorTM does not provide any guarantee on the sizes of the color classes relative to

each other. As we demonstrate in our evaluation (Section 3.6), the color classes produced by ColorTM

for a real-world graphs have high disparity in the number of vertices across them, thus causing load

imbalance and low resource utilization in real-world end-applications. Therefore, we extend our algo-

rithmic design to propose a balanced graph coloring algorithm, named BalColorTM [2]. BalColorTM

achieves high system performance and produces highly balanced color classes, i.e., having almost the

same number of vertices across color classes, targeting to provide high hardware resource utilization

and load balance in the real-world end-applications of graph coloring.

We evaluate ColorTM and BalColorTM on a dual socket Intel Haswell server using a wide variety

of large real-world graphs with diverse characteristics. ColorTM improves performance by 12.98×
on average using 56 parallel threads compared to state-of-the-art graph coloring algorithms, while

providing similar coloring quality. BalColorTM outperforms prior state-of-the-art balanced graph

coloring algorithms by 1.78× on average using 56 parallel threads, and provides the best color bal-

ancing quality over prior schemes (See Section 3.6). Finally, we study the effectiveness of our proposed

ColorTM and BalColorTM in parallelizing a widely used real-world end-application, i.e., Community

Detection [338], and demonstrate that our proposed algorithmic designs can provide significant per-

formance improvements in real-world scenarios. ColorTM and BalColorTM are publicly available [2]

at github.com/cgiannoula/ColorTM.

The main contributions of this work are:

• We design high-performance and balanced graph coloring algorithms, named ColorTM and

BalColorTM , for modern multicore platforms.

• We leverage HTM to efficiently detect coloring inconsistencies between adjacent vertices (pro-

cessed by different parallel threads) with low synchronization costs. We propose an eager con-

flict resolution approach to efficiently resolve coloring inconsistencies in multithreaded execu-

tions by minimizing data access costs.

• We evaluate ColorTM and BalColorTM using a wide variety of large real-world graphs and

demonstrate that they provide significant performance improvements over prior state-of-the-

https://github.com/cgiannoula/ColorTM


68 Chapter 3

art graph coloring algorithms. Our proposed algorithmic designs significantly improve perfor-

mance in multithreaded executions of real-world end-applications.

3.2 Prior Graph Coloring Algorithms

In this section, we describe prior state-of-the-art graph coloring algorithms [27,31–34]. Section 3.2.1

presents the sequential graph coloring algorithm. Section 3.2.2 describes prior parallel (no guarantee

on the sizes of color classes) graph coloring algorithms proposed in the literature, while Section 3.2.3

presents prior balanced (color classes are highly balanced) graph coloring algorithms proposed in the

literature.

3.2.1 The Greedy Algorithm

Figure 3.1 presents the sequential graph coloring algorithm, called Greedy [26]. Consider an undi-

rected graph G = (V,E), and the neighborhood N(v) of a vertex v ∈ V defined as N(v) = {u ∈ V :

(v, u) ∈ E}. For each vertex v of the graph, Greedy records the colors of v′s adjacent vertices in a

forbidden set of colors, and assigns the minimum legal color to the vertex v based on the forbidden

set of colors.

1 Input: Graph G=(V,E)
2 Let N(v) be the adjacent vertices of the vertex v

3 for each v ∈ V do
4 forbidColors = ∅
5 for each u ∈ N(v) do
6 forbidColors = forbidColors ∪ {u.color}
7 v.color = minLegalColor(forbidColors)

Figure 3.1: The Greedy algorithm.

The Greedy approach produces at most ∆+ 1 colors [26], where ∆ is the degree of the graph G.

The degree of the graph is defined as ∆ = maxv∈V {deg(v)}, where deg(v) is the degree of a vertex v,

which is the number of its adjacent vertices deg(v) = |N(v)|. However, finding the minimum number

of colors to color a graph G is an NP-hard problem [488]. In this work, we have experimented with

the first-fit ordering heuristic [26], in which the vertices of the graph are processed and colored in the

order they appear in the input graph representation G, since this heuristic can provide high coloring

quality based on prior works [26, 35, 489]. We leave the exploration of other ordering heuristics for

future work.

3.2.2 Prior Parallel Graph Coloring Algorithms

To parallelize the graph coloring problem, the vertices of the graph are distributed among parallel

threads. However, due to crossing edges, the coloring subproblems assigned to parallel threads are not

independent, and the parallel algorithm may terminate with an invalid coloring. Specifically, a race

condition arises when two parallel threads assign the same color to adjacent vertices. The algorithm
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implies that when a parallel thread updates the color of a vertex, the forbidden set of colors of the

adjacent vertices has not been changed. Thus, the nature of this algorithm imposes that the reads to

the colors of the adjacent vertices of a vertex v have to be executed atomically with the write-update

to the color of the vertex v.

The SeqSolve Algorithm

Figure 3.2 presents the parallel graph coloring algorithm proposed by Gebremedhin et al. [31], hence-

forth referred to as SeqSolve. This algorithm consists of three steps: (i) multiple parallel threads iterate

over the whole graph and speculatively color the vertices of the graph with no synchronization (lines

3-6), (ii) multiple parallel threads iterate over the whole graph and detect coloring inconsistencies

that appeared in the (i) step (lines 7-13), and (iii) only one single thread resolves the detected coloring

inconsistencies by re-coloring the conflicted vertices (lines 14-16). Since the (iii) step is executed by

only a single thread, no coloring inconsistencies appear after this step. Note that when a coloring

conflict arises between two adjacent vertices, only one of the involved adjacent vertices needs to be

re-colored, e.g., using a simple order heuristic among the vertices (line 11).

1 Input: Graph G=(V,E)
2 Let N(v) be the adjacent vertices of the vertex v
3 // Speculative Coloring - Step (i)

4 for each v ∈ V do in parallel
5 Assign the minimum legal color to the vertex v
6 barrier

7 // Detection of Coloring Inconsistencies - Step (ii)

8 R = ∅ // Set of Conflicted Vertices
9 for each v ∈ V do in parallel

10 for each u ∈ N(v) do
11 if ((v.color == u.color) && (v < u))
12 R = R ∪ v
13 barrier

14 // Sequential Resolution of Coloring Conflicts - Step (iii)

15 for each v ∈ R do
16 Assign the minimum legal color to the vertex v

Figure 3.2: The SeqSolve algorithm.

In the SeqSolve algorithm, we make three key observations. First, if the number of coloring

conflicts arised in a multithreaded execution is low, the algorithm might scale well [31]. However,

as the number of parallel threads increases and the graph becomes denser, i.e., the vertices of the

graph have a large number of adjacent vertices, many more coloring conflicts arise in multithreaded

executions. In such scenarios, a large number of coloring inconsistencies is resolved sequentially, i.e.,

by only one single thread, thus achieving limited parallelism. Second, we note SeqSolve traverses the

whole graph at least two times, i.e., step (i) and step (ii). Assuming large real-world graphs that do not

typically fit in the Last Level Cache (LLC) of contemporary multicore platforms, the whole graph is

traversed twice using the main memory, thus incurring high data access costs. Third, we observe that

SeqSolve detects and resolves the coloring conflicts lazily, i.e., much later in the runtime compared

to the time that the coloring conflicts appears. Specifically, a coloring inconsistency in a vertex v
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might appear in step (i). However, SeqSolve detects the coloring inconsistency in vertex v in step

(ii), i.e., after first coloring all the remaining vertices of the graph. Similarly, SeqSolve resolves the

coloring inconsistency of the vertex v in step (iii), i.e., after first detecting if coloring inconsistencies

exist in all the remaining vertices of the graph (step (ii)). As a result, many conflicted vertices are

accessed multiple times in the runtime, however with a lazy approach, i.e., accessing them through

the expensive last levels of the memory hierarchy of commodity platforms, thus incurring high data

access costs.

The IterSolve Algorithm

Figure 3.3 presents the parallel graph coloring algorithm proposed by Boman et al. [32,33], henceforth

referred to as IterSolve. This algorithm consists of two repeated steps: (i) multiple parallel threads

iterate over the uncolored vertices of the graph and speculatively color the uncolored vertices of

the graph with no synchronization (lines 5-8), (ii) multiple parallel threads iterate over the recently-

colored vertices of the graph and detect coloring inconsistencies appeared in the (i) step (lines 9-15).

The steps (i) and (ii) are iteratively repeated until there are no coloring inconsistencies in any adjacent

vertices of the graph.

1 Input: Graph G=(V,E)
2 Let N(v) be the adjacent vertices of the vertex v
3 U = V
4 while U ̸= ∅
5 // Speculative Coloring - Step (i)

6 for each v ∈ U do in parallel
7 Assign the minimum legal color to the vertex v
8 barrier

9 // Detection of Coloring Inconsistencies - Step (ii)

10 R = ∅ // Set of Conflicted Vertices
11 for each v ∈ U do in parallel
12 for each u ∈ N(v) do
13 if ((v.color == u.color) && (v < u))
14 R = R ∪ v
15 barrier

16 U = R

Figure 3.3: The IterSolve algorithm.

In the IterSolve algorithm, we make four key observations. First, the programmer needs to explic-

itly define forward progress in the source code, so that the IterSolve algorithm terminates. Specifi-

cally, to ensure forward progress when a coloring inconsistency appears between two adjacent ver-

tices, the programmer needs to explicitly define only one of them to be re-colored (line 13), e.g., based

on the vertices’ ids. Otherwise, the two adjacent vertices may always obtain the same color, if they

are always being processed by different threads. Second, similarly to SeqSolve, IterSolve traverses

the whole graph at least two times (steps (i) and (ii)), i.e., in the first iteration of the while loop in line

4, where the set U is equal to the set V (line 3). In the first iteration of the while loop, the whole large

real-world graph is accessed through the main memory twice, thus incurring high data access costs.

Third, similarly to SeqSolve, IterSolve detects and resolves the coloring conflicts lazily. Specifically,
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a coloring inconsistency in a vertex v might appear in step (i) (line 7), it is detected in step (ii) (line

13), i.e., after first coloring all the remaining uncolored vertices of the graph. Moreover, IterSolve

resolves the coloring inconsistency of a vertex v in step (i) (with re-coloring), i.e., after first detect-

ing if coloring inconsistencies exist in all the remaining recently-colored vertices of the graph (step

(ii)). Thus, IterSolve incurs high data access costs on the many conflicted vertices, which are accessed

multiple times in the runtime with lazy approach, through the last levels of the memory hierarchy

of commodity platforms. Fourth, the iterative process of resolving coloring conflicts may introduce

new conflicts, and thus, IterSove might need additional iterations to fix them. This scenario may

happen when adjacent vertices are assigned to the same thread and incur coloring inconsistencies,

they will be assigned and processed by different parallel threads in the next iteration. The authors of

the original IterSolve papers [32,33] empirically observe that a few iterations of IterSolve are needed

to produce a valid coloring. However, the authors used synthetic and not real-world graphs in their

evaluation. In addition, the more iterations are needed, the more lazy traversals on the conflicted

vertices of the graph are performed, which can significantly degrade performance.

The IterSolveR Algorithm

Figure 3.4 presents the parallel graph coloring algorithm proposed by Rokos et al. [34], henceforth re-

ferred to as IterSolveR. Rokos et al. observed that the IterSolve algorithm (Figure 3.3) can be improved

by merging the steps (i) and (ii) into a single detect-and-re-color step, thus eliminating one of the two

barrier synchronizations of IterSolve (lines 8 and 15 in Figure 3.3). When a coloring inconsistency on

a vertex v is found, the vertex v can be immediately re-colored (line 18 in Figure 3.4). However, the

new re-coloring on the vertex v may again introduce a coloring inconsistency in multithreaded execu-

tions, since re-colorings are performed concurrently by multiple parallel threads (line 11). Therefore,

the vertex v is marked as recently-re-colored vertex (line 19), and needs to be re-validated in the next

iteration of IterSolveR. Overall, IterSolverR (Figure 3.4) first speculatively colors all the vertices of the

graph and marks them as recenlty-colored vertices (lines 3- 6). Then, it executes one single repeated

step (lines 8-21): multiple parallel threads iterate over the recently-colored vertices of the graph, and

detect if coloring inconsistencies have appeared, which in that case are immediately resolved via re-

coloring. This step is repeated until there are no recently-re-colored vertices: in one single iteration

of this step, there are no coloring inconsistencies detected in any adjacent vertices of the graph.

In the IterSolveR algorithm, even though one barrier synchronization is eliminated compared

to IterSolve, we observe that IterSolveR still traverses the whole graph at least twice: (i) in Step 0

(lines 4-5), and (ii) in the first iteration of the while loop in line 8, where the set U is equal to the

set V (line 7), including all the vertices of the graph. Thus, IterSolveR traverses the large real-world

graph twice through the main memory, incurring high data access costs. In addition, we find that

similarly to SeqSolve and IterSolve, the IterSolveR algorithm also detects the coloring inconsistencies

lazily. Specifically, a coloring inconsistency on a vertex v might appear in the re-coloring process of

lines 17-19, since the re-coloring process is concurrently executed on multiple conflicted vertices by

multiple parallel threads. However, re-coloring inconsistencies of lines 17-19 are detected in the next
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1 Input: Graph G=(V,E)
2 Let N(v) be the adjacent vertices of the vertex v
3 // Speculative Coloring (Step 0)

4 for each v ∈ V do in parallel
5 Assign the minimum legal color to the vertex v
6 barrier

7 U = V // Mark all Vertices as Recently-Colored

8 while U ̸= ∅
9 R = ∅ // Set of Recently-Colored Vertices

10 // Conflict Detection and Resolution (Step (i))

11 for each v ∈ U do in parallel
12 bool conflict −detected = false
13 for each u ∈ N(v) do
14 if ((v.color == u.color) && (v < u))
15 conflict −detected = true
16 break
17 if (conflict−detected == true)
18 Assign the minimum legal color to vertex v
19 R = R ∪ v // Mark vertex v as Recently-Colored
20 barrier

21 U = R

Figure 3.4: The IterSolveR algorithm.

iteration of the step (i) in lines 13-16, i.e., after first processing all the remaining vertices of the set U

(line 11). Therefore, as we demonstrate in our evaluation (Section 3.6.1), IterSolveR is still inefficient,

incurring high data access costs on multiple conflicted vertices which are accessed multiple times in

the runtime with a lazy approach.

3.2.3 Prior Balanced Graph Coloring Algorithms

To provide a balanced coloring on a graph in which the color classes produced include almost the

same number of vertices, a two-step process is typically used: (i) obtain an initial graph coloring

using a balanced-oblivious algorithm (e.g., Section 3.2.2), and (ii) obtain a balanced graph coloring

using a balanced-aware (henceforth referred to as balanced for simplicity) graph coloring algorithm,

as we describe next. Specifically, given a graph G = (V,E), we can assume that the number of colors

produced by the initial coloring step (i) is C . A strictly balanced graph coloring results in the size

of each color class being b = V/C .
1

Therefore, we refer to the color classes whose sizes are greater

than b as over-full classes, and those whose sizes are less than b as under-full classes. Balanced graph

coloring algorithms leverage the quantity of b, which can be extracted by first executing an initial

balanced-oblivious graph coloring on the graph, in order to provide balanced color classes on a graph.

1
Please note that in our work we make the following assumption: in a real-world end-application, the vertices of the

graph represent sub-tasks that have almost equal load/weights of computation. If the vertices of the input graph have

different load/weights of computation, a pre-processing step needs to be applied in the original graph: vertices with large

computation weights/load are split into multiple smaller vertices, each of them has one weight/load unit of computation.
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The Color-Centric (CLU) Algorithm

Figure 3.5 presents the color-centric balanced graph coloring algorithm proposed by Lu et al. [27],

henceforth referred to as CLU. In this scheme, vertices belonging in the same color class are processed

concurrently, and a subset of vertices from each over-full color class is moved to under-full color

classes in order to achieve high color balance. Only vertices belonging in over-full color classes are

considered for re-coloring, while graph coloring balance is achieved without increasing the number

of color classes produced by the initial graph coloring.

1 Input: Graph G=(V,E)
2 Obtain an initial coloring on G

3 Let C be the number of colors produced

4 Let b = V/C be the perfect balance

5 Let Q be the set of vertices of the over−full color classes
6 for each c ∈ Q do // Process the Over-Full Color Classes
7 Let R(c) be the set of vertices with color c
8 for each v ∈ R(c) do in parallel
9 if (the size of the color class c <= b)

10 continue // Color Class is Balanced
11 Let k be the index of the minimum under−full color class that is

permissible to vertex v
12 if (k exists) // Re-Coloring
13 v.color = k
14 Atomically decrease the size of the color class c
15 Atomically increase the size of the color class k
16 barrier

Figure 3.5: The CLU algorithm.

The CLU algorithm (Figure 3.5) processes the over-full color classes sequentially (lines 6 and 16),

while vertices belonging at the same over-full color class are processed concurrently (line 8). CLU

iterates over each vertex v of an over-full color class, and finds the minimum color of an under-full

color class that is permissible to be assigned at the vertex v (line 11). If such a color exists, the vertex v

is re-colored with a color of an under-full color class (lines 12-15). The CLU algorithm iterates over the

vertices of each over-full color class until that particular over-full class becomes balanced at a certain

point in the execution, i.e., until when its size becomes smaller or equal to b (lines 9-10). Then, the

vertices belonging on that color class are no longer considered for re-coloring (line 10). Thus, this

algorithm terminates when either vertex-balance across color classes is achieved or vertex-balance

across color classes is no longer available, i.e., there are no more permissible re-colorings for any

vertex belonging in an over-full color class.

In the CLU algorithm, we make two key observations. First, parallel threads always process ver-

tices of the same color, thus no coloring inconsistencies are produced: since vertices had the same

color in the initial coloring, they are not adjacent vertices, and thus they can be re-colored with the

same color of an under-full color class without violating correctness. This way CLU requires only one

iteration over the vertices of all the over-full color classes. Second, the parallel performance of CLU

depends on the number of the over-full color classes produced in the initial coloring. CLU requires

F steps, where F is the number of over-full color classes produced in the initial coloring. At each of

these steps, i.e., for each over-full color class on the initial coloring, CLU introduces a barrier syn-
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chronization among parallel threads (line 16). This way it increases the synchronization costs, which

might significantly degrade scalability in multithreaded executions.

The Vertex-Centric (VFF) Algorithm

Figure 3.6 presents the vertex-centric balanced graph coloring algorithm proposed by Lu et al. [27],

henceforth referred to as VFF. The VFF algorithm is the balanced graph coloring counterpart of the

IterSolve algorithm (Figure 3.3). In this scheme, vertices from different color classes are processed

concurrently by parallel threads. Thus, in contrast to CLU, VFF introduces coloring inconsistencies.

However, similarly to CLU, in VFF only vertices belonging in over-full color classes are considered for

re-coloring, i.e., to be moved to under-full color classes, while graph coloring balance is also achieved

without increasing the number of color classes produced by the initial graph coloring.

1 Input: Graph G=(V,E)
2 Let N(v) be the adjacent vertices of the vertex v
3 Obtain an initial coloring on G

4 Let C be the number of colors produced

5 Let b = V/C be the perfect balance

6 Let Q be the set of vertices of the over−full color classes
7 while Q ̸= ∅ // Process the Over-Full Color Classes
8 // Speculative Re-Coloring - Step (i)

9 for each v ∈ Q do in parallel
10 Let c be the current color of the vertex v
11 if ((c != −1) && (the size of the color class c <= b))
12 continue// Color Class is Balanced
13 Let k be the index of the minimum under−full color class that is

permissible to vertex v
14 if (k exists)// Re-Coloring
15 v.color = k
16 Atomically decrease the size of the color class c
17 Atomically increase the size of the color class k
18 barrier

19 // Detection of Coloring Inconsistencies - Step (ii)

20 R = ∅ // Conflicted Vertices of Over-Full Color Classes
21 for each v ∈ Q do in parallel
22 for each u ∈ N(v) do
23 if ((v.color == u.color) && (v < u))
24 R = R ∪ v
25 v.color = −1
26 barrier

27 Q = R

Figure 3.6: The VFF algorithm.

Similarly to IterSolve, VFF (Figure 3.6) consists of two repeated steps: (i) multiple parallel threads

iterate over vertices of over-full color classes and speculatively re-color them with permissible colors

of under-full color classes, if possible (lines 8-18), and (ii) multiple parallel threads iterate over the

recently re-colored vertices and detect coloring inconsistencies that appeared in the (i) step (lines

19-26). Similarly to CLU, VFF iterates over the vertices of an over-full color class until that particular

over-full class becomes balanced at a certain point in the execution, i.e., until when its size becomes

smaller or equal to b (lines 11-12). Then, the vertices belonging on that particular color class are no
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longer considered for re-coloring (line 12). The steps (i) and (ii) are iteratively repeated until there

are no coloring inconsistencies in any adjacent vertices of the graph, and the algorithm terminates

when either vertex-balance across color classes is achieved or vertex-balance across color classes is

no longer available, i.e., there are no more permissible re-colorings for any vertex belonging in an

over-full color class.

Since VFF is the balanced graph coloring counterpart of IterSolve, we report similar key obser-

vations for them. First, VFF detects and resolves the coloring conflicts lazily. Specifically, a coloring

inconsistency in a vertex v might appear in step (i), while it is detected in step (ii), i.e., after first iter-

ating over all the remaining vertices of over-full color classes. Moreover, VFF resolves the coloring

inconsistency in a vertex v in step (i) (re-coloring), i.e., after first detecting if coloring inconsistencies

exist in all the remaining recently re-colored vertices (in step (ii) of the previous iteration). Thus, VFF

incurs high data access costs due to accessing multiple conflicted vertices in the runtime through the

last levels of the memory hierarchy of commodity platforms. Second, the iterative process of resolv-

ing coloring conflicts may introduce new conflicts, and thus, VFF might need additional iterations to

fix them. This scenario may happen when adjacent vertices are assigned to the same thread and incur

coloring inconsistencies, they will be assigned and processed by different parallel threads in the next

iteration. Note that the more iterations are needed, the more lazy traversals on the conflicted vertices

of the graph are performed, which might significantly degrade performance.

The Recoloring Algorithm

Figure 3.7 presents the re-coloring balanced graph coloring algorithm proposed by Lu et al. [27],

henceforth referred to as Recoloring. Recoloring is similar to the VFF (Figure 3.6) and IterSolve (Fig-

ure 3.3) schemes. The key idea of this algorithm is that after performing an initial graph coloring with

C colors, all the vertices of the graph are re-colored, having an additional condition on the color se-

lection in order to achieve better vertex balance across color classes compared to that produced by

the initial graph coloring. Specifically, Recoloring leverages the perfect balance b = V/C known

from the initial graph coloring, and keeps track the sizes of the color classes during the execution in

order to improve vertex balance across color classes as follows: each vertex is re-colored using the

minimum permissible color k such that the size of the color class k is less than b.

Similarly to IterSolve and VFF, Recoloring (Figure 3.7) consists of two repeated steps: (i) multiple

parallel threads iterate over all the vertices of the graph and speculatively re-color them with a new

permissible color k, that satisfies the condition that the size of the color class k is less than b (lines 12-

17), and (ii) multiple parallel threads iterate over the recently re-colored vertices and detect coloring

inconsistencies that appeared in the (i) step (lines 18-25). The steps (i) and (ii) are iteratively repeated

until there are no coloring inconsistencies in any adjacent vertices of the graph. In contrast to VFF

and CLU, Recoloring does not guarantee that the graph color balance achieved uses the same number

of colors with the initial graph coloring. To avoid producing a large number of color classes, the

Recoloring scheme [27] (Figure 3.7) re-colors the vertices of the graph with the following order:

assuming that the vertices of the graph are ordered such that the vertices of the same color class are
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listed consecutively (line 6), Recoloring iterates over the vertex sets of the color classes in the reverse

order compared to that produced in the initial graph coloring, i.e., starting from the vertices assigned

to the color class with the largest index (See line 8). The rationale behind this heuristic is that the

vertices that are ”difficult” to color, i.e., in the initial graph coloring they are assigned to a color class

with large index, will be processed early, thus aiming to produce a small number of color classes. For

more details, we refer the reader to [27].

1 Input: Graph G=(V,E)
2 Let N(v) be the adjacent vertices of the vertex v
3 Obtain an initial coloring on G

4 Let C be the number of colors produced

5 Let b = V/C be the perfect balance

6 Let K(j) be the set of vertices u with color j
7 // K(j) = {u ∈ V, u.color = j}
8 Construct the order set W = {K(C),K(C − 1), ...,K(1),K(0)}
9 Initialize the sizes of the C color classes to 0

10 Q = W
11 while Q ̸= ∅ // Re-Color the Whole Graph
12 // Speculative Coloring - Step (i)

13 for each v ∈ Q do in parallel
14 Let k be the minimum color that is permissible to the vertex v such that

the size of the color class k is less than b // Balanced Color
Classes

15 v.color = k
16 Atomically increase the size of the color class k
17 barrier

18 // Detection of Coloring Inconsistencies - Step (ii)

19 R = ∅ // Set of Conflicted Vertices
20 for each v ∈ Q do in parallel
21 for each u ∈ N(v) do
22 if ((v.color == u.color) && (v < u))
23 Atomically decrease the size of the color class v.color
24 R = R ∪ v
25 barrier

26 Q = R

Figure 3.7: The Recoloring algorithm.

In Recoloring, we make three key observations. First, Recoloring traverses the whole graph, i.e.,

it re-colors all the vertices of the graph, while CLU and VFF re-color only a subset of the vertices

of over-full color classes. As a result, Recoloring performs a much larger number of computations

and memory accesses compared to VFF and CLU. Second, similarly to IterSolve and VFF, Recoloring

detects and resolves coloring inconsistencies with a lazy approach, thus incurring high data access

costs. Recoloring may also introduce new conflicts, thus resulting in additional iterations to fix them.

Third, even though Recoloring employs a different vertex ordering heuristic to re-color vertices com-

pared to that used in the initial graph coloring (vertices are colored with the order they appear in

the input graph), there is no guarantee on the number of color classes that will be produced. As we

demonstrate in our evaluation (Section 3.6.2), Recoloring might significantly increase the number of

color classes produced compared to that produced in the initial graph coloring.
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3.3 ColorTM: Overview

Our proposed algorithmic design is a high-performance graph coloring algorithm for multicore plat-

forms. ColorTM provides low synchronization and data access costs by relying on two key techniques,

that we describe in detail next.

3.3.1 Speculative Computation and Synchronization

As already discussed, the graph coloring kernel implies that the reads to the colors of the adjacent

vertices of a vertex v have to be executed atomically with the write-update to the color of the vertex v.

Figure 3.8 presents a straightforward parallelization scheme of the graph coloring problem. A naive

parallelization approach would be to distributed the vertices of the graph across parallel threads, and

for each vertex to include within a critical section the whole block of code that computes and assigns

a permissible color to that vertex. However, this approach results in large critical sections with large

data access footprints and long duration, and significantly limits the amount of parallelism and the

scalability to a large number of threads.

1 Input: Graph G=(V,E)
2 for each v ∈ V do in parallel
3 // Atomic Coloring Step (i)

4 begin critical section

5 Compute and assign the minimum legal color to the vertex v
6 end critical section

Figure 3.8: A Naive Approach.

We observe that it is not necessary to include inside the critical section (i) the computations per-

formed to find a permissible color for a vertex v, and (ii) the accesses to all the adjacent vertices

of the vertex v. Figure 3.9 presents an overview of ColorTM. For each vertex v, we design ColorTM

to implement a speculative computation scheme through two sub-steps: (i) speculatively compute a

permissible color k for the vertex v (line 5) without using synchronization and track the set of critical

adjacent vertices (line 6), i.e., a subset of v’s adjacent vertices that can cause coloring inconsistencies

with the vertex v (See Section 3.4.2 for more details), and (ii) execute a critical section (using syn-

chronization) that validates the speculative color k computed in step (i) over the colors of the critical

adjacent vertices (lines 8-9) and assigns the color k to the vertex v, if the validation succeeds (lines

10-14). With the proposed speculative computation scheme, we provide small critical sections, i.e.,

having small data access footprints and short duration, thus achieving high amount of parallelism

and high scalability to a large number of threads.

In addition, we leverage Hardware Transactional Memory (HTM) to implement synchronization

on critical sections (lines 7, 12, and 14 of Figure 3.9). HTM enables a speculative synchronization

mechanism: multiple critical sections of parallel threads are executed concurrently with an optimistic

approach that they will not cause any data inconsistency, even though their data access sets might

overlap. In contrast, fine-grained locking with software-based locks (e.g., provided by the pthread



78 Chapter 3

1 Input: Graph G=(V,E)
2 for each v ∈ V do in parallel
3 RETRY:

4 // Speculative Computation

5 Compute a speculative minimum color k that is permissible to the vertex v
6 Keep track the critical adjacent vertices of the vertex v
7 begin critical section

8 // Validate Coloring

9 Compare k with the colors of the critical adjacent vertices
10 if (no coloring conflict)
11 v.color = k
12 end critical section

13 else
14 end critical section

15 goto RETRY // Eager Resolution

Figure 3.9: ColorTM: Overview.

library) constitutes a more conservative synchronization approach: multiple critical sections of par-

allel threads are executed concurrently, only if their data access sets do not overlap. Therefore, HTM

can enable a higher number of critical sections to be executed in parallel compared to that enabled

with the fine-grained locking scheme. We provide more details in Section 3.4.1. With the speculative

synchronization approach of HTM, ColorTM further minimizes synchronization costs and provides

high amount of parallelism.

3.3.2 Eager Coloring Conflict Detection and Resolution

We design ColorTM to detect and resolve coloring inconsistencies eagerly, i.e., immediately detecting

and resolving coloring inconsistencies at the time that the coloring conflicts appear. This way, the

conflicted vertices are accessed multiple times, however within a short time during runtime. There-

fore, application data corresponding to conflicted vertices can remain and be located in the first levels

of the memory hierarchy of commodity platforms (i.e., in the low-cost cache memories), thus enabling

ColorTM to improve performance by achieving low data access costs.

In Figure 3.9, parallel threads concurrently compute speculative colors for multiple vertices of

the graph (lines 4-6), and at that time coloring inconsistencies may appear. Then, parallel threads

immediately detect possible coloring conflict inconsistencies for the current vertices using synchro-

nization (lines 7-14). This way, parallel threads detect conflicts by accessing application data with low

access latencies, since the data accessed in lines 7-14 has just been accessed within a short time, i.e.,

in lines 4-6. Next, if coloring conflicts arise (line 13), parallel threads immediately resolve the coloring

conflicts by directly retrying to find new colors for the current vertices (goto RETRY inline 15)

(without proceeding to process new vertices). This way, parallel threads resolve conflict inconsisten-

cies by accessing application data with low access latencies, since the data accessed in lines 4-6 after

the execution of goto RETRY has just been accessed within a short time, i.e., in lines 7-14 of the

previous iteration.

In ColorTM , we highlight two important key design choices. First, ColorTM executes only one sin-

gle parallel step (line 2). In contrast to prior state-of-the-art parallel graph coloring algorithms [27,
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31–34], ColorTM completely avoids barrier synchronization among parallel threads: multiple parallel

threads repeatedly iterate over each vertex of the graph until a valid coloring is found. By completely

avoiding barrier synchronization, ColorTM can provide high scability. Second, ColorTM does not per-

form re-colorings to vertices: once a vertex is assigned a permissible color, it will not be re-colored

again during the runtime. This way, colored vertices will not introduce coloring inconsistencies with

vertices that will be processed next. Prior lazy iterative graph coloring schemes including IterSolve,

IterSolveR, VFF and Recoloring do not use data synchronization when they assign permissible col-

ors to vertices. This way, many vertices are re-colored multiple times with different colors during

runtime, and thus new additional coloring inconsistencies might be introduced due to re-colorings.

Instead, ColorTM employs HTM synchronization (lines 7, 12 and 14 of Figure 3.9) when it assigns per-

missible colors to vertices (line 11 of Figure 3.9). This way, vertices are assigned only one final color

during the runtime, thus avoiding introducing new coloring inconsistencies due to re-colorings.

3.4 ColorTM: Detailed Design

ColorTM [1] is a high-performance graph coloring algorithm that leverages HTM to implement syn-

chronization among parallel threads, and performs speculative computations outside the critical sec-

tion in order to minimize the memory footprint and computations executed inside the critical sec-

tion. In the section, we describe the detailed design and correctness of ColorTM . We also extend our

proposed design to introduce a new balanced graph coloring algorithm, named BalColorTM , which

evenly distributes the vertices of the graph across color classes.

3.4.1 Speculative Synchronization via HTM

ColorTM leverages HTM to implement synchronization among parallel threads instead of using fine-

grained locking. As already discussed, HTM is a more optimistic synchronization approach and can

provide higher levels of parallelism compared to the fine-grained locking scheme. Specifically, mul-

tiple critical sections with overlapped data access sets can be executed in parallel with HTM, while

they need to be executed sequentially with fine-grained locking.

Figure 3.10 provides an example of the aforementioned scenario in graph coloring. Consider the

scenario where thread T1 attempts to assign a color to the vertex v, and thread T2 attempts to assign

a color to the vertex x. Thread T1 needs to atomically read the colors of the adjacent vertices of the

vertex v, i.e., u, r, z vertices, and write the corresponding color to the vertex v. Similarly, Thread T2

needs to atomically read the colors of the adjacent vertices of the vertex x, i.e., u vertex, and write

the corresponding color to the vertex x. With HTM (Figure 3.10a), T1’s and T2’s transactions can be

executed and committed concurrently: neither the write-set of T1’s transaction does not conflict with

the read-set of T2’s transaction, nor the write-set of T2’s transaction does not conflict with the read-

set of T1’s transaction. Therefore, even though T1’s and T2’s critical sections have overlapped data

access sets, i.e., both of them include the color of the vertex u in their read-sets, they can be executed

concurrently with HTM. In contrast, with fine-grained locking, T1’s and T2’s critical sections are
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executed sequentially (Figure 3.10b): threads T1 and T2 compete to acquire the same lock, i.e., the

lock associated with the vertex u, in order to execute their critical sections. Thus, only one of threads

T1 and T2 will acquire the lock, and will proceed. Given that T1’s and T2’s critical sections have

overlapped data access sets, i.e., both of them include the color of the vertex u in their read-sets, they

will be executed sequentially when using the fine-grained locking scheme for synchronization. As a

result, we conclude that in graph coloring HTM can provide higher levels of parallelism compared to

fine-grained locking.

T1

v u

xz
r

T2

T1

v u

xz
r

T2

Thread T1: read-set={u, r, z} write-set={v}
Thread T2: read-set={u} write-set={x}

a) HTM b) Fine-Grained Locking

Figure 3.10: An example execution scenario in which threads T1 and T2 attempt to concurrently find

colors for the vertices v and x, respectively, using a) HTM and b) fine-grained locking for synchro-

nization. The white circles represent uncolored vertices, and the colorful circles represent vertices

that have already obtained a color.

To this end, ColorTM employs HTM to deal with race conditions that arise when parallel threads

concurrently process adjacent vertices. HTM can detect and resolve coloring inconsistencies among

parallel threads as follows:

– HTM can detect coloring conflicts: HTM detects coloring conflicts that arise due to crossing

edges. For a vertex v to be colored, we enclose within the transaction (i) the memory location that

stores the color of the current vertex v (the transaction’s write-set), and (ii) the memory locations

that store the colors of the critical adjacent vertices of the vertex v (the transaction’s read-set).

When parallel threads attempt to concurrently update-write the colors of adjacent vertices us-

ing different transactions, the HTM mechanism detects read-write conflicts across the running

transactions: a running transaction attempts to write the read-set of another running transaction.

Figure 3.11 provides an example scenario on how HTM detects coloring inconsistencies among two

parallel threads. When the thread T1 attempts to color the vertex v using HTM, the correspond-

ing running transaction includes the memory location of the color of the vertex v in its write-set,

and the memory locations of the colors of the v’s adjacent vertices, i.e., u, r and z vertices, in its

read-set. Similarly, when the thread T2 attempts to color the vertex u using HTM, the correspond-

ing running transaction includes the memory location of the color of the vertex u in its write-set,

and the memory locations of the colors of the u’s adjacent vertices, i.e., v and x vertices, in its

read-set. When T1′s and T2′s transactions are executed concurrently, HTM detects a read-write
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conflict either on the color of the vertex v or the color of the vertex u: either T1′s transaction at-

tempts to write the read-set of T2′s transaction or T2′s transaction attempts to write the read-set

of T1′s transaction. Therefore, one of the two running transactions will be aborted by the HTM

mechanism, and the other one will be committed.

T1
v u

xz

r

T2
Thread T1: 
    read-set={u, r, z}
    write-set={v}

Thread T2: 
    read-set={v, x}
    write-set={u}

Figure 3.11: An example execution scenario in which threads T1 and T2 attempt to concurrently

update the colors of the vertices v and u respectively, using two different transactions, and the HTM

mechanism detects read-write conflicts to their data sets. The white circles represent uncolored ver-

tices, and the colorful circles represent vertices that have already obtained a color.

– HTM can resolve coloring conflicts: In case of n conflicting running transactions (read-write

conflicts explained in Figure 3.11), the HTM mechanism aborts n−1 running transactions and com-

mits only one of them. In prior graph coloring schemes such as SeqSolve (line 11 of Figure 3.2),

IterSolve (line 13 of Figure 3.3), VFF (line 23 of Figure 3.6) and Recoloring (line 22 of Figure 3.7),

the programmer explicitly defines a coloring conflict resolution policy among conflicted vertices

to guarantee forward progress, i.e., the programmer explicitly defines which of the conflicted ver-

tices will be re-colored next. In contrast, in ColorTM when coloring conflicts arise among multiple

running transactions, the programmer does not need to explicitly define a conflict resolution pol-

icy: the HTM mechanism itself commits one of the multiple conflicted transactions and aborts the

remaining running transactions. Thus, the conflict resolution policy implemented in the under-

lying hardware mechanism of HTM determines which vertices will continue to be processed for

coloring.

However, currently available HTM systems [316, 317, 490, 491] are best-effort HTM implementa-

tions that do not guarantee forward progress: a transaction may always fail to commit and thus, a

non-transactional execution path (fallback path) needs to be implemented. The most common fall-

back path is to implement a coarse-grained locking solution: each transaction can be retried up to a

predefined number of times (pre-determined threshold), and if it exceeds this threshold, it fall backs

to the acquisition of global lock, which allows only one single thread to execute its critical section.

To implement this, the global lock is added to the transactions’ read sets: inside the transaction the

thread always reads the value of the global lock variable. During the multithreaded execution, when

the transaction of a parallel thread exceeds the predefined threshold of retries, the parallel thread

acquires the global lock by writing to the value of the global lock variable, and then the concurrent
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running transactions of the remaining threads are aborted (read-write conflict) and wait until the

global lock is released.

3.4.2 Critical Adjacent Vertices

ColorTM implements a speculative computation approach to achieve high performance. Specifically,

for each vertex v, all necessary computations to find a permissible color k are performed outside the

critical section (line 5 in Figure 3.9) such that avoid unnecessary computations inside the critical sec-

tions. Within the critical section, ColorTM only validates the speculative color k (line 9 in Figure 3.9)

by comparing it with the colors of the adjacent vertices of vertex v. However, the speculative color

k for a vertex v does not need to be validated with the colors of all the adjacent vertices of vertex

v: we observe that some adjacent vertices can be omitted from the validation process of the critical

section, because they do not cause any coloring inconsistency with the vertex v. Specifically, we can

omit from the validation step performed within the critical section the following adjacent vertices of

vertex v:

1. The adjacent vertices that are assigned to be processed by the same thread with the vertex

v. Given that the vertices of the graph are distributed across multiple threads, coloring conflicts

cannot arise between adjacent vertices that are assigned to the same parallel thread. Therefore, we

omit from the validation step of the critical section the adjacent vertices assigned to the same thread

as the current vertex v.

2. The adjacent vertices that have already obtained a color. As already explained, ColorTM does

not perform re-colorings to the vertices of the graph: once a vertex is assigned a permissible color

within the critical section (using synchronization), it will not be re-colored again during runtime.

Multiple parallel threads repeatedly iterate over a vertex until a valid coloring is found, which is

assigned to it using data synchronization, and then proceed to the remaining vertices. Therefore, in

ColorTM coloring conflicts do not arise between adjacent vertices that have already obtained a color:

the colors assigned to adjacent vertices are taken into consideration in the computations performed

outside the critical section (line 5 in Figure 3.9) to find a speculative color for the current vertex, and

will not be modified when the critical section is executed (lines 7-15 in Figure 3.9), since ColorTM

does not perform re-colorings. Therefore, adjacent vertices of a vertex v that have already obtained a

color when the speculative coloring computation step (line 5 in Figure 3.9) is executed, do not cause

any coloring inconsistency when critical section is executed (lines 7-15 in Figure 3.9). Hence, we can

safely omit from the validation step of the critical section the adjacent vertices that have already been

assigned a color.

Figure 3.12 presents an example execution scenario of a graph partitioned across two parallel

threads T1 and T2. In Figure 3.12, the white vertices represent uncolored vertices and the color-

ful vertices represent vertices that have already obtained a color during runtime. In this scenario,

threads T1 and T2 attempt to color the vertices v and u, respectively. According to our described

optimizations, the adjacent vertices that need to be validated inside the critical sections (via HTM) of

the vertices v and u are only the vertices u and v, respectively.
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T1 T2 Thread T1: 
  current-vertex={v}
  critical-adj={u}

Thread T2: 
  current-vertex={u}
  critical-adj={v}

v u

x

a

r
e

ic

Figure 3.12: An example execution scenario in which the graph is partitioned across two parallel

threads. The white circles represent uncolored vertices, and the colorful circles represent vertices

that have already obtained a color. When the threads T1 and T2 attempt to color the vertices v
and u, respectively, the critical adjacent vertices that need to be validated within the critical section

(HTM) are only the vertices u and v, respectively.

Overall, for the current vertex v to be colored, the necessary adjacent vertices that need to be

validated inside the critical section, referred to as critical adjacent vertices, are the uncolored adja-

cent vertices assigned to different parallel threads compared to the thread to which the vertex v is

assigned to. By accessing inside the critical section only a few data needed to ensure correctness,

ColorTM provides short critical sections and small transaction footprints, and achieves high levels of

parallelism and low synchronization costs, i.e., low abort ratio in hardware transactions of HTM (See

Figure 3.18). Note that having large transactions footprints in HTM transactions can cause three im-

portant problems: (i) if the transaction read- and write-sets are large, the available hardware buffers

of HTM may be oversubscribed (hardware overflow), and in that case the HTM mechanism will abort

the running transactions due to capacity aborts, (ii) if the duration of a running transaction is long

(e.g., due to expensive data accesses), the running transactions may be aborted due to a time interrupt

(when the duration of a transaction exceeds the time scheduling quantum, the OS scheduler sched-

ules out the software thread from the hardware thread and the transaction is aborted), and (iii) the

longer the transactions last and the larger their data sets are, the greater the probability that running

transactions are aborted due to (read-write) data conflicts among them.

3.4.3 Implementation Details

Figure 3.13 presents ColorTM in detail. ColorTM distributes the vertices of the graph across multiple

threads, which color the vertices of the graph through one single parallel step (lines 4-29): multiple

parallel threads repeatedly iterate over each vertex of the graph until a valid coloring on each vertex

is performed.

For each vertex v, there are two sub-steps. In the first sub-step (lines 6-13), the parallel thread

keeps track (i) the forbidden set of colors assigned to the adjacent vertices of the vertex v (line 10),

and (ii) the critical adjacent vertices of the vertex v (lines 11-12), which are the uncolored adjacent

vertices assigned to different parallel threads (line 11), and then computes a speculative color k that is

permissible for the vertex v using the compute speculative color() function (line 13). In
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1 Input: Graph G=(V,E)
2 Let N(v) be the adjacent vertices of the vertex v
3 Let tid be the unique id of each parallel thread

4 for each v ∈ V do in parallel
5 RETRY:

6 // Speculative Computation

7 R = ∅ // Track Forbidden Colors
8 C = ∅ // Track Critical Adjacent Vertices
9 for each u ∈ N(v) do

10 R = R ∪ u.color
11 if ((hasColor(u) == false) && (get threadID(u) != tid))
12 C = C ∪ u // Critical Adjacent Vertices Are the Uncolored Vertices Assigned to

Another Thread

13 k = compute speculative color(R) // Compute a Speculative Color k for the Vertex
v

14 // Validate Coloring

15 if (C == ∅) // Skip the Validation Step, If There Are No Critical Adjacent Vertices
16 v.color = k
17 else
18 begin transaction

19 bool valid = true

20 for each u ∈ C do // Validate the Colors of the Critical Adjacent Vertices Over the
Speculative Color

21 if (u.color == k)
22 valid = false

23 break
24 if (valid == true) // If the Validation Succeeded, Assign the Speculative Color to

the Vertex v
25 v.color = k
26 end transaction

27 else // If the Validation Failed, Immediately Retry to Find a New Color for the
Vertex v

28 end transaction

29 goto RETRY // Eager Resolution

Figure 3.13: The ColorTM algorithm.

the second sub-step (lines 14-29), the parallel thread validates and assigns (if allowed) the speculative

color k to the vertex v using data synchronization via HTM (lines 18-29). Specifically, the colors of the

critical adjacent vertices are compared to the speculative color k within a hardware transaction (lines

20-23) to ensure that the color k is still permissible to be assigned to the vertex v. If the validation

succeeds (line 24), the color k is assigned to the vertex v within the same transaction (line 25) to

ensure correctness: recall that the reads on the colors of the critical adjacent vertices need to be

executed atomically with the write-update on the color of the vertex v. Instead, if the validation step

fails due to a coloring inconsistency appearing during runtime (line 27), the parallel thread repeatedly

and eagerly retries to find a new permissible color for the current vertex v (line 29). Note that if there

are no critical adjacent vertices to be validated (line 15), the speculative color k is directly assigned

to the vertex v without using synchronization (line 16).

Note that in the second sub-step (lines 14-29), ColorTM does not check if the colors of the critical

adjacent vertices have not been modified since the first sub-step (lines 6-13). Instead, the validation of

the second sub-step only checks that the colors of the critical adjacent vertices are different from the



Chapter 3 85

speculative color k computed in the first sub-step (line 13). In the meantime, different parallel threads

may have just assigned new colors to critical adjacent vertices, which however are different from the

color k, and thus causing no coloring inconsistencies. In that scenario, the validation of the second

sub-step succeeds. This way, ColorTM provides high levels of parallelism: multiple parallel threads

that have just assigned different colors than the color k to critical adjacent vertices of the vertex v will

not cause any validation failure in the critical section of the vertex v, and the corresponding running

transaction will be safely committed.

3.4.4 Progress and Correctness

We clarify in detail howColorTM resolves the race conditions that may arise during runtime. There are

two race conditions that may cause coloring inconsistencies in multithreaded executions. First, while

a parallel thread computes a speculative color k for the vertex v (lines 9-13 of Figure 3.13), different

parallel threads may have just assigned the color k to one or more adjacent vertices of the vertex v. In

that scenario, the validation step of lines 20-23 of Figure 3.13 fails (line 22, 27), since the speculative

color k has been assigned to at least one critical adjacent vertex (line 21). Then, the corresponding

parallel thread will retry to find a new permissible color for the vertex v (line 29). Second, a race

condition arises when n parallel threads (assuming n ¿ 1) attempt to write-update the same color k

to n adjacent vertices (fully connected adjacent vertices) within n different running transactions. In

that scenario, the HTM mechanism detects read-write data conflicts on running transactions, because

one (or more) running transaction attempts to write to the read-sets of another running transactions.

Recall that the colors of the critical adjacent vertices are included in the read-set of each running

transaction (lines 21 of Figure 3.13). Then, the HTM mechanism aborts n − 1 running transactions,

and commits only one of them. When the aborted n−1 transactions retry (each transaction can retry

up to a predefined number of times), the validation step of lines 20-23 fails (lines 27 of Figure 3.13),

since at that time the n− 1 parallel threads observe that there is one critical adjacent vertex that has

just been assigned to the color k (the committed transaction). Afterwards, since the validation failed,

the n − 1 parallel threads will retry to find new permissible colors for their current vertices (lines

27-29 of Figure 3.13).

Finally, we clarify that ColorTM provides forward progress and eventually terminates: each par-

allel thread retries to find a new permissible color for a current vertex v (line 29 of Figure 3.13) up to

a limited number of retries. Specifically, a parallel thread retries to find a new color for a vertex v,

when the validation step of lines 20-23 of Figure 3.13 fails. However, for each vertex v the validation

step can fail up to a bounded number of times: the validation step fails when one (or more) critical

adjacent vertex has been assigned to the same color k′
with the speculative color k computed for

the vertex v. Therefore, in the worst case, the validation step might fail up to deg(v) times, where

deg(v) is the adjacency degree of the vertex v. When all v’s adjacent vertices have obtained a color,

there are no critical adjacent vertices to be validated (line 15 of Figure 3.13), and thus, the speculative

color k is directly assigned to the vertex v (line 16 of Figure 3.13), and the validation step is omitted.

As a result, each parallel thread retries to find a color for each vertex v of the graph at most deg(v)
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times. However, in our evaluation, we find that the validation step fails only for a few times: across

all our evaluated large real-world graphs (Table 3.1) and using a large number of parallel threads (up

to 56 threads) the validation step failures are less than 0.01%. Overall, we conclude that ColorTM cor-

rectly handles all the race conditions that may arise in multithreaded executions of the graph coloring

kernel, and effectively terminates with a valid coloring.

1 Input: Graph G=(V,E)
2 Let N(v) be the adjacent vertices of the vertex v
3 Obtain an initial coloring on G

4 Let C be the number of colors produced

5 Let b = V/C be the perfect balance

6 Let Q be the set of vertices of the over−full color classes
7 for each v ∈ Q do in parallel
8 Let c be the current color of the vertex v
9 if (the size of the color class c <= b)

10 continue// Color Class is Balanced
11 RETRY:

12 // Speculative Computation

13 R = ∅ // Track Forbidden Colors
14 C = ∅ // Track Critical Adjacent Vertices
15 for each u ∈ N(v) do
16 R = R ∪ u.color
17 if ((isOverFull(u.color) == true) && (get threadID(u) != tid))
18 C = C ∪ u // Critical Adjacent Vertices Are the Vertices of Over-Full Color

Classes That Are Assigned to Another Thread

19 k = compute speculative color(R)
20 Let k be the index of the minimum under−full color class that is permissible

to the vertex v
21 if (k exists) // Validate Coloring
22 if (C == ∅) // Skip the Validation Step, If There Are No Critical Adjacent Vertices
23 v.color = k
24 Atomically decrease the size of the color class c
25 Atomically increase the size of the color class k
26 else
27 begin transaction

28 bool valid = true

29 for each u ∈ C do // Validate the Colors of the Critical Adjacent Vertices Over
the Speculative Color

30 if (u.color == k)
31 valid = false

32 break
33 if (valid == true) // If the Validation Succeeded, Set the Speculative Color to

the Vertex v
34 v.color = k
35 end transaction

36 Atomically decrease the size of the color class c
37 Atomically increase the size of the color class k
38 else // If the Validation Failed, Immediately Retry to Find a New Color for the

Vertex v
39 end transaction

40 goto RETRY // Eager Resolution
41 else
42 continue

Figure 3.14: The BalColorTM algorithm.
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3.4.5 The BalColorTM Algorithm

Figure 3.14 presents the balanced counterpart ofColorTM , named as BalColorTM . Similarly to CLU and

VFF, in BalColorTM (i) only the vertices of the over-full color classes are considered for re-coloring,

i.e., to be moved from over-full to under-full color classes in order to achieve high vertex-balance

across color classes, and (ii) graph coloring balance is achieved without increasing the number of

color classes produced by the initial graph coloring (e.g., using ColorTM).

Similarly to ColorTM, BalColorTM (Figure 3.14) has one single parallel step (lines 7-42): multiple

parallel threads repeatedly iterate over each vertex of the over-full color classes until either a valid

re-coloring to an under-full class is performed, or there is no permissible re-coloring for this vertex

to an under-full color class (line 42). For each vertex of an over-full color class c, there are two sub-

steps. In the first sub-step (lines 8-20), the parallel thread keeps track the forbidden set of colors

assigned to the adjacent vertices of the vertex v (line 16), and the set of the critical adjacent vertices

(lines 17-18) of the vertex v. In BalColorTM , note that the critical adjacent vertices of a vertex v (line

17) are the adjacent vertices that (i) belong to over-full color classes (recall that the vertices assigned

under-full color classes are not considered to be re-colored/moved, and thus they do not cause any

coloring inconsistency during runtime), and (ii) are assigned to different threads compared to the

parallel thread in which the vertex v is assigned to. Then, the parallel thread speculatively computes

a color k of an under-full color class that is permissible to be assigned to the vertex v (lines 19-20).

If a permissible color k exists (without increasing the number of color classes produced by the initial

graph coloring), the parallel thread attempts to assign the speculative color k to the vertex v in the

second sub-step (lines 21-42). If there is no permissible color k of an under-full color class (line 41),

the parallel threads continue to process the next vertices (line 42). In the second sub-step, if there

are critical adjacent vertices that need to be validated, the parallel thread validates the speculative

color k over the colors of the critical adjacent vertices within an HTM transaction (lines 27-39). If the

validation succeeds (line 33), the parallel thread moves the vertex v from the color class c to the color

class k by re-coloring it (line 34), and atomically updates the sizes of the color classes c and k (lines 36-

37) accordingly. If the validation step fails due to a coloring inconsistency appearing during runtime

(line 38), the parallel thread eagerly retries to find a new permissible color of an under-full color class

for the vertex v (line 40). Finally, note that BalColorTM iterates over the vertices of each over-full

color class until that particular over-full class becomes balanced at a certain point in the execution

(lines 9-10), i.e., until the size of the particular color class becomes smaller or equal to b = V/C . Then,

the vertices belonging to that color class are no longer considered for re-coloring (line 10). Overall,

BalColorTM terminates when either vertex-balance across color classes is achieved or vertex-balance

across color classes is no longer available, i.e., there are no more permissible re-colorings for any

vertex belonging to an over-full color class.

Similarly toColorTM, BalColorTM completely avoids barrier synchronization, since it includes only

one single parallel step, thus minimizing synchronization costs. Moreover, it also integrates an eager

approach to detect and resolve coloring conflicts appearing during runtime among parallel threads,

that concurrently move vertices from over-full to under-full color classes. With the eager color-
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ing policy, BalColorTM provides high performance by minimizing access latency costs to application

data. Finally, BalColorTM effectively implements short critical sections (short running transactions

with small transaction footprints) by (i) speculatively performing the computations to find permis-

sible colors for the vertices of the over-full color classes outside the critical section (lines 9-13), and

(ii) accessing inside the critical sections only the necessary data to ensure correctness, i.e., for each

vertex v BalColorTM only accesses the colors of a small subset of v’s adjacent vertices (critical adja-

cent vertices). Via short running transactions, BalColorTM achieves low synchronization costs and

provides high amount of parallelism.

3.5 Evaluation Methodology

We conduct our evaluation using a 2-socket Intel Haswell server with an Intel Xeon E5-2697 v3 pro-

cessor with 28 physical cores and 56 hardware threads. The processor runs at 2.6 GHz and each

physical core has its own L1 and L2 caches of sizes 32 KB and 256 KB, respectively. Each socket

includes a shared 35 MB L3 cache. We statically pin each software thread to a hardware thread,

and enable hyperthreading only on 56-thread executions, unless otherwise stated. In our evaluation

(Section 3.6), the numbers reported are averaged across 5 runs of each experiment.

Table 3.1 shows the characteristics of the large real-world graphs used in our evaluation. We select

18 representative graphs from the Suite Matrix Collection that vary in vertex and graph degrees, and

are used in different application domains. For each graph, Table 3.1 presents the number of vertices

(#vertices), the number of edges (#edges), the maximum (degmax) degree, the average (degavg) degree

and the standard deviation of the vertices’ degrees (degstd), and the last column of this table shows

the ratio of the standard deviation of the vertices’ degrees to the average degree (
degstd
degavg

).

3.6 Evaluation

This section evaluates the proposed ColorTM and BalColorTM algorithms. First, we compare the

coloring quality and the performance over prior state-of-the-art graph coloring algorithms, as well

as the execution behavior of ColorTM (Section 3.6.1). Second, we compare the color balancing quality

and the performance of BalColorTM over prior state-of-the-art balanced graph coloring algorithms,

as well as the execution behavior of BalColorTM (Section 3.6.2). Finally, we evaluate the performance

of Community Detection [338] by parallelizing it using ColorTM and BalColorTM (Section 3.6.3) via

chromatic scheduling.

3.6.1 Analysis of Parallel Graph Coloring Algorithms

We compare the following parallel graph coloring implementations:

• The sequential Greedy algorithm presented in Figure 3.1.

• The SeqSolve algorithm presented in Figure 3.2.

• The IterSolve algorithm presented in Figure 3.3.

• The IterSolveR algorithm presented in Figure 3.4.
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Graph Name #Vertices #Edges degmax degavg degstd
degstd

degavg

Queen 4147 (qun) 4147110 329499284 81 79.45 6.34 0.080

Geo 1438 (geo) 1437960 63156690 57 43.92 4.39 0.100

Flan 1565 (fln) 1564794 117406044 81 75.03 11.43 0.152

Bump 2911 (bum) 2911419 127729899 195 43.87 6.96 0.159

Serena (ser) 1391349 64531701 249 46.38 9.24 0.199

delaunay n24 (del) 16777216 100663202 26 5.99 1.34 0.222

rgg n 2 23 s0 (rgg) 8388608 127002786 40 15.14 3.89 0.257

kmer A2a (kmr) 170728175 360585172 40 2.11 0.57 0.267

cage15 (cag) 5154859 99199551 47 19.24 5.73 0.298

road usa (usa) 23947347 57708624 9 2.41 0.93 0.386

dielFilterV3real (dlf) 1102824 89306020 270 80.98 36.56 0.451

audikw 1 (aud) 943695 77651847 345 82.29 42.44 0.516

vas stokes 2M (vas) 2146677 65129037 637 30.34 37.18 1.226

stokes (stk) 11449533 349321980 720 30.51 41.44 1.358

uk-2002 (uk) 18520486 298113762 2450 16.10 27.53 1.710

soc-LiveJournal1 (soc) 4847571 68993773 20293 14.23 36.08 2.535

arabic-2005 (arb) 22744080 639999458 9905 28.14 78.84 2.802

FullChip (fch) 2987012 26621990 2312481 8.91 1806.80 202.725

Table 3.1: Large Real-World Graph Dataset.

• A variant of our proposed algorithm (Figure 3.13) that uses fine-grained locking instead of

HTM, henceforth referred to as ColorLock. Specifically, each vertex of the graph is associated

with a software-based lock. In the beginning of the critical section (line 18 in Figure 3.13), paral-

lel threads acquire the corresponding locks of both the current vertex v and the critical adjacent

vertices of the vertex v. Then, when the critical section ends (lines 26 and 28 in Figure 3.13),

parallel threads release the acquired locks. To avoid deadlocks, we impose a global order when

acquiring/releasing locks based on the vertices’ id: parallel threads acquire/release locks of

multiple vertices starting from the lock associated with the vertex with the smallest vertex id,

iterating via an increasing order of the vertices’ ids, and finishing to the lock associated with

the vertex with the highest vertex id.

• Our proposed ColorTM algorithm (Figure 3.13) that leverages HTM. Each transaction can retry

up to 50 times, before resorting to a non-transactional fallback path. The non-transactional

path is a coarse-grained locking solution for the critical section (lines 18-28 in Figure 3.13).

For a fair comparison, in all graph coloring schemes we color the vertices in the order they appear in

the input graph representation (first-fit ordering heuristic [35]).

Analysis of the ColoringQuality

Table 3.2 compares the coloring quality of all parallel graph coloring implementations in single-

threaded and multithreaded executions.
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Coloring 1 14 28 56

Scheme thread threads threads threads

Greedy 42.58 - - -

SeqSolve 42.58 42.34 42.33 42.18

IterSolve 42.58 44.05 43.94 44.04

IterSolveR 42.58 43.61 43.88 44.58

ColorLock 42.58 45.75 45.67 46.14

ColorTM 42.58 46.20 45.77 46.28

Table 3.2: The geometric mean on the number of colors produced across all large real-world graphs

(lower is better) for each parallel graph coloring implementation using one core (1 thread), all cores

of one socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware thread

capacity of our machine with hyperthreading enabled (56 threads).

We make two key observations. First, there is low variability on the number of colors used across

the different graph coloring schemes. The parallel graph coloring schemes provide similar graph

coloring quality, because the number of colors produced is primarily determined by the order in which

the vertices are colored [35, 36]. In this work, we use the first-fit ordering heuristic in all schemes,

i.e., coloring the vertices in the order they appear in the input graph representation, and we leave the

experimentation of other ordering heuristics for future work. Second, we find that in most schemes

the coloring quality becomes slightly worse as the number of threads increases. As the number of

threads increases, the number of coloring conflicts that arise during runtime typically increases, and

thus parallel threads might resolve coloring inconsistencies by introducing a few additional color

classes. The SeqSolve scheme does not typically increase the number of colors used in multithreaded

executions, because the coloring inconsistencies are resolved using one single thread. Overall, we

conclude that since all graph coloring schemes employ the same ordering heuristic, they provide

similar coloring quality.

Performance Comparison

Figure 3.15 evaluates the scalability achieved by all parallel graph coloring implementations in our

large real-world graphs, when increasing the number of threads from 1 to 56, i.e., the maximum

available hardware thread capacity of our machine.

We draw three findings. First, ColorTM and ColorLock achieve the lowest execution time across

all schemes in single-threaded executions. Using one single thread, ColorTM and ColorLock on aver-

age outperform SeqSolve by 1.55× and 1.42×, respectively, and they on average outperform IterSolve

by 1.17× and 1.06×, respectively. With only one thread, ColorTM and ColorLock have identical ex-

ecutions to the sequential Greedy algorithm (Figure 3.1): thanks to the optimizations proposed in

Section 3.4.2, the list of critical adjacent vertices that need to be validated inside the critical section

is empty, and thus ColorTM and ColorLock completely eliminate using synchronization (either HTM

of fine-grained locking). Second, we find that IterSolveR exhibits the lowest scalability across all

schemes. IterSolveR merges two parallel for-loops into a single parallel for-loop in order to eliminate

one of the two barriers used in IterSolve. Even though IterSolveR reduces the barrier synchronization
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Figure 3.15: Scalability achieved by all parallel graph coloring implementations in large real-world

graphs.

costs, it increases the load imbalance among parallel threads, thus causing significant performance

overheads. Third, we observe that the scalability of SeqSolve, IterSolve, and IterSolveR is highly af-

fected by the NUMA effect, i.e., the non-uniform memory access latencies to the application data. For

example, when increasing the number of threads from 7 to 14 (only one NUMA socket is used) the
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performance of SeqSolve, IterSolve, IterSolveR, ColorLock and ColorTM improves by 1.24×, 1.75×,

1.06×, 1.62× and 1.65×, respectively, averaged across all large graphs. However, when increasing

the number of threads from 14 to 28, i.e., using both NUMA sockets of our machine, the performance

of SeqSolve and IterSolve only improves by 1.03× and 1.26×, respectively, while the performance of

and IterSolveR decreases by 2.13×, averaged across all large graphs. In contrast, when increasing

the number of threads from 14 to 28, the performance of ColorLock and ColorTM significantly im-

proves by 1.77× and 1.97×, respectively, averaged across all graphs. This is because our proposed

algorithmic design implemented in ColorLock and ColorTM leverages better the deep memory hier-

archy of commodity multicore platforms thanks to its eager conflict detection and resolution policy,

thus achieving lower data access costs. Overall, we conclude that our proposed algorithmic design

achieves the best scalability in modern multicore platforms.

Figure 3.16 compares the speedup achieved by all schemes over the sequential Greedy scheme,

when varying the number of hardware threads used in all large real-world graphs.
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Figure 3.16: Speedup achieved by all parallel graph coloring implementations over the sequential

Greedy scheme in large real-world graphs using all cores of one socket (14 threads), all cores of two

sockets (28 threads), and the maximum hardware thread capacity of our machine with hyperthreading

enabled (56 threads).

We make two key observations. First, all parallel graph coloring schemes achieve lower speedup

in very irregular graphs including the soc, arb and fch graphs, compared to all the remaining

real-world graphs. In very irregular graphs, the number of edges per vertex significantly vary across

vertices [7, 87, 134]: typically only a few vertices have a much larger number of edges over the vast

majority of the remaining vertices of the graph. Therefore, in irregular graphs parallel threads typ-

ically cause more coloring inconsistencies than regular graphs, which are resolved during runtime,
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increasing the execution time. Second, we find that ColorTM achieves significant performance im-

provements over all the prior state-of-the-art graph coloring schemes. ColorTM outperforms Seq-

Solve, IterSolve, and IterSolveR by 3.43×, 1.71× and 5.83× respectively, when using 14 threads, and

by 8.46×, 2.84× and 27.66× respectively, when using the maximum hardware thread capacity of our

machine (56 threads). This is because SeqSolve, IterSolve, and IterSolveR traverse all the vertices of

the graph at least twice, and employ a lazy conflict resolution policy, thus incurring high data access

costs. Instead, ColorTM traverses more than once only the conflicted vertices, and resolves coloring

inconsistencies with an eager approach, thus better leveraging the deep memory hierarchy of multi-

core platforms and reducing data access costs. In addition, ColorTM outperforms ColorLock by 1.34×
and 1.67× when using 14 and 56 threads, respectively. As explained, HTM is a speculative hardware-

based synchronization mechanism, and thus ColorTM provides high performance improvements over

ColorLock thanks to significantly minimizing data access and synchronization costs. Note that in the

fine-grained locking approach of ColorLock, for each adjacent vertex accessed inside the critical sec-

tion, the parallel thread needs to acquire and release the corresponding software-based lock, thus

performing additional memory accesses in the memory hierarchy for accessing the lock variable.

Overall, we conclude that ColorTM significantly outperforms all prior state-of-the-art parallel graph

coloring algorithms across a wide variety of large real-world graphs.

To confirm the performance benefits of ColorTM across multiple computing platforms, we evalu-

ate all schemes on a 2-socket Intel Broadwell server with an Intel Xeon E5-2699 v4 processor at 2.2

GHz having 44 physical cores and 88 hardware threads. Figure 3.17 compares the speedup achieved by

all schemes over the sequential Greedy scheme in all large real-world graphs using 88 threads, i.e., the

maximum hardware thread capacity of the Intel Broadwell server. We find that ColorTM provides sig-

nificant performance benefits over prior state-of-the-art graph coloring algorithms, achieving 11.98×,

4.33× and 22.06× better performance over SeqSolve, IterSolve, and IterSolveR, respectively.

qun
geo fln bum ser del

rgg
kmr

cag usa dlf aud vas stk uk soc arb fch GM
0
5

10
15
20
25

Sp
ee

d
up

88 Threads

Figure 3.17: Speedup achieved by all parallel graph coloring implementations over the sequential

Greedy scheme in large real-world graphs using the maximum hardware thread capacity of an Intel

Broadwell server with hyperthreading enabled (88 threads).

Analysis of ColorTM Execution

We further analyze the HTM-related execution behavior of our proposed ColorTM and BalColorTM

algorithms. Figure 3.18 presents the abort ratio of ColorTM , i.e., the number of transactional aborts

divided by the number of attempted transactions, in all real-world graphs, as the number of threads

increases. In the 14-thread execution, we pin all thread on one single NUMA socket. In the 28-thread

execution, we pin threads on both NUMA sockets of our machine with hyperthreading disabled. In
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the (14+14)-thread execution, we pin all 28 threads on the same single socket with hyperthreading

enabled. In the 56-thread execution, we use the maximum hardware thread capacity of our machine.
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Figure 3.18: Abort ratio exhibited by ColorTM in all large real-world graphs.

We make three key observations. First, we find that the abort ratio becomes high in real-world

graphs which have high maximum degree and high standard deviation of the vertices’ degrees, e.g.,

dlf, aud, vas, stk, uk, soc and arb graphs. In graphs with high vertex degree, the transaction

data access footprint is large and parallel threads compete for the same adjacent vertices with a

high probability, thus causing aborts in HTM. Second, we observe that when using both sockets

of our machine, the transactional aborts in ColorTM significantly increase due to the NUMA effect.

Specifically, averaged across all graphs the (14+14)-thread execution of ColorTM exhibits 2.97× lower

abort ratio compared to the 28-thread execution of ColorTM . Due to the NUMA effect, the memory

accesses to the application data are very expensive. As a result, the duration of the transactions

increases, thus increasing the probability of conflict aborts among running transactions (See more

details in the next experiment). Third, we observe that ColorTM exhibits a very low abort ratio.

ColorTM has only 1.08% abort ratio on average across all real-world graphs, when using the maximum

hardware thread capacity (56 threads) of our machine. Our proposed speculative algorithmic design

effectively reduces the amount of computations and data accesses performed inside the critical section

(inside the HTM transaction), thus effectively decreasing the transaction’s footprint and duration. As

a result, ColorTM provides high amount of parallelism and low interference among parallel threads.

We conclude that ColorTM has low synchronization and interference costs among a large number of

parallel threads, even in real-world graphs with high vertex degree.

Figure 3.19 presents the breakdown of different types of aborts exhibited by ColorTM in a rep-

resentative subset of real-world graphs. We break down the transactional aborts into four types: (i)

conflict aborts: they appear when a running transaction executed by a parallel thread attempts to

write the read-set of another running transaction executed by a different thread, (ii) capacity aborts:

they appear when the memory footprint of a running transaction exceeds the size of the hardware

transactional buffers, (iii) lock aborts: current HTM implementations [316, 317, 490, 491] provide no

guarantee that any transaction will eventually commit inside the transactional path, and thus the pro-

grammer provides an alternative non-transactional fallback path, i.e., falling back to the acquisition

of coarse-grained lock that allows only a single thread to enter the critical section, and forces aborts

to the transactions of all the remaining threads
2
, and (iv) other aborts: they appear when a transac-

2
To achieve this, the lock is added to each transaction’s read set, so that when the lock is acquired by a thread (write

to the lock variable), the remaining threads are aborted and wait until the lock is released.
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tion fails due to other reasons such as cache line evictions, interrupts and/or when the duration of a

transaction exceeds the scheduling quantum and the OS scheduler schedules out the software thread

from the hardware thread, aborting the transaction. Note that since the fallback path lock is just a

variable in the source code, some conflict aborts are caused by the writes in this lock variable. Thus,

a part of the lock aborts is counted as conflict aborts in our measurements.
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Figure 3.19: Breakdown of different types of aborts exhibited by ColorTM in real-world graphs.

We draw three findings. First, we find that the conflict aborts significantly increase across all

graphs when using both sockets of our machine due to the NUMA effect. For example, the number

of conflicts aborts in the 28-thread executions is 3.32× higher compared to that in the 14-thread exe-

cutions. As already mentioned, the NUMA effect significantly increases the duration of the running

transactions, and thus the probability of causing conflict aborts among running transactions is high.

Second, as number of threads increases, e.g., when comparing the 56-thread execution over the 28-

thread execution, the number of conflict aborts increases by 1.05×. This is because partitioning the

graph to a higher number of threads results in a higher number of crossing edges among parallel

threads, which in turn results in a larger list of critical adjacent vertices that is validated inside the

HTM transactions. Therefore, the transaction footprint increases, thus increasing the probability of

causing conflict aborts. Third, we find that in graphs with very high maximum degree, e.g., uk and

arb graphs, the capacity aborts constitute a large portion of total aborts. In such graphs, the data

access footprint of the transactions is large, resulting to a high probability of exceeding the hardware

buffers. Overall, our analysis demonstrates that current HTM implementations are severely limited

by the NUMA effect [315], and incur high performance costs when using more than one NUMA

socket on the machine. To this end, we recommend hardware designers to improve the HTM imple-

mentations in NUMA machines, and suggest software designers to propose intelligent algorithmic

schemes and data partitioning approaches that minimize the expensive memory accesses to remote

NUMA sockets inside the HTM transactions.
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3.6.2 Analysis of Balanced Graph Coloring Algorithms

We compare the following balanced graph coloring implementations:

• The CLU algorithm presented in Figure 3.5.

• The VFF algorithm presented in Figure 3.6.

• The Recoloring algorithm presented in Figure 3.7.

• Our proposed BalColorTM algorithm (Figure 3.14) that leverages HTM. Each transaction is re-

tried up to 50 times, before resorting to a non-transactional fallback path. The non-transactional

path is a coarse-grained lock scheme for the critical section (lines 27-39 in Figure 3.14).

For a fair comparison, in all graph coloring schemes we color the vertices in the order they appear

in the color classes produced by the initial coloring.

Analysis of Color BalancingQuality

Table 3.3 compares the quality of balance in the color class sizes produced by the balanced-oblivious

ColorTM and all our evaluated balanced graph coloring implementations. Similarly to [27], we evalu-

ate the color balancing quality using the relative standard deviation of the color class sizes expressed

in %, which is defined as the ratio of the standard deviation of the color class sizes to the average

color class size. The closer the value of this metric is to 0.00, the better is the color balance. For the

ColorTM and Recoloring schemes, we also include in parentheses the number of color classes pro-

duced. As already explained in Section 3.2.3, the CLU, VFF, and BalColorTM schemes produce the

same number of color classes with the initial coloring. In this experiment, we evaluate all algorithms

using the maximum hardware thread capacity of our machine, i.e., 56 threads, in order to evaluate

the color balancing quality of all schemes using the maximum available parallelism provided by the

underlying hardware platform.

We draw three findings from Table 3.3. First, we observe that the balanced-oblivious ColorTM

scheme incurs very high disparity in the sizes of the color classes produced. Specifically, the color

balancing quality of ColorTM is 1887.01×, 287.70×, 10.32×, and 4266.03× worse than that of CLU,

VFF, Recoloring and BalColorTM , respectively. Second, even though Recoloring is effective over Col-

orTM by providing better color balancing quality, its color balancing quality is the worst compared

to all the remaining balanced graph coloring schemes. In addition, in highly irregular graphs (graphs

with high maximum degree and high standard deviation in the vertices’ degrees) such as uk, soc
and arb, Recoloring significantly increases the number of color classes produced over the initial col-

oring. Recoloring re-colors the vertices of the graph with a different order compared to that used in

the initial graph coloring scheme, which in turn may introduce new additional color classes. Third,

we find that BalColorTM provides the best color balancing quality compared to all prior state-of-

the-art balanced graph coloring schemes. Specifically, the color balancing quality of BalColorTM is

2.26×, 14.82× and 413.31× better compared to that of CLU, VFF and Recoloring, respectively. Over-

all, we conclude that our proposed BalColorTM provides the best color balancing quality over prior

state-of-the-art schemes in all large real-world graphs.

To better illustrate the effect of balancing the vertices across color classes, we present in Fig-
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Input Initial Coloring Balanced Graph Coloring Schemes

Graph ColorTM CLU VFF Recoloring BalColorTM
qun 63.62 (48) 0.212 1.669 14.739 (48) 0.009

geo 70.28 (36) 0.321 0.635 17.664 (34) 0.020

fln 65.42 (45) 0.576 0.611 20.384 (51) 0.044

bum 64.32 (36) 0.179 0.647 17.950 (33) 0.009

ser 73.64 (39) 0.405 0.751 16.651 (38) 0.024

del 100.06 (9) 0.002 0.013 35.136 (10) 0.001

rgg 115.30 (22) 0.018 3.783 21.799 (23) 0.003

kmr 189.79 (11) 0.0003 0.0002 31.492 (12) 0.0004

cag 122.89 (19) 0.014 0.649 34.197 (20) 0.005

usa 105.09 (5) 0.001 0.024 0.0005 (5) 0.0005

dlf 57.95 (54) 2.58 2.53 22.551 (57) 3.01

aud 84.02 (60) 5.243 2.780 19.498 (54) 3.575

vas 144.18 (38) 0.084 18.527 25.373 (34) 0.016

stk 141.41 (35) 0.016 17.684 25.375 (34) 0.003

uk 1882.66 (944) 0.437 0.237 65.994 (1355) 1.732

soc 945.35 (324) 1.136 1.466 58.190 (459) 1.886

arb 3351.79 (3248) 0.681 1.499 68.521 (4772) 3.410

fch 125.70 (9) 0.012 0.271 33.854 (10) 0.451

Table 3.3: Color balancing quality achieved by ColorTM and all balanced graph coloring implementa-

tions in the large real-world graphs. We present the relative standard deviation (in %) on the sizes of

the color classes obtained by each scheme (lower is better). In ColorTM and Recoloring, we provide

inside the parentheses the number of color classes produced. The CLU, VFF and BalColorTM produce

the same number of color classes with the initial coloring scheme.

ure 3.20 the sizes of all the color classes produced by ColorTM , CLU, VFF, Recoloring and BalColorTM

for a representative subset of our evaluated real-world graphs. The uk, soc and arb graphs are

web social networks [492] with a highly power-law distribution [7, 87, 134]: only a few vertices have

a very high degree, while the vast majority of the remaining vertices of the graph has very low degree.

In such graphs, ColorTM inserts the vast majority of the vertices in the first few color classes, and

the remaining few vertices are assigned to different separate color classes. Moreover, as explained,

Recoloring introduces a large number of new additional color classes in such real-world graphs.

Performance Comparison

Figure 3.21 evaluates the scalability achieved by all balanced graph coloring implementations in a

representative subset of our evaluated large real-world graphs, as the number of threads increases

from 1 to 56, i.e., up to the maximum available hardware thread capacity of our machine. We present

the execution time of only the kernel that balances the vertices across color classes (excluding the

execution time of the initial graph coloring).
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Figure 3.20: Distribution of color class sizes produced by ColorTM and all our evaluated balanced

graph coloring schemes. Note that small color class sizes result in reduced parallelism in the real-

world end-application.

We draw three findings. First, we observe that Recoloring achieves the worst performance over

all balanced graph coloring schemes. Even in the single-threaded executions, Recoloring performs

by 3.21×, 2.26× and 3.69× worse than CLU, VFF and BalColorTM , respectively, because it executes a

much larger amount of computation, memory accesses and synchronization. Recall that Recoloring
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Figure 3.21: Scalability achieved by all balanced graph coloring implementations in large real-world

graphs.

processes and re-colors all the vertices of the graph, while the remaining balanced graph coloring

schemes re-color only a subset of the vertices of the graph. Note that in uk and arb graphs, all

balanced graph coloring schemes need to re-color a large portion of the graph’s vertices, thus per-

forming closely to each other. Second, we find that the scalability of all schemes is affected by the

NUMA effect, however BalColorTM on average scales well even when using all available hardware

threads and both NUMA sockets of our machine. When increasing the number of threads from 28

to 56, the performance of BalColorTM improves by 1.55× averaged across all large graphs. Third, we

find that in contrast to the graph coloring kernel, in many real-world graphs the performance of the

balanced graph coloring kernel scales up to 14 threads, and degrades when using 56 threads. This

is because the balanced graph coloring kernel has a lower amount of parallelism (a small subset of

the vertices of the graph are re-colored by parallel threads) than the graph coloring kernel. Thus,

our analysis demonstrates that when a kernel has low levels of parallelism, the best performance

is achieved using a smaller number of parallel threads than the available hardware threads on the

multicore platform. To this end, we suggest software designers of real-world end-applications to

on-the-fly adjust the number of parallel threads used to parallelize each different sub-kernel of the

end-application based on the parallelization needs of each particular sub-kernel.

Figure 3.22 compares the speedup achieved by all balanced graph coloring schemes normalized

to the CLU scheme in all large real-world graphs. We compare the actual kernel time that balances

the vertices across color classes.

We observe thatBalColorTM outperforms all prior state-of-the-art balanced graph coloring schemes

across all various large real-world graphs with a large number of parallel threads used. BalColorTM

outperforms CLU, VFF and Recoloring by on average 1.89×, 1.33× and 2.06× respectively, when us-

ing 14 threads. Moreover, BalColorTM outperforms CLU, VFF and Recoloring by on average 2.61×,

1.05× and 1.68× respectively, when using 56 threads, i.e., the maximum hardware thread capacity of

our machine. Overall, BalColorTM performs best over all prior schemes in all large real-world graphs.

Therefore, considering the fact that BalColorTM also provides the best color balancing quality over
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Figure 3.22: Speedup achieved by all balanced graph coloring implementations over the CLU scheme

in large real-world graphs using all cores of one socket (14 threads), all cores of two sockets (28

threads), and the maximum hardware thread capacity of our machine with hyperthreading enabled

(56 threads).

prior schemes, we conclude that our proposed algorithmic design is a highly efficient and effective

parallel graph coloring algorithm for modern mutlicore platforms.

To confirm the performance benefits of BalColorTM across multiple computing platforms, we

evaluate all schemes on a 2-socket Intel Broadwell server with an Intel Xeon E5-2699 v4 processor

at 2.2 GHz having 44 physical cores and 88 hardware threads. Figure 3.23 compares the speedup

achieved by all balanced graph coloring schemes normalized to the CLU scheme in all large real-

world graphs using 88 threads, i.e., the maximum hardware thread capacity of the Intel Broadwell

server. We find that BalColorTM provides significant performance benefits over prior state-of-the-art

graph coloring algorithms, achieving 1.82×, 1.22× and 1.84× better performance over CLU, VFF, and

Recoloring, respectively.
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Figure 3.23: Speedup achieved by all balanced graph coloring implementations over the CLU scheme

in large real-world graphs using the maximum hardware thread capacity of an Intel Broadwell server

with hyperthreading enabled (88 threads).
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Analysis of BalColorTM Execution

Figure 3.24 presents the abort ratio of BalColorTM , i.e., the number of transactional aborts divided by

the number of attempted transactions, in all real-world graphs, as the number of threads increases.

In the 14-thread execution, we pin all thread on one single socket. In the 28-thread execution, we

pin threads on both NUMA sockets of our machine with hyperthreading disabled. In the (14+14)-

thread execution, we pin all 28 threads on the same single socket with hyperthreading enabled. In

the 56-thread execution, we use the maximum hardware thread capacity of our machine.
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Figure 3.24: Abort ratio exhibited by BalColorTM in all large real-world graphs.

We make two key observations. First, we observe that BalColorTM on average incurs higher abort

ratio over ColorTM , reaching up to 80% abort ratio in some multithreaded executions. Specifically,

BalColorTM incurs 68.55×, 64.35×, 55.83× and 25.91× higher abort ratio (averaged across all real-

world graphs) over ColorTM , when using 14, 28, (14+14), and 56 threads, respectively. This is because

BalColorTM processes and re-colors a much smaller number of vertices (a small subset of the ver-

tices of the graph) compared to ColorTM , which instead processes and colors all the vertices of the

graph. As a result, parallel threads compete for the same data and memory locations with a much

higher probability in BalColorTM compared to ColorTM , thus incurring higher abort ratio and syn-

chronization costs. Second, we find that in all real-world graphs the vast majority of transactional

aborts are conflict aborts. Specifically, the portion of conflict aborts is more than 95% in all real-world

graphs for all multithreaded executions. Typically, the lower parallelization needs a parallel kernel

has, the higher data contention among parallel threads it incurs. Overall, our analysis demonstrates

that using a high number of parallel threads results in high contention on shared data due to low

amount of parallelism of the balanced graph coloring kernel. The aforementioned high contention

causes high synchronization overheads. To this end, we recommend software designers of real-world

end-applications to design adaptive parallelization schemes that trade off the amount of parallelism

provided for lower synchronization costs.

3.6.3 Analysis of a Real-World Scenario

In this section, we study the performance benefits of our proposed graph coloring schemes, i.e.,

ColorTM and BalColorTM , when parallelizing a widely used real-world end-application, i.e., Commu-

nity Detection, via chromatic scheduling. Specifically, we compare the following parallel implemen-

tations to execute the Community Detection application:
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• The parallelization scheme for the Louvain method [493–495] provided by Grappolo suite [12],

henceforth referred to as SimpleCD, in which the vertices are processed as they appear in the

input graph representation. The algorithm consists of multiple iterations. First, each vertex is

placed in a community of its own. Then, multiple iterations are performed until a convergence

criterion is met. Within each iteration, all vertices are processed concurrently by multiple

parallel threads, and a greedy decision is made to decide whether each vertex should be moved

to a different community (selected from one of its adjacent vertices) or should remain in its

current community, targeting to maximize the net modularity gain. For more details, we refer

the reader to [493, 496–498].

• The chromatic scheduling parallelization approach using ColorTM to color the vertices of the

graph, henceforth referred to as ColorTMCD, in which the vertices are processed in the order

they are distributed in the color classes. The end-to-end Community Detection execution can

be broken down in two steps: (i) the time to color the vertices of the graph with ColorTM ,

and (ii) the time to classify the vertices of the graph into communities via chromatic schedul-

ing parallelization approach. The (ii) step processes the color classes produced by the (i) step

sequentially, and all vertices of the same color class are processed in parallel.

• The chromatic scheduling parallelization approach using ColorTM to color the vertices of the

graph and BalColorTM to balance the vertices across color classes produced, henceforth referred

to as BalColorTMCD, in which the vertices are processed in the order they are distributed in

the color classes. The end-to-end Community Detection execution can be broken down in three

steps: (i) the time to color the vertices of the graph with ColorTM , (ii) the time to balance the

vertices of the graph across color classes, and (iii) the time to classify the vertices of the graph

into communities via chromatic scheduling parallelization approach. The (iii) step processes

the color classes produced by the (ii) step sequentially, and all vertices of the same color class

are processed in parallel.

Figure 3.25 evaluates the scalability of all the end-to-end Community Detection parallel imple-

mentations in a representative subset of large real-world graphs, as the number of parallel threads

increases. We present the total end-to-end execution time, i.e., in ColorTMCD we account for the time

to color the vertices of the graph (coloring step), and in BalColorTMCD we account for the time to

color the vertices of the graph (coloring step), and the time to balance the vertices across color classes

(balancing step).

We draw two findings. First, we find that ColorTMCD and BalColorTMCD scale well in large

real-world graphs. For example, when increasing the number of threads from 1 to 56, ColorTMCD

improves performance by 12.34× and 3.44× in bum and arb graphs, respectively. Similarly, when

increasing the number of threads from 1 to 56, BalColorTMCD improves performance by 11.38× and

3.63× in bum and arb graphs, respectively. However, we observe that in uk and arb graphs,

SimpleCD outperforms both ColorTMCD and BalColorTMCD. In these two graphs, ColorTM and Bal-

ColorTM produce the largest number of color classes compared to all the remaining real-world graphs

(See Table 3.3), i.e., they produce 944 and 3248 colors for the uk and arb graphs, respectively. As

a result, in uk and arb graphs the chromatic scheduling parallelization approach of ColorTMCD
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Figure 3.25: Scalability of the end-to-end Community Detection execution achieved by (i) the Grap-

polo [12] parallelization approach of the Louvain method (SimplCD) and (ii) the chromatic scheduling

parallelization approach withColorTM (ColorTMCD) and (iii) the chromatic scheduling parallelization

approach with both ColorTM and BalColorTM (BalColorTMCD) in large real-world graphs.

and BalColorTMCD executes 944 and 3248 times of barrier synchronization among parallel threads,

respectively, thus incurring higher synchronization costs over SimpleCD. Second, the scalability of

BalColorTMCD is affected more by the NUMA effect compared to that of ColorTMCD. Specifically,

when increasing the number of threads from 14 to 28, the performance of ColorTMCD improves by

1.63× averaged across all real-world graphs, while the performance of BalColorTMCD only improves

by 1.22×. Similarly, when increasing the number of threads from 14 to 56, the performance of Col-

orTMCD improves by 1.98×, while the performance of BalColorTMCD improves by 1.50×. We find

that even though balancing the sizes of color classes provides higher load balance across parallel

threads of real-world end-applications, it might because more remote expensive memory accesses

across NUMA sockets of modern multicore machines.

Figure 3.26 shows the actual kernel time (without accounting for performance overheads intro-

duced by the coloring and balancing steps) of Community Detection by comparing the speedup of

ColorTMCD and BalColorTMCD over SimpleCD in all our evaluated large real-world graphs.

We draw two key findings. First, BalColorTM can on average outperform ColorTM , when consid-

ering only the actual kernel time of Community Detection, by providing better load balance among

parallel threads. When only the actual kernel time of Community Detection is considered (exclud-

ing the performance overheads introduced by the coloring and balancing steps), BalColorTMCD on

average outperforms ColorTMCD by 1.27×, 1.01× and 1.12× when using 14, 28, and 56 threads,

respectively. Second, parallelizing the Community Detection using ColorTM and BalColorTM pro-

vides significant performance speedups over SimpleCD, the state-of-the-art paralellization approach

of Louvain method of Community Detection [12, 493–495]. Specifically, ColorTMCD improves the

performance of the actual kernel time of Community Detection compared to SimpleCD by 1.40×,

1.34×, and 1.20×, when using 14, 28, and 56 threads, respectively. In addition, BalColorTMCD im-

proves the performance of the actual kernel time of Community Detection compared to SimpleCD
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Figure 3.26: Speedup of the actual kernel of the Community Detection execution achieved by (i)

SimpleCD (D), (ii) ColorTMCD (C) and (iii) BalColorTMCD (B) in large real-world graphs using all

cores of one socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware

thread capacity of our machine with hyperthreading enabled (56 threads).

by 1.77×, 1.34×, and 1.34×, when using 14, 28, and 56 threads, respectively. We conclude that our

proposed graph coloring algorithmic designs can provide high performance benefits in real-world

end-applications which are parallelized using coloring.

Figure 3.27 presents the speedup breakdown of ColorTMCD and BalColorTMCD over SimpleCD

in all our evaluated large real-world graphs. The performance is broken down in three steps: (i)

the coloring step to color the vertices of the graph (Coloring), (ii) the balancing step to balance

the vertices across color classes (Balancing), and (iii) the actual Community Detection kernel time

(CommunityDetection).

We make two key observations. First, BalColorTMCD on average outperforms ColorTMCD when

using up to 14 threads (using one single NUMA socket). When considering the end-to-end execution

including the performance overheads introduced by the coloring and balancing steps, BalColorTMCD

outperforms ColorTMCD by 1.19× when using 14 threads, while it performs on average 1.18× and

1.10× worse over ColorTMCD, when using 28 and 56 threads, respectively. We find that the perfor-

mance overhead introduced in the balancing step of BalColorTMCD is not compensated in the runtime

of the actual kernel time of Community Detection when using both NUMA sockets of our machine.

Second, we observe that both ColorTMCD and BalColorTMCD can provide high performance in Com-
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Figure 3.27: Speedup breakdown of the end-to-end Community Detection execution achieved by (i)

SimpleCD (D), (ii) ColorTMCD (C) and (iii) BalColorTMCD (B) in large real-world graphs using all

cores of one socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware

thread capacity of our machine with hyperthreading enabled (56 threads).

munity Detection. ColorTMCD on average outperforms SimpleCD by 1.38×, 1.33× and 1.19×, when

using 14, 28 and 56 threads, respectively. BalColorTMCD on average outperforms SimpleCD by 1.64×,

1.10× and 1.08×, when using 14, 28 and 56 threads, respectively. In addition, we observe that BalCol-

orTMCD provides significant performance speedups over Simple CD in many graphs such as fln,

del, cag, aud, soc and fch, reaching up to 10.36× with 56 threads. Overall, we conclude that

our proposed parallel graph coloring algorithms can provide significant performance improvements

in real-world end-applications, e.g., parallelizing Community Detection with chromatic scheduling,

across a wide variety of input data sets with diverse characteristics.

3.7 Recommendations

This section presents our key takeaways in the form of recommendations for software and hardware

designers.

Recommendation #1. Optimize the Hardware Transactional Memory implementation on NUMAmul-

ticore systems. Figures 3.18 and 3.24 demonstrate the number of transactional aborts significantly

increases when using both NUMA sockets of our machine. Accessing data of remote NUMA sockets
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within HTM transactions increases the duration of the transactions, thus potentially causing trans-

actional aborts: long-running HTM transactions increase the probability of incurring read-write

conflicts among them, while they might suffer from time interrupt aborts when the OS scheduler

schedules out the software threads from the hardware threads. Overall, we find that current HTM

implementations are severely limited by the NUMA effect [315], which degrades the benefits of HTM

on synchronization among parallel threads. To this end, we suggest that hardware designers of mul-

ticore systems provide a NUMA-aware HTM implementation for modern multicore systems.

Recommendation #2. Design intelligent data partitioning techniques of real-world graphs across

NUMA sockets of modern systems. Figure 3.19 shows that the number of conflicts (read-write) aborts

among running HTM transactions significantly increases when using both sockets of our evaluated

machine. This is because expensive accesses to remote data increase the duration of the HTM transac-

tions, and thus the probability of causing conflicts aborts among long-running transactions becomes

very high. Thus, we conclude that the performance of parallel algorithms might significantly degrade

when accessing application data from remote NUMA sockets within the critical section. Therefore,

we recommend that software designers of parallel graph processing kernels design effective data

partitioning techniques of real-world graphs across NUMA sockets of modern systems to minimize

contention and synchronization overheads among parallel threads.

Recommendation #3. Design adaptive parallel applications that on-the-fly adjust the number of par-

allel threads used to parallelize their sub-kernels based on the parallelization needs of each particular

sub-kernel. Figure 3.15 shows that all parallel graph coloring schemes scale up to 56 threads, i.e., all

available hardware threads of our machine. However, Figure 3.21 shows that balanced graph col-

oring schemes typically scale up 14 threads, thus achieving the best performance with 14 parallel

threads, while their performance degrades when using all available hardware threads of our ma-

chine (56 threads). The graph coloring kernel has high parallelization needs, since all the vertices of

the large real-world graph need to be processed (colored) by parallel threads. Instead, the balance

coloring kernel has lower parallelization needs, since typically a small subset of the vertices of the

graph need to be processed (re-colored) by parallel threads. We demonstrate in Section 3.6.3 that

the execution times of the graph coloring and balance coloring kernels add to the overall execution

time of the real-world end-application. Thus, we conclude that to achieve high system performance

in the end-to-end execution of real-world applications, we need to dynamically tune the number of

parallel threads used to parallelize the sub-kernels of the end-applications depending on the paral-

lelization needs of each particular sub-kernel. To this end, we recommend that software designers

provide adaptive parallel applications that on-the-fly adjust the number of parallel threads used to

parallelize each sub-kernel of the end-applications based on the parallelization needs of the particular

sub-kernel.

3.8 Related Work

A handful of prior works [1, 26–30,30–36] has examined the graph coloring kernel in modern multi-

core platforms. Welsh and Powell [26] propose the original sequential Greedy algorithm that colors



Chapter 3 107

the vertices of the graph using the first-fit heuristic. Recent prior works [31–34] parallelize Greedy

by proposing the SeqSolve, IterSolve and IterSolveR schemes described in Section 3.2.2. We com-

pare ColorTM with these prior schemes in Section 3.6.1, and demonstrate that our proposed ColorTM

outperforms these state-of-the-art schemes across a wide variety of real-world graphs. Jones and

Plassmann [28] design an algorithm, named JP, that colors the vertices of the graph by identifying

independent sets of vertices: in each iteration, the algorithm finds and selects an independent set of

vertices that can be colored concurrently. However, JP is a recursive algorithm that typically runs

longer than the original Greedy [1, 35, 36], since it performs more computations and needs more

synchronization points, i.e., parallel threads need to synchronize at each iteration of processing inde-

pendent sets of vertices. Moreover, the original paper [28] shows that JP provides good performance

mostly in O(1)-degree graphs. In contrast, our work efficiently parallelizes the original and widely

used Greedy algorithm for graph coloring, and our proposed parallel algorithms achieve significant

performance improvements across a wide variety of real-world graphs and using a large number of

parallel threads.

Deveci et al. [29] present an edge-centric parallelization scheme for graph coloring which is better

suited for GPUs. ColorTM and BalColorTM can be straightforwardly extended to color the vertices

of a graph by equally distributing the edges of the graph among parallel threads. We leave the ex-

ploration of edge-centric graph coloring schemes for future work. Future work also comprises the

experimentation of the graph coloring kernel on multicore computing platforms such as modern

GPUs [499–502] and Processing-In-Memory systems [5, 7, 134–136, 141, 188, 196, 203, 207]. Maciej et

al. [36] and Hasenplaugh et al. [35] propose new vertex ordering heuristics for graph coloring. Order-

ing heuristics define the order in which Greedy colors the vertices of the graph in order to improve

the coloring quality by minimizing the number of colors used. Instead, our work aims to improve

system performance by proposing efficient parallelization schemes. For a fair comparison, we employ

the first-fit ordering heuristic (the vertices of the graph are colored in the order they appear in the

input graph representation) in all parallel algorithms evaluated in Sections 3.6.1 and 3.6.1. ColorTM

and BalColorTM can support various ordering heuristics [35,36,320,321,328,333–337,503] by assign-

ing the vertices of the graph to parallel threads with a particular order. We leave the evaluation of

various vertex ordering heuristics for future work.

Lu et al. [27] design balanced graph coloring algorithms to efficiently balance the vertices across

the color classes. We compare BalColorTM with their proposed algorithms, i.e., CLU, VFF, Recoloring,

in Section 3.2.3, and demonstrate that our proposed BalColorTM scheme on average performs best

across all large real-world graphs. Tas et al. [30] propose balanced graph coloring algorithms for

bitpartie graphs, i.e., graphs whose vertices can be divided into two disjoint and independent sets

U and V , and every edge (u, v) either connects a vertex from U to V or a vertex from V to U . In

contrast, ColorTM and BalColorTM are designed to be general, and efficiently color any arbitrary

real-world graph using a large number of parallel threads. In addition, Tas et al. [30] also explore the

distance-2 graph coloring kernel on multicore architectures, in which any two vertices u and v with an

edge-distance at most 2 are assigned with different colors. Instead, our work efficiently parallelizes

the distance-1 graph coloring kernel on multicore platforms, in which any two adjacent vertices
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of the graph connected with a direct edge are assigned with different colors. Finally, prior works

propose algorithms for edge coloring [504], dynamic or streaming coloring [505–510], k-distance

coloring [511, 512] and sequential exact coloring [513–515]. All these works are not closely related

to our work, since we focus on designing high-performance parallel algorithms for the distance-1

vertex graph coloring kernel.

3.9 Summary

In this work, we explore the graph coloring kernel on multicore platforms, and propose ColorTM and

BalColorTM , two novel algorithmic designs for high performance and balanced graph coloring on

modern computing platforms. ColorTM and BalColorTM achieve high system performance through

two key techniques: (i) eager conflict detection and resolution of the coloring inconsistencies that

arise when adjacent vertices are concurrently processed by different parallel threads, and (ii) specula-

tive computation and synchronization among parallel threads by leveraging Hardware Transactional

Memory. Via the eager coloring conflict detection and resolution policy, ColorTM and BalColorTM

effectively leverage the deep memory hierarchy of modern multicore platforms and minimize access

costs to application data. Via the speculative computation and synchronization approach, ColorTM

and BalColorTM minimize synchronization costs among parallel threads and provide high amount of

parallelism. Our evaluations demonstrate that our proposed parallel graph coloring algorithms out-

perform prior state-of-the-art approaches across a wide range of large real-world graphs. ColorTM

and BalColorTM can also provide significant performance improvements in real-world scenarios. We

conclude that ColorTM and BalColorTM are highly efficient graph coloring algorithms for modern

multicore systems, and hope that this work encourages further studies of the graph coloring kernel

in modern computing platforms.
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SmartPQ

4.1 Overview

Concurrent data structures are widely used in the software stack, i.e., kernel, libraries and appli-

cations. Prior works [15, 39, 64, 339] discuss the need for efficient and scalable concurrent data

structures for commodity Non-Uniform Memory Access (NUMA) architectures. Pointer chasing

data structures such as linked lists, skip lists and search trees have inherently low-contention, since

their operations need to de-reference a non-constant number of pointers before completing. Recent

works [64, 340, 341] have shown that lock-free algorithms [48, 342–346] of such data structures can

scale to hundreds of threads. On the other hand, data structures such as queues and stacks typically

incur high-contention, when accessed by many threads. In these data structures, concurrent threads

compete for the same memory locations, incurring excessive traffic and non-uniform memory ac-

cesses between nodes of a NUMA system.

In this work, we focus on priority queues, which are widely used in a variety of applications,

including task scheduling in real-time and computing systems [347], discrete event simulations [348,

109
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Figure 4.1: Throughput achieved by a NUMA-oblivious [13, 14] and a NUMA-aware [15] priority

queue, both initialized with 1024 keys. We use 64 threads that perform a mix of insert and deleteMin

operations in parallel, and the key range is set to 2048 keys. We use all NUMA nodes of a 4-node

NUMA system, the characteristics of which are presented in Section 4.4.

349] and graph applications [350–352], e.g., Single Source Shortest Path [353] and Minimum Spanning

Tree [471]. Similarly to skip-lists and search trees, in insert operation, concurrent priority queues typ-

ically have high levels of parallelism and low-contention, since threads may work on different parts

of the data structure. Therefore, concurrent NUMA-oblivious implementations [37, 38, 40–43, 55, 56]

can scale up to a high number of threads. In contrast, in deleteMin operation, all threads compete

for deleting the highest-priority element of the queue, thus competing for the same memory loca-

tions (similarly to queues and stacks), and creating a contention spot. In deleteMin-dominated work-

loads, concurrent priority queues typically incur high-contention and low parallelism. To achieve

higher parallelism, relaxed priority queues have been proposed in the literature [13, 472], in which

deleteMin operation returns an element among the first few (high-priority) elements of the priority

queue. However, such NUMA-oblivious implementations are still inefficient in NUMA architectures,

as we demonstrate in Section 4.4. Therefore, to improve performance in NUMA systems, NUMA-

aware implementations have been proposed [15, 64].

We examine NUMA-aware and NUMA-oblivious concurrent priority queues with a wide variety

of contention scenarios in NUMA architectures, and find that the performance of a priority queue

implementation is becoming increasingly dependent on both the contention levels of the workload

and the underlying computing platform. This is illustrated in Figure 4.1, which shows the throughput

achieved by a NUMA-oblivious and a NUMA-aware priority queue using a 4-node NUMA system.

Even though in a insert-dominated scenario, e.g., when having 100% insert operations, the NUMA-

oblivious implementation achieves significant performance gains over the NUMA-aware one, when

contention increases, i.e., the percentage of deleteMin operations increases, the NUMA-oblivious im-

plementation incurs non-negligible performance slowdowns over the NUMA-aware priority queue.

We conclude that none of the priority queues performs best across all contention workloads.

Our goal in this work is to design a concurrent priority queue that (i) achieves the highest perfor-

mance under all various contention scenarios, and (ii) performs best even when the contention of the

workload varies over time.
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Figure 4.2: High-level overview of SmartPQ. SmartPQ dynamically adapts its algorithm to the con-

tention levels of the workload based on the prediction of a simple classifier.

To this end, our contribution is twofold. First, we introduce NUMA Node Delegation (Nuddle), a

generic technique to obtain NUMA-aware data structures, by effectively transforming any concur-

rent NUMA-oblivious data structure into the corresponding NUMA-aware implementation. In other

words, Nuddle is a framework to wrap any concurrent NUMA-oblivious data structure and transform

it into an efficient NUMA-aware one. Nuddle extends ffwd [15] by enabling multiple server threads,

instead of only one, to execute operations in parallel on behalf of client threads. In contrast to ffwd,

which aims to provide single threaded data structure performance, Nuddle targets data structures

which are able to scale up to a number of threads such as priority queues.

Second, we propose SmartPQ, an adaptive concurrent priority queue that achieves the highest per-

formance under all contention workloads and dynamically adapts itself over time between a NUMA-

oblivious and a NUMA-aware algorithmic mode. SmartPQ integrates (i) Nuddle to efficiently switch

between the two algorithmic modes with very low overhead, and (ii) a simple decision tree classi-

fier, which predicts the best-performing algorithmic mode given the expected contention levels of a

workload.

Figure 4.2 presents an overview of SmartPQ, where we use the term base algorithm to denote any

arbitrary concurrent NUMA-oblivious data structure. SmartPQ relies on three key ideas. First, client

threads can execute operations using either Nuddle (NUMA-aware mode) or its underlying NUMA-

oblivious base algorithm (NUMA-oblivious mode). Second, SmartPQ incorporates a decision-making

mechanism to decide upon transitions between the two modes. Third, SmartPQ exploits the fact

that the actual underlying implementation of Nuddle is a concurrent NUMA-oblivious data structure.

Client threads in both algorithmic modes access the data structure in the same way, i.e., with no

actual change in the way data is accessed. Therefore, SmartPQ switches from one mode to another

with no synchronization points between transitions.

We evaluate a wide range of contention scenarios and compare Nuddle and SmartPQ with state-

of-the-art NUMA-oblivious [13,55] and NUMA-aware [15] concurrent priority queues. We also eval-

uate SmartPQ using synthetic benchmarks that dynamically vary their contention workload over

time. Our evaluation shows that SmartPQ adapts between its two algorithmic modes with negligible

performance overheads, and achieves the highest performance in all contention workloads and at

any point in time with 87.9% success rate.
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The main contributions of this work are:

• We propose Nuddle, a generic technique to obtain NUMA-aware concurrent data structures.

• We design a simple classifier to predict the best-performing implementation among NUMA-

oblivious and NUMA-aware priority queues given the contention levels of a workload.

• We propose SmartPQ, an adaptive concurrent priority queue that achieves the highest perfor-

mance, even when contention varies over time.

• We evaluate Nuddle and SmartPQ with a wide variety of contention scenarios, and demonstrate

that SmartPQ performs best over prior state-of-the-art concurrent priority queues.

4.2 NUMA Node Delegation (Nuddle)

4.2.1 Overview

NUMA Node Delegation (Nuddle) is a generic technique to obtain NUMA-aware data structures by

automatically transforming any concurrent NUMA-oblivious data structure into an efficient NUMA-

aware implementation. Nuddle extends ffwd [15], a client-server software mechanism which is based

on the delegation technique [59–63].

Figure 4.3 left shows the high-level overview of ffwd, which has three key design characteris-

tics. First, all operations performed by multiple client threads are delegated to one single dedicated

thread, called server thread. The server thread performs operations in the data structure on behalf of

its client threads. This way, the data structure remains in the memory hierarchy of a single NUMA

node, avoiding non-uniform memory accesses to remote data. Second, ffwd eliminates the need for

synchronization, since the shared data structure is no longer accessed by multiple threads: only a sin-

gle server thread directly modifies the data structure, and therefore, ffwd uses a serial asynchronized

implementation of the underlying data structure. Third, ffwd provides an efficient communication

protocol between the server thread and client threads that minimizes cache coherence overheads.

Specifically, ffwd reserves dedicated cache lines to exchange request and response messages between

the client threads and sever thread. Multiple client threads are grouped together to minimize the

response messages from the server thread: one response cache line is shared among multiple client

threads belonging to the same client thread group. For more details, we refer the reader to the original

paper [15].

Figure 4.3 right presents the high-level overview of Nuddle, which is based on three key ideas.

First, Nuddle deploys multiple servers to perform operations on behalf of multiple client threads.

Specifically, client threads are grouped in client thread groups, and each sever thread serves multiple

client thread groups. This way, multiple server threads concurrently perform operations on the data

structure, achieving high levels of parallelism up to a number of server threads. Second, Nuddle lo-

cates all server threads to the same NUMA node to keep the data structure in the memory hierarchy of

one single NUMA node, and propose a NUMA-aware approach. Client threads can be located at any

NUMA node. Third, since multiple servers can concurrently update the shared data structure, Nuddle

uses a concurrent NUMA-oblivious implementation (i.e., which includes synchronization primitives
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Figure 4.3: High-level design of ffwd [15] and Nuddle. Nuddle locates all server threads at the same

NUMA node to design a NUMA-aware scheme, and associates each of them to multiple client thread

groups. Nuddle uses the communication protocol proposed in ffwd [15].

when accessing the shared data) of the underlying data structure to ensure correctness. Third, Nud-

dle employs the same client-server communication protocol with ffwdto carefully manage memory

accesses and minimize cache coherence traffic and latency.

ffwd targets inherently serial data structures, whose concurrent performance cannot be better

than that of single threaded performance. In contrast, Nuddle targets data structures that can scale

up to a number of concurrent threads. Priority queue is a typical example of such a data structure.

In insert operation, priority queue can scale up to multiple threads, which can concurrently update

the shared data. In contrast, deleteMin operation is inherently serial: at each time only one thread

can update the shared data, since all threads compete for the highest-priority element of the queue.

However, as we mentioned, in relaxed priority queues (e.g., SprayList [13]), even deleteMin operation

can be parallelized to some extent.

4.2.2 Implementation Details

Figures 4.4, 4.5 and 4.6 present the code of a priority queue implementation using Nuddle. We denote

with red color the core operations of the base algorithm, which is used as the underlying concurrent

NUMA-oblivious implementation of Nuddle. Note that even though in this work we focus on priority

queues, Nuddle is a generic framework for any type of concurrent data structure.

Helper Structures. Nuddle includes three helper structures (Figure 4.4), which are needed for

client-server communication. First, the main structure of Nuddle, called struct nuddle pq , wraps

the base algorithm (nm oblv set ), and includes a few additional fields, which are used to associate

client thread groups to server threads in the initialization step. Second, each client thread has its

own struct client structure with a dedicated request and a dedicated response cache line. The

request cache line is exclusively written by the client thread and read by the associated server thread,

while the response cache line is exclusively written by the server thread and read by all client threads

that belong to the same client thread group. Third, each server thread has its own struct server
structure that includes an array of requests (my clients ), each of them is shared with a client thread,
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43 #define cache line size 128
44 typedef char cache line[cache line size];
45

46 struct nuddle pq {
47 nm oblv set ∗base pq;
48 int servers, groups, clnt per group;
49 int server cnt , clients cnt , group cnt;
50 cache line ∗requests[groups][clnt per group];
51 cache line ∗responses[groups];
52 lock ∗global lock;
53 };
54

55 struct client {
56 cache line ∗request, ∗response;
57 int clnt pos;
58 };
59

60 struct server {
61 nm oblv set ∗base pq;
62 cache line ∗my clients[], ∗my responses[];
63 int my groups , clnt per group;
64 };

Figure 4.4: Helper structures of Nuddle.

and an array of responses (my responses ), each of them is shared with all client threads of the same

client thread group.

Initialization Step. Figure 4.5 describes the initialization functions of Nuddle. initPQ() initial-

izes (i) the underlying data structure using the corresponding function of the base algorithm (line 25),

and (ii) the additional fields of struct nuddle pq . For this function, programmers need to specify

the number of server threads and the maximum number of client threads to properly allocate cache

lines needed for communication among them. Programmers also specify the size of the client thread

group (line 27), which is typically 7 or 15, if the cache line is 64 or 128 bytes, respectively. As ex-

plained in ffwd [15], assuming 8-byte return values, a dedicated 64-byte (or 128-byte) response cache

line can be shared between up to 7 (or 15) client threads, because it also has to include one additional

toggle bit for each client thread. After initializing struct nuddle pq , each running thread calls ei-

ther initClient() or initServer() depending on its role. Each thread initializes its own helper

structure (struct client or struct server ) with request and response cache lines of the corre-

sponding shared arrays of struct nuddle pq . Server threads undertake client thread groups with

a round-robin fashion, such that the load associated with client threads is balanced among them.

In function initServer() , it is the programmer’s responsibility to properly pin software server

threads to hardware contexts (line 56), such that server threads are located in the same NUMA node,

and the programmer fully benefits from the Nuddle technique. Moreover, given that client threads

of the same client thread group share the same response cache line, the programmer could pin client

threads of the same client thread group to hardware contexts of the same NUMA node to minimize

cache coherence overheads. Finally, since the request and response arrays of struct nuddle pq
are shared between all threads, a global lock is used when updating them to ensure mutual exclusion.

Main API. Figure 4.6 shows the core functions of Nuddle, where we omit the corresponding
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65 struct nuddle pq ∗initPQ(int servers, int max clients) {
66 struct nuddle pq ∗pq = allocate nuddle pq();
67 base init(pq->base pq);

68 pq−>servers = servers;
69 pq−>clnt per group = client group(cache line size);
70 pq−>groups = (max clients +
71 pq−>clnt per group −1) / pq−>clnt per group;
72 pq−>server cnt = 0;
73 pq−>client cnt = 0;
74 pq−>group cnt = 0;
75 pq−>requests = malloc(groups ∗ clnt per group);
76 pq−>responses = malloc(groups);
77 init lock(pq−>global lock);
78 return pq;
79 }
80

81 struct client ∗initClient(struct nuddle pq ∗pq) {
82 struct client ∗cl = allocate client();
83 acquire lock(pq−>global lock);
84 cl−>request = &(pq−>requests[group cnt][clients cnt]);
85 cl−>response = &(pq−>responses[group cnt]);
86 cl−>pos = pq−>client cnt;
87 pq−>client cnt++;
88 if (pq−>client cnt % pq−>clnt per group == 0) {
89 pq−>clients cnt = 0;
90 pq−>group cnt++;
91 }
92 release lock(pq−>global lock);
93 return cl;
94 }
95

96 struct server ∗initServer(struct nuddle pq ∗pq, int core)
97 {
98 set affinity(core);

99 struct server ∗srv = allocate server();
100 srv−>base pq = pq−>base pq;
101 srv−>my groups = 0;
102 srv−>clnt per group = pq−>clnt per group;
103 acquire lock(pq−>global lock);
104 int j = 0;
105 for(i = 0; i < pq−>groups; i++)
106 if(i % pq−>servers == pq−>server cnt) {
107 srv−>my clients[j] = pq−>requests[i][0..gr clnt];
108 srv−>my responses[j++] = pq−>responses[i];
109 srv−>my groups++;
110 }
111 pq−>server cnt++;
112 release lock(pq−>global lock);
113 return srv;
114 }

Figure 4.5: Initialization functions of Nuddle.

functions for deleteMin operation, since they are very similar to that of insert operation. Both insert

and deleteMin operations of Nuddle have similar API with the classic API of prior state-of-the-art

priority queue implementations [13, 37, 55, 56]. However, we separate the corresponding functions

for client threads and server threads. A client thread writes its request to a dedicated request cache
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line (line 75) and then waits for the server thread’s response. In contrast, a server thread directly

executes operations in the data structure using the core functions of the base algorithm (line 82).

Moreover, a server thread can serve client threads using the serve requests() function. A server

thread iterates over its own client thread groups and executes the requested operations in the data

structure. The server thread buffers individual return values for clients to a local cache line (resp
in lines 92 and 94) until it finishes processing all requests for the current client thread group. Then,

it writes all responses to the shared response cache line of that client thread group (line 96), and

proceeds to its next client thread group.

115 int insert client(struct client ∗cl, int key, int64 t value)
116 {
117 cl−>request = write req("insert", key, value);
118 while (cl−>response[cl−>pos] == 0) ;
119 return cl−>response[cl−>pos];
120 }
121

122 int insert server(struct server ∗srv, int key, int64 t value)
123 {
124 return base insrt(srv−>base pq , key, value);
125 }
126

127 void serve requests(struct server ∗srv) {
128 for(i = 0; i < srv−>mygroups; i++) {
129 cache line resp;

130 for(j = 0; j < srv−>clnt per group; j++) {
131 key = srv−>my clients[i][j].key;
132 value = srv−>my clients[i][j].value;
133 if (srv−>my clients[i][j].op == "insert")
134 resp[j] = base insrt(srv−>base pq , key, value);
135 else if (srv−>my clients[i][j].op == "deleteMin")
136 resp[j] = base delMin(srv−>base pq);
137 }
138 srv−>my responses[i] = resp;
139 }
140 }

Figure 4.6: Functions used by server threads and client threads to perform operations using Nuddle.

4.3 SmartPQ

We propose SmartPQ, an adaptive concurrent priority queue which tunes itself by dynamically switch-

ing between NUMA-oblivious and NUMA-aware algorithmic modes, in order to perform best in all

contention workloads and at any point in time, even when contention varies over time.

Designing an adaptive priority queue involves addressing two major challenges: (i) how to switch

from one algorithmic mode to the other with low overhead, and (ii) when to switch from one algorith-

mic mode to the other.

To address the first challenge, we exploit the fact that the actual underlying implementation of

Nuddle is a concurrent NUMA-oblivious implementation. We select Nuddle, as the NUMA-aware

algorithmic mode of SmartPQ, and its underlying base algorithm, as the NUMA-oblivious algorithmic
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mode of SmartPQ. Threads can perform operations in the data structure using either Nuddle or its

underlying base algorithm, with no actual change in the way data is accessed. As a result, SmartPQ

can switch between the two algorithmic modes without needing a synchronization point between

transitions, and without violating correctness.

To address the second challenge, we design a simple decision tree classifier (Section 4.3.1), and

train it to select the best-performing algorithmic mode betweenNuddle, as the NUMA-aware algorith-

mic mode of SmartPQ, and its underlying base algorithm, as the NUMA-oblivious mode of SmartPQ.

Finally, we add a lightweight decision-making mechanism in SmartPQ (Section 4.3.2) to dynamically

tune itself over time between the two algorithmic modes. We describe more details in next sections.

4.3.1 Selecting the Algorithmic Mode

The Need for a Machine Learning Approach

Selecting the best-performing algorithmic mode can be solved in various ways. For instance, one

could take an empirical exhaustive approach: measure the throughput achieved by the two algorith-

mic modes for all various contention scenarios on the target NUMA system, and then use the algo-

rithmic mode that achieves the highest throughput on future runs of the same contention workload

on the target NUMA system. Even though this is the most accurate method, it (i) incurs substan-

tial overhead and effort to sweep over all various contention workloads, and (ii) would need a large

amount of memory to store the best-performing algorithmic mode for all various scenarios. Fur-

thermore, it is not trivial to construct a statistical model to predict the best-performing algorithmic

mode, since the performance of an algorithm is also affected by the characteristics of the underlying

computing platform. Figure 4.7 summarizes these observations by comparing Nuddle with its un-

derlying base algorithm in a 4-node NUMA system. For the base algorithm, we use alistarh herlihy

priority queue [13, 14], since this is the NUMA-oblivious implementation that achieves the highest

performance, according to our evaluation (Section 4.4).
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Figure 4.7: Throughput achieved by Nuddle (using 8 server threads) and its underlying NUMA-

oblivious base algorithm, i.e., alistarh herlihy [13, 14], when we vary (a) the number of threads that

perform operations in the shared data structure, and (b) the key range of the workload.

Figure 4.7a demonstrates that the best-performing algorithmic mode depends on multiple pa-
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rameters, such as the number of threads that perform operations in the shared data structure, the

size of the data structure, the operation workload, i.e., the percentage of insert/deleteMin opera-

tions. Specifically, when the number of threads increases, we may expect that the performance of

the NUMA-oblivious alistarh herlihy degrades due to higher contention. In contrast, with 80% insert

operations when increasing the number of threads to 29, alistarh herlihy outperforms Nuddle. This is

because the size of the priority queue and the range of keys used in the workload are relatively large,

while the percentage of deleteMin operations is low. In this scenario, threads may not compete for

the same elements, working on different parts of the data structure, and thus, the NUMA-oblivious

alistarh herlihy achieves higher throughput compared to the NUMA-aware Nuddle.

Figure 4.7b demonstrates that the best-performing algorithmic mode cannot be straightforwardly

predicted, and also depends on the characteristics of underlying hardware [4]. In insert-dominated

workloads, as the key range increases, threads may update different parts of the shared data structure.

We might, thus, expect that after a certain point of increasing the key range, the NUMA-oblivious

alistarh herlihy will always outperform Nuddle, since the contention decreases. However, we note

that, even though the performance of Nuddle remains constant, as expected, the performance of al-

istarh herlihy highly varies as the key range increases due to the hyperthreading effect. When using

more than 32 threads, hyperthreading is enabled in our NUMA system (Section 4.4). The hyperthread-

ing pair of threads shares the L1 and L2 caches, and thus, these threads may either thrash or benefit

from each other depending on the characteristics of L1 and L2 caches (e.g., size, eviction policy), and

the elements accessed in each operation.

Considering the aforementioned non-straightforward behavior, we resort to a machine learning

approach as the basis of our prediction mechanism.

Decision Tree Classifier

We formulate the selection of the algorithmic mode as a classification problem, and leverage super-

vised learning techniques to train a simple classifier to predict the best-performing algorithmic mode

for each contention workload. For our classifier, we select decision trees, since they are commonly

used in classification models for multithreaded workloads [66, 74–77, 516–518], and incur low train-

ing and inference overhead. Moreover, they are easy to interpret and thus, be incorporated to our

proposed priority queue (Section 4.3.2). We generate the decision tree classifier using the scikit-learn

machine learning toolkit [519].

1) Class Definition: We define the following classes: (a) the NUMA-oblivious class that stands

for the NUMA-oblivious algorithmic mode, (b) the NUMA-aware class that stands for the NUMA-

aware algorithmic mode, and (c) the neutral class that stands for a tie, meaning that either a NUMA-

aware or a NUMA-oblivious implementation can be selected, since they achieve similar performance.

We include a neutral class for two reasons: (i) when using only one socket of a NUMA system, NUMA-

aware implementations deliver similar throughput with NUMA-oblivious implementations, and (ii)

in an adaptive data structure, which dynamically switches between the two algorithmic modes, we

want to configure a transition from one algorithmic mode to another to occur when the difference
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Feature Definition

#Threads
The number of active threads

that perform operations in the data structure

Size The current size of the priority queue

Key range The range of keys used in the workload

% insert/deleteMin The percentage of insert/deleteMin operations

Table 4.1: The features of the contention workload which are used for classification.

in their throughput is relatively high, i.e., greater than a certain threshold. Otherwise, the adaptive

data structure might continuously oscillate between the two modes, without delivering significant

performance improvements or even causing performance degradation.

2) Extracted Features: Table 4.1 explains the four features of the contention workload which are

used in our classifier targeting priority queues. We assume that the contention workload is known

a priori, and thus, we can easily extract the features needed for classification. Section 4.5 discusses

how to on-the-fly extract these features.

3) Generation of Training Data: To train our classifier, we develop microbenchmarks, in which

threads repeatedly execute random operations on the priority queue for 5 seconds. We select Nuddle,

as the NUMA-aware implementation, and alistarh herlihy, as its underlying NUMA-oblivious imple-

mentation, since this is the best-performing NUMA-oblivious priority queue (Section 4.4). We use a

variety of values for the features needed for classification (Table 4.1). Our training data set consists

of 5525 different contention workloads. Finally, we pin software threads to hardware contexts of the

evaluated NUMA system in a round-robin fashion, and thus, the classifier is trained with this thread

placement. We leave the exploration of the thread placement policy for future work.

4) Labeling of Training Data: Regarding the labeling of our training data set, we set the thresh-

old for tie between the two algorithmic modes to an empirical value of 1.5 Million operations per

second. When the difference in throughput between the two algorithmic modes is less than this

threshold, the neutral class is selected as label. Otherwise, we select the class that corresponds to the

algorithmic mode that achieves the highest throughput.

The final decision tree classifier has only 180 nodes, half of which are leaves. It has a very low

depth of 8, that is the length of the longest path in the tree, and thus, a very low traversal cost (2-4

ms in our evaluated NUMA system).

4.3.2 Implementation Details

Figure 4.8 presents the modified code of Nuddle adding the decision-making mechanism (using

green color) to implement SmartPQ. We extend the main structure of Nuddle, renamed to struct
smartpq , by adding an additional field, called algo , to keep track the current algorithmic mode,

(either NUMA-oblivious or NUMA-aware). Similarly, struct client and struct server struc-

tures are extended with an additional algo field (e.g., line 111), which is a pointer to the algo
field of struct smartpq . Each active thread initializes this pointer either in initClient() or
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t

141 struct smartpq {
142 nm oblv set ∗base pq;
143 int servers, groups, clnt per group;
144 int server cnt , clients cnt , group cnt;
145 cache line ∗requests[groups][clnt per group];
146 cache line ∗responses[groups];
147 lock ∗global lock;
148 int *algo; // 1: NUMA-oblivious (default), 2: NUMA-aware

149 };
150

151 struct client {
152 nm oblv set *base pq;

153 int *algo;

154 cache line ∗request, ∗response;
155 int clnt pos;
156 };
157

158 struct client ∗initClient(struct smartpq ∗pq) {
159 ... lines 40−49 of Fig. 5 ...
160 cl->base pq = pq->base pq;

161 cl->algo = &(pq->algo);

162 release lock(pq−>global lock);
163 return cl;
164 }
165

166 int insert client(struct client ∗cl, int key, float value) {
167 if(*(cl->algo) == 1) {
168 return base insert(cl->base pq,key,value);

169 } else { // *(cl->algo) == 2
170 ... lines 75−77 of Fig. 6 ...
171 }
172 }
173

174 void serve requests(struct server ∗srv) {
175 if(*(srv->algo) == 2){
176 for(i = 0; i < srv−>mygroups; i++) {
177 cache line resp;

178 for(j = 0; j < srv−>clnt per group; j++) {
179 key = srv−>my clients[i][j].key;
180 value = srv−>my clients[i][j].value;
181 if (srv−>my clients[i][j].op == "insert")
182 resp[j] = base insrt(srv−>base pq , key, value);
183 else if (srv−>my clients[i][j].op == "deleteMin")
184 resp[j] = base delMin(srv−>base pq);
185 }
186 srv−>my responses[i] = resp;
187 }
188 } else
189 return;

190 }
191

192 void decisionTree(struct server struct client ∗str, int nthreads ,
int size, int key range , double insert\ deleteMin) {

193 int algo = 0;

194 ... code for decision tree classifier ...

195 if (algo != 0) // 0: neutral

196 *(str->algo) = algo;

197 }

Figure 4.8: The modified code ofNuddle with the decision-making mechanism to implement SmartPQ.
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initServer() depending on its role (e.g., line 119). This way, all threads share the same algorith-

mic mode at any point in time. In struct client , we also add a pointer to the shared data struc-

ture (line 110), which is used by client threads to directly perform operations in the data structure

in case of NUMA-oblivious mode. Specifically, we modify the core functions of client threads, i.e.,

insert client() and deleteMin client() , such that client threads either directly execute their

operations in the data structure (e.g., line 126), or delegate them to server threads (e.g., line 127-128),

with respect to the current algorithmic mode. In contrast, the core functions of server threads do

not need any modification. Finally, we wrap the code of serve requests function, i.e., the lines

86-97 of Figure 4.6, with an if/else statement on the algo field (lines 133, 146 in Fig. 4.8), such that

server threads poll at client threads’ requests only in NUMA-aware mode. In NUMA-oblivious mode,

serve requests function returns without doing nothing. This way, programmers do not need to

take care of calls on this function in their code, when the NUMA-oblivious mode is selected.

The decisionTree() function describes the interface with our proposed decision tree classifier,

where the input arguments are associated with its features. In frequent time lapses, one or more

threads may call this function to check if a transition to another algorithmic mode is needed. If this is

the case, the algo field of struct smartpq is updated (line 154 in Fig. 4.8), and SmartPQ switches

algorithmic mode, i.e., all active threads start executing their operations using the new algorithmic

mode. If the classifier predicts the neutral class (line 153), the algo field is not updated, and thus

SmartPQ remains at the currently selected algorithmic mode.

4.4 Experimental Evaluation

In our experimental evaluation, we use a 4-socket Intel Sandy Bridge-EP server equipped with 8-core

Intel Xeon CPU E5-4620 processors providing a total of 32 physical cores and 64 hardware contexts.

The processor runs at 2.2GHz and each physical core has its own L1 and L2 cache of sizes 64KB and

256KB, respectively. A 16MB L3 cache is shared by all cores in a NUMA socket and the RAM is 256GB.

We use GCC 4.9.2 with -O3 optimization flag enabled to compile all implementations.

Our evaluation includes the following concurrent priority queue implementations:

– alistarh fraser [13, 48]: A NUMA-oblivious, relaxed priority queue [13] based on Fraser’s skip-

list [48] available at ASCYLIB library [340].

– alistarh herlihy [13, 14]: A NUMA-oblivious, relaxed priority queue [13] based on Herlihy’s skip-

list [14] available at ASCYLIB library [340].

– lotan shavit [55]: A NUMA-oblivious priority queue available at ASCYLIB library [340].

– ffwd [15]: A NUMA-aware priority queue based on the delegation technique [59–63], which in-

cludes only one server thread to perform operations on behalf of all client threads.

– Nuddle: Our proposed NUMA-aware priority queue, which uses alistarh herlihy as the underlying

base algorithm.

– SmartPQ: Our proposed adaptive priority queue, which uses Nuddle as the NUMA-aware mode,

and alistarh herlihy as the NUMA-oblivious base algorithm.

We evaluate the concurrent priority queue implementations in the following way:
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– Each execution lasts 5 seconds, during which each thread performs randomly chosen operations.

We also tried longer durations and got similar results.

– Between consecutive operations in the data structure each thread executes a delay loop of 25 pause

instructions. This delay is intentionally added in our benchmarks to better simulate a real-life

application, where operations in the data structure are intermingled with other instructions in the

application.

– At the beginning of each run, the priority queue is initialized with elements the number of which

is described at each figure.

– Each software thread is pinned to a hardware context. Hyperthreading is enabled when using

more than 32 software threads. When exceeding the number of available hardware contexts of the

system, we oversubscribe software threads to hardware contexts.

– We pin the first 8 threads to the first NUMA node, and consecutive client thread groups of 7 client

threads each, to NUMA nodes in a round-robin fashion.

– In NUMA-oblivious implementations, any allocation needed in the operation is executed on de-

mand, and memory affinity is determined by the first touch policy.

– In NUMA-aware implementations, since our NUMA system has 64-byte cache lines, the response

cache line is shared between up to 7 client threads, using 8-byte return values.

– In Nuddle, the first 8 threads represent server threads. Server threads repeatedly execute the

serve requests function, and then a randomly chosen operation until time is up.

– We have disabled the automatic Linux Balancing [520] to get consistent and stable results.

– All reported results are the average of 10 independent executions with no significant variance.

4.4.1 Throughput of Nuddle

Figure 4.9 presents the throughput achieved by concurrent priority queue implementations for var-

ious sizes and operation workloads. NUMA-aware priority queue implementations, i.e., ffwd and

Nuddle, achieve high throughput in deleteMin-dominated workloads: Nuddle performs best in all

deleteMin-dominated workloads, while ffwd outperforms NUMA-oblivious implementations in the

small-sized priority queues (e.g., 100K elements). In large-sized priority queues, insert operations

have a larger impact on the total execution time (due to a longer traversal), and thus Nuddle and

NUMA-oblivious implementations perform better than ffwd, since they provide higher thread-level

parallelism. Note that ffwd has single-threaded performance, since at any point in time only one

(server) thread performs operations in the data structure. Moreover, as it is expected, the perfor-

mance of both ffwd and Nuddle saturates at the number of server threads used (e.g., 8 server threads

for Nuddle) to perform operations in the data structure. Finally, we note that the communication

between server and client threads used in NUMA-aware implementations has negligible overhead;

when the number of client threads increases, even though the communication traffic over the in-

terconnect increases, there is no performance drop. Overall, we conclude that Nuddle achieves the

highest throughput in all deleteMin-dominated workloads, and is the most efficient NUMA-aware

approach, since it provides high thread-level parallelism.
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Figure 4.9: Throughput of concurrent priority queue implementations. The columns show different

priority queue sizes using the key range of double the elements of each size. The rows show different

operation workloads. The vertical line in each plot shows the point after which we oversubscribe

software threads to hardware contexts.

On the other hand, NUMA-oblivious implementations incur high performance degradation in

high-contention scenarios, such as deleteMin-dominated workloads, when using more than one NUMA

node (i.e., after 8 threads). As already discussed in prior works [5,16,61,521–523], the non-uniformity

in memory accesses and cache line invalidation traffic significantly affects performance in high-

contention scenarios. In insert-dominated workloads, which incur lower contention, even though

lotan shavit priority queue still incurs performance degradation when using more than one NUMA

nodes of the system, the relaxed NUMA-oblivious implementations, i.e., alistarh fraser and alis-

tarh herlihy priority queues, achieve high scalability. This is because relaxed priority queues decrease

both (i) the contention among threads, and (ii) the cache line invalidation traffic: the deleteMin op-

eration returns (with a high probability) an element among the first few (high-priority) elements of

the queue, and thus, threads do not frequently compete for the same elements. Finally, we observe

that alistarh herlihy priority queue achieves higher performance benefits over alistarh fraser prior-

ity queue, when we oversubscribe software threads to the available hardware contexts of our system.

Overall, we find that in insert-dominated workloads, the relaxed NUMA-oblivious implementations

significantly outperform the NUMA-aware ones.

To sum up, we conclude that there is no one-size-fits-all solution, since none of the priority queues

performs best across all contention workloads. Nuddle achieves the highest throughput in high con-
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tention scenarios, while alistarh herlihy performs best in low and medium contention scenarios. It

is thus desirable to design a new approach for a concurrent priority queue to perform best under all

various contention scenarios.

4.4.2 Throughput of SmartPQ

Classifier Accuracy

We evaluate the efficiency of our proposed classifier (Section 4.3.1) using two metrics: (i) accuracy,

and (ii) misprediction cost. First, we define the accuracy of the classifier as the percentage of correct

predictions, where a prediction is considered correct, if the classifier predicts the algorithmic mode

(either the NUMA-aware Nuddle or the NUMA-oblivious alistarh herlihy) that achieves the best per-

formance between the two. We use a test set of 10780 different contention workloads, where we ran-

domly select the values of the features in each workload. In the above test set, our classifier has 87.9%

accuracy, i.e., it mispredicts 1300 times in 10780 different contention workloads. Second, we define

the misprediction cost as the performance difference between the correct (best-performing) algorith-

mic mode and the wrong predicted mode, normalized to the performance of the wrong predicted

mode. Specifically, assuming the throughput of the wrong predicted and correct (best-performing)

algorithmic mode is Y and X respectively, the misprediction cost is defined as ((X−Y )/Y )∗ 100%.

In 1300 mispredicted workloads, the geometric mean of misprediction cost for our classifier is 30.2%.

We conclude that the proposed classifier has high accuracy, and in case of misprediction, incurs low

performance degradation.

Varying the Contention Workload

We present the performance benefit of SmartPQ in synthetic benchmarks, in which we vary the

contention workload over time, and compare it with Nuddle and its underlying base algorithm, i.e.,

alistarh herlihy priority queue. In all benchmarks, we change the contention workload every 25

seconds. In SmartPQ, we set one dedicated sever thread to call the decision tree classifier every second,

in order to check if a transition to another algorithmic mode is needed. Figure 4.10 and Figure 4.11

show the throughput achieved by all three schemes, when we vary one and multiple features in the

contention workload, respectively. Table 4.2 and Table 4.3 show the features of the workload as they

vary during the execution for the benchmarks evaluated in Figure 4.10 and Figure 4.11, respectively.

Note that the current size of the priority queue changes during the execution due to successful insert

and deleteMin operations.

We make three observations. First, as already shown in Section 4.4.1, there is no one-size-fits-

all solution, since neither Nuddle nor alistarh herlihy performs best across all various contention

workloads. For instance, in Figure 4.10b, even though the performance of Nuddle remains constant,

it outperforms alistarh herlihy, when having 15 running threads, i.e., using 2 NUMA nodes of the

system. Second, we observe that SmartPQ successfully adapts to the best-performing algorithmic

mode, and performs best in all contention scenarios. In Figure 4.11, even when multiple features in the
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Time (sec) Current Size Key Range Number of Threads Insert - DeleteMin (%)

0 1149 100K 50 75-25

25 812 2K 50 75-25

50 485 1M 50 75-25

75 2860 10K 50 75-25

100 2256 50M 50 75-25

(a) Varying the key range in the workload.

Time (sec) Current Size Key Range Number of Threads Insert - DeleteMin (%)

0 1166 20M 57 65-35

25 15567 20M 29 65-35

50 15417 20M 15 65-35

75 15297 20M 43 65-35

100 15346 20M 15 65-35

(b) Varying the number of threads that perform operations in the data structure.

Time (sec) Current Size Key Range Number of Threads Insert - DeleteMin (%)

0 1M 5M 22 50-50

25 140 5M 22 100-0

50 7403 5M 22 30-70

75 962 5M 22 100-0

100 8236 5M 22 0-100

(c) Varying the percentage of insert/deleteMin operations.

Table 4.2: Features of the contention workload for benchmarks evaluated in Figure 4.10. We use bold

font on the features that change in each execution phase.
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(b) Varying the number of threads.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

0

5

10

15

20

25

30

35

40

Key Range = 5M, Number of Threads = 22

alistarh_herlihy Nuddle SmartPQ

Time (sec)

T
hr

o
ug

hp
ut

 (
M

o
p

s/
se

c)

(c) Varying the operation

workload.

Figure 4.10: Throughput achieved by SmartPQ, Nuddle and its underlying base algorithm (alis-

tarh herlihy), in synthetic benchmarks, in which we vary a) the key range, b) the number of threads

that perform operations in the data structure, and c) the percentage of insert/deleteMin operations in

the workload.

contention workload vary during the execution, SmartPQ outperforms alistarh herlihy and Nuddle

by 1.87× and 1.38× on average, respectively. Note that any of the contention workloads evaluated in

Figures 4.10 and 4.11 belongs in the training data set used for training our classifier. Third, we note

that the decision-making mechanism of SmartPQ has very low performance overheads. Across all
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evaluated benchmarks, SmartPQ achieves only up to 5.3% performance slowdown (i.e., when using a

range of 50M keys in Figure 4.10a) over the corresponding baseline implementation (alistarh herlihy

priority queue). Note that since the proposed decision tree classifier has very low traversal cost

(Section 4.3.1), we intentionally set a frequent time interval (i.e., one second) for calling the classifier,

such that SmartPQ detects the contention workload change on time, and quickly adapts itself to the

best-performing algorithmic mode. We also tried large time intervals, and observed that SmartPQ

slightly delays to detect the contention workload change, thus achieving lower throughput in the

transition points.

Overall, we conclude that SmartPQ performs best across all contention workloads and at any

point in time, and incurs negligible performance overheads over the corresponding baseline imple-

mentation.

Time (sec) Current Size Key Range Number of Threads Insert - DeleteMin (%)

0 1M 10M 57 50-50

25 26 10M 36 70-30

50 12 20M 36 50-50

75 79 20M 36 80-20

100 29K 20M 50 80-20

125 319K 100M 50 50-50

150 13 100M 57 50-50

175 524K 100M 22 100-0

200 524K 100M 22 50-50

225 1142 100M 22 50-50

250 463 200M 57 0-100

275 253 200M 57 100-0

300 33K 20M 57 0-100

325 142 20M 29 80-20

350 25K 20M 29 50-50

Table 4.3: Features of the contention workload for benchmarks evaluated in Figure 4.11. We use bold

font on the features that change in each execution phase.
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Figure 4.11: Throughput achieved by SmartPQ, Nuddle and its underlying base algorithm (alis-

tarh herlihy), in synthetic benchmarks, in which we vary multiple features in the contention work-

load.
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4.5 Discussion and Future Work

In Section 4.3.1, we assume that the contention workload is known a priori to extract the features

needed for classification. To on-the-fly extract these features, and dynamically detect when con-

tention changes, the main structure of SmartPQ, i.e., struct smartpq , needs to be enriched with

additional fields to keep track of workload statistics (e.g., the number of completed insert/deleteMin

operations, the number of active threads that perform operations on the data structure, the minimum

and/or maximum key that has been requested so far). Active threads that perform operations on the

data structure could atomically update these statistics. In frequent time lapses, either a background

thread or an active thread could extract the features needed for classification based on the work-

load statistics, and call the classifier to predict if a transition to another algorithmic mode is needed.

Finally, an additional parameter could be also added in SmartPQ to configure how often to collect

workload statistics.

In our experimental evaluation, we pin server threads on a single NUMA node and client threads

on all nodes. We have chosen to do so (i) for simplicity, given that this approach fits well with our

microbenchmark-based evaluation, and (ii) because this is par with prior works on concurrent data

structures [13, 15, 37, 39, 45, 52, 54, 64, 314, 339, 340, 344, 524–527]. In a real-world scenario, where

SmartPQ is used as a part of a high-level application, client threads do not need to be pinned in

hardware contexts, and they can be allowed to run in any core of the system. However, for our

approach to be meaningful server threads need to be limited on a single NUMA node. This can easily

be done by creating the server threads when SmartPQ is initialized, and pinning them to hardware

contexts that are located at the same NUMA node. In this case, server threads are background threads

that only accept and serve requests from various client threads, which are part of the high-level

application.

Finally, even though we focus on a microbenchmark-based evaluation to cover a wide variety

of contention scenarios, it is one of our future directions to explore the efficiency of SmartPQ in

real-world applications, such as web servers [528, 529], graph traversal applications [37, 353] and

scheduling in operating systems [530]. As future work, we also aim to investigate the applicability of

our approach in other data structures, that may have similar behavior with priority queues (e.g., skip

lists, search trees), and extend our proposed classifier (e.g., adding more features) to cover a variety

of NUMA CPU-centric systems with different architectural characteristics.

4.6 Recommendations

Recommendation. Design adaptive parallel algorithms and concurrent data structures that on-the-fly

adjust their parallelization approach and synchronization scheme depending on the dynamic workload

demands and contention.

Our work demonstrates (Figures 4.1 and 4.7) that there is no one-size-fits-all algorithmic mode (be-

tween NUMA-oblivious and NUMA-aware) for a concurrent priority queue in modern computing

systems: the best-performing algorithmic mode depends on multiple characteristics, including the
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contention/operation workload, the size of the data structure and the underlying hardware plat-

form [4]. Such characteristics can dynamically change during runtime, when performing various

operations (e.g., insert, deleteMin) in the data structures used. Therefore, we conclude that to achieve

high system performance in real-world scenarios, we need to dynamically tune the configuration of

parallel kernels based on the characteristics of the current load at each time. To this end, we recom-

mend that software designers propose adaptive parallel algorithms and concurrent data structures

that dynamically adjust their parallelization technique and synchronization approach depending on

the dynamic contention and workload demands. For example, machine learning, dynamic profiling

and statistical approaches [4,285,531] could be integrated in parallel kernels to improve performance.

4.7 Related Work

To our knowledge, this is the first work to propose an adaptive priority queue for NUMA systems,

which performs best under all various contention workloads, and even when contention varies over

time. We briefly discuss prior work.

Concurrent Priority Queues. A large corpus of work proposes concurrent algorithms for pri-

ority queues [13, 37–46, 55, 56], or generally for skip lists [14, 47–54]. Recent works [55, 56] designed

lock-free priority queues that separate the logical and the physical deletion of an element to increase

parallelism. Alistarh et al. [13] design a relaxed priority queue, called SprayList, in which deleteMin

operation returns with a high probability, an element among the first O(p log 3p) elements of the

priority queue, where p is the number of threads. Sagonas et al [45] design a contention avoiding

technique, in which deleteMin operation returns the highest-priority element of the priority queue

under low contention, while it enables relaxed semantics when high contention is detected. Specif-

ically, under high-contention a few deleteMin operations are queued, and later several elements are

deleted from the head of the queue at once via a combined deletion operation. Heidarshenas et al. [472]

design a novel architecture for relaxed priority queues. These prior approaches are NUMA-oblivious

implementations. Thus, in NUMA systems, they incur significant performance degradation in high-

contention scenarios (e.g., deleteMin-dominated workloads in Section 4.4.1). In contrast, Calciu et

al. [39] propose a NUMA-friendly priority queue employing the combining and elimination tech-

niques. Elimination allows the complementary operations, i.e., insert with deleteMin, to complete

without updating the data structure, while combining is a technique similar to the delegation tech-

nique [59–63] of Nuddle and ffwd [15]. Finally, Daly et al. [339] propose an efficient technique to

obtain NUMA-aware skip lists, which however, can only be applied to skip list-based data structures.

In contrast, Nuddle is a generic technique to obtain NUMA-aware data structures.

Black-Box Approaches. Researchers have also proposed black-box approaches: any data struc-

ture can be made wait-free or NUMA-aware without effort or knowledge on parallel programming or

NUMA architectures. Herlihy [532] provides a universal method to design wait-free implementations

of any sequential object. However, this method remains impractical due to high overheads. Hendler

et al. [57] propose flat combining; a technique to reduce synchronization overheads by executing mul-

tiple client threads’ requests at once. Despite significant improvements [58], this technique provides
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high performance only for a few data structures (e.g., synchronous queues). ffwd [15] is black-box ap-

proach, which uses the delegation technique [59–63] to eliminate cache line invalidation traffic over

the interconnect. However, ffwd is limited to single threaded performance. Calciu et al. [64] propose

a black-box technique, named Node Replication, to obtain concurrent NUMA-aware data structures.

In Node Replication, every NUMA node has replicas of the shared data structure, which are syn-

chronized via a shared log. Even though ffwd and Node Replication are generic techniques to obtain

NUMA-aware data structures, similarly to Nuddle, both of them use a serial asynchronized implemen-

tation as the underlying base algorithm. Therefore, if they are used as the NUMA-aware algorithmic

mode in an adaptive data structure, which dynamically tunes itself between a NUMA-oblivious and

a NUMA-aware mode, both ffwd and Node Replication need a synchronization point between tran-

sitions to ensure correctness. Consequently, they would incur high performance overheads, when

transitions between algorithmic modes happen at a non-negligible frequency.

Machine Learning in Data Structures. Even though machine learning is widely used to im-

prove performance in many emerging applications [66–78], there are a handful of works [65,79] that

leverage machine learning to design highly-efficient concurrent data structures. Recently, Eastep

et al. [79] use reinforcement learning to on-the-fly tune a parameter in the flat combining tech-

nique [57, 58], which is used in skip lists and priority queues. Kraska et al. [65] demonstrate that

machine learning models can be trained to predict the position or existence of elements in key-value

lookup sets, and discuss under which conditions learned index models can outperform the traditional

indexed data structures (e.g., B-trees).

4.8 Summary

We propose SmartPQ, an adaptive concurrent priority queue for NUMA architectures, which performs

best under all various contention scenarios, and even when contention varies over time. SmartPQ has

two key components. First, it is built on top of Nuddle; a generic low-overhead technique to obtain

efficient NUMA-aware data structures using any concurrent NUMA-oblivious implementation as its

backbone. Second, SmartPQ integrates a lightweight decision-making mechanism, which is based

on a simple decision tree classifier, to decide when to switch between Nuddle, i.e., a NUMA-aware

algorithmic mode, and its underlying base algorithm, i.e., a NUMA-oblivious algorithmic mode. Our

evaluation over a wide range of contention scenarios demonstrates that SmartPQ switches between

the two algorithmic modes with negligible overheads, and significantly outperforms prior schemes,

even when contention varies over time. We conclude that SmartPQ is an efficient concurrent priority

queue for NUMA systems, and hope that this work encourages further study on adaptive concurrent

data structures for NUMA architectures.
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CHAPTER5

SynCron

5.1 Overview

Recent advances in 3D-stacked memories [354–359] have renewed interest in Near-Data Process-

ing (NDP) [135, 191, 258, 360]. NDP involves performing computation close to where the applica-

tion data resides. This alleviates the expensive data movement between processors and memory,

yielding significant performance improvements and energy savings in parallel applications. Plac-

ing low-power cores or special-purpose accelerators (hereafter called NDP cores) close to the mem-

ory dies of high-bandwidth 3D-stacked memories is a commonly-proposed design for NDP sys-

tems [135,138,139,188,189,191–193,196,197,200,201,203,204,206,207,254–257,308,360–369]. Typical

NDP architectures support several NDP units connected to each other, with each unit comprising

multiple NDP cores close to memory [135, 206, 207, 308, 362, 368, 369]. Therefore, NDP architectures

provide high levels of parallelism, low memory access latency, and large aggregate memory band-

width.

Recent research demonstrates the benefits of NDP for parallel applications, e.g., for genome anal-
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ysis [189, 201], graph processing [135, 191–193, 203, 206, 207], databases [193, 204], security [198],

pointer-chasing workloads [54, 199, 200, 374], and neural networks [256, 308, 363, 364]. In general,

these applications exhibit high parallelism, low operational intensity, and relatively low cache local-

ity [141, 370–373], which make them suitable for NDP.

Prior works discuss the need for efficient synchronization primitives in NDP systems, such as

locks [54, 374] and barriers [135, 196, 206, 207]. Synchronization primitives are widely used by multi-

threaded applications [1, 4, 63, 88, 202, 375–379], and must be carefully designed to fit the underlying

hardware requirements to achieve high performance. Therefore, to fully leverage the benefits of NDP

for parallel applications, an effective synchronization solution for NDP systems is necessary.

Approaches to support synchronization are typically of two types [380, 381]. First, synchroniza-

tion primitives can be built through shared memory, most commonly using the atomic read-modify-

write (rmw) operations provided by hardware. In CPU systems, atomic rmw operations are typi-

cally implemented upon the underlying hardware cache coherence protocols, but many NDP sys-

tems do not support hardware cache coherence (e.g., [135, 139, 206, 207, 369]). In GPUs and Mas-

sively Parallel Processing systems (MPPs), atomic rmw operations can be implemented in dedicated

hardware atomic units, known as remote atomics. However, synchronization using remote atomics

has been shown to be inefficient, since sending every update to a fixed location creates high global

traffic and hotspots [132, 382–385]. Second, synchronization can be implemented via a message-

passing scheme, where cores exchange messages to reach an agreement. Some recent NDP works

(e.g., [135,196,207,386]) propose message-passing barrier primitives among NDP cores of the system.

However, these synchronization schemes are still inefficient, as we demonstrate in Section 5.6, and

also lack support for lock, semaphore and condition variable synchronization primitives.

Hardware synchronization techniques that do not rely on hardware coherence protocols and

atomic rmw operations have been proposed for multicore systems [287–289,291–293,295,296]. How-

ever, such synchronization schemes are tailored for the specific architecture of each system, and are

not efficient or suitable for NDP systems (Section 5.8). For instance, CM5 [296] provides a barrier

primitive via a dedicated physical network, which would incur high hardware cost to be supported

in large-scale NDP systems. LCU [295] adds a control unit to each CPU core and a buffer to each

memory controller, which would also incur high cost to implement in area-constrained NDP cores

and controllers. SSB [288] includes a small buffer attached to each controller of the last level cache

(LLC) and MiSAR [287] introduces an accelerator distributed at the LLC. Both schemes are built on

the shared cache level in CPU systems, which most NDP systems do not have. Moreover, in NDP

systems with non-uniform memory access times, most of these prior schemes would incur significant

performance overheads under high-contention scenarios. This is because they are oblivious to the

non-uniformity of NDP, and thus would cause excessive traffic across NDP units of the system upon

contention (Section 5.6.7).

Overall, NDP architectures have several important characteristics that necessitate a new approach

to support efficient synchronization. First, most NDP architectures [54,135,138,139,188,196,197,200,

204, 206, 207, 255–257, 308, 360, 361, 363, 386] lack shared caches that can enable low-cost commu-

nication and synchronization among NDP cores of the system. Second, hardware cache coherence
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protocols are typically not supported in NDP systems [54, 135, 138, 188, 196, 197, 200, 204, 206, 207,

255, 256, 308, 361, 363, 364, 386], due to high area and traffic overheads associated with such proto-

cols [139, 369]. Third, NDP systems are non-uniform, distributed architectures, in which inter-unit

communication is more expensive (both in performance and energy) than intra-unit communica-

tion [135, 192, 193, 196, 204, 206, 207, 368].

In this work, we present SynCron, an efficient synchronization mechanism for NDP architectures.

SynCron is designed to achieve the goals of performance, cost, programming ease, and generality to

cover a wide range of synchronization primitives through four key techniques. First, we offload syn-

chronization among NDP cores to dedicated low-cost hardware units, called Synchronization Engines

(SEs). This approach avoids the need for complex coherence protocols and expensive rmw operations,

at low hardware cost. Second, we directly buffer the synchronization variables in a specialized cache

memory structure to avoid costly memory accesses for synchronization. Third, SynCron coordinates

synchronization with a hierarchical message-passing scheme: NDP cores only communicate with

their local SE that is located in the same NDP unit. At the next level of communication, all local SEs

of the system’s NDP units communicate with each other to coordinate synchronization at a global

level. Via its hierarchical communication protocol, SynCron significantly reduces synchronization

traffic across NDP units under high-contention scenarios. Fourth, when applications with frequent

synchronization oversubscribe the hardware synchronization resources, SynCron uses an efficient

and programmer-transparent overflow management scheme that avoids costly fallback solutions and

minimizes overheads.

We evaluate SynCron using a wide range of parallel workloads including pointer-chasing, graph

applications, and time series analysis. Over prior approaches (similar to [135,196]), SynCron improves

performance by 1.27× on average (up to 1.78×) under high-contention scenarios, and by 1.35× on

average (up to 2.29×) under low-contention scenarios. In real applications with fine-grained syn-

chronization, SynCron comes within 9.5% of the performance and 6.2% of the energy of an ideal

zero-overhead synchronization mechanism. Our proposed hardware unit incurs very modest area

and power overheads (Section 5.6.8) when integrated into the compute die of an NDP unit.

The main contributions of this work are:

• We investigate the challenges of providing efficient synchronization in Near-Data-Processing

architectures, and propose an end-to-end mechanism, SynCron, for such systems.

• We design low-cost synchronization units that coordinate synchronization across NDP cores,

and directly buffer synchronization variables to avoid costly memory accesses to them. We pro-

pose an efficient message-passing synchronization approach that organizes the process hierar-

chically, and provide a hardware-only programmer-transparent overflow management scheme

to alleviate performance overheads when hardware synchronization resources are exceeded.

• We evaluate SynCron using a wide range of parallel workloads and demonstrate that it signif-

icantly outperforms prior approaches both in performance and energy consumption. SynCron

also has low hardware area and power overheads.
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5.2 Background and Motivation

5.2.1 Baseline Architecture

Numerous works [54, 135, 191–193, 196, 198, 200, 203, 204, 206, 207, 256, 276, 308, 364, 369, 374, 386, 418]

show the potential benefit of NDP for parallel, irregular applications. These proposals focus on the

design of the compute logic that is placed close to or within memory, and in many cases provide

special-purpose near-data accelerators for specific applications. Figure 5.1 shows the baseline orga-

nization of the NDP architecture we assume in this work, which includes several NDP units connected

with each other via serial interconnection links to share the same physical address space. Each NDP

unit includes the memory arrays and a compute die with multiple low-power programmable cores

or fixed-function accelerators, which we henceforth refer to as NDP cores. NDP cores execute the

offloaded NDP kernel and access the various memory locations across NDP units with non-uniform

access times [135, 192, 193, 204, 206, 207, 369]. We assume that there is no OS running in the NDP

system. In our evaluation, we use programmable in-order NDP cores, each including small private

L1 I/D caches. However, SynCron can be used with any programmable, fixed-function or reconfig-

urable NDP accelerator. We assume software-assisted cache-coherence (provided by the operating

system or the programmer), similar to [196,369]: data can be either thread-private, shared read-only,

or shared read-write. Thread-private and shared read-only data can be cached by NDP cores, while

shared read-write data is uncacheable.

NDP 
Architecture

NDP Unit

Interconnection Link

Compute Die

NDP Core

NDP Core

NDP Core

Programmable
Accelerator

Cache

...

Memory 
Arrays

Figure 5.1: High-level organization of an NDP architecture.

We focus on three characteristics of NDP architectures that are of particular importance in the

synchronization context. First, NDP architectures typically do not have a shared level of cache

memory [54, 135, 138, 139, 188, 196, 197, 200, 204, 206, 207, 255–257, 308, 360, 361, 363, 386], since the

NDP-suited workloads usually do not benefit from deep cache hierarchies due to their poor local-

ity [196, 369, 370, 373]. Second, NDP architectures do not typically support conventional hardware

cache coherence protocols [54, 135, 138, 188, 196, 197, 200, 204, 206, 207, 255, 256, 308, 361, 363, 364, 386],

because they would add area and traffic overheads [139, 369], and would incur high complexity and

latency [133], limiting the benefits of NDP. Third, communication across NDP units is expensive,

because NDP systems are non-uniform distributed architectures. The energy and performance costs
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of inter-unit communication are typically orders of magnitude greater than the costs of intra-unit

communication [135, 192, 193, 196, 204, 206, 207, 368], and thus inter-unit communication may slow

down the execution of NDP cores [206].

5.2.2 The Solution Space for Synchronization

Approaches to support synchronization are typically either via shared memory or message-passing

schemes.

Synchronization via Shared Memory

In this case, cores coordinate via a consistent view of shared memory locations, using atomic read-

/write operations or atomic read-modify-write (rmw) operations. If rmw operations are not sup-

ported by hardware, Lamport’s bakery algorithm [533] can provide synchronization to N partici-

pating cores, assuming sequential consistency [534]. However, this scheme scales poorly, as a core

accesses O(N) memory locations at each synchronization retry. In contrast, commodity systems

(CPUs, GPUs, MPPs) typically support rmw operations in hardware.

GPUs and MPPs support rmw operations in specialized hardware units (known as remote atomics),

located in each bank of the shared cache [535, 536], or the memory controllers [303, 474]. Remote

atomics are also supported by an NDP work [196] at the vault controllers of Hybrid Memory Cube

(HMC) [355, 357]. Implementing synchronization primitives using remote atomics requires a spin-

wait scheme, i.e., executing consecutive rmw retries. However, performing and sending every rmw

operation to a shared, fixed location can cause high global traffic and create hotspots [132, 382–385].

In NDP systems, consecutive rmw operations to a remote NDP unit would incur high traffic across

NDP units, with high performance and energy overheads.

Commodity CPU architectures support rmw operations either by locking the bus (or equiva-

lent link), or by relying on the hardware cache coherence protocol [537, 538], which many NDP

architectures do not support. Therefore, coherence-based synchronization [522, 539–549] cannot

be directly implemented in NDP architectures. Moreover, based on prior works on synchroniza-

tion [16, 375, 521, 523, 550, 551], coherence-based synchronization would exhibit low scalability on

NDP systems for two reasons. First, it performs poorly with a large number of cores, due to low

scalability of conventional hardware coherence protocols [537,552–554]. Most NDP systems include

several NDP units [135, 206, 207, 368], each typically supporting hundreds of small, area-constrained

cores [135, 206, 207, 308]. Second, the non-uniformity in memory accesses significantly affects the

scalability of coherence-based synchronization [16, 521–523]. Prior work on coherence-based syn-

chronization [16] observes that the latency of a lock acquisition that needs to transfer the lock across

NUMA sockets can be up to 12.5× higher than that within a socket. We expect such effects to be

aggravated in NDP systems, since they are by nature non-uniform and distributed [135, 192, 193, 196,

204, 206, 207, 368] with very low memory access latency within an NDP unit.

We validate these observations on both a real CPU and our simulated NDP system. On an In-

tel Xeon Gold server, we evaluate the operation throughput achieved by two coherence-based lock
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Million Operations 1 thread 14 threads 2 threads 2 threads

per Second single-socket single-socket same-socket different-socket

TTAS lock [540] 8.92 2.28 9.91 4.32

Hierarchical Ticket lock [542] 8.06 2.91 9.01 6.79

Table 5.1: Throughput of two coherence-based lock algorithms on an Intel Xeon Gold server using

the libslock library [16].

algorithms (Table 5.1), i.e., TTAS [540] and Hierarchical Ticket Lock (HTL) [542], using a microbench-

mark taken from the libslock library [16]. When increasing the number of threads from 1 to 14 within

a single socket, throughput drops by 3.91× and 2.77× for TTAS and HTL, respectively. Moreover,

when pinning two threads on different NUMA sockets, throughput drops by up to 2.29× over when

pinning them on the same socket, due to non-uniform memory access times of lock variables.

In our simulated NDP system, we evaluate the performance achieved by a stack data structure

protected with a coarse-grained lock. Figure 5.2 shows the slowdown of the stack when using a

coherence-based lock [380] (mesi-lock), implemented upon a MESI directory coherence protocol, over

using an ideal lock with zero cost for synchronization (ideal-lock). First, we observe that the high

contention for the cache line containing the mesi-lock and the resulting coherence traffic inside the

network significantly limit scalability of the stack as the number of cores increases. With 60 NDP

cores within a single NDP unit (Figure 5.2a), the stack with mesi-lock incurs 2.03× slowdown over

ideal-lock. Second, we notice that the non-uniform memory accesses to the cache line containing

the mesi-lock also impact the scalability of the stack. When increasing the number of NDP units

while keeping total core count constant at 60 (Figure 5.2b), the slowdown of the stack with mesi-lock

increases to 2.66× (using 4 NDP units) over ideal-lock. In non-uniform NDP systems, the scalability of

coherence-based synchronization is severely limited by the long transfer latency and low bandwidth

of the interconnect used between the NDP units.
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Figure 5.2: Slowdown of a stack data structure using a coherence-based lock over using an ideal zero-

cost lock, when varying (a) the NDP cores within a single NDP unit and (b) the number of NDP units

while keeping core count constant at 60.

Message-passing Synchronization

In this approach, cores coordinate with each other by exchanging messages (either in software or

hardware) in order to reach an agreement. For instance, a recent NDP work [135] implements a

barrier primitive via hardware message-passing communication among NDP cores, i.e., one core of
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the system works as a master core to collect the synchronization status of the rest. To improve

system performance in non-uniform HMC-based NDP systems, Gao et al. [196] propose a tree-style

barrier primitive, where cores exchange messages to first synchronize within a vault, then across

the vaults of an HMC cube, and finally across HMC cubes. In general, optimized message-passing

synchronization schemes proposed in the literature [196, 291, 381, 555–557] aim to minimize (i) the

number of messages sent among cores, and (ii) expensive network traffic. To avoid the major issues

of synchronization via shared memory described above, we design our approach building on the

message-passing synchronization concept.

5.3 SynCron: Overview

SynCron is an end-to-end solution for synchronization in NDP architectures that improves perfor-

mance, has low cost, eases programmability, and supports multiple synchronization primitives. Syn-

Cron relies on the following key techniques:

1. Hardware support for synchronization acceleration: We design low-cost hardware units,

called Synchronization Engines (SEs), to coordinate the synchronization among NDP cores of the

system. SEs eliminate the need for complex cache coherence protocols and expensive rmw operations,

and incur modest hardware cost.

2. Direct buffering of synchronization variables: We add a specialized cache structure, the

Synchronization Table (ST), inside an SE to keep synchronization information. Such direct buffer-

ing avoids costly memory accesses for synchronization, and enables high performance under low-

contention scenarios.

3. Hierarchical message-passing communication: We organize the communication hierarchi-

cally, with each NDP unit including an SE. NDP cores communicate with their local SE that is lo-

cated in the same NDP unit. SEs communicate with each other to coordinate synchronization at a

global level. Hierarchical communication minimizes expensive communication across NDP units, and

achieves high performance under high-contention scenarios.

4. Integrated hardware-only overflow management: We incorporate a hardware-only overflow

management scheme to efficiently handle scenarios when ST is fully occupied. This programmer-

transparent technique effectively limits performance degradation under overflow scenarios.

5.3.1 Overview of SynCron

Figure 5.3 provides an overview of our approach. SynCron exposes a simple programming interface

such that programmers can easily use a variety of synchronization primitives in their multithreaded

applications when writing them for NDP systems. The interface is implemented using two new in-

structions that are used by NDP cores to communicate synchronization requests to SEs. These are

general enough to cover all semantics for the most widely used synchronization primitives.

We add one SE in the compute die of each NDP unit. For a particular synchronization variable

allocated in an NDP unit, the SE that is physically located in the same NDP unit is considered the
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Figure 5.3: High-level overview of SynCron.

Master SE. In other words, the Master SE is defined by the address of the synchronization variable. It

is responsible for the global coordination of synchronization on that variable, i.e., among all SEs of

the system. All other SEs are responsible only for the local coordination of synchronization among

the cores in the same NDP unit with them.

NDP cores act as clients that send requests to SEs via hardware message-passing. SEs act as

servers that process synchronization requests. In the proposed hierarchical communication, NDP

cores send requests to their local SEs, while SEs of different NDP units communicate with the Master

SE of the specific variable, to coordinate the process at a global level, i.e., among all NDP units.

When an SE receives a request from an NDP core for a synchronization variable, it directly buffers

the variable in its ST, keeping all the information needed for synchronization in the ST. If the ST is

full, we use the main memory as a fallback solution. To hierarchically coordinate synchronization via

main memory in ST overflow cases, we design (i) a generic structure, called syncronVar, to keep track

of required synchronization information, and (ii) specialized overflow messages to be sent among SEs.

The hierarchical communication among SEs is implemented via corresponding support in message

encoding, the ST, and syncronVar structure.

5.3.2 SynCron’s Operation

SynCron supports locks, barriers, semaphores, and condition variables. Here, we present SynCron’s

operation for locks. SynCron has similar behavior for the other three primitives.

Lock Synchronization Primitive: Figure 5.4 shows a system composed of two NDP units with two

NDP cores each. In this example, all cores request and compete for the same lock. First, all NDP cores

send local lock acquire messages to their SEs 1 . After receiving these messages, each SE keeps track

of its requesting cores by reserving one new entry in its ST, i.e., directly buffering the lock variable

in ST. Each ST entry includes a local waiting list (i.e., a hardware bit queue with one bit for each

local NDP core), and a global waiting list (i.e., a bit queue with one bit for each SE of the system). To

keep track of the requesting cores, each SE sets the bits corresponding to the requesting cores in the

local waiting list of the ST entry. When the local SE receives a request for a synchronization variable

for the first time, it sends a global lock acquire message to the Master SE 2 , which in turn sets the

corresponding bit in the global waiting list in its ST. This way, theMaster SE keeps track of all requests

to a particular variable coming from an SE, and can arbitrate between different SEs. The local SE can
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Figure 5.4: An example execution scenario for a lock requested by all NDP cores.

then serve successive local requests to the same variable until there are no other local requests. By

using the proposed hierarchical communication protocol, the cores send local messages to their local

SE, and the SE needs to send only one aggregated message, on behalf of all its local waiting cores,

to the Master SE. As a result, we reduce the need for communication through the narrow, expensive

links that connect different NDP units.

The Master SE first prioritizes the local waiting list, granting the lock to its own local NDP cores

in sequence (e.g., to NDP Core 0 first 3 , and to NDP Core 1 next 4 in Figure 5.4). At the end of the

critical section, each local lock owner sends a lock release message to its SE in order to release the

lock. When there are no other local requests, the Master SE transfers the control of the lock to the SE

of another NDP unit based on its global waiting list 5 . Then, the local SE grants the lock to its local

NDP cores in sequence (e.g., 6 , 7 ). After all local cores release the lock, the SE sends an aggregated

global lock release message to the Master SE 8 and releases its ST entry. When the message arrives

at the Master SE, if there are no other pending requests to the same variable, the Master SE releases

its ST entry. In this example, SEs directly buffer the lock variable in their STs. If an ST is full, the

Master SE globally coordinates synchronization by keeping track of all required information in main

memory 9 , via our proposed overflow management scheme (Section 5.4.3).

5.4 SynCron: Detailed Design

SynCron leverages the key observation that all synchronization primitives fundamentally communi-

cate the same information, i.e., a waiting list of cores that participate in the synchronization process,

and a condition to be met to notify one or more cores. Based on this observation, we design SynCron

to cover the four most widely used synchronization primitives. Without loss of generality, we assume

that each NDP core represents a hardware thread context with a unique ID. To support multiple hard-

ware thread contexts per NDP core, the corresponding hardware structures of SynCron need to be

augmented to include 1-bit per hardware thread context.

5.4.1 Programming Interface and ISA Extensions

SynCron provides lock, barrier, semaphore and condition variable synchronization primitives, sup-

porting two types of barriers: within cores of the same NDP unit and within cores across different
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NDP units of the system. SynCron’s programming interface (Table 5.2) implements the synchro-

nization semantics with two new ISA instructions, which are rich and general enough to express all

supported primitives. NDP cores use these instructions to assemble messages for synchronization

requests, which are issued through the network to SEs.

SynCron Programming Interface

syncronVar *create syncvar ();

void destroy syncvar (syncronVar *svar);

void lock acquire (syncronVar *lock);

void lock release (syncronVar *lock);

void barrier wait within unit (syncronVar *bar, int initialCores);

void barrier wait across units (syncronVar *bar, int initialCores);

void sem wait (syncronVar *sem, int initialResources);

void sem post (syncronVar *sem);

void cond wait (syncronVar *cond, syncronVar *lock);

void cond signal (syncronVar *cond);

void cond broadcast (syncronVar *cond);

Table 5.2: SynCron’s Programming Interface (i.e., API).

req sync addr, opcode, info: This instruction creates a message and commits when a response

message is received back. The addr register has the address of a synchronization variable, the opcode

register has the message opcode of a particular semantic of a synchronization primitive (Table 5.3),

and the info register has specific information needed for the primitive (MessageInfo in message en-

coding of Fig. 5.5).

req async addr, opcode: This instruction creates a message and after the message is issued to the

network, the instruction commits. The registers addr, opcode have the same semantics as in req sync

instruction.

Memory Consistency

We design SynCron assuming a relaxed consistency memory model. The proposed ISA extensions

act as memory fences. First, req sync, commits once a message (ACK) is received (from the local

SE to the core), which ensures that all following instructions will be issued after req sync has been

completed. Its semantics is similar to those of the SYNC and ACQUIRE operations of Weak Ordering

(WO) [558] and Release Consistency (RC) [558] models, respectively. Second, req async, does not

require a return message (ACK). It is issued once all previous instructions are completed. Its seman-

tics is similar to that of the RELEASE operation of RC [558]. In the case of WO, req sync is suffi-

cient. In the case of RC, the req sync instruction is used for acquire-type semantics, i.e., lock acquire,

barrier wait, semaphore wait and condition variable wait, while the req async instruction is used

for release-type semantics, i.e., lock release, semaphore post, condition variable signal, and condi-

tion variable broadcast.
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Message Encoding

Figure 5.5 describes the encoding of the message used for communication between NDP cores and

the SE. Each message includes: (i) the 64-bit address of the synchronization variable, (ii) the mes-

sage opcode that implements the semantics of the different synchronization primitives (6 bits cover

all message opcodes), (iii) the unique ID number of the NDP core (6 bits are sufficient for our sim-

ulated NDP system in Section 5.5), and (iv) a 64-bit field (MessageInfo) that communicates specific

information needed for each different synchronization primitive, i.e., the number of the cores that

participate in a barrier, the initial value of a semaphore, the address of the lock associated with a

condition variable.
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Address Opcode CoreID MessageInfo

64 bits 6 bits 6 bits 64 bits

Address Opcode CoreID MessageInfo
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Figure 5.5: Message encoding of SynCron.

Hierarchical Message Opcodes. SynCron enables a hierarchical scheme, where the SEs of NDP

units communicate with each other to coordinate synchronization at a global level. Therefore, we

support two types of messages (Table 5.3): (i) local, which are used by NDP cores to communicate

with their local SE, and (ii) global, which are used by SEs to communicate with the Master SE, and

vice versa. Since we support two types of barriers (Table 5.2), we design two message opcodes for

a local barrier wait message sent by an NDP core to its local SE: (i) barrier wait local within unit is

used when cores of a single NDP unit participate in the barrier, and (ii) barrier wait local across units

is used when cores from different NDP units participate in the barrier. In the latter case, if a smaller

number of cores than the total available cores of the NDP system participate in the barrier, SynCron

supports one-level communication: local SEs re-direct all messages (received from their local NDP

cores) to the Master SE, which globally coordinates the barrier among all participating cores. This

design choice is a trade-off between performance (more remote messages) and hardware/ISA complex-

ity, since the number of participating cores of each NDP unit would need to be communicated to the

hardware through additional registers in ISA, and message opcodes (higher complexity).

Primitives SynCron Message Opcodes

Locks

lock acquire global, lock acquire local, lock release global

lock release local, lock grant global, lock grant local

lock acquire overflow, lock release overflow, lock grant overflow

Barriers

barrier wait global, barrier wait local within unit

barrier wait local across units, barrier depart global, barrier depart local

barrier wait overflow, barrier departure overflow

Semaphores

sem wait global, sem wait local, sem grant global

sem grant local, sem post global, sem post local

sem wait overflow, sem grant overflow, sem post overflow

Condition

Variables

cond wait global, cond wait local, cond signal global

cond signal local, cond broad global, cond broad local

cond grant global, cond grant local, cond wait overflow

cond signal overflow, cond broad overflow, cond grant overflow

Other decrease indexing counter

Table 5.3: Message opcodes of SynCron.
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5.4.2 Synchronization Engine (SE)

Each SE module (Figure 5.6) is integrated into the compute die of each NDP unit. An SE consists of

three components:

Synchronization Processing Unit (SPU)

The SPU is the logic that handles the messages, updates the ST, and issues requests to memory as

needed. The SPU includes the control unit, a buffer, and a few registers. The buffer is a small SRAM

queue for temporarily storing messages that arrive at the SE. The control unit implements custom

logic with simple logical bitwise operators (and, or, xor, zero) and multiplexers.

Buffer

Registers

SPU

ST

Indexing
Counters

Network

140 bits
149 bits

READ/WRITE

ENABLE

INDEX

SE

Control 
Logic

DATA

Figure 5.6: The Synchronization Engine (SE).

Synchronization Table (ST)

ST keeps track of all the information needed to coordinate synchronization. Each ST has 64 entries.

Figure 5.7 shows an ST entry, which includes: (i) the 64-bit address of a synchronization variable, (ii)

the global waiting list used by the Master SE for global synchronization among SEs, i.e., a hardware

bit queue including one bit for each SE of the system, (iii) the local waiting list used by all SEs for

synchronization among the NDP cores of an NDP unit, i.e., a hardware bit queue including one bit for

each NDP core within the unit, (iv) the state of the ST entry, which can be either free or occupied, and

(v) a 64-bit field (TableInfo) to track specific information needed for each synchronization primitive.

For the lock primitive, the TableInfo field is used to indicate the lock owner that is either an SE of an

NDP unit (Global ID represented by the most significant bits) or a local NDP core (Local ID represented

by the least significant bits). We assume that all NDP cores of an NDP unit have a unique local ID

within the NDP unit, while all SEs of the system have a unique global ID within the system. The

number of bits in the global and local waiting lists of Figure 5.7 is specific for the configuration of our

evaluated system (Section 5.5), which includes 16 NDP cores per NDP unit and 4 SEs (one per NDP

unit), and has to be extended accordingly, if the system supports more NDP cores or SEs.
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Figure 5.7: Synchronization Table (ST) entry.
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Indexing Counters

If an ST is full, i.e., all its entries are in occupied state, SynCron cannot keep track of information for

a new synchronization variable in ST. We use the main memory as a fallback solution for such ST

overflow (Section 5.4.3). The SE keeps track of which synchronization variables are currently serviced

via main memory: similar to MiSAR [287], we include a small set of counters (indexing counters), 256

in current implementation, indexed by the least significant bits of the address of a synchronization

variable, as extracted from the message that arrives at an SE. When an SE receives a message with

acquire-type semantics for a synchronization variable and there is no corresponding entry in the

fully-occupied ST, the indexing counter for that synchronization variable increases. When an SE

receives a message with release-type semantics for a synchronization variable that is currently ser-

viced using main memory, the corresponding indexing counter decreases. A synchronization variable

is currently serviced via main memory, when the corresponding indexing counter is larger than zero.

Note that different variables may alias to the same indexing counter. This aliasing does not affect

correctness, but it does affect performance, since a variable may unnecessarily be serviced via main

memory, while the ST is not full.

Control Flow in SE

Figure 5.8 describes the control flow in SE. When an SE receives a message, it decodes the message

1 and accesses the ST 2a . If there is an ST entry for the specific variable (depending on its address),

the SE processes the waiting lists 3 , updates the ST 4a , and encodes return message(s) 5 , if needed.

If there is not an ST entry for the specific variable, the SE checks the value of the corresponding

indexing counter 2b : (i) if the indexing counter is zero and the ST is not full, the SE reserves a new

ST entry and continues with step 3 , otherwise (ii) if the indexing counter is larger than zero or the

ST is full, there is an overflow. In that case, if the SE is the Master SE for the specific variable, it reads

the synchronization variable from local memory arrays 2c , processes the waiting lists 3 , updates the

variable in main memory 4b , and encodes return message(s) 5 , if needed. If the SE is not the Master

SE for the specific variable, it encodes an overflow message to the Master SE 2d to handle overflow.
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Figure 5.8: Control flow in SE.

5.4.3 Overflow Management

SynCron integrates a hardware-only overflow management scheme that provides very modest per-

formance degradation (Section 5.6.7) and is programmer-transparent. To handle ST overflow cases,



144 Chapter 5

we need to address two issues: (i) where to keep track of required information to coordinate synchro-

nization, and (ii) how to coordinate ST overflow cases between SEs. For the former issue, we design

a generic structure allocated in main memory. For the latter issue, we propose a hierarchical overflow

communication protocol between SEs.

SynCron’s Synchronization Variable

We design a generic structure (Figure 5.9), called syncronVar, which is used to coordinate synchro-

nization for all supported primitives in ST overflow cases. syncronVar is defined in the driver of

the NDP system, which handles the allocation of the synchronization variables: programmers use

create syncvar() (Table 5.2) to create a new synchronization variable, the driver allocates the bytes

needed for syncronVar in main memory, and returns an opaque pointer that points to the address of

the variable. Programmers should not de-reference the opaque pointer and its content can only be

accessed via SynCron’s API (Table 5.2).

SynCron’s Synchronization Variable

  struct syncronVar_t { 
uint16_t Waitlist[4]; 
uint64_t VarInfo; 
uint8_t OverflowInfo; 

   }
  typedef struct syncronVar_t syncronVar;
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Figure 5.9: Synchronization variable of SynCron (syncronVar).

syncronVar structure includes one waiting list for each SE of the system, which has one bit for

each NDP core within the NDP unit, and two additional fields (VarInfo, OverflowInfo) needed to hier-

archically handle ST overflows for all primitives.

Communication Protocol between SEs

To ensure correctness, only the Master SE updates the syncronVar variable: in ST overflow, the SPU of

the Master SE issues read or write requests to its local memory to globally coordinate synchronization

via the syncronVar variable. In our proposed hierarchical design, there are two overflow scenarios:

(i) the ST of the Master SE overflows, and (ii) the ST of a local SE overflows or STs of multiple local

SEs overflow.

The ST of theMaster SE overflows. The other SEs of the system have not overflowed for a specific

synchronization variable. Thus, they can still directly buffer this variable in their local STs, and serve

their local cores themselves, implementing a hierarchical (two-level) communication with Master SE.

The Master SE receives global messages from SEs, and serves a local SE of an NDP unit using all bits in

the waiting list of the syncronVar variable associated with that local SE. Specifically, when it receives

a global acquire-type message from a local SE, it sets all bits in the corresponding waiting list of the

syncronVar variable. When it receives a global release-type message from a local SE, it resets all bits

in the corresponding waiting list of the syncronVar variable.
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The ST of a local SE overflows. In this scenario, there are local SEs that have overflowed for a

specific variable, and local SEs that have not overflowed. Without loss of generality, we assume that

only one SE of the system has overflowed. The local SEs that have not overflowed serve their local

cores themselves via their STs, implementing a hierarchical (two-level) communication with Master

SE. When the Master SE receives a global message from a local SE (that has not overflowed), it (i)

sets (or resets) all bits in the waiting list of the syncronVar variable associated with that SE, and (ii)

responds with a global message to the local SE, if needed.

The overflowed SE needs to notify the Master SE to handle local synchronization requests of

NDP cores located at another NDP unit via main memory. We design overflow message opcodes

(Table 5.3) to be sent from the local overflowed SE to the Master SE and back. The overflowed SE re-

directs all messages (sent from its local NDP cores) for a specific variable to the Master SE using the

overflow message opcodes, and both the overflowed SE and theMaster SE increase their corresponding

indexing counters to indicate that this variable is currently serviced via memory. When the Master SE

receives an overflow message, it (i) sets (or resets) in the waiting list (associated with the overflowed

SE) of the syncronVar variable, the bit that corresponds to the local ID of the NDP core within the NDP

unit, (ii) sets (or resets) in the OverflowInfo field of the syncronVar variable the bit that corresponds

to the global ID of the overflowed SE to keep track of which SE (or SEs) of the system has overflowed,

and (iii) responds with an overflow message to that SE, if needed. The local ID of the NDP core, and the

global ID of the overflowed SE are encoded in theCoreID field of the message (Figure 5.5). When all bits

in the waiting lists of the syncronVar variable become zero (upon receiving a release-type message),

theMaster SE decrements the corresponding indexing counter. Then, it sends a decrease index counter

message (Table 5.3) to the overflowed SE (based on the set bit that is tracked in the OverflowInfo field),

which decrements its corresponding indexing counter.

5.4.4 SynCron Enhancements

RMW Operations

It is straightforward to extend SynCron to support simple atomic rmw operations inside the SE (by

adding a lightweight ALU). The Master SE could be responsible for executing atomic rmw operations

on a variable depending on its address. We leave that for future work.

Lock Fairness

When local cores of an NDP unit repeatedly request a lock from their local SE, the SE repeatedly grants

the lock within its unit, potentially causing unfairness and delay to other NDP units. To prevent this,

an extra field of a local grant counter could be added to the ST entry. The counter increases every

time the SE grants the lock to a local core. If the counter exceeds a predefined threshold, then when

the SE receives a lock release, it transfers the lock to another SE (assuming other SEs request the

lock). The host OS or the user could dynamically set this threshold via a dedicated register. We leave

the exploration of such fairness mechanisms to future work.



146 Chapter 5

5.4.5 Comparison with Prior Work

SynCron’s design shares some of its design concepts with SSB [288], LCU [295], and MiSAR [287].

However, SynCron is more general, supporting the four most widely used synchronization primitives,

and easy-to-use thanks to its high-level programming interface.

Table 5.4 qualitatively compares SynCron with these schemes. SSB and LCU support only lock

semantics, thus they introduce two ISA extensions for a simple lock. MiSAR introduces seven ISA

extensions to support three primitives and handle overflow scenarios. SynCron includes two ISA

extensions for four supported primitives. A spin-wait approach performs consecutive synchronization

retries, typically incurring high energy consumption. A direct notification scheme sends a direct

message to only one waiting core when the synchronization variable becomes available, minimizing

the traffic involved upon a release operation. SSB, LCU and MiSAR are tailored for uniform memory

systems. In contrast, SynCron is the only hardware synchronization mechanism that targets NDP

systems as well as non-uniform memory systems.

SSB and LCU handle overflow in hardware synchronization resources using a pre-allocated table

in main memory, and if it overflows, they switch to software exception handlers (handled by the pro-

grammer), which typically incur large overheads (due to OS intervention) when overflows happen at

a non-negligible frequency. To avoid falling back to main memory, which has high latency, and using

expensive software exception handlers, MiSAR requires the programmer to handle overflow scenar-

ios using alternative software synchronization libraries (e.g., pthread library provided by the OS).

This approach can provide performance benefits in CPU systems, since alternative synchronization

solutions can exploit low-cost accesses to caches and hardware cache coherence. However, in NDP

systems alternative solutions would by default use main memory due to the absence of shared caches

and hardware cache coherence support. Moreover, when overflow occurs, MiSAR’s accelerator sends

abort messages to all participating CPU cores notifying them to use the alternative solution, and when

the cores finish synchronizing via the alternative solution, they notify MiSAR’s accelerator to switch

back to hardware synchronization. This scheme introduces additional hardware/ISA complexity, and

communication between the cores and the accelerator, thus incurring high network traffic and com-

munication costs, as we show in Section 5.6.7. In contrast, SynCron directly falls back to memory via a

fully-integrated hardware-only overflow scheme, which provides graceful performance degradation

(Section 5.6.7), and is completely transparent to the programmer: programmers only use SynCron’s

high-level API, similarly to how software libraries are in charge of synchronization.

5.4.6 Use of SynCron in Conventional Systems

The baseline NDP architecture [135, 196, 206, 207, 369] we assume in this work shares key design

principles with conventional NUMA systems. However, unlike NDP systems, NUMA CPU systems

(i) have a shared level of cache (within a NUMA socket and/or across NUMA sockets), (ii) run multiple

multi-threaded applications, i.e., a high number of software threads executed in hardware thread con-

texts, and (iii) the OS migrates software threads between hardware thread contexts to improve system
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SSB [288] LCU [295] MiSAR [287] SynCron

Supported Primitives 1 1 3 4

ISA Extensions 2 2 7 2

Spin-Wait Approach yes yes no no

Direct Notification no yes yes yes

Target System uniform uniform uniform non-uniform

Overflow partially partially handled by fully

Management integrated integrated programmer integrated

Table 5.4: Comparison of SynCron with prior mechanisms.

performance. Therefore, although SynCron could be implemented in such commodity systems, our

proposed hardware design would need extensions. First, SynCron could exploit the low-cost accesses

to shared caches in conventional CPUs, e.g., including an additional level in SynCron’s hierarchical

design to use the shared cache for efficient synchronization within a NUMA socket, and/or handling

overflow scenarios by falling back to the low-latency cache instead of main memory. Second, Syn-

Cron needs to support use cases (ii) and (iii) listed above in such systems, i.e., including larger STs and

waiting lists to satisfy the needs of multiple multithreaded applications, handling the OS thread mi-

gration scenarios across hardware thread contexts, and handling multiple synchronization requests

sent from different software threads with the same hardware ID to SEs, when different software

threads are executed on the same hardware thread context. We leave the optimization of SynCron’s

design for conventional systems to future work.

5.5 Methodology

Simulation Methodology. We use an in-house simulator that integrates ZSim [559] and Ramula-

tor [356]. We model 4 NDP units (Table 5.5), each with 16 in-order cores. The cores issue a memory

operation after the previous one has completed, i.e., there are no overlapping operations issued by

the same core. Any write operation is completed (and the latency is accounted for in our simulations)

before executing the next instruction. To ensure memory consistency, compiler support [560] guar-

antees that there is no reordering around the sync instructions and a read is inserted after a write

inside a critical section.

We evaluate three NDP configurations for different memory technologies, namely 2D, 2.5D, 3D

NDP. The 2D NDP configuration uses a DDR4 memory model and resembles recent 2D NDP sys-

tems [137, 142, 318, 454]. In the 2.5D NDP configuration, each compute die of NDP units (16 NDP

cores) is connected to an HBM stack via an interposer, similar to current GPUs [568, 569] and FP-

GAs [367, 570]. For the 3D NDP configuration, we use the HMC memory model, where the compute

die of the NDP unit is located in the logic layer of the memory stack, as in prior works [135,206,207,

308]. Due to space limitations, we present detailed evaluation results for the 2.5D NDP configuration,

and provide a sensitivity study for the different NDP configurations in Section 5.6.5.
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NDP Cores 16 in-order cores @2.5 GHz per NDP unit

L1 Data + Inst. Cache private, 16KB, 2-way, 4-cycle; 64 B line; 23/47 pJ per hit/miss [561]

NDP Unit buffered crossbar network with packet flow control; 1-cycle arbiter;

Local Network 1-cycle per hop [562]; 0.4 pJ/bit per hop [563];

M/D/1 model [564] for queueing latency;

DRAM HBM
4 stacks; 4GB HBM 1.0 [358, 359]; 500MHz with 8 channels;

nRCDR/nRCDW/nRAS/nWR 7/6/17/8 ns [356, 565]; 7 pJ/bit [566]

DRAM HMC
4 stacks; 4GB HMC 2.1; 1250MHz; 32 vaults per stack;

nRCD/nRAS/nWR 17/34/19 ns [356, 565]

DRAM DDR4
4 DIMMs; 4GB each DIMM DDR4 2400MHz;

nRCD/nRAS/nWR 16/39/18 ns [356, 565]

Interconnection Links 12.8GB/s per direction; 40 ns per cache line;

Across NDP Units 20-cycle; 4 pJ/bit

Synchronization SPU @1GHz clock frequency [567]; 8× 64-bit registers;

Engine buffer: 280B; ST: 1192B, 64 entries, 1-cycle [561];

indexing counters: 2304B, 256 entries (8 LSB of the address), 2-cycle [561]

Table 5.5: Configuration of our simulated system.

We model a crossbar network within each NDP unit, simulating queuing latency using the M/D/1

model [564]. We count in ZSim-Ramulator all events for caches, i.e., number of hits/misses, network,

i.e., number of bits transferred inside/across NDP units, and memory, i.e., number of total memory

accesses, and use CACTI [561] and parameters reported in prior works [369, 563, 566] to calculate

energy. To estimate the latency in SE, we use CACTI for ST and indexing counters, and Aladdin [567]

for the SPU with 1GHz at 40nm. Each message is served in 12 cycles, corresponding to the message

(barrier depart global) that takes the longest time.

Workloads. We evaluate workloads with both (i) coarse-grained synchronization, i.e., including

only a few synchronization variables to protect shared data, leading to cores highly contending for

them (high-contention), and (ii) fine-grained synchronization, i.e., including a large number of syn-

chronization variables, each of them protecting a small granularity of shared data, leading to cores

not frequently contending for the same variables at the same time (low-contention). We use the term

synchronization intensity to refer to the ratio of synchronization operations over other computation

in the workload. As this ratio increases, synchronization latency affects the total execution time of

the workload more.

We study three classes of applications (Table 5.6), all well suited for NDP. First, we evaluate

pointer-chasing workloads, i.e., lock-based concurrent data structures from the ASCYLIB library [571],

used as key-value sets. In ASCYLIB’s Binary Search Tree (BST) [572], the lock memory requests are

only 0.1% of the total memory requests, so we also evaluate an external fine-grained locking BST

from [314]. Data structures are initialized with a fixed size and statically partitioned across NDP

units, except for BSTs, which are distributed randomly. In these benchmarks, each core performs a

fixed number of operations. We use lookup operations for data structures that support it, deletion for

the rest, and push and pop operations for stack and queue. Second, we evaluate graph applications

with fine-grained synchronization from Crono [573, 574] (push version), where the output array has
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read-write data. All real-world graphs [575] used are undirected and statically partitioned across

NDP units, where the vertex data is equally distributed across cores. Third, we evaluate time series

analysis [576], using SCRIMP, and real data sets from Matrix Profile [577]. We replicate the input

data in each NDP unit and partition the output array (read-write data) across NDP units.

Data Structure Configuration

Stack [571] 100K - 100% push

Queue [571, 578] 100K - 100% pop

Array Map [525, 571] 10 - 100% lookup

Priority Queue [571, 579, 580] 20K - 100% deleteMin

Skip List [571, 579] 5K - 100% deletion

Hash Table [380, 571] 1K - 100% lookup

Linked List [380, 571] 20K - 100% lookup

Binary Search Tree Fine-Grained (BST FG) [314] 20K - 100% lookup

Binary Search Tree Drachsler (BST Drachsler) [571, 572] 10K - 100% deletion

Real Application Locks Barriers

Breadth First Search (bfs) [573] ✓ ✓
Connected Components (cc) [573] ✓ ✓
Single Source Shortest Paths (sssp) [573] ✓ ✓
Pagerank (pr) [573] ✓ ✓
Teenage Followers (tf) [574] ✓ -

Triangle Counting (tc) [573] ✓ ✓

Time Series Analysis (ts) [577] ✓ ✓

Real Application Input Data Set

wikipedia

-20051105 (wk)

bfs, cc, sssp, soc-LiveJournal1 (sl)

pr, tf, tc sx-stackoverflow (sx)

com-Orkut (co)

ts
air quality (air)

energy consumption (pow)

Table 5.6: Summary of all workloads used in our evaluation.

Comparison Points. We compare SynCron with three schemes: (i) Central: a message-passing

scheme that supports all primitives by extending the barrier primitive of Tesseract [135], i.e., one

dedicated NDP core in the entire NDP system acts as server and coordinates synchronization among

all NDP cores of the system by issuing memory requests to synchronization variables via its mem-

ory hierarchy, while the remaining client cores communicate with it via hardware message-passing;

(ii) Hier : a hierarchical message-passing scheme that supports all primitives, similar to the barrier

primitive of [196] (or hierarchical lock of [555]), i.e., one NDP core per NDP unit acts as server and

coordinates synchronization by issuing memory requests to synchronization variables via its mem-

ory hierarchy (including caches), and communicates with other servers and local client cores (located

at the same NDP unit with it) via hardware message-passing; (iii) Ideal: an ideal scheme with zero

performance overhead for synchronization. In our evaluation, each NDP core runs one thread. For

fair comparison, we use the same number of client cores, i.e., 15 per NDP unit, that execute the main

workload for all schemes. For synchronization, we add one server core for the entire system in Cen-

tral, one server core per NDP unit for Hier , and one SE per NDP unit for SynCron. For SynCron, we

disable one core per NDP unit to match the same number of client cores as the previous schemes.

Maintaining the same thread-level parallelism for executing the main kernel is consistent with prior

works on message-passing synchronization [287, 555].
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5.6 Evaluation

5.6.1 Performance

Synchronization Primitives

Figure 5.10 evaluates all supported primitives using 60 cores, varying the interval (in terms of instruc-

tions) between two synchronization points. We devise simple benchmarks, where cores repeatedly

request a single synchronization variable. For lock, the critical section is empty, i.e., it does not include

any instruction. For semaphore and condition variable, half of the cores execute sem wait/cond wait,

while the rest execute sem post/cond signal, respectively. As the interval between synchronization

points becomes smaller, SynCron’s performance benefit increases. For an interval of 200 instruc-

tions, SynCron outperforms Central and Hier by 3.05× and 1.40× respectively, averaged across all

primitives. SynCron outperforms Hier due to directly buffering synchronization variables in low-

latency STs, and achieves the highest benefits in the condition variable primitive (by 1.61×), since

this benchmark has higher synchronization intensity compared to the rest: cores coordinate for both

the condition variable and the lock associated with it. When the interval between synchronization

operations becomes larger, synchronization requests become less dominant in the main workload,

and thus all schemes perform similarly. Overall, SynCron outperforms prior schemes for all different

synchronization primitives.
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Figure 5.10: Speedup of different synchronization primitives.

Pointer-Chasing Data Structures

Figure 5.11 shows the throughput for all schemes in pointer-chasing varying the NDP cores in steps

of 15, each time adding one NDP unit.

We observe four different patterns. First, stack, queue, array map, and priority queue incur high

contention, as all cores heavily contend for a few variables. Array map has the lowest scalability

due to a larger critical section. In high-contention scenarios, hierarchical schemes (Hier , SynCron)
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Figure 5.11: Throughput of pointer-chasing using data structures.

perform better by reducing the expensive traffic across NDP units. SynCron outperforms Hier , since

the latency cost of using SEs that update small STs is lower than using NDP cores as servers that

update larger caches. Second, skip list and hash table incur medium contention, as different cores

may work on different parts of the data structure. For these data structures, hierarchical schemes

perform better, as they minimize the expensive traffic, and multiple server cores concurrently serve

requests to their local memory. SynCron retains most of the performance benefits of Ideal, incurring

only 19.9% overhead with 60 cores, and outperformsHier by 9.8%. Third, linked list and BST FG exhibit

low contention and high synchronization demand, as each core requests multiple locks concurrently.

These data structures cause higher synchronization-related traffic inside the network compared to

skip list and hash table, and thus SynCron further outperforms Hier by 1.19× due to directly buffering

synchronization variables in STs. Fourth, in BST Drachsler lock requests constitute only 0.1% of the

total requests, and all schemes perform similarly. Overall, we conclude that SynCron achieves higher

throughput than prior mechanisms under different scenarios with diverse conditions.
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Real Applications

Figure 5.12 shows the performance of all schemes with real applications using all NDP units, normal-

ized to Central. Averaged across 26 application-input combinations, SynCron outperforms Central by

1.47× and Hier by 1.23×, and performs within 9.5% of Ideal.
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Figure 5.12: Speedup in real applications normalized to Central.

Our real applications exhibit low contention, as two cores rarely contend for the same synchro-

nization variable, and high synchronization demand, as several synchronization variables are active

during execution. We observe that Hier and SynCron increase parallelism, because the per-NDP-unit

servers service different synchronization requests concurrently, and avoid remote synchronization

messages across NDP units. Even though Hier performs 1.19× better than Central, on average, its

performance is still 1.33× worse than Ideal. SynCron provides most of the performance benefits of

Ideal (with only 9.5% overhead on average), and outperforms Hier due to directly buffering the syn-

chronization variables in STs, thereby completely avoiding the memory accesses for synchronization

requests. Specifically, we find that time series analysis has high synchronization intensity, since the

ratio of synchronization over other computation of the workload is higher compared to graph work-

loads. For this application, Hier and SynCron outperform Central by 1.64× and 2.22×, as they serve

multiple synchronization requests concurrently. SynCron further outperforms Hier by 1.35× due to

directly buffering the synchronization variables in STs. We conclude that SynCron performs best

across all real application-input combinations and approaches the Ideal scheme with no synchro-

nization overhead.

Scalability. Figure 5.13 shows the scalability of real applications using SynCron from 1 to 4 NDP

units. Due to space limitations, we present a subset of our workloads, but we report average values for

all 26 application-input combinations. This also applies for all figures presented henceforth. Across

all workloads, SynCron enables performance scaling by at least 1.32×, on average 2.03×, and up to

3.03×, when using 4 NDP units (60 NDP cores) over 1 NDP unit (15 NDP cores).
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Figure 5.13: Scalability of real applications using SynCron.
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5.6.2 Energy Consumption

Figure 5.14 shows the energy breakdown for cache, network, and memory in our real applications

when using all cores. SynCron reduces the network and memory energy thanks to its hierarchical

design and direct buffering. On average, SynCron reduces energy consumption by 2.22× over Central

and 1.94× over Hier , and incurs only 6.2% energy overhead over Ideal.
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Figure 5.14: Energy breakdown in real applications for C: Central, H: Hier , SC: SynCron and I: Ideal.

We observe that 1) cache energy consumption constitutes a small portion of the total energy, since

these applications have irregular access patterns. NDP cores that act as servers for Central and Hier

increase the cache energy only by 5.1% and 4.8% over Ideal. 2) Central generates a larger amount

of expensive traffic across NDP units compared to hierarchical schemes, resulting in 2.68× higher

network energy over SynCron. SynCron also has less network energy (1.21×) than Hier , because it

avoids transferring synchronization variables from memory to SEs due to directly buffering them. 3)

Hier and Central have approximately the same memory energy consumption, because they issue a

similar number of requests to memory. In contrast, SynCron’s memory energy consumption is similar

to that of Ideal. We note that SynCron provides higher energy reductions in applications with high

synchronization intensity, such as time series analysis, since it avoids a higher number of memory

accesses for synchronization due to its direct buffering capability.

5.6.3 Data Movement

Figure 5.15 shows normalized data movement, i.e., bytes transferred between NDP cores and memory,

for all schemes using four NDP units. SynCron reduces data movement across all workloads by 2.08×
and 2.04× overCentral andHier , respectively, on average, and incurs only 13.8% more data movement

than Ideal. Central generates high data movement across NDP units, particularly when running time

series analysis that has high synchronization intensity. Hier reduces the traffic across NDP units;

however, it may increase the traffic inside an NDP unit, occasionally leading to slightly higher total

data movement (e.g., ts.air). This is because when an NDP core requests a synchronization variable

that is physically located in another NDP unit, it first sends a message inside the NDP unit to its local

server, which in turns sends a message to the global server. In contrast, SynCron reduces the traffic

inside an NDP unit due to directly buffering synchronization variables, and across NDP units due to

its hierarchical design.
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Figure 5.15: Data movement in real applications for C: Central, H: Hier , SC: SynCron and I: Ideal.

5.6.4 Non-Uniformity of NDP Systems

High Contention

Hierarchical schemes provide high benefit under high contention, as they prioritize local requests

inside each NDP unit. We study their performance benefit in stack and priority queue (Figure 5.16)

when varying the transfer latency of the interconnection links used across four NDP units. Central

is significantly affected by the interconnect latency across NDP units, as it is oblivious to the non-

uniform nature of the NDP system. Observing Ideal, which reflects the actual behavior of the main

workload, we notice that after a certain point (vertical line), the cost of remote memory accesses

across NDP units become high enough to dominate performance. SynCron and Hier tend to follow

the actual behavior of the workload, as local synchronization messages within NDP units are much

less expensive than remote messages of Central. SynCron outperforms Hier by 1.06× and 1.04× for

stack and priority queue. We conclude that SynCron is the best at hiding the latency of slow links

across NDP units.
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Figure 5.16: Performance sensitivity to the transfer latency of the interconnection links used to con-

nect the NDP units.

Low Contention

We also study the effect of interconnection links used across the NDP units in a low-contention graph

application (Figure 5.17). Observing Ideal, with 500 ns transfer latency per cache line, we note that

the workload experiences 2.46× slowdown over the default latency of 40 ns, as 24.1% of its memory
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accesses are to remote NDP units. As the transfer latency increases, Central incurs significant slow-

down over Ideal, since all NDP cores of the system communicate with one single server, generating

expensive traffic across NDP units. In contrast, the slowdown of hierarchical schemes over Ideal is

smaller, as these schemes generate less remote traffic by distributing the synchronization requests

across multiple local servers. SynCron outperforms Hier due to its direct buffering capabilities. Over-

all, SynCron outperforms prior high-performance schemes even when the network delay across NDP

units is large.

40 100 200 500
1.0
1.5
2.0
2.5

Sl
o

w
d

o
w

n Ideal
SynCron
Hier
Central1.07 1.11 1.15 1.171.29 1.33 1.36 1.37

1.61
1.87

2.23

2.67pr.wk

Transfer latency in ns for each cache line

Figure 5.17: Performance sensitivity to the transfer latency of the interconnection links used to con-

nect the NDP units. All data is normalized to Ideal (lower is better).

5.6.5 Memory Technologies

We study three memory technologies, which provide different memory access latencies and band-

width. We evaluate (i) 2.5D NDP using HBM, (ii) 3D NDP using HMC, and (iii) 2D NDP using DDR4.

Figure 5.18 shows the performance of all schemes normalized to Central of each memory. The re-

ported values show the speedup of SynCron over Central and Hier . SynCron’s benefit is independent

of the memory used: its performance versus Ideal only slightly varies (±1.4%) across different mem-

ory technologies, since STs never overflow. Moreover, SynCron’s performance improvement over

prior schemes increases as the memory access latency becomes higher thanks to direct buffering,

which avoids expensive memory accesses for synchronization. For example, in ts.pow, SynCron out-

performs Hier by 1.41× and 2.49× with HBM and DDR4, respectively, as the latter incurs higher

access latency. Overall, SynCron is orthogonal to the memory technology used.
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Figure 5.18: Speedup with different memory technologies.
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5.6.6 Effect of Data Placement

Figure 5.19 evaluates the effect of better data placement on SynCron’s benefits. We use Metis [581] to

obtain a 4-way graph partitioning to minimize the crossing edges between the 4 NDP units. All data

values are normalized to Central without Metis. For SynCron, we define ST occupancy as the average

fraction of ST entries that are occupied in each cycle.
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Figure 5.19: Performance sensitivity to a better graph partitioning and maximum ST occupancy of

SynCron.

We make three observations. First, Ideal, which reflects the actual behavior of the main kernel

(i.e., with zero synchronization overhead), improves performance by 1.47× across the four graphs.

Second, with a better graph partitioning, SynCron still outperforms both Central and Hier . Third, we

find that ST occupancy is lower with a better graph partitioning. When a local SE receives a request

for a synchronization variable of another NDP unit, both the local SE and the Master SE reserve a

new entry in their STs. With a better graph partitioning, NDP cores send requests to their local SE,

which is also the Master SE for the requested variable. Thus, only one SE of the system reserves a new

entry, resulting in a lower ST occupancy. We conclude that, with better data placement SynCron still

performs the best while achieving even lower ST occupancy.

5.6.7 SynCron’s Design Choices

Hierarchical Design

To demonstrate the effectiveness of SynCron’s hierarchical design in non-uniform NDP systems, we

compare it with SynCron’s flat variant. Each core in flat directly sends all its synchronization requests

to the Master SE of each variable. In contrast, each core in SynCron sends all its synchronization

requests to the local SE. If the local SE is not the Master SE for the requested variable, the local SE

sends a message across NDP units to the Master SE.

We evaluate three synchronization scenarios: (i) low-contention and synchronization non-intensive

(e.g., graph applications), (ii) low-contention and synchronization-intensive (e.g., time series analy-

sis), and (iii) high-contention (e.g., queue data structure).
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Figure 5.21: Speedup of SynCron normalized to flat, as we vary the transfer latency of the intercon-

nection links used to connect NDP units, under (a) a low-contention and synchronization-intensive

scenario using 4 NDP units, and (b) a high-contention scenario using 2 and 4 NDP units.

Low-contention and synchronization non-intensive. Figure 5.20 evaluates this scenario using

several graph processing workloads with 40 ns link latency between NDP units. SynCron is 1.1%

worse than flat, on average. We conclude that SynCron performs only slightly worse than flat for

low-contention and synchronization non-intensive scenarios.
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Figure 5.20: Speedup of SynCron normalized to flat with 40 ns link latency between NDP units, under

a low-contention and synchronization non-intensive scenario.

Low-contention and synchronization-intensive. Figure 5.21a evaluates this scenario using time

series analysis with four different link latency values between NDP units. SynCron performs 7.3%

worse than flat with a 40 ns inter-NDP-unit latency. With a 500 ns inter-NDP-unit latency, SynCron

performs only 3.6% worse than flat, since remote traffic has a larger impact on the total execution time.

We conclude that SynCron performs modestly worse than flat, and SynCron’s slowdown decreases as

non-uniformity, i.e., the latency between NDP units, increases.

High-contention. Figure 5.21b evaluates this scenario using a queue data structure with four dif-

ferent link latency values between NDP units, for 30 and 60 NDP cores. SynCron with 30 NDP cores

outperforms flat from 1.23× to 1.76×, as the inter-NDP-unit latency increases from 40 ns to 500 ns

(i.e., with increasing non-uniformity in the system). In a scenario with high non-uniformity in the

system and large number of contended cores, e.g., using a 500 ns inter-NDP-unit latency and 60 NDP

cores, SynCron’s benefit increases to a 2.14× speedup over flat. We conclude that SynCron performs

significantly better than flat under high-contention.

Overall, we conclude that in non-uniform, distributed NDP systems, only a hierarchical hardware

synchronization design can achieve high performance under all various scenarios.
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ST Size

We show the effectiveness of the proposed 64-entry ST (per NDP unit) using real applications. Ta-

ble 5.7 shows the measured occupancy across all STs. Figure 5.22 shows the performance sensitivity

to ST size. In graph applications, the average ST occupancy is low (2.8%), and the 64-entry ST never

overflows: maximum occupancy is 63% (cc.wk). In contrast, time series analysis has higher ST oc-

cupancy (reaching up to 89% in ts.pow) due to the high synchronization intensity, but there are no

ST overflows. Even a 48-entry ST overflows for only 0.01% of synchronization requests, and incurs

2.1% slowdown over a 64-entry ST. We conclude that the proposed 64-entry ST meets the needs of

applications that have high synchronization intensity.

cc.wk pr.wk ts.air ts.pow0.8
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Figure 5.22: Slowdown with varying ST size (normalized to 64-entry ST). Numbers on top of bars

show the percentage of overflowed requests.

Overflow Management

The linked list and BST FG data structures are the only cases where the proposed 64-entry ST over-

flows, when using 60 cores, for 3.1% and 30.5% of the requests, respectively. This is because each

core requests at least two locks at the same time during the execution. Note that these synthetic

benchmarks represent extreme scenarios, where all cores repeatedly perform key-value operations.

ST Occupancy Max (%) Avg (%)

bfs.wk 51 1.33

bfs.sl 59 1.49

bfs.sx 51 3.24

bfs.co 55 6.09

cc.wk 63 1.27

cc.sl 61 2.16

cc.sx 48 2.43

cc.co 46 4.53

sssp.wk 62 1.18

sssp.sl 54 2.08

sssp.sx 50 2.20

sssp.co 48 5.23

pr.wk 62 4.27

ST Occupancy Max (%) Avg (%)

pr.sl 51 2.27

pr.sx 53 2.46

pr.co 48 4.72

tf.wk 62 1.44

tf.sl 53 2.21

tf.sx 50 2.99

tf.co 48 4.61

tc.wk 62 1.26

tc.sl 48 2.08

tc.sx 50 2.77

tc.co 51 4.52

ts.air 84 44.20

ts.pow 89 43.51

Table 5.7: ST occupancy in real applications.
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Figure 5.23: Throughput achieved by BST FG using different overflow schemes and varying the ST

size. The reported numbers show to the percentage of overflowed requests.

Figure 5.23 compares BST FG’s performance with SynCron’s integrated overflow scheme versus

with a non-integrated scheme as in MiSAR. When overflow occurs, MiSAR’s accelerator aborts all

participating cores notifying them to use an alternative synchronization library, and when the cores

finish synchronizing via an alternative solution, they notify MiSAR’s accelerator to switch back to

hardware synchronization. We adapt this scheme to SynCron for comparison purposes: when an

ST overflows, SEs send abort messages to NDP cores with a hierarchical protocol, notifying them

to use an alternative synchronization solution, and after finishing synchronization they notify SEs

to decrease their indexing counters and switch to hardware. We evaluate two alternative solutions:

(i) SynCron CentralOvrfl, where one dedicated NDP core handles all synchronization variables, and

(ii) SynCron DistribOvrfl, where one NDP core per NDP unit handles variables located in the same

NDP unit. With 30.5% overflowed requests (i.e., with a 64-entry ST), SynCron CentralOvrfl and Syn-

Cron DistribOvrfl incur 12.3% and 10.4% performance slowdown compared to with no ST overflow,

due to high network traffic and communication costs between NDP cores and SEs. In contrast, Syn-

Cron affects performance by only 3.2% compared to with no ST overflow. We conclude that SynCron’s

integrated hardware-only overflow scheme enables very small performance overhead.

5.6.8 SynCron’s Area and Power Overhead

Table 5.8 compares an SE with the ARM Cortex A7 core [582]. We estimate the SPU using Al-

addin [567], and the ST and indexing counters using CACTI [561]. We conclude that our proposed

hardware unit incurs very modest area and power costs to be integrated into the compute die of an

NDP unit.

SE (Synchronization Engine) ARM Cortex A7 [582]

Technology 40nm 28nm

Area

SPU: 0.0141mm
2
, ST: 0.0112mm

2

32KB L1 Cache
Indexing Counters: 0.0208mm

2

Total: 0.0461mm
2

Total: 0.45mm
2

Power 2.7 mW 100mW

Table 5.8: Comparison of SE with a simple general-purpose in-order core, ARM Cortex A7.
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5.7 Recommendations

This section presents our key takeaways in the form of recommendations for software and hardware

designers.

Recommendation #1. Provide hardware synchronization support for NDP architectures. Figures 5.10,

5.11 and 5.12 demonstrate that SynCron significantly outperforms software-based synchronization

schemes, e.g., Central and Hier , across various contention scenarios and workload demands. In addi-

tion, Tables 5.7 and 5.8 show that SynCron has modest area and power costs for NDP architectures.

In contrast to commodity CPU and GPU systems that run multiple software threads executed at each

hardware thread context, NDP architectures [135, 138, 139, 188, 189, 191–193, 196, 197, 200, 201, 203,

204, 206, 207, 254–257, 308, 318, 360–369] typically support a only fixed number of hardware thread

contexts, and thus in such computing platforms synchronization can be effectively implemented in

hardware with low cost. Therefore, we suggest that hardware designers of NDP architectures provide

low-cost synchronization mechanisms implemented in hardware.

Recommendation #2. Design hierarchical, non-uniform aware synchronization schemes for non-

uniform NDP systems. NDP systems are typically non-uniform, distributed architectures, in which

inter-unit communication is more expensive (both in performance and energy) than intra-unit com-

munication [135, 192, 193, 196, 204, 206, 207, 368]. Our evaluations presented in Figures 5.16 and 5.17

show that the hierarchical schemes, i.e., Hier and SynCron, provide significant performance ben-

efits over Central, since Central is oblivious to the non-uniform nature of NDP systems. Under

high-contention scenarios (Figure 5.16), the hierarchical (non-uniform aware) schemes achieve high

system performance by minimizing the expensive traffic across NDP units of the system. Under

low-contention scenarios (Figure 5.17), the hierarchical schemes provide high system performance,

because they (i) generate less remote traffic by distributing the synchronization requests across multi-

ple local synchronization units, and (ii) increase parallelism, since the per-NDP-unit synchronization

units service different synchronization requests concurrently. To this end, we recommend that hard-

ware architects design non-uniform aware synchronization mechanisms for NDP systems.

Recommendation #3. Design effective data placement schemes of the input data and the associated

synchronization variables across multiple NDP units of the NDP system. In many real-world appli-

cations (e.g., graph processing applications), the large input data set given (e.g., real-world graphs

with a large number of vertices and edges) is shared among multiple cores, and thus a fine-grained

synchronization scheme (i.e., including a large number of synchronization variables, each of them

protects a small granularity of shared data) is typically used. Figure 5.19 demonstrates that a better

graph partitioning in graph processing workloads significantly improves performance of the main

kernel and reduces the synchronization costs among NDP cores. Specifically, with a better graph

partitioning SynCron (i) reduces the remote synchronization messages sent across the NDP units of

the system through the expensive interconnection links, and (ii) has lower ST occupancy, thus hav-

ing lower ST sizes (with lower area and power costs) can be sufficient to meet the synchronization

needs of real-world applications without never overflowing. Therefore, we suggest that software en-

gineers of real-world applications with fine-grained synchronization schemes design intelligent data
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placement schemes of the input data and the associated synchronization variables across multiple

NDP units of NDP architectures to achieve high system performance and minimize synchronization

costs.

5.8 Related Work

To our knowledge, our work is the first one to (i) comprehensively analyze and evaluate synchro-

nization primitives in NDP systems, and (ii) propose an end-to-end hardware-based synchronization

mechanism for efficient execution of such primitives. We briefly discuss prior work.

Synchronization on NDP. Ahn et al. [135] include a message-passing barrier similar to our Cen-

tral baseline. Gao et al. [196] implement a hierarchical tree-based barrier for HMC [355], where cores

first synchronize inside the vault, then across vaults, and finally across HMC stacks. Section 5.6.1

shows that SynCron outperforms such schemes. Gao et al. [196] also provide remote atomics at the

vault controllers of HMC. However, synchronization using remote atomics creates high global traffic

and hotspots [132, 382–385].

Synchronization on CPUs. A range of hardware synchronization mechanisms have been pro-

posed for commodity CPU systems [289–294]. These are not suitable for NDP systems because they

either (i) rely on the underlying cache coherence system [290, 294], (ii) are tailored for the 2D-mesh

network topology to connect all cores [289, 291], or (iii) use transmission-line technology [292] or

on-chip wireless technology [293]. Callbacks [583] includes a directory cache structure close to the

LLC of a CPU system built on self-invalidation coherence protocols [297–302]. Although it has low

area cost, it would be oblivious to the non-uniformity of NDP, thereby incurring high performance

overheads under high contention (Section 5.6.7). Callbacks improves performance of spin-wait in

hardware, on top of which high-level primitives (locks/barriers) are implemented in software. In

contrast, SynCron directly supports high-level primitives in hardware, and is tailored to all salient

characteristics of NDP systems.

The closest works to ours are SSB [288], LCU [295], and MiSAR [287]. SSB, a shared memory

scheme, includes a small buffer attached to each controller of LLC to provide lock semantics for a

given data address. LCU, a message-passing scheme, incorporates a control unit into each core and

a reservation table into each memory controller to provide reader-writer locks. MiSAR is a message-

passing synchronization accelerator distributed at each LLC slice of tile-based many-core chips. These

schemes provide efficient synchronization for CPU systems without relying on hardware coherence

protocols. As shown in Table 5.4, compared to these works, SynCron is a more effective, general and

easy-to-use solution for NDP systems. These works have two major shortcomings. First, they are

designed for uniform architectures, and would incur high performance overheads in non-uniform,

distributed NDP systems under high-contetion scenarios, similarly to flat in Figure 5.21b. Second,

SSB and LCU handle overflow cases using software exception handlers that typically incur large

performance overheads, while MiSAR’s overflow scheme would incur high performance degradation

due to high network traffic and communication costs between the cores and the synchronization

accelerator (Section 5.6.7). In contrast, SynCron is a non-uniformity aware, hardware-only, end-to-
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end solution designed to handle key characteristics of NDP systems.

Synchronization on GPUs. GPUs support remote atomic units at the shared cache and hard-

ware barriers among threads of the same block [584], while inter-block barrier synchronization is

inefficiently implemented via the host CPU [584]. The closest work to ours is HQL [384], which mod-

ifies the tag arrays of L1 and L2 caches to support the lock primitive. This scheme incurs high area

cost [385], and is tailored to the GPU architecture that includes a shared L2 cache, while most NDP

systems do not have shared caches.

Synchronization on MPPs. The Cray T3D/T3E [474, 475], SGI Origin [303], and AMOs [476]

include remote atomics at the memory controller, while NYU Ultracomputer [305] provides fetch&and

remote atomics in each network switch. As discussed in Section 5.2, synchronization via remote

atomics incurs high performance overheads due to high global traffic [132, 382, 384, 385]. Cray T3E

supports a barrier using physical wires, but it is designed specifically for 3D torus interconnect. Tera

MTA [304], HEP [477,478], J- and M-machines [479,480], and Alewife [585] provide synchronization

using hardware bits (full/empty bits) as tags in each memory word. This scheme can incur high area

cost [295]. QOLB [481] associates one cache line for every lock to track a pointer to the next waiting

core, and one cache line for local spinning using bits (syncbits). QOLB is built on the underlying

cache coherence protocol. Similarly, DASH [482] keeps a queue of waiting cores for a lock in the

directory used for coherence to notify caches when the lock is released. CM5 [296] supports remote

atomics and a barrier among cores via a dedicated physical control network (organized as a binary

tree), which would incur high hardware cost to be supported in NDP systems.

5.9 Summary

SynCron is the first end-to-end synchronization solution for NDP systems. SynCron avoids the need

for complex coherence protocols and expensive rmw operations, incurs very modest hardware cost,

generally supports many synchronization primitives and is easy-to-use. Our evaluations show that

it outperforms prior designs under various conditions, providing high performance both under high-

contention (due to reduction of expensive traffic across NDP units) and low-contention scenarios

(due to direct buffering of synchronization variables and high execution parallelism). We conclude

that SynCron is an efficient synchronization mechanism for NDP systems, and hope that this work

encourages further comprehensive studies of the synchronization problem in heterogeneous systems,

including NDP systems.
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SparseP

6.1 Overview

Sparse Matrix Vector Multiplication (SpMV) is a fundamental linear algebra kernel for important

applications from the scientific computing, machine learning, and graph analytics domains. In com-

modity systems, it has been repeatedly reported to achieve only a small fraction of the peak perfor-

mance [18,81,90,99,111,125,281,306,387–390] due to its algorithmic nature, the employed compressed

matrix storage format, and the sparsity pattern of the input matrix. SpMV performs indirect memory

references as a result of storing the matrix in a compressed format, and irregular memory accesses

to the input vector due to sparsity. The matrices involved are very sparse, i.e., the vast majority of

elements are zeros [18,81,129,276,279–283]. For example, the matrices that represent Facebook’s and

YouTube’s network connectivity contain 0.0003% [276, 279] and 2.31% [276, 280] non-zero elements,

respectively. Therefore, in processor-centric systems, SpMV is a memory-bandwidth-bound kernel

for the majority of real sparse matrices, and is bottlenecked by data movement between memory and

processors [17, 18, 81, 88, 90, 99, 125, 141, 142, 262, 281, 306, 387–393].

163
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One promising way to alleviate the data movement bottleneck is the Processing-In-Memory (PIM)

paradigm [5, 54, 135, 137–144, 154, 155, 160, 161, 166, 170–173, 179, 183, 184, 187–189, 191, 194–197, 199,

201, 205, 206, 208–210, 254, 256, 257, 308, 362, 370, 374, 394–443]. PIM moves computation close to ap-

plication data by equipping memory chips with processing capabilities [140, 399]. Prior works [5,

54, 120, 135, 188, 192, 193, 196, 197, 200, 203–207, 255–257, 308, 374, 401, 401, 412, 444–446] propose PIM

architectures wherein a processor logic layer is tightly integrated with DRAM memory layers us-

ing 2.5D/3D-stacking technologies [354, 355, 359]. Nonetheless, the 2.5D/3D integration itself might

not always be able to provide significantly higher memory bandwidth for processors than standard

DRAM [395, 398]. To provide even higher bandwidth for the in-memory processors, near-bank PIM

designs have been explored [137,141,142,318,386,395,397,398,406–411,415,423,447–451]. Near-bank

PIM designs tightly couple a PIM core with each DRAM bank, exploiting bank-level parallelism to

expose high on-chip memory bandwidth of standard DRAM to processors. Moreover, manufactur-

ers of near-bank PIM architectures avoid disturbing the key components (i.e., subarray and bank)

of commodity DRAM to provide a cost-efficient and practical way for silicon materialization. Two

real near-bank PIM architectures are Samsung’s FIMDRAM [395, 397] and the UPMEM PIM sys-

tem [137, 141, 142, 452].

Most near-bank PIM architectures [137,141,142,318,386,395,397,398,406,447–450] support several

PIM-enabled memory chips connected to a host CPU via memory channels. Each memory chip com-

prises multiple PIM cores, which are low-area and low-power cores with relatively low computation

capability [141,142], and each of them is located close to a DRAM bank [137,141,142,318,386,395,397,

398, 406, 447–450]. Each PIM core can access data located on their local DRAM banks, and typically

there is no direct communication channel among PIM cores. Overall, near-bank PIM architectures

provide high levels of parallelism and very large memory bandwidth, thereby being a very promis-

ing computing platform to accelerate memory-bound kernels. Recent works leverage near-bank PIM

architectures to provide high performance and energy benefits on bioinformatics [141, 142, 453, 454],

skyline computation [483], compression [455] and neural network [141, 142, 386, 395, 448] kernels.

A recent study [141, 142] provides PrIM benchmarks [484], which are a collection of 16 kernels for

evaluating near-bank PIM architectures, like the UPMEM PIM system. However, there is no prior

work to thoroughly study the widely used, memory-bound SpMV kernel on a real PIM system.

Our work is the first to efficiently map the SpMV execution kernel on near-bank PIM systems,

and understand its performance implications on a real PIM system. Specifically, our goal in this

work is twofold: (i) design efficient SpMV algorithms to accelerate this kernel in current and future

PIM systems, while covering a wide variety of sparse matrices with diverse sparsity patterns, and (ii)

provide an extensive characterization analysis of the widely used SpMV kernel on a real PIM archi-

tecture. To this end, we provide a wide variety of SpMV implementations for real PIM architectures,

and conduct a rigorous experimental analysis of SpMV kernels in the UPMEM PIM system, the first

publicly-available real-world PIM architecture.

We present the SparseP library [11] that includes 25 SpMV kernels for real PIM systems, sup-

porting various (1) data types, (2) data partitioning techniques of the sparse matrix to PIM-enabled

memory, (3) compressed matrix formats, (4) load balancing schemes across PIM cores, (5) load balanc-
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ing schemes across threads of a multithreaded PIM core, and (6) synchronization approaches among

threads within PIM core. We support a wide range of data types, i.e., 8-bit integer, 16-bit integer, 32-

bit integer, 64-bit integer, 32-bit float and 64-bit float data types to cover a wide variety of real-world

applications that employ SpMV as their underlying kernel. We design two types of well-crafted data

partitioning techniques: (i) the 1D partitioning technique to perform the complete SpMV computation

only using PIM cores, and (ii) the 2D partitioning technique to strive a balance between computation

and data transfer costs to PIM-enabled memory. In the 1D partitioning technique, the matrix is hor-

izontally partitioned across PIM cores, and the whole input vector is copied into the DRAM bank of

each PIM core, while PIM cores directly compute the elements of the final output vector. In the 2D

partitioning technique, the matrix is split in 2D tiles, the number of which is equal to the number of

PIM cores, and a subset of the elements of the input vector is copied into the DRAM bank of each PIM

core. However, in the 2D partitioning technique, PIM cores create a large number of partial results for

the elements of the output vector which are gathered and merged by the host CPU cores to assemble

the final output vector. We support the most popular compressed matrix formats, i.e., CSR [456,457],

COO [457, 458], BCSR [459], BCOO [457], and for each compressed format we implement various

load balancing schemes across PIM cores to provide efficient SpMV execution for a wide variety of

sparse matrices with diverse sparsity patterns. Finally, we design several load balancing schemes and

synchronization approaches among parallel threads within a PIM core to cover a variety of real PIM

systems that provide multithreaded PIM cores.

We conduct an extensive characterization analysis of SparseP kernels on the UPMEM PIM sys-

tem [137,141,142,318] analyzing the SpMV execution using (1) one single multithreaded PIM core, (2)

thousands of PIM cores, and (3) comparing it with that achieved on conventional processor-centric

CPU and GPU systems. First, we characterize the limits of a single multithreaded PIM core, and show

that (i) high operation imbalance across threads of a PIM core can impose high overhead in the core

pipeline, and (ii) fine-grained synchronization approaches to increase parallelism cannot outperform

a coarse-grained approach, if PIM hardware serializes accesses to the local DRAM bank. Second, we

analyze the end-to-end SpMV execution of 1D and 2D partitioning techniques using thousands of

PIM cores. Our study indicates that the performance (i) of the 1D partitioning technique is limited

by data transfer costs to broadcast the whole input vector into each DRAM bank of PIM cores, and

(ii) of the 2D partitioning technique is limited by data transfer costs to gather partial results for the

elements of the output vector from PIM-enabled memory to the host CPU. Such data transfers incur

high overheads, because they take place via the narrow memory bus. In addition, our detailed study

across a wide variety of compressed matrix formats and sparse matrices with diverse sparsity pat-

terns demonstrates that (i) the compressed matrix format determines the data partitioning strategy

across DRAM banks of PIM-enabled memory, thereby affecting the computation balance across PIM

cores with corresponding performance implications, and (ii) there is no one-size-fits-all solution. The

load balancing scheme across PIM cores (and across threads within a PIM core) and data partitioning

technique that provides the best-performing SpMV execution depends on the characteristics of the

input matrix and the underlying PIM hardware. Finally, we compare the SpMV execution on a state-

of-the-art UPMEM PIM system with 2528 PIM cores to state-of-the-art CPU and GPU systems, and
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observe that SpMV on the UPMEM PIM system achieves a much higher fraction of the machine’s peak

performance compared to that on the state-of-the-art CPU and GPU systems. Our extensive evalua-

tion provides programming recommendations for software designers, and suggestions and hints for

hardware and system designers of future PIM systems.

Our most significant recommendations for PIM software designers are:

1. Design algorithms that provide high load balance across threads of PIM core in terms of com-

putations, loop control iterations, synchronization points and memory accesses.

2. Design compressed data structures that can be effectively partitioned across DRAM banks, with

the goal of providing high computation balance across PIM cores.

3. Design adaptive algorithms that trade off computation balance across PIM cores for lower data

transfer costs to PIM-enabled memory, and adapt their configuration to the particular patterns

of each input given, as well as the characteristics of the PIM hardware.

Our most significant suggestions for PIM hardware and system designers are:

1. Provide low-cost synchronization support and hardware support to enable concurrent memory

accesses by multiple threads to the local DRAM bank to increase parallelism in a multithreaded

PIM core.

2. Optimize the broadcast collective operation in data transfers from main memory to PIM-enabled

memory to minimize overheads of copying the input data into all DRAM banks in the PIM sys-

tem.

3. Optimize the gather collective operation at DRAM bank granularity for data transfers from

PIM-enabled memory to the host CPU to minimize overheads of retrieving the output results.

4. Design high-speed communication channels and optimized libraries for data transfers to/from

thousands of DRAM banks of PIM-enabled memory.

Our SparseP software package is freely and publicly available [11] to enable further research on

SpMV in current and future PIM systems. The main contributions of this work are as follows:

• We present SparseP , the first open-source SpMV software package for real PIM architectures.

SparseP includes 25 SpMV kernels, supporting the four most widely used compressed matrix

formats and a wide range of data types. SparseP is publicly available at [11], and can be useful

for researchers to improve multiple aspects of future PIM hardware and software.

• We perform the first comprehensive study of the widely used SpMV kernel on the UPMEM PIM

architecture, the first real commercial PIM architecture. We analyze performance implications

of SpMV PIM execution using a wide variety of (1) compressed matrix formats, (2) data types,

(3) data partitioning and load balancing techniques, and (4) 26 sparse matrices with diverse

sparsity patterns.

• We compare the performance and energy of SpMV on the state-of-the-art UPMEM PIM system

with 2528 PIM cores to state-of-the-art CPU and GPU systems. SpMV execution achieves less

than 1% of the peak performance on processor-centric CPU and GPU systems, while it achieves

on average 51.7% of the peak performance on the UPMEM PIM system, thus better leveraging

the computation capabilities of underlying hardware. The UPMEM PIM system also provides

high energy efficiency on the SpMV kernel.



Chapter 6 167

6.2 Background and Motivation

6.2.1 Sparse Matrix Vector Multiplication (SpMV)

The SpMV kernel multiples a sparse matrix of size M × N with a dense input vector of size 1 × N

to compute an output vector of size M × 1. The SpMV kernel is widely used in a variety of appli-

cations including graph processing [1, 276, 586, 587], neural networks [265, 588–590], machine learn-

ing [261, 591–595], and high performance computing [90, 392, 447, 596–599]. These applications in-

volve matrices with very high sparsity [18,81,129,276,279–283], i.e., a large fraction of zero elements.

Thus, using a compression scheme is a straightforward approach to avoid unnecessarily storing zero

elements and performing computations on them. For general sparse matrices, the most widely used

storage format is the Compressed Sparse Row (CSR) format [456, 457]. Figure 6.1 presents an exam-

ple of a compressed matrix using the CSR format (left), and the CSR-based SpMV execution (right),

assuming an input vector x and an output vector y.
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1.     for (i = 0; i < M; i++) 

2.     for (j = rowptr[i]; j < rowptr[i+1]; j++) 

3.     y[i] += values[j] * x[colind[j]]

Figure 6.1: (a) CSR representation of a sparse matrix. (b) CSR-based SpMV implementation.

Compressed Matrix Storage Formats

Several prior works [17, 95, 96, 99, 111, 393, 456–459, 600–613] propose compressed storage formats

for sparse matrices, which are typically of two types [276]. The first approach is to design general

purpose compressed formats, such as CSR [456, 457], CSR5 [601], COO [457, 458], BCSR [459], and

BCOO [457]. Such encodings are general in applicability and are highly-efficient in storage. The sec-

ond approach is to leverage a certain known structure in a given type of sparse matrix. For example,

the DIA format [603] is effective in matrices where the non-zero elements are concentrated along the

diagonals of the matrix. Such encodings aim to improve performance of sparse matrix computations

by specializing to particular matrix patterns, but they sacrifice generality. In this work, we explore

with the four most widely used general compressed formats (Figure 6.2), which we describe in more

detail next.
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Figure 6.2: (a) SpMV with a dense matrix representation, and (b) CSR, (c) COO, (d) BCSR, (e) BCOO

formats.
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Compressed Sparse Row (CSR) [456,457]. The CSR format (Figure 6.2b) sequentially stores values

in a row-wise order. A column index array (colind[]) and a value array (values[]) store the

column index and value of each non-zero element, respectively. An array, named rowptr[], stores

the location of the first non-zero element of each row within the values[] array. The values of an

adjacent pair of therowptr[] array, i.e.,rowptr[i, i+1], represent a slice of thecolind[]
and values[] arrays. The corresponding slice of the colind[] and values[] arrays stores

the column indices and the values of the non-zero elements, respectively, for the i-th row of the

original matrix.

Coordinate Format (COO) [457,458]. The COO format (Figure 6.2c) stores the non-zero elements

as a series of tuples (tuples[] array). Each tuple includes the row index, column index, and value

of the non-zero element.

Block Compressed Sparse Row (BCSR) [459]. The BCSR format (Figure 6.2d) is a block repre-

sentation of CSR. Instead of storing and indexing single non-zero elements, BCSR stores and indexes

r× c sub-blocks with at least one non-zero element. The original matrix is split into r× c sub-blocks.

Figure 6.2d shows an example of BCSR assuming 4× 4 sub-blocks. The original matrix of Figure 6.2a

is split into four sub-blocks, and two of them (highlighted with red color) contain at least one non-

zero element. The bvalues[] array stores the values of all the non-zero sub-blocks of the original

matrix. Each non-zero sub-block is stored in the bvalues[] array with a dense representation, i.e.,

padding with zero values when needed. The bcolind[] array stores the block-column index of

each non-zero sub-block. The browptr[] array stores the location of the first non-zero sub-block

of each block row within the bcolind[] array, assuming a block row represents r consecutive

rows of the original matrix, where r is the vertical dimension of the sub-block.

Block Coordinate Format (BCOO) [457]. The BCOO format is the block counterpart of COO. The

browind[], bcolind[] and bvalues[] arrays store the row indices, column indices and

values of the non-zero sub-blocks, respectively. Figure 6.2e shows an example of BCOO, assuming

4× 4 sub-blocks.

SpMV in Processor-Centric Systems

Many prior works [18,81,90,99,111,118,282,306,387–390] generally show that SpMV performs poorly

on commodity CPU and GPU systems, and achieves a small fraction of the peak performance (e.g.,

10% of the peak performance [389]) due to its algorithmic nature, the employed compressed matrix

storage format and the sparsity pattern of the matrix.

The SpMV kernel is highly bottlenecked by the memory subsystem in processor-centric CPU and

GPU systems due to three reasons. First, due to its algorithmic nature there is no temporal locality in

the input matrix. Unlike traditional algebra kernels like Matrix Matrix Multiplication or LU decom-

position, the elements of the matrix in SpMV are used only once [281,306]. Second, due to the sparsity

of the matrix, the matrix is stored in a compressed format (e.g., CSR) to avoid unnecessary computa-

tions and data accesses. Specifically, the non-zero elements of the matrix are stored contiguously in

memory, while additional data structures assist in the proper traversal of the matrix, i.e., to discover
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the positions of the non-zero elements. For example, CSR uses the rowptr[] and colind[] ar-

rays to discover the positions of the non-zero elements of the matrix. These additional data structures

cause additional memory access operations, memory bandwidth pressure and contention with other

requests in the memory subsystem. Third, due to the sparsity of the input matrix, SpMV causes irreg-

ular memory accesses to the elements of the input vector x. The memory accesses to the elements of

the input vector are input driven, i.e., they follow the sparsity pattern of the input matrix. This irreg-

ularity results to poor data locality on the elements of the input vector and expensive data accesses,

because it increases the average access latency due to a high number of cache misses on commodity

systems with deep cache hierarchies [281, 306]. As a result, memory-centric near-bank PIM systems

constitute a better fit for the widely used SpMV kernel, because they provide high levels of parallelism,

large aggregate memory bandwidth and low memory access latency [141, 142, 318, 395, 398].

6.2.2 Near-Bank PIM Systems

Figure 6.3 shows the baseline organization of a near-bank PIM system that we assume in this work.

The PIM system consists of a host CPU, standard DRAM memory modules, and PIM-enabled memory

modules. PIM-enabled modules are connected to the host CPU using one or more memory channels,

and include multiple PIM chips. A PIM chip (Figure 6.3 right) tightly integrates a low-area PIM core

with a DRAM bank. We assume that each PIM core can additionally include a small private instruction

memory and a small data (scratchpad or cache) memory. PIM cores can access data located on their

local DRAM bank, and typically there is no direct communication channel among PIM cores. The

DRAM banks of PIM chips are accessible by the host CPU for copying input data and retrieving

results via the memory bus.
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Figure 6.3: High-level organization of a near-bank PIM architecture.

The UPMEM PIM Architecture

The UPMEM PIM system [137, 141, 142] includes the host CPU with standard main memory, and

UPMEM PIM modules. An UPMEM PIM module is a standard DDR4-2400 DIMM [614] with 2 ranks.

Each rank contains 64 PIM cores, which are called DRAM Processing Units (DPUs). In the current

UPMEM PIM system, there are 20 double-rank PIM DIMMs with 2560 DPUs.
1

1
There are thirty two faulty DPUs in the system where we run our experiments. They cannot be used and do not affect

the correctness of our results, but take away from the system’s full computational power of 2560 DPUs.
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DPU Architecture and Interface. Each DPU has exclusive access to a 24-KB instruction mem-

ory, called IRAM, a 64-KB scratchpad memory, called WRAM, and a 64-MB DRAM bank, called

MRAM. A DPU is a multithreaded in-order 32-bit RISC core that can potentially reach 500 MHz [318].

The DPU has 24 hardware threads, each of which has 24 32-bit general purpose registers. The DPU

pipeline has 14 stages, and supports a single cycle 8x8-bit multiplier. Multiplications on 64-bit inte-

gers, 32-bit floats and 64-bit floats are not supported in hardware, and require longer routines with a

large number of operations [141, 142, 318]. Threads share the IRAM and WRAM, and can access the

MRAM by executing transactions at 64-bit granularity via a DMA engine, i.e., data can be accessed

from/to MRAM as a multiple of 8 bytes, up to 2048 bytes. MRAM transactions are serialized in the

DMA engine. The ISA provides DMA instructions to move instructions from MRAM to IRAM, or data

between MRAM and WRAM. The DPU accesses the WRAM through 8-, 16-, 32- and 64-bit load/s-

tore instructions. DPUs use the Single Program Multiple Data programming model, where software

threads, called tasklets, execute the same code, but operate in different pieces of data, and can exe-

cute different control-flow paths during runtime. Tasklets can synchronize using mutexes, barriers,

handshakes and semaphores provided by the UPMEM runtime library.

CPU-DPU Data Transfers. Standard main memory and PIM-enabled memory have different data

layouts. The UPMEM SDK [615] has a transposition library to execute necessary data shuffling

when moving data between main memory and MRAM banks of PIM-enabled memory modules via

a programmer-transparent way. The CPU-DPU and DPU-CPU data transfers can be performed in

parallel, i.e., concurrently across multiple MRAM banks, with the limitation that the transfer sizes

from/to all MRAM banks need to be the same. The UPMEM SDK provides two options: (i) perform

parallel transfers to all MRAM banks of all ranks, or (ii) iterate over each rank to perform parallel

transfers to MRAM banks of the same rank, and serialize data transfers across ranks.

6.3 The SparseP Library

This section describes the parallelization techniques that we explore for SpMV on real PIM archi-

tectures, and presents the SpMV implementations of our SparseP package. Section 6.3.1 describes

SpMV execution on a real PIM system. Section 6.3.2 presents an overview of the data partitioning

techniques that we explore. Section 6.3.3 and Section 6.3.4 describe in detail the parallelization tech-

niques across PIM cores, and across threads within a PIM core, respectively. Section 6.3.5 describes

the kernel implementation for all compressed matrix storage formats.

6.3.1 SpMV Execution on a PIM System

Figure 6.4 shows the SpMV execution on a real PIM system, which is broken down in four steps: (1)

the time to load the input vector into DRAM banks of PIM-enabled memory (load), (2) the time

to execute the SpMV kernel on PIM cores (kernel), (3) the time to retrieve from DRAM banks to

the host CPU results for the output vector (retrieve), and (4) the time to merge partial results

and assemble the final output vector on the host CPU (merge). In our analysis, we omit the time
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to load the matrix into PIM-enabled memory, since this step can typically be hidden in real-world

applications (it can be overlapped with other computation performed by the application or amortized

if the application performs multiple SpMV iterations on the same matrix).
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Figure 6.4: Execution of the SpMV kernel on a real PIM system.

6.3.2 Overview of Data Partitioning Techniques

To parallelize the SpMV kernel, we implement well-crafted data partitioning schemes to split the

matrix across multiple DRAM banks of PIM cores. SparseP supports two general types of data parti-

tioning techniques, shown in Figure 6.5.

Figure 6.5: Data partitioning techniques of the SparseP package.

First, we provide an 1D partitioning technique (Figure 6.5a), where the matrix is horizontally

partitioned across PIM cores, and the whole input vector is copied into the DRAM bank of each

PIM core. With the 1D partitioning technique, almost the entire SpMV computation is performed

using only PIM cores, since the merge step in the host CPU is negligible: a very small number of

partial results is created, i.e., only for a few rows that are split across neighboring PIM cores. Thus,

the number of partial elements of the output vector is at most equal to the number of PIM cores

used. Second, we provide a 2D partitioning technique (Figure 6.5b), where the matrix is partitioned

into 2D tiles, the number of which is equal to the number of PIM cores. With the 2D partitioning

technique, we aim to strive a balance between computation and data transfer costs, since only a subset

of the elements of the input vector is copied into the DRAM bank of each PIM core. However, PIM

cores assigned to tiles that horizontally overlap, i.e., tiles that share the same rows of the original
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matrix (rows that are split across multiple tiles), produce many partial results for the elements of the

output vector. These partial results are transferred to the host CPU, and merged by CPU cores, which

assemble the final output vector. In the SparseP library, the merge step performed by the CPU cores

is parallelized using the OpenMP API [616].

In both data partitioning schemes, matrices are stored in a row-sorted way, i.e., the non-zero

elements are sorted in increasing order of their row indices. Therefore, each PIM core computes

results for a continuous subset of elements of the output vector. This way we minimize data transfer

costs, since we only transfer necessary data to the host CPU, i.e., the values of the elements of the

output vector produced at PIM cores. If each PIM core instead computed results for a non-continuous

subset of elements of the output vector, an additional array per core, which would store the indices of

the non-continuous elements within the output vector, would need to be transferred to the host CPU,

causing additional data transfer overheads.

6.3.3 Parallelization Techniques Across PIM Cores

To parallelize SpMV across multiple PIM cores SparseP supports various parallelization schemes for

both 1D and 2D partitioning techniques.

1D Partitioning Technique

To efficiently parallelize SpMV across multiple PIM cores via the 1D partitioning technique, SparseP

provides various load balancing schemes for each supported compressed matrix format. Figure 6.6

presents an example of parallelizing SpMV across multiple PIM cores using load balancing schemes

for the CSR and COO formats. For the CSR and COO formats, we balance either the rows, such

that each PIM core processes almost the same number of rows, or the non-zero elements, such that

each PIM core processes almost the same number of non-zero elements. In the CSR format, since the

matrix is stored in row-order, i.e., the rowptr[] array stores the index pointers of the non-zero

elements of each row, and thus balancing the non-zero elements across PIM cores is performed at

row granularity. In the COO format, the matrix is stored in non-zero order using the tuples[]
array, and thus balancing the non-zero elements can be performed either at row granularity, or by

splitting a row across two neighboring PIM cores to provide a near-perfect non-zero element balance

across cores. In the latter case, as mentioned, a small number of partial results for the output vector is

merged by the host CPU: if the row is split between two neighboring PIM cores at most one element

needs to be accumulated at the host CPU cores.

Figure 6.7 presents an example of parallelizing SpMV across multiple PIM cores using load balanc-

ing schemes of the BCSR and BCOO formats. In Figure 6.7, the cells of the matrix represent sub-blocks

of size 4x4: the grey cells represent sub-blocks that do not have any non-zero element, and the colored

cells represent sub-blocks that have k non-zero elements, where k is the number shown inside the

colored cell. In the BCSR and BCOO formats, since the matrix is stored in sub-blocks of non-zero

elements, we balance either the blocks, such that each PIM core processes almost the same number

of blocks, or the non-zero elements, such that each PIM core processes almost the same number of
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Figure 6.6: Load balancing schemes across PIM cores for the CSR (left) and COO (right) formats with

the 1D partitioning technique. The colored cells of the matrix represent non-zero elements.
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the 1D partitioning technique. The cells of the matrix represent sub-blocks of size 4x4. The colored

cells of the matrix represent non-zero sub-blocks, and the number inside a colored cell describes the

number of non-zero elements of the corresponding sub-block.

non-zero elements. Similarly to CSR, in the BCSR format, the matrix is stored in block-row-order, i.e.,

the browptr[] array stores the index pointers of the non-zero blocks of each block row (recall that

a block row represents r consecutive rows of the original matrix, where r is the vertical dimension

of the sub-block), and thus balancing the blocks or the non-zero elements across cores is limited to

be performed at block-row granularity. In the BCOO format, given that a block-row might be split

across two PIM cores, a small number of partial results for the output vector is merged by the host

CPU: between two neighboring PIM cores at most block size r elements (r is the vertical dimension

of the block size) might need to be accumulated at the host CPU cores.

2D Partitioning Technique

SparseP includes three 2D partitioning techniques, shown in Figure 6.8:

1. equally-sized (Figure 6.8a): The 2D tiles are statically created to have the same height and

width. This way the subsets of the elements for the input and output vectors have the same

sizes across all PIM cores.
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2. equally-wide (Figure 6.8b): The 2D tiles have the same width and variable height. This way

the subset of the elements for the input vector has the same size across PIM cores, while the

subset of the elements for the output vector varies across PIM cores. We balance the non-zero

elements across the tiles of the same vertical partition, such that we can provide high non-zero

element balance across PIM cores assigned to the same vertical partition.

3. variable-sized (Figure 6.8c): The 2D tiles have both variable width and height. We balance the

non-zero elements both across the vertical partitions and across the tiles of the same vertical

partition. This way we can provide high non-zero element balance across all PIM cores.

2D
equally-sized

2D
equally-wide

2D
variable-sized

input vector input vector

Core 1 Core 3

Core 2 Core 4

Core 1
Core 3

Core 2
Core 4

x 4 x 4 x 3 x 5

+

(a) (b) (c)

x 2

input vector

x 4 x 4 x 2 x 2

Core 1
Core 3

Core 2
Core 4

output 
vector

output 
vector

output 
vector

  =  +   =  +  =

sparse
matrix

sparse
matrix

sparse
matrix

Figure 6.8: The 2D partitioning techniques of SparseP package assuming 4 PIM cores and 2 vertical

partitions.

SparseP provides various load balancing schemes across PIM cores in the equally-wide and variable-

sized techniques. In the equally-wide technique, for the CSR and COO formats, we balance the non-

zero elements across the tiles of the same vertical partition. Load balancing in the CSR format is

performed at row-granularity, i.e., splitting the rowptr[] array across PIM cores. For the BCSR

and BCOO formats, we balance either the blocks or the non-zero elements across the tiles of the

same vertical partition. Load balancing in the BCSR format is performed at block-row granularity,

i.e., splitting the browptr[] array across PIM cores. In the variable-sized technique, we first bal-

ance the non-zero elements across the vertical partitions, such that the vertical partitions include the

same number of non-zero elements. Then, across the tiles of the same vertical partition, we balance

the non-zero elements for the CSR (at row-granularity) and COO formats, and either the blocks or

the non-zero elements for the BCSR (at block-row granularity) and BCOO formats.

Table 6.1 summarizes the parallelization approaches across PIM cores. Please also see Appendix 9.3

for all SpMV kernels provided by the SparseP software package. All kernels support a wide range of

data types, i.e., 8-bit integer (int8), 16-bit integer (int16), 32-bit integer (int32), 64-bit integer (int64),

32-bit float (fp32), and 64-bit float (fp64) data types.

6.3.4 Parallelization Techniques Across Threads within a PIM Core

PIM cores can support multiple hardware threads to exploit high memory bank bandwidth [141,142].

To parallelize SpMV across multiple threads within a multithreaded PIM core SparseP supports var-

ious load balancing schemes for each compressed matrix format, and three synchronization ap-

proaches to ensure correctness among threads of a PIM core.
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Partitioning Compressed Load Balancing

Technique Format Across PIM Cores

1D

CSR
rows (CSR.row)

nnz
⋆

(CSR.nnz)

COO

rows (COO.row)

nnz
⋆

(COO.nnz-rgrn)

nnz (COO.nnz)

BCSR
blocks

†
(BCSR.block)

nnz
†

(BCSR.nnz)

BCOO
blocks (BCOO.block)

nnz (BCOO.nnz)

2D

equally-sized

CSR (DCSR) -

COO (DCOO) -

BCSR (DBCSR) -

BCOO (DBCOO) -

2D

equally-wide

CSR (RBDCSR) nnz
⋆

COO (RBDCOO) nnz

BCSR
blocks

†
(RBDBCSR)

nnz
†

BCOO
blocks (RBDBCOO)

nnz

2D

variable-sized

CSR (BDCSR) nnz
⋆

COO (BDCOO) nnz

BCSR
blocks

†
(BDBCSR)

nnz
†

BCOO
blocks (BDBCOO)

nnz

Table 6.1: Parallelization techniques across PIM cores of the SparseP library.
⋆
: row-granularity,

†
:

block-row-granularity

Load Balancing Approaches

In a similar way as explained in Figure 6.6, for the CSR and COO formats, we balance either the rows,

such that each thread processes almost the same number of rows, or the non-zero elements, such

that each thread processes almost the same number of non-zero elements. In the CSR format, matrix

is stored in row-order, and thus load balancing across threads is performed at row granularity. In

the UPMEM PIM system, elements of the output vector are accessed at 64-bit granularity in DRAM

memory. Thus, when balancing is performed at row granularity, we assign rows to threads in chunks

of 8/sizeof(data type) to ensure 8-byte alignment on the elements of the output vector. In the COO

format, balancing the non-zero elements can be performed either at row granularity or by splitting

the row between threads, i.e., providing an almost perfect non-zero balance across threads. In the

latter case, synchronization among threads for write accesses on the elements of the output vector

can be implemented with three synchronization approaches described in Section 6.3.4.

For the BCSR and BCOO formats, we balance either the blocks, such that each thread processes

almost the same number of blocks, or the non-zero elements, such that each thread processes almost
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the same number of non-zero elements. In the BCSR format, the matrix is stored in block-row order,

and thus load balancing across threads is performed at block row granularity. For both formats, the

block sizes are configurable in SparseP . In our evaluation, we use block sizes of 4x4, since these are

the most common dimensions to cover various sparse matrices [18, 387, 617]. In the UPMEM PIM

architecture, elements of the output vector are accessed at 64-bit granularity. Therefore, for the BCSR

format, with an 8-bit integer data type and small block sizes (4x4 or smaller), threads use synchroniza-

tion primitives to ensure correctness when writing the elements of the output vector. This is because

different threads may write to the same 64-bit-aligned DRAM memory location. Synchronization

among threads for writes to the elements of the output vector is necessary for all configurations of

the BCOO format, and can be implemented with three approaches described next.

Synchronization Approaches

SparseP provides three synchronization approaches.

1. Coarse-Grained Locking (lb-cg). One global mutex protects the elements of the entire output

vector.

2. Fine-Grained Locking (lb-fg). Multiple mutexes protect the elements of the output vector.

SparseP associates mutexes to the elements of the output vector in a round-robin manner. The

UPMEM API supports up to 56 mutexes [615]. In our evaluation, we use 32 mutexes such that

we can find the corresponding mutex for a particular element of the output vector only with a

shift operation on the MRAM address, avoiding costly division operations.

3. Lock-Free (lf). Since the formats are row-sorted or block-row-sorted, race conditions in the

elements of the output vector arise only in a few elements, i.e., either when a row (or a block

row for BCSR/BCOO) is split across threads, or when continuous elements of the output vector

processed by different threads belong to the same 64-bit-aligned DRAM location in the UPMEM

PIM system. In our proposed lock-free approach, threads temporarily store partial results for

these few elements in the data (scratchpad) memory (i.e., WRAM in the UPMEM PIM system),

and later one single thread merges the partial results, and writes the final result for the corre-

sponding element of the output vector to the DRAM bank.

Table 6.2 summarizes the parallelization techniques across threads of a PIM core. All kernels

support a wide range of data types, i.e., 8-bit integer (int8), 16-bit integer (int16), 32-bit integer

(int32), 64-bit integer (int64), 32-bit float (fp32), and 64-bit float (fp64) data types.

6.3.5 Kernel Implementation

We briefly describe the SparseP implementations for all compressed matrix formats, i.e., the way

that threads access data involved in the kernel from/to the local DRAM bank. The SpMV kernels

include three types of data structures: (i) the arrays that store the non-zero elements, i.e., the val-

ues (values[]) and the positions of the non-zero elements (rowptr[], colind[] for CSR,

tuples[] for COO,browptr[],bcolind[] for BCSR,browind[],bcolind[] for BCOO),



Chapter 6 177

Compressed Load Balancing Synchronization

Format Across Threads Approach

CSR
rows (CSR.row) -

nnz
⋆

(CSR.nnz) -

COO

rows (COO.row) -

nnz
⋆

(COO.nnz-rgrn) -

nnz (COO.nnz) lb-cg / lb-fg / lf

BCSR
blocks

†
(BCSR.block) lb-cg / lb-fg (only for int8 and small block sizes)

nnz
†

(BCSR.nnz) lb-cg / lb-fg (only for int8 and small block sizes)

BCOO
blocks (BCOO.block) lb-cg / lb-fg / lf

nnz (BCOO.nnz) lb-cg / lb-fg / lf

Table 6.2: Parallelization schemes across threads of a PIM core.
⋆
: row-granularity,

†
: block-row-

granularity

(ii) the array that stores the elements of the input vector, and (iii) the array that stores the partial re-

sults created for the elements of the output vector.

First, SpMV performs streaming memory accesses to the arrays that store the non-zero elements

and their positions. Therefore, to exploit spatial locality and immense bandwidth in data (scratch-

pad or cache) memory, each thread reads the non-zero elements by fetching large chunks of bytes

in a coarse-grained manner from DRAM to data memory (i.e., WRAM in the UPMEM PIM system).

Then, it accesses elements through data memory in a fine-grained manner. In the UPMEM PIM sys-

tem, we fetch chunks of 256-byte data to discover the non-zero elements, as suggested by the UP-

MEM API [615], since 256-byte transfer sizes highly exploit the available local bandwidth of DRAM

bank [141, 142]. For the BCSR and BCOO formats, only for the array that stores the values of the

non-zero elements (i.e., bvalues[]), we fetch from DRAM to data memory block size chunks, i.e.,

chunks of r× c× sizeof(data type) bytes, assuming that the matrix is stored in blocks of size r× c.

Second, SpMV causes irregular memory accesses to the elements of the input vector. Specifically,

the accesses to the elements of the input vector are input-driven, i.e., they are determined by the

column positions (column indexes) of the non-zero elements of each particular matrix. Given that

matrices involved in SpMV are very sparse [18, 81, 129, 276, 279–283], i.e., the column indexes of the

non-zero elements significantly vary, memory accesses to the input vector incur poor data locality.

Thus, in our SpMV implementations, threads of a PIM core directly access elements of the input vector

through DRAM bank at fine-granularity [141, 142, 615], i.e., using the smallest possible granularity:

for the CSR and COO formats at 64-bit granularity, and for the BCSR and BCOO formats at the

granularity of c× sizeof(data type) bytes, where c is the horizontal dimension of the block size.

Third, regarding the output vector, threads temporarily store partial results for the same elements

of the output vector in data (scratchpad or cache) memory to exploit data locality, until all the non-

zero elements of the same row or the same block row have been traversed (recall matrices are stored

in a row-sorted way). Then, the produced results are written to DRAM bank at fine-granularity [141,

142,615]: for the CSR and COO formats at 64-bit granularity, and for the BCSR and BCOO formats at

the granularity of r × sizeof(data type) bytes, where r is the vertical dimension of the block size.
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6.4 Evaluation Methodology

We conduct our evaluation on an UPMEM PIM system that includes a 2-socket Intel Xeon Silver 4110

CPU [618] at 2.10 GHz (host CPU), standard main memory (DDR4-2400) [614] of 128 GB, and 20

UPMEM PIM DIMMs with 160 GB PIM-capable memory and 2560 DPUs.
2

First, we evaluate SpMV execution using one single DPU and multiple tasklets (Section 6.5). Ta-

ble 6.3 shows our evaluated small matrices that fit in the 64 MB DRAM memory of a single DPU. The

evaluated matrices vary in sparsity (i.e., NNZ / (rows x columns)), standard deviation of non-zero

elements among rows (NNZ-r-std) and columns (NNZ-c-std). The highlighted matrices in Table 6.3

with red color exhibit block pattern [17, 18], i.e., they include a lot of dense sub-blocks (almost all

their non-zero elements fit in dense sub-blocks).

Matrix Name Sparsity NNZ-r-std NNZ-c-std

delaunay n13 7.32e-04 1.343 1.343

wing nodal 1.26e-03 2.861 2.861

raefsky4 3.396e-03 15.956 15.956

pkustk08 0.006542 61.537 61.537

Table 6.3: Small Matrix Dataset.

Second, we evaluate SpMV execution using multiple DPUs of the UPMEM PIM system (Sec-

tion 6.6). We evaluate SpMV execution using both 1D (Section 6.6.1) and 2D (Section 6.6.2) parti-

tioning techniques, and compare them (Section 6.6.3) using a wide variety of sparse matrices with

diverse sparsity patterns. We select 22 representative sparse matrices from the Sparse Suite Collec-

tion [575], the characteristics of which are shown in Table 6.4. As the values of the last two metrics

increase (i.e., NNZ-r-std and NNZ-c-std), the matrix becomes very irregular [86, 87], and is referred

to as scale-free matrix. In our evaluation, we refer to all matrices between hgc to bns matrices of

Table 6.4 as regular matrices. The matrices in which NNZ-r-std is larger than 25, i.e., all matrices

between wbs to ask in Table 6.4, we refer to as scale-free matrices. Please see Appendix 9.4 for a

complete description of our dataset of large sparse matrices.

Third, we compare the performance and energy consumption of SpMV execution on the UPMEM

PIM system to those on the Intel Xeon Silver 4110 CPU [618] and the NVIDIA Tesla V100 GPU [619]

(Section 6.7).

In Section 6.8, we summarize our key takeaways and provide programming recommendations

for software designers, and suggestions and hints for hardware and system designers of future PIM

systems.

2
There are thirty two faulty DPUs in the system where we run our experiments. They cannot be used and do not affect

the correctness of our results, but take away from the system’s full computational power of 2560 DPUs.
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Matrix Name Sparsity NNZ-r-std NNZ-c-std

hugetric-00020 (hgc) 4.21e-07 0.031 0.031

mc2depi (mc2) 7.59e-06 0.076 0.076

parabolic fem (pfm) 1.33e-05 0.153 0.153

roadNet-TX (rtn) 1.98e-06 1.037 1.037

rajat31 (rjt) 9.24e-07 1.106 1.106

af shell1 (ash) 6.90e-05 1.275 1.275

delaunay n19 (del) 1.14e-05 1.338 1.338

thermomech dK (tdk) 6.81e-05 1.431 1.431

memchip (mem) 2.02e-06 2.062 1.173

amazon0601 (amz) 2.08e-05 2.79 15.29

FEM 3D thermal2 (fth) 1.59e-04 4.481 4.481

web-Google (wbg) 6.08e-06 6.557 38.366

ldoor (ldr) 5.13e-05 11.951 11.951

poisson3Db (psb) 3.24e-04 14.712 14.712

boneS10 (bns) 6.63e-05 20.374 20.374

webbase-1M (wbs) 3.106e-06 25.345 36.890

in-2004 (in) 8.846e-06 37.230 144.062

pkustk14 (pks) 6.428e-04 46.508 46.508

com-Youtube (cmb) 4.639e-06 50.754 50.754

as-Skitter (skt) 7.71e-06 136.861 136.861

sx-stackoverflow (sxw) 5.352e-06 137.849 65.367

ASIC 680k (ask) 8.303e-06 659.807 659.807

Table 6.4: Large Matrix Dataset. Matrices are sorted by NNZ-r-std, i.e., based on their irregular

pattern. The highlighted matrices with red color exhibit block pattern [17, 18].

6.5 Analysis of SpMV Execution on One DPU

This section characterizes SpMV performance with various load balancing schemes and compressed

matrix formats using multiple tasklets in a single DPU. Section 6.5.1 compares load balancing schemes

of each compressed matrix format, and Section 6.5.2 compares the scalability of various compressed

matrix formats.

6.5.1 Load Balancing Schemes Across Tasklets of One DPU

We compare the parallelization schemes of each compressed matrix format supported by SparseP

library (presented in Table 6.2) across multiple threads of a multithreaded PIM core. Figure 6.9 com-

pares the load balancing schemes of each compressed matrix format using 16 tasklets in a single

DPU. For the BCSR and BCOO formats, we omit results for the fine-grained locking approach, since

it performs similarly with the coarse-grained locking approach: as we explain in Appendix 9.1.1,

fine-grained locking does not increase parallelism over coarse-grained, since in the UPMEM PIM

hardware, DRAM memory accesses of the critical section are serialized in the DMA engine of the

DPU [141, 142, 615].
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Figure 6.9: Execution time achieved by various load balancing schemes of each compressed matrix

format using 16 tasklets of a single DPU.

We draw four findings from Figure 6.9. First, we find that SpMV execution using int8, int16, and

int32 data types achieves similar execution times across them. This is because the multiplication

operation of these data types is sufficiently supported by hardware [142]. In contrast, execution time

sharply increases when using more heavyweight data types, i.e., int64 and floating point data types,

in which multiplication is emulated in software using the 8x8-bit multiplier of the DPU [141,142,615].

Second, we observe that balancing the non-zero elements across tasklets typically outperforms

balancing the rows for the CSR/COO formats or blocks for the BCSR/BCOO formats, since the non-

zero element multiplications are computationally very expensive and can significantly affect load

balance across tasklets. However, in delaunay n13 matrix, balancing the non-zero elements

causes high row/block imbalance across tasklets, since one tasklet processes a significantly higher

number of rows/blocks over the rest, thereby causing high operation imbalance across tasklets within

the DPU core pipeline. As a result, balancing the rows/blocks outperforms balancing the non-zero

elements due to the particular pattern of delaunay n13 matrix. In addition, performance ben-

efits of balancing the blocks over balancing the non-zero elements are significant in the BCSR/BCOO

formats, because they operate at block granularity and incur high loop control costs.

Third, we observe that the lock-free approach (COO.nnz-lf) outperforms the lock-based ap-

proaches (COO.nnz-lb-cg and COO.nnz-lb-fg) in delaunay n13 matrix, especially

in data types where the multiplication operation is supported directly in hardware. Indelaunay n13
matrix, one tasklet processes a much larger number of rows than the rest, i.e., it performs a much

larger number of critical sections than the rest. In other words, one tasklet performs a much larger

number of lock acquisitions/releases and memory instructions than the rest. Thus, lock-based ap-

proaches cause high operation imbalance in the DPU core pipeline with significant performance
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costs. Instead, lock-free and lock-based approaches in the BCOO format perform similarly, since lock

acquisition/release costs can be hidden due to BCOO’s higher loop control costs and larger critical

sections. Overall, based on the second and the third findings, we conclude that in matrices and for-

mats, where the load balancing and/or the synchronization scheme used cause high disparity in the

number of non-zero elements/blocks/rows processed across tasklets or the number of lock acqui-

sitions/lock releases/memory accesses performed across tasklets, the DPU core pipeline can incur

significant performance overheads.

OBSERVATION 1:

High operation imbalance in computation, control, synchronization, or mem-

ory instructions executed by multiple threads of a PIM core can cause high

performance overheads in the compute-bound and area-limited PIM cores.

Fourth, we find that the fine-grained locking approach (COO.nnz-lb-fg) performs similarly

with the coarse-grained locking approach (COO.nnz-lb-cg). This is because the critical section

includes memory accesses to the local DRAM bank, which, in the UPMEM PIM hardware, are serial-

ized in the DMA engine of the DPU. Therefore, fine-grained locking does not increase execution par-

allelism over coarse-grained locking, since concurrent accesses to MRAM bank are not supported in

the UPMEM PIM hardware. Fine-grained locking does not improve performance over coarse-grained

locking, also when using block-based formats (e.g., BCSR/BCOO formats), as we demonstrate in Ap-

pendix 9.1.1. Therefore, we recommend PIM hardware designers to provide lightweight synchroniza-

tion mechanisms [5] for PIM cores, and/or enable concurrent accesses to local DRAM memory, e.g.,

supporting sub-array level parallelism [160, 414, 418, 421, 425, 620–622] or multiple DRAM banks per

PIM core.

OBSERVATION 2:

Fine-grained locking approaches to parallelizing critical sections that

perform memory accesses to different DRAM memory locations can-

not improve performance over coarse-grained locking, when the

PIM hardware does not support concurrent accesses to a DRAM bank.

6.5.2 Analysis of Compressed Matrix Formats on One DPU

We compare the scalability and the performance achieved by various compressed matrix formats.

Figure 6.10 compares the supported compressed formats for the int8 (top graphs) and fp64 (bottom

graphs) data types when balancing the non-zero elementsacross tasklets of a DPU.

We draw three findings. First, we find that even though a DPU supports 24 tasklets, SpMV exe-

cution typically scales up to 16 tasklets, since the DPU pipeline is fully utilized. In delaunay n13
matrix, CSR.nnz scales up to 24 tasklets. In this matrix, when using 16 tasklets, performance of the

CSR.nnz scheme is limited by memory accesses: only one tasklet processes 6 × more rows than the
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Figure 6.10: Scalability of all compressed formats for the int8 (top graphs) and fp64 (bottom graphs)

data types as the number of tasklets of a single DPU increases.

rest, i.e., it performs 6 × more memory accesses to fetch elements from the rowptr[] array. Thus,

as we increase the number of tasklets from 16 to 24, the disparity in the number of rows across tasklets

decreases, and the performance of the CSR.nnz scheme improves.Second, we observe that for the

data types with hardware-supported multiplication operation (e.g., int8 data type), CSR achieves the

highest scalability, since it provides a better balance between memory access and computation. In

contrast, in the floating point data types (e.g., fp64 data type), the DPU is significantly bottlenecked

by the expensive software-emulated multiplication operations, and thus all formats scale similarly.

Third, we observe that the BCSR and BCOO formats outperform the CSR and COO formats in matri-

ces that exhibit block pattern (i.e., raefsky4 and pkustk08matrices), only when multiplication

is supported by hardware (e.g., int8 data type). This is because they exploit spatial and temporal lo-

cality in data memory (i.e., WRAM) in the accesses of the elements of the input vector. Instead, in the

fp64 data type, performance is severely bottlenecked by computation, thus the BCSR/BCOO formats

perform worse than the CSR/COO formats, since they incur higher indexing costs to discover the

positions of the non-zero elements [276, 617].

OBSERVATION 3:

Block-based formats (e.g., BCSR/BCOO) and can provide high performance gains

over non-block-based formats (e.g., CSR/COO) in matrices that exhibit block pat-

tern, if the multiplication operation is supported by hardware. Otherwise, the state-

of-the-art CSR and COO formats can provide high performance and scalability.
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6.6 Analysis of SpMV Execution on Multiple DPUs

This section analyzes SpMV execution using multiple DPUs in the UPMEM PIM system using the

large matrix data set of Table 6.4.

Section 6.6.1 evaluates the 1D partitioning schemes. Section 6.6.1 evaluates the actual kernel

time of SpMV by comparing (a) all load balancing schemes of each compressed matrix format, and

(b) the performance of all compressed matrix formats. Section 6.6.1 characterizes end-to-end SpMV

execution time of the 1D partitioning technique including the data transfer costs for the input and

output vectors.

Section 6.6.2 evaluates the 2D partitioning techniques. Section 6.6.2 presents three character-

ization studies on (a) performing fine-grained data transfers to transfer the elements of the input

and output vectors to/from PIM-enabled memory, (b) the scalability of 2D partitioning techniques to

thousands of DPUs, and (c) the number of vertical partitions to perform on the matrix. Section 6.6.2

compares the end-to-end performance of all compressed matrix formats for each of the three types

of 2D partitioning techniques. Section 6.6.2 compares the best-performing SpMV implementations of

all three types of 2D partitioning techniques.

Section 6.6.3 compares the best-performing (on average across all matrices and data types) SpMV

implementations of the 1D and 2D partitioning techniques.

6.6.1 Analysis of SpMV Execution Using 1D Partitioning Techniques

We evaluate the 1D partitioning schemes highlighted in bold in Table 6.1. Specifically, for COO.nnz,

we present the coarse-grained locking (COO.nnz-lb) and lock-free (COO.nnz-lf) approaches,

since the fine-grained locking approach performs similarly with the coarse-grained locking approach,

as shown in the previous section (Section 6.5.1). Similarly, for the BCSR (int8 data type) and BCOO

formats, we present only the coarse-grained locking approach, since all synchronization approaches

perform similarly (Section 6.5.1). Finally, in all experiments presented henceforth, we use 16 tasklets

and load-balance the non-zero elements across tasklets within the DPU, since this load balancing

scheme provides the highest performance benefits on average across all matrices and data types,

according to our evaluation shown in Section 6.5.

Analysis of Kernel Time

We compare the kernel time of SpMV achieved by various load balancing schemes for each par-

ticular compressed matrix format, and then we compare the kernel time of the compressed matrix

formats.

Analysis of Load Balancing Schemes Across DPUs. Figure 6.11 compares load balancing tech-

niques for each compressed matrix format using 2048 DPUs and the int32 data type.

We draw four findings. First, we observe that CSR.nnz and COO.nnz-rgrn, i.e., balancing

the non-zero elements across DPUs (at row granularity), either outperform or perform similarly to

CSR.row and COO.row, respectively, i.e., balancing the rows across DPUs, except for hgc and
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Figure 6.11: Performance comparison of load balancing techniques for each particular compressed

format using 2048 DPUs and the int32 data type.

del matrices. In these two matrices, CSR.nnz and COO.nnz-rowgrn incur a high disparity

in rows assigned to DPUs, i.e., only one DPU processes 4× and 11× more rows than the rest, for

hgc and del matrices, respectively. This in turn creates a high disparity in the elements of the

output vector processed across DPUs, causing performance to be limited by the DPU that processes

the largest number of rows. Thus, we find that adaptive load balancing approaches and selection

methods based on the characteristics of each input matrix need to be developed to achieve high

performance across all matrices.

OBSERVATION 4:

Adaptive load balancing schemes and selection methods for the balancing scheme

on rows/blocks/non-zero elements based on the characteristics of each input

matrix need to be developed to provide best performance across all matrices.
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Second, we find that COO.nnz-lb and COO.nnz-lf, which provide an almost perfect non-

zero element balance across DPUs, significantly outperform COO.row and COO.nnz-rgrn in

scale-free matrices (i.e., from wbs to ask matrices) by on average 6.73×. Scale-free matrices have

only a few rows, that include a much larger number of non-zero elements compared to the remaining

rows of the matrix. Therefore, perfectly balancing the non-zero elements across DPUs provides high

performance gains.

OBSERVATION 5:

Perfectly balancing the non-zero elements across PIM cores can provide

significant performance benefits in highly irregular, scale-free matrices.

Third, we find that the lock-freeCOO.nnz-lf scheme outperforms the lock-basedCOO.nnz-lb
scheme by 1.34× on average, and provides high performance benefits when there is a high row im-

balance across tasklets within the DPU. When one tasklet processes a much larger number of rows

versus the rest, it executes a much larger number of critical sections. As a result, the core pipeline

incurs high imbalance in lock acquisitions/releases, causing the lock-based approach to incur high

performance overheads in relatively compute-bound DPUs [141, 142].

OBSERVATION 6:

Lock-free approaches can provide high performance benefits over lock-based approaches

in PIM architectures, because they minimize synchronization overheads in PIM cores.

Finally, in the BCSR and BCOO formats, balancing the blocks across DPUs performs similarly (on

average across all matrices) to balancing the non-zero elements across DPUs.

To further investigate the performance of the various load balancing schemes, Figure 6.12 com-

pares them using all the data types. We present the geometric mean of all matrices using 2048 DPUs.

In the CSR and COO formats, balancing the non-zero elements across DPUs on average outperforms

balancing the rows across DPUs by 1.18× and 1.20×, respectively. We observe that in the COO for-

mat almost perfectly balancing the non-zero elements across DPUs provides significant performance

benefits (2.55×, averaged across all the data types), compared to balancing the rows, especially when

multiplication is not supported by hardware (e.g., for the floating point data types). In contrast, in

the BCSR and BCOO formats, balancing the blocks across DPUs performs only slightly better (on

average 2.7% across all the data types) than balancing the non-zero elements.

Comparison of Compressed Matrix Formats. Figures 6.13 and 6.14 compare the throughput (in

GOperations per second) and the performance, respectively, achieved by various compressed for-

mats using 2048 DPUs and the int32 data type. For the CSR and COO formats, we select balancing

the non-zero elements across DPUs, and for the BCSR and BCOO formats, we select balancing the

blocks across DPUs, since these are the best-performing schemes for each format averaged across all

matrices and data types (Figure 6.12).
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Figure 6.12: Performance comparison of load balancing techniques for each data type using 2048

DPUs.
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Figure 6.13: Throughput of various compressed formats using 2048 DPUs and the int32 data type.
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Figure 6.14: Performance comparison of various compressed formats using 2048 DPUs and the int32

data type. Performance is normalized to that of CSR.nnz.

We draw four findings. First, matrices that exhibit block pattern (almost all non-zero elements of

the matrix fit in dense sub-blocks), i.e., ash, ldr, bns, pksmatrices, have the highest throughput,

since they leverage higher data locality compared to matrices with non-block pattern. Second, in

scale-free matrices, the COO and BCOO formats significantly outperform the CSR and BCSR formats

by 6.94× and 13.90×, respectively. This is because they provide better non-zero element balance
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across DPUs. In the CSR and BCSR formats, the non-zero element balance is limited to be performed

at row and block-row granularity, respectively, causing performance to be limited by the DPU that

processes the largest number of non-zero elements. Third, we observe that the BCOO format can

outperform the CSR format even in non-blocked scale-free matrices. Fourth, we find that when the

CSR and BCSR formats provide sufficient non-zero element balance across DPUs, i.e., in many regular

matrices such as rtn, tdk, amz, and fth, they can outperform the COO and BCOO formats,

respectively.

OBSERVATION 7:

In scale-free matrices, the COO and BCOO formats significantly outperform the CSR and

BCSR formats, because they provide higher non-zero element balance across PIM cores.

Analysis of End-To-End SpMV Execution

Figure 6.15 shows the end-to-end execution time of 1D-partitioned kernels using 2048 DPUs and the

int32 data type. The times are broken down into (i) the time for CPU to DPU transfer to load the input

vector into DRAM banks (load), (ii) the kernel time on DPUs (kernel), (iii) the time for DPU to

CPU transfer to retrieve the results for the output vector (retrieve), and (iv) the time to merge

partial results on the host CPU cores (merge).
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Figure 6.15: Total execution time when using 2048 DPUs and the int32 data type for CR: CSR.nnz,

CO: COO.nnz-lf, BR: BCSR.block and BO: BCOO.block kernels.

We draw four findings. First, the load data transfers constitute more than 90% of the total

execution time, because the input vector is replicated and broadcast into each DPU, causing a large

number of bytes to be transferred through the narrow off-chip memory bus. An exception is in the

CSR and BCSR formats forsxw, askmatrices, which include one very dense row, and thuskernel
time is highly bottlenecked by one DPU that processes a significantly larger number of non-zero

elements than the rest. Second, the kernel time constitutes on average only 4.3% of the total

execution time, since SpMV is effectively parallelized to thousands of DPUs. Third, the retrieve
data transfers constitute on average 3.4% of the total execution time, because the output vector is

split across DPUs. Fourth, the merge time on the host CPU is negligible (less than 1% of the total

execution time), since only a few partial results for the elements of the output vector are merged by

the host CPU cores in the 1D partitioning techniques.
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OBSERVATION 8:

The end-to-end performance of the 1D partitioning techniques is severely bottlenecked

by the data transfer costs to replicate and broadcast the whole input vector into each

DRAM bank of PIM cores, which takes place through the narrow off-chip memory bus.

To further investigate on the costs to the load input vector into all DRAM banks of PIM-enabled

memory, we present in Figure 6.16 the total execution time achieved byCOO.nnz-lfwhen varying

(a) the data type using 2048 DPUs (normalized to the experiment for the int8 data type), and (b) the

number of DPUs for the int32 data type (normalized to 64 DPUs).
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Figure 6.16: End-to-end execution time breakdown achieved by COO.nnz-lfwhen varying (a) the

data type using 2048 DPUs (normalized to the experiment for the int8 data type), and (b) the number

of DPUs for the int32 data type (normalized to 64 DPUs).

We draw two conclusions. First, the load data transfer costs increase proportionally to the

number of bytes of the data type, and still dominate performance even for the data type with the

smallest memory footprint (int8). Second, the load data transfer costs and the associated memory

footprint for the input vector increase proportionally to the number of DPUs used, and thus the best

end-to-end performance is achieved using only a small portion of the available DPUs on the system.

OBSERVATION 9:

SpMV execution of the 1D-partitioned schemes cannot scale up to

a large number of PIM cores due to high data transfer overheads to

copy the input vector into each DRAM bank of PIM-enabled memory.
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6.6.2 Analysis of SpMV Execution Using 2D Partitioning Techniques

We evaluate the 2D-partitioned kernels highlighted in bold in Table 6.1. Specifically, for the COO

format we use the lock-free approach, and for the BCSR (in the int8 data type) and BCOO formats

we use the coarse-grained locking approach. In the equally-wide and variable-sized techniques, for

the BCSR and BCOO formats we balance the blocks across DPUs of the same vertical partition, since

doing so performs slightly better than balancing the non-zero elements, as explained in Section 6.6.1.

In all experiments, we balance the non-zero elements across 16 tasklets within a single DPU.

Sensitivity Studies on 2D Partitioning Techniques

We present three characterization studies on the 2D partitioning techniques. First, we evaluate the

performance of fine-grained data transfers from/to PIM-enabled memory for the input and output

vectors. Second, we evaluate the scalability of the 2D partitioning techniques to thousands of DPUs.

Finally, we explore performance implications on the number of vertical partitions used in the 2D-

partitioned kernels.

Analysis of Fine-Grained Data Transfers. The UPMEM API [615] has the limitation that the

transfer sizes from/to all DRAM banks involved in the same parallel transfer need to be the same. The

UPMEM API provides parallel data transfers either to all DPUs of all ranks (henceforth referred to as

coarse-grained transfers), or at rank granularity, i.e., to 64 DPUs of the same rank (henceforth referred

to as fine-grained transfers). In the first case, parallel data transfers are performed to all DPUs used at

once, padding with empty bytes at the granularity of all DPUs used, e.g., 2048 DPUs in Figure 6.17. In

the latter case, programmers iterate over the ranks of PIM-enabled DIMMs, and for each rank perform

parallel data transfers to the 64 DPUs of the same rank padding with empty bytes at the granularity

of 64 DPUs.

In SpMV execution, for the equally-wide and variable-sized techniques the heights and widths of

2D tiles vary, and thus padding with empty bytes is necessary for the load and retrieve data

transfers of the elements of the input and output vector, respectively. Figure 6.17 compares coarse-

grained data transfers, i.e., performing parallel transfers to all 2048 DPUs at once, with fine-grained

data transfers, i.e., iterating over the ranks and for each rank performing parallel transfers to the 64

DPUs of the same rank. We evaluate both the equally-wide and variable-sized techniques using the

COO format and with 2 and 32 vertical partitions. Please see Appendix 9.1.2 for all matrices.

We draw two findings. First, when the number of vertical partitions is small, e.g., 2 vertical

partitions, the disparity in widths across tiles in the variable-sized scheme is low. Thus, BT only

slightly outperforms BY by 1% on average, since in BY only a small amount of padding is added

on the load data transfers of the input vector. In contrast, the disparity in heights across tiles

in the equally-wide and variable-sized schemes is high. Thus, RY and BY significantly outperform

RC and BC by an average of 1.68× and 1.60×, respectively. This is because fine-grained transfers

to retrieve the elements of the output vector significantly decrease the amount of bytes transferred

from PIM-enabled memory to host CPU over coarse-grained transfers. Second, when the number

of vertical partitions is large, e.g., 32 vertical partitions, the disparity in heights across tiles in the
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Figure 6.17: Performance comparison of RC: RBDCOO with coarse-grained transfers, RY: RBDCOO
with fine-grained transfers in the output vector, BC: BDCOO with coarse-grained transfers, BY:

BDCOO with fine-grained transfers only in the output vector, and BT: BDCOO with fine-grained

transfers in both the input and the output vector using the int32 data type, 2048 DPUs and having 2

(left) and 32 (right) vertical partitions. Performance is normalized to that of the RC scheme.

equally-wide and variable-sized schemes is lower compared to when the number of vertical partitions

is small. Thus, RY and BY provide smaller performance benefits over RC and BC (on average 1.24×
and 1.22×, respectively), respectively, compared to a small number of vertical partitions. In contrast,

the disparity in heights across tiles in the equally-wide and variable-sized schemes is higher compared

to when the number of vertical partitions is small. Thus, BT outperforms BY by 4.7% on average.

Overall, we conclude that fine-grained data transfers (i.e., at rank granularity in the UPMEM PIM

system) can significantly improve performance in the equally-wide and variable-sized schemes.

OBSERVATION 10:

Fine-grained parallel transfers in the equally-wide and variable-sized 2D partition-

ing techniques, i.e., minimizing the amount of padding with empty bytes in parallel

data transfers to/from PIM-enabled memory, can provide large performance gains.

Scalability of the 2D Partitioning Techniques. We analyze scalability with the number of DPUs

for the 2D partitioning techniques. Figures 6.18, 6.19 and 6.20 compare the performance of the

equally-sized, equally-wide and variable-sized schemes, respectively, using the COO format and the

int32 data type, as the number of DPUs increases.

We draw two findings. First, the equally-sized scheme (i.e., DCOO) achieves high scalability with

a large number of vertical partitions. The kernel time of equally-sized scheme is mainly limited by

the DPU (or a few DPUs) that processes the largest number of non-zero elements. With a large num-
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Figure 6.18: Execution time breakdown of equally-sized partitioning technique of the COO format

using 4 (left) and 16 (right) vertical partitions when varying the number of DPUs used for the int32

data type. Performance is normalized to that with 256 DPUs.
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Figure 6.19: Execution time breakdown of equally-wide partitioning technique of the COO format

using 4 (left) and 16 (right) vertical partitions when varying the number of DPUs used for the int32

data type. Performance is normalized to that with 256 DPUs.
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Figure 6.20: Execution time breakdown of variable-sized partitioning technique of the COO format

using 4 (left) and 16 (right) vertical partitions when varying the number of DPUs used for the int32

data type. Performance is normalized to that with 256 DPUs.

ber of static vertical partitions, the non-zero element disparity across DPUs is high, i.e., the kernel
time is highly bottlenecked by the DPU that processes the largest number of non-zero elements. As

a result, increasing the number of DPUs improves performance by decreasing the kernel time via

better non-zero element balance across DPUs.

OBSERVATION 11:

The kernel time in the equally-sized schemes is limited by the PIM core (or a few

PIM cores) assigned to the 2D tile with the largest number of non-zero elements.

Second, we observe that the equally-wide and variable-sized schemes (i.e., RBDCOO and BDCOO)

are severely bottlenecked by retrieve data transfer costs (a large number of partial results is

created on PIM cores), and thus they are difficult to scale up to thousands of DPUs. Moreover, when
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the number of vertical partitions is high, the disparity in heights of the tiles is high. Thus, as the

number of DPUs increases, the amount of padding needed in retrieve data transfers becomes

very large, causing significant performance degradation.

OBSERVATION 12:

The scalability of the equally-wide and variable-sized schemes to a large num-

ber of PIM cores is severely limited by large data transfer overheads to re-

trieve partial results for the elements of the output vector from the DRAM

banks of PIM-enabled memory to the host CPU via the narrow memory bus.

Effect of the Number of Vertical Partitions. In all experiments presented henceforth, we perform

fine-grained data transfers (at rank granularity, i.e., 64 DPUs in the UPMEM PIM system) in the

2D partitioning schemes. Figure 6.21 evaluates performance implications on the number of vertical

partitions performed in 2D-partitioned kernels. We use the COO format and vary the number of

vertical partitions from 1 to 32, in steps of multiple of 2. We draw four findings.
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Figure 6.21: Execution time breakdown of 2D partitioning schemes using the COO format and 2048

DPUs when varying the number of vertical partitions from 1 to 32 for the int8 and fp64 data types.

Performance is normalized to the performance of the experiment with 1 vertical partition.

First, in the equally-sized scheme, as the number of vertical partitions increases, kernel time

increases, if there is no dense row in the matrix. This is because the disparity in the non-zero elements
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across 2D tiles increases as the number of vertical partitions increases. Thus, performance is limited

by one DPU or a few DPUs that process the largest number of non-zero elements.

OBSERVATION 13:

As the number of vertical partitions increases, the equally-sized 2D partitioning

scheme typically increases the non-zero element disparity across PIM cores (un-

less there is one dense row on the matrix), thereby increasing the kernel time.

Second, as the number of vertical partitions increases,retrieve data transfer costs andmerge
time increase. This is because the partial results created for the output vector increase proportionally

with the number of vertical partitions. The performance overheads of retrieve data transfer costs

are highly affected by the characteristics of the underlying hardware (e.g., the bandwidth provided

on I/O channels of the memory bus between host CPU and PIM-enabled DIMMs). Similarly, the

performance cost of the merge step depends on the hardware characteristics of the host CPU (e.g.,

the number of the CPU cores, the available hardware threads, microarchitecture of CPU cores). We

refer the reader to Appendix 9.1.3 for a comparison of SpMV execution using two different UPMEM

PIM systems with different hardware characteristics (Table 9.1).

Third, we find that in the equally-wide and variable-sized schemes, there is high disparity in

heights of 2D tiles, and as a result on the number of partial results created across DPUs. Even with

fine-grained parallel retrieve data transfers at rank granularity, the amount of padding needed

in the equally-wide and variable-sized schemes is at 88.6% and 88.0%, respectively, causing high bot-

tlenecks in the narrow memory bus. Therefore, in PIM systems that do not support very fine-grained

parallel transfers to gather results from PIM-enabled memory to the host CPU at DRAM bank granu-

larity, execution is highly limited by the amount of padding performed in retrieve data transfers,

which can be very large in irregular workloads [1,4,18,81,129,141,142,276,279–283,392,400,401,587]

like the SpMV kernel.

OBSERVATION 14:

The equally-wide and variable-sized 2D partitioning schemes require fine-

grained parallel transfers at DRAM bank granularity to be supported by

the PIM system, i.e., zero padding in parallel retrieve data transfers

from PIM-enabled memory to the host CPU, to achieve high performance.

Fourth, we find that the number of vertical partitions that provides the best performance depends

on the sparsity pattern of the input matrix, the data type, and the underlying hardware parameters

(e.g., number of PIM cores, off-chip memory bus bandwidth, transfer latency costs between main

memory and PIM-enabled memory, characteristics and microarchitecture of the host CPU cores that

perform the merge step). For example, with the int8 data type, DCOO performs best for hgc and

mem matrices with 8 and 4 vertical partitions, respectively. Instead, with the fp64 data type, DCOO
performs best for hgc and mem matrices with 16 and 8 vertical partitions, respectively. We refer the
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reader to Appendix 9.1.3 for a characterization study on the number of vertical partitions to perform

in the 2D-partitioned kernels using two UPMEM PIM systems with different hardware character-

istics. As we demonstrate in Appendix 9.1.3, the number of vertical partitions that provides best

performance on SpMV varies across the two different UPMEM PIM platforms. In this work, we leave

for future work the exploration of selection methods for the number of vertical partitions that provide

best SpMV execution. Overall, based on our analysis we conclude that the parallelization scheme that

achieves the best performance in SpMV depends on both the input sparse matrix and the hardware

characteristics of the PIM system.

OBSERVATION 15:

There is no one-size-fits-all parallelization approach for SpMV in PIM sys-

tems, since the performance of each parallelization scheme depends on

the characteristics of the input matrix and the underlying PIM hardware.

Analysis of Compressed Formats

We compare the performance achieved by various compressed matrix formats for each of the three

types of the 2D partitioning technique. The goal of this experiment is to find the best-performing

compressed format for each 2D partitioning technique. Figures 6.22, 6.23, and 6.24 compare the

performance of compressed matrix formats for the equally-sized, equally-wide and variable-sized 2D

partitioning techniques, respectively. We use 2048 DPUs and the int32 data type having 4 vertical

partitions. See Appendix 9.1.4 for the complete evaluation on all large sparse matrices.

We draw two findings. First, as already explained, kernel time of the equally-sized scheme

is limited by the DPU (or a few DPUs) assigned to the 2D tile with the largest number of non-zero

elements. In scale-free matrices (e.g., in and ask), the disparity in the non-zero elements across

2D tiles is higher than in regular matrices (e.g., pfg and bns), causing kernel time to be a larger

portion of the total execution time. Second, we find that the CSR and BCSR formats perform worse

than the COO and BCOO formats, especially in the equally-wide and variable-sized schemes, due to

higher kernel times. In the CSR and BCSR formats, data partitioning across DPUs and/or across
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Figure 6.22: End-to-end execution time breakdown of the equally-sized 2D partitioning technique for

CR: DCSR, CO: DCOO, BR: DBCSR and BO: DBCOO schemes using 4 vertical partitions and the int32

data type. Performance is normalized to that of DCSR.
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Figure 6.23: End-to-end execution time breakdown of the equally-wide 2D partitioning technique for

CR: RBDCSR, CO: RBDCOO, BR: RBDBCSR and BO: RBDBCOO schemes using 4 vertical partitions

and the int32 data type. Performance is normalized to that of RBDCSR.
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Figure 6.24: End-to-end execution time breakdown of the variable-sized 2D partitioning technique

for CR: BDCSR, CO: BDCOO, BR: BDBCSR and BO: BDBCOO schemes using 4 vertical partitions

and the int32 data type. Performance is normalized to that of BDCSR.

tasklets within a DPU is performed at row and block-row granularity, respectively. Thus, the CSR and

BCSR formats can cause higher non-zero element imbalance across processing units compared to the

COO and BCOO formats. Overall, the COO and BCOO formats outperform the CSR and BCSR formats

by 1.59 × and 1.53 × (averaged across all three types of 2D partitioning techniques), respectively.

OBSERVATION 16:

The compressed matrix format used to store the input matrix determines the

data partitioning across DRAM banks of PIM-enabled memory. Thus, it affects

the load balance across PIM cores with corresponding performance implica-

tions. Overall, the COO and BCOO formats outperform the CSR and BCSR for-

mats, because they provide higher non-zero element balance across PIM cores.

Comparison of 2D Partitioning Techniques

We compare the best-performing SpMV implementations of all 2D partitioning schemes, i.e., using

the COO and BCOO formats. Figures 6.25 and 6.26 compare the throughput (in GOperations per sec-

ond) and the performance, respectively, of DCOO, DBCOO, RBDCOO, RBDBCOO, BDCOO, BDBCOO
schemes using 2048 DPUs and the int32 data type. For each implementation, we vary the number

of vertical partitions from 2 to 32, in steps of multiple of 2, and select the best-performing execution
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throughput.
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Figure 6.25: Throughput of 2D partitioning techniques using the COO and BCOO formats, 2048 DPUs

and the int32 type.
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Figure 6.26: Performance comparison of 2D partitioning techniques using the COO and BCOO for-

mats, 2048 DPUs and the int32 type. Performance is normalized to that of DCOO.

We draw two conclusions. First, similarly to 1D-partitioned kernels, matrices that exhibit block

pattern (e.g., ash, ldr, bns, pks) have the highest throughput (Figure 6.25). Second, the equally-

wide and variable-sized schemes perform similarly, i.e., their performance varies only by ±1.1% on

average. Even though the variable-sized technique can improve the non-zero element balance across

DPUs, and thuskernel time, compared to the equally-wide technique, the total execution time does

not improve. In the UPMEM PIM system, performance of both techniques is severely bottlenecked by

data transfer overheads due to a large amount of padding needed to retrieve results from PIM-enabled

memory to the host CPU. Third, we find that the equally-sized technique outperforms the equally-wide

and variable-sized techniques by 3.71× on average, because it achieves lower data transfer overheads.

The equally-wide and variable-sized techniques provide near-perfect non-zero element balance across

DPUs, but they significantly increase the retrieve data transfer costs due to the large amount of

padding with empty bytes performed. As a result, we recommend software designers to explore

relaxed load balancing schemes, i.e., schemes that trade off computation balance across PIM cores for

lower amounts of data transfer.

6.6.3 Comparison of 1D and 2D Partitioning Techniques

We compare the throughput (in GOperations per second) and the performance of the best-performing

1D- and 2D-partitioned kernels in Figures 6.27 and 6.28, respectively. For 1D partitioning, we use

the lock-free COO (COO.nnz-lf) and coarse-grained locking BCOO (BCOO.block) kernels. For

each matrix, we vary the number of DPUs from 64 to 2528, and select the best-performing end-to-

end execution throughput. For 2D partitioning, we use the equally-sized COO (DCOO) and BCOO
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(DBCOO) kernels with 2528 DPUs. For each matrix, we vary the number of vertical partitions from

2 to 32 (in steps of multiple of 2), and select the best-performing end-to-end execution through-

put. The numbers shown over each bar of Figure 6.27 present the number of DPUs that provide the

best-performing end-to-end execution throughput for each input-scheme combination. Please see

Appendix 9.1.5 for a performance comparison of the best-performing SpMV kernels on two UPMEM

PIM systems with different hardware characteristics.
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Figure 6.27: Throughput of the best-performing 1D- and 2D-partitioned kernels for the fp32 data type.
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Figure 6.28: Performance comparison of the best-performing 1D- and 2D-partitioned kernels for the

fp32 data type. Performance is normalized to that of COO.nnz-lf.

We draw two findings. First, we find that best performance is achieved using a much smaller num-

ber of DPUs than the available DPUs on the system. In the 1D-partitioned kernels (i.e.,COO.nnz-lf
and BCOO.block), replicating the input vector into a large number of DPUs significantly increases

the load data transfer costs. Thus, best performance is achieved using 253 DPUs on average across

all matrices. In the 2D-partitioned kernels (i.e., DCOO and DBCOO), creating equally-sized 2D tiles

leads to a large disparity in non-zero element count across tiles, causing many tiles to be empty,

i.e., without any non-zero element. Thus, best performance is achieved using 1329 DPUs on average

across all matrices, since DPUs associated with empty tiles are idle.

OBSERVATION 17:

Expensive data transfers to PIM-enabled memory performed via the narrow

memory bus impose significant performance overhead to end-to-end SpMV ex-

ecution. Thus, it is hard to fully exploit all available PIM cores of the system.

Second, we observe that in regular matrices, the 2D-partitioned kernels outperform the 1D-

partitioned kernels by 1.45× on average. This is because the 2D-partitioned kernels use a larger
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number of DPUs, and thus their kernel times are lower. In contrast, in scale-free matrices, the

1D-partitioned kernels outperform the 2D-partitioned kernels by 1.41× on average. This because the

equally-sized 2D technique significantly increases the non-zero element disparity across DPUs, i.e.,

kernel time is bottlenecked by only one DPU or a few DPUs that process a much larger number

of non-zero elements compared to the rest.

OBSERVATION 18:

In regular matrices, 2D-partitioned kernels outperform 1D-partitioned kernels,

since the former provide a better trade-off between computation and data trans-

fer overheads. In contrast, in scale-free matrices, 2D-partitioned kernels perform

worse than 1D-partitioned kernels, since the former’s performance is limited by

one DPU or a few DPUs that process the largest number of non-zero elements.

6.7 Comparison with CPUs and GPUs

We compare SpMV execution on the UPMEM PIM architecture to a state-of-the-art CPU and a state-

of-the-art GPU in terms of performance and energy consumption. Our goal is to quantify the potential

of the UPMEM PIM architecture on the widely used memory-bound SpMV kernel.

We compare the UPMEM PIM system with 2528 DPUs to an Intel Xeon CPU [618] and an NVIDIA

Tesla V100 GPU [619], the characteristics of which are shown in Table 6.5. We use peakperf [623]

and stream [624] for CPU and GPU systems to calculate the peak performance, memory bandwidth,

and Thermal Design Power (TDP). For the UPMEM PIM system, we estimate the peak performance as

Total DPUs ∗AT , where the arithmetic throughput (AT) is calculated for the multiplication opera-

tion in Appendix 9.2 (Figure 9.12), the total bandwidth as Total DPUs ∗ Bandwidth DPU , where

the Bandwidth DPU is 700 MB/s [137, 141, 142], and TDP as (Total DPUs/DPUs per chip) ∗
1.2W/chip from prior work [137, 141, 142].

Process Peak Memory Total
System

Node
Total Cores Frequency

Performance Capacity Bandwidth
TDP

Intel Xeon 4110 CPU [618] 14 nm 2x8 x86 cores (2x16 threads) 2.1 GHz 660 GFLOPS 128 GB 23.1 GB/s 2x85 W

NVIDIA Tesla V100 [619] 12 nm 5120 CUDA cores 1.25 GHz 14.13 TFLOPS 32 GB 897 GB/s 300 W

PIM System 2x nm 2528 DPUs 350 MHz 4.66 GFLOPS 159 GB 1.77 TB/s 379 W

Table 6.5: Evaluated CPU, GPU, and UPMEM PIM Systems.

6.7.1 Performance Comparison

For the CPU system, we use the optimized CSR kernel from the TACO library [82]. For the GPU

system, we use the CSR5 CUDA [625,626] for the int32 data type and cuSparse [627] for the other data

types. For the UPMEM PIM system, we use the lock-free COO 1D-partitioned kernel (COO.nnz-lf)

and the equally-sized COO 2D-partitioned kernel (DCOO). In the former, we run experiments from

64 to 2528 DPUs, and in the latter, we use 2528 DPUs, and vary the number of vertical partitions

from 2 to 32, in steps of multiple of 2. In both schemes, we select the best-performing end-to-end
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Figure 6.29: Performance comparison between the UPMEM PIM system, Intel Xeon CPU and Tesla

V100 GPU on SpMV execution.

execution throughput. We also include the lock-free COO 1D-partitioned kernel using 2528 DPUs,

named COO.kl, to evaluate SpMV execution using all available DPUs of the system.

Figure 6.29 shows the throughput of SpMV (in GOperations per second) in all systems, comparing

both the end-to-end execution throughput (i.e., including the load and retrieve data transfer

costs for the input and output vectors in case of the UPMEM PIM and GPU systems), and only the

actual kernel throughput (i.e., including the kernel time in DPUs and the merge time in host CPU

for the UPMEM PIM system).

We draw three conclusions. First, when data transfer costs to/from host CPU are included, CPU

outperforms both the GPU and UPMEM PIM systems, since data transfers impose high overhead.

When only the actual kernel time is considered, GPU performs best, since it is the system that provides

the highest computation throughput, e.g., 14.13 TFlops for the fp32 data type. Second, we evaluate

the portion of the machine’s peak performance achieved on SpMV in all systems, and observe that

SpMV execution on the UPMEM PIM system achieves a much higher fraction of the peak performance
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compared to CPU and GPU systems. For the fp32 data type, SpMV achieves on average 0.51% and

0.21% of the peak performance in CPU and GPU, respectively, while it achieves 51.7% of the peak

performance in the UPMEM PIM system using the COO.kl scheme. Achieving a high portion of

machine’s peak performance is highly desirable, since the software highly exploits the computation

capabilities of the underlying hardware. This way, it improves the processor/resource utilization, and

the cost of ownership of the underlying hardware. Third, we observe that when all DPUs are used, as

inCOO.kl, SpMV execution on the UPMEM PIM outperforms SpMV execution on the CPU by 1.09×
and 1.25× for the int8 and int32 data types, respectively, the multiplication of which is supported by

hardware. In contrast, SpMV execution on the UPMEM PIM performs 1.27× and 2.39× worse than

SpMV execution on the CPU for the fp32 and fp64 data types, the multiplication of which is software

emulated in the DPUs of the UPMEM PIM system.

OBSERVATION 19:

SpMV execution can achieve a significantly higher fraction of the peak performance

on real memory-centric PIM architectures compared to that on processor-centric CPU

and GPU systems, since PIM architectures greatly mitigate data movement costs.

6.7.2 Energy Comparison

For energy measurements, we consider only the actual kernel time in all systems (in the UPMEM

PIM we consider the kernel and merge steps of SpMV execution). We use Intel RAPL [628] on

the CPU, and NVIDIA SMI [629] on the GPU. For the UPMEM PIM system, we measure the number

of cycles, instructions, WRAM accesses and MRAM accesses of each DPU, and estimate energy with

energy weights provided by the UPMEM company [318]. Figure 6.30 shows the energy consumption

(in Joules) and performance per energy (in (GOp/s)/W) for all systems.

We draw three findings. First, GPU provides the lowest energy on SpMV over the other two

systems, since the energy results typically follow the performance results. Second, we find that the

2D-partitioned kernel, i.e., DCOO, consumes more energy than the 1D-partitioned kernels, i.e., COO
and COO.kl, due to the energy consumed in the host CPU cores. CPU cores merge a large number

of partial results in the 2D-partitioned kernels to assemble the final output vector, thereby increasing

the energy consumption. Finally, we find that the 1D-partitioned kernels provide better energy effi-

ciency on SpMV over the CPU system, when the multiplication operation is supported by hardware.

Specifically, 1D-partitioned kernels provide 3.16× and 4.52× less energy consumption, and 1.74×
and 1.14× better performance per energy over the CPU system for the int8 and int32 data types,

respectively.

OBSERVATION 20:

Real PIM architectures can provide high energy efficiency on SpMV execution.
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Figure 6.30: Energy comparison between the UPMEM PIM system, Intel Xeon CPU and Tesla V100

GPU on SpMV execution.

6.7.3 Discussion

These evaluations are useful for programmers to anticipate how much performance and energy sav-

ings memory-centric PIM systems can provide on SpMV over commodity processor-centric CPU

and GPU systems. However, our evaluated SpMV kernels do not constitute the best-performing ap-

proaches for all matrices. Designing methods to select the best-performing SpMV parallelization

scheme depending on the particular characteristics of the input matrix would further improve per-

formance and energy savings of SpMV execution on memory-centric PIM systems. Moreover, the

UPMEM PIM hardware is still maturing and is expected to run at a higher frequency in the near

future (500 MHz instead of 350 MHz) [142, 318]. Hence, SpMV execution on the UPMEM PIM ar-

chitecture might achieve even higher performance and energy benefits over the results we report

in this comparison. Finally, note that our proposed SparseP kernels can be adapted and evaluated

on other current and future real PIM systems with potentially higher computation capabilities and

energy efficiency than the UPMEM PIM system.

6.8 Key Takeaways and Recommendations

This section summarizes our key takeaways in the form of recommendations to improve multiple

aspects of PIM hardware and software.
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Recommendation #1. Design algorithms that provide high load balance across threads of a PIM core in

terms of computations, loop control iterations, synchronization points and memory accesses. Section 6.5

shows that in matrices and formats where the parallelization scheme used causes high disparity in

the non-zero elements/blocks/rows processed across threads of a PIM core, or the number of lock

acquisitions/lock releases/DRAM memory accesses performed across threads, SpMV performance

severely degrades in compute-bound DPUs [141, 142]. Therefore, from a programmer’s perspective,

providing high operation balance across parallel threads is of vital importance in low-area and low-

power PIM cores with relatively low computation capabilities [141, 142].

Recommendation #2. Design compressed data structures that can be effectively partitioned across

DRAM banks, with the goal of providing high computation balance across PIM cores. Sections 6.6.1 and

6.6.2 demonstrate that (i) the compressed matrix format used to store the input matrix determines

the data partitioning across DRAM banks of PIM-enabled memory, and (ii) SpMV execution using

the CSR and BCSR formats performs significantly worse than SpMV execution using the COO and

BCOO formats. This is because the matrix is stored in row- or block-row-order for the CSR and BCSR

formats, respectively, and thus data partitioning across DRAM banks is limited to be performed at row

or block-row granularity, respectively, leading to high non-zero element imbalance across PIM cores.

Therefore, we recommend that programmers design compressed data structures that can provide

effective data partitioning schemes with high computation balance across thousands of PIM cores.

Recommendation #3. Design adaptive algorithms that (i) trade off computation balance across PIM

cores for lower data transfer costs to PIM-enabled memory, and (ii) adapt their configuration to the

particular patterns of each input given, as well as the characteristics of the PIM hardware. Our analysis in

Sections 6.6.1, 6.6.2 and 6.6.2 demonstrates that the best-performing SpMV execution on the UPMEM

PIM system can be achieved using algorithms that (i) trade off computation for lower data transfer

costs, and (ii) select the load balancing strategy and data partitioning policy based on the particular

sparsity pattern of the input matrix. In addition, the performance of each balancing scheme and data

partitioning technique for SpMV execution highly depends on the characteristics of the underlying

PIM hardware, as we explain in Section 6.6.2 and Appendix 9.1.3. To this end, we recommend that

software designers implement heuristics and selection methods for their algorithms to adapt their

configuration to the underlying hardware characteristics of the PIM system and the input data given.

Recommendation #4. Provide low-cost synchronization support and hardware support to enable con-

current memory accesses by multiple threads to the local DRAM bank to increase parallelism in a multi-

threaded PIM core. Section 6.5 shows that (i) lock acquisitions/releases can cause high overheads in the

DPU pipeline, and (ii) fine-grained locking approaches to increase parallelism in critical sections do

not improve performance over coarse-grained approaches in the UPMEM PIM hardware. This is be-

cause the DMA engine of the DPU serializes DRAM memory accesses included in the critical sections.

Based on these key takeaways, we recommend that hardware designers provide lightweight synchro-

nization mechanisms for multithreaded PIM cores [5], and enable concurrent access to local DRAM

memory arrays to increase execution parallelism. For example, sub-array level parallelism [620, 622]

or multiple DRAM banks per PIM core could be supported in the PIM hardware to improve paral-

lelism.
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Recommendation #5. Optimize the broadcast collective operation in data transfers frommain memory

to PIM-enabled memory to minimize overheads of copying the input data into all DRAM banks in the PIM

system. Figures 6.15 and 6.16 show that SpMV execution using the 1D partitioning technique cannot

scale up to a large number of PIM cores. This is because it is severely limited by data transfer costs

to broadcast the input vector into each DRAM bank of PIM-enabled DIMMs via the narrow off-chip

memory bus. To this end, we suggest that hardware and system designers provide a fast broadcast

collective primitive to DRAM banks of PIM-enabled memory modules [439].

Recommendation #6. Optimize the gather collective operation at DRAM bank granularity for data

transfers from PIM-enabled memory to the host CPU to minimize overheads of retrieving the output

results. Figures 6.19, 6.20 and 6.21 demonstrate that SpMV execution using the equally-wide and

variable-sized 2D partitioning schemes is severely limited by data transfers to retrieve results for

the output vector from DRAM banks of PIM-enabled DIMMs. This is due to two reasons: (i) 2D-

partitioned kernels create a large number of partial results that need to be transferred from PIM-

enabled memory to the host CPU via the narrow memory bus in order to assemble the final output

vector, and (ii) the UPMEM PIM system has the limitation that the transfer sizes from/to all DRAM

banks involved in the same parallel transfer need to be the same, and therefore a large amount of

padding with empty bytes is performed in the equally-wide and variable-sized schemes. To this end,

we suggest that hardware and system designers provide an optimized gather primitive to efficiently

collect results from multiple DRAM banks to host CPU [439], and support parallel fine-grained data

transfers from PIM-enabled memory to host CPU at DRAM bank granularity to avoid padding with

empty bytes.

Recommendation #7. Design high-speed communication channels and optimized libraries for data

transfers to/from thousands of DRAM banks of PIM-enabled memory. Section 6.7 demonstrates that

SpMV execution on the memory-centric UPMEM PIM system achieves a much higher fraction of the

machine’s peak performance (on average 51.7% for the 32-bit float data type), compared to that on

processor-centric CPU and GPU systems. However, the end-to-end performance of both 1D- and 2D-

partitioned kernels is significantly limited by data transfer overheads on the narrow memory bus. To

this end, we recommend that the hardware architecture and the software stack of real PIM systems be

enhanced with low-cost and fast data transfers to/from PIM-enabled memory modules, and/or with

support for efficient direct communication among PIM cores [160, 170, 171, 418, 421, 621].

6.9 Related Work

To our knowledge, this is the first work that (i) extensively characterizes the Sparse Matrix Vector

Multiplication (SpMV) kernel in a real PIM system, and (ii) presents an open-source SpMV library for

real-world PIM systems. We briefly discuss closely related prior work.

Processing-In-Memory (PIM). A large body of prior work examines Processing-Near-Memory

(PNM) [5, 54, 135, 138, 188, 189, 191–193, 195–197, 199–201, 203–207, 210, 217, 254–257, 308, 318, 362,

364, 374, 386, 394–396, 398–401, 404, 406, 407, 415–417, 439, 440, 446, 450, 451]. PNM integrates process-

ing units near or inside the memory via a 3D PNM configuration (i.e., processing units are located at
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the logic layer of 3D-stacked memories) [54,135,192,193,196,203,204,206,207,255,257,308,374,446],

a 2.5D PNM configuration (i.e., processing units are located in the same package as the CPU con-

nected via silicon interposers) [5, 188, 210], a 2D PNM configuration (i.e., processing units are placed

inside DDRX DIMMs) [386, 394, 396, 398, 406, 407, 415, 448, 450, 451, 453–455, 483], or at the mem-

ory controller of CPU systems [199, 401, 416]. These works propose hardware designs for irregular

applications like graph processing [135, 191–193, 203, 205, 207], bioinformatics [5, 189, 201, 453, 454],

neural networks [113, 188, 210, 256, 308, 364, 386, 405], pointer-chasing workloads [5, 54, 200, 374], and

databases [204]. However, none of these works examines the SpMV kernel in such systems.

Several prior works enable Processing-Using-Memory (PUM) [154, 155, 160, 161, 166, 170–173,

179, 183, 184, 187, 194, 208, 418–437, 441, 442]. PUM exploits the operational principles of memory

cells to perform computation within the memory chip. Prior works propose PUM designs using

SRAM [154, 155, 419, 420], DRAM [160, 161, 166, 170–172, 208, 418, 421–425, 437, 441], PCM [173] or

RRAM/memristive memory technologies [179,183,184,187,194,426–436,442]. A few PUM works [154,

179, 194, 419, 423–425] enable the multiplication operation inside memory cells with the goal of per-

forming efficient matrix vector multiplication at low cost within the memory chip. These works

design hardware-based solutions to accelerate the dense matrix vector multiplication (GEMV) kernel

via PUM. However, there is no prior work that leverages PUM to accelerate the Sparse Matrix Vector

Multiplication (SpMV) kernel using state-of-the-art compressed matrix storage formats.

Sparse Matrix Kernels in PIM Systems. Xie et al. [391] design heterogenous PIM units to accel-

erate SpMV via a 3D PNM configuration, i.e., in HMC-based PIM systems. Sun et al. [439] leverage

the buffer device space of DIMM modules to add one processing unit per each DIMM module, and

design low-cost inter-DIMM broadcast collectives to minimize data transfer overheads on irregular

workloads, like SpMV and graph processing, executed in 2D PNM configurations. Zhu et al. [217]

propose a PIM accelerator for Sparse Matrix Matrix Multiplication via a 3D PNM configuration. Fujiki

et al. [630] enhance the memory controllers of GPUs with PIM cores to transform the matrix from

the CSR to the DCSR format [606] on the fly to minimize memory traffic on SpMV execution. These

works propose hardware designs for sparse matrix kernels. In contrast, our work studies software

optimizations and strategies to efficiently map compressed matrix storage formats on real near-bank

PIM systems, and accelerate SpMV execution on such systems.

SpMV in Commodity Systems. Numerous prior works propose optimized SpMV algorithms for

CPUs [18, 80–103], GPUs [104–119], heterogeneous CPU-GPU systems [631–638], and distributed

CPU systems [120–131]. Optimized SpMV kernels for processor-centric CPU and GPU systems ex-

ploit the shared memory model of these systems and data locality in deep cache hierarchies. How-

ever, these kernels cannot be directly mapped to most near-bank PIM systems, which have a dis-

tributed memory model and a shallow cache hierarchy. Most well-tuned SpMV kernels for distributed

CPU and CPU-GPU systems improve performance by overlapping computation with communication

among processing units, and exploiting data locality in large cache memories. In contrast, real near-

bank PIM architectures are fundamentally different from CPU-GPU systems, since they are highly

distributed, i.e., there is no direct communication among PIM cores, and include a shallow mem-

ory hierarchy. Therefore, SpMV kernels designed for common processor-centric systems cannot be
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directly used in near-bank PIM systems.

Hardware Accelerators for SpMV. Recent works design accelerators for SpMV [271–278] or other

sparse kernels [20,259–270]. In contrast, our work proposes software optimizations and provides the

first characterization study of SpMV on a real PIM system.

Compressed Matrix Storage Formats. Prior works propose a range of compressed matrix storage

formats [17, 95, 96, 99, 111, 393, 456–459, 600–612] and selection methods to find the most efficient

compressed format [76, 109, 613, 617, 639–646]. In this work, we extensively explore the four most

widely used general compressed matrix formats, and observe that the compressed format (i) needs to

provide good balance between computation and memory accesses inside the core pipeline, and (ii)

affects load balancing across PIM cores, with corresponding performance implications. Therefore,

some compressed formats designed for commodity processor-centric systems might not be suitable

or efficient for real PIM systems. We leave the exploration of other PIM-suitable compressed matrix

storage formats for future work.

6.10 Summary

We present SparseP , the first open-source SpMV library for real Processing-In-Memory (PIM) systems,

and conduct the first comprehensive characterization analysis of the widely used SpMV kernel on a

real-world PIM architecture.

First, we design efficient SpMV kernels for real PIM systems. Our proposed SparseP software

package supports (1) a wide range of data types, (2) two types of well-crafted data partitioning tech-

niques of the sparse matrix to DRAM banks of PIM-enabled memory, (3) the most popular compressed

matrix formats, (4) a wide variety of load balancing schemes across PIM cores, (5) several load balanc-

ing schemes across threads of a multithreaded PIM core, and (6) three synchronization approaches

among threads within PIM core.

Second, we conduct an extensive characterization study of SparseP kernels on the state-of-the-

art UPMEM PIM system. We analyze SpMV execution on one single multithreaded PIM core and

thousands of PIM cores using 26 sparse matrices with diverse sparsity patterns. We also compare the

performance and energy consumption of SpMV on the UPMEM PIM system with those of state-of-the-

art CPU and GPU systems to quantify the potential of a real memory-centric PIM architecture on the

widely used SpMV kernel over conventional processor-centric architectures. Our analysis of SparseP

kernels provides programming recommendations for software designers, as well as suggestions and

hints for hardware and system designers of future PIM systems.

We believe and hope that our work will provide valuable insights to programmers in the develop-

ment of efficient sparse linear algebra kernels and other irregular kernels from different application

domains tailored for real PIM systems, as well as to architects and system designers in the develop-

ment of future memory-centric computing systems.
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CHAPTER7

Conclusions and Future

Directions

The goal of this dissertation is to significantly improve performance and efficiency of important irreg-

ular applications in modern processor-centric CPU and memory-centric NDP/PIM systems. To this

end, we develop low-overhead synchronization and well-crafted data access approaches for emerging

irregular applications including graph processing kernels, pointer-chasing, data analytics, and sparse

linear algebra.

First, we comprehensively analyze prior state-of-the-art algorithms for the widely used graph

coloring kernel, and we find that they are still inefficient, since they access application data from the

last levels of the memory hierarchy (e.g., main memory) of commodity CPU architectures. Therefore,

we introduce the ColorTM parallel algorithm, which provides highly efficient execution of the graph

coloring kernel. ColorTM (i) accesses application data by leveraging the low-cost on-chip cache mem-

207
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ories of CPU systems to minimize data access costs, and (ii) executes short and small critical sections

by performing many computations and data accesses outside the critical section to minimize syn-

chronization overheads and increase the levels of parallelism among parallel threads. We also extend

our proposed design to introduce a highly efficient balanced graph coloring algorithm (BalColorTM)

that can provide high load balance and high resource utilization in the real-world end-applications

of graph coloring. Our evaluations show that ColorTM and BalColorTM can provide significant per-

formance improvements over prior state-of-the-art parallel graph coloring algorithms. We hope that

ColorTM and BalColorTM will encourage further studies on the graph coloring kernel in modern

multicore computing systems.

Second, we extensively characterize prior state-of-the-art NUMA-oblivious and NUMA-aware

concurrent priority queues in a NUMA CPU architecture using a wide variety of contention scenar-

ios, and find that none of them performs best across all various contention scenarios. Based on this

observation, we introduce SmartPQ, an adaptive concurrent priority queue for NUMA architectures

that achieves the highest performance in all different contention scenarios. We design SmartPQ that

integrates (i) Nuddle, a generic framework that wraps any arbitrary NUMA-oblivious concurrent data

structure and transforms it to its NUMA-aware counterpart, and (ii) a simple decision tree classifier

which predicts the best-performing algorithmic mode between a NUMA-oblivious and a NUMA-

aware algorithmic mode. Therefore, SmartPQ can dynamically switch during runtime between the

NUMA-aware Nuddle and its underlying NUMA-oblivious implementation with negligible transition

overheads. We demonstrate that SmartPQ outperforms prior state-of-the-art NUMA-oblivious and

NUMA-aware concurrent priority queues under various contention scenarios, and when the con-

tention of the workload varies over time. We hope that our study will inspire future work on design-

ing adaptive algorithmic designs and/or adaptive runtime frameworks for concurrent data structures

for modern computing systems.

Third, we rigorously examine the applicability of synchronization mechanisms tailored for processor-

centric systems, including CPU, GPU and Massively Parallel Processing systems, to memory-centric

NDP architectures, and find that such synchronization approaches are not efficient or suitable for

NDP systems. To this end, we introduce SynCron, the first end-to-end hardware synchronization

mechanism for NDP architectures. SynCron achieves the goals of high performance, low cost, high

programming ease and generality to cover a wide range of synchronization primitives by (1) adding

low-cost hardware support near memory for synchronization acceleration, (2) including a specialized

cache memory structure to store synchronization information and minimize latency overheads, (3)

implementing a hierarchical message-passing communication protocol to minimize expensive net-

work traffic, and (4) integrating a programmer-transparent hardware-only overflow management

scheme to minimize performance degradation when hardware resources for synchronization track-

ing are exceeded. Our evaluations show that SynCron can significantly improve system performance

and system energy in NDP systems across a wide variety of emerging irregular applications and

under various contention scenarios. We hope that SynCron will encourage further studies of the

synchronization problem in NDP systems and other unconventional computing systems.

Finally, we examine and efficiently map the fundamental memory-bound SpMV kernel on near-
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bank PIM systems. Specifically, we design SparseP , the first open-source SpMV library for real PIM

systems that includes 25 efficient SpMV kernels to cover a wide variety of sparse matrices and real-

world applications of SpMV. SparseP supports various (1) data types, (2) compressed matrix storage

formats, (3) data partitioning techniques of the sparse matrix to PIM-enabled memory modules, (4)

load balancing schemes across PIM cores of the system, (5) load balancing schemes across paral-

lel threads of a multithreaded PIM core, and (6) synchronization approaches among parallel threads

within PIM core. We comprehensively evaluate the SparseP kernels on a real PIM system with 2528

PIM cores using 26 sparse matrices with diverse sparsity patterns. Our extensive evaluations pro-

vide new recommendations for software, system and hardware designers of real PIM systems. We

also demonstrate that the SpMV execution on a memory-centric PIM system achieves a much higher

fraction of the machine’s peak performance compared to that on processor-centric CPU and GPU

systems, while also having high energy efficiency. We hope that our SparseP analysis on a real PIM

system will provide valuable insights to software engineers in the development of efficient irregular

kernels for real PIM systems, as well as to system designers and hardware architects in the develop-

ment of future memory-centric computing platforms.

7.1 Future Research Directions

The concepts and methods proposed in this dissertation can potentially enable and open up several

new research directions. This section describes some promising directions for future work.

7.1.1 Accelerating Irregular Applications in Unconventional Systems

Traditional data centers comprise monolithic servers that use DRAM as the main memory of the

system, and tightly integrate it with the compute units, e.g., processors or accelerators. However,

the increasing demand and growing size of data in modern applications in combination with the

device scaling problems of DRAM memory technology [647] have enabled the commercialization

of new unconventional systems that consist of heterogeneous memory technologies (e.g., combine

DRAM with alternative memory technologies such as 3D-DRAM [354, 355], Phase Change Mem-

ory [648], STT-RAM [649], NAND flash-based SSD [650]) or physically separate compute and mem-

ory devices as independent network-attached hardware components (e.g., disaggregated memory

systems [651–654]). These unconventional computing systems can satisfy the increasing memory

capacity demands of emerging applications by providing a large pool of main memory either as a

second-tier main memory tightly integrated within the server [531, 655–659] or as remote disaggre-

gated memory components accessed over a high-bandwidth network [651, 654]. Therefore, future

work can take inspiration from the techniques proposed in this dissertation to accelerate irregular

applications in other unconventional computing systems.

In Heterogeneous Memory Systems

Hybrid or heterogeneous memory systems typically include two (or even three) tiers of mem-

ory, e.g., integrating a die-stacked DRAM [354, 355] organized as a cache of a larger main memory.
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Therefore, the key challenge to fully leverage the heterogeneity of such systems is to accurately iden-

tify the performance-criticality of application data and place the corresponding memory pages in the

”best-fit” tier of main memory.

At the same time, memory pages corresponding to application data of irregular applications ex-

hibit high variability in their memory access patterns. For example, in SpMV, the memory pages

that store the compressed sparse matrix exhibit high spatial locality [276], since the values and the

positions of non-zero elements of the compressed matrix are accessed and traversed with a stream-

ing manner in the SpMV execution. Instead, the memory pages that store the input vector typically

exhibit low spatial locality [7,276], since SpMV causes irregular/random memory accesses to the ele-

ments of the input vector. However, the accesses on the input vector are input driven, i.e., they follow

the sparsity pattern of the particular input matrix given: e.g., in sparse matrices with power-law

distribution, a small subset of the rows of the matrix has a very large number of non-zero elements

(accounting for the majority of the matrices’ non-zero elements) [7, 284], and thus processing these

few rows can lead to high spatial locality in the memory pages that store the input vector. Therefore,

irregular applications have dynamic access patterns, e.g., memory pages might exhibit either low or

high spatial locality during runtime, a fact that also depends on the particular characteristics of the

input data given.

Future work could investigate intelligent hot memory page placement approaches and selection

methods tailored for irregular applications executed in heterogeneous memory systems. Even though

past works [531, 655, 656, 660] propose many different memory page placement techniques, these

works do not handle variability in memory access patterns of irregular applications, and do not con-

sider the dynamic access patterns exhibited at memory pages for each particular input data given.

Therefore, the first steps would involve to investigate the memory access patterns and page hotness/-

coldness across a wide variety of irregular applications (e.g., graph analytics, pointer-chasing, sparse

matrix kernels) executed in modern heterogeneous memory systems, and understand the variability

on the memory access patterns exhibited across memory pages. The long-term research goal is to

design (i) intelligent data placement approaches for irregular applications that take into consider-

ation the characteristics of the particular input data given, (ii) easy-to-use programming interfaces

that communicate information for the characteristics of the application data to the underlying system

and hardware in order to leverage data properties, and (iii) cost-effective frameworks and runtime

systems that are general to support various types of memory/storage devices and more than two tiers

of main memory.

In Disaggregated Memory Systems

Disaggregated memory systems propose to physically separate compute (e.g., processors, accel-

erators), memory (e.g., DRAM) and storage (e.g., disk) devices as independent and failure-isolated

components connected over a high-bandwidth network [651–654]. This way they can provide a cost-

effective solution to improve resource utilization, resource scaling and failure handling in data cen-

ters, thus decreasing data center costs. In disaggregated systems, almost all the memory in the data

center is separated as network-attached disaggregated memory components, and the majority of the

application working sets are accessed from the remote disaggregated memory components over the
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network. Moreover, disaggregated memory systems are not monolithic: each component in the sys-

tem implements its own resource allocation and management policy in a completely transparent way

from the remaining components in the system.

Achieving high system performance for irregular applications in disaggregated memory systems

is challenging for three reasons. First, accesses across the network can be significantly slower than

these within the server, and data is typically migrated at a page granularity (e.g., 4KB) [651,652,661–

667], thus incurring high data movement overheads. Second, there is high variability in data access

latencies as they depend on the location of the remote disaggregated memory components and the

contention with other compute components that share the same remote memory components and

network. Third, prior runtime systems and hot page selection/placement schemes for heterogeneous

systems [531,655,656,660] are not suitable for fully disaggregated memory systems: prior approaches

for heterogeneous systems assume that the management of memory pages is handled by the com-

pute component itself and the OS running on it. Instead, this is not the case with fully disaggre-

gated systems, in which remote disaggregated memory components have their own kernel modules

and hardware controllers to manage their resources and memory pages (transparently to compute

components) [651–653]. Therefore, to efficiently execute irregular applications in such systems new

software and hardware solutions are necessary.

Future work would investigate the following new challenges in the execution of irregular appli-

cations in fully disaggregated memory systems: (i) the high data movement overheads imposed by

remotely accessing data over the network, (ii) the high variability in data access costs during runtime

due to network and memory sharing, (iii) the unconventional distributed approach of managing the

data on multiple components in the system with a completely transparent way to each other, and

(iv) the high memory sharing and the memory protection issues for pages located in remote disag-

gregated memory components, which can be accessed by multiple processes that concurrently run

at different compute components of the system.

The first step is to develop a cost model, a software-based simulator, or a hardware-based em-

ulator for fully disaggregated memory systems, which can support various configurations for the

network characteristics (e.g., network topology, network bandwidth/latency), and evaluate, analyze

and understand critical performance overheads in the execution of a wide variety of irregular appli-

cations with diverse access patterns. Rigorously and comprehensively understanding performance

implications of irregular applications in fully disaggregated memory systems can provide valuable in-

sights to software engineers, system designers and hardware architects of this architecture. The next

steps are to propose new address translation approaches and kernel modules to minimize system-

level overheads (e.g., page faults), flexible (asynchronous and synchronous) programming interfaces

and abstractions to easily access remote data over the network, fast network technologies to mitigate

network-related bottlenecks, low-overhead synchronization and memory sharing/coherence mech-

anisms for multiple memory components in the system to ensure correctness at low cost, as well as

to leverage the NDP paradigm [138] in disaggregated memory components to reduce access costs to

remote data. The long-term goal is to perform research on designing fundamentally new approaches

for all key components of the computing stack, which need to be distributed, disaggregated and scale
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elastically, in keeping with the promise of resource disaggregation.

7.1.2 AdaptiveAlgorithmic, System-Level andHardware-BasedApproaches

for Irregular Applications

Emerging irregular applications exhibit dynamic workload demands and contention, i.e., their mem-

ory access patterns, bandwidth, latency and parallelization demands vary over time. For instance,

irregular key-value stores such as binary search trees [314,341,344–346], linked lists [13,48,342,343],

priority queues [4, 13, 15, 55], hash tables [525, 668, 669] are used in database management systems,

and multiple users perform lookup and update operations (e.g., insert or delete) on them with various

frequencies over runtime: concurrent key-value store data structures exhibit high variability during

time in the levels of contention and their memory access patterns as they depend on the amount

and types of operations (lookup, insert, delete) that users perform on them during runtime. Simi-

larly, modern computing systems and large-scale architectures exhibit high variability into network

characteristics (e.g., memory bandwidth, latency, network topology), runtime contention (e.g., co-

running applications), and available hardware resources (e.g., memory devices, accelerators). For

example, in disaggregated memory systems, the architectures, component placements and network

characteristics can highly vary over time, since multiple hardware components can be dynamically

added, removed or upgraded, and network technologies or topologies can also flexibly change over

time [651–653]. Similarly, virtualized environments support dynamic sets of resources, in which

virtual machines can be dynamically added, removed or change their hardware characteristics/con-

figuration over time [670]. The dynamic variability on the (i) runtime workload demands of irregular

applications, and (ii) architecture and network characteristics of modern computing systems results

in significant variations on data access latencies and data movement overheads in the execution of

emerging irregular applications, which might thus significantly degrade system performance and

resource utilization. To this end, future work would involve (i) designing adaptive algorithmic ap-

proaches for irregular applications depending on the runtime contention, and application, hardware

and network characteristics, and (ii) enabling the system and hardware to dynamically change their

configurations depending on the availability of resources and runtime application behavior.

Adaptive Algorithmic Designs

The research goal is to design adaptive algorithms that on-the-fly change their parallelization

strategy, synchronization approach and data management policy over time to significantly improve

system performance, energy efficiency and data access costs in irregular applications. The key idea

is to enable parallel threads or background/monitor threads to track properties of application data

and/or runtime statistics, and employ low-overhead decision-making mechanisms to select between

multiple configurations (e.g., different parallelization strategies, synchronization approaches, data

management policies) during the execution. For example, in Chapter 4, we propose an adaptive prior-

ity queue for NUMA CPU architectures that dynamically changes its data access policy and synchro-

nization scheme by tracking the levels of contention during runtime and integrating a lightweight

decision tree classifier that predicts the optimal parallelization strategy based on runtime statistics.
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Other examples include to change on-the-fly the graph traversal strategy on graph processing kernels

depending on the number of the edges of the current vertex that is being processed (e.g., in real-world

graphs with power-law distribution [284] a few vertices have a significantly larger number of edges

compared the remaining vertices) or alternate the data access policy in sparse matrix kernels when

processing rows with a small/large number of non-zero elements. The challenge in designing adaptive

algorithms for irregular applications is to minimize the performance overheads between transitions

on different configurations.

Adaptive Runtime Systems

The research goal is to develop adaptive runtime systems that dynamically adjust the task as-

signments, task scheduling and data distribution policies during runtime to significantly improve

system performance, resource utilization and financial costs. The key idea is to integrate in the run-

time systems dedicated managers that monitor tasks and jobs running across the computing nodes

of the system, and decide on the optimal configuration, e.g., optimal task scheduling across the com-

puting nodes of the system, when architecture, hardware and/or network characteristics change. For

instance, a recent work [670] proposes a novel runtime system for distributed machine learning train-

ing, that dynamically tunes the number of pipeline stages, depending on the network load/contention

at any given time and the number of available computing nodes (i.e., GPUs) in the system. Therefore,

future work could investigate designing adaptive runtime systems for distributed training of sparse

neural networks, that include dedicated monitoring managers which track the execution of running

tasks and on-the-fly tune the parallelization approach and data distribution policy across multiple

computing nodes (e.g., GPUs, TPUs, NPUs) of large-scale clusters and in cloud environments (e.g.,

when using virtual machines), when new computing nodes are added or removed in the system and

when network load/contention changes. Similarly to adaptive algorithmic designs, the key challenge

in such intelligent runtime systems is to achieve low synchronization overheads between transitions

from one configuration to another.

Adaptive Hardware Mechanisms

The key research goal is to propose adaptive hardware mechanisms that on-the-fly adjust their

performance optimization strategies depending on availability of resources and runtime application

characteristics. The key idea is to integrate hardware controllers in the computing system that decide

between different optimization policies by leveraging system-level metadata (e.g., page tables/TLBs),

simple prediction heuristics, or statistics collected during runtime at low cost. For instance, a few

recent works [671–675] propose hardware compression mechanisms for cache and main memory of

CPU systems that dynamically enable/disable compression [671–673] or on-the-fly select the best-

performing compression algorithm [674, 675] based on properties of application data or the runtime

application behavior. Other examples include to design (i) intelligent hardware prefetchers that on-

the-fly enable/disable fetching application data from main memory to cache memory depending on

the current bandwidth utilization and locality of application data, or (ii) effective selection granu-

larity mechanisms that on-the-fly decide the granularity at which data migrations should be served

(e.g., in heterogeneous systems choosing if a data migration from the second tier main memory to the

cache-based main memory should be served by a page or a smaller granularity, e.g., cache line granu-
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larity) depending on the runtime network and application characteristics, and the available memory

resources. The key challenge in designing adaptive hardware mechanisms is to implement intelli-

gent prediction heuristics and/or to enable keeping metadata for the runtime system and application

behavior at low hardware- and system-level cost.

7.2 Concluding Remarks

In this dissertation we extensively characterize the execution of irregular applications in modern

processor-centric (e.g., CPUs) and memory-centric (e.g., NDP/PIM) systems, and provide directions

to bridge the gap between processor-centric systems and memory-centric systems in the context of

important yet difficult irregular applications. We observe that excessive synchronization and high

memory intensity of irregular applications can significantly degrade system performance. Therefore,

we propose low-overhead synchronization and well-crafted data access techniques for irregular appli-

cations, and demonstrate that they can significantly increase parallelism, improve energy efficiency,

minimize data access costs, and accelerate performance of emerging irregular applications in CPU

and NDP/PIM systems. Specifically, we introduce four new designs that enable efficient execution

of irregular applications in modern computing systems: (1) ColorTM , a speculative synchronization

scheme co-designed with an effective data access policy that accelerates the graph coloring kernel

in modern CPU systems, (2) SmartPQ, an adaptive algorithm design that improves performance of

priority queue data structure in NUMA CPU architectures, (3) SynCron, a practical and low-overhead

hardware synchronization mechanism that effectively leverages the benefits of NDP for a wide range

of irregular applications, and (4) SparseP , a wide collection of parallel algorithms to easily attain high

performance of the SpMV kernel on real PIM systems. We hope that the ideas, analysis, methods and

techniques presented in this dissertation will enable new studies and research directions to acceler-

ate the execution of important data-intensive irregular applications in current and future computing

platforms.
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Other Works of the Author

In addition to the works presented in this dissertation, the author of this dissertation has also con-

tributed to several other research works done in collaboration with SAFARI Research Group members

at ETH Zürich. This chapter briefly overviews these works.

PrIM [136,141,142,484]: In modern computing systems like CPU and GPU systems, a large frac-

tion of the execution time and energy consumption of modern data-intensive irregular workloads is

spent on moving data between memory and processor cores. Recent research explores different PIM

configurations [5, 108, 136–258], since the PIM paradigm provides a promising way to alleviate the

data movement bottleneck between memory and processors. The UPMEM company [137,318,452] has

designed and fabricated the first commercially-available near-bank PIM architecture. In this work,

we conduct an experimental characterization of the UPMEM-based PIM system using microbench-

marks to assess various architecture limits such as compute throughput and memory bandwidth,

and we present PrIM (Processing-In-Memory benchmarks), a benchmark suite of 16 irregular work-

loads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics,

graph processing, neural networks, bioinformatics, image processing), which we identify as memory-
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bound. We evaluate the performance and scaling characteristics of PrIM benchmarks on the UPMEM

PIM architecture, and compare their performance and energy consumption to their state-of-the-art

CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM

systems provides new insights about suitability of different irregular workloads to the PIM system,

programming recommendations for software designers, and suggestions and hints for hardware and

architecture designers of future PIM systems.

NATSA [188, 676]: Time series analysis is an irregular computation kernel that processes a

chronologically ordered set of samples of a real-valued variable that can contain millions of obser-

vations, and is used to analyze information in a wide variety of domains including epidemiology,

genomics, neuroscience, medicine and environmental sciences. Matrix profile is the state-of-the-art

algorithm to perform time series analysis, by computing the most similar subsequence for a given

query subsequence within a sliced time series. In this work, we evaluate the state-of-the-art CPU im-

plementation of the matrix profile algorithm on a real multi-core machine, i.e., Intel Xeon Phi KNL,

and observe that its performance is heavily bottlenecked by data movement between the off-chip

memory units and the on-chip computation units that execute matrix profile. To reduce the data

movement overheads, we design a near-data processing accelerator for time series analysis, called

NATSA. NATSA exploits the low-latency, high-bandwidth, and energy-efficient memory access pro-

vided by modern 3D-stacked High Bandwidth Memory (HBM), and integrates specialized custom

processing units in the logic layer of HBM. This way NATSA enables energy-efficient and fast matrix

profile computation near memory, i.e., where time series data resides, and reduces the data move-

ment costs between the computation units and the memory units. NATSA provides generality and

flexibility supporting a wide range of time series applications, and significantly improves system

performance and energy efficiency over state-of-the-art CPU, GPU and NDP systems.

SMASH [276,677]: The matrices involved in irregular sparse linear algebra computation kernels

are very large in size and highly sparse, i.e., the vast majority of the elements are zeros. Prior re-

search works [17, 95, 96, 99, 111, 393, 456–459, 600–612] design compressed storage formats for sparse

matrices: the non-zero elements and their positions within the matrix are stored using additional data

structures and different encodings. However, determining the positions of the non-zero elements in

the compressed encoding (i.e., indexing) requires a series of pointer-chasing operations in memory,

that are highly inefficient in modern processors and memory hierarchies, and incur high data access

costs. The key idea of SMASH is to explicitly enable the hardware to recognize and exploit the com-

pression encoding used in software for any sparse matrix. On the software side, SMASH efficiently

compresses any sparse matrix via a novel software encoding that is based on a hierarchy of bitmaps.

On the hardware side, SMASH includes a lightweight hardware unit, named Bitmap Management

Unit, that is used to perform highly-efficient scans of the hierarchy of bitmaps, and thus enabling

highly efficient indexing in sparse matrices and minimizing data access costs in sparse linear alge-

bra computation kernels. SMASH provides significant speedups in sparse matrix computations by

eliminating the expensive pointer-chasing operations required in state-of-the-art compressed matrix

storage formats.
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Appendix A

9.1 Extended Results for SparseP

9.1.1 SynchronizationApproaches inBlock-BasedCompressedMatrix For-

mats

We compare the coarse-grained locking (lb-cg) and the fine-grained locking (lb-fg) approaches in the

BCOO format. Figure 9.1 shows the performance achieved by the BCOO format for all the data types

when balancing the blocks or the non-zero elements across 16 tasklets of one DPU. We evaluate all

small matrices of Table 6.3, i.e., delaunay n13 (D), wing nodal (W), raefsky4 (R) and pkustk08 (P)

matrices.

Our key finding is that the fine-grained locking approach performs similarly with the coarse-

grained locking approach. The fine-grained locking approach does not increase parallelism in the

UPMEM PIM architecture, since memory accesses executed by multiple tasklets to the local DRAM

bank are serialized in the DMA engine of the DPU. The same key finding holds independently of the
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Figure 9.1: Performance of the BCOO format with various load balancing schemes and synchroniza-

tion approaches for all the data types and small matrices using 16 tasklets of one DPU.

compressed matrix format used.

9.1.2 Fine-Grained Data Transfers in 2D Partitioning Techniques

Figures 9.2 and 9.3 compare coarse-grained data transfers (i.e., performing parallel data transfers to

all 2048 DPUs at once, padding with empty bytes at the granularity of 2048 DPUs) with fine-grained

data transfers (i.e., iterating over the ranks and for each rank performing parallel data transfers to the

64 DPUs of the same rank, padding with empty bytes at the granularity of 64 DPUs) for all matrices

of our large matrix dataset in the equally-wide and variable-sized schemes, respectively. The reported

key findings of Figure 6.17 (Section 6.6.2) apply to all matrices with diverse sparsity patterns.
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Figure 9.2: Performance comparison of RC: RBDCOO with coarse-grained transfers, RY: RBDCOO
with fine-grained transfers in the output vector, BC: BDCOO with coarse-grained transfers, BY:

BDCOO with fine-grained transfers only in the output vector, and BT: BDCOO with fine-grained

transfers in both the input and the output vector using the int32 data type, 2048 DPUs and having 2

vertical partitions. Performance is normalized to that of the RC scheme.
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Figure 9.3: Performance comparison of RC: RBDCOO with coarse-grained transfers, RY: RBDCOO
with fine-grained transfers in the output vector, BC: BDCOO with coarse-grained transfers, BY:

BDCOO with fine-grained transfers only in the output vector, and BT: BDCOO with fine-grained

transfers in both the input and the output vector using the int32 data type, 2048 DPUs and having 32

vertical partitions. Performance is normalized to that of the RC scheme.
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9.1.3 Effect of the Number of Vertical Partitions Using Two Different UP-

MEM PIM Systems

We compare SpMV execution in the two different UPMEM PIM sytems using 2048 DPUs and 16

tasklets for each DPU. Table 9.1 shows the characteristics of two different UPMEM PIM systems.

We calculate the available PIM peak performance and PIM bandwidth assuming 2048 DPUs for both

PIM systems
1
. We estimate the PIM peak performance as Total DPUs ∗ AT , where the arithmetic

throughput (AT) is calculated for the multiplication operation by running the arithmetic throughput

microbenchmark of the PrIM benchmark suite [141, 142] in each of the two UPMEM PIM systems

(See Appendix 9.2). We estimate the PIM bandwidth as Total DPUs ∗ Bandwidth DPU , where

the Bandwidth DPU is calculated according to prior work [141, 142]. Specifically, the theoretical

maximum MRAM bandwidth (i.e., Bandwidth DPU ) is 700 MB/s and 850 MB/s at a DPU frequency

of 350 MHz (PIM system A) and 425 MHz (PIM system B), respectively.

Avail. PIM Peak PIM CPU Peak Bus
System

DPUs
Frequency

Performance Bandwidth
Host CPU

Performance Bandwidth

PIM System A 2048 DPUs 350 MHz 3.78 GFLOPS 1.43 TB/s Intel Xeon Silver 4110 @2.1 GHz 660 GFLOPS 23.1 GB/s

PIM System B 2048 DPUs 425 MHz 4.63 GFLOPS 1.74 TB/s Intel Xeon Silver 4215 @2.5 GHz 1016 GFLOPS 21.8 GB/s

Table 9.1: Evaluated UPMEM PIM Systems.

Figures 9.4, 9.5 and 9.6 compare SpMV execution in the two different UPMEM PIM systems

(2048 DPUs) using 2D-partitioned kernels with the COO format, when varying the number of vertical

partitions from 1 to 32 (in steps of multiple of 2) for the int32 (left) and fp64 (right) data types.

We observe that the number of vertical partitions that provides the best performance on SpMV

execution varies depending on the input matrix and the PIM system. For example, in PIM system B

with the int32 data type, DCOO performs best for the hgc matrix with 16 vertical partitions, while

in PIM system A, DCOO performs best for the same matrix with 8 vertical partitions. Similarly,

in PIM system A with the fp64 data type, BDCOO performs best for the rjt matrix with 4 vertical

partitions. Instead, in PIM system B with the fp64 data type,BDCOO’s performance does not improves

for the rjt matrix when having more than 1 vertical partition (i.e., compared to when using the 1D

partitioning technique). We conclude that the best-performing parallelization scheme that achieves

the best performance in SpMV depends on the characteristics of both the input sparse matrix and the

underlying PIM system.

9.1.4 Performance of Compressed Matrix Formats Using 2D Partitioning

Techniques

Figures 9.7, 9.8, 9.9 compare the performance achieved by various compressed matrix formats for each

of the three types of the 2D partitioning technique for all matrices of our large matrix dataset. The

reported key findings explained in Section 6.6.2 apply to all matrices with diverse sparsity patterns.

1
Both UPMEM PIM systems support 20 UPMEM PIM DIMMs with 2560 DPUs in total. However, both UPMEM-based

PIM systems include multiple faulty DPUs. Thus, for a fair comparison between two systems we conduct our experiments

using 2048 DPUs in both systems.
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Figure 9.4: Execution time breakdown of DCOO using 2048 DPUs when varying the number of vertical

partitions from 1 to 32 for the int32 (left) and fp64 (right) data types on two different UPMEM PIM

systems.
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Figure 9.5: Execution time breakdown of RBDCOO using 2048 DPUs when varying the number of

vertical partitions from 1 to 32 for the int32 (left) and fp64 (right) data types on two different UPMEM

PIM systems.
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Figure 9.6: Execution time breakdown of BDCOO using 2048 DPUs when varying the number of

vertical partitions from 1 to 32 for the int32 (left) and fp64 (right) data types on two different UPMEM

PIM systems.
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Figure 9.7: End-to-end execution time breakdown of the equally-sized 2D partitioning technique for

CR: DCSR, CO: DCOO, BR: DBCSR and BO: DBCOO schemes using 4 vertical partitions and the int32

data type. Performance is normalized to that of DCSR.
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Figure 9.8: End-to-end execution time breakdown of the equally-wide 2D partitioning technique for

CR: RBDCSR, CO: RBDCOO, BR: RBDBCSR and BO: RBDBCOO schemes using 4 vertical partitions

and the int32 data type. Performance is normalized to that of RBDCSR.
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Figure 9.9: End-to-end execution time breakdown of the variable-sized 2D partitioning technique for

CR: BDCOO, CO: BDCOO, BR: BDBCSR and BO: BDBCOO schemes using 4 vertical partitions and

the int32 data type. Performance is normalized to that of BDCSR.

9.1.5 Analysis of 1D- and 2D-Partitioned Kernels in Two UPMEM PIM Sys-

tems

Figures 9.10 and 9.11 compare the throughput and the performance, respectively, achieved by the

best-performing 1D- and 2D-partitioned kernels in two different UPMEM PIM systems (Table 9.1

presents the characteristics of the two UPMEM PIM systems). For 1D partitioning, we use the lock-

free COO (COO.nnz-lf) and coarse-grained locking BCOO (BCOO.block) kernels. For each

matrix, we vary the number of DPUs from 64 to 2048 DPUs, and select the best-performing end-to-

end execution throughput. For 2D partitioning, we use the equally-sized COO (DCOO) and BCOO

(BCOO) kernels with 2048 DPUs for both systems. For each matrix, we vary the number of vertical

partitions from 2 to 32 (in steps of multiple of 2), and select the best-performing end-to-end execution

throughput.
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Figure 9.10: Throughput of 1D- and 2D-partitioned kernels for the fp32 data type using two different

UPMEM PIM systems.
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Figure 9.11: Performance comparison of 1D- and 2D-partitioned kernels for the fp32 data type using

two different UPMEM PIM systems. Performance is normalized to that of COO.nnz-lf (A).

We draw three findings. First, we observe that in both systems the best performance is achieved

using a smaller number of DPUs than 2048 DPUs. This is because SpMV execution in both UPMEM

PIM systems is significantly bottlenecked by expensive data transfers performed via the narrow mem-

ory bus. As a result, the best-performing 1D- and 2D-partitioned kernels trade off computation with

lower data transfer costs, thus causing many DPUs to be idle. Second, we find that in both systems

the 2D-partitioned kernels outperform the 1D-partitioned kernels in regular matrices (i.e., from hgc
to bns matrices on x axis), while the 1D-partitioned kernels outperform the 2D-partitioned kernels

in scale-free matrices, i.e., in matrices that have high non-zero element disparity among rows and

columns (i.e., from wbs to ask matrices on x axis). Third, we observe that PIM system B improves

performance over PIM system A by 1.14× (averaged across all matrices). This is because the DPUs

of the PIM system B run at a higher frequency than that of PIM system A (425 MHz vs 350 MHz),

providing higher peak performance on the system. Specifically, with 2048 DPUs, peak performance

of the PIM system A and PIM system B is 3.78 GFlops and 4.63 GFlops, respectively, i.e., PIM system

B provides 1.22 × higher computation throughput than PIM system A.
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9.2 ArithmeticThroughput of One DPU for theMultiplication

Operation

We evaluate the arithmetic throughput of the DPU for the multiplication (MUL) operation. We use

the arithmetic throughput microbenchmark of the PrIM benchmark suite [141, 142] and configure it

for the all data types.

Figure 9.12 shows the measured arithmetic throughput (in MOperations per second) for the MUL

operation varying the number of tasklets of one DPU at 350 MHz (PIM system A in Table 9.1) for all

the data types. The arithmetic throughput for the MUL operation is 12.941 MOps, 10.524 MOps, 8.861

MOps, 2.381 MOps, 1.847 MOps, and 0.517 MOps for the int8, int16, int32, int64, fp32 and fp64 data

types, respectively.
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Figure 9.12: Throughput of the MUL operation on one DPU at 350 MHz for all the data types.
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Figure 9.13 shows the measured arithmetic throughput (in MOperations per second) for the MUL

operation varying the number of tasklets of one DPU at 425 MHz (PIM system B in Table 9.1) for

all the data types. The arithmetic throughput for the MUL operation is 15.656 MOps, 12.721 MOps,

10.732 MOps, 2.888 MOps, 2.259 MOps, and 0.631 MOps for the int8, int16, int32, int64, fp32 and fp64

data types, respectively.
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Figure 9.13: Throughput of the MUL operation on one DPU at 425 MHz for all the data types.
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9.3 The SparseP Software Package

Table 9.2 summarizes the SpMV PIM kernels provided by the SparseP library. All kernels support a

wide range of data types, i.e., 8-bit integer, 16-bit integer, 32-bit integer, 64-bit integer, 32-bit float,

and 64-bit float data types.

Partitioning Compressed Balancing Balancing Synchronization

Technique Format Across PIM Cores Across Threads Approach

1D

CSR
rows rows, nnz

⋆
-

nnz
⋆

rows, nnz
⋆

-

COO

rows rows, nnz
⋆

-

nnz
⋆

rows, nnz
⋆

-

nnz nnz lb-cg / lb-fg / lf

BCSR
blocks

†
blocks

†
, nnz

†
lb-cg

‡
/ lb-fg

‡

nnz
†

blocks
†
, nnz

†
lb-cg

‡
/ lb-fg

‡

BCOO
blocks blocks, nnz lb-cg / lb-fg / lf

nnz blocks, nnz lb-cg / lb-fg / lf

2D

equally-sized

CSR - rows, nnz
⋆

-

COO - nnz lb-cg / lb-fg / lf

BCSR - blocks
†
, nnz

†
lb-cg

‡
/ lb-fg

‡

BCOO - blocks, nnz lb-cg / lb-fg

2D

equally-wide

CSR nnz
⋆

rows, nnz
⋆

-

COO nnz nnz lb-cg / lb-fg / lf

BCSR
blocks

†
blocks

†
, nnz

†
lb-cg

‡
/ lb-fg

‡

nnz
†

blocks
†
, nnz

†
lb-cg

‡
/ lb-fg

‡

BCOO
blocks blocks, nnz lb-cg / lb-fg

nnz blocks, nnz lb-cg / lb-fg

2D

variable-sized

CSR nnz
⋆

rows, nnz
⋆

-

COO nnz nnz lb-cg / lb-fg / lf

BCSR
blocks

†
blocks

†
, nnz

†
lb-cg

‡
/ lb-fg

‡

nnz
†

blocks
†
, nnz

†
lb-cg

‡
/ lb-fg

‡

BCOO
blocks blocks, nnz lb-cg / lb-fg

nnz blocks, nnz lb-cg / lb-fg

Table 9.2: The SparseP library.
⋆
: row-granularity,

†
: block-row-granularity,

‡
: (only for 8-bit integer

and small block sizes)
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9.4 Large Matrix Dataset

We present the characteristics of the sparse matrices of our large matrix data set. Table 9.3 presents

the sparsity of the matrix (i.e., NNZ / (rows x columns)), the standard deviation of non-zero elements

among rows (NNZ-r-std) and columns (NNZ-c-std).

Matrix Name Rows x Columns NNZs Sparsity NNZ-r-std NNZ-c-std

hugetric-00020 7122792 x 7122792 21361554 4.21e-07 0.031 0.031

mc2depi 525825 x 525825 2100225 7.59e-06 0.076 0.076

parabolic fem 525825 x 525825 3674625 1.33e-05 0.153 0.153

roadNet-TX 1393383 x 1393383 3843320 1.98e-06 1.037 1.037

rajat31 4690002 x 4690002 20316253 9.24e-07 1.106 1.106

af shell1 504855 x 504855 17588875 6.90e-05 1.275 1.275

delaunay n19 524288 x 524288 3145646 1.14e-05 1.338 1.338

thermomech dK 204316 x 204316 2846228 6.81e-05 1.431 1.431

memchip 2707524 x 2707524 14810202 2.02e-06 2.062 1.173

amazon0601 403394 x 403394 3387388 2.08e-05 2.79 15.29

FEM 3D thermal2 147900 x 147900 3489300 1.59e-04 4.481 4.481

web-Google 916428 x 916428 5105039 6.08e-06 6.557 38.366

ldoor 952203 x 952203 46522475 5.13e-05 11.951 11.951

poisson3Db 85623 x 85623 2374949 3.24e-04 14.712 14.712

boneS10 914898 x 914898 55468422 6.63e-05 20.374 20.374

webbase-1M 1000005 x 1000005 3105536 3.106e-06 25.345 36.890

in-2004 1382908 x 1382908 16917053 8.846e-06 37.230 144.062

pkustk14 151926 x 151926 14836504 6.428e-04 46.508 46.508

com-Youtube 1134890 x 1134890 5975248 4.639e-06 50.754 50.754

as-Skitter 1696415 x 1696415 22190596 7.71e-06 136.861 136.861

sx-stackoverflow 2601977 x 2601977 36233450 5.352e-06 137.849 65.367

ASIC 680 682862 x 682862 3871773 8.303e-06 659.807 659.807

Table 9.3: Large Matrix Dataset. Matrices are sorted by NNZ-r-std, i.e., based on their irregular

pattern.
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Glossary

Αλγόριϑµος Εύρεσης των Συντοµότερων Μονοπατιών Single Source Shortest Path Algorithm

Αλγόριϑµος Χρωµατισµού Γράφων Graph Coloring Algorithm

Αρχιτεϰτονιϰές µε Ανοµοιόµορφη Πρόσβαση στη Μνήµη Non-Uniform Memory Access Architectures

Αρχιτεϰτονιϰές µε Επεξεργασία Κοντά στη Μνήµη Processing-In-Memory Architectures

Αρχιτεϰτονιϰές µε Επεξεργασία Κοντά στη Μνήµη Near-Data-Processing Architectures

Ατοµιϰές Εντολές Atomic Operations

Βηµατιϰός Strided

∆έντρο Αποφάσεων Decision Tree Classifier

∆ιαδοχιϰός Streaming

Εµπόδια Barriers

Ενεργειαϰή Κατανάλωση Energy Consumption

Επίδοση Performance

Εύρος Ζώνης Μνήµης Memory Bandwidth

Κανάλια Μνήµης Memory Channels

Κεντριϰός ∆ίαυλος Μνήµης Memory Bus

Κλειδώµατα Locks

Κρίσιµο Τµήµα Critical Section
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Κρυφή Μνήµη Cache Memory

Κρυφή Μνήµη Τελευταίου Επιπέδου Last Level Cache

Κύρια Μνήµη Main Memory

Λειτουργία ∆ιαγραφής Delete Operation

Λειτουργία Εισαγωγής Insert Operation

Λογισµιϰό Software

Μετάδοση Μηνυµάτων Message-Passing

Μη-Κανονιϰές Εφαρµογές Irregular Applications

Νηµατα-∆ιαϰοµιστές Server Threads

Νήµατα-Πελάτες Client Threads

Παράλληλες ∆οµές ∆εδοµένων Concurrent Data Structures

Παράλληλη Ουρά Προτεραίοτητας Concurrent Priority Queue

Πίναϰας Μνήµης DRAM bank

Πολλαπλασιασµός Αραιού Πίναϰα µε ∆ιάνυσµα Sparse Matrix Vector Multiplication (SpMV)

Πρωτόϰολλο Συνοχής Μνήµης Cache Coherence Protocol

Συγχρονισµός Synchronization

Υλιϰό Hardware

Υπολογιστιϰή Ιϰανότητα Operational Intensity

Υποσύστηµα Μνήµης Memory Subsystem
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Partitioning Problems. In CLUSTER, 2012.

[131] Erik G. Boman, Karen D. Devine, and Sivasankaran Rajamanickam. Scalable Matrix Computa-

tions on Large Scale-Free Graphs Using 2D Graph Partitioning. In SC, 2013.

[132] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. PHI: Architectural Support for

Synchronization- and Bandwidth-Efficient Commutative Scatter Updates. In MICRO, 2019.

[133] Maleen Abeydeera and Daniel Sanchez. Chronos: Efficient Speculative Parallelism for Accel-

erators. In ASPLOS, 2020.

[134] Christina Giannoula, Ivan Fernandez, Juan Gómez-Luna, Nectarios Koziris, Georgios Goumas,
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Hajj. High-throughput Pairwise Alignment with the Wavefront Algorithm using Processing-

in-Memory. In HICOMB, 2022.

[229] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. In-Memory Data Parallel Processor. In

ASPLOS, 2018.

[230] Yue Zha and Jing Li. Hyper-AP: Enhancing Associative Processing Through A Full-Stack Op-

timization. In ISCA, 2020.



246 Bibliography

[231] Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, and Onur Mutlu.

Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research

Directions. CoRR, 2018.

[232] Onur Mutlu. Memory Scaling: A Systems Architecture Perspective. In 2013 5th IEEE Interna-

tional Memory Workshop, 2013.

[233] Onur Mutlu and Lavanya Subramanian. Research Problems and Opportunities in Memory

Systems. Supercomput. Front. Innov.: Int. J., 2014.

[234] Vivek Seshadri and Onur Mutlu. In-DRAM Bulk Bitwise Execution Engine. CoRR, 2019.

[235] Vivek Seshadri and Onur Mutlu. Chapter Four - Simple Operations in Memory to Reduce Data

Movement. volume 106 of Advances in Computers, pages 107–166. Elsevier, 2017.

[236] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and O. Mutlu. Ac-

celerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation. In

ICCD, 2016.

[237] Berkin Akin, Franz Franchetti, and James C. Hoe. Data Reorganization in Memory Using 3D-

Stacked DRAM. In ISCA, 2015.

[238] Yu Huang, Long Zheng, Pengcheng Yao, Jieshan Zhao, Xiaofei Liao, Hai Jin, and Jingling Xue.

A Heterogeneous PIM Hardware-Software Co-Design for Energy-Efficient Graph Processing.

In IPDPS, 2020.

[239] Paulo C Santos, Geraldo F Oliveira, Diego G Tomé, Marco AZ Alves, Eduardo C Almeida, and
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Yet. In USENIX ATC, 2016.

[540] Larry Rudolph and Zary Segall. Dynamic Decentralized Cache Schemes for MIMD Parallel Pro-

cessors. 1984.

[541] THOMASE Anderson. The Performance Implications of Spin-Waiting Alternatives for Shared-

Memory Multiprocessors. In ICPP, 1989.

[542] John M Mellor-Crummey and Michael L Scott. Algorithms for Scalable Synchronization on

Shared-Memory Multiprocessors. TOCS, 1991.

[543] Michael L Scott. Non-Blocking Timeout in Scalable Queue-based Spin Locks. In PODC, 2002.

[544] David Dice, Virendra J. Marathe, and Nir Shavit. Lock Cohorting: A General Technique for

Designing NUMA Locks. TOPC, 2015.

[545] Peter Magnusson, Anders Landin, and Erik Hagersten. Queue Locks on Cache Coherent Mul-

tiprocessors. In IPDPS, 1994.

[546] Travis Craig. Building FIFO and Priority Queuing Spin Locks from Atomic Swap. Technical

report, 1993.

[547] Victor Luchangco, Dan Nussbaum, and Nir Shavit. A Hierarchical CLH Queue Lock. In Euro-

Par, 2006.

[548] Dave Dice, Virendra J Marathe, and Nir Shavit. Flat-Combining NUMA Locks. In SPAA, 2011.

[549] Milind Chabbi, Michael Fagan, and John Mellor-Crummey. High Performance Locks for Multi-

Level NUMA Systems. PPoPP, 2015.

[550] Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros, and Konstantinos Sago-

nas. Turning Centralized Coherence and Distributed Critical-Section Execution on Their Head:

A New Approach for Scalable Distributed Shared Memory. In HPDC, 2015.

[551] John Mellor-Crummey and Michael Scott. Synchronization without Contention. ASPLOS, 1991.



Bibliography 269

[552] Mark Heinrich, Vijayaraghavan Soundararajan, John Hennessy, and Anoop Gupta. A Quan-

titative Analysis of the Performance and Scalability of Distributed Shared Memory Cache Co-

herence Protocols. TC, 1999.

[553] John H. Kelm, Daniel R. Johnson, William Tuohy, Steven S. Lumetta, and Sanjay J. Patel. Co-

hesion: A Hybrid Memory Model for Accelerators. In ISCA, 2010.

[554] John H. Kelm, Matthew R. Johnson, Steven S. Lumettta, and Sanjay J. Patel. WAYPOINT: Scaling

Coherence to Thousand-Core Architectures. In PACT, 2010.

[555] Xiongchao Tang, Jidong Zhai, Xuehai Qian, and Wenguang Chen. pLock: A Fast Lock for

Architectures with Explicit Inter-core Message Passing. In ASPLOS, 2019.

[556] Debra Hensgen, Raphael Finkel, and Udi Manber. Two Algorithms for Barrier Synchronization.

International Journal of Parallel Programming, 1988.

[557] Dirk Grunwald and Suvas Vajracharya. Efficient Barriers for Distributed Shared Memory Com-

puters. In IPDPS, 1994.

[558] David Culler, Jaswinder Singh, and Anoop Gupta. Parallel Computer Architecture: A Hardware-

Software Approach. 1999.

[559] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate Microarchitectural Simula-

tion of Thousand-Core Systems. In ISCA, 2013.

[560] Jochem Rutgers, Marco Bekooij, and Gerard Smit. Portable Memory Consistency for Software

Managed Distributed Memory in Many-Core SoC. In IPDPSW, 2013.

[561] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing NUCA Or-

ganizations and Wiring Alternatives for Large Caches with CACTI 6.0. In MICRO, 2007.

[562] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha. GARNET: A Detailed on Chip

Network Model inside a Full-System Simulator. In ISPASS, 2009.

[563] P. T. Wolkotte, G. J. M. Smit, N. Kavaldjiev, J. E. Becker, and J. Becker. Energy Model of

Networks-on-Chip and a Bus. In SOCC, 2005.

[564] U. Narayan Bhat. An Introduction to Queueing Theory: Modeling and Analysis in Applications.
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