A°)

»'-D
éfé

SN

g ‘:ﬁ"; 54
ll//n ro::ﬂi_vi
SaI==5(
nvPgopos

3l

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
School of Electrical & Computer Engineering

Division of Communication, Electronic and Information Engineering
Microprocessors and Digital Systems Lab

Design Methodologies and Tools for
Energy-aware IoT-based Applications

Ph.D. Thesis
of

Charalampos C. Marantos

Supervisor: Prof. Dimitrios Soudris

Athens, September 2022

This work is partially supported by European Commission projects that received
funding from the European Unions Horizon 2020 Research and Innovation Programme:
FABSPACE2.0, SDK4ED and EVOLVE.

Content that is reused from publications that the author has (co-)authored (fig-
ures, text excerpts, etc.) is under copyright with the respective paper publishers (IEEE,
Elsevier, Springer, ACM) and is cited accordingly in the current dissertation. References
to techniques and tools owned by third parties are accompanied by the copyright of their
holder and have not been used for commercial gain in the preparation of this Ph.D.
dissertation. Reuse of such content by any interested party requires the copyright holder’s
prior consent, according to the applicable copyright policies. Content that has not been
published before is copyrighted jointly as follows:

(©) 2022 NTUA - School of Electrical and Computer Engineering
Charalampos Marantos

EGNIKO METXOBIO IIOAYTEXNEIO
YXOAH HAEKTPOAOT'QN MHXANIKOQN KAI
MHXANIKOQN YIIOAOTTXTON

TOMEAY, TEXNOAOITAY ITAHPO®OPIKHX
KATI YIIOAOTTIXTON

EPTAYTHPIO MIKPOYIIOAOTIETON — KAI
VHOPTAKON YTYTHMATON

Design Methodologies and Tools for
Energy-aware IoT-based Applications

ATAAKTOPIKH ATATPIBH

TOoV

Xopdhaurouv XeroTtou
Mdpavtou

YuvpPouvievtiny Enttponn: Anurtplog Yolvteng
Kuopdh Texpeotln
Kowvotavtivoc 2udlioc

Eyxpldnxe and tnv entopeir| e€etactixy emtponn tnyv 26m Xenteyfelov 2022

Anufitploc Xobvtenc Baoiietog TTahovpde Kovotavtivog Ludhliog

Kodnynthc E.M.IL Kodnynthc ILIL. Av. Kadnynthc A.IL.O.
ANéEavdpog Xatlnyewpyiou Sothetoc Z0dng Tedpylog Oeodweldng
Kodnyntic ITA.MAK. Er. Kadnyntic X.ILA. Av. Koadnyntic I1.IL.

Hhioc Koopatdénoviog
Koadnynthc AILO.

AdAva, YemtéuPBplog 2022

Xapdropnog Mdépavtog
Awdxtop Hiextpohdyog Mnyovinde xaw Mnyoavixde Trohoyiotodv E.M.IL

Anayopebeton 1 aviiypapn, arodrixeucr xou dlavopr tne nopoloos epyasiag, €€ ohoxhpou
N TUAUATOC QUTAS, Yo EUTopxd oxond. Emtpéneton 1 avatinwor, anodxeuon xat diovou
Yo OXOTO 1) XEPBOOKOTING, EXTAUBELTIXNE 1 EpeLVNTIXAC QUONE, LTS TNV mpolUnddeon va
avapépetol 1 TNYN Tpogheuang xou va diatnpeeitar To mopdy privuua. Epwtiuota mou agpopodv
™ YeNon TS epYASlaS Yo XEPBOOKOTING GHOTO TEETEL VoL AMELTVVOVTOL TTROG TOV GUYYRIPE.

Ou andelc xou Ta CUUTERGOUTA TOU TEPLEYOVTOL O oUTO TO EYYpapo expedlouv Tov
ouyypopéa xan dev mpémel v epunveuldel O6TL avTimpoownebouy Ti¢ emlonuec Yéoec Tou
Edvixod Metodfiou Iloiuteyvelou.

Iepieydpevo mou TuydV EmavVayENOWOTOAUNXE Oomd BNUOCIEVCEC OTIC OTOlEG O GCUY-
yoopéos ouupetelye (oyAuata, xeipevo x.o.) avixel otov exdotote exd6trn (IEEE, Elsevier,
Springer, ACM) evéd yivovtar oL oyeTéc avapopéc péoa oto Topdy xelyevo. Epyaheio xou
TEYVIXEC TIOU AVAXOUV OE TEITOUC GUVODEVOVTAL MO TIC AVTIOTOLYES AVOPORES EVE YETOL-
pomolfinxay UOVo Yiol EQEUVITIXOUEC Xal OYL Yo EUTOPLXOUE OXOTOUC XATE TNV CLYYEUPY
e moapoloog datePnc. AvTiypogh 1 XeHomn TEPLEYOUEVOL TOU EUTINTEL GTIC TUPATAVE
xatnyoplec ypetdleTton TNV GBELY TOU XUTOYOU TOU.

Copyright (©) Xapdhapnoc Mépavtoc, 2022
Me empOhadn movtoc duxandporos. All rights reserved

Abstract

Green, sustainable and energy efficient computing terms are gaining more
and more attention during the last years. As the number of Internet of Things
(IoT) computing devices keeps increasing, energy efficiency is becoming an
important requirement, imposing new challenges to software developers. Ex-
isting works vary significantly, depending on the abstraction level in which
the energy efficiency is treated. On the one hand, from software engineering
perspective, there are tools that suggest best practices and guidelines based
on empirical studies. On the other hand, embedded system practitioners re-
duce energy either at hardware level or by making custom transformations
at source-code level, using custom techniques, DSPs or memory management
optimizations. As applications evolve, there is an increasing need to address
energy efficiency at application source code level, beyond general guidelines.
Therefore, software tools capable of providing energy consumption estima-
tions and identifying optimization opportunities are vital for assisting devel-
opers during the phases of application development.

The goal of this dissertation is to introduce the design of application
analysis tools that target energy efficiency at the software design level. The
introduced tools, coupled with implementation details, are capable of esti-
mating the expected energy consumption of applications running on multiple
devices. The proposed tools suggest a number of optimizations to the user
with special emphasis on estimating potential gains by acceleration. The
presented methodology provides several features, including the combination
of static analysis and dynamic instrumentation approaches in order to exploit
the advantages of both. The potential use of the proposed methods towards
building a tool that focuses on saving energy by suggesting efficient function
placements on Edge devices is demonstrated. Finally, a special study of the
impact of the suggested optimizations on software development, such as the
programming effort, is introduced.

The recent increase in demand for IoT embedded systems, such as the
control of Heating Ventilation and Air-Conditioning (HVAC) in buildings,
motivated our study of a special use-case. HVAC control systems exhibit in-
creased complexity and their operation relies less on human decision-making
and more on computational intelligence. The efficiency of these systems is
usually limited by the orchestrators’ flexibility to optimize simultaneously
multiple, and usually contrary, parameters. Throughout this thesis, we aim
to introduce novel solutions for designing model-free orchestrators. Experi-
mental results highlight the superiority of our solutions, as we achieve com-
parable performance to state-of-the-art relevant controllers without the need
of any prior detailed modeling and requiring lower computational and storage

resourced without sacrificing the quality of derived results.

Keywords: Green Computing, Energy Consumption, Sustainable Comput-
ing, Software Design, Decision-making, Cyber-Physical Systems, Embedded
Systems, Machine Learning, Smart Buildings.

ITepiindm

H evepyetomr] amodoTixdTnTo TV UTOAOYIO TIXGOY TORMY TOU EXPEALETOL GU-
Y Vé e Toug bpoug Green xou Sustainable computing xepdilel 6ho xan pueyahite-
o1 mpocoy 1| ta tTeheutada Ypovia. Kadde o aprdudc twv uTohoYlo Tixdy GUoKEL-
OV ot £QupUoYES AlBXTOOU TV AVTIXEWEVKDY (IoT) ouveyilet var aw€dveton,
1 LElWOT) TNG EVERYELIS TWYV EQUOUOY WY UTOTEAEL TAEOV Lol CTUAVTIXT| Aol TNoT)
ToUL eMBAAAEL VEEC TROXATOELS 0TOUS TROYEAUUUITIOTEC. Ol uTtdpyouoeg Aioelg
TOWIAAOLY GNUOYTIXG, avEAOYA UE TO EN{NEBO 0To onoio e&eTdleTal 1) EVEQYELO-
x| amodotxdTNTA. A6 TN piot TASUPd, TO XOVTA OTO AOYLOULXO, UTHEYOUV
epELVNTIXEC €pYaoleC TOU TEOTEVOLY BEATIOTEC TPAUXTIXES Xa Bivouv xaTeudu-
vTfpteg Yeouuéc Paotlopeveg o eumelpixés UeEAETeES. Antd Ty dAAN Theupd, ot
EQEVVNTEG OTOV TOPEN TWV EVOOUNTWUEVGY CUC TNUATODY UELDVOUY TNV EVEQYELY
elte pe BeATioTonooELC 07O (Bl To UAXO, lte peTaoynuatilovTag ToV oo
NG EQUPUOYYC, YPTOUOTOLOVTOG EUTELPIXES TEYVIXES, T.Y. Yot TNV BeATIo TOTO-
inon tne drayelpong pvAung. Kodog ol egapuoyéc eehiccovtal, dnulovpyeito
1 VY XN AVTIIETOTONG TNS AVENUEVNC EVERYELONNC XATAVIAWOTC OTO ENINESO
TOU TN Yaou XWMOWXA TNG EPUPUOY TS amd Toug (BLOUG TOUC TEOYRUUMATICTES. ()¢
ex T00TOU, 1) dNULouEYid EPYUAEIY AOYIOULXOU IXUVMY VoL TUEEYOLY EXTYIHOELS
XATAVIAWOTNG EVEQYELNG o Vo TpoTelvouy BehtioTonotfoels, elvon Aoy e&ou-
PETIXG OTUAVTIXY, TEOXEWEVOL Vo TopéyeTal BorJelol GTOUC TROYPAUUUTIO TES
oe Oheg Ti¢ pdoelg avanTtuing IoT eqopuoydv.

Ytoy0¢ g mapoloog dtateBhc ebvar 1 oyediaor epyakeiwy avdiuong e-
(PUPUOYWY TOU GTOYEVOUV GTNV EVERYELXT amodoTotnTa. Ol TpoTEVOUEVES
Aooelg, ol onoleg ouvoudlovial xal UE AETTOPERELEC LAOTIOINGTC, TaREYOUY €-
ATWNOELS TNG AVAUEVOUEVTS XATUAVIAWOTG EVEQYELAS TWV EQPUPUOYMY TRV AUTEG
exteAeoTOLY 0TI ouoxeues. Ta mpotevoueva epyahela TUPEYOUY TEOTACELS
BehTloTOTONOEWY GTOV YPAOTY UE WOLUTERT EUPUOT) GTNY EXTUNOT TwV TAVmY
EVEQYELAXMY XEEOWY amd TNV emTdyuvor e eopuoyric oe GPU. Emnifoy,
e&eTdleTan 1) EMEXTUOT) TOUS GTNV ONULOLEYIN EVOC GUG THUITOS ATOYACEWY EVEQ-
YEWXE ATOBOTIXWY TOTOVETHCEMY TWV ETUUEPOUS CUVIRTHOEMY TWYV EQUOUOY MV
oTic Sldéotueg cuoxevéc Tou dtvou. H yedodolroyio mou mapovoidleton oty
OLatELBT], €xEL TOAS XAUVOTOUA YULUXTNELO TIXY, OTIE TOV GUVOLIOUS O TUTIXNAS
X0 BUVOXNC AVEAUCTC TIPOXEWEVOL VoL 0LOTOLOUYTOL TO TAEOVEXTAUOTA YOl
Twv 600 TeEyVixGOY. Emmiéov, mapouvoidleton wio ewdixr) uehétn tne enidpaong
TWYV TREOTEWOUEVWY BEATIOTOTOWOEWY GTNY AVATTUEY AOYIOUIXOU, OTWE T.Y. 1|
extiunon tne npoondletag mou weénel Vo xatoBAnUel yior var eQopuocToOV.

H mpbdogatn adénon tng {hmong Y véeg eqopuoyés IoT, omwe yua mo-
EUOELYUOL YLl TOV EAEYYO TNG EVEQYELNG XL TOU XAYOTIOUOU GTo GUYY POV
eCunva xtipla, xyntomoinoe T ueRéTn wog e tepintwone. Ta cus thuoTa
ouTd TaEOLGLECoUY AUENUEVT ToAUTAOXOTNTAL Xat 1) Acttoupyio Toug BaolleTo

Ay oTteERO TNV ovlp@dmv A AmoQIcEDY XL TEPLOGOTERO GTNV UTOAOYIC TIXT
vonuooOvn. Mg auth| TN dlatelfn elodyovton veeg MICES TwV OTolwY T TELa-
HoTIXd amoTEAEGUTOL OELYVOUY CUYXEICIIES ETOOCELC UE TUPOUOLOUC EAEYHTES
Tehevtodag TEYVOAOYioG, Ywels oUW TNY avdyxrn TEOoNYOUUEVNS AETTOUEPOUS
HOVTEAOTOINONG TV XTIRlWY X0l ATOUTOVTAS TOAD YAUUNAOTEQOUSC UTOAOYIC TI-
%0U¢ TOPOUG.

Aé€eic Khewdid: Evepyeton Atodotixotnta, Evepyeiond| Kotavdiwor, Xye-
olaon Aoyiouxol, Avdivon TroloyoTindv Anatioewy, Afdn Arogpdoeny,
Kufepvo-guowd Yuotiota, Evoouoatwuévo X0otrua, Mnyavixd Mdadnon, 'E-
cunvo Kripto

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dimitrios Soudris
for the trust, the support and the guidance. Our conversations gave me
valuable memories and knowledge and broadened my horizons and my way
of thinking, while I will never forget his genuine interest and appreciation.

I probably would not have started this doctorate if I had not met Prof.
Kostas Siozios. We met in 2016 when he supervised my diploma thesis.
Since then he was always there to give me advice and knowledge, while our
cooperation is still active.

Then I would like to thank Dr. Lazaros Papadopoulos with whom we
collaborated very actively in the SDK4ED project and the products of our
collaboration and his proposals are part of my dissertation.

Afterwards, I would like to thank Christos Lambrakos. We met in 2017
when he did his diploma. Parts of the present dissertation would not be the
same without our collaboration that has already lead to five publications.

In the context of research projects that I worked on, I also met people
that I would like to thank. I will make a special reference to the partners
of the SDK4ED project and specifically to Prof. Alexandros Chatzigeor-
giou from University of Macedonia who in collaboration with his team show
me the world of software quality and our collaboration led to a best paper
award at the IGSC conference as well as the CERTH team under the co-
ordination of Dr. Dionisios Kehagias and especially Dr. Miltiadis Siavvas
(CERTH) with whom we often talked, exchanged views, organized new ex-
periments and publications. Other important collaborations include prof.
Francky Catthoor (KU Leuven and imec), who organized and supported a
research collaboration between Belgium, Japan (prof. Ittetsu Taniguchi and
phd student Daichi Watari) and Greece that led to valuable publications, as
well as Dr. losif Paraskevas who gave me knowledge on management tasks
on FabSpace 2.0 project.

Next I would like to refer to people that collaborated with me for their
diploma theses. Their work gave me valuable knowledge, and parts of it
are included in this dissertation. I would especially like to thank Konstanti-
nos Salapas with whom we also collaborated in SDK4ED and his patience
and hard work contributed the most. The very organized work of Niko-
laos Maidonis, with whom we collaborated during the difficult period of the
coronavirus, gave very useful conclusions. Giannos Gavriilides with his char-
acteristic ease of learning new things helped me to see things that I knew
in a new environment and Chrysostomos Karakassis introduced me to the
world of robotics.

Nothing would be the same without Microlab’s wonderful company. Apart

from partners, Microlab members are also friends. One by one, they made
each day pleasant and unique, keeping the fun of research work undiminished.
In order not to upset anyone, I will refer only to those that we co-authored
publications, namely Achilleas Tzenetopoulos who gave me valuable help in
technical matters related to experiments with dockers and Kubernetes and
Vasileios Leon.

The feedback of Prof. Sotirios Xydis was also very important for improv-
ing the quality of some parts of the present document.

Finally, I would like to thank my friends who have been listening to
my joys and concerns all these years. Leonidas Moustakas, for our endless
discussions, Savvas Koulepoglou that we started ECE school together back
in 2010 and Konstantinos Kontos.

Without my family this thesis would never have existed. My parents have
always supported me since my childhood with love and interest and gave me
the opportunity to study and realize my goals and dreams. To my mother
(Lina), to my father (Christos) and to my sister (Korina), I love you.

Euvyapiotieg

Oa el va Ypdho Tic evyoploTieg xar 0TV YAOOGW Uag xodde lvon TOAAS
Tot oLVLCVATA TOU UE XaTaxALLoLY GTO TEAOC AUTOU TOU PEYEAOU TaLOLoL.

‘Eva peydho euyoptote otov emBAénovia xadnynty| uouv x. Anufteio Xo-
OVTEN YLoL TNV EUTIGTOGUVY, TNV oThEEN xou TNy xododrynon. Ilépa amd tny
dhoyn emoryyEhUaTINy oG cuvepyaota, ol GUUBOUVAES TOL xal ol GLULNTACELS g
UOU €Y0UV BNUIOVEYACEL UVANES XAl YVOOELS Tou 0ev Vo Eeydow ToTE, Ve
TOEIAANAL LoV EBdwoay €va TpOTo oxéPng xou epyaciog mou Yo e axoloude-
{ oc Oha wou ta Brpata. To aAndvd Tou evdlagépov o dha tar enimedo Tng
Cwnc, T0 omolo SlmeTOVOTHY G OAN TNV BLAEXEL TG CUVERYACiog pog, lvou
CUYXVNTLXO.

oavotata 6ev Vo ebyo Eextviioel TOTE BLOOXTOPXO oV GTOV BEOUO [OU OEV
Beroxdtav o x. Kootag Xuwliog. Luvavtnirxaue 1o 2016 otny Sumhwpotix
MOU xou EMEITOL HTAV EXEVOC TOU HOU TEOTEWVE Vo SOoLAEYW epeuYNTIXG Blvo-
vTog pou xivntea xon otoyouc. ‘Extote cav gliog Betoxdtay exel vo you divel
OUUBOUAES X0 YVWOELS, EVE 1) GUVERYIOTO UG TUOEUELVE TTAVTA EVEQYT).

‘Enetta Yo fdero v euyaplotion tov dwdxtopa Adlago Iamaddémovho ue
TOV 0Tol0 CUVERYAOTIHXAUE TOAL eVERYd oTo €pyo SDK4ED xou mpotdvta tng
ouvepyaotag pog etval TopdvTo 68 TOAAG xoupdTiar TNE SlaTEU3|C oL xon Bev Vo
oy (Bt ywelc Tic moAltiueg mpotdoelg xar TV xadodrynoct| Tou.

XNy ouvéyeL, oQeihw Vo ELYaEIETHOW Tov cLVeEEYdTN Xproto Aoumpdxo.
Yuvavtnifxape to 2017 dtay exove TNy Simhwuatixy Tou. O déeg xan To pepdnt
Tou ebvar TOAY yapoxtneloTixd. Eivar exelivog mou pou yvopeloe tov x6ouo tou
Reinforcement Learning xou xoupdtior tng mapodoog dwtedhc dev Yo oy (Blor
Ywelc Ty cuvepyasta pog 1 onola HETEdEL 1idN TEVTE ONUOCIEVCELS.

Me v euxaplar TwV EEELYNTIXAOY €YWYV CUVERYUOTAXAUE UE avipnToug
TOU YOV €0woaY TOAITIUES EUTELRIES X YVAOOELS. o AV WBLUTERT ovapopd
oTnV opdda Tng Occcahovixng and o €pyo SDK4AED xou cuyxexpyléva otov
xodnynt Tou Hoavemotnuiou Moxedoviag x. Aré€avdpo Xatlnyewmpyiou mou
OE GUVEPYQOSIA UE TNV OUddA TOU YVOELoo Tov xdcuo tou software quality
xou 1) ouvepyaoio pag odfynoe oe dnuocicuon Yl Ty omolo AdPBaue Beofeio
oto cLvEdplo IGSC xadide xou Ty oudda tou 6p. Atovictouv Keyoryid amd to
EKETA. ZEeywplotd Yo avapépw tov dp. Midtiddn Xidffa pe tov onolo cuyvd
whovoope, avTolhdlope oxEPELS, OpYAVOVOUE VEU TELSUATA X0t ONUOCIEVOELC.
‘ANec onuavtixée ouvepyooieg Hrav ye tov xadnynth Francky Catthoor (KU
Leuven xot imec) o onolog othpile wa ouvepyooio uetalld Belylou, Tomwmviag
(o). Ittetsu Taniguchi - YA Daichi Watari) xou EXAEBac oto epeuvntind
Vépa tne dayelplong evépyelog ota EEumva XTHpLo Tou €yEL 0dNyNoEL HON O
oNUoVTXES BNpootedoelg xadwg xou exelvn pe tov dp. Iworg Iapuoxeud oe
otoyelptoTixd Yéuota xatd to épyo FabSpace 2.0.

7

‘Eneito Yo Hlehor var ovapepded oe avlp®dTouc ToU GUVERYAO TAXIUE Yidl TNV
oumhwpatint) Toug. H ouvepyaoio pag pou mpdogepe TONITYIES YVOOELS, EVE)
XOUUATIOL OO oUTHY amoTENOUY UEpog Tng mapoloug dwtelBrc. Idwitepa Yo
fleha vo avapepde otov Kwvotavtivo Yoakdma pe tov onoio douiédape poli
X0l OE EQELVITIXG €0YO X0 O OTOLOG UE TEWTOYVMPET) UTOUOVT| X0 EQYATIXOTNTA
oLvéBohe Ta péytota. H moAd opyavewuévn douleld xon to %L Tou Nixdhoou
Moiidcyvn), ue Tov onolo GUVERYAC TAXAUE GTNY BUOXOAN TERIOBO TOL XOEOVOIOY,
€0woe oAU Yeroda cuunepdopata xo peterioec. O Idvvog FafpnAidng ue
TNV YopaxTNELo Tt euxohio Tou v pordodver vEa mpdrypata foriinoe va 56 Tedy-
wortor tou yveetlo uéoa o€ éva véo teplBdiioy xou o Xpucbdotouog Kapoxdoong
Ue €Boke 0TOV dYVWOTO Yo UEVA XOOUO TNS POUTOTIXNS.

Tirota otov dpdpo autd dev Va Aray Blo ywelc TNV unépoyn mapéa Tou
Microlab. IIépa and cuvepydteg eivon xon @idol. ‘Ohot évag évag Eeywplotd
Exavay TNV xde €A ELYGPLOTI %o LOVIDLXY| X0 TO XEPL Yia DOUAELd auelwTO.
[t vou unv ducapestiow xavévay Yo avagepde uovo o exetvoug Tou €youle
xau Onuootedoele poll xou cuyxexpyéva tov Ayuliéa Tlevetdmovho, Tou omolou
1 Bordeta xan 1 tey VXY uTooTHEIEY ot TElpduaTo Tou eumepLelyov Docker xou
Kubernetes unfple mohOtun xou tov Boaoikn Aéwv.

Or cupPouléc xou oL eTONUAVOELS Tou %x. MwTtnelou 200N Atay enlong TohD
ONUOVTXES G TTPOG TNV ToloTT| BEATIWOT) TOU XEWEVOU 0PLOUEVLY XEPAUAUiLY
¢ STpBric.

Téhog Yo Hleho var eLYAELETHOW TOUC ToUdLXOUC GEAOUC oL TIOU dXOUYOY
TNV YXEVLA JOV OTIC amoTUY(EC AAAG XaL TIC YORES UOoU OTIC eTTUY(EC Ohat T
o yeova. Tov Aewvida Mouotdna, yia Ti¢ atéAelwTteg oUINTACELS YOS, TOV
YaBpo Koviénoyhou mou pall Eexwviicoue Ty oyohr) To 2010 oTo mpomtuytlaxd
xot tov Kwv/vo Kovté.

Xwple v owoyéveta pou dev Yo unrpye ToTé autd To Xelpevo. Ou yovelg
Uou Ue oThplay amd Ta TOUOWXE UOU YEOVIAL TEVTO UE oydmr Xt EVOLIQEPOV
0tvovTdg pou TNV euxonplal Vo TIOUBEC, VoL T YUUTOTIOAGEL TOUG GTOYOUG Kol
oL OVELpd wou. Xtny untépa wou (Abva) otov matépa pou (Xenoto) xon oTnv
adeppr) pou (Koplvar), cog euyoplatd xou ooug oryome.

Contents
Abstract

Hepirndn
Acknowledgements
List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1 Internet-of-Things
1.2 Green/Sustainable Software
1.3 Cyber-Physical Systems

1.3.1 Smart-grid - HVAC
1.4 Contribution and Structure

2 Motivation and Related work

2.1 Green Computing - Existing approaches
2.1.1 What is missing?
2.2 Related toolso
2.2.1 Monitoring Tools
2.2.2 Optimization Automation Tools
2.3 Optimizing Smart-Grid HVAC Control
2.3.1 What is missing?

3 Background (methods, tools and experimental setup)

3.1 Dynamic Instrumentation Tools
3.1.1 Valgrind Suite
3.1.2 Pintools.

3.2 Statistics and Machine Learning
321 Overview

3.2.1.1 Reinforcement Learning (RL)
3.2.2 Prediction Models
3.2.3 Correlation L

3.3 Multiobjective optimization
3.3.1 Weighted-sum optimization
3.3.2 Algorithms and Methods

13

18

19

21
21
22
24
26
28

3.4 Experimental Setup 52

3.4.1 Applications 52
3.4.2 Targeted hardware 52
3.4.3 Container orchestration - Kubernetes 54
3.4.4 Building Simulation 55
34.4.1 Thermal Comfort 55
Cross-device Energy Estimation 57
4.1 Problem definitiono 58
4.2 Related work 58
4.3 Design approach oo 60
4.4 Design Estimator 0oL 61
4.4.1 Dynamic analysis approach 62
4.4.2 Static analysis approach 63

4.5 Add new platform oL 66
4.6 Energy Estimation model 67
4.6.1 Dynamic analysis 67
4.6.2 Staticanalysis 68

4.7 Feature analysis: Selection and Correlation study 69
4.7.1 Dynamic analysis features 69
4.7.2 Static analysis features 71

4.8 Evaluation of Energy Estimation 73
4.8.1 Experimental Setup 73
4.8.2 Evaluation Results 74
4.8.3 Extensibility evaluation 75

4.9 Conclusion 79
Energy Optimization 80
5.1 Energy Indicators and Hotspots Monitoring 82
5.2 Data flow-related optimizations 85
5.3 Energy Gains by Acceleration 7
5.3.1 Building the dataset 88
5.3.2 Static analysis approach 91
5.3.3 Dynamic instrumentation 92
5.3.4 Experimental setup and methodology 95
5.3.5 Accuracy evaluation 97
5.3.6 Motivation for Combining Dynamic and Static Analysis 101
5.3.7 Extensibility Evaluation 103

5.4 Energy-aware Placement on Edge resources 106
5.4.1 Cross-device Energy/Time estimation 107
5.4.2 Multi-objective optimization 108

10

2.5

5.6

2.7
5.8

The
6.1

6.2

6.3

6.4

5.4.3 Placement example 109

5.4.4 Experimental Results 109
5.4.4.1 Experimental Setup 109
5.4.4.2 Evaluation and Discussion 110
5.4.5 Limitations 112
Software Engineering Perspective - Design time quality 113
5.5.1 Impact on Software Maintainability 114
5.5.2 Programming Effort Estimation 118
5.5.3 Combination of Programming Effort Estimation and
Acceleration Gains Prediction 125
Implementation of Energy-aware Software Analysis Tools . . . 127
5.6.1 Back-end micro-services 127
5.6.1.1 Consumption Analysis Component back-end . 128
5.6.1.2 Optimization Component back-end function-
ality 129
5.6.1.3 Language Support 130
5.6.1.4 Git Support 130
5.6.1.5 Database implementation 130
5.6.1.6 API implementation 131
5.6.2 Front-end 131
5.6.3 Extensibility 132
5.6.3.1 Energy Estimation 132
5.6.3.2 Acceleration Prediction 133
5.6.4 Energy Toolbox demonstration 133
Related work and comparison 136
Conclusion 139
Smart-grid HVAC Control use-case 140
Problem Definition 140
6.1.1 Experimental Setup - Simulation testbed 145
Related work oo 146
6.2.1 Simulation-based approaches and objectives 149
Reinforcement Learning Approach (RL) 150
6.3.1 Pre-processing tasks 151
6.3.2 Decision-making mechanism 153
6.3.3 Optimizing Model Procedure. 155
6.3.4 Experimental Results 156
6.3.5 Orchestrator’s Performance on Embedded Devices . . . 159
Proposed LR-Knapsack based Orchestrator 160
6.4.1 Efficient manipulation of history data - Sliding window
approach oo 161

6.4.2 Energy and Thermal comfort estimation (Linear Re-

gression) 163
6.4.2.1 Thermal Comfort Estimation Model 163
6.4.2.2 Energy Consumption Estimation Model . . . 166

6.4.2.3 Sliding window data management impact on
estimation models 169
6.4.3 Decision-making algorithm (Knapsack) 170
6.5 Experimental Results 172
6.5.1 Results on minimizing cost 172
6.5.2 Orchestrator’s Performance on Embedded Devices . . . 177
6.6 Comparison to state-of-the-art methods 178
6.7 Conclusion 180
7 Discussion 181
7.1 Conclusions 181
7.2 Future work 189
Extetopévn Ilepiindn 194
List of Publications 231
Curriculum Vitae 235
References 236

12

List of Figures

O W N~

oo

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26

27

Estimated number of connected IoT devices®

The block diagram of a typical cyber-physical system (CPS)
Overview of the a smart-grid environment
Green computing from different point of views
High-level schematic diagram of Tegra X1
Cross-device energy estimation tools as part of software devel-
Opment e
Overview of the studied energy estimation method
Create platform dataset and estimation models
The sliding window method for modeling the assembly instruc-
tionsorder
Alternative dynamic analysis based energy estimation models
COMPATISONL . . . v v v v vt e e e e e
Alternative static analysis based energy estimation models
COMPATISONL v v v vt e e e e e e e e e
Impact of number of k-means dataset pre-process
Average execution time of each instruction category feature . .
Impact of the selected features on Energy Estimation error . .
Actual vs Estimated energy of Rodinia/Polybench basic blocks
(Static analysis) - Test on ARM Cortex A57
Actual vs Estimated energy of Rodinia/Polybench loops (Dy-
namic analysis) - Test on ARM Cortex A7
Dynamic against static analysis approach - Representative
Polybench benchmarks
Actual vs Estimated energy of Rodinia/Polybench loops (Dy-
namic analysis) - Test on Xavier NX (ARM v8.2)
Actual vs Estimated energy of Rodinia/Polybench loops (Dy-
namic analysis) - Test on Intel Xeon Server
Actual vs Estimated energy of Rodinia/Polybench loops (Static
analysis) - Test on Intel Xeon Server
Overview of the energy optimization framework
Estimation of energy gains by acceleration
Building dataset for estimationg energy gains by acceleration .
Flow of prediction of energy savings by acceleration based on
static analysis L oL
Predicted vs. actual energy gains class: Static analysis
Comparison of accuracy of various classification models for
dynamic analysis based estimation
Predicted vs. actual energy gains class: Dynamic analysis . . .

13

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49

20
o1

Energy gains prediction accuracy comparison of various re-
gression modelso 100
Predicted vs. actual energy gains using regression analysis for
hotspots assigned into the ”Moderate gains” category (Nvidia

TX1) .o 100
Energy gains classification accuracy (Nvidia Jetson TX1) . . . 102
Execution time overhead of the dynamic instrumentation . . . 102
Energy Gains Prediction results for Nvidia Jetson Nano 105

Energy Gains Prediction results for Nvidia Jetson Xavier NX . 105
Predicted vs. actual energy consumption gains class - Server

(Xeon Gold 6138 - Tesla V100) 105
Overview of Energy-aware function placement on Edge resources107
Output example: Different function placement scenarios. . . . 110
Placement results using 4 Edge devices against the average
results of default Kubernetes placement 111
Placement results using three devices against the average re-
sults of default Kubernetes placement 112
Cache blocking impact on Maintainability (applied on appli-
cations from Rodina and Polybench suite) 115
Lines of code and Cyclomatic complexity increase after apply-
ing GPU acceleration 115
Impact on maintainability: Number of applied optimizations
and initial application lines of code 117
Impact on maintainability: Number of applied optimizations
and lines of code to be changed 118
Correlation of initial program characteristics with the final
linesof code 119
Energy gains vs LoC increase by GPU acceleration in appli-
cations of the Rodinia Benchmark Suite 120
Effort prediction accuracy comparison of various regression
models 123
Predicted vs. actual programming effort increase using regres-
sion analysis 124
Predicted vs. actual LoC increase using regression analysis . . 124
Overview of the proposed methodology 126

Output of combining the programming effort estimation with
the acceleration gains prediction methodology for the Poly-
bench and Rodinia hotspots that are classified into the ”Mod-

erate gains” category.o 127
Energy analysis framework back-end tools 128
Indicators results panel 134

52
33
o4

95
26

o7

o8

59
60

61
62
63

64
65

66

67

68

69

70

71

72

73

74

75

Static analysis results panel 135
History results panel (IMD use-case analysis) 136
Overview of the employed Smart-Grid case study (emphasis

on the HVAC control)., 142
Simulation testbed of proposed controller 146
Reinforcement Learning method for design and customization

of the targeted model-free HVAC orchestrator 152
Evaluation of the orchestrator’s performance over time: Episodes
duration regarding the January—March experiment. 157
Evaluation of the Machine Learning model: Daily mean MLP
TD-error 158
Daily performance vs RBCs (left tr = 0, right tr =1) 158
Time needed for model optimization (data transfers + building
targets + 1 epoch re-training) 159
Proposed LR-Knapsack decision-making orchestrator. 161
The concept of coarse- and fine-grain sliding windows 162
PPD estimation with the proposed and the reference Fanger [1]

models as a function of thermal zone’s air temperature (7°") . 164
Evaluate the accuracy of the proposed thermal comfort model. 165
Energy consumption model’s linearity selection: (a) based on
Q-Q plot, and (b) based on the Residuals-vs-Fitted graph. . . 168
Evaluation of the proposed energy consumption model accuracy168
RMSE analysis for quantifying the impact of coarse- and fine-
grain window sizes to: (a) the energy estimation model accu-
racy, and (b) thermal comfort estimation model accuracy . . . 169
Virtualization example of the proposed Multiple-Choice Knap-
sack Problem (MCKP) approach to the HVAC control problem 172
Evaluate (based on Equation 12) the efficiency of alternative
coarse- and fine-grain sliding windows. 173
LR-Knapsack efficiency against RBCs (balanced scenario) . . . 174
Evaluate Energy and PPD variation for the alternative Sce-
nario 2 (optimize energy keeping acceptable PPD) vs RBC

values ... 175
Evaluate Energy variation for alternative Scenario 3 (optimize
energy keeping total energy under AF limits) 176
Evaluate PPD variation for alternative Scenario 3 (optimize
energy keeping total energy under AF limits) 177
Difference (in absolute manner) between the LR-Knapsack or-
chestrator versus the Fmincon solver 179

Minimum number of execution cycles for computing temper-
ature set-points per thermal zone among alternative controllers.180

15

76
77

78

79

80
81

82

83

84

85

86

87

38

89

90

91

92

93

94

95

3d convolution power consumption on Nvidia TX1 183
LoC and Effort actual increase of GPU version in comparison
to CPU for Polybench and Rodinia benchmarks 185
Number of execution cycles for energy and thermal comfort
models retraining without and with the proposed coarse and

fine-grain sliding windows. 189
First try to make a model that suggests Loop tiling by pre-
dicting the energy gain 191
Extyouevoc aprdudc ouvoedeuévwy IoT cuoxevov 195
Ipotewouevn pédodog oyedioone epyarelwy extiunong tng e-
VEQYELOG v v o e e e e 199
Evohhortind povtéla extipnong tng evépyetag Bactopéva ot du-
VO OVBAUGT) . . 200
Evahhaxctind povtéda extiunong tng evépyetag Pactopéva oe
OTUTA AVEAUGT) o o oo 202
LOYrEIoT EXTOUEVNC Xt TpaypaTixhc evépyelag otov ARM-
Cortex A-B7 203
LOYHEIOT EXTHIOUEVNG XL TEAYMATIXAG EVEQPYELNG OTOV Server
(Xeon Gold 6138) 204
LOYHEIOT EVOANAXTIXOY HOVTEAWY VLo TNV EXTIUNGCT EVERYELD-
AV HEEOWY UECW BUVOULXAC AVBAUGNG .+ 208
Enadénon tou ypdvou extéheonc Aoyw mapedBoAAC Tng duvopl-
XAC AVIAUCC .+« o o o 208
Axp{Beta xatnyoplonoiong EVERYELIX®Y XEPOOY UECHL ETLTAYUV-
onc oty Nvidia Jetson TX1 209
YOyxplon mpofrédewy pe oTATIXY OVEAUCT XL TEOYUATIXGY
xepdwv (xAdon ‘Meydho x€pdn’)o 209
YOyxplon meoBrédewy pe oTaTIn ovEAUCT) XUl TEOYUATIXGY
xepdov (xhdoewc "Meoodo xépdn’ /Oyt xépdn’) 210

YOyxplon mpofBiédewy Ue makvdpounon Bactouévr o duvopLl-
2 AVEAUCT) %Ol TIQUYUATIXGY XEEOWY YLoL TIC TEPLTTWOELS TOU
avixouv oty xAdor ‘Meoata x€pdn otnv Nvidia Jetson TX1 . 210
L0y xplon TeolBAEDENY xon TEUYUATIXGY XEQOWY EVEREYELIS OTOV

Server (Xeon Gold 6138 - Tesla V100) 211
Y0yxpon Twv anoteleoud Tty Tomo¥ETnone ot 4 CUOXEUES YE
v tonovétnon tou KuPepvtno 213
LOyxpon TV anoTeAeoudTwy Toto¥ETnone oc 3 CUOXEUES UE
Vv tomodétnon tou KuPepvitn. Lo 214

Axp{Beta extiunong g TeoYeUUUATIo TIXY |G TROOTAVELIS Yior TNV
EMUTAYLVOT TWV eQapuoY®Y and Ti¢ coultecPolybench xau Ro-
dinia 216

96
97
98

99
100

101
102
103
104
105

106

IIGvel extlunong eVERYELNG .« .« v . o o o L L 216

II&vel mopouclaone UETEXMY OYETIXWY UE TNV EVEQYELW 217
Hapoustaor tou mepiBdhhovtog €CuTVwy xTNelwy 010 oTolo &-

QaEUOTETOL N AUOT OIS« « « o o o 219
H mpotewvéuevrn duyelplon dedouévev yéow mapadlony 221
H extiunon tng ducopeoxetag oav cuVHETNON NG ECWTERIXNC

Ueppoxpaoiog 222
Axp(Bera mpofhedme Vepuinric ducapéoxetag 222
AxpiBela TpdPAedng evepyelaxAc XATAVIAWONS .« 224
Evépyeior xan Gepuinny dveon yio tnv Aertovpyio 2 (Beltioon

evépyetac pe 6pto 10% yua tnv Buocopéoxeta) L. L 226

AZoAdynon TNE EVERYELXNC XATAVIAWCTC YLl TNV Agttoupyio 3
(ﬁs)\riwon dveong Ue OpLo Yo Toug drardEoyoug Topoug evépyetac)226
AZoldynom tne Yepuixric Sucapéoniag yia Ty Asttovpyio 3 (Bei-
tiwon dveong e bpto yia Toug dadéotpous topoug evépyelag) . 227
Aprdude ®x0OxAwv Unyavic YLol TOV UTOAOYIOHO TV VEQUOXEAOL-
OV YL TNV TROTEWOUEVY XU TNV AVOAUTIXA AUOT) avapopd . . . 228

17

List of Tables

Ol W N~

10
11
12
13
14
15

16

17
18
19
20
21
22

Generated Loop example 0L
List of examined dynamic analysis features
List of examined static analysis features
Most important dynamic features
Indicative loop transformations for improving energy/perfor-

INANCE .« o v v e e e e e e
Importance of features in terms of relation to GPU version

ENETEY « o v v e e e e e
Importance of the selected features in terms of relation to Pro-

gramming Effort to produce the accelerated version (stepAIC

criterion)
Energy Toolbox APl call
Comparison against related recently designed approaches . . .
The smart-grid HVAC control use-case Symbols
Summary of building properties.
Qualitative comparison of system’s orchestrators.
Summary of the introduced RL solution parameters.
Evaluation of RL control performance
Applying the knapsack formulation to the HVAC control case-

study
Execution run-time for computing temperature set-points per

thermal zone regarding the proposed orchestrator.
Evaluation of yearly results against other methods.
[opdderypor TUYalor TUEUYOUEVOU XOOIXOL .« o o o o L L .
1o oNUoVTIXG YoEoXTNEIOTIXG DUVUUIXAC avVBAUCOTG
LOyxewon x60Toug PE GAAEG pedodoug L. L L L L L L L L
Xpbvog exTENEOTC TPOTEWOUEVNG AIOTG OE DLAPOPES CUOXEVES .
woodplo Avtiotolyiong Ayyhxov-EMnvixoy Opwv

18

List of Abbreviations

ADC
AF
ALU
ANN
API
ASIC
AST
BCVTB
BEM
CNN
CPS
CPU
CSV
DRAM
DSP
DVES
EBO
FIR
FPGA
GPGPU
GPIO
GPU
GUI
HDD
HPC
HVAC
HW
I/0
IACA
ILP
IoT

IR
JIT

Analog-to-Digital Converter

Available Funds

Arithmetic Logic Unit

Artificial Neural Network

Application Programming Interface
Application-Specific Integrated Circuit
Abstract Syntax Tree

Building Controls Virtual TestBed
Building Energy Management
Convolutional Neural Network
Cyber-Physical System

Central Processing Unit
Comma-Separated Values

Dynamic Random-Access Memory
Digital Signal Processing

Dynamic Voltage and Frequency Scaling
Event -Based Optimization

Finite Impulse Response
Field-Programmable Gate Array
General Purpose Graphics Processing Unit
General-Purpose Input/Output
Graphics Processing Unit

Graphical User Interface

Hard Disk Drive

High Performance Computing

Heating Ventilation and Air Conditioning
Hardware

Input/Output

Intel Architecture Code Analyser
Instruction Level Parallelism

Internet of Things

Intermediate Representation

Just In Time

19

JVM
LoC
LOOCV
LR
LSS
MAE
MCKP
ML
MOO
MPC
MSE
NN
PC
PCle
PMV
PPD
PV
QoS
RAM
RBC
RL
RMSE
SDK
SoC
SoTA
SW
TLB
TPU
Ul
VLIW
WCT

Java Virtual Machine

Lines of Code

Leave-One-Out Cross-Validation
Linear regression

Large-Scale system

Mean Absolute Error
Multiple-Choice Knapsack Problem
Machine Learning
Multi-Objective Optimization
Model Predictive Control

Mean Squared Error

Neural Network

Personal Computer

Peripheral Component Interconnect Express
Predicted Mean Vote

Predicted Percentage of Dissatisfied
PhotoVoltaic

Quality of Service
Random-Access Memory

Ruled Based Controller
Reinforcement Learning

Root Mean Squared Error
Software Development Kit
System-on-Chip

State of The Art

Software

Translation Lookaside Buffer
Tensor Processing Unit

User Interface

Very Long Instruction Word
Worst-Case execution Time

20

Chapter 1

1 Introduction

1.1 Internet-of-Things

Internet of Things (IoT) edge devices are now installed in various environ-
ments, e.g. factories, hospitals and residential buildings. The interconnected
devices are estimated to transmit up to 79.4 zettabytes of data over the In-
ternet, further increasing the demands for electric power and the impact on
the CO4 emissions generated by electricity production [2] [3].

The ToT market is expected to achieve a big global economic value, as
the current predictions show a sharp increase in the computing devices rev-
enue in the next years. This big increment is going to be enhanced by the
upcoming 5G technology, which is expected to enable the support of more
AT applications at the Edge!. The continued growth of IoT will lead to 41.6
billion connected devices by 2025 [2]. Another study by IHS (as depicted in
Figure 1) predicts that the total number of installed connected computing
devices is expected to reach 75.4 billion in 20252.

As IoT applications gain increased attention, application developers tar-
get devices with constraints in terms of power, memory capacity and energy
consumption. On the cloud computing side, the amount of data being pro-
cessed is also increasing, leading to greater use of accelerators and memory
management techniques to reduce energy consumption. As a result, the grow-
ing number of IoT applications [4] has created new challenges for software
developers. Demanding computations, such as image processing and Neural
Network training, were traditionally performed on the Cloud layers leading
to an increase of the energy consumed by data-centers. However, in case of
applications which are sensitive to latency or when data security is critical,
offloading computations to the Cloud may violate application requirements.
Therefore, demanding computations are often performed in-place at the Edge

https://www.iotworldtoday.com/2019/03/18/
how-5g-could-help-fuel-the-next-generation-of-iot-projects/
’https://ihsmarkit.com

21

80
» 70
2 60
50
o 40
£ 30
20
UL

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year

f dev

P

Billio

DN

ALMMHIHIHIHIHTHIIy

7
.
/
.
.
/

AN
AN

N

Figure 1: Estimated number of connected IoT devices?

or the Fog layers of the network [5].

1.2 Green/Sustainable Software

Since low energy consumption of battery-operated edge devices is a criti-
cal design constraint and reducing the energy footprint of High Performance
Computing (HPC) infrastructure is mandatory, the development of energy
efficient software becomes a significant challenge for application develop-
ers. Therefore, bringing the design principles of energy efficient develop-
ment closer to the software engineering perspective is now an active research
topic [6].

Although improvements at the hardware level are typically a key factor
to achieve energy savings, software design also significantly affects the con-
sumption of applications. The importance of tools that aim to optimize these
designs during the Software Development Life Cycle is highlighted in recent
survey studies [6]. Inefficient software in terms of energy consumption can
waste the system’s energy [7].

Accelerators integrated into edge computing devices target not only per-
formance improvements, but also energy efficiency [8]. Indeed, the growth of
image processing and machine learning embedded applications, contributed
to the evolution of embedded system architectures towards heterogeneity.
Acceleration units, such as GPUs and FPGAs are often integrated in em-
bedded systems to enable efficient execution of computationally intensive
algorithms. This method reduces the amount of data transmitted to Fog
and Cloud and further improves the energy efficiency of the whole network.
Typical examples include CPU-GPU System-on-Chips (SoC) such as Nvidia
Tegra, which incorporates an embedded GPU [9], custom VLIW architec-

22

tures such as Intel /Movidius Myriad [10] [11] and CPU-FPGA SoCs, such as
Xilinx Zynq 7000 Series [12].

Green, sustainable and energy efficient computing terms are gaining more
and more attention [13]. However, software engineers still either do not take
energy into consideration [14], or lack the necessary expertise [15]. Although,
from the software engineering perspective, there are tools that propose best
practices and guidelines for software development, they are based on empir-
ical studies [16], without specific structure and tool-support. On the other
side of the coin, a large number of tools and methods are proposed in the lit-
erature for embedded or hardware developers, targeting specific devices and
architectures or requiring access to specific hardware, sophisticated equip-
ment and special knowledge.

Therefore, based on the tools and methodologies developed in the context
of embedded computing, it is necessary to provide tools that will support soft-
ware engineers towards the development of energy efficient software. There
is still a limited number of tools that can actually support developers to
evaluate their software in terms of energy consumption [17]. To make things
worse, the techniques and refactorings that are proposed are stated to be too
complex for software developers [15] [16]. Although, a large number of tech-
niques that aim to contribute to the energy efficient software development can
be found in the literature (especially regarding the implementation phase of
a Software Development Life-cycle) such as Parallel Programming [18], Ap-
proximate Computing [19], Data Structures [20], and other Practices [21],
they are difficult to be adopted by a non-experienced software developer.

More and more tools and services are being introduced in order to prop-
erly use modern heterogeneous devices from the software level and without
the need for specialized hardware knowledge. Typical examples can be found
in the field of machine learning, where libraries such as Tensorflow, Pytorch
etc. offer the ability to use GPUs and TPUs easily from the Python source
code level. Typical examples include high level languages, like CUDA and
OpenCL, which are used by software engineers in order to exploit the accel-
eration capabilities of the targeted heterogeneous devices. However, software
developers still need support about how and when to use these features,
while a significant programming effort is required to effectively employ the
available accelerators and bring the computational load of such complex al-
gorithms within their power envelope.

Another very important limitation of existing tools is the fact that they
target specific architectures and programming environments. Furthermore,
they require significant time and effort to be configured and used. Existing
tools use hardware-specific performance and energy models, for associating
basic software constructs (source code blocks or basic blocks in the interme-

23

diate representation) with energy consumption [22]. New tools that will offer
energy consumption estimation in the source code level (with the minimum
possible interaction with the targeted hardware), even less accurate, will en-
able continuous monitoring and provide feedback to the developers, assisting
them to have a view of the energy consumption of their code [6].

Recent survey studies in the field of software engineering highlight the
development of tools for energy efficient development targeting software en-
gineers as of great importance [6]. More specifically, they highlight the need
of tools that will help inexperienced developers to identify the most energy
expensive parts of an application and to adopt techniques that are applicable
and have the potential to reduce energy consumption.

A promising solution is the performance prediction: Tools that fall into
this category estimate the performance of a piece of CPU code on various
devices or the potentiality to exploit an accelerator. In this way, they guide
application developers in the early design choice of using a specific device
or offloading a piece of code to an accelerator without requiring tedious re-
development effort for testing and/or access to the actual hardware. These
tools, however, only targets performance, while non of the existing solutions
considers software engineering metrics such as the effort required to develop
the accelerated version of a piece of CPU code.

1.3 Cyber-Physical Systems

Recently, the convergence of embedded computing and information tech-
nology became also a key enabler for new generation products. These systems
bridge the cyber world of computing and communications with the physical
world and are referred to as Cyber-Physical Systems (CPS) [23]. Specifically,
a CPS is a collection of task-oriented, or dedicated, systems that pool their
resources and capabilities together to create a new, more complex ecosys-
tem, which offers increased functionality and performance. This new design
paradigm has the ability to interact with, and expand the capabilities of
physical world through monitoring, computation (i.e., distributed coordina-
tion), communication, and decision-making mechanisms [24]. A typical CPS
block diagram is depicted in Figure 2. According to this representation, a
CPS can be considered as a tight integration of cyber and physical compo-
nents. The term cyber refers to any computing hardware/software resources
that perform data processing, computation, communication and decision-
making services. Similarly, the physical components include any natural or
human-made systems such as the environment, appliances, even humans that
communicate with the cyber part through sensors that express the physical
system state and actuators that receive and apply the cyber part’s decision.

24

Cyber Physical

.

Components % 7 Components

Control
Mechanism

Decision /Signa}s
making Knowledge Processing
4_ * Sensors

Figure 2: The block diagram of a typical cyber-physical system (CPS)

—>

Actuator

v

A

We might say that cyber part operates in discrete time, while physical part is
governed by the laws of physics and operate in continuous time. The goal of a
CPS is the effective combination of all these subsystems, while the most crit-
ical part is the decision-making mechanism, that controls all the individual
modules.

Another definition of CPS includes three main components: Sensing,
Computing and Communication. In this definition, sensing belongs to the
aforementioned physical components, computing in cyber components and
communication offers the bridge between the two parts [23].

By pooling the system’s resources and capabilities together, CPS offers
a new, more complex system with additional functionality and a number of
sub-systems. This design enables a better resolution of the physical world
and thus, advanced mechanisms of detecting the occurrence of an event. As
a result, CPS are expected to play a key role in the development of next-
generation autonomous systems. CPS are widely used and provide solutions
in a large number of state-of-the art fields. They can be found in automotive,
in sanitary environments, in data centers, in telecommunication networks, in
industry, in robotics etc.

Since the physical world is bounded by unpredictability, it is not pru-
dent to expect the CPS to be operating in a fully-controlled environment;
thus, solutions that rely on robust and self-adaptable to unexpected condi-
tions controllers are of upmost importance: These controllers (also called
orchestrators) will be responsible for orchestrating the CPS sub-components
and drive their operation automatically. Formally, self-adaptivity refers to
systems that adjust their behavior autonomously in response to external
events unpredictable, or unforeseen, at design time [25]. The orchestrators’

25

1

>(>, i i

Renewable é Main si%l\jﬁ‘ Demand Side i
Sources = Grid QEE !i; ZE i
Gas R | == —
Lot 27 o ————
N A s/ NN

I Appliances HVAC]
Utilities 1
..................... E

1

1

1

1

1

Funds i System’s
:Orchestrator i }

Figure 3: Overview of the a smart-grid environment

selections are usually defined according to the system’s cost function. Since
multiple (usually conflicting) objectives have to be taken into account simul-
taneously, the orchestrator relies on advanced decision-making mechanisms
for this purpose. The efficiency of a CPS relies mainly on the employed al-
gorithm(s) that perform system’s orchestration under real-time constraints.
Existing approaches [26] [27] [28] towards this direction rely on computa-
tional intensive decision-making algorithms that are executed onto powerful
processing core(s).

1.3.1 Smart-grid - HVAC

CPS are widely-used in modern smart-grid environments. A template
of a micro-grid environment is depicted at Figure 3. More precisely, for
introducing the micro-grid structure and capabilities we assume that it is
composed by three entities:

e The supply side: It contains the available energy sources (e.g., solar,
wind, bio-gas)

e The demand side: It contains the energy consuming devices found in
buildings such as the appliances and the cooling/heating systems.

e The utilities: They refer to the mechanisms that guarantee optimal
control of system’s components (supply and demand sides) and here is
the focus of the present study

26

Smart-grids include a number of sensors that acquire data (such as weather
conditions). Also they are capable of performing energy trading for buy-
ing/selling energy depending on the building’s requirements and the avail-
able funds (AF). Finally, micro-grids are usually connected either directly to
other micro-grids, or to the main grid [29].

Buildings are immensely energy-demanding and are expected to consume
even more in the near future. European Union’s (E.U.) buildings consume
around 40-45% of the total energy consumption, whereof two-thirds of which
is used in dwellings [30]. Heating, Ventilation and Air-Conditioning (HVAC)
is the largest contributor to the buildings’s energy cost and carbon emissions.

A large number of studies aim at mitigating this problem and its financial
and ecological costs. Next generation materials, innovative design methods
and new appliances [31] are used when constructing new buildings including
improvements to the insulation and less energy consuming HVAC systems.
New green building can be benefit also from the usage of renewable sources,
while fine-tuning and intelligent control of HVAC systems is applied to all
buildings, regardless of their age. Such a solution is given by Smart Ther-
mostats: Computerized embedded platforms that apply advanced control
methods on HVAC systems. These systems promise to reduce energy con-
sumption while improving thermal conditions by using proper configuration
of the HVAC system at real-time, based on environmental parameters and
occupants preferences. Recent reports highlight the continuously increasing
revenue of the global smart thermostat market® [32].

This type of devices targets the problem of non-optimal strategies for the
building’s cooling and heating services that increases the energy consump-
tion even more. The expected energy savings that can be achieved are very
high, considering that 20-30% of the building’s energy requirements could
be reduced just by turning off the HVAC system when residents are sleeping
or away [33].

Although promising, the programmable thermostats are too difficult to
be used effectively for the majority of people. For example, a lot of house-
holds with programmable thermostats have higher energy consumption on
average than those with manual thermostat control because users program
them incorrectly [34]. All these limitations can partially alleviated by CPS
that enable a better resolution of the physical world (weather conditions,
renewable resources production, energy prices). Thus, CPS are expected to
to play a key role in controlling smart buildings and micro-grids subsystems
[33].

However, the CPS technology also faces a number of challenges and con-

Shttps://www.fortunebusinessinsights.com/u-s-smart-thermostat-market-106393

27

straints. The control of HVAC uses sensors and processing nodes that moni-
tor system’s dynamic parameters and evaluate multiple operating scenarios.
Due to the large problem’s scalability, the CPS control mechanisms exhibit
increased requirements for the data processing and storage. Additionally,
as the physical world is not entirely predictable, the CPS operation is not
expected in a fully-controlled environment. So, the CPS orchestrator has
to be robust enough to unexpected events at run-time. A continuous de-
mand both in academia and industry for providing higher flexibility during
the service and product development of CPS orchestrators is observed, and
rapid prototyping of plug&play solutions that can be sufficiently operate
onto low-performance (and hence low-cost) embedded devices is always a
deign goal [23].

1.4 Contribution and Structure

The contributions of the work presented in the context of this disertation
can be summarised as follows:

e A holistic methodology for designing software analysis tools to be used
by developers for estimating energy consumption for running an appli-
cation on multiple embedded devices is introduced (Chapter 4).

— Cross-device energy estimation methods are designed based on
both dynamic and static analysis techniques, trading between
accuracy and usability. The introduced methods use datasets,
popular profiling tools and well-established regression estimators
achieving an R2 score of 0.96. By studying the correlation be-
tween the various metrics (features) and energy consumption, as
well as by comparing predicting methods we aim to contribute
on constructing practical and easy-to-develop energy estimation
tools.

e Nowel techniques that guide energy optimizations at the software level
are designed. More precisely, special emphasis is given on estimating
the potential energy gains by offloading parts of the source code to a
GPU accelerator of a heterogeneous system (Chapter 5).

— The proposed approach combines both static and dynamic anal-
ysis approaches and exploits the advantages of both into a sin-
gle flow. While the static analysis components rely on analysing
source code, the dynamic estimation part, extends existing ap-
proaches that provide performance predictions, towards estimat-

28

ing the potential energy gains too achieving a classification accu-
racy of more than 75%.

— Impact of energy related optimizations on software design quality
is studied, making also a first step towards designing a tool that
estimates programming effort prior development. The results are
very promising as the proposed solution estimates the program-
ming effort (expressed using the Halstead effort metric) achieving
an accuracy of 85%.

— The potential use of the introduced models to build another type
of software analysis tool that gives energy-aware placement solu-
tions of the application’s individual functions on Edge devices, is
demonstrated. The first results are promising, as the presented so-
lution achieves 33.6% energy savings (on average) for using 4 edge
devices to place 25 functions and 8.5% for using 3 edge devices,
compared to the default Kubernetes placement.

— An application analysis framework, aiming to integrate the intro-
duced methods that contribute to the identification of energy con-
sumption issues and propose relevant optimizations is designed.
A pre-alpha version that includes individual micro-services, com-
bined with a database, github support and graphical user inter-
face is demonstrated, offering the capability of integrating different
kinds of application analysis tools in a convenient and user-friendly
way.

e Nowel online decision-making methods for optimal configuration and
rapid prototyping of Cyber-Physical Systems applications, such as the
HVAC systems in micro-grid environment, are presented. The method
exhibits remarkable lower computational and storage complexities with-
out sacrificing the quality of derived results (Chapter 6).

— One-way solutions based on Reinforcement Learning as well as a
custom solution that incorporates Linear Regression (LR) and
Multiple-Choice Knapsack algorithms are designed and tested.
The problem and the objectives of the introduced decision-making
algorithm were formulated towards being flexible and supporting
multiple operating modes, such as balancing energy consumption
with residents’ satisfaction, minimizing energy consumption while
maintaining a satisfactory level of thermal comfort, and maximiz-
ing residents’ satisfaction without exceeding the available energy
budget. The introduced fast and accurate models for estimating

29

the residents’ thermal comfort and HVAC’s energy consumption
exhibit negligible complexity compared to relevant implementa-
tions without any quality degradation. More precisely, the final
version of the proposed orchestrator exhibits comparable efficiency
against the initial offline solver (3% worse in terms of total cost
reduction) but with significant lower complexity (about 8 orders
of magnitude) and without using any prior knowledge or system
modeling. As a result, the introduced solutions contribute on tar-
geting low-cost embedded devices (e.g. smart thermostats) and on
enabling shorter design times, which in turn alleviates the time-
to-market pressure.

The rest of the dissertation is structured as follows: A detailed description
of the motivation behind the presented work along with a detailed survey on
the related approaches is presented in Chapter 2. Chapter 3 describes the
technical background that is needed in order for the reader to understand
more easily the rest of the document. Chapter 4 describes the designed so-
lutions towards calculating the expected energy consumption of programs
running on different devices and architectures (cross-device), while Chapter
5 presents the proposed methodology with all the design choices for energy
optimization along with implementation details and software engineering as-
pects analysis. Our solutions applied in the special application of the Smart-
grid use-case are presented in Chapter 6. Finally, in Chapter 7 we draw
conclusions and we discuss a number of observations, potential issues and
future directions.

30

Chapter 2

2 Motivation and Related work

This Chapter gives a brief overview of the related research activities to the
present work, aiming at giving the reader an understanding of the motivation
behind our study. More detailed and specified related work sections are also
found in each of the following Chapters, giving a more detailed view of the
relevant approaches to the specific problem on which each Chapter focuses,
including also quantitative and qualitative comparisons.

2.1 Green Computing - Existing approaches

Back in 2017, Pinto et al. [15] emphasize software developers’ lack of
knowledge about energy. More precisely, while 70% of developers partici-
pated in a study, thing that energy is important, 50% could not find what con-
sumes energy in their apps. Indeed, 32% tried to improve the consumption
unsuccessfully. The same conclusion was made by Pang et al. [17], where a
representative number of developers gave very different answers about which
part of their application consumes more energy.

In fact, although traditionally energy efficiency was studied on the hard-
ware level, green computing is gaining more attention from the software
engineering community [6]. Relative sessions are included in Software Engi-
neering conferences and journals, while new research groups are specialized
on this field (e.g. Green Software Lab?). However, the relevant work, in-
cludes completely different approaches, while recent survey articles highlight
the need for tools and practices also influenced by the author’s background.
As a result, we can conclude that we need approaches that build a ”bridge”
between the various sectors.

In Figure 4, we make a symbolic representation of the current approaches
that can be found in the literature, placing them on an axis between a soft-
ware perspective and a hardware point of view. We refer to the knowledge of
embedded computing as "hardware”, while "software” refers to approaches

“https://greenlab.di.uminho.pt/

31

Program. Design Energy System calls Power Man. Memory
_______ . Languages Patterns Smells Data Struct. DVFS hierarchy etc.
s N ¥ 4 ¥ 4 + (}_/) N
‘ s $ ¢ ¢ ¢ (1) < D IR

\SOFTWARE/ } L PN I
RN % Energy Coding Estimation Parallel Profiling | DSPs, HARDWARE
e Efficiency Practices Computing H ' FPGA. GPU
! 1 1 i
! Metrics I !
i Proposed i | aC(‘Itelerators etc.

L

Figure 4: Green computing from different point of views

that mainly focus on the high-level source code and application development.
As we point out in the following paragraphs, the red lines indicate the need
to provide the software developer with a clear picture of the energy improve-
ment opportunities that are closer to hardware knowledge. The following
paragraphs provide a brief overview of some representative approaches about
energy efficiency, green computing and sustainability, starting from the soft-
ware engineering point of view and moving on to the hardware, in order to
give a clear picture of what is proposed in this thesis.

Programming Languages: Recent work, even in 2021 [35], ranks the choice
of programming languages in terms of energy efficiency. After developing the
same algorithms in different languages, they draw conclusions about the en-
ergy consumption. For example, according to [35], Python consumes 75 times
more energy than C. Many similar works can be found in the literature in
recent years (2015-2020) [36]. Most of them, evaluate different implementa-
tions on workstations, embedded systems or mobile devices and compare the
energy consumption of memory allocation methods, structures, etc.

Software Energy Efficiency Metrics: Approaches that belong to this cat-
egory propose new Energy Efficiency metrics that assess how efficient a soft-
ware application is. Capra et al. [37] introduced a metric based on the size
of the source code, the application age, the type of internal applications (e.g.
web, image processing) and the framework entropy [38] which is a measure of
the degree that external libraries and application development environments
have been used by the developers. Based on this metric, the authors con-
clude that intensive use of development environments has a positive impact
on energy for small applications, but increases energy for large projects.

Design Patterns: There are a lot of approaches in the software engineer-
ing area that study which Software Design Pattern is the most energy effi-
cient [39]. These approaches are based on empirical evaluation only [40]. Ac-
cording to them, for example, Flyweight, Mediator and Proxy [41] design pat-

32

terns are more energy efficient than Decorator and Abstract Factory [41] [42].
However, these works do not provide clarifications and explanations of the
results and we might also argue that there are many inconsistencies in the
observations depending on the studied application.

Coding Practices: Another type of green computing approaches, also
closer to the software engineering perspective, suggests coding practices and
guidelines for energy efficiency, i.e. sets of coding rules that help software
practitioners to reduce energy consumption [43] [44]. These practices are also
based on empirical evaluation. Some examples include using macros instead
of function calls, using variables for loop termination, using effective queries
in databases etc.

Source code analysis - FEnergy Code Smells: The term ”code smells
was proposed by Fowler et al. back in 1997 [45] and is widely used in the
software engineering communities. Eliminating ”smells” through source-to-
source refactorings (i.e. code reconstructions) contributes to the maintain-
ability of the application. New kinds of ”code smells”, such as the energy
smells have been recently proposed. By eliminating the energy smells, the
application source code is claimed to be energy efficient [46]. Some examples
of energy smells include Loop bug (repeating same activity usually waiting
for an I/O operation), in-line method (method in-lining sometimes leads
to energy savings), immortal processes (processes that keep restarting) etc.
Other studies try to evaluate the effect of refactoring existing maintainability
smells on energy consumption. For example, refactoring Feature Envy (meth-
ods placed in wrong class in an application developed in an object-oriented
language) or Long Methods (methods that should be broken in more meth-
ods), God Class (a class that controls a large part of the application) [47] is
expected to affect energy consumption.

Source code analysis - Estimation of energy consumption: The next cat-
egory of research works includes the design of tools that aim at estimating
energy consumption. These tools usually perform static analysis. For ex-
ample [48] relies on machine learning methods based on measurement-based
dataset targeting a specific microcontroller. There are also tools that make
a coarse-grain estimation of expected consumption based on symbolic execu-
tion, such as SEEP [49].

System Calls and Data Structures: A large number of works refer to the
impact of system calls on energy efficiency. For example, GreenAdvisor [20]
tracks the number of system calls during application lifetime, comparing the
number of system calls between different versions. Other tools [50] try to

5

SEnergy Smell is a source code segment which needs to be restructured to improve the
application’s quality (e.g. maintainability).

33

estimate the energy consumption of system calls and use system call traces
to estimate energy. Focusing on data structures is a traditional method of
reducing energy consumption [51]. Relevant projects propose methods for
selecting data structures that are more energy efficient for particular cases.
These approaches rely on both general empirical and application specific
studies [14].

Parallel computing: Thread management often has significant impact on
the energy consumption of applications. A set of the configurations and
parameters is selected manually, through experimentation or based on the
designer’s experience. A number of studies propose methods for energy effi-
cient workload management, such as thread shuffling [52]. According to this
method, slow threads are placed together in the same processor core and
DVFS (dynamic voltage frequency scaling) is used for their fast execution.
Another method is the work-stealing: the thread that completes its tasks,
steals work from other threads [18].

Power Management, DVFS: Getting closer to the hardware perspective,
a widely used technique is DVFS (dynamic voltage and frequency scaling):
defining the clock frequency based on performance and power requirements.
Determining voltage/frequency during heavy operations of an application
may lead to trade-offs between power and performance and finding suitable
settings that take into account energy is a challenging problem. Usually,
there are specific sets of selections provided by the hardware (power modes)
that can be used properly. For example Awan et al. proposes a method
for selecting power mode based on offline analysis [53], while Bhatti et al.
introduces an online analysis machine learning approach [54].

Profiling for Energy Modeling: A traditional approach of embedded sys-
tem developers is to perform dynamic instrumentation manually on the hard-
ware. They use the offered CPU performance counters [55], or popular tools
like linux Perf [56] or Valgrind [57], in order to profile their applications and
to find the behavior that lead to increased energy consumption as well as
potential opportunities for improving. Approaches that try to automate and
bring this procedure closer to the software perspective either use hardware-
specific performance/energy models in order to link basic software constructs
(source code or IR blocks) to energy [22] or perform dynamic instrumenta-
tion to collect features like cache misses, cycles etc to train machine learning
models or to construct analytical modelling of the energy behaviour [58] [59].

Memory hierarchy, microarchitectural techniques etc.: Embedded systems
developers with a hardware background, often use microarchitectural tech-
niques to save energy in specific device components. By leveraging the device
properties and according to the application’s behavior, a dynamic reconfig-
uration of the individual components is carried out to optimise energy. A

34

large number of approaches can be found in the literature that usually rely
on exhaustive design space exploration in different combinations of line sizes,
associativity and cache-partitioning [60] [61] [62].

Custom DSPs, FPGA accelerators etc: From hardware point of view,
optimizing energy consumption is usually associated with the use of custom
SoCs, ASICs, DSPs or programmable FPGA and GPU accelerators. A large
number of approaches propose application specific architectures and designs.
Comparisons between alternative architectures are also presented. For ex-
ample, using FPGAs may lead to better energy efficiency than GPUs, while
GPUs have better performance for some applications [21] [63] [64] [65]. In
this category, we can find studies that perform custom design approaches
to further improve performance and energy efficiency, such as approximate
computing [66].

2.1.1 What is missing?

All the aforementioned techniques are so different from each other and are
characterized by custom inherent characteristics, usually perfectly related to
the application under analysis or to the background and experience of the
designer. From the above analysis it becomes clear that there is a need for
tools capable of supporting a wide range of different techniques, assisting
software development and providing a clear picture of energy improvement
opportunities to the developer, as indicated by red lines in Figure 4. For
example, software developers need to be aware about when to offload parts
of an application to an accelerator, about the memory utilization, data races,
etc. but this information should be offered to them in a way that is familiar
to them, accompanied with a set of suggestions.

One could argue that as the years go by, the burden of efficient program-
ming falls more on libraries and service providers. More and more tools and
services are being introduced in order to properly use the hardware from the
software level without the need for specialized knowledge. Typical examples
can be found in recent years in the field of machine learning that is very pop-
ular, where libraries such as Tensorflow, Pytorch etc. offer the ability to use
GPUs and TPUs easily from the Python code level. In addition, cloud ser-
vice providers use their algorithms to select the best servers, VMs or physical
machines to run client applications consuming less energy. Finally, high-level
programming languages offer more libraries with data structures, monitor-
ing functions, etc. However, software developers still need advice about how
and when to use all these automated features, the choices and configurations
they need to make, and the potential impact on the behavior of their ap-
plications. As a result, we may argue that such assisting tools become even

35

more necessary and useful.

The methods proposed in this dissertation, supported by tools, analyze
applications in terms of energy consumption and recommend relevant opti-
mizations, without the need of executing the code on the targeted devices
(cross-device). This means that the proposed techniques guide energy opti-
mizations at the software level (as part of an SDK tool). Special emphasis
is given on estimating the potential energy gains by offloading parts of the
source code to a GPU accelerator of a heterogeneous system. The introduced
application analysis framework is designed to be able to integrate different
kinds of tools that contribute to the identification of energy consumption
issues and propose relevant optimizations.

2.2 Related tools

Designing a software development toolkit that targets energy consump-
tion and optimization is a challenging task. As stated earlier, Pinto and
Castor [15] highlight the lack of such tools and consider supporting devel-
opers on refactoring their code as a key concept (with emphasis on memory
utilization and acceleration optimizations which we target in this thesis),
as well as the challenge of designing simple static analysis estimators. The
importance of such a tool is also emphasized in a recent survey by Geor-
giou et.al. [6]. The article concludes that software-based energy monitoring
tools are of great importance as most tools are based on custom empirical
studies or target a very specific type of application or hardware. Addition-
ally, continuous energy consumption monitoring that provides feedback to
the developer is needed for developing energy efficient applications.

The proposed solutions aim to offer energy consumption estimation and
optimization, lowering the barrier of access of embedded systems energy op-
timizations for software engineers. On the contrary, State-of-the-Art ap-
proaches either target a very specific domain or are based on empirical re-
sults that require specific knowledge by developers. The proposed tools are
also extensible in the sense that they can be used in a variety of different
architectures.

2.2.1 Monitoring Tools

Tools that fall in this category monitor consumption, helping the de-
signer to have a view of the application’s energy. Monitoring tools are based
on a variety of different approaches from estimation models and performance
counters to direct measurements through hardware energy sensors. A very
promising and widely-used solution is the Running Average Power Limit

36

(rapl) [67], which is a dynamic tool, supported from specific Intel archi-
tectures, which estimates power consumption from the CPU’s performance
counters. New tools based on Rapl have been introduced, such as jRapl for
Java. A popular tool in the Java community is Jalen®, which is a dynamic
analysis tool that estimates energy by analyzing JVM. PowerAPI [68] per-
forms energy profiling through dynamic instrumentation. There are tools
specified to Virtual machines, that estimate energy by profiling CPU, RAM,
HDD usage, like Vmeter and BitWatts [69]. The most mature and well-
structured monitoring tools target Smartphones. A large amount of tools
offer energy related metrics based on simulation or profiling. Some of them
are the following: Android Energy Profiler, GreenOracle, Petra, Anandroid,
PowerBooter, GreenScaler, Trepn [70]. Finally, tools targeting performance
can be extended or considered very useful for improving energy. Such tools
are the throughput estimators, like LLVM-mca’ , the older Intel Architecture
Code Analyser (IACA)® or Ithemal [71].

Tools aiming at estimating energy consumption of running the code on
different devices (cross-device) have also been introduced in the literature.
Initial approaches are based on simple regression algorithms [48], adopting
measurement-based methods that achieve very accurate results. However,
they only target specific microcontrollers. More recent approaches employ
machine learning methods [58] [59] and after dividing the application into
phases they use dynamic instrumentation features (such as cache misses,
CPU cycles etc.) to train the models. The dynamic instrumentation, how-
ever, not only requires application execution, but also adds a large time
overhead and needs a lot of manual actions by the developer (such as adding
annotations in the source code) imposing a lot of problems for being a part
of Software Development Tools. Another type of methods extend the Worst
Case execution Time tools (WCT) [72] [73] towards energy estimation. These
tools are usually criticised because they are very slow, their accuracy is very
limited and they can support only specific architecture models.

2.2.2 Optimization Automation Tools

PEEK [74] aims to be used as a plugin on Eclipse or other IDEs and to
make energy monitoring on function level, using git as a middleware. It sup-
ports a simple search on a set of alternative power mode configurations, com-
piler flags, libraries executing the app in the backend using a custom energy

Shttps://gitlab.com/adelnoureddine/jalen

"https://11lvm.org/docs/CommandGuide/11vm-mca.html

8https://software.intel.com/content/www/us/en/develop/articles/
intel-architecture-code-analyzer-download.html.

37

measurement device or SEEP profiler [49]. SEEP makes coarse-grain estima-
tions of expected energy based on symbolic execution. SEEDS [75] targets
also Java. This tool transforms the code and profile energy usage trying to
make some optimizations in data structures automatically (e.g. substitutes
HashSet for a TreeSet or LinkedList for ArrayList and vice versa). Other
tools aim at a specific optimization type. For example Green, Parrot, En-
erJ [76] target approximate computing, offering support to perform function
memoization, loop termination, approximate arithmetic computations, but
they still require specific knowledge from the user. Tools like GreenAdvisor
and Eprof monitors system calls. Another category of tools used by practi-
tioners to help them improve energy efficiency are the system emulators like
Gemb. Finally, tools that target polyhedral optimization, such as MIRA [77]
can also improve energy.

There are tools aiming to assist developers by predicting the GPU acceler-
ation gains. These tools analyze CPU code to predict potential performance
gains by GPU acceleration (speed-up). XAPP [78] and CGPredict [79] use
dynamic instrumentation to analyze CPU code. They leverage either ma-
chine learning techniques for prediction, or they use analytical models. Other
recent works that belong to the broad category of performance predictors are
Compass and Automatch [80,81]. Compass analyzes C code and generates
application performance models, while Automatch detects application char-
acteristics and predicts the performance of execution in various accelerators
through the generation of analytical modeling. Most of the aforementioned
predictors rely on dynamic instrumentation techniques. Although dynamic
instrumentation is a widely-used analysis technique and is supported by ma-
ture tools (e.g. Valgrind [57], Pin [82]), it suffers from large execution time
overhead and requires manual actions as mentioned before. Also although
the existing approaches provide predictions in terms of execution time, they
do not consider energy consumption predictions at all. Therefore, in the con-
text of this dissertation, we extend existing approaches towards predicting
energy gains by acceleration on heterogeneous embedded devices.

2.3 Optimizing Smart-Grid HVAC Control

The HVAC system’s orchestration is a well-established challenge that has
been extensively analyzed in literature. For the dynamic HVAC control there
exist two major techniques: on-line decision-making and Model Predictive
Control (MPC). Each one is characterized by a number of advantages and
disadvantages.

On-line algorithms usually require lower design time, while MPC methods
are usually more robust and efficient, especially in cases where the models

38

were designed along with the system under control. The usual ”black-box”
approach of machine learning on-line methods is sometimes criticized [83].
However, on-line methods are more reactive to real-time conditions, whereas
the accuracy of MPC techniques is affected by the precision of weather fore-
casts and building dynamics models.

While MPC control techniques have been successfully applied in a wide
range of non-linear applications [84, 85|, including HVAC system control
[83], extensive analysis of the system is required, fact that leads to high-
dimensional mathematical problems [86]. A large amount of design and cus-
tomization time for each individual building, through detailed experimental
and mathematical analysis, is needed. Taking into account the tight time-to-
market pressure, that imposes the need of rapid prototyping solutions, MPC
solutions sometimes are difficult to be applied (especially on existing build-
ings). In general, MPC methods are suitable for controlling components of
HVAC systems that have been modeled at their design time.

Simulation-based methods based on popular tools such as the EnergyPlus
and Modelica facilitate building modeling but their use can only be part of
a Building Management System, included mainly in large buildings (offices,
hotels, public buildings) due to their increased computational requirements
[28].

Fuzzy rules [87,88] alleviate the necessity of a detailed mathematical
model giving a predefined action plan that selects HVAC configuration based
on the information received by the environment. In some cases genetic algo-
rithms are employed to support the fuzzy controller [89,90]. Supervised ma-
chine learning techniques, such as Artificial Neural Networks (ANNs) [91,92],
are gaining a lot of attention, as that they do not require a detailed study
of the underlying building dynamics. They are trained, using historical data
and learn the the building’s physics indirectly by estimating their impact.
These techniques have the ability to enable model-free controllers. However,
they have a number of limitations. Machine learning models usually need
long time to be trained and calibrated and are difficult to implement in prac-
tice, while fuzzy rules create fuzzy classes of some parameters and as a result
they are not able to learn building’s behavior in detail, in order to react on
real-time dynamics. Therefore a stage of ”"pre-training” is performed, based
on historical data of a target building that they target to or by using building
modeling tools (e.g. EnergyPlus, Modelica).

Reinforcement Learning (RL) aims at giving a solution by continuously
learning through the results of different HVAC configurations. RL is gaining
attention nowadays, while several HVAC control approaches use RL [93] [94]
[95]. Commercial thermostats are also rumored to use similar techniques in
order to learn occupant’s preferences standing on their manual configura-

39

tion [93]. Usual criticism to this approach is the human factor of defining
RL rewards, the instability and inefficiency at the initial system period, as
well as prolonged learning periods [83].

Finally, regarding the optimization target, several works focus only on
energy consumption. Some approaches try to satisfy a desired threshold set
by users [96] and minimize energy cost taking into account the energy mar-
ket. By using simulations [96] linear regression models that relate energy
to temperature difference are created or a full model for estimating energy
consumption is pre-assumed [97], based on modeled building parameters and
a computationally demanding Monte Carlo approach. On the other hand, a
number of related methods attempt to serve occupant’s preferences accord-
ing to their manual modifications on HVAC configuration. These solutions
attempt to save energy by avoiding unnecessary re-adjustments, or by turn-
ing off the HVAC when while the comfort zone is defined manually by the
occupants [98] [99].

2.3.1 What is missing?

The related work highlights the necessity of a plug&play solution that
targets existing buildings easily. While there is a large number of relevant
approaches, most of them are building-dependent and need a considerable
amount of time for modeling the building under control or retrieving his-
torical data to train machine learning models. In the context of this thesis,
emphasis was given on designing decision-making techniques that support
on-line learning by receiving information from the environment, striving for
rapid prototyping.

The work presented in the context of this thesis envisions a controller
that takes into account both energy and thermal comfort. More precisely,
we build a multi-objective optimization problem (MOO), where energy and
comfort give the two objectives. The optimization goal is expressed as a
weighted sum of the single objectives, where by setting the weights the user
can define the relative importance of optimizing either the energy, or the
comfort objective.

Finally, the increased computational complexity of most of the existing
techniques makes them affordable only to enterprise environments, e.g., as
part of BEM systems. In this thesis, we give special emphasis on designing
a solution that exhibits low computational requirements without sacrificing
the quality of the delivered results, in order to facilitate its implementation
as part of a low-cost embedded system. This necessity has already been
identified by the industry, as it is portrayed by the expanding market of
smart thermostats.

40

Chapter 3

3 Background (methods, tools and experimen-
tal setup)

This Chapter provides a brief overview of the methods, the tools and the
infrastructure used in this study. It is considered useful for the reader in
order to understand the rest of the dissertation.

For the reader’s convenience, although this Chapter’s sections correspond
to different subjects, we decided to refer on which of the following information
will be useful as a background for which of the next Chapters. Section 3.1
presents the dynamic intstrumentation tools that are extensively used in the
work presented in Chapters 4 and 5. The machine learning and statistics
techniques presented in Section 3.2 are present in all the chapters of this
thesis, while Multi-objective optimization (Section 3.3) is used in Chapters
5 and 6. The first paragraphs of Section 3.4 describe the experimental setup
(applications, devices and tools) used in Chapters 4 and 5, while Section
3.4.4 presents the simulation environment and the thermal comfort model
used in Chapter 6.

3.1 Dynamic Instrumentation Tools

Dynamic Binary Instrumentation tools add monitoring functions and rou-
tines into the application during its runtime (i.e. in its binary file) in order
to extract profiling information [100]. This technique allows events, statis-
tics and error detection information to be gathered in fine granularity. On
the other hand, it imposes significant overhead in the execution time of the
application.

3.1.1 Valgrind Suite

Valgrind is one of the most popular open-source profiling suites. Valgrind
suite includes a wide variety of dynamic instrumentation tools that provide a
lot of detailed information about the execution of a program, the software and

41

hardware behaviour, the memory utilization and threading errors and bugs.
It also enables the design of new tools that provide profiling information
which are not available by the default tools of the suite. The design of new
tools is based on Valgrind intermediate representation (IR) [14].

The input of Valgrind tools is the application executable. Valgrind gen-
erates a synthetic CPU in which the application is executed. During the
runtime, Valgrind adds instrumentation code to the application binary in
order to coordinate the execution and the corresponding Valgrind tool re-
trieves profiling results. Valgrind instrumentation code imposes overhead in
the execution time of the application. Experiments show that profiling the
application using Valgrind increases the execution time by 10-50 times.

In the following paragraphs we describe each tool of the Valgrind suite,
along with the profiling information that it provides.

Memcheck identifies memory errors, including: Overrunning/underrun-
ning heap blocks, Overrunning the top of the stack, Attempts to access freed
memory, Attempts to use undefined values, Incorrect allocation/freeing of
heap memory, Overlapping source and destination pointers in memcpy/() and
related functions and Memory leaks.

Cachegrind simulates the way that applications utilize cache memory hi-
erarchies, as well as branch prediction mechanisms. By using Cachegrind,
developers can evaluate various cache architectures and gather profiling re-
sults. Cachegrind provides profiling information for the cache architecture
under evaluation including: Instruction cache reads/misses, Last-level cache
instruction write/read misses, Data cache reads/misses, Data cache writes/
write misses, Conditional braches executed /mispredicted and Indirect braches
executed /mispredicted.

Callgrind monitors function calls during the application execution. The
gathered call history is used to generate a call-graph. Profiling informa-
tion includes the number of instructions, call/calle relationship, number of
calls, for example: Call-graph (list of functions and number by which each
function is called), Data read, cache misses in each function (gathered using
cachegrind).

Although Valgrind is normally used based on command line input /output
and text output files, the suite also offers a tool for graphical visualization
of the output, called KCachegrind, which is a KDE/Qt based GUIL

Helgrind is used for finding synchronisation errors in applications that use
POSIX threads. Helgrind can monitor and report: Mutexes errors/misuses,
Inconsistent Lock Orderings (potential deadlocks), Data races, List of locks
and their status, location, global variable and Access history recorded for a
number of bytes starting at a specified address.

DRD tool detects possible errors with respect to thread synchronization

42

similar to Helgrind. However, it also monitors lock contention and can be
used to identify thread starvation. DRD reports: Data races, Memory ac-
cesses that conflict with a past memory accesses and Lock Contention mon-
itoring.

Massif tool profiles heap memory. The profiling information of Massif
can be used to improve the utilization of heap memory by the application.
An example of its output is shown in Figure 6. Massif profiling information
includes the reporting of: Memory footpring, Useful-heap / extra-heap (mal-
loc, calloc, new etc), Size of the stack(s) and Location of memory allocations
and percentage of total allocation.

DHAT profiles heap memory and provides detailed information about al-
located memory blocks (lifetime and utilisation of each one). DHAT profiling
results include the following: Heap allocations: total number of bytes and
blocks, Maximum live volume (i.e. maximum total size of blocks that are
simultaneously live), Average block lifetime, Average number of reads and
writes of each block (”access ratios”) and Access frequency of each block.

SGcheck detects overflows of stack and global arrays.

3.1.2 Pin tools

Pin Tools are a different kind of dynamic analysis binary instrumenta-
tion tools. Pin offers a C-based development API to be used within the
application source code. Developers insert the instrumentation functions in
selected places of the application source code and select the metrics that will
be monitored. The instrumentation functions are invoked at runtime and
gather the selected profiling information [100]. An interesting feature offered
by Pin tools is the fact that the instrumentation functions can be customized
by developers, enabling, in this way, the monitoring of user-defined metrics.
Pin works like a just-in-time (JIT) compiler and execute the application in
a Virtual Machine. Pin tools fully support Intel-based architectures, while
they provide limited ARM support?. Finally, they integrate several models,
such as branch predictor, cache memory architectures and timing models.
MICA' includes a set of metrics developed by Ghent University, which en-
ables the collection of various profiling information [101]. It is built on top
of Pin tools and the reported profiling information includes:

e Degree of Instruction-Level Parallelism (ILP)

e Types of Instructions, such as load/store, control, arithmetic (integer
and floating point), string operations, bitwise operations, etc.

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
Ohttps://github.com/boegel/MICA

43

e Ratio of branch predictions
e Data stream strides

e Memory Footprint

3.2 Statistics and Machine Learning
3.2.1 Overview

Machine learning (ML) is a very popular sub-field of computer science,
with a huge number of applications, which have gained much attention by
academia and industry in recent decades. In this section we give a very brief
description. The term ”learning” refers on the ability of gaining information
from the environment without programming and adding new elements and
functions as well as the ability of adjustment and improvement of the system
without re-programming.

According to Arthur Samuel (1959), machine learning gives computers the
ability to learn without being explicitly programmed [102]. Machine learn-
ing models can learn a system’s behaviour, improve, generalize and extract
important features, using feedback from the environment. ML algorithms
receive, as input, data retrieved from observations and produce models for
making predictions on new data. Therefore, ML is closely related to compu-
tational statistics and mathematical optimization [103].

ML algorithms can be divided into the following categories:

o Supervised learning: This type of methods receives as input already
known observations (input-output pairs) and then produce a general
model that is able of finding the output of future inputs. In other
words, we might say that the model tries to produce a function that
describes the given data.

e Unsuperuvised learning: In this type of methods, there are no output la-
bels on the observations. The algorithms are employed to find patterns
and correlations in order to create a structure in the input data.

e Reinforcement learning: In this method, the model starts without any
data and interacts dynamically with the environment giving reward
to each action, in order to learn strategies. More details are given in
Section 3.2.1.1.

Another ML categorization is based on the type of the model’s output:

44

o Classification: The input data are assigned to two or more classes and
the algorithm creates a model that assigns new input data into one of
these classes (supervised learning).

e Regression: The output is a continuous real number. The algorithm
produces a function that approaches the correlation between input and
output (supervised learning).

e (lustering: The model divides data into groups according to correla-
tions of the input features, as there are no output data (unsupervised
learning). In contrast to the classification models the cluster that each
observation belongs to is completely uknown and thus the model is
responsible of grouping the data by identifying their similarities.

e Dimensionality Reduction: These algorithms reduce the number of in-
put features by selecting those that explain the most information and
removing those that do not contribute to the models prediction accu-
racy. Some algorithms of this category are also able of constructing
new features from the existing ones.

3.2.1.1 Reinforcement Learning (RL) For a system that has un-
known parameters, a deterministic approach for controlling and decision
making is limited by approximations regarding the available system states
that can be reached at run-time. Similarly, when the parameter space is vast,
the definition of deterministic transitions from one state to another can be
proven to be infeasible. Such design requirements, gave birth to Reinforce-
ment learning (RL) machine learning approach, which constantly gaining
attention. RL has been successful applied in applications including strate-
gic games [104] [105] and supporting decisions for autonomous driving [106].
Tasks of greater difficulty have been tackled as well, in fields like neuroscience
and psychology [107].

More precisely, an RL problem consists of a set S of states, a set A of
actions, and a reward function r : S x A — R. At each instance of the
problem, an action a; € A (we assume that A is finite) has to be chosen,
which will lead from s; € S to a new state s;41. The tuple (s;,a;, Si+1) is
called a transition. A real value r; is assigned to each of the transitions. The
agent’s goal is a series of transitions ¢y, ¢, ..., t, that maximizes the R value
(called the return) in Equation 1. Finally, the v € [0, 1) is a discounting factor
that controls the importance of future rewards and ensures convergence of
the sum in Equation 1 when n — oo.

45

Maximize R = Z vorg (1)

1=0

Although state-values suffice to converge to an optimal solution, it is
useful to define action-values. Given a state s and an action a, the action-
value of the pair (s,a) is defined by Equation 2, where R now stands for
the random return associated with first taking action a in state s, there-
after. Consequently, we might claim that estimating () plays a key role on
the overall performance as it quantifies the efficiency of the candidate CPS
orchestrator’s selections.

Q(s, a) = E[R|(s, a)] (2)

Next we summarize the RL Definitions and terminology:

Agent: The mechanism that learns and acts, having as a goal to max-
imize the rewards given by the Environment.

State: We call state a vector that describes the scenario/situation that
the Agent encounters in the Environment. The Agent performs an
action that drives the Environment to the next state and gives a reward.
If a terminal state has been reached, and a new Episode begins. A
terminal state gives as a reward zero.

Actions: The Agent makes an Action, which influences the Environ-
ment and therefore changes the State. Every Action gives a Reward
from the Environment to the Agent.

Reward: A value that the Agent receives from the Environment as a
response to the Action performed. The Agent’s objective is to maximize
the total Reward it receives during an Episode. An Episode ends if a
terminal State has been approached.

3.2.2 Prediction Models

This paragraph gives a very brief overview of the specific ML regression
models that can be found in the rest of the present thesis:

Linear regression is the simplest prediction model used in this disserta-
tion. It uses a linear approach to correlate the features with the target

46

values. The model training procedure sets the values of the coefficients
to minimize the residual sum of squares between the targets of the
training set and the targets as calculated by the linear approximation
formula [108].

Lasso stands for Least Absolute Shrinkage and Selection Operator. It
is a more complex regression analysis method that performs not only
coefficients regularization but also feature selection. This is achieved
by the ”shrinking” the coefficients towards zero to exclude certain fea-
tures. This model works better on new data-sets [109] that are not
pre-processed using another feature selection methods.

Random Forests is a Supervised ML Algorithm capable of performing
both classification and regression analysis. It is an ensemble method
that is based on the simpler decision tree method. By building multiple
decision trees using different samples of the training set, it returns the
result of the majority in case of classification or the average value for
regression [110].

Orthogonal Matching Pursuit (extension of Matching Pursuit) is a
sparse approximation algorithm that uses sparse solutions for systems
of linear equations. It is an iterative algorithm that finds the best
matching to approximately represent a signal from Hilbert space as
a weighted sum of finitely many functions. It is a greedy algorithm
as at each stage, the problem is solved based on current information
only [111].

Neural Networks is one of the most popular ML methods originally
inspired by the human brain. They are systems with interconnected
nodes that (by using algorithms) become able to identify hidden pat-
terns and correlations, and to perform clustering, classification or re-
gression analysis. A special type of neural networks is the Convolu-
tional Neural Network (CNN), which is widely used in image processing,
sound recognition, and sequence classification because of its inherent
ability to identify new features using convolution filters [112].

3.2.3 Correlation

Correlation methods are used to express the degree that two variables

are related. They are used to describe relationships and to show which
characteristics (features) are the most important in terms of their relationship
to the value needed to be predicted. Two correlation models are used in the
context of the present study:

47

e StepAIC is an automated method that identifies an optimal set of fea-
tures by step-wisely adding and removing features in each step and
by using regression methods to evaluate the importance of each one.
AIC stands for Akaike Information Criteria and estimates the predic-
tion error and thus, the quality of each model [113]. Therefore stepAIC
quantifies in each step the amount of information loss when a feature
is removed. For a typical analysis, the null hypothesis is that removing
a feature from the features vector does not affect the estimation accu-
racy. The hypothesis is rejected when p-value < 0.05 and not rejected
when p-value > 0.05.

e Spearman correlation is a widely-used correlation method, which eval-
uates the monotonic relationship between two continuous variables: A
coefficient is assigned to each feature, which varies from -1 to +1. -1
or +1 indicates an exact monotonic relationship. Positive correlations
mean that as the feature value increases so does the the targeted value,
while negative correlations mean that the increase of the feature indi-
cates decrease in the targeted value. Zero implies no correlation [114].

3.3 Multiobjective optimization

In the concepts presented in this dissertation, we model the core function-
ality of our targets as a multi-objective optimization problem (MOO) [115],
formally defined in Equation 3. Without loss of generality, we refer to a min-
imization problem, where Fy, Fy, ..., F}, are the multiple objectives that have
to be minimized simultaneously, while G; < 0 denotes the constraints that
have to be satisfied. Moreover, x is a vector of input variables, which repre-
sent the design parameters of the target system. Finally, especially for the
CPS (IoT) case, that we examine in Chapter 6 of this dissertation, the objec-
tive functions may also be related to an external vector of (environmental)
variables (s).

Minimize : (Fi(x,s), Fa(z,s), ..., F,(z,s))
subject to: G;(z,s) <0, j=1,2,...,m

3.3.1 Weighted-sum optimization

Equation 3 refers to the general case of multi-objective optimization prob-
lems. Since we aim to provide online solutions, the proposed solvers focus
to a subset of these problems, where the cost function is expressed in the
form of a weighted sum of single objectives, as it is described by Equation

48

4 [116]. Such an approach enables using the weights of the sum as a way
to express how important each system’s objective is. According to relevant
weighted-sum optimization literature [116] there is a need for normalizing
the objective functions in order to achieve adherence to the preferences of the
designer, expressed through the values of the weights.

Minimize : Cost = ZwiFi(x, s), Zwi =1 n
i=1 i=1

subject to: G;(z,s) <0, j=1,2,...,m

For the problems described in this dissertation, the increased complexity
of this formulation makes it prohibiting, or even infeasible, to derive an accu-
rate analytical description of all the involved objective functions of Equation
4. Furthermore, the number of system parameters can be large and bound
by unpredictability with respect to the actual value range of each parameter.
Thus, the problem’s definition of Equation 4 is described by the following
properties:

1. the detailed form of the objective functions (Fy, Fy, ..., F,) is uknown;

2. the objective functions are not only related to the design variables but
also to additional variables that retrieve values from the environment
of the system

3. the effect of choosing a value for the design variables can be evaluated
once per operation time-step;

The ultimate goal of the presented approaches is to provide the building
blocks of a framework that solve the optimization problem characterized by
the aforementioned properties in specific domains (e.g. Smart-grid presented
in Chapter 6). According to the first property the problem cannot be analyt-
ically defined at design time and as a result a self-adaptive method is needed.
Furthermore, the cost is affected from the system’s environment and this en-
larges the problem’s difficulty. The third property represents the ”penalty”
of exploring the solution space as the only way to evaluate a solution is by
applying it on the system and receiving the feedback. This means that a fast
solution is needed because in most of the cases wrong configuration for some
time-steps may have a huge impact in its operation.

49

3.3.2 Algorithms and Methods

Optimization methods are used in various stages of the present disser-
tation (e.g. Chapter 6). This type of methods belong to the Mathematical
Programming field of study. The solution that these methods generate, is the
input that minimizes (or maximizes) a targeted function and it is searched in
a solution space that is characterized by specific available boundaries. The
targeted function is called objective, cost, loss or utility function and the
input that minimizes (or maximizes) its value is called an optimal solution.
A fast introduction of some methods that will be mentioned in the rest of
this dissertation is presented in the next paragraphs.

Dynamic Programming is a problem solving technique that is based on
combining sub-problems solutions. Sub-problems depend on each other.
Each sub-problem is solved once and the solution is saved in an array, in
order to be easily available without needing resolving [117]. Dynamic pro-
gramming methods start with constructing the problem’s solution and finding
the optimal solution recursively (”bottom-up”).

Interior Point Methods were introduced around 1980 - 1990 and target
non-linear problems. Although their results can be considered comparable
to the simplex method, simplex is usually faster for small problems but ex-
tremely complex for large problems. Interior point algorithms offer solutions
with polynomial complexity. While each interior-point iteration is computa-
tionally expensive it is progressive towards finding the optimal solution [118].
Interior-point algorithms approach the optimal solution but never actually
reach it as they use barrier functions. Barrier functions’ values tend to infin-
ity as the point approaches the limits of the feasible region. For example the
simplified optimization problem’s (Equation 5) inequalities can be handled
with a logarithmic barrier function that converts the problem in the way
presented in Equation 6) [119], where > 0 is a very small parameter.

min ¢'x st Ax=0b, x>0 (5)
min ¢f'x — ,uZlog(xj) 5.t Ax =0 (6)
j=1

Differential Evolution [120] [121] is a metaheuristic method used for func-
tion optimization. Due to the fact that it treats the targeted function as a
black-box, it is extensively used for multi-objective optimization. Differential
Evolution solves the optimization problem by iterative trials, creating new

50

candidate solutions and combining existing ones. Its stochastic nature en-
ables searching over large areas of candidate solutions, but usually needs large
numbers of evaluations. Also, Differential Evolution does not require the tar-
geted function to be differentiable, as it does not rely on gradient methods.
While originally Differential Evolution finds solution in the form of vectors
of real numbers, recent studies propose its usage also for integer/discrete
variables [122].

The Knapsack problem is a special problem of combinatorial optimization
that aims at optimization under constraints and is very popular in computer
science. It has been mentioned in the literature since 1897, while special
emphasis has been given since the 50’s due to its application in economics
[123]. The definition of the problem is as follows: “Given a set of items,
where each item 1s associated with a value and a weight, choose which items
to include in a collection (sack) so that the total weight is less than or equal
to a given capacity and the total value is maximized” .

In the context of this dissertation we will refer to a special subset of the
knapsack problems, namely the Multiple-Choice Knapsack Problem (MCKP).
Its definition [124] [125] is as follows: “Given K classes of items Ny, Na, ..., Nk,
where each item j € N; is associated with a profit/value v;; and a weight w;,
choose exactly one item from each class so that the total weight is less than,
or equal, to a given capacity W and the total value is maximized”. The
problem’s mathematical formulation is given by Equation 7.

K
max E E VijLig,

i=1 jEN;
K
subject to Z Z wijzy; < W, (7)
i=1 jEN;
 my=Lli=1..K,

JEN;
xi]’E{O,l},izl...K,]6]\[z

The MCKP algorithm is an N P-hard problem, leading to a high compu-
tational complexity. Solutions, found in the literature, optimize the problem
by initially solving a simplified linear MCKP problem and then expanding
the core solution based on dynamic programming and by adding the neces-
sary classes [124]. In contrast to relevant solvers, such as dynamic program-
ming [125] that exhibits pseudo-polynomial time complexity, the solution
proposed by Pisinger [124] minimizes the problem’s complexity by consid-
ering only a few items. More thoroughly, the computational complexity for

o1

finding a solution is O(n 4+ W x > \.c.ni), where n is the number of total
items, n; the number of items in class N/ and c is the core solution that con-
tains only the classes and items that constitute the solution space retrieved

from [124].

3.4 Experimental Setup
3.4.1 Applications

For evaluating the methods designed in the context of this disserta-
tion, applications from popular benchmark suites that are widely-used by
researchers are chosen. These benchmarks are considered reliable for demon-
strating, testing and presenting research results.

e Rodinia [126] is a well-known benchmark suite that provides a set of
applications for the study of heterogeneous systems. The programs
coupled with sets of data are publicly available. Each application’s in-
herent architectural characteristics effect parallelization, data transfers
and communication in a different way. Finally, each Rodinia applica-
tion includes CPU and GPU versions of the same applications.

e Polybench [127] is a collection of benchmarks that contains compu-
tational intensive kernels. It includes applications from different fields
such as linear algebra, stencil computations, image processing and data
mining. The latest versions of the suite provide applications both in
CPU and GPU versions. These kernels can be part of a large number
of both cloud (server) and embedded applications.

3.4.2 Targeted hardware

o Nvidia Jetson TX1' is a low-power embedded device that includes
a Tegra System on Chip (SoC) which combines an ARM Cortex-A57
quad-code CPU and a 256-core NVIDIA Maxwell GPU. A high-level
schematic diagram is shown in Figure 5. This embedded platform is
used for embedded deep learning, computer vision and graphics appli-
cations, offering acceleration by exploiting the inherent heterogeneity of
the SoC and the GPU capabilities. Some additional characteristics of
the device are the 4GB 64-bit LPDDR4 Memory and the 16GB eMMC
5.1 internal storage. It consumes less than 10W total power and it
includes Wi-Fi sensors and Gen 2 1x4 + 1x1 PCle connection. We

Uhttps://developer.nvidia.com/embedded/jetson-tx1

52

selected this device for our experiments due to the fact that it incorpo-
rates a widely-used ARM embedded processor, it includes a hardware
energy sensor (INA 3221) to measure the actual energy on the chip
and it is a typical haterogeneous SoC including an embedded GPU
that is used for improving performance and energy consumption in IoT
applications [128] [129].

o Nuidia Jetson Nano is another device that incorporates a version of
the same SoC as Jetson TX1 (Tegra X1) with the same CPU ARM
Cortex-A57 at a maximum frequency of 1.48GHz instead of 1.73GHz
of TX1 and a smaller 128-core Maxwell GPU at 921MHz instead of
TX1’s 256-core GPU at 994MHz!?

o Nvidia Jetson Xavier NX' is a high performance edge device that
focuces on Al applications. It incorporates a different architecture
(Nvidia Volta) including 384 CUDA cores and a 6-core NVIDIA Carmel
ARMv8.2 CPU, with 2-level cache and 8 GB of 128bit RAM. In the
context of this dissertation, this device is mainly used to evaluate the
extensibility of the presented methods that were first designed based on
the Jetson TX1. The increased capabilities of this device in both CPU
and GPU compared to the Tegra X1 offer better CPU performance and
much faster but more power consuming GPU usage.

o Intel Xeon Gold 6138 - Nvidia Tesla V100 server is used only to eval-
uate the potential extensibility of the presented methods that target
embedded systems to partially support and assist developers in de-
signing HPC (server/cloud/data center) applications. It is a high-end
Supermicro server that incorporates a 20-core Intel Xeon Gold 6138
CPU (40 threads), 128GB RAM and an Nvidia Tesla V100 GPU. Intel
Xeon Gold processor delivers improved performance, enhanced memory
capabilities, advanced security technologies optimized for data centers,
cloud computing, network and storage workloads. NVIDIA V100 Ten-
sor Core !4 is one of the most advanced data center GPUs that targets
AT, high performance computing (HPC), data science and graphics ap-
plications. It is based on NVIDIA Volta architecture and has a 32GB
memory size.

2https://docs.nvidia.com/jetson/14t/ Clock Frequency and Power Management
3https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
Yhttps://www.nvidia.com/en-us/data-center/v100/

33

Maxwell 256 core GPU

Encoder / /O

Decoder 4x ARM
Cortex -

Memory A57

controller

Figure 5: High-level schematic diagram of Tegra X1

3.4.3 Container orchestration - Kubernetes

Kubernetes'® is an open-source platform for orchestrating containerized
(e.g. Docker'® containers) services on Cloud clusters. It has became the
most popular solution for facilitating the configuration and automation of
managing very large number of workloads (even in huge clusters) and it is
supported by a large ecosystem.

Kubernetes introduces the pod concept, a group of one or more containers
with shared storage and network. A Container Management Platform (CMP)
offers the capabilities for building and managing a Kubernetes infrastructure,
making a distributed and scalable system that contains (micro)services, sup-
porting resilience and elasticity. In the Kubernetes environment, a cluster
includes of a set of worker machines, namely Nodes, that run the container-
ized services. The components of the application workload are called Pods
and are hosted by the Nodes. Nodes and Pods are controlled by the Con-
trol Plane. Kubernetes also offers fault-tolerance and high availability, by
keeping replicas of pods and running the control plane on multiple machines.

While Kubernetes (or k8s) can be used for large configurations (up to
5000 nodes), it is not operable in Edge computing devices due to its’ large
computational requirements. For this type of applications, a lightweight
distribution of Kubernetes, namely the k3s was developed by Rancher Labs.

Kubernetes was originally designed by Google, but now is maintained by
the Cloud Native Computing Foundation. We will refer to Kubernetes in
Section 5.4.

Bhttps://kubernetes.io/
Yhttps: //www.docker.com/

o4

3.4.4 Building Simulation

For simulating the building dynamics and the data of the micro-grid sen-
sors, in the context of this thesis (Chapter 6), we use the well-known Energy-
Plus suite [130]. EnergyPlus is a building simulation program that is used to
study the energy consumption of building’s HVAC systems, lights and appli-
ances. It offers a complete solution that takes into account detailed models of
the components of the building’s infrastructure, as well as weather conditions
and occupants loads (through schedules). It uses advanced air flow models
to achieve high accuracy. EnergyPlus also offers interaction with the user
between timesteps in order to test real-time systems as they were operating
in the actual building.

For the communication and the update of the EnergyPlus schedules dur-
ing the experiment, there are external tools that make data exchanges be-
tween EnergyPlus and MATLAB scripts, such as the BCVTB (Building Con-
trols Virtual TestBed) [131].

3.4.4.1 Thermal Comfort The definition of thermal comfort as defined
in the ANSI/ASHRAE Standard [132] is: "The state of the brain that ex-
presses satisfaction with the thermal environment”. This concept is exten-
sively used in Chapter 6, where it is a design goal of the proposed system.
Retaining its value, within some satisfactory limits (according to the stan-
dards) is a goal of HVAC systems (heating, air conditioning, ventilation).
In addition to ANSI/ASHRAE, there are other standards such as EN 15251
and ISO 7730.

Thermal comfort is calculated based on factors that affect the uptake and
loss of heat by the human skin [133]. The most important factors are the
following;:

e Air temperature

e Mean Mean radiant temperature
e Air speed

e Relative humidity

e Metabolic rate (Tables with various activities along with approximated
values of metabolic rates are offered for helping the calculation [132] -
ISO 8996)

e Clothing insulation (It is calculated through detailed tables that include
clothes along with the insulation factors [134].)

95

e Psychological factors may also be involved

Predicted Mean Vote (PMV) is one of the most popular thermal com-
fort models and it is introduced by Fanger [1]. It is based on experiments
performed in a room by controlling the environment conditions. The people
who participated in the experiments had to rank their feel on a scale from
-3 (very cold) up to +3 (very hot). The Predicted Mean Vote (PMV) (as
calculated by Fanger’s equations) can range from -0.5 to 0.5 according to
ASHRAE standard [132] in order to have acceptable thermal conditions in a
building. Zero is the ideal value. Another way to express the same value is
by using the predicted Percentage of Dissatisfied (PPD), which is a number
that corresponds to how many people (out of 100) would be dissatisfied by
the thermal conditions in the room.

56

Chapter 4

4 Cross-device Energy Estimation

Modern low-energy IoT devices should be driven by energy-aware soft-
ware. The ever-increasing attention to IoT applications pose new challenges
to software developers as they now target devices where energy is a criti-
cal design constraint, with great social and economic impact. A promising
solution to support developers in this direction is provided by energy esti-
mation tools. The design of such tools, for bringing energy efficiency closer
to the software engineering perspective during all the phases of the Software
Development Life Cycle, is now an active research topic [6]. This Chap-
ter presents a methodology for designing cross-device energy consumption
estimation tools.

The introduced energy estimation tools rely on two types of analysis:
Dynamic or Static analysis of the source code in order to get the advantages
of both:

e Dynamic analysis (instrumentation) is extensively used by embedded
system developers. It usually leads to accurate results through detailed
profiling of the application’s execution and it is employed by the most of
existing approaches. However, this kind of solutions not only requires
applications to be executed but also adds a large time overhead. In
addition, manual actions are usually needed by the developers (e.g.
adding special comments or compiler annotations).

e Static analysis is more difficult to develop and thus it is not so widely
used. The accuracy is expected to be rather limited, however, as it
provides energy estimations by using the source code as the only input,
it alleviates the need for real hardware devices and it doesn’t require
the developer to have specific knowledge about how to measure energy
consumption. Therefore, we might claim that static analysis offers
a more user-friendly solution that can be part of a software analysis
toolbox. Such a solution introduces similar approaches to tools used

o7

in software engineering community that target other quality attributes
(e.g. maintainability).

4.1 Problem definition

It is considered very important to state and define the specific problem
that the methodology presented in the next paragraphs aims to solve: The
energy estimation tool runs on the programmer’s workstation (PC), as part
of the SDK tool used by the software developer. When the final application
or part of it is ready, the developer uses the energy estimation tool to get an
idea of the energy consumption that the application’s code will consume if
executed on a list of embedded devices (cross-device). This idea is presented
schematically in Figure 6.

Although measuring energy directly on the targeted device would give
the most accurate results, not all hardware alternatives are accessible to
developers and such a process may involve sophisticated equipment (e.g.
special sensors) or expertise. These extra efforts would not only increase
development time and cost, but may also not be feasible in very complex
applications that involve a large number of different devices.

4.2 Related work

A large variety of approaches for solving the aforementioned problem has
been introduced in the literature. Initial approaches towards performance
and /or energy predictions at instruction-level, include works based on simple
regression algorithms [48]. Work in [48] adopts a measurement-based method

How much energy
will my program
consume on this
device?

Estimated
Energy: 8.2J

Figure 6: Cross-device energy estimation tools as part of software develop-
ment

38

and achieves very accurate results. However, it targets only a specific micro-
controller and it is based on its specific Instruction Set. Furthermore, this
approach uses a very limited dataset (60 programs).

More recent approaches that achieve increased accuracy, employ machine
learning methods for predicting the performance and power consumption of
running the code on different devices (cross-device) [58] [59]. These methods
divide the application into phases and use dynamic instrumentation to re-
trieve the features that feed the introduced estimation models such as cache
misses, CPU cycles etc. The dynamic part of the method presented in the
context of this dissertation is inspired by these methods. We focus mainly
on loops (the usual most energy-intensive phases). In addition, in this study
we provide features-energy correlation results and we select a small subset of
the features provided, to make simpler models and reduce the profiling phase
time overhead. Also, we focus on designing a method for adding new tar-
geted platforms easily. However, the dynamic instrumentation used in this
type of approaches, not only requires application execution, but also adds a
large time overhead. Therefore, despite its very accurate estimations, it im-
poses a lot of problems for being a part of a Software Development Toolbox.
Furthermore, a lot of manual actions are needed by the developer (such as
adding annotations in the source code). These problems inspired us to also
investigate the alternative solution of using simple static analysis features.

Mira tool [77] leverages the capabilities of the ROSE compiler and es-
timates the numbed of floating-point operations per block, based on a user
input (i.e. the number of loop iterations) and an analytical hardware architec-
ture description file. Although Mira does not estimate energy consumption
directly, it is worth including it in the related studies as it gave us a lot of
ideas for designing the static component of the presented methodology. For
example, the analysis of the Abstract Syntax Tree and the special focus on
the loops combined with the requirement of some dynamic information by
the user (such as the number of loop iterations) are inspired by Mira.

Another type of estimation methods extend the Worst Case execution
Time tools (WCT) [72] [73] towards energy estimation. These methods aim
to estimate the applications worst case performance based on an iterative
approach without receiving any information about the input. These tools
are usually criticised because they are estremely slow, their accuracy is very
limited and they can support only specific architecture models. Some ap-
proaches that aim to provide improvements are also proposed [135].

Another type of tools that predict the throughput (or the number of cy-
cles), include Ithemal [71], LLVM-mca!” and Intel Architecture Code Anal-

1"https://llvm.org/docs/CommandGuide/llvin-mca.html

39

[Application: C/C++]

(Application
{ l initialization

A\ 4

2
1 Assembly Eeatures] -
= extraction
Parsing source

code
: g [Platform @) [Estimation Platform g
H dataset ; e model l [dataset] i
“‘ Dynamic Analysis \-- --------- RE SRk s s nnnnnnnnnnnnnnn é 't;t'l;:' K;);]-y-SIS ..:

*
N *

Estimated Energy Consumption o
for (...) {
insl; ‘7 0 3]’
ins2; ‘ :
} - - 0.5]
while (...) { ‘
insl; ‘» 0.2]

}

Figure 7: Overview of the studied energy estimation method

yser (IACA)'®. Tthemal tool is based on machine learning techniques, while
LLVM-mca and Intel TACA use architecture models. These tools are very
useful as they give as an output the estimated throughput of executing a
basic block of source code on a specific architecture. In the static part of
the methodology presented in this dissertation, the information retrieved by
these tools is also combined with additional features to construct an input
for the designed energy consumption estimation models.

4.3 Design approach

Figure 7 depicts the estimation tool that is ready to be used by the final
user. Static and dynamic analysis tools work in a similar way. The two key
components (included in the two boxes with the dashed line) are an Esti-
mation model that receives Platform dataset as input. More specifically, the
estimation model refers to the final model that estimates energy consump-
tion, while the platform dataset is a set of data retrieved from the targeted
platform for which we want to estimate the applications energy. The differ-
ence between the two approaches lies in the way they analyze applications

8https://software.intel.com/content /www /us/en/develop/articles /intel-architecture-
code-analyzer-download.html

60

Design Estimator Add new Platform
Generate synthetic | C

Compile on

L)
C‘z(}e] [Target Platform
Compile on host
Static | |[Dynamic Run and Measure

= :

Analyzing object file |@ Profiling energy

2 o H e . N4
{fmm Extract info ifmm Extract info Collect data
v — v v — v
o= Select Features o— Select Features

1 ! > Platform dataset £
1

ol

v
Retrain model g

v
Estimation model

Figure 8: Create platform dataset and estimation models

to obtain the features that feed the estimation models. To illustrate these
differences, Figure 8 shows the detailed procedure for creating the datasets
and the energy estimation models, detailing both the Design Estimator phase
and the addition of a new platform.

As shown on Figure 8, the idea of designing our practical and flexible
estimators is based on two phases: The first one is the back-end phase, called
the Design Estimator phase in the context of this dissertation, which contains
the central mechanism for designing energy estimators. The second (Add
new Platform) gives the process for adding new target hardware platforms
(devices) to be supported by the introduced tool, contributing to the desired
extensibility of the presented method.

4.4 Design Estimator

The first component is responsible for generating synthetic code: the
data-set used for training the estimation models. It is very important to
describe the way the dataset is structured, as it is crucial for supporting the
energy estimating methods.

The dataset used in the context of this work consists of random synthetic
C/C++ loops. The loops are generated by a set of python scripts and include
operations between random-sized vectors and matrices [136]. More specifi-
cally, the generator creates a random number of integer arrays and a random
number of floating-point arrays, where the sizes and the number of dimen-
sions are also random. The limits can be selected by the user. For example,
for the experiments performed in this work we selected a maximum num-

61

Table 1: Generated Loop example

for(i=0; i<18; i++){
for(j=0; j<250; j++){
for(k=0; k<167; k++){
AOL][j]k] = AL [j] [k* AL[]][] /A LT [][k]
} BO[][jI[k] = B1[iJ{jl-BLfi][j]/BL{][]*B1i[j]
}

I
9

}

ber of 10 arrays, with maximum size of 1000000 elements and a maximum
dimension of 4. Then, the generator creates a program that initialize the
arrays with random numbers and makes a for loop code segment where the
profiling and the energy measurements are performed. In this loop random
operations (additions, subtractions, multiplications or divisions) between ar-
ray elements are selected. A representative example of a generated loop is
given in Table 1.

In order to keep the most representative data-points, we employ an ad-
ditional k-means clustering pre-processing. By selecting one data-point from
each cluster, we avoid keeping very similar data-points which can cause model
over-fitting.

The next step performs the compilation of the random codes on the host
machine (the workstation that the estimation tool is running on). The syn-
thetic codes are compiled using the same optimization flags (O0): Due to the
inherent random characteristics of the loops, the loop bodies usually involve
calculations that are not affected by the loop iterations. As a result, choosing
other optimization flags would place the body’s functionality out of the loop
to avoid the meaningless overhead, fact that is not desired in our case.

4.4.1 Dynamic analysis approach

The dynamic approach analyzes applications through dynamic instru-
mentation (profiling). This step uses the popular Valgrind [57] and Pin [100]
tools and the profiling process runs on the host (developer’s workstation) to
generate the information to be used by the estimation models.

Cachegrind tool (from the Valgrind’s suite) simulates the cache memory
architecture. It gathers information about Instruction and Data cache reads,
writes and misses and it monitors branching behavior. Valgrind’s Massif tool
measures heap and stack memory usage (see Section 3).

Pin tools, as mentioned in Section 3, is a flexible tool that offers the ca-

62

pability of designing custom monitoring metrics through C++. It can be
considered as a just in time compiler that performs the manual defined cal-
culations each time the next assembly instruction is fetched. Our custom
designed measurements capture branching divergence information, the num-
ber of single-point and double-point operations and the types of arithmetic
operations (additions, subtractions, multiplications, divisions). Moreover, we
used Pin metrics designed by MICA' [101]. The provided metrics include
instruction-level parallelism, instruction types (categories include memory
reads, memory writes, control flow, arithmetic operations, etc.), instruction
and data memory footprint, memory reuse distances, conditional branching
predictability and memory stride (distances between subsequent memory ac-
cesses). Table 2 shows the full list of the gathered metrics.

The information provided by the Profiling step is analyzed in the next
components in order to extract useful information for feeding the energy
estimation models. These steps are considered very important for identifying
relation between the metrics and energy. For this purpose, the component
uses correlation and cross-validation techniques to produce the final features.
These features are forwarded to the next component, which is responsible for
comparing and selecting the most accurate models. The relevant analysis is
presented in detail in Section 4.7.

4.4.2 Static analysis approach

The alternative static analysis approach comes as a mitigation of the con-
straints of dynamic analysis. Dynamic analysis, as already mentioned, adds
a large time overhead and requires the execution of the programs under anal-
ysis. The static analysis mechanism aims to make the estimation framework
more user-friendly and easier to use.

The Design Estimator (shown in Figure 8 green boxes) first analyzes the
object file created by the compiler and identifies blocks of code. Due to
the fact that only the source code is analysed (without dynamic informa-
tion), static analysis focuses on code blocks: Blocks of code executed as they
are (e.g. loop bodies, function bodies, etc.) and do not contain iterations,
branches or calls.

The code block identification is based on the analysis of the Abstract
Syntax tree (AST) produced by the compiler front end (in this work, CLANG
was used) and splits the given application source code into blocks. The object
file (generated by the compiler) is analysed for extracting information to be
used as input to the estimation model. It is worth mentioning that, especially

9https://github.com/boegel/MICA

63

Table 2: List of examined dynamic analysis features

Dynamic Analysis Feature

Instructions

Instruction reads

Instruction cache Level 1 miss rate

Instruction cache Last Level miss rate

Data reads

Data cache Level 1 miss rate

D cache Last Level miss rates

Data writes

Data cache Level 1 write misses

Data cache Last Level write misses

Conditional Branches

Branch prediction misses

Indirect Branches executed

Indirect Branches misspredicted

Stack bytes used

Heap bytes allocated as ”padding”

Heap bytes used

Execution time

Instruction Level Parallelism rate

Parallel instructions for different instruction window sizes
Branch predictability rate

Register traffic

Average number of register operands

Average degree of register use

Local memory stride

Global memory stride

Total memory stride

Total memory accesses with stride 0 (local memory)
Total memory accesses with stride 0 (global memory)
Control flow instructions

Arithmetic operations

Integer operations

Floating-point operations

Shift operations

Single precision Floating-point operations

Double precision Floating-point operations
Memory footprint (blocks and pages) different sizes
Memory reuse distances (count for different distance sizes)
Division operations

Control operations

Total memory operations

Branch divergence rate

Branch divergences (count in branch window sizes)

64

Table 3: List of examined static analysis features

Static Analysis Feature

Estimated throughput (by LLVM-mca)

Number of instructions

Number of LOAD instructions

Number of STORE instructions

Number of OP (operations) instructions

Number of class 1 instructions (add, sub, shift, mul)
Number of class 2 instructions (conv, arrays, div)
OP, LOAD and STORE instructions order

regarding the loops, dynamic information (e.g. the number of iterations) is
also considered necessary. The presented framework supports gathering this
information as an input from the user in order to combine the individual code
blocks estimations in a proper way that corresponds to the actual execution
of the total application.

As we aim to provide a cross-device and cross-architecture solution, the
presented solution uses general features that model and characterize the ap-
plication’s behavior and computational requirements that directly affect the
performance and energy consumption. The selected features are based on
the application’s assembly code as well as the output of the LLVM-mca?’
tool analysis.

Assembly instructions are categorized, building a small number of gen-
eralized features. Instructions belonging to the same category have simi-
lar execution time. This choice supports the applicability of the estimation
method to different architectures and instruction sets. The selected features
are presented in Table 3.

Section 4.7 describes in detail the methodology followed for selecting these
features, as well as their importance.

Not only the kind but also the order of the assembly instructions has
a large impact on the performance and energy. In order to model the in-
structions order and build simple and generic features capable of being used
to estimate the performance and energy for various platforms and architec-
tures, we adopted a sliding window approach. More precisely, a window runs
through the assembly instructions of the block under analysis and each com-
bination of instructions types corresponds to a new feature, as it is depicted
schematically in the example presented in Figure 9 [137]. Beyond the type
of instructions, further information, such as the registers being used and the
location of the accessed data affects the consumption. However, we keep the

2Ohttps://1lvm.org/docs/CommandGuide/1lvm-mca.html

65

{ LOAD/OP/OP+1 § : OP/OP/STORE+1 } } OP/STORE/OP+1 }{ STORE/OP/STORE+1
Sessssssssssnnnnas ‘ reerr ---------------.--4 ‘ -

LOAD

Figure 9: The sliding window method for modeling the assembly instructions
order

features simple and relatively few to support adding new devices and retrain-
ing models easily, resulting to a generic solution that offers flexibility perhaps
with a small effect on the quality of the results. The basic instruction cate-
gories are 3 (LOAD, STORE and OP), as the rest of them are subcategories
of the OP instructions. Our final design choice is a 3-instructions-size sliding
window leading up to 3% = 27 new features.

Similarly to the aforementioned dynamic analysis based procedure, the
selected features are forwarded to the next component for comparing and
selecting the best models that estimate energy. The analysis of the features
importance is presented in detail in Section 4.7.

4.5 Add new platform

One of the main goals of the designed energy consumption estimators is
to be extensible: New devices (hardware platforms) can be added by the user
easily, following three steps:

e Run the synthetic codes on the new device in combination with a call
to the energy metering script. The user adds commands to get energy
information from external monitors, specific paths in the device tree
or, if no sensors are available, user-defined metrics (e.g. power-delay
product).

e The energy measurements received from the previous step are processed
and form an extra dataset file (csv).

e The estimation model is retrained using the new data as energy values
(v values), maintaining the same feature values (x values) retrieved
from the already analysed applications of the dataset (statically or
dynamically).

66

A presentation of the extension to support an additional platform based
on these steps is provided in Section 4.8.

4.6 Energy Estimation model

The heart of energy estimation is the model, while nothing is possible
without the right features. Before proceeding to the very important analysis
of our feature selection method and the feature-significance study, we must
refer to the models used for the energy estimation mechanism described in
this thesis.

The procedure is rather straightforward: We compare the accuracy of
different models expressed as the Mean Absolute or Square Error between the
actual energy value corresponding to a subset of the synthetic code blocks of
the data set running on the targeted device and the predicted values produced
by each alternative model. The device we chose for the construction of the
models is the Nvidia Tegra TX1 platform, which incorporates an integrated
ARM-Cortex A5T7 processor as as well as a built-in energy sensor (INA 3221)
(see Section 3).

4.6.1 Dynamic analysis

The features gathered by dynamic instrumentation analysis, described in
Section 4.4.1 are more than 100 and related to CPU and memory behavior, as
well as operations types, branches etc. The full list of the examined features
is presented in Table 2 (please note that some lines of Table 2 include multiple
features).

As mentioned before, all the tests are based on our generated dataset,
splitted into training and test sets, for performing cross-validation. In the
next step, we gave the complete list of features, which were collected by
analyzing the synthetic data set, as an input to the estimation models. Figure
10 presents the results of the top six models. We might observe that the Lasso
model is far superior to the competing models. However, this is due to its
inherent feature selection capabilities, which gives a comparative advantage
when we have a very large number of features, where many are proportional
and express similar features. More specifically, the Mean Absolute Error
appears to be 85 times smaller compared to using the Linear regressor and
2.2 times compared to the results of using the Random Forest regressor. It
is worth mentioning that the error refers to the execution of the entire loop
(including the total number of iterations), as the dynamic analysis process
aims to estimate the total execution energy.

67

0.1

0.01

0.001

Mean Prediction Absolute Error (J)

Figure 10: Alternative dynamic analysis based energy estimation models
comparison

4.6.2 Static analysis

Similarly to the case of dynamic analysis, Figure 11 shows the accuracy of
the most suitable models for static analysis. For each model, the Mean Abso-
lute Error between the actual values (that correspond to the basic blocks) and
the predicted values is presented. Based on these results, we can conclude
that the Orthogonal Matching Pursuit model makes better predictions. It is
worth noting that the error refers to the execution of just one loop iteration,
as the core static analysis process aims to estimate the basic block execu-
tion energy, without the need of dynamic information such as the number of
iterations.

As mentioned in Section 4.4, a k-means clustering pre-processing process
is used in order to avoid potential over-fitting problems due to to the great
similarities between data points in the synthetic (generated) data set. As a
result, the number of selected clusters, corresponding to the final number of
data points in the data set, is also a design option to explore in this analysis.

In this direction, Figure 12 shows the mean absolute prediction error, for
estimating the energy of a synthetic loop iteration belonging to the testset,
using the above methods. According to these results, we might conclude
that selecting 200 clusters, that correspond to the most representative 200
generated blocks of code, reduces the final error.

68

1.40E-07

%
g 8.00E-08 %
- g oo .
1 aomo
: g

Figure 11: Alternative static analysis based energy estimation models com-
parison

1.44E-07
1.34E-07
1.24E-07
__ 1.14E-07
= 1.04E-07
S 9.40E-08
K 8.40E-08
7.40E-08
6.40E-08
54008 & A WA ¥4 BE kE WE | | U
100 200 300 400 500 600 700 800 900 1000
Number of Clusters

Mean Prediction Absolute

A

W

Figure 12: Impact of number of k-means dataset pre-process

4.7 Feature analysis: Selection and Correlation study

A key concept of the work presented in this Chapter is to study the corre-
lation between alternative features (collected in the developer’s workstation
- host machine) and the energy consumption (measured on the targeted de-
vice).

4.7.1 Dynamic analysis features

For this study, we employed widely-used correlation methods. The list of
the examined features is presented in Table 2. A first analysis is based on
the weights calculated by the Lasso Regressor (see Section 4.6.1). The inher-
ent feature selection mechanism of the Lasso Regressor relies on shrinking

69

Table 4: Most important dynamic features

Feature Lasso importance | Feature Spearman Correlation
Instruction level parallelism 2.481 # Instruction Reads 0.979
Data writes 0.688 # Instructions 0.979
Memory blocks/pages 0.438 # Data reads 0.978
Heap memory size 0.379 # Data LL misses 0.977
Arithmetic operations 0.324 # Data writes 0.977
Memory stride 0.240 # Data L1 misses 0.975
Conditional branches 0.187 Data L1 miss rate 0.975
Branch prediction misses 0.185 Instruction types 0.974
Data LL miss rate 0.119 Instruction level parallelism 0.974
Stack usage 0.099 Memory stride 0.974
Data L1 miss rate 0.053 Memory reuse distances 0.974
Memory reads 0.014 Register traffic 0.974

the weights of non-used features to zero, while assigning a non-zero weight
value to the rest of the features. Larger weights are given to the most impor-
tant features. An alternative method is the Spearman correlation analysis.
Spearman correlation evaluates the monotonic relationship between two con-
tinuous variables. More specifically, a coefficient is assigned to each feature,
which varies from -1 to +1. The correlations of -1 or +1 indicate an ex-
act monotonic relationship. Positive correlations mean that as the feature
value increases, so does the energy consumption, while negative correlations
mean that as the value of the feature increases, the energy decreases. Zero
values imply no correlation. The most important characteristics according
to this analysis are presented in Table 4 alongside with the values of their
coefficients [136].

According to the correlation analysis we came to the expected following
conclusions:

e [nstruction Level Parallelism indicates how many instructions can be
processed in parallel affecting the performance and respectively the
energy consumption.

e Each memory access (especially writes) imposes a cost in terms of
energy consumption. The amount of cost is affected by various pa-
rameters, such as the layer of the memory hierarchy in which data are
accessed. When a cache miss occurs, the CPU fetches requested data
from the main memory. The cache miss rate describes how effectively
the application uses cache memories. Apparently, cache misses impose
energy consumption overhead. The memory reuse distances (stride)
heavily affect the potential cache performance.

e Modern CPUs use branch prediction mechanisms to guess the branch
that will be selected and fetch the corresponding instructions in the

70

CPU pipeline. When branch prediction fails, the CPU pipeline is
flushed, which has a negative impact in application’s energy consump-
tion.

e Arithmetic operations are managed by the ALU and often need a lot
of energy, especially in case of division. As a result, this feature can be
used as an indicator of the energy that a piece of code consumes.

One might claim that the conclusions seem rather obvious. However, the
total metrics we collected from the profiling tools gave us a list of more than
100 different metrics possibly related to energy consumption, as mentioned
in Section 4.6.1. According to the correlation results, instruction miss rate,
some types of operations, branch divergence rates, etc. are not included in
the most important features. For example, shift operations seem to have a
similar overhead as addition operations. Similarly, multiplications, although
they have a higher overhead as they involve multiple additions, seem to
affect the energy less than the metrics presented in Table 4 and are included
coupled with the rest of arithmetic operations in a single feature metric.
The selection of fewer metrics serves our purpose of building a method for
designing simple estimators, as it reduces the time overhead costs of the
profiling phase (making the integration in SDK tools easier) and produces
an hierarchical analysis of the alternative features.

4.7.2 Static analysis features

The static analysis features are presented in Section 4.6.2, Table 3. In
this section, we will analyse the selection and the importance of each of the
aforementioned features.

As mentioned in Section 4.6.2 the execution time of instructions also
inspired our choices to include them or not in the feature list and to group
them as similar features. Figure 13 shows the average execution time of each
assembly instruction, on Nvidia Jetson TX1 (ARM-Cortex A-57). Exactly
the same behavior were observed in other devices too (such as Raspberry Pi
4 - ARM-Cortex A-72).

Load and Store operations highly affect the program performance and
energy consumption because they require access to the system’s memory. The
average execution time of these operations as measured on the ARM Cortex-
A57-based device (Nvidia Tegra TX1) is from 2.2 x 1077 up to 4.4 x 107" ms
for Store and from 1.2 x 10~7 up to 3.2 x 10~7 ms for Load operations. The
observed time variations depend on the type and the size of data, as well as
the cache memory behavior (also analysed in the beginning of this Section).

71

0.0000016 INS Class 2
~ 0.0000014
£ 0.0000012
£ 0.000001
= 0.0000008
0.0000006
0.0000004 INS Class 1

0.0000002] T

o U

10

X

DMIIN

Execut
N\

%
%
/
|
%
%
%
.
%
%
|
|
%
%
.

7
lm oo 0

store load add sub mul shift div conv

OP Instructions

Figure 13: Average execution time of each instruction category feature

The operation type instructions (OP) are categorized into two more cate-
gories. The first one contains the add, sub, shift, and mul instructions. These
instructions are the majority of the arithmetic operations performed in the
applications included in our dataset and analyzed in the context of this dis-
sertation. Shift and addition operations seem to have similar time overhead.
Also, mul operations seem to have similar or sometimes lager overhead, fact
that makes perfect sense considering that they include multiple additions.
For example, add, sub, and shift operation’s time does not exceed 2.2 x 10~7
ms, while multiplications need up to 2.4 x 10~7 ms to be executed. However,
this additional overhead is not considered significantly large leading us to
include them also in the same category. One of the most usual operations
are between arrays and matrices. Arrays processing is very important for the
overall performance and energy consumption of the application and is accom-
panied by memory functions. When an array element if accessed for the first
time, a cache miss occurs and a transaction of data from the main memory is
required. If the specific block is already cached, the energy consumption and
time overhead is relatively smaller. For the purpose of the presented static
analysis method, we assume that the cache memory is ideal and we do not
take into account any hardware information about the cache architecture, as
we rely on the source code only. The impact of array operations is measured
indirectly by including all the instructions that perform array operations into
a single category. Usually, especially in 64-bit systems, when an array opera-
tion is performed, the compiler also produces conversion instructions (conv)
(such as cltq, cdge, and movslq in x86 assembly) to convert the index value
from a 32 to 64 bits for the pointer to access the 64-bit memory addresses.
So, by monitoring this type of instructions, we indirectly monitor the array

72

operations. Division operations use pipeline and include multiple stages and
this increases time and energy. The array operations and the conversion ex-
ecution time in ARM-Cortex A-57 varies from 2 x 1077 ms up to 1.3 x 10~°
ms, while division operations sometimes need up to 1.6 x 1076 ms to be
executed.

Jump, comparison and mowve instructions are included only in the OP
instruction category. Jump and comparison operations are not present in
the basic blocks analyzed by the static analysis part of the tool (loop bodies
and function bodies) because they change the program flow. As stated in
Section 4.4.2, due to the fact that this component is based on static analysis
(similarly to the relevant literature, e.g., [71]), we focus only on basic blocks.
The estimation of the total application’s energy is calculated based on a
combination of these blocks. Therefore, these types of operations are just
treated as part of the operations category. Finally, move instructions are used
both in memory operations and in arithmetic operations (data exchanges
between registers) and thus, further classification is not needed.

The importance of the selected features is highlighted in Figure 14. More
precisely, we re-build the estimation model using different sets of features in
the training set and we evaluate the efficiency of the tool on estimating energy
consumption of a random testset on Nvidia Tegra TX1 (ARM-Cortex A57).
The reduction of the average absolute error indicates the importance of each
new feature added. In the first case, only the number of instructions is used
as a feature. Afterwards, we added the estimated throughput (by LLVM-
mca), as well as the OP feature, corresponding to arithmetic operations (the
rest of the instructions are memory loads and stores). Then, we made the
features more special (LOADS, STORES, OP classes), and then, the order
of the instructions is added in the way described in Section 4.4.2.

We should mention again here that the selected features must be quite
specific in order to increase estimation accuracy but also quite general to
support a wide range of devices and architectures, even different instruction
sets.

4.8 Evaluation of Energy Estimation
4.8.1 Experimental Setup

e Applications: Applications from Rodinia and Polybench suites, pre-
sented in Section 3 are used.

e Targeted hardware: The methods were first designed and tested on
the widely-used Nwidia Jetson TX1 embedded platform (see Section

73

3.10E-07

e
e |
e 8 7
dvr O 0 E

Figure 14: Impact of the selected features on Energy Estimation error

3). For testing the extensibility, another embedded device was used,
namely the Nvidia Jetson Xavier NX. Finally, to test if such a method
can be extended towards supporting also high-end computers/services,
Intel Xeon Gold 6138 server, also presented in Section 3, was used.

4.8.2 FEvaluation Results

Figure 15 presents the static analysis estimation results for running the
most important basic blocks of the Polybench and Rodinia benchmark appli-
cations. The code blocks that we selected to analyse correspond to the bodies
of the most computationally intensive loops of the applications. These loops
have a large impact on the total program’s performance and energy. The
applications are executed on ARM Cortex A57 and the energy is calculated
on the Nvidia Tegra TX1 platform through an integrated energy sensor. As
shown in this Figure, most of the points are very close to the ideal diagonal
line. According to these results we concluded that the estimation accuracy
can be considered acceptable (R? score = 0.92). The largest divergences are
observed for blocks that consume the lowest energy (less than 107% J) such
bige, syr2k and doitgen applications from the Polybench benchmark suite.

Similarly, Figure 16 presents the estimated (through dynamic analysis)
and the actual energy of the application loops for the default input data sizes
on Nvidia Tegra TX1. Actual energy ranges from less than 0.01 to 10 Joules.
Based on these results we might claim that the estimation can be considered
accurate. More specifically, the Mean Absolute Error (MAE) is 0.17 Joules,
while the estimations follow the real values very well, as the final R? score

74

0.000002 ’
0.0000018 #
0.0000016 pid
0.0000014 e

0.0000012 ”

0.000001 ,

stimated (J)
\\

E
=
=
S
S
S
S
S
[o2e]
\
N,

0.0000006 7 0@
0.0000004 7t
0.0000002 t

. &

0.000001
0.000002

Actual (J)

0.0000002
0.0000004
0.0000006
0.0000008
0.0000012
0.0000014
0.0000016
0.0000018

Figure 15: Actual vs Estimated energy of Rodinia/Polybench basic blocks
(Static analysis) - Test on ARM Cortex A57

exceeds 0.96.

After comparing the results presented in Figures 15 and 16, we can
conclude that the static analysis approach is (as expected) less accurate
(R? =~ 0.92), while it requires additional user input that is not always easy
to obtain (e.g. the number of iterations of each loop body) for making pre-
dictions for the entire execution of the loop. A more detailed comparison
is depicted in Figure 17, where the results for 6 representative applications
from the Polybench suite are presented. The average error is 0.14 Joules for
the proposed approach, while the static method has an average error of 0.24
Joules.

4.8.3 Extensibility evaluation

The results of estimating the Polybench/Rodinia applications energy vs
the actual values using the dynamic analysis approach for the case of using
Nvidia Xavier NX are presented in Figure 18. As shown in this Figure, for
the applications that consume less than 0.2 Joules of energy the predictions
were mostly overestimating the actual energy. Additionally, there are three
applications for which we have a relatively large error (more than 0.3 Joule).

75

o

\
S

o

Estimated (J)
A W
\
\
\
N

2 //)
&
0 ‘.‘

0 1 2 3 4 5 6 7 8 9
Actual (J)

Figure 16: Actual vs Estimated energy of Rodinia/Polybench loops (Dy-
namic analysis) - Test on ARM Cortex A57

= 12

g n

a

g 0.8

Z 0.6

o)

O 04

>

202

§ o =0 N

bicg covariance doitgen fdtd-2d syr2k syrk
BActual ODynamic analysis Estimation O Static analysis Estimation

Figure 17: Dynamic against static analysis approach - Representative Poly-
bench benchmarks

However, we might conclude that these miss-predictions do not affect the
overall quality of the presented methodology. The study of their character-
istics will give a future direction for improvements, while a refinement of the
model’s parameters is expected to lead to better results. In the context of
this work we focused on showing the results of using exactly the same model.

Finally, we extended the proposed energy estimator by adding the HPC
system that incorporates a high-end CPU, namely the Intel Xeon Gold 6138.

76

1.8 o o
1.6 24
1.4 ”’
1.2 o
1 »

0.8 7

Estimated (J)
\

0.6 s
0.4

Ud
,I
&°
U4
0.2 w
®.’
'l

0
0 02 04 06 08 1 12 14 16 138

Actual (J)

Figure 18: Actual vs Estimated energy of Rodinia/Polybench loops (Dy-
namic analysis) - Test on Xavier NX (ARM v8.2)

45 (<) ’
40 Q.

35 »

Estimated (J)
[N} [\S] W
[e] 9] ()
\\ ..
\
\
\
N\
N

—_
(9]
RS

5 10 15 20 25 30 35 40 45
Actual (J)

Figure 19: Actual vs Estimated energy of Rodinia/Polybench loops (Dy-
namic analysis) - Test on Intel Xeon Server

77

0.000005 ’
0.0000045 o .
0.000004 ° .~
0.0000035 ° s
0.000003 -~
0.0000025

0.000002 7 °

Estimated (J)

0.0000015 Va
0.000001 i
0.0000005

K.
.‘\
(<}

0 P4

0.0000005 @
0.000001
0.0000015
0.000002
0.0000025
0.000003
0.0000035
0.000004
0.0000045
0.000005

Actual (J)

Figure 20: Actual vs Estimated energy of Rodinia/Polybench loops (Static
analysis) - Test on Intel Xeon Server

Following the introduced procedure (see 4.5), we estimated the server CPU
and DRAM energy. The results for estimating the energy consumption using
the dynamic analysis method are presented in Figure 19, while the static
analysis based estimation for the most important basic blocks of the Rodinia
and Polybench benchmark suite are presented in Figure 20.

The loops consume up to 45 Joules on the server. Dynamic analysis offers
accurate results as it achieves an R? score of 0.9 and an average error of 2.4
Joules. According to the results presented in Figure 19, we might observe
that the model overestimates the energy for the most cases. However, this
observation can only be a promising direction towards improving the model
and a validity of its extensibility capabilities as no refinement of the model’s
parameters was performed.

For static analysis, the average error is high compared to the estimations
made for embedded systems. A server is much more complex and the en-
ergy is affected by many parameters and peripheral systems. The processor
itself incorporates 20 cores (40 threads) making the correlation of a simple
instruction block with energy consumption more complex. Finally, the en-
ergy measurements required for building the proposed model, as well as the
measurements for making the final evaluation, can be very noisy. However,

78

we might conclude that the results are not prohibitively inaccurate. We can
clearly see that the order of magnitude of energy consumption is approached
correctly: Polybench blocks consume about 5 times less energy compared to
the Rodinia ones and the prediction is also close to the actual values. Addi-
tionally, in the Rodinia benchmark suite the more energy expensive blocks
are also predicted to consume more energy than the others leading to accu-
rate results in terms of comparison (R? score = (.85).

According to these results we might conclude that the proposed method
can partially support importing CPU-based servers easily.

4.9 Conclusion

A complete methodology for designing practical analysis tools to be used
by developers for estimating energy consumption for running an application
on different embedded devices was presented. The introduced framework uses
random synthetic loops and regression methods. The approach offers both
static analysis and dynamic analysis based solutions, in order for the user to
exploit the advantages of both. The proposed solutions achieve similar effec-
tiveness compared to related state-of-the-art tools but focuses on building an
easy-to-use and extensible solution that can be part of SDK tools. Particular
emphasis was placed on studying the correlation between alternative features
and energy as well as the tool’s capabilities to add new targeted platforms
in an easy and convenient way.

79

Chapter 5

5 Energy Optimization

The present work introduces an energy optimization methodology that
consists of two basic parts. The first one is similar to the logic in Chapter
4 which presented our methodology for designing cross-device energy con-
sumption estimation tools applied at source code level. This component not
only estimates the consumption of individual code blocks but also monitors
indicators helping developers to understand the application behavior that
consumes more energy and identifies the most consuming parts of the code
(hot-spots), where developers should focus.

The second part suggests optimizations to reduce the energy of the ap-
plication under analysis, focusing on the identified energy hot-spots. The
current version of the introduced framework suggests various categories of
optimizations, namely the data-flow optimizations, the concurrency-related
optimizations, platform selection, function placement on Edge resources and
the acceleration optimizations. In the context of this thesis, platform se-
lection is simply based on the cross-device energy estimations presented in
Chapter 4, while data-flow and concurrency related optimizations are par-
tially supported by making suggestions based on the energy indicators values
(see Section 5.2). Our main research focus is on estimating the potential en-
ergy gains by acceleration (Section 5.3), while we also investigate the use
of our estimation models for supporting an energy-aware placement on the
Edge (Section 5.4). Also, a study of the impact of the proposed source-code
optimizations on design-time quality (software development) is presented in
Section 5.5.

The flow of the proposed methodology is depicted in Figure 21 and is
presented in detail in the rest of this Chapter. Our optimization strategy
follows three key criteria:

e Optimizations can be applied at the application source code level.

e Optimizations should be applicable in a wide range of embedded de-
vices. In other words, we focus on optimizations applied to families of

80

[Application: C/C++]

‘.----------.uu--------.uu----------uu--------.--u-----: ;--uu--------uu---------.uu----------uu-----.,.
03

- Consumption fnalysis [Application) p
: L initialization]
: : y N\ 4 (Chapter 4)\ :
R \ AT, o [Profiling application] v
i New Analysis | Parsing source :
ii component code [2K Y E
ER SO Proposed (ORI Eld [Dynamic] Static]]
: : inehesiios LERCLE lndcators Analysis I Analysis :
"“ nergy Indicators & Hotspots Monitoy \ Cross-device Estimation s
o . Optimization Suggestions (.) .".‘
3 i Select OptiMIzation [F—p———— e e . 3
I w—! Lt) IS
RIS AN :
= | Data flow- Concurrency | Energy gains by offloading on accelerator Select Placement | New
related - related Static (Word platform on the Edge J; Optimization :i
E instrumentation embeddm s : Suggestion :x
H Tool H
([Estimationmodel]) | | e
: N imization)+ R B
5 > Propose optimization | :

, ;
' :

[Evaluate optimization]

Figure 21: Overview of the energy optimization framework

embedded architectures, rather than to a specific embedded platform.

e Optimizations will have an impact on other software qualities such as
maintainability. This will be discussed in Section 5.5.

For the design of the introduced solution, we focused on meeting two
goals:

e Usability: The introduced solution offers an analysis that is closer to
the software developers point of view. The consumption analysis and
the optimization suggestions are identified and presented at the source
code level. Although measuring energy (through sensors) on the ac-
tual hardware leads to more accurate estimations, targeted hardware
alternatives are not always accessible. Also, measurement may require
special equipment and knowledge.

e Extensibility: The proposed tools are designed based on specific com-
puting architectures and offer energy optimizations for embedded sys-
tems. Our design, however, aims to be generic enough and able to
be extended for other types of architectures by following the provided
step-by-step guidelines. These extensibility capabilities are presented
and demonstrated in evaluation section.

81

Similarly to Chapter 4, the introduced optimization tools rely on both
dynamic and static analysis of the application in order to exploit the advan-
tages of both.

5.1 Energy Indicators and Hotspots Monitoring

There exist various metrics that can be considered valuable indicators
that monitor the energy consuming application behaviour. Their values rep-
resent particular aspects of an application executed on specific hardware
architecture. Some of them can be used to show how effectively an appli-
cation exploits features of the underlying architecture, such as the memory
hierarchy. Their optimization potentially reduces the energy consumption.

In this Section we focus on indicators that can be monitored using tools
that are mature, actively supported by developers and widely used by the
embedded systems community. The selection of energy indicators is based
on the following three criteria:

e The indicators should be directly related to the source code of the
application. Indicators that are mainly controlled by OS or hardware
architecture-level techniques are not selected. For instance, TLB misses
are mainly controlled by the memory management unit and the CPU
clock frequency is very important but it is controlled by the dynamic
frequency scaling.

e There should exist source-to-source transformations that may improve
their values. More specifically, the values of the indicators are expected
to indicate corresponding optimizations.

e Some of the selected indicators should indicate the efficiency of assign-
ing the execution of a part of CPU source code on an accelerator. We
selected indicators from the literature that can be used to estimate
the energy gains of offloading a piece of application source code on an
accelerator (see Section 5.3).

The selected energy indicators that are integrated in the current version of
the framework are summarized below. The introduced indicators will be used
to indicate source-to-source optimizations that improve energy efficiency. For
each indicator, we describe its impact on energy consumption as well as the
tools that can be used to monitor its value.

e CPU cycles: A CPU cycle generally refers to a clock cycle (a single tick
of the internal clock of the CPU). Some instructions on a CPU take

82

multiple cycles to be executed. In most cases, we consider as an op-
timization goal, the ability to execute multiple instructions in a single
cycle (pipelining, parallelization). Therefore, the number of instruc-
tions executed in a given cycle may vary across different application
implementations. The number of CPU cycles is directly related with
the performance as well as with the energy that the application con-
sumes. This indicator is generic and applicable in every CPU-based
application. A large number of optimizations can reduce the CPU cy-
cles (loop transformations for better memory utilization, acceleration,
etc.) [138].

e Ratio of branch misses: Modern CPUs use branch prediction mecha-
nisms that attempt to guess the branch that will be selected and fetch
the assumed instructions in the CPU pipeline. However, when CPU
branch prediction fails, a branch miss occurs and the CPU pipeline is
flushed, which has a negative impact in application’s energy consump-
tion. Removing of recursion may reduce branch misses.

o Number of memory accesses: Each memory access imposes a cost in
terms of energy consumption and execution time. The amount of cost
is affected by various parameters, such as the layer of the memory hier-
archy in which the access occurs. Reducing memory accesses improves
the execution time and the energy consumption. There is a lot of work
in the literature towards this direction by applying transformations at
the source-code level (e.g. using data-flow optimizations) [139].

e Ratio of D-Cache and I-Cache misses: Cache utilization directly af-
fects energy consumption. A cache miss occurs when a CPU fetches
requested data from the main memory of the system, because they are
not available in cache. There is a lot of work in the literature that pro-
poses source-to-source optimizations to reduce the ratio of cache misses
(e.g. loop optimizations that improve locality).

e Data races: A data race occurs when two or more threads access the
same memory address simultaneously, with at least one thread altering
the data stored in this memory location. The absence of mechanisms
that coordinate the memory accesses by multiple threads to shared
data (mutexes, atomic operations, etc.) generate data races. Possible
effects of data races are the erroneous results leading to wasted energy,
since restarting the execution may be required.

As the proposed framework aims to be continuously extending and evolv-
ing more indicators may be added in the future for serving the indication

83

of more potential source-to-source optimizations. The next indicators that
we suggest to add, which are able to be reported using the already inte-
grated tools, are the the (Ratio of) CPU stalls, the number of page faults
and the number of heap memory blocks that are lost (or memory leaks).
CPU stalls are often a result of a cache miss, when a CPU waits for a cache
line to be fetched from another layer of the memory hierarchy. Mitigation
techniques include out of order execution and hyper-threading. Apparently,
CPU stalls contribute to increase application execution time and energy con-
sumption [140]. A page fault is an exception raised by the system when a
program tries to access a non-mapped memory address. The Memory Man-
agement Unit detects this fault and raises an exception, which is handled by
the operating system or the page fault handler. Page faults have negative
impact on energy consumption and execution time [141]. C and C++ de-
velopers are responsible for allocating and deallocating heap memory within
the application source code. Failing to deallocate a block of memory that is
no longer used is a common bug called memory leak. Memory leaks are a
cause of wasted heap memory. Ineffective management of the heap memory
may cause its exhaustion, yielding application crashes and wasted energy
consumption. In programming languages that utilize a Garbage Collector,
such as Java, memory leaks are not as frequent as in C/C++, in which de-
velopers are responsible to deallocate heap memory. However, there are still
cases that unused memory cannot be deallocated by the Garbage Collector,
causing memory leaks: Objects and data that are no longer used but they
are still referenced [142]. For example, data that are defined as static or
originate from external data streams and connections may cause memory
leaks, increasing the risk of running out of memory, leading to wasted energy
consumption.

With regard to multi-threading applications, Lock contention monitors
the time that a thread waits for a lock that is currently held by another
thread. As a result, this metric indicates thread starvation, where CPU
cores are active (consuming energy) without performing useful work for the
application progress. This indicator can help the developer use better locking
mechanisms. Lock order violation monitors situations where using multiple
layers of locks is required. Lock order violation is a common bug that may
lead to deadlocks, causing wasted energy consumption [143].

Our framework starts with the initialization of the application. This stage
includes retrieving information about the targeted source files by the user
and building/running the application. Afterwards, the tool proceeds to the
application profiling, supported by dynamic instrumentation tools, such as
Valgrind and Linux Perf and returns the energy indicators (after processing
the generated results).

84

The definition of an energy hotspot (in the context of this thesis) is as
follows: A block of CPU source code, in which significant number of CPU
cycles are spent, compared to the application’s total. A hotspot is a candidate
place for applying energy optimizations.

By generating the Abstract Syntax tree (AST) of the application using
CLANG, for and while blocks are identified. Then, the application is dynam-
ically analysed to monitor CPU cycles, by leveraging a widely used dynamic
binary instrumentation profiler: Callgrind by the Valgrind suite. By com-
bining the information generated by the dynamic analysis (i.e. Callgrind
output) and the statements identified by the AST processing, the number of
CPU cycles spent in each statement is calculated. The code blocks in which
the number of CPU cycles spent is above a threshold (e.g. 3% of the total
applications cycles) are considered as hotspots. For each hot-spot, the corre-
sponding values of energy indicators such as CPU cycles and cache misses are
provided. All this information is forwarded to the next component, which is
responsible for suggesting suitable optimizations.

5.2 Data flow-related optimizations

The first category of energy optimization techniques, at application level,
aims to improve the memory hierarchy utilization. Since the energy con-
sumed by memory operations depends on whether the access hits or misses
in the cache memory, we can claim that the cache behaviour is very important
for optimizing energy.

Typical examples of these techniques are the loop transformations that
aim to improve the cache performance, by improving data locality and to
reduce the overhead of the loops, that are often the most computationally
intensive parts of an application. Due to the fact that each memory access
has a cost in terms of energy and performance, this kind of transformations
aims also to improve the memory utilization and to reduce memory allocation
and memory accesses.

Data-flow optimizations are proposed in the case that the hotspot under
analysis includes nested loops that have a number of cache misses that is be-
yond a threshold, which can be set by developers (default: 3%). Cache misses
are directly related to energy consumption, as mentioned in Section 4.4.1.
The Spearman correlation between Data cache misses and Energy consump-
tion is realy strong (above 0.97). Developers can either use tools that imple-
ment the proposed optimizations automatically (e.g. Pluto, Orio [144] [145])
or perform them manually. In the context of the present work, we expensively
used these two tools with very promising results in terms of the reduction of
programming effort (see also Section 5.5). These tools alleviate the need of

85

Table 5: Indicative loop transformations for improving energy /performance

Before

After

Loop Merge:

for (i=0; i<N; i++) {
//do something...
}

for (i=0; i<N; i++) {
//do something else...
}

for (i=0; i<N; i++) {
//do something...
//do something else..

}

Loop Interchange:

for (j=0; j<N; j++) {
for (i=0; i<N; i++) {
sum += ali|[j];
}
}

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
sum += al[i][j];
}
}

Loop Tiling:

for (i=0; i<MAX; i++) {
for (j OJ<MAXJ++>{
Afi][i] = ALJG] + B[]
}
}

for (i=0; i<MAX; i+=BLOCKSIZE) {
for (j=0; j<MAX; j+=BLOCKSIZE) {
for (ii=i; ii<i+BLOCKSIZE; ii++) {
for (jj=j: jj<j+BLOCKSIZE; jj++) {
Alii][ij] = Afilfi] + Bl fijl;

Loop Unrolling:

for (i=0; i<100; i++) {
Ali] = BIiJ;

}
}
}
}
for (i=0; i<100; i+=4) {
Ali] = BIiJ;
Ali+1] = B[i+1];
Ali+2] = B[i+2];
Afi+3] = B[i+3];

manual code refactorings and help to easily investigate if loop transforma-
tion has a positive impact on the performance and energy consumption. An
automatic estimation of the impact of Loop Transformations on energy is a
future work (more details are provided in Section 7.2).

Typical loop transformation examples are illustrated in Table 5:

86

e Loop merge (or Loop fusion) is the technique that combines two loop
bodies into one. This method is applicable when two loops iterate over
the same range and do not reference each other’s data.

e Loop interchange, is a typical data reuse transformation that, when
properly applied, reduces execution time and energy consumption by
improving memory hierarchy utilization.

e Loop tiling method, breaks the iteration space of a loop into smaller
blocks, in order to ensure that more data used in the loop will stay
in the cache memory until they are reused. As a result, this method
aims to increase the loop depth to reduce D-cache misses. Breaking
the loop space leads to partitioning of large arrays into smaller blocks,
aiming to fit the accessed array elements into the cache size, exploiting
spatial and temporal locality of data accesses. The partition block size
is defined as a parameter by the developer with a goal to maximize the
reuse of data at a specific level of the memory hierarchy [146].

e Loop unrolling aims to increase the program’s speed by eliminating
loop control instruction and loop test instructions, as well as by ex-
posing and enabling parallelization (if the statements in the loop are
independent of each other). The loop body is repeated a number of
times and consequently the loop iteration space is reduced. This type
of transformation is safe to apply as the order in which the operations
are executed remains unchanged, however if the number of iterations
is not known there is the need to include code to check if the number
of iterations is greater or equal than the unrolling factor [146].

5.3 Energy Gains by Acceleration

A massive improvement of the performance and reduction of energy con-
sumption is achieved by using accelerators [147]. During the recent years,
a plethora of heterogeneous computing architectures are introduced provid-
ing increased performance at limited energy consumption. A complementary
infrastructure, which is part of modern System-on-Chip (SoC) embedded de-
vices installs a GPU or an FPGA on the same chip (along with the CPU).
This trend provides even increased performance. However, using this type of
device, i.e. offloading computationally intensive parts of the application to
the acceleration unit, can not be considered as trivial due to the large num-
ber of source code refactorings that have to be performed manually. While
modern libraries and tool-flows aim to make this process as easy as possible,
different programming tools or languages must be used properly. As a result,

87

the software developer still needs to know how, when and where to use these
enhanced programming features.

In this direction, this subsection presents a flow for predicting the poten-
tial energy gains of offloading a hotspot to a GPU accelerator. The overview
of the introduced flow is depicted in Figure 22. The hotspots identified us-
ing the aforementioned methodology (see Section 5.1) are further analyzed
for monitoring the values of features (acceleration specific indicators), which
will be the inputs of the prediction models for estimating energy consump-
tion gains. Similarly to the work presented in Chapter 4, the techniques
are first built and tested on NVidia Jetson Tegra X1 that incorporates a
MAXWELL embedded GPU. Energy consumption was measured using the
integrated power monitor.

The presented tool-flow (similarly to the techniques presented in Section
4) combines static source code analysis and dynamic instrumentation tech-
niques to exploit the advantages of both approaches. While the developer
can use both techniques for the application under analysis, one suggestion for
combining static and dynamic methods in a single flow is the following: Ini-
tially, the hotspots are statically analyzed (Section 5.3.2) using text analytics
methods, that provide a coarse grained estimation of potential energy gains.
Throught this procedure, the hotspots are classified into one of the following
two categories: ”High-gains” or ”Moderate/no gains”. The hotspots that are
predicted to belong into the ”Moderate/no gains” category are further an-
alyzed using dynamic instrumentation methods for fine grained predictions,
as described in Section 5.3.3. In this way, the overhead of dynamic instru-
mentation can be avoided in cases in which high energy gains by acceleration
are predicted. Predicting the cases for which relatively high gains are ex-
pected using only static analysis gives a significant advantage as the time
required to make a prediction by using dynamic analysis can reach many
hours for some applications. Static analysis, on the other hand, generates
results almost instantly. More information about this process and the moti-
vation behind its implementation will be given in Section 5.3.5. But first of
all, we should analyze the process we followed for building the dataset that is
used for training the estimation models of both the approaches. Afterwards,
the details of each approach will be described in a detailed manner.

5.3.1 Building the dataset

A major challenge in designing estimation models, both in general and in
the case of the source code analysis on which this study focuses, is to create
a high quality dataset. This is also highlighted by several related studies [78,
79]. Especially in the case described in this section, the main difficulty relies

88

(Hotspots)

Static Analysis

| preprocessing |

| encoding |

*

Classification ege,
model '??;':'

High gains

oommcchoccccccccccccccccccccnas

Dynamic
Analysis

Dynamic
instrumentation

v

Classification ,°\:q:...

model oo

No gains Moderate gains

Regression model :

Predicting energy . °.£
gains quantity

P L L R L TR Y N

Y Y
Output | Output
|
Energy gains | Ener .
higher thana ! gy gains
threshold : 1x or lower
|

Figure 22: Estimation of energy gains by acceleration

on the need to include CPU (source code) applications, together with the
corresponding GPU kernels (i.e. the accelerated GPU-version of the specific
CPU code). Apparently, we could find a relatively small number of available
benchmark suites that provide both CPU and the exactly corresponding
accelerated code. As a result, in the work presented in the context of this

89

Rodinia ~ Polybench
i

Get CPU
» Get features :
loops — GPU | [1/75]] S Features | Final
kernels sets " Target anetl?tl_:'s Dataset
: ce |l | WS L
Compile| device Pre-process @

Generate | __ L| Validate || i Dynamic |)
random CPU | [[</] v___| | analysis

loops/GPU
kernels sets

Figure 23: Building dataset for estimationg energy gains by acceleration

dissertation, we used a dataset that combines an equal number of synthetic
benchmarks and real-world applications. This choice aims to reduce the
danger of over-fitting that could be caused by the small dataset size that
could lead to biased results. Figure 23 shows the steps we followed to build
the dataset, which are detailed in the next paragraphs.

Regarding the synthetic part of the dataset, we used the same procedure
described in Section 4 for energy estimation. The major difference, as men-
tioned before, is that we also need to include the corresponding GPU code.
However, due to the fact that our Python scripts generate simple for loops
that perform random matrix and vector operations, adding also an extra
check that we don’t write the same matrices that are also read in the loop to
avoid data conflicts, the corresponding CUDA kernels can include the same
loop body. Finally, to keep only valid data points in the data set, we run
both CPU and GPU versions, and a test phase follows that performs cross-
checking to all the resulting data structure values. This validation method
checks that no errors were occurred due to data conflicts in the parallel exe-
cution because of the inherent random characteristics of the generated code.

The real-world application data-points of the dataset include kernels from
the already mentioned and extensively used in the literature and in the con-
text of this thesis, Polybench [127] and Rodinia benchmark suites [126].
These suites include a set of CPU applications, as well as the corresponding
GPU version of each application. Following a similar approach for dataset
building with other approaches [78], the size of the dataset is increased by
modifying the input of some kernels (i.e. the amount of data processed). So,
the final number of real-world data-points equals to 100. We should notice
here that since the dataset includes same kernels with different inputs or a
single application may include very similar kernels, we made sure that for all
the experiments that we performed in the context of this study, data-points

90

that belong to the same application will not be in training and test sets
consequently.

A further refinement to the synthetic part of the dataset is achieved
through eliminating very similar data-points that may cause overfitting. This
process is performed in the same way employed in Section 4, through a k-
means clustering pre-processing of the data-points. After applying the clus-
tering method we select one data-point from each cluster. The number of
generated and selected data-points is configured to be equal to the real-world
data-points (100), resulting in a final training dataset of 200 data points in
total. The method for gathering the utilised dataset, consisting of 50% of
synthetic benchmarks and 50% of real-world applications is publicly avail-
able?!,

A reasonable question one might ask here is how the quality of CUDA
code can affect results? Obviously, the quality of the CUDA code is ex-
pected to affect the quality of the dataset and, subsequently, the accuracy of
the predictions. Since the CUDA synthetic part is relatively simple, CUDA
quality concern us for the real-world part of the dataset. The utilized bench-
mark suites are widely used in many research works, both in the embedded
and HPC domains. So they are constantly maintained and improved. As a
result, we might claim that it makes sense to assume that the CUDA code
quality is relatively high, or at least close to the code quality created by
experienced developers. Although studying the impact of the code quality
on the accuracy of predictions is an interesting issue, it is beyond the scope
of this work.

5.3.2 Static analysis approach

As presented in Figure 22, the static analysis mechanism first receives the
C/C++ CPU source code that corresponds to the hotspot that is a candidate
to be offloaded to a GPU. This component classifies the received blocks of
source code into one of the two categories, with respect to the expected en-
ergy savings: "High gains” and "Moderate/No gains”. As mentioned above,
the goal of this analysis is to identify with a very small time overhead, the
hotspots that will benefit a lot by GPU acceleration ("High gains”). The
threshold between ”Moderate/No gains” and ”High gains” classes is selected
so that the accuracy of the static analysis based classification is maximized.
This is demonstrated in the evaluation section. The accuracy of the static
analysis significantly decreases when more that two output classes are de-
fined. As a result, discrimination between ”Moderate gains” and ”No gains”

2lhttps://git.microlab.ntua.gr/hmar/Decision_Support_for_GPU_
Accelerator_dataset

91

is not possible by using static analysis. As a result, for identifying hotspots
for which ”"No gains” are expected and to provide fine-grained predictions
for "Moderate gains”, dynamic analysis must be used.

From a technical point of view, the static analysis method is based on
text analytic approaches. It is inspired by existing work in the literature that
focuses on analysing source code but for different purposes [148]. Figure 24
presents the static analysis procedure. After pre-processing the source code
to remove information that is irrelevant to the code’s structure (e.g. com-
ments), the source code is encoded into sequences of integers. A vocabulary
is constructed including all the source code that can be derived from the
training dataset. A tokenization mechanism is then employed to convert
each character into a vocabulary item. Common language words such as if,
for, while etc are special vocabulary items. The encoded source code (in the
form of word embeddings) is then given as input to the classification model.
The utilized prediction model is a Convolutional Neural Network (CNN) for
sequence classification [149]. The input sequences have a maximum length
of 500. The CNN includes 250 hidden neurons and uses filter sizes of 12.
Related studies that leverage static analysis techniques for speed-up predic-
tion (e.g. [150]) use also dynamic data as input (such as the number of loop
iterations or the direction of branches). In the context of this study, we de-
cided to test the use of a more sophisticated approach that relies only on
source code without any dynamic information. This choice may reduce the
prediction accuracy, as the actual gains in absolute values are affected a lot
by such execution-context metrics. Considering, however, that the orders of
magnitude of the gains are not usually affected , we preferred to design a
coarse-grain classification based on static analysis, having the source code as
the only input of the prediction model. Of course, the enhancement of the
static analysis approach with the dynamic information obtained earlier by
dynamic instrumentation is a worth investigating direction to improve the
classification accuracy of the static analysis step. For example, during the
hotspot identification, the CPU cycles are calculated for each code block that
is a candidate for acceleration. However, we decided to use a purely static
analysis approach for coarse grained prediction and to provide as input only
the application source code. The reason is the fact that developers famil-
iar with the application under analysis are already aware of the hotspots,
therefore, they are expected to skip the entire hotspot identification step.

5.3.3 Dynamic instrumentation

The dynamic instrumentation based method for predicting the potential
energy savings by acceleration is described in this paragraph. The goals of

92

Energy

Source Do sequence _
code [. Encoding » CNN [— gans
processing
</> T class

—

Dataset for acceleration gains

Figure 24: Flow of prediction of energy savings by acceleration based on
static analysis

the dynamic analysis are the following:

e identifying the hotspots for which "No gains” are expected using a
classification model

e performing a fine grained analysis to the hotspots classified into the
"Moderate gains” using a regression model

In case we follow the suggested combination between the two technices,
then as shown in Figure 22, the dynamic analysis component of the method-
ology will receive as input the output of the static analysis component and
more specifically the hotspots for which ”Moderate/No gains” are predicted.

The CPU code blocks (provided by the hotspots identification), are ana-
lyzed using profiling tools presented in Section 3 and already used in Section
4.4.1 for CPU to CPU cross-platform energy estimation. These tools include
Intel Pin (custom designed metrics) and Valgrind and monitor the values
of accelerator-specific indicators that capture the extent by which the code
behaviour can exploit the architectural features of the GPU accelerator. The
selected indicators are a subset of the most widely used features defined in the
literature [78,151] for speed-up prediction, after studying their correlation to
energy consumption. The final feature set contains the following metrics:

e Total number of instructions in the code block

Instruction level parallelism

Number of cold memory references

Number of single precision floating point operations

Number of integer operations

Number of control /branching operations

93

Number of memory operations

Number of memory accesses with zero stride

Branch divergence

Data reuse percentage

Number of data blocks that belong to the same memory page

The selection of the features was performed by investigating the suitabil-
ity of each candidate metric (retrieved from a set of metrics already used
in the literature for speed-up) for predicting potential energy savings. For
this purpose, we employed the stepAIC method. This method is used for
identifying an optimal set of features by selectively adding and removing fea-
tures and using regression methods to evaluate the importance of each one.
In this way, AIC (which stands for Akaike Information Criteria) quantifies
the amount of information loss when a feature is removed. AIC re-estimates
the prediction error and thus, the quality of each model based on different
subsets of the examined features.

Table 6: Importance of features in terms of relation to GPU version energy

Features p-value

Instruction Level Parallelism 2.12e-06
Number of instructions 1.44e-07
Number of cold memory references 0.033269
Number of single precision floating point operations | 0.035817
Number of integer operations 0.006868
Number of control operations 0.039069
Number of memory operations 5.14e-05
Number of memory accesses with zero stride 1.41e-06
Branch divergence 2.84e-11
Number of division operations 0.061380
Number of blocks accessed in the same page 2.75e-05

Table 6 presents the result of the StepAIC analysis. More precisely, the
features with the highest relation to the energy consumption of the acceler-
ated version, which are the ones for which the p-value is less or close to 0.05,
are presented. For our statistical analysis, the null hypothesis is that we can
remove a feature from the features vector as it is not related with energy
consumption. This hypothesis is rejected when p < 0.05 and not rejected
when p > 0.05. It should be noted here that the 0.05 value is a standard

94

choice and it is worth keeping in the features-set metrics for which the p
value is close to 0.05, such as the Number of division operations for which
p = 0.061380, according to the results presented in the Table 6.

For analysing a hotspot in terms of energy gains, the values of the features
presented in Table 6 are first forwarded to the classification model. If the
hotspot is classified into the "No gains” class, no further analysis is required.
If the hotspot is classified into the ”Moderate gains”, then the values are
forwarded to a regression model for predicting the expected gains as accurate
as possible. For this proposes, the acceleration gains are predicted as a
percentage of corresponding CPU energy consumption. For example, energy
gains of 3x means that the accelerated version of the code will consume 3
times less energy, compared to the corresponding CPU code.

5.3.4 Experimental setup and methodology

The evaluation of the methodology presented in this Chapter is based on
the level of prediction accuracy of each of the two mechanisms (the static
analysis based and the dynamic analysis based). As mentioned before, the
evaluation results are first analysed for the NVidia Jetson Tegra X1 that
incorporates a MAXWELL embedded GPU. Energy was measured using the
installed power monitor (INA3221). Then we test the extensibility of the
method to support and provide results for two more Nvidia SoC embedded
devices, namely Nvidia Jetson Nano and Nvidia Xavier NX as well as for a
high-end server (Section 5.3.7).

After training the estimation models using the dataset described in Sec-
tion 5.3.1, we first defined the boundary between the ”"High gains” and the
”Moderate/no gains” classes (the boundary used by the static analysis based
component). To select this boundary, we performed a k-means clustering on
the energy gains degree of the data to include hotspots with similar energy
gains in each class. For setting the number of clusters into 2, k-means makes
a cluster that includes codes with energy-gains < 83x and another with
energy-gains > 83x. However, in this scenario only 11 of the 100 hotspots
are placed in the ”High-gains” class, while we consider such a boundary very
high. So, we tried to increase the number of k-means clusters. The results
are the following:

e clusters = 2:

— cluster 1 (gains < 83x) - Data-points: 89
— cluster 2 (gains > 83x) - Data-points: 11

e clusters = 3:

95

— cluster 1 (gains < 49x) - Data-points: 88
— cluster 2 (gains < 128x) - Data-points: 5
— cluster 3 (gains > 128x) - Data-points: 7

e clusters = 4:

— cluster 1 (gains < 16x) - Data-points: 68

— cluster 2 (gains < 49x) - Data-points: 18
— cluster 3 (gains < 128x) - Data-points: 7

— cluster 4

o~ o~ o~~~

gains > 128x) - Data-points: 7
e clusters = 5:

— cluster 1 (gains < 16x) - Data-points: 68
— cluster 2 (gains < 49x) - Data-points: 18

(

(

— cluster 3 (gains < 128x) - Data-points: 7

— cluster 4 (gains < 180x) - Data-points: 5
(

— cluster 5 (gains > 128x) - Data-points: 2
e clusters = 6:

— cluster 1 (gains < 16x) - Data-points: 68
— cluster 2 (gains < 49x) - Data-points: 18
— cluster 3 (gains < 128x

(

(

(Data-points: 7
— cluster 4 (gains < 180x

(

(

) -

) - Data-points: 5
— cluster 5 (gains < 253x) - Data-points: 1

) - 1

— cluster 6 (gains > 253 %) - Data-points

e clusters = T7:

— cluster 1 (gains < 16x) - Data-points: 68

— cluster 2 (gains < 49x) - Data-points: 18

— cluster 3 (gains < 83x) - Data-points: 1
Data-points

— cluster 5 (gains < 180x

(
(
(

— cluster 4 (gains < 128x 0 6
(Data-points: 5
(1
(o1

) -
) -

— cluster 6 (gains < 253x) - Data-points
) _

— cluster 7 (gains > 253x) - Data-points

96

According to these results, we conclude that k-means does not split the
cluster of energy gains < 16x, which includes 68 data-points. This means
that the hotspots in this cluster have very similar gains. Indeed, if we place
the gains in an ascending order, for each subsequent hotspot the gains in-
crease by 0.23x on average for hotspots of energy gains < 16x and by 10.43 x
for hotspots of energy gains > 16x. Therefore, we choose a class boundary
of 16x. This means that, hotspots for which energy gains above 16x are
predicted, are classified into the ”High gains”, while the rest of the hotspots
are classified into the "Moderate/No gains” class. This threshold is recalcu-
lated each time the dataset changes in order to support additional platforms
or in order to optimize the accuracy for the specified platform. Therefore,
this procedure takes place rarely, only when the models are retrained.

For the evaluation purposes we select to highlight the proposed method-
ology effectiveness on the Rodinia and Polybench benchmark suites. It is
worth summarizing here the experimental methodology details:

e Models: The static and dynamic models were presented in Sections
5.3.2 and 5.3.3, respectively. Detailed model selection experiments will
be presented in the next paragraphs.

e Features: The input of the static model is encoded C/C++ source code
(5.3.2). The input of the dynamic model is the features gathered by
dynamic instrumentation, presented on Table 6.

o Test dataset and evaluation process: The test dataset consists of a
total number of 100 applications hotspots from Rodinia and Polybench
benchmark suites [126, 127]. For the evaluating the accuracy of the
introduced models, we followed the same approach with related works
in the literature (e.g. [78,150]): When predicting the energy gains for a
specific hotspot (i.e. single datapoint), we train the models from scratch
using a training dataset that includes all the datapoints that belong to
the rest of the applications. This approach, which can be termed as a
modified leave-one-out cross-validation (LOOCV) is widely used in the
analysis of small dataset [78,150,152].

e Fualuation platform: NVidia Tegra X1 with an integrated power mon-
itor (INA3221 sensor) [9] (see Section 3).

5.3.5 Accuracy evaluation

In this paragraph we evaluate the accuracy of the prediction models of
the methodology presented in Sections 5.3.2 and 5.3.3.

97

84% 59%

4 0
Moderate

MNo | 57 13 =s81%

(<16x) _ Y,
(N

High

el 19 e
K

/

Moderate High s
/No Gains 76.0%

Actual Results

Predicted Results

Figure 25: Predicted vs. actual energy gains class: Static analysis

The accuracy of the static analysis component (Section 5.3.2) equals to
76%. In other words, the probability that a hotspot that actually belongs
to the "High gains” class will be classified into the ”Moderate/no gains” or
vice versa, is 24%. The accuracy results are further demonstrated in the
confusion matrix presented in Figure 25. In this Figure the rows represent
the instances in a predicted class and the columns represent the instances in
an actual energy gains class. It is shown that the model correctly classifies
76 datapoints (i.e. hotspots) out of 100. Considering the fact that the static
analysis receives as input only the hotspot source code, this level of accuracy
is reasonable. The accuracy can be potentially improved by receiving as
input, apart from the source code, information obtained by dynamic analysis.
However, as stated earlier, in this work we developed a purely static analysis
component and traded classification accuracy for user friendliness.

As mentioned in Section 5.3.3, the implemented dynamic analysis compo-
nent includes a classification step, to identify the hotspots for which no gains
are expected and a regression step to make fine-grained predictions of the
energy gains by acceleration for the hotspots classified into the "Moderate
gains” category. In order to select a suitable classification model, we com-
pare the accuracy of alternative models. The accuracy of the best 7 models
is depicted schematically in Figure 26. After extensive testing, we conclude
that by utilizing an Ensemble Voting technique that incorporates the best 3
models (Extra Trees, Bagging Trees and Gradient Boosting) we can reach an
energy gains prediction accuracy level of 85.3%. The final results are shown
in the confusion matrix of Figure 27, highlighting that the misclassification
probability is lower than 15%.

The input features are the values of the acceleration specific indicators
used for the dynamic analysis based component (see Section 5.3.3). It is

98

Ensemble Method
Extra Trees
Bagging Trees
Gradient Boosting
Random Forest
Decision Tree

Quadratic Discriminant

K-nearest neighboors

65 67.5 70 72.5 75 77.5 80 82.5 85 87.5
Accuracy (%)

Figure 26: Comparison of accuracy of various classification models for dy-
namic analysis based estimation

2% 96%
gy @

gains

No ‘ 13’ 2 |D87%

Predicted Results

Moderate 8 | 45 JE>85%

gains
: N
No gains Moderate
Gains 85 o 3 %

Actual Results

Figure 27: Predicted vs. actual energy gains class: Dynamic analysis

worth noting again that the models predict how many times the energy con-
sumption is lower when the code is offloaded to the GPU, compared to the
corresponding CPU-only execution. As a result, the prediction model assigns
each piece of CPU (hotspot) code to the appropriate category.

For the regression step, we evaluated several alternative methods in terms
of accuracy, as shown in Figure 28, which depicts the Mean Absolute Error of
the 7 most accurate models. Based on this analysis, we selected the Random
Forest regression method, which provides the highest accuracy.

The actual and the predicted energy gains regarding the hotspots clas-
sified into the ”"Moderate gains” category are shown in Figure 29. Each
hotspot is denoted as {application name}_{hotspot id} {input size}. The av-
erage error, which is defined as the difference between actual and predicted
energy gains gains is 2.6 x. However, mispredictions can be more costly for

99

4.5x

e
- .

K-nearest Decision Bayesian SVR Gradient Bagging Random
neighboors Tree Ridge Boosting Trees Forest

Figure 28: Energy gains prediction accuracy comparison of various regression
models

14x :
1% oPredicted @Actual
T
ol Ox
>
2,)8)(
q’:,)GX
Lﬂ4X
2x (L nd il
0x
''''' V=M oD oD o s g VS E B o= o = O 0= S eAe—NTN O— O
EEE eSO R e e e B SR SR AE S A 5 SR S B
EEEESsE%EmuoNxONxE-&.LNxEE SESEC-SEREcaE g FEEYEEYE
12 JETI e AP e e 0 580G T PS8 A Re e A5 888 T8
T T ¥ A2RIERBIZOIZLT OSSR EEQEESEE SE
EgE 55¢ > g2t¢g9g9:y SiiEe Iy JJEESAR0 eS8 %
&S EED SEESEE® ggEs FEAZAER &7 2
N 55 022022 880LQ S 0 -~ s =
enon [eNe) [eNe] S = c 7] 7]
> > > > O>
ZE =g S2
88 88 o

Figure 29: Predicted vs. actual energy gains using regression analysis for
hotspots assigned into the "Moderate gains” category (Nvidia TX1)

low energy gains, than for higher. As an example, predicting energy gains
4%, while the actual is 2x may affect decision making to a higher degree,
than in the scenario of predicting 10x, while the actual is 8x. Based on
the results presented in Figure 29, there are 28 hotspots with actual energy
gains below 6x. 22 out of 28 predictions can be considered accurate, since
the average error is 1.4x only.

The few mispredictions observed can be attributed to the following rea-
sons:

e The presence of a relatively small instruction level parallelism may lead
the models to overestimate the potential energy gains. As an example,

100

Nuw (for large input) falls into this category, where actual energy gains
are around 3x, while the model predicts more than 9x.

e When we have a high branch divergence we also have mispredictions.
This was observed for example in Heartwall: the model predicts a
energy gains below 6x, while the actual gains are more than 10x.

In fact, very few real-world applications and synthetic benchmarks used in the
dataset had similar behavior with respect to branch divergence and instruc-
tion level parallelism. As a result, the models were not trained to provide
accurate predictions for such cases. We might claim that enhancement of
the dataset with more real-life and synthetic applications that have a similar
behavior to the above is expected to improve the energy gains predictions.

5.3.6 Motivation for Combining Dynamic and Static Analysis

In this paragraph we present what motivated us to select a hybrid ap-
proach. If we increase the number of classes in the classification step to three
or four, the prediction accuracy results of static and dynamic analysis based
approaches are shown in Figure 30. For the purpose of this experiment,
the classes divide the number of hotspots into equal parts. For example, in
the case of having 3 classes, the boundaries are set so that each 1/3 of the
dataset is classified into a different class. Based on these results, we conclude
that the classification accuracy of the static analysis approach significantly
decreases for more than 2 classes. This shows that the static analysis can be
effectively used for coarse-grained predictions (i.e. up to 2 classes). However,
for more fine grained predictions, using three or more classes, analysis based
on dynamic instrumentation should be employed, as shown in Figure 30b.
Indeed, predictions based on the dynamic instrumentation technique provide
correct classification with 75% accuracy even for 4 classes.

The overhead of the dynamic instrumentation approach in terms of execu-
tion time is shown in Figure 31. The dynamic instrumentation is performed
by analyzing each one of the applications of the dataset with Valgrind and
Intel Pin tools, as mentioned in 5.3.3, in order to extract the acceleration
specific indicators. Figure 31 presents the large time overhead that the dy-
namic instrumentation adds, making the execution more than 2000 times
slower in some cases, compared to running the application without dynamic
instrumentation profiling. The reason, is the fact that instrumentation pro-
cess adds extra instructions in application binaries in order to extract the
required information. The static-only version, on the other hand, takes only
the source code as input without running the application. This means that
the analysis time is constant as opposed to the dynamic analysis which is

101

o0
9]

77

AN
N\
N
N

N
Nl
N N
.
N\ N
.

.

7
77
%

\

%

7
)

7

\
RN

N

\
N
N\

7
7
.
.
.

N

7
/ //

.

077
5
i

\
\

/f%///f:%///?"

ﬁ/%////%

-
77 77

.

_ /// /

.

W’é / 7

. ‘ ‘

0 \ \

%%

\

X
N\
\\\&“t\\\

Accuracy (%)
SNV, V) o) W e) NEN BN e o)
n O o o n o

N
N
\ N
AR NN
N

RN
NhITnnnt

W2 classes E3 classes M4 classes 2 classes @3 classes M4 classes

(a) Accuracy of static analysis ap- (b) Accuracy of dynamic instrumen-
proach tation approach

Figure 30: Energy gains classification accuracy (Nvidia Jetson TX1)

2000x

1500x

verhead

‘TN
< 1000x | P11 s ML A
Q nmn . A A A AP
=) | 7 | ’ |
4 3

e 1 YAy

1 10 19 28 37 46 55 64 73 82 91 100
Application

Ti
Ul
S
(o]
=

Figure 31: Execution time overhead of the dynamic instrumentation

proportional to the execution time of the application. As a result, we can
argue that we can not refer to ”overhead” of the static analysis component.
The static analysis process takes less than 1 second to make a prediction (us-
ing an average CPU of a personal computer, e.g. Intel i7-6400). The biggest
argument in favor of using static analysis in the presented solution is that
it can produce fast results for hotspots belonging to the “High Gains” cate-
gory. However, the overall cost of the dynamic analysis cannot be avoided in
cases where the static approach is not adequate or when the developer needs
fine-grained results. Nevertheless, dynamic analysis overhead can motivate
even partial static-only analysis support.

102

5.3.7 Extensibility Evaluation

The experiments, presented earlier, were performed on Nvidia Jetson TX1
device. In this paragraph, we evaluate the extensibility of the presented tool
and its ability to support more devices and systems. A prerequisite for being
able to support the new device is that it must include an energy sensor (or
at least a way to define the actual energy). The step-by-step guidelines that
must be followed in order to add more platforms in the tool are provided
below [153]:

- Step 1: Download the dataset from git repository

- Step 2: Build the dataset in the new device.

- Step 3: Run the dataset. The developer has to update the paths of
power sensors of the new device.

- Step 4: The final dataset is added in the tool. The models are re-trained
in the new data (transfer learning).

After retraining the models, we investigated the support of the following
additional devices:

o Nuidia Jetson Nano: Nvidia Jetson Nano is very similar to TX1. as
stated in Section 3. It should be noticed here, that we used the default
power modes for all the platforms (without custom frequency scaling)
and the dataset was build with keeping this configuration constant in all
measurements, as the methodology aims to use the application software
as input.

For Nano, Rodinia/Polybench hotspots are classified slightly differ-
ently. More specifically, we have 4 more hotspots in the ”Moderate
gains” category and 1 more in the ”"No gains” category, while the val-
ues of energy gains differ in most cases. The accuracy of each estima-
tion component is similar to the results for TX1. The static analysis
classification reaches 78% accuracy, while the accuracy of the dynamic
analysis classification is around 82%. The fine-grain regression results
for ”"Moderate gains” hotspots are presented in Figure 32. We observe
a similar performance, as the average error is 2.9x, while the proposed
model miss-predicts the energy gains of the same benchmarks described
in Section 5.3.5 (e.g. the Nw app).

e Nvidia Jetson Xavier NX: For Xavier NX (see Section 3), Rodini-
a/Polybench hotspots are classified differently. 28 hotspots show no
gains, while 39 hotspots are expected to have high Energy gains (more
than 16x). The increased capabilities of this device in both CPU and
GPU compared to the Tegra X1 offer better CPU performance and

103

much faster but more more power consuming GPU usage. These char-
acteristics increase the energy gains of some hotspots, such as 2mm
and 3mm from the Polybench suite due to the higher efficiency that
exceeds the higher power consumption and reduces the energy gains for
kernels that do not benefit from the increased number of GPU cores.
Classification accuracy decreases to 78% for dynamic analysis and 75%
for static analysis. This is due to the fact that we maintain the same
boundary between the "Moderate Gains” and ”"High Gains” classes,
which is based on accuracy optimization for TX1.

Figure 33 presents the regression results for ”Moderate gains” hotspots.
Based on these results, we observe a similar performance to the other
devices, as the average error is 2.7x.

Intel Xeon Gold 6138 - Nuvidia Tesla V100 server: The studied appli-
cation hotspots show completely different behavior, when executed on
the server infrastructure. The hospots classified in the no gains class
are much more (18 instead of 11 for the Tegra X1). This is mainly due
to the fact that the data transfers between the main memory and the
GPU have a large impact compared to the embedded device where both
CPU and GPU are in the same chip. More precisely, data transfers in-
crease energy by 22x on average for running the kernels belonging to
the utilized dataset presented in Section 5.3.1, while the overhead is
only 3x more energy in Tegra X1.

The prediction results of the proposed tool are presented in Figure
34. Here, we evaluate the 50 Polybench/Rodinia hotspots (without
the applied increments based on input data changes). We use just two
classes "No gains” and ”Gains”. As depicted in Figure 34a the accu-
racy reaches 82% for the dynamic analysis, while static analysis clasifies
around 72% of the hotspots correctly (Figure Figure 34b). Especially
in the case of the server, more fine-grain results are not provided due
to the very large prediction errors of the models. The biggest disad-
vantage of static analysis is the fact that it cannot model the volume
of data required for transmission. For example, for some hotspots (e.g.
in the Polybench suite correlation application), if we reduce the in-
put data using the mini dataset provided by the benchmark, no gains
are observed as the kernel also runs very fast only on the CPU and
the additional energy overhead for data transfer and GPU utilization
exceeds the energy consumed by the CPU-only version. This case is
correctly classified by the dynamic analysis tool, while static analysis
cannot work due to the fact that the source code remains the same.

104

===q7 [A pRIS
=== |[A peIs
==p])
—===7"9a1+q
=== 0a1+q
=——==(J¢lodsioy
== JOJSN[OWEeaNs
E=[ews IABAR]
=== \®A?]
=== doidyoeg
—==={[ewIs_pn]
e=====03Ie[pN']
=== [[BWS_[[EM}IEoY
===== J3Ie[[[eM)IBIY
——= I9)[1Jo[onIed
———==[[eWiS_ 7 MmN
=———=031e[¢ _MN
—=——=[[eWS_| MN
=———=e=031e] [MN
£ 8Jq
S=—==pue)S_¢ Q0URLIEAOD)
=—=———=[[RWIS_{_ 90URLIBAO)
—== UMW _¢ OOUBLIBAO))
=== pue)S_},_UONE[oLI0)
=== [[eWS_{, UOIB[o1I0)
=== UMW _}, UONE[oLI0)
=== ©IjXa_pg-1qooel
== o81e] pZ-iqooel
——==pIepue]s_pg-1qooel
====PpIepUe]S pC-pipj
===IUll Pg-pIpJ
==—m===1pJjX0_pP¢-UONN[OAUOD
==—=====03Ie]_p¢-UOIIN[OAUOD
===——=e===pue)S_pP¢-UOIIN[OAUOD
—==—=R®I)Xd_P¢-UOIIN[OAUOD
“===03Ie]_pZ-UOIIN[OAUOD
E===pue)s” pg-UOIIN[OAUOD
=————=== pIepue)s U330
<= BI)Xd_301g
= oSrer 301
== pIepue)s_3org
——==pIepue)s JIAS
== [[eWS YIAS
—==pIepur)s YIS
==[[ews_YZIAS
=——=RIXJ | JOAW3
=—==03Ie[| JoAwa3
——=pIepue)s” | IoAW3
===—=plepue)s ¢ wuwg
S==Iuiu_g_wuyg
s==ijuiw | wuwyg

oPredicted ©Actual

Figure 32: Energy Gains Prediction results for Nvidia Jetson Nano

F——=0°1 ¢A puIs
Se=———=q1 A pess
E==—=qC [A peIs
== IA puIs
e ==—=_9%04q
Ee———=1 9204q
== tepuyped
— = 51004 W
= (JIN®AR]
== ¢ doidyoeg
=== 1" doidyoeg

= ——— lIpws pn]

R g
= TONe1onIed
e=—E==|pws ¢ MmN
=931 ¢ MN
===Irus [MmN
——E=031[| MmN
E====——r—— pIepuE]S ¢ 9OUBLIEAOD)
=== enxa pg-1qodel
== o8e[pg-1qooel
——= piepuels” pg-1qooel
=== PIepurIS pZ-pIpJ
——E WU pgZ-pIpJ
—E=— BIIX9 Pg-UonNN[OAUOD
—== oSIe[pPg-UOTIN[OATUOD
== o3Ie[PZ-UOTINJOAUOD
=== piepuels_ uddyoq
== piepuels_ 3o1g
=== piepue)s YIAS
—E=—= pIrepue)s gILS
£=enxX9 | JoAwad

X X X
86420

OPredicted @ Actual

14x
12x
10x

ured AS1oug

Figure 33: Energy Gains Prediction results for Nvidia Jetson Xavier NX

91%

67%

@
3

72%

£ 60%

&

Actual Results
(b) Static Analysis

No gains

»
S g
<
en

N

S

[e%e)
w2
=
'3
@)

72}

g

‘s

)

SINSY PAOIPAI]

82%

£ 80%
™

Actual Results

No gains

Gains

N
gains

SIINSY pAIoIpaId

(a) Dynamic Analysis

actual energy consumption gains class - Server

Figure 34: Predicted vs.

(Xeon Gold 6138 - Tesla V100)

105

5.4 Energy-aware Placement on Edge resources

Resource management is a key concept of modern IoT application devel-
opment, that hat has been attracting the interest of many researchers over
the years. While there is a plethora of provided solutions, selecting the best
resources at the application design time, can lead to significant energy sav-
ings. Exploiting the information retrieved by the proposed energy estimation
models (see Chapter 4) can be very beneficial towards an energy-efficient ap-
plication functions placement that also exhibits high performance. In this
Chapter, we demonstrate a proof-of-concept of the potential use of the meth-
ods introduced in the context of this thesis on the use-case of building an
energy-aware function placement tool for IoT applications.

The majority of approaches that can be found in the literature focus
mostly on performance, often neglecting the impact on energy consump-
tion. While more recent approaches consider multi-objective optimization
solutions, most of them formulate and solve a problem using only simula-
tions, abstractions or by utilizing traditional IoT communication frameworks
and exploring candidate solutions on the actual targeted devices [154], [155].
Nowadays, serverless computing introduces the Function-as-a-Service (FaaS)
paradigm, where short-lived functions are also placed on Edge computing
resources [156]. A large number of recent research works propose custom
frameworks to optimize function placement [157], [158] [159].

In this Section we present our vision towards using the introduced models
to build a software analysis tool to be used by software developers in order
to select the placement of the application’s individual functions on Edge
environments. The resulted placement will take into account both energy
consumption and quality-of-service (QoS) at design-time, before running the
code on the targeted devices.

The overview of the presented solution is illustrated in Figure 35. The
introduced tool consists of the following steps: Initially, the tool parses the
source code, which corresponds to the user’s application code, as well as the
list of the available devices and estimates the potential energy and time of
executing each function on each of the devices, using the methods described
in Chapter 4. The output of this task is forwarded to the multi-objective
optimization stage, where the function-to-device mapping, that minimizes
both energy consumption and execution time is resulted. A pre-request for
this step is a user input that corresponds to a value ([0, 1]) that defines the
preferences (focusing more on energy or on execution time).

In the context of this study, the output of the aforementioned procedure
will be given (by the developers) to the Kubernetes container orchestra-
tor system of the IoT/Edge cluster (see Section 3), which is responsible for

106

List of List of

functions Edge devices

() N —

<> : Energy/Time Estimation e & —

N (Chapter 4) —
2222222
(A 7y

Multi-objective | vs ®

L optimization | Trade-off -

Y

Proposed
Placement

,______.
g

Device 1 Device2 Device3 Devicen

Figure 35: Overview of Energy-aware function placement on Edge resources

placing the functions on the resources that were determined by the multi-
objective optimization heuristic.

5.4.1 Cross-device Energy/Time estimation

The methods described in Chapter 4 were used in this stage. More specif-
ically, we followed the Extensibility procedure to add all the devices of the
Edge network. We used the dynamic analysis methods due to their increased
accuracy, their capabilities of estimating the energy of the entire application
(without needing to give additional information such as the number of loop
iterations) and because they are based on dynamic instrumentation of the
execution and thus they give us the opportunity to analyse more languages
such as Python which is used in modern serverless environments. Finally,
we extended the introduced methods to make predictions also for execution
latency, by changing the energy values of the datasets with execution time
values. We do not provide analytical results for this procedure because the
purpose of this Section is to show the importance and the potential use (as
a proof-of-concept) of the methods introduced in this thesis on building an

107

energy-aware function placement tool that can be used by developers at ap-
plication design time.

5.4.2 Multi-objective optimization

After predicting the energy consumption and the execution time of each
function (f;), per candidate device host (d), a multi-objective solver based
on differential evolution (see Section 3) follows. This solver is responsible of
calculating a function placement strategy (p, where p; determines the device
where function f; is placed) that optimizes the total energy consumption (E)
and the total time (7"). Finally, a weighing factor ¢r defines the relative im-
portance of optimizing either the energy cost or the execution time according
to the designer’s (user’s) priorities. Based on this value our method’s solution
might lead to the maximum energy savings (tr = 1.0), the lowest execution
latency (tr = 0.0), or any trade-off between these two border scenarios as
described in Equation 8.

Minimize : tr x E(p) + (1 —tr) x T'(p) (8)

The aforementioned total energy cost is formulated in Equation 9. More
thoroughly, we assume a factor « (0,1) that makes a simple model of the
functions interference. The total energy is expected to be less than the
consumption of a fully serial execution of all the functions (Fge.q) that
would be estimated by summing the individual estimations. On the other
hand, the total energy is expected to be much higher than the energy of
the ideal case (Fjgeq) of running all the functions in parallel consuming the
same amount of energy as the most consuming function (without additional

energy).

E<p) =a X Ese’rial(p) + (1 - Oé) X Eideal(p)a
where

Eserial(p) = i Eest(fiapi)g (9)
=1

Eideal(p) = Z(Ed)a Ed = max(Eest(fia d))7 where pi = d
vd

In order to calculate the total execution time, we followed a similar pro-
cedure as it can be shown in Equation 10. For the worst case scenario,
corresponding to the fully serial execution per device, total time (Tseriar)

108

equals to the time of the device that completes the execution last (because
we have only the parallelization between devices). For the ideal case, all the
functions are executed in parallel perfectly and the total time corresponds to
the latency of the slowest function.

T(p) =aX Tserial<p) + (1 - a> X Edeal(p)a
where

Tserial(P) = maz(Ty), Ty = Z Test(fi, d) (10)

Vi, where p;=d

,I;deal (P) = ma‘r(Test(fh pz))

5.4.3 Placement example

In order to demonstrate the solution presented in this Section, Figure 36
illustrates four examples of our solver’s outputs for analysing an application
decomposed into ten individual functions. In those four scenarios, we are
gradually decreasing the trade-off value to get better execution latency.

Starting from the first scenario, by setting trade-off to 0.9 we focus more
on energy and, as a result, the proposed placement utilizes only two of the
available devices, to achieve a lower energy consumption. In the second sce-
nario (Figure 36b), our solver alters the function placement to achieve better
execution latency. More precisely, device #1 is utilized, while functions are
more equally balanced between devices #2 and #3. The additional comput-
ing power increases the consumed energy. By further reducing the trade-off
(Figure 36¢), the heuristic solver changes the mapping of functions to the
available devices, e.g., selecting a function with higher computing demands
to be executed on the device #1. Finally, in the scenario with the most de-
manding execution time limit (Figure 36d), there are two functions mapped
to device #1, and the energy consumption is the highest amongst all four
scenarios [160].

5.4.4 Experimental Results

In this paragraph, we present some first experimental results that validate
our assumptions and illustrate that our vision towards using the introduced
models and tools for supporting energy-aware function placement can be
successful.

5.4.4.1 Experimental Setup The introduced solution is designed to
serve the needs of developing energy-aware IoT applications targeting power-

109

(2

(7 I\ 1147
()

(19

@p O 00

@ @ 911J @

Qﬁ g (15) y
(18 ()

@® 9 s @ s
2 3 1

Device Dev1ce

(a) Trade-off = 0.9 (b) Trade-off = 0.6

0o (1) 122J (o) () (110 143]
00
@ 94 s

92s
(19
1 2 3
Device Device
(c) Trade-off = 0.4 (d) Trade-off = 0.1

Figure 36: Output example: Different function placement scenarios

constrained Edge clusters. Therefore, while the proposed method runs on the
user’s personal computer (as also mentioned in Section 4.1), for the evalua-
tion we used four low-powered embedded devices (see also Section 3.4). More
precisely, we place CPU functions on NVIDIA Jetson TX1, NVIDIA Jetson
Nano, NVIDIA Xavier NX and NVIDIA Xavier AGX. All the devices in-
clude a built-in power monitoring sensor that we used for measuring energy
consumption. Regarding the applications, we used 25 benchmarks/functions
from the widely-used scikit-learn python library, that is very popular in ma-
chine learning applications.

5.4.4.2 Evaluation and Discussion Figure 37 depicts the total time
and total energy results of the placements proposed by the introduced method
for various trade-off values, as well as the average results of letting Kubernetes
decide the placement (denoted with the blue Kubernetes logo). According
to this analysis we conclude that our solution that takes into account the
estimated energy and time can achieve up to 43% Energy Savings, by setting
trade-off value to 1.0 (tr = 1.0) with a cost on the QoS and up to 32%

110

|91
9]

L up to 43% Energy Savings _
50
O
g 45 (5}
= " o ®
% 40 up to
= 8 32%
35 oo speed-up
@
30 ®

280 320 360 400 440 480 520
Total Energy (J)

Figure 37: Placement results using 4 Edge devices against the average results
of default Kubernetes placement

less latency for tr = 0.0, while also consuming less energy. On average the
proposed solution reduces the energy consumption by 33.6%, achieving also
a 11% of speed-up.

The results are very promising and are expected to improve further for
using more Edge devices. We observe that our method does not use some
devices especially in the cases that energy is of most importance. For ex-
ample, TX1, while consuming less energy, is the slowest device and porting
heavy functions on that may lead to larger energy overhead. On the other
hand, Kubernetes default strategy tries to distribute the functions as much
as possible on the available resources. Sometimes placing more functions on
Nvidia NX and less to AGX leads to better energy results and although such
a placement selection doesn’t exploit as much as possible the available com-
puting capabilities, it doesn’t have a large overhead on the execution time.
Therefore, in the following experiments we try to stress our solution even
more by using only 3 devices, forcing (this way) also our method to use all
devices for most cases (trade-off values).

Figure 38a illustrates the results of using Jetson TX1, Jetson Nano and
Xavier AGX. Based on these results, we might claim that by using the intro-
duced method, the users can choose between a number of available solutions,
according to their preferences determined by the trade-off value. By select-
ing to optimize only energy, up to 46% energy savings can be achieved, while
focusing only on execution time offers a speed-up of 19% compared to the
Kubernetes placement. Also, the provided solutions consume on average
7.5% less energy compared to the Kubernetes placement.

111

60 48
.‘ up to 46% Energy Savings 46 @ _ up to 39% Energy Savings
< > >
56 ® a4 °
z °)
o 52) 42 Y ()
2 ® Z.
&= upto| @ .‘ &= Ps
I 48 19% g 38 e
ﬁ speed-up = °
" e 36 e
o 34
40 32
200 250 300 350 400 450 200 250 300 350 400
Total Energy (J) Total Energy (J)
(a) TX1, Nano, Xavier AGX (b) TX1, Nano, Xavier NX

Figure 38: Placement results using three devices against the average results
of default Kubernetes placement

In the experiment presented in Figure 38b, we replaced the Nvidia Xavier
AGX, with the Nvidia Xavier NX that incorporates a similar CPU with 4
cores instead of 6. Here the Kubernetes placement achieves the faster results,
while we can observe three placements provided by the introduced framework
that give sub-optimal results, meaning that both energy and time are worse
than in the pure Kubernetes case. However, we can see that changing the
trade-off value still provides a compromise between time and energy, achiev-
ing up to 39% energy savings for tr = 1.0, while the provided solutions reduce
the energy 9.6% on average compared to the Kubernetes placement.

According to the presented results, we conclude that the methods pro-
posed in this thesis can be very beneficial for building a solution that provides
the software developer with placement solutions that minimize the energy
consumed and/or the execution time of Edge computing clusters, subject to
a user-defined trade-off value.

5.4.5 Limitations

As mentioned in the beginning of this Section, the proposed placement
solution employs the methods proposed in the rest of this thesis to perform
function-level profiling and, by using the energy consumption and execution
latency predictions, to propose efficient function placement on Edge devices.
So, we give the directions for the development of another type of energy
optimization tools that can be easily integrated in the overall framework
proposed in this dissertation. The first results are very promising giving

112

a proof-of-concept for this solution. However, there is still a number of
limitations summarized bellow:

e The proposed solution does not take into account data exchanges be-
tween the function calls, meaning that there is no modelling of the
communications that have a large impact on the execution time of the
application and the energy of the Edge cluster.

e The proposed method assumes that the Edge devices are dedicated
to run only the application under analysis. This means that it does

not consider the case when other applications are running in parallel
(traffic).

e One might claim that the comparisons in the presented experiments
are not fare enough due to the fact that the pure Kubernetes solution
also runs a scheduling algorithm on the run-time to select the final
placement.

5.5 Software Engineering Perspective - Design time
quality

The rapid evolution of the embedded systems and IoT applications in-
creases the requirements for long lifetime expectancy and the demand for
maintainable software products [6]. However, the source code optimizations
that developers apply to improve performance and energy may affect the
maintainability [161] [162]. In other words, employing techniques (presented
in Chapter 5) to improve the energy consumption (runtime quality) may
have a negative impact on the design time quality, such as maintainability,
reusability and programming effort [163] [164]. In this section we investigate
the impact of the proposed transformations for improving energy efficiency
on software quality metrics and we make a first step towards estimating the
programming effort required to develop optimized code (and more specifically
CUDA acceleration) based only on the analysis of the initial corresponding
CPU code, by using well-established indicators. We would like to inform the
reader that for the work presented in Section 5.5 we closely collaborated with
the Department of Applied Informatics, University of Macedonia??, Thessa-
loniki, Greece that suggested metrics and tools for measuring design quality,
with the author’s contributions being on applying and studying the impact of
energy transformations on maintainability metrics (Section 5.5.1), designing

22We would like to thank Prof. Alexander Chatzigeorgiou, Prof. Apostolos Ampatzoglou
and Angeliki-Agathi Tsintzira

113

and testing (dataset, experiments) models to predict the programming effort
(Section 5.5.2).

5.5.1 Impact on Software Maintainability

Cache blocking and acceleration optimization presented in Sections 5.2
and 5.3 correspondingly, are applicable in the selected applications from the
Polybench and Rodinia benchmark suites. After applying the relevant refac-
torings proposed by the previously described energy optimization methods,
we evaluate the impact on Software Maintainability. More precisely, for this
analysis we chose to use the Lines of Code and the Cyclomatic Complex-
ity as the simplest and oldest Maintainability indicators used in the litera-
ture [165] [166] [167]. We should mention here that the focus of this work
is not based on the use of the most accurate maintainability metrics, but
rather on the study of the impact of the aforementioned energy optimiza-
tion techniques on maintainability and (as we will discuss in Section 5.5.2)
on the design of tools that predict maintainability metrics that express the
programming effort required to develop the new version of the code, which
is optimized in terms of energy.

Typical examples of cache blocking (or data-flow) optimizations are the
loop transformations that aim to improve the cache performance, by improv-
ing data locality to reduce the overhead of the loops. Loop tiling method
is the most important and widely-used loop transformation. It ensures that
more data are reused by the cache, by breaking the iteration space of a loop
into smaller blocks. Thus, loop tilling increases the loop depth and partitions
large arrays into smaller blocks, in order to fit the accessed array elements
into the cache size and reduce D-cache misses (see Section 5.2).

In the context of this analysis, we analysed several applications from
the Rodinia and Polybench benchmark suite, using tools designed in the
SDK4ED EU project. In cases where the energy optimization tools propose
the use of the Cache blocking refactoring, we applied the optimization man-
ually. The majority of the applied optimizations are loop tiling. Then, the
updated applications were analysed in terms of Maintainability, measuring
the total Lines of Code as well as the Cyclomatic Complexity. Figure 39
shows the increase of the two maintainability indicators between the two
versions of the application. As expected, in all cases the Lines of Code as
well as the total Cyclomatic Complexity increase. The increase varies from
10% to 105% for Complexity and from 7% to 50% for Lines of Code.

Offloading the heavy parts of the applications to accelerators is a process
that needs a lot of source code transformations and additional source code,
a fact that usually has a negative impact on Maintainability. Following

114

120

= Complexity === [.ines of Code
100
& 80
[«F)
g 60
@
£ 40
20 -
0
g s o g g g g g & & =
= B z § E £ % £ 2 § &%
N) = ™ =) oh 5 =) »
oD ‘; = o < <
1) 5] o
@) @)
Application

Figure 39: Cache blocking impact on Maintainability (applied on applications
from Rodina and Polybench suite)

100
== Complexity == Lines of Code
’?80
&
o 60
%2}
[3+]
&
@)
g 40
i=
20
0 - T
| S — (=9 CU (9} v - N
EEE 55 8 Y3 g 3T B og g2 s E e %5
™~ > - o0 o= =] h — [l = 7] 8} B @] [3+] | |
E » =© &2 5 &8 ©w & 2 3 h= Q -
eVl > o= a1 o = QL -~ — Q = + o (e
n o] = g =] @] o =X = © E = =
T = 8 = U g T E 2 = ~ » »
= > g = o T v ®©
g8 & g ~ &
2 2
Application

Figure 40: Lines of code and Cyclomatic complexity increase after applying
GPU acceleration

the same procedure, we measure and compare the Lines of Code as well
as the Cyclomatic Complexity of the CPU-only vs CPU4+CUDA version of
applications from Rodinia and Polybench benchmark suites. The results are
shown in Figure 40.

As shown in Figure 40, Lines of Code are increased from 1% up to 100%
while there is an increase of 1% up to 78% for Cyclomatic Complexity. The
range of the impact is from slightly to severely negative. The large number
of changes (even to the algorithm itself) for applying acceleration in some

115

applications leads to high increase while other projects require simple re-
structuring (for example, in the case that the for-loop is already written in
a way that is parallelizable and the kernel is easy to be developed). For a
few cases, the CPU-only version of the application was already very complex
and the refactorings did not lead to more complex code.

The presented results give us a coarse-grained analysis of the impact of
cache blocking and acceleration energy optimizations on software Maintain-
ability. However, the experiments show very different effects (from small up
to severe impact). Therefore, although we might conclude that there is a
clear negative impact on maintainability, we also think that further analysis
is needed.

In this direction, we will try to make a more fine-grained characterization
of the trade-off between energy and maintainability and, more specifically,
to highlight the project-related metrics and characteristics that may affect
the observed impact. For this purpose, we divide the Rodinia and Polybench
cases into two classes. The first includes applications in which the refac-
torings seem to have a slightly negative impact: less than 25% increase in
Cyclomatic Complexity and less than 30% increase in the total number of
Lines of Code. The second category includes all the applications that lead
to a severe trade-off for applying the two energy-related optimizations. One
could argue that 30% cannot be considered as a slight impact, but we decided
to split the two sets of applications in the middle. In addition, all these appli-
cations are relatively small and therefore more “sensitive” to small changes
in the number of lines. Figure 41 illustrates the number of the initial Lines of
Code and the number of times the refactoring is applied to the application.
Based on these results, we might claim that a low impact (slightly negative)
is observed when the application has more lines of code or if the refactorings
are applied 1 or 2 times. On the other hand, when the initial number of
Lines of Code is relatively small or the refactorings are applied many times,
we have a greater impact.

These results highlight that the size of the impact is related to the size
of the application under analysis and the number of the times that a refac-
toring is applied. However, we can find some applications that belong to
the first class that may have a larger number of applicable refactorings or
some others that, although only one instance of the refactoring is applied, it
leads to a high impact. Figure 42 shows the number of the specific lines in
the initial application that are going be refactored (or the number of lines
of the energy hotspot according to the definition presented in Section 5.1).
This analysis indicates that the number of lines that will be changed during
the optimization application is also related to the size of the impact that
this refactoring will have on Maintainability. More lines are refactored in the

116

2700

2430 Slightly negative < Severe trade-off <9
Y 7 N L4
2160 " 8 o
< 1890 7 5
o —
S 1620 i 6 &
S 1350 5&
w
£1080 4 2
= o
" a0 | i | ¢
540 " it ' 2 5
270Iiil"‘ l IL’! ||!|,I“'l!!!!!! w! 1!!1!-| 1%
o TR b T A VT
— oS = oo Nl X D Hymo—— [OR e
B0 Y e N L e S S B UR R P ER e s OEE B E
= 1%} @ 205 LR o =
QBRSSO Y cE Sl e oS e Sy sE B30 | IS 5B S
S EEE S S0 5O E S S e e E S B0l WEESE R B E a0 o
S5 oSSR RS aa e e 2 e e g O RS E S eSO e BEE R R S P T
-:.EgmgmEmwogogwgbbﬁ~.‘£,‘£,s:~~~~ms:ooc‘&‘d%ﬂﬂ--waaogom:
SR EE 0SS 0 S8 EWME S 200800 dE88IEERSSOTOET
B YT Y E O EEE P a2 S0 EE00E 00 EEdE 0 g 0o 58S ondoiky
T Ul U S "0 0B g UYE o0 E SR YR C0RUERVUEROBBEREY0
CUQ_,UUUH;_‘::.._“._H-‘,AUO UU(‘UCUCU"O"OUQ)"—‘”—‘Q)UOQU:UM”“’—‘""""‘D"“O'—‘
CloYoUmTIEERYdIZ 8o HE S ¥ o0 E Rt 2Saisgooxek=0
S0 REgIETgY S EECTEEE"SEEe FY S5 fd0g5Ys g
© T OBILEE £0289dTre 0ITL I BWEIIYSIw2ET
OS8gvuwm YrORREOYTUU cdda — Yol ggluldm
umguu €T m;_<;_<UU Qo [} OUg U [F] Vg O
& 999 OglaggT® gy o ®©°g £ S0
O T T [Y== T T O < g U
o [N < © ©
< OO o o
QO
T T
Refactoring: Application
B Num.of refactorings Application Lines of code

Figure 41: Impact on maintainability: Number of applied optimizations and
initial application lines of code

cases that although we applied more than one refactorings, a small impact
is observed. On the other hand, when the initial version has fewer lines in
the hotspot that will be rewritten, the lines are expected to be increased,
making the updated version less maintainable.

In order to study the way that the aforementioned characteristics affect
the final maintainability and to make a more formal study, Figure 43 il-
lustrates the correlation (scatter plot) between Lines of Code of the final
refactored application with the initial Cyclomatic Complexity, the number
of refactorings, the initial Lines of Code as well as the number of lines be-
longing to the hotspots that will be refactored. Scatter plots show how much
one variable is affected by another (linearly). The R value also presented
in the figure quantifies how strong the linear relationship between the two
variables is:

e R = 1 perfect positive linear relationship, R = —1 perfect negative
linear relationship

e R > 0.7 strong positive linear relationship, R < —0.7 strong negative
linear relationship

117

2048 -, Slightly negative < Severe trade-off 9
1024~ = 8w
o0
o 512 7 £
] —
8256 68
« 128 5<
P
g 64 4”5
E 32 3 g
16 23
dmnmmmii Wil Tk
— = » e X [<3] 5 e <5
SSerTs08n s YR BAINESR A g iR Traneysns s
= = w0 o LI U D | @ 205 ety ..BU || =
N> OH A S0 e Y CE S0 e SRRV e 88T EE S8 o8 BE @
R = — 0 O+ ::q_),& o o022 NN os—=ge Y ong B [
RO e e L el R R R e P e e Sk Bk
SO E RS R E D E S SR e B8 S E R S5 S EENT EEBE S
. oogo — 0= = CE00S & N=bg i) [o}vieR-I]=!
EEECETEE 12528 e S0 ou 000008888 550 02E
$H°J—'°J':-—<b""'5‘“’*—‘<ﬂ'—'>>Ooa ,_‘::E:'—‘Q‘_"—‘ooc..—mdwo 2T
T 0O ERESRn UG5 SXE209 8O Cam T Y a LoD SEE V0 v
TgYCYE B8 e U CEE SRR Os S50 eoRR 2SS0 58S
CEo0S 0B TEEEY e8P B RY¥ e el 8l s s i RI oK LD
R ol e R o e PR R S el
© 99830 m -G‘%f:’.g.gggurcm o2 g go LOT 0 OR 8559
Oggdiem %J:UmmUurcuu rc88m —_— Uuumm—augum
g 200 OUBSE =TT ole] 9] 87 g = J:‘SU
©® Yss S ® T 9]] S 9
2 o s -
© QO
©

Refactoring: Application

B Num.of refactorings

M Lines to be changed

Figure 42: Impact on maintainability: Number of applied optimizations and
lines of code to be changed

e R > 0.5 moderate positive linear relationship, R < —0.5 moderate
negative linear relationship

e R > 0.3 weak positive linear relationship, R < —0.3 weak negative
linear relationship

Based on these results, we can observe a clear correlation, concluding
that the impact of the energy-related refactorings depends on the application
under analysis. More specifically, the relationship of the impact with the
initial Complexity and Lines of Code is very strong positive (R > 0.7),
while there is a considerable relationship with the number of refactorings
and the lines that will be refactored. Note that we do not present a more
detailed analysis regarding the Cyclomatic Complexity (in the way presented
in Figure 41 and Figure 42) as the results are very similar.

5.5.2 Programming Effort Estimation

Although the energy optimizations proposed in the context of the present
dissertation are widely used (usually for targeting performance), existing

118

R=0.78 R=0.44

4000 I
9
S o
O 3000 - °
B
.°5" 2000
3
£ 1000
Z

0 T T T T T
100 200 300 400 500
Initial Cyclomatic Comlexity Number of refactorings

4000 | R=0.96 | R=0.65
[<5)
g °
O 3000 | ®
B
£ 2000 | o
- °
£ 1000 |
Z

0 T T T T T T T T T
1000 2000 3000 100 200 300 400 500 600
Initial Lines of Code Lines to be changed (in hotspots)

Figure 43: Correlation of initial program characteristics with the final lines
of code

work in the literature does not take into consideration the programming
effort that is required to refactor existing code in order to achieve the desired
performance or energy gains. There are only a few attempts to quantify
the effort of accelerating applications. These are either based on empirical
investigations [168], or rely on relatively simple metrics, such as the Lines-
of-Code (LoC) of accelerator-specific code (i.e. CUDA, OpenCL) versus the
LoC of the corresponding CPU code [169].

Aside from the utilized metric, the most important thing here is that, to
the best of the author’s knowledge, there is no approach towards designing
a tool that estimates programming effort of developing GPU code using only
the CPU code as input. Existing work only measures the effort of existing
code, while it is very important to know the effort required before writing
the new code.

The first type of optimization presented in Section 5.2 concerns Data-flow
optimizations with particular emphasis on loop transformations. So, one
might wonder why we are only talking about GPU acceleration. There are

119

two reasons: First of all, loop transformations usually require small changes
inside the loop. If a complete loop reconstruction is not required, then by
following the examples in Table 5, the developer can easily become familiar
with this type of optimizations. The second reason is that there are tools
that help the developer in this direction. In our study, we used Pluto®3
extensively. Pluto uses the polyhedral model and transfers the compiler
optimizations for data locality and parallelization up to the software level
(source to source) [144] [145]. It is considered easy to use, while the user can
choose which optimization to perform in which loop (with special pragmas
in the source code and flags in the command line) or perform an automatic
optimization. Other tools, such as Orio?*, also based on the LLVM infras-
tructure, offer heuristic optimization methods (e.g. for selecting the best tile
size). Regarding Platform Selection and Placement optimizations, they do
not require direct changes to the application software.

X32 - =
! ® = N
161" N, High Energy Gain
x16f
\ hR Low LoC increasg
g | ¢ e ¢
= x8 N\ N [J \
o0 N]
‘Eﬁ x4+ T e *
=
M ol Low Energy Gain .
High LoC increase,.’ - BN
x1} [J \ - ® _ ,I
. BT
10% © 20% 30% 50% 100%

LoC increase

Figure 44: Energy gains vs LoC increase by GPU acceleration in applications
of the Rodinia Benchmark Suite

Figure 44 shows how GPU acceleration on a set of applications of the
Rodinia suite [126] affects the final energy consumption, as well as the Lines of
Code. The vertical axis corresponds to the energy gains by GPU acceleration
measured on NVidia Jetson TX1 embedded heterogeneous platform [9] (see
Section 3), while the horizontal is the percentage of LoC increase. According
to these results, we might notice that some applications require minor effort
to be ported on GPU, while the energy gains are very high. Also, there are
applications that need significant effort to be accelerated, but with relatively

Bhttp://pluto-compiler.sourceforge.net/
Zhttp://brnorris03.github.io/0rio/.

120

small gains in energy. Especially for the applications belonging to the last
category, developers may decide not to invest in GPU acceleration. As a
result, tool support for predicting not only energy gains (Section 5.3) but
also programming effort is expected to significantly contribute to an effective
investment of programming time and effort of IoT applications.

As mentioned before, the first thing we have to do is to choose the met-
ric that we will use for the quantification of programming effort. Beyond
the old LoC metric that sometimes may underestimate the amount of pro-
gramming effort [170] we also used the Halstead’s metrics [171] [172]. These
metrics quantify both the number of distinct operators and distinct operands
(their sum corresponds to the program’s Length (N)), as well as the total
number of occurrences of operators and operands (their sum corresponds to
the program’s Vocabulary (n)). The Volume of a Program (V = N x logan)
expresses the minimum number of bits required to represent all operators
and operands [173]. Any piece of code, could be theoretically written in its
most abstract form as a hypothetical function that has the same function-
ality. In this sense, the minimal volume for any program can be defined as
V* = (2+4nk)logz2(2+n}) and the ratio of the minimal volume over the actual
volume is called Level L = V*/V, expressing the abstractness of a program.
Difficulty is the inverse of the program level, while the ratio of volume over
the level represents a metric called Effort (E = L/V'). This metric quantifies
the effort needed to write or understand a program as it considers both its
actual size and its abstractness [174] [171]. Halstead metrics have been used
to measure both maintainability [175] and the development effort in high-
level parallel programming approaches [176]. More specifically, according to
these studies, there is evidence that they are capable of estimating the time
spent on writing an existing source code.

It is worth mentioning here that the main focus in the context of the
present dissertation is not based on the use and monitoring of the Halstead
metric itself, but rather on the design of a tool that predicts the effort re-
quired to develop a new (accelerated) version of the code, before development.
In contrast to related approaches that quantify the programming effort of al-
ready written code, in the presented analysis, the LoC and the Halstead’s
Effort is estimated using only the initial CPU code as input, in order to
support design-decision for developers with respect to acceleration. Other
metrics that capture progamming effort can be also supported by the intro-
duced method.

This type of analysis is very important for energy hotspots (see Section
5.1) that are predicted to have energy gains if offloaded on a GPU accelerator
(see Section 5.3). Capturing the required effort to develop the new GPU code
(e.g. CUDA, OpenCL) would be useful for the evolution of a software project.

121

The programming effort prediction is based on the following procedure:
Having as a baseline the effort (expressed using the Halstead’s Effort or the
simpler LoC) required to develop a part of the CPU code, we predict the
percentage of extra effort (the increase of the value) required to develop the
accelerator-specific code. This metric will serve as indicator of the program-
ming effort required to develop the accelerated version of the code. The
programming effort predictions are made by a regression model. The model
receives as input the values of the features listed below (captured on the
initial CPU-version of the application):

e The number of hotspots

e LoC (Lines of Code) of the application

e The number of hotspots’ LoC

e The number of hotspots’ statements

e The number of distinct and total operators
e The application’s Complexity

e The application’s Volume

e The application’s Length

e The application’s Difficulty

Table 7: Importance of the selected features in terms of relation to Program-
ming Effort to produce the accelerated version (stepAIC criterion)

Features p-value
Number of hotspots 0.0707
LoC of application 0.0219
Number of hotspot’s LoC 0.0219
Number of hotspot’s statements | 0.0129
Distinct operations 0.0238
Total operations 0.0308
Complexity 0.069

Volume 0.0362
Length 0.0231
Difficulty 0.0289

122

2.8
2.6
24
22

1.8
1.6
1.4
1.2

Effort increase error

';/"//
%
/
.
.

Bayesian SVR Decision Gradient K-nearest Bagging Random
Ridge Tree Boosting neighboors Trees Forest

Figure 45: Effort prediction accuracy comparison of various regression models

Table 7 quantifies the importance of each of the selected features regarding
the programming effort, after applying the stepAIC criterion similarly to the
method used in Section 5.3 for estimating the energy gains. The feature
metrics are collected by analysing the source code. Open-source tools can
be used for this purpose such as the SonarQube platform?® and the Halstead
Metrics tool?°.

The dataset used for programming effort includes hotspots from Poly-
bench and Rodinia benchmark suites. We did not use any synthetic applica-
tions, since only for applications developed by programmers it makes sense to
evaluate the programming effort. As regards the selected estimation model,
Figure 45 presents the 7 best models. Based on these results, we can con-
clude that that Random forest regression achieves the highest accuracy. The
prediction accuracy of the programming effort increase of developing CUDA
code compared to the corresponding CPU is shown in Figure 46. The average
absolute error (i.e. Effort-increase difference between predicted and actual
values) is 1.4x. The accuracy is very high for the applications from the Poly-
bench benchmark suite (around 93%). However, few inaccurate predictions
are observed in some applications from Rodinia. The reason is the fact that
these use-cases are more complex compared to the Polybench applications,
including more changes from version to version than the necessary. Interest-
ingly, we can notice that for 3 applications the effort increase seems to be less
than 1x. The reason is the fact that the CPU versions of these applications
provide functionality that is not present in the corresponding GPU version.
Therefore, the GPU version required less effort to be developed than the

Zhttps://www.sonarqube.org/
Z6https://sourceforge.net/projects/halsteadmetricstool /

123

7x O Predicted @ Actual
2 6x
%5)(
S 4x
5 3x
=
EZX
x ELLEL I
Ox i HeUE UL L TR LE UL LU UL UL UL TR T U T LT TR UL U TR
HTU T T T T L K= - an ks 89 2 s 0™ v — A
EESEEMEE S ESEEITTSIEZEEEES 22288888855
— = = Bp = e =1 QO Rr »uc T 5}
S s .o 2 = = S 278 8558 = eI 33303 EF o 9
aa EE T2 EaSE £E83g%Q 3y <£:552288Es EEE
s 2 s g8 538¢ 28 S2EERBETEZ ~ a3
E 5% ©o T—— g< A g A= =
S O > = 5_‘“ 2
= = 2
SRS}
o O

Figure 46: Predicted vs. actual programming effort increase using regression
analysis

2x .
T OPredicted @ Actual
.0X
%1.6){
5 1.4x
E1s
2x
2
o Ix
0.8x
0.6x M8t HE U HE LR CUE LR UE LR U L R R U U L U L R U R
5T T T T T2 HD T A E 0 OB E ODT 2 —q
EEBEEUEEPEEESRISSTdE285EES 55882 E8E%Y
- = = &n = FE- -] = a, Q9 wBr B g 9]
SN2 MRS = = 5 ° = O S B2 88 Q@ <2 .= + o o
amEE G FaSE £83%% 2§ £IS:22:22 EEE
3 T 23 E2327 88 2L ST EEZZTE v e
& 88 tg 7 F g ~= =
g g = @
o QO

Figure 47: Predicted vs. actual LoC increase using regression analysis

CPU version. Nevertheless, we decided to maintain the original structure of
the applications, without making any modifications. Due to these cases, we
employ the median absolute percentage error (MdAPE) approach, which is
less sensitive to outliers. According to this analysis, we have an error less
than 15% (85% of accuracy).

Although we mentioned that the LoC metric may not be a good estimator
of the programming effort, it would be interesting to use it in our predictors
as a more traditional metric. In this regard, Figure 47 shows the accuracy
of using the proposed models to predict the CUDA code development effort
expressed in LoC increment. The prediction accuracy is considered high
(87.3%).

After comparing the actual values of the effort expressed using the Hal-
stead’s Effort metric as well as the simple LoC increase (Figures 46 and
47), we might confirm that by using advance metrics, such as the Halstead’s
Effort, the programming effort required for developing CUDA code may be

124

captured more accurately than using LoC. We notice that Effort ranges from
x1 to x8, while LoC ranges from x1 to x2. However, in many cases the
increase in LoC can be safely attributed to statements such as definitions and
variable initialization, which cannot be directly related to programming ef-
fort. On the other hand, Effort is mainly affected by the number of operands,
operators and function calls. Therefore, programming effort is more accu-
rately expressed through Effort. Indeed, in Figure 47 we observe that there
are some applications in which there is a very small LoC increase, but the ef-
fort increases by more than x4. This observation is in line with Shihab et al.
that state that relying in LoC often leads to underestimation of programming
effort [170].

5.5.3 Combination of Programming Effort Estimation and Accel-
eration Gains Prediction

The analysis of the programming effort presented above, inspired us to
propose a final methodology that combines the effort with the prediction of
energy gains described in Section 5.3 in a single tool-flow that aims to help
developers investigate the GPU acceleration of their applications [172].

The proposed methodology is depicted in Figure 48. The input of the
methodology is the source code of the CPU application and the output is
the predicted energy gains by acceleration, as well as the programming effort
needed to develop the CUDA version of the CPU application code. The
methodology consists of the following steps:

e Hotspot identification (Section 5.1)
e Prediction of acceleration gains by static analysis (Section 5.3.2)
e Prediction of acceleration gains by dynamic analysis (Section 5.3.3)

e Programming effort prediction (Section 5.5.2)

The output of the methodology is shown in Figure 48. A CPU application un-
der analysis is classified into one of the three categories: ”No gains”, "Moder-
ate” or ”"High gains” with respect to the predicted energy consumption gains
by GPU acceleration. Fine-grained energy consumption prediction, along
with programming effort prediction is provided for the applications classified
into the ”Moderate gains” category.

The methodology reports the prediction of the programming effort re-
quired to develop CUDA code, only for the applications classified into the
"Moderate gains” category. We make the assumption that for applications

125

(Application source code)
y

| Hotspot identification |
|

|

|
I
|
I
Static analysis for energy gains :
I
I
I
I

estimation

Dynamic analysis for energy gains

Moderate estimation
&No gains o ‘ v *
oderate gains [T p gramming
High gains effort estimation
No gains l

| |
Output | Output :Outputg A threshold
Ener ains !] | ‘s | .- application
ichia g = | Energy gains | g
t%lreshold | Ix or lower %‘3
| | =
| |

Prog. effort

E

Figure 48: Overview of the proposed methodology

classified into "High gains”, the CUDA version will be developed no matter
how much programming effort is required. However, for applications classi-
fied into the ”Moderate gains”, programming effort may affect developers’
decision about developing CUDA or not, especially if the predicted energy
gains by the regression step are relatively low.

For the moderate gains, the output of the proposed methodology is de-
picted in Figure 49. The Figure shows the predicted energy gains on Tegra
X1 (see Section 3) vs. the predicted Effort required to develop the GPU
version of each application in comparison to the corresponding CPU version.
Each point corresponds to a single hotspot. 55 hotspots were classified into
the "Moderate gains” category, while 30 were classified into "High gains”
and for 15 hotspots ”No gains” were predicted.

126

High gains

X16 -------------- .-.- l.ll EEEEEEEEEEEEEEENEENEEE
x14 o0 o
x12
£ 10 o°))
o0 X 1o} Moderate
E‘l) x8 o (o) gains
2
5 xb 8 o 00 8
x4 ." .. :.
x2 %) o°
N eEmmmsEEEEsEEEEs Pk
x0 x2 x4 X6 x8

Effort increase

Figure 49: Output of combining the programming effort estimation with the
acceleration gains prediction methodology for the Polybench and Rodinia
hotspots that are classified into the "Moderate gains” category.

5.6 Implementation of Energy-aware Software Analy-
sis Tools

In this Section, we describe the implementation of an Energy-aware Soft-
ware Analysis Toolbox that incorporates the methods described in Chapter
4 as well as in Sections 5.2 and 5.3. We clarify that this work is part of
the European Union’s Project SDK4ED?" [177] [178]. The thesis author’s
contributions are on the implementation of the Energy Toolbox backend’s
services®®, as well as on the structure of the Energy Toolbox front-end based
on the template of the project. The usability of the introduced solution is

demonstrated using a real-life application designed by Neurasmus®.

5.6.1 Back-end micro-services

The architecture of the framework back-end is depicted in Figure 50.
More specifically, the central (Manage Energy Consumption) component con-
sists of two basic parts that correspond to the sub-components of the method-
ology presented in Figure 21. The first one is responsible for monitoring and

2"https://sdk4ed.eu/, funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 780572

28The design of these components were done together with Christos P. Lamprakos and
Kostantinos Salapas from National Technical University of Athens - Microlab

Pnttp://www.neurasmus.nl/, the author would like to thank Assoc. Prof. Christos
Strydis (Erasmus MC) for providing the application

127

Energy Dashboard (Front-end)
API

<<<Database>>>
Energy DB

Manage Energy Consumption @ @ dg;
| Python Flask & @

plak

S— . T —

Consumption Analysis i iEstimation&Optimization;
P Acceleration :

= C]ai;ma loﬂnﬂl Hotspots i il[Pintool] [Clang ||:
= | | [_Clang WJ1|i . -

[LLVM-mca | T Collorng | Valgrind _ #a
— allgrin - | & E I—. N

[Scikit Learn @ : “{):(> Tensorflow | |}
Mg |_Cachegrind ;" Scikit Learn d o §
i| Indicators Monitoring |l i
[Linux Perf | | L lE Python ¢ |

[Valonnd &k [Python ¢ EData—ﬂow/ConcurrecyE
s :

Figure 50: Energy analysis framework back-end tools

estimating the Energy Consumption, reporting indicators and identifying the
most energy consuming parts of the code (hotspots). Developers should fo-
cus on these code blocks to potentially reduce the energy consumption or
improve the performance of the executed operations. The latter (Estimation
& Optimization) aims at suggesting the proper source-code transformations
that will potentially reduce the energy consumption of the operations exe-
cuted in this block. The functionality of these mechanisms is described in
Chapter 4 and the rest of Chapter 5.

The framework is implemented as a Docker Container, while the entry
point that receives requests through APIs and returns results in a json for-
mat is a RESTful web server that uses the Python Flask framework. The
Consumption Analysis sub-component first checks the database for previous
analysis results on the same project. If none exists, it proceeds with the
code profiling task. All this information is passed to the next step, which is
responsible for suggesting a proper optimization.

5.6.1.1 Consumption Analysis Component back-end Both the en-
ergy estimation and hotspots identification functionalities require a source-
code-parsing task. This procedure is performed for compiling and breaking
the application source file in blocks, such as for and while statements or func-
tions. More specifically, the AST tree produced by the compiler front-end

128

is analysed. For those purposes, the Clang compiler is used coupled with
Python libraries (libclang). The aforementioned mechanism is implemented
in a Python module.

For the hotspots identification, Valgrind and Linux Perf are used for fine-
grain profiling of the applications execution (hprof is used for partially sup-
porting Java applications). The generated output of the application profiling
is recorded into log files. For each produced statement by the previously de-
scribed procedure, the profiling results are analysed in order to characterize
the statement as a hot-spot or not. For each hot-spot, the corresponding val-
ues of performance/energy indicators such as CPU cycles and cache misses
are provided. All this information is forwarded to the Optimization compo-
nent, which is responsible for suggesting suitable optimizations.

Although this approach produces accurate results, it requires the devel-
oper to use the appropriate structure that profiling tools need. Also, as
mentioned in Chapter 4 and Section 5.3.3, the profiling procedure adds ex-
ecution time overhead. Therefore, an alternative static analysis process is
also introduced. For the energy estimation through static analysis, gcc and
CLANG are used for compiling, while all the analysis is written in Python.
As referred in Section 4.4.2, LLVM-mca is used for getting the features pre-
sented before. Python Scikit Learn is used for implementing the estimation
models.

5.6.1.2 Optimization Component back-end functionality The hot-
spots identified by the aforementioned component (Consumption Analysis),
are further analyzed for monitoring the values of features (described in Sec-
tion 5) in order to suggest optimizations based on the potential energy gains
estimation.

A dynamic-analysis-based classification is applied in order to identify the
hotspots for which energy gains by acceleration are expected (see Section
5.3.3). The CPU code of each hotspot is analyzed, to monitor the accelerator-
specific indicators. These indicators capture the extent by which the archi-
tectural features of the accelerator can be exploited. The values of these
indicators are forwarded to the classification model (implemented in Python
Scikit-learn). It is worth mentioning that we used only GPU accelerators
but other types of accelerators can also be supported if the corresponding
dataset is provided.

Finally the “Optimization” part (written in Python) of the component
proposes energy consumption refactorings/optimizations: Data-flow opti-
mizations are proposed in the case that the hot-spot under analysis includes
nested loops that have a number of cache misses that is beyond a thresh-

129

old (3%), concurrency-related optimizations are suggested when we observe
data races between the application threads and acceleration optimizations
are recommended if the potential energy gains prediction phase estimates
that offloading the hot-spot code on an acceleration will lead to energy con-
sumption gains.

5.6.1.3 Language Support With respect to programming language sup-
port, the proposed tools are fully functional for C/C++ (indicators moni-
toring, hotspot identification and energy estimation). Some first steps for
supporting also Java (indicators monitoring and hotspot identification) have
been done using the hprof tool for profiling the applications. While not fully
integrated in the platform, the majority of the tools are tested and work also
for Python. Of course, in order to perform an analysis, the application must
meet the standards and requirements set out on the SDK4ED Wiki page®.

5.6.1.4 Git Support The introduced framework analyses projects that
are stored in git repositories. For supporting this functionality, there is a
special API (or parameters on the API) and the back-end includes all the
mechanisms that are necessary for cloning a git repository (from a user-
provided URL), using a user-name and a token for credentials in order to get
the source files and all the information needed for performing the analysis.
This capability makes the proposed framework more useful, following the
same direction with popular software developing tools, making the introduced
tools capable of beeing a part of the entire applications development lifecycle.
In Section 5.6.4, the importance of git Support and the database (described
in the next paragraph), will be highlighted through the use of the proposed
tool during the developement of a real application.

5.6.1.5 Database implementation In order to support the proposed
framework and store the analysis results, a MongoDB database is used. The
results are retrieved from the database, when the API requests an analysis for
a project commit that was analysed before. The database is also very useful
for providing the results and services to other tools, as well as for supporting
possible future extensions, that need access to historical analysis data. The
database is implemented as a separate Docker container that communicates
with the main toolbox Docker container via local port 27017. The data is
stored in JSON format and the project name is the key used for searching
the required results.

30https://gitlab.seis.iti.gr/sdkded-wiki/wiki-home/wikis/Energy-Toolbox

130

5.6.1.6 API implementation The Energy Toolbox API includes both
the Consumption Analysis API and the Energy Optimization API. A call
to this API tests the whole functionality of the Energy Toolbox. The URL
given in Table 8 represents the call to the Energy Toolbox API including
the requested information (details about each parameter can be found in
SDK4ED Project Wiki page).

Table 8: Energy Toolbox API call

http://<energy_toollbox_endpoint>:3002/analysis?new=T&
user=<github-user>&token=<github-token>&url=<github-url>&
commit=<github_commit>&type=<analysis-type>

url | The URL of the git repository to be analyzed

user | The user name of the repository owner
token | Private access token in the case of private repo

type | whether to run a full, hotspots-only, static-only, acceleration
or history analysis. Supported values: ['full’, "hotspots’,
'static’, acceleration’, "history’]
new | run a new analysis, or return existing results (if any)

5.6.2 Front-end

React is a JavaScript library for building user interfaces for applications.
React can be used as a base for the development of web applications, as it
is very effective for fetching changing data. React applications require the
use of additional libraries for state management, routing, and interaction
with APIs. The GUI of the introduced framework is implemented in React
Framework [177]. The Energy dashpage is responsible for sending requests
to the back-end APIs, according to the user input, as well as for visualizing
and presenting the results of the analysis to the user.

The provided user interface offers the user the ability to select the ap-
plications for analysis and see the results as well as the recommendations
that are produced by the proposed framework. Requests from the front-
end are sent to the back-end in order to specify the microservices that will
be executed. The Ul is part of the SDK4ED platform [178], which can be
found online just for demo purposes on platform.sdk4ed.eu (some com-
ponents provide limited functionality on the online version of the tool for
security reasons and due to proprietary back-end support tools, but the tool
can be easily installed locally). A walk-through scenario coupled with some
screenshots of the Front-end will be presented in Section 5.6.4, where the use

131

of the proposed framework on a real-life applications development cycle is
presented.

5.6.3 Extensibility

One of the main goals of the proposed platform is to be extensible: The
user can add new devices and systems. The GUI and backend include re-
ports and guidelines, as well as useful scripts and tools. In this section,
we present the main steps that must be followed to add a new system to
the two introduced components, namely energy estimation and acceleration
prediction.

5.6.3.1 Energy Estimation The main backend python script receives
as input the source files of an application and performs the energy analysis for
all the functions and loop statements. There is a specific call on an energy
estimation function that takes as input the data collected from a specific
platform. In order to add a new platform, the energy consumption of the
programs of the training-set in the specific new platform must be computed
and included in the file.

e Step 1 (Back-End): Collect the data for the new device and provide an
additional call to the energy estimation function, giving the new data
as an argument. For the case that the new platform runs a linux OS,
the proposed platform provides a script that automates the procedure.
The user has to add the commands needed for the specific platform
(energy data received from external monitors, power monitors, specific
paths from the device tree etc). If energy sensors are not available, a
user defined estimation (such as a power-delay product) can be given.

e Step 2 (Back-End): In order for the user to add the new platform,
two extra dictionaries to store the results need to be added. All the
dictionaries are stored in a json file that is loaded when a specific event
in the main platform page is triggered. Comments in the source code
guide the user.

e Step 3 (Front-End): The prediction results are shown in the static
analysis panel and are taken from the json file sent by the back-end
services. The user can choose a specific platform from a drop-down list
to show the prediction results. There is a special method that loads the
results into the page. If the user wants to add a platform, an additional
condition needs to be added in the method, including the name of the
platform, which must be the same as it is defined in the back-end.

132

5.6.3.2 Acceleration Prediction This sub-component calculates a num-
ber of Acceleration Specific indicators based on which, a classification model
is used to estimate the potential energy gains of using a specific acceleration
unit. The step-by-step guidelines provided show how to add predictions for
new GPU devices. A prerequisite for being able to achieve this is that the
new device must include an energy sensor:

e Step 1: Download the dataset benchmarks?!
e Step 2: Compile the dataset in the new device/system.

e Step 3: Run the dataset in the new device. The developer has to
update the scripts providing the monitoring of power sensors of the
new device.

e Step 4: The final dataset must be added in the back-end and more
precisely in specific places given in the Wiki page of the platform. This
process is guided by comments.

5.6.4 Energy Toolbox demonstration

This Section demonstrates the use of energy toolbox by presenting screen-
shots of the SDK4ED platform with analysis results of analysing an embed-
ded healthcare application developed by Neurasmus (IMD) [179].

The IMD application is developed by Neurasmus and it is one of the
pilot use-cases presented in the context of the SDK4ED EU project. It is
an embedded application that runs on standalone battery-powered devices.
These devices are equipped with wireless transceivers, able to communicate
with external reader/programmer for remote monitoring, testing and up-
dating. The application includes functionality for supporting receiving data
from (ECoG/EEG) sensors via ADC periodically, performing FIR filtering
on the input samples to approximate a Morlet wavelet, deciding whether a
seizure is detected or not based on the FIR output and applying optogenetic
or electrical stimulus via GPIO in order to suppress the seizure.

The first up-and-running version of the proposed framework was employed
for assisting the development of the IMD-application by Neurasmus.

The first version of the application was an emulator of the final system
that was running on a linux environment, written in C/C++ (imd-v1.3 ver-
sion) [180]. The implementation on the hardware that follows is based on this
first version that was used for experiments. Figure 51 presents the results

3lhttps://gitlab.seis.iti.gr/hmar/energy_toolbox_new_platform_addition.
git

133

hbdd
rewy

L g L

Total CPU cycles Total Data Races Total Memory accesses
7114619 311 1546270

Profilling Tools

U > —

Total Ratio of branch misses Total | Cache miss rate Total D Cache miss rate

2.53% 0.5% 6.88%

Figure 51: Indicators results panel

of Energy indicators monitoring. We see that the total number of Memory
accesses is 1546270, which is considered a relatively small number, while the
data cache misses (6.88%) are mainly cold misses at the beginning of the
application, that do not lead to any cache-blocking optimization. Another
important indicator is the Data Races. The imd-v1.3 version of the Neuras-
mus use-case consists of 4 threads, simulating a realistic healthcare wearables
scenario. The analysis of the application based on the introduced tool re-
vealed a significant number of recommendations by the Valgrind DRD tool.
DRD is the thread error detector of the Valgrind suite, which is integrated in
the introduced framework. DRD provides recommendations for eliminating
data races and thread starvation. In the Neurasmus use case, DRD detected
a large number of data races in the use of I/O C libraries and more specif-
ically, in the use of printf(), scanf() and similar I/O functions. Since these
functions are not implemented in a thread-safe manner, they may provide
erroneous output results, leading to wasted energy consumption. DRD rec-
ommended the use of mutexes to eliminate this issue. With regard to the
identified energy hotspots, the tool can report hotspots both on functions and
in statements level by using the "Hotspot Granularity” button. It is worth
mentioning that most of the identified hotspots correspond to the locks wait-
ing for the rest of the application threads, while there is just one for loop
statement in the energy hotspots.

The framework proposes also a for loop hotspot as a candidate block for
acceleration due to the fact that there is a large instruction parallelism com-
bined with a few cold references and control operations, while a significant
part of operations are memory operations that do not refer to the same mem-
ory address. Indeed, this is a parallelizable loop, however this loop performs
a very small number of iterations and therefore the use of acceleration does
not make sense as we will have more delays on the transmission of the data
and thus no such an optimization was applied.

134

Energy consumption and execution time estimation
PLATFORM# GRANULARITY$. Total Energy

= ARM Cortex

[AYT]

R
Time A7
Function Source
Energy st Ins Load Store ; 5.779e-5
Est (J name File
st()) (ms) -@- Total Energy
8.87e-7 1.508 29715 10513 4381 main imdcode.c e ARM Cortex
8.63e-8 0.147 2885 1024 420 cmac imdcode.c MO+
8.874e-7

8.36e-8 0.142 2803 992 408 encrypt mistyl.c

Figure 52: Static analysis results panel

The next versions of this use-case were implemented on the hardware
platform and were continuously monitored through the proposed framework.
The introduced static analysis energy estimation was extensively used in
these versions. As an example, Figure 52 shows the results of the static anal-
ysis for the last version of the application. The static analysis provides a fast
and easy way to have estimations of the energy and to compare the efficiency
of using different platforms, assisting the developer to select the most energy
efficient CPU architecture, giving also the trade-off between execution time
and energy consumption. The panel consists of two parts: Profiling results
per function or loop on the left presented table. Users can configure this
selecting, by using the “Granularity” button. By setting different granular-
ity levels the results in the table below are updated accordingly. Energy is
estimated for each loop, while additional information is given. For example,
in Figure 52 the estimated time and energy per function for ARM Cortex
MO+, finally used in the use-case, are presented. Also, the user can select
the platform for which Time and Energy is estimated. Results for running
the entire application are also given for different embedded systems. For ex-
ample, in this particular use-case, selecting the microprocessor ARM Cortex
MO+ is more energy efficient but with a penalty on the response time and
the quality of service. Using this microcontroller can achieve energy reduc-
tion up to 98% compared to using the more complex ARM Cortex A57. We
should remind here that the introduced framework provides the option of
adding more platforms. There are relevant guidelines in SDK4ED Project’s
Wiki page.

The static-analysis estimations for all the revisions (including minor Git
commits) are presented in Figure 53 (as it is depicted in the GUI). We can
see that the estimated energy consumption is lower when using ARM Cortex
MO+. There is also an increase in energy consumption in the middle of

135

Estimated Energy consumption over project versions

0.00001
w
o
=2

E 0.000001
 —
i=l
a

E 1e-7
[72]
=
Q
(8]

= 1e-8
@
=
w

1e-9

- ARM Cortex-A57 - ARM Cortex M0+
1e-10
0 10 20 30 40
Versions

Figure 53: History results panel (IMD use-case analysis)

the project’s history. A cryptographic function was added in these versions.
After measuring the energy overhead in the next versions a special hardware
crypto peripheral was employed for this purpose and the cpu energy was
reduced by 95%. Note that the proposed framework only analyse the software
part of the applications. These results were considered very useful during the
development phase as they provide fast estimations of how the new code or
refactorings affect the energy consumption [153].

5.7 Related work and comparison

Regarding the prediction of the acceleration gains, a detailed comparison
of the method presented in this dissertation against the most recent perfor-
mance prediction tools (i.e. after 2015) is depicted in Table 9. These tools
analyze CPU code to predict potential performance gains by GPU accelera-
tion (speed-up). XAPP [78] and CGPredict [79] use dynamic instrumenta-
tion to analyze CPU code. XAPP leverages machine learning techniques for
prediction, while CGPredict uses analytical models. A first step towards a
static analysis approach using random forest classification with two output
classes has also been proposed recently [150]. Other recent works that belong
to the broad category of performance predictors are the Compass and Au-
tomatch tools [80,81]. Compass analyzes C code and generates application
performance models, while Automatch detects application characteristics and
through the generation of analytical modeling predicts the performance of

136

Table 9: Comparison against related recently designed approaches

Approach [78] [79] [150] Proposed
Analvsis Tyvpe Dynamic Dynamic Static Combination
¥ P instrumentation instrumentation Analysis (advantages of both)
. Energy Gain &
Predicted value | Speed-up Speed-up Speed-up Progr. Effort
Targeted CPU-GPGPU CPU-GPGPU CPU-GPGPU Embedded
platform
Provide results No. dvnamic
only based on No No A Yes
. . info needed
static analysis
Training Benchmarks
Dataset Benchmarks Benchmarks Benchmarks & Synthetic
Ability to Dataset and
reproduce No No No .
. models provided
the analysis
Static
classification: 76%
Dynamic
76% - 88% 81% 62-85% classification: 85.3%
Accuracy . . S .
regression regression classification ~ Dynamic
Regr: 63% (median)
Effort
Regression: 85%
Extensibility / - P oo High (guidelines
Usability Medium Medium Medium scripts provided)

execution in various accelerators.

Most of the aforementioned predictors rely on dynamic instrumentation
techniques. After profiling the applications, they extract features that feed
models that generate predictions. Although dynamic instrumentation is a
well established analysis and profiling technique and is supported by widely-
used tools (e.g. Valgrind [57], Pin [82]), it suffers from a large execution
time overhead, as mentioned in Section 5.3.6. In addition, the predictors
that entirely rely on dynamic instrumentation inherit the limitations and
the constraints of the instrumentation tools that integrate, such as the need
for specific configurations and the requirement of source code modifications.
As a result, some first approaches of designing predictors that rely on static
analysis of source code have recently been proposed [150]. However these
approaches still require some dynamic information, such as the number of
loop iterations by the user. Static analysis methods trade prediction accuracy
or granularity level for user friendliness and short analysis time overhead.
The methodology described in this work proposes a combination of static and
dynamic analysis approaches to a single tool-flow, to exploit the advantages
of both approaches, to provide flexibility to application developers, offering

137

also the capability of using static analysis only, when feasible, to avoid large
time overhead.

Although the existing approaches provide predictions in terms of execu-
tion time, they do not consider energy consumption predictions. Indeed,
energy efficiency is a critical design constraint, especially in the embedded
systems domain. Therefore, in the context of this thesis, we extend ex-
isting approaches towards the prediction of energy consumption gains by
acceleration on heterogeneous embedded devices. This is performed by in-
vestigating the potential use of machine learning features already proposed in
the literature, but for building energy consumption (instead of performance)
prediction models.

Finally, the existing tools predict only execution time gains without con-
sidering the programming effort that is required to achieve the predicted
gains. Few attempts to quantify the programming effort of accelerating ap-
plications can be found in the literature, which are either based on empirical
investigations [168], or rely on relatively simple metrics. A typical example
of such a metric, is the Lines-of-Code (LoC) of accelerator-specific code (i.e.
CUDA, OpenCL) versus the LoC of the corresponding CPU code [169]. How-
ever, using LoC may not be a good indicator of programming effort [170].
In addition, these approaches measure the effort on existing code, while it is
very important to know the effort required before writing the new code.

We should mention that our main purpose is to provide an extensible
tool that makes the prediction of energy gains by accelerating in heteroge-
neous embedded devices as well as estimating the effort of developing GPU-
accelerated code prior development feasible and not to increase the accuracy
of models as much as possible. The advantages of the work presented in this
dissertation over the relevant approaches are summarized below:

e Combining both static and dynamic analysis approaches and exploiting
the advantages of both of them into a single tool-flow.

e Designing a static analysis component relies entirely on analysing source
code using text analytics techniques.

e Extending existing approaches ([78] [151]), that provide speedup pre-
dictions, towards estimating the potential energy gains too by studying
the correlation of the used features with energy consumption.

e To the best of the author’s knowledge this is a first approach towards
designing a tool that estimates programming effort (expessed using the
Halstead’s effort metric) of developing GPU code using the CPU code
as input.

138

5.8 Conclusion

A framework for analyzing applications for improving energy consump-
tion has been introduced. The proposed method enables optimization sug-
gestions, with particular emphasis on the investigation of potential energy
savings for individual blocks of the application by using GPU accelerators.
The introduced techniques rely on both static and dynamic analysis of CPU
source code to provide a compromise between prediction granularity and time
overhead. We concluded that approaches focusing on GPGPU speed-up can
be extended towards Energy Consumption predictions for heterogeneous em-
bedded systems. Accuracy evaluation performed in well-known platforms,
where energy measurements are enabled by sensor, shows that the proposed
methodology is able to provide acceptable predictions and that a future in-
crease of the size of the dataset has the potential to further improve the
accuracy of the models.

In addition, the impact of the proposed optimizations on design time soft-
ware quality metrics was studied and a method for predicting programming
effort prior developing the optimized code was proposed.

As a result, this Chapter presents a methodology of designing new tools
that assist application developers to decide whether to invest in optimizing
CPU application (mostly by using GPU accelerating), considering not only
speed-up but energy consumption and programming effort for developing
CUDA code, as well.

Moreover, the introduced models were used to build another type of soft-
ware analysis tool that suggests energy-aware placement solutions of the
application’s individual functions on Edge devices.

Finally, a tool-flow that implements the proposed methods was integrated
as a number micro-services, combined with a database, github support and
graphical user interface. After evaluating the proposed tools in applications
from well-known benchmark suites, a walk-through scenario using a real-life
application was demonstrated.

139

Chapter 6

6 The Smart-grid HVAC Control use-case

The constant need for energy efficiency and the design of new renewable
energy and smart-grid technologies, foretell that in the near future building
facilities will be active participants in the energy market. This trend is ex-
pected to lead to autonomous micro-grids that incorporate energy trading
capabilities. The challenges posed by the smart-grid concept can be ad-
dressed by the new CPS - IoT technologies. More specifically, the real-time
monitoring and action capabilities of these technologies allow the system to
be continuously refined to an optimal state. Utilities and information, such as
market-driven pricing, are available even to the end users [30] [181]. Energy
pricing policies (expressed as a price per kilowatt hour) are now beginning
to abandon fixed pricing (24/7) and follow variable pricing mechanisms that
make changes based on day, time of day or more dynamic events, such as
weather conditions or expected load requirements.

6.1 Problem Definition

This section introduces the template of our case study. In order for the
reader to understand the rest of this Chapter easily, Table 10 summarizes the
symbols used in this analysis. The targeted study corresponds to a micro-grid
environment, depicted schematically in Figure 54. In detail, our template in-
cludes multiple energy sources (e.g., solar, wind, bio-gas) and nodes that are
in need of energy, such as the HVAC systems. Throughout this Chapter we
focus on the orchestration task (highlighted with red color). These mecha-
nisms aim to offer optimal control of system’s components (energy sources)
in terms of computing the HVAC thermostat set-points per thermal zone. In
order to support the HVAC control task, a number of sensors acquire data
related to weather (temperature, humidity, solar radiation and forecasts),
building conditions (indoor temperature/humidity) and residents activity.
This data is transferred to the main controller in order to compute optimal
actions that co-optimize thermal comfort and energy cost metrics.

140

Table 10: The smart-grid HVAC control use-case Symbols

Symbols
k Number if buildings in micro-grid environment
t Time-step
ag Control actions (thermostat set-points) at time-step ¢

Ei(t,ai) Energy consumption for building ¢ at time-step ¢
ES(t,al) Energy purchased from the grid for building i at time-step ¢
EFY(t) Renewable energy for building i at time-step ¢

P(t) Trading price for buying/selling energy at time-step ¢
tr Trade-off between energy and thermal comfort optimization
AF Available funds for buying energy budget from the grid

Ci(t,al) PPD for building i at time-step ¢
Climit Maximum acceptable PPD (based on ASHRAE standard [132])

Cest Estimated thermal comfort per thermal zone
Chreal Actual thermal comfort per thermal zone

Eeg Estimated energy consumption per thermal zone
Erea Actual energy consumption per thermal zone

T4 Reward at time-step t

Ct Cost at time-step ¢ (a combination of energy and comfort)
St State of the building at time-step ¢

T Outdoors temperature at time-step ¢

R, Solar Radiation at time-step t

" Thermal Zone Indoors temperature at time-step ¢
H,; Thermal Zone Indoors Humidity at time-step ¢

Throughout this Section we discuss the analytical form of the HVAC opti-
mization problem. For this purpose, we build a multi-objective optimization
problem (MOO), formally defined with Equation 11, where E and C' give the
two objectives (Energy consumption and occupants’ thermal Comfort) un-
der minimization. C' corresponds to the Predicted Percentage of Dissatisfied
occupants, while C' < ;i gives the thermal comfort constraints that have
to be satisfied. At this notation, «; corresponds to the input variables that
refer to the temperature set-point of the target HVAC system in time-step .
Finally, we consider that objective functions are also related to an external
vector of environmental variables s;.

The proposed framework focuses to a subset of the general MOO prob-
lem, where the cost function is expressed as a weighted sum of the single
objectives [116]. However, the increased complexity of contemporary build-
ings makes it prohibiting, or even impossible, to consider at Equation 11 an

141

MICRO-GRID !

A

Main Power Grid Renewable sources

: >Q> :

' PN~ HVAC System Orchestrator

Tlhermal ' Esa\ig (Monitor and Control) E

mpact ' N N

Weather : b jé sensorsdatay @ wion
= 2 =

T/ Energy? E

Figure 54: Overview of the employed Smart-Grid case study (emphasis on
the HVAC control).

accurate analytical description, while providing a Plug&Play solution; thus,
the definition of the problem that this chapter aims to solve is given by the
Equation 11 coupled with the following properties:

1. the detailed form of the objective functions (£ (Energy) and C' (thermal
Comfort)) is unknown;

2. the objective functions are not only related to the temperature set-
point, but also to the buildings environment, the occupants behaviour
etc.;

3. by considering discrete time/events (time-steps), the controllers actions
are evaluated once per time-step;

4. No prior information is given.

Minimize : tr x E(ay, s¢) + (1 —tr) x C(ay, s¢)
subject to : C(ay, $t) < Climit

(11)

The target case study considers five buildings with multiple thermal zones
(summarized in Table 11), while the efficiency of the proposed orchestrator is
evaluated with the usage of the well-established EnergyPlus suite [182]. The

142

Table 11: Summary of building properties.

Surface Thermal Operating Warm-up Random

Building
area zones hours phase occupancy

m :00am-9:00pm) es
#1 350m? 8 6:00 9:00 N Y

m :00am—9:00pm es es
#2 525m? 10 8:00 9:00 Y Y
#3 420m? 10 8:00am—5:00pm Yes Yes
#4 280m? 6 7:00am-8:00pm Yes Yes
#5 228m? 4 6:00am—6:00pm No Yes

buildings’ modeling was performed in detailed manner? [130]. The weather
and energy pricing data, used in the experiments, correspond to publicly
available information for 2010 [181].

By appropriately configuring the temperature set-point it is possible to
improve the residents’ thermal comfort and also reduce the energy consump-
tion [183]. Assuming a grid consisted of & buildings, the quality of proposed
solution is quantified with the (already mentioned) two orthogonal metrics,
namely the energy cost and the thermal comfort level. A more detailed form
of Equation 11 is given in Equation 12. Factors EX (¢, S¢) and C;(t, S!) denote
the Energy purchased from the main-grid and the average thermal Comfort,
respectively, for building i during the time-step ¢. a! is a vector with the
actions of our controller and more specifically the temperature set-points for
the building 7 during time-step t. We should menthion that the building’s
energy cost per time-step E(¢,a’) differs from the total energy consump-
tion E;(t, al), since it takes also into consideration the power saving from PV
panels (EPY(t)). Additionally, by definition the comfort metric is improved
whenever its value is reduced (as the Predicted Percentage of Dissatisfied -
PPD metric was used).

Cost(t) = Z <t7‘ X ZZ EC(t,al) + (1 —tr) x ZZ Ci(t, ai)) (12)

vt

The aforementioned energy cost is formulated by Equation 13: In case
that the i-th building’s energy requirements (E;(t, al)) exceed the sum of en-
ergy provided by the PV panels (EXV(t)), the additional demand is satisfied
by purchasing energy from the main-grid at the current price (P(¢)). On the
contrary, if the energy budget for the desired HVAC operation is available

32The modeling of the buildings was part of the PEBBLE FP7 project funded by the
European Commission under the grand agreement 248537.

143

from renewable sources (ETV (1)) the energy cost is assumed to be 0. Extra
energy can be stored in batteries, but this analysis goes beyond the scope
of this dissertation. The proposed methods, however, could easily take this
case into account.

(Ei(t,a;') - EfV(t)) x P(t), if E(t,al) > EPY(t)
EiG(tvai) = (13)

0, if EYV(t) > E(t,al)

The energy consumption can be measured with metering devices, while
the residents’ thermal comfort can only be estimated. For our study, we
employ the Fanger thermal comfort [1]. This model relates environmental
and physiological factors in conjunction to the thermal sensation in order to
estimate the Predicted Percentage of Dissatisfied (PPD) people in a room.
We have to mention that both the energy metering device, as well as the
PPD metric, are not applicable to the online control algorithms since they
report results only for previous time-steps (up to ¢ — 1). To overcome this
limitation, we estimate the impact of candidate temperature set-points in
HVAC’s energy and resident’s thermal comfort.

Finally, the factor ¢r in Equations 11 and 12 defines the relative impor-
tance of optimizing either the energy, or the comfort objective (trade-off).
A proper normalization of the objectives is necessary. For this purpose, the
ES(t,al) is normalized over the nominal energy of HVAC system, whereas
the C;(t,a!) is normalized over its maximum observed value. Usually, the
improvement of the residents’ thermal comfort imposes additional energy
consumption for cooling/heating the corresponding thermal zone. As it will
be shown in Section 6.4, this formulation enables the study of alternative
operating scenarios:

e Scenario 1: The goal is to achieve a compromise between energy con-
sumption Z(EzG (t,ai)) and thermal comfort Z(C’At,ai)) metrics.
Vi Vi

This operation mode considers that 0< ¢r <1, while regarding our im-
plementation we study the case where both energy consumption and
resident’s thermal comfort are of equal importance (tr = 0.5).

e Scenario 2: Minimize energy consumption Z(EZG (t, ai)) while re-
Vi

specting a minimum threshold for the PPD metric. According to stan-
dards there are specific ranges for PPD in order for the thermal condi-
tions to be acceptable for residents. For example according ASHRAE

144

standard [132], the range is 0-10%, while according EN15251 European
standard PPD can be up to 15%. Hence, we consider that tr = 1, while
PPD is up to the limit (Equation 14).

e Scenario 3: Optimize thermal comfort (tr = 0) without exceeding a
predefined energy budget for the experiment’s duration (mentioned as
available funds or AF), as it is formulated by Equation 15.

Min; (i}fﬁ(zﬁ,a;’)) (14)

st.Viel.. . k: C’l(t,ai) < Climit

Mm%: (i@(t,ai)) (15)
sty <§Ef(t,ai)) < AF
Vi i=1

The problem sescribed in this Section cannot be considered trivial due
to the intermittent behaviour of the solar energy, the uncertain building’
dynamics, as well as the constant requirement to meet a desired residents’
thermal comfort level. Section 6.1.1 describes the Experimental Framework,
while Section 6.2 gives an overview of the related approaches to the prob-
lem. The proposed approach that offers a plug& play solution based on the
Knapsack algorithm and Linear regression models is presented in Section 6.4.
Finally, Section 6.5 offers experimental results that highlight the superiority
of the proposed method.

6.1.1 Experimental Setup - Simulation testbed

To evaluate the effectiveness of the solutions presented in the next Sec-
tions, we use a well-known simulation testbed presented in [184,185]. Figure
55 depicts an overview of the utilized testbed, which has also been used in a
variety of works [186,187]. The building dynamics and the data of the micro-
grid sensors are produced by the EnergyPlus suite [130] (see also Section 3).

The designed smart termostat controller gathers this data and calculates
the set-points through MATLAB. Data exchanges are facilitated through
BCVTB (Building Controls Virtual TestBed) [131]. As mentioned above, the

145

Building ;

Building dynamics — EnergyPlus [€—Set-points

Building Controls Virtual TestBed (BCVTB)

Set—pointsj

Building dynamics Matlab
Designed
Controller

Figure 55: Simulation testbed of proposed controller

employed building models correspond to actual buildings located in Crete,
Greece and their design is part of the PEBBLE FP7 EU project. All data
required for the thermostat’s control (energy consumption, room humidity,
etc) are outputs of the EnergyPlus suite, ensuring realistic results.

To evaluate the thermostat’s performance, the results are compared with
rule-based control set-points (RBC’s). This is a typical function found in
all cooling/heating devices for setting a ”static” temperature set-point for
some periods (e.g. winter). In the context of this study, a setup with “RBC
23" means that during the experiment the temperature set-point at a given
thermal zone is constantly equal to 23°C. This can be considered as a rea-
sonable comparison because most manual thermostats tend to operate in a
single heating set-point in winter, and a respective cooling set-point in sum-
mer [188]. Similarly, alternative smart thermostat solutions also produce
set-points in the range from 20°C' to 27°C', which is deemed reasonable in
regard of thermal comfort. Fluctuations in these set-points do exist, since
other factors affecting room temperature and user activities could be at play
(open windows, cooking, etc), but still the result of these fluctuations would
be a trajectory varying between the RBC set-points. So, by including a set
of RBC values for comparison, a meaningful assessment against typical user
or smart control can be ensured. In Section 6.5 comparisons against more
sophisticated and well-established solvers are also provided.

6.2 Related work

The problem of deciding upon the HVAC configuration in smart buildings
is a well-established challenge that has been attracting the interest of many
researchers over the years [189] [190] [191] [192]. There are two mainstream
ways for the HVAC configuration according to literature. The first way aims
on designing systems that provide online decision-making [28], while the lat-

146

ter method relies on Model Predictive Control (MPC) [193]. Each method’s
inherent characteristics offer different advantages and characteristics.

More precisely, the online algorithms exhibit limited efficiency compared
to MPC but they are reactive to real-time constraints (i.e., climatic condi-
tions, occupants behaviour, etc). Although MPC for nonlinear systems has
been extensively analyzed and successfully applied in various domains dur-
ing the recent decades [84] [85] [83] due to the significant progress made in
optimal nonlinear control theory [194] [195], they likewise encounter dimen-
sionality issues: in most cases, predictive control computations for nonlinear
systems amount to numerically solving a non-convex high-dimensional math-
ematical problem [86], whose solution may require formidable computational
power for supporting online solutions.

However the typical “black-box” approach of on-line methods (e.g. based
on machine learning techniques) is often criticized [83]. MPC solutions in-
clude controllers that were usually designed along with the system under
control. However, as mentioned before, MPC algorithms cannot support real-
time decisions because their efficiency relies on moving forward in time to
simulate the impact of alternative control strategies. In addition to that, on-
line solvers exhibit lower computational and storage complexities compared
to the corresponding MPC solutions (especially when the buildings’ mod-
elling relies on simulation); thus, they are candidate for being implemented
onto embedded devices

The increased computational requirements of MPC-based algorithms makes
their implementation feasible only on enterprise environments, e.g., as part
of a Building Energy Management (BEM) systems. However, recently there
is an emerging need for solutions that are applicable to residential buildings
as well. This necessity is being clear considering the expanding market of
smart thermostats [196].

In order to alleviate the overhead of the increased computational complex-
ity, meta-heuristics are employed. This type of approaches includes stochas-
tic dynamic programming [26] and genetic algorithms [197]. Furthermore,
methods that rely on empirical models [198], simulation optimization [27]
and event-based optimization (EBO) [190] have also studied. Although these
algorithms trade-off quality of derived solutions with the associated compu-
tational and storage complexities, they are rarely employed as orchestrators
for large-scale systems, such as the one discussed throughout this Chapter,
because the algorithm’s customization phase is firmly tied to the selected
cost function. In addition to that, the adoption of cost function in (meta-
)Jheuristic solvers impose mentionable effort for fine-tuning algorithm’s pa-
rameters and weights.

An alternative way for trading quality (accuracy) with problem’s com-

147

plexity relies on empirical models, such as fuzzy logic [87] [88] [89] [90],
that enable CPS customization without prior detailed modeling of the un-
derline ecosystem. Specifically, the controller employ a fuzzy approximation
scheme (i.e. predefined action plan) according to the feedback acquired by
sensors. Supervised learning techniques, such as Artificial Neural Networks
(ANNs) [92] [91], are also recently gaining a lot of attention because they do
not require detailed study of the micro-grid dynamics. More specifically, by
training these models with history data, the ANN learns the behavior of the
CPS. This enables solutions that rely on ANN to be employed as model-free
approaches at the decision-making task of CPS platforms by acquiring input
data from sensors [199].

Although the aforementioned techniques are in line with the model-free
controller concept, they exhibit limited flexibility. Specifically, both super-
vised and unsupervised machine learning models usually impose excessive
computational /storage complexities for training, which cannot be tackled
with low-cost embedded platform under real-, or run-time, constrains. Simi-
larly, fuzzy rules create fuzzy classes regarding some of the system’s parame-
ters; hence, they cannot “learn” in detail the CPS’s behavior at unexpected
operating conditions. To overcome this limitation, a ”pre-training” phase
has to be performed based either on historical data (pairs of input from sen-
sors and their associated score from the objective function), or on simulation
software that estimates overall system’s performance. Consequently, both
machine learning and fuzzy rules solvers cannot tackle efficiently the task
of self-adaptive orchestration without any prior knowledge of the problem’s
statement that we indent to address throughout this dissertation.

To address this challenge, another class of decision-making algorithms
have been proposed that “learns” continuously by quantifying the quality
(impact) of applied actions. These algorithms, also known as Reinforcement
Learning (RL), apply a rewarding scheme that accrues by the evaluation
of the CPS output. Thus, based on RL decisions, the orchestrator takes
actions in an environment so as to maximize some notion of cumulative re-
ward. Various RL approaches have been proposed to address the HVAC
control according to a strategy for simultaneous maximization of occupant’s
thermal comfort and energy savings [93] [95] [94]. Apart from the control
algorithm itself, these approaches do not give any information about the
physical implementation, fact that doesn’t contribute towards a rapid pro-
totyping solution. This challenge becomes more important by taking into
consideration the development cost of an embedded system.

Table 12 provides a qualitative overview among alternative algorithms
discussed so far. According to this analysis, the designed method has to be
able of taking into account constraints posed at execution phase. However,

148

Table 12: Qualitative comparison of system’s orchestrators.

Optimi- Design Plug& Real

zation Time Play Time Adaptive Complex. Accuracy
On/Off [200] No Low Yes No No Low Low
PID [201] No Low Yes No No Low Low
MPC [191] [193] [83] Yes High No No No High High
Approx. MPC [189] [192] Yes High No No Partially Med. Med.
Event-based Opt. [190] Yes Med. No Yes No Med. Med.
Fuzzy [88] [202] Partially Med. Partially Partially No Low Med.
Stochastic [97] Yes Med. No Partially No High Med.
ML [92] [186] Yes Med. Partially Yes Yes Low High
RL [93] [94] Yes Low Yes Yes Yes Med. Med.
Proposed Yes Low Yes Yes Yes Low High

our target is on exhibiting lower computational and storage complexities.
Note that the absence of lightweight decision-making solutions in relevant
literature able to be executed onto embedded platforms is not due to neglect,
but rather due to its difficulty. Additionally, the plug&play functionality is
also crucial for this type of orchestrators, as they have to support the model-
free feature. In contrast to MPC and online methods, we focus on designing
modular components (e.g. history windows, energy /thermal models, heuris-
tic solver, etc.) that can be adapted even at run-time in order to respect
the resident’s requirements. Furthermore, the mainstream methods usually
require prior knowledge, while we focus on learning the system’s behavior
through receiving information form its output. Finally, regarding the hard-
ware implementation phase, the presented framework exhibits remarkable
lower design complexity since it is not necessary to model system’s dynam-
ics, while the availability of software tools for supporting the implementation
phase is also a crucial parameter.

6.2.1 Simulation-based approaches and objectives

Current approaches to the specific problem described in Section 6.1.1
require simulation-based loops. For example, the solution by Korkas et.
al. [28] makes about 700 loops of using a detailed simulation of the micro-
grid which needs about 20 hours to calculate the results for a 3-days building
operation, while relative solutions (fmincon and genetic algorithms) need
about 4 days to complete.

Another simulation-based approach uses the well-established fmincon sol-
ver [203]. Fmincon solves the problem by performing iterative simulations
based on the interior-point algorithm, while the objectives (energy and com-
fort) are known a priori through detailed modeling of the buildings dynamics

149

by using the EnergyPlus suite. Consequently, the efficiency of this method
is limited by the accuracy of modeling each particular setup, which is an
ineffective online solution. Moreover, the fact that Fmincon relies on ex-
haustive design space exploration, leads to high latency (arround 5 x 10
execution cycles, or more than 12 hours execution time, even for simulating
just 1-day building’s operation in Intel i7-6700K@Q4GHz), which makes its
usage prohibitive for an embedded controller.

The main objective of the proposed solution is to support the task of
decision-making for HVAC control but with significant lower computational
and storage complexities as compared to the existing simulation-based imple-
mentations. For this purpose, different contributions of the proposed method
(e.g., coarse-grain window, fine-grain window, low-complexity energy and
thermal comfort models etc) are applied in a complementary manner.

A major differentiator of the introduced solution compared to similar ap-
proaches found in relevant literature can be summarized as follows: Rather
than applying a detailed modeling either of building or HVAC dynamics,
which is a time-consuming procedure, throughout this study we propose a
Plug&Play framework that can be applied to any building in order to control
the HVAC system. The data acquired by sensors enable the proposed orches-
trator to improve itself through a “learning procedure”, without considering
any prior knowledge (i.e. buildings’ modeling) and constant definition of cost
function(s).

We strongly believe that by enabling “smart components” to apply an ef-
ficient pre-processing step of the acquired data (such as the sliding windows),
it is feasible to minimize both the data communication problem, as well as
to enable more efficient data analysis. For this purpose, rather than propos-
ing a “typical” control algorithm with enormous computational and storage
complexities, which execution pre-requests an HPC (High-Performance Com-
puting) platform, we study a solution capable to be executed onto low-cost
embedded devices similar to those that tackle the data acquisition in the
majority of “smart sensors”.

6.3 Reinforcement Learning Approach (RL)

Throughout this Section we aim to design a rapid solution to the model-
free HVAC optimization problem, which is based on Reiforcement Learning
(see Section 3). For this purpose, we should remind the multi-objective op-
timization problem (MOOQO), formally defined in Equation 11, where E and
C' are the two objectives (energy and comfort) under minimization, «; corre-
sponds to the input variables (controller’s actions) that refer to the temper-
ature set-points in time-step ¢ and s; is an external vector of environmental

150

variables.

Reinforcement Learning is a very popular method that targets our need
for self-adaptive solutions. As a Reinforcement Learning problem consists
of a set of states, a set of actions, and a reward function. Each time-step,
the dynamic control of the HVAC system is performed by the Reinforcement
Learning Agent (see Section 3), by sampling the state of the building and
computing the next set-point, i.e. a vector designating the values of all the
configuration parameters of the HVAC system.

In order to address the inherent unpredictability of the unknown under-
line system, the Reinforcement Learning (RL) based controller (i) navigates
between available system’s states, and (ii) models and predicts the cost func-
tion according to the already acquired (from the CPS/building’s sensors)
data. The studied RL algorithm models the target system by means of a set
of states, a set of actions and a reward function. Since the reward maximiza-
tion is equal to the minimization of cost function (see Equation 16), for the
rest of our analysis we will refer to ¢ as the cost function. At this notation, a
real value ¢; is assigned per transition (per time-step). Estimating the action-
value function @ (see Equation 2 in Section 3) is of high-importance for eval-
uating the overall orchestrator’s performance. Moreover, as the employed
costs ¢; are unknown, a function approximation (by means of data-driven
supervised learning) is applied.

ry = max_cost — ¢ (16)

The Reinforcement Learning method is supported by a framework de-
picted in Figure 56 in order to be used to control the targeted HVAC system
operation. The next paragraphs describe the individual components of the
framework.

6.3.1 Pre-processing tasks

The functionality of these tasks is to guarantee that the preceding decision-
making logic can dynamically respond to the building and weather related
events, constructing the introduced self-adaptive mechanism.

State retrieval: This task retrieves the current buildings’ state once per
time-step. The state is formed by the subset of acquired data that influence
system’s functionality. At this notation, a system’s state (Equation 17) is
defined as a tuple of (Qutdoor temperature (T™), Solar radiation (R;), In-
door temperature (T;"), Indoor humidity (H;)), since they effectively capture
the building’s dynamics for both energy consumption and thermal comfort
metrics.

151

l State Retrieval \L
i
|

ol
|

l
|
— : — i
Data storage (DB) | Action Space
T .
: ' | Pre -Processing tagks !
: CPU/RAM Memory : e e — NG
| ' . Actuator
] Train Learning ' Main
: |
! 1
! [}

Dynamic Transition-Cost
. [.
Scaling Fusion

Building
Sensors

Cost

Calculation

Controller Exploration

Model

Optimizing Model Procedure

Decision-making mechanism
T

Figure 56: Reinforcement Learning method for design and customization of
the targeted model-free HVAC orchestrator

St = [thom?Rtaj;inaHt] (17)

Action Space: For each time-step, an action refers to the assignment of
a temperature set-point per thermal zone. Then, the action space accrue
by dividing the range of HVAC’s set-points (temperature) into discrete seg-
ments. A step-by-step search approach is applied for this purpose. Regarding
the studied problem formulation, the required action space a; includes five
candidate options with respect to the current temperature, i.e. maintain-
ing current temperature, increase/decrease it by a step of £0.5°C or £1.0°C
degrees (Equation 18).

o € {T/" — 1, T}" — 0.5, T/, T;" + 0.5, T/ + 1} (18)

Cost calculation: The cost function is formed by a weighted sum of the
HVAC objectives (energy cost and thermal comfort). An action is deemed
terminal (i.e., resulting in a terminal cost of value max_cost that corresponds
to zero reward (see Equation 16)) if it leads to prohibitive results regarding
the constraints (thermal comfort), or the constraints were already unsat-
isfied and the action further increases the dissatisfaction value [106]. Our
framework evaluates the efficiency of applied, or candidate actions, through
the cost function given at Equation 19. The weighting factor (¢tr € [0, 1])
gives the relative importance between the two orthogonal metrics, namely
the energy cost and the occupants’ thermal comfort level.

152

C(S «) _ tr X E(StJ at) + (1 - t’f’) X C<St7 at)u C(5t7 at) < Climit (19)
b max_cost, else

Regarding the energy cost (F), if the expected energy loads of the build-
ings at time-step 7 exceed the energy availability from the photovoltaic panels
(PVs), the excessive demand is met by purchasing additional energy from the
main-grid at price. Otherwise, the energy requirements are met with micro-
grid’s renewable sources.

Given that the value of thermal comfort (C') cannot exceed a limit (15%
according to EN15251 European standard or 10% according to ASHRAE
standard [132]), the cost metric at Equation 19 does not equal to maz_cost
whenever |C| < Cjipnir- On the other hand, an action is deemed terminal (i.e.,
corresponds to a terminal cost) if:

e the thermal comfort metric is out of acceptable range (|C| > Climit);

e the thermal comfort metric was already out of the acceptable range
and the action further increases its value.

6.3.2 Decision-making mechanism

In this paragraph, we descibe the functionality of the presented RL algo-
rithm. By taking advantage of its acquired knowledge, the method increases
the efficiency of the predicted actions. In principle, this is a leap towards
self-adaptive orchestrators, as any unforeseen and manifested condition will
be considered at the supervised machine learning model.

Transition-cost fusion: The controller’s efficiency is based on the history
of all encountered states, taken actions, calculated costs and the preceding
states as a result of these actions. A batch of data in the form of concatenated
tuples (s;, a;, ¢;), one per transition (s;, a;, S;41), is created and stored to the
database to support the learning procedure.

Dynamic scaling: An accurate scaling (normalization) of the objective
functions must be accomplished especially for the energy consumption, where
the range is unknown without prior information about the buildings’ dynam-
ics. Our framework lies to uses an unsupervised dynamic scaling method
[204], where running average and standard deviation are calculated for all
the objectives. As new data acquired from building’s sensors, the scaling
parameters are re-calculated, ensuring that the scaling is up-to-date.

Data storage: The presented framework considers that both transitions
and costs are stored in databases to enable model’s refinement task.

153

Main controller: Given the current state and the available actions, the
orchestrator designates the configuration for the next set-point, which mini-
mizes the expected return (i.e. the cumulative future costs in the time frame
defined by v in Equation 1 of Section 3).

An Artificial Neural Network (ANN) is used for supporting the task of
machine learning. The training of this ANN is performed with the database
in the form of (s;, ;) tuples. The targets for this training are computed
based on Equation 20, where (); denotes the output of the current ANN.
Finally, the term ¢;(s;, ;) is a linearly scaled value of the actual cost as a
function of cost definition and dynamic scaling adjustment.

target = c;(s;, i) + 7 - ming, Qi (Sit1, ;) (20)
When terminal cost is exceeded, the following two procedures take place:

e An action, which exhibits increased probability to improve the overall
solution in term of thermal comfort constraints satisfaction is selected.
This choice merely rectifies the previous “sub-optimum” action and
based on previous observations it computes a set-point that ensures
thermal comfort constraint satisfaction. More precisely, this action
increases or decreases the indoor temperature by 1°C, according to the
residents estimated thermal comfort.

e The ANN model is retrained

Ezxploration: In order for the proposed framework to solve non-convex
problems, an exploration mechanism for avoiding being trapped in a local
minimum is necessary. In this work, an e-greedy exploration mechanism is
employed. The main controller operates with possibility 1 — €, where € is
self-regulated [205]. The value of ¢ is calculated based on the orchestrator’s
success rate and its update is performed by Equation 21, where A and k are
the success rate and learning rate, respectively.

¢ = F(1—N[kL =N+ (1= k)e], where f(z) = {1 =0 o

0 <0

The A parameter is based on the orchestrator’s consecutive positive out-
comes, which are determined by the validity of the learning model’s predic-
tion. Inspired by [206] the definition of this validity is selected to correlate
with the Temporal Difference (TD) error formulated by Equation 22. Specif-
ically, the controller’s decision is deemed positive if |TD| < T'D _limit, where

154

Table 13: Summary of the introduced RL solution parameters.

State sy = [T, Ry, T)™, Hy]
Action Space a; € {T7" — 1, T/ — 0.5, 17", T\ + 0.5, T + 1}
Objective Mazimize Yy .,y
Reward ry = max_cost — ¢,
tr X E(sy,ap) + (L —tr) x C(sy, o), Cl(sg,) <15
ce(se, an) =
max_cost, else
Algorithm Neural Fitted Q Iteration (NFQ)
. Strateg e-greedy exploration
Exploration Explofgtion rate (e) Bzgxsed g/n nf())del’s prediction (Eq. 21 and 22)
Discounting factor - v | 0.98
Type Multilayer Perceptron (MLP)
Learning Model iﬁ;\;?son Function Zanh
#Nodes 16
o .- Based on Temporal Difference (TD Eq. 22
Validity Definition Criterion for positive decision |TD\p§ 0.15 (22

T'D_limit has to be small enough to represent an accurate approximation
and elastic enough to encourage early stages of learning [207].

TD = Ct<8t, Oét> =+ v minatQ(StH, Oét> — Q(St, Oét> (22)

Table 13 summarizes the parameters employed within our RL-based so-
lution. The values of these parameters regarding the studied case study
(i.e. efficient configuration of HVAC system at agnostic buildings towards
improving thermal comfort and energy savings metrics) are also included.

6.3.3 Optimizing Model Procedure

This task performs the iterative model optimization. Specifically, it deals
with the data transfer from system’s database to RAM or GPU memory,
the ANN'’s targets calculation according to Equation 20, as well as the ANN
retraining.

Train Learning Model: Two different approaches for ANN retraining are
considered. The first of them assumes that one training epoch is performed
once per time-step, whereas the latter approach concerns a full ANN re-
train in case a terminal-cost is reported. Since an ANN retraining includes
many epochs, it exhibits increased computational complexity and execution
run-time overhead. During the initial time-steps, ANN retrain is performed
more frequently due to the limited orchestrator’s “knowledge”; however, the
reduced amount of training data imposes negligible overhead for this task.
On the other hand, the retrains for an already trained RL algorithm are lim-

155

ited; hence, the associated overhead (due to the increased database size) is
also limited.

6.3.4 Experimental Results

Without loss of generality we consider that both energy consumption and
thermal comfort metrics are of equal importance; thus, the selected weights
at Equation 11 are equal to 0.5.

The targets of the proposed data-driven machine learning method aim
to derive temperature set-points that not only lead to lower costs for the
current time-step, but also optimize future orchestrator’s decisions. For this
purpose, careful selection of the «y parameter (Equation 1) is necessary. Based
on our exploration, we conclude that the performance of proposed orchestra-
tor is retrieved for v equals to 0.98. The estimation of objective functions
is performed via a Multiple Layers Perceptron (MLP) ANN. The activation
function for all the nodes except those of the output layer is the hyperbolic
tangent sigmoid, whereas the output layer incorporates the logistic sigmoid
to produce values in the range [0, 1]. Similarly, the A parameter for the explo-
ration component refers to the number of successful actions of the controller.
For the scopes of this manuscript, according to the required characteristics
of the T'D _limit presented in 6.3.2, we consider that an action is valid if the
MLP’s |T'D| is less or equal to 0.15 (Equation 22). With regard to data ma-
nipulation for local database storage, we selectively save the data that refer
to the last NV days in order to reduce the incremental batch of data. Such
a technique has proven to be very efficient as it will be discussed in Section
6.4.

Initially, we quantify the efficiency of the proposed framework in terms
of episodes. An episode is a sequence of control iterations, that ends if the
current state fulfills a termination condition (e.g. the system reached its
goal state, or a failure occurred) [208]. In the context of this case study, an
episode ends either when the orchestrator results to thermal comfort values
out of the acceptable limits, or the HVAC system is turn off at the end of a
day.

The results of this analysis are depicted in Figure 57. For demonstration
purposes, the horizontal axis plots the id of consecutive episodes for an oper-
ation period of three months (January—March), while the vertical one gives
the duration (in term of operating time-steps) of each episode. Without
affecting the generality of our analysis we considered time-steps of 20 min-
utes duration. Hence, the controller can be involved up to 45 times per day
(based on operating hours depicted in Table 11). At this figure, an episode
with duration 45 indicates that the Main Controller component computes

156

45 455
= 40 140
o— [<P]
235 35 =
530 130 &
A 25| | 125 &
2 20 IV RARAL | o 1AL | 120 £
215 (AT A AT R 15 =
= 10 .', i I'I' | | ,. i 10 ;6

5 il 5 o

0 20 40 60 80 100 120 ©

Episode Number

Figure 57: Evaluation of the orchestrator’s performance over time: Episodes
duration regarding the January-March experiment.

successfully the temperature set-points for the entire day without any fail-
ure. Based on our experimentation, the proposed orchestrator achieves an
average episode’s duration equals to 32 regarding the 3 months (90 days)
experiment. In addition to that, if we exclude the training phase during the
first 20 episodes, then the corresponding average episode’s duration is 37.
This figure highlights also that the performance of introduced orchestrator is
improved over time, since there is no failure for the last 22 consecutive days.
In order to study more thoroughly this efficiency, we also plot with red color
line the outdoor temperature. This analysis indicates that the proposed or-
chestrator exhibits increased episodes’ duration until an unexpected change
in weather conditions that has never been encountered before occurs (i.e. at
episode 40 the outdoors temperature remains under 15°C' for the whole day).
Similar behavior is reported until the proposed model-free orchestrator to be
robust to weather changes (last 22 days).

The mean TD error (Equation 22) for each of the first 90 days is plotted
in Figure 58. These results confirm previous evidence about improving the
controller’s efficiency over time, as the machine learning part of the controller
leads to lower error values. More specifically, the majority of these values is
less than 0.15 (average error value is 0.07), which has been defined in as the
threshold value for a successful.

Finally we should evaluate the RL based controller’s efficiency against
typical RBC values (see Section 6.1.1). Figure 59 summarizes the results for
a typical summer day. According to these results, we might conclude that the
proposed solution actually verges on the ideal comfort level for tr = 0 and
leads to less consumption for tr = 1. Results concerning for the entire year
and more precisely two 3-month periods, one for testing heating (January to

157

5 0.5

0 10 20 30 40 50 60 70 80 90
Days

Figure 58: Evaluation of the Machine Learning model: Daily mean MLP
TD-error

Comfort Consumption

1 ‘ ‘ A =—RL control
> —RBC 20°C
E 2f RBC 21°C
d —RBC 22°C
g RBC 23°C
= 1.5 ¢ \ RBC 24°C
=) . |—RBC 25°C
E _]—RBC 26°C
2 1 —RBC27°C
) /
O
o
= 0.5
)
Q-' |

-1.5 : ; : 0 i
6am 10am 2pm 6pm 9pm 6am 10am 2pm 6pm Y9pm

Simulation hours Simulation Hours

Figure 59: Daily performance vs RBCs (left ¢tr = 0, right ¢tr = 1)

Trade-off Mean energy savings | Mean comfort sav-

(vs RBCs)

ings (vs RBCs)

0 (Optimize Comfort)
0.5 (Optimize both)
1 (Optimize Energy)

7.8% /10.8%
28.4% / 32.4%
59.2% / 48.3%

11.9% / 41.8%
-3.9% / 27.4%
-23.3% / 5.8%

Table 14: Evaluation of RL control performance

March) and one for testing cooling (June to August), are presented in Table
14. The RL based controller achieves up to 59.2% mean energy savings (for
tr = 1) and up to 41.8% comfort savings (for ¢tr = 0) on average.

158

)—*NQJBU'ICD\]
time (s)

.

1 2 3 4.5 7 8 9 10
data51ze

1234567891004
data size

(a) Embedded CPU (ARM Cortex A57) (b) Embedded GPU (Nvidia Tegra Xl)

Figure 60: Time needed for model optimization (data transfers + building
targets + 1 epoch re-training)

6.3.5 Orchestrator’s Performance on Embedded Devices

While the framework that supports the Reinforcement Learning solution
consists of numerous components, the task of model optimization is perfor-
mance dominant. Hence, improving the execution time of this component
will improve the overall CPS orchestrator’s performance. In order to study
the run-time requirements for the proposed framework, the model optimiza-
tion test was implemented onto a low-cost embedded system. The target
platform for this analysis is an 4-core ARM Cortex A57 operating at 1900
MHz with 4 GB of system memory. Figure 60a plots the execution latency
for different input data set sizes and number of neurons per ANN. These
results refer to the ANN retraining task for ANN architectures that consist
of 2 up to 18 layers. Each of the solution has an average of 4 input features
(i.e. state) that correspond to environmental variables that are acquired by
CPS’s sensors.

According to this analysis, the proposed framework can perform model
refinement (through ANN’s 1-epoch retrain) with a maximum execution run-
time overhead of 55 seconds for 10* data and 8197 neurons. In case a more
complex model is considered, our decisions have to be performed in tighter
manner. In such a case, an architectural template with accelerator hardware
(such as FPGA or GPU cores) is necessary. Figure 60b evaluates the corre-
sponding ANN performance regarding the same experiment for the Nvidia
Tegra Jetson TX1 embedded many-core platform (with 256 cores). Based
on this analysis, the model’s retraining is performed in less than 8 seconds,
which is sufficient for the majority of on-line orchestrators.

Taking onto account that for the case-study of smart thermostats we
utilize a MLP with 4 input nodes, corresponding to the 4 features of the
state (see Section 5) and 2 hidden layers with total number of nodes 16, and

159

a data window size that is less than 3000, we might conclude that around 0.03
second delay is added to each time-step (the decision-making has to be done
in less than 10 minutes) and as a result an embedded CPU can support the
proposed method. However, if a more complex model is needed, more data
are required and the time-step restrictions are more tight, a more complex
embedded system with a GPU can be used.

The second optimizing approach refers to the total neural network train-
ing when optimizing model. It is important to note that according to this
approach, this full re-training is not required in every time-step but only
when the Main Controller fails. For example as shown in Figure 57 for our
case-study, for the first 3 months of operation only 55 re-training instances
are required. As a result the time delay is acceptable and allows the train-
ing phase to take place with the continuous operation. For demonstrating
the performance in this approach we would repeat the previous experiments
(same data transfers and target preperation) but for 100 epochs NN train-
ing. This procedure would lead to around 100 times larger overhead. For the
case-study of the smart thermostat, we calculated an overhead of around 1
second for ARM Cortex A57.

6.4 Proposed LR-Knapsack based Orchestrator

In this section we propose a more detailed low-complexity decision-making
mechanism for the specific targeted CPS optimization problem. Contrary
to relevant methods, that rely either on detailed building modeling, itera-
tive and time consuming simulation or on analyzing an excessive amount
of data, our approach delivers close to optimal results by taking into ac-
count only a small subset of information without applying any simulation or
considering any prior knowledge. This solution aims to improve the results
even more than the "black-box” RL approach described in Section 6.3, be-
ing also more flexible as it supports multiple operating modes easily, such
as balancing energy consumption with residents’ satisfaction, minimizing en-
ergy consumption while maintaining a satisfactory level of thermal comfort,
and maximizing residents’ satisfaction without exceeding the available energy
budget.

The introduced LR-Knapsack orchestrator consists of three basic compo-
nents as depicted schematically in Figure 61. Initially, the method manipu-
lates the raw data aquired from various sensors (e.g., temperature, humidity,
solar radiation etc). Additional details are provided in Section 6.4.1. Af-
terwards, the proposed linear regression based models for estimating energy
and thermal comfort are appropriately refined (Section 6.4.2). Finally, the
orchestrator proceeds to the third component (the decision-making itself),

160

Building Weather Occupant’s Weather
Sensors Sensors act1v1ty forecast

Z - History (raw) data :
. [H
‘2 : : Coarse-grain window : :
Sl 7
ol Fine-grain window : '
@i i Available

Pl : — funds

i Y i
:: . Refine models (Linear Regression) Operating
© [: Scenario
5| v ‘ ;

‘S| i | Thermal comfort . Energy '
& | i |estimation model estimation model | :

i | (Eq. 23, 24, 25) (Eq. 26, 27) L P R EEEII I A
ol * Thermal zone
A LA ;
o Decision- making algorithm (Multiple Choice Knapsack) !
S (Eqg. 28 and Table 15) :
(}J‘-j A e d e e el d el Lol 4ol Ll 4 dd dld dll Ll L L LA L AL d

o

R TemPerature JELT ISP T I .
oot set-point 3
! Thermal Temperature Temperature ' Thermal

0 [} .
zone | set-point set-point " zone
WIS AA IS . / et

HVAC

-~

Figure 61: Proposed LR-Knapsack decision-making orchestrator.

where the temperature set-points per thermal zone are computed using a
Multiple-Choice Knapsack algorithm. As described in Section 6.4.3 the algo-
rithm can support different operation scenarios. The operation scenario as
well as the available funds for heating/cooling are additional inputs to the
decision making component.

6.4.1 Efficient manipulation of history data - Sliding window ap-
proach

The effective selection of data subset used for the analysis purposes is
a very important part of our framework. Although one might expect that
additional data improves the models’ accuracy, this is not the case because
this improvement degrades with non-correlated data and imposes constraints
to the refinement procedure. Moreover, since the amount of data (stored to

161

coarse -grain window

today

raw data

from sensors tommorow

v

time-steps

23:59f

fine-grain fine-grain
— window 4 window —
))
4—useful data—>»

Figure 62: The concept of coarse- and fine-grain sliding windows

support the models) increases linearly with the execution time, data storage
and processing are becoming challenging aspects especially at the embed-
ded domain. In order to overcome these drawbacks, our framework employs
two complementary mechanisms, namely the coarse- and fine-grain sliding
windows, respectively.

This combination of sliding windows is used to determine and keep the
“useful” data that will be considered for energy and thermal comfort predic-
tion. Figure 62 depicts the functionality of sliding windows schematically.
By utilizing this mechanism, instead of using the raw historical data acquired
from sensors, the coarse-grain sliding window considers only data that refer
to the last x days. A further improvement is achieved by using the fine-grain
window, which selects a subset of this data referring to a specific time-slot
(time period) per day (within the last = days configured by the coarse-grain
window). As a result, instead of manipulating the entire history data, the
combination of coarse-/fine-grain windows selects only a small subset for the
model’s refinement task. In other words, we keep only the data from the
last x days with timestamps from Now — y to Now + y, where Now is the
timestamp that we invoke the framework [187].

We should mention that sliding windows are part of the solution and not
an optimization step. Without the use of the slding windows, the excessive
amount of data would lead to sub-optimal solutions. Both the coarse-grain
window size, as well as the amount of data per day (fine-grain window), are
adaptive in order to balance the problem’s scalability and the availability of
hardware resources. Finally, we have to state that the coarse-grain window’s
size defines the storage requirements for the proposed controller.

The sizes of these windows are defined after a detailed exploration un-

162

der typical weather conditions and residents’ activity and the results of this
analysis along with additional details about the efficiency of this selection in
term of improving model’s accuracy are provided in upcoming paragraphs.

6.4.2 Energy and Thermal comfort estimation (Linear Regres-
sion)

In these paragraphs, we describe the construction as well as the procedure
for refining the thermal comfort and HVAC energy consumption estimation
models. As mentioned above, both models rely on linear regression (LR)
techniques. By using LR we compute the relationship between the dependent
variable y that we desire to estimate (energy or thermal comfort) and a
number of explanatory variables that correspond to the values of buildings
sensors. The input to this procedure is the subset of historical data, as they
are retrieved from the fine-grain sliding window, described in Section 6.4.1.
Refinement is applied periodically to the employed models.

6.4.2.1 Thermal Comfort Estimation Model Since thermal comfort
depends among others on air temperature, humidity, radiant temperature,
air velocity, metabolic rate, and clothing levels, while each person experiences
these sensations a bit differently based on his/her physiology and state, it is
assessed by subjective evaluation.

For the scope of the work presented in the context of this dissertation,
we propose a new model to quantify the residents’ satisfaction by correlating
the impact of thermal zone’s temperature to the PPD (Predicted Percentage
of Dissatisfied) value computed by the widely-used Fanger model [1]. The
presented model is a function of the thermal zone’s temperature and this
choice was selected since the rest parameters (e.g. metabolic rate, clothing,
etc) are difficult to be measured and they can be considered as constant for
a relatively short period of time [209].

Figure 63 plots the result of this analysis for a representative winder day.
Although this information refers to the winter period, similar results are also
observed during summer. Based on this analysis, the reference estimation
solution (blue color curve) can be approximated by the square function (red
color) given at Equation 23, where the T™ parameter refers to the indoor
temperature of the thermal zone. T is configured by the smart thermo-
stat’s set-point and, for the majority of cases, the difference in temperature
set-points between consequent time-steps is less than 1°C. So, we can claim
that 7" for time-step t is assumed to be equal to the selected temperature
set-point for time-step ¢ — 1 (as the HVAC system follows the smart thermo-
stat’s configuration). Hence, by refining the 6, and 6, weights iteratively, the

163

60%

—— Fanger model
50%- —— Proposed model

40%-
2 30%-
(=W

20%

10%-+

O% T T T T T T T T T T T T T
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Zone temperature (°C)

Figure 63: PPD estimation with the proposed and the reference Fanger [1]
models as a function of thermal zone’s air temperature (7°")

estimator minimizes the error (J) for the optimization problem presented in
Equation 24.

Clogt = 05+ 05 X T™ + 05 x T (23)

2

JC(QC) = Z(Creal - Cest>2 = HCreal — X, x 09 (24)
where
0
0° = |0
o

LT (T
1T (T

C

1T (T

16%

—— Estimated PPD
14%- |——— PPD from Fanger's model
12%4 {
210%-
[a W
8%
6% L
4% T T T T T
1 11 21 31 41 51

Weeks

Figure 64: Evaluate the accuracy of the proposed thermal comfort model.

As mentioned above, the concept of the coarse- and fine-grain sliding win-
dows enables the proposed thermal comfort estimation model, due to the fact
that the majority of Fanger model’s factors (e.g., metabolic rate, clothing,
etc) are almost constant for the last few days, while the weather (e.g., solar
radiation) and the residents’-related metrics (e.g., number of people, activity,
etc) can be considered similar for a given time-slot between consecutive days.

The number of features used by the linear regression model is relative
small. More specifically, in our case, the features are 1, T and 7", As a
result, it is possible to calculate the weight vector ¢ with the normal equation
formulated by Equation 25. The computational complexity of the employed
method is O(n? x m), where m and n refer to the rows (number of history
data after applying the sliding windows data manipulation) and the columns
(number of features) of Table X, respectively.

—1
0¢ = <XCT X Xc) X X' Chrear (25)

The accuracy of the proposed thermal comfort estimation model is eval-
uated against the corresponding results from the Fanger reference solution
[1] and the results are plotted in Figure 64. The outcome of this analysis
indicates that the average error between these two models is about 0.02% for
the entire year. As a result, we might conclude, that the proposed thermal
comfort model can be considered accurate enough for the smart thermostat
use-case.

165

6.4.2.2 Energy Consumption Estimation Model This section intro-
duces the proposed method for performing building-agnostic HVAC energy
predictions and quantifying the impact of the selected temperature set-points
on energy consumption. We focus on providing a Plug&Play solution that
accomplish self-adaptive customization based on a limited amount of data
acquired from building’s sensors at run-time. Since metering devices mea-
sure only already consumed energy, such a prediction model is absolutely
necessary. We assume that each smart thermostat constructs its own model
in order to consider the parameters from its associated thermal zone.

As inputs for our model we consider the data acquired by building’s sen-
sors together with the hourly weather forecast regarding the next hours (for
predictions far in the future). The sensors data include Building’s outdoor
conditions and more precisely the current weather conditions and weather
forecast (i.e., temperature and solar radiation), as well as Building’s indoor
conditions, that include zone’s temperature, thermostat’s configuration set-
point, etc. Additionally, our method relies on a small dataset that includes
the “useful data” extracted from the sliding windows data management mech-
anism introduced in Section 6.4.1. The data are fed as inputs to the linear
regression task in order to predict HVAC’s energy consumption. It is worth
highlighting that apart from the selected linear regression, any other model
with similar functionality could also be applied for this task. However, the
selection of linear regression was based on our objective for deriving a low-
complexity solution, which can be implemented onto low-cost embedded de-
vices.

The energy consumption estimation model is described by Equation 26,
while (similarly to the thermal comfort model) its formulation with normal
equations is described in Equation 27. The 6 ... 05 are the weights that are
(re-)calculated, while T°% T R and S refer to the outdoors temperature,
the indoors temperature, the solar radiation and the thermostat’s set-point
respectively. For performing predictions for the next hours, future values of
T,.: and R parameters are acquired from the weather forecasts. Regarding
the indoor temperature 7% for time-step ¢, similarly to the thermal comfort
model, we assume that it is equal to the HVAC’s configuration set-point for
the time-step ¢ — 1.

Eegt = 0+ 05 X T + 05 x R405 x T™ + 605 x S (26)

—1
6 — (XZ X Xe> % XT X Eyeat | (27)

166

where

& e
0 2

1 T R, Tin 8
1 T9% Ry T S,

e

1 T R, T" S,

The energy estimation model, which is designed for the purposes of the
present dissertation follows a linear approach, similarly to relevant literature
[191] [97] [96] [210]. For building this model, we must make the assumption
that energy consumption is a linear combination of the selected features
(Equation 26). To test the validity of this assumption, two diagnostic plots
(namely the Q-Q and the Residuals-vs-Fitted plots) were used, as they are
depicted in Figures 65(a) and 65(b). Based on the QQ plot, we observe that
the residuals of energy model (red color dots) are normally distributed, a
trend that is pre-requested for constructing a linear model [211] [212]. The
vertical axis at the Residuals-vs-Fitted graph gives the residuals of energy
consumption, while the horizontal one corresponds to the fitted values. Since
the values at this graph are almost equally distributed around the horizontal
line and there are no patterns, we might claim that our assumption about
energy model’s linearity can be confirmed.

The accuracy of the proposed model as compared to the actual energy
reported from metering sensors is evaluated in Figure 66. Based on this study,
the presented model exhibits a very small average error for the entire year
(about 2.5%), which is considered acceptable for the scopes of our analysis.
The overall complexity of the energy prediction method is O(n? x m), where
n. and m refer to the columns and rows of table X, respectively. As a result,
by configuring the selected window sizes, the associated complexity can be
sufficiently supported by the majority of existing low-cost embedded devices.

167

=
o]

Residuals vs Fitted
o , , ,

03—

= e
R

—_
T

Sample Quantiles
Residuals

e L2 @9
SRS

S

e
o

. . . -0.3
0 0.5 1 1.5 2 02 04 06 0.8 1 1.2 14 1.6
Theoretical Quantiles Fitted values
G)) (b)

(=}

Figure 65: Energy consumption model’s linearity selection: (a) based on Q-Q
plot, and (b) based on the Residuals-vs-Fitted graph.

25004 Estimated
—_ — Reference
= 2000+
2
<
jely]
2
5 1000
=
g 500 -
0 a T T T T
1 6 11 16 21 26
Weeks (winter period)
800
— Estimated
= — Reference
600 -
Z
)
£ 400
=
5
£ 200
H
0 -
1 6 11 16 21 26

Weeks (summer period)

Figure 66: Evaluation of the proposed energy consumption model accuracy

168

= 4 = 27
= . 3
0674
i 3.5 g 2.5
E 2 24
= 3 B 230 2051
g 2674 , g 22
M 25 Moo
0 5 10 15 20 25 30 01234567 89101112131415
Coarse-grain window size (days) Fine-grain window size (hours)
(@)

0.40 2 0.315
Q g 0y
A 0.38 g 0.310 p—o—0
& & 0.305
;0.36 s
n (ﬁ 0.300
=034 2 (05
% %’ ’ 0.291
%032 31 F 0290
S 0.30 S 0.285
o 0 5 10 15 20 25 30 01234567 8 9101112131415

Coarse-grain window size (days) Fine-grain window size (hours)
(b)

Figure 67: RMSE analysis for quantifying the impact of coarse- and fine-
grain window sizes to: (a) the energy estimation model accuracy, and (b)
thermal comfort estimation model accuracy

6.4.2.3 Sliding window data management impact on estimation
models The previously discussed results regarding the thermal comfort and
energy consumption estimation (Sections 6.4.2.1 and 6.4.2.2) are retrieved for
the selected sliding window sizes discussed in Section 6.4.1.

The size of coarse and fine-grain windows are selected in a way that max-
imizes the final control results (as we will discuss later). The efficiency of the
comfort and energy estimation models is a critical part of our solution, since
the results of these models guide the decisions of our controller. Therefore,
in order to validate the efficiency of our selection, we have to evaluate the
accuracy of the estimation models for different window sizes. Figures 67(a)
and 67(b) plot the average value (among buildings’ thermal zones) of Root-
Mean-Square Error (RMSE) for the thermal comfort and energy consumption
models. For demonstration purposes, we highlight the corresponding values
for the selected window sizes. The selected window sizes for coarse- and
fine-grain windows must reduce the RMSE for both models. Based on this

169

analysis, slightly different results are observed for the two metrics, however,
we might claim that a selection that leads to very good accuracy for both
models is achieved for coarse-grain and fine-grain window sizes equal to 15
and 3, respectively.

6.4.3 Decision-making algorithm (Knapsack)

The outcomes from the comfort and energy estimation models feed the
last phase of the HVAC control framework, which is responsible for mak-
ing the system’s decisions. The functionality of the system’s orchestrator is
based on a modified Multiple-Choice Knapsack Problem (MCKP) [124] [125]:
“Given K classes of items Ny, No, ..., Ni, where each item j € N; is associ-
ated with a profit/value v;; and a weight w;;, the orchestrator aims to choose
exactly one item from each class so that the total weight is less than, or equal,
to a given capacity W and the total value is minimized”. The mathematical
formulation of our problem is given in Equation 28. Our goal is minimizing
(instead of maximizing) the total value and this is the main differentiation
compared to conventional Knapsack problem.

K
min E E VijLig,

=1 jEN;
K
subject to Z Z wix; < W, (28)
=1 jEN;
Z:CU:Lizl...K,

JEN;
xijG{O,l},izl...K, jeN;

At the Knapsack problem’s notation, each class refers to a time-step of the
smart thermostat’s operation. An item represents the temperature set-point
regarding the aforementioned time-step, which is associated with a PPD
value and an energy cost. Table 15 summarizes the correspondences between
the proposed MCKP algorithm solution and the HVAC control problem’s
parameters. For the sake of completeness, three different operating scenar-
ios are presented in order to show the capabilities of the employed solution
(Equation 12) as presented also in Section 6.1:

e Scenario 1: Achieve a compromise between energy consumption and
thermal comfort metrics (tr = 0.5).

170

Table 15: Applying the knapsack formulation to the HVAC control case-
study

Knapsack formulation Case-study
Class Time-step Objiective
Ttem Temperature set-point Jee
£ Item’s value (v;;) trx Energy + (1-tr)x PPD ik ik ‘
S Ttem’s weight (w;;) 0 min(}" (tr X Y EC(tal) + (1 —tr) x 3 Cilt, aﬁ)))
%‘ Knapsack’s capacity (W) 00 v =1 i=1
[a\}
2 i=k)
§ Item’s value (v;;) Energy min(>2 (Y EF(t, Sal))),
Vi =l

s Ttem’s weight i PPD i=k
32 em’s weight (w;;) . e ‘

Knapsack’s capacity (W) PPDy, while ; Ci(t, a;) < Climit
o
2 ik .
2 Item’s value (v;;) PPD min(>- (3" Ci(t, al))),
g) B v isl
2 Item’s weight (w;; nergy . el .
wn = g) - G i

Knapsack’s capacity (W) AF while Zt(lzzl B (t a)))) < AF

e Scenario 2: Minimize energy consumption while respecting a minimum
threshold for the PPD metric (tr = 1).

e Scenario 3: Optimize thermal comfort (tr = 0) without exceeding a
predefined energy budget for the experiment’s duration (mentioned as
available funds or AF).

Figure 68 visualizes the proposed version of MCKP algorithm for the
operating Scenario 3. For demonstration purposes (at this figure) we assume
that each time-step corresponds to a day. In addition, we highlight the
parameters discussed in Table 15, namely the “classes” (time-steps), “items”
(set-points), “item’s value” (the PPD value per item), “item’s weight” (the
corresponding energy per item), as well as the “Knapsack’s capacity” that
refers to the available energy budget (AF). We also assume that we want to
calculate the temperature set-points one week ahead. The decision-making
procedure is applied once per day in order to refine the thermostat’s selections
based on the available funds (AF).

The MCKP algorithm is an N P-hard problem. The employed solution
initially solves the simplified linear MCKP problem and then expands the
core solution based on dynamic programming and by adding the necessary
classes [124]. In contrast to relevant state-of-the-art solvers, such as the dy-
namic programming [125] that exhibits pseudo-polynomial time complexity,
the solution discussed throughout this Chapter minimizes the problem’s com-
plexity by considering only a few items. More precisely, the computational
complexity for the decision-making algorithm is O(n+W x> Nlec n;), where

171

A 1 week ahead forecast 7

day day day day day day
now now + 1 now + 2 now + 3 now + 4 now +5 now+6

Select set-points
that minimize PPD
items
per class

\ Knapsack’s capacity

\\
» AF=AF-Eo — —

execute once per day

Figure 68: Virtualization example of the proposed Multiple-Choice Knapsack
Problem (MCKP) approach to the HVAC control problem

n is the number of total items, n; the number of items in class N/ and c is
the core solution that contains only the classes and items that constitute the
solution space retrieved from [124].

6.5 Experimental Results
6.5.1 Results on minimizing cost

As mentioned above, the proposed sliding windows data manipulation
is part of the introduced solution and not an optimization step, as other-
wise the excessive amount of data leads to sub-optimal solutions for the
model’s refinement problem. The sizes of the coarse and fine-grain windows
were defined with a detailed exploration under typical weather and residents’
activity, in a way that optimizes the energy and thermal comfort model ac-
curacy (see Section 6.4.1 and Figure 67). Figure 69 presents the impact of
the selected windows sizes on the overall cost computed by Equation 12 (in
normalized manner). Based on this analysis, the selected sizes (equal to 15
for coarse-grain and 3 for fine-grain window) lead to optimal performance

172

1.00
6‘1" —— Winter period (heating)
E—"Cj 0.98 —— Summer period (cooling)
@
8
= 0.96
[<F)
=
=
£ 0.94
o
Z

0.92

1 5 10 15 20 25 30
Coarse-grain window size (days)

1.00
5 —— Winter period (heating)
E 0.95 —— Summer period (cooling)
< 0.90
(<]
S
o
g 0.85
Z

0.80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fine-grain window size (hours)

Figure 69: Evaluate (based on Equation 12) the efficiency of alternative
coarse- and fine-grain sliding windows.

(minimization of total cost).

A number of quantitative comparisons that highlight the superiority of
introduced solution are provided in this section. The proposed decision-
making mechanism computes temperature set-points for the micro-grid case
study discussed in Table 11. The reference solutions to this analysis are the
Ruled Based Configurations (RBCs). As mentioned earlier, RBC is the typ-
ical approach for thermostat configuration. The RBC configuration aims to
achieve a constant temperature to the target thermal zone. The majority
of commercially available thermostats are configured with consecutive RBCs
that differ 0.5°C or 1.0°C. ranging from 20°C up to 27°C. The experimenta-
tion for this analysis refers to a 52-weeks duration (winter, spring, summer
and autumn) in order to evaluate the stability of the proposed orchestrator.

Figure 70 quantifies the quality of decisions derived from the introduced
decision-making algorithm as compared to the reference RBC solutions. Ver-

173

‘&; -
S 2 05
© 05 O
S =]
g8 15}
S X025
s =
E 025 £
z 2 0.125
0.125 0.0625
06.00 09.00 12.00 15.00 18.00 21.00 06.00 09.00 12.00 15.00 18.00 21.00
Time Time
= RBC 20°C RBC 21°C RBC 22°C = RBC 20°C RBC 21°C RBC 22°C
RBC 23°C ==——=RBC 24°C =———RBC 25°C RBC 23°C =—=RBC 24°C =—RBC 25°C
e RBC 26°C ====RBC 27°C escee LR-Knapsack e RBC 26°C ====RBC 27°C esecee LR-Knapsack
(a) Winter day (b) Summer day

Figure 70: LR-Knapsack efficiency against RBCs (balanced scenario)

tical axis corresponds to the normalized cost (according to Equation 12) for a
representative winter and a representative summer day, in order to consider
both building’s cooling and heating. According to this analysis, we conclude
that the proposed framework achieves to minimize the overall cost as com-
pared to RBC values. Moreover, the temperature set-points computed by
the proposed methodology improve the cost metric as compared to RBCs
for the presented winter and summer days by 31% and 46%, on average,
respectively.

In the next experiments, we quantify the efficiency of the presented or-
chestrator to minimize energy cost while respecting a minimum threshold for
PPD metric, presented as Scenario 2 in Table 15. For this purpose, we set the
ASHRAE standard limit, according to which temperatures leading to PPD
values up to 10% are acceptable by residents [132]. So, the optimization goal
for this experiment is to minimize the energy consumption (¢r = 1) under
the respect of ASHRAE standard (PPD value less or equal to 10%). This
scenario enables considerable flexibility to the controller’s selections, since
further reduction of PPD’s value imposes increased energy consumption for
heating/cooling.

Figure 71 evaluates the efficiency of this operating mode as compared
to the corresponding selections from the operating Scenario 1 and the RBC
configurations. Also, for demonstration purposes, we highlight the 10% PPD
threshold, as it is defined by the ASHRAE standard. Based on these re-
sults, our orchestrator achieves an average reduction at energy consumption
by 48% compared to the RBC selections that achieve an average PPD value
under 10%. More precisely, for the winter period, we achieve almost equal
energy consumption to keeping the set-point constant on 20°C but with a

174

60000 35
228888 @Energy OComfort _ %(8) § 1 OEnergy OComfort 30
570000 I _ ig&f % 50000 25§
£ 60000 g 40000 A
2 50000 IRl 12 8 2 20 &
E h—n 10 % E 30000 ~
2 40000 g E 15 §
& 30000 ¢ E 820000 Hﬂ n n 1 &
© 20000 s ¢ S
> 4 O 10000 5 ©
£ 10000 2 B mm
g0 o 5 0 0
POPYYYLYIY PEPYYYLYYTY
S NThoEE S — AN N o~ RS
SESRIRINIRIRININ - SESRIRIRINIRINNE -
g g 22 2cg
R RRpmmpee s
o 9 o U
g g g 3
[= Ty [V =}
& oy
[—
(a) Winter (b) Summer

Figure 71: Evaluate Energy and PPD variation for the alternative Scenario
2 (optimize energy keeping acceptable PPD) vs RBC values

thermal comfort value of 8.5% instead of the unacceptable 16.4% of RBC
20°C. Note that Scenario 2 does not lead to a PPD value of exactly 10% but
even better, due to the weather conditions. For example in summer if the
weather conditions lead to PPD under 10% without the need of HVAC cool-
ing, which is a case observed especially in the night or early in the morning,
then our orchestrator keeps the HVAC system off, maintaining good ther-
mal conditions and saving energy. According to the previous findings, we
claim that the presented decision-making algorithm can address the goal of
maintaining affordable indoor thermal conditions with the minimum possible
energy cost efficiently.

The third Scenario tested in the context of this dissertation, considers a
case where the smart thermostat optimizes the thermal comfort (PPD) with-
out exceeding the available energy budget (available funds - AF) (tr = 0 at
Equation 12). As it has already mentioned in Section 6.1, if the energy from
renewable sources is not enough to meet the residents’ demand, additional
electricity is purchased from the main-grid (by decreasing the value of AF
parameter).

This problem is addressed with the Multiple-Choice Knapsack algorithm
discussed in Section 6.4.3. For our analysis, and without affecting the gener-
ality of the introduced solution, we consider random weekly reference values
for the AF metric in a range that partially takes into account the weather

175

3000 1000

§ =
g 2500 : Z 800
= 2000 =
2 & 600
£ 1500 = w0
Z 1000 2
@) o
2 500 S 200
2 &
g 0 3 0
i 1357 91113151719212325 &

1 357 91113151719212325
Week Week

Scenario 3 - Low

Scenario 3 - High

Scenario 3 - Low Scenario 3 - High

----- Low AF Limits eee+oe High AF Limits eeeees [.ow AF Limits e ee+e High AF Limits
(a) Winter (b) Summer

Figure 72: Evaluate Energy variation for alternative Scenario 3 (optimize
energy keeping total energy under AF limits)

conditions (more funds for the coldest weeks in winter and the warmest weeks
in summer) and around the nominal HVAC heating and cooling energy val-
ues respectively. Two instantiations of Scenario 3 are evaluated throughout
this paragraph, where the initial energy budget (AF) is set to ”Low” (under-
estimate scenario) and "High” (overestimate scenario).

In order to evaluate the efficiency of this scenario, Figure 72 evaluates
energy for the aforementioned operating scenarios. The results indicate that
the proposed orchestrator respects the AF limit in most cases expect only
some weeks for the "Low AF” case in summer. The reason is that in these
weeks the weather was too hot at noon to meet the PPD limits without
exceeding the energy limits. So the controller had to consume a little above
AF to satisfy the comfort constraints. Apart from the variation of energy
metric, we also evaluate the PPD metric for the studied operating scenarios.
These results, depicted in Figure 73, indicate that the underestimated version
of our algorithm exhibits on average 36% higher PPD value compared to
the "High AF” solution. The few spikes where the PPD metric exceed the
10% threshold defined by ASHARE standard are on periods that the HVAC
system is off (Octomber and April-May as also can be seen in Figure 72 that
the energy is zero).

More experiments will be presented in Section 6.5, where the proposed
solution will be also compared to the current state-of-the-art simulation-
based method.

176

16 16
14 14
12 § 12
g E
6 6
4 4

1 357 91113151719212325
Week

=0 Scenario3 - High

1 357 91113151719212325
Week

== Scenario3 - Low

—&—Scenario3 - Low =®=Scenario3 - High

(a) Winter (b) Summer

Figure 73: Evaluate PPD variation for alternative Scenario 3 (optimize en-
ergy keeping total energy under AF limits)

Table 16: Execution run-time for computing temperature set-points per ther-
mal zone regarding the proposed orchestrator.

ARM Cortex-A57 | Intel Quarkx1000 | ARMx STM32F103
@2 GHz Intel @400MHz @72MHz
Scenario 1 & Scenario 2 0.004 sec 0.006 sec 0.082 sec
Scenario 3 0.03 sec 0.035 sec 0.576 sec

6.5.2 Orchestrator’s Performance on Embedded Devices

Finally, we present a number of experimental results regarding the phys-
ical implementation of the introduced LR-Knapsack orchestrator. For eval-
uation purposes we evaluate the previously mentioned controller to vari-
ous architectures, including micro-controllers (ARMx STM32F103@Q72MHz)
and embedded processors (ARM Cortex-A57@2GHz - see Section3), Intel
Quarkx1000@400MHz).

Table 16 summarizes the execution time results of our orchestrator for
the three operating scenarios presented in Table 15. These results high-
light that our decision-making framework is able to compute a tempera-
ture set-point per building’s thermal zone in less than a second, even in the
case where the target platform is a low-performance micro-controller (ARMx
STM32F103@72MHz). We have to mention that the execution time for the
Scenario 3 is higher because temperature set-points are computed for all the
thermal zones a week ahead. To sum up, this analysis indicates that one
low-cost platform can be used to control in optimal way indoor temperatures

177

Table 17: Evaluation of yearly results against other methods.

Method Energy (kWh) | Avg. PPD (%) | Cost (Equation 4)
RBC 20°C 66,967 24.99 0.89
RBC 21°C 62,939 17.46 0.72
RBC 22°C 61,223 11.66 0.59
RBC 23°C 61,955 7.94 0.52
RBC 24°C 65,191 6.46 0.51
RBC 25°C 70,467 7.23 0.56
RBC 26°C 77,359 10.22 0.66
RBC 27°C 85,680 15.31 0.81
Fmincon 34,936 6.17 0.33
RL 34,601 7.71 0.36
LR-Knapsack 36,399 6.47 0.34

for multiple thermal zones [213].

6.6 Comparison to state-of-the-art methods

Table 17 quantifies the impact of the orchestrator’s selections in terms of
the total energy, the average comfort and total weighted cost. The reference
solutions to this comparison are the Ruled Based Configurations (RBCs)
ranging from 20°C up to 27°C (already presented in Section 6.4), as well as
the well-established Fmincon solver [203] (see Section 6.2.1). We assume that
both the building’s model as well as the weather forecasts used by the fmincon
solver are 100% accurate, due to the fact that we evaluate our controller at
the same ”simulated” model. This means that the results of the Fmincon
solver can be considered as the optimal results in the context of this study.

According to Table 17, the introduced orchestrators achieve superior per-
formance against RBCs, as it leads to overall cost reduction ranging from
40% up to 150%. Additionally, the introduced solutions exhibit compara-
ble efficiency against relevant implementations (e.g. Fmincon), but without
the limitations of these solutions that restrict their general-purpose applica-
bility. More thoroughly, Fmincon solves the problem using iterative simu-
lations, while the objectives (namely the energy consumption and thermal
comfort) are known a priori through detailed modeling of the buildings’ dy-
namics. Consequently, the efficiency of existing solvers is firmly tied to the
assumption that CPS modeling was performed in advance. In addition, our
orchestrator does not rely on such an iterative approach (it is executed only
once), without considering any information about the employed objective

178

=
o

o
®

o
@

o
.

e
>

e
o

Difference in temperature set-points (°C)

—_

11 21 31 41 51
Weeks

Figure 74: Difference (in absolute manner) between the LR-Knapsack or-
chestrator versus the Fmincon solver

functions.

The LR-Knapsack approach improves the overall cost by 5.5% compared
to the ”black-box” RL approach presented in Section 6.3. In addition, LR-
Knapsack solution gives the capability of quickly changing operating modes
as it was highlighted in Section 6.5 based on its individual energy and ther-
mal comfort models, while the RL approach would be restarted from the
beginning because the cost/reward definition would have been changed.

Figure 74 plots the mean absolute difference between temperature set-
points computed from the LR-Knapsack based system’s orchestrator com-
pared to the reference solutions of the fmincon solver. In particular, the
decisions from our orchestrator exhibit an average variation about 0.32°C
compared to the Fmincon solver.

Among others, the exhaustive design space exploration performed by
existing solvers (such as the Fmincon), leads to increased execution run-
time (more than 10'* execution cycles, or equivalently 12 hours execution
time, for simulating an 1-day building’s operation experiment in Intel i7-
6700K@4GHz), which makes its usage prohibitive for an embedded controller.
Moreover, objective functions have to be known a priori. On the other hand,
the proposed solution achieves to compute close to optimal operating set-
points without any prior information about the problem’s instantiation.

Figure 75 quantifies the number of execution cycles in order to com-
pute temperature set-points per thermal zone regarding the operating Sce-
nario 1. For this analysis, we consider that the underline device is a ARM-
based embedded processor (ARM Cortex-A8) and a BEM system (Intel i7-

179

le+15
le+14-
le+13- (mmm Intel i7-6700K
le+12] —3 ARM Cortex-A57
le+11-
le+10
le+9 -
le+8 -
let+7 A
le+6 -

ers |

LR-Knapsack RL solution Fmincon

Execution cycles

Figure 75: Minimum number of execution cycles for computing temperature
set-points per thermal zone among alternative controllers.

6700K@4GHz). Based on this analysis, the proposed LR-Knapsack orches-
trator exhibits significant lower complexity (about 8 orders of magnitude)
compared to the Fmincon offline solver. For sake of completeness we have
to mention that Fmincon cannot be executed onto an embedded platform
(low-cost device), as it imposes EnergyPlus and Matlab-based simulations.

6.7 Conclusion

A framework for supporting the design of a low-cost CPS orchestrator
targeting HVAC systems, was introduced. This orchestrator was applied to
solve a multi-objective problem related to the simultaneous enhancement of
buildings’ energy consumption and the occupant’s thermal comfort metric.

Based on our experimentation, we validate the superiority of the pro-
posed solution against relevant solvers without the necessity of accurate prior
system modeling, as both functions that describe energy consumption and
thermal comfort are agnostic. Moreover, the introduced solution exhibits
significant lower computational /storage complexities, which in turn enables
its execution onto low-cost embedded devices.

180

Chapter 7

7 Discussion

In this Chapter we summarize the conclusions we have reached from the
present study. The presented conclusions are accompanied by discussions
and explanations of the methods and experiments that led us to them as
well as possible limitations of the proposed solutions. Finally, we suggest
extensions of the present work.

7.1 Conclusions

The construction of practical tools capable of analysing the
source code of applications and estimating the expected energy
consumption, without the need of executing the code on the tar-
geted devices, is feasible.

The proposed energy estimation tools run on the programmer’s worksta-
tion (PC). So, when the final application or part of it is ready, the developer
can use the proposed tools to estimate the energy consumption that the
application’s code will consume, if executed on a list of embedded devices
(cross-device). Of course, measuring energy directly on the targeted device
would give the most accurate results. However, not all hardware alternatives
are accessible to developers and such a process may involve sophisticated
equipment (e.g. sensors). Furthermore, such a solution would need hardware
expertise, increasing the development time and cost. Finally, this procedure
is not feasible in very complex applications that involve a large number of
devices/architectures.

Throughout Section 4, we presented a method for designing practical
analysis tools to be used by developers for estimating energy consumption
of applications running on CPU-based embedded devices. We provide a
systematic methodology to create estimation models for various platforms.

The introduced framework uses random synthetic loops, popular profiling
tools and regression methods. Static and dynamic analysis methods were
designed and compared. Dynamic analysis leads to more accurate results

181

as expected (R? = 0.96). Its limitations are summarized in the fact that it
requires application execution, adding also a large time overhead. On the
other hand, static analysis, although less accurate (R* = 0.92), estimates
energy in a fast, convenient, and user-friendly way. However, it also needs
additional user input that is not always easy to obtain (e.g. the number of
iterations of each loop body).

For demonstration purposes, each sub-component was evaluated on a
widely used ARM-based device using well-known benchmark suites, while
some results of the extension of the tool for partially supporting HPC sys-
tems is presented. Based on our experimentation, we evaluated the capa-
bilities of the proposed solutions, concluding that they achieve acceptable
results without requiring accurate prior hardware modeling. The proposed
approaches achieve similar effectiveness compared to related state-of-the-art
tools but focus on building an extensible solution that can be part of SDK
tools. Our special emphasis on studying the correlation between alternative
metrics and energy is expected to contribute to the creation of new software
analysis metrics for energy consumption.

The prediction of energy consumption gain by acceleration in het-
erogeneous embedded devices is feasible.

Existing works focus on the prediction of speedup by offloading a piece of
CPU code on GPGPUs [78,79]. However, in the area of embedded het-
erogeneous systems, energy efficiency is equally important and affects design
decisions. Based on the results presented in Section 5.3, we conclude that the
existing approaches that analyze CPU code to provide speedup predictions
can be extended towards predicting the energy gains by acceleration.

An important contribution of this thesis is the proposed combination of
static and dynamic approaches in the same tool-flow. In addition, for the
dynamic analysis component, a clarification of the difference between speed-
up and energy gain estimation will highlight the importance of the presented
extension of existing (speed-up) predictors towards estimating energy gains.
One may argue that energy consumption can usually be estimated based
on the prediction of execution time by using the power delay product or
an analytical model. This is a reasonable question considering that if the
average power consumed by the CPU and GPU does not vary and change
dynamically, a performance gain will lead to a similar energy gain in most
cases.

Although performance gains are usually similar to energy gains, this is
not always the case, especially when we have heterogeneous systems such as
CPU-GPU devices that we target in the context of this study. Indeed, power
consumption is not constant because it depends on a wide range of parame-

182

o : Start . S

= : End Pz

E 6000 | C

g P 8

2 .-

= P E

7] - 2]

=) AN =

5} ¥ 3

O \ O

8 i 5

2 2

S —~ O IN AN N O T — 0 S OO =AM~

= SRx3283 5358 = mmiaRs2asb=g
CPU power Time (x10ms) CPU power Time (x10ms)

=== GPU power === GPU power

module power module power

(a) CPU version power consumption (b) GPU version power consumption

Figure 76: 3d convolution power consumption on Nvidia TX1

ters (memory transactions, cache behavior, number of cores used, etc.). This
is also indicated in Figure 76. Figure 76a shows the power consumption of
the CPU, GPU, and the entire module unit to run the 3d convolution ap-
plication from the polybench benchmark suite on Nvidia Jetson TX1, while
Figure 76b shows the same power consumption modules for the GPU version.
Based on this experiment, we can observe that the additional power of the
GPU leads to a higher instantaneous module power consumption compared
to the CPU-only version, while the power consumption can not be consid-
ered stable at all. Based on these results, we can expect that the performance
gains should be more than the energy savings in most cases and not with a
fixed additional gain.

Studying and designing a model of the correlation between energy and
performance for the specific platform would be also interesting but it is be-
yond the scope of this work. However, in the proposed study we wanted to
show that it is easy to extend existing approaches towards estimating energy
gains following the same procedure. Also presenting the importance of fea-
tures from existing approaches in terms of relation to energy consumption
(see Table 6) is also something new (to the best of the author’s knowledge).
Finally, a first method that is based entirely on static analysis and a tool-flow
that combines the two methods are designed. We also consider this study
as perfectly related to our focus on green, sustainable and energy efficient
computing.

The overhead of dynamic instrumentation in cross-device energy
prediction is large and it can be avoided by using static analysis

183

when maximum accuracy is not required.

As it is mentioned in the first conclusion, dynamic instrumentation although
more accurate, adds a large time overhead that is a big disadvantage of
making the proposed solutions a part of an SDK tool. In the case of applying
static analysis, prediction results are instantly generated.

The time required to reach a prediction by using dynamic analysis reached
even 10 hours for some applications included in our datasets. Special em-
phasis on this overhead was given in Section 5.3.6, where we presented the
motivation behind combining static and dynamic analysis in predicting en-
ergy gains by acceleration.

As a result, the support of making some estimations using only static
analysis is a significant advantage for application developers. However, the
accuracy of static analysis is limited. Therefore, the combination of both
techniques can compromise granularity and time overhead to reach a predic-
tion, making the integration of energy estimation methods as part of a soft-
ware development toolkit easier. For example in estimating potential gains
by acceleration, the overhead of dynamic instrumentation can be avoided
in cases in which high energy gains are predicted. In contrast to existing
works ([78,79]), the fact that the proposed methodology, predicts the cases
for which relatively high gains are expected using only static analysis is a
significant advantage for application developers.

The quantification of programming effort is important and its pre-
diction is feasible.

Quantifying the programming effort is a very interesting research topic
that is expected to support the design of software applications. Expressing
programming effort in actual development time (e.g. hours) requires feedback
from many developers working on the same projects, in order to make a
clear and representative dataset. The purpose of Section 5.5.2 is to show
that metrics, that have already been mapped with programming effort in the
literature, can be estimated before the new version of the code is written.
The main contribution of this analysis is not based on the use and monitoring
of the Halstead metric itself, but rather on the design of a tool that predicts
the effort required to develop a new (accelerated) version of the code, before
development. To the best of the author’s knowledge, this is a first attempt
of using this metric (the increase of Halstead effort) to create a model that
predicts GPU-accelerated programming effort using the CPU version of the
code as the only input. In this direction, we observed that it is feasible to
predict the effort required to develop the acceleration-specific code using only
the CPU code as input, achieving a very high accuracy (85%). We might
claim that such a solution can contribute significantly to support developers

184

. M\M\V/\/\/V\ ~

x1
x0.5
——Effort increase LOC increase
EES Edts 5 EE8RdTITTEZEEEEESEE8E8888E%5
~ = = 8y = NV = Q9B =z
SAEETFTTEIRE: EEEEE 55T STCi2ESX ERE
B S ®Bs EE=g g S8 §EFzZSS 25 5
& 88 S8 T £< M 82 £
°° zz o
S8
<«——— Polybench > < Rodinia ——»

Figure 77: LoC and Effort actual increase of GPU version in comparison to
CPU for Polybench and Rodinia benchmarks

on deciding whether to invest in acceleration. Results using the traditional
LoC metric are also provided.

Figure 77 shows the actual LoC and Effort increase between the CPU vs.
GPU versions for the Polybench and Rodinia applications. We notice that
Effort ranges from x1 and x8, while LoC ranges from x1 to x2. However, in
several cases the increase in LoC can be safely attributed to statements such
as definitions and variable initialization, which cannot be directly related to
programming effort. On the other hand, Effort is mainly affected by the
number of operands, operators and function calls. Therefore, programming
effort is more accurately expressed through Effort. Indeed, in Figure 77 we
notice that there are applications in which there is a very small increase in
LoC, however the effort increases by more than x4. This observation is inline
with Shihab et al. that state that relying on LoC often leads to underestima-
tion of programming effort [170]. Interestingly, there are some applications
for which the effort seems to decrease. These applications belong to the Ro-
dinia benchmark suite, as shown in Figure 77. The reason, as explained in
Section 5.5.2 is the fact that the CPU versions of these applications provide
functionality that is not present in the corresponding GPU version.

Extending the proposed energy estimation and optimization meth-
ods towards supporting additional devices is straightforward.
There are no constraints in the presented methods with respect to portability.
When accurate energy consumption measurement is feasible, the designed
methods can be easily applied to other devices.

185

To apply the methodology to other platforms the following steps should
be followed:

i) Downloading the datasets and performing energy consumption mea-
surements for each application to generate datapoints

ii) Training of the static and dynamic analysis regression models.

iii) Design choices and methods calibration (e.g. definition of class bound-
aries between ”high gains” and "moderate/no gains” for the prediction
of gains by acceleration in Section 5.3).

Cross-device energy estimation methods support Energy-aware
Function Placement on Edge devices (Resource management).

More and more applications are deployed on power-constrained Edge-
computing devices. The minimization of the energy consumption of Edge
resources becomes very important but any transformation towards saving
energy may violate the Quality of Service (QoS), which is the main design
goal. As a result, effective decomposing of applications into fine-grained
functions and energy-aware placement on a cluster of edge devices that also
guaranties QoS is a very important problem.

Nowadays, serverless computing offers a large flexibility and user-friendli-
ness by utilizing fine-grained functions and can be easily adopted in edge
computing environments. Developers can use a large variety of available
frameworks to apply the serverless concept on an Edge infrastructure without
needing deep knowledge of network protocols etc. These frameworks allow
many optimizations from the resource management point of view.

As tested and demonstrated in Section 5.4, methods that exploit the out-
put of the proposed software analysis tools (in this thesis) alongside with
multi-objective optimization heuristics enable a more efficient resource man-
agement on the edge. The introduced tools presented in Chapters 4 and
5 provide function-level profiling, making cross-device energy consumption
predictions, while it is easy to be used also for estimating execution latency
on various platforms. The two objectives are the energy consumption and
the QoS. As shown in Section 5.4, formulating the optimization goal as a
multi-objective problem can help developers minimize energy consumption
while also satisfying the QoS guarantees for latency-critical applications. The
results are very promising showing an average 33.6% of energy savings for
using 4 edge devices to place 25 functions, or 8.5% for using 3 edge devices,
giving the directions for future research and the development of tools that can
be easily integrated in the overall framework proposed in this dissertation.

186

Online CPS orchestrators are very important for controlling exist-
ing systems. Low-complexity statistical models and multi-objective
optimization algorithms can contribute towards this direction. De-
signing smart thermostats capable of controlling heating/cooling in
existing buildings without requiring prior modelling is a typical ex-
ample.

In the context of this thesis, a framework for rapid prototyping and imple-
mentation of low-cost orchestrators for Cyber-physical systems, was intro-
duced. More specifically, for demonstration purposes, the framework was
employed to control HVAC configuration in a micro-grid environment. The
introduced system is a model-free, plug&play solution of the problem of
HVAC thermostat’s set-point scheduling. The user can set the preferred bal-
ance between energy savings and thermal comfort. The proposed controller
is lightweight and can be implemented on low-cost embedded devices. Exper-
imental results for representative weather conditions shown the superiority of
proposed solution against state-of-the-art relevant algorithms as it achieved
comparable performance but with significant lower computational and stor-
age complexities, which in turn enables its execution onto low-cost embedded
devices.

Although simulation-based MPC methods can produce a solution, they
require a time-consuming procedure and rely on the quality and the accuracy
of the building model. Thus, this type of methods is suitable for controlling
components of HVAC systems that have been modeled at their design time.
The problem of energy prediction becomes far more challenging in case we
consider a scenario without any prior knowledge about consumers (i.e. en-
ergy consumption profiles, occupants behavior) and buildings’ modeling, for
example controlling existing systems.

Some approaches try to handle the buildings’ energy consumption as
a time-series data consisting of linear and nonlinear components based on
heuristics algorithms, statistical analysis, and machine learning. However,
the efficiency of these algorithms is firmly tied to their increased computa-
tional complexity, as well as to excessive training periods in order to improve
model’s accuracy.

In contrast to relevant implementations, the proposed solution requires
only a limited amount of historical data. We build individual models for esti-
mating thermal comfort and energy consumption based on linear regression.
The selection of linear regression was based solely on our objective for deriv-
ing a low-complexity solution, which can be implemented onto an embedded
low-cost device. These models feed a knapsack algorithm that is responsible
for delivering the optimal solutions, depending on the problem objectives as

187

set by the residents.

Efficient data manipulation can enable the design of low-complexity
embedded CPS orchestrators. Sliding window approaches are a
good choice for data based on weather or building’s residents be-
haviour.

To address the challenge of the increased complexitiy, our framework in-
corporates a combination of sliding windows to determine the “useful” data
that will be considered for energy prediction. The functionality of these
sliding windows is presented in Section 6.4.1. More thoroughly, instead of
analyzing raw historical data acquired from sensors, the coarse-grain sliding
window considers only the data that refer to the last days. A further im-
provement is achieved with the fine-grain window, which selects a subset of
this data that refers to a specific time period per day within the days selected
by the coarse-grain window.

This data manipulation can enable the use of much simpler models (e.g.
the linear regression that was used in our case). Such an enhancement of
linear regression’s output is feasible, since both weather and occupants’ en-
ergy consumption profiles, usually exhibit similarities for a given time period
within consecutive days. Note that this time frame affects only the subset
of historical data that is stored to the coarse-grain window. The fact that
the coarse- and fine-grain windows approach is an enabler for our solution, is
highlighted in Figure 67 and Figure 69. According to these results it is clear
that its efficiency dominates the overall framework’s performance.

Both the number of previous days, as well as the time period per day
can be customized depending on the requirement for model’s accuracy and
the availability of hardware resources. Part of the framework’s superiority is
due to the effective selection of data subset used for the analysis purposes.
Although one might expect that additional data improves the model’s ac-
curacy, this is not the case because this improvement degrades with non-
correlated data. Moreover, since the amount of data increases linearly with
the execution time, data storage, manipulation and processing are becoming
challenging aspects, especially at the embedded domain.

We have to state that the coarse-grain window’s size defines the storage
requirements for the proposed framework. In this sense, Figure 78 plots the
number of execution cycles without and with the combination of selected
coarse-/fine-grain windows. This analysis highlights the superiority of in-
troduced sliding windows, which is (as mentioned above) a prerequisite for
performing models retraining, and hence minimizing the system’s output er-
ror, onto an embedded device. More specifically, in contrast to the typical
solution, the employed data manipulation technique leads to an almost con-

188

—— Models refinement without windows
—— Models refinement - proposed sliding windows

I
1

N w
1 1

Number of cycles (x1019)
[y
L

bR v ey g i b e o g e o piton, e il il g s IS ot A, R Y g, Sl et il e, il iR,

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Timesteps

(e}
L

Figure 78: Number of execution cycles for energy and thermal comfort mod-
els retraining without and with the proposed coarse and fine-grain sliding
windows.

stant demand of execution cycles ignoring the experiment’s duration. This
mainly occurs because the windows stores only selective data, whereas the
conventional way stores (on-chip) raw history files.

7.2 Future work

There is a large number of potential extensions of the presented work, fact
that also highlights its importance and applicability. The proposed frame-
work aims to guide developers in designing energy-aware [oT applications.
Of course the energy consumption optimizations that such a tool can offer to
developers are really many. In this section we present some ideas for future
work.

Increase proposed models accuracy by either enlarging the datasets
and using more complex models or change the analysis and the
features type.

As observed in Section 5.3 the larger errors of the energy gains by accel-
eration estimation models where due to the fact that very few benchmarks,
included in the dataset, had similar behavior. As a result, we might conclude
that the models are not trained to provide accurate predictions for such cases
and although the first results can be considered acceptable, an enlargement
of the dataset with more real-world applications and more representative
synthetic applications is expected to also improve the estimations.

An improvement of the way that static estimator analyses the code and
more precisely the type of the features it uses, can contribute to improv-

189

ing the quality of results. We should mention that our main purpose is to
provide an extensible tool that makes the prediction of energy and energy
gains in heterogeneous embedded devices prior development feasible and not
to increase the accuracy of models as much as possible. The suggested fu-
ture directions presented here are not easy to implement as they require,
first of all, to solve the problem of creating a large and reliable data-set
containing CPU (source code) applications, together with the corresponding
accelerated GPU version of the specific CPU code. The data-points must
be executable on the targeted devices (thus synthetic code solutions found
in the literature usually are not applicable) and in a second time we must
change all the analysis tools and estimation models, performing calibration
and cross-validation. One solution towards this direction is to retrieve fea-
tures based on the compiler’s Intermediate Representation. Approaches that
estimate the number of cycles based on LLVM-IR and deep neural networks
are promising in capturing the behavior of modern processors [71]. In addi-
tion, more complex methods [214] are recently proposed offering a (derived
from IR) graph-based representation of programs, capable of capturing the
semantics of the application’s statements that can be used by source code
analysis tools and estimators.

Support additional hardware architectures.

The ability of the proposed solution to support not only standard CPU-
GPU architectures, but also specific domain accelerators, as well as data flow
architectures or even CPU-FPGA SoCs can be easily tested. However, this
requires a very difficult process, which is to create a sufficient and accurate
dataset. As mentioned in Section 5.3.1 the main difficulty is based on the
need to include CPU (source code) applications, along with the correspond-
ing CPU-FPGA accelerated version of the specific CPU code. Obviously,
we could find a relatively small number of available benchmarks that pro-
vide both the CPU and the corresponding accelerated code. HLS (High
Level Synthesis) can be very useful in creating a synthetic dataset because
of its similarities to the C language. However, we can not expect very ac-
curate results as the quality of the FPGA accelerator code is expected to
affect the quality of the dataset and, subsequently, the accuracy of the pre-
dictions. Some first steps to support energy-aware placement and HW /SW
partitioning just by analyzing the CPU code version can be found in the
literature [215].

Support additional source-to-source optimizations or make more

fine-grain suggestions.
As mentioned above, the number of source-to-source optimizations that

190

68% 82% 25% 83%
@ @

. =
E 3
.2 No 2 No
[al) 2 o

Tiling No Tiling No p

Tiling ~ (16.0% Tiling ~ |00.0%
Actual Results Actual Results
(a) Synthetic testset (b) Rodinia/Polybench

Figure 79: First try to make a model that suggests Loop tiling by predicting
the energy gain

the proposed framework can support is not limited.

Our motivation for designing the proposed methods, was the lack of tools
to assist developers in estimating the energy on multiple devices without
needing to get access to them and in addressing the heterogeneity challenges
of modern embedded systems. The proposed framework is designed to be
extensible in the sense that it can be used in a variety of different architectures
but also that the user can add new tools. The GUI and back-end include
reports and guidelines, as well as useful scripts and tools to incorporate them
into our framework.

For example, the proposed framework suggests testing data-flow opti-
mizations when cache misses in nested loops occur. Developers can either use
tools that implement the proposed optimizations automatically (e.g. Pluto,
Orio) or perform them manually. In the context of the present work, we used
extensively these two tools with very promising results in terms of the reduc-
tion of programming effort. These tools alleviate the need of manual code
refactorings and can help to easily investigate if loop transformation has a
positive impact on the performance and energy consumption. However, this
process is still slow and needs the final targeted device to test the actual
results of loop transformation. It would be interesting if the tool also sug-
gested this type of optimizations more accurately by predicting the potential
energy gains.

Towards this direction, we tried to estimate if Loop tilling is expected to
improve energy or not. To achieve this we used a similar procedure to the
method for predicting energy gains by acceleration 5.3. More specifically,
after studying the correlation between profiling features and energy gain af-
ter tilling, we built estimation models. Figure 79 presents these preliminary

191

results. However, we might conclude that such a solution leads to unsatisfac-
tory, inaccurate results. Although in the synthetic dataset the results might
be acceptable (76% accuracy), in the real-life applications (Rodinia/Poly-
bench benchmark suite) the model suggests tiling only for 4 out of the total
16 cases that offer actual energy savings.

Improve, extend and fully-integrate new optimization tools that
use the proposed cross-device estimation methods, such as the
Energy-aware function placement on Edge devices.

In Section 5.4 we introduced a placement decision-making solution that
employs the methods proposed in Chapters 4 and 5 to propose efficient func-
tion placement on Edge devices. This study gives the directions for the
development of another type of energy optimization tools that can be easily
integrated in the overall framework proposed in this dissertation. The first
results are very promising giving a proof-of-concept for this solution. How-
ever, as mentioned in Section 5.4, some limitations still exist. We claim that
focusing on their mitigation is expected to provide a map for future research
directions.

The placement suggestion method should take into account the data ex-
changes between the function calls. Modeling communication costs is a chal-
lenging task that is expected to have a large impact on the quality of the
results produced in real IoT applications. Furthermore, making a more fine-
grain modeling of the interference between functions in the same node is
expected to give more accurate energy and time predictions. Moreover, the
introduced method should also be able of partially adapting its initial place-
ment suggestion, by considering scenarios where other applications are run-
ning in parallel on the same Edge devices. Finally, increasing the experiments
by adding comparisons with other function placement strategies found in the
literature is expected to increase the added value of the presented research
study.

Generalize the targeted CPS control problem by taking into ac-
count more components (Batteries, Electric Vehicles) as well as a
more complex energy market (grid-to-grid transactions).
Nowadays, energy market starts to make traditional energy consumers ac-
tive prosumers, meaning that they can both dissipate and generate energy in
modern smart-grid environments [216]. As a result, a dynamic pricing scheme
is adopted, depending on building-to-microgrid, as well as microgrid-to-grid
transactions. Demand and price forecasts are becoming crucial components
for estimating energy cost and for scheduling loads. Taking also into account
the intensively increased energy entities in the micro-grid, such as the use

192

of bateries to store energy produced by the renewable sources, even the use
of Electrical Vehicles charging stations, the orchestration of such a CPS is
expected to be even more complex [217].

The solution presented in the context of this thesis is generic enough
and an extension towards covering these aspects can be tested in the future.
Of course, such a problem remains difficult to be approached due to its
complexity and the absence of a testbed (simulation framework or grid) that
incorporates all these components.

193

ITAPAPTHMA A

Extetopevn Ilepliindmn

Ewooaywyn

H evepyelond) amodotixdTnTo TV UTOAOYLO TIXWY TOPMY TOL EXPEALETOL CU-
YVvé pe toug 6pouc Green xou Sustainable computing xepdiler 6ho xou peya-
ANotepn mpoooyhy To teheutada yeovia. Kaldng o apriude twv umoloyio Ty
OLUOXEUOY o€ eQopuoYEC Aladtiou Twv Avuxeuévoy (IoT) ouveylel va au-
EdveTon (ZXY'WO(80 - IIny#: https://ihsmarkit. com), 1 pelwon g evépyetag
TWYV EPUPUOYWYV ATOTEAEL TAEOV Lo oTuavTixY amaitnon Tou emPBAiAeL Véeg Ttpo-
x\\oelg oToug TPoYpaUUaTIo TEC. Ot uTdpyouoeg AJGELC TOXIAAOUY GNUOVTIXG,
avdAoya e To eTinedo oTo onolo e€eTdleTal 1) EVERYELOXT) AmOBOTIXOTNTA. ATO
N plo TAEURE, TO XOVTE GTO AOYIOUXO, UTHEYOUV ERELVITIXEG EQYAOIEC TIOU
Tpoteivouy BEATIOTEC TPaXTES xou Bivouv xateutuvThples Yoouués Bactloue-
VEC o€ eumelpiéc pehéteg [37,42,43,47]. And tnv dAAn mheupd, oL epeuvnTég
OTOV TOUEN TV EVOWUATOUEVWY CGUCTNUATWY UELOVOUV TNV EVEQYELX EITE UE
BehtioTonomoelg oTo (Blo To UAXO, elte ueTaoyNuatiloviag ToV Xm0 TNG €-
PUPUOYNS, YENOWOTOLWVTAG EUTELOIXEG TEYVIXES, T.Y. YL TNV BeATioTomoino
e droyelptone uviune [14,21,51,53,62]. Kadoe ov epopuoyéc eZehiooova,
ONULOVEYELTOL 1) VALY XY OVTYETOTIONG TNG AUENUEVNS EVERYELNXNC XATAVAAWONG
070 eninEdO TOU TNYAloU (MBI TNS EQPUPUOYTHC AT TOUC (BLOUC TOUS TEOYP-
votiotéc. ¢ ex TolTou, 1M BnulovpYla EPYUAEDY AOYIOUIXOU XOVOY VO T
PEYOLY EXTIUNOELS XUTAVIAWONG EVERYELUS XAl VoL TOTEVOUY PeATIo TOTOLOEL,
etvan TAE0V EEAUPETIXG GTUOVTIXT, TROXEWEVOL Vo TapEyeTon Borlela 0Toug TEo-
YeoupaTIo TéC o OAeg TiC pdoelg avantuine IoT eqopuoydv.

Ytoyo¢ tne mopoloog dlateBhc elvar 1 oyedioor cpyokeiwy avdiuong e-
(PUPUOYWY TOU GTOYEVOUV GTNV EVERYELOXT amodoTxoTnTa. Ol TPOTEWVOUEVES
Aooelg, ol onoleg ouvdudlovial xaL UE AETTOPEREIEC LAOTIOMOTNC, ToREYOUV €-
ATYNOELS TNG AVOUEVOUEVTG XUTAVIAWOTG EVEQYELUS TWYV EQUOUOYMY TPV AUTEG
exteAeoTOVY oTIc ouoxeuéc. Ta mpotevoueva epyahela TUPEYOUY TEOTACELS
BeATIoTOTOAGEWY GTOV YPNOTN UE WLUTERT EUPUOT GTNY EXTUNOT) TWV TAVHY
EVEQYELAXWY XEEOWY OO TNV ETLTAYLUVOT) TN eQopuoyic oe GPU, eved e€etdle-
TOL 1) EMEXTACT] TOUG OTNV ONULOVEYLA EVOS CUC TARATOS UMOPACEWY EVEQYELUX
AmOBOTIXWY TOTOVETACEWY TWV ETYEQOUS CUVIPTHCENY TV EQPUQUOYOY OTIG
dlodéotpeg ouoxevég Tou Bixtlou. H pedodoroyia mou napovctdletar 6TnV OLo-
TEPT, £YEL TOAAE XOUVOTOUN YUQUXTNELO TIXE, OTIKS TOV GUVOLICUO O TATIXAC XAl
OLVAULXNG AVIAUOTC TTEOXEWEVOU VoL 0LOTIOLOUVTAL TAL TAEOVEXTAUATO Xl TGV
oVo. EmnAéov, mapouotdleton ytar 0T MEAETN TNG ETOEAUOTC TWV TEOTEVOUE-

194

80
» 70
2 60
50
o 40
£ 30
20
UL

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year

f dev

P

Billio

DN

ALMMHIHIHIHIHTHIIy

7
.
/
.
.
/

AN
AN

N

Lyhuo 80: Extiumuevog apriude cuvdedeusvey IoT cuoxeunvy

VoV BEATIOTOTOACEWY GTNY aVATTUET AOYIOUIXOU, OTWE T.Y. 1) EXTUNoM Tng
mpoomdielog Tou meEmel vo xotaBAnel yia var eQapuocTouV.

H npdéopatn abénon tne {itnone yia eqgopuoyég IoT, omwe yio napdderypa o
ENEYYOC TNC EVEPYELXG X0l TOU XAWoTLopol ota xtipla [26-28], xivnronoinoe
ueRéTn o e mepintwone. Ta cuothuato autd Tapoustdlouy audnuévn
TohUTAOXOTNTA Xt 1) AetTovpyia Toug Bacileton Arydtepo otny avlpdmivn Afdn
AMOPEOEWY XU TEPLOGHTERO GTNV UTOAOYIOTIXH vonuoolvn [23,24]. Ye auti
T OtelPn) elodyovian VEEC AUGEIC TV OOV T TELROUATIXG ATOTEAEOUUTA
OElVOUY CLYXEICIUES ETMDOCEIC UE TOPOUOLOUS EAEYXTEC TEAEUTALOC TEYVOAO-
yiog, ywele Ouwe TV avdyxrn TeonYoVUEVNS AETTOUEQPOUS HOVTEAOTIOMOTC TWV
ATNELOY Xt ATOUTOVTIS TOAD YUUNAGTEQOUC UTOAOYLE TIX00S THROUG.

Or ouvelogopéc tng dLote3ng umopolv var cuvoioToly ota e€hg:

e Ilpotelveton par yevixr) ueodoroyia yio Ty dnuovpyla epyokeiny avdiu-
ong mnyodou xwdwa o ontota Yo YpNOULOTOLOUVTOL UTd TOUS TEOY QOUMO-
TIOTEG UE OTOYO TNV EXTIUNCT) TNG EVERYELNG TWV EPURUOYMY TOUS Ywpelg
TNV vy xn eEXTEAECTS TOUG OTIG TEMXEC GUOXEVEG.

— H extlunon evépyelag, ot pédodol xou ta epyaheior BeAtioTomolnong
€)OUV OYEDLIOTEL YOENOWOTOWWVTAS TOCO TEYVIXES DUVAUIXC OGO
XL OTATXAC avahuoNg xWOxa, TeTuyabvovtag éva cuUPiBaoud Je-
Tog 0 axpifelag xou yenotwotntag. Ot mpotevoueveg pédodol yenot-
Lomotoy GUVIETINE TEOYEAUUATE WG GOVORX DEBOUEVWY, DNUOPLAN
gpYoheior AVIAUOTC XoL OTATIOTIXES TEYVIXEC METLUYUUVOVTAS UPNAY
axpiBeta tpdBhedne (R2 = 0.96). Meletdvtac tn cuoyétion Petald
TWV OLUPOEWY UETENOEWY (chpommptcuxc’ov) X0 TNG HATAVIAWOTG
evépyelag, xadg xar ouyxpivovtag petall pedodwy mpoBiedng, 7

195

OLoTELBr) CUUBIAEL GTNY XUTACKEUT) TEAXTIXWY XAl EUXOAWY OTNY 0-
VATTUEY €QYUAEIWY.

o Ou véec teyvinéc xon Ta epyahela emextelvouy TNy undpyouca BiBAloypo-
plo, divovtag Tig xatevdivoelg yio evepyeloxr Pektiotonolnon and To
eninedo tou Aoylouxov. Ilo cuyxexpweva, ol uédodol apopoly extiun-
OY) DUYNTIXGV EVERYELIXWDY XEEOMY UECEK) UETACY NUAUTIOUWY YId EXTEAEDT)
TUNUETWY Tou Tyalou xwmdwa ot évay emttayuvt GPU evég etepoyevoic
CUG THUATOC.

— H npotewvéuevn npocéyyion cuvdudlet pedddoug G TATIXAC Xou Buva-
UXAC VBAUCNC Xl EXUETUAAEVETOL TOL TAEOVEXTAUATOL XU TOV BUO
oe éva eviaio epyarelo. Evd n otatiny| avdiuon Poacileton otny
aVIAUOT) TOu TINYoloU XWOWXA, 1) BUVAUIXT] AVEAUCT) ETEXTEIVEL TIC
UTdEY0VCES TEOOEYYIOES Tou Tapéyouy TEOPBAEPES YpdVou, TEOg
™V extipnomn xou Twv mavey evepyelaxmy xepdwy. Ot epapuoyeég
xotnyoptomotolvton e oxpifela peyohitepn touv 75%.

— Meketdton o aviixtumog Twv BekTioTono|oewy Tou oyeTiovtol Ue
TNV EVEQYELXL OTNY TOLOTNTA OYEDCUO) AOYLOUIX00, XAVOVTOG €-
mlong éva mpwTo Brua Teog TN oyedioon eVOg EpyaAelou TOU EXTI
Vv mpoondeta mou yeetdleton var xataBAndel yior Tov Tpoypeaua-
Tioud g Pertiotonoiuévng éxdoone. Ta amoteléopota €deilay
oxpiBeta mpoPBAedne e TEOYpUUUATIOTIXAS TeooTdElS (eExppa-
ouévng Péow twv etpixwy tou Halstead) tne td€ewe tou 85%.

— E&etdotnyre 1 ypfion Twv TeoTEVOUEVGLY UEHOBOAOYLMY XAl LOVTEAWY
otnv onuovpyla evog dhiou eldoug epyahelou avdiuong epapuo-
YOV TOU GTOYEVEL O EVERYELOXY ATOBOTIXEG EMLAOYEC TOTOVETNOTG
TWV CUVOPTACEWY TWV EPUPUOY®Y GTOUS OLIECLIOUS UTOAOYLO T
xoU¢ mopoug (cuoxeuvéc) tou dixtvou. To mpmta anoteréopota e-
tvou evioppuvtixd xadde emtuyydvetar 33.6% uéon evepyeloxt| e-
Eowovounon vl yeNon TECodEmY GUOXELUGY Yiot TNV Tonolétnon
25 CUVOPTACEWY EVG YLo TRELC CUCKEVES 1) EEOIXOVOUNGT| TTOU TETU-
yotvoupe efvar tepinou ato 8.5% ev ouyxploet e v tomovétno
mou xdver o KuBepvtng.

— Xyeddotnxe eva TAalolo avdhUoTG EQUEUOYWY, UE OTOYO TNV EVOWL-
UATWOT BLAPORETIXMY EWBMY EQYUAEIWY TOLU GUUSBIALOUY GTOV EVTOTI-
oUO CNTNUATERY XATAVIAWOTS EVERYELIC XUl GTNY TEOTUCT] OYETIXWDY
Behtiotomojoewy. M oelpd epyakeinv vhomotfinxay yio va o Tn-
eiCouv TNy mpotevouev uedodohoyia TepIEyovTag TG00 TIC AETTO-
UEpeLeg LhoTolnoNg Yo TNV dNUtoLEYia UTNEECLOY GO %ot YEAPIXO
TepBdAloy.

196

o Ilpotelvovton véeg pédodol AMne amogdoeny yia BEATIOTN anddoor xou
Toyela Onovpyio epapuoy®y AMbng arogdoenmy Y Cyber-Physical Sys-
tems, Omwe T cUCTAATA Sl ElploNg EVERYELNG Xa XALUATIOUO) OF Te-
eBdrloy E€unvewy xtnplwy. H mpotewduevn pédodoc eupavilel alloon-
ueloTo younhétepn TohumAoxdTnTa ywelc va Yuctdlel TNy ToLOTNTA TV
TUEAY OUEVKY ATOTEASOUATODV.

— IMopousctdlovtar Tpocoupuoouévee MIGEIC TOU EVOOUTOVOUY YEu-
U] ToAvdpounon xat oAy dpriuoug Xoadiou, eve tpoteivovTon vEa,
Yeryopa xon oxpi3Y) povtéla yia Ty extiunon e Vepuixnc dveong
xa TNG xoTavdhwong evepyetag. To povtéda autd €youv TohD uixeY
TOAUTAOXOTNTA GE CUYXELOT) UE TIC GAAEC UANOTIOLAOELS, Ywpelg xoula
uToBdduLom NG TOWOTNTUG. LUYXEXPWEVA 1) TEOTEWVOUEVT A)OT) Te-
Tuyaiver uohic 3% yewpdtepa anoteréopato and TNV BEATIO T ahhd
oe 8 tdlelg pey€doug Ayodtepoug xUxAoug unyavic xon Ywelc Teorn-
yolpevn poviehornoinon 1 yvoon. To mpdBinua €yel povielonon-
Vel ye xotdhhnho TpoTO, 00TWC OOTE Vo utoo Tnellovial TOAATAES
Aertoupyleg, Omwg 1 eEl00PEOTNCT TN XATAVIAWGCNG EVEQYELIS UUE
TNV IXAVOTIOINOT) TWY XATOIXWY, 1) EAAYICTOTOINGT] TNG XATAVIAWGCTC
EVEQYELIC OLUTNEMVTAS TapdhAniar €var ixavoTounTixd eninedo Yep-
UXAC GVESTC XAl 1) UEYICTOTOINGT) TNG LXAVOTIOINOTNS TWY XATOXMY
yweic urépBao Tou dlardéotuou evepyeloaxol TEOUTOAOYLONOD.

MeédoboL extiunong tng svépyelag
Oplopog Tou TEOBAAUATOG XA CYETIXY| EpYATIA

Efvar onpovtind opyxd vo oplooude o mpoBAnua mou AOVEL 1] TROTEWOUEYT
uedodoroyia. To epyaielo mou mapdyetan ue yerion tne vedodoloyiog pog, Yo
TEEYEL GTOV UTIONOYIOTT] GTOV 0T0{0 EpYALETOL O TPOYPUUUATICTAS, WS UEPOS TOU
TEPBAAROVTOC AVATTUENS EQOPUOYGY T Yenotponolel. Me autdv Tov TpdTo, ot
TROYPUUUITIOTES UTOROVY VoL EYOLY aVE TG GTLYUT EXOVA TOU TOGT) EVERYELX
TEOXELTOL VO XAUTOUVOAWCOLY TUAUAT TNG EQPARUOY NS TOUS OE OLAPOREC CUCKEVES
YWelc TNV avdyxn EXTEAECTC TOU XWOLXA OE QUTEC.

Auté elvor ol ypriowo, xodde oL TEOYRUUHATIO TES BEV €YOUY TAVTA OTNY
oLdect| Toug OAeg TIg evalhaxTixeg cuoxeveg. Ernlong n pétenon tng evépyetag
T8V GTO TROYHOTIXG LIS umopel v ypeetdleton edixd e€omhiond (m.y. ou-
oUNnTrheeS) xou YVOOoES. Axoua, ov ETAEYOTAV 1) eyt PETenoT, TOTE 1
ToEEUPBOAT] WG TETOWG OLadixactag (og toxTd &ocoﬂwoc‘coc) xaTd TNV OLdpxELa
oyedlaong Twv e@appoy®y Yo adave TOA) TOV YPOVO OROXAPWONG TOU TEO-
t6vtoc. Télog, umopel va unv elvon VT EQIXTO 1) EQPUPUOYT| VO TEEYEL OTIC
CUOXEVEC TOU OIXTUOU YL TIELOOUATIONO.

197

‘Onwe elvor QUOIXG UTIEEYOLY OYETIXES EQYACIEC TOL OTOGXOTOUV GTO Vol
TEoGPEpoLY A)oES 0T0 TEOPATUA Tou Teptypddope. Kdmoleg mpooeyyioeig
OTOYEVOLY UOVO OF ULXPOEAEYUTEC XU OE CUYXEXEWEVO GOVORA EVIOAGY TEO-
o@épovtac ToAD ueydAn axplBeto [48]. Alkec epyoaoiec, ol onoleg pdAioTa €-
TNEEACOY UEXETA TNV OXT YOG TROGEYYLOT), EWOXE GTO XOUUATL TNG OUVAULXNG
AVIAUONG, YENOHOTOOUY TEYVIXES UnyYavixnc udidnone méve oe dedouéva Tou
€y 0oLV €CAYEL MO TNV TEOG AVAAUGCT| EPUPUOYT| UECE TEYVIXWY AVIAUCTG UTO-
Aoyto oy onathoewy (profiling xow dynamic instrumentation) [58,59]. Ta
epYaheior aUTE €y0UV UEYEAT oxpiBeior oAAd yeetdlovTon TOAD YEOVO Yia VoL ONO-
XANEOCOUY TNV AVIAUGT) TOUG XU UERPXES PORES amouToUV Xdmola TeoeToucta
TOU TPOC OVIAUGT) XWOWXOL UTO TOUS TEOYROUUATIOTEC. AUTEC OL oA TNENOELS
o €dwoay xivntea va e€eTdoouue eniong TN dnuovpyia cpyolelwy tou Po-
ollovtar oe otatxr avéiuon. To epyoreio Mira [77], mopdlo mou dev extiud
NV eVEpYEL OAAG TOV aptdud TEAEEWY XIVNTAS UTOOLICO TOAAG, HOG ETNRENCE
TOA) GTNY GYEDNCT TNG AVOTG MO UECL CTATIXNG OVIAUOTG. LUYXEXPLUEVA,
N éugaon mou Siver atouc Pedyouc (loops), n avauovr npdodetwy TANpogo-
PLOY 0TS 0 aEtdudS TV enavalbewy oToug Bedyouc and TOV TEOYQOUUNTL-
o %.a. elvan oyYedloTiXég emAoYEG Tou yivovton xou améd pog. Alha gpyo-
Aelor mou undpyouv oty BiBloypapia emextelvouy ueVddoUC TOU GTOYELOUV
oty extiunon tou yewpdtepou duvatol yedvou (worst case execution time —
WCT) [72,73,135]. XuvAdn tpoBriuoata toug eivar 6t ebvon e€apetind opYd,
Oyt TOhD axElf3r) o €YOUV TEQLOPLOUEVY] EQUOUOYY| OF OPYLTEXTOVIXEC XOL GU-
oxevec. Téhog mohD onpavtixd ebvan Tor epyaielor extiunone tou throughput
wag epopuoyrc 6nwg to LLVM-mca, to Intel Architecture Code Analyser
(IACA) 7| 7o Ithemal [71]. To LLVM-mca pdhiota evowpotddnxe o otny
TEOTEWOUEVY o TaTXT| U€V0dO.

ITpotewopevn wédodog

H mpocéyyior pog mapovoldleton cuvontxd oto Myfua 81. Apyixd mo-
edryovtal cUVUETIXO! XWOWES Yo Vo oTNUEl To oUVOAO BeBOPEVLDY. Ot xOOL-
%EC avohDOVTOL UE TOL TROTEWOUEVA EQYUAEIN GTATIXNAG %ot BUVOUIXHG AVIAUGTS
wote va Topoy Yoy o yopuxtnelo Tixd mou Yo divovtar cav eicodol oo po-
vTéha extiunong tng evépyetoag. llpoxewévou va npociétouue véeg cuoxevéc,
ol ornoleg 070 €€rc Va elvon SlordécUes YL EXTIUACELS EVERPYELIC, YPEWICETOL (Lol
popd var TeE€ouv oL cuvieTixol x@oixeg xon va peteniel 1 evépyeta. Ta dedo-
uévor autd evépyetag wall U Tal YuEaX TNEIC TIXA TTOL ToRdy I NXoY TEONYOUHEVKS
cLVIETOUY T0 GUVOLO BEBOUEVKY TO OTOlO YENOYLOTOLE(TOL YLl TNV EXTAUOELOT)
TWV HOVTEAWY Ta oTolot 0TV GUVEYELX elvon €Towda YLt YeHom.

O ouvideTtinol xdxeg mapdyovton péow Python scripts xou amotehodvTon
amd Tuyatoug Bedyoug ot YAnooo C, ot onofol eumepléyouy tuyaio apriud emo-

198

Design Estimator

Generate synthetic |

Add new Platform

[, Compile on

L

)

code T

~
Compile on host

|| Dynamic

Analyzing object file

Static ﬂ_ :

: 3%
|@ Profiling

[” Target Platform

Run and Measure
energy

2 .
{fmm Extract info

Hl - .
ifmm Extract info

Collez:t data

=
2= Select Features

— 5%
o= Select Features

1 ! > Platform dataset £
1

ol

v
Retrain model g

v
Estimation model

Yyfuo 81: Ipotewvduevn pédodoc oyedioone epyahelwy extiunone e evée-
YELog

Iivaag 18: Toapdderypor Tuy oo ToEory OUEVOU XOOLXL

for(i=0; i<18; i++){
for(j=0; j<250; j++){
for(k=0; k<167; k++){
AO[][j][k] = AL[i][i] [k]* A1[i][i] (k] /AL[i][3] [k];
} BO[i][jl[k] = B1[i][i]-B1[i}[j]/BL[i][i]*B1[i][jl;
}
}

vahfhewy xaw exteloly Tuyaies npdielc (tpdodeonc, agaipeons, Tolhamlocta-
ool xou Slaipeong) Letadd Tuyaiou oprduo xot ueyédoug mvexwmy axepalnwy xo
aprduoY xvnThc uTtodtacTorrc. Evo mopdderypor Tuyola ToEayOUEVOU XGOLXL
patveton otov Ilivanca 18.

Avvapxr avdluor H duvouw avdhuor BaciCeton xupltg ot pedddoug o-
V&AUONC UTOROYOTIXGY omanTAcewy (profiling xou dynamic instrumentation).
Xpnowonowel ta dnuogihyy epyaheta Valgrind xow Pin. Me autdv tov TtpoT0O
ToEdYOupE TEploo6TEPEG amd 100 PETEXEG amd TNV EXTENEOT TNG EQUQUOYYS.
Ipoxeipevou vo emhéZouUE TIC O OYETIXEC UE TNV EVEQYELD, YPETOWOTOLOVUE
UeDOB0UC CUCYETIONE %o TEAOS GUYXEIVOUUE Xl ETLAEYOUNE TO XATUAANAOTEQN
wovtéla extiunonc. Ymeviuuilouvye 6Tt oL YETPIXES/ YopoxTNElo TIXd Ttapdyo-
VTOL GTOV UTIOAOYLOTY| TTOU BOUAEVEL O TROYPOUUATIO TAG, EVEK Ol EXTIUACELS UG

199

e
-

0.01

0.001

Mean Prediction Absolute Error (J)

Yyfuor 82: Evaddoxtixnd povtéha extiunong tne evépyelog Bactouévo oe duva-
Ur) avdAuoT)

apoEoUY TNV EVERPYEL TTOU 1) EQUEUOYT) Vol XATAVAAMGCEL GTNY TEAIXY| GUOXELT.

Apywd 10 oOvoro BEBOPEVWV UAC TEQLEYEL OAAL TAL YUPUXTNELOTIXE, OAWY
TV CUVIETIXOV TROYPUUUATODY XL TNV EVERYELX TTOU UTH XATAVUADYVOUY GTOV
ARM Cortex-A57 tng xdptoc Nvidia TX1. Aivovtag cav elcodo pépog tev
SLVIETIXOV DEBOPEVWY GE BLAPOE EVOANIXTING LOVTERN Yo TROBAETOVTAS TIG
EVEQYEIEC TWV LUTOAOITLV (TEXVLXY’] cross-validation), to amotehéouata Qotvo-
vtar oto Lyfua 82. Ilopatnpolue 6Tl 1o povteho Lasso uneptepel twv umolo-
(twv. ‘Evag Adyog mou oupPaiver autd ebvar 1 SuVATOTNTA TOU EYEL Vo ETUAEYEL
YAEUXTNPLO TG, YEYOVOS TOAD ONUAVTIXOG EWDXE OF TEQLTTWOOELS OOV TNV Oix
MO, OTIOU €Y OUNE TOAAY YAQOXTNELO TIXG TOU EXPEALOUY TopdUoL TANEOGORia
1) €Y0LV Aol AVUAOYIXT) OYECT] AVOETALY TOUC.

To {dto 10 povieho Lasso poag mopeyel evoy TeOTo ETMAOYNG YUEUXTNELO TL-
%WV olvovtag Bden xovtd 6To UNdEV O GO YAPAXTNPLC TXE DEV YENOWOTOLEL.
To mo onuavTixd yopoxTnewo Tixd clugwva e To Lasso, gaivovtal otov ITivenca
19. Ioapatneolue 6Tt ol Aettovpyieg UvAUNG, N cuUTepLpopd TNg Uviung cache,
1 meoPBhedn twv branches, o apriudc xou 0 TOTOC TV KELHUNTIXGY TEAEEWY X.0L.
€Y 0LV xUPLAPY T CUVELGPORE GTNY EVERYELX TTOU XAUTOUVUAWYVEL 1) TEALXY| GUOXELY).
[opdho mou To anoteréopota Yo Umopoloay Vo YopoXTNEIG TOUY VOUEVOUEVA,
1 EAETN auTA efvar TOAD onuavTxy| Yot Yag ETITEETEL VoL UELWOGOUUE TOV apLl)-
UO TWV YENOWOTOOVUEVKY YUQUXTNELO TIXMY XATE TOAD, UELOVOVTIG ETOL ol
T0 TON) peydho (O6mwe Vo dolue Topaxdt®) X60TOG TS BUVOIXAC avdAuoTg
UTIOAOYLO TIXWV ATALTYOEWY.

Yratix avdAuor Ye auThY TNV Tapdyeapo TUpOUCLACOUNE Lol EVIAAUX T
x| TPOCEYYLOT TEOXEWEVOU VO ATOPEDYOUUE TNV UEYT) EXTEAECT) TV EQPUOUO-

200

Hivoxag 19: Tho onuovtind yopaxTneloTixd duVaxg avdhuong

Xopaxtnelotind Bdpoc Lasso (onuavtixétnta)
[apakknhomoinon o€ eninedo eVIOAGDY 2.481
Eyypogéc dedopévwy otn puviun 0.688
Yehideg pvAung mou TEooTEAOVOVTUL 0.438
Méyedog uviung cweot 0.379
Apriunmixéc mpdelc 0.324
Brua npooBdoewy otny uviun (stride) 0.240
Tro cuvifxn SlaxAadOoeLg 0.187
Arnotuyiec mpdPAedng SlaxAadOoEnmY 0.185
Puiudg actoyiog oto tedeutalo eninedo pviung 0.119
Xpron otolBag 0.099
Puiudg actoyiog oto mpwto eninedo uviung 0.053
Avoryvooeig uviung 0.014

YWV TOU ETUPEREL 1) BUVOULXT| OVIAUOT). L€ AUTH TNY TROCEYYIOT 1) AVAAUGT) UG
Baotleton otov mnyalo o Tng egopuoync xo povo. O otdyog pog etvar xan
oL Lo AUoT) TToU BiVEL TTPOGEYYIOELS EVEQYELNS YId TOAAES X0 OLUPOPETIXES GU-
OXEVEC O OPYLTEXTOVIXES. AUTO o 00N YEl GTNY ETAOYY| ATAWY XAl YEVIXODY
YUPUXTNPLO TIXGY YOl VO TPOPODOTACOUUE Tal LOVTEAN EXTIUNONG TNG EVEQYELAG,
Tor omofor Yor e€dyovTon améd Tov xOWaL xou Vol EYOUV EQUPUOYT| XL VOTUXL GE
mAniopa apyttextovixey Pootoyéveoy oe CPU. To yapoxtnptotind autd hop-
BévovTon and Ty avdiucr tng assembly tnv onola TopdyeEl 0 UETAYAWTTIOTAS
xadde xou Y yenon tou epyaietov LLVM-mca. To yopoxtneiotind mou tpo-
(pOodOTOUY Tl LOVTENX oG ebvor Tor EEHG:

e O aptiudc twv eviordv (INS)

e H extiunon tou throughput (uéow LLVM-mca)

O apripdc v eviohodv avdyvoone uviunce (LOAD)

O apriudc v eviohodv eyypaprc uviuns (STORE)

O aprdude v eviohoy aptduntixdy ertovpyundy (OP)

o Troxatnyopio aptduntxdy eviohdv 1 (mpdodeon, agaipeon, tolomia-
olaop6e, ohionon)

o Troxatnyopio oprduntixdv eviohodv 2 (Uetatponr) Oeixtrn, €violéc o€
ivaxee, dlodpeon)

e H oepd twv evioadv OP, LOAD xou STORE

201

1.40E-07
1.20E-07
1.00E-07
8.00E-08
6.00E-08
4.00E-08
2.00E-08
0.00E+00

.
%

Mean Prediction Absolute Error
@)

Lyfuo 83: Evodhooctind povteda extiunong tng eVERYELXS BaACIOUEVA OE GTATLIXY
avdAvon

H xdde xatnyopio emiéydnxe ye Bdon tov ypdvo extéheonc xou TNy evép-
YELL TWV EVIOADY aUT®V 0 oLUoXEVES Baotopévee oe ARM. Yuyxexpuéva xdle
YAEUXTNELO TIXO TEPLAOBAVEL EVTOAEG UE XOVTIVO XOCTOG OE evépyew/ypovo. H
oElpd TWV EVIOA®OY povieronotfinxe ue W tey vy sliding window. 'Eva na-
eddupo ohloalvel ueTal TwV EVIOADY TOU TEOYROUUATOS Xt XEVE GUVBLICUOC
evtohwv LOAD, STORE xou OP dnulovpyet éva emmpdcoieto yopaxtnelotixd
O0NYOVTG OF 33 = 27 véau YOEUXTNELO T

Katémy olyxpiong Yetall dlapdpwy poviéhwy extiunong, n oxpifeio tov
€1 xah0tepwy ouvodileTton oTo My 83. LOuwva Ye TNV UEAETN aUTY, TO
uovtélo Orthogonal Matching Pursuit emagydnxe.

IMTelpopatind anoteAéopata

[o metpdpator tou Yo TupoUCLECOUUE TORUXATL YENOUOTOLACOUE oY\
x4 v ovoxeur| Nvidia Jetson TX1 xou cuyxexpéva enedn tpéyovpe CPU
epapuoyéc, Tov ARM Cortex A-57 mou mepiéyel 1o toun. llpoxewévou va e-
AEYEOUUE TNV EMEXTACLUOTNTA TNE TEOTEWVOUEVNE UEVOOOU, Vol EXTYUHCOUPE TNV
evépyeta mou xatavahwvel o Intel Xeon Gold 6138 evdg server cuc THpaToC.

Ov egopuoyég mou YENOWOTOVUE Yiot TNV allOAGYNOT) TWV TROTEWVOUE-
VoV Uedddnv tepthaudvovton oTic coulteg egapuoywy Polybench xou Ro-
dinia [126], mou Tepéy 0oLV UEYARN YU UTOAOYIOUMY OO GTATIOTIXY), Unyo-
vixt| udinor, enelepyocio exovog, BIOTANEOQORIXY X.0. X0l YENOULOTOVVTIL
cupEng oTtny PiBAoypagpia.

To mpwta anoteAéopata gotvovior 610 Uyfua 84, XenoWonouwvTag ooy
GUVORO BEDOUEVWY EXTUDEUOTC HOVO TOUG CUVIETINOUG XWOXES, TTROBAETOUUE
TNV EVEPYELX TV TO CNUAVTIXGY Bpdywy twv epapuoyny tou Polybench xou

202

9 2 0.000002 ’

’ 0.0000018 -

=)
N,
N,
N,
N,

e 0.0000016 ’-2

EN|
N
N,
N\,
N\,
(]

°
s 0.0000014 e

’ d D /’
g6 e = 0.0000012 §e
ko] e % /,
25 # £ 0.000001 .
e 2 °
E 4 e & 0.0000008 e
172] d P
53] S L
L 0.0000006 S o®
3 1’. 0
e 0.0000004 ,/’
2 ’ R (]
e 0.0000002 ¢
4
1 & °© o &
o °© gz 883z ¢g 32 ¢ g
(= (=] (= (=] [=] (= f= (= (=]
00 2 8 8 8 8 8 8 8 S
0 1 2 3 4 5 6 7 8 9 S 8 8 8 3 &8 8 & 2
(=] (=1 f=] (= (= f=] (=)
Actual (J) Actual (J)
(o) Auvaixd avéiuon (B") Erotxh avdiuon

Yyfuor 84: Xlyxpion exTydopevne xon mpoyUotixic evépyelac otov ARM-
Cortex A-57

tou Rodinia yenotuonowdvtag duvopxr (XyAuo 840) xon oot (Xyruo 848")
avéAvon. ‘Omeg elvar Quoxod 1 duvopxr| avdhucr odnyel ot To axpydr| anote-
Moparo (R? = 0.96) eved 1 otatied| avdhuon netuyabvel éva R? tne tééne tou
0.92. H Suvauxr avdhuon yeetdleton (Omwe avapépUn e ot TEONYOUREVHS)
OEXETO YPOVO YLl Vo OAOXANEWUEl, EVE amoutel TNV EXTEAECT) TV EQPUPUOY DY
X0l AUTES OL OLOTNTES TNG ATOTEAOVUY UELOVEXTAUITO XUTA TNV EVOWUATWON TN
o€ €va TEPSUALOY OYEBIAOTC EQUOUOYMY EVEK 1) OTATIXT| AVAAUCT) TapdryeL O TLy-
wakor amoteAéopata avahbovtag povo tov mnyaio xwowa. H otatir avdiuvon
oo TNV GAAY, %dveL exTIUNOT HOVO TNG EVERYELIS EXTEAEOTC EVOS UTAOX WO
Ywelc vor hoBdver uddn duvopxr TAneogopia OTWS YLo TaEddELyUa ToV apLl-
U6 twv enavakibewy otoug Pedyouc. Autéd qaiveton xon oto My fuo 843" 6oy
BAémouUE OTL Ol EVERYELEC AVTIOTOLYOUY GE WLol UOVO ETaVEANdM Twv Bedywy.
H mhnpogopio auth| meémel vor Sodel amd ToV TEOYREUUUATIOTY| XYTL TOU OEV €-
tvan vt €000, EWBIXE OTNY TERITTWOT) TOL EYOUUE ELPWAEUUEVOLS Bpdyoug,
XANOELC CLUVORTHOEWY UEGa oE Bpdyoug 1 UTO GLUVITXY XAdBOUC.

210 EMOUEVYL TEWRGUOTA OV TopouctdlovTal 6To Ly hua 85, Yenoylomolo-
Oue TNV P€Yodo Teoc¥1nng VEWY GUOKELMY TROXEWEVOL VoL UTOC TNEIEOUUE TOV
Intel Xeon Gold 6138. Edo 1 otatiny| avdhuorn ydvel tohd oe axp{Bela, xdtt
TOU OQEIAETOL OTO YEYOVOC OTL Ol EVERYEIEC TNG WG emavaindne etvar mohd
uxeéc xou 0 VopuPog Tou TEpLhoUBAVEL OTIC UETPNOELS €VaC UEYHAOC Server e
20 muprveg xon 40 viuoTa BUOKOAEVEL AXOUN TEQIGCOTEQO T TR YUoTA. Xoo-
ATNEIO TG Ebvan OTL GTOUG o PEYEAOUS Bodyoug, OTKC Yio TUEAOELY A LTOUG
Tou TepthopBével 1 covita Rodinia, to R? ayyilet 1o 0.85. Avudétoc, v tny

203

45 ° 0.000005 ’

o . P
S 0.0000045 °
40 Q.7 e
o e
> 0.000004 °
35 ya v °
7 0.0000035 ° -
Q —~ s
30 el = 0.000003 /’
g ~ E b
225 o .7 ‘g 0.0000025 o
= ./z = ,/
g e % 0.000002 . °
£ o & o S
i . 0.0000015 .
s S e 7
4
0 08, 0.000001 vl
00 0.0000005 G0
e ,. e °
5 0 <
4’ S wv = wv o ¥ O wv ¥ v 0
’ g 8z 8¢ 8 8 8 2 g
0 - S 28555 ¢s¢&¢¢
=3 (=3 (=3 =3 =3 =} =3 =3 =3 =3
0 5 10 15 20 25 30 35 40 45 § 282582828 ¢
Actual (J) Actual (J)
, Lo / Loz
(o) Auvaixn avéluon (B") Eratxd avdhuon

Yyfuor 851 XOyxpiorn eXTWOUEVNG XL TRUYUOTIXNAC EVEQYEWIS GTOV Server
(Xeon Gold 6138)

Yenon duvouxrg avdhuong To amotehéopota ebvar TOAD xohd (R2 =0.9), Aoy
Bévovtag udhioto unddy OTL Bev Eyvay adhayé 6To wovTéLo extiunong mopd
MOVO OTIC TWESG EVEQYELIS TOU GUVOAOU BEDOUEVLY TIOU YENOWOTOLELTOL YL TNV
exnaidevon).

MedoboL BeAtioTonolnong tng svépyelag

Y10y 0¢ NG evOTNTIC AUTAG €lvar 1) avdmTUEN UEVOOWY AVIAUGTS TOL AoYL-
ool IoT egapuoyov pe oxond v evepyeloxnn Pehtiotonoinorn. Ou uédodol
autég Va ebvon Yépog Tou TERIBAANOVTOC avATTUENS EQUOUOYOY TWV TEOYEOW-
HOTIOTOV Xt Vol TEOTEVOLY TEOTIOUC UETACY NUATIOUOU TV EQUOUOYMY TROXEL-
UEVOU VoL JELOVETOL 1) EVEpYELa Tou Yo xatovadwvouy. Ot evepyetaxéc BerTioTo-
TOLAoELS oL ontoleg utoo TneilovTon and To TPOTEWVOUEVO epyaieio epapuolovTo
AMOXAELTTIXG 0TO Aoytouxd (Bev mepthapfdvouy odhayéc 6To LAXG) xou elvor
ot e€hc:

e Behtlwon tng poric dedopévwy oty tepapyio uviune péow Peitiotonol-
HOEWY EVTOC Bpodyou.

o Emoyh mhotgpdpuac/cuoxeunic otny onofo Yo exteAeiton 1 eopuoy.
o Extiunon tov mbavov EVERYEIIM®Y XEEOMY UECL ETTAYUVOTG.

o Bvepyeiond anodot| Tomolétnor cuVIpTAOEWY TNG EPUPUOYHS OTOUG
OLrETLIOUE UTOAOYLOTIXOUE TTORPOUC.

204

H npotn xatnyopla Bociletar otny mopoohotbdnon Tomv ac Toyuwmy T WvHUnG
cache (cache misses), n onolo eivon UEEOC TOV UETEIXWY CYETXWY UE TNV EVER-
Yew Tou mpofBdihovton otov yehot (6nwe detfoue otov Ilivoxa 19). Xty
Teplntwon mou oL aoTtoyieg o€ xdmowo Pedyo nepvoly o 3%, mpotelvetal GTOV
YENoTN 1) 0XUY| XATOWWY UETACY NUATIOUOY BeATio Toroinong Bedyou. Tap” bho
ToL 670 TAXCLO TNG BLUTEBHC BoXWUACUUE EQYUAEIN AUTOUUTOTIOMONE OTWE TO
Pluto xou o Orio xou Slamiotodoope 6Tt ETTOYLUYOUY TOAD TG BOXES XL TNV
O BLodixacio, OTOTE Xt Tal TPOTEVOUUE GTOV YEY|OTY], ATOLTOLY XAl TOAL TNV
EXTENEOT) TNG EQUPUOYTC OTNY TEAXT) cuoxeur]. M tepontépn autopatoToino
xou TEOBAED TV EXTYOUEVWY XEEOWY Vo EMITAYUVE axOUo TEQIGOOTEQO TNV
oLodtxacior xadde 0 HETUCY NUATIONOS Yo YIVOTAY UOVO GTO TERUSHANOY OVAmTU-
&ng e e@appoyhs. Autd OUwe amoTEAEl UEANNOVTIXY UEAETY).

H Se0tepn xatnyoplo facileton 6Tig ued6d0ug ToL EBUUE OTIC TEOTYOVUEVES
Toparyedpous. Me Bdon Tic TeoPBAEdels Yia BldpopES CUOKEVES, O YPNOTNG UTO-
eel va emA€yeL TNV cuoxeut| Tou TAneol Ti¢ Tpolnodéoceic Tou YETel 1 eQapuoY
oo TAELEAS EVEQYELOC.

H tpltn xatnyopla elvon auts) mou pag anacyOANCE TEQIGCOTEQO GTNV To-
covoa dater). H ousio autod tou eldoug Bertiotonoinong cuvolileton ota
edhc: BT TEONYOUUEVES oAy edpoug TpoTelvale pa pédodo dnulovpyiag -
YOUAELWY Yo TNV EXTUNOY TNG EVEQYELNS TIOU Vol XUTOUVUADOEL ULd EQUQUOYT| oLV
exteheotel ot W dAAN cuoxeur) Tou mepthouPBdveton oto IoT dixtuo, xodoupd
UEoL avBALUGTC TNS EQUPUOYHC OTO TEQIBAANOY OVATTUENS TTOU Y ENOULOTOLEl O
TEOYEUUUOTIOTHS. Luepa, ol cuoxeveg ToT nepihoufBdvouy ToAleEg gopeg ete-
POYEVH| TOLT TOL EUNEQPLEYOUV EMTAYUVTES Uoll UE TOV XeVTEpO emelepyaoT,
omee yio topdderypa GPUs) FPGAs. Autd onuioupyet véeg duvatotnteg Bei-
Tlwomne 1000 ToL YPOVOL EXTEAECTNC TNG EQPUPUOYTC OCO XU TNG EVEQYELIS TTOU
XATOVUAWVEL. AV OL TEOYROUHATIC TEC YVWEICOLY EX TWV TEOTEPWY av 1) Yerion
TWV OUVITOTATWY AUTOV TEOXELTOL VO ETUPEREL ONUOVTIXE XEQEDT), UTOPOUY VoL
EMEVOUOLY GTOV AVACYNUATIOUS TOU XWOLXA TNG EQUPUOYYC TROG QUTHY TNV Xa-
tebduvon. Méow tng mpotewouevng Abong, Vo dlvetan pia extipnomn tng TeAxg
EVEQYELIS TOU UTOREL VoL XATAVOADOEL 1) EQUOUOYY) TOU ool UETATY NUATIO TEL
AATEAANAQL.

H tétaptn xatnyopla apopd pa mpoéxtact twv pedddnmy mou avantiloue
otnv napovoa duteh. H yeron tov npotevduevey epyalelwy extiunong tng
evépyelag oty Onuoupyio evog emmiov epyaieiou evepyeloxd BEATIGTNG TOTO-
VETNONG TWV CUVIPTACEWY TNG EPUPUOYTS 0TOUE BlalESOUE UTOAOYLE TIXOUG
TOPOUC UE TEOTO WOTE VO TANEOUVTOL ETONEC Ol AMUTHOEIS TG EPUEUOY NS OF
Yeovo e&eTdlETon Xou TUPOLCLELOVTOL ToL TEMTA ATOTEAECUATOL.

205

Extipnon tov nidavoy xepddyv LECw ENLTAYLYVONG

LNV LEAETN Yag xan TEAL cuuTEpthopfBdvoupe T6c0 TNV avalTnor Uedddwy
OLVAULXNG 60O %O GTATIXAG AVIAUCTC. DUYHEXQPUEVA, Yiot AdYoug Tou Vo Ta-
EOUCLACTOOV GTNV CUVEYELX, TEOTEVOUUE EVa GUVOLUOUSO TV 000 UEVOOWY.
Apywd, mpénel vo avapépoude OTL GhOL Ol PETACY NUATIOUO!l TeoTElvovTOL Yot
TOL TUAROTO XWOXA TTOU TAPOLGIALoUY EVOLAPEROY Kol ATOTEAOUY UTOPHPLYL OT)-
uelor Yoo var egapudooupe evepyetoxés Pehtiotonomoel. Iho cuyxexpuyeva,
Yewpolpe onuela EVOLUPECOVTOS To XOUUGTLOL XMOLXA YIal T OOl Ol UETELXES
Tou Iivoxa 19 mou optlel o yerotne Tou epyaheiou pag eivon peydree. Ilpwta
UE oTaTX!) avdhuoTr exTddToL oV Yo EYOUUE UEYTA EVEQYELOMA XEEOT UECK
emTdyLVonG. AUtV TNV ¥AdoT TagvouNoNG TRV TUNUATWY xOdxa, Yo TNy o-
vopdlouue «Meydha x€pdny. LNV CUVEYELL, OTNY TEPITTOOT TOU TO XOUUdTL
%O DEV avixeL oty xhdor «Meydho xEpdny, e duvoXT| AVAAUGCT| EXTLUO-
OUE TNV TEpInTmon vou Uny €youde xavéva x€pdoc and emitdyuvar (Kidon « Oyt
x€p01y). Ot TeptnTwoelc Tou dev avixouv o0Te atny xAdon «Meydho x€pdn»
oUte oty <Oyt x€pdny» Vo anoteroly v xAdon «Meoaio x€pdny. o authy
Yo eapuoletar pédodog makvdpounong Pactouévn e duvopxr| avaAucy Teo-
XEWEVOL VoL BIVOVTAL TILO AETTOUEQEIC TROOEYYIOEIC TV UVUUEVOUEVLY XEEOWY
OO ETUTAYLVOT).

E&éyovoac onuacioc otnv yehétn auty|, elvon 1 onutovpyio evog xohol xou
YAEUXTNELO X0V GUVOAOL BEBOUEVWY Tou Vot UTOGTNRIZEL T TPOTEWVOUEVAL [LO-
vieha. H duoxohlo evog téTolou eyyelpuatoc EYXELTol OTO YEYOVOS OTL TO
oOvoho mEénel v Tepléyel xwdxeg mou extehovvton oe CPU pall pe tic a-
xpBwg avtiotoryeg exdoyéc toug Yo GPU. T toug oxomolg tng mapoloag
EPELVOC, YENOWOTOGOPE EVol GUVORO BeBopévmy Tou amoteleltan xortd 50% o-
16 cuvleTnolC XOBXES (OIS AUTOUE IOV TepLydpnxay mapamdve — Ilivoncag
18) xon xotd 50% omd xOOxec mou TepthauBdvovton 6Tig couiteg Rodinia xou
Polybench.

H oot avdhuon yenoylomolel edddoug avory viptons XEWEVOU and Ty
BiBhoypapio [148]. Aol yiver pa tpo-enelepyoasion Tou XOBXo GOV KPALEO-
OVTOL GYOAOL XATL., €VOC UNYOVIoUOC avTioTotyel xdde yedupor xodode xou yvo-
otéc Mé&ewc mou avtioToryolv o evtokéc m.y. (while, if, for) oe eywproTolc
oprduole, OmoTE Xat TO TURUa xdOLXa YiveTon €va Bidvuoua aptducy. Autd tpo-
POBOTOVY EVOL GUVEMXTIXO VEUPWVIXO DIXTUO EWOXO YL TNV XATNYOELOTONoM
oxohoutiyv [149].

H Suvopuer avdduor Boaoileton otny mAndoea HETEXGOY TOU TolpVOUUE UE
ToL €QYAUAELN AVIAUOTC UTOAOYIO TIXWY AMOUTHOEWY TOU TERLYpdae Tapamdve.
‘Eneita yiveton pior UEAETN CUOYETIONG Yo VoL DOUUE TOLEG OO QUTEG TIC ME-
Tewég elvon xatdhAnheg yia v extiunon tng evépyetag oty GPU ue yeron
Tou povtéiou stepAIC. Ao autrhv TV UEAETH TEOXUTTEL OTL OL TUO OYETIXES

206

UETEIXES, ToU Vo ATOTEAECOLY O TAL YAUPUXTNRIOTIXE Yol TNV TEOPOBOGId TV
LOVTEA®Y Buvoixic avdiuong elvon oL e€rc:

o O Baduodg maporiniomoinong eviohov

O apriude Twv eVIoA®Y

O opriude Twv TPocBAoEwyY oTNY UVAUTN Yo TEOTY POopd

O opriude Twv TEALEY XIVNTAC UTOOIGTOANG

O opriude twv axepolwy Tedlewy

O oprdudc Twv EVIOADY EAEYYOU

O oaprduog TV EVIOADY Uviung

O apipdc TV TEooBAcEmY TNV UVAUN UE UNdevixd Briua (zero stride)

O ahharyée xoteduvong otig dlohadnoel (branch divergence)

O oprdude twv mpdiewy dkpeong
o O oprdudc Twv TpocBdocwy ot UThox UvAung otny (Bl ceAlda

[t TNV EMAOYT| TOU HOVTEAOU TIPOGEYYLONG TWYV EVEQYELUXDY XEQOWY AAVAE
xaon wéht ouyxplosic. H oxp{Belar twv xahiTepwy HOVTEAWY QuivETUL GTO Ly Hud
86.)¢ evepyelond #€pdog 0plCouUE To TNAIXO TNG EVERYELNG TTOU XATUVUAWYVEL 1|
exdoy 1| ToL xWdxa Tou yenotpornotel wovo CPU mpog tnyv evépyela Tou x@otxa
mou xdvet yerion xou tng GPU, 1 SlapopeTtind t0 TOoES Qopég YelmveTon 1) EVER-
yew. §2¢ TEAXS LOVTERO YENOLLOTOOVUE EVAY GUVOUAOUOS TV TELWY XUAVTERWY
ue o pédodo Pnpogopioc (ensemble voting).

oy mpoywerioouye oTa Tetpapatixd anoteréopata oa&ilel vo Bel€oude Tt pog
OB YNOE GTOV GUVOUUOUO CTATIXAC XU BUVOUIXAG OVIALOTG XoTd TOV TEOTO
oL ToEOVCLIoUUE. ‘OIS TEOUVUPEQUUE 1) DUVOLXT] AVIAUCT) ETLPEREL UEYAAO
%060TOC YPEOVOU Yl Vo ohoxhnewiel. Xto Xyfua 87 gaiveton 1 enodénon mou
onuovpyel otny exteheon 100 eqopuoywy and 10 GOVOAO BEBOUEVWY Uag, T
omolo o€ 0ploPEVES TEQITTWOEL Efvon Tdpar TOAD LAY Ao TNV AN, 1 OTOTL-
xf) avdAvon exterelton otrypiador ahhd Eyel younhr oxplBeta cuyxELITnd Ye TNV
ouvaxy. Auté gaiveton oto My Aua 88. H ototiny| avdhuoT €yel ixavorotntixy
oxpifBetar povo Yo xatnyoplomolnon YeTal U0 XAACEWY EVEQYELOXWY XEQDWY,
EVE 1) BUVOIXT| XEoTdeL TNV axplBEla oTo 75% OO XOUL YL TEGOERLC XAAOELS.
‘Apat qUTO POg OBHYNOE OTNY YPNON TNG OTUATIXNAC AVAAUCTC YLOL ULOL TROTT) X0
myoptonoinom petald 600 XAACEWMY o ETELTO TNV YPHOT DUVOXAC avdAuoNG
YLOL O AETTOUEQT] UMOTEAEGUOTAL.

207

Ensemble Method

Extra Trees

Bagging Trees

Gradient Boosting
Random Forest 777

Decision Tree

Quadratic Discriminant

K-nearest neighboors

65 67.5 70 72.5 75 77.5 80 82.5 85 87.5
Accuracy (%)

Yyfua 86: DOYXEIOT EVUANOXTIXOV MOVTIEAWY YLOL TNV EXTIUNOT EVEQYELUXOY
AEEOWY HECK BUVOXAC AVIALOTG

2000x

—_
U1
o
o
>

’
P
HAV

1 10 19 28 37 46 55 64 73 82 91 100
Application

Time overhead

Yyfua 87: Enadénomn tou ypdvou extéheonc hAoyw TapepfBornc TS Suvouixic
aVIAUCTG

IMewpapatind anoteAéopata [to Tewpduata Tou napouctdlovTon GTnyV
CLVEYELL, aEYWd xon T8AL yenotuonot\dnxe 1 cuoxeun Nvidia TX1, auth Ty
popd xou) CPU xou nf GPU amd o toum xon oL Tparyatinés EVERYELIXES XAUTO-
VOAOGELG METEAUNXAY UE TOV EVOOUUTLPEVO acinthpa evépyetag. ‘Ocov agopd
TIC EQPUPUOYES YENOWOTOLACUUE ot TIdAL Bpdyoug amd Tig couiteg Polybench
xou Rodinia. Aédnxe npocoyt, wote moté vo unv cuunepthoufdvovior 6To
GUVORO BEBOUEVLY EXTAUBEUCTC XAl GTOUC XWOLXES TIOU YENOLLOTOLOUUE Yiol TNV
aCLOAOYNOT TV UOVTEAWY, Bpdyol amd Tty (Bla egopuoyh!

To anoteréopota galvovion oto Lyfuata 89 xou 90. To ocuyxexpyévo
eldocg dlarypdupartog Aéyeton confusion plot xou ot YpouUES TOU AVTIOTOLYOLY OTIC
TEOPBAEPELC HOC EVE Ol OTHAEC TOU OTIC TEAYUOTIXES XAGOELS. LTV Oloryvio
TOL QOUVETAL UE TEACIVO YEWUA EYOUUE TIC TEQLTTOOELS TOL Ol TEOBAEPELS uag

208

0077
757

80 80
g 75 g 75 :
= 70 =70
2 65 g 65
2 60 3 60
255 <55

50 50

o M I

W2 classes E3 classes M4 classes 2 classes E3 classes M4 classes
(o) Erotnh avdhuon (B") Auvoxd avéluon

Yyfuor 88: Axpifeior xatnyoptonolone EVERYELOXDY XEEDWY PECK ETLTAYLVOTG
otnv Nvidia Jetson TX1

84% 59%
. 305
= Moderate (O h
S /No 57 13 =281%
B<16%) I)
2 a Y N
.2 High
2 elen| 11 || 19 6%
= N '\ 0
Moderate High
/No Gains 76.0%
Actual Results

Eyua 89: Xdyxplon teolAEdeny Ue oTaTX avEAUOT) X0l TEOYUATIXGDY XEPOWY
(x\&om "Meydha x€pdn’)

X0 1) TEOYUATIXY) TOTOVETNOT TV UTO €EETAOT XWOIXWY CUUTITTOUY EVG) OTd
TOPTOXUAL TETEAY VAL €YOUUE TIC TEQITTWOELS TOL ot TEOBAEPELS pog etvan Addoc.
Yougpowva ye to melpaua auTod, 1 oToTiny| avdhuor TeTuyolvel uio oxplBela Tng
Té4Ene Tou 76% OTNV EVPEECT] TWV TEPLTTOOEWY UE «Meydia x€pdny». H xhdon
«Meydha x€pdny yior Toug umd e&étaom Bpodyoug oplleton o xEEdN evépyelag
Tdve amd 16 gopec. H duvapiny| avdiuom netuyalvel axpifelo xotnyoplomoinong
dve tou 85%.

‘Eneita, yio Ti¢ TEQLTTOOELS oL avixouv oty xatnyopio «Meocola x€pdny,
AGVOUUE Lo TO AETTOUERT EXTIUNOY UECK TUAVOPOUNONG, YENOHLOTOLWVTAS
10 povtéro Tuyaia Adon (Random forest). To amoteréoporto goivovtar oo
Yyfuo 91. To péow opdiua avtioToryel ot evepyeloxd xpdmn 2.6 x. To ueya-
AOTERU GPANUATO TOEAUTNPOVVTAL OE TEQITTWOOELS TTOL OEV UTARY Y GTO UTOAOLTO

209

62% 96%

2

S No

é gains ‘ 13 ’ 2 |87%
=

s

.2 Moderate

E gains 8 | 45 |85

: N
No gains Moderate
Gains 85 o 3 %

Actual Results

Eyfuo 90: Edyxpion npoBAEdewy Ue oTATIXT) AVIAUGT) X0l TEAYHATIXWDY XEEODY
(xNdoec "Meoaio xépdn’ /Oyt x€pdn)

14x .
E12x OPredicted @Actual
Si.0x
>
2D8X
QE)GX
g 4x
> I nd il
OX-~='~N Pe=d= v T 08T OISy VS E Do o= EO= 0=~ §AE— NS 0o— o
EEE PETEUSE O MED S EQIS 555 o0 oS 8 S0S s03 | 1520 80l 0 ' 80 80
EEEERéE»Emuowxo«*Ee.;meE SESECSSEREaEge B EYEEYE
JAdET e AP BT e 0SB0 TP Ae NS85 aBEE 9T Ie T
ST ¢ S2S3233S=SSS T oSS TeR o0 EEET EaE-
ede He 5 SQICRRL S99 gy I 12 8E33EES 50 Z_1% |
EEE 58% & cES5:5E® psB8 zrrrEEEA03%358 .
£ A ESEEEE8 So&5 ZzZzagg MmMmzE 2 %
SPESISUNN=R= 55055+ s s ERZ s &
o o QL= 0 O —
O O — = —_—— ST L& = ‘(7;' ;rZ'
S e s SREs £
22 E£E& 32
86 o8 O
[N [ONS)

Yyfua 91: Edyxpeion meofAédewy pe mokvdpounon Bactopévr o duvaixy o-
VEAUGT) X0l TEAYHOTIXWY XEEOMY Yol TIC TEPLTTWOELS TOU AVAXOUY GTNY XA
"Meoata x€pdn’ otnv Nvidia Jetson TX1

oUvoho Bedouévwy. T Topdderyua, 1 egoupouoyy) Heartwall €yel peydho enime-
00 AAAXY WV XATEVTUYONG OTIC SLOXAABWCELS, YEYOVOC TIOU 001YEL TO UOVTENOD
woc vor meofAéder uxpd x€pdn. o’ dha autd, ot Bpdyol TN c@apuoYig TE-
Axd metuyabvouy méve amd 10 gopéc peiwon tng evépyelag oty GPU. Ou
TORUTNPHOELS AUTES HOG 001YOUY GTO GUUTERIGUO OTL Lol LEANOVTIXT EToE O
TOU GUVOAOU BEBOUEVWYV |UE TEPLOGOTERES TRUYUAUTIXES EQUpUOYES Vol BEATIOOEL
OXOUOL TIEPLOCOTEQPO TO ATOTEAECUATOL.

H enéxtaon e pedoddou oe GANEC EVOWUATWUEVES CUOXEVEC OTIWS OTNY
Nvidia Jetson Nano xa Nvidia Xavier NX €dwoe mopduolo amotehéouota.
H mpoonddeia eméxtoong otnv unootipln evog server ue Intel Xeon Gold
6138 xou Nvidia Tesla V100, o omolog unopel tAéov va eivon yépog evéog IoT
OxTO0U, EDWOE THO PETELO ATOTEAECUATO OTIWE (alveTon 6TO Ly 92 6mou

210

67% 91% 67% 75%
“ gy i) “ 3y gy
= No E No
wn n
el =
L 3
2 2
3 Gains £ 83% T Gains > 80%
> A
No gai Y . Y
gains Gains No gains Gains
© 0
Actual Results Actual Results
(o) Auvaixi avéiuon (B") Erotxh avdiuon

Yyfuar 92: 3X0yxeton meoPAEPewy xon TEOYUATIXWY XEQOWY EVEREYELIS GTOV
Server (Xeon Gold 6138 - Tesla V100)

xGvaye yior xatnyoplonoinon twv Pedywv oe «Képdny /<Oyt xépdny. Auté
ogelleTal 6TO YEYOVOS OTL 6TO GUGTNUO QUTO €YOUUE TOAD UEYIAO %O0TOG
UETAPOQEAC BEBOUEVWY amd TNV XevTEwh uvAun otny uvAun e GPU, xdm tou
odnyel og enadinom Tou Ypovou axdua xou 22 Qopég Yia Uxpols Bedyous, TNV
OTLYHT] TTOU OTIG EVOWHATWUEVEG GUOXEVES Efvan epitou 3 gopég. H mpooéyyion
OTATXAC ovahLoNE {NULOVETOL TTOAD A6 TO YEYOVOS auTO xS BEV EYEL TPOTIO
VO LOVTEAOTIOLEL TNV TOGOTNTA TWV OEOOUEVKY TIOU UETUPECOVTOL.

Yxetwxy) Epyacio Ou mo onuavtixéc oyetnég npooeyyioeg mou Peloxo-
vtan oty Brhoypapio [78-81] eotidlouv otny EmiTdyuVon ot Gyt GTOL EVERYELX-
x& ®épdr. Emiong otoycbouv yevixol oxonol cucthpata CPU-GPGPU xa
OYL EVOWUATWUEVEG cuoXEVES. Emimhéov yenowonooly uévo duvouxr avéhu-
on, eV eAdyloTeC TpooTdieleg €youy Poedel va doxyddlouvy ooty avdhuo
{nrodvtag ot Tk Opee ToMhES Buvopxéc TAnpogopiec ond tov yerotn [150].
Téhoc dev e€eTdlouV TNV ENEXTACWOTNTA, EVEK OEV TEQLAUBAVOLY PETEIXEC TOU
APoEOUV TO XOGTOC GYEDBLUOTC TOU VEOU WO 0TS TNV TROYEUUUATIO TIXY)
mpoondielo Tou Yo BoVUE TOEOHATE.

ITpoextdoelg oty evepyelaxd AnTOBOTIXY) TOTOVETNOY, CLUVIE-
TAOEWY 0TOLG SLAIECLULOUE UTTOAOYLO TIX0UG TOEOUG

YV napdypapo auty| Yo Sel€oude Wiot TERITTWOTN YEHONG TWV TEOUVUPER-
VEVIWY POVTEAWY eXTIUNONG EVEQYELNS OE €vay pnyoviold Adne amogdoenmy
Yot TNV Tono¥ETNOT GUVAPTACEWY OTOUC SLIECLIOUC UTONOYLG TIXOUS TOROUS
Tou OTOoL IoT. 'Oneg avapepaue TEONYOLUUEVHS, T TPOTEWOUEVA HOVTEAX
Bondolv Tov TEOYEUUUATIOTH VoL BLIAEYEL TNV CUOXELY| 6NV oTnola Vo exTeel

211

TOL TEOYEAUUOTS Tou. LTNY TERINTWOT Tou Wi epapuoyy| IoT arotehelton and
TOMES aveEAPTNTEC GUVIPTACELS Xl Ol OLtIECUIEC CUOXEVES Elvol TEQIOCOTE-
PEC amb pLaL, 1) EVPECT) XATAAANANG OTEATNYXTS ToToVETNONG Xde cuvdpTnoTNg
TEOC EXTEAEOT) OTIC GUOXEVES, elvan €va xAaoxd TpofBinua mou €yel Tpafniet
€00 xat ypovia To evilapépov Twv epeuvntey [154,155]. To va AaufBdveto
1 AmOPACY) AUTH EVA GTAOWO Tow, dNANDY xaTd TNV dnuoupyion e epapuo-
YHC xo YWElg TIC BOXES TV OTOL TEOYHATIXG CUC TAUOTA, UTOREL Vo OWGoEL
OTOV TTEOYPUUMATIO TH TNV DUVATOTNTA VoL BEATIOVEL TNV EVEQYELYL TNG EPUPUOYTS
ToU 0pilovTog Uiol SLUPOPETIXT| TOTOVETNOT TwV EQapUoY®Y €€ apyrc. Ot oly-
YPOVEC UBALOTOL TAGELS TOU UTOAOYIOUOU Ywplc Staxoutoty (serverless comput-
ing) npoo@épouv epyoleia mou yenowonotolv Docker containers, KuBepvAtn
(https://kubernetes.io/) x.\.T., xou UE To OTOlA O TEOYPAUUUATIO THS UTOEEL
ToAD €0xoha var 0pilel xon vor adAGCeL TNV TomoléTnoT Ywelc Vo £xelL YVOoELS
STleV ot emxoveovdy [156]. TTodiég EQELVITIXEC TPOOTIAELEC GTOYEVOUY
oty npoTaoT AoEwY Bactouévwy ota epyoleta autd [158,159).

Apywd yenoUOTOLOUUE Tal TEOTEWVOUEVO HOVTEAN Yo Vo TeoBAEdoupe TNV
EVEQYELL OAWV TWY CUVIPTACEWY TNG EQUOUOYNS, OE OAEC TI¢ cuoxeveg. Eme-
XTEWVAUE ToL LOVTENQ, ETlONE, Yiol TNV EXTIUNOT TOU YpoVou dAAGLOVTAS TIG TYES
EVEQYELIG OTA GUVOAA OEBOUEVLVY UE TWES Ypovou. ‘Erneita, dheg ol mAnpogo-
elec mou mopdyovtan divovton cav elcodog ot wa pédodo BeltioTonolnong mou
elvon Baotopévn otov alyoprduo differential evolution. Mo Ty and 0 €nc 1
(trade-off — tr) Siveton and tov yprHotn avdroyo e to av Vélel va Bertioto-
TOLEl TEPLOCOTERO TOV YPOVO EXTEAECTC 1) TEQIOCOTERPO TNV eVvépyela. Apa 1
uétdodog ehayioTonotel TNV Ty oL BiveTon amd TNV TopaxdTw e£l0waT), 6Tou
E, ebvar 1 evépyeia xou T o ypdvog mou mpofAéneton yia xdde tomodétnon:
Minimize : tr x E(p) + (1 —tr) x T(p)

Mot T TorpanediTes TELpduaToL YenowoTotoouE 25 cuvVpTAoELS antd Ty PiSAlo-
U scikit-learn tng Python, n omolo ypnowonoieiton cupéwg oe eqopuoyég
unyovixric udinong. Emié€ope tnv Python Adyw tng peyding yerone g oe
EQUPUOYES UTONOYIOUOU YwRIg BLOXOUIOTH %ol TNG UEYAANG UTooTARENS TN
amo ToL cUYyeova epyolelo. Yto mpeTo Telpaua yenoylomotiinxay 4 GUoAEVES
(Nvidia TX1, Nvidia Jetson Nano, Nvidia Xavier NX, Nvidia Xavier AGX).
‘Oneg Brénovye oto Lyrua 93 yio uéylotn BeAtioTonolnon eVEQYELIG TETUYO-
tvoupe 43% Ay 6TEEN XAUTAVEADOT CLUYXELTIXS PE To Vo aphooupe Tov KuBepvit
VoL amogaciosl WOVOS TOU TNV TOTOVETNOY oL XATE UEGO OPO 33.6% Ay oTepn
evépyeta xau 11% Aryotepo ypdvo. Ou amogdoelc dune tng uedodou pog Bev
YPNOWOTOLOUV GE XAMOIEC TEQITTMOOELC XATOLOL Ao TIC GUOXEVES, eve 0 KuPep-
VATNG TpooTael Vo loopotpdlel TIC oUVIPTHOELS 6TOoUC dlordéatuoug tépoug. T
auté ot enduevo Tedpota (Eyfua 94) anogacioaue vo yenoylonothoouue 3
OLOXEVES, TECOVTAC OXOUN TEPLOGOTERO TNV AUCT) oG, LTNV TEMTH TERITTWOT)
xou TdhL Brémouue 6T 1) pédodog pog odnyel ot didpopous cuUPBacuole ueTagd

212

|91
9]

L up to 43% Energy Savings _
50
O
g 45 (5}
= " o ®
% 40 up to
= 8 32%
35 oo speed-up
@
30 ®

280 320 360 400 440 480 520
Total Energy (J)

Yyfuor 93: XUyxplon TV AmoTEAEOUATLY ToT0VETNONG O 4 GUOKEVEC UE TNV
Tonovétnom tou KuBepvrtn

EVEQYELNC XoU YPOVOU avdAoya e TV Tun (1) mou opilet o ypRoTtng odnyhvTag
O UEYPL XA 46% HElwoT TNG EVERYELIC KoL UEYEL 19% ueiwon tou ypbévou cu-
yxertind pe tov KuBepvrtn. Xtny deltepn neplntwon €youue 3 AVoELS oL oToleg
elvon yewpdtepeg and tov KuBepvrtn xadog netuyabvouy pueyahitepo ypdvo xa-
TAVOADVOVTUG OUOE oL UEYUAVTERY EVEQYELX EVEM OL UTOAOLTEG UELOVOLY TNV
evépyela o oyéon e tov Kuepvi|tn e x6otog duwe otov ypodvo. Katd péoo
6p0 oL MNJGELS Yog TETUY VoLV ECOLXOVOUNOT) EVEQYELNG XUTd 8.5% o¢e OYEOT UE
Tov KuBepvitn.

To amotehéopota autd elvon apxetd evioppuvtind. Tlap’ dha awtd €youue
OXOUA XETOLOUG TEQLOPLOUOUS Yial TNV TAART EVOWUATWOT NG AUoNG UaS GTO
TEOTEWOUEVO TAdfGL0, oL oTmolol divouy xot Tic xaTeLIOVOELS Ylol HEAAOVTIXT
¢oeuvar Ilpdtov, 1 Abon yac dev Aoufdver unddy TuydY avtodloyéc dedo-
UEvey PETOCY TwV cuvapThoewy. H povielomolnon twv EmXOWOVIOV aUTOY
elval Lol TPOXATOT) 1) OTOloL OUWE AVIUEVETAL VoL AUEACEL XAUTE TOAD TNV EQUOUO-
Y g pevdddou pag o mporypotixd cuothpata IoT. Achtepov, Yewpolue 6Tt
Ol GLOXEVEC TPO0RILoVToL UOVO YLl TNV EXTEREDT] TNG EQUPUOYNC HOC Yol Vo
AoBdvouue umtddy TNV TERITTWOT Vo TEEYOUV TaEAAANAAL X GAAES EQUQUO-
véc. Téhog, ta melpduatd pog TEENEL Vo EMEXToOUY UEGL CUYXPICEWY UE AN
epyahela TotoveTnomg cuvapTHoEwy and TNV BiBAoypeapio.

213

60 48
.‘ up to 46% Energy Savings 46 @ _ up to 39% Energy Savings
< > >
56 ® a4 °
2 . 2
o 52) 42 Y ()
2 ® Z.
&= upto| @ .‘ &= Ps
= 48 19% £ 38 °
ﬁ speed-up = 4
" e 36 e
() 34
40 32
200 250 300 350 400 450 200 250 300 350 400
Total Energy (J) Total Energy (J)
(o) TX1, Nano, Xavier AGX (B") TX1, Nano, Xavier NX

Eyfuor 94: X0yxplon TwV anoTEAEOUATLY ToToVETNONG O 3 CUOKEVEC UE TNV
Tonovetnom tou KuPepvrtn

Enippor) petaoNUaTiop®y o UETEIXES OYediaong AoYLoUixo0
- Extiunon npoypappatiotinic npoonddciog

YTIC TPONYOUUEVES TOEAYPAPOUS avaTTUEAUE TEYVIXES OL OTOlEC TPOTEVO-
VTOL OTOUC TTROYPUUUATIO TEC TEOXEWEVOL VoL BEATUOVOLY TNV XATAVIANWGT) EVER-
Yeg xdvovac ahhayéc otov mnyaio xwdwa. ‘Ouwg dev avapepdrixaue xoddhou
O€ EMNTWOOELS oV Yo EYOLY Ol AAAAYEC AUTEC XATE TNV OYEBLUOT, TOU XOOLXAL
OTUWE YL TOURABELY O OTNV TEOCTIAVELN TTOU TEETEL VoL XATAUSHAOUY OL GYEBLUC TES
TEOXEWEVOU Vo Tig uhoTtotioouy. Mo tétola emnAéov TAnpogopla extipdtar 6T
Yo mafel pOAO OTIC EMAOYES TWV GYEDLAGTOV TWV EQUQUOYMY, xa®S Vo umo-
eoLV AoV var hofBdvouy uTody xou Tov yedvo Tou Yo Teénel var xatoAndel
MOTE VoL OYEOLACTEL 1) VEAL EXDOGT) TOU AOYIGUIXOU.

O peyahltepol petaoy NUaTioyol ypeltdlovial oTNY TEPITTWON TNG EMLTAYUV-
ong xaddS 0 xWOLXG TEETEL VoL LavarypapTel yio va exteleltan mAéov oty GPU.
YTIC TEQIMTMOOELS TWV UETACY NUTIOU®Y BelTioTonolnong Bedyou undpyouy -
yohela 6mwe to Pluto mou pewddvouy v mpoomdiela, VL GTIC TEQLTTWOELS
eTAOYYC CUOKEVHC 1 TOTOVETNONG TWV CUVOPTHOEWY, Ol OTOLES AAAXYEC OTOV
mnyodo xooua Yo aopoly xou TEAL TNV TERIMTWON Tou ETMAEYETOL 1 Aoy
wag ovoxeuric CPU oe ua mou nepthopPBdver GPU mou ¥éloupe va yenotuo-
motnUel yio emiTdyuvon, eve ol ahhayég g Tono¥éTnong and UOVES Toug BeV
ETLPEQOUY OUCLUC TIXES OANXYEC GTOV TINYOLO XMOLXAL.

[v extipnon tng mpoypauuatio T mpoondletag, otny BiBAoypaupio
Beloxouue Ty mokid petpixn Tou oprduol v yeauudy xdda (Lines of Code
— LOC) [169] mou buwe mhéov Béyeton xpttixs yio Ty axpifeld e [170]. v

214

TapoVou epyacta eeTdloVUE TNV YEHoN NS METEWTC TeooTdlelag Tou Halstead
(Halstead effort) [171] [172]. H petpixr auty ennpedleton and 1o mAdoc ou-
VOPTACEWY, To 0plOHOTA, TOUS TEAEGTES X.0., EXPEALOVTUC ETOL TO XA TNV
Tpoypaupatio T tpoonddeta [173]. H mpdtaon poc dev €yxerton amhd otny
Yerion TS METEWNC auTHS ool YpupTel 0 VEog xowxag. Ao 660 yvwpilouye
XUTE TNV CLUYYPPY| TNE Topolcas dlatelfhc, yiveTow yio Te®Tn Qopd 1 Tpo-
omdielor TG TEOBAEPNS TNG TIELY TNV GUYYEAUPT) TOU VEOL YOOI LUYXEXQIUEVA,
Yol YENOOTOOVUE YapaxTNELO TiXd o LovTéha tpofBiedng otnv CPU éxdoon
TOU XOOWXA TPOXEWEVOL Vo TEoPBAEoupe TNV TpooTdleto tou Yo ypelao Tel va
XoTa3AhoLY oL OYEBUOTES TTPOXEWEVOL VoL YRAPOUY TNV EXBOYY| TOU EUTEPLEYEL
Vv emtdyuvon o GPU. Q¢ petpwr tne mpoondietac dewpolue tov aprdud
TV Qopv Tou audvetar 1 petewt| Tou Halstead otny CPU-GPU éxdoom ev
ouvyxploel pye v CPU exdoon tou xmdixa. Ot PETEXES ToU TPOYOBOTONY TO
wovtélo npoPredne (otnyv nepintwor yag éva yovtého Tuyaiov Adcoug dmwg
Tpoéxue amd melpduoTo xou oLYXploELS), haufdvovton avahlovTog UOVo TNV
CPU éxdoon tou x@oixa xou ebvan oL e€¥c:

o O oprduoc twv onueiwy evolapépoviog

O apripdg TV YROUHGY TNG EQUEUOYNG

O oapriuog TV Ypoup®oY 6T oTueia EVOLUPEPOVTOS

O aprdude v dnhdoewy (statements) oo onueia evdiopépovtog

O apriude twv droxpttdv npdewmy (distinct operations)

O ocuvohixéc mpdéelc

H noluvmhoxétnta (complexity)

O éyxoc (Volume)
e To urxoc (Length)
e H Suoxolia (Difficulty)

To anotehéopata gaivoviar oto Lyfua 95. H axpifeio mpoBiedne ayyilet
10 85%. Ot mepntidoelg Tou Ydvoupe avixouy xuplwe oty coutta Rodinia
omou pdhioTa BAETOVUE 3 EQapUOYEC UE xdTw Tou 1x avinon tou Halstead
effort. Autéd Béfona Bev omuaiver oTL €youpe apvnTny| tpoondiela, amAd oTig
ouyxexpiévee epopuoyéc n CPU éxboorn mepelye hertovpyixdtnto (m.y. e-
XTUTWON XATOLWY UNVUUAT®Y) Ttou dev petagépinxe otny GPU. Tpotyolue
T’ Ohot UTE Vo UV EMEPBOVUE OTA TIROYEAUUATOL.

215

7x O Predicted @ Actual
Q
2 6x
%5)(
S 4x
5 3x
=
“LaZX
i 00 A
Ox i HeUE UL L TR LE UL LU UL UL UL TR T U T LT TR UL U TR
HTU T T T T L K= - an ks 89 2 H 0" 28—
EESEEMEE S ESEEITISIE22EEE9 22288888850
— = = B = B = QO B v g 7 Q
SR R = P £ €288 = &35 338390 3E ¢ = 9
ShEET S oS E 2Z23%% 25 $E5c5228282 EEE
% g s TES 53788 22 B EEBETE ~ 2
E 8% ©o°o T g'ﬂ A g A= =
[SINS) > > ay =
= = 2
8 3
o QO

Eyfuar 95: Axpifeio extipnong g meoYeoUUaTIOTIXG TeooTAUEwS Yior TNV
ETUTAYLVOT) TV EQupUoY®Y antd Tig cou{tegPolybench xou Rodinia

Energy consumption and execution time estimation
PLATFORM#% GRANULARITY# ;i Tote! Energy

= ARM Cortex
R

Time A7
Function Source
Energy st Ins Load Store name File 5.779e-5
Est()) (ms)

. Total Energy

[AXT]

8.87e-7 1.508 29715 10513 4381 main imdcode.c = ARM Cortex
8.63e-8 0.147 2885 1024 420 cmac imdcode.c MO+
8.36e-8 0.142 2803 992 408 encrypt mistyl.c 8.874e-7

Yyfuo 96: ITdveh extiunong evépyetog

YAomoinon Twv TEoTEWOUEVLY UETODWY

O pédodol Tou TUPOVCLUCUUE TUPAUTEVEL EVOWUATOVOVTOL GE €VOL TAPES
Tepi3dhhov avdiuong hoylouxol. To mepiBdhhov autéd BladéTel youpixd UEpog
ETMXOWVOVIAG UE TOV YpNOTT), AaBAveL ToV x@dLxa Teog avdhuor and Git reposi-
tories, dlad€tel Bdon dedouEvwy amoVAAELOTC TWY ATOTEAECUATLY X0l UAOTIOLE-
{ran ohoxAneo péoa o Docker containers npoxewévou va eyxadiototar edxola
XL PE ao@dhela. Nyeddotnxe ota Aot Tou evpwmdixol éoyou SDK4ED
xon oo Ly fuato 96 xan 97 napouctdloupe 500 GTLYULOTUTA, TO TEWTO OTd TNV
eXTUNOY TN EVERPYELUC OF DLAPOPES GUOXEUES XU TO OEUTEQD GO TNV TUPOL-
olaoT UETEOY OYETIOY YE TNV EVEQYELXL OTOV YPNOTN.

216

L g L

Total CPU cycles Total Data Races Total Memory accesses

rewy

7114619 311 1546270
Profilling Tools S —

e
D >_ =
Total Ratio of branch misses Total | Cache miss rate Total D Cache miss rate
2.53% 0.5% 6.88%

Yyuo 97: TIdveh mopouciaong HETEIXMY OYETIXMY UE TNV EVERYEL

Egapuoyh eléyyouv Yéppavorneg/Puing os é€unva
XTNEL

Ti¢ teheutaieg dexoetieg, oL AMUTHOEIC EVERYELNG GTOV TAAVATY EYOLY oU-
Endel onuavtind xar autd €yel T6G0 OXOVOULXES 600 xaL TEQIBUANOVTINES €-
mrTOoels. §2¢ ex ToUTOU, 1 AVEYXN Yo TNV EVEECT) «EEUTVWVY GUC TNUATWY
IXOVOV VL UELVOUY TNV XUTAVIAWOT EVERYELNC YIVETOL TAEOV ETLTOCTIXT|. 2UU-
POV UE OTATIOTIXEG EPEUVES, TAL XTAPLAL XATAVAAWMVOUY TERITOU TO 40% ™me
GLVONXNAS XATAVIAWOTG evépyelag otny Evpwndixh Evewon. Mdlota, pueydho
uépoc authc ogeileton ota ouo Thuata Vépuavone/Poine (repinov to 45% g
XOTOVIAWONG).

‘Evag tpomog e€owovounone eivon 1 yprforn VEwY TEYVOROYLMY XALUTIC Ti-
%WV 1) VEQUAVTIXODY CWUETWY TOU EYOUV TOAD XUAUTEQY EVEQYELUXT| UTODOOT).
Mt de0tepn AVo), SUECH EQPUPUOCIUT XL GTO UTERYOVTA XTARLY, THEEYOLY OL
olyypovee teyvoloyiec KuBepvo-guoixwy cuatnudtey (Cyber-physical) uéow
ouveyc enifiedng, eréyyou xar ahhnhemidpoone e to TepBdAAOY. e auTo
Bontolv ot cUYYEOVES BUVITOTNTES TMV UTOAOYIOTIXMY CUCTNUATOY, TWY dl-
oOnTipwy xou ToL ALaBIXTUOU TV AVTIXEEVLY. XTOV TOUEN TMV ECUTVWY X1
olwv, ot teyvohoyleg autéc Tapéyouy duecec AOOEIC Xt VAl TUTIXO TIORABELY UL
Yenone toug eivon ot é€unvol Yeppootdtee. Ol TWAACEC TOUC To TeEheuTaia
Yeovia Tapovatdlouy paydaio adEnon xou 1 Bedtiwon Tne amddoorc Toug amo-
Tehel avTixeluevo TV olYYEOVWY E0ELVLV.

Xe auTh) TV evéTnTa TNng dLatelPrc meoTelvoupe €va cho T dlayelplong
evépyelag mou oTtoyelel TNy egopuoyn IoT twv éZunvey xtnplwy. 1o cuyxe-
xpuéva, TeoTelvoupe W uédodo APne amogpdoenmy yia Ty autopatn ebduiom
TWV ETAOY®Y TOU 6L TAUATOS VEQUAVOTS 1) XAUATIOUOU Y€ ECUTTVLY Vepuo-
OTATWY XU UE GTOYO TNV ENAYIG TOTOINGT TOU xOGTOUS. §2¢ «x6GT0CY Vewpolye
EVOLY GUVOLAOUO TOCO TNE XATAVIAWOTNG EVEQYELIG TOU CUC THUNTOS XALUATIONO-
0, 660 1ot TNG VEQUIXAC DUOUPESHELIS TOV VIPOTLY GTO XTHELO TOU UTOXEWVTOL

217

OTIC CLVITHES TTIOU BNULOURYOUVTOL WG ATOTEAEGHO TWYV ETLAOYMY TOU GUGC THUA-
166 pag. Ov ouvelogopée Tng Perétng authc ouvodilovton wg e€hc.

o Ilpoteivetan évag véog ahydprduog Ang amogdoenmy Yl tov BéATioTo
éheyyo KuBepvogpuodv cuotnudtonv, ue eZedixeucn ota ous THUTA
Véppavone/Poinc v unvey xtneinyv. H Aon eugpoaviler aioonueinta
YOUUNAOTERY) UTOAOYIG TWH) TOAUTAOXOTNTA Y welc Vo Yuctdlel Tny TotoTnTa
TWV TOPAYOUEVWY UTOTEAECUATOV.

o Ilapovoidloupe 800 ypryopo xon axeBr WovTéAa yiow TNV exTiunomn tng
VepUIXNC AVEOTIC %O TNG EVERYELOXNC XUTOUVIAWONG TWY XAWATICTIXGY
CUCTNUATWY BACLOUEVA OE YEUUUIXT| TAALVOROUNCT).

e H mpotewvduevn Aon urnoctnpeilel Beitinon 1600 tng evépyelag 660 %ot
¢ Vepuixrc dveong meoo@épovTag SLdPORES BUVATOTNTES GTOUC YENOTES
Ywelg TNV avdryxn TeonYoUUEVOU GYEBLACUOL, OVUALTIXTG HOVTIEAOTOLN
one 1 yvoone (plugé&play hoor).

Opopdéc Tou mpoPBAfjuatog

H pehétn pog yivetan oe éva mepBdAlov xtnplwy, cav autd Tou ameExo-
vileton o0 Uy 98. Iho cuyxexpyéva, To xThplo SlodéTel TNYEC EVEQYELUS
(.. Mo, cwohixr, puotxd agplo), eved tor suo THUaTa POEng/Vépuavone xa-
Tavah@vouy evépyeta. Evog apriuog aoInthiony cuyxevTpovel dedouéva Tou
oyetiCovton ue tov xoupd (Veppoxpacio, vypasio xon Nt oxtivoBolia), Ti
ouviixec tou xtneiou (ecwtepixr) Veppoxpacia xou uypacio), xadodg xo T
0PACTNELOTNTO TWV AVIPMOTWY.

To cuyxexpyévo TEOBANUA TOL AVTIHETOTILOVUE O QUTHY TNV EVOTNTA O-
POpd TOV EAEYYO TWV CUCTNUATWY ﬂéppavong/L})L’)Eng (67])\0167’], TIC AMOPACELS
v €Eunvev depuooTatdy) tpoxetuévou vo Behtiwdel 1 epuixny| dveon twyv
xATOXWY e TNV eENdyLo TN xoTavdhwon evépyelag. Ta xthpia ota onolo Eytvory
TOL TELRAUATO TROGOUOLWINXOY PE AETTOUEQRT) TEOTO OTO TEOYEUUUN TEOGOUO-
{wone EnergyPlus [182], eved to dedopéva xatpol xat THoAOYNoNG EVERYELNS
avTIoToLY 0LV o€ BedoUéva Tou GUAAEY UMy To 2010 yior Ty AdrAva. Xto met-
edotd pog, utodEtoupe 6Tl oL dvipwnol Beloxovtar ota (TP HOVO XATY TIG
opec Aettovpyloc Toug (6.00 - 21.00) xar o aprdude twv atduwy avd dwudtio
Toux{AAEL xaTd TN SLdpxEl TNG NUEEAS CUUPLVAL UE iar (PeudoTLUY LA XAUTOVOUT.
‘Onwe avagépope, 1) TOLOTNTA TNE TEOTEWOUEVNS AUOTC TocoTIXOTOLE TN UE B0
UETEHOEIC XOU TIO CGUYXEXPUIEVO TO XOOTOC EVEQYELIC TOU oryOpdlETAL OO TO
olxtuo xou To eninedo Vepuxhc dveong.

218

MICRO-GRID !

O

Main Power Grid

; N :

' PN~ HVAC System Orchestrator

Thermal[3 gsa\ig: (Monitor and Control) E

Weather e E 4‘; ;ﬁ' sensors data action '
= Z ¢ 7 . i

' Q¢ AL------ !

—> En :

Ti:/ . Energy? ‘ % E

Yyfuo 98: Tapouvaoioon tou tepiBdriovtog EEunvwy xTneiwy 6To onolo egap-
uoleton 1 Moo Yag

Movtelornoinorn x6cT0Lg - ActToupyieg TOU TEOTEWOUEVOU CL-
O THRATOG

H cuvdptnon x6otoug tou cusTAUATOHC Yo UoVIEAOTOLUNXE UE TETOLO
TPOTO HOTE TO GUOTNUA ECUTVWY VepUooTaT®Y Vo utooTneilel Tplo evallo-
(TS oEVAPLA AetToupYlog:

Aettovpyio 1) Enitevin ouuPiBoaouol peTalld TG xATAVEAWONG EVEPYELISG
xo TV UeTPRoEwY Vepuixnic dveorg.

Aettovpyio 2) Ehayiotonoinon tne xatavdAwong eVERYELNC TNEOVTAS To-
edAANA O €val ERGYLOTO GpLo Yior TNV VeQUIXT| GVEST). MOUPWVOL UE TO TEOTUTO
ASHRAE [132], onowdfnote Ty Yepuiniic duoapéoxetag (PPD) oto elpog
0% -10% eivon amodexty.

Aettovpyia 3) Behtotonolnon tng Yepurc dveong yweic vo unepfolue
Evary TEOX A ORIGUEVO TPOUTIOAOYLOUO EVEQYELNG YL TT) DLIEXEL TOU TELOGUATOS.

H ouvdptnon xbéctoug diveton mopondte:

Cost(t) = tr x E(ay, s;) + (1 —tr) x C(ay, s¢) , 6mou t 10 Briua yedvou,
E(ou, st), n evépyeta otov ypovo t xou C(ay, s¢) 1 Vepuixt Sucapéoxela 6Tov
YPOVO t, Ylol 0 ATOPAOELS TOU ECUTVOU VEPUOTTATN Xou S¢ GUVITXES TTEPYBIAND-
vtoc. To tr anotehel o Tyr) mou opileton xatdAinia ané 0 éwe 1 mpoxeuévou
vor Btvetan avdhoyo Bdpog otny Pehtictonolnong tng evépyelag 1) TG Aveong
m.y. otnv Aettovpyla 1 €yovue tr = 0.5, otnv Acttouvpyla 2 éyouue tr = 1 xou
otnv Acttovpyla 3 tr = 0.

Y10 xthplo undpyouv acUNTrheeC Tou Uag divouv Téc oe xdle ypovixy
OTHYUN (ﬁv’]poc). To uéyedog tou ypovixol Bruatog to xaopilel o yprRotng.

219

Avtéc ol Twée anoterolyv TNy €lcodo oTo cUCTNUE pog. e xdde BwUITIO
utdpyouy acUNTAEES oL uag divouv v Yepuoxpacio, TNy vypacio xou TNV
AATOVAAWOT] EVEQYELS TOU XAHATIOTIXO) CUOTHUNTOS, EVK OTNY 0p0YY| TOU
xTnelou UTEEYoLY ACHNTHPES TOL YO EVNUERWVOUY YLo TNV EEMOTERIXY| VEQUO-
xpaota, TNV e€wtept| Lypactior xon TNV Nt oxTvofolla.

ITpotewopevn Alon

AuTh 1 evOTNTA TEPLYPAPEL TOV TEOTEWOUEVO UNYavVIons APne amogdoe-
ov. Xe avtideon pe oyeTixég UEAETES, TOU 1) UMOTEASOUATIXOTNTY Toug [a-
olleton oty TApwe avahuTixd povielonoinon tou xtneiov [28,203] A oty
avdhuon evog Ueydhou dyxou 1o Topxdy dedouévey [92,186], n mpotewduevn
AOom TopEyEL TOAD xahd amoTeEAEGUATO AauBdvovTag UTOYN UOVO €Vl Uixed LTO-
oOvoho Thnpogoplwy. Emmiéov, n mpocéyyioy| pog dev eopudlel ypovolopeg
TPOGOUOLWGELS, EVG ETONG BEV YEELALETOL TEONYOUUEVT] LOVIEAOTIOINOT] Yol T1|
OuVoLXTH TOU XTiplou xou Twv xAatioTixwy. Etol, mapoucidler onuovtind
YOUUNAOTERY UTOAOYIC TIXH) TOAUTAOXOTNTA Xl GTOYEVEL Vo Bivel dueon Avom.

O eheyxtic, apyxd, AauBdvel aveneZépyaota dedopéva omd oaodntipes (e-
owtep) xou eEwtepixr) Vepuoxpacia xou Lypaoia, nAtoxr axtvoBohia xAm.)
XL OTN OUVEYEL, To LOVTEAA EVERYELOC Xou VEQPUIXNC AVECTIC EVIUEQWVOVTAL
XATEAANAL Yiar VoL TpooeYYioouv T duvouxr| Tou xTnplou.

To yovtéha otnpilovion oe TeEyVIXES Yeauuixrc Tokvdpounone. H ypouut-
xf) TOAVOpOUNCT Efval Lo TEYVIXA TG OTATIOTIXNAS UE TNV oTola EpEuvdTL 1|
ouoyétion Yetodd uog egoptmpevne petaBhntic (LetoBAnthc e£680u) xon evog
cLVOROUL aveldpTNTLY PETOBANTOY. Ot uédodot autol €youv we oTéY0 TNV edpE-
O1) TOU XATUAANAOTEPOU HOVTEAOU TOU TPOCupUOlETon XUAITEQN GTal BEBOUEVAL
X0 OTIC TORUTNENOELS. JE XAdE ypovixd Bhua, To Bden TV HOVTEAWY YRuUUUIXNG
TovSpounone utoroyllovto ex véou. Téhog, mpoywedue otny BeAtioTonoin-
o1 TOAATAGY xpLtnelwy mou anotelel TV xoEdld e Adne amogdoewy. O
unyaviouoc autdc utoroyiCel ot Téc Yepuoxpaciog tou Yo divoviar avd Yeput-
%1} LOVN, YENOWOTOLWOVTOS Lol TPOTOTOINUEVT) EXBOOT) Tou olyopituou coxidiou
(Knapsack).

IMTopddupa diayeipiong dedopévwy O Twés Tov acintrhieny arodn-
%EVOVTAL TEOCWEIVA Yiol VoL UTOGTNEIEOUY TNV avavEwoT Tev HovTEAWY. Eom
YenotonoolvTon 6V0 cuUTANewUATIXOl Unyavioyol, tou otnelloviol oTny -
5éa Tou oupodpevou mapadleou (sliding window) mpoxeévou vo pewdvouy Ty
TocoTNTA dedouévey. Me autdy tov tedmo, avtl vo armodnxedovtor Ao To
OEDOMEV TTIOU EPYOVTAL OO TOUG UoUNTHPES, TO Eva Tapdiupo xpatdet Tar Oe-
OOUEVOL IOV AVTIOTOLYOLY GTIC TEASUTALEG MUERES, EVG Wia TEponTépw BeAtion
ETUTUYYAVETOL BIVOVTOG EUQPACT) UOVO OE Lol CUYXEXQUIEVT] OLdEXELS ovdL TUEQRQL.

220

coarse -grain window

today
raw data

from sensors

tommorow

v

time-steps

23:59f

fine-grain fine-grain
— window 4 window —
))
4—useful data—>»

Yo 99: H npotevouevn drayeipion dedouévmy u€ow mapodipwy

Omnote tehd amoUnxedeTon HOVO EVOL IXEO UTOGUYOAOD BEBOUEVLY OIS (o
tveton oto Eyrua 99. Toéco to péyedoc tou mapadieou mou opllel Tov apriud
TWYV TEOMNYOUUEVWY MUERWY, 0G0 xot To Uéyedog Tou mapadioou tou opllet TNV
OLdipxetol ove Nuépa, UToeolV Vo Te0GupUOLOVTOL TROXEWEVOU VoL ETLTUY Y AVETOL
1 XOAUTERY TOLOTNTA HOVTEAWY 0N xou 1) Yerion TwV Slodé€oilmy UTOAOYIC TI-
%WV Topwv. Me aquthy TNV TEYVIXT ETTUYYAVOUUE YRTYOQPU AMOTEAECHUOTA XAl
UEWWOVOUPE ONUAVTIXG TIC OMOLTHOELS ENMEEERYACTIXAC Lo 00C %ol AmOUAXEUCTC.
H mpdtaon yefione authc Tne TEYVIXAC BIEUXOADVEL TNV EVOWUATHOT) TOU TRO-
TEWOUEVOU UMY OVIOHOU GE YUUNAO) XOCTOUG EVOWUATWUEVA GUC THUATA (n.X.
¢€unvog VeppootdTng).

Movtého mpoocéyyiong Jepuinng dveong H depunr| dveon etvan 1
oLV XN TOU YOU Tou ExPEACEL TNV txavoToincr Tou avip®mou yia To Vepuind
nepBdhhov. Ltny mapovoo uekétn yenotwonoolue to poviého PMV/PPD,
mou avantOydnxe and tov P.O Fanger [1] xou exgpdlet tny ducapéoxeta Ye Tig
Yepuinée ouviixeg. Auty| n T eaptdton, PeTal GAAWY, amd TNV ECKHTERPLXN
Yeppoxpacio, Tnv uypaocio, TNV ToyLTNTA TOL AP, TOUS PETABOAXOVC PUIUOUC
(BPOco'mpLo’mw) xau To eidog évouone. Ilpoteivouye éva povtého mou cuoyetiletl
NV ducapéoxela uovo e Ty Yepuoxpacio Tou dwuatiou, xomg oL UTOAOLTEG
TopdueTeol (petaBolxde pudude, polyo x.AT.) ebvar BUoxoho vo uetendolyv
OANG puTopoLY va Yewpeniolyv oTadepés Yol oYETIXE GUVTOUO YROVIXO BIACTNUOL.
To amotéheoya auTAC TNG AvVAAUGTC YLoL Lol YEWEEVY Nuépa amexoviletal 6To
Yyfua 100 (avtiotowya anoteléopata PAénouye emiong xou Yl TO xohoxaipt).
Me Bdon to nelpapo auté, ot tiwée tou Fanger (umke ypoua) tpooeyyilovton
and €V TETROYWVIXO WOVTELO (XOXXWVO Ypemua), OTou 1) ueTaBANTY pog Yo etvou
uovo 1 ecwtepxn Yepuoxpasia.

221

60%

—— Fanger model
50%- — Proposed model

40%
2 30%-
[aW

20%-

10%-

0% T T T T T T T T T T T T T
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Zone temperature (°C)

Yyfuo 100: H extiunon tng ducupéoxelag ooy cuvapTnom Tng ecntepxrc Jep-
uoxpaotag

16%

—— Estimated PPD
14%- |——— PPD from Fanger's model

12%4 (K

2 10%-
[

8% -

6%

4% T T T T T

1 11 21 31 41 51
Weeks

Yoyfua 101: AxpBeta mpoBhedng Yepuinric ducapéoxeiag

To cupdueva Topddupa TOU TAPOUCLUCUUE TUEATEVG EVEQYOTOLOUV QUTHY
NV TPOCEYYLoN, xodwe 1 Thetodngio Twv Tapouétpwy Tou Fanger mou ovo-
pépoue elvan oyedov otodepéc Yo Tic TeAsuTaleg Alyeg nuépeg, EVe o xanpdg
NG TEPLOYAC Xou oL TtapdpeTeoL Tou oyetilovton ue toug xotoixoug (t.y. eo-
Uy, 1) 0pACTNELOTNTY TOUg X.AT.) umopolv va Yewpniolv mapduoles yio Tig
(Biegc wpeg petadd dadoywmy nuepwy. H axpifewa g mpotewouevng Adong
OE OyEoT UE To avTioTolyo amoTeEAEoUuTa NG Abong tou Fanger, gafveton 6to
Yyua 101, 6mou TopatneoVUE 6Tt To UEGO GQAAUN UETAEY TeV 8U0 UETEHOEWY
etvan o 0,02% yior ohdxkneo To étoc.

222

Movtého TEOCEYYIONG EVERYELAXNG XATAVAAWOTNE AviticTolyo ue
v UEYodo g extiunong tng Vepuxrc dveong, oyedldooue Ui uEYodo yia TNV
TPOCEYYLON TNG ENIOPAOTS TV VEQUOXQUCLOY TOU ETUAEYEL O UNYAVIOUOS EAEY-
YOL oTNY EVepYELoX Xatavdhwor). Koo ot cwointipeg yétpnong Yetpoly tny
evépyeta Tou HON Exel xortovahwVel, évar Tétoto yovtého (npdfBredng) xadiota-
Ton omohUTwe anopaitnto. H Ao poc utodétel 6L xde €€unvog Yepuoctdtng
XATUOXEVALEL TO Bix6 TOU POVTEAD Yl Vo EEETACEL TIC TORAUUETEOUS amd TO Bw-
ydmo/ﬂepptxr’] Cwvn oto omnoio PBeloxetar. Ta 6edopéva mou hopfdvouue and
Toug ato¥nTipes Tou xTipiou TepthapPBdvouy: 1) Luvifixec e&wtepixol yhpou:
Teéyouoeg xatpixéc cuvIixeS xou TEGYVWoN xatpol (Snh. Ocpuoxpacio xou 1-
Alooen ozxuvoﬁokia), 2) Eowtepuéc ouviineg xtiplou: Oepuoxpacia dwuatiou,
oerduOC aTéUEY avd dewudTio xou 00Tw xadelrnc. XenowonoloUue €vo LoVTEND
Yoo Tokvopouong, to Bden tou onolou utoloyiCovtar ex VEou ot xdie
yeovio Bruc. H ypauuixnr) mpocéyyion tng evépyelog, YenotlomoLe{ton eupéwg
ot BiBhoypapio [96,191,210]. Xto Eyduoa 102 ofohoyeiton 1 axpileta tou
TPOTEWOUEVOU UOVTEAOU GE GUYXQELON UE TNV TEUYUOTIXH XAUTAVIAWGT) EVEp-
YELIC TTOL BIVOUY Ol CUOXEUES UETENONG (oﬂqv TEOGOUO{LGT) TOU EnergyPlus).
To anotehéouata Belyvouv OTL TO TEOTEWVOUEVO UOVTELOD eugaviCel éva péoo
OO Yo OAOXANEO TO €T0C TNE TALEWS TOU 2.5%.

MéVodog Mdng anogpdcewy Topoviéra Vepuinnic dveorng xa evepyela-
xS xaTavdhwong divovtar wg elcodog oty teheutala @don tng Abong, 6mou
yivetar 1) BeAtiotomoinon tou x60TouC X uToAoYilovTaL Ol UTOYACELC TOU GU-
othuatoc. [ty Abon pag yenotonolobue uia Tpotonolnet Tou TeofAfuaTog
Tou owdiov pe oo TNua TohAaTAGY emAoyov: “Eyouue K oet avtixeyevwy
omou xdie avtixeluevo yet o adio xon éva Bdpog. Xxomdg eivon vo emAéEouue
vo. Bdhouue oTo couxidio Pag Eva axpBng oTolyelo and xdle oeT, €101 WOTE 1O
oLVOXO [Bdpog va ebvan puxpdTePD 1) (o0 Ue To YéyioTo Bdpog mou umopel vo
UTEL 6TO coxiBlo aC Xot VoL JEYIo ToTOLE(ToL 1) GUVORXY o okia’. YTo TEOBAN-
UoL oG 0TOY0G Ebval 1) EAYLGTOTOINOT) TNG GUVORXNC TWING (x6oT0ULC) avTi Yia
Vv peyiotonoinon tng allag. Kde ot avagépetan o éva ypovind Brda tng
Aertovpylag TOU CUOTANATOC UG XU €Vl OTOLYEID AVTITPOCWTEVEL TO oTNuEio
Yepupoxpaciog oyetind Ye 10 TpoavapepUEy Ypovixd Bua, To ontolo Ue T oelpd
ToU OYETICETAL UE TNV TIUT) DUCUPESHELNG XAl TNV EVEQRYELUXT) TOU XATAVIAWOT).

ITewpapatind anoteAécpota

LTV EVOTNTA QUTY| TOPEYOUUE UL OELEY TOCOTIXMY CUYXPIOEWY TEOXEL-
uévou va Oeiloupe TNY ToLOTATA TG ADOTG TOU TPOTEIVOUUE, GE GUYXQLOT| UE
Tic oYeTXéC Tpooeyyioelg. Ou AMoelc Ue T OTOlEC CUYXEVOUAOTE Elval:

223

1 —— Estimated
~ — Reference
= 2000+
2
=
= 1500
o0
Z
5 10004
=
E 500
0 a T T T T
1 6 11 16 21 26
Weeks (winter period)
800
— Estimated
= — Reference
600 -
Z
)
2 400 -
=
&5
=
£ 200 1
[_4
0 -
1 6 11 16 21 26

Weeks (summer period)

Yyua 102: Axp{Bera mpofiedme evepyetaniic xatavdhwong

o Ytadepn| Vepuoxpacta: 8 hoewg and 20°C wg 27°C.

e Mo avahutinr) pédodog mou xdvel TATET Teocouolwor Tou xTnelou o
AOveL To TEdBAnua pe euploTind teomo (Fmincon+EnergyPlus). Mdé-
oo Yewpolpe Ty Aoon auth we BéEAtiotn Ao (Aon avapopdc) xodog
urodétouue 6 éyoupe 100% axplBr) mpocouoiwon xou TeéBhedn xoupo-
U [203] [182].

To melpduatd pag €youv ypovixt| dldpxeta evog yeodvou. Xtov Ilivoxa 20
TOCOTIXOTOETOL TO TEAXO XOOTOC (XAVOVIXOTIOINUEVD) TIOU TpoépyeTtal amd
TOV TROTEWVOUEVO ahyoptduo Mbng anogdoewy oe clyxpion Pe Tic AIGES Tou
mpoavagépaue yioo TNV Aettovpyio 1 (ouuBiBacudc petald evépyetog xon Ou-
capéontog). Auth 1 avdluon Belyver 6t 1 hoom pog €xel avWTEPN ambd0oT
EVOVTL OTIC OTATIXES ETAoYES. Emmhéov, emtuyydvouue cuyxplown anddoon
(3% yewpdtepn) ue Ty avolutixr-euptotixr Ao, 1 onola ouee ebvor Bactouévn
oc TAYPN) TEOCOUOIKOT. AxOuo Xou v TOURUXGUPOUNE TOUS TEPLOPLOHOVS TOU
ETUPEREL 1) avdry X YL oxpl3Y) Tpocouolnon Twv xTreley, uo Tétolo Abon ma-
EOUGLALEL ONUAVTIXG UPNAOTEQEC UTONOYIGTIXEC AMOUTHOELS CUYXQLTIXG UE TNV

224

ivoxag 20: Xoyxpion x60T0ug PE dAheg uedddoug

Mé9dodoc Evépyewo (kWh) | PPD (%) | Kéotoc
Lradepd 20°C 66,967 24.99 0.89
Yradepd 21°C 62,939 17.46 0.72
Yrodepd 22°C 61,223 11.66 0.59
Yradepd 23°C 61,955 7.94 0.52
Lradepd 24°C 65,191 6.46 0.51
Eradepd 25°C 70,467 7.23 0.56
Yradepd 26°C 77,359 10.22 0.66
Yradepd 27°C 85,680 15.31 0.81
Fmincon 34,936 6.17 0.33
ITootewopevn Ao 36,399 6.47 0.34
OLxr| Hoc.

H Acitoupyla 2 €yet oxond TNy eAdyloTOTOMOT) TNE EVERYELOXNS XAUTAVEAG-
omNe, OLTNEWVTAC TdvTo TNV ThAeNo Twv oplnv Tou tpotinou ASHRAE écov
apopd Ty Vepuxt| dveon (10%). To anoteléoporta, To omolo (aivoviar GTto
Yyruo 103, detyvouv wixpée dtaxupdvoele oe authv) uétenon éwe xo 1%.
Autéd ouuPaivel Aoyw Slapopwy un TeoBrédiuny cuvinxdy, 6Twe 1 Buvauixn
Tou xTnplou xar 1 TEOBAed Tou xowpol. Ta Tov yewwva, 1 péon Beitiwon
OTNV XATAVIAOOT) EVEPYELNS TOU TETUYalvoulE o oyéorn ue TV ouuPiBaoTi-
x1} Aettovpyio 1 xou Tic mponyolueveg Aoelg etvan 27%. Enfong metuyaivoupe
mepimou (Bl xatavdhowon evépyelag ye toug 20°C ahhd pe duoapéoxeta 8.5%
avti Tou un anodextol 16.4%. To xahoxaipl 1 evépyeta elvon younhotepn and
ONEC TIC BAAEC TEQITTWOELS. MOUPWVOL PE ToL AmOTEAECUATO oUTA, Loy UELLOUa-
OTE OTL O TPOTEWOUEVOS ahybprduog Ang amogpdoewy umopel vor TeTUyaiveL
TOV 0TOYO TNG OWITARNONG ATOBEXTWY VEPUIXWY CUVINXGOY ECWTERIXOU YOEOU
UE TO EAYLOTO BUVATO XOOTOC EVEQYELUC.

Ipoxewévou vo aglohoyniel 1 anotedecyotixotnto g Acitoupyiog 3, to
Yyfuo 104 amewxoviCel tny Evépyeta xou tnv Oepuixr dveon yia 2 Slopopetind
oevdpLo SLECtuwy TOpwY Yo ayopd evépyetag. Autd To amoteréouato Oe-
fyvouv 611 1 6tay Bivouue pEdTEPOUC TIHPOUG (xotd 20% ouyxertind Ue TNV
Aoon avagopdc Fmincon+EnergyPlus) yio ayopd evépyetoc, 1 Ao pog metu-
Yotver xatd uéco 6po 28% vnhdtepn twh PPD oe ayéon ue tnv Aon avago-
edc xan 36% omd auth Tou meTuyoiveL Ye TNV emAéoy TEoo¥HxXn Srodéauwy
TOPWY AT 20%, v etvou EUQAVAC 1 THENOT TOU 0plou TOEWY TOU BWOUUE
o710 cUoTrua AMdng anogdoewy. O udveg popéc mou 1o umepPalvet, eivon dtay
ot dlodéctuol mépot Tou divoupe elvon TOAD Wixpol yio var xahlpouv To 6plo To
PPD rnou 6iveton and to npdétuno ASHRAE.

225

90000 20
§80000 BEnergy OComfort_ 18
%2 70000] _ ig&f
£ 60000
Ss0000 | g - [N C%E
2 40000 g 5
530000 6 E
~ 20000 4 3
%010000{ 2
5 0 0
PEYLYIYIY ST
O — N o<t o> CE "
QOO g a
oo s <o B o Y o R <a o IO
A AR A
& I
2 &
@ @
[=ER=]
ok
o e
— =

(o) Xewdvog

Yyfuo 103: Evépyeta xon Yepuixr dveon
YELIC UE OPLO 10% vy ™y 8uoo¢péoxsm)

3000
2500 .
2000 .
1500
1000
500
0

Energy Consumption (kWh)

1 357 91113151719212325
Week

Scenario 3 - Low Scenario 3 - High

eeeee Low AF Limits e oo+ High AF Limits

(o) Xepdrvoc

_’5\60000 n BEnergy OComfort 35
550000 2(5)§
.540000 ZOE
€ 30000 &
[l
820000 m N @g
Sl {0 T
g0 0
PYYLYYEYY D
S —~ AN N N o>~ CE S
AN AN AN AN AN NN © c
goooouoogg
S2222228885
g
22
(==
X
&
— =

(B") Kahoxoipt

v Ty Aettovpyia 2 (Behtiwon evép-

1000
800
600
400

200

Energy Consumption (kWh)

1 357 91113151719212325
Week

Scenario 3 - Low Scenario 3 - High

eeeees [.ow AF Limits e++e+ High AF Limits
(B") Kahoxoipt

Yyfua 104: AZohdynom tng EVEPYELIXAS XATAVAAWONG Yiol TNV Asttoupyio 3
(Behtiowon dveong ue bpto yia Toug Btadéotpous Tépous EVERYELNC)

H mpotewvduevn Ao ebvan eniong amodextr| and Toug avipnhtoug oTo xThplo

OTWe porveTar oto Ly fua 105, xadog 1)
wou 10% mou optleton amd TO TEOTUTO
mou 1o umepPaivel ebvan To PIVGTOPO Xl

Ty PPD onavieog unepPatvel to 6plo
ASHRAE. O ehdyiotec TEQITTOOELS
L TNy dvolln. Tic emoyéc autéc oL Vep-

uoxpaoleg etvan pecaieg eved T0 XAPATIOTIXG LOVA pUIULOPEVO 1| o VEpuavon
1 o YO&n. Ondte av yio mopdderyua Tov OxtmBeto xdvel (€T xou To XTI

226

16 16

PPD (%)
S o

PPD (%)
S o

A O @
~ O

1 357 91113151719212325 1 357 91113151719212325
Week Week

—e—Scenario3 - Low ~ =®=Scenario3 - High ~=®=Scenario3 - Low =®=Scenario3 - High

(o) Xeudrvoc (B") Kahoxoipt

Yyfuo 105: AZiohdynon tne Vepuinnic ducopéoxiag yior Ty hertoupyia 3 (Beh-
tiwon dveong e bpto yia Toug dtadéotpoug TépouC EVERYELIC)

Hivoxag 21: Xpdvog extéAeonc TEOTEWVOUEVNC AUOTC OF BLAPOPES CUOHEVES

ARM Cortex-A57 | Intel Quarkx1000 | ARMx STM32F103
@2 GHz Intel @400MHz @72MHz
Aertovpyla 1 & Actoupyla 2 0.004 sec 0.006 sec 0.082 sec
Aettoupyla 3 0.03 sec 0.035 sec 0.576 sec

OTIx6 UTOPEL Vo TPOGPEREL UOVO VEQUAVOT), TUPUUEVEL XAELGTO Ywplc Vo umopel
va pewwoet o PPD.

YAonoinom oc evowpatwpévo cbotnua Ilpoxewévou va yeretricou-
UE TOV YpOVO eEXTEAEOTC TNG AUOTG oG UAOTIOLACOE TOV UMY OVICUO OE DLAPORES
EVOWUATOUEVES GUOXEVES oL Vo UmopoUGaY EUXOAA VoL AMOTEAEGOUY TO UAL-
%6 evog €€unvou Vepuootdty. To anoteAéouata TV UETEHOENDY Uog QaivovTal
otov Ilivaxa 21. Autd ta anoteréopata unoypauuilouy 6Tl 0 TEOTEWVOUEVOC
unyaviouog etvan o Véon va utohoyioetl Tig Yepuoxpacicg o Arydtepo amd Eval
OEUTEQOAETTO, AXOUT) XOL OV YENOWOTOLETOL EVOG YUUNAHC OmOBOCTS UXQOE-
Aeyxthc (ARMx STM32F103 ot 72 MHz). O mpdoletoc ypbdvog extéleong
¢ Acttovpylag 3 ogelheton 60 6TL 0L amogdoelc Vepuoxpaciog utohoyilovtan
Yoo Oheg g Loveg pa Bdoudda umpocTd (mpoxeyévou vo TnpolvTL Tar Gpla
TV Slrdéotuwy TépWY Yo ayopd EVERYELIC).

To Myfuo 106 detyver Tov apriud Twv x0Oxhwy UnyavAc Tou yeeldleTon 1)
AOoT pag ouyxettixd ye Ty avohutixd| pédodo. o autd to melpoua yenot-
uomotolue éva evonuotwpévo cuotnuo ARM Cortex-Ab57 o éva xevtond
server mou €yel évav Intel i7-6700K@4GHz. Me 3don ta anotehéopata autd,

227

le+15
le+14 -
le+13{ |mmm Intel i7-6700K
le+12- — ARM Cortex-A57
le+11-
le+10+
le+9 -
le+8 -
le+7 -
le+6 -

le+5 —J

Proposed Fmincon

Execution cycles

Eyfuor 106: Aprdudc x0xAov unyovic YLol ToV UTOAOYLOHO TV EpUOXQICLOY
YL TNV TEOTEWVOUEVT] XAl TNV VOAUTIXY ADGT| avapopdiq

N Aoom pog ebvon yenyopoteen xatd 8 tdeig yeyédoug. Koatd ouvéneia, pia
TAATQOEUA YAUUNAOL XOGTOUE UTOREL VoL UTOC TNEIEEL TNY TEOTEWVOUEVY A)GT| X0l
vo. yenowonotniel yio Tov EAEY YO TV VEQUOXEAUCLOY ECHTERXOV YWEOU, XYTL
Tou BV ebvor EQIXTO YLol ToV LEYGBOUE TTIOU YENOLLOTIOLOUY TpocoUoiwon (Aoyw
NS EYYEVOUC ALENUEVNC UTOAOYLO TIXNG Tco)\urc)\oxémrocg).

Y VUTEEAC AT

To cupnepdouato Tou amopeéoLy and auThHY TNV dwtedr) cuvolilovton To-
EOATE):

o H onurovpyla TEox TV EQYAAELDY IXAVDY VoL aVAALOUY TOV TNy oo XWOL-
AL EQPUAPUOY MV XA VAL EXTUIOUY TNV EVERYELX TTOU AUTEC Vol XATAVUADOOUY,
Ywelg TNV avdyxn exTEAEONS TOUG OTIC TEMXEG cUoXELES ebvan epucty|. H
EVOWUATOON AUTOV TV ERYUAEiwY Yéou ot mepBdhhovia avdmTtulng e-
PUEUOY WY VewpoUUE OTL Yo ETLPEREL GNUAVTIXG OPENT) XUTH TOV TYEDLAOUO
[oT eqopuoywy.

o H npofBhedm tou avauevouevou x€pdoug o eVERYELX AmMd TNV EMTAYUVOT)
TWV EQUPUOYMY OF ETEPOYEVEIG CUOKEVES Elval EQUXTY).

e To x6670¢ TNG SUVOIXTC AVIAUCTIC UTOAOYLO TIXMY ATOLTHOEWY EQUOUO-
YoV ebvon yeydho xon unopel va amogevy Vel ue yeron oTaTxhc avahuong
oty oev emupeiton 1 péytoTn duvaty axplBela anoTeAeoudTwY.

228

H mocotxonoinom tne npoondieioc mou ypeetdleton vo xotaBhniet yio Tov
UETUOY NUATIOUO EQPUPUOY®Y UE 0TOY0 TNV BeAtinon tng entdoong xou Tng
eVEQYELOG Elval oNUovTXT xou 1) TeoBAedn Tng elvon EQLXTH.

Ou mpotewvoueveg yedodoloyieg elvon eUXOAA ETEXTAGUIES TPOXEWEVOL VA
UTOCTNEILOUY TEPLOGOTEPEG GUOXEUES X0l UOYLTEXTOVIXES.

Ta epyoahela extiunong Tng eVEpYELIC TOU TEOTEVOVTAL UTOPOVUY VO UTO-
otneilouv Tov oyedlaoud YedodwY EVEpYELOXd amodoTIXTC Toto¥ETnoNg
CLVAPTHCEWY 0ToUG BladEooug UTOROYIO TIX0UE TOPOUG TOL BLXTUOU.

H dnuovpyio online cuotnudtwy AMdng amo@doewmy yia @apuoyeég
KuBepvo-guowmy (Cyber-Physical) cuotnudtov eivar mohd onuovtixdg
YL TOV EAEYYO UTORYOVIWY CUOTNUATWY. MTUTIOTIXG LOVTERA YOUNATG
TOAUTTAOXOTNTAS Xou oAy bpriuol BedTio Tomoinomng ToA®Y xpLtnelwy umo-
eoLV va cuufdiouy mpog auth TNV xatedduvorn. H oyedlaon éunvey
epuootatdy yio tov éheyyo e Véppavone/Poing oe undpyovta xTipl
YWelc TEONYOUUEVN LOVTEAOTIOMOT) TOU TEOTEVOUE EVOL EVOL YOEUXTNEL-
OTIXO TORABELYUAL.

H anodotur| Sioyelpion twv dedopévwy unopel var cUUBAAeL oTny drnutove-
yio eheyxTodv yia egapuoyeg Kufepvo-guoiney cuoTnudtwy yaunirg To-
Amhoxotnrag. H pébdodoc 1wy cupduevev napodlewy (sliding windows)
omoTtehel pLor xoh) ETAOYT yia Loty elplor) BEBOUEVKY BACLOUEVWY GE Xal-
e CUVUAXES 1) CUUTIEQLPORES XATOIXWY OE XTHELAL.

Hivoxag 22: I'hwoodplo Avtistobyiong AyyAuxadv-Earnvixey ‘Opwv

Branch Divergence Ay Katehuvong Ao adodoewmy
Central Processing Unit Kevtpur) Movédda Enelepyaociog
Classification Katnyoplonoinon

Compiler MeToyAwtTioTrC

Computational Complexity Troroyotr) IlohumhoxdtnTa
Control Operation Instructions Evtokéc EAéyyou

Correlation Yuoyétion

CPU cycles Kxhow Mnyaviic

229

Cyber-Physical System
Decision-making Algorithm
Embedded System
Energy Efficiency
Ensemble Voting Method
Feature Selection
Floating-point Operations
Function Placement
Graphics Processing Unit
Heterogeneous System
Insrtuction Level Parallelism
Internet of Things
Knapsack algorithm
Kubernetes (software)
Loop

Memory Management
Microcontroller

Model Training

Neural Network

Profiling

Programming Effort
Random Forest Method
Regression Analysis
Resource Management
Serverless Computing
Sliding window technique
Smart Building

Smart Thermostat
Software Development Kit
Source Code

Thermal Comfort

Kufepvo-guowd Yootnua
Ahyopriuoc Afdne Anogdocwy
Evowpatwuévo Yootnua
Evepyeton| Anodotixdtnta
Yuvouaotr) MéYodog Wngogopiog
Emhoyr Xopoxtnpto iy

IpdZec Kivntrc Trodotohrg
Tonovétnon XLuvapthoewy

Kdpto Tpagpuxcdyv

Etepoyeveg Xootnua

Boduog [apariniomoinorne Evtohomv
Awdixtuo Twv Avuxeévey
Alyoprduoc Loabdiou

KuBepvitng

Bpdyog

Awyetplon Myvrune
Muwpoeheyxtrg

Exraideuon Movtéhou

Nevpwvixd Aixtuo

Avdhvon Troloyotnodv Anathoswy
Hpoypapuotiotins Ipoondibela
Meédodoc Tuyainv Aactv
Avéhuor Hahvopounong
Awyetoon lopwv

Troloyloude ywelc Aoxouiotn
Teyvinr| cupduevou Iapadioou
'‘E€unvo Ktrplo

"E&umvoc Oepuootdtng

HepBdrrov Avdntuine Egapuoymy
IInyaloc Koodixag

Ocpuxr] Aveon

230

List of Publications
Book Chapters

Bl1.

Charalampos Marantos, Christos Lamprakos, Kostas Siozios, and
Dimitrios Soudris. ”Towards Plug&Play smart thermostats for build-
ing’s heating/cooling control.” In IoT for Smart Grids, pp. 183-207.
Springer, Cham, 2019.

Journals

J6.

J5.

J4.

J3.

J2.

Charalampos Marantos, Lazaros Papadopoulos, Christos P. Lam-
prakos, Konstantinos Salapas, and Dimitrios Soudris. ”Bringing En-
ergy Efficiency closer to Application Developers: An Extensible Soft-
ware Analysis Framework.” IEEE Transactions on Sustainable Com-
puting, under minor revision

Charalampos Marantos, Lazaros Papadopoulos, Angeliki-Agathi Tsi-
ntzira, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Dim-

itrios Soudris. ”Decision support for GPU acceleration by predicting

energy savings and programming effort.” Sustainable Computing: In-

formatics and Systems 34 (2022): 100631.

Christos P. Lamprakos, Charalampos Marantos, Miltiadis Siavvas,
Lazaros Papadopoulos, Angeliki-Agathi Tsintzira, Apostolos Ampat-
zoglou, Alexander Chatzigeorgiou, Dionysios Kehagias, and Dimitrios
Soudris. ”Translating quality-driven code change selection to an in-
stance of multiple-criteria decision making.” Information and Software
Technology 145 (2022): 106851.

Charalampos Marantos, Konstantinos Salapas, Lazaros Papadopou-
los, and Dimitrios Soudris. ”A flexible tool for estimating applica-
tions performance and energy consumption through static analysis.”
SN Computer Science 2, no. 1 (2021): 1-11.

Charalampos Marantos, Kostas Siozios, and Dimitrios Soudris. ”Ra-
pid prototyping of low-complexity orchestrator targeting cyberphysical
systems: The smart-thermostat usecase.” IEEE Transactions on Con-
trol Systems Technology 28, no. 5 (2019): 1831-1845.

231

J1.

Charalampos Marantos, Kostas Siozios, and Dimitrios Soudris. ” A
flexible decision-making mechanism targeting smart thermostats.” IEEE
Embedded Systems Letters 9, no. 4 (2017): 105-108.

Conferences - Workshops

Cl14.

C13.

C12.

C11.

C10.

Charalampos Marantos, Nikolaos Maidonis, and Dimitrios Soudris.
"Designing Application Analysis Tools for Cross-Device Energy Con-
sumption Estimation” In 2022 11th International Conference on Mod-
ern Circuits and Systems Technologies (MOCAST), pp. 1-4. IEEE,
2022.

Charalampos Marantos, Miltiadis Siavvas, Dimitrios Tsoukalas, Ch-

ristos P. Lamprakos, Lazaros Papadopoulos, Pawet Boryszko, Katarzyna
Filus, Joanna Domanska, Apostolos Ampatzoglou, Alexander Chatzi-

georgiou, Erol Gelenbe, Dionysios Kehagias and Dimitrios Soudris.

"SDK4ED: One-click platform for Energy-aware, Maintainable and De-

pendable Applications.” In 2022 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pp. 981-986. IEEE, 2022.

Achilleas Tzenetopoulos, Charalampos Marantos, Giannos Gavrieli-
des, Sotirios Xydis, and Dimitrios Soudris. "FADE: FaaS-inspired ap-
plication decomposition and Energy-aware function placement on the
Edge.” In Proceedings of the 24th International Workshop on Software
and Compilers for Embedded Systems, pp. 7-10. 2021.

Daichi Watari, Ittetsu Taniguchi, Francky Catthoor, Charalampos
Marantos, Kostas Siozios, Elham Shirazi, Dimitrios Soudris, and Takao
Onoye. ”Thermal Comfort Aware Online Energy Management Frame-
work for a Smart Residential Building.” In 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 535-538. IEEE,
2021.

Christos P. Lamprakos, Charalampos Marantos, Lazaros Papadopou-
los, Dimitrios Soudris. (2021). The Known Unknowns: Discovering

Trade-Offs Between Heterogeneous Code Changes. In: Orailoglu, A.,

Jung, M., Reichenbach, M. (eds) Embedded Computer Systems: Ar-

chitectures, Modeling, and Simulation. SAMOS 2021. Lecture Notes

in Computer Science, vol 13227. Springer, Cham.

232

Co.

C8.

C7.

C6.

C5.

C4.

C3.

Chrysostomos Karakasis, Konstantinos Machairas, Charalampos Ma-
rantos, losif S. Paraskevas, Evangelos Papadopoulos, and Dimitrios
Soudris. ”Exploiting the SoC FPGA Capabilities in the Control Ar-
chitecture of a Quadruped Robot.” In 2020 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), pp. 501-507.
IEEE, 2020.

Charalampos Marantos, Angeliki-Agathi Tsintzira, Lazaros Papado-
poulos, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Dim-
itrios Soudris. ”Technical Debt Management and Energy Consumption
Evaluation in Implantable Medical Devices: The SDK4ED Approach.”
In International Conference on Embedded Computer Systems, pp. 348-
358. Springer, Cham, 2020.

Miltiadis Siavvas, Dimitrios Tsoukalas, Charalampos Marantos, An-
geliki-Agathi Tsintzira, Marija Jankovic, Dimitrios Soudris, Alexander
Chatzigeorgiou, and Dionysios Kehagias. ”The sdkded platform for
embedded software quality improvement-preliminary overview.” In In-
ternational Conference on Computational Science and Its Applications,
pp. 1035-1050. Springer, Cham, 2020.

Miltiadis Siavvas, Charalampos Marantos, Lazaros Papadopoulos,
Dionysios Kehagias, Dimitrios Soudris, and Dimitrios Tzovaras. ”On
the relationship between software security and energy consumption.” In
15th China-Europe International Symposium on software engineering
education. 2019.

Charalampos Marantos, Christos P. Lamprakos, Vasileios Tsout-
souras, Kostas Siozios, and Dimitrios Soudris. ”Towards plug&play
smart thermostats inspired by reinforcement learning.” In Proceedings
of the Workshop on INTelligent Embedded Systems Architectures and
Applications, pp. 39-44. 2018.

Lazaros Papadopoulos, Charalampos Marantos, Georgios Digkas,
Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Dimitrios Sou-
dris. ”Interrelations between software quality metrics, performance and
energy consumption in embedded applications.” In Proceedings of the
21st International Workshop on software and compilers for embedded
systems, pp. 62-65. 2018.

Charalampos Marantos, Nikolaos Karavalakis, Vasileios Leon, Vasi-
leios T'soutsouras, Kiamal Pekmestzi, and Dimitrios Soudris. ” Efficient
support vector machines implementation on Intel/Movidius Myriad 2.”

233

C2.

C1.

In 2018 7th International Conference on Modern Circuits and Systems
Technologies (MOCAST), pp. 1-4. IEEE, 2018.

Helbert Arenas, Aurélie Baker, Damian Bargiel, Matthias Becker, Anna
Bialczak, Francesco Carbone, Véronique Gaildrat, Sascha Heising, Md
Bayzidul Islam, Philippe Lattes, Charalampos Marantos, Colette
Menou, Josiane Mothe, Aude Nzeh Ngong, Iosif S. Paraskevas, Miguel
Penalver, Paulina Sciana, Dimitrios Soudris ” FabSpaces at ImageCLEF
2017-Population Estimation (Remote) Task.” In International Confer-
ence of the CLEF Association, CLEF 2017 Labs Working Notes (CLEF
2017), vol. 1866, pp. pp-1. 2017.

Charalampos Marantos, losif S. Paraskevas, Kostas Siozios, Josiane
Mothe, Colette Menou, and Dimitrios Soudris. ”FabSpace 2.0: A plat-
form for application and service development based on Earth Observa-
tion data.” In 2017 6th International Conference on Modern Circuits
and Systems Technologies (MOCAST), pp. 1-4. IEEE, 2017.

234

Curriculum Vitae

Charalampos Marantos received the Diploma and the PhD degrees from
the Department of Electrical and Computer Engineering, National Techni-
cal University of Athens, Greece, in 2016 and 2022. From 2016 to 2022, he
worked as a Research Assistant and Freelance Computer Engineer in National
Technical University of Athens (NTUA) and Institute of Communication and
Computer Systems (ICCS). His research interests include Embedded Sys-
tems Programming, Decision-making mechanisms targeting IoT and Cyber-
Physical systems applications, Machine Learning, Energy/Performance opti-
mization for embedded systems applications. He worked and collaborated on
many EU research projects such as the SDK4ED, which was about designing
a Software Development Toolkit for Energy Optimization and Technical Debt
Elimination, targeting Embedded Systems applications and the FABSPACE
2.0, which created an open-innovation network for geodata-driven informa-
tion. He is a co-author of more than 20 international journal and conference
research papers. During his Ph.D. he co-supervised multiple master theses in
the fields of Cyber-Physical Systems, Machine Learning and Embedded Sys-
tems Developing, while offering assistant teaching in Microprocessors courses
in the fields of Microprocessors architecture and embedded systems develop-
ment (C and Assembly). Finally, he offered System Administration services
such as Linux server management (OS, installations, users, dockers, SW li-
censes), purchase, installation and maintenance of equipment.

235

References

1]

[9]

[10]

P. O. Fanger et al., “Thermal comfort. analysis and applications in en-
vironmental engineering.” Thermal comfort. Analysis and applications
in environmental engineering., 1970.

A. Hamm, A. Willner, and I. Schieferdecker, “Edge computing: a com-
prehensive survey of current initiatives and a roadmap for a sustain-
able edge computing development,” 15th International Conference on
Wirtschaftsinformatik, 2019.

B. Ramprasad, A. da Silva Veith, M. Gabel, and E. de Lara, “Sus-
tainable computing on the edge: A system dynamics perspective,” in
Proceedings of the 22nd International Workshop on Mobile Computing
Systems and Applications, 2021, pp. 64-70.

A. Al-Fuqgaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE communications surveys & tutori-
als, vol. 17, no. 4, pp. 2347-2376, 2015.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEFE internet of things journal, vol. 3, no. 5, pp.
637-646, 2016.

S. Georgiou, S. Rizou, and D. Spinellis, “Software development lifecycle
for energy efficiency: techniques and tools,” ACM Computing Surveys
(CSUR), vol. 52, no. 4, pp. 1-33, 2019.

K. Georgiou, S. Xavier-de Souza, and K. Eder, “The iot energy
challenge: A software perspective,” IEEE Embedded Systems Letters,
vol. 10, no. 3, pp. H3-56, 2017.

Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “Diannao family:
energy-efficient hardware accelerators for machine learning,” Commu-
nications of the ACM, vol. 59, no. 11, pp. 105-112, 2016.

“Specifications of Nvidia Tegra X1:,” https://shield.nvidia.com/blog/
tegra-x1-processor-and-shield, 2017.

“Specifications of Intel/Movidius Myriad:,” https://www.movidius.
com/myriadx, 2019.

236

[11]

[12]

[13]

[14]

C. Marantos, N. Karavalakis, V. Leon, V. Tsoutsouras, K. Pekmestzi,
and D. Soudris, “Efficient support vector machines implementation

on intel /movidius myriad 2,” in 2018 7th International Conference on
Modern Clircuits and Systems Technologies (MOCAST). 1EEE, 2018,

pp. 1-4.

“Xilinx zynq 7000,” https://www.xilinx.com/products/
silicon-devices/soc/zyng-7000.html, 2022.

E. Kern, “Green computing, green software, and its characteristics:
Awareness, rating, challenges,” in From Science to Society. Springer,
2018, pp. 263-273.

[. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’ per-
spectives on green software engineering,” in 2016 IEEE/ACM 38th In-
ternational Conference on Software Engineering (ICSE). 1EEE, 2016,
pp. 237-248.

G. Pinto and F. Castor, “Energy efficiency: a new concern for applica-
tion software developers,” Communications of the ACM, vol. 60, no. 12,
pp. 68-75, 2017.

G. Procaccianti, H. Fernandez, and P. Lago, “Empirical evaluation of
two best practices for energy-efficient software development,” Journal
of Systems and Software, vol. 117, pp. 185-198, 2016.

C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do pro-
grammers know about software energy consumption?” IEEE Software,
vol. 33, no. 3, pp. 83-89, 2015.

H. Ribic and Y. D. Liu, “Energy-efficient work-stealing language run-
times,” ACM SIGARCH Computer Architecture News, vol. 42, no. 1,
pp. 513-528, 2014.

V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi, “Approximate
hybrid high radix encoding for energy-efficient inexact multipliers,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 26, no. 3, pp. 421-430, 2017.

K. Aggarwal, A. Hindle, and E. Stroulia, “Greenadvisor: A tool for
analyzing the impact of software evolution on energy consumption,”

in 2015 IEEFE international conference on software maintenance and
evolution (ICSME). 1EEE, 2015, pp. 311-320.

237

[21]

[26]

[27]

[28]

[29]

[30]

J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and
energy comparison of fpgas, gpus, and multicores for sliding-window
applications,” in Proceedings of the ACM/SIGDA international sym-
posium on Field Programmable Gate Arrays, 2012, pp. 47-56.

K. Eder, J. P. Gallagher, G. Fagas, L. Gammaitoni, and D. Paul,
“Energy-aware software engineering,” ICT-energy concepts for energy
efficiency and sustainability, pp. 103-127, 2017.

E. A. Lee, “Cps foundations,” in Design automation conference. IEEE,
2010, pp. 737-742.

K. Siozios, D. Soudris, and E. Kosmatopoulos, Cyber-Physical Sys-
tems: Decision Making Mechanisms and Applications. River Publish-
ers, 2017.

F. D. Macias-Escrivd, R. Haber, R. del Toro, and V. Hernandez,
“Self-adaptive systems: A survey of current approaches, research
challenges and applications,” Fxpert Systems with Applications,
vol. 40, mno. 18, pp. 7267 — 7279, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417413005125

B. Sun, P. B. Luh, Q.-S. Jia, Z. Jiang, F. Wang, and C. Song, “Building
energy management: Integrated control of active and passive heating,
cooling, lighting, shading, and ventilation systems,” IFEFE Transac-

tions on automation science and engineering, vol. 10, no. 3, pp. 588—
602, 2012.

K. F. Fong, V. I. Hanby, and T.-T. Chow, “Hvac system optimization
for energy management by evolutionary programming,” FEnergy and
Buildings, vol. 38, no. 3, pp. 220-231, 2006.

C. D. Korkas, S. Baldi, I. Michailidis, and E. B. Kosmatopoulos, “In-
telligent energy and thermal comfort management in grid-connected

microgrids with heterogeneous occupancy schedule,” Applied Energy,
vol. 149, pp. 194-203, 2015.

N. Lu, “An evaluation of the hvac load potential for providing load
balancing service,” IEEE Transactions on Smart Grid, vol. 3, no. 3,
pp. 1263-1270, 2012.

Eurostat, “Energy balance sheets,” Data 2002--2003, Luxemburg,
2005.

238

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Y. He, T. Kvan, M. Liu, and B. Li, “How green building rating systems
affect designing green,” Building and Environment, vol. 133, pp. 19-31,
2018.

D. C. Khedekar, A. C. Truco, D. A. Oteyza, and G. F. Huertas,
“Home automation—a fast-expanding market,” Thunderbird Interna-
tional Business Review, vol. 59, no. 1, pp. 79-91, 2017.

K. Rathouse and B. Young, “Domestic heating: Use of controls,” Defra
Market Transformation Programme, 2004.

E. P. Agency, “Summary of research findings from the programmable
thermostat market,” Washington, DC: Office of Headquarters, 2004.

R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,
and J. Saraiva, “Ranking programming languages by energy efficiency,”
Science of Computer Programming, vol. 205, p. 102609, 2021.

M. Couto, R. Pereira, F. Ribeiro, R. Rua, and J. Saraiva, “Towards a
green ranking for programming languages,” in Proceedings of the 21st
Brazilian Symposium on Programming Languages, 2017, pp. 1-8.

E. Capra, C. Francalanci, and S. A. Slaughter, “Is software “green”?
application development environments and energy efficiency in open
source applications,” Information and Software Technology, vol. 54,
no. 1, pp. 60-71, 2012.

E. Capra and F. Merlo, “Green it: Everything starts from the soft-
ware,” 2009.

C. Bunse and S. Stiemer, “On the energy consumption of design pat-
terns,” Softwaretechnik-Trends: Vol. 33, No. 2, 2013.

C. Sahin, F. Cayci, I. L. M. Gutierrez, J. Clause, F. Kiamilev, L. Pol-
lock, and K. Winbladh, “Initial explorations on design pattern energy

usage,” in 2012 First International Workshop on Green and Sustain-
able Software (GREENS). 1EEE, 2012, pp. 55-61.

H. Mu and S. Jiang, “Design patterns in software development,” in
2011 IEEE 2nd International Conference on Software Engineering and
Service Science. TEEE, 2011, pp. 322-325.

A. Noureddine and A. Rajan, “Optimising energy consumption of de-
sign patterns,” in 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, vol. 2. 1EEE, 2015, pp. 623-626.

239

[43]

[44]

[45]

[46]

[47]

[48]

[51]

[52]

D. Li and W. G. Halfond, “An investigation into energy-saving pro-
gramming practices for android smartphone app development,” in Pro-
ceedings of the 3rd International Workshop on Green and Sustainable
Software, 2014, pp. 46-53.

J. Grossschadl, S. Tillich, C. Rechberger, M. Hofmann, and M. Med-
wed, “Energy evaluation of software implementations of block ciphers
under memory constraints,” in 2007 Design, Automation € Test in
Furope Conference & FExhibition. TEEE, 2007, pp. 1-6.

M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
2011, pp. 1-6.

R. Pérez-Castillo and M. Piattini, “Analyzing the harmful effect of god
class refactoring on power consumption,” IEEFE software, vol. 31, no. 3,
pp. 48-54, 2014.

M. Bazzaz, M. Salehi, and A. Ejlali, “An accurate instruction-level
energy estimation model and tool for embedded systems,” IEEFE trans-

actions on instrumentation and measurement, vol. 62, no. 7, pp. 1927—
1934, 2013.

T. Honig, C. Eibel, R. Kapitza, and W. Schroder-Preikschat, “Seep:
exploiting symbolic execution for energy-aware programming,” ACM
SIGOPS Operating Systems Review, vol. 45, no. 3, pp. 5862, 2012.

A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app? fine grained energy accounting on smartphones with eprof,” in
Proceedings of the Tth ACM european conference on Computer Systems,
2012, pp. 29-42.

L. Papadopoulos, C. Baloukas, and D. Soudris, “Exploration methodol-
ogy of dynamic data structures in multimedia and network applications
for embedded platforms,” Journal of Systems Architecture, vol. 54,
no. 11, pp. 1030-1038, 2008.

Q. Cai, J. Gonzalez, G. Magklis, P. Chaparro, and A. Gonzalez,
“Thread shuffling: Combining dvfs and thread migration to reduce

240

[53]

[56]

[57]

[60]

[61]

energy consumptions for multi-core systems,” in IEEE/ACM Interna-
tional Symposium on Low Power Electronics and Design. TEEE, 2011,
pp- 379-384.

M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A leakage-
aware energy management approach for dynamic priority systems,” in
2011 23rd Euromicro Conference on Real-Time Systems. 1EEE, 2011,
pp- 92-101.

K. Bhatti, C. Belleudy, and M. Auguin, “Power management in real
time embedded systems through online and adaptive interplay of dpm
and dvfs policies,” in 2010 IEEE/IFIP International Conference on
Embedded and Ubiquitous Computing. TEEE, 2010, pp. 184-191.

K. Hazelwood and A. Klauser, “A dynamic binary instrumentation en-
gine for the arm architecture,” in Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded sys-
tems, 2006, pp. 261-270.

A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux
Kongress, vol. 18, 2010, pp. 1-42.

N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in ACM Sigplan notices, vol. 42,
no. 6. ACM, 2007, pp. 89-100.

X. Zheng, L. K. John, and A. Gerstlauer, “Accurate phase-level cross-
platform power and performance estimation,” in Proceedings of the
53rd Annual Design Automation Conference, 2016, pp. 1-6.

X. Zheng, H. Vikalo, S. Song, L. K. John, and A. Gerstlauer,
“Sampling-based binary-level cross-platform performance estimation,”

in Design, Automation € Test in Europe Conference € Exhibition
(DATE), 2017. 1EEE, 2017, pp. 1709-1714.

W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration
and partitioning for energy optimization in real-time multi-core sys-
tems,” in 2011 48th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC). 1EEE, 2011, pp. 948-953.

R. Reddy and P. Petrov, “Cache partitioning for energy-efficient and
interference-free embedded multitasking,” ACM Transactions on Em-
bedded Computing Systems (TECS), vol. 9, no. 3, pp. 1-35, 2010.

241

[62]

[64]

[66]

[67]

[68]

[69]

H. Hajimiri, K. Rahmani, and P. Mishra, “Synergistic integration of
dynamic cache reconfiguration and code compression in embedded sys-

tems,” in 2011 International Green Computing Conference and Work-
shops. 1EEE, 2011, pp. 1-8.

D. Llamocca, C. Carranza, and M. Pattichis, “Separable fir filtering
in fpga and gpu implementations: Energy, performance, and accuracy
considerations,” in 2011 21st International Conference on Field Pro-
grammable Logic and Applications. 1EEE, 2011, pp. 363-368.

C. Karakasis, K. Machairas, C. Marantos, I. S. Paraskevas, E. Pa-
padopoulos, and D. Soudris, “Exploiting the soc fpga capabilities in
the control architecture of a quadruped robot,” in 2020 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM).
[EEE, 2020, pp. 501-507.

V. Leon, I. Stamoulias, G. Lentaris, D. Soudris, D. Gonzalez-Arjona,
R. Domingo, D. M. Codinachs, and I. Conway, “Development and test-
ing on the european space-grade brave fpgas: Evaluation of ng-large
using high-performance dsp benchmarks,” [FEE Access, vol. 9, pp.
131 877-131892, 2021.

V. Leon, K. Pekmestzi, and D. Soudris, “Exploiting the potential of
approximate arithmetic in dsp & ai hardware accelerators,” in 2021
31st International Conference on Field-Programmable Logic and Ap-

plications (FPL). TEEE, 2021, pp. 263-264.

K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl
in action: Experiences in using rapl for power measurements,” ACM

Transactions on Modeling and Performance Fvaluation of Computing
Systems (TOMPECS), vol. 3, no. 2, pp. 1-26, 2018.

R. E. Grant, M. Levenhagen, S. L. Olivier, D. DeBonis, K. Pedretti,
and J. H. Laros, “Overcoming challenges in scalable power monitoring
with the power api,” in 2016 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). 1EEE, 2016,
pp. 1094-1097.

M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and
A. Sobe, “Process-level power estimation in vm-based systems,” in

Proceedings of the Tenth European Conference on Computer Systems,
2015, pp. 1-14.

242

[70]

[71]

[72]

[73]

[74]

D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Petra: a software-based tool for estimating the energy
profile of android applications,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). 1EEE,
2017, pp. 3-6.

C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal: Ac-
curate, portable and fast basic block throughput estimation using deep

neural networks,” in International Conference on machine learning.
PMLR, 2019, pp. 4505-4515.

C. Ferdinand and R. Heckmann, “ait: Worst-case execution time pre-
diction by static program analysis,” in Building the Information Soci-
ety. Springer, 2004, pp. 377-383.

X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A timing
analyzer for embedded software,” Science of Computer Programming,
vol. 69, no. 1-3, pp. 56-67, 2007.

T. Honig, H. Janker, C. Eibel, O. Mihelic, and R. Kapitza, “Proac-
tive energy-aware programming with {PEEK},” in 201/ Conference
on Timely Results in Operating Systems ({ TRIOS} 14), 2014.

I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s
energy-optimization decision support framework,” in Proceedings of the
36th International Conference on Software Engineering, 2014, pp. 503~
514.

Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design € Test, vol. 33, no. 1, pp. 822, 2015.

K. Meng and B. Norris, “Mira: A framework for static performance
analysis,” in 2017 IEEFE International Conference on Cluster Comput-
ing (CLUSTER). 1EEE, 2017, pp. 103-113.

N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu, “Cross-
architecture performance prediction (xapp) using cpu code to predict
gpu performance,” in Proceedings of the 48th International Symposium
on Microarchitecture. ACM, 2015, pp. 725-737.

S. Wang, G. Zhong, and T. Mitra, “Cgpredict: Embedded gpu perfor-
mance estimation from single-threaded applications,” ACM Transac-
tions on Embedded Computing Systems (TECS), vol. 16, no. 5s, p. 146,
2017.

243

[80]

[81]

[82]

[84]

[35]

[36]

[87]

[38]

[39]

S. Lee, J. S. Meredith, and J. S. Vetter, “Compass: A framework for
automated performance modeling and prediction,” in Proceedings of
the 29th ACM on International Conference on Supercomputing, 2015,
pp- 405-414.

A. E. Helal, W.-c. Feng, C. Jung, and Y. Y. Hanafy, “Automatch: An
automated framework for relative performance estimation and work-
load distribution on heterogeneous hpc systems,” in 2017 IEEE Inter-
national Symposium on Workload Characterization (IISWC). 1EEE,
2017, pp. 32-42.

V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, “Pin: a binary
instrumentation tool for computer architecture research and educa-
tion,” in Proceedings of the 2004 workshop on Computer architecture
education: held in conjunction with the 31st International Symposium
on Computer Architecture, 2004, pp. 22—es.

A. Afram and F. Janabi-Sharifi, “Theory and applications of hvac con-
trol systems—a review of model predictive control (mpc),” Building and
Environment, vol. 72, pp. 343-355, 2014.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automat-
ica, vol. 36, no. 6, pp. 789-814, 2000.

L. Magni, G. De Nicolao, L. Magnani, and R. Scattolini, “A stabiliz-
ing model-based predictive control algorithm for nonlinear systems,”
Automatica, vol. 37, no. 9, pp. 1351-1362, 2001.

A. 1. Dounis and C. Caraiscos, “Advanced control systems engineering
for energy and comfort management in a building environment—a re-
view,” Renewable and Sustainable Energy Reviews, vol. 13, no. 6-7, pp.
1246-1261, 20009.

J. Singh, N. Singh, and J. Sharma, “Fuzzy modeling and control of
hvac systems—a review,” 2006.

F. Calvino, M. La Gennusa, G. Rizzo, and G. Scaccianoce, “The control
of indoor thermal comfort conditions: introducing a fuzzy adaptive
controller,” Energy and buildings, vol. 36, no. 2, pp. 97-102, 2004.

D. Kolokotsa, G. Stavrakakis, K. Kalaitzakis, and D. Agoris, “Ge-
netic algorithms optimized fuzzy controller for the indoor environmen-
tal management in buildings implemented using plc and local operating

244

[92]

[93]

[94]

[95]

[96]

[97]

[98]

networks,” Engineering Applications of Artificial Intelligence, vol. 15,
no. 5, pp. 417-428, 2002.

P. P. Angelov and R. A. Buswell, “Automatic generation of fuzzy rule-
based models from data by genetic algorithms,” Information Sciences,
vol. 150, no. 1-2, pp. 17-31, 2003.

A. E. Ben-Nakhi and M. A. Mahmoud, “Energy conservation in build-
ings through efficient a/c control using neural networks,” Applied En-
erqy, vol. 73, no. 1, pp. 5-23, 2002.

R. Kumar, R. Aggarwal, and J. Sharma, “Energy analysis of a build-
ing using artificial neural network: A review,” Energy and Buildings,
vol. 65, pp. 352-358, 2013.

E. Barrett and S. Linder, “Autonomous hvac control, a reinforcement
learning approach,” in Joint European conference on machine learning
and knowledge discovery in databases. Springer, 2015, pp. 3—19.

T. Wei, Y. Wang, and Q. Zhu, “Deep reinforcement learning for build-
ing hvac control,” in Proceedings of the 54th annual design automation
conference 2017, 2017, pp. 1-6.

K. Dalamagkidis, D. Kolokotsa, K. Kalaitzakis, and G. S. Stavrakakis,
“Reinforcement learning for energy conservation and comfort in build-
ings,” Building and environment, vol. 42, no. 7, pp. 2686—2698, 2007.

J. H. Yoon, R. Baldick, and A. Novoselac, “Dynamic demand response
controller based on real-time retail price for residential buildings,”
IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 121-129, 2014.

D. Menniti, F. Costanzo, N. Scordino, and N. Sorrentino, “Purchase-
bidding strategies of an energy coalition with demand-response capa-
bilities,” IEEE Transactions on Power Systems, vol. 24, no. 3, pp.
1241-1255, 20009.

D. P. Chassin, J. Stoustrup, P. Agathoklis, and N. Djilali, “A new
thermostat for real-time price demand response: Cost, comfort and
energy impacts of discrete-time control without deadband,” Applied
Energy, vol. 155, pp. 816-825, 2015.

S. Behboodi, D. P. Chassin, N. Djilali, and C. Crawford, “Transactive
control of fast-acting demand response based on thermostatic loads
in real-time retail electricity markets,” Applied Energy, vol. 210, pp.
1310-1320, 2018.

245

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized pro-
gram analysis tools with dynamic instrumentation,” Acm sigplan no-
tices, vol. 40, no. 6, pp. 190-200, 2005.

K. Hoste and L. Eeckhout, “Microarchitecture-independent workload
characterization,” IEEFE micro, vol. 27, no. 3, pp. 63-72, 2007.

A. L. Samuel, “Some studies in machine learning using the game of
checkers. ii—recent progress,” IBM Journal of research and develop-
ment, vol. 11, no. 6, pp. 601-617, 1967.

M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255-260, 2015.

G. Tesauro, “Td-gammon: A self-teaching backgammon program,” in
Applications of Neural Networks. Springer, 1995, pp. 267-285.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,” Na-
ture, vol. 518, no. 7540, p. 529, 2015.

M. Riedmiller, M. Montemerlo, and H. Dahlkamp, “Learning to drive a
real car in 20 minutes,” in Frontiers in the Convergence of Bioscience
and Information Technologies, 2007. FBIT 2007. 1EEE, 2007, pp.
645-650.

R.S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear
regression analysis. John Wiley & Sons, 2021.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Methodological), vol. 58,
no. 1, pp. 267288, 1996.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Transactions on signal processing, vol. 41, no. 12,
pp. 3397-3415, 1993.

246

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

S. Haykin, Neural networks and learning machines, 3/E. Pearson
Education India, 2009.

H. Akaike, “A new look at the statistical model identification,” IFEFE
transactions on automatic control, vol. 19, no. 6, pp. 716-723, 1974.

L. Myers and M. J. Sirois, “Spearman correlation coefficients, differ-
ences between,” Encyclopedia of statistical sciences, vol. 12, 2004.

R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Structural and multidisciplinary optimiza-
tion, vol. 26, no. 6, pp. 369-395, 2004.

——, “The weighted sum method for multi-objective optimization:
new insights,” Structural and multidisciplinary optimization, vol. 41,
no. 6, pp. 853-862, 2010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

I. J. Lustig, R. E. Marsten, and D. F. Shanno, “Interior point meth-
ods for linear programming: Computational state of the art,” ORSA
Journal on Computing, vol. 6, no. 1, pp. 1-14, 1994.

M. Kojima, S. Mizuno, and A. Yoshise, “A primal-dual interior point
algorithm for linear programming,” in Progress in mathematical pro-
gramming. Springer, 1989, pp. 29-47.

R. Storn, “On the usage of differential evolution for function optimiza-
tion,” in Proceedings of north american fuzzy information processing.
leee, 1996, pp. 519-523.

R. Storn and K. Price, “Differential evolution—a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341-359, 1997.

D. Datta and J. R. Figueira, “A real-integer—discrete-coded differential
evolution,” Applied Soft Computing, vol. 13, no. 9, pp. 3884-3893, 2013.

G. B. Dantzig, “Discrete-variable extremum problems,” Operations re-
search, vol. 5, no. 2, pp. 266-288, 1957.

D. Pisinger, “A minimal algorithm for the multiple-choice knapsack
problem,” European Journal of Operational Research, vol. 83, no. 2,
pp. 394-410, 1995.

247

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

K. Dudzinski and S. Walukiewicz, “Exact methods for the knapsack
problem and its generalizations,” European Journal of Operational Re-
search, vol. 28, no. 1, pp. 3—21, 1987.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in 2009 IEEFE international symposium on workload characteri-
zation (IISWC). leee, 2009, pp. 44-54.

L.-N. Pouchet et al., “Polybench: The polyhedral benchmark suite,”
URL: http://www. cs. ucla. edu/pouchet/software/polybench, 2012.

N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar,
“An early resource characterization of deep learning on wearables,
smartphones and internet-of-things devices,” in Proceedings of the 2015
international workshop on internet of things towards applications, 2015,

pp. 7-12.

X. Qi and C. Liu, “Enabling deep learning on iot edge: Approaches
and evaluation,” in 2018 IEEE/ACM Symposium on Edge Computing
(SEC). 1EEE, 2018, pp. 367-372.

D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J.
Huang, C. O. Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher, M. J.
Witte et al., “Energyplus: creating a new-generation building energy

simulation program,” Energy and buildings, vol. 33, no. 4, pp. 319-331,
2001.

M. Wetter, “Co-simulation of building energy and control systems with
the building controls virtual test bed,” Journal of Building Perfor-
mance Simulation, vol. 4, no. 3, pp. 185-203, 2011.

ASHRAE, “Thermal environmental conditions for humman occu-

pancy,” ANSI/ASHRAE Standard 55-2013, 2013.

R. De Dear and G. S. Brager, “Developing an adaptive model of ther-
mal comfort and preference,” 1998.

A. AC08024865, Ergonomics of the thermal environment-Analytical de-
termination and interpretation of thermal comfort using calculation of
the PMV and PPD indices and local thermal comfort criteria. 1SO,
2005.

248

[135]

[136]

[137]

138

[139]

[140]

[141]

[142]
[143]

[144]

[145]

G. Callou, P. Maciel, E. Tavares, E. Andrade, B. Nogueira, C. Araujo,
and P. Cunha, “Energy consumption and execution time estimation
of embedded system applications,” Microprocessors and Microsystems,
vol. 35, no. 4, pp. 426-440, 2011.

C. Marantos, N. Maidonis, and D. Soudris, “Designing application
analysis tools for cross-device energy consumption estimation,” in 2022
11th International Conference on Modern Circuits and Systems Tech-

nologies (MOCAST). 1EEE, 2022, pp. 1-4.

C. Marantos, K. Salapas, L. Papadopoulos, and D. Soudris, “A flexible
tool for estimating applications performance and energy consumption
through static analysis,” SN Computer Science, vol. 2, no. 1, pp. 1-11,
2021.

M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for re-
duced cpu energy,” in Mobile Computing. Springer, 1994, pp. 449-471.

F. Catthoor, S. Wuytack, G. de Greef, F. Banica, L. Nachtergaele, and
A. Vandecappelle, Custom memory management methodology: Fxplo-
ration of memory organisation for embedded multimedia system design.
Springer Science & Business Media, 2013.

D. A. Patterson and J. L. Hennessy, Computer organization and design
ARM edition: the hardware software interface. Morgan kaufmann,
2016.

A. S. Tanenbaum and A. S. Woodhull, “Operating systems, design and
implementation, 1997.”

J. Bloch, Effective java (the java series). Prentice Hall PTR, 2008.

G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems:
concepts and design. pearson education, 2005.

U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic transformations for
communication-minimized parallelization and locality optimization in
the polyhedral model,” in International Conference on Compiler Con-
struction. Springer, 2008, pp. 132-146.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 29th ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2008, pp. 101-113.

249

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

J. M. P. Cardoso, J. G. de Figueired Coutinho, and P. C. Diniz, Em-
bedded computing for high performance: Efficient mapping of computa-
tions using customization, code transformations and compilation. Mor-
gan Kaufmann, 2017.

J. Fowers, G. Brown, J. Wernsing, and G. Stitt, “A performance and
energy comparison of convolution on gpus, fpgas, and multicore pro-

cessors,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 9, no. 4, pp. 1-21, 2013.

C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-
end deep learning of optimization heuristics,” in 2017 26th Inter-

national Conference on Parallel Architectures and Compilation Tech-
niques (PACT). 1EEE, 2017, pp. 219-232.

Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiw:1408.5882, 2014.

N. Ardalani, U. Thakker, A. Albarghouthi, and K. Sankaralingam, “A
static analysis-based cross-architecture performance prediction using
machine learning,” arXiw preprint arXiw:1906.07840, 2019.

[. Baldini, S. J. Fink, and E. Altman, “Predicting gpu performance
from cpu runs using machine learning,” in 201/ IEEE 26th Interna-
tional Symposium on Computer Architecture and High Performance
Computing. 1EEE, 2014, pp. 254-261.

P. A. Lachenbruch and M. R. Mickey, “Estimation of error rates in
discriminant analysis,” Technometrics, vol. 10, no. 1, pp. 1-11, 1968.

C. Marantos, L. Papadopoulos, C. P. Lamprakos, K. Salapas, and
D. Soudris, “Bringing energy efficiency closer to application develop-
ers: An extensible software analysis framework,” IEFE Transactions
on Sustainable Computing, 2022, under minor revision.

O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738-4755, 2014.

F. Samie, V. Tsoutsouras, D. Masouros, L. Bauer, D. Soudris, and
J. Henkel, “Fast operation mode selection for highly efficient iot edge
devices,” IEEFE Transactions on Computer-Aided Design of Integrated
Chircuits and Systems, vol. 39, no. 3, pp. 572-584, 2019.

250

[156]

[157]

158

[159]

[160]

[161]

[162]

[163]

[164]

E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud

programming simplified: A berkeley view on serverless computing,”
arXiv preprint arXiw:1902.03383, 2019.

A. Hall and U. Ramachandran, “An execution model for serverless
functions at the edge,” in Proceedings of the International Conference
on Internet of Things Design and Implementation, 2019, pp. 225-236.

T. Pfandzelter and D. Bermbach, “tinyfaas: A lightweight faas plat-
form for edge environments,” in 2020 IEEFE International Conference
on Fog Computing (ICFC). 1EEE, 2020, pp. 17-24.

T. Achilleas et al., “Faas and curious: Performance implications of
serverless functions on edge computing platforms,” in International
Conference on High Performance Computing. Springer, 2021.

A. Tzenetopoulos, C. Marantos, G. Gavrielides, S. Xydis, and
D. Soudris, “Fade: Faas-inspired application decomposition and
energy-aware function placement on the edge,” in Proceedings of the
24th International Workshop on Software and Compilers for Embedded
Systems, 2021, pp. 7-10.

L. Papadopoulos, C. Marantos, G. Digkas, A. Ampatzoglou, A. Chatzi-
georgiou, and D. Soudris, “Interrelations between software quality met-
rics, performance and energy consumption in embedded applications,”
in Proceedings of the 21st International Workshop on software and com-
pilers for embedded systems, 2018, pp. 62—65.

C. P. Lamprakos, C. Marantos, L. Papadopoulos, and D. Soudris, “The
known unknowns: Discovering trade-offs between heterogeneous code

changes,” in International Conference on Embedded Computer Systems.
Springer, 2022, pp. 342-353.

C. P. Lamprakos, C. Marantos, M. Siavvas, L. Papadopoulos, A.-
A. Tsintzira, A. Ampatzoglou, A. Chatzigeorgiou, D. Kehagias, and
D. Soudris, “Translating quality-driven code change selection to an in-
stance of multiple-criteria decision making,” Information and Software
Technology, vol. 145, p. 106851, 2022.

M. Siavvas, C. Marantos, L. Papadopoulos, D. Kehagias, D. Soudris,
and D. Tzovaras, “On the relationship between software security and
energy consumption,” in 15th China-Furope International Symposium
on software engineering education, 2019.

251

[165]

[166]

[167]

168

[169]

[170]

[171]

[172]

[173]

[174]

[175]

T. J. McCabe, “A complexity measure,” IEEE Transactions on soft-
ware Engineering, no. 4, pp. 308-320, 1976.

B. Henderson-Sellers, Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., 1995.

G. K. Gill and C. F. Kemerer, “Cyclomatic complexity density and
software maintenance productivity,” IEEF transactions on software en-
gineering, vol. 17, no. 12, pp. 1284-1288, 1991.

X. Li, P.-C. Shih, J. Overbey, C. Seals, and A. Lim, “Comparing
programmer productivity in openacc and cuda: an empirical investi-

gation,” International Journal of Computer Science, Engineering and
Applications (IJCSEA), vol. 6, no. 5, pp. 1-15, 2016.

S. Memeti, L. Li, S. Pllana, J. Kotodziej, and C. Kessler, “Bench-
marking opencl, openacc, openmp, and cuda: programming produc-
tivity, performance, and energy consumption,” in Proceedings of the
2017 Workshop on Adaptive Resource Management and Scheduling for
Cloud Computing, 2017, pp. 1-6.

E. Shihab, Y. Kamei, B. Adams, and A. E. Hassan, “Is lines of code
a good measure of effort in effort-aware models?” Information and
Software Technology, vol. 55, no. 11, pp. 1981-1993, 2013.

M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series). FElsevier Science Inc., 1977.

C. Marantos, L. Papadopoulos, A.-A. Tsintzira, A. Ampatzoglou,
A. Chatzigeorgiou, and D. Soudris, “Decision support for gpu accelera-
tion by predicting energy savings and programming effort,” Sustainable
Computing: Informatics and Systems, vol. 34, p. 100631, 2022.

E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, M. Galster, and
P. Avgeriou, “A mapping study on design-time quality attributes and
metrics,” Journal of Systems and Software, vol. 127, pp. 52-77, 2017.

T. Amanatidis and A. Chatzigeorgiou, “Studying the evolution of php
web applications,” Information and Software Technology, vol. 72, pp.
48-67, 2016.

M. Riaz, E. Mendes, and E. Tempero, “A systematic review of soft-
ware maintainability prediction and metrics,” in 2009 3rd Interna-

tional Symposium on FEmpirical Software Engineering and Measure-
ment. IEEE, 2009, pp. 367-377.

252

[176]

[177]

[178]

[179)

[180]

181]

[182]

[183]

[184]

J. Legaux, F. Loulergue, and S. Jubertie, “Development effort and
performance trade-off in high-level parallel programming,” in 2014 In-

ternational Conference on High Performance Computing € Simulation
(HPCS). 1EEE, 2014, pp. 162-169.

C. Marantos, M. Siavvas, D. Tsoukalas, C. P. Lamprakos, L. Pa-
padopoulos, P. Boryszko, K. Filus, J. Domanska, A. Ampatzoglou,
A. Chatzigeorgiou et al., “Sdk4ed: One-click platform for energy-aware,
maintainable and dependable applications,” in 2022 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). 1EEE, 2022,
pp. 981-986.

M. Siavvas, D. Tsoukalas, C. Marantos, A.-A. Tsintzira, M. Jankovic,
D. Soudris, A. Chatzigeorgiou, and D. Kehagias, “The sdk4ed platform
for embedded software quality improvement-preliminary overview,” in

International Conference on Computational Science and Its Applica-
tions. Springer, 2020, pp. 1035-1050.

C. Marantos, A.-A. Tsintzira, L. Papadopoulos, A. Ampatzoglou,
A. Chatzigeorgiou, and D. Soudris, “Technical debt management and
energy consumption evaluation in implantable medical devices: The
sdk4ed approach,” in International Conference on Embedded Computer
Systems. Springer, 2020, pp. 348-358.

C. Strydis, R. M. Seepers, P. Peris-Lopez, D. Siskos, and I. Sourdis, “A
system architecture, processor, and communication protocol for secure

implants,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 10, no. 4, pp. 1-23, 2013.

“Wholesale electricity and natural gas market data,” November
2015. [Online]. Available: http://www.eia.gov /electricity /wholesale/
#history

U. S. Department of Energy, “Energyplus energy simulation software,”
http://appsl.eere.energy.gov/buildings/energyplus/, 2015.

C. Marantos, C. Lamprakos, K. Siozios, and D. Soudris, “Towards
plug&play smart thermostats for building’s heating/cooling control,”
in IoT for Smart Grids. Springer, 2019, pp. 183-207.

C. Sagerschnig, D. Gyalistras, A. Seerig, S. Privara, J. Cigler, and
Z. Vana, “Co-simulation for building controller development: The case
study of a modern office building,” in Proc. CISBAT, 2011, pp. 14-16.

253

[185]

[186]

[187]

[188]

[189)]

[190]

[191]

[192]

193]

[194]

G. Kontes, G. Giannakis, E. B. Kosmatopoulos, and D. Rovas,
“Adaptive-fine tuning of building energy management systems using
co-simulation,” in Control Applications (CCA), 2012 IEEE Interna-
tional Conference on. 1EEE, 2012, pp. 1664-1669.

P. Danassis, K. Siozios, C. Korkas, D. Soudris, and E. Kosmatopoulos,
“A low-complexity control mechanism targeting smart thermostats,”
Energy and Buildings, vol. 139, pp. 340-350, 2017.

C. Marantos, K. Siozios, and D. Soudris, “A flexible decision-making
mechanism targeting smart thermostats,” IEEE FEmbedded Systems
Letters, vol. 9, no. 4, pp. 105-108, 2017.

B. Urban and K. Roth, “A data-driven framework for comparing resi-
dential thermostat energy performance,” 2014.

Y. Ma, J. Matusko, and F. Borrelli, “Stochastic model predictive con-
trol for building hvac systems: Complexity and conservatism,” [FEE

Transactions on Control Systems Technology, vol. 23, no. 1, pp. 101—
116, 2014.

Z. Wu, Q.-S. Jia, and X. Guan, “Optimal control of multiroom hvac sys-
tem: An event-based approach,” IEEE Transactions on Control Sys-
tems Technology, vol. 24, no. 2, pp. 662-669, 2015.

S. A. Vaghefi, M. A. Jafari, J. Zhu, J. Brouwer, and Y. Lu, “A hybrid
physics-based and data driven approach to optimal control of building
cooling/heating systems,” IEEE Transactions on Automation Science
and Engineering, vol. 13, no. 2, pp. 600-610, 2014.

X. Zhang, W. Shi, X. Li, B. Yan, A. Malkawi, and N. Li, “Decentralized
temperature control via hvac systems in energy efficient buildings: An
approximate solution procedure,” in 2016 IEFEE Global Conference on
Signal and Information Processing (GlobalSIP). TEEE, 2016, pp. 936—
940.

J. Clarke, S. Conner, G. Fujii, V. Geros, G. Jéhannesson, C. Johnstone,
S. Karatasou, J. Kim, M. Santamouris, and P. Strachan, “The role of
simulation in support of internet-based energy services,” Energy and
Buildings, vol. 36, no. 8, pp. 837-846, 2004.

W.-M. Lu and J. C. Doyle, “/spl hscr//sub/spl infin//control of non-
linear systems: a convex characterization,” IEEE Transactions on Au-
tomatic Control, vol. 40, no. 9, pp. 1668-1675, 1995.

254

[195]

196]

[197]

[198]

[199]

200]

[201]

[202]

203]

[204]

205

T. Bagar and P. Bernhard, H-infinity optimal control and related min-
imax design problems: a dynamic game approach. Springer Science &
Business Media, 2008.

S. Research, “Global smart thermostats market 2015-2019,” pp.
1-66, Oct. 2015. [Online]. Available: http://www.sandlerresearch.org/
global-smart-thermostats-market-2015-2019.html/

W. Huang and H. Lam, “Using genetic algorithms to optimize con-
troller parameters for hvac systems,” Energy and Buildings, vol. 26,
no. 3, pp. 277-282, 1997.

Y. Yao, Z. Lian, Z. Hou, and X. Zhou, “Optimal operation of a large
cooling system based on an empirical model,” Applied Thermal Engi-
neering, vol. 24, no. 16, pp. 2303-2321, 2004.

J. Liang and R. Du, “Thermal comfort control based on neural net-
work for hvac application,” in Control Applications, 2005. CCA 2005.
Proceedings of 2005 IEEE Conference on. IEEE, 2005, pp. 819-824.

M. Harrold and D. Lush, “Automatic controls in building services,” in
IEE Proceedings B (Electric Power Applications), vol. 135, no. 3. IET,
1988, pp. 105-133.

G. Levermore, Building energy management systems: An application to
heating, natural ventilation, lighting and occupant satisfaction. Rout-
ledge, 2013.

R. Alcala, J. Casillas, O. Cordon, A. Gonzalez, and F. Herrera, “A
genetic rule weighting and selection process for fuzzy control of heating,
ventilating and air conditioning systems,” Engineering Applications of
Artificial Intelligence, vol. 18, no. 3, pp. 279-296, 2005.

R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A trust region method
based on interior point techniques for nonlinear programming,” Math-
ematical programming, vol. 89, no. 1, pp. 149-185, 2000.

D. Bollegala, “Dynamic feature scaling for online learning of binary
classifiers,” Knowledge-Based Systems, vol. 129, pp. 97-105, 2017.

T.-H. Teng, A.-H. Tan, and Y.-S. Tan, “Self-regulating action explo-
ration in reinforcement learning,” Procedia Computer Science, vol. 13,
pp. 18-30, 2012.

255

[206]

207]

208

209

[210]

[211]

[212]

[213]

214]

[215]

C. Gehring and D. Precup, “Smart exploration in reinforcement learn-
ing using absolute temporal difference errors,” in Proceedings of the
2018 international conference on Autonomous agents and multi-agent
systems. International Foundation for Autonomous Agents and Mul-
tiagent Systems, 2013, pp. 1037-1044.

C. Marantos, C. P. Lamprakos, V. Tsoutsouras, K. Siozios, and
D. Soudris, “Towards plug&play smart thermostats inspired by rein-
forcement learning,” in Proceedings of the Workshop on INTelligent
Embedded Systems Architectures and Applications, 2018, pp. 39-44.

M. Riedmiller, “Neural fitted q iteration—first experiences with a data
efficient neural reinforcement learning method,” in Furopean Confer-
ence on Machine Learning. Springer, 2005, pp. 317-328.

D. Watari, I. Taniguchi, F. Catthoor, C. Marantos, K. Siozios, E. Shi-
razi, D. Soudris, and T. Onoye, “Thermal comfort aware online energy
management framework for a smart residential building,” in 2021 De-
sign, Automation & Test in Furope Conference € Ezhibition (DATE).
[EEE, 2021, pp. 535-538.

N. Fumo and M. R. Biswas, “Regression analysis for prediction of res-
idential energy consumption,” Renewable and sustainable energy re-
views, vol. 47, pp. 332-343, 2015.

T. W. Anderson, An Introduction to Multivariate Statistical Analysis.
Wiley-Interscience; 3 edition, July 2003.

R. D. Cook and S. Weisberg, Residuals and influence in regression.
New York: Chapman and Hall, 1982.

C. Marantos, K. Siozios, and D. Soudris, “Rapid prototyping of low-
complexity orchestrator targeting cyberphysical systems: The smart-
thermostat usecase,” IFEE Transactions on Control Systems Technol-
ogy, vol. 28, no. 5, pp. 1831-1845, 2019.

C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, M. F. O’Boyle,
and H. Leather, “Programl: A graph-based program representation
for data flow analysis and compiler optimizations,” in International
Conference on Machine Learning. PMLR, 2021, pp. 2244-2253.

G. Fihr, S. H. Hamurcu, D. Pala, T. Grass, R. Leupers, G. Ascheid,
and J. F. Eusse, “Automatic energy-minimized hw/sw partitioning for

256

[216]

217]

fpga-accelerated mpsocs,” IEEE Embedded Systems Letters, vol. 11,
no. 3, pp. 93-96, 2019.

K. Siozios and S. Siskos, “A low-complexity framework for distributed
energy market targeting smart-grid,” in 2019 Design, Automation &
Test in Europe Conference € Exhibition (DATE). 1EEE, 2019, pp.
878-883.

C. D. Korkas, M. Terzopoulos, C. Tsaknakis, and E. B. Kosmatopoulos,
“Nearly optimal demand side management for energy, thermal, ev and
storage loads: An approximate dynamic programming approach for
smarter buildings,” Energy and Buildings, vol. 255, p. 111676, 2022.

257

