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Abstract

Activity recognition from optical cues is an arduous task that has recently received a lot of
attention in the research community, due to the performance of deep learning architectures
in the analysis of such kinds of data. However, these analyses have to take into account both
the types of input data as well as statistical particularities and a priori knowledge over the
types of activities captured. This dissertation focuses on the development of deep machine
learning methods to classify actions recorded in datasets consisting of capturings inside and
outside the visible spectrum. Two main application scenarios are studied.

The first application scenario includes recordings of traditional dance
choreographies, where the dataset consists of a predefined set of actions (motion primitives),
i.e. the steps that compose the specific dance choreography. The problem then takes the form
a mutli-class classification task. Two deep learning classifiers are presented. For the data
outside the visual spectrum, in this case recordings of infrared depth sensors, an optimised
Long Short Term Memory (LSTM) neural network is presented. This classifier manages to
capture both short-term dependencies, by using a short memory window before its input
layer, as well as take into account non-causality during classification, by using the
bidirectional variant of LSTM networks. For the data inside the visible spectrum, a hybrid
architecture is presented. This architecture puts into use the feature extraction capabilities of
Convolutional Neural Networks (CNN), as well as the ability of LSTM networks to map
temporal correlations. Autoregressive and Moving Average capabilities are added to the
architecture, while an adaptive weight control scheme is also employed. Finally, for the first
application scenario, a tensor based classifier is presented that manages to classify
choreographic motion primitives with similar performance, while requiring significantly less
trainable parameters, allowing for increased performance even when a small set of training
data is available.

The second application scenario focuses on datasets where there is no a priori
knowledge of the actions captured. Instead we study ways to “map” the normal state, and

employ techniques for binary classification of the normal and the abnormal state. Initially, a



supervised approach is presented, employing an adaptive NARMA filter, based on a CNN
architecture. Data fusion from other sensors is also used to inform the classification step and
increase performance. Additionally, unsupervised techniques, based on convolutional
autoencoders are employed. Finally, a stack autoencoder method is presented where the
feature extraction of convolutional spatiotemporal autoencoders is used in combination with
a tensor-based autoencoder to model the normal state in datasets with large numbers of

actions, and then perform outlier detection.

Keywords

Deep learning, computer vision, analysis of visual cues, supervised and unsupervised

learning, adaptive neural network architectures, data fusion, tensor-based learning



[IepiAnyn

H avayvopion dpaoctnpidmrag and omntikég evoeilelg sivor pia emimovn gpyacio mwov
TPOcPOTO £xel AAPEL HEYAAN TPOGOYN OTNV EPELVNTIKY] KOWOTNTA, AOY® TNG 0mdd00mNg
APYLITEKTOVIKOV Pabidg pnyavikng pddnong oty avaivon Tétoumv €00V 0edopEvav.
Q061660, AVTEG 01 OVOAVGELS TPETEL VO AopBEvouY VTTOYT TOGO TOVS THTOVS TV OEOOUEVAOV
€16000V 000 KOl TIC OTATIOTIKEG WOLTEPOTNTEG KOL TNV EK TOV TPOTEPWOV YVAGT CYETIKA LLE
TOVG TOTMOVG TV OPOCTNPLOTHTOV TOL KoTaypdgovtal. Avth 1 dwTpiPny eotidlel oy
avdmtuoén peboddwv Pabidg pnyavikng pddnong yw v Ta&vOUNcT EVEPYELDV TOV
KOTOYPAPOVTOL GE GUVOAN OESOUEVMV TTOV OMOTEAOVVTOL OO KOTAYPOUPES EVTOG KO EKTOG
TOV 0paToV PACUATOG. MehetdvTot S0 PaciKd GEVAPLL EPOPLOYNC.

To m@pdtO0 OEVAPLO €QUPUOYNG TEPIAAUPAVEL  KATOYPOPES TAPUIOCIOKDV
YOPOYPOPLOV, OOV TO GUVOAO OESOUEVOV amoTeAEiTOL OO €va TPOKAOBOPIGUEVO GUVOAO
evepyel®v (motion primitives), dnAadr| ta PNUATO TOV GLVOETOLV TN GLYKEKPIUEVN
yopoypooia. To mpodPANUa otn cvvéyeln maipvel ™ popen oG epyaciog tagvounong
noAlamAGV kKAdcewv. [Tapovoidlovral 600 Ta&vountég Pabdidg pabnong. o ta dedopéva
EKTOC OTTIKOD PACLATOG, GE QLTI TNV TEPINTOGCT EYYPUPES Aot PV fABovg vITepHBpwV,
napovotaletar éva  PeAtiotomomuévo vevpovikd odiktvo MoakporpdBecung Mviung
(LSTM). Avtdg o ta&tvoun g katapépvel vo GVAAGPEL Kot Tig Bpayvmpofeceg eEapTnoEl,
YPNOLOTOIDVTAG VA TAPABVPO GOVIOUNG LVAUNG TTPLV A0 TO EMMEDO E1GOO0V TOV, KOOMG
Kot va AABEL vITOWYT TN 1N ouTOTHTO KATA TNV TAEIVOUN G|, PO LOTOLDOVTOS TNV OUEIdpOUN
naporiayn tov dwktoov LSTM. Ta 1o dedopéva €vidc 1oL 0paTtod  (QACUOTOG,
TapovotaleTal pio LPPOIKN OPYLITEKTOVIKY. ALTH 1 OPYITEKTOVIKY YPNOLLOTOLEL TIg
duvatodTTEG EEUYMYNG YOPOUKTNPIOTIKAOV TOV ZVVEAMKTIKOV Nevpwvikdv Atktowv (CNN),
KaBdg Kot TV wovotnTo Tov diktvwv LSTM va xaptoypa@oldv ¥poviké CUGYETIGELC.
Avvatotteg Autoregressive kot Moving Average Tpootifeviol 6Ty apyITeEKTOVIKY, EVA
YPNOOTOIEITOL EMIONG £VO TPOCAPHOCTIKO GVGTNHO EAEYXOV T®V PAPOV TOV VELPMVIKOD.
Téhog, Y10t TO TPAOTO GEVAPLO EPAPLOYNG, TOPOVCIALETOL EVOG TaSvouNTHG POCIGUEVOS GE

TOVUGTN TTOL KATAPEPVEL VOL TOEIVOUNGEL YOPOYPUPIKES KIVIGELG IE TopOUOLe 0mdS00T), EVAD



ATOLTEL ONUOVTIKA AYOTEPEG EKTOOEVGIUES TOPAUETPOVS, EMLTPETOVTAG AVENUEVT 0mdOOoT
axoun kot 6tav givar S1Bécipo Eva Pkpod cHVOLO dedOUEVOV EKTOIOEVOTG.

To debtepo Geviplo epapproyng eoTlalel 6 GHVOLA OESOUEVMV OTTOV dEV VILAPYEL EK
TOV TPOTEP®V YVMGTN TOV EVEPYELDV OV KATAYPAQOvTal. AvTifeta, HEAETNOOUE TPOTOVG
YO VO «XOPTOYPOPTIGOVLEN TNV KOVOVIKY KOTAGTOOT] KOl YPTOLLOTOW|COUE TEXVIKES Y10,
dVadIKN TaEVOUNoN TNG KOVOVIKNG KOl TNG AVAOUOANG KATAGTAONS. ApyKd, Topovctaletal
L0 ETOTTEVOUEVT] TTPOCEYYION, TOL YpNoIponotel Eva mpocappootikd @idtpo NARMA,
Bacwopévo oe apyttektovikn CNN. H oOvinén odedopévov omd GAlovg oucOntipeg
YPNOOTOIEITOL €MiONG Yo VO EVNUEP®GEL TO Prpa ta&vopnong Kot va avénoest v
arodoon. EmmAéov, ypnoyomotovvion texvikég ywpic emifieym, mov Pacilovror og
OLVEMKTIKOUG  ovTtokmokomomtés. Téhog, mapovoidletor por péBOd0S  avTOHOTOV
Kodkomomtn otoifog 6Tov 1 &aymyn YOPUKTNPIOTIKOV TMV GUVEAKTIKOV XWPOYPOVIKDOV
QVTOKOIKOTOMNTAV YPNOUYLOTOIEITAL GE GLVOLOCUO HE EVOV AVTOUOTO KMOKOTOWTH TOV
Baciletal o€ TAVLOTIKN LAONON Y10 VO, LOVTEAOTOWGEL TNV KOVOVIKN KOTAGTAOT) GE GOVOAL
OEQOUEVMV e LEYAAO PO EVEPYELDY KOL GTN] GUVEXELN VO EKTEAEGEL OVIYVEVOT] OKPOL®OV

TILDV.

AéEeic Kherond:

Babid punyavikn pdonon, 6pacr vroroyioT®v, avaAvon onTIK®V ded0UEVOVY, ETPAETOUEVN
Kot pn emPAendpevn paONoM, TPOCAPUOCTIKEG OOUEC VELPOVIKMV OIKTO®V, GUUUEEN

JEQOUEVMV, TOVVOTIKY LA on
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1. Introduction

Action recognition on optical data is considered an arduous task that requires the analysis of
high dimensional input signals both in the temporal and spatial field. It includes the analysis
of movements identified over sets of sensors and it typically relies on numerous methods
spanning from digital signal processing to the extraction of salient characteristics from the
raw data in order to feed a machine learning model. Nowadays, deep learning methods have
become the gold standard in such analyses, since architectures such as Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN) have established state of the art
performances in the extraction of characteristics from raw data that drive classification or
regression tasks.

The rapidly increasing computational power of the past decades has allowed the
development of complex models that are able to explain complicated physical mechanisms.
Moreover, innovations in data capturing, storage and retrieval technologies, e.g. novel sensor
networks, big data database architectures, has created a plethora of data sources that can be
used for the training of deep learning models, and transform monitoring and control tasks
over large and complicated infrastructures. Consequently, modern activity recognition
problems are characterized by complexity. Also, since real-world systems often evolve under
transient conditions, the signals received tend to exhibit various forms of non-stationarity.
As for mathematical models, they can be categorized in many different ways. They can be
linear or non-linear, static or dynamic, continuous or discrete over time, deterministic or
contemplative. The model chosen for the description of a system depends on the system
under study, on whether the operation of the system is known or not, as well as on the
purpose of implementing the model. This dissertation proposes techniques for identifying
activities based on deep machine learning, comparing them under specific application
scenarios. More specifically, algorithms were developed for two main sub-cases of the
activity recognition problem.

The first case concerns the study of visual data sets, in which there is prior knowledge

of the actions that were recorded. In this case, an application scenario was chosen which
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concerns the analysis of recordings of Greek traditional dances with the aim of creating
models for the automatic annotation of the primitive steps contained in the performance. The
problem in this case takes the form of a multidisciplinary classification problem, for the
solution of which supervised machine learning techniques were used.

The second case concerns the study of data sets, for which there is no prior
knowledge about the actions they contain. In this case the problem turns into a problem of
outlier detection. The use of supervised machine learning using test datasets and the attempt
to generalize these models to real-world conditions were studied. Furthermore, the use of
non-supervised machine learning models for the analysis of benchmarking datasets was
studied.

In both sub-cases, sets of visual data both inside and outside the visible spectrum
were analyzed, as well as tensor-based learning techniques for limiting training parameters
in order to maximize the performance of the models under development. The rest of this
dissertation is structured in the following way:

Chapter 2 provides the theoretical background for the development of models of deep
machine learning. First, the relevant literature is presented. Specifically, after extensive
research, the most important literature references related to the methods for modeling both
the first and the second subproblem are described.

Chapter 3 presents the proposed supervised machine learning method for the
annotation of motion primitives in choreography analysis, in data sets outside the visible
spectrum. Specifically, the problem analyzes recordings similar to the previous chapter, but
using recording sensors in the infrared spectrum. The use of these sensors enables the rapid
extraction of the skeletal structure of the person being recorded, and the transformation of
the problem into a multidimensional time series analysis problem. Use of Long Short-Term
Memory Networks (LSTM) networks is recommended. LSTM networks are considered
suitable for time series data modeling as they are "memory" networks and past inputs affect
future forecasts. The proposed model is based on bidirectional LSTM networks, introducing
the property of non-causality and thus achieving greater accuracy in the model.

Chapter 4 presents the proposed supervised machine learning method for the

annotation of motion primitives in choreography analysis, in data sets within the visible
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spectrum. The method is based on the development of a deep learning machine model that
extends the well-known Convolutional Neural Networks (CNN) to simulate the behavior of
a NARMA (Non-Linear Autoregressive Moving Average) model.

In Chapter 5 the analysis focused on the use of tensor-based learning to limit training
parameters. Specifically, a new deep neural network is introduced based on a tensor network
model capable of automatically processing and correlating spatio-temporal information from
different sources and discovering appropriate patterns for assigning inputs to the desired
outputs. This is a general space-time learning machine, which can be useful for a variety of
time series analysis applications, such as human behavior recognition, moving object
analysis, radar signals, audio processing, etc. Here the research focused on the classification
of human posture using three-dimensional skeletal information in a manner similar to that
of chapter 3.

Chapter 6 presents the use of supervised machine learning techniques in data sets in
which there is no prior information about the activities recorded. Experimental models with
representative activities were created and an algorithm based on convolutional deep neural
networks that can analyze inputs both inside and outside the visible spectrum was developed.

Chapter 7 presents an unsupervised learning method for analyzing sets inside and
outside the optical spectrum. Specifically, a convolutional spatiotemporal autoencoder was
developed which has the ability to model activities that describe the "normal" state. The
recognition of statistical endpoints is achieved by analyzing the decoder reconstruction error.

Chapter 8 extends the use of autoencoders to the analysis of data sets containing a
large number of concurrent activities. The use of tensor-based learning and in particular an
automatic tensor autoencoder is done in combination with convolutional autoencoders with
the aim of developing a model that can represent the normal state even when it contains
complex movements and a large number of people.

Finally, Chapter 9 presents the summary and contribution of the doctoral dissertation

as well as the conclusions that emerged, framed by ideas for future research in the field.
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2. Previous Works

2.1. Supervised learning in motion primitive recognition

The approaches regarding the decoding of the human kinesiology are distinguished into: 1)
supervised and 1ii) unsupervised categories and mainly take as input RGB images and
depth/skeletal data. The decoding and explanation of the human activity by observing only
individual representative postures and their temporal variations in a sequence of video
frames has been a challenge in the field of Computer Vision and ICH. In the literature, many
applications are proposed regarding the human activity indexing [1], pose identification [2],

action prediction [3], emotion recognition [4] and background subtraction [5].

In [6], an unsupervised approach for understanding activity by means of its most grained
temporal constituents is proposed. In [7], a spatio-temporal decomposition of kinesiology
sequences based on a hierarchically modification of the SMRS algorithm is introduced. In
[8], an approach to model videos using dense sampling with feature tracking is introduced.
Moreover, descriptors combine motion information and trajectory shape for action
localization and video retrieval purposes. In [9], features from shapes and optical flow are
combined for classification purposes. Hidden Markov Model (HMM) is adopted using multi-

frame averaging method for background extraction.

Deep learning methods have been shown to outperform previous state-of-the-art machine
learning techniques in several fields, with computer vision being one of the most prominent
cases [10]. In [11], a CNN-based feature extraction approach that extracts the local
dependency and scale invariant characteristics is proposed. In [12], the problem of human
activity recognition by combining multiple vision cues of RGB-D sensor is proposed. In
[13], a deep video classification model with competitive performance is introduced.
Specifically, this model embeds separate spatial and temporal recognition streams based on
ConvNets. In [14], a novel three-stream CNN embedding deep learnt single frame, optical
flow and maximizing significant difference and independence (MSDI) features is

introduced. The architecture is implemented in the spatial and temporal domain. In [15], a
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method for human action recognition from depth data and skeletal data using deep CNNss is
proposed. This architecture used two action representations and three CNNs channels in
order to maximize the feature extraction procedure. In [16], a fully automated behaviour
understanding through visual cues in industrial environments is proposed constructing
features from spatial and temporal dimensions. In [17], the authors propose a flexible Deep
CNN framework, a Deep Event Network (DevNet), that detects high-levels events and
localizes spatial-temporal evidences. This framework takes into consideration keyframes of

videos as input data detecting the event of interest by aggregating the CNN features.

Background subtraction (BS) is a challenging task in Computer Vision field especially in
real-time application scenarios. BS methods are distinguished into the following categories:
1) Foreground detection (FS) and ii) Background detection (BS). During the first category, a
comparison process between the current frame and the background model is carried out. In
the second category, the obtained images are analysed, updating the background model
learned at the initialization step. In general, the BS field comprises the basic, statistical, fuzzy
and neural techniques. The BS algorithms are used to detecting moving objects in video
sequences from the difference between the current frame and a reference frame. In [18], the
authors present a real-time maritime surveillance system based in VAM, background
subtraction and an adaptive NN tracker. In [19], a novel background subtraction from video
sequences algorithm using deep Convolutional Neural Network is introduced. The proposed
approach consists of three processing steps, background model generation, CNN for feature
extraction and post-processing. In [20], the authors introduce a region-based Mixture of
Gaussians (MoQ) for background subtraction in order to handle the sensitivity to dynamic
background. In [21], the authors introduce a novel deep background subtraction method by
proposing a guided learning methodology that learns a predefined CNN model for each video

without pre-labelling process.

21



2.2. Supervised learning in the identification of outlier actions

Detection of physical intrusion and direct attacks on main infrastructure calls for
automatic supervision and immediate identification of suspicious behavior, which can be
effected by computer vision tools. These tools aim at exploiting smart video surveillance to
detect humans, operating in limited visual conditions, performing just-in-time computation
to suggest preventive actions. Computer vision tools that operate outside of the visible
spectrum (i.e. thermal sensors) are also gaining traction in this context, because they are not
significantly affected by illumination changes [26]. However, such approaches do not
capture texture or color information. Vision techniques focus on background and target
modelling [27], object tracking [28], target detection [24], activity recognition [29], crowd
dynamics and identification of unusual and suspicious behavior [30]. These approaches aim
at detecting abnormalities in crowded environments by analyzing actions both on the spatial
and temporal scales. Detailed surveys about video-based abnormal activity recognition have

been published [31], [32].

2.2.1. Localization using channel state information from WiFi

Several studies have been carried out which leverage the properties of radiofrequency
devices to detect a person. Focusing on the device-free solutions, there are techniques based
on SDR (Software Defined Radio) devices and custom antenna-arrays, like RF-Capture. One
approach is to analyze the Received Signal Strength (RSS) of a wireless signal since the
latter undergoes measurable distortions upon the presence of humans or due to human
movement [33]. However, RSS is not sufficiently accurate and consistent due to the high
variability of these signals [34]. In 2011, a tool based on a COTS WiFi network card has
been released [35] which uses an Intel FW modification that allows the upper layers of the
protocol to acquire this CSI information used in WiFi devices. Recent studies [25] have
shown that analysing the correlation changes over different subcarriers provides a robust and
accurate method for detecting human presence with a 99% success rate, even in the case of

TTWD (Through the Wall Detection).
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2.2.2. Cyber security of sensors, PLC and SCADA

The first works to address the problem of cyber-security in complex infrastructures
[36] involved a bank of delay-differential observer systems based on an analytically
approximate model of canal hydrodynamics. The method was tested on a class of adversarial
scenarios of a generalized fault/attack model. In [22] a modelling framework was developed
to characterize the effect of cyber-physical attacks on the hydraulic behavior of water
distribution systems. The model identifies the components of the cyber infrastructure (e.g.,
sensors or PLCs) potentially vulnerable to attacks, determining the exact specifications of
an attack (e.g., timing, duration) and simulating it with water system simulation model
EPANET. The conclusions is that the same hydraulic response can be obtained through
different attack scenarios.

Further, the "BATtle of the Attack Detection Algorithms (BATADAL)" conducted
at the EWRI-ASCE conference (https://batadal.net/), extended this work through an
algorithm competition for detecting cyber-attacks on a test case study about a water
distribution system operated through PLCs and a SCADA. Related results are summarized
in [37], while the most successful method of the competition was based on understanding of
the physical behavior of the water distribution system operation, combined with an anomaly
detection technique [23]. Finally, in [38] an augmented graph assembly is employed between
sensors to actuators, which is then tested to sustain malicious attacks to water distribution

systems prior to failure.

2.2.3. Fusion across multiple data modalities

As for works involving fusion of multiple data modalities, the majority of existing
methods pertains to combined use of RGB and thermal (or hyperspectral) sensors for
computer vision. Fusion of thermal and RGB sensors, e.g., has been used to create
semantically enriched visual information structures [39]. This is also the case in [40] where
discrete wavelet transform (DWT) is used, combined with a SVM for feature classification.
In the field of person detection using WiFi reflection, fusion with visual and other (e.g.
inertia) sensors has been used to a limited extent, to increase the accuracy of location
estimation and eliminate problems arising from signal oscillation and other interfering issues

[41]. An example of visual and sensor data fusion is [42], where RGB data are fused with
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laser sensor and GPS data. However, to our knowledge, there are no previous works in the
literature considering the fusion of visual and WiFi reflection data, with ICS sensing data in

the context of water infrastructure monitoring.

2.3. Unsupervised learning in the identification of outlier
actions

Abnormal event detection in video surveillance, a process to detect specific frames
containing an anomaly, has been drawn a great attention in image processing research mainly
due to its advantages in many applications [43] - [46]. Examples include surveillance in
industrial environments [44] or critical infrastructures [45] for safety/security and quality
assurance, traffic flow management [46] and intelligent monitoring of public places [47].

Some works address abnormal event detection as a multi-class classification problem
under a supervised paradigm ([44],[45]). The main, however, limitation of such approaches
is that abnormal events sporadically occur in real-world videos. Additionally, what is an
abnormal event is vague and tough to model. This means that the distribution of normal
versus abnormal events is severely imbalanced which result in low classification
performance. One solution to address this issue is to use semi-supervised learning [48],[49].
However, again the problem of data imbalance among normal and abnormal cases cannot
be handled. For this reason, the abnormal event detection problem is modeled as outlier
detector. In particular, the model learns the normality from data samples and then it identifies
the abnormal events as the ones which deviate from the normal learnt cases [50] - [52].

In this context, unsupervised learning has been applied to handle abnormal event
detection [53]-[55]. The methods partition the normal space into coherent clusters in contrast
to the outlier-detector models that they use a common global model for the whole normal
space. Then, the abnormality is detected as those events which cannot be represented by the
normal space. Usually, k-means clustering algorithm is utilized (as in [53])combined with
SVM learning. We concentrate on works handling abnormal event detection either as an
outlier detection or using deep/ unsupervised learning schemes. Regarding outlier detection,
the works of [50], [52], [S6]learn dictionary of sub-events, through a training process, and

then those events that do not lie in the partitioned sub-space are marked as abnormal ones.
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Regarding deep learning, the work of [55] employs convolutional auto-encoders
(ConvAE) to learn temporal regularity in videos, while auto-encoders are exploited in [57]
to learn feature and reconstruct the input images. Then, one-class Support Vector Machines
(SVMs) are used for detecting the abnormal events. The work of [58] introduces a hybrid
scheme which aggregates ConvAE with Long Short-Term Memory (LSTM) encoder-
decoder. Recently, deep generative models have been applied [59]-[62] , modelling, first,
the normal space and then, the abnormal is given the difference from the normal one.

Unsupervised learning models are utilized for abnormal event detection. In [63], the
anomalies in videos are scored independently of temporal ordering and without any training
by simply discriminating between abnormal frames and the normal ones. Other approaches
employ tracking algorithms to extract salient motion information which is then classified
either as normal or abnormal [64], [65]. However, tracking fails in complex visual scenes of

multiple humans’ presence.

2.4, Contribution

This dissertation presents techniques developed for the extraction of semantic
information in from data capturings inside and outside the visible spectrum. The techniques
presented can be broken down in two different categories. A summary of the techniques

presented based on the application scenario can be viewed in the figure below.
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Figure 1. Summary of implemented methods presented in this dissertation

The first category, where there is previous knowledge about the actions captured,
includes the development of a Bayesian optimized bi-directional LSTM network [66], of a
unimodal hybrid LSTM-CNN architecture with autoregressive and moving average behavior
[67] and of a tensor based neural network [68] that can perform similar classification tasks
with [66] but with the use of fewer trainable parameters. The second category, where there
is no information about the actions captured, presents initially a multimodal CNN
architecture extended to showcase autoregressive and moving average behavior, which also
includes a novel weight adaptation mechanism to incorporate user feedback [69]. Finally,
two unsupervised techniques are presented, based on implementations of deep neural
autoencoders. Initially, a set of convolutional autoencoders trained on multiple image
properties is used in fall detection scenarios [70]. This implementation is extended to include

a tensor-based autoencoder, following a stack autoencoder architecture.
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3. Identification of motion primitives:
data outside the visible spectrum

A special field of computer vision is that of digitization of Cultural Heritage Assets,
especially in the field of Intangible Cultural Heritage, such as traditional dance
choreographies or other performing arts. This creates a ripe application scenario for
developing modelling algorithms based on visual cues that are able to identify the motion
primitives that comprise a dance choreography. The algorithms developed should be based
on capturings of the performance of a choreography, and also take into account previous
folklore studies, that identify specific steps that differentiate this dance from others. This
provides us with a priori knowledge on the analysis of the performance, as we know the
chain of motion primitives, as well as the ratio of each primitive in the entire performance.
This knowledge can be used in the development of a deep learning architecture that allows
the automatic classification of dance steps in a capturing of a specific traditional dance.

In this section the infrared mode of a Kinect-II sensor is used as a capturing interface, which

translates depth data to M 3D skeleton joints. Vector ]_,f) = (xf,yg,z8)is the xyz
coordinates of the k-th joint. Superscript G indicates the origin of a global coordination

system (coincides with the Kinect location). The main limitation of directly processing joints
J¢ is that the choreographic attributes of a dancer are lost, since j¢ also includes global
motion trajectory attributes. For this reason, we transform j¢ into a local coordination

system, the center of which coincides with the center of mass of the dancer. jr = J¢ — Com
Variable ccnis the center of mass of the dancer.

The kinematics of the dancer is modelled using principles of rigid body dynamics [71]. In
particular, for every dancer’s joint]_,f, the velocity and the acceleration vector are estimated
dJi

as the first and the second derivative of the kth joint position, that is u; (t) = de and

— d_)
145 (t) = uk/dt-
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In this way, the xyz coordinates of the velocity and the acceleration are derived as U (t) =
(u,’\f, u,{,u,ﬁ), and Y, (t) = (y,f,y,?’ JVE ),. It is clear that acceleration actually models the
force Fi(t) acting on the k-th joint, assuming that mass equals one (m = 1). Therefore, a state

vector is derived including all the kinematics properties of a dancer’s joint.

JE Xk Ve zk
S@=\me|=v w w (1)
Ve () Vi Vi Yk

In order to include the contribution of all M joints, a 3-M x3 state matrix is constructed.

S) = (5:1(6),S:(t), ... ,Sz(E))"  (2)

3.1. Problem Formulation and Notation

The purpose of the pose choreographic identification is to categorize a dance frame ¢ into a
set of L available choreographic primitives. Let us denote as pi(t) the probability that ¢ frame

is assigned to the i-th choreographic class. Then, frame t is categorized to the ¢"(t) class

¢(t) = argmaxe;, 1pi(t) (3)

Let p(t) = [p,(t), po(t), ..., p.(t)] a vector including all probabilities p;(t). Usually,
p;(t) is a non-linear relationship of the 3D kimenatics features. Pose identification depends
not only on the current dancer’s movement, but also on previous and future choreographic
primitives. For example, for a particular choreography, a left cross leg is a result of several
previous dancer’s movements and also implies that, in the future, other pre-determined steps
will be followed.
p(t) = g(x(),X(t—1),..,X(t—p),X(t+1),..,X(t+p) (4)

In Eq. (4) function g(+) refers to a non-linear vectored value function. Eq. (4) implies that
2-p+1 image frames affect the pose identification at frame t.

The main difficulty in implementing Eq. (4) is that function g(-) is actually unknown.

However, it has been proven that a feedforward neural network with a Tapped Delay Line
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(TDL) filter can approximate the g(-) [72] with any degree of accuracy. In this way, the

probabilities pi(t) is a relationship of L latent (hidden) state units u;.

p(t) = u'(0)-u

ur'(t) = (5)

uL(t)

ul(t)] [tanh(wl - X(t)
tanh(w, - (t)

In Eq. (5), vector X(t) refers to the input data, generated after a vectorization of the matrices
S(t + k), with k = —p,--- ,p. Moreover, function tanh(-) refers to the hyperbolic tangent
function, which is used as an activation function of each hidden neuron unit. Vectors % and
w, are appropriately estimated by a learning algorithm, usually based on a steepest descent.
To better model the non-causal relationships of a choreography, we allow the hidden states
units u;to be related with its previous and future state values.
u,(t) = tanh(w;, - 2(t) + #L,m(t — 1) + 7,7t + 1) (6)

Eq. (6) implies a recurrent mechanism within the network states, resulting in a so-called

bi-directional recurrent neural network architecture [73]. Figure 2 depicts this architecture

used for choreographic pose identification.

3.2. Bi-directional Long-Range Dependence

The main limitation of the aforementioned model is that it is not able to approximate long-
range dependencies. However, a dance choreography is composed of repeated patterns,

spanned over long time periods. Thus, a bi-directional Long
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Figure 2.The architecture of a bi-directional feedforward neural network with time delay line filter able to
model non-causal relationships among the choreographic pose primitives
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Bidirectional LSTM unfolded in time

Short Term Memory (LSTM) network is adopted. LSTMs are of similar structure to the bi-

directional recurrent regression models but each node in the hidden layer is replaced by a

memory cell, instead of a single neuron [74].

The basic unit of an LSTM is the memory cell. It consists of four components as shown

in Figure 3. The i) the forget node, ii) the input gate, iii) the internal state, and vi) the

output gate. Each component non-linearly relates the inner product of the input vectors with

appropriate weights, estimated via a training phase. The non-linear activation function

adopted for the components is i) the sigmoid denoted as o and the tanh. The forget gate
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throws out (forgets) information from the memory cell to model long-range dependence. The
input node is the same as a hidden neuron, measuring the contribution of a hidden state to
the final classification outcome. The internal gate decides if the respective hidden gate is
’significant enough” for dance pose identification. Finally, the output gate regulates
whether the response of the current memory cell is significant enough to contribute to the

next cell.

3.3. Bayesian Optimization

A Bayesian strategy is applied for optimally tuning the parameters of the LSTM, in particular
the model structure (i.e. number of hidden layers, number of neurons per layer and learning
rate). We hereby present the operation of Bayesian Optimization. Let us assume that we have
a set of Q different configurations, D;.q = {01 *-Uq}. Then, an error is estimated for a given
configuration & and an input vector X(t), E(X(t),9). Let us now assume that a minimum
error Enmin has been reached over all Q different configurations of the set D1.9. Then, an
improvement function is given by
1(%(t),8) = max{0,Emin— E(X(t),9)} (7)

Assuming a probabilistic framework, we take the expectations of the above equation. The
target is to estimate a new configuration parameter vector, U* that further decrease the I(-).
Since we do not known the function I(-), one easy way to estimate its respective distribution,

using the Bayesian rule.

P(E|D1:q) o P(D1:q|E) - P(E) ®)
Usually P(E) follows a Gaussian distribution and it is proven that P(D1.¢|E) is a Gaussian

process of mean value of u(9) and a standard deviation X at configuration point & [23].

k(6:,61) .. k(6y,64)
5= : : (9)
k(6g,01) ... k(6g,04)

In case of a new configuration point 9%, the P(D1.¢+1|E) is again a Gaussian process of

standard deviation
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b) b

) = 10
BT k(Bgs1,Bgs1)| (10

where b = [k(¥¢+1,01) - k(¥0+1,9¢)]. Therefore, the new optimal configuration point J* is
given as the integral of the expectation of Eq.(7) and P(D1.¢+1|E) that follows a Gaussian

process with known mean and standard deviation.

3.4, Experimental Evaluation
Table 1. A brief description of the dances recorded from Kinect-II.
Type of Dance Description Main Choreographic Steps

Sirtos (3-Beat)

A Greek folklore dance in a slow
three-beat rthythm performed by
both women and men.

1) Initial Posture (IP); 2) Cross Leg (CL); 3)
Initial Posture (IP); 4) Left Leg Up (LLU);
5) Initial Posture (IP); 6) Right Leg Up
(RLU);

Sirtos (5-Beat)

A Greek folkloric circular dance
performed by both women and
men, with a 7/8 musical beat.

1) Initial Posture (IP); 2) Left Leg Back
(LLB); 3) Cross Legs (CL); 4) Cross Legs
(CL); 5) Cross Legs (CL); 6) Initial Posture
(IP); 7) Right Leg Back (RLB);

Kalamatianos

A very popular Greek folk-
dance through Peloponnese and
the Greek Islands. The tempo is
at 7/8 beat.

1) Initial Posture (IP); 2) Cross Legs (CL);

3) Cross Legs (CL); 4) Cross Legs (CL); 5)
Cross Legs (CL); 6) Initial Posture (IP); 7)

Cross Legs Backwards (CLB);

Trehatos

A circle dance, performed by
both women and men.

1) Initial Posture (IP); 2) Cross Legs (CL);
3) Cross Legs (CL); 4) Cross Legs (CL); 5)
Initial Posture (IP); 6) Left Leg Up (LLU);
7) Right Leg Up (RLU); 8) Left Leg Up
(LLU); 9) Cross Legs Backwards (CLB);

Enteka

A folkloric dance performed by
women and men by at a line

D)Initial Posture (IP); 2) Right Leg Up
(RLU); 3) Dancer's Right Turn (DRT); 4)
Initial Posture (IP) 5) Dancer's Left Tum
(DLT);

Data Set Description: In our approach, the motion capturing process are funded by the EU

project TERPSICHORE [75].
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Choreographic Steps for Sirtos (3-Beat)

Figure 4. The choreographic primitives for Sirtos (3-Beat).

The data set consists of six Greek folklore dances (Sirtos at 3 beat, Sirtos at 5 beat,
Kalamatianos, Trehatos, Enteka). Each dance is performed by three professionals. Several
instances (realizations) are considered. Table 1 presents a brief description of the dances
along with the main choreographic primitives, used as categories for pose identification. For

example, in Sirtos at 3-beat, we have six main choreographic postures, repeated over time
(see Table 1 and Figure 4).
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Table 2. Performance evaluation and comparisons

Classification Method = Memory Window Accuracy Precision Recall F1 Score
No Memory 45,360% 35,389% | 43,293% | 38,944%

SVM 5 Frames 55,074% 45,300% | 55,988% | 50,080%

10 Frames 70,041% 61,375% | 68,982% | 64,956%

No Memory 23,548% 15,037% | 19,341% | 16,920%

kNN 5 Frames 35,069% 28,007% | 39,042% | 32,616%

10 Frames 37,937% 30,004% | 40,659% | 34,528%

No Memory 43,047% 32,294% | 37,844% | 34,850%

FNN 1 5 Frames 61,075% 51,217% | 69,281% | 58,895%
10 Frames 65,486% 55,094% | 77,066% | 64,254%

No Memory 43,987% 32,753% | 37,186% | 34,829%

FNN 2 5 Frames 64,835% 54,654% | 74,192% | 62,941%
10 Frames 68,426% 58,242% | 76,168% | 66,009%

No Memory 61,003% 51,386% | 57,725% | 54,371%

LSTM 5 Frames 65,558% 55,818% | 69,222% | 61,802%

10 Frames 84,189% 75,736% | 89,341% | 81,978%

No Memory 62,521% 53,310% | 55,449% | 54,359%

BOBi-LSTM 5 Frames 71,101% 62,234% | 71,737% | 66,648%
10 Frames 85,418% 86,249% | 75,868% | 80,726%

Table 2 provides a comparison with state of the art methods for choreography modelling.
We indicate the performance using methods such as Support Vector Machines (SVMs) and
k-Nearest neighbors (kNN) as well as well two different configurations of feedforward
neural networks, one with one hidden layer and 10 neurons and one of two hidden layers and
10 neurons per layer. The proposed scheme (BOBi-LSTM) outperforms the compared ones.
In the Table, we depict how the classification performance depends on window size (number
of frames) fed as input to the classifiers (the effect of the time delay line filter). We observe
that as the memory increases the performance improves, but with a decaying improvement
ratio. Memory actually acts as a smoothing operation, introducing, however, delay lags in
pose identification process. Figure 5 depicts the accuracy performance versus memory
length for different classifiers. The effect of the Bayesian optimization method is depicted in
Figure 6. As is observed, Bayesian optimization increases the performance of the bi-

directional LSTM over all objective criteria. Finally, Figure 7 depicts indicative outcomes
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of the proposed BOBi-LSTM with 10 frame memory in comparison with the ground truth

data, over one cycle of Syrtos in 3-beats.
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Figure 5. The effect of the memory length (e.g., the time delay line filter) on the accuracy criterion for
different classifiers

Figure 6. The performance of the proposed BOBi-LSTM network for pose identification at different frame
indices. Ground truth data are also depicted.
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3.5.
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HLSTM 84.19 75.74 89.34 81.98
B BOBiLSTM 85.42 86.25 75.87 80.73

Objective Criteria

Figure 7. Performance of BOBi-LSTM model on pose identification versus conventional LSTM structures.

Conclusions

In this chapter, we proposed a Bayesian optimized, bi-directional LSTM network for
pose characterization of a choreography. Comparisons with other shallow learning classifiers
indicates that the proposed scheme is very effective for kinesiology modelling. This is due
to the fact that a dance sequence presents 1) non-causalities (future steps affect the current

performance) and ii) long-range dependencies (several forward or backward steps affect the

current dancer’s movement).
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4. Identification of motion primitives:
data inside the visible spectrum

Similarly to the previous chapter, the data used for the development of this deep
learning model, are performance captures of dances. However, in this chapter, we use normal
RGB streams, i.e. capturing inside the visible spectrum, as inputs to our model. The input
can be considered as a time series dataset, where each frame represents an instance of this
series. Usually, an LSTM network has better classification performance than a CNN when
simple time series are analysed, however, the feature extraction capabilities of a CNN are
extremely valuable when analysing visual inputs, as they contain enormous spatio-temporal
information. Another difference between LSTM and CNN is that an LSTM network models
recurrent and bi-directional capabilities in contrast with the traditional CNN structures. A
choreography is a highly temporally dependent video sequence, and therefore, the recurrent
model characteristics are significant for dance video modelling.

Thus, we introduce a hybrid deep learning architecture that combines the advantages
of an LSTM and a CNN model. In particular, we propose a convolutionally enriched LSTM
filter, which operates in RGB video streams, using initially a convolutional layer to extract
features for the visual cues, and then feeds these features in an LSTM network. A
choreographic primitive usually depends on the past (backward) and future (forward)
dancers’ steps, resulting in bi-directional (non-causal) relationships. This is due to the fact
that dance choreographies consist of a finite number of repeating steps, thus the correct
identification of a step provides information about both future and past states.

Moreover, since while non-causal relationships can be covered by the bidirectional
capabilities of a bidirectional LSTM network, the classification output is also of use here, as
it provides additional knowledge in the classification of both past and future states. To this
end, we also include Autoregressive and Moving Average (ARMA) characteristics to the
proposed deep learning model. Autoregressive behavior means that the classification output

is depended on its own previous value, while moving average properties allow to smooth out
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short term classification fluctuations. In this way, the dynamics inherently existing in a dance
sequence are addressed.

Another limitation of both LSTM and CNN networks is the assumption of stationarity
between the input-output signals. This means that the network weights remain constant
throughout the network operation. However, a dance sequence is a highly dynamic sequence.
Therefore, network adaptation is needed to fit the current dancer dynamics. For this reason,
an adaptive mechanism is introduced to update model response in a way that maximizes
overall choreographic modeling performance, addressing different style and gender issues.
Finally, we use a foreground estimator exploiting principles of variational inference of
Gaussian Mixtures [76]. The purpose of the convolution layer is to transform the high
dimensional RGB inputs into low forms of representations, that is the best features for the
classification. However, background visual information confuses visual choreographic
modeling performance, since it contains data irrelevant to the modeling content. Thus, the
convolutional layer operates only foreground data, extracting therefore low dancers’
representations which are now less sensitive to motion capturing errors. An overall

architecture of the proposed model can be viewed in Figure 8.
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Figure 8. The proposed adaptive convolutionally enriched LSTM network with AutoRegressive and Moving
Average capabilities

4.1. Mathematical Formulation

Let us denote as I(t) an image frame at a time instance t. This frame is processed using the
variational inference of Gaussian mixtures of [76]. in order to isolate the background from
the foreground. Let us denote as I¢(t) the respective foreground t. The purpose of
choreographic modeling is to recognize a set of L different choreographic primitives. For
this reason, let us denote as P, (t) a probability corresponding to one of the L available
classes w;, i = 1,...,L. Then, frame I(t) is classified to the class c(t) of maximum
probability value
c(t) = ar§£)niin P, () (1)

Usually, there is a non-linear relationship among the raw RGB input data of I(t) and the
class probabilities F,, (t). Let us denote as f(*) this non-linear input-output relationship.
Therefore, we have that P, (¢)~f (I(t)). Actually, function f(*) is unknown. One way to
approximate f (+) is through the use of feedforward neural networks since it has been proven
to be universal approximator [72]. This means that

P, =u"(®)-v() (2a)
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uy (1)

u(t) = :
Uk (1)

(2b)

[tanh(w{ : I(t))l

tanh(w;T( -1(t))

In (2), we have assumed a feedforward neural network of K hidden neurons. v(t) are the
weights connecting the outputs of the hidden neurons, denoted as u(t), with the output node,

estimating the probability P, (t). The weights w;, i = 1,...,K are the ones connecting the

input node I(t) with one of the K hidden neurons. Each hidden neuron models the
hyperbolic tangent, denoted as tanh (see Figure 8).

Autoregressive Moving Average Behavior: The dynamic nature of a dance sequence
implies that choreographic modeling depends not only on the current visual observations but
also on other backward and forward frames. Moving Average (MA) is often used with input
signals to smooth out temporal dependencies. MA is implemented by a Tapped Delay Line
(TDL) filter of delaying the input signals of one tap per time. In addition, the output of the
dance identification neural model should depend on backward and forward classification
outputs mainly due to the dynamics of a dance sequence. Consequently, we introduce an
additional AutoRegressive (AR) filter that stimulates the dependence of the classification
output on its previous own values. In this way, we ensure a smoothness in the classification
output, improving overall choreographic modeling performance.

Long-Range Dependence & Bi-Directional Behavior: A dance sequence follows repeated
patterns span on long-time periods, implying a long-range dependence behavior. In addition,
choreographic dance modeling follows a bi-directional behavior. For this reason, bi-
directional properties are introduced in the fully connected neural network model of (2).
Assuming one tap dependence, the following equation is held

u,(t) = tanh (W' - I1(t) + £, -u(t—1) + 3)
rf-u(t +1))
Extending (3) to a long-range dependent framework, we conclude to a bi-directional LSTM

structure for modeling the f(+). In the LSTM network, the hidden layer is transformed to a
memory cell of different processing units, that is the forget gate, the input node and gate and
the output gate [77].

Convolutionally Enriched LSTMs: The main limitation of the aforementioned structure is

that it fails to process efficiently high-dimensional data, such as RGB input signals,
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presenting issues related with skeleton errors often occurred by the motion capturing
architectures. For this reason, a convolutionally enriched an LSTM structure was used in a
way to better process high-dimensional RGB visual signals. In particular, we include a
convolution hierarchy after the input layer for transforming the RGB visual signals into low
forms of representations. In this way, the convolutional layer is responsible for extracting

the skeleton like signal from the raw input data, facing skeleton error related issues.

4.1.1. Network Weight Adaptation
To address the dynamics of a dance sequence, we introduce an adaptive algorithm for
dynamic weight modification. Let us now assume that w, are network weights after
adaptation and as w,, before. We now assume that the w, and w,, are related with a small
weight perturbation

w, =w, +dw @)
From (4), it is clear that estimation of the new weights w, is equivalent to estimate the dw.

It is clear that a dance composes of repeated choreographic patterns. These patterns are
periodically appearing through time (perhaps with small variations due to dancer’s style).
Let us denote as ™ = {c,(t;), ...,cy(tg)} the main choreographic pattern of a dance. A
frequency domain approach is adopted for determining this pattern, that is the start and end
time instances t; and tz[79]. Then, it is clear that the performance of the network should
satisfy the main choreographic pattern.

Ywa () = (1), V¢i(t) €m ®)
In Eq. (5), yw,(t) refers to the network response at time instance t in case that the new

(adapted) network weights are used (e.g., w, ). Eq. (5) means that the response of the network
within the choreographic pattern should be as close as possible. However, since the network
parameters (and consequently the dw) are quite large compared to the number of equations
of (5), many solutions satisfy (5). To overcome this difficulty, an additional constraint is

introduced; the one that minimizes the norm of dw. Thus,

dw = argmin ||dw|| subject to
Ywa () = (1), V¢i(t) €m (6)
Solving Eq. (6), one can estimate the new network weights w,. In particular, we exploit the

assumption of (4). Thus, by applying a first order Taylor series expansion to the LSTM layer

42



of the proposed neural network model, we can rewrite Eq. (5) as a linear equation system of
the form

Ywa () = Y, () = A~ dw (M
In Eq. (7), matrix 4 depends only from the previous network weight, that is the w;, and

Yy (£) — Y, (£) expresses the response difference error of the network of the previous and

the adapted network weights over the detected choreographic pattern 7.

Variational Inference of Gaussian Mixtures for Foreground Extraction: A variational
inference of Gaussian mixtures method is adopted for foreground extraction. The approach
presents advantages compared to conventional Gaussian mixtures techniques both in terms
of performance and computational complexity. The main difference of a variational
inference approach is that the scalar coefficients, regulating the importance of each mixture
of Gaussian, is substituted by a probability density function. In other words, each pixel has
a probability of belonging to background based on the following probability value

POO = ) PW) - N(X, 1,0) ®)

In Eq. (8), instead of having scalar coefficients to regulate the effect of each Gaussian
distribution, we have probability density functions. This means that better approximations

can be achieved even for highly dynamic visual environments.

4.2. Performance Evaluation

4.2.1. Dataset Description
Dataset Description & Algorithm Set-up: To evaluate the aforementioned deep learning
framework we utilized the latest version of the dataset of choreographic motion capturing of
the EU project the TERPSICHORE. The dancers are professionals. Thirty dance sequences
have been recorded of different Greek dances [75] presents the description of five dances

along with the respective frame choreographic primitive sequence.
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Figure 9. The main choreographic primitives of the Syrtos (3-beat) dance sequence
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Figure 9 indicates two choreographic cycles of the dance sequence syrtos (3-beat). As we
observed, the choreographic primitives are quite similar with each other, imposing
challenges to the classification process. The used algorithms were implemented in Python

3.6 using the Keras and Tensorflow libraries.

Experimental Validation: We have conducted experiments to assess the efficacy of our
approach, compared five with other popular classifiers, namely an SVM classifier, a feed
forward neural network with 1 hidden layer of 10 neurons, a normal bi-directional LSTM
[66] and a CNN [78]. The LSTM classifier is the same as the proposed convolutional LSTM
classifier, but without the convolutional layer in the input. The CNN classifier has the same
structure of the Convolutional layer of the proposed classifier, followed by on fully
connected hidden layer [66]. A comparative Analysis of the performance of these classifiers

is presented in Table 3.
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Figure 10. The effect of background subtraction on the choreographic modelling performance.

Table 3. Comparative Performance Evaluation of the proposed method with other classifiers

Classification Method Accuracy Precision Recall F1 Score
SVM 60.87% 55.08% 55.35% 55.22%
FNN 52.53% 45.05% 59.23% 51.18%
LSTM [66] 54.89% 47.45% 57.92% 52.16%
CNN [78] 70.57% 70.61% 59.89% 64.81%
Proposed Method 71.35% 71.02% 61.07% 65.67%
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Regarding the background subtraction module, Figure 10 illustrates the accuracy of the
different classifiers with or without the background subtraction. As is expected, background
modelling improves overall choreographic representation. Finally, Figure 11 highlights how
the size of the memory window (that is the AR and MA order) affect choreographic

modelling performance.
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Figure 11. The effect of the memory window in the classification performance.

4.3. Conclusions

In this chapter, we have proposed a hybrid CNN-Bidirectional LSTM model for recognition
of key choreographic postures in dance sequences. The proposed model combines the multi-
scale feature extraction process of CNN with the long-term dependency modeling
capabilities of bidirectional LSTM networks. ARMA capabilities also included with an
adaptive weight modification strategy. The method has been evaluated on RGB sequences
depicting real-world sequences of traditional dances and has been shown to outperform other

machine learning (including deep learning) approaches in terms of recognition accuracy.
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5. Identification of motion primitives:

Space-Time Tensor Based Neural
Networks for training under Small
Sample Settings

The techniques presented in Chapter 3 and 4 while presenting significant advantages in the
way the extract feature and perform the requested micro-action classification tasks, they
present one significant drawback, common in most deep learning approaches. That is that
deep neural networks are usually extremely complex learning structures with millions of
trainable parameters, which makes their training difficult both due to the computational
complexity and due to their need of large training sets in order to effectively calculate all
these trainable parameters (model weights). Based on this, in this chapter we present the
development of a tensor based technique that has the following three advantages. First, we
propose an end-to-end trainable architecture that unifies the feature and pattern recognition
tasks. Second, we exploit tensor algebra tools to significantly reduce the number of the
proposed model’s trainable parameters making it very robust for small sample setting
problems. Last but not least, the proposed approach is a general one that can potentially be

applied to different problems that employ spatiotemporal data coming from sensor networks.

5.1. Problem Formulation

We consider the problem of human pose classification using 3D skeleton data from Kinect-
II. As we will see later, that problem is a specific instance of the more general problem of
pattern recognition using information coming from sensor networks. Therefore, in this
section, we describe the form of the latter more general problem.

Consider a sensor network that contains C sensors. Each one of the sensors, let’s say the c-th
sensor, retrieves / measurements (information modalities) at each time instance t, which can

be represented by the vector
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s, (t) = [xgl)(t), o X0, o, xP(0) ] (1)

for c=1,---,C. Since each sensor occupies a specific spatial position, the spatial information
for the j-th information modality captured by the sensor network can be represented by the

following vector:
sO@) = [0, @), .. xP© ] @

for j = 1,---,], while the spatiotemporal information corresponding to a time window t to ¢t +

T can be represented by the matrix
SO E+T) = [sD), .., sDD ] € RHT (3)

The information from all SO(tt + T), j = 1,++,] can be aggregated into a tensor object
Stt+T) =[SV t+T),...SP(¢t+T)] 4)

in RE*T*J For the sake of clarity, in the following we omit the time index, thus, when we
write S we refer to a tensor object of the form of (4) for some time instance t. Obviously, for
a specific time window, the tensor object in (4) encodes the spatiotemporal information for
all information modalities and all sensors in a sensor network.

Each tensor S describes a pattern that belongs to a specific class. Let us denote as y the class

of that pattern, and assume that we have in our disposal a set D of N pairs of the form:

D = {(Syyd}. (5)
The objective of this study is to derive a function for mapping S to y given the set D in (5).

This can be seen as a machine learning problem. Let us denote as F the class of functions

that can be computed by a learning machine. We want to select the function
fx=argmingep X; L (f (S0, y:) (6)

such that (S,y:) € D. In (6) I(+) is a loss function. For classification problems /(-) usually is
the cross entropy loss. Remark 1: In order to facilitate the solution of problem (6) the learning

machine must contain a number of trainable parameters that are comparable to the cardinality
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N of set D, and at the same time it should be capable of fully exploiting the spatiotemporal
nature of the data.

Remark 2: The problem of human pose recognition using 3D skeleton data from Kinect-II is
a special instance of the problem described above. Each skeleton joint can be seen as a
sensor, which, at every time instance, measures its x—y-z location. So, in this case C equals

the number of skeleton joints and J in (1) equals 3 (x, y and z positions).
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Figure 12. Kinect II skeletal capturing system (vvvv.org/documentation/kinect).

In this chapter, we use 3D skeleton data captured using Kinect-1I, along with their
annotations, which correspond to the depicted human pose at every time instance. Initially,
we process the skeleton data to create tensor objects as in (4) and then use their annotations
to create a training set as in (5).

After creating the training set, we design an end-to-end trainable neural network, which is
able to fully exploit the spatiotemporal nature of the data, and at the same time employs a
small number of trainable parameters (compared to the size of the training set). The first
layer of the proposed model learns CSP-like features from each information modality using
inputs in the form of (3). Then, the constructed features from all modalities are fused into a
tensor object to compactly represent the spatiotemporal information captured by the sensor

network. Finally, the tensor objects are processed by a tensor-based neural network for
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producing a mapping from 3D skeleton data to human poses. In the following, we describe

each one of the steps presented above in details.

5.2. Data Processing

The Kinect-II sensor identifies and monitors twenty-five skeletal joints at the constant rate
of 30 measurements per second, see Figure 12. The positions of joints in the 3D space with
respect to the Kinect-II device are provided. We utilize the measurements in the form they
are captured without employing any tracking technique. A human pose, however, is
characterized by the relative positions of the human body parts. For this reason, we represent
the position of each joint with respect to the position of the Spine Base joint. This way, the
recognition of human poses does not depend on the position of the human with respect to the
Kinect-II device.
Specifically, if we denote as s (t) the coordinates of the Spine Base joint and as s.(t), ¢ =
1,---,24 the coordinates of all other joints, then the coordinates of the joints with respect to
the Spine Base joint will be given by

sc(t) = si(t) — sp(t), c=1,...,24 (7)
Using the transformed coordinates in (7), we create matrices as in (3) for j = 1,---,3 that
correspond to x—y-z positions. Those matrices encode the spatiotemporal information for
classifying human poses.
At this point, we have to mention that parameter T in (3) is application dependent and affects
the recognition results. For this reason, it must be set appropriately. For T = 1, the pose
recognition model will not be able to exploit the temporal information and thus it will be
more prone to measurements errors, while large values of T may result to a dataset where

each datum depicts more than one pose, increasing, this way, the uncertainty in recognition.

5.3. Space-Time Domain Tensor Based Neural Network

The proposed tensor-based neural network consists of three main components; the input
layer capable of computing CSP like features, the tensor fusion operation, and the tensor

contraction and regression layers that process high-order data in its original multilinear form.
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5.3.1. CSP Neural Network Layer
The CSP layer aims to produce highly discriminative features for human pose classification.
The design of that layer is motivated by the CSP algorithm , which, for the sake of clarity
and completeness, we briefly describe here.
The CSP algorithm originally was developed for binary classification problems. It receives
as input zero average signals in the form of (3) along with their labels. Then, its objective is
to produce features that increase the separability between two pattern classes. Consider that

we have in our disposal N samples {Sl'i}if where [ = 1,2 denotes the class of each sample.

The CSP algorithm computes the covariance matrix:

T
SLiSLi
trace (Sl_l-,Szri)

R, = ®)

for each sample, and the average covariance matrix

= 1

Rl = n_lZ:l=I1 Rl,i 'l = 1,2 (9)
for each class, where n;is the number of samples belonging to class I. Then, the CSP filter,
W, is constructed by using M = 2m, (M < C), eigenvectors corresponding to m largest and m

smallest eigenvalues of E R;. Finally, using W each sample is represented by a feature

vector:

var (V) var (V1)

5\'4=1 var(Yl{l.) Zy=1 var(yl{i)

fui = e RM (10)

where Yl]l stands for the j-th row of WSj;. Features fi; typically are used for as inputs to

: . : . . . N
learning models since they encode the spatiotemporal information of signals {S l'i}i=1'

Although, theoretically sound, the CSP algorithm presents several drawbacks when applied
to real world problems mainly due to the non-stationarity of captured signals. Moreover, it
is a feature construction technique that is performed individually, and thus does not permit
information flow between feature construction and pattern recognition tasks (see Section I-
A2). To overcome those drawbacks, the proposed CSP layer learns W during the training of

phase model. Trainable matrix W projects measurements in R¥*Tand then features as in (10)
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are computed from the projected measurements. Additionally, since Kinect-II measurements
extract 3D coordinates, we use three parallel CSP layers, one for each coordinate. Therefore,

the output of the CSP layer consists of three vectors in RM.

5.3.2. Tensor Fusion Operation
The fusion module receives as input the feature vectors constructed by the CSP layer and
produces a rich and compact representation of the data. Since we do not know in advance
the kind of interactions between the elements of the constructed feature vectors, we cannot
fuse them using feature averaging or addition. The employed fusion technique is motivated
by the work in [11]. The output of the fusion module corresponds to the Kronecker product
of the feature vectors produced by the CSP layer. Therefore, after the fusion module each
input sample S, in the form of (4), is represented by a tensor object in X € RM*M*M_Contrary
to [11], we do not reduce the dimensionality of the fused tensor object via decomposition
techniques. Instead, we use a tensor-based learning machine capable of processing the fused
information in its original multilinear form. The proposed CSP layer and the tensor fusion

operation are depicted in Figure 13.
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Figure 13. The proposed CSP layer and the tensor fusion operation. Parameter N stands for the number of
skeleton joints

5.3.3. Tensor Based Neural Network

The employed tensor-based neural network is a fully connected feed forward neural network,
its parameter space, however, is compressed [81]. At each layer the weights should satisty
the Tucker decomposition [82]. In particular, the weights Wy at the k-th hidden layer are
expressed as

Wi = I xy WD x, W& ..ox, WP (11)
where /ris a tensor all elements of which equal one, and the operation ”x;” stands for the
mode-j product.
The information is propagated through the layers of the tensor-based neural network in a
sequence of projections — at each layer the tensor input is projected to another tensor space
— and nonlinear transformations. Formally, consider a network with (K-1) hidden layers. An
input (tensor) sample X € RPr<*Fjis propagated from the k-th layer of the network to the next
one via the projection

Zisr = Hi g (BEDT g (KTDT (12)

and the nonlinear transformation

Hir1 = g(Zit1), (13)
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where g(+) is a nonlinear function (e.g. sigmoid) that is applied element-wise on a tensor
object. For the input layer Ho = X. The layers that propagate information in the way described
above are referred as Tensor Contraction Layers (TCL) [83].

Finally, the output of the (K - 1)-th hidden layer is fed to a Tucker regression model [81],

which outputs
yi = 5({Hy—1, (G X3 WD) o 3 WD) + By) (14)

for the I-th class. In (14) the tensor G; € RE>*Band R;is the rank of the Tucker decomposition
along mode j used in the output layer. The scalar b;is the bias associated with the I-th class,
while the subscript [ indicates that separate sets of parameters are used to model the response

for each class. The tensor-based neural network is presented in Figure 14.
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Figure 14. Propagation of information through the layers of the tensor-based neural network

At this point it should be highlighted that the sequential projections and nonlinear
transformations can be seen as a hierarchical feature construction process, which aims to
capture statistical relations between the elements of the input in order to emphasize
discriminative features for the pattern recognition task. Finally, since the weights of the
employed tensor-based neural network need to satisfy the decomposition in [84], the total
number of trainable parameters is reduced substantially [81]. This reduction acts as a very

strong regularizer that shields the network against overfitting [85].

5.4, Performance Evaluation

The dataset of Chapter 3 is used for the evaluation of the tensor based neural network. The
dataset consists of four Greek folklore dances performed by three professionals and is

publicly available upon request. Each dance performance is described by consecutive frames
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and each frame is represented by the spatial coordinates of the twenty-five tracked skeleton
joints (see Figure 12). The frames of the captured choreographies were manually annotated
by dance experts according to the posture they depict. In total seven different postures are
depicted. The distribution of annotated samples between different classes for each dance
(performer) is depicted in Table 4, and apparently the dataset is highly unbalanced. First, we
follow the procedure described in 5.2 to transform the coordinates of skeleton joints to a
coordinate system in which the origin is the Spine Base joint. Second, we use different values
for parameter T to create a dataset as in (4). Third, we assign to each sample the annotation
of the centered frame, e.g., for T = 15 we assign to the sample the annotation of the 8-th

frame.

Table 4. Distribution of annotated samples between classes for each dance (performer).

ID Cl C2 C3 C4 C5 C6 C7
D1 (P1) 155 201 - - 44 13 -
D2 (P1) 82 95 42 22 - - 47
D3 (P1) 122 246 - - - - 82
D3 (P2) 44 268 - - - - 61
D1 (P2) 82 155 - - 40 85 -
D2 (P2) 82 112 16 32 - - 44
D5 (P3) 37 98 38 25 - - 77
D1 (P3) 152 96 - - 13 16 -
D2 (P3) 33 102 38 25 - - 77
D3 (P3) 119 130 - - - - 49

Total 908 1503 134 104 97 114 437

For evaluating the performance of our methodology, we randomly shuffle the constructed
dataset and follow a 10-fold cross validation scheme. Under that scheme, the performance
is evaluated in terms of average classification accuracy and F1 score across the 10 folds. To
train our model we used Adam optimizer with learning rate equal to 2.5 - 10-4. We set the
maximum number of training epochs to 300 and employed early stopping criteria to avoid
overfitting, which are activated if the accuracy on the validation set is not improved after 20
epochs. The validation set corresponds to 10% of the training set for each fold. Finally, since
the problem is unbalanced, we used the weighted cross entropy as the loss function, and the

weight for each class corresponds to the inverse of its frequency in the training set.
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Figure 15. Average classification accuracy and F1 score of a tensor-based neural network with two TCLs, for
T =7, and for different values of M.

100 95.8 955
91.6 90.9 93.9 93.1
80.6
80 78.7
9
o 60
[&]
c
(0]
£
£ 40
o
o
20
[ | Accuracy
F1 score
0
T=7 T=11 T=15 T=19

Figure 16. Average classification accuracy and F1 score of a tensor-based neural network with one tensor
contraction layer, for M = 24, and for different values of parameter T .

There are three different parameters that affect the performance of the proposed
methodology; namely, parameter M, that is the dimension of feature vector constructed by
the CSP layer, parameter T, that is the temporal dimension of the samples, and K that is the

number of tensor contraction layers employed in the tensor-based neural network

architecture.
The effect of parameter M: Parameter M corresponds to the dimension of the features

constructed by the CSP layer. For investigating the effect of that parameter on the
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performance of the model, we keep fixed the parameter T = 7. Then, we train and test the
performance of the proposed model with two tensor contraction layers (TCLs) for different
values of M, i.e, M =12, M = 18, M = 24, and M = 30. The dimension of the tensor
contraction and regression layers is presented in the second column of Table 5.

The effect of the parameter M is depicted in Figure 15. The best accuracy is achieved for M
= 24. The dimension of the features constructed by the CSP layer is directly related to their
representation power. Thus, features of higher dimension can better capture the spatial and
temporal patterns of skeleton data resulting to more accurate human pose classification. For
M = 30, however, the accuracy drops, which might be an indication of over-fitting.
Moreover, increasing the value of parameter M increases the total number of trainable
parameters of the model. Indicatively, the number of trainable parameters for M equals 12,
18, 24 and 30 is 1335, 1839, 2343, and 2847 respectively.

The effect of parameter T: In contrast to parameter M, parameter T does not affect the
number of trainable parameters of the model nor the dimension of the features constructed
by the CSP layer due to the variance operator employed in (10). Parameter T indirectly
determines the amount of temporal information that is taken into consideration during the
construction of the features.

The effect of parameter T on the performance of the model is presented in Figure 16. To
obtain those results we train a tensor-based neural network with two TCLs and keep the
value of parameter M fixed equal to 24. Producing features that encode larger amounts of
temporal information results to higher human pose recognition accuracy. Increasing the
value of parameter T from 7 to 11 results in a performance improvement more than 10%.
Increasing, however, more the value of T results in smaller performance improvements
around 2%. This implies that capturing important temporal information for problem at hand

more that 11 consecutive frames need to be used.
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Figure 17. Average classification accuracy and F1 score of a tensor-based neural network with two TCLs, for
M = 24, and for different values of T.

In Figure 17, we also compare the performance of the proposed model against a ID-CNN.
First, we concatenated the measurements of different channels to produce input samples for
the CNN of dimension 72 x T. The CNN performs convolutions along the temporal
dimension of the samples, and thus, similarly to the proposed model, it encodes the temporal
information within the constructed feature vectors. The employed CNN consists of 3
convolutional layers with 8, 16 and 24 kernels, which are followed by a dense layer with 12
neurons and the output layer. The width of the kernels is (T —1)/2 for the first two layers
and 3 for the third layer. The ID-CNN and the proposed model perform almost the same.
The proposed model, however, employs a significantly smaller number of trainable
parameters. Specifically, the proposed model employs 2343 trainable parameters, while the
CNN employs 3415, 4631, 5847 and 7063 trainable parameters for T = 7,11,15 and 19

respectively.
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Figure 18. Average classification accuracy and F1 score of a tensor-based neural network with different
number of tensor contraction layers (parameter K) for M =24 and T = 11.

3) The effect of parameter K: Parameter K corresponds to the number of TCLs present in the
network. Figure 18 presents the effect of the number of TCLs on the performance of the
model. To obtain those results we keep parameter M an T fixed and equal to 24 and 11
respectively, and trained four different tensor-based neural networks with 1, 2, 3, and 4
tensor contraction layers. The projections of the employed contraction layers are presented
in Table 5. Increasing the number of tensor contraction layers increases the total number of
trainable parameters of the model, and thus its learning capacity. Indicatively, the number of
trainable parameters for K equals 1, 2, 3, and 4 is 1959, 2343, 2919, and 3783 respectively.
That increase, however, does not seem to affect the performance of the model, since the
performance improvement from K = 2 to K = 4 is only 1%.

The investigation above suggests that the most important parameter for achieving highly
accurate results is parameter M. Indeed, increasing the dimension of the features constructed
by the CSP layer from 12 to 24, we achieve a performance improvement of more than 10%.
On the contrary, designed deeper architectures does not seem to significantly affect the
performance of the model. This might be due to the Tucker decomposition (see (11)), which

acts as a very strong regularizer for the model.
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Table 5. Projections of tensor objects when they propagated through tensor contraction layers (TCL) and the
ranks of the tensor regression layer (TRL).

1 TCL 2 TCLs 3 TCLs 4 TCLs
Input (24x24x24) (24x24x24) (24x24x24) (24%24x24)
Layerl (4x4x4) (8x8x8) (12x12x12) (16x16x16)
Layer2 - (4x4x4) (8x8x8) (12x12x12)
Layer3 - - (4x4x4) (8x8x8)
Layer4 - - - (4x4x4)
TRL (2x2x2) (2x2x2) (2x2x2) (2x2x2)

5.4.1. Performance Evaluation Against State of the Art Methods

In this section we compare the performance of the proposed model against state-of-the-art
methods for choreographic modeling. We compare the performance of our model against
LSTM and the recently proposed Bayesian Optimized Bidirectional LSTM (BOBi LSTM)
[40]. In contrast to the proposed model and the 1D-CNN, the LSTM-based models exploit
the order of the data as an additional source of information.

For the performance comparison, we utilize a tensor-based neural network with two TCLs
(K = 2), and parameters M and T equal to 24 and 11 respectively. Regarding the LSTM and
the BOBi LSTM models, their architectures are the ones presented in section 3 and they use
a memory of 10 frames for recognizing human poses. At this point we should emphasize that
those models receive as input the kinematic properties of the skeleton joints; i.e., the spatial
position as well as the velocity and the acceleration of each joint. In contrast, our method
receives as input solely the spatial position of the joints. Moreover, the proposed model
consists of 2343 trainable parameters. In contrast, the BOBi-LSTM network in [40] was
composed by 2 LSTM Layers of 128 cells each and two additional dense layers as the output.
This makes the total number of training parameters at 205,674, namely 87 times more than
the number of trainable parameters in our approach. This significant reduction favors the
efficient parameter estimation especially when small sample setting problems need to be
addressed.

Table 6 presents the results of that comparison. The proposed model performs more than

6% better compared the BOBi LSTM, despite the fact that is uses a simpler input
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representation (our method is completely blind to kinematics information of the skeleton
joints). Also, Table 6 presents the performance of the 1D-CNN mentioned above. The
IDCNN performs better than both LSTM models and slightly worse than our proposed
model. This implies that models that do not take into consideration the order of the samples
are more appropriate for classifying human poses in folklore dances. This is justified by the
fact that different dances are composed of different sequences of poses. Therefore,
information regarding the order of the samples confuses the model and deteriorates its
performance.

Figure 19 presents the confusion matrix for the proposed model. The models performs very
well for all classes with the smallest accuracy to be 87% for the second class (cross-legs).
9% of the samples belonging to the second class are misclassified to class 1 (initial pose).
This mainly happens due to similarities of the poses belonging to these two classes. For poses
that belong to the first and the second classes the dancer faces the camera, and the
measurements for all joints (except knees and ankles) are very similar.

The comparison above implies the following. First, the proposed CSP layers can produce
highly discriminative features that encode the spatial and the temporal information in the
data. Second, employing the tensor fusion operation produces compact yet highly descriptive
representations of the input. Finally, tensor contraction and tensor regression layers can
efficiently process data in tensor form and produce highly accurate learning models.

Table 6. Performance comparison in terms of average classification accuracy and F1 score against LSTM and
BOBi LSTM models.

Accuracy (%) F1 Score (%)
LSTM 84.2% 82.0%
BOBi LSTM 85.4% 80.7%
ID-CNN 91.1% 89.7%
Our Approach 91.6% 90.9%
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Figure 19. Confusion matrix for T =11, and M = 24.

5.5. Conclusions

In this chapter we proposed a spatially and temporally aware tensor-based neural
network that can efficiently process spatiotemporal data. We evaluated the performance of
the proposed model on the problem of human pose recognition using 3D data captured using
the Kinect-II sensor. The evaluation results indicate that the proposed model can construct
highly discriminative spatiotemporal features and achieve state-of-the-art performance. The
problem of recognizing human poses using 3D skeleton data is a specific instance of the
more general problem of pattern recognition using information coming from sensor network.
Therefore, despite the fact that in this work we consider that specific problem, our model is
a general one that can be applied on general pattern recognition problems that employ

spatiotemporal data from sensor networks.
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Part 2:
Extraction of statistical insights in datasets composed by

random sets of actions
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6. Supervised Approach: Simulating
scenarios in multimodal datasets

In this chapter, we study the use of CNN approaches as presented in previous chapters, in
data where the semantic information is not as fine-tuned, but multiple actions are captured
simultaneously from both thermal and visual spectrum data modalities, specifically thermal
and RGB videos. These datasets are enriched by additional information from other data such
as sensors. The learning goal is for the model to be able to ascertain a binary classification
paradigm (expected vs unexpected actions).

The need for effective complex representations

Traditional machine learning approaches are sensitive to the features used as input to the
detection framework (usually a classifier), therefore appropriate feature selection is crucial.
However, extracting adequate features from complex, multi-faceted threats is a very
challenging task. This is mainly because of the wide range, variety and heterogeneity of
events and their different physical attributes (e.g. pertaining to visual, electromagnetic,
mechanical, sensorial information or combination thereof), which cannot be accurately
modeled by a common physical law or description. Instead, deep Convolutional Neural
Networks inherently compute feature maps extracting complex representations which drive
the subsequent classification stage [86] and are especially useful in problems where feature
detection and extraction are hard to enact. Furthermore, CNNs exploit strong spatial local
correlation by enforcing a local connectivity pattern between neurons of adjacent layers,
which can be significant in certain attacks, where locality is a salient attribute.

The need for autoregressive and adaptive learning models

As is often the case, however, there are significant domain-specific factors which even
powerful models like CNNs do not inherently take into consideration. In particular, the
output of an attack detector should not only depend on external input but also on its
classification output history, so as to avoid abrupt spikes in the detection output. Second, an
attack detection should often be based on a cumulative behavior over a time period instead

of only relying on the current measurable observations, in order to avoid having outliers in
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the input data trigger erroneous detections. Third, a conventional CNN assumes a stationary
input-output relation, whereas this assumption is not valid since a water distribution and
monitoring infrastructure environment can be highly dynamic and changing over time.
Therefore, an attack detection framework should be based on a non-linear autoregressive
and adaptive model that fulfills the above-described conditions.

In this chapter, we explore the intrinsic characteristics and review current methods on
detection of attacks pertaining to three information flows: vision-based surveillance, human
intrusion detection based on wireless signal reflectance, and cyber-physical attack detection
on sensors, actuators or controllers. We then propose a novel framework for multimodal data
fusion and adaptive deep learning. The proposed Tapped Delay Line (TDL) CNN model
approximate a non-linear Auto-Regressive Moving Average (NARMA) filter. The proposed
TDL-CNN classifier achieves an effective feature representation of the heterogeneous input,
introduces input- and output memory to the model thus approximating a non-linear
autoregressive filter, and incorporates a novel recursive algorithm for online modification
the weight parameters of the network to fit the dynamic environmental parameters. An
extensive comparative experimental evaluation on real-world data demonstrates the
superiority of multimodal vs. unimodal approaches, deep learning vs. ‘“shallow”

architectures, as well as autoregressive and adaptive models vs. conventional ones.
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Figure 20. A high-level overview of a framework to tackle diverse types of cyber and physical attacks

6.1. Modelling input data modalities

6.1.1. Visual modality: RGB & thermal camera streams for vision-based detection
Computer vision—based surveillance systems are usually based on analysis of RGB video
streams. However, the possibility to process information flows from bands beyond the
visible spectrum can enhance the performance of intelligent vision systems. In this work,
two types of cameras are considered: RGB and thermal. To increase field of view coverage,
a network of cameras is used. The raw captured visual data are processed using the YOLO
(You look only once) object detection framework. The system models the object detection
as a regressive problem by separating the image into spatial bounding boxes and associates
to each box a class probability. A convolutional neural network architecture is deployed for
performing the object detection task. The model consists of 24 convolutional layers and 2

fully connected layers.
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For each frame, class object identities are specified per image region (pixel coordinates). In
particular, denoting as o, (x,y) the k-th object identity of the (x,y) pixel, we can form a
class label image, say CL(x,y), of the same size as that of the RGB image I(x,y) or the
thermal image T (x, y) respectively, so that:

CLi(x,y) = oy i(x,y), i={RGB, Thermal} €))

where subscript i indicates either the RGB or the thermal data. Eq. (2) retains the spatial
coherency of the data since the derived class label images are of the same size and spatial
consistency with the original raw RGB and thermal image data. For convenience, we resize
the RGB and thermal image frames so that they are of equal size, N X M. That is, tensor
Xrop(n) € RV*M represents an image, each pixel of which indicates the object ID that the
respective RGB pixel belongs to. Similarly, tensor X;,ermar(n) € RNV*M represents the class
label image of the thermal data. It should be noted that in the case of thermal data, an
additional pre-processing stage including background subtraction [87] is carried out. The
derived class label image maps, along with the respective confidence scores indicating the
reliability in object detection, are the visual (RGB and thermal) modality input, xgz;5(n) €

RYM and Xipermar () € RV*M to the multimodal data fusion classifier.

6.1.2. WiFisignal reflection modality for human intrusion detection

Detecting human movement using WiFi commercial off-the-shelf devices can be effected
by exploiting Channel State Information (CSI) [88], [35]. CSI models the propagation of a
signal from the transmitter to the receiver, supporting many subcarriers due to the
Orthogonal Frequency Division Multiplexing (OFDM) principle. The main advantage of
CSI data is that they capture physical attributes of the wireless channel, such as scattering,
power decay with respect to distance, fading, shadowing and effects of interference [89].
These physical properties are extracted by measuring the amplitude and the phase overall
the K available subcarriers:

Hn) =[H(n,f1) H(n fz) -~ Hn, fi)l” 2

where H(n, f;) refers to the amplitude and the phase of the i-th subcarrier with central

frequency f;. Therefore, we have that: H(n, f;) = |H(n, f;)|e/“H®/ 0,
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Usually, H(n) input data contain noise and they are also distorted by the presence of outliers.
For this reason, CSI data signals H (n) need to undergo a pre-processing stage. First, outliers
are removed using a Hampel identifier [90]. Alternatively, density-based clustering methods
such as the DBSCAN algorithm [91] are applied to the raw captured CSI data for outliers’
removal. Then, noise is removed by means of wavelet denoising. It should be noted that
outlier elimination should precede denoising, since otherwise, outliers may distort the noise
removal process. The next stages include normalization, correlation of subcarriers and
eigenvector processing of the signals (Figure 21).

The pre-processed CSI data are analysed using a linear Support Vector Machine (SVM)
classifier in order to detect human intrusions in a scene, which constitutes the output of
unimodal detection based on WiFi signal reflectance. These classification IDs, say Cyip; (1),
will also be used as input to the proposed fused deep learning classifier for cyber-physical
attack detection. Therefore, tensor x,;r;(n), pertaining to the WiFi signal reflection for

human intrusion detection modality, is composed of:

Xyiri(n) = [HM) Cyipi(M)]" 3

I scw Outlier Data Wavelet
s Removal Interpolation Denoising

J32 Correlation
' of SC

Eigenvector

Ay . Processin
WM (Subcarriers) 9

Figure 21. Schematic overview of human presence detection mechanism from WiFi reflection signals.
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To retain spatial coherency in line with the visual input data, tensor x,,;;(n) is expanded

RNXM

over the grid, forming an additional input channel to the multimodal detection

framework.

6.1.3. ICS sensing modality: PLC and SCADA data for cyber-physical attack analysis
Interconnected sensors and controlled devices of critical infrastructures, like water utilities,
have been primarily designed for industrial process control. They provide valuable
information about the smooth operation of the infrastructure, and can be utilized for security
and protection purposes in an appropriately designed holistic threat detection framework.
Extraction of appropriate features for ICS measurable data (e.g. sensors, PLC and SCADA
indications) monitored by the operator is not straightforward, since there is no direct physical
interpretation of cyber threats with sensorial patterns appearing in the monitoring signals
[92]. Moreover, there are several types of different attacks with different “signatures”, which
makes them difficult to model holistically. To address these challenges, the proposed TDL-
CNN multimodal deep learning model is allowed to find the most appropriate features in a
way that classification performance for detecting cyber-physical attacks on specific
application scenarios is maximized.

Therefore, tensor X;¢s sensing (1) comprises a set of measurable sensorial data obtained from

ICS of a water utility infrastructure. As in the previous case, the data are pre-processed so as
to eliminate outliers and noise, using DBSCAN algorithm and a low-pass filter respectively.
In this work, we measure the flows of two water pumps, the suction pressure and the
discharge pressure for a real-world water utility. The measurements are acquired at 30 sec
intervals. Again, to retain spatial coherency as for the previous cases, we expand tensor
Xsensing () over the RN*M orid, forming again an additional input channel.

6.1.4. Multimodal data fusion from visual, WiFi reflection and ICS sensing input

channels

Unimodal approaches based on solely one of the above types of information are bound to
have limitations as regards the range of threat types that they can detect. Critical
infrastructures today may face increasingly sophisticated multi-faceted attacks, protection
from which unavoidably requires a holistic approach that intelligently combines different

channels of information. In this context, the adaptive deep learning model proposed is
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driven by a fused multimodal data tensor. Therefore, the multimodal input tensor data x(n)

can be derived as:
x(n) = [xRGB (n) Xthermal (n) xwifi(n) Xics sensing (n)]T (4)

where xzcp(n) is the data tensor pertaining to RGB visual signals, Xpermar(n) the
respective data tensor of the thermal component, x,,;;(n) the data tensor pertaining to the
WiFi reflection signal and, finally, X;cs sensing() the data tensor of the ICS sensing

modality.

6.2. The proposed adaptive deep learning model for cyber-
physical event detection

6.2.1. Tapped Delay Line Convolutional Neural Network (TDL-CNN)

Letus denote as y(n) = [Pw; " Pw,]" an L X 1 vector that contains probabilities p,,, for

attacks w; (out of L possible ones) occurring in the water utility infrastructure at time
instance n. Classes w; may correspond, e.g., to cyber threat, physical intrusion, a combined
attack detection, or a normal functional situation; such a scheme is also adopted in the
experimental evaluation. Let us now assume that there is a non-linear function that relates
probabilities p,,, with some measurable input observations x(n) that describe the status of
the critical water infrastructure at time instance n. To calculate probabilities p,,, we need to
take into account several previous observations over a time window consisting, say, of ¢
previous time instances. That is, vector y(n) depends on g previous samples x(n — j), j=0,
., g-1. Furthermore, the classification also depends non-linearly on its own previous
values, thus resulting in a non-linear autoregressive-moving average framework. Therefore,
the classification output y(n) can be modelled with a non-linear vector-valued

relationship g(*):
ym) =gx(n—1),...x(n—q),y(n—1),..,y(n—p)) + e(n) 5)

where, p, g express the order of the model over the previous ¢ measurable observations and
previous p classification values. Additionally, vector e(#n) is an independent and identically

distributed (i.i.d.) error.
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The main difficulties in Eq. (5) are that: (i) non-linear relationship g(-) is actually unknown,
and (ii) input observations x(n) should be properly selected so that we can suitably divide
the attack classification space in a way to maximize attack classification performance.

To address the first fact, machine learning methods can be applied to approximate g(+) in a
way that minimizes error e(n). Eq. (5) actually models a Non-linear Autoregressive Moving
Average (NARMA) filter. In particular, a feedforward neural network (FNN) with a tapped
delay line (TDL) input filter can simulate the behavior of a NARMA(p,q), while a recursive
implementation of such a model has been proposed in [72]. However, such a TDL-FNN
model fails to address the challenge of effective feature selection in a high-dimensional space
and a complex heterogeneous environment. In this context, Convolutional Neural Networks
(CNNs) have demonstrated excellent representational capabilities in feature selection [86].
The proposed TDL-CNN model combines the representational power of CNNs with the
autoregressive nature of TDL. A TDL—CNN selects the optimal features for classification
through an approximation of a series of convolutional filters, while also modeling the
unknown vector-valued relationship g(-) of Eq. (5). To this end, we expand the architecture
of a CNN by (i) adding a TDL input layer which acts as a spatiotemporal moving average of
the multiple modality input channels, and (ii) feeding back the classification output as
additional input to the network over a time window. A block diagram of the proposed

architecture is shown in Figure 22.
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Figure 22. Architecture of the proposed TDL-CNN.

Tapped Delay Line Layer: The purpose of this layer is to appropriately organize the
external input data x(n) as well as to feed back the previous classification outputs. It consists
of two terms: The first term models the moving average component by delaying the external
input signals x(n) for ¢ discrete previous times. The second term simulates the
autoregressive component by delaying the output of y(n) over a time window of p previous
discrete times. The TDL is a non-linear dynamic model, employed to endow the network
with an autoregressive character. Past classification results influence current and future
outputs to an extent, as temporal dependencies do occur. Therefore, the TDL layer helps take
into consideration previous classification results, thus decreasing spikes in the output
behavior.

Convolutional Layer: The purpose of this layer is to apply convolutional transformations

on the input data in a way as to maximize classification performance. A set of
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parameterizable filters (e.g., learnable kernels) is convolved with the input data selecting
appropriate features and estimating kernel parameters, so that performance error on a ground
truth training set is minimized. The L feature maps, say fi, f5, ..., f1, optimally selected by
the convolutional layer will be used as input to the final classification layer.

Classification Layer: The Classification Layer receives the transformed representations
from the convolutional layer as input, i.e. feature maps f3, f5, ..., fr, and triggers the final
(supervised) attack predictions. Normally, feature maps f; are tensors of a high dimensional
grid. The first dimensions express the spatial attributes of the scene, in 2D or 3D space, while
the rest refer to the different modalities of the input data. In the following, to simplify the
notation, we assume, without loss of generality, that feature maps f; are scalars. Extension
to tensors can be done by exploiting tensor algebra properties and appropriate modification
of the inner product operators.

Let us now assume that the classification layer consists of one hidden layer of » neurons.
Each neuron stimulates a non-linear operation, modeled by an activation function ¢ (x).
Usually, the sigmoid function is used. Let us denote as w; ; the weights that connect the i-th
feature map, expressed by f;, with the j-th hidden neuron of the classification layer. Then,
the output of this neuron will be u; = <p(WjT f) , where f is the aggregate feature map
including all features f; and w; the aggregate weights for the j-th hidden neuron, i.e., all
weights connecting all feature maps with the j-th hidden neuron. Then, output will be given
as:

Y@ =o(v" -u ) = @z, (1) (6)
where u includes all outputs u; of the » hidden neurons and v the aggregate r weights
connecting the » hidden neurons of the classification layer with the output neuron. In Eq. (6),
z,,(n) expresses the input of the final output neuron before applying the activation function
@ (). Here we have assumed that, without loss of generality, the classification output consists
of one neuron. Extending to multiple output neurons is simple. In Eq. (6) we have added the
dependence of the classification output y,, (n) on network weights w, estimated by a training

process.
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6.2.2. Adaptive TDL-CNN

The main limitation of the TDL-CNN is that it assumes a stationary stochastic non-linear
relationship of the input data with the classification output. However, this cannot be the case
in real-world application scenarios, as in a modern critical infrastructure monitoring setting,
due to the dynamic nature and complexity of the system, and the elaboration of potential
attacks. Therefore, adaptation strategies are required to recursively update the model’s
behavior through appropriate weight modification to fit the changing environmental
conditions.
Let us denote as w() all the weights of the classification layer before the adaptation, and
w®) the respective weights after the adaptation. Then, we assume that these weights are
related via a small perturbation factor dw: w® = w® + dw. It is clear that estimation of
the new weights w® is equivalent with the estimation of dw. To calculate dw, two
complementary types of constraints are considered: discriminative and generative
constraints.

The discriminative constraints model the current statistics of the input-output
relationship that fit current environmental conditions. In particular, we assume that a training
set S.={(x;(n), t;(n))} includes pairs of input-target relationships at a time instance ». Input
data x;(n) express fused information from multiple modalities, while targets t; are
supervised (desired) outputs, provided by water utility experts. Then,

Y ,n+1) =t(n), V(x,t;) €S, (8a)
or z,,n+1) =@ 1(t;(n) =d;, V(x,t) €S,. (8b)

Eq. (8) means that the small weight perturbation is estimated so that the current
collected data (by set S.) are trusted as much as possible. By applying perturbation theory
and particularly a first order Taylor series expansion on the last classification layer of the

network we can conclude to a linear relationship for dw:

cin+1) =A4;-dw )
where c;(n+1) =z,»(x;,n+ 1) — z,0)(x;,n + 1) is the classification difference before and

after the adaptation, A; is only related with the previous network weights w(®).
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The generative constraints model the effect of the already obtained knowledge on
weight updating, yielding to stable adaptation solutions. Previous knowledge is modelled by
a set S, of the same structure as S.. The effect of small perturbation dw is expressed by
applying sensitivity analysis. Taking into account both constraints, we conclude to:

E=2dw' )" -Js,-dwVi€S, (10a) subjectto c(n+1)=A4;-dw,Vi€S,  (10b)

where Js, expresses the Jacobian matrix over set S,. The aforementioned constraint

minimization consists of a convex term (see Eq. (10a)) subject to a linear constraint (Eq.
(10b)). Iterative methods are applied for solving (10), such as the reduced gradient method
[72].

6.3. Experimental evaluation

6.3.1. Experiment setup
The dataset used to evaluate and validate the proposed methods has been captured as part of

the EU Horizon 2020 STOP-IT project (https://stop-it-project.cu/), a research initiative that

addresses the protection of critical water infrastructure and that includes as consortium
members eight (8) water utilities from Spain, Israel, Germany, and Norway that are
responsible for providing water distribution services in more than ten million citizens in
total.

The dataset consists of RGB and thermal camera streams, data from WiFi reflectance based
detection and ICS data. In particular, the RGB data were captured using using OB-500Ae
cameras with a 1280x720 pixels resolution and a 30 fps framerate. The thermal data were
captured using Workswell InfraRed Camera 640 (WIC) with a 640x512 pixels resolution
and a 30 fps framerate. To acquire WiFi signal reflection data, two WiFi devices were used.
The WiFi router (TP-Link N300 TL-WR841N) implements the 802.11n standard, used to
retrieve the CSI information. For the receiver, Intel's 5300 NIC was plugged in to a standard
laptop. This setting allows data capturing at 10 sec intervals. Finally, the ICS sensing data
consist of information from water infrastructure SCADA systems and include the pressure
of two pumps, suction pressure, discharge pressure, and the water level from a water tank.

The computer used for all training and testing was an Intel® Core™ 17-6700 CPU@ 4000
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GHz CPU with 16GB of RAM and an NVIDIA GeForce GTX 1070 with 8GB DDRS5
memory. The deep learning models also used the CUDA 9.2 Toolkit.

Data are labeled based on pre-determined scenarios co-defined by end users, i.e. water
utilities, that designate: normal behavior, cyber attacks (on ICS sensors), physical intrusions
(including tracking of suspicious movements in secured areas from the RGB and thermal
cameras, as well as intrusions not captured by cameras but detected from WiFi reflection)
and a combination of both cyber and physical attacks (notated in the dataset as cyber-
physical attacks). All data are normalized so as to be in the same range, i.e. from 0 to 1. The
dataset consists of 5 days of data, including individual attacks per modality, so that the
dataset is sufficiently representative of attack patterns. The ICS modality includes 24
instances of hour-long attacks. The RGB, thermal and WiFi modalities, were all captured
simultaneously. They include 20 different instances of attacks, spanning in duration from 2
to 20 minutes of consecutive suspicious behavior.

Regarding the details of the proposed TDL-CNN model, it is implemented through (i) the
TDL input layer, (ii) the convolutional/pooling layers and (iii) the classification layer. The
input layer receives the current data (RGB, thermal, ICS, and WiF1i) along with tapped delay
responses over previous times. It includes three Convolutional/Pooling layers with a
convolutional, ReLU and a Max pooling component. Finally, the classification layer consists
of one fully connected hidden layer and one output layer. The first convolutional layer
consists of 32 filters with a filter size of 5x5x4 (three RGB channel plus one thermal channel;
the remaining modalities are added as additional rows over all four channels), the second
again of 32 filters of size 5x5x32 (since 32 filter kernels are produced by the first
convolutional, ReLU and Max pooling component) while the third of 64 filters of size
5x5x32. The stride for the convolution for all layers is 1x1 while the polling stride is 2x2.
Finally, the classification layer consists of 64 hidden neurons and 4 output neurons. The
input size of the TDL-CNN is 640x524x4 (640x512x3 for the RGB, one additional
640x512x1 for the Thermal and 12 additional rows of data for the ICS and WiFi modality).
The feature map produced by the convolutional/pooling layer is 576.
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6.3.2. Results

We have conducted extensive experiments to evaluate the efficacy of the proposed approach
and showcase the contribution of each one of its core components, i.e. fusion from multiple
data modalities, deep learning, and finally autoregressive and adaptive capabilities.
Regarding the significance of data modalities utilised for attack detection, Table 7 shows the
classification performance in cases where only one information modality is taken into
consideration: (i) visual (RGB and thermal), (ii) WiFi signal reflection, or (iii) ICS sensing
modality. Four different classifiers were used: a linear kernel SVM, a non-linear Radial Basis
Function (RBF) kernel SVM, a Feedforward Neural Network (FNN1) with 1 hidden layer
of 10 neurons, and another FNN2 with 2 hidden layers of 10 neurons/layer. Classification
performance is measured through five objective metrics, namely Precision, Recall, False
Positive Rate (FPR), Accuracy and F1-Score. As is observed, the classification performance
is low when data from a single modality are used as input. We also observe that the
classification performance on ICS sensing and WiFi signal reflection modality is almost the
same over all classifiers. This is mainly due to the fact that simple data taken from
interconnected sensors of a water utility do not suffice to lead to detection of complex
unusual activity and combined cyber-physical attacks. In all results of Table I, we have
assumed that the autoregressive and moving average window (p, g) of past time instances is
100 frames long (henceforth referred to as “long memory” case).

Table 8 depicts attack detection performance in case that fused data across multiple
modalities are used as input (again, for the “long memory” case). In this case, apart from the
“shallow” machine learning models mentioned above, deep learning schemes are
additionally employed. In particular, we scrutinize the effectiveness of: a Long Short-Term
Memory (LSTM) deep recurrent neural network, a conventional Convolutional Neural
Network (CNN) and the proposed Tapped Delay Line CNN (TDL-CNN), as well as the
adaptive versions of CNN and TDL-CNN. As is observed, data fusion from all three
modalities significantly improves classification rates even in the case of shallow classifiers.
Moreover, performance rates improve significantly when deep learning schemes are utilized,
which highlights the representational power of the models and their suitability for the

discussed critical infrastructure monitoring application. We also notice that the proposed
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TDL-CNN, i.e., a CNN network with autoregressive-moving average properties, yields the
best performance in terms of all metrics (barring its adaptive version, which will be
elaborated on later).

Table 8 shows the execution times (per 100 frames) for the multimodal configurations. As
can be observed, the proposed adaptive TDL-CNN’s execution time (1.36452 sec per 100
frames) is only a little higher than that of the plain CNN (0.91556 sec) and the shallow
models, although its respective classification performance is higher. In all cases, the
processing time remains lower than 25 frames/sec, i.e., less than 40 msec per image frame.
It is also observed that the proposed adaptivity mechanism minimally increases the execution
time. Training of deep learning is of course computationally more demanding compared to
conventional methods (it takes approximately 1.2-1.8 hours to train shallow models, as
opposed to 7-7.5 hours for LSTM and CNN frameworks, and around 15 hours for TDL-
CNN). However, the training process is an offline process that only takes place once; then
the adaptability of the proposed self-configurable scheme readjusts the network parameters

to better fit new behavior instances, thus obviating the need for a new retraining phase.

Table 7. Classification performance metrics for experiments using a single data modality (visual, WiFi signal reflection,

ICS sensing). Four different classification methods have been examined.

Classification Method Precision Recall FPR Accuracy F1 Score
Visual Modality
SVM-Linear 40.02% 27.42% 29.57% 52.43% 32.55%
SVM-RBF 25.98% 26.34% 54.00% 37.78% 26.16%
FNNI1 35.04% 41.35% 56.16% 43.38% 37.93%
FNN2 40.21% 59.98% 64.16% 45.94% 48.14%
WiFi Signal Reflection Modality
SVM-Linear 22.06% 24.59% 62.50% 32.10% 23.25%
SVM-RBF 22.42% 24.68% 61.45% 32.74% 23.50%
FNNI1 22.03% 26.34% 67.09% 30.16% 23.99%
FNN2 22.84% 26.21% 63.69% 32.08% 24.41%
ICS Sensing Modality
SVM-Linear 29.37% 31.30% 54.15% 39.76% 30.31%
SVM-RBF 29.37% 31.30% 54.15% 39.77% 30.31%
FNNI1 29.37% 31.30% 54.15% 39.76% 30.31%
FNN2 29.37% 31.30% 54.15% 39.76% 30.31%
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Table 8. Classification performance metrics and execution times (per 100 frames) for experiments using fusion of all
modalities (visual, WiFi signal reflection, and ICS sensing).

Classification Method Precision Recall FPR Accuracy F1 Score Execution
Time (per 100
frames)
“Shallow” Models
SVM-Linear 59.04% 62.71% 31.30% 66.19% 60.82% 0.72897 sec
SVM-RBF 43.19% 50.14% 47.45% 51.54% 46.40% 0.75852 sec
FNNI1 49.08% 64.68% 48.29% 57.14% 55.81% 0.89652 sec
FNN2 51.49% 63.94% 43.35% 59.70% 57.04% 0.92356 sec
Deep Models
LST™M 70.38% 62.63% 18.97% 73.33% 66.28% 0.90547 sec
CNN 74.20% 71.20% 17.79% 77.60% 72.68% 0.91556 sec
Adaptive CNN 75.14% 74.72% 17.79% 79.08% 74.93% 0.95667 sec
TDL-CNN 84.45% 78.77% 10.44% 85.04% 81.51% 1.36448 sec
Adaptive TDL-CNN 85.41% 84.92% 10.44% 87.62% 85.16% 1.36452 sec

In the sequel, the effect of the autoregressive — moving average property is examined for the
multimodal fusion experimental setting. Figure 23(a) depicts the respective effect in case
that shallow learning classifiers are exploited, whereas Figure 23 (b) illustrates the same
results when deep learning schemes are employed. For all cases, as the length of the memory
window increases, better performance rates are noticed, but a saturation in the improvement
is also encountered. Deep machine learning classifiers yield better performance than the
conventional shallow ones as is also shown from Figure 23 (b) where the best performing
shallow classifier (FNN2) is overlaid with the deep learning schemes.

The same autoregressive — moving average performance is noticed for the unimodal visual
case (see Figure 24(a)) but reaching far lower classification rates than the multimodal case.
However, in the case of unimodal WiFi signal reflection and ICS sensing data, the
autoregressive — moving average effect is minimal and the results are constant regardless of
the memory window length used. This is clearly shown in Figure 24 (b), in which we
compare the effect of the memory window length on the F1-score for each one of the three
unimodal settings in the case of SVM-Linear and FNN2 (feedforward neural network with

2 hidden layers and 10 neurons/layer).
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Finally, Figure 25 shows how the proposed adaptive scheme can further improve the
performance of both the conventional CNN and, more importantly, the proposed TDL-CNN
model, which attains an overall accuracy of 87.62% and a Fl-score of 85.16%. It is clear
that using the adaptation, a small but consistent improvement in all performance metrics is
noticed; this is explained by the fact that the classifier can automatically adjust to the
changing dynamics of the environmental and application-specific conditions, let alone

requiring a very small number of samples for the readjustment process.
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Figure 23. The effect of autoregressive — moving average behavior on the classification performance (F1-
score) in the case of multimodal data fusion using (a) shallow learning classifiers and (b) deep learning ones.
Short memory corresponds to considering 30 previous frames, while long memory corresponds to 100 previous
frames.
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Figure 24. The effect of autoregressive — moving average behavior on the classification performance (F1-score) in case
that (a) data from only the visual modality are used, and (b) data from only WiFi signal reflection or ICS sensing compared
to the respective behavior on the unimodal visual case.
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Figure 25. Performance metrics for CNN and the proposed TDL-CNN, as well as their adaptive versions. Applying the
adaptive scheme improves the classification performance in terms of all metrics examined.

Overall, the successful performance of the proposed model can be explained by a
combination of factors. Intertwining different information modalities offers increased insight
into the complex multi-faceted nature of water infrastructure attacks. These can be
successfully modeled by means of deep learning models, due to the great generalization (as
opposed to memorization) capability of the latter [93]. Furthermore, the autoregressive
property of the proposed TDL-CNN plays a significant role in “smoothening”, i.e. removing
spikes from the output. Finally, the adaptive mechanism endows the model with a
reconfigurable behavior that allows self-adjustment to dynamic settings and thus mitigation

of misclassification error.

6.4. Conclusions

In this chapter, we highlighted the significance of using multiple data modalities, i.e.
RGB, thermal, WiFi signal reflection, and ICS sensor data, as a driver for a cyber- and
physical attack detection. To address the challenges involved, we proposed an extension of
the CNN model, the Tapped Delay Line Convolutional Neural Network (TDL-CNN), which
combines the representational power of deep learning with autoregressive and moving-
average attributes of a NARMA filter. An additional adaptive version of the TDL-CNN was
presented, which allows the model to better adapt to dynamic attack characteristics.

The proposed methods were experimentally evaluated using a dataset captured in the context
the EU H2020 STOP-IT project. The results show that the use of multimodal data fusion leads to

significantly better attack detection rates compared to unimodal approaches; the same goes for deep
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CNNs compared to “shallow” models. Finally, the results indicate that the autoregressive and
adaptive attributes of the proposed multimodal deep model provide clear added value in terms of the

performance rates attained in cyber and physical attack detection.
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7. Unsupervised Approach: Fall detection
in optical and thermal datasets

All the aforementioned techniques are paradigms of supervised learning, where an
annotated dataset is present and helps the training of the deep learning models. However, all
those approaches, even powerful extended deep convolutional networks lack in the area of
generalization. This means that the overall model fails when we “change the scene” of
application, and for each installation, a necessary annotation needs to take place before the
training. To this end, unsupervised approaches, while not offering the same degree of
granularity in terms of action recognition, as the resulting semantic models are cruder than
the fine-tune micro-action identification that can take place with supervised approaches, they
however provide valuable insights in terms of modeling the statistical distribution of various
actions composing this dataset.

This means, that the detection of actions that are not expected to be part of the
composition of the data that are under analysis, can take place by using deep learning
techniques to essentially model the normality within the data. Autoencoder approaches, have
been proven quite valuable in this area. Autoencoders are models that learn to extract
representative features (encoding part) from the input data. These features are selected
during the training process, with the overall learning goal being to be able to use these
features to re-extract the high dimensional input signals (decoding part). The advantage of
these approaches is that we can train the autoencoder using only examples from a normal
situation. Then by simply monitoring the reconstruction error, in an already trained model,
we can deduce the presence of outlier events, simply by the fact that the autoencoder failed
to extract a representation of them.

The first application scenario for the testing of such an approach presented here is a
fall detection scenario, specifically, a man-overboard event. A man overboard is an
emergency incident, where a crew member or passenger of a maritime vessel has fallen off-
vessel in the sea. These types of accidents are more often in passenger ships, where there is

presence of a large number of untrained individuals. It is estimated that 22 people fall off a
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cruise ship annually [94]. Moreover, these incidents have high mortality rates, as almost 79%
of the victims do not survive or are considered missing [94]. The cause of such high motrality
rates is the low speed of detection and retrieval. After an hour in water at 4.4°C, body
temperature drops to 30°C [95]. Thus, it is a critical event that demands immediate handling
as time plays an important role and because the overboard casualty is exposed to various
security risks, such as drowning at sea, hypothermia, injuries and rough sea. It is noted that
the problem lies in the lack of timely and critical information, such as the accurate
confirmation of the event as well as its exact time and position of the occurrence. The
proposed framework (see Figure 26) is based on a spatiotemporal convolutional auto-
encoder, which is trained on RGB video sequences that simulate man overboard scenarios.
We train our network on the normal situation in order to learn efficient data encodings by
ignoring signal noise and then use its reconstruction error to detect man overboard as an
abnormal event during the test process. In parallel, we utilize multiple image proper-ties to
enhance the identification capabilities of the proposed architecture. To the best of our
knowledge, man overboard identification has not been addressed as an anomaly detection

task utilizing unsupervised deep learning techniques.
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Figure 26. Autoencoder System Architecture
The presented system using only RGB video streams to identify overboard falls.

However, the simple use of raw RGB frames is not sufficient for an efficient detection. To
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extract additional data from the visual modality we furtherly analysed the camera streams to
extract specific visual properties, i.e. representative vectors. To this end, the visual modality
is analyzed to extract the actual frame (appearance), the gradient of the frame using a short
memory window of 10 frames (movement vector), the objectness of the current frame
(saliency vector). The Appearance Property consists of the actual frame capturing. The
Motion Property captures the movement of objects by taking as input the gradient of the
frame. Finally, the Saliency Property reflects how likely a window of the frame covers an
object of any category. This property creates a saliency map with the same size as the frame
that covers all objects in an image in a category independent manner.

Each image property was fed into an individual spatiotemporal autoencoder.
Autoencoders are a type of Neural Network that manage to learn efficient data encodings by
training the network to ignore signal noise. Their usefulness comes from the fact that they
are trained in an unsupervised manner. They are essentially composed from two main
components that are trained in parallel. The dimensionality reduction component aims at
extracting an efficient encoding of the input signal, while the reconstruction side tries to
generate from the reduced encoding a representation as close as possible to the original input.
To identify the abnormalities, the reconstruction error of each autoencoder was monitored,
and when the error was bigger than a predefined threshold, an alert was raised. The selection
of the threshold took place during the training, to identify the exact value that maximized
detection performance.

The autoencoders used for each image property had the structure presented in Figure
27. Each RGB frame for the appearance vector was reduced to a grayscale image with a
resolution of 227x227x1. A 10 frame batch was used for the analysis. Each autoencoder had

the structure presented in Figure 28.
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Figure 29. Individual Autoencoder Structure

7.1. Stacked Convolutional Autoencoders for Feature
Extraction

The property cubes Px generated by the aforementioned property operators are
usually sparse tensors containing redundant information. For this reason, a stacked
convolutional autoencoder [31] has been utilized for compressing the tensors Pk, acting as
an intra-property compression scheme. In this chapter, we chose convolutional autoencoders,
instead of the traditional neuron-based models, since convolutional filtering is more suitable
for processing and analysis of multidimensional imaging signals.

A convolutional autoencoder is trained so that its target output coincides with the
autoencoder input itself, resulting, therefore, in an unsupervised learning paradigm, since
labelled (annotated) data are not required during the learning process. It has, in general, two
main parts; the encoder which is responsible for compressing the image data through
learning and the decoder with the main purpose of best reconstructing the input signal from

the compressed, encoded data.
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Figure 30. Structure of the encoding part of a stacked convolutional autoencoder
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Figure 31. Structure of the Convolutional Kernel Operator

Let us denote, in the following, as L the number of encoding hierarchies of the model.
As in the traditional autoencoders, where each hidden layer is constructed by a number of
neurons, processing the input signal through an inner product operator, the encoding layer
of a convolutional autoencoders is constructed by a number of convolutional kernels. A
convolutional kernel of an encoding layer performs three main types of operations; a
convolution, a function activation and a max-pooling. Figure 32 presents the architecture of
the encoding part of a stacked convolutional autoencoder, while Figure 33 the main
operators of a convolutional filter, which is the heart of the autoencoder.

First, the input signal is convoluted with a filter kernel, defined by a set of weights

Wi(l) . In this notation, Wl-(l) refers to the i-th convolutional filter of the I-th encoding layer.
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Then, the convoluted image is fed to a non-linear activation function, performing value
adjustment through pixel-based processing.

Finally, a max-pooling operator is considered which is responsible for the
compression (down-sampling) of the input data. Therefore, the output of a convolutional

kernel is

g = o(w®*C(L-1)

i

¢ = max (gi(l)),l =12..,L (1)

t pooling
In Eq.(1), the operator ’+’ corresponds to the convolution between the input signal C(/ - 1)

and the filter Wl.(l) . The o(+) refers to the non-linear activation function. Example of o(-) are

the sigmoid, the hyperbolic tangent, and the rectified linear unit (ReLU) functions. Tensor

Ci(l) refers to the final output of the i-th kernel at the I-th encoding layer. Finally, tensor C(I

—1) refers to the input signal of the convolutional kernel.
O]

Actually, the tensor ¢;~ is a codeword or a representation of the input signal Py at the I-th

)

encoding layer derived by the convolutional kernel Wl-(l . Gathering all these individual

D

codewords ¢;” , together, we form a codebook representation C(I) of the input signal Py at

the I-th hierarchy:

c) =P, e, (@)

l

It is clear that C(I = 0) = Pxsince at this layer no compression is encountered. In Eq.(2), Qiis
a scalar denoting the number of convolutional filters at the I-th encoding layer. A codebook
C() is propagated at the next encoding layer feeding as input the convolutional kernels of
the next hierarchy. Therefore, a hierarchy of codebooks are created C(1),C(2),---,C(L).

The convolutional kernels of the network, which are used to compute the codebooks C(I) of
Eq.(2) are estimated through a learning process so that the codewords are optimally

reconstruct the input signals. That is,

Ec=[Pi- AACD]2 3)

87



where || - ||2represents the mean square error and f{-) is a non-linear function of the decoder
part of the autoencoder modelling through inverse convolutional operators of the encoder.
Since the convolutional autoencoder has L encoding layers, the codebook used for

representing a property Pis the one derived from the last encoding layer Ck(L).

7.2. Evaluation

7.2.1. Dataset Description
To train and evaluate the proposed methodology, a mock man-overboard event was
conducted that concerned the fall of a human-sized dummy from the balcony of a high-rise
building. In particular, the human dummy (see Figure 34), weighting 30 Kg, was thrown
from an approximate height of 20 meters, which is roughly equivalent to two seconds of

free-falling.

LR W

Figure 34. The human-sized dummy that was used during the test throws.

For the needs of the experiment, we made 320 test throws of the dummy, to simulate a man-
overboard event [see Figure 35(a)-(d)]. Additionally, we recorded several videos without
dropping the dummy as well as numerous throws of various objects, such as plastic bags and
bottles [see Figure 35(¢)-(f)]. This way we can implement deep learning models that are not

prone to false-positive alarms, triggered by non-human-related events.
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(a) (b) (© (d) (e) ()
Figure 35. Test throws during the data collection experiments. The free fall (a)-(d) of the human dummy from
different shooting angles (positive event), and various other objects such as (e) plastic bags and (f) bottles
(negative event).

The experiments took place in the surrounding area of Nikaia Olympic Weightlifting Hall,
and lasted five days. Due to the fact that the test throws were carried out throughout the
whole day, from 9:00 AM to 5:00 PM, the acquired videos vary in terms of illumination
conditions (e.g., underexposure, overexposure). Additionally, we shot under various weather
conditions (e.g., sunny, cloudy, rainy, windy, hot, cold), thus providing further variations in
the background of the event.

Here, we are using a dataset consisted of RGB videos featuring the free falls of the dummy
(see Figure 35(a)-(d)). For the dataset collection, which contains video sequences with a
resolution of 1080x1920 pixels, we used a GoPro Hero 7 Silver (see Figure 36). The camera
was set to shoot at a high frame rate, at 50 frames per second, to ensure sufficient acquisition
of data that concerns the critical event. The dataset of this work is available online at:

https://github.com/ikatsamenis/Fall-Detection/ (accessed date 20 September 2022).
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Figure 36. The RGB optical sensor, which was used during the data acquisition experiments to monitor the
test throws of the human dummy, mounted on the building.

It is underlined that to avoid training bias and guarantee replicability of the results to other
datasets, we placed the sensor in four different locations of the building, in order to obtain
data that vary in terms of background, illumination, shooting angle, and distance [see Figure
35(a)-(d)]. In particular, as depicted in Figure 37, we placed the RGB camera (i) on the left
of the fall at a close distance of 7m [see Figure 35(a)], (ii) on the right of the fall at a close
distance of 5m [see Figure 35(b)], (iii) on the top left of the fall at an angle of roughly 45°
[see Figure 35(c)], and (iv) to the left of the fall at a long distance of 13m [see Figure 35(d)].
It is emphasized that to further generalize the learning procedure, we augmented the training

data by horizontally flipping the corresponding videos.
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Aot

Figure 37. The four locations of the building where the opticai sensor was placed, during the data acquisition
experiments.

7.2.2. Model Training

The proposed method was implemented in the interactive environment called "Google
Colaboratory", which allows the user to write Python codes through a browser. In this
environment, important libraries are already installed, such as Tensorflow and Keras. This
specific implementation used Python 3.7.12, Keras (1.08), and Tensorflow (2.1.0) machine
learning libraries, in combination with various scientific and data management libraries. The
model was trained using Tesla K80 GPU.

In order to train the model, a preprocessing stage was necessary. Preprocessing began with
the separation of the RGB video data into the train and test set. No falling action data were
used for the train set, while falling action data were used for the test set. Subsequently,
frames were exported from the video data. These frames were resized and turned into gray
scale, in order to train the autoencoder model.

Then, the training process was initiated by only using the data that had no falling action.

These data constituted normal data. The test data were used for predictions after the training
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process. In order to study the most useful camera placement, two models were trained; the
first model was designed for the horizontal view and the second one for the 45-degree angle
view of the camera.

For comparison purposes, a supervised learning method was created, which consisted of a
classifier code. In this method, the same data as in the unsupervised learning method were
used, but the falling and no falling data were combined to the training process. More
specifically, 60% of the entire dataset was used for the train set, 30% for the test set and 10%
for the validation. In this method, the same preprocessing concept was followed and the
focus was on the best camera placement, as in the unsupervised learning method.

The performance of the proposed method was tested in the dataset described in section 4.1.
We started with a simple autoencoder over the appearance property, and tested its
performance from multiple angles and compared it with a simple CNN classifier. For this
purpose the model was trained on videos representing the normal condition, i.e. falls with
zero numbers of falls in them. The testing of the performance took place using the falls and
an equal number of frames depicting the normal condition.

The Area Under Curve (AUC) metric was employed in evaluating the performance of the
proposed method. The AUC is computed with regard to ground-truth annotations at the
frame-level and it is a common metric for many abnormal event detection methods. In this
work, it was used to measure the ability of the learning algorithm to correctly distinguish
falling from no falling events and summarize the Receiver Operating Characteristic (ROC)
curve of the system. The ROC curve constitutes the probability curve that plots the raising
of a true alert (true positive rate) and a false alarm (false positive rate) at various thresholds.
The proposed algorithm achieved an AUC score of 100% for the horizontal view model and
59% for the 45-degree angle view model. The horizontal view model showed an excellent
measure of separability. On the other hand, the 45-degree angle view model showed no class
separation capacity. The AUC score proves that the horizontal view is the most suitable
placement for the camera. The performance of the system using these metrics can be viewed

in Figure 38 and Figure 39.
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Table 9. Performance of the unsupervised autoencoder approach for the different positions of the camera

Autoencoder Accuracy Recall Precision F1
horizontal view 0,613475 0,613475 0,782 0,545585
45-degree angle 0,5 0,5 0,25 0,333333

view

Table 10. Performance of a supervised classifier for the different positions of the camera

Classifier Accuracy Recall Precision F1
horizontal view 0,428571 0,375 0,25 0,3
45-degree angle 0,5 0,5 0,25 0,33333

view

Metrics which consisted of accuracy, recall, precision and F1 score, were employed for the
evaluation of the two methods. In order to compute these metrics, it was necessary to
calculate True Positive (TP), True Negative (TN), False Positive (FP) and False Negative
(FN) values. These values can be displayed through the Confusion Matrix. Confusion Matrix
is a special table layout that allows visualization of the method performance. Each row of
the matrix represents the instances in an actual class and each column represents the
instances in a predicted class.

Regarding the autoencoder metrics, the low percentage of the metrics lies in the fact that the
labeling rate is low. The fact that the precision metric is high-scoring shows that there is a
negligible quantity of FP values, which means that we had the minimum amount of false
alarms. Concerning the placement of the camera, the horizontal view has proved to be the
most suitable.

It is clear, considering the low percentage of the metrics, that a supervised learning method
is inadequate for the purpose of this application scenario. The performance of the metrics is
shown in Table 9 and Table 10. The comparison of the performance of the classifier and the

autoencoder can be seen in Figure 40.
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Figure 40. Comparative analysis unsupervised vs supervised approach for both capturing angles

From the analysis above, we see that an autoencoder model analyzing streams from the
horizontal view angle, we provide the optimal results. These however still fail to achieve
performance that can be considered sufficient for using it in real world scenarios. To this
end, we mobilise an additional set of autoencoders over the additional image properties as
seen in Figure 41.This increases the AUC score significantly, achieving and AUC of 97.3.
Based on the same annotation that was used for the comparative analysis of the autoencoder
and the classifier in Figure 40 we can assess the performance of the multiple autoencoder

method. This can be seen in Figure 42.
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Figure 42. Performance of multi-autoencoder approach

7.3. Conclusions

In this chapter, man overboard detection was formulated as an anomaly detection problem.
We presented and evaluated an unsupervised learning algorithm for the automated
recognition of such critical events, which is based on a spatiotemporal convolutional
autoencoder. The employed technique models the normal conditions of the perimeter of the
ship by learning the spatial and temporal features from the input video frames during the
training stage and then identifies falls as abnormal behavior.

More specifically, the proposed framework uses multi-property (i.e., appearance, gradient,
and saliency) analysis of RGB video streams in order to extract salient features and
encodings of the normal scene utilizing a set of spatiotemporal convolutional autoencoders.
Subsequently, the system can recognize a man overboard situation depending on whether
the autoencoder is able or not to reconstruct a scene due to the potential existence of an
abnormal event. Furthermore, to train and evaluate the performance of the proposed method,
a dataset containing RGB video sequences with test throws of a human-sized dummy from
the balcony of a high-rise building was demonstrated. The proposed multi-property
spatiotemporal autoencoder achieved state-of-the-art results and, in particular, 97.30%

accuracy and 96.01% F1-score on the test set of the presented dataset, surpassing other state-
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of-the-art approaches, such as a single autoencoder, over the appearance property and a
conventional CNN classifier. This entails a relative change in the error rate of 93.01% and
87.23% in terms of the accuracy and the Fl-score, respectively. Therefore, through the
proposed expansion of the autoencoder in such a way that it utilizes multiple image

properties, the obtained error rate was roughly decreased to 1/10 of its original value.
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8. Unsupervised  Approach:  Outlier
detection 1n datasets including numerous
simultaneous actionss

As stated before, even in the simple binary classification of actions (such as a normal
abnormal paradigm presented in the previous chapter), there is difficulty in that the definition
of an abnormal event is not always clear. What is an abnormal event is vague and tough to
model. For this reason, the abnormal event detection problem is modeled as outlier detector.
The main difficulty of applying an outlier scheme for abnormal event detection is that these
methods are usually adopt a common global model for representing the whole normal space.
However, usually normality consists of several sub-activities each one having quite different
characteristics. Therefore, their modelling through a common model is not efficient.

For the technique presented in this chapter, we handle the abnormal event detection
problem as an unsupervised learning paradigm. However, the limitations of the unsupervised
approaches for abnormal event detection are the following: First, the number of clusters that
a normal space is partitioned to, is a priori given an assumption which it is not valid in real-
life application scenarios. It is clear that the sub-activities of the normal space are application
dependent and therefore the number of clusters are highly related with the scenario. Second,
the models assume no interrelations for events across different clusters (the sub-activities of
the normal space), conditions that are also not valid for real-life cases. To address these
difficulties, in this chapter, we introduce a framework for intra and inter property (feature)
encoding to take into account property interrelations. In particular, we adopt convolutional
autoencoders for compressing the video information at different property (feature)
dimensions. Then, we introduce unsupervised tensor-based models for compressing the
inter-property information resulting in a more compact normal space representation,
increasing, consequently, the abnormal event detection performance. The overall proposed
architecture for the abnormal event detection scheme is presented in Figure 43.

The technique presented here uses a two-fold scheme towards unsupervised

abnormal event detection; the Intra and Inter-Property Encoding. In this way, we eliminate
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the correlated information within and across image property features of video frames. Intra
property encoding is implemented through auto-encoders as in the previous chapter, while a
novel tensor-based unsupervised learning model is utilized as far as inter-property encoding
is concerned. The current approaches, such as the work of [53], adopts a simple
concatenation mechanism for fusing the intra-property compressed latent features. However,
such an approach inherently implies that each property representation is independent from
each other, an assumption which it is not valid. For example, the gradient property is highly
correlated with the appearance as well as the saliency property. To address this difficulty, in
this chapter, we introduce an alternative approach for fusing the intra-property compressed
latent features together using a tensor-based unsupervised learning model. Tensor-based
learning 1) addresses the assumption that the partitions of the normal event space are a priori
known and ii) reduces the dimensionality of space removing the inter-relationships across
different properties. Tensor learning compacts the normal space partitioning, increasing the
performance and generalization of the abnormal event detection. Figure 43 presents the

proposed methodology consisting of two main parts; the intra and inter property encoding.

Intra-Property Encoding: Stacked of Auto-Encoders Fusion Inter-Property Encoding: Unsupervised Tensor based Learning
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Figure 43. Proposed twofold architectures for abnormal event detection

8.1. Intra-Inter property encoding

8.1.1. Property Representations

Let us first denote as I € RV*Man image frame of NxM dimension. Let us also denote as Is €
RNxMxk 3 sequence of k consecutive image frames of I. A property, in this research, refers to

a two-dimensional image operator applied on the stacked of image frames Is generating an
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image cube as its output. In other words, a property refers to a feature of an image sequence
capable of transforming the raw image pixels into a more meaningful semantic information.
We denote as P; € RV*M=kthe property image cube (e.g., a 3D tensor) which is generated by
applying the i-th property operator on I;. Let us also denote as K the number of image
property operators used. Here, three image properties are considered (K = 3); the
appearance, the gradient and the saliency. These properties are the same that were described
in the previous chapter, i.e. Appearance (actual video frame), Motion (gradient of the frame),

and Objectness (saliency map of the frame).

8.1.2. Intra Property Encoding using spatiotemporal autoencoders

The first part of the proposed methodology includes a set of convolutional auto-
encoders each associated for an image property. The purpose of these auto-encoders is to
reduce the redundant information of a property extracting key property components in a
hidden (latent) way. Here, three image properties are considered; the appearance, the
gradient and the saliency.

The first two property features are in a similar line with previous works such as of
[96], while saliency property is extracted to make our abnormal event detector more generic
to different event types. The Appearance Property consists of the actual frame capturing.
The Motion Property captures the movement of objects by taking as input the gradient of the
frame. Finally, the Saliency Property reflects how likely a window of the frame covers an
object of any category. This property creates a saliency map with the same size as the frame

that covers all objects in an image in a category independent manner.

8.1.3. Inter Property Encoding using tensor-based unsupervised learning
The current approaches, such as the work of [53], adopt a simple mechanism for fusing the
intra-property compressed latent features Cx(L), by just concatenating the derived codebooks
one after the one. However, such an approach inherently implies that each property
representation is independent from each other, an assumption is not valid. For example, the
gradient property is highly correlated with the appearance as well as saliency property. To
address this difficulty, we introduce an alternative approach for fusing the intra-property

compressed latent features as the outer product across all the compressed codebooks Ck(L).
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In particular, let us first vectorize each Cx(L) and let us denote this vectorized signal as xx, k
= 1,---,K. We recall that three property operators are considered, and thus K = 3. Then, the
fused property feature

X=X1°X2°"'°XK (4)

is derived as the outer product over all xx. Therefore X € Rév*dx where diis the number of
elements of the vectorized signal xx.
While the outer product generates all possible correlations among the compressed property

features (and therefore, it handles the issue of inter-relationships among them), it has the
limitation of producing quite large tensors of high redundant information, confusing the
direct application of an unsupervised clustering algorithm (e.g., c-means) for normal space
partitioning. To overcome this difficulty, we introduce a novel tensor based unsupervised

learning, with the main purpose of compressing tensor X.

The Inter-Property encoding part is also an autoencoding structure. The main difference is
that we now involve nonlinear neuron operators, implementing as an inner product of the
neuron weights and the input signal instead of convolutions. This is mainly due to the fact
that the convolutional kernels are more suitable for processing image data. Instead, the
neuron operators are more suitable for processing tensorbased data [96] as X.

Therefore, the inter-property encoding model consists of an inner-product tensor
autoencoder where its input and output coincide with the tensor X. Below we define the
tensor algebra operations utilized by the tensor autoencoder and then we describe rigorously

the autoencoder’s architecture.

Mode-n product. The mode-n product, C = X x, B of a tensor X € Ré»*drand a matris B €
Raxdx yields a tensor C € Raix--xdn—1xgxdntix-xdK -

Tucker decomposition. The Tucker decomposition provides a factorization of a tensor X €
Rd:ixxdk into a core tensor G € R%**dxand factor matrices B™ = [bin),bén), ...,biq") €

R%%4n_and can be expressed as follows:

q1 4k
X =G %, BO x, B® .. x, B® = z z G (b 0P 0 .0 b)) (5)

i=1ig=1
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where gi...iis the element of the core tensor G indexed by i1,iz,*,ix.
The tensor autoencoder is a fully connected feedforward neural network, however, its

weights at each layer satisfy a Tucker decomposition; see (5). n particular, the weights W;of

the 1-th hidden layer can be expressed as
W, =1, x; WD s, WP e w5 (6)

where | is the core tensor all elements of which are equal to 1.

The information is propagated through the layers of the tensor autoencoder in a sequence of
projections and nonlinear transformations. Due to (6), the tensor autoencoder at each layer
projects tensor objects from a tensor space to another tensor space. Formally, a tensor sample

X € Rdr-xdkjg projected to another tensor space by
T
1 2 K
Zy = X % WOV ¢, )T oxe (W S) ()

where

@ [CONED @

VVl(k) € ]qul *dk and Z, € ]qu1 xqy" X-"qul . q](,l)

is the rank of the decomposition along mode k and the superscript denotes that this
decomposition takes place on the I-th layer of the tensor autoencoder. Then Z1 passes through

the first hidden layer of the autoencoder, which applies the following nonlinear

transformation

Hi=o0 ( A ) ( 8 }
on it. The same pattern is used to propagate the information from the /-th hidden layer to the

next one. Initially, the tensor object H;is projected to another tensor space by Z;,; =

©ON: ©N )" , : ~
Hy Xy (Wi1)" Xo W) o Xy (W1+1) and then the nonlinear transformation Hp1 =

0(Z1+1) is used to produce the output of the (I + 1)-th hidden layer.
Let’s assume that the autoencoder has L hidden layers. Then the dimension of the
weights Wl(k) for the last hidden layer will be (dx X a")) for k = 1,--- K. This way the input

and the output of the tensor autoencoder are forced to have the same dimension. Let us denote
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by X the output of the tensor autoencoder. Then, its weights are optimized via

backpropagation by minimizing the following reconstruction error

Ee=[IX—X]] 2 *)
where || - ||2 stands for the mean squared error.
The tensor autoencoder consists of two parts: the encoder and the decoder. The encoder,
from layer to layer, reduces the dimension of the input, while the decoder increases the
dimension so as the output of the autoencoder has the same dimension as the input. This way
the autoencoder produces an information bottleneck which, when used in conjunction with
the loss in (9), forces the encoder to learn input representations in a lower dimension that

capture the most important aspects of input’s information.
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Figure 44. The tensor based learning algorithm adopted in the unsupervised tensor based network

8.1.4. Unsupervised Tensor —based Learning
Let us assume that we form a neural network-based auto-encoder, in which its inputs/outputs
coincide with tensors X. Each neuron implements a non-linear relationship g(-), relied on
the sigmoid function. We also assume that we have O neurons at the hidden layer. The input
X is weighted through parameters w; and the inner product < w;, X > is given as input to

g (). The response of the i-th hidden neuron is
w=g(<w;, X>) (2
weights w; are tensors since the input X is a hyper-cube.

In Eq. (2), tensor u; is a transformed version of X at the i-th hidden neuron. The decoder part

receives as input the compressed signal u; and transforms it to an output signal which should
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be as close as possible to X. In the decoder, tensor u; are first weighted by parameters v and
then are inputted to neurons to generate an estimate X of X.

X=<y, g<v, u >) > 3)
In Eq. (3), y denotes the parameters that weigh the outputs of the decoder to produce
estimates of X. Since the network weights are huge due to the outer product, a tensor-based

unsupervised learning is proposed for reducing significantly its parameters and consequently

the number of data samples.

8.2. The Rank-1 Canonical Decomposition of Network
Parameters

Let us assume that the weights w; are rank-1 canonically decomposed into the weights
wi, Wi, ...,wp, where wP refers to the D-th rank-1 canonical decomposition of the weight

w;. Therefore, we have that

wi=w?®..Qw 4
In Eq. (4), the & refers to the Kronecker product of the tensors w}, w7, ..., w/ . Using tensor
algebra, the inner product of < w; - X > can be written as
<w, X>=<w?Q®.QwlXx>=<w/, X;,> (O

where X,; is a transformed version of the input signal X independent from the /-th rank-1
canonical decomposition w}. More specifically, the X, is given as

X0 =XW2 O .. witowit. .ow)) (6
In Eq. (6) the © denotes the Khatri-Rao product in tensor algebra. Using Eq. (5) and (6) one
can re-write the encoding part of Eq. (2) as

u = g(<wi, X >)=g(<wf, Xy >) (7
In a similar way, we can re-write the decoding part of the network using rank-1 canonical

decomposition.
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8.2.1. The Learning Algorithm
Using Eq. (7) we are able to train the network with a significant reduction in the number of
its parameters. We initially fix all the weights w}, w7, ..., w? apart from the /-th. This way,
the transformed version X,; is computer from Eq. (6). Then, using the backpropagation
algorithm, we update only the weight w} to minimize the error so that network output
resembles as much as possible the respective inputs. Therefore, network parameters are
solved in an iterative way with respect to one of the D canonical decomposed weight vectors,

assuming the remaining fixed.

Normal Activity Space
Partitioning

Input Signal
1
Q.
Intra - Property Inter - Property AbEr:gnTal
Compression Compression

Figure 45. Our approach for abnormal event detection as outliers of normal space partitioning by the
unsupervised tensor learning.

The output of the encoding part of the unsupervised tensor-based learning module is used to
partition the normal activity space into sub-groups. This is depicted in Figure 46. Therefore,
a way for detecting an abnormal event detection compared with a normal activity is to
compare the event with respect to its distance to the normal activity space. In case that the
reconstructed error with respect to the normal activity subgroups (representing by the tensors

u;) is high the event is considered not normal and therefore abnormal.

8.3. Experimental evaluation

The proposed method was tested using two popular benchmarking datasets, namely

the Avenue [97] and Shanghai Tech [103]. The Avenue dataset includes 16 training videos
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and a total of 15,328 frames as well as 21 test videos or 15,324 test frames. For each frame
ground truth locations of anomalies are provided. The Shanghai Tech dataset consists of 330
training and 107 testing videos. It contains of about 130 abnormal events.

The proposed method was implemented in Python. The autoencoders that implement
the feature extraction (Appearance, Gradient and Saliency) were implemented in Tensorflow
and Keras, while the tensor based autoencoder was implemented in PyTorch using the
Tensorly library. The hyperparameter optimization of the learning algorithms was
determined using the Hyperband optimization method of [104], which employs a principled
early-stopping strategy to allocate resources, allowing it to evaluate orders-of-magnitude

more configurations than black-box procedures like Bayesian optimization methods [105].

Table 11. Abnormal Behavior detection based on frame level AUC on the Avenue and Shanghai tech datasets.

Method Avenue Dataset Shanghai Tech Dataset ‘

Luetal. [97] 80.9 -
Hasan et al. [100] 70.2 60.9

Del Giorno et al. 78.3 -
Smeureanu et al. [106] 84.6 -
Ionescu et al. [102] 80.6 -
Luo et al. [103] 81.7 68.0
Liuetal. [101] 85.1 72.8
Liu et al. [107] 84.4 -
Sultani et al. [108] - 76.5
Ionescu et al. [98] 90.4 84.9
Our Method 86.9 79.8

The Area Under Curve (AUC) metric was employed in assessing the performance of the
proposed method and the compared ones. The AUC is computed with regard to ground-truth
annotations at the frame-level and it is a common metric for many abnormal event detection
methods. The performance comparison of our method with other implementations is
presented in Table 13. For each of the compared methods, we choose the optimal parameter
selection and thus the worst-case comparison scenario for our case. As we can see in the
table above our method outperforms all nine works but one technique. Only [98] performs

better. However, [98] employs an optimized k-means clustering on these datasets the
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generalization of which to another data sequence is doubtful due to its limitations in initial
condition selection, well separable clustering property (k-means fails in complex non-linear
cluster separation like a spiral) and the distance metric adopted. Moreover, [98] uses an
initial object detection step for preprocessing. This allows only for the detection of
abnormalities relevant to specific objects, such as humans, that can be identified by the object
detection method, while also introducing a computational overhead as a result of the frame
preprocessing. Instead, our approach can be generalized to any type of object classes, such
as falling debris, natural disaster detection et which can be seen as abnormal events. Table
12 and Figure 40 indicate the limitation of [98] in using k-means for normal event space
partitioning. It is clear that the number of clusters selected is highly related with the
application scenario used. In this figure, we have implemented the approach of [98] without
the use of the initial object detection algorithm for different numbers of clusters. This is the
reason of why the results are not the same as Table 14, which they have been optimized for
a particular dataset. As is observed, the maximum accuracy is achieved for different numbers

of clusters between different datasets.

Table 12. Research difference summary of our work with [98].

The work of [98] Qur Approach
Dependent on k-means performance Independent from any clustering
Dependent on specific objects/events, mainly humans It works for any type of objects and events
Computational overhead No additional overhead
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Figure 47. Performance difference between different number of k in the Shangai and Avenue Dataset.

This drawback is also illustrated by the introduction of noise in the input video stream. The
multi-property processing and the frame wide analysis of our method results in robustness
towards noise introduced to the stream. Such noise can be the result of poor visibility
conditions. Figure 42 presents this comparison with our method and [98] in this aspect. The
figure illustrates the variance of AUC scores as the input signal’s SNR drops. The noise

introduced is simple Gaussian noise
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Figure 48. Performance difference between different levels of noise in the video stream, Avenue Dataset
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The response of our system to various abnormalities in a test video can be viewed in Figure
44. In the figure we have averaged the reconstruction errors in batches of 10 frames, for
presentation purposes. The frames above are representative of the state captured in the
bounding boxes in the graph. The annotation of abnormalities comes from the ground truth

dataset.

Score

Frame

Figure 49. Captured abnormalities and system response (Avenue Dataset). Axis x presents the frame batch
while axis y represents the average reconstruction error. Above the detected abnormalities the annotated
ground-truth data is presented

8.1. Conclusions

In this chapter, we introduce a novel method for abnormal event detection in video
systems based on an intra/inter property feature information redundancy reduction. Intra
property redundancy reduction is carried out using auto-encoders while the inter property
one through tensor-based learning to take into account all potential interrelations of them.
Experiments on benchmarked datasets show that our scheme outperforms all the compared

works but one.
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9. Conclusions

In this dissertation we presented the use of six different methods based on deep learning
architectures for the analysis of visual data inside and outside the visible spectrum. Two
application scenarios are considered, one where there is a priori knowledge of the captured
actions, and one where the actions captured are unknown.

For the first application scenario we showcase that for the analysis inside the visible
spectrum, the combination of the feature extraction capabilities of CNN architectures in
combination with the temporal analysis abilities of LSTM networks achieves state of the art
performance. However, due to particularities of the application scenario, adaptations on
these architectures are required. Specifically, because of short-term dependencies in the
classification of choreographic motion primitives, a memory window in the input layer,
enhances the performance and allows for the output to change in the appropriate degree of
granularity. Moreover, since the classification step is affected not only from previous but
also the next states, the use of a bidirectional LSTM, increases the performance by inherently
taking into account the non-causality of the input stream.

For the analysis outside the visible spectrum, the extraction of skeletal data from
infrared depth sensors is a useful preprocessing step. This preprocessing transforms raw
spatial data into semantically enriched structures that can be used for the classification,
transforming the problem in a time-series analysis problem. Then, the use of a bidirectional
LSTM network, enhanced with both autoregressive and moving average functionalities can
successfully drive the classification step, achieving state of the art performance.

Additionally, since the selected application scenario has small datasets, and due to
the known fact that deep learning techniques require extreme numbers of examples to
achieve sufficient performance, we study the use of tensor-based learning networks for the

classification of motion primitives in dance choreographies. We showcase that a tensor based
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network can achieve performances similar to the ones achieved by known state of the art
classifiers, but using significantly less trainable parameters. This results in the ability of such
tensor-based neural networks to be trained using smaller datasets, facilitating faster
deployment and analysis.

For the second application scenario, where there are unknown actions inside the
under analysis data, we present two main techniques. The first one is a supervised learning
method where a deep NARMA filter, in the form of an adaptive CNN, achieves high
classification performance. The proposed architecture also allows for the incorporation of
additional data modalities in parallel to the visual ones, and the simultaneous analysis of
these multi-modal data.

However, because of the lack of generalization of such supervised approaches,
unsupervised ones are also studied. Initially, a convolutional spatiotemporal autoencoder is
used to detect outlier actions. In this case, a fall detection problem is considered. The
advantages of this technique is that it does not need the outlier action inside the training set.
Instead, the autoencoder is only trained using samples from normal conditions. The
appearance of an outlier action significantly affects the performance of the autoencoder,
which is showcased in the reconstruction error of the decoder. We achieve extremely high
performance in fall detection by employing this scheme in multiple parameters of visual data
both inside and outside the visible spectrum.

Finally, we extend the autoencoder method, in order for it to be used in benchmarking
datasets with large number of actions captured. The use of convolutional autoencoders in
multiple visual properties allows for the proper modelling of all aspects of normality inside
the dataset. Then a tensor-based autoencoder is used for effectively minimizing the
dimensions of the normal state, which is then used for identifying outlier actions.

Future steps of the research presented in this dissertation include the use of
architectures such as the newly published visual transformer layers to drive the
classifications. Moreover, and specifically for the technique presented in chapter 8, beyond
the monitoring of the autoencoder reconstruction error, can be used as classifications. An
example of that would be the breaking down of the normal state into multiple normality sub-

states, and then use appropriate classifiers, or even conformal learning schemes, to allow for
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better performance. Finally, the use of all this techniques can be greatly enriched by using
techniques to not only classify the data, but also explain the reasons behind the classification
outcome. Such explainable Al techniques can facilitate the use of such tools not only from
researchers that are well versed in machine learning algorithms, but also by multidisciplinary

teams that can also bring domain specific knowledge into the analysis.
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