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Abstract 
Activity recognition from optical cues is an arduous task that has recently received a lot of 

attention in the research community, due to the performance of deep learning architectures 

in the analysis of such kinds of data. However, these analyses have to take into account both 

the types of input data as well as statistical particularities and a priori knowledge over the 

types of activities captured. This dissertation focuses on the development of deep machine 

learning methods to classify actions recorded in datasets consisting of capturings inside and 

outside the visible spectrum. Two main application scenarios are studied.  

The first application scenario includes recordings of traditional dance 

choreographies, where the dataset consists of a predefined set of actions (motion primitives), 

i.e. the steps that compose the specific dance choreography. The problem then takes the form 

a mutli-class classification task. Two deep learning classifiers are presented. For the data 

outside the visual spectrum, in this case recordings of infrared depth sensors, an optimised 

Long Short Term Memory (LSTM) neural network is presented. This classifier manages to 

capture both short-term dependencies, by using a short memory window before its input 

layer, as well as take into account non-causality during classification, by using the 

bidirectional variant of LSTM networks. For the data inside the visible spectrum, a hybrid 

architecture is presented. This architecture puts into use the feature extraction capabilities of 

Convolutional Neural Networks (CNN), as well as the ability of LSTM networks to map 

temporal correlations. Autoregressive and Moving Average capabilities are added to the 

architecture, while an adaptive weight control scheme is also employed. Finally, for the first 

application scenario, a tensor based classifier is presented that manages to classify 

choreographic motion primitives with similar performance, while requiring significantly less 

trainable parameters, allowing for increased performance even when a small set of training 

data is available. 

The second application scenario focuses on datasets where there is no a priori 

knowledge of the actions captured. Instead we study ways to “map” the normal state, and 

employ techniques for binary classification of the normal and the abnormal state. Initially, a 
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supervised approach is presented, employing an adaptive NARMA filter, based on a CNN 

architecture. Data fusion from other sensors is also used to inform the classification step and 

increase performance. Additionally, unsupervised techniques, based on convolutional 

autoencoders are employed. Finally, a stack autoencoder method is presented where the 

feature extraction of convolutional spatiotemporal autoencoders is used in combination with 

a tensor-based autoencoder to model the normal state in datasets with large numbers of 

actions, and then perform outlier detection. 

 

 

Keywords 
Deep learning, computer vision, analysis of visual cues, supervised and unsupervised 

learning, adaptive neural network architectures, data fusion, tensor-based learning 
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Περίληψη 
Η αναγνώριση δραστηριότητας από οπτικές ενδείξεις είναι μια επίπονη εργασία που 

πρόσφατα έχει λάβει μεγάλη προσοχή στην ερευνητική κοινότητα, λόγω της απόδοσης 

αρχιτεκτονικών βαθιάς μηχανικής μάθησης στην ανάλυση τέτοιων ειδών δεδομένων. 

Ωστόσο, αυτές οι αναλύσεις πρέπει να λαμβάνουν υπόψη τόσο τους τύπους των δεδομένων 

εισόδου όσο και τις στατιστικές ιδιαιτερότητες και την εκ των προτέρων γνώση σχετικά με 

τους τύπους των δραστηριοτήτων που καταγράφονται. Αυτή η διατριβή εστιάζει στην 

ανάπτυξη μεθόδων βαθιάς μηχανικής μάθησης για την ταξινόμηση ενεργειών που 

καταγράφονται σε σύνολα δεδομένων που αποτελούνται από καταγραφές εντός και εκτός 

του ορατού φάσματος. Μελετώνται δύο βασικά σενάρια εφαρμογής.  

Το πρώτο σενάριο εφαρμογής περιλαμβάνει καταγραφές παραδοσιακών 

χορογραφιών, όπου το σύνολο δεδομένων αποτελείται από ένα προκαθορισμένο σύνολο 

ενεργειών (motion primitives), δηλαδή τα βήματα που συνθέτουν τη συγκεκριμένη 

χορογραφία. Το πρόβλημα στη συνέχεια παίρνει τη μορφή μιας εργασίας ταξινόμησης 

πολλαπλών κλάσεων. Παρουσιάζονται δύο ταξινομητές βαθιάς μάθησης. Για τα δεδομένα 

εκτός οπτικού φάσματος, σε αυτή την περίπτωση εγγραφές αισθητήρων βάθους υπερύθρων, 

παρουσιάζεται ένα βελτιστοποιημένο νευρωνικό δίκτυο Μακροπρόθεσμης Μνήμης 

(LSTM). Αυτός ο ταξινομητής καταφέρνει να συλλάβει και τις βραχυπρόθεσμες εξαρτήσεις, 

χρησιμοποιώντας ένα παράθυρο σύντομης μνήμης πριν από το επίπεδο εισόδου του, καθώς 

και να λάβει υπόψη τη μη αιτιότητα κατά την ταξινόμηση, χρησιμοποιώντας την αμφίδρομη 

παραλλαγή των δικτύων LSTM. Για τα δεδομένα εντός του ορατού φάσματος, 

παρουσιάζεται μια υβριδική αρχιτεκτονική. Αυτή η αρχιτεκτονική χρησιμοποιεί τις 

δυνατότητες εξαγωγής χαρακτηριστικών των Συνελικτικών Νευρωνικών Δικτύων (CNN), 

καθώς και την ικανότητα των δικτύων LSTM να χαρτογραφούν χρονικές συσχετίσεις. 

Δυνατότητες Autoregressive και Moving Average προστίθενται στην αρχιτεκτονική, ενώ 

χρησιμοποιείται επίσης ένα προσαρμοστικό σύστημα ελέγχου των βάρων του νευρωνικού. 

Τέλος, για το πρώτο σενάριο εφαρμογής, παρουσιάζεται ένας ταξινομητής βασισμένος σε 

τανυστή που καταφέρνει να ταξινομήσει χορογραφικές κινήσεις με παρόμοια απόδοση, ενώ 
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απαιτεί σημαντικά λιγότερες εκπαιδεύσιμες παραμέτρους, επιτρέποντας αυξημένη απόδοση 

ακόμη και όταν είναι διαθέσιμο ένα μικρό σύνολο δεδομένων εκπαίδευσης.  

Το δεύτερο σενάριο εφαρμογής εστιάζει σε σύνολα δεδομένων όπου δεν υπάρχει εκ 

των προτέρων γνώση των ενεργειών που καταγράφονται. Αντίθετα, μελετήσαμε τρόπους 

για να «χαρτογραφήσουμε» την κανονική κατάσταση και χρησιμοποιήσαμε τεχνικές για 

δυαδική ταξινόμηση της κανονικής και της ανώμαλης κατάστασης. Αρχικά, παρουσιάζεται 

μια εποπτευόμενη προσέγγιση, που χρησιμοποιεί ένα προσαρμοστικό φίλτρο NARMA, 

βασισμένο σε αρχιτεκτονική CNN. Η σύντηξη δεδομένων από άλλους αισθητήρες 

χρησιμοποιείται επίσης για να ενημερώσει το βήμα ταξινόμησης και να αυξήσει την 

απόδοση. Επιπλέον, χρησιμοποιούνται τεχνικές χωρίς επίβλεψη, που βασίζονται σε 

συνελικτικούς αυτοκωδικοποιητές. Τέλος, παρουσιάζεται μια μέθοδος αυτόματου 

κωδικοποιητή στοίβας όπου η εξαγωγή χαρακτηριστικών των συνελικτικών χωροχρονικών 

αυτοκωδικοποιητών χρησιμοποιείται σε συνδυασμό με έναν αυτόματο κωδικοποιητή που 

βασίζεται σε τανυστική μάθηση για να μοντελοποιήσει την κανονική κατάσταση σε σύνολα 

δεδομένων με μεγάλο αριθμό ενεργειών και στη συνέχεια να εκτελέσει ανίχνευση ακραίων 

τιμών. 
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1. Introduction 
Action recognition on optical data is considered an arduous task that requires the analysis of 

high dimensional input signals both in the temporal and spatial field. It includes the analysis 

of movements identified over sets of sensors and it typically relies on numerous methods 

spanning from digital signal processing to the extraction of salient characteristics from the 

raw data in order to feed a machine learning model. Nowadays, deep learning methods have 

become the gold standard in such analyses, since architectures such as Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN) have established state of the art 

performances in the extraction of characteristics from raw data that drive classification or 

regression tasks. 

 The rapidly increasing computational power of the past decades has allowed the 

development of complex models that are able to explain complicated physical mechanisms. 

Moreover, innovations in data capturing, storage and retrieval technologies, e.g. novel sensor 

networks, big data database architectures, has created a plethora of data sources that can be 

used for the training of deep learning models, and transform monitoring and control tasks 

over large and complicated infrastructures. Consequently, modern activity recognition 

problems are characterized by complexity. Also, since real-world systems often evolve under 

transient conditions, the signals received tend to exhibit various forms of non-stationarity. 

As for mathematical models, they can be categorized in many different ways. They can be 

linear or non-linear, static or dynamic, continuous or discrete over time, deterministic or 

contemplative. The model chosen for the description of a system depends on the system 

under study, on whether the operation of the system is known or not, as well as on the 

purpose of implementing the model. This dissertation proposes techniques for identifying 

activities based on deep machine learning, comparing them under specific application 

scenarios. More specifically, algorithms were developed for two main sub-cases of the 

activity recognition problem. 

The first case concerns the study of visual data sets, in which there is prior knowledge 

of the actions that were recorded. In this case, an application scenario was chosen which 
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concerns the analysis of recordings of Greek traditional dances with the aim of creating 

models for the automatic annotation of the primitive steps contained in the performance. The 

problem in this case takes the form of a multidisciplinary classification problem, for the 

solution of which supervised machine learning techniques were used. 

The second case concerns the study of data sets, for which there is no prior 

knowledge about the actions they contain. In this case the problem turns into a problem of 

outlier detection. The use of supervised machine learning using test datasets and the attempt 

to generalize these models to real-world conditions were studied. Furthermore, the use of 

non-supervised machine learning models for the analysis of benchmarking datasets was 

studied. 

In both sub-cases, sets of visual data both inside and outside the visible spectrum 

were analyzed, as well as tensor-based learning techniques for limiting training parameters 

in order to maximize the performance of the models under development. The rest of this 

dissertation is structured in the following way: 

Chapter 2 provides the theoretical background for the development of models of deep 

machine learning. First, the relevant literature is presented. Specifically, after extensive 

research, the most important literature references related to the methods for modeling both 

the first and the second subproblem are described. 

Chapter 3 presents the proposed supervised machine learning method for the 

annotation of motion primitives in choreography analysis, in data sets outside the visible 

spectrum. Specifically, the problem analyzes recordings similar to the previous chapter, but 

using recording sensors in the infrared spectrum. The use of these sensors enables the rapid 

extraction of the skeletal structure of the person being recorded, and the transformation of 

the problem into a multidimensional time series analysis problem. Use of Long Short-Term 

Memory Networks (LSTM) networks is recommended. LSTM networks are considered 

suitable for time series data modeling as they are "memory" networks and past inputs affect 

future forecasts. The proposed model is based on bidirectional LSTM networks, introducing 

the property of non-causality and thus achieving greater accuracy in the model. 

Chapter 4 presents the proposed supervised machine learning method for the 

annotation of motion primitives in choreography analysis, in data sets within the visible 
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spectrum. The method is based on the development of a deep learning machine model that 

extends the well-known Convolutional Neural Networks (CNN) to simulate the behavior of 

a NARMA (Non-Linear Autoregressive Moving Average) model. 

In Chapter 5 the analysis focused on the use of tensor-based learning to limit training 

parameters. Specifically, a new deep neural network is introduced based on a tensor network 

model capable of automatically processing and correlating spatio-temporal information from 

different sources and discovering appropriate patterns for assigning inputs to the desired 

outputs. This is a general space-time learning machine, which can be useful for a variety of 

time series analysis applications, such as human behavior recognition, moving object 

analysis, radar signals, audio processing, etc. Here the research focused on the classification 

of human posture using three-dimensional skeletal information in a manner similar to that 

of chapter 3. 

Chapter 6 presents the use of supervised machine learning techniques in data sets in 

which there is no prior information about the activities recorded. Experimental models with 

representative activities were created and an algorithm based on convolutional deep neural 

networks that can analyze inputs both inside and outside the visible spectrum was developed. 

Chapter 7 presents an unsupervised learning method for analyzing sets inside and 

outside the optical spectrum. Specifically, a convolutional spatiotemporal autoencoder was 

developed which has the ability to model activities that describe the "normal" state. The 

recognition of statistical endpoints is achieved by analyzing the decoder reconstruction error. 

Chapter 8 extends the use of autoencoders to the analysis of data sets containing a 

large number of concurrent activities. The use of tensor-based learning and in particular an 

automatic tensor autoencoder is done in combination with convolutional autoencoders with 

the aim of developing a model that can represent the normal state even when it contains 

complex movements and a large number of people. 

Finally, Chapter 9 presents the summary and contribution of the doctoral dissertation 

as well as the conclusions that emerged, framed by ideas for future research in the field. 
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2. Previous Works 

2.1. Supervised learning in motion primitive recognition 

The approaches regarding the decoding of the human kinesiology are distinguished into:  i) 

supervised and ii) unsupervised categories and mainly take as input RGB images and 

depth/skeletal data. The decoding and explanation of the human activity by observing only 

individual representative postures and their temporal variations in a sequence of video 

frames has been a challenge in the field of Computer Vision and ICH. In the literature, many 

applications are proposed regarding the human activity indexing [1], pose identification [2], 

action prediction [3], emotion recognition [4] and background subtraction [5].  

In [6], an unsupervised approach for understanding activity by means of its most grained 

temporal constituents is proposed. In [7], a spatio-temporal decomposition of kinesiology 

sequences based on a hierarchically modification of the SMRS algorithm is introduced.  In 

[8], an approach to model videos using dense sampling with feature tracking is introduced. 

Moreover, descriptors combine motion information and trajectory shape for action 

localization and video retrieval purposes. In [9], features from shapes and optical flow are 

combined for classification purposes. Hidden Markov Model (HMM) is adopted using multi-

frame averaging method for background extraction.  

Deep learning methods have been shown to outperform previous state-of-the-art machine 

learning techniques in several fields, with computer vision being one of the most prominent 

cases [10]. In [11], a CNN-based feature extraction approach that extracts the local 

dependency and scale invariant characteristics is proposed. In [12], the problem of human 

activity recognition by combining multiple vision cues of RGB-D sensor is proposed. In 

[13], a deep video classification model with competitive performance is introduced. 

Specifically, this model embeds separate spatial and temporal recognition streams based on 

ConvNets. In [14], a novel three-stream CNN embedding deep learnt single frame, optical 

flow and maximizing significant difference and independence (MSDI) features is 

introduced. The architecture is implemented in the spatial and temporal domain. In [15], a 
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method for human action recognition from depth data and skeletal data using deep CNNs is 

proposed. This architecture used two action representations and three CNNs channels in 

order to maximize the feature extraction procedure. In [16], a fully automated behaviour 

understanding through visual cues in industrial environments is proposed constructing 

features from spatial and temporal dimensions. In [17], the authors propose a flexible Deep 

CNN framework, a Deep Event Network (DevNet), that detects high-levels events and 

localizes spatial-temporal evidences. This framework takes into consideration keyframes of 

videos as input data detecting the event of interest by aggregating the CNN features. 

Background subtraction (BS) is a challenging task in Computer Vision field especially in 

real-time application scenarios. BS methods are distinguished into the following categories: 

i) Foreground detection (FS) and ii) Background detection (BS). During the first category, a 

comparison process between the current frame and the background model is carried out. In 

the second category, the obtained images are analysed, updating the background model 

learned at the initialization step. In general, the BS field comprises the basic, statistical, fuzzy 

and neural techniques.  The BS algorithms are used to detecting moving objects in video 

sequences from the difference between the current frame and a reference frame. In [18], the 

authors present a real-time maritime surveillance system based in VAM, background 

subtraction and an adaptive NN tracker. In [19], a novel background subtraction from video 

sequences algorithm using deep Convolutional Neural Network is introduced. The proposed 

approach consists of three processing steps, background model generation, CNN for feature 

extraction and post-processing. In [20], the authors introduce a region-based Mixture of 

Gaussians (MoG) for background subtraction in order to handle the sensitivity to dynamic 

background. In [21], the authors introduce a novel deep background subtraction method by 

proposing a guided learning methodology that learns a predefined CNN model for each video 

without pre-labelling process.  
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2.2. Supervised learning in the identification of outlier actions 

Detection of physical intrusion and direct attacks on main infrastructure calls for 

automatic supervision and immediate identification of suspicious behavior, which can be 

effected by computer vision tools. These tools aim at exploiting smart video surveillance to 

detect humans, operating in limited visual conditions, performing just-in-time computation 

to suggest preventive actions. Computer vision tools that operate outside of the visible 

spectrum (i.e. thermal sensors) are also gaining traction in this context, because they are not 

significantly affected by illumination changes [26]. However, such approaches do not 

capture texture or color information. Vision techniques focus on background and target 

modelling [27], object tracking [28], target detection [24], activity recognition [29], crowd 

dynamics and identification of unusual and suspicious behavior [30]. These approaches aim 

at detecting abnormalities in crowded environments by analyzing actions both on the spatial 

and temporal scales. Detailed surveys about video-based abnormal activity recognition have 

been published [31], [32]. 

2.2.1. Localization using channel state information from WiFi 

Several studies have been carried out which leverage the properties of radiofrequency 

devices to detect a person. Focusing on the device-free solutions, there are techniques based 

on SDR (Software Defined Radio) devices and custom antenna-arrays, like RF-Capture. One 

approach is to analyze the Received Signal Strength (RSS) of a wireless signal since the 

latter undergoes measurable distortions upon the presence of humans or due to human 

movement [33]. However, RSS is not sufficiently accurate and consistent due to the high 

variability of these signals [34]. In 2011, a tool based on a COTS WiFi network card has 

been released [35] which uses an Intel FW modification that allows the upper layers of the 

protocol to acquire this CSI information used in WiFi devices. Recent studies [25] have 

shown that analysing the correlation changes over different subcarriers provides a robust and 

accurate method for detecting human presence with a 99% success rate, even in the case of 

TTWD (Through the Wall Detection). 
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2.2.2. Cyber security of sensors, PLC and SCADA 

The first works to address the problem of cyber-security in complex infrastructures 

[36] involved a bank of delay-differential observer systems based on an analytically 

approximate model of canal hydrodynamics. The method was tested on a class of adversarial 

scenarios of a generalized fault/attack model. In [22] a modelling framework was developed  

to characterize the effect of cyber-physical attacks on the hydraulic behavior of water 

distribution systems. The model identifies the components of the cyber infrastructure (e.g., 

sensors or PLCs) potentially vulnerable to attacks, determining the exact specifications of 

an attack (e.g., timing, duration) and simulating it with water system simulation model 

EPANET.  The conclusions is that the same hydraulic response can be obtained through 

different attack scenarios.  

Further, the "BATtle of the Attack Detection Algorithms (BATADAL)" conducted 

at the EWRI-ASCE conference (https://batadal.net/), extended this work through an 

algorithm competition for detecting cyber-attacks on a test case study about a water 

distribution system operated through PLCs and a SCADA. Related results are summarized 

in [37], while the most successful method of the competition was based on understanding of 

the physical behavior of the water distribution system operation, combined with an anomaly 

detection technique [23]. Finally, in [38] an augmented graph assembly is employed between 

sensors to actuators, which is then tested to sustain malicious attacks to water distribution 

systems prior to failure. 

2.2.3.  Fusion across multiple data modalities 

As for works involving fusion of multiple data modalities, the majority of existing 

methods pertains to combined use of RGB and thermal (or hyperspectral) sensors for 

computer vision. Fusion of thermal and RGB sensors, e.g., has been used to create 

semantically enriched visual information structures [39]. This is also the case in [40] where 

discrete wavelet transform (DWT) is used, combined with a SVM for feature classification. 

In the field of person detection using WiFi reflection, fusion with visual and other (e.g. 

inertia) sensors has been used to a limited extent, to increase the accuracy of location 

estimation and eliminate problems arising from signal oscillation and other interfering issues 

[41]. An example of visual and sensor data fusion is [42], where RGB data are fused with 
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laser sensor and GPS data. However, to our knowledge, there are no previous works in the 

literature considering the fusion of visual and WiFi reflection data, with ICS sensing data in 

the context of water infrastructure monitoring. 

2.3.  Unsupervised learning in the identification of outlier 
actions 

Abnormal event detection in video surveillance, a process to detect specific frames 

containing an anomaly, has been drawn a great attention in image processing research mainly 

due to its advantages in many applications [43] - [46]. Examples include surveillance in 

industrial environments [44] or critical infrastructures [45] for safety/security and quality 

assurance, traffic flow management [46] and intelligent monitoring of public places [47].  

Some works address abnormal event detection as a multi-class classification problem 

under a supervised paradigm ([44],[45]). The main, however, limitation of such approaches 

is that abnormal events sporadically occur in real-world videos. Additionally, what is an 

abnormal event is vague and tough to model. This means that the distribution of normal 

versus abnormal events is severely imbalanced which result in low classification 

performance. One solution to address this issue is to use semi-supervised learning [48],[49]. 

However, again the problem of data imbalance among normal and abnormal cases cannot 

be handled. For this reason, the abnormal event detection problem is modeled as outlier 

detector. In particular, the model learns the normality from data samples and then it identifies 

the abnormal events as the ones which deviate from the normal learnt cases [50] - [52].  

In this context, unsupervised learning has been applied to handle abnormal event 

detection [53]-[55]. The methods partition the normal space into coherent clusters in contrast 

to the outlier-detector models that they use a common global model for the whole normal 

space. Then, the abnormality is detected as those events which cannot be represented by the 

normal space. Usually, k-means clustering algorithm is utilized (as in [53])combined with 

SVM learning. We concentrate on works handling abnormal event detection either as an 

outlier detection or using deep/ unsupervised learning schemes. Regarding outlier detection, 

the works of [50], [52], [56]learn dictionary of sub-events, through a training process, and 

then those events that do not lie in the partitioned sub-space are marked as abnormal ones.  
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Regarding deep learning, the work of [55] employs convolutional auto-encoders 

(ConvAE) to learn temporal regularity in videos, while auto-encoders are exploited in [57] 

to learn feature and reconstruct the input images. Then, one-class Support Vector Machines 

(SVMs) are used for detecting the abnormal events. The work of  [58] introduces a hybrid 

scheme which aggregates ConvAE with Long Short-Term Memory (LSTM) encoder-

decoder. Recently, deep generative models have been applied [59]-[62] , modelling, first, 

the normal space and then, the abnormal is given the difference from the normal one.  

Unsupervised learning models are utilized for abnormal event detection. In [63], the 

anomalies in videos are scored independently of temporal ordering and without any training 

by simply discriminating between abnormal frames and the normal ones. Other approaches 

employ tracking algorithms to extract salient motion information which is then classified 

either as normal or abnormal [64], [65]. However, tracking fails in complex visual scenes of 

multiple humans’ presence.  

2.4. Contribution 

This dissertation presents techniques developed for the extraction of semantic 

information in from data capturings inside and outside the visible spectrum. The techniques 

presented can be broken down in two different categories. A summary of the techniques 

presented based on the application scenario can be viewed in the figure below. 
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Figure 1. Summary of implemented methods presented in this dissertation 
 

The first category, where there is previous knowledge about the actions captured, 

includes the development of a Bayesian optimized bi-directional LSTM network [66], of a 

unimodal hybrid LSTM-CNN architecture with autoregressive and moving average behavior 

[67] and of a tensor based neural network [68] that can perform similar classification tasks 

with [66] but with the use of fewer trainable parameters. The second category, where there 

is no information about the actions captured, presents initially a multimodal CNN 

architecture extended to showcase autoregressive and moving average behavior, which also 

includes a novel weight adaptation mechanism to incorporate user feedback [69]. Finally, 

two unsupervised techniques are presented, based on implementations of deep neural 

autoencoders. Initially, a set of convolutional autoencoders trained on multiple image 

properties is used in fall detection scenarios [70]. This implementation is extended to include 

a tensor-based autoencoder, following a stack autoencoder architecture.   
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Part 1: 

Action recognition in datasets composed from finite 

predefined motion primitives 
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3. Identification of motion primitives: 
data outside the visible spectrum 

A special field of computer vision is that of digitization of Cultural Heritage Assets, 

especially in the field of Intangible Cultural Heritage, such as traditional dance 

choreographies or other performing arts. This creates a ripe application scenario for 

developing modelling algorithms based on visual cues that are able to identify the motion 

primitives that comprise a dance choreography. The algorithms developed should be based 

on capturings of the performance of a choreography, and also take into account previous 

folklore studies, that identify specific steps that differentiate this dance from others. This 

provides us with a priori knowledge on the analysis of the performance, as we know the 

chain of motion primitives, as well as the ratio of each primitive in the entire performance.  

This knowledge can be used in the development of a deep learning architecture that allows 

the automatic classification of dance steps in a capturing of a specific traditional dance.  

In this section the infrared mode of a Kinect-II sensor is used as a capturing interface, which 

translates depth data to M	 3D skeleton joints. Vector   𝚥!""""⃗ = (𝑥!" , 𝑦!" , 𝑧!")	is the xyz	

coordinates of the k-th joint. Superscript G	 indicates the origin of a global coordination 

system (coincides with the Kinect location). The main limitation of directly processing joints 

𝚥!""""⃗  is that the choreographic attributes of a dancer are lost, since 𝚥!""""⃗  also includes global 

motion trajectory attributes. For this reason, we transform 𝚥!""""⃗ 	into a local coordination 

system, the center of which coincides with the center of mass of the dancer. 	𝚥!#"""⃗ = 	 𝚥!""""⃗ − 	𝑐$%""""""⃗  

Variable ccm	is the center of mass of the dancer. 

The kinematics of the dancer is modelled using principles of rigid body dynamics [71]. In 

particular, for every dancer’s joint	𝚥!#""""⃗ , the velocity and the acceleration vector are estimated 

as the first and the second derivative of the kth joint position, that is 𝑢!""""⃗ (𝑡) = 	
𝑑𝐽!#"""⃗

𝑑𝑡
5  and 

𝛾!""""⃗ (𝑡) = 	
𝑑𝑢!""""⃗

𝑑𝑡7 . 
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In this way, the xyz	coordinates of the velocity and the acceleration are derived as  𝑢!""""⃗ (𝑡) =

8𝑢!& , 𝑢!
' , 𝑢!(9, and  𝛾!""""⃗ (𝑡) = 8𝛾!& , 𝛾!

' , 𝛾!(9,. It is clear that acceleration actually models the 

force Fk(t)	acting on the k-th joint, assuming that mass equals one (m	=	1). Therefore, a state 

vector is derived including all the kinematics properties of a dancer’s joint. 

 

𝑆!(𝑡) = 	;
𝚥!#"""⃗

𝑢!""""⃗ (𝑡)
𝛾!""""⃗ (𝑡)

< = 	;
𝑥!# 𝑦!# 𝑧!#

𝑢!& 𝑢!
' 𝑢!(

𝛾!& 𝛾!
' 𝛾!(

<          (1) 

In order to include the contribution of all M	joints, a 3·M	×3	state matrix is constructed. 

𝑆(𝑡) = 	 (𝑆)(𝑡), 𝑆*(𝑡), …	, 𝑆+(𝑡)), 								(2)	

3.1. Problem Formulation and Notation 

The purpose of the pose choreographic identification is to categorize a dance frame t	into a 

set of L	available choreographic primitives. Let us denote as pi(t)	the probability that t	frame 

is assigned to the i-th choreographic class. Then, frame t	is categorized to the cˆ(t)	class 

𝑐̂(𝑡) = arg𝑚𝑎𝑥-∈),…,#𝑝-(𝑡)				(3)	

Let 𝑝(𝑡) = 	 [𝑝)(𝑡), 𝑝*(𝑡), … , 𝑝#(𝑡)] a vector including all probabilities 𝑝-(𝑡). Usually, 

𝑝-(𝑡)	is a non-linear relationship of the 3D kimenatics features. Pose identification depends 

not only on the current dancer’s movement, but also on previous and future choreographic 

primitives. For example, for a particular choreography, a left cross leg is a result of several 

previous dancer’s movements and also implies that, in the future, other pre-determined steps 

will be followed. 

𝑝(𝑡) = 𝑔(𝑥⃗(𝑡), 𝑥⃗(𝑡 − 1), … , 𝑥⃗(𝑡 − 𝑝), 𝑥⃗(𝑡 + 1), … , 𝑥⃗(𝑡 + 𝑝)	(4) 

In Eq. (4) function g(·)	refers to a non-linear vectored value function. Eq. (4) implies that 

2·p+1	image frames affect the pose identification at frame t. 

The main difficulty in implementing Eq. (4) is that function g(·)	 is actually unknown. 

However, it has been proven that a feedforward neural network with a Tapped Delay Line 
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(TDL) filter can approximate the g(·)	[72] with any degree of accuracy. In this way, the 

probabilities pi(t)	is a relationship of L	latent (hidden) state units ui. 

𝑝(𝑡) = 	𝑢"⃗ ,(𝑡) ∙ 𝑢"⃗  

𝑢"⃗ ,(𝑡) = 	 N
𝑢)(𝑡)
⋮

𝑢#(𝑡)
P = Q

tanh(𝑤)""""⃗
, ∙ 	 𝑥⃗(𝑡)
⋮

tanh(𝑤#"""""⃗
, ∙ 	 𝑥⃗(𝑡)

V    (5) 

In Eq. (5), vector 𝑥⃗(𝑡) refers to the input data, generated after a vectorization of the matrices 

𝑆(𝑡 + 𝑘), with k	=	−p,···	 ,p. Moreover, function tanh(·)	 refers to the hyperbolic tangent 

function, which is used as an activation function of each hidden neuron unit. Vectors 𝑢"⃗ 	and 

𝑤1"""⃗ 	are appropriately estimated by a learning algorithm, usually based on a steepest descent. 

To better model the non-causal relationships of a choreography, we allow the hidden states 

units ui	to be related with its previous and future state values. 

𝑢2"""⃗ (𝑡) = 	 tanh(𝑤2""""⃗
, ∙ 	 𝑥⃗(𝑡) +	 𝑟⃗-,3, 𝑢2"""⃗ (𝑡 − 1) +	𝑟-,3, 𝑢2"""⃗ (𝑡 + 1)	(6) 

Eq. (6) implies a recurrent mechanism within the network states, resulting in a so-called 

bi-directional recurrent neural network architecture [73]. Figure 2 depicts this architecture 

used for choreographic pose identification. 

3.2. Bi-directional Long-Range Dependence 

The main limitation of the aforementioned model is that it is not able to approximate long-

range dependencies. However, a dance choreography is composed of repeated patterns, 

spanned over long time periods. Thus, a bi-directional Long 
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Figure 2.The architecture of a bi-directional feedforward neural network with time delay line filter able to 
model non-causal relationships among the choreographic pose primitives 

 
 
 
 

 

 
 

Figure 3. (a) The architecture of the memory cell for the LongShort Term Memory (LSTM) network, (b) 
Bidirectional LSTM unfolded in time 
 

Short Term Memory (LSTM) network is adopted. LSTMs are of similar structure to the bi-

directional recurrent regression models but each node in the hidden layer is replaced by a 

memory cell, instead of a single neuron [74]. 

The basic unit of an LSTM is the memory cell. It consists of four components as shown 

in Figure 3. The i) the forget node, ii) the input gate, iii) the internal state, and vi) the 

output gate. Each component non-linearly relates the inner product of the input vectors with 

appropriate weights, estimated via a training phase. The non-linear activation function 

adopted for the components is i) the sigmoid denoted as σ	and the tanh. The forget gate 
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throws out (forgets) information from the memory cell to model long-range dependence. The 

input node is the same as a hidden neuron, measuring the contribution of a hidden state to 

the final classification outcome. The internal gate decides if the respective hidden gate is 

”significant enough” for dance pose identification. Finally, the output gate regulates 

whether the response of the current memory cell is significant enough to contribute to the 

next cell. 

3.3. Bayesian Optimization 

A Bayesian strategy is applied for optimally tuning the parameters of the LSTM, in particular 

the model structure (i.e. number of hidden layers, number of neurons per layer and learning 

rate). We hereby present the operation of Bayesian Optimization. Let us assume that we have 

a set of Q	different configurations, 𝐷):5 =	{θ1	···θq}. Then, an error is estimated for a given 

configuration θ and an input vector 𝑥(𝑡), E(𝑥(𝑡),θ). Let us now assume that a minimum 

error Emin	has been reached over all Q	different configurations of the set D1:Q. Then, an 

improvement function is given by 

I(𝑥(𝑡),θ)	=	max{0,Emin	−	E(𝑥⃗(𝑡),θ)}	 (7) 

Assuming a probabilistic framework, we take the expectations of the above equation. The 

target is to estimate a new configuration parameter vector, θ∗	that further decrease the I(·). 

Since we do not known the function I(·), one easy way to estimate its respective distribution, 

using the Bayesian rule. 

P(E|D1:Q)	∝	P(D1:Q|E)	·	P(E)	 (8) 

Usually P(E)	follows a Gaussian distribution and it is proven that P(D1:Q|E)	is a Gaussian 

process of mean value of µ(θ)	and a standard deviation Σ	at configuration point θ [23]. 

𝛴 = 	 Q
𝑘(𝜃)	, 𝜃)	) … 𝑘(𝜃)	, 𝜃	5	)

⋮ … ⋮
𝑘(𝜃5	, 𝜃	)	) … 𝑘(𝜃5	, 𝜃	5	)

V  (9) 

In case of a new configuration point θ∗, the P(D1:Q+1|E)	is again a Gaussian process of 

standard deviation 
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𝛴 = 	 ]
𝛴 𝑏
𝑏, 𝑘(𝜃57), 𝜃57))

_	(10) 

where b =	 [k(θQ+1,θ1)···k(θQ+1,θQ)]. Therefore, the new optimal configuration point θ∗	is 

given as the integral of the expectation of Eq.(7) and P(D1:Q+1|E)	that follows a Gaussian 

process with known mean and standard deviation. 

3.4. Experimental Evaluation 

Table 1. A brief description of the dances recorded from Kinect-II. 

 

Data Set Description: In our approach, the motion capturing process are funded by the EU 

project TERPSICHORE [75]. 
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Initial Posture Cross Legs Left Leg Up Right Leg Up Initial Posture Cross Legs Left Leg Up Right Leg Up 

Pose Identification Primitives 

 
Choreographic Steps for Sirtos (3-Beat) 

Figure 4. The choreographic primitives for Sirtos (3-Beat). 
 

The data set consists of six Greek folklore dances (Sirtos at 3 beat, Sirtos at 5 beat, 

Kalamatianos, Trehatos, Enteka). Each dance is performed by three professionals. Several 

instances (realizations) are considered. Table 1 presents a brief description of the dances 

along with the main choreographic primitives, used as categories for pose identification. For 

example, in Sirtos at 3-beat, we have six main choreographic postures, repeated over time 

(see Table 1  and Figure 4). 
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Table 2. Performance evaluation and comparisons 

 

Table 2 provides a comparison with state of the art methods for choreography modelling. 

We indicate the performance using methods such as Support Vector Machines (SVMs) and 

k-Nearest neighbors (kNN) as well as well two different configurations of feedforward 

neural networks, one with one hidden layer and 10 neurons and one of two hidden layers and 

10 neurons per layer. The proposed scheme (BOBi-LSTM) outperforms the compared ones. 

In the Table, we depict how the classification performance depends on window size (number 

of frames) fed as input to the classifiers (the effect of the time delay line filter). We observe 

that as the memory increases the performance improves, but with a decaying improvement 

ratio. Memory actually acts as a smoothing operation, introducing, however, delay lags in 

pose identification process. Figure 5 depicts the accuracy performance versus memory 

length for different classifiers. The effect of the Bayesian optimization method is depicted in 

Figure 6. As is observed, Bayesian optimization increases the performance of the bi-

directional LSTM over all objective criteria. Finally, Figure 7 depicts indicative outcomes 
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of the proposed BOBi-LSTM with 10 frame memory in comparison with the ground truth 

data, over one cycle of Syrtos in 3-beats. 

 

Figure 5. The effect of the memory length (e.g., the time delay line filter) on the accuracy criterion for 
different classifiers 
 

 

Figure 6. The performance of the proposed BOBi-LSTM network for pose identification at different frame 
indices. Ground truth data are also depicted. 
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Figure 7. Performance of BOBi-LSTM model on pose identification versus conventional LSTM structures. 
 

3.5. Conclusions 
In this chapter, we proposed a Bayesian optimized, bi-directional LSTM network for 

pose characterization of a choreography. Comparisons with other shallow learning classifiers 

indicates that the proposed scheme is very effective for kinesiology modelling. This is due 

to the fact that a dance sequence presents i) non-causalities (future steps affect the current 

performance) and ii) long-range dependencies (several forward or backward steps affect the 

current dancer’s movement). 
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4. Identification of motion primitives: 
data inside the visible spectrum 

 Similarly to the previous chapter, the data used for the development of this deep 

learning model, are performance captures of dances. However, in this chapter, we use normal 

RGB streams, i.e. capturing inside the visible spectrum, as inputs to our model. The input 

can be considered as a time series dataset, where each frame represents an instance of this 

series. Usually, an LSTM network has better classification performance than a CNN when 

simple time series are analysed, however, the feature extraction capabilities of a CNN are 

extremely valuable when analysing visual inputs, as they contain enormous spatio-temporal 

information. Another difference between LSTM and CNN is that an LSTM network models 

recurrent and bi-directional capabilities in contrast with the traditional CNN structures. A 

choreography is a highly temporally dependent video sequence, and therefore, the recurrent 

model characteristics are significant for dance video modelling.  

 Thus, we introduce a hybrid deep learning architecture that combines the advantages 

of an LSTM and a CNN model. In particular, we propose a convolutionally enriched LSTM 

filter, which operates in RGB video streams, using initially a convolutional layer to extract 

features for the visual cues, and then feeds these features in an LSTM network. A 

choreographic primitive usually depends on the past (backward) and future (forward) 

dancers’ steps, resulting in bi-directional (non-causal) relationships. This is due to the fact 

that dance choreographies consist of a finite number of repeating steps, thus the correct 

identification of a step provides information about both future and past states.  

Moreover, since while non-causal relationships can be covered by the bidirectional 

capabilities of a bidirectional LSTM network, the classification output is also of use here, as 

it provides additional knowledge in the classification of both past and future states. To this 

end, we also include Autoregressive and Moving Average (ARMA) characteristics to the 

proposed deep learning model. Autoregressive behavior means that the classification output 

is depended on its own previous value, while moving average properties allow to smooth out 
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short term classification fluctuations. In this way, the dynamics inherently existing in a dance 

sequence are addressed.  

Another limitation of both LSTM and CNN networks is the assumption of stationarity 

between the input-output signals. This means that the network weights remain constant 

throughout the network operation. However, a dance sequence is a highly dynamic sequence. 

Therefore, network adaptation is needed to fit the current dancer dynamics. For this reason, 

an adaptive mechanism is introduced to update model response in a way that maximizes 

overall choreographic modeling performance, addressing different style and gender issues. 

Finally, we use a foreground estimator exploiting principles of variational inference of 

Gaussian Mixtures [76]. The purpose of the convolution layer is to transform the high 

dimensional RGB inputs into low forms of representations, that is the best features for the 

classification. However, background visual information confuses visual choreographic 

modeling performance, since it contains data irrelevant to the modeling content. Thus, the 

convolutional layer operates only foreground data, extracting therefore low dancers’ 

representations which are now less sensitive to motion capturing errors. An overall 

architecture of the proposed model can be viewed in Figure 8. 
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Figure 8. The proposed adaptive convolutionally enriched LSTM network with AutoRegressive and Moving 
Average capabilities 

4.1.  Mathematical Formulation 

Let us denote as 𝐼(𝑡) an image frame at a time instance 𝑡. This frame is processed using the 

variational inference of Gaussian mixtures of [76].  in order to isolate the background from 

the foreground.  Let us denote as 𝐼8(𝑡) the respective foreground 𝑡. The purpose of 

choreographic modeling is to recognize a set of 𝐿 different choreographic primitives. For 

this reason, let us denote as 𝑃9!(𝑡) a probability corresponding to one of the 𝐿 available 

classes 𝜔-, 𝑖 = 1,… , 𝐿. Then, frame 𝐼(𝑡) is classified to the class 𝑐(𝑡) of maximum 

probability value 
𝑐(𝑡) = argmin

∀	$!
𝑃$!(𝑡)	 (1) 

Usually, there is a non-linear relationship among the raw RGB input data of  𝐼(𝑡) and the 

class probabilities 𝑃9!(𝑡). Let us denote as 𝑓(∙) this non-linear input-output relationship. 

Therefore, we have that 𝑃9!(𝑡)~𝑓(𝐼(𝑡)).  Actually, function  𝑓(∙) is unknown. One way to 

approximate 𝑓(∙) is through the use of feedforward neural networks since it has been proven 

to be universal approximator [72]. This means that 
𝑃$!(𝑡) = 𝒖𝑻(𝑡) ∙ 𝒗(𝑡) (2a) 
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𝒖(𝑡) = 1
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⋮
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( ∙ 𝐼(𝑡))
⋮

𝑡𝑎𝑛ℎ(𝒘'
( ∙ 𝐼(𝑡))

5 (2b) 

 

In (2), we have assumed a feedforward neural network of 𝐾 hidden neurons. 𝒗(𝑡) are the 

weights connecting the outputs of the hidden neurons, denoted as 𝒖(𝑡), with the output node, 

estimating the probability 𝑃9!(𝑡). The weights 𝒘𝒊, 𝑖 = 1,…,K are the ones connecting the 

input node  𝐼(𝑡) with one of the 𝐾 hidden neurons. Each hidden neuron models the 

hyperbolic tangent, denoted as tanh (see Figure 8).  

Autoregressive Moving Average Behavior: The dynamic nature of a dance sequence 

implies that choreographic modeling depends not only on the current visual observations but 

also on other backward and forward frames. Moving Average (MA) is often used with input 

signals to smooth out temporal dependencies. MA is implemented by a Tapped Delay Line 

(TDL) filter of delaying the input signals of one tap per time. In addition, the output of the 

dance identification neural model should depend on backward and forward classification 

outputs mainly due to the dynamics of a dance sequence. Consequently, we introduce an 

additional AutoRegressive (AR) filter that stimulates the dependence of the classification 

output on its previous own values. In this way, we ensure a smoothness in the classification 

output, improving overall choreographic modeling performance.  

Long-Range Dependence & Bi-Directional Behavior: A dance sequence follows repeated 

patterns span on long-time periods, implying a long-range dependence behavior. In addition, 

choreographic dance modeling follows a bi-directional behavior. For this reason, bi-

directional  properties are introduced in the fully connected neural network model of (2). 

Assuming one tap dependence, the following equation is held  

𝑢)(𝑡) = tanh	(𝐰𝑖
𝑇 ∙ 𝐼(𝑡) + 𝐫⃗𝑖

𝑇 ∙ 𝐮(𝑡 − 1) + 
𝐫⃐#$ ∙ 𝐮(𝑡 + 1)) 

(3) 

Extending (3) to a long-range dependent framework, we conclude to a bi-directional LSTM 

structure for modeling the 𝑓(∙).  In the LSTM network, the hidden layer is transformed to a 

memory cell of different processing units, that is the forget gate, the input node and gate and 

the output gate [77].    

Convolutionally Enriched LSTMs: The main limitation of the aforementioned structure is 

that it fails to process efficiently high-dimensional data, such as RGB input signals, 
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presenting issues related with skeleton errors often occurred by the motion capturing 

architectures. For this reason, a convolutionally enriched an LSTM structure was used in a 

way to better process high-dimensional RGB visual signals. In particular, we include a 

convolution hierarchy after the input layer for transforming the RGB visual signals into low 

forms of representations. In this way, the convolutional layer is responsible for extracting 

the skeleton like signal from the raw input data, facing skeleton error related issues.  

4.1.1. Network Weight Adaptation 

To address the dynamics of a dance sequence, we introduce an adaptive algorithm for 

dynamic weight modification. Let us now assume that 𝑤; are network weights after 

adaptation and as 𝑤3 before. We now assume that the 𝑤; and 𝑤3 are related with a small 

weight perturbation  
𝑤* = 𝑤+ + 𝑑𝑤 (4) 

From (4), it is clear that estimation of the new weights 𝑤* is equivalent to estimate the 𝑑𝑤.  

It is clear that a dance composes of repeated choreographic patterns. These patterns are 

periodically appearing through time (perhaps with small variations due to dancer’s style).  

Let us denote as 𝜋 = {𝑐)(𝑡<), … , 𝑐=(𝑡>)}  the main choreographic pattern of a dance. A 

frequency domain approach is adopted for determining this pattern, that is the start and end 

time instances 𝑡< and 𝑡>[79]. Then, it is clear that the performance of the network should 

satisfy the main choreographic pattern. 
𝑦,"(𝑡) = 𝑐)(𝑡), ∀	𝑐)(𝑡) ∈ 𝜋 (5) 

In Eq. (5), 𝑦?-(𝑡) refers to the network response at time instance 𝑡 in case that the new 

(adapted) network weights are used (e.g., 𝑤;). Eq. (5) means that the response of the network 

within the choreographic pattern should be as close as possible. However, since the network 

parameters (and consequently the 𝑑𝑤) are quite large compared to the number of equations 

of (5), many solutions satisfy (5). To overcome this difficulty, an additional constraint is 

introduced; the one that minimizes the norm of 𝑑𝑤. Thus,  
𝑑𝑤E = 𝑎𝑟𝑔𝑚𝑖𝑛	‖𝑑𝑤‖ subject to   
𝑦,"(𝑡) = 𝑐)(𝑡), ∀	𝑐)(𝑡) ∈ 𝜋 (6) 

Solving Eq. (6), one can estimate the new network weights 𝑤;. In particular, we exploit the 

assumption of (4). Thus, by applying a first order Taylor series expansion to the LSTM layer 
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of the proposed neural network model, we can rewrite Eq. (5) as a linear equation system of 

the form  
𝑦,"(𝑡) − 𝑦,#(𝑡) = 𝐴 ∙ 𝑑𝑤  (7) 

In Eq. (7), matrix A depends only from the previous network weight, that is the 𝑤3, and 

𝑦?-(𝑡) − 𝑦?.(𝑡) expresses the response difference error of the network of the previous and 

the adapted network weights over the detected choreographic pattern 𝜋.  

Variational Inference of Gaussian Mixtures for Foreground Extraction: A variational 

inference of Gaussian mixtures method is adopted for foreground extraction. The approach 

presents advantages compared to conventional Gaussian mixtures techniques both in terms 

of performance and computational complexity. The main difference of a variational 

inference approach is that the scalar coefficients, regulating the importance of each mixture 

of Gaussian, is substituted by a probability density function. In other words, each pixel has 

a probability of belonging to background based on the following probability value 

𝑃(𝑋) =N𝑃(𝑤)) ∙ 𝑁(𝑋, 𝜇, 𝜎) (8) 

In Eq. (8), instead of having scalar coefficients to regulate the effect of each Gaussian 

distribution, we have probability density functions. This means that better approximations 

can be achieved even for highly dynamic visual environments. 

4.2.  Performance Evaluation 

4.2.1. Dataset Description 

Dataset Description & Algorithm Set-up: To evaluate the aforementioned deep learning 

framework we utilized the latest version of the dataset of choreographic motion capturing of 

the EU project the TERPSICHORE. The dancers are professionals. Thirty dance sequences 

have been recorded of different Greek dances [75] presents the description of five dances 

along with the respective frame choreographic primitive sequence. 

 
Figure 9. The main choreographic primitives of the Syrtos (3-beat) dance sequence 
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 Figure 9 indicates two choreographic cycles of the dance sequence syrtos (3-beat). As we 

observed, the choreographic primitives are quite similar with each other, imposing 

challenges to the classification process. The used algorithms were implemented in Python 

3.6 using the Keras and Tensorflow libraries.  
 

Experimental Validation: We have conducted experiments to assess the efficacy of our 

approach, compared five with other popular classifiers, namely an SVM classifier, a feed 

forward neural network with 1 hidden layer of 10 neurons, a normal bi-directional LSTM 

[66] and a CNN [78]. The LSTM classifier is the same as the proposed convolutional LSTM 

classifier, but without the convolutional layer in the input. The CNN classifier has the same 

structure of the Convolutional layer of the proposed classifier, followed by on fully 

connected hidden layer [66]. A comparative Analysis of the performance of these classifiers 

is presented in Table 3. 

 
Figure 10. The effect of background subtraction on the choreographic modelling performance.  

 

Table 3. Comparative Performance Evaluation of the proposed method with other classifiers 
Classification Method  Accuracy Precision Recall F1 Score 
SVM 60.87% 55.08% 55.35% 55.22% 
FNN 52.53% 45.05% 59.23% 51.18% 
LSTM [66] 54.89% 47.45% 57.92% 52.16% 
CNN [78] 70.57% 70.61% 59.89% 64.81% 
Proposed Method 71.35% 71.02% 61.07% 65.67% 
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Regarding the background subtraction module, Figure 10 illustrates the accuracy of the 

different classifiers with or without the background subtraction. As is expected, background 

modelling improves overall choreographic representation. Finally, Figure 11 highlights how 

the size of the memory window (that is the AR and MA order) affect choreographic 

modelling performance.  

 
Figure 11. The effect of the memory window in the classification performance.  

4.3. Conclusions 

In this chapter, we have proposed a hybrid CNN-Bidirectional LSTM model for recognition 

of key choreographic postures in dance sequences. The proposed model combines the multi-

scale feature extraction process of CNN with the long-term dependency modeling 

capabilities of bidirectional LSTM networks. ARMA capabilities also included with an 

adaptive weight modification strategy. The method has been evaluated on RGB sequences 

depicting real-world sequences of traditional dances and has been shown to outperform other 

machine learning (including deep learning) approaches in terms of recognition accuracy.  
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5. Identification of motion primitives: 
Space-Time Tensor Based Neural 
Networks for training under Small 
Sample Settings 

The techniques presented in Chapter 3 and 4 while presenting significant advantages in the 

way the extract feature and perform the requested micro-action classification tasks, they 

present one significant drawback, common in most deep learning approaches. That is that 

deep neural networks are usually extremely complex learning structures with millions of 

trainable parameters, which makes their training difficult both due to the computational 

complexity and due to their need of large training sets in order to effectively calculate all 

these trainable parameters (model weights). Based on this, in this chapter we present the 

development of a tensor based technique that has the following three advantages. First, we 

propose an end-to-end trainable architecture that unifies the feature and pattern recognition 

tasks. Second, we exploit tensor algebra tools to significantly reduce the number of the 

proposed model’s trainable parameters making it very robust for small sample setting 

problems. Last but not least, the proposed approach is a general one that can potentially be 

applied to different problems that employ spatiotemporal data coming from sensor networks. 

 

5.1.  Problem Formulation 

We consider the problem of human pose classification using 3D skeleton data from Kinect-

II. As we will see later, that problem is a specific instance of the more general problem of 

pattern recognition using information coming from sensor networks. Therefore, in this 

section, we describe the form of the latter more general problem. 

Consider a sensor network that contains C	sensors. Each one of the sensors, let’s say the c-th 

sensor, retrieves J	measurements (information modalities) at each time instance t, which can 

be represented by the vector 
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𝑠$(𝑡) = 	 r𝑥$
())(𝑡), … , 𝑥$

(B)(𝑡), … , 𝑥$
(C)(𝑡)	s (1) 

for c	=	1,···	,C. Since each sensor occupies a specific spatial position, the spatial information 

for the j-th information modality captured by the sensor network can be represented by the 

following vector: 

𝑠(B)(𝑡) = 	 r𝑥)
(B)(𝑡), 𝑥*

(B)(𝑡), … , 𝑥D
(B)(𝑡)	s  (2) 

for j =	1,···	,J, while the spatiotemporal information corresponding to a time window t	to t	+	

T	can be represented by the matrix 

𝑆(B)(𝑡, 𝑡 + 𝑇) = 	 u𝑠(B)(𝑡), … , 𝑠(B)(𝑡)	v, ∈ 	ℝD7,  (3) 

The information from all S(j)(t,t	+	T), j	=	1,···	,J	can be aggregated into a tensor object 

𝑆(𝑡, 𝑡 + 𝑇) = 	 u𝑆())(𝑡, 𝑡 + 𝑇), … , 𝑆(C)(𝑡, 𝑡 + 𝑇)v		(4) 

in ℝD×,×C. For the sake of clarity, in the following we omit the time index, thus, when we 
write S we refer to a tensor object of the form of (4) for some time instance t. Obviously, for 
a specific time window, the tensor object in (4) encodes the spatiotemporal information for 
all information modalities and all sensors in a sensor network. 
Each tensor S describes a pattern that belongs to a specific class. Let us denote as y	the class 

of that pattern, and assume that we have in our disposal a set D	of N	pairs of the form: 

𝐷 =	 {(𝑆- , 𝑦-)}-F)=    (5) 

The objective of this study is to derive a function for mapping S to y	given the set D	in (5). 

This can be seen as a machine learning problem. Let us denote as F	the class of functions 

that can be computed by a learning machine. We want to select the function 

𝑓 ∗= arg𝑚𝑖𝑛8∈G ∑ 𝑙	(𝑓(𝑆-), 𝑦-)-   (6) 

such that (Si,yi)	∈	D. In (6) l(·)	is a loss function. For classification problems l(·)	usually is 

the cross entropy loss. Remark 1: In order to facilitate the solution of problem (6) the learning 

machine must contain a number of trainable parameters that are comparable to the cardinality 
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N	of set D, and at the same time it should be capable of fully exploiting the spatiotemporal 

nature of the data. 

Remark 2: The problem of human pose recognition using 3D skeleton data from Kinect-II is 

a special instance of the problem described above. Each skeleton joint can be seen as a 

sensor, which, at every time instance, measures its x−y−z	location. So, in this case C	equals 

the number of skeleton joints and J	in (1) equals 3 (x, y	and z	positions). 

 
Figure 12. Kinect II skeletal capturing system (vvvv.org/documentation/kinect). 
 

In this chapter, we use 3D skeleton data captured using Kinect-II, along with their 

annotations, which correspond to the depicted human pose at every time instance. Initially, 

we process the skeleton data to create tensor objects as in (4) and then use their annotations 

to create a training set as in (5). 

After creating the training set, we design an end-to-end trainable neural network, which is 

able to fully exploit the spatiotemporal nature of the data, and at the same time employs a 

small number of trainable parameters (compared to the size of the training set). The first 

layer of the proposed model learns CSP-like features from each information modality using 

inputs in the form of (3). Then, the constructed features from all modalities are fused into a 

tensor object to compactly represent the spatiotemporal information captured by the sensor 

network. Finally, the tensor objects are processed by a tensor-based neural network for 
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producing a mapping from 3D skeleton data to human poses. In the following, we describe 

each one of the steps presented above in details. 

5.2.  Data Processing 

The Kinect-II sensor identifies and monitors twenty-five skeletal joints at the constant rate 

of 30 measurements per second, see Figure 12. The positions of joints in the 3D space with 

respect to the Kinect-II device are provided. We utilize the measurements in the form they 

are captured without employing any tracking technique. A human pose, however, is 

characterized by the relative positions of the human body parts. For this reason, we represent 

the position of each joint with respect to the position of the Spine Base joint. This way, the 

recognition of human poses does not depend on the position of the human with respect to the 

Kinect-II device. 

Specifically, if we denote as 𝑠HI (𝑡) the coordinates of the Spine Base joint and as 𝑠$I(𝑡), c	=	

1,···	,24	the coordinates of all other joints, then the coordinates of the joints with respect to 

the Spine Base joint will be given by 

𝑠$(𝑡) = 	 𝑠$I(𝑡) −	𝑠HI (𝑡) , c=1,…,24 (7) 

Using the transformed coordinates in (7), we create matrices as in (3) for j	=	1,···	 ,3	 that 

correspond to x−y−z	positions. Those matrices encode the spatiotemporal information for 

classifying human poses.  

At this point, we have to mention that parameter T	in (3) is application dependent and affects 

the recognition results. For this reason, it must be set appropriately. For T	=	1, the pose 

recognition model will not be able to exploit the temporal information and thus it will be 

more prone to measurements errors, while large values of T	may result to a dataset where 

each datum depicts more than one pose, increasing, this way, the uncertainty in recognition. 

 

5.3.  Space-Time Domain Tensor Based Neural Network 

The proposed tensor-based neural network consists of three main components; the input 

layer capable of computing CSP like features, the tensor fusion operation, and the tensor 

contraction and regression layers that process high-order data in its original multilinear form. 
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5.3.1. CSP Neural Network Layer 

The CSP layer aims to produce highly discriminative features for human pose classification. 

The design of that layer is motivated by the CSP algorithm , which, for the sake of clarity 

and completeness, we briefly describe here. 

The CSP algorithm originally was developed for binary classification problems. It receives 

as input zero average signals in the form of (3) along with their labels. Then, its objective is 

to produce features that increase the separability between two pattern classes. Consider that 

we have in our disposal N	samples }𝑆J,-~-F)
= , where l	=	1,2	denotes the class of each sample. 

The CSP algorithm computes the covariance matrix: 

𝑅J,- =	
K/,!,K/,!

1

LM;$N(K/,!,K/,!
1 )

  (8) 

for each sample, and the average covariance matrix 

𝑅�J =	
)
O/
∑ 𝑅J,-
O/
-F) 	 , 𝑙 = 1,2	(9) 

for each class, where nl	is the number of samples belonging to class l. Then, the CSP filter, 

W, is constructed by using M	=	2m, (M	<	C), eigenvectors corresponding to m	largest and m	

smallest eigenvalues of 𝑅*P)����� 𝑅). Finally, using W	each sample is represented by a feature 

vector: 

𝑓J,- = 𝑙𝑜𝑔 N
𝑣𝑎𝑟(𝑌J,-) )

∑ 𝑣𝑎𝑟(𝑌J,-
B )Q

BF)
…

𝑣𝑎𝑟(𝑌J,-Q)
∑ 𝑣𝑎𝑟(𝑌J,-

B )Q
BF)

P ∈ ℝQ 		(10) 

where 𝑌J,-
B  stands for the j-th row of WSl,i. Features fl,i	typically are used for as inputs to 

learning models since they encode the spatiotemporal information of signals }𝑆J,-~-F)
= . 

Although, theoretically sound, the CSP algorithm presents several drawbacks when applied 

to real world problems mainly due to the non-stationarity of captured signals. Moreover, it 

is a feature construction technique that is performed individually, and thus does not permit 

information flow between feature construction and pattern recognition tasks (see Section I-

A2). To overcome those drawbacks, the proposed CSP layer learns W	during the training of 

phase model. Trainable matrix W	projects measurements in RM×T	and then features as in (10) 
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are computed from the projected measurements. Additionally, since Kinect-II measurements 

extract 3D coordinates, we use three parallel CSP layers, one for each coordinate. Therefore, 

the output of the CSP layer consists of three vectors in RM. 

5.3.2. Tensor Fusion Operation 

The fusion module receives as input the feature vectors constructed by the CSP layer and 

produces a rich and compact representation of the data. Since we do not know in advance 

the kind of interactions between the elements of the constructed feature vectors, we cannot 

fuse them using feature averaging or addition. The employed fusion technique is motivated 

by the work in [11]. The output of the fusion module corresponds to the Kronecker product 

of the feature vectors produced by the CSP layer. Therefore, after the fusion module each 

input sample S, in the form of (4), is represented by a tensor object in X ∈	RM×M×M. Contrary 

to [11], we do not reduce the dimensionality of the fused tensor object via decomposition 

techniques. Instead, we use a tensor-based learning machine capable of processing the fused 

information in its original multilinear form. The proposed CSP layer and the tensor fusion 

operation are depicted in Figure 13. 
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Figure 13. The proposed CSP layer and the tensor fusion operation. Parameter N stands for the number of 

skeleton joints 

5.3.3. Tensor Based Neural Network 

The employed tensor-based neural network is a fully connected feed forward neural network, 

its parameter space, however, is compressed [81]. At each layer the weights should satisfy 

the Tucker decomposition [82]. In particular, the weights Wk	at the k-th hidden layer are 

expressed as 

𝑊! =	 𝐼! ×)𝑊!
()) ×*𝑊!

(*)…×C 𝑊!
(C)	 (11) 

where Ik	is a tensor all elements of which equal one, and the operation ”×j” stands for the 

mode-j	product. 

The information is propagated through the layers of the tensor-based neural network in a 

sequence of projections – at each layer the tensor input is projected to another tensor space 

– and nonlinear transformations. Formally, consider a network with (K−1)	hidden layers. An 

input (tensor) sample X ∈	RP1×···×PJ	is propagated from the k-th layer of the network to the next 

one via the projection 

𝑍!7) =	𝐻! ×) (𝑊!7)
()) ), …×C (𝑊!7)

(C) ), (12) 

and the nonlinear transformation 

Hk+1	=	g(Zk+1),	 (13)	
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where g(·)	is a nonlinear function (e.g. sigmoid) that is applied element-wise on a tensor 

object. For the input layer H0	≡	X. The layers that propagate information in the way described 

above are referred as Tensor Contraction Layers (TCL) [83]. 

Finally, the output of the (K	−	1)-th hidden layer is fed to a Tucker regression model [81], 

which outputs 

𝑦J = 𝑠�〈𝐻RP), (𝐺J ×)𝑊R,J
()))…	×C 𝑊R,J

(C)〉 +	𝑏J� (14) 

for the l-th class. In (14) the tensor Gl	∈	RR1×···×RJ	and Rj	is the rank of the Tucker decomposition 

along mode j	used in the output layer. The scalar bl	is the bias associated with the l-th class, 

while the subscript l	indicates that separate sets of parameters are used to model the response 

for each class. The tensor-based neural network is presented in Figure 14. 

 
Figure 14. Propagation of information through the layers of the tensor-based neural network 

 

At this point it should be highlighted that the sequential projections and nonlinear 

transformations can be seen as a hierarchical feature construction process, which aims to 

capture statistical relations between the elements of the input in order to emphasize 

discriminative features for the pattern recognition task. Finally, since the weights of the 

employed tensor-based neural network need to satisfy the decomposition in [84], the total 

number of trainable parameters is reduced substantially [81]. This reduction acts as a very 

strong regularizer that shields the network against overfitting [85]. 

5.4.  Performance Evaluation 

The dataset of Chapter 3 is used for the evaluation of the tensor based neural network. The 

dataset consists of four Greek folklore dances performed by three professionals and is 

publicly available upon request. Each dance performance is described by consecutive frames 
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and each frame is represented by the spatial coordinates of the twenty-five tracked skeleton 

joints (see Figure 12). The frames of the captured choreographies were manually annotated 

by dance experts according to the posture they depict. In total seven different postures are 

depicted. The distribution of annotated samples between different classes for each dance 

(performer) is depicted in Table 4, and apparently the dataset is highly unbalanced. First, we 

follow the procedure described in 5.2 to transform the coordinates of skeleton joints to a 

coordinate system in which the origin is the Spine Base joint. Second, we use different values 

for parameter T	to create a dataset as in (4). Third, we assign to each sample the annotation 

of the centered frame, e.g., for T	=	15	we assign to the sample the annotation of the 8-th 

frame. 

 
Table 4. Distribution of annotated samples between classes for each dance (performer). 

ID C1 C2 C3 C4 C5 C6 C7 
D1 (P1) 155 201 - - 44 13 - 
D2 (P1) 82 95 42 22 - - 47 
D3 (P1) 122 246 - - - - 82 
D3 (P2) 44 268 - - - - 61 
D1 (P2) 82 155 - - 40 85 - 
D2 (P2) 82 112 16 32 - - 44 
D5 (P3) 37 98 38 25 - - 77 
D1 (P3) 152 96 - - 13 16 - 
D2 (P3) 33 102 38 25 - - 77 
D3 (P3) 119 130 - - - - 49 
Total 908 1503 134 104 97 114 437 

 

For evaluating the performance of our methodology, we randomly shuffle the constructed 

dataset and follow a 10-fold cross validation scheme. Under that scheme, the performance 

is evaluated in terms of average classification accuracy and F1 score across the 10	folds. To 

train our model we used Adam optimizer with learning rate equal to 2.5	·	10−4. We set the 

maximum number of training epochs to 300 and employed early stopping criteria to avoid 

overfitting, which are activated if the accuracy on the validation set is not improved after 20 

epochs. The validation set corresponds to 10% of the training set for each fold. Finally, since 

the problem is unbalanced, we used the weighted cross entropy as the loss function, and the 

weight for each class corresponds to the inverse of its frequency in the training set. 
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Figure 15. Average classification accuracy and F1 score of a tensor-based neural network with two TCLs, for 
T = 7, and for different values of M. 

 

 
Figure 16. Average classification accuracy and F1 score of a tensor-based neural network with one tensor 
contraction layer, for M = 24, and for different values of parameter T .  
 
There are three different parameters that affect the performance of the proposed 

methodology; namely, parameter M, that is the dimension of feature vector constructed by 

the CSP layer, parameter T, that is the temporal dimension of the samples, and K	that is the 

number of tensor contraction layers employed in the tensor-based neural network 

architecture. 

The effect of parameter M: Parameter M	 corresponds to the dimension of the features 

constructed by the CSP layer. For investigating the effect of that parameter on the 
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performance of the model, we keep fixed the parameter T	=	7. Then, we train and test the 

performance of the proposed model with two tensor contraction layers (TCLs) for different 

values of M, i.e., M	=	 12, M	=	 18, M	=	 24, and M	=	 30. The dimension of the tensor 

contraction and regression layers is presented in the second column of Table 5. 

The effect of the parameter M	is depicted in Figure 15. The best accuracy is achieved for M	

=	24. The dimension of the features constructed by the CSP layer is directly related to their 

representation power. Thus, features of higher dimension can better capture the spatial and 

temporal patterns of skeleton data resulting to more accurate human pose classification. For 

M	 =	 30, however, the accuracy drops, which might be an indication of over-fitting. 

Moreover, increasing the value of parameter M	 increases the total number of trainable 

parameters of the model. Indicatively, the number of trainable parameters for M	equals 12, 

18, 24	and 30	is 1335, 1839, 2343, and 2847	respectively. 

The effect of parameter T: In contrast to parameter M, parameter T	does not affect the 

number of trainable parameters of the model nor the dimension of the features constructed 

by the CSP layer due to the variance operator employed in (10). Parameter T	 indirectly 

determines the amount of temporal information that is taken into consideration during the 

construction of the features. 

The effect of parameter T	on the performance of the model is presented in Figure 16. To 

obtain those results we train a tensor-based neural network with two TCLs and keep the 

value of parameter M	fixed equal to 24. Producing features that encode larger amounts of 

temporal information results to higher human pose recognition accuracy. Increasing the 

value of parameter T	from 7	to 11	results in a performance improvement more than 10%. 

Increasing, however, more the value of T	 results in smaller performance improvements 

around 2%. This implies that capturing important temporal information for problem at hand 

more that 11	consecutive frames need to be used. 
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Figure 17. Average classification accuracy and F1 score of a tensor-based neural network with two TCLs, for 
M = 24, and for different values of T. 
 

In Figure 17, we also compare the performance of the proposed model against a 1D-CNN. 

First, we concatenated the measurements of different channels to produce input samples for 

the CNN of dimension 72	 ×	 T. The CNN performs convolutions along the temporal 

dimension of the samples, and thus, similarly to the proposed model, it encodes the temporal 

information within the constructed feature vectors. The employed CNN consists of 3 

convolutional layers with 8, 16 and 24 kernels, which are followed by a dense layer with 12 

neurons and the output layer. The width of the kernels is (T	−1)/2	for the first two layers 

and 3 for the third layer. The 1D-CNN and the proposed model perform almost the same. 

The proposed model, however, employs a significantly smaller number of trainable 

parameters. Specifically, the proposed model employs 2343	trainable parameters, while the 

CNN employs 3415, 4631, 5847	and 7063	trainable parameters for T	=	7,11,15	and 19	

respectively. 



 

 

 

58 

 

 

 

 
Figure 18. Average classification accuracy and F1 score of a tensor-based neural network with different 
number of tensor contraction layers (parameter K) for M = 24 and T = 11.  
 
3) The effect of parameter K: Parameter K	corresponds to the number of TCLs present in the 

network. Figure 18 presents the effect of the number of TCLs on the performance of the 

model. To obtain those results we keep parameter M	an T	 fixed and equal to 24	and 11	

respectively, and trained four different tensor-based neural networks with 1, 2, 3, and 4	

tensor contraction layers. The projections of the employed contraction layers are presented 

in Table 5. Increasing the number of tensor contraction layers increases the total number of 

trainable parameters of the model, and thus its learning capacity. Indicatively, the number of 

trainable parameters for K	equals 1, 2, 3, and 4	is 1959, 2343, 2919, and 3783	respectively. 

That increase, however, does not seem to affect the performance of the model, since the 

performance improvement from K	=	2	to K	=	4	is only 1%. 

The investigation above suggests that the most important parameter for achieving highly 

accurate results is parameter M. Indeed, increasing the dimension of the features constructed 

by the CSP layer from 12	to 24, we achieve a performance improvement of more than 10%. 

On the contrary, designed deeper architectures does not seem to significantly affect the 

performance of the model. This might be due to the Tucker decomposition (see (11)), which 

acts as a very strong regularizer for the model. 
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Table 5. Projections of tensor objects when they propagated through tensor contraction layers (TCL) and the 
ranks of the tensor regression layer (TRL). 

 1 TCL 2 TCLs 3 TCLs 4 TCLs 

Input (24×24×24) (24×24×24) (24×24×24) (24×24×24) 
Layer1 (4×4×4) (8×8×8) (12×12×12) (16×16×16) 
Layer2 - (4×4×4) (8×8×8) (12×12×12) 
Layer3 - - (4×4×4) (8×8×8) 
Layer4 - - - (4×4×4) 
TRL (2×2×2) (2×2×2) (2×2×2) (2×2×2) 

 

5.4.1. Performance Evaluation Against State of the Art Methods 

In this section we compare the performance of the proposed model against state-of-the-art 

methods for choreographic modeling. We compare the performance of our model against 

LSTM and the recently proposed Bayesian Optimized Bidirectional LSTM (BOBi LSTM) 

[40]. In contrast to the proposed model and the 1D-CNN, the LSTM-based models exploit 

the order of the data as an additional source of information. 

For the performance comparison, we utilize a tensor-based neural network with two TCLs 

(K	=	2), and parameters M	and T	equal to 24	and 11	respectively. Regarding the LSTM and 

the BOBi LSTM models, their architectures are the ones presented in section 3 and they use 

a memory of 10	frames for recognizing human poses. At this point we should emphasize that 

those models receive as input the kinematic properties of the skeleton joints; i.e., the spatial 

position as well as the velocity and the acceleration of each joint. In contrast, our method 

receives as input solely the spatial position of the joints. Moreover, the proposed model 

consists of 2343	 trainable parameters. In contrast, the BOBi-LSTM network in [40] was 

composed by 2 LSTM Layers of 128 cells each and two additional dense layers as the output. 

This makes the total number of training parameters at 205,674, namely 87 times more than 

the number of trainable parameters in our approach. This significant reduction favors the 

efficient parameter estimation especially when small sample setting problems need to be 

addressed. 

Table 6 presents the results of that comparison. The proposed model performs more than 

6%	 better compared the BOBi LSTM, despite the fact that is uses a simpler input 
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representation (our method is completely blind to kinematics information of the skeleton 

joints). Also, Table 6 presents the performance of the 1D-CNN mentioned above. The 

1DCNN performs better than both LSTM models and slightly worse than our proposed 

model. This implies that models that do not take into consideration the order of the samples 

are more appropriate for classifying human poses in folklore dances. This is justified by the 

fact that different dances are composed of different sequences of poses. Therefore, 

information regarding the order of the samples confuses the model and deteriorates its 

performance. 

Figure 19 presents the confusion matrix for the proposed model. The models performs very 

well for all classes with the smallest accuracy to be 87% for the second class (cross-legs). 

9% of the samples belonging to the second class are misclassified to class 1 (initial pose). 

This mainly happens due to similarities of the poses belonging to these two classes. For poses 

that belong to the first and the second classes the dancer faces the camera, and the 

measurements for all joints (except knees and ankles) are very similar. 

The comparison above implies the following. First, the proposed CSP layers can produce 

highly discriminative features that encode the spatial and the temporal information in the 

data. Second, employing the tensor fusion operation produces compact yet highly descriptive 

representations of the input. Finally, tensor contraction and tensor regression layers can 

efficiently process data in tensor form and produce highly accurate learning models. 

Table 6. Performance comparison in terms of average classification accuracy and F1 score against LSTM and 
BOBi LSTM models. 

 Accuracy (%) F1 Score (%) 

LSTM 84.2% 82.0% 
BOBi LSTM 85.4% 80.7% 
1D-CNN 91.1% 89.7% 
Our Approach 91.6% 90.9% 
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Figure 19. Confusion matrix for T = 11, and M = 24. 
 

5.5. Conclusions 

In this chapter we proposed a spatially and temporally aware tensor-based neural 

network that can efficiently process spatiotemporal data. We evaluated the performance of 

the proposed model on the problem of human pose recognition using 3D data captured using 

the Kinect-II sensor. The evaluation results indicate that the proposed model can construct 

highly discriminative spatiotemporal features and achieve state-of-the-art performance. The 

problem of recognizing human poses using 3D skeleton data is a specific instance of the 

more general problem of pattern recognition using information coming from sensor network. 

Therefore, despite the fact that in this work we consider that specific problem, our model is 

a general one that can be applied on general pattern recognition problems that employ 

spatiotemporal data from sensor networks. 
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Part 2: 

Extraction of statistical insights in datasets composed by 

random sets of actions 
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6. Supervised Approach: Simulating 
scenarios in multimodal datasets 

In this chapter, we study the use of CNN approaches as presented in previous chapters, in 

data where the semantic information is not as fine-tuned, but multiple actions are captured 

simultaneously from both thermal and visual spectrum data modalities, specifically thermal 

and RGB videos. These datasets are enriched by additional information from other data such 

as sensors. The learning goal is for the model to be able to ascertain a binary classification 

paradigm (expected vs unexpected actions).  

The need for effective complex representations 

Traditional machine learning approaches are sensitive to the features used as input to the 

detection framework (usually a classifier), therefore appropriate feature selection is crucial. 

However, extracting adequate features from complex, multi-faceted threats is a very 

challenging task. This is mainly because of the wide range, variety and heterogeneity of 

events and their different physical attributes (e.g. pertaining to visual, electromagnetic, 

mechanical, sensorial information or combination thereof), which cannot be accurately 

modeled by a common physical law or description. Instead, deep Convolutional Neural 

Networks inherently compute feature maps extracting complex representations which drive 

the subsequent classification stage [86] and are especially useful in problems where feature 

detection and extraction are hard to enact. Furthermore, CNNs exploit strong spatial local 

correlation by enforcing a local connectivity pattern between neurons of adjacent layers, 

which can be significant in certain attacks, where locality is a salient attribute.  

The need for autoregressive and adaptive learning models 

As is often the case, however, there are significant domain-specific factors which even 

powerful models like CNNs do not inherently take into consideration. In particular, the 

output of an attack detector should not only depend on external input but also on its 

classification output history, so as to avoid abrupt spikes in the detection output. Second, an 

attack detection should often be based on a cumulative behavior over a time period instead 

of only relying on the current measurable observations, in order to avoid having outliers in 
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the input data trigger erroneous detections. Third, a conventional CNN assumes a stationary 

input-output relation, whereas this assumption is not valid since a water distribution and 

monitoring infrastructure environment can be highly dynamic and changing over time. 

Therefore, an attack detection framework should be based on a non-linear autoregressive 

and adaptive model that fulfills the above-described conditions. 

In this chapter, we explore the intrinsic characteristics and review current methods on 

detection of attacks pertaining to three information flows: vision-based surveillance, human 

intrusion detection based on wireless signal reflectance, and cyber-physical attack detection 

on sensors, actuators or controllers. We then propose a novel framework for multimodal data 

fusion and adaptive deep learning. The proposed Tapped Delay Line (TDL) CNN model 

approximate a non-linear Auto-Regressive Moving Average (NARMA) filter. The proposed 

TDL-CNN classifier achieves an effective feature representation of the heterogeneous input, 

introduces input- and output memory to the model thus approximating a non-linear 

autoregressive filter, and incorporates a novel recursive algorithm for online modification 

the weight parameters of the network to fit the dynamic environmental parameters. An 

extensive comparative experimental evaluation on real-world data demonstrates the 

superiority of multimodal vs. unimodal approaches, deep learning vs. “shallow” 

architectures, as well as autoregressive and adaptive models vs. conventional ones. 
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Figure 20. A high-level overview of a framework to tackle diverse types of cyber and physical attacks 
 

6.1. Modelling input data modalities 

6.1.1. Visual modality: RGB & thermal camera streams for vision-based detection  

Computer vision–based surveillance systems are usually based on analysis of RGB video 

streams. However, the possibility to process information flows from bands beyond the 

visible spectrum can enhance the performance of intelligent vision systems. In this work, 

two types of cameras are considered: RGB and thermal. To increase field of view coverage, 

a network of cameras is used. The raw captured visual data are processed using the YOLO 

(You look only once) object detection framework. The system models the object detection 

as a regressive problem by separating the image into spatial bounding boxes and associates 

to each box a class probability. A convolutional neural network architecture is deployed for 

performing the object detection task. The model consists of 24 convolutional layers and 2 

fully connected layers.  
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For each frame, class object identities are specified per image region (pixel coordinates). In 

particular, denoting as 𝑜!(𝑥, 𝑦) the k-th object identity of the (𝑥, 𝑦) pixel, we can form a 

class label image, say 𝐶𝐿(𝑥, 𝑦), of the same size as that of the RGB image 𝐼(𝑥, 𝑦) or the 

thermal image 𝑇(𝑥, 𝑦) respectively, so that:  

 𝐶𝐿!(𝑥, 𝑦) ≡ 𝑜",!(𝑥, 𝑦), i={RGB, Thermal} (1) 

where subscript i indicates either the RGB or the thermal data. Eq. (2) retains the spatial 

coherency of the data since the derived class label images are of the same size and spatial 

consistency with the original raw RGB and thermal image data. For convenience, we resize 

the RGB and thermal image frames so that they are of equal size, 𝑁 ×𝑀. That is, tensor 

𝒙S"T(𝑛) ∈ 𝑅=×Q represents an image, each pixel of which indicates the object ID that the 

respective RGB pixel belongs to. Similarly, tensor  𝒙LUNM%;J(𝑛) ∈ 𝑅=×Q represents the class 

label image of the thermal data. It should be noted that in the case of thermal data, an 

additional pre-processing stage including background subtraction [87] is carried out. The 

derived class label image maps, along with the respective confidence scores indicating the 

reliability in object detection, are the visual (RGB and thermal) modality input,  𝒙S"T(𝑛) ∈

𝑅=×Q 	and 𝒙LUNM%;J(𝑛) ∈ 𝑅=×Q to the multimodal data fusion classifier. 

6.1.2. WiFi signal reflection modality for human intrusion detection 

Detecting human movement using WiFi commercial off-the-shelf devices can be effected 

by exploiting Channel State Information (CSI) [88], [35]. CSI models the propagation of a 

signal from the transmitter to the receiver, supporting many subcarriers due to the 

Orthogonal Frequency Division Multiplexing (OFDM) principle. The main advantage of 

CSI data is that they capture physical attributes of the wireless channel, such as scattering, 

power decay with respect to distance, fading, shadowing and effects of interference [89]. 

These physical properties are extracted by measuring the amplitude and the phase overall 

the K available subcarriers: 

 𝐻(𝑛) = [𝐻(𝑛, 𝑓$)		𝐻(𝑛, 𝑓%)	⋯ 	𝐻(𝑛, 𝑓&)]' (2) 

where 𝐻(𝑛, 𝑓-) refers to the amplitude and the phase of the i-th subcarrier with central 

frequency 𝑓-. Therefore, we have that: 𝐻(𝑛, 𝑓-) = |𝐻(𝑛, 𝑓-)|𝑒B∠W(O,8!). 
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Usually, 𝐻(𝑛) input data contain noise and they are also distorted by the presence of outliers. 

For this reason, CSI data signals 𝐻(𝑛) need to undergo a pre-processing stage. First, outliers 

are removed using a Hampel identifier [90]. Alternatively, density-based clustering methods 

such as the DBSCAN algorithm [91] are applied to the raw captured CSI data for outliers’ 

removal. Then, noise is removed by means of wavelet denoising. It should be noted that 

outlier elimination should precede denoising, since otherwise, outliers may distort the noise 

removal process. The next stages include normalization, correlation of subcarriers and 

eigenvector processing of the signals (Figure 21).  

The pre-processed CSI data are analysed using a linear Support Vector Machine (SVM) 

classifier in order to detect human intrusions in a scene, which constitutes the output of 

unimodal detection based on WiFi signal reflectance. These classification IDs, say 𝐶X-G-(𝑛), 

will also be used as input to the proposed fused deep learning classifier for cyber-physical 

attack detection. Therefore, tensor 𝒙?-8-(𝑛), pertaining to the WiFi signal reflection for 

human intrusion detection modality, is composed of: 

 𝒙(!)!(𝑛) = [𝐻(𝑛)		𝐶*!+!(𝑛)]' (3) 

 

Figure 21. Schematic overview of human presence detection mechanism from WiFi reflection signals. 
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To retain spatial coherency in line with the visual input data, tensor 𝒙?-8-(𝑛) is expanded 

over the 𝑅=×Q grid, forming an additional input channel to the multimodal detection 

framework. 

6.1.3. ICS sensing modality: PLC and SCADA data for cyber-physical attack analysis 

Interconnected sensors and controlled devices of critical infrastructures, like water utilities, 

have been primarily designed for industrial process control. They provide valuable 

information about the smooth operation of the infrastructure, and can be utilized for security 

and protection purposes in an appropriately designed holistic threat detection framework. 

Extraction of appropriate features for ICS measurable data (e.g. sensors, PLC and SCADA 

indications) monitored by the operator is not straightforward, since there is no direct physical 

interpretation of cyber threats with sensorial patterns appearing in the monitoring signals 

[92]. Moreover, there are several types of different attacks with different “signatures”, which 

makes them difficult to model holistically. To address these challenges, the proposed TDL-

CNN multimodal deep learning model is allowed to find the most appropriate features in a 

way that classification performance for detecting cyber-physical attacks on specific 

application scenarios is maximized.  

Therefore, tensor 𝒙YDK	<NO<-OZ(𝑛) comprises a set of measurable sensorial data obtained from 

ICS of a water utility infrastructure. As in the previous case, the data are pre-processed so as 

to eliminate outliers and noise, using DBSCAN algorithm and a low-pass filter respectively. 

In this work, we measure the flows of two water pumps, the suction pressure and the 

discharge pressure for a real-world water utility. The measurements are acquired at 30 sec 

intervals. Again, to retain spatial coherency as for the previous cases, we expand tensor 

𝒙<NO<-OZ(𝑛) over the 𝑅=×Q grid, forming again an additional input channel. 

6.1.4. Multimodal data fusion from visual, WiFi reflection and ICS sensing input 
channels  

Unimodal approaches based on solely one of the above types of information are bound to 

have limitations as regards the range of threat types that they can detect. Critical 

infrastructures today may face increasingly sophisticated multi-faceted attacks, protection 

from which unavoidably requires a holistic approach that intelligently combines different 

channels of information.   In this context, the adaptive deep learning model proposed is 
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driven by a fused multimodal data tensor. Therefore, the multimodal input tensor data 𝒙(𝑛) 

can be derived as: 

𝒙(𝑛) = 3𝒙,-.(𝑛)		𝒙/012345(𝑛)	𝒙(!)!(𝑛)	𝒙678	:1;:!;<(𝑛)4
'    (4) 

where 𝒙S"T(𝑛) is the data tensor pertaining to RGB visual signals, 𝒙LUNM%;J(𝑛) the 

respective data tensor of the thermal component, 𝒙?-8-(𝑛) the data tensor pertaining to the 

WiFi reflection signal and, finally, 𝒙YDK	<NO<-OZ(𝑛) the data tensor of the ICS sensing 

modality.  
 

6.2. The proposed adaptive deep learning model for cyber-
physical event detection  

6.2.1. Tapped Delay Line Convolutional Neural Network (TDL-CNN) 

Let us denote as 𝑦(𝑛) = [𝑝9! ⋯ 𝑝95], an 𝐿 × 1 vector that contains probabilities 𝑝9! for 

attacks 𝜔- (out of L possible ones) occurring in the water utility infrastructure at time 

instance n. Classes 𝜔- may correspond, e.g., to cyber threat, physical intrusion, a combined 

attack detection, or a normal functional situation; such a scheme is also adopted in the 

experimental evaluation. Let us now assume that there is a non-linear function that relates 

probabilities  𝑝9!  with some measurable input observations 𝑥(𝑛) that describe the status of 

the critical water infrastructure at time instance n. To calculate probabilities 𝑝[6 we need to 

take into account several previous observations over a time window consisting, say, of q 

previous time instances. That is, vector 𝑦(𝑛) depends on q previous samples 𝑥(𝑛 − 𝑗),  j=0, 

… , q-1. Furthermore, the classification also depends non-linearly on its own previous 

values, thus resulting in a non-linear autoregressive-moving average framework. Therefore, 

the classification output 𝑦(𝑛) can be modelled with a non-linear vector-valued 

relationship	𝑔(∙): 

 𝑦(𝑛) = 𝑔6𝑥(𝑛 − 1),… , 𝑥(𝑛 − 𝑞), 𝑦(𝑛 − 1),… , 𝑦(𝑛 − 𝑝)< + 𝑒(𝑛) (5) 

where, p, q express the order of the model over the previous q measurable observations and 

previous p classification values. Additionally, vector e(n) is an independent and identically 

distributed (i.i.d.) error.  
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The main difficulties in Eq. (5) are that: (i) non-linear relationship 𝑔(∙) is actually unknown, 

and (ii) input observations 𝑥(𝑛) should be properly selected so that we can suitably divide 

the attack classification space in a way to maximize attack classification performance.  

To address the first fact, machine learning methods can be applied to approximate 𝑔(∙) in a 

way that minimizes error e(n). Eq. (5) actually models a Non-linear Autoregressive Moving 

Average (NARMA) filter. In particular, a feedforward neural network (FNN) with a tapped 

delay line (TDL) input filter can simulate the behavior of a NARMA(p,q), while a recursive 

implementation of such a model has been proposed in [72]. However, such a TDL-FNN 

model fails to address the challenge of effective feature selection in a high-dimensional space 

and a complex heterogeneous environment. In this context, Convolutional Neural Networks 

(CNNs) have demonstrated excellent representational capabilities in feature selection [86].   

The proposed TDL-CNN model combines the representational power of CNNs with the 

autoregressive nature of TDL. A TDL–CNN selects the optimal features for classification 

through an approximation of a series of convolutional filters, while also modeling the 

unknown vector-valued relationship 𝑔(∙) of Eq. (5). To this end, we expand the architecture 

of a CNN by (i) adding a TDL input layer which acts as a spatiotemporal moving average of 

the multiple modality input channels, and (ii) feeding back the classification output as 

additional input to the network over a time window. A block diagram of the proposed 

architecture is shown in Figure 22.  
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Figure 22. Architecture of the proposed TDL-CNN. 
 

Tapped Delay Line Layer: The purpose of this layer is to appropriately organize the 

external input data 𝑥(𝑛) as well as to feed back the previous classification outputs. It consists 

of two terms: The first term models the moving average component by delaying the external 

input signals 𝑥(𝑛) for q discrete previous times. The second term simulates the 

autoregressive component by delaying the output of 𝑦(𝑛) over a time window of p previous 

discrete times. The TDL is a non-linear dynamic model, employed to endow the network 

with an autoregressive character. Past classification results influence current and future 

outputs to an extent, as temporal dependencies do occur. Therefore, the TDL layer helps take 

into consideration previous classification results, thus decreasing spikes in the output 

behavior. 

Convolutional Layer: The purpose of this layer is to apply convolutional transformations 

on the input data in a way as to maximize classification performance. A set of 
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parameterizable filters (e.g., learnable kernels) is convolved with the input data selecting 

appropriate features and estimating kernel parameters, so that performance error on a ground 

truth training set is minimized. The L feature maps, say 𝑓), 𝑓*, … , 𝑓#, optimally selected by 

the convolutional layer will be used as input to the final classification layer.  

Classification Layer: The Classification Layer receives the transformed representations 

from the convolutional layer as input, i.e. feature maps 𝑓), 𝑓*, … , 𝑓#,  and triggers the final 

(supervised) attack predictions. Normally, feature maps 𝑓- 	are tensors of a high dimensional 

grid. The first dimensions express the spatial attributes of the scene, in 2D or 3D space, while 

the rest refer to the different modalities of the input data. In the following, to simplify the 

notation, we assume, without loss of generality, that feature maps 𝑓- 	 are scalars. Extension 

to tensors can be done by exploiting tensor algebra properties and appropriate modification 

of the inner product operators.  

Let us now assume that the classification layer consists of one hidden layer of r neurons. 

Each neuron stimulates a non-linear operation, modeled by an activation function 𝜑(𝑥). 

Usually, the sigmoid function is used. Let us denote as 𝑤-,B the weights that connect the i-th 

feature map, expressed by 𝑓-, with the j-th hidden neuron of the classification layer. Then, 

the output of this neuron will be 𝑢B = 𝜑(wB, ∙ 𝑓) , where 𝑓 is the aggregate feature map 

including all features 𝑓- and wB the aggregate weights for the j-th hidden neuron, i.e., all 

weights connecting all feature maps with the j-th hidden neuron. Then, output will be given 

as: 

 𝑦((𝑛) = 𝜑6v' ∙ 𝑢 < ≡ 𝜑(𝑧((𝑛)) (6) 

where u includes all outputs 𝑢B of the r hidden neurons and v the aggregate r weights 

connecting the r hidden neurons of the classification layer with the output neuron. In Eq. (6), 

𝑧?(𝑛) expresses the input of the final output neuron before applying the activation function 

𝜑(∙). Here we have assumed that, without loss of generality, the classification output consists 

of one neuron. Extending to multiple output neurons is simple. In Eq. (6) we have added the 

dependence of the classification output 𝑦?(𝑛) on network weights w, estimated by a training 

process.  
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6.2.2. Adaptive TDL-CNN  

The main limitation of the TDL-CNN is that it assumes a stationary stochastic non-linear 

relationship of the input data with the classification output. However, this cannot be the case 

in real-world application scenarios, as in a modern critical infrastructure monitoring setting, 

due to the dynamic nature and complexity of the system, and the elaboration of potential 

attacks. Therefore, adaptation strategies are required to recursively update the model’s 

behavior through appropriate weight modification to fit the changing environmental 

conditions.  

Let us denote as 𝑤()) all the weights of the classification layer before the adaptation, and 

𝑤(*) the respective weights after the adaptation. Then, we assume that these weights are 

related via a small perturbation factor 𝑑𝑤: 𝑤(*) = 𝑤()) + 𝑑𝑤. It is clear that estimation of 

the new weights 𝑤(*) is equivalent with the estimation of 𝑑𝑤. To calculate 𝑑𝑤, two 

complementary types of constraints are considered: discriminative and generative 

constraints.  

The discriminative constraints model the current statistics of the input-output 

relationship that fit current environmental conditions. In particular, we assume that a training 

set 𝑆$={(𝑥-(𝑛), 𝑡-(𝑛))} includes pairs of input-target relationships at a time instance n. Ιnput 

data 𝑥-(𝑛) express fused information from multiple modalities, while targets 𝑡- are 

supervised (desired) outputs, provided by water utility experts. Then,  

 𝑦((&)(𝑥! , 𝑛 + 1) ≈ 𝑡!(𝑛),			∀(𝑥! , 𝑡!) ∈ 𝑆=    (8a) 

or  𝑧((&)(𝑥! , 𝑛 + 1) = 𝜑>$(𝑡!(𝑛)) ≡ 𝑑! ,			∀(𝑥! , 𝑡!) ∈ 𝑆=. (8b) 

Eq. (8) means that the small weight perturbation is estimated so that the current 

collected data (by set 𝑆$) are trusted as much as possible. By applying perturbation theory 

and particularly a first order Taylor series expansion on the last classification layer of the 

network we can conclude to a linear relationship for 𝑑𝑤: 

 𝑐!(𝑛 + 1) = 𝐴! ∙ 𝑑𝑤 (9) 

where 𝑐!(𝑛 + 1) ≡ 𝑧((&)(𝑥! , 𝑛 + 1) − 𝑧((()(𝑥! , 𝑛 + 1) is the classification difference before and 

after the adaptation,  𝐴! is only related with the previous network weights 𝑤($).  
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The generative constraints model the effect of the already obtained knowledge on 

weight updating, yielding to stable adaptation solutions. Previous knowledge is modelled by 

a set 𝑆\ of the same structure as 𝑆$. The effect of small perturbation 𝑑𝑤 is expressed by 

applying sensitivity analysis. Taking into account both constraints, we conclude to: 

𝐸 = $
%
𝑑𝑤' ∙ 𝐽:)

' 	 ∙ 𝐽:) ∙ 𝑑𝑤 ∀	𝑖 ∈ 𝑆A   (10a)     subject to    𝑐!(𝑛 + 1) = 𝐴! ∙ 𝑑𝑤, ∀	𝑖 ∈ 𝑆=  (10b) 

where 𝐽<7expresses the Jacobian matrix over set 𝑆\. The aforementioned constraint 

minimization consists of a convex term (see Eq. (10a)) subject to a linear constraint (Eq. 

(10b)). Iterative methods are applied for solving (10), such as the reduced gradient method 

[72].  

6.3. Experimental evaluation 

6.3.1. Experiment setup 

The dataset used to evaluate and validate the proposed methods has been captured as part of 

the EU Horizon 2020 STOP-IT project (https://stop-it-project.eu/), a research initiative that 

addresses the protection of critical water infrastructure and that includes as consortium 

members eight (8) water utilities from Spain, Israel, Germany, and Norway that are 

responsible for providing water distribution services in more than ten million citizens in 

total. 

The dataset consists of RGB and thermal camera streams, data from WiFi reflectance based 

detection and ICS data. In particular, the RGB data were captured using using OB-500Ae 

cameras with a 1280´720 pixels resolution and a 30 fps framerate. The thermal data were 

captured using Workswell InfraRed Camera 640 (WIC) with a 640´512 pixels resolution 

and a 30 fps framerate. To acquire WiFi signal reflection data, two WiFi devices were used. 

The WiFi router (TP-Link N300 TL-WR841N) implements the 802.11n standard, used to 

retrieve the CSI information. For the receiver, Intel's 5300 NIC was plugged in to a standard 

laptop. This setting allows data capturing at 10 sec intervals. Finally, the ICS sensing data 

consist of information from water infrastructure SCADA systems and include the pressure 

of two pumps, suction pressure, discharge pressure, and the water level from a water tank. 

The computer used for all training and testing was an Intel® Core™ i7-6700 CPU@ 4000 
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GHz CPU with 16GB of RAM and an NVIDIA GeForce GTX 1070 with 8GB DDR5 

memory. The deep learning models also used the CUDA 9.2 Toolkit. 

Data are labeled based on pre-determined scenarios co-defined by end users, i.e. water 

utilities, that designate: normal behavior, cyber attacks (on ICS sensors), physical intrusions 

(including tracking of suspicious movements in secured areas from the RGB and thermal 

cameras, as well as intrusions not captured by cameras but detected from WiFi reflection) 

and a combination of both cyber and physical attacks (notated in the dataset as cyber-

physical attacks). All data are normalized so as to be in the same range, i.e. from 0 to 1. The 

dataset consists of 5 days of data, including individual attacks per modality, so that the 

dataset is sufficiently representative of attack patterns. The ICS modality includes 24 

instances of hour-long attacks. The RGB, thermal and WiFi modalities, were all captured 

simultaneously. They include 20 different instances of attacks, spanning in duration from 2 

to 20 minutes of consecutive suspicious behavior.  

Regarding the details of the proposed TDL-CNN model, it is implemented through (i) the 

TDL input layer, (ii) the convolutional/pooling layers and (iii) the classification layer. The 

input layer receives the current data (RGB, thermal, ICS, and WiFi) along with tapped delay 

responses over previous times. It includes three Convolutional/Pooling layers with a 

convolutional, ReLU and a Max pooling component. Finally, the classification layer consists 

of one fully connected hidden layer and one output layer. The first convolutional layer 

consists of 32 filters with a filter size of 5x5x4 (three RGB channel plus one thermal channel; 

the remaining modalities are added as additional rows over all four channels), the second 

again of 32 filters of size 5x5x32 (since 32 filter kernels are produced by the first 

convolutional, ReLU and Max pooling component) while the third of 64 filters of size 

5x5x32. The stride for the convolution for all layers is 1x1 while the polling stride is 2x2. 

Finally, the classification layer consists of 64 hidden neurons and 4 output neurons. The 

input size of the TDL-CNN is 640x524x4 (640x512x3 for the RGB, one additional 

640x512x1 for the Thermal and 12 additional rows of data for the ICS and WiFi modality). 

The feature map produced by the convolutional/pooling layer is 576. 
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6.3.2. Results  

We have conducted extensive experiments to evaluate the efficacy of the proposed approach 

and showcase the contribution of each one of its core components, i.e. fusion from multiple 

data modalities, deep learning, and finally autoregressive and adaptive capabilities.  

Regarding the significance of data modalities utilised for attack detection, Table 7 shows the 

classification performance in cases where only one information modality is taken into 

consideration: (i) visual (RGB and thermal), (ii) WiFi signal reflection, or (iii) ICS sensing 

modality. Four different classifiers were used: a linear kernel SVM, a non-linear Radial Basis 

Function (RBF) kernel SVM, a Feedforward Neural Network (FNN1) with 1 hidden layer 

of 10 neurons, and another FNN2 with 2 hidden layers of 10 neurons/layer. Classification 

performance is measured through five objective metrics, namely Precision, Recall, False 

Positive Rate (FPR), Accuracy and F1-Score. As is observed, the classification performance 

is low when data from a single modality are used as input. We also observe that the 

classification performance on ICS sensing and WiFi signal reflection modality is almost the 

same over all classifiers. This is mainly due to the fact that simple data taken from 

interconnected sensors of a water utility do not suffice to lead to detection of complex 

unusual activity and combined cyber-physical attacks.  In all results of Table I, we have 

assumed that the autoregressive and moving average window (p, q) of past time instances is 

100 frames long (henceforth referred to as “long memory” case).   

Table 8 depicts attack detection performance in case that fused data across multiple 

modalities are used as input (again, for the “long memory” case). In this case, apart from the 

“shallow” machine learning models mentioned above, deep learning schemes are 

additionally employed. In particular, we scrutinize the effectiveness of: a Long Short-Term 

Memory (LSTM) deep recurrent neural network, a conventional Convolutional Neural 

Network (CNN) and the proposed Tapped Delay Line CNN (TDL-CNN), as well as the 

adaptive versions of CNN and TDL-CNN. As is observed, data fusion from all three 

modalities significantly improves classification rates even in the case of shallow classifiers. 

Moreover, performance rates improve significantly when deep learning schemes are utilized, 

which highlights the representational power of the models and their suitability for the 

discussed critical infrastructure monitoring application. We also notice that the proposed 
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TDL-CNN, i.e., a CNN network with autoregressive-moving average properties, yields the 

best performance in terms of all metrics (barring its adaptive version, which will be 

elaborated on later).  

Table 8 shows the execution times (per 100 frames) for the multimodal configurations. As 

can be observed, the proposed adaptive TDL-CNN’s execution time (1.36452 sec per 100 

frames) is only a little higher than that of the plain CNN (0.91556 sec) and the shallow 

models, although its respective classification performance is higher. In all cases, the 

processing time remains lower than 25 frames/sec, i.e., less than 40 msec per image frame. 

It is also observed that the proposed adaptivity mechanism minimally increases the execution 

time.  Training of deep learning is of course computationally more demanding compared to 

conventional methods (it takes approximately 1.2-1.8 hours to train shallow models, as 

opposed to 7-7.5 hours for LSTM and CNN frameworks, and around 15 hours for TDL-

CNN). However, the training process is an offline process that only takes place once; then 

the adaptability of the proposed self-configurable scheme readjusts the network parameters 

to better fit new behavior instances, thus obviating the need for a new retraining phase.  
Table 7. Classification performance metrics for experiments using a single data modality (visual, WiFi signal reflection, 

ICS sensing). Four different classification methods have been examined. 

Classification Method  Precision Recall FPR Accuracy F1 Score 

Visual Modality 

SVM-Linear 40.02% 27.42% 29.57% 52.43% 32.55% 

SVM-RBF 25.98% 26.34% 54.00% 37.78% 26.16% 

FNN1  35.04% 41.35% 56.16% 43.38% 37.93% 

FNN2 40.21% 59.98% 64.16% 45.94% 48.14% 

WiFi Signal Reflection Modality 

SVM-Linear 22.06% 24.59% 62.50% 32.10% 23.25% 

SVM-RBF 22.42% 24.68% 61.45% 32.74% 23.50% 

FNN1 22.03% 26.34% 67.09% 30.16% 23.99% 

FNN2 22.84% 26.21% 63.69% 32.08% 24.41% 

ICS Sensing Modality 

SVM-Linear 29.37% 31.30% 54.15% 39.76% 30.31% 

SVM-RBF 29.37% 31.30% 54.15% 39.77% 30.31% 

FNN1 29.37% 31.30% 54.15% 39.76% 30.31% 

FNN2 29.37% 31.30% 54.15% 39.76% 30.31% 
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Table 8. Classification performance metrics and execution times (per 100 frames) for experiments using fusion of all 
modalities (visual, WiFi signal reflection, and ICS sensing). 

Classification Method  Precision Recall FPR Accuracy F1 Score Execution 

Time (per 100 

frames) 

“Shallow” Models  

SVM-Linear 59.04% 62.71% 31.30% 66.19% 60.82% 0.72897 sec 

SVM-RBF 43.19% 50.14% 47.45% 51.54% 46.40% 0.75852 sec 

FNN1 49.08% 64.68% 48.29% 57.14% 55.81% 0.89652 sec 

FNN2 51.49% 63.94% 43.35% 59.70% 57.04% 0.92356 sec 

Deep Models  

LSTM 70.38% 62.63% 18.97% 73.33% 66.28% 0.90547 sec 

CNN 74.20% 71.20% 17.79% 77.60% 72.68% 0.91556 sec 

Adaptive CNN 75.14% 74.72% 17.79% 79.08% 74.93% 0.95667 sec 

TDL-CNN 84.45% 78.77% 10.44% 85.04% 81.51% 1.36448 sec 

Adaptive TDL-CNN 85.41% 84.92% 10.44% 87.62% 85.16% 1.36452 sec 

 

In the sequel, the effect of the autoregressive – moving average property is examined for the 

multimodal fusion experimental setting. Figure 23(a) depicts the respective effect in case 

that shallow learning classifiers are exploited, whereas Figure 23 (b) illustrates the same 

results when deep learning schemes are employed. For all cases, as the length of the memory 

window increases, better performance rates are noticed, but a saturation in the improvement 

is also encountered. Deep machine learning classifiers yield better performance than the 

conventional shallow ones as is also shown from Figure 23 (b) where the best performing 

shallow classifier (FNN2) is overlaid with the deep learning schemes.   

The same autoregressive – moving average performance is noticed for the unimodal visual 

case (see Figure 24(a)) but reaching far lower classification rates than the multimodal case. 

However, in the case of unimodal WiFi signal reflection and ICS sensing data, the 

autoregressive – moving average effect is minimal and the results are constant regardless of 

the memory window length used. This is clearly shown in Figure 24 (b), in which we 

compare the effect of the memory window length on the F1-score for each one of the three 

unimodal settings in the case of SVM-Linear and FNN2 (feedforward neural network with 

2 hidden layers and 10 neurons/layer). 
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Finally, Figure 25 shows how the proposed adaptive scheme can further improve the 

performance of both the conventional CNN and, more importantly, the proposed TDL-CNN 

model, which attains an overall accuracy of 87.62% and a F1-score of 85.16%. It is clear 

that using the adaptation, a small but consistent improvement in all performance metrics is 

noticed; this is explained by the fact that the classifier can automatically adjust to the 

changing dynamics of the environmental and application-specific conditions, let alone 

requiring a very small number of samples for the readjustment process.  

  

(a) (b) 

Figure 23. The effect of autoregressive – moving average behavior on the classification performance (F1-
score) in the case of multimodal data fusion using (a) shallow learning classifiers and (b) deep learning ones. 
Short memory corresponds to considering 30 previous frames, while long memory corresponds to 100 previous 
frames. 
 

 

  
(a) (b) 

Figure 24. The effect of autoregressive – moving average behavior on the classification performance (F1-score) in case 
that (a) data from only the visual modality are used, and (b) data from only WiFi signal reflection or ICS sensing compared 
to the respective behavior on the unimodal visual case. 
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Figure 25. Performance metrics for CNN and the proposed TDL-CNN, as well as their adaptive versions. Applying the 

adaptive scheme improves the classification performance in terms of all metrics examined. 

 

 Overall, the successful performance of the proposed model can be explained by a 

combination of factors. Intertwining different information modalities offers increased insight 

into the complex multi-faceted nature of water infrastructure attacks. These can be 

successfully modeled by means of deep learning models, due to the great generalization (as 

opposed to memorization) capability of the latter [93]. Furthermore, the autoregressive 

property of the proposed TDL-CNN plays a significant role in “smoothening”, i.e. removing 

spikes from the output. Finally, the adaptive mechanism endows the model with a 

reconfigurable behavior that allows self-adjustment to dynamic settings and thus mitigation 

of misclassification error. 

6.4. Conclusions 

In this chapter, we highlighted the significance of using multiple data modalities, i.e. 

RGB, thermal, WiFi signal reflection, and ICS sensor data, as a driver for a cyber- and 

physical attack detection. To address the challenges involved, we proposed an extension of 

the CNN model, the Tapped Delay Line Convolutional Neural Network (TDL-CNN), which 

combines the representational power of deep learning with autoregressive and moving-

average attributes of a NARMA filter. An additional adaptive version of the TDL-CNN was 

presented, which allows the model to better adapt to dynamic attack characteristics.  
The proposed methods were experimentally evaluated using a dataset captured in the context 

the EU H2020 STOP-IT project. The results show that the use of multimodal data fusion leads to 

significantly better attack detection rates compared to unimodal approaches; the same goes for deep 
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CNNs compared to “shallow” models. Finally, the results indicate that the autoregressive and 

adaptive attributes of the proposed multimodal deep model provide clear added value in terms of the 

performance rates attained in cyber and physical attack detection.  
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7. Unsupervised Approach: Fall detection 
in optical and thermal datasets 

All the aforementioned techniques are paradigms of supervised learning, where an 

annotated dataset is present and helps the training of the deep learning models. However, all 

those approaches, even powerful extended deep convolutional networks lack in the area of 

generalization. This means that the overall model fails when we “change the scene” of 

application, and for each installation, a necessary annotation needs to take place before the 

training. To this end, unsupervised approaches, while not offering the same degree of 

granularity in terms of action recognition, as the resulting semantic models are cruder than 

the fine-tune micro-action identification that can take place with supervised approaches, they 

however provide valuable insights in terms of modeling the statistical distribution of various 

actions composing this dataset.  

This means, that the detection of actions that are not expected to be part of the 

composition of the data that are under analysis, can take place by using deep learning 

techniques to essentially model the normality within the data. Autoencoder approaches, have 

been proven quite valuable in this area. Autoencoders are models that learn to extract 

representative features (encoding part) from the input data. These features are selected 

during the training process, with the overall learning goal being to be able to use these 

features to re-extract the high dimensional input signals (decoding part). The advantage of 

these approaches is that we can train the autoencoder using only examples from a normal 

situation. Then by simply monitoring the reconstruction error, in an already trained model, 

we can deduce the presence of outlier events, simply by the fact that the autoencoder failed 

to extract a representation of them. 

The first application scenario for the testing of such an approach presented here is a 

fall detection scenario, specifically, a man-overboard event. A man overboard is an 

emergency incident, where a crew member or passenger of a maritime vessel has fallen off-

vessel in the sea. These types of accidents are more often in passenger ships, where there is 

presence of a large number of untrained individuals. It is estimated that 22 people fall off a 
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cruise ship annually [94]. Moreover, these incidents have high mortality rates, as almost 79% 

of the victims do not survive or are considered missing [94]. The cause of such high motrality 

rates is the low speed of detection and retrieval. After an hour in water at 4.4oC, body 

temperature drops to 30 oC [95]. Thus, it is a critical event that demands immediate handling 

as time plays an important role and because the overboard casualty is exposed to various 

security risks, such as drowning at sea, hypothermia, injuries and rough sea. It is noted that 

the problem lies in the lack of timely and critical information, such as the accurate 

confirmation of the event as well as its exact time and position of the occurrence. The 

proposed framework (see Figure 26) is based on a spatiotemporal convolutional auto-

encoder, which is trained on RGB video sequences that simulate man overboard scenarios. 

We train our network on the normal situation in order to learn efficient data encodings by 

ignoring signal noise and then use its reconstruction error to detect man overboard as an 

abnormal event during the test process. In parallel, we utilize multiple image proper-ties to 

enhance the identification capabilities of the proposed architecture. To the best of our 

knowledge, man overboard identification has not been addressed as an anomaly detection 

task utilizing unsupervised deep learning techniques.  

 
Figure 26. Autoencoder System Architecture 

The presented system using only RGB video streams to identify overboard falls. 

However, the simple use of raw RGB frames is not sufficient for an efficient detection. To 
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extract additional data from the visual modality we furtherly analysed the camera streams to 

extract specific visual properties, i.e. representative vectors. To this end, the visual modality 

is analyzed to extract the actual frame (appearance), the gradient of the frame using a short 

memory window of 10 frames (movement vector), the objectness of the current frame 

(saliency vector). The Appearance Property consists of the actual frame capturing. The 

Motion Property captures the movement of objects by taking as input the gradient of the 

frame. Finally, the Saliency Property reflects how likely a window of the frame covers an 

object of any category. This property creates a saliency map with the same size as the frame 

that covers all objects in an image in a category independent manner. 

Each image property was fed into an individual spatiotemporal autoencoder. 

Autoencoders are a type of Neural Network that manage to learn efficient data encodings by 

training the network to ignore signal noise. Their usefulness comes from the fact that they 

are trained in an unsupervised manner. They are essentially composed from two main 

components that are trained in parallel. The dimensionality reduction component aims at 

extracting an efficient encoding of the input signal, while the reconstruction side tries to 

generate from the reduced encoding a representation as close as possible to the original input. 

To identify the abnormalities, the reconstruction error of each autoencoder was monitored, 

and when the error was bigger than a predefined threshold, an alert was raised. The selection 

of the threshold took place during the training, to identify the exact value that maximized 

detection performance.  

The autoencoders used for each image property had the structure presented in Figure 

27. Each RGB frame for the appearance vector was reduced to a grayscale image with a 

resolution of 227x227x1. A 10 frame batch was used for the analysis. Each autoencoder had 

the structure presented in Figure 28. 
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Figure 29. Individual Autoencoder Structure 
 

7.1. Stacked Convolutional Autoencoders for Feature 
Extraction 

The property cubes Pk	 generated by the aforementioned property operators are 

usually sparse tensors containing redundant information. For this reason, a stacked 

convolutional autoencoder [31] has been utilized for compressing the tensors Pk, acting as 

an intra-property compression scheme. In this chapter, we chose convolutional autoencoders, 

instead of the traditional neuron-based models, since convolutional filtering is more suitable 

for processing and analysis of multidimensional imaging signals. 

A convolutional autoencoder is trained so that its target output coincides with the 

autoencoder input itself, resulting, therefore, in an unsupervised learning paradigm, since 

labelled (annotated) data are not required during the learning process. It has, in general, two 

main parts; the encoder which is responsible for compressing the image data through 

learning and the decoder with the main purpose of best reconstructing the input signal from 

the compressed, encoded data.  
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Figure 30. Structure of the encoding part of a stacked convolutional autoencoder 
 

 
Figure 31. Structure of the Convolutional Kernel Operator 
 

Let us denote, in the following, as L	the number of encoding hierarchies of the model. 

As in the traditional autoencoders, where each hidden layer is constructed by a number of 

neurons, processing the input signal through an inner product operator, the encoding layer 

of a convolutional autoencoders is constructed by a number of convolutional kernels. A 

convolutional kernel of an encoding layer performs three main types of operations; a 

convolution, a function activation and a max-pooling. Figure 32 presents the architecture of 

the encoding part of a stacked convolutional autoencoder, while Figure 33 the main 

operators of a convolutional filter, which is the heart of the autoencoder. 

First, the input signal is convoluted with a filter kernel, defined by a set of weights 

𝑤-
(J)  . In this notation, 𝑤-

(J)  refers to the i-th convolutional filter of the l-th encoding layer. 
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Then, the convoluted image is fed to a non-linear activation function, performing value 

adjustment through pixel-based processing. 

Finally, a max-pooling operator is considered which is responsible for the 

compression (down-sampling) of the input data. Therefore, the output of a convolutional 

kernel is 

𝑔-
(J) = 𝜎(𝑤-

(J)*C(L-1)  

𝑐-
(J) = max

\]]J-OZ
�𝑔-

(J)�	, 𝑙 = 1,2… , 𝐿    (1) 

In Eq.(1), the operator ’∗’ corresponds to the convolution between the input signal C(l	−	1)	

and the filter 𝑤-
(J)  . The σ(·)	refers to the non-linear activation function. Example of σ(·)	are 

the sigmoid, the hyperbolic tangent, and the rectified linear unit (ReLU) functions. Tensor 

𝑐-
(J)   refers to the final output of the i-th kernel at the l-th encoding layer. Finally, tensor C(l	

−1)	refers to the input signal of the convolutional kernel. 

Actually, the tensor 𝑐-
(J)   is a codeword or a representation of the input signal Pk	at the l-th 

encoding layer derived by the convolutional kernel 𝑤-
(J)  . Gathering all these individual 

codewords 𝑐-
(J)  , together, we form a codebook representation C(l)	of the input signal Pk	at 

the l-th hierarchy: 

𝐶(𝑙) = {𝑐)
(J), 𝑐*

(J), . . . , 𝑐5/
(J)	(2) 

It is clear that C(l	=	0)	≡	Pk	since at this layer no compression is encountered. In Eq.(2), Ql	is 

a scalar denoting the number of convolutional filters at the l-th encoding layer. A codebook 

C(l)	is propagated at the next encoding layer feeding as input the convolutional kernels of 

the next hierarchy. Therefore, a hierarchy of codebooks are created C(1),C(2),···	,C(L).  

The convolutional kernels of the network, which are used to compute the codebooks C(l)	of 

Eq.(2) are estimated through a learning process so that the codewords are optimally 

reconstruct the input signals. That is, 

Ec	=	||Pk	−	f(C(l)||2	 (3) 
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where ||	·	||2	represents the mean square error and f(·)	is a non-linear function of the decoder 

part of the autoencoder modelling through inverse convolutional operators of the encoder. 

Since the convolutional autoencoder has L encoding layers, the codebook used for 

representing a property Pk	is the one derived from the last encoding layer Ck(L). 

7.2. Evaluation 

7.2.1. Dataset Description 

To train and evaluate the proposed methodology, a mock man-overboard event was 

conducted that concerned the fall of a human-sized dummy from the balcony of a high-rise 

building. In particular, the human dummy (see Figure 34), weighting 30 Kg, was thrown 

from an approximate height of 20 meters, which is roughly equivalent to two seconds of 

free-falling.  
 

 
Figure 34. The human-sized dummy that was used during the test throws. 
For the needs of the experiment, we made 320 test throws of the dummy, to simulate a man-

overboard event [see Figure 35(a)-(d)]. Additionally, we recorded several videos without 

dropping the dummy as well as numerous throws of various objects, such as plastic bags and 

bottles [see Figure 35(e)-(f)]. This way we can implement deep learning models that are not 

prone to false-positive alarms, triggered by non-human-related events. 
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(a) (b) (c) (d) (e) (f) 
Figure 35. Test throws during the data collection experiments. The free fall (a)-(d) of the human dummy from 
different shooting angles (positive event), and various other objects such as (e) plastic bags and (f) bottles 
(negative event). 
 

The experiments took place in the surrounding area of Nikaia Olympic Weightlifting Hall, 

and lasted five days. Due to the fact that the test throws were carried out throughout the 

whole day, from 9:00 AM to 5:00 PM, the acquired videos vary in terms of illumination 

conditions (e.g., underexposure, overexposure). Additionally, we shot under various weather 

conditions (e.g., sunny, cloudy, rainy, windy, hot, cold), thus providing further variations in 

the background of the event. 

Here, we are using a dataset consisted of RGB videos featuring the free falls of the dummy 

(see Figure 35(a)-(d)). For the dataset collection, which contains video sequences with a 

resolution of 1080×1920 pixels, we used a GoPro Hero 7 Silver (see Figure 36). The camera 

was set to shoot at a high frame rate, at 50 frames per second, to ensure sufficient acquisition 

of data that concerns the critical event. The dataset of this work is available online at: 

https://github.com/ikatsamenis/Fall-Detection/ (accessed date 20 September 2022). 
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Figure 36. The RGB optical sensor, which was used during the data acquisition experiments to monitor the 
test throws of the human dummy, mounted on the building. 
 

It is underlined that to avoid training bias and guarantee replicability of the results to other 

datasets, we placed the sensor in four different locations of the building, in order to obtain 

data that vary in terms of background, illumination, shooting angle, and distance [see Figure 

35(a)-(d)]. In particular, as depicted in Figure 37, we placed the RGB camera (i) on the left 

of the fall at a close distance of 7m [see Figure 35(a)], (ii) on the right of the fall at a close 

distance of 5m [see Figure 35(b)], (iii) on the top left of the fall at an angle of roughly 45° 

[see Figure 35(c)], and (iv) to the left of the fall at a long distance of 13m [see Figure 35(d)]. 

It is emphasized that to further generalize the learning procedure, we augmented the training 

data by horizontally flipping the corresponding videos. 
 



 

 

 

91 

 

 

 

 
Figure 37. The four locations of the building where the optical sensor was placed, during the data acquisition 
experiments. 

7.2.2. Model Training 

The proposed method was implemented in the interactive environment called "Google 

Colaboratory", which allows the user to write Python codes through a browser. In this 

environment, important libraries are already installed, such as Tensorflow and Keras. This 

specific implementation used Python 3.7.12, Keras (1.08), and Tensorflow (2.1.0) machine 

learning libraries, in combination with various scientific and data management libraries. The 

model was trained using Tesla K80 GPU. 

In order to train the model, a preprocessing stage was necessary. Preprocessing began with 

the separation of the RGB video data into the train and test set. No falling action data were 

used for the train set, while falling action data were used for the test set. Subsequently, 

frames were exported from the video data. These frames were resized and turned into gray 

scale, in order to train the autoencoder model. 

Then, the training process was initiated by only using the data that had no falling action. 

These data constituted normal data. The test data were used for predictions after the training 
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process. In order to study the most useful camera placement, two models were trained; the 

first model was designed for the horizontal view and the second one for the 45-degree angle 

view of the camera.  

For comparison purposes, a supervised learning method was created, which consisted of a 

classifier code. In this method, the same data as in the unsupervised learning method were 

used, but the falling and no falling data were combined to the training process. More 

specifically, 60% of the entire dataset was used for the train set, 30% for the test set and 10% 

for the validation. In this method, the same preprocessing concept was followed and the 

focus was on the best camera placement, as in the unsupervised learning method. 

The performance of the proposed method was tested in the dataset described in section 4.1. 

We started with a simple autoencoder over the appearance property, and tested its 

performance from multiple angles and compared it with a simple CNN classifier. For this 

purpose the model was trained on videos representing the normal condition, i.e. falls with 

zero numbers of falls in them. The testing of the performance took place using the falls and 

an equal number of frames depicting the normal condition. 

The Area Under Curve (AUC) metric was employed in evaluating the performance of the 

proposed method. The AUC is computed with regard to ground-truth annotations at the 

frame-level and it is a common metric for many abnormal event detection methods. In this 

work, it was used to measure the ability of the learning algorithm to correctly distinguish 

falling from no falling events and summarize the Receiver Operating Characteristic (ROC) 

curve of the system. The ROC curve constitutes the probability curve that plots the raising 

of a true alert (true positive rate) and a false alarm (false positive rate) at various thresholds. 

The proposed algorithm achieved an AUC score of 100% for the horizontal view model and 

59% for the 45-degree angle view model. The horizontal view model showed an excellent 

measure of separability. On the other hand, the 45-degree angle view model showed no class 

separation capacity. The AUC score proves that the horizontal view is the most suitable 

placement for the camera. The performance of the system using these metrics can be viewed 

in Figure 38 and Figure 39. 
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Figure 38. Autoencoder ROC Curve Sideways Camera 

 

 
 

 
Figure 39. Autoencoder ROC Curve Top Camera 
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Table 9. Performance of the unsupervised autoencoder approach for the different positions of the camera 
 

 
Table 10. Performance of a supervised classifier for the different positions of the camera 

 

Metrics which consisted of accuracy, recall, precision and F1 score, were employed for the 

evaluation of the two methods. In order to compute these metrics, it was necessary to 

calculate True Positive (TP), True Negative (TN), False Positive (FP) and False Negative 

(FN) values. These values can be displayed through the Confusion Matrix. Confusion Matrix 

is a special table layout that allows visualization of the method performance. Each row of 

the matrix represents the instances in an actual class and each column represents the 

instances in a predicted class. 

Regarding the autoencoder metrics, the low percentage of the metrics lies in the fact that the 

labeling rate is low. The fact that the precision metric is high-scoring shows that there is a 

negligible quantity of FP values, which means that we had the minimum amount of false 

alarms. Concerning the placement of the camera, the horizontal view has proved to be the 

most suitable. 

It is clear, considering the low percentage of the metrics, that a supervised learning method 

is inadequate for the purpose of this application scenario. The performance of the metrics is 

shown in Table 9 and Table 10. The comparison of the performance of the classifier and the 

autoencoder can be seen in Figure 40. 

Autoencoder Accuracy Recall Precision F1 

horizontal view 0,613475 0,613475 0,782 0,545585 

45-degree angle 
view 

0,5 0,5 0,25 0,333333 

Classifier Accuracy Recall Precision F1 

horizontal view 0,428571 0,375 0,25 0,3 

45-degree angle 
view 

0,5 0,5 0,25 0,33333 
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Figure 40. Comparative analysis unsupervised vs supervised approach for both capturing angles 
 

From the analysis above, we see that an autoencoder model analyzing streams from the 

horizontal view angle, we provide the optimal results. These however still fail to achieve 

performance that can be considered sufficient for using it in real world scenarios. To this 

end, we mobilise an additional set of autoencoders over the additional image properties as 

seen in Figure 41.This increases the AUC score significantly, achieving and AUC of 97.3. 

Based on the same annotation that was used for the comparative analysis of the autoencoder 

and the classifier in Figure 40 we can assess the performance of the multiple autoencoder 

method. This can be seen in Figure 42. 
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Figure 42. Performance of multi-autoencoder approach 
 

7.3. Conclusions 

In this chapter, man overboard detection was formulated as an anomaly detection problem. 

We presented and evaluated an unsupervised learning algorithm for the automated 

recognition of such critical events, which is based on a spatiotemporal convolutional 

autoencoder. The employed technique models the normal conditions of the perimeter of the 

ship by learning the spatial and temporal features from the input video frames during the 

training stage and then identifies falls as abnormal behavior. 

More specifically, the proposed framework uses multi-property (i.e., appearance, gradient, 

and saliency) analysis of RGB video streams in order to extract salient features and 

encodings of the normal scene utilizing a set of spatiotemporal convolutional autoencoders. 

Subsequently, the system can recognize a man overboard situation depending on whether 

the autoencoder is able or not to reconstruct a scene due to the potential existence of an 

abnormal event. Furthermore, to train and evaluate the performance of the proposed method, 

a dataset containing RGB video sequences with test throws of a human-sized dummy from 

the balcony of a high-rise building was demonstrated. The proposed multi-property 

spatiotemporal autoencoder achieved state-of-the-art results and, in particular, 97.30% 

accuracy and 96.01% F1-score on the test set of the presented dataset, surpassing other state-
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of-the-art approaches, such as a single autoencoder, over the appearance property and a 

conventional CNN classifier. This entails a relative change in the error rate of 93.01% and 

87.23% in terms of the accuracy and the F1-score, respectively. Therefore, through the 

proposed expansion of the autoencoder in such a way that it utilizes multiple image 

properties, the obtained error rate was roughly decreased to 1/10 of its original value. 
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8. Unsupervised Approach: Outlier 
detection in datasets including numerous 
simultaneous actionss 

As stated before, even in the simple binary classification of actions (such as a normal 

abnormal paradigm presented in the previous chapter), there is difficulty in that the definition 

of an abnormal event is not always clear. What is an abnormal event is vague and tough to 

model. For this reason, the abnormal event detection problem is modeled as outlier detector. 

The main difficulty of applying an outlier scheme for abnormal event detection is that these 

methods are usually adopt a common global model for representing the whole normal space. 

However, usually normality consists of several sub-activities each one  having quite different 

characteristics. Therefore, their modelling through a common model is not efficient.  

For the technique presented in this chapter, we handle the abnormal event detection 

problem as an unsupervised learning paradigm. However, the limitations of the unsupervised 

approaches for abnormal event detection are the following: First, the number of clusters that 

a normal space is partitioned to, is a priori given an assumption which it is not valid in real-

life application scenarios. It is clear that the sub-activities of the normal space are application 

dependent and therefore the number of clusters are highly related with the scenario. Second, 

the models assume no interrelations for events across different clusters (the sub-activities of 

the normal space), conditions that are also not valid for real-life cases. To address these 

difficulties, in this chapter, we introduce a framework for intra and inter property (feature) 

encoding to take into account property interrelations. In particular, we adopt convolutional 

autoencoders for compressing the video information at different property (feature) 

dimensions. Then, we introduce unsupervised tensor-based models for compressing the 

inter-property information resulting in a more compact normal space representation, 

increasing, consequently, the abnormal event detection performance. The overall proposed 

architecture for the abnormal event detection scheme is presented in Figure 43. 

The technique presented here uses a two-fold scheme towards unsupervised 

abnormal event detection; the Intra and Inter-Property Encoding. In this way, we eliminate 
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the correlated information within and across image property features of video frames. Intra 

property encoding is implemented through auto-encoders as in the previous chapter, while a 

novel tensor-based unsupervised learning model is utilized as far as inter-property encoding 

is concerned. The current approaches, such as the work of [53], adopts a simple 

concatenation mechanism for fusing the intra-property compressed latent features. However, 

such an approach inherently implies that each property representation is independent from 

each other, an assumption which it is not valid. For example, the gradient property is highly 

correlated with the appearance as well as the saliency property. To address this difficulty, in 

this chapter, we introduce an alternative approach for fusing the intra-property compressed 

latent features together using a tensor-based unsupervised learning model. Tensor-based 

learning i) addresses the assumption that the partitions of the normal event space are a priori 

known and ii) reduces the dimensionality of space removing the inter-relationships across 

different properties. Tensor learning compacts the normal space partitioning, increasing the 

performance and generalization of the abnormal event detection. Figure 43 presents the 

proposed methodology consisting of two main parts; the intra and inter property encoding. 

 

 
Figure 43. Proposed twofold architectures for abnormal event detection 

8.1. Intra-Inter property encoding 

8.1.1. Property Representations 

Let us first denote as I	∈	RN×M	an image frame of N×M	dimension. Let us also denote as Is	∈	

RN×M×k	a sequence of k	consecutive image frames of I. A property, in this research, refers to 

a two-dimensional image operator applied on the stacked of image frames Is	generating an 
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image cube as its output. In other words, a property refers to a feature of an image sequence 

capable of transforming the raw image pixels into a more meaningful semantic information. 

We denote as Pi	∈	RN×M×k	the property image cube (e.g., a 3D tensor) which is generated by 

applying the i-th property operator on Is. Let us also denote as K	 the number of image 

property operators used. Here, three image properties are considered (K	 =	 3); the 

appearance, the gradient and the saliency. These properties are the same that were described 

in the previous chapter, i.e. Appearance (actual video frame), Motion (gradient of the frame), 

and Objectness (saliency map of the frame). 

8.1.2. Intra Property Encoding using spatiotemporal autoencoders 

The first part of the proposed methodology includes a set of convolutional auto-

encoders each associated for an image property. The purpose of these auto-encoders is to 

reduce the redundant information of a property extracting key property components in a 

hidden (latent) way. Here, three image properties are considered; the appearance, the 

gradient and the saliency.  

The first two property features are in a similar line with previous works such as of 

[96], while saliency property is extracted to make our abnormal event detector more generic 

to different event types. The Appearance Property consists of the actual frame capturing. 

The Motion Property captures the movement of objects by taking as input the gradient of the 

frame. Finally, the Saliency Property reflects how likely a window of the frame covers an 

object of any category. This property creates a saliency map with the same size as the frame 

that covers all objects in an image in a category independent manner. 

8.1.3. Inter Property Encoding using tensor-based unsupervised learning 

The current approaches, such as the work of [53], adopt a simple mechanism for fusing the 

intra-property compressed latent features Ck(L), by just concatenating the derived codebooks 

one after the one. However, such an approach inherently implies that each property 

representation is independent from each other, an assumption is not valid. For example, the 

gradient property is highly correlated with the appearance as well as saliency property. To 

address this difficulty, we introduce an alternative approach for fusing the intra-property 

compressed latent features as the outer product across all the compressed codebooks Ck(L). 
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In particular, let us first vectorize each Ck(L)	and let us denote this vectorized signal as xk, k	

=	1,···	,K. We recall that three property operators are considered, and thus K	=	3. Then, the 

fused property feature 

X	=	x1	◦	x2	◦	···	◦	xK	 (4) 

is derived as the outer product over all xk. Therefore X	∈	Rd1×···×dK, where dk	is the number of 
elements of the vectorized signal xk. 
While the outer product generates all possible correlations among the compressed property 

features (and therefore, it handles the issue of inter-relationships among them), it has the 

limitation of producing quite large tensors of high redundant information, confusing the 

direct application of an unsupervised clustering algorithm (e.g., c-means) for normal space 

partitioning. To overcome this difficulty, we introduce a novel tensor based unsupervised 

learning, with the main purpose of compressing tensor X.  

The Inter-Property encoding part is also an autoencoding structure. The main difference is 

that we now involve nonlinear neuron operators, implementing as an inner product of the 

neuron weights and the input signal instead of convolutions. This is mainly due to the fact 

that the convolutional kernels are more suitable for processing image data. Instead, the 

neuron operators are more suitable for processing tensorbased data [96] as X. 

Therefore, the inter-property encoding model consists of an inner-product tensor 

autoencoder where its input and output coincide with the tensor X. Below we define the 

tensor algebra operations utilized by the tensor autoencoder and then we describe rigorously 

the autoencoder’s architecture. 

Mode-n product. The mode-n	product, C	=	X	×n	B	of a tensor X	∈	Rd1×···×dK	and a matris B	∈	

Rq×dn		yields a tensor  𝐶 ∈	Rd1×···×dn−1×q×dn+1×···×dK			. 

Tucker decomposition. The Tucker decomposition provides a factorization of a tensor X	∈	

Rd1×···×dK	 into a core tensor G	 ∈	Rq1×···×qK	and factor matrices 𝐵(O) = [𝑏)
(O), 𝑏*

(O), … , 𝑏)
(^8) 	 ∈

ℝ_8×^8, and can be expressed as follows: 

𝑋 = 𝐺 ×) 𝐵()) ×* 𝐵(*)…×R 𝐵(R) =	� � 𝑔-9….-:�𝑏-9
()) ∘ 𝑏-;

(*) ∘ … ∘ 𝑏-:
(R)�	(5)

^:

-:F)

^9

-F)
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where gi1···iK	is the element of the core tensor G	indexed by i1,i2,···	,iK.  
The tensor autoencoder is a fully connected feedforward neural network, however, its 

weights at each layer satisfy a Tucker decomposition; see (5). n particular, the weights Wl	of 

the l-th hidden layer can be expressed as 

𝑊J = 𝐼J ×)𝑊J
()) ×*𝑊J

(*)…×R 𝑊J
(R)	 (6) 

where I	is the core tensor all elements of which are equal to 1. 

The information is propagated through the layers of the tensor autoencoder in a sequence of 

projections and nonlinear transformations. Due to (6), the tensor autoencoder at each layer 

projects tensor objects from a tensor space to another tensor space. Formally, a tensor sample 

X	∈	Rd1×···×dK	is projected to another tensor space by 

𝒵) = 𝒳 ×) (𝑊J
())), ×* (𝑊J

(*)), …×R �𝑊J
(R)�

,
	(7) 

where  

𝑊J
(!) ∈ ℝ^<

(9)×_< and 𝒵) ∈ ℝ^9
(9)×^;

(9)×…×^<
(9)
∙ 𝑞B

(J) 

is the rank of the decomposition along mode k	 and the superscript denotes that this 

decomposition takes place on the l-th layer of the tensor autoencoder. Then Z1	passes through 

the first hidden layer of the autoencoder, which applies the following nonlinear 

transformation 

H1	=	σ(Z1)	 (8)	

on it. The same pattern is used to propagate the information from the l-th hidden layer to the 

next one. Initially, the tensor object Hl	 is projected to another tensor space by  𝒵J7) =

𝐻J ×) (𝑊J7)
())), ×* (𝑊J7)

(*)), …×R �𝑊J7)
(R)�

,
 and then the nonlinear transformation Hl+1	 =	

σ(Zl+1)	is used to produce the output of the (l	+	1)-th hidden layer. 

Let’s assume that the autoencoder has L	 hidden layers. Then the dimension of the 

weights	𝑊J
(!) for the last hidden layer will be  for k	=	1,···	,K. This way the input 

and the output of the tensor autoencoder are forced to have the same dimension. Let us denote 
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by X¯	 the output of the tensor autoencoder. Then, its weights are optimized via 

backpropagation by minimizing the following reconstruction error 

Et	=	||X	−	X||¯	2,	 (9)	

where ||	·	||2	stands for the mean squared error. 

The tensor autoencoder consists of two parts: the encoder and the decoder. The encoder, 

from layer to layer, reduces the dimension of the input, while the decoder increases the 

dimension so as the output of the autoencoder has the same dimension as the input. This way 

the autoencoder produces an information bottleneck which, when used in conjunction with 

the loss in (9), forces the encoder to learn input representations in a lower dimension that 

capture the most important aspects of input’s information. 

 

 

 
Figure 44. The tensor based learning algorithm adopted in the unsupervised tensor based network 

8.1.4. Unsupervised Tensor –based Learning 

Let us assume that we form a neural network-based auto-encoder, in which its inputs/outputs 

coincide with tensors 𝑋. Each neuron implements a non-linear relationship 𝑔(⋅), relied on 

the sigmoid function. We also assume that we have Q neurons at the hidden layer. The input 

𝑋 is weighted through parameters 𝑤- and the inner product < 𝑤- 	, 𝑋 > is given as input to 

𝑔(⋅). The response of the i-th hidden neuron is  

𝑢- = 𝑔(< 𝑤- 	, 𝑋 >) (2) 

weights 𝑤- are tensors since the input 𝑋 is a hyper-cube.  

In Eq. (2), tensor 𝑢- is a transformed version of 𝑋 at the i-th hidden neuron. The decoder part 

receives as input the compressed signal 𝑢- and transforms it to an output signal which should 
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be as close as possible to 𝑋. In the decoder, tensor 𝑢- are first weighted by parameters 𝑣 and 

then are inputted to neurons to generate an estimate 𝑋¬ of 𝑋. 

 𝑋¬ =< 𝑦	, 𝑔(< 𝑣	, 	𝑢- >) > (3) 

In Eq. (3), 𝑦 denotes the parameters that weigh the outputs of the decoder to produce 

estimates of  𝑋. Since the network weights are huge due to the outer product, a tensor-based 

unsupervised learning is proposed for reducing significantly its parameters and consequently 

the number of data samples.  

 

8.2. The Rank-1 Canonical Decomposition of Network 
Parameters  

Let us assume that the weights 𝑤- are rank-1 canonically decomposed into the weights 

𝑤-), 𝑤-*, … , 𝑤-a, where 𝑤-a refers to the D-th rank-1 canonical decomposition of the weight 

𝑤-. Therefore, we have that 

 

𝑤- = 𝑤	-a ⊗…⊗𝑤	-) (4) 

In Eq. (4), the ⊗ refers to the Kronecker product of the tensors 𝑤-), 𝑤-*, … , 𝑤-a. Using tensor 

algebra, the inner product of < 𝑤- ⋅ 𝑋 > can be written as  

< 𝑤- 	, 𝑋 >	=	< 𝑤	-a ⊗…⊗𝑤	-)	, 𝑋 > =	< 𝑤-J 	, 𝑋bJ > (5) 

where 𝑋bJ is a transformed version of the input signal 𝑋 independent from the l-th rank-1 

canonical decomposition  𝑤-J. More specifically, the 𝑋bJ is given as  

𝑋bJ 	= 𝑋(𝑤	-a ⊙…	𝑤	-J7)⊙𝑤	-JP)…⊙𝑤	-))  (6) 

In Eq. (6) the ⊙ denotes the Khatri-Rao product in tensor algebra. Using Eq. (5) and (6) one 

can re-write the encoding part of Eq. (2) as  

𝑢- = 𝑔(< 𝑤- 	, 𝑋 >) = 𝑔(< 𝑤-J 	, 𝑋bJ >) (7) 

In a similar way, we can re-write the decoding part of the network using rank-1 canonical 

decomposition.   
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8.2.1. The Learning Algorithm  

Using Eq. (7) we are able to train the network with a significant reduction in the number of 

its parameters. We initially fix all the weights 𝑤-), 𝑤-*, … , 𝑤-a apart from the l-th. This way, 

the transformed version 𝑋bJ is computer from Eq. (6). Then, using the backpropagation 

algorithm, we update only the weight 𝑤-J to minimize the error so that network output 

resembles as much as possible the respective inputs. Therefore, network parameters are 

solved in an iterative way with respect to one of the D canonical decomposed weight vectors, 

assuming the remaining fixed.  

 
Figure 45. Our approach for abnormal event detection as outliers of normal space partitioning by the 
unsupervised tensor learning. 
 

The output of the encoding part of the unsupervised tensor-based learning module is used to 

partition the normal activity space into sub-groups. This is depicted in Figure 46. Therefore, 

a way for detecting an abnormal event detection compared with a normal activity is to 

compare the event with respect to its distance to the normal activity space. In case that the 

reconstructed error with respect to the normal activity subgroups (representing by the tensors 

𝑢-) is high the event is considered not normal and therefore abnormal.  

8.3. Experimental evaluation 

The proposed method was tested using two popular benchmarking datasets, namely 

the Avenue [97] and Shanghai Tech [103]. The Avenue dataset includes 16 training videos 
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and a total of 15,328 frames as well as 21 test videos or 15,324 test frames. For each frame 

ground truth locations of anomalies are provided. The Shanghai Tech dataset consists of 330 

training and 107 testing videos. It contains of about 130 abnormal events. 

The proposed method was implemented in Python. The autoencoders that implement 

the feature extraction (Appearance, Gradient and Saliency) were implemented in Tensorflow 

and Keras, while the tensor based autoencoder was implemented in PyTorch using the 

Tensorly library. The hyperparameter optimization of the learning algorithms was 

determined using the Hyperband optimization method of [104], which employs a principled 

early-stopping strategy to allocate resources, allowing it to evaluate orders-of-magnitude 

more configurations than black-box procedures like Bayesian optimization methods [105].  

 
Table 11. Abnormal Behavior detection based on frame level AUC on the Avenue and Shanghai tech datasets. 

Method Avenue Dataset Shanghai Tech Dataset 

Lu et al. [97]  80.9  - 

Hasan et al. [100] 70.2 60.9 
Del Giorno et al.  78.3 - 

Smeureanu et al. [106] 84.6 - 

Ionescu et al. [102] 80.6 - 

Luo et al. [103] 81.7 68.0 

Liu et al. [101] 85.1 72.8 

Liu et al. [107] 84.4 - 

Sultani et al. [108] - 76.5 

Ionescu et al. [98] 90.4 84.9 

Our Method 86.9 79.8 

 
 
The Area Under Curve (AUC) metric was employed in assessing the performance of the 

proposed method and the compared ones. The AUC is computed with regard to ground-truth 

annotations at the frame-level and it is a common metric for many abnormal event detection 

methods. The performance comparison of our method with other implementations is 

presented in Table 13. For each of the compared methods, we choose the optimal parameter 

selection and thus the worst-case comparison scenario for our case. As we can see in the 

table above our method outperforms all nine works but one technique. Only [98] performs 

better. However, [98] employs an optimized k-means clustering on these datasets the 
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generalization of which to another data sequence is doubtful due to its limitations in initial 

condition selection, well separable clustering property (k-means fails in complex non-linear 

cluster separation like a spiral) and the distance metric adopted.  Moreover, [98] uses an 

initial object detection step for preprocessing. This allows only for the detection of 

abnormalities relevant to specific objects, such as humans, that can be identified by the object 

detection method, while also introducing a computational overhead as a result of the frame 

preprocessing. Instead, our approach can be generalized to any type of object classes, such 

as falling debris, natural disaster detection et which can be seen as abnormal events. Table 

12 and Figure 40 indicate the limitation of [98] in using k-means for normal event space 

partitioning. It is clear that the number of clusters selected is highly related with the 

application scenario used. In this figure, we have implemented the approach of [98] without 

the use of the initial object detection algorithm for different numbers of clusters. This is the 

reason of why the results are not the same as Table 14, which they have been optimized for 

a particular dataset. As is observed, the maximum accuracy is achieved for different numbers 

of clusters between different datasets.  
Table 12. Research difference summary of our work with [98].  

The work of [98] Our Approach 

Dependent on k-means performance Independent from any clustering 

Dependent on specific objects/events, mainly humans It works for any type of objects and events 

Computational overhead No additional overhead 
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Figure 47. Performance difference between different number of k in the Shangai and Avenue Dataset. 

 

This drawback is also illustrated by the introduction of noise in the input video stream. The 

multi-property processing and the frame wide analysis of our method results in robustness 

towards noise introduced to the stream. Such noise can be the result of poor visibility 

conditions. Figure 42 presents this comparison with our method and [98] in this aspect. The 

figure illustrates the variance of AUC scores as the input signal’s SNR drops. The noise 

introduced is simple Gaussian noise 

 

 
Figure 48. Performance difference between different levels of noise in the video stream, Avenue Dataset 
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The response of our system to various abnormalities in a test video can be viewed in Figure 

44. In the figure we have averaged the reconstruction errors in batches of 10 frames, for 

presentation purposes. The frames above are representative of the state captured in the 

bounding boxes in the graph. The annotation of abnormalities comes from the ground truth 

dataset. 

 

 
Figure 49. Captured abnormalities and system response (Avenue Dataset). Axis x presents the frame batch 
while axis y represents the average reconstruction error. Above the detected abnormalities the annotated 
ground-truth data is presented 
 

8.1. Conclusions 

In this chapter, we introduce a novel method for abnormal event detection in video 

systems based on an intra/inter property feature information redundancy reduction. Intra 

property redundancy reduction is carried out using auto-encoders while the inter property 

one through tensor-based learning to take into account all potential interrelations of them. 

Experiments on benchmarked datasets show that our scheme outperforms all the compared 

works but one. 
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9. Conclusions 
In this dissertation we presented the use of six different methods based on deep learning 

architectures for the analysis of visual data inside and outside the visible spectrum. Two 

application scenarios are considered, one where there is a priori knowledge of the captured 

actions, and one where the actions captured are unknown.  

For the first application scenario we showcase that for the analysis inside the visible 

spectrum, the combination of the feature extraction capabilities of CNN architectures in 

combination with the temporal analysis abilities of LSTM networks achieves state of the art 

performance. However, due to particularities of the application scenario, adaptations on 

these architectures are required. Specifically, because of short-term dependencies in the 

classification of choreographic motion primitives, a memory window in the input layer, 

enhances the performance and allows for the output to change in the appropriate degree of 

granularity. Moreover, since the classification step is affected not only from previous but 

also the next states, the use of a bidirectional LSTM, increases the performance by inherently 

taking into account the non-causality of the input stream.  

For the analysis outside the visible spectrum, the extraction of skeletal data from 

infrared depth sensors is a useful preprocessing step. This preprocessing transforms raw 

spatial data into semantically enriched structures that can be used for the classification, 

transforming the problem in a time-series analysis problem. Then, the use of a bidirectional 

LSTM network, enhanced with both autoregressive and moving average functionalities can 

successfully drive the classification step, achieving state of the art performance. 

Additionally, since the selected application scenario has small datasets, and due to 

the known fact that deep learning techniques require extreme numbers of examples to 

achieve sufficient performance, we study the use of tensor-based learning networks for the 

classification of motion primitives in dance choreographies. We showcase that a tensor based 
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network can achieve performances similar to the ones achieved by known state of the art 

classifiers, but using significantly less trainable parameters. This results in the ability of such 

tensor-based neural networks to be trained using smaller datasets, facilitating faster 

deployment and analysis. 

For the second application scenario, where there are unknown actions inside the 

under analysis data, we present two main techniques. The first one is a supervised learning 

method where a deep NARMA filter, in the form of an adaptive CNN, achieves high 

classification performance. The proposed architecture also allows for the incorporation of 

additional data modalities in parallel to the visual ones, and the simultaneous analysis of 

these multi-modal data. 

However, because of the lack of generalization of such supervised approaches, 

unsupervised ones are also studied. Initially, a convolutional spatiotemporal autoencoder is 

used to detect outlier actions. In this case, a fall detection problem is considered. The 

advantages of this technique is that it does not need the outlier action inside the training set. 

Instead, the autoencoder is only trained using samples from normal conditions. The 

appearance of an outlier action significantly affects the performance of the autoencoder, 

which is showcased in the reconstruction error of the decoder. We achieve extremely high 

performance in fall detection by employing this scheme in multiple parameters of visual data 

both inside and outside the visible spectrum. 

Finally, we extend the autoencoder method, in order for it to be used in benchmarking 

datasets with large number of actions captured. The use of convolutional autoencoders in 

multiple visual properties allows for the proper modelling of all aspects of normality inside 

the dataset. Then a tensor-based autoencoder is used for effectively minimizing the 

dimensions of the normal state, which is then used for identifying outlier actions. 

Future steps of the research presented in this dissertation include the use of 

architectures such as the newly published visual transformer layers to drive the 

classifications. Moreover,  and specifically for the technique presented in chapter 8, beyond 

the monitoring of the autoencoder reconstruction error, can be used as classifications. An 

example of that would be the breaking down of the normal state into multiple normality sub-

states, and then use appropriate classifiers, or even conformal learning schemes, to allow for 
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better performance. Finally, the use of all this techniques can be greatly enriched by using 

techniques to not only classify the data, but also explain the reasons behind the classification 

outcome. Such explainable AI techniques can facilitate the use of such tools not only from 

researchers that are well versed in machine learning algorithms, but also by multidisciplinary 

teams that can also bring domain specific knowledge into the analysis. 
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