
National Technical University of Athens
School of Electrical and Computer Engineering

MSc Data Science and Machine Learning

Hybrid Recommendation Systems

using Neural Networks

Diploma Thesis
of

MICHAIL V. BIZIMIS

Supervisor: Alexandros Potamianos

Professor NTUA

Athens, October 2022

National Technical University of Athens

School of Electrical and Computer Engineering

MSc Data Science and Machine Learning

Hybrid Recommendation Systems

using Neural Networks

Diploma Thesis
of

MICHAIL V. BIZIMIS

Supervisor: Alexandros Potamianos

Professor NTUA

Approved by the examination committee on the 27th of October 2022.

(Signature) (Signature) (Signature)

. .

Alexandros Potamianos Theodoros Giannakopoulos Symeon Papavassiliou

Professor NTUA Researcher NCSR Demokritos Professor NTUA

Athens, October 2022

National Technical University of Athens

School of Electrical and Computer Engineering

MSc Data Science and Machine Learning

Copyright © – All rights reserved.

Michail V. Bizimis, 2022.

The copying, storage and distribution of this diploma thesis, exall or part of it, is prohibited

for commercial purposes. Reprinting, storage and distribution for non - profit, educational

or of a research nature is allowed, provided that the source is indicated and that this

message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work

/ contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference

is included in the bibliographic references section. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

. .

Michail V. Bizimis

27th October 2022

Abstract

As consumers of the 21st century, deciding where to focus our limited time and

attention, when faced with making a choice over a vast number of alternatives, can quickly

become overwhelming. To alleviate this problem, recommendation systems, capable of

automatically filtering these options and suggesting to us only a smaller subset of relevant

ones, tailored to our preferences, have been widely employed. In this thesis, we develop

a hybrid recommendation system, based on three increasingly complex neural network

architectures, which we then apply for movie recommendations.

More specifically, we start by combining the Neural Collaborative Filtering framework,

a Collaborative Filtering method based on neural networks, with content-based meth-

ods for creating item and user profiles, in order to acquire said hybrid recommendation

system. Then, we extend this architecture in two separate ways. In the first, instead of re-

lying on fixed user profiles, we create them dynamically during the forward pass, wherein

each aggregated item profile that is part of the user profile is assigned a different weight

as a result of an item-item attention mechanism. This mechanism, not only improves the

model’s performance, but also offers some useful explainability. In the second, we revert

back to using fixed user profiles, except now we incorporate Graph Neural Networks into

the embedding process, in an attempt to explicitly capture the collaborative signal on the

user-item bipartite graph and, in this way, acquire better user and item embeddings.

For the purposes of this thesis, we create a custom dataset by combining of a popular

Collaborative Filtering dataset for movies with movie metadata as their content. We

proceed to train models from the three aforementioned architectures on it, under both a

regression and a ranking setting and, then, we evaluate and compare them using suitable

regression as well as ranking metrics. In our experiments, we found that the regression

training setting works best. Out of the three architectures, the second performs the best

on the test set, whilst simultaneously offering some much desired explainability. On the

contrary, we found that the third did not perform any better on our dataset than the much

simpler first one, possibly due to the lack of complicated enough patterns in it. Finally,

to showcase our best model, we deploy it in a demo web application, where a user can

receive explainable movie recommendations after rating movies in our dataset.

Keywords

Recommendation Systems, Hybrid Recommendation Systems, Deep Learning, Neural

Networks, Collaborative Filtering, Content-based profiles, Neural Collaborative Filtering,

Attention, Graph Neural Networks, Neural Graph Collaborative Filtering

1

Πεϱίληψη

Ως καταναλωτές του 21ου αιώνα, είναι δύσκολο να επιλέξουµε που να εστιάσουµε την

πϱοσοχή και τον χϱόνο µας, όταν καλούµαστε να πάϱουµε µια απόφαση ανάµεσα σε ένα

τεράστιο πλήϑος επιλογών. Για την ελάττωση αυτού του προβλήµατος, συστήµατα συστάσεων,

ικανά να εξετάζουν αυτόµατα αυτές τις επιλογές και να µας προτείνουν µόνο ένα µικϱότεϱο

υποσύνολο τους, έχουν χρησιµοποιηθεί ευρέως. Σε αυτήν τη διπλωµατική εργασία, αναπ-

τύσσουµε ένα υϐϱιδικό σύστηµα συστάσεων, ϐασισµένο σε τϱεις αύξουσας πολυπλοκότητας

αρχιτεκτονικές νευρωνικών δικτύων, το όποιο εφαρµόζουµε για τη σύσταση ταινιών.

Πιο συγκεκριµένα, ξεκινάµε συνδυάζοντας µία µέϑοδο Συνεργατικού Φιλτραρίσµατος,

που ϐασίζεται σε νευρωνικά δίκτυα, µε µεθόδους δηµιουϱγίας πϱοϕίλ χϱηστών και αν-

τικειµένων ϐασισµένα στο περιεχόµενο, έτσι ώστε να καταλήξουµε µε ένα υϐϱιδικό σύστηµα

συστάσεων ϐασισµένο σε νευρωνικά δίκτυα. ΄Υστεϱα, επεκτείνουµε αυτήν την αρχιτεκτονική

µε δύο διαφορετικούς τϱόπους. Στον πϱώτο, αντί να στηϱιχϑούµε σε στατικά πϱοϕίλ χϱηστών,

τα δηµιουργούµε δυναµικά, ως µέϱος του νευρωνικού δικτύου, υπολογίζοντας το ϐάϱος µε

το οποίο ϑα συναθροιστεί κάϑε αντικείµενο-µέϱος του πϱοϕίλ µέσω ενός µηχανισµού προσο-

χής µεταξύ δύο αντικειµένων. Αυτός ο µηχανισµός προσφέρει, όχι µόνο καλύτεϱη από-

δοση, αλλά και έναν ϐαθµό επεξηγησιµότητας. Στον δεύτεϱο, επιστρέφουµε στη χϱήση

στατικών πϱοϕίλ χϱήστη, αλλά τώϱα ενσωµατώνουµε Νευρωνικά ∆ίκτυα Γϱάϕων στη δι-

αδικασία παραγωγής διανυσµατικών αναπαραστάσεων για χϱήστες και αντικείµενα, έτσι ώστε

να συλλέξουµε άµεσα το συνεργατικό σήµα του διµεϱούς γράφου χϱηστών-αντικειµένων.

Στα πλαίσια αυτής της εργασίας, δηµιουργούµε ένα δικό µας σύνολο δεδοµένων, συν-

δυάζοντας ένα δηµοϕιλές σύνολο δεδοµένων Συνεργατικού Φιλτραρίσµατος για ταινίες µε

µεταδεδοµένα ταινιών. Στη συνέχεια, εκπαιδεύουµε µοντέλα από τις τϱεις προαναφερθείσες

αρχιτεκτονικές σε αυτό για παλινδρόµηση αλλά και για κατάταξη και, έπειτα, τα αξιολογούµε

µε αντίστοιχες µετϱικές. Στα πειράµατά µας, διαπιστώσαµε ότι η εκπαίδευση για παλιν-

δρόµηση είναι προτιµότερη, ότι η δεύτεϱη αρχιτεκτονική αποδίδει καλύτεϱα, ενώ ταυτόχϱονα

προσφέρει έναν σηµαντικό ϐαθµό επεξηγησιµότητας, και ότι η τϱίτη αρχιτεκτονική δεν

αποδίδει καλύτεϱα από την απλούστεϱη πϱώτη στα δικά µας δεδοµένα. Τέλος, δηµιουργούµε

µία ενδεικτική εφαρµογή διαδικτύου, όπου ένας χϱήστης µποϱεί να λάϐει επεξηγήσιµες

συστάσεις ταινιών, έχοντας πϱώτα ϐαθµολογήσει ταινίες του συνόλου δεδοµένων µας.

Λέξεις Κλειδιά

Υϐϱιδικά Συστήµατα Συστάσεων, Βαθιά Μάϑηση, Νευρωνικά ∆ίκτυα, Συνεργατικό Φιλ-

τράρισµα, Πϱοϕίλ ϐασισµένα στο περιεχόµενο, Πϱοσοχή, Νευρωνικά ∆ίκτυα Γϱάϕων

2

Σύνοψη

Στη σηµερινή εποχή, είναι αναµφισβήτητο ότι απολαµβάνουµε ένα υψηλότερο ϐιοτικό

επίπεδο σε σύγκριση µε άλλες εποχές της ιστορίας µας ως άνθρωποι. Χάϱις στην τεχνολογική

και ϐιοµηχανική µας πϱόοδο, ποτέ πϱιν δεν είχαµε τη δυνατότητα να έχουµε τόσο εύκολη

πρόσβαση σε τέτοια αϕϑονία από καταναλωτικά αγαϑά και υπηϱεσίες. Ωστόσο, µε τόσες

πολλές εναλλακτικές, ϐρισκόµαστε συνεχώς αντιµέτωποι µε έναν συντριπτικό αριθµό από δι-

αφορετικές επιλογές, από τα άρθρα ειδήσεων που διαβάζουµε µέχϱι τις ταινίες που παρακολου-

ϑούµε. Σε πολλές περιπτώσεις, το να εξετάσουµε όλες τις διαθέσιµες επιλογές, προκειµέ-

νου να πάϱουµε µία ενηµερωµένη απόφαση, µποϱεί να είναι δύσκολο, χϱονοϐόϱο και

κουϱαστικό, οδηγώντας σε ένα ϕαινόµενο γνωστό ως υπερφόρτωση επιλογών1
. Το ϕαινό-

µενο αυτό περιγράφει µια γνωστική κατάσταση, κατά την οποία οι άνθρωποι δυσκολεύονται

να λάϐουν µία απόφαση, όταν έρχονται αντιµέτωποι µε πολλές επιλογές. Για την ελάττωση

αυτού του προβλήµατος, συστήµατα συστάσεων έχουν αναπτυχθεί και χρησιµοποιηθεί ευ-

ϱέως. Αυτά τα συστήµατα έχουν τη δυνατότητα να ξεσκαϱτάϱουν τις άσχετες επιλογές και να

προτείνουν στους χϱήστες τους µόνο ένα µικϱότεϱο σύνολο από τις πιο σχετικές επιλογές για

αυτούς, κάνοντας, έτσι, την τελική επιλογή των χϱηστών τους πολύ πιο εύκολη.

Υπάϱχουν πολλοί τύποι συστηµάτων συστάσεων, αλλά γενικά οι δύο κύϱιες κατηγορίες

που έχουν καθιερωθεί είναι οι µέϑοδοι Συνεργατικού Φιλτραρίσµατος και οι µέϑοδοι ϐα-

σισµένες στο περιεχόµενο. Και τα δύο αυτά σύνολα µεϑόδων ϐασίζονται σε παρελθοντικές

αλληλεπιδράσεις ενός χϱήστη µε αντικείµενα, προκειµένου να του κάνουν συστάσεις για

νέα αντικείµενα, που είναι εξατοµικευµένα σε αυτόν. Ωστόσο, οι πϱώτες το πετυχαίνουν

αυτό αξιοποιώντας συσχετίσεις µεταξύ των αλληλεπιδράσεων του χϱήστη µε άλλες γνωστές

αλληλεπιδράσεις χϱήστη-αντικειµένου από άλλους παρόµοιους χϱήστες, ενώ οι τελευταίες

το πετυχαίνουν εστιάζοντας στο περιεχόµενο των αντικειµένων που ο εν λόγω χϱήστης έχει

αλληλεπιδράσει στο παρελθόν. Και οι δύο αυτές κατηγορίες έχουν τα ϑετικά και τα αρνητικά

τους. Η επιτυχία των µεϑόδων ϐασισµένων στο περιεχόµενο εξαρτάται από την ποιότητα

των χαρακτηριστικών των αντικειµένων. Οι µέϑοδοι Συνεργατικού Φιλτραρίσµατος, από

την άλλη, δεν απαιτούν πρόσβαση σε τέτοια χαρακτηριστικά, αλλά συνήϑως δεν µποϱούν

να αντιµετωπίσουν νέους χϱήστες και αντικείµενα, δεν τα πηγαίνουν πολύ καλά, όταν δεν

υπάρχουν αρκετές γνωστές αλληλεπιδράσεις µεταξύ χϱηστών και αντικειµένων, και είναι

πιο δύσκολο να κλιµακωθούν σε πολύ µεγάλο αριθµό από χϱήστες και αντικείµενα. Για

να πάϱουµε τα καλύτεϱα και από τους δύο κόσµους ή να αντιµετωπίσουµε τα µειονεκτή-

µατα του ενός, καθώς και να πετύχουµε καλύτεϱη επίδοση συνολικά, υϐϱιδικά συστήµατα

συστάσεων συνδυάζουν µεθόδους και από τις δύο αυτές κατηγορίες.

1https://en.wikipedia.org/wiki/Overchoice

3

https://en.wikipedia.org/wiki/Overchoice

Σύνοψη

Την τελευταία δεκαετία, τα ϐαθιά νευρωνικά δίκτυα έχουν επιτύχει κορυφαίες επιδόσεις

σε πολλές εφαρµογές. Υπό το ϕως αυτής της ϱαγδαίας εξέλιξης της ϐαθιάς µάϑησης, πολλά

συστήµατα συστάσεων, που ϐασίζονται σε µοντέλα µηχανικής µάϑησης, έχουν επανασχε-

διαστεί έτσι, ώστε να ενσωµατώνουν ϐαθιά νευρωνικά δίκτυα, προκειµένου να ϐελτιώσουν

πεϱαιτέϱω την επίδοσή τους. Το Neural Collaborative Filtering [11] αποτελεί µία τέτοια

επέκταση µίας δηµοϕιλής µεθόδου Συνεργατικού Φιλτραρίσµατος γνωστή ως Matrix Fac-

torization
2
, στην οποία ένα νευρωνικό δίκτυο χρησιµοποιείται για να µοντελοποιήσουµε µία

συνάϱτηση που αντιστοιχεί Ϲευγάϱια από χϱήστες και αντικείµενα σε µία τιµή προτίµησης

(πχ µια ϐαθµολογία). Αυτή η µέϑοδος παϱουσιάστηκε αρχικά ως µία µέϑοδος αµιγούς

Συνεργατικού Φιλτραρίσµατος, αϕού χρησιµοποιεί one-hot διανύσµατα για να αναπαραστή-

σει χϱήστες και αντικείµενα. Παϱόλα αυτά, οι συγγραφείς αναϕέϱουν τη δυνατότητα χϱήσης

διαφορετικών διανυσµάτων για αυτό τον σκοπό.

Αυτό που προτείνουµε εµείς είναι ένα υϐϱιδικό σύστηµα συστάσεων, ϐασισµένο στο

Neural Collaborative Filtering, αλλά στο οποίο αναπαριστούµε χϱήστες και αντικείµενα

µε πϱοϕίλ που ϐασίζονται στο περιεχόµενο, αντί για one-hot διανύσµατα. ∆ηλαδή ανα-

παριστούµε κάϑε αντικείµενο µε ένα διάνυσµα που αντιπροσωπεύει τα χαρακτηριστικά

του και κάϑε χϱήστη µε ένα διάνυσµα που δηµιουργείται από την κατάλληλη συνάϑϱοιση

των διανυσµάτων χαρακτηριστικών των αντικειµένων µε τα οποία έχει αλληλεπιδράσει στο

παρελθόν. Με αυτόν τον τϱόπο, περιµένουµε ότι χϱήστες µε παρόµοιες προτιµήσεις στα

χαρακτηριστικά των αντικειµένων ϑα καταλήξουν να έχουν πιο παρόµοια πϱοϕίλ σε σχέση

µε χϱήστες µε διαφορετικές προτιµήσεις. Χάϱις σε αυτή τη χϱήση πϱοϕίλ ϐασισµένα στο

περιεχόµενο, το µοντέλο µας µποϱεί να γενικεύει σε νέα αντικείµενα και, το σηµαντικότερο,

σε νέους χϱήστες, χωϱίς να χρειάζεται να το επανεκπαιδεύσουµε, λύνοντας έτσι το cold-start

πϱόϐληµα, το οποίο ταλανίζει τις µεθόδους Συνεργατικού Φιλτραρίσµατος.

Πιο συγκεκριµένα, αναπτύσσουµε τϱεις διαφορετικές αρχιτεκτονικές νευρωνικών δικ-

τύων. Η πϱώτη, στην οποία ϑα αναφερόµαστε ως Basic NCF, χρησιµοποιεί στατικά πϱοϕίλ

χϱηστών και αντικειµένων ως είσοδο στο νευρωνικό δίκτυο. Η δεύτεϱη, που ονοµάζουµε At-

tention NCF, δηµιουϱγεί τα πϱοϕίλ των χϱηστών δυναµικά, κατά το εµπρόσθιο πέϱασµα του

δικτύου, όπου, εµπνευσµένα από τη δουλειά στο [28], υπολογίζει ένα ϐάϱος προσοχής µεταξύ

του αντικειµένου της εισόδου και κάϑε αντικειµένου που ϑα χρησιµοποιηθεί ως µέϱος του

πϱοϕίλ του χϱήστη. Χρησιµοποιώντας αυτόν τον µηχανισµό προσοχής, µποϱεί να καταλήξει

σε διαφορετικό πϱοϕίλ για τον ίδιο χϱήστη, ανάλογα µε το αντικείµενο της εισόδου. ΄Οπως

ϑα δούµε, αυτό, όχι µόνο οδηγεί σε καλύτεϱη επίδοση, αλλά προσφέρει και έναν σηµαν-

τικό ϐαθµό επεξηγησιµότητας, καθώς µποϱούµε να προσφέρουµε αντικείµενα µε µεγάλη

πϱοσοχή ως µία εξήγηση του γιατί ένα αντικείµενο συστάϑηκε στον χϱήστη. Τέλος, η τϱίτη,

που ονοµάζουµε Graph NCF, χρησιµοποιεί πάλι στατικά πϱοϕίλ χϱηστών και αντικειµένων,

όπως η πϱώτη, αλλά προσπαθεί να µάθει καλύτεϱες διανυσµατικές αναπαραστάσεις για τους

χϱήστες και τα αντικείµενα, εκµεταλλευόµενη µε άµεσο τϱόπο το συνεργατικό σήµα στον

διµεϱή γϱάϕο χϱηστών-αντικειµένων, χρησιµοποιώντας νευρωνικά δίκτυα γϱάϕων, ακολου-

ϑώντας τις δουλειές στα [29] και [10].

2https://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)

4

https://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)

Σύνοψη

Συνολικά, εκτός από την ανάπτυξη των τϱιών παραπάνω αρχιτεκτονικών νευρωνικών δικ-

τύων, ϑα λέγαµε ότι η συνεισφορά αυτής της διπλωµατικής εργασίας περιλαµβάνει τα εξής:

• ∆ηµιουϱγούµε ένα νέο σύνολο δεδοµένων, συνδυάζοντας ένα δηµοϕιλές σύνολο δε-

δοµένων Συνεργατικού Φιλτραρίσµατος µε ϐαθµολογίες χϱηστών σε ταινίες µαϹί µε

µεταδεδοµένα για αυτές (πχ είδος, ηϑοποιοί, κτλ.) ως τα χαρακτηριστικά τους.

• Αϕού χωρίσουµε κατάλληλα τις αλληλεπιδράσεις (ϐαθµολογίες) του συνόλου δεδοµένων

µας σε σύνολα εκπαίδευσης, επικύρωσης και ελέγχου, εκπαιδεύουµε µοντέλα από τις

τϱεις προαναφερθείσες αρχιτεκτονικές νευρωνικών δικτύων σε αυτές, τα οποία αξιολο-

γούµε και συγκρίνουµε µε µετϱικές παλινδρόµησης και µετϱικές κατάταξης.

• Για την εκπαίδευση τους, εξεϱευνούµε δύο δηµοϕιλείς πϱοσεγγίσεις: την εκπαίδευσή

τους για παλινδϱόµηση µε τη συνάϱτηση κόστους MSE και την εκπαίδευσή τους για

κατάταξη µε τη συνάϱτηση κόστους BPR.

• ∆εδοµένου ότι το Attention NCF προσφέρει την προαναφερθείσα επεξηγησιµότητα,

απεικονίζουµε διαισθητικά τον µηχανισµό προσοχής του, υπολογίζοντας κάποια στατισ-

τικά για τα ϐάϱη προσοχής καθώς προβλέπουµε το σύνολο ελέγχου.

• ∆ηµιουϱγούµε µία ενδεικτική εφαρµογή διαδικτύου, στην οποία εκθέτουµε το καλύτεϱο

µοντέλο από τα πειράµατά µας, που κατέληξε να είναι το Attention NCF. Σε αυτήν, ένας

χϱήστης µποϱεί να ϐαθµολογήσει ταινίες και να λάϐει επεξηγήσιµες συστάσεις, στις

οποίες ϕαίνονται τα ήδη ϐαθµολογηµένα αντικείµενα τα οποία πήϱαν το µεγαλύτεϱο

ϐάϱος προσοχής.

΄Ολος ο κώδικας αυτής της διπλωµατικής εργασίας, συµπεριλαµβανοµένου της ενδεικτικής

εφαρµογής διαδικτύου, είναι open-source και είναι διαθέσιµος στο εξής δηµόσιο git reposi-

tory: https://github.com/michaelbzms/DeepRecommendation.

5

https://github.com/michaelbzms/DeepRecommendation

"Smart people focus on the right things."

– Jensen Huang

Acknowledgements

First of all, I would like to thank my professor, Dr. Alexandros Potamianos, and the

researcher Dr. Theodoros Giannakopoulos, for giving me the opportunity to undertake

this thesis, concerning the application of neural networks on a subject that I find very

interesting. Furthermore, I would like to thank Mr. Giannakopoulos and, especially, the

assistant researcher Konstantinos Bougiatiotis, for their constant support and guidance

throughout the implementation and writing of this thesis. Finally, I would like to thank

my family and friends who supported me during this period.

Athens, October 2022

Michail V. Bizimis

7

Table of Contents

Abstract 1

Πεϱίληψη 2

Σύνοψη 3

Acknowledgements 7

1 Introduction 12

1.1 Introduction . 12

1.2 Thesis Contribution . 14

1.3 Thesis organization . 14

2 Background and related work 15

2.1 Introduction to recommendation systems 15

2.1.1 The recommendation setting . 15

2.1.2 Defining the task of recommendation 17

2.2 Traditional approaches . 17

2.2.1 Collaborative Filtering methods . 17

2.2.2 Content-based methods . 19

2.2.3 Hybrid methods . 20

2.3 Deep learning approaches . 20

2.3.1 Neural Collaborative Filtering . 21

2.3.2 Neural Graph Collaborative Filtering 27

3 Methodology employed 34

3.1 Content-based profiles . 34

3.1.1 Item Profiles . 34

3.1.2 User Profiles . 35

3.2 Examined models . 38

3.2.1 Basic NCF . 38

3.2.2 Attention NCF . 39

3.2.3 Graph NCF . 42

3.3 Prediction vs ranking problem . 45

3.3.1 Solving the prediction problem . 45

3.3.2 Solving the ranking problem . 46

8

TABLE OF CONTENTS

4 Experiments 48

4.1 Dataset . 48

4.1.1 Public datasets used . 48

4.1.2 Creating a custom dataset . 49

4.1.3 Train-val-test split . 50

4.2 Evaluation metrics . 53

4.2.1 Regression metrics . 53

4.2.2 Ranking metrics . 53

4.3 Experiments . 55

4.3.1 Hyperparameter exploration . 55

4.3.2 Using one-hot vectors vs using features 58

4.3.3 Comparing all models . 59

4.3.4 Visualizing the quality of the regression 60

4.3.5 Visualizing the item-item attention in Attention NCF 61

4.3.6 Solving the ranking problem directly 63

4.3.7 Comparison with other methods as baselines 64

5 Conclusions 66

5.1 Conclusions . 66

5.2 Future work . 68

Bibliography 72

List of Abbreviations 73

9

List of Figures

2.1 A simple example for a utility matrix with explicit ratings. 16

2.2 The same example for a utility matrix, but with implicit interactions. . . . 16

2.3 A manufactured example of a matrix factorization for movies. 22

2.4 The Neural Collaborative Filtering (NCF) framework. 22

2.5 The Neural Collaborative Ranking (NCR) framework. 26

2.6 The Neural Matrix Factorization (NeuMF) framework. 26

2.7 Graph Neural Networks (GNNs) as encoders. 27

2.8 An example of a user-item bipartite graph and message propagation on it. 29

2.9 The Neural Graph Collaborative Filtering framework. 29

3.1 The Basic NCF architecture. 38

3.2 The Attention NCF architecture. 39

3.3 The Graph NCF architecture. 42

4.1 Movie year and genre distribution. 49

4.2 The item rating distribution and the item and user degree distributions. . . 50

4.3 Histograms of how the user-item interactions are distributed between train,

validation and test sets. 51

4.4 The item rating distribution and the item and user degree distributions. . . 53

4.5 Learning curves for Basic NCF using one-hot input vectors vs using feature

vectors. 58

4.6 Learning curves for Basic NCF and Graph NCF using one-hot input vectors

vs using feature vectors. 59

4.7 Learning curves for all models using features. 59

4.8 Learning curves for all models. 60

4.9 Normalized stacked histograms of predicted ratings per ground truth ratings. 61

4.10 Average item-item attention weights visualized for two subsets of movies. . 62

4.11 Learning curves for all models when training for ranking with BPR loss. . . 63

4.12 Validation NDCG curves for the models trained for the prediction vs them

trained for the ranking problem. 64

10

List of Tables

4.1 Test set evaluation for different Basic NCF hyperparameters. 56

4.2 Test set evaluation for different Attention NCF hyperparameters. 56

4.3 Test set evaluation for different Graph NCF hyperparameters. 57

4.4 Test set evaluation for Basic NCF using one-hot input vectors vs feature

vectors. 58

4.5 Average time per epoch for each model type. 59

4.6 Test set evaluation for all models. 59

4.7 Test set evaluation for all ranking models. 63

4.8 Average time per epoch for the ranking models. 64

4.9 Test set evaluation for simpler baseline models and our own. 65

11

Chapter 1

Introduction

1.1 Introduction

In this day and age, it is no secret that we enjoy a higher standard of living compared to

other eras of our history as humans. Thanks to our technological and industrial prowess,

never before have we grown so accustomed to such an abundance of consumer goods

and services. With so many alternatives to choose from, however, we are constantly

faced with an overwhelming amount of options, from the news articles we read to the

movies we watch. In many cases, going through all the available options, in order to

make an informed decision, can be intimidating, time-consuming and exhausting, leading

to a phenomenon known as choice overload or overchoice1
. Overchoice is a cognitive

impairment in which people have a difficult time making a decision when faced with many

options. To amend this issue, recommendation systems have emerged. These systems are

able to discard irrelevant options and only present their users with a smaller and easier to

manage subset of relevant ones, usually in the form of top-K recommendations, thereby

making their user’s choice a much easier task.

There exist many types of recommendation systems, but the two main distinct cate-

gories have generally been Collaborative Filtering methods and content-based methods.

Both of these sets of methods rely on a user’s past interactions with items, in order to

make new item recommendations that are personalized to him. However, the former do

so by leveraging correlations between the user’s own past interactions and other known

user-item interactions from other similar users, while the latter do so by focusing on the

content of the items that the user in question has interacted with in the past. Each of

these two categories comes with its own advantages and disadvantages. Content-based

methods rely on the quality of item features to be successful. Collaborative Filtering

methods, on the other hand, do not require access to such features, but they usually

cannot deal with new users and items and they have been known to struggle when there

are a lot of missing interactions as well as with scaling to a significantly large number of

users and/or items. To get the best of both worlds or to combat one’s drawbacks, as well

as achieve better performance overall, hybrid recommendation systems combine methods

from both of these categories.

1https://en.wikipedia.org/wiki/Overchoice

12

https://en.wikipedia.org/wiki/Overchoice

1.1 Introduction

Over the last decade, deep neural networks have achieved state-of-the-art performance

in many applications. In light of this rise of deep learning, many model-based recommen-

dation systems have been redesigned to incorporate deep neural networks in order to

improve their performance. Neural Collaborative Filtering [11] is one such extension of

a popular model-based Collaborative Filtering method known as Matrix Factorization
2
,

wherein a neural network is used in order to model a function that maps user-item pairs

to a preference score (e.g. a rating). This method was originally presented as a purely Col-

laborative Filtering one, seeing as it uses one-hot vectors to represent users and items.

Nevertheless, the authors do mention the possibility of using other meaningful vector

representations for items and/or users.

What we propose is a hybrid recommendation system, based on Neural Collaborative

Filtering, but wherein we represent users and items with content-based profiles instead

of one-hot vectors. That is, we represent an item with a feature vector and a user with

a vector that is created by appropriately aggregating the feature vectors of items that the

user has interacted with in the past. Via this aggregation, we are trying to estimate the

user’s preferences in items with respect to their features. Hence, we expect users with

similar preferences to have more similar profiles than users with different ones. It is this

use of content-based profiles that allows our model to generalize to new items and, more

importantly, new users, without having to retrain, thereby solving the cold-start problem

associated with Collaborative Filtering methods.

More specifically, we develop three such distinct neural network architectures. The

first, which we shall refer to as Basic NCF, uses fixed user and item profiles as input

vectors to the neural network. The second, Attention NCF, creates the user profiles

dynamically, during the forward pass, where, inspired from the work in [28], it calculates

an attention weight between the input item and every interacted item that will make up

the user profile. Using this item-item attention mechanism, it has the ability to end up

with a different profile for the same user, depending on the input item, for which it is

being called to predict a preference score. As we shall see, this does not only result in

better performance, but also in some much needed explainability, as we can offer highly

attended interacted items as an explanation for why an item is being recommended to

a user. Last but not least, the third architecture, Graph NCF, uses fixed user and item

profiles, like the first one, but it also attempts to learn better user and item embeddings

by explicitly capturing the collaborative signal on the user-item bipartite graph via Graph

Neural Networks, following the work in [29] and [10].

2https://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)

13

https://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)

Chapter 1. Introduction

1.2 Thesis Contribution

All in all, other than the development of these three neural network architectures, this

thesis’s contribution can be summarized as follows:

• We create a custom dataset for hybrid recommendation by combining a popular

Collaborative Filtering dataset of user ratings to movies with movie metadata (e.g.

genres, actors, etc.) as features for those movies.

• After appropriately splitting the dataset’s user-item interactions (ratings) into train,

validation and test sets, we train models from the three aforementioned neural net-

work architectures on it and we evaluate and compare them using both regression

and ranking metrics.

• For training, we explore two popular formulations, training them for regression

using the MSE loss and training them for ranking using the BPR loss.

• Considering that Attention NCF offers the previously mentioned explainability, we

intuitively visualize its attention mechanism via some aggregated statistics on the

attention weights produced while running inference on the test set.

• We create a demo web application where we showcase the best model from our

experiments, which turned out to be Attention NCF. In this application, a user can

rate movies and receive explainable recommendations for new ones, where highly

attended rated movies will be shown for each recommendation.

All the source code for this thesis, including the web application, can be found at this

public git repository: https://github.com/michaelbzms/DeepRecommendation.

1.3 Thesis organization

The rest of this thesis can be broken down as follows:

• In Section 2, we delve into some important background for recommendation sys-

tems in general as well as related work, which also employs neural networks for

recommendations.

• In Section 3, we discuss our approach to creating content-based profiles for users

and items and, then, we present in detail the three aforementioned architectures:

Basic NCF, Attention NCF and Graph NCF. We also look into the two different

formulations that we used for training these models.

• In Section 4, we describe how we create and split the custom dataset that we use.

We go into the evaluation metrics we employed and present the most interesting

experiments we conducted along with their results.

• In Section 5, we review our work and report our conclusions along with possible

directions for future work.

14

https://github.com/michaelbzms/DeepRecommendation

Chapter 2

Background and related work

2.1 Introduction to recommendation systems

2.1.1 The recommendation setting

In the recommendation setting, we usually assume that we have access to certain

users, certain items and recorded interactions between them. In this context, the gen-

eral goal of a recommendation system is to learn to predict potential future interactions

between users and items from those recorded interactions and/or additional auxiliary

features for the items and/or the users.

We typically store recorded interactions between users and items in a matrix dubbed

as the utility matrix. This matrix is usually a two-dimensional matrix with one dimension

for all the users and one dimension for all the items. Each cell represents a user-item

interaction and its value may be known (for recorded interactions) or unknown. As there

usually does not exist a recorded interaction between every user and every item, this

matrix is usually quite sparse.

The type of values in the utility matrix depend on the type of interactions we have

access to. We may have access to:

1. Explicit interactions, where the user has explicitly stated his preference or dispref-

erence for an item. These usually come in the form of user ratings, e.g. discrete

integer values on a scale 1-5 (5-star rating system), in the range {-1, 0, 1} (like/dis-

like), continuous values in [0, 1], etc.

2. Implicit interactions, where we derive user preferences implicitly from their activity

(e.g. their views, their purchases, etc.). In these situations, we usually only know

that there exists a positive (i.e. unary data) or positive/negative (i.e. binary data)

interaction between a user-item pair.

Explicit interactions

Explicit interactions are of course more informative, since we can convert them to bi-

nary or unary implicit ones by applying a threshold (e.g. if the rating is ≥ than the average

rating). At the same time, however, it is rarer to have access to explicit interactions, since

15

Chapter 2. Background and related work

users may not easily volunteer feedback that requires effort on their part such as rating

an item, and, even if we do have access to some, they may be too few to work with.

item 1 item 2 item 3 item 4

user 1 2 5 1 3

user 2 4 ? ? 1

user 3 ? 4 2 ?

user 4 2 4 3 1

user 5 1 3 2 ?

Figure 2.1. A simple example for a utility matrix with explicit ratings.

Implicit interactions

On the other hand, implicit interactions such as users clicking on an article, purchas-

ing an item, watching a video, etc. are much easier to collect in large quantities without

requiring any effort from the user. Thus, they tend to be more common.

At the same time, however, they are trickier to work with because, unless we also have

access to negative interactions (e.g. a user refunding an item), there is no way to tell for

sure if the lack of an interaction between a user and an item is because the user is not

interested in the item or because he has not yet been presented with it.

In other words, when working with implicit recorded interactions that are only posi-

tive (i.e. unary data), we have to make an assumption, which may not always be true,

about which blank entries in the utility matrix are to be considered negative interactions.

Whereas when working with explicit recorded interactions we typically won’t have to use

blank entries at all, since the known interactions can be both positive and negative, as

quantified by a scalar value like a rating.

We have to make this assumption because we typically need both positive and negative

interactions to train a discriminative machine learning model to perform recommenda-

tions. This type of learning, where we only have positive labeled samples and the unla-

beled samples could be both positive and negative, is usually referred to as PU learning

(Positive and Unlabeled) [2]. In the context of recommendation, it is also referred to as

One-Class Collaborative Filtering [21].

item 1 item 2 item 3 item 4

user 1 ? 1 ? 1

user 2 1 ? ? ?

user 3 ? 1 ? ?

user 4 ? 1 1 ?

user 5 ? 1 ? ?

(a) Without negative interactions (unary data).

item 1 item 2 item 3 item 4

user 1 0 1 0 1

user 2 1 ? ? 0

user 3 ? 1 0 ?

user 4 0 1 1 0

user 5 0 1 0 ?

(b) With negative interactions (binary data).

Figure 2.2. The same example for a utility matrix, but with implicit interactions. On the
left (a) we can see unary data, while on the right (b) we can see binary data.

16

2.1.2 Defining the task of recommendation

2.1.2 Defining the task of recommendation

When defining the task of recommendation, there are two primary formulations to

consider [1]:

1. In the prediction version of the problem, we are given a user u and an item i and

we want to learn to predict a preference score f (u, i) between them. This preference

score, depending on whether we are working with explicit or implicit interactions,

could be a rating from the user to the item (i.e. regression) or the probability of

a future interaction happening (i.e. binary classification) respectively. Under this

formulation, we are essentially trying to fill in the blanks of the utility matrix.

2. In the ranking version of the problem on the other hand, we do not have to predict

a preference score, we only care about learning to make top-k recommendations of

items for each user (or, more rarely, top-k recommendations of users for each item).

In this scenario, we typically want to learn to rank [15] all the items per user.

Of course, the prediction version is more general as if we solve the prediction problem

we already have a solution for the ranking problem: just sort the items in descending

preference score for a user and recommend the top-k ones. In some cases, however, it

may be more natural to solve the ranking version (e.g. in purely content-based methods)

and, if we only care about making top-k item recommendations to users, then it may as

well be all we need.

2.2 Traditional approaches

There traditionally have been three main approaches to solving the recommendation

problem: Collaborative Filtering methods, content-based methods and hybrid methods,

i.e. the combination of the two.

2.2.1 Collaborative Filtering methods

Collaborative Filtering (CF) methods typically solve the prediction version of the rec-

ommendation problem. They predict the missing values in the utility matrix by leveraging

the information already on it. That is, they rely on recorded past interactions between

users and items to predict future ones. They are called "collaborative" because they at-

tempt to capture similarities/correlations between users and/or between items in order

to make recommendations. For example, recommend to a user u an item i that other

similar-to-him users liked.

Collaborative Filtering methods can be further split into memory-based methods and

model-based methods [1].

Memory-based methods

Memory-based methods, aka neighborhood-based collaborative filtering [1], are simple

heuristic similarity-based methods. The main idea is to represent users with their rows

17

Chapter 2. Background and related work

and items with their columns in the utility matrix. For example, in Figure 2.1, user 5 can

be represented by the vector (with missing values) [1, 3, 2, _] while item 1 is represented

by the vector [2, 4, _, 2, 1].
Then, using user-based CF, to predict the value f (u, i) of the cell for user u and item

i we perform the two following steps [14]:

1. First, find the k users (rows) most similar to u, ni ∈ NearestNeighbors(u) i = 1...k,

via some vector similarity metric (e.g. cosine similarity, Jaccard similarity, etc.),

that can deal with missing values (e.g. treat them as zeroes).

2. Then, aggregate (e.g. average) the known interactions f (vi , i) between those k neigh-

boring users and item i to predict f (u, i).

After performing the first step and finding user u’s k-nearest neighbors, we can fill all

the blanks in the row for user u. Consequently, we can immediately make recommenda-

tions for user u.

Due to symmetry, we can also do the same thing from the item’s perspective, aka

item-based CF. Item-based CF consists of finding the k most similar items to i and then

aggregating the known preference scores of user u to these items in order to predict

f (u, i). In practice, item-based CF methods work better because similarity in items tends

to exist more naturally than between users [14]. That is, items tend to cluster better

under categories of similar items, whereas users are likely to have more unique tastes. A

detailed presentation of traditional item-based CF algorithms can be found in [24].

Notice that in both approaches we can only use known interactions, so if the utility

matrix is very sparse we may not be able to make reliable predictions or even make a

prediction at all (e.g. when none of the neighbors have rated the item i for which we

are predicting f (u, i)). Another related problem of this method is the infamous cold-start

problem, where we cannot make a good (or any) prediction for new items (nor for new

users) that have not yet been rated by enough users.

It’s worth noting that this method can actually be seen as a generalization of a k-

nearest-neighbor classifier [1], which is an instance-based classifier that delays training

until inference (i.e. lazy learner).

Model-based methods

Model-based methods employ machine learning models (typically eager learners) in

order to solve the prediction problem. This problem can be formulated as a supervised

learning problem where we are trying to learn a function f (x) = y from labeled data

instances in the form (x, y), where y (i.e. the label) represents the utility matrix’s cell

values and x represents a user-item pair. In other words, the data that we have available

to train the model are the known cells in the utility matrix (i.e. each cell is a single data

instance), whilst the unknown cells are the data for which we want to infer their values.

Depending on the utility matrix’s cell value types, this supervised problem can be that

of binary classification for unary/binary y values or regression for arbitrary y values,

such as ratings.

18

2.2.2 Content-based methods

However, it is not straightforward how to use the utility matrix in order to represent

a user-item pair x in a suitable way for an arbitrary machine learning model to train on

(x, y) data instances. Is representing users as the rows and items as the columns in the

utility matrix still the best choice? How do we represent a user-item pair and input it into

a machine learning model? Would concatenating the two vectors into one suffice, or can

the model take in pairs of separate vectors? Are missing values in such vectors a concern?

All these are valid questions that a model-based method should answer. Of course, to a

certain extent, the answer also depends on the type of machine learning model used.

Some methods avoid dealing with pairs altogether. For example, in [1] it is mentioned

that one could fix one of the two – e.g. the items – as a dependent variable and train a

separate machine learning model (e.g. decision trees) for each item using all the known

cells from other columns. In this case, the other items (i.e. the other columns) are the

features and the rows of the utility matrix are the data instances. The model of choice

here should be able to handle missing values, as the utility matrix is naturally sparse.

Other methods, such as Latent Factor models [3], learn fully-specified latent vector

representations, aka embeddings, for both users and items, thereby solving the missing

values problem, and employ models that take in pairs of separate latent vectors, thereby

bypassing the issue of representing a user-item pair as one vector. These latent vectors

(aka factors) could be learned separately using dimensionality reduction methods on the

utility matrix or directly whilst learning to complete the matrix, like in Matrix Factorization

methods. By using latent representations, we do lose some explainability. However, these

methods have been shown to perform significantly better [1]. Matrix factorization will be

presented in more detail in Subsection 2.3.1.1.

2.2.2 Content-based methods

The term "content-based" can be used to characterize recommender systems that

make use of auxiliary information for items (or even users as well). This information is

usually task-specific features we have access to.

Content-based recommender systems try to match users to items that are similar to

items that they have liked in the past. Unlike collaborative filtering methods, however,

their approach is not based on interaction correlations across multiple users, but solely

based on the attributes of items and, more specifically, those rated by the same user

in the past [1, 17]. In other words, the interaction scores of other users play no role

whatsoever and, thus, they are not needed to make recommendations to a certain user.

As a result, these methods can usually offer better personalization, e.g. for users with

unique tastes, as well as avoid the cold-start problem for new items with few interactions.

At the same time, however, it is required that we have access to relevant item features

representing the content of the items as well as some recorded past interactions for the

user at hand so that we can estimate his preferences in items (that is, unless we already

have access to other user features for that purpose).

In a typical content-based recommendation system, with access to item features, that

solves the ranking version of the recommendation problem we operate as follows:

19

Chapter 2. Background and related work

1. First, we use auxiliary information for items to create an item profile for each item,

i.e. a feature vector for it. These features are item-specific and they represent

the "content" of an item. They usually need to be numeric for common similarity

metrics to work, so categorical features should probably be one-hot or multi-hot

encoded. They could even be representative dense vectors, i.e. embeddings, learned

via representation learning.

2. After creating all the item profiles, we use the known interaction values (i.e. utility

matrix cells) for user-item pairs in order to build a user profile for a user by appro-

priately aggregating the item profiles of the items that he has interacted with. That

is, we build user profiles from the item profiles. These user profiles represent the

preferences of users in the attributes of items.

There is no free lunch concerning the choice of aggregation, but a common choice is

using the average of item profiles when we have binary interactions and a weighted

average when we are dealing with, for example, ratings [14].

3. Having constructed a user profile for a certain user u, we can rank all the items

by descending similarity (e.g. cosine similarity) between said user profile and each

item profile. We can then simply recommend the k most similar items for top-k

recommendation.

The similarity metric used between item and user profiles chosen should be some-

thing suitable for the features we used and the way we constructed the user profiles.

2.2.3 Hybrid methods

Hybrid methods attempt to inherit the best of both worlds by combining both sources

of information. That is, they seek to exploit both the correlations between users and/or

between items in the utility matrix as well as the user’s preferences in item attributes.

According to [1, 5], we can build a hybrid recommendation system in a variety of

ways including taking a weighted combination of an ensemble of different methods (e.g.

like the Netflix prize winners did albeit this was a purely CF method), cascading the

recommenders in a way where each refines the recommendations given by another [7],

training a recommendation system on both sources of information directly [18, 25], etc.

2.3 Deep learning approaches

An insightful survey of deep learning methods applied to the recommendation task

can found in [33]. In this paper, the authors go through many proposed deep learning

architectures and briefly describe some of them. From these methods, Neural Collabora-

tive Filtering [11] stands out to be a simple and flexible framework, as it can be used as

both a pure collaborative filtering method and a hybrid method (by adding content-based

profiles to it) and it can admit a variety of possible losses depending on our goal.

20

2.3.1 Neural Collaborative Filtering

2.3.1 Neural Collaborative Filtering

Neural Collaborative Filtering is a method that extends Matrix Factorization (MF). We

therefore present the basics of Matrix Factorization methods first.

2.3.1.1 Matrix Factorization

The basic idea of Matrix Factorization (MF) methods is to decompose the m × n utility

matrix R into two matrices: an m × k matrix U and an n × k matrix V , such that:

R ≈ UV T
(2.1)

That is usually achieved by finding matrices U and V (e.g. via gradient descent) that

minimize the approximation error as measured by the quantity [1]:

||R − UV T || 2 =

m∑
i=1

n∑
j=1

|rij − u⃗i · v⃗j |
2

(2.2)

Assuming that there exist enough correlations in the utility matrix R, it is possible to

use a small enough k ≪ min(m, n) to achieve a small approximation error, even though

R has missing values. To deal with missing values we can just exclude those terms from

the sum in 2.2.

The k-dimensional row vectors of matrix U represent latent factors (i.e. embeddings)

for users, while the k-dimensional row vectors of matrix V represent latent factors for

items. These vectors represent the affinity of a user or an item towards the k latent

concepts that are extracted from the utility matrix.

These concepts are usually arbitrary and do not have an interpretable semantic mean-

ing (unless more restrictions are placed upon U and V e.g. non-negative matrix factor-

ization). However, a useful example to understand the intuition behind these vectors is

presented in Figure 2.3, where the concepts are genres of movies, a user factor is a vector

representing if a user likes / is neutral towards / dislikes a genre and an item factor

represents if a movie belongs or not to one or more genres.

Having access to these latent factors for users and items the prediction r̂ij of the model

for the i-th user and the j-th item is defined as the dot product of the two latent factors:

r̂ij = u⃗i · v⃗j =

k∑
s=1

uisvjs (2.3)

Therefore, by minimizing 2.2 we minimize the margin of error (i.e. the mean squared

error) in our predictions for the known cells of the utility matrix.

An interesting part about this process is that after finding U and V we can reconstruct

the whole utility matrix in one shot.

Of course, more advanced variations have been proposed and used in practice [13].

These may involve adding regularization (e.g. Funk MF [8]), adding bias terms for users

and items (e.g. biased SVD), etc. but the basic idea is the one presented above.

21

Chapter 2. Background and related work

Figure 2.3. A manufactured example of a matrix factorization for movies taken from [1].

2.3.1.2 Neural Collaborative Filtering

The Neural Collaborative Filtering (NCF) framework is presented in [11] and is a gen-

eralization of Matrix Factorization methods. In this paper, the authors note that MF

methods linearly combine the latent concepts in 2.3 and, as such, can be deemed as

linear models of latent factors. They then describe how this, i.e. using the dot product of

latent vectors for items and users as the model’s prediction, can be limiting.

Instead of increasing the latent concepts k, which can increase the model’s expres-

siveness but adversely hurt its generalization (e.g. by overfitting), the authors suggest

the use of deep neural networks in order to model the interaction between user and item

latent vectors rather than using a simple dot product. They argue that this can potentially

make the model more expressive by being able to combine latent concept with different

weights and by being able to capture non-linear user-item interactions.

Figure 2.4. The Neural Collaborative Filtering (NCF) framework.

22

2.3.1 Neural Collaborative Filtering

The basic network structure for this framework is summarized in Figure 2.4 and is

made up of the following parts:

Input layer

The network has two separate vector inputs: one for a user u and one for an item i.

This allows our network to directly model a preference score f (u, i) between the user u

and the item i by working on a user-item pair at a time.

The type of input vectors, v⃗u and v⃗i , we use to represent users and items under this

framework is extremely flexible. For example:

1. We can use one-hot vectors, if we don’t have access to content (i.e. features) for

items and/or users and we do not care about being able to generalize to new items

and/or new users (we still want to generalize to unknown interactions i.e. user-item

pairs). By doing this, we effectively memorize embeddings for the users and items

we have access to.

2. We can still represent users as their rows and items as their columns in the utility

matrix as in neighborhood-based methods [31]. This should allow our model to

generalize to new users and new items, without having to retrain it, as we can

represent new users by their interactions with known (only) items and new items by

their interactions with known (only) users, assuming that there are any, of course.

There may very well not be due to the cold-start problem.

3. If we do have access to say auxiliary item features, then we can use content-based

methods in order to represent items with item profiles and users with user profiles.

This would allow our network to generalize to new items and to new users, without

the cold-start problem for items.

Embedding layer

For each input vector we use a separate embedding layer, i.e. a simple feed-forward

layer, in order to learn to project items and user input vectors to a latent vector space of

their own. So by using a m × k weight matrix P for users and an n × k matrix Q for items,

we can get their embeddings by simply forwarding their input vectors as:

e⃗u = PT v⃗u and e⃗i = QT v⃗i (2.4)

Note that if we already have access to user or item embeddings as input vectors, we

could theoretically skip this extra layer or keep it to tune them further. We could even

add a non-linear activation like ReLU to force the embeddings to be non-negative (like in

non-negative matrix factorization).

23

Chapter 2. Background and related work

Neural CF layers

After acquiring a user and an item embedding, instead of simply taking their dot-

product as in Matrix Factorization methods, we concatenate the two latent vectors and

pass the resulting vector through a deep neural network, let’s call it MLP, that the authors

dubbed as neural CF layers. The role of these layers are to capture the potentially complex

non-linear interactions between users and items.

Output layer

After passing through the neural CF layers we reach the output layer which has only

one neuron outputting the prediction f̂ (u, i) or ŷui of our network for the input user-item

pair. If we are outputting probabilities, then this layer should have a sigmoid activation

function, otherwise (e.g. for regression) no activation function is needed.

Put together, the output of the network (without the sigmoid) should be:

ŷui = f̂ (u, i) = MLP(concat(e⃗u , e⃗i)) (2.5)

Loss function

This framework can be used to solve both the prediction and the ranking versions of

the recommendation problem. To solve the prediction problem we would use a pointwise

loss on (user, item, label) samples (u, i, yui) such as:

1. The Mean Squared Error (MSE) loss, if we have access to arbitrary interactions and

we are performing regression. In this case:

L(u, i) = (yui − ŷui)2
(2.6)

2. The Binary Cross-Entropy (BCE) loss, if we have access to unary or binary interac-

tions and we are performing binary classification. In this case:

L(u, i) = −yui log ŷui − (1 − yui) log (1 − ŷui) (2.7)

Note that performing binary classification for binary targets is preferable because

the loss ranges from 0 to∞ instead of from 0 to 1. In this scenario, we should add a

sigmoid activation function in our output layer in order for it to output probabilities.

To solve the ranking problem we would typically use a pairwise ranking loss, such as

the Bayesian Personalized Ranking (BPR) loss, on (user, item, item) triplets (u, i, j), where

we want item i to be ranked higher than item j for the user u. In this setting, which is

also discussed in [26], we would need to forward our model twice for each triplet: once

for (u, i) and once for (u, j). After doing so, we can define the BPR loss as:

L(u, i, j) = − log σ(ŷui − ŷuj) (2.8)

24

2.3.1 Neural Collaborative Filtering

where σ is the sigmoid function. This loss function is minimized when ŷui is larger than

ŷuj i.e. when we are indeed ranking item i higher than item j.

It is worth noting that the triplets used in pairwise learning are typically going to be

a lot more than the user-item pairs in pointwise learning. If a user u has interacted with

say n items, then there are n(n−1)/2 possible (i, j) pairs of items to form an equal amount

of (u, i, j) triplets
1
, while there are only n possible user-item pairs. This means that one

may have to rely on some kind of sampling scheme and not examine all of them in each

epoch. An example of such uniform sampling for binary interactions from implicit data

is presented in [23].

It is also worth mentioning that the BPR loss has been criticized for suffering from van-

ishing gradients [22], where for correctly ranked item pairs the gradients can become very

close to zero. This essentially means that we learn next to nothing from these updates.

When employed with uniform sampling, this phenomenon slows down convergence as

this kind of pairs waste calculations and it may take a while to draw useful ones. Accord-

ing to the authors of [22], this is especially true when the item popularity is tailed, e.g.

it follows a Power-Law distribution
2
. To combat this, they suggest a context-dependent

sampling strategy which oversamples the most informative pairs. That being said, simple

random sampling approaches can still be considered viable, as shown in [29].

2.3.1.3 Neural Collaborative Ranking

The authors in [26] prefer a similar but more specialized (in terms of ranking) archi-

tecture, which they call Neural Collaborative Ranking (NCR). In this architecture, which is

presented in Figure 2.5, they forward a similar model to concatenated embeddings for u, i

and j and predict a preference score yuij for the whole triplet directly, which expresses the

user’s preference of item i over item j. This score is then used directly inside the sigmoid

of Equation 2.8. They claim that the intuitive advantage of this architecture over the

previous one (i.e. NCF with BPR loss) is that it can also model the non-linear interactions

between the two items.

However, predicting a score for the triplets instead of user-item pairs means that we

cannot just rank the items’ scores for top-K recommendations anymore. To solve this

situation, the authors suggest a heuristic algorithm, based on the transitive property that

the predicted scores of ranked items should ideally have.

2.3.1.4 Neural Matrix Factorization

The authors in [11] go one step further to suggest an architecture that combines both

Matrix Factorization, or a more generalized version of it they refer to as Generalized Matrix

Factorization (GMF), and Neural Collaborative Filtering (NCF). They call this architecture

Neural Matrix Factorization (NeuMF).

1
This estimate would assume that we also pair together items of the same ranking which is something we

do not want to do e.g. when we have binary interactions we would only pair a positive with a negative item.

So the actual number is less than this estimate e.g. npositive × nnegative but still considerably larger than n.

2https://en.wikipedia.org/wiki/Power_law

25

https://en.wikipedia.org/wiki/Power_law

Chapter 2. Background and related work

Figure 2.5. The Neural Collaborative Ranking (NCR) framework.

NeuMF is presented in Figure 2.6. It combines NCF and GMF by concatenating the

result of their last hidden layer and adding a final output neuron after that. The idea

is that, with such a model, we can use both a shallow and a deep representation of the

user-item interactions to make our final prediction. In the authors’ experiments, NeuMF

is slightly better than NCF, which in turn is better than GMF.

Some things that the authors note are that:

1. It is better to use separate user and item embedding layers for the two models and

not restrict them to share the same ones (e.g. GMF may need larger embeddings).

2. We can first train each subnetwork separately and then combine them by initializing

the respective weights of NeuMF with their values in the pre-trained GMF and NCF

networks.

Figure 2.6. The Neural Matrix Factorization (NeuMF) framework.

26

2.3.2 Neural Graph Collaborative Filtering

2.3.2 Neural Graph Collaborative Filtering

A survey of Graph Neural Network (GNN) approaches to the recommendation setting

can be found in [30]. The motivation behind these approaches is to learn better user and

item embeddings by leveraging the structure of the bipartite user-item interaction graph

and the relationships of multi-hop neighbors in it. From the many possible approaches

here, Neural Graph Collaborative Filtering [29] and Light Graph Convolution Networks

[10] appear to be a natural extension to the Neural Collaborative Filtering framework

using GNNs. In order to present these methods, we first dive into the basics of Graph

Neural Networks in general.

2.3.2.1 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural networks that work on graph

data. Given a graph G, with an initial set of nodes V , each of which has an initial vector

representation, GNNs learn how to use the structure of the graph (i.e. its edges) in order

to acquire new latent vector representations or embeddings, aka hidden states, for each

node in the same or a similar graph. These new representations depend on said structure

as well as the initial representations. In other words, GNNs are just encoders for nodes

on graphs that leverage the graph’s structure
3
, as shown in Figure 2.7.

Figure 2.7. Graph Neural Networks (GNNs) as encoders.

In order to do this, they implement what is known as the Message Passing Framework

[9]. In this framework, for each directed edge from node v to node u in the graph G we

determine that a message mv→u , which is just a vector itself
4
, will be passed from node

v to node u. Via these messages, information is propagated through the structure of the

graph. Each node sends messages to all his outgoing neighbors and receives messages

from all his incoming neighbors in a series of time steps t = 1, 2, ..., T , where T is a

hyperparameter of the process.

After the first iteration (t = 1) every node embedding contains information from its

1-hop neighborhood, after the second iteration (t = 2) every node embedding contains

information from its 2-hop neighborhood, etc. In general, after the k-th iteration, every

node embedding contains information from its k-hop neighborhood, as shown in Figure

2.8 for k = 3. Therefore, by using T > 1, we can model high-order connectivity in the

3https://www.microsoft.com/en-us/research/video/msr-cambridge-lecture-series-an-introduction-to-

graph-neural-networks-models-and-applications/
4
The message to be sent can be learned during training.

27

https://www.microsoft.com/en-us/research/video/msr-cambridge-lecture-series-an-introduction-to-graph-neural-networks-models-and-applications/
https://www.microsoft.com/en-us/research/video/msr-cambridge-lecture-series-an-introduction-to-graph-neural-networks-models-and-applications/

Chapter 2. Background and related work

graph. At the same time, however, using too large a T can lead to a phenomenon known

as oversmoothing [20, 6], where almost every node ends up passing information to every

other node and, as a result, all the nodes end up with very similar embeddings. In any

case, T should be tuned to the graph (e.g. performance on a validation set).

During each time step, the following operations take place:

1. First, each node v constructs and "sends" a message mv→u to each of his outgoing

neighbors u ∈ N−v .

2. Second, each node u "receives" and aggregates (e.g. average) its incoming messages

mv→u from each of his incoming neighbors v ∈ N+u .

3. Third, each node u updates its hidden state using his previous hidden state h(u), or

a self-message mu→u created from it, and the aggregated incoming messages from

his incoming neighbors.

Put together, as a general rule, for each time step t = 1, 2, ..., T and for each node u

we update its hidden state h(u) as [9]:

h(t)(u) = UPDATE
(
m(t−1)

u→u , AGGREGATE
(
{m(t−1)

v→u | v ∈ N+u }
))

(2.9)

where h(0)(u) is u’s initial node representation, UPDATE and AGGREGATE are arbitrary

differential functions and the messages mv→u are usually created from the current hidden

state of node v using a learnable feedforward layer, although more complex approaches

can also be used (e.g. use u’s hidden state as well, normalizations, etc.).

Based on the choice of UPDATE, AGGREGATE, the way we construct messages and the

way we choose a final node representation (e.g. take the last hidden state, concatenate

all T hidden states, aggregate them, use an RNN encoder like GRUs to learn what to

keep from each hidden state, etc.), different GNN models have been proposed e.g. Graph

Convolutional Networks (GCNs) [32], Gated Graph Neural Networks (GGNNs) [16], Graph

Attention Networks (GATs) [27], etc.

2.3.2.2 Neural Graph Collaborative Filtering

The authors of [29] argue that methods such as Neural Collaborative Filtering, in

which the collaborative signal is captured implicitly by using known user-item interactions

in the objective function, are not sufficient to yield satisfactory embeddings for users and

items. They claim that, because of this deficiency, these models have to rely on the

interaction modeling, e.g. the neural CF layers of NCF, to make up for suboptimal user

and item embeddings.

The authors propose that we ought to use the known user-item interactions in the

embedding process for users and items as well, in order to explicitly capture the existing

collaborative signals. To that end, they urge us to consider the bipartite graph of user-

item interactions as shown in Figure 2.8. They suggest that, by using this graph as

input to a GNN, we can acquire better user and item embeddings, which can then better

contribute to the task of the overall network.

28

2.3.2 Neural Graph Collaborative Filtering

Figure 2.8. An example of a user-item interaction bipartite graph and the message propa-
gation on it for node u1 for T = 3.

The authors essentially suggest the same architecture as NCF, but with a GNN plugged

in-between the embedding layers and the neural CF layers, that serves as an encoder

which improves the user and item embeddings via message propagation on the user-item

bipartite graph. In fact, they proceed to completely omit the neural CF layers and revert

back to the simple dot product of MF methods for interaction modeling, as they argue

that we can now learn good enough user and item embeddings to not need these extra

layers. The architecture they used, which they call Neural Graph Collaborative Filtering

(NGCF), is shown in Figure 2.9.

Figure 2.9. The Neural Graph Collaborative Filtering framework (here T = 3).

29

Chapter 2. Background and related work

A caveat to keep in mind, which makes this method more costly to train than NCF,

is that, in order to forward one user-item pair through the network, we have to run the

GNN on the entire bipartite graph
5
, since we need their neighbors and their neighbors’

neighbors, etc. for message propagation. Consequently, if we are training the model with

mini-batch gradient descent, we have to forward the entire graph into the GNN once per

batch, unlike NCF where each batch’s forward pass was independent of items and users

outside of it.

We can summarize NGCF as follows.

Embedding layers

We first use the same embedding layers as in Equations 2.4 of NCF to acquire some

initial embeddings for user and item input vectors. These layers can be trained end-to-end

along with the rest of the network.

GNN layers

We then stack T (e.g. 2-5) GNN layers on top of these initial embeddings, that give

us T new embeddings for both users and items by leveraging the structure of the user-

item bipartite graph, as explained in Subsection 2.3.2.1. The authors made the following

choices regarding the GNN implementation.

We construct a message m u→u from node u to himself at time step t as:

m(t)
u→u = W (t)

1
e⃗u

(t−1)
(2.10)

and we construct a message m i→u from node i to a different node u at time step t as:

m(t)
i→u =

1
√
|Ni | |Nu |

(
W (t)

1
e⃗i

(t−1) +W (t)
2

(
e⃗i

(t−1) ⊙ e⃗u
(t−1)
))

(2.11)

where e⃗i
(t), e⃗u

(t)
are the hidden states (i.e. embeddings) of nodes i and u respectively at

time step t, Ni and Nu are their first-hop neighbors, W (t)
1

, W (t)
2
∈ Rd(t)×d(t−1)

are learnable

weight matrices for the t-th GNN layer, d(t−1)
and d(t)

are the embedding sizes associated

with those layers and the ⊙ operator signifies element-wise vector multiplication.

Notice that, unlike standard GCNs, the authors chose to also encode the user-item

interaction between e⃗i and e⃗u into the messages being passed between user and item

nodes via the term e⃗i ⊙ e⃗u . They claim that this has an important impact in the model’s

performance, as it makes the messages being passed depend on the affinity between the

interacting user-item pairs.

To aggregate all the messages in a node u, including the one he sends to himself, we

simply sum them (the messages are already normalized to account for node degrees) and,

to get the new hidden state for u, we pass them through LeakyReLU :

e⃗u
(t) = LeakyReLU

m(t)
u→u +

∑
i ∈Nu

m(t)
i→u

 (2.12)

5
Or a subgraph containing all their T -hop neighbors

30

2.3.2 Neural Graph Collaborative Filtering

By using LeakyReLU as the activation function we allow messages to encode both positive

and small negative signals whilst still introducing non-linearity, which is what makes deep

learning powerful.

The authors also express the whole propagation rule in Matrix Form, so that we can

forward the model efficiently, as:

E(t) = LeakyReLU
(
(L + I) E(t−1) W (t)

1
+ L E(t−1) ⊙ E(t−1) W (t)

2

)
(2.13)

where E(t) ∈ R(N+M)×d(t)
are the embeddings for the N users and M items at time step t (with

E(0)
being their initial ones after the embedding feedforward layers), W (t)

1
, W (t)

2
∈ Rd(t−1)×d(t)

are the transposed weight matrices of Equations 2.10 and 2.11, I is the (N+M) × (N+M)
identity matrix and L is the Laplacian matrix of the same dimensions for the user-item

graph and is constructed as:

L = D−
1

2 AD−
1

2 and A =

 0 U

UT
0

 (2.14)

where A is the (N+M)× (N+M) adjacency matrix, U ∈ RN×M
is the utility matrix, 0 signifies

the all-zero matrix and D is the diagonal degree matrix (i.e. Dii = |Ni |). The result is that

L is a matrix with the same nonzero elements as the adjacency matrix A but with each

nonzero (off-diagonal) entry normalized as Lui = 1/
√
|Nu | |Ni | as in Equation 2.11. This

normalization "trick" was suggested by Kipf et al. [12].

Prediction layers

After applying the GNN propagation rules for T time steps, we acquire embeddings

E(t)
for t = 1, 2, ..., T for all users and items in the graph. From these embeddings, we

would only keep the ones concerning user-item pairs we want to make a prediction for

(e.g. the ones in the batch).

However, as briefly mentioned in Subsection 2.3.2.1, there are many possible choices

on how to pick a final embedding for each node from the T embeddings we have acquired

for them e.g. keep only the last hidden state, aggregate all T hidden states, use an LSTM

on the sequence they create, etc. The authors opt for the simple approach of simply

concatenating all the T node embeddings to form a final one:

e⃗u = concat
(
[e⃗u

(t) | t = 1, 2, ..., T]
)

(2.15)

They argue that this is effective because it uses all the representations, which reflect

different orders of connectivity in the graph, in a very simple way.

After having formed a final embedding for a user and an item, the authors make a

prediction for the user-item pair using their dot product, as in traditional MF methods:

ŷui = f̂ (u, i) = e⃗u · e⃗i (2.16)

31

Chapter 2. Background and related work

Of course, we are free to add a sigmoid activation if, for example, we are training with a

BCE pointwise loss for binary classification. We are also free to apply the same methods

that NCF does for interaction modeling, i.e. concatenate the two embeddings and pass

them through a series of neural CF layers before making a prediction as in Equation 2.5.

The same loss approaches as presented in Subsection 2.3.1.2 apply here as well,

as this is essentially the same approach with NCF but with an extra GNN layer at the

embedding process. The authors, for example, train their model using the BPR loss for

ranking.

Message and node dropout

In order to make the model more robust against the existence or absence of single

user-item interactions (i.e. edges) or certain nodes in the graph, the authors suggest the

use of message dropout or node dropout respectively [4]. This is paramount if we want

our model to generalize well to new graphs (or modified versions of the original one), as

our model is very likely to overfit the input graph’s structure without it.

Message dropout involves randomly blocking a percentage p (aka dropout rate) of edges

in the graph so that messages are not passed through them during message propagation.

To do this, we can randomly zero out p percent of the non-zero entries of the Laplacian

matrix L. Node dropout consists of randomly blocking all messages of a percentage p

of nodes during each propagation step. To do this, we can temporarily zero-out all the

outgoing edges in the Laplacian matrix L for a random percentage p of nodes during each

time step t. The authors of NGCF experimented with both methods and concluded that

node dropout was consistently superior in their tests.

2.3.2.3 Light Graph Convolution Networks

Following up on the work of NGCF [29], the authors of [10] introduce a similar but

much simpler GNN architecture that they name LightGCN. After performing an ablation

study on NGCF’s components, they empirically reached the conclusion that NGCF is too

complex for the task of Collaborative Filtering
6
, as many of its components (e.g. feature

transformations, non-linear activation, etc.), that theoretically make it more expressive

and have proven effective in other GNN applications, ended up not helping the model

generalize better in their experiments. In fact, they found that removing them even

improved the performance of the resulting model by as much as 16% on average under

the same experimental setting [10].

In their new proposed model, LightGCN, they get rid of both learnable feature trans-

formation layers W1 and W2 in Equations 2.10 and 2.11, completely remove self messages

and instead define a message m i→u from node i to a different node u at time step t to be

just the normalized embedding of node i as:

m(t)
i→u =

1
√
|Ni | |Nu |

e⃗i
(t−1)

(2.17)

6
They examined the task of pure Collaborative Filtering on implicit interactions.

32

2.3.2 Neural Graph Collaborative Filtering

They aggregate these messages in the receiver node u by simply summing them and they

update the next hidden state of u with no self messages and without an activation function

as:

e⃗u
(t) =

∑
i∈Nu

m(t)
i→u =

∑
i∈Nu

1
√
|Ni | |Nu |

e⃗i
(t−1)

(2.18)

This means that the only learnable parameters of the process are the initial embedding

layers P and Q in Equations 2.4. Only they are responsible for learning suitable user and

item embeddings that are then refined using the graph’s structure.

In order to get a final embedding for node u after T GNN layers, instead of concatenat-

ing all the T hidden states as in NGCF, they compute a weighted average of each hidden

state and the original embeddings as:

e⃗u =

T∑
k=0

ak e⃗u
(k)

(2.19)

where e⃗u
(0)

is the initial user or item embedding produced from the embedding layers in

Equations 2.4 and the weights ak sum to 1 and determine how much importance to give

each GNN layer in the aggregation. It is because of the inclusion of the initial user and

item embeddings e⃗u
(0)

that the authors claim that self messages are not necessary in the

updated hidden state. The weights ak could be learned (e.g. via another differentiable

component of the network), but the authors claim that setting each layer to be equally

important, as in ak =
1

T+1
(i.e. using the standard arithmetic mean), generally works well

and adds to the simplicity of their model.

After acquiring the final node embeddings, they also use the dot product to make a

prediction for a user-item pair, as in Equation 2.16. As for the loss function, they also

went for the BPR loss with uniform negative sampling, even though they point out that

more advanced negative sampling methods exist that promise to speed up convergence.

Last but not least, they mention that they did not use either message nor node dropout,

as they deemed it unnecessary due to their model’s simplicity compared to NGCF.

All in all, LightGCN is a much cheaper and lighter model compared to NGCF that,

in these authors’ experiments, even outperformed NGCF for pure Collaborative Filtering

on implicit user-item interactions. The authors attribute its success to its simplicity.

They argue that, when using one-hot vectors as input for items and users (as is the case

with pure Collaborative Filtering tasks), learnable feature transformation layers are not

as helpful as when they are used on rich node feature vectors (e.g. on other GNN applica-

tions). As a result, including such layers only hinders the learning process. Instead, they

only keep the most essential graph operation, message aggregation, and they show that

this is enough to achieve better performance, when we attempt to capture a – potentially

limited – collaborative signal in the user-item bipartite graph.

33

Chapter 3

Methodology employed

In the context of this dissertation, we explore the application of the deep learning

methods discussed in the previous chapter and consider possible extensions and mod-

ifications to them. One such extension we seek to employ is the use of content-based

methods in order to create meaningful item and user profiles, instead of relying on plain

one-hot vectors. This essentially converts these otherwise purely Collaborative Filtering

methods to hybrid ones, which come with some of the added benefits that content-based

methods are known for, such as avoiding the cold-start problem for new items and new

users. We experiment with three major neural network architectures, all based on the

original Neural Collaborative Filtering framework. The first one is the original NCF, the

second adds an item-item attention mechanism to the construction of user profiles, while

the third introduces Graph Neural Networks in the user and item embedding process.

Last but not least, we investigate two of the most popular training formulations for these

kinds of models: training them for the prediction problem using a pointwise loss versus

training for the ranking problem directly using a pairwise loss.

3.1 Content-based profiles

3.1.1 Item Profiles

There is a plethora of ways to create item profiles depending on the type of features we

have access to. Perhaps the most common features we could have access to are simple

numerical or categorical features. As mentioned in [14], there is a straightforward way to

covert and aggregate these kinds of features into a purely numerical feature vector that

is suitable for input to ML models like neural networks:

1. For numerical features (e.g. the duration of a movie), we can just take their value

and place it in one dimension of the item profile vector. It is also very common to

normalize all the numerical features (e.g. to [0, 1] or [−1, 1]) so that they are in the

same scale.

2. For categorical features (e.g. the genre(s) of a movie), we one-hot (if the values are

mutually exclusive) or multi-hot (if they are not mutually exclusive) encode them.

That is, we convert them to a zero vector, where only the values that exist have

a value of one. Thus, just one categorical feature will end up taking up multiple

34

3.1.2 User Profiles

dimensions (as many as all its possible values) in the item profile vector, many of

which might be zero, thereby making the vector sparse.

A useful property of such built item profiles is that cosine similarity can be used as

a meaningful measure of similarity between items. In fact, this is what content-based

methods as described in Subsection 2.2.2 rely on to make top-k recommendations.

If we were to apply a traditional content-based method, we might also want to multiply

all entries associated with a feature by a weight (as a hyperparameter)[14], with which

we could tune how much importance to assign to each feature. However, as we intend to

use these profiles as input to a neural network, we can just let the neural network decide

itself which feature to give more importance to, by ending up with larger weights for it.

It is worth mentioning, that we could also have access to content in the form of text

or image. For text content, we could choose between sparse bag-of-word representations

like Tf-Idf
1

and (pre-trained) NLP models (like BERT
2
) to extract meaningful embeddings

from it. For image content, we could use (pre-trained) convolutional neural networks to

extract embeddings from them. We could then concatenate all these embeddings to a

single vector as the item profile, or have several item profiles for each item.

3.1.2 User Profiles

As mentioned in Subsection 2.2.2, in order to create a user profile for a user u that

has already interacted with certain items i1, i2, ..., i |N(u)| ∈ N(u), we typically aggregate the

item profiles of those items in a suitable way so that they reflect the user’s preferences

in item attributes. The idea is to learn to make similar recommendations to users with

similar preferences in item attributes by making those users have similar user profiles.

Once again, it should be noted that there is no one-beats-all approach to this and

one could devise multiple approaches in an attempt to better capture user preferences,

depending on the interaction types that are available and/or any auxiliary information

about the user.

A distinction can be made between using fixed versus dynamic user profiles. In the

first case, fixed user profiles are built from fixed item profiles, based on the user’s known

interactions. Note that this needs only happen once, before any training takes place. In

the second case, we incorporate user profile construction into the forward pass of the

network. While this is more expensive, there are certain advantages to it, as we shall see.

Fixed user profile construction

If we are dealing with unary interactions, then perhaps the most natural choice for

building a user profile would be to simply average all the interacted item profiles (i.e.

those with a utility matrix value of 1) as:

1https://en.wikipedia.org/wiki/Tf-idf
2https://en.wikipedia.org/wiki/BERT_(language_model)

35

https://en.wikipedia.org/wiki/Tf-idf
https://en.wikipedia.org/wiki/BERT_(language_model)

Chapter 3. Methodology employed

v⃗u =
1

|N(u)|

∑
i ∈N(u)

v⃗i (3.1)

where v⃗u is the user profile and v⃗i are the item profiles. In regard to this aggregation, we

note that:

1. Averaging item features like this can work well for the numerical features of said

items if they follow a suitable (in that the mean of the distribution can be estimated

by taking the arithmetic mean) type of distribution, e.g. a Gaussian one. But it

could also not work well if say a user is split between two extremes e.g. liking only

short movies or extremely long ones, in which case, by using the average movie

length in the user profile, we would falsely infer that he likes medium-length ones.

Our hope using this method is that the former is more common than the latter.

2. As far as categorical features go, taking an average simply gives us the percentage

of interacted items with a certain categorical value. For instance, if 50% of the

movies a user has watched were comedies whereas only 10% were dramas, this

would mean that the user, on average, prefers comedies and this will be reflected in

his user profile.

If we are dealing with binary or (mostly) explicit interactions such as arbitrary ratings

(e.g. 1-5) then, while we could reduce this to the unary case
3
, we can do something

better. We can leverage the fact that we now have a positive and a negative preference

score by taking a weighted average of the item profiles, where highly rated item profiles

get a positive weight and lowly rated item profiles get a negative weight. We can do this

via the following weighted aggregation:

v⃗u =
1

|N(u)|

∑
i ∈N(u)

(rui − ru) v⃗i (3.2)

where rui is the rating of user u to item i and ru is the user’s neutral rating to items. For

this neutral rating ru we could use:

1. The arithmetic mean of all the possible ratings, e.g. if we have ratings from 0 to

5 we can use ru = 2.5. This reasonably assumes that a user likes anything rated

above this number and dislikes everything below it.

2. The mean rating that the user rates items with as in ru =
1

|N(u)|
∑

i ∈N(u) rui . By using

this, we account for different users being more or less strict with their ratings, but

we assume that a user has rated both items that he likes and dislikes about equally,

which may not always be true.

3. We can combine both previous options by taking their mean in order to be some-

where in the middle. This is what we found to work the best empirically.

3
By applying a binary threshold and looking only at positive interactions.

36

3.1.2 User Profiles

The idea is that now we can have similar user profiles for users that, not only like the

same item attributes, but that also dislike the same item attributes. The latter attributes

will usually take negative values in the user profiles. For example, if a user dislikes

thrillers, then we expect him to have rated them less than his neutral rating, resulting in

a negative thriller value in his user profile. On the other hand, if he loves dramas, then

we similarly expect a positive drama value. Furthermore, we can have more accurate user

profiles by accounting for the degree of liking and disliking an item, which is available to

us from the known explicit interactions.

While this aggregation makes sense for categorical features that are one-hot or multi-

hot encoded as well as for dense embeddings, it is perhaps not as sensible when we blindly

apply it to numerical features such as the duration of a movie. To see that, imagine that

user u1 has highly rated long movies, while user u2 has both highly rated long movies

and lowly rated short movies. We would expect user u2 to have a higher user profile

value for the movie duration than user u1 (because of the opposite nature of short vs

long movies), however the opposite would happen if we were to use Equation 3.2, because

of the summation of extra negative terms. To capture this opposite nature, we should

normalize positive numerical features like movie duration to [−1, 1] instead of [0, 1], as

this fixes this issue.

Dynamic user profile construction

Having a fixed user profile as explained above for a user with certain item interactions

has its advantages, mainly the fact that it’s an efficient calculation that can be done

independently and prior to training our neural network. In that calculation, however,

every interacted item is given the same weight of 1/|N(u)| without taking into account the

candidate item for which we are trying to make a prediction (recall that all our networks

make predictions for user-item pairs).

The authors of [28], who use a similar architecture to that of NCF, make use of an

item-item attention mechanism in which, instead of assigning the fixed weight of 1 / |N(u)|
in each interacted item, we learn4

the weight to use via a secondary neural network which

they dub AttentionNet. This network takes as input the concatenated item profiles or the

item embeddings of the candidate item and each interacted item (one-by-one) and outputs

an attention score. After outputting all the attention scores, we normalize them by passing

them through a softmax activation layer so that they sum to 1. Now we are able to use

these weights instead of the fixed 1/|N(u)| weights in Equations 3.1 and 3.2 as:

v⃗u =
∑

i ∈N(u)

aci v⃗i (3.3)

v⃗u =
∑

i ∈N(u)

aci (rui − ru) v⃗i (3.4)

where c is the candidate item, aci is the normalized attention weight in [0, 1] for the

interacted item i based on the candidate item c and
∑

i ∈N(u) aci = 1.

4
In an end-to-end fashion, during the training of the whole network.

37

Chapter 3. Methodology employed

It is worth noting that the authors of [28] construct the user profile from item embed-

dings instead of item profiles, but they are forced to do so as they are dealing with text

content. We are free to use the item profile vectors directly or the item embeddings from

the item embedding layer of our neural network.

The idea behind this item-item attention mechanism is for our network to learn to

which past interactions to pay more attention when making a prediction for a new inter-

action. It should potentially learn different attention weights for different candidate items

and, as such, we would be using a dynamically different user profile for the same user

depending on the candidate item for which we want to make a prediction.

This item-item attention mechanism should not only potentially make our model more

expressive but also add some much desired explainability, where we can reason as to why

certain items were recommended by visualizing the attention weights of previously inter-

acted items. At the same time, however, dynamically aggregating item profiles during the

forward pass is significantly more computationally expensive than using a precalculated

user profile.

3.2 Examined models

3.2.1 Basic NCF

The first and most basic category of models we sought to try, which we shall hereby

refer to as Basic NCF, was that of the simple Neural Collaborative Filtering, presented in

Subsection 2.3.1.2, using fixed input vectors for users and items, as shown in Figure 3.1.

In Basic NCF, we simply forward the user and item vector inputs into their respective

embedding layers (to which we have added bias terms but no activation function
5
) to get

the embeddings that will be forwarded to the MLP network, which ultimately makes a

prediction.

Figure 3.1. The Basic NCF architecture.

5
Adding an activation function like ReLU hurt the model’s performance in our experiments.

38

3.2.2 Attention NCF

There are three kinds of inputs we experimented with:

1. Using one-hot vectors for items and users.

2. Using fixed content-based item profiles for items, but one-hot vectors for users.

3. Using fixed content-based item and user profiles.

The first amounts to a pure Collaborative Filtering approach, the second tests to see if

item profiles alone help our task and the third tests if the constructed user profiles along

with the item profiles help our task.

In this case, since the user profiles are fixed, they are constructed once, in the begin-

ning. This makes this model faster to train, since we do not need to construct any user

profiles during training. However, we would still need to construct the user profile for a

new user during inference.

3.2.2 Attention NCF

The second category of models we examined, which we shall refer to as Attention NCF,

is an extension of the Basic NCF architecture that constructs user profiles dynamically

during the forward pass with an item-item attention mechanism as in Equation 3.4. The

idea of Attention NCF is to learn to which rated items to give more attention, depending

on the candidate item we are trying to predict the preference score of.

Figure 3.2. The Attention NCF architecture.

Input

This network expects a different input from the data loader compared to the much

simpler Basic NCF, as shown in Figure 3.2. Let B be the batch size, F the dimension of

the item profiles, I the (unique) number of (sorted) rated items by users in the current

batch and IE and UE the dimension of item and user embeddings. We expect:

39

Chapter 3. Methodology employed

1. A B × F matrix C with the item profiles of all candidate items (i.e. the items we are

predicting a preference score for) in the batch.

2. An I × F matrix R with the item profiles of all rated items in the batch (i.e. items

with known ratings from users in the batch).

3. A B × I matrix U that contains the terms rui − ru of Equation 3.4 for each user u in

the batch and for each rated item i (unrated items have a value of zero).

Calculating the item-item attention weights

There are a lot of ways we could calculate the attention weights for item pairs in the

dynamic user profiles of Equation 3.4. As we already mentioned in Subsection 3.1.2, the

authors of [28] do this based on item-item pairs via a secondary neural network that they

call AttentionNet. The AttentionNet takes as input pairs of item embeddings and outputs

a score. The bigger the score (compared to others), the bigger the attention weight will be

(after the softmax normalization) for this specific pair of items.

We implemented this idea as depicted in Figure 3.2. First, we acquire the item em-

beddings for the item profiles in matrices C and R by passing them through the item

embedding layer. Then, we interleave the resulting matrices’ rows so that each row from

the first is paired with each row from the second. One way for us to get an attention score

for each item-item pair is to pass the two (B ∗ I) × IE matrices through the AttentionNet

and then reshape the resulting vector into a B × I matrix: B candidate items, I rated

items. However, the user of each sample in the current batch will probably not have rated

every item in R (different users have rated different items) and, therefore, this approach

would unnecessarily calculate many attention scores for invalid item-item pairs, which

should be masked out before applying softmax afterwards
6
. Instead, in Figure 3.2, we

only calculate the attention scores for valid item-item pairs and then correctly place them

in a B × I matrix, where every other cell is −∞ so that their value after applying softmax

will be zero. Finally, we apply softmax on the I axis of that matrix (i.e. the rows sum to

1) in order to acquire the final attention weights.

While this works reasonably well, there also exist other differentiable ways to learn the

item-item attention weights of Equation 3.4. One other way is to use the cosine similarity

of the item embeddings (or some other differentiable vector similarity measure e.g. dot

product), instead of the output of a neural network like AttentionNet, as the attention

score that we then normalize via softmax. By doing this, we essentially try to force the

network to learn more meaningful item embeddings, whose similarity plays a direct role

on how we dynamically create user profiles.

Last but not least, for both methods discussed, we could fall back on using the item

profiles directly instead of item embeddings as inputs. For the first, this would allow

AttentionNet to learn completely different things from the item profiles, but it would also

make the whole operation much more expensive, since the item profiles will typically

be much larger than their embeddings. For the second, it would mean that attention

6
We had initially followed this approach and found it much slower than the latter.

40

3.2.2 Attention NCF

can not be learned, but is instead fixed based on item profile similarity. While this still

makes sense (because item profile similarity makes sense for meaningful item profiles), it

is probably too restrictive and also much more expensive.

Constructing user profiles

Having calculated the attention weights in a B×I matrix A, we can implement Equation

3.4 with two steps. First, we perform an element-wise multiplication of matrices A and

U in order to add the attention weights aci to the rui − ru terms. Second, we do a matrix

multiplication between that B × I result and the rated item profiles I × F matrix R. This

results in a B × F matrix with the user profiles of the B users in the batch. After having

dynamically constructed the user profiles for the users in the batch, we can proceed to

pass them through the MLP network as in regular NCF.

Again, we could use the I × IE item embeddings instead of the item profiles in R and

doing so gives very similar results, but we preferred using the fixed item profiles directly

in this case, as it more closely resembles Basic NCF’s user profiles.

Important caveat about the item profiles used in the user profiles during training

In order to maximize the training data (i.e. user-item interactions) we have available

for training, we ended up using the same user ratings to items for both constructing the

user profile and as training objectives. That has the unwanted side effect of using the very

thing we are trying to predict as part of the input, even if it is somewhat encapsulated in

the user profile.

When the weight of a rated item is fixed at 1/|N(u)| as in Equation 3.2, which is used

for Basic NCF, this probably does not significantly hurt the model’s generalization, as its

role in the final user profile is limited (i.e. it is averaged out). If we want to use fixed user

profiles, then it is also kind of unavoidable, unless we use completely different interactions

for input and as objectives, which would adversely lead to fewer data for training.

When we attempt to learn the weight of rated items (as we do in Attention NCF),

however, the fact that the candidate item always exists in the rated items as well can

quickly lead to overfitting, as the network learns to always give all its attention to that item

alone, in order to drastically minimize its training loss. Unfortunately, the network will

never have access to the rating of a new item when it will be called to predict its preference

score during inference, so this plan cannot generalize at all to unknown interactions,

which is what we are ultimately interested in.

Therefore, to avoid this overfitting and only during the training phase, we explicitly set

the attention weight of zero to item-item pairs that concern the same item
7

during the

forward pass, thereby ignoring the rating to the candidate item. This solves the overfitting

problem and ensures that we never use as input a user-item interaction that we are trying

to predict during training.

7
It is guaranteed that exactly one will exist per user in the batch.

41

Chapter 3. Methodology employed

Message dropout

We can actually take the previous idea one step further and randomly ignore p %
(e.g. 10%, 20%, etc.) of the interactions of the users in each batch during the training

phase, similarly to how message dropout works in GNNs. That is, during each forward

pass of the training phase, we set an attention weight of zero to random rated items in

matrix R, so that they are ignored during dynamic user profile construction (which very

much resembles neighbor aggregation in GNNs). The idea is that, even if we were missing

a small p % of the interactions of a user, the same recommendations should be made

to him since he is still the same user. The noise introduced in this way should help

regularize the model and make it more robust, especially if we want to use it on new

users with unseen user profiles during inference.

3.2.3 Graph NCF

The third category of models that we examined was those based on Graph Neural

Networks (GNNs). These models extend the architecture of Basic NCF by further tuning

the initial user and item embeddings via a GNN as an encoder over the user-item bipartite

graph. That is, they start by separately embedding the same fixed item and user profiles

that Basic NCF does, then they enrich them by explicitly capturing the collaborative

signal in the graph via multiple graph convolution layers, before finally inputting them

into the MLP network to output the model’s prediction. We also tried using a simple dot

product instead of the MLP, as [29] and [10] do, but it led to worse generalization in our

experiments. These operations are presented in Figure 3.3.

One caveat is that the graph convolutions have to be applied on the entire graph, so

we need to first embed all user and items in the graph and then select only those in the

current batch. Alternatively, if we use T graph convolution layers, then we theoretically

need only keep the T -hop neighbors of the users and items in the current batch, since

messages from more distance neighbors will never reach them. This may be something to

consider if the graph is too large and if these T -hop neighbors consistently end up being

significantly fewer than the full graph’s nodes.

Figure 3.3. The Graph NCF architecture.

42

3.2.3 Graph NCF

The user-item bipartite graph

The user-item bipartite graph is a graph consisting of user and item nodes where

there exists a bidirectional edge (i.e. two directed edges) between a user node and an item

node if and only if there is a known interaction between them. If we were dealing with

unary or binary interactions, then this would suffice. However, assuming we have access

to explicit user-item interactions such as ratings, we need to somehow take advantage of

the rating of each interaction. The most straightforward way to do this is to assign each

edge a weight based on its respective rating, and then appropriately leverage this weight

when performing the graph convolutions.

Drawing inspiration from the way we aggregate item profiles in Equation 3.2, we

thought it would be best to use the same formula for the edge weights: rui − ru for user-

to-item edges and rui − ri for item-to-user edges. The idea is that edges will have a scaled

positive or negative weight depending on if and how much their respective interaction is

positive or negative.

An alternative choice would be to apply a binary threshold on each edge and only

keep the edges for which rui ≥ ru and rui ≥ ri for user-to-item and item-to-user edges

respectively. This essentially keeps only positive interaction edges, thereby reducing the

cost of GNNs and absolving us of the responsibility of incorporating the rating into graph

convolutions, which seem to have mostly been applied on unweighted graphs. However,

it also misses out on potentially useful information in how positive an interaction is and

the very existence of negative interactions. As a result, we mainly experimented with the

former option.

Graph convolutions

When it comes to the graph convolutions to employ, there are many to consider. In

Subsection 2.3.2, we covered two GNN architectures specialized for recommendation,

NGCF [29] and LightGCN [10], both of which perform two very different graph convolution

operations. NGCF is theoretically more expressive but very complex and computationally

expensive, whilst LightGCN is simpler, much cheaper computationally and was even

proven to perform better than NGCF in its authors’ experiments.

It is important to note that both of these models were originally used for pure Col-

laborative Filtering on implicit interactions, while we seek to employ them for explicit

interactions (i.e. ratings) on a weighted graph under a hybrid recommendation setting,

where we do have access to node feature vectors (i.e. the fixed item and user profiles). As

a result, picking the right convolution for our use case comes down to trial and error, as

we seek to strike a balance between expressiveness (NGCF) and simplicity (LightGCN), as

well as find a way to effectively incorporate the edges’ weight into the graph convolutions.

After a lot of experimentation, we found that balance to be a modified LightGCN

convolution, wherein we use a single learnable weight matrix W , instead of the original

embeddings, during message construction. Despite the fact that the original LightGCN

seemed to perform just as well
8
, we believe that this learnable matrix is not too expensive

8
Higher train MSE but similar validation MSE.

43

Chapter 3. Methodology employed

and it adds a lot of potential expressiveness in return, since we do have access to node

features. Additional operations of NGCF like the element-wise multiplication or the second

weight matrix of Equation 2.11 did not result in better performance, only in slower training

times and sometimes worse performance, and, therefore, we omitted them.

Furthermore, in order to account for the heterogeneity
9

of the graph, we opted to

use two of these matrices: one Wu for user-to-item edges and one Wi for item-to-user

edges. Since the initial item and user vector distributions (i.e. the item profiles vs

the user profiles) are different, it makes sense to allow our model to learn potentially

different messages from each node type, instead of using one learnable layer for both.

Note that this is no more computationally expensive than before, as we just use a different

matrix depending on the type of edge and not both matrices at the same time as in

NGCF. Furthermore, this allows us to use different user and item embedding dimensions,

whereas they would have to be equal were we to use a single matrix for both node types.

Last but not least, in order to take into account the edge weights, we simply multiply

each message with the edge’s weight. Thus, if it’s an edge with a negative weight (i.e.

a negative interaction), the message will be the opposite of what it would be if it was a

positive interaction.

All in all, we construct user-to-item and item-to-user messages at time step t =

1, 2, ..., T as follows:

m(t)
u→i =

rui − ru
√
|Nu ||Ni |

W (t)
u e⃗u

(t−1)
(3.5)

m(t)
i→u =

rui − ri
√
|Nu ||Ni |

W (t)
i e⃗i

(t−1)
(3.6)

where W (t)
u and W (t)

i are the two learnable layers of the t-th GNN layer, rui−ru and rui−ri are

edge weights as described earlier and e⃗u
(t−1), e⃗i

(t−1)
are the user and item node embeddings

of the previous GNN layer (or the initial ones when t = 1). In fact, we empirically found

that using the same weight matrices Wu and Wi for all t = 1, 2, ..., T (i.e. the exact same

GNN convolution T times) is also viable in this use case, yielding equally good results.

For the neighbor aggregation step, we simply add all these (pre-normalized) messages

at each receiver node as:

e⃗u
(t) =

∑
i→u

m(t)
i→u (3.7)

e⃗i
(t) =

∑
u→i

m(t)
u→i (3.8)

Similar to LightGCN [10], we do not include self-messages in favor of simply adding the

initial user and item embeddings to the list of hidden states we aggregate to make up the

final node embeddings. Just as in [10], this should make self-messages redundant and

it did in fact empirically prove to be just as good if not better.

Finally, to get a final node embedding after all T GNN layers, we experimented with

both: concatenating all the hidden states as in NGCF and taking the average of all the

9
Item nodes are different from user nodes.

44

3.3 Prediction vs ranking problem

hidden state as in LightGCN. Compared to the former, the latter requires that all hidden

states (including the original user and item embeddings) are of equal dimensions, but it

is also cheaper and it worked equally well in our experiments.

Message and node dropout

In order to avoid overfitting the training graph, which seems to happen very easily

when using GNNs for this task (especially if we use a lot of trainable weights like in

NGCF), we experimented with the message node dropout techniques that the authors of

NGCF suggested. For the former, during the training phase and on each forward pass,

we randomly drop p% (e.g. 0.1, 0.2) of the undirected edges of the user-item bipartite

graph before performing the T graph convolutions, so that the GNN layers learn not to

rely on specific interactions. For the node dropout, we randomly drop all edges of p% of

the nodes in the graph that are not in the current batch of user-item pairs, so that the

GNN layers learn not to rely on specific nodes in the graph. Both techniques performed

comparably and they did slightly improve the model’s generalization ability, despite also

slowing down convergence.

Caveat for target user-item pairs during training

Just like in Attention NCF, we also found it important to remove from the graph the

edges concerning user-item interactions that we are trying to predict. That is, during

training, we manually remove all edges concerning user-item pairs in the current batch,

since the model will not have access to such edges when it gets called to predict new

unknown user-item interactions during inference.

3.3 Prediction vs ranking problem

All models presented are designed to predict a preference score for a user-item pair.

Hence, we can either train them to predict the preference scores we have access to (e.g.

item ratings), thereby solving the prediction version of the recommendation problem (i.e.

filling in the blanks of the utility matrix), or to predict an arbitrary preference score, with

the sole intention that the predicted scores of items rank them well in relation to the user’s

ideal ranking(s), thereby solving the ranking version of the recommendation problem.

3.3.1 Solving the prediction problem

When we presented Neural Collaborative Filtering in Subsection 2.3.1.2, we showed

how we can solve the prediction problem using pointwise losses like MSE (Equation 2.6)

and BCE (Equation 2.7). Assuming we have access to ratings in the range of 0-5, it is

more natural to opt for using the MSE loss, essentially training our models for a regression

task. That being said, we also experimented with using BCE loss for soft targets (aka BCE

loss with logits) by squashing 0-5 ratings to [0, 1], representing the probability of really

liking an item. Since the results between the two losses were very similar, we preferred

the MSE loss due to its better interpretation.

45

Chapter 3. Methodology employed

To solve the prediction problem, we simply treat each training interaction between a

user u and an item i with a rating r as a triplet (u, i, r), where r is the target label we are

trying to predict.

3.3.2 Solving the ranking problem

To solve the ranking problem, we employed the BPR loss (Equation 2.8) that was pre-

sented in Subsection 2.3.1.2. This pairwise loss is meant to be used on (user, item, item)
triplets (u, i, j) where item i should be ranked higher than item j for user u. Assuming

we have access to ratings r in the range of 0-5 for each user-item interaction, we can, for

each user u, form triplets (u, i, j) where rui > ruj.

The problem is that all these possible triplets are vastly more in number than the orig-

inal known interactions. Going through all of them in an epoch would take prohibitively

long. To combat this, we fix all the possible (u, i) pairs before training, thereby keeping

the amount of training samples seen in an epoch equivalent to that of pointwise learning,

and, during training, for each sample (u, i) we randomly sample the item j from all its

possible options. Statistically, a different item j will be sampled in each epoch for the

same (u, i) pair. Note that, out of the many possible options for j, only one will be consid-

ered per (u, i) pair in an epoch. As a counter measure, we opted to use bigger batch sizes

and/or smaller learning rate in this case so that we would end up completing more epochs

before eventually overfitting, thereby getting to see more triplets. All in all, sampling just

one item j proved to be enough to get decent results that were comparable to pointwise

learning, judging by the ranking quality of unseen interactions.

Of course, there are many ways to perform this negative sampling of j. Perhaps the

simplest thing we can do is to sample j uniformly among all its options. This may however

have the undesired effect of suffering from slow convergence as a result of vanishing

gradients as discussed in [22], since we may sample items that were already ranked

correctly. Given that incorrectly ranked pairs are the most informative, another strategy

that may make more sense is to give certain options for j higher probability of beings

sampled based on how hard we expect10
it to be for them to be ranked correctly. These

items are typically referred to as hard negatives. In our case, where we have access to

0-5 ratings, one could argue that the higher the rating of item j by user u then the harder

we can expect it to be for a model to correctly rank that item below item i. Therefore, we

could give higher probability to candidate j items the higher their rating by user u is, in

the hopes that this will help us sample more informative negatives.

The most intuitive and efficient way that we came up with to do that is to assign

probabilities to all possible negatives with the following formula:

pj =
rw
uj∑

k∈Negatives(u,i) rw
uk

for each j ∈ Negatives(u, i) (3.9)

10
We can’t know before we actually make the prediction and it’s very unlikely we will sample the same j

twice to even bother with something like boosting.

46

3.3.2 Solving the ranking problem

where Negatives(u, i) are all possible options for j and w ∈ [0,∞) is a hyperparameter that

controls how much more weight we should assign to higher rated negatives compared to

lower rated ones. For w = 0 we end up with uniform sampling, while increasing it boosts

higher rated items more. Regardless of the value of w, we always end up with
∑

j pj = 1.

We also tried using softmax, but that is a much more expensive operation for us to pay

every time we need to sample a single negative.

In our experiments, we found that we should not overdo it with w (e.g. using only

values in 0 − 3), as we don’t want to only sample the hardest of negatives, since we still

need the network to know how to rank items with low ratings as well. The method that

we ended up using is to gradually increase w, starting from 0 (uniform sampling), as we

complete more epochs and the model has learned more, essentially making the training

problem harder as we go.

47

Chapter 4

Experiments

4.1 Dataset

In order to train and evaluate the neural network models presented in the previous

chapter, we created a custom dataset of user-item interactions as well as item features

for each item.

4.1.1 Public datasets used

To create this custom dataset, we relied on the following two public datasets.

MovieLens 25M dataset

The MovieLens Dataset
1

is one of the most popular Collaborative Filtering datasets

out there, used as a benchmark for mainly pure Collaborative Filtering methods. In its

latest stable release (published in December 2019), it contains 25 million movie ratings

from 160000 users to 60000 movies.

In addition to user ratings of movies, this dataset also contains around 1100 tags,

which they call genome tags, describing the topics of the movie (e.g. addiction, World War

II, 18th century, etc.). For each movie and tag pair, there is a predicted relevance score

in [0, 1], which describes how relevant this tag is for the movie. In this work, these tags

were used as additional item features.

IMDb dataset

The IMDb dataset
2

is the official dataset provided by IMDb, which is updated regu-

larly. It contains metadata for movies such as their genres, directors, actors, writers,

etc. Luckily, the MovieLens dataset includes the IMDb ID for each movie, which makes

it possible to combine the two datasets. We use this metadata, along with the genome

tags from MovieLens, in order to build item profiles for the movies, as we described in

Subsection 3.1.1
3
.

1https://grouplens.org/datasets/movielens/
2https://www.imdb.com/interfaces/
3
Here all features happen to be categorical.

48

https://grouplens.org/datasets/movielens/
https://www.imdb.com/interfaces/

4.1.2 Creating a custom dataset

4.1.2 Creating a custom dataset

The deep learning models described in the previous chapter are increasingly expen-

sive, in both time and space. As a result, one cannot possibly use all the 25 million

ratings in the MovieLens dataset for benchmarking without having access to considerable

computing resources and/or significant amounts of time. Therefore, we selected only a

subset of the original movies and users and considered all the interactions available for

them.

To pick a subset of movies to focus on, we apply the following filters:

1. The movie must have an IMDb entry in order to get metadata for it.

2. The movie must be in a specific time frame. In this way, we focus on more recent

movies, e.g. from 2000 and later.

3. The movie must have a minimum number of ratings from the original 160000 users

and a minimum number of votes in the IMDb website. This way, we focus on movies

that are at least somewhat popular and are bound to have more user interactions

than unpopular ones
4
.

After adjusting these parameters to get an acceptable number of items, we pick a

subset of all the users. First, we filter out users who have less than 100 or more than 400

interactions. Then, if we are still left with more users than desired, we randomly sample

the exact number of users that we want to use.

By applying the above process we settled on a dataset of 910891 interactions (i.e.

ratings) between 1174 movies and 5000 randomly selected users. Some metadata for

those movies are shown in Figure 4.1. The rating distribution for items and the degree

distributions for both items and users compared to the original MovieLens data are shown

in Figure 4.2. Notice that both the item and user degree distributions roughly follow a

Power-Law distribution, as is usually the case in practice.

Figure 4.1. Movie year and genre distribution.

4
Recall that Collaborative Filtering methods are known to struggle when faced with too much sparsity.

49

Chapter 4. Experiments

(a) In the original movieLens dataset. (b) In our custom dataset.

Figure 4.2. The item rating distribution and the item and user degree distributions.

4.1.3 Train-val-test split

For point-wise learning, we train our model on user-item interaction pairs. The fact

that we have a user dimension and an item dimension, however, makes it unclear what

the best strategy for splitting the interaction data in train, validation and test sets may

be. A variety of possible choices are presented in [19]. We note the following:

1. The simplest and most straightforward strategy is to randomly and at uniform split

all the interactions into train, validation and test sets (without considering which

item or user any of them correspond to). Due to the uniformity in sampling, users

and items with more interactions are expected to be just as more common in the

validation and test sets as they are in the train set.

2. Another strategy that is very common [19] is to randomly leave out one or another

fixed number of item interactions per user for the test and validation sets and use the

50

4.1.3 Train-val-test split

rest for training. This strategy has the property that each user is equally represented

in the validation and test sets, despite him having more or less interactions than

other users overall. We could also do this from the item’s perspective, although

the user’s one appears to be much more common. We could also account for

the difference in number of user ratings by leaving out a certain percentage (e.g.

5%, 10%) of all their interactions instead of a fixed number, thereby giving higher

importance to users we know more about.

3. Some apply the above strategy, but instead of leaving out random entries, they leave

out the latest-in-time ratings (assuming we have a timestamp for each rating). This

strategy is called temporal splitting and it appears to be more appropriate in cases

where we consider the temporal aspect of user-item interactions (e.g. models who

treat them as a temporal sequence).

4. Another sensible strategy is to split the interactions based on the users, meaning

that a user along with all of his interactions are placed on the same set. This aims

to better measure the model’s ability to generalize to completely new users. This

strategy, however, is only applicable to models that are in fact able to generalize to

new users (e.g. we cannot do this when using one-hot vectors for users).

(a) Using the first flat method of splitting interac-
tions.

(b) Using the second popular method of splitting
interactions based on users.

Figure 4.3. Histograms of how the user-item interactions are distributed between train,
validation and test sets.

51

Chapter 4. Experiments

From the strategies mentioned above, we mostly experimented with the first and the

second approach. Figure 4.3 shows how these methods distribute user-item interactions

among the train, validation and test sets as grouped by users and by items. We can see

that, by using the first method, each item and each user has roughly (within reasonable

variance) 80% of its interactions as training interactions, 10% as validation and 10%

as test interactions, which is exactly what we would want for Collaborative Filtering

purposes. By using the second method, each user’s interactions are almost exactly split

at 80-10-10, but at the same time the item’s interactions are distributed more chaotically,

with some items having all their interactions in the train set, some having as much as

80% or 90% of their interactions at the validation set, etc. All in all, judging by Figure 4.3

and by running some experiments using both splitting methods
5
, we decided to opt for

the first splitting method on account of its simplicity and how much better it distributes

both the users’ and the items’ interactions.

A couple of caveats to note about the splitting of user-item interactions are:

• For the user profile construction we, of course, only use interactions that are in the

train set, as we have to consider the ones in the validation and test sets as unknown

interactions that we do not have access to for training. That being said, there is an

argument to be made about including the validation interactions in the user profile

construction when we are evaluating our trained models on the test set. The idea is

to see if the models would perform better by knowing more about the users, despite

not having been trained on those validation interactions, or if they would perform

worse
6
.

• The more interactions we keep in the train set, the better our models appear to do

when we evaluate them on the validation and test sets. This is probably due to them

having been trained on more data (less sparsity in the utility matrix) and the fact

that user profiles are more accurate (by using more interactions). At the same time,

however, we want to use enough interactions for validation and testing so that our

evaluations on them are statistically significant. We found a good compromise to be

to keep 80% of all interactions of training, 10% for validation and 10% for testing.

After performing the split we are left with the statistics shown in Figure 4.4 for our

train, validation and test sets respectively. Notice how closely they resemble the statistics

of each other as well as the original dataset’s in Figure 4.2.

5
The models faired roughly the same compared to each other in both experiments except that by using

the second method the one-hot models performed much worse (which is reasonable considering there were

items at the test/val set which were not in the train set) and all the metrics were somewhat worse.

6
For example, because they have overfitted on the training user profiles

52

4.2 Evaluation metrics

(a) In the train set. (b) In the validation set. (c) In the test set.

Figure 4.4. The item rating distribution and the item and user degree distributions.

4.2 Evaluation metrics

4.2.1 Regression metrics

In order to evaluate the models trained for regression on the prediction version of the

recommendation problem we can use the MSE loss (Equation 2.6) or, its square root, the

RMSE on the corresponding dataset (e.g. the validation and test sets). These regression

metrics give us an idea of how close to the correct ratings our model’s predictions lie. In

fact, the RMSE is exactly the standard deviation of the prediction error. Furthermore, we

can plot a histogram of the predicted scores compared to their ground truth, in order to

help us visualize how well the model is doing.

4.2.2 Ranking metrics

When it comes to the models trained for the ranking version of the recommendation

problem using the BPR loss, we can not use the MSE or the RMSE, as we are not perform-

ing regression and the predicted scores are not predicted ratings. They are just arbitrary

numbers, which can only be judged in relation to each other. Therefore, we need to evalu-

ate them based on the ranking quality of items, that they produce for users after ordering

the items based on their predicted scores. To measure this ranking quality of items, we

need a way to measure how close each item ranking is to an ideal item ranking, i.e. the

ranking (or one of the rankings in case of ties) that we would get if we were to order items

based on their actual ratings.

53

Chapter 4. Experiments

A popular ranking measure for this task is the Normalized Discounted Cumulative

Gain (NDCG). This metric takes as input the actual ratings and the predicted rating for

each item that a user has rated and returns a ranking score. The higher this score, the

better the ranking is. To define NDCG, we first have to define its simpler predecessors.

For a single user, i.e. for a sequence of items ranked by their predicted relevance

scores in descending order, the Cumulative Gain (CG) at cutoff k is defined as:

CG@k =
k∑

i=1

relevancei (4.1)

where the cutoff k (e.g. usually 5, 10 or 20 items) defines how many of the top recom-

mendations we care about and relevancei is the ground truth for how relevant an item is.

In this case, we can just use its actual rating by the user in question as its relevance.

However, when using the Cumulative Gain, it does not matter how well ranked the

top k items are, it only matters that the most relevant items made it to the top k. In order

to also differentiate between different orderings of the top k recommended items we can

use the Discounted Cumulative Gain (DCG) at cutoff k which is defined as:

DCG@k =
k∑

i=1

relevancei

log2(i + 1)
(4.2)

It’s called discounted because we discount each relevance score by an increasingly higher

number, as given by the term log2(i + 1), thereby making earlier ranked relevance scores

more important than later ranked ones. That is, we achieve the best possible DCG by

ordering the predicted scores in decreasing order.

Even so, there is still a problem with DCG. As different users may have different

relevance scores or some may have less than k recommendations, the scale of their DCGs

may be different. To combat this, the Normalized Discounted Cumulative Gain (NDCG)

normalizes the DCG score of each user (i.e. of each ranked sequence) in [0, 1] as:

NDCG@k =
DCG@k

iDCG@k
(4.3)

where iDCG@k is the ideal DCG that we get by using the actual relevance scores as the

predicted ones. This normalization makes the NDCG of each user be at the same scale.

By taking the mean of the NDCG@k of all the users, we are left with a final NDCG metric

by which to judge our model in terms of ranking quality.

Note that, even though the NDCG is normalized in [0, 1], if all the relevance scores are

only positives (as is usually the case) then in all likelihood the NDCG will never actually

be zero or even be close to it, even for the worst possible ranking that we could produce

(e.g. increasing order of actual ratings). If we want its values to be better distributed in

[0, 1], where 1 represents the ideal ranking and 0 represents the worst possible ranking,

then we could use a min-max normalization scheme as:

adj-NDCG@k =
DCG@k −wDCG@k

iDCG@k −wDCG@k
(4.4)

54

4.3 Experiments

where wDCG@k is the worst DCG, that we get, for example, by using the opposite of the

actual relevance scores as the predicted ones. Both NDCG and adj-NDCG behave the

exact same way and they will help us pick the same best model. The only difference is

that, in our opinion, adj-NDCG has a more intuitive interpretation of its face value.

4.3 Experiments

Having split the data into train, validation and test sets, we proceeded to train and

evaluate the models we discussed in the previous chapter on the custom dataset we

described in Subsection 4.1. In this Subsection, first, we will focus on each model type

separately and show experiments with different options for each type’s hyperparameters.

Then, we will compare the best model of each type with each other and look at the full

picture, as well as answer interesting questions that arise from this work.

While the validation set is used for early stopping during training, the test set is used

to produce a final evaluation of the model. During this evaluation we can keep the original

user profiles for each user, which use only known user-item interactions from the train

set, or we can add to them the user-item interactions of the validation set
7
. Doing the

latter should theoretically produce more accurate user profiles and, thus, improve the

test metrics, despite the fact that the model has not been trained on those validation

interactions and more accurate user profiles
8
. To that end, we calculate the test metrics

using both methods and we distinguish the latter by dubbing these metrics as Test+, to

mark the addition of the validation interactions in the input.

4.3.1 Hyperparameter exploration

All the three architectures, Basic NCF, Attention NCF and Graph NCF, share some

common hyperparameters (e.g. those of the MLP that makes the final prediction), whilst

also having unique ones that are specific to their architecture. Before comparing each

model type with each other, it is important to consider different hyperparameter options

for each one individually.

Basic NCF

Basic NCF is the simplest architecture of the three and, as such, doesn’t have a lot

of significant hyperparameter options to consider. For Basic NCF, we explored different

sizes for the user and item embedding layers (we used the same size for both), the possible

inclusion of an activation function (e.g. ReLU) at those layers as well as different hidden

layers for the final MLP network (which do have a ReLU activation function). The final test

metrics for some configurations are shown in Table 4.1. For all these runs, after some

initial tuning, we used a learning rate of 0.0007, a batch size of 128, a dropout rate of 0.2

and a weight decay of 0.00001 (L2 regularization).

7
Note that for Graph NCF we also add these validation interactions as edges in the user-item bipartite

graph.

8
If not, then it is possible that we have overfitted to the user profiles of the train set.

55

Chapter 4. Experiments

Table 4.1. Test set evaluation for different Basic NCF hyperparameters.

Emb dim Emb activation MLP hidden layers Test MSE Test+ MSE Test NDCG@10 Test+ NDCG@10

128 ReLU 128 0.5694 0.5670 0.9308 0.9313

64 – 128 0.5678 0.5651 0.9313 0.9319

128 – 128 0.5681 0.5654 0.9318 0.9324

128 – 256 0.5657 0.5618 0.9320 0.9327

256 – 256 0.5666 0.5632 0.9311 0.9317

256 – 512 0.5700 0.5665 0.9308 0.9318

128 – 128, 64 0.5716 0.5698 0.9320 0.9324

128 – 256, 128 0.5708 0.5680 0.9318 0.9325

128 – 256, 128, 64 0.5779 0.5757 0.9312 0.9314

256 – 512, 256 0.5657 0.5614 0.9329 0.9335

256 – 512, 256, 128 0.5725 0.5702 0.9321 0.9329

As we can see, changing these layer sizes has little effect on the final test metrics, pos-

sibly thanks to the regularization methods employed (dropout, L2 normalization). That

being said, we picked the cheapest model with the best test MSE of 0.5657 as a represen-

tative model for later comparisons.

Attention NCF

When it comes to Attention NCF, other than the layer sizes that are in common with

Basic NCF, we can also experiment with message dropout, the layer sizes of the Atten-

tionNet network and with using cosine similarity instead of the AttentionNet altogether,

as we described in Subsection 3.2.2. For the AttentionNet, we mostly experimented with

a network with one hidden layer, whose size is a hyperparameter, or one with no hidden

layers. The test metrics for some of these configurations are shown in Table 4.2. For all

these runs, we used a learning rate of 0.0007− 0.001, a batch size of 512, a dropout rate

of 0.2, a weight decay of 0.00001 (L2 regularization) and an item and user embedding

dimension of 128.

Table 4.2. Test set evaluation for different Attention NCF hyperparameters.

Method AttentionNet dim MLP hidden layers Message dropout Test MSE Test+ MSE Test NDCG@10 Test+ NDCG@10

Cosine Similarity – 256, 128 0.0 0.5420 0.5394 0.9360 0.9364

AttentionNet – 256, 128 0.0 0.5666 0.5645 0.9329 0.9332

AttentionNet 128 256, 128 0.0 0.5244 0.5185 0.9387 0.9396

AttentionNet 256 256, 128 0.0 0.5255 0.5190 0.9388 0.9400

AttentionNet 128 256, 128 0.1 0.5277 0.5237 0.9388 0.9397

AttentionNet 128 256, 128 0.2 0.5311 0.5278 0.9376 0.9381

AttentionNet 128 256 0.0 0.5315 0.5258 0.9371 0.9384

From the experiments above, it is clear that Attention NCF performs better with the

AttentionNet method when the AttentionNet network has at least one hidden layer of

sufficient size, while it performs much worse when it has no hidden layer. Furthermore,

it is clear that the AttentionNet method is superior to the Cosine Similarity method,

possibly because the latter is naturally symmetric as an attention mechanism, while the

former is not, allowing for a lower bias model. Message dropout did not seem to help

much after all. Out of these runs, we chose the model with the lowest Test MSE of 0.5244

as the representative of this architecture.

56

4.3.1 Hyperparameter exploration

Graph NCF

Graph NCF is the most complicated architecture we tackled and, thus, there are a

lot of different options for many parts of it, e.g. different ways to model the user-item

bipartite graph, many different graph convolution operations, different ways to combine

the hidden states into one node embedding, etc. It took a lot of trial and error to settle on

the final architecture that we describe in Subsection 3.2.3. However, even this version

has some hyperparameters to test on our final dataset.

In Table 4.3 we explore the use of different sizes and number of GNN layers, different

message and/or node dropout rates and different ways to aggregate the T + 1 hidden

states (including the original user and item embeddings) into one final node embedding

and different MLP networks or the use of dot product instead of an MLP as in [29, 10].

For all these runs, we used a learning rate of 0.001, a batch size of 512, a dropout rate of

0.2 and a weight decay of 0.00001 (L2 regularization). The number of GNN layers shown

does not include the initial user and item embeddings layers, which have both the same

dimension as the GNN layers. Furthermore, all the GNN layers share the same weights,

as this was found to be empirically better.

Table 4.3. Test set evaluation for different Graph NCF hyperparameters.

GNN layers MLP hidden layers Message / Node dropout Final aggregation Test MSE Test+ MSE Test NDCG@10 Test+ NDCG@10

1 × 128 128 0.2 / 0.0 mean 0.5711 0.5683 0.9309 0.9316

2 × 128 128 0.1 / 0.0 mean 0.5684 0.5648 0.9312 0.9320

2 × 128 128 0.2 / 0.0 mean 0.5670 0.5646 0.9318 0.9320

2 × 128 256, 128 0.2 / 0.0 mean 0.5667 0.5632 0.9321 0.9324

3 × 128 128 0.2 / 0.0 mean 0.5675 0.5645 0.9312 0.9315

1 × 64 128 0.2 / 0.0 mean 0.5694 0.5659 0.9316 0.9327

2 × 64 128 0.2 / 0.0 mean 0.5732 0.5704 0.9305 0.9312

3 × 64 128 0.0 / 0.0 mean 0.5796 0.5770 0.9299 0.9304

3 × 64 128 0.2 / 0.0 mean 0.5742 0.5713 0.9304 0.9307

3 × 64 128 0.0 / 0.2 mean 0.5753 0.5727 0.9297 0.9303

3 × 64 128 0.1 / 0.1 mean 0.5746 0.5721 0.9305 0.9310

3 × 64 128, 64 0.2 / 0.0 mean 0.5711 0.5683 0.9319 0.9324

4 × 64 128 0.2 / 0.0 mean 0.5687 0.5664 0.9312 0.9318

2 × 64 128 0.1 / 0.0 concat 0.5750 0.5728 0.9302 0.9306

3 × 64 128 0.1 / 0.0 concat 0.5708 0.5685 0.9314 0.9318

3 × 64 dot product 0.0 / 0.0 mean 0.5867 0.5807 0.9299 0.9314

3 × 64 dot product 0.1 / 0.1 mean 0.5762 0.5717 0.9316 0.9324

As we can see, all these different configurations made little difference to the final test

metrics. The most notable difference is observed for the models where we use the dot

product instead of the MLP to make the final prediction, as these models achieve signifi-

cantly smaller train MSE (not shown in the table) but slightly higher test MSE. Message

and node dropout, even when used together, only slightly improve the generalization of

the model but, at the same time, increase the number of epochs needed to converge.

The number of GNN layers and the final node embedding aggregation method also do not

seem to make much of a difference. Last but not least, it is worth reiterating that, other

than the experiments shown in Table 4.3, we have also extensively tried a lot of different

GNN architectures before settling on this one and they all performed similarly or worse in

the test set. For the purposes of further comparisons, we again chose the model with the

smallest test MSE of 0.5667 as the representative model.

57

Chapter 4. Experiments

4.3.2 Using one-hot vectors vs using features

Given our work on using content-based user and item profiles, one important question

to ask ourselves is how much of a role do they play in the performance of our models. We

know that without them, it would be impossible to generalize to new items and/or new

users. But it would be interesting to know if they also result in better recommendations

compared to using plain one-hot vectors as in pure CF.

To put that to the test, we took our simplest model, Basic NCF, and trained it using

the best hyperparameters from Subsection 4.3.1 and three different input configurations.

Once using one-hot vectors for both users and items, once using features for items but

one-hot vectors for users, and once using both item and user profiles as inputs. The

learning curves for these experiments are shown in Figure 4.5 and their test metrics are

shown in Table 4.4.

Figure 4.5. Learning curves for Basic NCF using one-hot input vectors vs using feature
vectors.

Table 4.4. Test set evaluation for Basic NCF using one-hot input vectors vs feature vectors.

Model Test MSE Test+ MSE Test NDCG@10 / adjusted Test+ NDCG@10 / adjusted

Basic NCF one-hot 0.5749 – 0.9287 / 0.7712 –

Basic NCF with features but users one-hot 0.5739 – 0.9287 / 0.7706 –

Basic NCF with features 0.5657 0.5618 0.9320 / 0.7786 0.9327 / 0.7817

As we can see by the results, it appears that adding item features does somewhat

help our model to generalize better, as that respective model showcases slightly smaller

validation and test MSE as well as bigger validation and test NDCG@10. Whilst, at first

glance, adding user profiles does not appear to make much of a difference in terms of

actual performance, we need to keep in mind that the more accurate those user profiles

become, the better the performance we can expect, as is evident from the Test+ metrics

(note that, by definition, these metrics cannot be employed when we are using one-hot

vectors for users).

By also performing a similar one-hot vs features experiment for the Graph NCF model,

we notice the same pattern, as shown in Figure 4.6 and Table 4.6. It is therefore safe

to conclude that we can introduce more generalizable patterns for our neural network

models to learn by using content-based profiles. However, the improvement or lack there

of one will definitely depend on the quality of those content-based profiles in relation to

the task at hand.

58

4.3.3 Comparing all models

Figure 4.6. Learning curves for Basic NCF and Graph NCF using one-hot input vectors vs
using feature vectors.

4.3.3 Comparing all models

Another question to ask ourselves is how does each model type perform compared to

each other. In general, Attention NCF will be more computationally expensive than Basic

NCF and, in turn, Graph NCF will be more computationally expensive than Attention

NCF. Of course, the actual training (and inference) time will depend on the layer sizes,

the batch size, the time spent in the data loader and many other factors. Nevertheless, a

rough estimate of minutes per epoch that it took for each model type in our experiments

by using a CUDA GPU and having optimized the data loading process (e.g. custom collate,

indexing, etc.) is presented in Table 4.5 and it does verify this intuition.

Table 4.5. Average time per epoch for each model type.

Model batch size Average time per epoch (minutes / epoch)

Basic NCF 128 2.516

Basic NCF 512 2.037

Attention NCF with AttentionNet 512 5.281

Attention NCF with Cosine Similarity 512 5.454

Graph NCF with 3 × 64 GNN layers 512 5.714

Graph NCF with 2 × 128 GNN layers 512 6.842

Nevertheless, that does not necessarily mean that the more expensive and complicated

models will also perform better in our dataset. After a lot of experimentation, the best

run (in terms of test set metrics) for each model type is presented in Figure 4.7 and its

test metrics in Table 4.6.

Figure 4.7. Learning curves for all models using features.

Table 4.6. Test set evaluation for all models.

Model Test MSE Test+ MSE Test NDCG@10 / adjusted Test+ NDCG@10 / adjusted

Basic NCF 0.5657 0.5618 0.9320 / 0.7786 0.9327 / 0.7817

Attention NCF 0.5244 0.5185 0.9387 / 0.8009 0.9396 / 0.8039

Graph NCF 0.5667 0.5632 0.9321 / 0.7804 0.9324 / 0.7817

Basic NCF one-hot 0.5749 – 0.9287 / 0.7712 –

Graph NCF one-hot 0.5858 – 0.9277 / 0.7690 –

59

Chapter 4. Experiments

As we can see, Attention NCF is performing significantly better on the validation and

test sets compared to Basic NCF and Graph NCF, meaning that it is better at generalizing.

More specifically, it is 7.3% better at Test MSE and 7.7% better at Test+ MSE from Basic

NCF. Notice that its training loss is also bigger than that of Basic NCF and Graph NCF.

We believe that, other than the item-item attention mechanism (which is also important),

a definite factor contributing to both these facts is that, in Attention NCF, we are able

to mask out the target training user-item interaction from being used in the user profile

construction. On the contrary, we are naturally unable to do so in Basic NCF and Graph

NCF where we rely on fixed user profiles, as explained in Subsection 3.2.2. This makes

the training task of Basic NCF and Graph NCF a little easier than the task of inference,

because we have access to the target user-item interaction as a small part of the user

profile during training but not during inference.

Surprisingly, despite being more computationally expensive and potentially more ex-

pressive, Graph NCF appears to perform no better than Basic NCF. This contradicts our

initial expectations, but then again, perhaps the collaborative signal on the user-item

bipartite graph, that we are trying to explicitly capture with graph convolutions in Graph

NCF, is not strong enough to offer any advantage over implicitly capturing it with Basic

NCF. After many experiments with many different GNN architectures, no GNN architec-

ture managed to outperform Basic NCF. Further experiments with even simpler methods

than Basic NCF also support this intuition, as we shall see in Subsection 4.3.7.

Of course, all of these models are better than their one-hot counterparts, as shown in

Figure 4.8 and Table 4.6.

Figure 4.8. Learning curves for all models.

4.3.4 Visualizing the quality of the regression

To get a visual idea of how well the regression is working, we took our best Attention

NCF model and plotted a number of stacked histograms – one per ground truth rating –

of all the predicted ratings in the train and test sets, regardless of which user-item pair

they belong to. Since the distribution of the ground truth ratings, as shown in Figure

4.2b, is not uniform (e.g. there are very little 1-2s compared to 3-4s), we normalized all

the stacked histograms so that they take up an equal amount of space to allow for an

easier interpretation. These normalized stacked histograms are shown in Figure 4.9.

Notice that, even though a lot of predicted ratings are off (especially for rare ground

truth ratings e.g. 0.5 to 1.5), there definitely exists a noticeable distinction between the

predicted scores of different ground truths, particularly in the train set. This means that

the model has learned, to some extent, to correctly rank a lot of the user-item interactions.

60

4.3.5 Visualizing the item-item attention in Attention NCF

(a) In the train set. (b) In the test set.

Figure 4.9. Normalized stacked histograms of predicted ratings per ground truth ratings.

4.3.5 Visualizing the item-item attention in Attention NCF

A considerable advantage that Attention NCF holds over Basic NCF and Graph NCF is

the explainability it offers through the attention weights it calculates, when dynamically

creating a user profile from rated item profiles as in Equation 3.4. Recall that, in order

to make a prediction for a user-item interaction between a user u and a candidate item

c, Attention NCF calculates an attention weight aci between item c and every rated item

i by user u. By looking at these attention weights during a prediction, we can observe

which of the user’s rated items the model gives more attention to, in order to make said

prediction. In other words, when offering a user a recommendation of a candidate item we

can also supply him with a list of items that he has rated before and have high attention

scores, as an explanation of why this candidate item is being recommended to him.

In the direction of visualizing this item-item attention mechanism, we run inference

on the entire test set and aggregated some statistics for the attention weights that were

calculated during the whole process. More specifically, for each candidate item and rated

item pair we calculate the average attention weight the pair received, as in the sum of the

attention weights that were calculated for that pair divided by the count that the pair was

observed. This average attention weight may not exactly be the fairest of measures, since

we are not accounting for the fact that the attention is distributed over the different sets

of rated items via softmax
9
. Nevertheless, we believe that it is a good high-level indication

of how the attention mechanism is working overall, independently of a specific user with

a specific set of rated items, in the unseen user-item interactions of the test set.

We visualize these average attention weights for two arbitrarily chosen subsets of all

the items in the heat maps of Figure 4.10. As one can see, in the first heat map the model

has learned to generally give more attention to item-item pairs of movies from the same

franchise e.g. the Lord of the Rings, Spider-Man, Harry Potter, etc., which makes sense

as how one has rated one of those movies may tell a lot about how he is going to rate the

other ones. In the second heat map we can also notice how it has learned to give higher

9
Different users are associated with a different number of rated items. The more rated items exist, the less

attention each one of them would be expected to receive, all else being equal

61

Chapter 4. Experiments

Figure 4.10. Average item-item attention weights visualized for two subsets of movies.

62

4.3.6 Solving the ranking problem directly

attention to movies pairs that are not from the exact same franchise but are similar in

nature e.g. cartoons, superhero movies, etc.

Keep in mind that these attention weights are learned solely from the item profiles

of the two movies at hand. Since we used the AttentionNet method that we described

in 3.2.2, these item-item attention weights between candidate and rated items are not

symmetric, as one can clearly see from Figure 4.10. If we were to use the cosine similarity

method, then these attention weights would be symmetric. However, as shown earlier,

the AttentionNet method yielded better results.

4.3.6 Solving the ranking problem directly

As we discussed in Subsection 3.3.2, by employing the BPR loss on (u, i, j) triplets

of (user, item, item), we can train the same three types of models for the ranking version

of the recommendation problem directly. In this case, we use the BPR loss only as a

training loss and not as a validation loss, as we deemed it more suitable to use the

validation NDCG metric as the early stopping criterion. Getting better at the ranking

problem should directly translate to better NDCG values, so it makes sense to pick the

model with the best validation NDCG.

Figure 4.11. Learning curves for all models when training for ranking with BPR loss.

Table 4.7. Test set evaluation for all ranking models.

Model Test NDCG@10 / adjusted Test+ NDCG@10 / adjusted

Basic NCF 0.9326 / 0.7817 0.9332 / 0.7839

Attention NCF 0.9315 / 0.7786 0.9315 / 0.7783

Graph NCF 0.9304 / 0.7753 0.9310 / 0.7778

Basic NCF one-hot 0.9238 / 0.7558 –

Graph NCF one-hot 0.9232 / 0.7552 –

We present the best run for each type of model and input in Figure 4.11 and table 4.7.

The first thing one might notice is how the train loss appears to suddenly increase every

so often. This is because we follow the scheduling strategy we discussed in Subsection

3.3.2 for the hyperparameter w of Equation 3.9. That is, we start with a w of 0 (uniform

negative sampling) and we increase it by 0.5 every 4-6 epochs (as indicated by the spikes

in Figure 4.11) in order to sample harder and harder negatives. This should make the

task more and more difficult as we go, resulting in the higher training loss we observe.

Recall that the purpose of this is to sample more informative negatives instead of easy

ones that are more likely to already be correctly ranked, resulting in vanishing gradients.

63

Chapter 4. Experiments

Unsurprisingly, the models using item and user profiles perform better than their

one-hot counterparts. On the other hand, it is rather surprising that the Attention NCF

model has been dethroned as the best model under this training setting. In the Figure

4.12, we can see how each model’s validation NDCG when trained for the ranking problem

(the dotted lines) versus when it was trained for the prediction problem (the solid lines).

For most models, those two curves are relatively the same, except for the Attention NCF

model where there is a significant improvement when trained for the prediction problem

using the MSE loss.

Figure 4.12. Validation NDCG curves for the models trained for the prediction vs them
trained for the ranking problem.

All in all, whilst training for the ranking problem directly is indeed viable and it

does require weaker supervision
10

, it does not appear to offer any notable advantage over

training for the prediction problem in this case. Conversely, it introduces more difficulties

due to the need for negative sampling (which adds more hyperparameters to tune) and

it is also more expensive computationally, since it requires two forward passes instead

of one for each triplet. Rough estimates in minutes per epoch for the ranking models

compared to the ones trained for the prediction problem are shown in Table 4.8.

Table 4.8. Average time per epoch for the ranking models.

Model batch size Average time with MSE (minutes / epoch) Average time with BPR (minutes / epoch)

Basic NCF 512 2.037 3.227

Attention NCF 512 5.281 7.913

Graph NCF 512 5.714 10.826

4.3.7 Comparison with other methods as baselines

To get an idea of how our neural network models fair compared to other recommenda-

tion methods, we train and evaluate some simpler recommendation methods as baselines

on our custom dataset by using, of course, the same train, validation and test sets. These

simpler methods include:

10
In many cases we might have access to ground truth for how to rank certain items but not to e.g. ratings.

64

4.3.7 Comparison with other methods as baselines

• Content-based similarity: A purely content-based method, solving the ranking prob-

lem, where we use the cosine similarity between our user and item profiles to make

top-k recommendations.

• MF : Matrix Factorization, a purely Collaborative Filtering method, as implemented

by a third-party library
11

and tuned on the validation set by grid searching its hy-

perparameters (number of epochs, learning rate, factors dimension, regularization).

• NCF-like MF : Matrix Factorization, implemented by us akin to Basic NCF but without

the MLP and by using the dot product of user and item embeddings directly for the

final prediction. It can be used with both one-hot vectors and content-based profiles.

Table 4.9. Test set evaluation for simpler baseline models and our own.

Model Test MSE Test+ MSE Test NDCG@10 / adjusted Test+ NDCG@10 / adjusted

Content-based similarity – – 0.9165 / 0.7299 0.9167 / 0.7309

MF 0.5985 – 0.9247 / 0.7565 –

NCF-like MF one-hot 0.5761 – 0.9306 / 0.7744 –

NCF-like MF with features 0.5714 0.5665 0.9337 / 0.7846 0.9342 / 0.7862

Basic NCF one-hot 0.5749 – 0.9287 / 0.7712 –

Basic NCF with features 0.5657 0.5618 0.9320 / 0.7786 0.9327 / 0.7817

Attention NCF with features 0.5244 0.5185 0.9387 / 0.8009 0.9396 / 0.8039

Graph NCF one-hot 0.5858 – 0.9277 / 0.7690 –

Graph NCF with features 0.5667 0.5632 0.9321 / 0.7804 0.9324 / 0.7817

The results of these methods, compared to our own, are summarized in Table 4.9.

There, we can see that:

• The pure content-based method performs significantly worse, as measured by NDCG,

than both our one-hot and hybrid NCF models. It’s possible that better similarity

measures and/or user profile aggregations may improve these metrics, but we be-

lieve that there are potentially more patterns to be learned via Collaborative Filter-

ing, assuming that we have access to such data, than by simply being based on

user-item profile similarity.

• Our implementation of Matrix Factorization, as a special case of Basic NCF, performs

better than the third-party library’s implementation, possibly due to our use of early

stopping and the use of Adam instead of SGD for gradient descend.

• More importantly, note how close the NCF-like Matrix Factorization model, a linear

model, and Basic NCF are in performance. This is strong evidence to support that

our dataset lacks significant non-linear and complex patterns for our deep learning

models to capture. Hence, it’s reasonable that even more complicated CF models

like Graph NCF fail to achieve better performance on it. Attention NCF, on the

other hand, must be able to achieve its better performance thanks to its item-item

attention mechanism combined with its masking of the candidate item from the

rated items.

11https://pypi.org/project/matrix-factorization/

65

https://pypi.org/project/matrix-factorization/

Chapter 5

Conclusions

5.1 Conclusions

In this thesis, we have combined the Neural Collaborative Filtering framework [11]

with content-based methods for item and user profiles, in order to acquire a hybrid rec-

ommendation system based on neural networks. This hybrid recommendation system

is still mostly a Collaborative Filtering approach, as the training objective is that of Col-

laborative Filtering. Nevertheless, by incorporating content-based profiles for items and

users we are able to avoid the cold-start problem, for which Collaborative Filtering meth-

ods are infamous, as well as leverage potential patterns in the content to achieve better

performance.

We have proposed three increasingly complex deep learning architectures. Basic NCF

is basically NCF but with fixed content-based user and item profiles instead of one-hot

vectors. Attention NCF builds upon Basic NCF by creating the user profiles dynamically,

during the forward pass of the neural network, using an item-item attention mechanism

inspired from the work in [28]. Through this mechanism, it can attend differently to

each interacted item from a user’s known interactions depending on the candidate item

it is trying to make a prediction for. Moreover, it allows us to present highly attended

interacted items as an explanation for a recommendation of a certain candidate item,

providing some much needed explainability. Finally, Graph NCF attempts to leverage the

relationships of multi-hop neighbors in the user-item bipartite graph by incorporating

Graph Neural Networks in the user and item embedding process, following the work of

[29] and [10], starting however from fixed item and user profiles as in Basic NCF.

To train and evaluate these three proposed architectures we created a custom dataset

of user-movie interactions by combining the popular Collaborative Filtering dataset of

MovieLens with metadata (e.g. genres, actors, directors, etc.) for movies from the IMDb

dataset. Using this dataset, we evaluated our models on both regression and ranking

metrics. From our experiments, we concluded the following:

• Attention NCF outperforms both Basic NCF and Graph NCF. More specifically, we

observed a ∼7.5% improvement in test MSE over Basic NCF. We believe that the

reasons behind this improvement are the item-item attention mechanism we used

and the ability to mask out the target training interaction from being used as input

in the user profile construction during training (as described in Subsection 3.2.2).

66

5.1 Conclusions

• Attention NCF indeed offers a good degree of explainability through the interpreta-

tion of the item-item attention weights that are part of the constructed user profile,

when making a prediction for a certain candidate item. This is intuitively shown in

Subsection 4.3.5.

• Graph NCF does not seem to be any better than Basic NCF, despite being more

sophisticated and arguably much more expensive as shown in Table 4.5 for both

training and inference. We believe the reason to be that the collaborative signal in

the user-item graph of our dataset simply isn’t strong enough in order for explicitly

capturing it via GNNs to be more beneficial than implicitly doing so through the

objective function. In other words, there may not be complicated enough patterns

in our dataset and our fixed user profiles to justify this complicated a CF model,

regardless of what GNN architecture we use or any further hyperparameter tuning.

This intuition seems to be supported by our experiments in Subsection 4.3.7, where

a Matrix Factorization model (implemented as a special case of Basic NCF), a purely

linear model, managed to achieve very comperable performance to that of Basic

NCF. Attention NCF, on the other hand, works with dynamic user profiles via its

item-item attention mechanism, where it is also able to mask the candidate item,

achieving better performance in that way.

• Training our models for the ranking problem directly using the BPR loss, instead

of the prediction problem using the MSE loss (or the BCE loss), is more costly, has

more hyperparameters to configure (e.g. for negative sampling) and it also seemed

to deprive Attention NCF of its superior performance as shown in Subsection 4.3.6.

Therefore, we concluded that, given the choice, solving the prediction problem using

a pointwise loss should be preferable.

Finally, we took our best Attention NCF model and we deployed it in a demo web

application, in order to showcase and intuitively assess it. In this application, a user can

input ratings to the movies we have available and then ask for recommendations. At that

point, we collect the user’s ratings and run inference on all the movies that he has not yet

rated. After sorting these movies according to their predicted rating, we recommend to the

user the top-K ones. For each recommendation, we also provide a list of the rated movies

that have an attention weight that is sufficiently larger than we would expect a random

rated movie to have (e.g. notably larger than 1 / |N(u)| from Equation 3.1) along with the

attention weight itself. Using this list – when available – we can better understand why

certain recommendations are being suggested.

67

Chapter 5. Conclusions

5.2 Future work

Seeing as complicated models such as Graph NCF have failed to achieve notably better

performance than Basic NCF – or even Matrix Factorization – in our dataset/task, it would

be interesting to test our models on different CF datasets, assuming we have access to

relevant item features for the items in them as well. Our hope is that there are complicated

enough patterns out there that our increasingly complex deep learning models would be

able to capture when other simpler models, like Matrix Factorization, would not.

When it comes to our dataset, we believe that our best bet for further performance

improvement lies not in even more sophisticated and complex CF models, but in using

more relevant item features. In our experiments, we have been relying on multi-hot

encoded metadata for movies (e.g. genres, actors, etc.) from IMDb and the genome tag

scores from MovieLens, as they were simple enough to extract for a large quantity of

movies. However, the multi-modal content of the movies, as in their video, audio and

text, has not been taken advantage of, when neural networks are universally praised

for their ability to extract patterns from raw data such as images and text. Therefore,

one interesting future work direction would be to attempt to incorporate these sources of

information in our models.

To achieve that we may be inclined to add more neural network components in our

models, e.g. a CNN to embed one or more images for each movie (e.g. a spectrogram of

its audio or frames of the movie) or an LSTM or a transformer-based encoder to embed

text (e.g. the movie’s script). Doing so would allow us to train our models on these new

features in an end-to-end fashion, using the same optimization objective we have been

using so far. However, our models are already quite expensive by just using feature vectors

and, given that the multi-modal content of a whole movie will be large, this approach will

almost certainly be too computationally expensive to be viable, not to mention that it

might face vanishing gradient issues should the network become too deep (e.g. with

LSTMs). Instead, we will probably have to embed this content to dense feature vectors

separately, using a different optimization objective, under an unsupervised setting (e.g.

autoencoders). Having done that, we can simply add these dense vectors as part of the

fixed item profiles that we have been using.

Other than that, further possible future work may include taking into account the

rating of the rated item in the item-item attention mechanism of Attention NCF. So far,

AttentionNet only uses the item embeddings of the candidate and rated items as input.

But the rating of the rated item might also be an important factor to decide how much

attention to give to the rated item. Therefore, we could try also including it or any other

information we deem relevant in the input of AttentionNet (e.g. via concatenation).

Furthermore, as we noted in Subsection 4.3.1, message dropout did not really help

in Attention NCF. However, that may be because we implemented a simple version of it,

where the dropped edges are sampled uniformly from all user-item interactions in the

batch, regardless of the user. As future work, we could try performing message dropout

in a way that it is normalized for each user in the batch, e.g. randomly drop p % of the

interactions of each user separately, to see if that version works better.

68

5.2 Future work

Last but not least, in our work we have considered the user’s preferences static, in

that it doesn’t matter when a user interacted with what item. However, given our work

on user profiles, there is a simple yet effective way to consider that. By heuristically

calculating a weight that decays with time, we could assign a larger weight to items that

were rated more recently than others. We can then somehow incorporate this weight in

Equations 3.2 and 3.4. This should result in user profiles that better estimate the user’s

latest preferences, giving less importance to older ones, as the user’s interests may change

over time. Although, if we were to do this, we may want to also consider a more suitable

train-val-test splitting strategy, where the latest interactions are left for the validation and

test sets as explained in Subsection 4.1.3.

69

Bibliography

[1] Aggarwal, C. C. Recommender Systems - The Textbook. Springer, 2016.

[2] Bekker, J., and Davis, J. Learning from positive and unlabeled data: a survey.

Machine Learning 109, 4 (Apr 2020), 719–760.

[3] Bell, R. M., and Koren, Y. Lessons from the netflix prize challenge. SIGKDD Explor.

Newsl. 9, 2 (dec 2007), 75–79.

[4] Berg, R. v. d., Kipf, T. N., and Welling, M. Graph convolutional matrix completion.

arXiv preprint arXiv:1706.02263 (2017).

[5] Burke, R. Hybrid Web Recommender Systems. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007, pp. 377–408.

[6] Cai, C., and Wang, Y. A note on over-smoothing for graph neural networks. arXiv

preprint arXiv:2006.13318 (2020).

[7] Covington, P., Adams, J., and Sargin, E. Deep neural networks for youtube recom-

mendations. In Proceedings of the 10th ACM conference on recommender systems

(2016), pp. 191–198.

[8] Funk, S. Netflix update: Try this at home, 2006.

[9] Hamilton, W. L. Graph representation learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning 14, 3, 1–159.

[10] He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang, M. Lightgcn: Simplifying

and powering graph convolution network for recommendation, 2020.

[11] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. Neural collaborative

filtering, 2017.

[12] Kipf, T. N., and Welling, M. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907 (2016).

[13] Koren, Y., Bell, R., and Volinsky, C. Matrix factorization techniques for recom-

mender systems. Computer 42, 8 (2009), 30–37.

[14] Leskovec, J., Rajaraman, A., and Ullman, J. D. Mining of Massive Datasets, sec-

ond ed. Cambridge University Press, 2014.

70

BIBLIOGRAPHY

[15] Li, H. A short introduction to learning to rank. IEICE Trans. Inf. Syst. 94-D (2011),

1854–1862.

[16] Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated graph sequence neural

networks. arXiv preprint arXiv:1511.05493 (2015).

[17] Lops, P., de Gemmis, M., and Semeraro, G. Content-based Recommender Systems:

State of the Art and Trends. Springer US, Boston, MA, 2011, pp. 73–105.

[18] Ma, J., Li, G., Zhong, M., Zhao, X., Zhu, L., and Li, X. Lga: latent genre aware

micro-video recommendation on social media. Multimedia Tools and Applications 77,

3 (2018), 2991–3008.

[19] Meng, Z., McCreadie, R., Macdonald, C., and Ounis, I. Exploring data splitting

strategies for the evaluation of recommendation models, 2020.

[20] Oono, K., and Suzuki, T. Graph neural networks exponentially lose expressive power

for node classification, 2021.

[21] Pan, R., Zhou, Y., Cao, B., Liu, N. N., Lukose, R., Scholz, M., and Yang, Q. One-class

collaborative filtering. In In ICDM 2008 (2008).

[22] Rendle, S., and Freudenthaler, C. Improving pairwise learning for item recommen-

dation from implicit feedback. In Proceedings of the 7th ACM International Conference

on Web Search and Data Mining (New York, NY, USA, 2014), WSDM ’14, Association

for Computing Machinery, p. 273–282.

[23] Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. Bpr: Bayesian

personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012).

[24] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. Item-based collaborative filtering

recommendation algorithms. In Proceedings of the 10th International Conference on

World Wide Web (New York, NY, USA, 2001), WWW ’01, Association for Computing

Machinery, p. 285–295.

[25] Seo, S., Huang, J., Yang, H., and Liu, Y. Representation learning of users and

items for review rating prediction using attention-based convolutional neural net-

work. In International Workshop on Machine Learning Methods for Recommender

Systems (2017).

[26] Song, B., Yang, X., Cao, Y., and Xu, C. Neural collaborative ranking, 2018.

[27] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. Graph

attention networks. arXiv preprint arXiv:1710.10903 (2017).

[28] Wang, H., Zhang, F., Xie, X., and Guo, M. Dkn: Deep knowledge-aware network for

news recommendation, 2018.

71

BIBLIOGRAPHY

[29] Wang, X., He, X., Wang, M., Feng, F., and Chua, T.-S. Neural graph collaborative

filtering. Proceedings of the 42nd International ACM SIGIR Conference on Research

and Development in Information Retrieval (Jul 2019).

[30] Wu, S., Sun, F., Zhang, W., Xie, X., and Cui, B. Graph neural networks in recom-

mender systems: A survey, 2022.

[31] Xue, H.-J., Dai, X.-Y., Zhang, J., Huang, S., and Chen, J. Deep matrix factorization

models for recommender systems. In Proceedings of the 26th International Joint

Conference on Artificial Intelligence (2017), ĲCAI’17, AAAI Press, p. 3203–3209.

[32] Zhang, S., Tong, H., Xu, J., and Maciejewski, R. Graph convolutional networks: a

comprehensive review. Computational Social Networks 6, 1 (2019), 1–23.

[33] Zhang, S., Yao, L., Sun, A., and Tay, Y. Deep learning based recommender system.

ACM Computing Surveys 52, 1 (Jan 2020), 1–38.

72

List of Abbreviations

ML Machine Learning

NLP Natural Language Processing

CF Collaborative Filtering

NCF Neural Collaborative Filtering

NGCF Neural Graph Collaborative Filtering

NCR Neural Collaborative Ranking

MF Matrix Factorization

GMF General Matrix Factorization

NeuMF Neural Matrix Factorization

MLP Multi-Layer Perceptron

NN Neural Network

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

GNN Graph Neural Network

GCN Graph Convolution Networks

GGNNs Gated Graph Neural Networks

GAT Graph Attention Networks

MSE Mean Squared Error

RMSE Root Mean Squared Error

BCE Binary Cross-Entropy

BPR Bayesian Personalized Ranking

CG Cumulative Gain

DCG Discounted Cumulative Gain

NDCG Normalized Discounted Cumulative Gain

73

	Abstract
	Περίληψη
	Σύνοψη
	Acknowledgements
	Introduction
	Introduction
	Thesis Contribution
	Thesis organization

	Background and related work
	Introduction to recommendation systems
	The recommendation setting
	Defining the task of recommendation

	Traditional approaches
	Collaborative Filtering methods
	Content-based methods
	Hybrid methods

	Deep learning approaches
	Neural Collaborative Filtering
	Neural Graph Collaborative Filtering

	Methodology employed
	Content-based profiles
	Item Profiles
	User Profiles

	Examined models
	Basic NCF
	Attention NCF
	Graph NCF

	Prediction vs ranking problem
	Solving the prediction problem
	Solving the ranking problem

	Experiments
	Dataset
	Public datasets used
	Creating a custom dataset
	Train-val-test split

	Evaluation metrics
	Regression metrics
	Ranking metrics

	Experiments
	Hyperparameter exploration
	Using one-hot vectors vs using features
	Comparing all models
	Visualizing the quality of the regression
	Visualizing the item-item attention in Attention NCF
	Solving the ranking problem directly
	Comparison with other methods as baselines

	Conclusions
	Conclusions
	Future work

	Bibliography
	List of Abbreviations

