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Abstract 

Complex machinery contains critical areas, such as revolute joints and bearings, that 
are prone to damage initiation and growth. If not detected early, damage in complex local 
areas leads to premature failure. The complexity of an integrated system is a factor that 
limits developed classical methods from detecting early damage in complex local areas. 
A pure experimental data environment could provide solutions given the broad impact of 
machine learning. Here an interesting idea is introduced to support a machine-learning 
framework for damage detection in local critical areas. The vibration field developed in a 
local area surrounding a ball bearing support of a lab flexible shaft-rotor system was 
measured by a set of accelerometers to form a dataset environment. It was used as an 
experience for machine learning by a deep convolutional neural network adapted from the 
AlexNet Architecture. Our main result is casting a solid mechanics prediction problem into 
a classification problem and eventually computing a solution by a deep learning technique. 
Current technology innovations are improving computer speed, data storage media, and 
graphics processing units. These factors are turning machine learning techniques into 
state-of-the-art computation-and-prediction tools that can be automated to deal with large 
volumes of vibration data. Prediction-diagnosis of damage results in improved condition 
monitoring of complex mechanical systems and this in turn infers economic gains due to 
estimated low-cost maintenance. Classical condition monitoring techniques have serious 
limitations such as the inability in learning from datasets the dynamics properties onboard 
installed machinery units operating under varying environmental conditions. 

 

Keywords: Vibration Signal Analysis, Sensor Classification, Deep Convolutional 
Neural Network.  



6 

Contents 

Acknowledgments ................................................................................................... 4 

Abstract ................................................................................................................... 5 

List of Tables ........................................................................................................... 7 

List of Figures .......................................................................................................... 8 

List of Nomenclature ............................................................................................. 10 

Chapter 1. INTRODUCTION ............................................................................... 11 

1.1. Motivation .................................................................................................. 11 

1.2. Introduction to Literature Review ............................................................... 11 

1.3. Master Thesis Organization ....................................................................... 13 

Chapter 2. THEORETICAL BACKGROUND ...................................................... 14 

2.1. Rotating Machines ....................................................................... 14 

2.2. Piezoelectric Sensor .................................................................... 15 

2.3. Vibration signal analysis .............................................................. 17 

2.3.1. Time-Domain ...................................................................................... 17 

2.3.2. Frequency Domain ............................................................................. 19 

2.3.3. Time-Frequency Domain .................................................................... 19 

2.4. Machine Learning ........................................................................ 20 

2.4.1. s Basics .............................................................................................. 20 

2.4.2. Deep Convolution Neural Network ..................................................... 22 

2.4.2.1. Image format ................................................................................... 23 

Chapter 3. EXPERIMENT & METHODOLOGY .................................................. 27 

3.1. Experiment .................................................................................. 27 

3.2. Method ......................................................................................... 28 

3.2.1. Cwt – Morse Wavelet ............................................................... 28 

3.2.2. Scalogram ................................................................................ 28 

3.2.3. Convolutional Neural Network - AlexNet .................................. 30 

Chapter 4. RESULTS & DISCUSSION ............................................................... 32 

Chapter 5. CONCLUSION – SUGGESTIONS FOR FURTHER STUDY ............ 41 

REFERENCES ...................................................................................................... 42 

 

  



7 

List of Tables 

 

Table 1: Features formula. ................................................................................... 18 

Table 2: Prediction Score of DCNNA .................................................................... 34 

 

  



8 

List of Figures 

 

Figure 1: Decomposition of Wavelet Transformation and Short-Time Fourier 
Transformation in time-frequency plane. ....................................................................... 12 

Figure 2: (a) Propulsion system of ship, (b) Wind turbine, (c) Electric generator 
turbine, (d) turbomachinery. ........................................................................................... 14 

Figure 3: Cutaway example of rolling-ball bearing ............................................... 15 

Figure 4: Piezoelectric Sensor. ............................................................................ 15 

Figure 5: Piezoelectric effect. ............................................................................... 16 

Figure 6: Principle of piezoelectric sensors (A) Force sensor (longitudinal), (B) 
Compression type accelerometer, (C) Shear – type accelerometer, (D) top view of (C). 
[12] ................................................................................................................................ 17 

Figure 7: Underfitting, Balance fitting, Overfitting. ................................................ 21 

Figure 8: Basic architect of Deep Convolution Neural Network. ........................... 22 

Figure 9: 1st layer of CNN (The array values are indicative). ................................ 23 

Figure 10: When a convolution expression is occurred between kernel and input 3 
are affected only three outputs. ..................................................................................... 24 

Figure 11: Process of extract feature in single convolution layer. ........................ 25 

Figure 12: Laboratory set-up of a flexible shaft-rotor system. Eight (8) sensors are 
arranged over a curve surrounding one of the local bearing areas. The arrangement is 
nearly symmetric about the vertical ball bearing axis of symmetry. ............................... 27 

Figure 13: Time Serie of 1st senor for 250 data points. ....................................... 29 

Figure 14: 2D scalogram plot of 1st sensor for 250 data points. .......................... 29 

Figure 15: Scalogram 3D plot of 1st sensor for 250 data points .......................... 30 

Figure 16: The AlexNet Architecture [28]. The original architecture is designed to 
work in 2 parallel GPUs and in the last FC consisted of 1000 nodes. The representing 
architecture is adjustable to specific research needs. ................................................... 31 

Figure 17: Training and Validation Loss of DCNNA. ............................................ 32 

Figure 18: Training and Validation Accuracy of DCNNA. ..................................... 33 

Figure 19: Confusion Matrix of Algorithm. ............................................................ 35 

Figure 20: Predicted distribution of mean-value signals of two neighboring sensors 
over the space of the eight sensors whose data were used to train a DCMM algorithm to 
solve the proposed problem. (S1, S2) & (S2, S3). ......................................................... 36 

Figure 21: Predicted distribution of mean-value signals of two neighboring sensors 
over the space of the eight sensors whose data were used to train a DCMM algorithm to 
solve the proposed problem. (S3, S4) & (S4, S5). ......................................................... 36 



9 

Figure 22: Predicted distribution of mean-value signals of two neighboring sensors 
over the space of the eight sensors whose data were used to train a DCMM algorithm to 
solve the proposed problem. (S5, S6) & (S6, S7). ......................................................... 37 

Figure 23: Predicted distribution of mean-value signals of two neighboring sensors 
over the space of the eight sensors whose data were used to train a DCMM algorithm to 
solve the proposed problem. (S7, S8). .......................................................................... 37 

Figure 24: Predicted distribution of linear combinations of sensors over the space 
of the eight sensors whose data were used to train a DCMM algorithm to solve the 
proposed problem. (S1, S2) & (S2, S3). ........................................................................ 38 

Figure 25: Predicted distribution of linear combinations of sensors over the space 
of the eight sensors whose data were used to train a DCMM algorithm to solve the 
proposed problem. (S3, S4) & (S4, S5) ......................................................................... 39 

Figure 26: Predicted distribution of linear combinations of sensors over the space 
of the eight sensors whose data were used to train a DCMM algorithm to solve the 
proposed problem. (S5, S6) & (S6, S7) ......................................................................... 39 

Figure 27: Predicted distribution of linear combinations of sensors over the space 
of the eight sensors whose data were used to train a DCMM algorithm to solve the 
proposed problem. (S7, S8) ........................................................................................... 40 

 

  



10 

List of Nomenclature 

FFT Fast Fourier Transformation 

STFT Short-Time Fourier Transformation 

DFT Discrete Fourier Transformation 

IT Information Technology 

WT Wavelet Transformation 

ML Machine Learning 

AI Artificial Intelligent 

FEA Finite Element Analysis 

ANN Artificial Neural Network 

CNN Convolution Neural Network 

DCNN Deep Convolution Neural Network 

DCNNA Deep Convolution Neural Network Architect 

CMB Ceramic Magnetic Bearing 

RMS Root Mean Square 

PDF Probability Density Function 

CWT Continuous Wavelet Transformation 

SGB Stochastic Gradient Descent 

ReLU Rectified Linear Units 

RGB Red Green Blue 

CMYK Cyan Magenta Yellow Key 

SC Scalogram 

PNG Portable network graphic 

dpi Dot per inches 

  



11 

Chapter 1. INTRODUCTION 

1.1. Motivation 

Rotating machines such as turbines, engines, propulsion plants, and energy 
conversion systems encounter in the worldwide industry. They consist of disks of various 
shapes, shafts with a circular cross-section that change shape depending on longitudinal 
position, and bearings situated at various positions to transmit power from one part to 
another. Their nonlinear coupling makes rotating machines quite a complicated system. 
During their operations, they become the main source of vibrations, hence they consist of 
areas prone to damage initiation and growth. A fighter plane in 1996 crashed due to a 
problem attributed to a bearing failure of the compressor region in one of the two engines 
[1, 2] before the estimated operating time for maintenance was reached. Past and new 
innovative ongoing research focus on vibration-based methods to pinpoint the cause root 
of failure. Vibration signal analysis is a process that monitors the levels and pattern of 
vibration signals within a component, machinery, and structure to detect abnormal 
vibrations and finally to evaluate the overall condition of the test subject. 

In recent years, many researchers investigate various structures for analyzing, 
simplifying, and conceiving mathematical models capable to extract features. Georgiadis 
et al. [3] and Obuchowski et al. [4] calculated kurtosis and skewness of times series to 
extract features of ball bearing and gearbox correspondingly. Caesarendra et al. [5] 
extracted features to monitor conditions when a low-speed slew bearing degraded. The 
previous papers used basic and advanced methods based on the time and frequency 
domain of vibration signal analysis. Furthermore, Lin et al. [6] used only frequency-based 
methods to defect detection of rolling bearings. The most common frequency-based 
method is Fourier transform which is turned signals from the time domain into the 
frequency domain to extract undetected frequencies. One more advanced tool in vibration 
signal analysis is wavelet transformation. Rucka et al. [7] to detect failures applicate this 
tool to the experimental setup of a plexiglass cantilever beam and steel plate 
correspondingly. They produced plots representing the wavelet transformation across the 
length and width of test subjects. 

Development of computers, such as increasing computational speed, storage of high 
volumes of data and so on, are motivations for using machine learning complex systems 
since they are produced nonlinear characteristics. Convolution neural networks in 
supervised learning are a powerful tool for image classification, which targets extracting 
features of the input dataset and then classifying them into possible categories. Hence, in 
current Thesis is investigated the performance of CNN instead of traditional vibration 
methods in extracting features and is focused on sensor signal classification of critical 
local areas of a complex system. 

1.2. Introduction to Literature Review 

It is well-known that the vibration dynamics of these complex systems provide 
exploitable information on their structural half and condition [8, 9]. Vibration monitoring 
systems are continuously being advanced due to mature sensors-and-actuators 
technologies as supported by data acquisition and communication technologies [10-14]. 
The tradeoff is the generation of large volumes of vibration data, hence bringing in the 
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issue of how the practicing engineer could extract anomaly features followed by learning. 
Dataset features such as min, max, mean values, root mean square, standard deviation, 
skewness, and kurtosis are extracted but practice reveals are not capable of describing 
reliably system health conditions [5], except for a few cases. Well-established as classical 
data processing techniques, both the Discrete Fourier (DFT) and Fast Fourier Transforms 
(FFT) come to barriers when it comes to detecting anomalies in non-stationary signals 
[15] as a result the Short-Time Fourier Transformation (STFT) and Winger-Ville 
distribution have aroused to enable a multi-resolution the in time-frequency domain. 
These methods have limitations in the presence of the well-known Heisenberg’s 
uncertainty principle: an arbitrary signal cannot achieve high resolution in both domains 
[16-19]. These limitations have led to the discovery and development of the Wavelet 
Transform (WT) as a powerful data processing tool in the time-frequency domain. Figure 
1 shows the ascendancy of WT over STFT in the time-frequency plane. In WT the time 
interval is inversely proportional to the resolution of frequency information: low-frequency 
information pairs with long-time intervals whereas short-time-interval leads to high-
frequency information. In STFT the window size of time-frequency is constant, as a result, 
time-and-frequency resolutions are inversely proportional. However, in the modern era of 
information technology (IT) accompanied by rapid advances, and where the norm now is 
the generation of large-volume datasets, these classical methods have very limited 
capabilities in the sense they cannot learn from datasets, so past experiences remain 
unexploited. The computation paradigm of machine learning (ML) bears great potential in 
machine health monitoring because experience from past data can lead to learning in the 
sense of how humans can become experts in performing some tasks. 

 

Figure 1: Decomposition of Wavelet Transformation and Short-Time Fourier 

Transformation in time-frequency plane. 

In recent years, Artificial Intelligent (AI) via machine learning algorithms finds 
horizontal implementation in a variety of fields of science, such as Health, Materials, Finite 
Element Analysis (FEA), Chemistry, and so forth [20]. Machine learning is an algorithm 
with the ability to learn from datasets [21] by following supervised, semi-supervised, and 
unsupervised training techniques. Inspired by the way the human brain network of 
neurons processes information by its very specific and extremely efficient way of 
computation-not possible by the classical ways of computations in computers, an Artificial 
Neural network (ANN) [22] is a paradigm of machine learning algorithm with remarkable 
predictabilities. Deep Convolutional Neural Networks (DCNN) [22-25], Recurrent Neural 
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Networks (RNN) [26] and  Long/Short Term Memory (LSTM) [27] are some well-
researched subsets of ANN. A proven state-of-the-art algorithm, DCNN, mainly used in 
image processing, learns filters to extract features and classify them [25]. Industry 
applications reveal that the architectures of CNN algorithms AlexNet[23], GoogLeNet [28], 
and ResNet [29] are very promising in providing solutions to difficult problems. The great 
achievement of Krizhevsky et al. in ImageNet Large Scale Visual Recognition Challenger 
(ILSVRC 2010 & 2012), established DCNNA in the field of image classification [23]. 

 

1.3. Master Thesis Organization 

The rest Thesis is organized as follows:  

Chapter 2 contains the theoretical background needed to understand some basic 
principles of ball bearing and monitoring devices. In addition, this chapter represents basic 
information about the machine learning algorithm and describes in depth the expressions 
that the AlexNet algorithm occurs. 

Chapter 3 describes the experimental setup and the conversion of the image data 
format to the input dataset and concludes with the AlexNet algorithm. 

Follows Chapter 4 in which the results of the Thesis are represented and discussed. 

Chapter 6 is mentioned the conclusion of the Thesis and is reported future research 
on how machine learning may give solutions to various mechanical problems.   
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Chapter 2. THEORETICAL BACKGROUND 

2.1. Rotating Machines 

Rotating systems in mechanic machines such as internal combustion engines, 
propulsion systems of ships, the gearbox of wind turbines, the power turbine generation 
and turbomachinery of hydroelectric power stations provide the backbone in numerous 
fields of the industry since they are used to transmit power from one part to another. 

  

(a) (b) 

  

(c) (d) 

Figure 2: (a) Propulsion system of ship, (b) Wind turbine, (c) Electric generator turbine, (d) 

turbomachinery. 

Operations like ship movement [30], rotation of blades of wind turbine [31] 
compression air in supercharger of the airplane, and rotation of camshaft of a vehicle are 
performed in critical areas and they are prone to damage resulting in harmful 
consequences. For example, an unexpected shutdown of a production line in a factory or 
the immobility of a ship leads to loss of money, as well as the endangerment of operation 
personnel. According to Tauqir et al., a fighter crashed due to damage to the ball bearing 
[1]. The defect was detected on the failure the of ceramic magnetic bearing (CMB) of the 
compressor region, even though it had been suspected 5 hours before the crash. Similar 
failures of ball bearings have been detected by Ejaz et al. [2] and Simon et al. [32] in the 
aero engine and turboshaft engine correspondingly. 

Bearings are elements of rotating systems that depending on contact are classified 
into rolling-elements bearings and plain bearings. As depicted in Figure 3 bearing 
consists of outer the ring, inner ring, metal shield, rolling elements (ball), cage, and metal 
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shield. According to the rolling element, this type of bearing is called a ball bearing. During 
their operation, the passage of rolling elements, natural vibrations of outer rings, 
geometrical imperfections, cage noise, and flaws noise are the main causes for producing 
vibration and noise. One more feature of ball bearings is produced nonlinear phenomena 
which are occurred by clearance and contact stiffness [8]. Due to the complexity of the 
system have been developed monitor devices such as sensors have to measure system 
dynamic conditions in the level of acceleration.  

 

Figure 3: Cutaway example of rolling-ball bearing 

 

2.2. Piezoelectric Sensor 

A sensor is a device that detects variables of a physical system, such as 
displacement, temperature, elasticity, acceleration, and so on. According to their 
operation principles, they are categorized into classes [13]. In the field of vibration 
dynamics, the piezoelectric sensor has got wide implementation. Piezo is from the Greek 
word “πιέξειν” meaning to squeeze. In the piezoelectricity phenomenon, an electric charge 
is produced when a force is acting on the tested subject to deform it. 

 

 

Figure 4: Piezoelectric Sensor. 

Figure 4 presents a cross-section of piezoelectric sensors with the seismic mass 
and the piezoelectric material to constitute the main sensing elements. When motion is 
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subjected to the sensor casing an inertial force is generated and exerted on the seismic 
mass with the interacting coupled piezoelectric material. According to Second Newton’s 
Law the generated force (N) is equal to the product of seismic mass (kg) and acceleration 
(m/s2). The behavior of piezoelectric material can be approached as a capacitor. The 
applied stress (N/mm2) and the generated force (N) are proportional to charge per unit 
area (C/ mm2) and electrical charge (C) correspondingly. So, the output signal that is 
recorded via the connector is a voltage. The acceleration mass (a) is exposed to the same 
acceleration magnitude as the test object, over a wide frequency range, and so on the 
sensor measure test vibration dynamics [10-14]. 

 

 

Figure 5: Piezoelectric effect. 

 

Piezoelectric sensors are classified into 3 types regarding detecting system 
variables. These are force, pressure, and acceleration. Their cross-section is represented 
in Figure 6. In the first one, the wire connects to the electrodes of the crystal and the 
acting force deform the crystal. In the compression type between two back-to-back 
crystals, there is a thin metal membrane. The acting force of the mass is applied to the 
membrane and then it deforms the two crystals. In the last type of piezoelectric sensor, 4 
crystals are mounted on rectangular posts and their deformation is happened immediately 
by the applied force of the seismic mass [12]. 
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Figure 6: Principle of piezoelectric sensors (A) Force sensor (longitudinal), (B) 

Compression type accelerometer, (C) Shear – type accelerometer, (D) top view of (C). [12] 

 

2.3. Vibration signal analysis 

All the collected acceleration points from the sensors provide exploitable information 
about the system’s dynamic condition. Vibration signal analysis as mentioned before is 
the process that uses the acceleration data to extract features such as health operation 
conditions, unbalance, misalignment, mechanical looseness, etc. Initially, researchers 
focused on a statistical analysis of signals in the time domain. Due to the limitation in 
monitoring the dynamic condition of the system, they drove the conversion of the signal 
in the frequency domain to extract features with great results.  

2.3.1. Time-Domain 

In the time-based domain extracting features is based on estimating the statical 
values of signals. The plot of signals in time order is called times-series. The most 
common statistical features that are used to identify the differences between time series 
are average, root means square (RMS), standard deviation, and variance. These basic 
values examine the probability density function and are tightly coupled with the system 
condition. Specifically, skewness identifies the asymmetry of PDF as well as kurtosis 
quantifies the peak value of PDF. The value of kurtosis and skewness for a signal of a 
health bearing in a normal distribution is approximately t and 0 correspondingly [33]. Other 
features such as entropy measure the randomness and uncertainty of data and provide 
noticeable information about systems’ conditions.  

Apart from the statistical features, have been developed non-dimensional features 
that based on the system mean and deviation values. These are the shape factor and 
crest factor which are affected by the system condition as well. The whole statistical-based 
features (whose formulas are represented in Table 1) may describe the dynamic condition 
of the bearing/system but they presented limitations in an advanced investigation that 
provides the following frequency domain.   
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Feature Name Formula 
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=
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Table 1: Features formula. 
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2.3.2. Frequency Domain 

In the frequency domain, Fourier transformation has been mentioned as a great 
success. It was introduced by Joseph Furrier in 1822. He focused to solve the heat 
equation (or Fourier equation) to determine the solution of the Fourier series of partial 
differential equations in specific boundary conditions [19]. The solution is defined as, 

 ( ) ( )
i t

F f t dte



 −

−
=   (1) 

The equation is a fundamental method in vibration signal analysis and machine 
health monitoring. He defined the transformation of a signal from the time-based domain 
f(t) to the frequency-based domain F(ω). Namely, in each frequency (ω) the integral 
measure the oscillations of function f. The F(ω) is called the frequency spectrum of a 
signal or waveform f(t) [15]. According to “Clarence” in chapter 10.1 mentioned that the 
great success of FT is owing to the conversion of time domain differential operations into 
algebraic operations [34]. Despite noticeable results, the Fourier transform seems to have 
limitations in further signal analysis. The two main reasons are the elimination to reflect in 
changes because it does not contain local information to represent the signal 
simultaneously in the time and frequency domain [19]. 

 

2.3.3. Time-Frequency Domain 

The Fourier transformations constitute the base for new extensions, such as Short-
Time Fourier Transformation and Wigner-Ville Distribution which have aroused to enable 
a multi-resolution in the time-frequency domain. Short-Time Fourier Transform, due to low 
computational complexity is used to analyze nonstationary signals as a pre-processing 
tool, which is defined as: 

 

/2

2

/2

( , ) ( ) ( )

t T

i pft

t T

STFT f t w t x e d  
+

−

= −  (2) 

As aforementioned, the most powerful tool of non-stationary signal with the capability 
of multi-resolution in both domains is wavelet transformation. It is about a relevant young 
method that appeared in the 20th century. The method is invented by Jean Morlet in 1982, 
according to Debnath [19]. This new mathematician tool finds wide application in the 
analysis of temporary phenomena, such as earthquakes, vibration signal analysis, pattern 
recognition [17], and so on. It is a wavelike function that oscillates in finite time. Wavelet 
is a set of family functions constructed from translations and dilations of a single function, 
called mother wavelet or (affine coherent states) ψ(t). It is defined as: 

 ,

1
( ) , , , 0       

a b

t b
t a b R a

aa
 

−
=  

 
 
 

  (3) 

Term a and b denote respectively the scaling and translation parameters, and t is the time. 
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The continuous wavelet transformation (CWT) measures the local similarity of a 
signal and wavelet function using their inner product. Specifically, it compares the signal 
with shifted and compressed or stretched version of the mother wavelet. The CWT is 
defined by: 

 
1

( , ) ( ) *
t b

C a b f t
aa


+

−

−
=

 
 
 

  (4) 

When the wavelet is being compressed (small scale a) the CWT is rapidly changing, 
thus resulting in fine details in signals of high frequency changing with time. On the other 
hand, the stretched wavelet extracts the low-frequency details of the signal. Hence there 
is a clear relationship between the scale and frequency of wavelet and signal respectively 
[15, 19, 34-36]. Despite these exploited features extracted by vibration signal analysis, 
the needs pushed them to implement new tools. Due to the great capabilities of computers 
that occur in storing and processing large volume datasets, humans have been led to use 
machine learning for monitoring. 

 

2.4. Machine Learning 

2.4.1. s Basics 

Artificial intelligence is a well-known branch of computer science that the target to 
simulate or even recreate the capabilities of the human mind. Machine learning, a specific 
task of AI aims in training a machine how to learn. It is based on the human mind principle 
to tackle task T, perform measure P and then learn and improve from experience [21]. 
Due to the limitation of existing programs to solve difficult problems it has board 
implementation. The task is not defined as the whole project but only its process. An 
insightful example mentioned by Goodfellow et. al. is that the task to program a robot to 
be able to walk is walking [26]. The most common machine learning is classification (even 
though with missing points), regression, speech recognition, transcription, machine 
translation, structured output, anomaly detection, synthesis & sampling, imputation of 
missing values, denoising, density estimation, or probability mass function estimation. 
Those algorithms perform in phone and computer applications such as Facebook, 
Instagram, Google Maps, and so on. They use AI and even ML algorithms on data 
aggregated from user interaction to examine their behavior. Siri by Apple Inc., Google 
Now by Google, and Cortana by Microsoft use ML algorithms such as speech 
interpretation and recognition interfaces that make them intelligent personal assistants. 
Last but not least, another promising field of the market with the implementation of ML 
algorithm are self-driving vehicles [37].  

Performance measures how well the machine learning algorithm performs on input. 
To evaluate it, design a quantitative measure. Because there are many types of tasks, 
measure P differs. For example, in classification and transcription, the most common 
measure is accuracy, which is the proportion of inputs for which the model predicts correct 
output. Another measure is the error rate, that range from 0-1, and in contrast to accuracy, 
it is the proportion of input for which the algorithm predicts an incorrect output. In density 
estimation, the previous performance metrics do not make sense. Indeed, the most proper 
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measure is a continuous-valued score for each input such as the average log-probability. 
In other cases, it is unachievable to measure the performance of the algorithm, 
consequently, an alternative criterion must be designed that corresponds to the inputs. All 
the measure types are used to improve the experience of the algorithm and finally to learn 
by its input. Based on experience, algorithms are classified into broad categories such as 
supervised, semi-supervised and unsupervised. The first one uses it for the task that is 
associated with a label or target and trains the algorithm to predict the class of each input 
data point. In an unsupervised algorithm, the data set contain various features, hence the 
algorithm is trained to predict in terms of the probability distribution of the input set. 

As mentioned before the main implementation of the machine learning algorithm is 
to receive input files, process them via mathematical expressions, and finally predict an 
output. The evaluation of how well one algorithm performs is to give good predictions in 
unseen input files. This ability is called generalization. In a supervised machine learning 
algorithm, the pre-processing of categorization of input files in a train, validate, and test 
set is necessary. 

A machine learning algorithm may be confused with optimization problems, in which 
one tries to maximize or eliminate an objective function. The algorithms of machine 
learning are separate from optimization problems because they want to eliminate the 
training and generalization (test) errors as well. The central challenge that makes an 
algorithm efficient is defined as: 

• Make the training error small. (Underfitting) 

• Make the gap between training and generalization errors small. (Overfitting). 

One model is underfitting when it performs poorly on training data and it is unable to 
capture the relationship between the input examples and target values. One model is 
overfitting when it performs well in training data but does not perform well on validate data. 
It is because the algorithm is memorizing the data it has seen and is unable to generalize 
to unseen examples [38]. The behavior of algorithms is controlled by settings called 
hyperparameters. They cannot be adapted by the learning algorithm itself. They constitute 
convolution layers, neural networks hidden units, and so on which are analyzed, in-depth 
in the subsequence section. 

 

 

Figure 7: Underfitting, Balance fitting, Overfitting. 
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2.4.2. Deep Convolution Neural Network 

Convolutional Neural Network (CNN) is a well-known deep learning algorithm 
formed architectures of basic computational, like biological neurons and nodal units. 
Inspired by neuroscientific principles such as the way human vision “sensors” are inputting 
information into the human brain, it performs as a state-of-art tool in image classification 
with a known grid-like topology [26]. Their main purpose is to approximate a function “f” 
that maps input data “x” to category data “y” by learning parameter “θ”. Parameters “θ” 
are estimated by trial and error during the flow of data through the layers of the network. 
Because the information has no feedback connection the network is called feedforward. 
Figure 8 depicts the architectural structure of a 2-D CNN. The algorithm is a series of 
mathematical expressions occurring in convolution layers with hidden layers and pooling 
layers, followed by a neural network composed of an input layer, a hidden layer, and the 
final layer which is called the output layer. A network is determined by chain functions in 

form (3) (2) (1)( ) ( ( ( )))f x f f f x= . The f (1) is called the first layer of the network, f (2) is called the 

second layer, and so on. The name “deep” arose from the overall length of these chain 
structures. Learning involves the minimization of a cost function. Minimization provides 
estimates for the learned parameters. The whole CNN can be thought of as a paradigm 
of computations of a certain character on input data to be matched to a fixed output. Below 
is described input data, convolution layers, hidden layers, pooling layers, neural layers, 
loss function, cost function, and finally represents how the algorithm gain experience via 
optimization. 

 

Figure 8: Basic architect of Deep Convolution Neural Network. 
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2.4.2.1. Image format 

Convolution neural networks as foregoing discussed achieved great success in 
processing data within a known grid-like topology such as an image [26]. An image is a 
composition of various pixels, and this in turn represents the color density of the current 
model. The most common model used worldwide to display an image is RGB (Red, Green, 
Blue), CMYK (Cyan, Magenta, Yellow, Key/black), and HSV (for Hue, Saturation, and 
Lightness). RGB, as it is used in the current Thesis, is an additive-based space, relating 
to trichromatic theory according to Allen et. al. [39]. The pixel ranges from 0 to 255, for 
example, a pixel displayed in the portal as 100% blue, in the RGB palette is expressed as 
[0,0,255]. Figure 9 depicts the conversion of image format data to input array for CNN. A 
color image is mathematically expressed by a 3D array with a block size equal to 3 (RGB).  

 

 

Figure 9: 1st layer of CNN (The array values are indicative). 

 

The input image is convoluted against a fixed filter (kernel) according to the 
convolution math operation: 

 ( ) ( * ) ( , ) ( , ) ( , )k k k k k

m n

c x x K i j b x i m j n K m n b= + = + + +  (5) 

Where Kk is a set of filters which is also called the weight parameter, bk provides the bias 
parameter, and ck is called the feature map of the kth layer in the set of convolutions. The 
motivation of convolution implements to extract features from images in a neural network 
is owing to three advantages. The first one is sparse interactions which are achieved by 
using a filter array smaller than the input and this in turn infers algorithms in better 
performance and simultaneously reduce its store capacity (see. Figure 10). For example, 
an image is composed of millions of pixels, but some features such as edges can be 
detected by using kernels that contain tens or hundreds of pixels. 



24 

 

Figure 10: When a convolution expression is occurred between kernel and input 3 are 
affected only three outputs. 

Another advantage of Convolution is the fact of parameter sharing. It means that in 
each layer the multiple of input image data occurred with the same filter array (see. eq. 
8). It keeps store capacity at a low value and simultaneously does not reduce its statistical 
efficiency. The last leverage that makes the algorithm mark great success is equivariant 
representations. In math, this means that if an input change, the output change in the 
same way. For example, assume that an event appeared in dt time at time series. The 
same event appeared in output at dt. A disadvantage that occurred in the CNN algorithm 
is the fact that they cannot recognize image changes such as image rotation and image 
scale, because two rotated or scaled images provide unsimilar input arrays. 

Between convolution and pooling, math expressions occurred in activation functions 
to detect nonlinear features. These layers are called hidden layers or detector stages. 
Even though in recent years has been developed many hidden layers, is an extremely 
active area for more research. The most common activation functions are logistic sigmoid, 
hyperbolic tangent, radial basis function, soft plus, hard tanh and rectified linear unit 
(ReLU)[40]. In each hidden layer of AlexNet [23] architect is used rectified linear unit 
function, which mathematically expression is given by:  

Re ( ( )) max(0, ( ))LU c x c x=  (6) 

Eq. 7 outputs values only in the active units while it outputs zero across the rest 
domain. The derivative of active units is equal to 1. Thus, the gradient direction in the 
detector stage is free from second-order effects and this in turn infers great performance 
in CNN algorithms, increasing their resistance to forgetting how to perform in already 
training tasks [22, 26, 41]. The research team that developed the AlexNet algorithm 
observed that the implementation of the normalization function after the produced 
nonlinearity of the ReLU function increased generalizations [23]. The most common is 
Batch Normalization defined as follows:  
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=  (7) 

Where μ is the mean value of x and σ denotes the standard deviation. 

The output of convolutions expressions often produced noise. Most modern image 
classification models, like AlexNet[23], and GoogLeNet[28] extract features by using max-
pooling functions whereas combining the outputs of the ReLU function in a local array of 
features. Thus, the algorithm emphasizes task-related information [42]. Figure 11 shows 
how an indicative input image array flows through one convolution layer. The input image 
pads with zero for the convolution expressions do not modify the size of the array. 

 

Figure 11: Process of extract feature in single convolution layer. 

 

As the image data input flows through all convolution layers the feature map is 
flattened into a vector and is fed to the input layer of the neural network. Similarly with 
convolution operation, in each neural network, the function that occurred is defined as: 

 
*n n ny x w b= +  (8) 

where wn is a row vector that included the weight parameters, and bn is the respective 
bias parameters of the nth layer in the set of neural network expressions. Like the 
convolution model, the activation function ReLU is applied as a loss function in hidden 
layers. In addition, a commonly used function applied after the ReLU activation is called 
the dropout layer. According to Srivastava et al. [43], dropout computation is a technique 
that prevents an algorithm from overfitting and improves its performance on supervised 
learning tasks. The last layer of CNN is called the output layer and the common function 
applied is called the cost function. The choice of the cost function is crucial for the 
algorithm because it determines the representation of output units.  

The last layer of the algorithm is called the output layer. As aforementioned, the main 
goal of the current paper is to predict the locations of the sensors whose signals are used 
as input wavelet images. This means that the output unit should be a probability 
distribution over the 8 sensor locations (classes). The function, used in several CNN 
architectures as well, that gives with great success this distribution is called the SoftMax 
function. It is defined as follows: 
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The fact that the CNN algorithm is associated with the human brain computation functions 
is owing to the SoftMax and in general the cost function’s property. Since they calculate a 
probability distribution over “n” possible states their sum is equal to 1. Hence, when the 
values of 1 class are increased the rest values are decreased. This process is believed 
that occurs similarly in a human brain at the infinitesimal time [26]. 

Having described in depth the most crucial CNN functions that occurred in the 
classification problem of supervised learning, it is appropriate to discuss briefly how the 
learning process is taking place in the flow of information in the CNN algorithm. As 
mentioned by Krizhevsky et al. [23] the learning is based on the Stochastic Gradient 
Descent (SGD) computational process. It is an optimization algorithm that differs from the 
traditional optimizers because optimizes all the parameters “θ”, allocated at different 
parts in the graphical schematic of the algorithm. Term parameters “θ” denote the weights 
and biases calculated per convolution layer, Eq. 1, and neural layer, Eq. 4. The SGD 
algorithm optimizes the error quantity defined by subtracting the quantity ε*g from the 
estimated old parameters (w, b), where “g” is the partial derivative of cost function 
SoftMax and “ε” provides the hyperparameter learning rate. A single running time of the 
algorithm, in which “k=1, 2, …” denotes the layer of convolution and neural network, is 
represented as follows: 

 

1,...,1,...,

Required="ε"

Required=parameters "θ"

Insert=Input image(multidimensional array)

Flow throught layers and then predict output

Estimate g(w )= ( ( )) and g(b ) ( ( )) 

Ap

k k k k
k mk m

SoftMax y SoftMax y
w b ==

 
=

 

ply update: *g(w ) and *g(b )new old new old

k k k k k kw w b b = − = −

 

 

Various CNN architectures developed for image classification use the above functions 
with success over a wide implementation of applications. Specific guidelines for the best 
approximation of function “f” have not been found as of yet. Therefore, the network 
architecture is adapted to the specifications of the case problem tackled. 
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Chapter 3. EXPERIMENT & METHODOLOGY 

3.1. Experiment 

The experiment focuses on collecting datasets using sensors distributed to cover a 
local area, considered critical. In complex mechanical systems, such an area hosts 
nonlinear dynamics with dissipation within crucial complex mechanical parts in machinery, 
ball bearings, for example, among others. Figure 12 depicts the ball-bearing area of a 
flexible shaft bearing a large disk rotor at its center. While forced to rotational motion at 
constant angular velocity by an electric motor, vibration data are collected simultaneously 
using eight state-of-the-art piezoelectric accelerometers distributed properly to cover the 
local ball bearing. The vibration dynamics were sampled at 48 kHz and a resolution of 18 
bits. The sensitivity and frequency range of piezoelectric accelerometers is about 1.00 
mV/ (m/s^2) and 1 Hz-104 Hz respectively. Preprocessing reveals that the acquired 
signals are of very high quality regarding the level of signal-to-noise. A large dataset was 
collected with the main variable the value of the rotational speed. Several datasets were 
evaluated using advanced proper orthogonal decomposition tools to explore the reduced 
dynamics [44].  

 

Figure 12: Laboratory set-up of a flexible shaft-rotor system. Eight (8) sensors are 
arranged over a curve surrounding one of the local bearing areas. The arrangement is nearly 
symmetric about the vertical ball bearing axis of symmetry. 

 

For the involved computations and DCNNA predictions MATLAB [45] and Python 
[46], programming languages were used. In each software, libraries such as Wavelet 
Toolbox [47], Numpy [48], Tensorflow [49], Scikit-learn [50], Pandas [51], Matplotlib [52], 
OpenCV [53] were used. 
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3.2. Method 

In foregoing sections citing that the current paper aims to explore the merits of how 
predictive could be a trained machine learning algorithm for predicting from datasets the 
location of the sensor that detected the acceleration signal. We address this very basic 
problem as a classification problem via the concept of learning from the dataset by a 
convolutional neural network. The classification set spans the space of locations of the 
sensors.  

 

3.2.1. Cwt – Morse Wavelet 

Through the programming language MATLAB and the wavelet toolbox, acceleration 
measurements are transformed over the frequency-time domain. The kind of wavelets 
that are used in MATLAB math software environment is continuous with Morse mother 
wavelet basis. The Fourier transform of the generalized Morse wavelet [54] is: 

 , ,
( ) ( )U e


 

   
    

−
=  (10) 

Parameter α β, γ is the normalizing constant, and U(ω) is the unit step function 
whereas ω is the frequency. Parameter γ characterizes the symmetry of the wavelet and 
b is a decay or compactness parameter. 

 

3.2.2.  Scalogram 

To plot images that will be used as input files for DCNN, scalograms (SC) are 
computed in MATLAB. SC plots the collected signal and the scaled wavelet in a time plot 
correlation. The plot represents the percentage of energy for each coefficient, defined as: 

 *S coefs coefs=  (11) 
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The wavelet transformation and scalogram are thus efficient tools in signal analysis 
because they could reveal some hidden features of the data not detected by another 
classical method [15]. Figure 13 represents an original signal in the time domain and 
Figure 14 shows the transformation of this signal in the frequency-time domain. In 
addition, Figure 15 presents a 3D plot of the SC to clarify how the percentage of energy 
is represented.  
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Figure 13: Time Serie of 1st senor for 250 data points. 

 

Figure 14: 2D scalogram plot of 1st sensor for 250 data points. 
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Figure 15: Scalogram 3D plot of 1st sensor for 250 data points 

 

To use the image depicted in Figure 14 as an input file into the AlexNet Architecture 
[23], we turned off all the marks such as axis, grid, label, and colormap to avoid redundant 
noise and finally saved it in portable graphic (png) format with 75 dpi (dots per inch) 
resolution [39].  

3.2.3.  Convolutional Neural Network - AlexNet 

The computer facility running DCNN via the programming language python has the 
following specifications:  

• Central Processing Unit (CPU): Intel® Core™ i7-11370H, (3.3GHz, 4 Cores) 

• Graphic Processing Unit (GPU): Nvidia GeForce MX 450 (Core speed: 1395 
MHz, Memory speed:10002 MHz, Max amount of memory: 2048 MB) 

• Random Access (RAM): 16 GB – DDR4 

• Operating System (OS): Windows 11 64-bit 

As mentioned before, AlexNet architecture is used to extract features for the 
classification of sensor acceleration signals acquired in the local area of a ball bearing by 
a proper distribution of sensors, see Figure 16. This kind of DCNN has achieved 
remarkable performance in AI contests in comparison to existing and tested ML [26].  
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Figure 16: The AlexNet Architecture [28]. The original architecture is designed to work in 
2 parallel GPUs and in the last FC consisted of 1000 nodes. The representing architecture is 
adjustable to specific research needs. 

Algorithm DCNNA consists of five convolution layers, three pooling layers, two fully 
connected layers, and one output layer. Scalograms before entering as input files into the 
1st convolution must be preprocessed. Specifically, the size of a scalogram in png format 
with 75 dpi resolution is 343x258 pixels. They are compressed in images with 227x227 
pixels. The color model of the input image is RGB (red, green, blue), additive-based 
spaces, relating to trichromatic theory according to Allen et. all. [39] The input image thus 
is a 3D matrix of dimension 227x227x3. The intensity of each color ranges in value in the 
interval numeric [0,255] i.e., when a random pixel has the value [0,0,255] it is displayed 
as a 100% blue pixel in the computer display portal. Then the inputs passed in the 1st 
convolution layer with 96 filters of size 11x11x3 and a 4x4 stride. The output of this layer 
is 96 matrixes each of dimension 55x55. After that, the function ReLU acted on neurons 
and they normalized. The 2nd convolution layer takes as input all the processing neurons 
and filters it with a 256 kernel of size 5x5x48. The other 3 convolution layers are connected 
without intermediate pooling or normalization layers. They filter the input with 384 kernels 
of size 3x3x256, 384 kernels of size 3x3x192, and 256 kernels of size 3x3x192. The output 
of the convolution part is flattened and is inserted as a one-dimensional vector into the 1st 
fully connected (FC) layer. Between the two FC layers activation function, ReLU and 
Dropout with a rate of 0.5 are applied. Finally, the last FC layer maps the neurons into 8 
nodes, as the sensor’s classes, and a SoftMax function is applied to predict their 
percentage. Figure 16 depicts the architecture investigated by Krizhevsky and his 
colleagues [22-25]. It is not the original one, since it has been adapted to the needs of the 
present research endeavor.  
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Chapter 4. RESULTS & DISCUSSION 

Scalograms that consist of the algorithm’s dataset is segmented into training, 
validation, and test datasets. Specifically, 70% of total inputs are used for training the 
algorithm and the remaining data are separated in equal numbers as validation and test 
data. The epochs and batch size of input data are 100 and 32 respectively. In each epoch, 
simultaneously is measured the loss and the accuracy of training and validation data. 
Training and validation loss indicates how well the model is fitting training and new data 
respectively. Figure 17 depicts in the same plot how training and validation loss changes 
over time. This graphic indicates that the training error is low and the gap between the 
training and validate date tends to be low values after 50 repetitions. In machine learning 
these results indicate that the algorithm does not reveal underfitting and overfitting 
phenomena. These promising results are confirmed by Figure 18, showing how the 
accuracy of the algorithm is being increased in each epoch revealing that the algorithm 
can produce 93% correct predictive outputs. 

 

 

Figure 17: Training and Validation Loss of DCNNA. 
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Figure 18: Training and Validation Accuracy of DCNNA. 

To check out in more depth the resultant of the algorithm, its performance is 
measured over total unseen test datasets (576 samples). The performance metric is 
determined by the number of correct detectors and the true events that were detected and 
this is turn determined as the fraction of correct model detections and as a fraction of how 
true events were corrected which are called precision (p) and recall (r) correspondingly. 
In addition, another performance metric is estimated which turns precision and recall into 
one fβ-score [55]. It is given by: 
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 Table 2 presents the performance metrics. Support is the random test dataset that 
is segmented by the total number of input images. The algorithm can predict the sensor 
location with a mean prediction score of 94%. His performance average value in predicting 
true events and f1 score is equal to 93%. In further analysis of the performance of each 
sensor, observed that the 3 intermediate sensors 4,5,6 which are located on the left side 
of the ball bearing have reduced prediction mean values. That may happen because the 
measured acceleration data points contain noise, or even the data sets are not sufficient 
for training.  
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Sensor Class precision recall f1-score support 

1 100% 97% 99% 73 

2 96% 100% 98% 69 

3 96% 99% 97% 72 

4 95% 76% 84% 70 

5 90% 87% 88% 79 

6 80% 95% 87% 73 

7 97% 93% 95% 72 

8 99% 99% 99% 68 

weighted avg 94% 93% 93% 576 

Table 2: Prediction Score of DCNNA 

Figure 19 is a plot of the algorithm performance in a form of a confusion matrix. A 
confusion matrix is a multidimensional array in a dimension equal to sensor classes, that 
is used to evaluate the prediction quality of an unseen dataset (test set) [52-54]. The 
matrix has been expressed via Python, so the sensor classes started from the value 0 
which corresponds the sensor 1. Diagonal elements represent true predictions, while off-
diagonal elements provide the mislabeled test images after classification. A colormap 
order is used to emphasize the class sensors that occur with the higher prediction score. 
The results of Table 2 are represented in the confusion matrix, indicating that for sensor 
4 the prediction of its location is correct 58 over 70 supper datasets. For sensor 2 the 
algorithm gives 69 times correct predictions over 69 support tests, this confirms the recall 
value of 100%. 
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Figure 19: Confusion Matrix of Algorithm. 

 

In respect of how the AlexNet CNN performs for the problem of identification of the 
eight sensors distributed in the local bearing region of the flexible shaft-rotor system, we 
wonder what would be the prediction of the algorithm if it uses new unseen scalograms. 
We perform 2 tests where the input scalograms are being defined as the average value 
of the signals of two neighboring sensors. This addresses to some extent the proposed 
problem. Thus, we used the trained algorithm to compute the prediction score, in 
percentage form, of every new scalogram of mean values over the 8 classes. To depict 
the whole prediction score, we summarize it by estimating the prediction score’s mean 
value over sensor classes, see Figure 20Figure 21, Figure 22, Figure 22, and Figure 
23. Is observed that in most cases at least one of the sensors that contributed to this linear 
combination receives a high value in the predicted distribution over the set of eight 
sequentially arranged sensors to cover the local bearing area.  Specifically, sensor pairs 
such as 1-2, 2-3, 6-7, and 7-8 give remarkable results, since the two nonboring sensors 
have the highest values while the remaining sensors have quite lower values. From the 
standpoint of mechanics, this prediction as a distribution over the space formed by the 
sensors is quite interesting. Since the sensors are distributed in a local area of a 
continuum, they share common features of the dynamics. This is revealed by the algorithm 
prediction of the mean value of the signals stemming from two neighboring sensors. 
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Figure 20: Predicted distribution of mean-value signals of two neighboring sensors over the 
space of the eight sensors whose data were used to train a DCMM algorithm to solve the proposed 
problem. (S1, S2) & (S2, S3). 

 

Figure 21: Predicted distribution of mean-value signals of two neighboring sensors over 
the space of the eight sensors whose data were used to train a DCMM algorithm to solve the 
proposed problem. (S3, S4) & (S4, S5). 
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Figure 22: Predicted distribution of mean-value signals of two neighboring sensors over 
the space of the eight sensors whose data were used to train a DCMM algorithm to solve the 
proposed problem. (S5, S6) & (S6, S7). 

 

Figure 23: Predicted distribution of mean-value signals of two neighboring sensors over 
the space of the eight sensors whose data were used to train a DCMM algorithm to solve the 
proposed problem. (S7, S8). 
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For further checking of algorithm performance, we proceeded in another explorative 
test where the inputs scalogram are defined as those of generic linear combinations of 
the already measured acceleration at the specific eight points: 

( 2 )

1

1 2
,  i=1,2,..,7

3 3
i i i

input s s
+

= +  (14) 

In this linear combination signal of the sensor, i+1 has a double contribution in a scalogram 
than that of the sensor. Similarly, with the previous experiment the results are quite 
optimistic (see. Figure 24, Figure 25, Figure 26, and Figure 27). In this case, sensor 
pairs such as 1-2, 2-3,4-5, and 6-7 give remarkable results, since the two nonboring 
sensors have the highest values while the remaining sensors have quite lower values. 

 

 

Figure 24: Predicted distribution of linear combinations of sensors over the space of the 
eight sensors whose data were used to train a DCMM algorithm to solve the proposed problem. 
(S1, S2) & (S2, S3). 
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Figure 25: Predicted distribution of linear combinations of sensors over the space of the 
eight sensors whose data were used to train a DCMM algorithm to solve the proposed problem. 
(S3, S4) & (S4, S5) 

 

Figure 26: Predicted distribution of linear combinations of sensors over the space of the 
eight sensors whose data were used to train a DCMM algorithm to solve the proposed problem. 
(S5, S6) & (S6, S7) 
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Figure 27: Predicted distribution of linear combinations of sensors over the space of the 
eight sensors whose data were used to train a DCMM algorithm to solve the proposed problem. 
(S7, S8) 

Both experiments based on the mechanic’s principle, reveal the properties of the 
system’s dynamic condition and make CNN a promising tool for extracting features by 
measuring acceleration data. As a result, their implementation in system monitoring for 
further analysis may drive in finding new aspects that reduce systems health. 
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Chapter 5. CONCLUSION – SUGGESTIONS FOR FURTHER 
STUDY 

A novel classification of vibration signals is successfully performed by training a 
tested deep neural network with measurements of vibration dynamics at the level of 
acceleration. The fact that the traditional vibration method analysis is used only for 
extracting features and is unable to learn from the experience inspired us to use 
convolution neural networks because they overcome these limitations. Thus, training the 
AlexNet algorithm on measuring acceleration data of eight sensors which are arranged 
over a curved surrounding one of the local bearing areas of a flexible shaft rotor systems, 
turned CNN into a detection tool of sensors position. Specifically, the collected 
acceleration data share dynamic features of each signal and they turned into images 
(scalograms) to train the AlexNet algorithm. Algorithm evaluation ranges from 93-94% for 
unseen datasets, and this in turn infers further experiments. 

The main motivation for further research is the fact that sensors share the common 
feature of dynamics since they are distributed in a local area of a continuum system. 
Hence, to evaluate the principle of the dynamic system produced two datasets. In the first 
one scalograms depicts dynamic features of the mean value of 2 consecutively signals 
while in the second dataset the contribution of one signal is double from the other. Plotting 
the mean value of probability distribution of each signal over 8 possible sensor positions 
observed that the detection tool gives promising results in the detection of the local area. 
The prediction as a distribution over the space of sensors is quite interesting from a 
physics point of view: since the sensors are distributed in a local area of a continuum, they 
share common dynamics and this revealed the prediction from where the mean value of 
the signals is coming.  

This quite promising research effort inspires further studies in the field of data-driven 
vibration dynamics with the powerful computation-and-prediction tools paved by Artificial 
Neural Networks as evidenced in the research community in computational science and 
real-world big data problems across major industries. Further research aimed to explore 
fundamental machine learning-based methods is being under process. The main goal is 
the implementation of the CNN algorithm as a detection tool, to find the distance of the 
collected signal from a reference point. So, in laboratory conditions, an experiment of 
shaft-bearing was set up to simulate an intermediate shaft of the propulsion system of the 
ship. Eight sensors were arranged along the length of the shaft at equal distances from 
one another and then was conducted a tap test by using a modal hammer. Data sets were 
collected to train the CNN algorithm so that it can detect the local location of each sensor. 
After training, the algorithm will be tested in unseen datasets, which have been collected 
by repeating the experiment and adjusting the sensors in the intermediate positions of the 
previous positions. Some initial results are quite promising and they will be represented 
hopefully shortly. 
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