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Amayopevetal 1 avirypapn, amodnkevon Kot Stovopun g mapodoos epyociag, €5 OAOKANPOL 1
TUNHOTOC O TN, Y10 EUTOPIKO okomo. Emttpénetol n avatdnwor, amodfkevon Kot dtovoun Yo, Komo
U1n KEPSOCKOTIKO, EKTAOEVTIKNG | EPEVVITIKNG QVOTG, VIO TNV TPpobmdOecN Vo avaEéPETAL 1) YN
TPOEAEVOT|G KO VO, ST pEiTOL TO TapOV Pvupo. EpoTipota Tov apopovv T xpion g Epyociog
Y. KEPOOOKOTIKO OKOTMO Tpémel vo. amevbuvovial mpog tov ovyypoeéa. Ot amoyels Kol To
CLUTEPACHOTA TTOV TEPIEXOVTAL GE QVTO TO EYYPOUPO EKPPALOVY TOV GUYYPAPEN Kol OEV TTPEMEL VO
epUNveLBEel 0TL avTITpocOTELOLY TIG emionuec Béoeig Tov EOvikod MetadPiov [ToAvteyveiov.



[epiAnym

H véoog tov kopawvoiod tov 2019 (COVID-19), mov mpokolel to Zofapo OEH Avanvevotixé Lovopouo
tomov 2 (SARS-CoV-2) éyer ennpedoet tic {wég exatopuvpianv avBpdrwy oe 610 tov kéouo. Méypt tov
loddio tov 2022, vripyov 569.771.691 evepyd, kpovouata COVID-19 moykoouing kot eiyov Katoypopel
6.383.776 Bcvazor. O 106 petadidetor kKopiwg UECw GTOYOVIOIWY TOV ONULOVPYODVTAL OTOV EVA HOLDOUEVO
atouo Prxet, ptepviletor 1 exnvéet. To mo ovyva eupovi{OUeEVa COUTTOUATO. EIVOL TVPETOS, PHYOS Kol
xorwon. H tpéyovoa uébodog didyvwanc faciletar oty doxiun Alvaidwns Avtidpaons Holvuepdons
Avtiotpopns Metaypoapnc (RT-PCR). Qotdoo, n 6ravioTyta, 10 KOoTog Kol 0 UEYGAOS XPOVOS
oiekmepalwong ivar uepira pstovextnuotoe g ookiuns RT-PCR. EmimAéov, avty n dioayvawotixh uéfodog
O¢tel T0 10TPIKO TPOTWTIKO GE KIVOLVO Loiumlng katd ) diopkela s ogtypotolnyiag. O guforiaouog
ATOTEAEL GNUAVTIKO OTAO QVTIETOTIONS TOV KOpwVvoiod. Avatoywg, ot moporloyéc e voeov COVID-19
UTOPODY VO, UELDOOVY KATOLA OTIYUN THV OTOTEAECUATIKOTHTO. TV EUPOMWY, 00NYMDVTAS OTH GOVEYELOD. OE
emovaioiumdels. g ek ToOTOD, 1] AVAYKN Y10, GOVEYEIS EAEYYODS VOOHOHS TOPOUEVEL, KO.OWGS N ovosia
ovyVve, ameileitar omo uetolralers. H mapodoa oimdwuoriki epyacia otoyedel oty digpevvion uedoowv
Boabiag MabBnong yra v aviyvevon s voeovo COVID-19 amo fyovg fryo. Avtog o tomog eAéyyov givou
XWPIC ETOPT, EIVOL EDKOLOG TTHV EPOPUOYH KOL UTOPEL VO UELWOGEL TOV POPTO EPYATIAS TTO. KEVIPO. EAEYYOD
ka0 KoL Vo TEPIOPITEL TH UETCOOTTH. XE AVTH THV EPYATLO. EXOVV YpNoLUoToInlel D0 oVVOLa. dedouEVMmV,
TOV TEPIEYOVY OPYELQ PO ATO COUUETEYOVTES OO OLAPOPES YWPES, TO GUVOLO dedouévav Coswara kol
70 oVVodo dedouévav tov Cambridge. H avioopporio tov 60VOL0V 0EO0UEVWY QVTIUETWTIOTHKE UE THV
EQaPUOYN UIOG TPOTEYYIONS EKUGONTNS ovvoAov, Etol wate n taln Covid va unv vroskrpoowneital. To
OTAO010 TPOETECEPYATIOS TEPILOYUPAVEL THY QVIYVEDGH PHy0 YLO. TOV TPOTOIOPICUO TOV EQV KOL TOTE DEGPYEL
Priyog otig axatépyaoctes nyoypapioeig. To obvola dedouévav eivor crowd-sourced, mpdyuo wov
ONUOIVEL OTL 01 HYOL TOV GUALEYOVTOU TPOEPYOVTAL ATO OIOPOPETIKG TEPIPALLOVTO KO 1} TOLOTHTO. TOVD
HIKPOP@VOL aupiofnteital. ¢ omotéleoua, to Loviéda Qo umopovooy va eivor ToAD emippeny oTnv
vrepPolixn mpooopuoyn oe avemdounto oiuoza. 1o vo aviuetwmiotel avto 1o (THua, oTo opyEio HYov
mov Eyovv taltvounbel wg nyntixa onuato fryo opaipeitar o Gopvfos. H emavénon dedousvav
eQapuoletar yio Ty OVIYWETOTLON TOD UIKPOD ODVOAOD dedouévamwv, kobw¢ ot Apyitextovikés Babidg
Mabnong (Deep Learning) omaitodvv peydlo oyko dedouévav. Xtn ovvéyela, to nyntikd Seiyuoro.
uetatpémovral oe pacuotoypopiuaro, mel (mel spectrograms). I'ia v talvounon twv deiyudrwy oe
COVID-19 7 non COVID-19, doxiualovror ko mopovoidloviai o€ avt THY EPYATLO. EVVED, OLOPOPETIKES
opytekToVIKES fobidc ualnong. Xoykexpuéva, viorotovvror Xoveliktika Nevpwvikd Aiktvo, (CNN) o
ovVOLOTUO e oupidpoue. oiktvoo, Long-Short-Term Memory (BiLSTM) ko oupidpouo. Gated Recurrent
Units (BiGRU) oe ovvovoouo ue unyaviouod mpocoyns (attention mechanism). Iapovaidalovron emiong
i TpoekTaidevuEve olktvo, ato ImageNet koi Eva. povieAo avvoiov mov amoteleitoun omo avta. Emiong
vdomorovvrar 1o VGG-13 kai to DenseNet Speech, mia apyrtexrovikn mwov ypnoiuonoiOnxe oe
TPONYOVUEVH] LEAETH VIO THV QVOYVWOPITH PWVHS KOl TOV EVIOTIoUO Aélewv-kleldiwv. H uelétn avédeile
ottt o CRNN mapéyovv vrooyoueva omoteléouato otnv aviyvevon e vocov COVID-19. Xty cvvéyeia, n
01001K0T10. EKUAONONS UETAPOPAS TOIAATADY GTAJIWY OTOTEAEITAL OO TPIO TTAOLO LUETOPOPAS
exuaOnong xou ypnoiuomroiel 6la to. Sraléaipo advola dedopEvamy. Avth § TPOEKTAIOEVON TE O1001KOTIES
7oV ayeTilovial 1e ToV Priyo 00nyel o€ DYHAOTEPO, ATOTEAEGUATO, TALIVOUNIONS V10, TO GDVOAO OEO0UEVDV
tov Cambridge. Emmpoceta, éyive puo mpoordbeio epunvevoudtnrog tov InceptionResnetV2 oe mel
spectrograms ue ypron tomikav epunvevtikay woviédwv LIME (Local Interpretable Model-Agnostic
Explanations). Ta kalvtepo amotedéouazo talvounong, mov mpoékvway uéow 5-fold cross validation xou
TCRNN, éyovv gtaocel oc axpifeia 76,67 % ko1 AUC 76,16%. To. mopomdva amoteAéauota éderéov oti o
apyeio. frya pmwopodv vo. ypnoipomondovv wg gpyaleio diotoyng/oigyvaoong yio. m voco COVID-19.
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Abstract

Coronavirus disease of 2019 (COVID-19) has affected the lives of millions of people around the globe.
Up until July 2022, there were 569.771.691 active cases of COVID-19 globally, and there had been
6.383.776 deaths. The virus is mainly transmitted through droplets generated when an infected person
coughs, sneezes, or exhales. The most common occurring symptoms are fever, cough, and fatigue. The
current diagnosis method is performed through Reverse-Transcription Polymer Chain Reaction (RT-PCR)
testing. However, scarcity, cost, long turnaround time of clinical testing and the fact that they can lead to
another infection if done improperly are some downsides of the RT-PCR testing. Furthermore, the in-
person testing methods put the medical staff, particularly those with limited protection, at serious risk of
infection. Vaccination remains a key component of the approach needed to reduce the impact of SARS-
CoV-2. Unfortunately, variants of Covid-19 reduce at some point the effectiveness of vaccines,
subsequently leading to reinfections. Therefore, the need for constant testing remains as immunity is often
threatened by mutations. The current thesis aims at demonstrating the feasibility of the automatic detection
of COVID-19 from cough sounds. This type of screening is non-contact, easy to apply, and can reduce
the workload in testing centres as well as limit transmission. Two datasets have been used in this thesis,
containing coughs from people from all continents, namely the “Coswara” and the “Cambridge” dataset.
Dataset skew was addressed by applying an ensemble learning approach so that the Covid class is not
underrepresented. The preprocessing step involves cough detection to identify if and when the cough is
present in the raw audio recordings. The datasets are crowdsourced which means that the collected sounds
are from differing environments and the quality of the microphone is disputed. As a result, the models
could be highly prone to overfitting to unwanted signals. To address this issue, the sound files classified
by the cough detector as cough are denoised. Data augmentation is applied to address data scarcity, since
Deep Learning Architectures are data hungry. Then, audio samples are converted to mel spectrograms.
For the Covid-19 classification task, nine different deep learning architectures are tested and presented in
this thesis. Specifically, CNNs combined with bidirectional Long Short-Term Memory (BiLSTM) and
bidirectional Gated Recurrent Units (BiGRU) networks in conjunction with an attention mechanism, are
implemented. Three pretrained networks on ImageNet and an ensemble model consisting of them are
presented as well. VGG-13 and DenseNet Speech, an architecture used to a prior study for voice
recognition and keyword spotting, are also implemented. Temporal CRNNs seem to produce promising
and consistent results in Covid-19 detection. Multistage Transfer Learning process consists of three stages
of transfer learning and uses all of the available datasets. This pretraining on cough related tasks leads to
higher classification results for the Cambridge dataset. Eventually, an interpretability attempt of
InceptionResnetV2 has been made on mel spectrograms using Local Interpretable Model-agnostic
Explanations. The best classification results, obtained through 5-fold cross validation and TCRNNSs, have
reached an accuracy of 76,67% and an AUC of 76,16%. These results demonstrate that cough can
potentially serve as a helpful triage or diagnostic tool for Covid-19 infection. Since this type of cough
audio classification is cost-effective and easy to deploy, it is potentially a useful and viable means of non-
contact COVID-19 screening.

Keywords

COVID-19, Multistage Transfer Learning, Deep Learning, Audio Preprocessing, CRNN, Cough
Detection, Image Classification, Pretrained Neural Networks, Attention Mechanisms, COVID-19
diagnosis, Ensemble Learning, Data Augmentation, SMOTE
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Extetapévn mepiinyn

I. Covid-19

H voécog COVID-19 (Corona Virus Disease of 2019), mov mpokadeitor amd tov 16 tov ZoPapod O&Eog
Avamvevotikod Zvvopopov Coronavirus 2 (SARS-CoV2), knpOydnke moykdoue movonuio otig 11
DePpovapiov 2020 and tov Iaykoéouo Opyaviepd Yyeiog (ITOY). To Zofapd O& Avamvevotikd
YHvdpopo mponyovpéveg nrav toavonuio to 2003 [1]. Epevvntikd otoygio vroonidvouv 61t ot SARS-
CoV ko MERS-CoV mpoépyovtar and vuytepidec. Méypt onuepa, n tpoéievon tov SARS-CoV-2 nov
npokdrece v movonuio COVID-19 dev éyel evtomiotel. Ta péypt oTIyUng €MGTNHOVIKG GTOLYELD
vrodnimvovv 6t o SARS-CoV-2 mbavotato TponAde amd v eEEMEN Tov 100 6TN OGN KoL LETATHONGE
GTOVG 0VOPOTOVG N HEG® KATOLOL ayvdatov Eevioth (v [2]. Ot avapopéc evtomilovv 1o Eéomaca o€
po Tepdotio ayopd mov moviovoe Loviavd {da, peta&d dAlov ayabov, otn [ovyxdv g Kivag kot
vrodnAmvovy 6Tt 0 kopwvoiog SARS-CoV-2 petadddnke and {do - mhovdg avTd TOV TOAOVVIOL GTIV
ayopd - o avBpm®TOVS TOLAGYIGTOV 600 Popég Tov NoéuPplo i Tov Askéuppro tov 2019 [3]. Méypr
OTLYUN TNG GLYYPAPNG, VIApxovv 569.771.691 evepyd kpovouata COVID-19 maykooping Kot &govv
onuewmbel 6.383.776 Odvatol, pe tic HITA va avaeépovy tov vyniotepo apud kpovoudtov (90.390
.184) ko Bavdrtovg (1.026.937)[4]. Zopowva pe tov Haykoécuo Opyavicpd Yyeiog, otnv EALGSa &xouv
emPefarwbei 4,21 ekatoppvpia kpovopoto kot Exovv avapepdei 30.707 Oavatot [5].

O1 kopavoiol etvar onuavtikd afoydva Tov HITOPOvY Vo EXNPEGGOLV TNV KOTMTEPT] AVATVEVCTIKY] 060
GTOV GvOP®TO KOl LITOPOVY VA TPOKAAEGOLY 060EVEIEG TTOL KLpaivoVTaL ol Eva omAd KPVOAGYNUA £®C
cofapn| polvvon pe Bvmoyodtnta Eog kot 50% [6]. O COVID-19 gaivetar vo punv dtapépet modd omd tov
SARS 6c0ov a@opd To KAWVIKG TOV YOPOKTNPLOTIKA. Q0T1000, €xel Tocootd Ovnowomtag 1,1%,
yopmAotepo amd avtd tov SARS (9,5%) kot modv yapnAotepo and avtd tov MERS (34,4%) [7], oAra
umopei va SlopEPEL 6E ATOUN TOV €YoV GuVVoeTPOTNTES [8].

Anuoypogpixa Xroryeio

Onwc avaeépbnke Tponyovpévae, autr| T oty vdpyovy 569.771.691 evepyd kpovopata COVID-19
TOYKOGUIMG Kot Eyovv onuelmbei 6.383.776 Odvatot, ue tic HITA va avagépovv tov vynidtepo apldud
kpovopdtov (90.390.184) ko Oavétov (1.026.937). [4]. To IMavemomuio Johns Hopkins £xet
OMUIOVPYNOEL KOl EVNUEPDVEL KOONUEPVE €val avorytod amobetnplo dedouévav pe d1ebvn avorvTikd
otoyeio Yo v mavonpic SARS-CoV-2 H pelwon tov pétpov ypfiong Haokag Kot ot ovEavOLEVES
TOVPIOTIKEG POEG TTOL £XOVV MG OMOTELECLO TOV GUVMCTICUO, £XOVV 0dNYNOEL o8 emakoOAovdn EEapon
KaOnUeEPIVOV KPOLGUATMOV TOVS KOAOKAPIVOUG Uiveg Tov 2022 otv EALGSa.

Ovyouotnto.

O1 meprocoTEPOL AvOpmTOL IOV £Y0VV poAVVOEL atd ToV 10 B EPPOVIcOVY NN EMG HETPLA OVOTVEVGTIKY
voc0 kot O avappdcovy yopic va yperaloviat ed1kn Oepaneio. Qotdc0, opiouévol Ha appwoTHGoLY
cofopd kot Bo ypelaotovv aTpky @povtida. Ot MAKIOUEVOL Kot EKEIVOL LE VTOKEIUEVES 10TPIKES
madnoelg Onme kapdloyyelok voco, SlopfTng, ¥poOvia aVOTVEVGTIKN VOGOC 1 Kapkivog givol mo mbavo
va avartoéovv cofapn acbéveln[S]. To mocootd Bvnoyottog kpovoudtov (CFR) tov COVID-19
avaeépetal 0Tt givan 1,1%, aAld pumopei va Sapépel oe acbeveig mov £yovv GAAEG TPOVTAPYOVGES
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madNoelg Kot Stopépel emione HeTalld TV YOPOV. X& 0pIGUEVOLG 0oBEVEIS, €101KE 08 aTOVG U dALN
VTOKEIUEVA VOCNLOTO, WUTOPEL VO VTAPYEL OGVOTVELOTIKY OVETApPKEWN, oappuluieg, GOk, VeQpiKn
avemdpkeln, Kapdayysaxn PAaPn 1 nratiky avendpkela [12]. ‘Evag amd toug mo onpoavtikods deikteg
tov COVID-19 etvar n Bvnopndmmra. Xopeg oe 0A0 TOV KOGULO £Y0VV avaPEPEL TOAD OLOPOPETIKES
avaAoyieg Ovnootntoag kpovoudtov (dniadn o apBudg tov Bavatov dtoupepévog pe tov apliud Tomv
emPefaiopévov kpovopdtmv). Ot dapopég otovg apBpods Bvnootntog uropel va tpokinovv and:

* Apopég otov aplud tov atopov mov efetdlovral: Me mepiocdtepeg efetdoelg, eviomilovran
TEPIOCOTEPA, ATOLOL LLE NTOTEPO, TEPIGTATIKA. AVTO LEIDVEL TNV avoroyio Bvnoudtnrag.

* Anpoypagikd otoryeia: I'a mapadetypa, n Bvnopdtta teivel va etvar vynAdTePT GTOVG NAIKIOUEVOLGS
mAnBvopovg.

* X0POKTNPLOTIKA TOV GUGTHHATOG VYEOVOKNG mepiBaiymc: ['a mapddetypa, n Bvnodtta propet va
avénBel kabdg ta vocokopeia KatakAvLovTol Kot Exovv Aydtepous TOPOLG.

H EALdda katéyel v 4n Béom oy katdtoén Tov yopmv avdioyo pe Tovg aptBpods Bavdtov ava
100.000 tAnBvopov.

Merarldleic

Av Ko 01 TEPIEGOTEPEC UETAALAEELS GTO YOVIdimpo Tov kopwvoiov 2 (SARS-CoV-2) tov coPfapod 0&éog
AVOTVELGTIKOD GUVIPOUOL avouévetal vo, eival gite emPrafeic kot va e€apavifovtal ypiyopa 1 GYETIKA
0VOETEPEC, €vol LIKPO TOG0oTO B0 EMMPECEL TIG AELTOVPYIKES 1010TNTEG Ko Umopel va aAldEel )
HOALGUATIKOTNTA, TN coPapotnTa TG VOGOL N TIG OAANAETIOPAGCELS LE TNV avocia tov Eeviotn [14].
Yrdpyovv tpelg Katnyopieg mapairaydv coppova pe to Evponaikd Kévipo IIpdinyng kot EAéyyov
Nocwv:

» MetadrhGéelg avnovyiag. o avtéc Tig maporlayés eivoar Swbéoua coen otoryeio. Tov
VTOSEIKVOOVY GNUAVTIKT ETIOPACN OTN UETAOOTIKOTNTA, TN coPfapoTnTa /KOl TNV 0vVOGio oV
glvar mBavd va £yl OVTIKTLTO GTNV EMONUOAOYIKT KATAGTOOT).

»  Metaldaéelg evoropépovtoc. Ia avtég Tig TaporriayEs, VIapyoLV StaBEca oTOLYEID OYETIKA e
YOVIOLOUOTIKEG 1O10TNTEC, EMONUOAOYIKG GTOLKElR 1 oTolyEio in vitro mov Oa pmopodoov vo
GUVETAYOVTOL GNUOVTIKO OVTIKTUTO OTN UETASOTIKOTNTA, TN cofopdtnTa 1/Kotl TNV ovooia,
£€YOVTOG PEOAOTIKA OVTIKTUTO OTNV  EMONUOAOYIKY] Katdotoon. Qotdco, To oTolyEin
g€axoAovBolv va glval TpokaToPKTIKG 1] GLVOEOVTOL e UeYOAN afeBatdtnTa.

» Metahhaéelg vd mapakorovnon. Avtég ot mpdcbetec maparrayés tov SARS-CoV-2 €youvv
EVIOMIOTEL MG ONUATO HECH EMONUIKNAG VONUOGUVNG, EAEYXOL YOVISIOUATIKDY TOPUAAOYDV
Baoetl kavovmv 1 TPOKOTAPKTIKOV EMGTNHOVIKOV oTotyeimv. Ymhpyovv kdmoteg evdeitelg 6Tt Oa
UTOPOVGOV VA, £YOVV 1O10TNTEG TAPOUOLIES LE OVTEC LLOG TOPOUAANYNC TOV TPOKAAEL ovnoLyia,
aALG To. oTolKElo gival advvapo 1 dev éxovv akoun a&toloynbei and 1o Evpomaikd Kévipo
IIpoAnync kar EAéyyov Noécwv (ECDC).

Llpoinyn kou Euforiaouos

e 6A0 TOV KOGUO eappolovTal HETPa dNUOGLOG VYELNG Kol KOWVOVIKNG VYEIOG Yio TNV KATOGTOAN TNg
uetdooonc tov SARS-CoV-2 kot ) peiwon g Ovnoottog kot g voonpdtnrag and tov COVID-19.
Ta pétpa avtd TephapBavouyv HETPO OTOUIKNG TPOoTaciog (.. Kabapiopdc, amoldpavor, e&aepiopdc)-
UETPOL ETTAPNONG Kal amoOKpLong (7). SOKIUES, YEVETIKT aAAnAovyio, yyvnAdTtnon enapdv, oToudvmon
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Kol KOpovtiva): HETPO QUOIKNG amdoTaonG Kol oebvi pétpa mov oyetiCovtarl pe ta tagidow[17]. Ot
odnyieg tov [TOY ya v TpdAnyn g poéivvong amd tov SARS-CoV-2 givou:

* Alatiipnon euoikng amdotaons ToLAdytoTov 1 pétpov amd Tovg GAAOVS, OKOUA KL av 0gV GalveTal Vo
glvar AppwoTol. AToeuyn TV TANBMV Kot TG 6TEVIG ETAPNC.

* X0o1d Tomofetnuévn pnacka otav ogv givor Suvatn N ELOIKY ATOGTACT KOl GE YDPOLS LLE AVETOPKN
aepiopo.

* ZuyvoG KaBoplopoc TV YEPLOV LE TPIYILO XEPLOV UE PACT) TO OWVOTTVELUA 1) GATOVVL KOl VEPO.

* KédAvym 100 6TOUATOC KOl TNG UOTNG LE AVYIGUEVO ayKdvVa 1 XOpTOUdvTiLo og mepintmon Priya 1
QTEPVIoUATOG. ATTOPPIYN TOV YPNCILOTOMUEVOV YUPTOUAVTIA®Y OUECHOC Kol KOOUPIGUOG TOV YEPLOV
TOKTIKGL.

* AVTO-0mOpOVOOT) €0V VOTTTUYHOVV GUUTTOUATH LOAVVONG.
* Epfolacpog

Abdyo ¢ Tavonpiog Kopwvoiol, EYovv EPapPULOCTEL 6€ TOAAEG YDPES Kot TEPLOYESG GE OAO TOV KOGLO [t
CEPA amd UM QOPUOKEVTIKEG TopepPdoelc yvootég oty kabophoopévn o¢ lockdowns (mwov
TEPAMAUPAVOUY EVTOAEG TOPAPOVIG GTO OTITL, ATOYOPEVOT] KUKAOQOPIOG, KOPAVTIVEG, VYELOVOUIKA
KAEIGIHOTA KOl TAPOUOIOVE KOVMVIKOVG TEPLOPLGUOVC). .

Duoikd 10 emikpoTéoTtepPo PETPO katd ¢ e€dmimwong tov Covid-19 givar o gufoiocpog. Eivor o
acPaAECTEPOG Kol O a&OMIGTOC TPOTOG Yio. va. dnpovpyndel avooia og cvykpion pe ) voonon. O
guPforacuédg katd tov COVID-19 Bonbd otnv mpoctacio SNUovpyOVING U0 OTOKPIOT] OVIICMUATOV
yoplc va ypedletar n aviyetdnion dvvntikd coPopng acBévewng. Ta mpdta gppdia Covid-19
yopnynOnkov pe ddela ypnong Extaktne avaykng tov Askéuppio tov 2020, pOAG Eva ¥pOVO UETH TNV
Tavonpia, €vo «Bodpo» QOPUOKEVTIKAG KAWOTOUING oV €xel OMOEL mePimOv ekaToppvpla (ES 1
neprocotepeg povo ot HITA. H avoconoinon pe eupora Pfizer-BioNTech xor Moderna mRNA
mpootdtevce éva a&loonueinta VYNAS 1060010 (>90%) TV ANTTOV amd TNV aVATTLET CUUTTOUATIKNG
Aolpwéng ko, og pukpotepo Pabud, emione and acvuntopatikn poivvon. Katd to mpmto e£dunvo tov
2021, 6tav n dAgo mapariayn tov SARS-CoV-2 frav kupiopyn, 10 10606T0 OvnoidtTog amd Tov
Covid-19 peiwbnke kotd 60%, 75% kot 81% o kounteieg pe younn, pecaio kot vynAn epforaotiKn
KéAvym, o cOyKplomn pe kounteieg mov elyav moAd yopunAin kaivyn [18]. Tov Mdwo tov 2021, 1 Yanpeoia
Tpoopinwv ko1 Papudxov tov Hvopévov [oAtteiov kot o Evponaikoc Opyaviopog Poapudakov (EMA)
gveékpwvav n xpnon tov gpfoiriov Pfizer—-BioNTech, Comirnaty, yio modid niwiog 12—15 etdv. Xtig 25
Noeuppiov 2021, 0o EMA enékteve autiv v €£0061060TN0T 6€ Tod1d nhikiog S - 11 etdv. Ta epPoria
mov givar eykekpipévo yu yprion oty Evpomnaikh ‘Eveoon eivor ta Comirnaty (Pfizer-BioNTech),
Jeovden (mpornyovpévaog COVID-19 Vaccine Janssen), Nuvaxovid (Novanax), Spikevax (Moderna) kot
Vaxzevria (AstraZeneca). Ot avapvnotikég d0o€lg £xovv yoprynbel tovAdytotov 3 puiveg petd t dedtepn
d0oom og atopa nAkiog 12 etdv kot dve. Mo tétaptn avopuvnotikn 60om et Anedet otnv EALGSa Yo
gunadeig opddec pe cvvvoonpodtnTes. Ot a&lopoTodyol e dNUOGLOC LYELNG avnGLYOVV amd TNV apYN TNG
mavonpioag 6t ot sufoltocuoi dev Oa katovépovtot dikala o 6A0 Tov KOcpo. Ta dedouéva @aivetol vo
emPefardvovy awtovg Toug PORovg Kabmg Ta avertuyuéva £0vn epfortdlovv tovg TANBLGHOLS TOVG
TOAD T10 YPNYOpa Od TIG AYOTEPO AVETTUYUEVES YOPEG[4].



Ocpameio

O Opyaviopog Tpoepipov koar @appdxev tov HITA (FDA) evékpive 10 aviuxd ¢dpupoko Veklury
(remdesivir) ywo evAAIKEG kol OPIOUEVOLS modtaTpikovs acbeveic pe COVID-19. Avti eivar po
evoopréPa Bepameic. O FDA éyxer eniong eyxpivel tov avocsodiapopewt) Olumiant (baricitinib) yu
oplopévovg voonievopevoug eviiikee e COVID-19. Ze kataotdoelg EKTOKTNG AVAyKNg Yio T dnuocio
vyeia, o FDA pmopel va gykpivel ) ypron pUn £yKeKpEVOV QOPUAK®OV 1] U1 EYKEKPIUEVAOV YPNCEDV
EYKEKPLUEVOV QapubKmv VIO opilopéveg mpoimobécels. Avtd ovoupdletar e£ovcloddtnon ypnong
éxtaxtg avaykng (EUA). O FDA éxer exddoer EUAs vy apketég Oepoameiec LOVOKAOVIK®V
avticopdtov, yioo COVID-19 yu ) Bepaneia kot 6€ opiopéveg TepInTdceLg TNV TpOANYN (Tpo@Oiasn)
tov COVID-19 oe evilkeg kol moudwotpikovg aocbeveic. Ta povokimvikd oviioopoto givol
EPYOOTNPLOKE KOTOOKEVAGUEVE LOPLO TOV dPOVV (OC VITOKOTAGTATA OVTICOUAT. Y TAPYOLV EMIGNS 600
amd ToL 6TOUATOG avTtukd yamo, to Paxlovid kot to Lagevrio (poAvovmipafipr), eykekpipéva yio
acOeveic pe Nmo g pétpro COVID-19 [20]. To Molnupiravir ivai 1o Tp@TO 00 TOV GTOUATOG, AUECNS
dpdiong avtuxod mov Eyetl amoderyfel 6Tt eivat 15104TEPA AMOTEAEGUOTIKO GTN LEIDOT] TOV PVOPAPVYYIKOD
poivopatikod v SARS-CoV-2 kot tov ukovd RNA kot €xel €uvoikd mpo@id aoc@OAERG Kot
avektikémrog [21]. O Evponaikog Opyavicudg @appakov (EMA) €xer eykpivel yuu ypnorn otv
Evponaixn ‘Evoon to akéiovba edpuaxa: Evusheld(tixagevimab / cilgavimab), Kineret (anakinra),
Paxlovid (PF-07321332 / pitovafipn), Regkirona (regdanvimab), RoActemra(tocilizumab), Ronapreve
(casirivimab / imdevimab), Veklury (remdesivir), Xevudy (sotrovimab). O EMA a&woloyei eni tov
TOPOVTOG TIG OUTNOES Adgwg KukAopopiag yio to Olumiant ko to Lagevrio [22]. Avotuydg, ot
UETAPOAAOUEVEG TAPUALAYEG TOV 10V ENNPEALOVV TNV OTOTEAEGUATIKOTNTO T®V DEPOUTEIDV TTOV LITOPEL VO
amocLpBovv v amodelyBoHV AVATOTEAEGLOTIKEG EVOVTL UIOG CUYKEKPIUEVT|G TTOPOAAUYNC.

Meradotikotnro

Opiopéveg dnuooctevpéveg Lehéteg £xovv vtoroyioet 0Tt 0 RO (dniadn o avaropoywywods aptfuoc) yo
70 SARS @0dver mv Ty tov 4. Eivar evduoeépov 6t pia mpdoeatn avackonnon amd tov Liu kot tovg
ouvepyateg Tov [24] £0e1&e OTL 0 uEGOG avamapay®yikog aptdudc tov SARS-CoV-2 extpdton 0Tt gival
3,28 , pe péon mun 2,79, vmepPaivovtog €tol Tig extpnoes tov IIOY [7]. Ymapyovv dvo tpdmot
petdooong - aueomn ko Eppeon. H dueon Asttovpyia mepiiappdaver petddoon pécsm aepolor, dakpdmv,
oéhov, omépratoc Kor omd pntépa oe moudi. Ot éppecot Tpdmol TEPIAaBAVOLY TN HETAO0CT HECMH
UOAVGUEVOVY avTIKEWWEVAV [25]. O1 cuyypa@eic KOTOAMYOVV GTO GUUTEPAGLO, OTL 1] LETASOCT aTd UNTEPQ.
o€ moudi pmopet va givarl omdvia, oAAd Gyl evieAd¢ amovoa. Zoppova pe tov Iaykocuo Opyavioud
Yyetog (IIOY), o SARS-CoV-2 petadideton petady tov avlponwv pe dtbpopovg tpomovs. Ta tpéyovia
ototyeia delyvouv 011 0 16¢ e&amAdvetal Kupimg puetald atdpmv Tov Ppickovial o 6TeVY emapn HeTAED
TOVG, Y10 Tapddetypo og andotaot cuvopMac. O 10g unopel va eEomAmbel amd to otdpa 1) T HUTYH EVOG
HOALGUEVOL ATOUOV OE HIKPA coUaTide vypov otav Prxel, TepvileTol, JAGEL TPOYOLOAEL 1) AVOTVEEL.
‘Eva. dAAo dtopo pmopei otn cvvéxela vo tpocoPAndel amd tov 10 OTav To LOADCUATIKA GOUATIOW TOV
SEpyovTaL amd TOV 0€PO EIGTVEOVTIOL GE LKPN amoctaot (avtd ovopdletar cuyva aepolOA pukpng
guPéletac) N edv polvopatikd couatiown Epbovy 6e aueon eraen pe ta udtia, T PoT. 1 6T0 6TOUN
(petddoon otayovidiov). O 16¢ umopel emiong vo eéamiobel o avemapkmg oaeplopevovg 1
TOAVGVYVOGTOVG ECMTEPIKOVS YMDPOVS, OMOV ol AvOpwmol TEivovy va TEPVOUV UEYOADTEPES YPOVIKES
TEPLOO0VG. AVTO GupPaivel ETEON TA OEPOADLLOTO UTOPOVV VO, TAPUUEIVOLY LOPOVUEVE GTOV AEPOL 1) VO
ta&devovy HaKkpOTEPO amd TNV AmOCTAOT, GLVOMIALNG (avTd ovopdleTor cuyva agpolod peydAng
guPérerac). Téhog, o avBpwmor umopei emiong va poAvvOovv otav ayyilovv ta pdtio, T udT 1 T0 GTOUN.
TOVG AoV ayyiovv empaveleg 1| avTiKeipeva Tov £xovv LoAvvoel amd Tov 10.



MéBooor Aviyvevang

IIeprocotepa and €&t dicekatoppvpla teot Yoo COVID-19 €yovv o mpaypatorombei otov kocpo. O
€leyyoc yia tov 16 SARS-CoV-2 kot ta avtictoryo avlpmdmive aviicodpota eivol amapaitntog oyl Hovo
vy 1 Odyveon kot ) Oepameio g Aoipméng and tatpikd 18pdpata, oAAL Kou ¢ Tpobmodeon yuo
ONUOVTIKEC KOWOVIKEG Opactnplotnteg [26]. Ot teyvikég aviyvevong tov 100 mepauPavovy Tnv
aviyvevon ukdv copatdiov (virions), ukod aviydvov, avIIGOUATMY EVOVTLTOV 100 KOl UKOV VOUKAETKOV
oféog. Ymbpyovv tpelg Koatnyopieg peBddwv eEétaong: dwyvootikég dokipég PCR, dwayvootikég
g€etdoeic avtydvou kot Sokipée avticopudtov. Ot kopieg pébodotl aviyvevong tov o0 SARS-CoV-2
BaciCovtar otnv aviyvevon ukod RNA. H PCR eivor pia amd tig Kowveég Texvikég Tov YPp1oLLomotodvTot
Yoo TV oviyvevon ukod vouvkAgikod o&fog. H efétaom ovvnbog exteleiton oe detypo pvikov
emypiopatog 1 cdiov. To TE0T YPNOWOTOIEL [0, TEYVOAOYID YVOGTH ®F OAVGIOMOTH OVTIOPOOT
nmoivpepdong (PCR) yia va aviyvevset iyvn yevetikod vAkod tov SARS-CoV-2. H aviyvevon ukov
cOUOTIOIOV Kol avTyovovy gival o fiooiun evorioktikn Avon oty RT-PCR [27]. Avtéc ot uébodot
glvar SuvnTikd EONVES, POPNTES, YPIYOPES KAl UTOpovV va xpnoipomomBoidv yia tn didyvoon aclevov
GTO TPAOUO GTASIO TNG 10YEVOVNE AOTUENG. Agv amatteital vo eKTEAODVTOL OO EEEIOIKEVUEVO XEIPIOTH
KOl UITOPOVV VO, EKTEAEGTOVV amd ToLg i610vg Tovg acbeveig. H e&étaon mpayuatomoieiton cuvnbwmg o€
delypa pvikod M Aopod. Aviyvevel OpodoHOTO GUYKEKPIUEVOV UKDV TpoTeivedv. Ot e&etdoels
AVTICOUAT®V 1 0POAOYIKOV eEETAGEDY UTOPOLV VO, Bpovy edv Eva dtouo ThavoTata iye TPONYOOLUEV
Aotlpwén amd SARS-CoV-2. Avti n e€étaon aipartog dev dlaytyvokel gvepyn Aoipumén o0te mapéyet
TANPOQOPIES GYETIKA [E TN pakportpdBesun avooia. Ta edkd avticopata IgG, IgM kot IgA Tov SARS-
CoV-2 yivovtor cuyvOTtepa OVTIKEIHEVE, OViYVELONG YPNOLOTOIDVTAS OlopopeTikés pebddove. Ta
avtiocopote IgM epeovifovior oty ofgla @don g HOAvvVoNg Kot apov (TAGOLV GTO WEYIOTO,
UELDVOVTOL GE dlyveoTikd acnuavto exineda. Ta avticouata IgG cuecmpevovtal mo apyd and o
avticopota IgM, oAAdd Topapévouy vYMAAG oto aipa Tov acbevods TeplocdTepo. Metd v avippwon,
ta avticopota IgG propodv va topapeivovy o yapnio eninedo en' adPIGTOV MG EVOEIEN TPONYOVLLEVNG
Aotpwénce.

2ovurtouatao

Zoppova pe toug Russel M Viner et al. mopetdg kot fxog Tov T IO KOWE GUUTTMOUOTO. TO TOGOCTH
Ue TVPETO Kupoivovtay omd 46% Emg 64,2% wat pe Py amd 32% Emg 55,9%. Ola to GAAL GOUTTMOUOTOL
N onuela, ovumeprrapPoavouévng g pvoppolaS, TOL TOVOAOILOV, TOV TOVOKEPAAOL, TNG
KOT®GON G/ LOOAYIOG KOL TOV YUGTPEVIEPIKDY GUUTTOUATOV, GOUTEPIAAUPAVOUEV®VY TNE d1GPPOLAG KOl TOV
gUETOL, NTav omavia kot gpeaviCovtav og Myotepo and 10%-20% [28]. Ta cvpntdpate tov Covid-19
Kopaivovtal kafmg emkpotodv véeg mapairayéc. Emmiéov, o TIOY £€xel ocvpmepthdfer og moAd ko
GUUTMUOTO, EKTOG 0d TUPETO Kot fy0, KOTWoT), SDGTVOLN KOl OTMAELN YeEVOT G T 0cppnonc. . To Long
Covid avagépetar 6tav ot avBpwmor cuveyilovv va gppavilovv copntopota tov COVID-19 kot dev
AVOPPMVOLY TANP®G Y10 opkeTEG EBdoUAdEC 1 UAVES UETE TNV évapén TV cuurTOUATOV Tove. Ta Tévte
7O KOWVA cuurTdpoTe ey kKommon (58%), movoképarog (44%), diatapayn tpocoync (27%), andisio
poAlov (25%) kot dvorvola (24%). Alo cvumtdpate oyetiloviav pe mvevpovikny voco (Priyog,
dvogopio 6to 6THO0C, LELMUEVT TVELLOVIKT TKOVOTNTO, O16VoTNG, Grvole DITVOL Kol TVELUOVIKTY tvmon),
Kapdlayyelakd (appuduieg, pookapditidn), vevporoyikd (dvola, KatdbAnym, Ayxos, SlTapoy TPOCOYNG,
OEOYVYOVOYKOGTIKEG OLOTAPOYES). KOl OAAN NTOV [N EWOIKA OTOC 1| OTOAEN HLOAADY, O EUPOEC KoL O
voytepvoc Wpdtag. Evidomcav cuvolikd 55 poakpompdbecpeg emdpdoeic mov oyetifovrol pe tov
COVID-19 ot Biphoypaeio wov avackornOnke. Ot teplocdTEPES OO TIG EMOPAGELS AVTIGTOLOVV OE



KAWVIKO GUUTTOUOTO OTMG KOTMOT), TOVOKEPAAOS, TOVOG OTIG apBpdoelg, avoopia K.AT. Emmiéov,
vInpYav eMiong acBéveleg TG TO EYKEPAAIKO KoL O cakyapmong dapnng [29].

Il.  Biplioypagpixn Avaokornon

[Iponyovueveg peréteg £xovv deiletl 0Tl 0 PO amd SUKPLTE OVATVEVGTIKG GUVOPOLO EXEL OLOKPLTA
AavBavovta yapaxmpiotikd. H aviyvevon Prixa eivar éva Prpo mpoemelepyaciog mov kabopilel edv
vrapyet 1 Oyt Prixog og éva apyeio Nyov. H duckoiia avayvodpiong tov Priya ykettal kupiog oto 86pvfo
Tov TEPIPaAlovTog. Mepikd amo to Pabid vevpovika dikTua oV SOKIUAGTNKOY Y10, TNV aviyvevon Prya
Ntav o0 YAMNNet [50] kot To Ubicoustics [51]. Avtég ot apyitektovikég eivar og B€om va tagvopnicovv
£va evpv EAG O YOV TOV epeavifovtal cuyva 6to TepBdilov. EmmAéov, extdc and to fabid vevpmvikd
diktoa, ot epevvntég epdppocay évav ta&vounti XGBoost 6to0 cbvolo dedopévaov Coughvid yuo va
aQPALPECOVY EYYPUPES Yopig Py xpnopomowdvtag to 78% tov dwbéciumv dedopévov [54] . Xy
TPEYOVCO EPYACIN, VIOl TO GLUYKEKPIUEVO £PYO NG aviyvevons Pryo €xel ypnoomombei to cHoTua
aviyvevong Prxa mov meprypapetot £dm [55]. L& avtd T0 cVueTa ot Simou et al. TéTvyav akpifela g
TaEng Tov 90% o specificity g taéng tov 99% oe owiokd mepPdArov pe v afomoinon g
apy1TeEKTOVIKNG Pabidc vevpovikmv diktowv Long-Short-Term-Memory. Ot Bales et al. [56] npotewvay
£€va GOGTN O TOL UTOPEGE e EMTLYI VA OV VEDCEL Kol vt dlaympicet To cupPdvta frixa amd Tov B6pufo
Tov mepPdrioviog. Xpnoomoincov CNN yio vo EVIOTIGOUV TPMTO KOl VO Slo(@PIGOVV TOVG YOV
Brxo amd S10popeTikohg TOTOVE NYWOV. XTH GLUVEXELN XPTCLULOTOINGOY TOVS NYXOLS PY0 TTOV AVIVEDTNKOV
YL va Styvadcoovy Tpelg mbaveg aoBéveteg (onAaaon, Bpoyyitida, Bpoyytoiitida Ko KokkOT) pe Bdon Ta
HOVOSIKE YOpOKTNPLGTIKA 130V ToL Priya og éva evomomuévo mhaicto. Ot Quan et al. [39] apdtevay o
pnébodo avayvmpiong Pryxa mov Paciletor oe pacpatoypappate Mel kot éva Xvveliktikd Nevpmvikd
Aiktvo. Ou Infante et al. ypnowonoincav pia uébodo pnyavikng uddnong yo vo avayvopicovv tov
Enpo/uypd Prya [57]. H nu-emomtevdpuevn StavuoUaTIK Unyavi DTosThplEng dEVIpmV TpoTeiveTal Yo
avayvoplon Kor oviyvevon Prya. To K-NN eivor emiong évo oamoteleopatikd epyoieio mov
YPTOULOTOLEITAL GLYVE Yio TNV avayvodpton Tov Pyxa [58]. EmmAiéov, to Teyvnto Nevpovikd Aiktvo
(ANN), to Gaussian Mixture Model (GMM), 1o Support Vector Machine (SVM) kot dAheg péBodot
YPTOULOTOLOVVTOL ETIONG Yoo TNV ovaryvapion tov Prxa [59]. TToArég peréteg €xovv mpoomabnoel va
YPTOULOTOGOVY TNV TEYVNTH vonuoovvn yio v taévounon tov Covid-19 ypnoiponoidvtag qyovg
Brya. Ot gpgvvntég tov MIT avéntvéav éva mAiaico opkiog Al yio tnv aviyvevon tov Covid-19 amod
Kkatoypoeéc fya[60]. Ot Imran et al. [61] mapovciocay Vo OVATTUGGOUEVO EPYOAEID TPOKATUPKTIKNG
dtryvoong Baociopévo og Al vy tov COVID-19 ypnoiponoidvog fyovs fryo LECH HioG EPOPHOYNS TOVL
ovoudletar AI4COVID-19. O Brown et.al [62] ypnowomoincav évav aiyopiBuo mov Paciletonr ot
unyoavikn pdbnon yio va dtaxpivetl tovg yovg Prixe vyovg kat COVID-19 (mAnbucuiokd oedouéva) amd
acBevelg axoun Kol pe TPOHTAPYOVCES KOTOOTACES AoOpatog. Ot GuyypaQEls ava@épouy Lo LLEoT
uétpnon AUC 70% yio. Ti¢ epyacieg Tov avoaeEépovial 6t LeEAET. MeTd amd avtiv v Tpootabdela, To
épyo Coswara [63] ovvétoEe €éva oOVOAO Oedopévov Tov  TEPEYEL Mo TOWKIAMO MoV,
GUUTEPIAQUPOVOLEVOV TOV TOPATETAUEV®V @OVNUATOVY, TOL Py kot Tov potifov avarvorg. O Pahar
et al.[64] avértuéov Ta&vountéc Prixo COVID-19 ypnoponoimvtag nyoypoenoelg smartphone kot entd
apYITEKTOVIKEG pnyovikng ekpadnong. Ot Chaudhari et al. [67] dwamicTocay 0Tl £vo LOVTELO GUVOAOD
TPLDV YAPOKTNPIOTIKOV £0€1EE TNV KaADTEPT amodoct. To mpmto yapaktnpiotikd frav to. MFCCs, to
devtepo ta mel spectrograms kat to teElevTaio YOV o, SLASIKY ETIKETO CYETIKE LE TV TOPOLGia 1] TNV
ATOVGI0 TPEYOVCMV AVATVELGTIKOV 0COEVEIDV.

1. 270yo¢ ¢ dimiwuatikng

e avtn Vv gpyacia, o Covid-19 aviyyveveton pe pebddovg Pabidg uabnong omd deiypato Prixa. To
Pruoto Tpoenelepyociag amoTeA0VVTOL Ad QUTOUATY ovayvapion Prixe Kot peimon Bopvdfov yio pa
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gvaictn avaivon. H eravénon dedopévav viomoteiton emiong oto apyeia yov ywpig 06pvpo mpv avtd
TPOPOOOTNHOVY GTIG TEPLGGOTEPES APYITEKTOVIKEG Pobiig expddnong. Xtn cvvéyeln, ta opyeio Myov
petatpénovtal og mel spectrograms kot to TpoPAnpa avipetoniletor g epyacio TaEvounong SLadKNg
gwovag. Iapovoidlovrar evvéa apylTeKToVIKES Kot pio amd ovTég etvat o, GLVOALKT TPOGEYYIOT TPLOV
TpoekTadeVpEVOV Hovtélwv. H avicoppomia dedopuévav avtipetomiletol pe S18popeg TEXVIKESG, OTMG M
ekpadnon ocvvorov, 1 SMOTE ko 1 tuyaio vrepderypatoinyia, pe tig 600 tedevtaieg va epappolovrol
ot pabnon petagopdg moldamimv otadiov. Téhog, to LIME ypnowonoteital yio tnv gpunveio tomv
OTOTELEGUATOV TOV TOPATAV® OPYLTEKTOVIKOV Pabidg pabnomng.

IV.  Babia Mobnon

H Babid pabnon (DL), évag kAadog T punyovikng pabnong (ML) kot g teyvntig vonuoovvng (Al)
Bewpeitan onpepa wg 1 Pacikn teyvoroyia T onuepwvig Téraptng Bropnyovikng Enavactaonc. Adym
TOV dUVOTOTATOV EKUAONONG TG omd dedopéva, 1 texvoroyion DL gpapudletar evpémg o d14.9opovg
TOUEIG EPOPUOYDV OTMG 1 VYELOVOLUKT TEPIBAAYT), 1] OTTIKY| AVOYVOPLOT|, 1] AGPAAELN GTOV KUPEPVOYDPO
Kol TOAAG dAha [ 75]. Zta téhn tng dekaetiag Tov 1980, Ta vevpwvikd diktva Eywvav éva dladedopévo
0¢ua otov topéa g Mnyaviking Madnoncg (ML) kabmg kot g Teyvntig Nonpoosvvng (Al), Aoywm g
€QeHPEONC O10POPOV OMOTELECUATIKOY HeBOd®V eKpanong kol dopu®mv JKTOLOVL, OTMG T OIKTLA
perceptron TOALUTADY GTPOUATOV OV eKTodevTKOY omd akyopiBuovg tomov ‘Backpropagation’,
YOPTEG AVTOOPYAVMONG Kol dIKTLA GUVOPTNCEDY aKTVIKNG Bdong [76]. To 2006, to «Deep Learningy»
(DL) e10my6n amd tovg Hinton et al.[77] , o onoio Paciotnke omnv évvola TOL TEXVNTOV VELPOVIKOV
dwtvov (ANN). H teyvoroyio DL ypnoponolel moALamAd enimeda yio vo, avVOTOPOGTHGEL TIC OQOIPECELS
dedopévov yio ™ Snuovpyio VTOAOYIGTIKOV HovTEA®VY. 'Eva tuomikd vevpwvikd diktvo amoteieiton
Kupig amd TOALG 0TAd, GLVOESENEV oTOlXELD EMEEEPYATIiag 1) EMEEPYUTTES TTOL OVOUALOVTOL VEVPAOVEG,
Kkafévag amd Tovug omoiovg OMuovpyel po GEPE amd EVEPYOMOMGELS TPUYUOTIKNAG o&lag yuo. TO
amotélecpa-otoxo. O Sarker [78] otnv gpyacio tov mepéypaye TiG dopopeTikés epyacieg Pabdiig
uéonong chpemva pe Tig omoieg TpokvRITEL 1| TALVOUNGT TV dikTLMV Padidg uabnonc. O teyvikég DL
yopilovion og Tpelg peydreg kotnyopieg: (i) Pabid diktva yio emomtevdpevn 1 dtakpirikny pdbnon. (ii)
Babid diktva yio un emomtevdueVn N TOPAYOYIKY Hadnom. ko (iil) Badid diktva yio vPPOKN uadnon
OV GLVOVALEL Kot Tl 6VO KoL TO GYETIKA GAAQL.

2vvediktikd Nevpawvikd Aiktoa

Q¢ éva €idog pebodov Pabiac pabnone, ta Tvvehiktikd Nevpovikd Aiktva (CNN) ypnoyomolovvol
€VPEMS oToV Topén TG Opaons vroroyotdv. Ta CNN zmpoopilovran e181KA Yo TV OVIHETOTION LG
mokiMog oynudtev 2D kot ETouEvmg ¥pNGIUOTOI0VVTOL EVPEMG GTNV OTTIKY AVOYVAOPIST, TNV 0vViALGeN
WTPIKAOV EKOVMV, TNV KATATINON EKOVAS, TNV eneEepyacio QUK YAMoog kot ToAAd dAla. Ta CNN
AMOTEAOVVTOL OO TPELG TOTOVG EMTEOMV. AVTA EIVOL TOL GUVEMKTIKA 6TpdpOTa, Ta Pooling otpduota
Kol o TANPOG cuvdedeuéva otpopato. Otav avtd to enineda otolPdlovral, €xel doapopemOel o
apyrtektovikn CNN. To cuvediktikd otpodpa 0o kabopicel Ty ££060 TOV VELPOV®OV TOL GUVIEOVTUL LE
TIG TOTKEG TTEPLOYES TNG €GOS0V PEGH TOV VTOAOYIGHOD ToL Pabumtod yvouévov petaéd tov Papov
TOVG KOl TNG TTEPLOYNG TOV GUVOEETAL LE TOV OYKO E16000V. TN GUVEKELD, TO EMINESO GLYKEVTP®ANG Ol
TPOUYUOTOTOOEL OMAMG UEI®ON OEYHOTOANYING KOTA UAKOG TNG YWPIKNG dIoTAoTG TNG OEOOUEVNG
€100000V, LEWDVOVTOG TEPALTEP® TOV APIOUO TOV TOPAUETPOV EVTOG TNG EVEPYOTOINGTG.

Enovoiaufovoueva Nevpwvika Aiktoo,

"Eva emavorappavouevo vevpwvikd diktvo (RNN) eivat éva AL dnuo@iléc veupmvikd dikTvo, To 0moio
YPTOLLOTOEL S1AO0YIKA 1) DESOUEVA YPOVOGEPDY KOl TPOPOSOTEL TNV €000 0O TO TPOTNYOVUEVO Pripal
g €16000 oto TpEYOV otddlo [75]. Onwg 1o feedforward kot to CNN, ta emavarapfovopeva diktoo
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pafoivouv amd Ty elc0ymyn EKTOIOELONG, MGTOGO, JOKPIVOVTOL OO TN «UVIL» TOVG, 1 OTOi0 TOLG
EMUTPEMEL VO EMMPEACOVY TNV TPEYOVCH €i0000 Kol €000 YPNCUOTOIOVING TANPOPOPiEG amd
TPONYOVUEVES €16OJ0VE. Ze avtifeon pe 1o Tvmkd DNN, 10 omoio vobétetl 611 o1 gicodot kat ot £Eodot
glvan ave&aptnteg n o amd v GAAn, 1 é€0dog tov RNN g€aptdror and mponyovpeva ototyeio evtdg
g akolovBiag. O o dradedopéveg maporriayés tov RNN egivon  Long Short Term Memory (LSTM),
N apeidpoun RNN/LSTM «xot ov Gated recurrent units (GRU).

V.  2dvola Aedouévarv

Avo civora dedopévav Exovv ypnotponomBel v v gpyacio Ta&vounong g duryvaoong tov Covid-
19 and deiypota Pryxa. [To cvykekpyéva, Tpokettot yio. 10 6OvoAo dedopévev Coswara Kot T0 GOVOAO
dedopévov Cambridge. To Coswara otoygvel otnv avantuén €vog dyvOOoTIKOD £PYOAEioL Yo TOV
Covid-19 pe Baon tovg avamveLsTIKOVG NYXOVG, TOV Prixa kot Tovg Nyovg ophiog[63],[113]. H cvAloyn
dedopévav Eyve pécwm web epappoyn 6mov {nNtdnke and Tovg PNOTEC VA TOPAGHOLV UETAOESOUEVOL KOl
VO TPOYWPTGOVV GTNV EYYPOET TOV SEIYUATOV X0V XPTCLUOTOUDVTAS TO UIKPOP®OVO TNG Guokevng. Ot
dnpociol cuppeTE)OVTEG TapEiyav 9 apyeia Myov £va Yo Kabe katnyopia fyov: avomvor (dHo tomot, pnyd
Kot fadud), ryog (600 tHmot, pnyodg Kot Papic), TAPATETAUEVT] TPOPOPAE POVNEVTOV (TPELG TOTOL, / ey /,
/1/,/a: /), xon petpadvrog amod Eva Emg eikoot ymoeia (800 €100V, Kavovikd kot ypriyopo). I'a kdbe ypiotn,
T LETUOEOOUEVE UTOPOVY VO, OUad0ToMBovV o€ TEVTE JLaKPITEG KoTyopieg: nAkia, OAO, Tomobecia
(xopa, Todteio/enopyia), TPEYOVOA KATAGTACT VYELOS KOl TAPOVGIN GLVVOGTPOTHT®V (Tpoimdpyovceg
wTpikéc mobnoeg). H katdotaon g vyelag mepilapfavel «oyi», «ektebeipnévny, «Bepamsvpuévny» 1
CUOAVCUEVIY). ZE QLT TN LEAETN, YPT|CLOTOUGOLE TIG OKATEPYAGTEG NYOYPAPTGELS TOL POV Prya Kot
OV €VTovVoL Pryo ¢ 60 Eexmpilotd cuvola dedopévov kot epappdcape tpoenesepyocio. Ymapyovv
2744 deiypato uVOMKAE, OAAG ovo 2661 amd avTd £X0VV TEPLYPAPT KATAGTAONG VYELNS, 0LpOV VITAPYOVY
83 deiypota vd emkvpwor. To Zynua la wapovctdlel TNV KATOVOUN TOV JEIYUATOV He Paon Tnv
KOTAGTAOT VYELNG.

To oVvolo dedopévav Tov Cambridge givot £va GOVOLO dEGOUEVOV TOL GUALEYETOL LEGM ULOIG EPAPLLOYNG
(Android kot Web) mov {nrtovce amd eBehovtég delypato TG @mVNG, TOL By Kot TG avamvong Tovg,
KaOME Kot TO 1TPIKO 1GTOPIKO KOl T GUUTTOUOTA TOVG[62]. O ¥pNoTNg KaAgiTaL Vo, EIGAYAYEL TNV NAIKIO
Kol T0 OAO TOV KOBMG KOl £VO GUVTIOUO WTPIKO 1GTOPLKO Kot €V VOGIAEVETOL GTO VOGOKOUETD. 2T
GUVEXELN, O YPNOTEC EIGAYOLV TO GCLUTTMOUATA TOVG (0V VILEAPYOLV) Kol KATAYPAPOLY OVOTVEVGTIKOVG
Nyovg: kKokovvtor va fREovv Tpelg popég, va avamvedoovy Babid and To GTOUN TOVG TPELS EOG TEVTE POPEG
Kol va dwPdoovv o covtopun TpodTacn mov epeaviletal otnv 00ovn tpeig popés. Télog, ol ypnoteg
gpot@vTaL v £xovv ereyydei yio COVID-19 kou cuAiéyeton dgiypa tomobeciag pe dosia. Yrdpyovv 141
detypoto Covid amd 66 povadikovg ypnoteg kou 298 detypata un Covid mov amokthOnxav and 220
povadikovg yprotec. Telkd, ypnopworolovvtar 124 dsiyparta covid kot 276 pun Covid (Zynua 1B) kot
aLTO V10Tl KOTOPYOHVTOL Ol EYYPUPEC TV 101V YPNOTOV TToL avePaivouy 6g Aydtepo amd 24 dpeg.

VI.  Ilpoerelepyaaio Aedouévarv
Avoyvapion Biya

To Universal System for Cough Detection in Domestic Acoustic Environments [55],[114]
YPMNOLOTOONKE Yo TNV CQLTOHOTN CVOYVOPIoT TOV OEYHATOV Prixo mov Kotoympnonkav oto
akatépyacto apyeic Myov. To Universal System for Cough Detection og owiokd axovoTiKd,
TEPPAALOVTO TPOGPEPEL TO TAEOVEKTIUA TNG IGYXVPNEC ONUAVOTG TOV NYNTIKDY YEYOVOT®OV. XPNGUOTOLEL
€VaV aVIYVELTN OKOLOTIKNG Evapéng og Pripa mpoeneiepyaciog, e GTOYXO VO aviYVEDCEL TOUPOPUNTIKE
potifa ot por Myov. Xe éva eTOUEVO Prina, 1 61aKkplon TV cVUPAVTEV Bya amd GALOLS TOPOPUNTIKODS
Nyovg avtpetonileToar g epyoacia Svadikng ta&vounong.
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Positive asymptomatic

status
Healthy
No respiratory illness exposed
Respiratory illness not identified
wes Fully recovered
Positive moderate
m= Positive mild
Positive asymptomatic

Positive mild

) Positive moderate

Healthy
¥ Fully recovered

Respiratory illness not identified

No respiratory iliness exposed

(o) (B)

Tympe 1: Katavopn tov detypdrov aviloya pe v katdotaon vyeiog yia to (o) Coswara () Cambridge covoro dedopévov
Apaipeon Gopvfov

"Eva onpovtikd mpofinpo mov tpoépyeton amd ded0UEVE TOL TPoEPYOovToL omd mANBog sivarl 1 EAAenym
KOVOTNTOG EAEYYOV TOV NY®V 6TO TEPPAALOV Kol TNG TOWOTNTOG TOL HIKPOE®MVOL. [ To Koo aLTo,
ypnowonoteitar o Piprodrxn mov ovopdletor Noisereduce[116]. To Noisereduce eivar £€voag
alyopdpog peimong BopvPov e python mov pewdvel To 00pvPo G GNUATA GTOV TOUED, TOV XPOVOL OTMS
olAia, PloakovoTiky Kot uatoroykd onuoato. Baciletor o pia pébodo mov ovopdleton "QAGHOTIKN
mOAN" mov eivor o popen ®opvfov. To Zyfuo 2 amewovilel TIG KUUOTOHOPPES Kol TO
QOCHOTOYPALLLOTE TOV oNpaTog Prye acBevois pe Covid o) mpwv ko B) petd ) peiwon tov Bopvfov.

Enavénon Aedouévaov

H enavénon oedopévov eivar vmoxpemTiky yioo pKpd cOVOAO OdOUEVOV OTOV YPNCUYLOTOLOVVTOL
GUVEMKTIKG, VELPOVIKE dikTuo EMEWDN AVTIUETOTILEL TN OTAVIOTNTA SESOUEVAYV, AVEAVEL TNV EVPOCTIO
TOV HoVTEA®V, PEATIOVEL TV aKPiPeln TV HOVTEA®Y, LEIDVEL TNV VTEPTPOCUPUOYN Kol e€otkovouel
TOPOVS Yl TN GLAAOYN Kol TNV emoNpovorn dedopévav. ). [ Tovg 6KOmovg auThg NG €pyaciog
yxpNoonold dvo Pifiobnkeg python, t librosa[119] kot Tig audiomentations[120]. Mia PBapotepn
avEnon dedopévav €xel epaplootel 6To GUVOLO dedopevav Ttov Cambridge Adyw Tov YeYovOTOG OTL Elvon
UIKPOTEPO KL TTLO EMPPETEG G€ VIepTpocapuoyn amd to Coswara heavy kot to Coswara shallow.

8192 8192

4096
4096

2048

H;

1024

1024

- L

512

Time

() ®

Zympe 2: Ot KOULOTOHOPPEG KoL TO PACLLOTOYPALLLATO TOV ofjpatog fiya acbevoig pue Covid a) Tpwv kot B) petd tn peioon tov
Bopvpov.



VII.  Apyrtexrovikés Babidg MabBnong mov ypnoiuomoifnroy

Evvéa povtéla pe 1o kaivtepa amotedéopata yio v taéwvopunon tov Covid-19 ypnoyomomOnkav. Tpia
amd oVTO €lval TPOEKTAIOEVUEV VEVPOVIKE dikTva G6T0 cOVOAo dedopévav ImageNet[122] kot ta
vrdhoma givol TPOTOTOMGELS VITapPYOVTOV pHoviéhov ot Pipioypapio kabdg kot €va otolPayuévo
VEVPOVIKO JiKTLO, TO 0Toi0 CLVOVALEL TIG TPOPAEYEIC TV TPOUVUPEPHEVTOV TPOEKTOUOELUEVDV
dwmowv. Ta tplo mpoexmardevpéva diktva eivor ta Xception, InceptionResnetv2 kot Resnet50.
E&etdomray emiong kot dAla tpogkmaidevpéva diktua, onmg to Inceptionv3, VGG-16, EfficientNetBO,
MobileNetv2, Densenet121, Resnetl8 aAAd 6ev métvyav a&ioAoya amoteAéopota. Ta vtoloute LovTéda
givar 10 VGG-13, éva CNN og ouvdvaopd pe Bi-LSTM, éva CNN og cuvdvoopd pe BIGRU, éva
GUVEMKTIKO emavolapuPavopuevo vevpovikd diktvo kol 1 mopadiayn evog DenseNet diktbov mwov
ypnowonoteitar oe gpapuoyég avayvopiong opdiag, to DenseNet Speech. Ou opyrtektovikég
mapovstaloviol oto Zynpota 3 — 7.

predictions 1
covid-19

i 2 predictions? \ o —-{ threshold l::
: —-————J : / non-Covid

iverage predictions

augmented data

predictions3

Resnet50

Zyqpa 3: TCRNN opyitextovikn Yympea 4: Stacked CNN apyitektovikn
| [
B B R P ~ FpimE
- s = 2 s S a
- TEFIEIRY 1 iR 1k F i : 2 H
2 § 2 £ 2 * a =~ ] Cf EEEN c — —_ o R =
g TEARARY I EREREN AR AN 3 2
§ 5 & | & |22 g g |2 2 g Iz B E 3 2
H Fl8 (2302 (8 | A 2 g |2 B S g
H g & 3 L] S N ) s
| =Y
ympe 5: CNN-BIiGRU apyttektovikn
ST

Dense Block
Transition Layer
Dense Biock
‘ OenseNet Speech | Transmon Layer
~ [ DenseBock_
Flatien

|
~ T Comvi128
Input Size 12864 Conw 6 216

64*32

Tympe 6: DenseNet Speech apyttektovikn Zyfqpa 7: VGG-13 apyitektovikn
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Awaotovpodusvy Emikbpwaon

To obvoro dedopévav yopiletar og 5 mTvyéc, He o Kabéva va mepieyet to 20% tov GuVOAIKoD GUVOAOL
K01, GTN] GLVEXELN, TO MOVTELO EKTOOEVETOL OTIG TTUYEG k —1, evdd pével pio muyn yoo T SOKU €vOg
povtédov. Avt 1 dwdkacio eravarapfdvetor 5 popés. H mapandve dwaduacio axkolovbeitat yia to
oVvoAo dedopévav Tov Cambridge, aAld Yo To cbvolo dedopévav Coswara (pnyog Pryag Ko Bapidc
BMxoc), éva ochvoro dokipav (20% tov cuvorov Tov GuVOLOL dedouévmv) dutnpeitatl amd TV oPYN Ko
o1 ovvéyelr to dedopéva exmaidevong ywpilovior cOUPOVE HE TG OpYES TNG OLOGTAVPOVUEVNG
emkvpoong. Kot ta Vo chvora dedopévav £xouy Ty 1101TEPOTNTA TOV 1010V ¥PNCTOV (ONANdT TV
YPNOTAOV TOV GLVOEOVTAL L TOAAATAEG £YYpapéq). H exmaidevon kot ot Sokipég 6To 1010 GHVOAO ypnoTdv
UTOPOvV Vo dOGOLV TPOUEPE TAPATAAVITIKG 0TOTEAECUATA TOV dgV Ba TpofAéyouy TV amddocT Tov
delypatog og véovg ypnotec. H exmaidevon oe moALOTALG £YYPUPEG/TAPATPNGELS 0O TOV 1010 XPHOTN
yiveton amodektn, aAld Ta dedopéva dokung TPémet va etvar aveEaptnta amd o dES0UEVE EKTOIOEVLOTC.
I'o 1o Aoyo avtd emotpatevetar to GroupShuffleSplit kotd 1o daywpiopd ce cHvora ekmaidevong,
EMKOPOOTG, OOKLUNG.

Avicoppornio KAaoewv

Xy ta&vopnon kKAvikov dedopévov, o un tooppomnuévog apiudg detypdtov dedopévav, Omov
TOVAGYIOTOV o amd TIG KOTNyopieg omoteAel POVO o TOAD UIKPT HEOYNQie ToV OE00UEVOYV,
gpeaviCetor moAd cuyva[138]. 1o chvoro dedopévov Cambridge kot oto cvvora dedouévav Coswara
v Bopod Py ko Coswara Priya pryd, n kotnyopio Covid-19 vroeknpoconeiton kot 1 avaroyio peTa&d
atopov yopic Covid kot Covid-19 givor 2:1. T'o TV avtipet®@mion avtod Tov {NTANATOS, EPUPUOCTNKE
po péBodog ekpabnong svvorov. Ilpadtov, 10 chvoro dedopévav ywpiletor oe chvora ekmaidevong,
emkOpwong ko dokipdv. To oet ekmaidevong mepéyel to 60% tv dedopévav, evd 1 SOKIUN Kot M
emkvpoon mepEyovy 20% to kabéva. Xtn cuvéyeln, M avénon O6edopévev QupuUolETal GTO GET
ekmaidevong povo Ko yio Tig 600 katnyopies. Ta 6eT eMKHPOONG Kot SOKIU®OV TOPEPEVAY OUETAPAN T
STNPAOVTOG TNV OPYIKT KOTOVOUN TOV SEIYUATOV o6Tlg 000 Katnyopieg (OnAadn 2:1). Xtn cuvvéyelo,
voletONKE WO 1GOPPOTNUEVT] TPOGEYYIGT] VTOSEYUATOANYING, OOV dNUIovpyRdnKav vrocHvoia
eknaidevong, dwtnpavrog o avoroyio 1:1 peta&d g tdéng g mietoyneiog (un Covid) kot g
uetoynoiag (Covid-19) [139]. H 16En un Covid tov oet eknaidevong ywpiotnke oe 500 et icov pey£bovg
KOl GUYY®VEVLTNKE UE Ta SelyIaTa OAOKAN PTG TNG LELOVOTIKTG TAENGC. £2G £k TOVTOV, dnpovpynnkay dvo
1GOPPOTNUEVE, VTTOGVVOAQ, TTOV TTEPLEXOVV Ta, G amd To apyikd deiyparta un Covid kot OAa o, deiyuoTo
Covid-19, 6nmg @aiveton 6to Zynuo 8.

Training Set Balanced Subset 1 Balanced Subset 2

| J H"\ ]

Covid-19 non-Covid Covid-19 non-Covid Covid-19 non-Covid

Zympa 8: MéBodog expdbnong cuvorov
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VIII.  MaBnon Metopopag Iloiomiav Ztadiwv

AbYo omd tig stacked CNN apylteKTOVIKEG TTOV TEPIYPAPNKOY TPONYOLUEVMS YPNOYLOTOLOVVTOL [E TIG
TpoPAéyelc cuvolov Tev Taévountdv va vroioyiloviar katd péco 6po. Eeapuodletor mevtamidoio
e TOVPOVUEVT ETIKOPOON TPOKEWEVOL Vo, kKafopiotel 1 akpifewa, to precision, n svaicbncio, n
gwwomrta, 1 AUC ko 1o Fl-score tov povtéiov. Ta amoteAéopoto 6TO UN €XAVENUEVO GUVOLO
dedopévav tov Cambridge emPePaimocav 4T Tpoeknaidevon oe Vo cHvora dedopévav mov oyetifovrol
pe Tov Pryo emruyydver vyniotepa anoteléopata dokipdv. To Coswara cough heavy kot to Coswara
Cough Shallow exmaidevovtal ¥pnoYOTOIOVTOS T0G0 TuYain vVIepderypatoinyio 6co kor SMOTE. O
616)0g tov MSTL eivar vo emweeAnBodue amd tn yvodoN TOL OROKTATOL HEGH TNg pabnong oe
drapopetikd otadio tov TL. H dwdikasioo MSTL weprdappaver Metagpopd Mabnong 3 otadiov kot to
Tpio wpoekmandevpéva, povtéda eivan ta Xception, InceptionResnet-v2, ResNet50. Olo ta poviéda
ekmondevTnKay yo 20 enoyés. £10 TpdTO 6TAd10, TO BApn ToL gival mpoekmadevuéva oto ImageNet
eopt@vovtal ypnotponowmvtag to Keras. 1o dgbtepo 6Td010, To PApn 0pYIKOTOIOVVIOL GE AVTE TOV
omoKT@VTOL pPE TNV ekmaidevon tomov dedopévev Coswara yia to Popd Prye. EmmAiéov, otav
exmoudevetal to Coswara Cough Shallow, gpoppodletar grid search mpokeyévov va kabopiotodv To
Bértiota Bdpn Yoo v aBpoion tv TpoPAréyenv kdbe ta&vount. ‘Eva otabuiocuévo cuvoro givar pia
EMEKTACT] EVOG GUVOAOL HEGOV OPOL HOVTEA®V OOV 1 cLUPorn KaBe pédlovg otnv TeEMKN TPOPAewn
otabuiletal amd v anddooT TOL LOVTEAOV. AVTO 001YNGE GTOV OPIGUO TV akOAoVO®V w¢ Papav [0.2,
0.2, 0.6] yio Ta Xception, InceptionResnetv2, ResNet50 avrtictoya, mpdypo mov onpaiver 0Tl TO
ResNet50 cupfdariet ta péyiota oto d0poicua twv tpoPfréyemv pe cuvtedeotn 0.6. X1o tpito otddio, To
oVvolo dedouévmv tov Cambridge ekmoidedeTon YPNOUOTOIOVTAG T Pépn OV amoKTHONKAY 0o TNV
eknmaidevon tov Coswara ywo 1o pnyod Pryxe. H Swdwkacio o@oivetor o100 Zynua 9.

Pretrained on ImageNet Coswara Cough Heavy (80%-20%) Coswara Cough Shallow(80%-20%) Cambridge Dataset(80%-20%)
Aceplion Xception Xoeplion Xceplion
stage 1 TL: : :
Inceplion Resnet v2 . > . Inception Resnet v2 :Stage 2 TL . Inceplion Resnet v2 - . Inception Resnet v2
e f— g ‘stage 3 TL

Resnat 50 Resnet 50 Resnet 50 Reznet 50

=

Bujsn ugely

Bupdwesiaan wWopueys | OWS
Busn ujely

Buydw esiaag wopueyd |LOWS

| desk ‘

casﬂe‘ | | | Covid-19 |

Covid-19 non-CDvid| ‘ Covid-19 ‘
| 11 ] '

non-Covid non-Covid

Grid search for the
weights to sum the
predictions

Zyqpa 9: MSTL Swdikooio
IX.  Amoteléouara

To povtého Stacked CNN givol To HOVTELO GUVOLOL TOV TPUDV TPOEKTALOEVUEV®V SIKTOMV Kot £)YEL
KOADTEPT amOO0GT 0d To GAAC, pOVTEAN OTOY €KTOISEDETOL 6TO GUVOAO dedopévav Coswara Cough
Heavy. To TCRNN, to omoio cionyfn apyikd yw v ta&vounon mepPoarloviikod myov Kot
TPOTOTOONKE YO TIG OVAYKES TNG TPEYOLOUG EPYACING, £XEL GLUVETY] GUUTEPLPOPA, KOOMG ivar TO
KOADTEPO HUOVTELO Y100 TO oOVOLO dedopévav Coswara Cough Shallow kot 0 6g0tEPO KAADTEPO Y10 TO
Coswara Cough Shallow. Avt6 0o uropotce vo anodobei oto yeyovog 6t ta CRNN expetaiievovton To
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GUVEMKTIK( EMIMESD £TGL MOTE VO EEAYOVV TOMIKEG TANPOPOPIES KAl To EMAVAAOUPAVOLEVO ETLTEDA Y10
VoL TI GLVOLAGOVY GE Eva PEYAADTEPO YPpovikd TAaicto. To ResNet50 gival 1o mpoekmadevévo dikTvo
o1o ImageNet mov emituyydvel KOAITEPO OMOTEAEGLOTO GE GUYKPIOT LE TO VITOAOLTO TPOEKTAUOEVUEVQL
NN yio 1o ovvoha odedopéveov Coswara Cough Heavy wor Coswara Cough Shallow, evd 1o
InceptionResNetV2 Eemepvd To VTOAOWTO TPOEKTAOEVUEV SIKTVA Y1O. TO GOVOAO OESOUEVOV TOV
Cambridge. To vPBp1dikd CRNN pe pnyovioud mov Paciletor omnv mpocoyn emtuyydvel vynAdTEP
amoteléopata 6tav cvvdvaletar pe Eva BiLSTM yuo 1o cuvoro dedopévav Coswara Cough Heavy ko
pe o povada BiGRU yio to dAda 600 cOvora dedopévov. Ta anoteléouata mov Aappdvoviot and o
VGG13 givor mpopavdg kakdtepa yia To cuvoro dedopévov Coswara Cough Heavy and ta dAla chvola
dedopévav. I'evikd, to Coswara Cough Heavy mpocpépel kaidtepa amotedéopato ta&vounons. Tao
amoteléopata Tapovoidlovtal otovg Tivakeg 1-4.

Mivexag 1: Metpikéc a&loldynong yia to ovvodro dedopévaov Coswara Cough heavy

Model Accuracy AUC Precision Recall Specificity F1-
(%) (%) (%) (%) (%) score
(%)
Xception 65,84 61,82 55,31 48,26 75,13 51,38
InceptionResnetV2 69,24 65 52,1 53,14 76,86 52,6
Resnet50 69,14 65,17 54,62 52,85 77,5 53,72
Stacked CNN 74,1 70,86 64,7 59,68 82,05 62,1
TCRNN 71,1 66,4 66,1 54,8 78,5 59,9
VGG13 70,52 66,9 58,82 54,68 79,14 56,7
CRNN+ALtt+BIiLSTM | 69,15 65,08 53,78 52,89 77,28 53,33
CRNN+ALtt+BiGRU | 65 63,81 67,22 47,62 80 55,75
DenseNet Speech 70,25 65,39 35,29 57,53 73,45 43,69
Mivokag 2: Metpikéc a&lorldynong yia o cdvoro dedopévov Coswara Cough Shallow
Model Accuracy AUC Precision Recall Specificity F1-
(%) (%) (%) (%) (%) score
(%)
XCeption 60,61 58,11 52,25 44,27 71,98 47,93
InceptionResnetV?2 59,69 58,1 55,86 43,66 72,47 49,01
ResNet50 62,18 60,77 60,36 46,53 75 52,55
Stacked CNN 63,12 61,16 58,55 47,45 74,86 52,42
VGG13 56,87 59,74 72,73 42,78 76,69 53,87
TCRNN 76,67 76,16 74,02 71,32 81 72,65
CRNN+ALtt+BiLSTM | 60,16 59,4 61,63 43,44 75,37 50,96
CRNN+ALtt+BiGRU 64,1 61,2 55,81 47,06 75,3 51,1
DenseNet Speech 63,67 64,34 73,25 47,37 81,3 57,53

X.  Epunvevaiuotnto. mpofréyewv

Opiopéveg amd T TPOPAEYELS GTO GET SOKIUDY EEETAGTNKAY Y10, TNV TOLOTIKT a&0AGYNOT TNG
amodoong tov InceptionResnetV2 yia to ochvoro dedouévov Coswara Cough Heavy. ' to okond avtd
YPNOLOTOELTAL TOTTIKT EpunvevSiun uEBodog ayvmotikdy eneénynoemv povtédov (LIME). 1o Zyfua
10 mapovcialovror Tapadsiypato epunveiag yio pio aAndn apvntikn (o) Kot pio Weudme apvnTikn
nepintoon (B). Edd 1o apvntikd onpaivel ypnoteg un Covid. To mapamdve oynua delyvel L EMGTPEPEL
7o LIME ¢ e&fynon otnv npofieyn ta&ivopnong eiovoy.
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Mivakoeg 3: Metpikéc a&loAdynong yu o cuvoro dedopévev Cambridge

Model Accuracy | AUC Precision Recall Specificity F1-
(%) (%) (%) (%) (%) score
(%)
Xception 59,72 58,15 59,09 39,39 76,92 47,27
InceptionResNetV?2 62,5 60,95 63,63 42,42 79,49 50,9
ResNet50 57 59,83 72,73 39,02 80,64 50,79
Stacked CNN 62,32 62,12 66,7 48,48 75,75 56,15
VGG13 62,5 61,97 68,18 42,86 81,08 52,63
TCRNN 70,2 52,2 57,93 54,4 72,3 56,1
CRNN+Att+BiLSTM | 64 63,86 72,72 44,44 83,33 55,14
CRNN+Att+BiGRU | 62,5 64,22 77,27 43,59 84,85 55,74
DenseNet Speech 59,82 59,18 63,63 40 78,37 49,12
Mivakag 4: Metpucég A&oddynong yio to Cambridge dataset katd to multistage transfer learning
Feature Imblance Accuracy | AUC | Precision Recall Specificity | F1-
Handling (%) (%) (%) (%) (%) score
(%)
Mel SMOTE 67,87 65,9 63 54,49 77,3 58,44
Spectrogram | Random 69,34 70,2 78,03 56,3 81,56 65,4
Oversampling

Yyfqpe 10: (Apotepd) to apywxd mel spectrogram xou (&) n e€nynon tov LIME ya (o) aAnBdg apvntikd, (B) wevdodg

apvnTIKO detypa.

@)

(b)

To Zynua 10 (a) deiyver v meployn ¢ ekdvog (super-pixel) mov €xovv 1oyxVPOTEPTN GYEOT UE TNV
wpoPreyn "non Covid", eved to 10(b) dciyver ta super-pixels mov £yovv 1GxVPOTEPN GYECT UE TNV
katnyopia "non Covid" aAld 1 ewdva NTov ec@oipévn tagwvounon. H é£odog tov LIME eivan pa Alota
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enefnynoewyv, mov avtikatomtpilel T cLUPOAN KAOE YoPaKTNPIGTIKOL otV TPOPAeyM evOg detyratog
dedopévey. Avtd TOPEYEL TOTIKN EPUNVEVLGILOTNTO KOL ETITPENEL EMIONG VO TPOGOLOPIGTOVY TOIEG
aAAOYEG YAPOKTNPOTIKAOV B €yovv Tov peyoivtepo avtiktumo otnv mpdPreyr. And TO0 TOPUTAVED
mapadetypa tpoadiopifovpe 61t ta vYNAGTEPA VIEGIUTEL TAilOVV TO OTUAVTIKO POAO GTNV TAEVOUN O
gvog mel spectrogram og pn Covid, kabcdc¢ to mel spectrogram taivoundnke cwotd. To yevdmg
apYNTIKO Topaderypo Aappavet voyn youniotepn évracn fyov (dB), Tpdypo mov onuaivel 6Tt avtd to
YOPOAKTNPLOTIKA EXOVV LKPOTEPO OVTIKTVTO.

Xl.  2vumepaouoro — Merlovuky Epevvo

O 1tpoémog pe tov onoio 1 COVID-19 emnpedlel T0 avomveLsTIKO GVGTNLO EIVOL OVGIAOTIKG LOVOSIKOG
Kol ®G €K TOVTOV, 0 Pyag mov oyetiletorl pe ovtny gival mBavo vo £xel emiong povoadikd Aavodavovta
YOPOKTNPIOTIKA. ZUVOTTIKA, GTNV TOPOVGH SMAMUATIKY epyacia, mapovstdleTor pia pébodog yio v
ENEEEPYAGI TOV NYOYPOUPNCEWMV, TNV avixveLST Tov Pya, TV eEaymyn pacpatoypappdtoy mel Kot v
tavounon tov dsiypdtov oe COVID-19 1 non COVID-19. 'Exouv ypnowomombei tpia cbvora
dedopévov, To cuvoro dedopéveov Cambridge kot Vo akdpn oV TPOEPYKOVTAL OO TO GVVOLO SESOUEVMV
Coswara. Mia and tig kOpieg mpokAncelg oy 1 vaeprpooapuoyn (overfitting) n omoio avipetoniomke
pe dbpopeg texVikég, Omws M L2 kavovikomoinon kot 1 depévvnon pnyotep®V apyLTEKTOVIKAOV, Y10
noapadetypa VGGI13 avti yio VGG16 1 VGG19, DenseNet Speech avti yio DenseNet201. Mo GAAN
TPOKANON oyeTileTOn HE TNV avicoppomio. KAAcE®mV. AlepeuvinONKaV SLOQPOPETIKEC TPOGEYYIGEIC Yo TNV
tagwounon tov detypdtov o COVID-19 v non COVID-19. I'ia to okond avtd, SoKIHAcTKaY EVVEQ
SLOQOPETIKEG apYLTEKTOVIKEC Pabidg pabnong. Opiopéveg omd avtég mephapuPavouy VEPLOIKEG TEYVIKES
ekpadnong mov ocvvovdlovv CNN kot BiLSTM 1 BiGRU. 'Eva poviého cvAloyikng pabnong mov
amoteleiton amo Tpia wpoekmadevpéva povieha oto ImageNet TE€Tuye IKAVOTOUTIKA ATOTEAEGLOTA V10!
0 ovuvoro odedopévav Coswara Cough Heavy, kot cvykekpyéva okpipeio 74,1%, AUC 70,86%,
Precision 64,7%, Recall 59,68%, Specificity 82,05% xat F1-score 62,1%. To TCRNN E&enépace Tig
EMOOCELS TMV VIOAOITOV OPYLTEKTOVIKMOV GE 600 GUVOAN dedoUEVAV, TO chVoLo dedouévev Cambridge
kot 70 Coswara Cough Shallow, 610 omoio nétvye axpifeia 76,67%, AUC 76,16%, Precision 74,02%,
Recall 71,32%, Specificity 81% a1 F1-score 72,65%. To MSTL a&lomoiei 6Aa ta dtabéoyia ochvora
OedOUEVOV TIPOKEEVOL Vo eTm@PeAnOel amd T yvodon mov omokthdnke péow g uddnong oe
dapopetikd otddio g dadikooiog Transfer Learning. Tvvovaleton pe v ekudbnon cuvorov yio
avicoppomio TAENS Yo To GuVoLo dedopévav Tov Cambridge. Metd and avtr| trn dadikacio, ot LETPNOELS
alordynoneg kot ewdwd n AUC, 1 oakpifeie xor to Fl-score £dei&av a&loonueiont PeAtioon.
Youmepaivetor 0Tl N Tpoeknaidevon og 600 cuvaen Ue TNV epyacia Ta&vounong chvoro dedOUEVOV
TPOCPEPEL KOAVTEPT] OPYIKOTOINGT TV PapdV TOL HOVTEAOL Kot Apa pobaivel o OmTOTEAECUATIKA TO
YOPOUKTNPLOTIKA GTO TPITO GUVOLO OEGOUEVMV.

H pedlovtikn épgvva Bo pmopovoe va meptapuPavel dilec dabéoiueg povnTikég AglTovpyiec, OTOS M
avamvon Kot 1 opdio, Tépa amd Tov Pye TOL avaAvETOL GE ovTH TNV gpyacia. Ot TPOKANGELS TOV
oyetilovial e TNV amoGoeNVIoT e GAAEG TAOOAOYIES TOV AVOTVEVGTIKOD UE TOPOUOLN GUUTTOUATO
TOPOUUEVOLV TTPOC OVTILETMRTIOT. ASOOUEVOL OTL OL aPYLTEKTOVIKES fadidc pabnong uropodv va Edyovv
TOALOTTAG OPAKTNPIOTIKA, 1) GUVEVMOGT YOPUKTNPIOTIK®OV B0 HTopovce va ival VoG amoTEAEGLOTIKOG
TpOmog yuo. vo, Pektiwbel  dwdikacio tagvounonc. EmumAéov, Oa pmopovoay va ypnoipomomfodv
Prodeixteg g gicodot, pali pe pacuatoypappota, MFCC 1 ewdveg, oe mopdiinieg apyrtektovikég. Ot
Brodeixteg Bo pmopovoay va TEPLEYOVY EMTAEOV YOPOUKTNPIGTIKA GYETIKA LE To. cupmTdpota tng COVID-
19.
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Chapter 1

Introduction

1.1 Covid-19

COVID-19 (COrona Virus Disease of 2019), caused by the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV?2) virus, was declared a global pandemic on February 11, 2020 by the World
Health Organization (WHO). The Severe Acute Respiratory Syndrome previously was pandemic in
2003[11]. Research evidence suggests that SARS-CoV and MERS-CoV originated in bats. SARS-CoV
then spread from infected civets to people. To date, the origin of SARS-CoV-2 which caused the COVID-
19 pandemic has not been identified. The scientific evidence thus far suggests that SARS-CoV-2 likely
resulted from viral evolution in nature and jumped to people or through some unidentified animal host
[12]. Reports trace the outbreak back to a massive market that sold live animals, among other goods, in
Wuhan, China , and a third suggests that the coronavirus SARS-CoV-2 spilled over from animals —
possibly those sold at the market — to humans at least twice in November or December 2019 [13].At the
moment of writing, there were 569.771.691 active cases of COVID-19 globally, and there had been
6.383.776 deaths, with the USA reporting the highest number of cases (90.390.184) and deaths
(1.026.937)[14]. According to the World Health Organization, in Greece 4,21 million cases have been
confirmed and 30,707 deaths have been reported[15].

Coronaviruses are important pathogens that can affect the lower respiratory tract in humans and can cause
diseases ranging from a simple cold to severe infection with up to 50% lethality[16]. COVID-19 seems
not to be very different from SARS regarding its clinical features. However, it has a fatality rate of 1.1%,
lower than that of SARS (9.5%) and much lower than that of MERS (34.4%) [17], but it can differ in
people who have comorbidities [18].

The most common symptoms in COVID-19 patients include fever, cough, fatigue, dyspnea and the
sputum [19]. According to WHO, loss of taste or smell is also a very common symptom while less
common symptoms are sore throat, headache, aches and pains, diarrhea, a rash on skin, or discoloration
of fingers or toes, red or irritated eyes. Diarrhea is more common in SARS [17]. Among serious symptoms
are difficulty in breathing or shortness of breath, loss of speech or mobility, or confusion and chest pain.

The reproductive number (Ro) of the novel infection is estimated by the World Health Organization
(WHO) to range between 2 and 2.5, which is higher than that for SARS (1.7-1.9) and MERS (<1),
suggesting that Covid-19 has a higher pandemic potential [17]. Due to incorporation of more individual
case information and travel data, the estimate for Ro in Wuhan was revised upward from 2.2-2.7 to 5.7
[20]. The virus can spread from an infected person's mouth or nose in small liquid particles when they
cough, sneeze, speak, sing or breathe.

From the beginning of its appearance, Covid-19 has mutated several times, which is a common behavior
of viruses. Most changes have little to no impact on the virus’ properties. However, some changes may
affect the virus’s properties, such ashow easily it spreads, the associated disease severity, or the
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performance of vaccines, therapeutic medicines, diagnostic tools, or other public health and social
measures[21].

1.1.1 Demographics

As stated earlier, at the moment there are 569.771.691 active cases of COVID-19 globally, and there had
been 6.383.776 deaths, with the USA reporting the highest number of cases (90.390.184) and deaths
(1.026.937) [14]. The overall reported number of Covid-19 cases from the beginning of the pandemics
until July 24 2022 is depicted in Figure 1.1. Johns Hopkins University has created and daily updates an
open data repository with international analytics on the SARS-CoV-2 pandemic. Figure 1.2 shows the
daily number of cases in Greece for the last two years. The abatement of mask use measures and the
increasing tourist flows which results in overcrowding, have led to a subsequent outbreak of daily cases
on the summer months of 2022.

989.766

565.207.160

Not Applicable
6.373.739

Figure 1.1: Heat map showing the number of cases across the world since the beginning of Covid-19 pandemics
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Figure 1.2:Number of daily cases in Greece since the beginning of Covid-19 pandemics

1.1.2 Fatality Rates

Most people infected with the virus will experience mild to moderate respiratory illness and recover
without requiring special treatment. However, some will become seriously ill and require medical
attention. Older people and those with underlying medical conditions like cardiovascular disease,
diabetes, chronic respiratory disease, or cancer are more likely to develop serious illness[15]. The case
fatality rate (CFR) of COVID-19 is reported to be 1.1% but it can differ in patients who have other pre-
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existing conditions and it differs across countries, as well. In some patients, especially those with other
underlying diseases, there may be a respiratory failure, arrhythmias, shock, kidney failure, cardiovascular
damage, or liver failure [22]. One of the most important ways to measure the burden of COVID-19 is
mortality. Countries throughout the world have reported very different case fatality ratios (i.e. the number
of deaths divided by the number of confirmed cases). Differences in mortality numbers can be caused by:

o Differences in the number of people tested: With more testing, more people with milder cases
are identified. This lowers the case fatality ratio.

o Demographics: For example, mortality tends to be higher in older populations.

e Characteristics of the healthcare system: For example, mortality may rise as hospitals become
overwhelmed and have fewer resources.

For the twenty countries currently most affected by COVID-19 worldwide, the bars in the chart below
show the number of deaths. Figure 1.3 (b) depicts the number of deaths per 100 confirmed cases (i.e.
observed case-fatality ratio) and Figure 1.3 (a) the number of deaths per 100,000 population (this
represents a country’s general population, with both confirmed cases and healthy people). Countries at
the top of this figure have the most deaths proportionally to their COVID-19 cases or population, not
necessarily the most deaths overall. Greece holds the 4" position in Figure 1.3 (a) which means that the
overall number of deaths is big in proportion to the general population since the CFR is equal to 0.7,
probably because of the high number of daily tests. Figure 1.4 shows the number of daily deaths in Greece,
which is currently in recession despite the outbreak of cases. Figure 1.5 details the number of deaths by
age in United States as of July 13, 2022 [23].

Ttaly
United Kingdom
Greece
Thailand

@) (b)

Figure 1.3:Number of deaths (a) per 100 confirmed cases (CFR) (b) per 100,000 population [4]

Number of Dally Deaths

Figure 1.4:Number of daily deaths in Greece since the beginning of the pandemics[4]
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1,015,431

50-64 years 189,281

232,603

262,080

262,131

Figure 1.5:Number of Covid-19 deaths in the U.S. by age as of July 13, 2022[13].

1.1.3 SARS-CoV-2 variants

Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome
are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect
functional properties and may alter infectivity, disease severity or interactions with host immunity [24].
There are three categories of variants according to the European Centre for Disease prevention and
Control:

» Variants of concern. For these variants clear evidence is available indicating a significant impact
on transmissibility, severity and/or immunity that is likely to have an impact on the
epidemiological situation.

» Variants of interest. For these variants, evidence is available on genomic properties,
epidemiological evidence or in-vitro evidence that could imply a significant impact on
transmissibility, severity and/or immunity, realistically having an impact on the epidemiological
situation. However, the evidence is still preliminary or is associated with major uncertainty.

» Variants under monitoring. These additional variants of SARS-CoV-2 have been detected as
signals through epidemic intelligence, rules-based genomic variant screening, or preliminary
scientific evidence. There is some indication that they could have properties similar to those of a
variant of concern, but the evidence is weak or has not yet been assessed by European Centre for
Disease prevention and Control (ECDC).

Table 1 shows the variants of concern and table 2 shows the variants under monitoring. With regards to
the titles of each column, these are conventions that have been made for describing mutations. As of 31st
May 2021, WHO proposed labels for global SARS-CoV-2 variants of concern and variants of interest to
be used alongside the scientific nomenclature in communications about variants to the public [25].
Lineage and additional mutations ape the variant designation specified by one or more PANGO lineages
and any additional characteristic spike protein changes. The Phylogenetic Assignment of Named Global
Outbreak Lineages (PANGOLIN) is a software tool developed by Dr. Aine O'Toole in order to implement
a dynamic nomenclature (known as the PANGO nomenclature) to classify genetic lineages for SARS-
CoV-2 [26]. Country first detected is only present if there is enough evidence linking the mutation with
the first country if detection. Year and month first detected as reported in the GISAID EpiCoV database.
Transmission in the EU/EEA is categorised as dominant, community, outbreak(s), and
sporadic/travel. Evidence is given on three different areas, transmissibility, immunity and infection. Each
category is described as:

» increased or reduced, if there is enough evidence that the variant is different enough from
previous variants and hence will have an impact on the epidemiological situation.
» Similar if there is enough evidence that the variant is similar to previous circulating variants
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» Unclear if the evidence is incomplete or contradictory

> No evidence

WHO LINEAGE | COUNTRY | YEAR AND | TRANSMISSIBILITY | IMMUNITY | SEVERITY | TRANSMISSIO

LABEL FIRST MONTH IMPACT IMPACT IMPACT N IN EU
DETECTED | FIRST

DETECTED

Omicron | BA.1 South November | increased increased | Reduced | Community
Africa 2021
and
Botswana

Omicron | BA.2 South November | increased increased | Reduced | Dominant
Africa 2021

Omicron | BA.3 South January No evidence increased | No Community
Africa 2022 evidence

Omicron | BA.4 South February | No evidence increased | No Community
Africa 2022 evidence

Table 1: Variants of Concern at the time of writing

WHO LINEAGE | COUNTRY YEAR AND | TRANSMISSIBILITY | IMMUNITY | SEVERITY | TRANSMISSION

LABEL FIRST MONTH IMPACT IMPACT IMPACT IN EU
DETECTED | FIRST

DETECTED

Omicron | BA.3 South November | No evidence No No detected

Africa 2021 evidence | evidence

Table 2: Variants under Monitoring at the time of writing

It is worth noting that at the time of writing of this thesis, the omicron BA.2 variant is dominant in

Europe.

1.1.4 Infection Prevention and Vaccination

Public health and social measures (PHSMs) are being implemented across the world to suppress SARS-
CoV-2 transmission and reduce mortality and morbidity from COVID-19. PHSMs include personal
protective measures (e.g. physical distancing, avoiding crowded settings, hand hygiene, respiratory
etiquette, mask-wearing); environmental measures (e.g. cleaning, disinfection, ventilation); surveillance
and response measures (e.g. testing, genetic sequencing, contact tracing, isolation, and quarantine);
physical distancing measures (e.g. regulating the number and flow of people attending gatherings,
maintaining distance in public or workplaces, domestic movement restrictions); and international travel-
related measures[27]. The guidelines of WHO to prevent the contamination from SARS-CoV-2 are:

Keep physical distance of at least 1 metre from others, even if they don’t appear to be sick. Avoid

crowds and close contact.

Wear a properly fitted mask when physical distancing is not possible and in poorly ventilated

settings.

Hands cleaning frequently with alcohol-based hand rub or soap and water.
Cover your mouth and nose with a bent elbow or tissue when you cough or sneeze. Dispose of
used tissues immediately and clean hands regularly.

Self-isolation if symptoms of the infection are developed.
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e Vaccination

Due to the COVID-19 pandemic, a number of non-pharmaceutical interventions colloquially known as
lockdowns (encompassing stay-at-home orders, curfews, quarantines, cordons sanitaires and similar
societal restrictions) have been implemented in numerous countries and territories around the world.

So far, the most prevailing measure against the spread of Covid-19 is vaccination. It is a safer and more
reliable way to build protection than getting sick with COVID-19. COVID-19 vaccination helps protect by
creating an antibody response without having to experience potentially severe illness or post-COVID
conditions. The first covid-19 vaccines were administered under emergency use authorisation in
December 2020, just one year into the pandemic, a “miracle” of pharmaceutical innovation that has saved
an estimated million lives or more in the US alone. Immunization with Pfizer-BioNTech and Moderna
MRNA vaccines protected a remarkably high percentage (>90%) of recipients from developing
symptomatic infection and, to a lesser extent, from asymptomatic infection too. During the first half of
2021, when the alpha variant of SARS-CoV-2 was dominant, the covid-19 mortality rate was reduced by
60%, 75%, and 81% in counties with low, medium, and high vaccination coverage, compared with
counties that had very low coverage [28]. In May 2021, the United States Food and Drug Administration
and the European Medicines Agency (EMA) authorised the use of the Pfizer-BioNTech vaccine,
Comirnaty, for children aged 12—15 years. On 25 November 2021, the EMA extended that authorisation
to children aged 5 - 11 years. The vaccines that are authorized for use in the European Union are
Comirnaty (Pfizer-BioNTech), Jcovden (previously COVID-19 Vaccine Janssen), Nuvaxovid (Novanax),
Spikevax (Moderna) and Vaxzevria (AstraZeneca). Comirnaty contains tozinameran, a messenger RNA
(mRNA) molecule with instructions for producing a protein from SARS-CoV-2 and it is given as two
injections 3 weeks apart. Jcovden is made up of another virus (of the adenovirus family) that has been
modified to contain the gene for making a protein found on SARS-CoV-2. A booster dose has been given
at least 2 months after the first dose of Jcovden in people aged 18 years and older. Nuvaxovid contains a
version of a protein found on the surface of SARS-CoV-2 which has been produced in the laboratory and
it is given as two injections 3 weeks apart. Spikevax contains elasomeran, a messenger RNA (mRNA)
molecule with instructions for producing a protein from SARS-CoV-2 and it is given as two injections 28
days apart. Finally, Vaxzevria is made up of another virus (of the adenovirus family) that has been
modified to contain the gene for making a protein from SARS-CoV-2. Vaxzevria is given as two
injections, usually into the muscle of the upper arm. The second dose should be given between 4 and 12
weeks after the first dose. Booster doses have been delivered at least 3 months after the second dose to
people aged 12 years and older. A fourth booster dose has been taken in Greece for vulnerable groups
with comorbidities. Public health officials were concerned since the start of the pandemic that
vaccinations would not be equitably distributed around the world. The data appears to be confirming those
fears as developed nations are vaccinating their populations far faster than less developed countries[14].
Figure 1.6 shows a heatmap of the percentage of people fully vaccinated around the world. In Greece,
73.2 % of people are fully vaccinated with 21.23 million doses. The alarming low rate of COVID-19
vaccination in Africa has made the continent trail behind in the vaccination campaign, thereby putting the
global vaccination progress under threat [29]. This might be the reason why current variants of concern
and variants under monitoring were first detected in South Africa (Table 1, 2).

26


https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/how-they-work.html
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/how-they-work.html
https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html
https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html

A

Figure 1.6:Heat map showing the percentage of vaccinations around the world [4].

1.1.5 Treatments

The U.S. Food and Drugs Administration (FDA) has approved the antiviral drug Veklury (remdesivir) for
adults and certain pediatric patients with COVID-19. This is an intravenous therapy. The FDA has also
approved the immune modulator Olumiant (baricitinib) for certain hospitalized adults with COVID-19.
During public health emergencies, the FDA may authorize the use of unapproved drugs or unapproved
uses of approved drugs under certain conditions. This is called an Emergency Use Authorization (EUA).
The FDA has issued EUAs for several monoclonal antibody treatments, for COVID-19 for the treatment,
and in some cases prevention (prophylaxis), of COVID-19 in adults and pediatric patients. Monoclonal
antibodies are laboratory-made molecules that act as substitute antibodies. There are also two oral
antiviral pills, Paxlovid and Lagevrio (molnupiravir), authorized for patients with mild-to-moderate
COVID-19 [30]. Molnupiravir is the first oral, direct-acting antiviral shown to be highly effective at
reducing nasopharyngeal SARS-CoV-2 infectious virus and viral RNA and has a favorable safety and
tolerability profile [31]. The European Medicines Agency (EMA) has approved for use in the European
Union the following medications: Evusheld(tixagevimab / cilgavimab), Kineret (anakinra), Paxlovid (PF-
07321332 /ritonavir), Regkirona (regdanvimab), RoActemra(tocilizumab), Ronapreve (casirivimab /
imdevimab), Veklury (remdesivir), Xevudy (sotrovimab). EMA is currently evaluating marketing
authorization applications for Olumiant and Lagevrio [32]. Unfortunately, changing variants of the virus
affect the efficacy of treatments which may be withdrawn if proven ineffective against a certain variant.
Table 3 analyses some of the most common antiviral treatments as described from Centers for Disease
Control and Prevention [33].

TREATMENT WHO CAN TAKE IT WHEN IT SHOULD BE | HOW
TAKEN

Paxlovid Adults, children ages 12 | Within 5 days of when | Orally

years or older symptoms start

Veklury Adults and children Within 7 days of when | Intravenous
symptoms start

Bebtelovimab Adults, children ages 12 | Within 7 days of when | Single intravenous

(monoclonal antibody) years or older symptoms start injection

Lagevrio Adults Within 5 days of when | Orally
symptoms start

Table 3: Treatments of Covid19
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1.1.6 Transmissibility

The basic reproduction number (Ro) is a well-known epidemiological concept to measure the spread of
an infectious disease. Some published studies have estimated an Ro for SARS reaching the value of 4.
Interestingly, a recent review by Liu and colleagues [34] has shown that the average reproductive number
of SARS-CoV-2 is estimated to be 3.28, with a median value of 2.79, thus exceeding the WHO estimates
[17]. Two modes of transmission exist - direct and indirect. The direct mode includes transmission via
aerosols, tears, saliva, semen, and mother-to-child. Indirect modes include transmission via fomites [35].
Authors conclude that transmission from mother-to-child may be rare, but not completely absent. Further
data is needed to find the details on this mode of transmission. Transmission from mother-to-child can be
prevented by delivering the neonates in negative pressure isolation rooms. Figure 1.1 demonstrates the
dominant transmission modes. According to the World Health Organization (WHO), the SARS-CoV-2 is
spread between people in several ways. Current evidence suggests that the virus spreads mainly between
people who are in close contact with each other, for example at a conversational distance. The virus can
spread from an infected person’s mouth or nose in small liquid particles when they cough, sneeze, speak,
sing or breathe. Another person can then contract the virus when infectious particles that pass through the
air are inhaled at short range (this is often called short-range aerosol or short-range airborne transmission)
or if infectious particles come into direct contact with the eyes, nose, or mouth (droplet transmission).
The virus can also spread in poorly ventilated aor crowded indoor settings, where people tend to spend
longer periods of time. This is because aerosols can remain suspended in the air or travel farther than
conversational distance (this is often called long-range aerosol or long-range airborne transmission).
Finally, people may also become infected when touching their eyes, nose or mouth after touching surfaces
or objects that have been contaminated by the virus.
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Figure 1.7:Transmission modes of Covid-19 infection
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1.1.7 Testing Methods

More than six billion tests for COVID-19 has been already performed in the world. The testing for SARS-
CoV-2 virus and corresponding human antibodies is essential not only for diagnostics and treatment of
the infection by medical institutions, but also as a pre-requisite for major semi-normal economic and
social activities [36]. Techniques of viral detection include detection of viral particles (virions), viral
antigen, antibodies to the virus, and viral nucleic acid. There are three categories of testing methods:
diagnostic PCR tests, diagnostic antigen tests and antibody tests. Major methods of detection of SARS-
CoV-2 virus is based on detection of viral RNA. PCR is one of the common techniques used to detect
viral nucleic acid. The test is typically performed on a nasal swab or saliva sample. The test uses a
technology known as polymerase chain reaction (PCR) to detect trace amounts of genetic material of
SARS-CoV-2. Once a swab is taken, its viral RNA is isolated from the sample and then converted into a
complimentary strand of DNA. Then using the PCR technique, the DNA is multiplied to create thousands
of copies, allowing a large enough sample to test for SARS-CoV-2 genes. Detection of viral particles and
antigen is a viable alternative to RT-PCR [37]. These methods are potentially inexpensive, portable, rapid,
and can be used to diagnose patients at the early stage of viral infection. They are not required to be
performed by a skilled operator and can be run by patients themselves. The test is typically performed on
a nasal or throat swab sample. It detects fragments of specific viral proteins. After a swab is collected, the
sample is mixed with a liquid and then placed on a testing strip. As the sample flows down the test strip,
SARS-CoV-2 antibodies in the test can recognize and bind to viral protein fragments, if present. This
protein fragment-antibody complex appears as a visible, colored line. Antibody or serology tests can
find whether a person likely had a previous SARS-CoV-2 infection. This blood test does not diagnose an
active infection or provide information about long-term immunity. SARS-CoV-2 specific IgG, IgM, and
IgA antibodies most often become objects of detection using different methods. IgM antibodies appear in
the acute phase of infection, and after reaching the maximum, they decrease to diagnostically insignificant
levels. 1gG antibodies build up more slowly than IgM antibodies, but they remain high in the patient’s
blood longer. After recovery, 1gG antibodies can remain at a low level indefinitely as evidence of a
previous illness.

1.1.8 Symptoms and Long-Covid

According to Russel M Viner et al. fever and cough were the most common symptoms; proportions with
fever ranged from 46% to 64.2% and with cough from 32% to 55.9%. All other symptoms or signs
including rhinorrhoea, sore throat, headache, fatigue/myalgia and gastrointestinal symptoms including
diarrhoea and vomiting were infrequent, occurring in less than 10%—-20% [38]. The symptoms of Covid-
19 range as new variants prevail. Moreover, WHO has included as very common symptoms, other than
fever and cough, fatigue, dyspnea and loss of taste or smell. CDC urges to seek emergency medical
attention if trouble breathing, persistent pain or pressure in the chest, confusion, inability to stay awake
or wake, pale, gray, or blue-colored skin, lips, or nail beds, depending on skin tone are some of the
symptoms.

COVID-19 can involve persistence, sequelae, and other medical complications that last weeks to months
after initial recovery. According to Sandra Lopez Lion et al. it was estimated that 80% of the infected
patients with SARS-CoV-2 developed one or more long-term symptoms. Long Covid refers to when
people continue to experience symptoms of COVID-19 and do not fully recover for several weeks or
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months after the start of their symptoms. The five most common symptoms were fatigue (58%), headache
(44%), attention disorder (27%), hair loss (25%), and dyspnea (24%). Other symptoms were related to
lung disease (cough, chest discomfort, reduced pulmonary diffusing capacity, sleep apnea, and pulmonary
fibrosis), cardiovascular (arrhythmias, myocarditis), neurological (dementia, depression, anxiety,
attention disorder, obsessive— compulsive disorders), and others were unspecific such as hair loss, tinnitus,
and night sweat. A couple of studies reported that fatigue was more common in females, and one study
reported that post-activity polypnea and alopecia were more common in females. They identified a total
of 55 long-term effects associated with COVID-19 in the literature reviewed. Most of the effects
correspond to clinical symptoms such as fatigue, headache, joint pain, anosmia, ageusia, etc. In addition,
diseases such as stroke and diabetes mellitus were also present [39]. Figure 1.8 presents all the symptoms
of long covid according to the above research.

Long-term effects of COVID-19
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Figure 1.8:Long-term effects of coronavirus disease 2019 (COVID-19)[29]

1.1.9 Consequences

COVID-19 has rapidly affected the day to day life, businesses, disrupted the world trade and movements.

The impacts of COVID-19 in daily life are extensive and have far reaching consequences. These can be

divided into downsides on economy, on healthcare system, on psychology/society and on environmental

issues. Covid-19 has burdened the existing medical system, overloading doctors who are at very high risk.
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Meanwhile, patients with other health problems were neglected, pandemic led to cancellation of many
health care visits resulting in non prevention or diagnosis of serious illnesses and cancer. Poor cash flow
in the market, due to the continuous lockdowns for example, led to huge losses in national and
international businesses. On a society level, quarantines and lockdowns had detrimental effects on mental
health by increasing stress and social distancing from the peers and family members [40]. Furthermore,
the environmental toll of disposable masks is dramatically increased in a planet suffering from climate
change due to overproduction and overconsumption.

1.2 Related Works

The inability to test at scale has become humanity’s Achilles’ heel in the ongoing war against the COVID-
19 pandemic [41]. The limited availability of testing due to geographical and temporal factors, the scarcity
and expense of clinical tests needed to cover the massive time-sensitive demand combined with the fact
that vaccinations are not highly effective in the current variants of concern make imperative the need of
investigating the feasibility of a preliminary diagnosis tool. Therefore, various intelligent diagnostic
approaches have been proposed in the literature to fight against this pandemic situation. Several of them
involve the use of artificial intelligence applied to images. For example, it has been demonstrated that
COVID-19 can be detected from computed tomography (CT) images[42] and from X-ray images [43]
with deep learning methods. Another school of thought, proposes the extraction of features from cough,
breath and speech samples (either handcrafted or automatically extracted from VGGish networks [44])
which are fed into logistic regression, support vector machines and neural networks .

1.2.1 Feature Extraction in Audio Recognition

Several researchers have studied how to extract features of sound and recognize the sound. Feature
extraction is the key of speech and audio processing. Spectral features computed from windowed Discrete
Fourier Transform (i.e. DFT) or Linear Predictive (i.e. LP) models are used in most of speech processing.
The DFT and LP models perform good under clean conditions but verification accuracy degrades under
different surrounding. Shintri et al. [45] used Mel Frequency Spectrum Coefficient (MFCC) as a method
of extracting audio features. They proposed a multitaper MFCC feature extraction method which extracts
low variance MFCC features from the speaker’s voice samples. For speaker verification the extracted
feature is used to design a model using classifier Gaussian Mixture Models (i.e. GMM), in order to decide
whether to accept or deny the registered speaker. They achieved an accuracy of 87.5% with multitaper
MFCC extraction as a method which is higher compared to the typical MFCC extraction. Xie et al. [46]
used MFCC to recognize abnormal voice. Many attempts have been made to analyze the cough type, its
intensity and its sound from its acoustic properties. In the study of Singh et al.[47] a Linear Predictive
analysis of cough signal is done. For a short duration of milliseconds the cough signal was considered as
a stationary system for carrying out linear prediction analysis. The main aim of this study was to classify
the ailment cough and healthy cough and compare it with normal voice of speakers. Swankar et al. [48]
applied logistic regression on a comprehensive set of features including MFCC, Formant Frequencies,
non Gaussianity on 178 cough instances from 46 subjects collected using a bed-side microphone. They
were able to achieve 80% sensitivity and 73% specificity. Quan et al.[49] use mel spectrograms and a
convolutional neural network in order to distinguish cough sounds. Cai et al. [50] compared the impact of
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different input features on the performance of cough recognition. The input features were namely Short-
Time Fourier Transform, Mel Spectrograms, Log Mel Spectrograms and MFCC. Among the four input
features they selected Mel spectrograms because they achieved the best accuracy (92.67%). And it has
the best sensitivity, which may be largely due to the enhancement of certain features of cough during Mel
conversion, which increases the accuracy of recognition. Other studies have introduced the concept of
visual multi feature fusion according to which multiple features are combined for image classification
tasks. Peng et al. [51] analyzed the effect of single features such as Mel Scale Spectrogram, Log-Mel
Scale Spectrogram, and Mel frequency cepstral coefficient as well as multi-feature such as Mel-MFCC,
LogMel-MFCC, and Mel-LogMel-MFCC. The experiment results showed that in the environmental
sound classification tasks, multi-features are better than the single features in the same dimensions, and
LogMel-MFCC has the strongest robustness. Xie et al. [52] has used both visual and acoustic features to
train a CNN and combine the results of both domains to classify a bird sound. They have transformed the
audio data through Constant Q-Transform (CQT), which is the input feature to CNN. For acoustic
features, they have chosen spectral centroid, spectral bandwidth, spectral contrast, spectral flatness,
spectral rolloff, zero-crossing rate, the energy of the signal, and Mel Frequency Cepstral Coefficients
(MFCC). For acoustic and visual feature classification, they have compared the results of K-NN and
Random -Forest classifier. Non Matrix Factorization spectrograms and MFCCs have been used for
diagnosing covid-19 from cough samples [53]. To calculate the NMF-spectrogram feature, they first did
a fourier transform on the audio files to get the spectrum features. After that, they performed a Non-
negative Matrix Factorization on the spectrum. Then, they took the resulting non-negative matrix without
the temporal values.

1.2.2 Cough Classification and Cough Detection

Prior studies have shown that coughs from distinct respiratory syndromes have distinct latent features.
Cough is a powerful reflex mechanism for the clearance of the central airways of inhaled and secreted
material. Typically, it follows a well-defined pattern, with an initial inspiration, glottal closure and
development of high thoracic pressure, followed by an explosive expiratory flow as the glottis opens with
continued expiratory effort [54]. Air from the lungs passes through the trachea and larynx and into the
vocal tract pharyngeal, oral and nasal cavities. The way in which we breathe while speaking, including
the rate and length of an exhalation and its intensity and variability, highly affects the quality of our voice.
The respiratory system is highly coordinated with these primarily laryngeal-based subsystems [55].
Likewise, in turn, laryngeal activity is finely coupled to articulation in the oral and nasal cavities [56].
Coughing is one of the predominant symptoms of COVID-19 as described earlier and also a symptom of
more than 100 other diseases caused by bacterial or viral respiratory infections apart from Covid-19.
Trained physicians have been using cough sounds to perform a differential diagnosis among several
respiratory conditions such as pneumonia, asthma, COPD, laryngitis and Tracheitis. It has also been
postulated that the glottis behaves differently under different pathological conditions and this makes it
possible to distinguish between coughs due to Tuberculosis, asthma , bronchitis and pertussis (whooping

cough) [57]. This is possible because in all these diseases the nature and location of the underlying irritant
in the respiratory system is quite different leading to audibly distinct cough sounds [41]. For
example, lung diseases can cause the airway to be either restricted or obstructed and this can influence
the acoustics of the cough [58]. COVID-19 disease is commonly distinguished by disorders in respiratory
physiology counting with the diaphragm and other sections of the lower respiratory tract, thereby
influencing breathing patterns in the course of inhalation and exhalation of air from the lungs. The cough
associated with COVID-19 has been reported to be dry (non-productive) in the early phases of the disease
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and more productive (wet) as the disease begins to affect the lungs. This possible transition from a dry to
wet cough is notable among diseases with cough as a symptom [59].

Cough detection is a preprocessing step which determines whether a cough sound exists or not in a sound
file. The difficulty of cough recognition mainly lies in the distinction of background noise. There are
many kinds of sound mixed together in daily scenes. How to effectively distinguish between coughing
and other sounds has become a difficult problem to be solved. Some of the deep neuronal networks which
were tested for the task of cough detection were YAMNNEet[60] and Ubicoustics[61]. These architectures
are capable of classifying a wide range of frequently occurring sounds in the environment. Ubicoustics
employs a model based on the pre-trained YouTube-8M VGG-16 architecture with a modified last layer,
and trained on sound set with substantial audio augmentation including amplification augmentation,
persistence augmentation and mixing augmentation using sound effect libraries such as AudioSet and
Freesound[62]. YAMNet classifies audio segments into sound classes described by the AudioSet
ontology employing MobileNet[63]. Both models need a post-processing step since they perform a weak
labelling of sound events as shown in figure 2.12. In post-processing the confidence scores for each of
the sound classes are converted into binary masks, then a selection of the best threshold of detecting cough
samples must be done, while the boundaries of the sound regions are found through a detect speech
algorithm. Moreover, apart from deep neuronal networks, researchers applied an XGBoost classifier in
the Coughvid dataset to remove non-cough recordings using 78% of the available data [64]. In the current
thesis, for the specific task of cough detection the universal system for cough detection has been used
[65]. In this system Simou et al. achieved a sensitivity in the order of 90% and a specificity in the order
of 99% in a domestic environment with the utilization of Long-Short-Term-Memory deep neural network
architecture. Their methodology employs onset detection which is used for spotting impulsive events in
the audio stream. For each detection, a short signal segment is extracted around the onset which is
subsequently passed as input to the feature extraction step. The feature representation of the audio segment
is then passed to the LSTM that decides whether a cough or a non-cough event occurred. Furthermore,
Bales et al. [66] proposed a system which was successfully able to detect and separate cough events from
background noise. They used CNNs to first detect and separate cough sounds from different types of
sounds. They then used the detected cough sounds to diagnose three potential illnesses (i.e., bronchitis,
bronchiolitis and pertussis) based on their unique cough audio features in a unified framework. For the
cough detection task, the input raw audio clips were transformed into Mel-spectrogram, resulting in a 2-
dimensional image where one dimension represents time, other dimension represents frequency and the
value of pixels in the image represent the amplitude. The resulting images were then converted to
grayscale. The CNN structure had three max pooling layers and two convolutional layers with 32 filters
and a size of 5 x 5. The features learned from this convolutional block were flattened before passing them
to two fully connected layers, each having 128 neurons and ReLU activation function. An accuracy of
89.05% was achieved. For the task of diagnosis of potential illnesses the sound files are cut to a single
cough event which lasts two seconds and then they are converted to mel spectrograms and turned into
gray. Mel spectrograms are fed into a similar CNN structure to the one used for the cough detection task
but after the 2x2 max-pooling layer at the end of convolutional block, another similar convolutional block
comprising of two convolutional layers is added. This method achieved an F1-score of 94.43% for
diagnosing pertussis, 85.74% for the detection of bronchitis and 88.89% for the detection of bronchiolitis.
Quan et al. [49] proposed a cough recognition method based on Mel-spectrograms and a Convolutional
Neural Network. First, they enhanced the audio data and mix the voice in various complex scenes. Then,
they preprocessed the data to ensure the consistency of data length and convert it into a Mel-spectrogram.
At last, they built a CNN-based model to classify the cough using the Mel-spectrogram. After the
experiment result comparison, it can be seen that this method can effectively identify and detect coughing
in complex scenes. An accuracy of 98.18% is achieved. The architecture has four convolutional blocks
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each one comprising of two convolutional layers except for the first one, which has one convolutional
layer, a kernel size of 5 and a stride of 2. The rest of them have a kernel size of 3 and a stride of 1. The
last fully connected layers have 256 and 2 neurons respectively. Infante et al. used a machine learning
method to recognize dry/wet cough [67]. Semi-supervised Tree Support Vector Machine is proposed for
cough recognition and detection. K-NN is also an efficient tool that is often used for cough recognition
[68]. In addition, the Artificial Neural Network (ANN), Gaussian Mixture Model (GMM), Support Vector
Machine (SVM), and other methods are also used for cough recognition [69].

1.2.3 Covid-19 Diagnosis from cough samples

Many studies have tried to utilize Al to classify Covid-19 using cough sounds. The detection of COVID-
19 by cough sound is very economical, does not require contact, thereby reducing the risk of COVID-19
transmission, can be carried out in bulk and the results are fast. The first related work was developed by
MIT researchers. They developed an Al speech framework for the detection of Covid-19 from cough
recordings[70]. This model was trained using a dataset that they collected themselves, Opensigma dataset.
Cough recordings were transformed with Mel Frequency Cepstral Coefficient and inputted into a
Convolutional Neural Network (CNN) based architecture made up of one Poisson biomarker layer and 3
pre-trained ResNet50's in parallel, outputting a binary prescreening diagnostic. Firstly, they created a
vocal cord biomarker model capable of detecting changes in basic features of vocal cord sounds in
continuous speech and they trained a ResNet50 with input shape (300, 200) from MFCC to discriminate
the word *"Them’ from others using LibriSpeech, which is an audiobook dataset. Secondly, they trained a
Sentiment Speech classifier model to learn sentiment features on the RAVDESS speech dataset. Finally,
a ResNet50 was trained on binary classification of English vs Spanish spoken language with input shape
(600, 200) from MFCC. The results revealed that when using pretrained ResNet50 on audio datasets,
higher results were accomplished, compared to the results given by non-pretrained ResNet50. There are
several authors that have concluded pretraining on audio datasets in covid-19 classification tasks from
cough sounds offers better results. Imran et al. [71] presented a deployable Al-based preliminary diagnosis
tool for COVID-19 using cough sounds through an application called AI4COVID-19. The smartphone
app records cough when prompted by the press and release button. The recorded sounds are forwarded to
the server when the diagnosis button is pressed. At the server, the sounds are first fed into the cough
detector. In case, the sound is detected as a cough, the sound is forwarded to three parallel, different
classifier systems, i.e., Deep Transfer Learning-based Multi Class classifier (DTL-MC), Classical
Machine Learning-based Multi Class classifier (CML-MC) and Deep Transfer Learning-based Binary
Class classifier (DTL-BC). The results of all these three classifiers are then passed on to a mediator. The
app reports a diagnosis only if all three classifiers return identical classification results. If the classifiers
do not agree, the app returns ‘test inconclusive’. The AI4COVID-19 engine displays three results as output
to the user which are the following: Covid-19 likely, Covid-19 not likely and test inconclusive. The
architecture minimizes the misdiagnosis error since it demands that the three classifiers converge to the
same output. The cough detector acts as a filter before the diagnosis engine and is capable to distinguish
cough sound from 50 types of common environmental noises. To train and test this detector, they used
the ESC-50 dataset and the cough and non-cough sounds recorded from their smartphone app and in
particular they used 1838 cough sounds and 3597 non-cough environmental sounds for training and
testing. The recorded cough sample is forwarded to their cloud-based server where the cough detector
engine first computes its Mel-spectrogram with 128 Mel components (bands). This image is then resized
and converted into grayscale. The resultant image is then fed into a Convolutional Neural Network (CNN)
based classifier to decide whether the recorded input sound is of cough or not. Results demonstrate that
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the cough detection algorithm can classify between cough evet and no cough event with an overall
accuracy of 95.60%. When the input sound is detected to be cough by the cough detection engine, it is
forwarded to the tri-pronged mediator-centered Al engine to diagnose between COVID-19 and non-
COVID-19 coughs. To train their cough diagnosis system, they collected cough samples from COVID-
19 patients as well as pertussis and bronchitis patients. They also collected normal coughs, i.e., cough
sounds from healthy people. At the time of writing, they had access to 96 bronchitis, 130 pertussis, 70
COVID-19, and 247 normal cough samples from different people, to train and test the diagnosis system.
The first classifier leverages a CNN-based four class classifier, using Mel spectrograms as input. The four
classes here are cough caused by 1) COVID-19, 2) pertussis, 3) bronchitis or 4) normal person with no
known respiratory infection. The architecture is similar to the one implemented in the cough detection
step, but the number of neurons in the last layer was modified since there are 4 classes and not two. the
second classifier begins with a different pre-processing of cough sounds. Instead of using a spectrogram
like the first classifier, it uses MFCC and Principal Component Analysis based feature extraction. These
smart features are then fed into a multi-class support vector machine (SVM) for classification. Class
imbalance is handled with random undersampling. The third parallel diagnosis test also uses deep transfer
learning based CNN on the Mel spectrogram image of the input cough samples, similar to the first branch
of the Al engine, but performs only binary classification, i.e. Covid-19 or not. The performance of the
two deep learning-based classifiers (DTL-MC and DTL-BC) is superior than the manual feature extraction
based classic machine learning classifier (CML-MC). In particular, DTL-MC achieved an accuracy of
92.64%, CML-MC achieved an accuracy of 88.76% and DTL-BC 92.85%. Brown et.al [72] used a
machine learning-based algorithm to distinguish between healthy and COVID-19 cough sounds
(crowdsourced data) from patients even with pre-existing asthma conditions. The authors report an
average AUC metric of 70% for the tasks reported in the study. Subsequent to this effort, the Coswara
project [73] compiled a crowdsourced dataset containing a variety of sounds including sustained
phonations, coughs and breathing patterns. Utilizing classical features such as Mel-frequency cepstral
coefficients (MFCCs), spectral centroid and mean square energy features to train a random forest classifier
for the sound classification task, the authors report a test accuracy of 66%. Pahar et al.[74] developed
COVID-19 cough classifiers using smartphone audio recordings and seven machine learning
architectures. To train and evaluate these classifiers, they used two datasets, the Coswara Dataset and the
Sarcos Dataset. Data imbalance was handled with Synthetic Minority Oversamling Technique. With
regards to the features extraction process, MFCCs along with the velocity (first-order difference, A) and
acceleration (second-order difference, AA) were extracted as well as kurtosis, log energies and zero

crossing rates. The best-performing classifier is the Resnet50 architecture and is able to discriminate
between COVID-19 coughs and healthy coughs with an AUC of 0.98 on the Coswara dataset. When
testing on the Sarcos dataset, the LSTM model trained on the Coswara dataset exhibit the best
performance, discriminating COVID-19 positive coughs from COVID-19 negative coughs with an AUC
of 0.94 while using the best 13 features determined by sequential forward selection (SFS). The LSTM
model has 128 LSTM units, each with rectified linear activation functions and a dropout rate of 0.3. This
is followed by two dense layers with 32 and 8 units respectively and rectified linear activation
functions. Despotovic et al. [75] created the CDCVA dataset repository [76] (i.e. COVID-19 Detection
by Cough and Voice Analysis). Five vocal tasks were asked from the participants: sustained phonation of
a vowel, coughing (3 times), breathing deeply in and out through mouth (3 times), number counting from
1 to 20, and reading a specified text. Health status of the participant (positive or negative to COVID-19)
is determined based on the self-declaration confirmed by the standard RT-qPCR or RAT test, with the
date of testing. They opted to experiment with standard acoustic feature sets, such as the Geneva
Minimalistic Acoustic Parameter Set (GeMaps), extended Geneva Minimalistic Acoustic Parameter Set
(eGeMaps) and ComParE feature set, which are used as baseline feature sets for various acoustic tasks.
They furthermore experimented with the wavelet scaterring features which are used to extract low-
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variance representations from audio signal by applying a wavelet scattering transform. The features that
are extracted are fed into three ensemble models: random forests, boosted and bagged decision trees.
Obtained results provided in reveal that although minimalistic sets of acoustic features, such as GeMaps
and eGeMaps, are capable of learning intrinsic features from coughs, substantially better results are
obtained using a brute force audio feature extraction approach with ComParE features, leading to accuracy
and sensitivity approximately equal to 87% for random forests, whereas specificity goes up to 90.87% in
case of bagging. Artificial Intelligence methods are critical tools for utilizing the rapidly growing body of
COVID-19 positive patient datasets, with a vast contribution in the fight against this pandemic [77].
Chaudhari et al. [78] found that an ensemble model of three features showed the best performance. The
first feature was mel-frequency cepstral coefficients (MFCCs), the second mel spectrograms and the last
one was a binary label about the presence or absence of current respiratory diseases. The best performing
network was an ensemble of 3 separate networks, each one for the three inputs described earlier, whose
structure and hyperparameters were fine-tuned using grid search to minimize overfitting. Outputs from
each network were aggregated to predict the probability of having COVID-19. An AUC of 77% was
achieved for the Coswara/Coughvid dataset.

1.2.4 Interpretability Methods

The improved predictive accuracy of deep learning methods has often been achieved through increased
model complexity. Deep Learning has achieved state of the art performance, similar to that of human
experts in solving classification tasks in computer vision from lung disease classification, metastasis
detection for breast cancer, skin lesion classification, identifying diabetic retinopathy, attention deficit
hyperactivity disorder (ADHD), Alzheimer’s disease and improving reconstruction for MRI, PET/CT
imaging. One of the most widely known definitions of interpretability is the one of Doshi-Velez and Kim,
who, in their work [79] , define it as “the ability to explain or to present in understandable terms to a
human”. The more interpretable a machine learning system is, the easier it is to identify cause-and-effect
relationships within the system’s inputs and outputs. For example, in image recognition tasks, part of the
reason that led a system to decide that a specific object is part of an image (output) could be certain
dominant patterns in the image (input) [80]. According to the type of algorithms that could be applied, the
scale of interpretation and the type of data, interpretable methods can be divided into model-
agnostic/model-specific, local/global and for tabular/text data/images respectively. Local methods explain
a single prediction whereas global explain the overall model. Model agnostic methods can be applied to
any model while model specific can be applied to a single model or a group of models. A substantial portion
of attention regarding python tools is focused on deep learning for images more specifically on the concept
of saliency. Saliency refers to unique features, such as pixels or resolution of the image in the context of
visual processing. The local interpretable model-agnostic explanations (LIME) method is one of the most
popular interpretability methods for black-box models. LIME samples input data used to train a
classification model, slightly perturbs the training data, and evaluates the perturbed data with the
classification model to evaluate how changes to input impact output. Figure 1.9 illustrates the explanation
returned by LIME in an image classification prediction made by Google’s Inception neural network. 1.9
(b) shows the area of the image (super-pixels) that have a stronger association with the prediction of
“Electric guitar”, 1.9(c) shows the super-pixels that have a stronger association with the class ‘Acoustic
guitar’ and 1.9(d) explains the class ‘Labrador’. Another interpretability technique that can be applied to
any black-box model is Shapley Additive explanations (SHAP). SHAP provides explanations on
individual models’ decisions in the form of particular feature contributions. In[81] an innovative
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approach, based on the XGBoost algorithm and a variant of the SHAP method named Tree SHAP, towards
the development of an explainable Cardiovascular Disease risk prediction model, was proposed.

Despotovic et al.[75] went deeper to further investigate the explainability of the ensemble models by trying
to discover the exact mechanisms that alter the acoustic parameters of coughs in people with COVID-19.
They analyzed the ten most informative features in “ComParE” acoustic feature set. The best indicator of
COVID-19 coughs according to the mutual information criterion is the root mean square signal frame
energy. They considered that cough has bursts of energy increase in a short interval of time which are
more evident in signals produced by people with COVID-19. Spectral harmonicity, the second most
informative feature, describes the harmonic structure of an audio signal in which the sound frequencies
are integer multiples of the fundamental frequency. Ghoshal et al. [82] trained Bayesian Deep Learning
classifier using transfer learning method on COVID-19 X-Ray images to estimate model uncertainty.
Their experiment has shown a strong correlation between model uncertainty and accuracy of prediction.
The estimated uncertainty in deep learning yields more reliable prediction, which can alert radiologists
on false predictions, which will increase the acceptance of deep learning into clinical practice in disease
detection. Furthermore, they qualitatively compared, the saliency maps produced by various state-of-the-
art methods e.g. Class Activation Map (CAM), Guided Backpropagation and Guided Gradient CAM and
Gradients. Chatterjee et al. [83] wused ResNetl8, ResNet34, InceptionV3, DenseNetl61,
InceptionResNetV2 to detect Covid-19 from chest X-ray images and used Occlusion, Saliency, Input X
Gradient, Integrated Gradients, Guided Backpropagation, DeepLIFT to interpret their results. ResNet18
is the most outstanding model, as it yielded high evaluation scores, despite having the least number of
network parameters. The interpretability analysis of this model showed where the lesion was located and
also the network can be utilized for the follow-up or severity estimations.

(a) (b) (© (d)

Figure 1.9:(a) Shows the original image, (b) explains the electric guitar, (c) explains the acoustic guitar and (d) explains
Labrador[72].

1.3 Scope of Thesis

In this thesis, Covid-19 is detected with deep learning methods from cough samples. The preprocessing
steps consist of automatic cough recognition and noise reduction for a sensitive analysis. Data
augmentation is also implemented to the denoised audio files before they are fed into most of the deep
learning architectures. Then, the audio files are converted into mel spectrograms and the problem is
handled as a binary image classification task. Nine architectures are presented and one of them is an
ensemble approach of three pretrained models. Data imbalance is handled with various techniques
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including ensemble learning, SMOTE and Random Oversampling with the last two being applied to
multistage transfer learning. Finally, LIME is used to interpret the outputs of the aforementioned deep
learning architectures.

The structure of the current thesis is presented as follows. Chapter 2 describes the evolution of Deep
Learning, audio features and mel spectrograms, basic concepts of Convolutional Neural Networks and
Recurrent Neural Networks, as well as performance measurements. Chapter 3 contains the dataset
description, the data preprocessing analysis, the methodology and the DNN architectures used and LIME
description. In Chapter 4 the results about the performance of classifiers and interpretability models are
presented. Chapter 5 conclusions are reached and future research is suggested.
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Chapter 2

Theoretical Framework

2.1 Audio Features and Mel Spectrograms

Sound is produced by the vibration of an object. Vibrations cause air molecules to oscillate. The
subsequent change in the air pressure creates a wave. The waveform carries multifactorial information
about the frequency, the intensity and the timbre of the sound. The audio features describe the sound and
its each one captures a different aspect of the sound. Based on the level of abstraction, there are three
categories of audio features: high level features (i.e. instrumentation, key, chords, lyrics, melody, rhythm,
mood, tempo, genre etc.), mid-level features (i.e. pitch related descriptors such as MFCCs, onsets,
fluctuation patterns) and low level (i.e. amplitude envelope, energy, spectral centroid, spectral flux
etc.)[84]. Based on the signal domain, audio features are divided into time domain, frequency domain,
time frequency domain and cepstral domain features. Examples of time domain features are amplitude
envelope, root mean square energy and zero crossing rate. Some frequency domain features are namely
band energy ratio, spectral centroid and spectral flux. The time frequency representation of a signal is
done through spectrograms, mel spectrograms and constant Q transform for example. Cepstral domain
based features are MFCCs, Liner Prediction Cepstral Coefficients, Perceptual Linear Prediction and
Gammatone Cepstral Coefficients [85].

In the current thesis, mel spectrograms will be used as input images to deep learning architectures. The
Mel spectrum contains a short-time Fourier transform (STFT) for each frame of the spectrum
(energy/amplitude spectrum), from the linear frequency scale to the logarithmic Mel-scale, and then goes
through the filter bank to get the eigenvector, these eigenvalues can be roughly expressed as the
distribution of signal energy on the Mel-scale frequency. After the audio data are processed, only the ones
containing cough are denoised, augmented and transformed into Mel-spectrograms so that we can train
the convolutional neural networks for detection of Covid-19. Audio data usually have complex features,
SO it is necessary to extract useful features to recognize the audio. The Mel- spectrogram is one of the
efficient methods for audio processing. In the experiment, we employ the Python package called librosa
for data processing and all parameters are as follows: number of mels = 128 and fnax = 8kHz. Then we
call the power_to_db function to convert the power spectrum (amplitude square) to decibel (DB) units.
Figure 2.1 presents the formula to convert f hertz into m mels and figure 2.2 presents the spectrogram of
a healthy user.

f
= 25951 1+ —

Figure 2.1: Formula of conversion from hertz to mels Figure 2.2: A healthy mel spectrogram
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2.2 Deep Learning

2.2.1 History and Expansion of Deep Learning

Deep learning (DL), a branch of machine learning (ML) and artificial intelligence (Al) is nowadays
considered as a core technology of today’s Fourth Industrial Revolution . Due to its learning capabilities
from data, DL technology originated from artificial neural network (ANN), has become a hot topic in the
context of computing [2]. However, the primary attribute behind deep learning success has been the
unprecedented accuracy in classification, segmentation, and image synthesis performance, consistently,
across imaging modalities [86]. In the late 1980s, neural networks became a prevalent topic in the area of
Machine Learning (ML) as well as Artificial Intelligence (Al), due to the invention of various efficient
learning methods and network structures such as multilayer perceptron networks trained by
“Backpropagation” type algorithms, self-organizing maps, and radial basis function networks [87]. In
2006, “Deep Learning” (DL) was introduced by Hinton et al.[88] , which was based on the concept of
artificial neural network (ANN). DL technology uses multiple layers to represent the abstractions of data
to build computational models. A typical neural network is mainly composed of many simple, connected
processing elements or processors called neurons, each of which generates a series of real-valued
activations for the target outcome. Figure 2.3 shows a schematic representation of the mathematical model
of an artificial neuron, i.e., processing element, highlighting input (Xi), weight (w), bias (b), summation
function (P), activation function (f) and corresponding output signal (y) [2]. Sarker [1] in his work
described the different deep learning tasks according to which the taxonomy of deep learning networks
occurs. Supervised is a task-driven approach that uses labeled training data while unsupervised is a data-
driven process that analyzes unlabeled datasets. Semi-supervised is a hybridization of both the supervised
and unsupervised methods and reinforcement is an environment driven approach. DL techniques are
divided into three major categories: (i) deep networks for supervised or discriminative learning; (ii) deep
networks for unsupervised or generative learning; and (iii) deep networks for hybrid learning combing
both and relevant others. Discriminative architectures mainly include Multi-Layer Perceptron (MLP),
Convolutional Neural Networks (CNN or ConvNet), Recurrent Neural Networks (RNN), along with their
variants. Commonly used deep neural network techniques for unsupervised or generative learning are
Generative Adversarial Network (GAN), Autoencoder (AE), Restricted Boltzmann Machine (RBM),
Self-Organizing Map (SOM), and Deep Belief Network (DBN) along with their variants. Hybrid deep
networks and several other approaches such as deep transfer learning (DTL) and deep reinforcement
learning (DRL) are popular.
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Figure 2.4 depicts the taxonomy of DL techniques described earlier. Supervised learning is used in
classification and regression tasks, unsupervised learning is used for dimensionality reduction, clustering
and associations. Semi supervised learning is used for classification and clustering while reinforcement
learning is used for classification and control. In 1989 a novel method combining expertise of neural
networks with speech recognition was used to realize a speech recognition system [89]. In 1992 Frasconi
et al. analyzed the limitations and characteristics of a local feedback multi-layered network with feedback
connections allowed only from neurons to itself [90]. In 1998 a multilayer neural network was trained
through backpropogation algorithm applied to create a complex decision surface to classify
highdimensional patterns like handwritten characters [91]. In 2010 an innovative framework of
comprehending a deep neural network through layers of denoising encoders trained to denoise corrupted
versions of their inputs [92]. 2012 was a thriving year for deep learning breakthroughs. ImageNet
Classification with Deep Convolutional Neural Networks was a testimony that applied convolutional nets
to halve the error rate for object recognition, resulting in brisk implementation of deep learning by the
computer vision commune [93]. The same year DistBelief software framework was developed to train
large, distributed models and significant results were obtained about large-scale nonconvex optimizations
[94], Hinton et al. [95] utilized a feed-forward neural network for speech recognition, Le et al. [96]
prepared a 9- layered locally connected thin autoencoder with pooling and local contrast normalization
on a large dataset of images and Hinton et al. [97] reduced overfitting on large feed-forward neural
networks through randomly omitting half feature detectors on each training set by overcoming complex
co-adaptations for many routine tasks in speech and object recognition. In 2013 a network by Zeiler et. al.
[98], winner of ILSVRC 2013 achieved top 5 error rate of 11.2%. AlexNet was fine tuned to improve
performance. They examined different feature activations and their relations to the input space. The same
year Graves et al.[99] trained Deep Long Short-term Memory RNN on the TIMIT phoneme recognition
benchmark for speech recognition, Sutskever et al. [100] used Stochastic Gradient Descent with
Momentum applied to train DNNs as well as RNNs on datasets with long term dependencies to achieve
considerable performance, Vanhoucke et al. [101]achieved reduction of the neural network computational
cost using speech signal stationarity for tying neural network parameters across frames. In 2014, Srivastana
et al. [102] introduced dropout technique which uses random unit dropping during training to avoid
coadaption. These resultant thinned networks optimize neural net performance on supervised learning
tasks in vision, speech recognition, document categorization as well as computational biology. The same
year two different ImageNet applications were published. Simonyan et al. [103]evaluated very deep
convolutional networks (up to 19 weight layers) for largescale image classification. It was demonstrated
that the representation depth is beneficial for the classification accuracy, and that state-of-the-art
performance on the ImageNet challenge dataset can be achieved using a conventional ConvNet
architecture with substantially increased depth. Szegedy et al. introduced GooglLeNet a 22-layer CNN,
winner of ILSVRC 2014 with 6.7% error rate. Nine inception modules were utilized with over 100 layers.
In 2015, an approach for conversational modelling based on sequence-to-sequence framework was
developed. It was to predict the next sentence in a conversation [104]. The same year a Deep Recurrent
Attentive Writer (DRAW) utilizing spatial attention mechanism to mimic the foveation of human eye
with a sequential variational auto-encoding framework to construct complex images was designed [105].
Moreover, He et al. [8] introduced Microsoft ResNet, a 152-layer network architecture winner of ILSVRC
2015 with error rate 3.6%. In 2016, Gulshan et al. [106]applied deep learning to propose an algorithm for
automated detection of diabetic retinopathy and diabetic retinal fundus photographs. In 2017, an algorithm
applying 121-layer CNN to detect pneumonia from chest x-rays was proposed [107]. The algorithm was
tested and found to exceed average radiologist performance on pneumonia detection. Table 2.1 shows a
summary of deep learning tasks and methods in healthcare and medical applications.
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APPLICATION TASKS METHODS REFERENCES
AREAS
Regular health factors | CNN-based Ismail et al. [108]
analysis
Identifying malicious | RNN-based Xue et al. [109]

Healthcare and Medical
applications

behaviors

Coronary heart disease
risk prediction

Autoencoder based

Amarbayasgalan et al.
[110]

Cancer classification

Transfer learning based

Sevakula et al. [111]

Diagnosis of COVID-

CNN and BiLSTM based

Aslan et al. [112]

19
Detection of COVID-

19
Table 2 : Summary of popular deep learning tasks and methods in healthcare and medical applications [2]

CNN-LSTM based Islam et al. [113]

2.2.2 Convolutional Neural Networks (CNNs or ConvNets)

With the development of deep learning, more and more deep learning methods are applied to various
scenarios, such as image recognition, image classification, speech recognition, machine translation, etc.
As a kind of deep learning method, Convolutional Neural Networks (CNN) are widely used in the field
of computer vision. CNNSs are specifically intended to deal with a variety of 2D shapes and are thus widely
employed in visual recognition, medical image analysis, image segmentation, natural language
processing, and many more. It is worth mentioning that ultrasound imaging[114] and feature extraction
from image regions[115] combined with KNN and statistical descriptors have been a breakthrough in
medical image analysis before the wide application of CNNs. In this section, the components of the
proposed CNN-based network are introduced. CNNs are comprised of three types of layers. These are
convolutional layers, pooling layers and fully-connected layers. When these layers are stacked, a CNN
architecture has been formed. A simplified CNN architecture is illustrated in Figure 2.5. According to
Shea et al. [116] the input layer of a CNN will hold the pixel values of an image. The convolutional layer
will determine the output of neurons which are connected to local regions of the input through the
calculation of the scalar product between their weights and the region connected to the input volume. The
pooling layer will then simply perform downsampling along the spatial dimensionality of the given input,
further reducing the number of parameters within the activation. The fully-connected layers will perform
the same duties found in standard ANNSs and attempt to produce class scores from the activations, to be
used for classification. The layers’ parameters focus around the use of learnable kernels. These kernels
are usually small in spatial dimensionality, but spreads along the entirety of the depth of the input. When
the data hits a convolutional layer, the layer convolves each filter across the spatial dimensionality of the
input to produce a 2D activation map. As we glide through the input, the scalar product is calculated for
each value in that kernel. From this the network will learn kernels that *fire’ when they see a specific
feature at a given spatial position of the input. These are commonly known as activations. Every kernel
will have a corresponding activation map, of which will be stacked along the depth dimension to form the
full output volume from the convolutional layer. Zero-padding is the simple process of padding the border
of the input, and is an effective method to give further control as to the dimensionality of the output
volumes. The calculation formula for the convolutional layer is as follows:

no_ n—=1w%1,n n
5 =f\ 2K Ay
ieM;
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where x}l is the output feature map, x[*~'is the input feature map, Mj is the selected area in the n — 1
layer, k{ljis weight parameter, b]-” is bias, and f is the activation function.

Sometimes after each convolutional layer, we conduct batch normalization to make the outputs of the
convolutional layer stay identically distributed, which can improve the performance of the model. The
batch normalization formula is as follows:

_ u+ﬁ
yf_}}\!crzwLe ]

where X; is the output of convolutional layer without activation, u is the mean of x, 2 is the variance of
x, and y and B are parameters to learn.

Pooling layers aim to gradually reduce the dimensionality of the representation, and thus further reduce
the number of parameters and the computational complexity of the model. Max pooling is a mathematical
operation that works by taking the largest value from a portion of the image with a certain size, while
average pooling is a mathematical operation that works by taking the average value of a portion of the
image with a certain size [4]. Average Pooling is a pooling operation that calculates the average value for
patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used
after a convolutional layer. It adds a small amount of translation invariance - meaning translating the
image by a small amount does not significantly affect the values of most pooled outputs. It extracts
features more smoothly than Max Pooling, whereas max pooling extracts more pronounced features like
edges. Figure 2.6 illustrates an example of the max pooling and average pooling operations.

Classification layer is a layer consisting of flattening, hidden layer and activation functions. Hidden layers
in artificial neural networks are layers between input layer and output layer, where artificial neurons take
a set of weight inputs and produce output through activation functions such as sigmoid, ReL U, or Softmax.
The calculation for the fully connected layer is:

h‘
Y =f( DX W+ bj)
i=1

where X is the input layer, N is the number of input layer nodes, wj; is the weight between the links x; and
yj, bj is the bias, and f is the activation function.

Max Pooling Average Pooling
29 | 15 | 28 | 184 73! 15 | 28 | 184
0 |00 70|38 0 |00 70|38
T e 2|27 2 22|72
12|12 | 45 & 12 | 12 | 45 8
2x2 2x2
pool size pool size
\J
100 | 184 | 36 | &0
12 | 45 12 | 15
Figure 2.5 : A typical CNN architecture [3] Figure 2.6 : Max Pooling and Average Pooling[4]
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Since convolution is a linear operation and images are far from linear, non-linearity layers are often placed
directly after the convolutional layer to introduce non-linearity to the activation map. A proper activation
function significantly improves the performance of a CNN for a certain task. Rectified linear unit (ReLU)
is one of the most notable non-saturated activation functions. The ReLU activation function is defined as:

aijkx = max(zijx, 0)

where z;;«is the input of the activation function at location (i, j) on the k-th channel. ReLU is a piecewise
linear function which prunes the negative part to zero and retains the positive part. The simple max(:)
operation of ReLU allows it to compute much faster than sigmoid or tanh activation functions. Even
though the discontinuity of ReLU at 0 may hurt the performance of backpropagation, many works have
shown that ReLU works better than sigmoid and tanh activation functions empirically [117] [118].
Exponential Linear Unit (ELU) enables faster learning of deep neural networks and leads to higher
classification accuracies. ELU avoids the vanishing gradient problem by setting the positive part to
identity. In contrast to ReLU, ELU has a negative part which is beneficial for fast learning. As the
saturation function will decrease the variation of the units if deactivated, it makes ELU more robust to
noise. The function of ELU is defined as:

Aijk = max(zi,,-,k, 0) + min(k(e zijk 1), 0)

where A is a predefined parameter for controlling the value to which an ELU saturate for negative inputs
[117].

The sigmoid non-linearity has the mathematical form o(x) = 1/(1+e™). It takes a real-valued number and
compresses it into a range between 0 and 1. However, a very undesirable property of sigmoid is that when
the activation is at either tail, the gradient becomes almost zero. If the local gradient becomes very small,
then in backpropagation it will effectively terminate the gradient. Also, if the data coming into the neuron
is always positive, then the output of sigmoid will be either all positives or all negatives, resulting in a
zig-zag dynamic of gradient updates for weight. Figure 2.7 shows the sigmoid plot. Since in the current
thesis the classification process is a binary task, sigmoid function is used in the last dense layer for the
output. Tanh activation function squashes a real-valued number to the range [-1, 1]. Like sigmoid, the
activation saturates, but — unlike the sigmoid neurons — its output is zero centered. Finally, Softmax
assigns decimal probabilities to each class in a multi-class problem. Those decimal probabilities must add
up to 1.0. This additional constraint helps training converge more quickly than it otherwise would.
Softmax is implemented through a neural network layer just before the output layer.

.—
vy

@ (b) ©

Figure 2.7: Activation functions (a)sigmoid activation function , (b) softmax activation function, (c) ELU activation function.
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It is important to choose an appropriate loss function for a specific task. Binary cross-entropy loss function
is chosen in this binary classification task.

output

1 « A 2
Loss = — s Zyi‘IOgyi+(1 — i) -log (1 —9;)

size i=1

where yiis the true output label of the model and y; the predicted label.

Overfitting is an unneglectable problem in deep CNNs, which can be effectively reduced by
regularization. Some regularization techniques are L2 regularization and Dropout. We can quantify
complexity using the L regularization formula, which defines the regularization term as the sum of the
squares of all the feature weights:

L2 regularization term=||w||o22=wi2+w;?+...+Wy?

In this formula, weights close to zero have little effect on model complexity, while outlier weights can
have a huge impact. Regularization modifies the objective function by adding additional terms that
penalize the model complexity. Formally, if the loss function is L(0, x, y), then the regularized loss will
be:

E(9, X, y) = L(0, X, y) + AR(0)

where R(0) is the regularization term, and A is the regularization strength. For p = 2, the 12-norm
regularization is commonly referred to as weight decay. The output of Dropout is y = rxa(WT x), where

X = [X1, X2, . . ., Xn] T is the input to fully-connected layer, W € R™? is a weight matrix, and r is a binary
vector of size d whose elements are independently drawn from a Bernoulli distribution with parameter p,
i.e. ri ~ Bernoulli(p). Dropout can prevent the network from becoming too dependent on any one (or any
small combination) of neurons, and can force the network to be accurate even in the absence of certain
information [117].

2.2.3 Recurrent Neural Networks and its variants

A Recurrent Neural Network (RNN) is another popular neural network, which employs sequential or
timeseries data and feeds the output from the previous step as input to the current stage [2]. Like
feedforward and CNN, recurrent networks learn from training input, however, distinguish by their
“memory”’, which allows them to impact current input and output through using information from
previous inputs. Unlike typical DNN, which assumes that inputs and outputs are independent of one
another, the output of RNN is reliant on prior elements within the sequence. The most prevalent variants
of RNNs are Long short-term memory (LSTMs), Bidirectional RNN/LSTM and Gated recurrent units
(GRUs). LSTM is a popular form of RNN architecture that uses special units to deal with the vanishing
gradient problem, which was introduced by Hochreiter et al. [119]. A memory cell in an LSTM unit can
store data for long periods and the flow of information into and out of the cell is managed by three gates.
The ‘Forget Gate’ determines what information from the previous state cell will be memorized and what
information will be removed that is no longer useful, while the ‘Input Gate’ determines which information
should enter the cell state and the ‘Output Gate’ determines and controls the outputs. LSTM is a recurrent
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model, in which the current time prediction depends on all past time inputs[5]. For each layer, the LSTM
processes at time t by computing:

Jr = 0o(Wrxy + Uphy—y + by)

i = O'g(“’rfx; + Uihi—1 + by)

0r = 0g(Wox; + Uphy—1 + by)

¢t = fici—1 + iroe(Wexy + Uchy—1 + be)
hy = oon(ct)

where, o4 is sigmoid function, o. and on is hyperbolic tangent function, f, i, o are gates, c is the internal
cell states, h is the hidden states. LSTM only uses past information. Bidirectional RNNs connect two
hidden layers that run in opposite directions to a single output, allowing them to accept data from both
the past and future. Bidirectional RNNs, unlike traditional recurrent networks, are trained to predict both
positive and negative time directions at the same time. It is a sequence processing model comprising of
two LSTMs: one takes the input forward and the other takes it backward. BiLSTM can also take advantage
of future information. In each BiLSTM layer, there are a forward pass and a backward pass. The forward
pass gets feature-maps , whereas the backward pass does the opposite by changing allt— 1 to t + 1 in the
above equations. Figure 2.8 depicts the structure of a biLSTM. A Gated Recurrent Unit (GRU) is another
popular variant of the recurrent network that uses gating methods to control and manage information flow
between cells in the neural network. The GRU is like an LSTM, however, has fewer parameters, as it has
a reset gate and an update gate but lacks the output gate. The GRU’s structure enables it to capture
dependencies from large sequences of data in an adaptive manner, without discarding information from
earlier parts of the sequence.

Ky X441 Xig1,042
i ¥ 4 v

backward * M LSTM |+ 1 M=

forward * M o LSTM ‘ -‘

it Xit+1 Kit+2
Figure 2.8: Structure of a BiLSTM [5]

A GRU unit is composed of a reset gate r. and an update gate z; [6]. The output h; is determined by both
current input x; and previous state /.-, under the control of these two gates. The outputs of the gates and
the GRU unit are calculated as follows:

re=o(W,x¢+Urhe-1+by)
2=0(WoxetUhea+b,)h
t=tanh[Wxe+Un(reOhe1)+bi]
ht=(1-z)Qh—1+z.Oh .
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where Wr , Ur , Wz, Uz, Whand Uh are the weight matrices. br , bz , bh are the synthesis of bias
vectors for input xt and previous state 4#t—1, o is the logistic sigmoid function, tanh is the hyperbolic
tangent activation function, ®denotes the Hadamard product.

Models with bi-directional structure have the ability to learn information from previous and subsequent
data when dealing with the current data. The structure of the bi-GRU model diagram is shown in Fig. 2.9
. The bi-GRU model is determined based on the state of two GRUs, which are unidirectional in opposite
directions . One GRU that moves forward, beginning from the start of the data sequence, the other GRU
that moves backward, beginning from the end of the data sequence. This allows the information from both
future and past to impact the current states. The bi-GRU is defined as follows:

ﬁ] Res i he bl e

e —1 GRU +— GRU (e | sacwar

Figure 2.9: Structure of a BiGRU unit[6]

2.3 Performance Measurements

In order to better evaluate the performance of the model, several indicators were used to evaluate the
model. The values used for classification assessment are True Positive (TP), True Negative(TN), False
Positive (FP), False Negative (FN). Accuracy is the indicator that the samples with a correct reaction
classification account for the total samples. In other words, accuracy simply measures how often the
classifier correctly predicts. We can define accuracy as the ratio of the number of correct predictions and
the total number of predictions.

TP+TN

Accuracy = TP+TN+FP+FN

Recall is the ratio of the number of samples recognized correctly to the total number of samples
recognized. It is a useful metric in cases where False Negative is of higher concern than False Positive.
It is important in medical cases where it doesn’t matter whether we raise a false alarm but the actual
positive cases should not go undetected. Recall for a label is defined as the number of true positives
divided by the total number of actual positives.

TP
TP+FN

Recall =

Precision is the ratio of the number of samples recognized correctly to the number of samples that should
be recognized. Precision explains how many of the correctly predicted cases actually turned out to be
positive. Precision is useful in the cases where False Positive is a higher concern than False
Negatives. Precision for a label is defined as the number of true positives divided by the number of
predicted positives.
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Precision =

TP+FP

F1-score gives a combined idea about Precision and Recall metrics. It is maximum when Precision is
equal to Recall. F1 Score is the harmonic mean of precision and recall. F1 Score could be an effective
evaluation metric in the following cases:

e When FP and FN are equally costly.
¢ Adding more data doesn’t effectively change the outcome
e True Negative is high

2xPrecision*Recall
Fl-score = *Precision*Reca

Precision+Recall

The Receiver Operator Characteristic (ROC) is a probability curve that plots the TPR(True Positive Rate)
against the FPR(False Positive Rate) at various threshold values and separates the ‘signal’ from the
‘noise’. The Area Under the Curve (AUC) is the measure of the ability of a classifier to distinguish
between classes. From the graph shown in Figure 2.10 below, the greater the AUC, the better is the
performance of the model at different threshold points between positive and negative classes. This simply
means that When AUC is equal to 1, the classifier is able to perfectly distinguish between all Positive and
Negative class points. When AUC is equal to 0, the classifier would be predicting all Negatives as
Positives and vice versa. When AUC is 0.5, the classifier is not able to distinguish between the Positive
and Negative classes. The TPR equals to the recall evaluation metric while FPR is computed as follows:

FP
TN+FP

False Positive Rate =

Specificity (SP) is calculated as the number of correct negative predictions divided by the total number
of negatives. It is also called true negative rate (TNR). It is computed as follows:

TN
TN+FP

Specificity =

True Positive Rate

e,

False Positive Rate

Figure 2.10: AUC curve
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Chapter 3

Datasets and Methods
3.1 Dataset Description

Two datasets have been used for the classification task of diagnosing Covid-19 from cough samples.
More specifically, these are the Coswara dataset and the Cambridge dataset.

3.1.1 The Coswara Dataset

The Coswara project is aimed at developing a diagnostic tool for Covid-19 based on respiratory, cough
and speech sounds[73],[120].The data collection was done via a web application where users were asked
to provide metadata, and proceed to recording the sound samples using the device microphone. Public
participants provided 9 sound files one for each sound category: breathing (two types; shallow and deep),
cough (two types; shallow and heavy), prolonged vowel pronunciation (three types; /ey /, / i/,/ u:/), and
counting from one to twenty digits (of two kinds, normal and fast). For each user, metadata can be grouped
into five distinctive categories: age, sex, location (country, state/province), current health status and the
presence of comorbidities (pre-existing medical conditions). Health status includes ‘healthy’, ‘exposed’,
‘cured’ or ‘infected’. The samples with a status in one of the three categories

i.e. positive mild, positive moderate and positive asymptomatic are classified as Covid, and the samples
with status healthy are classified as non-Covid. Audio recordings were sampled at 44.1 KHz. In this study,
we have made use of the raw audio recordings of shallow cough and heavy cough as two separate datasets
and applied pre-processing as described in Section 3.2. There are 2744 samples in total but only 2661 of
them have a health status description, since there are 83 samples under validation. Figure 3.1 depicts the
health status of samples meaning their distribution in each of the seven categories (healthy, no respiratory
iliness exposed, respiratory illness not identified, fully recovered, positive moderate, positive mild,
positive asymptomatic).

Positive asymptomatic

status
Healthy
No respiratory illness exposed
Respiratory iliness not identified
Fully recovered
Positive moderate
. Positive mild
Positive asymptomatic

Positive mild

/‘
/m | Positive moderate
_(lll—ﬂ-)
53.8% \ T
5.5%
Healthy (1423 smmplon) \ (145 samples)
| Fully recovered
\ \ 5.9%
(156 samples)
‘~.\ | 3w
\ L Mgt Respiratory illness not identified
N
;. ~\. ‘VI
\\.
‘-\.\ B - No respiratory illness exposed

Figure 3.1: Health status distribution of samples
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Information captured from the metadata are analyzed in figures 3.2 — 3.10. The age distribution
of participants is shown in figure 3.2, most of them are aged between 20 and 50 with the average age
being 35.15 years.

Age Distribution
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Figure 3.2: The age distribution of samples for the Coswara Dataset

With regards to the country of origin, subjects are from six continents: Asia (Bahrain, Bangladesh, China,
India, Indonesia, Iran, Japan, Malaysia, Oman, Philippines, Qatar, Saudi Arabia, Singapore, Sri Lanka,
United Arab Emirates, Israel, Vietnam, Thailand, Russia, Turkey, South
Korea), Australia, Europe (Belgium, Finland, France, Germany, Ireland, Netherlands, Norway, Romania,
Spain, Sweden, Switzerland, Ukraine, United Kingdom, Greece, Italy, Ukraine), North America (Canada,
United States, Mexico), South America (Argentina, Brazil, Ecuador, Peru), Africa(Mozambique, Egypt,
South Africa). The greatest proportion of samples (2515) come from India and figure 3.3 shows the top 3
continents of origin. Furthermore, there are 1900 male and 844 female subjects at the time of
experimentation (figure 3.4).

North America
Europe continent
Asia
/ e
/ North America

(10: il': s)
(Gl‘ mples)

J/‘
/ ,
/

\\\ (2565 samples)

\\\—/ > male female
i i gender
Figure 3.3: The origin of samples for the Coswara Dataset. Figure 3.4: Gender distribution among subjects for

the Coswara Dataset

Figure 3.5 is a violin plot of the age of participants by health status, separated by sex. The grouped violin
plot shows male subjects tend to have the same age or slightly bigger than female subjects in each health
status category. Further, conclusions are drawn about how the sex delta varies across categories: the
median weight difference is more pronounced for positive asymptomatic and fully recovered than the rest
categories.
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Figure 3.5: Violin plot of age of participants by health status, separated by sex.

The health status of vaccinated and non-vaccinated subjects is examined in figure 3.6. There are 752
subjects that claim to be partially (one dose) or fully vaccinated and 211 subjects that are not vaccinated
at all. Health status is provided to only 700 of these subjects. In each category, except for respiratory
illness not identified, vaccinated subjects prevail as expected since they are the majority.

VacC

40
) . l .

healthy e ess_exposed  resp_iliness_not_identifie: positive_moderate recovered ful
covid_status

Figure 3.6: Health status of vaccinated and non vaccinated subjects

Questioned whether they are using a mask or not, 57.3% of subjects replied negatively as shown in figure
3.7. As for the referred symptoms of Covid-19, 652 users declared cough as a symptom, 52 users declared
diarrhea, 211 users reported breathing difficulties, 296 users declared sore throat, 406 users

reported fever, 382 users fatigue, 325 users muscle pain and 169 users reported loss of smell as a symptom
(figure 3.8). As for the pre-existing conditions, 232 users claimed to have diabetes as a pre-existing
condition, 134 users claimed to have asthma, 233 users hypertension, 44 users reported having a chronic
lung disease and 37 users ischemic heart disease as a pre-existing condition(figure 3.9). Other conditions
that have been reported include cold, at a frequency of 488 samples, pneumonia, at a frequency of 45
samples, whilst there are 225 smokers (figure 3.10).
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3.1.2 The Cambridge Dataset

The Cambridge dataset is a crowdsourced dataset collected through an app (Android and Web) that asked
volunteers for samples of their voice, coughs and breathing as well as their medical history and
symptoms[72]. The user is asked to input their age and gender as well as a brief medical history and
whether they are in hospital. Users then input their symptoms (if any) and record respiratory sounds: they
are asked to cough three times, to breathe deeply through their mouth three to five times and to read a
short sentence appearing on the screen three times. Finally, users are asked if they have been tested for
COVID-19, and a location sample is gathered with permission. Given the data is sensitive (i.e., containing
voice) sharing agreements were set up for the data. The shared data originated both from web and android
app, contained breath and cough samples and was divided to five categories: healthy with no symptoms,
healthy with cough as a symptom, tested positive for Covid-19 with cough as a symptom, tested positive
for Covid-19 but do not have cough as a symptom and users with asthma with cough. For the task of
distinguishing users who have declared they tested positive for COVID-19 (COVID-positive), from users
who have not declared a positive test for COVID-19, have a clean medical history, have never smoked
and have no symptoms, the following folders were used : covid android no cough, covid android with
cough, covid web no cough, covid web with cough, healthy android no symptoms and healthy web
no symptoms. There are 141 Covid samples from 66 unique users and 298 non-Covid samples acquired
from 220 unique users. Eventually, 124 covid samples are used and 276 non-Covid and that is because
recordings of same users that are uploaded within less than 24 hours are eliminated. Each audio file
contains a timestamp in milliseconds. By comparing the timestamps of same users’ recordings, forty
samples are excluded. Figure 3.11 shows the number of samples in each class.

Covid

non-Covid

Figure 3.11: Covid and non-Covid samples for the Cambridge dataset

3.2 Data pre-processing

Preprocessing is performed to account for the potential missing, incomplete or noisy data in the dataset.
Various problems can be observed in a dataset, such as missing data instances for particular vocal tasks
or substitution of vocal tasks (e.g. coughing recorded instead of breathing)[75]. To tackle with the risk of
the model overfitting to unwanted signals, such as the method of recording or other environmental sounds,
prior to the cough-specific audio analysis and classification, it is necessary to identify if and when the
cough is present in the recording, crop the audio file accordingly and denoise the raw audio files.

53



3.2.1 Cough Detection

The Universal System for Cough Detection in Domestic Acoustic Environments [65],[121] was used for
the automatic identification of the cough samples registered in the raw audio files. The Universal System
for Cough Detection in Domestic Acoustic Environments offers the benefit of strong labelling of sound
events. It utilizes an acoustic onset detector as a pre-processing step, aiming to detect impulsive patterns
in the audio stream. In a subsequent step, discrimination of coughing events from other impulsive sounds
is handled as a binary classification task. The method for onset detection relies on measures of spectral
energy across successive time-frames. Frames are formed by windowing the signal with a short-length
Hanning window of length 672, moving on a continuous time-grid with hop-size 512. At each frame, the
short-time Fourier transform (STFT) is calculated and the frequency bins k € [120Hz, 6kHz]
corresponding to a specified spectral range are used for further processing. Various DNN architectures
were tested, among which the most promising appeared to be the one based on Long Short Term Memory
(LSTM) units. Specifically, two LSTM layers of 256 units each, were used, followed by one fully
connected layer of 64 units and finally a dropout layer with 0.3 probability and an output softmax layer.
For each .wav file of the raw audio recordings, if one or more coughs are detected firstly a.txt file will be
exported which contains each cough instance's timestamp as well as the corresponding level of confidence
the classifier has. Additionally, a .wav file containing all the cough detections concatenated, is exported.
All of the final wav files are down sampled to 16kHz. Figure 3.13 illustrates the waveforms of the cough
signal before and after the algorithm is implemented.

In Coswara cough heavy dataset there are originally 659 covid and 1376 non-covid samples due to the
fact that 77 files were empty. Cough was detected in 572 covid samples (86,8%) and 1241 healthy samples
(90,19%). In Coswara cough shallow, 532 out of 659 Covid samples were classified as cough(80,72%)
and 1065 out of 1375 non-Covid samples (77,45%). It was expected that Coswara cough heavy would
achieve higher classification results since the heavier cough has a more explosive phase compared to the
shallow, so the onset detection algorithm performs better. Last but not least, in Cambridge dataset cough
was detected in 119 out of 124 Covid samples (95,97%) and in 250 out of 276 non-Covid samples
(90,57%).

I R i A

Cheering (0.1~ 1.55) __Laughing (1.3 - 2.6s) Barking (3.1 - 4.6s) Gunshots (5.2 ~6.15) |

Illustration of Strong Labeling of Events
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| Cheering, Laughing, Barking, Gunshots |

Illustration of Weak Labeling of Events

Figure 3.12: Strongly labeled vs weakly labeled data. The first ones contain time stamps of the occurrences of the events.
Weakly labeled, on the other hand, only requires one to mark whether the event is present or not[122]

54



@) (b)

Figure 3.13: The waveforms of the cough signal a) before and b) after cough detection and cropping.

3.2.2 Noise Reduction

A major problem that comes from crowdsourced data is the lack of ability to control for the sounds in the
environment and the quality of the microphone. For this purpose, a library called Noisereduce[123] is
used. Noisereduce is a noise reduction algorithm in python that reduces noise in time-domain signals like
speech, bioacoustics, and physiological signals. It relies on a method called "spectral gating” which is a
form of Noise Gate. It works by computing a spectrogram of a signal and estimating a noise threshold (or
gate) for each frequency band of that signal. That threshold is used to compute a mask, which gates noise
below the frequency-varying threshold. The library works by removing a certain frequency from the target
sound clip by isolating the signal using Fast Fourier Transforms. The basic algorithm which leads to data
cleaning with the FFT in python is described in [124]. Firstly, an FFT is calculated over the noise audio
clip. Secondly, statistics are calculated over FFT of the noise (in frequency). Then, a threshold is
calculated based upon the statistics of the noise (and the desired sensitivity of the algorithm). Moreover,
an FFT is calculated over the signal and a mask is determined by comparing the signal FFT to the
threshold. The mask is smoothed with a filter over frequency and time, applied to the FFT of the signal,
and is inverted.
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Figure 3.14: The waveforms and spectrograms of the cough signal of a covid patient a) before and b) after noise reduction. All
spectrum resolution is kept after denoising as depicted in (c).

Overall, the noise reduction plays an important role in standardizing the datasets. Figure 3.14 compares
the spectrograms and the waveforms between a noisy and the corresponding denoised audio file of a covid
patient and depicts its spectrum.

3.2.3 Data Augmentation

Data augmentation is applied to train set only , because otherwise a data leakage would occur. There
are two ways of implementing augmentation to audio data: raw audio and spectrogram augmentation
such as SpecAugment[125]. In this study, raw audio data augmentation is implemented. Data
augmentation is compulsory for small datasets when using convolutional neural networks because
it addresses data scarcity, it increases models’ robustness, it improves models’ accuracy, it reduces
overfitting and it saves resources to collect and label data. There are many techniques with the most
dominant ones being time shifting, time stretching (i.e. change speed without affecting pitch or
frequency), pitch scaling, noise addition, impulse response addition, low/high/band pass filtering, polarity
inversion, random gain (i.e. change the amplitude). For the purposes of this task | am using two python
libraries, librosa[126] and audiomentations[127]. A heavier data augmentation has been applied to
the Cambridge dataset due to the fact that it is smaller and more prone to overfitting than the Coswara
heavy and the Coswara shallow. Furthermore, audio data augmentation can be used to improve the
recall performance according to [72]. With regards to the techniques, random gain, pitch
shifting[128] and time stretching have been used. The waveforms of the original and the augmented
data is shown in Figure 3.15(a-c). The following has been applied:

i. Stretching Time: reduce the sample sound signal (to unchanged running pitch). Based on the factors
{0.80,1.20} the duration is stretched.

ii. Shift Pitch: Sound/audio samples can be increased or decreased (to unchanged running pitch), and
every sample can be shifted differently by 1 or 2 semitones up.

iii. Random gain : Multiply the audio by a random amplitude factor between 10 and 15 to increase the
volume. This technique can help a model become invariant to the overall gain of the input audio.
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Figure 3.15: Data augmentation. The waveforms of (a) the original signal b) augmented signal by a time stretching factor of
0.8 and b) augmented signal by one semitone up.

Data augmentation is done for both classes Covid and non-Covid on the training set. Eventually, this
method has led to 1456 Covid samples and 3184 non-Covid samples in Coswara’s heavy training set,
1352 Covid samples and 2732 non-Covid samples in Coswara’s shallow training set, 616 Covid and 1113
non-Covid samples in Cambridge dataset.

3.3 CNN models

Nine models with the best results for the task of Covid-19 classification will be described in this section.
Three of them are pretrained neural networks on the ImageNet dataset[129] and the rest of them are
modifications of existing models in bibliography as well as a stacked neural network, which combines the
predictions of the aforementioned pretrained networks. The three pretrained networks are namely
Xception, InceptionResnetv2 and Resnet50. Other pretrained networks were examined as well, such as
Inceptionv3, VGG-16, EfficientNetB0, MobileNetv2, Densenet121, Resnet18 but they did not achieve
remarkable results. In all pretrained models, for each dataset, grid search has been done for
hyperparameter tuning in order to define the optimal learning rate, activation function, momentum,
optimizer, dropout rate, number of neurons in the last dense layer, batch size and number of epochs. The
initial weights used are the ones of training the model on the ImageNet dataset for the pretrained networks.

3.3.1 Xception

Xception is an extension of the Inception architecture which replaces the standard Inception modules with
depthwise separable convolutions[130]. It is based on the hypothesis that the mapping of cross-channels
correlations and spatial correlations in the feature maps of convolutional neural networks can be entirely
decoupled. Because this hypothesis is a stronger version of the hypothesis underlying the Inception
architecture, the proposed architecture(Figure 3.16) was named Xception, which stands for “Extreme
Inception”.
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Figure 3.16: Xception architecture [130]

After grid search, the optimal hyperparameters were chosen. For the Coswara cough heavy dataset,
XCeption’s last fully connected layer was replaced by a dense layer consisting of 256 neurons with
softmax activation function and a 0.3 dropout rate before being finally connected to a single neuron,
responsible for the binary classification. Batch normalization is introduced after the activation function.
The learning rate is set to 0.0001, the optimizer is RMSprop, the momentum is 0.7, the batch size is equal
to 16 and trained for 10 epochs. It is important to underline the usage of the batch normalization layer.
Batch normalization not only speeds up the training process and improves model generalization, but also
helps reduce sensitivity to bad parameters initialization which could undermine models’ training
process[131]. For the Coswara cough shallow dataset, the base model is used with average pooling and
batch normalization, Adam optimizer and learning rate equal to 0.0001 trained for 20 epochs. For the
Cambridge dataset, the last dense layer consists of 1024 neurons and the dropout rate is set to 0.5, the
optimizer chosen is Stochastic Gradient Descent and the learning rate is 0.0001, while the training process
lasts for 10 epochs. The loss function is binary cross entropy in all of the above datasets.

3.3.2 InceptionResnetv2

Inception-ResNet-v2 is a convolutional neural architecture that builds on the Inception family of
architectures but incorporates residual connections (replacing the filter concatenation stage of the
Inception architecture)[7]. In the Inception-Resnet block multiple sized convolutional filters are combined
by residual connections. The usage of residual connections not only avoids the degradation problem
caused by deep structures but also reduces the training time[132]. This model is trained on more than a
million images from the ImageNet database and it is 164 layers deep(Figure 3.17). With regards to the
Coswara cough heavy dataset, the classification head is substituted with a dense layer of 512 neurons, a
‘relu’ activation and a dropout layer with dropout rate equal to 0.5. The optimizer is Adam and the learning
rate is set to 0.001. Furthermore, the batch size is equal to 16 and the model achieves better results when
trained for 10 epochs. In the Coswara cough shallow dataset, the base model is used with the same
optimizer and learning rate as before, but it is trained for 20 epochs. Finally, regarding to the Cambridge
dataset, the last dense layer has 1024 neurons with the other hyperparameters remaining the same as in
the Coswara cough heavy.
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Figure 10.17: InceptionResnetv2 architecture [7]

3.3.3 ResNet50

Resnet50 has been reported as one of the models with the highest accuracy in diagnosing Covid-19 from
cough samples [74],[133], while Resnet18 has extraordinary results in the classification of Covid-19 from
chest X-Ray and CT images[134]. The fundamental breakthrough with ResNet was it allowed to train
extremely deep neural networks with more than 150 layers successfully. Prior to ResNet training very deep
neural networks was difficult due to the problem of vanishing gradients. ResNet uses skip connection to
add the output from an earlier layer to a later layer. This helps it mitigate the vanishing gradient problem.
The ResNet-50 model consists of 5 stages each with a convolution and Identity block. Each convolution
block has 3 convolution layers and each identity block also has 3 convolution layers. The ResNet-50 has
over 23 million trainable parameters[8]. With regards to the Coswara cough heavy dataset, the neurons of
the last dense layer are 256, and the dropout rate is 0.5. The model is trained for 20 epochs. As for the
Coswara cough shallow and the Cambridge dataset, the base model as described in Figure 3.18 is used,
with the classification head being replaced with an average pooling layer and a sigmoid activation. Nadam
is used as an optimizer in all three datasets, as well as the same learning rate which is equal to 0.001 and
the batch size is 16.
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Figure 3.18: ResNet architectures and base models [8]
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3.3.4 Ensemble Model of Pretrained Networks

Deep ensemble learning models combine the advantages of both the deep learning models as well as the
ensemble learning such that the final model has better generalization performance[135]. Combination of
several different predictions from different models to make the final prediction is known as ensemble
learning or ensemble model. The ensemble learning involves multiple models combined in some fashion
like averaging, voting such that the ensemble model is better than any of the individual models. Deep
Neural Networks offer increased flexibility and can scale in proportion to the amount of training data
available. A downside of this flexibility is that they learn via a stochastic training algorithm which means
that they are sensitive to the specifics of the training data and may find a different set of weights each
time they are trained, which in turn produce different predictions. Generally, this is referred to as neural
networks having a high variance and it can be frustrating when trying to develop a final model to use for
making predictions. A successful approach to reducing the variance of neural network models is to train
multiple models instead of a single model and to combine the predictions from these models. This can
lead, subsequently, to an increased robustness of the model. Ensemble models have been used for Covid-
19 classification tasks[136]. Each model uses the optimal parameters for training as defined in 3.1.2 —
3.1.3. Then, the predictions of each model are summed with the same weights (i.e. contributing equally)
and an average prediction is calculated. The probability threshold is set to 0.5. Samples with probability
greater than or equal to the threshold are classified as Covid and the ones with a probability smaller than
the threshold as non-Covid. Figure 3.19 depicts the model’s architecture.

: Xception x
: *  predictionsl
T \ ) _ covid-19
augmented data . predictions? N |
« J : InceptionResnetv2 ; = > () '| threshold
: Age predictions non-Covid
: predictions3
Resnet50 .

Figure 3.19: The ensemble model which combines the predictions of the three pretrained models on ImageNet.

3.3.5 Temporal Convolutional Recurrent Neural Networks

This model differs from the previous models in that the input is the full cough sounds themselves, thereby
preserving much of the information in the data. The model was implemented in the Early Detection of
COVID-19 from Cough Sounds, Symptoms, and Context[62]. The input was the raw .wav file of the
denoised cough audio files. This input was fed into a Temporal Convolutional Recurrent Neural Network,
termed TCRNN with a combined CNN and LSTM architecture, outputting a binary classification of
COVID-19 positive or negative. In more detail, the data is first transformed into a spectrogram, a temporal
sequence of spectra. As in images, neighboring spectrogram bins of natural sounds in time and frequency
are correlated; but in sound production, so are harmonics, or frequencies that are multiples of the same
base frequency. Therefore, the short-time Fourier transform (STFT) of the signal is obtained in order to
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calculate the spectrogram, which serves as the features for our model. CNNs and RNNs both have their
respective advantages and disadvantages in audio classification. CNNs have a fixed receptive field, which
can be limiting but also modified, while RNNs can in theory utilize an unlimited temporal context, but in
practice may require modifications to achieve this. Ideally, CRNNs offer the best of both words by using
the convolutional layers to extract local information, and the recurrent layers to combine it over a longer
temporal context. This classification model employs an LSTM to better capture long term temporal
dependencies. In summary, the CNN takes the spectrogram as input and consists of a sequence of 2D
convolutions, followed by a bi-directional LSTM. A maxpool layer was removed to accommodate the
data size. Moreover, the CNN consists of three convolutional blocks followed by a batch
normalization and a max pooling. The bidirectional LSTM contains 2 layers with hidden size equal
to 64. The model structure is illustrated in Figure 3.20.

Figure 3.20: TCRNN step-by-step. Firstly, the STFTs are calculated from the raw denoised audio files. Then, a 3 block
convolutional network is applied. Images are reshaped and fed into a bidirectional LSTM that captures the longer temporal
context.

3.3.6 VGG-13

VGG-13 network is structured as a series of layers, including convolutional layers and pooling layers.
Compared with traditional feature extraction methods convolutional layers can automatically extract
features from data [9]. Following convolutional layers, max pooling layers, which compute the maximum
of a local patch of units in one feature map, are added to reduce the dimension of representation and create
invariance to small translations or rotations. Particularly, all 13 convolutional layers contained in VGG-
Base adapt 3 x 3 kernel size. VGG16 contains 13 convolutional layers, 5 max-pooling layers, and 3 fully
connected layers; however in VGG-13 the 3 fully-connected layers and the last max-pooling layer are
removed. Each convolutional block consists of two convolutional layers followed by a max pooling layer
that halves each spatial dimension. After each convolution, which uses the ReLU activation function,
batch normalization is applied as a form of regularization. After the convolutional blocks, each channel
is averaged to a scalar value. Finally, a softmax layer is used to generate the predictions [137]. The input
images of mel spectrograms have size (128,64,3). The modifications of the VGG-13 base model that have
been done include the introduction of batch normalization after each convolution, one dense layer instead
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of two because the datasets are prone to overfitting, the replacement of the last max pooling layer with an
average pooling and the reduction of the number of units of the last dense layer from 4096 to 1024 for the
two datasets of Coswara repository and to 2048 for the Cambridge Dataset. The batch size is set to 20 for
the Coswara Cough Heavy and Shallow Datasets and 32 for the Cambridge Dataset and the epochs are
13, 13 and 150 respectively. The architecture used is shown in Figure 3.21 while the original architecture
proposed in the paper[9] is shown in Figure 3.22.
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Figure 3.21: The VGG-13 architecture used
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Figure 3.22: The VGG-13 architecture proposed in [9]. It contains 13 convolutional layers and 4 max-pooling layers.

3.3.7 CRNN with an attention mechanism and Bi-directional LSTM

The attention based hybrid CNN-LSTM architecture was introduced in [10]. The architecture can be
divided into three blocks. The first block uses a CNN architecture, which receives augmented mel-
spectrograms as input of shape (39x88x3). Then, the most relevant and informative features are extracted
by the convolution layers. In the second block, Attention-LSTM feature maps are passed to LSTM block,
where the deep features that have high temporal correlation are selected to be passed to the attention block
in order to capture more useful patterns. In the third block, a simple fully connected layer is used for
feature learning and classification.

The attention mechanism enables neural networks (NNs) to select the portions in speech that are more
likely to contain keywords, while ignoring the irrelevant parts. Soft attention is introduced to
automatically learn how to describe the speech content. Firstly, it learns a scalar score as
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where, ht is the hidden states. Then softmax is applied to compute the normalized weight as

exple;)

E;'Tzl exp(e;)

o =

where, o; stands for the attention score, and is applied to further extract content of the feature-maps from
BiLSTM layers [138], [5].

The modification that has been made in this architecture is the reduction of convolutional blocks from
four to three. Additionally, the Exponential Linear Unit has been used as an activation function instead of
ReLU. Incontrastto ReLUs, ELUs have negative values which allows them to push mean unit activations
closer to zero like batch normalization but with lower computational complexity [139]. The batch size is
256 in all three datasets, but the LSTM units are 128, 64, 32 for the Coswara cough heavy, the Coswara
cough shallow and the Cambridge dataset respectively. The dropout rate is set to 0.5 and the neurons of
the last dense layer are 50. The optimizer is Adam and the learning rate is 0.001. Moreover, the number
of epochs are 100, 30, 100 for the aforementioned datasets respectively. Figure 3.23 shows the above

structure in detail.
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Figure 3.23: Structure of the proposed Attention Hybrid CNN-LSTM architecture [10].

3.3.8 CRNN with an Attention Mechanism and BiGRU

This model was inspired from the architecture described in 3.1.7 but here instead of LSTM, GRU units
have been used. The idea for the GRU units came from a paper for a music auto tagging task proposed in
[140] which combined with a CNN achieved remarkable results. The architecture is shown in Figure 3.25.
The GRU units are equal to 256 for all the datasets and the batch size is set to 256, 32, 32 for the Coswara
cough heavy, the Coswara cough shallow and the Cambridge dataset respectively. The model is trained
for 100, 20 and 100 epochs for the aforementioned datasets respectively. The best optimizer for this task
is Adam. The learning rate scheduler has been used, with the initial learning rate being 0.002 and it drops

to half of its value every 10 epochs.
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Figure 3.24: Structure of the proposed Attention Hybrid CNN-GRU architecture.

3.3.9 DenseNet Speech

The effective combination of DenseNet Speech and BiLSTM was introduced by Mengjun Zeng and
Nanfeng Xiao for keyword spotting[5]. The DenseNet is primarily applied to obtain local features, while
the BiLSTM is used to grab time series features. The DenseNet Speech architecture that they proposed is
different from the original DenseNet, as they removed the pool on the time dimension in transition layers
to preserve speech time series information. In addition, DenseNet-Speech uses less dense blocks and
filters to keep the model small, thereby reducing time consumption. In DenseNet-Speech, they only
performed a convolution operation along the time dimension to get the basic feature-maps of the time
series. The convolution has a kernel of 5x1, without any pooling operation. The DenseNet Speech that is
used for the purposes of Covid-19 classification task is detailed in Table 3.1. There is no use of the
BiLSTM and attention layer that they used and the model was built from scratch. The growth rate is set
to 10, this determines the number of feature maps output into individual layers inside dense blocks. The
transition layers aggregate the feature maps from a dense block and reduce its dimensions. Here, we have
two transition layers with 1x2 average pooling enabled. The Reshape Layer is substituted with a flatten
layer, followed by a dense layer with 128 neurons. As for the hyperparameters, batch size is 16. Adam
optimizer is utilized for training with a learning rate of 0.0001. All of the datasets achieve higher results
when trained for 20 epochs. Figure 3.26 illustrates the model architecture.

Table 3.1: DenseNet-Speech Architecture. There are 3 dense blocks. The growth rate k = 10. Each ‘conv’ shown on the table
corresponds the sequence BN-ReLU-Conv.

LAYERS OUTPUT SIZE DENSENET SPEECH
Convolution 196 x 200 x 10 5 x 1 x conv(10)
Pooling 98 x 100 x 10 2x2 average
pooling, stride 2x2
Dense Block (1) 98 x 100 x 10 1x 1conv(40) ] %6
3x 3conv(10)
Transition Layer (1) 98 x 100 x 10 1 x 1 x conv(10)
98 x50 x 10 1x2 average
pooling, stride 1x2
Dense Block (2) 98 x50 x 10 1x 1conv(40) ] %6
3x 3conv(10)
Transition Layer (2) 98 x50 x 10 1 x 1 x conv(10)
98 x25 x 10 1x2 average
pooling, stride 1x2
Dense Block (3) 98 x25 x 10 1x 1conv(40) ] %6
3x 3conv(10)
Flatten (None, 24500)
Dense (None, 128)
Dense (None,2)
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3.4 Implemented Methods

3.4.1 5-fold Cross validation

Learning the parameters of a prediction function and testing it on the same data is a methodological
mistake: a model that would just repeat the labels of the samples that it has just seen would have a perfect
score but would fail to predict anything useful on yet-unseen data. This situation is called overfitting [48]
. To avoid it, a test set should be held out. Moreover, a validation set is needed so as to tackle the risk that
knowledge about the test set can “leak” into the model and evaluation metrics no longer report on
generalization performance. Finally, a solution to the bias that would occur from a random selection of
train and validation set is k fold cross validation. We have chosen k =5. The dataset is split into 5 folds,
with each one containing 20% of the total dataset and then the model is trained on the k —1 folds, while
one fold is left to test a model. This procedure is repeated 5 times. The above procedure is followed for
the Cambridge dataset but for the Coswara dataset (cough shallow and cough heavy), a test set (20% of
the whole dataset) is held out from the beginning and then the training data are split according to the 5
fold cross validation principles (as shown in Figure 3.27). Both datasets demonstrate the singularity of
same users (i.e. users linked to multiple recordings). Training and testing on the same set of users can
give horribly misleading results that will not predict out of sample performance on new users. Training
on multiple records/observations from the same user/subject is accepted, but test data must be independent
of the training data. There is the need for a subject-wise cross validation strategy [141] (Figure 3.28).
CSV files were created where each recording was linked to a unique user id. Hence, GroupShuffleSplit
iterator is used. It behaves as a combination of ShuffleSplit and LeavePGroupsOut, and generates a
sequence of randomized partitions in which a subset of groups are held out for each split.
GroupShuffleSplit tends to repeat the same splits as the splits are chosen after shuffling the data. This
repetitive behavior may generalize the model (Figure 3.29). Furthermore, grid search for the random state
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seed has effectively accomplished that the proportion of classes at each fold is same for most of the folds
as the initial dataset (non-Covid/Covid 2:1).
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Figure 3.26: 5-fold cv for the Coswara cough heavy and Coswara cough shallow datasets
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3.4.2 Handling Class Imbalance

In general, the imbalanced dataset is a problem often found in health applications. In clinical data
classification, the imbalanced number of data samples, where at least one of the classes constitutes only
a very small minority of the data, occurs very often[142]. To reduce the overfitting, appropriate testing
and training datasets should be created. A sub-sampling approach similar to the one developed by
Zarkogianni et al. was implemented [143]. In Cambridge, Coswara cough heavy and Coswara cough
shallow datasets, the Covid-19 class is underrepresented and the ratio between non-Covid and Covid-19
subjects is 2:1. To address this issue, an ensemble learning method was applied. Firstly, the dataset is split
into training, validation and testing sets, as described in 3.2.1. Training set contains 60% of the data, while
testing and validation contain 20% each. Then, data augmentation is applied to training set only for both
classes. The validation and testing sets remained unchanged retaining the original distribution of samples
in the two classes (i.e. 2:1). Subsequently, a balanced sub-sampling approach was adopted, where training
sub-sets were generated, preserving a 1:1 ratio between the majority (non-Covid) and the minority (Covid-
19) class [144]. The non-Covid class of the training set was split into two equally sized sets and was
merged with the whole minority class samples. Hence, two balanced subsets were created containing half
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of the original non-Covid samples and the whole Covid-19 samples. These subsets are trained individually
on the models described in section 3.3, with the architectures being identical in terms of hyperparameters.
The classification results are acquired from averaging the probabilities of the two subsets. Of course, the
final evaluation metrics are a result of this procedure combined with 5-fold cross validation. The ensemble
learning procedure is detailed in Figure 3.30. Figure 3.31 shows the split of the dataset and how the two
subsets are fed into deep learning architectures.

Training Set Balanced Subset 1 Balanced Subset 2
h h 4
Covid-19 non-Covid Covid-19 non-Covid Covid-19 non-Covid

Figure 3.29: Training set divided into two balanced subsets.
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Figure 3.30: The dataset split into training/testing/validation sets and the ensemble method through which the classification
results are acquired.

The class imbalance of the datasets in multistage transfer learning, which will be described thoroughly in
section 3.4.3, is handled with two oversampling techniques. Namely these are: Synthetic Minority
Oversampling TEchnique (SMOTE) and Random Oversampling. Both techniques have been used in
Covid-19 related tasks as well [53].SMOTE’s main idea is to create new minority class examples by
interpolating several minority class instances that lie together[145]. It is used to obtain a synthetically
class-balanced or nearly class-balanced training set, which is then used to train the classifier. SMOTE
performs better than simple oversampling with structured data, but not always in image classification tasks
and a practical explanation of this is that SMOTE is applied on flattened images, therefore the localized
information obtained from convolutions is lost. For each sample from the minority class (x) samples from
the minority class with the smallest Euclidean distance from the original sample were identified (nearest
neighbors), and one of them was randomly chosen (x®). The new synthetic SMOTE sample was defined
as:

S=x+u-(xR-x),

where u was randomly chosen from U(0, 1). u was the same for all variables, but differed for each SMOTE
sample; this choice guarantees that the SMOTE sample lies on the line joining the two original samples
used to generate it[146]. Synthetic Minority Oversampling Technique (SMOTE) algorithm applies KNN
approach where it selects K nearest neighbors, joins them and creates the synthetic samples in the space.
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The algorithm takes the feature vectors and its nearest neighbors, computes the distance between these
vectors. The difference is multiplied by random number between (0, 1) and it is added back to
feature. Since the Covid class represents the 50% of the non-Covid, the k_neighbors parameter is set to
5. Random oversampling tries to balance class distribution by randomly replicating minority class
instances. However, several authors agree that this method can increase the likelihood of overfitting
occuring, since it makes exact copies of existing instances[145]. The python library imblearn is used for
the implementation of both techniques.
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Figure 3.31: SMOTE

3.4.3 Multistage Transfer Learning

The multistage transfer learning architecture was inspired from an application on an ultrasound breast
cancer image classification[147]. Recently, multistage transfer learning (MSTL), where a model pre-
trained on a large dataset is further pre-trained on a given domain with a relatively small dataset size
compared to ImageNet, before fine-tuning it on a given target task with a much smaller dataset size, has
become popular. Their proposed MSTL method involves TL from an ImageNet (dataset containing 1000
categories and 1.2 million images) pre-trained model to cancer cell line microscopic images (dataset
containing three categories and 20,400 images), which is in turn used as a pre-trained model for TL on
US breast cancer images (200 Mendeley and 400 MT-SmallDataset images) to classify them as malignant
or benign. MSTL was implemented using three pre-trained models: EfficientNetB2, InceptionV3, and
ResNet50. For the purposes of the current analysis, the MSTL procedure involves 3-stage Transfer
Learning and the three pretrained models are Xception, InceptionResnet-v2, ResNet50 as shown in Figure
3.18 . No data augmentation is used, just the mel spectrograms of the denoised audio recordings. In the
first stage, we applied TL from ImageNet to Coswara cough heavy dataset which contains the most
samples among Coswara cough shallow and Cambridge. In the second stage, we utilized the first-stage
TL as a starting point and assigned weights to the model that classifies mel spectrograms images as Covid-
19 or non-Covid by applying TL from Coswara cough heavy to Coswara cough shallow dataset. In the
third stage, (i.e. TL from Coswara cough shallow to Cambridge dataset), we used the previous stages as
starting points and acquired the classification results. The objective of our MSTL task is to benefit from
knowledge acquired through learning at different stages of TL. More specifically, with regards to the
model, the same protocol was utilized for all three CNN models, Xception, InceptionResnet-v2, and
ResNet50, at each stage of transfer learning. XCeption’s last fully connected layer was replaced by a
dense layer consisting of 256 neurons with softmax activation function and a 0.3 dropout rate before being
finally connected to a single neuron, responsible for the binary classification. The optimizer is Adam and
the learning rate is set to 0.0001. InceptionResnet-v2 had its classification head substituted with a dense
layer of 512 neurons, a ‘relu’ activation and a dropout layer with dropout rate equal to 0.5. The optimizer
is Adam and the learning rate is set to 0.001. As for the ResNet50 architecture, the neurons of the last
dense layer are 256, and the dropout rate is 0.5. The optimizer is Nadam with a learning rate equal to
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0.001. All models were trained for 20 epochs. To overcome the class imbalance issue, SMOTE and
Random Oversampling are used during training for the Coswara cough heavy and Coswara cough shallow
datasets, as described in section 3.4.2. In the first stage, the weights pretrained on ImageNet are loaded
using Keras. In the second stage, the weights are initialized to the ones acquired by training the Coswara
cough heavy dataset. Moreover, when Coswara cough shallow is trained, grid search is implemented in
order to define the optimal weights to sum each classifier’s predictions. A weighted ensemble is an
extension of a model averaging ensemble where the contribution of each member to the final prediction
is weighted by the performance of the model. This led to defining the following as weights [0.2, 0.2, 0.6]
for Xception,InceptionResnetv2,ResNet50 respectively, which means that ResNet50 contributes the most
to summing the predictions by a factor 0.6. In the third stage, Cambridge dataset is trained using the
weights acquired from the training of Coswara cough shallow. Each classifier contributes to the
predictions according to the weights defined in the previous stage. Coswara cough shallow and Coswara
cough heavy are split into 80% training set and 20% validation set but the Cambridge dataset is split as
detailed in Figure 3.33. To overcome the issue of class imbalance in the Cambridge dataset an ensemble
learning approach has been used. Two of the architectures described are used with the ensemble
predictions of the classifiers being averaged. 5-fold cross validation is implemented in order to define
accuracy, precision, sensitivity, specificity, AUC and F1-score of the model. The results on the non-
augmented Cambridge dataset have revealed that pretraining on two cough related datasets achieves
higher testing results.

Pretrained on ImageNet Coswara Cough Heavy (80%-20%) Coswara Cough Shallow(80%-20%) Cambridge Dataset(80%-20%)
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: - stage 1 TL : : : :
N Inception Resnet v2 . . Inception Resnet v2 IStage 2TL : Inception Resnet v2 . . Inception Resnet v2
: : D : : : :stage 3 TL: :
. . (] . . . :
. . ] . w . : : :
. Resnet 50 : m . Resnet 50 g : Resnet 50 . . Resnet 50 .
. . A . ot - . . .
. : ‘i s . m :
: 5 : s £ : : :
ccccc s rrrmaan s 92- R i . S 2 L e et e s s EE e s s e *wwaan
‘ desk | | castls ‘ | ------- | ‘ Covid-19 non-Covid | 2 Covid-19 non-Covid ‘ Covid-19 ‘ non-Covid

“Grid search for the ™\
weights to sumthe |
_ predictions J

Figure 3.32: The Multistage Transfer Learning architecture.

3.5 Interpretability

Miller in his work [148] defines interpretability as “the degree to which a human can understand the cause
of a decision”. The widespread adoption of deep learning methods, combined with the fact that it is in
their very nature to produce black-box machine learning systems, has led to a considerable amount of
experiments and scientific work around them and, therefore, tools regarding their interpretability [80]. In
this thesis, the local interpretable model-agnostic explanations (LIME) method has been used. The term
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local is used to describe an interpretability method, which explains a single prediction rather than the
overall model. A model agnostic tool can be applied to any model. It is used so as to highlight the super-
pixels with positive weight towards a specific class, as they give intuition as to why the model would
think that class may be present [149] . LIME creates explanations by generating a new dataset of random
perturbations (with their respective predictions) around the neighbourhood of input instance, and then
fitting a weighted local surrogate model. This local model is usually a simpler model with intrinsic

interpretability such as a linear regression model. LIME generates perturbations by turning on and off
some of the super-pixels in the image. Additionally, we use the InceptionResnet-v2 model to predict the
class of each of the perturbed images. We use a distance metric to evaluate how far is each perturbation
from the original image. The original image is just a perturbation with all the super-pixels active (all
elements in one). Given that the perturbations are multidimensional vectors, the cosine distance is a metric
that can be used for this purpose. After the cosine distance has been computed, a kernel function is used to
translate such distance to a value between zero and one (a weight). At the end of this process we have a
weight (importance) for each perturbation in the dataset. Finally, we fit a weighted linear model using the
information obtained in the previous steps. We get a coefficient for each super-pixel in the image that
represents how strong is the effect of the super-pixel in the prediction of Covid-19 or non-Covid class.
Then, we sort these coefficients to determine what are the most important super-pixels (number of features)
for the prediction of each class. In our task, the number of features is set to 10.

Although an explanation of a single prediction provides some understanding into the reliability of the
classifier to the user, it is not sufficient to evaluate and assess trust in the model as a whole. As proposed
in [149], a global understanding of the model is given by explaining a set of individual instances. We
examined some of the predictions on the test set, and results are presented for a true negative and a false
negative case. The results will be demonstrated in Section 4.3.
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Chapter 4

Results

4.1 Evaluation of models’ performance

The classification results for the models presented in Section 3.3 are acquired, as stated earlier, through
5-fold cross validation. The data imbalance (i.e. the prevalence of the negative — non Covid class at a
ration 2 : 1) is handled with ensemble learning. The individual models predict on the five validation folds
and on the test dataset. The prediction probabilities are finally obtained for all test samples by averaging
the predictions from the two subsets that contain equal number of Covid and non-Covid cases as described
thoroughly in 3.4.2. The classification results for the Coswara Cough Heavy, the Coswara Cough Shallow
and the Cambridge datasets are shown in Tables 4.1 — 4.3 respectively. The Stacked CNN model is the
ensemble model of the three pretrained networks defined in Section 3.3.4 and it outperforms the other
models when trained on the Coswara Cough Heavy Dataset. TCRNN, which was originally introduced
for environmental sound classification and was modified for the needs of the current task, has a consistent
behavior since it is the best model for the Coswara Cough Shallow dataset and the second best for the
Coswara Cough Shallow. This could be attributed to the fact that CRNNs take advantage of the
convolutional layers so that they extract local information, and the recurrent layers to combine it over a
longer temporal context. ResNet50 is the pretrained network on ImageNet that achieves better results
compared to the rest pretrained NNs for the Coswara Cough Heavy and Coswara Cough Shallow Datasets,
while InceptionResNetV2 outperforms the rest pretrained networks for the Cambridge Dataset. The
hybrid CRNN with an attention-based mechanism achieves higher results when combined with a BiLSTM
for the Coswara Cough Heavy Dataset and with a BiGRU unit for the other two datasets. The results
obtained from VGG13 are obviously better for the Coswara Cough Heavy Dataset than the other datasets.
Generally, Coswara Cough Heavy offers better classification results. One apparent reason is the numerical
superiority of samples. Secondly, the lack of ability to control for the sounds in the environment and the
quality of the microphone affect the classification outcome despite the fact that sounds have been

Table 4.1: Evaluation metrics for the Coswara Cough heavy dataset

Model Accuracy AUC Precision Recall Specificity F1-
(%) (%) (%) (%) (%) score
(%)
Xception 65,84 61,82 55,31 48,26 75,13 51,38
InceptionResnetV?2 69,24 65 52,1 53,14 76,86 52,6
Resnet50 69,14 65,17 54,62 52,85 77,5 53,72
Stacked CNN 74,1 70,86 64,7 59,68 82,05 62,1
TCRNN 71,1 66,4 66,1 54,8 78,5 59,9
VGG13 70,52 66,9 58,82 54,68 79,14 56,7
CRNN+Att+BiLSTM | 69,15 65,08 53,78 52,89 77,28 53,33
CRNN+Att+BiGRU | 65 63,81 67,22 47,62 80 55,75
DenseNet Speech 70,25 65,39 35,29 57,53 73,45 43,69

71



denoised. A heavy cough file probably encodes more information about the cough than a shallow one.

This is the reason why in the Coswara’s paper [73] confusion matrix heavy cough is predicted more

accurately than shallow cough.

Table 4.2: Evaluation metrics for the Coswara Cough Shallow dataset

Model Accuracy AUC Precision Recall Specificity F1-
(%) (%) (%) (%) (%) score
(%)
XCeption 60,61 58,11 52,25 44,27 71,98 47,93
InceptionResnetV?2 59,69 58,1 55,86 43,66 72,47 49,01
ResNet50 62,18 60,77 60,36 46,53 75 52,55
Stacked CNN 63,12 61,16 58,55 47,45 74,86 52,42
VGG13 56,87 59,74 72,73 42,78 76,69 53,87
TCRNN 76,67 76,16 74,02 71,32 81 72,65
CRNN+ALtt+BIiLSTM | 60,16 59,4 61,63 43,44 75,37 50,96
CRNN+ALtt+BiGRU 64,1 61,2 55,81 47,06 75,3 51,1
DenseNet Speech 63,67 64,34 73,25 47,37 81,3 57,53
Table 4.3: Evaluation metrics for the Cambridge dataset
Model Accuracy | AUC Precision Recall Specificity F1-
(%) (%) (%) (%) (%) score
(%)
Xception 59,72 58,15 59,09 39,39 76,92 47,27
InceptionResNetV2 62,5 60,95 63,63 42,42 79,49 50,9
ResNet50 57 59,83 72,73 39,02 80,64 50,79
Stacked CNN 62,32 62,12 66,7 48,48 75,75 56,15
VGG13 62,5 61,97 68,18 42,86 81,08 52,63
TCRNN 70,2 52,2 57,93 54,4 72,3 56,1
CRNN+Att+BiLSTM | 64 63,86 72,72 44,44 83,33 55,14
CRNN+Att+BiGRU | 62,5 64,22 77,27 43,59 84,85 55,74
DenseNet Speech 59,82 59,18 63,63 40 78,37 49,12

On the other hand, the Cambridge Dataset is a much smaller dataset while Deep Learning methods, at the
same time, are data hungry. However, the data augmentation combined with the grid search for
hyperparameter tuning has shown some promising results. DenseNet Speech architecture has the second
best AUC score for the Coswara Cough Shallow dataset, though it did not perform as expected for the
other datasets.

4.2 Evaluation Metrics for Multistage Transfer Learning

To handle class imbalance in the Cambridge dataset an ensemble learning approach has been used. Two
of the stacked CNN architectures described earlier are used with the ensemble predictions of the classifiers
being averaged. 5-fold cross validation is implemented in order to define accuracy, precision, sensitivity,
specificity, AUC and F1-score of the model. The results on the non- augmented Cambridge dataset have
confirmed that pretraining on two cough related datasets achieves higher testing results. Classification
results are presented in Table 4.4. The imbalance handling refers to the previous from Cambridge datasets
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techniques. Coswara cough heavy and Coswara Cough Shallow are trained using both Random
Oversampling and SMOTE. These techniques are described in detail in Section 3.4.2. The aim of our
MSTL task is to benefit from knowledge acquired through learning at different stages of TL. The MSTL
procedure involves 3-stage Transfer Learning and the three pretrained models are Xception,
InceptionResnet-v2, ResNet50. All models were trained for 20 epochs. In the first stage, the weights
pretrained on ImageNet are loaded using Keras. In the second stage, the weights are initialized to the ones
acquired by training the Coswara cough heavy dataset. Moreover, when Coswara cough shallow is trained,
grid search is implemented in order to define the optimal weights to sum each classifier’s predictions. A
weighted ensemble is an extension of a model averaging ensemble where the contribution of each member
to the final prediction is weighted by the performance of the model. This led to defining the following as
weights [0.2, 0.2, 0.6] for Xception,InceptionResnetv2,ResNet50 respectively, which means that
ResNet50 contributes the most to summing the predictions by a factor 0.6. In the third stage, Cambridge
dataset is trained using the weights acquired from the training of Coswara cough shallow.

Among the two imbalance handling strategies, Random Oversampling offers higher and more consistent
results. SMOTE performs better than simple oversampling with structured data, but not always in image
classification tasks and a practical explanation of this is that SMOTE is applied on flattened images,
therefore the localized information obtained from convolutions is lost. Finally, an AUC of 70,2% and an
F1-score of 65,4% is achieved for the Cambridge dataset. A noticeable increase has been accomplished
since multistage transfer learning clearly outperformed the ensemble models for the Cambridge dataset. As
it can be observed in Figure 4.1 most of the evaluation metrics are increased with MSTL even when
compared to the best DNN model which was CRNN with the attention mechanism and BiGRU for the
Cambridge dataset.

Table 4.4: Evaluation metrics for the Cambridge dataset after the multistage transfer learning process

Feature Imblance Accuracy | AUC | Precision Recall Specificity | F1-
Handling (%) (%) (%) (%) (%) score
(%)
Mel SMOTE 67,87 65,9 63 54,49 77,3 58,44
Spectrogram | Random 69,34 70,2 78,03 56,3 81,56 65,4
Oversampling

Recall |

20 30 40 50 60 70 BD 50

DNMs using ensemble models @ MSTL

Figure 4.1: Comparison of evaluation metrics of the Cambridge dataset between the best DNN model and Multistage Transfer
Learning).
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4.3 Prediction Interpretation

Some of the predictions on the test set were examined to qualitatively evaluate InceptionResnetV2
performance for the Coswara Cough Heavy dataset. To this end local interpretable model-agnostic
explanations (LIME) method is employed. Fig. 4.1 examples of interpretation are shown for a true
negative (a) and a false negative case (b). Here negative stands for non-Covid users. The figure above
illustrates what LIME returns as explanation in the image classification prediction. 4.2 (a) shows the area
of the image (super-pixels) that have a stronger association with the prediction of “non Covid”, 4.1(b)
shows the super-pixels that have a stronger association with the class ‘non Covid’ but the image was
misclassified. The output of LIME is a list of explanations, reflecting the contribution of each feature to
the prediction of a data sample. This provides local interpretability, and it also allows to determine which
feature changes will have most impact on the prediction. From the above example we determine that
higher decibels play a more important role to classify a mel spectrogram as non-Covid since the mel
spectrogram was correctly classified. The false negative example takes in account lower decibels which
means that these features have less impact. Figure 4.3 illustrates a true positive case and what LIME
returns as an explanation. In Figure 4.3(b) only the super-pixels that are responsible for COVID-19
classification are shown. This means that our model classifies our image as COVID-19 because of these.
In Figure 4.3(c) the area of super-pixels colored in green are the ones that increase the probability of our
image belongs to COVID-19 class, while the super-pixels colored in red are the ones that decrease the
probability. In Figure 4.4 a false positive case is demonstrated and the explanation of LIME.

(@)

(b)
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Figure 4.2 : (Left) the original mel spectrogram and (right) LIME’s explanation for (a) a non Covid user which was predicted
non Covid, (b) a Covid user which was misclassified as non Covid

©

Figure 4.3: (a) Original mel spectrogram of COVID-19 patient, (b) super pixels that accounted for the COVID-19 class, (c)
super pixels that accounted for COVID-19 (in green color) and the ones that decreased the probability in red.

Figure 4.4: (Left) original mel spectrogram of a false positive case, (right) LIME’S explanation
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Chapter 5

Conclusion and Future Research

The current thesis aims at demonstrating the feasibility of the automatic detection of COVID-19 from
coughs. The core idea of the tool is inspired by prior studies that show cough can be used as a test medium
for diagnosis of a variety of respiratory diseases using Al. In summary, a pipeline has been provided for
processing the audio recordings, segmenting the cough sound, extracting mel spectrograms and
classifying the presence of COVID-19. Three datasets have been used while two of them are derived from
the Coswara dataset and the last one is Cambridge dataset. One of the main challenges was overfitting
which was tackled with various techniques, such as dropout, L2 regularization and the search for
shallower neural networks, for instance VGG13 instead of VGG16 or VGG19, DenseNet speech instead
of DenseNet201. Another challenge occurred from class imbalance.

We focused on breadth and explored several possibilities especially for the classification task. To this end
nine different deep learning architectures have been tested. Some of them involve hybrid learning
techniques which combine CNNs and BiLSTMs or BiGRUs. A stacked model consisting of three
pretrained models on ImageNet has achieved great results for the Coswara Cough Heavy dataset, and in
particular an accuracy of 74,1%, an AUC of 70,86%, a Precision score of 64,7%, a Recall reaching
59,68%, a specificity at about 82,05% and an F1-score of 62,1%. The results from the Temporal CRNN
model demonstrate potential promise on the feasibility of using cough sound to detect COVID-19. Its
effectiveness lies on the fact that it employs an LSTM to better capture long term temporal dependencies
along with a CNN for local extraction of features. TCRNN has outperformed in the Coswara Cough
Shallow dataset. It has accomplished an accuracy of 76,67%, an AUC of 76,16%, a precision of 74,02%,
a recall of 71,32%, a specificity of 81% and an Fl-score of 72,65% for the Coswara Cough shallow
dataset. CRNN with the BiGRU has outperformed in Cambridge dataset achieving an AUC of 64,22%.

Cambridge dataset had limited cough samples and a multistage transfer method was used to improve the
classification results. Multistage Transfer Learning (MSTL) was conducted from the dataset containing
the most samples (i.e. Coswara Cough Heavy) to the dataset with the fewest (i.e. Cambridge Dataset).
MSTL reclaims all available datasets in order to benefit from knowledge acquired through learning at
different stages of TL. It is combined with ensemble learning for class imbalance for the Cambridge
dataset. After this process, the evaluation metrics and especially AUC, precision and F1-score have
remarkable increase confirming the knowledge that an architecture pre-trained on audio samples can
provide very promising results in such a classification task. It is concluded that pre-training on two
relevant to the task datasets offers a better initialization of the model’s weights and so it effectively learns
features of the third dataset and provides better testing results. When using random oversampling to
handle class imbalance on the two first datasets, the best classification results are obtained. Specifically,
an accuracy of 69,34%, an AUC of 70,2%, a precision of 78,03%, a recall of 56,3%, a specificity of
81,56% and an F1-score of 65,4% have been acquired. Although the accuracy is not as high as in certain
prior literature works, an essential conclusion is extracted. Firstly, cough can potentially serve as a helpful
triage or diagnostic tool for Covid-19 infection. Secondly, it is observed that higher results occur from
pretraining on similar cough related tasks or using the weights of audio classifications than using
pretrained networks on ImageNet.

Eventually, an interpretability attempt has been made on mel spectrograms using LIME. LIME generates
perturbations by turning on and off some of the super-pixels in the image. The InceptionResnet-v2 model
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is used to predict the class of each of the perturbed images. The results of a true negative and a false
negative case are presented.
The way COVID- 19 affects the respiratory system is substantially unique and hence, cough associated

with it is likely to have unique latent features as well. This idea is confirmed from the above results.
Cough sound screening tools may not replace testing but they are functional for timely, cost-effective and
most importantly safe monitoring, tracing, tracking and thus, controlling the spread of the pandemic by
enabling testing for everyone.

Future research could include other vocal modalities available, such as breathing, speech and sustained
vowel phonations, in addition to cough analysed in this thesis. Challenges related to disambiguation with
other respiratory pathologies with similar symptoms remain to be addressed. Since, deep learning
architectures can extract multiple features, feature concatenation could be an effective way to add different
features together in order to enhance the classification process. Furthermore, biomarkers could be used as
inputs, along with spectrograms, MFCCs or images, into parallel architectures. Biomarkers could contain
extra features concerning symptoms of Covid-19. Additionally, the credibility of health status declaration
could be enhanced based on the confirmation by the standard RT-gPCR or RAT test, with the date of
testing. Many of the available datasets are not annotated by experts and they don’t demand a test to submit
the health status, which challenges the classification results. The aspects to be considered for improvement
range from time complexity, space complexity, data quality, recording, record keeping, transfer learning,
and the aspect of transition networks.
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