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Abstract

In the following thesis, the problem of the numerical flow simulation around
moving bodies is tackled. The flow solution concerns incompressible one or two
phase fluids without surface tension in the interface. These types of flows are
largely applied to marine and oceanographic applications and as a consequence,
there has been a need for a robust handling of the grid movement due to wall
translation and rotation. Moreover, due to the storage intensity of large sized
grids and the massive computational load needed from the computer to per-
form the required floating point operations, the following work is implemented
in parallel computer-architectures. The implementation is conducted via the
unstructured parallel CFD code provided by the laboratory coupled with an
overset grid assembly library.
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Chapter 1

Introduction

The research field of fluid dynamics has been in the center of many scientific
and engineering domains in the sense that there exist a plethora of physical
phenomena involving fluid interactions.

Evidently, the CFD industry has grown over the years with a variety of
research successes pertaining to answers to numerous engineering instances in
the aviation, transport, manufacturing, and health industries, as well as in the
climate domain and many more.

Although the following study devotes a significant portion to the idea behind
its methodology and a verification of its applicability, it focuses mostly on flows
observed in marine and oceanic engineering applications. Of course, further
integration with other engineering and scientific fields is obvious.

1.1 Motivation & Problem
The performance of the ship’s conventional propulsion system (namely, the

propeller) and the kinematics of a floating body are two of the most notable
maritime applications that are the focus of the following thesis.

Today, every area of heavy industry is being impacted by the issue of climate
change. Efficiency is on the scope as a benchmark for improvement. The marine
industry, where the scalability of the transporting means infer vast amounts
of fossil fuel produced energy and the footprint is similar with other heavy
industrial sections, is not an exception to the rule when it comes to system
efficiency improvement. Therefore, in-depth research and modelling are required
for the dynamical system of the self-propelled ship, the oscillations of marine
floating structures, and the energy extraction devices.

𝜔

𝑈

𝐹 𝑀𝐹

𝑈
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Computational fluid dynamics serves as a helpful instrument with numerous
extending capabilities in this process.

More specific applications that are of crucial importance, involve solid mov-
ing boundaries such as the propeller or energy-saving devices like the flapping
foil [1], the flettner rotor [2] and many others that are subject to a periodic
motion that either drives a generator, or produces propulsive force, reducing
thus the demand.

The concept of the overset grid approach, which is revisited in this thesis,
serves the role of bridging the stationary observed flow with the body-induced
interactions on a complex geometric domain.

1.2 Solving with CFD
Regarding fluid dynamics generally, conservation laws that describe the

kinematics and dynamics of a continua with a fluid behaviour are still to be
analytically solved in the most general case. As a consequence, there have been
significant advancements in the study of phenomena with boundaries, turbulent
flows, and multi-phase interactions with the aid of computing power and the
capability to approximate numerically the fully nonlinear conservation laws.

The process of simulating numerically a certain CFD case, in a nutshell,
involves creating a discretised domain of solution (mesh creation) with a proper
geometric approximation of the boundary. The underlying equations are then
also discretised and solved with machine precision on a computer.

Unavoidably, when a problem becomes more complicated, the discretization
procedure becomes a more difficult task, creating new problems.

For the special case of flows in the vicinity of moving solid boundaries, a
temporally static mesh, consisting of non-overlapping elements, is unable to
represent the time-dependent solution domain 𝒟(𝑡) and as a result, a mesh
motion is applied mainly near the boundary.

This mesh motion method, which is frequently referred to as “mesh mor-
phing”, can be a useful strategy with little overall computing expense that
monitors the time-varying solution domain 𝒟(𝑡).

However, mesh morphing is a limited alternative for flows with several solid
surfaces moving in a particular motion since it causes significant deformations
in each geometric cell.

The first alternative to address the dynamic change in the geometric domain
entails repeatedly generating meshes for every fraction of translation and rota-
tion, with the drawbacks of excessive computing costs and little to zero control
over the grid resolution.

In the second alternative, multiple overlapping meshes are used, one for
each body, each with its own motion (body driven), and possibly even with
an overlapping volume. This approach, called “chimera” after the mythological
creature, was first put forth by Joseph L. Steger et. al. [3], [4] and is now
the standard for complex simulations combining body motion and potentially
flexible borders.

Chapter 1 Spyridon Zafeiris 10
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1.2.1 Unstructured Grids
As more intricate geometric applications are modelled using CFD, the ne-

cessity for geometric versatility over the cell density across the entire domain
has drawn attention to the development of unstructured meshes. The unstruc-
tured cells can differ from the ones contained in structured meshes in that they
can have any number of bounding vertices, and the solver can then obtain the
necessary data from the cell connectivity in a global index style.

In contrast to structured meshes, unstructured cells may have many differ-
ent orientations with respect to the fluid momentum vector and their shape
and size has to be closely monitored be the researcher. More precisely, highly
skewed cells with flattened shapes are not very preferable. A poorly designed
unstructured mesh can lead to extra numerical diffusion, a fundamental issue
observed in numerical methods.

The question is “how does the cell skewness affects the numerical perfor-
mance?”. In the majority of the semi-discrete expressions for a weak formu-
lation, special attention is given in terms arising from the application of the
divergence theorem, i.e. the surface integral terms. The orientation of the face
with respect to the left and right cell centre will eventually determine the accu-
racy of the flux approximation or the face value approximation. In the case of
non-linear flux function terms, the system’s non-linearity is solely depicted on
this flux function, whereas, in the case of the face value, its use is seen in the
calculation of a cell-centered gradient (diffusion terms calculation).

Keeping in mind these features of unstructured discretisation, extensive
mesh morphing will also come with an extra cost of accuracy performance.

Chimera methods, will try to overcome this problem by using well-designed
(taylor-made for each body) meshes along with sophisticated interpolation tech-
niques.

However, a fundamental issue with multiple, overlapping unstructured grids
is grid connectivity, namely the sharing and ownership of field information.

1.2.2 Parallel Implementation
For such numerical algorithms, the computational and storage requirements

of a fluid dynamics simulation present an extra challenge. The MPI protocol
must be used to divide the computing demand among a number of storage
independent computing units (namely, CPUs). The major objective of the
scalability criterion is to lessen the communication bottleneck caused by data
transfer among computer units, which may be accomplished with the use of
the right library and a practical algorithm. As a result, parallel integration
increases processing performance and makes it possible to run sophisticated 3D
unstable simulations.

Chapter 1 Spyridon Zafeiris 11
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1.3 Moving Meshes
1.3.1 Structured Meshes

The most fundamental component for describing a body movement through
a fluid, is the expression of the conservation laws in the moving reference frame,
usually referred as Arbitrary Eulerian-Lagrangian (ALE). This method can be
used to solve the problem of a single body moving through the three-dimensional
space.

When a body with a different motion is added to the general case, the
moving reference frame is no longer unique, making it impossible for the (ALE)
expression to solve the approximation problem.

The use of multiple composite grids had another big advantage, as specified
in [5] in the time when mesh creation was more of a manual procedure.

Prior to the development of algorithms for unstructured mesh creation, mesh
points had to be produced on structured grids in compliance with a given
geometry (for example, an airfoil) by means of particular geometric trans-
formations, typically in the complex domain, such as the Schwartz-Cristoffel
transformation,[6], or other algorithms, with the restriction that the geometry
would have to be developable (and therefore the mapping from a parametric
space would be conformal). Additionally, these algorithms would typically limit
the researcher to two-dimensional simulations.

When dealing with many borders and more complex (non-developable) ge-
ometries, these techniques were challenging to implement. For that reason,
the overset grid method came as a solution, indicating that every boundary-
forming structure (or substructure) could be discretised in its vicinity and then
superimposed over a cartesian grid where field communication was applied.

As an illustration, we can consider discretising the volume surrounding the
propeller and its shaft (one body). The researcher was able to construct a vol-
ume mesh around each blade using structured composite meshes, a mesh around
the cylindrical shape of the shaft, and ultimately a cartesian mesh covering the
entire volume of solution.

1.3.2 Composite Grids
Naturally, there is a cost associated with the solution of the aforementioned

complex problem. Field variables are now (partially) interpolated from one
grid to another, which is one more source of numerical diffusion in addition
to the approximation error of the discretisation of the non-linear conservation
laws (e.g., finite differences). These errors are distinct from approximation
ones (where non-linear terms are projected onto a finite dimensional functional
space), and for the interpolation problem, point values are typically the only
available information.

In two-dimensional problems (probably unsteady), the effects of interpola-
tion errors are observed through the disability of the system to conserve its
energy (internal and mechanical). Or even if the spatial and temporal discreti-
sation have non-conservative properties, composite grids tend to weaken the
accuracy and the convergence rate.

Chapter 1 Spyridon Zafeiris 12
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Conservativity and accuracy preservability on composite meshes has been a
topic addressed by [5], [7], [8] and [9]. The majority of the research described
above either concentrate on the performance of grid data interpolation or the
coupling with the solver and the corrector steps for fluxes. For example in
[7], the mass loss is balanced by correcting the mass fluxes on an iterative
procedure. Other flux correction techniques were implemented in [10] aside
from interpolation schemes. The coupling with the solver can be implemented
in many ways and is dependent on the current solution methodology (e.g.,
the pressure-coupling procedure). Of course, there is an additional source of
computing weight that belongs in this iterative convergence process along with
the processing cost of interpolating and solving the partial differential equations.

Leaving solver coupling solutions aside, there are a variety of interpolation
techniques that, due to their high degree of accuracy and computational com-
plexity, tend to be computationally intensive. The decision to use high order
interpolation methods is made in an effort to avoid numerical diffusion by of-
fering an approximation with a higher order than the solver’s.

1.3.3 Interpolation Techniques
The problem of multivariate interpolation as mentioned before, relies on a

given topology of the interpolating nodes, the density of the cloud (of nodes)
and of course the order of solution in the inter-node regions. If the structure
of nodes is given and their expressions involve the counting of indices 𝑖, 𝑗, 𝑘,
then a parametric volume 𝜉, 𝜂, 𝜁 can be constructed in which the abscissa are
mapped from physical space while respecting the appropriate parameterisations.
In contrast, in the case of clustered node data (unstructured manner), there are
two possible solutions.

Asimuth free approximation The first solution which is widely applica-
ble and probably takes the less computational effort is the definition of the
interpolating weights in a radial-dependent way. The accuracy of this type of
interpolation is unaffected by the direction of contributions, and typically a
shape parameter for the basis functions is defined, implying a dependence on
the node density of the nearby region. For optimal results, this shape param-
eter needs to be properly defined. Weight functions without shape parameters
do exist, and they do solve the problem of defining these scaling parameters,
but they come with the trade-off of anticipating a suboptimal result (or, more
precisely, whether it is of acceptable accuracy or not), and the data interpola-
tion is heavily reliant on the dispersed node multitude throughout the desired
domain.

Many researchers who are mentioned above, have studied these techniques
(for example the Inverse Distance Weighting or the Radial Basis Functions).

Lagrangian to Eulerian to Lagrangian Methods The second solution
is derived from the existence of non-classical solvers, namely particle solvers
(vortex particles) and hybrid solvers (Particle and Mesh). As far as hybrid
solvers are concerned, the solution near the boundaries is obtained by the use
of a classic Eulerian solver over a body fitted discretised mesh, whereas regions
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without walls are formulated using particles that carry the field variables while
their movement and interactions are determined by the conservation laws, ex-
pressed in the Lagrangian frame of reference. Such methods have been tested
and thoroughly explored in [11], [12] and [13]. Some issues with these formu-
lations relate to the field data transfer from the grid to the particles or the
particle relocation, which is actually done to reduce the amount of trajectory
dislocations (or particle position conflicts).

Generally, particles are often arranged in a regular cartesian grid, and when
they have to be relocated (or redistributed), their placements have close to
normal spacing between neighbours, indicating that they are not dispersed ran-
domly. This property permits the use of particular kernels derived from the
theory of splines, specifically the cardinal splines developed by I.J. Schoenberg
[14], [15] that are of high order and preserve up to an order of moments over
their domain of support, like the kernel shown below (𝑀∗

6 function).

𝑀∗
6(𝑥) =

⎧{{{{
⎨{{{{⎩

0 |𝑥| > 3

− 1
24(|𝑥| − 2)(|𝑥| − 3)3(5|𝑥| − 8), 2 ≤ |𝑥| ≤ 3

1
24 (25|𝑥|3 − 114|𝑥|2 + 153|𝑥| − 48) (|𝑥| − 1)(|𝑥| − 2), 1 ≤ |𝑥| ≤ 2

− 1
12 (25|𝑥|4 − 38|𝑥|3 − 3|𝑥|2 + 12|𝑥| + 12) (|𝑥| − 1), |𝑥| ≤ 1

(1.1)

When using such functions on a tensor product for the representation in
many dimensions, the accuracy is sufficient enough to preserve the conservation
properties that mesh-less methods offer. Another characteristic of such kernels
is that they contain, by definition, the interpolation restrictions (identical values
over interpolating nodes), which makes the calculation on the new structured
grid simple and free of a linear system solution.

In the case of overset methods, these values can be re-projected on the
overset grid immediately following their projection on the structured grid (which
of course can be unstructured and with no regularity).

This concept, apart from being a direct implementation of the hybrid paradigm,
is computationally intensive and usually involves large inter-processor data com-
munication.

Robustness is a major goal in this thesis, and this type of interpolation is
not addressed.
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Chapter 2

Methodology

2.1 Navier-Stokes Equations
Firstly, the general boundary value-initial value problem for (in general)

compressible fluid motion by means of conservation laws is introduced.

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌u) = 0 (2.1)
𝜕𝜌u
𝜕𝑡 + ∇ ⋅ (𝜌u ⊕ u) = 𝜌𝑔 + ∇ ⋅ ↔𝜎 + 𝐹 (2.2)

𝜕𝜌 (1
2𝑢2 + 𝑒)
𝜕𝑡 + ∇ ⋅ (𝜌u (1

2𝑢2 + 𝑒)) = 𝜌ug + ∇ ⋅ (↔𝜎 ⋅ u) − ∇ ⋅ q + 𝑤𝜌
(2.3)

𝑓(𝑝, 𝑉 , 𝑇 ) = 0 (2.4)

u (x) = 0, x ∈ 𝜕𝒟 (2.5)

In the equations 2.1, 2.2, 2.3 and 2.4, the state variables {𝜌, u, 𝑒} stand in
for density, velocity components, and total internal energy, respectively. When
squared, the bold vector expression in the velocity components is absent. For
all the equations, x belongs to the domain of interest 𝒟(𝑡).

The Cauchy stress tensor is expressed with ↔𝜎 while the heat flux is repre-
sented with q.

Initial values for the variables and boundary conditions—typically of the
Dirichlet type (no slip condition) or Neumann type (no through condition)—
are introduced along with the governing equations.

2.1.1 Incompressibility
In the case of incompressible fluids, the equation 2.6 depicts the so-called

divergence-free condition (continuity equation), acting as a constraint on the
velocity field. Equation 2.7 is simplified with respect to the constant space and
time derivatives of the density, and equation 2.3 is trivial and may be omitted
as the energy terms are calculated through the equation of state 2.4.
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While further simplifications are done, the incompressible continuity and
Navier-Stokes Equations emerge.

∇ ⋅ u = 0 (2.6)
𝜕u
𝜕𝑡 + (u ⋅ ∇) u = 𝜌𝑔 + 1

𝜌∇ ⋅ ↔𝜎 + 1
𝜌𝐹 (2.7)

2.1.2 Material Equations
In addition, as the current work is devoted to the overset paradigm, further

simplifications are done considering viscous forces.
Since the fluid is thought to be of the Newtonian type, the viscous stresses

adhere to Hooke’s linear material law, and the shear component of the tensor
is a scaled function of the velocity field’s strain rate.

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗 (2.8)

𝜏𝑖𝑗 = 𝜇 (𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖

) (2.9)

Equations 2.6 become:

𝜕u
𝜕𝑡 + (u ⋅ ∇) u = −1

𝜌∇𝑝 + 𝜌𝑔 + 𝜈Δu + 1
𝜌𝐹 (2.10)

2.1.3 Free Surface Flows
Taking a step further, multi-phase flows are examined, especially flows re-

ferred as continuous-continuous Eulerian.
Regarding free surface flows (which fall under the aforementioned cate-

gory), numerous techniques have been developed throughout the years, pri-
marily falling into two main types.

• surface tracking methods
• surface capturing methods

The first category, which was developed by [16] and used in previous years,
entails representing the free surface as a moving boundary with appropriate
boundary conditions and a solution focusing only on the liquid phase. Grid
deformation occurs when this strategy is used.

The family of surface capturing methods involves different techniques such
as the Volume of Fluid (VOF) method [17], the level-set method [18] and the
Marker-and-Cell method [19] which, in contrast to surface tracking methods,
treat the material surface as a density discontinuity and both phases as solved.

In the case of (VOF) the volume fraction is presented.

𝛼𝑙 = 𝜌𝑚 − 𝜌𝑎
𝜌𝑤 − 𝜌𝑎

(2.11)
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Subscripts a & w refer to air and water respectively.
The density and dynamic viscosity fields are then expressed as a convex

combination of the volume fraction.

𝜌𝑚 = 𝛼𝑙𝜌𝑤 + (1 − 𝛼𝑙) 𝜌𝑎 (2.12)
𝜇𝑚 = 𝛼𝑙𝜇𝑤 + (1 − 𝛼𝑙) 𝜇𝑎 (2.13)

It is pointed out that surface tension is omitted, and thus the pressure field is
continuous across the surface. Also, phase changes and therefore mass transfer
across the field are out of the current scope.

As mentioned before, the free surface is considered to be a material surface
and the volume fraction is subject to pure advection:

𝜕𝛼𝑙
𝜕𝑡 + (u ⋅ ∇) 𝛼𝑙 = 0 (2.14)

The last equation 2.14 closes the system of equations for the incompressible
two phase flow problem.

2.1.4 Governing Equations
Lastly, we present the governing incompressible equations for the two phase

field collectively, while dropping the ∇ operator and reducing to the Einstein
notation.

𝜕𝑗𝑢𝑗 = 0 (2.15)

𝜕𝑡𝑢𝑖 + (𝑢𝑗𝜕𝑗) 𝑢𝑖 = −1
𝜌𝜕𝑖𝑝 + 1

𝜌𝑔𝑖 + 𝜈Δ𝑢𝑖 + 𝐹𝑖 (2.16)

𝜕𝑡𝛼𝑙 + (𝑢𝑗𝜕𝑗) 𝛼𝑙 = 0 (2.17)

2.1.5 Conservative Form
In order to derive the discrete system, we return to the conservative form

along with the transport equation for the volume fraction.

𝜕𝑗 ⋅ 𝑢𝑗 = 0 (2.18)
𝜕𝜌𝑚𝑢𝑖

𝜕𝑡 + 𝜕𝑗 ⋅ (𝜌𝑚𝑢𝑖𝑢𝑗) + 𝜕𝑗𝑝 = 𝜕𝑗 ⋅ 𝜎𝑖𝑗 + 𝐹𝐵𝑖
, 𝑖 = 1, 2, 3 (2.19)

𝜕𝛼𝑙
𝜕𝑡 + 𝜕𝑗 ⋅ (𝑢𝑗𝛼𝑙) = 0 (2.20)

The above system is suitable for employing the Green-Gauss theorem. In-
tegrating over a control volume, yields:
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∫
𝐷𝑘

𝜕𝑗 ⋅ 𝑢𝑗 d𝐷𝑘 = 0 (2.21)

𝜕
𝜕𝑡 ∫

𝐷𝑘

𝜌𝑚𝑢𝑖 d𝐷𝑘 + ∫
𝐷𝑘

𝜕𝑗 ⋅ (𝜌𝑚𝑢𝑖𝑢𝑗) d𝐷𝑘 + ∫
𝐷𝑘

𝜕𝑗𝑝 d𝐷𝑘 =

∫
𝐷𝑘

𝜕𝑗 ⋅ 𝜎𝑖𝑗 d𝐷𝑘 + ∫
𝐷𝑘

𝐹𝐵𝑖
d𝐷𝑖 (2.22)

𝜕
𝜕𝑡 ∫

𝐷𝑘

𝛼𝑙 d𝐷𝑘 + ∫
𝐷𝑘

𝜕𝑗 ⋅ (𝑢𝑗𝛼𝑙) d𝐷𝑘 = 0 (2.23)

Introducing the outward normal vector n and applying the Green-Gauss
theorem, the following expression arises.

∫
𝜕𝐷𝑘

𝑢𝑗 ⋅ 𝑛𝑗 d𝑆𝑘 = 0 (2.24)

𝜕
𝜕𝑡 ∫

𝐷𝑘

𝜌𝑚𝑢𝑖 d𝐷𝑘 + ∫
𝜕𝐷𝑘

𝜌𝑚𝑢𝑖 (𝑢𝑗 ⋅ 𝑛𝑗) d𝑆𝑘 + ∫
𝜕𝐷𝑘

𝑛𝑗𝑝 d𝑆𝑘 =

∫
𝜕𝐷𝑘

𝜎𝑇
𝑖𝑗 ⋅ 𝑛𝑗 d𝑆𝑘 + ∫

𝐷𝑘

𝐹𝐵𝑖
d𝐷𝑖 (2.25)

𝜕
𝜕𝑡 ∫

𝐷𝑘

𝛼𝑙 d𝐷𝑘 + ∫
𝜕𝐷𝑘

𝛼𝑙 (𝑢𝑗 ⋅ 𝑛𝑗) d𝑆𝑘 = 0 (2.26)

Presenting the above in a vector form and performing the variable transfor-
mation to the primitive variables, gives:

Γ𝑒
𝜕
𝜕𝑡 ∫

𝐷𝑘

⃗⃗⃗ ⃗⃗ ⃗𝑄 d𝐷𝑘 + ∫
𝜕𝐷𝑘

( ⃗⃗⃗⃗⃗ ⃗𝐹𝑐 − ⃗⃗⃗⃗⃗ ⃗𝐹𝑣) d𝑆𝑘 = ∫
𝐷𝑘

⃗⃗⃗ ⃗⃗𝑆𝑞 d𝐷𝑘 (2.27)

⃗⃗⃗ ⃗⃗ ⃗𝑈 = [ 0 𝜌𝑢⃗ 𝛼𝑙 ]𝑇 , ⃗⃗⃗ ⃗⃗ ⃗𝑄 = [ 𝑝 𝑢⃗ 𝛼𝑙 ]𝑇 (2.28)

𝜕 ⃗⃗⃗ ⃗⃗ ⃗𝑈
𝜕𝑡 = 𝜕𝑈

𝜕𝑄
𝜕 ⃗⃗⃗ ⃗⃗ ⃗𝑄
𝜕𝑡 = Γ𝑒

𝜕 ⃗⃗⃗ ⃗⃗ ⃗𝑄
𝜕𝑡 (2.29)
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Γ𝑒 = ⎡
⎢
⎣

0 0 0
0 𝜌𝐼3×3 𝑢⃗𝛿𝜌
0 0 1

⎤
⎥
⎦

⃗⃗⃗⃗⃗ ⃗𝐹𝑐 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑉
𝜌𝑚𝑢𝛿𝑉 + 𝑝𝑛𝑥
𝜌𝑚𝑣𝛿𝑉 + 𝑝𝑛𝑦
𝜌𝑚𝑤𝛿𝑉 + 𝑝𝑛𝑧

𝛼𝑙𝛿𝑉

⎤
⎥
⎥
⎥
⎥
⎦

(2.30)

⃗⃗⃗ ⃗⃗ ⃗𝐹𝑣 =

⎡
⎢
⎢
⎢
⎢
⎣

0
𝜏𝑥𝑥𝑛𝑥 + 𝜏𝑥𝑦𝑛𝑦 + 𝜏𝑥𝑧𝑛𝑧
𝜏𝑦𝑥𝑛𝑥 + 𝜏𝑦𝑦𝑛𝑦 + 𝜏𝑦𝑧𝑛𝑧
𝜏𝑧𝑥𝑛𝑥 + 𝜏𝑧𝑦𝑛𝑦 + 𝜏𝑧𝑧𝑛𝑧

0

⎤
⎥
⎥
⎥
⎥
⎦

In the above expressions which follow the nomenclature of [20], the following
expressions appear:

𝑉𝑛 = 𝑢⃗ ⋅ 𝑛⃗
𝑉𝑔 = 𝑢⃗𝑣𝑜𝑙 ⋅ 𝑛⃗
𝛿𝑉 = 𝑉𝑛 − 𝑉𝑔

2.2 Finite Volume Method
Some of the most commonly used numerical methods for hyperbolic systems

that have flourished for many decades are the finite difference method and the
finite element methods. The most important difference between them is that
the finite element methods rely on taking the weak formulation of the equation
and integrating over a control volume, performing that way the projection of
the solution to a finite space. Finite differences, on the other hand, rely on
approximating the differential operators acting on the solving variables. One
can generalize and assume that the finite difference method (FDM) is a form
of a Petrov-Galerkin approximation where the test function is the Dirac-delta
function and the spacial (mainly derivative) operators, and therefore the func-
tion itself is projected onto a polynomial space through interpolation on a given
stencil (arbitrary order of spacial accuracy).

Aside from these usual methods, meshless methods have found ground of
applicability in advection-diffusion problems, etc., but with certain difficulties
when solid bodies are present.

A special case for the finite element methods is the use of piece-wise constant
test functions and solution approximations. Additionally, the conservative form
of the equations is crucial for the use of the Green-Gauss theorem, such that the
discretization problem is reduced mainly to computing numerical fluxes across
the cell interfaces.

2.2.1 Velocity-Pressure Coupling
In contrast with the compressible continuity & Navier Stokes equations

2.1,2.2, 2.3 where the system of equations is well-coupled and the conserva-
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tion laws are able to converge equivalently for all the state variables via an
implicit or explicit temporal scheme, the incompressible manner of the equa-
tions cannot ensure that the pressure field, although approximated, is consistent
with the velocity field, not before the divergence-free constraint is applied.

For that matter, there have been proposed a number of ways to numerically
implement pressure-linked equations with the most known being the SIMPLE
algorithm developed by S. V. Patankar & D. B. Spalding [21] and the general
method of operator splitting (PISO) proposed by A. J. Chorin [22].

In the current work, the solver uses the artificial compressibility method
(AC) proposed by A. J. Chorin [23] which yields a hyperbolic nature to the
existing system of equations introducing a pseudo-time derivative for the proper
coupling within each of the equations. The time-fictitious problem is then
approximated implicitly or explicitly until convergence is achieved.

The advantage of the current hyperbolic reformulation is that both the in-
compressible NS equations with the continuity equation and the advection of
the volume fraction are approximated and updated simultaneously, giving the
possibility to treat the discontinuous problem as an approximation of the Rie-
mann problem for a system of equations.

Artificial Compressibility
With the introduction of the pseudo-time term the system of equations 2.27

has now the following expression:

Γ 𝜕
𝜕𝜏 ∫

𝐷𝑘

⃗⃗⃗ ⃗⃗ ⃗𝑄 d𝐷 + Γ𝑒
𝜕
𝜕𝑡 ∫

𝐷𝑘

⃗⃗⃗ ⃗⃗ ⃗𝑄 d𝐷𝑘 + ∫
𝜕𝐷𝑘

( ⃗⃗⃗⃗⃗ ⃗𝐹𝑐 − ⃗⃗⃗⃗⃗ ⃗𝐹𝑣) d𝑆𝑘 = ∫
𝐷𝑘

⃗⃗⃗ ⃗⃗𝑆𝑞 d𝐷𝑘

(2.31)

Γ = ⎡⎢⎢
⎣

1
𝛽𝜌𝑚

0 0
0 𝜌𝑚𝐼3×3 𝑢⃗𝛿𝜌
𝛼𝑙

𝛽𝜌𝑚
0 1

⎤⎥⎥
⎦

(2.32)

2.2.2 Spacial Discretisation
Volume Integral Approximation

The current solver (MaPFlow) uses cell-centered values and therefore the
volume integral is approximated as the average value times the volume. This
integral approximation is referred in the bibliography as the midpoint rule,
which is 2𝑛𝑑 order accurate for any control volume.

⃗⃗⃗ ⃗⃗𝑄⃗ = 1
𝐷𝑖

∫
𝐷𝑖

⃗⃗⃗ ⃗⃗ ⃗𝑄 (x, 𝑡) d𝐷 (2.33)

Face Reconstruction
Considering the inviscid fluxes, their values are computed as a function of

the left and right cell values, as:
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𝐹( ⃗⃗⃗ ⃗⃗ ⃗𝑄) = 𝑓 ( ⃗⃗⃗ ⃗⃗ ⃗𝑄𝐿, ⃗⃗⃗ ⃗⃗ ⃗𝑄𝑅) (2.34)

For the values of the left and right cells, a linear interpolation scheme is em-
ployed except for the case of the vicinity of the free surface where the pressure
gradient is discontinuous and the volume fraction is of course highly discontin-
uous.

u𝐿 = u𝑖 − ∇u𝑖 ⋅ r𝑖 (2.35)
u𝑅 = u𝑗 + ∇u𝑗 ⋅ r𝑗 (2.36)

𝐿 𝑅
f

𝑛⃗𝐷𝑖 ⃗𝑟𝑖𝑗

⃗𝑟𝑖

𝐷𝑗

⃗𝑟𝑗

Figure 2.1: schematic representation of face reconstruction

For the case of the inviscid fluxes ⃗⃗⃗ ⃗⃗ ⃗𝐹𝑐 the approximate Riemann solver of Roe
[24] is employed.

⃗⃗⃗ ⃗⃗ ⃗𝐹𝑐,𝑓 = 1
2( ⃗⃗⃗⃗⃗ ⃗𝐹𝑐 ( ⃗⃗⃗ ⃗⃗ ⃗𝑄𝑅) + ⃗⃗⃗⃗⃗ ⃗𝐹𝑐 ( ⃗⃗⃗ ⃗⃗ ⃗𝑄𝐿) ) − 1

2Γ ∣𝐴𝑐∣
𝑓

( ⃗⃗⃗ ⃗⃗ ⃗𝑄𝑅 − ⃗⃗⃗⃗⃗ ⃗𝑄𝐿) (2.37)

Where 𝐴𝑐 is the preconditioned Jacobian Matrix.

𝐴𝑐 = 𝜕 ⃗⃗⃗⃗⃗ ⃗𝐹𝑐
𝜕 ⃗⃗⃗ ⃗⃗ ⃗𝑄

= ΓΓ−1𝐴𝑐 = Γ𝐴𝑐 (2.38)

Where Γ is the precondition matrix given by Kunz [25].
For the case of viscous fluxes, a straightforward cell-averaging value is ob-

tained.

2.2.3 Temporal Discretisation
The solver focuses mainly on implicit temporal schemes, both on pseudo-

time and real time discretisation.
Firstly, the internal iteration is performed until the total residual (unsteady

& spacial terms) converges to zero.
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Γ
𝜕 ( ⃗⃗⃗ ⃗⃗ ⃗𝑄∗𝐷𝑖)

𝜕𝜏 + ⃗⃗⃗⃗⃗𝑅∗ = 0 (2.39)

⃗⃗⃗ ⃗⃗𝑅∗ = ⃗⃗⃗⃗⃗𝑅𝐷𝑖
( ⃗⃗⃗ ⃗⃗ ⃗𝑄∗) + Γ𝑒

𝜕 ( ⃗⃗⃗ ⃗⃗ ⃗𝑄∗𝐷𝑖)
𝜕𝑡 (2.40)

Then the internal iterator updates all the values based on the iterative pro-
cedure.

The time discretisation is second order implicit in time and obeys the ge-
ometric conservation law (GCL) for the case of temporally changing control
volumes.

2.3 The concept of Overset Grid Assembly
In CFD simulations with multiple overlapping grids that are subject to tem-

poral motion, the proper field data communication is the main goal along with
sufficient accuracy to achieve convergence as well as a computational efficiency
criterion. Since the first appearance of the method, many software packages &
libraries have been developed utilizing the algorithms for performing the grid as-
sembly, such as SUGGAR++ [26], CHIMPS [27] and the most known Chimera
Grid Tools attached to the solver OVERFLOW [28]. Many of these packages
can perform the grid communication with a certain limitation, such as lack of
handling unstructured grids or no parallel implementation.

2.3.1 TIOGA
In this thesis, the overset algorithms belong to TIOGA (Topology Indepen-

dent Overset Grid Assembly) library developed by J. Sitaraman et. al. [29],
which is a node-centred parallel MPI library with the capability of handling
complex unstructured partitioned grids in a scalable way. The library, due to
these advantages, performs in a general way within vast numerical simulation
instances without being solver-specific. Lastly, the library is open source and
the user is capable of performing the interpolation by himself.

In this thesis, the development lies more on matching the library with the
solver and not the construction of the overset grid assembly algorithms. These
algorithms were thoroughly researched and optimised by J. Sitaraman el. al.
[29]. The most valuable part in this process is the ability to extract the grid
assembly results (i.e. donors & receptors). That way, we can devote a large part
on addressing the interpolation problem in various numerical cases of interest.

2.3.2 Definition
Consider a number of subdomains, namely 𝒟𝑖 ⊆ Ω, 𝑖 < 𝑛 that are subject

to a geometric partitioning (such as triangulation) 𝒯𝑖.
The goal of the overset grid assembly has a number of tasks.
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Terminology
Characterization of points & cells:

• Query Point

• Donor Cell

• Candidate Donor Cell

• Hole Point

• Field Point

Tasks:

• Hole-Cutting

• Query identification

• Donor Search

• Point-type Assignment

Task Implementation
This indicates that the algorithm design is based on the principle of least

data communication, and since the library is intended for generally unstructured
grids, the main idea for all tasks is based on the creation and communication of
an Auxiliary Grid (AG) created to carry out the search and the identification.
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2.3.3 Hole-Cutting
The first algorithm that is implemented in the library (TIOGA) [29] identi-

fies nodes that lie within the closed surface of the wall boundary.

wall boundary

Bounding Box

Partitioned Mesh

Bounding Box Construction
Beginning with the identification of the hole cut, i.e. the smallest bounding

box that surrounds all the wall nodes, all processes that obtain wall nodes shall
build their own bounding box and communicate their coordinates:

𝐵𝐵𝑖 ∶= { 𝐴𝑖
𝑚𝑖𝑛 = (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛)

𝐴𝑖
𝑚𝑎𝑥 = (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥)} (2.41)

to all the other processes via broadcasting.
These (local) bounding boxes, along with those shared by communication,

are treated as sets, and their union is considered the geometry that is to be
bounded by a larger bounding box. This ensures that the final box will contain
all the wall nodes and is, of course, also known to every process P𝑖.

Sub-block Division
Every process, starting with the global bounding box, divides 𝐵𝐵𝑖 iteratively

into smaller sub-blocks until no sub-block contains both wall and outer nodes.
This way, the algorithm can mark the sub-blocks that lie entirely inside the

wall boundary and the sub-blocks that have a possible overlap with wall faces.

Performing flood-fill
In order to mark which sub-blocks are totally inside the wall boundary

and which do not, a layer is added externally in the bounding box, tagged as
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outer and the rest as inside. Moving from the outside region to the centre, the
algorithm marks the sub-blocks that contain wall nodes, leaving only sub-blocks
with zero overlap tagged as ”inside”.

2.3.4 Overset Node Identification
The next task is the query point identification. These overset points (named

query) are associated with the mesh-block of the process P𝑖 and its potential
geometric association with the mesh block of the process P𝑗, 𝑖 ≠ 𝑗 is examined.
The first criterion is the possible overlap of the two mesh-blocks, and the second
is that the point has to lie in the region of possible overlap.

In order to give a geometric intuition of the topology of the query points,
all the points close to the outer (possibly overset) boundary have to be found
and marked.

The algorithm starts with the creation of axis-aligned bounding boxes and
oriented bounding boxes for all the mesh-blocks. Oriented bounding boxes have
their three axes parallel with the three eigenvectors of the geometric covariance
matrix for each mesh block. Auxiliary grids are then created with cell resolution
defined by the number of vertices in the mesh-block. Necessary information for
these boxes is broadcast through all processes P𝑗, 𝑗 = 1, 𝑁 . Potential overlap
over different mesh-blocks is checked via point containment in an axis-aligned
bounding box or an oriented bounding box.

𝑣1 𝑣2

Axis-aligned Bounding Box

Oriented Bounding Box

𝐶𝑜𝑣 (𝑋) = 𝑋𝑇 𝑋
𝑑𝑒𝑡 (𝑋𝑇 𝑋 − 𝜆𝐼3×3) = 0 ⇒ find 𝜆𝑖, 𝑖 = 1, 3 (2.42)
(𝑋𝑇 𝑋 − 𝜆𝑖𝐼3×3) v𝑖 = 0 ⇒ find v𝑖, 𝑖 = 1, 3
define OBB by its orientation {𝑣1, 𝑣2, 𝑣3}

Overlap Criterion
Every process P𝑖 checks whether any of its sub-blocks that contain vertices

overlap with sub-blocks of the auxiliary grid belonging to P𝑗. These sub-blocks
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are tagged and sent to process P𝑗. From the side of P𝑖, a check is performed
whether these sub-blocks contains points from its mesh-block. Points that qual-
ify for this procedure are stored as query points.

Also, during this overlap test, if a point of P𝑗 is inside both of 𝐴𝐴𝐵𝐵𝑖 and
𝑂𝐵𝐵𝑖 then it is also marked as query.

Donor Search
Once the query point list is established, further information about cell con-

nectivity and cell resolution is obtained.
A mapping function is created, connecting auxiliary grid sub-blocks with

cells that overlap. This mapping is termed in [29] as the Exact Inverse Map.
The case that the cell centre does not overlap is also examined, considering a
possible intersection with the cell bounding box, establishing a cell point.

This mapping limits the donor search algorithm only on the listed (candidate
donor) cells.

The donor cell is found following the line-walk algorithm (or stencil jumping
algorithm) which briefly performs the following tasks:

• Defines the line (vector) pointing from starting point (cell point or cell
center) to the query point

• checks for intersections over a cell face and then moves to the neighbouring
cell

• checks whether the line intersects a mesh-block boundary

• chooses the closest cell for donor taking into account the above limitations

The structure of the algorithm identifying donor cells follows the line to face
or line to line orientation logic to target the specific topology of the unstructured
manner of the cells and its mesh-block boundaries.
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Development of the Chimera
Branch

3.1 Compatibility
The most work-intensive part of introducing a library into an existing code,

mainly with a large data structure, is obtaining the data in the correct way for
use.

Depending on the structure of a certain CFD software and the numerical
implementation, there are plenty of ways to introduce geometric data and field
variables. Most finite volume methods, due to their sole degree of freedom per
cell, tend to store field values at the cell centre and perform calculations on
every face. The cell type identification (whether it holds a boundary condition,
a symmetry condition, etc.) is done by firstly identifying the types of the faces
(boundary face, mesh-block boundary, etc.). By appropriately tagging the mesh
faces, the partitioned grid is adequately defined. Therefore, cell connectivity is
achieved through face-left and right-oriented cells.

On the other hand, for finite element structured solvers such as Spectral
Elements codes or Nodal Discontinuous Galerkin implementations, where every
cell may obtain a larger number of degrees of freedom, it is basically essential
that the structure is node-based (considering field values storing and topology
identification).

It is obvious that developing a node-centered data structure results in a
more generic and flexible approach, whereas the cell connectivity is based on
node index mappings.

Another issue of compatibility that arises when trying to match a solver data
structure with a library is the element sequence for all the grids per partition.

In unstructured meshes, it is usually valuable to reorder the cell sequence
with the scope of resulting in a diagonally-dominant linear system matrix. For
that matter, the grid-partitioning algorithms are used for proper grid division
sets and suitable reordering. The grids are read by the solver and joined together
as a result of these processes. Then the partitioning is performed and the grid
number of the cell sequence is not an ascending function. Due to this, the grid
number has to be kept in track during the start of the simulation.

The current library (TIOGA) [29] registers grids that are sorted by grid
number and cell type (number of nodes defining the cell). For that reason,
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proper index mappings were produced to remedy this incompatibility issue.
It is noted at this point that it may be more efficient to apply the geometric

grid partitioning algorithm separately to each grid for the hope of better load
balance, especially in the case of the grid assembly.

3.1.1 Hash Tables
In order to create a suitable cell sequence for the library index mappings,

appropriate algorithms have to be introduced for every job. These algorithms
have to be implemented either by tagging elements or by sorting based on a
mapping array.

During the simulation, it will be useful to obtain results and transfer cell
indices from the library to the solver, making use of these mapping functions.
For that reason, every index mapping will have its inverse introduced. However,
some of the mappings are not bĳective, meaning that they do not match one-
to-one items. Hash tables are useful in the sense that the mapped information
is basically a stored array of indices, and if there is a smaller number of mapped
values, the inverse array will simply match the mapping size.

These mapping arrays are constructed at the start of the simulation, and
they are used without being redefined. For that reason, computing performance
optimisation during their evaluation is of minor importance.

Cells

1
2
3
4
5
...

𝑁 − 1
𝑁

Mask

0
1
1
0
1
...

1
0

Hash
Function

Mapping

...

Figure 3.1: schematic of general mapping sequence

3.1.2 Cell Marking
The first step is to decide which parts of the mesh are useful to the library

and which parts may be only a performance bottleneck. On a general applica-
tion, this is a job that is done by the library.

In the current work, the first grid is always considered to be the background
grid (containing the far-field boundaries) and with no nodes tagged as wall
(hole-cutting is not performed for this grid).

This means that the hole-cutting algorithm will only be performed for the
body-fitted grids. This assumption greatly simplifies the implementation algo-
rithm in the developing section.
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Considering body-fitted grids, near wall boundary cells and nodes are use-
less for the OGA algorithm as they are far from the overset boundary and their
resolution is often different from the overset cell resolution (by scales in vol-
ume). In addition, these cells may often be highly skewed, as in many cases,
boundary layer resolving is desirable. This can cause performance issues in
query identification and donor search.

For that reason, a more broad area of cells is given to the library, tagged as
wall, that is distant by a small number of cell-lengths to the overset boundary.

To determine the cut-off distance of the cell marking in a general way, a basic
cell length has to be introduced. This length is defined as the square root of the
maximum surface for all the overset boundary faces. After this identification, a
distance search is conducted by providing the maximum distance of the search
(times the above length). Of course, there is no reason to consider that every
process has the closest cells to its portion of the overset boundary.

To circumvent this issue in parallel implementation, the following steps are
performed.

a) Every process P𝑖 that owns overset boundary faces for the grids 2, 3, 4, ...
broadcasts all of these faces to every process P𝑗, 𝑗 = 1, 𝑁 .

b) Process P𝑖 finds the maximum face surface of all the boundary faces and
takes the square root as a reference length times a portion (user defined).
This arithmetic procedure is identical to all the processes P𝑗, 𝑗 = 1, 𝑁 .
This portion is usually ranging from 1 ÷ 9.

c) Calculate the distance from every cell of the process P𝑗 to every overset
boundary face. If the distance of one cell to one boundary face is lower
than the defined length, the cell is tagged as 1, meaning that it will be
registered in TIOGA, otherwise it is tagged as 0 and is ignored by the
library.

By performing this operation, computational effort is saved for cells which
we know that there is no chance of being near an overset region. Therefore, the
hole-cutting examines less cells for a bigger bounding box.

This part is the most computing intensive, firstly due to broadcasting so
many data and secondly due to the double loop over cells and faces.

At this point, the first mask function is defined, which appends only the
tagged as 1 cells to a new array with a length equal to the total number of cells
in the starting array (𝑁𝑇 𝐸𝑡𝑖𝑜𝑔𝑎 out of 𝑁𝑇 𝐸).

3.1.3 Sorting
The next step involves the numbering so that the TIOGA library receives

the cells and the connectivity.
Firstly, cells are sorted by grid number and the grid mapping is constructed.

This function does not change the length of the resulting array. Sorting is
performed both on cells and faces, as well as for nodes.

Additionally, an array is created where the total number of cells of a specific
type is concentrated (tetrahedra, pyramids, prisms, and hexahedra) for the next
sorting.
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Before registering the volume mesh cells, incrementing loops are performed
for wall and overset boundary node registering.

For the volume mesh, every previous mapping is used on a composition func-
tion after the accumulated number of cells/nodes is subtracted. Now that the
nodes are index-compatible with the library, the node connectivity is registered
and the type of cell mapping is constructed (following if conditions).

After registering every grid, the resolutions are specified by some reference
quantity indicating which grid is the coarser.

It is noted that new arrays for storing the geometry are introduced, increas-
ing by a large amount the storage intensity of every simulation.

Loop

MaPFlow TIOGA

Grids Nodes

1
2
3

1
2
3 ...

𝑁𝑡𝑖𝑜𝑔𝑎

Mask Function
Inverse Regular

−𝑁𝑡𝑖𝑜𝑔𝑎Sorting

𝑖 𝑐

𝑋𝑡𝑖𝑜𝑔𝑎(𝑐) −→ 𝑋𝑀𝑎𝑃𝐹𝑙𝑜𝑤(𝑖)

Figure 3.2: Schematic of the index mapping for coordinate assignment

3.2 Interpolation Schemes
3.2.1 Interpolation Algorithm

At this point, the overset grid assembly is established and the TIOGA library
has provided a donor cell for every cell that is tagged as a receptor. Of course,
along with the cell index, other necessary information that is obtained is the
grid number of the donor cell and the index number of the process P𝑖 to which
it belongs. All the necessary data are then communicated from process P𝑖 to
process P𝑗 such as:

• cell center coordinates x𝑑

• cell center variables ⃗⃗⃗ ⃗⃗ ⃗𝑄
• cell center gradients 𝑔𝑟𝑎𝑑 { ⃗⃗⃗ ⃗⃗ ⃗𝑄}
Auxiliary data are also communicated such as:
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• cell index (for storing nearest neighbours)

• iblank value

• cell volume (shape parameter calculation for RBF)
Variable interpolation is always done from cells to cells without any inter-

action with cell faces. This is preferred due to the solver being cell-based and
the cell-centered value being considered the numerical approximation of the
solution.

After this point, the solver calculates the fluxes through the left and right
states from either an approximated or an interpolated value of the cell center.

3.2.2 Radial Basis Interpolation (RBF)
The current interpolation scheme is widely applicable, especially in multi-

dimensional scattered data interpolation problems (astrophysics, image pro-
cessing). The scheme may be implemented in a local or global manner as many
parallel algorithms have been developed. The algorithm is based on multiply-
ing the node value with a function of a radial dependence (and possibly with a
shape parameter 𝜀 > 0). After building the basis of the finite space that the field
will be projected onto, a linear system has to be solved, which unfortunately
consists of a dense matrix of coefficients (usually). The method ensures, that
if the nodes are distinctive among the rest (coordinates do not coincide) the
matrix of coefficients will always be positive definite and the system 𝐴x = 𝐵 is
solvable.

Given 𝑁 number of interpolating points in 3D space (generally 𝑁 −𝐷) with
coordinates and values x𝑘, 𝑦𝑘, 𝑘 = 1, 𝑁 respectively, the radial basis function
is built.

𝜑𝑘 (x; 𝜀) = 𝜑 (||x − x𝑘||; 𝜀) (3.1)

In many cases, the shape parameter is acting as a scaling function on the
norm || ⋅ ||. Usually, the Euclidean norm is selected for this instance.

The interpolated function is constructed.

𝑠 (x) =
𝑁

∑
𝑘=1

𝑐𝑘 𝜑𝑘 (x; 𝜀) (3.2)

The linear system of equations is built by applying the following constraints.

𝑠 (x𝑖) = 𝑦𝑖, 𝑖 = 1, 𝑁

⇒
𝑁

∑
𝑗=1

𝑐𝑗 𝜑𝜀 (||x𝑖 − x𝑗||) = 𝑦𝑖

𝐴 c = y
𝐴𝑖𝑗 = 𝜑𝜀 (||x𝑖 − x𝑗||)
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The role of the shape parameter is to control the active support of the basis
function. For example, if 𝜀 −→ 0 then the basis functions tend to be flattened
and the matrix of coefficients has a very large condition number. However,
when 𝜀 −→ ∞ then the basis function has a sharp spike shape and contributions
to the approximation point are practically zero.

Some of the most usual radial functions are:

• Gaussian

𝜑 (x) = 𝑒𝑥𝑝 {− (𝜀x)2} (3.3)

• Multiquadric

𝜑 (x) = √1 + (𝜀x)2 (3.4)

• Inverse

𝜑 (x) = 1
(1 + (𝜀x)2)

𝑝 , 𝑝 > 0 (3.5)

• Polyharmonic Splines (𝑟 = ||x||2).

𝜑 (𝑟) = { 𝑟𝑘 , 𝑘 odd
𝑟𝑘 log 𝑟 , 𝑘 even (3.6)

The case of polyharmonic splines is an example where a shape parameter is
absent. This feature makes this type of radial basis appealing in the case that
the density of scattered points is not uniform and a variable shape parameter
may be employed. Another reason that the shape parameter is not the best
option is that it has to be defined by taking into consideration the donor cell
volume and the distances for every donor. The donor cell volume is an unknown
quantity to the processor P𝑖 who receives donor information and therefore it
has to be communicated.

3.2.3 Inverse Distance Weighting (Shepard’s Method)
This type of interpolation uses a distance weight for every neighbouring

interpolating point. The smoothing function satisfies explicitly the interpolation
constraints for every interpolating node, and therefore weights do not have to
be found by solving a linear system.

The weights are defined as:

𝑤𝑖 (x) = 1
(||x − x𝑖||2)

𝑝 , 𝑝 > 0 (3.7)

The approximated function is the average with respect to all the weights.
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𝑠(x) =
∑𝑁

𝑖=1 𝑤𝑖 (x) 𝑦𝑖

∑𝑁
𝑖=1 𝑤𝑖 (x)

(3.8)

The choice of the exponent 𝑝 has an effect on the resulting approximation
and acts as a shape parameter, similar to 𝜀 defined in 3.2.1. The value of
the exponent, however, is not considered to be of great importance and, as a
common practice, its value for 3D applications is chosen so that 𝑝 > 3. The
choice of the exponent 𝑝 has an effect on the resulting approximation and acts
as a shape parameter, similar to 𝜀 defined in 3.2.1. The value of the exponent,
however, is not considered to be of great importance and, as a common practice,
its value for 3D applications is chosen so that 𝑝 > 3.

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝑅

𝑟1
𝑟2

𝑟3
𝑟4

𝑟5

Figure 3.3: Inverse Distance Weighting schematic

3.2.4 Nearest Neighbour
The easiest interpolation scheme, which, in contrast with the previous, is

not of high order type, assigns directly the value of the nearest neighbour to the
value of the receptor point. The order of accuracy is very low, and as a result,
this method is used with success in two-phase flows where a discontinuity is
present.
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𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝑅

Figure 3.4: Nearest Neighbour Schematic

This type of approach, although applicable in any case, is often insufficient
(as far as accuracy is concerned) as it may introduce numerical diffusion. Aside
from accuracy issues, it remains a robust way to communicate data among grids.

3.2.5 Axis-Aligned Local Interpolation
The last and most interesting type of local interpolation scheme that was

developed, nick-named Axis-Aligned has an exception which makes it distinctive
among all previous schemes. This scheme does not treat donor cell values and
positions as in a pure scatter point interpolation problem (which would make
more sense in the case of a Lagrangian interpretation). As a matter of fact, this
scheme uses further information already provided by the solver, such as the field
data gradients, and tries to distinguish between steep and smooth interpolation
directions.

This feature helps by providing a more intrinsic approach, especially in the
case that a density jump is expected to occur.

Firstly, the direction of the highest rate of change has to be found. Intro-
ducing the vector of the gradient ⃗⃗⃗𝑛⃗ with a starting point 𝐴 ≡ x𝑅, the first
thing that is noted is that “if a field discontinuity (jump) is present close to the
receptor point, it would most likely appear along the direction of ⃗⃗⃗𝑛⃗”.

Consider 𝑁𝑑 number of closest donors to the receptor point. It must be
first checked that the receptor point lies within a certain region among donors.
That region is considered in our case the Bounding Box constructed by the
minimum and maximum values of coordinates (𝑥𝑑, 𝑦𝑑, 𝑧𝑑) of all donors. This
constraint would also be present for every type of local interpolation scheme,
e.g. tri-linear. This check is done by straight-forward coordinate checking.

The gradient of the receptor point is approximated by distance-averaging
every gradient component while taking into account all the donor cell centres
(𝑁𝑑 in number).

Now that the direction of the steepest change is established and just because
we have a starting point 𝐴 and a normal ⃗⃗⃗𝑛⃗, we can fully define a perpendicular
plane, denoted from now on as {𝐴, ⃗⃗⃗𝑛⃗}.
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This plane is now used to define a left and right orientation for the donor
cell centers, that is, whether they lie left or right with respect to the plane and
a left-to-right reference, the direction of the normal ⃗⃗⃗𝑛⃗.

Once donor cell centers are tagged as L or R (left or right) we project their
coordinates on the axis that passes through ⃗⃗⃗𝑛⃗ and 𝐴. Next, field variables are
approximated on the projected points via a first order Taylor expansion (using
the already known gradient).

Once coordinates and field variables are projected and aligned on the axis,
the interpolation problem is now reduced to a 1D approximation case with 𝑁𝑑
abscissas and field values where a discontinuity is present.

In the worst case, a discontinuity has to be tracked along the axis and a
proper approximation on 𝐴 has to be produced, whereas in the best case, we
have a smooth solution where a quasi-approximation has to be found.

The steps of the algorithm are listed below for compactness.

1) Set a number of donors for the local approximation: 𝑁𝑑.
2) Find the 𝑁𝑑 nearest donor cell indices.
3) Construct a bounding box from the nearest donor min and max values.

𝐵𝐵 = {x𝑚𝑖𝑛, x𝑚𝑎𝑥} (3.9)

4) Check whether the receptor point 𝐴 lies inside the 𝐵𝐵 and if not, then
iterate by increasing the number of donors from the total batch.

𝑥𝑖𝑚𝑖𝑛
≤ 𝐴𝑖 ≤ 𝑥𝑖𝑚𝑎𝑥

, 𝑖 = 1, 3 (3.10)

5) Use distance averaging to approximate the receptor gradient for all com-
ponents of ⃗⃗⃗ ⃗⃗ ⃗𝑄.

𝑟𝑑 = ||x𝐴 − x𝑑||2 (3.11)

{∇𝑄𝑖}𝑘 ≈
∑𝑁𝑑

𝑑=1 𝑟𝑑 ⋅ {∇𝑄𝑑,𝑖}𝑘
∑𝑁𝑑

𝑑 𝑟𝑑
, 𝑘 = 1, 2, 3 𝑖 = 1, 𝑑𝑖𝑚{𝑄}

(3.12)

6) define the direction ⃗⃗⃗𝑛⃗ as the approximated normalised gradient from (3.4)
for every field variable.

⃗⃗⃗𝑛⃗ = ∇𝑄𝑖
||∇𝑄𝑖||

(3.13)

7) Create a parametric expression of the axis perpendicular to the plane
{𝐴, ⃗⃗⃗𝑛⃗} that passes through 𝐴.

x = 𝐴 + 𝑡 ⋅ ⃗⃗⃗𝑛⃗, 𝑡 ∈ ℝ (3.14)

8) Create the vector ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐷 = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝐴 − ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐷 and project ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐷 on the axis.

𝐴𝐷 ⋅ ⃗⃗⃗𝑛⃗ = |𝐴𝐷| | ⃗⃗⃗𝑛⃗| cos 𝜃 = 𝑡0 (3.15)
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9) if 𝑡0 is negative, tag as (L) left whereas if positive tag as (R) right.
10) Calculate the projected coordinates of donor cell centers.

x𝑑,𝑝𝑟𝑜𝑗 = 𝐴 + 𝑡0 ⋅ ⃗⃗⃗𝑛⃗ (3.16)

11) Every component of 𝑄 is then projected using first order Taylor’s expan-
sion.

𝑄𝑑,𝑝𝑟𝑜𝑗 = 𝑄𝑑 + ∇𝑄 ⋅ (x𝑝𝑟𝑜𝑗 − x𝑑) (3.17)

12) Solve the 1D interpolation problem where the parametric values are 𝑡0
(for every donor).

13) Track the discontinuity (if existent) and perform a suitable interpolation.

𝐴

𝐷

𝑂

⃗⃗⃗⃗⃗𝑛

⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗𝐴𝐷

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝐴

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐷

𝑥1
𝑥2

𝐻

𝜃

{ ⃗⃗⃗𝑛⃗, 𝐴}

Figure 3.5: Geometric interpretation of the value and coordinate projection on
the axis of interest

For the case that the average gradient has a zero length (below a tolerance
level), there are two possible causes. The first one is that every donor gradient
has a zero length, and therefore the field has a near zero change over this
area. The second reason might be that cell centre gradients have both positive
and negative components considering the whole batch. For the last case, it is
considered that the problem is grid-dependent and the resolution is insufficient
to accurately approximate the solution along with its gradients. Therefore,
grid refinement has to be performed. For that reason, it is preferred to choose
a small number of influencing donors for every receptor so as to minimise the
maximum donor distance with respect to cell dimensions.

Chapter 3 Spyridon Zafeiris 36



Master Thesis

It has to be mentioned that the cell-centered gradients are computed by the
solver using the divergence theorem for scalar fields over the cell of interest.

∫
𝐷𝑘

∇𝑄 d𝐷 = ∫
𝜕𝐷𝑘

𝑄 ⋅ n d𝑆 (3.18)

The face values for the equation 3.18 are computed, usually by averaging the
values of the left and right cells or even by calculating their convex combina-
tion (linear interpolation). Again, the volume integral is approximated by the
constant cell-centered value times its volume (midpoint rule), which is always
2𝑛𝑑-order accurate.

For the case of a zero length gradient, the algorithm bypasses steps from
7 to 13 and a usual multivariate interpolation method is used. This is chosen
mainly because a steep direction is non-existent. Now that the field is considered
sufficiently smooth, high-order interpolation schemes can be used for increased
accuracy.

The performance of the current method will be evaluated in the validation
chapter 4.

Another thing to keep in mind about the axis-aligned algorithm is that in
many parts, the solver’s spatial accuracy is preserved and only the simplest fur-
ther approximations are performed, such as the gradient approximation, which
is of different nature (involves only the approximation of the direction vector),
and the direct interpolation with given accuracy.

Lastly, it has to be mentioned that it is not necessary for the receptor point
to lie inside a particular bounding box of contributing donors. In this case, an
orientation is again found and all the donors are positioned left (L) or right (R).
In that case, there are some differences involving the interpolation patterns.

The first is that convex combinations such as linear fitting cannot be used
and an upwind or downwind approximation is unavoidable. The second dif-
ference is that, due to this upwind or downwind value association, special
treatment has to be given to the pressure field, which will be explained in
the following paragraphs 3.2.6.

3.2.6 Account for Hydrostatic Pressure
Continuing in the two-phase paradigm, especially for the case in which the

gravitational force is of great importance, the hydrostatic difference of the to-
tal pressure has to be tracked when going from donor data to receptor. This
treatment has to be implemented only when the accuracy of the interpolation
is below 1𝑠𝑡 order and its purpose is to produce a better approximation while
keeping in mind that errors deriving from hydrostatic differences play a big role
in the overall convergence. In fact, the pressure correction is not implemented
in the case of radial basis functions or inverse distance weighting, where the
contributions have a weight which depends on the radius in a non-linear way,
and therefore the approximation has a higher order of accuracy.

For that matter, hydrostatic pressure consideration is performed only in the
nearest neighbour and axis-aligned algorithms (upwind or downwind cases).
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𝜌𝑚 = 𝛼𝑙𝜌𝑤 + (1 − 𝛼𝑙) 𝜌𝑎 (3.19)
𝛿𝑝 = 𝜌𝑚𝑔 (𝑧𝑑 − 𝑧𝑟) (3.20)
𝑝𝑟 = 𝑝𝑑 + 𝛿𝑝 (3.21)

The hydrostatic approximation may seem to be–at least by a first glance–a
straightforward pressure correction step from donor to receptor as shown in
3.19.

As mentioned before, there is no issue when using a linear convex combina-
tion of two surrounding donors (when the interpolation is expressed with the
axis-aligned algorithm) or any high-order scheme. In the case that the interpo-
lation is performed by a direct value assignment (or an upwind-like method), a
problem arises in the hydrostatic term which concerns the origin of the density
value. The value of the density contains within itself the value of the volume
fraction, which is the 5𝑡ℎ state variable in the approximation problem and is
due to be updated when interpolating (meaning that the donor and the re-
ceptor may have different values for the volume fraction). This will not be a
problem with the nearest neighbour algorithm where the value of the volume
fraction is the same between the receptor and the (closest) donor, and therefore
consistency is achieved.

In contrast, when using the axis aligned algorithm, there could be a case
where the volume fraction will be interpolated as a convex linear combination
(is between a left and right donor) and the pressure will have a direct assignment
(upwind or downwind) because of the absence of the left or right donor. This
may occur because, for every variable, a different plane will be constructed and
the donors are not always both left and right of it.

Revising the above, there exists a case where the hydrostatic addition term
3.19 could have two different values, one where the density takes the volume
fraction of the donor and one where the density takes the volume fraction of
the receptor.

This may seem a minor problem; however, errors due to hydrostatic inac-
curacies are the ones with the highest magnitude (in fact, by scales), mainly
because of the large density difference between the two fluids (a scale of a thou-
sand). For example, the error in the 𝑢𝑥 component at some point on the overset
grid would be of order 𝒪(10−2), whereas the pressure error would be of order
𝒪(101). This phenomenon is amplified when the solver uses compressive flux re-
construction schemes, which means that the density differences between donor
and receptor are bigger. The result is a pressure source near the free surface
level in the overset region even with no wave present (hydrostatic simulation).

This case was observed just because the donor values were always used by
default on density assignment to avoid unbounded occasions and high errors.

To remedy this unfortunate case, every time that the interpolation routine
is called, the code checks with if conditions whether this special case is present
(checks for left and right cells for the pressure). From that point, first the
volume fraction is interpolated (which is the 5𝑡ℎ state variable) and then the
pressure and the velocity components. In that way, the hydrostatic term can
be calculated with respect to the receptor value of volume fraction and then
pressure addition may be done safely.
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Figure 3.6: Representation of the possible donor orientation with respect to the
plane

3.2.7 Flexibility of the Interpolation Process
Now that all the schemes are presented, it has to be noted that not all of

them are applicable in all cases, especially when free surface effects are present.
In order to give an example, suppose that a simple first-order Taylor expan-

sion is addressed as an alternative for the low-order nearest neighbour. This
means that the field approximation has the following expression.

𝑄𝑟𝑒𝑐 = 𝑄𝑑𝑜𝑛 + ∇𝑄𝑑𝑜𝑛 ⋅ (x𝑟𝑒𝑐 − x𝑑𝑜𝑛) (3.22)
In the case of the first order expansion, it is observed that the solution is

not generally bounded and the biggest issue is the derivation of the gradient
approximation.

Such gradients, especially in flows with density jumps and high z-linear
dependency (hydrostatic problems), may give poor approximations and, most
importantly of all, be unbounded. This issue can of course be addressed by a
limiter that has to be defined on a stencil over donors (and has to be commu-
nicated to the receptor-belonging process P𝑖) but this problem is not addressed
in this thesis, as it was preferred that the process of data interpolation is with
a more natural way (steep and smooth directions) in strictly steep areas and
a more traditional way when dealing with smooth regions (tri-linear or higher
order).

Another final note that separates the global interpolation schemes from lo-
cal is that, usually global schemes tend to achieve an order of scaling with
an exponent strictly greater than 1, for example 𝒪 (𝑁2) or 𝒪 (𝑁3) (if an LU-
decomposition is applied on the matrix of coefficients). This suggests that the
nature of the algorithm demands a strong dependence on the number of degrees
of freedom. However, local approximation algorithms use only neighbouring in-
formation, which is usually about the same in quantity for every control volume,
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and therefore the dependence on the overall degrees of freedom is weak, giving
the opportunity to achieve a near 𝒪 (𝑁) scaling order. This algorithmic crite-
rion for the approximation is also desired (and vastly applied) in the nature of
every classical solver (finite elements, finite volume).

3.3 Data Storage & Coupling
In this part of the development, the appropriate coupling between the solver

and the library is achieved, and therefore the proper information for the cell and
node identification is gathered. The mask function for every cell identification
is called iblank value and is an integer with the following indication.

a) −1: overset node
b) 0: node inside of wall
c) 1: node with solver solution

The first three tasks for the OGA are:

1) register grids
2) preprocess grids
3) perform grid connectivity

These identification integers are obtained by the third subroutine and are
the most essential identifier for the interpolation process.

3.3.1 Identification of Cells
These iblank values are used to give instructions to the solver. The strategy

behind the coupling is as follows.
Due to the fact that the solver is face-based and the approximated values

are stored in the cell centers, the iblank values are assigned to the cell centers.
Generally, the solver for every different iblank value performs different tasks.

iblank process
−1 values are interpolated at the start of the iteration
0 the solver ignores these cells
1 values derive from the finite volume discretisation

Unfortunately, the library marks every overset cell with lower resolution as
a receptor node, which is of 𝑖𝑏𝑙𝑎𝑛𝑘 = −1. This means that there will be a
large number of donors and receptors for the communication and interpolation
workload. The solver only needs a strip (or a thick sheet for 3D) of overset cells
to pass the information to the other mesh, and therefore, loops are performed
where useless cells are marked as 𝑖𝑏𝑙𝑎𝑛𝑘 = 0. This process reduces a significant
amount of computational and communication time.

The solver in every iteration, calls the following subroutines in the listed
order:
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1) perform interpolation

2) communicate inter-processor boundary data

3) set boundary conditions

4) calculate gradients at cell centers

5) calculate fluxes

6) calculate left hand side & right hand side

7) update with given algorithm

3.3.2 Donor information
After the grid assembly, the requisite overset information is extracted from

the library. This information is for every donor cell and consists of the number
of donors that the process P𝑖 contains, their cell number (local value), their
receptor process P𝑗 and cell number (for the communication) and the donor
points along with every cell (in the finite volume representation, nodes are of
no use). Lastly, the target grid is given for the proper grid value match.

3.3.3 Gradient Calculation
As it was mentioned in the interpolation section 3.2, the gradients in every

cell are calculated by applying the Green-Gauss theorem on the control volume
and then approximating the values on every face. For every face, a left (L)
and right (R) cell are used with its values and coordinates to approximate this
value. Using the L and R values, usually the cell value is approximated through
a linear interpolation, while special treatment is applied to pressure in the case
that a gravitational force exists.

There are some cases where one of the two cells (L or R) has an iblank value
of zero and therefore has no values. In that case, the face values are comprised
only of the other cell values, and the approximation is only of first order.

More specifically, in the algorithm, gradients are calculated only where cells
have an iblank value of 1 in the body-fitted grids (where -1 are only cells in the
outer boundary) and ignore cells with iblank equals 0 in the first grid (cartesian).
That way, values are taken from the approximated or interpolated cells and
consistency is achieved.

3.3.4 Flux Calculation
Similar to the gradient approximations, fluxes are only calculated when both

of the L and R cells have iblank values different than 0. No flux corrections
are applied, and the solver uses interpolated values to solve the approximate
Riemann problem (for the inviscid fluxes) or perform value averaging (for vis-
cous fluxes). This step is the most error-intensive and depends strongly on the
interpolation process as a flux reconstruction is applied for the L and R states
that are projected in some way on the face center.
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3.3.5 Left and Right hand side calculation
Regarding value updating on the internal iteration, the solver fills left (lin-

earised) and right-hand side contributions for every cell of the mesh. When
the chimera algorithms are applied, the solver ignores cells that are not solved,
namely with 𝑖𝑏𝑙𝑎𝑛𝑘 < 1. In these receptor cells, LHS and RHS values are always
zero, so no contribution to the iteration error exists from this family of cells.

3.3.6 Summarising
Concluding, the proper connection between the solver and the TIOGA li-

brary is achieved when following the steps described above, and a large part of
the development time was dedicated there.

After achieving a functioning coupled solver, basic simulations are run and
the first test cases are examined just for proof of concept and accurate flow
prediction. Meanwhile, further adjustments and corrections were performed,
mainly in the structure of the code and the data storage management. By
gradually increasing the complexity of the simulations (3D simulations, steady
and unsteady) and their meshes, the chimera solver is further tested up to its’
“breaking” limit.

The largest step for testing the software is depicted in the first test case
involving free surface flows. From this part and after, the work was focused
mainly on the interpolation process and its aspects.

Chapter 3 Spyridon Zafeiris 42



Chapter 4

Validation

The validation chapter contains all the simulations that were performed in
this thesis. The testing and debugging were done on a simple NACA 0012 in
uniform angled flow, usually with a visual criterion and quantitative exami-
nation. However, the first validating case starts with the examination of the
vortex street generation on a stationary 2D projected cylinder 4.1.1. Follow-
ing, a comparison with an analytical solution is documented 4.1.2 before the
introduction of two-phase cases 4.1.3.

The second part is devoted to pure 3D phenomena, with cases such as the
open water propeller 4.2.1 and the heave decay of a freely floating sphere from
a starting height 4.2.2.

4.1 2D cases
4.1.1 Laminar cylinder

One of the simplest cases for validating the basic performance of the method-
ology in its aspects is the uniform laminar steady-inlet flow around a cylinder
and the production of vortex shedding.

The reason for this choice is attributed to the examination of the feasibility
of the current method to communicate field variables between overset grids. A
well-transferred (interpolated) field will be validated based on existing contour
configurations from single grid simulations.

This case study was the first to be examined thoroughly using comparisons
from existing literature (simulations and experiments) during the development
process. In this subsection, no comparisons were made between different inter-
polating schemes, and the only type that was used was the radial basis function
interpolation.

Simulation details
For the case of the body-fitted grid:
The cylinder grid has a radial symmetry and the outer (overset) boundary

has a diameter five times the cylinder diameter (5 𝑚).
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Number of wall boundary vertices 392
Number of outer boundary vertices 392
Number of Cells for the first grid 19992
Height of first cell 5 𝑚𝑚

The background grid has a dense uniform zone mesh mostly consisting of
rectangles with a side length of (50 − 150 𝑚𝑚) with a 𝑦-range and a 𝑥-range
close to three times the body-fitted grid. The far-field is located at a distance of
50 cylinders from the cylinder center. Outside of the dense zone, the maximum
dimension of the cells is increased by up to five times the cylinder diameter in
the far-field region.

(a) Grid size in the vicinity of the over-
set boundary

(b) Grid size near the uniform size
dense zone

Figure 4.2: Vortex street generation due to unsteady vortex shedding past a
cylinder

Grid Independence Simulations
The first step of this validation is to execute the same simulation input

parameter with various first cell heights and various background grid cell sizes.
The choice of the current work limits the values to: 5, 10, 20 𝑚𝑚.
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The validation criterion of the grid independency is the value of lift and drag
coefficients over time as well as the dominant frequency present in the current
phenomenon.
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Figure 4.3: Comparison for 3 different meshes
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Figure 4.4: Square root of Energy Spectral Density of the Fast fourier trans-
form of 𝐶𝑙 − 𝑡𝑖𝑚𝑒 signal in semi-log 𝑦 scale over normalised frequency (strouhal
number)

In the last diagram 4.4 and in more detail, the observed peak value (dom-
inant normalised frequency), which is translated as the periodic frequency of
the vortex shedding interference for a cylinder of diameter 𝐷 = 1 𝑚 and a
downstream velocity of 𝑉 = 1 𝑚/𝑠𝑒𝑐 is listed down 4.1 for the three cases:

𝑆𝑡𝑟 = 𝑓𝐷
𝑉 ≡ 𝑓 (4.1)
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grid resolution coarse middle dense
Strouhal Number 0.19377 0.19377 0.19288

Table 4.1: Grid dependency comparison of the peak value of the strouhal num-
ber.

Comparison
Moving on to the validation of the results, computational experiments were

conducted for the case of three Reynolds numbers, specifically (𝑅𝑒 = 100, 150, 200).
The calculation of the Reynolds number is done by using the cylinder diam-

eter as the characteristic length.

𝑅𝑒 = 𝑉 𝐷
𝜈 (4.2)

The comparison of the performance of the overset grid values communication
is based again on the Strouhal number and the reference cases are experiments
conducted by Norberg ([30]) as well as side-by-side comparison with the sole-
grid MaPFlow solver.

The reference simulation in MaPFlow was conducted with a mesh consisting
of 38962 cells, mostly of rectangular type and in a radial manner.

Lastly, the comparison includes the empirical relationship between 𝑅𝑒 and
𝑆𝑡𝑟 number in the laminar cylinder case by Williamson, [31].
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Figure 4.5: Comparison of the calculated strouhal number over Reynolds Num-
ber

The presented results verify the widely validated relationship between the
two non-dimensional numbers in the case of the laminar vortex street generation
of a flow past an infinite (span-wise) cylinder.
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4.1.2 Lamp-Oseen Vortex
In this part of the validation, the comparison of different interpolation

schemes is presented. As reviewed in the previous section, four types of in-
terpolation are compared: the first two types have a global manner by taking
into account a large number of scattered donor points, whereas the last two
schemes are of a local nature.

The case of the Lamp-Oseen Vortex is considered as a reference analytical
solution to the 2D problem involving the presence of viscosity [32].

Regarding the setup of the solution, consider a vortex centred at x𝑐 with
the distribution of the following expression:

r = x − x𝑐 , 𝑟 = ||r||2 , 𝜔 = Γ
𝜋

1
𝜎2 + 4𝜈𝑡 𝑒𝑥𝑝 { −𝑟2

𝜎2 + 4𝜈𝑡} (4.3)

For 𝑡 = 0 the initial value of the vortex distribution is calculated. The flow
is considered laminar and the circumferential velocity and pressure have the
following expressions:

𝑢𝜃 = Γ
2𝜋𝑟 [1 − 𝑒𝑥𝑝 { −𝑟2

𝜎2 + 4𝜈𝑡}] (4.4)

𝑝 = 𝜌𝑢2
𝜃 log (𝑟) + 𝑝∞ (4.5)

The numerical experiment is performed by introducing a rigid cylinder which
induces the above velocity and pressure fields for 𝑟 > 𝑅, where 𝜎 = 𝑅 is the
cylinder radius. The following assumption is done by implying equal circumfer-
ential velocity at 𝑟 = 𝑅 in the expression 4.4 as the circumferential velocity of a
particle attached in the cylinder perimeter (expression of the no-slip condition).

The angular velocity (Ω) of the rotating cylinder respects the value of the
circumferential velocity in the perimeter and is derived by the following relation.

𝑢𝜃 (𝑟 = 𝑅, 𝑡) ̂𝜃 = (Ω ̂𝑧) × r (4.6)
Ω = 𝑢𝜃

𝑟 (4.7)

Additionally the following parameters are set.

𝑅 = 0.5 (4.8)
Γ = 𝜋 (4.9)
𝑅𝑒 = 200 (4.10)

In the present work, the spatial convergence is tested where the 𝐿2 and 𝐿∞
norms are displayed over grid density.

The grid density is assumed to be equal to the fraction of cylinder radius 𝑅
over first cell height ℎ𝑓𝑖𝑟𝑠𝑡, namely 𝑅/ℎ𝑓𝑖𝑟𝑠𝑡.
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𝐿2 = √ ∑
𝑘∈𝑐𝑒𝑙𝑙𝑠

(𝑄𝑘 − 𝑄𝑎𝑛 (x𝑘))2 ⋅ 𝐷𝑘 (4.11)

𝐿∞ = max
𝑐𝑒𝑙𝑙𝑠

|𝑄𝑘 − 𝑄 (x𝑘)| ⋅ ∑
𝑐𝑒𝑙𝑙𝑠

𝐷𝑘 (4.12)

All of the simulations are run with a constant 𝐶𝐹𝐿 = 0.5 and completion
is set on the 20th time step. The value of the time-step compatible with the
𝐶𝐹𝐿 condition is taken by using as a discretisation distance the smallest cell
length. Then, norms are calculated on the last time step, and at that point,
the comparison is presented.

During the convergence rate study, four different grid refinements are per-
formed.

Additionally, results are presented for one grid (no overset grids with a total
mesh circular motion) for visual comparison.

The scaling of the following convergence study could also be normalised by
the total domain volume, which is a constant quantity on all occasions and was
therefore omitted.

The dashed lines in the graphs represent the first order and the second order
angle between 𝑥 and 𝑦 axis.

For the overset case, beginning with the 𝐿2 norm:
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In the case of the ℒ∞ norm:
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Regarding the above results and starting with the ℒ2 norm, it is observed
that each and every one of the described schemes can retain by some degree
the convergence rate of the solver. Furthermore, the inverse distance weighting
scheme seems to introduce some numerical diffusion in the velocity components,
whereas the axis-aligned method has a well retained convergence rate.

The performance of the inverse distance method was an expected result, as
this particular type of interpolation is known for smooth approximations on
imaging with a smoothing indicator, the exponent 𝑝. This exponent has to be
calibrated when expecting highly accurate results.

In the following thesis, this parameter was not calibrated as it does not
lie among the problems of the methodology. Of course, its value would be
dependent on scatter point densities and field fluctuations and, of course, a
tuning much like this of the shape parameter tuning in RBF could be done
with the difference that it is no longer a scaling constant and the definition by
mesh volume or minimum distance would have a different expression.

Similar conclusions can be brought in the case of the ℒ∞ norm. Exceptions
involve poorer performance for the nearest neighbour method (as it is expected
due to low order) and the fact that pressure tends to follow a smaller convergence
rate.
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4.1.3 Wave Propagation
Until this point, the validation has a basic standard that follows famous

cases and analytical solutions.
The next case study that is examined takes the difficulty level up by one step

by introducing discontinuities in the solution field. The reason for the intro-
duction of such a case is the examination of the performance of the axis-aligned
interpolation scheme over its standard competitor, the nearest neighbour.

This comparison is done by measuring the wave amplitude with gauges (sim-
ilar to the experimental procedure) before and after the presence of the small
grid.

It is noted that all the simulations in the current case are inviscid and the
discontinuity problem is tackled using the Euler Equations.

As a reference, a simulation will be run with only one grid and the initial
loss of amplitude will be noted.

Numerical Experiment setup
To perform the following numerical experiment, let us consider a plane free

surface that is at rest in two-dimensional space. The concept is to generate a
wave of one harmonic frequency 𝜔 that is compliant with one of the existing
wave theories (e.g., the Airy Theory of linear waves). The entire domain is of
rectangular type and is distinguished by three zones:

a) Wave Generation Zone

b) Solution Domain

c) Wave absorption Zone

In the first zone, the creation of the propagating waves is performed through
source terms, which is the momentum equation. The generation zone is located
on the left and near the far-field boundary. The length of this zone is approxi-
mately one wave length, and the source term has the following expression:

⃗⃗⃗ ⃗⃗𝑆𝑤 = 𝐶𝑤𝜌𝑚 (u − u𝑡𝑎𝑟) , x ∈ 𝒟𝑔𝑒𝑛 (4.13)

The entity 𝐶𝑤 is a function of the normalised length from the far-field up
to the solution interface. Following the notation of [20], the expression of 𝐶𝑤 is
presented.

𝐶𝑤 = 𝛼exp{𝑥𝑛
𝑟 } − 1

𝑒 − 1 (4.14)

𝑥𝑟 = 𝑥𝑠 − 𝑥
𝑥𝑠 − 𝑥𝑒

(4.15)

The value of 𝛼 is not to be greater than 200 with an 𝒪 (102) order of mag-
nitude.
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As equation 4.15 points out, 𝑥𝑟 states the normalised length and finally the
exponent 𝑛 usually takes values ranging from 2 ∶ 5 which is used for regulating
the slope of the generation function.

The target field u𝑡𝑎𝑟 is a velocity field produced by a semi-analytical solution
from the Stokes Theory and the cnoidal Theory presented thoroughly in [33].

The second zone is the zone where we study the overset performance. It is
the regular domain without any sources or sinks for the solution. The length
of this zone is approximately two wavelengths, and the overset grid spans up to
around 4

5𝜆 length.
The absorption zone, similarly to the generation one, uses the expression

4.13 with the difference that this time the goal is the damping of the vertical
component of velocity. In our case the u𝑡𝑎𝑟 has a zero x-component and a
desired 𝑣∞ 𝑧-component.

The water tank has a constant depth of ℎ = 5 𝑚 and the entire length of
the domain spans in 4.5𝜆 length.

The harmonic wave characteristics are:

Wave Characteristics
𝐻 0.05 𝑚
𝜆 8 𝑚
𝑇 2.264 𝑠𝑒𝑐
𝑔 9.81 𝑚/𝑠𝑒𝑐2

𝑘 0.7854 -
𝜔 2.775 𝑟𝑎𝑑/𝑠𝑒𝑐

The grid structure consists of hexahedra (rectangular in 2D) cells which
have an increasing y-span as they become more distant from the undisturbed
free surface level. The resolution is such that in the vicinity of the flat free
surface, the mesh consists of 15 cells per wave height 𝐻. Respectively, the x-
span of the cells is constant over the regular domain and equal to 𝜆/150 𝑚.
In contrast, in the generation and absorption zones, the cell length in the 𝑥
direction is gradually increasing while moving closer to the far-field boundary.
At the bottom, no-through boundary conditions are imposed, and at every other
boundary surface, the boundary condition is of the far field inlet type.

Considering the time discretisation, a second order implicit (in time) scheme
is employed with a constant time step at Δ𝑡 = 5 ⋅ 10−3 [𝑠𝑒𝑐] which is approxi-
mately equal to 𝑇 /450, where 𝑇 is of course the wave period.

For a more intuitive and fairer comparison, the smaller grid, which spans for
two times the wave amplitude on both sides of the flat free surface (𝑧-direction),
has the same resolution and grid structure as the background grid. The only
difference is that during the mesh creation, the parameters for length increasing
are changed by a very small amount, and after the mesh creation, the grid is also
shifted in the 𝑥-direction by a fraction of the cell size. This is done to avoid any
topological conflicts in the TIOGA library when performing the various steps
for the grid assembly. Otherwise, all query points would have a twin cell centre
in the other grid and an error would occur.
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Figure 4.10: Details of the mesh creation for the current simulations

The comparison is performed with the following procedure:

• Two gauges are placed before and after the inner grid that measure the
free surface elevation.

• The simulation is ran, firstly with only one grid on the pure solver and
without any interpolation. After a time interval where the phenomenon
is time-harmonic, the free surface elevation signal is extracted by the two
gauges and is compared on a graph.

• Next, the simulations with the overset grid are ran, firstly using the near-
est neighbour scheme and then using the axis-aligned scheme.

• The signals from the last gauge (after passing through the overset grid)
are extracted and gathered along with the previous signals.

• The performance is tested by comparing the loss of amplitude for the
second gauge with reference the first gauge.

The resulting dynamic pressure field after a certain amount of time is visu-
alised below.

Figure 4.11: Contour Plot of the dynamic component of the pressure field in
[𝑃 𝑎].
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The plot 4.11 above is presented for better understanding of the generation
(left) and the absorption zone (right), as well as the periodic nature of the
dynamic pressure field.

Following, the comparison over the gauge signals is presented.
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(b) Free surface elevation signals before (dashed) and after the inner grid (focused
in a smaller time interval)

Figure 4.12: Station free surface elevation signal

By examining the above results of the stations’ free surface elevation 𝜂 [𝑚],
it is, first of all, noted that the pure solver simulation (only one grid) which is
marked as MaPFlow and MaPFlow 2𝑛𝑑 in the graph for the first and second
gauge respectively, has a small amplitude reduction. This implies that numerical
diffusion exists, which is of course dependent on the solver and the discretisation.
The quantification of the numerical diffusion (on a pure advective phenomenon)
is presented exactly with this wave amplitude reduction.

It is also noted that there is an improvement in the energy loss between the
newly presented scheme and its nearest neighbour. This is clearly visible in the
second graph 4.12b where the results indicate that the interpolation accuracy
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retains the order of spacial accuracy of the solver by a fair amount. Quantified
results of the above performance are presented in the table below.

Simulations Wave Height [𝑚] Percentage of Reduction
MaPFlow 1𝑠𝑡 0.055 − %
MaPFlow 2𝑛𝑑 0.052 5.599 %
Axis Aligned 0.049 10.602 %
Nearest Neighbor 0.041 24.544 %

Table 4.2: Wave height reduction percentage from the 1𝑠𝑡 station to the 2𝑛𝑑

normalised with the first station height.

This comparison table presents the total height loss both from approxima-
tion and from interpolation as it is compared with the first station amplitude.
The error that is caused by the solver itself is a common feature for all the
low-order solvers that focus on the approximation of the volume fraction. A
significant part in the performance of the solver, as mentioned in [20], plays
the face reconstruction problem, especially in the case of the volume fraction,
where it is treated with many proposed so-called ”compressive” schemes that
minimise the numerical diffusion while trying to retain spacial accuracy.

To compare the interpolation error only between the two methodologies, the
2𝑛𝑑 station is taken as a reference, and the results are presented in the following
table.

Simulations Wave Height [𝑚] Percentage of Reduction
MaPFlow 2𝑛𝑑 0.052 − %
Axis Aligned 0.049 5.300 %
Nearest Neighbour 0.041 20.068 %

Table 4.3: Wave height percentage reduction with respect to the second station.

It has to be noted that the effects of data interpolation are not only shown
in the amplitude reduction but also in the phase change.

This effect will be shown, again, by performing a Fast Fourier Transform on
the stations’ elevation signals for all the cases.
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Figure 4.13: Dominant normalised frequency of the surface elevation signal for
the first gauge and the second in 3 cases

The Strouhal number in this case is the frequency times the wave period.

𝑆𝑡𝑟 = 𝑓 ⋅ 𝑇 (4.16)

The dominant (normalised) frequency above is compared in all cases and
presented in a tabular form.

First Gauge 1.2578
MaPFlow 1.2578 +0%
Axis Aligned 1.2625 +0.37%
Nearest Neighbour 1.2679 +0.81%

Table 4.4: Comparison of strouhal number with the first gauge

4.2 3D Cases
The next step of the validation process involves the solution of pure 3D

problems in the engineering and scientific sectors.
The key feature of the methodology that is mentioned repeatedly in this

thesis is scalability, i.e., the ability of the software to scale on multiple memory-
separate processing units. Apart from this, the ability of the library is tested by
finding the desirable number of donors and receptors on a pure 3D unstructured
mesh consisting of many different cell types.

These cases were the second type of simulation tested during the develop-
ment process. This was done right after the data communication problem was
solved and the interpolation scheme was at an acceptable level (in terms of
accuracy). Furthermore, many issues were remedied and tested concerning the
library and the information that was extracted from it.
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In this section of the validation, two cases are examined; the first is a steady
case and the second is an unsteady one. The first case involves the prediction
of coefficients of the open water propeller (thrust & torque coefficients), which
are a global approximation indicator for the performance of the method. The
second case is the sphere drop test, where the solver is coupled with the rigid
body dynamics equations to study the heave decay of a sphere which is dropped
from a distance from the free surface. The last case, which is also the hardest
in terms of performance and accuracy, measures the heave response and the
radiation wave amplitude through several free surface stations.

4.2.1 Open Water Propeller
Starting from the case of the open water propeller, the numerical exper-

iments were conducted on a B-series Wagenigen propeller with the following
features:

𝐷 0.160 𝑚
𝑃/𝐷 0.880 −
𝐴𝐸/𝐴0 0.628 −
𝑍 4 −
𝐷ℎ 0.028 𝑚

Table 4.5: propeller particulars

In the table 4.5 the symbols represent the following.

• 𝐷: propeller nominal diameter
• 𝑃 : pitch
• 𝐴𝐸/𝐴𝑂: blade area ratio
• 𝑍: number of blades
• 𝐷ℎ: hub diameter

The comparison contains a steady (relative reference frame) single grid
MaPFlow simulation as well as experiments on the aforementioned propeller.

The simulations are run with a constant Reynolds number:

𝑅𝑒 = 𝑉 ⋅ 𝐷
𝜈 = 5.5 ⋅ 105 (4.17)

With 𝑉 we refer to the magnitude of the inlet velocity vector, which is
parallel to the 𝑥 axis.

The simulation is performed in an unsteady configuration with a rotating
body fitted grid around the propeller and a stationary background grid. 

The fluid is considered viscous and a turbulence model is required. In our
case, the 𝑘 − 𝜔 SST (RANSE) model was used.

The boundary layer was fully resolved with a max 𝑦+ value measured at
0.65 approximately.
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The configuration of the mesh is presented in the following figures, taken
from the post processing.

Figure 4.14: Representation of the volume and surface mesh of the propeller
grid.

Figure 4.15: Details of the grid connection (right) and the boundary layer
discretisation (left).

All the simulations are run on a dimensional standard with the following
specifications:

𝐽 𝑉 [𝑚/𝑠𝑒𝑐] 𝜔 [𝑟𝑎𝑑/𝑠𝑒𝑐] 𝑛 [𝑟𝑝𝑠] 𝑅𝑒 𝜈 [𝑚2/𝑠𝑒𝑐]
0.4008 1.6890 165.4991 26.34 5.5𝐸 + 05 4.9135𝐸 − 07
0.5006 2.0840 163.4885 26.02 5.5𝐸 + 05 6.0625𝐸 − 07
0.5994 2.4800 162.4832 25.86 5.5𝐸 + 05 7.2145𝐸 − 07
0.6987 2.8150 158.2106 25.18 5.5𝐸 + 05 8.1891𝐸 − 07
0.8028 3.2010 156.5770 24.92 5.5𝐸 + 05 9.3120𝐸 − 07

The first validation property that was used in the visualisation part of the
flow is the Q-criterion. This variable represents a measure for the vortex creation
in a 3D flow problem.

The Q-criterion is defined as follows:
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∇u = Ω (u) + 𝑆 (u) (4.18)

Ω (u) = 1
2 (∇u − ∇u𝑇 ) (4.19)

𝑆 (u) = 1
2 (∇u + ∇u𝑇 ) (4.20)

𝑄 (u) = 1
2 (||Ω (u)||2 − ||𝑆 (u)||2) (4.21)

||𝐴𝑛×𝑛||2 ∶= 𝜚 (𝐴∗𝐴) = max {𝜆1, 𝜆2, … , 𝜆𝑛}

(𝜆1, 𝜆2, … , 𝜆𝑛) −→ 𝑑𝑒𝑡 (𝐴∗𝐴 − 𝜆𝐼3×3) = 0 (4.22)

In this definition, Ω and 𝑆 refer to the rotation rate and the strain rate,
respectively, whereas the Euclidean norm of a matrix 𝐴𝑛×𝑛 (the so-called spec-
tral norm) is defined as the spectral radius of the conjugate matrix times itself,
i.e. the maximum of the modulus of its eigenvalues (measured in the case that
the eigenvalues are in the complex plane).

The Q-criterion is not the unique way to identify vortex cores in three-
dimensional flows. Another identification standard could be the 𝜆2-criterion
which checks whether at least two of the eigenvalues of the matrix 𝑆 (u)2+Ω (u)2

are negative.
Taking this measure into account, we visualise the field after a large set of

unsteady iterations in the following graph.

Figure 4.16: Iso-surface of the Q-criterion in values ±15000 along with projected
contour of pressure with front view (left) and back view (right)

In these iso-surface graphs, it can be observed that the vortex creation hap-
pens at the tip of every blade and is moving away along a cylindrical path. In
another note, it is clear to identify the low pressure zones of the blades (front
side) and the high pressure zones (back side). As far as the values of Q are
concerned, their magnitude implies that the vortex creation is very weak and
the simulation converges into a steady flow configuration.
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Additionally, in order to focus on the field communication between the two
grids, we present in a contour slice the values of the 𝑥-component of the velocity.

Figure 4.17: Contour plot on a 𝑧 − 𝑥 section slice of the 𝑥-component of the
velocity field

In this contour, it is without special notice that the flow accelerates behind
the lifting body, indicating the creation of longitudinal thrust in the negative
𝑥-direction.

Thrust & Torque approximation After the evaluation of the flow charac-
teristics visually, the comparison is made for global measures such as the total
thrust and torque that are exerted by the rotating body.

The dimensionless measures for the propeller with which we build the thrust
and torque1 diagram are:

𝐽 = 𝑉
𝑛𝐷 (4.23)

𝑘𝑇 = 𝑇
𝜌𝑛2𝐷4 (4.24)

𝑘𝑄 = 𝑄
𝜌𝑛2𝐷5 (4.25)

𝜂 = 𝐽
2𝜋

𝑘𝑇
𝑘𝑄

(4.26)

The simulations are ran in five values of the advance coefficient 𝐽 in which we
attempt to validate with the single grid (relative frame of reference) simulation
and experiments. Both the simulations with the single grid and the experiments
are conducted and assessed by Ntouras et. al. [34].

In the case that the simulations are run on a single grid with a steady-state
configuration, convergence is achieved from some point in the iteration process,
and therefore the body forces converge smoothly up to a tolerance level.

However, this is not the case in the unsteady regime, where even if the
physical phenomenon has a very low characteristic strouhal number (pseudo-
steady), when executing an unsteady simulation with a specific resolution, some

1The standard symbol for the mechanical torque in the majority of the bibliography con-
cerning ship propulsion is Q, so it is not to be confused with the Q-criterion symbol, which will
not be used furthermore in this thesis.
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part of the energy cascade spectrum is resolved and the presence of eddies is
inevitable. This dependency on the time and space resolutions can be easily
shown in large-scale high-fidelity simulations (DNS or LES) at low angles of
attack on airfoil sections where a vortex street is created near the trailing edge
after a sufficient amount of time. The vortex creation visualised above depicts
exactly this characteristic.

In order to find the part of the simulation that the longitudinal force is
considered to have converged around a single value, we first observe and note
the frequency of the force fluctuations and then create a chunk of time points
where we have solution output (how many unsteady iterations from peak to
bottom etc.). Then the mean value is calculated for every chunk. The criterion
for stopping the iterations and measuring the solution values is a minimum
tolerance level for the rate of change of the mean value function.

The comparison for the 𝑘𝑇 , 𝑘𝑄, 𝜂 variables is shown below in the graph as
well as tabulated.
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Figure 4.18: Comparison of the thrust, torque coefficients and efficiency grade

Comparison CFD-overset
𝐽 𝛿𝑘𝑇 𝛿𝑘𝑄 𝛿𝜂 𝛿𝑘𝑇 % 𝛿𝑘𝑄 % 𝛿𝜂 %

0.4008 −0.0118 −0.0632 0.0464 −1.18 −6.32 4.64
0.5006 −0.0074 −0.0685 0.0561 −0.74 −6.85 5.61
0.5994 −0.0001 −0.0727 0.0686 −0.01 −7.27 6.86
0.6987 0.0043 −0.0844 0.0835 0.43 −8.44 8.35
0.8028 0.0037 −0.1252 0.1115 0.37 −12.52 11.15

Table 4.6: Comparison of the coefficients for the overset simulation vs the single
grid CFD simulation normalised with the single grid CFD values
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Comparison overset-experiments
𝐽 𝛿𝑘𝑇 𝛿𝑘𝑄 𝛿𝜂 𝛿𝑘𝑇 % 𝛿𝑘𝑄 % 𝛿𝜂 %

0.4008 −0.0075 0.0716 −0.0738 −0.7507 7.16 −7.38
0.5006 −0.0138 0.0933 −0.0979 −1.3840 9.33 −9.79
0.5994 −0.0178 0.1163 −0.1201 −1.7830 11.63 −12.01
0.6987 −0.0169 0.1528 −0.1473 −1.6949 15.28 −14.73
0.8028 −0.0110 0.2108 −0.1832 −1.1022 21.08 −18.32

Table 4.7: Comparison of the coefficients for the overset simulation vs the ex-
periment measurements normalised with the experiment values

As it can be observed, the method adequately approximates the total thrust
that is exerted by the propeller, whereas there seems to be an over-estimation
of the torque. This small overestimation affects the mechanical efficiency grade.
Considering the load calculations, these are calculated by integrating over the
solid wall boundary (using the mid-point rule) the pressure field and the viscous
stresses plus gravitational forces (absent in our case). It is noted that the
load calculation consists of integrating over the same field variables with the
difference of the cross product with the position vector. This can cause a scaling
in the approximation error and a more fine surface mesh could give more precise
results.

⃗⃗⃗ ⃗⃗ ⃗𝐹 = ∫
𝑆𝑏

𝑝𝐼3×3 ⋅ ⃗⃗⃗𝑛⃗ d𝑆 + ∫
𝑆𝑏

↔𝜏 ⋅ ⃗⃗⃗𝑛⃗ d𝑆 ( + ∫
𝑉𝑏

𝜌𝑚g d𝑉 ) (4.27)

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑀 = ∫
𝑆𝑏

⃗𝑟 × (𝑝𝐼3×3 ⋅ ⃗⃗⃗𝑛⃗) d𝑆 + ∫
𝑆𝑏

⃗𝑟 × (↔𝜏 ⋅ ⃗⃗⃗𝑛⃗) d𝑆 ( + ∫
𝑉𝑏

⃗𝑟 × 𝜌𝑚g d𝑉 )

(4.28)

Scalability
The last part that is addressed in this simulation is the scalability of the

solver-library coupling.
However, it has to be pointed out that the scalability of this coupling has

not been optimised and far more work has to be done to achieve a close to
optimal result.

Both the solver and the library, have proven their skills for scalability by up
to 10𝑘 processors. In this test, we simply document the results for their coupling
with the intention of providing a global examination in our development.

In this scope, we provide the scale up factors and the elapsed time over the
number of computing units.

The scaling factor is calculated with the first simulation running at 5 pro-
cessors and not from 1 single processor. This is done due to a lack of sufficient
storage space for such a large simulation.

Suppose we have two simulations with 𝑁1 & 𝑁2 number of processors and
𝑁2 > 𝑁1. The scaling factor is defined as:
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𝑆𝑐𝑎𝑙𝑒 % =
elapsed time𝑁1

elapsed time𝑁2

/𝑁2
𝑁1

⋅ 100 (4.29)

Additionally, the speed-up percentage is calculated as:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑖 % = 𝑡0
𝑡𝑖

⋅ 100 (4.30)

𝑡𝑖 ∶ elapsed time for time step in simulation 𝑖 (4.31)

The calculated elapsed times for all the simulations are gathered in the
following table:

run CPUs Elapsed Time
1 5 116.91 𝑠𝑒𝑐
2 10 64.21 𝑠𝑒𝑐
3 20 35.38 𝑠𝑒𝑐
4 40 17.79 𝑠𝑒𝑐
5 80 9.86 𝑠𝑒𝑐
6 200 4.79 𝑠𝑒𝑐
7 400 3.81 𝑠𝑒𝑐
8 600 3.42 𝑠𝑒𝑐

Table 4.8: Execution time per time step
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Figure 4.19: Elapsed time of execution over the number of CPUs on a logarith-
mic scale
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Figure 4.21: total scaling factor for every two executions in an ascending order
of CPUs

As we observe in the graph 4.19 the elapsed time reduction is present for a
significant number of processors. The biggest effect of the library-solver coupling
that should be addressed concerns the graphs 4.20, 4.21 where a significant
reduction in scalability can be observed. However, it has to be mentioned, at this
point, that the elapsed time, along with the DoF (degrees of freedom) per CPU,
is the actual indicator of the total efficiency at the point where we would wish
that a time step has an elapsed time of execution at around 𝒪 (100) − 𝒪 (101).
This is the case for the current simulation at around 200 processes. Of course,
the amount of DoF per CPU affects the total inter-CPU communication time
and is considered a bottleneck when it is too small. It was observed in the whole
process of the development that the optimal amount of DoF per CPU is close
to 𝒪 (104).
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4.2.2 Heave decay of the floating sphere
Moving to the last validation case, we focus on the elementary physical

phenomenon that involves sphere lateral dynamics on the free surface without
forcing oscillations. This case is considered the most difficult among all the
cases in this chapter. It is expected to test the limits of both the solver and the
library, whether examining accuracy or computing efficiency.

This last numerical experiment was chosen mainly because it encompasses
a medley of aspects such as: a) a pure unsteady 3D simulation b) presence of
free surface c) rigid body dynamics. The second reason that the heave decay
experiment is being studied is that there have been thorough examinations of
the subject with plenty of experimental and simulation results. These results
are documented for all experiments (both numerical and experimental) in [35]
where various parties from different laboratories participate to produce results
concerning body dynamics and radiation measurements.

The case setup reads as follows:
“Suppose there is a sphere of diameter 𝐷 = 300 𝑚𝑚 that its center of gravity

is placed at 𝐻0 𝑚𝑚 from the undisturbed free surface of an experimental tank.
The tank is adequately large (to avoid remaining reflections) with a constant
depth of 𝑑 = 900 𝑚𝑚. At the time instant marked as 𝑡0 = 0 𝑠𝑒𝑐 the sphere is
left free with zero initial vertical velocity and experiences the effects of all the
hydrodynamic forces while freely oscillating.”

The first variable that is observed and measured is the heave response signal,
and the second is the free surface elevation in three different stations positioned
at 𝑥 = 0 (all of them) and 𝑦 = 600, 1200 and 1800 𝑚𝑚.
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Wave gauge 1
Wave gauge 2
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600 𝑚𝑚

Figure 4.22: Schematic representation of the water tank for the numerical ex-
periment

Chapter 4 Spyridon Zafeiris 64



Master Thesis

As shown in the schematic 4.22, the sphere is located at the centre of the
tank with centre coordinates (0, 0, 0).

The scope of the simulation case is to try and appropriately approximate
two-phase flows near wall boundaries and the effects of the volume fraction near
the boundary layer mesh. As far as the mesh resolution is concerned, for every
starting position height of the sphere, we try to keep approximately 15−20 cells
within the wave height. Just because the case does not involve a propagation
wave and is rather a radiation problem, we try to keep this number of cells
compatible with the wave that has the dominant frequency and wave number.

This rule will apply both in the 𝑧-direction and for the 𝑥𝑦-surface mesh.

Figure 4.23: Contour slice with projected mesh on time 𝑡 = 0 𝑠𝑒𝑐

4.2.3 Simulation setup
In order to simplify the setup for the rigid body dynamics, it is assumed that

only one degree of freedom exists (out of six), which is an adequately accurate
assumption for a perfectly azimuth-symmetric numerical experiment (however
not in an experimental setup).

To perform the CFD-RBD 2 coupling, a total iteration number is first defined
before the start of the simulation. From that point, each time-step is divided
into sub-steps in which the CFD and the RBD solver exchange forces and 𝐶𝑜𝐺
position and velocity, respectively.

The time integration for the RBD solver is performed by the Newmark-beta
method with coefficients 𝛾 = 0.5 & 𝛽 = 0.25.

𝑀 ̈𝑥3 = 𝐹𝑡𝑜𝑡 (4.32)
𝐹𝑡𝑜𝑡 from 4.27 (4.33)

The mass 𝑀 in equation 4.32 could be the experimental mass as it was
measured in [35] experiments. However, further accuracy can be achieved
while simultaneously eliminating a potential shift in the position of equilib-
rium (𝑧 = 0 𝑚𝑚), when using the numerical mass of the object, that is the

2RBD: Rigid Body Dynamics
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total hydrostatic force from the fluid to the stationary (𝐻0 = 0 𝑚𝑚) sphere
divided by the measured acceleration of gravity.

In order to evaluate the simulation parameters after the mesh creation, we
try to measure some flow characteristics by performing preliminary simulations.
From these simulations, the dominant wave length and the maximum fluid
velocities can be extracted. Taking into account the maximum values of the
velocities and the smallest cell volume, the Courant-Friedrich-Lewy number is
chosen, and therefore the appropriate time step:

𝐶𝐹𝐿𝑚𝑎𝑥 = 𝑢𝑚𝑎𝑥 ⋅ Δ𝑡
Δ𝑥𝑚𝑖𝑛

(4.34)

⇒Δ𝑡 = 𝐶𝐹𝐿𝑚𝑎𝑥 ⋅ Δ𝑥𝑚𝑖𝑛
𝑢𝑚𝑎𝑥

(4.35)

The flow is considered viscous in all cases, and the densities and viscosities
are specified in [35] and more specifically in tables 1,2 and 4. We present the
main features of the simulation input collectively.

Description Properties Values Unit
diameter 𝐷 300 𝑚𝑚
mass 𝑚 7056 𝑔

center of gravity CoG (0, 0, −34.8) 𝑚𝑚
acceleration of gravity 𝑔 9.82 𝑚/𝑠𝑒𝑐2

starting altitude 𝐻0 (30, 90, 150) 𝑚𝑚
depth 𝑑 900 𝑚𝑚

density of water 𝜌𝑤 998.2 𝑘𝑔/𝑚3

density of air 𝜌𝑎 1.2 𝑘𝑔/𝑚3

water kinematic viscosity 𝜈𝑤 1.0 ⋅ 10−6 𝑚2/𝑠𝑒𝑐
air kinematic viscosity 𝜈𝑎 15.1 ⋅ 10−6 𝑚2/𝑠𝑒𝑐

Table 4.9: Flow particulars

As far as the turbulence model is concerned, there have been some observa-
tions during the execution and development.

The Reynolds number was calculated using the solid sphere diameter and
maximum velocity during heave decay, which is the velocity of the object when
passing through the hydrostatic position for the first time. As for the viscosity,
the kinematic viscosity of water is used.

Generally, when working with two-phase flow phenomena, special attention
has to be given to the modelling of the existing turbulence. Classic eddy vis-
cosity models such as the 𝑘 − 𝜔 or the SST model (and their combination) [36],
[37] makes use of two equations for the shear stress transport that involve the
turbulent kinetic energy 𝑘 and the dissipation rate 𝜔. These models are men-
tioned briefly in Appendix A 5.2. When working with two-phase flows, such
models tend to overproduce the turbulent kinetic energy near the free surface
interface.

For that reason, modified turbulence models exist in which a source term is
added to account for this specific strange effect. The most well known model
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introduced by B. Devolder et. al. [38] introduces the following term to the
transport equation of the turbulent kinetic energy.

𝐺𝑏 = − 𝜈𝑡
0.85

𝜕𝜌
𝜕𝑥𝑖

𝑔𝑖 (4.36)

In fact, generally in MaPFlow, every time that a simulation is set up involv-
ing two phases of fluids along with a turbulent regime, the above modification
is always employed.

However, it was observed that, with the presence of a solid boundary and
with extreme conditions such as free surface piercing, the problem of overpro-
duction of turbulent kinetic energy is far from solved. This effect, in the case
of 0.5𝐷 starting height, can cause instabilities during the iterative procedure
of pseudo-time and the sudden increase in the local CFL number, that can
(conditionally) crash the simulation.

For this first reason, we try to execute the 0.5𝐷 simulation in the laminar
case with a first cell height of about 𝑦+ = 𝒪 (1). This assumption, in the case
of smaller starting heights (0.1𝐷, 0.3𝐷) is adequately compatible in the results
with the laminar hypothesis.

Another difficulty that is remedied during this family of simulations is the
choice of the flux reconstruction scheme. Generally, as explained in chapter 2,
two-phase flows with a high density difference and the presence of a gravitational
field demand a less (numerically) diffusive reconstruction scheme for the volume
fraction, mainly with the intention of constructing a more compressive free
surface effect with a steeper density jump. These types of flux reconstruction
schemes usually fluctuate between the upwind and the downwind state while
taking into account the angle between the gradient of the normalised variable
and the outward normal vector to the face. That way, accuracy is achieved in
smoother regions away from the free surface, and a surface compression with a
steeper volume fraction in the vicinity of the free surface is constructed.

Some of these schemes are: the HRIC [39], STACS [40], MGDS [41], CIC-
SAM [42] and BICS [43].

It has to be noted that, because there might be rapid changes in the in-
teractions between the solid body and the free surface (such as the surface
piercing effect), a more compressive scheme, which would work exceptionally
well in the simple case of a wave propagating through a tank, might produce
time-dependent discretisation restrictions. The scheme that was chosen for the
simulations and proved to give eminent results with a relatively normal time
step is the High Resolution Interface Capturing Scheme (HRIC).

To document more effectively all the results between our simulations and
the ones listed in [35], the comparison is presented, for every starting height
𝐻0 separately for experiments, the CFD simulations and the non-linear BEM.
Both signals (heave response and station free surface elevation) are compared in
their time sequence and in their energy spectral density. Especially for the heave
signals, the decaying cosine is mirrored on the negative time axis (horizontal
axis) to create a wavelet type signal, which is then subject to a Fast Fourier
Transform.
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(a) 𝑡 = 0 𝑠𝑒𝑐 (b) 𝑡 = 0.1 𝑠𝑒𝑐

(a) 𝑡 = 0.2 𝑠𝑒𝑐 (b) 𝑡 = 0.3 𝑠𝑒𝑐

(a) 𝑡 = 0.4 𝑠𝑒𝑐 (b) 𝑡 = 0.5 𝑠𝑒𝑐

The above snapshots represent the contour slice of the density in various
time instants for a starting height of 𝐻0 = 0.5𝐷 = 150 𝑚𝑚.
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4.2.4 Starting height at: 0.1D
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Figure 4.27: Heave decay compared with experiments at starting height 𝐻0 =
0.1𝐷.
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Figure 4.28: Heave decay compared with non-linear BEM solvers at starting
height 𝐻0 = 0.1𝐷.
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Figure 4.29: Heave decay compared with RANSE solvers at starting height
𝐻0 = 0.1𝐷.

4.2.5 Starting height at: 0.3D
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Figure 4.30: Heave decay compared with experiments at starting height 𝐻0 =
0.3𝐷.
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Figure 4.31: Heave decay compared with non-linear BEM solvers at starting
height 𝐻0 = 0.3𝐷.
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Figure 4.32: Heave decay compared with RANSE solvers at starting height
𝐻0 = 0.3𝐷.
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4.2.6 Starting height at: 0.5D
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Figure 4.33: Heave decay compared with experiments at starting height 𝐻0 =
0.5𝐷.
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Figure 4.34: Heave decay compared with non-linear BEM solvers at starting
height 𝐻0 = 0.5𝐷.
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Figure 4.35: Heave decay compared with RANSE solvers at starting height
𝐻0 = 0.5𝐷.

On a general note, results deriving from the overset method and the exper-
iments are in adequate agreement in all starting positions. In addition, results
from non-linear BEM and pure mesh morphing RANSE simulations are also in
agreement, especially in the case of 0.1𝐷 starting position. At higher starting
points, differences in the heave decay amplitude and phase are worsened for the
case of non-linear BEM because of effects such as wave-breaking and large de-
pendencies on shear forces on the sphere (which are omitted in the irrotational
inviscid hypothesis).

Along with the pure heave comparison, a cumulative graph is also presented
for the normalised response over normalised time. The time is divided by the
natural period of the free damping oscillation occurring when solving the linear
hydrodynamic response in the frequency domain with constant hydrodynamic
coefficients. The solution to this linear problem is a linear combination of
harmonics multiplied by a damping exponent. The value of the natural damping
period as investigated in [35] is calculated.

𝑇𝑒0 = 0.76 𝑠𝑒𝑐 (4.37)
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Figure 4.36: Comparison of the normalised heave position in the starting heights
and dominant divided frequency.

It may be noted that, as far as the dominant normalised frequency is con-
cerned, it has the expected value of unity, suggesting that the sphere is oscil-
lating within very small tolerance levels of its natural frequency (no external
force applied) as shown in the graph 4.36.

4.2.7 Free Surface Elevation
The free surface elevation results, which are measured in three different

stations as shown in figure 4.22, are more dependent on the spatial and temporal
discretisation, which is able to resolve only a limited spectra of wavelengths
that characterise a dispersive gravity-induced radiating wave. For that matter,
differences between signals from the gauges (in the numerical experiment) are
amplified due to this effect.

However, the grid sensitivity criterion is not addressed in this part of the
validation because of the absence of more specific data from the validating
numerical experiments (such as cell first heights –from the undisturbed free
surface– and cell lengths).

Lastly, the capturing of the free surface (for post processing and evaluation)
is done by tracking the vertical coordinate where the volume fraction has a
value of 0.5 (usually through interpolation).
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4.2.8 Starting height at: 0.1D
In the graphs below, the free surface elevation is presented for three gauges

and three starting heights (as the labels indicate). The comparison is done
among all experimental and simulation data derived from RANS simulations.
More precisely, on the left hand, the comparison is done between experimental
data and whereas on the right hand, RANSE simulations are used for compar-
ison.
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Figure 4.37: Free surface elevation time series of the 1st station for starting
height at 𝐻0 = 0.1𝐷.
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Figure 4.38: Free surface elevation time series of the 2nd station for starting
height at 𝐻0 = 0.1𝐷.
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Figure 4.39: Free surface elevation time series of the 3rd station for starting
height at 𝐻0 = 0.1𝐷.
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4.2.9 Starting height at: 0.3D
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Figure 4.40: Free surface elevation time series of the 1st station for starting
height at 𝐻0 = 0.3𝐷.
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Figure 4.41: Free surface elevation time series of the 2nd station for starting
height at 𝐻0 = 0.3𝐷.
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Figure 4.42: Free surface elevation time series of the 3rd station for starting
height at 𝐻0 = 0.3𝐷.
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4.2.10 Starting height at: 0.5D
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Figure 4.43: Free surface elevation time series of the 1st station for starting
height at 𝐻0 = 0.5𝐷.
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Figure 4.44: Free surface elevation time series of the 2nd station for starting
height at 𝐻0 = 0.5𝐷.
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Figure 4.45: Free surface elevation time series of the 3rd station for starting
height at 𝐻0 = 0.5𝐷.
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Chapter 5

Conclusion

5.1 Summary
A large portion of the work in this thesis was dedicated to both developing

and understanding the underlying structure of a numerical methodology. One
of the most desired aims for this work was to introduce a versatile solver-library
coupling with the intention of understanding more complex fluid-structure phe-
nomena. The structure of the resulting solver has great adaptivity in the case
that the researcher wants to introduce a higher complexity factor. Moreover,
chimera methods have advantages when compared with a famous competitor,
namely the immersed boundary methods, and that is the explicit interpretation
of a turbulence model in the vicinity of the boundary layer.

More precisely, immersed boundary methods usually introduce a source term
with a mask function that fluctuates between two values when the cell is in-
side or outside the solid boundary. Apart from getting around the problem of
complex moving geometries with great success, these methods lack the ability
to reproduce near boundary shear stress fluidic interactions in different scales
when applied in high-Reynolds number flows and a direct numerical simulation
cannot be avoided.

Apart from the developed result, special treatment and focus had to be given
to the field approximation through interpolation and the effects of special cases
of two-phase fluids or gravity effects.

The robustness and accuracy of the solver were thoroughly tested in various
cases, and a plethora of results and exported data validate these experiments
with other numerical and experimental work provided in various publications.

5.2 Future Work Recommendation
As mentioned before, the current work aims at the flexibility of introducing

complexity factors. By tackling the problem of an abstract movement of a body,
researchers are faced with a more broad family of cases that describe physical
phenomena. Some of these complexity factors that can be introduced and would
be a valuable development for future work are the introduction of the body’s
elasticity. Though the coupling of CFD with structural finite element solvers
seems straightforward (in the sense of algorithmic complexity), high-deformable
objects with abstract motions could be formulated using deformable (morphing)
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meshes in the body-fitted grid along with the grid assembly structure for the
communication of the field variables through the far field.

Other future work recommendations could easily involve hybrid solver cou-
pling, with different levels of accuracy in each grid. More precisely, a useful
interpretation in development would be the use of unstructured (triangulated)
versatile grids for the body fitted meshes and high-order AMR1 elements for
the background mesh. This separation of mesh types could introduce high-
fidelity solvers such as spectral elements, CWENO2 reconstructions or nodal
Discontinuous Petrov-Galerkin formulations with the intention of providing a
low (numerically) diffusive representation of the fluid flow variables away from
the vicinity of a solid boundary. By achieving this coupling, a researcher could
easily study interactions of multiple bodies in vortical flows or vortex generation
and vortex damping cases introduced by energy-saving devices.

1AMR: adaptive mesh refinement
2CWENO: central weighted non-oscillatory
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Appendix A

Turbulence Modelling

A.1 Eddy Viscosity RANS Models
The most famous family of turbulence models that introduce a physical

closure to phenomena with the presence of turbulence are the Eddy viscosity
models. In this appendix, the two classic RANS models are briefly referenced.
However, there have been many combinations of those and modified siblings
which are widely used nowadays. Lastly, apart from RANS models, a wide
range of applications require spatial filtering, introducing a filtering kernel for
the sub-ranges, giving rise to the LES (large eddy simulations) models, which
will not be mentioned in this thesis.

Generally, in the RANS family, a decomposition is introduced in the sense
of a time-integrated mean value and a perturbed value:

𝑢 (x, 𝑡) = 𝑢 (x) + 𝑢′ (x, 𝑡) (A.1)
The operator that produces the filtered function 𝑢 (x) is called a Reynolds

operator and obeys the following rules:

⟨𝑓 + 𝑔⟩ = ⟨𝑓⟩ + ⟨𝑔⟩ (A.2)
⟨𝑎𝑓⟩ = 𝑎⟨𝑓⟩ (A.3)
⟨⟨𝑓⟩𝑔⟩ = ⟨𝑓⟩⟨𝑔⟩ (A.4)

⟨𝜕𝑓
𝜕𝑡 ⟩ = 𝜕⟨𝑓⟩

𝜕𝑡 (A.5)

⟨𝜕𝑓
𝜕𝑥⟩ = 𝜕⟨𝑓⟩

𝜕𝑥 (A.6)

Applying the Reynolds filtering on equations 2.15 and 2.7, reads:

𝜕𝑗𝑢𝑖 = 0 (A.7)

𝜕𝑡𝑢𝑖 + 𝑢𝑗𝜕𝑗𝑢𝑖 + 𝑢′
𝑗𝜕𝑖𝑢′

𝑖 = 𝑓 𝑖 − 1
𝜌𝜕𝑖𝑝 + 𝜈𝜕2

𝑗 𝑢𝑖 (A.8)

By eliminating the time-derivatives of a time-invariant mean velocity field
and revisiting the definition of the strain-rate tensor 𝑆𝑖𝑗:
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𝜕𝑗𝑢𝑖 = 0 (A.9)
𝜌𝑢𝑗𝜕𝑗𝑢𝑖 = 𝜌𝑓 𝑖 + 𝜕𝑗 (−𝑝𝛿𝑖𝑗 + 2𝜇𝑆𝑖𝑗 − 𝜌𝑢′

𝑖𝑢′
𝑗) (A.10)

The term 𝑢′
𝑖𝑢′

𝑗 which is known as the Reynolds stress divided by density,
depicts every sub-grid to sub-grid interaction and is modelled by a transport
equation. A classical RANS turbulence model will provide a transport equation
for these Reynolds stresses. Additionally, the following definitions are impor-
tant.

𝜖 = 𝜈 𝜕𝑢′
𝑖

𝜕𝑥𝑘

𝜕𝑢′
𝑗

𝜕𝑥𝑘
Turbulent dissipation rate (A.11)

𝑘 = 1
2 ((𝑢′)2 + (𝑣′)2 + (𝑤′)2) Turbulent kinetic energy (A.12)

𝜇𝑡 dynamic eddy viscosity (A.13)

Some of these models are listed below.

A.1.1 K-epsilon Turbulence Model
The 𝑘 − 𝜖 model introduces a transport equation for the specific dissipation

rate and the turbulence kinetic energy.

𝜕𝜌𝑘
𝜕𝑡 + 𝜕𝜌𝑘𝑢𝑖

𝜕𝑥𝑖
= 𝜕

𝜕𝑥𝑗
( 𝜇𝑡

𝜎𝑘

𝜕𝑘
𝜕𝑥𝑗

) + 2𝜇𝑡𝐸𝑖𝑗𝐸𝑖𝑗 − 𝜌𝜖 (A.14)

𝜕𝜌𝜖
𝜕𝑡 + 𝜕𝜌𝜖𝑢𝑖

𝜕𝑥𝑖
= 𝜕

𝜕𝑥𝑗
(𝜇𝑡

𝜖
𝜕𝜖
𝜕𝑥𝑗

) + 𝐶1𝜖
𝜖
𝑘2𝜇𝑡𝐸𝑖𝑗𝐸𝑖𝑗 − 𝐶2𝜖𝜌

𝜖2

𝑘 (A.15)

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜖 (A.16)

The above equations contain constants that have been approximated through
many different turbulent flow cases.

A.1.2 k-omega Turbulence Model
This model introduces the specific dissipation rate of turbulent kinetic en-

ergy to thermal energy 𝜔. The transport equations read as follows:

𝜕𝜌𝑘
𝜕𝑡 + 𝜕𝜌𝑘𝑢𝑖

𝜕𝑥𝑖
= 𝜌𝑃 − 𝛽∗𝜌𝜔𝑘 + 𝜕

𝜕𝑥𝑖
[(𝜇 + 𝜎𝑘

𝜌𝑘
𝜔 ) 𝜕𝑘

𝜕𝑥𝑖
] (A.17)

𝜕𝜌𝜔
𝜕𝑡 + 𝜕𝜌𝜔𝑢𝑖

𝜕𝑢𝑖
= 𝛼𝜔

𝑘 𝑃 − 𝛽∗𝜌𝜔2 + 𝜕
𝜕𝑥𝑖

[(𝜇 + 𝜎𝜔
𝜌𝑘
𝜔 ) 𝜕𝜔

𝜕𝑥𝑖
] + 𝜌𝜎𝑑

𝜔
𝜕𝑘
𝜕𝑥𝑖

𝜕𝜔
𝜕𝑥𝑖

(A.18)

𝑃 = 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

(A.19)
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