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Controlling Bifurcations of Fixed Point and Limit Cycle Equilibria in
High-Speed Rotors Utilizing Active Gas Foil Bearings

by Anastasios Papadopoulos

High speed rotors on gas foil bearings (>200kRPM) are applications of increasing
interest due to their potential to increase the power to weight ratio in machines and
also establish oil-free design solutions. The gas lubrication principles render lower
– compared to oil – power losses and increase the threshold speed of instability in
rotating systems. However, self-excited oscillations may still occur at DN (Diam-
eter [mm] X Rotating Speed [RPM]) values much lower than the speed of sound
[DN<6.5e6], these being usually triggered through Hopf bifurcation of a fixed point
equilibrium (fully balanced rotor) or secondary Hopf (Neimark-Sacker) bifurcation
of periodic limit cycles (unbalanced rotor). Bifurcation-free operation is a target in
the dynamic design of high-speed machines like automotive turbosystems, turbop-
umps for rocket propulsion, small jet engines for drones or UAVs, and others; this
is not always achievable with conventional rotor-bearing design. In this work, an
active gas foil bearing is presented as a novel configuration including a number of
piezoelectric actuators which shape the foil component through linear feedback con-
trol. At first, an enhanced finite element model for the thin foil mounted in a number
of PZTs, is developed in order to avoid shear lock effect. Second, the gas-structure
interaction (FSI) is modeled through Reynolds equation for compressible flow. A
simple rotor model consisting of a rigid rotor and 2 gas foil bearings is then defined,
and the dynamic system is composed with its unique source of nonlinearity to be
the nonlinear impedance forces from the gas to the rotor and to the foil. The third
milestone includes a linear feedback control scheme to stabilize (pole placement) the
dynamic system, linearized around a speed depended equilibrium (balanced rotor).
Linear control is found to be insufficient to stabilize the system when certain pertur-
bations apply. Further to that, unbalanced rotor systems (most common case) follow
trajectories which extend far from fixed point equilibria, emerging strong nonlin-
ear impedance forces from the bearings. Linear feedback control is applied in the
dynamic system utilizing polynomial feedback functions in order to overcome the
problem of instability. Case studies include a small (30mm) and a large (100mm)
bearing, both at operating range with upper bound of speed at DN = 6.5e6; different
foil thickness is also included in the case study.
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ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Περίληψη
Σχολή Μηχανολόγων Μηχανικών

Διπλωματική Εργασία

Έλεγχος διακλαδώσεων σημείων ισορροπίας και οριακών
κύκλων σε περιστρεφόμενους άξονες υψηλών ταχυτήτων με

χρήση ενεργών αεροεδράνων
του Αναστάσιου Παπαδόπουλου

Οι περιστρεφόμενοι άξονες υψηλών ταχυτήτων (>200kRPM) στηριζόμενοι σε αεροέδρανα αποτελούν
εφαρμογές με αυξανόμενο ενδιαφέρον λόγω της δυνατότητάς τους να αυξήσουν τον λόγο απόδοσης-
βάρους των μηχανών και επίσης να εγκαθιδρύσουν καθεστώς λίπανσης άνευ ελαίου (oil-free lubrica-
tion). Το φυσικό αξίωμα της αεροδυναμικής λίπανσης επιτρέπει χαμηλότερες απώλειες ισχύος σε
σχέση με την υδρολίπανση και αυξάνει την ταχύτητα περιστροφής στην οποία επέρχεται αστάθεια
στα περιστρεφόμενα συστήματα. Ωστόσο, αυτοδιεγειρόμενες ταλαντώσεις δύνανται να συμβούν σε
τιμές DN (Διάμετρος άξονα [mm] X Ταχύτητα περιστροφής [RPM]) αρκετά χαμηλότερες από αυτή
που αντιστοιχεί στην ταχύτητα του ήχου (DN<6.5e6), και αυτές συνήθως προέρχονται έπειτα από
διακλάδωση Hopf σε σημείο ισορροπίας (fixed point) όταν ο άξονας είναι τέλεια ζυγοσταθμισμένος,
ή Secondary Hopf (Neimark-Sacker) σε περιοδικές ή σχεδόν περιοδικές τροχιές (limit cycles) όταν ο
άξονας είναι ατελώς ζυγοσταθμισμένος. Η λειτουργεία του περιστρεφόμενου συστήματος χωρίς την
εμφάνιση κάποιου τύπου διακλάδωσης είναι στόχος του δυναμικού σχεδιασμού υψηλόστροφων
συστημάτων όπως οι υπερτροφοδότες (turbochargers), οι στροβιλοαντλίες (turbopumps) για
πυραυλική πρόωση, οι μικροί κινητήρες jet για drones ή μη επανδρωμένα αεροχήματα, και άλλα.
Αυτό δεν είναι πάντα εφικτό με συμβατικά αεροέδρανα.
Σε αυτή την εργασία, ένα ενεργό αεροέδρανο (Active Gas Foil Bearing - AGFB) παρουσιάζεται ως
μία καινοτόμα διαμόρφωση περιλαμβάνοντας πιεζοηλεκτρικούς διεγέρτες οι οποίοι μορφοποιούν το
κέλυφος του αεροεδράνου μέσω γραμμικού ελέγχου ανάδρασης. Αρχικά παρουσιάζεται μία
βελτιωμένη προσομοίωση της δυναμικής συμπεριφοράς του κελύφους χρησιμοποιώντας
Πεπερασμένα Στοιχεία, καθώς αυτό στηρίζεται στους πιεζοηλεκτρικούς επενεργητές, αποφεύγοντας
το φαινόμενο του shear lock. Έπειτα, η αλληλεπίδραση της ροής αερίου και της δομής του κελύφους
(FSI) προσομοιώνεται μέσω της εξίσωσης Reynolds για συμπιεστό ρευστό και μαζί με τις εξισώσεις
κίνησης του άξονα αποτελούν ένα ισχυρά μη-γραμμικό και αριθμητικά στιβαρό (numerically stiff)
πρόβλημα. O περιστρεφόμενος άξονας προσομοιώνεται με ένα απλό συμμετρικό μοντέλο άκαμπτου
στέρεου (rigid rotor) και στηρίζεται σε 2 πανομοιότυπα ενεργά αεροέδρανα (AGFBs) και το δυναμικό
σύστημα ορίζεται με την μοναδική πηγή μη-γραμμικότητας να είναι η μη-γραμμική συνισταμένη
δύναμη από το αέριο προς τον άξονα και προς το κέλυφος.
Το τρίτο μέρος της εργασίας περιλαμβάνει τον σχήμα γραμμικού ελέγχου ανάδρασης για να
σταθεροποιήσει (τοποθέτηση πόλων) το δυναμικό σύστημα, το οποίο είναι γραμμικοποιημένο γύρω
από μία θέση ισορροπίας (τέλεια ζυγοσταθμισμένος άξονας) εξαρτημένη από την ταχύτητα
περιστροφής.
Ο γραμμικός έλεγχος ανάδρασης αποδεικνύεται ανεπαρκής για την ευστάθεια του συστήματος όταν
εφαρμόζονται συγκεκριμένες διαταραχές στο σύστημα. Επιπλέον, οι αζυγοστάθμητοι άξονες (η πιο
συνηθισμένη περίπτωση) εξελίσσουν τροχιές οι οποίες εκτείνονται μακριά από το σημείο ισορροπίας
(fixed point) και προκαλούν έντονα μη-γραμμικές δυνάμεις εδράνων. Ο γραμμικός έλεγχος
ανάδρασης εφαρμόζεται στο δυναμικό σύστημα με πολυωνυμικές συναρτήσεις ανάδρασης για να
ξεπεραστεί το πρόβλημα της αστάθειας. Η μελέτη των περιπτώσεων περιλαμβάνει ένα μικρότερο
(D30) και ένα μεγαλύτερο (D100) έδρανο, και τα δύο με άνω όριο ταχύτητας περιστροφής το
αντίστοιχο σε DN = 6.5e6. Το διαφορετικό πάχος κελύφους συγκαταλέγεται επίσης στην μελέτη των
περιπτώσεων.
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Chapter 1

Introduction

1.1 Conventional Gas Foil Bearings

Gas foil bearings are self-acting machine elements designed to support high-speed
rotating machines [1]. They utilize an oil-free technology by creating a thin load-
carrying gas film, without the need for external pressurization. Furthermore, be-
cause of the absence of contact between the rotor and the internal shell of the bear-
ing there has been found that low power loss can be achieved, as described by H.
Heshmat [2].

Over the past few decades, there has been a rapid development of GFBs and their ap-
plications, especially in turbofan engines of commercial aircraft [3]. Moreover, there
is an ever-increasing interest in the application of GFBs in turbocharging systems [4].

The resemblance between foil bearings and oil-lubricated bearings is great in terms
of their size, shape and utilization of the hydrodynamic effect to develop the fluid
film pressure. However, the working mean of GFBs is the air and their inner shell is
deformable, in comparison with oil bearings, where their inner surface is rigid [5].
This inner shell of foil bearings, also named top foil, is a thin shell supported by a
pack of spring-like layers, called bump foil. As a result, the bearing is adjustable
to potential shaft misalignment and thermal deformation and the user is given the
option to preload the bearing in such a way, in order to achieve the desired film pres-
sure and, as a result, the desired load capacity [6]. The schematic representation of
oil bearings and gas foil bearings is shown in Fig 1.1.

FIGURE 1.1: Schematic representation of (a) oil-film bearings and (b)
foil bearings



2 Chapter 1. Introduction

In multiple overleaf GFBs, the compliance to flexural strain from staggered struc-
tural foils and the Coulomb friction at the contact area define their operational char-
acteristics [7]. In corrugated bump GFBs, bump-strip layers supporting a top foil
render a tunable bearing nonlinear stiffness. In this case, Coulomb friction effects
arising between the bump layers and the top foil as well as the bumps and the bear-
ing rigid shell provide the energy dissipation, thus the damping characteristics [8, 9].

First generation foil bearings, shown in Fig. 1.2 are composed of a rigid housing,
a simple elastic foundation or bump foil with uniform stiffness, and the top foil and
are used almost exclusively in air-cycle machines [10]. The load capacity achieved by
those bearings is equal to rigid gas bearings. Second generation foil bearings display
a more complex structure as the bump foil is adjusted appropriately in one direction,
in order to encounter phenomena like shaft misalignment, their load capacity is ap-
proximately twice that of first generation GFBs and are used in turbocompressors
and microturbines [11]. A second generation gas foil bearing is shown in Fig. 1.2.
Third generation GFBs display a even more complex structure, as the bump foil is
adjusted in two directions and their load capacity is almost twice that of second gen-
eration. They are used mainly in aircraft engines [11] and can be seen in Fig. 1.3. The
load capacity of GFBs of each generation is displayed in Fig. 1.3.

In general, GFBs exhibit great advantages. They can be used in a wide range of tem-
peratures, approximately from −196◦C up to 650◦C [12]. Also, as stated above, there
is no need for external pressurization. Their adaptability to various operational con-
ditions due to foil deformation is remarkable, as well as their reliability. However,
solid lubrication, to prevent power loss at low rotating speeds, is necessary [12].

FIGURE 1.2: Gen. I, II and III GFBs [11]
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FIGURE 1.3: Load capacity of each generation [11]

1.2 Active Gas Foil Bearings

The need for controllable bearings arises from the requirement to improve the dy-
namic characteristics of the supported machinery, such as the suppression of the os-
cillation amplitudes and the elimination of instabilities within the operation range
[13]. Also the necessity for adaptability to different operational conditions, such as
temperature or unbalance conditions led to a mass research in this direction.

Until today, the research on active bearings mainly concerns electromagnetic bear-
ings. Electromagnetic bearings are the only type of bearings that operate in vac-
uum. A conventional active magnetic bearing (AMB) system is shown in Fig. 1.4.
It consists of a rotor supported by a number of Active Magnetic Bearings (AMBs), a
backup rolling bearing, a thrust magnetic bearing, the electromagnetic actuators, the
position sensors, the Magnetic Bearing Controller (MBC) and the cables that connect
the MBC to the AMB. The position of the rotor inside the AMB is measured by the
position sensors and then it is received as feedback by the controller. Then, based on
the feedback control law designed by the user, the MBC produces a control signal
that is sent to the AMBs, completing the closed loop system.
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FIGURE 1.4: Classic AMB system

The most popular controller in systems supported by magnetic bearings is the PID
controller [14]. T. K. Psonis et al. showed the need for a controller in order to stabilize
an unstable system and chose a PID one [15]. The block diagram of the closed loop
system is shown in Fig. 1.5. Furthermore, a band-limited white noise is considered
in order to investigate the robustness of the closed loop system. Also, nonlinear con-
trol techniques have been used, utilizing feedback linearization and back-stepping
concepts in order to achieve position and tracking control, as thoroughly explained
by John Y. Hung [16].

FIGURE 1.5: Closed loop system of a linearized magnetic bearing
model utilizing a PID controller [15]

Apart from the magnetic bearings, a significant effort has also been made for the
design and development of controllable or active GFBs. The most frequently used
method is the placement of piezoelectric actuators in the circumferential direction of



1.2. Active Gas Foil Bearings 5

the bearing, between the top foil and the rigid shell. J. Park and K. Sim proposed
a active gas foil bearing (AGFB) with a laminated top foil , a classic bump foil and
piezo stacks aiming to accommodate the clearance by adjusting the thickness of the
piezo stacks and to mechanically preload the bearing by changing the thickness of
several piezo stacks [17]. It has been found that the clearance control has a positive
impact on the dynamic force coefficients of the system, whereas the preload control
has a slight one. On the other hand, large preload results in a more stable passage
through the critical speeds. The schematic representation of this system is illustrated
in Fig. 1.6. Additionally, L. Savin et al. explain in detail the most common control-
lable bearing system, as shown in Fig. 1.7 [18].

FIGURE 1.6: Schematic representation of a AGFB with piezo stacks
[17]

FIGURE 1.7: Common bearing control system [18]
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Further, controllable GFBs with active bump foil with piezoelectric actuators were
thoroughly described by K. Feng et al. [19] and GFBs with radial air injection were
introduced by S. von Osmanski and I. F. Santos [20].

1.3 Current Work - Object of Study

In this work, a active gas foil bearing is considered. The bearing consists of a rigid
shell (bearing sleeve), a thin top foil and piezoelectric actuators allowed to move
radially. The bump foil is absent and the actuators are connected to the top foil by
springs, which are considered to be linear with stable stiffness. The model of the
bearing, along with the resulting gas forces acting on the top foil and on the rotor,
are shown in Fig. 1.8. The system is composed of 2 identical AGFBs , a rigid rotor
with a disc located in its center, as shown in Fig 1.9.

In Chapter 2 the modeling of the system is presented. The top foil is modeled using
a Finite Element Method and the resulting matrices are reduced using the Guyan
Reduction Method [21]. The Reynolds equation governing compressible fluid lubri-
cation [22] is discretized with Central Finite Differences. The differential equations
concerning the rotor are derived by the Lagrangian Method. At the end of Chapter
2, simulation results are presented for bearings with different nominal top foil diam-
eters, with different ways of placing the actuators and with different values of the
disc mass. In Chapter 3 a Linear Control Method using an observer is used in or-
der to stabilize unstable fixed points of the balanced system, namely zero unbalance
grade. Also, a polynomial feedback control law is used in order to eliminate Hopf
Bifurcations of the balanced system. The same feedback law is used to suppress
the oscillation amplitudes and produce output synchronous signals. Furthermore, a
design optimization procedure to locate the fixed point of the balanced system in a
desired location is presented.
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Chapter 2

Modelling and Composition of the
Dynamical System

In this chapter, the modeling of the dynamical system is thoroughly presented and
explained. Initially, the foil is assumed to behave as a thin flat plate and the equa-
tions of motion are derived using the MZC finite element [23, 24] followed by the
static Guyan Reduction [21]. The piezoelectric actuators are added and then, the
motion equations are converted into state equations. A semi-discrete approach is
then used in order to reduce the Reynolds Equation, which is a Partial Differential
Equation, to a system of Ordinary Differential Equations, i.e the state equations that
govern the pressure field [25]. The Lagrangian Method [26] is used in order to de-
rive the equations of motion of the rotor and, consequently, the state equations. The
resulting full system is nonlinear and the results of simulations for different bear-
ing geometries and actuator placement are extracted. For the implementation of the
thesis the Matlab programming language was exclusively used [27].

2.1 Modelling of the Active Gas Foil Bearing

In actual GFBs the foil is a thin shell. A shell, in general, is considered as the super-
position of plane stress and bending [28]. In this work, the plane stress is ignored,
as the corresponding deformations are small in relation to the vertical deformation,
therefore the foil is supposed to be a bending thin plate. After the discretization of
the foil and the construction of the FE mesh, each node is allowed to be displaced
perpendicular to the mid-surface of the plate. Those deflections are considered as
the radial displacements of the foil. Also, each node is allowed to perform two ro-
tations around the two axes that are perpendicular to the normal vector of the plate
surface. Later, those rotations will be eliminated using the Guyan Reduction men-
tioned above.

2.1.1 Computational Model of the Deformable Foil

After extensive research in the literature, the foil modelling effort started using the
quadratic isoparametric plate bending element PBL4 [24]. In order to cover the case
of thin plates, a 2x2 Gauss Quadrature integration used to calculate the bending
contribution to the stiffness matrix and 1x1 Gauss Quadrature integration to calcu-
late the shear one [29]. It was noticed that due to the small thickness, there was the
phenomenon of shear locking which was undesirable. Shear lock is a phenomenon
where a artificial shear is introduced to the model. This happens mainly because
of the linear nature of the element, as the shape functions of this element are first
order polynomials. As a result, the structure appears to be much more stiffer than
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it actually is and the elements reach equilibrium with smaller displacements, so a
numerical error occurs. Shear lock is easy to detect, as the numerical error is accom-
panied by a visual error, as ripples on the surface of the plate are noticed. To elimi-
nate this phenomenon, one should increase the thickness of the plate. In the case of
the top foil modelling this was not desirable. Finally, it was decided to use another
element that does not take into account the shear contribution to the stiffness matrix,
the MZC plate bending element. That element was designed to be applicable to thin
plates exclusively. Analytical integration for the calculation of the element matrices
was used and a sensitivity analysis for the selection of the number of elements fol-
lowed.

The top foil is divided into a mesh of thin rectangular elements. A MZC element
is shown in Fig. 2.1

FIGURE 2.1: MZC plate bending element

The side parallel to the x-axis has a length of 2a and the side parallel to the y-axis has
a length of 2b. It is important to note that these axes are the local axes of the element
and the origin of the local coordinate system is located in the center of the element.
Each element consists of four nodes with three degrees of freedom at each node,
therefore each element has twelve degrees of freedom. These degrees of freedom
are the displacements normal to the plane of the element qi, the rotations around
x-axis, θxi =

∂qi
∂y , and the rotations around y-axis, θyi = − ∂qi

∂x , i = 1, ..., 4. Then, the
dimensionless local coordinates ξ = x

a and η = y
b are introduced. The vector of

DOFs of each element is

we =
{

q1 θx1 θy1 q2 θx2 θy2 q3 θx3 θy3 q4 θx4 θy4

}T (2.1)

The vertical displacement of a point in the interior of the element is approximately
calculated by the equation

w(ξ, η) =
{

N1 N2 N3 N4
}
· we = N · we (2.2)

where

Ni(ξ, η) =


1
8 (1 + ξiξ) (1 + ηiη)

(
2 + ξiξ + ηiη − ξ2 − η2)

b
8 (1 + ξiξ) (ηi + η)

(
η2 − 1

)
− a

8 (ξi + ξ)
(
ξ2 − 1

)
(1 + ηiη)


T

(2.3)
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is the vector of shape functions of the DOFs corresponding to the node i and ξi, ηi
are the dimensionless coordinates of the node i. These dimensionless coordinates of
the nodes i = 1, ...4 are shown in table 2.1.

node i 1 2 3 4
ξi -1 1 1 -1
ηi -1 -1 1 1

TABLE 2.1: Dimensionless coordinates of nodes i = 1, ..., 4

Also, the following matrices are introduced

Bs =


∂2

∂x2

∂2

∂y2

2 ∂2

∂x∂y

 · N(x, y) =


1
a2

∂2

∂ξ2

1
b2

∂2

∂η2

2
ab

∂2

∂ξ∂η

 · N(ξ, η) (2.4)

and

D =

 E
1−v2

Ev
1−v2 0

Ev
1−v2

E
1−v2 0

0 0 G

 (2.5)

where B is the strain matrix, D is the material matrix, E is the Young’s modulus, G is
the shear modulus and v is the Poisson ratio. The material of the foil is considered
to be steel and its properties are shown in table 2.2.

E(N/mm2) 210000
ρ(kg/m3) 7860
v 0.3

TABLE 2.2: Top foil material properties

The element stiffness matrix is

Ke =

b∫
−b

a∫
−a

h3
f

12
Bs

T · D · Bs dxdy =

1∫
−1

1∫
−1

abh3
f

12
Bs

T · D · Bs dξdη (2.6)

and the element mass matrix is

Me =

b∫
−b

a∫
−a

ρh f NT · N dxdy =

1∫
−1

1∫
−1

abρh f NT · N dξdη (2.7)

where h f is the thickness of the top foil and ρ is the density of the material of the top
foil. The element force vector is calculated from the equation

Fe =

b∫
−b

a∫
−a

NT p(x, y)dxdy =

1∫
−1

1∫
−1

abNT p(ξ, η)dξdη (2.8)

where p(x, y) is a distributed load over the surface of the foil. Then, the global
stiffness K and mass M matrices and the global force vector F are constructed. Also,
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a damping matrix is introduced to the system. This damping matrix is calculated as

C = η f K (2.9)

where η f is the Rayleigh damping factor of the foil. As a result, the foil motion
equations are

M · ẅ + C · ẇ + K · w = F (2.10)

where w is a vector containing the DOFs of the foil and F is the vector of gas forces
acting on the foil. Concluding, the Guyan Reduction Method is used and the re-
duced motion equations of the top foil are

Mr · q̈ + Cr · q̇ + Kr · q = Fr (2.11)

The vector q contains only the radial displacements of the FE mesh nodes and Mr,
Cr, Kr, Fr are the corresponding reduced mass, damping, stiffness matrices and force
vector accordingly. The application of Guyan Reduction introduces a minimal error,
but decreases the computational cost to a significant extent. This method is pre-
sented in Appendix A. Furthermore, the calculation of the components of the force
vector is achieved by using Gauss - Lobatto Quadrature [30]. It is important to note
that the FE mesh global coordinate system concerns only the foil. The foil folds in
such a way that the displacement of a node is considered positive when that node
moves radially outwards. Similarly, an external force is considered positive if it
points radially outwards and negative if it points radially inwards.

Two different bearing geometries are considered. In both cases the foil length to foil
diameter ratio is L f /D f = 1. The foil FE mesh consists of sixteen elements in the x-
direction and ten elements in the y-direction and is shown in Fig. 2.2. The perimeter
of the foil is πD f . The right edge of the top foil is clamped, therefore the deflec-
tions and rotations corresponding to those nodes are all zero. The other three edges
are free. The first bearing has a diameter of 30 mm and will be referred as Bearing
D30. The second bearing has a diameter of 100 mm and will be referred as Bearing
D100. The clearance of each bearing is cr =

D f
1000 . Two bearing diameters are tested

in order to validate the following results for a high speed system (D30, operating at
Ω < 200 kRPM), and a medium speed system (D100, operating at Ω < 65 kRPM).
Tangential velocity of both journals reach the speed of sound when rotating speed is
at its maximum. Therefore, both bearings are characterized as DN = 6.500.000 bear-
ings, where DN = Diameter[mm] times N[RPM]. This value characterizes a system
as an ultra-high speed system.
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FIGURE 2.2: Finite element mesh of the foil with sixteen elements in
the circumferential direction and ten elements in the axial direction.

The elements have the same aspect ratio.

2.1.2 Implementation of piezoelectric (PZT) actuators

For the actual displacement of the foil, piezoelectric actuators are considered as one
solution in this thesis. Piezoelectric actuators are elements used in applications that
require precise movement of an embedded element. No moving parts, e.g. gears,
are included. Their displacement is a result of the ability of the material from which
they are made to expand or contract when a voltage is applied to it. The materi-
als that are usually used are ceramics and specifically lead zirconate titanate (PZT),
barium titanate and lead titanate. In this thesis, a simple model of a massless lon-
gitudinal piezoelectric actuator is considered. Each actuator is connected to the foil
and the rigid shell via simple supports (hinged supports). A representative value
for the stiffness of each actuator is taken into account in the foil support model. The
displacement of each actuator is defined as the radial displacement of the hinged
support at the rigid shell (outer shell), see Fig. 1.8.The linear stiffness of the actuator
is defined as k f . A representation of this model is shown in Fig. 1.8. The expansion
or contraction of the linear spring depends exclusively on its compliance and on the
displacement of its two ends, while the displacement of the actuator is determined
by the user and is denoted by qa, see Fig. 1.8. The displacement of the longitudinal
actuator in the radial direction is

δL = nd33V (2.12)

where n is the number of stacked layers, d is a deformation coefficient measured
in m/V and V is the voltage input measured in V. In this work, its is considered
d33 = 0.003m/V and n = 25.

Assuming that the actuator j is connected to the node i of the top foil discretized
domain, the additional force on this node will be equal to Factij = k fi(qaj − qi). There-
fore, eq. 2.11 become

Mr · q̈ + Cr · q̇ + Kr · q = Fr + Fact

Mr · q̈ + Cr · q̇ + Kr · q = Ftot
(2.13)

where Fact is a vector containing the forces due to the displacements of the actuators
and has that many nonzero components, as the number of actuators. Similarly to the
foil displacements, the displacements of the actuators are considered positive when
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they move radially outwards. Concluding, the state equations of the foil are

d
dt

{
q
q̇

}
=

[
O I

−Mr
−1 · Kr −Mr

−1 · Cr

]
·
{

q
q̇

}
+

{
O

Mr
−1 · Ftot

}
(2.14)

Consequently, the foil state equations can be written in the form

d
dt

{
q
q̇

}
= ff (q, q̇, p; qa) (2.15)

where qa is a vector with components the displacements of the actuators.

2.2 Solution of the Aerodynamic Lubrication Problem

Gas foil bearings use atmospheric air at ambient pressure to form a lubricating film.
Between the smooth top foil and the outer surface of the shaft the phenomenon
of aerodynamic lubrication appears. The longitudinal axes of the bearing and the
shaft are parallel, therefore no angular misalignment is considered. The geometrical
center of the bearing is denoted by Ob, while the geometrical center of the cross
section of the shaft is denoted by Oj

(
xj, yj

)
. The distance between those centers is

called journal eccentricity and is calculated as e =
√

x2
j + y2

j . The foil deformation,

qi (t, θ, z), as mentioned earlier, is a result of the pressure and the displacements of
the actuators. The angle coordinate θ is measured from the positive x semi-axis. At
θ = π

2 the top foil is clamped and its deformation and velocity are zero. These are
shown in Fig. 1.8.
The Reynolds equation governing the phenomenon of compressible fluid lubrication
is derived, taking into account the following assumptions [25]:

• The gas film is isothermal, namely the temperature is constant and indepen-
dent of pressure

• The flow is laminar

• At the solid boundary and flow field interface the solid-fluid relative velocities
are zero

• The fluid inertia is negligible

• The fluid is ideal, i.e p
ρair

= ct

• There are no fluid leaks

• R f = R + cr ≈ R , where R is the radius of the rotor and cr is the clearance

• The pressure does not change in the radial direction of the bearing

Under those assumptions, the Reynolds equation describing the pressure field is

∂

∂χ

(
ph3 ∂p

∂χ

)
+

∂

∂z

(
ph3 ∂p

∂z

)
= 6µRΩ

∂

∂χ
(ph) + 12µ

∂

∂t
(ph) (2.16)

or

ṗ =
h2

12µ

(
p2

χ + p2
z
)
+

ph
4µ

(hχ pχ + hz pz) +
ph2

12µ
(pχχ + pzz)−

RΩ
2

pχ − RΩp
2h

hχ − p
h

ḣ

(2.17)
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where p is the fluid pressure, h is the fluid film thickness, µ is the dynamic viscosity
of the air and Ω is the rotational speed of the rotor. Eq. 2.17 is a nonlinear partial
differential equation and does not have closed form analytical solution. Therefore, it
is solved numerically using a semi-discrete approach with central finite differences
[25]. In Eq. 2.16 and 2.17 it is considered that ∂χ

∂θ = R. The grid that is used in order
to solve the equation 2.17 consists of sixteen intervals in the χ-direction, therefore,
Nχ = 16 and Nz = 10 intervals are defined in the Finite Difference grid for the
Reynolds equation. The thickness of the gas film, as a function of θ and z is

h (t, θ, z) = cr − xj (t) cosθ − yj (t) sinθ + q (t, θ, z)

hpq (t) = cr − xj (t) cosθp − yj (t) sinθ+qpq (t)
(2.18)

The boundary conditions required for the solution of Eq. 2.17 are

p (t, 0, z) = p (t, 2π, z) = p0 ⇒ p1,j (t) = pNχ+1,j (t) = p0

p (t, θ, 0) = p
(
t, θ, L f

)
= p0 ⇒ pi,1 (t) = pi,Nz+1 (t) = p0

(2.19)

and the initial condition is
p (0, θ, z) = p0 (2.20)

where p0 is the ambient pressure. It is important to note that because of the semi-
discrete approach, the pressures pi,j are functions of time t, but the dependence on
time is implicit.

Concluding, the state equations of the pressure field are

ṗ = fp
(
q, q̇, p, xj, ẋj; Ω

)
(2.21)

In Eq. 2.21, xj =
{

xj ẋj yj ẏj
}T is the vector containing the DOFs of the rotor.

The gas forces acting on the rotor are calculated as

FBx = −
2π∫
0

L f∫
0

(p − p0) cosθ = −
Nχ

∑
i=2

Nz

∑
j=2

(
pi,j − p0

)
cosθi∆χ∆z

FBy = −
2π∫
0

L f∫
0

(p − p0) sinθ = −
Nχ

∑
i=2

Nz

∑
j=2

(
pi,j − p0

)
sinθi∆χ∆z

(2.22)

It is common that sup-ambient pressures arise in the bearing. In such cases, when
calculating the resulting gas forces on the rotor or on the top foil, those sub-ambient
pressures are considered to be ambient, according to Heshmat et al.

2.3 Rigid Rotor on Active Gas Foil Bearings

Apart from the rotation, the rotor has two more DOFs, the x-displacement and the
y-displacement. Those displacements are results of the forces acting on the rotor.
Those forces are of three types:

• Gas forces, calculated from Eq. 2.22,

• Gravity forces, depending on the mass of the disc and
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• Unbalance forces

Unbalance forces are centrifugal forces appearing on the rotor due to the non-uniformly
distributed mass of the disc and the rotational speed. This leads to vibrations that,
often, need to be suppressed. The unbalance force in the x-direction is denoted by
FUx and in the y-direction by FUy . If the rotational speed is constant, these unbalance
forces are

FUx = mdeuΩ2cos (ϕr) , FUy = mdeuΩ2sin (ϕr) (2.23)

where ϕr = Ωt and md is the mass of the disc. If the rotational speed is linearly
dependent on time, namely Ω = αt, with α representing the rotational acceleration,
the unbalance forces are

FUx = mdeu
(
Ω2cosϕr + αsinϕr

)
, FUy = mdeu

(
Ω2sinϕr − αcosϕr

)
(2.24)

where ϕr = αt2/2. The unbalance eccentricity eu is calculated according to the ISO
unbalance grades, known as G-grades. In this work medium (G2.5) and high (G6.3)
unbalance grades will be considered. The disc unbalance is of magnitude u = mdeu
and the eccentricity is

eu[m] = 0.001
G
Ωr

, G = 2.5, 6.3 (2.25)

where Ωr is the maximum service speed. The motion equations of the rotor are then
derived using the Lagrangian Method.

ẍj =
FBx

md
+

FUx

md
, ÿj =

FBy

md
+

FUy

md
− g (2.26)

where g is the gravitational acceleration. Therefore, the state equations of the rotor
are

ẋ1 = x2, ẋ2 =
FBx

md
+

FUx

md
, ẋ3 = x4, ẋ4 =

FBy

md
+

FUy

md
− g (2.27)

or
ẋj = fR

(
t, p, xj, ẋj; Ω

)
(2.28)

where x1 = xj, x2 = ẋj, x3 = yj and x4 = ẏj.

2.4 Full Nonlinear Dynamical System

The N = 491 state variables of the full system are derived from Eq. 2.15, 2.21, 2.28
and are gathered in the state vector

x =
{

p q q̇ xj ẋj
}T (2.29)

Therefore, the system of ODEs representing the coupled nonlinear system is

ẋ = f
(
t, p, q, q̇, xj, ẋj; qa, Ω

)
= f (t, x; qa, Ω) (2.30)

The system has a number of parameters, the M displacements of the actuators and
the rotational speed Ω. The vector field f is a mapping from the parametric state
space to the state space, i.e f : RN+M+1 −→ RN . In Chapter 3, the displacements
of the actuators will either be considered zero, or will follow a control feedback law,
therefore the system will have only one parameter, the rotational speed Ω. Note that
in the case of nonzero unbalance grade, the system is non-autonomous, as the time
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t appears explicitly in the state equations. Otherwise, it is a autonomous system. In
the case of the balanced rotor and for fixed displacements of the actuators, the state
equations are written in the form

ẋ = f (x; Ω) (2.31)

Further, for each value of the rotational speed Ω, the system has been found to have a
single equilibrium point x∗, namely a point in the state space where the time deriva-
tive of the state variables becomes zero, as shown in 2.32.

f (x∗) = 0 (2.32)

2.5 Reference Simulation Results - Open Loop System

In the last section of this chapter, several results from simulations are presented.
Both bearings are investigated, for different disc masses and actuator placement.
The different ways of placement of the actuators for each bearing is shown in Fig.
2.3 and 2.4. In the case of bearing D100, twenty four actuators are used and in the
case of the bearing D30 twelve actuators are used. Also, two different configurations
for each bearing are considered. In the first configuration, all actuators are free to
move. In the second configuration, only the actuators placed in the mid plane are
free to move, whereas the other will have a fixed displacement. Furthermore, in this
work, the angular acceleration will be considered zero, therefore, all the results will
refer to cases of rotors with constant rotational speed.

clamped edge
actuators

(a) Placement of the twenty four
moving actuators for the

bearing D100

clamped edge
actuators

(b) Placement of the twelve
moving actuators for the

bearing D30

FIGURE 2.3: First configuration of the placement of the actuators
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clamped edge
static actuators
moving actuators

(a) Placement of the eight moving
and sixteen static actuators for the

bearing D100

clamped edge
static actuators
moving actuators

(b) Placement of the four moving
and eight static actuators for the

bearing D30

FIGURE 2.4: Second configuration of the placement of the actuators

2.5.1 Results for the Bearing of Diameter D100

First, the case of the bearing D100 is presented. The thickness of the top foil is h f =
0.5 mm, the Rayleigh damping factor is ηh = 0.001 s, the stiffness of the actuators is
k f = 80 N

µm and the displacement of the actuators is zero, qa = 0.
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(a) x-displacement

0 0.1 0.2 0.3
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−0.5
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0.5

1

t (s)

ẋ j
/
(c

rΩ
)

(b) x-velocity

FIGURE 2.5: Displacement (a) and velocity (b) of the center of the
disc in the x-direction at Ω = 700 rad/s. Bearing D100. Disc mass

md = 1 kg. Balanced rotor

Fig. 2.5 shows that the x-displacement of the disc reaches equilibrium state in finite
time and the corresponding velocity becomes zero. In such cases, the equilibrium
point of the system is said to be stable and acts as an attractor. The same is shown
in Fig. 2.6 for the y-displacement and y-velocity. Also, the pressure distribution, the
thickness of the lubrication film and the deformation of the foil corresponding to this
equilibrium state are shown in Fig. 2.7. The orbit of the center of the disc is shown
in Fig. 2.8.
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(b) y-velocity

FIGURE 2.6: Displacement (a) and velocity (b) of the center of the
disc in the y-direction at Ω = 700 rad/s. Bearing D100. Disc mass

md = 1 kg. Balanced rotor
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(a) pressure distribution
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(b) film thickness
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(c) foil deformation

FIGURE 2.7: Stable equilibrium pressure distribution (a), film thick-
ness (b) and foil deformation (c) at Ω = 700 rad/s. Bearing D100.

Disc mass md = 1 kg. Balanced rotor
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FIGURE 2.8: Orbit of the center of the disc at Ω = 700 rad/s. Bearing
D100. Balanced rotor. Disc mass md = 1 kg. The shape of the foil

corresponds to the mid plane at t = 0.4 s.

As the rotational speed is increased from 700 rad/s to 850 rad/s, the disc displace-
ments and velocities shown in Fig. 2.9, 2.10 and Fig. 2.11 do not reach fixed point
equilibrium and an oscillation is observed, despite the fact that there are no external
harmonic forces acting on the rotor (self-excited motion). The resulting limit cycle,
shown in Fig. 2.11, is stable. Such a system, has an unstable equilibrium point. Note
that in Fig. 2.8 and 2.11 (a), the value of the diameter of the actuators reference circle
does not correspond to the actual value of the diameter of the rigid shell.
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(b) x-velocity

FIGURE 2.9: Displacement (a) and velocity (b) of the center of the
disc in the x-direction at Ω = 850 rad/s. Bearing D100. Disc mass

md = 1 kg. Balanced rotor.
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FIGURE 2.10: Displacement (a) and velocity (b) of the center of the
disc in the y-direction at Ω = 850 rad/s. Bearing D100. Disc mass

md = 1 kg. Balanced rotor
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(b) signal in the frequency domain

FIGURE 2.11: Orbit of the center of the disc at Ω = 850 rad/s (a) and
representation of the x-displacement of the center of the disc in the
frequency domain (b). Bearing D100. Disc mass md = 1 kg. Balanced

rotor. The shape of the foil corresponds to the mid plane at t = 1 s

The representation of the signal in the frequency domain concerns the x-displacement
of the center of the disc. The signals concerning the y-displacement and the two ve-
locities are omitted, as they are completely identical with that shown in Fig. 2.11. In
Fig. 2.11 (b) T denotes the synchronous period, i.e T = 2π

Ω .
Until now, only the balanced system was examined. The addition of unbalance
forces results in the response shown above in Fig. 2.12,2.13.
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FIGURE 2.12: x-displacement (a) and y-displacement (b) of the center
of the disc at Ω = 850 rad/s. Bearing D100. Disc mass md = 1 kg.

Unbalance grade G6.3
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FIGURE 2.13: Orbit of the center of the disc at Ω = 850 rad/s (a) and
representation of the x-displacement of the center of the disc in the
frequency domain (b). Bearing D100. Disc mass md = 1 kg. Unbal-
ance grade G6.3. The shape of the foil corresponds to the mid plane

at t = 1 s



2.5. Reference Simulation Results - Open Loop System 23

0 0.1 0.2 0.3
−1

−0.5

0

0.5

1

t (s)

x j
/

c r

(a) x-displacement

0 0.1 0.2 0.3
−1

−0.5

0

0.5

1

t (s)

y j
/

c r

(b) y-displacement

0.2 0.22 0.24 0.26 0.28 0.3
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

xj/cr

y j
/

c r
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FIGURE 2.14: x-displacement (a), y-displacement (b) and orbit (c) of
the center of the disc at Ω = 700 rad/s . Bearing D100. Disc mass

md = 1 kg. Unbalance grade G6.3.

As shown above, there is a great qualitative difference in the displacements of the
center of the disc for the same unbalance grade and for a small change in rotational
speed.

2.5.2 Results for the Bearing of Diameter D30

The results concerning the bearing D30 follow. The thickness of the top foil is h f =
0.1 mm, the Rayleigh loss factor is ηh = 0.001 s, the stiffness of the springs is k f =

80 N
µm and the displacement of the actuators is zero as well, i.e qa = 0.
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FIGURE 2.15: Displacement (a) and velocity (b) of the center of the
disc in the x-direction at Ω = 1300 rad/s. Bearing D30. Disc mass

md = 0.1 kg. Balanced rotor
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FIGURE 2.16: Displacement (a) and velocity (b) of the center of the
disc in the y-direction at Ω = 1300 rad/s. Bearing D30. Disc mass

md = 0.1 kg. Balanced rotor

It has been found that in the case of the bearing D30, the instability appears at higher
rotational speeds relative to the bearing D100. Fig. 2.15 and 2.16 display the x and
y- displacements and velocities of the center of the disc. The corresponding equi-
librium point appears to be stable at Ω = 1300 rad/s, while the system with the
bearing D100 has an unstable equilibrium point at Ω = 850rad/s. The stability of
each system is thoroughly examined in Chapter 3.
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FIGURE 2.17: Stable equilibrium pressure distribution (a), film thick-
ness (b) and foil deformation (c) at Ω = 1300 rad/s. Bearing D30.

Disc mass md = 0.1 kg. Balanced rotor
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FIGURE 2.18: Orbit of the center of the disc at Ω = 1300 rad/s. Bear-
ing D30. Balanced rotor. Disc mass md = 0.1 kg. The shape of the foil

corresponds to the mid plane at t = 0.4 s.

Again, when the equilibrium point is unstable, a periodic solution emerges. That
periodic solution is shown in Fig. 2.19 and 2.20. In Fig. 2.21 the orbit of the center of
the disc is shown. The corresponding limit cycle is stable as it has been found that it
attracts the orbit.
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FIGURE 2.19: Displacement (a) and velocity (b) of the center of the
disc in the x-direction at Ω = 1550 rad/s. Bearing D30. Disc mass

md = 0.1 kg. Balanced rotor
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FIGURE 2.20: Displacement (a) and velocity (b) of the center of the
disc in the y-direction at Ω = 1550 rad/s. Bearing D30. Disc mass

md = 0.1 kg. Balanced rotor
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FIGURE 2.21: Orbit of the center of the disc at Ω = 1550 rad/s (a) and
representation of the x-displacement of the center of the disc in the
frequency domain (b). Bearing D30. Disc mass md = 0.1 kg. Balanced
rotor. The shape of the foil corresponds to the mid plane at t = 0.4 s
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FIGURE 2.22: x-displacement (a) and y-displacement (b) of the center
of the disc at Ω = 1550 rad/s. Bearing D30. Disc mass md = 0.1 kg.

Unbalance grade G2.5
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FIGURE 2.23: Orbit of the center of the disc at Ω = 1550 rad/s (a) and
representation of the x-displacement of the center of the disc in the
frequency domain (b). Bearing D30. Disc mass md = 0.1 kg. Unbal-
ance grade G2.5. The shape of the foil corresponds to the mid plane

at t = 0.4 s
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Chapter 3

Application of Feedback Control

The main purpose of this Chapter is to exhibit a number of control techniques for
the stabilization of unstable equilibrium points of the autonomous system. The sta-
bilization of an equilibrium point results in the system reaching equilibrium asymp-
totically. In practice, the goal is for the system to reach sufficiently close to its equi-
librium state in a finite time, which is called the setting time and is determined by
the real part of the eigenvalues with the smallest real part. First, a linear control
technique is investigated. The system is linearized around its equilibrium point and
a feedback control law for the stabilization of this point is used, utilizing an observer
[31]. Polynomial feedback control laws [32] are then considered, in order to stabilize
the equilibrium point and eliminate possible Hopf Bifurcations [33]. Further to that,
this technique appears to be applicable and in the case of existing unbalance forces,
and results in steady state oscillations with significantly decreased amplitude and
synchronous period. A design optimization follows, with goal to place the compo-
nents of the equilibrium point concerning the displacements of the shaft to a desired
location.

3.1 Stabilization via Linear Control

The autonomous balanced system is written in the form

ẋ = f (x; qa, Ω)

Suppose that the interest is to stabilize the system at a specific value of the rotational
speed Ω = Ωi, for fixed actuator displacements qa = qa0 . Then, the system is written
as

ẋ = f (x; qa0 , Ωi) = f (x)

The vector field f (x) has an equilibrium point (fixed point) x∗ ∈ RN , which is the
result of the solution of the equation

f (x) = 0

For this equilibrium point, the Jacobian matrix of the partial derivatives of the vector
field f with respect to the state variables is calculated as

J =
∂f
∂x

∣∣∣ x=x∗
qa=qa0

=


∂ f1
∂x1

∂ f1
∂x2

... ∂ f1
∂xN

... ... ... ...
∂ fN
∂x1

∂ fN
∂x2

... ∂ fN
∂xN

 ∈ RN×N (3.1)

The stability of the equilibrium point is determined by the eigenvalues of the Jaco-
bian matrix, according to the First Lyapunov Criterion [34]. If all the eigenvalues are
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on the negative complex half-plane, i.e the real part of all eigenvalues is negative,
then the equilibrium point is asymptotically stable. If at least one eigenvalue has
positive real part, then the equilibrium point is unstable. If a number of eigenvalues
are located on the imaginary axis, i.e the corresponding real parts are zero, and the
other eigenvalues are on the negative complex half-plane, the stability of the equi-
librium point cannot be decided using this criterion. Also, the matrix containing the
partial derivatives of the vector field with respect to the actuators displacement is
calculated as

B =
∂f

∂qa

∣∣∣ x=x∗
qa=qa0

=


∂ f1
∂qa1

∂ f1
∂qa2

... ∂ f1
∂qaM

... ... ... ...
∂ fN
∂qa1

∂ fN
∂qa2

... ∂ fN
∂qaM

 ∈ RN×M (3.2)

The output of the system, namely the state variables that can be measured, will be
the displacements and velocities of the journal. The output vector is, then

y = C · x (3.3)

where y ∈ R4 and C ∈ R4×N

The linearized system around the equilibrium point is, then,

δẋ = A · δx + B · δqa

δy = C · δx
(3.4)

where A = J, δx = x − x∗ ∈ RN , δqa = qa − qa0 ∈ RM and δy = y − y∗ ∈ R4. y∗ is
the output of the system, when x = x∗ for qa = qa0 .

The main goal to be achieved in this section, is the stabilization of unstable equi-
librium points. By applying a state transformation to modal coordinates and rear-
ranging the new state variables, the system becomes

δẋb = Ab · δxb + Bb · δqa

δy = Cb · δxb
(3.5)

where xb = Tb · x, Tb is the transformation matrix, Ab = Tb
−1 ·A ·Tb, Bb = Tb

−1 ·B
and Cb = C · Tb. This transformation is shown in Appendix B. The matrix Tb is
non singular and the matrices A and Ab have the same eigenvalues. Also, the new
matrices are written in the form

Ab =

[
Au O
O As

]
, Bb =

[
Bu
Bs

]
, Cb =

[
Cu Cs

]
(3.6)

where Au contains the eigenvalues with positive real part. The new state vector is
written in the form

δxb =
{

δxu δxs
}T (3.7)

Note that the systems B.8 and 3.5 have the same input δqa and output δy. The two
systems are uncoupled and the interest is centered on the unstable part

δẋu = Au · δxu + Bu · δqa (3.8)
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For the stabilization of this system, a feedback control law in the form

δqa = −Kg · δx̂u (3.9)

is considered. In Eq. 3.9, δx̂u is an estimation of the state variables δxu provided
by the observer and Kg is the gain matrix that places the eigenvalues of the corre-
sponding closed loop system in the desired location and is calculated according to
Ackermann’s theory [35]. In any case, it has been found that the system (Au, Bu)
is fully controllable and the system (Au, Cu) is fully observable. The closed loop
equations then are{

δẋu
δ ˙̃xu

}
=

[
Au − Bu · Kg Bu · Kg

O Au − L · Cu

]
·
{

δxu
δx̃u

}
(3.10)

In this equation, L is the observer gain matrix. The block diagram of the close loop
system 3.1 is shown in Fig. 3.1. The Ackermann’s theory for the construction of the
gain matrices is shown in Appendix B. After the solution of the closed loop system
equations, δqa is calculated and the system of ODEs

δẋs = As · δxs + Bs · δqa (3.11)

is solved. Then, the response of the original state variables is calculated as x =
Tb · xb.

FIGURE 3.1: Close loop block diagram

First, the bearing D100 is investigated. In this case, the configuration of twenty four
moving actuators shown in 2.3(a) is used. As shown in Fig. 2.9, for Ω = 850 rad/s,
the system has an unstable equilibrium point. Therefore, in order to achieve sta-
bilization, a close loop system for the placement of the eigenvalues is needed. The
eigenvalues of the unstable subsystem 3.8 are placed in such location, that the closed
loop system has setting time ts = 0.5 s and the damped natural frequency remains
the same. From literature, it is known that the setting time is approximately ts =
− 4

Re(λ1,2)
[35]. These eigenvalues, which are the dominant eigenvalues of the close

loop system, are λ1,2 = −8 ± j405 and correspond to a damping ratio ζ ≈ 0.02.
The eigenvalues of the observer are chosen to have the same imaginary part but ten
times greater real part and they are λ3,4 = −80 ± j405. Fig. 3.2 and 3.3 display the
response of the open loop and the close loop system. The close loop system is stable
and the displacements and velocities of the center of the disc reach equilibrium in
approximately ts = 0.5 s. The error δx̃u = δxu − δx̂u tends to zero in 0.05 seconds
as shown in Fig. 3.4(b). The orbit shown in Fig. 3.4(a) is initially attracted by the
stable limit cycle. The activation of the control changes the qualitative behaviour
of the response of the system and the orbit is attracted by the stable equilibrium or
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fixed point. In this case, the close loop system has initial conditions that correspond
to the final state of the open loop system and the initial time is the the time that the
simulation of the open loop system ends. The initial conditions of the errors of the
state variables are arbitrary chosen to be 0.3 times the initial conditions of those state
variables.
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The pressure distribution, the film thickness and the foil deformation at the equilib-
rium state of the system are shown in Fig. 3.5. It should be noted that the control
law used in order to stabilize the system does not change the equilibrium point but
only the stability of it.
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Concerning the bearing D30, dealing with instability is done in the same way. Twelve
moving actuators are used, as shown in Fig. 2.3(b). The setting time has been found
that can reach the value of ts = 0.1 s and the observer is chosen to be ten times
faster. The damped natural frequency of the eigenvalues of the close loop system
is again the same as the one of the eigenvalues of the open loop system. Therefore,
the eigenvalues of the close loop system are −40 ± j738 and −400 ± j738. Fig. 3.6
and 3.7 display the displacements and velocities of the open and close loop systems.
After the initiation of the control, the system reaches equilibrium after time t = 0.1 s,
which is the desired setting time. The orbit of the close loop system, shown in Fig.
3.8, is attracted by the stable fixed point. In Fig. 3.9, the pressure distribution, the
film thickness and the foil deformation of the equilibrium state are shown.
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3.2 Hopf Bifurcation Control via Polynomial Feedback

Again, the autonomous balanced system 3.1 is considered. From Eq. 2.14 it follows
that the system can be written in the form

ẋ = f (x; qa, Ω) = g (x; Ω) + G · qa (3.12)

where G is a N × M constant matrix. Suppose that the reference displacement of the
actuators is qa0 , then for every discrete value of the rotational speed Ωi a equilibrium
point occurs. Therefore, there is a sequence of equilibrium points

(x∗1 , Ω1) , ..., (x∗m, Ωm) , (x∗i , Ωi) ∈ RN+1 (3.13)

each corresponding to a discrete value of the rotational speed. Their stability is ex-
amined using the First Lyapunov Criterion. In this system, it has been observed that
the system is stable until a threshold value of the rotational speed,Ωth, and then be-
comes unstable. This type of bifurcation is called Hopf Bifurcation [33, 32] and for it
to happen, the following conditions must apply:
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• f (xth; Ωth) = 0, i.e the point (xcr, Ωth) is a equilibrium point

• the dominant eigenvalues of the Jacobian matrix λ1,2 = â(Ωth)± jb̂(Ωth) are
located on the imaginary axis, i.e â(Ωth) = 0, and

• dâ
dΩ

∣∣∣
Ω=Ωth

̸= 0

The goal is to design a feedback control law, that will eliminate this Hopf Bifurcation.
First the stabilization of a fixed point is considered and then the elimination of Hopf
Bifurcations is presented.

3.2.1 Stabilization of Unstable Fixed Points

Suppose the case where the Hopf Bifurcation has already occurred and the equi-
librium point corresponding to the rotational speed Ωk is unstable. The goal is to
stabilize the system, without changing the equilibrium point. The output in this
case is again the displacements and velocities of the journal, so the feedback control
has to be designed using only these state variables, therefore qa = qa

(
xj, ẋj, yj, ẏj

)
.

For Ω = Ωk and qa = qa0 , the system

ẋ = f (x; qa0 , Ωk) = f (x; qa0) = g (x) + G · qa0 (3.14)

has a equilibrium point x∗k , therefore

g (x∗k ) + G · qa0 = 0 (3.15)

Therefore, in order to maintain the same equilibrium point, the condition
qa

(
x∗j , ẋ∗j , y∗j , ẏ∗j

)
= qa0 must be satisfied, where x∗j , ẋ∗j , y∗j , ẏ∗j are the equilibrium

components corresponding to the journal. A linear polynomial feedback law, pro-
posed by Chen [32], is

qa = −k1

(
xj − x∗j

)
− k2

(
ẋj − ẋ∗j

)
− k3

(
yj − y∗j

)
− k4

(
ẏj − ẏ∗j

)
+ qa0 (3.16)

where ki ∈ RM. It is clear, that when evaluated at the eq. point only the quantity qa0

remains, so the condition 3.15 is satisfied. The closed loop system is

ẋ = g (x) + G · qa
(
xj, ẋj, yj, ẏj

)
= fcl (x) (3.17)

The gain vectors ki are such, that the Jacobian matrix corresponding to the closed-
loop system has only eigenvalues with negative real parts. Also, they can be chosen
in such way, that the dominant eigenvalues have real parts corresponding to a de-
sired setting time ts ≈ − 4

Re(λ1,2)
, where λ1,2 are the dominant eigenvalues. For sim-

plicity, the gains are chosen in such way that ki = ki
{

1 1 ... 1
}T. The gains are

calculated using an optimization procedure, calculating the Jacobian matrix at each
step. The objective function is

minobj = |Re(λ1,2) +
4
ts
| (3.18)

choosing the desired ts. For the implementation of the above, the patternsearch func-
tion of the Matlab Global Optimization Toolbox was used.
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In this case, only the bearing D100 is investigated. The actuators in the second row
are moving, while the ones on the first and the third row are static, as shown in Fig.
2.4(a). The setting time is chosen to be t = 0.5 s. Again, the close loop system has
initial conditions that correspond to the final state of the simulation of the open loop
system.
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FIGURE 3.10: Open and close loop x-displacement and velocity of
the center of the disc at Ω = 850 rad/s.Bearing D100. Disc mass md =

1 kg. Balanced rotor

0 1 2
−1

−0.5

0

0.5

1

t (s)

y j
/

c r

without control
with control

(a) y-displacement

0 1 2
−1

−0.5

0

0.5

1

t (s)
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FIGURE 3.11: Open and close loop y-displacement and velocity of
the center of the disc at Ω = 850 rad/s. Bearing D100. Disc mass

md = 1 kg. Balanced rotor

Fig. 3.10 and 3.11 show the response of the journal. The orbit of the journal is shown
in Fig. 3.13. The close loop system reaches equilibrium in time t = 0.5 s. The dis-
placement of the actuators and the required voltage input are shown in Fig. 3.12(a)
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and 3.12(b) respectively.
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This control law, similar to the linear control technique that was used, does not
change the equilibrium point of the system. Therefore, the stable equilibrium pres-
sure distribution, film thickness and foil deformation are the same as the ones exhib-
ited in the section of the Linear control and are shown in Fig. 3.5.

Then, it is desirable to examine the behavior of the closed-loop system to external
perturbations. For this, an external lateral force with magnitude equal to 2.5md is ap-
plied to the disc. This force is parallel to the y-axis of the cross section of the journal
and is applied before the system reaches equilibrium. As a result, the disc oscillates
with reduced amplitude, until it finally reaches equilibrium, as shown in Fig. 3.14
and 3.15. The corresponding displacement of the actuators and voltage input are
shown in 3.16.
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In the case of the unbalanced system, it has been found that the same control law of
the corresponding autonomous system results in a steady state response with signif-
icantly reduced amplitude and synchronous period. This happens because, despite
the fact that the principle of superposition is not applicable in nonlinear systems, it
has been experimentally found that for small unbalance grades the superposition of
the balanced system with the unbalance forces approaches sufficiently the real sys-
tem. In Fig. 3.17 the displacements of the center of the disc are shown. Fig. 3.18
displays the steady state orbit and x-displacement of the center of the disc. The ro-
tor oscillates around the equilibrium point of the autonomous system with period
T = 2π/Ω and with a small amplitude in comparison with the open loop system.
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the open and close loop system at Ω = 850 rad/s. Bearing D100. Disc

mass md = 1 kg. Unbalance grade G6.3
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3.2.2 Hopf Bifurcation Elimination

In order to eliminate the Hopf bifurcation from the entire range of rotational speed of
the system, a polynomial feedback control law is designed for every discrete value of
the rotational speed, see Eq. 3.16. The gains ki are functions of the rotational speed
Ω, therefore ki = ki(Ω) and are calculated by performing an optimization procedure
for every Ωi, where the corresponding equilibrium point is unstable, with desired
setting time ts = 0.5 s.

The results concerning the bearing D30 are exhibited. The system with the bear-
ing D30 undergoes a Hopf bifurcation at a value of rotational speed between 1500
and 1550 rad/s. The eigenvalues of the open loop system for every value of Ω are
shown in Fig. 3.19. The gains are considered identical for all the actuators and only
the middle row of actuators is moving, therefore the configuration in Fig. 2.3(b) is
used.
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The application of a feedback control law for every Ω results in the elimination of
Hopf bifurcation and the eigenvalues are placed on the negative complex half-plane,
as shown in Fig. 3.20(a). The corresponding gains ki are shown in Fig. 3.20(b).
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FIGURE 3.20: Hopf bifurcation elimination with polynomial feedback

3.3 Design Optimization for the Placement of the Equilib-
rium Point

In some circumstances, the placement of the equilibrium point of the rotor on a de-
sired location is of great interest. Τhe requirement for this can be either the avoid-
ance of rotor-stator contact or the centralised rotor-stator configuration.

For the equilibrium point of the autonomous system to change, the actuators must
be preloaded, i.e a permanent displacement of the free end of the actuators must be
considered. That displacement is calculated by a design optimization procedure uti-
lizing again the patternsearch function of the Matlab Global Optimization Toolbox. The
objective function in this case is

minobj = |x∗j − x∗jd |+ |y∗j − y∗jd | (3.19)

where x∗j , y∗j are the equilibrium displacements of the center of the disc and x∗jd , y∗jd
are the desired equilibrium displacements.

In this case, only the bearing D30 is considered. The results are identical for the
bearing D100. The displacement of the actuators is symmetrical about the middle
row and the actuators are numbered according to their position. The actuators on
the front plane are numbered from 1 to 4 from the left to the right, on the middle
plane from 5 to 8 and on the rear plane from 9 to 12 accordingly. The front plane
is the third row of actuators shown in Fig. 2.4. The goal is to place the equilibrium
displacements on the origin O(0, 0). The necessary displacements are shown in Fig.
3.21.



3.3. Design Optimization for the Placement of the Equilibrium Point 45

1 2 3 4 5 6 7 8 9 10 11 12

−0.2

−0.1

0

0.1

0.2

actuator number

q a
/

c r

FIGURE 3.21: Displacement of the actuators in order to place the equi-
librium point of the balanced system on O(0, 0). Bearing D30

The new equilibrium point is unstable. In order to stabilize it, a polynomial feedback
law is used. The chosen setting time in this case is t = 0.2 s and the results are shown
in Fig. 3.25. The orbit of the closed loop system is shown in Fig. 3.23. The shape of
the foil corresponds to the equilibrium state.
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Chapter 4

Conclusions and Future Work

In conclusion, it was observed that the modeling of the full dynamic system is of
particular interest. The number of finite elements that can be applied in the foil
structure analysis is large, but a finite element must be chosen so that the compu-
tational cost is not increased, and to focus on the accurate prediction of the radial
displacements of the foil, introducing as few additional degrees of freedom (in other
directions) as possible. Thin plate bending elements are ideal for this purpose. Fur-
thermore, simple supports, e.g. actuators, have to be used if the bump foil structure
is not included as it happen in conventional GFB design. Concerning the design of
feedback control laws, linear polynomial feedback and classic linear control theory
are found to be adequate for the stabilization of fixed points. For the elimination of
Hopf Bifurcations and the stabilization of the system around fixed points, the gains
must be chosen in a way that a specification, like the setting time, is satisfied. It
is found that, evaluating the gains though an optimization problem is sufficient to
achieve the desired response in terms of stability and time constants. In addition to
this, nonlinear terms can be used in the feddback function, in order to control the
amplitude and the minimal period of self-excited limit cycle motion of the balanced
or the ubalanced system. This is future work to be performed.
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Appendix A

Guyan Reduction

The equilibrium of a statitic problem is expressed as:

Kx = f (A.1)

where K is the stiffness matrix, f is the force vector and x the displacement vector. By
partitioning the above system of linear equations with regards to loaded-master and
unloaded-slave degrees of freedom, the static equilibrium equation can be written
as: [

Kmm Kms
Ksm Kss

]{
xm
xs

}
=

{
fm
0

}
(A.2)

Solving the lower part of the above system of equations it follows:

Ksmxm + Kssxs = 0 (A.3)

Solving the above equation in terms of the master DOFs leads to:

xs = −K−1
ss Ksmxm (A.4)

Finally substituting to the upper partition of equation A.2 leads to the following
reduced system.

(Kmm − KmsK−1
ss Ksm)xm = fm (A.5)

The above system of linear equations is equivalent to the original problem but ex-
pressed in terms of the master degrees of freedom. Thus, the Guyan reduction re-
sults in a reduced system by condensing away the slave degrees of freedom.

The Guyan reduction can also be expressed as a change of basis which produces
a low-dimensional representation of the original space, represented by the master
degrees of freedom. The linear transformation that maps the reduced space onto the
full space is expressed as:{

xm
xs

}
=

[
I

−K−1
ss Ksm

] {
xm

}
=

{
TG

} {
xm

}
(A.6)

where Tr represents the Guyan reduction transformation matrix. Thus, the reduced
problem is represented as:

Krxm = fm (A.7)
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where Kr represents the reduced system of linear equations that’s obtained by ap-
plying the Guyan reduction transformation on the full system, which is expressed
as:

Kr = TT
r KTr (A.8)
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Appendix B

Ackermann’s Theory

Suppose the open loop system

ẋ = A · x + B · u
y = C · x

(B.1)

where x ∈ RN is the state vector, u ∈ RM is the input vector and y ∈ Rp is the output
vector. Furthermore, A ∈ RN×N , B ∈ RN×M, C ∈ Rp×N .

The system is controllable if the matrix

P =
[
B A · B ... AN−1 · B

]
(B.2)

has rank N. The system is observable if the matrix

Q


C

C · A
...

C · AN−1

 (B.3)

has rank N.

If the system is controllable, the eigenvalues of the close loop system can be placed
on the desired location using the feedback control law u = −K · x, where the matrix
K is calculated by the Ackermann’s formula:

K =
[
0 0 ... 1

]
· P−1 · g(A) (B.4)

where
g(s) = (s − s1)(s − s2)...(s − sN) (B.5)

is the desired characteristic polynomial and si are the desired eigenvalues of the
close loop system.

If the system is observable, the eigenvalues of the observer can be placed in the
desired location by introducing the matrix L as

L = h(A) · Q−1 ·
[
0 0 ... 1

]T (B.6)

where
h(z) = (z − z1)(z − z2)...(z − zN) (B.7)
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is the desired characteristic polynomial of the observer and zi are the desired eigen-
values of the observer.

The transformation of the system of state equations is performed by applying an
eigenvalue decomposition of the matrix A = Tb · Ab · Tb

−1. Therefore, the transfor-
mation x = Tb · xb results in the system

ẋb = Ab · xb + Bb · qa

y = Cb · xb
(B.8)

By applying a reenlistment of the state variables, the stable and unstable subsystems
are separated and can be treated independently of each other.
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