
National Technical University of Athens
School of Electrical and Computer Engineering

Division of Signals, Control and Robotics
Computer Vision, Speech Communication and Signal Processing

Group

Automatic Music Synthesis using Neural Networks and
Machine Learning Techniques

DIPLOMA THESIS

of

Danae-Nikoleta Charitou

Supervisor: Petros Maragos
Professor NTUA

Co-supervisor: Athanasia Zlatintsi
Postdoctoral Researcher NTUA

Athens, October 2022

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Signals, Control and Robotics
Computer Vision, Speech Communication and Signal Processing Group

Automatic Music Synthesis using Neural Networks and
Machine Learning Techniques

DIPLOMA THESIS

of

Danae-Nikoleta Charitou

Supervisor: Petros Maragos
Professor NTUA

Co-supervisor: Athanasia Zlatintsi
Postdoctoral Researcher NTUA

Approved by the examining committee on 31st October, 2022:

..........................
Petros Maragos Gerasimos Potamianos Athanasios Rontogiannis
Professor NTUA Associate Professor UTH Associate Professor NTUA

Athens, October 2022

..
Danae-Nikoleta Charitou

Electrical and Computer Engineer, NTUA

Copyright © – Danae-Nikoleta Charitou, 2022. All rights reserved.

This work is copyright and may not be reproduced, stored nor distributed in whole or in part
for commercial purposes. Permission is hereby granted to reproduce, store and distribute
this work for non-profit, educational and research purposes, provided that the source is
acknowledged and the present copyright message is retained. Enquiries regarding use for
profit should be directed to the author.

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the
National Technical University of Athens.

to my family

Abstract

Machine Learning has flourished over the last few years, resulting in the inevitable inclusion of
Artificial Intelligence into our everyday life. The emulation of human mental acuity, achieved
by Artificial Neural Networks, has made overwhelming progress concerning fundamental or
even instinctive intellectual processes. On this ground, the interest of research community
is now focused on more creative and generative functionalities, one of those being music
synthesis. The process of creating musical pieces is considered a higher mental function
that still remains unfathomed, even at a non-computational level. A musical composition
constitutes a form of expressing various attributes, such as knowledge, experience, ideas,
emotions. Therefore, this involving notion of subjectivity makes the problem of automatic
music generation particularly complex.

Our approach in the research field of automatic music synthesis is based on Generative Ad-
versarial Networks, one of the most prominent system architectures in the area of generative
modeling with several applications in comparable problems of different data types, such as
image, video and text. Initially, we examine the task of polyphonic music synthesis for
multiple tracks, in terms of generation from scratch, that is without any human input or
supplementary information. Αfterwards, we extend our model in a human-AI cooperative
framework by exploring the task of accompaniment generation, namely the generation pro-
cess of the musical part which provides the rhythmic and/or harmonic support for the melody
or main themes of a song, composed by human. The experimentation over the structure of
individual networks, the architecture of the whole system, the training algorithm and various
parameters with respect to the generated musical samples, allows us to investigate different
aspects of the procedure that an Artificial Intelligence model follows in order to compose
music, demonstrating at the same time the impact of the aforementioned components on the
produced musical result. Finally, a set of objective metrics concerning musical features is
established, while a user study is also conducted in the context of subjective evaluation. In
this way, we show that our model is capable of creating novel aesthetic music characterized by
tonal, temporal and harmonic structure, achieving competitive performance in comparison
with the baseline implementation.

Keywords — Music, Synthesis, Machine Learning, Artificial Intelligence, Generative Ad-
versarial Networks, Generation from scratch, Accompaniment Generation

vii

Περίληψη

Τα τελευταία χρόνια ο κλάδος της Μηχανικής Μάθησης αναπτύσσεται με ραγδαίους ρυθμούς,
καθιστώντας αναπόφευκτη την ενσωμάτωση της Τεχνητής Νοημοσύνης σε ποικίλες πτυχές της

ανθρώπινης καθημερινότητας. Η μοντελοποίηση της ανθρώπινης ευφυΐας μέσω της δημιουργίας
Τεχνητών Νευρωνικών Δικτύων σημείωσε σημαντική πρόοδο σε επίπεδο βασικών, ίσως και
ενστικτωδών για τον άνθρωπο, λειτουργιών, στρέφοντας έτσι το ενδιαφέρον της επιστημονικής
κοινότητας στην προσπάθεια προσέγγισης πιο παραγωγικών και δημιουργικών διαδικασιών. Μια
εξ αυτών είναι και η σύνθεση μουσικής. Πρόκειται για μία ανώτερη νοητική λειτουργία, η
οποία ακόμη και σε μη υπολογιστικό επίπεδο θεωρείται ανεξερεύνητη. ΄Ενα μουσικό κομμάτι
αποτελεί μια μορφή έκφρασης διαφόρων στοιχείων, όπως οι γνώσεις, η εμπειρία, τα ακούσματα,
τα συναισθήματα, οπότε αυτή η έννοια της υποκειμενικότητας που εμπλέκεται, καθιστά το
πρόβλημα δημιουργίας μουσικής με αυτόματο τρόπο ιδιαίτερα περίπλοκο.

Η δική μας προσέγγιση στην ερευνητική περιοχή της αυτόματης σύνθεσης μουσικής στηρίζε-

ται στα Παραγωγικά Αντιπαραθετικά Δίκτυα (Generative Adversarial Networks), τα οποία
αποτελούν την κατ’ εξοχήν αρχιτεκτονική υπολογιστικού συστήματος όσον αφορά tasks που
περιλαμβάνουν κάποια διαδικασία δημιουργίας και είναι ευρέως διαδεδομένα σε αντίστοιχα προ-
βλήματα διαφορετικού τύπου δεδομένων, όπως η εικόνα, το βίντεο και το κείμενο. Βάσει, λοιπόν,
του εν λόγω μοντέλου, εξετάζουμε σε πρώτο στάδιο την αυτόματη παραγωγή πολυφωνικής
μουσικής για πολλαπλά όργανα χωρίς τη χρήση ανθρώπινης εισόδου ή συμπληρωματικών δε-

δομένων. Στην συνέχεια, επεκτείνουμε το σύστημά μας σε ένα συνεργατικό πλαίσιο ανθρώπου-
μηχανής, μελετώντας τη διαδικασία αυτοματοποιημένης σύνθεσης του μουσικού τμήματος που
αποτελεί την συνοδεία μιας κύριας μελωδικής γραμμής προερχόμενης από αυθεντική μουσική

σύνθεση. Πειραματιζόμενοι με την δομή των επιμέρους δικτύων, την αρχιτεκτονική του συνο-
λικού συστήματος, τον αλγόριθμο εκπαίδευσης αλλά και διάφορες παραμέτρους που χαρακτηρί-
ζουν τα παραγόμενα μουσικά δείγματα, εξερευνούμε διαφορετικές πτυχές του τρόπου με τον
οποίο μπορεί ένα μοντέλο Τεχνητής Νοημοσύνης να συνθέτει αυτόνομα μουσική, καταδεικνύω-
ντας συγχρόνως την επίδραση αυτών των στοιχείων στο ακουστικό αποτέλεσμα. Τέλος, αξι-
οποιώντας ένα σύστημα ποσοτικών μετρικών που αφορούν μουσικά γνωρίσματα αλλά και διεξά-

γοντας μια ποιοτική μελέτη με την μορφή ακουστικού πειράματος, συμπεραίνουμε ότι το σύστημά
μας κατέχει την δυνατότητα δημιουργίας νέων μουσικών συνθέσεων που χαρακτηρίζονται από

τονική, χρονική και αρμονική δομή, επιτυγχάνοντας συγχρόνως ανταγωνιστικά αποτελέσματα
συγκριτικά με την baseline αρχιτεκτονική.

Λέξεις Κλειδιά — Μουσική, Σύνθεση, Μηχανική Μάθηση, Τεχνητή Νοημοσύνη, Παρα-
γωγικά Αντιπαραθετικά Δίκτυα

ix

Acknowledgments

Με την παρούσα Διπλωματική Εργασία ολοκληρώνεται ο εξαετής κύκλος φοίτησής μου στην

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του Εθνικού Μετσόβιου Πο-

λυτεχνείου και συνάμα η έρευνα που πραγματοποίησα στο Εργαστήριο Εργαστήριο ΄Ορασης

Υπολογιστών, Επικοινωνίας Λόγου και Επεξεργασίας Σήματος τον τελευταίο ενάμιση χρόνο.
Με την αφορμή λοιπόν που μου δίνεται, θα ήθελα να ευχαριστήσω:

Τον επιβλέποντα καθηγητή κ. Πέτρο Μαραγκό, ο οποίος, μέσω των εποικοδομητικών του
διαλέξεων στο πλαίσιο των προπτυχιακών μαθημάτων αλλά και του γενικότερου ερευνητικού του

έργου, με ενέπνευσε να ασχοληθώ ενεργά με το συγκεκριμένο αντικείμενο και μου προσέφερε
την ευκαιρία αλλά και την απαραίτητη καθοδήγηση για την εκπόνηση της διπλωματικής μου

εργασίας στο εργαστήριο του.

Ιδιαιτέρως τη μεταδιδακτορική ερευνήτρια Δρ. Νάνσυ Ζλατίντση και το διδακτορικό φοιτητή
Χρήστο Γαρούφη για την καθοδήγηση, τις συμβουλές, τις ευχάριστες συζητήσεις και την πολύ-
τιμη βοήθεια που μου προσέφεραν καθ’ όλη την διάρκεια της συνεργασίας μας.

Τον επιστημονικό συνεργάτη Κοσμά Κρίτση για τις συμβουλές και την βοήθεια που προσέφερε,
τον διδακτορικό φοιτητή Παναγιώτη-Παρασκευά Φιλντίση για την τεχνική υποστήριξη αλλά και
όλους όσους συμμετείχαν στο ακουστικό πείραμα της ποιοτικής μελέτης που διεξήχθη.

Τέλος, την οικογένειά μου και τους φίλους μου για την αμέριστη στήριξη που μου προσέφεραν
καθ’ όλη την διάρκεια της ακαδημαϊκής μου σταδιοδρομίας.

Δανάη-Νικολέτα Χαρίτου
Οκτώβριος 2022

xi

Contents

Abstract vii

Περίληψη ix

Acknowledgements xi

Contents xiii

List of Figures xvii

List of Tables xxi

0 Extended Greek Abstract 1
0.1 Εισαγωγή . 2

0.1.1 Ορισμός Ερευνητικού Προβλήματος 2
0.1.2 Συνεισφορές της παρούσης Διπλωματικής Εργασίας 4

0.2 Θεωρητικό Υπόβαθρο . 5
0.2.1 Συνελικτικά Νευρωνικά Δίκτυα . 5
0.2.2 Παραγωγικά Ανταγωνιστικά Δίκτυα 6
0.2.3 Αυτοκωδικοποιητές . 7

0.3 Baseline Project: MuseGAN . 8
0.3.1 Αρχιτεκτονική Συστήματος . 8
0.3.2 Δεδομένα Εκπαίδευσης . 11
0.3.3 Μετρικές Αξιολόγησης . 12

0.4 Unconditional Generation . 13
0.4.1 Μοντέλο . 13
0.4.2 Δεδομένα Εκπαίδευσης . 16
0.4.3 Εργαλεία Αξιολόγησης . 16
0.4.4 Πειράματα και Αποτελέσματα . 17

0.5 Conditional Generation . 20
0.5.1 Μοντέλο . 20
0.5.2 Πειράματα και Αποτελέσματα . 23

0.6 Σύνοψη και Μελλοντικές Επεκτάσεις . 27

1 Introduction 29
1.1 Problem Definition . 30

xiii

Contents

1.2 Challenges of the Task . 33
1.3 Thesis Outline & Contributions . 36

2 Theoretical Background 39
2.1 Machine Learning . 40

2.1.1 Supervised Learning: More Control, Less Bias 41
2.1.2 Unsupervised Learning: Speed and Scale 46
2.1.3 Reinforcement Learning: Rewards Outcomes 50

2.2 Artificial Neural Networks . 54
2.2.1 Perceptron . 55
2.2.2 Multilayer Perceptron . 59
2.2.3 Convolutional Neural Networks . 64
2.2.4 Recurrent Neural Networks . 71

2.3 Generative Adversarial Networks . 75
2.3.1 Discriminator . 77
2.3.2 Generator . 77
2.3.3 Overall Training . 78

2.4 Autoencoder . 80

3 Related Work 83
3.1 Music Representations . 84

3.1.1 MIDI . 84
3.1.2 MusicXML . 85
3.1.3 Pianoroll . 85
3.1.4 Text . 85
3.1.5 Audio . 87

3.2 Tasks and Methods . 88
3.2.1 Generation from Scratch . 88
3.2.2 Music Arrangement . 93
3.2.3 Music Style Transfer . 97
3.2.4 Music Completion/Inpainting . 98

3.3 Datasets . 100
3.3.1 MIDI . 100
3.3.2 MusicXML . 101
3.3.3 Pianoroll . 102
3.3.4 Text . 102
3.3.5 Audio . 103
3.3.6 Multimodality . 104

3.4 Evaluation . 108
3.4.1 Objective Evaluation . 108
3.4.2 Subjective Evaluation . 114

4 Baseline Project: MuseGAN 119
4.1 Overview & Challenges . 120
4.2 Architecture . 123

4.2.1 Generative Adversarial Networks . 123

xiv

Contents

4.2.2 Modeling Multitrack Interdependency 124
4.2.3 Modeling Temporal Structure . 126
4.2.4 MuseGAN . 128
4.2.5 Implementation Details . 129

4.3 Data . 131
4.3.1 Data Representation . 131
4.3.2 Dataset . 132
4.3.3 Data Preprocessing . 132

4.4 Evaluation & Results . 134
4.4.1 Objective Evaluation . 134
4.4.2 Subjective Evaluation . 136

5 Unconditional Generation 139
5.1 Task Description . 140
5.2 Model . 141

5.2.1 Architecture . 141
5.2.2 Implementation . 142
5.2.3 Training Process . 144

5.3 Data . 147
5.3.1 Data Representation . 147
5.3.2 Dataset . 147
5.3.3 Data Preprocessing . 147

5.4 Experimental Protocol . 149
5.4.1 Experimental Setup . 149
5.4.2 Objective Metrics . 149

5.5 Results . 151
5.5.1 Analysis of Training Process . 151
5.5.2 Model for Inference . 154
5.5.3 Qualitative Inspection . 155
5.5.4 Experimentation over Generative Configurations 156
5.5.5 Objective Comparison with Baseline 157

5.6 User Study . 160
5.6.1 Experimental Setup . 160
5.6.2 Subjective Results & Discussion . 162

6 Conditional Generation 163
6.1 Task Description . 164
6.2 Model . 165

6.2.1 Architecture . 165
6.2.2 Implementation . 167
6.2.3 Training Process . 170

6.3 Data . 174
6.3.1 Data Representation . 174
6.3.2 Dataset . 174
6.3.3 Data Preprocessing . 174

6.4 Experimental Protocol . 175

xv

Contents

6.4.1 Experimental Setup . 175
6.4.2 Objective Metrics . 175

6.5 Results . 177
6.5.1 Analysis of Training Process . 177
6.5.2 Qualitative Inspection . 179
6.5.3 Objective Evaluation . 180

6.6 User Study . 184
6.6.1 Experimental Setup . 184
6.6.2 Subjective Results & Discussion . 185

7 Conclusions 189
7.1 Synopsis . 190
7.2 Thoughts on Future Work . 191

Bibliography 193

xvi

List of Figures

0.1.1 Ιεραρχική δομή ενός μουσικού κομματιού [2] 3
0.2.1 Αρχιτεκτονική Συνελικτικού Νευρωνκού Δικτύου σε σύγκριση με την γενική

περίπτωση [7] . 5
0.2.2 Συνέλιξη [9] . 6
0.2.3 Παραγωγικό Ανταγωνιστικό Δίκτυο [10] 7
0.2.4 Αυτοκωδικοποιητής [12] . 8
0.3.1 MuseGAN tracks [13] . 8
0.3.2 Multi-track models [2] . 9
0.3.3 Temporal models [2] . 10
0.3.4 MuseGAN [13] . 11
0.3.5 Αναπαράσταση μουσικών δεδομένων [13] 11
0.3.6 Προεπεξεργασία Δεδομένων Εκπαίδευσης [2] 12
0.4.1 Αρχιτεκτονική του Unconditional Μοντέλου μας 14
0.4.2 Δημογραφικά στοιχεία της ποιοτικής μελέτης 17
0.4.3 Subjective Σύγκριση . 20
0.5.1 Συνιστώσες του conditional μοντέλου . 21
0.5.2 Conditional Μοντέλα . 23
0.5.3 Subjective Αξιολόγηση για Piano . 26
0.5.4 Subjective Αξιολόγηση για Guitar . 27

1.1.1 Artificial Artists [23] . 30
1.1.2 The Dice Waltz [25] . 31
1.1.3 Illiac Suite [30] . 32
1.1.4 Applications of AI in Music Industry [33] 32
1.2.1 Music and Memory [34] . 33
1.2.2 Hierarchical structure of a music piece [2] 33
1.2.3 Multiple Instruments . 34
1.2.4 Beethoven’s Piano Sonata in F minor [38] 34

2.1.1 Artificial Intelligence [39] . 40
2.1.2 Supervised Learning Diagram [40] . 42
2.1.3 Categorization of Supervised Learning Problems [41] 42
2.1.4 Regression [42] . 43
2.1.5 Types of Regression [43] . 43
2.1.6 Spam Detection [44] . 44
2.1.7 Classification Algorithms [45] . 44

xvii

List of Figures

2.1.8 Overfitting and Underfitting Overview [46] 46
2.1.9 Unsupervised Learning Diagram [47] . 47
2.1.10 Categorization of Unsupervised Learning Problems [48] 48
2.1.11 Clustering [49] . 48
2.1.12 Clustering Algorithms [50] . 49
2.1.13 Market Basket Analysis [51] . 50
2.1.14 Reinforcement Learning Diagram [52] . 50
2.1.15 Exploration vs Exploitation trade-off [53] 51
2.1.16 Reinforcement Learning Approaches . 52
2.2.1 Biological Neuron [54] . 54
2.2.2 Artificial Neuron [54] . 54
2.2.3 Multilayer Neural Network [54] . 55
2.2.4 Perceptron [55] . 56
2.2.6 Illustration of Decision Boundary [56] . 57
2.2.7 Multilayer Perceptron [57] . 59
2.2.8 Activation functions [58] . 60
2.2.9 Image representation as a grid of pixels [71] 64
2.2.10 CNN architecture in comparison with a typical MLP model [7] 64
2.2.11 Illustration of the Convolution Mechanism [9] 65
2.2.12 Kernel sliding [72] . 65
2.2.13 Convolutional layer with multiple filters [7] 66
2.2.14 Stride in CNN [73] . 66
2.2.15 Padding in CNN [73] . 67
2.2.16 Transposed Convolution [74] . 67
2.2.17 Types of pooling layes [75] . 68
2.2.18 Normalization methods [76] . 69
2.2.19 Fully-connected layer [75] . 71
2.2.20 Conversion of Feedforward to Recurrent Neural Network [83] 72
2.2.21 Recurrent Neural Network [83] . 72
2.2.22 LSTM unit [84] . 73
2.2.23 GRU unit [84] . 74
2.3.1 Generative vs Discriminative models [97] 75
2.3.2 Generative modeling [98] . 76
2.3.3 Overview of GAN structure [99] . 76
2.3.4 Block Diagram of Discriminator [100] . 77
2.3.5 Block Diagram of Generator [100] . 78
2.3.6 Illustration of GAN learning [21] . 79
2.4.1 Autoencoder architecture [12] . 80
2.4.2 Different types of AE systems [113] . 82

3.1.1 MIDI file format [114, 115] . 84
3.1.2 MusicXML [116] . 85
3.1.3 An example of MIDI file in a pianoroll view [117] 85
3.1.4 ABC notation of the traditional song A Cup of Tea [1] 86
3.1.5 Example of humdrum data representation [119] 86
3.1.6 Waveform Audio File Format [120] . 87

xviii

List of Figures

3.2.1 Monophonic music piece [121] . 88
3.2.2 Chronology of monophonic music generation [122] 89
3.2.3 Polyphonic music piece [128] . 90
3.2.4 Chronology of polyphonic music generation [122] 90
3.2.5 Chronology of multi-instrumental music generation [122] 92
3.2.6 Illustration of the role of piano arrangement in the three forms of music

composition [117] . 93
3.2.7 System diagram of the pop-song automation framework [141] 94
3.2.8 RL-Duet [143] . 95
3.2.9 Overview of Song2Quartet [146] . 96
3.2.10 Representation of position on the piano keyboard with a two-dimensional

lattice [147] . 97
3.2.11 Piano-score model incorporating fingering motion [148] 97
3.2.12 Musical Score Inpainting [161] . 99
3.2.13 Audio Inpainting [165] . 99
3.3.1 Projective orchestration of the first 3 bars of Modest Mussorgsky’s piano

piece Pictures at an Exhibition by Maurice Ravel [169] 101
3.3.2 Learning to groove through inverse sequence transformations for drumming

[187] . 104
3.3.3 Beat and downbeat annotations produced by ASAP workflow [188] 105
3.3.4 An example of alignment between lyrics and melody [189] 105
3.3.5 Examples of 3 data modalities in MTM Dataset [191] 106
3.4.1 General workflow of musical evaluation strategy [192] 110
3.4.2 Patterns discovered in each sample by VMO (colored boxes) [206] 113

4.1.1 Musical tracks in MuseGAN [13] . 120
4.1.2 GAN implemented with CNNs [221] . 121
4.1.3 Challenges of Automatic Music Generation [13] 122
4.2.1 Illustration of GAN mechanism [222] . 123
4.2.2 Jamming Model [2] . 125
4.2.3 Composer Model [2] . 125
4.2.4 Hybrid Model [2] . 126
4.2.5 Generation from Scratch [2] . 127
4.2.6 Track-conditional Generation [2] . 128
4.2.7 MuseGAN system diagram [13] . 128
4.2.8 Bar Generator in MuseGAN [13] . 129
4.2.9 Network architectures for the structural components of MuseGAN system

[2] . 130
4.3.1 Pianoroll format with symbolic timing [13] 131
4.3.2 Multi-track pianoroll format [13] . 132
4.3.3 Illustration of the dataset preparation and data preprocessing procedure [2] 132
4.3.4 Data configuration [13] . 133
4.4.1 Intra-track evaluation [2] (B: Bass, D: Drums, G: Guitar, P: Piano, S: Strings) 134
4.4.2 Inter-track evaluation [2] (B: Bass, D: Drums, G: Guitar, P: Piano, S: Strings) 135
4.4.3 User Study [2] (H: Harmonious, R: Rhythmic, MS: Musically Structured, C:

Coherent, OR: Overall Rating) . 136

xix

List of Figures

5.1.1 Unconditional vs Conditional Generation [227] 140
5.2.1 Architecture diagram of our proposed model 141
5.3.1 Multi-track pianoroll format [228] . 147
5.3.2 Dataset split ratios . 148
5.5.1 Training Loss of Generator and Discriminator Modules 151
5.5.2 Evolution of the generated piano-rolls as a function of update steps . . . 152
5.5.3 Pianoroll generated using our proposed model 155
5.6.1 File Conversion Diagram . 161
5.6.2 User Study Demographics . 161
5.6.3 Results of Subjective Evaluation . 162

6.1.1 Unconditional vs Conditional Generation [227] 164
6.2.1 Conditional Generator . 165
6.2.2 Conditional Discriminator . 166
6.2.3 Encoder and Decoder . 166
6.3.1 Split Ratios . 174
6.5.1 Generator losses for the various piano-based conditional GANs 177
6.5.2 MSE losses between real and generated pianorolls for the various piano-

based conditional GANs . 178
6.5.3 Qualitative analysis of generated pianorolls 180
6.6.1 Total number of comparisons for each model pair 185
6.6.2 Results of Subjective Evaluation for Piano 186
6.6.3 Results of Subjective Evaluation for Guitar 188

xx

List of Tables

1 Μεταβλητές Παραμετροποίησης . 15
2 Παραμετροποιήσεις Πειραμάτων . 17
3 Objective μετρικές για διαφορετικές πειραματικές παραμετροποιήσεις 18
4 Intra-track Αξιολόγηση . 19
5 Inter-track Αξιολόγηση . 19
6 Intra-track Αξιολόγηση για Piano . 23
7 Inter-track Αξιολόγηση για Piano . 24
8 Επιπρόσθετη Intra-track Αξιολόγηση για Piano 24
9 Objective Αξιολόγηση για Guitar . 25

2.1 Comparative summary of the two convolution types (adapted from [74]) . 68

3.1 A summary of existing datasets (adapted from [122]) 107
3.2 Objective evaluation metrics without musical domain knowledge (partially

adapted from [122]) . 109
3.3 Objective evaluation metrics with musical domain knowledge (adapted

from [122]) . 111
3.4 Signature vectors (adapted from [122]) 112

5.1 Parameter Notation . 143
5.2 Shared Generator Gs . 143
5.3 Private Generator Gp . 143
5.4 Private Discriminator Dp . 144
5.5 Shared Discriminator Ds . 144
5.6 Experiment Configurations . 149
5.7 Metric values at marked points of training process 153
5.8 Inference objective metrics for different experiment configurations 156
5.9 Results of intra-track evaluation of the baseline models, as well as our

proposed framework. 158
5.10 Results of inter-track evaluation of the baseline models, as well as our

proposed framework . 158
5.11 Additional results on the evaluation of our proposed framework 159

6.1 Parameter Notation . 167
6.2 Shared Generator Gs . 168
6.3 Private Generator Gp . 168

xxi

List of Tables

6.4 Global Private Discriminator Dp . 168
6.5 Global Shared Discriminator Ds . 168
6.6 Local Private Discriminator Dp . 168
6.7 Local Shared Discriminator Ds . 169
6.8 Encoder E . 169
6.9 Decoder D . 169
6.10 Conditional Models . 175
6.11 Results of inter-track evaluation of the Piano-based models 181
6.12 Results of inter-track evaluation of the Piano-based models 182
6.13 Additional results on the evaluation of the Piano-based models 182
6.14 Results of objective evaluation of the Guitar-based models 183
6.15 Conditional Comparisons . 185

xxii

Chapter 0

Extended Greek Abstract

0.1 Εισαγωγή . 2

0.1.1 Ορισμός Ερευνητικού Προβλήματος 2

0.1.2 Συνεισφορές της παρούσης Διπλωματικής Εργασίας 4

0.2 Θεωρητικό Υπόβαθρο . 5

0.2.1 Συνελικτικά Νευρωνικά Δίκτυα . 5

0.2.2 Παραγωγικά Ανταγωνιστικά Δίκτυα 6

0.2.3 Αυτοκωδικοποιητές . 7

0.3 Baseline Project: MuseGAN . 8

0.3.1 Αρχιτεκτονική Συστήματος . 8

0.3.2 Δεδομένα Εκπαίδευσης . 11

0.3.3 Μετρικές Αξιολόγησης . 12

0.4 Unconditional Generation . 13

0.4.1 Μοντέλο . 13

0.4.2 Δεδομένα Εκπαίδευσης . 16

0.4.3 Εργαλεία Αξιολόγησης . 16

0.4.4 Πειράματα και Αποτελέσματα . 17

0.5 Conditional Generation . 20

0.5.1 Μοντέλο . 20

0.5.2 Πειράματα και Αποτελέσματα . 23

0.6 Σύνοψη και Μελλοντικές Επεκτάσεις 27

1

Chapter 0. Extended Greek Abstract

0.1 Εισαγωγή

0.1.1 Ορισμός Ερευνητικού Προβλήματος

Τα τελευταία χρόνια το επιστημονικό πεδίο της Μηχανικής Μάθησης αναπτύσσεται με ρα-
γδαίους ρυθμούς, καθιστώντας αναπόφευκτη την ενσωμάτωση της Τεχνητής Νοημοσύνης σε
ποικίλες πτυχές της ανθρώπινης καθημερινότητας. Η μοντελοποίηση της ανθρώπινης ευφυΐας
μέσω της σχεδίασης και υλοποίησης υπολογιστικών συστημάτων που δρουν αυτόνομα σημείωσε

σημαντική πρόοδο σε επίπεδο βασικών, ίσως και ενστικτωδών για τον άνθρωπο, λειτουργιών,
στρέφοντας έτσι το ενδιαφέρον της επιστημονικής κοινότητας στην προσπάθεια προσέγγισης

πιο παραγωγικών και δημιουργικών διαδικασιών. Μια εξ αυτών είναι και η σύνθεση μουσικής,
η οποία αποτελεί και το αντικείμενο της παρούσας Διπλωματικής Εργασίας.

Αυτόματη Σύνθεση Μουσικής

Η διαδικασία δημιουργίας νέων μουσικών κομματιών με αυτόματο τρόπο, δηλαδή με την
ελάχιστη δυνατή ανθρώπινη παρέμβαση.

Το βασικό κίνητρο πίσω από την εφαρμογή τεχνικών Μηχανικής Μάθησης για την επίλυση του

συγκεκριμένου ερευνητικού προβλήματος, έναντι άλλων μεθόδων που στηρίζονται κατά κύριο
λόγο στην ανάπτυξη κανόνων και ειδικευμένων γραμματικών, έγκειται στην ικανότητα των
μοντέλων Τεχνητής Νοημοσύνης να αντιμετωπίζουν με έναν αγνωστικό τρόπο την διαδικασία

σύνθεσης και συγχρόνως την εγγενώς πολύπλοκη δομή της μουσικής πληροφορίας. Αυτή,
λοιπόν, η γενικευμένη προσέγγιση συνιστά ένα πολύ σημαντικό εργαλείο στην μελέτη του
τρόπου με τον οποίο μια υπολογιστική μηχανή μπορεί να αντιληφθεί την μουσική, ως μορφή
έκφρασης διαφόρων εννοιών, ιδεών, εμπειριών, ακόμη και συναισθημάτων.

Σύμφωνα με τους Briot et al. [1], οι θεμελιώδεις πτυχές του προβλήματος υπολογιστικής
αυτοματοποίησης της σύνθεσης μουσικής είναι οι ακόλουθες:

• Στόχος Σύνθεσης: Αφορά κυρίως το είδος και την δομή του παραγόμενου μουσικού
περιεχομένου (π.χ. μονοφωνία, πολυφωνία, αντίστιξη, κ.λ.π), σε συνδυασμό με το πλαίσιο
χρήσης και εφαρμογής των αποτελεσμάτων που προκύπτουν (π.χ. εκτέλεση από άνθρωπο
ή μηχανή).

• Μουσική Αναπαράσταση: Γενικότερα, μια μουσική σύνθεση μπορεί να παρα-
σταθεί στο πλαίσιο λειτουργίας ενός υπολογιστικού συστήματος με ποικίλους τρόπους

κωδικοποίησης, όπως για παράδειγμα ως εικόνα, ως ηχητική πληροφορία ή ως κάποια
συμβολική μορφή ειδικής σημειογραφίας. ΄Ολες αυτές οι διαφορετικές μορφές αναπαρά-
στασης εξυπηρετούν και διαφορετικού είδους λειτουργικότητες.

• Αρχιτεκτονική Συστήματος: Ο όρος αυτός αναφέρεται στην εσωτερική δομή
του υπολογιστικού συστήματος που μοντελοποιεί την διαδικασία αυτόματης παραγωγής

μουσικών συνθέσεων. Οι σχεδιαστικές επιλογές ποικίλουν, καθώς εξαρτώνται άμεσα από
την μέθοδο αναπαράστασης της μουσικής πληροφορίας.

• Μέθοδος: Η στρατηγική εκπαίδευσης της υπολογιστικής μηχανής κατέχει καθοριστικό
ρόλο στην διαμόρφωση του εν λόγω ερευνητικού προβλήματος. Κατά κύριο λόγο περιλαμ-

2

0.1. Εισαγωγή

βάνει τον αλγόριθμο εκμάθησης αλλά και διάφορες επιπρόσθετες ρυθμιστικές παραμέτρους

που εμπλέκονται στην διαδικασία παραγωγής νέου μουσικού περιεχομένου.

• Λειτουργικό Πλαίσιο: Οι λειτουργικότητες που πλαισιώνουν την διαδικασία αυτό-
ματης σύνθεσης μουσικής καθορίζονται κατά κύριο λόγο από την συνολικότερη διαμόρ-

φωση του εξεταζόμενου προβλήματος. Συνήθως αφορούν κάποια ευρύτερα χαρακτηριστι-
κά του μοντέλου, όπως η μεταβλητότητα, ο βαθμός δημιουργικότητας και το επίπεδο
αλληλεπίδρασης με άλλα συστήματα ή ανθρώπινους χρήστες άμεσα ή έμμεσα.

Figure 0.1.1: Ιεραρχική δομή
ενός μουσικού κομματιού [2]

Η αυτόνομη δημιουργία μουσικών συνθέσεων αποτελεί αναμ-

φίβολα ένα ιδιαίτερα δύσκολο πρόβλημα στο πεδίο υπολογιστι-
κής μοντελοποίησης παραγωγικών λειτουργιών. Κατ’ αρχάς,
σε ανθρώπινο επίπεδο η σύλληψη νέων μουσικών ιδεών είναι

άμεσα συνδεδεμένη με σύνθετες υποκειμενικές εμπειρίες και

άλλες ασαφείς έννοιες, όπως τα συναισθήματα, οι οποίες δεν
μπορούν εύκολα να γίνουν αντιληπτές από μια μηχανή.

Μια ακόμη πρόκληση στο πλαίσιο του εν λόγω ερευνητικού

προβλήματος αφορά την κατά κάποιο τρόπο ιεραρχική δομή

που χαρακτηρίζει μια μουσική σύνθεση, η οποία αναπαρίσταται
γραφικά στην Εικόνα 0.1.1 [2]. ΄Εχει αποδειχθεί ότι ο αν-
θρώπινος εγκέφαλος κατά την ακρόαση μουσικής έχει την τάση

να επικεντρώνεται σε δομικά μοτίβα που σχετίζονται με την

συνοχή, τον ρυθμό, την ένταση και την συναισθηματική ροή [3, 4] και εμφανίζονται σε πολ-
λαπλές χρονικές κλίμακες [5]. Συνεπώς, ένας μηχανισμός μοντελοποίησης όλων αυτών των
χαρακτηριστικών αυτοαναφοράς αλλά και των διαφόρων χρονικών εξαρτήσεων ανάμεσα στις

δομικές μονάδες θεωρείται αναγκαίος.

Μια επιπρόσθετη δυσκολία προκύπτει από το γεγονός ότι οι μουσικές συνθέσεις συνήθως

αποτελούνται από πολλά και διαφορετικά μουσικά όργανα, καθένα από τα οποία διαθέτει τα δικά
του χαρακτηριστικά και τις αντίστοιχες δυναμικές, αλλά όλα μαζί εκτυλίσσονται συλλογικά
στον χρόνο κατά έναν αλληλένδετο τρόπο. Ακόμη, στο πλαίσιο της πολυφωνικής μουσικής, οι
φθόγγοι καθενός από τα εμπλεκόμενα tracks παρουσιάζονται κατά κύριο λόγο σε διάφορους
δομικούς σχηματισμούς, όπως συγχορδίες ή arpeggios, εισάγοντας επιπλέον αρμονικές εξαρτή-
σεις. ΄Ολες αυτές, λοιπόν, οι αλληλοσυσχετίσεις, οι οποίες κατέχουν καθοριστικό ρόλο στην
διαμόρφωση του τελικού ακούσματος, δεν μπορούν εύκολα να μοντελοποιηθούν από ένα υπο-
λογιστικό σύστημα, ειδικότερα στην περίπτωση μιας αγνωστικής προσέγγισης.

Τέλος, η διαδικασία αξιολόγησης των μοντέλων παραγωγής μουσικής αποτελεί ένα ακόμη ιδι-
αίτερα σημαντικό ζήτημα. Από την μία πλευρά, έννοιες όπως η επίδοση και η βελτίωσή της
δεν μπορούν να οριστούν με σαφήνεια σε σχέση με την ποιότητα των παραγόμενων αποτε-

λεσμάτων, καθιστώντας μεθόδους, οι οποίες στηρίζονται στην χρήση αντικειμενικών μετρικών,
ιδιαίτερα προβληματικές. Από την άλλη πλευρά, πρακτικές αξιολόγησης, οι οποίες βασίζονται
κατά κύριο λόγο στην ανθρώπινη κρίση, θεωρούνται πιο προτιμητέες. Ωστόσο, χωρίς ομοφωνία
ως προς την έννοια της δημιουργικότητας αλλά και δεδομένης της υποκειμενικής αντίληψης

ως προς την μουσική, η οποία δεν μπορεί να περιγραφεί μέσω κανόνων [6], η σχεδίαση ενός
ακουστικού πειράματος που δύναται να οδηγήσει σε αξιόπιστα επιστημονικά τεκμήρια, ενέχει
αρκετές προκλήσεις.

3

Chapter 0. Extended Greek Abstract

0.1.2 Συνεισφορές της παρούσης Διπλωματικής Εργασίας

Στο πλαίσιο της παρούσης Διπλωματικής Εργασίας εξετάζουμε δύο διαφορετικές προσεγγίσεις

ως προς την αυτόματη δημιουργία νέου μουσικού περιεχομένου, κάνοντας χρήση Τεχνητών
Νευρωνικών Δικτύων και εφαρμόζοντας μεθόδους Μηχανικής Μάθησης. ΄Ετσι, λοιπόν, οι
συνεισφορές μας μπορούν να διαχωριστούν σε δύο μέρη ως εξής:

Unconditional Generation

• Βασιζόμενοι στο MuseGAN [2], αναπτύσσουμε ένα μοντέλο αυτόματης παραγωγής
πολυφωνικών μουσικών φράσεων σε συμβολική αναπαράσταση, αποτελούμενων από 5
μουσικά όργανα: Drums, Piano, Guitar, Bass και Strings. Στην περίπτωση αυτή, η δι-
αδικασία σύνθεσης δεν υπόκειται σε επιπλέον περιορισμούς, ούτε στηρίζεται σε συμπληρω-
ματικά δεδομένα.

• Παραμετροποιούμε την υλοποίησή μας ως προς ένα σύνολο μεταβλητών που αφορούν
μουσικά χαρακτηριστικά των παραγόμενων φράσεων, επιφέροντας έτσι μια τροποποίηση
στην εσωτερική δομή των δικτύων που απαρτίζουν το σύστημά μας ανάλογα με την επι-

θυμητή έξοδο.

• Ενσωματώνουμε στο μοντέλο μας μηχανισμούς για καλύτερη παρακολούθηση και έλεγχο
της διαδικασίας εκπαίδευσης.

• Αναπτύσσουμε μια εναλλακτική υλοποίηση των ήδη υπαρχόντων μουσικών μετρικών και
στην συνέχεια επεκτείνουμε το σύστημα αξιολόγησής μας με 3 νέες προσθήκες, οι οποίες
επικεντρώνονται σε τονικά χαρακτηριστικά και άλλα στοιχεία μουσικής υφής.

• Εκτελούμε ένα σύνολο πειραμάτων που στηρίζονται σε διαφορετικές παραμετροποιήσεις
και χρησιμοποιούμε τις ποσοτικές μας μετρικές για την αξιολόγηση των αποτελεσμάτων.

• Διεξάγουμε μια ποιοτική μελέτη στην μορφή ακουστικού πειράματος με 40 συμμετέχοντες
και αποδεικνύουμε ότι το μοντέλο μας σημειώνει σημαντικά καλύτερη επίδοση από το

baseline όσον αφορά 3 μουσικά κριτήρια: Musical Naturalness, Harmonic Consistency
και Musical Coherence.

Conditional Generation

• Επεκτείνουμε το μοντέλο μας σε ένα συνεργατικό πλαίσιο ανθρώπου-μηχανής προς την
κατεύθυνση της αυτόματης παραγωγής μουσικής συνοδείας: δεδομένου ενός από τα ε-
μπλεκόμενα tracks (προερχόμενου από ανθρώπινη μουσική σύνθεση), το σύστημά μας
παράγει αυτόματα τα υπόλοιπα 4, θεωρώντας τα ως την ρυθμική και αρμονική του συνο-
δεία.

• Πειραματιζόμαστε με διάφορες παραλλαγές του μοντέλου μας, οι οποίες διαφοροποιούνται
ως προς τις δομικές συνιστώσες που απαρτίζουν το σύστημα, τον αλγόριθμο εκπαίδευσης
και το είδος του conditional οργάνου, δηλαδή εκείνου που αποτελεί την βάση της δι-
αδικασίας σύνθεσης.

• Αξιολογούμε τα προκύπτοντα αποτελέσματα, κάνοντας χρήση του συστήματος μουσικών
μετρικών αλλά και της ποιοτικής μελέτης μέσω του ακουστικού πειράματος. Με αυτό
τον τρόπο εξάγουμε ενδιαφέροντα συμπεράσματα σχετικά με την επίδραση των διαφόρων

τροποποιήσεων στην ποιότητα και την μουσικότητα των παραγόμενων συνοδειών.

4

https://salu133445.github.io/musegan/

0.2. Θεωρητικό Υπόβαθρο

0.2 Θεωρητικό Υπόβαθρο

Στην συνέχεια, θα εξετάσουμε συνοπτικά ορισμένα βασικά εργαλεία, τα οποία αποτελούν τα
θεμέλια της προσέγγισής μας στο ερευνητικό πρόβλημα της Αυτόματης Παραγωγής Μουσικής.

0.2.1 Συνελικτικά Νευρωνικά Δίκτυα

Ο όρος Τεχνητό Νευρωνικό Δίκτυο αναφέρεται σε ένα υπολογιστικό σύστημα επεξεργασίας

δεδομένων, το οποίο προσομοιώνει την λειτουργία του ανθρώπινου εγκεφάλου. Πρόκειται στην
ουσία για ένα δίκτυο διασυνδεδεμένων δομικών μονάδων που ονομάζονται νευρώνες και είναι

τοπολογικά οργανωμένοι σε επίπεδα. Κατ’ αντιστοιχία με το βιολογικό πρότυπο, κάθε τεχνητός
νευρώνας λαμβάνει ένα σύνολο αριθμητικών εισόδων από άλλους κόμβους του δικτύου, τις
οποίες μετασχηματίζει βάσει ενός γραμμικού συνδυασμού με ανάλογα βάρη και ύστερα από την

εφαρμογή μιας μη-γραμμικής συνάρτησης ενεργοποίησης παράγει την τελική έξοδο, η οποία
τροφοδοτείται στην συνέχεια σε άλλους νευρώνες του δικτύου. Το βασικό χαρακτηριστικό
των Τεχνητών Νευρωνικών Δικτύων έγκειται στην δυνατότητα εκπαίδευσής τους μέσα από

μια διαδικασία μηχανικής μάθησης, η οποία στοχεύει στην σταδιακή βελτίωση της ικανότητάς
τους να επιλύουν κάποιο συγκεκριμένο πρόβλημα. Σε επίπεδο υλοποίησης, αυτό επιτυγχάνεται
μέσω ενός αλγορίθμου ακολουθιακού υπολογισμού των μεταβολών των βαρών κάθε νευρώνα

του δικτύου, ο οποίος καλείται Backpropagation.

Figure 0.2.1: Αρχιτεκτονική Συνελικτικού Νευρωνκού Δικτύου σε σύγκριση με την γενική
περίπτωση [7]

Τα Συνελικτικά Νευρωνικά Δίκτυα (CNNs) αποτελούν μία κατηγορία Τεχνητών Νευρωνικών
Δικτύων ειδικά σχεδιασμένων για την επεξεργασία και την ανάλυση δεδομένων που χαρακτηρί-

ζονται από κάποιου είδους χωρική τοπολογία πλέγματος και αναπαρίστανται συνήθως με την

μορφή γενικευμένων πινάκων. Η λειτουργία τους βασίζεται στον μηχανισμό του βιολογικού
συστήματος όρασης, ο οποίος είναι άμεσα συνδεδεμένος με την έννοια του πεδίου υποδοχής
(receptive field). Σύμφωνα με τους Levine και Shefner [8], ένα πεδίο υποδοχής ορίζεται ως “μία
περιοχή στην οποία ο οπτικός ερεθισμός οδηγεί σε αντίδραση ενός συγκεκριμένου αισθητήριου

νευρώνα”. Στο υπολογιστικό, λοιπόν, μοντέλο, η τοπολογική περιοχή της εισόδου που αντι-
στοιχεί στις αισθητήριες συνδέσεις κάθε κόμβου οριοθετείται από μια συγκεκριμένη δομή, η
οποία ονομάζεται πυρήνας ή φίλτρο και εμπεριέχει στην ουσία τα βάρη των συνδέσεων. Νευρώνες
με επικαλύπτοντα τοπικά πεδία υποδοχής ως προς την ίδια είσοδο διατάσσονται στο χώρο σε

επίπεδα 3-διάστατων υπολογιστικών όγκων, κατ’ αναλογία με τις κλάσεις οπτικών κυττάρων
στον φλοιό του ανθρώπινου ματιού, οι οποίες επιτελούν στην ουσία την διαδικασία εξαγωγής
χαρακτηριστικών από το οπτικό ερέθισμα.

5

Chapter 0. Extended Greek Abstract

Figure 0.2.2: Συνέλιξη [9]

Η αλληλεπίδραση μεταξύ ενός φίλτρου και του γενικευμένου πί-

νακα εισόδου μοντελοποιείται υπολογιστικά με την πράξη της

συνέλιξης. ΄Οπως φαίνεται και στην Εικόνα 0.2.2, κάθε τιμή της
τοπολογίας εξόδου, η οποία αποτελεί τον επονομαζόμενο χάρτη
χαρακτηριστικών (feature map), προκύπτει ως το άθροισμα των
στοιχείων του αντίστοιχου πεδίου υποδοχής σταθμισμένο κατά

το διάνυσμα βαρών του εφαρμοζόμενου πυρήνα. Η διαδικασία
αυτή, στην γενικότερη περίπτωση, επιφέρει διαστατική μείωση
της εισόδου. Ωστόσο, έχουν αναπτυχθεί διάφορες παραλλαγές
του τυπικού συνελικτικού τελεστή, οι οποίες στοχεύουν σε διαφορετικούς χωρικούς μετασχη-
ματισμούς του αρχικού πλέγματος. Μια εξ αυτών αποτελεί και η λεγόμενη transposed συνέλιξη,
η οποία επιτυγχάνει την δημιουργία ενός μεγαλύτερων διαστάσεων χάρτη χαρακτηριστικών,
μέσω της εφαρμογής της κλασσικής μεθόδου σε μια κατάλληλα επαυξημένη εκδοχή του πίνακα

εισόδου.

0.2.2 Παραγωγικά Ανταγωνιστικά Δίκτυα

Τα Παραγωγικά Ανταγωνιστικά Δίκτυα (Generative Adversarial Networks) αποτελούν μια
κατηγορία υπολογιστικών συστημάτων Μηχανικής Μάθησης, τα οποία, όπως μαρτυρά και η ονο-
μασία, στηρίζονται σε ένα μηχανισμό ανταγωνιστικής εκπαίδευσης 2 ανεξάρτητων νευρωνικών
δικτύων με στόχο την στατιστική μοντελοποίηση της κατανομής ενός δοθέντος συνόλου δε-

δομένων. Πιο συγκεκριμένα:

• Generator: Το παραγωγικό δίκτυο G δημιουργεί νέα υποψήφια δείγματα, μετασχηματί-
ζοντας ένα διάνυσμα τυχαίου θορύβου z, το οποίο προέρχεται από έναν λανθάνοντα χώρο
pz, στην μορφή των δεδομένων της επιθυμητής κατανομής. Στην ουσία, το δίκτυο αυτό
αποτελεί την υπολογιστική υλοποίηση μιας παραμετρικής συνάρτησης G = G(z; θg), η
οποία απεικονίζει στοιχεία της κατανομής εισόδου pz σε δείγματα της κατανομής εξόδου
pg.

• Discriminator: Το διαχωριστικό δίκτυο D αξιολογεί τα δεδομένα x που λαμβάνει ως
είσοδο, προβλέποντας την κλάση στην οποία ανήκουν (αυθεντικά ή όχι). Κατ’ αντι-
στοιχία με τον αντίπαλό του, το δίκτυο αυτό αποτελεί την υπολογιστική υλοποίηση μια
παραμετρικής συνάρτησης D = D(x; θd), η οποία αντιστοιχίζει τα δείγματα εισόδου x σε
πραγματικές τιμές στο διάστημα [0, 1]. Στην ουσία, η έξοδος D(x) αντιπροσωπεύει την
πιθανότητα το x να προέρχεται από την κατανομή των πραγματικών δεδομένων pd έναντι
της pg.

Η λειτουργία του συνολικού συστήματος, η οποία αναπαρίσταται διαγραμματικά στην εικόνα
0.2.3, μπορεί να μοντελοποιηθεί ως ένα παίγνιο αντιπαραθετικής μάθησης μεταξύ των δύο α-
ντίπαλων μοντέλων, του Generator και του Discriminator. Μαθηματικά, η εν λόγω διαδικασία
αποτυπώνεται στην ακόλουθη minimax συνάρτηση V , όπου E είναι ο τελεστής αναμενόμενης
τιμής:

min
G

max
D

V (G,D) = Ex∼pd [log (D(x))] + Ez∼pz [log (1−D(G(z)))] (0.2.1)

Παρατηρώντας την σχέση 0.2.1, διαπιστώνουμε ότι ο Generator στοχεύει στην ελαχιστοποίηση

6

0.2. Θεωρητικό Υπόβαθρο

του όρου log (1−D(G(z))), η οποία συνεπάγεται ότι ο Discriminator δεν μπορεί να αναγνω-
ρίσει τα υποψήφια δείγματα που παράγει ως μη αυθεντικά, δηλαδή D(G(z)) ≈ 1. Με αυτό
τον τρόπο, το παραγωγικό δίκτυο ωθείται στην ουσία σε μια προσπάθεια έμμεσης ανίχνευσης
υποκείμενων γνωρισμάτων της επιθυμητής κατανομής δεδομένων, προκείμενου να καταφέρει να
“ξεγελάσει” το αντίπαλο μοντέλο. Παράλληλα, ο Discriminator επιδιώκει την μεγιστοποίηση
του αθροίσματος των δύο όρων log (D(x)) + log (1−D(G(z))), έτσι ώστε να μάθει να κατη-
γοριοποιεί σωστά και τα αυθεντικά (D(x)) αλλά και τα συνθετικά δείγματα (D(G(z))) που
εξετάζει.

Figure 0.2.3: Παραγωγικό Ανταγωνιστικό Δίκτυο [10]

Σε κάθε βήμα του επαναληπτικού αλγορίθμου εκπαίδευσης, οι επιδόσεις των δύο εμπλεκόμενων
μοντέλων ως προς τους ατομικούς τους στόχους καθορίζονται από τους προαναφερθέντες όρους

της σχέσης 0.2.1, οι οποίοι στην ουσία αφορούν τις αποφάσεις του Discriminator σχετικά με
την κλάση ταξινόμησης των ανάλογα εξεταζόμενων δειγμάτων. Βάσει των προβλέψεων αυτών,
υπολογίζονται, μέσω μιας κατάλληλα επιλεγμένης συνάρτησης κόστους, οι αναγκαίες μεταβολές
των βαρών για κάθε ένα από τα διαγωνιζόμενα δίκτυα και πραγματοποιείται η ενημέρωσή τους

σύμφωνα με την μέθοδο οπισθοδιάδοσης (Backpropagation). Η διαδικασία αυτή τερματίζε-
ται όταν επιτευχθεί η επονομαζόμενη Ισορροπία Nash [11], δηλαδή όταν η απόδοση των δύο
αντίπαλων μοντέλων δεν μπορεί πλέον να βελτιωθεί περαιτέρω. Αυτό ιδανικά συμβαίνει όταν
το classification rate του Discriminator προσεγγίσει το 50%, το οποίο ισοδυναμεί με τυχαίες
προβλέψεις όσον αφορά την κλάση προέλευσης των εξεταζόμενων δειγμάτων και επομένως

συνεπάγεται ότι ο αντίστοιχος Generator είναι σε θέση να δημιουργεί νέα συνθετικά δεδομένα
που δεν μπορούν να διακριθούν από τα πραγματικά. Ωστόσο, στην πράξη η κατάσταση σύ-
γκλισης σε ένα τέτοιας μορφής πλαίσιο μάθησης δεν μπορεί εύκολα να καθοριστεί και γι’ αυτό
παραμένει ανοιχτό πρόβλημα.

0.2.3 Αυτοκωδικοποιητές

Ο αυτοκωδικοποιητής (autoencoder) είναι ένας τύπος Τεχνητού Νευρωνικού Δικτύου, ο οποίος
χρησιμοποιείται για εξαγωγή κωδικοποιημένων αναπαραστάσεων από δεδομένα που δεν επιση-

μειωμένα με κάποιου είδους ετικέτα. Η διαδικασία αυτή λαμβάνει χώρα σε ένα μη επιβλεπόμενο
πλαίσιο μάθησης, στο οποίο οι παραγόμενες κωδικοποιήσεις επικυρώνονται και βελτιώνονται
επαναληπτικά βάσει της ποιότητας ανακατασκευής της αρχικής εισόδου, σύμφωνα με την γνω-
στό αλγόριθμο οπισθοδιάδοσης (Backpropagation). ΄Οπως φαίνεται και στο διάγραμμα της
Εικόνας 0.2.4, ένας αυτοκωδικοποιητής αποτελείται από δύο βασικές δομικές μονάδες:

7

Chapter 0. Extended Greek Abstract

• Encoder: Ο κωδικοποιητής μετασχηματίζει τα δεδομένα εισόδου σε μια συμπιεσμένη
μορφή, γνωστή και ως code. Πιο συγκεκριμένα, το αρχικό διάνυσμα x διαβαίνει μέσα από
μια σειρά νευρωνικών επιπέδων, τα οποία επιφέρουν σταδιακή μείωση της διαστατικότητάς
του, καταλήγοντας σε ένα bottleneck. Το κρυφό αυτό επίπεδο απαρτίζεται κατά κανόνα
από λιγότερους κόμβους συγκριτικά με το επίπεδο εισόδου, περιορίζοντας με αυτό τον
τρόπο την πληροφορία που διασχίζει το συνολικό δίκτυο. ΄Ετσι, λοιπόν, δημιουργείται μια
χαμηλότερης τάξης αναπαράσταση της εισόδου σε ένα λανθάνοντα χώρο.

• Decoder: Ο αποκωδικοποιητής δρα ως “διερμηνέας” της παραγόμενης κωδικοποίησης,
αποσυμπιέζοντας αυτή την κρυφή αναπαράσταση σε ένα διάνυσμα του χώρου εισόδου

x′. Με αυτό τον τρόπο, επιχειρεί στην ουσία να ανακατασκευάσει τα αρχικά δεδομένα,
αξιοποιώντας τα στοιχεία που παρέχει η αντίστοιχη λανθάνουσα κωδικοποίηση. Δομικά
ο αποκωδικοποιητής συνήθως αντικατοπτρίζει την αρχιτεκτονική του κωδικοποιητή, υπό
την έννοια ότι αποτελείται από τα συμπληρωματικά νευρωνικά επίπεδα, τα οποία επιφέρουν
σταδιακή διαστατική αύξηση, διατεταγμένα σε αντίστροφη σειρά.

Figure 0.2.4: Αυτοκωδικοποιητής [12]

0.3 Baseline Project: MuseGAN

Figure 0.3.1: MuseGAN
tracks [13]

ΤοMuseGAN, το οποίο αποτελεί την συντομογραφία τουMulti-
track sequential Generative Adversarial Network, είναι, όπως
μαρτυρά και η ονομασία, ένα υπολογιστικό σύστημα αυτόματης
παραγωγής πολυφωνικής μουσικής, αποτελούμενης από 5 δι-
αφορετικά όργανα (Bass, Guitar, Strings, Drums, Piano), σε
συμβολική αναπαράσταση. Το project1

αυτό προτάθηκε από τους

Dong at al. [2] στο Association for the Advancement of Arti-
ficial Intelligence (AAAI) Conference το 2018 και στηρίζεται
στον μηχανισμό των Παραγωγικών Ανταγωνιστικών Δικτύων

(GANs).

0.3.1 Αρχιτεκτονική Συστήματος

Η αρχιτεκτονική του MuseGAN αποτελείται από δύο κύρια μέρη: ένα multitrack μοντέλο,
το οποίο επικεντρώνεται στις αλληλεξαρτήσεις μεταξύ των διαφόρων μουσικών οργάνων και

1
Ο κώδικας της υλοποίησης, το dataset που χρησιμοποιήθηκε για την εκπαίδευση του μοντέλου, αλλά και

ορισμένα ηχητικά αποσπάσματα είναι διαθέσιμα στην ιστοσελίδα του MuseGAN

8

https://salu133445.github.io/musegan/

0.3. Baseline Project: MuseGAN

ένα temporal μοντέλο, το οποίο διαχειρίζεται τις εμπλεκόμενες χρονικές συσχετίσεις. Πιο
συγκεκριμένα:

Multitrack μοντέλα

Σύμφωνα με την ανθρώπινη εμπειρία, υπάρχουν δύο επικρατούσες προσεγγίσεις όσον αφορά την
διαδικασία δημιουργίας νέων μουσικών συνθέσεων:

• ΄Ενα σύνολο μουσικών που παίζουν διαφορετικά όργανα μπορούν να δημιουργήσουν νέο
μουσικό περιεχόμενο σε ένα συνεργατικό πλαίσιο, αυτοσχεδιάζοντας ο καθένας πάνω στο
δικό του track χωρίς κάποιο προκαθορισμένο διακανονισμό ή εκτενή προετοιμασία.

• ΄Ενας συνθέτης δημιουργεί μουσική σε ένα πιο συντονισμένο αλλά και δομημένο πλαίσιο,
έχοντας γνώση των αρχών αρμονίας και ενορχήστρωσης. Στην συνέχεια, οι μουσικοί που
απαρτίζουν την ορχήστρα εκτελούν χωρίς παρεκκλίσεις τα αντίστοιχα μουσικά μέρη της

σύνθεσης, τα οποία είναι οργανωμένα με τρόπο που εξασφαλίζει αρμονική συμφωνία και
συνοχή.

(a) Jamming Model (b) Composer Model (c) Hybrid Model

Figure 0.3.2: Multi-track models [2]

Βάσει των προαναφερθεισών τεχνικών σύνθεσης, οι Dong et al. [2] σχεδιάζουν 3 διαφορετικά
μοντέλα για τις αλληλεξαρτήσεις μεταξύ των εμπλεκόμενων οργάνων:

• Jamming model: Στο πλαίσιο του Jamming μοντέλου, πολλαπλά Παραγωγικά Α-
νταγωνιστικά Δίκτυα λειτουργούν ανεξάρτητα με στόχο την δημιουργία πολυοργανικής

μουσικής. Πιο συγκεκριμένα, κάθε Generator Gi παράγει μουσικές φράσεις που αντι-

στοιχούν σε ένα συγκεκριμένο track από ένα ιδιωτικό τυχαίο διάνυσμα εισόδου zi και
λαμβάνει εποπτικά σήματα οπισθοδιάδοσης από τον αντίστοιχο Discriminator Di.

• Composer model: Στο πλαίσιο του Composer μοντέλου, ένας ενιαίος Generator G
παράγει πολυκαναλικά μουσικά αποσπάσματα, όπου το κάθε κανάλι αντιστοιχεί σε ένα
από τα εμπλεκόμενα tracks. Η δομή αυτή απαιτεί ένα κοινό τυχαίο διάνυσμα εισόδου
z, το οποίο κατά κάποιο τρόπο αντιπροσωπεύει το πλάνο του συνθέτη, αλλά και ένα
μοναδικό Discriminator, ο οποίος εξετάζει τα παραγόμενα μουσικά τμήματα συλλογικά,
προκειμένου να αποφανθεί για την αυθεντικότητα της σύνθεσης.

• Hybrid model: Το hybrid μοντέλο, όπως υποδεικνύει και η ονομασία, αποτελεί ένα
συνονθύλευμα των προαναφερθέντων αρχιτεκτονικών, το οποίο συνδυάζει σε επίπεδο
υλοποίησης τον αυτοσχεδιασμό στο πλαίσιο του jamming με την οργάνωση και τον συ-
ντονισμό που επιβάλλει ένας συνθέτης. ΄Οπως φαίνεται και στην εικόνα 0.3.2c, απαρτίζεται
από πολλαπλούς Generators, κάθε ένας εκ των οποίων αντιστοιχεί σε ένα διαφορετικό
track και ένα μοναδικό Discriminator. Κάθε Generator Gi λαμβάνει ως είσοδο ένα ιδι-

ωτικό (intra-track) τυχαίο διάνυσμα zi, το οποίο αφορά το μουσικό μέρος του αντί-

9

Chapter 0. Extended Greek Abstract

στοιχου οργάνου και ένα κοινό (inter-track) τυχαίο διάνυσμα z, το οποίο συντονίζει τους
διάφορους μουσικούς Gi όπως ένας συνθέτης. Ο Discriminator D εξετάζει τα παραγό-
μενα μουσικά τμήματα συλλογικά, προκειμένου να αποφανθεί για την αυθεντικότητα της
συνολικής σύνθεσης.

Temporal μοντέλα

΄Ολα ταmulti-track μοντέλα που παρουσιάστηκαν προηγουμένως παράγουν πολυφωνική μουσική
με χρονική διάρκεια ενός μέτρου, το οποίο αποτελεί και το βασικό δομικό στοιχείο των συν-
θέσεων γενικότερα. Προκειμένου λοιπόν να γίνει εφικτή η δημιουργία μουσικών δειγμάτων
μεγαλύτερης χρονικής διάρκειας όπου τα διαδοχικά μέτρα συνδέονται μεταξύ τους με συνεπή

τρόπο, οι δημιουργοί του MuseGAN [2] εφαρμόζουν 2 διαφορετικές μεθόδους για την μο-
ντελοποίηση της χρονικής δομής:

• Generation from Scratch: Αυτή η μέθοδος στοχεύει στην δημιουργία μουσικών
φράσεων καθορισμένου μήκους, εντάσσοντας την διαδοχή των μέτρων στο workflow του
Generator με την μορφή μιας επιπρόσθετης διάστασης [14]. Πιο συγκεκριμένα, σε αυτή
την περίπτωση το παραγωγικό δίκτυο αποτελείται από δύο μέρη:

– Temporal Structure Generator: Ο Gtemp μετασχηματίζει ένα τυχαίο διάνυσμα εισό-

δου z σε μια ακολουθία λανθανόντων μεταβλητών #»z = { #»z (t)}Tt=1 (το T > 0
συμβολίζει τον συνολικό αριθμό παραγόμενων μέτρων), η οποία αναμένεται να
ενσωματώνει πληροφορία σχετικά με χρονικές συσχετίσεις.

– Bar Generator: Ο Gbar μετασχηματίζει την προκύπτουσα ακολουθία μεταβλητών
#»z

σε μια μουσική φράση T μέτρων με διαδοχικό τρόπο (bar by bar).

• Track-conditional Generation: Στο πλαίσιο της μεθόδου αυτής, ένα από τα εμπλεκό-
μενα tracks δίνεται ως είσοδος στο μοντέλο, το οποίο καλείται να παράξει αυτόματα τα
υπόλοιπα, θεωρώντας τα ως την αρμονική και ρυθμική του συνοδεία. Πιο συγκεκριμένα,
στην περίπτωση αυτή, το παραγωγικό δίκτυο αποτελείται στην ουσία από τον Gbar, ο
οποίος παράγει τα διαδοχικά μέτρα της συνοδείας με ακολουθιακό τρόπο, λαμβάνοντας σε
κάθε βήμα δύο εισόδους, το conditional track #»y (t)

και το τυχαίο διάνυσμα z(t), όπου t είναι
ο δείκτης του τρέχοντος μέτρου. Ωστόσο, επειδή η ακολουθία μεταβλητών #»y = { #»y (t)}Tt=1

αναπαρίσταται σε ένα χώρο υψηλών διαστάσεων, ενσωματώνεται στην αρχιτεκτονική του
συστήματος ένας κωδικοποιητής, ο οποίος μετασχηματίζει το conditional track σε ένα
embedding στον χώρο του θορύβου, εξάγοντας inter-track χαρακτηριστικά από την high-
order μορφή του [15].

(a) Generation from Scratch (b) Track-conditional Generation

Figure 0.3.3: Temporal models [2]

10

0.3. Baseline Project: MuseGAN

MuseGAN

Το MuseGAN είναι στην ουσία το αποτέλεσμα της ενοποίησης και επέκτασης των προαναφερ-
θέντων multi-track και temporal μοντέλων. Η συνολική αρχιτεκτονική του συστήματος ανα-
παρίσταται γραφικά στο διάγραμμα της εικόνας 0.3.4. ΄Ολες οι δομικές του συνιστώσες εί-
ναι υλοποιημένες ως βαθιά Συνελεκτικά Νευρωνικά Δίκτυα, εκ των οποίων τα διαχωριστικά
αποτελούνται από τυπικά συνελικτικά επίπεδα που επιφέρουν διαστατική μείωση της εκάστοτε

εισόδου, ενώ τα παραγωγικά από transposed συνελικτικά επίπεδα που επιτυγχάνουν το αντί-
στροφο αποτέλεσμα.

Figure 0.3.4: MuseGAN [13]

0.3.2 Δεδομένα Εκπαίδευσης

Μέθοδος Αναπαράστασης

Δεδομένου ότι τα CNNs προορίζονται για επεξεργασία δεδομένων στην μορφή γενικευμένων
πινάκων καθορισμένου μεγέθους, τα μουσικά κομμάτια που χρησιμοποιούνται για την εκπαίδευση
του MuseGAN αναπαρίστανται σε μια μορφή γραφικής παρτιτούρας συμβολικού format, η οποία
καλείται pianoroll. Πρόκειται στην ουσία για ένα πίνακα δυαδικών τιμών, όπου ο οριζόντιος
άξονας αντιπροσωπεύει τον αυξάνοντα χρόνο βάσει μιας συγκεκριμένης διακριτοποίησης, ενώ ο
κατακόρυφος τους διάφορους φθόγγους ταξινομημένους ανάλογα με το τονικό ύψος. Η δυαδική
τιμή 1 στο κελί [i, j] του εν λόγω πίνακα υποδεικνύει ότι η νότα i εκτελείται στο timestep j.

(a) Pianoroll format με συμβολικό timing (b) Muti-track pianoroll format

Figure 0.3.5: Αναπαράσταση μουσικών δεδομένων [13]

Εύκολα μπορεί κανείς να διαπιστώσει ότι η συγκεκριμένη μέθοδος μπορεί να αναπαραστήσει

πολυφωνική μουσική που αντιστοιχεί σε ένα μοναδικό track. Προκειμένου λοιπόν να είναι

11

Chapter 0. Extended Greek Abstract

εφικτή η μοντελοποίηση μουσικής που αποτελείται από πολλά διαφορετικά όργανα, οι Dong et
al. [2] χρησιμοποιούν την multi-track pianoroll αναπαράσταση. ΄Οπως φαίνεται και στο σχήμα
0.3.5b, ένα multi-track pianoroll είναι ένα σύνολο πολλαπλών pianorolls, κάθε ένα εκ των
οποίων αντιστοιχεί σε κάποιο track.

Dataset

Τα μουσικά αποσπάσματα που χρησιμοποιούνται για την εκπαίδευση του MuseGAN, προέρχο-
νται από το Lakh MIDI Dataset (LMD) [16], μια από τις μεγαλύτερες συλλογές μουσικής σε
συμβολική αναπαράσταση, η οποία δημιουργήθηκε από τον Colin Raffel και περιλαμβάνει 176.581
μοναδικάMIDI αρχεία.2 Πιο συγκεκριμένα, γίνεται χρήση ενός συγκεκριμένου υποσυνόλου του,
το οποίο ονομάζεται LMD-matched και αποτελείται από 45.129 αρχεία που έχουν αντιστοιχηθεί
με καταχωρήσεις του Million Song Dataset (MSD) [17]. Το τελικό σύνολο παραδειγμάτων
εκπαίδευσης, ύστερα από την μετατροπή των MIDI αρχείων σε multi-track pianorolls, καλείται
Lakh Pianoroll Dataset ή LPD εν συντομία και μπορεί να βρεθεί στην ιστοσελίδα3 του
project.

Προεπεξεργασία Δεδομένων

Τα δεδομένα του LMD-matched υπόκεινται σε μια κατάλληλη διαδικασία προεπεξεργασίας, τα
βήματα της οποίας απεικονίζονται γραφικά στο Διάγραμμα 0.3.6. Το τελικό σύνολο εκπαίδευσης
αποτελείται από 50.266 μουσικές φράσεις 4 μέτρων, καθένα εκ των οποίων αντιστοιχεί χρονικά
σε 96 διακριτά timesteps και έχει εμβέλεια 84 διαφορετικών νοτών.

Figure 0.3.6: Προεπεξεργασία Δεδομένων Εκπαίδευσης [2]

0.3.3 Μετρικές Αξιολόγησης

Στο πλαίσιο της πειραματικής αξιολόγησης του MuseGAN, οι Dong et al. [2] προτείνουν
1 intra-track και 4 inter-track ποσοτικές μετρικές που αφορούν μουσικά χαρακτηριστικά και
μπορούν να υπολογιστούν τόσο για αυθεντικά όσο και για παραγόμενα δείγματα:

• Empty Bars (EB): ποσοστό κενών μέτρων (%)

• Used Pitch Classes (UPC): μέσος αριθμός τονικών τάξεων4 που χρησιμοποιούνται
ανά μέτρο (από 0 έως 12)

2
΄Ενα MIDI αρχείο εμπεριέχει στην ουσία ένα σύνολο εντολών που μπορούν να εκτελεστούν από διάφορες

ηλεκτρονικές συσκευές, παράγοντας το αντίστοιχο ηχητικό αποτέλεσμα.
3https://salu133445.github.io/lakh-pianoroll-dataset/dataset
4
Μια τονική τάξη (pitch class) ορίζεται ως το σύνολο όλων των νοτών που απέχουν μεταξύ τους έναν ακέραιο

αριθμό οκτάβων.

12

https://en.wikipedia.org/wiki/MIDI
https://salu133445.github.io/lakh-pianoroll-dataset/dataset
https://en.wikipedia.org/wiki/Pitch_class

0.4. Unconditional Generation

• Qualified Notes (QN): ποσοστό “qualified” νοτών5 (%)

• Drum Pattern (DP): ποσοστό νοτών σε μοτίβα ρυθμού 4/46 (%)

• Tonal Distance (TD): αρμονικότητα μεταξύ δύο μουσικών οργάνων7

0.4 Unconditional Generation

Ο όρος “Unconditional Generation” αναφέρεται στην διαδικασία αυτόματης δημιουργίας νέου
μουσικού περιεχομένου από το μηδέν, δηλαδή χωρίς κάποια πρότερη γνώση ή συμπληρωματική
πληροφορία σχετικά με τα παραγόμενα δείγματα. Η συγκεκριμένη μέθοδος παραγωγής αποτελεί
την αρχική μας προσέγγιση στο ερευνητικό πρόβλημα της Αυτόματης Σύνθεσης Μουσικής όσον

αφορά το πλαίσιο της παρούσης Διπλωματικής Εργασίας.

0.4.1 Μοντέλο

Στηριζόμενοι στο MuseGAN, αναπτύσσουμε ένα μοντέλο αυτόματης παραγωγής πολυφωνικών
μουσικών φράσεων σε συμβολική αναπαράσταση, αποτελούμενων από 5 μουσικά όργανα
(Drums, Piano, Guitar, Bass και Strings). Πιο συγκεκριμένα:

Αρχιτεκτονική Συστήματος

Η αρχιτεκτονική του συστήματός μας βασίζεται σε ένα συνελικτικό μηχανισμό Παραγωγικού

Ανταγωνιστικού Δικτύου και είναι εμπνευσμένη από μια επόμενη μελέτη των Dong και Yang
[19], η οποία επικεντρώνεται σε διαφορετικές μεθόδους μετατροπής πινάκων με πραγματικές
τιμές σε δυαδικά pianorolls. Πρόκειται στην ουσία για μια δομική παραλλαγή του Hybrid
μοντέλου στην αρχιτεκτονική του MuseGAN, καθώς συνδυάζει τις δύο θεμελιώδεις τεχνικές
σύνθεσης (jamming, composing) αλλά με πιο ομοιόμορφο και συνάμα συμπαγή τρόπο. ΄Οπως
φαίνεται και στο διάγραμμα της εικόνας 0.4.1, απαρτίζεται από 2 βασικές δομικές συνιστώσες:

• Generator: O Generator αποτελείται από ένα shared (κοινό) δίκτυο Gs, ακολουθούμενο
απόM private (εξειδικευμένα) υποδίκτυα Gi

p (i = 1, . . .M), κάθε ένα εκ των οποίων αντι-
στοιχεί σε ένα διαφορετικό μουσικό όργανο. Ο Gs παράγει αρχικά γενικευμένο μουσικό

περιεχόμενο, το οποίο διαισθητικά αντιπροσωπεύει την κοινή μουσική ιδέα που διαμοιρά-
ζονται όλα τα εμπλεκόμενα tracks, όπως ένας συνθέτης συντονίζει τα διάφορα όργανα
βάσει της συνολικής μουσικής δομής. Στην συνέχεια, κάθε Gp μετασχηματίζει αυτή την

αφηρημένη μορφή στο τελικό pianoroll του αντίστοιχου track, σύμφωνα με τα δικά του

5
΄Ενας φθόγγος χαρακτηρίζεται qualified εάν η χρονική του αξία είναι μεγαλύτερη ή ίση από 3 timesteps

(π.χ. τριακοστό δεύτερο).
6
Το dataset που χρησιμοποιείται για την εκπαίδευση του MuseGAN περιλαμβάνει pianorolls μόνο σε ρυθμό

4/4. Η μετρική DP υπολογίζει το ποσοστό των νοτών που εμφανίζονται στα ισχυρά μέρη κάθε μέτρου ανάλογα
με το χρησιμοποιούμενο resolution.

7
Το τονικό περιεχόμενο ενός μουσικού κομματιού μπορεί να αναπαρασταθεί σε συμπυκνωμένη μορφή μέσω

ενός ειδικού περιγραφητή που καλείται chroma vector. Πρόκειται για ένα διάνυσμα 12 στοιχείων, το οποίο
υποδεικνύει την ενέργεια κάθε τονικής τάξης στο ηχητικό σήμα. Η μετρική TD στηρίζεται στην προβολή των
chroma vectors των αντίστοιχων tracks στον εσωτερικό χώρο ενός 6-διάστατου πολυτόπου. Βάσει αυτής της
απεικόνισης, οι τονικές κλάσεις αντιστοιχίζονται στις κορυφές του και οι ισχυρές αρμονικές σχέσεις, όπως οι
τρίτες και οι πέμπτες, εμφανίζονται ως μικρές Ευκλείδειες αποστάσεις [18].

13

Chapter 0. Extended Greek Abstract

μουσικά γνωρίσματα και χαρακτηριστικά, όπως υποδεικνύει το πλαίσιο αυτοσχεδιασμού
στην jamming προσέγγιση. Δομικά η συγκεκριμένη αρχιτεκτονική διαφοροποιείται από
την hybrid, λόγω της προσθήκης του shared δικτύου, το οποίο απαιτεί μόνο ένα ενιαίο
τυχαίο διάνυσμα θορύβου στην είσοδο.

• Discriminator: Ο Discriminator καθρεπτίζει στην ουσία την δομή του Generator. Πιο
συγκεκριμένα, αποτελείται από M private υποδίκτυα Di

p (i = 1, . . .M), κάθε ένα εκ
των οποίων αντιστοιχεί σε διαφορετικό μουσικό όργανο, ακολουθούμενα από ένα shared
δίκτυο Ds. Αρχικά, κάθε Dp εξάγει low-level χαρακτηριστικά από το αντίστοιχο track, τα
οποία στην συνέχεια αξιοποιεί ο Ds για τον σχηματισμό μιας κοινής, high-level αναπαρά-
στασης, βάσει της οποίας εκτελεί την τελική πρόβλεψη σχετικά με την αυθεντικότητα της
συνολικής μουσικής σύνθεσης. Η βασική διαφορά ανάμεσα στο διαχωριστικό δίκτυο του
μοντέλου μας και εκείνο του baseline συστήματος έγκειται στην προσθήκη των private
υποδικτύων που επικεντρώνονται στα διαφορετικά μουσικά όργανα, καθώς το MuseGAN
χρησιμοποιεί μόνο έναν κοινό Discriminator, ο οποίος αξιολογεί τα παραγόμενα tracks
συλλογικά.

Figure 0.4.1: Αρχιτεκτονική του Unconditional Μοντέλου μας

Υλοποίηση

΄Οπως και στην περίπτωση του MuseGAN [2], όλες οι δομικές συνιστώσες του unconditional
μοντέλου μας είναι υλοποιημένες ως Βαθιά Συνελικτικά Δίκτυα. Τα μεν διαχωριστικά δίκτυα
αποτελούνται από διαδοχικά τυπικά συνελικτικά επίπεδα, έτσι ώστε να επιτυγχάνεται η αναγκαία
διαστατική μείωση που απαιτεί η απεικόνιση ενός pianoroll σε μια στατιστική πρόβλεψη πραγ-
ματικής τιμής. Από την άλλη, τα παραγωγικά αποτελούνται από transposed συνελικτικά επίπεδα
έτσι ώστε να είναι εφικτός ο μετασχηματισμός του αρχικού διανύσματος τυχαίου θορύβου στην

τελική μορφή μιας πολυφωνικής μουσικής σύνθεσης.

΄Οπως αναφέρθηκε προηγουμένως, το baseline project είναι ειδικά σχεδιασμένο για επεξεργασία
και δημιουργία δεδομένων με συγκεκριμένη δομή, όσον αφορά την διακριτοποίηση του χρόνου, το
εύρος νοτών ή ακόμη και το πλήθος των μέτρων που συνιστούν μια μουσική φράση. Προκειμέ-
νου, λοιπόν, να αντιμετωπίσουμε αυτόν τον περιορισμό και να μπορέσουμε να διερευνήσουμε
περαιτέρω τις παραγωγικές δυνατότητες του μοντέλου μας, παραμετροποιούμε την υλοποίησή
μας ως προς ένα σύνολο μεταβλητών που αφορούν μουσικά χαρακτηριστικά των παραγόμενων

φράσεων και παρουσιάζονται στον Πίνακα 1 μαζί με τον αντίστοιχο συμβολισμό. Η διαδικασία

14

0.4. Unconditional Generation

αυτή επιφέρει μάλιστα μια τροποποίηση στην εσωτερική δομή των δικτύων που απαρτίζουν το

σύστημά μας ανάλογα με την επιθυμητή έξοδο, καθιστώντας το έτσι ιδιαίτερο ευέλικτο και
ευπροσάρμοστο σε διαφορετικές πρακτικές σύνθεσης.

s number of samples
l latent dimension
t number of tracks
r bar resolution
p number of pitches
m number of measures

o (= m · r) number of total timesteps
b beat resolution
i lowest pitch

Table 1: Μεταβλητές Παραμετροποίησης

Διαδικασία Εκπαίδευσης

Η διαδικασία εκπαίδευσης του unconditional μοντέλου μας περιγράφεται μαθηματικά από την
ακόλουθη minimax συνάρτηση τιμής:

min
G

max
D

V ∗(G,D) = Ex∼pd [D(x)]−Ez∼pz [D(G(z))] +Ex̂∼px̂ [(∥∇x̂D(x̂)∥2− 1)2] (0.4.1)

Εύκολα μπορεί κανείς να διαπιστώσει ότι η V ∗
αποτελεί μια τροποποιημένη εκδοχή της

τυπικής συνάρτησης V , η οποία παρουσιάστηκε στην ενότητα 0.2.2, καθώς περιλαμβάνει έναν
επιπρόσθετο gradient penalty όρο, ο οποίος μέσω μιας κανονικοποίησης των υπολογιζόμενων
παραγώγων εξασφαλίζει ταχύτερη σύγκλιση στην βέλτιστη κατάσταση και γενικότερη στα-

θεροποίηση της συνολικής διαδικασίας εκπαίδευσης [2, 20]. ΄Οσον αφορά τον χρησιμοποιούμενο
συμβολισμό, η κατανομή px̂ ορίζεται έμμεσα μέσω ομοιόμορφης δειγματοληψίας σε ευθείες γραμ-
μές μεταξύ ζευγών σημείων που προέρχονται από την κατανομή των πραγματικών δεδομένων

pd και την κατανομή των παραγόμενων δειγμάτων pg, αντίστοιχα.

Ακολουθώντας την σχετική βιβλιογραφία [2, 19, 21, 20], εφαρμόζουμε μια διαφορετική μέθοδο
εκμάθησης, η οποία στηρίζεται σε διαδοχικές εναλλαγές μεταξύ k βημάτων βελτιστοποίησης
του Discriminator D και ενός βήματος ενημέρωσης του Generator G. Με αυτό τον τρόπο
εξασφαλίζεται ότι το διαχωριστικό δίκτυο διατηρείται αρκετά κοντά στην βέλτιστη λύση του,
ενώ συγχρόνως το παραγωγικό προσαρμόζεται με επαρκώς αργό ρυθμό.

Προκειμένου να αποκτήσουμε μια πιο λεπτομερή εικόνα του μηχανισμού μάθησης, ενσωματώ-
νουμε σε κάθε βήμα της διαδικασίας εκπαίδευσης μια επιπρόσθετη φάση επικύρωσης (validation
phase), κατά την οποία εξετάζουμε την συμπεριφορά και την απόκριση των δομικών συνιστωσών
του συστήματος σε δεδομένα εκτός του συνόλου εκπαίδευσης. Επιπλέον, εφαρμόζουμε τεχνικές
Early-Stopping και Checkpointing για καλύτερο έλεγχο και ενδεχόμενο πρόωρο τερματισμό
της εκπαίδευσης σε περίπτωση που η απόδοση του μοντέλου, η οποία υπολογίζεται βάσει μιας
προκαθορισμένης μετρικής παρακολούθησης, φθίνει με την πάροδο του χρόνου, ξεπερνώντας
ένα συγκεκριμένο κατώφλι.

15

Chapter 0. Extended Greek Abstract

0.4.2 Δεδομένα Εκπαίδευσης

Για την αναπαράσταση των δεδομένων εκπαίδευσης του unconditional συστήματός μας χρησι-
μοποιούμε το multi-track pianoroll format [2, 19]. Το τελικό μας dataset προκύπτει από την
LPD-5-cleansed version του LPD [2] ύστερα από μια κατάλληλη διαδικασία προεπεξεργασίας, η
οποία στοχεύει στην κατάτμηση των περιλαμβανομένων pianorolls σε μουσικές φράσεις συγκε-
κριμένης παραμετροποίησης:

1) Αρχικά εφαρμόζουμε μια διαδικασία υποδειγματοληψίας, έτσι ώστε να επιτευχθεί το επι-
θυμητό resolution στον χρονικό άξονα.

2) Στην συνέχεια, απορρίπτουμε νότες εκτός μιας συγκεκριμένης εμβέλειας προκειμένου να
αποκτήσουμε το ζητούμενο εύρος τόνων.

3) Τέλος, συλλέγουμε με τυχαίο τρόπο από κάθε τραγούδι ένα μεταβλητό πλήθος υποψηφίων
μουσικών φράσεων και επιλέγουμε μόνο εκείνες που εμπεριέχουν επαρκή αριθμό νοτών

στα διάφορα tracks, σύμφωνα με ένα προκαθορισμένο κατώφλι.

0.4.3 Εργαλεία Αξιολόγησης

Objective Μετρικές

΄Οσον αφορά το κομμάτι της πειραματικής αξιολόγησης, υλοποιούμε από την αρχή τις 5 υ-
πάρχουσες μετρικές βάσει της περιγραφικής τους ανάλυσης στο baseline paper [2]. Στην
συνέχεια επεκτείνουμε το σύστημα αξιολόγησής μας με 3 επιπλέον προσθήκες ποσοτικών δει-
κτών, οι οποίες επικεντρώνονται σε τονικά χαρακτηριστικά και άλλα στοιχεία μουσικής υφής:

• Used Pitches (UP): μέσος αριθμός νοτών που χρησιμοποιούνται ανά μέτρο, συμπερι-
λαμβανομένων όλων των οκτάβων στην προκαθορισμένη εμβέλεια

• Scale Ratio (SR): ποσοστό νοτών στην δοθείσα μουσική κλίμακα8 (%)

• Polyphonic Rate (PR): ποσοστό πολυφωνικών χρονικών βημάτων9 (%)

User Study

΄Οσον αφορά το κομμάτι της υποκειμενικής αξιολόγησης, διεξάγουμε μια ποιοτική μελέτη στην
μορφή ακουστικού πειράματος, η οποία μπορεί να διαχωριστεί σε δύο μέρη ανάλογα με το αντί-
στοιχο task. Το τμήμα που αφορά την Αυτόματη Παραγωγή Μουσικής χωρίς συνθήκες και
περιορισμούς (Unconditional Generation) στοχεύει σε μια εμπεριστατωμένη ακουστική σύγκρι-
ση του μοντέλου μας με το MuseGAN. H δομή του ερωτηματολογίου στηρίζεται σε ζεύγη
ηχητικών δειγμάτων, από τα οποία ο χρήστης καλείται να επιλέξει εκείνο που προτιμά όσον
αφορά 3 μουσικά κριτήρια:

• Musical Naturalness: Θα μπορούσε το εξεταζόμενο μουσικό απόσπασμα να έχει
δημιουργηθεί από άνθρωπο;

8
Για την υλοποίηση της SR μετρικής χρησιμοποιούμε την κλίμακα Ντο ματζόρε, καθώς η συντριπτική πλειο-

ψηφία των κομματιών στο Lakh Pianoroll Dataset είναι στην συγκεκριμένη τονικότητα [22]. Επομένως, η SR
υποδεικνύει στην ουσία το ποσοστό των φυσικών φθόγγων (χωρίς κάποιο σημείο αλλοίωσης).

9
΄Ενα χρονικό βήμα καλείται πολυφωνικό εάν ο αριθμός νοτών που εκτελούνται ταυτόχρονα την συγκεκριμένη

στιγμή υπερβαίνει ένα συγκεκριμένο κατώφλι (συνήθως λαμβάνει την τιμή 2).

16

https://en.wikipedia.org/wiki/Accidental_(music)

0.4. Unconditional Generation

• Harmonic Consistency: Οι ήχοι που παράγονται από τα διάφορα μουσικά όργανα είναι
σε συμφωνία μεταξύ τους; Το προκύπτον αποτέλεσμα είναι ακουστικά ευχάριστο;

• Musical Coherence: Οι διάφορες μουσικές φράσεις που απαρτίζουν το εξεταζόμενο
κομμάτι είναι μεταξύ τους συνδεδεμένες με κάποιο τρόπο; Υπάρχει συνοχή μουσικών
ιδεών;

Τα ακουστικά δείγματα που απαρτίζουν κάθε test case επιλέγονται με τυχαίο τρόπο ανάμεσα σε
200 μουσικές φράσεις που έχουν παραχθεί με κάθε μοντέλο και παρουσιάζονται στον αξιολογητή
με τυχαία σειρά. Οι συμμετέχοντες της έρευνάς μας είναι συνολικά 40 άτομα, κάθε ένα εκ
των οποίων αξιολογεί 2 διαφορετικά ζεύγη ηχητικών αποσπασμάτων. Ορισμένα δημογραφικά
στοιχεία παρουσιάζονται με παραστατικό τρόπο στην εικόνα 0.4.2.

Figure 0.4.2: Δημογραφικά στοιχεία της ποιοτικής μελέτης

0.4.4 Πειράματα και Αποτελέσματα

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Generation
parameters

Number of Pitches 84 72 72 72 72 72 72 72 72 72
Beat Resolution 24 4 8 12 16 4 8 12 16 4
Number of Bars 4 4 4 4 4 4 4 4 4 4
Lowest Pitch 24 24 24 24 24 24 24 24 24 24

Samples per song 8 8 8 8 8 8 8 8 8 8
Latent Dimension 128 128 128 128 128 128 128 128 128 256

Training
parameters

Number of Steps 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
Batch Size 16 16 16 16 16 16 16 16 16 4

Number of Phrases 4 4 4 4 4 4 4 4 4 4
Steps per G update 6 6 6 6 6 11 11 11 11 6
Steps per Evaluation 50 50 50 50 50 50 50 50 50 50

Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Betas (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9)

Table 2: Παραμετροποιήσεις Πειραμάτων

Προκειμένου να εξετάσουμε την αποδοτικότητα του μοντέλου μας ως προς την δημιουργία

πολυφωνικής μουσικής και να διερευνήσουμε διάφορες πτυχές της παραγωγικής διαδικασίας,

17

Chapter 0. Extended Greek Abstract

διεξάγουμε ένα σύνολο πειραμάτων χρησιμοποιώντας διαφορετικές παραμετροποιήσεις της

υλοποίησής μας (C1-C10), οι οποίες παρουσιάζονται αναλυτικά στον Πίνακα 2.

Σύγκριση διαφορετικών πειραματικών παραμετροποιήσεων

Η σύγκριση μεταξύ των διαφορετικών παραμετροποιήσεων του Πίνακα 2 (εκτός της C1) πραγμα-
τοποιείται στο πλαίσιο της objective αξιολόγησης. Ειδικότερα, για κάθε configuration παρά-
γουμε, χρησιμοποιώντας τον αντίστοιχο Generator του τελευταίου βήματος εκπαίδευσης, 20000
μέτρα οργανωμένα ανά τετράδες σε μουσικές φράσεις, στις οποίες εφαρμόζουμε στην συνέχεια
τις μουσικές μετρικές που εξετάστηκαν ενδελεχώς προηγουμένως. Ο Πίνακας 3 συνοψίζει τα
προκύπτοντα αποτελέσματα με την μορφή μέσων όρων. Τιμές πλησιέστερα στα αντίστοιχα
στατιστικά γνωρίσματα της κατανομής των πραγματικών δεδομένων θεωρούνται καλύτερες, ε-
κτός της inter-track μετρικής TD για την οποία οι μικρότερες τιμές είναι και οι ζητούμενες.

EB (%) UPC QN (%) UP
B D G P S B G P S B G P S B G P S

Ground-truth 1.6 1.1 4.1 5.1 3.2 2.48 4.16 4.2 4.57 91.7 85.3 89.7 89.7 2.72 5.8 5.9 6.8
C2 0.3 0.0 0.9 1.9 2.1 2.89 4.4 4.88 5.14 59.0 58.2 57.2 60.8 3.14 5.96 6.58 7.61
C3 0.4 0.0 0.9 0.7 0.7 3.12 5.18 5.33 5.14 49.0 52.2 56.5 64.6 3.4 7.57 7.73 7.05
C4 0.0 2.1 0.6 1.2 0.9 3.04 4.17 4.39 5.47 50.9 59.7 65.9 70.3 3.39 5.71 6.54 7.75
C5 0.0 0.8 1.6 1.0 2.5 3.09 4.05 4.58 4.14 63.1 72.9 72.4 74.3 3.32 5.9 6.6 5.97
C6 0.5 0.1 1.8 0.8 0.7 2.47 4.9 5.07 5.4 54.3 48.9 52.9 50.6 2.67 6.67 7.24 8.22
C7 0.1 0.1 1.6 0.2 0.4 2.75 4.36 4.87 5.49 56.2 64.9 59.1 57.2 3.15 6.06 6.8 7.72
C8 1.9 0.1 4.3 2.8 0.4 2.64 5.81 6.08 5.09 63.1 56.7 60.1 64.3 2.86 8.19 8.44 7.78
C9 0.0 0.2 1.5 0.0 0.2 3.06 3.92 5.41 5.48 62.9 54.5 55.0 45.3 3.4 5.62 7.3 9.24
C10 0.2 0.1 0.0 0.0 0.4 2.69 5.09 5.16 4.52 57.2 69.5 66.8 60.8 2.99 7.59 7.3 7.12

TD SR (%) PR (%) DP (%)
B-G B-S B-P G-S G-P S-P B G P S B D G P S D

Ground-truth 0.7 0.73 0.7 0.7 0.67 0.66 75.7 74.6 73.9 72.6 1.2 15.2 57.3 60.8 64.1 83.1
C2 0.86 0.91 0.9 0.98 0.99 0.97 79.0 82.1 78.7 75.0 2.6 21.7 49.7 53.7 58.7 79.6
C3 0.57 0.53 0.56 0.6 0.62 0.59 80.4 76.3 72.7 70.0 0.6 6.8 47.5 47.7 55.0 92.3
C4 0.37 0.38 0.36 0.39 0.39 0.38 70.6 82.5 81.9 78.4 0.1 4.6 28.5 37.9 50.2 88.4
C5 0.26 0.27 0.28 0.27 0.25 0.27 82.5 73.8 77.5 77.1 0.2 2.9 42.9 47.0 55.4 53.1
C6 0.9 0.96 0.92 1.08 1.03 1.09 80.5 77.6 79.0 78.7 1.4 10.8 42.6 43.5 57.3 83.5
C7 0.5 0.56 0.51 0.61 0.56 0.6 75.7 75.1 78.5 75.5 0.7 5.7 35.0 34.8 48.9 96.0
C8 0.42 0.37 0.42 0.45 0.49 0.46 70.6 71.9 66.3 67.7 0.1 4.4 39.5 40.0 52.6 92.6
C9 0.27 0.31 0.31 0.34 0.34 0.38 76.3 82.3 76.1 82.8 0.3 3.5 23.4 33.6 50.0 58.7
C10 0.96 0.89 0.95 0.93 1.04 1.05 84.4 69.4 78.2 71.2 1.9 14.2 66.9 51.7 56.8 81.6

Table 3: Objective μετρικές για διαφορετικές πειραματικές παραμετροποιήσεις

Κατ’ αρχάς, παρατηρούμε ότι δεν υπάρχει κάποια συγκεκριμένη παραμετροποίηση ικανή να
βελτιώσει ταυτόχρονα όλες τις objective μετρικές. Πιο συγκεκριμένα, διαπιστώνουμε ότι η
αύξηση του beat resolution (C5) οδηγεί σε ισχυρότερες αρμονικές σχέσεις μεταξύ των tracks
(TD) και υψηλότερα ποσοστά “qualified” νοτών (QN), αλλά συγχρόνως επιδρά αρνητικά στα
ρυθμικά χαρακτηριστικά των παραγόμενων δειγμάτων (DP κοντά στο 50%). Από την άλλη
πλευρά, η χρήση υψηλότερων τιμών για την υπερπαράμετρο k, η οποία αναπαριστά το πλήθος
βημάτων εκπαίδευσης ανά ενημέρωση του Generator, φαίνεται να συμβάλλει στην βελτίωση της
επιθυμητής πυκνότητας νοτών (EB) αλλά και άλλων τονικών χαρακτηριστικών, όπως το SR.
Τέλος, ο διπλασιασμός της λανθάνουσας διάστασης που αξιοποιείται από το παραγωγικό δί-
κτυο (C10) επηρεάζει θετικά τον δείκτη PR για τα Drums, καθώς επίσης και τους δείκτες UPC
και SR για τα Strings, τα οποία αποτελούν και το πιο προβληματικό μουσικό όργανο στην όλη

18

0.4. Unconditional Generation

διαδικασία υπό την έννοια ότι συνήθως ενσωματώνει αρκετό θόρυβο.

Σύγκριση με Baseline

Η σύγκριση του unconditional μοντέλου μας με το MuseGAN πραγματοποιείται ως προς τους
δύο βασικούς άξονες αξιολόγησης:

Objective Σύγκριση

΄Οσον αφορά το κομμάτι της ποσοτικής αποτίμησης, επιλέγουμε 2 διαφορετικές πειραματικές
παραμετροποιήσεις του συστήματός μας για την objective αντιπαράθεση με τα 4 multi-track
μοντέλα

10
που περιλαμβάνονται στην αρχιτεκτονική του MuseGAN. Η πρώτη είναι η C1, η

οποία αντιστοιχεί στο configuration της υλοποίησης της baseline αρχιτεκτονικής και η δεύτερη
είναι η C2, η οποία θεωρείται default στο πειραματικό πλαίσιο του συστήματός μας. ΄Οπως
και προηγουμένως, για κάθε μοντέλο παράγουμε 20000 μέτρα οργανωμένα ανά τετράδες σε
μουσικές φράσεις, στις οποίες εφαρμόζουμε στην συνέχεια τις μουσικές μετρικές.

EB (%) UPC QN (%) DP (%)
B D G P S B G P S B G P S D

training data baseline 8.06 8.06 19.4 24.8 10.1 1.71 3.08 3.28 3.38 90.0 81.9 88.4 89.6 88.6
ours 1.6 1.1 4.1 5.1 3.2 2.48 4.16 4.2 4.57 91.7 85.3 89.7 89.7 83.1

Baseline

jamming 6.59 2.33 18.3 22.6 6.10 1.53 3.69 4.13 4.09 71.5 56.6 62.2 63.1 93.2
composer 0.01 28.9 1.34 0.02 0.01 2.51 4.20 4.89 5.19 49.5 47.4 49.9 52.5 75.3
hybrid 2.14 29.7 11.7 17.8 6.04 2.35 4.76 5.45 5.24 44.6 43.2 45.5 52.0 71.3
ablated 92.4 100 12.5 0.68 0.00 1.00 2.88 2.32 4.72 0.00 22.8 31.1 26.2 0.0

Ours C1 0.0 0.7 0.4 1.3 1.2 3.63 4.67 4.64 5.29 55.6 75.8 74.1 75.9 59.5
C2 0.3 0.0 0.9 1.9 2.1 2.89 4.4 4.88 5.14 59.0 58.2 57.2 60.8 79.6

Table 4: Intra-track Αξιολόγηση

Ο Πίνακας 4 συνοψίζει τα προκύπτοντα αποτελέσματα της intra-track αξιολόγησης με την μορφή
μέσων όρων για τους κοινούς ποσοτικούς δείκτες μεταξύ των εξεταζόμενων frameworks. Τιμές
πλησιέστερα στα αντίστοιχα μουσικά γνωρίσματα της κατανομής των πραγματικών δεδομένων

θεωρούνται καλύτερες. Ωστόσο, λόγω της στατιστικής απόκλισης μεταξύ των δύο συνόλων
εκπαίδευσης, η οποία πιθανώς οφείλεται στην τυχαία διαδικασία διαλογής μουσικών φράσεων
από τα pianorolls του LPD-5-cleansed, η ακριβής σύγκριση των 4 baseline μοντέλων με τις 2
παραμετροποιήσεις της δικής μας αρχιτεκτονικής δεν είναι εφικτή. Παρόλα αυτά, στην περίπτωση
των QN και DP μετρικών όπου η εν λόγω διαφορά είναι αμελητέα, παρατηρούμε ότι το σύστημά
μας παρουσιάζει σημαντικά καλύτερη επίδοση από όλα τα baseline (χρωματιστά κελιά).

TD
B-G B-S B-P G-S G-P S-P

Baseline
jamming 1.56 1.60 1.54 1.05 0.99 1.05
composer 1.37 1.36 1.30 0.95 0.98 0.91
hybrid 1.34 1.35 1.32 0.85 0.85 0.83

Ours C1 0.2 0.22 0.2 0.21 0.2 0.21
C2 0.86 0.91 0.9 0.98 0.99 0.97

Table 5: Inter-track Αξιολόγηση

10
Το μοντέλο ablated αντιστοιχεί σε μια παραλλαγή του Composer, η οποία δεν περιλαμβάνει Batch Norma-

lization.

19

Chapter 0. Extended Greek Abstract

Ο Πίνακας 5 συνοψίζει τα προκύπτοντα αποτελέσματα της inter-track αξιολόγησης με την μορφή
μέσων όρων. Σε αυτή την περίπτωση, μικρότερες τιμές θεωρούνται καλύτερες. Εύκολα μπορεί
κανείς να διαπιστώσει ότι η παραμετροποίηση C1 υπερβαίνει σημαντικά όλα τα υπόλοιπα μοντέλα

σε ό,τι αφορά την αρμονικότητα των παραγόμενων δειγμάτων (TD κοντά στο 0.2 για όλα τα ζεύγη
οργάνων), γεγονός που έρχεται σε συμφωνία με τα πορίσματα των προηγούμενων πειραμάτων
σχετικά με την χρήση υψηλού beat resolution. Επιπλέον, παρατηρούμε ότι και η επίδοση της
παραμετροποίησης C1 είναι άξια αναφοράς, ειδικότερα στην περίπτωση αρμονικών συσχετίσεων
μεταξύ ενός μελωδικού οργάνου (Bass) και ενός οργάνου συνοδείας (Piano, Guitar, Strings).

Subjective Σύγκριση

Figure 0.4.3: Subjective Σύγκριση

΄Οσον αφορά το κομμάτι της ακουστικής σύ-
γκρισης των 2 εξεταζόμενων frameworks αυτό-
ματης παραγωγής μουσικής, επιλέγουμε δείγ-
ματα από την παραμετροποίηση C2 για την δική

μας αρχιτεκτονική και αντίστοιχα από το Com-
poser μοντέλο για το baseline. Τα προκύ-
πτοντα αποτελέσματα αναπαρίστανται γραφικά

στην εικόνα 0.4.3. Παρατηρούμε ότι το σύστημά
μας παρουσιάζει σημαντικά καλύτερη επίδοση

από το MuseGAN αναφορικά με όλα τα εξε-
ταζόμενα μουσικά κριτήρια. Το γεγονός αυτό
υποδεικνύει ότι η υλοποίησή μας, η οποία δίνει
έμφαση σε ρυθμικά χαρακτηριστικά, πράγματι συμβάλλει στην φυσικότητα και την συνοχή των
παραγόμενων δειγμάτων. Επιπλέον, διαπιστώνουμε ότι η shared/private δομή του Generator
αλλά και του Discriminator επιδρά θετικά σε διάφορα τονικά στοιχεία, τα οποία καθορίζουν την
συνολική αρμονικότητα μιας μουσικής σύνθεσης.

0.5 Conditional Generation

Σε συνέχεια της ερευνητικής μας μελέτης στον τομέα της Αυτόματης Σύνθεσης Μουσικής, επε-
κτείνουμε το μοντέλο μας σε ένα συνεργατικό πλαίσιο ανθρώπου-μηχανής προς την κατεύθυνση
της αυτόματης παραγωγής μουσικής συνοδείας. Πιο συγκεκριμένα, δεδομένου ενός από τα
εμπλεκόμενα tracks (προερχόμενου από ανθρώπινη μουσική σύνθεση), το σύστημά μας παράγει
αυτόματα τα υπόλοιπα 4, θεωρώντας τα ως την ρυθμική και αρμονική του συνοδεία.

0.5.1 Μοντέλο

Αρχιτεκτονική Συστήματος

Σε γενικότερο πλαίσιο, το conditional μοντέλο μας διατηρεί την υποδομή συνελικτικού μηχανι-
σμού Παραγωγικού Ανταγωνιστικού Δικτύου από το unconditional task, το οποίο εξετάστηκε
ενδελεχώς στην προηγούμενη ενότητα. Ωστόσο, η ενσωμάτωση συνθηκών στην παραγωγική
διαδικασία επιφέρει αναπόφευκτα τροποποιήσεις των υπαρχόντων δομικών μονάδων αλλά και

προσθήκες νέων. Πιο συγκεκριμένα:

• Generator: ΄Οπως φαίνεται και στο σχήμα της εικόνας 0.5.1a, ο Conditional Generator

20

0.5. Conditional Generation

ακολουθεί την shared/private δομή του Unconditional Παραγωγικού Δικτύου, καθώς
απαρτίζεται από ένα κοινό τμήμα Gs και 4 ιδιωτικά υποδίκτυα Gp, όσα δηλαδή και τα όρ-
γανα συνοδείας. Ωστόσο, το shared δίκτυο τροποποιείται κατάλληλα, έτσι ώστε να λαμ-
βάνει 2 εισόδους: ένα τυχαίο διάνυσμα θορύβου z που προέρχεται από μια prior κατανομή
pz και το embedding u του conditional track στο χώρο του θορύβου.

• “Global” Discriminator: Προκειμένου να αποκτήσουμε ένα γενικό κριτή, ο οποίος
αξιολογεί το κατά πόσον η παραγόμενη συνοδεία αρμόζει μουσικά στο δοθέν conditional
track, ενσωματώνουμε στην αρχιτεκτονική του conditional μοντέλου μας τον υπάρχοντα
Discriminator και τον ονομάζουμε “Global”. ΄Οπως φαίνεται και στο σχήμα 0.5.1b, η
δομή του παραμένει αναλλοίωτη, καθώς αποτελείται από 5 private υποδίκτυα Dp, κάθε
ένα εκ των οποίων αντιστοιχεί και σε διαφορετικό όργανο (συμπεριλαμβανομένου και του
conditional), ακολουθούμενα από ένα shared δίκτυο Ds.

• “Local” Discriminator: Επεκτείνουμε την αρχική μας υλοποίηση, ενσωματώνοντας
στο σύστημά μας και ένα δεύτερο Discriminator, τον οποίο ονομάζουμε “Local”. ΄Οπως
υποδεικνύει και η ονομασία, αυτό το επιπρόσθετο διαχωριστικό δίκτυο αξιολογεί μόνο
την παραγόμενη συνοδεία ως ανεξάρτητη μουσική σύνθεση. Δομικά, ακολουθεί την
shared/private σχεδίαση του “Global”, με μόνη διαφορά ότι σε αυτή την περίπτωση τα
ιδιωτικά υποδίκτυα Dp είναι 4, όσο δηλαδή και τα accompaniment tracks.

• Encoder: Εκτός των τυπικών συνιστωσών ενός Παραγωγικού Ανταγωνιστικού Δι-
κτύου, το conditional σύστημά μας περιλαμβάνει επίσης και έναν Κωδικοποιητή, ο οποίος
είναι υπεύθυνος για την δημιουργία των embeddings των conditional tracks στο χώρο
του θορύβου.

• Decoder: Υλοποιούμε και τον αντίστοιχο Αποκωδικοποιητή, ο οποίος επιτελεί την α-
ντίστροφη λειτουργία, ανακατασκευάζοντας την αρχική είσοδο από την λανθάνουσα ανα-
παράσταση.

(a) Generator (b) Discriminator

(c) Encoder και Decoder

Figure 0.5.1: Συνιστώσες του conditional μοντέλου

21

Chapter 0. Extended Greek Abstract

Υλοποίηση

΄Οπως και προηγουμένως, όλες οι δομικές συνιστώσες του conditional μοντέλου μας είναι
υλοποιημένες ως Βαθιά Συνελικτικά Δίκτυα. Τα μεν διαχωριστικά, καθώς επίσης και ο
Κωδικοποιητής, αποτελούνται από διαδοχικά συνελικτικά επίπεδα, έτσι ώστε να επιτυγχάνεται
η αναγκαία διαστατική μείωση. Τα δε παραγωγικά, αλλά και ο Αποκωδικοποιητής, αποτελού-
νται από transposed συνελικτικά επίπεδα έτσι ώστε να επιτυγχάνεται η κατάλληλη διαστατική
αύξηση. Επιπλέον, ακολουθούμε και σε αυτή την περίπτωση την τεχνική παραμετροποίησης ως
προς το σύνολο μεταβλητών που αναγράφονται στον Πίνακα 1.

Διαδικασία Εκπαίδευσης

Ο μηχανισμός μάθησης του conditional μοντέλου μας στηρίζεται στις επιμέρους εκπαιδευτικές
διαδικασίες των δομικών του συνιστωσών. Πιο συγκεκριμένα:

• “Global” Discriminator: O “Global” Discriminator μαθαίνει να διαχωρίζει τα αυθε-
ντικά από τα παραγόμενα δείγματα (conditional + accompaniment), χρησιμοποιώντας
μια κατάλληλα επιλεγμένη συνάρτηση κόστους, η οποία ποσοτικοποιεί τις εσφαλμένες
προβλέψεις του και για θετικά αλλά και αρνητικά παραδείγματα εκπαίδευσης.

• “Local” Discriminator: Ο “Local” Discriminator ακολουθεί την ίδια μέθοδο, με μόνη
διαφορά ότι σε κάθε περίπτωση εξετάζει μόνο τα μέρη της συνοδείας.

• Generator: O Generator μαθαίνει να δημιουργεί νέες μουσικές συνοδείες βάσει του
feedback που λαμβάνει από το εμπλεκόμενο σχήμα διαχωριστικών δικτύων. Ειδικότερα,
στην περίπτωση 2 Discriminators, το loss του Generator υπολογίζεται ως η μέση τιμή
των αντίστοιχων προβλέψεων, εναλλακτικά λαμβάνεται υπόψιν μόνο η έξοδος του ενός.

• Encoder: Αναπτύσσουμε 2 διαφορετικές μεθόδους όσον αφορά την διαδικασία εκ-
παίδευσης του Κωδικοποιητή:

– 1-phase: Σε αυτή την περίπτωση ο Κωδικοποιητής εκπαιδεύεται μαζί με το Παρα-
γωγικό Ανταγωνιστικό Δίκτυο, ακολουθώντας την πρακτική του Generator, κα-
θώς τα δύο αυτά δίκτυα συνεισφέρουν από κοινού στην παραγωγή νέων υποψήφιων

δειγμάτων.

– 2-phase: ΄Οπως υποδεικνύει και η ονομασία, σε αυτή την περίπτωση η διαδικασία
μάθησης του conditional μοντέλου μας διαιρείται σε δύο μέρη. Αρχικά, ο Κωδικοποι-
ητής εκπαιδεύεται μαζί με τον αντίστοιχο Αποκωδικοποιητή ως ένα ενιαίο Au-
toencoder σύστημα, χρησιμοποιώντας το MSE loss ανάμεσα στα αρχικά και τα
ανακατασκευασμένα conditional tracks και την Kullback–Leibler απόκλιση, η οποία
αναπαριστά την στατιστική απόσταση ανάμεσα στην Τυπική Κανονική Κατανομή

N (0, 1) και την κατανομή που μοντελοποιεί τον λανθάνοντα χώρο των παραγόμενων
embeddings. Στην συνέχεια πραγματοποιείται η εκπαίδευση του GAN, κατά την
διάρκεια της οποίας ο Encoder διατηρείται αμετάβλητος.

΄Οπως και στο unconditional task, η συνολική διαδικασία εκπαίδευσης στηρίζεται σε διαδοχικές
εναλλαγές μεταξύ k βημάτων βελτιστοποίησης των εμπλεκόμενων Discriminators και ενός βή-
ματος ενημέρωσης του Generator (ή και του Encoder στο 1-phase mode) [2, 19, 21, 20].

22

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

0.5. Conditional Generation

0.5.2 Πειράματα και Αποτελέσματα

Figure 0.5.2: Conditional Μοντέλα

΄Οσον αφορά το κομμάτι της πειραματικής μας

μελέτης, εστιάζουμε σε 8 διαφορετικά μοντέλα αυτό-
ματης παραγωγής μουσικών συνοδειών, τα οποία
παρουσιάζονται αναλυτικά στον πίνακα της εικόνας

0.5.2 μαζί με τον αντίστοιχο συμβολισμό. ΄Οπως

μπορούμε να δούμε, τα εξεταζόμενα conditional
μοντέλα διαφοροποιούνται ως προς τις δομικές

συνιστώσες που απαρτίζουν το σύστημα (Global Dis-
criminator / Global και Local Discriminators), τον
αλγόριθμο εκπαίδευσης του Κωδικοποιητή (1-phase
mode / 2-phase mode - AutoEncoder) και το είδος
του conditional οργάνου, δηλαδή εκείνου που αποτελεί την βάση της διαδικασίας σύνθεσης
(Piano / Guitar).

Objective Αξιολόγηση

Στο πλαίσιο της objective αξιολόγησης, παράγουμε με κάθε μοντέλο 20000 μέτρα οργανωμένα
ανά τετράδες σε μουσικές φράσεις, στις οποίες εφαρμόζουμε στην συνέχεια τις μουσικές μας
μετρικές και υπολογίζουμε τους αντίστοιχους μέσους όρους.

EB (%) UPC QN (%) DP (%)
B D G P S B G P S B G P S D

training data baseline 8.06 8.06 19.4 24.8 10.1 1.71 3.08 3.28 3.38 90.0 81.9 88.4 89.6 88.6
ours 1.6 1.0 5.0 5.6 3.7 2.47 4.09 4.19 4.5 91.6 85.6 90.0 89.7 82.9

Ours

P00 0.6 0.0 2.2 - 2.4 2.71 3.93 - 4.33 51.4 56.5 - 58.9 86.1
P01 0.2 0.0 1.8 - 1.5 2.57 4.09 - 4.76 58.2 56.1 - 61.7 86.3
P10 17.4 0.2 3.0 - 4.4 1.68 3.9 - 4.3 50.7 49.2 - 55.1 87.0
P11 1.6 0.0 0.7 - 0.9 2.56 4.19 - 5.16 54.8 56.6 - 51.0 86.2

Baseline
jamming 4.60 3.47 13.3 - 3.44 2.05 3.79 - 4.23 73.9 58.8 - 62.3 91.6
composer 0.65 20.7 1.97 - 1.49 2.51 4.57 - 5.10 53.5 48.4 - 59.0 84.5
hybrid 2.09 4.53 10.3 - 4.05 2.86 4.43 - 4.32 43.3 55.6 - 67.1 71.8

Table 6: Intra-track Αξιολόγηση για Piano

Ο Πίνακας 6 συνοψίζει τα αποτελέσματα των 4 intra-track μετρικών που είναι κοινές ανάμεσα
στο conditional σύστημά μας και το MuseGAN για την περίπτωση του Piano. ΄Οπως και προ-
ηγουμένως, τιμές πλησιέστερα στα αντίστοιχα μουσικά γνωρίσματα της κατανομής των πραγ-
ματικών δεδομένων θεωρούνται καλύτερες. Παρατηρούμε ότι η μεμονωμένη εφαρμογή της εκ-
παίδευσης 2 φάσεων (P10) επιδρά θετικά σε ορισμένα μουσικά χαρακτηριστικά, όπως το EB, το
DP και το UPC, αλλά φαίνεται να επηρεάζει αρκετά την μορφή του Bass track, ελαττώνοντας σημα-
ντικά την συνολική συμβολή του στην σύνθεση (EB κοντά στο 18%). Από την άλλη πλευρά, η
προσθήκη δεύτερου Discriminator, ανεξαρτήτως μεθόδου εκπαίδευσης, ευεργετεί σχεδόν όλους
τους ποσοτικούς δείκτες, επιβεβαιώνοντας ότι το επιπρόσθετο feedback που παρέχει ως προς τις
παραγόμενες συνοδείες είναι πράγματι χρήσιμο. Για λόγους πληρότητας, παραθέτουμε επίσης
και τα αντίστοιχα αποτελέσματα για τα 3 multi-track μοντέλα του MuseGAN. Ωστόσο και πάλι
λόγω της στατιστικής απόκλισης μεταξύ των συνόλων εκπαίδευσης, η απόλυτη σύγκριση δεν
είναι εφικτή. Παρ’ όλα αυτά, βλέπουμε ότι οι τιμές είναι στην ίδια τάξη μεγέθους, γεγονός το

23

Chapter 0. Extended Greek Abstract

οποίο υποδεικνύει ότι και η δική μας υλοποίηση για τις μετρικές παρέχει ουσιαστική ερμηνεία

της παραγόμενης μουσικής.

TD
B-G B-S B-P G-S G-P S-P

Ours

P00 0.82 0.83 0.88 0.87 0.95 0.94
P01 0.79 0.81 0.85 0.85 0.94 0.94
P10 0.74 0.73 0.81 0.94 1.02 1.01
P11 0.83 0.92 0.97 0.99 1.12 1.17

Baseline
jamming 1.51 1.53 1.50 1.04 0.95 1.00
composer 1.41 1.36 1.40 0.96 1.01 0.95
hybrid 1.39 1.36 1.38 0.96 0.94 0.95

Table 7: Inter-track Αξιολόγηση για Piano

Ο Πίνακας 7 συνοψίζει τα αποτελέσματα της inter-track μετρικής TD για την περίπτωση του
Piano (μικρότερες τιμές θεωρούνται καλύτερες). Παρατηρούμε ότι το μοντέλο P10 παρουσιάζει

την καλύτερη επίδοση συγκριτικά με όλα τα conditional μοντέλα (bold τιμές) αλλά και όλες
τις baseline αρχιτεκτονικές (χρωματιστά κελιά) όσον αφορά την αρμονικότητα μεταξύ ενός
μελωδικού οργάνου (Bass) και ενός οργάνου συνοδείας (Piano, Guitar, Strings). Από την
άλλη πλευρά, ισχυρότερες αρμονικές σχέσεις μεταξύ οργάνων συνοδείας εντοπίζονται στην
περίπτωση του μοντέλου P01.

UP SR (%) PR (%)
B G P S B G P S B D G P S

training data 2.71 5.68 5.85 6.71 75.9 74.4 74.1 72.8 1.1 15.2 55.7 61.8 62.3

Ours

P00 2.94 5.79 - 6.28 81.7 75.8 - 77.1 1.2 13.3 40.6 - 44.2
P01 2.94 5.77 - 7.17 77.1 76.3 - 75.6 1.5 15.2 48.7 - 59.9
P10 1.74 5.05 - 6.07 82.2 80.6 - 79.0 0.2 10.1 22.2 - 30.2
P11 2.84 5.43 - 7.3 80.7 77.6 - 72.3 1.9 9.7 38.2 - 56.3

Table 8: Επιπρόσθετη Intra-track Αξιολόγηση για Piano

Ο Πίνακας 8 συνοψίζει τα αποτελέσματα των 3 επιπρόσθετων intra-track μετρικών μόνο για τα 4
conditional μοντέλα που χρησιμοποιούν το Piano ως συνθήκη κατά την παραγωγική διαδικασία.
Εύκολα μπορεί κανείς να διαπιστώσει ότι για κάθε variant οι προκύπτουσες τιμές προσεγγίζουν
αρκετά τις πραγματικές. Ειδικότερα στην περίπτωση του PR, αξιοσημείωτη είναι η επίδοση
του P01, βάσει της οποίας συμπεραίνουμε ότι η προσθήκη του Local Discriminator πράγματι
συμβάλλει στην επίτευξη των κατάλληλων επιπέδων πολυφωνίας ανά track.

Τέλος, ο Πίνακας 9 συνοψίζει τα αποτελέσματα όλων των objective μετρικών για τα 4 μο-
ντέλα που χρησιμοποιούν την Κιθάρα ως conditional όργανο. Παρατηρούμε ότι το μοντέλο
G01 επιφέρει ισχυρότερες αρμονικές σχέσεις μεταξύ των εμπλεκόμενων tracks (TD), ενώ τo
επιπρόσθετο feedback που παρέχει ο δεύτερος Discriminator συνεισφέρει επίσης στα ρυθμικά
χαρακτηριστικά των παραγόμενων συνοδειών (DP) αλλά και σε άλλα στοιχεία υφής, όπως το
PR. Από την άλλη πλευρά, η εφαρμογή του αλγορίθμου εκπαίδευσης 2 φάσεων και για τους 2
συνδυασμούς διαχωριστικών δικτύων επιδρά θετικά στην πυκνότητα φθογγοσήμων (EB), καθώς
επίσης και σε χρονικά αλλά και τονικά χαρακτηριστικά των παραγόμενων δειγμάτων, όπως
ποσοτικοποιούνται από τους δείκτες QN, UP, UPC και SR, ειδικότερα για τα όργανα που παίζουν
κατά κύριο λόγο συγχορδίες.

24

0.5. Conditional Generation

EB (%) UPC QN (%) UP
B D G P S B G P S B G P S B G P S

training data 1.8 0.9 4.3 5.2 3.6 2.47 4.21 4.14 4.49 91.8 87.5 91.6 90.5 2.7 5.85 5.84 6.75
G00 0.8 0.0 - 2.1 1.8 2.51 - 5.04 4.59 62.5 - 49.3 60.3 2.77 - 7.31 6.91
G01 0.0 0.0 - 3.1 0.0 3.05 - 4.31 5.28 57.6 - 52.4 59.6 3.36 - 6.18 7.69
G10 1.6 0.0 - 1.8 3.5 2.35 - 4.28 4.01 50.2 - 59.5 58.6 2.59 - 6.13 5.88
G11 0.4 0.2 - 3.3 0.6 2.32 - 4.62 4.66 55.6 - 47.8 57.9 2.46 - 6.4 6.68

TD SR (%) PR (%) DP (%)
B-G B-S B-P G-S G-P S-P B G P S B D G P S D

training data 0.71 0.72 0.7 0.69 0.66 0.66 75.4 73.5 73.4 73.1 0.8 15.5 59.7 61.0 62.6 85.0
G00 0.83 0.85 0.9 0.96 1.01 0.98 84.7 - 80.9 77.0 1.1 10.9 - 53.9 53.4 87.1
G01 0.87 0.87 0.83 0.93 0.92 0.86 86.7 - 83.6 83.9 2.8 14.9 - 55.3 60.8 86.0
G10 0.84 0.84 0.84 0.93 0.95 0.89 82.0 - 79.8 85.4 0.7 6.0 - 37.5 44.0 91.7
G11 0.89 0.87 0.88 1.06 1.09 0.97 78.0 - 76.9 80.5 0.9 9.7 - 42.1 54.4 83.7

Table 9: Objective Αξιολόγηση για Guitar

Subjective Αξιολόγηση

Το τμήμα της ποιοτικής μας μελέτης που αφορά την Αυτόματη Παραγωγή Μουσικής Συνοδείας

(Conditional Generation) στοχεύει σε μια εμπεριστατωμένη ακουστική σύγκριση ανάμεσα στα
μοντέλα του πίνακα 0.5.2. Κάθε test case του ερωτηματολογίου αποτελείται από 3 ηχητικά
δείγματα, το πρώτο εκ των οποίων είναι το conditional track και τα υπόλοιπα 2 αντιστοιχούν
σε πιθανές συνοδείες του, προερχόμενες είτε από διαφορετικά τεχνητά μοντέλα είτε και από
την κατανομή των πραγματικών δεδομένων. O χρήστης καλείται να επιλέξει την συνοδεία
που προτιμά για το εκάστοτε conditional track αναφορικά με 3 μουσικά κριτήρια: Musical
Naturalness, Harmonic Consistency, Musical Coherence. Οι συμμετέχοντες της έρευνάς μας
είναι συνολικά 40 άτομα, καθένα εκ των οποίων αξιολογεί 18 ακουστικά groups, επιτυγχάνοντας
με αυτό τον τρόπο περίπου 45 συγκρίσεις για κάθε ζεύγος μοντέλων (συνολικά 16). ΄Ολα τα
conditional tracks και κατ’ επέκταση οι υποψήφιες συνοδείες τους επιλέγονται με τυχαίο τρόπο
ανάμεσα σε 32 ηχητικά δείγματα και παρουσιάζονται στον χρήστη με τυχαία σειρά.

Τα προκύπτοντα αποτελέσματα για την περίπτωση κατά την οποία το conditional όργανο είναι το
Piano παρουσιάζονται γραφικά στα διαγράμματα της εικόνας 0.5.3. Κάθε bar-plot αναπαριστά
τις προτιμήσεις των χρηστών ανάμεσα στα συγκρινόμενα μοντέλα με την μορφή ποσοστών.
Παρατηρούμε ότι στην περίπτωση σύγκρισης με τις αυθεντικές μουσικές εκδοχές, η πλειοψηφία
των τεχνητών δειγμάτων διακρίνονται εύκολα. Το υψηλότερο ποσοστό έναντι ανθρώπινης
σύνθεσης επιτυγχάνεται από το μοντέλο P01 για την μουσική φυσικότητα (35%), γεγονός το
οποίο υποδεικνύει ότι η προσθήκη του Local Discriminator πράγματι ευεργετεί την παραγωγική
διαδικασία.

΄Οσον αφορά την σύγκριση ανάμεσα στα διάφορα frameworks που έχουμε αναπτύξει, διαπιστώ-
νουμε ότι δείγματα του μοντέλου P01 είναι σημαντικά πιο προτιμητέα σε σχέση με το P11, υπο-
δηλώνοντας ότι η κατάλληλη μέθοδος εκπαίδευσης για την αρχιτεκτονική των 2 Discriminators
είναι η 1-phase, όπως προέκυψε και κατά την objective αξιολόγηση. Επιπλέον, παρατηρούμε ότι
το P10 υπερβαίνει την επίδοση του P11 σε όλα τα εξεταζόμενα μουσικά κριτήρια, αποτέλεσμα το
οποίο συνεπάγεται ότι η αρμόζουσα δομική σχεδίαση για τον αλγόριθμο εκπαίδευσης 2 φάσεων
περιλαμβάνει μόνο τον Global Discriminator, όπως αντίστοιχα υπέδειξε και η ανάλυση των
μετρικών. Τέλος, διαπιστώνουμε ότι υπάρχει μια μικρή προτίμηση του P00 έναντι των P10 και

25

Chapter 0. Extended Greek Abstract

(a) P00

(b) P01

(c) P10

(d) P11

Figure 0.5.3: Subjective Αξιολόγηση για Piano

P01, η οποία υποδηλώνει ότι και η πρωταρχική μας υλοποίηση παρέχει δυνατότητα παραγωγής
ποιοτικών συνοδειών.

Τα προκύπτοντα αποτελέσματα για την περίπτωση κατά την οποία το conditional όργανο είναι η
Κιθάρα παρουσιάζονται γραφικά στα διαγράμματα της εικόνας 0.5.4. ΄Οπως και προηγουμένως,
τα περισσότερα τεχνητά δείγματα διακρίνονται εύκολα από τα αντίστοιχα αυθεντικά ως προς

όλες τις εξεταζόμενες πτυχές. ΄Ολα τα ποσοστά προτίμησης κυμαίνονται στο εύρος 13-20%, υ-
ποδηλώνοντας ότι πιθανώς η Κιθάρα παρέχει λιγότερη πληροφορία στο σύστημα ως παραγωγική

συνθήκη συγκριτικά με το Piano, καθώς συνήθως παίζει συγχορδίες ενώ το μέρος του Πιάνου
περιλαμβάνει και κάποια μελωδικά στοιχεία. ΄Οσον αφορά τα διάφορα frameworks που έχουμε
αναπτύξει, τα πορίσματα που προκύπτουν είναι όμοια με την περίπτωση του Piano. Μια αξιοση-
μείωτη διαφορά έγκειται κατά την σύγκριση του G01 με το G00, όπου παρατηρούμε ότι η χρήση
μόνο του Global Discriminator φαίνεται να συμβάλλει αρκετά στην συνοχή των παραγόμενων
συνοδειών (ποσοστό προτίμησης 62%).

26

0.6. Σύνοψη και Μελλοντικές Επεκτάσεις

(a) G00

(b) G01

(c) G10

(d) G11

Figure 0.5.4: Subjective Αξιολόγηση για Guitar

0.6 Σύνοψη και Μελλοντικές Επεκτάσεις

Συμπερασματικά, η παρούσα Διπλωματική Εργασία επιχειρεί να μελετήσει και να διερευνήσει
διεξοδικά το πρόβλημα δημιουργίας νέου μουσικού περιεχομένου με αυτόνομο τρόπο από μια

υπολογιστική σκοπιά, κάνοντας χρήση Τεχνητών Νευρωνικών Δικτύων και εφαρμόζοντας μεθό-
δους Μηχανικής Μάθησης. Συνολικά, η έρευνά μας μπορεί να διαχωριστεί σε 2 βασικά μέρη:

• Το πρώτο αφορά το task της unconditional παραγωγής πολυφωνικών μουσικών φράσεων
σε συμβολική αναπαράσταση για 5 διαφορετικά μουσικά όργανα.

• Το δεύτερο μελετά την κατεύθυνση της αυτόματης παραγωγής μουσικής συνοδείας (con-
ditional generation) σε ένα συνεργατικό πλαίσιο ανθρώπου-μηχανής.

Μέσα από τα πειράματα που διεξάγουμε χρησιμοποιώντας ποικίλες παραλλαγές του μοντέλου

μας και βασιζόμενοι σε διαφορετικές μεθόδους αξιολόγησης, καταλήγουμε σε ενδιαφέροντα
συμπεράσματα σχετικά με την επίδραση των διαφόρων τροποποιήσεων στην ποιότητα και την

27

Chapter 0. Extended Greek Abstract

μουσικότητα των παραγόμενων δειγμάτων. Σε γενικές γραμμές, το μοντέλο μας επιδεικνύει
ορισμένες επιθυμητές ιδιότητες, ανοίγοντας έτσι τον δρόμο για περαιτέρω βελτιώσεις και μελ-
λοντικές επεκτάσεις, όπως για παράδειγμα η δημιουργία ολόκληρου τραγουδιού σε ανθρώπινο
επίπεδο σύνθεσης ή ο εμπλουτισμός των συνθηκών με διαφορετικά modalities (π.χ. βίντεο,
κείμενο) στην περίπτωση του δεύτερου task.

28

Chapter 1

Introduction

1.1 Problem Definition . 30

1.2 Challenges of the Task . 33

1.3 Thesis Outline & Contributions . 36

29

Chapter 1. Introduction

1.1 Problem Definition

By nearly every measure, interest in the area of the so-called Artificial Intelligence has
exploded over the past decades, drawing a flurry of research activity across the globe. As
a whole, this wide-ranging branch of Computer Science involves the development of smart
machines capable of performing tasks that typically require human cognitive skills. The
availability of massive data, the efficient and affordable computing power and also latest
advances in technical domains have made AI systems a growing part of our everyday life,
with applications ranging from recommendation engines in online platforms and chat-bots
for customer support to self-driving cars.

Recently, the AI research has been expanded in the field of generative modeling, enabling the
creation of unbelievably realistic pictures as well as artificially produced news articles. These
particularly promising signs in the aforementioned domains that handle data modalities, such
as text and image, have inspired researchers to further investigate the generation capabilities
of computational systems towards other directions and deal with different types of processable
information, such as audio and more specifically music, with the latter being the main focus
of this thesis. Hence, the research problem that we aim to approach within the scope of
Artificial Intelligence can be formally defined as follows:

Automatic Music Synthesis

The process of creating novel musical content in an autonomous manner, i.e. with
minimum human intervention.

Figure 1.1.1: Artificial Artists
[23]

Music is generally perceived as a form of artistic expres-
sion of knowledge, experience, ideas and emotions, estab-
lished on the arrangement of consonant sounds. To this
end, exact interpretations vary considerably around the
world, though it is an aspect of all human societies, as
stated in [24]. Without consensus over the foundation and
the substance of the music itself, the act of composing be-
comes undoubtedly more challenging. Even from the hu-
man perspective, the process of conceiving a piece of music
is considered a superior mental task, which has not been
decoded or explicitly analyzed yet. Therefore, the key for
the automation of this functionality lies in the utilization
of Machine Learning techniques. As opposed to handcrafted models, such as grammar-based
or rule-based generation systems, the ML approach provides a agnostic learning framework
that enables a computational machine to generalize from an arbitrary corpus of music and
hence create novel content independently.

Briot et al. [1] identify and tabulate the fundamental aspects of Automatic Music Synthesis
problem as follows:

• Objective: Just as every task, either implemented by human or machine, is inherently
related to an ultimate goal, so too the generation objective is the one that determines

30

1.1. Problem Definition

and consequentially forms the process of composing musical pieces in an autonomous
manner. It mainly refers to the type of musical content to be created, including
monophony, polyphony, accompaniment, counterpoint, etc. and also the framework
under which it will be used. For instance, the generated music samples might be in-
tended for performance by human(s) (in the case of a musical score) or by machine (in
case of an audio file).

• Representation: Generally, music can be represented in a computer, using various
storage forms that employ different modalities, such as text, audio or other image-like
symbolic formats. The selection of the proper representation encoding depends on the
type of musical information that will be processed and the nature of the generation
task that is implemented.

• Architecture: This term, from a computational scope, refers to the internal structure
of the system designed to perform a specific music generation task. The type of the
deep model that will be used for this purpose, is inextricably linked to the data format
and hence the employed representation method.

• Strategy: The strategy applied for the automatic creation of novel musical content
plays also a crucial role in the formulation of the examined research problem. It typically
involves the implemented algorithm as well as other parameters that control to some
extent the generation process.

• Mode: Last but not least, the generation mode mainly refers to other characteristics
and features of the music synthesis framework, such as the variability and creativity de-
gree of the model, as well as the interactivity with other systems or even human artists,
directly or indirectly. Such functionalities are typically determined by the objective of
the examined generation task.

Figure 1.1.2: The Dice
Waltz [25]

Despite the latest research towards the development of AI musi-
cians, the idea of automatically generating music is older than the
computer itself. It all started in 1787 when Mozart proposed a Dice
Game for random sound selections, in order to combine them and
finally form a musical piece. As described in [26], he used the dice
to collect melody fragments for some minuets and composed nearly
272 tones manually. Later in the 50s, the first piece composed en-
tirely by a computer, The Illiac Suite, was generated by a stochas-
tic rule-based system [27]. The score of the piece was created by a
computer and then transposed into traditional musical notation for
performance by a string quartet. What Hiller and Isaacson had done in the Illiac Suite was
to generate certain “raw materials” with the computer, modify them according to various
functions and then select the best results via multiple rules [26]. This “generator-modifier-
selector” paradigm was also later applied to MUSICOMP [28], one of the first computer
systems for automated composition, written in the late 1950s and early 1960s by Hiller and
Baker, which created Computer Cantata.

Another pioneering use of the computer in algorithmic synthesis is that of Iannis Xe-
nakis, who created a program that would produce data for his “stochastic” composi-
tions and is presented in great detail at his book Formalized Music [29] (1963). Xenakis

31

https://en.wikipedia.org/wiki/Iannis_Xenakis
https://en.wikipedia.org/wiki/Iannis_Xenakis

Chapter 1. Introduction

used the high-speed machine computations to calculate various probability theories that
he applied in compositions like Atrées (1962) and Morsima-Amorsima (1962). The pro-
gram would “deduce” a score from a “list of note densities and probabilistic weights sup-
plied by the programmer, leaving specific decisions to a random number generator” [26].

Figure 1.1.3: Illiac
Suite [30]

As in the previous example of the Illiac Suite, these scores were per-
formed live on traditional instruments. There are more modern ex-
amples, as well, of algorithmic composition without the use of the
computer. John Cage, for example, like Mozart, utilized randomness
in many of his compositions, such as in Reunion, performed by playing
chess on a photo-receptor equipped chessboard: “The players’ moves
trigger sounds, and thus the piece is different each time it is performed”
[31]. Cage also delegated the compositional process to natural phenom-
ena, as in his Atlas Eclipticalis (1961), which was composed by laying
score paper on top of astronomical charts and placing notes simply
where the stars occurred, again delegating the compositional process
to indeterminacy [32].

However, all those mathematical and stochastic approaches could not successfully model the
actual music composition rules that are customary and have been accumulated during human
history. Therefore, the previously mentioned methods were useful only when people wanted
to create really new and fresh styles, since the generated music tends to be unfamiliar and
strange. Consequently, Artificial Intelligence and Deep Learning techniques have become the
state-of-the-art approach to Automatic Music Generation, inducing already radical changes
in the landscape of Music Industry, as demonstrated in Figure 1.1.4. However, according to
most researchers the best is yet to come.

Figure 1.1.4: Applications of AI in Music Industry [33]

32

1.2. Challenges of the Task

1.2 Challenges of the Task

Figure 1.2.1: Music and
Memory [34]

Automatically composing realistic and aesthetically harmonic
musical pieces is considered a particularly hard problem in the
research field of generative modeling for many reasons, the most
hampering being the inherent adversity in representing and pro-
cessing musical content under the framework of a computational
machine. In contrast to other modal forms characterized by a
more specified structure, such as images, videos and text, music
is intrinsically related to more abstract and not especially con-
crete concepts and senses, such as the emotion, that cannot be
thoroughly defined or easily approached from a computational
aspect. However, all those notional characteristics collectively
enable our brains to make, store, and retrieve memories of mu-
sic, even when we are not aware of doing so. As stated in [35], music is actually the last thing
we forget. Thus, a simple song excerpt can be effortlessly memorized by a human, while at
the same time incorporates too many variables for a computer.

Figure 1.2.2: Hierarchical
structure of a music piece [2]

Another major difficulty lies behind the intrinsically hier-
archical arrangement of a musical piece. As demonstrated
in Figure 1.2.2, a song is abstractly composed of higher-
level building blocks, called paragraphs, which can be fur-
ther subdivided into musical phrases. A phrase in music is
defined as a substantial concrete musical thought that has
a complete musical sense of its own and therefore is consid-
ered as one of the fundamental elements in the structure
of a musical composition. Each phrase consists of smaller
recurrent patterns, termed bars, which contain beats, for-
mulated by a definite timestep number. As declared in [3,
4], the human brain focuses on such structural motifs, re-
lated to coherence, rhythm, tension and the emotion flow,
while listening to music and thus a mechanism capable of

capturing the aforementioned characteristics and also incorporating the self-reference, which
occurs in multiple timescales, from patterns to phrases or even entire sections [5], is critical.
However, it can be easily affirmed that the whole hierarchy of a musical piece is structured
upon temporal units, as the various elements of musical perception are presented to the
listener progressively in time. According to Dong et al. [2], “music in an art of time” and
therefore modeling the variant temporal dependencies is essential in the context of Automatic
Synthesis.

Furthermore, an additional key challenge arises from the fact that a musical piece is typically
composed of multiple varying tracks. For instance, a modern orchestra combines instruments
of different families, including bowed strings, brass, woodwinds and percussion, while the
most common configuration in a rock band includes two guitars, a lead and a rhythm one, a
bass, a drum set and possibly lead vocals, as graphically illustrated in Figure 1.2.3. Each in-
dividual track in an instrumental ensemble disposes its own musical properties and dynamics.
However, all the different track components collectively unfold over time in an interdependent

33

Chapter 1. Introduction

manner. Various composition disciplines have emerged over the years in an attempt to model
the interaction among different instruments. Such approaches are strongly influenced by the
corresponding music genre or the historical period to which they are related. In the context
of Automatic Music Synthesis, they formed the foundation of hand-crafted methods, which
are mainly established on compositional rules. However, the major progress in the fields of
Artificial Intelligence and especially Machine Learning have uncovered other more abstract
and creative modeling approaches to the concept of multi-track interdependence, which are
grounded on the human perception over the creation of musical pieces and vary depending
on the respective system implementation.

(a) Classical Orchestra [36] (b) Rock Band [37]

Figure 1.2.3: Multiple Instruments

Another adversity that makes the examined research problem even more challenging emerges
from the internal structure and arrangement of sounds in a polyphonic musical piece. As
visually demonstrated in Figure 1.2.4, notes are typically presented into grouping formu-
lations, such as chords, i.e. harmonic sets of multiple pitches/frequencies that are played
simultaneously, arpeggios, which constitute a special type of “broken” chord where the tonal
components are heard in a sequential form of ascending or descending order, or other melodic
motifs and harmonic patterns. All these musical texture attributes, which inherently incorpo-
rate a notion of complexity, cannot be easily captured by a computational machine system.
Former approaches, especially in the field of monophonic music generation, which by def-
inition consists of a single unaccompanied melodic line and hence includes much simpler
structural formulations, usually employ a chronological ordering of the various note events.
However, as a matter of course, such implementations cannot be generalized in tasks of higher
complexity, including polyphonic music generation. Therefore, a proper combination of data
representation and processing method is required in order to effectively model the structural
features of a polyphonic composition.

Figure 1.2.4: Beethoven’s Piano Sonata in F minor [38]

34

1.2. Challenges of the Task

Lastly, the assessment of music generation systems constitutes another crucial issue in the
context of our research problem that uncovers a lot of challenges. Generally, the evaluation of
artificial models is based on metrics that quantify their performance in terms of the objective
of the implemented task. However, due to the nature of generative AI itself, it is rather
hard to establish a standardized definition of concepts such as the performance improvement
with respect to the quality of the produced results, that can be applicable to a huge variety
of diverse studies in the field. To this end, the objective assessment practice, especially in
the research area of music synthesis, still remains largely problematic. On the other hand,
evaluation methods grounded on subjective criteria are typically more preferable in the field
of generative modeling, since the ultimate judge of creative output is the human (listener
or viewer). As Kang et al. [6] clarify, the assessment of music depends on complex and
subjective understanding, which cannot be expressed with a simple combination of known
rules, such as harmonics and counterpoint. Nevertheless, without consensus over the essence
of creativity, the proper design of an experimental methodology that can lead to valid and
reliable scientific evidence is often underestimated.

35

Chapter 1. Introduction

1.3 Thesis Outline & Contributions

This study attempts to investigate and offer further insights into the problem of Automatic
Music Synthesis, one of the most challenging topics in the research field of generative mod-
eling. We begin by providing a thorough consideration of the examined subject from a
computational perspective and later proceed on a comprehensive analysis of the arising ad-
versities and limitations. The rest of this thesis is organized in 7 chapters total (including
the current one), as described below:

• In chapter 2, we provide a detailed overview of the theoretical and technical background
required for the full comprehension of the employed methods and the design of the
utilized computational modules. More specifically, we emphasize on some fundamental
Machine Learning techniques and different types of Artificial Neural Networks, widely
applied in the examined research area. We also include a brief analysis of the two ML
frameworks that form the basis of our approach to the problem of Automatic Music
Synthesis.

• The aim of chapter 3 is to investigate the various aspects of the examined problem,
focusing on previous and related works in the field. In particular, we analyze different
music representations and attempt to categorize the distinct generation tasks into which
the general subject can be further divided, emphasizing on diverse architectures and
design choices that can be made. We also list some commonly used datasets and
engage on their usefulness. Finally, we present both objective and subjective evaluation
methods and elaborate on their nuances and importance.

• Chapter 4 provides a complete overview of the baseline project, on which our proposed
framework for automatic creation of novel musical pieces is established. We present
the system architecture and the structural characteristics of the integrated modules, as
well as the employed training dataset. We also display and discuss the results of the
conducted experiments, under the scope of the applied evaluation methods.

• In chapter 5, we focus on the task of Unconditional Generation. More specifically, we
develop a framework for the creation of multi-track polyphonic music samples from
scratch. At first, we dive into the system architecture, the implementation of the
various structural components, as well as the their respective training mechanism. We
also elaborate on the employed form of data representation, the utilized dataset and the
required preprocessing steps. Lastly, we display and discuss the results of the conducted
experiments, under the scope of our proposed evaluation tools.

• In chapter 6, we focus on the task of Conditional Generation. In particular, we extent
our previous model to a human-AI cooperative framework, capable of automatically
producing accompaniments for user-defined tracks. In this case, we introduce some
structural modifications in the system architecture and also emphasize on different
training modes. Finally, we proceed in a comprehensive comparison among the resulting
model variants, using both objective and subjective evaluation practices and present a
thorough analysis of the produced results.

• Chapter 7 draws general conclusions regarding the research sections of the examined
problem and also summarizes the experimental results and the contributions of this

36

1.3. Thesis Outline & Contributions

thesis. In advance, it briefly discusses our thoughts on potential directions for future
work.

At this point, we consider it particularly useful to briefly outline the contributions of our
research study, which will be further discussed and thoroughly analyzed in following chapters
of this thesis. Our contributions can be divided in two main sections, with respect to the
implemented generation task. More specifically:

Unconditional Generation

• Based on the functional concept of MuseGAN, we design a framework for automatic
generation of novel musical content in symbolic format from scratch, i.e without sub-
jecting to any prior or supplementary information. The produced samples consist of 5
distinct polyphonic tracks: Drums, Piano, Guitar, Bass and Strings.

• We perform a customization of our implementation with respect to a group of parame-
ters that define various generative configurations. This process induces an internal in-
ternal modulation in the architecture of the included modules depending on the current
input arrangement. In this way, our proposed model becomes flexible and adaptable
to different generation practices.

• We incorporate into our developed generative system proper auxiliary mechanisms for
the monitoring of the the training process, which plays undoubtedly a crucial role in
AI modeling. This closer inspection of the applied learning practice enables us to
further investigate the behavior of the individual structural units and derive respective
conclusions.

• We develop a novel implementation for the existing musical metrics, based on the
descriptive analysis presented in the original paper. We further expand our employed
objective evaluation system via the inclusion of 3 additional quantitative indicators that
emphasize on tonal characteristics and texture attributes of the generated samples.

• We examine the effectiveness of our proposed model over the creation of aesthetic multi-
track polyphonic musical pieces from scratch, by conducting a group of experiments
with different generative configurations and applying our proposed objective metric
system for the evaluation of the produced results.

• We conduct a qualitative study in the form of listening test across 40 subjects, in or-
der to compare our proposed framework with the baseline project from an auditory
perspective. We demonstrate that our developed music generation system significantly
outperforms MuseGAN with respect to 3 musical criteria: Musical Naturalness, Har-
monic Consistency and Musical Coherence.

Conditional Generation

• We extend our original model to a human-AI cooperative framework, by focusing on
the task of Accompaniment Generation: given one track derived from the ground-
truth distribution of human-composed music samples as conditional information, our
proposed system automatically generates the 4 remaining tracks, considering them as
the accompaniment parts of the conditional one in terms of rhythmic and harmonic
support.

37

Chapter 1. Introduction

• We follow our customization practice from Unconditional Generation and parameterize
the implementation of all structural units involved into our proposed accompaniment
framework, including modules from the previously examined task that have been prop-
erly modified in order to adjust to the new generation practice and also the additional
ones.

• We experiment over multiple variants of our conditional generative framework that
mainly differ in terms of the structural components included in the system architecture,
the utilized training algorithm and the type of conditional instrument.

• We evaluate the produced results using both objective (musical metrics) and subjective
(user study) assessment methods. In this way, we prove that the proposed variations can
lead to the creation of novel aesthetic accompaniments and actually contribute to the
improvement of the generated musical quality. We also demonstrate that the outcomes
derived from the objective evaluation are in agreement with the results of human assess-
ment, indicating that our proposed implementation for the employed metrics provides
a meaningful interpretation of the produced music from a computational perspective.

38

Chapter 2

Theoretical Background

2.1 Machine Learning . 40

2.1.1 Supervised Learning: More Control, Less Bias 41

2.1.2 Unsupervised Learning: Speed and Scale 46

2.1.3 Reinforcement Learning: Rewards Outcomes 50

2.2 Artificial Neural Networks . 54

2.2.1 Perceptron . 55

2.2.2 Multilayer Perceptron . 59

2.2.3 Convolutional Neural Networks . 64

2.2.4 Recurrent Neural Networks . 71

2.3 Generative Adversarial Networks 75

2.3.1 Discriminator . 77

2.3.2 Generator . 77

2.3.3 Overall Training . 78

2.4 Autoencoder . 80

39

Chapter 2. Theoretical Background

This chapter provides a complete overview of the required theoretical background,
concerning the problem of Automatic Music Synthesis. More specifically, in section
2.1 we present some fundamental Machine Learning techniques, while in section 2.2 we
focus on different types of Artificial Neural Networks, widely used in the aforementioned
research area. Lastly, sections 2.3 and 2.4 include a brief analysis of two fundamental
ML frameworks, which form the basis of our approach to the field of Music Generation.

2.1 Machine Learning

The term Machine Learning was introduced in 1959 by Arthur Samuel, an IBM employee
and pioneer in the field of Computer Gaming and Artificial Intelligence. According to Samuel,
Machine Learning is defined as

a field of study that provides computers with the ability
to “learn” without being explicitly programmed

In other words, Machine Learning is a branch of Artificial Intelligence (AI) and Computer
Science, which focuses on developing algorithms that can access data in order to imitate
the way that humans learn. For simple tasks assigned to computers, it is possible for a
human to manually create the appropriate algorithm, including all the required steps that
need to be executed by the machine for the solution of a specific problem. However, a variety
of advanced applications have emerged from the constantly growing field of data science
and evolving technology, especially in the fields of medicine, email filtering, speech and face
recognition, computer vision and many more. The computational modeling of such tasks
is overly complex for humans, making it difficult or even unfeasible to develop conventional
algorithms to perform the needed processes. On account of this, it turns out to be much
more effective to help the machine develop its own algorithm in order to solve such problems.

Figure 2.1.1: Artificial
Intelligence [39]

A constitutive key in the concept of Machine Learning arises from
the sample data, also known as “training data”, which the algo-
rithms use to built mathematical models that make predictions
or decisions in an autonomous way. Similar to how the human
brain derives knowledge and understanding, Machine Learning
relies on input in order to apprehend entities, domains and the
connections between them and proceed to inferences based on the
provided examples. This procedure can reveal trends and pat-
terns within data that allow information businesses to augment
or even replace human capabilities in terms of decision making
and efficiency optimization. For this reason, the conformation of
a dataset used by an ML algorithm is crucial, as it considerably
influences the performance of the respective model. A small or particularly specialised dataset
can render a model useless for real world applications, where generalization is a matter of
great importance.

From a computational scope, an ML system includes a set of learnable parameters. Their
respective values are being updated during the training process in order to improve the

40

2.1. Machine Learning

model’s performance, measured by the corresponding output of the system when samples
from the dataset are given as input. According to UC Berkeley, the learning framework1 of
an ML algorithm consists of roughly 3 components:

• Decision Process: It can be defined as the recipe of calculations or other computa-
tional steps that follows the ML algorithm in order to produce an estimate about the
type of pattern prevailing on the input data, which can be either labeled or unlabeled.

• Performance Index or Error Function: It quantifies the efficiency of the model
with respect to the examined task. As regards applications where the known samples
are available, the formation of the aforementioned function cam be simple or even trivial
(e.g. accuracy at a classification task), while the involved elusiveness and vagueness in
various problems of different types (e.g. quality of generated musical piece) render this
particular process complex and challenging.

• Updating or Optimization Process: It can be defined as the method that updates
the values of the model parameters, based on the output of the cost function, in such
a way that the discrepancy between the known samples and the model estimate is
reduced. This procedure is repeated until a specific performance threshold is met,
concerning the model fitness to the ground-truth examples.

The variety of different Machine Learning approaches can be categorized by the presence or
absence of human influence on raw data, regarding the inclusion of a reward, the utilization
of feedback or the existence of labels. There are three primary training practices, Supervised
Learning, Unsupervised Learning and Reinforcement Learning, which will be discussed more
explicitly in the following sections.

2.1.1 Supervised Learning: More Control, Less Bias

Supervised Learning (SL) includes a set of algorithms that leverage “labelled” training
data in order to predict outcomes accurately. The term “labelled” data refers to input data
already tagged with the correct output. More specifically, each sample is a pair consisting of
an input object (typically a vector) and a desired output value (also called the supervisory
signal). This structure of training examples provides the algorithm with the ability to analyze
the corresponding dataset, capture correlations and associations among samples and exploit
this kind of information in order to produce an inferred function which is able to predict
future events.

The concept of Supervised Learning method is graphically depicted in Figure 2.1.2 through
an example. We consider a dataset of different shape types, which includes square, circle
and triangle. The aim is to train a model so that it identifies each shape. A prospective
algorithm is described as follows:

• If the examined shape has 4 sides and all the sides are equal, then it will be labelled as
a Square.

• If the examined shape has 3 sides, then it will be labelled as a Triangle.

1A visual Introduction to Machine Learning by R2D3 can be found in this website

41

https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Chapter 2. Theoretical Background

• If the examined shape has no sides, using the evident definition, then it will be labelled
as a Circle.

During training process, the parameters of the algorithm are updated until the model fits
the training data appropriately. This is achieved by comparing the current output with the
correct one, as the input data is fed into the system, in order to determine errors and modify
the model parameters accordingly. As a result, when a new unseen shape instance is tracked
during validation, the machine is qualified to predict the correct corresponding class label,
based on the number of its sides.

Figure 2.1.2: Supervised Learning Diagram [40]

It may be assumed that training data operate as the supervisor that tutors the machine to
predict the output correctly, similar to the concept of a student learning under the supervi-
sion of the teacher. In effect, the model gains the ability of generalization from the training
data to unseen situations in a “reasonable” way, following the archetypes of human learning
process. This acquired attribute of computational systems is employed by various organi-
zations and industrial companies for building applications that solve real-time problems at
scale. Applications of that kind include Text categorization, Face Detection, Signature recog-
nition, Customer discovery, Spam detection, Weather forecasting, Predicting housing prices
based on the prevailing market price, Stock price predictions, etc.

Figure 2.1.3: Categorization of Supervised Learning Problems [41]

42

2.1. Machine Learning

Supervised Learning can be further divided into the following two groups of problems, as
demonstrated in Fig. 2.1.3:

Regression

Figure 2.1.4:
Regression [42]

Regression is a technique for investigating the association between
independent variables (features) and a dependent variable (out-
come). From a visual scope, it generally involves finding and draw-
ing a line of best fit through the given data points, as shown in Fig.
2.1.4. The distance between each point and the line is minimised in
order to achieve the most suitable result.

Regression can be employed as a method for predictive modelling
in the field of Supervised Machine Learning, concerning algorithms
that predict continuous outcomes, that is, real-valued output vari-
ables, such as unique numbers, dollars, salary, weight or pressure,
based on previous data observations. More specifically, regression
analysis provides insights into the effect of a specific independent
variable on the value of the dependent variable, when all other in-
dependent variables are held fixed.

There are multiple approaches for performing regression in the field of Machine Learning,
incorporating different popular algorithms. Those distinct techniques may include different
numbers of independent variables, process different types of data, or even assume a different
relationship between the independent and dependent variables. Nevertheless, each variant
has its own importance on diverse use case scenarios. Some of the most prevailing regression
methods can be grouped into the categories graphically displayed in Figure 2.1.5.

Figure 2.1.5: Types of Regression [43]

Classification

In the context of Machine Learning, Classification refers to the process of identifying the
category that corresponds to a specific sample-observation. From a mathematical point of
view, classification predictive modeling is the task of approximating the mapping function

43

Chapter 2. Theoretical Background

(f) from input variables (X) to categorical output variables (y), that best fits the respective
training dataset. As such, the training set should be sufficiently representative of the problem
and contain many examples of each class label. Throughout this procedure, the model is able
to recognize specific entities within the dataset and attempts to draw some conclusions on
how those entities should be labeled or defined. The main goal is the assignment of new
unseen samples into the formatted categories. Classification methods can be applied on both
structured or unstructured data.

Figure 2.1.6: Spam Detection [44]

Spam Detection is a typical example of a supervised
machine learning problem that leverages the method
of Classification. A spam-detector algorithm must
find a way to filter out spam mails, avoiding at the
same time the flagging of authentic messages that
users want to see in their inbox. This means that
the machine learning model should be supplied with
a set of examples of spam and ham (i.e. non-spam)
messages and explore the relevant patterns that sepa-
rate the two different categories, as presented in Fig.

2.1.6. Heart Disease Detection can be also identified as a classification problem. In this case,
the model uses training data in order to identify the relation of the given input variables to
the corresponding class. Once the classifier is trained accurately, it can be used to detect
heart disease for a particular patient.

Figure 2.1.7: Classification
Algorithms [45]

Both the aforementioned applications belong to the
category of Binary Classification, since only two
class labels are encountered (e.g. spam-non spam).
On the other hand, Multi-class Classification in-
cludes tasks characterized by three or more distinct
classes, such as Face Classification and Optical Char-
acter Recognition. An additional variant of the typ-
ical (multi-class) classification problem is established
on the assignment of multiple labels to each data sam-
ple and it is called Multi-label Classification. For
instance, in the task of Object Detection, the model
predicts the presence of multiple semantic objects con-
tained in every digital image-sample, by locating their
position, indicating their scale and assigning multi-
ple labels corresponding to different entity categories,
such as humans, buildings, or cars.

The wide variety of classification tasks has induced
the development of multiple different algorithms that
can be used in order to solve the corresponding prob-
lems. The choice depends on the nature of the ap-
plication and the form of available data. The most
commonly used classification algorithms are demon-
strated in Figure 2.1.7.

44

2.1. Machine Learning

The statistical ability of an algorithm to adapt properly to new, previously unseen data,
drawn from the same distribution as the training ones, either in the case of Regression or
Classification, is measured by the so-called generalization error. This quantity is employed
in the evaluation procedure of the model’s performance in the context of a cross-validation
formula.

Cross-validation, also known as Rotation Estimation or Out-of-Sample Testing, belongs to
a group of model validation techniques for assessing the generalizability of the results pro-
duced by a statistical analysis to an independent data set. In particular, it is a resampling
method that uses different portions of the dataset to test and train a model on different iter-
ations. One round of cross-validation involves partitioning data into complementary subsets,
performing the analysis on one subset, called the training set, and validating the analysis
on the other subset, called the validation set or testing set. For the purpose of variability
reduction, in most methods multiple rounds are performed using different partitions and the
individual validation results are combined to provide an estimate of the model’s predictive
performance. In summary, cross-validation is used to derive an as much as possible accurate
estimate of the model’s fitness in prediction and flag various problems, such as overfitting.

Overfitting is a concept in data science that constitutes a common pitfall for deep learning
algorithms. From a mathematical perspective, it can be defined as the production of an
analysis that corresponds too closely or exactly to a particular set of data. In other words,
it occurs when a model attempts to fit the training data entirely and results in memorizing
the data patterns, the noise or any other random fluctuations and interpreting them as part
of underlying data structure. The problem is that these notions cannot apply in the case
of unseen data scenarios, affecting negatively the model’s ability to generalize, as it fails to
predict future observations reliably.

Overfitting essentially arises from the difference between the criterion used for selecting the
model and the one used to assess the suitability of a model. For instance, a model might be
selected by maximizing its performance on some set of training data, and yet its suitability
might be determined by its ability to perform well on unseen data. Furthermore, the non-
parametric and non-linear methods, used by these types of machine learning algorithms, can
easily amplify the establishment of unrealistic models with lack of generalizability, due to the
flexibility incorporated in the learning process of a target function.

Underfitting, the counterpart of overfitting, is another major problem that afflicts super-
vised machine learning algorithms. It occurs when a data model is unable to capture the
relationship between features of a dataset and output variables accurately, generating a high
error rate on both the training set and unseen instances. An underfitted model might have
a simple structure that cannot establish the dominant trend within samples, due to short
training time, lack of features, uncleaned training data containing noise and outliers or over-
whelming regularization. Therefore, it results in problematic or erroneous outcomes on new
data and cannot be leveraged for classification or prediction tasks. Since this behavior can
be identified during training procedure, underfitted models are usually easier to track than
overfitted ones.

In both scenarios, the model generalizes poorly to unseen data, which is an important factor
concerning real-world applications. If we define bias as the quantity that measures the

45

Chapter 2. Theoretical Background

difference between the model’s prediction and the target value and variance as an indicator
of the inconsistency of different predictions over varied datasets, then we can affirm that an
overfitted model exhibits high variance and low bias. This is due to the fact that it can
represent the training data accurately but lacks at the same time the ability to generalize at
different testing sets. On the other hand, unlike overfitting, underfitted models experience
high bias and low variance, due to their simplified structure that overlooks regularities in
data and fails to approximate the underlying function. This demonstrates the bias-variance
trade-off, which represents the conflict in trying to simultaneously minimize these two sources
of error that prevent supervised learning algorithms from generalizing beyond their training
set. On account of this, the goal is to track down the “sweet spot” between underfitting and
overfitting. An illustration of the forenamed observations is presented in Figure 2.1.8.

Figure 2.1.8: Overfitting and Underfitting Overview [46]

2.1.2 Unsupervised Learning: Speed and Scale

Unsupervised Learning (UL) encompasses a group of machine learning algorithms that
analyze and cluster unlabeled or unclassified data, namely samples which are not given label,

46

2.1. Machine Learning

and thus do not correspond to any predefined target output. As the name suggests, this
procedure is accomplished without any human surveillance or superior guidance, following
the archetypes of the learning mode of human brain. The principal idea is that through the
exposure to large volumes of varying data, the machine discovers hidden patterns and insights,
identifies correlations and relationships among samples, detects similarities and differences in
information and leverages all these features in order to build a compact internal representation
of the underlying data structure.

In the context of Unsupervised Learning, algorithms are
left to their own devices to determine disparate or in-
teresting aspects about the input features, by exploring
autonomously the given dataset. In this way, without
any prior knowledge, unsupervised methods are capable
of inferring a function that describes the intrinsic data
distribution. This notion of self-organization renders
such kind of systems the ideal solution for exploratory
data analysis, cross-selling strategies, customer segmentation and image recognition.

Figure 2.1.9: Unsupervised Learning Diagram [47]

The overall mechanism of Unsupervised Learning systems is pictorially demonstrated in the
diagram of Figure 2.1.9. Let us again consider a dataset containing different types of geo-
metrical shapes, such as squares, triangles and circles, which are not accompanied with extra
information in the form of a tag. Let us also assume that the aforementioned set of data
samples comprises the input of a model that utilizes the method of Unsupervised Learning.
The task of the corresponding algorithm is to identify the input instances, by performing a
clustering of the geometrical shapes into groups, based only on similarities and associations
among them. To this effect, a stage of data interpretation is required in order to extract hid-
den patterns and determine features, which contribute to the formation of categories at the
processing step. Contrary to the Supervised Learning concept, where the labels can impose a
strategy for the problem solution, in this case the machine is programmed to learn by itself,

47

Chapter 2. Theoretical Background

since an equivalent set of generally applicable instructions for the grouping of the input data
cannot be defined.

One of the most important benefits of unsupervised learning techniques concerns the structure
of the utilized dataset. Unlabeled data do not require any kind of human intervention or
annotation, which is a significantly time-consuming procedure; as such, they constitute the
most common type of dataset regarding the majority of real-world applications. Furthermore,
such methods can be used for modeling more complex tasks compared to supervised learning,
since they have the ability to detect and reveal hidden patterns and intrinsic features of the
underlying data distribution, that can facilitate the approach of compound problems and
contribute to the categorization part.

Figure 2.1.10: Categorization of Unsupervised Learning Problems [48]

Unsupervised Learning can be broadly categorized into two classes of problems, which are
presented in Figure 2.1.10 and will be more extensively discussed further down.

Clustering

Figure 2.1.11: Clustering [49]

Clustering can be considered an important
concept when it comes to Unsupervised
Learning. This method involves organizing
unlabelled data into groups, called clusters,
by discovering patterns or detecting the in-
herent structure that may exist in the col-
lection of input instances. More specifically,
Cluster analysis can be defined as the task
of grouping objects into clusters in such a
way that samples in the same group are more
similar, in some sense, to each other than to
those in other groups. Therefore, a cluster is
a collection of objects which are “similar” be-

tween them and “dissimilar” to the objects belonging to other clusters. From a computational
aspect, Cluster analysis can be formulated as an iterative process of knowledge discovery or
interactive multi-objective optimization, that tracks down commonalities among data points
and performs a categorization, based on the presence and absence of those attributes.

Clustering is the main task of Exploratory Data Analysis and a common method for Sta-
tistical Data Analysis, used in many fields, including Pattern Recognition, Image Analysis,

48

2.1. Machine Learning

Information Retrieval, Bioinformatics, Data Compression and Computer Graphics. It can
be performed by a variety of algorithms that approach the constitution of clusters as well as
the procedure of their formation in a different manner. Popular notions of clusters include
groups with small distances between members, dense areas of the data space, intervals or
particular statistical distributions. The selection of the proper clustering algorithm in con-
junction with the setting of multiple parameters, such as the distance function to be used, a
density threshold or the number of expected clusters to be formed, depend on the structure
of the input object collection, the data format and the nature of the application that will
exploit the produced results. A visual overview of the most prevailing clustering algorithms
employed in Data Science and Mining is presented in Figure 2.1.12.

Figure 2.1.12: Clustering Algorithms [50]

Association

Association is a rule-based unsupervised method for discovering interest relations between
variables, hidden in large datasets. These correlations are usually represented in the form of
rules or frequent item-sets. It is a descriptive, not predictive, formula that detects new and
engaging insights between different objects in a set, frequent patterns in transaction data or
any sort of relational database. Association rules are employed in multiple application areas,
such as Web Usage Mining, Intrusion Detection, Continuous Production and Bioinformatics.

49

Chapter 2. Theoretical Background

Figure 2.1.13: Market
Basket Analysis [51]

In addition to the aforementioned problems and tasks, this
technique is most frequently utilized under the framework of
Market Basket Analysis, as shown in Figure 2.1.13. In this
case, association rules allow for discovering regularities between
products in large-scale transaction data, recorded by point-of-
sale (POS) systems in supermarkets. For instance, the rule
{onions, potatoes} =⇒ {burger} formatted from the sales data
of a specific store, indicates that if a customer buys onions and
potatoes together, they are also likely enough to buy hamburger
meat. Such kind of information comprises the basis for decisions and actions, concerning
marketing activities, such as promotional pricing or product placements. Understanding
consumption habits of customers enables businesses to develop better cross-selling strategies
and recommendation engines.

In general, association rules are formulated by identifying frequent if-then patterns among
data and using a particular criterion under Support, Confidence and Lift in order to determine
the most significant relations. The aforementioned quantities can be defined as follows:

• Support expresses the frequency of an item appearance in the given dataset.

• Confidence indicates the number of times the if-then statements are found to be
verified.

• Lift shows the number of times the if-then statements are expected to be verified and
is introduced in order to compare the actual and the expected Confidence.

2.1.3 Reinforcement Learning: Rewards Outcomes

Figure 2.1.14: Reinforcement Learning Diagram [52]

Reinforcement Learning (RL) constitutes a feedback-based Machine Learning technique
that enables an intelligent agent to learn how to act inside an interactive environment by
trial and error, using feedback from its own experiences, in order to maximize the notion
of cumulative reward. Given a set of prescribed rules for accomplishing a distinct goal, this
method allows machines and software programs to automatically determine the ideal behavior
that maximizes their performance, through a procedure of seeking positive rewards, which

50

2.1. Machine Learning

can be received when a beneficial toward the ultimate goal action is performed and avoiding
punishments, which can be received in the opposite situation.

As demonstrated in Figure 2.1.14, the fundamental elements that describe a Reinforcement
Learning problem are the following:

• Agent: An entity that has the ability to explore the environment and operate upon
it, in order to perform a specific task.

• Environment: The physical or virtual world that surrounds the agent.

• State: It describes the current situation and is modified by the actions of the agent.

• Action: It is the move made by the agent which alters the status of the environment.

• Reward: The evaluation of an action, which can be either positive or negative (it is
returned to the agent from the environment in the form of feedback).

• Policy: It is the strategy that the agent applies in order to determine the next action,
based on the current state. In other words, it constitutes a mechanism for mapping
states to actions.

• Value: Expected reward that the agent would receive by taking an action in a particular
state.

Figure 2.1.15:
Exploration vs

Exploitation trade-off
[53]

Both Supervised and Reinforcement Learning methods utilize a
form of mapping between the input and the corresponding out-
put. However, in the case of Supervised Learning, the feedback
provided to the agent is a set of parameter reformulations that
rectify its course to the global goal, since the structure of labeled
input-output data pairs impose the explicit correction of all sub-
optimal actions. On the other hand, Reinforcement Learning uses
rewards and punishments as signal indicators of good and bad
behavior respectively, which are both acceptable elements of the
training process, since the main focus is on finding a balance be-
tween exploration of uncharted territory and exploitation of the
current knowledge. This is called Exploration vs Exploita-
tion trade-off (Figure 2.1.15) and represents the dilemma that
an agent faces at every step of the algorithmic process, between exploring new states and
maximizing its overall reward at the same time. In other words, the procedure of establishing
an optimal policy with respect to a particular task may involve some short-term sacrifices,
which nevertheless enable the agent to collect adequate amount of information and as a
consequence make the best overall decision in the future.

As regards the comparison between Unsupervised and Reinforcement Learning, it can be
affirmed that those two methods differ in the matter of the objective of the whole procedure.
As explained before, the goal of Unsupervised Learning techniques is to detect similarities
and differences and discover hidden patterns among unstructured data, while in the case
of Reinforcement Learning the principal aim is to track down the most appropriate action
model that maximizes the total cumulative reward in the context of performing a specific
task.

51

Chapter 2. Theoretical Background

Figure 2.1.16: Reinforcement Learning Approaches

The various approaches concerning the implementation of a Reinforcement Learning system
in Machine Learning can be broadly divided, in accordance with the diagram of Figure 2.1.16,
into the following categories:

Model-based methods

In the framework of model-based RL approaches, the agent is enabled to construct a func-
tional representation of its environment. By performing actions and observing the outcomes
that include the next state and the immediate reward, the agent is capable of learning the
aforementioned virtual model and hence formulating the optimal behaviour in an indirect
manner, overcoming at the same time the issue of lack of prior knowledge. Since the model
representation depends on the corresponding environment, which can vary among different
problems, a generic algorithm cannot be established for this kind of methods.

Model-free methods

In the case of model-free RL systems, the agent does not take into account the environment’s
response to local actions and only concerns itself with determining which action to perform
given a specific state. More precisely, it does not consider predictions derived from environ-
mental information, that may refer to the expected next reward or the full distribution of next
states and next rewards, laying emphasis on the procedure of learning instead of planning.
Since it can be extremely difficult to construct a sufficiently accurate representation of the
environment, as required by the model-based strategy, model-free methods have been proven
significantly useful for a wide variety of problems, surpassing approaches that incorporate a
larger degree of complexity.

From a computational aspect, every policy employed by a Reinforcement Learning algorithm,
can be described by two functions: the State Value (V-value), which maps each state to
the corresponding expected reward, considering actions performed by the agent in accordance
with the given policy from the input state onward and the State-Action Value (Q-value),
which maps a state-action pair to the corresponding expected reward, considering all previous
pairs from the input state and beyond, according to the given policy. Therefore, discovering
the optimal policy and finding the optimal V-value or Q-value are equivalent procedures,

52

2.1. Machine Learning

as regards the task to be resolved. Under this concept, model-free methods can be further
partitioned as follows:

• Value-based: Value-based algorithms aim at specifying the optimal State-Action
Value or the optimal State Value. In this way, the optimal policy is indirectly es-
tablished, since it can be derived from the aforementioned functions.

• Policy-based: Policy-based algorithms track down directly the optimal policy, by
building an explicit representation of it during learning.

53

Chapter 2. Theoretical Background

2.2 Artificial Neural Networks

The term Artificial Neural Network (ANN), or simply Neural
Network (NN), refers to a family of Machine Learning and Arti-
ficial Intelligence algorithms, established on biological studies con-
cerning the structure and the respective functionalities of the human
brain and nervous system. As the name suggests, an Artificial Neural
Network can be defined as a computational system that models the
human brain. The concept of Artificial Neural Networks was first in-
troduced in 1943, when two mathematicians, Warren McCulloch and
Walter Pitts, built a circuitry system intended to approximate simple
biological operations of the human brain. This notion of emulating intellectual processes in a
computational form and enable machines to understand and learn things in order to perform
tasks in a human-like manner has flourished over the years, rendering ANNs the fundamental
tool for Deep Learning algorithms.

From a constructional perspective, an Artificial Neural Network comprises a collection of
interconnected units or nodes, called artificial neurons, which are organized in multiple layers.
Similar to the mechanism of synapses in the biological brain, each connection, also called edge,
in the equivalent artificial system can transmit a signal to other neurons. As demonstrated
in Figure 2.2.2, an artificial neuron receives signals from other neurons, processes them and
broadcasts the result of this procedure at neurons connected to it. The aforementioned signals
are real numbers and the output of each neuron is computed by some function of the sum of
its inputs, mimicking the indeterminate behaviour of biological neurons, which are enabled
and disabled irregularly when a particular operation is performed. Neurons and edges are
typically characterized by a weight value that adjusts as learning proceeds. This quantity
increases or decreases the strength of the signal at a connection, representing the significance
degree of the corresponding input information. Neurons may also have a threshold that
determines whether the respective aggregate signal is to be transmitted.

Figure 2.2.1: Biological Neuron [54] Figure 2.2.2: Artificial Neuron [54]

In comparison with the biological model, depicted in Figure 2.2.1, it may be stated that the
correspondence between the two structures can be summarized as follows:

• Dendrites ⇔ Inputs

• Cell Nucleus ⇔ Neuron

54

2.2. Artificial Neural Networks

• Axon ⇔ Output

• Synapse ⇔ Interconnections

As mentioned before, artificial nodes are usually aggregated into layers. The neurons con-
tained in each tier can be considered as parallel processors operating on the same input
information. Different layers may perform varying transformations on their respective in-
puts. The architecture of a multilayer neural network is graphically presented in Figure
2.2.3.

Figure 2.2.3: Multilayer Neural Network [54]

• Input Layer: As the name suggests, it is the first layer, which receives the input data
in several different formats.

• Hidden Layer: Hidden layers represent intermediate layers of the network, where
the included artificial neurons receive a set of weighted inputs and produce an output
through an activation function. These node tiers usually perform processing calcu-
lations in order to extract hidden features or to detect patterns among input data.
Hidden layers constitute a typical part of nearly any neural network structure, since
they essentially simulate the operations of the human brain.

• Output Layer: As the name suggests, it is the final layer, which produces the ultimate
result of the whole procedure.

There are many different types of Artificial Neural Networks. Although they all share the
same objective of modeling the human brain activity, they can differ in multiple aspects,
including the degree of complexity, the structure of artificial neurons and the connections
between them (e.g. node density, network depth, activation filters, etc.), the data flow or
the use cases. The most prevailing categories of Artificial Neural Networks, especially in the
research area of Automatic Music Synthesis which constitutes the principal subject of this
thesis, will be examined in greater detail at the subsequent sections.

2.2.1 Perceptron

The perceptron constitutes the fundamental building block of a typical Artificial Neural
Network, since it comprises only a single neuron, as displayed in Figure 2.2.4. It was initially
implemented in the mid of 20th century by Mr. Frank Rosenblatt, as a machine intended to
perform specific computations in order to detect properties of the input data distribution or
business intelligence.

55

Chapter 2. Theoretical Background

Figure 2.2.4: Perceptron [55]

As demonstrated in Figure 2.2.4, the perceptron unit consists of the following main compo-
nents:

• Input Nodes or Input Layer: This module feeds the initial data into the perceptron
system for further processing. Each input node corresponds to a real numerical value,
representing some feature of the input.

• Weights & Bias: The weight parameter represents the influence degree of the associ-
ated input neuron to the computational procedure of determining the system’s output.
In order to mathematically model this correlation, weights are linearly combined with
the respective input values. Bias is an adjustable, numerical term added to the percep-
tron’s equation formula, that allows the shifting of the activation function along the x
axis and can be considered as the decision threshold.

• Activation function: It is usually a non-linear partially differentiable function that
maps the linearly aggregated form of input attributes to a specific interval or a defined
set of values, determining in this way the output of the respective node. Activation
functions introduce a notion of non-linearity in the processing mode of neural net-
works, as the initial module of artificial neurons performs just a linear transformation
of the input. This additional feature is particularly crucial, since it enables machines
to deal with more complex tasks, that cannot be essentially approached through a
linear method. As regards the case of perceptron systems, the most widespread acti-
vation function is the Step function, which is illustrated in Figure 2.2.5a. A common
alternative is the Sign function, which is depicted in Figure 2.2.5b.

(a) Unit Step Function (b) Sign Function

Using mathematical notation, the perceptron mechanism can be described as follows:

56

2.2. Artificial Neural Networks

Let x ∈ Rn be a real-valued vector which represents the input features and w ∈ Rn

the internal real-valued vector of the system’s weights.

1. The dot product of the aforementioned vectors is computed:

wT · x =
n∑

i=1

wixi

where n is the number of input attributes.
2. The bias term b is added to the produced value:

wT · x+ b =
n∑

i=1

wixi + b

3. The result is applied to the activation function, generating the perceptron’s out-
put (we utilize Step Function for the formulation):

y = f(x) =

{
1, wT · x+ b > 0
0, otherwise

Evidently, the value of the perceptron’s output f(x) can be considered as an indicator of
the class in which the input x is assigned, establishing the framework of a typical binary
classification task. More specifically, in order to classify x as a “positive” instance, the
respective weighted compound of the input attributes must produce a value greater than
−b, leading in this way the perceptron’s neuron over the threshold value. Topologically, bias
determines, in essence, the position of the decision boundary, which partitions the underlying
vector space into two distinct groups. Furthermore, due to the fact that the classification
rule is based on a linear combination of the input features and the corresponding weights,
the perceptron unit can be employed as a type of linear classifier.

Figure 2.2.6: Illustration of
Decision Boundary [56]

The main objective of perceptron’s training process is to
learn the threshold function

f(x) = wT · x+ b

which by definition maps the real-valued input vector
x to a single binary output value f(x), that designates
the class of the respective data instance. Spatially,
the aforementioned function represents the decision sur-
face, which partitions the generalized data space into
two regions in accordance with the class distribution, as
demonstrated in Figure 2.2.6 for the 2D case. Therefore,
the training algorithm of the perceptron model aims at
computing the weight vector w and the bias parameter b, so that all samples included in the
training set are correctly classified by the corresponding predictor function f . On account
of this fact, a labeled dataset is required, rendering the Perceptron Rule one of the principal

57

Chapter 2. Theoretical Background

algorithms within the framework of Supervised Learning, which has been explicitly presented
in Section 2.1.1.

The Perceptron training rule is presented below. In practice, it optimizes the values of w and
b with respect to a cost function L(d, f(x)), which typically corresponds to the minimization
of misclassifications in the training set.

Algorithm 1: Perceptron Training Rule
Definitions:

• r denotes the learning rate of the perceptron. It is a hyperparameter which
determines the step size at each iteration of the algorithm, while moving toward a
minimum of a loss function. It is usually between 0 and 1, with larger values implying
more volatile weight updates.

• y = f(z) represents the perceptron’s output for an input vector z.
• D = {(x1, d1), . . . , (xs, ds)} is the labeled training set of s data samples, where xj

symbolizes the n-dimensional input vector and dj the corresponding desired output
value.

• xj,i indicates the i-th feature value of the j-th training input vector.
• wi signifies the i-th value in the n−dimensional weight vector, to be multiplied by the

value of the i-th input feature.
• wi(t) shows the i-th value in the weight vector at iteration t
• The weight vector w is augmented with the bias parameter b at position 0, hence
w0 ⇔ b. As a result, the input vector is equivalently augmented by setting xj,0 = 1,
since bias does not correspond to any input feature.

• The employed loss function is the so-called 0-1 Loss, which returns 1 when the target
and output are not equal and 0 otherwise.

Input:
• Learning Rate r
• Training Set D
• Maximum Number of Iterations T

Initialization:
• Initialize weight vector w(0) = 0 (or to a small random value)
• t← 0

1 repeat
2 for each training example (xj, dj) in dataset D do
3 Calculate the actual output.

yj(t) = f(wT(t) · xj) = f(w0(t) + w1(t)xj,1 + · · ·+ wn(t)xj,n)

4 Update the weights.

wi(t+ 1) = wi(t) + r · (dj − yj(t)) · xj,i, 0 ≤ i ≤ n

5 Update iteration parameter. t← t+ 1

6 endfor
7 until stopping criterion is satisfied or maximum iteration number is reached

58

https://www.baeldung.com/cs/ai-0-1-loss-function

2.2. Artificial Neural Networks

As it can be pointed out, in the case of a false prediction the algorithm adjusts the weight
values by a proportion of the input vector that has been misclassified. Otherwise, the weight
vector remains unmodified. The training procedure is terminated when the classification
error is less than a user-specified threshold or a predefined number of iterations has been
completed. If the utilized training set is linearly separable, i.e. the respective two classes
can be distinguished by a hyperplane, then the convergence of the perceptron’s training
algorithm is guaranteed. In the inverse situation, no “approximate” solution will be gradu-
ally approached under the standard process, but instead, learning will completely fail, since
perceptron is a linear classifier, as mentioned before.

2.2.2 Multilayer Perceptron

As the name suggests, a Multilayer Perceptron (MLP) is composed of multiple percep-
tron units, organized in numerous layers. Concretely, a typical MLP consists of at least
three layers of nodes: an input layer, a hidden layer and an output layer, which are visu-
ally demonstrated in Figure 2.2.7. Generally, all possible associations between perceptron
building blocks of consecutive layers are present and therefore every feature of the respective
input vector affects all attributes of the corresponding output vector, rendering MLP a typ-
ical example of fully-connected networks. By construction, such computational systems fall
under the class of feedforward Artificial Neural Networks, since the connections between the
nodes, contained in the model structure, do not form cycles or loops and consequently the
information flows only in a forward manner through the successive node layers.

Figure 2.2.7: Multilayer Perceptron [57]

The Multilayer Perceptron was developed in order to tackle the inadequacy of simple percep-
tron systems in modeling non-linear data and solving more complex problems. Its hierarchical
structure, where each layer is feeding the next one with its individual computational results
and the respective internal representations of the input data, enables the extraction of fea-
tures at different scales or resolutions and the eventual combination of them into high-order
characteristics. This mechanism renders the Multilayer Perceptron the most suitable ap-
proach for more composite tasks and at the same time the most commonly used type of
Artificial Neural Network.

Under this framework, Multilayer Perceptron can employ arbitrary activation functions, in
order to be disposed to perform either regression or classification. Figure 2.2.8 displays some

59

Chapter 2. Theoretical Background

of the most prominent non-linearities that are integrated in the MLP mechanism in an effort
to emulate the effect of action potentials in the biological neurons of the human brain. The
two historically common activation functions are Sigmoid and Tanh, which are graphically
depicted in the first row of Figure 2.2.8. As it might be seen, they are both continuously
differentiable functions that perform normalization by squashing the respective input values.
Their most distinguishable characteristic is their finite range, which makes them suitable for
classification tasks.

Figure 2.2.8: Activation functions [58]

However, the most frequently utilized activation function in recent studies concerning the
developments of deep learning techniques, is the Rectifier Linear Unit and its variants, illus-
trated at the second row of Figure 2.2.8. ReLU is a partially differentiable function, char-
acterized by infinite range of values, that enables Multilayer Perceptron models to overcome
numerical problems related to sigmoids. Due to its simple formula, the overall computational
requirements of the training procedure, including time and resources, can be significantly re-
duced, compared to the aforementioned alternatives. Leaky ReLU is a ReLU-based type of
activation function that introduces a small slope for negative values, which is predetermined
before training. It is widely applied in tasks suffering from sparse gradients.

It can be easily affirmed that the training algorithm of Perceptron cannot be directly ap-
plied in the case of an MLP network, since the rectification quantity of the weight values
corresponding to each node should be calculated with respect to the overall model’s out-
put, in terms of minimizing a specified cost function. Therefore, another, more generalized,
supervised learning method, called Backpropagation, has been established, as regards the
training process of feedforward neural networks, including Multilayer Perceptrons. The back-
propagation algorithm was initially introduced in the 1960s, but its importance wasn’t fully
appreciated until a famous paper [59] by David Rumelhart, Geoffrey Hinton and Ronald
Williams was published almost 30 years later, in 1986. This survey highlights the preva-
lence of backpropagation over earlier learning approaches, concerning various tasks, which

60

2.2. Artificial Neural Networks

had previously been considered insoluble. Nowadays, the backpropagation algorithm can be
characterized as the workhorse of learning in the field of Artificial Neural Networks.

The principle of the backpropagation technique is grounded on the utilization of a cost func-
tion, which quantifies the difference between the system’s output and a known expected value.
The main goal of the algorithm is to iteratively adjust the weights and biases throughout the
neural network’s structure, based on the currently calculated error, so that the respective cost
gradually decreases towards its minimum point. This can be achieved by applying a typical
gradient descent procedure, which employs small repeated steps in the opposite direction
of the gradient of the examined function, i.e. the direction of steepest descent, in order to
detect its local minimum. To this end, the gradients of the aforementioned loss function with
respect to the parameters, corresponding to the various layers of the network, are computed
through the Chain Rule of Calculus2 and applied during the update process. Therefore, the
function that combines the internal weightings and the input signals in each neuron of the
multilayer network should be differentiable and more specifically have a bounded derivative,
as the activation functions presented in Figure 2.2.8.

The selection of the appropriate loss index is indissolubly associated with the form of the
activation function used in the output layer of the neural network, as well as the nature of
the problem, which the model attempts to solve. The configuration of the output layer, in
essence, defines the framework of the examined task, while a suitable cost function constitutes
a computational tool that has the ability to effectively quantify the error calculated in the
aforementioned framework. For instance, in case of a binary classification problem the most
frequently applied combination of loss function and output layer’s non-linearity is sigmoid
activation unit along with Cross-Entropy loss, which is measured as number between 0 and
1 representing the difference between the predicted probability distribution and the ground-
truth (0 corresponds to the perfect classifier).

The Backpropagation algorithm is presented below in the form of pseudocode. In practice,
it manages to properly modify the system’s internal state, based on the error calculated at
each iterative step, in two distinct stages of execution:

• Forward Pass or Forward Propagation: This stage involves the calculation and
the storage of all intermediate variables of the system successively from the input layer
to the output layer, based on the current values of weights and biases. As mentioned
before, during this procedure, each neuron performs two operations, the computation
of the weighted sum and the processing of the produced result through an activation
function, which determines the behaviour of this particular model unit.

• Backward Pass or Backward Propagation: At this stage, the error between the
actual output of the system and the expected one is distributed inside the network.
This is accomplished by traversing the network in reverse order, from the output to
the input layer, and concurrently calculating the gradient of the loss function with
respect to the various model parameters, using the Chain Rule. During this procedure,
all intermediate variables, in the form of partial derivatives, that may be required for
further calculations are being stored.

2The chain rule is a mathematical formula that expresses the derivative of a composition of differentiable
functions in the form of a gradient chain, representing the dependencies among the individual functions.

61

https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Chain_rule

Chapter 2. Theoretical Background

Algorithm 2: Backpropagation Training Algorithm
Notation:

• D = {(x1, y1), . . . , (xN, yN)} is the labeled training set of N data samples, where xj

symbolizes the input vector and yj the corresponding desired output value.
• wk

ij denotes the weight between node j in layer lk and the node i in layer lk−1.
• bki denotes the bias parameter for node i in layer lk.
• aki symbolizes the activation of node i in layer lk, i.e. the weighted sum of

corresponding input values plus bias.
• oki symbolizes the output of node i in layer lk.
• rk indicates the number of nodes in layer lk.
• δkj denotes the error term which corresponds at node j in layer lk and represents the

partial derivative ∂C
∂akj

in the chain rule formula.
• g denotes the activation function for the nodes of the hidden layers.
• γ indicates the learning rate.
• C(y, ŷ) symbolizes the cost function, which defines the error between the ground

truth value y and the calculated output ŷ for all input-output pairs (xi, yi) ∈ D.
Preliminaries:

• To simplify the mathematical formula, the bias bki for node i in layer lk will be
incorporated into the weights as wk

0i with a fixed output of ok−1
0 = 1 for node 0 in

layer lk−1.
• The activation aki and the corresponding output oki of node i in layer lk can be

calculated as follows:

aki = bki +

rk−1∑
j=1

wk
jio

k−1
j

wk
0i=bki=

rk−1∑
j=0

wk
jio

k−1
j (2.2.1)

oki = g(aki) (2.2.2)

• The partial derivative of the activation with respect to the weight values can be
derived from the following equation:

∂akj
∂wk

ij

=
∂

∂wk
ij

(
rk−1∑
l=0

wk
ljo

k−1
l

)
= ok−1

i (2.2.3)

• The error terms δkj can be computed by the backpropagation formula:

δkj =
∂C

∂akj
=

rk+1∑
l=1

∂C

∂ak+1
l

∂ak+1
l

∂akj
=

rk+1∑
l=1

δk+1
l

∂ak+1
l

∂akj
(2.2.4)

ak+1
l =

rk∑
j=1

wk+1
jl g′(akj) =⇒ ∂ak+1

l

∂akj
= wk+1

jl g′(akj) (2.2.5)

(2.2.4)
(2.2.5)
=⇒ δkj = g′(akj)

rk+1∑
l=1

wk+1
jl δk+1

l (2.2.6)

62

2.2. Artificial Neural Networks

Initialization: Initialize all weights and biases at zero or any other small random value.
1 repeat
2 Forward Phase.
3 for each training example (xd, yd) do

• Calculate akj and okj using equations (2.2.1) and (2.2.2) respectively for each
node j in layer lk, by proceeding from the input to the output layer.

• Compute the final output ŷi.
• Store all the intermediate results.

4 Backward Phase.
5 for each training example (xd, yd) do

• Calculate ∂C
∂wk

ij
for each weight wk

ij, by proceeding from the output to the input
layer, according to the chain rule:

∂C

∂wk
ij

=
∂C

∂akj

∂akj
∂wk

ij

(2.2.3)
= δkj o

k−1
i

The error terms δkj can be recursively computed by the equation (2.2.6).
• Store all the intermediate results.

6 Total Gradient. Combine all the individual partial derivatives of the Cost
function, that have been calculated during the backward pass for each input-output
pair (xd, yd), in order to compute the total gradient ∇WC(W), which corresponds
to the entire training dataset D.

7 Weight Update.
W = W − γ∇WC(W) (2.2.7)

8 until stopping criterion is satisfied or maximum iteration number is reached

There is a wide variety of different optimization algorithms establishing on the concept of the
Gradient Descent. One of the most popular variants of the typical procedure is its stochastic
approximation called Stochastic Gradient Descent or SGD for short [60], which updates all
the model parameters for each training example, instead of computing the gradient of the
employed cost function for the whole dataset, as presented in the algorithm above. Due to
the integrated randomness, SGD is noisier than the typical Gradient Descent and also re-
quires larger number of iterations for convergence. The most commonly applied optimization
method with several deep learning applications, especially in the field of Computer Vision
[61, 62, 63], is an extension of SGD named Adam. It was initially introduced by Diederik
Kingma from OpenAI and Jimmy Ba from the University of Toronto in their 2015 ICLR
paper [64]. Adam computes individual adaptive learning rates for each weight parameter in
the network based on moving average estimations of the first and second moments of the
respective gradients. It is considered suitable for problems with non-stationary objectives,
large datasets, multiple parameters and sparse derivatives and is usually suggested as the
default optimization method [65].

63

https://openreview.net/group?id=ICLR.cc

Chapter 2. Theoretical Background

2.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) constitute a class of Artificial Neural Net-
works in the field of Deep Learning, designed for processing and analyzing data with grid-like
topology or structured information in the form of generalized arrays. Their ability to extract
spatial features and capture topological patterns in the input data has made them the most
prevailing architecture for various tasks and applications, such as Image and Video Recogni-
tion [66], Recommendation Systems [67], Natural Language Processing [68], Brain-Computer
Interfaces [69] and Financial Time Series [70].

The concept of Convolutional Networks was inspired by the biological mechanism of human
vision and therefore, such kind of systems mostly deal with input data in the image-format.
A digital image can be defined as a computational representation of visual information. As
demonstrated in Figure 2.2.9, it contains a series of pixels arranged in a grid-like fashion,
whose values denote the brightness level or the color. According to the biological archetypes,
when the human vision system perceives a physical image, the individual cortical neurons
respond to stimuli only in a restricted region of the visual scope, known as the receptive field.

Figure 2.2.9: Image
representation as a grid of pixels

[71]

The biological neurons are connected with each other
in such a way that their corresponding receptive fields
partially overlap and consequently cover the entire opti-
cal area. In order to emulate this procedure, each neu-
ron in the artificial implementation of the visual network
processes the information that appertains to its own re-
ceptive field, which can be demarcated through the uti-
lization of specified structures, called filters. These ker-
nel grids, which are shared-weight among the neurons of
each network layer, slide along input features and pro-
vide translation-equivariant responses, known as feature

maps. In this way, CNNs manage to assemble hierarchical patterns of increasing complexity
and detect various significant aspects and characteristics of the input image-like data.

Figure 2.2.10: CNN architecture in comparison with a typical MLP model [7]

The principal objective of Convolutional Neural Networks is to model a single differentiable
function that efficiently maps the input to a corresponding output, by incorporating an au-
tomated feature extraction process. Similar to the case of typical feedforward systems, each
node in the network topology receives a specific part of the input attributes, performs a gen-
eralized dot product and optionally applies a non-linearity afterwards. However, in order to
embed and encode the topological properties of the grid-like input into the architecture of the
system, the artificial nodes of each layer in a Convolutional Neural Network are arranged in

64

2.2. Artificial Neural Networks

three dimensions, width, height and depth, introducing the notion of computational volumes,
as illustrated in Figure 2.2.10. The main types of layers generally involved in the structure
of a CNN will be presented in detail at the following subsections.

Convolutional Layer

The convolutional layer constitutes the fundamental building block of a CNN model, as it
performs the major computational processes regarding the system’s mechanism. As the name
suggests, this layer applies grid-shaped feature detector filters to the input image, through
a mathematical operation, called Convolution. This procedure is graphically displayed in
Figure 2.2.11 for the case of 2-dimensional matrices. As it might be seen, the value of
each output point can be calculated as the Frobenius product between the kernel and an
equally-sized slice of the input data. In essence, the utilized filter consists of learnable weight
parameters and abstractly represents an attribute, which the model aims to detect. It is
usually spatially smaller than the input image, as regards the width and height dimensions,
while the connectivity along the depth axis is always equal to the depth of the input volume.

Figure 2.2.11: Illustration of the Convolution Mechanism [9]

Figure 2.2.12:
Kernel sliding [72]

As mentioned before, each convolutional neuron processes only the data
pixels that correspond to its receptive field, i.e. a restricted portion of the
input image, which is determined by the size of the aforementioned filter.
This fact implies that the produced output array is not directly mapped
to each input value, as occurs in the case of standard feedforward neural
networks. Therefore, convolutional (and pooling) layers are commonly
referred to as “partially connected” layers.

Under this framework of local connectivity, in order to cover the entire
data area, the kernel unit slides along the input image, according to
Figure 2.2.12. In this way, the output representation of every neuron’s
receptive region is produced through the filter’s convolutional response
and the respective activation map is created. During this process, the weights included in
the applied feature detector remain fixed, introducing the concept of “parameter sharing”
among the nodes of the convolutional layer. Their values are properly adjusted during the
training procedure, using the BackPropagation algorithm, which has been explicitly presented
in section 2.2.2. However, there are three hyperparameters involved in the convolutional
operation, that crucially affect the volume size of the output, but need to be set before the
training process of the CNN model. These include the following:

65

https://en.wikipedia.org/wiki/Frobenius_inner_product

Chapter 2. Theoretical Background

• Number of filters: Multiple filters can be employed in a convolutional layer, in order
to extract different characteristics from their respective common input. For instance,
Figure 2.2.13 demonstrates 5 distinct nodes, associated with 5 different filters, that
share the same receptive field and thus process data contained in the same region of
the input volume.

Figure 2.2.13: Convolutional layer with multiple filters [7]

The distinct activation maps, that will be created in correspondence with the afore-
mentioned kernels, can be stacked along the depth dimension, determining in this way
the output volume. Therefore, the number of utilized filters affects the depth of the
produced output.

• Stride: This non-negative quantity represents the shift of the sliding filter window over
the input matrix and in essence, determines how densely or sparsely the convolution is
applied. As shown in Figure 2.2.14, if the stride value is set to 1, then the kernel moves
across 1 pixel at a time, resulting in heavily overlapping receptive fields between the
input columns and accordingly to large output volumes.

Figure 2.2.14: Stride in CNN [73]

On the other hand, a higher stride value S implies that the kernel is translated S units
at a time per output and consequently skips some features, along the width or height
dimension as well, before being applied again. In this case, the smaller overlap of the
receptive fields leads to spatially smaller feature maps.

• Padding: Padding refers to the practice of surrounding a matrix with layers of zeroes
or another specified small value, in order to preserve features that exist at the border
of the original matrix and control the size of the output feature map.

There are three padding categories:

66

2.2. Artificial Neural Networks

Figure 2.2.15: Padding in CNN [73]

– Valid Padding : This is also known as no padding. In this case, the respective
convolutional layer does not pad at all, hence the output size shrinks, depending
on the input dimensions and the applied kernel.

– Same Padding : This type of padding ensures that the output matrix has the same
size as the input one.

– Full Padding : It can be defined as the maximum padding that is able to increase
the size of the output feature map.

Transposed Convolutional Layer

Transposed convolutional layer constitutes a special type of the standard convolutional layer,
which has been thoroughly examined in the previous section. As the name suggests, it
performs a regular convolution operation but reverts its spatial transformation, in terms of
generating an output feature map with greater dimensions that the input one. This upsam-
pling process is accomplished by properly modifying the input grid-like vector. Similar to
the typical version, a transposed convolutional layer is defined by the same hyperparameters,
including stride and padding. However, in this case, these values correspond to the process
of applying a standard convolution to the output in order to produce a feature map with the
same dimensions as the given input. The computational steps involved in the implementation
of a transposed convolution are graphically illustrated in the diagram of Figure 2.2.16.

Figure 2.2.16: Transposed Convolution [74]

A complete comparison between the two examined convolutional operations can be summa-
rized in the Table 2.1, where k denotes the kernel size, p symbolizes padding, s represents
stride and i indicates the input size.

67

Chapter 2. Theoretical Background

Conv Type Operation Zero Insertions Padding Stride Output Size
Standard Downsampling 0 p s (i+ 2p− k)/s+ 1

Transposed Upsampling s− 1 k − p− 1 1 (i− 1) · s+ k − 2p

Table 2.1: Comparative summary of the two convolution types (adapted from [74])

Pooling Layer

The pooling layer is responsible for progressively reducing the spatial size of the convolved
feature representation, by performing a downsampling process. Similar to the convolutional
layer, it applies a sliding filter across the entire input, which is able to combine multiple data
attributes, corresponding to neuron clusters from the previous layer, into a single value, using
a non-linear operation. However, the kernel used in this case, does not contain any weight
parameters, since it only aggregates the values within its receptive field.

Under the aforementioned framework, the pooling layer manages to derive a summary statis-
tic of the nearby outputs and extract dominant features, which are rotation- and position-
invariant, thus without affecting the efficiency of the training procedure. At the same time,
this dimensionality reduction induces a decrease of the computational power required to pro-
cess the data, since a smaller amount of essential parameters is involved. Pooling layers are
usually inserted in-between successive Convolutional layers in the CNN architecture, enabling
in this way the neurons contained in the subsequent convolutional layer to have a larger re-
ceptive field and be capable of discovering higher-scale patterns, without changing the size
of their corresponding filters.

Two dominant types of pooling layers can be distinguished:

• Max pooling: As the name suggests, max pooling returns the maximum value from
the portion of the image covered by the kernel, retaining in this way the most prominent
features of the activation map.

• Average pooling: This pooling operation averages the values of the image slice, which
corresponds to the kernel view. In this way it highlights the average presence of features
in the examined activation map.

(a) Max pooling (b) Average pooling

Figure 2.2.17: Types of pooling layes [75]

68

2.2. Artificial Neural Networks

Normalization Layer

Normalization can be defined as a procedure that standardizes a set of values corresponding
to numeric variables into a typical scale, without deforming existing contrasts or correlations
in the input range. In the context of Deep Learning, a Normalization layer performs this
operation, by shifting and scaling the input features into a distribution centered around 0 with
standard deviation equal to 1, typically via the computation of statistical data attributes,
such as mean and variance, during runtime. The inclusion of Normalization layers into the
architecture of deep models is essential, since this mechanism stabilizes the gradient descent
step during the training process and also ensures a faster convergence for a given learning
rate. Two prevailing normalization methods can be distinguished:

• Batch Normalization (BN)
Batch Normalization aims to decrease the internal covariance shift and hence acceler-
ate the training of deep neural nets, via a standardization step that transforms each
input included in the current mini-batch, based on its corresponding mean value and
standard deviation. This adjustment benefits the gradient flow through the network,
as it restricts the distribution of the input data to any particular layer and reduces in
this way the dependence of the produced gradients on the scale of the various param-
eters, enabling at the same time the use of higher learning rates without the risk of
divergence. From a mathematical perspective, a Batch Normalization layer applies the
following formula for a mini-batch B and the learnable parameters γ and β:

µB =
1

m

m∑
i=1

xi mini-batch mean

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 mini-batch variance

x̂i =
xi − µB√
σ2
B + ϵ

normalize

yi = γ · x̂i + β shift and scale

Figure 2.2.18: Normalization methods [76]

• Layer Normalization (LN)
Inspired by the results of Batch Normalization, Hinton et al. [77] introduced a novel
method called Layer Normalization, which standardizes the activations along the fea-
ture direction instead of the mini-batch axis, as graphically demonstrated in Figure
2.2.18. Unlike the previous case, Layer Normalization directly estimates the statistics

69

Chapter 2. Theoretical Background

from the summed inputs to the neurons within a hidden layer. In this way, it does
not impose any new dependencies between training cases or additional constraints on
the size of the mini-batch. From a mathematical perspective, the layer normalization
transforms the input features in accordance with the previous formula, but using the
following statistics instead (H denotes the layer width):

µl =
1

H

H∑
i=1

αl
i layer mean

σ2
l =

1

H

H∑
i=1

(αl
i − µl)

2 layer variance

Non-Linearity Layer

As mentioned before, Convolution can be algebraically implemented as the Frobenius product
between two equally sized matrices, one representing the input features arranged in a grid-
like manner and the other a filter composed of learnable weight parameters. It can be
easily affirmed that this operation inherently generalizes the weighted sum computed by the
perceptron neurons of standard MLP systems, which have been examined in detail at section
2.2.2. Thus, regarding the case of CNN models, the convolutional operator represents the
linear processing module of the artificial neurons, as it performs a linear transformation of
the input in a multi-dimensional space.

However, images or topologically structured information in general, comprise several non-
linear, irregular and particularly complex characteristics, that cannot be explicitly captured
through a linear method. This limitation can be tackled by emulating the mechanism of
typical Multilayer Perceptrons, which imposes the incorporation of non-linearities into the
system’s architecture. To this end, non-linearity layers are often placed between consecutive
convolutional or pooling layers, in order to apply an activation function to the corresponding
feature maps. Some of the most frequently used activation functions in the framework of
Convolutional Neural Networks are graphically displayed in Figure 2.2.8 of section 2.2.2.

Fully-Connected Layer

In contrast to the concept of partial connectivity, which characterizes the convolutional and
pooling layers in the architecture of a CNN, each neuron in a fully-connected layer is asso-
ciated with all the nodes in the preceding and the succeeding layers, as occurs in regular
MLP systems (section 2.2.2). Therefore, its respective activations can be computed in the
standard mode, by performing a matrix multiplication followed by a bias effect.

For the purpose of compatibility with the grid-like structure of the produced feature maps,
the operation of a Fully-Connected layer involves a flattening procedure. As demonstrated
in Figure 2.2.19, the entire matrix of the activation map is transformed into a single column,
which is then fed to the fully-connected module of the neural network for further processing.

If present, FC layers are usually found towards the end of CNN architectures and can be
used to optimize several objectives. For instance, they are able to perform tasks such as the

70

2.2. Artificial Neural Networks

classification of input images into multiple categories, based on features, extracted through
the previous convolutional and pooling layers and their respective filters.

Figure 2.2.19: Fully-connected layer [75]

2.2.4 Recurrent Neural Networks

Recurrent Neural Networks, or RNNs for short, constitute a class of Artificial Neural
Networks, designed to process sequential data and exhibit temporal dynamic behavior. The
term “sequential data” refers to information structures that contain elements arranged in
some kind of order. Examples include time series, DNA sequences in the field of biomedi-
cal informatics, sequences of user actions or the successive frames of a video. Based on the
concept of an integrated type of “memory” in the form of an internal hidden state, RNN mod-
els are capable of capturing temporal or ordinal dependencies among sequential data points
and hence are utilized in various related tasks, such as unsegmented, connected handwriting
recognition [78], speech recognition [79, 80], language translation [81] and image captioning
[82]. Furthermore, these systems are incorporated into many popular applications such as
Siri, voice search and Google Translate.

As discussed in former sections of this analysis, traditional feedforward neural networks allow
information to flow only in the forward direction, from the input nodes, through the hidden
layers and finally to the output nodes. Within this framework, which is illustrated in Figure
2.2.7, the computational operations concerning the model’s decisions in each step, are based
only on the current input representation, without taking into account prior features and
elements that might be associated with present information and therefore influence to some
degree the future events. As a consequence, feedforward systems are not suitable for tasks
that involve sequential data, due to the aforementioned inability of retaining prior knowledge
or past-related attributes to forecast subsequent values. Recurrent Neural Networks are
introduced to tackle this exact limitation, by incorporating such a mechanism into their
structure.

RNNs are basically derived from feedforward neural networks, by applying the transforma-
tion demonstrated in Figure 2.2.20. In essence, the nodes contained in different layers of
the feedforward system are compressed in order to form a single layer of the corresponding
RNN model. The term “recurrent” arises from the fact that the exact same operations are
performed for every element of the input sequence, with the time-dependent output being
computed based on previous information. This process can be graphically depicted as an
“unfolding” of the RNN layer across the time axis, in such a way that the current input
instance x(t) is mapped to its corresponding output value y(t) through a hidden “memory”

71

Chapter 2. Theoretical Background

Figure 2.2.20: Conversion of Feedforward to Recurrent Neural Network [83]

mechanism h(t) (Figure 2.2.21). To this effect, the connections between the nodes of the net-
work form a directed or undirected computational graph along the temporal input sequence.
All these interrelations are computationally modeled by distinct weight matrices.

Figure 2.2.21: Recurrent Neural Network [83]

The training process of Recurrent Neural Networks is established on a variant of the conven-
tional BackPropagation algorithm called BackPropagation Through Time (BPTT). This
method retains the basic principles of the standard algorithm regarding the error calculations
from the output to the input layer for the weight adjustments. Their main difference lies in
the fact that BPTT sums the errors at each time-step, since the parameters are shared across
each layer of the recurrent network. However, throughout this procedure, RNN models tend
to experience two significant problems, concerning the size of the computed gradients, which
represent the slope of the loss function along the error curve and are used in order to update
the weight values. These issues can be described as follows:

• Vanishing Gradient Problem: During training procedure, the gradients, which are
being calculated with respect to the various model parameters, are traversing the net-
work in the backward direction, from the output to the input cell, using the Chain Rule
of Calculus. If the effect of a layer on its subsequent one is small, then the value of the
corresponding partial derivative will be respectively small, leading to a gradual shrink-
ing of the multiplicative gradients, as the backpropagation through time occurs. On
account of this, the aforementioned product can exponentially decrease to zero, result-
ing in insignificant values that do not affect the weight updating. As a consequence, the
model is no longer capable of learning correlations between temporally distant events,

72

https://en.wikipedia.org/wiki/Backpropagation_through_time

2.2. Artificial Neural Networks

since the effect of earlier inputs cannot be captured and hence it is based only on its
short-term memory.

• Exploding Gradient Problem: This issue refers to the opposite behaviour in com-
parison to the previously explained problem, since it arises from the accumulation of
large error gradients during the backward phase of the training procedure. This sig-
nificant increase in the norm of the gradient causes very large updates to the network
weights, leading the model to an unstable state.

The exploding gradient problem can be easily controlled in practice, by applying the Gradient
Clipping technique, which rescales those gradient values that surpass a predefined threshold,
ensuring in this way that the gradient descent procedure will be performed in a reason-
able framework even if the loss landscape of the model is irregular. On the other hand,
the vanishing gradient limitation remains a matter of major concern regarding the RNN
well-functioning. In order to tackle this problem, the following two specialized versions of
Recurrent Neural Networks were created:

Long Short Term Memory (LSTM)

Figure 2.2.22: LSTM unit [84]

This RNN architecture was introduced by Sepp Hochre-
iter and Juergen Schmidhuber in 1997. Their survey [85]
attempts to address the problem of capturing long-term
dependencies among sequential data, which constitutes
an outcome of the vanishing gradient limitation and per-
tains to the inability of RNN models to accurately pre-
dict the current state, when former attributes that in-
fluence the current forecast do not correspond to the re-
cent past. The LSTM mechanism tackles this short-term
memory issue, by augmenting the cells, included in the
hidden layers of the recurrent network structure, with additional gates that filter out infor-
mation that is irrelevant to the prediction of the current output. As shown in Figure 2.2.22,
each LSTM cell receives three different states as input, the current data instance x(t), the
short-term memory from the previous cell h(t− 1) and lastly the long-term memory c(t− 1)
and employs three distinct gates in order to regulate the information to be kept or discarded
before passing on the long-term and short-term features to the next cell. These gates can be
defined as follows:

• Input gate: It processes the current input data as well as the short-term memory
of the previous cell in the network topology, in order to determine the supplementary
information, which should be added to the network’s long-term memory (cell state).

• Forget gate: It multiplies the incoming long-term memory by a forger vector, com-
posed of the current input and the short-term memory attribute, in order to filter out
the unuseful elements.

• Output gate: It specifies the new hidden state (short-term memory), which will
be passed on to the subsequent cell at the next-time step, by taking into account
the current input, the previous short-term memory and the newly updated cell state,

73

Chapter 2. Theoretical Background

computed by the forget gate. Moreover, as the name suggests, the output of the current
time-step can be derived from the aforementioned result.

Gated Recurrent Unit (GRU)

This gating mechanism, which is graphically illustrated in Figure 2.2.23, was introduced in
2014 by Kyunghyun Cho et al. [86] in order to address the short-term memory problem of
standard RNN models, as well. In comparison with the LSTM unit, GRU variant incorporates
fewer parameters, as it lacks the cell state input and includes only the two following types of
gates:

•

Figure 2.2.23: GRU unit [84]

Update gate: The update gate is responsible for
determining the amount of previous information
that will be transferred to the next cell, given the
former hidden state h(t− 1) and the current input
instance x(t). Under this concept, the model can
even decide to copy all the past information, elimi-
nating in this way the risk of the vanishing gradient
problem.

• Reset gate: The reset gate is used for determining the amount of past information
that should be ignored. In other words, it is in charge of deciding whether the hidden
state of the previous cell is important or not. To this end, it applies an equivalent to
the update gate formula with its corresponding weight matrices.

74

2.3. Generative Adversarial Networks

2.3 Generative Adversarial Networks
Generative Adversarial Networks, or GANs for short, constitute a class of Machine
Learning frameworks, initially introduced by Ian Goodfellow and other researchers at the
University of Montreal in 2014 [21] as a different approach in the concept of generative
modeling. French Computer Scientist Yann LeCun has described GANs as the “the most
interesting idea in the last 10 years in Machine Learning” [87], since the enlightening idea
behind this algorithmic architecture represents a real conceptual breakthrough in the research
field of Deep Learning. The applications of Generative Adversarial Networks have been
rapidly expanded over the past decade into multiple domains and areas, including Art and
Fashion [88, 89, 90], Astronomy [91, 92], Physics [93, 94], Video Games [95] and Audio
Synthesis [96].

Figure 2.3.1: Generative vs Discriminative models [97]

Τhe GAN mechanism is intrinsically interrelated with the concept of two contrastive ap-
proaches in the field of statistical classification, which will be thoroughly analyzed further
down:

• Discriminative models: As visually presented in Figure 2.3.1, discriminative models
distinguish decision boundaries among observed data. Based on features that char-
acterize the input instances, systems of such kind predict the label or the class that
corresponds to each data point. In this way, the input distribution is projected into
distinct categories. In simple words, the aforementioned logistical models operate as
classifiers that “discriminate” examples of input variables across different groups. More
formally, using mathematical notation, given a set of data instances X and a set of la-
bels Y , discriminative models capture the conditional probability p(Y |X), by estimating
a discriminative function f : X → Y , and hence are also referred to as Conditional
models.

• Generative models: On the other hand, generative models can be considered as a
class of statistical algorithms that are capable of generating new content in the form
of data instances, by capturing the underlying distribution of individual classes in the
input dataset, as illustrated in Figure 2.3.1. From a mathematical perspective, this
process can be considered equivalent to the problem of deriving a complex random
variable from a specific probability distribution, that plausibly fits in the input space.
However, due to the inherently composite nature of a random variable and the inability
to explicitly express the aforementioned distribution, a simplified parametric estimation
method is employed. As demonstrated in the diagram of Figure 2.3.2, this method is

75

Chapter 2. Theoretical Background

based on the utilization of a model (usually neural network), that learns to approximate
a transformation function from a simpler form of input random variable, such as white
noise, to an output random variable that incorporates the desired properties in terms
of the underlying distribution. More formally, given a set of data instances X and
possibly a set of target labels Y , generative systems capture the the joint probability
p(X, Y), or just p(X) if there are no labels.

Figure 2.3.2: Generative modeling [98]

Generative Adversarial Networks provide a computational framework for the training proce-
dure of generative models, based on a rivalry mechanism. More specifically, GAN systems
replace the direct comparison between the generated and the ground-truth distribution, ap-
plied by other statistical techniques, with an “indirect” approach, that takes the form of a
downstream discrimination task between real and generated samples, in order to force the
aforementioned distributions to get as close as possible. To this end, as graphically displayed
in the diagram of Figure 2.3.3, a typical GAN architecture, consists of a Generator network,
which is trained to produce samples following a target distribution and a Discriminator
network, which aims to identify the fake samples provided by the Generator. In more detail:

Figure 2.3.3: Overview of GAN structure [99]

76

2.3. Generative Adversarial Networks

2.3.1 Discriminator

The discriminator network learns to distinguish the real data from the fake samples created
by the generator model, by evaluating them in terms of authenticity. In this way, it penalizes
the generator for producing implausible results. It can be implemented as any type of network
architecture, depending on the nature of the data to be classified.

In Figure 2.3.3, the two “Sample” boxes represent the distinct sources of training data fed
into the discriminator. As it might be seen, its input consists of real instances, which are
considered as positive examples during training, as well as fake samples, which are used
as indicators of the negative data group. In either case, the discriminative model decides
whether the current instance belongs to the ground-truth dataset or not.

Figure 2.3.4: Block Diagram of Discriminator
[100]

The training procedure of the discriminator
network is graphically depicted in the dia-
gram of Figure 2.3.4. During this phase, the
weights incorporated in the generator archi-
tecture remain unaffected, as its involvement
in the process concerns only the construction
of fake examples in order to be evaluated by
the discriminator and hence a stable gener-
ator structure enables the detection of flaws
or other characteristics that can contribute
to the learning process of the discriminator.
More specifically, at first, the input features
are passed through the discriminator network, which operates as a classifier, trying to make
successful predictions regarding the labels that correspond to the data instances (real-fake).
The produced outcome is then utilized for the calculation of a properly selected cost value,
also denoted as discrimination loss, which quantifies the misclassification errors. Based on
this result, the weight parameters of the discriminative network are updated through the
BackPropagation Algorithmic procedure, which has been explicitly discussed in section 2.2.2.

2.3.2 Generator

The generator network learns to create novel data instances, by incorporating the feedback
from the discriminator. In particular, its training objective is to increase the discrimination
error rate, by “fooling” the discriminator network into classifying its output candidates as
real. In this way, it is able to indirectly discover underlying properties of the ground-truth
data distribution.

More specifically, the input of the generator model is a fixed-length random vector, which
can be considered as the seed of the generative process. This vector is typically sampled from
a predefined latent space, which comprises compressed representations of high-level concepts
regarding a specific data distribution (e.g. a multivariate normal distribution). During the
forward pass, the generative network transforms this random noise vector into a meaningful
form of output, which is interpreted as a new sample in the domain of interest. Typically, the
space, from which the randomized input is sampled, has smaller dimensionality in comparison
to the target one.

77

Chapter 2. Theoretical Background

The training procedure of the generator is graphically depicted in the diagram of Figure 2.3.5.
Similarly to the previously mentioned case, during this phase, the weight parameters included
in the discriminative network are not updated, since its involvement in the process concerns
only the evaluation of the fake samples, produced by the generator and this mechanism
should be consistent with respect to the generator’s learning process. As explained in former
sections of this analysis, the main objective of a training algorithm is the minimization of
a properly selected cost function, through the adjustment of the weight values contained
in the network structure. However, as in might be seen, in the framework of a Generative
Adversarial Network the generator is not directly associated with its respective loss, since it
is penalized for producing data instances which are identified as fake by the discriminator.
Therefore, this additional network should be included in the backpropagation process. To
this end, in order to properly calculate the impact of generator weights on the corresponding
output, the backpropagation flows back to the generator through the discriminator.

Figure 2.3.5: Block Diagram of Generator [100]

Thus, the training procedure of the generative model involves the following computational
steps:

(1) At first, random noise is sampled from a specified distribution and passed through the
generator neural network, in order to be transformed into realistic output examples.

(2) The generated output features are then fed into the discriminator, which classifies them
as either “fake” or “real”.

(3) Based on the difference between the actual output and the predictions of the discrimina-
tor concerning the labels of the examined samples, the corresponding loss is calculated.

(4) Lastly, the algorithm backpropagates through both the generator and the discriminator
to obtain the gradients, which are used in order to update only the generator’s weight
parameters.

2.3.3 Overall Training

Generally, the overall training of a Generative Adversarial Network proceeds in alternating
periods between the individual learning processes of the Generator and the Discriminator
respectively, which have been presented in detail up above. In practice, it has been proven
that the direct alteration is not effective and can even result in overfitting phenomena on
finite datasets. To this end, Goodfellow et al. [21] introduced a novel learning practice based
on consecutive interchanges between k steps of optimizing the Discriminator D and one step
of optimizing the Generator G. In this way, D is being maintained near its optimal solution,
so long as G adjusts slowly enough.

Figure 2.3.6 provides a graphical illustration of this learning approach. The black dotted line
represents the ground-truth data distribution pd, while the green solid one indicates the Gen-

78

2.3. Generative Adversarial Networks

Figure 2.3.6: Illustration of GAN learning [21]

erator distribution pg, which emerges from the produced fake candidates. The blue dashed
line corresponds to the decision boundary formatted by the Discriminator’s predictions. The
lower horizontal line is the latent domain from which the random noise z is sampled. The up-
ward arrows demonstrate how the mapping x = G(z) imposes the non-uniform distribution
pg on transformed samples.

(a) The depicted adversarial pair approximates a convergence point. The two data dis-
tributions pd and pg are similar, while the Discriminator D is considered a partially
accurate classifier.

(b) For k consecutive steps D is trained to discriminate the real samples from the fake
ones, all produced by the same stable Generator model and in this way converges to
its optimal form D∗.

(c) After an update of G, the corresponding distribution pg is shifted towards regions of
the x-domain, which are more likely to be classified as real by D.

(d) After several training steps, the ground-truth and the output distributions ideally co-
incide (pd = pg). At this point, G and D cannot be further improved, since D is unable
to differentiate between them, i.e. D(x) = 1

2
. This is equivalent to randomly predicting

the label that corresponds to each examined sample.

In practice, the convergence point which is depicted in step (d) of Figure 2.3.6 cannot be
explicitly determined or approached, as it constitutes a fleeting, rather than stable, state.
Therefore convergence under the framework of GAN systems still remains an open problem.

79

Chapter 2. Theoretical Background

2.4 Autoencoder
An Autoencoder is defined as a type of feedforward Artificial Neural Network used to learn
efficient data encodings for a given system configuration in an unsupervised manner. It was
initially introduced in 1980s by Hinton and the PDP group [101] to address the problem
of “backpropagation without a teacher”, by using the input data as the supervisor of the
learning process; that is, learning to reconstruct an input signal. More recently, autoencoder
systems have led to numerous state-of-the-art results in various challenging tasks, especially
in the field of Data Compression, by producing lower-dimensional representations of the
original input data through a statistical redundancy elimination procedure. Therefore, such
kind of models can tackle the so-called “curse of dimensionality” problem, which arises from
datasets with multiple attributes and hence high-dimensional feature spaces and often leads
to overfitting phenomena. To this end, autoencoders are applied in various domains and
tasks, including facial recognition [102], feature detection [103], anomaly detection and word
meaning extraction [104, 105].

Figure 2.4.1: Autoencoder architecture [12]

As demonstrated in Figure 2.4.1, an autoencoder system consists of two main structural
components:

• Encoder: As the name suggests, this module transforms the input data into a com-
pressed form, known as code. More specifically, the initial vector is passed through a
series of layers that successively perform dimensionality reduction, resulting in a net-
work “bottleneck”. This hidden layer typically comprises fewer neurons in comparison
with the input and hence constraints the amount of information that can traverse the
full network. In this way, it captures a low-order representation of the input that en-
codes the respective data features into a latent space. This term refers to an embedding
of a set of items or other abstract entities within a generalized manifold, which incor-
porates the notion of similarity between objects in the form of topological proximity.
Thus, the encoder network maps the input data points to their respective encodings in
a consistent manner, retaining at the same time the crucial information attributes.

• Decoder: The decoder network operates as an interpreter of the produced code, as it
“decompresses” this hidden representation into a vector in the original space. In this
manner, it is able to reconstruct the initial input, based on the latent attributes of
its corresponding encoded form. This module typically comprises a set of layer blocks
that successively perform an upsampling process, in order to properly expand the di-

80

2.4. Autoencoder

mensions of the bottleneck’s output. In general, the decoder architecture mirrors the
structure of the respective encoder model, as it usually consists of near-complement
layers to the ones included in the encoder, but in reverse order. A near-complement
layer can be defined as a layer that is used to undo, up to a certain limit, the opera-
tions performed by the original one. For instance, in the case of Convolutional Neural
Networks, a transposed convolutional layer is considered as the near-complement of the
convolutional layer.

It can be easily affirmed that the “bottleneck” constitutes the key attribute of the autoencoder
mechanism, since without its presence the model could easily learn to flawlessly duplicate
the input values to the output, by simply passing them through multiple flat layers of the
same width. Instead, autoencoder systems attempt to approximately reconstruct the original
input approximately, based on the produced code. Therefore, an as much as possible effective
intermediate representation is crucial, as it can facilitate the full decompression process. To
this end, such kind of models are trained and hence optimized under the framework of
the typical BackPropagation algorithm, as presented in section 2.2.2, by minimizing the
reconstruction error, which quantifies in a compact form the differences between the original
input and the generated output. However, there are four hyperparameters involved in the
learning procedure of an autoencoder system, that need to be set before training:

• Code size: It is the most important hyperparameter concerning the tuning of the
autoencoder, as it defines the number of nodes contained in the “bottleneck” layer and
hence the size of the respective latent representation. Apparently, smaller code size
implies higher compression.

• Number of layers: Another significant hyperparameter regarding the autoencoder
architecture is the depth of the encoder and the decoder components respectively. While
a higher depth increases model complexity, a lower depth is faster to process.

• Number of nodes per layer: The number of nodes in each layer defines the cor-
responding weight values that need to be adjusted. Typically, this quantity decreases
along the subsequent layers of the encoder and increases accordingly in the decoder,
due to their symmetry in terms of structure.

• Loss function: The loss function used to model the reconstruction error during the
training process of an autoencoder system depends heavily on the input data type.
More specifically, in case of images, the most frequently employed cost function is the
Mean Squared Error (MSE), which can be computed as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.4.1)

where n denotes the input and output size (number of elements) respectively, ŷi repre-
sents the i-th scalar value in the output vector and yi indicates the corresponding target
value, i.e the input one. However, if the input values are within the range [0, 1], as in
the MNIST dataset [106], the Binary Cross Entropy loss can be also utilized. Following
the aforementioned mathematical notation, it can be calculated using the underneath
formula:

81

https://en.wikipedia.org/wiki/Mean_squared_error
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/binary-crossentropy

Chapter 2. Theoretical Background

BCE = − 1

n

n∑
i=1

(yi · log ŷi + (1− yi) · log (1− ŷi)) (2.4.2)

Several variants of Autoencoder systems have been proposed over the last few years, in order
to address defective aspects of the typical mechanism and improve essential model properties,
such as generalizability. Some of the most prevailing types of Autoencoders are graphically
displayed in Figure 2.4.2:

(A) Classic autoencoder mechanism.

(B) In the context of Denoising Autoencoders (DAEs) [107, 108], the input is partially
corrupted by inserting noise or masking some individual values of the corresponding
vector (depicted in white) in a stochastic manner. The model is trained to recover the
original input.

(C) The Sparse Autoencoder (SAE) [109, 110] explicitly penalizes the use of hidden node
connections (inactivated nodes are indicated in white), in such a way that each layer is
sensitized toward specific attributes of the input data. In this case, a reduction in the
number of nodes at the network hidden layers is not required.

(D) The Variational Autoencoder (VAE) learns the underlying distribution of the latent
space, which can be defined by a mean value µ and a standard deviation σ and then
decodes samples of this distribution in order to recover the original input. It can be
employed for generative modeling tasks [111, 112].

Figure 2.4.2: Different types of AE systems [113]

82

Chapter 3

Related Work

3.1 Music Representations . 84

3.1.1 MIDI . 84

3.1.2 MusicXML . 85

3.1.3 Pianoroll . 85

3.1.4 Text . 85

3.1.5 Audio . 87

3.2 Tasks and Methods . 88

3.2.1 Generation from Scratch . 88

3.2.2 Music Arrangement . 93

3.2.3 Music Style Transfer . 97

3.2.4 Music Completion/Inpainting . 98

3.3 Datasets . 100

3.3.1 MIDI . 100

3.3.2 MusicXML . 101

3.3.3 Pianoroll . 102

3.3.4 Text . 102

3.3.5 Audio . 103

3.3.6 Multimodality . 104

3.4 Evaluation . 108

3.4.1 Objective Evaluation . 108

3.4.2 Subjective Evaluation . 114

83

Chapter 3. Related Work

The aim of this chapter is to investigate the various aspects of the problem of Auto-
matic Music Synthesis. In particular, section 3.1 briefly presents different music repre-
sentations utilized under the operating framework of computers. Section 3.2 includes
a general categorization of the distinct tasks into which the aforementioned research
subject can be divided, as well as a detailed analysis of several techniques that can be
applied for experimentation and different architectures and design choices that can be
made. Section 3.3 lists some commonly used datasets in the examined research field
and elaborates on their usefulness. Finally, in section 3.4, we present several metrics
employed for the objective evaluation of the considered models, along with subjective
assessment methods and emphasize on their nuances and importance.

3.1 Music Representations
As mentioned before, music can be represented in the framework of a computational machine
using various storage formats that typically employ different data modalities. In the following
subsections we provide a brief overview of the most frequently used representation forms in
the research field of Automatic Music Synthesis.

3.1.1 MIDI

Figure 3.1.1: MIDI file format [114, 115]

As described in [86], MIDI (Musical Instrument Digital Interface) is a technical standard
that represents a communication protocol applied in a wide variety of electronic musical
instruments, computers and related audio devices for playing, editing, and recording music.
As graphically illustrated in Figure 3.1.1, a MIDI file contains elements of 2 distinct types:

• Header chunks: A header chunk describes the file format and the number of track
chunks.

• Track chunks: Each track chunk corresponds to one single header and includes the
playable notes in the form of MIDI events. Each MIDI event is preceded by a delta-
time, which represents the required number of ticks before its execution. This variable-
length encoded value is predefined in the file header chunk. The MIDI event tokens are
composed of 2 parts: the first 4 bits contain the actual command, while the rest the

84

3.1. Music Representations

respective MIDI channel. In total, there are 16 channels, 8 commands and 128 notes
represented by a matching between pitches and unique numbers.

3.1.2 MusicXML

Figure 3.1.2: MusicXML [116]

MusicXML is an XML-based file format for representing
Western music notation in a symbolic fashion that is con-
sidered readable from both human and machine. Besides
the typical information provided by the MIDI format, this
encoding standard includes also a huge variety of addi-
tional music symbols, such as rest (pause), slur (symbol
for legato performance), beam (connection among equally
valued notes), key and time signatures, articulation marks
(specify the length, volume and style of individual notes’
attack) and organization tokens (e.g. repeat signs, da
capo). It is usually employed for the storage of lead sheets. The term lead sheet stands
for a basic form of musical notation that specifies only the essential elements of a song:

• melody : typically represented by modern western music symbols.

• lyrics : inline text usually written below the notes.

• harmony : specified with chord signs above the staff.

3.1.3 Pianoroll

Figure 3.1.3: An example of MIDI
file in a pianoroll view [117]

The pianoroll representation of a music piece is an
image-like symbolic format inspired by the automatic
piano. In particular, it constitutes a scoresheet-like ma-
trix, where the horizontal axis X represents the increas-
ing time and the vertical axis Y the pitch range. Notes
are graphically displayed as bars in this grid, with the
left edge of each bar indicating the “on” time of the cor-
responding pitch value and the bar length designating
the respective note duration. This is where the name
comes from, since the pattern of note bars, which is
illustrated in Figure 3.1.3, resembles the holes in old
paper player-piano rolls that force the musician to play
only the hole-specified notes. In essence, pianoroll can
be considered as a method that enables us to graphically
display data included in the MIDI file format.

3.1.4 Text

ABC notation is a shorthand symbolic format for recording and storing music in plain text.
It was originally developed by Chris Walshaw in the late 1980s for folk music and traditional
fragments in Western Europe and was later extended to support representations of complete

85

https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Legato
https://en.wikipedia.org/wiki/Lead_sheet
https://en.wikipedia.org/wiki/Staff_(music)
https://en.wikipedia.org/wiki/ABC_notation

Chapter 3. Related Work

classical music scores. The basic standard uses the letters a-g, A-G and z to represent the
corresponding notes and rests, along with other signs for the note length, the music key, the
accidentals (sharp, flat), etc. The first 6 lines of a music file in ABC notation constitute the
header, which includes the following metadata:

• X: number of distinct tunes in the file

• T: title of the music song

• R: rhythm1 of the song (hornpipe, jig, reel, waltz, polka, etc.)

• M: time signature

• L: default note length

• K: music key

The header is followed by the main text representing the melody, as shown in Figure 3.1.4.

Figure 3.1.4: ABC notation of the traditional song A Cup of Tea [1]

Another text-based file format for musical information storage is the Humdrum [118]. As
graphically illustrated in Figure 3.1.5, each data stream corresponding to a polyphonic staff
forms an individual column called spine. In the way, the musical time progresses by consecu-
tive rows, since all elements of the same row occur simultaneously during performance. This
spreadsheet-like grid can be augmented with additional columns representing other musical
features, such as harmonic analysis labels in the form of scale degrees.

Figure 3.1.5: Example of humdrum data representation [119]

1This information is mostly used during playback.

86

3.1. Music Representations

3.1.5 Audio

The audio file format is an encoding standard for storing digital auditory information on
a computer system. The sound data, which represent original musical pieces recorded by
proper electronic devices, are stored in the form of raw bitstream usually embedded in a
suitable container. The utilized bit layout can be compressed in order to reduce the size of
the file. An example of the most frequently used audio file format is graphically illustrated
in Figure 3.1.6.

Figure 3.1.6: Waveform Audio File Format [120]

87

Chapter 3. Related Work

3.2 Tasks and Methods
It is hard to provide a complete taxonomy of the various types of Automatic Music Gener-
ation Systems and their respective tasks, since the research field is vast. Therefore, a more
prevailing categorization is discussed in the following sections.

3.2.1 Generation from Scratch

As the name suggests, Generation from Scratch refers to a family of compositional methods
that computationally approximate the process of creating novel musical content without sub-
jecting to any formulated basis or prior source of musical information regarding the structure
and the form of the generated pieces. Such approaches can be further categorized in accor-
dance with the type of musical texture that is modeled under each generation framework.
In music, the term “texture” encompasses various characteristics of a musical composition,
ranging from melodic and harmonic materials to rhythmic attributes. All these features that
collectively describe the overall quality of the different sounds are usually defined and cor-
respondingly affected by multiple attributes, including the number and type of instruments,
the tempo, the musical genre, the style and so forth. Based on this criterion, three main
classes of generation systems can be distinguished:

Monophonic Music Generation

Monophony is the simplest form of musical texture, since it consists of a single unaccom-
panied melodic line, typically sung by a single singer or played by a single instrumentalist.
The prominent feature of monophonic music, which is considered extremely useful from the
perspective of the computational implementation, is the clear arrangement of the included
notes in a temporal order, with only one sound event at each time slot. A typical example
of a monophonic music score is presented in Figure 3.2.1.

Figure 3.2.1: Monophonic music piece [121]

A complete chronology of monophonic music generation systems is thoroughly discussed
in [122] and graphically depicted in the timeline diagram of Figure 3.2.2. As it might be
seen, the initial approach towards the automation of monophonic synthesis was attempted
by Bretan et al. [123] in 2016 via the introduction of a generative method based on unit
selection. Their proposed system architecture comprises a deep autoencoder module that
is applied to create a finite-size unit library, with the term unit corresponding to melodic
phrases of variable bar length, and a generation module incorporating a Deep Structured
Semantic Model (DSSM) with an LSTM in order to learn to predict the next unit for the
given input. This system has been proven capable of producing novel monophonic melodies
that do not conform to a provided harmonic context, but sometimes the lack of good units
may lead to poor performance.

88

3.2. Tasks and Methods

Figure 3.2.2: Chronology of monophonic music generation [122]

The subsequent works emphasize on the use of Recurrent Neural Networks for the automatic
creation of novel monophonic musical content, since such systems are designed to process
sequential data and capture temporal dependencies, as discussed in section 2.2.4 of chapter
2. Sturm et al. [124] developed generative LSTM models using approximately 23.000 mono-
phonic music transcriptions stored in textual format. The selection of this data type is mainly
based on the homogeneity it provides with respect to the stylistic conventions of the examined
music genres (Celtic, Morris, etc.). They built a char-rnn, which is a character-based system
modeling the joint probabilities for each textual character given the previous 50 characters
and a folk-rnn, which is a token-based system modeling the joint probability of each token
given all previous tokens in the current transcription. In this way, they were able to produce,
at either a character or a token level, new transcriptions similar to the ones contained in
the training material. Similarly, Hadjeres et al. [125] proposed a novel architecture called
Anticipation-RNN, which enables the enforcement of user-defined positional constraints. The
utilized their system for the generation of melodies in the style of the soprano parts of the
J.S. Bach chorale harmonizations.

It can be easily observed that, besides RNNs, Variational AutoEncoders are also applied
in the field of monophonic music synthesis. Roberts et al. [126] presented MusicVAE, a
Recurrent Variational AutoEncoder for modeling monophonic sequences of musical notes
with long-term structure. This architecture incorporates a novel hierarchical RNN as Decoder
module, which initially segments the input sequence into non-overlapping parts and produces
embeddings for each one of them. Afterwards, it utilizes the extracted latent representations
in order to autoregressively generate each subsequence independently, addressing in this way
the “posterior collapse” problem in recurrent VAEs, where the model tends to ignore the
latent space.

Generative Adversarial Networks are also included within the recent approaches in mono-
phonic music generation. Yu et al. [127] developed SeqGAN, a system that combines GANs
with the Reinforcement Learning framework for the generation of music sequences composed
of discrete tokens. In particular, the state represents the musical content generated so far,
while the action corresponds to the selection of the next note to be produced. The Discrimi-
nator evaluates the complete sequence and the obtained reward signal is transmitted back to
the intermediate state-action steps using Monte Carlo search. SeqGAN constitutes the first
attempt towards the extension of GAN applications in problems dealing with discrete data.

89

https://en.wikipedia.org/wiki/Monte_Carlo_method

Chapter 3. Related Work

It also exhibits excellent performance on generating sequences of other input modalities, such
as poems and speech language.

Polyphonic Music Generation

Figure 3.2.3:
Polyphonic music

piece [128]

Polyphony is a more complex type of musical texture as compared
to monophony, which has been explicitly presented up above, since
it typically involves multiple melodic lines of independent structure
that are combined to flow and unfold in a coordinated manner, as
graphically demonstrated in Figure 3.2.3. This formulation of musi-
cal entities implies dependencies along more than one axes, includ-
ing sequential patterns across time and harmonic intervals occurring
between notes that are played simultaneously. Therefore, automat-
ically creating novel polyphonic music is undoubtedly a challenging
problem in terms of computational implementation, since it requires
a mechanism capable of capturing and modeling all the aforemen-
tioned time-related and harmonic features.

A complete chronology of polyphonic music generation systems is extensively presented in
[122] and graphically summarized in the timeline diagram of Figure 3.2.4.

Figure 3.2.4: Chronology of polyphonic music generation [122]

The first comprehensive approach in the area of polyphony is the study of Boulanger-
Lewandowski et al. [129]. They developed a probabilistic framework for the modeling of
polyphonic sequences in the generalised pianoroll representation format with several appli-
cations in music transcription tasks. Their proposed system combines the structure of Re-
stricted Boltzmann Machines (RBM) used to learn composite distributions over the so-called
simultaneities at each timestep, i.e. the notes performed simultaneously formatting harmonic
patterns, along with a typical Recurrent Neural Network capable of capturing the various
temporal dependencies. They demonstrated that their innovative architecture outperforms
popular methods in the field of Music Information Retrieval.

Classical music is probably the most characteristic example of polyphony and therefore con-
stitutes a valuable source of training data for multiple studies in this research area. Hadjeres
et al. [130] focused on the 4-part chorale harmonizations by Johann Sebastian Bach and
introduced DeepBach, a dependency system for automatic generation of polyphonic music
in the style of Bach. Their core architecture is established on a non-sequential approach of

90

https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine

3.2. Tasks and Methods

music and consists of deep Recurrent Neural Networks that model the neighboring context
of each note. The generation is performed via a pseudo-Gibbs sampling procedure, which
also enables the enforcement of user-defined positional constraints, such as notes, rhythms
or cadences, through an interactive graphical interface. The produced samples are quite
convincing even under the assessment of professional musicians and to a large extent co-
herent without significant levels of plagiarism. Besides chorale-like pieces, DeepBach is also
applicable in other polyphonic types.

In the context of RNN-based approaches towards polyphony we can also distinguish the
study of Mao et al. [131]. They introduced DeepJ, an end-to-end generative framework for
automatic creation of polyphonic music based on a predefined mixture of composer styles.
Their proposed system leverages the Biaxial LSTM design [132], which models each note as
a probability conditioned on the musical content of all the previous timesteps and also the
notes within the current time step that have already been generated. They incorporated
into this structure style and volume (pitch dynamics) embeddings in order to be able to
learn and enforce specific compositional fashions in the generation process. The produced
results indicated that DeepJ indeed provides control over the artistic style of the generated
polyphonic music but cannot effectively address the problem of long-term structure.

In an attempt to tackle this limitation and handle long-range dependencies in polyphonic
musical compositions, Huang et al. [5] proposed Music Transformer, a sequence model with
a modified relative attention mechanism capable of capturing the self-reference in music that
occurs on multiple timescales, including repeated motifs, phrases or even entire sections.
Their developed system can be applied for generation of minute-long pieces in a token-
based symbolic format and also be extended in an accompaniment generation framework
via a sequence-to-sequence setup conditioned on melodies. The results derived from the
evaluation demonstrated that their improved Transformer module can effectively create long
musical sequences with coherent structure.

Deep unsupervised models such as Variational AutoEncoders are also applied in the research
field of polyphony. One of the recent approaches is the work of Wang et al. [133]. They
introduced PianoTree VAE, a novel model structured upon the VAE framework for learning
semantically meaningful latent representations of polyphonic musical segments. The most
intriguing characteristic of this system is that it employs a tree-structured musical syntax
in order to reflect the hierarchy of the various musical entities within a composition. More
specifically, the overall architecture can be regarded as a tree, where the nodes correspond to
embeddings of concepts such as a score, an independent note event or a grouping formulation
of simultaneous notes. The edges are modeled by recurrent networks that can either perform
an encoding of the children into their parent or a decoding of a parent to its children. The
conducted experiments indicated that PianoTree VAE can adequately capture the latent
space of the musical data, resulting in decent reconstructions and therefore can be utilized
for downstream generation of novel polyphonic content.

Multi-instrumental Music Generation

As the name suggests, multi-track music consists of several different instruments that
collectively unfold over time in a cooperative manner. Each instrument performs its own
musical part in the overall composition and is characterized by individual dynamics in terms

91

Chapter 3. Related Work

of harmonics and orchestration features. Multi-track music can be placed in the spectrum
of polyphony, however in this case the interaction between the included tracks, which can
be either monophonic or even polyphonic, forms an additional dimension of polyphonicity as
compared to the typical texture establishment.

A complete chronology of multi-track music generation systems is extensively presented in
[122] and graphically summarized in the timeline diagram of Figure 3.2.5.

Figure 3.2.5: Chronology of multi-instrumental music generation [122]

The first comprehensive attempt for automatic creation of novel multi-track musical pieces
was made by Chu et al. [134] in 2017. Inspired by the Song from π [135], a piano video
on YouTube where the sequence of digits of the mathematical constant π is utilized for
creation of music based on specified harmonic conversion rules, they introduced a framework
for pop music generation that leverages the idea of gradually transforming randomness into
acoustically pleasant sounds. To this end, they built a hierarchical Recurrent Neural Network
conditioned on a specific music scale, where the bottom layers generate the melody, while
the higher ones produce accompanying effects, such as chords and drums. They conducted
several qualitative studies that demonstrated the validity of their proposed model and also
expanded its applications towards neural dancing & karaoke and neural story singing.

Under the framework of GANs, the most popular model for multi-track polyphonic music
generation is MuseGAN2 [2], which has been proposed by Dong et al. in 2018 and laid the
foundations for other subsequent related approaches in the field [19, 136]. The architecture of
MuseGAN comprises three different model variants reflecting distinct human compositional
practices. The overall implementation is structured upon a convolutional mechanism, which
has been proven efficient at detecting local, translation-invariant patterns and hence music is
represented in the pianoroll image-like symbolic format. The system is trained on a dataset
containing over 100.000 bars of rock music and applied to generate samples of five tracks:
bass, drums, guitar, piano and strings. The results highlighted the harmonic and rhyth-
mic structure of the produced music, which nevertheless is still behind the level of human
musicians.

In an effort to extend the Transformer architectures, that have recently presented particularly
promising results in piano score generation [5], to a multi-instrumental setting, Donahue et al.
[137] introduced LakhNES, a generative high-dimensional language model capable of captur-
ing repeated patterns in long music sequences of multiple tracks. Their proposed methodology

2Since the MuseGAN model is the one that we base our experimental setup upon, we will present it in
more detail in chapter 4.

92

3.2. Tasks and Methods

is structured upon a pre-training mechanism in order to address the data availability problem
in the multi-track domain. More-specifically, they initially trained their model using a large
collection of heterogeneous music and then fine-tuned it in a smaller dataset containing four-
instrument scores from an early video game sound synthesis chip called NES. The produced
results indicated that this transfer learning approach improves the model performance from
both quantitative and qualitative aspects.

In the context of modeling an efficient latent space for symbolic multi-track music, Valenti et
al. [138] introduced MusAE, the first Music Adversarial Autoencoder. The major advantage
of Adversarial Autoencoders compared to the standard architecture is their ability to impose
a specific prior distribution on the latent variables via adversarial regularization in the form
of an additional discriminative task [139]. MusAE leverages this mechanism for more con-
trollable generation via the injection of high-level information concerning musical genre and
style into the latent space. It can also be applied for reconstruction of musical phrases with
high accuracy and creation of realistic interpolations between musical sequences, by properly
modifying the latent attributes of the different tracks.

3.2.2 Music Arrangement

Music Arrangement constitutes a different approach towards the automatic creation of novel
musical content established on methods for reconstructing and reconceptualizing musical
compositions. This process typically involves alterations and modifications of the original
pieces in terms of harmony, orchestration, melodic material or chord progression, based on
specific reference information of any structure. Following the categorization that is exten-
sively discussed in [117], Music Arrangement can refer to three distinct conditional generation
tasks, which are schematically illustrated in Figure 3.2.6 for the piano case and will be thor-
oughly examined in the subsequent sections. As can be observed, Arrangement acts as a
bridge between the three fundamental forms of music representation: the full score, the au-
dio and the lead sheet, which specifies only the essential elements of a musical composition
(melody, harmony, lyrics). The aforementioned modal formats are generally employed as
reference conditions for each corresponding family of arrangement problems.

Figure 3.2.6: Illustration of the role of piano arrangement in the three forms of music
composition [117]

93

https://en.wikipedia.org/wiki/Nintendo_Entertainment_System

Chapter 3. Related Work

Accompaniment Generation

In music the term accompaniment refers to the musical part that supports rhythmically
and/or harmonically the main theme of a musical composition, which can be either a song
or an instrumental piece. There is a wide variety of accompaniment schemes depending on
the music genre and the overall configuration of included instruments or vocals. From the
human perspective, the creation of accompaniment is typically established on a primary idea
for a main melody that is gradually enriched with chords or other supplemental patterns and
figures. Therefore, the automation of this process under the framework of a computational
machine inevitably involves a source of prior information on which the accompaniment gen-
eration is conditioned. In the general case, this musical information is provided to the model
in the form of a lead sheet, as depicted in Figure 3.2.6.

Throughout the years numerous studies have been published in an attempt to address the
particularly challenging problem of Automatic Accompaniment Generation. It may be cer-
tain that the first comprehensive approach has been introduced by Simon et al. [140] in
2008. They proposed MySong, an interactive framework for automatic harmonization of
vocal melodies designed to be intuitive to users who lack musical experience. At its core,
MySong is structured upon a Hidden Markov Model3 that learns the statistics of the chord
transitions presented in the training database along with the association between the notes
in the conditional melodic lines and the observed chord types. The interface of MySong ap-
plication leverages the probabilistic data derived from this process in order to select the best
fitting chord progression for novel melodies that are fed as input to the system from users by
just singing into a microphone. Since there are more than one matching accompaniments for
a given melody, MySong allows users to adjust and modify the proposed chords using param-
eters representing easy perceivable musical properties. The evaluation results demonstrated
the quality of the produced accompaniments and also highlighted the usability of the system
even by non-musicians.

Figure 3.2.7: System diagram of the pop-song automation framework [141]

3HMMs constitute a class of graphical probabilistic models used to describe the relation and evolution of
observable events depending on set of hidden unknown variables that cannot be directly inspected.

94

https://jonathan-hui.medium.com/machine-learning-hidden-markov-model-hmm-31660d217a

3.2. Tasks and Methods

In an attempt to unify tasks such as the lead melody generation and the accompaniment
arrangement that are mainly treated as separate, Wang et al. [141] developed a pop-song
automation framework, which is graphically illustrated in Figure 3.2.7. As can be seen, their
proposed system consists of three different models represented by the corresponding coloured
arrows: the harmony alternation model, the melody generation model and the melody in-
tegration model. Initially, the harmony alteration model modifies properly the input chord
progression with respect to a specified music style. The altered chord sequence is then fed
into the melody generation model that produces the lead melody along with various accom-
paniment textures in the form of additional melodic lines or patterns via seasonal ARMA
(AutoRegressive Moving Average) processes [142], which are tools for the statistical modeling
of time series. Finally, the melody integration model combines the produced melodies into
the final accompaniment scheme. The experimental results demonstrated that the generated
melodies are characterized by desirable properties, such as musicality and overall structure.

Figure 3.2.8: RL-Duet [143]

In the context of online accompaniment generation,
Jiang et al. [143] introduced RL-Duet, a novel model
that supports interactive real-time generation of musi-
cal content in a human-machine duet setup. Since this
framework inevitably requires the computer’s response to
human input, the examined problem is formulated upon
a Reinforcement Learning basis. More specifically, the
generation agent learns a policy for performing actions,
i.e. producing musical notes, based on the previously
generated context, which can be regarded as the state of
the algorithm and includes the long-term temporal struc-
ture, as well as the inter-part harmonization. However, the key feature of this method lies
in the employed reward system, which isn’t established on hand-crafted compositional rules
but instead is derived from the training data. The experiments have shown that RL-Duet is
able to produce diverse machine counterparts of high quality, harmony and coherence.

Another pop music accompaniment generation framework named PopMAG has been intro-
duced by Ren et al. in [144]. This approach aims at addressing the challenges of modeling the
harmonic structure and capturing the long-term dependencies in accompaniments consisting
of multiple distinct tracks. For this purpose the authors developed a novel symbolic repre-
sentation format called Multi-track MIDI. MuMIDI encodes multi-track MIDI events into a
single sequence and also integrates different note attributes, such as pitch, velocity and du-
ration, into one step, as opposed to the standard formulation, in order to confine the overall
sequence length. The system architecture is established on an enhanced sequence-to-sequence
model that employs a transformer-based structure for both encoder and decoder components
and operates in an autoregressive manner in order to predict the accompaniment tokens.
The experimental analysis demonstrated that PopMAG outperforms, both objectively and
subjectively, other state-of-the-art models.

Transcription and Reorchestration

In music the term transcription refers to the practice of recording auditory pieces into a
written form of symbolic music notation. As discussed in [145], this process from the human

95

Chapter 3. Related Work

perspective is intrinsically interrelated with higher mental abilities of the brain, such as
the perception of the various sounds, the identification of the included instruments, the
estimation of musical attributes (pitch, rhythm, onset, offset, etc.) and the analysis of
expressive timing and dynamics. To this end, the design of algorithms that implement the
autonomous conversion of acoustic signals into music sheets is considered one of the most
challenging tasks in the field. It is worth mentioning that the majority of transcription
methods typically involve a re-orchestration of the input music audio. More specifically,
music parts of the original work are assigned or restructured in order to be performed by
different instruments than the ones forming the initial piece. In this way, the musical ideas
incorporated into the original composition are preserved in the produced score, but expressed
under a diverse musical arrangement.

Figure 3.2.9: Overview of Song2Quartet [146]

One of the most popular approaches in Automatic Music Transcription is the work of Percival
et al. [146]. They introduced Song2Quartet, a generative system that produces string quar-
tet cover versions of popular songs. An overview of the proposed methodology is graphically
illustrated in the diagram of Figure 3.2.9. As can be seen, Song2Quartet includes an audio
analysis module, which is responsible for detecting recognizable musical features of the target
pop song, such as themes, rhythms and chord voicings, via time-frequency spectral processing
and a score analysis module, which captures characteristics of the string quartet style from
a symbolic corpus of classical music. These two modules are combined under a probabilistic
formulation established on the framework of dynamic programming, which results in the con-
struction of a statistical network of possible musical notes for each timestep. Consequently,
the musical score of the cover version is generated by detecting the optimal path through this
network. The produced results confirm the effectiveness of Song2Quartet over the creation
of pieces that follow the conventions of classical string quartet music, retaining at the same
time the prevailing features of the target song.

Score Reduction

In music, the term reduction refers to an arrangement of an existing score or composition
in general that involves modifications of the structural information in such a way that the
overall musical complexity is reduced. For instance, the number of the included parts may
be altered or the rhythmical attributes may be simplified. It also encompasses cases where
musical pieces that are originally intended for multiple instruments are re-arranged to be
performed by smaller musical ensembles or even a single instrument.

Piano reduction from ensemble scores has been traditionally one of the most widely inves-
tigated fields of Music Arrangement, forming the basis for more advanced techniques and
approaches in the research area. Nakamura and Sagayama [147] formulated piano reduc-
tion as an optimization problem of consistency between the original and the produced piano

96

3.2. Tasks and Methods

score under constraints on the degree of performance difficulty. More specifically, in or-
der to be able to measure quantitatively the performance difficulty they initially applied
a stochastic HMM-based model established on piano fingering principles for each hand.

Figure 3.2.10:
Representation of position
on the piano keyboard with
a two-dimensional lattice

[147]

This model provides a statistical interpretation of the natural-
ness characterizing each fingering, by assuming that every out-
put probability depends on the performed pitches only through
their geometrical positions on the keyboard, which is repre-
sented as a two-dimensional lattice and graphically depicted
in Figure 3.2.10. Their proposed piano reduction algorithm is
based on a combination of the two-hand fingering models along
with a stochastic method that involves probabilistic measures of
how notes in ensemble music scores are likely to be edited. The
experimental results confirmed the effectiveness of their system
over the creation of piano reductions with controllable perfor-
mance difficulty in terms of note and chord density, tempo and
rhythm. They also discussed a possible extension to other forms
of music arrangement, by replacing the fingering model with an

equivalent model of the target instrument and adapting properly the editing probabilities.

Figure 3.2.11: Piano-score model
incorporating fingering motion [148]

Another approach towards the computational imple-
mentation of automatic piano reduction under the
framework of controllable performance difficulty is
presented in [148]. Nakamura and Yoshii leveraged
the ideas described in [147] and introduced a sta-
tistical modeling method established on the concept
of iterative optimization. Following similar strategy,
the developed quantitative measures of the playability
level with respect to the performance error rate, using
statistical generative models for piano scores. For the
probabilistic description of the musical fidelity degree,
they integrated a prior piano-score module along with one representing how ensemble scores
are likely to be edited. The overall system produces the reduced scores via an iterative infer-
ence procedure. The conducted experiments demonstrated that this iterative optimization
approach improves the controllability over the performance difficulty and the corresponding
musical fidelity to a large extent, as compared to the method utilized in [147]. Moreover,
the results of both subjective and objective evaluation indicated that the incorporation of
the sequential dependence of pitches and the fingering motion (Figure 3.2.11) in the piano-
score model has a beneficial impact on the quality and naturalness of the produced scores,
especially in high-difficulty cases.

3.2.3 Music Style Transfer

The term style transfer has been originally introduced in the field of Artificial Intelligence
by Gatys et al. [149] in an attempt to computationally process and handle the artistic con-
tent of natural images. More specifically, this technique refers to capturing explicit features
of an image in the context of stylistic information and applying them to a different image.

97

Chapter 3. Related Work

The particularly promising results of this method in computer vision tasks have inspired the
interest of the research community for experimentation in the music domain. Equivalently,
music style transfer is defined as a practice for automatic generation of novel human-like
music established on the disentanglement and the reattachment of the musical content and
the musical style of different pieces. More specifically, in the general case, a style encoding
is initially separated from the latent representation of a song and then inserted into a suit-
able generation framework that retains the necessary information about the target musical
content. As discussed in [150], the musical style isn’t a well-defined concept from a scientific
point of view, as it encompasses multiple levels of attributes, such as the historic period,
the composer, the performance characteristics and the involved emotions, the music genre or
other texture elements. According to the analysis in [122], a more prevailing categorization of
the various musical style transfer methods that employ different interpretations of the term
is the following:

• Score Style Transfer: In the context of music scores, the style generally refers to
explicit compositional characteristics intrinsically interrelated with the music genre,
such as the scale type, the tonal motifs, the chord progressions [151] or the rhythmic
attributes [152]. There is also a class of techniques for creation of novel stylistic formats
in the symbolic domain based on fusion processes [153].

• Audio Style Transfer: In the context of auditory representations, the music style
involves sound features, such as timbre, i.e. the tone quality of notes performed by
different instruments [154] and audio texture, which refers to the overall temporal
homogeneity of the acoustic events [155, 156].

• Singing Style Transfer: Singing is a process that integrates music content along with
textural information in a particularly expressive fashion. Singing style transfer includes
Singing Voice Conversion (SVC) methods, where the singer’s timbre is properly altered
with respect to a specified target without affecting the linguistic context [157] and also
Speech-to-Sing (STS) approaches, which are established on the conversion of speech
into singing voice [158].

• Composition Style Transfer: As discussed in [150], composition style transfer in-
volves modifying attributes of a musical piece in a meaningful way, retaining at the
same time identifiable characteristics, such as melodic patterns and underlying har-
monic elements [159, 160].

3.2.4 Music Completion/Inpainting

Another form of automatic creation of novel musical content under fitting constraints is the
so-called Music Completion or Inpainting. This generation practice refers to filling the missing
or lost information in a piece of music. In contrast to previous approaches in the field that
implement the generation process in a sequential manner, this method embraces the iterative
and non-serial standards of human music creation and leverages both past and future musical
context in order to produce intermediate segments and phrases. In this way, the generation
procedure is extended to a more interactive and collaborative framework between human
and machine, allowing users to adjust specific parts of the composition according to their
personal preferences or subjective criteria. According to the analysis in [122], the various

98

3.2. Tasks and Methods

musical inpainting methods can be categorized as follows:

• Score Inpainting: As described in [161], within the framework of score generation the
inpainting process is formulated as the modeling task of creating a musical fragment Ci,
typically composed of a small number of bars, which can connect a past musical context
Cp and a future musical context Cf in a musically meaningful and consistent manner
(Figure 3.2.12). The developed score inpainting systems are generally based on an
interactive music generation perspective, enabling users to edit the produced samples
according to their personal ideas and acquire novel machine-generated suggestions [161,
162, 163].

Figure 3.2.12: Musical Score Inpainting [161]

• Audio Inpainting: Audio inpainting refers to the restoration of lost or missing sound
information via processing techniques, such as interpolation, extrapolation and signal
reconstruction, applied in the waveform that corresponds to the examined auditory con-
tent or other sound representation formats, as graphically illustrated in Figure 3.2.13.
There are systems designed to accurately recover musical and instrumental samples of
short damage in the range of 10ms [164], as well as models that attempt to tackle the
challenging problem of long corruptions [165]. In this case, the complete restoration is
considered unrealistic and therefore the inpainting algorithms typically introduce new
auditory information semantically compatible with the surrounding musical context.

Figure 3.2.13: Audio Inpainting [165]

99

Chapter 3. Related Work

3.3 Datasets

In the computer music community and especially the field of generating modeling, the dataset,
i.e the collection of data instances used to enable a computational machine to produce novel
musical content in an autonomous manner, plays undoubtedly a crucial role in the formulation
of the whole learning mechanism. The trade-off between the number of included samples
and the degree of consistency among them constitutes a major issue when developing deep
learning algorithms. On the one hand, if the utilized dataset is pretty heterogeneous, a good
generative model should be able to distinguish different subcategories and hence generalize
well. On the other hand, if there only subtle differences between the contained classes, then
it is significant to examine if the so-called “average” model can lead to musically interesting
results.

The selection of a suitable dataset is also closely related to the implemented generation task
and more specifically the form of music representation under the framework of a computer,
which, as mentioned before, may include various data modalities. In the context of our
analysis, we follow the work of Ji, Luo and Yang [122], which attempts to categorize the
various datasets that are commonly used in different studies and approaches in the research
area of Automatic Music Generation from the perspective of the employed music storage
format. A summary of the aforementioned is graphically presented in Table 3.1 along with
supplementary information at the end of this section.

3.3.1 MIDI

One of the most popular datasets in the field of symbolic music synthesis [129, 163] is struc-
tured upon the compositions of J.S.Bach. The so-called JSB Chorus [166] is an entire corpus
of 402 four-part harmonized chorales for soprano, alto, tenor and bass, which can be directly
obtained via the Python package of the Music21 [167] toolkit used for analyzing, searching
and converting music in symbolic format. However, this dataset is significantly small and
also lacks expressive information. In an attempt to tackle this limitation, Ferreira et al.
[168] introduced VGMIDI, a novel dataset consisting of 823 MIDI piano pieces derived from
video game soundtracks. The duration of the included samples ranges from 26 seconds to 3
minutes. A small proportion of the contained pieces (around 95 MIDI files) are annotated by
30 human subjects according to Circumplex (valence-arousal) model of emotion and hence
are accompanied by a sentiment label.

One of the largest symbolic music corpora including 176.581 unique MIDI files is the Lakh
MIDI Dataset or LMD for short, which has been created by Colin Raffel [16]. This dataset
provides unlimited polyphonic and expressive attributes and contains various genres, instru-
ments and time periods. It incorporates the following:

• LMD-full: The full collection of 176.581 MIDI files, without duplicates. Each file is
named according to its corresponding MD5 checksum.

• LMD-matched: A subset of 45.129 files that have been matched with entries in the
Million Song Dataset (MSD) [17].

• LMD-aligned: All files from the LMD-matched that are aligned to the 7digital preview

100

3.3. Datasets

MP3s in the MSD.

The Projective Orchestral Database (POD) emerged from the study of Crestel et al. [169] over
the musical correlation between piano scores and their respective orchestral arrangements.
The authors developed a novel method for automatic alignment between piano and orchestral
versions, an example of which is graphically illustrated in Figure 3.3.1 and also introduced
the corresponding task of automatic orchestration of piano scores. This process resulted in
a novel symbolic database containing 392 MIDI files.

Figure 3.3.1: Projective orchestration of the first 3 bars of Modest Mussorgsky’s piano piece
Pictures at an Exhibition by Maurice Ravel [169]

In the research area of performance generation over polyphonic music the e-Piano Competi-
tion Dataset [170] can be distinguished, as it constitutes the largest public collection of solo
performances by professional pianists in MIDI file format, including compositions of Chopin
and Liszt, as well as some Mozart sonatas too. This dataset provides enhanced control of
timing and performance dynamics, along with high-quality expressive attributes, but is does
not contain the corresponding music scores of the included pieces.

Following similar concept, ByteDance has recently released GiantMIDI-Piano [171], a sig-
nificantly large collection of classical pieces for piano in MIDI file format, including 10.854
music works of 2.784 different composers. The dataset has been formed via the utilization
of an open-source piano transcription system of high resolution [172], capable of converting
audio files in MIDI format. The produced MIDI files incorporate performance information,
such as pedal events and dynamics elements.

3.3.2 MusicXML

Theorytab Dataset (TTD) [173] is the largest publicly accessible collection of lead sheet frag-
ments stored in XML format, containing around 16K unique musical pieces. This corpus
has been collaboratively created by users of the online music forum TheoryTab via upload-
ing snippets of popular songs and voluntarily annotating them with structural (e.g. Intro,
Verse, Chorus) and also genre labels. The aforementioned forum is hosted by Hooktheory,
a company that builds music software and provides interactive learning material in order to
help musicians to gain further insights into the process of synthesis.

101

https://www.bytedance.com/en/
https://www.hooktheory.com/

Chapter 3. Related Work

Yeh et al. [174] leveraged TheoryTab and collected a new set of samples, called Hooktheory
Lead Sheet Dataset or HLSD for short [175]. This corpus comprises 11.329 lead sheets only
in 4/4 time signature. Each segment consists of high-quality human-transcribed melodies
along with their corresponding chord progressions, which are denoted by two different types
of symbols: literals (e.g. Gmaj7) and scale degrees with respect to the given key (e.g. VI7),
including also inversions if they are applicable and other chord extensions.

Another lead sheet dataset with applications in chord progression generation tasks [176] is
derived from the Wikifonia database, a public repository of samples in MusicXML format
that terminated its service in 2013. However, a subset of the provided data that contains
5.533 western lead sheets of varying genres, such as rock, pop, country, jazz, folk, R&B,
children, etc., has been retained.

An additional source of processable music scores that are transcribed voluntarily by the
community users and can be exported in MusicXML format is the web platform MuseScore.
Jeong et al. [177] used this online database in order to collect the scores that correspond to
the recordings of Yamaha e-piano junior competitions, resulting in a total of 26 pieces by 16
composers.

3.3.3 Pianoroll

Only a few datasets are stored in the pianoroll format, since it is particularly easy to convert
pianorolls into MIDI files and vice versa through the open-source Python package Pypianoroll
that has been introduced by Dong, Hsiao and Yang [178] for handling such symbolic repre-
sentations. One of them is the Lakh Pianoroll Dataset or LPD for short, a large collection of
174.154 multi-track pianorolls derived from the Lakh MIDI Dataset [16] and utilized during
the training process of the MuseGAN system [2]. More specifically, the authors employed
the LMD-matched version, which is presented up above, and applied specific preprocessing
operations in order to acquire pianorolls of the desirable configuration in terms of music
attributes.

3.3.4 Text

The Nottingham Music Database (NMD) [179] is a collection of 1200 British and American
folk songs stored in a special text format. Using a specific QBasic program called NMD2ABC
and some Perl scripts, a significantly large proportion of the included pieces have been trans-
lated into ABC notation. The created dataset has been recently edited by Seymour Shlien,
who corrected a few problems in terms of restoring missing beats. Since the songs consist
of simple melodic lines accompanied by chord progressions, the start-up company Jukedeck
performed a cleaning processing of the ABC version of the database by decoupling the melody
and the chord part for each file [180]. Another free online dataset focusing on traditional
music is the ABC tune book of Henrik Norbeck [181], which consists of more than 2.800
music scores and lyrics of Irish and Swedish songs in ABC format.

As regards the Humdrum data format, it is worth mentioning the KernScores online library,
which has been developed in order to organize and store music scores derived from various
sound sources following humdrum notation and contains more than 7 million notes in 108.703

102

https://en.wikipedia.org/wiki/Wikifonia
https://musescore.com
https://salu133445.github.io/pypianoroll/
https://salu133445.github.io/lakh-pianoroll-dataset/
http://john-chambers.us/~jc/music/abc/doc/ABCsoftware.html
https://www.crunchbase.com/organization/jukedeck
http://kern.humdrum.org/

3.3. Datasets

files. This website additionally provides direct conversion into MIDI format and PDF files
of music scores in case of copyright-free scanning. Cherla et al. [182] employed for the
evaluation of their proposed model the Essen Folksong Collection from KernScores library,
which consists of melodies and chorales from 7 distinct traditions.

3.3.5 Audio

The NSynth dataset is a large-scale and high-quality corpus consisting of 305.979 4-second
monophonic audio snippets of musical tones played by 1.006 different instruments. It has
been introduced by Engel et al. [183] for the training of their proposed audio synthesis model,
which is based on the idea of music factorization into individual note entities. Each musical
note corresponds to a unique pitch, timbre (tone color) and envelope (ADSR). Samples for
every included instrument have been generated with sampling rate of 16kHz using all pitches
(21-108) and 5 distinct velocities (25, 50, 75, 100, 127) of the standard MIDI piano. Each
snippet is accompanied by 3 additional metadata attributes, derived from human assessment
and heuristic algorithms:

• Source: The sound generation practice for the musical tone (acoustic, electronic, syn-
thetic).

• Family: The class of the employed instrument.

• Qualities: Sonic qualities of the note, depending upon its corresponding waveform.

One of the largest publicly accessible datasets in auditory format with several applications
in the field of Music Information Retrieval (MIR) is the Free Music Archive or FMA for
short [184]. This corpus contains 917GB of audio files arranged in a hierarchical taxonomy of
161 genres, including 106.574 pieces from 16.341 artists and 14.854 albums. Each sample is
accompanied by precomputed features, along with track- and user-level metadata, tags and
artist biographies. The following subsets are also available, as they extend the utilization of
FMA in cases of low computational resources:

• Full : the complete dataset as presented above.

• Large: the full dataset with audio trimmed to 30-second clips extracted from the middle
of the tracks.

• Medium: the collection of 25.000 30-second track clips annotated with a single genre
label and sampled in accordance with the completeness of their metadata.

• Small : the collection of the top 1.000 30-second clips from the 8 most popular genres
of the medium set.

Another public but also significantly smaller dataset (around an order of magnitude as com-
pared to NSynth) is the Minst, which can be considered equivalent to the MNIST (primary
dataset in Computer Vision) in the field of audio processing. This corpus incorporates 4
disparate solo instrument collections (University of Iowa-MIS, Philharmonia, RWC, Good-
sounds), resulting in a total of 50.912 notes from 12 different instruments.

The most popular collection of audio recordings in the field of signing voice research with
applications to Speech-to-Singing (STS) tasks is the so-called NUS Sung and Spoken Lyrics

103

http://kern.ccarh.org/browse?l=essen
https://magenta.tensorflow.org/nsynth
https://en.wikipedia.org/wiki/Envelope_(music)
https://en.wikipedia.org/wiki/Music_information_retrieval
https://github.com/ejhumphrey/minst-dataset
http://yann.lecun.com/exdb/mnist/

Chapter 3. Related Work

Corpus (NUS-48E corpus) [185]. This dataset contains 115 minutes of singing data and
54 minutes of speech data corresponding to 48 (20 unique) English songs performed by 12
subjects (6 males and 6 females) in various sound and accent types. It also provides a
complete set of transcriptions and duration annotations at the phone level.

3.3.6 Multimodality

Another family of music datasets employ multi-modal information derived from different
sources, such as scores, lyrics, audio files, etc. in order to provide a more complete and general
representation of the included data. One of them is the MAESTRO dataset [186], which
consists of 1.282 real virtuosic piano performances stored in MIDI and audio formats. The
contained musical pieces (approximately 430) are derived from the 9-year International Piano
e-Competition and are mainly of classical genre, including composers from the 17th to early
20th century. Each pair of audio and MIDI data is annotated with additional information,
such as the composer, the title and the year of performance. The achieved alignment degree
between the two modalities is ∼ 3 ms.

In the research field of expressive drum modeling the lack of proper training corpora in terms
of sufficient data of varying genres has led to the creation of a novel multi-modal dataset
called GMD (Groove MIDI Dataset) [187]. This corpus consists of 22.000 bars of tempo-
aligned expressive drumming performed by 10 musicians (5 professionals and 5 amateurs)
in the presence of metronome. The utilization of this device enables the quantization of
played notes to the nearest time division, yielding in this way a musical score, but also
enforces a consistent tempo that limits the drummer’s musical expression. The sound data
were recorded in 1.150 MIDI files via Roland TD-11 electronic drum kit, which has been
proven capable of capturing high-quality performance features. Each pair of samples is also
annotated with relevant metadata, such as music genre, tempo and anonymized drummer
identifiers.

Figure 3.3.2: Learning to groove through inverse sequence transformations for drumming
[187]

The multi-modal corpora are particularly useful in the context of Musical Arrangement, as
they provide alternative representations of the same musical content. According to Wang et
al. [117] a proper arrangement dataset should be characterized by the following properties:

• Style-consistency: The re-conceptualization of the original piece should be style-
consistent.

104

https://www.piano-e-competition.com/
https://www.piano-e-competition.com/
https://www.roland.com/us/products/td-11/

3.3. Datasets

• Time alignment: The arrangement should be time-aligned with the original music
version (audio, lead sheet, full score), in order to serve as a supervisor of the learning
algorithm.

• Sufficient annotations: The dataset should provide additional structured information,
such as key, beat and chord labels, in order to ensure better control of the generation
process.

Despite several promising generative models, the lack of corpora satisfying the aforemen-
tioned requirements becomes one of the main bottlenecks in the research area. To this end,
Wang et al. [117] proposed a novel dataset called POP909. As the name suggests, it is
structured upon 909 popular songs composed by 462 artists, spanning around 60 years from
the earliest in 1950s to the latest around 2010. In particular, multiple versions of piano
arrangements created by professional musicians are included for each song and stored in two
aligned modalities: MIDI format and original audio. Furthermore, each song is accompanied
by manually annotated tempo curves and machine-extracted key and chord labels using MIR
algorithms. Aside from the arrangement task, POP909 is considered as a high-quality source
for structural and cross-modal music generation.

Figure 3.3.3: Beat and downbeat
annotations produced by ASAP

workflow [188]

In an attempt to overcome problems related to auto-
matic alignment methods, Foscarin et al. [188] intro-
duced ASAP (abbreviation of Aligned Scores and Per-
formances), a novel dataset comprising 222 digital mu-
sical scores, stored in MusicXML and MIDI format,
aligned with 1.068 performances, recorded as MIDI
and partially audio files with approximately 3ms pre-
cision, of Western classical piano music from 15 com-
posers. Each pair of score and performance samples
is annotated with metadata, including the composer
and the title of the piece, along with supplementary
information, such as the exact positions of all beats,
downbeats, time and key signature changes, as demonstrated in Figure 3.3.3. These an-
notations are automatically produced by a new workflow that combines score analysis and
alignment algorithms, aiming at a radical reduce of the time required for manual processing.
ASAP is the largest known corpus providing fine-grained alignment between text, MIDI and
audio data and hence constitutes a valuable source for a wide variety of MIR tasks.

Figure 3.3.4: An example of alignment between lyrics and melody [189]

Automatically generating melodic lines from lyrics is considered one of the most challenging
problems in the research field of AI music, as it requires the detection of underlying latent

105

https://github.com/music-x-lab/POP909-Dataset
https://github.com/fosfrancesco/asap-dataset

Chapter 3. Related Work

associations between the two data representations. In order to tackle the limited availability
of paired lyrics-melody datasets, Yu and Canales [189] created a novel corpus comprising
12.197 MIDI songs that are provided as aligned pairs of melody and corresponding lyrics.
This collection incorporates samples derived from different music sources, such as the LMD-
full (7.998 files) and the reddit MIDI dataset (4.199 files).

Existing models in the field of Music Information Retrieval typically focus on representation
learning methods for 2 distinct data modalities [190]. In an attempt to extend the research
towards multiple data types, Zeng et al. [191] introduced the Music Ternary Modalities
Dataset (MTM). As illustrated in Figure 3.3.5, this corpus includes 3 different aligned data
modalities: sheet music, lyrics and music audio in the form of spectrograms. For each song
the respective representations are extracted by specialized pretrained models.

Figure 3.3.5: Examples of 3 data modalities in MTM Dataset [191]

106

https://www.reddit.com/r/datasets/
https://github.com/ZenzenDatabase/MusicTM-Dataset

3.3. Datasets

Format Name Modality Applicable Task Size
Score Performance Audio

MIDI

JSB Chorus ✓ Polyphonic 402 Bach chorales
VGMIDI ✓ ✓ Polyphonic with sentiment 823 piano soundtracks

LMD ✓ ✓ Multi-instrumental 176.581 MIDI files
POD ✓ Orchestral 392 pairs of MIDI files

e-Piano CD ✓ ✓ Polyphonic & Performance ∼1400 MIDI files
BitMIDI ✓ Polyphonic 113.244 MIDI files
Archives ✓ Polyphonic Classical music
Internet ✓ Polyphonic & Style 130.000 pieces of 8 genres

ADL Piano MIDI ✓ ✓ Polyphonic 11.086 piano MIDIs
GiantMIDI-Piano ✓ ✓ Polyphonic 10.854 MIDI files

MusicXML

TheoryTab ✓ Polyphonic 16K lead sheets
Hooktheory ✓ Polyphonic 11.329 lead sheets
Wikifonia ✓ Polyphonic 2.252 lead sheets
MuseScore ✓ ✓ Performance Yamaha e-Competitions

Pianoroll LMD ✓ ✓ Multi-instrumental size of LMD

Text

NMD ✓ Monophonic 1.000 folk songs
Norbeck’s book ✓ Monophonic 2.800 Irish and Swiss songs

FolkDB ✓ Monophonic Unknown
KernScores ✓ Polyphonic 108.703 files

Audio

NSynth ✓ Music audio 305.979 notes
FMA ✓ Music audio 106.574 tracks
Minist ✓ Music audio 50.912 notes

GTZAN ✓ Music audio 1.000 audios of 30s
SOL ✓ Music audio 120.000 sounds
NUS ✓ Sing Voice 48 English songs

Multimodal

MusicNet ✓ ✓ Fusion 330 recordings
MAESTRO ✓ ✓ ✓ Fusion 172h of piano performances

NES ✓ ✓ Multi-instrumental 1.000 pieces
Piano-MIDI ✓ ✓ ✓ Polyphonic & Performance 332 classical piano pieces
Groove-MIDI ✓ ✓ ✓ Drum 1.150 files of 13.6h

POP909 ✓ ✓ ✓ Polyphonic 909 songs
ASAP ✓ ✓ ✓ Fusion 222 scores

Lyrics-Melody ✓ Fusion 13.937-note sequences
MTM ✓ ✓ Fusion Unknown

Table 3.1: A summary of existing datasets (adapted from [122])

107

Chapter 3. Related Work

3.4 Evaluation
As discussed in [192], the assessment of generative systems, especially in the field of music
creative modeling, has been proven particularly challenging. The most prevailing catego-
rization of evaluation strategies is based on the perspective under which a specific problem’s
objective is approached and concepts such as creativity and efficiency are computationally
interpreted.

On the one hand, the generally preferable assessment practice in the research area of gen-
erative modeling involves subjective methods, which mostly rely on human feedback over
the quality of the produced musical content, since human is considered the ultimate judge
of creative output, either as listener or even viewer. However, without a clear definition
and consensus on the essence of human inventiveness and in view of the challenges arising
from the proper design and conduction of experiments that can lead to valid, reliable and
replicable results, subjective evaluation remains largely problematic.

On the other hand, methods for objective evaluation of generative systems are generally de-
sirable, as they provide an interpretation of the model’s performance with respect to a specific
tack, which is conceptually closer to the operating framework of a machine. Nevertheless,
despite the benefit of easy implementation, it is rather hard to approach music with certain
rigorous metrics that usually lack of musical relevance in terms of musical rule systems or
heuristics and also establish standardized definitions of improvement and quality applicable
to different models and generation cases.

To sum up, there is no unified criterion for the results of music generation systems. Ac-
cording to the analysis in [122], a summary of the existing music evaluation methods from
both objective and subjective aspects is conducted and explicitly presented in the following
subsections.

3.4.1 Objective Evaluation

The term objective evaluation refers to the quantitative consideration of music generation
models and their produced content, which is typically established on the utilization of differ-
ent metrics, closely related to the implemented task. Such indices only reflect the ability of
the model to process data, but cannot actually represent the generation efficiency, especially
in case of music that involves a highly innovative form of artistic expression. Yang et al.
[192] split the various objective evaluation methods, applied in recent studies in the research
field of Music Synthesis, into the following categories:

Probabilistic measures and metrics without musical domain knowledge

Evaluation metrics established on probabilistic measures and statistical properties are widely
used in various tasks included in the area of Image Processing and Computer Vision, exhibit-
ing consistent behaviour with respect to the model performance [193]. Therefore, they are
increasingly integrated into music-related tasks as well [194]. However, since this metric
family is basically derived from a different domain, it does not involve music relevance, but
instead focuses on forms of statistical divergence between the generated and the original
samples or other similar characteristics.

108

3.4. Evaluation

One of the most frequently applied statistical indices is Likelihood, which represents the
joint probability of the observed data viewed as a function of the chosen model’s parameters
[195]. In the context of music score inpainting via convolutional mechanisms, Huang et al.
[196] developed a frame-wise evaluation algorithm based on the computation of the negative
log-likelihood for each sample in an autoregressive manner. Similarly, the training objective
of the recurrent model proposed by Johnson [197] for polyphonic music composition and
prediction is the maximization of the log-likelihood for each note sequence, which has been
proven a meaningful quantitative indicator of performance. However, Theis et al. [193] state
that good performance with respect to particular criterion is not necessarily observed in the
context of a different standard and report examples of bad samples with significantly high
likelihoods.

Metrics Definition
Loss (L) Loss represents the cost associated to the model performance with respect to

a specific task. Computationally, it provides a quantitative estimation of the
inconsistency degree between the predicted results and the ground-truth and
therefore is typically employed as the optimization objective. However, loss
reduction indicates that the model can understand the problem numerically,
but doesn’t necessarily imply improvement of the generated musical quality,
while on the other hand a model with non-converging loss cannot produce
particularly fulfilling music pieces.

Perplexity (PPL) Perplexity measures the predictive ability of a probability model. It is com-
puted as an exponentiation of the respective distribution entropy. Low per-
plexity on the test set indicates that the model is suitable for unknown data,
that is, the model can generalize well in terms of producing novel musical con-
tent.

BLEU score The BLEU score is derived from the field of Natural Language Processing and
is used to measure the similarity between the validation set and the generated
samples.

Inception Score (IS) IS is an algorithm used to assess the quality of produced samples. In partic-
ular, generated examples are fed to a pretrained Inception classifier and the
respective score is computed as the mean KL divergence between the condi-
tional output class probabilities and the marginal distribution of the same. IS
penalizes models whose examples aren’t easily classified into a single class, as
well as models whose examples collectively belong to only a few of the possible
classes.

Frechet Inception Distance (FID) FID is an evaluation metric mostly applied in GAN systems. It is established
on the 2-Wasserstein (or Frechet) distance between multivariate Gaussian dis-
tributions, fit to features extracted from a pretrained Inception classifier. This
metric is correlated to perceptual quality and diversity on synthetic distribu-
tions.

Number of Statistically Different
Bins (NDB)

NDB quantifies the diversity among the generated samples. In particular, the
training examples are clustered into 50 Voronoi cells by k-means algorithm
and the generated ones are assigned to the nearest cell. The respective index
represents the number of cells where the number of included training samples
is significantly different from the number of assigned generated examples by a
two-sample Binomial test.

Table 3.2: Objective evaluation metrics without musical domain knowledge (partially
adapted from [122])

Other more efficient quantitative indices, mostly derived from the field of mathematical
optimization, are presented in Table 3.2 along with a brief description. All these metrics are

109

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Perplexity
https://en.wikipedia.org/wiki/BLEU
https://en.wikipedia.org/wiki/Inception_score
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance
https://en.wikipedia.org/wiki/Wasserstein_metric
https://arxiv.org/pdf/1805.12462.pdf
https://en.wikipedia.org/wiki/Binomial_test

Chapter 3. Related Work

widely used in the area of music generation with several applications in multiple formats [198,
199] and they have actually become the de-facto standard for measuring the performance of
such systems [200].

There is also a variety of task-specialized metrics, including reconstruction accuracy in VAE
models [201], chord prediction accuracy [176], style likelihood [151] and style classification
accuracy [202]. In the field of performance modeling the objective evaluation mainly involves
the Mean Square Error (MSE) and the correlation between the characteristics of human and
machine performance accordingly. Furthermore, in the context of drum generation, Gillick et
al. [112] proposed, among other metrics, the Mean Absolute (MAE) and the Mean Squared
Error of the onset, as well as the Kullback-Leibler divergence (KL) between the distributions
of the generated onset and drum velocities.

Nevertheless, it should be mentioned that the ultimate goal of generative systems is to auto-
matically create novel musical content, not to make predictions. Therefore, all the aforemen-
tioned probabilistic metrics can only be exploited as references and not as decisive measures
in terms of generated musical quality.

Metrics using general musical domain knowledge

In order to address the multi-faceted nature of music generation systems and acquire means
for their assessment based on human perception, a variety of musically-oriented metrics have
been proposed. This quantitative indicator family integrates musical domain knowledge and
enables detailed evaluation with respect to statistical measures of specific musical qualities,
typically in the form of comparison between the descriptive statistics of the authentic mu-
sical content and the ones corresponding to the artificially produced. However, researchers
can develop different musically motivated metrics according to the implemented generation
tasks, providing at each case a well formulated definition that emphasizes on the respective
association between the metric value and the musical characteristic that represents.

Figure 3.4.1: General workflow of musical evaluation strategy [192]

Musical metrics are widely applied in the field of score generation, since musical scores can
explicitly model various features of the included notes. In this context, Yang et al. [192]
developed an objective evaluation strategy based on a set of musically informed metrics and

110

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

3.4. Evaluation

features that has been utilized in a wide variety of symbolic music generation models [143].
The workflow of their proposed method is graphically illustrated in the diagram of Figure
3.4.1. As can be seen, this process involves absolute metrics, aiming to provide insights into
properties and characteristics of the collected data, as well as relative metrics used for the
comparison among different groups of samples. In particular, the input of the evaluation
system consists of a training and a generated dataset, with the first representing the target
space. Custom-designed features from the musical knowledge domain (mostly pitch- and
rhythm-based) are extracted from both datasets and utilized for the computation of absolute
and relative measurements, resulting in a group of inter-set and intra-set distances, along with
other similarity measures between distributions, such as Kullback-Leibler Divergence (KLD)
and Overlapping Area (OA). The evaluation framework has been released as an open-source
toolbox, including the demonstrated evaluation and analysis methods along with visualization
tools.

As regards other musical metrics mainly applied in an autonomous evaluation fashion, Ji et
al. [122] distinguish 4 major categories: pitch-related, rhythm-related, chord/harmony-related
and style transfer-related. Some of the most prevailing and commonly used examples for each
class are briefly presented in Table 3.3, along with a small definition.

Types Metrics
Name Definition

Pith-related

Used Pitch Classes Number of used pitch classes per bar (from 0 to
12).

Tone Span Number of half-tone steps between the lowest and
the highest tone in a sample.

Consecutive Pitch Repetitions
For a specified length l, CPR measures the fre-
quency of occurrences of l consecutive pitch repe-
titions.

Pitch Variations PV measures how many distinct pitches are played
within a sequence.

Rhythm-related
Qualified Rhythm QR measures the frequency of note durations

within valid beat ratios.

Rhythm Variations RV measures how many distinct note durations are
contained within a sequence.

Off-beat Recovery
Given an offset d, OR measures how frequently the
model can recover back onto the beat after being
forced to be off for d timesteps.

Chord/Harmony-related
Chord Tonal Distance

CTD is the average value of tonal distance com-
puted for every pair of adjacent chords in a given
sequence.

Tonal Distance Harmonicity between a pair of tracks.

Chord Coverage The number of chord labels with non-zero counts
in the sequence histogram.

Style Transfer Style Fit Cosine similarity (cs) between output and refer-
ence style profiles.

Content preservation Correlation between chroma representations of
source and generated segments.

Table 3.3: Objective evaluation metrics with musical domain knowledge (adapted from
[122])

The use cases of the aforementioned metrics that describe 4 fundamental attributes of a
musical composition vary significantly, depending on the implemented task and the ontology
of the model itself. For instance, Chuan et al. [203] focus on tonal characteristics, such as the

111

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01089/full
https://en.wikipedia.org/wiki/Cosine_similarity

Chapter 3. Related Work

pitch tension levels and the frequencies of melodic intervals, during the evaluation of their
proposed predictive deep network that models polyphonic music under the combination of
both CNN and LSTM modules. In the context of singing voice synthesis, Sturm et al. [194]
conduct a statistical analysis of their developed deep autoregressive mechanism on different
application scenarios, emphasizing on musical features related to pitch, timing and timbre.
Similarly, Dong et al. [2] assess their GAN-based generative framework for polyphonic music
of multiple instruments in terms of tonal characteristics, rhythmic patterns, as well as inter-
track harmonic distances observed in produced samples.

On the hand, Sabathé et al. [204] introduce a novel objective evaluation metric for their VAE
model, which is computed as the Mahalanobis distance between signature vectors composed
of high-level symbolic music descriptors of the generated and real musical pieces accordingly.
The aforementioned signature vectors are explicitly presented in Table 3.4 down below.

Signature vectors Definition

Number of notes Number of notes in the piece divided by the length of
the piece.

Occupation rate The ratio between the number of non-null values in the
pianoroll representation and the length of the piece.

Polyphonic rate
The number of time steps where two or more notes were
played simultaneously, divided by the total number of
notes in the piece.

Pitch range descrip-
tors

The maximum, minimum, mean and standard deviation
of the non-null pitches in the piece. All values were
divided by 127 in order to force these descriptors to be
bounded between 0 and 1.

Pitch interval range

An interval is a difference in pitch between two consec-
utive notes. All intervals were scaled between 0 and 1
(i.e.,divided by 127) and the maximum, minimum, mean
and standard deviation were computed.

Duration range

The duration is the number of time steps during which a
note is held. As before, the maximum, minimum, mean
and standard deviation of all durations in the piece were
computed (no scaling was performed).

Table 3.4: Signature vectors (adapted from [122])

Lastly, in the field of music performance the majority of objective evaluation metrics focus on
the interpretation characteristics of the performed musical pieces, such as velocity and timing.
Examples of such quantitative measures are Mean Velocity (MV), Variation of Velocity (VV),
Mean Duration (MD) and Variation of Duration (VD) [205]. However, since performance is
a form of live expression of the musical ideas captured within a musical score, metrics applied
in score generation can be also employed for evaluation of performance.

Task/model specific metrics

As the various approaches in the filed of Automatic Music Synthesis differ to a large extent on
multiple aspects of the generation mechanism, a group of evaluation metrics are particularly
designed for specific models or implemented tasks. These methods are based on different
theories or algorithms in order to assess musical properties and according to [122] can be
categorized as follows:

112

https://en.wikipedia.org/wiki/Mahalanobis_distance

3.4. Evaluation

Structure
Wang et al. [206] developed the Variable Markov Oracle or VMO for short, a novel method
for guided music synthesis and improvisation based on the detection of inherent data clus-
ters in an audio signal along with their respective sequential time relation. As regards the
evaluation part, this method is mainly applied for visualization of the identified repeated
patterns in the examined music samples. At its core, VMO is structured upon a combina-
tion of a suffix tree algorithm called Factor Oracle (FO) [207], which is used for retrieval of
repeated sub-strings in a symbolic sequence, and its continuous extension named Audio Or-
acle (AO) [208], which introduces a threshold θ representing the degree of similarity between
features in the continuous time series domain. Therefore, the utilization of VMO requires
the conversion of music signals from time-domain waveforms to appropriate representations,
such as chromagrams. Under different values of θ, the algorithm constructs diverse symbol
sequences and suffix structures from the input signals in terms of containing variable amount
of original information patters. The optimal threshold is indicated by the Information Rate
(IR), which captures the self-similarity, an almost integrant musical property especially in
pop songs where rhythmic patterns and melodies are often repeated on a short time scale.
Intuitively, higher IRs occur when repetition and variation are in balance.

Figure 3.4.2: Patterns discovered in each sample by VMO (colored boxes) [206]

Chen et al. [209] utilized VMO in order to investigate the self-similarity in music structure by
comparing the IRs of samples generated by different models. Since the graphical illustrations
of the examined musical sequences in pianoroll-like format allow for easier visual inspection of
repeated patterns, they employed the corresponding plots for the detection of such structural
motifs, as demonstrated in Figure 3.4.2.

113

Chapter 3. Related Work

Originality
In an attempt to computationally quantify the variation degree of the generated music from
the original corpus and examine the creativity of their proposed model, Hadjeres et al. [130]
applied a novel plagiarism analysis method, based on the creation of histograms representing
the length of the longest note subsequence in produced samples that can be detected identi-
cally in the training dataset. If the corresponding histogram peak is short, then the generated
music is considered innovative, since it doesn’t incorporate directly transferred segments of
significant length. Chu et al. [134] evaluated the creativity of their proposed generative
framework, using the same methodology as [130]. They also recorded additional information,
such as the number of repeats for each generated melody segment, which is considered a
supplementary index of the model’s ability to generate pieces of varied melodic properties.
Hakimi et al. [210] focused on jazz solos and assessed their originality with respect to a set
of source samples, by measuring the proportion of n-grams that appear in both generated
and ground-truth solos accordingly.

Style
In the field of Music Style Transfer, the most prevailing evaluation practices are typically
established on the training of specific style classifiers responsible for judging whether the
generated music style meets the expected profile. In other words, high performance of the
classifier implies that the generated pieces exhibit the desired style characteristics. A case
in point is the Minimum Distance Classifier (MDC) employed by Jin et al. [211] in order to
evaluate the generated music in terms of classical style. Following similar concept, Brunner
et al. [202] built a binary classifier that outputs a probability distribution over 2 style
domains ranging across different genres. In case of singing style transfer, the most commonly
applied evaluation approaches involve specialized metrics, such as Log Spectral Distance
(LSD) representing phoneme clarity, Singer Identity (SI), for which a classifier has to be
trained to model the probabilistic association between musical segments and target singers
and Raw Chroma Accuracy (RAC), typically used for melody transfer assessment [212].

3.4.2 Subjective Evaluation

As extensively discussed in the previous section, a wide variety of objective metrics have been
proposed in an attempt to provide a consistent quantitative interpretation of the produced
musical content and a comprehensive measure of the respective model performance. Standard
probabilistic and statistical indicators are generalizable and applicable to significantly varying
approaches but lack of music relevance, while the variability and diversity of metrics that
take into account musical domain knowledge leads to comparability issues and even biased
evaluation. However, despite the advantages and drawbacks related to each metric family,
in all cases there is still a gap between the quantitative consideration of music quality and
human judgement. Subjective evaluation aims to bridge this gap.

The term subjective evaluation refers to assessment practices that involve human feedback on
the generated musical content. The human perception over a musical composition is mainly
based on the unconscious identification of salient themes, structural elements and features
that cannot be explicitly defined under the framework of a computational machine and there-
fore subjective evaluation is considered the most persuasive post-hoc method. However, due

114

http://sar.kangwon.ac.kr/etc/rs_note/rsnote/cp11/cp11-6.htm
https://en.wikipedia.org/wiki/Log-spectral_distance
https://www.music-ir.org/mirex/wiki/2015:Audio_Melody_Extraction

3.4. Evaluation

to the involved subjectivity, the results derived from this process cannot form any absolute
measurement of quality, but only uncover relative differences or improvements. In the con-
text of comparability, the main challenges arise from the lack of a standard experimental
methodology, along with the absence of a general reference.

As described in [122], the most prevailing subjective evaluation approaches either follow the
concept of a listening test or include expert analysis based on compositional theory. Both
categories will be thoroughly presented in the following subsections.

Listening Test

Listening test is undoubtedly the most commonly employed evaluation method in the research
field of music generation, as it provides the ability for comprehensive assessment or even
comparison among varying models from an auditory perspective, regardless of the music
generation level. It can be successfully applied in both score and audio generation tasks.
The main difference is that the first case requires some additional preprocessing steps in
order for performance characteristics to be rendered and the corresponding audio files to be
synthesized. According to [213], a properly designed listening test should meet the following
requirements:

• Sufficient number of listening subjects with adequate diversity in terms of demographics
in order to offer statistically significant results.

• Uniform distribution of subjects’ music knowledge level, including both music amateurs
who lack relative background and experts in the field of music composition.

• Controlled environment with specific acoustic characteristics and equipment for the
conduction of the experiments.

• Identical instructions and stimuli given to every subject involved in the procedure.

As can be affirmed, the design of a listening experiment that can lead to valid and reli-
able results uncovers a lot of challenges. Controlling all the relevant variables ranging the
selection of samples, the listening environment, the recruitment of qualified participants to
the formulation of the examined questions, has been proven particularly hard. As stated in
[192], the majority of contemporary subjective studies address different evaluation criteria
and follow diverse methodologies regarding the structure of the questionnaire and the nature
of the experiment, reporting in this way varying results that cannot be explicitly compared
or represent a scientific benchmark.

The simplest form of listening experiment is the Turing test, originally introduced as concept
by Alan Turing in 1950 [214]. Turing’s “imitation game” investigates the ability of a com-
putational machine to exhibit intelligent behaviour close to the human level. In the context
of Automatic Music Synthesis, the Turing test targets the compositional origin of the ex-
amined musical pieces. More specifically, the subjects judge whether the music samples are
generated by computer or created by human. This strategy provides a qualitative measure
of the model’s generation efficiency in terms of specific musical properties, such as musical
naturalness and therefore has been applied in several studies in the field [196, 130, 215].

Haque et al. [216] conducted a side-by-side evaluation experiment for acoustic comparison be-

115

Chapter 3. Related Work

tween auditory samples produced by their sequence-to-sequence model and the corresponding
ground-truth, based on a quantitative approach of binary selection. In particular, the human
evaluators were asked to provide for each listening pair a score ranging from -1 (generated
audio is worse than the original) to +1 (generated audio is better that ground-truth). Bretan
et. al [123] evaluated subjectively their proposed generative framework using a forced-choice
ranking method. In particular, each test case consists of 4 8-bar sequences produced by 4
different models with a shared 4-measure seed. The participants of the study rank the candi-
dates in terms of transition naturalness and style consistency between the first and second 4
bars, naturalness and likeability of the generated segments (last 4 measures) and the overall
likeability.

Another category of listening tests focuses on the subjective assessment of a model’s ability
to create music with a specific target style. For instance, Mao et al. [131] performed a
subjective style analysis established as a classification task among 3 different music genres.
More specifically, the participants were asked to categorize music samples generated by DeepJ
as baroque, classical or romantic. Similarly, Zhao et al. [217] study the correlation of
music generated by their proposed model with particular emotions by conducting a listening
experiment in which subjects identify the emotion class of each music sample.

There is also a group of listening tests that require musical knowledge of advanced level
and relevant background for the evaluation of the produced music. In this case, the scoring
criteria are not subjective questions, but professional music evaluation metrics and therefore
only music experts and experienced composers are recruited to participate. For instance, Wei
et al. [218] conducted a listening experiment on professional musicians and drum performers
in order to collect feedback in the from of detailed comments over the structural compatibility
between the generated drum patterns and the corresponding melodic tracks, as well as the
stability and variability of the generation result.

Visual Analysis

In the context of visual analysis, no auditory perception of the produced results is considered.
Human raters evaluate the quality of generated music subjectively only through visual in-
spection of proper music representation formats, including music score, pianoroll, waveform,
spectrogram, etc. According to [122], visual analysis methods can be categorized as follows:

• Score Analysis: As the name suggests, score analysis is typically based on the musi-
cal information derived from a music score. Depending on the implemented generation
task, it emphasizes on different characteristics of interest, such as pitch changes, rhyth-
mic patterns, structural motifs, transition between bars, etc. The evaluation criteria
mainly rely on music theory principles and therefore score analysis is usually conducted
by experts in the field. However, different judges may express different opinions on the
same score, introducing a notion of subjectivity in the process. To this end, score
analysis is regarded as a practice for subjective evaluation. Dong et al. [2] perform a
qualitative analysis of the produced pianorolls in terms of the overall musicality, as well
as the individual features of each involved instrument. Pati et al. [161] follow similar
methodology in order to evaluate and compare scores inpainted by different models.

• Waveform/Spectrogram Analysis: The subjective evaluation of auditory samples

116

3.4. Evaluation

in the context of visual analysis is typically based on the elaborate inspection of the
corresponding signal waveforms4 or other representations in the time-frequency domain,
such as spectrograms5 and rainbowgrams6. Engel et al. [183] employ the latter format
in order to compare audio samples produced by interpolation in the latent space with
the originals. Also common is the utilization of mel-spectrograms7 and F0 contour8

maps, as implemented in [219] and [220] respectively.

4https://en.wikipedia.org/wiki/Waveform
5Spectrogram is a visual representation of a signal’s spectrum across time.
6Rainbowgrams can be regarded as CQT spectrograms with magnitude indicated by line intensity and

frequency by color.
7Mel-spectrograms are spectrograms where the frequencies are converted in the psychophysical mel scale.
8F0 denotes the fundamental frequency at which vocal chords vibrate in music sounds. It is perceived by

the ear as pitch. An F0 contour represents the F0 oscillations over time in the course of a utterance.

117

https://en.wikipedia.org/wiki/Waveform
https://en.wikipedia.org/wiki/Spectrogram
https://github.com/mwufi/rainbowgrams
https://en.wikipedia.org/wiki/Constant-Q_transform
https://en.wikipedia.org/wiki/Mel_scale

Chapter 3. Related Work

118

Chapter 4

Baseline Project: MuseGAN

4.1 Overview & Challenges . 120

4.2 Architecture . 123

4.2.1 Generative Adversarial Networks 123

4.2.2 Modeling Multitrack Interdependency 124

4.2.3 Modeling Temporal Structure . 126

4.2.4 MuseGAN . 128

4.2.5 Implementation Details . 129

4.3 Data . 131

4.3.1 Data Representation . 131

4.3.2 Dataset . 132

4.3.3 Data Preprocessing . 132

4.4 Evaluation & Results . 134

4.4.1 Objective Evaluation . 134

4.4.2 Subjective Evaluation . 136

119

Chapter 4. Baseline Project: MuseGAN

This chapter aims at providing a complete overview of the baseline project on which
our proposed framework for the problem of Automatic Music Synthesis is established.
In particular, section 4.1 introduces the main characteristics of the MuseGAN project,
as well as the various challenges that it attempts to tackle. Section 4.2 focuses on
the architecture of the system and the structural attributes of the integrated temporal
and multi-track modules, while section 4.3 includes a detailed analysis of the utilized
training dataset. Lastly, section 4.4 presents the employed evaluation methods as well
as the results produced by the conducted experiments.

4.1 Overview & Challenges

MuseGAN, which is the abbreviation of Multi-track sequential Generative Adversarial
Network, constitutes, as the name suggests, a novel framework for symbolic multi-track
music generation, based on the mechanism of Generative Adversarial Networks, which have
been thoroughly presented in section 2.3 of chapter 2. This project1 was initially introduced
by Dong et al. [2] at the Association for the Advancement of Artificial Intelligence (AAAI)
Conference in 2018 and has laid the foundation for various generative systems that were
developed within the research area of music synthesis. Therefore, it can be considered as a
landmark among the state-of-the-art approaches to the examined research problem.

Figure 4.1.1: Musical
tracks in MuseGAN [13]

More specifically, MuseGAN is a GAN-based generative model,
able to automatically produce polyphonic musical sequences for
multiple tracks and particularly for Piano, Guitar, Bass, Strings
and Drums, as shown in Figure 4.1.1. Under this framework,
both the Generator and the Discriminator system components
are implemented as deep Convolutional Neural Networks. An
abstract and simplified diagram of this system configuration is
graphically illustrated in Figure 4.1.2. As it might be seen, the
Generator network receives a random noise vector that follows
the Gaussian distribution as input and by performing successive
upsampling convolutional operations, produces fake samples in
the target space. Conversely, the Discriminator network acts in reverse convolutional mode
in order to evaluate as real or fake data instances derived from both distributions. According
to the detailed analysis in section 2.2.3 of chapter 2, CNNs are designed to process data with
grid-like topology or structured information in the form of generalized arrays and hence the
musical samples have to be represented in an image-like symbolic format.

The concept of the MuseGAN mechanism is derived from the research fields of Computer
Vision and Image Processing. However, the task of composing realistic and aesthetically
harmonic musical pieces in an automated manner can be considered particularly challenging,
due to the inherent difficulty of modeling music under the framework of neural networks, in
contrast to other modalities, such as images, videos and text, which are characterized by a
more specified structure.

1The entire implementation code, the utilized dataset, as well as some rendered audio samples are available
at MuseGAN’s website

120

https://en.wikipedia.org/wiki/Normal_distribution
https://salu133445.github.io/musegan/

4.1. Overview & Challenges

Figure 4.1.2: GAN implemented with CNNs [221]

First and foremost, this is owed to the intrinsically hierarchical arrangement of a musical
piece. As demonstrated in Figure 4.1.3a, a song is abstractly composed of higher-level build-
ing blocks, called paragraphs, which can be further subdivided into musical phrases. A phrase
in music is defined as a substantial concrete musical thought that has a complete musical
sense of its own and therefore is considered as one of the fundamental elements in the struc-
ture of a musical composition. Each phrase consists of smaller recurrent patterns, termed
bars, which contain beats, formulated by a definite timestep number. As Herremans and
Chew [3] report, the human brain focuses on such structural motifs, related to coherence,
rhythm, tension and the emotion flow, while listening to music and thus the incorporation of
a mechanism capable of capturing the aforementioned characteristics is critical in the context
of Automatic Music Synthesis. However, it can be easily affirmed that the whole hierarchy of
a musical piece is structured upon temporal units, as the various objects of musical perception
are presented to the listener progressively in time. To this end, MuseGAN system includes a
temporal model in order to generate samples, composed of few bars, that are associated in a
coherent manner.

Secondly, a musical piece is typically composed of multiple varying tracks. For instance, a
modern orchestra combines instruments of different families, including bowed strings, brass,
woodwinds and percussion, while the most common configuration in a rock band includes
two guitars, a lead and a rhythm one, a bass, a drum set and possibly lead vocals. Each indi-
vidual track in an instrumental ensemble disposes its own musical properties and dynamics.
However, all the different track components collectively unfold over time in an interdepen-
dent manner, as illustrated in Figure 4.1.3b. Various composition disciplines have emerged
over the years in an attempt to model the interaction among different instruments. Such
approaches are strongly influenced by the corresponding music genre or the historical period
they are related and they formed the foundation of rule-based methods in the context of Mu-
sic Synthesis with the use of Artificial Neural Networks and Machine Learning frameworks.
However, MuseGAN incorporates a more abstract and creative modeling approach to the
concept of multi-track interdependence. In particular, it employs three different GAN-based
models, whose mechanism is established on the human perception over the creation of musical
pieces.

Lastly, notes in a polyphonic musical piece are typically presented into grouping formu-
lations, such as chords, i.e. harmonic sets of multiple pitches/frequencies that are played

121

Chapter 4. Baseline Project: MuseGAN

simultaneously, arpeggios, which constitute a special type of “broken” chord where the tonal
components are heard in a sequential form of ascending or descending order, or other melodic
motifs and harmonic patterns, as visually demonstrated in Figure 4.1.3c. All these musical
texture attributes, which inherently incorporate a notion of complexity, cannot be easily
captured by a computational machine system and therefore a suitable combination of data
representation and processing is required in order to effectively model the structural features
of a polyphonic composition. Former approaches, especially in the field of monophonic music
generation, which by definition consists of a single unaccompanied melodic line and hence
includes much simpler structural formulations, usually employ a chronological ordering of
the various note events. However, as a matter of course, such kind of implementation cannot
be generalized in tasks of higher complexity, including polyphonic music generation. To this
end, under the framework of MuseGAN project, the musical samples are represented in an
image-like symbolic format with the bar being considered as the basic compositional unit, so
that composite patterns and grouping structures are perceivable as a whole. On account of
this fact, both the generative and the discriminative sub-models are implemented as Convo-
lutional Neural Networks, which, as thoroughly explained in section 2.2.3 of chapter 2, are
specialized at detecting local, translation-covariant features through successive convolutional
operations.

(a) (b)

(c)

Figure 4.1.3: Challenges of Automatic Music Generation [13]

122

4.2. Architecture

4.2 Architecture

4.2.1 Generative Adversarial Networks

As mentioned before, the core architecture of the MuseGAN system is established on the
framework of Generative Adversarial Networks. According to the respective analysis in sec-
tion 2.3 of chapter 2, a GAN model is typically composed of the following two individual
modules:

• Generator: The Generator network G creates novel data instances, by mapping a
random noise vector z sampled from a prior distribution pz to the target data space.
Thus, G = G(z; θg) can be considered as a differentiable function computationally
implemented by a an artificial neural network with parameters θg, which transforms
the input distribution pz to an output distribution pg.

• Discriminator: The Discriminator network D evaluates the input data instances x
in terms of authenticity, by predicting the label of their respective origin class. There-
fore, D = D(x; θd) can also be considered as a differentiable function computationally
implemented by an artificial neural network with parameters θd, which maps the input
data x to a single scalar value. Essentially, this output represents the probability that
x is derived from the real data distribution pd rather than the model distribution pg.

Figure 4.2.1: Illustration of GAN mechanism
[222]

These two structural components are in-
volved into an adversarial learning proce-
dure, which is graphically displayed in Fig-
ure 4.2.1. More specifically, the Discrimi-
nator is trained to distinguish the ground-
truth samples from the fake ones, while the
Generator aims at “fooling” its opponent,
by counterfeiting the real data distribution
as best as possible. This training frame-
work can be mathematically formulated by
employing the concept of the minimax de-
cision rule. The term “minimax” refers to
an optimization strategy usually applied in
the field of game theory for minimizing the
potential loss corresponding to the worst-case scenario, i.e. the maximum loss. This cost is
related to the decisions of the first player during the game, assuming that their opponent
responds in an optimal manner. In this context, the GAN mechanism can be intuitively
modeled as a two-player turn-based game, where the alternating actions of the two oppo-
nents, the Generator and the Discriminator, involve the update of their respective weight
parameters. Following the aforementioned notation, the adversarial game can be described
by the minimax value function V (G,D):

min
G

max
D

V (G,D) = Ex∼pd [log (D(x))] + Ez∼pz [log (1−D(G(z)))] (4.2.1)

As it can be easily seen, the first term of formula 4.2.1 represents the log probability of

123

https://en.wikipedia.org/wiki/Minimax

Chapter 4. Baseline Project: MuseGAN

predicting that the real samples are actually genuine, while the second one corresponds to
the log probability of classifying the fake samples, produced by G, as unauthentic. Thus,
the Discriminator aims at maximizing both the aforementioned quantities, in order to learn
to assign correct labels to both kinds of training examples and effectively distinguish them.
On the other hand, the objective of the Generator is to minimize the second term, so that
D cannot identify the counterfeit data instances successfully.

As Gulrajani et al. report in [20], if the Discriminator is trained before each parameter
update of the Generator, then the minimization of the value function 4.2.1 is equivalent to the
minimization of the Jensen-Shannon divergence between the distributions pd and pg, which
are defined up above. However, according to [21], this method in practice may not provide
sufficient gradients for the learning procedure of G, resulting in vanishing gradients and mode
collapse phenomena. This is owed to the fact that the quantity log (1−D(G(z))) saturates,
since at the early stages of training the Generator produces fake data which are clearly
diverging from the ground-truth distribution and hence are easily distinguishable by the
Discriminator. Therefore, Goodfellow et al. [21] advocate that, in order to to circumvent this
difficulty, the Generator should be instead trained to maximize the term Ex̃∼pg [log (D(x̃))],
where x̃ = G(z) implicitly defines the model distribution pg. This objective results in the
same fixed point concerning the dynamics of G and D, but provides much stronger gradients
early in learning.

However, even this modified loss function can misbehave in the presence of a good Discrimi-
nator [223]. To this end, Arjovsky et al. [224] introduce the WGAN model, which employs
the Wasserstein distance (alternatively termed as the Earth Movers distance), in order to
stabilize the training procedure and provide meaningful learning curves, particularly useful
for debugging and hyperparameter searching. Gulrajani et al. [20] improve this framework,
by enforcing a Lipschitz constraint in the form of an additional gradient penalty term at the
minimax objective function, which is consequently transformed as follows:

min
G

max
D

V ∗(G,D) = Ex∼pd [D(x)]−Ez∼pz [D(G(z))] +Ex̂∼px̂ [(∥∇x̂D(x̂)∥2− 1)2] (4.2.2)

where px̂ is implicitly defined by uniform sampling along straight lines between pairs of
points derived from the data distribution pd and the generator distribution pg accordingly.
This modification is found to ensure faster convergence to better optima and also require less
hyperparameter tuning. On account of this, the training process of the MuseGAN system is
based on the aforementioned formula 4.2.2.

4.2.2 Modeling Multitrack Interdependency

According to human experience, two prevailing approaches concerning the composition of
musical pieces can be distinguished:

• Jamming mode: The term “jam” refers to a relatively informal musical event, process
or activity, where a group of musicians, typically including various instrumentalists,
improvise music without extensive preparation or predefined arrangements. In this
way, novel musical content can be created in a cooperative manner.

124

https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://en.wikipedia.org/wiki/Wasserstein_metric
https://en.wikipedia.org/wiki/Earth_mover%27s_distance
https://en.wikipedia.org/wiki/Lipschitz_continuity

4.2. Architecture

• Composer mode: This compositional technique involves the presence of a principal
coordinator, referred to as composer, who arranges the various instruments based on
harmonic and orchestration principles. In this way, structured musical pieces can be
produced, as the individual musical parts in the overall composition are designed and
organized in a consonant and coherent manner.

Based on the aforementioned music creation modes, Dong et al. [2] propose three differ-
ent models, which are established on the GAN framework in order to capture multi-track
interdependency and will be thoroughly examined in the following sections of this analysis.

Jamming Model

As illustrated in Figure 4.2.2, the Jamming Model comprises multiple GAN modules that
operate independently in order to generate multi-track music. In particular, each individual
Generator Gi produces music samples which correspond to a specific track included in the
overall composition from a private input random vector zi and receives feedback in the form
of backpropagated supervisory signals from its respective Discriminator Di. The possible
values of the index i range from 1 to M , where M denotes the number of tracks. Therefore,
a musical piece consisting of M tracks requires, under the framework of the Jamming Model,
M Generators and M Discriminators accordingly.

Figure 4.2.2: Jamming Model [2]

Composer Model

As demonstrated in Figure 4.2.3, the Composer Model consists of a single pair of adversarial
networks, regardless of the value of M , which denotes the number of the employed music
tracks. More specifically, the Generator G receives a shared random vector z as input, which
can be considered as the intention of the composer and produces a multi-channel music
sample, where each channel represents one of the included tracks. The single Discriminator
D evaluates the musical segments in terms of authenticity, by examining the corresponding
M tracks collectively.

Figure 4.2.3: Composer Model [2]

125

Chapter 4. Baseline Project: MuseGAN

Hybrid Model

As the name suggests, the Hybrid Model constitutes a combined implementation of both
the aforementioned systems, that merges the notion of unconfined improvisation in the jam-
ming context along with the musical discipline imposed by the composer’s arrangement. As
graphically displayed in Figure 4.2.4, the hybrid architecture comprises multiple Generator
modules Gi, each one corresponding to a specific track included in the overall composition
and thus to the actions of one musician/instrumentalist, but only one Discriminator network
D. The input of each Generator consists of a private intra-track random vector zi, which can
be considered track-specialized, as well as a shared inter-track random vector z, which coor-
dinates to some extent the generation process performed by the various musicians Gi. The
Discriminator D evaluates the musical segments in terms of authenticity, by examining the
corresponding M tracks collectively. Therefore, under the framework of the Hybrid Model,
a musical piece of M tracks requires M Generators and one Discriminator.

Figure 4.2.4: Hybrid Model [2]

It can be easily affirmed that the core mechanism of the Hybrid Model enables flexible
variations of the track-specific generation procedure, either in terms of network structure
(e.g. different number of layers, filter size, etc. among the various Generators) or regarding
the form of the private input zi, retaining at the same time the desired overall inter-track
interdependency.

4.2.3 Modeling Temporal Structure

All the GAN-based multi-track models, which have been presented in the previous section,
are capable of generating polyphonic musical pieces for multiple tracks with duration up to
one bar. The “bar” or else “measure” is a segment of time corresponding to a specific number
of beats, in which every beat is represented by a particular note value. As mentioned before,
this small musical container constitutes the basic building block of a musical composition,
since the boundaries between consecutive bars are usually the spots where harmonic changes
occur. To this end, in order to be able to generate music samples with longer duration,
such as a musical phrase and ensure at the same time coherence and consistency among the
produced bars, a mechanism that captures and handles temporal dependencies is crucial.
Therefore, Dong et al. [2] design two distinct temporal models corresponding to different use
cases, which will be thoroughly examined further down.

126

4.2. Architecture

Generation from Scratch

Based on the concept of TGAN, a temporal GAN-based model proposed by Saito et al.
[14] in 2017 for learning semantic representations of unlabeled videos and generating image
sequences, this method aims at producing fixed-length musical phrases, by integrating bar
progression at the Generator’s workflow in the form of an augmented dimension. More
specifically, in this case the Generator module consists of two sub-networks, the temporal
structure generator Gtemp and the bar generator Gbar, which are graphically illustrated in
the diagram of Figure 4.2.5. As can be seen, Gtemp maps the input random vector z to a
sequence of latent variables #»z = { #»z (t)}Tt=1, where T > 0 denotes the total number of bars to
be generated. It can be easily affirmed that each one of these latent components corresponds
to a specific bar included in the musical segment which will be eventually composed and
incorporates to some extent information about temporal characteristics. The bar generator
Gbar transforms, as the name indicates, the resulting vector #»z into a musical phrase in a
sequential manner (i.e. bar by bar). Using formal notation, the overall function of the
Generator under this temporal framework can be formulated as follows:

G(z) =

{
Gbar

(
Gtemp(z)

(t)
)}T

t=1

(4.2.3)

Figure 4.2.5: Generation from Scratch [2]

Track-conditional Generation

This method can be considered as an extension of the MuseGAN model to a human-AI coop-
erative framework, as it can be applied in music accompaniment generation or in other tasks,
where the involved generative procedure is conditioned to some kind of prior information. In
particular, it aims to capture the underlying temporal structure of a specific human-composed
track, which is assumed to be given as input to the model in the form of a bar sequence #»y ,
in order to generate the remaining tracks. As demonstrated in the diagram of Figure 4.2.6,
the conditional Generator Go produces the consecutive bars of the formatted accompaniment
segment in a sequential manner, by receiving two distinct inputs, the conditional track #»y (t)

and a time-dependent random noise vector #»z (t), where t signifies the index of the current
bar. However, since the conditional bar sequence is usually represented in a high-dimensional
space, an additional encoder network E is included in the system architecture. This module
maps #»y (t) to a low-dimensional embedding in the space of #»z (t), by extracting inter-track
features that can be useful for the generation of the other musical parts, as suggested in
former related approaches [15]. Using formal notation, the overall function of the conditional
Generator can be formulated as follows:

127

Chapter 4. Baseline Project: MuseGAN

Go(#»z , #»y) =

{
Go

bar

(
#»z (t), E(#»y (t))

)}T

t=1

(4.2.4)

Figure 4.2.6: Track-conditional Generation [2]

4.2.4 MuseGAN

MuseGAN constitutes an integration and augmentation of the multi-track and temporal
models, which have been elaborately presented at the previous sections. As illustrated in
Figure 4.2.7, the input of the system consists of four different parts:

• an inter-track time-independent random vector z

• an inter-track time-dependent random vector zt

• M intra-track time-independent random vectors zi

• M intra-track time-dependent random vectors zi,t

Figure 4.2.7: MuseGAN system diagram [13]

The shared temporal structure Generator Gtemp, as well as the corresponding private temporal
structure Generator Gtemp,i for each track i, where the index i ranges from 1 to M , map the
time-dependent input random vectors zt and zi,t to sequences of latent variables that contain
inter-track and intra-track temporal information respectively. The resulting output series
are concatenated with the time-independent random vectors z and zi and then fed into the
bar Generator Gbar, which produces musical phrases in a sequential manner. Using formal
notation, the overall generation procedure can be formulated as follows:

128

4.2. Architecture

G(z̄) =

{
Gbar,i

(
z, Gtemp(zt)

(t), zi, Gtemp,i(zi,t)
(t)
)}M,T

i,t=1

(4.2.5)

where z̄ = (z, zt, zi, zi,t) for each i ∈ {1, . . . ,M} and t ∈ {1, . . . , T}. As regards the case of
the track-conditional generation, the aforementioned mechanism is slightly modified by the
inclusion of the additional encoder module that extracts useful inter-track features from the
user-provided musical part.

Figure 4.2.8: Bar Generator in MuseGAN [13]

As graphically displayed in Figure 4.2.8, the inter-track input components intuitively repre-
sent features that do not depend on a specific track, but instead are related to the general
configuration of the musical composition. Such characteristics include, among others, the
chord progression or the musical style. Therefore, the aforementioned random vectors can
be considered associated to the composer generative mode. On the other hand, following an
equivalent reasoning, the remaining intra-track input components represent track-dependent
features, such as melody and groove, and hence are inherently related to the jamming mode.

4.2.5 Implementation Details

Figure 4.2.9 demonstrates the network architectures for the aforementioned structural compo-
nents of the MuseGAN system. As it can be seen, all the involved modules are implemented
as deep Convolutional Neural Networks, which have been thoroughly presented in section
2.2.3 of chapter 2. In particular, the values included at each one of the depicted tables
represent orderly the following elements:

• Convolutional Layers : number of filters, kernel size, stride, batch normalization (BN)
and activation function.

• Fully-connected Layers : number of hidden nodes and activation function.

Both employed Generators successively augment the dimensions of the input vector through
transposed convolutional operations, which are initially applied along the time axis and
afterwards along the pitch axis. On the other hand, the Discriminator module displays
the opposite behaviour in terms of successively compressing the spatial dimensions of the
corresponding input vector, first along the pitch axis and then along the time one, through the
utilization of typical convolutional layers. Following a similar implementation, the Encoder

129

Chapter 4. Baseline Project: MuseGAN

network mirrors to some extent the architecture of the bar Generator, in order to produce
the latent embeddings.

(a) Temporal Generator Gtemp

(b) Discriminator D

(c) Bar Generator Gbar

(d) Encoder E

Figure 4.2.9: Network architectures for the structural components of MuseGAN system [2]

130

4.3. Data

4.3 Data

4.3.1 Data Representation

As mentioned before, CNNs are designed to process data with grid-like topology or structured
information in the form of generalized fixed-size arrays. To this end, the musical samples,
which are processed under the framework of the MuseGAN system are represented in the pi-
anoroll format. According to the extended analysis in section 3.1.3 of chapter 3, the pianoroll
format can be defined as a binary-valued scoresheet-like matrix representing the presence of
notes over different timesteps. Figure 4.3.1 demonstrates a pianoroll representation of a 4-bar
musical fragment. As can be seen, the horizontal axis represents time in a symbolic formula-
tion that discards tempo information resulting in equally sized time fragments for each beat,
while the vertical axis represents notes ordered from the low-pitched to the high-pitched ones.
A colored pixel (pixel with value 1) indicates that a specific pitch is played at the current
timestep.

Figure 4.3.1: Pianoroll format with symbolic timing [13]

However, the aforementioned method can represent polyphonic musical pieces corresponding
only to one single track. To that end, in order to tackle this limitation and model music
composed of multiple tracks, Dong et al. [2] introduce the multi-track pianoroll representation
format. As graphically displayed in Figure 4.3.2, a multi-track pianoroll is defined as a set
of piano-rolls corresponding to different musical tracks.

Using formal notation, an M -track piano-roll of one bar is represented as a tensor

x ∈ {0, 1}R×S×M (4.3.1)

where R denotes the number of timesteps included in a bar and S symbolizes the total
number of pitch candidates. Consequently, an M -track piano-roll of T bars is represented as
a sequence of tensors

#»x = { #»x (t)}Tt=1 (4.3.2)

where #»x (t) ∈ {0, 1}R×S×M indicates the multi-track pianoroll of bar t.

131

Chapter 4. Baseline Project: MuseGAN

Figure 4.3.2: Multi-track pianoroll format [13]

4.3.2 Dataset

The piano-roll dataset employed under the framework of the MuseGAN system is derived
from the Lakh MIDI Dataset (LMD) [16], which constitutes one of the largest symbolic music
corpora, including 176.581 unique MIDI files created by Colin Raffel. As discussed in section
3.1.1 of chapter 3, this dataset incorporates unlimited, polyphonic, inconsistent expressive
characteristics and encompasses various music genres, instruments and time periods. How-
ever, most of the included MIDI files are quite noisy, since they are mainly scraped from
the web or user-generated. To this end, Dong et al. [2] utilize a subset of the LMD, known
as LMD-matched, which, as the name suggests, comprises 45.129 files matched and aligned
with the corresponding entries in the Million Song Dataset (MSD) [17]. The resulting set
of training examples after the conversion of the aforementioned MIDI files into multi-track
piano-rolls is called Lakh Pianoroll Dataset or LPD for short and can be found on the
project’s website.

4.3.3 Data Preprocessing

All the steps involved in the data preprocessing procedure, which is applied in order to
construct the final set of training examples, are graphically illustrated in the diagram of
Figure 4.3.3.

Figure 4.3.3: Illustration of the dataset preparation and data preprocessing procedure [2]

As can be seen, at first, the MIDI files contained in the matched version of the LMD are
converted into multi-track piano-rolls, using the python module pretty_midi [225], which
has been proposed by Raffel and Ellis in 2014 for creating, manipulating and analyzing such
kind of music storing format. For each bar, the height of the score-like piano-roll matrix is

132

https://salu133445.github.io/lakh-pianoroll-dataset/dataset

4.3. Data

set to 128, covering from C-1 to G-9, while the width dimension, which as mentioned before
represents the time resolution, is set to 96, in order to model common temporal patterns,
such as triplets and 16th notes. During this transformation process from MIDI files to multi-
track pianorolls, an extra minimal-length (i.e. of one timestep) rest is added between two
consecutive notes of the same pitch, in order to be distinguished from one single long note of
the same corresponding duration, while notes shorter than two timesteps are dropped. The
aforementioned pause enforcing method is applied to all tracks except drums, where only the
onsets are encoded.

Naturally, some of the involved tracks tend to be sparse in terms of containing only a few
notes in the entire musical piece. Therefore, Dong et al. in order to tackle this inherent
data imbalance issue, which impedes the learning process of the system, employ a merging
technique that integrates tracks corresponding to similar instruments. In particular, each
multi-track piano-roll included in the matched version of the produced LPD dataset is com-
pressed into five distinct track categories: bass, drums, guitar, piano and strings. Instruments
out of this list are considered as part of the strings except those in the Percussive, Sound
Effects and Synth Effects families. After this step, the LPD-5-matched set of music samples
is created, consisting of 30.887 5-track piano-rolls.

Subsequently, in order to ensure a degree of homogeneity and uniformity among the vari-
ous musical pieces, which are included into the LPD-5-matched dataset, a filtering process
is performed, based on the metadata provided in the LMD and MSD respectively. More
specifically, only the pianorolls which are in 4/4 time, correspond to a “rock” tag and present
higher confidence score in matching with any entry in the MSD, are retained. The resulting
set of music samples is called LPD-5-cleaned and contains 21.425 multi-track pianorolls.

Finally, in order to collect musically meaningful phrases for the training of the embedded
temporal model, the pianorolls included in the LPD-5-cleansed version are segmented accord-
ing to a state-of-the-art algorithm, which is called structural features and has been proposed
by Serra et al. in 2012 [226]. Under the framework of the MuseGAN system, a phrase is con-
sidered as a 4-bar musical segment and therefore longer segments are pruned into the proper
size. Furthermore, notes below C-1 or above C-8 are discarded, since they are particularly
uncommon in the majority of the examined musical compositions, resulting in 84 possible
values as regards the range of the pitch axis. In this way, 50.266 musical phrases with the
aforementioned dimensions are acquired as the final set of training data for the MuseGAN
system.

Figure 4.3.4: Data configuration [13]

Consequently, as graphically demonstrated in
Figure 4.3.4, the size of the target output ten-
sor, which represents the artificial piano-roll of a
musical segment is

4× 96× 84× 5

133

Chapter 4. Baseline Project: MuseGAN

4.4 Evaluation & Results

4.4.1 Objective Evaluation

As thoroughly discussed in section 3.4.1 of chapter 3, objective evaluation in the research
field of Automatic Music Synthesis refers to a quantitative consideration of the examined
generative systems and their produced musical pieces. This process is typically based on
statistical criteria and hence employs a set of evaluation metrics in an attempt to model the
generation efficiency and capture properties of the highly intricate form of musical expression.
Under this framework, Dong et al. [2] propose one inter-track and four intra-track musical
metrics, that can be computed for both the real and the generated samples:

• Empty Bars (EB): ratio of empty bars included in the examined track (in %)

• Used Pitch Classes (UPC): mean number of pitch classes2 used per bar (from 0 to
12)

• Qualified Notes (QN): ratio of “qualified” notes3 (in %)

• Drum Pattern (DP): ratio of notes in beat patterns of 4/4 rhythm4 (in %)

• Tonal Distance (TD): measures the harmonicity between a pair of musical tracks5

Figure 4.4.1: Intra-track evaluation [2]
(B: Bass, D: Drums, G: Guitar, P: Piano, S: Strings)

Figures 4.4.1 and 4.4.2 demonstrate the computational results derived from the objective
evaluation process of the MuseGAN system. In particular, 20.000 bars generated by each one

2A pitch class can be defined as the group of all pitches that are related by octave and enharmonic
equivalence. In music theory, 12 distinct pitch classes can be distinguished, formulating a circular note space
called the chromatic circle.

3A qualified note can be considered as a note with duration greater than 3 timesteps (i.e. a 32th note).
The number of qualified notes included into a musical piece indicates to some extent the musical property of
fragmentation, which, as the name suggests, refers to the use of fragments or the partitioning of a musical
idea into segments. To this end, the QN metric demonstrates if the examined music samples are overly
fragmented, with higher values denoting lower fragmentation of the produced pieces.

4As elaborated in the previous section, the dataset used under the framework of the MuseGAN system
comprises pianorolls only in 4/4 time, which correspond to Rock songs. DP measures the notes presented at
the downbeats of 4/4 rhythm in accordance with the employed time resolution.

5This evaluation metric is inspired by the work of Harte et al. [18], who proposed a novel model for
the Equal Tempered Pitch Class Space, which maps 12-bin chroma vectors to the interior space of a 6-D
polytope, where the vertices represent the pitch classes. In this way, close harmonic relations such as fifths
and thirds appear as small Euclidean distances.

134

https://en.wikipedia.org/wiki/Pitch_class
https://en.wikipedia.org/wiki/Chromatic_circle
https://en.wikipedia.org/wiki/Fragmentation_(music)
https://en.wikipedia.org/wiki/Equal_temperament

4.4. Evaluation & Results

of the proposed models, which have been thoroughly presented in section 4.2, are evaluated
in terms of the aforementioned musical metrics. As regards the track-conditional scenario,
the generation of the four accompaniment instrumental parts is conditioned on the Piano
track. Furthermore, under the temporal framework of generation from scratch, an ablated
version of the composer model, which does not incorporate batch normalization (BN) layers,
is also included in the process for further comparison. The intra-track values produced from
this model variant can be considered as reference, due to its minimal learning ability.

According to the elaborate analysis concerning the concept of Generative Adversarial Net-
works in section 2.3 of chapter 2, the distributions of real and fake data samples and accord-
ingly their respective statistics are forced to get as close as possible through an adversarial
training procedure. Therefore, as regards the intra-track evaluation part, which is presented
in the table of Figure 4.4.1, values approximating the ones included in the first row, which
correspond to the metrics as measured in the training set, are considered better with respect
to the efficiency of the model. Consequently, the best performance is achieved by the jam-
ming model, possibly due to the fact that each generator module involved in the jamming
structure is designed to emphasize on its own respective track and hence improving musi-
cal attributes related the intra-track objective metrics. Aside from the ablated model, the
resulting DP values indicate that drums manage to capture underlying rhythmic patterns
from the training data, despite the relatively high EB in the composer and the hybrid model.
From UPC and QN, it can also be observed that all models tend to use more pitch classes
and produce fairly less qualified notes in comparison with the set of ground-truth samples.
The authors ascribe this form of noise which is introduced into the generation process to
the binarization method applied in order to transform the continuous-valued output of the
Generator modules to a binary-valued pianoroll.

Figure 4.4.2: Inter-track evaluation [2]
(B: Bass, D: Drums, G: Guitar, P: Piano, S: Strings)

As regards the inter-track evaluation part, which is presented in the table of Figure 4.4.2,
larger TD values imply weaker harmonic relations between the examined pairs of tracks
and hence the smaller ones correspond to the intended model behaviour. As can be seen,
this is achieved by the composer as well as the hybrid model. This result suggests that
the aforementioned architectures are more suitable for the task of multi-track polyphonic
generation compared to the jamming model in terms of cross-track harmonic relations, since
they both involve the presence of a principal coordinator, who arranges to some extent the
various instruments, based on harmonic and orchestration principles.

135

Chapter 4. Baseline Project: MuseGAN

4.4.2 Subjective Evaluation

As elaborated in section 3.4.2 of chapter 3, subjective evaluation constitutes an indispensable
assessment practice in the research area of music generation systems, since it attempts to
bridge the gap between the quantitative evaluation of the music quality, which emerges from
the use of objective metrics, and the human judgement.

Figure 4.4.3: User Study [2]
(H: Harmonious, R: Rhythmic, MS: Musically Structured, C: Coherent, OR: Overall Rating)

In this context, Dong et al. [2] conduct a user study in the form of a listening test, which, as
mentioned in section 3.4.2 of chapter 3, is considered the most fundamental, common and at
the same time convincing evaluation method, providing human feedback in a comprehensive
manner. The participants of the survey are 144 subjects, who have been recruited mostly
from the Internet via the social circles of the authors. Through a simple questionnaire probing
their musical background, the users are divided into two groups, the “pro” (44) and the “non-
pro” (100). Each subject listens to 9 audio clips presented in random order, where each one
of them consists of 3 four-bar phrases generated by one of the proposed models and quantized
by 16th notes. Then the user rates the aforementioned clips using a 5-point Likert scale (1
denotes the minimum and 5 the maximum), in terms of whether they

1) have pleasant harmony

2) have unified rhythm

3) have clear musical structure

4) are coherent

5) the overall rating

The produced results are demonstrated at the table of Figure 4.4.3. As can be seen, all
participants, irrespective of their musical knowledge level or experience, show a preference
for the hybrid model as regards the temporal framework of Generation from Scratch. In the
case of Track-conditional Generation, the music experts favor the hybrid model, while the
non-experts slant towards the jamming model. Furthermore, it can also be observed that
the hybrid as well as the composer models receive higher scores for the criterion Harmonious
under the Generation from Scratch framework in comparison with the ones associated to the
jamming model. This inference is in accordance with the results of the objective evaluation,

136

https://www.simplypsychology.org/likert-scale.html

4.4. Evaluation & Results

as it indicates that the aforementioned model structures, which incorporate a coordinated
track arrangement mechanism, are capable of handling multi-track interdependency in a more
efficient manner.

137

Chapter 4. Baseline Project: MuseGAN

138

Chapter 5

Unconditional Generation

5.1 Task Description . 140

5.2 Model . 141

5.2.1 Architecture . 141

5.2.2 Implementation . 142

5.2.3 Training Process . 144

5.3 Data . 147

5.3.1 Data Representation . 147

5.3.2 Dataset . 147

5.3.3 Data Preprocessing . 147

5.4 Experimental Protocol . 149

5.4.1 Experimental Setup . 149

5.4.2 Objective Metrics . 149

5.5 Results . 151

5.5.1 Analysis of Training Process . 151

5.5.2 Model for Inference . 154

5.5.3 Qualitative Inspection . 155

5.5.4 Experimentation over Generative Configurations 156

5.5.5 Objective Comparison with Baseline 157

5.6 User Study . 160

5.6.1 Experimental Setup . 160

5.6.2 Subjective Results & Discussion . 162

139

Chapter 5. Unconditional Generation

This chapter aims at providing a complete overview of our proposed GAN-based frame-
work for the task of Unconditional Generation. In particular, section 5.1 introduces the
main characteristics of the generation problem that we attempt to tackle. Section 5.2
includes a detailed description of the system architecture, the implementation of the
various structural components, as well as their respective training mechanism. Section
5.3 elaborates on the utilized form of data representation, the dataset and the required
preprocessing steps. Section 5.4 focuses on the employed experimental protocol, while
section 5.5 engages on a thorough analysis of the results produced using the afore-
mentioned setup. Lastly, section 5.6 presents our user study related to this task and
discusses its subjective findings.

5.1 Task Description
As thoroughly discussed in chapter 3, the problem of Automatic Music Synthesis involves
a huge variety of different techniques, methods and architectures that aim to emulate the
numerous variants of the human compositional practice and also model the diverse aspects
and multifarious attributes that characterize musical pieces. Since it is particularly hard to
fully investigate the undoubtedly vast research field of AI music, our initial approach to the
aforementioned problem in the context of this thesis focuses on the task of Unconditional
Generation of multi-track polyphonic musical samples.

Figure 5.1.1: Unconditional vs Conditional Generation [227]

According to the specialized analysis in section 3.2.1 of chapter 3, polyphony is defined as a
type of musical texture which consists of two or more distinct melodic lines that are com-
bined to flow and unfold simultaneously in a coordinated manner, introducing in this way
complex patterns along the time axis, as well as harmonic dependencies between rhythmically
concurrent notes. As a matter of course, the automatic generation of polyphonic music is
notably challenging, especially coupled with the use of multiple different musical instruments
or tracks. The term “unconditional” suggests that the generation procedure does not include
any prior knowledge or supplementary information from the human user, contrary to the
“conditional” case, which typically relies on additional human-provided data in the form of
lyrics, lead sheet, the respective chord progression or a primary melodic line for instance. As
graphically demonstrated in Figure 5.1.1, the unconditional mechanism is typically based on
the transformation of a random input into a meaningful form of musical expression.

140

5.2. Model

5.2 Model

Our proposed model for automatically generating polyphonic musical segments of multiple
tracks from scratch, i.e. without being subjected to conditional information of any kind, is
grounded on the MuseGAN system, which constitutes one of the most prevailing state-of-
the-art approaches to the examined research problem, as elaborately discussed in chapter 4.
The specific details as well as the respective alterations we performed on the baseline project
will be meticulously presented in the following subsections.

5.2.1 Architecture

Following [2], we design a framework for polyphonic music generation in symbolic format
including 5 distinct tracks (Bass, Guitar, Strings, Piano, Drums), based on a Convolutional
GAN mechanism. The core architecture of our proposed system is inspired by a later work of
Dong and Yang [19], which introduces the incorporation of binary neurons into the structure
of the MuseGAN model for directly generating binary-valued pianorolls and studies various
binarization methods that can be employed. As graphically displayed in the diagram of
Figure 5.2.1, two fundamental modules are included:

Figure 5.2.1: Architecture diagram of our proposed model

• Generator
The Generator component, as thoroughly discussed in previous chapters of this thesis,
produces novel data instances, by mapping an input random noise vector z, sampled
from a prior distribution, to the output target data space of musical representations, via
consecutive upsampling convolutional operations. As shown in Figure 5.2.1, it consists
of a shared network Gs, followed by M private subnetworks Gi

p (i = 1, . . .M), each
one corresponding to a specific track included in the musical composition. The shared
Generator Gs initially produces a common high-level and more abstract form of the
output musical segment, which intuitively represents a general musical idea that is
jointly shared among the various tracks. On account of this fact, Gs can be considered
as a composer that coordinates and arranges the various instruments based on harmonic
and orchestration principles. Consequently, each private Generator Gi

p transforms this

141

Chapter 5. Unconditional Generation

abstract representation into the final piano-roll output for the corresponding track,
according to its own musical properties, such as textural elements, melodic patterns,
rhythmical motifs etc. Thus, these track-specialized modules can be regarded as distinct
musicians improvising over the individual characteristics of each instrument in the
context of jamming mode. It can be easily observed that this structure differs from
our baseline project [2] regarding all the proposed multitrack interdependency models,
which have been extensively presented in section 4.2.2 of chapter 4.

• Discriminator
The Discriminator component evaluates the input data instances x in terms of au-
thenticity, by predicting the label of their respective origin class. This process is per-
formed via successive convolutional operations. As demonstrated in Figure 5.2.1, from a
structural perspective the Discriminator module mirrors the Generator’s design. More
specifically, it consists of M private subnetworks Di

p (i = 1, . . . ,M), with each one
corresponding to a specific track included in the musical composition, followed by a
shared network Ds. At first, each private Discriminator Di

p extracts low-level features
and detailed attributes from the corresponding track of the input pianoroll. Their pro-
duced outputs are then concatenated and fed into the shared Discriminator Ds, which
formulates a common, high-level abstraction of the final music representation. Similar
to the Generator case, the analogy between the aforementioned structural units and
jamming-composer modes accordingly is evident. The main difference between this
network mechanism and the reference system lies in the incorporation of track-focused
discriminative modules, since MuseGAN employs only one shared Discriminator that
evaluates all the contained musical tracks collectively.

As can be seen, our system provides a more compact and consistent mechanism for the un-
conditional generation task, especially with respect to the input, since it requires only one
random noise vector as opposed to MuseGAN, which employs 4 different kinds of inputs, each
one representing distinct musical dependencies. It can also be regarded as a structural varia-
tion of the hybrid model that incorporates the shared-private design for both Generator and
Discriminator modules. This further justifies our architecture since the hybrid model itself
merges the two compositional practices from an implementation perspective and according
to the respective analysis in section 4.4 of chapter 4, it outperforms the other multi-track
interdependency models in terms of inter-track and subjective evaluation, while achieving
adequate scores as regards the intra-track objective metrics.

5.2.2 Implementation

As previously noted, all the Generator and Discriminator modules involved in our proposed
system are designed as deep Convolutional Neural Networks [2, 19] and implemented using
the open source ML framework PyTorch, which is formulated on the Python programming
language and the Torch library and constitutes one of the most preferred platforms for deep
learning research. We employ as reference the code1 for the ISMIR tutorial on Music Gener-
ation with GANs presented in 2019.

1https://github.com/salu133445/ismir2019tutorial

142

https://pytorch.org/
https://www.ismir.net/
 https://github.com/salu133445/ismir2019tutorial

5.2. Model

According to the relevant analysis in sections 4.2.5 and 4.3.3 of chapter 4, the original project
is designed to handle data of only a specific configuration regarding time-related attributes,
such as the number of produced bars and the beat resolution, as well as tonal characteristics
like the number of used pitches. In order to tackle this limitation and further investigate the
generative capabilities of our proposed system, we extend the baseline implementation by
performing a customization process with respect to a group of parameters, that define vari-
ous generative configurations and are presented in Table 5.1 with their respective notation.
This modification allows us to experiment over multiple aspects of the generative procedure
and compare their effect on the produced result and its corresponding musical properties.
Furthermore, it entails a modulation on the internal structure of our Generator and Discrim-
inator components in accordance to the input and the desired output configuration, resulting
in a particularly flexible and adaptive mechanism.

s number of samples
l latent dimension
t number of tracks
r bar resolution
p number of pitches
m number of measures

o (= m · r) number of total timesteps
b beat resolution
i lowest pitch

Table 5.1: Parameter Notation

Input: z ∈ Rs×l (reshape to s× l × 1× 1× 1)

Layer Type Number of Filters Kernel Size Stride Normalization Activation
transconv 2 · l m× 1× 1 (m, 1, 1) Batch ReLU
transconv l 1× r/2× 1 (1, 1, 1) Batch ReLU
transconv l/2 1× 1× p/4 (1, 1, 1) Batch ReLU
transconv l/4 1× 1× (p/4 + 1) (1, 1, 1) Batch ReLU

Output: x ∈ Rs × l/4 × m × r/2 × p/2

Table 5.2: Shared Generator Gs

Input: x ∈ Rs × l/4 × m × r/2 × p/2

Layer Type Number of Filters Kernel Size Stride Normalization Activation
transconv l/8 1× (r/2 + 1)× 1 (1, 1, 1) Batch ReLU
transconv 1 1× 1× (p/2 + 1) (1, 1, 1) Batch ReLU

Output: x ∈ Rs × 1 × m × r × p (stack along track axis for final vector)

Table 5.3: Private Generator Gp

Tables 5.2 and 5.3 demonstrate our parameterized network architectures for the involved
Generator modules. As can be seen, both these structural units successively augment the
dimensions of the input vector via transposed convolutional operations, which are initially
applied along the time axis and afterwards along the pitch axis. Following the reference

143

Chapter 5. Unconditional Generation

implementation of [2], a Batch Normalization layer (BN) is added before each non-linear
activation function.

Accordingly, Tables 5.4 and 5.5 display the customized network configuration for the Discrim-
inator components of our proposed music generation framework. It can be easily observed
that the Discriminator modules act in reverse mode, compared to the Generator ones, in terms
of gradually compressing the spatial dimensions of the corresponding input vector, first along
the pitch axis and then along the time one, via the utilization of typical convolutional layers.
In this case, the Layer Normalization2 practice is applied before the non-linearity, as it does
not depend on the employed batch size and can be considered more feature-oriented.

Input: x ∈ Rs × 1 × o × p (reshape to s× 1×m× r × p)

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv l/8 1× 1× (p/2 + 1) (1, 1, 1) Layer Leaky ReLU
conv l/8 1× (r/2 + 1)× 1 (1, 1, 1) Layer Leaky ReLU

Output: x ∈ Rs × l/8 × m × r/2 × p/2 (stack along track axis for next layer)

Table 5.4: Private Discriminator Dp

Input: x ∈ Rs × tl/8 × m × r/2 × p/2

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv l/2 1× 1× (p/4 + 1) (1, 1, 1) Layer Leaky ReLU
conv l/2 1× 1× p/4 (1, 1, 1) Layer Leaky ReLU
conv l 1× r/2× 1 (1, r/2, 1) Layer Leaky ReLU
conv l (r/2 + 1)× 1× 1 (1, 1, 1) Layer Leaky ReLU
conv 2 · l r/2× 1× 1 (1, 1, 1) Layer Leaky ReLU
dense 1 (reshape to s× 2 · l before)

Output: y ∈ R

Table 5.5: Shared Discriminator Ds

It should be pointed out that our parameterization, from a mathematical perspective, is for-
mulated on multiples and mostly submultiples of the number 2, which constitutes to some
extent the basis of the note value3 system in music theory. Since the utilized training mu-
sic samples are only in 4/4 time signature, this modified network architecture enables our
proposed system to emphasize on rhythmical attributes and in this way capture temporal pat-
terns and motifs presented in the examined musical segments, which can be further employed
for the generation of novel data instances.

5.2.3 Training Process

According to the elaborated and detailed analysis on the framework of Generative Adversarial
Networks presented in section 2.3 of chapter 2, the GAN learning process can be modeled
as a two-player turn-based game, where the alternating actions of the two opponents, the
Generator and the Discriminator, involve the update of their respective weight parameters

2The implementation code is derived from https://github.com/pytorch/pytorch/issues/1959.
3In music notation, a note value indicates the relative duration of a note, based on the characteristics of

its representation form.

144

https://github.com/pytorch/pytorch/issues/1959
https://en.wikipedia.org/wiki/Note_value

5.2. Model

via the typical BackPropagation Algorithm. Following [2], we employ the modified version
of the minimax objective function for the training of our proposed system, that was initially
introduced by Gulrajani et al. in [20] and can be mathematically described as follows:

min
G

max
D

V ∗(G,D) = Ex∼pd [D(x)]−Ez∼pz [D(G(z))] +Ex̂∼px̂ [(∥∇x̂D(x̂)∥2− 1)2] (5.2.1)

In the context of the utilized notation, pd represents the ground-truth distribution of the real
music samples, pz indicates the prior distribution from which the input random noise vector z
is sampled and px̂ is implicitly defined by uniform sampling along straight lines between pairs
of points derived from the data distribution pd and the generator distribution pg, accordingly.
As can be easily observed, the value function V ∗, besides the typical probability expressions,
includes an additional gradient penalty term, which is found to ensure faster convergence
to better optima and stabilize the overall training process through a regularization of the
computed gradient magnitude [20].

As regards the consecutive interchanges between the individual learning procedures of the
Generator and the Discriminator modules respectively, we follow the relevant research lit-
erature [20, 2, 19] and embrace the training strategy which is thoroughly described and
graphically illustrated in section 2.3.3 of chapter 2. More specifically, we introduce into our
implementation a condition whereby the Generator is updated after every k optimization
steps of the Discriminator and further experiment over different values of the hyperparam-
eter k. Furthermore, we employ a batch-learning policy for the training of our proposed
system, under which the incorporated model parameters are updated at each step using data
derived only from the current mini-batch. Algorithm 3 summarizes all the aforementioned
training details and features in a pseudocode format.

In order to gain insights of our learning process, we incorporate an additional validation phase.
As the name suggests, this phase enables us to observe and also evaluate the behaviour of our
proposed GAN over unseen data instances, which are excluded from the set of training music
examples. From a computational aspect, it involves the estimation of the Discriminator and
Generator losses as performance indicators of the current training step, using samples derived
from the so-called validation set and the assessment of both real and generated piano-rolls,
produced by the current model state, via our employed metric system.

In advance, we further exploit this additional training feature by including an auxiliary
Early-Stopping mechanism into our proposed generative framework. In the field of Machine
Learning, Early-Stopping can be defined as an optimization technique, which is applied in
order to prevent overfitting phenomena without compromising model accuracy and efficiency.
This procedure mostly relies on the monitoring of a specified performance measure, which is
associated with the model’s generalization error. If this quantity starts to degrade, indicating
the model begins to learn the statistical noise that is inherently integrated into the training
dataset and eventually surpasses a predefined limit, a respective condition triggers the ter-
mination of the training process. Since validation strategy constitutes the most frequently
used and at the same time effective approach regarding the implementation of this method,
we employ as our monitoring metric the mean sum of the Discriminator and the Generator
losses, as computed during validation phase at each training step.

145

Chapter 5. Unconditional Generation

Finally, we also apply a checkpointing technique for the purpose of saving various versions of
our model components at successive stages of the training process, as they can be afterwards
used for the generation of novel music pieces in an inference context.

Algorithm 3: Mini-batch Training Algorithm for GANs with Gradient Penalty
1 In Input:

• Gradient penalty coefficient λ
• Number of Discriminator iterations per Generator iteration k
• Batch size m
• Adam4 hyperparameters α, β1, β2

• Number of total training steps N

2 for number of training iterations do

3 Update Discriminator Dw by ascending its stochastic gradient.
4 for k steps do
5 for i=1, . . . , m do
6 Sample: real data x = (xt,xa) ∼ pd
7 latent variable z ∼ pz
8 random number ϵ ∼ U [0, 1]

9 x̄← Gθ(z)
10 x̂← ϵ · x+ (1− ϵ) · x̄
11 L(i) ← Dw(x̄)−Dw(x) + λ(∥∇x̂Dw(x̂)∥2 − 1)2

12 endfor

13 w ← Adam

(
∇w

1

m

m∑
i=1

L(i), w, α, β1, β2

)
14 endfor

15 Update Generator Gθ by descending its stochastic gradient.

16 Sample a batch of latent variables {z(i)}mi=1 ∼ pz

17 θ ← Adam

(
∇θ

1

m

m∑
i=1

[−Dw(Gθ(z
i))], θ, α, β1, β2

)
18 endfor

4Adam is an optimization algorithm that can be used instead of the typical stochastic gradient descent
procedure for the update of the network weights in an iterative framework. This method computes individual
adaptive learning rates for different parameters from estimates of first and second moments of the respective
gradients. For more details, please refer to section 2.2.2 of chapter 2.

146

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam

5.3. Data

5.3 Data

5.3.1 Data Representation

Following [2, 19], we employ the multi-track pianoroll format for the representation of the
examined music samples under the framework of our proposed convolutional GAN-based sys-
tem. According to the detailed analysis in section 4.3.1 of chapter 4, a multi-track pianoroll
is defined as a set of piano-rolls, each one corresponding to a specific musical instrument in-
cluded in the overall composition. As graphically demonstrated in Figure 5.3.1, the vertical
axis of the score-like pianoroll matrix represents pitches in ascending order, while the hori-
zontal dimension indicates time in a symbolic format that discards the tempo information.
The contained binary values designate the presence (1) or absence (0) of notes over different
timesteps.

Figure 5.3.1: Multi-track pianoroll format [228]

5.3.2 Dataset

The pianoroll dataset used for the training process of our model is derived from the Lakh
MIDI Dataset (LMD) [16] after the preprocessing procedure, which is thoroughly described
in section 4.3.3 of chapter 4 and graphically illustrated in Figure 4.3.3. More specifically, we
employ the LPD-5-cleansed version5, which contains only those pianorolls with the higher
matching confidence score to MSD entries [17], a “Rock” tag and 4/4 time signature.

5.3.3 Data Preprocessing

As mentioned before, the final set of training examples, which will be processed under the
framework of our proposed model, requires the segmentation of the pianorolls included in
the cleansed dataset into musical phrases of proper format, regarding the temporal and the
tonal arrangement. To this end, we develop a routine responsible for the data preparation,
based on the open source Python library Pypianoroll. Following our customization practice
regarding the internal architecture of both the Generator and Discriminator modules, which
is elaborately presented in the previous section, we further parameterize our implementation

5https://salu133445.github.io/lakh-pianoroll-dataset/dataset.html

147

https://salu133445.github.io/pypianoroll/
https://salu133445.github.io/lakh-pianoroll-dataset/dataset.html

Chapter 5. Unconditional Generation

with respect to a group of user-defined attributes that determine the data configuration. In
particular:

1) At first, a downsampling process is applied. In this way, the temporal resolution of the
input pianorolls is set to the proper size, as specified by the parameters beat resolution
and measure resolution respectively.

2) Afterwards, the target pitch range is acquired (vertical dimension), in accordance with
the input parameters lowest pitch and number of pitches. Notes outside this scope are
discarded.

3) Finally, a variable number of candidate samples is collected from each song included in
the multi-track pianoroll dataset, based on a randomized rule. The size of each sample
is defined by the parameter number of measures, which equivalently indicates the length
of a musical phrase. Only samples that contain an adequate amount of notes among
the various tracks, as specified by a fixed threshold, are retained.

Figure 5.3.2: Dataset split ratios

Eventually, after these data preprocessing steps, the
resulting set of musical examples comprises approxi-
mately 15600 phrases, derived from 7323 distinct rock
songs. The exact number varies for each particular
configuration, mainly due to the integrated random-
ness concerning the selection of candidates, as well
as the downsampling process, in accordance with the
specified resolution. Furthermore, we perform a split-
ting of our final dataset into a training and a valida-
tion set accordingly. As the name suggests, the train-
ing set is used for the iterative updates of the model
weights, while the validation one is deployed during our introduced validation phase for the
evaluation of the system performance. The utilized split ratios are graphically demonstrated
in the pie chart of Figure 5.3.2. The overall training duration is less than 3 hours with a
GeForce RTX 2080 Ti GPU.

148

5.4. Experimental Protocol

5.4 Experimental Protocol

5.4.1 Experimental Setup

In order to evaluate our proposed model and and thoroughly examine its effectiveness over
the creation of aesthetic multi-track polyphonic musical pieces from scratch, we conduct a
group of experiments that enable us to investigate various aspects of the generative process.
The corresponding details as well as the produced results will be extensively presented in the
following sections of this chapter. Before proceeding further, we consider it useful to define
the experimental configurations that will be employed on the proximate analysis. These
configurations are summarized in Table 5.6. In more detail:

• C1 simulates the data configuration utilized under the framework of MuseGAN.

• C2-C5 examine 4 distinct values of the parameter beat resolution under k = 6 (number
of steps per Generator update).

• C6-C9 examine 4 distinct values of the parameter beat resolution under k = 11 (number
of steps per Generator update).

• C10 investigates doubling the latent dimension along with a 4 times smaller batch size.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Generation
parameters

Number of Pitches 84 72 72 72 72 72 72 72 72 72
Beat Resolution 24 4 8 12 16 4 8 12 16 4
Number of Bars 4 4 4 4 4 4 4 4 4 4
Lowest Pitch 24 24 24 24 24 24 24 24 24 24

Samples per song 8 8 8 8 8 8 8 8 8 8
Latent Dimension 128 128 128 128 128 128 128 128 128 256

Training
parameters

Number of Steps 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
Batch Size 16 16 16 16 16 16 16 16 16 4

Number of Phrases 4 4 4 4 4 4 4 4 4 4
Steps per G update 6 6 6 6 6 11 11 11 11 6
Steps per Evaluation 50 50 50 50 50 50 50 50 50 50

Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Betas (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9) (0.5, 0.9)

Table 5.6: Experiment Configurations

5.4.2 Objective Metrics

As pointed out in section 4.4.1 of chapter 4, Dong et al. [2] utilize one inter-track and
four intra-track musical metrics for the objective evaluation of the MuseGAN, that can be
computed for both the real and the generated samples:

• Empty Bars (EB): ratio of empty bars included in the examined track (in %)

• Qualified Notes (QN): ratio of “qualified” notes (in %)

• Drum Pattern (DP): ratio of notes in beat patterns of 4/4 rhythm (in %)

• Tonal Distance (TD): measures the harmonicity between a pair of musical tracks

• Used Pitch Classes (UPC): mean number of pitch classes used per bar (from 0 to
12)

149

Chapter 5. Unconditional Generation

In the context of our approach, we initially re-implement from scratch all the aforementioned
musical metrics according to their descriptive analysis, as it is presented in the original paper
[2]. For this purpose, we employ the Python library NumPy, which constitutes a fundamental
package for scientific computing based on structured matrices. Therefore, we transform the
multi-dimensional real-valued torch tensors produced by our Generator module, as well as
the real samples, into binary arrays via a Thresholding operation. As the name suggests,
thresholding is the process of setting to zero all values that are lower than a predefined
threshold and mapping the rest to one. We also apply this technique for the visualization of
these real-valued vectors in the form of multitrack pianorolls.

We further expand our employed objective evaluation system, by introducing three additional
musical metrics6 that emphasize on tonal characteristics and texture elements:

• Used Pitches (UP): mean number of unique pitches used per bar, including all
octaves in the predefined range

• Scale Ratio (SR): ratio of notes in the given music scale7 (in %)

• Polyphonic Rate (PR): ratio of polyphonic timesteps8 (in %)

It is worth mentioning that these supplementary quantitative indices are also considered
intra-track and can be calculated for both real and fake samples, produced by our proposed
generative system.

6We base our implementation on an existing code version of the baseline project.
7As stated in LMD Statistics, a significantly large number of MIDI files contained in the Lakh MIDI

Dataset and consequently in our Lakh Pianoroll Dataset (LPD) are in C major scale, since this musical
key constitutes the most frequently used and easily applied choice for many automatic MIDI transcription
software packages. Therefore, we use the C major scale for the implementation of our SR metric, which
accordingly indicates the percentage of physical tones without accidentals, such as sharp and flat, in the
corresponding pianoroll.

8A timestep is considered polyphonic if the number of pitches being simultaneously played at this specific
temporal slot exceeds a specified threshold. Typically, this threshold value is set to 2.

150

https://numpy.org/
https://github.com/salu133445/musegan
https://nbviewer.org/github/craffel/midi-ground-truth/blob/master/Statistics.ipynb
https://en.wikipedia.org/wiki/Accidental_(music)

5.5. Results

5.5 Results

5.5.1 Analysis of Training Process

As discussed in section 2.3 of chapter 2, the core mechanism of GAN systems in the field of
generative modeling is fundamentally based on the adversarial learning game between the two
opponents, the Generator and the Discriminator. However, the ideal training method still
remains an open problem, since it is particularly hard to explicitly identify the convergence
state from a computational perspective. Thus, a thorough examination of the training process
of our proposed model regarding the task of Unconditional Generation is considered essential.

To this end, in order to gain insights into the learning procedure and elaborately inspect the
behavior of the individual system components, we employ the experiment configuration C2,
which is presented in Table 5.6 and constitutes the default case under our music generation
framework. Other model variants corresponding to different generative configurations in the
context of our customized implementation lead to similar results and hence are not included
at this section of the experiment analysis.

Figure 5.5.1: Training Loss of Generator and Discriminator Modules

Figure 5.5.1 demonstrates the training losses of the Generator G and the Discriminator
D accordingly, formulated as functions of training steps. More specifically, the gray curves
indicate the normalized loss values, which are smoothed via a moving average operation (over
N steps). It can be observed that the Discriminator loss initially follows an increasing trend,
as the Generator gradually uncovers underlying properties of the target data distribution
and hence produces more plausible music samples that are not easily distinguishable, and
approximately after point D it saturates. On the other hand, the Generator loss slowly
decreases in a more irregular fashion, as it progressively learns patterns and data features
that can “fool” the Discriminator in terms of inducing a gradual reduce of its classification
accuracy.

Figure 5.5.2 displays the generated piano-rolls that correspond to the four points marked in
Figure 5.5.1 and are produced during the validation phase, which is integrated at each step
of our training process, as mentioned in section 5.2.3. This illustration enables us to observe
the evolution of the created samples during training and examine the learning procedure
from a visual perspective. For further inspection, we also present in Table 5.7 the values of
our employed objective musical metrics, computed at the aforementioned training steps for
the respective piano-rolls. It is worth underlining the following observations:

151

Chapter 5. Unconditional Generation

(a) Step 0 (point A)

(b) Step 250 (point B)

(c) Step 1200 (point C)

(d) Step 5050 (point D)

Figure 5.5.2: Evolution of the generated piano-rolls as a function of update steps

152

5.5. Results

EB (%) UPC QN (%) UP
B D G P S B G P S B G P S B G P S

Point A 0.0 0.0 0.0 0.0 0.0 12.0 12.0 12.0 12.0 51.3 45.9 49.6 47.8 55.69 62.25 51.75 57.0
Point B 50.0 56.2 43.8 50.0 50.0 4.94 5.94 5.56 6.0 37.7 61.5 54.8 71.1 14.62 26.69 21.19 21.94
Point C 31.2 0.0 6.2 12.5 0.0 1.75 4.5 4.38 6.06 53.1 53.5 31.7 48.3 1.94 5.44 5.94 9.88
Point D 0.0 6.2 0.0 0.0 18.8 3.31 4.56 5.62 2.31 49.3 35.8 49.3 58.7 3.62 5.94 7.69 2.62

TD SR (%) PR (%) DP (%)
B-G B-S B-P G-S G-P S-P B G P S B D G P S D

Point A 0.7 0.64 0.52 0.95 0.94 0.85 58.5 62.8 58.1 63.1 100.0 94.9 100.0 100.0 100.0 53.5
Point B 0.63 0.52 0.59 0.44 0.57 0.45 52.0 60.6 66.2 60.2 37.7 52.4 61.5 54.8 71.1 52.8
Point C 0.76 0.97 0.66 0.96 0.9 1.1 87.1 90.7 81.4 93.1 2.7 15.6 26.2 15.2 73.0 87.0
Point D 0.96 0.66 1.01 0.87 1.07 0.93 59.1 95.1 61.9 71.6 0.8 2.3 31.2 46.9 9.8 82.2

Table 5.7: Metric values at marked points of training process

• At point A, i.e. the initial step of the training process, where the Generator is charac-
terized by complete ignorance regarding the target data distribution and its properties,
the output samples are quite random and involve a significant amount of noise. From a
quantitative aspect, this results in zero EB rates for all the comprised tracks, suggesting
that there aren’t any empty bars in the corresponding pianoroll and also the inclusion
of all twelve pitch classes in multiple octaves, as indicated by UPC and UP values. Fur-
thermore, QN and PR point out that the produced music is extremely polyphonic and
approximately half of the contained notes are “qualified”. Lastly, since the examined
key is C major, 7 out of the 12 pitch classes are considered in scale, resulting in SR
close to 60% and hence relatively small TD values, implying moderately strong harmonic
relations among tracks.

• At point B, which corresponds to the training step 250, a denoising trend can be
clearly observed, since the corresponding pianoroll contains significantly less notes in
comparison with the previous point and moreover half of the produced bars are empty,
as indicated by the respective EB values. This fact implies that the model begins to
discover the note density of the target data distribution. From UPC and UP accordingly,
we can conclude that, at this stage of the training, the Generator also begins to grasp
the proper pitch range of each track. In particular, it can be easily seen that clusters of
notes are gathering between specific boundaries, resulting, in this way, at even smaller
TD values and consequently stronger harmonic relations. The rest of the objective
metrics display similar behavior with point A.

• As the training progresses, the Generator gradually detects rhythmical motifs and other
latent texture elements of the target distribution, such as the duration of the contained
notes. As can be observed, the pianoroll of point C (step 1200) includes longer notes
especially at the Bass track, which tends to become monophonic according to the
standards of Rock music. This qualitative inference aligns with the increase of the
corresponding QN rate and the decrease of the PR metric respectively. The UP and UPC
values indicate an improvement of the pitch ranges for each individual track, while the
increase of SR ratios implies that the majority of them are in scale. Furthermore, the
significantly high value of DP percentage suggests that the Drum track captures to a
large extent the 4/4 rhythm, via the inclusion of notes in 8- or 16-beat patterns.

153

Chapter 5. Unconditional Generation

• Lastly, it can be easily observed that the pianoroll of point D, which corresponds to the
training step 5050, approximately follows the desired ground-truth distribution of music
segments, as it is characterized by essential musical properties. In comparison with the
previous training point, the respective EB, UP and UPC values indicate a further denoising
of Drum and Strings, which consequently entails an improvement of the harmonic
interrelations between Strings and the other tracks, as suggested by the smaller TD
values. Additionally, PR shows that the Bass track plays a single melodic line composed
of the lowest pitches, while the rhythmic pattern of the Drum track is much more
evident.

5.5.2 Model for Inference

As mentioned in previous sections of this chapter, two distinct losses are involved in the
training process of our proposed GAN-based generative system:

• Discriminator loss: As the name suggests, the Discriminator loss represents the cost
arising from incorrect predictions over the origin class of the examined data samples. In
practice, it comprises two individual losses, one quantifying the misclassification errors
concerning data instances derived from the ground-truth distribution and the other
indicating the cost related to the predictions over unauthentic candidates originated
from the Generator distribution.

• Generator loss: The Generator loss quantifies the feedback from the Discriminator
regarding its classification predictions over the fake samples. More specifically, it rep-
resents the cost arising from the successful identification of its produced data instances
as fake by its opponent.

During our experiments, we employ the mean sum of the aforementioned loss values, com-
puted at the validation phase of each training step, as the monitoring metric of our auxiliary
Early-Stopping mechanism. We also attempt to calibrate this sum via the introduction of
proper weights corresponding to the Generator and the Discriminator modules accordingly.

We observed that the learning procedure becomes smoother and more regular for larger
Discriminator loss weights, since the Early-Stopping system requires a significant number
of steps to trigger the training termination. However, in this case, the generated music
samples are quite noisy and substantially differ from the ones included in the ground-truth
distribution. This is probably owed to the fact that the Generator loss, which is indissolubly
associated with the generation performance and by extension determines the quality of the
produced musical pieces, is disregarded. On the other hand, larger Generator loss weights
induce an early termination of the training process, which may prevent the Generator from
discovering underlying patterns and features of the target data distribution.

Therefore, we can conclude that the utilization of a combination of the two distinct losses
in the form of sum as the monitoring index, leads to a training imbalance between the
two individual components of our GAN system, which negatively affects their respective
performance. To this end, we employ for our Inference process the Generator model of
the last training step and not the one indicated by the aforementioned quantity, as it has
been experimentally proven [2] that this Generator version is capable of producing music of

154

5.5. Results

sufficient quality.

Nevertheless, Heusel et al. [229] introduced in 2017 a novel monitoring metric for the training
of GAN systems in the research field of Computer Vision, known as Fréchet Inception Distance
or FID for short. From a mathematical perspective, it is defined as the Wasserstein distance
between two multivariate Gaussian distributions, which represent the real and fake images
accordingly. The features modeled by each distribution are extracted from the inception layer
of a deep CNN, called Inception-v3 [230], which is usually employed for various Computer
Vision tasks. However, the inclusion of this metric into our research problem in the area of
Music Generation requires an equivalent network trained to extract musical features from
representations of symbolic format, such as the multi-track piano-roll. Thus, we consider the
aforementioned implementation as a potential direction for future work.

5.5.3 Qualitative Inspection

Figure 5.5.3 illustrates the multi-track pianoroll of 4 musical phrases generated from scratch
by our proposed GAN-based framework during the process of Inference. The employed
Generator network corresponds to the experiment configuration C2, as presented in Table
5.6. It is worth pointing out the following qualitative observations:

• The included tracks are generally playing in the same music scale, preserving an ap-
proximate pitch range from C2 to C4.

• Chord-like intervals can be detected at multiple timesteps, especially in Guitar, Pi-
ano and Strings, which are the mainly polyphonic tracks and hence tend to play the
accompaniment parts.

• The Bass track is principally monophonic, playing a single melodic line often composed
of the lowest pitches.

• The Drum track follows an evident rhythmic motif, which mainly comprises notes in
8- or 16-beat patterns.

• The pitches of the melodic tracks (all expect Drums) sometimes overlap. This fact
indicates nice harmonic relations among the included instruments, that can contribute
to an acoustically pleasant result.

Figure 5.5.3: Pianoroll generated using our proposed model

155

https://en.wikipedia.org/wiki/Wasserstein_metric

Chapter 5. Unconditional Generation

5.5.4 Experimentation over Generative Configurations

Our customized model implementation, which is thoroughly discussed in section 5.2.2, en-
ables us to experiment over different generative configurations with respect to the included
parameters. In order to examine the resulting variants of our framework and compare their
performance on the task of Unconditional Generation, we evaluate them in terms of our
proposed objective metrics, as presented in detail at section 5.4. More specifically, for each
experimental configuration included in Table 5.6 (all except C1) we generate, using the respec-
tive Generator of the last training step, 20000 bars organised in 4-measure musical phrases,
on which we afterwards perform our objective assessment.

Table 5.8 provides an overview of the produced results in the form of mean values. In order to
gain further insights into the musical properties of the ground-truth distribution and acquire
a reference point, we also apply our objective metrics on the employed set of training music
samples. The respective statistics are displayed in the first row of Table 5.8. Since the main
goal of the Generator is to approximate as best as possible the quality of real music pieces,
values closer to the training ones correspond to better performance. However, following our
baseline project, in case of the inter-track evaluation part represented by TD metric, smaller
values are considered better regarding the efficiency of the corresponding model.

At first glance, we can easily observe the absence of a particular parameter configuration
capable of improving all the employed objective musical metrics. This fact highlights the
need for inclusion of human feedback into our assessment practice, since the quantitative
indicators cannot establish a unified criterion for the designation of the best model in terms
of generation efficiency and produced musical quality.

EB (%) UPC QN (%) UP
B D G P S B G P S B G P S B G P S

Ground-truth 1.6 1.1 4.1 5.1 3.2 2.48 4.16 4.2 4.57 91.7 85.3 89.7 89.7 2.72 5.8 5.9 6.8
C2 0.3 0.0 0.9 1.9 2.1 2.89 4.4 4.88 5.14 59.0 58.2 57.2 60.8 3.14 5.96 6.58 7.61
C3 0.4 0.0 0.9 0.7 0.7 3.12 5.18 5.33 5.14 49.0 52.2 56.5 64.6 3.4 7.57 7.73 7.05
C4 0.0 2.1 0.6 1.2 0.9 3.04 4.17 4.39 5.47 50.9 59.7 65.9 70.3 3.39 5.71 6.54 7.75
C5 0.0 0.8 1.6 1.0 2.5 3.09 4.05 4.58 4.14 63.1 72.9 72.4 74.3 3.32 5.9 6.6 5.97
C6 0.5 0.1 1.8 0.8 0.7 2.47 4.9 5.07 5.4 54.3 48.9 52.9 50.6 2.67 6.67 7.24 8.22
C7 0.1 0.1 1.6 0.2 0.4 2.75 4.36 4.87 5.49 56.2 64.9 59.1 57.2 3.15 6.06 6.8 7.72
C8 1.9 0.1 4.3 2.8 0.4 2.64 5.81 6.08 5.09 63.1 56.7 60.1 64.3 2.86 8.19 8.44 7.78
C9 0.0 0.2 1.5 0.0 0.2 3.06 3.92 5.41 5.48 62.9 54.5 55.0 45.3 3.4 5.62 7.3 9.24
C10 0.2 0.1 0.0 0.0 0.4 2.69 5.09 5.16 4.52 57.2 69.5 66.8 60.8 2.99 7.59 7.3 7.12

TD SR (%) PR (%) DP (%)
B-G B-S B-P G-S G-P S-P B G P S B D G P S D

Ground-truth 0.7 0.73 0.7 0.7 0.67 0.66 75.7 74.6 73.9 72.6 1.2 15.2 57.3 60.8 64.1 83.1
C2 0.86 0.91 0.9 0.98 0.99 0.97 79.0 82.1 78.7 75.0 2.6 21.7 49.7 53.7 58.7 79.6
C3 0.57 0.53 0.56 0.6 0.62 0.59 80.4 76.3 72.7 70.0 0.6 6.8 47.5 47.7 55.0 92.3
C4 0.37 0.38 0.36 0.39 0.39 0.38 70.6 82.5 81.9 78.4 0.1 4.6 28.5 37.9 50.2 88.4
C5 0.26 0.27 0.28 0.27 0.25 0.27 82.5 73.8 77.5 77.1 0.2 2.9 42.9 47.0 55.4 53.1
C6 0.9 0.96 0.92 1.08 1.03 1.09 80.5 77.6 79.0 78.7 1.4 10.8 42.6 43.5 57.3 83.5
C7 0.5 0.56 0.51 0.61 0.56 0.6 75.7 75.1 78.5 75.5 0.7 5.7 35.0 34.8 48.9 96.0
C8 0.42 0.37 0.42 0.45 0.49 0.46 70.6 71.9 66.3 67.7 0.1 4.4 39.5 40.0 52.6 92.6
C9 0.27 0.31 0.31 0.34 0.34 0.38 76.3 82.3 76.1 82.8 0.3 3.5 23.4 33.6 50.0 58.7
C10 0.96 0.89 0.95 0.93 1.04 1.05 84.4 69.4 78.2 71.2 1.9 14.2 66.9 51.7 56.8 81.6

Table 5.8: Inference objective metrics for different experiment configurations

A closer inspection indicates that the increase of the utilized beat resolution (configuration

156

5.5. Results

C5) results in significantly strong harmonic relations among the tracks (TD) and also a large
proportion of “qualified” notes (QN), probably due to the fact that notes of longer duration are
more easily generated when a larger number of timesteps is employed for each beat. However,
it seems to negatively affect the rhythmic attributes of the produced musical pieces (DP), as
only half of the contained notes are in 8- or 16-beat patterns.

On the other hand, the selection of higher values for the hyperparameter k, which denotes the
number of training steps per Generator update, has a positive impact on the note density (EB)
and also other tonal characteristics of the generated samples, such as the SR. As stated in [21],
the inclusion of more steps for the individual training process of the Discriminator ensures
that it is fine-tuned near its optimal solution, while the Generator remains fixed. In this
way, the Generator is implicitly forced to uncover more detailed features of the latent target
distribution in order to fool its opponent, thereby producing candidates that approximate
human-composed music to a larger extent.

Lastly, doubling of the latent dimension (configuration C10) induces a slight improvement
of UPC and SR metrics for the Strings track, which is the most problematic of the included
instruments, as it usually incorporates a significant amount of noise. Furthermore, it benefits
the Drum track in terms of the desired polyphonic rate (PR).

5.5.5 Objective Comparison with Baseline

In order to examine if our proposed modifications and additional extensions constitute an
actual novelty in the research field of Automatic Music Synthesis and more specifically the
task of Unconditional Generation, we proceed in a comprehensive comparison between our
music generation system and the baseline project, MuseGAN, which is extensively presented
in chapter 4, under the employed objective metrics.

In particular, we select two different experimental configurations, corresponding to two dis-
tinct variants of our proposed framework, to be compared with the four multitrack interde-
pendency models included in MuseGAN and thoroughly examined in section 4.2.2 of chapter
4. The first one is configuration C1, which is equivalent to the original implementation in
terms of parameter values and the other is configuration C2, which is considered as default
in the context of our conducted experiments. Both the aforementioned configurations are
explicitly presented in Table 5.6. In order to ensure a fair comparison between the two music
generation approaches, we follow the inference practice of our baseline project. In particular,
for each model variant involved in the evaluation process, we generate, using the respective
Generator of the last training step, 20000 bars organised in 4-measure musical phrases. Af-
terwards we apply our objective metrics on the produced musical segments and calculate the
respective mean values.

Table 5.9 summarizes the results of the intra-track evaluation for all the examined models, in
terms of those objective musical metrics which are shared between the two implementations.
As mentioned previously, in this case values closer to the ones representing musical properties
of the ground-truth distribution correspond to the desirable generative behavior and hence
are considered better. However, it can be easily observed that there is a substantial divergence
between the training data statistics, as measured under the two examined frameworks. This
difference may result from the randomized rule that determines the collection of training

157

Chapter 5. Unconditional Generation

EB (%) UPC QN (%) DP (%)
B D G P S B G P S B G P S D

training data baseline 8.06 8.06 19.4 24.8 10.1 1.71 3.08 3.28 3.38 90.0 81.9 88.4 89.6 88.6
ours 1.6 1.1 4.1 5.1 3.2 2.48 4.16 4.2 4.57 91.7 85.3 89.7 89.7 83.1

Baseline

jamming 6.59 2.33 18.3 22.6 6.10 1.53 3.69 4.13 4.09 71.5 56.6 62.2 63.1 93.2
composer 0.01 28.9 1.34 0.02 0.01 2.51 4.20 4.89 5.19 49.5 47.4 49.9 52.5 75.3
hybrid 2.14 29.7 11.7 17.8 6.04 2.35 4.76 5.45 5.24 44.6 43.2 45.5 52.0 71.3
ablated 92.4 100 12.5 0.68 0.00 1.00 2.88 2.32 4.72 0.00 22.8 31.1 26.2 0.0

Ours C1 0.0 0.7 0.4 1.3 1.2 3.63 4.67 4.64 5.29 55.6 75.8 74.1 75.9 59.5
C2 0.3 0.0 0.9 1.9 2.1 2.89 4.4 4.88 5.14 59.0 58.2 57.2 60.8 79.6

Table 5.9: Results of intra-track evaluation of the baseline models, as well as our proposed
framework.

samples from the songs included in the employed pianoroll dataset, as explained in section
5.3.3. Thus, the two generative systems cannot be exactly compared in the context of intra-
track evaluation metrics. Furthermore, the re-training of the original model using our set
of data instances is not feasible, mainly due to the diverse implementations. Nevertheless,
as it might be seen, both of our model variants accomplish to significantly approximate the
statistics of the real distribution (bold values denote greater proximity). Moreover, as regards
the QN and DP metrics, where the aforementioned divergence is negligible, we remark that
our model outperforms all the baseline variations to a large degree (coloured cells).

TD
B-G B-S B-P G-S G-P S-P

Baseline
jamming 1.56 1.60 1.54 1.05 0.99 1.05
composer 1.37 1.36 1.30 0.95 0.98 0.91
hybrid 1.34 1.35 1.32 0.85 0.85 0.83

Ours C1 0.2 0.22 0.2 0.21 0.2 0.21
C2 0.86 0.91 0.9 0.98 0.99 0.97

Table 5.10: Results of inter-track evaluation of the baseline models, as well as our proposed
framework

The results of the inter-track evaluation, which is represented by TD metric, are demonstrated
in Table 5.10 for all models involved in the comparative analysis. As referred to earlier, in this
case smaller values correspond to smaller Euclidean distances in the interior space of a 6D
polytope and hence imply stronger harmonic relations between the examined pairs of tracks.
It can be easily affirmed that our model with configuration C1 notably surpasses all the
baseline multi-track interdependency architectures, by generating extremely harmonic music
segments, as indicated by the corresponding TD, which is around 0.2 for all the included pairs.
This observation comes in agreement with the outcomes of the experiments discussed in the
previous section, which indicate that the increase of the utilized beat resolution induces an
improvement of the harmonicity in the produced music samples. Furthermore, it should be
pointed out that the performance of the model with configuration C2, even though weaker
than C1, is also considerable, especially regarding the harmonic distance between a melody-
like track, such as the Bass and a chord-like track, such as the Piano, Guitar and Strings.

Finally, the supplementary Table 5.11 displays the results corresponding to the three addi-
tional intra-track metrics, that we have incorporated into our objective evaluation system,
only for the two examined variants of our proposed framework. Bold values denote greater

158

5.5. Results

UP SR (%) PR (%)
B G P S B G P S B D G P S

training data 2.72 5.8 5.9 6.8 75.7 74.6 73.9 72.6 1.2 15.2 57.3 60.8 64.1

Ours C1 4.33 6.86 6.56 8.01 85.2 81.0 84.0 70.9 0.8 1.9 33.2 31.3 36.9
C2 3.14 5.96 6.58 7.61 79.0 82.1 78.7 75.0 2.6 21.7 49.7 53.7 58.7

Table 5.11: Additional results on the evaluation of our proposed framework

proximity to the ground-truth distribution. As can be seen, the generation efficiency of
both experiment configurations is confirmed also in the context of tonal characteristics, as
quantified by UP and SR metrics and texture elements, such as PR.

159

Chapter 5. Unconditional Generation

5.6 User Study

5.6.1 Experimental Setup

As discussed before, the objective metrics cannot precisely reflect the human perception over a
piece of music, since they are just quantitative indicators of musical properties. Thus, human
evaluation is considered essential. To this end, following [2], we conduct a user study in the
form of a listening test, which, according to the extensive analysis in section 3.4.2 of chapter 3
on the matter of subjective evaluation, is generally the most preferable assessment practice in
the research field of generative modeling. Our survey is divided into two parts, with each one
corresponding to a specific music generation task implemented by our proposed framework.
More specifically, the section of Unconditional Generation, which constitutes the principal
topic of this chapter, aims at a comprehensive comparison between our Convolutional GAN-
based system and the official re-implementation of the baseline project MuseGAN. To this
end, we employ an A/B testing9 format for the structure of our questionnaire, under which
musical segments, all generated from scratch, i.e. without any prior knowledge or additional
information, are paired in such a way that every created listening couple involves results
from both the aforementioned models. The evaluator is required to choose from each pair
the sample that prefers in terms of:

• Musical Naturalness: Could the musical segment be composed by a human?

• Harmonic Consistency: Are the sounds produced by different instruments in musical
consonance? Is the result acoustically pleasant?

• Musical Coherence: Are the various musical phrases associated someway through
time?

It can be easily affirmed that the first question is established on the intuitive concept of the
typical Turing test, which constitutes the simplest form of listening assessment and is applied
in several studies of generative music systems [231, 15]. This strategy evaluates whether a
machine is able to exhibit behavior indistinguishable from humans, in terms of generating
musical pieces which can be considered man-made by the users. Since our examined research
problem concerns the generation of aesthetic music in an autonomous manner, i.e. with
minimum human intervention, musical naturalness is undoubtedly essential.

As regards the second question, harmonicity is another fundamental aspect of music compo-
sitions and hence is examined in a huge variety of assessment studies in the research field of
Automatic Music Synthesis, including our reference project [2, 15, 140, 232]. It is interrelated
to the acoustical result, as it defines how euphonic and cohesive is the composite product of
individual musical voices. Thus, it constitutes an easily perceivable feature of the produced
music samples from the perspective of the human listeners.

Finally, in order to acquire human feedback over the deeper structure of our generated exam-
ples, we investigate the property of musical coherence. This term refers to vaguely defined
qualities in musical pieces that create a sense of connectivity and cohesion among the var-
ious parts of a musical entity. Musical coherence ensures that the arrangement of a music

9A/B testing constitutes an experimental methodology for the controlled comparison between two variants,
A and B, established on individual user choices over pairs of samples representing the two alternatives.

160

https://en.wikipedia.org/wiki/A/B_testing

5.6. User Study

composition represents an abstract musical idea and does not just involve random disjoint
musical phrases.

Figure 5.6.1: File Conversion Diagram

As regards the implementation details, we conduct our evaluation experiment online by
designing the respective application based on the Python web development framework Flask.
All the utilized samples are transformed into the proper auditory format, according to the
diagram of Figure 5.6.1. As can be seen, the produced pianorolls are initially converted into
MIDI files using the Python library Pypianoroll10 and then into WAV files via the software
synthesizer Timidity++11. After performing preprocessing by pruning longer audio samples,
the duration of each resulting audio clip, regardless of its derivation model, is equal to
approximately 12 seconds, a time period that corresponds to one 4-bar musical phrase under
the framework of our proposed system and the employed multitrack pianoroll representation.
The samples of each listening pair are randomly selected from two pools of 200 audio clips
each, produced by our proposed system using the experimental configuration C2 and the
baseline project using the composer variant accordingly and presented to the users in random
order. In order to avoid bias, we use LPD-cleansed version as the training dataset for both
models.

Figure 5.6.2: User Study Demographics

The participants in our survey are 40 subjects, mainly recruited through social circles. Each
10https://salu133445.github.io/pypianoroll/
11https://wiki.archlinux.org/title/Timidity++

161

https://flask.palletsprojects.com/en/2.2.x/
https://en.wikipedia.org/wiki/WAV
https://salu133445.github.io/pypianoroll/
https://wiki.archlinux.org/title/Timidity++

Chapter 5. Unconditional Generation

subject evaluates 2 pairs of music samples, resulting in a total of 80 comparisons between our
generative framework and the reference model. Identical instructions and stimuli are given
to every evaluator involved in the procedure. The participants are also informed that some
of the music examples “might be” real and some might be generated by machine, although
in this case all samples are actually automatically produced.

The respective demographic analysis is graphically illustrated in Figure 5.6.2 in the form of
pie charts. As can be observed, we have recruited a sufficient number of qualified listeners,
characterized by adequate diversity regarding various, not necessarily musical, aspects. More
specifically, the subjects’ music knowledge level as well as their degree of familiarity with
Machine Learning and Artificial Intelligence follow an approximately uniform distribution,
including amateurs who lack relevant background, experts in the respective field and even self-
taught musicians. According to [213], our user study satisfies the majority of requirements
concerning the design of a proper listening test and therefore can lead to valid, reliable and
replicable scientific evidence.

5.6.2 Subjective Results & Discussion

The results of our subjective testing are graphically illustrated in the barplot of Figure 5.6.3.

Figure 5.6.3: Results of Subjective Evaluation

As can be easily observed, our developed music generation system outperforms MuseGAN
with respect to all the examined musical aspects. This fact indicates that our proposed pa-
rameterized architecture, which is based on a shared-private design for both the Generator
and the Discriminator modules and enables us to emphasize on rhythmic attributes, un-
doubtedly contributes to the Naturalness and the Coherence of the generated musical pieces.
Since a huge majority of human-composed songs follow an almost evident beat motif, which
is also capable of creating a sense of cohesion and connectivity among the various parts of
a musical entity, we confirm that rhythm is actually the key for both the aforementioned
properties. In addition, it is also subjectively proven that our customization practice, which
allows the experimentation over various generative configurations, such as the employed one,
induces an improvement of tonal characteristics and texture elements that determine the
overall harmony in a musical composition.

162

Chapter 6

Conditional Generation

6.1 Task Description . 164

6.2 Model . 165

6.2.1 Architecture . 165

6.2.2 Implementation . 167

6.2.3 Training Process . 170

6.3 Data . 174

6.3.1 Data Representation . 174

6.3.2 Dataset . 174

6.3.3 Data Preprocessing . 174

6.4 Experimental Protocol . 175

6.4.1 Experimental Setup . 175

6.4.2 Objective Metrics . 175

6.5 Results . 177

6.5.1 Analysis of Training Process . 177

6.5.2 Qualitative Inspection . 179

6.5.3 Objective Evaluation . 180

6.6 User Study . 184

6.6.1 Experimental Setup . 184

6.6.2 Subjective Results & Discussion . 185

163

Chapter 6. Conditional Generation

This chapter aims at providing a complete overview of our proposed GAN-based frame-
work for the task of Conditional Generation. In particular, section 6.1 introduces the
main characteristics of the generation problem that we attempt to tackle. Section
6.2 includes a detailed description of the system architecture, the implementation of
the various structural components, as well as the their respective training mechanism.
Section 6.3 elaborates on the utilized form of data representation, the dataset and the
required preprocessing steps. Section 6.4 focuses on the employed experimental proto-
col, while section 6.5 engages on a thorough analysis of the results produced using the
aforementioned setup. Lastly, section 6.6 presents our user study related to this task
and discusses its subjective findings.

6.1 Task Description

Figure 6.1.1: Unconditional vs
Conditional Generation [227]

In order to expand our research into the undoubt-
edly vast field of Automatic Music Synthesis beyond
the task of Unconditional Generation, which is con-
sidered a fundamental practice for composing novel
musical pieces from scratch, we further focus on a dif-
ferent generation approach that involves some kind of
conditions, typically in the form of prior knowledge
about the produced musical pieces or supplementary
information from the human user. More specifically,
as graphically illustrated in Figure 6.1.1, the creation
of novel music samples, under the framework of the
Conditional Generation mechanism, is based on
additional human-provided data of varying modalities, such as lyrics [233], lead sheets, chord
progressions, primary melodic lines, tags and even video clips [234].

In our developed GAN-based generative system, this procedure is modeled as follows:

• One of the included tracks, derived from the ground-truth distribution of human-
composed music samples, is provided to the network as conditional information. There-
fore, this track is called conditional.

• The model learns to generate the four remaining tracks, which are considered as the
accompaniment of the conditional one in terms of rhythmic and harmonic support.

The aforementioned task entails a lot of challenges, since it involves capturing the underlying
structure of the conditional instrumental piece, discovering the intrinsic relations between the
main theme and the accompaniment and creating the counterparts and the secondary melodic
lines according to the selected accompaniment figure. Moreover, it constitutes a method for
reconstructing and reconceptualizing existing musical pieces with new compositional tech-
niques, such as the introduction of novel thematic material into the accompaniment tracks
or their reharmonization in terms of chord progression and orchestration. Thus, it enables us
to explore also the research area of Music Arrangement, as a different generation approach
in the field of AI music.

164

6.2. Model

6.2 Model

Our proposed model for automatically generating polyphonic musical segments that accom-
pany human-composed parts of user-specific tracks, is conceptually established on our Uncon-
ditional Generation mechanism, which is extensively presented in the previous chapter 5, and
basically developed from scratch. The respective modifications and also extensions required
for the adjustment of our original framework to the examined generative approach in the
context of human-AI cooperation will be meticulously discussed in the following subsections.

6.2.1 Architecture

The core architecture of our proposed system generally retains its convolutional GAN-based
infrastructure from the Unconditional task, which is analytically described in the respective
section 5.2.1 of chapter 5. However, the inclusion of conditions into the generation process
naturally entails the alteration of some of the included modules from a structural perspective
and also the incorporation of additional networks as well. To this end, the specific details
will be examined for each component individually, as follows:

Generator

Figure 6.2.1: Conditional
Generator

Under the context of the Conditional approach, the Gener-
ator module is responsible for producing novel accompani-
ment instances, by mapping an input vector to the output
target data space of musical representations, via consecu-
tive upsampling convolutional operations. As graphically
demonstrated in the diagram of Figure 6.2.1, it structurally
preserves the shared-private design of the Unconditional
Generator, which has been thoroughly presented in section
5.2.1 of chapter 5), since it consists of a shared network Gs,
followed by M private subnetworks Gi

p (i = 1, . . .M). How-
ever in this case M equals to 4, as it signifies the number
of accompaniment tracks. In order to ensure that the Gen-
erator takes into consideration the conditional track for the
creation of the remaining ones, we properly modify its shared part so that it receives 2 distinct
inputs:

• A random noise vector z, sampled from a prior distribution pz.

• An embedding of the conditional track into the latent space of noise, denoted as u.

The two equally-sized vectors are concatenated and provided to the network in a unified
form.

“Global” Discriminator

As mentioned in previous chapters of this thesis, the Discriminator module evaluates the
input data instances x in terms of authenticity, by predicting the label of their respec-
tive origin class. Under the framework of our proposed generative system for music of

165

Chapter 6. Conditional Generation

symbolic format, this process is performed via successive operations of typical convolution.

Figure 6.2.2: Conditional
Discriminator

According to the respective analysis in section 5.2.1 of
chapter 5, our Unconditional Discriminator, which is
developed for the homonym task, assesses 5-track pi-
anorolls as a whole. To this end, in order to acquire
a general critic capable of measuring the fitness of the
accompaniment parts for the corresponding conditional
track, we incorporate the aforementioned existing Dis-
criminator unit into the architecture of our conditional
generation model and referred to it as “Global”. As
graphically illustrated in the diagram of Figure 6.2.2, its
design from a structural perspective remains unaltered.
In particular, it consists of M private subnetworks Di

p

(i = 1, . . . ,M), with each one corresponding to a specific track included in the music setting,
followed by a shared network Ds. In this case M equals to 5, since our “Global Discrimina-
tor” receives all tracks as input in order to judge if they can collectively form a real musical
composition.

“Local” Discriminator

We further expand our original framework for the previously examined task of Unconditional
Generation, via the inclusion of a second Discriminator, called “Local”. As the name suggests,
this Discriminator module is responsible for evaluating all the other tracks jointly, except for
the conditional one, in order to provide feedback over the quality of the accompaniment as an
independent musical piece. Structurally, it follows the shared-private design of the “Global”
Discriminator, which is graphically demonstrated in the diagram of Figure 6.2.2. The only
difference is that in this case only 4 private subnetworks Dp are involved, with each one
corresponding to a specific accompaniment track.

Figure 6.2.3: Encoder and Decoder

Encoder

Apart from the typical components of a GAN framework, our proposed system for automat-
ically generating accompaniments of man-made musical pieces also includes an additional
Encoder module. As graphically illustrated in the diagram of Figure 6.2.3, the Encoder
network E receives as input the representation vector of a specific conditional track x and
produces an embedding u in the latent space of the noise distribution. The resulting encoding
is then fed into the shared part of the Generator as conditional information.

166

6.2. Model

Decoder

In order to be able to experiment over the training mode of our Encoder module, we incor-
porate into the architecture of our proposed generative system the corresponding Decoder
network, which is schematically displayed in the diagram of Figure 6.2.3 too. As the name
suggests, the Decoder D acts as an interpreter of the produced encoding u in terms of de-
compressing this hidden representation into a vector x̂ in the original data space. In this
way, it attempts to reconstruct the initial conditional track, based on the latent attributes
of its low-order representation.

6.2.2 Implementation

Similar to the case of Unconditional Generation, which is thoroughly discussed in the previous
chapter of this thesis, all structural modules included in our developed conditional framework
are designed as deep Convolutional Neural Networks [2, 19] and implemented using the open
source Machine Learning framework PyTorch. We also follow the same customization practice
with the previously examined task, since, according to the produced results, has been proven
extremely valuable regarding the experimentation over different generative configurations and
the comparison of their effect on the music quality. The involved parameters are presented
in Table 6.1 along with their respective notation.

s number of samples
l latent dimension
t number of tracks
r bar resolution
p number of pitches
m number of measures

o (= m · r) number of total timesteps
t′ number of accompaniment tracks
b beat resolution
i lowest pitch

Table 6.1: Parameter Notation

Tables 6.2 and 6.3 demonstrate the parametric network architectures for the shared Gener-
ator Gs and the private Generator Gp accordingly. As can be seen, both conditional units
successively augment the dimensions of the respective input vector via transposed convolu-
tional operations, which are initially applied along the time axis and afterwards along the
pitch axis. Following the reference implementation of [2], a Batch Normalization layer (BN)
is added before each non-linear activation function.

Tables 6.4 and 6.5 display the customized network configurations for the structural compo-
nents of our “Global Discriminator”, while Tables 6.6 and 6.7 provide the equivalent overview
of the “Local Discriminator”. It can be easily affirmed that all the aforementioned Discrim-
inator modules act in reverse mode, compared to the Generator ones, in terms of gradually
compressing the spatial dimensions of the corresponding input vector, first along the pitch
axis and then along the time one, via the utilization of typical convolutional layers. In this
case, the Layer Normalization method is applied before the non-linearity.

167

https://pytorch.org/

Chapter 6. Conditional Generation

Input: z ∈ Rs×l, u ∈ Rs×l

concatenate input vectors along horizontal axis: z ∥ u ∈ Rs×2l

reshape to s× 2l × 1× 1× 1

Layer Type Number of Filters Kernel Size Stride Normalization Activation
transconv 2 · l m× 1× 1 (m, 1, 1) Batch ReLU
transconv l 1× r/2× 1 (1, 1, 1) Batch ReLU
transconv l/2 1× 1× p/4 (1, 1, 1) Batch ReLU
transconv l/4 1× 1× (p/4 + 1) (1, 1, 1) Batch ReLU

Output: x ∈ Rs × l/4 × m × r/2 × p/2

Table 6.2: Shared Generator Gs

Input: x ∈ Rs × l/4 × m × r/2 × p/2

Layer Type Number of Filters Kernel Size Stride Normalization Activation
transconv l/8 1× (r/2 + 1)× 1 (1, 1, 1) Batch ReLU
transconv 1 1× 1× (p/2 + 1) (1, 1, 1) Batch ReLU

Output: x ∈ Rs × 1 × m × r × p (stack along track axis for final vector)

Table 6.3: Private Generator Gp

Input: x ∈ Rs × 1 × o × p (reshape to s× 1×m× r × p)

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv l/8 1× 1× (p/2 + 1) (1, 1, 1) Layer Leaky ReLU
conv l/8 1× (r/2 + 1)× 1 (1, 1, 1) Layer Leaky ReLU

Output: x ∈ Rs × l/8 × m × r/2 × p/2 (stack along track axis for next layer)

Table 6.4: Global Private Discriminator Dp

Input: x ∈ Rs × tl/8 × m × r/2 × p/2

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv l/2 1× 1× (p/4 + 1) (1, 1, 1) Layer Leaky ReLU
conv l/2 1× 1× p/4 (1, 1, 1) Layer Leaky ReLU
conv l 1× r/2× 1 (1, r/2, 1) Layer Leaky ReLU
conv l (r/2 + 1)× 1× 1 (1, 1, 1) Layer Leaky ReLU
conv 2 · l r/2× 1× 1 (1, 1, 1) Layer Leaky ReLU
dense 1 (reshape to s× 2 · l before)

Output: y ∈ R

Table 6.5: Global Shared Discriminator Ds

Input: x ∈ Rs × 1 × o × p (reshape to s× 1×m× r × p)

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv l/8 1× 1× (p/2 + 1) (1, 1, 1) Layer Leaky ReLU
conv l/8 1× (r/2 + 1)× 1 (1, 1, 1) Layer Leaky ReLU

Output: x ∈ Rs × l/8 × m × r/2 × p/2 (stack along track axis for next layer)

Table 6.6: Local Private Discriminator Dp

168

6.2. Model

Input: x ∈ Rs × t′l/8 × m × r/2 × p/2

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv l/2 1× 1× (p/4 + 1) (1, 1, 1) Layer Leaky ReLU
conv l/2 1× 1× p/4 (1, 1, 1) Layer Leaky ReLU
conv l 1× r/2× 1 (1, r/2, 1) Layer Leaky ReLU
conv l (r/2 + 1)× 1× 1 (1, 1, 1) Layer Leaky ReLU
conv 2 · l r/2× 1× 1 (1, 1, 1) Layer Leaky ReLU
dense 1 (reshape to s× 2 · l before)

Output: y ∈ R

Table 6.7: Local Shared Discriminator Ds

Tables 6.8 and 6.9 demonstrate the internal structure of our employed Encoder and Decoder
modules with respect to the involved generative parameters. As can be seen, the Encoder
transforms the initial input vector into a low-order representation in a latent space, by per-
forming a gradual dimensionality reduction through consecutive convolutional layers. On the
other hand, the Decoder mirrors the architecture of the corresponding Encoder, in terms of
performing an upsampling process that successively expands the dimensions of the produced
encoding unto the target data space of conditional tracks. This is accomplished by the uti-
lization of transposed convolutional layers, which are considered as the near-complements of
the typical convolutional ones.

Input: x ∈ Rs × o × p (reshape to s× 1×m× r × p)

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv l/8 1× 1× (p/2 + 1) (1, 1, 1) Batch Leaky ReLU
conv l/4 1× (r/2 + 1)× 1 (1, 1, 1) Batch Leaky ReLU
conv l/2 1× 1× (p/4 + 1) (1, 1, 1) Batch Leaky ReLU
conv l 1× 1× p/4 (1, 1, 1) Batch Leaky ReLU
conv 2 · l 1× r/2× 1 (1, 1, 1) Batch Leaky ReLU
conv l m× 1× 1 (m, 1, 1) Batch Leaky ReLU

Output: u ∈ Rs×l

Table 6.8: Encoder E

Input: u ∈ Rs×l (reshape to s× l × 1× 1× 1)

Layer Type Number of Filters Kernel Size Stride Normalization Activation
transconv 2 · l m× 1× 1 (m, 1, 1) Batch ReLU
transconv l 1× r/2× 1 (1, 1, 1) Batch ReLU
transconv l/2 1× 1× p/4 (1, 1, 1) Batch ReLU
transconv l/4 1× 1× (p/4 + 1) (1, 1, 1) Batch ReLU
transconv l/8 1× (r/2 + 1)× 1 (1, 1, 1) Batch ReLU
transconv 1 1× 1× (p/2 + 1) (1, 1, 1) Batch ReLU

Output: x ∈ Rs×1×m×r×p (reshape to s× o× p)

Table 6.9: Decoder D

169

Chapter 6. Conditional Generation

6.2.3 Training Process

Similar to the case of Unconditional Generation, the learning mechanism of our proposed
framework for creation of novel multi-track accompaniments is based on the individual train-
ing procedures of the included network components. In particular:

• Global Discriminator
Since this module retains its infrastructure from the previously examined task, its
corresponding training process remains unaltered. Thus, according to the respective
analysis in section 5.2.3 of chapter 5, our Global Discriminator learns to distinguish
the real data from the fake samples, created by the Generator, using a properly se-
lected cost function that quantifies the misclassification errors over both positive and
negative training examples. As mentioned before, in this case, the examined music
samples, derived from either the ground-truth or the Generator distribution, include
the conditional track along with the accompaniment ones in a unified form.

• Local Discriminator
Naturally, our introduced Local Discriminator follows the training procedure of the
Global one. However, the main difference is that this module evaluates in terms of
authenticity only the accompaniment parts, without the conditional track.

• Generator
Similar to the unconditional case, the Generator learns to create novel realistic data in-
stances, based on the predictions of the Discriminator over the class of its produced can-
didates. Therefore, under the framework of our proposed system, this module discovers
underlying properties of the ground-truth accompaniment distribution indirectly via
the feedback of the employed Discriminator scheme. More specifically, if both Discrim-
inators are included in the model architecture, the loss of the Generator is computed
as the mean value of the corresponding output probabilities over fake accompaniments
and 5-track samples accordingly. Otherwise, only the predictions of the involved Dis-
criminator are utilized.

• Encoder
We experiment with two distinct practices regarding the training mode of our Encoder
network:

– 1-phase training: In this case, the Encoder is trained jointly with the GAN system.
More specifically, it follows the individual learning process of the Generator, which
is previously described in detail, since these two structural units contribute to the
creation of novel music samples collectively.

– 2-phase training: As the name suggests, in this case the training procedure of
our proposed framework for Conditional Generation is divided into two definite
parts. The first one involves the Encoder, while the other one corresponds to
the GAN components. In particular, our Encoder module is initially pretrained
along with the respective Decoder as a unified AutoEncoder system, using the
MSE loss between the initial and the reconstructed conditional tracks and the
Kullback–Leibler divergence, which represents the statistical distance between the
Standard Normal distribution of white noise N (0, I) and the one modeling the

170

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

6.2. Model

latent space of the produced embeddings. In this way, we ensure that the latent
encodings follow the distribution of the input random noise. During this process,
our incorporated Early-Stopping and Checkpointing mechanism, which employs
as monitoring metric the mean sum of the aforementioned loss values calculated
at the validation stage of each training step, indicates the version of the Encoder
that will be utilized unchanged in the upcoming training of the GAN system.

Following our primary implementation for the task of Unconditional Generation, the overall
training of our GAN-based model proceeds in consecutive interchanges between k steps of
optimizing the included Discriminators and one step of optimizing the Generator. Algorithms
4 and 5 summarize all the aforementioned training details in a pseudocode format. As regards
the utilized notation, the index t denotes the conditional track, while the index a symbolizes
the accompaniment. Furthermore pt indicates the distribution that models the latent space
of the conditional embeddings, pd represents the ground-truth distribution of the real music
samples and pz denotes the prior distribution from which the input random noise vector z is
sampled. Lastly, U [0, 1] symbolizes the continuous uniform distribution, defined by the given
boundaries.

Algorithm 4: AutoEncoder Training
Input:

• Batch size m
• Adam hyperparameters α, β1, β2

• Number of total training steps N

1 for number of training iterations do
2 for i=1, . . . , m do
3 Sample real data x = (xt,xa) ∼ pd

4 u← Eγ(xt)
5 x̂t ← Dη(u)

6 L(i) ← MSE (xt, x̂t) + KL (pt ∥ N (0, 1))

7 endfor

8 γ ← Adam

(
∇γ

1

m

m∑
i=1

L(i), γ, α, β1, β2

)

9 η ← Adam

(
∇η

1

m

m∑
i=1

L(i), η, α, β1, β2

)
10 endfor

171

https://en.wikipedia.org/wiki/Continuous_uniform_distribution

Chapter 6. Conditional Generation

Algorithm 5: Mini-batch Training Algorithm for Conditional GANs with Gradient
Penalty
Input:

• Gradient penalty coefficient λ
• Number of Discriminator iterations per Generator iteration k
• Batch size m
• Adam hyperparameters α, β1, β2

• Number of total training steps N

1 for number of training iterations do

2 Update Global Discriminator Dw by ascending its stochastic gradient.
3 for k steps do
4 for i=1, . . . , m do
5 Sample: real data x = (xt,xa) ∼ pd
6 latent variable z ∼ pz
7 random number ϵ ∼ U [0, 1]

8 u← Eγ(xt)
9 x̄a ← Gθ(z,u)

10 x̄← (xt, x̄a)
11 x̂← ϵ · x+ (1− ϵ) · x̄
12 L(i) ← Dw(x̄)−Dw(x) + λ(∥∇x̂Dw(x̂)∥2 − 1)2

13 endfor

14 w ← Adam

(
∇w

1

m

m∑
i=1

L(i), w, α, β1, β2

)
15 endfor

16 Update Local Discriminator Dϕ by ascending its stochastic gradient.
17 if Local then
18 for k steps do
19 for i=1, . . . , m do
20 Sample: real data x = (xt,xa) ∼ pd
21 latent variable z ∼ pz
22 random number ϵ ∼ U [0, 1]

23 u← Eγ(xt)
24 x̄a ← Gθ(z,u)
25 x̂a ← ϵ · xa + (1− ϵ) · x̄a

26 L(i) ← Dϕ(x̄a)−Dϕ(xa) + λ(∥∇x̂aDϕ(x̂a)∥2 − 1)2

27 endfor
28 endfor

29 ϕ← Adam

(
∇ϕ

1

m

m∑
i=1

L(i), ϕ, α, β1, β2

)
30 end

172

6.2. Model

31

32 Update Generator Gθ by descending its stochastic gradient.

33 for i=1, . . . , m do
34 Sample: real data x = (xt,xa) ∼ pd
35 latent variable z ∼ pz

36 u← Eγ(xt)
37 x̄a ← Gθ(z,u)
38 x̄← (xt, x̄a)

39 if Local then

40 L(i) ← −Dw(x̄) +Dϕ(x̄a)

2
41 else
42 L(i) ← −Dw(x̄)

43 end
44 endfor

45 θ ← Adam

(
∇θ

1

m

m∑
i=1

L(i), θ, α, β1, β2

)
46 Update Encoder Eγ by descending its stochastic gradient.

47 if 1-phase then
48 for i=1, . . . , m do
49 Sample: real data x = (xt,xa) ∼ pd
50 latent variable z ∼ pz

51 u← Eγ(xt)
52 x̄a ← Gθ(z,u)
53 x̄← (xt, x̄a)

54 if Local then

55 L(i) ← −Dw(x̄) +Dϕ(x̄a)

2
56 else
57 L(i) ← −Dw(x̄)

58 end
59 endfor

60 γ ← Adam

(
∇γ

1

m

m∑
i=1

L(i), γ, α, β1, β2

)
61 end
62 endfor

173

Chapter 6. Conditional Generation

6.3 Data

6.3.1 Data Representation

Following our primary approach to the research problem of automatic synthesis from scratch,
we employ the multi-track pianoroll format for the representation of music samples, processed
under the framework of our proposed conditional generation system. According to the de-
tailed analysis in section 4.3.1 of chapter 4, a piano-roll is a binary-valued scoresheet-like
matrix, which indicates the presence or absence of notes over different timesteps and conse-
quently a multi-track piano-roll is defined as a set of piano-rolls corresponding to different
musical instruments.

6.3.2 Dataset

The pianoroll dataset used for the training process of our conditional model is derived from
the Lakh MIDI Dataset (LMD) [16] after the preprocessing procedure, which is thoroughly
described in section 4.3.3 of chapter 4 and graphically illustrated in Figure 4.3.3. More
specifically, we employ the LPD-5-cleansed version1, which contains only those pianorolls
with the higher matching confidence score to MSD entries [17], a “Rock” tag and 4/4 time.

6.3.3 Data Preprocessing

In order to acquire the final set of training examples, we apply the preprocessing steps that
are explicitly presented in section 5.3.3 of chapter 5. In this way, the pianorolls included
in the cleansed version of the utilized dataset are segmented into musical phrases of proper
format and size, according to the input configuration. We further extend our data preparation
routine via the inclusion of an additional criterion regarding the required note density in the
conditional tracks. More specifically, we discard candidate samples with insufficient number
of note instances in a specific user-defined track, which represents the conditional information.
Finally, we perform a splitting of our processed dataset into training and validation subsets,
using the ratios that are graphically illustrated in the pie-charts of Figure 6.3.1 for two
distinct conditional instruments. The overall training duration is around 8 hours with a
GeForce RTX 2080 Ti GPU.

(a) Piano (b) Guitar

Figure 6.3.1: Split Ratios

1https://salu133445.github.io/lakh-pianoroll-dataset/dataset.html

174

https://salu133445.github.io/lakh-pianoroll-dataset/dataset.html

6.4. Experimental Protocol

6.4 Experimental Protocol

6.4.1 Experimental Setup

In order to evaluate our proposed conditional system and thoroughly examine its effectiveness
over the creation of aesthetic multi-track polyphonic accompaniments in a human-AI coop-
erative framework, we conduct a group of experiments that enable us to investigate various
aspects of the generation process. The corresponding details as well as the produced results
will be extensively presented in the following sections of this chapter.

AutoEncoder Local Discriminator

Piano

P00 - -
P01 - ✓
P10 ✓ -
P11 ✓ ✓

Guitar

G00 - -
G01 - ✓
G10 ✓ -
G11 ✓ ✓

Table 6.10: Conditional Models

Before proceeding further, we consider it useful to define the model variants that will be
employed on the proximate analysis. As demonstrated in Table 6.10, these models mainly
differ in terms of:

• Included structural components

– Only Global Discriminator ("-" at second column)

– Both Global and Local Discriminators ("✓" at second column)

• Training mode of Encoder

– 1-phase training ("-" at first column)

– 2-phase training ("✓" at first column)

• Conditional Instrument

– Piano

– Guitar

It is also worth mentioning that we employ the experiment configuration C2, as presented in
Table 5.6, for all the aforementioned conditional models, since the results of the previously
examined task indicated that this particular combination of generation and training param-
eters can adequately capture rhythmic patterns, tonal characteristics and texture elements
of man-made pieces and hence lead to artificial music of high quality.

6.4.2 Objective Metrics

In the context of objective assessment, we utilize our musical metric system consisting of the
following 8 quantitative indices:

175

Chapter 6. Conditional Generation

• Empty Bars (EB): ratio of empty bars included in the examined track (in %)

• Qualified Notes (QN): ratio of “qualified” notes (in %)

• Drum Pattern (DP): ratio of notes in beat patterns of 4/4 rhythm (in %)

• Tonal Distance (TD): measures the harmonicity between a pair of musical tracks

• Used Pitch Classes (UPC): mean number of pitch classes used per bar (from 0 to
12)

• Used Pitches (UP): mean number of unique pitches used per bar, including all
octaves in the predefined range

• Scale Ratio (SR): ratio of notes in the given music scale

• Polyphonic Rate (PR): ratio of polyphonic timesteps

It is worth mentioning that all the aforementioned metrics can be computed for both real
and generated samples.

Unlike music synthesis from scratch, the framework of Conditional Generation inherently pro-
vides two different accompaniments for each conditional track, one derived from the ground-
truth distribution of human-composed musical pieces and the other created by our Generator
module. Thus, we consider it useful to introduce an additional objective index that mea-
sures the corresponding distance between the two versions and in this way examine if our
proposed model tends to musically imitate the real samples and also confine its creativity.
For this purpose, we employ the Mean Squared Error, calculated between the original and
the generated accompaniments of the provided conditional pieces.

176

https://en.wikipedia.org/wiki/Mean_squared_error

6.5. Results

6.5 Results

6.5.1 Analysis of Training Process

As discussed in previous chapters of this thesis, the ideal training practice for a GAN-based
system still remains an open problem, since it is particularly hard to explicitly identify the
convergence state from a computational perspective, especially when additional components,
such as a second Discriminator or an Encoder module, are also included in the architecture.
Therefore, a closer inspection of the learning mechanism of our proposed model for the task of
Conditional Generation, as well as a thorough examination of the individual behaviour of the
involved networks, are considered essential. For this purpose, we employ the 4 model variants
that use the Piano track as conditional information2, since this constitutes the default case
under our proposed music generation framework and also our baseline project [2].

(a) P00 (b) P01

(c) P10 (d) P11

Figure 6.5.1: Generator losses for the various piano-based conditional GANs

Figure 6.5.1 demonstrates the training loss of the Conditional Generator, formulated as
function of training steps, for the examined model variants. In particular, the gray curves
indicate the normalized loss values, which are smoothed via a moving average operation. As
regards the figure layout, the plots in the first row correspond to the 1-phase training method,
while the ones in the second row to the utilization of the AutoEncoder Pretraining (2-phase).
Accordingly, the loss values resulting from the inclusion of only one Discriminator in the

2The Guitar models exhibit similar behaviour.

177

Chapter 6. Conditional Generation

system architecture are depicted in the first column, while the effect of both Discriminators
in the learning process of the Accompaniment Generator is graphically represented in the
plots of the second column.

(a) P00 (b) P01

(c) P10 (d) P11

Figure 6.5.2: MSE losses between real and generated pianorolls for the various piano-based
conditional GANs

First of all, it can be easily affirmed that the 2-phase learning practice requires significantly
less training steps as compared to the joint fashion (1-phase). This observation is naturally
expected, since in the first case the Encoder network is already trained to create embeddings of
the conditional tracks following a consistent mapping between the input and the output latent
space. This fact implies that its produced encodings throughout the complete training of the
GAN part approximately follow the normal distribution. As a consequence, the Generator’s
training behaviour is stabilized rather early. Furthermore, in this way the GAN learning
procedure is computationally lightened and also accelerated, as the Encoder state remains
unaltered during this phase. As can be also observed, the Generator losses that are depicted
in plots of the same column and hence correspond to identical GAN architectures, follow
a similar trend, which is scaled according to the required number of training steps. More
specifically, in the case of both Discriminators, a slight increase of the corresponding loss
function is detected after the initial steep spikes, suggesting that the Generator probably can’t
handle the combined output predictions of its opponents and produces easily distinguishable
candidates. However, it seems that after a particular training point, the Generator loss begins

178

6.5. Results

to steadily decrease, indicating that the produced music samples become more plausible, until
saturation.

Figure 6.5.2 displays the log of the MSE loss calculated between real and generated pianorolls
during the training procedure of the 4 examined model variants for the first 100 steps. The
plot layout is similar to the previous one, concerning the arrangement of the conditional
models at rows and columns. As can be seen, the employment of the 1-phase training
mode (first row) leads to faster convergence of the MSE function. This observation implies
that, under this learning framework, our proposed generative system tends to imitate the
real accompaniments by reproducing their tonal, rhythmic or texture features in quite early
stages of training. However, some small oscillations are observed after the saturation point,
indicating that a margin for creativity and differentiation from the original human-composed
musical pieces is preserved. On the other hand, the utilization of the 2-phase learning practice
(second row) also results in convergence of the MSE loss (≈ 0.025), but requires larger number
of training steps. Similar to the previous case, this fact suggests that the generated and the
corresponding real music segments become almost identical as training proceeds. From the
perspective of our objective evaluation system, the similarity of the examined pianorolls is
considered beneficial, but at the same time it limits the generation capabilities of our proposed
model towards novel alternative accompaniments.

6.5.2 Qualitative Inspection

Figure 6.5.3 illustrates two multi-track polyphonic pianorolls, which correspond to the same
Piano track as conditional information and represent one 4-bar musical phrase. The first one
is a real human-composed music sample, derived from the ground-truth dataset, while the
other one is created by our proposed GAN-based framework during the process of Inference.
In particular, we employ the model variant P11 and utilize the Generator version of the last
training step, as discussed in section 5.5.2 of chapter 5.

It is worth pointing out the following qualitative observations:

• The Drum track of the generated pianoroll follows an almost steady rhythmic pattern,
which resembles the original to a significantly large degree. Notes in 8- or 16-beat motifs
are evident, indicating the presence of 4/4 rhythm, while the strong beats of each bar
can also be easily detected. This apparent rhythmicity is probably the result of our
parameterized implementation, which enables us to emphasize on texture elements of
this type during the creation of novel musical pieces.

• The Bass track is principally monophonic, playing a single melodic line. As can be
seen, our proposed generative system is capable of capturing musical features of the
real bass line, such as the duration of the notes and also the utilized pitch range, which
is approximately from C0 to C2.

• The Strings and the Guitar, which are the mainly polyphonic tracks in the overall
composition and usually tend to play the chord-like parts, are quite noisy compared to
the original ones, both in terms of note density and number of utilized pitch classes.
This fact may lead to weaker harmonic relations among the included instruments, which
can negatively affect the acoustic result. On the other hand, it may also contribute to

179

Chapter 6. Conditional Generation

a more musically interesting alternative.

• The melodic tracks (i.e. all except Drums) of the fake pianoroll usually play in the
same music scale, as indicated by the overlapping pitches. This fact implies strong har-
monic relations among the included instruments, that can contribute to an acoustically
pleasant result.

(a) Real sample

(b) Fake sample

Figure 6.5.3: Qualitative analysis of generated pianorolls

6.5.3 Objective Evaluation

In order to examine if the structural modifications and extensions of our proposed GAN-based
framework, as well as the different training modes can actually improve the quality of artifi-
cial music and lead to innovative results in the research field of Automatic Accompaniment
Generation, we proceed in a comprehensive comparison of the model variants presented in
Table 6.10, using our objective metric system. To this end, we follow the assessment practice
of our baseline project. In particular, for each conditional model involved in the evaluation,
we create, using the respective Generator of the last training step, 20000 bars organised in
4-bar musical phrases. Afterwards we apply our objective metrics on the produced musical
segments and calculate the respective mean values.

180

6.5. Results

Piano case

Table 6.11 summarizes the intra-track evaluation results of the 4 Piano models, i.e those
variants that employ piano tracks as conditions, only for objective metrics shared between
our implementation and the baseline project accordingly. As mentioned before, in this case
values closer to the ones representing musical properties of the ground-truth distribution
correspond to the desirable generative behavior and hence are considered better. At first
glance, we can easily detect the absence of a particular model variation capable of improving
all the employed objective musical metrics. However, a closer inspection indicates that the
utilization of the 2-phase training mode (model P10) benefits some musical characteristics
of the produced samples, such as the intended note density as measured by EB metric, the
contained beat patterns in 4/4 rhythm represented by DP value and also the proper number of
used pitch classes (UPC). Nevertheless, it seems to negatively affect the form of the Bass track
in terms of making it more sparse than the original (EB around 18 %). On the other hand, the
inclusion of the Local Discriminator in the system architecture under both training practices
has a positive impact on all the examined quantitative indicators of musical attributes. This
result confirms that the extra feedback over the authenticity of the accompaniment parts
actually helps the Generator to produce more plausible candidates.

EB (%) UPC QN (%) DP (%)
B D G P S B G P S B G P S D

training data baseline 8.06 8.06 19.4 24.8 10.1 1.71 3.08 3.28 3.38 90.0 81.9 88.4 89.6 88.6
ours 1.6 1.0 5.0 5.6 3.7 2.47 4.09 4.19 4.5 91.6 85.6 90.0 89.7 82.9

Ours

P00 0.6 0.0 2.2 - 2.4 2.71 3.93 - 4.33 51.4 56.5 - 58.9 86.1
P01 0.2 0.0 1.8 - 1.5 2.57 4.09 - 4.76 58.2 56.1 - 61.7 86.3
P10 17.4 0.2 3.0 - 4.4 1.68 3.9 - 4.3 50.7 49.2 - 55.1 87.0
P11 1.6 0.0 0.7 - 0.9 2.56 4.19 - 5.16 54.8 56.6 - 51.0 86.2

Baseline
jamming 4.60 3.47 13.3 - 3.44 2.05 3.79 - 4.23 73.9 58.8 - 62.3 91.6
composer 0.65 20.7 1.97 - 1.49 2.51 4.57 - 5.10 53.5 48.4 - 59.0 84.5
hybrid 2.09 4.53 10.3 - 4.05 2.86 4.43 - 4.32 43.3 55.6 - 67.1 71.8

Table 6.11: Results of inter-track evaluation of the Piano-based models

For the purpose of completeness, we also present in Table 6.11 the respective results of the
intra-track evaluation for the 3 multitrack interdependency models included in MuseGAN
and thoroughly examined in section 4.2.2 of chapter 4. However, it can be easily observed
that there is a substantial divergence between the training data statistics, as measured under
the two involved frameworks. This difference may result from the randomized rule that de-
termines the collection of training samples from the songs included in the employed pianoroll
dataset, as explained in section 5.3.3. Thus, the two generative systems cannot be exactly
compared in the context of intra-track evaluation metrics. Nevertheless, despite the statisti-
cal bias, all the calculated values are in the same order of magnitude, which indicates that our
metric implementation actually provides a meaningful interpretation of the produced music.

The results of the inter-track evaluation, which is represented by TD metric, are demonstrated
in Table 6.12 for all models involved in the comparative analysis of piano conditions. As
referred to earlier, in this case smaller values correspond to smaller Euclidean distances in
the interior space of a 6D polytope and hence imply stronger harmonic relations between
the examined pairs of tracks. It can be easily affirmed that the model P10, which is derived
from the the inclusion of only the Global Discriminator under the 2-phase training practice,

181

Chapter 6. Conditional Generation

TD
B-G B-S B-P G-S G-P S-P

Ours

P00 0.82 0.83 0.88 0.87 0.95 0.94
P01 0.79 0.81 0.85 0.85 0.94 0.94
P10 0.74 0.73 0.81 0.94 1.02 1.01
P11 0.83 0.92 0.97 0.99 1.12 1.17

Baseline
jamming 1.51 1.53 1.50 1.04 0.95 1.00
composer 1.41 1.36 1.40 0.96 1.01 0.95
hybrid 1.39 1.36 1.38 0.96 0.94 0.95

Table 6.12: Results of inter-track evaluation of the Piano-based models

presents the best performance among our proposed variants (bold values) and also surpasses
all the baseline architectures (coloured cells) in terms of harmonicity between a melody-
like track, such as the Bass and a chord-like track, such as the Piano, Guitar and Strings.
This observation comes in agreement with the role of our Global Discriminator as a general
critic that evaluates all tracks collectively and hence assesses the harmonic quality between
melody and chords. On the other hand, the model P01, which results from the inclusion of
both Discriminators in the system architecture under the 1-phase training mode, outperforms
all the involved variants in terms of harmonicity between two chord-like tracks. This fact
confirms the beneficial contribution of our Local Discriminator, which provides an additional
feedback over the quality of the accompaniment tracks, to the generation efficiency of our
proposed framework.

UP SR (%) PR (%)
B G P S B G P S B D G P S

training data 2.71 5.68 5.85 6.71 75.9 74.4 74.1 72.8 1.1 15.2 55.7 61.8 62.3

Ours

P00 2.94 5.79 - 6.28 81.7 75.8 - 77.1 1.2 13.3 40.6 - 44.2
P01 2.94 5.77 - 7.17 77.1 76.3 - 75.6 1.5 15.2 48.7 - 59.9
P10 1.74 5.05 - 6.07 82.2 80.6 - 79.0 0.2 10.1 22.2 - 30.2
P11 2.84 5.43 - 7.3 80.7 77.6 - 72.3 1.9 9.7 38.2 - 56.3

Table 6.13: Additional results on the evaluation of the Piano-based models

Lastly, the supplementary Table 6.13 displays the additional intra-track evaluation results,
only for our 4 model variants that employ Piano as conditional track. As can be seen, all
conditional models accomplish to significantly approximate the statistics of the real distri-
bution in the context of tonal characteristics as quantified by UP and SR metrics and other
texture elements, such as PR. Especially in the case of PR, the most distinguishable perfor-
mance corresponds to model P01, indicating that the incorporation of a Local Discriminator
in the architecture of our proposed system helps the Generator to uncover more properties
of the human-composed music, including the proper polyphony of the chord-like tracks and
accordingly the monophony of the melodic ones, such as the Bass, which actually tends to
play a single melodic line (PR around 1.5%).

Guitar case

Table 6.14 provides an overview of the objective evaluation results for the 4 model variants
that employ Guitar as conditional instrument and are presented in Table 6.10 along with
their respective notation. As before, bold values denote greater proximity to the ground-

182

6.5. Results

EB (%) UPC QN (%) UP
B D G P S B G P S B G P S B G P S

training data 1.8 0.9 4.3 5.2 3.6 2.47 4.21 4.14 4.49 91.8 87.5 91.6 90.5 2.7 5.85 5.84 6.75
G00 0.8 0.0 - 2.1 1.8 2.51 - 5.04 4.59 62.5 - 49.3 60.3 2.77 - 7.31 6.91
G01 0.0 0.0 - 3.1 0.0 3.05 - 4.31 5.28 57.6 - 52.4 59.6 3.36 - 6.18 7.69
G10 1.6 0.0 - 1.8 3.5 2.35 - 4.28 4.01 50.2 - 59.5 58.6 2.59 - 6.13 5.88
G11 0.4 0.2 - 3.3 0.6 2.32 - 4.62 4.66 55.6 - 47.8 57.9 2.46 - 6.4 6.68

TD SR (%) PR (%) DP (%)
B-G B-S B-P G-S G-P S-P B G P S B D G P S D

training data 0.71 0.72 0.7 0.69 0.66 0.66 75.4 73.5 73.4 73.1 0.8 15.5 59.7 61.0 62.6 85.0
G00 0.83 0.85 0.9 0.96 1.01 0.98 84.7 - 80.9 77.0 1.1 10.9 - 53.9 53.4 87.1
G01 0.87 0.87 0.83 0.93 0.92 0.86 86.7 - 83.6 83.9 2.8 14.9 - 55.3 60.8 86.0
G10 0.84 0.84 0.84 0.93 0.95 0.89 82.0 - 79.8 85.4 0.7 6.0 - 37.5 44.0 91.7
G11 0.89 0.87 0.88 1.06 1.09 0.97 78.0 - 76.9 80.5 0.9 9.7 - 42.1 54.4 83.7

Table 6.14: Results of objective evaluation of the Guitar-based models

truth distribution, expect for the inter-track TD metric, where smaller ones are considered
better. Similar to the Piano case, we can easily detect the absence of a particular model
variation capable of improving all the employed objective musical metrics simultaneously.
However, a closer inspection indicates that the utilization of the Local Discriminator under
the 1-phase training practice (model G01) results in stronger harmonic interrelations among
the included tracks, as suggested by the corresponding TD values. Moreover, the additional
evaluation feedback over the authenticity of the accompaniment parts as an independent
musical composition benefits the rhythmic attributes of the generated musical phrases, as
indicated by the high DP rate and also other texture elements, such as the desired PR for each
track individually. On the other hand, the utilisation of the 2-phase training mode over both
architectural approaches has a positive impact on the note density of the generated samples,
as measured by EB metric, the number of contained “qualified” notes, particularly in the
Piano track and tonal characteristics, such as UP, UPC and SR, especially for the chord-like
instruments. However, in case of QN rates there is still space for further improvement, since
there is a substantial distance between the resulting values and the original ones.

183

Chapter 6. Conditional Generation

6.6 User Study

6.6.1 Experimental Setup

As discussed in section 5.6 of chapter 5, in the context of subjective assessment, we follow
our baseline project [2] and conduct a user study in the form of listening test. Our survey is
divided into two parts, with each one corresponding to a specific music generation task im-
plemented by our proposed framework. In particular, the section of Conditional Generation,
which constitutes the principal topic of this chapter, aims at a comprehensive comparison
among the variants of our developed system presented in Table 6.10 along with their respec-
tive notation.

The conditional part of our questionnaire follows the A/B testing format, which has been also
applied in the section of Generation from scratch. However, in this case, the two alternative
choices A and B represent two possible accompaniments, generated by different models or
even derived from the ground-truth distribution of human-composed musical pieces, for the
same conditional track. Thus, each testing group of samples consists of 3 distinct audio clips.
The first one is the conditional track and the others contain matching accompaniments for
it. Similar to the unconditional case, the evaluator is required to choose from each listening
pair the accompaniment version that best fits the conditional track in terms of:

• Musical Naturalness: Could the musical segment be composed by human?

• Harmonic Consistency: Are the sounds produced by different instruments in musical
consonance? Is the result acoustically pleasant?

• Musical Coherence: Are the various musical phrases associated someway through
time?

As regards the implementation details, all the involved models are trained using the same
set of training examples for each conditional instrument. The produced samples and also
the real musical segments are then transformed into the proper auditory format, according
to the diagram of Figure 5.6.1 in section 5.6. The duration of each resulting audio clip,
regardless of its derivation model, is pruned to approximately 12 seconds, a time period that
corresponds to one 4-bar musical phrase under the framework of our proposed system and
the employed multitrack pianoroll representation. The conditional track of each listening
case and consequentially the respective accompaniment versions are randomly selected from
pools of 32 audio clips. Both the order of the testing groups and also the sample order within
each group are randomized for each user.

Table 6.15 demonstrates the examined comparisons among the involved conditional models.
As can be easily observed, musical segments derived from each variant are placed in jux-
taposition with fake data instances generated by two other models of the same conditional
instrument and also the real accompaniments that correspond to their common conditional
track (denoted with the letter R). If we consider symmetric comparisons as equivalent cases,
this results in a total of 16 unique testing pairs.

As mentioned in section 5.6 of chapter 5, the participants in our survey are 40 subjects, mainly
recruited via social circles. In this case, each subject evaluates 18 listening group of samples,
where 16 of them correspond to the unique model pairs and the remaining 2 are randomly

184

https://en.wikipedia.org/wiki/A/B_testing

6.6. User Study

Piano

P00 P01 P10 R
P01 P00 P11 R
P10 P00 P11 R
P11 P01 P10 R

Guitar

G00 G01 G10 R
G01 G00 G11 R
G10 G00 G11 R
G11 G01 G10 R

Table 6.15: Conditional Comparisons

selected. The overall occurrences for each examined couple are graphically illustrated in the
diagrams of Figure 6.6.1. As can be seen, we have recruited a sufficient number of qualified
listeners and also distributed the involved comparisons in a almost uniform fashion among
them. Thus, we can conclude that our user study can provide statistically significant results
and hence lead to valid, reliable and replicable scientific evidence.

Figure 6.6.1: Total number of comparisons for each model pair

6.6.2 Subjective Results & Discussion

Piano case

The results of our subjective testing for the model variants that employ Piano as conditional
track are graphically illustrated in Figure 6.6.2. Each bar-plot represents the evaluators’
preferences between the compared models under the examined musical criteria in the form
of percentages. As can be seen, in the case of comparison with the real music segments,
the majority of fake samples are easily distinguishable, regardless of their derivation model,
indicating that AI music is still far from the level of human compositions in terms of Natu-
ralness, Harmony and Coherence. The highest favor proportion against human performance
corresponds to model P01 for the first question in our survey and is equal to 35%. This fact

185

Chapter 6. Conditional Generation

suggests that the additional evaluation feedback provided by the Local Discriminator over
the accompaniment parts, can actually help the Generator to create samples that sound more
natural to the human subjects.

(a) P00

(b) P01

(c) P10

(d) P11

Figure 6.6.2: Results of Subjective Evaluation for Piano

As regards the comparison among our developed varying frameworks, we observe that model

186

6.6. User Study

P01 significantly outperforms P11 with respect to all the examined musical aspects, especially
Coherence. This result comes in agreement with the outcomes of the objective assessment,
as it suggests that the most suitable training practice for the system architecture of both
Discriminators is the 1-phase mode. Moreover, it can be easily affirmed that variant P10 also
surpasses P11 in terms of all 3 criteria, indicating that the proper structural design for the
2-phase training mode includes only the Global Discriminator, as pointed out in the objective
analysis too. Lastly, we can further observe a slight preference for P00 as compared to P01

and P10. This fact suggests that the basic implementation of our proposed generative system
can also lead to the creation of aesthetic musical pieces.

Guitar case

The results of our subjective testing for the model variants that employ Guitar as conditional
instrument are graphically illustrated in Figure 6.6.3.

(a) G00

(b) G01

(c) G10

187

Chapter 6. Conditional Generation

(d) G11

Figure 6.6.3: Results of Subjective Evaluation for Guitar

Similar to the previous conditional case, the majority of fake samples are easily distinguish-
able from the real ones in terms of all the examined musical aspects. As can be seen, all
the favor proportions are in the range of 13 to 20%, probably indicating that Guitar tracks
provide less conditional information than the Piano ones. This is mostly due to the fact that
Guitar in Rock songs usually plays the chords, while Piano typically includes some melodic
patterns as well.

As regards the comparison among the 4 generative frameworks, it can be easily affirmed that
the corresponding outcomes are similar to the ones of the Piano case. More specifically, we
observe that model G10 outperforms both G00 and G11 with respect to all the aforementioned
musical criteria. This result suggests that the most effective combination of training practice
and architectural design regarding the quality of produced music, is the 2-phase mode applied
in a GAN system that comprises only the Global Discriminator. Furthermore, we can see
that the variant G01 surpasses to a large extent G11 in terms of all the examined musical
properties. This fact indicates that the most suitable training practice for the architecture
of both Discriminators is the 1-phase mode. However, in the case of comparison between
G01 and G00, where the 1-phase learning method is applied, the utilization of the Global
Discriminator only seems to have a beneficial impact on the coherence of the generated
musical pieces, as indicated by the preference proportion of 62%.

188

Chapter 7

Conclusions

7.1 Synopsis . 190

7.2 Thoughts on Future Work . 191

189

Chapter 7. Conclusions

7.1 Synopsis

In the past decade, automatic music generation has undoubtedly achieved rapid progress.
Compared to traditional methods and former approaches, deep learning has shown its pow-
erful capabilities. However, the generative results still deviate from the real ones in terms of
structure and innovation, highlighting the open challenges in the area, such as the modeling
of music expressive performance, the incorporation of the emotion, the limited interaction
with users and the absence of a unified music evaluation standard. Thus, due to the multi-
disciplinary nature of this research field, it is sometimes hard to define precise goals and keep
track of which tasks can be considered solved by state-of-the-art systems and which instead
require further developments.

In the context of this thesis, we begin with a hierarchical review of existing approaches
to the examined research problem, emphasizing on recent studies that make use of deep
neural networks and machine learning techniques. We advocate that such a detailed and
organized analysis could provide means to face many of the open challenges listed above and
possibly allow for easier comparison among varying methods in terms of the learning process
improvement and hence the creation of more aesthetic human-like music.

Moving on to the experimental part of our research, we designed a convolutional GAN-based
generative framework that implements the automatic creation of novel polyphonic musical
content in the pianoroll format, under 2 different approaches:

• Unconditional Generation: Automatic generation of musical phrases, composed of
5 distinct tracks (Drums, Piano, Guitar, Bass and Strings), from scratch, i.e. without
subjecting to any prior knowledge or supplementary information provided from the
human user.

• Conditional Generation: Automatic generation of 4-track accompaniments for
human-composed track samples that are provided to the model as conditional informa-
tion.

We made our model even more flexible and structurally adaptable to different generative con-
figurations and practices, by performing a customization of our implementation with respect
to a group of various parameters that determine musical attributes and also training fea-
tures. As regards the learning process, we incorporated into our system auxiliary monitoring
mechanisms, based on an additional validation phase, for closer inspection of the individual
structural components behavior during training. In the context of assessment, we devel-
oped an alternative implementation for the existing musical metrics and further expanded
our employed objective evaluation system via the introduction of 3 additional quantitative
indicators that emphasize on tonal characteristics and texture attributes of the generated
samples per track. We also conducted a qualitative study in the form of listening test across
40 subjects, in order to include human auditory feedback into our analysis.

In the case of Unconditional Synthesis, we extensively experimented over multiple generative
configurations and examined the effect of the respective modifications on the musical quality
of the created pianorolls, investigating at the same time various aspects of the generation
mechanism. For this purpose, we applied our proposed objective evaluation system, which
consists of 7 intra-track and 1 inter-track metrics. The produced results indicated the absence

190

7.2. Thoughts on Future Work

of a particular parameter arrangement capable of improving all the employed quantitative
indicators simultaneously. This outcome highlighted the lack of a unified objective criterion
for the designation of the best model in terms of generation efficiency and produced musi-
cal quality. Nevertheless, we were able to derive some interesting conclusions, such as the
correlation between the utilized beat resolution and the resulting harmonic relations among
the included tracks or the impact of higher values of k (number of training steps per Gen-
erator update) on tonal characteristics of the generated samples. As regards the subjective
assessment part, we observed that our developed system for music generation from scratch
significantly outperforms MuseGAN with respect to 3 examined musical aspects: Musical
Naturalness, Harmonic Consistency, Musical Coherence. This fact demonstrates that our
proposed parameterized architecture, which is based on a shared-private design for both
the Generator and the Discriminator modules and enables us to emphasize on rhythmic
attributes, undoubtedly contributes to the creation of novel aesthetic music.

In the case of Conditional Synthesis, we experimentally focused on 8 variants of our proposed
conditional generative system that differ in terms of the included structural components
(Global Discriminator, Global and Local Discriminators), the training algorithm of the En-
coder module (1-phase mode, 2-phase-mode) and the type of conditional instrument (Piano,
Guitar). We thoroughly examined the impact and the effectiveness of our proposed modifi-
cations over the creation of aesthetic multi-track polyphonic accompaniments in a human-AI
cooperative framework from objective as well as subjective aspects. The produced results
from both assessment methods indicated that the most suitable training practice for the
system architecture of both Discriminators is the 1-phase mode, confirming that the extra
feedback over the authenticity of the accompaniment parts as an independent musical com-
position along with a shared learning fashion between the utilized Encoder and the GAN,
actually helps the Generator to produce more plausible candidates. On the other hand, we
observed that the proper structural design for the 2-phase training mode includes only the
Global Discriminator. This fact suggests that the AutoEncoder Pretraining contributes to
the improvement of the generated accompaniment quality when the supervisory signals come
from a single Discriminator. The aforementioned outcomes refer to both conditional instru-
ments. However, the qualitative study demonstrated that Guitar provides less conditional
information than Piano, probably due to the fact that in Rock songs it usually plays the
chords, while Piano typically includes some melodic patterns as well. Lastly, the agreement
between the results of the objective evaluation and the outcomes of human assessment in-
dicates that our proposed implementation for the employed metrics provides a meaningful
interpretation of the produced music from a computational perspective.

7.2 Thoughts on Future Work

As thoroughly discussed in the previous section, the contributions of our research study in
the area of Automatic Music Synthesis cover 2 distinct generation tasks, corresponding to
different approaches and hence capabilities. Although our developed framework musically
and aesthetically still falls behind the level of human musicians, it demonstrates a few de-
sirable properties that pave the way for further investigation in the field. To this end, some
interesting potential directions for future research are the following:

191

Chapter 7. Conclusions

• User Melodies : model extension to an interactive framework between human and ma-
chine that automatically produces accompaniments for user-defined inputs of variable
length and track type.

• Full Song Generation, not by just concatenating independently produced musical
phrases but in a more human-like compositional fashion, related to overall structure
and musical coherence.

• Cross-Modal Generation: enrichment of conditions with different modalities or supple-
mentary information derived from other sources (e.g. Music + Video, Music + Lyrics,
Video + Text).

• Monitoring Metric: Implementation of a network that extracts features from pianorolls,
so that FID is applicable to symbolic music generation [229, 230].

192

Bibliography

[1] Briot, J.-P., Hadjeres, G., and Pachet, F.-D. “Deep Learning Techniques for Music
Generation – A Survey”. In: arXiv preprint arXiv:1709.01620 (2017). URL: Survey on
Music Generation.

[2] Dong, H.-W. et al. “MuseGAN: Multi-track Sequential Generative Adversarial Net-
works for Symbolic Music Generation and Accompaniment”. In: Proceedings of Inter-
national Conference on Artificial Intelligence (AAAI), New Orleans, LA, USA. 2018.
URL: MuseGAN.

[3] Herremans, D., Chuan, C.-H., and Chew, E. “A Functional Taxonomy of Music Gen-
eration Systems”. In: ACM Computing Surveys (CSUR) 50 (2017), pp. 1–30. URL:
Music Generation Systems.

[4] Herremans, D. and Chew, E. “MorpheuS: Generating Structured Music with Con-
strained Patterns and Tension”. In: arXiv preprint arXiv:1812.04832 (2017). URL:
MorpheuS.

[5] Huang, C.-Z. A. et al. “Music Transformer: Generating Music with Long-Term
Structure”. In: Proceedings of International Conference on Learning Representations
(ICLR), Vancouver, British Columbia, Canada. 2018. URL: Music Transformer.

[6] Kang, S., Ok, S.-Y., and Kang, Y.-M. “Automatic Music Generation and Machine
Learning based Evaluation”. In: Proceedings of International Conference on Multime-
dia Systems and Signal Processing (ICMSSP), Shanghai, China. 2012. URL: Automatic
Music Generation and Machine Learning based Evaluation.

[7] Convolutional Neural Networks (CNNs / ConvNets). URL: CNN.
[8] Levine, M. W and Shefner, J. M. Fundamentals of Sensation and Perception. Oxford

University Press, 1991. URL: Visual perception.
[9] Convolutional Neural Networks. URL: CNN.

[10] Vint, D. et al. “Automatic Target Recognition for Low Resolution Foliage Penetrating
SAR Images using CNNs and GANs”. In: Remote Sensing 13 (2021), p. 596. URL:
GAN.

[11] Bang, D. and Shim, H. “Improved Training of Generative Adversarial Networks us-
ing Representative Features”. In: Proceedings of International Conference on Machine
Learning (ICML), Stockholm, Sweden. 2018. URL: Nash equilibrium.

[12] From Autoencoder to Beta-VAE. URL: AutoEncoder.
[13] MuseGAN slides. URL: MuseGAN tracks.
[14] Saito, M., Matsumoto, E., and Saito, S. “Temporal Generative Adversarial Nets with

Singular Value Clipping”. In: Proceedings of International Conference on Computer
Vision (ICCV), Venice, Italy. 2017. URL: Temporal GANs.

193

https://hal.sorbonne-universite.fr/hal-01660772/document
https://hal.sorbonne-universite.fr/hal-01660772/document
https://arxiv.org/pdf/1709.06298.pdf
https://dl.acm.org/doi/pdf/10.1145/3108242
https://www.researchgate.net/publication/319054140_MorpheuS_Generating_Structured_Music_with_Constrained_Patterns_and_Tension/link/599bdba2aca272dff128f976/download
https://openreview.net/pdf?id=rJe4ShAcF7
https://www.researchgate.net/publication/302206040_Automatic_Music_Generation_and_Machine_Learning_Based_Evaluation
https://www.researchgate.net/publication/302206040_Automatic_Music_Generation_and_Machine_Learning_Based_Evaluation
https://cs231n.github.io/convolutional-networks/
https://books.google.gr/books?id=ol1qAAAAMAAJ
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://www.mdpi.com/2072-4292/13/4/596
https://arxiv.org/pdf/1801.09195.pdf
https://lilianweng.github.io/posts/2018-08-12-vae/
https://salu133445.github.io/musegan/pdf/musegan-aaai2018-slides.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Saito_Temporal_Generative_Adversarial_ICCV_2017_paper.pdf

Bibliography

[15] Yang, L.-C., Chou, S.-Y., and Yang, Yi-Hsuan. “MIDINET: A Convolutional Genera-
tive Adversarial Network for Symbolic-Domain Music Generation”. In: arXiv preprint
arXiv:1703.10847 (2017). URL: MIDINET.

[16] The Lakh MIDI Dataset v0.1. URL: LMD.
[17] Bertin-Mahieux, T. et al. “The Million Song Dataset”. In: Proceedings of International

Conference on World Wide Web (WWW), Lyon, France. 2012. URL: MSD.
[18] Harte, C., Sandler, M., and Gasser, M. “Detecting Harmonic Change in Musical Au-

dio”. In: Proceedings of International Conference on Audio and Music Computing Mul-
timedia (AMCMM), Santa Barbara, California, USA. 2006. URL: Detecting harmonic
change in musical audio.

[19] Dong, H.-W. and Yang, Y.-H. “Convolutional Generative Adversarial Networks
with Binary Neurons for Polyphonic Music Generation”. In: arXiv preprint
arXiv:1804.09399 (2018). URL: BMuseGAN.

[20] Gulrajani, I. et al. “Improved Training of Wasserstein GANs”. In: arXiv preprint
arXiv:1704.00028 (2017). URL: Improved Training of Wasserstein GANs.

[21] Goodfellow, I. et al. “Generative Adversarial Nets”. In: arXiv preprint arXiv:1406.2661
(2014). URL: GANs.

[22] LMD Statistics. URL: LMD.
[23] Want to Generate your own Music using Deep Learning? Here’s a Guide to do just

that! URL: AI artists.
[24] Morley, Iain. The Prehistory of Music: Human Evolution, Archaeology, and the Origins

of Musicality. Oxford University Press, 2013. URL: Prehistory of Music.
[25] Mozart’s Musical Dice Game. URL: Dice Game.
[26] Alpern, A. “Techniques for Algorithmic Composition of Music”. In: CiteSeer 95 (1995),

p. 120. URL: Algorithmic Music Composition.
[27] Hiller, A., Lejaren, J., and Isaacson, L. M. “Musical Composition with a High Speed

Digital Computer”. In: Audio Engineering Society Convention 9. Audio Engineering
Society 6 (1957), pp. 154–160. URL: Musical composition with digital computer.

[28] MusiComp. URL: MusiComp.
[29] Xenakis, I. Formalized Music: Thought and Mathematics in Composition. Pendragon

Press, 1992. URL: Formalized music.
[30] Illiac Suite. URL: Illiac Suite.
[31] John Cage and his Musical Chess Pieces: Part One. URL: Chess Music.
[32] Schwartz, E. and Godfrey, D. Music Since 1945: Issues, Materials, and Literature.

Schirmer Books: New York, 1993. URL: Music Since 1945: Issues, Materials, and Litera-
ture.

[33] How Is Artificial Intelligence Transforming The Music Industry. URL: AI Music.
[34] Music and the Brain. URL: Music and Brain.
[35] Music: The Last Thing We Forget. URL: Music and Memory.
[36] Orchestra Stock Vectors, Clipart and Illustrations. URL: Orchestra.
[37] Rock Band Figure. URL: Band.
[38] Chords and Arpeggios. URL: Texture elements.
[39] What is Artificial Intelligence? URL: Artificial Intelligence.
[40] Supervised and Unsupervised Learning [Differences & Examples]. URL: Supervised and

Unsupervised Learning.
[41] Supervised Machine Learning. URL: Supervised Learning.

194

https://arxiv.org/pdf/1703.10847.pdf
https://colinraffel.com/projects/lmd/
https://www.ee.columbia.edu/~dpwe/pubs/BertEWL11-msd.pdf
https://dl.acm.org/doi/pdf/10.1145/1178723.1178727?casa_token=VHgFJtDk-YkAAAAA:qt39SsoOgWwa1Whj6k8XLChLdK-MtT_IEUOfpYiESCq1OGGk6uRm2Cm1F2g12I-iWMV-Uh8BU3bp
https://dl.acm.org/doi/pdf/10.1145/1178723.1178727?casa_token=VHgFJtDk-YkAAAAA:qt39SsoOgWwa1Whj6k8XLChLdK-MtT_IEUOfpYiESCq1OGGk6uRm2Cm1F2g12I-iWMV-Uh8BU3bp
https://salu133445.github.io/bmusegan/pdf/bmusegan-ismir2018-paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://nbviewer.org/github/craffel/midi-ground-truth/blob/master/Statistics.ipynb
https://www.analyticsvidhya.com/blog/2020/01/how-to-perform-automatic-music-generation/
https://vdoc.pub/documents/the-prehistory-of-music-human-evolution-archaeology-and-the-origins-of-musicality-275hiiku6l1g
https://thebrickinthesky.wordpress.com/2012/07/18/mozart-musikalisches-wurfelspiel-mozarts-musical-dice-game/
https://www.scribd.com/document/485782110/Alpern-Techniques-for-Algorithmic-Music-Composition
https://www.aes.org/e-lib/browse.cfm?elib=231
https://musicprintinghistory.org/musicomp/
https://www.politeianet.gr/books/9781576470794-xenakis-iannis-pendragon-press-pb-formalized-music-176052
https://www.discogs.com/fr/release/2942390-Hiller-Isaacson-Baker-Computer-Music-From-The-University-Of-Illinois
https://chessandmusic.wordpress.com/2019/05/21/john-cage-and-his-musical-chess-pieces-part-one/
https://archive.org/details/musicsince1945is0000schw
https://archive.org/details/musicsince1945is0000schw
https://madhab-ninad98.medium.com/how-is-artificial-intelligence-transforming-the-music-industry-1957405b565c
https://musicandmemory.org/resources/
https://kids.frontiersin.org/articles/10.3389/frym.2017.00005
https://www.123rf.com/clipart-vector/orchestra.html
https://www.vecteezy.com/vector-art/2185462-rock-star-musician-music-artist-with-musical-instruments-stick-figure-pictogram-icons
https://music.stackexchange.com/questions/90060/how-to-transcribe-an-arpeggiated-4-addendum-chord-to-be-playable-on-a-violin
https://uclmed.tech/what-is-artificial-intelligence/
https://www.v7labs.com/blog/supervised-vs-unsupervised-learning
https://www.v7labs.com/blog/supervised-vs-unsupervised-learning
https://www.javatpoint.com/supervised-machine-learning

Bibliography

[42] Linear Regression t-test: Formula, Example. URL: Linear regression.
[43] Regression Analysis in Machine Learning. URL: Regression Analysis.
[44] Email Spam Classifier using Naive Bayes. URL: Email Spam Classifier.
[45] Top 6 Machine Learning Algorithms for Classification. URL: Classification Algorithms.
[46] Underfitting Vs Just right Vs Overfitting in Machine Learning. URL: Underfitting vs

Overfitting.
[47] Unsupervised Learning. URL: Unsupervised Learning.
[48] Unsupervised Machine Learning. URL: Unsupervised Machine Learning.
[49] Ezugwu, A. E et al. “Automatic Clustering Algorithms: A Systematic Review and

Bibliometric Analysis of Relevant Literature”. In: Neural Computing and Applications
33 (2021), pp. 6247–6306. URL: Automatic clustering algorithms.

[50] 17 Clustering Algorithms used in Data Science and Mining. URL: Clustering Algorithms.
[51] Market Basket Analysis. URL: Market Basket.
[52] Reinforcement Learning Applications: A Brief Guide on How to Get Business Value

from RL. URL: Reinforcement Learning.
[53] More Effective and Efficient Reinforcement Learning. URL: Reinforcement Learning.
[54] Artificial Neural Network Tutorial. URL: Artificial Neuron.
[55] The Unit that Makes Neural Networks Neural: Perceptron. URL: Perceptron.
[56] Perceptron: Explanation, Implementation and a Visual Example. URL: Perceptron.
[57] Multi-layer Perceptron in TensorFlow. URL: Multi-layer Perceptron.
[58] Feng, J. et al. “Reconstruction of Porous Media from Extremely Limited Informa-

tion using Conditional Generative Adversarial Networks”. In: Physical Review E 100
(2019), p. 033308. URL: Reconstruction using CGAN.

[59] Rumelhart, D. E, Hinton, G. E, and Williams, R. J. “Learning Representations by
Back-Propagating Errors”. In: Nature 323 (1986), pp. 533–536. URL: Learning repre-
sentations by back-propagating errors.

[60] Bottou, L. “Online Algorithms and Stochastic Approximations”. In: Online Learning
and Neural Networks. Cambridge University Press, 1998. URL: SGD.

[61] Jais, I. K. M., Ismail, A. R., and Nisa, S. Q. “Adam Optimization Algorithm for Wide
and Deep Neural Network”. In: Knowledge Engineering and Data Science 2 (2019),
pp. 41–46. URL: Adam for wide and deep neural network.

[62] Xu, K. et al. “Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention”. In: Proceedings of International Conference on Machine Learning (ICML),
Lille, France. 2015. URL: Image caption generation.

[63] Gregor, K. et al. “Draw: A Recurrent Neural Network for Image Generation”. In:
Proceedings of International Conference on Machine Learning (ICML), Lille, France.
2015. URL: Draw.

[64] Kingma, D. P and Ba, J. “Adam: A Method for Stochastic Optimization”. In: arXiv
preprint arXiv:1412.6980 (2014). URL: Adam.

[65] Convolutional Neural Networks for Visual Recognition. URL: CNN for Visual Recogni-
tion.

[66] Chauhan, R., Ghanshala, K. K., and Joshi, RC. “Convolutional Neural Network
(CNN) for Image Detection and Recognition”. In: Proceedings of International Confer-
ence on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India.
2018. URL: Image Recognition.

195

https://vitalflux.com/linear-regression-t-test-formula-example/
https://www.javatpoint.com/regression-analysis-in-machine-learning
https://medium.com/analytics-vidhya/email-spam-classifier-using-naive-bayes-a51b8c6290d4
https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-2197870ff501
https://www.kaggle.com/getting-started/166897
https://www.kaggle.com/getting-started/166897
https://aditi22prerna.medium.com/unsupervised-learning-a24caf362e79
https://www.javatpoint.com/unsupervised-machine-learning
https://link.springer.com/article/10.1007/s00521-020-05395-4
https://towardsdatascience.com/17-clustering-algorithms-used-in-data-science-mining-49dbfa5bf69a
https://uwsdatamining.wordpress.com/market-basket-analysis/
https://perfectial.com/blog/reinforcement-learning-applications/
https://livebook.manning.com/book/grokking-deep-reinforcement-learning/chapter-4/v-4/1
https://www.javatpoint.com/artificial-neural-network
https://blog.camelot-group.com/2022/01/neural-networks-perceptron/
https://towardsdatascience.com/perceptron-explanation-implementation-and-a-visual-example-3c8e76b4e2d1
https://www.javatpoint.com/multi-layer-perceptron-in-tensorflow
https://www.researchgate.net/publication/335845675_Reconstruction_of_porous_media_from_extremely_limited_information_using_conditional_generative_adversarial_networks
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
http://leon.bottou.org/papers/bottou-98x
http://journal2.um.ac.id/index.php/keds/article/view/6775
https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/1502.04623
https://arxiv.org/pdf/1412.6980.pdf?source=post_page---------------------------
https://cs231n.github.io/neural-networks-3/
https://cs231n.github.io/neural-networks-3/
https://ieeexplore.ieee.org/document/8703316

Bibliography

[67] Van den Oord, A., Dieleman, S., and Schrauwen, B. “Deep Content-based Music Rec-
ommendation”. In: Proceedings of International Conference on Neural Information
Processing Systems (NIPS), Lake Tahoe, Nevada, USA. 2013. URL: Recommendation
System.

[68] Collobert, R. and Weston, J. “A Unified Architecture for Natural Language Process-
ing: Deep Neural Networks with Multitask Learning”. In: Proceedings of International
Conference on Machine Learning (ICML), Helsinki, Finland. 2008. URL: NLP.

[69] Avilov, O. et al. “Deep Learning Techniques to Improve Intraoperative Awareness De-
tection from Electroencephalographic Signals”. In: Proceedings of International Con-
ference of Engineering in Medicine & Biology Society (EMBS), Montreal, Canada.
2020. URL: Brain-Computer interfaces.

[70] Tsantekidis, A. et al. “Forecasting Stock Prices from the Limit Order Book using Con-
volutional Neural Networks”. In: Proceedings of International Conference on Business
Informatics (CBI), Thessaloniki, Greece. 2017. URL: Financial Time Series.

[71] Convolutional Neural Networks, Explained. URL: Image.
[72] A Comprehensive Guide to Convolutional Neural Networks. URL: CNN.
[73] Convolutional Neural Networks. URL: Stride.
[74] What is Transposed Convolutional Layer? URL: Transposed Convolution.
[75] Convolutional Neural Networks Cheatsheet. URL: Pooling.
[76] Normalization. URL: Normalization.
[77] Ba, J. L., Kiros, J. R., and Hinton, G. E. “Layer Normalization”. In: arXiv preprint

arXiv:1607.06450 (2016). URL: Layer Normalization.
[78] Graves, A. et al. “A Novel Connectionist System for Unconstrained Handwriting

Recognition”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
31 (2008), pp. 855–868. URL: Unconstrained Handwriting Recognition.

[79] Sak, H., Senior, A., and Beaufays, F. “Long Short-Term Memory based Recurrent
Neural Network Architectures for Large Vocabulary Speech Recognition”. In: arXiv
preprint arXiv:1402.1128 (2014). URL: Speech Recognition.

[80] Li, X. and Wu, X. “Constructing Long Short-Term Memory based Deep Recurrent
Neural Networks for Large Vocabulary Speech Recognition”. In: Proceedings of In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), South
Brisbane, Queensland, Australia. 2015. URL: Vocabulary Speech Recognition.

[81] Language Translation with RNNs. URL: RNN.
[82] Khan, R. et al. “A Deep Neural Framework for Image Caption Generation using GRU-

based Attention Mechanism”. In: arXiv preprint arXiv:2203.01594 (2022). URL: Image
Captioning.

[83] Recurrent Neural Network (RNN) Tutorial: Types, Examples, LSTM and More. URL:
RNN.

[84] Recurrent Neural Network. URL: RNN.
[85] Hochreiter, S. and Schmidhuber, J. “Long Short-Term Memory”. In: Neural Compu-

tation 9 (1997), pp. 1735–1780. URL: LSTM.
[86] Cao, J., Qi, M., and Fiaidhi, J. “A Review of Automatic Music Generation based on

Performance RNN”. In: TechRxiv Preprint Server (2020). URL: Performance RNN.
[87] Generative Adversarial Networks could be most Powerful Algorithm in AI. URL: Le-

Cun’s statement.

196

https://proceedings.neurips.cc/paper/2013/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf
https://dl.acm.org/doi/pdf/10.1145/1390156.1390177?casa_token=LM5Q3a3Eu_QAAAAA:6tUPhuLardrB6dHmh3NipILXNEG_tIdaWHSrZWstJfSSYCFaHFJnRr7KFxct5CDIn2FzPKoa
https://ieeexplore.ieee.org/document/9176228
https://ieeexplore.ieee.org/document/8010701
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://developersbreach.com/convolution-neural-network-deep-learning/
https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://paperswithcode.com/method/layer-normalization
https://arxiv.org/pdf/1607.06450.pdf
https://people.idsia.ch/~juergen/tpami_2008.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43905.pdf
https://arxiv.org/pdf/1410.4281.pdf
https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571
https://arxiv.org/pdf/2203.01594.pdf
https://arxiv.org/pdf/2203.01594.pdf
https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn
https://en.wikipedia.org/wiki/Recurrent_neural_network
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.4320&rep=rep1&type=pdf
https://www.techrxiv.org/articles/preprint/A_Review_of_Automatic_Music_Generation_Based_on_Performance_RNN/12088980/1
https://www.techtarget.com/searchenterpriseai/feature/Generative-adversarial-networks-could-be-most-powerful-algorithm-in-AI
https://www.techtarget.com/searchenterpriseai/feature/Generative-adversarial-networks-could-be-most-powerful-algorithm-in-AI

Bibliography

[88] Taif, K., Ugail, H., and Mehmood, I. “Cast Shadow Generation using Generative
Adversarial Networks”. In: Proceedings of International Conference on Computational
Science (ICCS), Amsterdam, The Netherlands. 2020. URL: Cast Shadow Generation.

[89] Yu, J. et al. “Generative Image Inpainting with Contextual Attention”. In: Proceedings
of International Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, Utah, USA. 2018. URL: Image Inpainting.

[90] The Rise of AI Supermodels. URL: AI Supermodels.
[91] Schawinski, K. et al. “Generative Adversarial Networks Recover Features in Astro-

physical Images of Galaxies beyond the Deconvolution Limit”. In: Monthly Notices of
the Royal Astronomical Society: Letters 467 (2017), pp. L110–L114. URL: Astrophysical
Images.

[92] Mustafa, M. et al. “CosmoGAN: Creating High-Fidelity Weak Lensing Convergence
Maps using Generative Adversarial Networks”. In: Computational Astrophysics and
Cosmology 6 (2019), pp. 1–13. URL: CosmoGAN.

[93] Oliveira, L. de, Paganini, M., and Nachman, B. “Learning Particle Physics by Ex-
ample: Location-Aware Generative Adversarial Networks for Physics Synthesis”. In:
Computing and Software for Big Science 1 (2017), pp. 1–24. URL: Physics Synthesis.

[94] Paganini, M., Oliveira, L. de, and Nachman, B. “Accelerating Science with Generative
Adversarial Networks: an Application to 3D Particle Showers in Multilayer Calorime-
ters”. In: Physical Review Letters 120 (2018), p. 042003. URL: 3D Particle Showers.

[95] Wang, X. et al. “EsrGAN: Enhanced Super-Resolution Generative Adversarial Net-
works”. In: Proceedings of International Conference on Computer Vision (ICCV), Mu-
nich, Germany. 2018. URL: ESRGAN.

[96] Nistal, J. et al. “VQCPC-GAN: Variable-Length Adversarial Audio Synthesis using
Vector-Quantized Contrastive Predictive Coding”. In: Proceedings of International
Conference on Applications of Signal Processing to Audio and Acoustics (WASPAA),
New Paltz, New York, USA. 2021. URL: VQCPC-GAN.

[97] Deep Understanding of Discriminative and Generative Models in Machine Learning.
URL: Generative and Discriminative Models.

[98] Understanding Generative Adversarial Networks (GANs). URL: Generator.
[99] Generative Adversarial Networks. URL: GANs.

[100] Complete Guide to Generative Adversarial Networks (GANs). URL: Discriminator.
[101] Hinton, G. E. “Learning Translation Invariant Recognition in a Massively Parallel

Networks”. In: Proceedings of International Conference on Parallel Architectures and
Languages Europe (PARLE), Eindhoven, The Netherlands. 1987. URL: Parallel net-
works.

[102] Hinton, G. E, Krizhevsky, A., and Wang, S. D. “Transforming Auto-Encoders”. In:
Proceedings of International Conference on Artificial Neural Networks (ICANN), Es-
poo, Finland. 2011. URL: Transforming auto-encoders.

[103] Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. " O’Reilly Media, Inc.",
2019. URL: Feature Detection.

[104] Liou, C.-Y., Huang, J.-C., and Yang, W.-C. “Modeling Word Perception using the
Elman Network”. In: Neurocomputing 71 (2008), pp. 3150–3157. URL: Modeling word
perception.

197

https://link.springer.com/content/pdf/10.1007/978-3-030-50426-7.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_Generative_Image_Inpainting_CVPR_2018_paper.pdf
https://www.cdotrends.com/story/14300/rise-ai-supermodels
https://arxiv.org/pdf/1702.00403.pdf
https://arxiv.org/pdf/1702.00403.pdf
https://comp-astrophys-cosmol.springeropen.com/track/pdf/10.1186/s40668-019-0029-9.pdf
https://arxiv.org/pdf/1701.05927.pdf
https://arxiv.org/pdf/1705.02355.pdf
https://arxiv.org/pdf/1809.00219.pdf
https://arxiv.org/pdf/2105.01531.pdf
https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-machine-learning/
https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
https://developers.google.com/machine-learning/gan/gan_structure
https://blog.paperspace.com/complete-guide-to-gans/
https://apps.dtic.mil/sti/pdfs/ADA164453.pdf
https://apps.dtic.mil/sti/pdfs/ADA164453.pdf
http://www.cs.toronto.edu/~fritz/absps/transauto6.pdf
https://www.knowledgeisle.com/wp-content/uploads/2019/12/2-Aur%C3%A9lien-G%C3%A9ron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-O%E2%80%99Reilly-Media-2019.pdf
https://www.researchgate.net/publication/228865413_Modeling_word_perception_using_the_Elman_network
https://www.researchgate.net/publication/228865413_Modeling_word_perception_using_the_Elman_network

Bibliography

[105] Liou, C.-Y. et al. “Autoencoder for Words”. In: Neurocomputing 139 (2014), pp. 84–96.
URL: Autoencoder for words.

[106] The MNIST Database of Handwritten Digits. URL: MNIST.
[107] Lu, X. et al. “Speech Enhancement based on Deep Denoising Autoencoder”. In: Inter-

speech 2013 (2013), pp. 436–440. URL: Speech enhancement.
[108] Gondara, L. “Medical Image Denoising using Convolutional Denoising Autoencoders”.

In: Proceedings of International Conference on Data Mining (ICDM), Barcelona,
Spain. 2016. URL: Medical image denoising.

[109] Deng, J. et al. “Sparse Autoencoder-based Feature Transfer Learning for Speech Emo-
tion Recognition”. In: Proceedings of International Conference on Affective Computing
and Intelligent Interaction (ACII), Geneva, Switzerland. 2013. URL: Speech emotion
recognition.

[110] Al-Qatf, M. et al. “Deep Learning Approach Combining Sparse Autoencoder with
SVM for Network Intrusion Detection”. In: IEEE Access 6 (2018), pp. 52843–52856.
URL: Network intrusion detection.

[111] Hennig, J. A., Umakantha, A., and Williamson, R. C. “A Classifying Variational
Autoencoder with Application to Polyphonic Music Generation”. In: arXiv preprint
arXiv:1711.07050 (2017). URL: Classifying Variational Autoencoder.

[112] Gillick, J., Roberts, A., and Engel, J. “GrooVAE: Generating and Controlling Expres-
sive Drum Performances”. In: Proceedings of International Conference on Machine
Learning (ICML), Long Beach, California, USA. 2019. URL: GrooVAE.

[113] Pratella, D. et al. “A Survey of Autoencoder Algorithms to Pave the Diagnosis of Rare
Diseases”. In: International Journal of Molecular Sciences 22 (2021), p. 10891. URL:
Diagnosis of Rare Diseases.

[114] Symbolic Format: MIDI. URL: MIDI Format.
[115] MIDI. URL: MIDI.
[116] Symbolic Format: MusicXML. URL: MusicXML.
[117] Wang, Z. et al. “POP909: A Pop-Song Dataset for Music Arrangement Generation”.

In: Proceedings of International Conference on Music Information Retrieval (ISMIR),
Montréal, Canada. 2020. URL: POP909.

[118] Humdrum File Format. URL: Humdrum.
[119] Sapp, C. S. “Online Database of Scores in the Humdrum File Format”. In: Proceedings

of International Conference on Music Information Retrieval (ISMIR), London, UK.
2005. URL: Humdrum file format.

[120] WAVE PCM Soundfile Format. URL: WAV.
[121] Monophony. URL: Monophonic piece.
[122] Ji, S., Luo, J., and Yang, X. “A Comprehensive Survey on Deep Music Generation:

Multi-Level Representations, Algorithms, Evaluations, and Future Directions”. In:
arXiv preprint arXiv:2011.06801 (2020). URL: A Comprehensive Survey on Deep Music
Generation.

[123] Bretan, M., Weinberg, G., and Heck, L. “A Unit Selection Methodology for Music
Generation using Deep Neural Networks”. In: arXiv preprint arXiv:1612.03789 (2016).
URL: A Unit Selection Methodology for Music Generation.

[124] Sturm, B. L. et al. “Music Transcription Modelling and Composition using Deep
Learning”. In: arXiv preprint arXiv:1604.08723 (2016). URL: Music transcription.

198

https://www.sciencedirect.com/science/article/abs/pii/S0925231214003658
http://yann.lecun.com/exdb/mnist/
https://www.researchgate.net/profile/Xugang-Lu/publication/283600839_Speech_enhancement_based_on_deep_denoising_Auto-Encoder/links/577b420108ae213761c9c7be/Speech-enhancement-based-on-deep-denoising-Auto-Encoder.pdf
https://ieeexplore.ieee.org/abstract/document/7836672
https://ieeexplore.ieee.org/abstract/document/6681481
https://ieeexplore.ieee.org/abstract/document/6681481
https://ieeexplore.ieee.org/abstract/document/8463474
https://arxiv.org/pdf/1711.07050.pdf
https://magenta.tensorflow.org/groovae
https://www.researchgate.net/publication/355220750_A_Survey_of_Autoencoder_Algorithms_to_Pave_the_Diagnosis_of_Rare_Diseases
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_MIDI.html
http://www.cs.uccs.edu/~cs525/midi/midi.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_MusicXML.html
https://arxiv.org/pdf/2008.07142.pdf
https://wiki.ccarh.org/images/d/dc/Humdrum_file_format.pdf
https://ccrma.stanford.edu/~craig/papers/05/sapp-ismir2005A4.pdf
https://ccrma.stanford.edu/courses/422-winter-2014/projects/WaveFormat/
https://en.wikipedia.org/wiki/Monophony
https://arxiv.org/pdf/2011.06801.pdf
https://arxiv.org/pdf/2011.06801.pdf
https://computationalcreativity.net/iccc2017/ICCC_17_accepted_submissions/ICCC-17_paper_30.pdf
https://arxiv.org/pdf/1604.08723.pdf

Bibliography

[125] Hadjeres, G. and Nielsen, F. “Interactive Music Generation with Positional Con-
straints using Anticipation-RNNs”. In: arXiv preprint arXiv:1709.06404 (2017). URL:
Anticipation-RNN.

[126] Roberts, A. et al. “A Hierarchical Latent Vector Model for Learning Long-Term Struc-
ture in Music”. In: Proceedings of International Conference on Machine Learning
(ICML), Stockholm, Sweden. 2018. URL: MusicVAE.

[127] Yu, L. et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient”.
In: Proceedings of International Conference on Artificial Intelligence (AAAI), San
Francisco, California, USA. 2017. URL: SeqGAN.

[128] Polyphony. URL: Polyphonic piece.
[129] Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. “Modeling Temporal Depen-

dencies in High-Dimensional Sequences: Application to Polyphonic Music Generation
and Transcription”. In: arXiv preprint arXiv:1206.6392 (2012). URL: Polyphonic Music
Generation and Transcription.

[130] Hadjeres, G., Pachet, F., and Nielsen, F. “DeepBach: A Steerable Model for Bach
Chorales Generation”. In: Proceedings of International Conference on Machine Learn-
ing (ICML), Sydney, Australia. 2017. URL: DeepBach.

[131] Mao, H. H., Shin, T., and Cottrell, G. W. “DeepJ: Style-Specific Music Generation”.
In: Proceedings of International Conference on Semantic Computing (ICSC), Laguna
Hills, California, USA. 2018. URL: DeepJ.

[132] Johnson, D. D. “Generating Polyphonic Music using Tied Parallel Networks”. In: Pro-
ceedings of International Conference on Evolutionary and biologically Inspired Music
and Art (EvoMUSART), Amsterdam, The Netherlands. 2017. URL: Biaxial LSTM.

[133] Wang, Z. et al. “PIANOTREE VAE: Structured Representation Learning for Poly-
phonic Music”. In: arXiv preprint arXiv:2008.07118 (2020). URL: PIANOTREE VAE.

[134] Chu, H., Urtasun, R., and Fidler, S. “Song from Pi: A Musically Plausible Network
for Pop Music Generation”. In: arXiv preprint arXiv:1611.03477 (2017). URL: Song
from Pi.

[135] Song from π. URL: Song from π.
[136] Guan, F., Yu, C., and Yang, S. “A GAN model with Self-Attention Mechanism to

Generate Multi-Instruments Symbolic Music”. In: Proceedings of International Joint
Conference on Neural Networks (IJCNN), Budapest, Hungary. 2019. URL: DMB-GAN.

[137] Donahue, C. et al. “LakhNES: Improving Multi-Instrumental Music Generation
with Cross-Domain Pre-training”. In: arXiv preprint arXiv:1907.04868 (2019). URL:
LakhNES.

[138] Valenti, A., Carta, A., and Bacciu, D. “Learning Style-Aware Symbolic Music Repre-
sentations by Adversarial Autoencoders”. In: arXiv preprint arXiv:2001.05494 (2020).
URL: MusAE.

[139] Makhzani, A. et al. “Adversarial Autoencoders”. In: arXiv preprint arXiv:1511.05644
(2015). URL: AAE.

[140] Simon, I., Morris, D., and Basu, S. “MySong: Automatic Accompaniment Generation
for Vocal Melodies”. In: Proceedings of International Conference on Human Factors
in Computing Systems (CHI), Florence, Italy. 2008. URL: MySong.

[141] Wang, Z. and Xia, G. “A Framework for Automated Pop-Song Melody Generation with
Piano Accompaniment Arrangement”. In: arXiv preprint arXiv:1812.10906 (2018).
URL: Automated Pop-song Melody Generation with Piano Accompaniment Arrangement.

199

https://arxiv.org/abs/1709.06404
http://proceedings.mlr.press/v80/roberts18a/roberts18a.pdf
https://arxiv.org/pdf/1609.05473.pdf
https://en.wikipedia.org/wiki/Polyphony
https://arxiv.org/pdf/1206.6392.pdf
https://arxiv.org/pdf/1206.6392.pdf
http://proceedings.mlr.press/v70/hadjeres17a/hadjeres17a.pdf
https://cseweb.ucsd.edu/~gary/pubs/henry-deepj.pdf
https://www.danieldjohnson.com/files/2017generatingpolyphonic.pdf
https://arxiv.org/pdf/2008.07118.pdf
https://arxiv.org/pdf/1611.03477.pdf
https://arxiv.org/pdf/1611.03477.pdf
https://youtu.be/OMq9he-5HUU
https://ieeexplore.ieee.org/document/8852291
https://arxiv.org/pdf/1907.04868.pdf
https://arxiv.org/pdf/2001.05494.pdf
https://arxiv.org/pdf/1511.05644.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/mysongchi2008.pdf
https://arxiv.org/pdf/1812.10906.pdf

Bibliography

[142] Shumway, R. H, Stoffer, D. S, and Stoffer, D. S. Time Series Analysis and its Appli-
cations. Springer, 2000. URL: ARMA.

[143] Jiang, N. et al. “RL-Duet: Online Music Accompaniment Generation using Deep Re-
inforcement Learning”. In: Proceedings of International Conference on Artificial Intel-
ligence (AAAI), New Delhi, India. 2020. URL: RL-Duet.

[144] Ren, Y. et al. “PopMAG: Pop Music Accompaniment Generation”. In: Proceedings of
International Conference on Multimedia (ACM-MM), New York, USA. 2020. URL:
PopMAG.

[145] Benetos, E. et al. “Automatic Music Transcription: An Overview”. In: IEEE Signal
Processing Magazine 36 (2018), pp. 20–30. URL: Automatic Music Transcription.

[146] Percival, G., Fukayama, S., and Goto, M. “Song2Quartet: A System for Generating
String Quartet Cover Songs from Polyphonic Audio of Popular Music”. In: Proceed-
ings of International Conference on Music Information Retrieval Conference (ISMIR),
Málaga, Spain. 2015. URL: Song2Quartet.

[147] Nakamura, E. and Sagayama, S. “Automatic Piano Reduction from Ensemble Scores
based on Merged-Output Hidden Markov Model”. In: Proceedings of International
Conference on Computer Music (ICMC), Denton, Texas, USA. 2015. URL: Automatic
Piano Reduction from Ensemble Scores.

[148] Nakamurai, E. and Yoshii, K. “Statistical Piano Reduction Controlling Performance
Difficulty”. In: APSIPA Transactions on Signal and Information Processing 7 (2015),
p. 13. URL: Piano Reduction.

[149] Gatys, L. A., Ecker, A. S., and Bethge, M. “Image Style Transfer using Convolutional
Neural Networks”. In: Proceedings of International Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, Nevada, USA. 2016. URL: Image Style
Transfer.

[150] Dai, S., Zhang, Z., and Xia, G. G. “Music Style Transfer: A Position Paper”. In: arXiv
preprint arXiv:1803.06841 (2018). URL: Music Style Transfer.

[151] Brunner, G. et al. “MIDI-VAE: Modeling Dynamics and Instrumentation of Music
with Applications to Style Transfer”. In: arXiv preprint arXiv:1809.07600 (2018).
URL: MIDI-VAE.

[152] Yang, R. et al. “Deep Music Analogy via Latent Representation Disentanglement”. In:
arXiv preprint arXiv:1906.03626 (2019). URL: Latent representation disentanglement.

[153] Chen, Z. et al. “Learning to Fuse Music Genres with Generative Adversarial Dual
Learning”. In: Proceedings of International Conference on Data Mining (ICDM),
Phuket, Thailand. 2017. URL: Fuse Music Genres.

[154] Huang, S. et al. “TIMBRETRON: A Wavenet(cycleGAN(CQT(audio))) Pipeline for
Musical Timbre Transfer”. In: arXiv preprint arXiv:1811.09620 (2019). URL: TIM-
BRETRON.

[155] Barry, S. and Kim, Y. “Style Transfer for Musical Audio using Multiple Time-
Frequency Representations”. In: Proceedings of International Conference on Learning
Representations (ICLR), Vancouver, British Columbia, USA. 2018. URL: Style transfer
for musical audio.

[156] Peng, X. et al. “A Lightweight Music Texture Transfer System”. In: arXiv preprint
arXiv:1810.01248 (2020). URL: Music Texture Transfer System.

200

https://link.springer.com/book/10.1007/978-3-319-52452-8
https://arxiv.org/pdf/2002.03082.pdf
https://arxiv.org/pdf/2008.07703.pdf
https://www.researchgate.net/publication/330068609_Automatic_Music_Transcription_An_Overview
https://archives.ismir.net/ismir2015/paper/000141.pdf
https://eita-nakamura.github.io/articles/Nakamura-Sagayama_AutomaticPianoReduction_ICMC2015.pdf
https://eita-nakamura.github.io/articles/Nakamura-Sagayama_AutomaticPianoReduction_ICMC2015.pdf
https://arxiv.org/pdf/1808.05006.pdf
https://rn-unison.github.io/articulos/style_transfer.pdf
https://rn-unison.github.io/articulos/style_transfer.pdf
https://arxiv.org/pdf/1803.06841.pdf
https://arxiv.org/pdf/1809.07600.pdf
https://arxiv.org/pdf/1906.03626.pdf
https://arxiv.org/pdf/1712.01456.pdf
https://arxiv.org/pdf/1811.09620.pdf
https://arxiv.org/pdf/1811.09620.pdf
https://openreview.net/pdf?id=BybQ7zWCb
https://openreview.net/pdf?id=BybQ7zWCb
https://arxiv.org/pdf/1810.01248.pdf

Bibliography

[157] Sismana, B. et al. “SINGAN: Singing Voice Conversion with Generative Adversarial
Networks”. In: Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA), Lanzhou, China. 2019. URL: SINGAN.

[158] Zhang, L. et al. “DurIAN-SC: Duration Informed Attention Network based Singing
Voice Conversion System”. In: arXiv preprint arXiv:2008.03009 (2020). URL: DurIAN-
SC.

[159] Hung, Y.-N. et al. “Musical Composition Style Transfer via Disentangled Timbre Rep-
resentations”. In: arXiv preprint arXiv:1905.13567 (2019). URL: Music Style Transfer.

[160] Zalkow, F., Brand, S., and Graf, B. “Musical Style Modification as an Optimization
Problem”. In: Proceedings of International Conference on Computer Music (ICMC),
Utrecht, Netherlands. 2016. URL: Musical Style Modification.

[161] Pati, A., Lerch, A., and Hadjeres, G. “Learning to Traverse Latent Spaces for Musical
Score Inpainting”. In: arXiv preprint arXiv:1907.01164 (2019). URL: Musical score
inpainting.

[162] Chen, K. et al. “Music Sketchnet: Controllable Music Generation via Factorized Rep-
resentations of Pitch and Rhythm”. In: arXiv preprint arXiv:2008.01291 (2020). URL:
Music Sketchnet.

[163] Chi, W. et al. “Generating Music with a Self-Correcting, Non-Chronological Autore-
gressive Model”. In: arXiv preprint arXiv:2008.08927 (2020). URL: EsNET.

[164] Marafioti, A. et al. “A Context Encoder for Audio Inpainting”. In: IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing 27 (2019), pp. 2362–2372. URL:
Audio Inpainting.

[165] Marafioti, A. et al. “GACELA: A Generative Adversarial Context Encoder for Long
Audio Inpainting of Music”. In: IEEE Journal of Selected Topics in Signal Processing
15 (2020), pp. 120–131. URL: GACELA.

[166] JSB Chorales. URL: Bach chorales.
[167] Cuthbert, M. S. and Ariza, C. “music21: A Toolkit for Computer-Aided Musicology

and Symbolic Music Data”. In: Proceedings of International Conference on Music
Information Retrieval (ISMIR), Utrecht, Netherlands. 2010. URL: music21.

[168] Ferreira, L. N. and Whitehead, J. “Learning to Generate Music with Sentiment”. In:
arXiv preprint arXiv:2103.06125 (2019). URL: Learning to generate music with senti-
ment.

[169] Crestel, L. et al. “A Database Linking Piano and Orchestral MIDI Scores with Appli-
cation to Automatic Projective Orchestration”. In: arXiv preprint arXiv:1810.08611
(2018). URL: A Database linking piano and orchestral MIDI scores.

[170] International Piano e-Competition. URL: e-Piano.
[171] Kong, Q. et al. “GiantMIDI-Piano: A Large-Scale MIDI Dataset for Classical Piano

Music”. In: arXiv preprint arXiv:2010.07061 (2020). URL: GiantMIDI-Piano.
[172] Kong, Q. et al. “High-Resolution Piano Transcription with Pedals by Regressing On-

sets and Offsets Times”. In: arXiv preprint arXiv:2010.01815 (2020). URL: Piano Tran-
scription with Pedals.

[173] TheoryTab DB. URL: TheoryTab.
[174] Yeh, Y.-C. et al. “Automatic Melody Harmonization with Triad Chords”. In: Journal

of New Music Research 50 (2021), p. 20. URL: Automatic Melody Harmonization with
Triad Chords: A Comparative Study.

[175] Lead Sheet Dataset. URL: HLSD.

201

http://www.apsipa.org/proceedings/2019/pdfs/73.pdf
https://arxiv.org/pdf/2008.03009.pdf
https://arxiv.org/pdf/2008.03009.pdf
https://arxiv.org/pdf/1905.13567.pdf
https://quod.lib.umich.edu/cgi/p/pod/dod-idx/musical-style-modification-as-an-optimization-problem.pdf?c=icmc;idno=bbp2372.2016.041;format=pdf
https://arxiv.org/pdf/1907.01164.pdf
https://arxiv.org/pdf/1907.01164.pdf
https://arxiv.org/pdf/2008.01291.pdf
https://arxiv.org/pdf/2008.08927.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8867915
https://arxiv.org/pdf/2005.05032.pdf
https://github.com/czhuang/JSB-Chorales-dataset
https://dspace.mit.edu/bitstream/handle/1721.1/84963/Cuthbert_Ariza_ISMIR_2010.pdf?sequence=1&isAllowed=y
http://www.lucasnferreira.com/papers/2019/ismir-learning.pdf
http://www.lucasnferreira.com/papers/2019/ismir-learning.pdf
https://arxiv.org/pdf/1810.08611.pdf
https://www.piano-e-competition.com/
https://arxiv.org/pdf/2010.07061.pdf
https://arxiv.org/pdf/2010.01815.pdf
https://arxiv.org/pdf/2010.01815.pdf
https://www.hooktheory.com/theorytab
https://arxiv.org/pdf/2001.02360.pdf
https://arxiv.org/pdf/2001.02360.pdf
https://github.com/wayne391/lead-sheet-dataset

Bibliography

[176] Lim, H., Rhyu, S., and Lee, K. “Chord Generation from Symbolic Melody using
BLSTM Networks”. In: arXiv preprint arXiv:1712.01011 (2017). URL: Chord gener-
ation from symbolic melody.

[177] Jeong, D. et al. “VirtuosoNet: A Hierarchical RNN-based System for Modeling Ex-
pressive Piano Performance”. In: Proceedings of International Conference on Music
Information Retrieval (ISMIR), Delft, The Netherlands. 2019. URL: VirtuosoNet.

[178] Dong, H.-W., Hsiao, W.-Y., and Yang, Y.-H. “Pypianoroll: Open source Python Pack-
age for Handling Multitrack Pianoroll”. In: Proceedings of International Conference
on Music Information Retrieval (ISMIR), Paris, France. 2018. URL: Pypianoroll.

[179] ABC version of the Nottingham Music Database. URL: NMD.
[180] Going to use the Nottingham Music Database? URL: Cleansed NMD.
[181] Henrik Norbeck’s ABC Tunes. URL: Norbeck’s ABC Tunes.
[182] Cherla, S. et al. “Hybrid Long- and Short-Term Models of Folk Melodies”. In: Proceed-

ings of International Conference on Music Information Retrieval (ISMIR), Málaga,
Spain. 2015. URL: Folk melodies.

[183] Engel, J. et al. “Neural Audio Synthesis of Musical Notes with WaveNet Autoen-
coders”. In: Proceedings of International Conference on Machine Learning (ICML),
Sydney, Australia. 2017. URL: Neural Audio Synthesis.

[184] Defferrard, M. et al. “FMA: A Dataset for Music Analysis”. In: arXiv preprint
arXiv:1612.01840 (2017). URL: FMA.

[185] Duan, Z. et al. “The NUS Sung and Spoken Lyrics Corpus: A Quantitative Comparison
of Singing and Speech”. In: Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA), Kaohsiung, Taiwan. 2013. URL: The NUS
Sung and Spoken Lyrics Corpus.

[186] Hawthorne, C. et al. “Enabling Factorized Piano Music Modeling and Generation with
Maestro Dataset”. In: arXiv preprint arXiv:1810.12247 (2019). URL: Maestro Dataset.

[187] Gillick, J. et al. “Learning to Groove with Inverse Sequence Transformations”. In:
Proceedings of International Conference on Machine Learning (ICML), Long Beach,
California, USA. 2019. URL: Learning to Groove.

[188] Foscarin, F. et al. “ASAP: A Dataset of Aligned Scores and Performances for Pi-
ano Transcription”. In: Proceedings of International Conference on Music Information
Retrieval (ISMIR), Montreal, Canada. 2020. URL: ASAP.

[189] Yu, Y. and Canales, S. “Conditional LSTM-GAN for Melody Generation from Lyrics”.
In: arXiv preprint arXiv:1908.05551 (2019). URL: Melody Generation from Lyrics.

[190] Dorfer, M. et al. “Learning Audio-Sheet Music Correspondences for Cross-Modal Re-
trieval and Piece Identification”. In: Proceedings of International Conference on Music
Information Retrieval (ISMIR), Paris, France. 2018. URL: Cross-modal retrieval.

[191] Zeng, Donghuo, Yu, Yi, and Oyama, Keizo. “MTM Dataset for Joint Representa-
tion Learning among Sheet Music, Lyrics and Musical Audio”. In: arXiv preprint
arXiv:2012.00290 (2020). URL: MTM Dataset.

[192] Yang, L.-C. and Lerch, A. “On the Evaluation of Generative Models in Music”. In:
Neural Computing and Applications 32 (2018), pp. 4773–4784. URL: Evaluation of
generative models in music.

[193] Theis, L., Oord, A., and Bethge, M. “A Note on the Evaluation of Generative Models”.
In: arXiv preprint arXiv:1511.01844 (2015). URL: Evaluation of generative models.

202

https://arxiv.org/pdf/1712.01011.pdf
https://arxiv.org/pdf/1712.01011.pdf
https://archives.ismir.net/ismir2019/paper/000112.pdf
https://salu133445.github.io/pypianoroll/pdf/pypianoroll-ismir2018-lbd-paper.pdf
http://abc.sourceforge.net/NMD/
https://highnoongmt.wordpress.com/2018/10/02/going-to-use-the-nottingham-music-database/
http://www.norbeck.nu/abc/
https://archives.ismir.net/ismir2015/paper/000140.pdf
http://proceedings.mlr.press/v70/engel17a/engel17a.pdf
https://arxiv.org/pdf/1612.01840.pdf
https://www.researchgate.net/publication/261277428_The_NUS_sung_and_spoken_lyrics_corpus_A_quantitative_comparison_of_singing_and_speech
https://www.researchgate.net/publication/261277428_The_NUS_sung_and_spoken_lyrics_corpus_A_quantitative_comparison_of_singing_and_speech
https://arxiv.org/pdf/1810.12247.pdf
https://arxiv.org/pdf/1905.06118.pdf
https://program.ismir2020.net/static/final_papers/127.pdf
https://arxiv.org/pdf/1908.05551.pdf
https://transactions.ismir.net/articles/10.5334/tismir.12/
https://arxiv.org/pdf/2012.00290.pdf
https://musicinformatics.gatech.edu/wp-content_nondefault/uploads/2018/11/postprint.pdf
https://musicinformatics.gatech.edu/wp-content_nondefault/uploads/2018/11/postprint.pdf
https://arxiv.org/pdf/1511.01844.pdf

Bibliography

[194] Sturm, B. L. and Ben-Tal, O. “Taking the Models back to Music Practice: Evaluating
Generative Transcription Models built using Deep Learning”. In: Journal of Creative
Music Systems 2 (2017). URL: Evaluating Generative Transcription Models.

[195] Casella, G. and Berger, R. L. Statistical Inference. Cengage Learning, 2021. URL:
Statistical Inference.

[196] Huang, C.-Z. A. et al. “Counterpoint by Convolution”. In: arXiv preprint
arXiv:1903.07227 (2019). URL: Counterpoint by convolution.

[197] Johnson, D. D. “Generating Polyphonic Music using Tied Parallel Networks”. In: Pro-
ceedings of International Conference on Evolutionary and Biologically Inspired Music
and Art (EvoMUSART), Amsterdam, The Netherlands. 2017. URL: Generating Poly-
phonic Music Using Tied Parallel Networks.

[198] Donahue, C., McAuley, J., and Puckette, M. “Adversarial Audio Synthesis”. In: arXiv
preprint arXiv:1802.04208 (2018). URL: Adversarial Audio Synthesis.

[199] Marafioti, A. et al. “Adversarial Generation of Time-Frequency Features with Appli-
cation in Audio Synthesis”. In: Proceedings of International Conference on Machine
Learning (ICML), Long Beach, California, USA. 2019. URL: Audio Synthesis.

[200] Engel, J. et al. “GANSynth: Adversarial Neural Audio Synthesis”. In: arXiv preprint
arXiv:1902.08710 (2019). URL: GANSynth.

[201] Roberts, A. et al. “A Hierarchical Latent Vector Model for Learning Long-Term Struc-
ture in Music”. In: Proceedings of International Conference on Machine Learning
(ICML), Stockholm, Sweden. 2018. URL: Long-Term Structure in Music.

[202] Brunner, G. et al. “Symbolic Music Genre Transfer with CycleGAN”. In: Proceedings of
International Conference on Tools with Artificial Intelligence (ICTAI), Volos,Greece.
2018. URL: CycleGAN.

[203] Chuan, C.-H. and Herremans, D. “Modeling Temporal Tonal Relations in Polyphonic
Music through Deep Networks with a Novel Image-based Representation”. In: Pro-
ceedings of International Conference on Artificial Intelligence (AAAI), New Orleans,
Louisiana, USA. 2018. URL: Modeling Temporal Tonal Relations in Polyphonic Music.

[204] Sabathé, R., Coutinho, E., and Schuller, B. “Deep Recurrent Music Writer: Memory-
Enhanced Variational Autoencoder-based Musical Score Composition and an Objec-
tive Measure”. In: Proceedings of International Joint Conference on Neural Networks
(IJCNN), Anchorage, Alaska, USA. 2017. URL: Deep Recurrent Music Writer.

[205] Choi, K. et al. “Encoding Musical Style with Transformer Autoencoders”. In: Pro-
ceedings of International Conference on Machine Learning (ICML), Vienna, Austria.
2020. URL: Encoding Musical Style .

[206] Wang, C.-i and Dubnov, S. “Guided Music Synthesis with Variable Markov Oracle”.
In: Proceedings of International Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE), Raleigh, North Carolina, USA. 2014. URL: Variable
Markov Oracle.

[207] Allauzen, C., Crochemore, M., and Raffinot, M. “Factor Oracle: A New Structure for
Pattern Matching”. In: Proceedings of International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM), Milovy, Czech Republic. 1999.
URL: Factor Oracle.

[208] Dubnov, S., Assayag, G., and Cont, A. “Audio Oracle: A New Algorithm for Fast
Learning of Audio Structures”. In: Proceedings of International Conference on Com-
puter Music (ICCM), Copenhagen, Denmark. 2007. URL: Audio Oracle.

203

https://www.mdpi.com/2076-3417/7/12/1313/htm
https://mybiostats.files.wordpress.com/2015/03/casella-berger.pdf
https://arxiv.org/pdf/1903.07227.pdf
https://www.cs.hmc.edu/~ddjohnson/tied-parallel/johnson2017tiedparallel.pdf
https://www.cs.hmc.edu/~ddjohnson/tied-parallel/johnson2017tiedparallel.pdf
https://arxiv.org/pdf/1802.04208.pdf
https://proceedings.mlr.press/v97/marafioti19a.html
https://arxiv.org/pdf/1902.08710.pdf
https://arxiv.org/pdf/1803.05428.pdf
https://arxiv.org/pdf/1809.07575.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/11880
https://core.ac.uk/download/pdf/80780383.pdf
https://arxiv.org/pdf/1912.05537.pdf
https://scholar.google.com/citations?user=SmuY2sMAAAAJ&hl=en
https://scholar.google.com/citations?user=SmuY2sMAAAAJ&hl=en
https://www.researchgate.net/profile/Maxime-Crochemore/publication/221513115_Factor_Oracle_A_New_Structure_for_Pattern_Matching/links/55e3276708ae6abe6e8e5bd6/Factor-Oracle-A-New-Structure-for-Pattern-Matching.pdf
https://hal.inria.fr/hal-00839072/file/AudioOracle_5.pdf

Bibliography

[209] Chen, K. et al. “The Effect of Explicit Structure Encoding of Deep Neural Networks for
Symbolic Music Generation”. In: Proceedings of International Workshop on Multilayer
Music Representation and Processing (MMRP), Milano, Italy. 2019. URL: Symbolic
Music Generation.

[210] Hakimi, S. H., Bhonker, N., and El-Yaniv, R. “BEBOPNET: Deep Neural Models
for Personalized Jazz Improvisations”. In: Proceedings of International Conference on
Music Information Retrieval (ISMIR), Montreal, Canada. 2020. URL: BEBOPNET.

[211] Jin, C. et al. “A Style-Specific Music Composition Neural Network”. In: Neural Process-
ing Letters 52 (2020), pp. 1893–1912. URL: A Style-Specific Music Composition Neural
Network.

[212] Parekh, J., Rao, P., and Yang, Y.-H. “Speech-to-Singing Conversion in an Encoder-
Decoder Framework”. In: Proceedings of International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Barcelona, Spain. 2020. URL: Speech-to-singing con-
version.

[213] Ribeiro, F. et al. “CROWDMOS: An Approach for Crowdsourcing Mean Opinion
Score Studies”. In: Proceedings of International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Prague, Czechia. 2011. URL: CROWDMOS.

[214] Turing, A. M. “Computing Machinery and Intelligence”. In: Parsing the Turing Test.
Springer, 2009. URL: Computing machinery and intelligence.

[215] Liang, F. et al. “Automatic Stylistic Composition of Bach Chorales with Deep LSTM”.
In: Proceedings of International Conference on Music Information Retrieval (ISMIR),
Suzhou, China. 2017. URL: Bach chorales.

[216] Haque, A., Guo, M., and Verma, P. “Conditional End-to-End Audio Transforms”. In:
arXiv preprint arXiv:1804.00047 (2018). URL: Conditional End-to-End Audio Trans-
forms.

[217] Zhao, K. et al. “An Emotional Symbolic Music Generation System based on LSTM
Networks”. In: Proceedings of International Conference on Information Technology,
Networking, Electronic and Automation Control (ITNEC), Chengdu, China. 2019.
URL: Emotional Symbolic Music Generation.

[218] Wei, I-C., Wu, C.-W., and Su, L. “Generating Structured Drum Pattern using Varia-
tional Autoencoder and Self-Similarity Matrix”. In: Proceedings of International Con-
ference on Music Information Retrieval (ISMIR), Delft, The Netherlands. 2019. URL:
Generating structured drum pattern.

[219] Lu, C.-Y. et al. “Play as You Like: Timbre-Enhanced Multi-Modal Music Style Trans-
fer”. In: Proceedings of International Conference on Artificial Intelligence (AAAI),
Honolulu, Hawaii, USA. 2019. URL: Play as You Like.

[220] Yi, Y.-H. et al. “Singing Voice Synthesis using Deep Autoregressive Neural Networks
for Acoustic Modeling”. In: arXiv preprint arXiv:1906.08977 (2019). URL: Singing
Voice Synthesis .

[221] Anomaly Detection using GAN. URL: Convolutional GAN.
[222] Generative Adversarial Networks - A Deep Learning Architecture. URL: GANs.
[223] Arjovsky, M. and Bottou, L. “Towards Principled Methods for Training Generative

Adversarial Networks”. In: arXiv preprint arXiv:1701.04862 (2017). URL: Training
generative adversarial networks.

204

https://arxiv.org/pdf/1811.08380.pdf
https://arxiv.org/pdf/1811.08380.pdf
https://program.ismir2020.net/static/final_papers/132.pdf
https://link.springer.com/article/10.1007/s11063-020-10241-8
https://link.springer.com/article/10.1007/s11063-020-10241-8
https://arxiv.org/pdf/2002.06595.pdf
https://arxiv.org/pdf/2002.06595.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/05/0002416.pdf
https://academic.oup.com/mind/article/LIX/236/433/986238
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/11/156_Paper.pdf
https://arxiv.org/pdf/1804.00047.pdf
https://arxiv.org/pdf/1804.00047.pdf
https://www.semanticscholar.org/paper/An-Emotional-Symbolic-Music-Generation-System-based-Zhao-Li/5d60ba42234842eafd5ed295e3224a5472428023#citing-papers
https://zenodo.org/record/3527946#.YFHi9dszY5k
https://ojs.aaai.org//index.php/AAAI/article/view/3897
https://arxiv.org/pdf/1906.08977.pdf
https://arxiv.org/pdf/1906.08977.pdf
https://blog.nerdfactory.ai/2021/07/05/Anomaly-detection-using-GAN.html
https://www.bitcoininsider.org/article/20018/generative-adversarial-networks-deep-learning-architecture
https://arxiv.org/pdf/1701.04862.pdf?source=post_page---------------------------
https://arxiv.org/pdf/1701.04862.pdf?source=post_page---------------------------

Bibliography

[224] Arjovsky, M., Chintala, S., and Bottou, L. “Wasserstein Generative Adversarial Net-
works”. In: Proceedings of International Conference on Machine Learning (ICML),
Sydney, Australia. 2017. URL: WGANs.

[225] Raffel, C. and Ellis, D. PW. “Intuitive Analysis, Creation and Manipulation of MIDI
Data with Pretty_midi”. In: Proceedings of International Conference on Music Infor-
mation Retrieval (ISMIR), Taipei, Taiwan. 2014. URL: Pretty_Midi.

[226] Serra, J. et al. “Unsupervised Detection of Music Boundaries by Time Series Struc-
ture Features”. In: Proceedings of International Conference on Artificial Intelligence
(AAAI), Toronto, Ontario, Canada. 2012. URL: Unsupervised detection of music bound-
aries.

[227] AI Music Generation - Lead Sheet Composition and Arrangement. URL: Unconditional
Generation.

[228] ISMIR 2019 tutorial: Generating Music with Generative Adversarial Networks
(GANs). URL: Generating Music with GANs.

[229] Heusel, M. et al. “GANs Trained by a two Time-Scale Update Rule Converge to a
Local Nash Equilibrium”. In: arXiv preprint arXiv:1706.08500 (2017). URL: FID.

[230] Szegedy, C. et al. “Rethinking the Inception Architecture for Computer Vision”. In:
Proceedings of International Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, Nevada, USA. 2016. URL: Inception-v3.

[231] Wang, Z. et al. “Learning Interpretable Representation for Controllable Polyphonic
Music Generation”. In: arXiv preprint arXiv:2008.07122 (2020). URL: Controllable
Generation.

[232] Zhao, J. and Xia, G. “AccoMontage: Accompaniment Arrangement via Phrase Selec-
tion and Style Transfer”. In: arXiv preprint arXiv:2108.11213 (2021). URL: AccoMon-
tage.

[233] Yu, Y., Srivastava, A., and Canales, S. “Conditional LSTM-GAN for Melody Genera-
tion from Lyrics”. In: ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM) 17 (2021), pp. 1–20. URL: Melody generation from lyrics.

[234] Gan, C. et al. “Foley Music: Learning to Generate Music from Videos”. In: Proceedings
of European Conference on Computer Vision (ECCV), Glasgow, UK. 2020. URL: Foley
Music.

205

http://proceedings.mlr.press/v70/arjovsky17a/arjovsky17a.pdf
https://colinraffel.com/publications/ismir2014intuitive.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewFile/4907/5309
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewFile/4907/5309
https://towardsdatascience.com/ai-music-generation-lead-sheet-composition-and-arrangement-b984208f8519
https://towardsdatascience.com/ai-music-generation-lead-sheet-composition-and-arrangement-b984208f8519
https://www.slideshare.net/affige/ismir2019tutorialgan4music
https://papers.nips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://arxiv.org/pdf/1512.00567v3.pdf
https://arxiv.org/pdf/2008.07122.pdf
https://arxiv.org/pdf/2008.07122.pdf
https://arxiv.org/pdf/2108.11213.pdf
https://arxiv.org/pdf/2108.11213.pdf
https://dl.acm.org/doi/pdf/10.1145/3424116
https://link.springer.com/chapter/10.1007/978-3-030-58621-8_44
https://link.springer.com/chapter/10.1007/978-3-030-58621-8_44

	Abstract
	Περίληψη
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Extended Greek Abstract
	Εισαγωγή
	Ορισμός Ερευνητικού Προβλήματος
	Συνεισφορές της παρούσης Διπλωματικής Εργασίας

	Θεωρητικό Υπόβαθρο
	Συνελικτικά Νευρωνικά Δίκτυα
	Παραγωγικά Ανταγωνιστικά Δίκτυα
	Αυτοκωδικοποιητές

	Baseline Project: MuseGAN
	Αρχιτεκτονική Συστήματος
	Δεδομένα Εκπαίδευσης
	Μετρικές Αξιολόγησης

	Unconditional Generation
	Μοντέλο
	Δεδομένα Εκπαίδευσης
	Εργαλεία Αξιολόγησης
	Πειράματα και Αποτελέσματα

	Conditional Generation
	Μοντέλο
	Πειράματα και Αποτελέσματα

	Σύνοψη και Μελλοντικές Επεκτάσεις

	Introduction
	Problem Definition
	Challenges of the Task
	Thesis Outline & Contributions

	Theoretical Background
	Machine Learning
	Supervised Learning: More Control, Less Bias
	Unsupervised Learning: Speed and Scale
	Reinforcement Learning: Rewards Outcomes

	Artificial Neural Networks
	Perceptron
	Multilayer Perceptron
	Convolutional Neural Networks
	Recurrent Neural Networks

	Generative Adversarial Networks
	Discriminator
	Generator
	Overall Training

	Autoencoder

	Related Work
	Music Representations
	MIDI
	MusicXML
	Pianoroll
	Text
	Audio

	Tasks and Methods
	Generation from Scratch
	Music Arrangement
	Music Style Transfer
	Music Completion/Inpainting

	Datasets
	MIDI
	MusicXML
	Pianoroll
	Text
	Audio
	Multimodality

	Evaluation
	Objective Evaluation
	Subjective Evaluation

	Baseline Project: MuseGAN
	Overview & Challenges
	Architecture
	Generative Adversarial Networks
	Modeling Multitrack Interdependency
	Modeling Temporal Structure
	MuseGAN
	Implementation Details

	Data
	Data Representation
	Dataset
	Data Preprocessing

	Evaluation & Results
	Objective Evaluation
	Subjective Evaluation

	Unconditional Generation
	Task Description
	Model
	Architecture
	Implementation
	Training Process

	Data
	Data Representation
	Dataset
	Data Preprocessing

	Experimental Protocol
	Experimental Setup
	Objective Metrics

	Results
	Analysis of Training Process
	Model for Inference
	Qualitative Inspection
	Experimentation over Generative Configurations
	Objective Comparison with Baseline

	User Study
	Experimental Setup
	Subjective Results & Discussion

	Conditional Generation
	Task Description
	Model
	Architecture
	Implementation
	Training Process

	Data
	Data Representation
	Dataset
	Data Preprocessing

	Experimental Protocol
	Experimental Setup
	Objective Metrics

	Results
	Analysis of Training Process
	Qualitative Inspection
	Objective Evaluation

	User Study
	Experimental Setup
	Subjective Results & Discussion

	Conclusions
	Synopsis
	Thoughts on Future Work

	Bibliography

