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Abstract

Machine Learning has flourished over the last few years, resulting in the inevitable inclusion of
Artificial Intelligence into our everyday life. The emulation of human mental acuity, achieved
by Artificial Neural Networks, has made overwhelming progress concerning fundamental or
even instinctive intellectual processes. On this ground, the interest of research community
is now focused on more creative and generative functionalities, one of those being music
synthesis. The process of creating musical pieces is considered a higher mental function
that still remains unfathomed, even at a non-computational level. A musical composition
constitutes a form of expressing various attributes, such as knowledge, experience, ideas,
emotions. Therefore, this involving notion of subjectivity makes the problem of automatic
music generation particularly complex.

Our approach in the research field of automatic music synthesis is based on Generative Ad-
versarial Networks, one of the most prominent system architectures in the area of generative
modeling with several applications in comparable problems of different data types, such as
image, video and text. Initially, we examine the task of polyphonic music synthesis for
multiple tracks, in terms of generation from scratch, that is without any human input or
supplementary information. Afterwards, we extend our model in a human-Al cooperative
framework by exploring the task of accompaniment generation, namely the generation pro-
cess of the musical part which provides the rhythmic and/or harmonic support for the melody
or main themes of a song, composed by human. The experimentation over the structure of
individual networks, the architecture of the whole system, the training algorithm and various
parameters with respect to the generated musical samples, allows us to investigate different
aspects of the procedure that an Artificial Intelligence model follows in order to compose
music, demonstrating at the same time the impact of the aforementioned components on the
produced musical result. Finally, a set of objective metrics concerning musical features is
established, while a user study is also conducted in the context of subjective evaluation. In
this way, we show that our model is capable of creating novel aesthetic music characterized by
tonal, temporal and harmonic structure, achieving competitive performance in comparison
with the baseline implementation.

Keywords — Music, Synthesis, Machine Learning, Artificial Intelligence, Generative Ad-
versarial Networks, Generation from scratch, Accompaniment Generation
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ITepiAndn

To tereutala ypovia o xAddog tng Mnyovixig Mdnong avanticoetan ye paydaloug puduoic,
xohoTOvTag avamdpeuxtn TNy evowudtwon tng Teywntrc Nonuooivng oe noiiheg ttuyée tng
avipwmvng xadnueptvotntag. H poviehonoinon tne avipmmivng euguiog yéow tng dnutoupyiog
Teyvnrov Nevpwvixov Auxtionv onuelnwoe onpovtin meoodo ot eninedo Bacxay, (owe xou
EVOTIXTWOWY Y10 TOV AVUpWTO, AELTOLRYLOY, CTEEPOVTAS €TOL TO EVOLUPEROY TNG EMCTNUOVIXAG
XOLVOTNTAS OTNY TPOCTIAYELN TTROGEYYLOTG THO THPEAY WYXV XAl ONULOVEYIXODY dladtxactoy. Mia
€& autodv elvan xou 1 olvideon povowrc. Ilpdxeirton yior plor avedTepn vonte| Aettoupyla, 7
omofo oxoun xaL OE PN UTOROYLOTIXG eTinedo Vewpelton avelepedvntn. ‘Evo poucixd xouudtt
amoTEAEL Uiot Lop@Y| ExPEUoNS BLaPOE®Y GTOLYEIWY, OIS OL YVWOELS, 1) EUTELRN, ToL AXOUCUITA,
Ta ouvonoOuaT, OTOTE QUTH 1) €VVOL TNG UTOXEWEVIXOTNTAC ToU EUTAEXETAL, xahoTd ToO
TEOBANUA dntoveYlag LOUCIXNC UE AUTOUATO TEOTO LWLaiTERH TEP(TAOXO.

H 8uer) pag mpooéyyion otny gpeuvntiny| TEpoyn Tng autouatng cuvieone yovownc otneile-
tou ota Hopayoywmd Avunopadetuxd Aixtuo (Generative Adversarial Networks), to omola
amoTEAOLY TNV %aT’ eLOYNV UOYLTEXTOVIX] UTOAOYLOTIXO) GUOTAUATOS OGOV apopd tasks mou
TepL oufdvouy xdmotor Sladixacta dnuloupyiog xou eivar EUPENS BLUBEBOPEVA GE AVTIGTOLY O TEO-
BAAuaTo SLPORETIXOY TUTOL BEBOPEVWY, OTIWS 1) EOVY, To Bivteo xau o xeluevo. Bdoel, howndy,
TOU €V AOYW UOVTEROU, €€eTAlOUUE OE TEWTO OTABI0 TNV AUTOPUTY TORUYWYT) TORUPOVIXAC
HOLCWXAC YLot TOAAATAG Opyova Ywels T yerion avipnmivng eloéd0u 1 CUUTANEWUATIXDY OE-
OOMEVWY. XTNV CLUVEYEL, EMEXTEVOUUE TO OUCTNHE UG OE €Vl GUVERYATIXO TAdICLO avip®TOU-
UNyOvAC, UEAETOVTOC T1) SLadixacior auTOUaTOTONUEYNS GUVIESTC TOU LOUGIXOU TUUITOS ToU
amotehel TNV cuvodelo LG xVELIG HEAWOWAC YRUUUNG TROERYOUEVNG amtd auJEVTIXT| HOUCLXN
obvieon. ewapaniloyevor ye TNy dour Twv emPépoug dXTOWY, TNV JEYITEXTOVIXT| TOU GUVO-
AMx00) UG TAUATOC, TOV ahYOEWIUO exTadEVOTIC UAAS XAl DIAPOPES TUPAUUETEOUS TTOU YoEax TNel-
Couv Ta TopaYOUEVL LoUCIXd DElypoTa, £EEPEUVOUUE DLUPOPETIXEC TTUYES TOU TEOTOU UE TOV
orofo unopel éva povtého Teyvntric Nonuooivne vo cuviétel autdvoua Louotnr|, xaTadeEXVIe-
VTOC CLYYEOVWS TNV ETUOROCT, QUTWY TWV OTOLYEIWY 0To axoucTixd amotéheoya. Télog, all-
OTOLOVTOG EVOL GUCTNPN TOCOTIXMY UETPLXMDY TOU APOopoVY LoV YVeplouata ahhd xan Biegd-
YOVTOG UL TOLOTUXT) UEAETT) UE TNV LOR(PY| AXOUC TIXOU TELRAUATOS, CUUTERALVOUUE OTL TO GUCTNUS
HOC XATEYEL TNV duVATOTNTA dNuLoLEYiag VEWY Louctxwy cuviéoewy tou yapaxtnellovial amod
TOVIXT), YPOVIXT] XL CEUOVIXY| DOUT), ETUTUYYAVOVTAS CUYYEOVS OVTUYWVIC TS ATOTEAECUOTA
ouyxettxd ue tnv baseline apyttextovix.

AéZeigc KAewdid —  Mouowt|, XOvieon, Mnyovin) Mddnor, Teyvnthy Nonuooivr, Toapo-
yoywd Avuinopadetind Alxtua
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Chapter 0. Extended Greek Abstract

0.1 Ewaywyn

0.1.1 Opgiopog Epsuvntixot IlgoBAfpatog

To tehevtador ypoviar To emotnuovixd medio tng Mnyavixrc Mdnong avorntiooeston e po-
ydatoug puiuoie, xahoT®VTag avamodPELX TN TNV evowudtworn tne Teyvntric Nonuooivng oe
mouxiheg mTuyéc TNg avipdmivng xainuepvotntac. H poviehonoinon tne avidpmmivng suguiog
HECW TNE oYEdlaoNe %ot LAOTOINOTC UTOAOYIOTIXWY GUGTNUATWY TOLU BEOLY AUTOVOUN CTUEIWOE
ONUUVTIXT] TTEO0D0 OE ETUTEDO Pucix®y, (OmE %ol EVOTIXTMOWY Yl TOV AVUpWTO, AELTOURYLOY,
OTEEPOVTUG £TOL TO EVOWIPEROY TNG EMUGTNUOVIXNC XOWVOTNTUC OTNY TEOCTAUELN TROGEYYLIONG
O TUROYWYIXMY X0l SNULOVEYIX®Y Sladxactdyv. Mo € autdv eivar xou 1 obvdeorn pouoixrg,
1 omola armoTeAel xou To aviixeluevo g mapoloug Atmhwuatinic Epyactoc.

Avtépatn Lovieon Mouourg

H Sraducacta dnutoupylog VEWY HOUCIXMY XOUPATIOY UE QUTOUATO TEOTO, ONAADY UE TNV
eNdytotn Buvat avipmvn tapéufact).

To Baowd xivnteo mlow amd v egopuoyt TeYvixey Mnyavixrc Mddnong yio tnv enthuon tou
CUYXEXPUEVOU EpELVNTXOU TROBAYUTOC, EvavTl Sy uedddny tou otnpilovton xotd xUpLo
AOYO OTNY aVATTUET XOVOVOY X0k EWDIXEUPEVDY YROUUATIXWY, EYXELTAUL OTNV IXOVOTNTA TOV
wovtédwy TeyvntAc Nonuoolvng vo avtiuetonilouyv e évay ayveotixd Teémo tny dladixaocta
oOVUESNC XL CUYYEOVWE TNY EYYEVWS TOAUTAOXY GOUY TNG Houoxic TAnpogopioc. Auth,
AOLTIOV, 1) YEVIXELUEVY] TEOGEYYLOY GUVIOTE €val TOAD ONUovTind epyoheio otny Yehétn Tou
TPOTOU UE TOV OTOLO [Lal UTOAOYLOTIXY Unyovh) UTopel var avTAngUel Tnv uouotxy, o¢ 1wop@n
EXPEAOTC DLAPOPWY EVVOLOV, LOEWY, EUTELQLOV, UXOUT] X0 CUVULCUNUATWY.

Yougwva pe toug Briot et al. [1], ot Yegehiddeic nTuyéc TOU TEOBAYUATOC UTOAOYLOTIXNAS
autopatoroinong tTng ocuVUeong Louotxric elvon oL axdrlovleg:

e Ytoyog X0Ovieong: Agopd xuplwg To €lB0g xou TNV BOUT| TOU TOEAYOUEVOU LOUGLXO0
Tepteyouévou (T.y. Lovogwvio, tohugwvia, avtiotén, x.A.1), o€ GUVBLUOUOS UE TO ThalCLO
YPNHOMG X EQAUPUOYNC TOV OMOTEAEGUAT®Y TOL TROXUTTOLY (T.Y. exTéleon and dvipwro

7 pnyevi).

e Mouvowxr Avarnapdotaocy: ['evixdtepa, o youcixy) cOvieor umopel vo mopa-
otadel oto mhaiclo Aettoupylog evog UTOAOYIGTXO) CUCTAUNTOS UE TowXiAoug TEOTOUG
XWOXOTOINONG, OTWE Yol TUPAOELYUO WS EXOVY, WS NYNTIXY| TANeogopia 1 ©¢ xdmoLa
oudPolut| poppn edwhc onuetoypaplac. ‘OAeg aUTEC OL DLUPORETINES UOPPES AVITUQRY-
oTaoNg CUTNEETOUY Xl SLaPORETIXOU EIBOUC AEITOURYIXOTNTES.

o Apyttextovixy Xuvotiuatog: O 6pog autdC avapépeTol OTNY EOWTERPXY doun
TOU UTOAOYIGTIXO) CUGTAUATOS TOU UOVIEAOTIOLEL TNV Bladacior auTOUATNG oAy WY NG
HouoY cuvitécewy. Ot oyedlacTixéc emhoyeég toxihouy, xadne e€uptdvial dusoa and
NV YEY0BO avamopdo TUonS TNG LOUCX|C TANROopopiag.

e MéVodog: H otpatnyixn exnaideuone tng UTOAOYIO TXAG Uy avig xaTéyel xooploTixd
EONO GTNY BLUUOEPWOT) TOL EV AOY L EEELYNTXOV TRoBAUaToS. Kotd x0plo Adyo tepthay-
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0.1. Ewaywy

Bdver Tov ahybprduo expdinong oAAd o SLdpopes emmEoc¥eTeg PUIULO TIXES TUPAUUETEOUS
TOU EUTAEXOVTAL TNV OLOAGTA TUPAYWYHC VEOU OUGIXOU TEPLEYOUEVOU.

o Acittovpyixd ITAaiclo: Ou AeltoupydTNTEC TOU TAUCUOVOUY TNV Btadixacio auTo-
wotng olvieong pouoixrc xadopllovton xatd x0pto AOYo amd TNV GUVOMXOTERY Blouop-
pwor Tou e€eTaldPeVoU TROBAAUATOC. YUVAT®S apopoly XAToLo EVPUTERN Y oQUX TNELOTI-
%8 TOU POVTENOUL, OTWC 1N UETABANTOTNTA, O Bardude BNUoLEYOTNTIC ot TO ETINEDO
oM nhenidpoong e dhha cUCTHUOTA 1) aVDIPMTIVOUS YENOTES UECA 1) EUUETOL.

H autdvourn onutovpyio woucixwy cuviécewy amotehel avay-
piBoha €va Wialtepa 50Gx0A0 TEOBANUN GTO TEGIO LUTOAOYLOTL-
xfc poviehonolnong mapaywyxey Aettovpyiwy. Kat’ apydc, ;
oe avipnmvo eminedo 1 cUANPN VEWY JousIX®OY 1BEMY efval e

song

Queco CUVOEDEUEVY UE CUVUETEC UTOXEWMEVIXES EUTELDIEC al 5Ph{*jf_e__{_|l"“asez|[’_‘}{f‘_ﬁ‘fj___ih_f_’hrase“5
GAAeg acupelc EVVOLEG, 0TS To CUVULCUTUUTA, Ol OTOlEG BEV [ bart | bar2 | bars | bar4
UTOPOLY €0X0OA VO YIVOUV avTIANTTES amd Lol Uy oV [Theat 1 “l--“l-leatl [ beats | beatd
M axoun mpdxAnorn oto mha{clo Tou eV AOYW €RELVNTIXOU [pixeir | pixeiz | - | pixei24 |

TEOBAAUATOS 0popd. TNV %ATd XATOL0 TEOTO LEpoEy XY douT
oL YoapoxTnetlel yio pouotxy| obvieaor, 1 omolo avomraploTortal
Yeapwd otnv Ewxévo 0.1.1 [2]. "Eyet anodewydel 6t o av-
YoWTIVOG EYAEPUNOS XATE TNV UXEOACT| LOUCIXHC EYEL TNV TAOT
VO ETUXEVTPWVETOL o€ Bouxd pot{Bo mou oyetiCovton ue tnv
ouvoyX, tov pulud, v évtoon xa TNV cuvouoOnuoTixh eoY| [3, 4] xou eppaviloviar oe TOA-
NUTAES Y EOVIXES XAUoXES [5]. Tuvenog, évac UMY OVIOUOS HOVTEAOTIOMNCNC OAWY QUTOY TV
YAPUXTNELO TIXCY OUTOAVAPORAS AAAG XOL TWV BLAPORKY YRPOVIXWY ECUPTHOEWY AVIUECI GTIC
douxéc povddeg Vewpelton avoryxaiog.

Figure 0.1.1: Iepopytxy| doun
eVOC UOLGIXOU XopupaTLol [2]

M emmpdovetn duoxola TEoxUTTEL amd TO YEYOVOS OTL Ol UousIxé cuVUEsE cuvAleg
amoTeEhOUVTOL oIt TOARSL 1o BLopOEETINE LoLOWE dpyava, xadéva amd Ta omola SlodETer Tor HLxd
TOU YORAXTNEIoTIXG Xl TIG ovTIoTOES BUVAUIXES, oMM Ohar pall exTuklocovtal GUANOYIXS
OTOV YEOVO %aTd Evay OAMNAEVOETO TEOTO. AxOUr), 0T0 TAUCIO TNE TOAUPWVIXHAS LOUCIXHC, Ol
pOoyYyOoL xadevog and ta eumhexdueva tracks mopoucidlovtan xatd x0plo Adyo oe Bidpopoug
00UX00C GYNUATIOUOUS, OTIWS CUYYOEDIES 1) arpeggios, lodyovTog ETMTAEOV ApUOVIXES ECUPTT -
oelc. ‘Ohec autée, Aowmody, ol oAAnhocucyeTioelc, ol onoleg xatéyouy xadoploTind pdro GTnY
OLUUOPPWOT| TOU TEALXOU ax00OUATOE, BEV UTOPOLY ELXOAX Vo povIEAOTOUO0Y amd Eva UTO-
AOYLOTIXG GUOTNUA, EWOLXOTEPN OTNY TERITTWOT WA oY VWO TIXNG TROCEYYLOTS.

Téhoc, 1 Sadocion alOAOYNONG TWY HOVTEAWY TORAYWYNC LOVOXAC amoTeERE! €var axdur 1oL
altepa onuavtind (Atnue.  Amo tnv pio TAcupd, évvoleg 6mwe 1 emidoon xo 1) Beitiwor| Tne
OEV UTOPOOY Vol 0PLOTOLY UE CUQPHVELN OE OYECT| UE TNV TOLOTNTA TOV TUQUYOUEVWY ATOTE-
Aeoudtov, xahoTtovtag pedodoug, ol onoleg oTNEilovial GTNY YN0 AVTIXEWUEVIXMY UETELXWY,
Wiadtepa TeoPAnuoTiKéS. AT TNV dAAN Theupd, TeoxTixég alloAdynomg, ol onoleg Bacilovto
xatd x0plo Aoyo otny avipnmivn xplor, Yewpolvia o tpotuntéee. 2oTt600, ywelc opopwyvia
¢ TEOS TNV €VVoLd TNEG ONULOVEYWOTNTOS ARG ot DEBOPEVNG TNG UToXEWEVIX S avTiAndng
¢ TEOG TNV HOUGLXY|, 1N oTola OeV umopel vor Teplypapel UEGK XAVOVLY 6], 1 oyedloom evog
OXOUC TIXOU TELOHUATOC TOU DUVOTAL Vol 00NYAoEL OF allOTIC T EMO TNUOVIXG TEXUHELO, EVEYEL
UPETES TTPOXATOELS.




Chapter 0. Extended Greek Abstract

0.1.2 3Xuvelogopég tng tapovong Awnhwuatixne Epyaciog

Y10 mhatoto g mapovong Atmhwuatixic Epyactag e€etdlouue 500 SlapopeTinés mpooeyYIloelg
O¢ TEOG TNV AUTOUATY dnutovpyia vEou Uouctxol Tepleyouévou, xdvovtag yerion Teyvntov
Nevpwvixayv Awtiwv xou eqopudlovtac pedodsoue Mnyovixic Mddnone. Etot, howmdy, o
GUVELCPORES UG UTOPOUY VoL Blaty wetoToly e 600 pépn o e€hc:

Unconditional Generation

Boowlébuevor oto MuseGAN [2], avontiocouye €va UOVTEAO auUTOUUTNG TOROYWYNS
TOAVQPWVIXODY LOUCIXWY PEAUCEWY G CUUBONXT avamapdcTaoT), ATOTEAOVUEVLY antd S
novowd épyavo: Drums, Piano, Guitar, Bass xou Strings. Ytnv neplntwon autr, 1) O
adixacta chvieong 6ev UTOXEITOL GE ETLTAEOY TEPLOPLOPOUS, 0UTE O TNEI(ETOL OE GUUTANEW-
MOt DEDOPEVAL.

Hapapetponolobye v VAOTOINGY HoC WS TEOC €val GUVORO UETABANTOV TOU 0popoly
HOUGLXAL YUQAXTNELO TS TOV TORXYOUEVWY POACEWY, ETLPECOVTAS ETOL UIdl TROTOTONOT
OTNV €0KLTEPIXT BoUn TwV OXTLKY ToL amaETI{oVY To GUOTNUS LS AVIAOYO UE TNV ETL-

Yuuntr é€odo.

EVoWUAThVOUUE GTO HOVTERO UG UNYAVIOUOUE Yol XUADTEQRT] TURUXOAOUUNOT Yol EAEYYO
¢ Odixaolug exnaideuong.

Avantiocoupe plar evodhoxTixny UAOTOINoT TwV 101 UTOEYOVTWY UOUCIXMOY UETELXOY X0l
OTNV CUVEYELL ENEXTEIVOUUE TO GUCTNUA AELOAOYNOHC HOG UE 3 VEEC TPOCUXES, OL OTIOlES
ETUXEVTPWOVOVTOL GE TOVIXE YUQUXTNELGTIXG xou Ak oTolyela LousIXhC L.

Extelolue éva cUvolo melpopdtev mou oTtnelloviol o BLUPORETINES TUPUUETPOTOLHOELS
X0 YENOWOTOLOUUE TIC TOGOTIXEC HOC UETEIXES Yol TNV 0ELOAOYNOT TWV ATOTEAEGUATWY.

Ae&dryouUe plar TOLOTIXA HEAETN OTNY HOR®T) 0x0LCTIXO0U TELRAUATOC e 40 CUPPETEYOVTES
X0l OTOOEIXVUOUUE OTL TO HOVTEAO HOC OTNUELOVEL ONUAVTIXE XAAUTERT, €nidoon and TO
baseline écov agopd 3 pouowd xeithpta: Musical Naturalness, Harmonic Consistency
xoit Musical Coherence.

Conditional Generation

Enexteivoupe 10 wovtélo pog oe €va cuvepyatind mAalolo avlp®mou-unyavig Teog Tny
©xotedYUVOT TNG AUTOPATNG TORUYWYHS LOUCIXHC CUVODELNG: BEBOUEVOL EVOC OO ToL E-
umhexoueva tracks (npoepxépevou amd oavUp®TLYY LOUGLXH oOvﬂson), T0 GUOTNUA Uog
TOEAYEL QUTOMOTO T UTOAOLTOL 4, VEWEMVTOS Tol ¢ TNV PUIIXT XL OQUOVIXT) TOU GUVO-
ocio.

HewpopotilouacTe pe SLdPOpES TUPUAAAYES TOU OVTEAOU OGS, OL OTO(ES BLaPOPOTOLOUVTOL
(G TEOC TIC BOUIXES CUVLOTHOOES ToL amoaeTilouy To GUCTNUA, TOV ahYOELIUO EXTAldEVCTC
xou To €idog tou conditional opydvou, dnAudY| exelvou mou amoteAel TNy Bdon Tng O
adixacioc ovvieorng.

AZiohoyolue Tal TEOXOTTOVT ATOTEAEGUATA, XAVOVTAS YENOT) TOU GUGTHUNTOS LOUGIXMY
HETEWOY GAAG %o TNG TOLOTIXAG UEAETNG UEOW TOL axouoTxo) Tewpduatos. Me autd
TOV TEOTO €EAYOUUE EVOLUPEQOVTO CUUTERACUITA OYETIXG UE TNV ETEBEACT) TKV SLaPOpwY
TPOTIOTOLAGEWY GTNY TOLOTNTA XU TNV UOUCIXOTNTA TWV TURAYOUEVWY GUVOOELOV.
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0.2. Oewpnuxd Trolodpo

0.2 Oeswpntxd YroBadeo

Ynv ouvéyela, Yo eEeTdooUUE GUVOTTIXG Optopéva Boactxd epyalela, To omola ATOTEAODY Ta
Yepéhar TG TEOCEYYLONC Mag 6TO gpeuvnTind TeoBAnUa tne Autéuotng Iapaywyrc Mououxic.

0.2.1 Xuvelwtixd Nevpwvixd Aixtua

O 6poc Texvnté Nevpwriké Aiktuo avagépeTtol o €va UTOAOYIOTIXO GUOTNHA eneéepyaoiog
0EDOUEVWY, TO OTOL0 TPOGOUOLWVEL TNV Aettoupyia Tou avipwmivou eyxegdiou. [lpdxeitar otny
ouola Yo €vor BIXTUO BLICUVBESEUEVODY BOUIXMY HOVABWY TOU OVOUGLOVTOL VEURKOVES Xal efvol
TomohoYXd opyavwpévol ot enineda. Kat” avtiotovyio ye to floloyind npdtuno, xde teyvntoc
veup@vac Aopfdvel €vor OVolo opllunTIX®y €L660wY amd dhhoug xOuouc Tou dxTlou, TIg
omoieg yetaoynuotiCel Bdoel evog ypouuxol cuvduaoUol pe avdroya Bden xou VoTERa and TNV
EQUOUOYY) UG UN-YROUUUXAC CUVARTNONG EvEpyoToinong mapdyel Ty TeAxr] €€odo, 1 omola
TPOYOOOTEITAUL OTNY GUVEYEWL G dAAOUS VELPWVES ToL dxTOou. To Baocxd yupaxTnELOTNO
Twv Teyyntov Nevpovixev Amtiwy €yxeitor otny duVATOTNTO EXTAUDEUCHC TOUC PECO OO
uar Srodixacior unyavixrc wddnong, n omolo oToyelel otny otadloy| BeAtivwon TN xavoTnTdc
TOUG VA ETULAUOUY XYTOL0 CUYXEXEWEVO TROBANUa. Xe eninedo uvAomolnong, auTod emTUY Y dveEToL
HEOL VoG alyopituou axoAoutiaxol UTOAOYIOUOD TV UETABOANOY TV Bapny xdle VEUPHOVA
Tou 0ixthou, o onolog xaeltan Backpropagation.

input layer

hidden layer 1 hidden layer 2

Figure 0.2.1: Apyitextovixs) Yuvehxtixol Nevpwvxold Axtiou oe olyxplon Ue TV YEVIXT
nepintwon [7]

To Yuvehiktikd Nevpwvikd Afktva (CNNs) anoteholv o xotnyopia Teyvnuodv Nevpomvixoy
A0y 0wl oyedAoPEVODY Yia TNV enelepyaoio xou TNV avdAuoT) BEBOPEVKY TOU YapaxXTNei-
Covtar amd xdmotou €ldoug yweixr) Tomohoyla TAEYUATOC ot avomopio TavTon GUVATWS UE TNV
Hop®Y| YEVIXELUEVWLY Tvdxwy. H Aeitouvpyla Toug Baciletar otov unyaviopsd tou Broloyixod
CUCTAUNTOS 6pacng, 0 onofog efval dUECH GUVOEBEUEVOS UE TNV €vvola Tou TEBiOL UTOBOYHC
(receptive field). X0ugovo e toug Levine xou Shefner [8], éva nedio unodoyc opileton we “uin
Teploy 1 oty omola 0 onTOg epeiouds 001YEL o AVTIBEACT EVOS CUYXEXEWEVOL aoUNTYpLoU
VEUPOVY.  2TO LTOAOYIOTIXG, AOLTOV, UOVTEAOD, 1) TOTOAOYLXY TEQLOYT| TNG ELGODOU TOU UVTL-
otoiyel ot aoUnTrpleg cuvdEoelg xdde xouPou optoleteiton amd Pl CUYXEXEWEVT doUY|, 1)
omola ovoudleTtar Tuprvag 1 GIATEO xou eunepLEyEL oTNY oucia Ta Bden Twv cuVOEcEnmY. Neuptveg
ME ETUXAAUTTOVTO TOTUXA TEdlot UTOBOY S WS TEOS TNV (Bla El00B0 BLATAGCOVTUL GTO YWEO OF
eninedo 3-0Ld0TATWY UTOAOYIOTIXWY OYXWY, XUT ovohoYlol UE TIC XAJCELS OTTIXWOY XUTTHPWY
O0TOV PAOL6 ToU avIp®OTIVOU UaTioU, Ol OTOlES EMTEAOUY GTNV oucia TNV dladixaocta e€aymYhg
YUEUXTNELO TIXGY A6 TO OTTIXO EpEVIoUAL.
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H odknhenidpoon petald evog giAtpou xow Tou YEVIXEUUEVOL T
VXL ELGOBOU UOVTEAOTIOLE(TO UTOAOYIGTIXG PE TNV TEAEN TNg ﬂ SR
ouvéhing. Omnwe gaiveton xou oty Ewdva 0.2.2, xdlde tiur tng aag
Tonoloylag e€6dou, 1 onola anoTehel Tov emovopalouevo YdeT Eﬂ @
YopoxtneloTixdv (feature map), mpoxintel we 1o dbpoloua Twv

oTolyelwy Tou aviicTolyou medlov umodoyhc oTaduouévo xatd e

T0 Odvuoua Bapdyv Tou egapuoléuevou mupriva. H Sadixactio
QUTY|, OTNV YEWXOTEPN TEPITTMOT, ETLPEREL DLACTATIXNY UElWOT)
¢ ewddou. otdoo, Eyouv avamtuylel Bdpopes mopaAAdYES
TOU TUTIXOU GUVEMXTIXOU TEAECTH), OL OTOLEG GTOYEDOLY GE BLUPORETINOUG YWEXOUS UETATY T
HoTiopoUg Tou oy ol TAéyUatoc. Mo & autdv anotelel xan i Aeyouevr transposed cUVENET,
1 omolol EMTLYYAVEL TNV dnuoupyior eVOg UEYAAITEPWY BLUCTUCEMY YHETN YAURUXTNPLO TIXMY,
HEOL TNS EQOPUOYHC TNG XAACOXAC UEVOBOL OE Lol XU TIAANAYL ETAUENUEVT EXDOY T TOU Tvoxa
€lo600u.

Figure 0.2.2: Zuvélin (9]

0.2.2 Ilapaywywd Aviaywviotixd Alxtuo

To IHapaywyrcd Avtaywriotikd Afktvae (Generative Adversarial Networks) omotehoOv pia
xatyopiot UTOAOYLO TIXWY GLUO TNUATEOY Mnyavixic Mddnong, ta ontola, OTwe papTUEd X0 1) OVO-
wocta, otneilovion o €vor UNyavioUd ovToyWVIo TG EXTUOEUOTC 2 avEEdPTNTWY VEURWVIXOY
OTOWY UE OTOYO TNV OTATIOTIXY LOVTIEAOTOMNOT TNG XATOVOUNC €VOC BoUEVTOC GUVOROL Oe-
oopévov. Il cuyxexpuéva:

e Generator: To nopaynywd dixtuo G onuiovpyel véa utodhpio Selypota, YeTooy NuoTi-
Covroag éva didvuoua Tuyatou Yoplfou z, To onolo TpoépyeTon amd Evoy Aavidvovia YMeo
Pz, OTNY MOPQT TV BEBOPEVLY TN EMIUUNTAC XaTavounc. XTnv oucia, To dixTuo aUTo
amotehel TV uTohoYoTIXH LAoToinon wog apopeTeic ouvdptnone G = G(z;6,), 7
omoio ameixoviel oTolyelor TN XATAVOUTC ELOOBOU P, GE SElyHOTA TNG XATAVOUHS EEGO0U
Py-

e Discriminator: To Sywplotind dixtvo D aloloyel Tor dedouéva X mou Aopfdver o
eloodo, mpoBiénoviac TNV xhdorn oty omola avixouy (avdevtixd ¥ oyt). Kot ovu-
otouylo pe Tov avtimahd Tou, To BixTLO AUTO amoTEAEL TNV UTOAOYLOTIXA LAOTIOINOY UL
TopapeTEC ouvdptnone D = D(x;0,), n onola avtiotolyilel To Belypota e10680u X oE
TpayUaTéc Twée oto didotnua [0, 1]. Xtnv ousia, 1 éZodoc D(x) aviimpoownelel TNy
TavOTNTO TO X VoL TPOEQYETAL OO TNV XUATAVOUT| TWV TEAYHATIXWY OEQOUEVOV Py EVIVTL
™S Py-

H Aertovpyla Tou cuvohxol GUCTANATOS, 1) OTOlol AVUTURICTUTAL DLy PUUUATIXG OTNY EXOVAL
0.2.3, umopet va povtehomomndel wg éva matyvio avtimopodeTixAc udinong petolld twv dlo o-
viimohwy poviéhwy, Tou Generator xou Tou Discriminator. Modnupotixd, 1 ev Aoyw dadixacta
ATOTUTWVETOL GTNY ox6AoulT minimax cuvdptnon V, onou E eivor o tekeothc avopevouevng

THNG:

min max V(G, D) = Exup, log (D(x))] + By, [log (1 = DG(z))]  (02.1)

Hapatneavtag v oyéon 0.2.1, dwamotwvoupe 6Tt o Generator otoyelel TNy EAayloTOTOMON
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Tou 6pou log (1 — D(G(z))), n onoio cuvendyetoaw 6Tt o Discriminator 8ev yrnopel vo avoryve-
ploet tor umohpLo Belypata Tou mapdyet we un avdevtxd, dnhadr D(G(z)) ~ 1. Me autd
TOV TEOTO, TO TUEAYWYWO BixTuo witlton oTNY oucio ot Wia Tpoondieio Euueone aviyveuong
UTOXEUEVOY Y VORLOUATOVY TNG ETUUNTYS XAUTUVOUY|G OEDOUEVLY, TPOXEUEVOU VoL XUTAUPEREL VA
“Zeyehdoel” To avtinaho yovtéro. Ilopdhinia, o Discriminator emdidxel tnv yeyiotonoinon
Tou adpolopotog Twv BYo Gpwv log (D(x)) + log (1 — D(G(z))), étol Hote vo udiel var xotn-
yoptomotel owotd xou o awdevuxd (D(x)) odhd xou tor ouvdetind Seiypoto (D(G(z))) mou
e€etdlel.

fa,q(l f)(r;mjj

I% [ log(D(x)) + log (1 0\:(:[71]}

z G(z) e h
Latent Space Generated Samples Discriminator |

L /| D(G(2)) and D(x)

Discriminator
I% Decision
x

Real Samples

Figure 0.2.3: Iopaywyxd Avtoywviotixd Aixtuo [10]

e xdde Brua Tou emavaknmTieol alyoplduou exnaldevong, ol ETBOOELS TV 800 EUTAEXOUEVLY
HOVTEAWY WG TEOS TOUG ATOUIX0US Toug 6ToY0ug xadopilovTon amd Toug TpoavapeplEvTes bpoug
¢ oyéong 0.2.1, ot omolol otV oucta apopoly Tig anogdoslg Tou Discriminator oyetd ye
NV xAdoT Tagvounone Ty avihoyo eetalouevwy deltypdtoy. Bdoel twv mpofiédewy autdy,
umohoytlovTat, UEGe ULag XATAAANAAL ETAEYHEVNC GUVERTNONG XOGTOUS, OL VY XUlES HETUBOAES
TV Bap®v yia xdde Eva amd Tar Bty VL OMEVA BIXTUN XU TEOYUATOTIOLEITOL 1) EVIUERMCT) TOUC
olugpwva pe ™y uédodo omododidboone (Backpropagation). H Swoduaocto aut tepuartile-
ton 6tav emtevyVel n emovopalduevn Ioopporia Nash [11], Snhodn 6tav n omddoon twv 800
avTinoAwy povTéhwy 0ev unopel mhéov va Bertiwdel mepantépw. Autd wbavixd cuuBaiver dtav
7o classification rate tou Discriminator npoceyyioel to 50%, to omolo woduvoel ue Tuyoieg
TeoPBAEPEC 660V aopd TNV AAAoT TEOEAEVOTC TWV €ZeTACOUEVOY OELYUATWY XUl ETOUEVKC
cuvemdyetar 6TL 0 avtioToryog Generator elvar o Véom vo dnutovpyel véo cuvieTixnd dedopéva
Tou 0evV umopolV va dlaxptdoly amd To mparydaTd. 20Té00, oty TEdLn 1 xuTdoTAoT OU-
YxMong o€ €va TETolag wop@pnc mhaioto udinong dev unopel ebxoha va xadoplotel xou v’ autod
TORUUEVEL AVOLY TO TEOBANUAL.

0.2.3 AvuTtoxwdixonointég

O autoxwdixoTonTg (autoencoder) eivor évog tOTOC Teyvntod Neupwvixol Awtdou, o omolog
yenotonoteiton yior oy wyY| XWOXOTOUUEVLY AVATURUC TAGEWY ATO BEDOYEVA TOU OEV ETUOT
HELOUEVY PE xdmotou eldoug etixéta. H dodixaction auth houfBdver yohpa ot éva un emBAenoyevo
mhalolo udinone, oto omolo oL TUPUYOUEVES XWOLXOTIOOELC EMLXUEMVOVTOL Xl BEATIOVOVTOL
EMAVOANTTIXG BACEL TNE TOLOTNTOC OVOXATAOXEUNC TNG OEYIXNG ELGOBOU, GUUPWVOL UE TNV YVe-
076 alyopwiuo omotodiddoong (Backpropagation). ‘Omnwc pofveEToL X0 OTO OLYEUUU TNG
Ewdvog 0.2.4, évag autoxwdonotnthg anoteleiton amd 600 Baones Bouxég LOVAOES:
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e Encoder: O xwdwonointic yetaoynuatilet to dedouéva €L0680U OE UL GUUTIECUEVT)
Hop®, YVwoTy xou w¢ code. 1o cuyxexpéva, o apyixd didvuoua x dBoivel péoa and
MOl OELRG VEUPWVIXGY ETUTEDWY, Ta OTolal ETLPEEOLY GTABLINY| UELWOT| TNG BLUCTATIXOTNTAS
ToU, xatalyovtag o éva bottleneck. To xpugpd autd eninedo amaptileton xotd xovdva
amo AYOTEPOUC XOUPBOUC CUYXELTIXG UE TO ETUMEDO €L0660L, TEELOPILOVTAS PE AUTO TOV
TPOTO TNV TANEOYOopla oL Sluoy (el To GUVOAIXS bixTuo. Etot, Aotndy, dnuiovpyeiton pa
YOUUNAOTEONS TAENG AVUTORAGTAOT) TNG ELGOB0U GE €va AavidvovTa Ymeo.

e Decoder: O amoxwduxonontrc dpa we “Olepunvéac” Tng TopoyOUEVNS Xwdixomoinone,
amocLUTECOVTOG QUTH TNV XEUPT AVITOREOTACY GE €VOL OLEYUOHO TOU YMOEOU ELGOO0U
x'. Me auté tov 1010, ETYELREl GTNV OUGI VO OVUXATAOXEVAOEL Tor apytxd Bedouéva,
adlomolwvTog Ta otolyeio Tou Tapéyel 1 aviioTtolyn Aavidvouca xwdwonoinor. Aouxd
0 AmOXWOWOTONTAC GLUVHTWE aVTIXATOTTEILEL TNV APYLTEXTOVIXT) TOU XWOXOTONTY, UTO
TNV €VVOLOL OTL AMOTEAELTAL OO TOL CUUTIATEWUATIXG VEUPWVIXE ETUTED, T OTOlL ETLPEQOUV
otadtoy SlooTatixr) adEno, SloTETaYUéVa OE avTioTEoRT oELRd.

Reconstructed
Input <o Ideally they are identical, ------------------ - irlpult‘

x~x

Bottleneck!
Encoder Decoder
x x"
9¢ fo

An compressed low dimensional
representation of the input.

Figure 0.2.4: Autoxwdixonointic [12]

0.3 Baseline Project: MuseGAN

To MuseGAN, 1o onolo arotehel Ty cuvtoyoypagpio Tou Multi-

track sequential Generative Adversarial Network, etvat, 6mwe @ o
HOETUES %ot 1) OVopaGtd, Vol UTOROYIGTIXG GUGTNUO AUTOUUTNG Basf' T'.‘T A
TOEAUYWYNE TOAVPWVIXTG UOUGIXAG, ATOTEAOUMEVNG amtd O Ol Qﬁ .Drums‘.jxs'-
aopeTixd dpyava (Bass, Guitar, Strings, Drums, Piano), oc A B tngs
ouuBoru avamopdotaoy. To project! autd Tpotéddnxe and Toug Piano SR il cur
Dopg at al.' [2] oto Association for the Advancement of Arti- Figure 0.3.1: MuseGAN
ficial Intelligence (AAAI) Conference to 2018 xou otnpiletou tracks [13]

otov unyovioud twv Iopaywymoy Avioywviotixav Awtiov

(GANS).

0.3.1 Apyitextoviny L UOTAUATOC

H apyrtextovixry tou MuseGAN amotehelton and 6Vo xOpwar uéen: éva multitrack poviého,
TO OTOl0 ETUXEVTPWVETOUL OTIC AAANAELUPTACELS UETAEY TOV OLPORMY HOUCIXMY ORYEVWY X0l

1O xdduac tne vhorolnong, To dataset mou yenowwomohdnxe Yot TNV exTadBeuoT) Tou LovTéhou, oARS xou
oplopéva Ny NTixd anoondopata elvon Sloéoipa oty totocerida Tou MuseGAN
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https://salu133445.github.io/musegan/

0.3. Baseline Project: MuseGAN

éva temporal povtého, To omolo dayelplleton TG eumAEXOUEVES Ypovixée ouoyetioelc. 1o
CUYXEXQLIEVL:

Multitrack povtéia

Lopgova ue Ty avienmivr eunetpla, UTdEYOLY BUO ETXEUTOVCES TROCEYYIOELS OGOV UPORd TNV
otadwacior dnuLoLEYIag VEWY HOUCIXWY CUVIECEWV:

e Tva olvolo pouoix®y mou Tallouy BLaPORETIXG RV UTOPOLUY VoL SNULOVEYHCOLY VEO
HOUCIXO TEEQLEYOUEVO OE €Va GUVERYUTIXO TAaioto, autooyedidlovtog o xadévac Téve 6To
o6 tou track ywplic xdmoto mpoxadoplouévo daxavovioud A extevr) mpostoyocto.

e ‘Evac cuviétng onuiovpyel Louoxr) € €Val TLO GUVTOVIOUEVO OAA xou Bounuevo Thaicto,
EYOVTUS YVWOT| TWYV UEY OV APUOVING oL EVORYHAOTEWONS. MTNV GUVEYELY, Ol LOUGIXOL ToU
anopTilouy TNV 0pYNoTEN EXTEAOUY Ywplc Topexxhloelc Ta avtioTolyo poustxd uépn Tng
obvieong, to omola lvar opyavwuéva Pe TEOTO TOL ECACPUALEL apUOVIXT| GUUQLVIN XaL
cuvoyT).

(a) Jamming Model (b) Composer Model (c) Hybrid Model

Figure 0.3.2: Multi-track models [2]

Bdoel v npoavagepieiony teyvixidv obvieone, ot Dong et al. [2] oyedidlouy 3 Swpopetixd
HOVTEAA Yol TIC OAANAECUPTAOELS PETOED TWY EUTAEXOUEVODY OPYAVWV:

e Jamming model: ¥to mhaicio tou Jamming povtéhou, morhamid IHopoywywd A-
VToywVIoTixd Aixtua AEtTovpyoly aveldpTnto Ue GTOYO TNV ONULouEYIa TOAVORYUVIXTS
wovowrc. Iho ocuyxexpyéva, xde Generator G; mopdyel LOUCIXEC PEACELC TOU OVTL-
oTolyolV ot €va oUYXEXEWEVO track omd €vo WwTind Tuyalo Sldvuoua €lG6B0L z; XAl
Aopfdver emontixd ohjpota omoBodiddoone and tov aviictoryo Discriminator D;.

e Composer model: Xto miaicio tou Composer yoviéhou, évag eviatoc Generator G
TOEAYEL TOANUXOUVUALXS HOVUOIXE AMOCTEOUOTA, OTOU TO XGUE XavaAL avTioTolyel ot éva
amd to eunAexoueva tracks. H Soury auti| amoutel €va xowvé tuyalo ddvucua €L.GOB0U
z, T0 omolo %aTd %AMOL0 TEOTO AVTIMPOCWTEVEL TO TAGVO Tou CUVIETY, ahhd xan Eva
wovadixo Discriminator, o onotog e€etdlel Ta Topary OUEVOL HOUGIXE TUAUTA CUANOYIXG,
TEOXEWEVOU Vo amogoaviel yior Ty awdevtixdtnTa Tng cuvieong.

e Hybrid model: To hybrid povtélo, émwe umodeixviel xat 1 ovopaoia, amoTehel €va
GLVOVIUAEUUO TWY TEOUVAUPERUEVTOY APYITEXTOVIX®WY, TO omolo cUVOUALEL ot eminedo
uloTolnong Tov auTooYEdCUS 0To TAXClO TOU jamming Pe TNV 0pYAvVKGT XaL TOV GU-
VTOVIGUO Tou eTPBAAAeL €vag cuviéTng. ‘Omwg gaiveton xar otny etxdva 0.3.2¢, anaptileton
amd mohhamholg Generators, xdle €vog ex Twv omolwv avTioTolyel oe €val BlapoeeTING
track xou éva povadixé Discriminator. Kde Generator G; hauBdver we gicodo éva 1dt-
otxd (intra-track) tuyofo didvuoua z;, To omolo oopd To YouoIXS PEpOC TOU OvTi-
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oToLyou 0pYd&vou xou éva xowvo (inter-track) tuyoio Sidvuopa z, To onoto cuvtovilel Toug
otdpopoug povowols Gy 6mwe évac ouviétne. O Discriminator D e€etdlel T moporyd-
HEVOL LOUCIXE. TUAMOTA GUAROYIXG, TEOXEWEVOU Vo amogoviel yia TNy avdevTixdTnTa Tng
oLvohxig cuVeEoTg.

Temporal povtéla

‘Oha toe multi-track povtéla mou TapoUCLAGTNXOY TEOTYOUUEVWS THEEYOUY TOAVPOVIXT LOUGLXY
UE Ypeovixt| dLdpxela evog pétpou, To onofo amotekel xar To Poucixd dopxd GTolyelo TV CUV-
Véoewv yevotepa. Ilpoxewévou howmdy va yiver egixt 1 dnuiovpyio HOUCXOY BELYUATGLY
HEYOADTEONC YPOVIXAC OLdEXELOC OOV Tol BLadoy s UETE CUVOEOVTOL UETAEY TOUC UE GUVETH
Tp6T0, ot dnuovpyol tou MuseGAN (2] eqapuélouv 2 Bragopetiés pedddoug yior Ty po-
vTeAomolnoT TN Yeovixrg doung:

e Generation from Scratch: Auth n uédodoc ctoyclel oty dnuoupyio LOUCIXGY
PpdoEWY XoOPIOUEVOL UTXOUS, EVIACOOVTAS TNV OLdoy | Twv uéTeny oto workflow tou
Generator ye v pop@n wog eminpootetng otdoTtaong [14]. IIio ouyxexpyéva, oe T
TNV TEPIMTWOT TO ToEaYwYLx6 dixTuo anoteheltar and dvo uépn:

— Temporal Structure Generator: O Giem, UeTaoynuoatiCel éva Tuyato didvucuo elo6-
dou z oe o axohowdic havdovéviey petoBintoy Z2 = {ZW} (1o T > 0
ouuPBohilel Tov GUVOMXO UG ToEAYOUEVGY UETPWY), 7 omolol AVOUEVETOL VL
EVOWUATOVEL TANPOQOpla OYETIXNS UE YPOVIXEG CUOYETIOELS.

— Bar Generator: O Gygr petooynuatilel Ty npoxintouco axoroudio UETABANTOV z
oe yat povoxn gedon T pétpwv e dtadoyxd teoéno (bar by bar).

e Track-conditional Generation: 1o mhaiclo tng Yedddou auTAG, Eval amd To EUTAEXO-
ueva tracks diveton w¢ €lcodoc 6To YoVTELO, TO 0Tolo XohelTon Vo ToEdEel auTOUoTa Ta
umohoLTL, VEMPMVTIS T WG TNV appovixr) xou puduxY| Tou cuvodeta. Iho cuyxexpléva,
OTNV TMEQIMTWOT AUTH, TO TAUPAYWYXO dixTuo amoteheitar oty oucio and Tov Gper, O
omolog mapdryel To Bradoynd UETEA TNG GLUVODELNS Ue axoroutiaxd TeoTo, AauPBdvovTag o
xdde Brua 600 elob6douC, To conditional track v xou to Tuyato BLdvuoua z | 6mou t ebvan
o debxtng Tou TpéyovTog wétpou. Qotdoo, eneldh 1 axoroudio petofintev y = {y W},
avomoplo TUToL 68 EVal YWEO UPNAGDY BLoC TUCEWY, EVOWUATOVETOL GTNV UPYLTEXTOVIXY| TOU
CUCTAUNTOC €VaC XxwdoTonThc, o onofog uetaoyrnuotiCel To conditional track oe éva
embedding otov ywpo Tou Yopifou, e€dyovtag inter-track yapoxtneiotind and tnv high-
order popgr tou [15].

conditional bar generator, Gy,

v
queue (?‘J(?'_‘P)
bar generator, G, G(z) ¥
Gims(2) iime
I III quene H q queune | [T /:il'lll'
e L1
z
(a) Generation from Scratch (b) Track-conditional Generation

Figure 0.3.3: Temporal models [2]
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MuseGAN

To MuseGAN eivar 6tnv oucio To anotéheoua TG EVOTOINONG XL EMEXTACNE TWY TEOUVAPER-
Uevtwy multi-track xou temporal povtéiwyv. H cuvolunr| cpyttextovixny| Tou cUGTAUATOS avo-
moploToton yeupixd oto dudypauuo tng ewédvog 0.3.4. ‘Oleg oL Bouxég Tou GUVICTOOES &l
voi Lhomotnuéves we Bardid Luvehextind Nevpovixd Aixtua, €x TV omolwy To dloyweto Tixd
amoTEAOUVTOL OO TUTIXE GUVEAXTIXG €TiTEDN TTOU ETLPEPOLY BlACTATIXT| UElWOT TNG EXACTOTE
€L0000L, EVK TA TOEUYWYLXA amd transposed cuveAxTixd enimeda TOU €MTUYYAVOLY TO avTi-
OTEOPO UTOTENECUAL.

Ling L8
=
%

—

time
#
g .
— 1
I
14}
M
15

har cacoder, L

: 53

¥
i

bar generator, Gy,

generator, (7

Figure 0.3.4: MuseGAN [13]

0.3.2 Acodouéva Exnaldsvong
Médodoc Avanapdotaong

Aedopévou 6T T CNNs npoopiovtan yior emelepyacion Se00UEVWY OTNV UORPY| YEVIXEUPEVOY
TUVAX Y X OPIGUEVOL UEYEVOUS, TA LOVUCIXE XOUUATIO TTOU Y ENOLLOTOLOUYTOL YL THY EXTIOOEVCT)
Tou MuseGAN avanopiotavton oe pLor pop@r| yeapixhic maptitovpas cudoiixol format, n onola
xohetton pianoroll. Ipdxerton otnv oucio yia €vor Thvoxa SUABIXOY TV, OToL 0 0pllOVTIOC
GEovag avTITPOCKTEVEL TOV AUEAVOVTA YPOVO BACEL UG CUYXEXPWEVNS BLIXELTOTOMOTG, EVE O
XATAXOELPOS TOLG BLAPoEOLS PIGYYOoUS TalvouNuéVoug avdloya ue To Tovixd Uhog. H duadixn
A 1 oto xel [, j] Tou ev Moyw mivoxor utodevieL TL 1 voTa i exteleltar oTo timestep j.

polyphonic v' multi-track %

Bar 3 Bar 4 polyphonic v multi-track v/

Bar 1 Bar 2

A3

|

pitch

Il

I
I

i
"

I

(a) Pianoroll format ye cuyBoAixé timing

time b

t

pitch

i

l
Il
Il

Ll

I

A:ks

time

(b) Muti-track pianoroll format

Figure 0.3.5: Avanapdotaon pouoixwy dedouévev [13]

Edxoha pmopel xovelc var Slamot@oel 0Tl 1) SUYXEXEWEVY PeY0d0¢ UTopel Vo avamapaoT|oEL
TOALQWVIXT| HoUCIXT| Tou avTioTolyel oe €va povadixd track. Ilpoxewévou howmdy va ebvou
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€QTY| 1) LoVTEAOTIOINOT) LoUGIXC Tou amoTeAElTon amd TOAAG BlaopeTnd dpyava, ot Dong et
al. [2| yenotwonowolv v multi-track pianoroll avamopdotacy. ‘Onwe Gaiveton xou 0To oy AL
0.3.5b, éva multi-track pianoroll elvon éva ohvoho molhamAdv pianorolls, xdlde éva ex twv
onolwv avtioTtolyel oe xdmoto track.

Dataset

To youvowd anoomdopata Tou yenoyorolvTo Yo TNy exnaidcuon Tou MuseGAN, npoépyo-
vtow oméd to Lakh MIDI Dataset (LMD) [16], wo ond tig peyahdtepee aUAOYES Youotxic o€
cuuPohur avamapdoTtaon), 1 ontolo dnuoupyRinxe and tov Colin Raffel xou nepihopBdver 176.581
povadixd MIDI apyetor.? Tio cuyxexpyéva, yiveton yphon VO GUYXEXPLEVOL UTOGUYGAOL TOU,
70 omoto ovoudleton LMD-matched xou amoteheiton amod 45.129 apyeio mou €youv avtiotolyniet
e xotaywenoec tou Million Song Dataset (MSD) [17]. To tehxd clvolo mapoaderyudtwy
exnofdevorg, Lotepa and TNy Uetatpony| Twv MIDI apyelwv o multi-track pianorolls, xoheiton
Lakh Pianoroll Dataset 4 LPD ev cuvtopia xou propel va Bpedel otnv totocehide® tou
project.

ITpooeneiepyacia Acdopévwy

To Sedouéva tou LMD-matched umdxevtan o pa xatdAANAY dradcacio tpoeneepyasiog, ta
Brpata T omolag amewovilovtar yeapd oto Awdypoppa 0.3.6. To tehixd clvoro exnaideuorng
amotehelton and 50.266 wouoixéc @pdoelc 4 YETpwy, xadéva ex TwV omolwy avTioTolyel Ypovixd
oe 96 OloxpLtd timesteps xou €yel eUBEReLo 84 BLUPOPETIDY VOTWV.

..................

track 1 pick only those

midiZpianoroll merge tracks |« with the highest s

MIDI file A ry . i matching training data

_________ P N . . Y W _ H fid s
* 96 time steps in a bar | | Prano roll merge to 5 tracks: prano roll i contidence score (50,266 phrases)

i
i
i
i

i i W .

* 128 possible pitches | « bass i with a 1_?'3"‘ tag
| i *+ in 4/4 time S — — -
output i l + drums H l e <, * structural feature |
= aNx96x 128xM i Y * guitar H R v - i based segmentation |
LMD- tensor for a song of N | LPD- « piano i LPD5- filter songs LPDS- | * prune to 4-bar phrases i

: H ; 5 . as ;

matchea J LXESCNEE | F Umatchea S {2 srngs &others | matheed cleansed J |7 %4 possblepches _ |

Figure 0.3.6: Ilpoeneepyooio Aedopévemv Exnaideuone [2]

0.3.3 MeTtpuxég AEoAoYTnong

Y10 mhaloto tne mewpopatixic aglohdynone tou MuseGAN, o Dong et al. |[2] npotelvouv
1 intra-track xou 4 inter-track mocoTixéc UETEIXEC TOU 0POEOLY LOUGCIXE YOEAUXTNPLOTIXG XAl
UTOPOUY Vol UTOAOYLGTOLUY TOGO Yia auUEVTIXG OGO %o YLoL TUpay OUEVAL DElY AT

e Empty Bars (EB): tocoot6 xeviv pétpwy (%)

e Used Pitch Classes (UPC): péooc aptdudc tovixey téEewv?
avé pétpo (amd 0 énc 12)

oV XPT]OL[J.OTEOLO\/)V‘COCL

ZEvo. MIDI apysto eunepiéyet otny oucio éva GOVOAO EVTOAGY TOU UTOPODY VoL EXTEAEGTOOY omd BLAPOPEC
NAEXTEOVIXEC CUOXEVES, TUPAYOVTOS TO AVTIOTOLYO NYNTIXS ATOTENECUAL.

3https://salu133445.github.io/lakh-pianoroll-dataset /dataset

4 Mo Tovix TéEn (pitch class) opileton wC T0 GUVORO ALY TWY VOTGOV TOU améy oLV PeTOED TOUC évary axépoto
aptiud oxtdBrv.
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e Qualified Notes (QN): nocooté “qualified” votav® (%)

e Drum Pattern (DP): toc00t6 votdv ot potifa puduold 4/4° (%)

e Tonal Distance (TD): opuovixétnta uetald 800 HoustxdY 0pYEvev”

0.4 Unconditional Generation

O 6po¢ “Unconditional Generation” avogépeton otny dtadacta autouatng dnuovpyiog véou
HOLGXO) TEQLEYOUEVOL OO TO UNOEY, dNAAdT Ywelc xdmota TEOTERT YVMOT ¥ CUUTANPOUTIXN
TAnpogoplo oyeTnd Ue Ta maparyoueva detyuota. H ouyxexpyuévn pédodoc mopaywyric arotehet
TNV dEyIx)| LG TEOGEYYLOT 0TO EPELVNTIXG TROPBANUA TNg Autouatng XLovieone Mouoirc 6cov
apopd To Thalolo tng mapolone Awmhwpatixig Epyootoc.

0.4.1 Movtéro

Ynpwlouevor 6to MuseGAN, avantiocoupe €va LOVTERD AUTOUATNG TOROY WY NG TOAUPOVIXOY
HOUCIX®Y PEACEWY Ot GUUPBOANXTY avamapdoTaoT], OmOTEAOUUEVKDY omd 5 pouctxd dpyava
(Drums, Piano, Guitar, Bass xou Strings). 1o cuyxexpuévo:

ApyitexTtoviny XUoTHUATOS

H apyrtextovinr tou cuotiuatog pag Paciletar oe éva ouvelxTid unyoviold Hoporywyixo
Avtayoviotxod Awtiou xat elvon EUTVEUCUEVN amd Wil ETOUEV UeAETn Twv Dong xou Yang
[19], n omoio emxevipdvetal oe SlaPOPETIXES HEVOOOUC UETUTROTNAG TVIXWY UE TEAYUOTIXES
Tiég og duadixd pianorolls. Ilpdxetton oty oucta ylo war douxy| mopaiioyy) Tou Hybrid
novtéhou oty apyttextoviny Tou MuseGAN, xodoe cuvdudlel Tic 800 VeUeMMBELS TEYVIXES
olvieone (jamming, composing) oAAd e TO OpOLOUOPYPO Xt GUVEUA cupmoy T TeoTo. ‘Onwe
paibvetar xar oTo ddrypauua tng exovog 0.4.1, amaptiCeton amd 2 Pacinés BopéC CUVIOTMOES:

e Generator: O Generator anoteheitar ané éva shared (xowo) dixtuo G, axohouvdoluevo
ané M private (e€edixevpéva) unodixtua G (i = 1,... M), xdide éva ex tov onoiwy ovii-
oTolyel oe €var SLaPopeTind woucixd Gpyavo. O G Topdyel dpyIXd YEVIXEUUEVO LOUGIXO
TEPLEYOUEVO, TO OTO{0 BLUGUNTING AVTITPOCWTEVEL TNV XOLVY) LOUCLXH| LOEX TTOU OLOLOLO-
Covtar Oha Ta eumAexodueva tracks, omwe évag ouviétng ouvtovilel Ta dudpopa dpyovol
Bdoel Tng ouVoAXg HOVOWAG BoURS. LTy cuvEyew, xdie G petaoynuotiCel auTh TNV
aPnENUEVT Hop@t| 0To Tehxd pianoroll Tou avtioToyou track, clugwve ye ta dixd Tou

7

Evae pdéyyoc yopuxtnelleton qualified €év 1 ypovxh tou ofia elvon peyohltepn 1 {on and 3 timesteps
(). TpLX00TS BelTEPO).

6To dataset mou ypnowonoteiton yio v exnoddeuon Tou MuseGAN nepihouBéver pianorolls pévo oe pudud
4/4. H petpinf DP unoloyilel 1o 1060016 TV VoThv ntou epgavilovtor oto loyupd pépn xdde pétpou avéloya
HE TO Yenotdomololuevo resolution.

"To Tovixd TEPLEYOUEVO EVOS LOUGLXOU XOPUTION UTopeEl Vo avomapaoTtodel 08 GUUTUXVOEEVT Lop®Y uéow
evoc edxol meplypagnth mou xoAeitow chroma vector. Ilpdxeiton yia évar Sdvuoua 12 otolyeiwy, To onolo
unodeviel TNy evépyela xdde Tovixig TdEng oto MyNTd ofua. H petpuy TD otnpileton oty meofolr] Twv
chroma vectors twv avtiotolywy tracks otov ecwtepind ypo evog 6-didotatouv tohutémou. Bdoel authc tng
ATEXOVIONG, Ol TOVIXES XNdoELs avTioToly(CovTal 0TI XOPUPES TOL oL OL LOYUPES UPUOVIXES OYECELS, OTWGS OL
tpltec xau ot mépmteg, epgovifovton we uixpéc Euxheidelec anootdoeic [18].
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HOLOWXE YVWEIOUATA Ko YUEAXTNEWOTIXE, 0TS UTOOEYUEL TO TAXCLO AUTOCYEDLUOUOY
oTnVv jamming npocéyylon. Aouxd 1 CUYXEXPWIEVT] dEYITEXTOVIXY dlaopoTole{ton amd
v hybrid, Aéyw tne mpoolxng tou shared Suxtbou, To omoio amaitel UOVo €va eviaio
Tuyado ddvuoua YopLBou otny elcodo.

e Discriminator: O Discriminator xatpentilelt otnv oucio tnv dour; Tou Generator. Ilio
ouYXEXPIEVY, anoTeleiton and M private umodixTua D; (1t = 1,... M), x&dc éva ex
TWV 0TOlWY AVTIOTOLYEL OE BLUPOPETIXG UOLUCLXS OpYOvVO, axoloudolueva and éva shared
olxtuo D,. Apywxd, xdie D, e€dyel low-level yopaxtneiotind amd to avtiotoryo track, ta
ornola oty cuvéyeta adlonotel o Dy yia Tov oynuationsd wag xotvig, high-level avomopd-
oTaomg, Bdoet g omolag exteAel TNV TEAX| TEOBAEdN oyeTind e TNV awdevTIXdTNTO TNG
cuvoAxtic pouoixic ouvieong. H Baowr| Slopopd avdueca 6To BlaymeLoTid dixTuo Tou
HovTéNoL Yo xou exeivo tou baseline cuotuatog Eyxetton oty TEoc¥rxn Twv private
UTOOXTUMY TIOU ETUXEVTRMVOVTOL GTA OLUPORETIXG HOUGXE Gpyava, xadne To MuseGAN
yenowomolel povo évav xowvé Discriminator, o onolog adloloyel Ta mapayoueva tracks
OUAOYLXG.

Generator Discriminator

...... »

shared/private design

True/Fake

shared/private | G
design -

Figure 0.4.1: Apyitextovixr) tou Unconditional Movtéhou pog

YAoroinom

‘Onog xou oty nepintwon tou MuseGAN 2], 6hec o1 Bopxéc ouviotdhoee tou unconditional
HovTéhou yag etvar VAoTomnuévee w¢ Bothd Luvehtind Aixtua. To yev Sayomplotind dixtua
amoTeEAOUVTOL OO DLAdOY IS TUTLXS CUVEAMXTIXS ETiTEDA, ETOL OOTE VoL ETULTUY Y AVETOL 1) orvary xarkot
ot Tatiny| pelwon mou amantel 1) amexdévior evog pianoroll oe o otaTio i TEOBAED TEOY-
potixic Tc. Amd Ty AR, Ta TopaywyLxd anoteholvToL and transposed GUVEMXTIXG ETinEDA
€T0L WOTE VAL EVOL EPIXTOC O PETACY NUATIOUOS TOU apytxol dtaviopatog Tuyaiou Yoplfiou otny
TEMXT| HOPPT UG TOAVPOVIXTG HOVOXTE cUVIESTC.

‘Onog avagpépinxe mponyouuévng, To baseline project etvon ewdind oyedlaouévo yio enelepyacio
%o ONULoUEY (o DEBOUEVMY UE CUYXEXELUEVT) BOUT|, OGOV APORd TNV BLaXELTOTOINCT| TOU YPOVOU, TO
€0p0¢ VOTOV 1) 0xxoun 1ot T0 TARYOC TwV UETPWY TOL GUVIGTOVY Uia Louctxy| gedor). Tlpoxeiué-
VOU, AOLTOV, VO AVTIETOTICOUPE AUTOV TOV TEPLOPIOUO XOL VO UTOREGOUUE VoL DLEQEUVHCOUNE
TEQAULTERL TIC TUPAYWYIXEC DUVAUTOTNTES TOU UOVTEAOU WOG, TOURUUETEOTOLOVUE TNV LAOTOINGN
HOG WC TROG EVAL GUVOAO PETOPBANTMV TTOU APOROLY UOUCLXS YUPAUXTNELO T TWV TOEAY OUEVHY
ppdoewy xou tapouctdlovton otov Ilivaxa 1 pall ue tov avtiotoyyo cupBoiious. H diadixaocta
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oUTY| ETLPEREL USALOTAL L0 TPOTIOTIOINGT OTNY ECWTEQIXT| BOUT| TWV dXTUKY Tou anopTiCouy To
oloTNud pog avdhoya pe Ty emuuntr €£060, xooTOVTAC TO €TOL OLUTEPO EUENXTO Xou
EUTPOCYPUOCTO OE BLAPORETIXES TPOXTIXEG GUVIEDT.

s number of samples
l latent dimension
t number of tracks
r bar resolution
P number of pitches
m number of measures
o (=m-r) | number of total timesteps
b beat resolution
7 lowest pitch

Table 1: Metafintéc [opapetpomoinong

Aadixocio Exntaidevong

H Swidixacio exnaidevong Tou unconditional povtélou pag meprypdpeton podnuotid and tny
ax6Aoul minimax cuvdpTnoT TWAC:

min max V*(G, D) = Exp, [D(x)] = Eznp, [D(G(2))] + Egpe (V2 D(F) 2 = 1)°] (0.4.1)

Edxoha umopel xavelc va Owmotooer 6Tt n V* oamotehel yio tpomononuévn exdoyr) Tng
TuTxic ouvdptnone V', n omola mapovoidotnxe oty evotnta 0.2.2, xodoe TteptauBdvel évay
emmpooveto gradient penalty 6po, o onolog P€ow UG XAVOVIXOTOMONE TV UTOAOYILOUEVKDY
TopayOYwy e€acorilel ToylTepn oOYXAon 0TV BEATIOT XATACTOON %ol YEVIXOTEQT, OTo-
Yepomolnomn Tng cuvolng dladaciog exnaideucng [2, 20]. "Ocov APORE. TOV YLENOLHLOTOLOVUEVO
oLUBOAOUO, 1) xorTavouTr Px 0plleTon EUPECH UEGW OpOLOHOPPTC OeryuaToAnloc ot eulelec ypou-
HéC YeTaLy CEUY®Y OoNUElY TOU TEOERPYOVTUL AT TNV XATAVOUY| TWV TEAYUATIXOY OEGOUEVHV
Pd KO TNV XATAVOUT] TWV TOEXYOUEVWY DELYUATWY Py, avTioTOLY AL

Axohouvddvtag v oyet| Bifhoypagla [2, 19, 21, 20], epopudlouvye o drapopetixy uédodo
exudinong, n omola otnpileton oe SladoyéS evorlayég peTall k Prudtwy BeitioTtonoinong
Tou Discriminator D xaw evég Priuatog evnuépwone tou Generator G. Me autd tov tpbéTO
eCacorileTon OTL TO BlaywELoTIXG dixTuo dlatnpeeitar apxeTd xovTd otny BéATioTn Abon Tou,
EVE CUYYPOVKC TO TOQOYWYIXO TEOCUPUOLETAL UE EMUPXMS dpYO PUIUO.

ITpoxewévou Vo amoxTHOOUUE [lal O AETTOUEQT ELXOVOL TOU UNYOVIOUOU UEUINoNG, EVOOUTE-
voupe o€ xde Briua tng dadixaciog exmaldeuong plo emmpdoVETY) QAT EXVEWOTNS (validation
phase), xotd NV omolo e£eTACOUUE TNV CUUTERLPOEE X0 TNV ATOXQLOT TWV GOULXDY CUVLO TOOWY
TOU GUO THUATOC GE BE0UEVA EXTOC TOU GUVOAOU exTaldevonc. Emniéoyv, epapudloupe TeyVIXEC
Early-Stopping xan Checkpointing yio xoah0T€00 EAEYYO XU EVOEYOUEVO TEOWEO TEQUITIONO
N¢ exnaidevong oe TEpiTTWOoT oL 1) ambd0CT) Tou YovTélou, 1) omolo utoloyiletar Bdoet plog
Tpoxadoploévng HETEIG Tapaxorolinong, gUivel Ue Ty mdpodo Tou YEOVOU, CEMEQVMVTUG
EVOL CUYXEXQWIEVO XATOPAL.
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0.4.2 Acdoueva Exnaildsuong

[oc v avoamopdo Taoy Ty 0edopEvemY extaldeuong Tou unconditional cusTAuAToC pag yenot-
womotoUue to multi-track pianoroll format [2, 19]. To tehixé pac dataset mpoxdOnter and Ty
LPD-5-cleansed version tou LPD [2| Uotepa and puar xatdAinhn diodixacio tpoenelepyaaiag, 1
orola 6TOYEVEL OTNY XATATUNOT TV TepthapBovouévewy pianorolls oe povoés pedoelc ouyxe-
XPWEVNG TIOEUUETEOTIOIMOMG:

1) Apywd epopudlouvpe o Sodixacior utoderypatoindlag, étot wote va emteuyvel o emt-
Yuuntoé resolution ctov ypovixd dfova.

2) YV cuvéyEld, ATOPEITTOUUE VOTEC EXTOC UG CUYXEXPUIEVNG EYPENELNS TTPOXEWEVOL VoL
amoxTHoOVUE TO (NTOVUEVO EVEOC TOVWV.

3) Téhog, cuhhéyouye ue Tuyoio TedTO and xdie TEayoldL Eva uetoBAntd TARdog utodmelwy
HOUCIXOY PEACEWY XU ETULAEYOUNE UOVO EXEVEC TIOU eUTEQIEYOLY ETOEXT apLiUd VOT®Y
ota OLdpopa tracks, cOUPoVE Ue Eval TEOXVOPLGUEVO XATO@AL.

0.4.3 Epyoieio AStoAoynong
Objective Metpuxég

‘Ocov agopd T0 XOUUATL TNG TEWRUUUTIXAC a&loAdYNoNg, LhoTololue amd TV apyy| Tic 5 u-
TPy 0VOEC PETPWES BACEL TNC TEpLYpoPiXAc Toug avdhuone oto baseline paper [2]. Xty
oLVEYELN EMEXTEVOUUE TO CUGTNUA AllOAOYNONC UaC UE 3 eTTAEOV TPOCUAXEC TOCOTIXWY BEL-
XTOV, OL OTOLEG ETUXEVTPWVOVTUL OE TOVIXY YUQUXTNELO TIXG %ot dhha oToLyEld HOUOIXHC UPHC:

e Used Pitches (UP): pécoc aptiudc votdhv mou yenotponolobvior avé uéteo, cuUtEpL-
AoBovoUEVWY OAWY TV oXTABwY oTNY Teoxadoplouévr euBéreia

e Scale Ratio (SR): 06016 votmv otny dodeioo povoixr| xhipoxa® (%)

e Polyphonic Rate (PR): 1060616 Tohuguvixdv ypovixoy Brudtwy? (%)

User Study

‘Ocov apopd T0 XOUUATL TG UTOXEWEVIXAC 0CLOAOYNOTNG, DIEEAYOUUE Lol TOLOTIXY UEAETT OTNY
HOE(Y| UXOUCTIXOU TEELRAUATOG, 1) oTolo UTopEl Var BlaywpetoTel ot dLO UepT) avdAOY L UE TO avTi-
otovyo task. To turua mou agopd tnv Autouatn Hapoywyr) Moucic ywelc cuvivixeg xou
neptoptopolc (Unconditional Generation) otoyelet o€ yiol EUTEQLOTATWUEVT AXOLVGTIXT GUYXEL-
on tou povtéhou pog pe To MuseGAN. H bopr) tou spwtnuatoroyiou otnpiletar oe (edyn
NYNTHOY BeLYpdTeY, amd Ta onolo 0 yeoTne xoheiton va emAélel exelvo mou mpoTyd 6Gov
apopd 3 LOUCIXE xELTHPLL

e Musical Naturalness: Oo unopoloe 10 €ZeTalOUEVO HOUCIXO OTOCTIACUN VoL EYEL
onuovpynUel amd dvipwo;

8Two Tnv vhomoinom e SR petpic yenotonoolue Ty xhipaxa Nto patldpe, xadde 1 ouvtplntind TAELo-
dnela twv xoppotudv oto Lakh Pianoroll Dataset eivar oty ouyxexpipévn tovixdétnta [22]. Enopévee, n SR
uTodEVUEL 0TNY ovola TO TOC0OTS TLV PuaMY PIGYYWY (xwplc xdmolo onueio alhoiwone).

YEva ypovind Briwa xohelton ToAUGLXS €4y 0 aprdd VOTEOY TOU EXTEAOUVTAL TAUTOYPOVOL TNV CUYXEXPLUEVN
oTypr; unepPaivel éva ouYXeXpEVO ot (cuvidong AouBdver Ty Ty 2).
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e Harmonic Consistency: O ¥yol mou napdyovtar amd to SLdpopo Louctnd dpyava elvan
oe ouugwvia Yetallh toug; To mpoxinTov anotéheoua elvon oxoUGTIXE ELYEELGTO;

e Musical Coherence: Ou didgopec Uouowés gpdoelg mou anuptilouy to e€etalduevo
xoupdTL efvor petall Toug GUVOESEUEVES UE Xdmolo TpoTo; Y Tdpyel cuVOYT HOUCIXWY
LOEWV;

To axovoTnd delypata mou amaptilouy xdle test case emAéyovTal Ye Tuyaio TEéTO avduEcH oE
200 povowég gpdoelg mou €youy Toapay Vel e xde povtéro xa tapouctdlovtal oTov allohoyNTh
ue tuyola oepd. Ou cuppetéyovteg Tng €peuvdc pog elvar ouvolxd 40 drtoua, xdde éva ex
TV omolwv allohoyel 2 SupopeTind Lebyn NNTUOY amooTaoUdTwy. Optopéva dnuoypapixd
otovyeio TapouctdlovTal PUE TUPAUoTUTIXG TEOTO oty ewdva 0.4.2.

Age Gender Music Knowledge

65.0%
Self-t. ht
.

Male

20-30

30 plus Non self-taught
Female
Familiarity with ML and Al Years of Music Study
Expert Proficient

0% 22.5%

Novice 57

Competent

Advanced Beginner

Figure 0.4.2: Anpoypagpud otoiyela Tng ToloTixAg UEAETNG

0.4.4 Ileipdypata xow AnoterAécpoTa

| L & [ &6 [ &6 [ & [ &6 [ G [ & [ G | G [ Co |

Number of Pitches 84 72 72 72 72 72 72 72 72 72
Beat Resolution 24 4 8 12 16 4 8 12 16 4
Generation ~ Number of Bars 4 4 4 4 4 4 4 4 4 4
parameters Lowest Pitch 24 24 24 24 24 24 24 24 24 24
Samples per song 8 8 8 8 8 8 8 8 8 8

Latent Dimension 128 128 128 128 128 128 128 128 128 256

Number of Steps 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
Batch Size 16 16 16 16 16 16 16 16 16 4
Training Number of Phrases 4 4 4 4 4 4 4 4 4 4
Steps per G update 6 6 6 6 6 11 1 11 1 6
POTameters g s per Evaluation | 50 50 50 50 50 50 50 50 50 50

Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Betas (0.5,0.9) | (0.5,0.9) | (0.5, 0.9) | (0.5,0.9) | (0.5,0.9) | (0.5,0.9) | (0.5,0.9) | (0.5,0.9) | (0.5,0.9) | (0.5,0.9)

Table 2: Iapauetponowioelg [epaudtewy

Ipoxewévou vo e€etdoouue TNV AmodOTIXOTNTA TOU HOVTEAOU UOC WS TEOC TNV Onuloupyla
TOAVQPWVIXHG UOUOIXAC XAl VO DIEPEUVACOUUE OLAPORES TTUYES TNG TRy wyxhg dtadixactog,
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ole€dyouue éva GUVOAO TEWUUATWY  YENOWOTOWVTAS OLUPORETIXES TUPUUETPOTOLACELS TNG
vlotnoinorc pog (C1-Chp), ot onoleg mopovatdlovtar avohutixd atov Iivaxa 2.

Y OY®ELOT BLAPOPETIXNGY TELRUAATIXNGY TARUAETPOTOLACEWY

H oOyxpion uetald Twv SlapopeTinty TopopeTeonotioewy tou [livaxo 2 (extoc ™me Ch) TEOLY Ot
Tomole{tar 6To TAalolo Tng objective allohdynonec. Ewdidtepa, yia xdde configuration mopd-
YOUUE, yenowonolwvTag Tov avtiotoryo Generator Tou teheutalou Briuatog exnaideuong, 20000
UETEA OPYOVOUEVA 0Ve TETEADES OF UOUCIXES PEAOELS, OTIC OToleC EQUPUOLOUUE OTNY CUVEYELL
TIC HOUOWES PETPIXEC Tou eEETAOo TNy EVOEAEY WS Tponyoupéves. O Ilivaxag 3 cuvoliler ta
TEOXUTITOVTA ATOTEAECUOTA UE TNV YopPT| UEowy Gpwv. Tuwéc minoiéotepa ota avtioTolya
CTATIOTIXG YVWEICUTA TNG XATUVOUNE TOV TRUYUATIXGY BEBOUEVLY VempoUvTon XAAITERES, €-
xt6¢ g inter-track petpwAc TD yio TNV omolol oL UxedTERES TWEC efvan xan ot {NToVUEVES.

EB (%) UPC QN (%) UP
B D G P S B G P S B G P S B G P S
[Ground-truth [ 1.6 1.1 41 5.1 32[248 416 42 457 [91.7 853 89.7 89.7[272 58 59 638 |
Cs 03 0.0 09 1.9 21[28) 44 48 514[590 582 572 608 [314 596 658 7.61
Cs 04 00 09 07 07]312 518 533 514|490 522 565 646 | 34 757 7.73 7.05
Cy 00 21 06 12 09304 417 4.39 547|509 59.7 659 703|339 571 6.54 7.75
Cs 00 08 16 1.0 25309 405 458 414 |63.1 729 724 743|332 59 6.6 597
Co 05 01 18 08 07247 49 507 54 |543 489 529 506 |2.67 667 724 822
Cr 01 01 16 02 04]275 436 487 549|562 649 591 572|315 606 68 7.72
Cs 1.9 01 43 28 04264 58 608 509|631 567 60.1 643|286 819 844 7.78
Co 00 02 15 00 02306 392 541 548|629 545 550 453 | 34 562 73 924
Co 02 01 00 00 04]269 509 516 4.52|57.2 695 668 60.8 | 299 759 73 7.12
TD SR (%) PR (%) DP (%)
B-G B-S B-P G-S G-P S-P B G P S B D G P S D
[ Ground-truth [ 0.7 073 0.7 07 0.67 066[7.7 746 739 72612 152 573 608 641] 831 |
Cs 086 091 09 098 099 097 [79.0 821 787 750 [26 217 49.7 53.7 587 79.6
Cs 057 053 056 06 062 059|804 763 727 70.0 | 0.6 68 475 47.7 550 | 92.3
Ci 037 038 036 039 039 038 |70.6 825 819 784 |01 46 285 379 502 | 884
Cs 0.26 0.27 0.28 0.27 0.25 0.27 | 825 738 775 77.1 |02 29 429 470 554 | 53.1
Cé 09 096 092 108 1.03 109 |80.5 776 79.0 787 |14 108 426 435 573 | 83.5
Cr 05 056 051 061 056 06 |75.7 75.1 785 755 |0.7 57 350 348 489 | 96.0
Cs 042 037 042 045 049 046 | 70.6 719 663 677 | 0.1 44 395 400 526 | 92.6
Cy 027 031 031 034 034 038|763 823 761 828 |03 35 234 336 500 | 587
Co 096 089 095 093 1.04 105|844 694 782 71.2| 19 14.2 669 517 568 | 816

Table 3: Objective yetpinéc yio BAPORETIXEC TELUUATIXES TUPUUETPOTOLOELG

Kot’ apydc, mopatneolue 6Tl OV UTEQYEL XUTOLL CUYXEXPWIEVT] TUPUUETEOTOMGT txavy va
Behtioel Tautoypova OAeg T objective petpixéc. Ihio ouyxexpéva, dlamoT@VouUE OTL 1
av&non tou beat resolution (C5) odnyel oe toyupdtepes apuovinés oyéoelc YeTall Twy tracks
(TD) xou umhétepa mocootd “qualified” votdv (QN), odhd cuyypdvwe embdpd apvnTxd oo
eLUXS yapoxXTNELOTIXG TwY TapoyOpevVLY detyudtwy (DP xovtd oto 50%). And tnv dAin
TAEUR, 1 Yerion VYNAOTERKY TWMOY YLoL TNV UTERTURAUETEO k, 1) omolo avamaploTtd To TArfdog
Brudrov exmaideuong avd evnuépnaor tou Generator, gofveton vor cUUBIAAEL 6Ty BeAtinon Tng
emUUNTAC TUXVOTNTOC VOTOV (EB) ohA& ot GARWY TOVIXEDV YOEUXTNPIO TIXWY, OTwS To SR.
Téhoc, o dimhactaouds e havidvoucag dLdcTaoNC Tou alOTOLETHL Amd TO ToEUYWYIXO Of-
xto (Cho) emnpedlel Yetixd Tov deixtn PR yio Ta Drums, xade emlong xou toug deixteg UPC
xou SR ytar o Strings, T omolo amoTeAOVY X0 TO THO TREOBANUAUTIXG HOUGIXO ORYAUVO GTNY OAN

18




0.4. Unconditional Generation

/7 / /7 / /4 7 / /
otadwactor UTO TNV Evvola Tl CUVATWE EVOWUATWVEL dpXeTO VopuS0.

Y 0yxpiom pe Baseline

H o0yxeion tou unconditional povtélou pag pe To MuseGAN nporyuatonoteitar we mpog Toug
000 PBactxolc dZoveg a€lohoynong:

Objective YV ykpion

‘Ocov apopd T0 XOUUATL TNG TOCOTXAC ATOTIUNONG, ETAEYOUUE 2 DLUPOPETIXES TELQUUATINEG
TOQUUETPOTIOLACELS TOU CUOTAUATOS Hag Yl TV objective avtimapdieon ue to 4 multi-track
wovtéra!? mou mepthapPdvovton oty apyttextovixh Tou MuseGAN. H rpd elvan  C4, 1
omola avtiotolyel 6o configuration tng uhonoinong tng baseline apyltexTovinrc xan 1) 6elTeE
elvar 1 Oy, 1 omolo Vewpeitar default oto mepapatind mhaiclo Tou cusTiuaToc poc. ‘Omee
X0l TEONYOUUEVKS, Yot xdde povtého mapdyouue 20000 uetpo opyavmueva avd TETPAOES o€
HOUGCIXEC QPRACELS, OTIC OTOLEG EQUPUOLOUKE OTNY GUVEYELDL TIC UOUCIXES UETPIXEC.

EB (%) UPC QN (%) DP (%)
B D G P S B G P S B G P S D
baseline | 8.06 8.06 194 248 10.1| 1.71 3.08 3.28 338 | 90.0 819 834 896 | 886
ours | 1.6 11 41 51 32 |248 416 42 457|917 853 89.7 89.7 | 83.1

jamming | 6.59 2.33 183 226 6.10| 1.53 3.69 4.13 4.09 | 711.5 56.6 62.2 63.1 93.2
composer | 0.01 289 134 0.02 0.01 | 251 420 4.89 519 | 495 474 499 525 75.3

training data

Baseline hybrid | 214 29.7 11.7 17.8 6.04 | 2.35 4.76 545 524 | 446 432 455 520 | 713
ablated | 924 100 125 0.68 0.00| 1.00 2.8 232 472 | 0.00 228 311 262 | 0.0
Oure Cy 00 0.7 04 13 12 |363 467 4.64 529 | 556 75.8 74.1 75.9| 505

Cy 03 00 09 1.9 2.1 |289 44 488 5.14|59.0 582 572 608 79.6

Table 4: Intra-track AZioréynon

O Iivoxoag 4 cuvodilel Ta tpoximtovTa amotehéoyata Tng intra-track altoAdynone ue tny yopet
HECY 6V YLOL TOUS XOLVOUC TOCOTIXOUC DEXTES PETALY TwV eéetalduevwy frameworks. Tiuéc
TANCIECTEPA OTA AVTIOTOLY O LOUCIXE YVWEIOUATA TNG XATAVOUNE TOV TRUYUNTIXWY OEQOUEVHY
Yewpolvtan xahltepeg. 201600, AoYw TG OTATIOTIXNG ATOXALOTC METOLY TWV 5V0 GUVORWY
exnofdevorg, 1 onola maveg ogetheton oty Tuyaio BladWAGI BLIAOYHC LOUCIXMY POUCENY
am6 to pianorolls Tou LPD-5-cleansed, 1 axpif3ric olyxpeton twv 4 baseline yovtéiwy ye Tic 2
TOUEUUETEOTIOLACELS TNG OIXC HOG Ry LTEXTOVIXTC OEV Elvon @uxTn. TlopdAia autd, oty tepinTwon
TwV QN xou DP PETEIX®Y 6TOU 1) €V AOYw Olapopd efvor aeANTEN, TORUTNEOVUE OTL TO CLOTNUS
uoc mopouctdler onuovTixd xakitepn enidoon and Gha ta baseline (ypwpotiotd xehd).

TD
B-G B-S B-P G-S G-P S-P
jamming | 1.56 1.60 1.54 1.05 0.99 1.05
Baseline composer | 1.37 1.36 1.30 0.95 0.98 0.91
hybrid | 1.34 1.35 1.32 0.85 0.85 0.83
Cy 02 022 02 021 02 021
Cy 0.86 091 0.9 098 0.99 0.97

Ours

Table 5: Inter-track AlioAdyrnon

0T0 povtédro ablated avtiotolyel o pa topehayf Tou Composer, 1 onola dev tepthouPdver Batch Norma-
lization.
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O Hivaxag 5 ouvodilel Ta tpoxinTovTa anotehéouato Tne inter-track aftohdynone ue v Lopn
HEOWY OpwY. e aUTH TNV TERPITTOOT), WxOTERES TWES VewpolvTar xohUTepec. EUxoha pnopet
XAVELG Vo BLamoTOoEL 6TL ) TapopeTponoinon C unepBaivel onuavTixd Oho Tar UTOAOLTA HOVTEAN
o€ 6, TL APOEd TNV OPUOVIXOTNTOL TWY TRy OUEVEY Setypudtev (TD xovtd 6to 0.2 yia Gha tar Lebyn
0PYEV®WY), YEYOVOC TIOU €0YETUL GE GUUPMVIN UE TO TORICHOTA TV TEONYOUUEVLY TELRUUSTELY
oyeTxd ue Ty yenon udnhot beat resolution. Emmiéov, mapoatnpolue 6Tt xan 1 enidoon tng
mopopeTeonoinone Oy elvon dlio avoapopds, EWOIXOTERN OTNV TERITTWOT) APUOVIXGY GUCYETICENDY
HETAZD evog YehmBIXoL opydvou (Bass) xou evéc opydvou cuvodeiac (Piano, Guitar, Strings).

Subjective XVykpion

‘Ocov agopd 10 xopudTL TNG aXoUCTIXNG OU-
Yxpong Twv 2 e€etalopevwy frameworks outo-

HOTNG TOEAYWYNS LOUCIXNG, ETUAEYOUHE OEly-  Naturainess 8 n
potar oo TNV mapapeteonolnon Cy yla Ty duxn
Mo opyLTEXTOVIXT o avTioTorya amd To Com- Harmony = | m=on

poser povieho yio to baseline. To mpoxd-
TTOVTA AMOTEAECUOTA avamaploTavTal YRuUpXd

, B , ) , Coherence 82 18
otnyv exova 0.4.3. Iopatneolue 6T To choTNUd
o mopouotdler onuavTied xahTepn enidoon G0z o e 080
a6 o MuseGAN avogopixd ye oha o e€e-
Talopeva povowd xetthple. To yeyovog autd Figure 0.4.3: Subjective X0yxpion

uTodEXVOEL OTL 1) UAoToiNoY pag, N omola Blvel

EUaoT o PLIULXSE YoUEUXTNEIG TXE, TEAYUUTL CUUBAAAEL GTNY QUOIXOTNTA XOL TNV CUVOYT| TOV
ooy OUEVLY detypdtwy. Emmiéov, dmotdvoupe 6t 1 shared/private dopr; tou Generator
aAAd xou Tou Discriminator emdpd Yetixd oe dudpopa Tovind otoyeia, To onola xodopilouv Ty
GUVOALXY| OPUOVIXOTNTAL Lo Louctxic olvieonc.

0.5 Conditional Generation

Y€ CUVEYEL TNE EPELYNTIXAC MAC UEAETNE oToV Touéa Tne Autopatng Xouvieone Mouoixic, ene-
XTEVOUUE TO UOVTENO oG OF €Va GUVERYATIXO TAXCLO otvUp®TOU-UnyoviC TEOS TNV XaTEUTIUVOT
NG QUTOUUTNG ToRUYWYHEG MouotxAg cuvodeiag. Iho cuyxexpeva, dedouévou evdg and To
eumhexdpeva tracks (tpoepyduevou and avdpmmivn pouotxr oivieon), To GUOTNUE Lag TaPdYEL
auTOpoTo Tor UTOAOLTaL 4, VEWPOVTAS T ¢ TNV EUIXT ot dEUOoVIXY| TOU GUVODELX.

0.5.1 MovTélo
Apyrtextovixy, UoTHUATOG

Ye yevotepo mhaioto, To conditional povtélo pag diatneel TNV UTOBOUT] GUVEMXTIXOU UMY avL-
ouov Hoaporywyxod Avtaywviotinod Aixtdou and to unconditional task, to omolo e€etdotnxe
EVOEAEY (S OTNY TEONYOLUEVY eVOTNTa. 20TOC0, 1) EVOWUATWOT CUVINXMOY GTNY TUEAYWYLXN
OLOWCLoL ETLPEREL AVATOPEUXTA TPOTOTIOLACELS TWV UTIOEYOVIWY BOUXOY UOVEDWY OAAS Xt
TpocUxeg véwyv. o cuyxexpyieva:

e Generator: ‘Onwe galvetor xon oto oyfua Tng exovag 0.5.1a, o Conditional Generator
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0.5. Conditional Generation

oxohovdel v shared/private Sour) Tou Unconditional Iopaywyixod Awxtdou, xodog
amoptiCetan amd éva xowvod Turiua G xan 4 Wiwtxd urodixtua G, 6o dnhadt xon To Op-
yava cuvodetag. 2ot600, To shared dixtuo TpomomoLEiTon XAUTIAANAAL, £TOL WGTE VoL Ao~
Bdver 2 elobdoug: Eva Tuyaio Sidvuoua YoplBou z Tou TEOEEYETOL Amd Lol Prior XATAVOUN
Pz xat To embedding u tou conditional track oto yweo Tou Yopifou.

“Global” Discriminator: Ilpoxewévou vo anoxtricouue €va Yevixd xpltr, o omolog
a&loAOYEL TO XUTE OGOV 1) TPy OUEVT GUVODELN apUOLEL Hovoxd oto doléy conditional
track, evowpat@vouue oty apyttextovixr) Tou conditional yovtéhou pog Tov undpyovta
Discriminator xou tov ovoudlouue “Global”. ‘Onwg gaiveton xou oto oyfue 0.5.1b, 7
dopn} Tou TUEAUEVEL avaAlolwTy, xadog anoteleitar and 5 private umodixtua D, xde
€VaL EX TWY OTOIWY AVTLOTOLYEL Xt GE DUPORETING GpYAVO (GUUTERLAUBOVOUEVOL XAt TOU
conditional), axoloudolueva and éva shared dixtuo D;.

“Local” Discriminator: Enextelvoupe tnv apyix] pog LAOTOMGY), EVOOUATOVOVTUG
0To oVOTNUG pag xat éva devtepo Discriminator, tov onoto ovopdlouue “Local”. ‘Omnwg
UTOBEWYVEL X0l 1) OVOMOGER, aUTO TO EMTEOCUETO BlaywploTwd dixTuo alloloyel Uovo
TNV TEUYOUEVT, oLVOOEiN WS aveldeTnTn wouctxy) olvieon. Aouxd, axoloudel Ty
shared /private oyedioon tou “Global”, ue uévn Swpopd dtt oe auth Ty TEpinTwon T
LTS uTodixtua D), eivon 4, 6oo dnAadT xou Tor accompaniment tracks.

Encoder: Extéc twv tumix®yv cuvictwody evog Hoapoywmywod Aviayoviotixol Al
xtou, To conditional oot pag TepthauPdver enlong xou Evay Kwdicorounty|, o onolog
ebvon umeduvog yio Ty dnuovpyla Twv embeddings Twv conditional tracks oto y@eo
Tou Yoplfou.

Decoder: Tlornotolue xat tov avtictoryo Anoxwdixomointy|, o onotog emtehel TNy o-
viiotpogn Aertoupyla, avaxataoxeudloviag TNy opyxt| eloodo and Ty Aavidvouca ova-
TOEAC TUOT).

< "sha red/private design

True/Fake

shared/private | G
design o

(a) Generator (b) Discriminator

X— \—>—> — X

Latent-Vector
Generated from X

(c) Encoder ot Decoder

Figure 0.5.1: Yuviot®oec tou conditional povtéiou
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YAoroinom

‘Onwe xou TEoNYoupEvewe, OAEC oL Bouxég cuviotwmoeg tou conditional povtéhou pag ebvou
viomounuévee g Bathd Muvehuctind Abctva.  Ta pev Soywetotind, xodog eniong xo o
Koduwonomnthc, anotehobvton and dladoyixd GUVEMXTIXG eTITEdN, €TOL OOTE VoL ETULTUY Y AvVETOL
1 ovaryxaibo dtaoTotiny| etwon. To 0e moporywyind, ahhd xar 0 AToxwdixononThe, amoTEAOL-
vTon and transposed GUVENXTIXG ETINEDN ETOL OTE VO ETUTUYYAVETOL 1) XUTUAANAT OLOG TOTLXY
avénorn. Emmiéov, axolouvdolue xow o€ auTy| TNV TERIMTWON TNV TEYVIXY| TUQAUUETEOTOINONS WS
TEOG TO 0UVOAO PETUPBANTGY Tou avaypdpovral otov Tlivanca 1.

Aadixoocio Exnaidevong

O unyoviouode pdinone tou conditional yovtéhou pac otneileton oTIC EMUECOUS EXTOUOEUTIXES
otadxaoieg Twv douxwy Tou cuvoTwony. Ilio cuyxexpyeva:

e “Global” Discriminator: O “Global” Discriminator podaiver vo Soywpiler tar avde-
Vg omd tor moparydpeve detypato (conditional + accompaniment), ypnotpuonoudvtog
HLot X TIAANAGL ETUASYHEVY], CLUVEETNGCT XOGTOUS, 1) OTIOlol TOCOTIXOTOLEL TIC ECPUANIEVES
TeoPAédelg Tou xan yio Jeticd ahhd xon apyntikd TopodelyoTa eEXTaldEvoTC.

e “Local” Discriminator: O “Local” Discriminator oaxoloudel tnv (Bl yédodo, ue povn
Olapopd 6Tl ot xdie mepinTwon e€eTtdlel uévo to uéen NS cuvodeiac.

e Generator: O Generator yadaivelr vo dnuloupyel véeg pouoixég cuvodeleg Bdoel Tou
feedback mou Aopfdver and to eumhexduevo oy AUa Dy WELCTIXGY OxTOwY. Eddtepa,
otnv mepintwon 2 Discriminators, to loss tou Generator urnoloyiletouw w¢ 1 uéon T
TV aviiotolywy TeoBrédewy, evolhoxtind houBdveton utddiv uévo 1 €€odog Tou evoc.

e Encoder: Avantiocouue 2 SlapopeTinég Uelodoug Ocov a@opd TNy Stadacio ex-
Taldevorng Tou Kwdwonownt:

— I-phase: ¥e auth v nepintwon o Kowdwonomntrc exnadeteton yall pe to Iopo-
Ywywo Aviayoviotxd Aixtuo, axohouvdoviag Ty mpoxtix Tou Generator, xa-
V¢ Tar 500 AUTA BEXTUN GUVELGPEPOLY ATO XOLYOU GTNV TPy WYY| VEMY UTOPH QLY
OELYUATWY.

— 2-phase: 'Onwe umodeixviel xou 1 ovouacio, oc auth TNV TeplnTwon 1 dlodixacio
udinong tou conditional povtéhou pag donpeiton oe 600 pépn. Apyixd, o Kwodixornor-
ntic exnoudedetan pall ue tov avtiotoryo Amoxwdwornointh w¢ éva eviaio Au-
toencoder clotnua, yenowomowwviag to MSE loss avdusoa oto cpywd xon To
avaxataoxevacpéva conditional tracks xou tnv Kullback-Leibler andxiion, n omolo
AVOTOELO TS TNV OTUTIO T anéotaoT avdueoa oty Tumxny| Kavovin Katavour)
N(0,1) xou tnVv xatavops; Tou poviehonotel Tov Aavildvovta Yhpo Twy Topoy GUEVKY
embeddings. Xtnv cuvéyeia mpaypoatonoteiton 1 exmaidevon tou GAN, xotd TnV
odpxeta Tng onotag o Encoder dotrpeiton auetdfinTtoc.

‘Onwe xou oto unconditional task, 1 cuvolny| Sladixacio extaldevone otneiletal oe BladoyINéS
evodaryég petall k Prudtewy Pedtiotonolinong Twv eumhexdpevey Discriminators xan evog Bri-
atog evnuépwone tou Generator (1 xou tou Encoder oto 1-phase mode) (2, 19, 21, 20.
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0.5. Conditional Generation

0.5.2 Ilewpdpata xow AToTEAECUATH

‘Ocov  agopd TO XOUUATL TNG TEWRAUUTIXAC oS
ueéTng, eoTidloupe ot 8 BLUPOPETXY HOVTEAN QUTO-

, , ) i Autolineoder | Local Discriminator
HOTNG TOQUYWYHAG HOUCIXMY CUVOOEL®Y, To oTold Ton
ToEoLCLALoVTaL AVIAUTIXG OTOV TVAXA TG EIXOVAC Piane  T0 v
’ ’ 7 7, PIIJ v

0.5.2 pali ye tov avtiotowyo cuuBoiious. ‘Omnwg Py 7 7
umopolue va dolue, Ta efetaldpeva conditional G - -
HOVTEAN  OLUPOEOTIOOUVTOL WG TEOS TS OOUXEC | Guitar i:'” = v

/. 7 7 . 10 -
CLVIOTHOOES TToU anaETI{ouV To GUCTNUA (Global Dis- e 7 7

criminator / Global xou Local Discriminators), tov

ovydpripo exmoldevone tou Kwduoromt (1-phase Figure 0.5.2: Conditional Movtéla
mode / 2-phase mode - AutoEncoder) xot to €idog

Tou conditional opydvou, dnAady| exeivou mou amoteiel TV Bdon tng dladwaciog clvieone
(Piano / Guitar).

Objective AZwoAb6ynom

Y10 mhatoto tng objective a&lohdynong, mapdyouue pe xdde poviého 20000 pétpa opyavwuéva
ova TETPAOES OF UOUCIXES PRACELS, OTIC OTOlES EQUPUOLOUUE OTNY CUVEYELX TIC UOUCIXES YOG
HETEIXES xou uToAoYiloupe Toug avtioTolyoug PEcoug Gpouc.

EB (%) UPC QN (%) DP (%)
B D G P S B G P S B G P S D
baseline | 8.06 8.06 19.4 24.8 10.1 | 1.71 3.08 3.28 3.38 | 90.0 &81.9 884 89.6 88.6
ours 1.6 1.0 50 56 3.7 |247 409 419 4.5 91.6 85.6 90.0 89.7 82.9

training data

Poo 06 0.0 22 - 24 | 271 393 - 4.33| 514 565 - 58.9 86.1

Ours P 02 0.0 18 - 1.5 | 257 4.09 - 4.76 | 58.2 56.1 - 61.7 86.3
Py 174 0.2 3.0 - 4.4 | 1.68 3.9 - 4.3 | 50.7 49.2 - 55.1 87.0

Py 1.6 00 0.7 - 0.9 |2.56 4.19 - 5.16 | 54.8 56.6 - 51.0 86.2

jamming | 4.60 3.47 133 - 344 ] 205 3.79 - 423 | 73.9 588 - 62.3 91.6

Baseline composer | 0.65 20.7 197 - 1.49 | 251 4.57 - 5.10 | 53.5 484 - 59.0 84.5
hybrid |2.09 453 103 - 4.05| 2.86 4.43 - 432 | 43.3 556 - 67.1 71.8

Table 6: Intra-track A&ohéynon yu Piano

O Iivaxag 6 ouvodilel ta amoteréopota Twv 4 intra-track petpin@y mou ebvor xowvég avduecoa
oto conditional cUotnud pag xou o MuseGAN yio v tepintwon Tou Piano. ‘Onwg xa mpo-
NYOUPEVGS, THES TANCLECTERPN OTA AVTIOTOLY A LOUCIXA YVORICUAT TNG XATAVOUNS TOV TTELY-
HOTIX®Y OEdOpPEVELY FewpolvTar xahltepes. [lupatnpolue 6Tl 1 UEHOVOUEVT EQUOUOYY| TN EX-
Taidevong 2 pdoewy (Pro) eMOEA VETING OE OPLOUEVA OGNS YoRUXTNEIC TIXY, OTwS To EB, To
DP xou o UPC, oA afveTon vor emnpedel apxeTd Ty pop@r| Tou Bass track, ehottwvovtog onuo-
VT Vv cuvolixr cuuBoly| Tou oty oUvieon (EB xovtd oto 18%). Amd v ddAn mheupd, 1)
mpoc¥rixn devtepou Discriminator, aveapthtwe peddodou exmaldeuong, evepyeTel oyedOY GAOUC
Toug T0GoTXOUG delxTeg, emBefonwvovTag 6Tt To emimpooieto feedback mou mapéyel wg TEOC TIC
TP YOUEVES GUYOOELES ebvan TpdypoTt yerowo. T Aéyoug mhnpdtnTog, topadétouue eniong
xou To avtioTolyo amoteréopato yio T 3 multi-track povtéha Tou MuseGAN. Q261660 xou mdAL
AOY® TNG OTATIOTIXNG OMOXAONG UETAEY TWY OUVOL®Y EXTUBEUOTS, 1 AmOAUTY GUYXELOT| OEV
etvor eqpuxtr). Top” Ohar autd, PAémoupe 6Tt oL Tiég ebvon otny dlar TN ueyédoug, yeyovog to
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omofo UTOBEWVUEL OTL X0 1) DI YoC LAOTIONOY Yol TIC UETEIXEC TapEYEL OUCLACTLIXY Epun Vel
NG TOPUYOUEVNG HOUGLXYC.

TD

B-G B-S B-P G-S G-P S-P
Poo 0.82 0.83 0.88 0.87 0.95 0.94
Po 0.79 081 085 0.85 0.94 0.94
Py 0.74 0.73 0.81 094 102 1.01
Py 0.83 092 097 099 1.12 1.17
jamming | 1.51 1.53 1.50 1.04 095 1.00
Baseline composer | 1.41 1.36 140 0.96 1.01 0.95
hybrid 1.39 136 1.38 0.96 094 0.95

Ours

Table 7: Inter-track AZioléynon yio Piano

O ITivaxag 7 cuvodiler ta anoteréopata tng inter-track petpuc TD yior TV TeplnTwon Tou
Piano (uuxpodtepec tpée Yewpotvtar xohUtepeg). Tlapatnpolue 61t to poviého Py mopovatdlel
™V xoAOTepn eidoon ouyxpltxd e dho To conditional povtéha (bold Twéc) oAAd xon Gheg
Ti¢ baseline apyttextovixeg (Xpwpanordﬁ xeNd) GO0V apopEd. TNV apUOVIXOTNTA UETAE) EVOC
HeAmdXoL opydvou (Bass) xau evoc opydvou ouvodeiog (Piano, Guitar, Strings). Ané tnv
GANT) TAEURA, LOYUEOTERES OPUOVIXES OYEoel UETAC) opydvwy ouvodelag evtoniCovion otny
Tep{nTworn Tou poviéhou Fy.

UP SR (%) PR (%)
B G P S B G P S B D G P S
[ training data 971 5068 585 6.4l ] 759 744 741 728 | L1 152 557 618 62.3
Po | 294 579 - 6.28 | 8l7 75.8 - 771 |12 133 406 - 442
Ours Py | 294 577 - 717|771 763 - 756 | 15 152 487 - 59.9
Po | 174 505 - 607|822 8.6 - 79002 101 222 - 302
Py |284 543 - 73 807 7.6 - 72319 97 382 - 563

Table 8: Emnpéoietn Intra-track AZioldynon yia Piano

O Iivaxag 8 cuvodilel to amoteréopata Twv 3 emnpdoveTwy intra-track Yetewdy wévo yio to 4
conditional yovtéia tou yenotwonololy To Piano wg cuvixn xatd tnv mopaywyixy dtaduascta.
EOxoha unopel xovelc va Slomotahoet 6T yia xde variant ot tpoxintouceg Tée npooeyyilovy
aEXETE TIC TpaypoTixée.  Ewdwodtepa otnv mepintwon tou PR, alloonueiwtn elvon 1 enidoon
Tou Py, Bdoel tne onolag oupnepaivoupe 6t 1 tpoc¥rixn Tou Local Discriminator mpdryportt
ouUBdiher oY eMTELEN TWV XATIAANAGY ETUTESWY TOALUQLViag avd track.

Téhoc, o Ilivaxoac 9 cuvoliler ta anoteAéopata OAwY TV objective petp@v yio To 4 po-
viéla ou yernowponotoLy v Kiddpa we conditional épyavo. Iapatneolue 6Tt T0 poviého
Go1 emupépel 1oy LPOTERES dpUoVIXEC oyéoelc UeTolD Tov eumhexduevoy tracks (TD), evdd To
emmpocveto feedback mou nopéyel o dedtepog Discriminator cuvelogepet enlong ota puduixd
YOURUXTNPIOTIXG TV TORAUYOUEVKDY GLVOBEWY (DP) ahhd xou oe dhhor ototyela LPHC, OTWS TO
PR. And tnv dhAn mhevpd, 1 epopuoyt Tou ahyoplluou exnaideuong 2 @doewy xoL Yol Toug 2
GLVBLAGUOUS BLoYWELOTIXGY BiXTOWY emdpd Vetxd oty muxvotnta @loyyoohuwy (EB), xadoe
enlong xou OE YEOVIXE OAAG O TOVIXA YUEUXTNELOTIXG TWV TURAYOUEVGY OELYUATWY, OTKS
TocoTxonotouvTon amd Toug deixteg QN, UP, UPC xou SR, €18x6Tepa Yo Tar dpyava Tou todlouy
xatd x0plo AOYo ouYy0pdleS.
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0.5. Conditional Generation

EB (%) UPC QN (%) UP
B D G P S B G P S B G P S B G P S
| training data [ 1.8 0.9 43 52 3.6 [ 247 421 414 449|918 875 916 905 [ 27 585 584 6.75 |
Goo 08 00 - 21 18[251 - 504 459[625 - 493 60.3[2.77 - 731 691
Go 00 00 - 31 000|305 - 431 528|576 - 524 596|336 - 618 7.9
Gho 1.6 00 - 18 3.5|235 - 4.28 401|502 - 595 586 |25 - 6.13 588
Gn 04 02 - 33 06232 - 462 466 |55.6 - 478 579|246 - 64 6.68
TD SR (%) PR (%) DP (%)
B-G B-S B-P G-S G-P S-P B G P S B D G P S D
training data [ 071 072 0.7 069 066 066754 735 734 731][08 155 59.7 61.0 62.6 [ 85.0
Goo 0.83 085 09 096 101 098]847 - 8.9 77.0[ 11 109 - 539 534 871
e 087 087 0.83 0.93 0.92 0.86| 867 - 836 839 |28 149 - 553 60.8| 86.0
Gho 084 0.84 084 093 095 089 |80 - 798 84|07 60 - 375 440 | 917
Gu 089 087 08 106 109 097 | 780 - 769 80.5 |09 9.7 - 421 544 | 837

Table 9: Objective A&ohdynon vy Guitar

Subjective AZioAéymom

To tufuo Tng motoTAg pog UEAETNG Tou agopd Ty Autéuatn Hapoywyr Mououxrg Yuvodeiog
(Conditional Generation) ctoyelel o€ Ulo EUTEPLOTATWUEVY AXOLUGTIXY GUYXPLOY AVUETO OTOL
povtéha Tou mivaxo 0.5.2. Kdie test case tou spwtnuatoloyiov amoteheiton amd 3 MynTind
oelyuota, T0 TEMTO £x TwV omoiwyv elvar To conditional track xou tor uTdoina 2 avtioToLy OOV
oe moavéc cuvodeieg Tou, TEOEPYOUEVES ElTE amd BLUPORETIXG TEYVNTA HOVTENX ElTE Xou oMo
TNV XOTAVOUY| TWV TEUYUATIXGY Oedouévey. O yerotne xahelton vo emhééel v cuvodela
ToL TEOTWA Yl To exdotote conditional track avagopud pe 3 pouvowxd xpithpl:  Musical
Naturalness, Harmonic Consistency, Musical Coherence. Ou GUUUETEYOVTEG TNG EQELVAS UG
elvar ouvohixd 40 droyua, xadéva ex Twv omolwy aflohoyel 18 axoucTixd groups, EMLTUYYAvVoVToC
ue autd Tov TedTO TEpinou 45 cuyxploeic yio xdde Ledyoc woviéhwy (cuvolxd 16). ‘Ola to
conditional tracks xouw xot’ enéxtaon ol utodrigiec cuvodeieg Toug emhéyovton Ue TUYalo TEOTO
VeSO OE 32 Ny NTIXA BEYHATO oL TOEOUCIALOVTOL OTOV YEHOTN UE Tuyala oelpd.

To tpoxintovTa anoTeAéopuTa YL TNV TEpiTTmoTn xutd Ty omola To conditional dpyavo elvar to
Piano napoustdlovtar ypapuxd ota diorypduuatoa tne edvag 0.5.3. Kdde bar-plot avanapiotd
TIC TROTYWHOELS TV YENOTOV AVAUESH GTA CUYXELVOUEVA HOVTEAX PE TNV UOPQPY) TOGOGTOV.
Hapatneolue 6tL oty nepintwon olyxplong Pe TIC auevTIXEC LOUCIXES EXBOYES, 1) TAELodYNpla
TWV TEYVNTOVY Oeryudtonv dtaxpivovion evxola. To unidtepo mocootd évavt avipnnivng
olvieone emtuyydvetar and To Hovtéro Pyp yio Ty govowxn guotxdétnta (35%), yeyovég to
omofo umodewvUeL 6TL 1 Tpoc 7 Tou Local Discriminator mpdryuatt euepyetel TNy moparywyixn
otadtxaoto.

‘Ocov agopd tnv clyxplon avdueoa ota didgpopa frameworks mou €youue avantdEel, SLOmo To-
Voupe 0Tt detypota Tou poviélou Py elvon onuovtid o mpotiuntea o€ oyéon ue To P, uto-
ONAOVOVTOG OTL 1) XATIAANAT uédodog exmaldeuong yio TNV opyltexTtovixt| Twv 2 Discriminators
elvor 1 1-phase, 6nwe npoéxude xou xatd Ty objective a&lordynor. Emmiéov, nopatnoodue 61t
T0 Pyo unepPaivel Ty enidoon Tou Py o 6ha Tor eEETACOUEVA LOUCIXE XPLTTOLAL, ATOTEAECUA TO
omolo cuvendyeTon 6TL 1) spudlouca douxt| oyedlaoT yio Tov alyopriuo extaldeuong 2 @pdoewy
mepthauPBdver uévo tov Global Discriminator, 6mwe avtiotorya unédelle xou 1 avdhuoTn TeV
petewy. TEhog, BlamoT@VOUNE OTL LTdEYEL plal Uixper) TpoTiunon tou Fyy €vavtt Twv Py xou
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Chapter 0. Extended Greek Abstract
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Figure 0.5.3: Subjective AZioAdynom yia Piano

Py1, 1 omolor uToBNAGVEL OTL X0 1) TEWTAEYIXY| LIS VAOTOINGT) TUREYEL BUVITOTNTO TORIYWYTHC

TOLOTIXMY CUVOOELMV.

To mpoxinTovta anoteAéoputa o TNy TepinTtwon xotd Ty omoia To conditional 6pyavo elvor 7
Kuddpa napovoidlovton ypopixd oto dtarypdupata tne exovag 0.5.4. ‘Onwe xou meonyouuévng,
TaL TEPLOGOTERY TEYVNTA Oelyuato Slaxpivovtan eixoia and To avtioTolyo audevTind »¢ TEog
Ohec Tic eZetalbpeveg ntuyée. ‘Oha to Tocootd mpotiunone xuuaivovtar oto evpoc 13-20%, v-
TodnAovovtag 6Tt mavag 1 Kiddpa napéyel Aiydtepn minpogopla 610 GUOTAHN WG TAROYWYLIXN
ouvixn cuyxprtxd ue to Piano, xadde cuvidoe nailel ouyyopdieg eved To pépog Tou Ilidvou
TepL opPdvel xon xdmotar UeAwdd ototyelo. ‘Ocov agopd Ta didgopa frameworks mou €youue
ovamTOEEL, To TOoRIGUOTO TTOL TEOXUTTOUY Elval 6ot e TNV Tepintworn tou Piano. M afloon-
uelwtn dlapopd €yxetton xutd TV olyxetorn Tou Goi pe T0 Gop, OTOL THUPATNEOVUE OTL 1} Xe1o
uovo tou Global Discriminator gotveton vor GUUBEALEL AEXETA GTNV CUVOYY| TWV TUEXYOUEVHY

ouvodeldv (tocootd mpotiunong 62%).

T
10

= Py
Poa
Py

Paa
Py
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0.6. X0Ovodn xaw Mehhovurée Enextdoeig
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Figure 0.5.4: Subjective AZloAdynon yioa Guitar

0.6 XUvodn xow MeAhovTtixég Enextdosig

Yuurepaopatxd, 1 mopovoa Aimhwuoatix Epyoaocio emiyetpel va yekethoet xan vor Slepeuvioet
ole€odxd To mEOBANUa SnuLoupYlag VEOU UOUCLXO) TEPLEYOUEVOU UE AUTOVOUO TEOTO Amd {ld
uToAOYLO TIXT) oX0TId, XxdvovTag yerion Teyvntdy Nevpwvixdy Autdwy xat egapuolovtog pedo-
ooug Mnyovixic Mddnong. Xuvohxd, 1 épeuvd pag unopel vo dtayweiotel oe 2 Poaoixd péen):

e To mpwto agopd to task tng unconditional mopaywYNS TOAVPWVIXWY LOUCIXMY PEAUCEWY
o€ oUUPoAXY| avamaEdCTAOT) Yio 5 BLOPORETIXG LOUGLXS GEY VL.

e To deltepo peretd Ty xatebiuvon Tng auTOUATNS TPy WY HS Houotxic cuvodeiog (con-
ditional generation) oe évo cuvepyoTXd TAA(GIO avipWTOL-UNYaVAC.

Méoo and ta melpduoto ToU SLECdYOUUE YENOUOTOLOVTOS TOIAES TUPUARAYEC TOU HOVTEAOU
pog xar PoactlOpevol ot BLPORETIXEG UEVOOOUS alOAOYNONG, XUTUAYOUUE OFE EVOLUPELOVTA
CUUTEQACHOTA OYETIXG UE TNV ETOPAOT] TV DLUPOE®Y TEOTOTONCEWY GTNY TOLOTNTU XAl TNV
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Chapter 0. Extended Greek Abstract

HOUCIXOTNTA TWVY TORAYOUEVODY OELYHATOVY. e YEVXES YPOUMES, TO UOVTEAO Uog ETLOEIXVUEL
optopéveg emuunTéS ILOTNTES, ovolyovTag ETOL TOV OPOUO Yol TEPUUTERW BEATIMOEL Xl UEA-
AOVTIXEC EMEXTACELS, OTWC YLl TORABELY AL 1) BnLoupyior ohdXANEoU Teayoudlol Ge avlp®Tvo
eninedo clvieonc 1) o eumhouTionos Twv cuvinxwy Ue BtagopeTixd modalities (m.y. Pivreo,
xellevo) atny mepintwon tou dedtepou task.
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Chapter 1. Introduction

1.1 Problem Definition

By nearly every measure, interest in the area of the so-called Artificial Intelligence has
exploded over the past decades, drawing a flurry of research activity across the globe. As
a whole, this wide-ranging branch of Computer Science involves the development of smart
machines capable of performing tasks that typically require human cognitive skills. The
availability of massive data, the efficient and affordable computing power and also latest
advances in technical domains have made Al systems a growing part of our everyday life,
with applications ranging from recommendation engines in online platforms and chat-bots
for customer support to self-driving cars.

Recently, the Al research has been expanded in the field of generative modeling, enabling the
creation of unbelievably realistic pictures as well as artificially produced news articles. These
particularly promising signs in the aforementioned domains that handle data modalities, such
as text and image, have inspired researchers to further investigate the generation capabilities
of computational systems towards other directions and deal with different types of processable
information, such as audio and more specifically music, with the latter being the main focus
of this thesis. Hence, the research problem that we aim to approach within the scope of
Artificial Intelligence can be formally defined as follows:

Automatic Music Synthesis

The process of creating novel musical content in an autonomous manner, i.e. with
minimum human intervention.

Music is generally perceived as a form of artistic expres-
sion of knowledge, experience, ideas and emotions, estab-
lished on the arrangement of consonant sounds. To this
end, exact interpretations vary considerably around the
world, though it is an aspect of all human societies, as
stated in [24]. Without consensus over the foundation and
the substance of the music itself, the act of composing be-
comes undoubtedly more challenging. Even from the hu-
man perspective, the process of conceiving a piece of music
is considered a superior mental task, which has not been Figure 1.1.1: Artificial Artists
decoded or explicitly analyzed yet. Therefore, the key for 23]

the automation of this functionality lies in the utilization

of Machine Learning techniques. As opposed to handcrafted models, such as grammar-based
or rule-based generation systems, the ML approach provides a agnostic learning framework
that enables a computational machine to generalize from an arbitrary corpus of music and
hence create novel content independently.

Briot et al. 1] identify and tabulate the fundamental aspects of Automatic Music Synthesis
problem as follows:

e Objective: Just as every task, either implemented by human or machine, is inherently
related to an ultimate goal, so too the generation objective is the one that determines
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1.1. Problem Definition

and consequentially forms the process of composing musical pieces in an autonomous
manner. [t mainly refers to the type of musical content to be created, including
monophony, polyphony, accompaniment, counterpoint, etc. and also the framework
under which it will be used. For instance, the generated music samples might be in-
tended for performance by human(s) (in the case of a musical score) or by machine (in
case of an audio file).

Representation: Generally, music can be represented in a computer, using various
storage forms that employ different modalities, such as text, audio or other image-like
symbolic formats. The selection of the proper representation encoding depends on the
type of musical information that will be processed and the nature of the generation
task that is implemented.

Architecture: This term, from a computational scope, refers to the internal structure
of the system designed to perform a specific music generation task. The type of the
deep model that will be used for this purpose, is inextricably linked to the data format
and hence the employed representation method.

Strategy: The strategy applied for the automatic creation of novel musical content
plays also a crucial role in the formulation of the examined research problem. It typically
involves the implemented algorithm as well as other parameters that control to some
extent the generation process.

Mode: Last but not least, the generation mode mainly refers to other characteristics
and features of the music synthesis framework, such as the variability and creativity de-
gree of the model, as well as the interactivity with other systems or even human artists,
directly or indirectly. Such functionalities are typically determined by the objective of
the examined generation task.

Despite the latest research towards the development of AI musi-

cians, the idea of automatically generating music is older than the
computer itself. It all started in 1787 when Mozart proposed a Dice
Game for random sound selections, in order to combine them and
finally form a musical piece. As described in [26], he used the dice
to collect melody fragments for some minuets and composed nearly

¥ = === ! =

272 tones manually. Later in the 50s, the first piece composed en-

tirely by a computer, The Illiac Suite, was generated by a stochas- Figure 1.1.2: The Dice
tic rule-based system [27]. The score of the piece was created by a Waltz [25]
computer and then transposed into traditional musical notation for

performance by a string quartet. What Hiller and Isaacson had done in the Illiac Suite was
to generate certain “raw materials” with the computer, modify them according to various
functions and then select the best results via multiple rules [26]. This “generator-modifier-
selector” paradigm was also later applied to MUSICOMP [28], one of the first computer
systems for automated composition, written in the late 1950s and early 1960s by Hiller and
Baker, which created Computer Cantata.

Another pioneering use of the computer in algorithmic synthesis is that of lannis Xe-
nakis, who created a program that would produce data for his “stochastic” composi-
tions and is presented in great detail at his book Formalized Music [29] (1963). Xenakis
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used the high-speed machine computations to calculate various probability theories that
he applied in compositions like Atrées (1962) and Morsima-Amorsima (1962). The pro-
gram would “deduce” a score from a “list of note densities and probabilistic weights sup-
plied by the programmer, leaving specific decisions to a random number generator” [26].
As in the previous example of the Illiac Suite, these scores were per-
il : == formed live on traditional instruments. There are more modern ex-
: EUMPU% MUSIC amples, as well, of algorithmic composition without the use of the
'UN‘HVHER/S‘WSHE&T'QS computer. John Cage, for example, like Mozart, utilized randomness
' in many of his compositions, such as in Reunion, performed by playing
chess on a photo-receptor equipped chessboard: “The players’ moves
trigger sounds, and thus the piece is different each time it is performed”
[31]. Cage also delegated the compositional process to natural phenom-
ena, as in his Atlas Eclipticalis (1961), which was composed by laying
Figure 1.1.3: Illiac  score paper on top of astronomical charts and placing notes simply
Suite [30] where the stars occurred, again delegating the compositional process

to indeterminacy [32].

However, all those mathematical and stochastic approaches could not successfully model the
actual music composition rules that are customary and have been accumulated during human
history. Therefore, the previously mentioned methods were useful only when people wanted
to create really new and fresh styles, since the generated music tends to be unfamiliar and
strange. Consequently, Artificial Intelligence and Deep Learning techniques have become the
state-of-the-art approach to Automatic Music Generation, inducing already radical changes
in the landscape of Music Industry, as demonstrated in Figure 1.1.4. However, according to
most researchers the best is yet to come.

Future of Al in Music

Audio Processing using ML
. L 2 L .
L
|

Figure 1.1.4: Applications of AT in Music Industry [33]
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1.2. Challenges of the Task

1.2 Challenges of the Task

Automatically composing realistic and aesthetically harmonic
musical pieces is considered a particularly hard problem in the
research field of generative modeling for many reasons, the most
hampering being the inherent adversity in representing and pro-
cessing musical content under the framework of a computational
machine. In contrast to other modal forms characterized by a
more specified structure, such as images, videos and text, music
is intrinsically related to more abstract and not especially con-
crete concepts and senses, such as the emotion, that cannot be Figure 1.2.1: Music and
thoroughly defined or easily approached from a computational Memory [34]
aspect. However, all those notional characteristics collectively

enable our brains to make, store, and retrieve memories of mu-

sic, even when we are not aware of doing so. As stated in [35], music is actually the last thing
we forget. Thus, a simple song excerpt can be effortlessly memorized by a human, while at
the same time incorporates too many variables for a computer.

Another major difficulty lies behind the intrinsically hier-
archical arrangement of a musical piece. As demonstrated
: in Figure 1.2.2, a song is abstractly composed of higher-
paragraph 1 | paragraph 2 | paragraph 3 level building blocks, called paragraphs, which can be fur-
en T ther subdivided into musical phrases. A phrase in music is
---------- - defined as a substantial concrete musical thought that has
_________________ a complete musical sense of its own and therefore is consid-
[ heat1 |""beﬂt2 [ beats | beatd ered as one of the fundamental elements in the structure
--------------------- of a musical composition. Each phrase consists of smaller
[pixett | piver2 | - | pinet2s | recurrent patterns, termed bars, which contain beats, for-
mulated by a definite timestep number. As declared in |3,
4], the human brain focuses on such structural motifs, re-
lated to coherence, rhythm, tension and the emotion flow,
while listening to music and thus a mechanism capable of
capturing the aforementioned characteristics and also incorporating the self-reference, which
occurs in multiple timescales, from patterns to phrases or even entire sections [5], is critical.
However, it can be easily affirmed that the whole hierarchy of a musical piece is structured
upon temporal units, as the various elements of musical perception are presented to the
listener progressively in time. According to Dong et al. [2|, “music in an art of time” and
therefore modeling the variant temporal dependencies is essential in the context of Automatic
Synthesis.

song

Figure 1.2.2: Hierarchical
structure of a music piece [2]

Furthermore, an additional key challenge arises from the fact that a musical piece is typically
composed of multiple varying tracks. For instance, a modern orchestra combines instruments
of different families, including bowed strings, brass, woodwinds and percussion, while the
most common configuration in a rock band includes two guitars, a lead and a rhythm one, a
bass, a drum set and possibly lead vocals, as graphically illustrated in Figure 1.2.3. Each in-
dividual track in an instrumental ensemble disposes its own musical properties and dynamics.
However, all the different track components collectively unfold over time in an interdependent
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Chapter 1. Introduction

manner. Various composition disciplines have emerged over the years in an attempt to model
the interaction among different instruments. Such approaches are strongly influenced by the
corresponding music genre or the historical period to which they are related. In the context
of Automatic Music Synthesis, they formed the foundation of hand-crafted methods, which
are mainly established on compositional rules. However, the major progress in the fields of
Artificial Intelligence and especially Machine Learning have uncovered other more abstract
and creative modeling approaches to the concept of multi-track interdependence, which are
grounded on the human perception over the creation of musical pieces and vary depending
on the respective system implementation.

T ETA Xt
ﬁﬁ@#ﬁﬁ r'%ﬁ 'Kaua .®§“

DA fir 7 24

(a) Classical Orchestra [36] (b) Rock Band [37]

Figure 1.2.3: Multiple Instruments

Another adversity that makes the examined research problem even more challenging emerges
from the internal structure and arrangement of sounds in a polyphonic musical piece. As
visually demonstrated in Figure 1.2.4, notes are typically presented into grouping formu-
lations, such as chords, i.e. harmonic sets of multiple pitches/frequencies that are played
simultaneously, arpeggios, which constitute a special type of “broken” chord where the tonal
components are heard in a sequential form of ascending or descending order, or other melodic
motifs and harmonic patterns. All these musical texture attributes, which inherently incorpo-
rate a notion of complexity, cannot be easily captured by a computational machine system.
Former approaches, especially in the field of monophonic music generation, which by def-
inition consists of a single unaccompanied melodic line and hence includes much simpler
structural formulations, usually employ a chronological ordering of the various note events.
However, as a matter of course, such implementations cannot be generalized in tasks of higher
complexity, including polyphonic music generation. Therefore, a proper combination of data
representation and processing method is required in order to effectively model the structural
features of a polyphonic composition.

N°I

I —
SONATE g(_\;

o
ot reee IF
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Figure 1.2.4: Beethoven’s Piano Sonata in F minor [3§]
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1.2. Challenges of the Task

Lastly, the assessment of music generation systems constitutes another crucial issue in the
context of our research problem that uncovers a lot of challenges. Generally, the evaluation of
artificial models is based on metrics that quantify their performance in terms of the objective
of the implemented task. However, due to the nature of generative Al itself, it is rather
hard to establish a standardized definition of concepts such as the performance improvement
with respect to the quality of the produced results, that can be applicable to a huge variety
of diverse studies in the field. To this end, the objective assessment practice, especially in
the research area of music synthesis, still remains largely problematic. On the other hand,
evaluation methods grounded on subjective criteria are typically more preferable in the field
of generative modeling, since the ultimate judge of creative output is the human (listener
or viewer). As Kang et al. [6] clarify, the assessment of music depends on complex and
subjective understanding, which cannot be expressed with a simple combination of known
rules, such as harmonics and counterpoint. Nevertheless, without consensus over the essence
of creativity, the proper design of an experimental methodology that can lead to valid and
reliable scientific evidence is often underestimated.

35



Chapter 1. Introduction

1.3

Thesis Outline & Contributions

This study attempts to investigate and offer further insights into the problem of Automatic
Music Synthesis, one of the most challenging topics in the research field of generative mod-
eling. We begin by providing a thorough consideration of the examined subject from a
computational perspective and later proceed on a comprehensive analysis of the arising ad-
versities and limitations. The rest of this thesis is organized in 7 chapters total (including
the current one), as described below:

In chapter 2, we provide a detailed overview of the theoretical and technical background
required for the full comprehension of the employed methods and the design of the
utilized computational modules. More specifically, we emphasize on some fundamental
Machine Learning techniques and different types of Artificial Neural Networks, widely
applied in the examined research area. We also include a brief analysis of the two ML
frameworks that form the basis of our approach to the problem of Automatic Music
Synthesis.

The aim of chapter 3 is to investigate the various aspects of the examined problem,
focusing on previous and related works in the field. In particular, we analyze different
music representations and attempt to categorize the distinct generation tasks into which
the general subject can be further divided, emphasizing on diverse architectures and
design choices that can be made. We also list some commonly used datasets and
engage on their usefulness. Finally, we present both objective and subjective evaluation
methods and elaborate on their nuances and importance.

Chapter 4 provides a complete overview of the baseline project, on which our proposed
framework for automatic creation of novel musical pieces is established. We present
the system architecture and the structural characteristics of the integrated modules, as
well as the employed training dataset. We also display and discuss the results of the
conducted experiments, under the scope of the applied evaluation methods.

In chapter 5, we focus on the task of Unconditional Generation. More specifically, we
develop a framework for the creation of multi-track polyphonic music samples from
scratch. At first, we dive into the system architecture, the implementation of the
various structural components, as well as the their respective training mechanism. We
also elaborate on the employed form of data representation, the utilized dataset and the
required preprocessing steps. Lastly, we display and discuss the results of the conducted
experiments, under the scope of our proposed evaluation tools.

In chapter 6, we focus on the task of Conditional Generation. In particular, we extent
our previous model to a human-Al cooperative framework, capable of automatically
producing accompaniments for user-defined tracks. In this case, we introduce some
structural modifications in the system architecture and also emphasize on different
training modes. Finally, we proceed in a comprehensive comparison among the resulting
model variants, using both objective and subjective evaluation practices and present a
thorough analysis of the produced results.

Chapter 7 draws general conclusions regarding the research sections of the examined
problem and also summarizes the experimental results and the contributions of this
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thesis. In advance, it briefly discusses our thoughts on potential directions for future
work.

At this point, we consider it particularly useful to briefly outline the contributions of our
research study, which will be further discussed and thoroughly analyzed in following chapters
of this thesis. Our contributions can be divided in two main sections, with respect to the
implemented generation task. More specifically:

Unconditional Generation

Based on the functional concept of MuseGAN, we design a framework for automatic
generation of novel musical content in symbolic format from scratch, i.e without sub-
jecting to any prior or supplementary information. The produced samples consist of 5
distinct polyphonic tracks: Drums, Piano, Guitar, Bass and Strings.

We perform a customization of our implementation with respect to a group of parame-
ters that define various generative configurations. This process induces an internal in-
ternal modulation in the architecture of the included modules depending on the current
input arrangement. In this way, our proposed model becomes flexible and adaptable
to different generation practices.

We incorporate into our developed generative system proper auxiliary mechanisms for
the monitoring of the the training process, which plays undoubtedly a crucial role in
Al modeling. This closer inspection of the applied learning practice enables us to
further investigate the behavior of the individual structural units and derive respective
conclusions.

We develop a novel implementation for the existing musical metrics, based on the
descriptive analysis presented in the original paper. We further expand our employed
objective evaluation system via the inclusion of 3 additional quantitative indicators that
emphasize on tonal characteristics and texture attributes of the generated samples.

We examine the effectiveness of our proposed model over the creation of aesthetic multi-
track polyphonic musical pieces from scratch, by conducting a group of experiments
with different generative configurations and applying our proposed objective metric
system for the evaluation of the produced results.

We conduct a qualitative study in the form of listening test across 40 subjects, in or-
der to compare our proposed framework with the baseline project from an auditory
perspective. We demonstrate that our developed music generation system significantly
outperforms MuseGAN with respect to 3 musical criteria: Musical Naturalness, Har-
monic Consistency and Musical Coherence.

Conditional Generation

We extend our original model to a human-Al cooperative framework, by focusing on
the task of Accompaniment Generation: given one track derived from the ground-
truth distribution of human-composed music samples as conditional information, our
proposed system automatically generates the 4 remaining tracks, considering them as
the accompaniment parts of the conditional one in terms of rhythmic and harmonic
support.
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e We follow our customization practice from Unconditional Generation and parameterize
the implementation of all structural units involved into our proposed accompaniment
framework, including modules from the previously examined task that have been prop-
erly modified in order to adjust to the new generation practice and also the additional
ones.

e We experiment over multiple variants of our conditional generative framework that
mainly differ in terms of the structural components included in the system architecture,
the utilized training algorithm and the type of conditional instrument.

e We evaluate the produced results using both objective (musical metrics) and subjective
(user study) assessment methods. In this way, we prove that the proposed variations can
lead to the creation of novel aesthetic accompaniments and actually contribute to the
improvement of the generated musical quality. We also demonstrate that the outcomes
derived from the objective evaluation are in agreement with the results of human assess-
ment, indicating that our proposed implementation for the employed metrics provides
a meaningful interpretation of the produced music from a computational perspective.
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Chapter 2. Theoretical Background

This chapter provides a complete overview of the required theoretical background,
concerning the problem of Automatic Music Synthesis. More specifically, in section
2.1 we present some fundamental Machine Learning techniques, while in section 2.2 we
focus on different types of Artificial Neural Networks, widely used in the aforementioned
research area. Lastly, sections 2.3 and 2.4 include a brief analysis of two fundamental
ML frameworks, which form the basis of our approach to the field of Music Generation.

2.1 Machine Learning

The term Machine Learning was introduced in 1959 by Arthur Samuel, an IBM employee
and pioneer in the field of Computer Gaming and Artificial Intelligence. According to Samuel,
Machine Learning is defined as

a field of study that provides computers with the ability
to “learn” without being explicitly programmed

In other words, Machine Learning is a branch of Artificial Intelligence (AI) and Computer
Science, which focuses on developing algorithms that can access data in order to imitate
the way that humans learn. For simple tasks assigned to computers, it is possible for a
human to manually create the appropriate algorithm, including all the required steps that
need to be executed by the machine for the solution of a specific problem. However, a variety
of advanced applications have emerged from the constantly growing field of data science
and evolving technology, especially in the fields of medicine, email filtering, speech and face
recognition, computer vision and many more. The computational modeling of such tasks
is overly complex for humans, making it difficult or even unfeasible to develop conventional
algorithms to perform the needed processes. On account of this, it turns out to be much
more effective to help the machine develop its own algorithm in order to solve such problems.

A constitutive key in the concept of Machine Learning arises from
the sample data, also known as “training data”, which the algo-
rithms use to built mathematical models that make predictions
or decisions in an autonomous way. Similar to how the human
brain derives knowledge and understanding, Machine Learning
relies on input in order to apprehend entities, domains and the
connections between them and proceed to inferences based on the
provided examples. This procedure can reveal trends and pat-
terns within data that allow information businesses to augment
or even replace human capabilities in terms of decision making
and efficiency optimization. For this reason, the conformation of
a dataset used by an ML algorithm is crucial, as it considerably
influences the performance of the respective model. A small or particularly specialised dataset
can render a model useless for real world applications, where generalization is a matter of
great importance.

Figure 2.1.1: Artificial
Intelligence [39]

From a computational scope, an ML system includes a set of learnable parameters. Their
respective values are being updated during the training process in order to improve the

40




2.1. Machine Learning

model’s performance, measured by the corresponding output of the system when samples
from the dataset are given as input. According to UC Berkeley, the learning framework® of
an ML algorithm consists of roughly 3 components:

e Decision Process: It can be defined as the recipe of calculations or other computa-
tional steps that follows the ML algorithm in order to produce an estimate about the
type of pattern prevailing on the input data, which can be either labeled or unlabeled.

e Performance Index or Error Function: It quantifies the efficiency of the model
with respect to the examined task. As regards applications where the known samples
are available, the formation of the aforementioned function cam be simple or even trivial
(e.g. accuracy at a classification task), while the involved elusiveness and vagueness in
various problems of different types (e.g. quality of generated musical piece) render this
particular process complex and challenging.

e Updating or Optimization Process: It can be defined as the method that updates
the values of the model parameters, based on the output of the cost function, in such
a way that the discrepancy between the known samples and the model estimate is
reduced. This procedure is repeated until a specific performance threshold is met,
concerning the model fitness to the ground-truth examples.

The variety of different Machine Learning approaches can be categorized by the presence or
absence of human influence on raw data, regarding the inclusion of a reward, the utilization
of feedback or the existence of labels. There are three primary training practices, Supervised
Learning, Unsupervised Learning and Reinforcement Learning, which will be discussed more
explicitly in the following sections.

2.1.1 Supervised Learning: More Control, Less Bias

Supervised Learning (SL) includes a set of algorithms that leverage “labelled” training
data in order to predict outcomes accurately. The term “labelled” data refers to input data
already tagged with the correct output. More specifically, each sample is a pair consisting of
an input object (typically a vector) and a desired output value (also called the supervisory
signal). This structure of training examples provides the algorithm with the ability to analyze
the corresponding dataset, capture correlations and associations among samples and exploit
this kind of information in order to produce an inferred function which is able to predict
future events.

The concept of Supervised Learning method is graphically depicted in Figure 2.1.2 through
an example. We consider a dataset of different shape types, which includes square, circle
and triangle. The aim is to train a model so that it identifies each shape. A prospective
algorithm is described as follows:

e If the examined shape has 4 sides and all the sides are equal, then it will be labelled as
a Square.

e If the examined shape has 3 sides, then it will be labelled as a Triangle.

! A visual Introduction to Machine Learning by R2D3 can be found in this website
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e If the examined shape has no sides, using the evident definition, then it will be labelled
as a Circle.

During training process, the parameters of the algorithm are updated until the model fits
the training data appropriately. This is achieved by comparing the current output with the
correct one, as the input data is fed into the system, in order to determine errors and modify
the model parameters accordingly. As a result, when a new unseen shape instance is tracked
during validation, the machine is qualified to predict the correct corresponding class label,
based on the number of its sides.

Supervised Learning
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Input Raw Data ’ ( ‘ Output ’
\ Training Desired
Data set Qutput
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Figure 2.1.2: Supervised Learning Diagram [40]

It may be assumed that training data operate as the supervisor that tutors the machine to
predict the output correctly, similar to the concept of a student learning under the supervi-
sion of the teacher. In effect, the model gains the ability of generalization from the training
data to unseen situations in a “reasonable” way, following the archetypes of human learning
process. This acquired attribute of computational systems is employed by various organi-
zations and industrial companies for building applications that solve real-time problems at
scale. Applications of that kind include Tezxt categorization, Face Detection, Signature recog-
nition, Customer discovery, Spam detection, Weather forecasting, Predicting housing prices
based on the prevailing market price, Stock price predictions, etc.

Supervised Learning

Classification

Regression

Figure 2.1.3: Categorization of Supervised Learning Problems [41]
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Supervised Learning can be further divided into the following two groups of problems, as
demonstrated in Fig. 2.1.3:

Regression

Regression is a technique for investigating the association between
independent variables (features) and a dependent variable (out-
come). From a visual scope, it generally involves finding and draw-
ing a line of best fit through the given data points, as shown in Fig.
2.1.4. The distance between each point and the line is minimised in
order to achieve the most suitable result.

<
3y
>

Line of
regression

dependent Variable

Regression can be employed as a method for predictive modelling
in the field of Supervised Machine Learning, concerning algorithms
that predict continuous outcomes, that is, real-valued output vari-
ables, such as unique numbers, dollars, salary, weight or pressure, Figure 2.1.4:
based on previous data observations. More specifically, regression
analysis provides insights into the effect of a specific independent
variable on the value of the dependent variable, when all other in-
dependent variables are held fixed.

<Y

independent Variables

Regression [42]

There are multiple approaches for performing regression in the field of Machine Learning,
incorporating different popular algorithms. Those distinct techniques may include different
numbers of independent variables, process different types of data, or even assume a different
relationship between the independent and dependent variables. Nevertheless, each variant
has its own importance on diverse use case scenarios. Some of the most prevailing regression
methods can be grouped into the categories graphically displayed in Figure 2.1.5.

1 Linear
Regression

2 Polynomial Regression

Support Vector

3 Regression

Types
\ Decision tree

Of | 4 Regression
Regression/.' 5 Random Forest

4 Regression

6 Ridge Regression

7 Lasso Regression

~.og Logistic
Regression

Figure 2.1.5: Types of Regression [43|

Classification

In the context of Machine Learning, Classification refers to the process of identifying the
category that corresponds to a specific sample-observation. From a mathematical point of
view, classification predictive modeling is the task of approximating the mapping function
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(f) from input variables (X) to categorical output variables (y), that best fits the respective
training dataset. As such, the training set should be sufficiently representative of the problem
and contain many examples of each class label. Throughout this procedure, the model is able
to recognize specific entities within the dataset and attempts to draw some conclusions on
how those entities should be labeled or defined. The main goal is the assignment of new
unseen samples into the formatted categories. Classification methods can be applied on both
structured or unstructured data.

Spam Detection is a typical example of a supervised
machine learning problem that leverages the method
of Classification. A spam-detector algorithm must
find a way to filter out spam mails, avoiding at the
same time the flagging of authentic messages that
users want to see in their inbox. This means that
the machine learning model should be supplied with
a set of examples of spam and ham (i.e. non-spam)
messages and explore the relevant patterns that sepa-
rate the two different categories, as presented in Fig.
2.1.6. Heart Disease Detection can be also identified as a classification problem. In this case,
the model uses training data in order to identify the relation of the given input variables to
the corresponding class. Once the classifier is trained accurately, it can be used to detect
heart disease for a particular patient.

Not Spam

o9

Figure 2.1.6: Spam Detection [44]

Both the aforementioned applications belong to the
category of Binary Classification, since only two
class labels are encountered (e.g. spam-non spam).
On the other hand, Multi-class Classification in-
cludes tasks characterized by three or more distinct
classes, such as Face Classification and Optical Char-
acter Recognition. An additional variant of the typ-
ical (multi-class) classification problem is established
on the assignment of multiple labels to each data sam-
ple and it is called Multi-label Classification. For
instance, in the task of Object Detection, the model
predicts the presence of multiple semantic objects con-
tained in every digital image-sample, by locating their
position, indicating their scale and assigning multi-
ple labels corresponding to different entity categories,
such as humans, buildings, or cars.

The wide variety of classification tasks has induced
the development of multiple different algorithms that
can be used in order to solve the corresponding prob-
lems. The choice depends on the nature of the ap-
plication and the form of available data. The most
commonly used classification algorithms are demon-
strated in Figure 2.1.7.

PLELH- ey
B ——

Figure 2.1.7: Classification
Algorithms [45]
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The statistical ability of an algorithm to adapt properly to new, previously unseen data,
drawn from the same distribution as the training ones, either in the case of Regression or
Classification, is measured by the so-called generalization error. This quantity is employed
in the evaluation procedure of the model’s performance in the context of a cross-validation
formula.

Cross-validation, also known as Rotation Estimation or Out-of-Sample Testing, belongs to
a group of model validation techniques for assessing the generalizability of the results pro-
duced by a statistical analysis to an independent data set. In particular, it is a resampling
method that uses different portions of the dataset to test and train a model on different iter-
ations. One round of cross-validation involves partitioning data into complementary subsets,
performing the analysis on one subset, called the training set, and validating the analysis
on the other subset, called the validation set or testing set. For the purpose of variability
reduction, in most methods multiple rounds are performed using different partitions and the
individual validation results are combined to provide an estimate of the model’s predictive
performance. In summary, cross-validation is used to derive an as much as possible accurate
estimate of the model’s fitness in prediction and flag various problems, such as overfitting.

Overfitting is a concept in data science that constitutes a common pitfall for deep learning
algorithms. From a mathematical perspective, it can be defined as the production of an
analysis that corresponds too closely or exactly to a particular set of data. In other words,
it occurs when a model attempts to fit the training data entirely and results in memorizing
the data patterns, the noise or any other random fluctuations and interpreting them as part
of underlying data structure. The problem is that these notions cannot apply in the case
of unseen data scenarios, affecting negatively the model’s ability to generalize, as it fails to
predict future observations reliably.

Overfitting essentially arises from the difference between the criterion used for selecting the
model and the one used to assess the suitability of a model. For instance, a model might be
selected by maximizing its performance on some set of training data, and yet its suitability
might be determined by its ability to perform well on unseen data. Furthermore, the non-
parametric and non-linear methods, used by these types of machine learning algorithms, can
easily amplify the establishment of unrealistic models with lack of generalizability, due to the
flexibility incorporated in the learning process of a target function.

Underfitting, the counterpart of overfitting, is another major problem that afflicts super-
vised machine learning algorithms. It occurs when a data model is unable to capture the
relationship between features of a dataset and output variables accurately, generating a high
error rate on both the training set and unseen instances. An underfitted model might have
a simple structure that cannot establish the dominant trend within samples, due to short
training time, lack of features, uncleaned training data containing noise and outliers or over-
whelming regularization. Therefore, it results in problematic or erroneous outcomes on new
data and cannot be leveraged for classification or prediction tasks. Since this behavior can
be identified during training procedure, underfitted models are usually easier to track than
overfitted ones.

In both scenarios, the model generalizes poorly to unseen data, which is an important factor
concerning real-world applications. If we define bias as the quantity that measures the
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difference between the model’s prediction and the target value and variance as an indicator
of the inconsistency of different predictions over varied datasets, then we can affirm that an
overfitted model exhibits high variance and low bias. This is due to the fact that it can
represent the training data accurately but lacks at the same time the ability to generalize at
different testing sets. On the other hand, unlike overfitting, underfitted models experience
high bias and low variance, due to their simplified structure that overlooks regularities in
data and fails to approximate the underlying function. This demonstrates the bias-variance
trade-off, which represents the conflict in trying to simultaneously minimize these two sources
of error that prevent supervised learning algorithms from generalizing beyond their training
set. On account of this, the goal is to track down the “sweet spot” between underfitting and
overfitting. An illustration of the forenamed observations is presented in Figure 2.1.8.

Underfitting Just right Overfitting

- High training error = Training error slightly lower - Very low training error

« Training error close to test than test error « Training error much lower
Symptoms

error than test error

« High bias » High variance
Regression
illustration

Classification
illustration

Frror Ervor Error

Deep learning
illustration

Epochs Epochs Epochs

: . lexi e
Passible eotiaclesit mpoel « Perform regularization
+ Add more features

remedies ) « Get more data
« Train longer

Figure 2.1.8: Overfitting and Underfitting Overview [46]

2.1.2 Unsupervised Learning: Speed and Scale

Unsupervised Learning (UL) encompasses a group of machine learning algorithms that
analyze and cluster unlabeled or unclassified data, namely samples which are not given label,
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and thus do not correspond to any predefined target output. As the name suggests, this
procedure is accomplished without any human surveillance or superior guidance, following
the archetypes of the learning mode of human brain. The principal idea is that through the
exposure to large volumes of varying data, the machine discovers hidden patterns and insights,
identifies correlations and relationships among samples, detects similarities and differences in
information and leverages all these features in order to build a compact internal representation
of the underlying data structure.

In the context of Unsupervised Learning, algorithms are
left to their own devices to determine disparate or in-

Learning

teresting aspects about the input features, by exploring by tself
autonomously the given dataset. In this way, without —
any prior knowledge, unsupervised methods are capable  moss D g | :> output

of inferring a function that describes the intrinsic data
distribution. This notion of self-organization renders
such kind of systems the ideal solution for exploratory
data analysis, cross-selling strategies, customer segmentation and image recognition.

D [ ' | [

Input Raw Data Algorithm

Unknown Output
#No Training Data Set

Figure 2.1.9: Unsupervised Learning Diagram [47]

The overall mechanism of Unsupervised Learning systems is pictorially demonstrated in the
diagram of Figure 2.1.9. Let us again consider a dataset containing different types of geo-
metrical shapes, such as squares, triangles and circles, which are not accompanied with extra
information in the form of a tag. Let us also assume that the aforementioned set of data
samples comprises the input of a model that utilizes the method of Unsupervised Learning.
The task of the corresponding algorithm is to identify the input instances, by performing a
clustering of the geometrical shapes into groups, based only on similarities and associations
among them. To this effect, a stage of data interpretation is required in order to extract hid-
den patterns and determine features, which contribute to the formation of categories at the
processing step. Contrary to the Supervised Learning concept, where the labels can impose a
strategy for the problem solution, in this case the machine is programmed to learn by itself,
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since an equivalent set of generally applicable instructions for the grouping of the input data
cannot be defined.

One of the most important benefits of unsupervised learning techniques concerns the structure
of the utilized dataset. Unlabeled data do not require any kind of human intervention or
annotation, which is a significantly time-consuming procedure; as such, they constitute the
most common type of dataset regarding the majority of real-world applications. Furthermore,
such methods can be used for modeling more complex tasks compared to supervised learning,
since they have the ability to detect and reveal hidden patterns and intrinsic features of the
underlying data distribution, that can facilitate the approach of compound problems and
contribute to the categorization part.

Unsupervised Learning

Association

Figure 2.1.10: Categorization of Unsupervised Learning Problems [48|

Unsupervised Learning can be broadly categorized into two classes of problems, which are
presented in Figure 2.1.10 and will be more extensively discussed further down.

Clustering

Clustering can be considered an important
concept when it comes to Unsupervised
n."‘m" Learning. This method involves organizing
o::'. .0 o: ‘;‘ ..:. N unlabelled data into groups, called clusters,
‘ot 0 e ® by discovering patterns or detecting the in-

[ ] |:> Inter-clust larit . .
° g0 ..‘.‘. . herent structure that may exist in the col-
*% e 0.: *% e lection of input instances. More specifically,
e Cluster analysis can be defined as the task
o of grouping objects into clusters in such a
a. Dot cbjcts b, Clostred dts acts way that samples in the same group are more
similar, in some sense, to each other than to
Figure 2.1.11: Clustering [49] those in other groups. Therefore, a cluster is

a collection of objects which are “similar” be-
tween them and “dissimilar” to the objects belonging to other clusters. From a computational
aspect, Cluster analysis can be formulated as an iterative process of knowledge discovery or
interactive multi-objective optimization, that tracks down commonalities among data points
and performs a categorization, based on the presence and absence of those attributes.

Clustering is the main task of Exploratory Data Analysis and a common method for Sta-
tistical Data Analysis, used in many fields, including Pattern Recognition, Image Analysis,
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Information Retrieval, Bioinformatics, Data Compression and Computer Graphics. It can
be performed by a variety of algorithms that approach the constitution of clusters as well as
the procedure of their formation in a different manner. Popular notions of clusters include
groups with small distances between members, dense areas of the data space, intervals or
particular statistical distributions. The selection of the proper clustering algorithm in con-
junction with the setting of multiple parameters, such as the distance function to be used, a
density threshold or the number of expected clusters to be formed, depend on the structure
of the input object collection, the data format and the nature of the application that will
exploit the produced results. A visual overview of the most prevailing clustering algorithms
employed in Data Science and Mining is presented in Figure 2.1.12.
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Figure 2.1.12: Clustering Algorithms [50]

Assoctation

Association is a rule-based unsupervised method for discovering interest relations between
variables, hidden in large datasets. These correlations are usually represented in the form of
rules or frequent item-sets. It is a descriptive, not predictive, formula that detects new and
engaging insights between different objects in a set, frequent patterns in transaction data or
any sort of relational database. Association rules are employed in multiple application areas,
such as Web Usage Mining, Intrusion Detection, Continuous Production and Bioinformatics.
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In addition to the aforementioned problems and tasks, this ARKET BASKET ANALASS
technique is most frequently utilized under the framework of - a
Market Basket Analysis, as shown in Figure 2.1.13. In this = g;ﬁ
case, association rules allow for discovering regularities between E/@
products in large-scale transaction data, recorded by point-of- y,,.wfw,mw,:F
sale (POS) systems in supermarkets. For instance, the rule —
{onions, potatoes} = {burger} formatted from the sales data  Figure 2.1.13: Market
of a specific store, indicates that if a customer buys onions and Basket Analysis [51]
potatoes together, they are also likely enough to buy hamburger

meat. Such kind of information comprises the basis for decisions and actions, concerning
marketing activities, such as promotional pricing or product placements. Understanding
consumption habits of customers enables businesses to develop better cross-selling strategies
and recommendation engines.

In general, association rules are formulated by identifying frequent if-then patterns among
data and using a particular criterion under Support, Confidence and Lift in order to determine
the most significant relations. The aforementioned quantities can be defined as follows:

e Support expresses the frequency of an item appearance in the given dataset.

e Confidence indicates the number of times the if-then statements are found to be
verified.

e Lift shows the number of times the if-then statements are expected to be verified and
is introduced in order to compare the actual and the expected Confidence.

2.1.3 Reinforcement Learning: Rewards Outcomes

O

oy

Figure 2.1.14: Reinforcement Learning Diagram [52]

Reinforcement Learning (RL) constitutes a feedback-based Machine Learning technique
that enables an intelligent agent to learn how to act inside an interactive environment by
trial and error, using feedback from its own experiences, in order to maximize the notion
of cumulative reward. Given a set of prescribed rules for accomplishing a distinct goal, this
method allows machines and software programs to automatically determine the ideal behavior
that maximizes their performance, through a procedure of seeking positive rewards, which

20




2.1. Machine Learning

can be received when a beneficial toward the ultimate goal action is performed and avoiding
punishments, which can be received in the opposite situation.

As demonstrated in Figure 2.1.14, the fundamental elements that describe a Reinforcement
Learning problem are the following:

e Agent: An entity that has the ability to explore the environment and operate upon
it, in order to perform a specific task.

e Environment: The physical or virtual world that surrounds the agent.
e State: It describes the current situation and is modified by the actions of the agent.
e Action: It is the move made by the agent which alters the status of the environment.

e Reward: The evaluation of an action, which can be either positive or negative (it is
returned to the agent from the environment in the form of feedback).

e Policy: It is the strategy that the agent applies in order to determine the next action,
based on the current state. In other words, it constitutes a mechanism for mapping
states to actions.

e Value: Expected reward that the agent would receive by taking an action in a particular
state.

Both Supervised and Reinforcement Learning methods utilize a
form of mapping between the input and the corresponding out-
put. However, in the case of Supervised Learning, the feedback
provided to the agent is a set of parameter reformulations that
rectify its course to the global goal, since the structure of labeled
input-output data pairs impose the explicit correction of all sub-
optimal actions. On the other hand, Reinforcement Learning uses
rewards and punishments as signal indicators of good and bad

behavior respectively, which are both acceptable elements of the Figure 2.1.15:
training process, since the main focus is on finding a balance be- Exploration vs
tween exploration of uncharted territory and exploitation of the  Eyploitation trade-off
current knowledge. This is called Exploration vs Exploita- 53]

tion trade-off (Figure 2.1.15) and represents the dilemma that

an agent faces at every step of the algorithmic process, between exploring new states and
maximizing its overall reward at the same time. In other words, the procedure of establishing
an optimal policy with respect to a particular task may involve some short-term sacrifices,
which nevertheless enable the agent to collect adequate amount of information and as a
consequence make the best overall decision in the future.

As regards the comparison between Unsupervised and Reinforcement Learning, it can be
affirmed that those two methods differ in the matter of the objective of the whole procedure.
As explained before, the goal of Unsupervised Learning techniques is to detect similarities
and differences and discover hidden patterns among unstructured data, while in the case
of Reinforcement Learning the principal aim is to track down the most appropriate action
model that maximizes the total cumulative reward in the context of performing a specific
task.
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Figure 2.1.16: Reinforcement Learning Approaches

The various approaches concerning the implementation of a Reinforcement Learning system
in Machine Learning can be broadly divided, in accordance with the diagram of Figure 2.1.16,
into the following categories:

Model-based methods

In the framework of model-based RL approaches, the agent is enabled to construct a func-
tional representation of its environment. By performing actions and observing the outcomes
that include the next state and the immediate reward, the agent is capable of learning the
aforementioned virtual model and hence formulating the optimal behaviour in an indirect
manner, overcoming at the same time the issue of lack of prior knowledge. Since the model
representation depends on the corresponding environment, which can vary among different
problems, a generic algorithm cannot be established for this kind of methods.

Model-free methods

In the case of model-free RL systems, the agent does not take into account the environment’s
response to local actions and only concerns itself with determining which action to perform
given a specific state. More precisely, it does not consider predictions derived from environ-
mental information, that may refer to the expected next reward or the full distribution of next
states and next rewards, laying emphasis on the procedure of learning instead of planning.
Since it can be extremely difficult to construct a sufficiently accurate representation of the
environment, as required by the model-based strategy, model-free methods have been proven
significantly useful for a wide variety of problems, surpassing approaches that incorporate a
larger degree of complexity.

From a computational aspect, every policy employed by a Reinforcement Learning algorithm,
can be described by two functions: the State Value (V-value), which maps each state to
the corresponding expected reward, considering actions performed by the agent in accordance
with the given policy from the input state onward and the State-Action Value (Q-value),
which maps a state-action pair to the corresponding expected reward, considering all previous
pairs from the input state and beyond, according to the given policy. Therefore, discovering
the optimal policy and finding the optimal V-value or Q-value are equivalent procedures,
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as regards the task to be resolved. Under this concept, model-free methods can be further
partitioned as follows:

e Value-based: Value-based algorithms aim at specifying the optimal State-Action
Value or the optimal State Value. In this way, the optimal policy is indirectly es-
tablished, since it can be derived from the aforementioned functions.

e Policy-based: Policy-based algorithms track down directly the optimal policy, by
building an explicit representation of it during learning.
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2.2 Artificial Neural Networks

The term Artificial Neural Network (ANN), or simply Neural
Network (INN), refers to a family of Machine Learning and Arti-
ficial Intelligence algorithms, established on biological studies con-
cerning the structure and the respective functionalities of the human
brain and nervous system. As the name suggests, an Artificial Neural
Network can be defined as a computational system that models the
human brain. The concept of Artificial Neural Networks was first in-
troduced in 1943, when two mathematicians, Warren McCulloch and
Walter Pitts, built a circuitry system intended to approximate simple
biological operations of the human brain. This notion of emulating intellectual processes in a
computational form and enable machines to understand and learn things in order to perform
tasks in a human-like manner has flourished over the years, rendering ANNs the fundamental
tool for Deep Learning algorithms.

From a constructional perspective, an Artificial Neural Network comprises a collection of
interconnected units or nodes, called artificial neurons, which are organized in multiple layers.
Similar to the mechanism of synapses in the biological brain, each connection, also called edge,
in the equivalent artificial system can transmit a signal to other neurons. As demonstrated
in Figure 2.2.2, an artificial neuron receives signals from other neurons, processes them and
broadcasts the result of this procedure at neurons connected to it. The aforementioned signals
are real numbers and the output of each neuron is computed by some function of the sum of
its inputs, mimicking the indeterminate behaviour of biological neurons, which are enabled
and disabled irregularly when a particular operation is performed. Neurons and edges are
typically characterized by a weight value that adjusts as learning proceeds. This quantity
increases or decreases the strength of the signal at a connection, representing the significance
degree of the corresponding input information. Neurons may also have a threshold that
determines whether the respective aggregate signal is to be transmitted.

Input1 X —> m

@?

\ ) Input 2 Y Output
l@ 4 é:rj:;ﬁj/
&
WE? @ Input 3
Figure 2.2.1: Biological Neuron [54] Figure 2.2.2: Artificial Neuron [54]

In comparison with the biological model, depicted in Figure 2.2.1, it may be stated that the
correspondence between the two structures can be summarized as follows:

e Dendrites < Inputs

e (Cell Nucleus & Neuron
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2.2. Artificial Neural Networks

e Axon < Output
e Synapse < Interconnections

As mentioned before, artificial nodes are usually aggregated into layers. The neurons con-
tained in each tier can be considered as parallel processors operating on the same input
information. Different layers may perform varying transformations on their respective in-
puts. The architecture of a multilayer neural network is graphically presented in Figure
2.2.3.

Input Layer
Hidden Layer 1
Hidden Layer 2

Qutput Layer

Figure 2.2.3: Multilayer Neural Network [54]

e Input Layer: As the name suggests, it is the first layer, which receives the input data
in several different formats.

e Hidden Layer: Hidden layers represent intermediate layers of the network, where
the included artificial neurons receive a set of weighted inputs and produce an output
through an activation function. These node tiers usually perform processing calcu-
lations in order to extract hidden features or to detect patterns among input data.
Hidden layers constitute a typical part of nearly any neural network structure, since
they essentially simulate the operations of the human brain.

e Output Layer: As the name suggests, it is the final layer, which produces the ultimate
result of the whole procedure.

There are many different types of Artificial Neural Networks. Although they all share the
same objective of modeling the human brain activity, they can differ in multiple aspects,
including the degree of complexity, the structure of artificial neurons and the connections
between them (e.g. node density, network depth, activation filters, etc.), the data flow or
the use cases. The most prevailing categories of Artificial Neural Networks, especially in the
research area of Automatic Music Synthesis which constitutes the principal subject of this
thesis, will be examined in greater detail at the subsequent sections.

2.2.1 Perceptron

The perceptron constitutes the fundamental building block of a typical Artificial Neural
Network, since it comprises only a single neuron, as displayed in Figure 2.2.4. It was initially
implemented in the mid of 20" century by Mr. Frank Rosenblatt, as a machine intended to
perform specific computations in order to detect properties of the input data distribution or
business intelligence.
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Weights
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Figure 2.2.4: Perceptron [55]
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As demonstrated in Figure 2.2.4, the perceptron unit consists of the following main compo-
nents:

e Input Nodes or Input Layer: This module feeds the initial data into the perceptron
system for further processing. Each input node corresponds to a real numerical value,
representing some feature of the input.

Weights & Bias: The weight parameter represents the influence degree of the associ-
ated input neuron to the computational procedure of determining the system’s output.
In order to mathematically model this correlation, weights are linearly combined with
the respective input values. Bias is an adjustable, numerical term added to the percep-
tron’s equation formula, that allows the shifting of the activation function along the x
axis and can be considered as the decision threshold.

Activation function: It is usually a non-linear partially differentiable function that
maps the linearly aggregated form of input attributes to a specific interval or a defined
set of values, determining in this way the output of the respective node. Activation
functions introduce a notion of non-linearity in the processing mode of neural net-
works, as the initial module of artificial neurons performs just a linear transformation
of the input. This additional feature is particularly crucial, since it enables machines
to deal with more complex tasks, that cannot be essentially approached through a
linear method. As regards the case of perceptron systems, the most widespread acti-
vation function is the Step function, which is illustrated in Figure 2.2.5a. A common
alternative is the Sign function, which is depicted in Figure 2.2.5b.

(a) Unit Step Function (b) Sign Function

Using mathematical notation, the perceptron mechanism can be described as follows:
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2.2. Artificial Neural Networks

Let x € R" be a real-valued vector which represents the input features and w € R"
the internal real-valued vector of the system’s weights.

1. The dot product of the aforementioned vectors is computed:

n
WT X = E W; X5
=1

where n is the number of input attributes.
2. The bias term b is added to the produced value:

WT-X—f-b:Z’wil‘i—f—b

u=ll

3. The result is applied to the activation function, generating the perceptron’s out-
put (we utilize Step Function for the formulation):

_ f(x) = 1, wh-x+b>0
y= 1 0, otherwise

\

Evidently, the value of the perceptron’s output f(x) can be considered as an indicator of
the class in which the input x is assigned, establishing the framework of a typical binary
classification task. More specifically, in order to classify x as a “positive” instance, the
respective weighted compound of the input attributes must produce a value greater than
—b, leading in this way the perceptron’s neuron over the threshold value. Topologically, bias
determines, in essence, the position of the decision boundary, which partitions the underlying
vector space into two distinct groups. Furthermore, due to the fact that the classification
rule is based on a linear combination of the input features and the corresponding weights,
the perceptron unit can be employed as a type of linear classifier.

The main objective of perceptron’s training process is to
learn the threshold function

X3

\
2,
3
>
2
3
>

f(x)=wT -x+0b

which by definition maps the real-valued input vector
x to a single binary output value f(x), that designates
the class of the respective data instance. Spatially,
the aforementioned function represents the decision sur- \ %
face, which partitions the generalized data space into

two regions in accordance with the class distribution, as Figure 2.2.6: Illustration of
demonstrated in Figure 2.2.6 for the 2D case. Therefore, Decision Boundary [56]

the training algorithm of the perceptron model aims at

computing the weight vector w and the bias parameter b, so that all samples included in the
training set are correctly classified by the corresponding predictor function f. On account
of this fact, a labeled dataset is required, rendering the Perceptron Rule one of the principal
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algorithms within the framework of Supervised Learning, which has been explicitly presented
in Section 2.1.1.

The Perceptron training rule is presented below. In practice, it optimizes the values of w and
b with respect to a cost function L(d, f(x)), which typically corresponds to the minimization
of misclassifications in the training set.

Algorithm 1: Perceptron Training Rule

Definitions:

e 1 denotes the learning rate of the perceptron. It is a hyperparameter which
determines the step size at each iteration of the algorithm, while moving toward a
minimum of a loss function. It is usually between 0 and 1, with larger values implying
more volatile weight updates.

e y = f(z) represents the perceptron’s output for an input vector z.

o D={(x1,d1),...,(xs,ds)} is the labeled training set of s data samples, where x;
symbolizes the n-dimensional input vector and d; the corresponding desired output
value.

e z;,; indicates the i-th feature value of the j-th training input vector.

e w; signifies the i-th value in the n—dimensional weight vector, to be multiplied by the
value of the i-th input feature.

e w;(t) shows the i-th value in the weight vector at iteration ¢

e The weight vector w is augmented with the bias parameter b at position 0, hence
wy < b. As a result, the input vector is equivalently augmented by setting x;o = 1,
since bias does not correspond to any input feature.

e The employed loss function is the so-called 0-1 Loss, which returns 1 when the target
and output are not equal and 0 otherwise.

Input:

e Learning Rate r

e Training Set D

e Maximum Number of Iterations T’

Initialization:
e Initialize weight vector w(0) = 0 (or to a small random value)
e 1<+ 0

repeat

for each training example (x;,d;) in dataset D do

Calculate the actual output.

yi(t) = F(WT (1) - x5) = flwo(t) +wi(t)zjn + -+ wn(t)7))
Update the weights.

Update iteration parameter. <t +1

endfor
until stopping criterion is satisfied or mazximum iteration number is reached
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As it can be pointed out, in the case of a false prediction the algorithm adjusts the weight
values by a proportion of the input vector that has been misclassified. Otherwise, the weight
vector remains unmodified. The training procedure is terminated when the classification
error is less than a user-specified threshold or a predefined number of iterations has been
completed. If the utilized training set is linearly separable, i.e. the respective two classes
can be distinguished by a hyperplane, then the convergence of the perceptron’s training
algorithm is guaranteed. In the inverse situation, no “approximate” solution will be gradu-
ally approached under the standard process, but instead, learning will completely fail, since
perceptron is a linear classifier, as mentioned before.

2.2.2 Multilayer Perceptron

As the name suggests, a Multilayer Perceptron (MLP) is composed of multiple percep-
tron units, organized in numerous layers. Concretely, a typical MLP consists of at least
three layers of nodes: an input layer, a hidden layer and an output layer, which are visu-
ally demonstrated in Figure 2.2.7. Generally, all possible associations between perceptron
building blocks of consecutive layers are present and therefore every feature of the respective
input vector affects all attributes of the corresponding output vector, rendering MLP a typ-
ical example of fully-connected networks. By construction, such computational systems fall
under the class of feedforward Artificial Neural Networks, since the connections between the
nodes, contained in the model structure, do not form cycles or loops and consequently the
information flows only in a forward manner through the successive node layers.

Input Layer Hidden Layers Qutput Layer
I'd X
°
[
°

Figure 2.2.7: Multilayer Perceptron [57]

The Multilayer Perceptron was developed in order to tackle the inadequacy of simple percep-
tron systems in modeling non-linear data and solving more complex problems. Its hierarchical
structure, where each layer is feeding the next one with its individual computational results
and the respective internal representations of the input data, enables the extraction of fea-
tures at different scales or resolutions and the eventual combination of them into high-order
characteristics. This mechanism renders the Multilayer Perceptron the most suitable ap-
proach for more composite tasks and at the same time the most commonly used type of
Artificial Neural Network.

Under this framework, Multilayer Perceptron can employ arbitrary activation functions, in
order to be disposed to perform either regression or classification. Figure 2.2.8 displays some
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of the most prominent non-linearities that are integrated in the MLP mechanism in an effort
to emulate the effect of action potentials in the biological neurons of the human brain. The
two historically common activation functions are Sigmoid and Tanh, which are graphically
depicted in the first row of Figure 2.2.8. As it might be seen, they are both continuously
differentiable functions that perform normalization by squashing the respective input values.
Their most distinguishable characteristic is their finite range, which makes them suitable for
classification tasks.

Sigmoid Tanh

|:,: )
LeakyRelU(z)=1
| iz otherwise

B |-:_'_'-"U

RelU(:z
N (2) ll]_rJH;lc-J'u'f.*.'c P . — - -
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10 5 0 5 0 101

<) (d)

Figure 2.2.8: Activation functions [58|

However, the most frequently utilized activation function in recent studies concerning the
developments of deep learning techniques, is the Rectifier Linear Unit and its variants, illus-
trated at the second row of Figure 2.2.8. ReLU is a partially differentiable function, char-
acterized by infinite range of values, that enables Multilayer Perceptron models to overcome
numerical problems related to sigmoids. Due to its simple formula, the overall computational
requirements of the training procedure, including time and resources, can be significantly re-
duced, compared to the aforementioned alternatives. Leaky ReLU is a ReLU-based type of
activation function that introduces a small slope for negative values, which is predetermined
before training. It is widely applied in tasks suffering from sparse gradients.

It can be easily affirmed that the training algorithm of Perceptron cannot be directly ap-
plied in the case of an MLP network, since the rectification quantity of the weight values
corresponding to each node should be calculated with respect to the overall model’s out-
put, in terms of minimizing a specified cost function. Therefore, another, more generalized,
supervised learning method, called Backpropagation, has been established, as regards the
training process of feedforward neural networks, including Multilayer Perceptrons. The back-
propagation algorithm was initially introduced in the 1960s, but its importance wasn’t fully
appreciated until a famous paper [59] by David Rumelhart, Geoffrey Hinton and Ronald
Williams was published almost 30 years later, in 1986. This survey highlights the preva-
lence of backpropagation over earlier learning approaches, concerning various tasks, which
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had previously been considered insoluble. Nowadays, the backpropagation algorithm can be
characterized as the workhorse of learning in the field of Artificial Neural Networks.

The principle of the backpropagation technique is grounded on the utilization of a cost func-
tion, which quantifies the difference between the system’s output and a known expected value.
The main goal of the algorithm is to iteratively adjust the weights and biases throughout the
neural network’s structure, based on the currently calculated error, so that the respective cost
gradually decreases towards its minimum point. This can be achieved by applying a typical
gradient descent procedure, which employs small repeated steps in the opposite direction
of the gradient of the examined function, i.e. the direction of steepest descent, in order to
detect its local minimum. To this end, the gradients of the aforementioned loss function with
respect to the parameters, corresponding to the various layers of the network, are computed
through the Chain Rule of Calculus? and applied during the update process. Therefore, the
function that combines the internal weightings and the input signals in each neuron of the
multilayer network should be differentiable and more specifically have a bounded derivative,
as the activation functions presented in Figure 2.2.8.

The selection of the appropriate loss index is indissolubly associated with the form of the
activation function used in the output layer of the neural network, as well as the nature of
the problem, which the model attempts to solve. The configuration of the output layer, in
essence, defines the framework of the examined task, while a suitable cost function constitutes
a computational tool that has the ability to effectively quantify the error calculated in the
aforementioned framework. For instance, in case of a binary classification problem the most
frequently applied combination of loss function and output layer’s non-linearity is sigmoid
activation unit along with Cross-Entropy loss, which is measured as number between 0 and
1 representing the difference between the predicted probability distribution and the ground-
truth (0 corresponds to the perfect classifier).

The Backpropagation algorithm is presented below in the form of pseudocode. In practice,
it manages to properly modify the system’s internal state, based on the error calculated at
each iterative step, in two distinct stages of execution:

e Forward Pass or Forward Propagation: This stage involves the calculation and
the storage of all intermediate variables of the system successively from the input layer
to the output layer, based on the current values of weights and biases. As mentioned
before, during this procedure, each neuron performs two operations, the computation
of the weighted sum and the processing of the produced result through an activation
function, which determines the behaviour of this particular model unit.

e Backward Pass or Backward Propagation: At this stage, the error between the
actual output of the system and the expected one is distributed inside the network.
This is accomplished by traversing the network in reverse order, from the output to
the input layer, and concurrently calculating the gradient of the loss function with
respect to the various model parameters, using the Chain Rule. During this procedure,
all intermediate variables, in the form of partial derivatives, that may be required for
further calculations are being stored.

2The chain rule is a mathematical formula that expresses the derivative of a composition of differentiable
functions in the form of a gradient chain, representing the dependencies among the individual functions.
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Algorithm 2: Backpropagation Training Algorithm
Notation:
e D={(x1,y1),...,(xXn,yn)} is the labeled training set of N data samples, where x;
symbolizes the input vector and y; the corresponding desired output value.
wfj denotes the weight between node j in layer [, and the node ¢ in layer [;_;.
e bY denotes the bias parameter for node i in layer .
e af symbolizes the activation of node i in layer I, i.e. the weighted sum of
corresponding input values plus bias.
e of symbolizes the output of node i in layer Ij.
e 7 indicates the number of nodes in layer [j.
° 5’“ denotes the error term which corresponds at node 7 in layer [, and represents the

partlal derivative 2 o k in the chain rule formula.

e ¢ denotes the activation function for the nodes of the hidden layers.

e ~ indicates the learning rate.

e C(y,y) symbolizes the cost function, which defines the error between the ground
truth value y and the calculated output y for all input-output pairs (x;,y;) € D.

Preliminaries:

e To simplify the mathematical formula, the bias b¥ for node 4 in layer I}, will be
incorporated into the weights as w§; with a fixed output of 0’5_1 =1 for node 0 in
layer lp_1.

e The activation af and the corresponding output of of node i in layer [, can be
calculated as follows:

at = b+ waz f 1St Zw 0 (2.2.1)

o = g(a;) (2.2.2)

e The partial derivative of the activation with respect to the weight values can be
derived from the following equation:

a Tk—1
85) - (Z whiok~ 1) = o1 (2.2.3)

ij

e The error terms 5;“ can be computed by the backpropagation formula:

OC &R 9C daitt IR 8ak+1
k _ et k+1 l
ok = ok = > — b ok Z 5! (2.2.4)
l
gkl k+1 / Gaf“ k+1 1/ k 295
a —Zw 5ak = Wi g'(a3) (2.2.5)
J
(2 2.5) -— k+1 ck+1
(2.2.4) = Z whe) (2.2.6)
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N =

Initialization: Initialize all weights and biases at zero or any other small random value.
repeat
Forward Phase.
for each training example (xq,y4) do
e Calculate a¥ and of using equations (2.2.1) and (2.2.2) respectively for each
node 7 in layer [, by proceeding from the input to the output layer.
e Compute the final output v;.
e Store all the intermediate results.
Backward Phase.
for each training example (xq,v4) do
oC

e Calculate 75 for each weight wfj, by proceeding from the output to the input

layer, accordqijng to the chain rule:
oc  oC 3&;? (2.2.3)

= = 5’?0].671
k k 9,k 3%
ow;;  dai dwy;

The error terms 0% can be recursively computed by the equation (2.2.6).

L e Store all the intermediate results.

Total Gradient. Combine all the individual partial derivatives of the Cost
function, that have been calculated during the backward pass for each input-output
pair (Xq,¥q), in order to compute the total gradient VwC(W), which corresponds
to the entire training dataset D.

Weight Update.

W =W — v VwC (W) (2.2.7)

8 until stopping criterion is satisfied or mazimum iteration number is reached

There is a wide variety of different optimization algorithms establishing on the concept of the
Gradient Descent. One of the most popular variants of the typical procedure is its stochastic
approximation called Stochastic Gradient Descent or SGD for short [60], which updates all
the model parameters for each training example, instead of computing the gradient of the
employed cost function for the whole dataset, as presented in the algorithm above. Due to
the integrated randomness, SGD is noisier than the typical Gradient Descent and also re-
quires larger number of iterations for convergence. The most commonly applied optimization
method with several deep learning applications, especially in the field of Computer Vision
[61, 62, 63|, is an extension of SGD named Adam. It was initially introduced by Diederik
Kingma from OpenAl and Jimmy Ba from the University of Toronto in their 2015 ICLR
paper [64]. Adam computes individual adaptive learning rates for each weight parameter in
the network based on moving average estimations of the first and second moments of the
respective gradients. It is considered suitable for problems with non-stationary objectives,
large datasets, multiple parameters and sparse derivatives and is usually suggested as the
default optimization method [65].
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2.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNSs) constitute a class of Artificial Neural Net-
works in the field of Deep Learning, designed for processing and analyzing data with grid-like
topology or structured information in the form of generalized arrays. Their ability to extract
spatial features and capture topological patterns in the input data has made them the most
prevailing architecture for various tasks and applications, such as Image and Video Recogni-
tion |66], Recommendation Systems [67|, Natural Language Processing [68|, Brain-Computer
Interfaces [69] and Financial Time Series [70].

The concept of Convolutional Networks was inspired by the biological mechanism of human
vision and therefore, such kind of systems mostly deal with input data in the image-format.
A digital image can be defined as a computational representation of visual information. As
demonstrated in Figure 2.2.9, it contains a series of pixels arranged in a grid-like fashion,
whose values denote the brightness level or the color. According to the biological archetypes,
when the human vision system perceives a physical image, the individual cortical neurons
respond to stimuli only in a restricted region of the visual scope, known as the receptive field.
The biological neurons are connected with each other
in such a way that their corresponding receptive fields
partially overlap and consequently cover the entire opti-
cal area. In order to emulate this procedure, each neu-
ron in the artificial implementation of the visual network
processes the information that appertains to its own re-
ceptive field, which can be demarcated through the uti-
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Figu?e 2.2.9: Image ' lization of specified structures, called filters. These ker-
representation as a grid of pixels g grids, which are shared-weight among the neurons of
[71] each network layer, slide along input features and pro-

vide translation-equivariant responses, known as feature
maps. In this way, CNNs manage to assemble hierarchical patterns of increasing complexity
and detect various significant aspects and characteristics of the input image-like data.
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Figure 2.2.10: CNN architecture in comparison with a typical MLP model 7|

input layer

hidden layer 1 hidden layer 2

The principal objective of Convolutional Neural Networks is to model a single differentiable
function that efficiently maps the input to a corresponding output, by incorporating an au-
tomated feature extraction process. Similar to the case of typical feedforward systems, each
node in the network topology receives a specific part of the input attributes, performs a gen-
eralized dot product and optionally applies a non-linearity afterwards. However, in order to
embed and encode the topological properties of the grid-like input into the architecture of the
system, the artificial nodes of each layer in a Convolutional Neural Network are arranged in
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three dimensions, width, height and depth, introducing the notion of computational volumes,
as illustrated in Figure 2.2.10. The main types of layers generally involved in the structure
of a CNN will be presented in detail at the following subsections.

Convolutional Layer

The convolutional layer constitutes the fundamental building block of a CNN model, as it
performs the major computational processes regarding the system’s mechanism. As the name
suggests, this layer applies grid-shaped feature detector filters to the input image, through
a mathematical operation, called Convolution. This procedure is graphically displayed in
Figure 2.2.11 for the case of 2-dimensional matrices. As it might be seen, the value of
each output point can be calculated as the Frobenius product between the kernel and an
equally-sized slice of the input data. In essence, the utilized filter consists of learnable weight
parameters and abstractly represents an attribute, which the model aims to detect. It is
usually spatially smaller than the input image, as regards the width and height dimensions,
while the connectivity along the depth axis is always equal to the depth of the input volume.

Input image Filter Output array

Figure 2.2.11: Tllustration of the Convolution Mechanism [9]

As mentioned before, each convolutional neuron processes only the data
pixels that correspond to its receptive field, i.e. a restricted portion of the
input image, which is determined by the size of the aforementioned filter.
This fact implies that the produced output array is not directly mapped
to each input value, as occurs in the case of standard feedforward neural
networks. Therefore, convolutional (and pooling) layers are commonly
referred to as “partially connected” layers. s

U%r;,

height

Under this framework of local connectivity, in order to cover the entire

data area, the kernel unit slides along the input image, according to  Figure 2.2.12:
Figure 2.2.12. In this way, the output representation of every neuron’s Kernel sliding [72]
receptive region is produced through the filter’s convolutional response

and the respective activation map is created. During this process, the weights included in
the applied feature detector remain fixed, introducing the concept of “parameter sharing”
among the nodes of the convolutional layer. Their values are properly adjusted during the
training procedure, using the BackPropagation algorithm, which has been explicitly presented
in section 2.2.2. However, there are three hyperparameters involved in the convolutional
operation, that crucially affect the volume size of the output, but need to be set before the
training process of the CNN model. These include the following:
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e Number of filters: Multiple filters can be employed in a convolutional layer, in order
to extract different characteristics from their respective common input. For instance,
Figure 2.2.13 demonstrates 5 distinct nodes, associated with 5 different filters, that
share the same receptive field and thus process data contained in the same region of
the input volume.

=50000]

Figure 2.2.13: Convolutional layer with multiple filters [7]

The distinct activation maps, that will be created in correspondence with the afore-
mentioned kernels, can be stacked along the depth dimension, determining in this way
the output volume. Therefore, the number of utilized filters affects the depth of the
produced output.

e Stride: This non-negative quantity represents the shift of the sliding filter window over
the input matrix and in essence, determines how densely or sparsely the convolution is
applied. As shown in Figure 2.2.14, if the stride value is set to 1, then the kernel moves
across 1 pixel at a time, resulting in heavily overlapping receptive fields between the
input columns and accordingly to large output volumes.

Stride =1 Stride = 2

Feature 3x3

5x5 Map

Figure 2.2.14: Stride in CNN [73]

On the other hand, a higher stride value S implies that the kernel is translated S units
at a time per output and consequently skips some features, along the width or height
dimension as well, before being applied again. In this case, the smaller overlap of the
receptive fields leads to spatially smaller feature maps.

e Padding: Padding refers to the practice of surrounding a matrix with layers of zeroes
or another specified small value, in order to preserve features that exist at the border
of the original matrix and control the size of the output feature map.

There are three padding categories:
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Figure 2.2.15: Padding in CNN [73]

— Valid Padding: This is also known as no padding. In this case, the respective
convolutional layer does not pad at all, hence the output size shrinks, depending
on the input dimensions and the applied kernel.

— Same Padding: This type of padding ensures that the output matrix has the same
size as the input one.

— Full Padding: Tt can be defined as the maximum padding that is able to increase
the size of the output feature map.

Transposed Convolutional Layer

Transposed convolutional layer constitutes a special type of the standard convolutional layer,
which has been thoroughly examined in the previous section. As the name suggests, it
performs a regular convolution operation but reverts its spatial transformation, in terms of
generating an output feature map with greater dimensions that the input one. This upsam-
pling process is accomplished by properly modifying the input grid-like vector. Similar to
the typical version, a transposed convolutional layer is defined by the same hyperparameters,
including stride and padding. However, in this case, these values correspond to the process
of applying a standard convolution to the output in order to produce a feature map with the
same dimensions as the given input. The computational steps involved in the implementation
of a transposed convolution are graphically illustrated in the diagram of Figure 2.2.16.

.** —-—) Calculate —
(s:p) z =s—1
p=k-p-1

s=1

1. Calculate parameters 2. Insert 7 zeros between 4. The kernel always jumps 1 Output
z, and p’ the rows and columns around the image pixel when being slided across the P
image

Input Kernel

Figure 2.2.16: Transposed Convolution [74]

A complete comparison between the two examined convolutional operations can be summa-
rized in the Table 2.1, where k denotes the kernel size, p symbolizes padding, s represents
stride and ¢ indicates the input size.
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] Conv Type \ Operation \ Zero Insertions \ Padding \ Stride \ Output Size ‘

Standard | Downsampling 0 D S (t+2p—Fk)/s+1
Transposed Upsampling s—1 k—p-—1 1 (t—1)-s+k—2p

Table 2.1: Comparative summary of the two convolution types (adapted from [74])

Pooling Layer

The pooling layer is responsible for progressively reducing the spatial size of the convolved
feature representation, by performing a downsampling process. Similar to the convolutional
layer, it applies a sliding filter across the entire input, which is able to combine multiple data
attributes, corresponding to neuron clusters from the previous layer, into a single value, using
a non-linear operation. However, the kernel used in this case, does not contain any weight
parameters, since it only aggregates the values within its receptive field.

Under the aforementioned framework, the pooling layer manages to derive a summary statis-
tic of the nearby outputs and extract dominant features, which are rotation- and position-
invariant, thus without affecting the efficiency of the training procedure. At the same time,
this dimensionality reduction induces a decrease of the computational power required to pro-
cess the data, since a smaller amount of essential parameters is involved. Pooling layers are
usually inserted in-between successive Convolutional layers in the CNN architecture, enabling
in this way the neurons contained in the subsequent convolutional layer to have a larger re-
ceptive field and be capable of discovering higher-scale patterns, without changing the size
of their corresponding filters.

Two dominant types of pooling layers can be distinguished:

e Max pooling: As the name suggests, max pooling returns the maximum value from
the portion of the image covered by the kernel, retaining in this way the most prominent
features of the activation map.

e Average pooling: This pooling operation averages the values of the image slice, which
corresponds to the kernel view. In this way it highlights the average presence of features
in the examined activation map.

X
|

(a) Max pooling (b) Average pooling

Figure 2.2.17: Types of pooling layes [75]
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Normalization Layer

Normalization can be defined as a procedure that standardizes a set of values corresponding
to numeric variables into a typical scale, without deforming existing contrasts or correlations
in the input range. In the context of Deep Learning, a Normalization layer performs this
operation, by shifting and scaling the input features into a distribution centered around 0 with
standard deviation equal to 1, typically via the computation of statistical data attributes,
such as mean and variance, during runtime. The inclusion of Normalization layers into the
architecture of deep models is essential, since this mechanism stabilizes the gradient descent
step during the training process and also ensures a faster convergence for a given learning
rate. Two prevailing normalization methods can be distinguished:

e Batch Normalization (BN)

Batch Normalization aims to decrease the internal covariance shift and hence acceler-
ate the training of deep neural nets, via a standardization step that transforms each
input included in the current mini-batch, based on its corresponding mean value and
standard deviation. This adjustment benefits the gradient flow through the network,
as it restricts the distribution of the input data to any particular layer and reduces in
this way the dependence of the produced gradients on the scale of the various param-
eters, enabling at the same time the use of higher learning rates without the risk of
divergence. From a mathematical perspective, a Batch Normalization layer applies the
following formula for a mini-batch B and the learnable parameters v and f:

1 m
ug = — Z x; mini-batch mean
=1
1 & - ,
T = — z:(;nz — pp)? mini-batch variance
i=1

o Ti — KB .
T; = normalize

Vo +e€

Yi =7 T; + 0 shift and scale

Batch Norm
<>

Figure 2.2.18: Normalization methods [76]

e Layer Normalization (LN)
Inspired by the results of Batch Normalization, Hinton et al. [77] introduced a novel
method called Layer Normalization, which standardizes the activations along the fea-
ture direction instead of the mini-batch axis, as graphically demonstrated in Figure
2.2.18. Unlike the previous case, Layer Normalization directly estimates the statistics
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from the summed inputs to the neurons within a hidden layer. In this way, it does
not impose any new dependencies between training cases or additional constraints on
the size of the mini-batch. From a mathematical perspective, the layer normalization
transforms the input features in accordance with the previous formula, but using the
following statistics instead (H denotes the layer width):

H
1
= Zl ol layer mean

H
1
= = Z(aﬁ —)? layer variance
i=1

Non-Linearity Layer

As mentioned before, Convolution can be algebraically implemented as the Frobenius product
between two equally sized matrices, one representing the input features arranged in a grid-
like manner and the other a filter composed of learnable weight parameters. It can be
easily affirmed that this operation inherently generalizes the weighted sum computed by the
perceptron neurons of standard MLP systems, which have been examined in detail at section
2.2.2. Thus, regarding the case of CNN models, the convolutional operator represents the
linear processing module of the artificial neurons, as it performs a linear transformation of
the input in a multi-dimensional space.

However, images or topologically structured information in general, comprise several non-
linear, irregular and particularly complex characteristics, that cannot be explicitly captured
through a linear method. This limitation can be tackled by emulating the mechanism of
typical Multilayer Perceptrons, which imposes the incorporation of non-linearities into the
system’s architecture. To this end, non-linearity layers are often placed between consecutive
convolutional or pooling layers, in order to apply an activation function to the corresponding
feature maps. Some of the most frequently used activation functions in the framework of
Convolutional Neural Networks are graphically displayed in Figure 2.2.8 of section 2.2.2.

Fully-Connected Layer

In contrast to the concept of partial connectivity, which characterizes the convolutional and
pooling layers in the architecture of a CNN, each neuron in a fully-connected layer is asso-
ciated with all the nodes in the preceding and the succeeding layers, as occurs in regular
MLP systems (section 2.2.2). Therefore, its respective activations can be computed in the
standard mode, by performing a matrix multiplication followed by a bias effect.

For the purpose of compatibility with the grid-like structure of the produced feature maps,
the operation of a Fully-Connected layer involves a flattening procedure. As demonstrated
in Figure 2.2.19, the entire matrix of the activation map is transformed into a single column,
which is then fed to the fully-connected module of the neural network for further processing.

If present, FC layers are usually found towards the end of CNN architectures and can be
used to optimize several objectives. For instance, they are able to perform tasks such as the
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classification of input images into multiple categories, based on features, extracted through
the previous convolutional and pooling layers and their respective filters.

Figure 2.2.19: Fully-connected layer |75]

2.2.4 Recurrent Neural Networks

Recurrent Neural Networks, or RNNs for short, constitute a class of Artificial Neural
Networks, designed to process sequential data and exhibit temporal dynamic behavior. The
term “sequential data” refers to information structures that contain elements arranged in
some kind of order. Examples include time series, DNA sequences in the field of biomedi-
cal informatics, sequences of user actions or the successive frames of a video. Based on the
concept of an integrated type of “memory” in the form of an internal hidden state, RNN mod-
els are capable of capturing temporal or ordinal dependencies among sequential data points
and hence are utilized in various related tasks, such as unsegmented, connected handwriting
recognition [78], speech recognition |79, 80|, language translation [81] and image captioning
[82]. Furthermore, these systems are incorporated into many popular applications such as
Siri, voice search and Google Translate.

As discussed in former sections of this analysis, traditional feedforward neural networks allow
information to flow only in the forward direction, from the input nodes, through the hidden
layers and finally to the output nodes. Within this framework, which is illustrated in Figure
2.2.7, the computational operations concerning the model’s decisions in each step, are based
only on the current input representation, without taking into account prior features and
elements that might be associated with present information and therefore influence to some
degree the future events. As a consequence, feedforward systems are not suitable for tasks
that involve sequential data, due to the aforementioned inability of retaining prior knowledge
or past-related attributes to forecast subsequent values. Recurrent Neural Networks are
introduced to tackle this exact limitation, by incorporating such a mechanism into their
structure.

RNNs are basically derived from feedforward neural networks, by applying the transforma-
tion demonstrated in Figure 2.2.20. In essence, the nodes contained in different layers of
the feedforward system are compressed in order to form a single layer of the corresponding
RNN model. The term “recurrent” arises from the fact that the exact same operations are
performed for every element of the input sequence, with the time-dependent output being
computed based on previous information. This process can be graphically depicted as an
“unfolding” of the RNN layer across the time axis, in such a way that the current input
instance x(t) is mapped to its corresponding output value y(t) through a hidden “memory”
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- o
:

Input Layer Hidden Layers Output Layer Recurrent Neural Network
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Figure 2.2.20: Conversion of Feedforward to Recurrent Neural Network [83]

mechanism h(t) (Figure 2.2.21). To this effect, the connections between the nodes of the net-
work form a directed or undirected computational graph along the temporal input sequence.
All these interrelations are computationally modeled by distinct weight matrices.

y yi-2) yi-1) ¥©) yit+1) y(t+2)
A A A A A ‘A
C
h —— ht2) C. fh C.6a C. &8 . <.,
B[
B B B B B
x x(t-2) x(t-1) x(t) x(t+1) x(t+2)

Figure 2.2.21: Recurrent Neural Network [83]

The training process of Recurrent Neural Networks is established on a variant of the conven-
tional BackPropagation algorithm called BackPropagation Through Time (BPTT). This
method retains the basic principles of the standard algorithm regarding the error calculations
from the output to the input layer for the weight adjustments. Their main difference lies in
the fact that BPTT sums the errors at each time-step, since the parameters are shared across
each layer of the recurrent network. However, throughout this procedure, RNN models tend
to experience two significant problems, concerning the size of the computed gradients, which
represent the slope of the loss function along the error curve and are used in order to update
the weight values. These issues can be described as follows:

e Vanishing Gradient Problem: During training procedure, the gradients, which are
being calculated with respect to the various model parameters, are traversing the net-
work in the backward direction, from the output to the input cell, using the Chain Rule
of Calculus. If the effect of a layer on its subsequent one is small, then the value of the
corresponding partial derivative will be respectively small, leading to a gradual shrink-
ing of the multiplicative gradients, as the backpropagation through time occurs. On
account of this, the aforementioned product can exponentially decrease to zero, result-
ing in insignificant values that do not affect the weight updating. As a consequence, the
model is no longer capable of learning correlations between temporally distant events,
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since the effect of earlier inputs cannot be captured and hence it is based only on its
short-term memory.

¢ Exploding Gradient Problem: This issue refers to the opposite behaviour in com-
parison to the previously explained problem, since it arises from the accumulation of
large error gradients during the backward phase of the training procedure. This sig-
nificant increase in the norm of the gradient causes very large updates to the network
weights, leading the model to an unstable state.

The exploding gradient problem can be easily controlled in practice, by applying the Gradient
Clipping technique, which rescales those gradient values that surpass a predefined threshold,
ensuring in this way that the gradient descent procedure will be performed in a reason-
able framework even if the loss landscape of the model is irregular. On the other hand,
the vanishing gradient limitation remains a matter of major concern regarding the RNN
well-functioning. In order to tackle this problem, the following two specialized versions of
Recurrent Neural Networks were created:

Long Short Term Memory (LSTM)

This RNN architecture was introduced by Sepp Hochre-

an outcome of the vanishing gradient limitation and per-
tains to the inability of RNN models to accurately pre- it

dict the current state, when former attributes that in- ® ® ®
fluence the current forecast dg not correspopd to the re- Figure 2.2.22: LSTM unit [84]
cent past. The LSTM mechanism tackles this short-term

memory issue, by augmenting the cells, included in the

hidden layers of the recurrent network structure, with additional gates that filter out infor-
mation that is irrelevant to the prediction of the current output. As shown in Figure 2.2.22,
each LSTM cell receives three different states as input, the current data instance z(t), the
short-term memory from the previous cell h(t — 1) and lastly the long-term memory ¢(t — 1)
and employs three distinct gates in order to regulate the information to be kept or discarded
before passing on the long-term and short-term features to the next cell. These gates can be
defined as follows:

iter and Juergen Schmidhuber in 1997. Their survey [85] >
attempts to address the problem of capturing long-term LSTM unit Lh ‘
dependencies among sequential data, which constitutes NE Al e e Llc .

e Input gate: It processes the current input data as well as the short-term memory
of the previous cell in the network topology, in order to determine the supplementary
information, which should be added to the network’s long-term memory (cell state).

e Forget gate: It multiplies the incoming long-term memory by a forger vector, com-
posed of the current input and the short-term memory attribute, in order to filter out
the unuseful elements.

e Output gate: It specifies the new hidden state (short-term memory), which will
be passed on to the subsequent cell at the next-time step, by taking into account
the current input, the previous short-term memory and the newly updated cell state,

73




Chapter 2. Theoretical Background

computed by the forget gate. Moreover, as the name suggests, the output of the current
time-step can be derived from the aforementioned result.

Gated Recurrent Unit (GRU)

This gating mechanism, which is graphically illustrated in Figure 2.2.23, was introduced in
2014 by Kyunghyun Cho et al. [86] in order to address the short-term memory problem of
standard RNN models, as well. In comparison with the LSTM unit, GRU variant incorporates
fewer parameters, as it lacks the cell state input and includes only the two following types of
gates:

e Update gate: The update gate is responsible for

determining the amount of previous information
that will be transferred to the next cell, given the GRUunit ______to

former hidden state h(t — 1) and the current input .- "U il e
instance z(t). Under this concept, the model can

even decide to copy all the past information, elimi- Xt

nating in this way the risk of the vanishing gradient ® ® &
problem. Figure 2.2.23: GRU unit [84]

e Reset gate: The reset gate is used for determining the amount of past information
that should be ignored. In other words, it is in charge of deciding whether the hidden
state of the previous cell is important or not. To this end, it applies an equivalent to
the update gate formula with its corresponding weight matrices.
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2.3 Generative Adversarial Networks

Generative Adversarial Networks, or GANs for short, constitute a class of Machine
Learning frameworks, initially introduced by Ian Goodfellow and other researchers at the
University of Montreal in 2014 [21] as a different approach in the concept of generative
modeling. French Computer Scientist Yann LeCun has described GANs as the “the most
interesting idea in the last 10 years in Machine Learning” [87], since the enlightening idea
behind this algorithmic architecture represents a real conceptual breakthrough in the research
field of Deep Learning. The applications of Generative Adversarial Networks have been
rapidly expanded over the past decade into multiple domains and areas, including Art and
Fashion [88, 89, 90|, Astronomy [91, 92|, Physics [93, 94|, Video Games [95] and Audio
Synthesis [96].
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Figure 2.3.1: Generative vs Discriminative models [97]

The GAN mechanism is intrinsically interrelated with the concept of two contrastive ap-
proaches in the field of statistical classification, which will be thoroughly analyzed further
down:

e Discriminative models: As visually presented in Figure 2.3.1, discriminative models
distinguish decision boundaries among observed data. Based on features that char-
acterize the input instances, systems of such kind predict the label or the class that
corresponds to each data point. In this way, the input distribution is projected into
distinct categories. In simple words, the aforementioned logistical models operate as
classifiers that “discriminate” examples of input variables across different groups. More
formally, using mathematical notation, given a set of data instances X and a set of la-
bels Y, discriminative models capture the conditional probability p(Y|X), by estimating
a discriminative function f : X — Y, and hence are also referred to as Conditional
models.

e Generative models: On the other hand, generative models can be considered as a
class of statistical algorithms that are capable of generating new content in the form
of data instances, by capturing the underlying distribution of individual classes in the
input dataset, as illustrated in Figure 2.3.1. From a mathematical perspective, this
process can be considered equivalent to the problem of deriving a complex random
variable from a specific probability distribution, that plausibly fits in the input space.
However, due to the inherently composite nature of a random variable and the inability
to explicitly express the aforementioned distribution, a simplified parametric estimation
method is employed. As demonstrated in the diagram of Figure 2.3.2, this method is
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based on the utilization of a model (usually neural network), that learns to approximate
a transformation function from a simpler form of input random variable, such as white
noise, to an output random variable that incorporates the desired properties in terms
of the underlying distribution. More formally, given a set of data instances X and
possibly a set of target labels Y, generative systems capture the the joint probability
p(X,Y), or just p(X) if there are no labels.

GENERATIVE
NETWORK

-
'
'

=

Dutput random variable

Figure 2.3.2: Generative modeling [98|

Generative Adversarial Networks provide a computational framework for the training proce-
dure of generative models, based on a rivalry mechanism. More specifically, GAN systems
replace the direct comparison between the generated and the ground-truth distribution, ap-
plied by other statistical techniques, with an “indirect” approach, that takes the form of a
downstream discrimination task between real and generated samples, in order to force the
aforementioned distributions to get as close as possible. To this end, as graphically displayed
in the diagram of Figure 2.3.3, a typical GAN architecture, consists of a Generator network,
which is trained to produce samples following a target distribution and a Discriminator
network, which aims to identify the fake samples provided by the Generator. In more detail:

Real i Sample
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Figure 2.3.3: Overview of GAN structure [99]
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2.3.1 Discriminator

The discriminator network learns to distinguish the real data from the fake samples created
by the generator model, by evaluating them in terms of authenticity. In this way, it penalizes
the generator for producing implausible results. It can be implemented as any type of network
architecture, depending on the nature of the data to be classified.

In Figure 2.3.3, the two “Sample” boxes represent the distinct sources of training data fed
into the discriminator. As it might be seen, its input consists of real instances, which are
considered as positive examples during training, as well as fake samples, which are used
as indicators of the negative data group. In either case, the discriminative model decides
whether the current instance belongs to the ground-truth dataset or not.

The training procedure of the discriminator
network is graphically depicted in the dia-
gram of Figure 2.3.4. During this phase, the G
weights incorporated in the generator archi-

tecture remain unaffected, as its involvement  reatures (x) =;>- => output (1) > -
in the process concerns only the construction

of fake examples in order to be evaluated by
the discriminator and hence a stable gener-
ator structure enables the detection of flaws
or other characteristics that can contribute Figure 2.3.4: Block Diagram of Discriminator
to the learning process of the discriminator. [100]

More specifically, at first, the input features

are passed through the discriminator network, which operates as a classifier, trying to make
successful predictions regarding the labels that correspond to the data instances (real-fake).
The produced outcome is then utilized for the calculation of a properly selected cost value,
also denoted as discrimination loss, which quantifies the misclassification errors. Based on
this result, the weight parameters of the discriminative network are updated through the
BackPropagation Algorithmic procedure, which has been explicitly discussed in section 2.2.2.

Parameters (60) €

Labels (Y)

2.3.2 Generator

The generator network learns to create novel data instances, by incorporating the feedback
from the discriminator. In particular, its training objective is to increase the discrimination
error rate, by “fooling” the discriminator network into classifying its output candidates as
real. In this way, it is able to indirectly discover underlying properties of the ground-truth
data distribution.

More specifically, the input of the generator model is a fixed-length random vector, which
can be considered as the seed of the generative process. This vector is typically sampled from
a predefined latent space, which comprises compressed representations of high-level concepts
regarding a specific data distribution (e.g. a multivariate normal distribution). During the
forward pass, the generative network transforms this random noise vector into a meaningful
form of output, which is interpreted as a new sample in the domain of interest. Typically, the
space, from which the randomized input is sampled, has smaller dimensionality in comparison
to the target one.
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The training procedure of the generator is graphically depicted in the diagram of Figure 2.3.5.
Similarly to the previously mentioned case, during this phase, the weight parameters included
in the discriminative network are not updated, since its involvement in the process concerns
only the evaluation of the fake samples, produced by the generator and this mechanism
should be consistent with respect to the generator’s learning process. As explained in former
sections of this analysis, the main objective of a training algorithm is the minimization of
a properly selected cost function, through the adjustment of the weight values contained
in the network structure. However, as in might be seen, in the framework of a Generative
Adversarial Network the generator is not directly associated with its respective loss, since it
is penalized for producing data instances which are identified as fake by the discriminator.
Therefore, this additional network should be included in the backpropagation process. To
this end, in order to properly calculate the impact of generator weights on the corresponding
output, the backpropagation flows back to the generator through the discriminator.

o $-:> o ti] => -$ o t?} $ -

Figure 2.3.5: Block Diagram of Generator [100]

Thus, the training procedure of the generative model involves the following computational
steps:

(1) At first, random noise is sampled from a specified distribution and passed through the
generator neural network, in order to be transformed into realistic output examples.

(2) The generated output features are then fed into the discriminator, which classifies them
as either “fake” or “real”.

(3) Based on the difference between the actual output and the predictions of the discrimina-
tor concerning the labels of the examined samples, the corresponding loss is calculated.

(4) Lastly, the algorithm backpropagates through both the generator and the discriminator
to obtain the gradients, which are used in order to update only the generator’s weight
parameters.

2.3.3 Overall Training

Generally, the overall training of a Generative Adversarial Network proceeds in alternating
periods between the individual learning processes of the Generator and the Discriminator
respectively, which have been presented in detail up above. In practice, it has been proven
that the direct alteration is not effective and can even result in overfitting phenomena on
finite datasets. To this end, Goodfellow et al. [21] introduced a novel learning practice based
on consecutive interchanges between k steps of optimizing the Discriminator D and one step
of optimizing the Generator G. In this way, D is being maintained near its optimal solution,
so long as GG adjusts slowly enough.

Figure 2.3.6 provides a graphical illustration of this learning approach. The black dotted line
represents the ground-truth data distribution py, while the green solid one indicates the Gen-
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Figure 2.3.6: Illustration of GAN learning [21]

erator distribution p,, which emerges from the produced fake candidates. The blue dashed
line corresponds to the decision boundary formatted by the Discriminator’s predictions. The
lower horizontal line is the latent domain from which the random noise z is sampled. The up-
ward arrows demonstrate how the mapping x = G(z) imposes the non-uniform distribution
pgy on transformed samples.

(a)

(b)

(c)

(d)

The depicted adversarial pair approximates a convergence point. The two data dis-
tributions p; and p, are similar, while the Discriminator D is considered a partially
accurate classifier.

For k consecutive steps D is trained to discriminate the real samples from the fake
ones, all produced by the same stable Generator model and in this way converges to
its optimal form D*.

After an update of G, the corresponding distribution p, is shifted towards regions of
the z-domain, which are more likely to be classified as real by D.

After several training steps, the ground-truth and the output distributions ideally co-
incide (pg = py). At this point, G and D cannot be further improved, since D is unable
to differentiate between them, i.e. D(x) = % This is equivalent to randomly predicting
the label that corresponds to each examined sample.

In practice, the convergence point which is depicted in step (d) of Figure 2.3.6 cannot be
explicitly determined or approached, as it constitutes a fleeting, rather than stable, state.
Therefore convergence under the framework of GAN systems still remains an open problem.
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2.4 Autoencoder

An Autoencoder is defined as a type of feedforward Artificial Neural Network used to learn
efficient data encodings for a given system configuration in an unsupervised manner. It was
initially introduced in 1980s by Hinton and the PDP group [101] to address the problem
of “backpropagation without a teacher”, by using the input data as the supervisor of the
learning process; that is, learning to reconstruct an input signal. More recently, autoencoder
systems have led to numerous state-of-the-art results in various challenging tasks, especially
in the field of Data Compression, by producing lower-dimensional representations of the
original input data through a statistical redundancy elimination procedure. Therefore, such
kind of models can tackle the so-called “curse of dimensionality” problem, which arises from
datasets with multiple attributes and hence high-dimensional feature spaces and often leads
to overfitting phenomena. To this end, autoencoders are applied in various domains and
tasks, including facial recognition [102], feature detection [103|, anomaly detection and word
meaning extraction [104, 105].

Reconstructed
Input <o Ideally they are identical. ------------------ > inpu:

x~x

Bottleneck!
Encoder Decoder
X x"
96 fo

An compressed low dimensional
representation of the input.

Figure 2.4.1: Autoencoder architecture [12]

As demonstrated in Figure 2.4.1, an autoencoder system consists of two main structural
components:

e Encoder: As the name suggests, this module transforms the input data into a com-
pressed form, known as code. More specifically, the initial vector is passed through a
series of layers that successively perform dimensionality reduction, resulting in a net-
work “bottleneck”. This hidden layer typically comprises fewer neurons in comparison
with the input and hence constraints the amount of information that can traverse the
full network. In this way, it captures a low-order representation of the input that en-
codes the respective data features into a latent space. This term refers to an embedding
of a set of items or other abstract entities within a generalized manifold, which incor-
porates the notion of similarity between objects in the form of topological proximity.
Thus, the encoder network maps the input data points to their respective encodings in
a consistent manner, retaining at the same time the crucial information attributes.

e Decoder: The decoder network operates as an interpreter of the produced code, as it
“decompresses” this hidden representation into a vector in the original space. In this
manner, it is able to reconstruct the initial input, based on the latent attributes of
its corresponding encoded form. This module typically comprises a set of layer blocks
that successively perform an upsampling process, in order to properly expand the di-
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mensions of the bottleneck’s output. In general, the decoder architecture mirrors the
structure of the respective encoder model, as it usually consists of near-complement
layers to the ones included in the encoder, but in reverse order. A near-complement
layer can be defined as a layer that is used to undo, up to a certain limit, the opera-
tions performed by the original one. For instance, in the case of Convolutional Neural
Networks, a transposed convolutional layer is considered as the near-complement of the
convolutional layer.

It can be easily affirmed that the “bottleneck” constitutes the key attribute of the autoencoder
mechanism, since without its presence the model could easily learn to flawlessly duplicate
the input values to the output, by simply passing them through multiple flat layers of the
same width. Instead, autoencoder systems attempt to approximately reconstruct the original
input approximately, based on the produced code. Therefore, an as much as possible effective
intermediate representation is crucial, as it can facilitate the full decompression process. To
this end, such kind of models are trained and hence optimized under the framework of
the typical BackPropagation algorithm, as presented in section 2.2.2, by minimizing the
reconstruction error, which quantifies in a compact form the differences between the original
input and the generated output. However, there are four hyperparameters involved in the
learning procedure of an autoencoder system, that need to be set before training:

e Code size: It is the most important hyperparameter concerning the tuning of the
autoencoder, as it defines the number of nodes contained in the “bottleneck” layer and
hence the size of the respective latent representation. Apparently, smaller code size
implies higher compression.

e Number of layers: Another significant hyperparameter regarding the autoencoder
architecture is the depth of the encoder and the decoder components respectively. While
a higher depth increases model complexity, a lower depth is faster to process.

e Number of nodes per layer: The number of nodes in each layer defines the cor-
responding weight values that need to be adjusted. Typically, this quantity decreases
along the subsequent layers of the encoder and increases accordingly in the decoder,
due to their symmetry in terms of structure.

e Loss function: The loss function used to model the reconstruction error during the
training process of an autoencoder system depends heavily on the input data type.
More specifically, in case of images, the most frequently employed cost function is the
Mean Squared Error (MSE), which can be computed as follows:

n

MSE= -5 (y — i) (241)

n <
=1

where n denotes the input and output size (number of elements) respectively, ; repre-
sents the i-th scalar value in the output vector and y; indicates the corresponding target
value, i.e the input one. However, if the input values are within the range [0, 1], as in
the MNIST dataset [106], the Binary Cross Entropy loss can be also utilized. Following
the aforementioned mathematical notation, it can be calculated using the underneath
formula:
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n

1 A :
BCE =~ (- logg; + (1 - ) - log (1 - 3)) (2.4.2)

=1

Several variants of Autoencoder systems have been proposed over the last few years, in order
to address defective aspects of the typical mechanism and improve essential model properties,
such as generalizability. Some of the most prevailing types of Autoencoders are graphically
displayed in Figure 2.4.2:

(A) Classic autoencoder mechanism.

(B) In the context of Denoising Autoencoders (DAEs) [107, 108|, the input is partially
corrupted by inserting noise or masking some individual values of the corresponding
vector (depicted in white) in a stochastic manner. The model is trained to recover the
original input.

(C) The Sparse Autoencoder (SAE) [109, 110] explicitly penalizes the use of hidden node
connections (inactivated nodes are indicated in white), in such a way that each layer is
sensitized toward specific attributes of the input data. In this case, a reduction in the
number of nodes at the network hidden layers is not required.

(D) The Variational Autoencoder (VAE) learns the underlying distribution of the latent
space, which can be defined by a mean value 1 and a standard deviation o and then
decodes samples of this distribution in order to recover the original input. It can be
employed for generative modeling tasks [111, 112].
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Figure 2.4.2: Different types of AE systems [113]
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The aim of this chapter is to investigate the various aspects of the problem of Auto-
matic Music Synthesis. In particular, section 3.1 briefly presents different music repre-
sentations utilized under the operating framework of computers. Section 3.2 includes
a general categorization of the distinct tasks into which the aforementioned research
subject can be divided, as well as a detailed analysis of several techniques that can be
applied for experimentation and different architectures and design choices that can be
made. Section 3.3 lists some commonly used datasets in the examined research field
and elaborates on their usefulness. Finally, in section 3.4, we present several metrics
employed for the objective evaluation of the considered models, along with subjective
assessment methods and emphasize on their nuances and importance.

3.1 Music Representations

As mentioned before, music can be represented in the framework of a computational machine
using various storage formats that typically employ different data modalities. In the following
subsections we provide a brief overview of the most frequently used representation forms in

the research field of Automatic Music Synthesis.

3.1.1 MIDI
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l [Milller, FMP, Springer 2015]
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Figure 3.1.1: MIDI file format [114, 115]

As described in [86], MIDI (Musical Instrument Digital Interface) is a technical standard
that represents a communication protocol applied in a wide variety of electronic musical
instruments, computers and related audio devices for playing, editing, and recording music.
As graphically illustrated in Figure 3.1.1, a MIDI file contains elements of 2 distinct types:

o Header chunks:
chunks.

A header chunk describes the file format and the number of track

e Track chunks: Each track chunk corresponds to one single header and includes the
playable notes in the form of MIDI events. Each MIDI event is preceded by a delta-
time, which represents the required number of ticks before its execution. This variable-
length encoded value is predefined in the file header chunk. The MIDI event tokens are
composed of 2 parts: the first 4 bits contain the actual command, while the rest the
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respective MIDI channel. In total, there are 16 channels, 8 commands and 128 notes
represented by a matching between pitches and unique numbers.

3.1.2 MusicXML

MusicXML is an XML-based file format for representing
Western music notation in a symbolic fashion that is con-
sidered readable from both human and machine. Besides — <witen>

<step>E</step>

the typical information provided by the MIDI format, this <alter>-1</alter>

<octave>4</octave>

encoding standard includes also a huge variety of addi-  <piten>

tional music symbols, such as rest (pause), slur (symbol Py
for legato performance), beam (connection among equally "

valued notes), key and time signatures, articulation marks Figure 3.1.2: MusicXML [116]
(specify the length, volume and style of individual notes’

attack) and organization tokens (e.g. repeat signs, da

capo). It is usually employed for the storage of lead sheets. The term lead sheet stands

for a basic form of musical notation that specifies only the essential elements of a song:

L

e melody: typically represented by modern western music symbols.
e [yrics: inline text usually written below the notes.

e harmony: specified with chord signs above the staff.

3.1.3 Pianoroll

The pianoroll representation of a music piece is an
image-like symbolic format inspired by the automatic
piano. In particular, it constitutes a scoresheet-like ma-

: am—a1 trix, where the horizontal axis X represents the increas-
T— - " — ing time and the vertical axis Y the pitch range. Notes
L e e : - are graphically displayed as bars in this grid, with the

Wi mes DT me s B left edge of each bar indicating the “on” time of the cor-

s === responding pitch value and the bar length designating
s . the respective note duration. This is where the name
comes from, since the pattern of note bars, which is
illustrated in Figure 3.1.3, resembles the holes in old
Figure 3.1.3: An example of MIDI paper player-piano rolls that force the musician to play

file in a pianoroll view [117] only the hole-specified notes. In essence, pianoroll can
be considered as a method that enables us to graphically
display data included in the MIDI file format.

3.1.4 Text

ABC notation is a shorthand symbolic format for recording and storing music in plain text.
It was originally developed by Chris Walshaw in the late 1980s for folk music and traditional
fragments in Western Europe and was later extended to support representations of complete
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classical music scores. The basic standard uses the letters a-g, A-G and z to represent the
corresponding notes and rests, along with other signs for the note length, the music key, the
accidentals (sharp, flat), etc. The first 6 lines of a music file in ABC notation constitute the
header, which includes the following metadata:

e X: number of distinct tunes in the file

T: title of the music song

R: thythm! of the song (hornpipe, jig, reel, waltz, polka, etc. )

M: time signature

L: default note length
e K: music key

The header is followed by the main text representing the melody, as shown in Figure 3.1.4.

e E oo
=
=
=

x
teh (3ABA g2 fgleA (3ARA BGGfleA (3AAA g2 fg|lafge d2 gf:
2afge d2 cd :eaag efgf|eaag edBd|eaag efgelafge dgfg:

Figure 3.1.4: ABC notation of the traditional song A Cup of Tea |1]

Another text-based file format for musical information storage is the Humdrum [118]. As
graphically illustrated in Figure 3.1.5, each data stream corresponding to a polyphonic staff
forms an individual column called spine. In the way, the musical time progresses by consecu-
tive rows, since all elements of the same row occur simultaneously during performance. This
spreadsheet-like grid can be augmented with additional columns representing other musical
features, such as harmonic analysis labels in the form of scale degrees.

! ]
**kern **kern **kern **kern **harm
- 4RR a6 ad ig Vh
. . 8ok . .
ARA AR ad Af# Te

4GG 4B 4d 4e ii7b
LY. 8E Ack da v
- 8A . . -
*_ ., . a_ *_

Figure 3.1.5: Example of humdrum data representation [119]

IThis information is mostly used during playback.
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3.1.5 Audio

The audio file format is an encoding standard for storing digital auditory information on
a computer system. The sound data, which represent original musical pieces recorded by
proper electronic devices, are stored in the form of raw bitstream usually embedded in a
suitable container. The utilized bit layout can be compressed in order to reduce the size of
the file. An example of the most frequently used audio file format is graphically illustrated
in Figure 3.1.6.

Subchunk1Size = 16 NumChannels =

ChunkSize = 2084 AudloFon‘nat-1 [PCh) \
chunk descriptor ¥ fmtsubchunk
52 49 46 4657 41 56 45(66 6d 74 20-
W A ¥ E|f m
ByteRate = 88200 BitsPerSample = 16

SampleRate = 22050 ) BlockAlign = 4 Subchunk2Size = 2048

« L data subchunk ¥
22 56 00 00i88 58 01 00x04 00 64 61 74 6100 08 00 00x00 0Q:00 0O
[ —

d a t a

sample 1

T TE B i B D6 e S w0 @ B

k_\,_ff \‘_\/_J* \‘_V_A**l‘_v_,v ?\‘_\,_fr l.._v_,v

sample 2 sample 3 sample 4 sample 5 sample & sample 7

right channel samples left channel samples

Figure 3.1.6: Waveform Audio File Format [120]
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3.2 Tasks and Methods

It is hard to provide a complete taxonomy of the various types of Automatic Music Gener-
ation Systems and their respective tasks, since the research field is vast. Therefore, a more
prevailing categorization is discussed in the following sections.

3.2.1 Generation from Scratch

As the name suggests, Generation from Scratch refers to a family of compositional methods
that computationally approximate the process of creating novel musical content without sub-
jecting to any formulated basis or prior source of musical information regarding the structure
and the form of the generated pieces. Such approaches can be further categorized in accor-
dance with the type of musical texture that is modeled under each generation framework.
In music, the term “texture” encompasses various characteristics of a musical composition,
ranging from melodic and harmonic materials to rhythmic attributes. All these features that
collectively describe the overall quality of the different sounds are usually defined and cor-
respondingly affected by multiple attributes, including the number and type of instruments,
the tempo, the musical genre, the style and so forth. Based on this criterion, three main
classes of generation systems can be distinguished:

Monophonic Music Generation

Monophony is the simplest form of musical texture, since it consists of a single unaccom-
panied melodic line, typically sung by a single singer or played by a single instrumentalist.
The prominent feature of monophonic music, which is considered extremely useful from the
perspective of the computational implementation, is the clear arrangement of the included
notes in a temporal order, with only one sound event at each time slot. A typical example
of a monophonic music score is presented in Figure 3.2.1.

r 4 T
7 n ro— -
{es— T T

i ——
DR d

Figure 3.2.1: Monophonic music piece [121]

A complete chronology of monophonic music generation systems is thoroughly discussed
in [122] and graphically depicted in the timeline diagram of Figure 3.2.2. As it might be
seen, the initial approach towards the automation of monophonic synthesis was attempted
by Bretan et al. [123] in 2016 via the introduction of a generative method based on unit
selection. Their proposed system architecture comprises a deep autoencoder module that
is applied to create a finite-size unit library, with the term unit corresponding to melodic
phrases of variable bar length, and a generation module incorporating a Deep Structured
Semantic Model (DSSM) with an LSTM in order to learn to predict the next unit for the
given input. This system has been proven capable of producing novel monophonic melodies
that do not conform to a provided harmonic context, but sometimes the lack of good units
may lead to poor performance.
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Figure 3.2.2: Chronology of monophonic music generation [122]

The subsequent works emphasize on the use of Recurrent Neural Networks for the automatic
creation of novel monophonic musical content, since such systems are designed to process
sequential data and capture temporal dependencies, as discussed in section 2.2.4 of chapter
2. Sturm et al. [124] developed generative LSTM models using approximately 23.000 mono-
phonic music transcriptions stored in textual format. The selection of this data type is mainly
based on the homogeneity it provides with respect to the stylistic conventions of the examined
music genres (Celtic, Morris, etc.). They built a char-rnn, which is a character-based system
modeling the joint probabilities for each textual character given the previous 50 characters
and a folk-rnn, which is a token-based system modeling the joint probability of each token
given all previous tokens in the current transcription. In this way, they were able to produce,
at either a character or a token level, new transcriptions similar to the ones contained in
the training material. Similarly, Hadjeres et al. [125] proposed a novel architecture called
Anticipation-RNN, which enables the enforcement of user-defined positional constraints. The
utilized their system for the generation of melodies in the style of the soprano parts of the
J.S. Bach chorale harmonizations.

It can be easily observed that, besides RNNs, Variational AutoEncoders are also applied
in the field of monophonic music synthesis. Roberts et al. [126] presented MusicVAE, a
Recurrent Variational AutoEncoder for modeling monophonic sequences of musical notes
with long-term structure. This architecture incorporates a novel hierarchical RNN as Decoder
module, which initially segments the input sequence into non-overlapping parts and produces
embeddings for each one of them. Afterwards, it utilizes the extracted latent representations
in order to autoregressively generate each subsequence independently, addressing in this way
the “posterior collapse” problem in recurrent VAEs, where the model tends to ignore the
latent space.

Generative Adversarial Networks are also included within the recent approaches in mono-
phonic music generation. Yu et al. [127]| developed SeqGAN, a system that combines GANs
with the Reinforcement Learning framework for the generation of music sequences composed
of discrete tokens. In particular, the state represents the musical content generated so far,
while the action corresponds to the selection of the next note to be produced. The Discrimi-
nator evaluates the complete sequence and the obtained reward signal is transmitted back to
the intermediate state-action steps using Monte Carlo search. SeqGAN constitutes the first
attempt towards the extension of GAN applications in problems dealing with discrete data.
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It also exhibits excellent performance on generating sequences of other input modalities, such
as poems and speech language.

Polyphonic Music Generation

Polyphony is a more complex type of musical texture as compared
to monophony, which has been explicitly presented up above, since 5 J
it typically involves multiple melodic lines of independent structure r

|
that are combined to flow and unfold in a coordinated manner, as — i
graphically demonstrated in Figure 3.2.3. This formulation of musi- < ﬁ? F,;Q.
cal entities implies dependencies along more than one axes, includ- =22 :l__-::%‘ =
ing sequential patterns across time and harmonic intervals occurring S R |
between notes that are played simultaneously. Therefore, automat- Figure 3.2.3:
ically creating novel polyphonic music is undoubtedly a challenging Polyphonic music
problem in terms of computational implementation, since it requires piece [128]

a mechanism capable of capturing and modeling all the aforemen-
tioned time-related and harmonic features.

A complete chronology of polyphonic music generation systems is extensively presented in
[122] and graphically summarized in the timeline diagram of Figure 3.2.4.

VRAE C-RNN-GAN DeepBach Deep) Music Transformer PianoTree VAE

2015 2016 2018 2018 2019 2020
VAE ‘ not model ‘ ‘
proposed Continuous from left to I : - polyphenic
firstly sequence data right style ong-term structure counterpoint
Polyphony
first work in translation- e Y - learn high-level features
polyphony invariance ¥ L by first modeling low-
‘ ‘ ‘ ‘ level attributes
RNN-RBM TP-LSTM-NADE, BachProp MuseNet Music FaderNets
2012 BALSTM, 2017 2018 2019 2020

RNN Encoder-decoder GAN Transformer Others

Figure 3.2.4: Chronology of polyphonic music generation [122]

The first comprehensive approach in the area of polyphony is the study of Boulanger-
Lewandowski et al. [129]. They developed a probabilistic framework for the modeling of
polyphonic sequences in the generalised pianoroll representation format with several appli-
cations in music transcription tasks. Their proposed system combines the structure of Re-
stricted Boltzmann Machines (RBM) used to learn composite distributions over the so-called
simultaneities at each timestep, i.e. the notes performed simultaneously formatting harmonic
patterns, along with a typical Recurrent Neural Network capable of capturing the various
temporal dependencies. They demonstrated that their innovative architecture outperforms
popular methods in the field of Music Information Retrieval.

Classical music is probably the most characteristic example of polyphony and therefore con-
stitutes a valuable source of training data for multiple studies in this research area. Hadjeres
et al. [130] focused on the 4-part chorale harmonizations by Johann Sebastian Bach and
introduced DeepBach, a dependency system for automatic generation of polyphonic music
in the style of Bach. Their core architecture is established on a non-sequential approach of
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music and consists of deep Recurrent Neural Networks that model the neighboring context
of each note. The generation is performed via a pseudo-Gibbs sampling procedure, which
also enables the enforcement of user-defined positional constraints, such as notes, rhythms
or cadences, through an interactive graphical interface. The produced samples are quite
convincing even under the assessment of professional musicians and to a large extent co-
herent without significant levels of plagiarism. Besides chorale-like pieces, DeepBach is also
applicable in other polyphonic types.

In the context of RNN-based approaches towards polyphony we can also distinguish the
study of Mao et al. [131]. They introduced DeepJ, an end-to-end generative framework for
automatic creation of polyphonic music based on a predefined mixture of composer styles.
Their proposed system leverages the Biaxial LSTM design [132], which models each note as
a probability conditioned on the musical content of all the previous timesteps and also the
notes within the current time step that have already been generated. They incorporated
into this structure style and volume (pitch dynamics) embeddings in order to be able to
learn and enforce specific compositional fashions in the generation process. The produced
results indicated that DeepJ indeed provides control over the artistic style of the generated
polyphonic music but cannot effectively address the problem of long-term structure.

In an attempt to tackle this limitation and handle long-range dependencies in polyphonic
musical compositions, Huang et al. [5] proposed Music Transformer, a sequence model with
a modified relative attention mechanism capable of capturing the self-reference in music that
occurs on multiple timescales, including repeated motifs, phrases or even entire sections.
Their developed system can be applied for generation of minute-long pieces in a token-
based symbolic format and also be extended in an accompaniment generation framework
via a sequence-to-sequence setup conditioned on melodies. The results derived from the
evaluation demonstrated that their improved Transformer module can effectively create long
musical sequences with coherent structure.

Deep unsupervised models such as Variational AutoEncoders are also applied in the research
field of polyphony. One of the recent approaches is the work of Wang et al. [133|. They
introduced PianoTree VAE, a novel model structured upon the VAE framework for learning
semantically meaningful latent representations of polyphonic musical segments. The most
intriguing characteristic of this system is that it employs a tree-structured musical syntax
in order to reflect the hierarchy of the various musical entities within a composition. More
specifically, the overall architecture can be regarded as a tree, where the nodes correspond to
embeddings of concepts such as a score, an independent note event or a grouping formulation
of simultaneous notes. The edges are modeled by recurrent networks that can either perform
an encoding of the children into their parent or a decoding of a parent to its children. The
conducted experiments indicated that PianoTree VAE can adequately capture the latent
space of the musical data, resulting in decent reconstructions and therefore can be utilized
for downstream generation of novel polyphonic content.

Multi-instrumental Music Generation

As the name suggests, multi-track music consists of several different instruments that
collectively unfold over time in a cooperative manner. Each instrument performs its own
musical part in the overall composition and is characterized by individual dynamics in terms
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of harmonics and orchestration features. Multi-track music can be placed in the spectrum
of polyphony, however in this case the interaction between the included tracks, which can
be either monophonic or even polyphonic, forms an additional dimension of polyphonicity as
compared to the typical texture establishment.

A complete chronology of multi-track music generation systems is extensively presented in
[122| and graphically summarized in the timeline diagram of Figure 3.2.5.

MuseGAN  MuseGAN with BNs MNGANs  BandNet MMM MusAE
2018 2018 2018 2019 2020 2020
| | ‘ new first music
first multi- generate binary pianorolls - musicality & Beatles” representa  adversarial

track model directly with BNs novelty T;\e tion autoencoder
extract temporal WAE-based & new

. . ; transfer 3 "
song from nt arbitrary instruments & spatial features learning pianoroll-like

‘ | simultalneously ‘ represelmalion

song from pi  MusicVAE (extension) DMB-GAN LakhNES CONLON
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RNN Encoder-decoder GAN Transformer

Figure 3.2.5: Chronology of multi-instrumental music generation [122]

The first comprehensive attempt for automatic creation of novel multi-track musical pieces
was made by Chu et al. [134] in 2017. Inspired by the Song from 7 [135], a piano video
on YouTube where the sequence of digits of the mathematical constant 7 is utilized for
creation of music based on specified harmonic conversion rules, they introduced a framework
for pop music generation that leverages the idea of gradually transforming randomness into
acoustically pleasant sounds. To this end, they built a hierarchical Recurrent Neural Network
conditioned on a specific music scale, where the bottom layers generate the melody, while
the higher ones produce accompanying effects, such as chords and drums. They conducted
several qualitative studies that demonstrated the validity of their proposed model and also
expanded its applications towards neural dancing & karaoke and neural story singing.

Under the framework of GANSs, the most popular model for multi-track polyphonic music
generation is MuseGAN? [2], which has been proposed by Dong et al. in 2018 and laid the
foundations for other subsequent related approaches in the field [19, 136]. The architecture of
MuseGAN comprises three different model variants reflecting distinct human compositional
practices. The overall implementation is structured upon a convolutional mechanism, which
has been proven efficient at detecting local, translation-invariant patterns and hence music is
represented in the pianoroll image-like symbolic format. The system is trained on a dataset
containing over 100.000 bars of rock music and applied to generate samples of five tracks:
bass, drums, guitar, piano and strings. The results highlighted the harmonic and rhyth-
mic structure of the produced music, which nevertheless is still behind the level of human
musicians.

In an effort to extend the Transformer architectures, that have recently presented particularly
promising results in piano score generation [5], to a multi-instrumental setting, Donahue et al.
[137] introduced LakhNES, a generative high-dimensional language model capable of captur-
ing repeated patterns in long music sequences of multiple tracks. Their proposed methodology

2Since the MuseGAN model is the one that we base our experimental setup upon, we will present it in
more detail in chapter 4.
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is structured upon a pre-training mechanism in order to address the data availability problem
in the multi-track domain. More-specifically, they initially trained their model using a large
collection of heterogeneous music and then fine-tuned it in a smaller dataset containing four-
instrument scores from an early video game sound synthesis chip called NES. The produced
results indicated that this transfer learning approach improves the model performance from
both quantitative and qualitative aspects.

In the context of modeling an efficient latent space for symbolic multi-track music, Valenti et
al. [138] introduced MusAE, the first Music Adversarial Autoencoder. The major advantage
of Adversarial Autoencoders compared to the standard architecture is their ability to impose
a specific prior distribution on the latent variables via adversarial regularization in the form
of an additional discriminative task [139]. MusAE leverages this mechanism for more con-
trollable generation via the injection of high-level information concerning musical genre and
style into the latent space. It can also be applied for reconstruction of musical phrases with
high accuracy and creation of realistic interpolations between musical sequences, by properly
modifying the latent attributes of the different tracks.

3.2.2 Music Arrangement

Music Arrangement constitutes a different approach towards the automatic creation of novel
musical content established on methods for reconstructing and reconceptualizing musical
compositions. This process typically involves alterations and modifications of the original
pieces in terms of harmony, orchestration, melodic material or chord progression, based on
specific reference information of any structure. Following the categorization that is exten-
sively discussed in [117], Music Arrangement can refer to three distinct conditional generation
tasks, which are schematically illustrated in Figure 3.2.6 for the piano case and will be thor-
oughly examined in the subsequent sections. As can be observed, Arrangement acts as a
bridge between the three fundamental forms of music representation: the full score, the au-
dio and the lead sheet, which specifies only the essential elements of a musical composition
(melody, harmony, lyrics). The aforementioned modal formats are generally employed as
reference conditions for each corresponding family of arrangement problems.

(3) Score

@ Accompaniment )
Generation Reduction

Lead \
Sheet

Figure 3.2.6: Illustration of the role of piano arrangement in the three forms of music
composition [117]
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Accompaniment Generation

In music the term accompaniment refers to the musical part that supports rhythmically
and/or harmonically the main theme of a musical composition, which can be either a song
or an instrumental piece. There is a wide variety of accompaniment schemes depending on
the music genre and the overall configuration of included instruments or vocals. From the
human perspective, the creation of accompaniment is typically established on a primary idea
for a main melody that is gradually enriched with chords or other supplemental patterns and
figures. Therefore, the automation of this process under the framework of a computational
machine inevitably involves a source of prior information on which the accompaniment gen-
eration is conditioned. In the general case, this musical information is provided to the model
in the form of a lead sheet, as depicted in Figure 3.2.6.

Throughout the years numerous studies have been published in an attempt to address the
particularly challenging problem of Automatic Accompaniment Generation. It may be cer-
tain that the first comprehensive approach has been introduced by Simon et al. [140] in
2008. They proposed MySong, an interactive framework for automatic harmonization of
vocal melodies designed to be intuitive to users who lack musical experience. At its core,
MySong is structured upon a Hidden Markov Model® that learns the statistics of the chord
transitions presented in the training database along with the association between the notes
in the conditional melodic lines and the observed chord types. The interface of MySong ap-
plication leverages the probabilistic data derived from this process in order to select the best
fitting chord progression for novel melodies that are fed as input to the system from users by
just singing into a microphone. Since there are more than one matching accompaniments for
a given melody, MySong allows users to adjust and modify the proposed chords using param-
eters representing easy perceivable musical properties. The evaluation results demonstrated
the quality of the produced accompaniments and also highlighted the usability of the system
even by non-musicians.
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Figure 3.2.7: System diagram of the pop-song automation framework [141]

3SHMMs constitute a class of graphical probabilistic models used to describe the relation and evolution of
observable events depending on set of hidden unknown variables that cannot be directly inspected.
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In an attempt to unify tasks such as the lead melody generation and the accompaniment
arrangement that are mainly treated as separate, Wang et al. [141]| developed a pop-song
automation framework, which is graphically illustrated in Figure 3.2.7. As can be seen, their
proposed system consists of three different models represented by the corresponding coloured
arrows: the harmony alternation model, the melody generation model and the melody in-
tegration model. Initially, the harmony alteration model modifies properly the input chord
progression with respect to a specified music style. The altered chord sequence is then fed
into the melody generation model that produces the lead melody along with various accom-
paniment textures in the form of additional melodic lines or patterns via seasonal ARMA
(AutoRegressive Moving Average) processes [142|, which are tools for the statistical modeling
of time series. Finally, the melody integration model combines the produced melodies into
the final accompaniment scheme. The experimental results demonstrated that the generated
melodies are characterized by desirable properties, such as musicality and overall structure.

In the context of online accompaniment generation,

Jiang et al. [143| introduced RL-Duet, a novel model .

that supports interactive real-time generation of musi- Human Part )? _\

cal content in a human-machine duet setup. Since this . @Q’ AR AN S TR T
framework inevitably requires the computer’s responseto ~ , ., e
human input, the examined problem is formulated upon v é’u’ J333InA ];LL? ro :

a Reinforcement Learning basis. More specifically, the Machine Part (RL-Duet) (53 /‘
generation agent learns a policy for performing actions, \\35'

i.e. producing musical notes, based on the previously
generated context, which can be regarded as the state of
the algorithm and includes the long-term temporal struc-
ture, as well as the inter-part harmonization. However, the key feature of this method lies
in the employed reward system, which isn’t established on hand-crafted compositional rules
but instead is derived from the training data. The experiments have shown that RL-Duet is
able to produce diverse machine counterparts of high quality, harmony and coherence.

Figure 3.2.8: RL-Duet [143]

Another pop music accompaniment generation framework named PopMAG has been intro-
duced by Ren et al. in [144]. This approach aims at addressing the challenges of modeling the
harmonic structure and capturing the long-term dependencies in accompaniments consisting
of multiple distinct tracks. For this purpose the authors developed a novel symbolic repre-
sentation format called Multi-track MIDI. MuMIDI encodes multi-track MIDI events into a
single sequence and also integrates different note attributes, such as pitch, velocity and du-
ration, into one step, as opposed to the standard formulation, in order to confine the overall
sequence length. The system architecture is established on an enhanced sequence-to-sequence
model that employs a transformer-based structure for both encoder and decoder components
and operates in an autoregressive manner in order to predict the accompaniment tokens.
The experimental analysis demonstrated that PopMAG outperforms, both objectively and
subjectively, other state-of-the-art models.

Transcription and Reorchestration

In music the term transcription refers to the practice of recording auditory pieces into a
written form of symbolic music notation. As discussed in [145], this process from the human
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perspective is intrinsically interrelated with higher mental abilities of the brain, such as
the perception of the various sounds, the identification of the included instruments, the
estimation of musical attributes (pitch, rhythm, onset, offset, etc. ) and the analysis of
expressive timing and dynamics. To this end, the design of algorithms that implement the
autonomous conversion of acoustic signals into music sheets is considered one of the most
challenging tasks in the field. It is worth mentioning that the majority of transcription
methods typically involve a re-orchestration of the input music audio. More specifically,
music parts of the original work are assigned or restructured in order to be performed by
different instruments than the ones forming the initial piece. In this way, the musical ideas
incorporated into the original composition are preserved in the produced score, but expressed
under a diverse musical arrangement.

Andio analysis
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Figure 3.2.9: Overview of Song2Quartet [146|

One of the most popular approaches in Automatic Music Transcription is the work of Percival
et al. [146]. They introduced Song2Quartet, a generative system that produces string quar-
tet cover versions of popular songs. An overview of the proposed methodology is graphically
illustrated in the diagram of Figure 3.2.9. As can be seen, Song2Quartet includes an audio
analysis module, which is responsible for detecting recognizable musical features of the target
pop song, such as themes, rhythms and chord voicings, via time-frequency spectral processing
and a score analysis module, which captures characteristics of the string quartet style from
a symbolic corpus of classical music. These two modules are combined under a probabilistic
formulation established on the framework of dynamic programming, which results in the con-
struction of a statistical network of possible musical notes for each timestep. Consequently,
the musical score of the cover version is generated by detecting the optimal path through this
network. The produced results confirm the effectiveness of Song2Quartet over the creation
of pieces that follow the conventions of classical string quartet music, retaining at the same
time the prevailing features of the target song.

Score Reduction

In music, the term reduction refers to an arrangement of an existing score or composition
in general that involves modifications of the structural information in such a way that the
overall musical complexity is reduced. For instance, the number of the included parts may
be altered or the rhythmical attributes may be simplified. It also encompasses cases where
musical pieces that are originally intended for multiple instruments are re-arranged to be
performed by smaller musical ensembles or even a single instrument.

Piano reduction from ensemble scores has been traditionally one of the most widely inves-
tigated fields of Music Arrangement, forming the basis for more advanced techniques and
approaches in the research area. Nakamura and Sagayama [147| formulated piano reduc-
tion as an optimization problem of consistency between the original and the produced piano
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score under constraints on the degree of performance difficulty. More specifically, in or-
der to be able to measure quantitatively the performance difficulty they initially applied
a stochastic HMM-based model established on piano fingering principles for each hand.
This model provides a statistical interpretation of the natural-
¢ ness characterizing each fingering, by assuming that every out-
Y put probability depends on the performed pitches only through
‘ their geometrical positions on the keyboard, which is repre-
sented as a two-dimensional lattice and graphically depicted
‘ in Figure 3.2.10. Their proposed piano reduction algorithm is
" Ly based on a combination of the two-hand fingering models along
with a stochastic method that involves probabilistic measures of
how notes in ensemble music scores are likely to be edited. The
experimental results confirmed the effectiveness of their system
over the creation of piano reductions with controllable perfor-
mance difficulty in terms of note and chord density, tempo and
rhythm. They also discussed a possible extension to other forms
of music arrangement, by replacing the fingering model with an
equivalent model of the target instrument and adapting properly the editing probabilities.

Figure 3.2.10:
Representation of position
on the piano keyboard with

a two-dimensional lattice
[147]

Another approach towards the computational imple-

mentation of automatic piano reduction under the fus |

framework of controllable performance difficulty is Flielfog & |  Fmeeringmotion
presented in [148]. Nakamura and Yoshii leveraged F GlimmiesAAREL
the ideas described in [147] and introduced a sta- m

tistical modeling method established on the concept III II

of iterative optimization. Following similar strategy, — 7/

the developed quantitative measures of the playability

level with respect to the performance error rate, using Figure 3.2.11: Piano-score model
statistical generative models for piano scores. For the incorporating fingering motion [148|
probabilistic description of the musical fidelity degree,

they integrated a prior piano-score module along with one representing how ensemble scores
are likely to be edited. The overall system produces the reduced scores via an iterative infer-
ence procedure. The conducted experiments demonstrated that this iterative optimization
approach improves the controllability over the performance difficulty and the corresponding
musical fidelity to a large extent, as compared to the method utilized in [147|. Moreover,
the results of both subjective and objective evaluation indicated that the incorporation of
the sequential dependence of pitches and the fingering motion (Figure 3.2.11) in the piano-

score model has a beneficial impact on the quality and naturalness of the produced scores,
especially in high-difficulty cases.
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3.2.3 Music Style Transfer

The term style transfer has been originally introduced in the field of Artificial Intelligence
by Gatys et al. [149] in an attempt to computationally process and handle the artistic con-
tent of natural images. More specifically, this technique refers to capturing explicit features
of an image in the context of stylistic information and applying them to a different image.
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The particularly promising results of this method in computer vision tasks have inspired the
interest of the research community for experimentation in the music domain. Equivalently,
music style transfer is defined as a practice for automatic generation of novel human-like
music established on the disentanglement and the reattachment of the musical content and
the musical style of different pieces. More specifically, in the general case, a style encoding
is initially separated from the latent representation of a song and then inserted into a suit-
able generation framework that retains the necessary information about the target musical
content. As discussed in [150], the musical style isn’t a well-defined concept from a scientific
point of view, as it encompasses multiple levels of attributes, such as the historic period,
the composer, the performance characteristics and the involved emotions, the music genre or
other texture elements. According to the analysis in [122], a more prevailing categorization of
the various musical style transfer methods that employ different interpretations of the term
is the following:

e Score Style Transfer: In the context of music scores, the style generally refers to
explicit compositional characteristics intrinsically interrelated with the music genre,
such as the scale type, the tonal motifs, the chord progressions [151] or the rhythmic
attributes [152]. There is also a class of techniques for creation of novel stylistic formats
in the symbolic domain based on fusion processes [153].

e Audio Style Transfer: In the context of auditory representations, the music style
involves sound features, such as timbre, i.e. the tone quality of notes performed by
different instruments [154] and audio texture, which refers to the overall temporal
homogeneity of the acoustic events [155, 156].

e Singing Style Transfer: Singing is a process that integrates music content along with
textural information in a particularly expressive fashion. Singing style transfer includes
Singing Voice Conversion (SVC) methods, where the singer’s timbre is properly altered
with respect to a specified target without affecting the linguistic context [157| and also
Speech-to-Sing (STS) approaches, which are established on the conversion of speech
into singing voice [158].

e Composition Style Transfer: As discussed in [150], composition style transfer in-
volves modifying attributes of a musical piece in a meaningful way, retaining at the
same time identifiable characteristics, such as melodic patterns and underlying har-
monic elements [159, 160].

3.2.4 Music Completion/Inpainting

Another form of automatic creation of novel musical content under fitting constraints is the
so-called Music Completion or Inpainting. This generation practice refers to filling the missing
or lost information in a piece of music. In contrast to previous approaches in the field that
implement the generation process in a sequential manner, this method embraces the iterative
and non-serial standards of human music creation and leverages both past and future musical
context in order to produce intermediate segments and phrases. In this way, the generation
procedure is extended to a more interactive and collaborative framework between human
and machine, allowing users to adjust specific parts of the composition according to their
personal preferences or subjective criteria. According to the analysis in [122], the various
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musical inpainting methods can be categorized as follows:

e Score Inpainting: As described in [161], within the framework of score generation the
inpainting process is formulated as the modeling task of creating a musical fragment C;,
typically composed of a small number of bars, which can connect a past musical context
C, and a future musical context Cy in a musically meaningful and consistent manner
(Figure 3.2.12). The developed score inpainting systems are generally based on an
interactive music generation perspective, enabling users to edit the produced samples
according to their personal ideas and acquire novel machine-generated suggestions [161,

162, 163].
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Figure 3.2.12: Musical Score Inpainting [161]

e Audio Inpainting: Audio inpainting refers to the restoration of lost or missing sound
information via processing techniques, such as interpolation, extrapolation and signal
reconstruction, applied in the waveform that corresponds to the examined auditory con-
tent or other sound representation formats, as graphically illustrated in Figure 3.2.13.
There are systems designed to accurately recover musical and instrumental samples of
short damage in the range of 10ms [164], as well as models that attempt to tackle the
challenging problem of long corruptions [165]. In this case, the complete restoration is
considered unrealistic and therefore the inpainting algorithms typically introduce new
auditory information semantically compatible with the surrounding musical context.

2 o 2
time (s)

Figure 3.2.13: Audio Inpainting [165]
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3.3 Datasets

In the computer music community and especially the field of generating modeling, the dataset,
i.e the collection of data instances used to enable a computational machine to produce novel
musical content in an autonomous manner, plays undoubtedly a crucial role in the formulation
of the whole learning mechanism. The trade-off between the number of included samples
and the degree of consistency among them constitutes a major issue when developing deep
learning algorithms. On the one hand, if the utilized dataset is pretty heterogeneous, a good
generative model should be able to distinguish different subcategories and hence generalize
well. On the other hand, if there only subtle differences between the contained classes, then
it is significant to examine if the so-called “average” model can lead to musically interesting
results.

The selection of a suitable dataset is also closely related to the implemented generation task
and more specifically the form of music representation under the framework of a computer,
which, as mentioned before, may include various data modalities. In the context of our
analysis, we follow the work of Ji, Luo and Yang [122|, which attempts to categorize the
various datasets that are commonly used in different studies and approaches in the research
area of Automatic Music Generation from the perspective of the employed music storage
format. A summary of the aforementioned is graphically presented in Table 3.1 along with
supplementary information at the end of this section.

3.3.1 MIDI

One of the most popular datasets in the field of symbolic music synthesis [129, 163] is struc-
tured upon the compositions of J.S.Bach. The so-called JSB Chorus [166] is an entire corpus
of 402 four-part harmonized chorales for soprano, alto, tenor and bass, which can be directly
obtained via the Python package of the Music21 [167] toolkit used for analyzing, searching
and converting music in symbolic format. However, this dataset is significantly small and
also lacks expressive information. In an attempt to tackle this limitation, Ferreira et al.
[168] introduced VGMIDI, a novel dataset consisting of 823 MIDI piano pieces derived from
video game soundtracks. The duration of the included samples ranges from 26 seconds to 3
minutes. A small proportion of the contained pieces (around 95 MIDI files) are annotated by
30 human subjects according to Circumplex (valence-arousal) model of emotion and hence
are accompanied by a sentiment label.

One of the largest symbolic music corpora including 176.581 unique MIDI files is the Lakh
MIDI Dataset or LMD for short, which has been created by Colin Raffel [16]. This dataset
provides unlimited polyphonic and expressive attributes and contains various genres, instru-
ments and time periods. It incorporates the following:

o LMD-full: The full collection of 176.581 MIDI files, without duplicates. Each file is
named according to its corresponding MD5 checksum.

o LMD-matched: A subset of 45.129 files that have been matched with entries in the
Million Song Dataset (MSD) [17].

o LMD-aligned: All files from the LMD-matched that are aligned to the 7digital preview
100




3.3. Datasets

MP3s in the MSD.

The Projective Orchestral Database (POD) emerged from the study of Crestel et al. [169] over
the musical correlation between piano scores and their respective orchestral arrangements.
The authors developed a novel method for automatic alignment between piano and orchestral
versions, an example of which is graphically illustrated in Figure 3.3.1 and also introduced
the corresponding task of automatic orchestration of piano scores. This process resulted in
a novel symbolic database containing 392 MIDI files.
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Figure 3.3.1: Projective orchestration of the first 3 bars of Modest Mussorgsky’s piano piece
Pictures at an Ezhibition by Maurice Ravel [169]

In the research area of performance generation over polyphonic music the e-Piano Competi-
tion Dataset [170] can be distinguished, as it constitutes the largest public collection of solo
performances by professional pianists in MIDI file format, including compositions of Chopin
and Liszt, as well as some Mozart sonatas too. This dataset provides enhanced control of
timing and performance dynamics, along with high-quality expressive attributes, but is does
not contain the corresponding music scores of the included pieces.

Following similar concept, ByteDance has recently released GiantMIDI-Piano [171], a sig-
nificantly large collection of classical pieces for piano in MIDI file format, including 10.854
music works of 2.784 different composers. The dataset has been formed via the utilization
of an open-source piano transcription system of high resolution [172], capable of converting
audio files in MIDI format. The produced MIDI files incorporate performance information,
such as pedal events and dynamics elements.

3.3.2 MusicXML

Theorytab Dataset (TTD) [173] is the largest publicly accessible collection of lead sheet frag-
ments stored in XML format, containing around 16K unique musical pieces. This corpus
has been collaboratively created by users of the online music forum TheoryTab via upload-
ing snippets of popular songs and voluntarily annotating them with structural (e.g. Intro,
Verse, Chorus) and also genre labels. The aforementioned forum is hosted by Hooktheory,
a company that builds music software and provides interactive learning material in order to
help musicians to gain further insights into the process of synthesis.
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Yeh et al. [174] leveraged TheoryTab and collected a new set of samples, called Hooktheory
Lead Sheet Dataset or HLSD for short [175]. This corpus comprises 11.329 lead sheets only
in 4/4 time signature. Each segment consists of high-quality human-transcribed melodies
along with their corresponding chord progressions, which are denoted by two different types
of symbols: literals (e.g. Gmaj7) and scale degrees with respect to the given key (e.g. VI;),
including also inversions if they are applicable and other chord extensions.

Another lead sheet dataset with applications in chord progression generation tasks [176] is
derived from the Wikifonia database, a public repository of samples in MusicXML format
that terminated its service in 2013. However, a subset of the provided data that contains
5.533 western lead sheets of varying genres, such as rock, pop, country, jazz, folk, R&B,
children, etc., has been retained.

An additional source of processable music scores that are transcribed voluntarily by the
community users and can be exported in MusicXML format is the web platform MuseScore.
Jeong et al. [177] used this online database in order to collect the scores that correspond to
the recordings of Yamaha e-piano junior competitions, resulting in a total of 26 pieces by 16
COmposers.

3.3.3 Pianoroll

Only a few datasets are stored in the pianoroll format, since it is particularly easy to convert
pianorolls into MIDI files and vice versa through the open-source Python package Pypianoroll
that has been introduced by Dong, Hsiao and Yang [178] for handling such symbolic repre-
sentations. One of them is the Lakh Pianoroll Dataset or LPD for short, a large collection of
174.154 multi-track pianorolls derived from the Lakh MIDI Dataset [16] and utilized during
the training process of the MuseGAN system [2]. More specifically, the authors employed
the LMD-matched version, which is presented up above, and applied specific preprocessing
operations in order to acquire pianorolls of the desirable configuration in terms of music
attributes.

3.3.4 Text

The Nottingham Music Database (NMD) [179] is a collection of 1200 British and American
folk songs stored in a special text format. Using a specific QBasic program called NMD2ABC
and some Perl scripts, a significantly large proportion of the included pieces have been trans-
lated into ABC notation. The created dataset has been recently edited by Seymour Shlien,
who corrected a few problems in terms of restoring missing beats. Since the songs consist
of simple melodic lines accompanied by chord progressions, the start-up company Jukedeck
performed a cleaning processing of the ABC version of the database by decoupling the melody
and the chord part for each file [180]. Another free online dataset focusing on traditional
music is the ABC tune book of Henrik Norbeck [181], which consists of more than 2.800
music scores and lyrics of Irish and Swedish songs in ABC format.

As regards the Humdrum data format, it is worth mentioning the KernScores online library,
which has been developed in order to organize and store music scores derived from various
sound sources following humdrum notation and contains more than 7 million notes in 108.703
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files. This website additionally provides direct conversion into MIDI format and PDF files
of music scores in case of copyright-free scanning. Cherla et al. [182] employed for the
evaluation of their proposed model the Essen Folksong Collection from KernScores library,
which consists of melodies and chorales from 7 distinct traditions.

3.3.5 Audio

The NSynth dataset is a large-scale and high-quality corpus consisting of 305.979 4-second
monophonic audio snippets of musical tones played by 1.006 different instruments. It has
been introduced by Engel et al. [183] for the training of their proposed audio synthesis model,
which is based on the idea of music factorization into individual note entities. Each musical
note corresponds to a unique pitch, timbre (tone color) and envelope (ADSR). Samples for
every included instrument have been generated with sampling rate of 16kHz using all pitches
(21-108) and 5 distinct velocities (25, 50, 75, 100, 127) of the standard MIDI piano. Each
snippet is accompanied by 3 additional metadata attributes, derived from human assessment
and heuristic algorithms:

e Source: The sound generation practice for the musical tone (acoustic, electronic, syn-
thetic).

e Family: The class of the employed instrument.
e (Qualities: Sonic qualities of the note, depending upon its corresponding waveform.

One of the largest publicly accessible datasets in auditory format with several applications
in the field of Music Information Retrieval (MIR) is the Free Music Archive or FMA for
short [184]. This corpus contains 917GB of audio files arranged in a hierarchical taxonomy of
161 genres, including 106.574 pieces from 16.341 artists and 14.854 albums. Each sample is
accompanied by precomputed features, along with track- and user-level metadata, tags and
artist biographies. The following subsets are also available, as they extend the utilization of
FMA in cases of low computational resources:

e Full: the complete dataset as presented above.

e Large: the full dataset with audio trimmed to 30-second clips extracted from the middle
of the tracks.

e Medium: the collection of 25.000 30-second track clips annotated with a single genre
label and sampled in accordance with the completeness of their metadata.

e Small: the collection of the top 1.000 30-second clips from the 8 most popular genres
of the medium set.

Another public but also significantly smaller dataset (around an order of magnitude as com-
pared to NSynth) is the Minst, which can be considered equivalent to the MNIST (primary
dataset in Computer Vision) in the field of audio processing. This corpus incorporates 4
disparate solo instrument collections (University of lowa-MIS, Philharmonia, RWC, Good-
sounds), resulting in a total of 50.912 notes from 12 different instruments.

The most popular collection of audio recordings in the field of signing voice research with
applications to Speech-to-Singing (STS) tasks is the so-called NUS Sung and Spoken Lyrics
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Corpus (NUS-48E corpus) [185]. This dataset contains 115 minutes of singing data and
54 minutes of speech data corresponding to 48 (20 unique) English songs performed by 12
subjects (6 males and 6 females) in various sound and accent types. It also provides a
complete set of transcriptions and duration annotations at the phone level.

3.3.6 Multimodality

Another family of music datasets employ multi-modal information derived from different
sources, such as scores, lyrics, audio files, etc. in order to provide a more complete and general
representation of the included data. One of them is the MAESTRO dataset [186], which
consists of 1.282 real virtuosic piano performances stored in MIDI and audio formats. The
contained musical pieces (approximately 430) are derived from the 9-year International Piano
e-Competition and are mainly of classical genre, including composers from the 17" to early
20" century. Each pair of audio and MIDI data is annotated with additional information,
such as the composer, the title and the year of performance. The achieved alignment degree
between the two modalities is ~ 3 ms.

In the research field of expressive drum modeling the lack of proper training corpora in terms
of sufficient data of varying genres has led to the creation of a novel multi-modal dataset
called GMD (Groove MIDI Dataset) [187]. This corpus consists of 22.000 bars of tempo-
aligned expressive drumming performed by 10 musicians (5 professionals and 5 amateurs)
in the presence of metronome. The utilization of this device enables the quantization of
played notes to the nearest time division, yielding in this way a musical score, but also
enforces a consistent tempo that limits the drummer’s musical expression. The sound data
were recorded in 1.150 MIDI files via Roland TD-11 electronic drum kit, which has been
proven capable of capturing high-quality performance features. Each pair of samples is also
annotated with relevant metadata, such as music genre, tempo and anonymized drummer
identifiers.

Drum Performance Drum Score Fewer Instruments Rhythm Only
—_—
Model Humanization Infilling Tap2Drum

Figure 3.3.2: Learning to groove through inverse sequence transformations for drumming

[187]

The multi-modal corpora are particularly useful in the context of Musical Arrangement, as
they provide alternative representations of the same musical content. According to Wang et
al. [117] a proper arrangement dataset should be characterized by the following properties:

e Style-consistency: The re-conceptualization of the original piece should be style-
consistent.
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e Time alignment: The arrangement should be time-aligned with the original music
version (audio, lead sheet, full score), in order to serve as a supervisor of the learning
algorithm.

e Sufficient annotations: The dataset should provide additional structured information,
such as key, beat and chord labels, in order to ensure better control of the generation
process.

Despite several promising generative models, the lack of corpora satisfying the aforemen-
tioned requirements becomes one of the main bottlenecks in the research area. To this end,
Wang et al. [117| proposed a novel dataset called POP909. As the name suggests, it is
structured upon 909 popular songs composed by 462 artists, spanning around 60 years from
the earliest in 1950s to the latest around 2010. In particular, multiple versions of piano
arrangements created by professional musicians are included for each song and stored in two
aligned modalities: MIDI format and original audio. Furthermore, each song is accompanied
by manually annotated tempo curves and machine-extracted key and chord labels using MIR
algorithms. Aside from the arrangement task, POP909 is considered as a high-quality source
for structural and cross-modal music generation.

In an attempt to overcome problems related to auto-
matic alignment methods, Foscarin et al. [188] intro-

duced ASAP (abbreviation of Aligned Scores and Per- W‘

formances), a novel dataset comprising 222 digital mu- W= =

sical scores, stored in MusicXML and MIDI format, :F =

aligned with 1.068 performances, recorded as MIDI & preit - -
and partially audio files with approximately 3ms pre-
cision, of Western classical piano music from 15 com-
posers. Each pair of score and performance samples
is annotated with metadata, including the composer
and the title of the piece, along with supplementary
information, such as the exact positions of all beats,
downbeats, time and key signature changes, as demonstrated in Figure 3.3.3. These an-
notations are automatically produced by a new workflow that combines score analysis and
alignment algorithms, aiming at a radical reduce of the time required for manual processing.
ASAP is the largest known corpus providing fine-grained alignment between text, MIDI and
audio data and hence constitutes a valuable source for a wide variety of MIR tasks.

Figure 3.3.3: Beat and downbeat
annotations produced by ASAP
workflow [188]

Jo1m . mon
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Listen W the rhy the of the fall ing rain Tel ling me

Lyrics List en to the rhy thm of the fall ing rain Tel ing me
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Figure 3.3.4: An example of alignment between lyrics and melody [189)]

Automatically generating melodic lines from lyrics is considered one of the most challenging
problems in the research field of Al music, as it requires the detection of underlying latent
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associations between the two data representations. In order to tackle the limited availability
of paired lyrics-melody datasets, Yu and Canales [189] created a novel corpus comprising
12.197 MIDI songs that are provided as aligned pairs of melody and corresponding lyrics.
This collection incorporates samples derived from different music sources, such as the LMD-
full (7.998 files) and the reddit MIDI dataset (4.199 files).

Existing models in the field of Music Information Retrieval typically focus on representation
learning methods for 2 distinct data modalities [190]. In an attempt to extend the research
towards multiple data types, Zeng et al. [191] introduced the Music Ternary Modalities
Dataset (MTM). As illustrated in Figure 3.3.5, this corpus includes 3 different aligned data
modalities: sheet music, lyrics and music audio in the form of spectrograms. For each song
the respective representations are extracted by specialized pretrained models.

. 0= T —_—
The Chain
H F
Fleetwood Mac- Rumours I
‘ [os =
—
Listen to the wind blow, : LIS R O A
i S
‘Watch the sun rise, :
Run in the shadows. : c6

Damn your love, damn you lies : H

Synthesis Musical Audio Lyrics Sheet Music

Figure 3.3.5: Examples of 3 data modalities in MTM Dataset [191]
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Format Name Modality Applicable Task Size
Score | Performance | Audio
JSB Chorus v Polyphonic 402 Bach chorales
VGMIDI v v Polyphonic with sentiment 823 piano soundtracks
LMD v v Multi-instrumental 176.581 MIDI files
POD v Orchestral 392 pairs of MIDI files
MIDI e-Piano CD v v Polyphonic & Performance ~1400 MIDTI files
BitMIDI v Polyphonic 113.244 MIDI files
Archives v Polyphonic Classical music
Internet v Polyphonic & Style 130.000 pieces of 8 genres
ADL Piano MIDI v v Polyphonic 11.086 piano MIDIs
GiantMIDI-Piano v v Polyphonic 10.854 MIDI files
TheoryTab v Polyphonic 16K lead sheets
o } Hooktheory v Polyphonic 11.329 lead sheets
MusicXML Wikifonia v Polyphonic 2.252 lead sheets
MuseScore v v Performance Yamaha e-Competitions
Pianoroll LMD v v Multi-instrumental size of LMD
NMD v Monophonic 1.000 folk songs
Text Norbeck’s book v Monophonic 2.800 Irish and Swiss songs
FolkDB v Monophonic Unknown
KernScores v Polyphonic 108.703 files
NSynth v Music audio 305.979 notes
FMA v Music audio 106.574 tracks
Audio Minist v Music audio 50.912 notes
GTZAN v Music audio 1.000 audios of 30s
SOL v Music audio 120.000 sounds
NUS v Sing Voice 48 English songs
MusicNet v v Fusion 330 recordings
MAESTRO v v v Fusion 172h of piano performances
NES v v Multi-instrumental 1.000 pieces
Piano-MIDI v v v Polyphonic & Performance | 332 classical piano pieces
Multimodal Groove-MIDI v v v Drum 1.150 files of 13.6h
POP909 v M v Polyphonic 909 songs
ASAP v v v Fusion 222 scores
Lyrics-Melody v Fusion 13.937-note sequences
MTM v v Fusion Unknown

Table 3.1: A summary of existing datasets (adapted from [122])
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3.4 Evaluation

As discussed in [192], the assessment of generative systems, especially in the field of music
creative modeling, has been proven particularly challenging. The most prevailing catego-
rization of evaluation strategies is based on the perspective under which a specific problem’s
objective is approached and concepts such as creativity and efficiency are computationally
interpreted.

On the one hand, the generally preferable assessment practice in the research area of gen-
erative modeling involves subjective methods, which mostly rely on human feedback over
the quality of the produced musical content, since human is considered the ultimate judge
of creative output, either as listener or even viewer. However, without a clear definition
and consensus on the essence of human inventiveness and in view of the challenges arising
from the proper design and conduction of experiments that can lead to valid, reliable and
replicable results, subjective evaluation remains largely problematic.

On the other hand, methods for objective evaluation of generative systems are generally de-
sirable, as they provide an interpretation of the model’s performance with respect to a specific
tack, which is conceptually closer to the operating framework of a machine. Nevertheless,
despite the benefit of easy implementation, it is rather hard to approach music with certain
rigorous metrics that usually lack of musical relevance in terms of musical rule systems or
heuristics and also establish standardized definitions of improvement and quality applicable
to different models and generation cases.

To sum up, there is no unified criterion for the results of music generation systems. Ac-
cording to the analysis in [122], a summary of the existing music evaluation methods from
both objective and subjective aspects is conducted and explicitly presented in the following
subsections.

3.4.1 Objective Evaluation

The term objective evaluation refers to the quantitative consideration of music generation
models and their produced content, which is typically established on the utilization of differ-
ent metrics, closely related to the implemented task. Such indices only reflect the ability of
the model to process data, but cannot actually represent the generation efficiency, especially
in case of music that involves a highly innovative form of artistic expression. Yang et al.
[192] split the various objective evaluation methods, applied in recent studies in the research
field of Music Synthesis, into the following categories:

Probabilistic measures and metrics without musical domain knowledge

Evaluation metrics established on probabilistic measures and statistical properties are widely
used in various tasks included in the area of Image Processing and Computer Vision, exhibit-
ing consistent behaviour with respect to the model performance [193]. Therefore, they are
increasingly integrated into music-related tasks as well [194]. However, since this metric
family is basically derived from a different domain, it does not involve music relevance, but
instead focuses on forms of statistical divergence between the generated and the original
samples or other similar characteristics.
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One of the most frequently applied statistical indices is Likelihood, which represents the
joint probability of the observed data viewed as a function of the chosen model’s parameters
[195]. In the context of music score inpainting via convolutional mechanisms, Huang et al.
[196] developed a frame-wise evaluation algorithm based on the computation of the negative
log-likelihood for each sample in an autoregressive manner. Similarly, the training objective
of the recurrent model proposed by Johnson [197] for polyphonic music composition and
prediction is the maximization of the log-likelihood for each note sequence, which has been
proven a meaningful quantitative indicator of performance. However, Theis et al. [193] state
that good performance with respect to particular criterion is not necessarily observed in the
context of a different standard and report examples of bad samples with significantly high

likelihoods.
| Metrics Definition ‘
Loss (L) Loss represents the cost associated to the model performance with respect to

a specific task. Computationally, it provides a quantitative estimation of the
inconsistency degree between the predicted results and the ground-truth and
therefore is typically employed as the optimization objective. However, loss
reduction indicates that the model can understand the problem numerically,
but doesn’t necessarily imply improvement of the generated musical quality,
while on the other hand a model with non-converging loss cannot produce
particularly fulfilling music pieces.

Perplexity (PPL)

Perplexity measures the predictive ability of a probability model. It is com-
puted as an exponentiation of the respective distribution entropy. Low per-
plexity on the test set indicates that the model is suitable for unknown data,
that is, the model can generalize well in terms of producing novel musical con-
tent.

BLEU score

The BLEU score is derived from the field of Natural Language Processing and
is used to measure the similarity between the validation set and the generated
samples.

Inception Score (IS)

IS is an algorithm used to assess the quality of produced samples. In partic-
ular, generated examples are fed to a pretrained Inception classifier and the
respective score is computed as the mean KL divergence between the condi-
tional output class probabilities and the marginal distribution of the same. IS
penalizes models whose examples aren’t easily classified into a single class, as
well as models whose examples collectively belong to only a few of the possible
classes.

Frechet Inception Distance (FID)

FID is an evaluation metric mostly applied in GAN systems. It is established
on the 2-Wasserstein (or Frechet) distance between multivariate Gaussian dis-
tributions, fit to features extracted from a pretrained Inception classifier. This
metric is correlated to perceptual quality and diversity on synthetic distribu-
tions.

Number of Statistically Different
Bins (NDB)

NDB quantifies the diversity among the generated samples. In particular, the
training examples are clustered into 50 Voronoi cells by k-means algorithm
and the generated ones are assigned to the nearest cell. The respective index
represents the number of cells where the number of included training samples
is significantly different from the number of assigned generated examples by a
two-sample Binomial test.

Table 3.2: Objective evaluation metrics without musical domain knowledge (partially

adapted from [122])

Other more efficient quantitative indices, mostly derived from the field of mathematical
optimization, are presented in Table 3.2 along with a brief description. All these metrics are

109


https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Perplexity
https://en.wikipedia.org/wiki/BLEU
https://en.wikipedia.org/wiki/Inception_score
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance
https://en.wikipedia.org/wiki/Wasserstein_metric
https://arxiv.org/pdf/1805.12462.pdf
https://en.wikipedia.org/wiki/Binomial_test

Chapter 3. Related Work

widely used in the area of music generation with several applications in multiple formats [198,
199] and they have actually become the de-facto standard for measuring the performance of
such systems [200].

There is also a variety of task-specialized metrics, including reconstruction accuracy in VAE
models [201], chord prediction accuracy [176], style likelihood [151] and style classification
accuracy [202]. In the field of performance modeling the objective evaluation mainly involves
the Mean Square Error (MSE) and the correlation between the characteristics of human and
machine performance accordingly. Furthermore, in the context of drum generation, Gillick et
al. [112] proposed, among other metrics, the Mean Absolute (MAE) and the Mean Squared
Error of the onset, as well as the Kullback-Leibler divergence (KL) between the distributions
of the generated onset and drum velocities.

Nevertheless, it should be mentioned that the ultimate goal of generative systems is to auto-
matically create novel musical content, not to make predictions. Therefore, all the aforemen-
tioned probabilistic metrics can only be exploited as references and not as decisive measures
in terms of generated musical quality.

Metrics using general musical domain knowledge

In order to address the multi-faceted nature of music generation systems and acquire means
for their assessment based on human perception, a variety of musically-oriented metrics have
been proposed. This quantitative indicator family integrates musical domain knowledge and
enables detailed evaluation with respect to statistical measures of specific musical qualities,
typically in the form of comparison between the descriptive statistics of the authentic mu-
sical content and the ones corresponding to the artificially produced. However, researchers
can develop different musically motivated metrics according to the implemented generation
tasks, providing at each case a well formulated definition that emphasizes on the respective
association between the metric value and the musical characteristic that represents.

Analysis of characteristic
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Figure 3.4.1: General workflow of musical evaluation strategy [192]

Musical metrics are widely applied in the field of score generation, since musical scores can
explicitly model various features of the included notes. In this context, Yang et al. [192]
developed an objective evaluation strategy based on a set of musically informed metrics and
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features that has been utilized in a wide variety of symbolic music generation models [143].
The workflow of their proposed method is graphically illustrated in the diagram of Figure
3.4.1. As can be seen, this process involves absolute metrics, aiming to provide insights into
properties and characteristics of the collected data, as well as relative metrics used for the
comparison among different groups of samples. In particular, the input of the evaluation
system consists of a training and a generated dataset, with the first representing the target
space. Custom-designed features from the musical knowledge domain (mostly pitch- and
rhythm-based) are extracted from both datasets and utilized for the computation of absolute
and relative measurements, resulting in a group of inter-set and intra-set distances, along with
other similarity measures between distributions, such as Kullback-Leibler Divergence (KLD)
and Overlapping Area (OA). The evaluation framework has been released as an open-source
toolbox, including the demonstrated evaluation and analysis methods along with visualization
tools.

As regards other musical metrics mainly applied in an autonomous evaluation fashion, Ji et
al. [122] distinguish 4 major categories: pitch-related, rhythm-related, chord/harmony-related
and style transfer-related. Some of the most prevailing and commonly used examples for each
class are briefly presented in Table 3.3, along with a small definition.

Tvpes Metrics
yP Name | Definition
Used Pitch Classes II\IQL;mber of used pitch classes per bar (from 0 to
Pith-related Number of half-tone steps between the lowest and

Tone Spa . .
one Span the highest tone in a sample.

For a specified length [, CPR measures the fre-
Consecutive Pitch Repetitions | quency of occurrences of [ consecutive pitch repe-
titions.

PV measures how many distinct pitches are played
within a sequence.

QR measures the frequency of note durations
within valid beat ratios.

RV measures how many distinct note durations are
contained within a sequence.

Given an offset d, OR measures how frequently the
Off-beat Recovery model can recover back onto the beat after being
forced to be off for d timesteps.

CTD is the average value of tonal distance com-

Pitch Variations

Qualified Rhythm

Rhythm-related
Rhythm Variations

Chord Tonal Distance puted for every pair of adjacent chords in a given
Chord/Harmony-related sequence.
Tonal Distance Harmonicity between a pair of tracks.

The number of chord labels with non-zero counts
in the sequence histogram.

Cosine similarity (cs) between output and refer-
ence style profiles.

Correlation between chroma representations of
source and generated segments.

Chord Coverage

Style Transfer Style Fit

Content preservation

Table 3.3: Objective evaluation metrics with musical domain knowledge (adapted from
[122])

The use cases of the aforementioned metrics that describe 4 fundamental attributes of a
musical composition vary significantly, depending on the implemented task and the ontology
of the model itself. For instance, Chuan et al. [203] focus on tonal characteristics, such as the
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pitch tension levels and the frequencies of melodic intervals, during the evaluation of their
proposed predictive deep network that models polyphonic music under the combination of
both CNN and LSTM modules. In the context of singing voice synthesis, Sturm et al. [194]
conduct a statistical analysis of their developed deep autoregressive mechanism on different
application scenarios, emphasizing on musical features related to pitch, timing and timbre.
Similarly, Dong et al. |2] assess their GAN-based generative framework for polyphonic music
of multiple instruments in terms of tonal characteristics, rhythmic patterns, as well as inter-
track harmonic distances observed in produced samples.

On the hand, Sabathé et al. [204] introduce a novel objective evaluation metric for their VAE
model, which is computed as the Mahalanobis distance between signature vectors composed
of high-level symbolic music descriptors of the generated and real musical pieces accordingly.
The aforementioned signature vectors are explicitly presented in Table 3.4 down below.

‘ Signature vectors ‘ Definition ‘

Number of notes in the piece divided by the length of
the piece.

The ratio between the number of non-null values in the
pianoroll representation and the length of the piece.
The number of time steps where two or more notes were
Polyphonic rate played simultaneously, divided by the total number of
notes in the piece.

The maximum, minimum, mean and standard deviation
Pitch range descrip- | of the non-null pitches in the piece. All values were
tors divided by 127 in order to force these descriptors to be
bounded between 0 and 1.

An interval is a difference in pitch between two consec-
utive notes. All intervals were scaled between 0 and 1
(i.e.,divided by 127) and the maximum, minimum, mean
and standard deviation were computed.

The duration is the number of time steps during which a
note is held. As before, the maximum, minimum, mean
and standard deviation of all durations in the piece were
computed (no scaling was performed).

Number of notes

Occupation rate

Pitch interval range

Duration range

Table 3.4: Signature vectors (adapted from [122])

Lastly, in the field of music performance the majority of objective evaluation metrics focus on
the interpretation characteristics of the performed musical pieces, such as velocity and timing.
Examples of such quantitative measures are Mean Velocity (MV), Variation of Velocity (VV),
Mean Duration (MD) and Variation of Duration (VD) [205]. However, since performance is
a form of live expression of the musical ideas captured within a musical score, metrics applied
in score generation can be also employed for evaluation of performance.

Task/model specific metrics

As the various approaches in the filed of Automatic Music Synthesis differ to a large extent on
multiple aspects of the generation mechanism, a group of evaluation metrics are particularly
designed for specific models or implemented tasks. These methods are based on different
theories or algorithms in order to assess musical properties and according to [122] can be
categorized as follows:
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Structure

Wang et al. [206] developed the Variable Markov Oracle or VMO for short, a novel method
for guided music synthesis and improvisation based on the detection of inherent data clus-
ters in an audio signal along with their respective sequential time relation. As regards the
evaluation part, this method is mainly applied for visualization of the identified repeated
patterns in the examined music samples. At its core, VMO is structured upon a combina-
tion of a suffix tree algorithm called Factor Oracle (FO) [207], which is used for retrieval of
repeated sub-strings in a symbolic sequence, and its continuous extension named Audio Or-
acle (AO) [208], which introduces a threshold 6 representing the degree of similarity between
features in the continuous time series domain. Therefore, the utilization of VMO requires
the conversion of music signals from time-domain waveforms to appropriate representations,
such as chromagrams. Under different values of @, the algorithm constructs diverse symbol
sequences and suffix structures from the input signals in terms of containing variable amount
of original information patters. The optimal threshold is indicated by the Information Rate
(IR), which captures the self-similarity, an almost integrant musical property especially in
pop songs where rhythmic patterns and melodies are often repeated on a short time scale.
Intuitively, higher IRs occur when repetition and variation are in balance.
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Figure 3.4.2: Patterns discovered in each sample by VMO (colored boxes) [206]

Chen et al. [209] utilized VMO in order to investigate the self-similarity in music structure by
comparing the IRs of samples generated by different models. Since the graphical illustrations
of the examined musical sequences in pianoroll-like format allow for easier visual inspection of
repeated patterns, they employed the corresponding plots for the detection of such structural
motifs, as demonstrated in Figure 3.4.2.
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Originality

In an attempt to computationally quantify the variation degree of the generated music from
the original corpus and examine the creativity of their proposed model, Hadjeres et al. [130]
applied a novel plagiarism analysis method, based on the creation of histograms representing
the length of the longest note subsequence in produced samples that can be detected identi-
cally in the training dataset. If the corresponding histogram peak is short, then the generated
music is considered innovative, since it doesn’t incorporate directly transferred segments of
significant length. Chu et al. [134] evaluated the creativity of their proposed generative
framework, using the same methodology as [130]. They also recorded additional information,
such as the number of repeats for each generated melody segment, which is considered a
supplementary index of the model’s ability to generate pieces of varied melodic properties.
Hakimi et al. |210] focused on jazz solos and assessed their originality with respect to a set
of source samples, by measuring the proportion of n-grams that appear in both generated
and ground-truth solos accordingly.

Style

In the field of Music Style Transfer, the most prevailing evaluation practices are typically
established on the training of specific style classifiers responsible for judging whether the
generated music style meets the expected profile. In other words, high performance of the
classifier implies that the generated pieces exhibit the desired style characteristics. A case
in point is the Minimum Distance Classifier (MDC) employed by Jin et al. [211] in order to
evaluate the generated music in terms of classical style. Following similar concept, Brunner
et al. [202]| built a binary classifier that outputs a probability distribution over 2 style
domains ranging across different genres. In case of singing style transfer, the most commonly
applied evaluation approaches involve specialized metrics, such as Log Spectral Distance
(LSD) representing phoneme clarity, Singer Identity (SI), for which a classifier has to be
trained to model the probabilistic association between musical segments and target singers
and Raw Chroma Accuracy (RAC), typically used for melody transfer assessment [212].

3.4.2 Subjective Evaluation

As extensively discussed in the previous section, a wide variety of objective metrics have been
proposed in an attempt to provide a consistent quantitative interpretation of the produced
musical content and a comprehensive measure of the respective model performance. Standard
probabilistic and statistical indicators are generalizable and applicable to significantly varying
approaches but lack of music relevance, while the variability and diversity of metrics that
take into account musical domain knowledge leads to comparability issues and even biased
evaluation. However, despite the advantages and drawbacks related to each metric family,
in all cases there is still a gap between the quantitative consideration of music quality and
human judgement. Subjective evaluation aims to bridge this gap.

The term subjective evaluation refers to assessment practices that involve human feedback on
the generated musical content. The human perception over a musical composition is mainly
based on the unconscious identification of salient themes, structural elements and features
that cannot be explicitly defined under the framework of a computational machine and there-
fore subjective evaluation is considered the most persuasive post-hoc method. However, due
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to the involved subjectivity, the results derived from this process cannot form any absolute
measurement of quality, but only uncover relative differences or improvements. In the con-
text of comparability, the main challenges arise from the lack of a standard experimental
methodology, along with the absence of a general reference.

As described in [122], the most prevailing subjective evaluation approaches either follow the
concept of a listening test or include expert analysis based on compositional theory. Both
categories will be thoroughly presented in the following subsections.

Listening Test

Listening test is undoubtedly the most commonly employed evaluation method in the research
field of music generation, as it provides the ability for comprehensive assessment or even
comparison among varying models from an auditory perspective, regardless of the music
generation level. It can be successfully applied in both score and audio generation tasks.
The main difference is that the first case requires some additional preprocessing steps in
order for performance characteristics to be rendered and the corresponding audio files to be
synthesized. According to [213], a properly designed listening test should meet the following
requirements:

e Sufficient number of listening subjects with adequate diversity in terms of demographics
in order to offer statistically significant results.

e Uniform distribution of subjects’ music knowledge level, including both music amateurs
who lack relative background and experts in the field of music composition.

e Controlled environment with specific acoustic characteristics and equipment for the
conduction of the experiments.

e Identical instructions and stimuli given to every subject involved in the procedure.

As can be affirmed, the design of a listening experiment that can lead to valid and reli-
able results uncovers a lot of challenges. Controlling all the relevant variables ranging the
selection of samples, the listening environment, the recruitment of qualified participants to
the formulation of the examined questions, has been proven particularly hard. As stated in
[192], the majority of contemporary subjective studies address different evaluation criteria
and follow diverse methodologies regarding the structure of the questionnaire and the nature
of the experiment, reporting in this way varying results that cannot be explicitly compared
or represent a scientific benchmark.

The simplest form of listening experiment is the Turing test, originally introduced as concept
by Alan Turing in 1950 [214]. Turing’s “imitation game” investigates the ability of a com-
putational machine to exhibit intelligent behaviour close to the human level. In the context
of Automatic Music Synthesis, the Turing test targets the compositional origin of the ex-
amined musical pieces. More specifically, the subjects judge whether the music samples are
generated by computer or created by human. This strategy provides a qualitative measure
of the model’s generation efficiency in terms of specific musical properties, such as musical
naturalness and therefore has been applied in several studies in the field [196, 130, 215].

Haque et al. [216] conducted a side-by-side evaluation experiment for acoustic comparison be-
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tween auditory samples produced by their sequence-to-sequence model and the corresponding
ground-truth, based on a quantitative approach of binary selection. In particular, the human
evaluators were asked to provide for each listening pair a score ranging from -1 (generated
audio is worse than the original) to +1 (generated audio is better that ground-truth). Bretan
et. al [123] evaluated subjectively their proposed generative framework using a forced-choice
ranking method. In particular, each test case consists of 4 8-bar sequences produced by 4
different models with a shared 4-measure seed. The participants of the study rank the candi-
dates in terms of transition naturalness and style consistency between the first and second 4
bars, naturalness and likeability of the generated segments (last 4 measures) and the overall
likeability.

Another category of listening tests focuses on the subjective assessment of a model’s ability
to create music with a specific target style. For instance, Mao et al. [131] performed a
subjective style analysis established as a classification task among 3 different music genres.
More specifically, the participants were asked to categorize music samples generated by DeepJ
as baroque, classical or romantic. Similarly, Zhao et al. [217] study the correlation of
music generated by their proposed model with particular emotions by conducting a listening
experiment in which subjects identify the emotion class of each music sample.

There is also a group of listening tests that require musical knowledge of advanced level
and relevant background for the evaluation of the produced music. In this case, the scoring
criteria are not subjective questions, but professional music evaluation metrics and therefore
only music experts and experienced composers are recruited to participate. For instance, Wei
et al. [218] conducted a listening experiment on professional musicians and drum performers
in order to collect feedback in the from of detailed comments over the structural compatibility
between the generated drum patterns and the corresponding melodic tracks, as well as the
stability and variability of the generation result.

Visual Analysis

In the context of visual analysis, no auditory perception of the produced results is considered.
Human raters evaluate the quality of generated music subjectively only through visual in-
spection of proper music representation formats, including music score, pianoroll, waveform,
spectrogram, etc. According to [122], visual analysis methods can be categorized as follows:

e Score Analysis: As the name suggests, score analysis is typically based on the musi-
cal information derived from a music score. Depending on the implemented generation
task, it emphasizes on different characteristics of interest, such as pitch changes, rhyth-
mic patterns, structural motifs, transition between bars, etc. The evaluation criteria
mainly rely on music theory principles and therefore score analysis is usually conducted
by experts in the field. However, different judges may express different opinions on the
same score, introducing a notion of subjectivity in the process. To this end, score
analysis is regarded as a practice for subjective evaluation. Dong et al. [2]| perform a
qualitative analysis of the produced pianorolls in terms of the overall musicality, as well
as the individual features of each involved instrument. Pati et al. [161] follow similar
methodology in order to evaluate and compare scores inpainted by different models.

e Waveform /Spectrogram Analysis: The subjective evaluation of auditory samples
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in the context of visual analysis is typically based on the elaborate inspection of the
corresponding signal waveforms®* or other representations in the time-frequency domain,
such as spectrograms® and rainbowgrams®. Engel et al. [183] employ the latter format
in order to compare audio samples produced by interpolation in the latent space with
the originals. Also common is the utilization of mel-spectrograms’ and F, contour®
maps, as implemented in [219] and [220] respectively.

4https://en.wikipedia.org /wiki/Waveform

5Spectrogram is a visual representation of a signal’s spectrum across time.

6Rainbowgrams can be regarded as CQT spectrograms with magnitude indicated by line intensity and
frequency by color.

"Mel-spectrograms are spectrograms where the frequencies are converted in the psychophysical mel scale.

8 Fy denotes the fundamental frequency at which vocal chords vibrate in music sounds. It is perceived by
the ear as pitch. An Fj contour represents the Fjy oscillations over time in the course of a utterance.
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Chapter 4. Baseline Project: MuseGAN

This chapter aims at providing a complete overview of the baseline project on which
our proposed framework for the problem of Automatic Music Synthesis is established.
In particular, section 4.1 introduces the main characteristics of the MuseGAN project,
as well as the various challenges that it attempts to tackle. Section 4.2 focuses on
the architecture of the system and the structural attributes of the integrated temporal
and multi-track modules, while section 4.3 includes a detailed analysis of the utilized
training dataset. Lastly, section 4.4 presents the employed evaluation methods as well
as the results produced by the conducted experiments.

4.1 Overview & Challenges

MuseGAN, which is the abbreviation of Multi-track sequential Generative Adversarial
Network, constitutes, as the name suggests, a novel framework for symbolic multi-track
music generation, based on the mechanism of Generative Adversarial Networks, which have
been thoroughly presented in section 2.3 of chapter 2. This project! was initially introduced
by Dong et al. [2| at the Association for the Advancement of Artificial Intelligence (AAAT)
Conference in 2018 and has laid the foundation for various generative systems that were
developed within the research area of music synthesis. Therefore, it can be considered as a
landmark among the state-of-the-art approaches to the examined research problem.

More specifically, MuseGAN is a GAN-based generative model,
able to automatically produce polyphonic musical sequences for
multiple tracks and particularly for Piano, Guitar, Bass, Strings Bass @
and Drums, as shown in Figure 4.1.1. Under this framework, %

both the Generator and the Discriminator system components I .Drums. Strings
are implemented as deep Convolutional Neural Networks. An A ’s
abstract and simplified diagram of this system configuration is Pia“°-%- i cuttar
graphically illustrated in Figure 4.1.2. As it might be seen, the
Generator network receives a random noise vector that follows
the Gaussian distribution as input and by performing successive
upsampling convolutional operations, produces fake samples in
the target space. Conversely, the Discriminator network acts in reverse convolutional mode
in order to evaluate as real or fake data instances derived from both distributions. According
to the detailed analysis in section 2.2.3 of chapter 2, CNNs are designed to process data with
grid-like topology or structured information in the form of generalized arrays and hence the
musical samples have to be represented in an image-like symbolic format.

Figure 4.1.1: Musical
tracks in MuseGAN |[13]

The concept of the MuseGAN mechanism is derived from the research fields of Computer
Vision and Image Processing. However, the task of composing realistic and aesthetically
harmonic musical pieces in an automated manner can be considered particularly challenging,
due to the inherent difficulty of modeling music under the framework of neural networks, in
contrast to other modalities, such as images, videos and text, which are characterized by a
more specified structure.

!The entire implementation code, the utilized dataset, as well as some rendered audio samples are available
at MuseGAN’s website
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Figure 4.1.2: GAN implemented with CNNs [221]

First and foremost, this is owed to the intrinsically hierarchical arrangement of a musical
piece. As demonstrated in Figure 4.1.3a, a song is abstractly composed of higher-level build-
ing blocks, called paragraphs, which can be further subdivided into musical phrases. A phrase
in music is defined as a substantial concrete musical thought that has a complete musical
sense of its own and therefore is considered as one of the fundamental elements in the struc-
ture of a musical composition. Each phrase consists of smaller recurrent patterns, termed
bars, which contain beats, formulated by a definite timestep number. As Herremans and
Chew [3| report, the human brain focuses on such structural motifs, related to coherence,
rhythm, tension and the emotion flow, while listening to music and thus the incorporation of
a mechanism capable of capturing the aforementioned characteristics is critical in the context
of Automatic Music Synthesis. However, it can be easily affirmed that the whole hierarchy of
a musical piece is structured upon temporal units, as the various objects of musical perception
are presented to the listener progressively in time. To this end, MuseGAN system includes a
temporal model in order to generate samples, composed of few bars, that are associated in a
coherent manner.

Secondly, a musical piece is typically composed of multiple varying tracks. For instance, a
modern orchestra combines instruments of different families, including bowed strings, brass,
woodwinds and percussion, while the most common configuration in a rock band includes
two guitars, a lead and a rhythm one, a bass, a drum set and possibly lead vocals. Each indi-
vidual track in an instrumental ensemble disposes its own musical properties and dynamics.
However, all the different track components collectively unfold over time in an interdepen-
dent manner, as illustrated in Figure 4.1.3b. Various composition disciplines have emerged
over the years in an attempt to model the interaction among different instruments. Such
approaches are strongly influenced by the corresponding music genre or the historical period
they are related and they formed the foundation of rule-based methods in the context of Mu-
sic Synthesis with the use of Artificial Neural Networks and Machine Learning frameworks.
However, MuseGAN incorporates a more abstract and creative modeling approach to the
concept of multi-track interdependence. In particular, it employs three different GAN-based
models, whose mechanism is established on the human perception over the creation of musical
pieces.

Lastly, notes in a polyphonic musical piece are typically presented into grouping formu-
lations, such as chords, i.e. harmonic sets of multiple pitches/frequencies that are played
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simultaneously, arpeggios, which constitute a special type of “broken” chord where the tonal
components are heard in a sequential form of ascending or descending order, or other melodic
motifs and harmonic patterns, as visually demonstrated in Figure 4.1.3c. All these musical
texture attributes, which inherently incorporate a notion of complexity, cannot be easily
captured by a computational machine system and therefore a suitable combination of data
representation and processing is required in order to effectively model the structural features
of a polyphonic composition. Former approaches, especially in the field of monophonic music
generation, which by definition consists of a single unaccompanied melodic line and hence
includes much simpler structural formulations, usually employ a chronological ordering of
the various note events. However, as a matter of course, such kind of implementation cannot
be generalized in tasks of higher complexity, including polyphonic music generation. To this
end, under the framework of MuseGAN project, the musical samples are represented in an
image-like symbolic format with the bar being considered as the basic compositional unit, so
that composite patterns and grouping structures are perceivable as a whole. On account of
this fact, both the generative and the discriminative sub-models are implemented as Convo-
lutional Neural Networks, which, as thoroughly explained in section 2.2.3 of chapter 2, are
specialized at detecting local, translation-covariant features through successive convolutional
operations.

song
paragraph 1 . paragraph 2 . paragraph 3 '
phrase1 | phrase 2 I phrase 3 phrase4
[Soart | barz | s | bars |

(a)
melody
P == 2 )
v | — T l’ l’e—:lJ =T 7‘7‘ - 1 =i I i
B - : Y
chord r
harmon USRI o
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()
Figure 4.1.3: Challenges of Automatic Music Generation [13]
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4.2 Architecture

4.2.1 Generative Adversarial Networks

As mentioned before, the core architecture of the MuseGAN system is established on the
framework of Generative Adversarial Networks. According to the respective analysis in sec-
tion 2.3 of chapter 2, a GAN model is typically composed of the following two individual
modules:

e Generator: The Generator network GG creates novel data instances, by mapping a
random noise vector z sampled from a prior distribution p, to the target data space.
Thus, G = G(z;0,) can be considered as a differentiable function computationally
implemented by a an artificial neural network with parameters 6,, which transforms
the input distribution p, to an output distribution p,.

e Discriminator: The Discriminator network D evaluates the input data instances x
in terms of authenticity, by predicting the label of their respective origin class. There-
fore, D = D(x;60,) can also be considered as a differentiable function computationally
implemented by an artificial neural network with parameters 64, which maps the input
data x to a single scalar value. Essentially, this output represents the probability that
x is derived from the real data distribution p, rather than the model distribution p,.

These two structural components are in-

volved into an adversarial learning proce-
dure, which is graphically displayed in Fig- 1 [

ure 4.2.1. More specifically, the Discrimi- ‘ o
nator is trained to distinguish the ground- (etective) ‘
truth samples from the fake ones, while the

Generator aims at “fooling” its opponent, il
by counterfeiting the real data distribution ks
as best as possible. This training frame- PR il

work can be mathematically formulated by Py Fran

employing the concept of the minimax de-
cision rule. The term “minimax” refers to
an optimization strategy usually applied in
the field of game theory for minimizing the
potential loss corresponding to the worst-case scenario, i.e. the maximum loss. This cost is
related to the decisions of the first player during the game, assuming that their opponent
responds in an optimal manner. In this context, the GAN mechanism can be intuitively
modeled as a two-player turn-based game, where the alternating actions of the two oppo-
nents, the Generator and the Discriminator, involve the update of their respective weight
parameters. Following the aforementioned notation, the adversarial game can be described
by the minimax value function V (G, D):

Figure 4.2.1: Illustration of GAN mechanism
[222]

min max V(G, D) = Exup, l0g (D(x))] + By, [log (1 = D(G(2))] (4.2.1)

As it can be easily seen, the first term of formula 4.2.1 represents the log probability of
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predicting that the real samples are actually genuine, while the second one corresponds to
the log probability of classifying the fake samples, produced by G, as unauthentic. Thus,
the Discriminator aims at maximizing both the aforementioned quantities, in order to learn
to assign correct labels to both kinds of training examples and effectively distinguish them.
On the other hand, the objective of the Generator is to minimize the second term, so that
D cannot identify the counterfeit data instances successfully.

As Gulrajani et al. report in [20], if the Discriminator is trained before each parameter
update of the Generator, then the minimization of the value function 4.2.1 is equivalent to the
minimization of the Jensen-Shannon divergence between the distributions pg and pg, which
are defined up above. However, according to [21], this method in practice may not provide
sufficient gradients for the learning procedure of GG, resulting in vanishing gradients and mode
collapse phenomena. This is owed to the fact that the quantity log (1 — D(G(z))) saturates,
since at the early stages of training the Generator produces fake data which are clearly
diverging from the ground-truth distribution and hence are easily distinguishable by the
Discriminator. Therefore, Goodfellow et al. [21] advocate that, in order to to circumvent this
difficulty, the Generator should be instead trained to maximize the term Eg.,,[log (D(X))],
where X = G(z) implicitly defines the model distribution p,. This objective results in the
same fixed point concerning the dynamics of G and D, but provides much stronger gradients
early in learning.

However, even this modified loss function can misbehave in the presence of a good Discrimi-
nator [223]. To this end, Arjovsky et al. [224] introduce the WGAN model, which employs
the Wasserstein distance (alternatively termed as the Earth Movers distance), in order to
stabilize the training procedure and provide meaningful learning curves, particularly useful
for debugging and hyperparameter searching. Gulrajani et al. [20] improve this framework,
by enforcing a Lipschitz constraint in the form of an additional gradient penalty term at the
minimax objective function, which is consequently transformed as follows:

min max V(G, D) = Exup, [D(X)] = Egnp, [D(G(2))] + g [([[V2 D(R) 2 = 1)°] (4.2.2)

where pg is implicitly defined by uniform sampling along straight lines between pairs of
points derived from the data distribution py and the generator distribution p, accordingly.
This modification is found to ensure faster convergence to better optima and also require less
hyperparameter tuning. On account of this, the training process of the MuseGAN system is
based on the aforementioned formula 4.2.2.

4.2.2 Modeling Multitrack Interdependency

According to human experience, two prevailing approaches concerning the composition of
musical pieces can be distinguished:

e Jamming mode: The term “jam” refers to a relatively informal musical event, process
or activity, where a group of musicians, typically including various instrumentalists,
improvise music without extensive preparation or predefined arrangements. In this
way, novel musical content can be created in a cooperative manner.
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e Composer mode: This compositional technique involves the presence of a principal
coordinator, referred to as composer, who arranges the various instruments based on
harmonic and orchestration principles. In this way, structured musical pieces can be
produced, as the individual musical parts in the overall composition are designed and
organized in a consonant and coherent manner.

Based on the aforementioned music creation modes, Dong et al. [2] propose three differ-
ent models, which are established on the GAN framework in order to capture multi-track
interdependency and will be thoroughly examined in the following sections of this analysis.

Jamming Model

As illustrated in Figure 4.2.2, the Jamming Model comprises multiple GAN modules that
operate independently in order to generate multi-track music. In particular, each individual
Generator G; produces music samples which correspond to a specific track included in the
overall composition from a private input random vector z; and receives feedback in the form
of backpropagated supervisory signals from its respective Discriminator D;. The possible
values of the index 7 range from 1 to M, where M denotes the number of tracks. Therefore,
a musical piece consisting of M tracks requires, under the framework of the Jamming Model,
M Generators and M Discriminators accordingly.

real'fake

Figure 4.2.2: Jamming Model [2]

Composer Model

As demonstrated in Figure 4.2.3, the Composer Model consists of a single pair of adversarial
networks, regardless of the value of M, which denotes the number of the employed music
tracks. More specifically, the Generator G receives a shared random vector z as input, which
can be considered as the intention of the composer and produces a multi-channel music
sample, where each channel represents one of the included tracks. The single Discriminator
D evaluates the musical segments in terms of authenticity, by examining the corresponding
M tracks collectively.

Fa L D real/fake
G(z)

Figure 4.2.3: Composer Model [2]
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Hybrid Model

As the name suggests, the Hybrid Model constitutes a combined implementation of both
the aforementioned systems, that merges the notion of unconfined improvisation in the jam-
ming context along with the musical discipline imposed by the composer’s arrangement. As
graphically displayed in Figure 4.2.4, the hybrid architecture comprises multiple Generator
modules (G;, each one corresponding to a specific track included in the overall composition
and thus to the actions of one musician/instrumentalist, but only one Discriminator network
D. The input of each Generator consists of a private intra-track random vector z;, which can
be considered track-specialized, as well as a shared inter-track random vector z, which coor-
dinates to some extent the generation process performed by the various musicians G;. The
Discriminator D evaluates the musical segments in terms of authenticity, by examining the
corresponding M tracks collectively. Therefore, under the framework of the Hybrid Model,
a musical piece of M tracks requires M Generators and one Discriminator.

real/fake

G, (2, ;)

Figure 4.2.4: Hybrid Model [2]

It can be easily affirmed that the core mechanism of the Hybrid Model enables flexible
variations of the track-specific generation procedure, either in terms of network structure
(e.g. different number of layers, filter size, etc. among the various Generators) or regarding
the form of the private input z;, retaining at the same time the desired overall inter-track
interdependency.

4.2.3 Modeling Temporal Structure

All the GAN-based multi-track models, which have been presented in the previous section,
are capable of generating polyphonic musical pieces for multiple tracks with duration up to
one bar. The “bar” or else “measure” is a segment of time corresponding to a specific number
of beats, in which every beat is represented by a particular note value. As mentioned before,
this small musical container constitutes the basic building block of a musical composition,
since the boundaries between consecutive bars are usually the spots where harmonic changes
occur. To this end, in order to be able to generate music samples with longer duration,
such as a musical phrase and ensure at the same time coherence and consistency among the
produced bars, a mechanism that captures and handles temporal dependencies is crucial.
Therefore, Dong et al. 2] design two distinct temporal models corresponding to different use
cases, which will be thoroughly examined further down.
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Generation from Scratch

Based on the concept of TGAN, a temporal GAN-based model proposed by Saito et al.
[14] in 2017 for learning semantic representations of unlabeled videos and generating image
sequences, this method aims at producing fixed-length musical phrases, by integrating bar
progression at the Generator’s workflow in the form of an augmented dimension. More
specifically, in this case the Generator module consists of two sub-networks, the temporal
structure generator Giem, and the bar generator Gp,,, which are graphically illustrated in
the diagram of Figure 4.2.5. As can be seen, Gien,p, maps the input random vector z to a
sequence of latent variables Z = {Z®}Z_, where T' > 0 denotes the total number of bars to
be generated. It can be easily affirmed that each one of these latent components corresponds
to a specific bar included in the musical segment which will be eventually composed and
incorporates to some extent information about temporal characteristics. The bar generator
Ghar transforms, as the name indicates, the resulting vector Z into a musical phrase in a
sequential manner (i.e. bar by bar). Using formal notation, the overall function of the
Generator under this temporal framework can be formulated as follows:

T

612) = { G (Groms()") } (123)

t=1

bar generator, G, G(2)

{'-lvmv(z)
queue
/:ime

Figure 4.2.5: Generation from Scratch [2]

Track-conditional Generation

This method can be considered as an extension of the MuseGAN model to a human-AI coop-
erative framework, as it can be applied in music accompaniment generation or in other tasks,
where the involved generative procedure is conditioned to some kind of prior information. In
particular, it aims to capture the underlying temporal structure of a specific human-composed
track, which is assumed to be given as input to the model in the form of a bar sequence Y,
in order to generate the remaining tracks. As demonstrated in the diagram of Figure 4.2.6,
the conditional Generator GG° produces the consecutive bars of the formatted accompaniment
segment in a sequential manner, by receiving two distinct inputs, the conditional track y®
and a time-dependent random noise vector Z®, where t signifies the index of the current
bar. However, since the conditional bar sequence is usually represented in a high-dimensional
space, an additional encoder network FE' is included in the system architecture. This module
maps y® to a low-dimensional embedding in the space of Z®), by extracting inter-track
features that can be useful for the generation of the other musical parts, as suggested in
former related approaches [15]|. Using formal notation, the overall function of the conditional
Generator can be formulated as follows:
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G(Z,Y) = { o (?(t),E(?(t)))} (4.2.4)

G(7,¥)

Gl ¥ 1 |||

Figure 4.2.6: Track-conditional Generation [2]
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4.2.4 MuseGAN

MuseGAN constitutes an integration and augmentation of the multi-track and temporal
models, which have been elaborately presented at the previous sections. As illustrated in
Figure 4.2.7, the input of the system consists of four different parts:

e an inter-track time-independent random vector z
e an inter-track time-dependent random vector z;

M intra-track time-independent random vectors z;

M intra-track time-dependent random vectors z; ;
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bar generator, €, Ja— . B "l.I

Figure 4.2.7: MuseGAN system diagram [13]

The shared temporal structure Generator Gien,y, as well as the corresponding private temporal
structure Generator Gyep,; for each track ¢, where the index ¢ ranges from 1 to M, map the
time-dependent input random vectors z; and z;, to sequences of latent variables that contain
inter-track and intra-track temporal information respectively. The resulting output series
are concatenated with the time-independent random vectors z and z; and then fed into the
bar Generator G,,, which produces musical phrases in a sequential manner. Using formal
notation, the overall generation procedure can be formulated as follows:
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M,T

G(Z) = {Gbar,i (Z> Gtemp(zt)(t)v Zj, Gtemp,i(zi,t)(t)> } (425)

it=1

where z = (z,2,2;,2;;) for each i € {1,...,M} and t € {1,...,T}. As regards the case of
the track-conditional generation, the aforementioned mechanism is slightly modified by the
inclusion of the additional encoder module that extracts useful inter-track features from the
user-provided musical part.

Bar Generator

Figure 4.2.8: Bar Generator in MuseGAN [13]

As graphically displayed in Figure 4.2.8, the inter-track input components intuitively repre-
sent features that do not depend on a specific track, but instead are related to the general
configuration of the musical composition. Such characteristics include, among others, the
chord progression or the musical style. Therefore, the aforementioned random vectors can
be considered associated to the composer generative mode. On the other hand, following an
equivalent reasoning, the remaining intra-track input components represent track-dependent
features, such as melody and groove, and hence are inherently related to the jamming mode.

4.2.5 Implementation Details

Figure 4.2.9 demonstrates the network architectures for the aforementioned structural compo-
nents of the MuseGAN system. As it can be seen, all the involved modules are implemented
as deep Convolutional Neural Networks, which have been thoroughly presented in section
2.2.3 of chapter 2. In particular, the values included at each one of the depicted tables
represent orderly the following elements:

e Convolutional Layers: number of filters, kernel size, stride, batch normalization (BN)
and activation function.

e Fully-connected Layers: number of hidden nodes and activation function.

Both employed Generators successively augment the dimensions of the input vector through
transposed convolutional operations, which are initially applied along the time axis and
afterwards along the pitch axis. On the other hand, the Discriminator module displays
the opposite behaviour in terms of successively compressing the spatial dimensions of the
corresponding input vector, first along the pitch axis and then along the time one, through the
utilization of typical convolutional layers. Following a similar implementation, the Encoder
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network mirrors to some extent the architecture of the bar Generator, in order to produce
the latent embeddings.
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conv 128 1x2x1 (1,2, 1) LReLU conv 16 1%7 (f 7 BN LReLU
conv 128 1x2x%1 (1,2, LReLU o P R R (3’I)BN ...... (KLU~
conv 256 1x4x1 (1,2, 1) LReLU conv 16 9% 1 (2’ ) BN LReLU
conv_ . 512 1x3x1  (1,2,1)  LReLU conv 16 2x1 (2.1) BN LRelLU
fully-connected 1024 LReLU conv 16 9% 1 (2’ 1 BN LReLU
fully-connected | -

Output: E(y) € RI® |

Output: D(X) € ®

(b) Discriminator D (d) Encoder E

Figure 4.2.9: Network architectures for the structural components of MuseGAN system [2]
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4.3 Data

4.3.1 Data Representation

As mentioned before, CNNs are designed to process data with grid-like topology or structured
information in the form of generalized fixed-size arrays. To this end, the musical samples,
which are processed under the framework of the MuseGAN system are represented in the pi-
anoroll format. According to the extended analysis in section 3.1.3 of chapter 3, the pianoroll
format can be defined as a binary-valued scoresheet-like matrix representing the presence of
notes over different timesteps. Figure 4.3.1 demonstrates a pianoroll representation of a 4-bar
musical fragment. As can be seen, the horizontal axis represents time in a symbolic formula-
tion that discards tempo information resulting in equally sized time fragments for each beat,
while the vertical axis represents notes ordered from the low-pitched to the high-pitched ones.
A colored pixel (pixel with value 1) indicates that a specific pitch is played at the current
timestep.

polyphonic v multi-track %

4 Bar1 Bar 2 Bar 3 Bar 4
a3l o e L
pitch f———— — = e —— 5—-?:__—_
5 5 |[=5 & : = =5 : —=
1 1
1 =
1 il
1 1
4 AH
1 1 -
time % t i

Figure 4.3.1: Pianoroll format with symbolic timing [13|

However, the aforementioned method can represent polyphonic musical pieces corresponding
only to one single track. To that end, in order to tackle this limitation and model music
composed of multiple tracks, Dong et al. [2| introduce the multi-track pianoroll representation
format. As graphically displayed in Figure 4.3.2, a multi-track pianoroll is defined as a set
of piano-rolls corresponding to different musical tracks.

Using formal notation, an M-track piano-roll of one bar is represented as a tensor

x € {0, 1}xsxM (4.3.1)

where R denotes the number of timesteps included in a bar and S symbolizes the total
number of pitch candidates. Consequently, an M-track piano-roll of T" bars is represented as
a sequence of tensors

X ={X0)r, (4.3.2)

where X® € {0, 1}#9*M indicates the multi-track pianoroll of bar ¢.

131




Chapter 4. Baseline Project: MuseGAN
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Figure 4.3.2: Multi-track pianoroll format [13]

4.3.2 Dataset

The piano-roll dataset employed under the framework of the MuseGAN system is derived
from the Lakh MIDI Dataset (LMD) [16], which constitutes one of the largest symbolic music
corpora, including 176.581 unique MIDI files created by Colin Raffel. As discussed in section
3.1.1 of chapter 3, this dataset incorporates unlimited, polyphonic, inconsistent expressive
characteristics and encompasses various music genres, instruments and time periods. How-
ever, most of the included MIDI files are quite noisy, since they are mainly scraped from
the web or user-generated. To this end, Dong et al. |2] utilize a subset of the LMD, known
as LMD-matched, which, as the name suggests, comprises 45.129 files matched and aligned
with the corresponding entries in the Million Song Dataset (MSD) [17]. The resulting set
of training examples after the conversion of the aforementioned MIDI files into multi-track
piano-rolls is called Lakh Pianoroll Dataset or LPD for short and can be found on the
project’s website.

4.3.3 Data Preprocessing

All the steps involved in the data preprocessing procedure, which is applied in order to
construct the final set of training examples, are graphically illustrated in the diagram of
Figure 4.3.3.

track pick only those |

midi2pianoraoll merge tracks | « with the highest 1 ‘s

MIDI file | =—— —_— | matching | training data

—— S N — H _eall [ pee——— S N — _ 1 fid s 1
= 96 time steps in a bar-! p1ano roll merge to 5 tracks: | prano roll i m.n idence scare 1 (50,266 phrases)
i 1+ witha Rock tag !
I i H ;
1.

* 128 possible pitches * bass

1 ]
H g
md/dtime  V J ) seeecccccccccccccacaaa.
output i l drums i ---------------- i y{‘ * structural feature -i
a Nx96x128xM i “ = guitar ! il b - i based segmentation |
y ! - o

aithe Sl I e | | DD | L ERDE Te e

J matched * strings & others i mathced e : possible pitches !

A

LMD-
matched

Figure 4.3.3: Tllustration of the dataset preparation and data preprocessing procedure [2]

As can be seen, at first, the MIDI files contained in the matched version of the LMD are
converted into multi-track piano-rolls, using the python module pretty midi [225], which
has been proposed by Raffel and Ellis in 2014 for creating, manipulating and analyzing such
kind of music storing format. For each bar, the height of the score-like piano-roll matrix is
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set to 128, covering from C-1 to G-9, while the width dimension, which as mentioned before
represents the time resolution, is set to 96, in order to model common temporal patterns,
such as triplets and 16th notes. During this transformation process from MIDI files to multi-
track pianorolls, an extra minimal-length (i.e. of one timestep) rest is added between two
consecutive notes of the same pitch, in order to be distinguished from one single long note of
the same corresponding duration, while notes shorter than two timesteps are dropped. The
aforementioned pause enforcing method is applied to all tracks except drums, where only the
onsets are encoded.

Naturally, some of the involved tracks tend to be sparse in terms of containing only a few
notes in the entire musical piece. Therefore, Dong et al. in order to tackle this inherent
data imbalance issue, which impedes the learning process of the system, employ a merging
technique that integrates tracks corresponding to similar instruments. In particular, each
multi-track piano-roll included in the matched version of the produced LPD dataset is com-
pressed into five distinct track categories: bass, drums, guitar, piano and strings. Instruments
out of this list are considered as part of the strings except those in the Percussive, Sound
Effects and Synth Effects families. After this step, the LPD-5-matched set of music samples
is created, consisting of 30.887 5-track piano-rolls.

Subsequently, in order to ensure a degree of homogeneity and uniformity among the vari-
ous musical pieces, which are included into the LPD-5-matched dataset, a filtering process
is performed, based on the metadata provided in the LMD and MSD respectively. More
specifically, only the pianorolls which are in 4/4 time, correspond to a “rock” tag and present
higher confidence score in matching with any entry in the MSD, are retained. The resulting
set of music samples is called LPD-5-cleaned and contains 21.425 multi-track pianorolls.

Finally, in order to collect musically meaningful phrases for the training of the embedded
temporal model, the pianorolls included in the LPD-5-cleansed version are segmented accord-
ing to a state-of-the-art algorithm, which is called structural features and has been proposed
by Serra et al. in 2012 [226]. Under the framework of the MuseGAN system, a phrase is con-
sidered as a 4-bar musical segment and therefore longer segments are pruned into the proper
size. Furthermore, notes below C-1 or above C-8 are discarded, since they are particularly
uncommon in the majority of the examined musical compositions, resulting in 84 possible
values as regards the range of the pitch axis. In this way, 50.266 musical phrases with the
aforementioned dimensions are acquired as the final set of training data for the MuseGAN
system.

Consequently, as graphically demonstrated in
Figure 4.3.4, the size of the target output ten-
sor, which represents the artificial piano-roll of a
musical segment is

84
pitches

4 %96 x 84 x5

96 time steps

Figure 4.3.4: Data configuration [13]
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4.4 Evaluation & Results

4.4.1 Objective Evaluation

As thoroughly discussed in section 3.4.1 of chapter 3, objective evaluation in the research
field of Automatic Music Synthesis refers to a quantitative consideration of the examined
generative systems and their produced musical pieces. This process is typically based on
statistical criteria and hence employs a set of evaluation metrics in an attempt to model the
generation efficiency and capture properties of the highly intricate form of musical expression.
Under this framework, Dong et al. [2| propose one inter-track and four intra-track musical
metrics, that can be computed for both the real and the generated samples:

e Empty Bars (EB): ratio of empty bars included in the examined track (in %)

e Used Pitch Classes (UPC): mean number of pitch classes? used per bar (from 0 to
12)

e Qualified Notes (QN): ratio of “qualified” notes® (in %)
e Drum Pattern (DP): ratio of notes in beat patterns of 4/4 rhythm? (in %)
e Tonal Distance (TD): measures the harmonicity between a pair of musical tracks®
empty bars (EB; %) used pitch classes (UPC) qualified notes (QN; %) DP (%)
B D G P S| B G P S|B G P S8 D
[ training data [806_ 806104 248 101 | I.71 308 328 338 | 000 810 884 806 | 880 |
jamming | 6.59 233 183 226 6.10 | 153 3.60 413 400 | 715 566 622 631 | 032
from composer | 0.01 289 134 002 001 | 251 420 489 519 | 495 474 499 525 753
scratch  hybrid | 2.14 297 117 178 604 | 235 476 545 524 | 446 432 455 520 | 713
ablated [ "924" 00”125 068000 | T00 28R 28T ATY ] 0006 28RN 63 T 0
ack jamming | 460 347 133 344 | 205 379 423 | 739 388 623 | 9016
conditional COmposer | 0.65 207 197 — 149 | 251 457 — 510|535 484 — 500 | 845
hybrid | 209 453 103 — 405|286 443 — 432|433 556 — 671 | 718

Figure 4.4.1: Intra-track evaluation 2]
(B: Bass, D: Drums, G: Guitar, P: Piano, S: Strings)

Figures 4.4.1 and 4.4.2 demonstrate the computational results derived from the objective
evaluation process of the MuseGAN system. In particular, 20.000 bars generated by each one

2A pitch class can be defined as the group of all pitches that are related by octave and enharmonic
equivalence. In music theory, 12 distinct pitch classes can be distinguished, formulating a circular note space
called the chromatic circle.

3A qualified note can be considered as a note with duration greater than 3 timesteps (i.e. a 32" note).
The number of qualified notes included into a musical piece indicates to some extent the musical property of
fragmentation, which, as the name suggests, refers to the use of fragments or the partitioning of a musical
idea into segments. To this end, the QN metric demonstrates if the examined music samples are overly
fragmented, with higher values denoting lower fragmentation of the produced pieces.

4As elaborated in the previous section, the dataset used under the framework of the MuseGAN system
comprises pianorolls only in 4/4 time, which correspond to Rock songs. DP measures the notes presented at
the downbeats of 4/4 rhythm in accordance with the employed time resolution.

5This evaluation metric is inspired by the work of Harte et al. [18], who proposed a novel model for
the Equal Tempered Pitch Class Space, which maps 12-bin chroma vectors to the interior space of a 6-D
polytope, where the vertices represent the pitch classes. In this way, close harmonic relations such as fifths
and thirds appear as small Euclidean distances.

2th
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4.4. Evaluation & Results

of the proposed models, which have been thoroughly presented in section 4.2, are evaluated
in terms of the aforementioned musical metrics. As regards the track-conditional scenario,
the generation of the four accompaniment instrumental parts is conditioned on the Piano
track. Furthermore, under the temporal framework of generation from scratch, an ablated
version of the composer model, which does not incorporate batch normalization (BN) layers,
is also included in the process for further comparison. The intra-track values produced from
this model variant can be considered as reference, due to its minimal learning ability.

According to the elaborate analysis concerning the concept of Generative Adversarial Net-
works in section 2.3 of chapter 2, the distributions of real and fake data samples and accord-
ingly their respective statistics are forced to get as close as possible through an adversarial
training procedure. Therefore, as regards the intra-track evaluation part, which is presented
in the table of Figure 4.4.1, values approximating the ones included in the first row, which
correspond to the metrics as measured in the training set, are considered better with respect
to the efficiency of the model. Consequently, the best performance is achieved by the jam-
ming model, possibly due to the fact that each generator module involved in the jamming
structure is designed to emphasize on its own respective track and hence improving musi-
cal attributes related the intra-track objective metrics. Aside from the ablated model, the
resulting DP values indicate that drums manage to capture underlying rhythmic patterns
from the training data, despite the relatively high EB in the composer and the hybrid model.
From UPC and QN, it can also be observed that all models tend to use more pitch classes
and produce fairly less qualified notes in comparison with the set of ground-truth samples.
The authors ascribe this form of noise which is introduced into the generation process to
the binarization method applied in order to transform the continuous-valued output of the
Generator modules to a binary-valued pianoroll.

tonal distance (TID)
B-G BS BP G5 GP 5P

train. 1.57 158 151 110 102 1.04
train. (shullled) 1.59 159 156 1.14 112 1.13
from Jjam. 156 160 154 1.05 099 1.05

comp. | 1.37 136 130 095 098 0091

scratch
SCrACl - pebrid | 134 135 132 085 085 0.83

track-  jam. 1.51 153 150 1.4 095 1.00
condi- comp. | 141 136 140 0% 101 095
tional hybrid | 1.39 136 138 096 094 095

Figure 4.4.2: Inter-track evaluation [2]
(B: Bass, D: Drums, G: Guitar, P: Piano, S: Strings)

As regards the inter-track evaluation part, which is presented in the table of Figure 4.4.2,
larger TD values imply weaker harmonic relations between the examined pairs of tracks
and hence the smaller ones correspond to the intended model behaviour. As can be seen,
this is achieved by the composer as well as the hybrid model. This result suggests that
the aforementioned architectures are more suitable for the task of multi-track polyphonic
generation compared to the jamming model in terms of cross-track harmonic relations, since
they both involve the presence of a principal coordinator, who arranges to some extent the
various instruments, based on harmonic and orchestration principles.
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4.4.2 Subjective Evaluation

As elaborated in section 3.4.2 of chapter 3, subjective evaluation constitutes an indispensable
assessment practice in the research area of music generation systems, since it attempts to
bridge the gap between the quantitative evaluation of the music quality, which emerges from
the use of objective metrics, and the human judgement.

| [H R _MS C OR |

_— jam. 283 329 288 284 288
pro comp. | 312 336 295 313 312
hybrid | 3.15 333 309 330 3.16
jam. 231 305 248 249 242
pro  comp. | 266 313 268 263 273
hybrid | 292 325 281 300 293

jam. 289 344 297 301 306

from
scratch

non-

. E pro  comp. 270 320 298 297 286
=4 2 hybrid | 278 334 293 298 3.01
g 1;3 jam. 244 33 167 277 1469

2 | pro comp. | 235 321 259 267 262

hybrid | 249 329 271 273 270

Figure 4.4.3: User Study [2]
(H: Harmonious, R: Rhythmic, MS: Musically Structured, C: Coherent, OR: Overall Rating)

In this context, Dong et al. [2] conduct a user study in the form of a listening test, which, as
mentioned in section 3.4.2 of chapter 3, is considered the most fundamental, common and at
the same time convincing evaluation method, providing human feedback in a comprehensive
manner. The participants of the survey are 144 subjects, who have been recruited mostly
from the Internet via the social circles of the authors. Through a simple questionnaire probing
their musical background, the users are divided into two groups, the “pro” (44) and the “non-
pro” (100). Each subject listens to 9 audio clips presented in random order, where each one
of them consists of 3 four-bar phrases generated by one of the proposed models and quantized
by 16" notes. Then the user rates the aforementioned clips using a 5-point Likert scale (1
denotes the minimum and 5 the maximum), in terms of whether they

1) have pleasant harmony

2) have unified rhythm

4) are coherent

5

)
3) have clear musical structure
)
) the overall rating

The produced results are demonstrated at the table of Figure 4.4.3. As can be seen, all
participants, irrespective of their musical knowledge level or experience, show a preference
for the hybrid model as regards the temporal framework of Generation from Scratch. In the
case of Track-conditional Generation, the music experts favor the hybrid model, while the
non-experts slant towards the jamming model. Furthermore, it can also be observed that
the hybrid as well as the composer models receive higher scores for the criterion Harmonious
under the Generation from Scratch framework in comparison with the ones associated to the
jamming model. This inference is in accordance with the results of the objective evaluation,
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as it indicates that the aforementioned model structures, which incorporate a coordinated
track arrangement mechanism, are capable of handling multi-track interdependency in a more
efficient manner.
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Chapter 5. Unconditional Generation

This chapter aims at providing a complete overview of our proposed GAN-based frame-
work for the task of Unconditional Generation. In particular, section 5.1 introduces the
main characteristics of the generation problem that we attempt to tackle. Section 5.2
includes a detailed description of the system architecture, the implementation of the
various structural components, as well as their respective training mechanism. Section
5.3 elaborates on the utilized form of data representation, the dataset and the required
preprocessing steps. Section 5.4 focuses on the employed experimental protocol, while
section 5.5 engages on a thorough analysis of the results produced using the afore-
mentioned setup. Lastly, section 5.6 presents our user study related to this task and
discusses its subjective findings.

5.1 Task Description

As thoroughly discussed in chapter 3, the problem of Automatic Music Synthesis involves
a huge variety of different techniques, methods and architectures that aim to emulate the
numerous variants of the human compositional practice and also model the diverse aspects
and multifarious attributes that characterize musical pieces. Since it is particularly hard to
fully investigate the undoubtedly vast research field of Al music, our initial approach to the
aforementioned problem in the context of this thesis focuses on the task of Unconditional
Generation of multi-track polyphonic musical samples.

Unconditional Conditional

=" Qi [

* Prime melody < Tags
e Lyrics - Video clips

Figure 5.1.1: Unconditional vs Conditional Generation [227]

According to the specialized analysis in section 3.2.1 of chapter 3, polyphony is defined as a
type of musical texture which consists of two or more distinct melodic lines that are com-
bined to flow and unfold simultaneously in a coordinated manner, introducing in this way
complex patterns along the time axis, as well as harmonic dependencies between rhythmically
concurrent notes. As a matter of course, the automatic generation of polyphonic music is
notably challenging, especially coupled with the use of multiple different musical instruments
or tracks. The term “unconditional” suggests that the generation procedure does not include
any prior knowledge or supplementary information from the human user, contrary to the
“conditional” case, which typically relies on additional human-provided data in the form of
lyrics, lead sheet, the respective chord progression or a primary melodic line for instance. As
graphically demonstrated in Figure 5.1.1, the unconditional mechanism is typically based on
the transformation of a random input into a meaningful form of musical expression.

140



5.2. Model

5.2 Model

Our proposed model for automatically generating polyphonic musical segments of multiple
tracks from scratch, i.e. without being subjected to conditional information of any kind, is
grounded on the MuseGAN system, which constitutes one of the most prevailing state-of-
the-art approaches to the examined research problem, as elaborately discussed in chapter 4.
The specific details as well as the respective alterations we performed on the baseline project
will be meticulously presented in the following subsections.

5.2.1 Architecture

Following [2], we design a framework for polyphonic music generation in symbolic format
including 5 distinct tracks (Bass, Guitar, Strings, Piano, Drums), based on a Convolutional
GAN mechanism. The core architecture of our proposed system is inspired by a later work of
Dong and Yang [19], which introduces the incorporation of binary neurons into the structure
of the MuseGAN model for directly generating binary-valued pianorolls and studies various
binarization methods that can be employed. As graphically displayed in the diagram of
Figure 5.2.1, two fundamental modules are included:

Generator Discriminator

...... -

shared/private design

True/Fake

shared/private | G
design ey

Figure 5.2.1: Architecture diagram of our proposed model

e Generator
The Generator component, as thoroughly discussed in previous chapters of this thesis,
produces novel data instances, by mapping an input random noise vector z, sampled
from a prior distribution, to the output target data space of musical representations, via
consecutive upsampling convolutional operations. As shown in Figure 5.2.1, it consists
of a shared network Gy, followed by M private subnetworks G; (1t =1,...M), each
one corresponding to a specific track included in the musical composition. The shared
Generator (G initially produces a common high-level and more abstract form of the
output musical segment, which intuitively represents a general musical idea that is
jointly shared among the various tracks. On account of this fact, G, can be considered
as a composer that coordinates and arranges the various instruments based on harmonic
and orchestration principles. Consequently, each private Generator G; transforms this
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abstract representation into the final piano-roll output for the corresponding track,
according to its own musical properties, such as textural elements, melodic patterns,
rhythmical motifs etc. Thus, these track-specialized modules can be regarded as distinct
musicians improvising over the individual characteristics of each instrument in the
context of jamming mode. It can be easily observed that this structure differs from
our baseline project |2] regarding all the proposed multitrack interdependency models,
which have been extensively presented in section 4.2.2 of chapter 4.

e Discriminator

The Discriminator component evaluates the input data instances x in terms of au-
thenticity, by predicting the label of their respective origin class. This process is per-
formed via successive convolutional operations. As demonstrated in Figure 5.2.1, from a
structural perspective the Discriminator module mirrors the Generator’s design. More
specifically, it consists of M private subnetworks D;', (1t =1,..., M), with each one
corresponding to a specific track included in the musical composition, followed by a
shared network D,. At first, each private Discriminator D; extracts low-level features
and detailed attributes from the corresponding track of the input pianoroll. Their pro-
duced outputs are then concatenated and fed into the shared Discriminator D, which
formulates a common, high-level abstraction of the final music representation. Similar
to the Generator case, the analogy between the aforementioned structural units and
jamming-composer modes accordingly is evident. The main difference between this
network mechanism and the reference system lies in the incorporation of track-focused
discriminative modules, since MuseGAN employs only one shared Discriminator that
evaluates all the contained musical tracks collectively.

As can be seen, our system provides a more compact and consistent mechanism for the un-
conditional generation task, especially with respect to the input, since it requires only one
random noise vector as opposed to MuseGAN, which employs 4 different kinds of inputs, each
one representing distinct musical dependencies. It can also be regarded as a structural varia-
tion of the hybrid model that incorporates the shared-private design for both Generator and
Discriminator modules. This further justifies our architecture since the hybrid model itself
merges the two compositional practices from an implementation perspective and according
to the respective analysis in section 4.4 of chapter 4, it outperforms the other multi-track
interdependency models in terms of inter-track and subjective evaluation, while achieving
adequate scores as regards the intra-track objective metrics.

5.2.2 Implementation

As previously noted, all the Generator and Discriminator modules involved in our proposed
system are designed as deep Convolutional Neural Networks [2, 19] and implemented using
the open source ML framework PyTorch, which is formulated on the Python programming
language and the Torch library and constitutes one of the most preferred platforms for deep
learning research. We employ as reference the code! for the ISMIR tutorial on Music Gener-
ation with GANs presented in 2019.

1 https://github.com /salul33445 /ismir2019tutorial
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According to the relevant analysis in sections 4.2.5 and 4.3.3 of chapter 4, the original project
is designed to handle data of only a specific configuration regarding time-related attributes,
such as the number of produced bars and the beat resolution, as well as tonal characteristics
like the number of used pitches. In order to tackle this limitation and further investigate the
generative capabilities of our proposed system, we extend the baseline implementation by
performing a customization process with respect to a group of parameters, that define vari-
ous generative configurations and are presented in Table 5.1 with their respective notation.
This modification allows us to experiment over multiple aspects of the generative procedure
and compare their effect on the produced result and its corresponding musical properties.
Furthermore, it entails a modulation on the internal structure of our Generator and Discrim-
inator components in accordance to the input and the desired output configuration, resulting
in a particularly flexible and adaptive mechanism.

s number of samples
l latent dimension
t number of tracks
r bar resolution
P number of pitches
m number of measures
o (=m-r) | number of total timesteps
b beat resolution
7 lowest pitch

Table 5.1: Parameter Notation

Input: z € R*! (reshape to s x I x 1 x 1 x 1) ‘

Layer Type Number of Filters Kernel Size Stride Normalization Activation
transconv 2-1 mx1x1 (m,1,1) Batch ReLU
transconv l Ixr/2x1 (1,1,1) Batch ReLU
transconv /2 1x1xp/4 (1,1,1) Batch ReLU
transconv l/4 Ix1x(p/4+1) (1,1,1) Batch ReLU

Output: XERSXI4><m><7’/2><p/2

Table 5.2: Shared Generator G,

Input: x € Rs X VAxmxr/2xp/2 ‘

Layer Type Number of Filters Kernel Size Stride Normalization Activation
transconv /8 Ix(r/2+1)x1 (1,1,1) Batch ReLU
transconv 1 I1x1x(p/2+1) (1,1,1) Batch ReLU

Output: x € R * 1™ > XP (stack along track axis for final vector) ‘

Table 5.3: Private Generator G,

Tables 5.2 and 5.3 demonstrate our parameterized network architectures for the involved
Generator modules. As can be seen, both these structural units successively augment the
dimensions of the input vector via transposed convolutional operations, which are initially
applied along the time axis and afterwards along the pitch axis. Following the reference
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implementation of [2], a Batch Normalization layer (BN) is added before each non-linear
activation function.

Accordingly, Tables 5.4 and 5.5 display the customized network configuration for the Discrim-
inator components of our proposed music generation framework. It can be easily observed
that the Discriminator modules act in reverse mode, compared to the Generator ones, in terms
of gradually compressing the spatial dimensions of the corresponding input vector, first along
the pitch axis and then along the time one, via the utilization of typical convolutional layers.
In this case, the Layer Normalization? practice is applied before the non-linearity, as it does
not depend on the employed batch size and can be considered more feature-oriented.

’ Input: x € R* %1 X°XP? (veshape to s x 1 x m x r x p) ‘

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv /8 Ix1x(p/2+1) (1,1,1) Layer Leaky ReLU
conv /8 Ix(r/2+1)x1 (1,1,1) Layer Leaky ReLU

Output: x € R X V/8xmxr/2Xp/2 (stack along track axis for next layer) ‘

Table 5.4: Private Discriminator D,

Input: XGRsxtl 8xmXxXr/2xXp/2
Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv /2 I1x1x(p/4+1) (1,1,1) Layer Leaky ReLU
conv 1/2 1x1xp/4 (1,1,1) Layer Leaky ReLU
conv l Ixr/2x1 (1,7/2,1) Layer Leaky ReLU
conv l (r/24+1)x1x1 (1,1,1) Layer Leaky ReLU
conv 21 r/2x1x1 (1,1,1) Layer Leaky ReLU
| dense r (reshape to s x 2-1 before) ]

‘ Output: y € R ‘

Table 5.5: Shared Discriminator D,

It should be pointed out that our parameterization, from a mathematical perspective, is for-
mulated on multiples and mostly submultiples of the number 2, which constitutes to some
extent the basis of the note value® system in music theory. Since the utilized training mu-
sic samples are only in 4/4 time signature, this modified network architecture enables our
proposed system to emphasize on rhythmical attributes and in this way capture temporal pat-
terns and motifs presented in the examined musical segments, which can be further employed
for the generation of novel data instances.

5.2.3 Training Process

According to the elaborated and detailed analysis on the framework of Generative Adversarial
Networks presented in section 2.3 of chapter 2, the GAN learning process can be modeled
as a two-player turn-based game, where the alternating actions of the two opponents, the
Generator and the Discriminator, involve the update of their respective weight parameters

2The implementation code is derived from https://github.com/pytorch /pytorch /issues/1959.
3In music notation, a note value indicates the relative duration of a note, based on the characteristics of
its representation form.
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5.2. Model

via the typical BackPropagation Algorithm. Following [2]|, we employ the modified version
of the minimax objective function for the training of our proposed system, that was initially
introduced by Gulrajani et al. in [20] and can be mathematically described as follows:

min max V*(G, D) = Exp, [D(x)] = Eznp, [D(G(2))] + Egpe (V2 D(F) 2 = 1)7] (5.2.1)

In the context of the utilized notation, pg represents the ground-truth distribution of the real
music samples, p, indicates the prior distribution from which the input random noise vector z
is sampled and pg is implicitly defined by uniform sampling along straight lines between pairs
of points derived from the data distribution p; and the generator distribution p,, accordingly.
As can be easily observed, the value function V*, besides the typical probability expressions,
includes an additional gradient penalty term, which is found to ensure faster convergence
to better optima and stabilize the overall training process through a regularization of the
computed gradient magnitude [20].

As regards the consecutive interchanges between the individual learning procedures of the
Generator and the Discriminator modules respectively, we follow the relevant research lit-
erature [20, 2, 19] and embrace the training strategy which is thoroughly described and
graphically illustrated in section 2.3.3 of chapter 2. More specifically, we introduce into our
implementation a condition whereby the Generator is updated after every k optimization
steps of the Discriminator and further experiment over different values of the hyperparam-
eter k. Furthermore, we employ a batch-learning policy for the training of our proposed
system, under which the incorporated model parameters are updated at each step using data
derived only from the current mini-batch. Algorithm 3 summarizes all the aforementioned
training details and features in a pseudocode format.

In order to gain insights of our learning process, we incorporate an additional validation phase.
As the name suggests, this phase enables us to observe and also evaluate the behaviour of our
proposed GAN over unseen data instances, which are excluded from the set of training music
examples. From a computational aspect, it involves the estimation of the Discriminator and
Generator losses as performance indicators of the current training step, using samples derived
from the so-called wvalidation set and the assessment of both real and generated piano-rolls,
produced by the current model state, via our employed metric system.

In advance, we further exploit this additional training feature by including an auxiliary
Early-Stopping mechanism into our proposed generative framework. In the field of Machine
Learning, Farly-Stopping can be defined as an optimization technique, which is applied in
order to prevent overfitting phenomena without compromising model accuracy and efficiency.
This procedure mostly relies on the monitoring of a specified performance measure, which is
associated with the model’s generalization error. If this quantity starts to degrade, indicating
the model begins to learn the statistical noise that is inherently integrated into the training
dataset and eventually surpasses a predefined limit, a respective condition triggers the ter-
mination of the training process. Since validation strategy constitutes the most frequently
used and at the same time effective approach regarding the implementation of this method,
we employ as our monitoring metric the mean sum of the Discriminator and the Generator
losses, as computed during validation phase at each training step.
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Chapter 5. Unconditional Generation

Finally, we also apply a checkpointing technique for the purpose of saving various versions of
our model components at successive stages of the training process, as they can be afterwards
used for the generation of novel music pieces in an inference context.

Algorithm 3: Mini-batch Training Algorithm for GANs with Gradient Penalty

In Input:

Gradient penalty coefficient A

Number of Discriminator iterations per Generator iteration k
Batch size m

Adam* hyperparameters a, 31, 52

Number of total training steps N

for number of training iterations do

Update Discriminator D, by ascending its stochastic gradient.

for k steps do
for +=1, ..., m do
Sample: real data @ = (@, €,) ~ pa
latent variable z ~ p,
random number € ~ U|0, 1]
T Gg(z)
e x+(l—e-x
L® < Dy () — Dy(x) + M| VDo (2)||2 — 1)
endfor

1 &

w < Adam Vw_ZL(Z)7w704751752
me3

endfor

Update Generator GGy by descending its stochastic gradient.

Sample a batch of latent variables {2} ~ p,

0 «— Adam (V@% Z[—Dw(Ga(zi))L 0, a, b1, 52)

=1

endfor

4Adam is an optimization algorithm that can be used instead of the typical stochastic gradient descent
procedure for the update of the network weights in an iterative framework. This method computes individual
adaptive learning rates for different parameters from estimates of first and second moments of the respective
gradients. For more details, please refer to section 2.2.2 of chapter 2.
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5.3. Data

5.3 Data

5.3.1 Data Representation

Following [2, 19|, we employ the multi-track pianoroll format for the representation of the
examined music samples under the framework of our proposed convolutional GAN-based sys-
tem. According to the detailed analysis in section 4.3.1 of chapter 4, a multi-track pianoroll
is defined as a set of piano-rolls, each one corresponding to a specific musical instrument in-
cluded in the overall composition. As graphically demonstrated in Figure 5.3.1, the vertical
axis of the score-like pianoroll matrix represents pitches in ascending order, while the hori-
zontal dimension indicates time in a symbolic format that discards the tempo information.
The contained binary values designate the presence (1) or absence (0) of notes over different
timesteps.

IEDrurr:ps
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|
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® strings ; [ |
Piamo ﬁ Guitar sa“' |
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- ;EStrln!;:s E=EHEEEsE=s E EEE

Figure 5.3.1: Multi-track pianoroll format [228|

5.3.2 Dataset

The pianoroll dataset used for the training process of our model is derived from the Lakh
MIDI Dataset (LMD) [16] after the preprocessing procedure, which is thoroughly described
in section 4.3.3 of chapter 4 and graphically illustrated in Figure 4.3.3. More specifically, we
employ the LPD-5-cleansed version®, which contains only those pianorolls with the higher
matching confidence score to MSD entries [17], a “Rock” tag and 4/4 time signature.

5.3.3 Data Preprocessing

As mentioned before, the final set of training examples, which will be processed under the
framework of our proposed model, requires the segmentation of the pianorolls included in
the cleansed dataset into musical phrases of proper format, regarding the temporal and the
tonal arrangement. To this end, we develop a routine responsible for the data preparation,
based on the open source Python library Pypianoroll. Following our customization practice
regarding the internal architecture of both the Generator and Discriminator modules, which
is elaborately presented in the previous section, we further parameterize our implementation

Shttps://salul33445.github.io/lakh-pianoroll-dataset /dataset.html
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Chapter 5. Unconditional Generation

with respect to a group of user-defined attributes that determine the data configuration. In

particular:

1) At first, a downsampling process is applied. In this way, the temporal resolution of the
input pianorolls is set to the proper size, as specified by the parameters beat resolution

and measure resolution respectively.

2) Afterwards, the target pitch range is acquired (vertical dimension), in accordance with
the input parameters lowest pitch and number of pitches. Notes outside this scope are

discarded.

3) Finally, a variable number of candidate samples is collected from each song included in
the multi-track pianoroll dataset, based on a randomized rule. The size of each sample
is defined by the parameter number of measures, which equivalently indicates the length
of a musical phrase. Only samples that contain an adequate amount of notes among
the various tracks, as specified by a fixed threshold, are retained.

Eventually, after these data preprocessing steps, the
resulting set of musical examples comprises approxi-
mately 15600 phrases, derived from 7323 distinct rock
songs. The exact number varies for each particular
configuration, mainly due to the integrated random-
ness concerning the selection of candidates, as well
as the downsampling process, in accordance with the
specified resolution. Furthermore, we perform a split-
ting of our final dataset into a training and a valida-
tion set accordingly. As the name suggests, the train-
ing set is used for the iterative updates of the model

5 7% Validation Data
Training Data

Figure 5.3.2: Dataset split ratios

weights, while the validation one is deployed during our introduced validation phase for the
evaluation of the system performance. The utilized split ratios are graphically demonstrated
in the pie chart of Figure 5.3.2. The overall training duration is less than 3 hours with a

GeForce RTX 2080 Ti GPU.
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5.4 Experimental Protocol

5.4.1 Experimental Setup

In order to evaluate our proposed model and and thoroughly examine its effectiveness over
the creation of aesthetic multi-track polyphonic musical pieces from scratch, we conduct a
group of experiments that enable us to investigate various aspects of the generative process.
The corresponding details as well as the produced results will be extensively presented in the
following sections of this chapter. Before proceeding further, we consider it useful to define
the experimental configurations that will be employed on the proximate analysis. These
configurations are summarized in Table 5.6. In more detail:

e () simulates the data configuration utilized under the framework of MuseGAN.

e (5-Cjs examine 4 distinct values of the parameter beat resolution under k = 6 (number
of steps per Generator update).

o (s-Cy examine 4 distinct values of the parameter beat resolution under k = 11 (number
of steps per Generator update).

e (U investigates doubling the latent dimension along with a 4 times smaller batch size.

| | &6 | & [ &6 [ & | &6 [ G | & [ G | G [ G |
Number of Pitches 84 72 72 72 72 72 72 72 72 72
Beat Resolution 24 4 8 12 16 4 8 12 16 4
Generation ~ Number of Bars 4 4 4 4 4 4 4 4 4 4
parameters Lowest Pitch 24 24 24 24 24 24 24 24 24 24
Samples per song 8 8 8 8 8 8 8 8 8 8
Latent Dimension 128 128 128 128 128 128 128 128 128 256
Number of Steps 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
Batch Size 16 16 16 16 16 16 16 16 16 4
Training Number of Phrases 4 4 4 4 4 4 4 4 4 4
Steps per G update 6 6 6 6 6 11 11 11 11 6
parameters g s per Evaluation | 50 50 50 50 50 50 50 50 50 50
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Betas (0.5,0.9) | (0.5,0.9) | (0.5, 0.9) | (0.5,0.9) | (0.5,0.9) | (0.5,0.9) | (0.5,0.9) | (0.5,0.9) | (0.5,0.9) | (0.5,0.9)

Table 5.6: Experiment Configurations

5.4.2 Objective Metrics

As pointed out in section 4.4.1 of chapter 4, Dong et al. [2] utilize one inter-track and
four intra-track musical metrics for the objective evaluation of the MuseGAN, that can be
computed for both the real and the generated samples:

e Empty Bars (EB): ratio of empty bars included in the examined track (in %)
Qualified Notes (QIN): ratio of “qualified” notes (in %)
Drum Pattern (DP): ratio of notes in beat patterns of 4/4 rhythm (in %)

Tonal Distance (TD): measures the harmonicity between a pair of musical tracks

Used Pitch Classes (UPC): mean number of pitch classes used per bar (from 0 to
12)
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In the context of our approach, we initially re-implement from scratch all the aforementioned
musical metrics according to their descriptive analysis, as it is presented in the original paper
[2]. For this purpose, we employ the Python library NumPy, which constitutes a fundamental
package for scientific computing based on structured matrices. Therefore, we transform the
multi-dimensional real-valued torch tensors produced by our Generator module, as well as
the real samples, into binary arrays via a Thresholding operation. As the name suggests,
thresholding is the process of setting to zero all values that are lower than a predefined
threshold and mapping the rest to one. We also apply this technique for the visualization of
these real-valued vectors in the form of multitrack pianorolls.

We further expand our employed objective evaluation system, by introducing three additional
musical metrics® that emphasize on tonal characteristics and texture elements:

e Used Pitches (UP): mean number of unique pitches used per bar, including all
octaves in the predefined range

e Scale Ratio (SR): ratio of notes in the given music scale” (in %)
e Polyphonic Rate (PR): ratio of polyphonic timesteps® (in %)

It is worth mentioning that these supplementary quantitative indices are also considered
intra-track and can be calculated for both real and fake samples, produced by our proposed
generative system.

6We base our implementation on an existing code version of the baseline project.

"As stated in LMD Statistics, a significantly large number of MIDI files contained in the Lakh MIDI
Dataset and consequently in our Lakh Pianoroll Dataset (LPD) are in C major scale, since this musical
key constitutes the most frequently used and easily applied choice for many automatic MIDI transcription
software packages. Therefore, we use the C major scale for the implementation of our SR metric, which
accordingly indicates the percentage of physical tones without accidentals, such as sharp and flat, in the
corresponding pianoroll.

8 A timestep is considered polyphonic if the number of pitches being simultaneously played at this specific
temporal slot exceeds a specified threshold. Typically, this threshold value is set to 2.
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5.5 Results

5.5.1 Analysis of Training Process

As discussed in section 2.3 of chapter 2, the core mechanism of GAN systems in the field of
generative modeling is fundamentally based on the adversarial learning game between the two
opponents, the Generator and the Discriminator. However, the ideal training method still
remains an open problem, since it is particularly hard to explicitly identify the convergence
state from a computational perspective. Thus, a thorough examination of the training process
of our proposed model regarding the task of Unconditional Generation is considered essential.

To this end, in order to gain insights into the learning procedure and elaborately inspect the
behavior of the individual system components, we employ the experiment configuration Cy,
which is presented in Table 5.6 and constitutes the default case under our music generation
framework. Other model variants corresponding to different generative configurations in the
context of our customized implementation lead to similar results and hence are not included
at this section of the experiment analysis.

Generator Loss Discriminator Loss

5 -15 - Step 50 (A)

0l ® * Step 250 (8)
20 - Step 1200 (C)

Step 5050 (D)

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Steps Steps

Figure 5.5.1: Training Loss of Generator and Discriminator Modules

Figure 5.5.1 demonstrates the training losses of the Generator G and the Discriminator
D accordingly, formulated as functions of training steps. More specifically, the gray curves
indicate the normalized loss values, which are smoothed via a moving average operation (over
N steps). It can be observed that the Discriminator loss initially follows an increasing trend,
as the Generator gradually uncovers underlying properties of the target data distribution
and hence produces more plausible music samples that are not easily distinguishable, and
approximately after point D it saturates. On the other hand, the Generator loss slowly
decreases in a more irregular fashion, as it progressively learns patterns and data features
that can “fool” the Discriminator in terms of inducing a gradual reduce of its classification
accuracy.

Figure 5.5.2 displays the generated piano-rolls that correspond to the four points marked in
Figure 5.5.1 and are produced during the validation phase, which is integrated at each step
of our training process, as mentioned in section 5.2.3. This illustration enables us to observe
the evolution of the created samples during training and examine the learning procedure
from a visual perspective. For further inspection, we also present in Table 5.7 the values of
our employed objective musical metrics, computed at the aforementioned training steps for
the respective piano-rolls. It is worth underlining the following observations:
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Figure 5.5.2: Evolution of the generated piano-rolls as a function of update steps
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EB (%) UPC QN (%) UP
B D G P S B G P S B G P S B G P S
Point A | 0.0 0.0 0.0 00 0.0 |120 12.0 120 12.0|51.3 459 49.6 47.8 | 55.69 62.25 51.75 57.0
Point B || 50.0 56.2 43.8 50.0 50.0|494 594 556 6.0 |37.7 61.5 548 71.1|14.62 26.69 21.19 21.94
Point C || 31.2 0.0 6.2 125 00 |1.75 4.5 438 6.06|53.1 53.5 31.7 483 | 194 544 594 9.88
Point D | 0.0 6.2 0.0 0.0 188|3.31 456 5.62 231|493 358 49.3 587 | 3.62 594 7.69 2.62
TD SR (%) PR (%) DP (%)
B-G B-S B-P G-S G-P S-P B G P S B D G P S D
Point A | 0.7 0.64 052 0.95 094 0.85]|585 628 581 63.1|100.0 94.9 100.0 100.0 100.0 53.5
Point B || 0.63 0.52 0.59 0.44 0.57 045 |52.0 60.6 66.2 60.2| 37.7 524 61.5 54.8 711 52.8
Point C || 0.76 0.97 0.66 096 09 1.1 |87.1 90.7 81.4 93.1 27 156 26.2 152 73.0 87.0
Point D || 0.96 0.66 1.01 0.87 1.07 0.93]59.1 951 619 716 | 0.8 23 31.2 46.9 9.8 82.2

Table 5.7: Metric values at marked points of training process

e At point A, i.e. the initial step of the training process, where the Generator is charac-
terized by complete ignorance regarding the target data distribution and its properties,
the output samples are quite random and involve a significant amount of noise. From a
quantitative aspect, this results in zero EB rates for all the comprised tracks, suggesting
that there aren’t any empty bars in the corresponding pianoroll and also the inclusion
of all twelve pitch classes in multiple octaves, as indicated by UPC and UP values. Fur-
thermore, QN and PR point out that the produced music is extremely polyphonic and
approximately half of the contained notes are “qualified”. Lastly, since the examined
key is C' major, 7 out of the 12 pitch classes are considered in scale, resulting in SR
close to 60% and hence relatively small TD values, implying moderately strong harmonic
relations among tracks.

At point B, which corresponds to the training step 250, a denoising trend can be
clearly observed, since the corresponding pianoroll contains significantly less notes in
comparison with the previous point and moreover half of the produced bars are empty,
as indicated by the respective EB values. This fact implies that the model begins to
discover the note density of the target data distribution. From UPC and UP accordingly,
we can conclude that, at this stage of the training, the Generator also begins to grasp
the proper pitch range of each track. In particular, it can be easily seen that clusters of
notes are gathering between specific boundaries, resulting, in this way, at even smaller
TD values and consequently stronger harmonic relations. The rest of the objective
metrics display similar behavior with point A.

As the training progresses, the Generator gradually detects rhythmical motifs and other
latent texture elements of the target distribution, such as the duration of the contained
notes. As can be observed, the pianoroll of point C (step 1200) includes longer notes
especially at the Bass track, which tends to become monophonic according to the
standards of Rock music. This qualitative inference aligns with the increase of the
corresponding QN rate and the decrease of the PR metric respectively. The UP and UPC
values indicate an improvement of the pitch ranges for each individual track, while the
increase of SR ratios implies that the majority of them are in scale. Furthermore, the
significantly high value of DP percentage suggests that the Drum track captures to a
large extent the 4/4 rhythm, via the inclusion of notes in 8- or 16-beat patterns.
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e Lastly, it can be easily observed that the pianoroll of point D, which corresponds to the
training step 5050, approximately follows the desired ground-truth distribution of music
segments, as it is characterized by essential musical properties. In comparison with the
previous training point, the respective EB, UP and UPC values indicate a further denoising
of Drum and Strings, which consequently entails an improvement of the harmonic
interrelations between Strings and the other tracks, as suggested by the smaller TD
values. Additionally, PR shows that the Bass track plays a single melodic line composed
of the lowest pitches, while the rhythmic pattern of the Drum track is much more
evident.

5.5.2 Model for Inference

As mentioned in previous sections of this chapter, two distinct losses are involved in the
training process of our proposed GAN-based generative system:

e Discriminator loss: As the name suggests, the Discriminator loss represents the cost
arising from incorrect predictions over the origin class of the examined data samples. In
practice, it comprises two individual losses, one quantifying the misclassification errors
concerning data instances derived from the ground-truth distribution and the other
indicating the cost related to the predictions over unauthentic candidates originated
from the Generator distribution.

e (Generator loss: The Generator loss quantifies the feedback from the Discriminator
regarding its classification predictions over the fake samples. More specifically, it rep-
resents the cost arising from the successful identification of its produced data instances
as fake by its opponent.

During our experiments, we employ the mean sum of the aforementioned loss values, com-
puted at the validation phase of each training step, as the monitoring metric of our auxiliary
Early-Stopping mechanism. We also attempt to calibrate this sum via the introduction of
proper weights corresponding to the Generator and the Discriminator modules accordingly.

We observed that the learning procedure becomes smoother and more regular for larger
Discriminator loss weights, since the Early-Stopping system requires a significant number
of steps to trigger the training termination. However, in this case, the generated music
samples are quite noisy and substantially differ from the ones included in the ground-truth
distribution. This is probably owed to the fact that the Generator loss, which is indissolubly
associated with the generation performance and by extension determines the quality of the
produced musical pieces, is disregarded. On the other hand, larger Generator loss weights
induce an early termination of the training process, which may prevent the Generator from
discovering underlying patterns and features of the target data distribution.

Therefore, we can conclude that the utilization of a combination of the two distinct losses
in the form of sum as the monitoring index, leads to a training imbalance between the
two individual components of our GAN system, which negatively affects their respective
performance. To this end, we employ for our Inference process the Generator model of
the last training step and not the one indicated by the aforementioned quantity, as it has
been experimentally proven [2] that this Generator version is capable of producing music of
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sufficient quality.

Nevertheless, Heusel et al. [229] introduced in 2017 a novel monitoring metric for the training
of GAN systems in the research field of Computer Vision, known as Fréchet Inception Distance
or FID for short. From a mathematical perspective, it is defined as the Wasserstein distance
between two multivariate Gaussian distributions, which represent the real and fake images
accordingly. The features modeled by each distribution are extracted from the inception layer
of a deep CNN, called Inception-v3 [230], which is usually employed for various Computer
Vision tasks. However, the inclusion of this metric into our research problem in the area of
Music Generation requires an equivalent network trained to extract musical features from
representations of symbolic format, such as the multi-track piano-roll. Thus, we consider the
aforementioned implementation as a potential direction for future work.

5.5.3 Qualitative Inspection

Figure 5.5.3 illustrates the multi-track pianoroll of 4 musical phrases generated from scratch
by our proposed GAN-based framework during the process of Inference. The employed
Generator network corresponds to the experiment configuration Cy, as presented in Table
5.6. It is worth pointing out the following qualitative observations:

e The included tracks are generally playing in the same music scale, preserving an ap-
proximate pitch range from C2 to C4.

e Chord-like intervals can be detected at multiple timesteps, especially in Guitar, Pi-
ano and Strings, which are the mainly polyphonic tracks and hence tend to play the
accompaniment parts.

e The Bass track is principally monophonic, playing a single melodic line often composed
of the lowest pitches.

e The Drum track follows an evident rhythmic motif, which mainly comprises notes in
8- or 16-beat patterns.

e The pitches of the melodic tracks (all expect Drums) sometimes overlap. This fact
indicates nice harmonic relations among the included instruments, that can contribute
to an acoustically pleasant result.

T tr
|
I

‘

I

Figure 5.5.3: Pianoroll generated using our proposed model
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5.5.4 Experimentation over Generative Configurations

Our customized model implementation, which is thoroughly discussed in section 5.2.2, en-
ables us to experiment over different generative configurations with respect to the included
parameters. In order to examine the resulting variants of our framework and compare their
performance on the task of Unconditional Generation, we evaluate them in terms of our
proposed objective metrics, as presented in detail at section 5.4. More specifically, for each
experimental configuration included in Table 5.6 (all except C) we generate, using the respec-
tive Generator of the last training step, 20000 bars organised in 4-measure musical phrases,
on which we afterwards perform our objective assessment.

Table 5.8 provides an overview of the produced results in the form of mean values. In order to
gain further insights into the musical properties of the ground-truth distribution and acquire
a reference point, we also apply our objective metrics on the employed set of training music
samples. The respective statistics are displayed in the first row of Table 5.8. Since the main
goal of the Generator is to approximate as best as possible the quality of real music pieces,
values closer to the training ones correspond to better performance. However, following our
baseline project, in case of the inter-track evaluation part represented by TD metric, smaller
values are considered better regarding the efficiency of the corresponding model.

At first glance, we can easily observe the absence of a particular parameter configuration
capable of improving all the employed objective musical metrics. This fact highlights the
need for inclusion of human feedback into our assessment practice, since the quantitative
indicators cannot establish a unified criterion for the designation of the best model in terms
of generation efficiency and produced musical quality.

EB (%) UPC QN (%) UP
B D G P S B G P S B G P S B G P S
[ Ground-truth [ 1.6 1.1 41 51 32[248 416 42 457917 853 897 897[272 58 59 6.8 |
Cy 03 00 09 19 21[28 44 48 514590 582 572 608314 596 658 7.61
Cs 04 00 09 07 07312 518 533 514|490 522 565 646 | 34 757 7.73 7.05
Cy 00 21 06 12 09304 417 439 547 | 50.9 597 659 703|339 571 6.54 7.75
Cs 00 0.8 16 1.0 25309 405 458 414 |63.1 72.9 724 743|332 59 66 597
Cs 05 01 18 08 07247 49 507 54 |543 489 529 506 |2.67 6.67 7.24 822
Cr 01 01 16 02 04275 436 487 549 | 562 649 591 572|315 606 68 7.72
Cs 1.9 01 43 2.8 04264 581 608 509|631 56.7 60.1 643|286 819 844 7.78
Co 00 02 15 00 02306 392 541 548|629 545 550 453 | 34 562 73 924
Cio 02 01 00 00 04269 509 516 4.52|57.2 695 66.8 60.8 | 2.99 759 7.3 7.12
TD SR (%) PR (%) DP (%)
B-G B-S B-P G-S G-P S-P B G P S B D G P S D
[ Ground-truth | 0.7 073 0.7 07 067 066|757 746 739 72612 152 573 608 641 ] 831 |
C, 086 091 09 098 099 097[79.0 821 787 75026 21.7 49.7 53.7 58.7[ 796
Cs 057 053 056 06 062 059|804 763 72,7 700 |06 68 475 47.7 550 | 923
Cy 037 038 036 039 039 038|706 825 819 784 |01 46 285 379 50.2| 884
Cs 0.26 0.27 0.28 0.27 0.25 0.27 | 825 738 775 771 (02 29 429 470 554 | 531
Cs 09 096 092 1.08 1.03 109|805 77.6 79.0 787 |14 108 426 435 57.3| 83.5
Cr 05 056 051 061 056 0.6 |75.7 75.1 785 755 |07 57 350 348 489 | 96.0
Cs 042 037 042 045 049 046 | 70.6 719 663 677 |01 44 395 40.0 526 | 926
Co 027 031 031 034 034 038|763 823 761 828 |03 35 234 336 500 | 587
Cio 096 089 095 093 1.04 105|844 694 782 71.2|19 142 669 517 568 | 816

Table 5.8: Inference objective metrics for different experiment configurations

A closer inspection indicates that the increase of the utilized beat resolution (configuration
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() results in significantly strong harmonic relations among the tracks (TD) and also a large
proportion of “qualified” notes (QN), probably due to the fact that notes of longer duration are
more easily generated when a larger number of timesteps is employed for each beat. However,
it seems to negatively affect the rhythmic attributes of the produced musical pieces (DP), as
only half of the contained notes are in 8- or 16-beat patterns.

On the other hand, the selection of higher values for the hyperparameter k, which denotes the
number of training steps per Generator update, has a positive impact on the note density (EB)
and also other tonal characteristics of the generated samples, such as the SR. As stated in [21],
the inclusion of more steps for the individual training process of the Discriminator ensures
that it is fine-tuned near its optimal solution, while the Generator remains fixed. In this
way, the Generator is implicitly forced to uncover more detailed features of the latent target
distribution in order to fool its opponent, thereby producing candidates that approximate
human-composed music to a larger extent.

Lastly, doubling of the latent dimension (configuration Cjg) induces a slight improvement
of UPC and SR metrics for the Strings track, which is the most problematic of the included
instruments, as it usually incorporates a significant amount of noise. Furthermore, it benefits
the Drum track in terms of the desired polyphonic rate (PR).

5.5.5 Objective Comparison with Baseline

In order to examine if our proposed modifications and additional extensions constitute an
actual novelty in the research field of Automatic Music Synthesis and more specifically the
task of Unconditional Generation, we proceed in a comprehensive comparison between our
music generation system and the baseline project, MuseGAN, which is extensively presented
in chapter 4, under the employed objective metrics.

In particular, we select two different experimental configurations, corresponding to two dis-
tinct variants of our proposed framework, to be compared with the four multitrack interde-
pendency models included in MuseGAN and thoroughly examined in section 4.2.2 of chapter
4. The first one is configuration C}, which is equivalent to the original implementation in
terms of parameter values and the other is configuration C5, which is considered as default
in the context of our conducted experiments. Both the aforementioned configurations are
explicitly presented in Table 5.6. In order to ensure a fair comparison between the two music
generation approaches, we follow the inference practice of our baseline project. In particular,
for each model variant involved in the evaluation process, we generate, using the respective
Generator of the last training step, 20000 bars organised in 4-measure musical phrases. Af-
terwards we apply our objective metrics on the produced musical segments and calculate the
respective mean values.

Table 5.9 summarizes the results of the intra-track evaluation for all the examined models, in
terms of those objective musical metrics which are shared between the two implementations.
As mentioned previously, in this case values closer to the ones representing musical properties
of the ground-truth distribution correspond to the desirable generative behavior and hence
are considered better. However, it can be easily observed that there is a substantial divergence
between the training data statistics, as measured under the two examined frameworks. This
difference may result from the randomized rule that determines the collection of training
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EB (%) UPC QN (%) DP (%)
B D G P S B G P S B G P S D
baseline | 8.06 8.06 194 248 10.1| 1.71 3.08 3.28 3.38 | 90.0 819 88.4 &89.6 88.6
ours 1.6 1.1 4.1 5.1 3.2 | 248 4.16 4.2 4.57 | 91.7 85.3 89.7 89.7 83.1
jamming | 6.59 2.33 18.3 22.6 6.10 | 1.53 3.69 4.13 4.09 | 71.5 56.6 62.2 63.1 93.2
composer | 0.01 28.9 1.34 0.02 0.01 | 2.51 4.20 4.89 5.19 | 495 474 499 525 75.3

training data

Baseline hybrid | 2.14 297 11.7 178 6.04 | 2.35 476 545 524 | 44.6 43.2 455 520 | 713
ablated | 924 100 12.5 0.68 0.00 | 1.00 2.88 232 472 | 0.00 228 311 262 | 0.0
Oure c 00 0.7 04 1.3 12 | 3.63 467 4.64 529 | 55.6 75.8 74.1 75.9| 595

Cy 0.3 00 09 1.9 21 |289 44 483 5.14|59.0 582 572 608 79.6

Table 5.9: Results of intra-track evaluation of the baseline models, as well as our proposed
framework.

samples from the songs included in the employed pianoroll dataset, as explained in section
5.3.3. Thus, the two generative systems cannot be exactly compared in the context of intra-
track evaluation metrics. Furthermore, the re-training of the original model using our set
of data instances is not feasible, mainly due to the diverse implementations. Nevertheless,
as it might be seen, both of our model variants accomplish to significantly approximate the
statistics of the real distribution (bold values denote greater proximity). Moreover, as regards
the QN and DP metrics, where the aforementioned divergence is negligible, we remark that
our model outperforms all the baseline variations to a large degree (coloured cells).

TD
B-G B-S B-P G-S G-P S-P
jamming | 1.56 1.60 1.54 1.05 0.99 1.05
Baseline composer | 1.37 1.36 1.30 0.95 0.98 0.91
hybrid | 1.34 1.35 1.32 0.85 0.85 0.83
Cy 02 022 02 021 02 0.21
Cy 0.86 091 0.9 098 0.99 0.97

Ours

Table 5.10: Results of inter-track evaluation of the baseline models, as well as our proposed
framework

The results of the inter-track evaluation, which is represented by TD metric, are demonstrated
in Table 5.10 for all models involved in the comparative analysis. As referred to earlier, in this
case smaller values correspond to smaller Euclidean distances in the interior space of a 6D
polytope and hence imply stronger harmonic relations between the examined pairs of tracks.
It can be easily affirmed that our model with configuration C; notably surpasses all the
baseline multi-track interdependency architectures, by generating extremely harmonic music
segments, as indicated by the corresponding TD, which is around 0.2 for all the included pairs.
This observation comes in agreement with the outcomes of the experiments discussed in the
previous section, which indicate that the increase of the utilized beat resolution induces an
improvement of the harmonicity in the produced music samples. Furthermore, it should be
pointed out that the performance of the model with configuration C5, even though weaker
than (', is also considerable, especially regarding the harmonic distance between a melody-
like track, such as the Bass and a chord-like track, such as the Piano, Guitar and Strings.

Finally, the supplementary Table 5.11 displays the results corresponding to the three addi-
tional intra-track metrics, that we have incorporated into our objective evaluation system,
only for the two examined variants of our proposed framework. Bold values denote greater
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UP SR (%) PR (%)
B G P s B G P s | B D G P S
| training data (272 58 59 68 [ 757 746 739 T26[12 152 573 608 641 |
Ours C, [ 433 68 6.56 801|852 81.0 840 70.9
Cy |3.14 596 658 7.61

79.0 821 787 750

0.8 19 332 313 369

2.6 21.7 49.7 53.7 58.7

Table 5.11: Additional results on the evaluation of our proposed framework

proximity to the ground-truth distribution.

As can be seen, the generation efficiency of

both experiment configurations is confirmed also in the context of tonal characteristics, as
quantified by UP and SR metrics and texture elements, such as PR.
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5.6 User Study

5.6.1 Experimental Setup

As discussed before, the objective metrics cannot precisely reflect the human perception over a
piece of music, since they are just quantitative indicators of musical properties. Thus, human
evaluation is considered essential. To this end, following [2], we conduct a user study in the
form of a listening test, which, according to the extensive analysis in section 3.4.2 of chapter 3
on the matter of subjective evaluation, is generally the most preferable assessment practice in
the research field of generative modeling. Our survey is divided into two parts, with each one
corresponding to a specific music generation task implemented by our proposed framework.
More specifically, the section of Unconditional Generation, which constitutes the principal
topic of this chapter, aims at a comprehensive comparison between our Convolutional GAN-
based system and the official re-implementation of the baseline project MuseGAN. To this
end, we employ an A /B testing? format for the structure of our questionnaire, under which
musical segments, all generated from scratch, i.e. without any prior knowledge or additional
information, are paired in such a way that every created listening couple involves results
from both the aforementioned models. The evaluator is required to choose from each pair
the sample that prefers in terms of:

e Musical Naturalness: Could the musical segment be composed by a human?

e Harmonic Consistency: Are the sounds produced by different instruments in musical
consonance? Is the result acoustically pleasant?

e Musical Coherence: Are the various musical phrases associated someway through
time?

It can be easily affirmed that the first question is established on the intuitive concept of the
typical Turing test, which constitutes the simplest form of listening assessment and is applied
in several studies of generative music systems [231, 15]. This strategy evaluates whether a
machine is able to exhibit behavior indistinguishable from humans, in terms of generating
musical pieces which can be considered man-made by the users. Since our examined research
problem concerns the generation of aesthetic music in an autonomous manner, i.e. with
minimum human intervention, musical naturalness is undoubtedly essential.

As regards the second question, harmonicity is another fundamental aspect of music compo-
sitions and hence is examined in a huge variety of assessment studies in the research field of
Automatic Music Synthesis, including our reference project 2, 15, 140, 232]. It is interrelated
to the acoustical result, as it defines how euphonic and cohesive is the composite product of
individual musical voices. Thus, it constitutes an easily perceivable feature of the produced
music samples from the perspective of the human listeners.

Finally, in order to acquire human feedback over the deeper structure of our generated exam-
ples, we investigate the property of musical coherence. This term refers to vaguely defined
qualities in musical pieces that create a sense of connectivity and cohesion among the var-
ious parts of a musical entity. Musical coherence ensures that the arrangement of a music

9A /B testing constitutes an experimental methodology for the controlled comparison between two variants,
A and B, established on individual user choices over pairs of samples representing the two alternatives.
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composition represents an abstract musical idea and does not just involve random disjoint
musical phrases.

1_I**II;DII

Figure 5.6.1: File Conversion Diagram

Pypianoroll | Timidity++ N\

ﬂ > Ld) EI

: ) WAV
— i

As regards the implementation details, we conduct our evaluation experiment online by
designing the respective application based on the Python web development framework Flask.
All the utilized samples are transformed into the proper auditory format, according to the
diagram of Figure 5.6.1. As can be seen, the produced pianorolls are initially converted into
MIDI files using the Python library Pypianoroll'® and then into WAV files via the software
synthesizer Timidity++!'. After performing preprocessing by pruning longer audio samples,
the duration of each resulting audio clip, regardless of its derivation model, is equal to
approximately 12 seconds, a time period that corresponds to one 4-bar musical phrase under
the framework of our proposed system and the employed multitrack pianoroll representation.
The samples of each listening pair are randomly selected from two pools of 200 audio clips
each, produced by our proposed system using the experimental configuration Cy and the
baseline project using the composer variant accordingly and presented to the users in random
order. In order to avoid bias, we use LPD-cleansed version as the training dataset for both
models.

Age Gender Music Knowledge

65.0%
Self-t hit
-

Male

20-30

30 plus Non self-taught

Familiarity with ML and Al Years of Music Study
Expert Proficient

0% 22.5%

Novice

57

Competent

Advanced Beginner

Figure 5.6.2: User Study Demographics

The participants in our survey are 40 subjects, mainly recruited through social circles. Each

Ohttps://salul33445.github.io/pypianoroll/
Hhttps://wiki.archlinux.org/title/ Timidity++
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Chapter 5. Unconditional Generation

subject evaluates 2 pairs of music samples, resulting in a total of 80 comparisons between our
generative framework and the reference model. Identical instructions and stimuli are given
to every evaluator involved in the procedure. The participants are also informed that some
of the music examples “might be” real and some might be generated by machine, although
in this case all samples are actually automatically produced.

The respective demographic analysis is graphically illustrated in Figure 5.6.2 in the form of
pie charts. As can be observed, we have recruited a sufficient number of qualified listeners,
characterized by adequate diversity regarding various, not necessarily musical, aspects. More
specifically, the subjects’” music knowledge level as well as their degree of familiarity with
Machine Learning and Artificial Intelligence follow an approximately uniform distribution,
including amateurs who lack relevant background, experts in the respective field and even self-
taught musicians. According to [213], our user study satisfies the majority of requirements
concerning the design of a proper listening test and therefore can lead to valid, reliable and
replicable scientific evidence.

5.6.2 Subjective Results & Discussion
The results of our subjective testing are graphically illustrated in the barplot of Figure 5.6.3.

Maturalness 89 11
mm Ours
Harmony & = Baseline
Coherence 82 18
D.IU D.IZ D.I4 D.IG D.IB ]_ICI
Percentage (%)

Figure 5.6.3: Results of Subjective Evaluation

As can be easily observed, our developed music generation system outperforms MuseGAN
with respect to all the examined musical aspects. This fact indicates that our proposed pa-
rameterized architecture, which is based on a shared-private design for both the Generator
and the Discriminator modules and enables us to emphasize on rhythmic attributes, un-
doubtedly contributes to the Naturalness and the Coherence of the generated musical pieces.
Since a huge majority of human-composed songs follow an almost evident beat motif, which
is also capable of creating a sense of cohesion and connectivity among the various parts of
a musical entity, we confirm that rhythm is actually the key for both the aforementioned
properties. In addition, it is also subjectively proven that our customization practice, which
allows the experimentation over various generative configurations, such as the employed one,
induces an improvement of tonal characteristics and texture elements that determine the
overall harmony in a musical composition.
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Chapter 6. Conditional Generation

This chapter aims at providing a complete overview of our proposed GAN-based frame-
work for the task of Conditional Generation. In particular, section 6.1 introduces the
main characteristics of the generation problem that we attempt to tackle. Section
6.2 includes a detailed description of the system architecture, the implementation of
the various structural components, as well as the their respective training mechanism.
Section 6.3 elaborates on the utilized form of data representation, the dataset and the
required preprocessing steps. Section 6.4 focuses on the employed experimental proto-
col, while section 6.5 engages on a thorough analysis of the results produced using the
aforementioned setup. Lastly, section 6.6 presents our user study related to this task
and discusses its subjective findings.

6.1 Task Description

In order to expand our research into the undoubt-
edly vast field of Automatic Music Synthesis beyond

the task of Unconditional Generation, which is con- Unconditional Conditional
sidered a fundamental practice for composing novel
musical pieces from scratch, we further focus on a dif- o ﬂ e — n

ferent generation approach that involves some kind of
conditions, typically in the form of prior knowledge
about the produced musical pieces or supplementary
information from the human user. More specifically,
as graphically illustrated in Figure 6.1.1, the creation
of novel music samples, under the framework of the
Conditional Generation mechanism, is based on
additional human-provided data of varying modalities, such as lyrics [233], lead sheets, chord
progressions, primary melodic lines, tags and even video clips [234].

¢ Prime melody < Tags
e Lyrics < Video clips

Figure 6.1.1: Unconditional vs
Conditional Generation [227]

In our developed GAN-based generative system, this procedure is modeled as follows:

e One of the included tracks, derived from the ground-truth distribution of human-
composed music samples, is provided to the network as conditional information. There-
fore, this track is called conditional.

e The model learns to generate the four remaining tracks, which are considered as the
accompaniment of the conditional one in terms of rhythmic and harmonic support.

The aforementioned task entails a lot of challenges, since it involves capturing the underlying
structure of the conditional instrumental piece, discovering the intrinsic relations between the
main theme and the accompaniment and creating the counterparts and the secondary melodic
lines according to the selected accompaniment figure. Moreover, it constitutes a method for
reconstructing and reconceptualizing existing musical pieces with new compositional tech-
niques, such as the introduction of novel thematic material into the accompaniment tracks
or their reharmonization in terms of chord progression and orchestration. Thus, it enables us
to explore also the research area of Music Arrangement, as a different generation approach
in the field of Al music.
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6.2 Model

Our proposed model for automatically generating polyphonic musical segments that accom-
pany human-composed parts of user-specific tracks, is conceptually established on our Uncon-
ditional Generation mechanism, which is extensively presented in the previous chapter 5, and
basically developed from scratch. The respective modifications and also extensions required
for the adjustment of our original framework to the examined generative approach in the
context of human-Al cooperation will be meticulously discussed in the following subsections.

6.2.1 Architecture

The core architecture of our proposed system generally retains its convolutional GAN-based
infrastructure from the Unconditional task, which is analytically described in the respective
section 5.2.1 of chapter 5. However, the inclusion of conditions into the generation process
naturally entails the alteration of some of the included modules from a structural perspective
and also the incorporation of additional networks as well. To this end, the specific details
will be examined for each component individually, as follows:

Generator

Under the context of the Conditional approach, the Gener-
ator module is responsible for producing novel accompani-
ment instances, by mapping an input vector to the output
target data space of musical representations, via consecu-
tive upsampling convolutional operations. As graphically
demonstrated in the diagram of Figure 6.2.1, it structurally
preserves the shared-private design of the Unconditional
Generator, which has been thoroughly presented in section  shared/private | G|~

5.2.1 of chapter 5), since it consists of a shared network G, design <"

followed by M private subnetworks G, (i = 1,... M). How-

ever in this case M equals to 4, as it signifies the number Figure 6.2.1: Conditional
of accompaniment tracks. In order to ensure that the Gen- Generator

erator takes into consideration the conditional track for the
creation of the remaining ones, we properly modify its shared part so that it receives 2 distinct
inputs:

e A random noise vector z, sampled from a prior distribution p,.
¢ An embedding of the conditional track into the latent space of noise, denoted as u.

The two equally-sized vectors are concatenated and provided to the network in a unified
form.

“Global” Discriminator

As mentioned in previous chapters of this thesis, the Discriminator module evaluates the
input data instances x in terms of authenticity, by predicting the label of their respec-
tive origin class. Under the framework of our proposed generative system for music of
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symbolic format, this process is performed via successive operations of typical convolution.
According to the respective analysis in section 5.2.1 of
------ . . chapter 5, our Unconditional Discriminator, which is
"y shared/private design .
.. developed for the homonym task, assesses 5-track pi-
anorolls as a whole. To this end, in order to acquire
a general critic capable of measuring the fitness of the
accompaniment parts for the corresponding conditional
track, we incorporate the aforementioned existing Dis-
criminator unit into the architecture of our conditional
generation model and referred to it as “Global”. As

% |-

True/Fake

%,

Figure 6.2.2: Conditional graphically illustrated in the diagram of Figure 6.2.2, its
Discriminator design from a structural perspective remains unaltered.

In particular, it consists of M private subnetworks D;

(t=1,..., M), with each one corresponding to a specific track included in the music setting,

followed by a shared network D;. In this case M equals to 5, since our “Global Discrimina-
tor” receives all tracks as input in order to judge if they can collectively form a real musical
composition.

“Local” Discriminator

We further expand our original framework for the previously examined task of Unconditional
Generation, via the inclusion of a second Discriminator, called “Local”. As the name suggests,
this Discriminator module is responsible for evaluating all the other tracks jointly, except for
the conditional one, in order to provide feedback over the quality of the accompaniment as an
independent musical piece. Structurally, it follows the shared-private design of the “Global”
Discriminator, which is graphically demonstrated in the diagram of Figure 6.2.2. The only
difference is that in this case only 4 private subnetworks D, are involved, with each one
corresponding to a specific accompaniment track.

X— %4» X

Latent-Vector
Generated from X

Figure 6.2.3: Encoder and Decoder

Encoder

Apart from the typical components of a GAN framework, our proposed system for automat-
ically generating accompaniments of man-made musical pieces also includes an additional
Encoder module. As graphically illustrated in the diagram of Figure 6.2.3, the Encoder
network FE receives as input the representation vector of a specific conditional track x and
produces an embedding u in the latent space of the noise distribution. The resulting encoding
is then fed into the shared part of the Generator as conditional information.
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Decoder

In order to be able to experiment over the training mode of our Encoder module, we incor-
porate into the architecture of our proposed generative system the corresponding Decoder
network, which is schematically displayed in the diagram of Figure 6.2.3 too. As the name
suggests, the Decoder D acts as an interpreter of the produced encoding u in terms of de-
compressing this hidden representation into a vector X in the original data space. In this
way, it attempts to reconstruct the initial conditional track, based on the latent attributes
of its low-order representation.

6.2.2 Implementation

Similar to the case of Unconditional Generation, which is thoroughly discussed in the previous
chapter of this thesis, all structural modules included in our developed conditional framework
are designed as deep Convolutional Neural Networks [2, 19] and implemented using the open
source Machine Learning framework PyTorch. We also follow the same customization practice
with the previously examined task, since, according to the produced results, has been proven
extremely valuable regarding the experimentation over different generative configurations and
the comparison of their effect on the music quality. The involved parameters are presented
in Table 6.1 along with their respective notation.

number of samples

latent dimension

number of tracks

bar resolution

number of pitches

number of measures
number of total timesteps
number of accompaniment tracks

<
~

S
—
I

beat resolution
lowest pitch

N.@“ﬁgS'@ﬁ#N%

Table 6.1: Parameter Notation

Tables 6.2 and 6.3 demonstrate the parametric network architectures for the shared Gener-
ator G and the private Generator G, accordingly. As can be seen, both conditional units
successively augment the dimensions of the respective input vector via transposed convolu-
tional operations, which are initially applied along the time axis and afterwards along the
pitch axis. Following the reference implementation of [2], a Batch Normalization layer (BN)
is added before each non-linear activation function.

Tables 6.4 and 6.5 display the customized network configurations for the structural compo-
nents of our “Global Discriminator”, while Tables 6.6 and 6.7 provide the equivalent overview
of the “Local Discriminator”. It can be easily affirmed that all the aforementioned Discrim-
inator modules act in reverse mode, compared to the Generator ones, in terms of gradually
compressing the spatial dimensions of the corresponding input vector, first along the pitch
axis and then along the time one, via the utilization of typical convolutional layers. In this
case, the Layer Normalization method is applied before the non-linearity.
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Input: z € R**! u € R

concatenate input vectors along horizontal axis: z || u € R#*?
reshape to s x 2l x 1 x 1 x 1

Layer Type Number of Filters Kernel Size Stride Normalization Activation
transconv 2-1 mx1x1 (m,1,1) Batch ReLU
transconv l Ixr/2x1 (1,1,1) Batch ReLU
transconv /2 1x1xp/4 (1,1,1) Batch ReLU
transconv l/4 Ix1x(p/4+1) (1,1,1) Batch ReLU

‘ Output:X€R5x14xmxr2><p2 ‘

Table 6.2: Shared Generator G,

‘ Input.xeRsxl4><m><r2><p2 ‘

Layer Type Number of Filters Kernel Size Stride Normalization Activation
transconv /8 Ix(r/2+1)x1 (1,1,1) Batch ReLU
transconv 1 Ix1x(p/2+1) (1,1,1) Batch ReLU

‘ Output: x € R XX ™ X7 XP (stack along track axis for final vector) ‘

Table 6.3: Private Generator G,

‘ Input: x € R* X1 X°XP (reshape to s X 1 x m X 7 X p) ‘

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv /8 Ix1x(p/24+1) (1,1,1) Layer Leaky ReLU
conv /8 Ix(r/2+1)x1 (1,1,1) Layer Leaky ReLU

‘ Output: x € R® X V/8xmx1/2XD/2 (stack along track axis for next layer) ‘

Table 6.4: Global Private Discriminator D,

Input' XERSthSXmXT2xp2

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv 1/2 1x1x(p/4+1) (1,1,1) Layer Leaky ReLU
conv /2 1x1xp/4 (1,1,1) Layer Leaky ReLU
conv l Ixr/2x1 (1,r/2,1) Layer Leaky ReLU
conv l (r/24+1)x1x1 (1,1,1) Layer Leaky ReLU
conv 21 r/2x1x1 (1,1,1) Layer Leaky ReLU

| dense r (reshape to s x 2-1 before) ]

‘ Output: y € R ‘

Table 6.5: Global Shared Discriminator Dy

‘ Input: x € R* X1 X°XP (reshape to s X 1 x m X 7 X p) ‘

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv /8 Ix1x(p/24+1) (1,1,1) Layer Leaky ReLU
conv /8 Ix(r/2+1)x1 (1,1,1) Layer Leaky ReLU

Output: x € R® ¥ /8 xmx7/2xp/2 (gtack along track axis for next layer)

Table 6.6: Local Private Discriminator D,
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T
Input:XeRsxtl?;meTZXpZ ‘

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv 1/2 I1x1x(p/4+1) (1,1,1) Layer Leaky ReLU
conv /2 1x1xp/4 (1,1,1) Layer Leaky ReLU
conv l Ixr/2x1 (1,r/2,1) Layer Leaky ReLU
conv l (r/24+1)x1x1 (1,1,1) Layer Leaky ReLU
conv 21 r/2x1x1 (1,1,1) Layer Leaky ReLU

| dense r (reshape to s x 21 before) ]

‘ Output: y € R ‘

Table 6.7: Local Shared Discriminator Dy

Tables 6.8 and 6.9 demonstrate the internal structure of our employed Encoder and Decoder
modules with respect to the involved generative parameters. As can be seen, the Encoder
transforms the initial input vector into a low-order representation in a latent space, by per-
forming a gradual dimensionality reduction through consecutive convolutional layers. On the
other hand, the Decoder mirrors the architecture of the corresponding Encoder, in terms of
performing an upsampling process that successively expands the dimensions of the produced
encoding unto the target data space of conditional tracks. This is accomplished by the uti-
lization of transposed convolutional layers, which are considered as the near-complements of
the typical convolutional ones.

‘ Input: x € R®*°*? (reshape to s x 1 X m x 7 X p) ‘

Layer Type Number of Filters Kernel Size Stride Normalization Activation
conv /8 Ix1x(p/2+1) (1,1,1) Batch Leaky ReLU
conv l/4 Ix(r/2+1)x1 (1,1,1) Batch Leaky ReLU
conv /2 Ix1x(p/4+1) (1,1,1) Batch Leaky ReLU
conv [ 1x1xp/d (1,1,1) Batch Leaky ReLU
conv 2-1 Ixr/2x1 (1,1,1) Batch Leaky ReLU
conv l mx1x1 (m,1,1) Batch Leaky ReLLU

Output: u € R*! |

Table 6.8: Encoder F

Input: u € R¥*' (reshape to s x I x 1 x 1 x 1) |

Layer Type Number of Filters Kernel Size Stride Normalization Activation
transconv 2-1 mx1x1 (m,1,1) Batch ReLU
transconv l Ixr/2x1 (1,1,1) Batch ReLU
transconv /2 I1x1xp/4 (1,1,1) Batch ReLU
transconv l/4 Ix1x(p/4+1) (1,1,1) Batch ReLU
transconv /8 Ix(r/2+1)x1 (1,1,1) Batch ReLU
transconv 1 Ix1x(p/2+1) (1,1,1) Batch ReLU

Output: x € R¥*XMX"XP (yeshape to s X 0 X p) ‘

Table 6.9: Decoder D
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6.2.3 Training Process

Similar to the case of Unconditional Generation, the learning mechanism of our proposed
framework for creation of novel multi-track accompaniments is based on the individual train-
ing procedures of the included network components. In particular:

¢ Global Discriminator

Since this module retains its infrastructure from the previously examined task, its
corresponding training process remains unaltered. Thus, according to the respective
analysis in section 5.2.3 of chapter 5, our Global Discriminator learns to distinguish
the real data from the fake samples, created by the Generator, using a properly se-
lected cost function that quantifies the misclassification errors over both positive and
negative training examples. As mentioned before, in this case, the examined music
samples, derived from either the ground-truth or the Generator distribution, include
the conditional track along with the accompaniment ones in a unified form.

e Local Discriminator
Naturally, our introduced Local Discriminator follows the training procedure of the
Global one. However, the main difference is that this module evaluates in terms of
authenticity only the accompaniment parts, without the conditional track.

e Generator

Similar to the unconditional case, the Generator learns to create novel realistic data in-
stances, based on the predictions of the Discriminator over the class of its produced can-
didates. Therefore, under the framework of our proposed system, this module discovers
underlying properties of the ground-truth accompaniment distribution indirectly via
the feedback of the employed Discriminator scheme. More specifically, if both Discrim-
inators are included in the model architecture, the loss of the Generator is computed
as the mean value of the corresponding output probabilities over fake accompaniments
and 5-track samples accordingly. Otherwise, only the predictions of the involved Dis-
criminator are utilized.

e Encoder
We experiment with two distinct practices regarding the training mode of our Encoder
network:

— I-phase training: In this case, the Encoder is trained jointly with the GAN system.
More specifically, it follows the individual learning process of the Generator, which
is previously described in detail, since these two structural units contribute to the
creation of novel music samples collectively.

— 2-phase training: As the name suggests, in this case the training procedure of
our proposed framework for Conditional Generation is divided into two definite
parts. The first one involves the Encoder, while the other one corresponds to
the GAN components. In particular, our Encoder module is initially pretrained
along with the respective Decoder as a unified AutoEncoder system, using the
MSE loss between the initial and the reconstructed conditional tracks and the
Kullback—Leibler divergence, which represents the statistical distance between the
Standard Normal distribution of white noise N'(0,I) and the one modeling the
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latent space of the produced embeddings. In this way, we ensure that the latent
encodings follow the distribution of the input random noise. During this process,
our incorporated Early-Stopping and Checkpointing mechanism, which employs
as monitoring metric the mean sum of the aforementioned loss values calculated
at the validation stage of each training step, indicates the version of the Encoder
that will be utilized unchanged in the upcoming training of the GAN system.

Following our primary implementation for the task of Unconditional Generation, the overall
training of our GAN-based model proceeds in consecutive interchanges between k steps of
optimizing the included Discriminators and one step of optimizing the Generator. Algorithms
4 and 5 summarize all the aforementioned training details in a pseudocode format. As regards
the utilized notation, the index ¢ denotes the conditional track, while the index a symbolizes
the accompaniment. Furthermore p; indicates the distribution that models the latent space
of the conditional embeddings, p; represents the ground-truth distribution of the real music
samples and p, denotes the prior distribution from which the input random noise vector z is
sampled. Lastly, U[0, 1] symbolizes the continuous uniform distribution, defined by the given
boundaries.

Algorithm 4: AutoEncoder Training

Input:
e Batch size m
e Adam hyperparameters «, 1, B2
e Number of total training steps N

for number of training iterations do

for :=1, ..., m do
Sample real data @ = (x;, ,) ~ pg
u < B, (x;)
&, < Dy(u)
L@ « MSE (x,, &) + KL (p, || N(0,1))
endfor
1 &
Y= Adam (Vf}/% Zl L(’), v, &, 617 52)
1 o=
/R Adam <v77% Zl L(l), n, o, ﬁla 52)
endfor
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Chapter 6. Conditional Generation

Algorithm 5: Mini-batch Training Algorithm for Conditional GANs with Gradient
Penalty

Input:

Gradient penalty coefficient A

Number of Discriminator iterations per Generator iteration k
Batch size m

Adam hyperparameters «, 1, B2

Number of total training steps N

for number of training iterations do

Update Global Discriminator D), by ascending its stochastic gradient.

for k steps do
for i=1, ..., m do
Sample: real data & = (@, T,) ~ P
latent variable z ~ p,
random number € ~ U[0, 1]
u <+ E,(x;)
Z, + Go(z,u)
T < (x4, 2,)
T—ecx+(l—e€-x
LY ¢ Dy (&) — Du(x) + A(|[VaDu(&)[l2 — 1)

endfor
1 <&,
w <+ Adam (Vw— Z LD w, a, By, 52)
m3
endfor

Update Local Discriminator D, by ascending its stochastic gradient.

if Local then
for k steps do
for i=1, ..., m do
Sample: real data & = (x;, ®,) ~ pa
latent variable z ~ p,
random number € ~ UJ0, 1]
u < E. ()
T, — Gy(z,u)
Ty € x,+(1—¢) -z,
L = Dyl@a) — Dolwa) + A(|Vs, Dola) s — 1)

endfor
endfor
1 w— |,
¢ < Adam <V¢E Zl: L(l)a ¢7 Q, 617 62)

end
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31
32 Update Generator (¢p by descending its stochastic gradient.
33 for =1, ..., m do
34 Sample: real data * = (@, ©,) ~ pa
35 latent variable z ~ p,
36 u < B, (x)
37 T, — Go(z,u)
38 T < (x4, ,)
39 if Local then
o 16  _ Dul@) + Do(@2)
2

41 else
42 ‘ LY« —D,(z)
43 end
44 endfor

1 o=
45 0 + Adam (Vg— Z LD 0., B, &)

mai3
46 Update Encoder [, by descending its stochastic gradient.
a7 if I-phase then
48 for i=1, ..., m do
49 Sample: real data * = (@, ©,) ~ pa
50 latent variable z ~ p,
51 u <+ E,(x;)
52 Z, «— Go(z,u)
53 x — (x¢,2,)
54 if Local then
55 0 _ Dy(z) J;qu(wa)
56 else
57 ‘ LY < —D,(z)
58 end
59 endfor

1~
— Adam | V., — LY~ o

60 v < T ; Y, @, B, Ba
61 end
62 endfor

6.2. Model
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6.3 Data

6.3.1 Data Representation

Following our primary approach to the research problem of automatic synthesis from scratch,
we employ the multi-track pianoroll format for the representation of music samples, processed
under the framework of our proposed conditional generation system. According to the de-
tailed analysis in section 4.3.1 of chapter 4, a piano-roll is a binary-valued scoresheet-like
matrix, which indicates the presence or absence of notes over different timesteps and conse-
quently a multi-track piano-roll is defined as a set of piano-rolls corresponding to different
musical instruments.

6.3.2 Dataset

The pianoroll dataset used for the training process of our conditional model is derived from
the Lakh MIDI Dataset (LMD) [16] after the preprocessing procedure, which is thoroughly
described in section 4.3.3 of chapter 4 and graphically illustrated in Figure 4.3.3. More
specifically, we employ the LPD-5-cleansed version!, which contains only those pianorolls
with the higher matching confidence score to MSD entries [17], a “Rock” tag and 4/4 time.

6.3.3 Data Preprocessing

In order to acquire the final set of training examples, we apply the preprocessing steps that
are explicitly presented in section 5.3.3 of chapter 5. In this way, the pianorolls included
in the cleansed version of the utilized dataset are segmented into musical phrases of proper
format and size, according to the input configuration. We further extend our data preparation
routine via the inclusion of an additional criterion regarding the required note density in the
conditional tracks. More specifically, we discard candidate samples with insufficient number
of note instances in a specific user-defined track, which represents the conditional information.
Finally, we perform a splitting of our processed dataset into training and validation subsets,
using the ratios that are graphically illustrated in the pie-charts of Figure 6.3.1 for two
distinct conditional instruments. The overall training duration is around 8 hours with a
GeForce RTX 2080 Ti GPU.

N Training Dat
Validation Data raining Data

97.0%

Training Data —_—
Validation Data

(a) Piano (b) Guitar

Figure 6.3.1: Split Ratios

Thttps://salul33445.github.io/lakh-pianoroll-dataset /dataset.html
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6.4. Experimental Protocol

6.4 Experimental Protocol

6.4.1 Experimental Setup

In order to evaluate our proposed conditional system and thoroughly examine its effectiveness
over the creation of aesthetic multi-track polyphonic accompaniments in a human-Al coop-
erative framework, we conduct a group of experiments that enable us to investigate various
aspects of the generation process. The corresponding details as well as the produced results
will be extensively presented in the following sections of this chapter.

‘ H AutoEncoder ‘ Local Discriminator ‘

Py - -

. Py - v
Piano Pu 7 -
Py v v

Goo - -

. G01 - v
Guitar Cio 7 -
Gu v v

Table 6.10: Conditional Models

Before proceeding further, we consider it useful to define the model variants that will be
employed on the proximate analysis. As demonstrated in Table 6.10, these models mainly
differ in terms of:

e Included structural components

— Only Global Discriminator ("-" at second column)

— Both Global and Local Discriminators ("v'" at second column)
e Training mode of Encoder

— 1-phase training ("-" at first column)

— 2-phase training ("v'" at first column)
e Conditional Instrument

— Puano

— Guitar

It is also worth mentioning that we employ the experiment configuration C, as presented in
Table 5.6, for all the aforementioned conditional models, since the results of the previously
examined task indicated that this particular combination of generation and training param-
eters can adequately capture rhythmic patterns, tonal characteristics and texture elements
of man-made pieces and hence lead to artificial music of high quality.

6.4.2 Objective Metrics

In the context of objective assessment, we utilize our musical metric system consisting of the
following 8 quantitative indices:
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Empty Bars (EB): ratio of empty bars included in the examined track (in %)
Qualified Notes (QN): ratio of “qualified” notes (in %)

Drum Pattern (DP): ratio of notes in beat patterns of 4/4 rhythm (in %)

Tonal Distance (TD): measures the harmonicity between a pair of musical tracks

Used Pitch Classes (UPC): mean number of pitch classes used per bar (from 0 to
12)

Used Pitches (UP): mean number of unique pitches used per bar, including all
octaves in the predefined range

Scale Ratio (SR): ratio of notes in the given music scale

Polyphonic Rate (PR): ratio of polyphonic timesteps

It is worth mentioning that all the aforementioned metrics can be computed for both real
and generated samples.

Unlike music synthesis from scratch, the framework of Conditional Generation inherently pro-
vides two different accompaniments for each conditional track, one derived from the ground-
truth distribution of human-composed musical pieces and the other created by our Generator
module. Thus, we consider it useful to introduce an additional objective index that mea-
sures the corresponding distance between the two versions and in this way examine if our
proposed model tends to musically imitate the real samples and also confine its creativity.
For this purpose, we employ the Mean Squared Error, calculated between the original and
the generated accompaniments of the provided conditional pieces.
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6.5 Results

6.5.1 Analysis of Training Process

As discussed in previous chapters of this thesis, the ideal training practice for a GAN-based
system still remains an open problem, since it is particularly hard to explicitly identify the
convergence state from a computational perspective, especially when additional components,
such as a second Discriminator or an Encoder module, are also included in the architecture.
Therefore, a closer inspection of the learning mechanism of our proposed model for the task of
Conditional Generation, as well as a thorough examination of the individual behaviour of the
involved networks, are considered essential. For this purpose, we employ the 4 model variants
that use the Piano track as conditional information?, since this constitutes the default case
under our proposed music generation framework and also our baseline project [2].

20

0 10000 20000 30000 20000 50000 2 10000 20000 30000 40000 50000
Steps Steps

(a) P()O (b) P01

—100 =40

=150

-200

—250

0 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Steps Steps

(c) Pio (d) Py

Figure 6.5.1: Generator losses for the various piano-based conditional GANs

Figure 6.5.1 demonstrates the training loss of the Conditional Generator, formulated as
function of training steps, for the examined model variants. In particular, the gray curves
indicate the normalized loss values, which are smoothed via a moving average operation. As
regards the figure layout, the plots in the first row correspond to the 1-phase training method,
while the ones in the second row to the utilization of the AutoEncoder Pretraining (2-phase).
Accordingly, the loss values resulting from the inclusion of only one Discriminator in the

2The Guitar models exhibit similar behaviour.
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system architecture are depicted in the first column, while the effect of both Discriminators
in the learning process of the Accompaniment Generator is graphically represented in the
plots of the second column.
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Figure 6.5.2: MSE losses between real and generated pianorolls for the various piano-based
conditional GANs

First of all, it can be easily affirmed that the 2-phase learning practice requires significantly
less training steps as compared to the joint fashion (1-phase). This observation is naturally
expected, since in the first case the Encoder network is already trained to create embeddings of
the conditional tracks following a consistent mapping between the input and the output latent
space. This fact implies that its produced encodings throughout the complete training of the
GAN part approximately follow the normal distribution. As a consequence, the Generator’s
training behaviour is stabilized rather early. Furthermore, in this way the GAN learning
procedure is computationally lightened and also accelerated, as the Encoder state remains
unaltered during this phase. As can be also observed, the Generator losses that are depicted
in plots of the same column and hence correspond to identical GAN architectures, follow
a similar trend, which is scaled according to the required number of training steps. More
specifically, in the case of both Discriminators, a slight increase of the corresponding loss
function is detected after the initial steep spikes, suggesting that the Generator probably can’t
handle the combined output predictions of its opponents and produces easily distinguishable
candidates. However, it seems that after a particular training point, the Generator loss begins
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to steadily decrease, indicating that the produced music samples become more plausible, until
saturation.

Figure 6.5.2 displays the log of the MSE loss calculated between real and generated pianorolls
during the training procedure of the 4 examined model variants for the first 100 steps. The
plot layout is similar to the previous one, concerning the arrangement of the conditional
models at rows and columns. As can be seen, the employment of the 1-phase training
mode (first row) leads to faster convergence of the MSE function. This observation implies
that, under this learning framework, our proposed generative system tends to imitate the
real accompaniments by reproducing their tonal, rhythmic or texture features in quite early
stages of training. However, some small oscillations are observed after the saturation point,
indicating that a margin for creativity and differentiation from the original human-composed
musical pieces is preserved. On the other hand, the utilization of the 2-phase learning practice
(second row) also results in convergence of the MSE loss (= 0.025), but requires larger number
of training steps. Similar to the previous case, this fact suggests that the generated and the
corresponding real music segments become almost identical as training proceeds. From the
perspective of our objective evaluation system, the similarity of the examined pianorolls is
considered beneficial, but at the same time it limits the generation capabilities of our proposed
model towards novel alternative accompaniments.

6.5.2 Qualitative Inspection

Figure 6.5.3 illustrates two multi-track polyphonic pianorolls, which correspond to the same
Piano track as conditional information and represent one 4-bar musical phrase. The first one
is a real human-composed music sample, derived from the ground-truth dataset, while the
other one is created by our proposed GAN-based framework during the process of Inference.
In particular, we employ the model variant P;; and utilize the Generator version of the last
training step, as discussed in section 5.5.2 of chapter 5.

It is worth pointing out the following qualitative observations:

e The Drum track of the generated pianoroll follows an almost steady rhythmic pattern,
which resembles the original to a significantly large degree. Notes in 8- or 16-beat motifs
are evident, indicating the presence of 4/4 rhythm, while the strong beats of each bar
can also be easily detected. This apparent rhythmicity is probably the result of our
parameterized implementation, which enables us to emphasize on texture elements of
this type during the creation of novel musical pieces.

e The Bass track is principally monophonic, playing a single melodic line. As can be
seen, our proposed generative system is capable of capturing musical features of the
real bass line, such as the duration of the notes and also the utilized pitch range, which
is approximately from C0 to C2.

e The Strings and the Guitar, which are the mainly polyphonic tracks in the overall
composition and usually tend to play the chord-like parts, are quite noisy compared to
the original ones, both in terms of note density and number of utilized pitch classes.
This fact may lead to weaker harmonic relations among the included instruments, which
can negatively affect the acoustic result. On the other hand, it may also contribute to
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a more musically interesting alternative.

e The melodic tracks (i.e. all except Drums) of the fake pianoroll usually play in the
same music scale, as indicated by the overlapping pitches. This fact implies strong har-
monic relations among the included instruments, that can contribute to an acoustically
pleasant result.

(a) Real sample

(b) Fake sample

Figure 6.5.3: Qualitative analysis of generated pianorolls

6.5.3 Objective Evaluation

In order to examine if the structural modifications and extensions of our proposed GAN-based
framework, as well as the different training modes can actually improve the quality of artifi-
cial music and lead to innovative results in the research field of Automatic Accompaniment
Generation, we proceed in a comprehensive comparison of the model variants presented in
Table 6.10, using our objective metric system. To this end, we follow the assessment practice
of our baseline project. In particular, for each conditional model involved in the evaluation,
we create, using the respective Generator of the last training step, 20000 bars organised in
4-bar musical phrases. Afterwards we apply our objective metrics on the produced musical
segments and calculate the respective mean values.
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Piano case

Table 6.11 summarizes the intra-track evaluation results of the 4 Piano models, i.e those
variants that employ piano tracks as conditions, only for objective metrics shared between
our implementation and the baseline project accordingly. As mentioned before, in this case
values closer to the ones representing musical properties of the ground-truth distribution
correspond to the desirable generative behavior and hence are considered better. At first
glance, we can easily detect the absence of a particular model variation capable of improving
all the employed objective musical metrics. However, a closer inspection indicates that the
utilization of the 2-phase training mode (model Pjo) benefits some musical characteristics
of the produced samples, such as the intended note density as measured by EB metric, the
contained beat patterns in 4/4 rhythm represented by DP value and also the proper number of
used pitch classes (UPC). Nevertheless, it seems to negatively affect the form of the Bass track
in terms of making it more sparse than the original (EB around 18 %). On the other hand, the
inclusion of the Local Discriminator in the system architecture under both training practices
has a positive impact on all the examined quantitative indicators of musical attributes. This
result confirms that the extra feedback over the authenticity of the accompaniment parts
actually helps the Generator to produce more plausible candidates.

EB (%) UPC QN (%) DP (%)
B D G P S| B G P S| B G P S D
baseline | 8.06 8.06 19.4 248 10.1] 1.71 3.08 328 3.38 | 90.0 819 834 896 | 886
ours | 1.6 1.0 50 56 37 |247 409 419 45 | 91.6 856 900 89.7 | 82.9

training data

Pyo 06 0.0 22 - 24 1271 393 - 433|514 565 @ - 58.9 86.1

Ours Py 02 00 1.8 - 1.5 | 257 4.09 - 4.76 | 58.2 56.1 - 6L.7 86.3
Py 174 0.2 3.0 - 4.4 | 1.68 3.9 - 4.3 | 50.7 49.2 - 55.1 87.0

Py 1.6 00 0.7 - 09 | 256 4.19 - 5.16 | 54.8 56.6 - 51.0 86.2

jamming | 4.60 347 133 - 344|205 379 - 423 | 739 588 - 62.3 91.6

Baseline composer | 0.65 20.7 197 - 1.49 | 2,51  4.57 - 5.10 | 53.5 48.4 - 59.0 84.5
hybrid | 2.09 4.53 10.3 - 4.05]| 2.86 4.43 - 432 | 43.3 556 - 67.1 71.8

Table 6.11: Results of inter-track evaluation of the Piano-based models

For the purpose of completeness, we also present in Table 6.11 the respective results of the
intra-track evaluation for the 3 multitrack interdependency models included in MuseGAN
and thoroughly examined in section 4.2.2 of chapter 4. However, it can be easily observed
that there is a substantial divergence between the training data statistics, as measured under
the two involved frameworks. This difference may result from the randomized rule that de-
termines the collection of training samples from the songs included in the employed pianoroll
dataset, as explained in section 5.3.3. Thus, the two generative systems cannot be exactly
compared in the context of intra-track evaluation metrics. Nevertheless, despite the statisti-
cal bias, all the calculated values are in the same order of magnitude, which indicates that our
metric implementation actually provides a meaningful interpretation of the produced music.

The results of the inter-track evaluation, which is represented by TD metric, are demonstrated
in Table 6.12 for all models involved in the comparative analysis of piano conditions. As
referred to earlier, in this case smaller values correspond to smaller Euclidean distances in
the interior space of a 6D polytope and hence imply stronger harmonic relations between
the examined pairs of tracks. It can be easily affirmed that the model Pjy, which is derived
from the the inclusion of only the Global Discriminator under the 2-phase training practice,
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TD
B-G B-S B-P G-S G-P S-P
Pyo 0.82 0.83 0.88 0.87 0.95 0.94
Ours Py 0.79 081 0.85 0.85 0.94 0.94
Py 0.74 0.73 0.81 0.94 1.02 1.01
Py 0.83 092 097 099 112 1.17
jamming | 1.51 1.53 1.50 1.04 0.95 1.00
Baseline composer | 1.41 1.36 1.40 0.96 1.01 0.95
hybrid 1.39 136 138 096 094 0.95

Table 6.12: Results of inter-track evaluation of the Piano-based models

presents the best performance among our proposed variants (bold values) and also surpasses
all the baseline architectures (coloured cells) in terms of harmonicity between a melody-
like track, such as the Bass and a chord-like track, such as the Piano, Guitar and Strings.
This observation comes in agreement with the role of our Global Discriminator as a general
critic that evaluates all tracks collectively and hence assesses the harmonic quality between
melody and chords. On the other hand, the model Fy;, which results from the inclusion of
both Discriminators in the system architecture under the 1-phase training mode, outperforms
all the involved variants in terms of harmonicity between two chord-like tracks. This fact
confirms the beneficial contribution of our Local Discriminator, which provides an additional
feedback over the quality of the accompaniment tracks, to the generation efficiency of our
proposed framework.

UP SR (%) PR (%)
B G P S B G P S B D G P S
| training data [ 271 568 585 6.71[759 744 741 728 11 152 557 61.8 623
Py | 294 5.79 6.28 | 817 75.8 - 77.1[1.2 133 406 44.2
Outs Py | 294 5.77 717 | 771 763 - 756 | 15 15.2 48.7 - 59.9
Py | 174 5.05 6.07 | 822 806 - 790 |02 101 222 - 302
Py | 2.84 543 73 | 807 776 - 723|119 97 382 - 563

Table 6.13: Additional results on the evaluation of the Piano-based models

Lastly, the supplementary Table 6.13 displays the additional intra-track evaluation results,
only for our 4 model variants that employ Piano as conditional track. As can be seen, all
conditional models accomplish to significantly approximate the statistics of the real distri-
bution in the context of tonal characteristics as quantified by UP and SR metrics and other
texture elements, such as PR. Especially in the case of PR, the most distinguishable perfor-
mance corresponds to model Fy, indicating that the incorporation of a Local Discriminator
in the architecture of our proposed system helps the Generator to uncover more properties
of the human-composed music, including the proper polyphony of the chord-like tracks and
accordingly the monophony of the melodic ones, such as the Bass, which actually tends to
play a single melodic line (PR around 1.5%).

Guitar case

Table 6.14 provides an overview of the objective evaluation results for the 4 model variants
that employ Guitar as conditional instrument and are presented in Table 6.10 along with
their respective notation. As before, bold values denote greater proximity to the ground-
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EB (%) UPC QN (%) UP
B D G P S B G P S B G P S B G P S
| training data [ 1.8 0.9 43 52 3.6 [ 247 421 414 449|918 875 916 905 [ 27 585 584 6.75 |
Goo 08 00 - 21 18[251 - 504 459[625 - 493 60.3[2.77 - 731 691
Go 00 00 - 31 000|305 - 431 528|576 - 524 596|336 - 618 7.9
Gho 1.6 00 - 18 3.5|235 - 4.28 401|502 - 595 586 |25 - 6.13 588
Gn 04 02 - 33 06232 - 462 466 |55.6 - 478 579|246 - 64 6.68
TD SR (%) PR (%) DP (%)
B-G B-S B-P G-S G-P S-P B G P S B D G P S D
training data [ 071 072 0.7 069 066 066754 735 734 731][08 155 59.7 61.0 62.6 [ 85.0
Goo 0.83 085 09 096 101 098]847 - 8.9 77.0[ 11 109 - 539 534 871
e 087 087 0.83 0.93 0.92 0.86| 867 - 836 839 |28 149 - 553 60.8| 86.0
Gho 084 0.84 084 093 095 089 |80 - 798 84|07 60 - 375 440 | 917
Gu 089 087 08 106 109 097 | 780 - 769 80.5 |09 9.7 - 421 544 | 837

Table 6.14: Results of objective evaluation of the Guitar-based models

truth distribution, expect for the inter-track TD metric, where smaller ones are considered
better. Similar to the Piano case, we can easily detect the absence of a particular model
variation capable of improving all the employed objective musical metrics simultaneously.
However, a closer inspection indicates that the utilization of the Local Discriminator under
the 1-phase training practice (model Gg;) results in stronger harmonic interrelations among
the included tracks, as suggested by the corresponding TD values. Moreover, the additional
evaluation feedback over the authenticity of the accompaniment parts as an independent
musical composition benefits the rhythmic attributes of the generated musical phrases, as
indicated by the high DP rate and also other texture elements, such as the desired PR for each
track individually. On the other hand, the utilisation of the 2-phase training mode over both
architectural approaches has a positive impact on the note density of the generated samples,
as measured by EB metric, the number of contained “qualified” notes, particularly in the
Piano track and tonal characteristics, such as UP, UPC and SR, especially for the chord-like
instruments. However, in case of QN rates there is still space for further improvement, since
there is a substantial distance between the resulting values and the original ones.

183



Chapter 6. Conditional Generation

6.6 User Study

6.6.1 Experimental Setup

As discussed in section 5.6 of chapter 5, in the context of subjective assessment, we follow
our baseline project [2] and conduct a user study in the form of listening test. Our survey is
divided into two parts, with each one corresponding to a specific music generation task im-
plemented by our proposed framework. In particular, the section of Conditional Generation,
which constitutes the principal topic of this chapter, aims at a comprehensive comparison
among the variants of our developed system presented in Table 6.10 along with their respec-
tive notation.

The conditional part of our questionnaire follows the A /B testing format, which has been also
applied in the section of Generation from scratch. However, in this case, the two alternative
choices A and B represent two possible accompaniments, generated by different models or
even derived from the ground-truth distribution of human-composed musical pieces, for the
same conditional track. Thus, each testing group of samples consists of 3 distinct audio clips.
The first one is the conditional track and the others contain matching accompaniments for
it. Similar to the unconditional case, the evaluator is required to choose from each listening
pair the accompaniment version that best fits the conditional track in terms of:

e Musical Naturalness: Could the musical segment be composed by human?

e Harmonic Consistency: Are the sounds produced by different instruments in musical
consonance? Is the result acoustically pleasant?

e Musical Coherence: Are the various musical phrases associated someway through
time?

As regards the implementation details, all the involved models are trained using the same
set of training examples for each conditional instrument. The produced samples and also
the real musical segments are then transformed into the proper auditory format, according
to the diagram of Figure 5.6.1 in section 5.6. The duration of each resulting audio clip,
regardless of its derivation model, is pruned to approximately 12 seconds, a time period that
corresponds to one 4-bar musical phrase under the framework of our proposed system and
the employed multitrack pianoroll representation. The conditional track of each listening
case and consequentially the respective accompaniment versions are randomly selected from
pools of 32 audio clips. Both the order of the testing groups and also the sample order within
each group are randomized for each user.

Table 6.15 demonstrates the examined comparisons among the involved conditional models.
As can be easily observed, musical segments derived from each variant are placed in jux-
taposition with fake data instances generated by two other models of the same conditional
instrument and also the real accompaniments that correspond to their common conditional
track (denoted with the letter R). If we consider symmetric comparisons as equivalent cases,
this results in a total of 16 unique testing pairs.

As mentioned in section 5.6 of chapter 5, the participants in our survey are 40 subjects, mainly
recruited via social circles. In this case, each subject evaluates 18 listening group of samples,
where 16 of them correspond to the unique model pairs and the remaining 2 are randomly
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Po | Pn Pio R

- FPo | o Pu R
P

vane Py | Poo Pu R

Py | Pn Po R

Goo | Gor Gio R

. Go || Goo Gu R

Guitar Go | G Gu R

Gu | Goo G R

Table 6.15: Conditional Comparisons

selected. The overall occurrences for each examined couple are graphically illustrated in the
diagrams of Figure 6.6.1. As can be seen, we have recruited a sufficient number of qualified
listeners and also distributed the involved comparisons in a almost uniform fashion among
them. Thus, we can conclude that our user study can provide statistically significant results
and hence lead to valid, reliable and replicable scientific evidence.

Poo Pox Pig P11
50 50
0 407 0 2
0 0 0 0
20 201 20 20
10 10 10 10
0 0 0 0
Pa1 Pia R P P R Pa P R Pa Pia R
G Gm Guo Gu
40 40 4 401 40
0 30 30 0
20 201 20 0
10 10 4 10 10
ol R ol ol
Go1 Gio R Gag G R Gag Gi1 R Gax Gia R

Figure 6.6.1: Total number of comparisons for each model pair

6.6.2 Subjective Results & Discussion
Piano case

The results of our subjective testing for the model variants that employ Piano as conditional
track are graphically illustrated in Figure 6.6.2. Each bar-plot represents the evaluators’
preferences between the compared models under the examined musical criteria in the form
of percentages. As can be seen, in the case of comparison with the real music segments,
the majority of fake samples are easily distinguishable, regardless of their derivation model,
indicating that AI music is still far from the level of human compositions in terms of Natu-
ralness, Harmony and Coherence. The highest favor proportion against human performance
corresponds to model Py; for the first question in our survey and is equal to 35%. This fact
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suggests that the additional evaluation feedback provided by the Local Discriminator over
the accompaniment parts, can actually help the Generator to create samples that sound more
natural to the human subjects.
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Figure 6.6.2: Results of Subjective Evaluation for Piano

As regards the comparison among our developed varying frameworks, we observe that model
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Py significantly outperforms P;; with respect to all the examined musical aspects, especially
Coherence. This result comes in agreement with the outcomes of the objective assessment,
as it suggests that the most suitable training practice for the system architecture of both
Discriminators is the 1-phase mode. Moreover, it can be easily affirmed that variant P also
surpasses Pp; in terms of all 3 criteria, indicating that the proper structural design for the
2-phase training mode includes only the Global Discriminator, as pointed out in the objective
analysis too. Lastly, we can further observe a slight preference for Py, as compared to Py
and Pjo. This fact suggests that the basic implementation of our proposed generative system
can also lead to the creation of aesthetic musical pieces.

Guitar case

The results of our subjective testing for the model variants that employ Guitar as conditional
instrument are graphically illustrated in Figure 6.6.3.
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Maturalness 64 38 B2 80
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Ga1
Harmony 66 29 71 82
Gia
R
Coherence 64 38 62 80
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Percentage (%)
(d) G

Figure 6.6.3: Results of Subjective Evaluation for Guitar

Similar to the previous conditional case, the majority of fake samples are easily distinguish-
able from the real ones in terms of all the examined musical aspects. As can be seen, all
the favor proportions are in the range of 13 to 20%, probably indicating that Guitar tracks
provide less conditional information than the Piano ones. This is mostly due to the fact that
Guitar in Rock songs usually plays the chords, while Piano typically includes some melodic
patterns as well.

As regards the comparison among the 4 generative frameworks, it can be easily affirmed that
the corresponding outcomes are similar to the ones of the Piano case. More specifically, we
observe that model GG;o outperforms both Gog and G1; with respect to all the aforementioned
musical criteria. This result suggests that the most effective combination of training practice
and architectural design regarding the quality of produced music, is the 2-phase mode applied
in a GAN system that comprises only the Global Discriminator. Furthermore, we can see
that the variant Gy surpasses to a large extent GG1; in terms of all the examined musical
properties. This fact indicates that the most suitable training practice for the architecture
of both Discriminators is the 1-phase mode. However, in the case of comparison between
Go; and Ggg, where the 1-phase learning method is applied, the utilization of the Global
Discriminator only seems to have a beneficial impact on the coherence of the generated
musical pieces, as indicated by the preference proportion of 62%.
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7.1 Synopsis

In the past decade, automatic music generation has undoubtedly achieved rapid progress.
Compared to traditional methods and former approaches, deep learning has shown its pow-
erful capabilities. However, the generative results still deviate from the real ones in terms of
structure and innovation, highlighting the open challenges in the area, such as the modeling
of music expressive performance, the incorporation of the emotion, the limited interaction
with users and the absence of a unified music evaluation standard. Thus, due to the multi-
disciplinary nature of this research field, it is sometimes hard to define precise goals and keep
track of which tasks can be considered solved by state-of-the-art systems and which instead
require further developments.

In the context of this thesis, we begin with a hierarchical review of existing approaches
to the examined research problem, emphasizing on recent studies that make use of deep
neural networks and machine learning techniques. We advocate that such a detailed and
organized analysis could provide means to face many of the open challenges listed above and
possibly allow for easier comparison among varying methods in terms of the learning process
improvement and hence the creation of more aesthetic human-like music.

Moving on to the experimental part of our research, we designed a convolutional GAN-based
generative framework that implements the automatic creation of novel polyphonic musical
content in the pianoroll format, under 2 different approaches:

e Unconditional Generation: Automatic generation of musical phrases, composed of
5 distinct tracks (Drums, Piano, Guitar, Bass and Strings), from scratch, i.e. without
subjecting to any prior knowledge or supplementary information provided from the
human user.

e Conditional Generation: Automatic generation of 4-track accompaniments for
human-composed track samples that are provided to the model as conditional informa-
tion.

We made our model even more flexible and structurally adaptable to different generative con-
figurations and practices, by performing a customization of our implementation with respect
to a group of various parameters that determine musical attributes and also training fea-
tures. As regards the learning process, we incorporated into our system auxiliary monitoring
mechanisms, based on an additional validation phase, for closer inspection of the individual
structural components behavior during training. In the context of assessment, we devel-
oped an alternative implementation for the existing musical metrics and further expanded
our employed objective evaluation system via the introduction of 3 additional quantitative
indicators that emphasize on tonal characteristics and texture attributes of the generated
samples per track. We also conducted a qualitative study in the form of listening test across
40 subjects, in order to include human auditory feedback into our analysis.

In the case of Unconditional Synthesis, we extensively experimented over multiple generative
configurations and examined the effect of the respective modifications on the musical quality
of the created pianorolls, investigating at the same time various aspects of the generation
mechanism. For this purpose, we applied our proposed objective evaluation system, which
consists of 7 intra-track and 1 inter-track metrics. The produced results indicated the absence
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of a particular parameter arrangement capable of improving all the employed quantitative
indicators simultaneously. This outcome highlighted the lack of a unified objective criterion
for the designation of the best model in terms of generation efficiency and produced musi-
cal quality. Nevertheless, we were able to derive some interesting conclusions, such as the
correlation between the utilized beat resolution and the resulting harmonic relations among
the included tracks or the impact of higher values of £ (number of training steps per Gen-
erator update) on tonal characteristics of the generated samples. As regards the subjective
assessment part, we observed that our developed system for music generation from scratch
significantly outperforms MuseGAN with respect to 3 examined musical aspects: Musical
Naturalness, Harmonic Consistency, Musical Coherence. This fact demonstrates that our
proposed parameterized architecture, which is based on a shared-private design for both
the Generator and the Discriminator modules and enables us to emphasize on rhythmic
attributes, undoubtedly contributes to the creation of novel aesthetic music.

In the case of Conditional Synthesis, we experimentally focused on 8 variants of our proposed
conditional generative system that differ in terms of the included structural components
(Global Discriminator, Global and Local Discriminators), the training algorithm of the En-
coder module (1-phase mode, 2-phase-mode) and the type of conditional instrument (Piano,
Guitar). We thoroughly examined the impact and the effectiveness of our proposed modifi-
cations over the creation of aesthetic multi-track polyphonic accompaniments in a human-Al
cooperative framework from objective as well as subjective aspects. The produced results
from both assessment methods indicated that the most suitable training practice for the
system architecture of both Discriminators is the 1-phase mode, confirming that the extra
feedback over the authenticity of the accompaniment parts as an independent musical com-
position along with a shared learning fashion between the utilized Encoder and the GAN,
actually helps the Generator to produce more plausible candidates. On the other hand, we
observed that the proper structural design for the 2-phase training mode includes only the
Global Discriminator. This fact suggests that the AutoEncoder Pretraining contributes to
the improvement of the generated accompaniment quality when the supervisory signals come
from a single Discriminator. The aforementioned outcomes refer to both conditional instru-
ments. However, the qualitative study demonstrated that Guitar provides less conditional
information than Piano, probably due to the fact that in Rock songs it usually plays the
chords, while Piano typically includes some melodic patterns as well. Lastly, the agreement
between the results of the objective evaluation and the outcomes of human assessment in-
dicates that our proposed implementation for the employed metrics provides a meaningful
interpretation of the produced music from a computational perspective.

7.2 Thoughts on Future Work

As thoroughly discussed in the previous section, the contributions of our research study in
the area of Automatic Music Synthesis cover 2 distinct generation tasks, corresponding to
different approaches and hence capabilities. Although our developed framework musically
and aesthetically still falls behind the level of human musicians, it demonstrates a few de-
sirable properties that pave the way for further investigation in the field. To this end, some
interesting potential directions for future research are the following;:
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e User Melodies: model extension to an interactive framework between human and ma-
chine that automatically produces accompaniments for user-defined inputs of variable
length and track type.

e Full Song Generation, not by just concatenating independently produced musical
phrases but in a more human-like compositional fashion, related to overall structure
and musical coherence.

e (ross-Modal Generation: enrichment of conditions with different modalities or supple-
mentary information derived from other sources (e.g. Music + Video, Music + Lyrics,
Video + Text).

e Monitoring Metric: Implementation of a network that extracts features from pianorolls,
so that FID is applicable to symbolic music generation [229, 230].
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