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ITepiindn

Ta teheutola ypovior 1 TANUOEa TOAVUESWY Xt oL eEENEE GTOV TOPEN TNG UNY VXS
udinong €xer odnynoel oty eCATAWOT TNG TOAUTEOTUXNAG UAUNONS OC EVOL OO TOL OTUOV-
TIXOTEPX TEDBLA EPELVWV EPUPUOCUEVTS TEYVNTAC VonuooLvne. H extetopévn yerion tov péowy
XOWWVMG BWTOWoNG €yel emTEEPEL TNV GUANOYY TERAOTIWY CUVOLLY Bedopévey. Emnpdo-
Veta, ) mpdogatn emtuyia Twv Hpoexnadeupévoy Ihwoowxdy Movtéhoy (II'M) éyer odnyr-
o€l oTNV ONUoupYiot EXTANXTIXGV VEY eqopuoyov. Tlag’ dha autd 1 mpo-exnaldeuon veup-
WVIXOY OXTUOY YEYIANG XAipoxag oc TOAG 6TddLo Tou amoutelton emBAAAEL Eva BucHewpnTo
%(0GTOC TUPUUETEWY.

Yy mopovoa epyaocia, npotelvetan to Ipooopuoouévo Ioavtpouxé BERT (AMB), éva
povtého Pooiopévo oto yAwoowo uoviého BERT to onolo emextelveton yia moAutpomx
avdhuon Siddeong pe évo cuvBLaoUS and avtdnTopes (1 Al TEOCUPUOYES) Xou EVOLdUESH
enineda cuyywvevone. To BERT etvon éva mpoexmondeupévo Pod veupwvixd dixtuo To onolo
elye apyixd oyedlaoTel yio Ty enelepyacia YAWOOIXAC TANROQORLaG XaL ATOTEAEITOL oTtd TOAAS.
enineda Tou povtélou transformer. O avtdmtopog elvon Evar TUAUA TNS KEYLTEXTOVIXTC TO OTOlO
TomoVeteiton avdueco ota enineda Tou BERT ye oxond va mpocopudoel T0 TpoexTaldeuuévo
YAWOOoX6 YOVTELO Yiol TO oTtolodnnoTe TEOBANU. Auty 1 Sodixacio ovoudleton UeTopopd
pdinong, adid oc avtideon e TNy xhaoixy| uédodo mou ovoudleto fine-tuning, ot avtdntopeg
elvow To otxovouixol we Tpog Tig mapauéteous. Ta emineda cuyydveuong anotelobVTOL Ao
plo o amA apyttextovixy) Yvwoth w¢ feedforward network. Ytoyebouv otny cuyydveuon
NG OTTXOAXOVO TG TANEoYoplag PE TG avamapactdoelc xewwévou Tou BERT. Kotd ) ou-
adixacto TS TpocapuoYNg, Ta Bde TOL TEOEXTUOEUUEVOU LOVTEAOU TUPAUUEVOLY “Tary wuéva,
ETUTEETOVTAS YPHYORT) XAl OXOVOULXY| EXTIUOEUGT).

Me tnv Sie€aywyn eEXTETUUEVNG APUUEETIXAC UEAETNC AMOBEXVUETOL TIELOUUOTIXG OTL OL OV~
Tdntopeg Bondolv TNV emldoon av xaL YENOWWOTO0V TOAD ALYOTEREC TUQUUETEOUS, ETELDY
ATOPEYYOUV XATOLYL AT T TPOBAAUATOV TWV XAACIXWY TEYVIXOY PETAPORdS udinone. Ernlong,
1 TEOTEWVOUEYT AUoT Belyvel onuddio evpwotiag oe VopuPo elcdbou, To onolo etvor VeueAMMOES
yioo adndvég egapuoyée. T melpduata oto TEolAnua tng avdivong ddeong ye to CMU-
MOSEI oaroxaiintouv 6Tt To AMB Zenepvd oe dheg Tic PETEES TO XOAUTERO UOVTEAD UE

3.4% oyetn pelwon oto opdhua xou 2.1% oyetixd Behtiwon oty axpifela 7 xhdoewmv.

AéEeic KAeoud

Boardd vevpwvixd dixtua, petagpopd udinone, evduion Bapwy, Bonintixd cuupealdueva,

avtdntopeg, BERT, nolutpomxd dedopéva, cuyy®veuor, eupnotia, avdiuoT dudieorng






Abstract

Over the past few years, the abundance of multimedia data and progress in core ma-
chine learning algorithms has set the scene for multimodal machine learning as one of the
frontiers of applied Al research. The usage of social networks has exploded leading to mas-
sive amounts of data available. In addition, the recent success of the so-called Pretrained
Language Models (PLMs) has encouraged the creation of many fascinating new applica-
tions. However, training these deep networks in multiple stages, as this trend suggests,
comes at the cost of increased model parameters.

In this work, we propose Adapted Multimodal BERT (AMB), a BERT-based architec-
ture for multimodal tasks that uses a combination of adapter modules and intermediate
fusion layers. Specifically, the task that is going to be tackled is sentiment analysis on
videos with text, visual and acoustic data. BERT is a deep pretrained neural network
architecture that was originally used for processing language information and consists of
multiple neural network layers, which are called transformer layers. The adapter is a neural
module that is interleaved in between the layers of BERT in order to adjust the pretrained
language model for the task at hand. This allows for transfer learning to the new task,
but in contrast with fine-tuning which is the prevalent method, adapters are parameter-
efficient. The fusion layers are composed of a simpler feedforward neural network aiming
to perform task-specific, layer-wise fusion of audio-visual information with textual BERT
representations. During the adaptation process the pretrained language model parameters
remain frozen, allowing for fast, parameter-efficient training.

Extensive ablation studies are performed which reveal that this approach leads to an
efficient model. Adapters prove empirically to help with performance although they train
much less parameters, because they avoid some of the issues with standard approaches of
transfer learning. They can outperform these costly approaches which consist of the afore-
mentioned fine-tuning that refines the weights of the model to adapt it to the new task.
Also, the proposed model shows signs of robustness to input noise, which is fundamental
for real-life applications. The experiments on sentiment analysis with CMU-MOSEI re-
veal that AMB outperforms the current state-of-the-art across metrics, with 3.4% relative
reduction in the resulting error and 2.1% relative improvement in 7—class classification

accuracy.

Keywords

Al, deep neural network, transformer, tranfer learning, fine-tuning, prompt-tuning,

adapters, BERT, multimodal, fusion, robustness, sentiment analysis






Euyoegiotisg

H nopodoo dimhoyotiny epyaoio anotelel €vo TEOoWTIXG TOVAUL GTNY SLOORQWCT) TOU
omnotou cuveTéAeoay Tohhol. Ou el VoL EUYUPIOTACW TEWTIOTWS TOV EMPBAETOVTA XNy NTH
e epyaotiag, Tov xadnynt) AAé€avdpo Ilotopidvo yio TNV evaoyOANGY| TOU UE TNV EPELYNTIXT
pou mpooTdveld, TIC Xolpleg GUUPBOLAES TOU OAAG Xl Yiol TIC TEWTOTOELIXES OLIAEECELS oL
HE EVETVELCOY VoL oOYOANOC UE TNV Unyovixy) uddnom xow You €Bmoay XOUPAYLO €V XOLEW
mavdnuiog, o ula mepiodo 60oxoln v 6houg yoc. ‘Eva peydho suyoptote ogelley otov
INaopyo [opaoxevémovho yia Ty ToAUTIUN Poridetar Tou xon T xadopLoTIXES TOU LOEES.

Ou Hlela eniong va euyaELoTACK GA0LE 660U UoU GTANNUAY OTIG BUOXOAES GTLYUES AUTHG
e mpoomdielog, Tou dev Yytav Alyeg, xau e Borinoay vo tig Eenepdow. Téhog, To ueyardtepo

ELYOPLOTY TO OPEIA GTOUS YOVEIC HOUL Yiot Ot OOU UOU TEOGPEROLY XAV NUERLVA.
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Extetouevn Ilepiindn oto EAANvIxa

E :'co xe@dhato outd Tapouctdleton uio extetopévn tepiAndn g epyacioc auTAC oTa ENA-

nvixd. Me ouvontixd tpémo Yo dlatunmwdoly oL xevtpixéc 1Wéec amd xdde evotnTa.

0.1 Ewooywyn

Ta teheutaio YpovLa, 0 TOUENS TWV TOAUTROTULXMY EQPURUOYMY avanTOCOETOL porydokar AOY e
TNC TANGDEAUS TOAVUECIXDY BEBOPEVGLY Kol TNG AVETTUENG TwV ohyopldumy unyovixhc uddnonc.
H extetopévn ypnon tov UEcmY XOWmVIXASC BIXTUMONG EXEL EMITEEPEL TNV GUALOYY| TERAOTIWY
oLVOAWY Oedopévwy. ‘Ouwg, Bev elvar duvatd va yivelr enelepyacio tétolag xhipaxac Oe-
douévev pe yewpoxivito tpomo. Ia tny enfluon authc tng doxwoaotog amoutelton 1 avdmTuén

ATOTEAECUATIXWY CUCTNUATWY TEYVNTAS VONUOGUYTC.

0.1.1 Mnyovixr; Mddnon

H unyovixy) udidnon otneiletar otnv oyedlacn evog poviélou To omoio mpocupudlel Tig
TapouéTeoug Tou e TN Pordeta ahyopluwy Pehtiotonolnong mhvew o pla TAndwea 6ToTIo-
Txwv oedopévwy. 'Evo biaitepo eldog yovtého elvar 10 yvwoTtod xat w¢ VEupwvixd dixTtuo.
Ta vevpwvixd dixtua, xou Waktepo Tor Bordid vevpwwixd dixtua, Tar TEAeUTAO YEOVIAL EYOUV
yenowonomndel oe TOAES EMAVIC TATIXES EQUPUOYES Xou €ToL BpioxovTtal 6TO ENiXEVTRPO NG
€QELVAC OTNY TEYVNTY| VONUOGUV).

Ta Bl T vevpwvixd dixtua yweilovtouw oe emuépoug xatnyoplec woviédwy. To mo
amho €€ auT®Y elvon To TAREKC cUVBEDBEUEVO BixTuUO, To oTtolo anoteheiton amd TOAAG emineda
VEUROVWY Ta 0Tolol GUVOEOUY Xde VELPWVA TNG ELGOBOL UE €Val TOMATAACLIC TIXG BApog Yl
vo tapdgouy Tig €£odoug Toug. Eva 8eltepo onuavTind Yovtélo elvor TO GUVEAXTIXG BiXTUO.
Arnotelel tpomonoinon tou meonyoluevou, pe TNV TeooU N cuveNEewy ot plo yeltovd 1
omofo ovoudleton muprvag. Ta Bden tou muprvar elvon xowvd yio xde vevpddva. To cuve-
Axtixd dixtua enelepydlovian ouvidwe exdves. T Ty mepintwon Twv PHovodldo Tatwy
oxohouth®y, OTKe elvar 1 YAMOOoW, €va GANO UOVTENO TEOTHIATOL TO OVUBPOUIXO VEURMVIXO
oixtuo. To avadpouixd vevpwvixd dixtuo enelepydleton xdle cluforo tne axoloudiag ye to
{80 vevpwvixd dixtuo, anotnxebovtag TNy TANpogopio and Ta TeonYolUEVL GUUBOAA. Buy Vi
Tor avadpopxd dixTua eu@avilovTal OE HORYT XWOLXOTONTA-UTOXWOLXOTOUNTH XAl OE AUTY| TNV
nepintwon elvon yeriown 1 epapuoyn ploc dwdixacioc mou ovoudletou npocoyr. H mpocoyn
oivel éva Bdpog oe xdde TuAua tng axoloudiog to onolo xadopllel TNV cUVEIGYPORA TOU GTO
Tehx6 anotéheoua. Me agopur v emtuylor TN TEOCOYNAC, AATOLOL EMCTHUOVES ETLVOT-
oav €vo eEUEETIXG TETUYNUEVO YoVTENO Tou ovopdleton transformer xou yenowonolel TOANS

enineda TEOCOY Mg XAl TAHEMS CUVBESEUEVOL BIXTOOU Yla Vo eTeCepYaoTel dedOPEVa.



Extetopévn Iepiindn ota EAAnvixd

0.1.2 Meragopd Mdinong oc Ilpoexnoudevpéva Movtéla Transformer

H npwtn epyaocio mou ewohyaye 1 pédodo fine-tuning oe peydin xiiyoxa frav to GPT

6], pe v axdroudn Swotinwon:

e ‘Eva Padl yovtélo transformer mpoexmoudeleton oe €vo UeYdAo GUVONO XEWEVWY UE

OTOYO VO ATOXTACEL YPNOWES YEVIXES YVWOELS Ywplc emiBAedm

e To (B0 mpoexmoudeupévo poviého ot ouvéyelo mpooapudletar (fine-tuned) mdve oe

€V CUYXEXPWEVO TEOBANU UE ALYOTERAL OElY AT

Mio &k onpovtixy epyacio fitay to BERT [7], to onolo elvon éva povtého transformer
AWOOTONTA.

H pédodoc fine-tuning nopovoidlel onpovtixd npolifuata. Ipwtov, nediuon twy Bopny
Tpoxahel amdAela TANpoYopiag 1 ontota ovoudleton “opvnoia” (catastrophic-forgetting) eneidy
o Bdipn meptéyouv yeroyn TAnpogopia 1 onola TROEEYETAL ATO TO GTADLO TNG TEOEXTUUOEVOTC
1 omolo Yo mp€mel vor adrotwdel yior TV TpocapuoyY| Tou ovtélou oTig Véeg cuviiixes. Emlong,
to fine-tuning elvan pio xootoPopa Swadixacio 1 onola anoutel TOMES TUPAUETEOUC XL €Vl
avTiypapo OAOXANEOU TOU HOVTEAOU Yo XGUE BLUPORETING TEOBATUL.

Tnv Mon oe autd ta TeoAiuate Teoc@épouy oL TEocUpHOYELS 1 ahhie avtdntopes (8.
O avtdmropeg etvon dixtua uixerc xAlpaxag to omolo Totovetodvion Thve and xdie eninedo
Tou transformer pe oxomnéd va to mpocupudcoLY 6To VEO TEOPBANua. ‘Ouwe, €tot, Ta dla To

enineda Tou transformer nopouévouy aueTIBANTA 1) AAALOC “Tory UEVA.

0.1.3 IToAutpomxry Mddnorn »xow Avdiuomn Awddeong

Ta mohutpomixd dedouéva elvon BEGOUEVO TOU TEOEEYOVTOL OTO BLUPOPETING acUNTHELL
(ouyVvé xelpevo, edva xou fyog) xat €xouv SLaPopETIXG TEOTO XWBIXOTOINONS OE €Vol VEUp-
OVXO BixTuo.  AuTH 1 Slapopd TNV AVITUEACTACT) TEOXAAEL CNUOVTIXES BUOXOAEC OTNY
enthuon TOAUTEOTUIXWY TEOBANUATOY ETELSY) BUGKOAEVEL TNV CLUYYWVEUCT| TG TANEOQORLaC.
[ v anotekeopdtins ouyydveuon pio uédodoc [9] mpoteiver Ty TEoBoAY twv dedouévev
o€ €VaY X0WVO YOPo oTov omolo 1 TAnpogopia amd xdie acintrplo €yl cupfaty avatupdo-
Toom yioe ouyywvevor. To poviého MISA [9] mou axoloudel auth v pédodo netuyaivel
aroteréopota ouyunc. Mio dAAn Snpogiiic puédodog eivon 1 avdntudn TeplimAoxwy dixTOwY
TEOCOY MG 0 TOAG eTineda yiar TNV eLILYEaUULOT TV oI nTneiwy.

‘Eva 4o mohl eviiagépov povtéro eivor to MAGMA [10], to omolo ypnowwonotel éva
TAYWUEVO TPOEXTIUOEUUEVO YAWGGIXO UOVTEAO GE GUVBUNGUO UE TEOGUPUOYELS YLOl VoL TIpoLy-
UOTOTOLACEL TORoy WY 1) XEWEVOU Ue onTxd cuupealoueva. H ypron mpocapuoyéwy aviyeoa
oTa eniNEdA TOU YAWGOXOU UOVTEAOU QaiVETOL Vo AELTOLEYOUY XAAOTERA OO TNV XAACIXT
uédodo fine-tuning, cOuQWvOL UE TOUG CUYYEAUPELS.

XNy meptoy ) Tne ToAuTeomixg avdAuong Siddeong, €xouv mpotodel ToAAES evBlapépouaeg
wéec. H yprion tng mpocoyric enétpede TNV avdmTtuln mo eEEAYUEVODY HORPUWY CUYYWVEUCTS
ue ToAEC mopahharyéc: Lepapyix Tpocoyt [11], transformer ye npocoyy yio euduypdupion
avdueo oe BlapopeTind onointhpto [12], Tpocoyy| Yl THY AVaVEMGT) TWV OVATARC TAGEDY
tou BERT (uédodoc shifting) [13], axdua xou Tpocoy yior ThY eTAOYH XUTEAANAWY Yopox-

el Ty [14].
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Figure 1. Apyitektovikn tov MISA
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Figure 2. H apxitextovikiy MAGMA rnapovoidler ikavétnte§ andvtnons e epwTnoes e
ontikd ovugpaloueva

0.2 Ilpoocapuocuevo IToAuvtpomixd BERT pe eninedo cuy-

X WVEVONG YLl AvAALOTY) dddeong
H Boowxn ouvelogopd tng epyacioc cuvoiletar oTa TopoxdTw:

o ITapovoidleton to véo povtéro: Ipocappoouévo Illolutponiné BERT (AMB). Anotelet
enéxtaon tou dnuogtholc BERT [7] xau puduileton pe mpooopupoyeic xou evdidueoa
enineda feedforward Sutbou ta omola cuyywvebouv TAnpogopla amd xelUEVO, ELXOVA

xaL YO0 Yo VoL EXTEAEGOLY avdAuoT) Sldeonc.

o H allohdynon tou yoviéhou oto dnuogiréc cbvoho dedouévry CMU-MOSEIL bivet
anoteléopato ayphc (state-of-the-art).

o H yprion avtdntopa emteénel ouxovouxr) eEXToldeucT) HE MYOTERO Amd TO €VOL TEUTTO

TWV TUPUUETEMY TOU TRONYOUPEVOL UOVTEAOU atyuhc, ywelc va Yuoidlel Tig emdooeLC.

o Ilpayuatomoteiton apoupetiny) UEAETN 1 Omolo AmODEXVUEL TELRAUUATIXG OTL 1) XAACLXY
pédodog “fine-tuning” 7 onola mpotwdtor ot Pihoyeapio Tapouctdlel yuUnAOTERES

EMBOOELS oV %ol OmUTEL TOAD) TEPLOCOTERES EXTULOEVOUEVES TORAUUETOOUG.
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o Aweldyeton peAETn eVpwaTiag 1) oTtola BElY VEL OTL TO TEOTELVOUEVO HOVTEAO Elval EVPWOTO

otny noagoucia Yoplfou ota awcinTrpLo.
0.2.1 Apyitextovixy
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Figure 3. Architecture of Adapted Multimodal BERT (AMB)

To oyfuo 3 mapouoldlel TNV oEYLTEXTOVIXY TOU CUCTANATOS.  Apyixd, 1 axoloudio
TOU XEWEVOU NG ELCOBOL TEPVEEL amd To ToywUévo oTtddlo mpoemeiepyaoioc Tou BERT
(BERT tokenizer) yia va petotpanet o oxohovdia and draviopata-Aéeic(tokens) tou BERT.
HopddAnia, 1 axoVAOUDIEC UE TO OTTIXE XOL AXOUCTIXA YUQUXTNEOTIXG TEQVAVE omd ex-
TUOEVOUEVOUS HWBOIXOTOINTES TROXEWEVOU VO UETAPEACTOOY OE €val €0XO OLAVUoUA-AEET
ouuPatd ye v avarapdotaon tou BERT. O xopudc tng apyttextovinfc anoteieiton and
éva Taywuévo npoexmandevuévo poviého BERT 1o onolo puduileton and eninedo avtdntopa,
xwelc mpdoPaor ota dhia cwodntipla. Ot avanapactdoe Tou BERT cuvbudlovton oe xdie
eMMESO UE OMTIXO-UXOLOTIXH TANPOYOp(d OE €val TAHEWS CUVOEBEUEVO VeEupwvxd dixtuo (feed-
forward network - FFN) yi v enitevin nolutpomxfic ouyywvevone. H Sadixaoio auth
enavalouPdveton oe 12 enimeda xou ol Teheutaieg avanapactdong divovto oe €va FEN yuo va

TpofAéwel To oxop NG dddeoTg.

IMayowuéva eninedoa BERT

To naywpévo povtého BERT amotelel tov xoppod tng apyttextovixic Yo v dwiel Eupaon

oty onuaocia e yhwooos. Kot to otddio npoeneiepyooioc tou BERT (BERT tokenizer),
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oANG xon T 12 eminedo tou BERT, nopauévouy auetdfBAnto xatd Tny eXTolOEUsT), UELOVOVTAS

€TOL TG EMTTOOELC NG ovnotag Tmou umopel vo tpoxtouy amd ) phiulon Twv Bopoy.

Enineda ITpocappoyewy

Y10 YOVTENO YpNotonotE(Tal To TprTdTUTO Eld0C Tpocupuoyéa tonou “bottleneck” [8].
Kde eninedo anotehelton and pla ypauuxr teofolt| o younhotepr Sldotaon axolouoluevn
am6 ula un-yeopuxotnta tonou “ReLU” xou téhog pio ypouuxr meofohy| yio emovapopd
ot apywés dotdoelc. Xpnowwonotolvtow cuvdécelg utoholtou (residual) ovdueoo otny
eloobdo xau v €080 Tou mpooapuoyéa.  Avtl yio TV TEOCUHXN TEOCUPUOYENL o OTNV
npocoyf xau oto FEN, axoloudmvtac o [15], tpootidevto pdvo éva eninedo mpooapuoyéa,
petd and to FEN. 'Etol, yewdvetar o apududg tTwv mopopétewy 6To wood. O npocapuoyelc
elvar Tomodetnuévol ye té€tolo TeoéTo KoTe elvon umedduvol Yo TNV TEOCUEUOYY UOVO TNG

Thnpogoplag and To xeluevo xou oyt amd To dhha cwodInTrpla.

Ontuxol xou Axovotixol Kwdixonowntég

Or omtixol xan axoLG Tl XWOLXOTOLNTES AmOTEAOVUVTOL aTtd ENITESA XWOXOTONTGY trans-
former to omolo emdpolv oe xde ouoinTAplo Eexwplotd Yior TNV e€aywyn TAneogopiag and
o oxoroudia avdalpeTou UAXOUC XAl TNV CUUTIEST) TNC O €VOL GUUTAYES OTTLXOUXOUC TIXO
OLvUoHa-AEEN. AUTO TO BLAVUCUA TEOETOWALETAL YId TO ETOUEVO GTABIO 0TO OTolo Vo GUVTE-
AeoTel ouYyOVEUST) PE TNV TANEOoOopia Tou Xewévou. H oyedlaon Twv xwdonomtodv avthiet

éumvevon ond Tic epyaoiec Twv [16, 10, 17], ye v mpootixn Tou axouctixol aointreiov.

Enineda Yuyywvevong

[Mo ta enineda ouyywvevone yenowonoeiton feedforward network. To mpdhto ctoiyelo
tou BERT, yvewoto wg “CLS token” ypnowomnoteltan cov obvoln yla tnv mhnpogoplor Twv
XPLPAOY AaTACTACEWY evoe emnédou [18]. Autd to otouyeio mpoBdiheton apyxd oe youn-
ANOTEPQ DIACTAUON XaL EMELTAL ToEATIIETOL UE TO OTTIXOUXOLC TN BLdvUoUa-AEEN Yiar Vo dw el
oav eloodoc oto eninedo ouyydvevone. Av xa ot [13, 17| eniong epapudlouv ouyywveuon,
%0 oL 6V0 YENOWOTOLOVUY TO ATOTEAEGUA YL VO UETATOTHOOLY TIg avarmapactdoel Tou BERT.
H 8uery pog exdoyr| tng ouyywveuong elvar amholotepn xat omodetxvieTol EToEXNS Yol €&-

OUPETIXG ATOTEAECUOITAL.

IMeoPBAERTNG

H cuvohuxn avamapdotaoy tou tekeutaiov eminédou diveton oe Evay npoBAéntn tumouv FEN
mou bivel Ty €€0do tou cucTiatoc. To clotnuo exnoudeleton ye otpatnyixy| end-to-end,

dnhadt| o€ évo oTddto (ue eZaipeon Ty npoexnaideuon tou BERT).
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Models MAE (1) | Corr (1) | Ace-7 (1) | Acc-2 (1) | F1 (1) | Trainable Parameters
MMLatch (G) [14] 0.582 0.704 52.1 82.8 82.9 2.6
MulT (G) [12] 0.580 | 0.703 51.8 82.5 82.3 1.8
LMF (B) [19] 0.623 | 0.677 50.2 82.0 82.1 1.0
TFN (B) [20] 0.593 0.700 51.8 82.5 82.3 0.6
MFM (B) [21] 0.568 | 0.717 51.3 84.4 84.3 1.7
ICCN (B) [22] 0565 | 0.713 51.6 84.2 84.2 -
MAG-BERT* (FT) [13] 0.614 0.763 50.9 84.3 84.2 110.8
MISA (FT) [9] 0555 | 0.756 52.2 85.3 85.3 47.1
AMB (Ours) 0.536 0.766 53.3 85.8 85.8 8.6

Table 1. AnoteAéouara oto CMU-MOSEIL Movtéla e (G) xypnoyuonooly euputelpata
glove. Ta povtéla pe (B) xpnoyonowdy taywpéva xapaktnprotikd BERT ka1 mpoépxovtal
and ta repdpata ovo [22]. Ta povtéda MISA kar MAG-BERT ypnowonowoty puédodo fine-
tuning (FT) yia to BERT. Ta meapduata tov MAG-BERT* éxouvr mapaxOel yia avtniv
™y epyacia ané tov onpocievpuévo kaowka. O apuos Twv eKTaldeVOHEVwY TapauéTpwy
(Trainable Parameters) elvai o€ ekatoupipia.

0.2.2 Iletpopatixy Atadixacio
Aldtadm

H eymeipuer o&tohdynom tng enidoong tou poviéhou yiveton ue tn fordeta Tou GuvOoL Oe-
dopévey Yo avdhuon diditeone CMU-MOSEL Anoteheiton and 23.454 Bivteo and to YouTube
To omolot aopolV xELTIXES TaviwY ot GAAa Vépata. To dedouéva elcod0L anoTeAodVTAL ATd
oXOAOUDIEC TOU XEWEVOU AMOPAY VATOPWOYNOTNG, XIS Xl OTTIXG X0 OXOUGC TIXE. YORAUXTNELO-
Txd. [ty a€lohdynomn yenowonolobvTon xAaCIXEC PETEES Takvdpounong: Méoo Andhuto
Ygdpa (MAE), cuvteheotic ouoyétione (Corr) xou tadvéunone: axplBeta 7 xAdoewyv (Acc-
7), axpiBela 2 xhdoewv (Acc-2) xou F1 oxop (F1). I to povtého BERT ypenowonoteitar n
€xdoor bert-base-uncased. H exnaidevon diapxel 20 Aentd oe pio xdpta ypagpwy GTX
1080Ti NVIDIA.

Arnoteréopata

Ta aroteréopata tng avdhuong ddeone oto CMU-MOSEI galvovtar otov mivoxa 1.
Hapatnpeiton onpovtiny Bedtiwon oe Ohec T YETEIXES omd TO TEOTEWVOUEVO Yoviého AMB.
Hapddinia, 6mwe gatveton and Ty ewove 4, ol VYNAEC eMBOCELC GUVOLALOVTAL UE YOUNAO

A(00TOC TUPUUETEWY AOYW TNG YOS AVTATTORA.

Agoupetinr) Mehétn (Ablation)

O ITivaxog 2 mapouctdlel T EMTTOOELS TN APUPEONC AcUNTNEIY Xl TO ATOTEAEGUATOL
e xenone avidntopa ot Véor tou fine-tuning yio TNV TpOCUPUOYT TOU YAWOGWO) UOV-
éhou. Apywd, N andppudn Tou xewévou elvan xatacTeoPXr Yiot To Yovtého “AMB no-text”,
(PAVERWVOVTOC TNV XUpLoEylal TOU XEWEVOL €Tl TwV dhhwy awotntnelwy. AAAG xou 1 amdppudn
TV MY arontnelny odnyel ot xdmolo uixer| pelwon tng entdoong, ondte 6Aa To acUnTHELL

elvon onpavTind yia TNy eniteun xoADY EMBOCEWY.
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Figure 4. Awdypappa axpifeias 7 kAdoewy - eknaidevopevwy Tapauétpwy Yia ta KaAUTepa
pHovTéla ané tn fiplioypagia. To G ovuporiler eppuretpata GloVe, to A avtdntopes, to B
raywpéva kai to F'T fine-tuned eppurevpata BERT. To tpotewvopuevo AMB e avtdntopes
rapovoidler pia kaAn 1wwoppornia avdpeoa o€ enidoon KAl €EKTAIOEVOIEVES TAPAMUETPOUS.

Models MAE (}) | Corr (1) | Acc-7 (1) | Acc-2 (1) | F1 (1) | Trainable Parameters
AMB no-text 0.816 0.240 41.6 63.3 61.8 8.6
AMB text-only 0.541 0.760 52.8 85.7 85.7 8.6
MISA-Adapters 0.5480 0.758 52.1 85.8 85.8 8.5
MISA 0.555 0.756 52.2 85.3 85.3 47.1
AMB-FT 0.548 0.756 51.9 85.4 85.3 47.2
AMB 0.536 0.766 53.3 85.8 85.8 8.6

Table 2. Avtdntopes kai fine-tuning. Ilapatidevtar neipduata pe agaipeon eite keyuévou
(no-text) efte ontikoaxovotikis mAnpogopias (text-only). O amduds twv extaibevépevwy
napapétpwy (Trainable Parameters) eivai o€ exatopuipia.

[o v oUyxpeton tou fine-tuning ye toug mpocapuoyels, LVAomoloLVTOL plot EXBOYY| TOU
MISA pe npooopuoyeic (“MISA-Adapters”) xadoe xou pla exdoyr) tou AMB pe fine-tuning
(“AMB-FT”). Etnv nepintwon touv MISA, 1o fine-tuning omodewxvieton neplttd, eved otny
nepintwon tou AMB elvan xou emPBroféc. H pelwon oty enidoon tou AMB e fine-tuning

Oev unopel Tapd Vo OPEIAETAUL GTO PUUVOUEVO TNG AUVNoLag.

Meiétn Evpwotiog

Ye autrv TNV evoTnTa gpeuvdTaL 1) eupwoTia Tou AMB oty elcaywyy) YopiBou. T ta
OMTIXG Xon ToL NYNTXE yapoxTnetoTixd oxohoudeiton 1 uédodoc twv Hazarika et al. |[23].
INo to xelpevo mpotelvovton 6Vo véeg pédodol: Slorypopr xou avtixatdotoon Aélewy. I
To Telpopa NG avTiXaTtdoToone AEEWY €V TOCOOTO TwV AEEEWV TN €10600U emAEYETU
Tuyato xou avtxodiotovtor and pla AEEN Tou Ae&xoU, EVG Yo TNV TEQINTWOT TNG Sy PaPrC
avuxadiotavtar and to eldnd oToryeio T dyvwotng AEng yvwotd we [UNK].

H ewdva 5 delyvel Ta anoteréoyata TN €pEuvag. TNV TERIMTOOT TNG BLayEapnc Xou TNG
AVTIXATAC TOONG AEEEWY TORAUTNEE(TOL TUPOUOLN CUUTERLPORY Yol Tar Telol OVTENA, oV Xol TO
AMB pe npocopuoyelc gaiveton o eVpwoto and to AMB ye fine-tuning. Xtnv nepintwon

TOV OTTIXWY YORUXTNPLO TIXWY 1) TTOOT TNE ENidoong eivan pavepd uixpodteen Yo too AMB xan
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(d) Tuyaia ewaywyn GopdPov oe nyntikd xapak-
npioTiKd.
Ta arotedéopata elvar kdnws anpdopeva.

(¢) Tuyafa ewaywynr JoptBov ge omtikd xapak-
TnpioTikd

Figure 5. Euvpwotia tov povtélov ya oOwgopetikd emimeda Jop¥Pov. Tuyaia o1aypagn
otoryelwy €106dov (apiotepd), Tuyain avtikatdotaon otoyeiwy €106dov (uéon) kar Tuyaia
aioaywyn Joptfov ata ortikd xapaxtnpiotikd (deiid). Fakdlio ©: AMB, Kéxiwvo ©: MISA,
Ilpdowo °: AMB-FT.

MISA, 6uwe to AMB-FT nopapével tehelwe avennpéacto and tny eioaywyt YoplBou. Autd
OElYVEL OTL AUTO TO LOVTENO ETAPIETOL ATOXAELS TIXE GTO XELUEVO Yia Vo xdvel TeofBAédeic. ‘Apa,
N xeHon Twv emnédwy npocupuoYEény gaiveton va Bonddel otny aflonoinon tne TAneogopiog
TRV AYOTERO xUplapyx®y awodntnelwy.  Aviideta, oty eloaywyy) YopiBou ota NynTxd
YOEAUXTNELO TIXG. TOL LOVTEAO PAEVETOL VoL CUUTIEQLPEROVTAL XATWS anpooueva. Anhadn, avtl va
HELOVETAL 1) ETIB0CY) TOUG PE TNV EloaywYr OAo xan TeplocoTepo VopLBou 6To acinTrpLo,
yioo Toe povtéha AMB xon AMB-FT mopotnpeiton undevixt|; uetaBorr. Apa, autd onuoivel
6ot oUte to AMB, ahhd o0te xou to AMB-FT ennpedlovtar and to awodntrpto avtod. Xtnv
nepintwon oune Tou AMB, @dvnxe 6Tl Tl OTIXG YoEAXTNEICTIXG Efval ONUOVTIXG Yiot TNV
An anogdoeny, doa dev Umopel Vo GTAlEL O UNYOVIGUOS CUYYOVELONS Yot TO “anpbouevo”
amotéheopa. ' to MISA oupBaiver xdtl oaxdun mo Oronto, agold v 1) eloaynyn YopdBou
OTA OTTIXG YopaxTNELo TXd duoxoieler To MISA, otnyv mepintwon Twy axoucTIXOY Yopax-

7 7. 4 4 4 e 7. Z
TNELOTIXGY Qadvetan var uTdpyel axdun xou Bertiwon. Katd tn yvoun yog, ta anotehéouato
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oty vouv plor Eexddopn aduvouion TOV NYNTIXOY YORUXTNPIOTIXWY, oAAd To (TN amontel

TEPLOCOTERY BlEEEUYNOT Yiar Vo Angiel €var Tehxd cuuTEpacaL.

0.3 Xvurepdouata

Ye authAv v gpyooio mpoteivetan To poviého AMB, éva amhé ok Tautdypova TEw-
Tomoptaxd Yovtého To omoto yTilel mévw oTo oyLEd mpoexTadELPEVO xwdixorounth BERT
xa amogedYeEL Toug xwvdlvoug TN xhaowrc pedodou fine-tuning. H yperjon Tou avtdntopa
EMTEENEL OTO UOVTENO UAC VO PELWCOLY TO XOOTOC TWV EXTUOEVOUEVLV TORUUETOMY Ywelc
vor Yuoldler and TNy enidoor| Tou, apol xotapépvel Véo enidoon aryuric oto CMU-MOSEL
Emnpéocieta, anodelytnxe melpauatind 6Tt 1 ye oW YVOOT ord To GTAB0 TROEXTAUOEUGTS
OLVOLALETOL APUOVIXEL UE TNV OTTIXOUXOVC TiXY| TANEOQORLa GE QUTO TO HOVTENOD, ATOPEDYOVTAC
€tol T Bouxd {nthuata e “opvnotag” xou Tng avicopporiog Twv aodntnelwyv.  Télog,
1N MEAETY eupwaoTiog €0elle OTL TO TEOTEWVOUEVO UOVTELO elval aflOTIOTO %ot EVEWCTO OTNY
Tepintwon tuyaiag eloaynyrg YopdBou, To onolo elvon ovclacTixd THTNUA Yiot TNV avdmTuln

EQUPUOYDY GTOV TEAYHATIXO XOCUO.






Chapter

Introduction

1.1 Motivation

Over the past few years, the field of multimodal applications has witnessed impressive
breakthroughs due to the abundance of multimedia data and progress in core machine
learning algorithms. Social networks are more active than ever , as depicted in Fig. 1.1,
uploading a massive amount of multimedia and other kinds of data online for anyone to
access freely. It is not humanely possible to manually process and digest information from
these extreme amounts of data. As E.O.Wilson puts it: “We are drowning in information,
while starving for wisdom.” Many digital applications, such as conversational virtual as-
sistants, have emerged, aiming to help humans in this laborious task by processing their
requests through their understanding of natural language. However, these approaches are
limited by their inadequate abilities to leverage context from other modalities, such as vi-
sual and acoustic, that humans commonly use to enrich their social interactions. This has
set the scene for multimodal machine learning as one of the frontiers of applied research

in artificial intelligence (AI).

INTERNET
USERS.

)

O, O,
+1.8% +4.0

+80 MILLION +95 MILLION +192 MILLION +424 MILLION
o

1 © Hootsuite:

Figure 1.1. The digital report was taken from [24].

b

According to [25], “You can’t learn language from the radio.” The understanding of
current methods in natural language understanding (NLU) is only based on statistical
patterns that arise by studying words and their context in sentences. However, most of
the knowledge that humans use to understand language is built on assumptions that have
risen from sensory perception on the physical world. These assumptions, also referred to
as “common sense”’, are only implied during conversation, never directly mentioned. For

this reason, in order for an artificial system to acquire NLU abilities as close to human
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understanding as possible, it is required to expand its perception to incorporate more
modalities in order to “ground language”.

Another important factor for real-world applications that humans might consider useful,
especially in the context of Al assistants, is the illusion of empathy. Human behaviour is
deeply connected with social interaction and non-verbal cues. Understanding the feelings
of others is often demanded in order to understand completely what they mean. This is
especially the case in the context of strong emotions that lead to humour or irony. In these
cases, it is hard to infer accurate conclusions only with language, as the meaning is implied
by visual cues, such as face expressions, and acoustic cues, that are known in the field of
linguistics as prosody.

As mentioned, the rapid progression of machine learning research has recently enabled
Al systems to tackle advanced multimodal problems. Innovative deep neural network
models and specifically the transformer, have been instrumental to the success of large-
scale language models that can understand natural language competently. This has inspired
the research community to augment these models with other modalities in order to expand
their abilities and increase their performance.

Real-world Al applications are extremely demanding. The industry’s requirements on
costs are strict and the computational power of portable devices is limited, imposing serious
restrictions in the budget of trainable parameters. For this reason, models that strike the
correct balance between performance and parameter efficiency should be developed in order
to be flexible and modular. Flexible in the sense that they can be adapted easily on a new
task if is necessary and modular in the sense that if the core system is updated, the internal
system can remain exactly the same or adapt with a few minor modifications. Furthermore,
when deploying software in the wild the importance of adapting to errors is priceless and
for this reason it is crucial to study the robustness of these models to noise inserted in
their input modalities. The popular techniques employed by deep learning researchers and
engineers seem to be inadequate to the aforementioned requirements and this motivates

the proposal of a new approach that overcomes these issues.

1.2 Contributions

The main contributions of this thesis are the following:

e We present Adapted Multimodal BERT or AMB for short, a multimodal extension
of a popular deep learning model called BERT [7|, which is tuned with adapter layers
and intermediate feedforward network layers perform multimodal fusion with textual,

visual and acoustic information in order to perform sentiment analysis.

e We test our model on a popular dataset called CMU-MOSEI and it achieves state-

of-the-art performance.

e The use of adapters allows our model to be lightweight, training less than one fifth

of the parameters of the previous state-of-the-art, without sacrificing performance.
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e Our ablation study proves empirically that standard fine-tuning, which is the pre-
ferred method in the literature, falls behind adapter-tuning, even though it demands

a much larger parameter budget.

e Our robustness study shows that our model is robust to random insertion of noise in

its input modalities.

1.3 Outline

In chapter 2, Machine Learning, the preliminaries of machine learning are presented
and the adoption of deep learning techniques is motivated. In addition, the most popular
deep learning models are explained including the most fundamental for this and many
other works, the transformer. In chapter 3, Transfer Learning, the standard approaches
for successful pretraining techniques are discussed as well as alternative methods that avoid
some of the issues that are present with the previous. Chapter 4, Multimodal Learning,
is an introduction to the fascinating field of deep learnign with multiple sensory inputs.
The most important techniques are analyzed and the operation of the advanced visual-
language models is clarified. Multimodal Sentiment Analysis, which is the task that our
method is evaluated, is the point of emphasis of chapter 5. The available datasets, the
most influential methods as well as a method for diagnosing the robustness of the evaluated
model are all discussed. In chapter 6, Adapted Multimodal BERT (AMB), which is our
proposed method, is finally presented. The architecture is thoroughly explained and the
experiments are presented in great detail with clear figures. In chapter 7, Conclusions, the
results of our work are discussed and some ideas for future work are proposed together

with some ethical considerations that every researcher should keep in mind.






Chapter

Machine Learning

2.1 Introduction

According to Mitchell [26] “machine learning (ML) is a field of inquiry devoted to
understanding and building methods that ’learn’, that is, methods that leverage data to
improve performance on some set of tasks”. Essentially, the programmer designs a machine
learning algorithm which is then left to “learn” from data alone, only with the help of
statistical models and optimization algorithms. The data used to train these models is
called training data and the set of parameters that can be adjusted through this procedure,
along with their underlying structure is often described as a machine learning model.

A very special kind of model is the so-called neural network. Neural networks, and
especially deep neural networks, are at the forefront of machine learning research with
fascinating results. In recent years they have been used plentifully in exciting applications
and they are often speculated to possess “Artificial Intelligence” or in rare cases even
consciousness [27]. In fact, more often than not, Al applications involve either neural
networks or other machine learning techniques and for this reason all of these terms are
used interchangeably.

Earlier efforts in artificial intelligence focused on expert knowledge systems which, based
on logical inference rules, derived new fragments of knowledge or reasoned over statements.
This is also referred to as symbolic Al and is characterized by serious limitations such as
the difficulty of formally describing all possible knowledge based on a given task. Machine
learning approaches such as neural networks were initially disregarded due to infeasibility
concerns which, however, were refuted by the technological developments around storage
and processing power, enabling the success of modern artificial intelligence with real life

applications broadly used.

2.2 Machine Learning Concepts

2.2.1 Types of Learning

There are two main learning paradigms depending on the nature of the data samples and
the type of feedback they can provide to the learning system. If the samples are organised in
pairs of examples with their desired outputs, known as labels, then this paradigm is called

supervised learning. In this case, models can be trained by minimizing an expression of the
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error, named loss function, between predictions and labels. This encourages the model to
“learn” to predict the correct labels in a statistical manner. The other paradigm is called
unsupervised learning and in this case only the samples are given, without any labels. The
goal in this scenario is to apply a certain strategy or rule to guide the algorithm in order
to explore its own view of the internal structure of the given samples. This can lead to
grouping data in categories called clusters, or alternatively, projecting them to a latent
space of lower dimensions, where each dimension has a specific intuitive intepretation. In

this work we will focus on Supervised Learning.

2.2.2 Neural Networks

A neural network is the most popular machine learning model at the foundations of
deep learning. Originally inspired by biological neurons in the human brain, it consists of
nodes that interact with non-linear mappings. The nodes are organised in layers, typically
the input and output layers, as well as a number of hidden layers that are meant for internal

computations that will help the output layer predict the output successfully.

2.2.3 Training Machine Learning Models
Loss Function

The loss function is a metric to evaluate the distance between a prediction and the
ground truth in the supervised learning setting. In other words, the loss function measures
magnitude of the error of a prediction. The goal of training is to minimize the total loss

as computed with this function.

Backpropagation

In order to train a model on a single sample-label pair, the first procedure is to obtain
a prediction for this sample. This is called the forward pass and consists of calculating the
output of each layer and feeding it as input to the next layer, until the output layer which
produces the prediction. Now that the prediction is obtained, the loss function is used to
evaluate the errors of this prediction compared to the given label. The key for training is
not the value of the loss function but its gradient. After calculating the gradient of the
output compared to the label, this gradient can be used with the help of the chain rule to
compute the gradient of the last hidden layer before the output layer. This procedure can
be iterated for all hidden layers, essentialy propagating the gradients back to the input
layer, hence the name backpropagation. To complete the procedure, the gradients of each
hidden layer are used to update the weights of each node in the layer, so that the total
loss would decrease. Backpropagation is repeated on all the samples of a dataset once to
complete an epoch and then multiple epochs take place until convergence of the model is

succeded.
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Generalization and Regularization

The ability of a machine learning model to achieve accurate predictions for previously
unseen data is called generalization. Generalization is the end goal of every machine
learning model in the supervised setting, because the labels for the samples used in the
training procedure are already known. In the case that there are too many parameters, such
as in deep models, and not enough data the model can learn the exact features of all the
possible samples. This model forms a trivial solution that has a zero total loss in training,
but cannot generalize. This problem is called overfitting. To solve this problem, some
procedures have been proposed under the umbrella term of regularization. Regularization
methods in general consist of introducting constraints in the parameters of the network in

an effort to encourage it to learn meaningful relationships that lead to generalization.

2.3 Deep Learning

“With four parameters I can fit an elephant, and with five I can make him wiggle his

trunk.” John von Neumann

2.3.1 Why depth?

A great explanation of the intuition behind the success of deep neural networks iron-
ically comes from work on compressing neural networks. The concept is called "Lottery
Ticket Hypothesis” [28] and it can be stated quite simply: “A randomly-initialized, dense
neural network contains a subnetwork that is initialized such that —when trained in iso-
lation— it can match the test accuracy of the original network after training for at most
the same number of iterations.”

This subnetwork is called a winning ticket. With the lottery ticket hypothesis in mind,
the intuition of why depth works is obvious. Assuming perfect balance between depth and
regularization, an assumption rather not trivial, deeper models will certainly provide more
combinatorial possibilities and so more winning tickets. If combined in a complementary
manner, like an ensemble of machine learning models, these tickets will display excellent

performance.

2.3.2 Architecture

But if the success of deep networks is only based on randomness why do we need more
than one basic model?
Not so fast. There are many more aspects to deep learning than just having a lot of
random layers stuck one on top of the other. The most important is to design structure
that will aid the emergence of winning tickets. This is done by ensuring the aforementioned
regularization and also creating suitable conditions for winning tickets to occur. The
introduction of structure in a deep neural network, aiming to find winning tickets more

reliably and efficiently, is called architecture.
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2.3.3 Feedforward Neural Networks

A Feedforward Neural Network (FFN) is a neural network that its nodes do not form re-
current connections. The simplest FFN only has a single node and is called the perceptron.
The input node calculates the sum of the input features and applies a non-linear mapping,
which is called the activation function, to obtain the output features. In a Multi-layer Per-
ceptron (MLP) many nodes are combined to form a layer. There are three types of layers:
an input layer, a number of hidden layers and an output layer. Multiple layer are stacked
one on top of the other to form a chain of hidden layers. The number of hidden layers in
the chain is called depth and the name “deep learning” arose from this terminology. They
are the basis for most deep neural architectures. The only structural points introduced
are in the choice of the depth and size of the hidden layer chain. The rest is left to be
decided by the learning algorithm. This unstructured approach gives total freedom to the
network to take its own decisions, resulting in a highly non-interpretable and unintuitive
final model. This is a disadvantage in the general case, but if prior information about the
structure of the input data is lacking but there are enough of them, then, it is a viable

solution.

Neural network Deep neural network

Input  Hidden  Output Input  Hidden Hidden Hidden Output

Figure 2.1. Multilayer Perceptron (MLP) and Feedforward Network (FFN). A deep FFN
is simply an extension of the MLP to include more hidden layers. Taken from [1]

2.3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are restricted versions of FFNs. The restriction
is imposed by convolutional layers instead of fully connected layers. They are organised
with many of these layers stacked one on top of the other to form a deep neural architecture.
Convolution is achieved by connecting each neuron with its neighborhood of neurons. The
weights of these connections are computed by a convolutional kernel depending on the
relative positions of the two neurons. This kernel is then shared for the whole layer. The
output of a convolutional layer is called feature map.

The mathematical equation for the operation of convolution is the following:

(I K)(i,j) :ZZI(i—l-m,j—l-n)K(m,n)



2.3.5 Recurrent Neural Networks

The goal of this design is to take advantage of the grid-structure of data (organised in
pixels usually) and introduce an inductive bias. The introduced bias is called translation
equivariance and it means that an object can be translated in any position of the image
and the network will interact with it in the exact same way. This is true for any object
in the 3-dimensional world. Unfortunately, this inductive bias does not include rotations,
so the model has to learn how objects rotate on its own, but this does not seem to limit
CNNs success.

In between convolutions, most CNN architectures interleave pooling layers. These
layers lower the dimensions of data by picking a representative value for a cluster of neurons
as the output of this cluster. This will be fed to the next layer of convolutions. Commonly,
the representative value is simply the maximum output of the cluster and in this case this

process is called max-pooling.
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Figure 2.2. AlexNet [2] Architecture

Figure 2.3. Feature map of 96 layers learnt from the first convolutional layer of AlexNet

12l

2.3.5 Recurrent Neural Networks

Convolutional networks are ideal for processing a grid of features, but they cannot
be leveraged as successfully for symbolic sequences such as language. For this purpose
recurrent neural networks (RNNs) are preferred. Their accepted input is a sequence of
elements that could be for example parts of words. These elements are called tokens. As is

the case with CNNs, imposing constraints is key for RNNs too. The primary characteristic
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of a RNN is that the same weights that are used by the RNN function to process one token
are used for all tokens; they are shared. This forces the model to learn a universal way
to process all tokens and during this process the network learns a lot about the tokens’

properties.

one to one one to many many to one many to many many to many

I
] D00 000 OOOO0 OO
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Figure 2.4. Various alternative sequential arrangements. Image taken from [3].

i t

[29] proposed an innovative design for RNNs called sequence to sequence that was orig-
inally proposed for translation and is still used in various applications today. The concept
of this design is simple: an encoder reads the input and the output of this encoder is passed
to a decoder that has to produce the final output. The encoder reads the whole sentence
and transforms it to a compact semantic hidden state and the decoder is responsible for
using this latent code to produce natural output in the target-language. Instead of solving
the problem all at once, the task is simplified and split to two subtasks that are solved by
each module and this allows for effective end-to-end training. For an in-depth review of
CNNs and RNNs we refer to Goodfellow et al. [30].
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Figure 2.5. RNN encoder-decoder architecture [4]
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2.3.6 Attention

The development of encoder-decoder architectures with RNNs gave rise to an old issue
that was seemingly solved by LSTMs: long-term dependencies. LSTMs helped overcome
some issues with the introduction of gates, but, still, very long-dependencies remained
undetected. This became especially evident in the task of neural machine translation,
where the goal is to translate a sentence from one language to another and exact alignment
is demanded. The system pays more attention to the last parts of the sequence, because
information from the earlier hidden states has been overwritten multiple times. There is no
way to factor in earlier positions, or emphasize some input words compared to others while
translating the sentence. A solution to this problem was provided with the introduction of
the attention function. After the encoder, an attention layer is used to collect information
from all hidden states, i.e. temporal attention. The collected information, which is a
semantic summary of the input, is then passed as input to the decoder to make predictions.
In this way long-range dependencies are taken into account by adjusting the attention

weights.
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Figure 2.6. RNN encoder-decoder with attention

The attention function in principle maps a query to a weighted sum of values. Each
value corresponds to a key to form a key-value pair. The weight of each value in the sum
is computed according to the compatibility function between the query and the paired key.
So if a key matches well with the query the corresponding paired value will have a high
weight in the sum and so on.

This procedure is analogous to the mechanism of retrieval systems. For example in a
search engine system the user inputs a string as a query and the system matches this string
with a set of keys using a compatibility function. The values with the highest scoring keys

will be returned as the best candidate results.
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2.3.7 Transformers

The transformer model was introduced by [5]. It consists of a series of attention and
FFN layers. In between the attention and the FFN a normalization function called “Add
& Norm” is used. The specific attention is called self-attention because it does not require
another sequence; it uses only the input sequence. The FFN is called position-wise because
it is applied to each token of the sequence independently.

Self-attention is an attention mechanism relating different positions of a single sequence
in order to compute a representation of the same sequence. The difference with vanilla
attention is that instead of interacting temporally, self-attention interacts spatially. The
Scaled Dot-Product attention of the transformer model is defined as the alignment scoring
(via dot-product) on a series of keys (K) by a series of queries (Q), followed by softmax and
application of the resulting weights on a series of values (V) to compute the output context
representation. These keys, queries, and values are learnable linear transformations of the
input vectors X.

Instead of computing a single self-attention of a sequence, the authors suggest multi-
head attention with 8 attention layers. This gives freedom to each attention head to
perform an independent computation on the sequence. The result is concatenated and

projected with a FFN as the output of the multi-head attention layer.

MatMul

Figure 2.7. Scaled Dot-Product Self Attention

The original transformer architecture [5| follows a similar approach to the encoder-
decoder design of a sequence-to-sequence RNN. However, other researchers experimented
with decoder-only and encoder-only models. Decoder models are better suited for text

generation tasks, while encoders are more suitable for classification tasks.
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Figure 2.9. Architecture of the Transformer introduced by Vaswani et al. in [5]
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Pretrained Language Models and Transfer Learning

Methods

3.1 Transfer Learning

Domain: A domain D is defined by the pair of a feature space and a marginal distri-
bution on this feature space. By feature space we mean the space of possible values for
the features and by marginal distribution we simply refer to the distribution of dataset
instances on this domain.

Task: Given a specific domain D, a task T is defined in an analogous way, as the pair
of a label space and a predictive function f. Label space consists of the possible values for
the labels and the predictive function is implicitly defined as the correct mapping from a
sample x with features in D, to its label y.

We write: f(x) = y, where y is the correct label of x, if x is a sample in D. The goal
of a learning algorithm is to create a model M that is a good approximation of f, meaning
that M(z) = f(x), for most instances of x in D.

Transfer Learning: Let Ts be a source task defined on a source domain D, and a
similar but not identical target task T}, possibly defined on a different, but related, domain
D;. Also, let M be a model trained on T, meaning that we expect M to be a good
approximation of fs. We expect that the use of M as an initial approximation of f; will
help our learning algorithm to learn f;. In other words, knowledge from the source task
helps improve learning on the target task. This is the essence of the concept of transfer

learning. For more a more formal definition of transfer learning, we refer to [31].

3.2 Pretrained Language Models

3.2.1 Large-scale Language Models

Advancements in computing power and the need to constantly exceed previous perfor-
mance brought explosive growth to the depth of deep learning models. This trend was
soon adopted for language models and especially the transformer model. However, growth
in trainable parameters comes at a cost: these models required a large amount of data to
converge to useful solutions. Datasets for supervised Natural Language Processing (NLP)

tasks could not keep up with the requirements of these data-hungry models. To solve these
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issues, the paradigm of pretraining was proposed. Huge unlabeled corpora were created
semi-automatically from the unlimited resources of the internet. These datasets of raw
text were leveraged with a variety of self-supervised objectives that were based on hiding
information from the model and asking for predictions from the given context. The first
and most popular models that adopted these techniques are GPT [6] and BERT [7].

3.2.2 GPT

GPT [6] is an autoregressive decoder transformer model that generates text. For the
pretraining process, a simple unsupervised auxiliary task is used: predict the next token
of the input sequence. Autoregressive means that during inference the prediction is fed as
input to the model to predict the next output, until it decides to stop. In order to ensure
that the model can execute the training process in parallel, the authors employed masked
attention which blocks the view of the future tokens that the model should predict. This

way training costs were reduced drastically.

3.2.3 BERT

Another landmark work that shaped research on PLMs was BERT [7]. BERT and
GPT are in a way complementary. While GPT is best suited for autoregressive generation,
BERT, which is an encoder model, was originally designed to perform classification and
regression tasks. The first key feature that allows BERT to excel is that it is bidirectional.
In this way, it avoids the use of masked-attention and allows the model to access the
context of the whole input sentence. The drawback of this approach is that it cannot use
the simple next-token prediction pretraining task. For this reason, the authors invented
two novel pretraining auxilliary tasks. One of them is called Masked Language Modeling
(MLM) and the other one Next Sentence Prediction (NSP).

3.3 Fine Tuning

3.3.1 Early Methods

Hinton and Salakhutdinov [32] were the first to pretrain a model (an autoencoder model,
we refer to [30] for more details) on one task and then save the weights of this model to
initialize another model. Inspired by this approach, [33| applied a similar technique in
the field of computer vision. They trained a generic unsupervised CNN in layer-wise
stages, using the output from the previous layer at each stage. After the pretraining stages
they updated the whole hierarchy all together, in the same fashion as modern fine-tuning.
Finally, RCNN (Regions with CNN features) [34] optimised this method and established it
for computer vision. They leveraged pretraining for an auxiliary task followed by domain-
specific fine-tuning on object detection in order to balance the limited amount of training
data for this task.
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3.3.2 Fine Tuning Paradigm for Transformers

Soon enough, these early “transfer learning” methods were “transferred” to the field of
Natural Language Processing (NLP). The first work to introduce this paradigm to NLP in

large scale with enormous success was GPT [6], with the following formulation:

e A high capacity, deep transformer model is pretrained on a large corpus of text, in

order to collect useful general knowledge in an unsupervised manner

e This pretrained model is then refined (fine-tuned) on a specific task (downstream

task), using much fewer labeled examples

BERT |[7] expanded this approach for bidirectional encoder models by introducing two
novel pretraining approaches: Masked Language Modeling (MLM) and Next Sentence Pre-
diction (NSP). In MLM, some of the words of the input sentence are randomly replaced by
a mask-token ([MASK]) and the model has to predict the original token by understanding
the context of the sentence. In the same spirit, NSP tests the model by choosing either
two sentences that were found the one after the other in the original text or they were at
random positions and essentially unconnected. To distinguish the sentences in NSP, two
special tokens are added: [CLS] and [SEP]. The first one, called classification token, is very
important because it is often used as a semantic summary [18] for the representation of

the whole sentence.
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Figure 3.1. BERT’s fine-tuning strateqy. A copy of the pretrained model is created for
each specific task.

3.3.3 Drawbacks of fine tuning

Fine-tuning consists of updating the pretrained weights, that contain general knowl-
edge, to adapt them to a new specific task. The issue with this process is that the pretrained
weights are not saved; they are overwritten. Clearly, if the original pretraining domain and
the domain of the specific task are similar this is not a huge problem. But in some cases,
such as multimodal learning, these two domains are completely distinct and the adapta-

tion is not as smooth. In those cases, some of the useful knowledge that was stored in the
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pretrained weights is lost in order to perform domain-adaptation. This is an unreasonable
practice, as domain adaptation should be viewed as a completely separate process than
pretraining and there is little connection between them. The only reasonable explanation
to actually perform this practice is in some rare cases were the pretraining and the specific
data come in similar quantities. In that case, maybe pretraining has inserted some biases
and fine-tuning can be a way to eliminate them, however that is almost never the case with
multimodal data.

Another important issue with fine-tuning is storage and training requirements. An
extensible model [8] is a model that can be used as it is to solve a variety of tasks without
forgetting previous ones. A fine-tuned model is not extensible as it is initially an exact copy
of a pretrained model that has modified all of its weights slightly and so it has specialized
in this and only this task. In addition, a lot of similar copies that serve more or less the
same purpose are copied for each task. For all of these reasons, some alternative methods

to fine-tuning have been proposed in the literature.

A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses

pu is:
veling in Africa and we saw these very cute whatpus.

To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses
the word farduddle is:

One day when I was playing tag with my little sister, she got really excited and she
started doing these crazy farduddles.

A "yalubalu" is a type of vegetable that looks like a big pumpkin. An example of a sentence
that uses the word yalubalu is:
I was on a trip to Africa and I tried this yalubalu vegetable that was grown in a garden
there. It was delicious.

Figure 3.2. GPT3 performs few-shot learning with prompt tuning. Text in bold is gener-
ated by the model.

3.4 Lightweight Tuning

3.4.1 Prompt tuning variations

Inspired by humans’ ability to follow simple instructions, [35] instruct their model,
called GPT-3, via text interaction, to perform a language task it has never seen before,
without any gradient updates. These interactions, which are called "textual prompts”, are
designed by researchers, specifically for each task and they are prepended to the input. This
method is often called "prompt tuning”. Later, [36] proposed to search for prompts instead
of designing them manually. [37] extended this idea, by learning prompt-embeddings with
traditional backpropagation and showing that scaling is very beneficial for soft prompts.
These "soft prompts” are not easily interpretable, but perform better and require less
human intervention. |[38] take the ideas of soft prompts yet another step further, by
inserting a trainable prefix in the attention module of each layer of the transformer. Prefixes
are very loosely related to prompts, but they achieve impressive results, displaying much

greater flexibility than prompts, with an extremely low parameter budget. Their biggest
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advantage is that they work equally well with encoder models, such as BERT. This method

is called prefix tuning.

3.4.2 Adapters

The original adapters, called bottleneck adapters, were introduced by Houlsby et al.
[8]. They consist of a linear down-projection, a non-linear activation and finally a linear
up-projection to return to the original dimensions. The original input in this module is
then added to the output to form the so called residual connection. Note that the weights
of the adapter are initialized to have a very low norm. The residual connections together
with the small norm initialization, ensure that they only intervene as much as they are
needed to tweak the representations to be compatible with BERT.

This module is inserted in between BERT layers, in order to prepare the representation
for the next layer. The original formulation from Houlsby suggested to insert adapter
layers both after the attention layer and after the feedforward layer. However, Pfeiffer et
al. [15] later proposed to insert an independent adapter module after the layernorm of the

feedforward layer, which proved equally efficient with half additional parameters.
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Figure 3.3. Adapter Architecture

The role of the adapters is to try to query the original BERT layer, essentially treating
it as a blackbox algorithm. By separating the parameters each training stage has access to,
in effect they are assigned a different task. AdapterFusion [15] first showed that this makes

adapters much more than just a method for light tuning pretrained models. They are a



Chapter 3. Pretrained Language Models and Transfer Learning Methods

very useful tool that can be leveraged to avoid some of the dangers of naive fine tuning by
providing the ability to disentangle training stages. Information learnt at a specific training
stage is saved at a specific location for each layer and then it cannot change (we say it
is frozen), thus mitigating the problems caused by catastrophic forgetting. In addition to

that, it has proven to be a very data efficient process, partly because no knowledge is lost.



Chapter

Multimodal Learning

4.1 Introduction

4.1.1 What is a modality?

According to [39] a modality is: “The way in which something happens or is experi-
enced.” Jaimes et al. [40] clarify this as: “By modality we mean mode of communication
according to human senses and computer input devices activated by humans or measuring
human qualities.” These two represent the human-centered approach, but there has also
been proposed a machine perspective from [41] that is stated as: “A particular way or
mechanism of encoding information.” The final and most fulfilling approach is focused on
the specific task. In their paper: "What is Multimodality?”, Letitia et al. [42] propose that
two streams of information belong to the same modality only and only if there exists a
lossless 1-1 mapping between their domains in the preprocessing stage. These definitions
suggest that the heterogeneous representations of modalities, also called modality gaps, is
the bottleneck in a multimodal problem and our primary goal should be to bridge this gap
and bring these representations closer together. When this happens, many techniques have
been proposed in order to use these representations to draw accurate conclusions. This

process is called multimodal fusion.

4.2 Multimodal Deep Learning Techniques

4.2.1 Learning Representations for Multimodal Fusion

There are many ways to produce successful multimodal representations, but in this
section only deep neural methods are discussed. For different approaches we refer to [43].
According to Srivastava and Salakhhutidinov [44] a successful multimodal representation
should possess three desirable properties: firstly, it should incorporate a kind of distance
metric that reveals the amount of connection of the underlying concepts; secondly, it should
be easy to obtain even in the absence of some modalities and finally, it should be possible
to infer some elements of the missing modalities given the observed ones.

The goal of modern multimodal learning is to design a deep neural network that with
its structure and some additional external regularization, it manages to project information

from all the modalities to a common latent manifold that has the desired properties. The
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hope is that in such a manifold, the heterogeneity between the modalities, also called the
modality gap [9], will be bridged. In that case, the model can easily process this information
and infer useful conclusions that lead to predictions. In other words, perform multimodal

fusion.

4.2.2 Fusion Methods

In recent years, there have been numerous proposed methods for performing multimodal
fusion effectively. For an in-depth review we suggest [43]. The focus of this study will be
on deep learning methods, which are also the most successful up to date. It is important
to note, that according to research [45], intermediate fusion applied to all of the layers of
a deep neural network has great advantages because it each layer has its own properties.
Specifically, the deeper the layer the more abstract the representation it processes. Two

broad categories of fusion, introduced by [45] will be shortly reviewed:
e simple concatenation and feedforward network (FFN) fusion

e attention-based fusion

Concatenation and FFN

Concatenation is the most naive method of combining different features. The applica-
tion of a feedforward network layer after concatenation is the most unstructured method
of performing fusion. This is not necessarily a bad thing, as it means that total freedom
is given to the model. In other words, no inductive bias is inserted in the architecture. If
the designers have no access to such priors, or they have no clue how to establish them,

then simple concatenation and FFN is the best and easiest solution they can hope for.

Attention-based

Attention mechanisms are widely used for fusion [45] [Mult, Flamingo, ViLBERT,
Multimodal Intelligence|. They are usually preferred because they have a more intuitive
interpretation compared to a simple feedforward network with no structure. The most
popular variation of attention used for this purpose is symmetric cross-attention which is
essentially standard attention with the keys and values set equal to one modality and the
queries set equal to the other modality. Cross-attention allows each token of one modality
to interact directly with each token from the other modality. This way, each token can
ask questions and attend to specific features that are aligned with its own features. This
alignment procedure has proven very efficient for multimodal fusion and this explains

further why it is so popular.



4.3 Vision and Language

4.3 Vision and Language

4.3.1 Visual BERT family

After the rapid success of BERT, many researchers [18, 46, 47, 48] implemented a
multimodal version augmented with images. The general architecture is similar for all of
these methods so only VIIBERT [18] will be discussed here.

ViLBERT is composed of two parallel streams of transformer layers that interact in
between each layer with a variation of the symmetric cross-attention fusion module, which
the authors call co-attention. The first stream is a standard BERT that can process text
and the other stream is a variation that can process visual features that correspond to
image regions. The co-attention layers perform intermediate layer-wise fusion. VILBERT
also follows a complicated pretraining procedure in 3 stages, which is inspired by BERT’s
methods, that involve masking image-caption pairs. It is important to note that this

procedure does not scale well if another modality is to be added.

. ‘Hﬁ{“}

(" ()

Add & Norm

Multi-Head
Attention

Multi-Head
Attention

Q.} KwfVut Vv Ky
\ J \ J
\Uisual \_ Ijnguist‘l:j
HPp=======mmmm- == |HY

Figure 4.1. ViLBERT architecture
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Figure 4.2. A pretrained, but not fine-tuned, ViLBERT exhibits impressive performance

4.3.2 Visual Language Models

Another important line of work on visual-language was initiated by a simple concept:

a large-scale Pretrained Language Model (PLM) is augmented with visual information in
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order to generate text in a rich multimodal context. Essentially, this method avoids to
pretrain the model with expensive multimodal data and instead hopes that a powerful
unimodal language model can be extended to understand visual information. In addition
to that, fine-tuning is avoided as it causes catastrophic forgetting and alternative methods

of lightweight tuning are leveraged [10] instead.

Frozen

Tsimboukelli et al. [16] proposed to augment a PLM with visual information, without
changing its weights. The core concept was to translate image features into language-like

¢

embeddings which can be interpreted by the language transformer as “visual prompts”
without the need to retrain the latter from scratch. A simple trainable visual encoder
was responsible for preparing an input image to resemble language embeddings which are
prepended to the input text of the frozen language model. This idea is similar to the
light-tuning technique named “soft prompting”, which, as described in chapter 3, trains a
continuous embedding to interact with the language model. However, instead of training a
soft prompt to effectively “ask questions” to the model, the visual soft prompt introduced
by Frozen, provides the model with visual information.

The end goal of this model was to be able to complete the input sequence of text, in
the context of an image, in the most reasonable way. To do a specific task the model was
not tuned, i.e. no gradient updates were performed. It utilized the well-known property of
the frozen PLM [35] to perform few-shot learning, revealing that it retained such abilities
even in a visual context. A very important result of Frozen was that standard fine-tuning
the language model in this scenario actually hurts performance because of the well studied
catastrophic forgetting issues. The authors argued that much less paired image-caption
data was available than the amount of text-only data used to pretrain the frozen model,
so it was essential to keep as much knowledge from this training stage as possible. In
addition, a very important attribute of this work was that it was very flexible because it
is modular, meaning that it could use the best available language model off the shelf, just

by re-training only the visual encoder with the visual-language pairs.

Model Completion
This was invented ; - — ; the Wright
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o Janssen.
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Thomas Edison. sgpem y invented by brothers. <E0S>
~ £ g

—
Figure 4.3. Frozen understands images interleaved with text.

MAGMA

MAGMA [10] extended this approach by adding adapter layers [8] in between the
frozen layers. This proved empirically to boost performance as it outperformed Frozen by
a significant margin. Adapter layers essentially allowed the PLM to adapt to a multimodal
domain without losing any useful knowledge acquired in the pretraining stage. This is a
key result that will turn out to be the foundation for the approach of this thesis to solve

a different but related multimodal problem.
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Figure 4.4. MAGMA shows visual question-answering abilities

Flamingo

Flamingo [17] scaled up and optimised this concept by introducing large scale multi-
modal pretraining and foundational innovations. They collected and curated a massive
image-text dataset from the internet aiming to achieve higher quality multimodal few-shot
learning abilities. The first innovation was a flexible visual encoder which can turn ar-
bitrary sequences of images or even video frames to a fixed number of visual prompts.
Moreover, instead of bottleneck adapters [8] they preferred cross-attention adapters that
take fusion tokens and text tokens as input and output text token updates that are added
with a residual gated connection to the previous text tokens, a technique known as shifting
[49].
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Figure 4.5. Flamingo example question answering with video frames







Chapter

Multimodal Sentiment Analysis

5.1 Introduction

One of the most distinguishable human traits is the feeling of empathy. Empathy leads
to compassion and is crucial for the well-being of our society. Of course current Al systems
are far from “feeling” empathy, but the illusion of empathy and sympathy is fascinating for
users of Al applications because they encourage them to bond and feel “friendly” with the
device. A great method to help achieve these traits is to evaluate the systems on sentiment
analysis. Obviously, the first step in order to act in a compassionate manner as an Al
system is to recognise the emotional state of the user. For these reasons, is is of immense

importance to develop the field of sentiment analysis.

5.2 Datasets

There is a plethora of datasets for multimodal sentiment analysis (MSA) with text,
visual and acoustic features as input. CMU-MOSI [50] contains 2199 opinion videos man-
ually annotated with sentiment ranging from -3 to 3. ICT-MMMO |[51], YouTube [52] and

MOUD [53] all contain product reviews and opinion videos.

Language: And he I don't think he got mad when hah
I don 't know maybe.

Vision:

Gaze aversion

Acoustic: (frustrated voice)

Figure 5.1. An example from CMU-MOSEI

CMU Multimodal Opinion Sentiment and Emotion Intensity or CMU-MOSEI [54] for
short is a multimodal dataset which is the second and updated version of CMU-MOSI. The
creators emphasized the importance of diversity in training samples by incorporating over
23,453 video segments with 250 topics and 1000 distinct speakers. Each sample consists of
manual transcription aligned with acoustic and visual features. The videos are collected

from YouTube and other online sources.
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(b) Summary of the statistics.
(a) Word cloud of topics.

Figure 5.2. Word cloud and statistics for CMU-MOSEI

Data collection for this dataset was done in an automatic way, but a curation process
followed. Specifically, videos were analyzed to ensure that the camera was stationary and
there was only one speaker. The diversity of the topics is remarkable, as there are about
250 of them, as can be seen in Fig. 5.2b. The most frequent topic is of course “reviews”.
Expert judges checked the dataset for mistakes. All videos have manual transcriptions and
visual and acoustic features are aligned at word-level.

According to [12] for evaluation, although sentiment analysis is technically a regression
task, both regression and accuracy metrics are leveraged. Specifically, Mean Absolute Error
(MAE) and Pearson Correlation Coefficient are the preferred regression metrics. In order
to use classification metrics, scores are split either in 7 classes to get 7-class Accuracy, or

in 2 classes to get 2-class Accuracy and F1 score.
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Figure 5.3. Sentiment distribution shows a slight shift for positive sentiments

5.3 Prior Work and State of the art

Early works on multimodal sentiment analysis used standard machine learning methods
such as ensembles of Support Vector Machines [55|. Advanced neural network models
such as Recurrent Neural Networks (RNNs) [56, 57, 58] Convolutional Neural Networks
(CNNs) [59] and later Transformers surpassed them by taking advantage of context in
the input sequences. Attention was used heavily as one of the most important tool for
creating sophisticated modules that interact with different modalities. The variations that

were created with this in mind are numerous: attention for fusion [11], cross-attention
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transformer pairs for alignment [12], cross-attention for shifting [13], attention for creating
multimodal prefix [10, 16], even attention for creating masks [14].
The following are the most successful models in MSA:

Mult [12]| translates one modality to another using 3 pairs of cross-attention trans-
formers that perform multimodal fusion. Impressively, this method of fusion allows it to
align the input sequences even if they are not aligned in the preprocessing stage. Addition-
aly, an extensive study is performed showing attention activations visually. It uses GloVe

embeddings [60] as language features and this hinders its performance.
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Figure 5.5. MulT’s attention activations

MMLatch [14] uses high level representations to mask low level input features in a
top-down manner. It is an innovative idea loosely inspired by congitive models of human
perception. A feedback mechanism is used to capture top-down cross-modal interactions
and update the input features. They achieve the best results among models which use
GloVe embeddings.

MAG-BERT |13] presents a simple way to perform shifting of BERT representations,
by adding a single multimodal adaptation gate to only one of BERT’s layers.

In ICCN |22] audio-visual features are first extracted and then fused with text embed-

dings to get two outer-products, text-acoustic and text-visual. A Canonical Correlation
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Figure 5.6. MMLatch architecture

Analysis (CCA) network takes these features fuses them to create a meaningful represen-
tation for prediction.For text embeddings, frozen BERT output is used as text features.

More recently, many researchers turned their efforts towards intricate multimodal pre-
training strategies, such as [61, 62]|. Such methods are model-agnostic and should be
studied separately for a fair comparison.

MISA [9] is the current state-of-the-art in MSA. Instead of developing another intricate
fusion approach, the authors emphasized the importance of building a reliable represen-
tation learning manifold. In this way, even a simple technique for fusion will be very
effective. Specifically, they projected the input modalities in 4 subspaces: one modality-
invariant and three modality-specific for each modality. To achieve this, they leveraged
multiple loss functions to impose constraints for regularization. Namely, they used the
original loss function of the task combined with a similarity loss, a differential loss and a
reconstruction loss. Similarity is used in order to create the modality-invariant subspace
and differential is used to ensure the modality-specific representation. The reconstruction
loss is only there to avoid trivial solutions. Although it requires hand-crafting all of these
losses, the rest of their architecture is quite simple and it surpasses the previous models

by a large margin.

5.4 Robustness in MSA

Robustness is crucial for practical applications where unexpected errors are common.
Data imbalances are often the cause of such errors and for this reason a clean and curated

dataset is the foundation of a successful model. It has been observed |9, 12| that even
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Figure 5.8. MISA creates representation learning manifolds with modality-invariant and
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for the highest performing models in MSA datasets language is by far dominating the
other modalities. The same researchers performed simple ablation studies of removing one
modality and letting the model use the rest of them only to find out that their models
almost solely relied on language to make predictions. In order to study this phenomenon
further Hazarika et al. [63] performed an extensive robustness study on state-of-the-art
models for MSA.

Their method constitutes of two diagnostic checks at test time: removing a percentage
of the modalities and inserting gaussian noise to a percentage of the modalities. The tests
showed that even the state-of-the-art MISA is not as robust as expected to these tests. As
a solution to the issues they proposed a training method that inserts noise in the training
stage to better prepare the models for the noisy diagnostic tests. It is notable that with
their method performance does not drop for the standard evaluation tests and at the same

time perfomance on the diagnostic robustness tests rises significantly.
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Adapted Multimodal BERT (AMB)

6.1 Introduction

As discussed in the two previous chapters, there are some useful insights that prior
work has established for multimodal learning that can be applied to MSA. First of all, the
use of BERT seems to be a prerequisite for top-notch performance, as language has proven
to be the most dominant modality. In addition, visual-language models have presented
interesting novel ideas in the effective augmenting of PLMs, such as BERT, with the visual
modality. It is obvious that such methods can be modified to include the acoustic modality
as well, however the way in which to achieve this is not so obvious. Of course, methods
such as VILBERT|18] are not easily accessible because they do not scale well.

For these reasons, in this method we are inspired from visual-language models [16, 10,
17] to present an adapted BERT model for multimodal sentiment analysis. Our model is
called Adapted Multimodal BERT (AMB). It leverages a novel but simple layer-wise feed-
forward network interleaved with adapter and BERT layers in order to perform multimodal
fusion. The details of our method’s architecture are explained thoroughly, as well as the
experimental procedure that leads to state-of-the-art results and important conclusions on

the effect of adapters and the insertion of noise.

6.2 Architecture

6.2.1 Overview

Fig. 6.1 illustrates an overview of the system architecture. First of all, the input text
sequence is fed to the frozen BERT preprocessing tokenizer to output a sequence of tokens.
At the same time, the visual and audio sequences pass through their own trainable encoders
in order to be translated to a single audio-visual token that is compatible with BERT
representations. The core component is a frozen pretrained BERT model, which is tuned
by adapter layers, without access to any other modalities. These BERT representations
are combined with audio-visual information in a feedforward network (FFN) in order to
perform layer-wise multimodal fusion. This process is repeated for 12 layers and the last

representations are provided to a FFN to predict the sentiment score.
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Figure 6.1. Architecture of Adapted Multimodal BERT (AMB)

6.2.2 Frozen BERT layers

The frozen BERT model is at the core of the architecture to emphasize the importance
of language. Both BERT tokenizer and the 12 BERT layers are kept intact during training,

limiting the effects of catastrophic forgetting that can incur during fine-tuning.

6.2.3 Adapter Layers

We use the original bottleneck adapters, introduced by Houlsby et al. [8]. Each adapter
layer is composed of a linear down-projection followed by a ReLLU non-linearity and then
a linear up-projection to restore the original input dimensions. Residual connections are
used between the input and output of each adapter layer. Instead of inserting an adapter
layer both between the attention and the feedforward module, we follow [15] and only
insert them after the feedforward layernorm layers, thus cutting the number of additional
parameters in half. Our adapter layers are only responsible for adapting to the textual

inputs.

6.2.4 Visual and Audio Encoders

Visual and audio encoders consist of transformer encoder layers that act on each modal-
ity separately to extract information from an arbitrary sequence of features and com-
press it in a concatenated visual-acoustic token. This token is then prepared for the next
stage of layer-wise multimodal fusion. Our encoders are closely related to the approach of
[16, 10, 17|, with the addition of audio.
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6.2.5 Fusion Layers

For multimodal fusion FeedForward Network Fusion (FFN-Fusion) is used in a layer-
wise manner, between each BERT layer. The first BERT token (known as CLS token),
which is commonly used to store a semantic summary of BERT’s hidden states [18], is
projected to a lower dimension and then concatenated with the modality tokens produced
by the visual and audio encoders. This tensor is then fed into FFN-Fusion to output the
fused representations. Although [13] and [17] also perform layer-wise multimodal fusion,
both use the result to shift BERT representations in order to generate output text. We
adopt a simpler approach without shifting.

6.2.6 Predictor

The fused representation of the last BERT and fusion layers are concatenated and fed
into a classification head, consisting of a single Feedforward layer. Minimum Absolute

Error loss is used for end-to-end training of the network.

6.3 Experiments

6.3.1 Setup

Data: The proposed model is evaluated for sentiment analysis on CMU-MOSEI [54]. It
contains 23,454 YouTube video clips of reviews on movies or other topics, where each sam-
ple is manually annotated with a sentiment score, ranging from —3 (strongly negative) to
+3 (strongly positive). Text transcriptions are segmented into words, while visual FACET
and acoustic COVAREP features are collected and aligned on these words. Standard train,
development and test splits are provided. For evaluation, mean absolute error (MAE) and
Pearson Correlation (Corr) between model and human predictions are used for regression,
while seven-class accuracy (Acc-7), binary accuracy (Acc-2) and Fl-score (F1) are used for
classification.
Implementation Details: The bert-base-uncased version of BERT [7] is used for all
experiments. It contains 12 transformer layers, where each token of the sentence has hidden
size of 768 dimensions. The tokens are prepared for BERT with the standard tokenization
procedure, while the two special tokens, [CLS| and [SEP], are added at the start and in the
end of each sentence respectively. The encoders used for visual and acoustic modalities are
randomly initialized transformer encoder modules with 2 layers and 1 attention head. We
find that prepending a learnable [CLS] token and collecting this as a semantic summary
works best. After a short hyper-parameter search in the range [128, 768 for the hidden
size of the adapter layers, 384 is chosen as the optimal value. Similarly, for fusion layers
220 is chosen from [160, 820| as the hidden size.

For optimization, the Adam optimizer [64] is used with learning rate 5 * 107°. Early
stopping is used with patience set to 10 epochs and dropout is set to 0.2. Training takes
20 minutes on a single GTX 1080Ti NVIDIA GPU.
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6.3.2 Results

The results for multimodal sentiment analysis on CMU-MOSEI are presented in Ta-
ble 6.1. For fair comparison we only compare with methods in the literature that train in
one stage, without leveraging their own, separate, pretraining stage on multimodal data.
We observe that the proposed model outperforms all other methods by a significant mar-
gin across all metrics. As shown in Fig. 6.2, models that utilize Glove embeddings (G)
[60], or frozen BERT embeddings (B), have fewer trainable parameters, sacrificing overall
performance. Models that rely on fine-tuning of BERT have a significantly larger amount
of trainable parameters. AMB with adapters surpasses fine-tuning based approaches on a

small parameter budget.

Models MAE (1) | Corr (1) | Ace-7 (1) | Acc-2 (1) | F1 (1) | Trainable Parameters
MMLatch (G) [14] 0.582 0.704 52.1 82.8 82.9 2.6
MulT (G) [12] 0.580 | 0.703 51.8 82.5 82.3 1.8
LMF (B) [19] 0.623 | 0677 50.2 82.0 82.1 1.0
TFN (B) [20] 0.593 0.700 51.8 82.5 82.3 0.6
MFM (B) [21] 0.568 | 0.717 51.3 84.4 84.3 1.7
ICCN (B) [22] 0565 | 0.713 51.6 84.2 84.2 -
MAG-BERT* (FT) [13] | 0.614 | 0.763 50.9 84.3 84.2 110.8
MISA (FT) [9] 0555 | 0.756 52.2 85.3 85.3 47.1
AMB (Ours) 0.536 0.766 53.3 85.8 85.8 8.6

Table 6.1. Results on CMU-MOSEI Models indicated with (G) use glove embeddings.
Models indicated with (B) use frozen BERT embeddings, and are taken from [22]. MISA
and MAG-BERT use a fine-tuned (FT) BERT for feature extraction from language. MAG-
BERT* is reproduced for CMU-MOSEI by the authors of this thesis. Trainable parameter

are in millions.

In our opinion, the interpretation of these results is clear. Methods that leverage a
frozen BERT and the ones that use GloVe embeddings for feature extraction perform

adequately, with very high parameter-efficiency. On the other hand, MISA fine-tunes



6.3.3 Ablation Study

BERT to increase performance considerably, but it increases trainable parameters by a
large margin in exchange. Finally, the proposed AMB with adapters manages to surpass
the performance of MISA, by leveraging intermediate BERT representations instead of
only the last layer BERT features. At the same time, adapters achieve a great parameter
discount, making AMB competitive to frozen BERT and GloVe embeddings at parameter-
efficiency. The following section aims to shed light to the comparison of adapters and

fine-tuning even further.

6.3.3 Ablation Study

Table 6.2 shows an ablation study on the effect of the exclusion of modalities and the
effect of using adapters versus finetuning for the adaptation of the language model. Firstly,
the exclusion of the textual modality significantly degrades performance for the “AMB no-
text” model, which demonstrates that text is the dominant modality for this task. With
the exclusion of audio-visual information in “AMB text-only” performance still declines,
though to a lesser degree, indicating that the use of multimodal information is beneficial.

For the adapters versus fine-tuning experiments, an adapter based version of MISA
(“MISA-Adapters”) and a fine-tuned version of AMB (“AMB-FT”) are implemented. We
observe that fine-tuning is either unnecessary as in the case of MISA or even decreases
model performance as in the case of AMB, revealing that some catastrophic forgetting

occurs when performing fine-tuning on the text modality in this multimodal setting.

Models MAE (}) | Corr (1) | Acc-7 (1) | Ace-2 (1) | F1 (1) | Trainable Parameters
AMB no-text 0.816 0.240 41.6 63.3 61.8 8.6
AMB text-only 0.541 0.760 52.8 85.7 85.7 8.6
MISA-Adapters | 0.5480 0.758 52.1 85.8 85.8 8.5
MISA 0.555 0.756 52.2 85.3 85.3 47.1
AMB-FT 0.548 0.756 51.9 85.4 85.3 47.2
AMB 0.536 0.766 53.3 85.8 85.8 8.6

Table 6.2. Multimodal adapters vs fine-tuning. We include experiments, where the teut,
or the audio-visual modalities are missing. Trainable parameters are in millions.

6.3.4 Robustness Study

In this section the robustness of AMB with respect to noise insertion is evaluated. For
visual and acoustic robustness tests the work of Hazarika et al. [23] is followed. They
propose the insertion of multiplicative Gaussian noise to a randomly selected set of in-
put sequence elements for a given modality. For the text modality a different approach
is employed that more closely simulates real-world errors, i.e. deleting and replacing in-
put tokens. In the token replacement experiment a percentage of input tokens is selected
randomly and replaced with random tokens from the vocabulary, while for the token dele-
tion experiment they are instead replaced with the [UNK] token. The best checkpoint of
each model is selected and the average correlation over three independent runs is reported,
following [23].
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Fig. 6.3 displays the results of the robustness tests for varying levels of input noise. The
deletion, replacement and noise insertion rate refer to the probability of corrupting each
element in the input sequence. When corrupting textual inputs by deleting or replacing
tokens we observe that performance starts to degrade after corrupting each token with 5%
probability. Steeper performance degradation occurs in the case of replacement than in the
case of deletion. This sensitivity to noise is expected, as text is the dominant modality. We
observe similar robustness characteristics for AMB, MISA and AMB-FT, though adapter-
based AMB appears to be somewhat more robust than its fine-tuned counterpart. In the
extreme case from 50% probability and beyond AMB’s lowest point is significantly higher
than the rest, verifying that it considers all modalities to make predictions. In the case of
noise injection to the visual modality performance drops off for AMB and MISA at 10%
noise insertion rate. We observe that noise insertion in the visual modality affects both
models less than noise insertion in text. Interestingly, the AMB-FT model is not affected by
visual noise, revealing that this model relies completely on text, ignoring visual cues. These
results highlight that, favoring adapter-based approaches over fine-tuning when using large

pretrained language models for multimodal tasks may lead to improved model robustness
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and better utilization of information from less dominant modalities (that contribute less
to overall performance).

The results on acoustic modality were expected to be similar to the visual ones but
they are qualitatively different. It is revealed that neither method seems to benefit from a
clean acoustic modality. Not only that, but MISA surprisingly performs even better with
a completely noisy stream than a clean acoustic stream of information. These results are
in our opinion inconclusive and further investigation should be performed to get a clear
insight. However, it seems that the acoustic modality of the dataset is inadequate to keep
up with the others indicating a large imbalance and also MISA seems to interact with
the acoustic modality although it is proven destructive, probably due to the additional

regularization constraints that MISA uses.






Chapter

Conclusions

7.1 Discussion

In this work, AMB is proposed, a simple yet innovative model that builds on a pow-
erful pretrained BERT transformer encoder and avoids the pitfalls of standard fine-tuning
approaches for transfer learning. The use of adapters allows our model to lower the cost of
trainable parameters without sacrificing performance, as it achieves new state-of-the-art on
CMU-MOSEI The most effective previous method, MISA 9], leverages fine-tuning which
leads to five times more trainable parameters than our model. Other methods either use
a frozen BERT for feature extraction or GloVe embeddings leading to parameter-efficient
models that sacrifice performance. With this in mind, it is clear to us that adapters provide
an excellent performance-parameter trade-off.

The ablation study showed that fine-tuning our model actually hinders its performance.
In addition, it was proven empirically that useful knowledge from pretraining and non-
dominant modalities is only leveraged effectively in the adapter-version. It seems that
modality imbalances challenged the effectiveness of updating the weights of the model
accurately. At the same time, a version of the previous state-of-the-art, MISA, that uses
adapters achieves similar performance to the original that leverages fine-tuning, revealing
that the same trends are followed by other models, although our architecture was optimised
for this purpose. All of these results are a strong indication that fine-tuning suffers from
the undesirable effects of catastrophic forgetting and adapter-based methods should be
preferred instead.

Finally, our robustness study showed that the improvements introduced lead to reliable
models that display robustness to various types of noise, a crucial trait for deploying
applications in the wild. Although language modality is the foundation of our model, the
study shows that a baseline performance is retained even with more than 50% deletion
rate of input words by leveraging useful information from the other modalities. This is
not observed for the fine-tuned version of our model and it is observed in a lesser degree
for MISA. On the other hand, when visual features are pertrubed with noise, an expected
drop in performance is observed, indicating the usefulness of these features for prediction.
Surprisingly, this does not apply to acoustic features which is concerning for the quality
of this stream of information. The latter result is in our opinion inconclusive and requires

further investigation.
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7.2 Future Work

Our experiments could be extended in many intriguing directions in the future in order
to get clear insights on the degree of success of our proposed method. Firstly, it could be
easily expanded in various ways in order to cement our results with further experimental
evidence and at the same time explore the limits of this approach. One direction that
our model could be expanded would be to incorporate more tasks, such as text generation
from input prompts enriched with images in order to challenge AMB in a more demanding
enviroment that requires generation. Also, the choice of the frozen PLM is not investigated
enough in the literature, although it is the foundation of such methods. [13] experiment
with BERT [7] and XL-net [65], while [16, 10] prefer GPT [6] for language generation tasks,
but all of these works are incomparable and their results are inconclusive.

Moreover, exploring more sophisticated fusion methods compatible with our approach
might be beneficial. For example, it was shown in chapter 5 that many successful mul-
timodal approaches that require a similar intermediate fusion like AMB, they preferred
a more complicated fusion method that leveraged cross-attention between modalities. It
would be interesting to explore the effects of such a module on our design and our exten-
sible architecture allows this change without severe modifications. The only part of the
architecture that would have to change would be the feedforward network in the fusion
layer. Ideally, an extensive ablation study on the effects of different modules in the fusion
layer would shed light on the most appropriate method of fusing multimodal information
in this scenario.

Another aspect to be considered is the effect of updating BERT representations. Our
proposed approach extracts information from BERT to incorporate it in intermediate fusion
modules, but BERT does not receive any feedback from the fusion process. In other
words, BERT remains modality agnostic. As mentioned in chapters 4 and 5, there have
been proposed approaches [49, 13, 17| that use feedback from the fusion layers in order
to contextualize the next layer of BERT representations with modality information. This
method is called shifting as feedback is used to modify slightly the multi-dimensional word
hidden states with the hope of bringing them closer to the other modalities.

7.3 Ethical Considerations

Unfortunately, nowadays the costs of deep learning research are known to be prohibitive
for low-budget institutions. It is our hope that our approach will be viewed as the blueprint
for designing multimodal models based on pretrained unimodal encoders in a flexible and
effective manner, that will be accesible to anyone independently of their budget. The
readers should be already familiar by now with the fact that successful multimodal learning
with Al systems requires massive amounts of cleaned, carefully curated data which are
expensive to create manually and difficult to find reliably online in an automatic manner.
To handle all of these data a deep learning system should use them as efficiently as possible
without spending huge amounts of precious computational power, as standard methods are

prone to do. In addition, if a system does not use all of the modalities to make decisions,
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although it might exhibit excellent performance in the lab, it is vulnerable to the noisy
real-life enviroment. It is clear for us that the proposed paradigm is a step forward in the

right direction to achieve these goals and provide accessible Al research for everyone.
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Al
NLU
PLM
MSA
BERT
AMB
ICCN
CMU-MOSEI
MAE
MSA
ML

DL
GPU
CV
NLP
NMT
LM
MLM
SVM
MLP
FFN
SGD
ReLU
CNN
R-CNN
RNN
LSTM
ViLBERT
GPT

Artificial Intelligence

Natural Language Understanding
Pre-trained Language Model

Multimodal Sentiment Analysis
Bidirectional Encoder Representations from Transformers
Adapted Multimodal BERT

Interaction Canonical Correlation Network
CMU Multimodal Opinion Sentiment and Emotion Intensity
Mean Absolute Error

Multimodal Sentiment Analysis

Machine Learning

Deep Learning

Graphics Processing Unit

Computer Vision

Natural Language Processing

Neural Machine Translation

Language Modelling

Masked Language Modelling

Support Vector Machine

Multi Layer Perceptron

Feed Forward Network

Stochastic Gradient Descent

Rectified Linear Unit

Convolutional Neural Network
Region-based Convolutional Neural Network
Recurrent Neural Network

Long Short Term Memory network

Vision and Language BERT

Generative Pre-trained Transformer
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