EOviko Metoofio IToAvteyveio

Yyoir] Hiektpoddywv Mnyovikov
Kot Mnyavik®v Y ToAoy1iotodv
Topéag Teyvoroyiag [TAnpo@opikng kot Y ToAOyIoTOV

’,
£
&

OEVS$

. oy
0 ‘\\,‘\\
N
A Y
7 npomp £lS
-‘ijlﬂ!l’?orm

')

Mnyovikn KeTacKeLV] oVVERAY®YIKAOV (coinductive)
amoocitemv otn Liquid Haskell

AIIIAQMATIKH EPTAXIA

AYKOYPI'OX MAXTOPOY

Empiénov : Nworaog Z. [Tornacmtdpov
KaOnynmg E.M.IL.

ABnva, IovAog 2022

EOviko Metoofio IToAvteyveio

Yyoir] Hiektpoddywv Mnyovikov
Kot Mnyavik®v Y ToAoy1iotodv

Topéag Teyvoroyiag [TAnpo@opikng kot Y ToAOyIoTOV

oA
=\ 5
h/nn? <
N Sihi==E|

A vpeopo

|

Mnyoviki] KaTOGKELT GUVETAYOYIKOV (coinductive)
amodcitemv otn Liquid Haskell

AIIIAQMATIKH EPTAXIA

AYKOYPI'OX MAXTOPOY

EmBiénov: Nikdraog Z. [Taracmopov
Kafnynmg E.ML.IL.

Eykpinke and v tpyueln eEetaotikn emtponn v 281 loviiov 2022.

Nuwdraog 2. [Toracmdopov Kovotavtivog Zayohvag Nixkn Balov
Kabnynmg E.M.IL Av. Kadnynmce E.M.IL. Epevvitpio IMDEA

ABnva, IovAog 2022

Avkovpyos Maotopov

Amhopotovyog Hiektporldyog Mnyavikdg kot Mnyavikog Ymoroyiotev E.MLIT

Copyright © Avkobvpyog Mactopov, 2022.
Me gmpoiaén mavtog sikaumdpatoc. All rights reserved.

AmaryopeleTaL 1) avTIypor], 0o KeELOT Kot S10VOUT TS TAPOVSUS EPYACIAG, €& OAOKANPOL 1 TUN-
LOTOG QUTAG, Yot EUTOPIKO okomd. Emtpéneton 1 avatdnwon, amodnikevon kot Stovoun yio. okomd
L1 KEPOOGKOMIKO, EKTALOEVTIKNG 1 EPEVVITIKNG GVONGC, VIO TNV TPoUTOOEGN VO avapEPETaL 1) TNy
npoélevong kot va dratnpeitan to Tapodv unvope. Epotipata mov apopoldv) xpion e epyaciog
Y10 KEPOOOKOTIKO GKOTO TPEMEL VA, ameLBVVOVTAL TTPOG TOV GLYYPUPEQ.

O1 amOYELS KO TOL GUUTEPAG AT TTOV TEPIEXOVTOAL GE AVTO TO £YYPAPO EKPPALOVV TOV GUYYPUPEN Kol

dgv mpémet va epunvevdel 0TL avtimpoocwnevovy Ti enionpeg Béoeig tov EBvikod Metoofiov [Tolvte-
YVeiov.

IHepiinyn

H opBotta givar pio emBopnt oA oyt TeTpiupév 1o tnTa Tov Aoyiouikov. 'Evog modd a&iomictog
TPOTOG Y10, Vo s aAloTel n opBdTTa givar n emaAnBevon Aoyiopikov. H Liquid Haskell sivat évag
emay@yKog enaAndevtig mov Paciletar og Evav emddtn SMT Kot enekteivel T0 GHGTNUO TOTOV TNG
Haskell ypnoponowdvrog Aoywkd katnyopipata. Xpnowonowwvrag t Liquid Haskell, sivat dvvato
va amoderyBovv ToAAEG emBLUNTEC 1010t TEG Yo Kddka Ypaupévo o€ Haskell. H Haskell, Aoyw g
OKVN PG AmOTIUNONG, LG EMTPENEL VO, OpicovE avTIKEILEVA OV €YoLV TBOVOG dmelpa GTotKEld,
omwg anelpec AMoteg. Qotoco, 1 Liquid Haskell dev etvar o€ 0éom va, emainBedoel T€T0100¢ 0piopong
MOy ENAeyn TepUATIGHOD TOVG. Emtiong, Yio mapopo1oug AOyovs, dev UTopEl v, ETLYELPT|LOTOLOYNGEL
Y10 1310TNTEG TETOLWV OPICUDYV.

Avt 1 epyacio €1 GTOYO VO AVTILETOTICEL AVTO TO YA petaéd Tov duvatotntmv g Haskell
ka1 g ekepaotikotntag g Liquid Haskell. [Tapovoidlovpe pia texvikn mov pog Bondd vo emoin-
BghoovpE TNV TOPAY®YIKOTNTO TOV GUVOVOIPOULIKDV OPICUAOV, 0KOAOLODVTG TOpOLUOLN. SOVAELL OE
dAAeg YAwooes. [apovasidlovpe emiong 600 EVAALAKTIKEG TPOGEYYIGELS, ONANON TIC CUVETAYWOYIKEC
OmOdEIEELG e TN XPNOM SEIKTMV KOl TIG ETOUKOOOUNTIKEG CUVETOYOYIKEG amodeiEELS, 01 0Toieg K-
OKOTTOLOVV L CLVETELD CLVETAY®YIKES omodgiEelg otn Liquid Haskell. Xpnoiponolodue avtég tic
KOOIKOTOMGELS Y10, VO EAEYEOVLE OTOUATO SLAPOPOVS OPLGLOVG KOL OTTOOEIEELS, EMLOEIKVDOVTOG TMDG
umopet va, ypnopomoinfet £vag enaywykd enaAnfevtig yio vo eA&yxBo0v o1 cuVETAYOYIKES 1O10TN-
TEG KO 1) TapoyoywkoTnTo, kddiko Haskell.

A&Ee1g KAEO1A

INwcoec Tpoypappaticpov, [poypappatiopndg pe amodeiéels, ITictomomnpévog Kddkag, Zovemaym-
Yié€g amodeiEels, AVTOHOTOTOMUEVES OmOdEiEELC.

Abstract

Correctness is a desirable, yet not trivial, property of software. One very reliable way to ensure cor-
rectness is software verification. Liquid Haskell is an inductive verifier which is based on an SMT
solver and extends Haskell’s type system using logical predicates. Using Liquid Haskell, it is possible
to prove many desired properties for code written in Haskell. Haskell, due to laziness, allows us to
define objects that have possibly infinite elements, such as infinite lists. However, Liquid Haskell is
not able to verify such definitions due to their lack of termination. Also, for similar reasons, it cannot
reason about properties of such definitions.

This thesis aims to address this gap between Haskell’s capabilities and Liquid Haskell’s expres-
siveness. We present a technique which aids us to verify the productivity of corecursive definitions,
following similar work in other languages. We also present two alternative approaches, namely in-
dexed and constructive coinduction, to consistently encode coinductive proofs in Liquid Haskell. We
use these encodings to machine check various definitions and proofs, showcasing how an inductive
verifier can be used to check coinductive properties and productivity of Haskell code.

Key words

Programming languages, Programming with proofs, Certified code, Coinduction, Refinement types,
Theorem Proving.

Evyoaprotieg

Oa 10ela va guyaploTiom TpOTicTms Tov emPrénovtda pov, Niko [Taracmvpov, 1660 yio tn cuppfoin
TOV OTO TAAICLO AVTNG TG EPYOCTOG OGO KO Y10l TIG YVADGELG TOV PO Y10 TO AVTIKEIEVO TV [Awccdv
[poypappaticpod péca and to podnpata mov dddokel. Emiong moldéc suyapiotieg 0EAm va ddom
ot Nikn Bdalov yia ™ ocvverifieyn g epyaciog. Ot vrodeitelg g aAld Kot TO EVOLAPEPOV TNG
omoTéAESAV LEYAAT PorBeia GAOV aTOV TOV KaLPO.

Eipon evyvopov yio 6ha o xpovia 611 ool T060 Y TG YVMOGELS Tov EAaPa OGO Kot Yo TNV
gupiTeEPN eumelpia. Qg ek ToVTOL Ha NOEAA VA EVYOPICTHC® TO TPOSMOTIKS TG GYOANG Yo TO EVOLHL-
QEPOV TTOV EYEL Y10L TOVS POLTNTEG KOL TNV TPOAYDYT TOV YVOGEMY KOl TOV EMIGTILOVIKOD TVEDOTOC
o1 oyoAn. Emiong 6o 10ela va uxoploTiom TOVg GLUEOITNTEG LoV Yo TNV KOV TOPEiD Kot TV
CUUTOPAGTACT KOTA TN OAPKELN TOV GTOVIMV.

Télog B Bl VoL EVYAPIOTHGM TNV OIKOYEVELX KOl TOVG PIAOVG OV TTOL OAO AVTA Ta. XPOVIK LIE
otpifovv pe TV aydnr Toug.

Avkovpyog Maotdpov,

AbMva, 28n TovAiov 2022

H epyooia avt) givan emiong dabéoiun wg Teyvikn Avagopd CSD-SW-TR-2-22, EOviké Metoofio TToivte-
yvelo, ZyoA] Hiektpoddymv Mnyavikdv kot Mnyavikov Yroloyiotov, Topéag Teyvoroyiag ITAnpopopikrg
kot Yroroywotmv, Epyactipilo Teyvoroyiog Aoyiopucov, lovitog 2022.

URL: http://www.softlab.ntua.gr/techrep/
FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

Iepreyopeva

Hepitnyn

Abstract

Evyaprotieg

Mepreydpeva

Katdhoyos oynpuatov

1. Ewoayoy
2. IMopoyoyikéTnTo GVVEVIIPOULIKAV OPLOUAOV
3. Amo0d€ilelg GUVETOYOYIKAV 1010THTOV

4. Xvopmepacpato

Keipevo ota ayyhka

1. Introduction
Liquid Haskell

1.1

1.2
1.3
1.4

2. Productivity of Corecursive Definitions

2.1

3. Coinductive Proofs

3.1

3.2

1.1.1

Corecursive definitions
Coinduction
Contribution

Syntactic guardedness
2.2 Productivity with depths

Indexed Coinduction

Verification of properties in Liquid Haskell

3.1.1 Consistent Approach: Indexed Properties
3.1.2 Precise Approach: Indexed Predicates
3.1.3 Take Lemma: Did we Prove Equality?

Constructive Coinduction

3.2.1 Constructive Equality.
3.2.2 Proof by Constructive Coinduction
3.2.3 Again, Did we Prove Equality?

11

13

15

19

27

31

31
31
32
34
36
37

4. Examples e 53

4.1 Corecursive definition examples 53
4.2 Examples of coinductive proofs 57
42.1 EqualStreams 57

4.2.2 Unary Predicateson Streams 62

4.2.3 Binary Predicates: Lexicographic Ordering 65

424 CoinductiononLists L e 66

5. Related Work L 71
5.1 Mechanized Coinduction L 71

5.2 Haskell Verifiers e e e 71

53 Conclusion 72
Bifhoypagio e 75

12

Katdroyog oynuatov

1.1

2.1
2.2

3.1

Amodewctikol teAeotég g Liquid Haskell L. 17
Katookevaotég Kot KataoTpoeeig Tov Streampue fédn L. L. L. 20
YUVOPTNCELG Y10 TANPMOG OPIGUEVE STTEAMS & .+« « v v v v v o e e e e e e e e e e u 22
Teleotc amddeléng yio 160TNTO TOV TPOT®V K OTOWYEI®OV v o o v v . . . 24

TyNUHOTO 6TO AYYMKO KEipEvo

1.1

2.1
2.2

4.1

Proof Combinators of Liquid Haskell 34
Infrastructure of Stream L. e 41
Functions for fully defined streams 43
Properties 2 and 3 on Morse signals. o Lo 59

13

Keparawo 1

Ewcayoyn

To Moyioukd gival appnkTo cLVOEdEUEVO e TN SLUOIKAGIO UTOCPUALATMOONG: VYV KAVOLLLE
AGON otV TPOooTADELD VO KOSIKOTOGOVIE TN AOYIKN Hag, 1 M Aoyikn pog givar €€ apyng TpoPfin-
patikn. Kémoleg popéc umopolile vo apKeGTOVE GE L0 APEAT) TPOGEYYION WPIG VO EXYOVLLE KATOLN
ovoTnHOTIKN HEB0S0 TPOANYNG AabdV. Q6TdG0, OTAV TO AOYIoHIKO YiVETAL TEPITAOKO TAPOUOLES TPO-
oeyyioelg umopel va omofodv KoTooTPOPIKES.

[MoMhamAég texvikéc €xovv avamtuybel dote va dtacpoiiotel n opBOTHTO TOL AoyicLukov. H do-
K Aoytopkov (software testing) givor icwg pio omd T1g wo dNUoPireic: amoteAeital omd ™ GLY-
YPOOT KOO TOL EKTEAEL LEPOG TOL AOYIGUIKOD oG IE E16O00VE delypLaTa Kol GLYKPIveL TG e£600VG
HE aVOUEVOLEVEG TIES. OUmG LE QLT TV TEXVIKN O&V £XOVE TPUYUUTIKG amodei&et Ty opBoTTH
TOV AOYIGUIKOD poG, 0AAG €yovpe pia Tlavotikn SaPefainon 6Tl 0 kddikog eival opBog, avaroya
Kol e To TAN00G KoL TNV TOIKIALL TV GEVAPI®mY EAEYYOV, KL TNV TOAVTAOKOTNTA TOV AOYIGHLKOD.

Mo GAAN TpocEyyion oty opBoTTA lvar 1 xprion TOT®V. O1 TOTOL Elval id apKETH EGPOLOUEVN
£VVOL0L TTOV L0 EMTPETEL VOL TOPEYOVLLE EVOL TAAICLO OTIG SIAPOPES TLLES TTOV YPNCLOTOLOVVTOL LEGH
o€ €va TPOYPAUO. AVAAOYQ LE TN GVGT TOL GLGTHLOTOG TOTWV, LOG EMTPENETAL VO fefotdoovple
KATO1EG 1010TNTEG TOV KMJIKE Hag. Yhpyovv axopa Kot YAOooes, 0nwg 1 Agda [Team22] ka1 n Coq
[Barr97], mov ypnoomrolovv tov isopoppiopd Curry-Howard (o omoiog oyetilel mpoypdaupoata e
LaONUaTIKEG 0mOodEiEELS) HECH TOL GLOTNOTOC TOTMV TOVG £TCL MGTE VO aodeifovv 1010TNTEG TOV
AOYIGLIKOV.

Liquid Haskell Xe avtov tov topéa €yl avamtuydel kot 1o epyadeio g Liquid Haskell. H Liquid
Haskell eivan éva epyaieio 1o omoio enekteivel To oot TOTOV TNG YA®scoc Haskell pe tn ypion
AOYIKAOV KOTNYOPNUATOV, T OTO{0, LLOG EMTPETOVY VO GUYKEKPILEVOTOUGOVLE TOVS TUTOVS OV OE-
YOVTOL KOl EMGTPEPOLV 01 GVVAPTNCELS. [0 Tapddetypa 1 cuvaptnon head

data [a] =[] | a : [a]
head :: [a] — a
head (x:_) = x

SN et, LEG® TG VTTOYPAPNG TOTOL TNG, OTL d€YETAL pia AloTa omd GToyEln TOUTTOL a Kot EML-
oTpéPeL £va otoygio TOTov a. O THnog avTdS M®OTOGO dev givar akpiPne, Kabmg og pa ddgto Alota 1
cuvaptnon avtn Ba dnovpynoel cEAAp aeob dev givatl opiopévn yia doeteg Moteg. O opBOG TOTOC
TOV OPIGLOTOC TNG cLVVAPTNONG head givar) un adeto Aloto, 1) omoio pwopel va ekppactel ot Liquid
Haskell mg o Tomog NonEmpty a tov TEPLYPAPOVLLE TOPOKATM:

{-@ measure empty @-}

empty :: [a] — Bool
empty [] = True
empty _ = False

{-@ type NonEmpty a = {v:[a] | not (empty v) @-}

15

H Liquid Haskell €yt emiong tnv ikavoTnTa vo amodEIKVEL ETAYMYIKES 1010TNTES TOV KOJIKO. [
Tapadery o propet va amoderybei 0tL) cuvdptnon map dotnpel To KOG TNG MOTOG TOL TOipVEL oAV
opopa:

map :: (a — b) = x:[a] — {l:[b] | len 1 = 1len x}

map f [] =[]
map f (x:xs) = f x : map f xs

len :: List a — {v:Int| v >= 0}
len [] =0
len (_:xs) =1 + len xs

H Liquid Haskell ypnowonotel to ocdpo g map dote va amodei&el v emBounty idtra. H
avadpopky kAnon map f Xxs ypnoilonoeitor wg enay@ykn vIodeon evd N TePINTOOT NG AdENG
AMotog gival n Bdon g emayyng.

Y& TEPUTMCELG TOL 1) amdOEEN TePLapfdvel ToAAATA0DS opiopovg cuvaptioewv 1 Liquid Haskell
TPOGOEPEL T SOLVOTATNTO TNG CVOAVTIKNG CLYYPAPNS HoG 0mdOEENC, YPNCILOTOUDVTOG TOVG Sl0GO-
PNVIoUEVOLS TEAECTEG TOV oyNiaTog 1.1. Mo 18101 Ta TOoL ATOJEIKVOOLLE LLE AVTOV TOV TPOTO £iva
1 10TNTO GLVEVMONG TV map (map fusion):

mapFusion :: f:(b — ¢c) — g:(a — b) — xs:[a] — {map f (map g xs) = map (f
. g) Xxs}

mapFusion f g [] = ()

mapFusion f g (x:xs)
= map f (map g (X:xs))
===map f (g x : map g Xxs)
=== f (g x) : map f (map g xs)

? mapFusion f g xs

=== (f . g) x : map (f . g) xs
=== map (f . g) (x:xs)
* % % QED

Edm n emaymyn yivetol mo eupovig Aoyw g avaivtikotntoc. H vroypaen tomov dnAdvel to
Becdpnua wov BEAovpe va amodeifovpe. O tedestg (===) &y€l T€TO10 TOTO MGTE VO ELEYYEL TNV 1G0-
™NTO TOV SO0y IK®OV PNUAT®OV eved T0O (?) Umopel va Tpochitel dedopéva otny amddelln, OTme edm
N enoyoykn vnddeon. Téhog pe TNV Ekepacn *** QED OAOKANPMVETL 1) OTOSEEN.

Avtikgipeva angipov pijkovg H Haskell pog emtpénet axopo, péc® g okvnpng amotipnong, va
opicovpe anepa avtikeipeva. ‘Evag tomog 6edopévav mov cuyvd ypnoiomoteitat yio va deiet avtiv
v 1010t Ta givan Ta Streams (poéc dESOUEVOV):

data Stream a = a :> Stream a

X
XS

shead (x :> xs)
stail (x :> xs)

H dopn tov Stream potdletl pe avtiv tng AMotag pe dapopd ot dev Teptiappdavel to ddelo
stream. 'Etot éva stream dev teppatifel moté: eival pia amelpn oelpd oot eimv OOV a.

Hapott ot Haskell tétotol tomotl ypnoiponotodvol katd Kopov, dev vrootnpilovial and
Liquid Haskell 6nwg 6a do0pe ot cvvéyeta. H dovield avtn epydletol mive og autd To KeEVO HETAED
¢ Haskell ko1 tng Liquid Haskell. Zvykekpipéva k@dtkomolovpe TpOTovg LLE TOVS OTOI0VG LTOPOVLLE
va amodeifovpe TV Tapoy@ywdTnTa (Hio £vvola SLiky TOV TEPUATIGHOV) EVOG OPIGHOD Y10, GTELPO.
OVTIKEIPEVO KOOMDE Kot VoL AmodEIEOVLLE 1O10TNTEC TETOLMV AVTIKEUEVOV.

16

(===) :: x:a — y:{a | x =y} = {via | v = x}
X === = X

data QED = QED _ *** QED = ()

Tyqpo 1.1: Amodewktikol teAeotéc g Liquid Haskell

Kepaiaro 2

HopayoyKOTNTO GUVEVEIPOUIKAOV 0PLOUAOV

To Tp®d@TO TPOPAN O TOL GUVAVTOVE TV TPooTaBov e va opicovpe To Stream givor 6tim Liquid
Haskell to amoppintel pe €vol error 1ov VTodNAMVEL OTL HLTOG O TOHTTOG JEV Elval ETAY®YIKOS. Mmopole
VO AEVEPYOTOGOVIE TOV GLYKEKPUEVO Edeyyo pe To flag tng Liquid Haskell ”--no-adt”. Avtd
LG TTPOEIOOTOLEL KOl Y10 TNV 1 VooTNPIEN TéTolmV e1dmV dedopévav and t Liquid Haskell.

3TN GUVEYELN TPOYWMPOVLLE GE EVOV OPIGLLO TTOV EIVOL OPKETA YVMOOTOG 6Ty Kowvotnta tg Haskell,
v axoAovdia tov apiBunv Fibonacci:

fib = 0 :> 1 :> 1 :> zipwith (+) fib (stail fib)
where zipWith f (x:>xs) (y:>ys)
= f xy > zipWwith f xs ys

Opiouoi 6mmg M Fib Tov TOPAYOLY ATTEPA AVTIKEILEVA e KANOELG GTOV EQVTO TOVG TIG KOAOVLLE
TOVOVAOPOUIKES Y10, VO, TIG SLoYOPICOVUE amd TIG OVOOPOUIKEG, Ol OTTOIEG KAAOVY TOV EUVTO TOVG UE
pelovpevo. opiopota mapdymvrog nenepacpéveg e€0dovg. H Liquid Haskell, coppmva kot pe é6ca
gimape vopitepa, Oo emonpuavel pe Evo oedipa 0Tt 1 cuvaptnon avtn dev teppartilel. Qotdco TPo-
ocbétovtag Vv ofuavon lazy fib UTOPOVE VO ATEVEPYOTOUCOVIE TOV EAEYYO TEPLLOTIGLOV YOl TN
GLYKEKPLEVT GLVAPTNON.

Avt 1 TaKTiKy O0po¢ dev €xel Tnv axkpifela mov Ba BOEAape. o mapdderypo @EPVOLLLE T GLVAP-
ton loop:

loop = loop

H ovvdptnon loop yiverar dextr and) Liquid Haskell pe t onpovon lazy loop. QQot600
VILApYEL dlapopd peta&d g Fib kot g loop.

H fib &yel mv 016t ta 6T1 umopei va mapatnpnel pepkag: umopel vo amotiundel 1 KeQOAn
™G, 1 OVPA TNG OAAL Kol OTTOLOONTOTE TEMEPAGLEVO TUNLOL TNG O TEMEPAGLLEVO YpOvo. Ev avtibécel,
omoladnTote amotiunon g loop Oo KotoAnéel o€ évav atépUova LTOAOYIGHO. Ba fTav YPHCILO
AOUOV, EPOGOV ACYOAOVLOACTE L OESOUEVE, OTEIPOV PLRKOVGE, VO LTOPOVLLE VO Staympiloviie 0plopovg
TOL “KOAAAVE”, OIS M Loop, and OPIGHOVG TOL etvor Tapaywyikoi dnwg N fib.

Onog simape yio va eleyyBel o TeppatIicpdc o€ GLVOPTNOELS e AMOTEG ¥PNOYLOTOIEITOL MG LETPIKN
T0 UéyeBog TG MoTag. XTrV TPOKEUEVT] TEPITTOON KATL TETO10 OV €lval duvaTo: Ta streams £Yovv
navta dmelpo péyebog Kot £Tot 1 peTpikn Tov peyébovug dev Exel vonua.

Yrdpyer Opwg n mopeppepns évvola tov Baovg 1 omoio pmwopel vo pog Pondnoel. Xpnoyo-
TOWOVUE PETAPANTES GUOIKGV APOUDY TOV AVTITPOSOTEVOVY T BABog, To péyebog dSniadn Tov mpo-
olpiov evog stream to omoio gival opiopévo ympic va KOAAGEL.

INo mapddetypa eépvovpe tn cuvdptnon loop2:

loop2 =1 :> 2 :> stail (stail loop2)

19

measure depth :: Stream a — Nat

measure inf :: Stream a — Bool
type StreamS a S = {v:Stream a | depth v = S}
type StreamG a S = {v:Stream a | depth v >= S || inf v}

type StreamI a I {v:Stream a | inf v}

type LT I = {j:Nat | j < I}

assume cons :: i:Nat
— (LT 1 — a) — (j:LT i — StreamG a j)
— StreamS a i

cons _ fx fxs = fx 0 :> fxs 0

shead :: j:Nat — {xs:Stream a | depth xs > j || inf xs} — a
shead j (x :> xs) = x

assume stail :: j:Nat
— {xs:Stream a | depth xs > j || inf xs}
— {v:StreamS a j | inf xs == inf v}
stail i (x :> XS) = XS

Tympa 2.1: KotaokevaoTég Kol KOTaoTpoeeic Tov Stream pe fadn

211 GUVAPTNOT| CVTY £YOVLE TAAL VTOAVOPOPA: T OVPA TNG OVPAS TOV Loop2 opileTat WG 0 ENVTOG
™m¢. 'Etot 610 loop2, cOppava Le Tov 0piopd Tov ddcape, pmopel va 600et fdBog < 2. Ot mapayw-
YIKEG cLUVOPTNAGELG Aodv B glvar oTEG TOV pmopovLE va TIG avafécovile omotodnmote Paboc.

lNo va propéoovpie va KpoTape Aoyaplacio Tov BAB0VS TPOTOTOIOVLLE TOV KOTACKEVAOTI] KOL TOVG
KataoTpoPelg (to shead kot To stail dnAadn) Tov Stream pe S10GAPNVIGTIKOVG TOTOVE Ol OTO{0L
avapépovial ot PN Tov 1600wV e£6d0mV, dTmg paivetatl 6To oynua 2.1.

Inpeioon: Ot onudvoelg measure €d® cvotivovyv ot Liquid Haskell ta katnyopfpata depth
ko inf. H Liquid Haskell apyikd Eépet pLovo 15 vroypagég Tomov toug. Ora Ta Ao dedopéva yio
OVTE TO KATNYOPNUATO TO GLAAEYEL OO TOVG SLOCAPNVIGUEVOVS TOTTOVE TV cons, tail kot toInf
(oynua 2.2). Ot cuvapTRoELS QVTEG EYOVV VTTOYPAPES TOTWV TOL apyilovV LLE TNV GIULOVCT) assume 1
omoia kdévet tn Liquid Haskell va dgytel og a&udpota avtodg Toug THmovg.

Me avtd T0 GVOTNUO KAOE OPIoUOG LETATPENETOL KOl GE EMAYMYIKT OTOOEIET TOPAYOYIKOTITAS.
2UYKEKPIEVQ, TO cons, Yo kABe puotkd aptBud i, etidyvel éva stream Babovg i. Avtd 10 TpAyO-
ToTOlEL YpMoILOTOIOVTAG £va Stream mov £xetl fdbog >= j yia ovpd, yio omotodnmote fdbog j < i
Kol éva omAo ototyeio Yo Kepair]. Onwg Ba dodpe apydtepa | cons mapéyet ta fadn j 611G cuvap-
TNGELS TOV TOIPVEL OOV OPIGLOTOH Ol OTTOIEC UTOPOVV VO YPOPTOOV cav Aduda ekppdcelc. H shead
kot 1 stail ypnoonotody to Pabog j, To omoio givat pikpdTEPO TOL PABOVE TOL XS, MG PAPTLPA OTL
T0 Xs €xel faboc > 0 Kot apa pumopel va yivel ac@aing tpdsfacn oTny KEQOAN KAl 6TV OVPA TOV.
Emmléov n stail ypnowonotei 10 j dote vo dNAmdacetl 6Tt 1o PAbog Tng ovpag eival LIKPOTEPO TOV
BaBovg Tov apyucov stream.

Me 1 ¥pioTn QVTOV TOV CUVOPTHCEDYV UTOPOVLE VO Eovaypayouie Tov opiopd ¢ Fib wote va
OTOOEIKVOETAL 1] TOPAYDYIKOTNTH TNG:

20

zipwith :: i:Nat
— (a — b = ¢)
— StreamG a i — StreamG b i
— StreamG c 1
zipwith i f xs ys = cons i
(\j — f (shead j xs) (shead j ys))
(\j — zipwith j f (stail j xs) (stail j ys))

fib :: i:Nat — StreamG Int i
fib i = cons i (const 0)
$ \j — cons j (const 1)
$ \k — zipwith k (fib k) (stail k (fib j))

const x _ = X

H zipwith maipvel dvo streams wov givat opiopéva o€ Babog i kot emotpépet £va e to 1610 fdbog
i. Autd amodEIKVOETOL EMAYMYIKE 0md TIG VITOYPOEESG TOTOL TV cons, shead kot stail. O éieyyog
TEPUATIOHOV emPBePatdvel OTL 1 ETOy®YN LOg ival cmoTh Kot o€ ovtd BonBodv ot petafintég fabov
OV oG EMTPEMOVY VO KOAEGOVUE TNV zipWith pe peodpevo opiopa (j < i).

H fib apo¥ opicetl ta 600 mpdta oToKEln 1 cons Kavel dtobEoteg TG petafintég fabmv j Kot
k. AVTO Hag apNVEL LLE TNV VIOYPEMGOT va dei&ovpe Tmg To VOO stream £xel Pabog >= k, ®oTE M
fib iva éyelPdbog i. To mpwro dpiopa g zipwith &xet fdBog k Ady® g emaywykng vedOeonc, n
omoia eivat Eykopn apov k < i.Xt0 dgvTEPO OpIoLO TNG ZipWith BAémovue Tmg kodgitoann stail k
névo o fib j. H fib j éyet fdbog j Aoyw g emarywyikng vedbeong kot dpa 1 kKAfon oty stail
glvar &yxopn aeov j > k. 'Etot amodeikvietal mwg Kot 1 ékepaocn stail k (fib j) éxer fabog k
Kot Gpo, Ady® TG zipWith 1 6An éxepaon Exetl fabog k.

Av TpooTabncovpEe vo YpAWouE TNV Loop2 pe ovTd TO GUGTNUA KOTOANYOVLLE 6TO eENG:

loop2 :: i:Nat — StreamG
loop2 i = cons i (const 1) $ \j — cons j (const 2)
$ \k — stail ?? (stail k (loop2 j))

Yt KAnon g loop2 avaykalopaote va ddcovpe opiopa j (ko oyl 1) doTe vo iIkavonoleital o
éleyyoc Teppatiopo? (kat vo givat opdn 1 eraywyn). To mpdTo stail avayKaoTika Taipvel Optopo k
v va woyvet k < j. Xtn dgbtepn stail dev €yovpe kamola petafint Pabovg 1 omoia va ivar < k
OTOTE OEV LG EMTPEMETOL VO, OLOKATPMGOVLLE TNV AOSEIEN TaPpAy@YIKOTNTAG TG Loop2 — oL gival
aKpIPOG TO ATOTEAEG L TTOV EMHVHOVCALLE.

Oloxkinpopévoropropoi [va EKPPAGOLLLE TNV TOPAYOYIKOTNTA EVOG OPLGHOD, OTL SNANOT 0 Op1-
oudg €xet anelpo PAOoc, LTopovLLE VA XPTCIOTOM GOV LE TO Katryopnua inf (oynua 2.1). To katnyo-
PO AVTO 0POPE OAOKAT POUEVOVG OPLGLLOVG TTOV £X0VV 1O1 0dOEIEN TAPAYOYIKOTNTAG. XE TETOL0VG
0pIoUOVG UTOPoVLE Vo Kavoupe 6oeg TpocPdoels OEAovpe yopic va pog meplopilovv ot PHeTafANTES
BaBadv ¥p1GILOTOLDVTAG TIC GLVAPTNHGELS TOL GYNLATOG 2.2, ot Tapdoety Lo pmopoOiLE VoL TAPOLLLE TO
néunto otoryeio g akoAovbiog Fibonacci ypnoyonoidvag tnyv ékepaocn ihead (itail (itail
(itail (itail (toInf fib))))).

21

22

assume toInf :: (i:Nat — StreamG a i) — StreamI a

toInf f =

ihead
ihead xs

itail
itail xs

fo

StreamI a — a
= shead 0 xs

StreamI a — StreamlI a
= stail 0 Xxs

yfqpa 2.2: TuvopTtioELg Yo TANPOS Opiopéva streams

Kepararwo 3

ATO00EIEELS GLVETAYOYIKAOV LO10TITOV

Y10 pépog | meprypayape TNy 11OTNTO TG GLVEVOGNG TV map (map fusion) 1 omoia ®g opiouévn
v Moteg amodeikvoetal emaywyikd. Opilovpe to 110 Bedpnua yio streams mg e&Ng:

smap :: (a — b) — Stream a — Stream b
smap f (x :> xs) = f x :> smap f xs

mapFusion :: f:(b — ¢) — g:(a — b) — xs:Stream a
— {smap f (smap g xs) = smap (f . g) xs}

YnevOopiloope 0Tt yio va yivel dektdg o Tomog Stream omd tnv Liquid Haskell npémetl va ome-
VEPYOTOMGOLLLE KATOl0VE EAEYYOLG e To flag ” - -no-adt”. [Ipocrabovpe apytkd vo SO GOV LE TV
amddelEn akoAoVOmYTAG TNV ovTicToyN OmddEEN Yo MOTEG:

mapFusion f g (x :> Xxs)
= smap f (smap g (x :> xs))
=== smap f (g X :> smap g xsS)
=== f (g x) :> smap f (smap g xs)
? mapFusion f g xs
=== (f . g) x :>smap (f . g) xs
=== smap (f . g) (x :> xs)
* k% QED

Av10¢ 0 KddKag yiveTar dektoc amd T Liquid Haskell. Qotoco n anddeién avtn dev givor enoym-
YIKT], a@oD 0VTE PaoT VITAPYEL, 0VTE 1) ETOy@YIKT VOB £xel pelovpevo opiopa. [pdypatin Liquid
Haskell &yet yivel acvvennc Ay g xpnong Tov ” - -no-adt”, 0TS eoiveTol 0md TO TOPAKATO:

falseStream :: xs:Stream a — {false}
falseStream (x :> xs) = falseStream xs

H ocvuvdptnon falseStream amodeikvoel 1o false pe AavOacév EnToy®yn TOV OU®G EMLTPETEL
n Liquid Haskell.

Yovenayoyikés anodsileis pe dcikteg BAEmovpe 6T1T0 va amodeiovpe pia cuvenaymykn (coinductive)
amodelEn, o amddelEn dnAadn n omoia apopd avtikeipeva dnwg o stream, ival KATL TOL dEV VITO-
ompiletan and T Liquid Haskell. Apod 1 16610 TV streams (¢ GUVETAY®YIKT 1010TNTO) dEV
amodetkvieTon pe v TpoOTOo TPocTaBOVLLE VA amodeifovpe TV 160TNTA TOV TPOT®V Kk oTotXEl®OVY, N
omoia amoteAel emaywyikn W10tNTa. H 106tNnTa avt prnopei va exkppactel og e€Ng:

egK :: Eq a = Stream a — Stream a — k:Nat — Bool

23

(=#=) :: Eq a
= X:Stream a
— k:{Nat | 0 < k }
— y:{Stream a | egK (stail x) (stail y) (k-1)
&& shead x == shead y}
— {v:Stream a | egKk x y k & v == x}

Tyfqpa 3.1: Tekeotg amodeléng yio 100TNTe TOV TPOTOV K oTol) ElmV

egKk _ _ 0 = True
egK (x:>xs) (y:>ys) k = x ==y && eqgK xs ys (k-1)

H an6dei&n tov Bempnpotodg pog pe antiy v 1810t To el og e&NG:

mapFusionIdx f g (x :> xs) k

= smap f (smap g (x :> xs))

=== smap f (g X :> smap g Xs)

=== f (g x) :> smap f (smap g xs)
? mapFusionIdx f g xs (k-1)

=#= k #
(f . g) x :>smap (f . g) xs

=== smap (f . g) (x :> xs)

* % % QED

O teheotig =#= givar oplopévog 6To oynpa 3.1 Kot ¥PNOYEDEL MOTE VO LTOPEGOVLE VO TPOM-
Onoove TNV 106TNTO TOV TPOOLUIOV TMV streams, VD TO # oAl Lag BonBdet Le TIg TPOTEPUIOTNTES
TEAEGTMV MOTE va PNV yperalovral mapeviEcels.

H 1516t t0 mov poiig amodeiCapie gival, OT®G EIMOLLE, EXAYMYIKN Kot dpo OV EXEL TO TPOPAN LA
OGVVETELNG TTOV TEPLYPAWAE TpoNYoVupEVDS. Emmpdobeta paivetar 6Tt avti 1 amddeén eivat 16o-
dvvaun pe v amAn 166tNTe TV streams, a@ov ov 6vo streams €ival {60 G€ OTOLOONTOTE PNKOC
npooiuiov Oa givar kot ica. H mpdtacn avti vedpyet ot Pifloypapio og take lemma [Bird88] o
UTOpOVLLE VO, TNV Kmdtkorotoovpe o€ Liquid Haskell:

assume takeLemmaEq :: x:Stream a — y:Stream a
— (k:Nat — {egK x vy k}) — {x = vy}

Me 1 ypnomn oG TG TPOTUCTG UTOPOVLE VO OLOKAT|POGOVLLE TV OPYIKT HaG amdOeEn:

mapFusion f g xs =
takeLemmaEq (smap f (smap g xs)) (smap (f . g) xs) (mapFusionIdx f g xs)

KotaokevooTikég ovvenayoyikés amodeilels AAAOG TPOTOC TOL UTOPOVLE VO TPOGEYYIGOVLLE TIG
GUVETAYWOYIKES 0mOodeiEelg elvat Vo, 0piGOVUE KATAGKEVUGTIKO GUVETAYMYLKA KOTNYOPTLATO TOTOL
Coq [Chlil3] ypnouomoiwvtog data propositions [Bork22] tng Liquid Haskell oe cuvdvoouo e dia-
capnvicpéva GADTs [Peyt06]. H icdtnta yio streams pumopet va, ekppaotel pe avtdv Tov TpOTo MG:

24

data EqC1 a where
EgRefll :: x:a — xs:Stream a — ys:Stream a
— Prop (EqC1 xs ys)
— Prop (EqC1 (x :> xs) (x :>ys))

AvTtog 0 TOTOG £XEL EVay KATAGKEVAGTH (VO TPOTO NANST VO KOTOGKELAGOVUE Uio 160TNTA), O
01010G L€ £V OTOLYEID X Y10 KEPAAT, OVO streams XS Kol y'S Kot Lo amodeEn TG TPOTAGNS XS = VS,
KOTAoKEVACEL poL amdOEIEN TG TPOTUONG X > XS = X > ysS.

Avt n tervikn dpwg maAL dev apkel. H Coq ota cuvenaymyikd Katnyopuatd g emPaiiet
v 10 tta “guardedness”, 1 omoio €ival VTOGVLVOLO TNG TOPAYMYIKOTNTOG TOL TEPLYPAYOLE GTO
KePAAO10 2. Xwpig avtdv ToV EAEYY0 KATAAYOVUE TAAL GE AGVVETEG CVGTN LA, OTWS PaiveTal amd To
TOPAKATO:

falseProp :: xs:Stream a — ys:Stream a — Prop (EqC1l xs ys) — {false}
falseProp _ _ (EgRefll a xs ys p) = falseProp xs ys p

H 2on Aowmdv mov Ba ypnoyomomcovie gival va TpocBEécovie Tov EAEYYO TAPAYOYIKOTNTOG
TOV KEQUAOiov 2 oTnV 106TNTO TV Streams:

data EqQC a where
EgRefl :: i:Nat — x:a
— XS:Stream a — ys:Stream a
— (j:{Nat | j < i} — Prop (EqC j xs ys))
— Prop (EqC 1 (X :> xs) (x :> ys))

Me 1 ypniomn tov EqC pmopovpe va omodei&ovpe ek vEOL TNV 1010TNTA LG

mapFusionC :: f:(b — ¢c) — g:(a — b)
— s:Stream a — i:Nat
— Prop (EqC i (smap f (smap g s))
(smap (f . g) s))
mapFusionC f g (x :> xs) i =
EgRefl 1 ((f . g) x) (smap f (smap g xs))
(smap (f . g) xs) (mapFusionC f g xs)
? lhs ? rhs

where

lhs = ((f . g) x) :> (smap f (smap g xs))
=== (f (g x)) :> (smap f (smap g xs))
=== smap T (g X :> smap g Xxs)
=== smap f (smap g (X :> Xxs))
* k% QED

rhs = ((f . g) x) :> (smap (f . g) xs)
=== smap (f. g) (x :> xs)
* k% % QED

Y1nv omoia o EqRef 1 eivat 0 okeletdg TNG amddeEng Kot Ta Lhs Kot rhs emexteivovy) de&1d ko
TNV apLoTEPN HEPLA TNG IGOTNTAG AVTIGTOLYM, MGTE VO LTOPEL VO EQUPLOCTEL 1] ETAYOYIKN VIOBEST).

Télog, Yia vo LETATPEWYOLLLE TNV ATOOEIEN QLT G€ ATOSEIEN 1GOTNTOC, LTOPOVLE VO, YPT|CLLOTOL-
noovpe éva aSlopo cov avTd TG TPONYOLLEVNS LEBOOOV:

25

assume eglLemma :: x:Stream a — y:Stream a
— (i:Nat — Prop (EqC i x y)) — {x =y}

mapFusion :: f:(b — ¢c) = g:(a — b)

— Xs:Stream a

— {smap f (smap g xs) = smap (f . g) xs}
mapFusion f g xs =

eqLemma (smap f (smap g xs)) (smap (f . g) xs)
(mapFusionC f g xs)

Keoaiaro 4

Yvourepdopata

Xpnowonomoope tn Liquid Haskell yia vo vrootnpiovpe cuvemayoytkd xopaKTnploTiKd on-
AadM vo, amodeiovLE TNV TOPAYDYIKOTTO TOV OLAQOP®Y GUVOVOIPOUIKDY OPIGUAOV KOl GUVETOY®-
YIKEG 1G0T TEG,.

[etvyape Tov Eleyyo TapayYIKOTNTOG 0ALALOVTAG TOVG KOTAOKEVAOTEG KOl KATAGTPOPELG GUVE-
TOYOYIKOV AVTIKEILEVOV Y10 VO TAPOKoAoLOEgiTe TO BAOOC TOL OVTIKEILEVO KO XPTOLLOTOINGE QLT
TNV VOO0 UT] Y10, VO OPIGEL KOL VO TOPEYEL TNV TOPOYDYIKOTNTO OO SLAPOPO OVTIKEIUEVAL.

Kwodwomomoape cuvenaywylkég omodeiEelg oTov Enaymykd enoAndeuti ypnoLOTOIOVTOS SO
TPOGEYYIOEIS. TNV TPOGEYYLON UE OEIKTEG, TPOSHETOVE GTNV 15OTNTA VY PUGTKO PO K Kol 1)
amddelEn yiveton e EXaymYN| 610 K. XT1V KATACKEVAGTIKY TPOGEYYION, 1 10OTNTO KOOIKOTOIEITOL (G
exAentuoopuévo GADT 10 omoio eAéyyeTol yio TV TOPUYDYIKOTNTE TOV. XPNOLOTOIDOVIOS OTOLNOT-
ToTE amd AVTEG TIC TPOGEYYioELS, Evag mpoypappotiots Haskell umopel va éleyEel cuvenaymykég
w0t teg kmoko Haskell otn Liquid Haskell.

‘O)eg o1 pébodot mov meptypdyape UTOPoHY VoL YEVIKELTOVV KO Y10, AAAOVG OTEIPOVS TOTOVE TEPQL
omd streams, 6mwg 6Evopa N TOavoG dnepec AMoteg. EmmAéov pmopodv va amoderyBobv Kot GALEC
WOLOTNTEG TEPQ OTTO TNV 1GOTNTA, T.X. 1) Ae&IKOYpa@ikT cVYKpLon. [Tapadeiypato OA®V avT®V VITAPYOVY
o1 d1evBvvon github.com/lykmast/co-liquid. Emiong, éva peydlo pépoc e Tapodous SITAMUOTIKNG
€yel yivel dekto Yo mopovoioon oto eetvo Haskell Symposium [Mast22].

27

https://github.com/lykmast/co-liquid/

Keipevo otao ayyhMkad

Chapter 1

Introduction

Software, for anyone that has attempted to produce it, is closely coupled with the process of debugging:
We often make mistakes while encoding our logic, or our logic is faulty to begin with. Sometimes we
can get away with approaching software naively, without a strategy to catch errors. However, when
software becomes complex or has critical functionality, such naiveness may be catastrophic.

Multiple techniques have been developed for ensuring that software is correct. Testing is perhaps
the most widely used: it comprises of writing code that runs part of our software with sample inputs
and compares the output to expected values. Though, as Dijkstra famously said, “Program testing can
be used to show the presence of bugs, but never to show their absence!” With testing we don’t actually
prove correctness, but we get a probabilistic assurance that our software is correct, depending on the
number and diversity of test-cases, and the complexity of our software.

Another approach to correctness is types. Types are a very traditional concept that allows us
to provide context for values that are used throughout a program. Depending on the nature of the
type system it can allow us to assert certain properties of our code. There are even languages like
Agda [Team22] and Coq [Barr97] that use the Curry-Howard isomorphism (which relates computer
programs to mathematical proofs), through their type system to formally prove software properties.

1.1 Liquid Haskell

Haskell’s type system is famous for its expressiveness. With algebraic datatypes we can define types
with sums and products. Its usefulness can become apparent when defining the types for an interpreter:

data Expr = Add Int Int
| Mul Int Int
| Lt Int Int
| Eg Int Int
| Or Bool Bool
I

Not Bool

We also have the ability to inductively define types such as lists:
data [a] = a : [a] | []

The power of this type system is famously put into words with the saying ”If it compiles, it is correct!”.
However this view overestimates the expressiveness of Haskell’s type system.

There are ample properties that we cannot express in this type system and, hence, cannot ensure
at compile time. Consider the following:

tail :: [a] — [a]
tail (x : Xxs) = Xxs

31

This function is happily accepted by Haskell’s type system. In fact, tail is part of Prelude, Haskell’s
standard library. What happens then if we call tail on an empty list? We get a runtime error! The
problem is that the type of tail is incorrect, as the function does not work for all lists, but only for
non-empty ones.

Liquid Haskell [Vazo14] is a tool that extends the type system of Haskell by adding logical predi-
cates to types, in order to cover this possibility of incorrectness. The logical predicates are translated
to logical constraints which are passed to an SMT solver. The SMT solver then informs us whether
our constraints are satisfiable or not.

Indeed, Liquid Haskell will not accept the above definition of tail because it is non-total in its
argument (since it only covers the non-empty case of a list). In order to correct tail we can define
a type that describes a non-empty list, using a predicate on lists that expresses the property of being
empty.

{-@ measure empty @-}
empty :: [a] — Bool
empty [] = True
empty _ = False

{-@ type NonEmpty a = {v:[a] | not (empty v) @-}

Note: The measure annotation tells Liquid Haskell to reflect the definition of the corresponding
function in logic so that it can be used as a predicate in NonEmpty. Liquid Haskell annotations are
enclosed between {-@ @-3}, which we mostly omit in the rest of this work, along with measure anno-
tations, in order to avoid cluttering.

Using NonEmpty we can refine the definition of tail so that we won’t get a runtime error:

{-@ tail :: NonEmpty — [a] @-}
tail (x : xs) = xs

unsafe = tail [] -- Refinement Type Error
safe tail (1:[])

tail now is total and Liquid Haskell will prevent us from calling it on an empty list, by throwing an
error at compiler time.

1.1.1 Verification of properties in Liquid Haskell

Inductive Light Verification Liquid Haskell can be used to automate verification about “light”
properties on inductive data. As a first example, we can prove that map preserves the list’s length:

map :: (a — b) — x:[a] — {l:[b] | len 1 = 1len x}

map f [] =[]
map f (x:xs) = f x : map f xs

len :: List a — {v:Int| v >= 0}
len [] =0
len (_:xs) =1 + len xs

Liquid Haskell verifies that map preserves the length of its argument using the definition of map as
a proof. In the empty ([]) case the property holds trivially, since the result is also [] which has a
length of 0. In the cons case, using the definition of len the argument has length 1 + len xs while
the result has length 1 + len (map f xs) which can be proven equal by the inductive hypothesis
(len xs = len (map f xs)).

32

Note: termination Liquid Haskell automatically checks that our functions are terminating i.e., for
all arguments they do not lead to infinite computation. It does so by ensuring that, when a function
recurses, it does so on a decreasing argument that also has a minimal value that it decreases towards.
For arguments like natural numbers this tactic is straightforward. In the map function the decreasing
argument is the list itself. What actually decreases in each recursive step is the size of the list, which,
in the empty case, takes its minimal value of zero. Indeed, we can observe that, in the recursive case,
map recurses on the tail of its list argument, and so will eventually lead to the base case by recursing
on the empty list.

Inductive Deep Verification Deep verification, in the setting of refinement types, is the process
of providing explicit proofs to ensure properties that cannot be automatically proved by the SMT
automation. Usually, such properties refer to the interaction of more than one function, thus, cannot
be proved simply by the function definition.

Such an example is the famous map fusion property:

{-# RULES "map-fusion” V f g xs.
map f (map g xs) = map (f . g) xs #-}

(.) :: (b —=c¢c) - (a—=>b) -a—c
(f . 9) x=17 (g x)

The rule defined above replaces the left-hand sidemap f (map g xs) withmap (f . g) xs,travers-
ing the list only once which optimizes the correspondent program. It is useful to be able to prove such
properties before asserting a rule to the compiler.

To prove such a property we need to employ the theorem proving capabilities of Liquid Haskell
[Vazo18] that encode theorems as refinement type specifications and proofs as inhabitants to these

types.
We start by encoding our theorem with the following signature:

mapFusion :: f:(b - ¢c) — g:(a = b) — xs:[a] — {map f (map g xs) = map (f
. g) xs}

The notation { p } is an abbreviation of the unit type with the predicate p, i.e., {v: ()| p}. Thus,
mapFusion only returns a unit value. This is because we don’t need anything from a proof at runtime,
we solely need it to prove the desired property at compile time.

To actually prove mapFusion we need to construct an inhabitant of the previously defined signa-
ture, i.e., a definition of mapFusion’s body that is accepted by Liquid Haskell:

mapFusion f g [] = ()

mapFusion f g (x:xs)
= map f (map g (x:xs))
===map f (g X : map g xs)
=== f (g x) : map f (map g xs)

? mapFusion f g xs

=== (f . g) x : map (f . g) xs
=== map (f . g) (x:xs)
* k% QED

In the empty case the proof is trivial; we need only define the result as () and the rest is automated by
Liquid Haskell’s rewriting [Vazo17]. The non-empty case starts by the left-hand side and performing
equational steps arrives at the right-hand side.

This equational reasoning is encoded as a Haskell function using a set of Haskell operators that are
refined to check equalities at each equational step. These operators are defined in the Liquid Haskell

33

(===) :: x:a — y:{a | x =y} = {via | v = x}

X === _ = X
X ? _ =X data QED = QED _ *** QED = ()
Figure 1.1: Proof Combinators of Liquid Haskell
library ProofCombinators and are summarized in Figure 1.1. Operator (===) takes two arguments,

checks their equality and returns the first. In that way, it accumulates proof steps and propagates the
equality from the left-hand (resp. right-hand) side to the right (resp. left) one. Operator (?) ignores
its second argument and returns the first. It is solely used to invoke facts (such as other lemmas or
the inductive hypothesis), which Liquid Haskell takes into account parallel to equational reasoning.
Finally *** QED simply completes the proof by turning the result into a unit.

Specifically, in the mapFusion proof, we start by expanding twice the definition of map using
=== steps. We notice that we have arrived at the expression f (g x) : map f (map g xs). The
sub-expression map f (map g xs) is eligible for the mapFusion property and so we can invoke the
inductive hypothesis on the tail of the list with ? mapFusion f g xs to transform it to map (f .
g) xs. Finally, by folding the definitions of (.) and map, we arrive at the desired result map (f .
g) (x : xs) and complete the proof with *** QED.

The validity of this proof depends on the following: For one, the refinement checks of (===
ensure that each step is congruent to the previous one. Secondly, the proof is checked to be total,
which ensures that we truly prove the property for all possible arguments of this type. Lastly, the
proof is checked to be terminating, as we previously described. That means that when invoking the
inductive hypothesis we need to do so on a term that decreases to a base case, making our induction
well-formed.

1.2 Corecursive definitions

Laziness is one of the most distinctive features of Haskell. It describes the evaluation model of Haskell,
where an expression is only evaluated when its result is needed. This feature allows us to define and
use objects with infinite size, such as streams, which are defined as follows:

data Stream = a :> Stream a

We can observe that streams are very similar to lists; they basically describe infinite lists. This allows
us to easily adapt many functions that are defined for lists to work on streams.

Streams are defined using a technique called corecursion. Corecursion, like recursion, describes
self-calling algorithms which, rather than destructing data until they reach a base case (as is done in a
recursive setting), build up from a base case producing data.

For example we can define srepeat, which takes an argument and returns a stream that consists
of this argument repeated infinite times:

srepeat :: a — Stream a
srepeat X = X :> srepeat X

A very popular example of an infinite list definition that illustrates the usefulness and elegance of
laziness is the definition of the infinite list containing all the Fibonacci numbers in order:

{-@ lazy fib @-}
fib = @ :> 1 :> zipwith (+) fib (tail fib)

34

These definitions yield, as we described, infinite objects. If we were to evaluate them (e.g by printing
their result), we would get an infinitely running program. Of course such a program can sometimes be
useful. Servers for one can be thought of as programs that never terminate, always waiting for requests
and returning answers. We can also interact with such definitions by observing a finite part of them,
which is possible because of laziness! If we try to evaluate the first n elements of the Fibonacci list
(using stake which we define below) the fib object will only be evaluated at a depth of n elements;
the rest will remain unevaluated, unless we specifically ask for it through some computation.

As we previously described, Liquid Haskell demands that functions are terminating and therefore
our elegant fib definition would normally be rejected. In order to get it accepted we have to explicitly
mark it as a non-terminating function, which is the purpose of the annotation lazy fib.

However, there are definitions and expressions that are infinite in some sense but are undesirable.
Consider, for example, the function loop:

loop = loop

This function is perfectly valid Haskell code, but it describes a divergent computation. loop is not
useful in most normal scenarios. Trying to evaluate will yield an infinite computation that does not
produce any output, in contrast to fib, the usefulness of which we described previously. However,
if we added a lazy loop annotation, Liquid Haskell would naively accept the definition of loop
just as it accepts the definition of fib! There is no way to account for well-behavedness of infinite
definitions.

When dealing with laziness, we can attain a part of a possibly infinite result in finite time, since
we can refer to and compute part of an infinite object without triggering an infinite computation.
Specifically for streams we can define stake:

stake :: Nat — Stream a — [a]
stake 0 _ =[]
stake n (x :> xs) = x: stake n xs

We can then express the well-behavedness of a stream definition if for any n we can compute stake n
of this stream in finite steps. This kind of well-behavedness is called productivity. Below we define
srepeat which, despite being infinite it is well-behaved in this sense:

srepeat :: Stream a
srepeat x = X :> srepeat x

In contrast to srepeat, the function loop, which we defined previously, is not productive. The prob-
lem with it is that not only is it infinite, but also there is not a part of its result which we can attain in
finite time: stake n loop for any n yields an infinite computation.

In chapter 2 we describe how we can encode productivity in Liquid Haskell and write corecursive
definitions so that those that are well-defined (e.g., srepeat) are accepted and ill-defined ones (e.g.,
loop) are rejected by Liquid Haskell. As a motivation we add here the definition of the Fibonacci
sequence as a stream as encoded in chapter 2:

zipwith :: i:Nat
— (a — b = ¢)
— StreamG a i — StreamG b i
— StreamG c 1
zipwith i f xs ys = cons i
(\j — f (shead j xs) (shead j ys))
(\j — zipwith j f (stail j xs) (stail j ys))

fib :: i:Nat — StreamG Int i

35

fib i = cons i (const 0)
$ \j — cons j (const 1)
$ \k — zipwith k (fib k) (stail k (fib j))

const x _ X

1.3 Coinduction

Since we are dealing with infinite definitions it is useful to start venturing into the world of coinduction,
which is a notion dual to structural induction.

Structural induction deals with well-founded datatypes, meaning types that have base cases (such
as lists). Such types contain objects that can be constructed with finite steps by starting from the base
cases and using the other available rules.

Coinduction on the other hand deals with datatypes which need not be well-founded. Coinductive
objects cannot be constructed in the inductive sense, since base cases are not available. We can only
define a coinductive object if we have such an object to begin with. If we observe the definitions
of fib and repeat previously, we can see that both use self-references in order to complete their
definitions.

Coinduction is better understood as observation or destruction instead of construction: Objects
are defined by how they can be observed, or, equally, by the parts to which they can be destructed. A
(non-empty) list for example can be decomposed to its head (the first element) and its tail which is
also a coinductive object that can be decomposed. In fact in Agda we can define coinductive objects
by using co-patterns [Abel13] which makes this definition by observation explicit.

While lists are very relevant and well-known in the Haskell world, coinduction is better illustrated
when acting on streams as we mentioned in section 1.2:

data Stream = a :> Stream a

We can easily see that streams are non-well-founded and therefore they can only be interpreted coin-
ductively. The similarity of streams to lists allows us to easily adapt many functions that are defined
for lists to work on streams. For example we can define smap following the previous map definition:

smap :: (a — b) — Stream a — Stream b
smap f (x :> xs) = f x :> smap f xs

Because of non-termination we need to annotate smap as lazy in order for Liquid Haskell to accept
it. In fact we also have to pass a special flag in order for Liquid Haskell and the underlying SMT
solver to allow the definition of Stream in the first place. The ”--no-adt” flag that we use for this
purpose, tells Liquid Haskell not to map Haskell data types to SMT data types, which would reject
non-well-founded types.

Now if we also adapt the mapFusion proof for streams we arrive at:

smapFusion f g (Xx:>Xxs)
= smap f (smap g (x:>xs))
=== smap f (g X :> smap g Xs)
=== f (g x) :> smap f (smap g xs)
? smapFusion f g xs
=== (f . g) x :>smap (f . g) xs
=== smap (f . g) (x:>xs)
* k% QED

36

This proof definition is accepted by Liquid Haskell — provided we have already added the ” - -no-adt”
flag. The proofis accepted without being terminating. This makes us question the validity of the proof.
Indeed, Liquid Haskell becomes inconsistent with this setup!

The problem is that by not having the restriction of termination we can easily prove any property,
even false ones, by simply invoking the inductive hypothesis. Such an example is falseStream
defined below:

falseStream :: Stream a — {false}
falseStream (x:>xs) = falseStream xs

In chapter 3 we show how we can in fact reason about coinductive properties in Liquid Haskell using
two techniques: the indexed approach (section 3.1) and the constructive approach (section 3.2). For
example, with the constructive approach we can obtain the mapFusion proof as follows:

mapFusionC :: f:(b —- ¢c) — g:(a — b)
— s:Stream a — i:Nat
— Prop (EqC 1 (smap f (smap g s))
(smap (f . g) s))
mapFusionC f g (x :> xs) 1 =
EqRefl 1 ((f . g) x) (smap f (smap g xs))
(smap (f . g) xs) (mapFusionC f g xs)
? lhs ? rhs

where

lhs = ((f . g) x) :> (smap f (smap g xs))
=== (f (g x)) :> (smap f (smap g xs))
=== smap f (g X :> smap g Xxs)
=== smap f (smap g (X :> Xxs))
* k% QED

rhs = ((f . g) x) :> (smap (f . g) xs)
=== smap (f. g) (x :> xs)
* % % QED

1.4 Contribution

To sum up, in this work we encode coinductive techniques in Liquid Haskell. We first present a tech-
nique for modifying an inductive verifier to ensure productivity of corecursive definitions (chapter 2).
Second, we present how an inductive verifier could be extended to support coinductive reasoning
(chapter 3). These extensions could, in the future, be applied both in Liquid Haskell and in GHC’s
dependent types. Apart from the specific methods used, we also highlight the gap that an inductive
verifier has to cover in order to verify coinductive properties. We finally (chapter 4) provide a number
of examples in order to illustrate the use of the techniques described.

Our code can be found in its entirety in github.com/lykmast/co-liquid. Also, a large part of this
work has been accepted for presentation at this year’s Haskell Symposium [Mast22].

37

https://github.com/lykmast/co-liquid/

Chapter 2

Productivity of Corecursive Definitions

In chapter 1 we discussed how and why Liquid Haskell ensures termination of definitions. We also
described corecursive definitions which can be non-terminating.

In this chapter we encode corecursive definitions in Haskell and use Liquid Haskell to typecheck
their well-behavedness — despite non-termination:

e In section 2.1 we make a first attempt at expressing productivity using a syntactic check.

e In section 2.2 we encode in Liquid Haskell a better approach using depths.

2.1 Syntactic guardedness

Observing the difference between srepeat and loop we can start formulating rules about how a
corecursive definition should look like. We see that stake pattern-matches on a stream cons. In
contrast to loop, srepeat is expressed as a cons. However this is not a sufficient condition for a
productive corecursive function, as exemplified by badCons:

badCons = shead badCons :> badCons

The problem here is that in order to calculate the first element of badCons we first need to calculate
shead badCons. This tautology leads to an infinite computation. We can generalize this problem to
a bad self-call: shead badCons is obviously problematic in this position.

A rule we can come up with to exclude badCons is that, besides using the constructor (:), a valid
definition needs to directly self-call (so head badCons is not accepted in any position). Both loop
and badCons are now rejected while srepeat is accepted. This rule is the guardedness condition
which is widely used (e.g. Coq [Bert06]) and it is a sufficient condition of productive corecursive
definitions.

Unfortunately, there is a large class of definitions that are productive but not syntactically guarded.
Let’s come back to our Fibonacci function from chapter 1. To define fib we first need zipwith:

zipwith :: (a —+ b — ¢) — Stream a — Stream b — Stream c
zipwith f (x :> xs) (y > ys) = f x y :> zipwith f xs ys

We can easily see that zipwith is guarded: the only self-call is directly applied inside the (:) con-
structor. Now to define fib:

fib = @ : 1 : zipwith (+) fib (stail fib)

It is obvious that this definition is not guarded in the sense we described above, since the self-call of
fib is inside zipwith. If we implemented this guardedness check we would not be able to get fib to
typecheck. However we strongly suspect that fib is productive — for one, because of its popularity
in the Haskell community. If we want to be able to accept fib we need a more complex system that
will be able to keep track of productivity during function composition.

39

2.2 Productivity with depths

In order to implement a better productivity check we should explore what can go wrong in a definition
like fib in terms of productivity. To that end we define zipwith’:

zipwith” f (x :> _ > xs) (y > _ :>ys) = f x y :> zipWith f xs ys

The definition of zipwith’ is similar to zipwith, but its result is different since it discards every
other element of the initial streams. We now define fib’ that is identical to fib except for the fact
that it uses zipwith’ instead of zipwith:

fib’ = @ :> 1 :> zipwWith’ (+) fib’ (stail fib’)
=== @ :>1 >0 + 1 :> zipWith’ (+) (stail (stail fib’))
(stail (stail (stail fib’)))
=== 0 :>1 :>1 :>1 + shead (stail (stail (stail fib’))) :> ...

We can see that fib’ is not productive: the term shead (stail (stail (stail fib’))) here
cannot be computed because its computation depends on itself. We can reframe this by saying that
fib’ attempts to define its fourth element with a dependency on the fourth element, which will of
course get stuck since it is not yet calculated. Only the first three elements should be present in the
expression that calculates the fourth one, since they are the only ones that have already been calculated.

What we need is a system that allows us to express which elements of the stream have already
been calculated and so can be used in an expression that calculates another element. To that end we
use a natural number that keeps track of the number of elements from the start of the stream that can
be accessed without getting stuck on a non-computable element. We call this number the depth of
the stream. In order to actually keep track of the depth of a stream we need to alter the definitions of
cons, shead and stail as viewed in fig. 2.1. The actual value of a depth variable in the runtime does
not matter, because depths are only relevant to Liquid Haskell, so we instantiate every depth with 0.
Depths are different than sizes: Size is used to count the number of elements that a structure has.
This metric is useful for structures like lists that are terminating, but for streams it is nonsensical since
streams have always infinite size. Depth, in contrast to size, measures the number of elements from
the start of the stream that can be accessed without getting stuck on a non-computable element like
fib’. According to this definition fib’ can be given a maximum depth of 3, since the fourth element
cannot be computed.

Productivity for a stream can be expressed by proving that this stream can be given any depth,
i.e., any of its elements can be accessed and computed. To actually prove this, we use the altered
infrastructure of fig. 2.1 to enable a stream definition to also serve as a proof of its productivity.

Namely, cons signature dictates that a stream can be accessed at depth i, if for every j<i we can
produce a stream of depth >= j and a single element. Of course this follows from the meaning we
gave to depth: if a stream’s first j elements can be calculated and we provide a definition for another
element that will serve as the head of the stream, then we can obtain a stream of which the firsti > j
elements can be safely accessed.

Respectively, if a stream has depth > j we can produce a stream with depth >= j using stail.
shead works in the same way but does not assert a depth property for its result as it is a single element.
In shead and stail the j argument serves also as a witness that we can access the head and tail of the
stream: The reasoning is that since the stream has a depth i with the property i > j, then iis>= 1
(since all depths are natural numbers) and both head and tail can be safely computed.

Note that in these depth signatures we use inequalities, such as i>j or >=j, instead of specifying
the exact depth of the stream. We do this because it gives greater flexibility to definitions. Basically
it allows us to use strong induction inside the productivity proofs as we highlight later.

Finally we use the measure inf to signify a stream that can be accessed at infinite depth i.e., a
stream which has a productive definition. This is expressed in toInf (section 2.2) which allows us

40

measure depth :: Stream a — Nat

measure inf :: Stream a — Bool

type StreamS a S = {v:Stream a | depth v = S}

type StreamG a S = {v:Stream a | depth v >= S || inf v}
type StreamI a I = {v:Stream a | inf v}

type LT I = {j:Nat | j < I}

assume cons :: i:Nat
— (LT i — a) — (j:LT i — StreamG a j)
— StreamS a i

cons _ fx fxs = fx 0 :> fxs 0

shead :: j:Nat — {xs:Stream a | depth xs > j || inf xs} — a
shead j (x :> xs) = x

assume stail :: j:Nat
— {xs:Stream a | depth xs > j || inf xs}
— {v:StreamS a j | inf xs == inf v}
stail i (x :> XS) = Xs

Figure 2.1: Infrastructure of Stream

to say that a stream is considered to have infinite depth when it can be given any depth i which is
equivalent to having a proof of productivity. We also use inf in the signatures of fig. 2.1 to express
that any access is allowed to streams that are already proven productive. Note that inside its own
definition a stream is not yet proven productive and so cannot be inf

A note on measures: In Liquid Haskell we can use the measure annotation to introduce uninter-
preted functions. Liquid Haskell initially knows nothing about these functions but their type signa-
ture. We can introduce facts about these functions to Liquid Haskell by using them in axiomatized
signatures. For example, depth is such a function that express the depth of a stream as a natural num-
ber. Liquid Haskell initially knows only that depth is a function that accepts a stream and returns a
natural numbers. Additional facts about depth are introduced to Liquid Haskell through the assumed
signatures of cons and stail as described above.

With the help of this infrastructure we can now write fib and other interesting corecursive func-
tions in a way that allows Liquid Haskell to verify that they are productive. These definitions differ
from the original (i.e., the ones that we would define in plain Haskell) because in order to keep track
of depths we have to use lambda expressions to instantiate the depth with the property that we want
(e.g. smaller than the depth of a stream).

zipwith :: i:Nat
— (a — b = ¢)
— StreamG a i — StreamG b i
— StreamG c 1
zipwith i f xs ys = cons i
(\j] — f (shead j xs) (shead j ys))
(\j — zipwith j f (stail j xs) (stail j ys))

41

fib :: i:Nat — StreamG a i
fib i = cons i (const 0)
$ \j — cons j (const 1)
$ \k — zipwith k (fib k) (stail k (fib j))

const x _ = X

Explaining the depth-annotated versions. The signature of zipwith expresses the fact that zipwith
takes as arguments two streams defined at depth i or higher and returns a stream defined at the same
depth i. In other words if both streams can be accessed at a specific depth, so can the result of an
element-wise operation on them. This property is proved in the body of zipwith and checked by
Liquid Haskell through the type signatures of shead, stail and cons.

More concretely, cons produces a stream of depth i, since it is given i as its depth argument,
provided that the second and third argument produce a single element and a stream of depth >= j
respectively for every j < i. The head of the stream is produced by operating on the heads of the
two argument streams, which we are able to do using j as a witness on the fact that we are allowed to
access them. The tail of the stream can be proven to have depth j by applying the inductive hypothesis
on j and the tails of the two streams — which we are again allowed to access because of j.

Productivity proofs are inductive. We remind that in order for the proof to be inductive we also
need Liquid Haskell’s termination check which in these case is satisfied since zipwith recurses on j
< i. Proofs of productivity can be viewed as — and indeed are — inductive proofs. For i = 0 there are
no j < 1iso the proofis trivial, as is the fact that any stream has depth at least 0. Then for every other
i we show that the stream has depth i by using strong induction, i.e., using the inductive hypothesis
onany j < i.

Moving on to fib, we define with constants the first two elements, which leaves us to prove that
the tail of the tail of fib ihasdepth k foreveryk < j < i. To prove this we first invoke the inductive
hypothesis on k and j —which proves that fib j and fib k have depths >= j and >= k respectively.
This allows us to invoke stail k (fib j) to prove that this expression has depth >= k and finally
using zipwith k we prove that the whole tail-of-tail expression has depth k.

We can also disallow fib’. Ifwe try to add signatures through our newly defined system to zipwith’
and fib’ we discover that we don’t have a way to do so without Liquid Haskell throwing an error:

zipwith” :: i:Nat
— (a — b = ¢)
— StreamI a — StreamI a
— StreamG a i
zipwith’ i f xs ys = cons i
(_ — f (ihead xs) (ihead ys))
(\j — zipwith j f (itail (itail xs)
(itail (itail ys))

In order to get zipWith” to typecheck we need to demand from the arguments to be of infinite depth
i.e., fully defined, because otherwise we will not able to access two depths below i with only one
nesting of cons. Because of this infinite depth we can use the corresponding destructors which do not
need a depth witness (section 2.2).

The signature of zipwith’ prevents us from defining fib’ using zipwWith’ since we can only invoke
zipwith’ with full stream definitions. Even if we try to use toInf inside the definition we will get
an error.

42

assume toInf :: (i:Nat — StreamG a i) — StreamI a
toInf f = f 0O

ihead :: StreamI a — a
ihead xs = shead 0 xs

itail :: StreamI a — StreamI a
itail xs = stail 0 Xxs

Figure 2.2: Functions for fully defined streams

fib’” :: i:Nat — StreamG Int i

fib’ i = cons i (const 0)
$ \j — cons j (const 1)
$ \k — zipwith’ k (toInf fib’) (itail (toInf fib’))
-- I'ERROR!!

The problem here is that toInf attempts to invoke fib’ for all natural numbers. This is not a valid
inductive hypothesis invocation since toInf also needs depths that are greater than i. Liquid Haskell
points this out by throwing a termination error on the self-call of fib”.

Generalization. Productivity can also be applied to other coinductive types than streams (e.g. possi-
bly infinite tree structures). The technique we use here can easily be applied to express the productivity
of such types: we just have to apply the depth refinements that we applied to shead, stail and cons
to the corresponding destructors and constructors of these types. In chapter 4 we include examples of
such corecursive definitions. A more formal definition of constructors and destructors that use depths
can be found in [Abel10, Abel16].

43

Chapter 3

Coinductive Proofs

In chapter 1 we described how coinductive properties can not be seamlessly proven in Liquid Haskell:
The well-foundedness check disallows us even defining coinductive types and deactivating it intro-
duces inconsistency (e.g., falseStream).

In this chapter we present two methods we used for adapting Liquid Haskell’s infrastructure to
prove coinductive properties:

e In section 3.1 we present the indexed coinduction technique in which we index the coinductive
predicates and encode coinductive proofs by induction on the index.

e In section 3.2 we present the constructive coinduction technique that again uses indices, but to
ensure guardedness in constructive proofs that are encoded in Liquid Haskell using refinements
over GADTs.

3.1 Indexed Coinduction

In this section we encode indexed coinduction, that let us consistently prove properties about coin-
ductive predicates. First (§3.1.1), we index coinductive properties with a natural number, to eliminate
inconsistent proofs. Next (§3.1.2), we define indexed predicates that trivially satisfy base cases. Fi-
nally (§3.1.3), we conclude by noticing that indexed equality bisimulates stream equality.

3.1.1 Consistent Approach: Indexed Properties

A first attempt to ensure consistent proofs is to require inductive proofs. To do so, we define the type
of indexed properties IProp p:

type-alias IProp p = k:Nat — { p } / [K]

This type says that to prove IProp p one needs to prove p, for all natural numbers k, using induction
on k. The notation [k] is used by Liquid Haskell to encode termination metrics, i.e., expressions that
provably decrease at each recursive function call, and thus prove termination of the function.

Note: Even though Liquid Haskell permits type aliases, it does not permit them being accompanied
by termination metrics. In our implementation, type-alias are manually inlined by the user.

Wrapped in IProp, the false predicate cannot be proved anymore, since in the base case, for k=0,
there is not enough evidence to show false, as no recursive call is allowed.

falseStream :: Stream a — IProp false
falseStream _ O = () -- ERROR
falseStream (_ :> xs) i = falseStream xs (i-1)

Yet, this is exactly the case for correct stream properties. Wrapped in IProp the mapFusion sketches
as follows:

45

mapFusion :: f:(b — ¢c) — g:(a — b) — s:Stream a
— IProp (smap f (smap g s) = smap (f . g) s)

mapFusion _ _ _ @ = () -- ERROR

mapFusion f g (_ > xs) 1 = ... -- OK

Even though Liquid Haskell can easily verify the inductive case, there is no way to prove the base
case of the, now correct, theorem.

From this failing first attempt we conclude that the indexed technique can be used only to prove
properties that trivially hold for the base case.

3.1.2 Precise Approach: Indexed Predicates

Our goal is to define coinductive predicates, indexed with a natural number k, that trivially hold when
k=0. Having set this goal, we define egK to be indexed stream equality.

egK :: Eq a = Stream a — Stream a — Int — Bool
eqgK 0 True

egK (x:>xs) (y:>ys) k X ==y && egK xs ys (k-1)

Concretely, egk xs ys k checks if the first k elements of the streams xs and ys are equal. Indexed
equality on k=0 is trivially true, since the zero first elements of the stream are always equal. So,
indexed equality can be proved via indexed coinduction.

Next, we encode and prove map-fusion as a coinductive indexed proposition.

Indexed Coinductive Propositions We encode coinductive propositions using the type alias CProp
p, that is similar to IProp except the index k is now further applied to the indexed property p.

type-alias CProp p = k:Nat — {p k} / [K]

Using CProp, we define the map-fusion property as the specification of mapFusionIdx that equates
all the elements of the streams smap f (smap g xs) and smap (f . g) Xs.

mapFusionIdx :: f:(b — ¢c) — g:(a — b)
— s:Stream a —
CProp {eqK (smap f (smap g s)) (smap (f . g) s)}

The proof can only go by induction on the index k, as indicated by the termination metric / [k]. The
base case is easy and goes by unfolding the definition of eqK which is always true at the index 0.

mapFusionIdx f g xs 0
= egK (smap f (smap g xs)) (smap (f . g) xs) 0
* k% QED

The inductive case also starts easily. Concretely, it starts by exactly following the equational reasoning
steps of the theorem proved in §1.1:

mapFusionIdx f g (x :> xs) k

= smap f (smap g (x :> xs))

=== smap f (g x :> smap g XS)

=== f (g x) :> smap f (smap g xs)

? mapFusionIdx f g xs (k-1)

=== (f . g) x :> smap (f . g) xs -- ERROR
=== smap (f . g) (x :> xs)

* % % QED

46

However, we are stuck again: Liquid Haskell is not convinced that the inductive call mapFusionIdx
f g xs (k-1) can prove smap f (smap g xs) = smap (f . g) xs. And it has every right not
to be convinced, since the inductive call provides evidence for the indexed equality egK, not (=).

To proceed with the proof, we need to define a new, coinductive proof operator, similar to the
(===) of Figure 1.1, that will let us: (1) check that the proof step is correct, and (2) conclude that our
final proof is correct. We define the proof combinator (=#=), which has a precondition that checks
and a postcondition that concludes indexed equalities:

(=#=) :: Eq a
= Xx:Stream a
— k:{Nat | 6 < k }
— y:{Stream a | egK (stail x) (stail y) (k-1)
&& shead x == shead y}
— {v:Stream a | egK x y k && v == x}

That is, (=#=) x k y checks that x and y have equal heads and indexed equal tails to conclude that
they are indexed equal. Its definition is not assumed, but proved just by expanding the definition
of indexed equality. Note, that the operator returns its first argument, giving us the ability to chain
indexed equality proof steps. Also, note that the order of the arguments is strange: the index k appears
between the two stream arguments. We chose this order on purpose; we further define a function
application operator (#), similar to ($) but with the proper precedence, that lets us write x =#= k
yinstead of (=#=) x k y.

f#x="Ffx
Let us now conclude the proof of mapFusionIdx:

mapFusionIdx f g (x :> xs) k

= smap f (smap g (x :> xs))

=== smap f (g X :> smap g Xs)

=== f (g x) :> smap f (smap g Xs)
? mapFusionIdx f g xs (k-1)

=#= k #
(f . g) x :>smap (f . g) xs

=== smap (f . g) (x :> xs)

* % % QED

This proof is now not only accepted, but it is consistent (as proof by induction on Nat) and, most
importantly, it looks a lot like the inductive proof.

3.1.3 Take Lemma: Did we Prove Equality?

Even though our proof looks much like the original inductive proof, the theorem’s statement has
diverged. Instead of proving equality between streams, in §3.1.2 we prove indexed equality. Here, we
explain how these two forms of the theorem’s statement connect.

[Bird88] formulate and prove the take lemma, which states that two streams are equal if and only
if their first k “taken” elements are equal, forall k. Namely:

r=vy & Vk.takekax =takeky

We axiomatize the right-to-left direction of this lemma in Liquid Haskell as follows:

assume takeLemma :: x:Stream a — y:Stream a
— (k:Nat — {take k x = take k y})
— {x =y}

47

In our mechanization, streams do not have a base case, thus take converts streams to Haskell’s lists,
returning an empty list on zero:

take :: Nat — Stream a — [a]
take 0 _ =[]
take i (x :> xs) = x : take (i-1) xs

By induction on k, we can prove that our indexed equality predicate behaves like the take equality:

egKLemma :: x:Stream a — y:Stream a — k:Nat
— {egK x y k & take k x = take k y}

We combine the two lemmas above to derive stream equality from our indexed equality:

approx :: x:Stream a — y:Stream a
— CProp {egK x y} — {x =y}
approx x y p =
takeLemma x y (\k — p k ? egkLemma x y k)

The proof calls the takeLemma with an argument that combines the egk x y k premise and eqKkLemma,
for each k.

By calling approx we are able to replace indexed with stream equality in our map fusion theorem:

mapFusion :: f:(b — ¢) — g:(a — b)
— s:Stream a —
— {smap f (smap g s) == smap (f . g) s}
mapFusion f g s
= approx (smap f (smap g s))
(smap (f . g) s) (mapFusionIdx f g s)

Inshort, we mechanized indexed coinduction by (1) defining a related property indexed by a natural
number k, and (2) proving the related property, by induction on k. The benefit of this technique is that
the proof is simple and can use inductive techniques, in the style of equational reasoning. The great
drawback though is that for consistency, the developer needs to make sure that induction happens on
the index and not on a substream, as sketched below.

thm (x <: xs) i
thm _ (i-1) -- good inductive hypothesis
thm xs _ -- potentially inconsistent!

In all our examples, we used Liquid Haskell’s termination metrics to ensure inductive calls occur on
smaller indices, yet, in more advanced proofs this requirement could be missed. Next, we present an
alternative mechanization of coinductive proofs that does not have user-imposed requirements.

3.2 Constructive Coinduction
Constructive coinduction is our second mechanization technique, where proofs are constructed using
Haskell’s (refined) GADTs [Xi03, Peyt06]. First (§3.2.1) we define EqC, the GADT that constructs

observational equality on streams. Next (§3.2.2), we use EqC to prove our running theorem. Finally
(§3.2.3), via the take lemma, we prove that EqC approximates stream equality.

48

3.2.1 Constructive Equality

As a first (failing) attempt to define constructive stream equality, we define Coq’s textbook [Chlil3]
coinductive stream equality, using Liquid Haskell’s data propositions [Bork22] and a refined GADT:

data EqQC1 a where
EqRefll :: x:a — Xxs:Stream a — ys:Stream a
— Prop (EqC1 xs ys)
— Prop (EqC1 (x :> xs) (x :> ys))

The EqC1 data type has one constructor, that given a head x, two steams, xs and ys, and a proof of
the proposition that xs is equal to ys, constructs a proof of the proposition that x :> xs is equal to
X 1> ys.

Liquid Haskell’s built-in Prop type constructor encodes propositions; given an expression e, it
denotes a proposition that e holds. It is defined as follows:

type Prop e = {v:a

| e = prop v}
measure prop :: a — b

where prop is an uninterpreted function in the logic. So, any expression of type Prop e is a witness
that proves e.
The EqC1 data constructor, that is used as an argument to Prop, is defined below:

data Proposition a = EqC1 (Stream a) (Stream a)

The statement w : Prop (EQC1l xs ys) states that w witnesses that the proposition EqC1 xs ys
holds. Since the only way to construct such a term is via the EqRef 11 construction, w : Prop
(EqC1 xs ys) witnesses observational equality of xs and ys.

The problem: no guardedness condition. Even though EqC1 seemingly encodes observational
equality, due to the lack of a base case, as in §1.3, we can trivially prove false.

falseProp :: xs:Stream a — ys:Stream a
— Prop (EqC1 xs ys) — {false}
falseProp _ _ (EqRefll a xs ys p)

= falseProp xs ys p

Remember, that the definition of EqC1 follows Coq’s textbook stream equality definition. But in Coq,
this equality is defined as CoInductive, which comes with the guardedness condition check. This
check ensures that recursive calls produce values, i.e., dually to recursive calls of inductive data,
recursive calls on codata should be guarded by data constructors. Such a condition is not enforced
by (Liquid) Haskell and is violated by the falseProp definition. Thus, our first attempt to define
constructive stream equality is not consistent.

Indices to the rescue. Next, we encode the guardedness condition using indices, following Agda’s
sized types approach [Abel10]. The indexed constructive stream equality is defined as follows:

data EqQC a where
EgRefl :: i:Nat — x:a
— Xs:Stream a — ys:Stream a
— (j:{Nat | j < i} — Prop (EqC j xs ys))
— Prop (EqQC i (x :> xs) (X :>ys))

data Proposition a = EqQC Int (Stream a) (Stream a)

49

That is, to construct an equality for the index i one can use the equality on tails for some index j
strictly smaller than i. With this guard, the previous falseProp cannot be encoded:

falseProp :: i:Nat — xs:Stream a — ys:Stream a
— Prop (EqC i xs ys) — {false}
falseProp © _ _ _ = () -- REFINEMENT TYPE ERROR
falseProp i _ _ (EqRefl _ X Xs ys p)
= falseProp (i-1) xs ys (p (i-1))

The recursive call is easy: poftype j: {Nat | j < i} — Prop (EqC j xs ys) canbe called with
i-1. That call, combined with the requirement that j is a Nat requires that i is greater than 0. Thus
we are left with the i=0 base case, from which it is impossible to prove false. Unsurprisingly, this
reasoning is similar to §3.1.1. Indexing permits coinductive reasoning using inductive verification.

3.2.2 Proof by Constructive Coinduction

Next, we use constructive coinduction to prove the map fusion theorem.

mapFusionC :: f:(b =& ¢c) — g:(a — b)
— s:Stream a — 1i:Nat
— Prop (EqC 1 (smap f (smap g s))
(smap (f . g) s))
mapFusionC f g (x :> xs) i =
EqRefl 1 ((f . g) x) (smap f (smap g xs))
(smap (f . g) xs) (mapFusionC f g xs)
? lhs ? rhs

where

lhs = ((f . g) x) :> (smap f (smap g xs))
=== (f (g x)) :> (smap f (smap g xs))
=== smap f (g X :> smap g XxS)
=== smap f (smap g (X :> Xs))
* %k % QED

rhs = ((f . g) x) :> (smap (f . g) xs)
=== smap (f. g) (x :> xs)
* k% QED

The only way to construct a term of the required type is by the data constructor Eqref 1. Calling this
with the inductive hypothesis in the definition of MapFusionC above gives us a witness that EqC i
((f . g) x :>smap T (smap g xs)) ((f . g) x :> smap (f . g) xs). In both sides, we
need to push the head (f . g) x inside the smap and persuade Liquid Haskell that this push proves
the theorem. This is exactly what ? 1lhs and ? rhs serve for: they provide the missing steps using
equational reasoning. With this, the proof completes without any unguarded recursive calls!

3.2.3 Again, Did we Prove Equality?

Finally, as in §3.1.3, we use the take lemma to show that constructive equality approximates stream
equality and use this approximation in our map fusion theorem.

Concretely, we start by proving that for each index i, constructive equality between the streams x
and y implies that the i prefixes of the streams are equal.

eqCLemma :: x:Stream a — y:Stream a
— i:Nat — (Prop (EqC i x y))
— {take i1 x = take i y}

50

eqCLemma _ _ 0 _ = ()
eqCLemma _ _ i (EgRefl _ _ xs ys p)
= egCLemma xs ys (i-1) (p (i-1))

The proof goes by induction on i: the base case is automatically proved by Liquid Haskell’s PLE and
the inductive case is easy, calling the tail equality p for the previous index.

Note that the proof of eqCLemma requires inverting the constructive EqC proof. In theory, to prove
the lemma given the EqC i x y witness, we need to know that this equality was only derived by the
tail equality and not via any other way. That is, if the EqC data type had other constructors, the proof
would have to pattern match on all of them. In practice, this proof and the requirement of inversion
are the reasons why the definition of EqC had to be a GADT, instead of a function assumption.

By combining the eqCLemma above with the takeLemma of §3.1.3, we prove that constructive
equality approximates stream equality:

approx :: x:Stream a — y:Stream a
— (i:Nat — Prop (EqC i x y)) — {x =y}
approx x y p
= takeLemma x y (\1 — egKLemma x y i (p 1))

Finally, this approximation theorem can be used to convert constructive to stream equality in our map
fusion theorem.

mapFusion :: f:(b — ¢) — g:(a — b)
—> Xs:Stream a
— {smap f (smap g xs) = smap (f . g) xs}
mapFusion f g xs =
approx (smap f (smap g xs)) (smap (f . g) xs)
(mapFusionC f g xs)

In short, we mechanized constructive coinduction by (1) encoding the coinductive predicate as an
indexed data proposition, and (2) proving a coinductive property by constructing a witness for the
coinductive predicate. Consistency of the constructive proofs relies on the guardedness check, that
we implemented using indices. One way to add native support for coinductive reasoning in Liquid
Haskell would be to extend it with guardedness checks, like Coq.

51

Chapter 4

Examples

In this chapter we present some code examples of the techniques described in this work.

e In section 4.1 we present examples of corecursive definitions annotated with depths in order to
verify their productivity.

e Insection 4.2 we present examples of coinductive proofs using the indexed (§3.1) and construc-
tive (§3.2) techniques.

4.1 Corecursive definition examples

Example 1: Merge Evens Odds In section 4.2 we prove the property mergeEven0dd which uses
the functions merge, evens and odds. Here we prove the productivity of those functions:

{-@ odds :: i:Nat — StreamI _ — StreamG _ i @-}
odds :: Int — Stream a — Stream a
odds i xs = cons i (const $ ihead xs) (\j — odds j $ itail . itail $ xs)

{-@ evens :: i:Nat — StreamI _ — StreamG _ i @-}
evens :: Int — Stream a — Stream a
evens 1 = odds i . itail

{-@ merge :: i:Nat — StreamG _ i — StreamG _ i — StreamG _ i @-}
merge :: Int — Stream a — Stream a — Stream a
merge i xs ys = cons i (\j — shead j xs) (\j — merge j ys (stail j xs))

The functions odds and evens take a fully defined stream as an argument. This is because they
consume twice the elements that they produce and therefore cannot be part of a self-calling definition
that can be proven productive with our technique. This allows us to use the destructors ihead and
itail and makes productivity trivial to prove.

merge on the other hand takes two arguments that, for some i have depth i (meaning they are
defined at least for depth i) and returns a stream that claims to have depth i. The self-call to merge j
satisfies both the termination checker and the signature of cons (since j < i and merge j has depth
j). We cannot easily give merge a more accurate type (which expresses that it returns two elements
after one access to each stream) using this technique. However, as in the case of odds and evens,
these annotations are expressive enough for most sensible definitions.

Notice that all of merge, evens and odds can be also proven productive with syntactic guarded-
ness, since the self call is nested under cons.

Example 2: Paperfolds Another interesting corecursive definition that we encountered in [Clou15]
is paperfolds, which represents the regular paper-folding sequence (A014577) as a stream. The
original definition of paperfolds is:

53

https://oeis.org/A014577

paperfolds = merge toggle paperfolds

toggle = True :> False :> toggle
Below we rewrite paperfolds and toggle with depths in order to prove their productivity:

{-@ toggle :: i:Nat — StreamG _ i @-}

toggle :: Num a = Int — Stream a

toggle i = cons i (const 0) $ \j —
cons j (const 1) toggle

{-@ paperfolds :: i:Nat — StreamG _ i @-}
paperfolds :: Num a = Int — Stream a
paperfolds i = cons i (\j — ihead (toInf toggle)) $
\j — merge j (paperfolds j) (itail (toInf toggle))

In the code above, one unfolding of merge was necessary to prove termination of paperfolds: with-
out unfolding merge we would have to self-call paperfolds i which would not pass the termination
check. We also see that toggle can be used as a complete definition (using toInf), since paperfolds
is not part of its definition. Finally, while toggle could be proven productive with syntactic guard-
edness, paperfolds cannot, as its self-call is inside merge rather than being directly nested in cons.

Example 3: Mixed recursive and corecursive calls In corecursive definitions there can be branches
that are non-productive. This is allowed as long as we can prove that a productive branch will be al-
ways reached. A simple example of such a definition is fivesUp (found in [Lein14]), which produces
a stream with all multiples of five greater than its argument:

{-@ fivesUp :: i:Nat — n:_

— StreamG {v:_ | v >=n} i / [i, fivesUpTerm n]
@-}
fivesUp :: Int -‘> Int — Stream Int
fivesUp i n | n ‘mod’ 5 == 0

= cons i (const n) $ \j — fivesUp j (n+1)
| otherwise = fivesUp i (n+1)

{-@ inline fivesUpTerm @-}
fivesUpTerm :: Int — Int
fivesUpTerm n = 4 - ((n-1) ‘mod’ 5)

The first branch is productive as it has a valid self-call inside cons with j < i (guarded by coinductive
constructor). The second branch is not directly productive, but we can determine that it will eventually
return to the n “mod‘ 5 == 0 branch, as fivesUpTerm n is decreasing for the otherwise branch.
In order to satisfy the termination checker we have added a lexicographic termination measure ([1,
fivesUpTerm n]) which expresses that when the branch is not productive (i.e., i does not decrease),
it is eventually escaped because of another termination metric (i.e., fivesUpTerm n).

Example 4: Breadth first labeled infinite tree Jones and Gibbons [Jone93] have described a func-
tional, linear-time, breadth-first tree labeling algorithm. Abel and Pientka [Abell16] modified it for
infinite trees and, using copatterns and sized types, prove its productivity.

bf :: Stream a — Tree a

54

bf vs = t where (t, vss) = bfs (vs :> vss)

bfs :: Stream (Stream a) — (Tree a, Stream (Stream a))
bfs ((v :> vs) (> vss) = (node v 1 r, vs :> vss’'’)
where (1, vss') bfs vss
(r, vss’’) = bfs vss’

The function bf takes as an input a stream of labels and produces the infinite binary tree that is labeled
by the stream in a breadth-first order. bfs takes a stream of streams of labels and produces a pair of a
tree and a stream of streams. The role of bf's is to help define bf in a cyclical way. In bf it is apparent
that the input v:>vss of bfs is partly constructed by its output.

The algorithm is fairly complex and its productivity is not evident by a simple read-through. For
that reason, and also to illustrate the use of the technique in more complex datatypes, we add here the
proof of its productivity following [Abell6].

We first define the Tree datatype and along with the depth-tracking constructor and destructors:

data Tree a = Node {_label :: a, _left :: Tree a, _right :: Tree a}

{-@ measure tdepth :: Tree a — Nat @-}

{-@ measure tinf :: Tree a — Bool @-}

{-@ label :: j:Nat — {t:_ | tdepth t > j} — _ @-}

label :: Int — Tree a — a

label _ = _label

{-@ assume left :: j:Nat — {t:_ | tdepth t > j || tinf t}
— {1:_| tdepth 1 = j && (tinf t == tinf 1)}

@-3

left :: Int — Tree a — Tree a

left _ = _left

{-@ assume right :: j:Nat — {t:_ | tdepth t > j || tinf t}
— {r:_| tdepth r = j && (tinf t == tinf r)}

@-3

right :: Int — Tree a — Tree a

right _ = _right

{-@ assume node :: i:Nat — ({j:Nat|j<i} — _)
— ({j:Nat|j<i} — TreeG _ j)
— ({j:Nat|j<i} — TreeG _ j)
— {v:_ | tdepth v = i}
@-3
node :: Int — (Int — a) — (Int — Tree a) — (Int — Tree a) — Tree a
node i flb fl fr = Node (flb @) (fl 0) (fr 0)

We also need to define our stream of streams and a Result datatype which will take the place of the
tuple that carries the result of bfs. We mostly need it to relate the depth of the resulting tree with the

depth of the resulting stream of streams.

type SS a = Stream (Stream a)
{-@ type SS a S = StreamG (StreamI a) S @-}

55

data Result a = Res { tree:: Tree a, _rest:: SS a}

{-@ measure rdepth :: Result a — Nat @-}
{-@ measure rinf :: Result a — Bool @-}

{-@ type ResultI a I = {r:Result a | rdepth r = I} @-}

{-@ assume res :: i:Nat — TreeG _ i
—+ SS _ i — ResultI _ i @-}
res :: Int — Tree a — SS a — Result a

res t ss = Res t ss

{-@ assume tree :: r:_ — TreeG _ {rdepth r} @-}

tree = _tree
{-@ assume rest :: r:_ — SS _ {rdepth r} @-}
rest = _rest

Now we can proceed to define bf's:

{-@ bfs :: i:Nat — SS _ i — ResultI _ i @-}
bfs i ss = res i (node i v (\j — tree $ p1 j)
$ \j — tree $ p2 j)

$ cons ivs $\j — rest (p2 j)

where p1 = \j — bfs j (vss j)
p2 =\j — bfs j $ rest $ p1 j
vss = \j — stail j ss
\% = \j — ihead (shead j ss)
vs = \j — itail (shead j ss)

Finally we can define bf as follows:

{-@ bf :: i:Nat — StreamI _ — TreeG _ i @-}
bf i = tree . bfp i
where {-@ bfp :: i:Nat — StreamI a — ResultI a i @-}
bfp i vs = bfs i $ cons i (const vs) $ \j — rest (bfp j vs)

In [Abel16] the above definition of bfp is not possible. Sizes are only available when copatterns are
being used, so bfp does not have a j available because of cons. We do not share that problem since
we have a different annotation of cons that provides us with a j<i. However we proceed to translate
the two implementations of bfp that Abel and Pientka provide. Note that in order to define bfp with
copatterns there has to be one unfolding of bfs which makes the code a little bulkier:

{-@ bfp’ :: i:Nat — StreamI _ — ResultI _ i @-}

bfp’ :: Int — Stream a — Result a

bfp’ i vs = res i (node i (\j — label j $ t j)
(\j — left j $t j)
(\j = right j $ t j))

$ cons i (\j — shead j$rj)
$ \j — stail j$rj
where p j = bfs (j+1) $ cons (j+1)

56

(const vs)
(_ — rest $ bfp’ j vs)

tree $ p j

t]
rj rest $p j

In order to embelish bfp, the authors also propose the use of fixR to hide away the unfolding:

{-@ fixR :: i:Nat
— (j:Nat — ResultI _ j — ResultI _ {j+1})
— ResultI _ i
@-}
fixR :: Int — (Int — Result a — Result a) — Result a
fixR 1 f = res i (node i (\j — label j $ t j)
(\j — left j $t Jj)
(\j — right j $ t j))

$ cons i (\j — shead j$rj)
$ \j — stail j$rj

where p j = f j (fixR j f)
t j=tree $pj
r j =rest$pj
{-@ bfp’’” :: i:Nat — StreamI _ — ResultI _ i @-}
bfp’’ :: Int — Stream a — Result a

bfp’’ i vs = fixR 1 f
where f j r = bfs (j+1) $ cons (j+1)
(const vs)
(_ — rest r)

4.2 Examples of coinductive proofs

4.2.1 Equal Streams

The first 4 properties prove equality on streams. Property 0 was detailed in §3.1 and §3.2. Using
exactly the same predicates (egK and EqC) and axiom (takeLemma), we prove three more properties:

Property 1: Merge even and odd elements One very popular example of a coinductive proof
concerns the following functions on streams:

merge :: Stream a — Stream a — Stream a
merge (X :> XS) ysS = X !> merge ys XS

evens, odds :: Stream a — Stream a
odds (x :> xs) = x :> odds (stail xs)
evens xs = odds (stail xs)

It is easy to see that, for any stream, merging its odd and even elements will reconstruct the initial
stream. This is expressed in Liquid Haskell as follows:

mergeEvenOdd :: xs:Stream a
— {merge (odds xs) (evens xs) = Xs}

57

e Indexed proof of mergeEven0dd:

{-@ mergeEven0OddK :: xs:_ — k: Nat
— {eqgK k (merge (odds xs) (evens xs)) xs}
@-3
mergeEven0ddK s 0
= eqK 0 (merge (odds s) (evens s)) s
* ok k QED
mergeEven0ddK xxs@(x :> xs) k

merge (odds xxs) (evens XXs)
=== merge (X :> odds (stail xs))
((odds . stail) xxs)

=== merge (x :> (odds . stail) xs) (odds xs)
=== :> merge (odds xs) (evens xs)

? mergeEven0ddK xs (k-1)
=#= k # X > XS
* * k QED

mergeEven0dd xs = approx (merge (odds xs) (evens xs)) xs (
mergeEven0ddK xs)

e Constructive proof of mergeEvenodd:

{-@ mergeEven0OddI :: xs:Stream a
— 1i:Nat
— Prop (Bisimilar i (merge (odds xs) (evens Xs)) Xs)
@-3
mergeEven0ddI xxs@(x :> xs) 1
= Bisim i x (merge (odds xs) (evens xs)) xs (mergeEvenOddI xs)
? (merge (odds xxs) (evens Xxs)
=== merge (X :> odds (stail xs)) (odds (stail xxs))
=== x :> merge (odds (stail xxs)) (odds (stail xs))
=== X :> merge (odds xs) (evens Xs)
* % % QED)

mergeEven0dd xs = eqCLemma (merge (odds xs) (evens xs)) xs (
mergeEven0ddI xs)

Properties 2-3: Thue-Morse sequence These two properties are inspired by [Rosu09] and deal
with morse signals, represented as infinite streams of Booleans. We included them because they are
somewhat more complex proofs since we have to invoke the coinductive hypothesis at a deeper level,
after unfolding the streams twice. The definition of the properties is shown in Figure 4.1. First, we
define the stream morse that encodes the Thue-Morse sequence, i.e., an infinite sequence obtained by
starting with False and successively appending the Boolean complement of the sequence obtained
thus far. Then, we define the function ff that takes as input a stream and replaces each of its values
x with x, followed by x’s negation. Property 2, morseFix, proves that f is the fixpoint of the morse

58

morse :: Stream Bool
morse = False :> True
:> merge (stail morse) (smap not (stail morse))

ff :: Stream Bool — Stream Bool
ff xs = shead xs :> not (shead xs) :> ff (stail xs)

not True = False
not False = True

-- Morse Property

morseFix :: {ff morse = morse}
-- T Property
fNotCommute :: s:Stream Bool

— {ff (smap not s) = smap not (ff s)}

Figure 4.1: Properties 2 and 3 on Morse signals.

sequence. In order to prove it we use the morseMerge property which proves that f xs is equal to
merge xs (smap not xs), from which we can obtain morseFix by:

{-@ morseFix :: {ff morse = morse} @-}
morseFix
= ff morse
=== shead morse :> not (shead morse) :> ff (stail morse)
? morseMerge (stail morse)
=== False :> True :> merge (stail morse) (smap not (stail morse))
=== morse
* * k QED

Property 3, fNotCommute, proves that f and (smap not) commute.
e Indexed proofs of morseMerge and fNotCommute:

{-@ morseMergeK :: xs:_ — k:Nat
— {egK k (ff xs) (merge xs (smap not xs))}

@-3
morseMergeK xs @ = egK @ (ff xs) (merge xs (smap not xs)) *** QED
morseMergeK xxs@(x :> xs) 1

= ff xxs

=== x !> not x :> ff xs

? (egKk @ (not x :> ff xs) (not x :> merge xs (smap not xs)) *** QED)
=#= 1 #
X :> not X :> merge xs (smap not Xxs)

=== :> merge (not x :> smap not xs) Xxs

=== merge XXS (smap not Xxxs)

* ok k QED
morseMergeK xxs@(x :> xs) k

= ff xxs

=== x > (

59

60

not x :> ff xs
? morseMergeK xs (k-2)
=#= k-1 #
not x :> merge xs (smap not xs)

=#= k #

X :> not x :> merge xs (smap not Xxs)
=== X :> merge (not x :> smap not xs) Xs
=== merge XXS (smap not Xxs)

* % % QED

{-@ morseMerge :: xs:Stream Bool — {ff xs = merge xs (smap not xs)} @-}
morseMerge xs = approx (ff xs) (merge xs (smap not xs)) (morseMergeK xs)

{-@ fNotCommuteK :: xs:_ — k:Nat — {egK k (smap not (ff xs))
(ff (smap not xs))}
@-}
fNotCommuteK xs @ = egK @ (smap not (ff xs)) (ff (smap not xs)) *** QED
fNotCommuteK xxs@(x :> xs) 1
= smap not (ff xxs)
=== smap not (x :> not x :> ff xs)
=== npot x :> smap not (not x :> ff Xxs)
? (egK @ (smap not (not x :> ff xs))
(not (not x) :> ff (smap not xs))
**% QED
)
=#H= 1 #
not x :> not (not x) :> ff (smap not xs)
=== ff (not x :> smap not xs)
=== ff (smap not xxs)
**% QED
fNotCommuteK xxs@(x :> xs) k | k > 1
= smap not (ff xxs)
=== smap not (X :> not x :> ff xs)
=== not x :> smap not (not x :> ff xs)
=== npot x :> (not (not x) :> smap not (ff xs)
? fNotCommuteK xs (k-2)
=#= k-1 #
not (not x) :> ff (smap not xs)

=#= Kk #
not x :> not (not x) :> ff (smap not xs)
=== ff (not x :> smap not xs)
=== ff (smap not xxs)
* k% QED

fNotCommute xs = eqCLemma (smap not (ff xs)) (ff (smap not xs)) (
fNotCommuteI xs)

e Constructive proofs of morseFix and fNotCommute:

{-@

morseMergel :: xs:_ — i:Nat

— Prop (Bisimilar i (ff xs) (merge xs (smap not xs)))

@-}

morseMergeIl xxs@(x :> xs) i

= Bisim i x (stail (ff xxs)) (stail (merge xxs (smap not xxs)))

$ \j — Bisim j (not x) (ff xs) (merge xs (smap not xs))
(morseMergeI xs) ? expandL ? expandR

where
expandL
= stail (merge xxs (smap not xxs))
=== stail (x :> merge (smap not Xxs) xs)
=== merge (not x :> smap not Xxs) xs
=== not X :> merge Xs (smap not Xxs)
* % % QED
expandR
= stail (ff xxs)
=== stail (x :> not x :> ff xs)
=== npot x :> ff xs
**%* QED
{-@ morseMerge :: xs:Stream Bool — {ff xs = merge xs (smap not xs)} @-}
morseMerge xs = eqCLemma (ff xs) (merge xs (smap not xs)) (morseMergel
XS)
{-e
fNotCommuteI :: xs:_ — i:Nat
— Prop (Bisimilar i (smap not (ff xs)) (ff (smap not xs)))
@-3

fNotCommuteI xxs@(x :> xs) i
= Bisim i (not x) tlLhs t1Rhs

$ \j — Bisim j (not (not x)) (smap not (ff xs))
(ff (smap not xs)) (fNotCommuteI Xxs)

= smap not (ff xxs)
=== smap not (X :> not x :> ff xs)
=== npot x :> smap not (not x :> ff xs)

=== npot x :> not (not x) :> smap not (ff xs)

rhs
= ff (smap not xxs)
=== ff (not x :> smap not xs)
=== npot x :> not (not x) :> ff (smap not xs)
t1Rhs
= stail rhs
=== not (not x) :> ff (smap not xs)
tlLhs
= stail 1lhs

=== npot (not x) :> smap not (ff xs)

61

fNotCommute xs = eqCLemma (smap not (ff xs)) (ff (smap not xs)) (
fNotCommuteI xs)

4.2.2 Unary Predicates on Streams

While equality is the most frequently used predicate, we used our techniques to prove other copredi-
cates. The next three properties reason about unary predicates on streams.

Property 4: Trivial streams The most trivial coinductive unary predicate on streams, is the one
that traverses the infinite stream and “returns” some Boolean.

trivial :: Stream a — Bool
trivial (x :> xs) = trivial xs

trivialAll :: s:Stream a — {trivial s}

The property we proved is trivialAll and states that all streams satisfy trivial.

Following the equality proofs, for each new predicate we introduce we need to define an indexed
version, a constructive version, and an axiom that connects the indexed with the original predicate.

The indexed predicate is defined as below:

trivialK :: Stream a — Nat — Bool
trivialK _ 0 True
trivialK (x :> xs) k trivialK xs (k-1)

trivialAllK :: s:_ — k:Nat — {trivialK s k}

Importantly, for k=0 the predicate should be true, while for bigger ks it simply recurses. We proved,
by induction on k, that trivialk holds for all indices and streams.

For the constructive approach, we defined the Trivial proposition as follows:

data Trivial a where
TRefl :: i:Nat — x:a — Xxs:Stream a
— (j:{Nat | j < i} — Prop (Trivial j xs))
— Prop (Trivial i (x :> xs))

trivialAllC :: s:_ — 1i:Nat — Prop (Trivial i s)

The Trivial GADT has one constructor that, like EqC in §3.2, for each natural number i and stream
X 1> xs, returns a property that x :> xs is trivial on i, given a property that xs is trivial for all j
smaller than i. Using the constructive technique, we proved in trivialAl1lC that each stream s has
the trivial property.

To prove trivialAll from either trivialK or trivialC, we used an axiom that similar to the
take lemma, connects the indexed with the original predicates:

62

assume triviallLemma :: s:Stream a
— (k:Nat — {trivialK s k})
— {trivial s}

assume trivialLemmaC :: s:Stream a
— (k:Nat — Prop (Trivial k s))
— {trivial s}

Using triviallLemma, we reached the trivialAll proof twice.
e Indexed proof of trivialAll:

trivialAll xs = trivialLemmaC xs (trivialAllK xs)
where {-@ trivialAllK :: s:_ — k: Nat — {trueStreamK k s} @-}
trivialAllK s @ = trueStreamK @ s *** QED
trivialAllK (s :> ss) k
= trueStreamK k (s:>ss)
=== trueStreamK (k-1) ss
? trivialAllK ss (k-1)
* k% QED

e Constructive proof of trivialAll

trivialAll xs = trivialLemmaC xs (trivialAllI xs)
where {-@ trivialAllI :: xs:_ — i:Nat — Prop (TrueStream i xs) @-}

trivialAllI (x :> xs) 1 = TrueS i x xs (trivialAllI xs)

Property 5: Duplicate streams The second unary predicate we defined is dup that checks that each
stream element has an equal element next to it. This property was added because it observes more
than one elements of the stream in each unfolding.

dup (X1 :> X9 > XS) = X1 == X2 && dup xs
mergeSelfDup :: xs:_ — {dup (merge xs xs)}

We proved, using definitions similar to the trivial predicate, that merging a stream with itself always
satisfies the dup predicate.

e Indexed proof of mergeSelfDup:

{-@ mergeSelfDupK :: xs:_ — k:Nat — {dupK k (merge xs xs)} @-}
mergeSelfDupK xs 0@ = dupK 0 (merge Xs Xxs) *** QED
mergeSelfDupK xxs@(x :> xs) k =
dupK k (merge XXS XXS
=== X :> merge XXS XS
=== X !> X :> merge XS XS
)
=== dupK (k-1) (merge Xxs xs)
? mergeSelfDupK xs (k-1)
* k% QED

63

mergeSelfDup xs = dupLemma (merge xs xs) (mergeSelfDupK Xxs)

e Constructive proof of mergeSe1fDup:

{-@ mergeSelfDupI :: xs:_ — i:Nat — Prop (Dup i (merge Xxs xs)) @-}
mergeSelfDupl xxs@(x :> xs) i =
MkDup i x (merge xs xs) (mergeSelfDupI xs)
? (merge XXS XXS
=== X !> merge XXS XS
=== X !> X !> merge Xs Xs
* k% QED)

mergeSelfDup xs = dupLemmaC (merge xs xs) (mergeSelfDupI xs)

Property 6: Non negative streams Our final unary stream predicate is nneg and checks that a
stream of integers consists only of non negative numbers:

nneg :: Stream Int — Bool
nneg (x :> xs) = 0 <= X && nneg Xxs

The property we proved states that the “square” of a stream, i.e., the result of pointwise multiplication
of the stream with itself, is a non negative stream.

mult :: Stream Int — Stream Int — Stream Int
mult (a :> as) (b :> bs) = a * b :> mult as bs

squareNNeg :: s:_ — {nneg (mult s s)}

This property shows that our techniques can be used to reason about streams of non polymorphic
values, here integers.

e Indexed proof of squareNNeg:

{-@ squareNNegK :: xs:_ — k:Nat — {nnegK k (mult xs xs)} @-}
squareNNegK xs @ = nnegK @ (mult xs xs) *** QED
squareNNegK xxs@(x:>xs) k

= nnegK k (mult xxs Xxxs)

=== nnegK k (x * x :> mult xs xs)

=== (X * x >= 0 && nnegK (k-1) (mult xs xs))

? squareNNegK xs (k-1)
* kK QED

squareNNeg xs = nnegLemma (mult xs xs) (squareNNegK xs)

o Constructive proof of squareNNeg

{-@ squareNNegI :: xs:_ — 1i:Nat

— Prop (NNeg i (mult xs xs)) @-}

64

squareNNegI xxs@(x :> xs) i
= NNegC i (x*x) (mult xs xs) (squareNNegI xs)
? (mult xXxs xxs === X*x :> mult xs xs *** QED)

squareNNeg xs = nnegLemmaC (mult xs xs) (squareNNegI xs)

4.2.3 Binary Predicates: Lexicographic Ordering

In order to challenge the expressiveness of our techniques, we used them to check lexicographic com-
parison for streams. The original predicate below x y is true only when x is lexicographically below

y:

below :: Ord a = Stream a — Stream a — Bool
below (x :> xs) (y :> ys) =
X <=y & (x ==y ‘implies’ below xs ys)
where implies x y = not x || vy

The indexed version of below is quite straightforward, it simply guards the recursive call:

belowK :: Ord a = Stream a — Stream a — Nat — Bool
belowK k (x :> xs) (y :> ys) =
X <=y & (x ==y ‘implies’ belowK (k-1) xs ys)

Like in the case of equality we can define a proof combinator for belowK in order to embellish our
proof:

{-@ (<=#) :: x:Stream Int — k:{Nat | 0 < k}
— y:{Stream Int | (belowK (k-1) (stail x) (stail y)
&& shead x == shead y)
| | shead x < shead y}
— {v:Stream Int | belowK k x y & v =y } @-}

The constructive version of be low is more interesting. In order to avoid reasoning about constructive
Booleans (since be low is using conjunction and implication) we interpreted be Low using two different
cases:

data BelowC a where

Belo :: Ord a
= 1:Nat — x:a — xs:Stream a — ys:Stream a
— ({j:Nat | j < i} — Prop (BelowC j Xxs ys))
— Prop (BelowC i (X :> Xxs) (X :>ys))

Bell :: Ord a
= i:Nat — x:a — {y:a| x < vy}
— Xs:Stream a — ys:Stream a
— Prop (BelowC i (x :> xs) (y :> ys))

The first case Be10 compares streams of same heads and requires that the tail of the first is below the
tail of the second. The second case Bel1 decides below, simply by looking at the heads. We can show
that the constructive and original predicates indeed encode the same predicate.

We also encode the lemmas that we need to go from the indexed or constructive predicate to the
intended coinductive:

65

assume belowLemma :: xs:_ — ys:_ — (k:Nat — {belowK k xs ys})
— {below xs ys}

assume belowLemmaC :: xs:_ — ys:_ — (k:Nat — Prop (BelowC k xs ys))
— {below xs ys}

Property 7: Below square We used the two encodings of below to prove our final property on
streams: each stream is always below its “square™:

belowSquare :: s:Stream Int — {below s (mult s s)}

e Indexed proof of belowSquare:
{-@ belowSquareK :: a: Stream Int — k: Nat — {belowK k a (mult a a)}
@-}

belowSquareK as 0
= belowK © as (mult as as)

* k k QED
belowSquareK (a :> as) k
= a :> as
? belowSquareK as (k-1)
<=# k #

a * a :> mult as as
=== mult (a :> as) (a :> as)
* % % QED

belowSquare xs = belowLemma xs (mult xs xs) (belowSquareK Xxs)

e Constructive proof of belowSquare:

{-@ belowSquareI :: xs:_ — 1i:Nat — Prop (Below i xs (mult xs xs)) @
-}
belowSquareIl xxs@(x :> xs) i
| X == x*x
Beld® i x xs (mult xs xs) (belowSquareI xs)
X < X*X
Bell i x (x*x) xs (mult xs xs) ? expand
where
expand = mult XXs XXs
=== X*X :> mult xs Xxs
* k k QED

belowSquare xs = belowLemmaC xs (mult xs xs) (belowSquareI xs)

4.2.4 Coinduction on Lists

Haskell’s lists are also often treated as codata (e.g., Prelude’s notable repeat returns an infinite list).
We used our two approaches to prove two coinductive properties on lists.

Because Liquid Haskell comes with various inductive predicates on built-in Haskell’s lists, we did
not use Haskell’s lists but defined our own data type:

66

data L a=a :|] L a | Nil

We defined two coinductive predicates on this list, a unary which ensures infinity and a binary which
checks equality.

Property 8: Map infinite lists The check of infinity is the most interesting property on lists, coming
from streams, since it relies on returning False in the base case:

infinite :: L a — Bool
infinite (_ :| xs) infinite xs
infinite Nil False

We used the infinite predicate to ensure than map preserves infinity:

mapInfinite :: f:(a — b) — xs:{L a | infinite xs}
— {infinite (map f xs)}

map :: (a —+b) - La—=>1L6Db
map _ Nil = Nil
map f (x :| xs) = f x :| map f xs

The proving techniques remain the same on lists: we defined the indexed and constructive predicates
and an axiom that reconstructs the original predicate.
The indexed infinite predicate is defined as follows:

infiniteK :: L a — Nat — Bool

infiniteK _ 0 = True

infiniteK Nil _ = False

infiniteK (_ :| xs) k = infiniteK xs (k-1)

As with streams, the k=0 case should be True. Note that with lists, unary predicates have one more
case, for Nil. Because of this, our proofs, that usually follow the structure of the predicates, also have
one extra case, which is usually trivial.

The constructive predicate has only one case:

data InfiniteC a where
Inf :: i:Nat — x:a — xs:L a
— (j:{Nat | j < i} — Prop (InfiniteC j xs))
— Prop (InfiniteC i (X :| Xxs))

Thelistx :| xsisinfinite when xs is also infinite, while there is no constructor to ensure an empty list
is infinite. Of course, this is a consequence of the meaning of the predicate, while for most predicates
(e.g., dup or nneg) the constructive property requires more than one constructors.

In both techniques, the list proofs are similar to the ones on streams. To reconstruct the original
from the indexed or constructive predicate, similar to streams, we assume the lemma below:

assume infLemma :: xs:L a — (k:Nat — {infiniteK xs k})
— {infinite xs}

assume infLemmaC :: xs:L a — (k:Nat — Prop (Infinite k xs))
— {infinite xs}

e Indexed proof of mapInfinite:

67

mapInfiniteK :: (a — b) — List a — Int — Proof
mapInfiniteK f xs 0 = isInfiniteK @ (map f xs) *** QED
mapInfiniteK f xs@Nil k = infinite xs *** QED
mapInfiniteK f xxs@(x :| xs) k

= isInfiniteK k (map f xxs)

=== isInfiniteK k (f x :| map f Xxs)

? (infinite xxs === infinite xs *** QED)
? mapInfiniteK f xs (k-1)
* k% QED

mapInfinite f xs = infLemma (map f xs) (mapInfiniteK f xs)

e Constructive proof of mapInfinite:

{-@ mapInfiniteS :: f:_ — {xs:_| infinite xs} — i:Nat
— Prop (Infinite i (map f xs))@-}
mapInfiniteS f xs@Nil _ =

absurd (xs ? (infinite xs === False *** QED))
mapInfiniteS f xxs@(x :| xs) i =
Inf i (f x) (map f xs) (mapInfiniteS f (xs ?infTail)) ? expand
where expand = map f xxs
=== f x :| map f xs
* %k QED

infTail = infinite xxs
=== infinite xs
* % % QED

mapInfinite f xs = infLemmaC (map f xs) (mapInfiniteS f xs)

Property 9: List map fusion Our last property proves map fusion on infinite lists:

mapFusion :: f:(b — ¢) — g:(a — b) — xs:L a
— {map f (map g xs) = map (f . g) xs}

The indexed predicate for list equality has now four cases:

eqK :: Eqa =L a — L a — k: Nat — Bool

eqgK _ _ 0 = True
egK Nil Nil k = True
egK (a:|as) (b:|bs) k = a == b & eqgK as bs (k-1)
eqgK _ _ _ = False

The first three cases are expected, while the last returns false when comparing an empty to a non
empty list.

As with the infinite predicate, the false cases simply do not appear in the constructive predicate,
which for equality has two constructors: one that equates empty lists and the coinductive that compares
two non empty lists.

data EqQC a where
EgNil :: i:Nat

68

— Prop (EQC i Nil Nil)

EgCos :: i:Nat — x:a — xs:L a — ys:L a
— (j:{Nat | j < i} — Prop (EqQC j Xs ys))
— Prop (EqC 1 (x :| xs) (x :] ys))

The proofs are unsurprising, while, as in stream equality, we used the take lemma to retrieve SMT
equalities.

egLemma :: xs:_ — ys:_ — (k:Nat — {egK k xs ys}) — {xs = ys}
egLemmaC :: xs:_ — ys:_ — (k:Nat — Prop (Bisim k xs ys)) — {xs = ys}
e Indexed proof of mapFusion

{-@ mapFusionK :: f:_ — g:_ — xs:_ — k:Nat
— {egK k (map (f . g) xs) (map f (map g xs))} @-}
mapFusionK :: (Eq a, Eq b, Eq c)
= (b -+ c¢) - (a =+ b) = List a — Int — Proof

mapFusionK f g xs 0

= eqK @ (map (f.g) xs) (map f (map g xs))

* %k % QED
mapFusionK f g xs@Nil k | k > @

= egK k (map (f.g) xs) (map f (map g xs))

=== egK k xs xs

*%% QED
mapFusionK f g xxs@(x :| xs) k | k>0

= map (f.g) xxs

=== (f.g) x :| map (f.g) xs

=== (f.g) x :| map (f.g) xs

? mapFusionK f g xs (k-1)
=#H= Kk #
f (g x) :| map f (map g xs)

===map f (g x :| map g xs)

=== map f (map g Xxxs)

**%* QED

mapFusion f g xs =
eqLemma (map (f . g) xs) (map f (map g xs)) (mapFusionK f g xs)

e Constructive proof of mapFusion

{-@ mapFusionS :: f:_ — g:_ — xs:_ — 1i:Nat
— Prop (Bisimilar i (map f (map g Xxs))
(map (f . g) xs)) @-}

mapFusionS f g xs@Nil i = BisimNil i ? (map f (map g Nil) === Nil ***
QED)

? (map (f . g) Nil === Nil ***
QED)
mapFusionS f g xxs@(x :| xs) i =

Bisim i ((f . g) x) (map f (map g xs)) (map (f . g) xs)

69

(mapFusionS f g xs) ? expandL ? expandR
where expandL
= map f (map g xxs)
===map f (g x :| map g Xxs)
=== (f (g x)) :| map f (map g xs)
* % K QED
expandR
= map (f . g) xxs
=== (f . g) x :| map (f . g) xs
* Kk QED

mapFusion f g xs =
eqLemmaC (map f (map g xs)) (map (f . g) xs) (mapFusionS f g xs)

Note on more complex data types Even though we only evaluated our techniques on streams and
lists, we are confident that they apply to more complex data types. Essentially the requirement to
apply our techniques to some codata is the ability to assume the “take lemma”. Graham Hutton and
Jeremy Gibbons [Hutt01] explain how the approximation lemma, which is a simplification of the take
lemma, can be generalized to any data type pF', where F' is a locally continuous functor, ensuring that
the generalized approximation lemma, and thus our techniques, do apply to e.g., infinite tree-like data

types.

70

Chapter 5

Related Work

Here we present the three mechanized verifiers that influenced our work (§5.1) and summarize how
existing verifiers for Haskell programs treat coinduction (§5.2). We refer the reader to [Jaco97] for a
foundational tutorial on coinduction and to [Gibb05] for (paper and pencil) proofs on Haskell core-
cursive programs.

5.1 Mechanized Coinduction

Coq has, for some time now, support for coinduction [Bert06]. The proving technique in §3.2 is
partly inspired from Coq’s textbook [Chlil13] bisimilarity relation for infinite streams, where in place
of syntactic guardedness we use natural numbers to keep track of productivity. The disadvantage of
Coq’s coinductive mechanization is that the proof is checked after QED, which means that the user
interaction is lost. In our Liquid Haskell encoding, we have no user interaction, but we do have
localized errors. The approach of §3.1 preserves local errors (and thus better user experience), while
§3.2, as in Coq, has no proof steps and only returns a general failing error. As we also described, Coq
has a guardedness condition which allows the definition of corecursive functions, but definitions like
fib are not accepted.

Agda’s coinduction [Abell0, Abell6] is quite similar to Coq’s in the encoding of bisimilarity.
A key difference is that Agda uses sizes (instead of syntactic guardedness) to encode productivity,
a feature that we leverage to encode productivity in §2 and in §3.2 in order to construct our own
bisimilarity relation in Liquid Haskell. In actual proofs, this difference is not significant since the
invocation of the coinductive hypothesis is immediate. However, using sizes to encode guardedness
in proves gives as a unified approach to both coinductive proofs and corecursive definitions.

Dafny’s approach of coinduction [Leinl4] greatly inspired our indexed approach (§3.1). Coin-
ductive predicates are syntactically checked to ensure monotonicity, which is important for proving
soundness. Indexed proofs are formed by proving the indexed version of the predicate for all indexes.
Finally, coinductive proofs are obtained by using the correspondent axiom. Of course, Dafny provides
an automated program transformation that introduces indices, while in our case the transformation is
manually performed by the user.

In [Lein14] we can also find a proof of soundness, which connects indexed proofs and predicates
to coinductive ones. It uses the Kleene fix-point theorem [Wins93], after proving Scott-continuity for
predicates. An important takeaway is “positivity”, which is a restriction on the form of predicates that
can be approximated using the indexed method.

Corecursive definitions in Dafny also use syntactic guardedness which has the limitations we have
already discussed.

5.2 Haskell Verifiers

Many Haskell verifiers target only total Haskell programs which permits using well known and au-
tomated inductive verification techniques, but allows them to prove properties that do not hold in the
presence of infinite data. Consider for example, the standard Haskell encoding of natural numbers:

71

data Nat = Z | S Nat. Zeno [Sonnl2] assumes all values are total and, in Theorem 10 of its test
suite, automatically proves that V. m:Nat. m - m = Z, which does not hold when m is infinite, be-
cause the left-hand-side will not terminate. Liquid Haskell can also prove the same property and also
can prove false (§1.3) in the presence of infinite data. The soundness of inductive reasoning is pre-
served by rejecting non-wellfounded data definitions. With the well-foundedness check active, users
can employ the well understood principle of induction to reason about their programs, but are not able
to define coinductive types and reason about their properties as we did here.

HERMIT [Farm12] and HALO [Vytil3] are two Haskell verifiers that do reason about infinite
data. HERMIT performs equational reasoning by rewriting the GHC core language, guided by user
specified scripts. This approach is far from ours where the proofs are Haskell programs while SMT
solvers are used to automate reasoning. HALO is a prototype contract checker that translates Haskell
programs to first-order SMT logic, using denotational semantics, and validates them against user-
provided contracts. HALO reasons about laziness and infinite data and explicitly encodes Haskell’s
bottom in SMT logic. Unfortunately, this encoding renders HALO’s SMT queries outside of de-
cidable logics which makes verification using HALO unpredictable. On the contrary, Liquid Haskell
prioritizes SMT-predictable verification, so it shamefully disregards bottoms, which, currently, makes
coinductive reasoning possible only with explicit user encodings, like the ones we presented here.

Hs-to-coq [Spec18] converts Haskell code to Coq, which users can verify for functional correct-
ness. Hs-to-coq has been used to verify real Haskell code (e.g., the containers library) and permits
coinductive reasoning. Concretely, the user can annotate data types as coinductive and functions as
corecursive and then use Coq’s CoInductive principle to prove coinductive properties. Thus, the
coinductive properties we describe can be verified in Coq, via hs-to-coq.

Dependent Types for Haskell is a work initiated by Eisenberg [Eisel6] and is currently under
active design in GHC (see ghc-proposal#378). Interestingly, the dependent Haskell proposal promises
neither a termination nor a guardedness check. We conjecture that in the presence of codata, the lack
of a guardedness check could lead to inconsistencies, similar to §1.3, and we believe that the lessons
presented in this work can be used by the GHC’s dependent types proposal.

5.3 Conclusion

We used Liquid Haskell to support coinductive features; namely to prove the productivity of various
corecursive definitions and to prove coinductive properties.

We achieved productivity checking by altering the constructors and destructors of coinductive
objects to keep track of the depth of the object and used this infrastructure to define and prove the
productivity of various objects.

We encoded coinduction in the inductive verifier using two approaches. In the indexed approach,
the predicate is indexed by a natural number k and the proof is by induction on k. In the constructive
approach, the predicate is encoded as a refined GADT which is guarded using indexing. Using either
of these approaches, a Haskell programmer can machine check coinductive properties of their Haskell
code in Liquid Haskell.

As an important contribution, with this experiment we concretely identify two alternative exten-
sions required for Liquid Haskell (or even GHC’s dependent types) to natively support coinductive
reasoning: indexed predicate transformation (in the classical logic setting; like in Dafny), or imple-
mentation of a guardedness check (in the constructive setting; like in Coq).

In the future, we can design and implement automation to realize the proposed encodings, cur-
rently manually provided by the user. Regarding productivity proofs, future work can be applied to
either automating the process by trying to infer depth annotations where possible, or to binding the
proofs with the original definitions so as to hide away the complexity of depths. In the coinductive
proof setting we see two potential directions for such automation. First, we could follow Dafny’s
approach [Lein14] to mechanically transform copredicates and cofunctions by inserting an index that
will, also mechanically, be used to ensure the guardedness and positivity requirements. A second

72

https://github.com/ghc-proposals/ghc-proposals/pull/378

direction would be to use SMT’s (concretely CVC4’s [Reyn17]) support for codata to reason about
coinductive properties using SMT’s decision procedures.

73

Biphoypaoia

[Abel10]

[Abel13]

[Abel16]

[Barr97]

[Bert06]
[Bird88]

[Bork22]

[Chli13]

[Cloul5]

[Eisel6]

[Farm12]

[Gibb05]

[Hutt01]

[Jaco97]

Andreas Abel, “MiniAgda: Integrating Sized and Dependent Types”, Electronic
Proceedings in Theoretical Computer Science, vol. 43, pp. 14-28, December 2010.

Andreas Abel, Brigitte Pientka, David Thibodeau and Anton Setzer, “Copatterns:
Programming Infinite Structures by Observations”, in Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, p.
27-38, New York, NY, USA, 2013, Association for Computing Machinery.

Andreas Abel and Brigitte Pientka, “Well-founded Recursion with Copatterns and Sized
Types”, Journal of Functional Programming, 2016.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaél Courant, Jean-Christophe Filliatre,
Eduardo Giménez, Hugo Herbelin, Gérard Huet, César Muiioz, Chetan Murthy, Catherine
Parent-vigouroux, Christine Paulin-Mohring, Amokrane Saibi and Benjamin Werner, The
Coq Proof Assistant Reference Manual : Version 6.1, June 1997.

Yves Bertot, “Colnduction in Coq”, CoRR, 2006.

Richard Bird and Philip Wadler, Introduction to Functional Programming, Prentice Hall
International, 1988.

Michael Borkowski, Niki Vazou and Ranjit Jhala, “Mechanizing Refinement Types”, in
CoRR, 2022.

Adam Chlipala, Certified Programming with Dependent Types: A Pragmatic Introduction
to the Coq Proof Assistant, MIT Press, 2013.

Ranald Clouston, Ale§ Bizjak, Hans Grathwohl and Lars Birkedal, “Programming and
Reasoning with Guarded Recursion for Coinductive Types”, in Andrew Pitts, editor,
Foundations of Software Science and Computation Structures, vol. 9034, pp. 407421,
Berlin, Heidelberg, January 2015, Springer.

Richard A. Eisenberg, Dependent Types in Haskell: Theory and Practice, Ph.D. thesis,
University of Pennsylvania, 2016.

Andrew Farmer, Andy Gill, Ed Komp and Neil Sculthorpe, “The HERMIT in the Machine:
A Plugin for the Interactive Transformation of GHC Core Language Programs”, in
Proceedings of the 2012 Haskell Symposium, Haskell *12, p. 1-12, 2012.

Jeremy Gibbons and Graham Hutton, “Proof Methods for Corecursive Programs”,
Fundamenta Informaticae, 2005.

Graham Hutton and Jeremy Gibbons, “The Generic Approximation Lemma”, Information
Processing Letters, 2001.

Bart Jacobs and Jan J. M. M. Rutten, “A Tutorial on (Co)Algebras and (Co)Induction”,
Bulletin of The European Association for Theoretical Computer Science, vol. 62, pp. 62—
222,1997.

75

[Jone93]

[Lein14]

[Mast22]

[Peyt06]

[Reynl7]

[Rosu09]

[Sonnl2]

[Specl8]

[Team22]
[Vazol4]

[Vazol7]

[Vazol8]

[Vytil3]

[Wins93]

76

Geraint Jones and Jeremy Gibbons, “Linear-time breadth-first tree algorithms: An exercise
in the arithmetic of folds and zips”, Technical report, Dept of Computer Science, University
of Auckland, 1993.

K. Rustan M. Leino and Michal Moskal, “Co-induction Simply”, in Cliff Jones, Pekka
Pihlajasaari and Jun Sun, editors, Formal Methods, pp. 382-398, Springer International,
2014.

Lykourgos Mastorou, Niki Vazou and Nikolaos Papaspyrou, “Coinduction Inductively:
Mechanizing Coinductive Proofs in Liquid Haskell”, in Proceedings of the 15th
ACM SIGPLAN International Haskell Symposium (Haskell "22), September 15—16, 2022,
Ljubljana, Slovenia, Haskell *22, 2022.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich and Geoffrey Washburn,
“Simple Unification-Based Type Inference for GADTSs”, in Proceedings of the Eleventh
ACM SIGPLAN International Conference on Functional Programming, ICFP *06, p. 50—
61, 2006.

Andrew Reynolds and Jasmin Christian Blanchette, = “A Decision Procedure for
(Co)datatypes in SMT Solvers”, in Journal of Automated Reasoning, 2017.

Grigore Rosu and Dorel Lucanu, “Circular Coinduction: A Proof Theoretical Foundation”,
in Alexander Kurz, Marina Lenisa and Andrzej Tarlecki, editors, Algebra and Coalgebra
in Computer Science, pp. 127-144, Berlin, Heidelberg, 2009, Springer.

William Sonnex, Sophia Drossopoulou and Susan Eisenbach, “Zeno: An automated prover
for properties of recursive data structures”, in Cormac Flanagan and Barbara Konig, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pp. 407—421, Berlin,
Heidelberg, 2012, Springer.

Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah and Stephanie Weirich,
“Total Haskell is Reasonable Coq”, in Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2018, p. 14-27, New York, NY, USA,
2018, Association for Computing Machinery.

Agda Team, “The Agda Wiki”, 2022.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis and Simon Peyton-Jones,
“Refinement Types for Haskell”, in Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP 14, p. 269-282, 2014.

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton,
Philip Wadler and Ranjit Jhala, “Refinement Reflection: Complete Verification with SMT”,
Proc. ACM Program. Lang., vol. 2, no. POPL, December 2017.

Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn and Graham Hutton,
“Theorem Proving for All: Equational Reasoning in Liquid Haskell (Functional Pearl)”,
in Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell, Haskell
2018, p. 132-144, 2018.

Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen and Dan Rosén, “HALO: Haskell
to Logic through Denotational Semantics”, in Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, p.
431-442,2013.

Glynn Winskel, The Formal Semantics of Programming Languages: An Introduction, MIT
Press, 1993.

[Xi03] Hongwei Xi, Chiyan Chen and Gang Chen, “Guarded Recursive Datatype Constructors”,
in Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL *03, p. 224-235, 2003.

77

	Περίληψη
	Abstract
	Ευχαριστίες
	Περιεχόμενα
	Κατάλογος σχημάτων
	Εισαγωγή
	Παραγωγικότητα συναναδρομικών ορισμών
	Αποδείξεις συνεπαγωγικών ιδιοτήτων
	Συμπεράσματα
	Κείμενο στα αγγλικά
	Introduction
	Liquid Haskell
	Verification of properties in Liquid Haskell

	Corecursive definitions
	Coinduction
	Contribution

	Productivity of Corecursive Definitions
	Syntactic guardedness
	Productivity with depths

	Coinductive Proofs
	Indexed Coinduction
	Consistent Approach: Indexed Properties
	Precise Approach: Indexed Predicates
	Take Lemma: Did we Prove Equality?

	Constructive Coinduction
	Constructive Equality
	Proof by Constructive Coinduction
	Again, Did we Prove Equality?

	Examples
	Corecursive definition examples
	Examples of coinductive proofs
	Equal Streams
	Unary Predicates on Streams
	Binary Predicates: Lexicographic Ordering
	Coinduction on Lists

	Related Work
	Mechanized Coinduction
	Haskell Verifiers
	Conclusion

	Βιβλιογραφία

