OVERLAPPING COMMUNITY DETECTION USING
GRAPH ATTENTION NETWORKS

ANIXNETEH EIIKAAYTITOMENON KOINOTHTON SE ['PA®OYTY

ME AIKTYA [TPOZOXHY

Metamtuytoxf Atmiopotin Epyaoto

Kovotavtivog Zioudvnge

EmfBAénwy Aploteldne [oyouptlhc, Kadnyntrc
YuvemPBhénovoa Ocodmpa Lovhou, EAIII

EoNIKO METZ0BIO IIOAYTEXNEIO
ATIATMHMATIKO IITPOrPAMMA METAIITYXIAKON YIOTAQN
EnrsTHMH AEAOMENON & MHXANIKH MAGHSH

Adnva, Aexéufplog 22

OVERLAPPING COMMUNITY DETECTION USING
GRAPH ATTENTION NETWORKS

ANIXNETEH EIIIKAATITOMENON KOINOTHTON SE ['PAGOTE
ME AIKTTA [TPOSOXHY

Metantuytond; Atmiopotin Epyaoto

Kwvotavtivog Mioudvne

EmfAienwy Aploteldne [oyovptlhc, Kadnyntic
YuvemBAénovoa Oeodwpa Xovhou, EAIII

Eyxptdnxe and tny tpyelt| e€etaotiny emtpons| v 1n Aexepfpeiou 2022

Apiotelone Iayouptlhic Tidpyog Xtduou Anurtetog Pwtdxng
Kodnyntic Kodnyntic Avaminpontic Kadnynthc

EoNIKO METZ0BIO IIOAYTEXNEIO
ATIATMHMATIKO IITPOrPAMMA METAIITYXIAKON YIOTAQN
EnrsTHMH AEAOMENON & MHXANIKH MAGHSH

Adnva, Aexéufplog 22

©)(2022) Edvixé Metobfio Ilohuteyveio Me empiiain xdde Suarduoroc.
All rights reserved.

Anayopeletan 1 avirypagt], amodixeuor xat dlavour Tng Tapoloag epyaoctug, €€
OMOXA PO 1) TUAUATOS QUTAG, Yo untopixd oxond. Emtpénetan n avatinwon,
amoVAXELOT) X DLAVOUT| YId OXOTO 1) XEEOOCKOTIXS, EXTIOUOEVTIXHS 1)
gpeuvnTIXC OOTE, UTO TNV TEoUTOVEST) Var avapEpeTal 1) YY) TEOEAEUGTC Kol
vou dtatnpeiton To Topdy prvupa. Epwtuata tou agopoly tny yerorn tng
epyaciog Yo xEpBOOXOTIXO OXOTO TEETEL Var ameLIOVOVTUL TPOG TOV GUYYQPUPE.

Ov améeic o Tol GUUTERIOUATA TTOU TEQLEYOVTOL OF AUTO TO EYYPAPO EXPEALOUV
TOV GLYYPAUPEN XL BEV TEETEL VoL EQUNVELVEL OTL AVTITPOCWTEVOLY TI¢ eTioNUES
Yéoewc Tou Edvixol Metodfiou Iohuteyvelou.

Euvyopiotieg

Oa fieha vo evyopiotiow Tov emBAénovta xonynth Aploteldn Ioyouptls), xou
Vv ouvemPBAénovoa Ocodwpa LovAou Yo TV xadodynor, xou TNy oTHELETN ToUg,
TOL UTHREAY XAUTAAUTIXES Yol TNV OROXATIPWON TNG.

Eniong Yo fleha va euyoapiotion Toug ouugoltntés, Toug epyalOUEVOUS Xal
Toug xonyntég oto Edwixd MetooPio Iloduteyvelo, yio 1 ouvepyaoio xan Tig
YVOOELS TOU TROGEPERAY XUTA T1) DIEXELL TV OTOUBHV.

IMepiAndm

H aviyveuon xowvothtwy ot yedgoug, EYEL ATODMOEL CNUAVTIXG ATOTEAECUATY
OE EQUPUOYEC TIOU EXTEVOVIOL OO T XOWWVIXG OIXTUN XL TO CUCTAUNTA CU-
OTACEWY, €0 ToL BIXTLA CAANAETEBEUOTNG TEWTEWVGDY ot To BIXTUN VELPWVKY GTOV
EYUEPANO.

H yefion petodwnv Baddc Mddnong €yel emtiyel onuavtixd anoteAéopota
otnyv enthuon TeolAnudtwy oe yedgouc, Omwe elvon 1 Tagvounon xOuBwy xou
YEdPwY xon 1 TEOBAEDT oeudV.

H pnyovinr| pdinon €yer opyloel va epopuoleton oL oty TEQLOYN TNG oVo-
CATNoMG XOWOTHTWY PE CUVEY®S avlavouevn emtuyio. 2oT600 oL TEPLoCOTERES
EQEUVNTIXEC TPOOTIAUEIEC EMUXEVTOWVOVTOL OTNY ovol\TNON UN-ETXUAUTTOUEVEY
XOWOTHTWY. ALYOTEQEC €PEUVEC AOYONOUVTAL UE TIC ETUXUAUTTOUEVES XOWOTNTES
O€ YPAPouS, YenotuotolnvIas Yevddoug Podide udinonc.

Ye auth v epyooio enexteivouue uo PEY0O0 TOU EyEl ATOPERPEL TOAD Xahd
amoTEAEOUATO GTO TEOBANUA TNG oviy VEUOTG ETUXUAUTITOUEVLDY xowoThTwy. H ou-
yxexpuévn pédodog, cuvdudlel wor mavotiny onTtx oto TEOBAnua pall e TV
udinon avomapactdocwy, e T yerion Nevpwvixodv Aoy I'edgwy.

H npétoon poc éyxerton otny npocdnixn evog unyaviouol “mpocoyic” mou
Yo ETUXEVTPOVETAL OTA ONUAVTXE onueia TV dedouévwy. ALepeuvolue av €vag
unyaviouoég mpocoyfc Yo umopel v dlaxpivel motog xoufog ebvar To onuavTinog oe
Ut YELTOVLE XOUP V.

Hapouoidloupe TNy TelpauaTx Sladixacta Tou TeayuaToToLUNXE Yiot TNV o Lo-
AOYNON TNS TEOTACTC, DLEQEUVAOVTUC TNV IXAVOTNTA oVOXSALVPNG TWV TEOYHOTIXWY
xowottwy. H mpdtacn pog, ota yeyohltepo 0OVORA GEBOUEVKY TTOU EEETAC TNXAY
%L TTOU BLETOUY TEPLOCOTERT, TANEOPORLL YId T YUEUXTNELO TIXG TV XOULWY,
EMTUYYAVEL BeATinon otV avOTNTa aVaXGALPNG TV ETXUAUTTOUEVLY HOWVO-
THTOV.

>0vodn

IToAOThOXO CUCTAUATA OTWE T TNAETXOVWVIONS BixTUN, Tol BIXTUN XOWVWWIXAG
OTOwoNg, Tor BixTua AAANAETBPAUONC TEWTEVGDY, avamuploTavToL UE T HOPYT
Yedpov. H avalhtnon xowothtov ot yedpoug Bondd otny xatavonon tng dSounc
xaL TNe Aettovpyloag Twv oucTrudteny. Ot EMGTAUES TNG xowmVIoAoYiog xou Tng
AxOVWVIXAC ovlpwTohoyiag UEAETOUY TNV BLUULOLPWOT) XOWOTHTGLY and TNV dexaeTio
Tou 1920. Q61600 TMPdoPuUTA OTIC APYES Tou 21ou ALV ETTUYYEVETOL 1) UEAETT
NG dNutovpEYiag SIXTUKY Bactopévn endve ot TeaypaTxd dedoueva. Ou Girvan xou
Newman[20] acyol{dnxay mpotol ye to tedio mou ovoudotnxe graph clustering.
Ané téte morhéc peréteg éyouv mpotelvel uedodoug aviyveuone xowothtwy[53).
Teheutaior ToAE pédodol ouvdudlouy Ty yeron e Podide udinonc.

Opwopdeg IlpoBAjuatog Ocwpolue évav un xatevduvouevo, un {uyt-
ouévo yedpo G(V, E), mou unopel vo avamapootodel pe évoy Suabixd mivaxo yeLt-
vicong A € (0,1). 6mou N o aprdudc twv x6uBwv V. = {1,...,N} xoo M o
oo twv axuey E = {(u,v) €e V xV : A,, = 1}. Towc opileton évac nivo-
xag Pe yopoxtnptoTind twv xoufov X € RY*P nou propel duwc va unv ebvo
otadéatuoc.

Y16y0¢ TN avallATNONG EMXAAUTTOUEVKY XOWOTATWY elvor 1 avaeon Twy xou-
Bwv oe C xowodtnreg. Mia avdleon uropet va avomopas tadel wg Evag un apvnTindg
oo cuupeToy g o xowotnteg F € Révoxc, omou F . ebvar o Baduode oupueto-
YNS TOU xOUBOL U GTNY XOWOTNTA C . N

To npofBinua uropel va Yewpeniel wg éva mpoBinua mavoTixrg enoywyhe [63].
Av Bratunwidel éva yovtého napaywync Yedpwy pe Bdon tic xowdtntee P(G|F),
TOTE 1) EMaywYn) Tou Tivaxor F evoc ypdgou G iooduvopel ye TV avodiudn twv
XOWOTATWV.

MovTélo cuppetoyrc xoufPou oe xowotnteg Ilodiéc yédodol e-
tvau Baoctopéveg otny undleon GTL oL xoWOTNTES Efval TUXVOTEPX CUVOEDEUEVES GTO
E0WTEPIXO TOUC Xal OTL Ol EMXAADPELS TV XOWOTHTOV Elvol apond GUVOESEUEVES.
Melétec oe BixTua e YVOOTH TNV XATavour Tmv XovoThteY, [62] é6et&ay 6Tt auth
n unéveon Bev elvar CwWOTH. Lo TEPLOGOTERN TEAYUXTIXG BixTu, 6ToV O aELiuoS
TWY XOWOTHTOY OTOU GUUUETEYOLY BUO xouPBol avldvetar, ToTe auddveTtal 1) To-
voTnTa oL 6uo autol xoufol va ebvor cuvdedeuévol. Autd oruaivel 6Tl BnpLovpYo-
OvTon ETIXAAOPELS XOWVOTAHTOY, TOU EvVol TUXVE CUVOEDEUEVEC OTO ECMHTERPXO TOUC.
Ou meprocdtepol ahyodpripol mou Bacilovtoun otnv unddeon otL ol exoAleg elvou
TO oEOLE GUVOEDEUEVES OO OTL OL XOWOTNTEG OTO ECWTERPIXO TOUC, UTOTUYYAVOUV
VoL EVTOTGOUY Tuxvd cuVBEdENEVES emaAlelc. Avtideta avoryvewpeilouy Ttétolou
eldoug emxahlelg, elte ooV EEYWEIOTEC XOWOTNTES, EITE WC Uil EVIOLAL.

5

To povtého ouppetoyhic x6uPwv ae xowdtnree (AGM) [62], napdyet, and évoy
Thvoar GUUUETOY S XOUBWY GE XOWOTNTES, YRAPOUC, OTIOU Ol XOWOTNTES UToEOVY
var €youy Tuxvd 1) opand cuvdedepgveg emxoAlpelc. Ou xépfol mou cuuueTéYoLV
oty oo xowotnta C €youv mdavotTnTa va eivon ouVOEdEUEVOL PeTa) Toug, fom ue
Po MNOY® TNG CUPHETOY S Toug ot auThy T xowotnta. H cuvohixd mdavétnta yia
duo xouBouc va eitvor cuvdedepévol, pe dedopéves Tic mapauéteous (V, C, M, pe)
elvo :

plu)=1—] Q@-pc) (1)

CeM, N\ My

To povtého cuuueTtoyfic xouPou oe xowotnteg unopel yiveton mo guéhixto, o-
voEToVTaG BLapopeTIX0UE Poduolc GUUHETOY YIS 0TOUC XOUBoug NG (Blag xowoTnTa
[54, 63, 72]. Mnopel va optoTel Fy,a 1 GUUUETOYH TOU X6UBou U TNV XOWVOTNTA
A. To povtého opilel TNV cLUUUETOYY| OE XOWVOTNTEC UE TN HOPPT| EVOC BYEEOUC
Yedpou, 6Tou xdVE xOUBOC GUVBEETUL GE L0t 1) TEPLOCOTEPES XOWVOTNTES UE [ULOL UXUT
otopopeTol Poduod cuppetoyric. H cuvohixd mdavotnra vo etvor cuvoedeuévol
2 x6pfol ebvan:

P(u,v)=1-— H(l — Pe(u,v))

Cerl
=1- H(_Fuc'FvC')

Ccel

2
=1—exp(— Z Fue - Fyo) @)
cer
Sien- FR)
——

€owTEPXS YIVOUEVO

‘Omouv F, 7o ddvucyo cupueTtoyic xouBou tou xoufBou u, {FuC}cer ot F, to
Sudvuoua cuduetoyic Tou x6ufov v, {Fyotoer xou I' 10 ohvolo twv xowothtwy.

O rnivaxog yerrviaong propet vo dnuovpyniel amd tov mivoxo GUPPETOY S xOU-
Bwv - xowotitwv F € R;VOXC oxOhOLIMVTAC Lol aveE deTN T TAVOTNTA XATAVOUTC.

Ay ~ Bernoulli(1 — exp(—Fye - Fye)) (3)

Meé9odog BigClam Yty uédodo BigClam [63], mpoteiver tnv ypron tou
wovtéhou AGM avtiotpoga. Tmoloyilovtag TNV amodoTxdTERN TYF| ToU Tivaxa
ovuuetoyrc F, mou peyiotonoel tne mbavétnta o yedgoc va mpoéxule and To
LOVTENO, pE yerom Tou ahybprduou oUYXNoNG UE ENGTTWON TNE Tapoy@You (gra-
dient descent).H mioavétnta o yedgpog va éyet npoxiiel ano 1o povtého ue Bdon

6

Tov ivoxa ouppetoyry F unoloyiletan wc:

P(G|F) = H P(u,v) H (1 = P(u,v))

(u,v)eG (u,0)¢G <4)
= [[* —exp(=FEF)) [] exp(—F/F.,)
u.veE uvgE

H Aoyapuduwe mioavotnto etvan:

log(P(G|F)) = log([[(1 = exp(=F[F,))][] exp(~F[F,))

uweEE u,v¢FE
=) log(l —exp(—F[F,)) — Y (FIF,) (5)
uwEE u,v¢E

= I(f)

Mé9o06oc Neural Overlapping Community Detection, NOCD H
Baowr| wEx tng pedodou ebvan N Pertiotoroinom tou mivaxo cuppetoyric F mou
ueytoTonolel TN cuvdETNoT PEYIO TG Aoyaptiuxrg mavoTntag Tou woviehou Big-
Clam , oyt wg ehediepng petoBANTHG, ahhd pe TNV exTtaldeuoT) EVOC GUVEMXTIXOU
duetou ypdpwy (GCN) xat tne Behtiotononone twv TopauéTemy Tou.

F := GCNy(A,X) (6)
H opvntues) hoyoprduu mdavotnta mpog ehaylotonoinon elvou :
—log(P(G|F)) =L =—) log(1—exp(—FF,))+ Y _(FIF,) (7)
uweEE u, ¢ E

Avti va unohoyiletan 1 amodotxdTeEn THT Tou Tivoxa cupueToy e F ¢ eheliepn
UETOBANTY), uTohoyilovTal oL ATOBOTIXOTEPES TWES TWV TUPAUUETEWY 0 Tou ehoryt-
OTOTOLY TNV cLVAETNOT anwheldy Loss function.

arggminﬁ(GC’Ng(A, X)) (8)

oTOoU:
the first layer

R /,_/A
= GCNy(A,X) =0 (Ao (AXWID) W) (9)

~
the second layer

o elvon plar pn YeoUuIX | CUVAETNOT| EVERYOTOINONG, CUYXEXPWEVA TEOTAUNXE 1)

7

xenon tne LeakyRelu.

H yperion evog veupmvinol dixthou yedpwy €xel apxeTd Thcovexthuuta. Meow
UG EToywyixnic mpoxatdAndmg, to dixtuo e&dyel mapoupoLa dlaviouaTa CUCYETL-
OGS XOWOTNTAS Yo YELTOVIXOUS xOUBoug, To omolo BEATIOVEL TNV TOLOTNTA TWY
mpoPBrédewy o olyxplon pe anrolotepa wovtéha. Eniong, pog emtpenet vo evow-
UOTWGOUNE TA YORAXTNEWOTIXG TwV xOUfwy 6To povtého. Edv to yopoxtneiotixd
oev ebvon dodéoua, umopolv va yenoylomoniel o mivaxoag A W YoeaxTNELo TN
xouPBou. Axéun eivon duvaty| 1 TEOBAedn xowoTATWY ETaywYWE Yo x6ufouc Tou
OEV UTARY Y OTOV YEAPO, XATH TOV YPOVO TNG EXTAUBEVOTS.

Enéxtaon tng pwedoédou NOCD ue €vav unyaviclwd mpocoyng
Ipbtaon tne epyaciag eivon 1 eméxtoaot tng Yedoddou, e vay unyavioud “tpoco-
Y1Nc”. Lxomdg ebvon uéoa amo T dladixaola exmaldevong Tou poviéhou, vo e€oydel
EVOC BLUPOPETIXOS CUVTEAEC TG TPOCOY S EVOS %xOuPBou Tpog xdie Tou yelTovi-
%6 x6pfo. Alaxplvovtag molog x6ufoc efvan To GNUAVTIXOC OF Lol YELTOVIA, %O
amodidoviag ot aUTOV YEYOAUTERD Bdpog.

Yy pgdodo NOCD o cuvtereotrc onpactiag efvar o {dlog yla 6houg Tou ye-
{roveg evég xoufou:

1
W =o() O] WO p{=1) (10)
v
UEN(’U) ——
otadepy) Tpocoyh
Ov unoAoyloudE ToU BLaVOCUATOSC TEOGOYNS Uay, YEVETOL 0RY XS UECEL) TOU LTIO-

AOYIOUOU TWV GUVTEAEGTMY TEOGOYY|C €. LT CUVEYEL, EQUOUOLETOL OTOUSC GUVTE-
AECTEC TPOCOYNG 1) U1 YRUUUIXT) CUVEETNOT

e = LeakyRelu(a® D" Concat(WVRID, WD p-1)) (11)
(0
exp(evu
aq()lql = b{ew) 0 (12)
2 ke, OXP Cp
W) =o() al, wWOpI-) (13)
ueN (v

) CLVTENECTAHC TPOCOXAC

2Ny medEN 0 unyaviopos autog 0ev ouyxAbvel edxola. o autd exteholvTon
mave amé pla enavahels, pe dapopeTinég apyixonotioelg. Ot enavahrelg autég
ovopdlovton heads . Kot to tehixd anotéheopa eivan €vog cuvdLACUOS TwV omo-
TEAEOUATOV TWV BLUPORETIXDY ETAVAAPEwY, 6w 0 uéoog dpog, To dlpoloua 1 1
arlknhouyta.

IMetpapatixy Awadixacio oty allohdynon e uedddou, yenolonot-
oMoy 8éxor ovvola Sedopévmv. ‘Bl alvoha dedopévmy and to Facebook [38] e
oixtua 50 w¢ 800 xouBwyv. Téooepa civola dedouévev, Ta Chemistry, Computer
Science, Medicine, Engineering mou elvor d8{xtuot GUV-CUYYRUPHC ETUC TNUOVIXGY
dnuooteboewy, ané to Microsoft Academic Graph [24] ue neplooétepoug and 10
YIMAOES xOUPoug. e auTd oL XOWOTNTES AVTIOTOLYOLY GE ETUO TNUOVIXOUS TOUE(S
2oL ToL OLVOOHOTAL YAURUXTNRLO TIXWY TWV xOUPwy elvon Pactouéva oTig AEEELS XAEL-
018 TwV ONUOCLEUGEWY xdle cuYYpPuPEn. Ol AETTOUEREIES TWV GUVOAWY BEBOUEVLV
TepLypdgovTon oTov mivaxa 5.1.

Ye Oha T MEWRdATA TO SLUVEAXTXXO BixTuo Yedpou GON omoteieiton amo 2
eninedo ue evOLduEco xpupuévo uéyedog 128.

To dixtuo ue Tov unyavioud tpocoyhc, GAT anoteheiton eniong amd 2 eninedo
UE eVOLIUECO XpuUPEVO Uéyedoc 128 xan 2 enavahelc Tou pnyaviopod Tpocoyic
heads ., ané Tic omolec unohoyilouye TOV PEGO 6RO TWV ATOTEAECUATCY TOUC.

H eloodog tou dixtlou €yel To Yéyetog Tou BLAVOOUATOSC TV YoQUXTNOICTIXDY
TV x0uPwy, 1 1o yeyedog Tou BlaviouaTog YerTviaong Tou xdde xoufou, eve
1 TeAy| €€odog €yl péyedog (oo pe Tov apriud Twv xowothtwy. Ko ota 6Uo
wovtéha GCON, GAT petd 1o mpwto eninedo epoapudleton xavovixonoinor batch
normalization.

Ye xdie eninedo epoapudleton 1 teyviny) Dropout ye moavotnto dwtrienong
50%. Axéun epopuéletar weight decay otoug mivoxeg Bapdv pe regularization
strength A = 1072, O wivoxag yopoxtnpotixav X (A A, oe mepintwon nou
epYolOUAOTE Ywplc YopoxXTNEIoTIXG) EiVol XAVOVIXOTIOINUEVOS OOTE xGE Yoauun
va el povadloda Ly vopua.

H Beitiotomoinon emavoropfdvetar to moAd yior 5000 emoyéc 1) otauatd ov
oev urdpyel Bertiwon otny cuvdptnon xoctoug loss funtion yia 500 cuveydueveg
enavorfeic. O puiude exudidnong eivo 1073,

‘Otav 1 Behtiotonoinon tepuatiotel xde xoufog avatideton oTic xovoTnTES
oTIg omola N Ty CUPPETOYNS TOU GTO BLdvuoua €680V Tou dTOov, ivon Ve
aro éva oplo p = 0.5.

H petpur) allohdynong tne ixavotTnTog EVIOTOUOD TWY TROYUATIXWY XOWVO-
TV Tou yernowonotinxe etvon 1 Kavovixorowmuévn ApoBaio ITinpogopioa Nor-
malized Mutual Information (NMI).H ApoBoia IIAnpogopia expedler v xown
TAneogopio PETAEY BUO AATAVOUWY, WS TO Too6 Tng ofeBaitnTag mou yeudveTtal
yioe Ty plar 6tay yvwpetloupe Ty dhAn. ‘Eyouv mpotadel morkég exdoyéc optouol
TNG XUYOVIXOTIOLNUEVTC Hoppic TNE. EB yenotuonouinxe 1 exdoyn omwe optletan
and touc MeDaid et al., [39].

1H(X)+ HY) — H(X|Y) — H{Y]|X)
NMIypar(X,Y) = 5 max(H(X), H(Y))

To netpdpata exteréotnray o wa K12 GPU pe 12GB RAM. H vioroinon
€ywve ot YAwooo tpoypoupatiopod Python ye yeron twv BBAodnxwmy PyTorch
xou PyTorch Geometric xau Booiotnxe otny vhonoinon tng dnuootevone [50].

AmoteAéopaTa xo CLUUTERACKATE XTov Tivaxa 1 mapouctdlovton ot
Tiég e petpwAc NMI mou métuyay o duo povtéha. Xuyxexpyéva eugovileton
0 Uéoog 6pog Tev TWoY NMI 10 enavalidewy tng exnaideuong tou povtélou Ue
OLOUPORETINES 0Py XOTOMOELS Yol UE TNV TUTIXAC AMOXAICT] TWY TWHOV AUTOV.

To Buo povTéra €youv xahOTERT AMOBOCT), OTA UEYAAITERA GUVOAA DEDOUEVLY,
OTOY TOL BLAVOOHOTA TV YURUXTNRLO TIXMY TWV XOUBwY YeNoYLoTo0VTHL GV €-
{codog oTo povtého. Autd Tor GUVOAYL €Y 0UV BLAVOCHOTA YUEUXTNOLC TIXWOY XOUBWY
TOAN) UEYIANG OLdo TOoTG.

Yo peyohUTEpar ovola BEBOUEVLY TapaTNeEiTon Wiot adENoT OTNY IXAVOTN T
aVAXGALPNC TWY XOWOTATWY PETE TNV TEooUxn Tou unyaviopod tpocoyhic. Kdtu
TOU OMUALVEL TS GE oUTA O UNYAVIoUOS Teocoyfic “yeeex” wodaivel mota ebvon To
oNUAVTIXG oTolyElo TNG EIGOBOL, amodidOVTAUS OE AUTE UEYAADTERT TEOGOY .

‘Ocov agopd 6TV IXavOTNTA TOU HOVTEAOU VoL ATtodidEL O UeydAa dixTua dedO-
UEVOY, OTIWE QUIVETOL GTOV THivoxal 2 0 YeOVog Tou yeetdletan eivon AydTEROS amo
BUO AEMTY WOTE TO PHOVTELO Vo amogasicet, Yo To obvoho Medicine (810 yuliddeg
xo6uPot), ue v yenon woag GPU pe 12 GB RAM.

Evoiapépouceg meployéc €peuvag, EVol 1) TOCOTIX GUCYETION TWY GUVTEAE-
OTWV TPOCOY NS UE TNV UTapdn xovoTATwY, Yo unopoloe (owe Vo odnyHoEL OE Lo
aVIALOT) EPUNVELCOTNTS TOL poviehou. Tledlo yia Siepedivnom unopel va etvan 1
TELPOOTLXH AELOAOYNOT) VEGTERWY TEOGEYYIGEWY UNyaviopny tpocoyhc [6, 69].

Booixd avouytéd epotnua mpog digpebvnor, elvar To 6TL yio TOAES UeddoUg
avalATNone xoWoTHTeY, BIVETal ¢ BEBOUEVO 0 dELIIOC TWV TRUYUUTIXWY XOLVO-
Ty, Kdtl t€to10 dev elvor e@tod yia o TEPLOCOTEQN TEAYUATIXE DixTUN DEDO-
UEVOVY xou amoTehel onuoavTind medio €peuvag 1) avdnTuln pedodnmy Tou Yo uTtoeolyv
VL TO UTTOAOY{GOUV.

10

Adjacency Attributes

Dataset GCN GAT GCN GAT

Facebook 348 309+14 334+£35 2944+26 303+29
Facebook 414 52.1 + 3.5 5H06+£19 51.04+45 51.3£46
Facebook 686 17.7+1.3 171 +0.8 16.0+19 153+ 2.1
Facebook 698 4124+ 3.7 45.1 +3.2 369+64 31.1+09.1
Facebook 1684 39.6 1.5 337+£30 263+15 302427
Facebook 1912 43.2 £ 0.8 395 £1.7 33.0+£36 347+29
Chemistry 190+26 192+11 413+£30 41.8+ 2.3
Computer Science 299 +1.8 296+ 14 46.5 +3.4 46.1+£1.6
Engineering 194+10 152414 348+34 356+ 1.3
Medicine 274 4+09 236 +27 349434 35.2 4+ 2.7

Table 1: Avaxdhun oV TeoryLaTix®y ETXoATTONEV®DY XovoThTtwy, ae NMI (%)
xou Tumixn) andxhion. Méoog 6pog 10 enavokfpewy Ue SlapopeTixt| apyxoroino.

Adjacency Attributes
Dataset GCN GAT GCN GAT
Facebook 348 6.729 9.395 6.463 9.091
Facebook 414 6.096 8.733 6.132 8.958
Facebook 686 6.531 9.032 6.509 9.072
Facebook 698 7.002 9.166 6.745 9.134
Facebook 1684 11.633 9.745 7.043 9.668
Facebook 1912 6.895 14.426 11.186 15.385
Chemistry 26.078 43.094 29.209 71.867
Computer Science 20.067 31.075 28.482 79.655
Engineering 13.031 19.183 15.766 34.84
Medicine 78.674 169.594 74.745 114.041

Table 2: Ipoypotixde ypodvog exTEAEONG TNG EXTAUOEUONC, OF OEUTEPOAETTOL.

Méococ dpoc 10 emavorfiheny Ue Blapopetiny| opyixomoino.

11

Abstract

Community detection is a research area with increasing practical significance.
Successful examples of its application are found in social networks, recommender
systems and biology.

Deep learning has achieved great performance on various graph related tasks
and is recently used in the field of community detection with accuracy and
scalability.

The majority of community detection efforts, using deep learning, is investi-
gating the discovery of disjoint communities. While the overlapping communities
are a lot less researched.

In this thesis we propose an extension to an already well established method
to discover overlapping communities. This method combines a probabilistic view
on the problem with the expressiveness of representation learning,using a Graph
Neural Network.

Our proposed method lies on the addition of an attention mechanism, focus-
ing on the “important” parts of the data. We investigate whether an attention
mechanism can discover differences on the inputs’s importance, allowing the
model to focus more on the important nodes of a neighborhood.

Finally we evaluate our proposed method, examining its ability to discover
ground truth communities. For larger networks and inputs, the graph attention
mechanism of the proposed method increases the community detection ability.

12

Contents

1 Introduction

1.1 Background oo
1.2 Motivation
1.3 Related worko
1.4 Contribution o
2 Community Detection
2.1 Overlapping community detection
2.2 Methods overview
3 Graph Neural Networks
3.1 Introduction
3.2 Architecture
321 GNNLayer
3.2.2 Stacking layers oL
3.2.3 Graph Augmentation
3.3 Training
3.3.1 Prediction Heads
3.3.2 Labels
3.3.3 Loss Functions 0oL
3.3.4 Evaluation Metrics 0L
3.3.5 Dataset split.
3.4 Graph Attention Networks
4 Model
4.1 Affiliation Graph Model
4.2 Graph likelihood oo
4.3 Cluster Affiliation Model for Big networks
4.4 Neural Overlapping Community Detection
4.5 Overlapping Community Detection using GAT

13

19
19
19
20
20

21
21
22

25
25
28
28
30
30
32
32
33
33
34
36
37

Contents Contents

5 Experiments description 52
5.1 Datasets 52
5.2 Implementation 52
5.3 GOCN configurationo 53
54 GAT configuration 53
5.5 Hyper parameterso 54
5.6 Trainingo 54
5.7 Assigning nodes to communities L. 54
5.8 Normalized Mutual Information o4
5.9 Experimental setting 00 58

6 Results and discussion 59
6.1 Recovery performance L. 59
6.2 Scalability 60

7 Conclusions and future work 62
7.1 Conclusions 62
7.2 Futurework 62

14

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

Non-overlapping vs overlapping communities, Wikipedia

GNN layers
GNN computational graph
GNN two step process
GNN two step process
Graph attention mechanism, ..
Attention Mechanism Example

Granoveter, the strength of weak ties
Sparsely & densely overlapping communities
Affiliation Graph Model
Membership bipartite graph
Affiliation membership bipartite graph
Graph fittingo
Neural Overlapping Community Detection

Mutual information Venn

15

List of Tables

3.1
3.2

5.1
6.1

6.2

Avoxdhudm Twv Teoy TGV ETLXUAUTTOUEV®Y X0voTATwY, o NMI
(%) nou Tumx amdxhion. Méoog bpoc 10 enavahfbewy pe Swaupo-

CETLXN QEYXOTIOMOT. oo 11
Hporypotinde ypdvog extéleone TN EXTUDEUOTC, OF BEUTEQOAETTOL.

Méococ dpoc 10 emavorfipewmy ye diagopetiny apyixornoinon. 11
Constant versus one-hot encoding feature augmentation 31
Confusion Matrix 35
Dataset statistics. K stands for 1000 53

Recovery of ground-truth communities, measured by NMI (in %)
with standard deviation. Results are averaged over 10 initializations 60
Real time of execution, measured in seconds. Results are averaged
over 10 initializationso 61

16

List of Algorithms

17

Thesis structure

Introduction The motivation and purpose of the thesis are outlined, followed
by a description of related studies.

Community Detection The problem definition and an overview of the most
widely used methods.

Graph Neural Networks A description of Graph Neural Networks design
and architecture.

Model Related models description, upon which our proposal is based. Our
proposal description.

Experiments The setup of the experiments is described with the model pa-
rameters, the description of the datasets in use.

Results and discussion The results of the conducted experiments are ana-
lyzed and discussed.

Conclusion A presentation of the conclusions drawn from the experiments is
given, and topics for future work are presented.

18

Chapter 1

Introduction

1.1 Background

Communication systems, social networks, financial transactions, biological func-
tions and other systems can be represented in the form of a graph. A graph
describes a group of nodes that interact with each other forming edges.

A community is considered a group of nodes interact with each other more
often than others, or share a mutual attribute [16]. Community structures have
been investigated as early as the 1920s in sociology. Advanced scientific tools
developed, during the last century, allowed the study of networks on real data.
In 2002, Girvan and Newman [20] opened a new direction with graph partition.
The past ten years researchers have extensively studied community detection
[53].

Community detection is the process of discovering the communities that ex-
ist in a graph. This allows us to study interconnectedness, evolution or even
importance of a graph’s structure. Its role is pivotal in the of Protein-Protein
Interaction (PPI) networks, revealing the complexities of and proteins with sim-
ilar biological functions. Also it has been used in the study of metabolism and
brain networks.

1.2 Motivation

During the recent years a significant development of deep learning techniques
has emerged with advantages in the handling of high dimensional network data.

The biggest proportion of community detection research is directed towards
assigning each node to exactly one community, handling only non-overlapping
communities. A much smaller number of research efforts studies the formulation
and discovery of overlapping communities that motivated this thesis towards the

19

1.3. Related work Chapter 1. Introduction

direction of overlapping community detection. Additionally, we wanted to study
how deep representation learning techniques could be used towards the discovery
of overlapping communities.

1.3 Related work

Usually the methods proposed to detect overlapping community structure, are
based on the assumption, that community overlaps are less densely connected
than the core of the communities. As shown in [62] the higher the number of
communities a pair of nodes have in common, the higher the probability is, that
they will be connected. Meaning that the community overlaps formed are often
densely connected. Most methods based on the hypothesis stated above, will
fail to detect dense overlaps, and usually detect them as separate communities,
or as one community. In [62, 63] a probabilistic view of community structure is
proposed that includes the formation of densely connected overlaps.

Deep learning has proven its ability to handle high dimensional data. A
short description of community detection methods, based on deep learning, is
presented in Chapter 2. Many methods use deep learning to produce low dimen-
sional representations of graph nodes, followed by a clustering technique such
as K-means, but usually they are not very efficient on Community structure
detection.

1.4 Contribution

Our proposed method is based upon [50], where a combination of the prob-
abilistic model, with a representation learning approach, using graph neural
networks is proposed. This thesis proposed extension is the addition of an at-
tention mechanism that infers importance of information. Finally we present
our experiments, the model’s performance, evaluation and comparisons.

20

Chapter 2

Community Detection

2.1 Overlapping community detection

(a) Non-overlapping communities (b) Overlapping communities

Figure 2.1: Non-overlapping vs overlapping communities, Wikipedia

A universally agreed upon definition of “community” does not exist in the
literature, although its meaning seems rather intuitive. In many recent papers a
usual statement is that a community consists of a group of nodes, that present
a higher probability to be linked with each other than with other nodes. [17].

Assuming an undirected unweighted graph G(V, E) that can be represented
with a binary adjacency matrix A € (0, 1)V*¥. Where N is the number of nodes
V ={1,...,N} and M is the number of edges £ = {(u,v) € V xV : Ay, = 1}.

Every node can be associated with a D-dimensional attribute vector, repre-
sented by an attribute matrix X € RV*P,

The goal of overlapping community detection is to assign nodes into C
communities. Such assignment could be represented as a non-negative node-

21

2.2. Methods overview Chapter 2. Community Detection

community affiliation matrix F &€ Révoxc, where F),. is the strength of node u’s
membership in community c. -

The problem of community detection can be considered in terms of the
probabilistic inference framework [63]. If a community-based generative model
P(GJF) is posited, then to infer the unobserved affiliation matrix F of a graph
G would mean to detect the communities.

The problem of community detection can be examined from a representation
learning point of view. The affiliation matrix F could be considered as an
embedding of nodes into RS, , while preserving the graph structure.

Combining existing node embedding approaches with overlapping K-means
has not delivered satisfactory results. In [50], Shchur and Giinnemann proposed
the combination of the probabilistic and the representation points of view, to
learn the community affiliations, using a graph convolutional network. This is
the model we propose to extend with the use of a graph attention network and
evaluate it’s performance.

2.2 Methods overview

Traditional Methods

Traditional methods usually explore community formation from network struc-
ture [53].

Graph Partition The methods are usually known as graph clustering, are also,
employed in deep learning models. They partition the network into a given
number of K communities. Kernigal Lin and spectral bisection are two well
known representatives of graph clustering [16, 31, 4].

Statistical Inference Based on the Stochastic Block Model (SBM), a genera-
tive model that assigns nodes to communities, optimizing their probabili-
ties of likelihood [25, 30].

Hierarchical Clustering Discovering hierarchies these methods are further
divided to agglomerative, divisive and hybrid. The Girvan-Newman al-
gorithm is a divisive algorithm, removing edges to discover structures|20].
OST is a divisive algorithm based on edge betweenness via minimum span-
ning trees [44]. Fast Modularity (FastQ)[41] is an agglomerative represen-
tative and Community Detection Algorithm based on Structural Similarity
[68].

Dynamical Methods Random walks are utilized to detect communities in

22

Chapter 2. Community Detection 2.2. Methods overview

[47]. Information Mapping (InfoMap) calculates the minimal-length en-
coding[48].

Spectral Clustering Spectral clustering [3] partitions the network on the nor-
malized Laplacian matrix and the regularized adjacency matrix, and fits
the SBM in the pseudo-likelihood algorithm.

Density-based Algorithms DBscan[14] and others detect community mod-
ules, by measuring entities density.

Optimizations Community detection methods often maximize certain func-
tions. Modularity[41] is the most widely used optimization function, and
its variant Fastq[11]. The Louvain method [5] is a well known optimization
method. Also extremal, or spectral optimization and simulated annealing
are extensions of greedy methods. Normalized Mutual Information (NMI),
and Conductance (CON) are also used to optimize the partition quality.

Deep learning methods

Deep learning approaches have been very successful recently handling data with
underlying grid-like structure. Real world data, though, often come with a non
grid-like structure such as graphs. Deep learning methods have been recently
proven very efficient handling networks and graphs, on different tasks and also
on community detection tasks [53].

Convolutional Networks Convolutional Neural Networks (CNN) and Graph
Convolutional Networks (GCN) apply convolutions to represent latent fea-
tures.

Graph Attention Networks (GAT) Apply a trainable attention weight to
the graph information.

Generative Adversarial Networks (GAN) Adversarial training and GANs
are used with highly successful results in community detection.

Auto-Encoders (AE) A wide variety of Auto Encoders has been used. De-
noising, Stacked, Sparse, GCN, GAT or adversarial autoencoders.

Deep Nonnegative Matrix Factorization (DNMF) A particular technique
factorizing an adjacency matrix.

Deep sparse filtering These methods consist of a two layer learning model,
capable of handling high dimensional data.

23

2.2. Methods overview Chapter 2. Community Detection

Some methods that focus on overlapping community detection while using
Deep Learning reviewed on [53] are:

LGNN Line Graph Neural Network [10] learns node representation features in
directed networks, extending the Stochastic Block Model.

NOCD New overlapping community Detection [50] combines the GCN repre-
sentation learning with probabilistic inference.

SEAL Seed Expansion with generative Adversarial Learning [71] expands Gen-
erative Adversarial Learning, its generated samples are communities and
a Graph Isomorphism Network (GIN) is used as a discriminator.

CommunityGan Community GAN [28] performs a competition between the
motif-level AGM generator and discriminator, to optimize community
memberships embeddings.

ACNE [9] expands Generative Adversarial Learning, to optimize node and
community embeddings.

For completeness, a list of methods, presented in [53] that utilize a Graph
Attention mechanism. All 5 methods use k-means for clustering and aim to
detect non-overlapping communities.

o DMGI [46]
e HDMI [29]

MAGNN [18]

HeCo [58]

CP-GNN [37]

24

Chapter 3

Graph Neural Networks

3.1 Introduction to Graph Neural Networks

Many extensions to existing Deep Learning methods have been proposed re-
cently, towards handling non-grid data like graphs. Some are extending ideas
coming from signal processing [51], while others are presenting novel concepts.
Deep learning models on non-grid structured data encode inductive bias, through
the notions of geometry. Michael Bronstein first grouped these methods propos-
ing the term of geometric deep learning.

Graph Convolution Networks (GCN) have been proved very efficient on
graph related tasks, like node classification, link prediction, community detec-
tion and others.

In [7], [13] and [59], a convolution operation on graphs is defined via the
graph spectral domain.

Representation Learning [8] has proven to be very efficient on all types of
graph tasks.

Assuming a graph with:

e G(V.E).

e V a set of nodes.

e E the set of edges.

e X a matrix representing node features.

A naive approach to train a deep neural network on a graph would have
various problems. Using the adjacency matrix as an input to a deep neural
network would create a number of parameters to be trained multiple times the
number of nodes, which would be much larger than the input samples. Another

25

3.1. Introduction Chapter 3. Graph Neural Networks

issue would be that the trained model would not be applicable to graphs of
different sizes. Also this model would be sensitive to node ordering.

Borrowing intuition from Convolutional Neural Networks (CNN), Graph
Neural Networks generalize the idea of convolutions between layers, leverag-
ing node features or attributes. The idea is that instead of a sliding window on
where an operator is applied, there will be a center of collection information, a
node, where an operator is applied transforming information gathered from the
neighbors and creating new information.

Message passing and neighbor aggregation in graph convolution networks
has to be permutation equivariant.

Figure 3.1: Graph Neural Networks (GNN) consist of multiple permutation
equivariant functions, Bronstein, ICLR 2021 keynote

The basic idea behind a GNN is that the node’s neighborhood, defines the
structure of the neural network. Every node will get it’s own computation graph,
based on the graph structure around him.

In every layer of this computation network, two basic operations are per-
formed. Message collection including some message transformation and the
aggregation of all the node’s neighbors messages. This process will be repeated
just for a few steps.

The neighborhood aggregation function performed at each layer needs to be
order invariant. After collection of information from the neighbors, an order
invariant operator is applied Usually the calculation of a summation, or of the
average, or those of maximum or minimum. An embedding calculated at layer
[+ 1is:

26

Chapter 3. Graph Neural Networks 3.1. Introduction

.
TARGET NODE ® 4“’)
| ®
« s .4-.3 _
"oy
INPUT GRAPH @

B = x, (3.1)
Bo
AT = o(W, Z ’NZU” +Bihy), Vi €0,.., L -1 (3.2)
EN(v)
Y (3.3)

where W, B are the trained parameters shared across all nodes and o is a
non-linearity function like Relu or leakyRelu. The model can be trained using
any loss function, applying Stochastic Gradient Descent.

In the matrix form this can be expressed as :

R
— _ S H =D TAHO (3.4)
et 1V W)
where
l !
B =)"
D, ., = Deg(v) = |N(v)| 3.6
1
D, = (3.7)
©IN()]
and the whole aggregation function as :
HM = ¢(D'AHYW! + HYBY) (3.8)

which can be calculated with the use of efficient sparse matrix multiplication.

27

3.2. Architecture Chapter 3. Graph Neural Networks

3.2 Graph Neural Networks Architecture

A variety of Graph neural networks has achieved state of the art performance on
various tasks ;node classification [59], graph classification [65] and link prediction
[70].

Different transformation or aggregation operators allow a wide variety of
GNN architecture[67] like GCN, GraphSage, GAT and others.

The way the layers are stacked defines the GNN architecture in a different
way. Layer connectivity, is about whether the layers are stacked, and if there
are skip connections.

Different architecture can be defined by the way the computation graph is
created. The graph can be augmented to create new features, or some other
graph structure manipulation is applied.

Finally the objective task defines the architecture. Whether it is supervised
or not, or about the node or the edge or graph level.

(2) Aggregation

& o o (1) Message

Node v

Figure 3.3: GNN two step process, Stanford CS224W

3.2.1 GNN Layer

A simple GNN layer can be defined as a two step process of compressing a set
of vectors into a single vector:

e Message Computation.
e Aggregation

Message computation transforms the representation of a node at a previous

layer and transforms it.
m® = MSGO (1) (3.9)

an example would be a linear transformation m{) = WOR{™

28

Chapter 3. Graph Neural Networks 3.2. Architecture

Message aggregation, has to bee an ordering invariant function. Like a sum-
mation, an average and even maximum.

A = AGG(l)({mg), uinN(v)}) (3.10)
An example would be a summation for aggregation:
A = Sum(l)({mg),u inN(v)}) (3.11)

In order to preserve the information of a node computed at a previous layers,
when calculating its embedding at a next level, an aggregation of that previous
embedding is usually applied.

) = CONCAT(AGGY ({m{, u inN(v)}), m{) (3.12)

(2

where m{) = WORL™,
After the aggregation, a non linear activation function is applied o: Relu ,
Sigmoid.

h(l);U(w<l> S hg_l)) (3.13)
u€N (v) |N(U)|

The Graph Convolutional Network [59] (GCN) can been as a combination
of the two step process:

Message
0 o "
h :a(w) (3.14)
ue;(v) [N (v)]
~——
Aggregation

In GraphSAGE [22] the double aggregation shown in Referenceseq:doubleagg
is applied. Different aggregation operators can be applied, like a weighted aver-
age of the neighbors like GCN, a symmetric function like a maximum pooling
function, or a summation or even an LSTM sequence model to the messages,
shuffling the ordering of the neighbor messages. Also for the message computa-
tion step, different operators can be used like an MLP. Usually /5 normalization
is applied on every layer.

In practice many modern deep learning modules are used in a GNN layer.

e Batch Normalization, to stabilize neural network training [27].

e Dropout, to prevent overfitting [52].

29

3.2. Architecture Chapter 3. Graph Neural Networks

e Attention Gating to control the importance of each message [56].

e Activation functions, like Rectified Linear Unit (ReLU), Sigmoid and para-
metric ReLU.

3.2.2 Stacking layers

In a K-layer GNN each node has a receptive field of a K-hop neighborhood. The
receptive field is the set of nodes that will determine the embedding of the node
of interest. Increasing the number of stacked layer K of a GNN will mean that
many nodes will have highly overlapped receptive fields. In this way similar
embeddings will be computed for several nodes. This problem is widely known
as the over-smoothing problem. To overcome the over-smoothing problem, the
necessary receptive field needs to be analyzed, and the number of layers needs
to be set accordingly.

Enhancing the expressive power of a GNN, while avoiding over-smoothing
can be achieved by applying different stacking techniques.

e Increasing the expressive power within each layer. A 3-layer Multilayer
Perceptron (MLP) can be used within each layer.

e Using Pre-processing or post-processing layers that do not pass messages.

e Skipping connections between layers [23, 61] can create a mixture of shal-
low and deep GNNss.

3.2.3 Graph Augmentation

In many cases the input graph does not carry enough information for a GNN to
be trained efficiently.

e The graph could lack features.
e The graph could be too sparse, leading to inefficient message passing.
e The graph could be too dense, that means message passing is too costly.

e The graph could be too large, leading to memory limitations.

A solution to this issue is the idea that the computation graph does not need
to be the same as the input graph.In general two types of augmentation can be
performed.

e Graph feature augmentation.

e Graph structure augmentation.

30

Chapter 3. Graph Neural Networks 3.2. Architecture

Graph feature augmentation

When the input graph does not have any features, the standard approach is to
assign unique ids to graphs. The ids can be converted to one-hot vectors.

Constant One-hot
Expressive power Medium High
Inductive learning High Low
Computational cost Low High, O(|V])
Use cases Any graph, inductive | Small graph, transductive

Table 3.1: Constant versus one-hot encoding feature augmentation

Some graph structures are hard to learn with a GNN. One example is about
nodes that belong to cycles of different lengths, where they all share the same
degree of 2. Their computational graph will be the same binary tree. A solution
would be to use the cycle count as a node feature[66].

Other types of node features that can be used this way are:

e Node degree
e Clustering coefficient
e PageRank

e Centrality

Graph structure augmentation

Augmenting sparse graphs can be achieved by:

Adding virtual edges A common approach is to connect two-hop neighbors
via a virtual edge. This means that instead of the adjacency matric A,
the A 4+ A% is used as an input to the GNN.

Adding virtual nodes A virtual node added, is connected to all the nodes.
All the nodes will have a distance of two , improving message passing is
sparse graphs.

For dense graphs, an idea proposed [22] is that instead of using all the nodes
for message passing, a randomly sampled group of a node’s neighborhood [64]
is used at each layer. This can greatly reduce the computational cost.

31

3.3. Training Chapter 3. Graph Neural Networks

3.3 Training a Graph Neural Network

So far we have seen that given an input graph’s structure, the corresponding
computation graph and GNN can output a set of node embeddings hz(f), Yu € G.
A GNN training pipeline, is additionally defined by:

e Prediction Heads

Labels

Evaluation Metrics

Loss functions

Dataset split

3.3.1 Prediction Heads

Different tasks require different prediction heads.
e Node level
e Edge level

e Graph level

Node level prediction

Node level predictions are made directly using the node embeddings. After
the GNN training d-dimension node embeddings have been calculated nh e
R,Vu € G. A k-way prediction can be either:

e Classification, where we classify among k categories.
e Regression, where we regress on k targets.

The predicted values are :

gu = Headnode(hq(f)>
_ W(H)hz(LL)7 W(H) c kad

Mapping node embeddings from hE e RY to 7. € R

32

Chapter 3. Graph Neural Networks 3.3. Training

Edge level prediction

Making predictions using pairs of node embedding. Supposing we would like to

make k-way edge predictions g, = H eadedge(hgf), hS,L)) The options are:

Concatenation and Linear §,, = Linear(Concat((h",n{"))), the linear
transformation will map the 2d-dimensional embeddings to k-dimensions
embeddings to make k-way predictions.

Dot product 3, = (th))T B for a 1-way prediction, like link prediction.
K-way prediction Dot product Requires the introduction of a multi-head
attention, where W . W% trainable parameters are introduced and
k differently initialized predictions are performed, keeping their average
: £ (k) ~(k) _p (DT

or concatenation as a result. ¢, = Concat(guw), where guy = (ha”’)

WE R,

Graph level prediction

To make Graph level predictions, all the node embeddings in a graph under are
aggregated. Supposing a k-way prediction, the predicted head is

Jo = Headgap, ({2 € RY Yu € GY) (3.15)

Some options for H eadgmph({hq(f) € R4, Vu € G}) are the global Max, Mean,
and Sum pooling operations [60]. Hierarchical Global Pooling has been proposed
[65] to improve the efficacy of global pooling operators.

3.3.2 Labels

Training can be performed both in supervised and unsupervised settings. In su-
pervised learning the labels come from external sources. While in unsupervised
the labels come from graph themselves. (semi-supervised). The unsupervised
signals can be different node statistics like the clustering coefficient or PageR-
ank, for edge level predictions the link prediction and for graph level graph
isomorphism can be used.

3.3.3 Loss Functions
Supposing a training setting with N data points, predictions are defined as:
Node-level prediction gj&i) with label yl(f)

33

3.3. Training Chapter 3. Graph Neural Networks

Edge-level prediction g}(]v) with label yq(fg
Graph-Level prediction g)g) with label yg)

In general prediction § and label

Classification

Cross-Entropy (CE) loss is used for k-way classification.

k
CED, §) = ="y 10g(5") (3.16)
=1

where

y®) € R* is one-hot encoding
7 € R* the prediction after Softmax

and the total loss over all N training examples is:

Loss = Z CE(y®, §0) (3.17)

Regression

For regression tasks the Mean Squared Error (MSE) also known as L2 loss is
often used. For a k-way regression:

k
MSE(y®, §0) ="y —) (3.18)

J=1

where

y) € R* is a Real valued vector of targets
§" € R¥ is a Real valued vector of predictions

and the total loss over all N training examples is:

N
Loss = Z MSE(y®, §®) (3.19)
=1
3.3.4 Evaluation Metrics

The standard evaluation metrics are used for GNN training.

34

Chapter 3. Graph Neural Networks

3.3. Training

Regression

Root Mean Square Error (RMSE)

N

(v — §)2
2w

Mean Absolute Error (MAE)

Yy =99
N

Multi-class Classification

Accuracy
Largmaz (5@ = y)]
N
Binary Classification
Accuracy
TP+TN
TP+TN+ FP+ FN
Precision P
TP
TP+ FP
Recall R
TP
TP+ FN
F1-Score
2P x R
P+R

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Actually Positive

Actually Negative

Predicted Positive | True Positives (TPs)

False Positives (FPs)

Predicted Negative | False Negatives (FNs)

True Negatives (TNs)

Table 3.2: Confusion Matrix

35

3.3. Training Chapter 3. Graph Neural Networks

Receiver operating characteristic (ROC) Curve The ROC curve is
created by plotting the true positive rate (TPR) against the false positive rate

(FPR).
0.8 f_frj

—— NetChop C-term 3.0
— TAP + ProteaSMM-i
ProteaSMM-i

=]
o

True positive rate

<
S

02

I I 1 | 1 | 1
0 0.2 0.4 0.6 0.8 1
False positive rate

Figure 3.4: ROC Curve, Wikipedia

Where the dashed line represents the performance of a random classifier.

TP
TPR=R=—"
R=R=0p T N
TN
FPR= —
=N irp

We are measuring the Area Under the ROC Curve (AUC), which intuitively
captures the probability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one.

3.3.5 Dataset split

In machine learning tasks usually the graph is split just once to:
Training set used for optimizing the GNN parameters
Validation set to develop the model hyper-parameters

Test set to report the final performance

But for graph datasets we cannot guarantee that the test set will be really
held out. So applying many random splits to training, validation and test splits,
and average their result is proposed.

36

Chapter 3. Graph Neural Networks 3.4. Graph Attention Networks

Splitting a graph is a special case, because graph data points like nodes
are not independent. Removing a node affects the computational graphs of all
neighboring nodes and their embeddings computation. Several solutions are
proposed to address this special dataset split.

Transductive Setting

The input graph can be observed in all the dataset splits (training,validation and
test set). Only the node labels are split, meaning that different node labels are
used for training, validation and testing. Transductive setting is only applicable
for node and edge level prediction tasks.

Inductive Setting

The input graph is split to three different graphs used for training, validation
and testing. The dataset then consists of multiple graph splits. Each split can
only observe the graph within the split. A successful model can generalize to
unseen graphs. The inductive setting is applicable to all level tasks including
node, edge and graph level tasks.

3.4 Graph Attention Networks

Attention based models are inspired by human perception. Proposing the se-
lective focus on important parts of the information. Attention based models
have been applied to several deep learning tasks with much success. Graph At-
tention (GAT) mechanisms have been recently extended to generalize on graph
structured data and already had much success on several graph related tasks.

In a Graph Attention Network (GAT) [56][55], when aggregating information
from the neighbors, a weight factor is assigned to each message.

0= o T aWOn) 52
ueN (v)

In GCN and in the GraphSAGE the importance weight factor was defined ex-
1

plicitly as RO
In a GAT network, the graph attention mechanism “learns” the different
weight factors as the model is trained. The idea is that the neural network
should devote more computing power on that small but important part of the
data. Implicitly specifying different weights to different nodes in a neighborhood.
Lets assume that the attention mechanism produces a weight factor a,,, which

denotes the importance of node u to node v, by first computing attention coef-

37

3.4. Graph Attention Networks Chapter 3. Graph Neural Networks

concat/avg /7
R

Figure 3.5: At left the attention mechanism 3.28 illustrated. At right an illus-
tration of multihead attention (with K = 3 heads) by node one’s neighborhood,
Velickovi¢ et al. [56]

ficients across pairs of nodes based on their messages:

vy = a(WORID WO =1 (3.28)

u

The form of the attention mechanism a a can be a one layer linear network
with trainable parameters.

3.29
Cou = Linear(Concat(W(l)hg_l), W(l)hq(f_l))) |)

Normalizing the coefficients using a SoftMax so that) JinN(v) Gou = 1 cal-
culates the final attention weight:

exp (eyy)
Ay = (3.30)
ZkeN(v) exp(€eu)
The weighted sum and the embedding at layer [is calculated as :
W) =o(> a WORI) (3.31)

u€eN (v)

An example is shown in fig 3.6 for node A the embedding will be computed
as :

38

Chapter 3. Graph Neural Networks 3.4. Graph Attention Networks

(a) Attention coefficients (b) Attention a

Figure 3.6: Attention Mechanism Example, Stanford CS224W

eap = a(WORL™D WORL)y (3.32)
AAB = exp(eAB) (3-33)
exp(aap) + exp(aac) + exp(aap)
hA(l) — U(QABW(l)h(é_l) + CLACW(l)h(Clv_l) + aADW(l)h(Dl_1)> (334)

The learnable parameters of the attention mechanism as shown in figure 3.29
will be learned along with the weight parameters of the graph neural network
wo

To stabilize the learning process of self-attention, a multi-head attention
is used. .K independent attention mechanisms, known as “heads” compute
embeddings with different random initializations for their parameters. Then,
the calculated embeddings are concatenated or averaged to produce the final
output:

O =I5, Y alwert-vpt-n) (3.35)
ueN (v)
is an example of concatenation.

041(]2) are the normalized attention coefficients computed by the k-th attention
mechanism (a*), and W) is the corresponding input linear transformation’s
weight matrix. Note that for this setting, h’ € REF,

Using an attention mechanisms provides a series of benefits: Allowing im-
plicitly the specification of different importance values to different nodes, while
being computationally efficient, attentional coefficients computation and aggre-
gation can be parallelized.

Fixed number of parameters and sparse matrix operations are memory ef-
ficient. The mechanism attends over local neighborhood structure.lt is a pair

39

3.4. Graph Attention Networks Chapter 3. Graph Neural Networks

edge wise mechanism that does not depend on the global graph structure, thus
it can provide inductive capabilities.

40

Chapter 4

Model

4.1 Affiliation Graph Model

One important aspect, of how networks are formed, is the triadic closure, mean-
ing that similar nodes tend to create embedded structures, like clusters. In the
World Wide Web, pages related to a common subject are more densely linked
with each other [15]. In biological networks proteins that share a common func-
tional pattern interact with each other more often [19],[33].

Strong ties/edges

/ Weak ties/edges

Figure 4.1: Granoveter, the strength of weak ties, Wikipedia

Mark Granoveter [21] described edges in a graph, from a structural point
of view. Structurally embedded edges are considered strong edges. While
long range edges connecting different parts of the network are considered weak.
Through an information point of view, structurally embedded edges are heav-
ily redundant in terms of information flow, while long range edges facilitate
the flow of information from different parts of the network. Many publications
define communities as groups of nodes, that have more internal than external
edges [16]. Granoveter’s theory was much later tested by [43] and validated on
a FEuropean cell phone network graph.

41

4.1. Affiliation Graph Model Chapter 4. Model

Many methods to detect network modules were developed based on this idea
of weak and strong connections among nodes, meaning that graphs consist of
dense;y connected clusters that are linked by a smaller number of weak edges.
Graph partitioning [49], Modularity [42] or Betweenness centrality [20] based
methods are usually based in this assumption.

The assumption that community overlaps are less densely connected than
the surrounding communities(the non-overlapping parts), figure 4.2 (b) assumes
that the community overlaps are less densely connected, than the communities.
This would mean that for a pair of nodes with increasing number of common
communities, the possibility of them being connected is decreasing. One of the
reasons this remained unnoticed for a long time was the limited access in the
past to datasets with ground-truth structure.

oty &2 &>

(a) (b) (©

Figure 4.2: View of two non overlapping (a) communities,and two overlapping
communities, sparse & dense, Yang et al. [62]

Yang, Jaewon and Leskovec [62] with the use of ground-truth community
datasets, showed that on the contrary, when the number of common communities
two nodes share, the higher the probability will be that they are connected 4.2
(c). This observation explains why several methods fail to detect dense overlaps
[1], [45] [2]. Methods based on this assumption would mistakenly identify dense
overlaps as a separate community or join together two overlapping communities
to one. The Affiliation Graph Model (AGM [62] can produce graphs, where
the overlapping communities, can have densely connected overlaps.

Considering a graph G with:

e Nodes V| edges E, communities C', memberships M

e Each community has a single probability p.

According to the AGM model given the parameters (V,C, M, p.), a pair
of nodes that both belong to a community C will connect to each other by
probability p..

42

Chapter 4. Model 4.1. Affiliation Graph Model

Figure 4.3: Affiliation Graph Model, Yang et al. [62]

Two nodes u,v that belong to multiple common communities M, (| M,,
where M, and M, the communities each node belongs to, will have a higher
probability to form an edge between them.

pluv)=1- [@-p) (4.1)

CEMu n Mv

The AGM model describes a variety of community structures, that can be
overlapping or not and even nested.

The AGM model , can be relaxed with the use of a node community mem-
bership strength function. [54, 63, 72]. Where F,c defines the membership
strength of node v to community C. The model, defines the community mem-
berships, as a bipartite graph (e.g Figure 4.4) where each node u is connected
to a community A by an edge of a membership strength F, 4.

Figure 4.4: Membership bipartite graph, Yang, Jaewon, Leskovec [63]

43

4.1. Affiliation Graph Model Chapter 4. Model

The probability for a pair of nodes to be connected, under a community C,
depends on the value of their non-negative membership strengths.

Pc(uv U) =1- exp(_Fuc . Fvc) (42)

Figure 4.5: Affiliation membership bipartite graph, Stanford CS224W

The total probability, that the two nodes are connected is.

P(u,v) =1-[](1 = Pe(u,v)) (4.3)

cer

where C' € I', and I' a set of all the communities.

The overall probability then that the two nodes are connected is calculated
in r4.4.

P(u,v) =1-— H(l — Pe(u,v))

cel
=1- H(_Fuc'Fvc)
Cerl
4.4
=1—exp(— Z Fyue - Fye) (4.4)
CinIl

=1-exp(— F/F,)
——
dot product
where F,: a vector of {F,c}ocp and Fy: a vector of {Fyc} e, with the node’s
membership strength values to all communities.
Given the affiliations F € RJ;TOXC the adjacency matrix is produced, with

each A,, entry being sampled with mutual Independence and following the same
probability distribution.

Ay ~ Bernoulli(1 — exp(—Fye - Fie)) (4.5)

44

Chapter 4. Model 4.2. Graph likelihood

4.2 Graph likelihood

The AGM model can be used in a reverse way. To infer the parameters of the
AGM model, while maximizing the probability that the graph was generated by
the model, would mean to infer the community structure [62].

), = T

Figure 4.6: Graph fitting, Stanford CS224W

The likelihood to maximize is P(G|F'), optimizing the variable F, using

gradient descent.
arg maxP(G|F) (4.6)
F

Given G and F, the likelihood that F' generated G is calculated as :

P@GIF)= [Pwwv) [] - P,wv) (4.7)

(u,w)EG (u,0)¢G

where P(u,v) if the probability the nodes u,v are connected.

4.3 BigClam, Cluster Affiliation Model for Big
Networks

The graph likelihood [63] will be :

P(G|F) = H P(u,v) H (1 = P(u,v))

(u,v)eG (u,0)¢G (4 8)
= H (1 —exp(—Fng)) H eXp(_FEFv)
u.veE uvgE

45

4.3. Cluster Affiliation Model for Big networks Chapter 4. Model

The Maximum log likelihood objective is :

log(P(G|F)) = log(|| (1 —exp(=F[F,)) [] exp(—FIF.))

u,veER u,vg¢E
= Z log(1 — eXp(_Fng)) - Z (FEFU)
u,velR u,v¢ E

=1(f)

The optimization problem to solve:
arg max log(P(G|F))
F

The gradient descent approach used is shown in 1.

(4.9)

(4.10)

Algorithm 1 BigCLAM

F <+ random initialization
repeat
for u € V do
Update the membership F, for node u,
while fixing the memberships of all other nodes.
Do gradient descent to increase log-likelihood.
end for
until Convergence

More specifically a block coordinate gradient descent algorithm is used [26,
35], where the memberships of one node are updated, while fixing the member-
ship of all others. Fixing all F,,, the problem of updating F;,, becomes a convex

optimization problem. To solve the following problem for all nodes u:

arg maxl/(F,)
Fy>0

where

I(F.) = log(P(G|F,)) =) log(1 —exp(~F/F,)) = » (F/F,)
u,veEE u,v¢ E

The gradient of the loss function will be:

exp(—FTF,
ViE) = Y (1_61;(1)(_}3&))-&— SR

UEN(u)

46

(4.11)

(4.12)

(4.13)

Chapter 4. Model 4.4. Neural Overlapping Community Detection

When the number of nodes reaches millions, this process is not very scalable.
Computing [(F,) and VI(F,) takes linear time O(N). The second term in
equation 4.13, is very expensive to compute, because it sums over all non -
neighbors of node wu.

Z F, (4.14)

By calculating) F, just once, and caching it, then updating the two other
terms in 4.15, the time to compute each step is reduced to O(|N(,|). This
caching trick means that updating F, takes near-constant time.

Y F,=) F,-F.— Y F (4.15)
v)

vEN(w) vEN(

4.4 Neural Overlapping Community Detection

Neural Overlapping Community Detection (NOCD) [50] is also based on the
AGM model, combining the probabilistic view with representation learning.

log(P(G|F)) =log([] (1 = exp(=F[F,)) [] exp(~F.F.))

u,veE u,v¢E
= Y log(l —exp(—F[F,)) = Y _ (F,F,) (4.16)
uveR u,v¢E

=1(f)

Key idea of the proposed method is the maximization of the graph log likeli-
hood, calculated in equation 4.16 as it was calculated in section 4.3, by calculat-
ing the node community membership matrix F, with a Graph Neural Network
(GNN), using the adjacency matrix as an input or the node feature matrix X if
one is available.

The membership matrix F' is produced through a GCN.

F := GNNy(A, X) (4.17)
The negative log-likelihood, aiming to minimize shown in 4.18

~log(P(GIF) = = " log(1 = exp(~FTF) + 3 (FTE) (418)

u,veEE u,v¢E

47

4.4. Neural Overlapping Community Detection Chapter 4. Model

Node
attributes

0o0oBE000E0
CommOoOmon
[S[mins | [S]ws])
OmoDOm0Do0
00OB0000e0

- 1q;xlogp(A|F)

=

Il
o o
OEO0O0O0EEO0

Inference Predicted Reconstruction
Input graph network communities loss

Figure 4.7: Neural Overlapping Community Detection, Shchur [50]

Most real-world networks tend to be extremely sparse % < 1, meaning that
the second term in 4.18 will contribute the largest part to the loss function. To
Balance the two terms, uniform distributions of existing or non-existing edges
are considered, then the loss is calculated in 4.19.

_E(F) = _Eu,vaE [log(l - eXp(_FuTFv>>:| +]EU,UNPE [(Fngﬂ (419)

where Pr and Py are uniform distributions over edges and non-edges respec-
tively.

Instead of optimizing the F affiliation array directly as was done in BigClam,
in NOCD the parameters #* that minimize the loss function, are optimized.

argminC(GNNy(A, X)) (4.20)
0

Using a GNN to calculate the affiliation matrix(F') offers plenty of advan-
tages.

A GNN will output similar community affiliation vectors to neighboring
nodes, due to an inductive bias, improving the quality of the predictions.

Additionally, the node features matrix X can be used as an input into the
model. If the node features matrix X is not available, the adjacency matrix A
can be used as input [59].

Also , the GNN can predict communities inductively for nodes not known at
training time.

the first layer

N /A_/ﬁ
F:= GNNy(A,X) = 0 (Ao (AXWO W) (4.21)

(.

the second layer

48

Chapter 4. Model 4.5. Overlapping Community Detection using GAT

In more detail NOCD uses a two-layer GCN.

F := GCNy(A,X) = ReLu(ARe Lu(AXW1)W) (4.22)

where A =]5_11&, is the normalized adjacency matrix, A=A +1Iy is the
adjacency matrix with self loops, and D;; = > i flij is the diagonal degree matrix.

If the feature matrix X € RV*P is used as an input, then for a hidden layer
with H feature maps, the parameter matrices to optimize will be W) e RP*H
for the first layer, and W@ € R¥*¥ for the final one.

Using sparse-dense matrix multiplications, the computational complexity of
evaluating 4.22 is O(M DHF'), that is linear in the number of graph edges M.

Batch normalization is used after the first convolutional layer, and Lo reg-
ularization is applied to all weight matrices. Detailed information about the
parameters of the GCN are described in Section 5.3.

The caching trick used in BigClam can also be applied here, reducing the
complexity of operations from O(N?) to O(N + M). Considering that M < N
this leads to great performance optimization.

Instead of computing the loss function using all entries of the adjacency
matrix A the model is further optimized by calculating the loss function just for a
sample mini batch S of edges and non-edges at each training epoch. Experiments
have proved that training using the stochastic loss, converges to the same result.
Noting here that the full adjacency matrix is used inside the GCN.

After optimizing the loss function, a threshold parameter p = 0.5 is defined.
Every node is assigned to a community C if Fyc > p.

4.5 Overlapping Community Detection using
Graph Attention Networks

Here we propose the addition of an attention mechanism to the graph neural
network, of NOCD [50], in order to focus on the most important information
gathered from the nodes in the neighborhood.

Attention is inspired by cognitive attention, so that different importance
values can be assigned to different parts of the data. Which part of the data
is important is “learned” through training, while the neural network devotes
more computing power on that small but important part, specifying arbitrary
importance to different neighbors of each node in the graph.

The key idea behind Graph Attention Networks is to compute each node’s
hidden representations, by attending over its neighbors, following a self-attention
strategy. While GCN equally treats the neighbors of the target node 4.23,

49

4.5. Overlapping Community Detection using GAT Chapter 4. Model

GAT networks[56] utilize a self attention mechanism to allow the assignment of
different weights to nodes in the same neighborhood 4.24.

An embedding calculate for not v at layer 1, explicitly assigning equal im-
portance to all nodes.

1

O _ DOy =1

h) =o(E N WWh, ") (4.23)
ueN (v) ——

fixed importance

In a GAT layer nodes attend over their neighborhood’s message, implicitly
specifying different weights to different nodes in the neighborhood.

WO = o Z o WOh, (=) (4.24)
uEN (V) attention weights

where «,, is the attention weights “learned” by the attention mechanism:
As described in section 3.4 the weight coefficients, are calculated:

b

= LeakyReLu(a® V" (WOn, (=D |[|[WOR,) (4.25)

The attention coeflicients will be:

O]
(h(;lqz = eXP(evu> 0 (426)
>ken, eXP(€y;)
and the embeddings at layer [are computed:
W =o(> al,Whh,) (4.27)

u€N (v)

Adding that the time complexity of a GAT attention head computing an
embedding of size F' features, as proposed by [56], is expressed as O(NDF +
MF), where D is the number of input features and N, M the number of nodes
and edges. The complexity is about equal with the complexity of the GCN
network[59].

The configuration of the network is defined by two graph attention layers.
Also batch normalization is used after the first convolutional layer, and L4 regu-
larization is applied to all weight matrices. Detailed information about the rest
of the hyper-parameters of the GAT network are described in the experiment
description at Section 5.4.

The model is further optimized by calculating the Loss function just for a
sample mini batch S of edges and non-edges at each training epoch.

50

Chapter 4. Model 4.5. Overlapping Community Detection using GAT

After the loss function is optimized a threshold parameter p = 0.5 is defined.
Every node is assigned to a community C if Fyc > p.

51

Chapter 5

Experiments description

In order to evaluate the proposed model’s performance, an experiment was con-
ducted. A set of different datasets with ground truth community structure, was
used to train the model one at a time. The model training was repeated 10 times
for each dataset and their results averaged along with the standard deviation
observed.

5.1 Datasets

A collection of real-world graph datasets was used in our experiments. Face-
book[38] is a collection of small ego-networks from the Facebook graph with a
number of nodes ranging from 50 to 800 .

Four larger real world datasets were used, with reliable ground truth overlap-
ping community information and node attributes. Chemistry, Computer Sci-
ence, Medicine, Engineering are co-authorship networks, constructed from
the Microsoft Academic Graph [24]. Communities correspond to research ar-
eas, and node attributes are based on keywords of the papers by each author.
Statistics for all the datasets processed through the experiments, are presented
in Table 5.1.

5.2 Implementation

The code implementation is based on the NOCD code [50]. The GAT network
is implemented using Pytorch and the PyTorch Geometric libraries.

52

Chapter 5. Experiments description 5.3. GCN configuration

Dataset Network type N M D C
Facebook 348 Social 224 3.2K 21 14
Facebook 414 Social 150 1.7K 16 7
Facebook 686 Social 168 1.6K 9 14
Facebook 698 Social 61 270 6 13
Facebook 1684 Social 786 14.0K 15 17
Facebook 1912 Social 747 30.0K 29 46
Computer Science Co-authorship 22.0K 96.8K 7.8K 18
Chemistry Co-authorship 354K 157.4K 49K 14
Medicine Co-authorship 63.3K 810.3K 5.5K 17
Engineering Co-authorship 14.9K 493K 4.8K 16

Table 5.1: Dataset statistics. K stands for 1000

5.3 GCOCN configuration

A two layer Graph Convolutional Network (GCN)[59] was used for all experi-
ments. Specifically:

F := GNNy(A,X) = ReLu(ARe Lu(AXW®)W ?) (5.1)

where A = DA, is the normalized adjacency matrix, A = A + Iy is the
adjacency matrix with self loops, and D;; = > i fL-j is the diagonal degree matrix.

The hidden layer size is set at 128 and the final layer output is set at size
equal with the number of ground truth communities C.

Batch normalization is applied after the first graph convolution layer and
L regularization is applied to all the weight matrices. The architecture hyper
parameters were optimized using only the Computer Science dataset.

5.4 GAT configuration

A two layer Graph Attention Network[56] was used for all the experiments.

The first layer consists of K = 2 heads computing embeddings of size F' =
128. The average of the two heads results is calculated and finally passed through
a ReLU non-linearity [40].

The second layer consists of K = 2 heads of size 7/ = C. The average of
the two heads results is calculated and finally passed through another ReL.U
non-linearity.

Experiments took place trying different values for the hidden layer size of
16, 32, 64. Also tried the head concatenation instead of averaging them. But

33

5.5. Hyper parameters Chapter 5. Experiments description

the choices of hidden layer size equal to 128 and averaging of the heads lead to
best results.

5.5 Hyper parameters

The two models share the rest of hyper parameters:
e Batch normalization is applied after the first graph layer.
e Dropout with 50% keep probability is applied before every layer.

e Weight decay is applied to both weight matrices with regularization strength
of A =1072.

e The feature matrix X is Lo normalized before input.

5.6 Training

The training was performed using the Adam optimizer [32], with the default
parameters. Every 50 epochs the full training loss is computed, and if no im-
provement happened for the last 500 iterations, or after 5000 epochs, the training
stops.

5.7 Assigning nodes to communities

In order to compare the detected community partitionings, to the ground truth
community structure, the predicted continuous community affiliations F' are
transformed into binary community assignments. Each node u is assigned to
a community c if its affiliation strength F,. is above a fixed threshold p. The
threshold p = 0.5 like all other hyperparameters, was set following the hyperpa-
rameters set in NOCD [50].

5.8 Normalized Mutual Information

Normalized Mutual Information (NMI), is a measure used in community detec-
tion, to evaluate the partitioning performance. It is often considered because of
its comprehensive meaning and its ability to compare two partitions of different
size.

Considering the community assignments {z;},{y;} where z;,y; denote the
cluster labels of vertex 7 in partitions X and) one assumes that that the labels

o4

Chapter 5. Experiments description 5.8. Normalized Mutual Information

x and y are values of two random variables X and Y, with joint distribution,
P(z,y), where

P(z,y) =P(X ==Y =y) =

X
where “z,
n

respectively.

, nfly are the sizes of the clusters labeled by x, y and their overlap

3 |

NMI derives from entropy in information theory. Where for a discrete ran-
dom variable X, its Shannon entropy is defined as :

ZP)log P(x
ZP)log P(y

Similarly their joint entropy is defined as :

=~ Pla,y)log(P(z,y)) (5.2)

and the conditional entropy ox X given Y is :

H(X|Y) = - P(x,y)log P(z[y) (5.3)

T,y

Then the mutual information is calculated as:

P(z,y)
I(X:Y)=> Plx,y) 1ogW (5.4)
T,y y
In [12] Danon et al. defined its normalization as :
20(X 1Y)
Lnorm(X,Y) = NMI = 2.5
() H(X)+ H(Y) (5:5)

95

5.8. Normalized Mutual Information Chapter 5. Experiments description

where

(X :Y)=H(X)— H(X|Y) (5.6)

NMI has become the most widely used index for evaluation of clustering and
community detection methods.

Since then many more [36]have proposed different definitions of NMI dtrying
to increase its ability to assign importance to small clusters most efficiently.

In [34], Lancichinetti defined NMI as:

Definition 5.8.1.

1 H(X|Y) H(Y|X)
_§(HM3 H(Y)

NMI =1) (5.7)

where

e H(X),H(Y) are the marginal entropies, regarded as a measure of uncer-
tainty about a random variable.

e H(X|Y) and H(Y|X) are the conditional entropies.The conditional en-
tropy H(Y|X) could be described as the amount of uncertainty in Y which

remains, after X is known”.

e H(X,Y) is the joint entropy, that intuitively measures how much knowing
one of these variables reduces uncertainty about the other.

g <0

Figure 5.1: Mutual information and variation of information. The total infor-
mation H(X,Y) = H(X|Y)+ [(X :Y)+ H(Y|X), Aaron F. McDaid [39]

In Figure 5.1 the following useful identities, are visualized.

56

Chapter 5. Experiments description

5.8. Normalized Mutual Information

H(X)=I(X:Y)+HX|Y)

H(Y)=I(X:Y)+ H(Y|X)
H(X,Y)=H(X)+ H(Y|X)
H(X,Y)=H(Y)+ H(X|Y)

mutual information

— - %
HX,)Y)= T(X:Y) +HX|Y)+HY|X)

The mutual information is defined as:

I(X:Y):=

DN —

variation of information

[H(X) ~ H(X|Y) + H(Y) ~ H(Y|X)

(5.8)

The following sequence of inequalities [57] provide different options for the

normalization factor.

MecDaid et al. in [39] noticed that when the number of communities is getting
smaller, and one cluster is much bigger or complicated than the other, then the
overlap between in 5.1 will be quite large, almost the size of the smaller circle.
As a result, one of the terms inside the brackets in 5.7 will be small and will
bring the NM Iz, to 0.5. This value is not correct as we would expect a value

closer to 0.

MecDaid et al. [39] proposed the following NMI definition that is calculated

during the evaluation.

Definition 5.8.2.

VH(X) + H(Y) — HX|Y) — HY|X)

NMI0.(X,Y) = 5

max(H(X),H(Y))

(5.10)

o7

5.9. Experimental setting Chapter 5. Experiments description

5.9 Experimental setting

Both models were trained on a single K80 GPU with 12GB of RAM at a time.
Both models were implemented using PyTorch and PyTorch Geometric. Our
code implementation is based on the code implementation of [50].

o8

Chapter 6

Results and discussion

6.1 Recovery performance

The performance results of the experiments are shown on Table 6.1. The ability
of the two models to recover the ground-truth communities is measured in NMI.
All results are averaged over 10 initializations and the standard deviation of the
NMI values is calculated.

For the larger co-authorship datasets, Chemistry, Computer Science,
Medicine, Engineering, a much better performance is achieved when the
feature matrix is used as an input for both models. The larger sets have a much
larger dimension of node feature vectors also, that seems to be better handled
by the GCN and the GAT neural networks.

Our proposed method using a GAT network achieves the best performance
on 5 out of 10 datasets. Especially the best performance is achieved for three
out of four larger co-authorship datasets. Particularly for the 4 co-authorship
datasets, a great improvement in GAT’s performance is achieved when the node
feature matrix is used as an input.

For the Engineering dataset an improvement of almost 20% in NMI is achieved
for our proposed method, when the node feature matrix is used as an input ver-
sus the use of the adjacency matrix as an input. The same increase is observed
also for the baseline model using a GCN, but the performance gain is bigger
for our proposed method. We can conclude that when a larger dimension node
feature is used a s an input it is better handled by the GAT proposed method
and it achieves an increase in community structure recovery when compared to
the baseline GCN model.

For the smaller Facebook datasets, where the node feature dimension is
not very big, a similar improvement is not observed. For these datasets best
performance is produced when the adjacency matrix is used as an input.

29

6.2. Scalability Chapter 6. Results and discussion

The standard deviation of the NMI value measured ,over 10 different initial-
izations, is smaller for our proposed GAT model. This indicates that the GAT

model is a bit more stable.

Adjacency Attributes

Dataset GCN GAT GCN GAT

Facebook 348 309 +14 3344+35 294+26 30.3+£29
Facebook 414 52.1 + 3.5 5H506+19 51.04+45 5H1.3+46
Facebook 686 17.7+1.3 171 +0.8 160+ 1.9 15.3 £ 2.1
Facebook 698 41.2 £3.7 4514+ 3.2 369+64 31.1+9.1
Facebook 1684 39.6 £ 1.5 33.7+30 263+15 302+27
Facebook 1912 43.2 £0.8 395 +£1.7 33.0x36 347429
Chemistry 190+26 1924+11 413+30 41.8+ 2.3
Computer Science 29.9 £1.8 296+ 14 46.5 +3.4 46.1+1.6
Engineering 194410 1524+14 348+34 35.6+ 1.3
Medicine 274 +09 236+27 3494+34 352+ 2.7

Table 6.1: Recovery of ground-truth communities, measured by NMI (in %)
with standard deviation. Results are averaged over 10 initializations

6.2 Scalability

The graph attention neural overlapping community detection model is very scal-
able, as shown on table 6.2. The Medicine dataset (810K edges), the largest
of the datasets, is trained in less than 3 minutes, on a single GPU with 12GB
RAM. The time performance is a little bit higher when compared to the NOCD
method, without affecting the overall scalability.

60

Chapter 6. Results and discussion

6.2. Scalability

Adjacency Attributes
Dataset GCN GAT GCN GAT
Facebook 348 6.729 9.395 6.463 9.091
Facebook 414 6.096 8.733 6.132 8.958
Facebook 686 6.531 9.032 6.509 9.072
Facebook 698 7.002 9.166 6.745 9.134
Facebook 1684 11.633 9.745 7.043 9.668
Facebook 1912 6.895 14.426 11.186 15.385
Chemistry 26.078 43.094 29.209 71.867
Computer Science 20.067 31.075 28.482 79.655
Engineering 13.031 19.183 15.766 34.84
Medicine 78.674 169.594 74.745 114.041

Table 6.2: Real time of execution, measured in seconds. Results are averaged

over 10 initializations

61

Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we analyzed a model that combines successfully a probabilis-
tic view and representation learning, with deep graph geometric learning for
the discovery of overlapping community detection. The NOCD model was ex-
tended with the use of a Graph Attention mechanism . Evaluation experiments
were performed to evaluate our proposed extension’s performance compared to
the baseline’s. The results confirmed both model’s ability to discover graph
overlapping community structure and it’s scalability. When a Graph Attention
mechanism is used, the model produces an increase in performance and stability,
especially for larger networks, with higher dimension node feature datasets.

7.2 Future work

A number of questions to be answered in the future. One interesting question
that is raised, after experimenting with Graph Attention Networks is whether the
quantification of the attention coefficients relevance to the community structure,
could be helpful on creating interpretability analysis of the model.

The assessment of the models inductive performance [22] is an interesting
area of future work. For example the performance of induction on one network
while trained on another. Or to a wider part of the graph, when trained on
a smaller one. Inductive performance could also be evaluated on dynamically
evolving networks.

So far, some interesting improvements to graph attention networks have
been proposed. Further tests with graph attention modifications for example
proposed in , [6, 69] could be performed.

For most of the overlapping community methods, a most crucial issue that

62

Chapter 7. Conclusions and future work 7.2. Future work

remains open, is their dependence on explicitly declaring the number of commu-
nities K as an input. In real world datasets, there is no prior knowledge of the
number of communities that exist. Research should be focused on the question
of how to determine the number of communities hidden in a graph.

63

Bibliography

Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. “Link communities
reveal multiscale complexity in networks”. In: nature 466.7307 (2010),
pp. 761-764.

Edo M Airoldi, David Blei, Stephen Fienberg, and Eric Xing. “Mixed
membership stochastic blockmodels”. In: Advances in neural information
processing systems 21 (2008).

Arash A Amini, Aiyou Chen, Peter J Bickel, and Elizaveta Levina. “Pseudo-
likelihood methods for community detection in large sparse networks”. In:
The Annals of Statistics 41.4 (2013), pp. 2097-2122.

Earl R Barnes. “An algorithm for partitioning the nodes of a graph”. In:
SIAM Journal on Algebraic Discrete Methods 3.4 (1982), pp. 541-550.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. “Fast unfolding of communities in large networks”. In: Journal
of statistical mechanics: theory and experiment 2008.10 (2008), P10008.

Shaked Brody, Uri Alon, and Eran Yahav. “How attentive are graph at-
tention networks?” In: arXiv preprint arXiv:2105.14491 (2021).

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. “Spec-
tral networks and locally connected networks on graphs”. In: arXww preprint
arXiw:1812.6203 (2013).

Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. “A com-
prehensive survey of graph embedding: Problems, techniques, and applica-
tions”. In: IEEE Transactions on Knowledge and Data Engineering 30.9
(2018), 1616-1637.

Junyang Chen, Zhiguo Gong, Jigian Mo, Wei Wang, Cong Wang, Xiao
Dong, Weiwen Liu, and Kaishun Wu. “Self-training enhanced: Network
embedding and overlapping community detection with adversarial learn-
ing”. In: IEEE Transactions on Neural Networks and Learning Systems
(2021).

64

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Zhengdao Chen, Xiang Li, and Joan Bruna. “Supervised community detec-
tion with line graph neural networks”. In: arXww preprint arXiv:1705.08415
(2017).

Aaron Clauset, Mark EJ Newman, and Cristopher Moore. “Finding com-
munity structure in very large networks”. In: Physical review E 70.6 (2004),
p. 066111.

Leon Danon, Albert Diaz-Guilera, Jordi Duch, and Alex Arenas. “Com-
paring community structure identification”. In: Journal of statistical me-
chanics: Theory and experiment 2005.09 (2005), P0O900S.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convo-
lutional neural networks on graphs with fast localized spectral filtering”.
In: Advances in neural information processing systems 29 (2016).

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. “A
density-based algorithm for discovering clusters in large spatial databases
with noise.” In: kdd. Vol. 96. 34. 1996, pp. 226-231.

Gary William Flake, Steve Lawrence, and C Lee Giles. “Efficient identi-
fication of web communities”. In: Proceedings of the sizth ACM SIGKDD

international conference on Knowledge discovery and data mining. 2000,
pp- 150-160.

Santo Fortunato. “Community detection in graphs”. In: Physics reports
486.3-5 (2010), pp. 75-174.

Santo Fortunato and Darko Hric. “Community detection in networks: A
user guide”. In: Physics reports 659 (2016), pp. 1-44.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. “Magnn: Metapath
aggregated graph neural network for heterogeneous graph embedding”. In:
Proceedings of The Web Conference 2020. 2020, pp. 2331-2341.

Anne-Claude Gavin, Patrick Aloy, Paola Grandi, Roland Krause, Markus
Boesche, Martina Marzioch, Christina Rau, Lars Juhl Jensen, Sonja Bas-
tuck, Birgit Diimpelfeld, et al. “Proteome survey reveals modularity of the
yeast cell machinery”. In: Nature 440.7084 (2006), pp. 631-636.

Michelle Girvan and Mark EJ Newman. “Community structure in social
and biological networks”. In: Proceedings of the national academy of sci-
ences 99.12 (2002), pp. 7821-7826.

Mark S Granovetter. “The strength of weak ties”. In: American journal
of sociology 78.6 (1973), pp. 1360-1380.

65

28]

[29]

[30]

31]

32]

[33]

Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation
learning on large graphs”. In: Advances in neural information processing
systems 30 (2017).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770-778.

Drahomira Herrmannova and Petr Knoth. “An analysis of the microsoft
academic graph”. In: D-lib Magazine 22.9/10 (2016), p. 37.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.

“Stochastic blockmodels: First steps”. In: Social networks 5.2 (1983), pp. 109—

137.

Cho-Jui Hsieh and Inderjit S Dhillon. “Fast coordinate descent methods
with variable selection for non-negative matrix factorization”. In: Proceed-
ings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. 2011, pp. 1064-1072.

Sergey loffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”. In: Interna-
tional conference on machine learning. PMLR. 2015, pp. 448-456.

Yuting Jia, Qingin Zhang, Weinan Zhang, and Xinbing Wang. “Commu-
nitygan: Community detection with generative adversarial nets”. In: The
World Wide Web Conference. 2019, pp. 784-794.

Baoyu Jing, Chanyoung Park, and Hanghang Tong. “Hdmi: High-order
deep multiplex infomax”. In: Proceedings of the Web Conference 2021.
2021, pp. 2414-2424.

Brian Karrer and Mark EJ Newman. “Stochastic blockmodels and commu-
nity structure in networks”. In: Physical review E 83.1 (2011), p. 016107.

Brian W Kernighan and Shen Lin. “An efficient heuristic procedure for
partitioning graphs”. In: The Bell system technical journal 49.2 (1970),
pp- 291-307.

Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: ICLR (Poster). 2015.

Nevan J Krogan, Gerard Cagney, Haiyuan Yu, Gouqing Zhong, Xinghua
Guo, Alexandr Ignatchenko, Joyce Li, Shuye Pu, Nira Datta, Aaron P
Tikuisis, et al. “Global landscape of protein complexes in the yeast Sac-
charomyces cerevisiae”. In: Nature 440.7084 (2006), pp. 637-643.

66

[39]

[40]
[41]

[42]

[43]

[44]

[45]

Andrea Lancichinetti and Santo Fortunato. “Community detection al-
gorithms: a comparative analysis”. In: Physical review E 80.5 (2009),
p. 056117.

Chih-Jen Lin. “Projected gradient methods for nonnegative matrix fac-
torization”. In: Neural computation 19.10 (2007), pp. 2756-2779.

Xin Liu, Hui-Min Cheng, and Zhong-Yuan Zhang. “Evaluation of commu-
nity detection methods”. In: IEEE Transactions on Knowledge and Data
Engineering 32.9 (2019), pp. 1736-1746.

Linhao Luo, Yixiang Fang, Xin Cao, Xiaofeng Zhang, and Wenjie Zhang.
“Detecting communities from heterogeneous graphs: A context path-based
graph neural network model”. In: Proceedings of the 30th ACM Inter-
national Conference on Information € Knowledge Management. 2021,
pp- 1170-1180.

Julian Mcauley and Jure Leskovec. “Discovering social circles in ego net-
works”. In: ACM Transactions on Knowledge Discovery from Data (TKDD)
8.1 (2014), pp. 1-28.

Aaron F McDaid, Derek Greene, and Neil Hurley. “Normalized mutual
information to evaluate overlapping community finding algorithms”. In:
arXiv preprint arXiv:1110.2515 (2011).

Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve re-
stricted boltzmann machines”. In: Ieml. 2010.

Mark EJ Newman. “Fast algorithm for detecting community structure in
networks”. In: Physical review E 69.6 (2004), p. 066133.

Mark EJ Newman. “Modularity and community structure in networks”.
In: Proceedings of the national academy of sciences 103.23 (2006), pp. 8577—
8582.

J-P Onnela, Jari Saramaki, Jorkki Hyvonen, Gyorgy Szabd, David Lazer,
Kimmo Kaski, Janos Kertész, and A-L Barabdsi. “Structure and tie strengths
in mobile communication networks”. In: Proceedings of the national academy
of sciences 104.18 (2007), pp. 7332-7336.

Aris Pagourtzis, Dora Souliou, Petros Potikas, and Katerina Potika. “Over-
lapping community detection via minimum spanning tree computations”.
In: 2020 IEEE Sizth International Conference on Big Data Computing
Service and Applications (BigDataService). IEEE. 2020, pp. 62-65.

Gergely Palla, Imre Derényi, I1lés Farkas, and Tamas Vicsek. “Uncovering
the overlapping community structure of complex networks in nature and
society”. In: nature 435.7043 (2005), pp. 814-818.

67

[46]

[49]

[50]

[51]

[52]

[53]

Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. “Unsu-
pervised attributed multiplex network embedding”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 5371—
H378.

Pascal Pons and Matthieu Latapy. “Computing communities in large net-
works using random walks”. In: International symposium on computer and
information sciences. Springer. 2005, pp. 284-293.

Martin Rosvall and Carl T Bergstrom. “Maps of random walks on com-
plex networks reveal community structure”. In: Proceedings of the national
academy of sciences 105.4 (2008), pp. 1118-1123.

Satu Elisa Schaeffer. “Graph clustering”. In: Computer science review 1.1
(2007), pp. 27-64.

Oleksandr Shchur and Stephan Glinnemann. “Overlapping community de-
tection with graph neural networks”. In: arXwv preprint arXiv:1909.12201
(2019).

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and
Pierre Vandergheynst. “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains”. In: IEEFE signal processing magazine 30.3 (2013), pp. 83-98.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: a simple way to prevent neural networks
from overfitting”. In: The journal of machine learning research 15.1 (2014),
pp- 1929-1958.

Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin
Hu, Cecile Paris, Surya Nepal, Di Jin, et al. “A comprehensive survey
on community detection with deep learning”. In: IEEE Transactions on
Neural Networks and Learning Systems (2022).

Adrien Todeschini, Xenia Miscouridou, and Francois Caron. “Exchange-
able random measures for sparse and modular graphs with overlapping
communities”. In: arXiv preprint arXiv:1602.02114 (2016).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you
need”. In: Advances in neural information processing systems 30 (2017).

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. “Graph attention networks”. In: arXiv
preprint arXiv: 1710.10903 (2017).

68

[57]

[58]

[60]

[61]

[62]

[63]

[64]

[66]

Nguyen Xuan Vinh, Julien Epps, and James Bailey. “Information theoretic
measures for clusterings comparison: is a correction for chance necessary?”
In: Proceedings of the 26th annual international conference on machine
learning. 2009, pp. 1073-1080.

Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. “Self-supervised heteroge-
neous graph neural network with co-contrastive learning”. In: Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery € Data
Mining. 2021, pp. 1726-1736.

Max Welling and Thomas N Kipf. “Semi-supervised classification with
graph convolutional networks”. In: J. International Conference on Learn-
ing Representations (ICLR 2017). 2016.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How pow-
erful are graph neural networks?” In: arXw preprint arXiv:1810.00826
(2018).

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. “Representation learning on graphs
with jumping knowledge networks”. In: International conference on ma-
chine learning. PMLR. 2018, pp. 5453-5462.

Jaewon Yang and Jure Leskovec. “Community-affiliation graph model for
overlapping network community detection”. In: 2012 IEEE 12th interna-
tional conference on data mining. IEEE. 2012, pp. 1170-1175.

Jaewon Yang and Jure Leskovec. “Overlapping community detection at
scale: a nonnegative matrix factorization approach”. In: Proceedings of
the sixth ACM international conference on Web search and data mining.
2013, pp. 587-596.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. “Graph convolutional neural networks for
web-scale recommender systems” . In: Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery € data mining. 2018,
pp- 974-983.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton,
and Jure Leskovec. “Hierarchical graph representation learning with differ-
entiable pooling”. In: Advances in neural information processing systems
31 (2018).

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec.
“Identity-aware graph neural networks”. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence. Vol. 35. 12. 2021, pp. 10737-10745.

69

[72]

Jiaxuan You, Zhitao Ying, and Jure Leskovec. “Design space for graph
neural networks”. In: Advances in Neural Information Processing Systems
33 (2020), pp. 17009-17021.

Fataneh Dabaghi Zarandi and Marjan Kuchaki Rafsanjani. “Community
detection in complex networks using structural similarity”. In: Physica A:
Statistical Mechanics and its Applications 503 (2018), pp. 882-891.

Hengrui Zhang, Zhongming Yu, Guohao Dai, Guyue Huang, Yufei Ding,
Yuan Xie, and Yu Wang. “Understanding gnn computational graph: A
coordinated computation, io, and memory perspective”. In: Proceedings
of Machine Learning and Systems 4 (2022), pp. 467-484.

Muhan Zhang and Yixin Chen. “Link prediction based on graph neu-
ral networks”. In: Advances in neural information processing systems 31
(2018).

Yao Zhang, Yun Xiong, Yun Ye, Tengfei Liu, Weiqiang Wang, Yangyong
Zhu, and Philip S Yu. “SEAL: Learning heuristics for community detection
with generative adversarial networks”. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery € Data Min-
ing. 2020, pp. 1103-1113.

Mingyuan Zhou. “Infinite edge partition models for overlapping commu-
nity detection and link prediction”. In: Artificial intelligence and statistics.
PMLR. 2015, pp. 1135-1143.

70

	Introduction
	Background
	Motivation
	Related work
	Contribution

	Community Detection
	Overlapping community detection
	Methods overview

	Graph Neural Networks
	Introduction
	Architecture
	GNN Layer
	Stacking layers
	Graph Augmentation

	Training
	Prediction Heads
	Labels
	Loss Functions
	Evaluation Metrics
	Dataset split

	Graph Attention Networks

	Model
	Affiliation Graph Model
	Graph likelihood
	Cluster Affiliation Model for Big networks
	Neural Overlapping Community Detection
	Overlapping Community Detection using GAT

	Experiments description
	Datasets
	Implementation
	GCN configuration
	GAT configuration
	Hyper parameters
	Training
	Assigning nodes to communities
	Normalized Mutual Information
	Experimental setting

	Results and discussion
	Recovery performance
	Scalability

	Conclusions and future work
	Conclusions
	Future work

