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Abstract

Marine automated inspections using Unmanned Areal Vehicles (UAVs), Remotely Op-
erated Vehicles (ROVs) are emerging technologies which are constantly gaining ground.
Intelligent vehicles is essential to have an environmental perception that provides cru-
cial information about each ship’s feature so then to classify and inspect it according
to the regulations. In this thesis, the main task is research about the application of
image segmentation in welding joints. A Fully Convolution Neural Network is proposed
based on UNet architecture which was modified so that VGG16 to be implemented as
an encoder following a couple of transfer learning strategies. Decoder’s convolutional
layers were reduced by replacing one layer on each block with Batch Normalization and
Dropout operations in order to minimize computational cost and increase model’s accu-
racy. The dataset used for the training and testing of the model consists of images with
welding joints which were collected from school’s laboratory, ship surveys as well as from
the internet (300 images) to achieve greater diversity and increase model’s robustness.
The experimental results of the testing set show that the mean IoU is 0.46 and mean
F1-score is 0.60.
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Chapter 1

Introduction

Welding is undoubtedly a fundamental process in the contemporary manufacturing in-
dustries. The development of modern welding techniques during the Industrial Rev-
olution (19th - 20th centuries) took the place of riveted joints, due to its advantages
concerning mainly water-tight and oil-tight properties, better durability and overall a
more lightweight structure. The shipbuilding industry has radically changed since then
by utilizing arc welding for the majority of steel joints. Arc welding is a group of welding
processes that produce coalescence of metals by heating them with an electric arc. [1]

Over the last half century the evolution of welding technology and past experience of
welding defects and failures which led to marine accidents have raised SOLAS’ (Inter-
national Convention for the Safety of Life at Sea) minimum safety standards for the
safe construction of ships. Ensuring good welding quality is vital for the structure in
order to remain intact and functional (durable) even when extreme static and dynamic
loads are applied. Therefore, rules and guidelines for shipbuilding and maintenance pro-
cedures have been established and incorporated to (in) all ship classification societies’
requirements and guidelines, such as American Bureau of Shipping, Lloyd’s Register
and the International Association of Classification Societies (IACS). Quality control of
hull welds shall be performed using non-destructive methods to locate possible defects.
As far as the surface imperfection is concerned, visual testing, magnetic particle and
penetrant testing can be applied, whereas for sub-surface imperfections ultrasonic and
radio-graphic testing shall be conducted. [2]

Nowadays Welding Inspections are mainly carried out by human surveyors under ves-
sel’s problematic and dangerous conditions. Prior to each survey, a costly and time-
consuming preparation of vessel needs to be done (e.g. such as safety equipment, light-
ing, ventilation and gas free certificates) in order for the safety precautions to be ar-
ranged. The vessel can contain hundreds of kilometers of weld lines while surveys tend
to be performed and completed as promptly as possible, thereby are prone to oversights
and human errors. [3]

In latest years, poised for explosive growth, Unmanned Areal Vehicles (UAVs) and
Remotely Operated Vehicles (ROVs) are emerging technologies with limitless potential
and application in marine surveys. Since 2016 DNV GL has been using camera-equipped
drones in surveys [4] and since 2019 DNV has approved service suppliers to provide close-
up surveys using remote inspection techniques [5] (RIT) for ships and mobile offshore
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units. An automated inspection vehicle equipped with latest breakthrough of cameras
and sensors (e.g. LiDAR) is essential to have an environmental perception that provides
crucial information about each ship’s feature so then to classify and inspect it according
to the regulations.

The goal of this study is the weld detection on an image by creating a binary segmenta-
tion mask. This is implemented using Fully Convolutional Deep Neural Networks and
potentially can be integrated in such devices as ©Robohop [6]. In Chapter 2 an overview
of the literature is presented. Chapter 3 elaborates the fundamental theoretical con-
cepts regarding image processing and deep neural network algorithms. In Chapter 4 is
presented the dataset used for the training and testing phase. In Chapter 5 is presented
and explained the methodology followed to train the neural network. In Chapter 6 the
results are presented and analyzed through diagrams and visual examples. Finally, in
Chapter 7 are presented the conclusions of this work.



Chapter 2

Literature Review

There is a large volume of published studies investigating classification and segmentation
tasks in welding technology. Traditional image processing and machine learning algo-
rithms created for welding defects or weld segmentation need human interference to feed
algorithms with proper data, usually taken from a stable environment, and sometimes
to set by hand parameters such as thresholds [7] [8]. The emergence of deep learning
technology has dominated over the old machine learning techniques and so nowadays
the scientific community mainly uses deep Convolutional Neural Networks (CNN) for
computer vision tasks

Zhifen Zhanga, Guangrui Wena, Shanben Chen [9] proposed a CNN classification model
with 11 layers to identify weld penetration defects. In order to improve the generaliza-
tion ability of the CNN model, weld images from different welding current and feeding
speed were captured for the CNN model. Then they applied augmentation techniques
to the images to increase model’s robustness.

A more complex architecture, the Faster R-CNN, used by Chenhua Liu , Shen Chen
and Jiqiang Huang [10] for the detection of weld area using a bounding box. Transfer
learning technique was also employed for the convolutional core of their model. They
compared 6 different state-of-the-art pre-trained models used as backbone in order to
define the effectiveness of each model. Their study shows that the VGG16 model is the
best in weld seam area recognition with accuracy 91.68%.

Additional studies, where CNN has been applied to weld defects detection are [11][12].

Studies regarding image segmentation in welds using fully convolutional neural net-
works have also been successfully conducted. Yang Lei, Huaixin Wang, Benyan Huo,
Fangyuan Li, and Yanhong Liu from Zhengzhou University [13] evalueated an auto-
matic welding defect location method based on an improved U-net architecture. Digital
X-ray images were used for welding defects location and the dataset was augmented
to increase robustness. Their experiments showed that the method could acquire the
detection precision up to 88.4%. Weld seams semantic segmentation method has been
proposed by a group of academics in Leibniz University Hannover [14] who use deep
learning and Xception model architecture to perform semantic segmentation of micro-
graphs of complex weld areas to achieve the automatic detection and quantization of
weld seam properties achieving a value of around 95% for weld contour detection and
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76.88% of mean intersection over union.

Given weld seam forming results from the nonlinear formation of multiple welding pa-
rameters, studies have shown that convolutional neural networks (CNN) with nonlinear
properties can successfully cope with tasks concerning weld seam detection or the de-
tection of defects on it.



Chapter 3

Theoretical Basis

Artificial Intelligence (AI) as a term was first coined in 1956 by John McCarthy, also
known as the father of AI, at the Dartmouth Summer Research Project. During that
meeting John McCarth and his team tried to clarify and develop their views about
thinking machines [15]. A few years before, a milestone in AI history was set in 1950,
when Alan Turing published the paper "COMPUTING MACHINERY AND INTELLI-
GENCE" and formed the basis for artificial intelligence [16]. He also raised the crucial
question "Can a machine think ?" and introduced the Imitation Game, a deceptively
simple method determining whether a machine can think intelligently like humans.

Machine learning (ML) is a subset of AI that enables a computer system to make
predictions or take decisions using historical data without being explicitly programmed.
Machine learning uses a massive amount of structured and semi-structured data so that
a model can generate accurate results or give predictions based on that data.

Deep learning (DL) is an outgrowth of Machine learning and differs from machine learn-
ing techniques in that it can automatically learn representations form training data
(e.g. images, video, text) by creating non linear and complex correlations. That can be
achieved by artificial deep neural networks which try to mimic the human brain neurons’
functionality like interconnections and their learning process.

Figure 3.1: Artificial Intelligence Timeline

12



3.1. COMPUTER VISION - IMAGE PROCESSING 13

The implementation of Graphics Processing Units (GPUs) in the Convolutional Neural
Network (CNN) training process [17] led to breakthroughs. Nowadays, the exponentially
increasing development of GPUs provides a solution in large-scale computer vision and
speech-based applications which demand high computational power.

3.1 Computer Vision - Image Processing
Computer vision is a field of artificial intelligence (AI) that trains computers and sys-
tems to interpret and understand the visual world by analyzing digital images. Richard
Szeliski mentions in his book [18] the difficulties and challenges to cope with Computer
Vision as he calls it "(it is) an inverse problem, in which we seek to recover some un-
knowns given insufficient information to fully specify the solution and we must therefore
resort to physics-based and probabilistic models, or machine learning from large sets of
examples, to disambiguate between potential solutions."
An image can be defined as continuous-tone and spatially continuous brightness distri-
bution:

f : R2 → R (3.1)

where f(x,y) is the intensity of spatial (plate) coordinates (x,y). For computer processing
an image f(x, y) is sampled so that the resulting digital image has i rows and j columns.
The values of the coordinates (x,y) now become discrete quantities and the continuously
varying brightness f at each sample is quantized (3.2) (converted to a one of set of
integers).

f [i, j] = Quantizef(i∆, j∆) (3.2)

where Delta is the distance of samples.

Figure 3.2: Representation of image as a matrix

3.1.1 Grayscale and RGB Models

Grayscale

The Figure 3.2 above could be the representation of a grayscale image. Each of these
(i, j) cells correspond to a pixel which is denoted as the numerical value and these
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numbers are called Pixel Values. These pixel values denote the intensity of the pixels.
For a grayscale or black and white image, we have pixel values ranging from 0 to 255.
The smaller numbers closer to zero represent the darker shade while the larger numbers
closer to 255 represent the lighter or the white shade.

Figure 3.3: 8-bit grayscale ranging from black to white

RGB

The RGB color model, one of the most well-known multi-channel color models, specifies
colors in three primary colors (three channels or components), i.e., red (R), green (G),
and blue (B), and is an additive color model in which red, green, and blue light are
combined in various ways to reproduce a broad array of colors. Each of these metrics
would again have values ranging from 0 to 255 where each of these numbers represents
the intensity of the pixels. Finally, all of these channels or all of these matrices are
superimposed so the shape of the image, when loaded in a computer, will be NxMx3
where N is the number of pixels across the height, M would be the number of pixels
across the width, and 3 is representing the number of channels, in this case, we have 3
channels R, G, and B If all components are of the highest intensity, then the resulting
color is white (255,255,255). In the RGB color model, one original color image can be
constructed from three gray-scale value images (channels or components), as shown in
Figure 3.4. As the most widely used color space for sensing, representation, and display
of images in electronic systems, the RGB color model plays a very important role in the
image processing field. [19]

(a) (b)

Figure 3.4: RGB Color Model: (a) Primary colors representation; (b) Primary colors
cube
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3.1.2 Image Transformation

Given a classification task, when the dataset is limited, one may apply transformations
to generate additional data and let the learning algorithm infer the transformation in-
variance. This invariance is embedded in the parameters, so it is in some sense free, since
the computation at recognition time is unchanged. If the data is scarce and if the dis-
tribution to be learned has transformation-invariance properties, generating additional
data using transformations may even improve performance. The pixel coordinates in
an image (2D points) can be denoted using a pair of values x = (x, y) ∈ R2 or:

x =
[
x
y

]
(3.3)

The new target location, at position (x,y) is given with respect to the previous position.
There are two types of transformation that can be applied on a 2d matrix.

Rigid

Rigid called a transformation of a geometric object when the distance between each pair
of points of the object is preserved. In other words, rigid transformations preserve the
shape and size of an object, such as:

• Reflection - e.g. Flip across y [
x′

y′

]
=

[
−1 0
0 1

] [
x
y

]
(3.4)

• Translation
x′ = x + tx

y′ = y + ty
(3.5)

• Rotation - e.g. About the origin by an angle θ[
x′

y′

]
=

[
cosθ −sinθ
sinθ cosθ

] [
x
y

]
(3.6)

or a cobination of these.

Non-Rigid

Non - rigid transformations can change both the size and the shape of the image using
simple variations of the above transformations. In addition, more complex algorithms
can be applied to create a displacement field with random deformation of each pixel
such as the elastic distortion technique (Figure 3.6), proposed by Simard, P.Y. and
Steinkraus, D. and Platt, J.C. in 2003 [20]
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Figure 3.5: Basic 2D planar transformations

Figure 3.6: Top left: Original Image. Right and bottom: Displacement fields and the
resulting image

The image transformation types may be applied on a case-by-case basis. It is essential for
users to visualize each transformed image and check if it could be a realistic scenario.
An image that does correspond to reality may confuse the model and have opposite
effects to that intended.
For example in a number classification task, an image with the letter "six" can not be
rotated 180 deg (upside down) because it will resemble the "nine".

3.1.3 Image Filtering

Linear Filters

Neighborhood operator or local operator [18] is a filtering process which uses a collec-
tion of pixel values in the vicinity of a given pixel to determine its final output. The
most widely used type of Neighborhood operator is the linear filter, where an output
pixel’s value is a weighted sum of pixel values in the input pixel’s neighborhood N (see
Figure 3.7) and it is expressed by the correlation operation:

g = f ⊗ h (3.7)



3.1. COMPUTER VISION - IMAGE PROCESSING 17

g(i, j) =
∑

f(i + k, j + l)h(k, l) (3.8)

where the k,l are called filter coefficients and h is called kernel or mask. A common
variant on this formula by reversing the sign if the offsets in f is:

g(i, j) =
∑
k,l

f(i− k, j − l)h(k, l) =
∑
k,l

f(k, l)h(i− k, j − l) (3.9)

The convolution operator is given by the equation:

g = f ∗ h (3.10)

where h is the impulse response function. Equation (3.10) can be interpreted as the
superposition (addition) of shifted impulse response functions h(i− k, j − l) multiplied
by the input pixel values f(k, l).

Figure 3.7: Example of Neighborhood filtering

Types of widely used linear filters are listed below:

• Moving average or box filter, which simply averages the pixel values in a K x K
window.

• Gaussian filters, are good for reducing small standard deviations at the cost of
some blurring.

• Bartlett filter, which is used to smoothen an image by convolving the image with
a piece-wise linear “tent” function.

Non-Linear Filters

Non-linear filters indicate better performance than linear ones, for example in case
where the noise has very large values and the linear Gaussian filter cannot suppress it
completely. An important class of nonlinear filters is the statistical filters, such as the
median filter which operates over a window by selecting the median value from each
pixel’s neighborhood and the bilateral filter, a variation of the median filter with an
additional weighting term.
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In addition, non-linear filters are frequently used to process binary images (consist only
of black and white pixels). Such images can be created by applying a thresholding
operation to a grayscale image:

θ(f, t) =

1 iff ≥ t,

0 else
(3.11)

The most common binary image operations are called morphological operations because
they change the shape of the underlying binary objects. The simplest operation can be
applied is the convolution of a binary image f with a 3 x 3 structuring element s:

c = f ⊗ s (3.12)

The standard operations used in binary morphology include dilation, erosion, majority,
opening and closing, the result of each is shown in the image below.

(a) (b) (c) (d) (e) (f)

Figure 3.8: Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing.
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3.2 Neural Networks

3.2.1 Artificial Neural Networks

Model of Artificial Neuron

A neuron is an information - processing unit which is the fundamental element of the
neural network. The architecture of the neuronal model is shown in Figures 3.9 where
can be identified three basic elements:

• The set of synapses or connecting links that receive the input signal xj and multiply
it by the corresponding weight wkj .

• The adder that sums the bias and the products of input signal and weight.

• The activation function (also referred as squashing function) that limits the am-
plitude of neuron’s output vj . Typically, the normalizes amplitude range of the
output of a neuron is written as the close unit interval [0,1] or [-1, 1].

Figure 3.9: Non linear model of a neuron

In mathematical terms, the above statements can be written as:

uk =
m∑

j=1
wkjxj (3.13)

and
yk = ϕ(uk + bk) (3.14)

where xj the input signals, wkj the synaptic weight, uk is the linear combiner output,
bk the bias, ϕ(.) the activation function and yk the output of neuron k.

The activation functions are a key step in the formation of value of neuron’s output.
As mentioned above, they limit and normalize the output value as well as provide non-
linearity, which aids the learning of high order polynomials for deeper networks. Even in
linear correlation between input and output, activation functions are required to convert
it to non-linear. The most widely used activation functions are listed below and plotted
in Figure 3.10.

Activation functions

Neural Networks - A Comprehensive Foundation - Simon Haykin.pdf
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• Sigmoid
Sigmoid is a preferred activation function as it maps any real value to the range
(0,1) and is defined as:

f(x) = 1
1 + e−ax

∀x ∈ R→ f ∈ (0, 1) (3.15)

Provided that it is useful for AI applications where a real number needs to be
converted to a probability and therefore it usually placed as the last layer of a AI
model. A drawback of using sigmoid function is the called "Vanish gradient", which
occurs near the limits of (0,1). When the inputs of the sigmoid function becomes
larger or smaller, the derivative becomes close to zero, as shown in Figure 3.11.

• Tanh
The tanh activation function is like the sigmoid but the output is scaled in the
range of (-1,1), shifted and stretched:

f(x) = tanh(x) = 2
1 + e−2x

− 1 ∀x ∈ R→ f ∈ (−1, 1) (3.16)

The tanh, in contrast with sigmoid, suppress the input value in larger scale and
offers stronger gradients and bigger learning steps

• ReLU
ReLU derives form Rectified Linear Unit and nowadays is the most used activation
function in the world as it mainly operates at the output of convolutional layers
and is defined by the formula:

f(x) = max(0, x) ∀x ∈ R→ f ∈ [0,∞) (3.17)

It is computationally efficient since there is a lack of expensive exponential oper-
ations and just need to pick max(0,x). The main drawback of ReLU, commonly
called "Dying ReLU", is that during training, some neurons effectively die, mean-
ing they stop outputting anything other than 0. For that reason, ReLU activation
function variants have been developed such as LeakyReLU ELU and SELU to
alleviate that issue.

Figure 3.10: Sigmoid, tanh, and ReLU functions
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Figure 3.11: The sigmoid function and its derivative

The choice of activation function is determined by the nature of the data and the
assumed distribution of target variables

Neural Network Architecture

One well-ordered cluster of neurons forms a neural network whose simplest form is
depicted in Figure 3.12. The information travels from Input towards the output layer
through the intermediate layers, which are called hidden layers and consist the main
core of the model.

Figure 3.12: Simple Feed-Forward Neural Network architecture

The neural network can be visualized as a non-linear function y(x) with millions of
unknown parameters that are determined during the training phase. There is no ex-
act recipe for adopting a type of model and its specifications(Number of hidden layers,
activation function etc) which can present the highest accuracy to a given task. Never-
theless, the extended literature can lead the way in the right direction. Different types
of neural combinations have been developed and tested such as Convolution Neural
Networks, LSTM, RNN etc each one of them is used according to the data and the task
to be addressed.
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3.2.2 Network Training

So far, we have defined neural networks as a general class of parametric nonlinear func-
tions from a vector x of input variable to a vector y of output variables. A simple
approach to the problem of determining the network parameters is to visualize it as a
polynomial curve fitting where the precise form of the function is determined during the
training phase, also known as the learning phase, by dynamically adjusting the param-
eters to minimize sum-of-squares error functions [21]. Given a training set comprising
a set of input vectors xn, where n = 1, 2, ..., N, together with a corresponding set of
target vectors tn, the following error function is to be minimized:

E(w) = 1
2

N∑
n=1
∥y(xn, w)− tn∥2. (3.18)

However, by taking the advantage of probabilistic predictions and giving this kind of
interpretation to the network outputs, a much more general view of network training
can be provided.

p(t|x, w) = N (t|y(x, w), β−1) (3.19)

where β is the precision (inverse variance) of the Gaussian noise. For the conditional
distribution given by 3.19, it is sufficient to take the output unit activation function to
be the identity, because such a network can approximate any continuous function from
x to y. Given a data set of N independent, identically distributed observations X =
{x1, ..., xN}, along with corresponding target values t = {t1, ..., tN}, we can construct
the corresponding likelihood function:

p(t|X, w, β) =
n∏

n=1
p(tn|xn, w, β). (3.20)

By taking the negative logarithm, we obtain the error function:

β

2

N∑
n=1
{y(xn, w)− tn}2 −

N

2 ln β + N

2 ln (2π) (3.21)

which can be used to learn the parameters w and β. It should be mentioned that in the
neural networks literature, the primary goal is the minimization of an error function
rather than the maximization of the (log) likelihood, and so here we shall follow this
convention. Consider first the determination of w. Maximizing the likelihood function
(p=1) is equivalent to minimizing the sum-of-squares error function given by:

E(w) = 1
2

N∑
n=1
{y(xn, w)− tn}2 (3.22)

where we have discarded additive and multiplicative constants. The value of w found
by minimizing E(w) will be denoted wML because it corresponds to the maximum
likelihood solution. In practice, the nonlinearity of the network function y(xn, w) causes
the error E(w) to be nonconvex, and so in practice local maxima of the likelihood may
be found, corresponding to local minima of the error function.

In the case of a binary classification in which we have a single target variable t such
that t = 1 denotes class C1 and t = 0 denotes class C2. We consider a training set of
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independent observations. In the same way, the error function which is given by the
negative log likelihood, is then a cross-entropy error function of the form:

E(w) = −
N∑

n=1
{tn ln yn + (1− tn) ln 1− yn} (3.23)

where y(x, w) the output of a network whose activation function is sigmoid and the
conditional distribution of targets Bernoulli distribution

Parameter Optimization

As mentioned above, the principal task when training a neural network is to find a
weight vector w which minimizes the chosen function E(w). At this stage, it is useful
to visualize the error function as a surface sitting over weight space as shown in Fig-
ure 3.13. We can make a small step in weight space from w to w+δw to change the
error function by δE ≈ δwT∇E(w). Because the error E(w) is a smooth continuous
function of w, its smallest value will occur at a point in weight space such that the
gradient of the error function vanishes so that:

∇E(w) = 0 (3.24)

as otherwise, we could make a small step in the direction of −∇E(w) and thereby
further reduce the error.
The calculation of a vector w such that E(w) takes its smallest value is the ultimate
goal. However it is not always possible because the error function has a highly nonlinear
dependence on the weights and bias parameters, and so there will be many points in
weight space at which the gradient vanishes.
Considering that there is clearly no hope of finding an analytic solution to the equation
∇E(w) we resort to iterative numerical procedures. Optimization of continuous non-
linear functions is a common issue, widely studied and many algorithms and techniques
have been proposed to solve it efficiently. Most techniques involve choosing some initial
value w(0) for the weight vector and then using the gradient information to redefine the
new vector w(τ+1), where τ labels the iteration step.

Figure 3.13: Geometrical view of the error function as a surface sitting over weight
space
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Error Backpropagation

Error backpropagation is an efficient technique for evaluating the gradient of and error
function E(w) for a feed-forward neural network and therefore transfer the information
forwards and backwards through the network. Most training algorithms involve an iter-
ative procedure for minimization of an error function, with adjustments to the weights
being made in a sequence of steps. At each such step, we can distinguish between two
distinct stages. In the first stage, the derivatives of the error function with respect to
the weights must be evaluated. In the second stage, the derivatives are then used to
compute the adjustments to be made to the weights The backpropagation procedure
can therefore be summarized as follows:

• Apply an input vector xn to the network and forward propagate through the
network and calculate the activations of all the hidden and output units

• Evaluate the δk for all the output units:

δk = yk − tk (3.25)

• Backpropagate the δ’s to obtain δj for each hidden unit of the network using the
formula:

δj = h′(αj)
∑

k

wkj
δk (3.26)

• Evaluate the required derivatives using:

∂En

∂wji
= δjzi (3.27)

where δj ≡ ∂En
∂aj

and zi the activation of a unit

3.2.3 Optimizers

Gradient Decent

Gradient Descent Algorithm iteratively calculates the next point using gradient at the
current position, scales it by a learning rate η and subtracts obtained value from the
current position. It subtracts the value because we want to minimize the function f(x).
This process can be written as:

w(k+1) = w(k) − η∇wf(w(k)) (3.28)

where w the model’s parameters at step k.

The learning rate η is the most crucial parameter because it determines how quickly
the model is adapted to the problem. Choosing the right learning rate is not an easy
task as it affects the training process in many ways. Smaller learning rates require
more training epochs given the smaller changes made to the weights on each update,
whereas larger learning rates result in rapid changes and require fewer training epochs.
In addition, a too large learning rate can cause the model to converge too quickly to a
suboptimal solution, whereas a learning rate that is too small can cause the process to
get stuck as shown in Figure 3.14.
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
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Figure 3.14: A small learning rate makes the model converge slowly to the global
minimum loss.

AdaGrad

The AdaGrad algorithm derives from Adaptive Gradient algorithm and was developed
by J.Duchi, D.Hazan and Y.Singer [22]. It is an improved algorithm based on gradient
descent which individually adapts the learning rates of all model parameters by scaling
them inversely proportional to the square root of the sum of all of their historical squared
values. This method can be described by two basic steps:

• Calculation of the sum of the squares of the past gradients.

g(k+1) = g(k) +∇wf(w(k))

• Calculation of the new model’s parameters.

w(k+1) = w(k) − η∇wf(w(k))√
g + ε

where ε is the vector of small numbers to avoid dividing by zero.

The parameters with the largest partial derivative of the loss have a correspondingly
rapid decrease in their learning rate, while parameters with small partial derivatives
have a relatively small decrease in their learning rate. The net effect is greater progress
in the more gently sloped directions of parameter space. In the context of convex opti-
mization, the AdaGrad algorithm enjoys some desirable theoretical properties. However,
empirically it has been found that-for training deep neural network models-the accu-
mulation of squared gradients from the beginning of training can result in a premature
and excessive decrease in the effective learning rate.
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Figure 3.15: AdaGrad vs Gradient Descent: the former can correct its direction earlier
to point to the optimum

RMSProp

The RMSProp algorithm [23] modifies AdaGrad to perform better in the non-convex
setting by changing the gradient accumulation into an exponentially weighted moving
average.
AdaGrad operates by shrinking the learning rate according to the entire history of the
squared gradient and may have made the learning rate too small before arriving at such
a convex structure. AdaGrad Is designed to converge rapidly when applied to a convex
function. When applied to a non-convex function to train a neural network, the learning
trajectory may pass through many different structures and eventually arrive at a region
that is a locally convex bowl.
On the other hand, RMSProp uses an exponentially decay average υw

t to discard history
from the extreme past so that it can converge rapidly after finding a convex bowl.
Moreover, it takes away the need to adjust the learning rate, and does it automatically
and a different learning rate for each parameter wt+1.
In RMS prop, each update is done according to the equations described below. This
update is done separately for each parameter:

υw
t = β ∗ υw

t−1 + (1− β)(∇wt)2

wt+1 = wt −
η√

υw
t + ϵ

∗ ∇wt

where β is the momentum.

Adam

Adaptive Moment Estimation (Adam) introduced by Diederik P. Kingma, Jimmy Ba
in 2014 [24] and is another optimization algorithm that provides more efficient neural
network weights.

In addition to storing an exponentially decaying average of past squared gradients υt

like RMSprop, Adam also keeps an exponentially decaying average of past gradients
mt, similar to momentum. Whereas momentum can be seen as a ball running down
a slope, Adam behaves like a heavy ball with friction, which thus prefers flat minima
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in the error surface [25]. We compute the decaying averages of past and past squared
gradients and respectively as follows:

mt = β1mt−1(1− β1)gt υt = β2υt−1(1− β2)gt

where mt and υt are the estimated values of the first and second moment of gradients
respectively. As mt and υt are initialized as are initialized with zero vectors at the first
iteration, the authors of Adam observe that they are biased towards zero, especially
during the initial time steps, and especially when the decay rates are small. They
counteract these biases by computing bias-corrected first and second moment estimates:

m̂t = mt

1− βt
1

υ̂t = υt

1− βt
2

Building upon the strengths of previous models, Adam optimizer gives much higher
performance than the previously used and outperforms them by a big margin into
giving an optimized gradient descent. The plot is shown below clearly depicts how
Adam Optimizer outperforms the rest of the optimizer by a considerable margin in
terms of training cost (low) and performance (high) Figure 3.16

Figure 3.16: Performance Comparison on Training cost using different optimizer

3.3 Deep learning and Convolutional Neural Networks
In the previous section we discussed the basic features of a simple neural network model.
Deep Neural Networks are complex structures based on neurons and their architecture
differs according to the type of the task. In addition the existent dataset has to be
clarified as it will determine which of the following learning approaches to be applied.

• Supervised learning is a machine learning approach that’s defined by its use of
labeled datasets. These datasets are designed to train or “supervise” algorithms
into classifying data or predicting outcomes accurately. Using labeled inputs and
outputs, the model can measure its accuracy and learn over time.

• Unsupervised learning in general uses machine learning algorithms to analyze and
cluster unlabeled data sets. These algorithms discover hidden patterns in data
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Figure 3.17: CNN layers with rectangular local receptive fields

without the need for human intervention and they can be used in tasks such as
clustering, denoising and dimensionality reduction.

The main distinction between the two approaches is the use of labeled datasets. To put it
simply, supervised learning uses labeled input and output data, while an unsupervised
learning algorithm does not. Unsupervised learning models are used for three main
tasks: clustering, association and dimensionality reduction.

3.3.1 Convolution Layer

Convolution layers are the fundamental building blocks of the Convolutional Neural
Network [26]. Their interconnection differs significantly in contrast to a dense layer.
The Figure 3.17 illustrates the basic sequence of convolutional layers. Neurons in
the first convolutional layer are not connected to every single pixel in the input image
but only to pixels in their receptive fields. In addition, each neuron in the second
convolutional layer is connected only to neurons located within a small rectangle in
the first layer. This architecture allows the network to concentrate on small low-level
features in the first hidden layer, then assemble them into larger higher-level features
in the next hidden layer, and so on.
A neuron located in row i, column j of a given layer is connected to the outputs of the
neurons in the previous layer located in rows i to i − fh − 1, columns j to j + fw − 1,
where fh and fw are the height and the width of the receptive field. In order for a
layer to have the same height and width as the previous layer, a boarder of zeros can
be added as shown in 3.18
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Figure 3.18: Connections between layers and zero padding

In some cases, it is preferable to reduce the size of the layer so that the computational
power needed to be reduced accordingly. This can be achieved by spacing out the
receptive fields, as shown in 3.19. The shift from one receptive field to the next is called
the stride.

Figure 3.19: Dimensionality reduction using a stride of 2

A commonly used convolutional layer has multiple filters, and it outputs one feature map
per filter, so it is more accurately represented in 3D 3.20. To do so, it has one neuron
per pixel in each feature map, and all neurons within a given feature map share the same
parameters ( same weights and biases). However, neurons in different feature maps use
different parameters. A neuron’s receptive field is the same as described earlier, but it
extends across all the previous layers’ feature maps. In other words, a convolutional
layer simultaneously applies multiple trainable filters to its inputs, making it capable of
detecting multiple features anywhere in its inputs.
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Figure 3.20: Convolution layers with multiple feature maps

The equation computing the output of a neuron in a feature map k of a convolutional
layer is:

zi,j,k = bk

fh−1∑
u=0

fw−1∑
v=0

f ′
n−1∑

k′=0
xi′,j′,k′wu,v,k′,k (3.29)

where:

• zi,j,k is the output of the neuron located in row i, column j in feature map k of
the convolutional layer l

• sh and sw are the vertical and horizontal strides, fh and fw are the height and
width of the receptive field and f ′

n is the number of feature maps in the previous
layer

• xi′,j′,k′ is the output neuron located in previous layer

• wu, v, k′, k is the connection weight between any neuron in feature map k of the
layer and its input located at row u, column v (relative to the neuron’s receptive
field) and feature map k′.

3.3.2 Pooling

Pooling is one of the Convolution Networks distinctive concepts as it reduces the di-
mensionality of feature maps and eliminates noisy and unnecessary convolutions [27].
Using pooling layers the parameters of the consecutive model are radically reduced (Fig-
ure 3.21) as well as the computational power needed and the Neural network becomes
less prone to overfitting. There are multiple types of max pooling like Max, Sum and
Average which can be implemented using kernels whose size and stride can vary.
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Figure 3.21: Pooling Layer

Max pooling layer is the most widely used filter as it provides better performance with
sparse coding and simple linear classifiers. It operates by defining a spatial neighborhood
and getting the maximum unit of the feature map. An advantage of max pooling is its
noise-suppression properties, as it works on discarding those activations which contain
noisy activation.

Figure 3.22: Example of 2x2 and stride 2 Max and Average Pooling

On the other hand, a major downside of max pooling is that considers only the maximum
element from the pooling area and ignores other elements. For example in Figure 3.22
when a 2x2 and stride 2 max pooling layer is applied to a feature map passes forward only
the 25% of the existing information. If the majority of the elements in the pooling area
would be of high magnitudes, the discerning features get disappeared after performing
max pooling operation.

3.3.3 Transposed Convolution and Deconvolution

In image segmentation tasks transposed convolutional layers are normally used for up-
sampling in the decoding phase (Section 3.3.7) and generate an output feature map that
has a spatial dimension greater than that of the input feature map [28]. The parame-
ters that characterize a transposed convolutional operation are kernel size, padding and
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stride like the standard convolution. These values of padding and stride are the ones
that hypothetically were carried out on the output to generate the input dimensions. For
instance, if the output is passed through standard convolution with stride and padding
defined, it will generate the spatial dimension the same as that of the input.

Figure 3.23: Transpose Convolution by 2x2 kernel and stride 2

Deconvolution a is mathematical operation that reverses the effect of convolution and
should not be confused with transpose convolution [29]. Let assume that we pass an
image through a convolutional layer and collect the output. If we pass the output
through deconvolutional layer we get back the exact same input.

3.3.4 Batch normalization

Batch Normalization (BN) [30] is an algorithmic method which makes the training
of Deep Neural Networks faster and more stable. During each iteration, the network
computes the mean µB and the variance σB corresponding to each value x of mini-
batch B = {x1...xm} (Eq.3.30). Then normalization is applied to x (Eq.3.31) and the
final output yi is calculated by applying a linear transformation with the two learnable
parameters γ, β (Eq.).

µB = 1
m

m∑
i=1

xi σ2
B = 1

m

m∑
i=1

(xi − µB)2 (3.30)

x̂i = xi − µB√
σ2

B + ϵ
(3.31)

yi = γx̂i + β (3.32)

where is a constant added for numerical stability.

The batch normalization according to S.Ioffe and C.Szegedy [30] should be added after
the convolution layer and before the activation function.

3.3.5 Dropout

Dropout is a regularization technique and was first introduced by Nitish Srivastava,
Geoffrey Hinton et al. in 2014 [31]. It is developed to overcome the serious problem
of overfitting on the training set in deep neural networks by randomly dropping out a
percentage p of units from hidden and visible layers, as shown in Figures 3.24. In other
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words, it adds noise to the network layers in order to prevent the model from learning
the complex relationship between input and output values of the training set, which
would lead to poor performance on new data (testing set).
A common value of p is 0.5 which seems to produce the best results in most applications,
but it could be chosen and tested in range of [0.5,0.8].

(a) Standard Neural Net (b) After applying dropout

Figure 3.24: Visualisation of Dropout

3.3.6 VGGNet

VGG comes from Visual Geometry Group from Oxford. The architecture, shown in
Figure 3.25, was developed by Karen Simonyan and Andrew Zisserman of the Univer-
sity of Oxford at the ILSVRC competition in 2014, where it took the 2nd place [32].
The model consists of blocks, where each block is composed of a few 2D Convolution
layers followed by a Max Pooling layer, where its innovation was the use of small filters
3x3 instead of large-size filters (such as 11×11, 7×7). The model supports 16 or 19
convolution layers (VGG-16 / VGG-19) all equipped with the rectification non-linearity
(ReLU), which contains more than 138 million parameters and needs approx 550 MB
disk space. The original VVGNet was trained for 2-3 weeks on a computer system
equipped with four NVIDIA Titan Black GPUs. Consequently, it is not feasible for an
individual to build and train it form scratch. However, it is widely used by the commu-
nity as an image feature extractor through transfer learning techniques which will be
discussed later.
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Figure 3.25: VGG16 Architecture

3.3.7 Image segmentation using Deep Neural Networks

Image segmentation can be formulated as a classification problem of pixels with se-
mantic labels (semantic segmentation) or partitioning of individual objects (instance
segmentation)[33]. Semantic segmentation performs pixel-level labeling with a set of
object categories (e.g., human, car, tree, sky) for all image pixels, thus it is generally
a harder undertaking than image classification, which predicts a single label for the
entire image. Instance segmentation extends semantic segmentation scope further by
detecting and delineating each object of interest in the image as shown in Figure 3.26.
In this thesis, the Semantic Segmentation technique is applied for weld detection from
an image.

Figure 3.26: Semantic Segmentation vs Instance Segmentation

A Popular family of deep models for image segmentation is based on the convolutional
encoder-decoder architecture. It was initially developed for medical image segmentation,
such as UNet [34] but now also is being used for other applications. The UNet is a Fully
Convolutional Network (Figure 3.27) and was developed in 2015 by O.Ronneberger,
P.Fischer, and T.Brox and consists of convolutional, max pooling and transposed con-
volutional layers, whose function discussed in previous subsection.
A key-feature of UNet’s architecture is the skip-connection operation, depicted with
gray arrow and mentioned as "copy and crop", in Figure 3.27. During encoding phase
the image is downsampled and lot of information is lost which would be useful for a
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detailing upsampling. Thus, the developers connected and concatenated the fine-grained
details learned in the encoder with layers in the decoder part.

Figure 3.27: U-net architecture

3.3.8 Transfer Learning

The goal of transfer learning is to improve learning in the target task by leveraging
knowledge from previous tasks [35]. There are three common measures by which transfer
might improve learning, as shown in Figure 3.28. First is the initial performance
achievable in the target task using only the transferred knowledge, before any further
learning is done, compared to the initial performance of an ignorant agent. Second is
the amount of time it takes to fully learn the target task given the transferred knowledge
compared to the amount of time to learn it from scratch. Third is the final performance
level achievable in the target task compared to the final level without transfer.

Figure 3.28: Three ways in which transfer might improve learning
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In computer vision, where deep neural networks consist of millions of parameters, is not
feasible for an individual to train a model from scratch. In classification, object detection
and segmentation tasks the idea of transfer learning is to utilize one or more layers of an
existing deep neural model without its final layer(classifier). These models have been
trained in large datasets achieving high accuracy. Consequently, their convolutional
layers parameters have been adjusted to extract the important characteristics of each
image. The pre-trained model’s convolutional weighted layers function as universal
feature extractor and in transfer learning usage won’t be updated with the unseen data,
during back propagation.

There are three strategies that can be followed for the transfer learning implementation:

• Retrain only the last layers or the hole classifier of the model.

• Freeze part of the convolutional base and train the rest model. Following this
strategy, we take advantage of the ability of lower layers to detect general features
and higher layers more specific.

• Train all model’s parameters. In that way, the old information is discarded and
the model needs a large dataset to be retrained.

In image segmentation tasks only the last two strategies are applicable and due to the
lack of dense-layer classifier.

Figure 3.29: Transfer learning strategies



Chapter 4

Welding Datasets

This chapter presents the images we want to segment and how they were obtained. It
also describes the segmentation masks and how they were created.

4.1 Images
The target of this thesis is to develop a universal model for weld detection. Each welding
joint has a different pattern, shape and color depending on the welder’s experience or
the welding robot’s accuracy and the environmental conditions to which it is exposed.
Images with welding joints were collected from 3 sources to achieve greater diversity
and to increase the model’s robustness.

NTUA

The initial dataset was created using photos provided by the Marine Structures Ship-
building Technology Laboratory (MSSTL) at the School of Naval Architecture and Ma-
rine Engineering of NTUA. The photos include welds created using the Shielded Metal
Arc Welding (SMAW) or the Flux Cored Arc Welding (FCAW) method. The FCAW
procedure was automated with the use of a welding robot (Figure 4.1) with 6 degrees
of freedom, manufactured by IGM® Robotersysteme.

Photos from Internet

A large number of photos were collected from the Internet. In that way, different types
of welding such as butt joint, corner joint were added to the training set. Intermittent
welds and welds on circular tubes also used to enrich the dataset and enhance its ability
to detect non-straight line and non-continuous weld seams.

Shipyard

The majority of the photos which depict welds on ship’s steel joins were taken during
periodical surveys or after a repair procedure. A part of them was provided to the
school of Naval Architecture and Marine Engineering of National Technical University
of Athens from Mr. Theodoros Panagopoulos, surveyor at Helllenic Coast Guard and
the M&C Group and others were found on Shipbuilding Kapogiannatos website. Images
with painted welds were not preferred as they include limited information and the weld
outline sometimes can not be distinguished. Moreover, the visual or the NDtest is
conducted prior to coating.
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Some large-scaled photos were cropped into smaller ones to minimize the probability of
the weld seam’s distinctive characteristics ("information") to be vanished during down-
scaling in the preprocessing phase. The final data-set consist of 300 RGB image taken
with a smartphone with 24 bit depth sRGB color and are jpg formatted

Table 4.1: Images Dataset

Dataset Number of Images
NTUA lab 54
Various Internet 148
Shipyard 98
Total 300

Figure 4.1: Robotic arm for automatic welding, MSST Lab of NTUA



4.1. IMAGES 39

Figure 4.2: Samples of weld form NTUA LAB
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Figure 4.3: Samples of Images found on internet



4.1. IMAGES 41

Figure 4.4: Samples of Images from weld on ship
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4.2 Image Annotation
Image annotation plays a significant role in computer vision, the technology that allows
computers to gain high-level understanding from digital images or videos and to see and
interpret visual information just like humans.

In this thesis, the welding segmentation can be interpreted as a one class-segmentation
problem where the welding (white) and background (black) pixels constitute a binary
mask. It is obvious that the more accurate the image annotations, the better results
the model produces.

There are two primary data annotation methods; human annotation and automated
annotation. Human annotation typically takes longer and costs more than automated
annotation, and also requires training for annotators, but achieves more accurate results.
In comparison, automated annotation is more cost-effective but it can be difficult to
determine the accuracy level of the results.
During this study due to the relatively small dataset, the image annotation was created
manually using two software.
The first is GIMP [36], a free and open source Image editor, which allows users to create
and stack different layers on top of the initial RGB image. Labeling in such a program
like GIMP is a time-consuming procedure because the welds’ borders have to define
laboriously by hand using a polyline. Therefore, GIMP was used only for the creation
of a few masks for the initial testing of the neural network model.

For the rest of the annotation process, Segments.ai [37] was used. Segments.ai is a
professional Superpixel tool for image segmentation that boosts labeling efficiency sig-
nificantly. The platform by utilizing AI and ML algorithms, segments automatically
the image into regions which may constitute candidate objects to be labeled.

Even with the usage of a specialized software like Segments.ai, the image annotation
was not an easy task. During the welding procedure heat tints occur when the stainless
steel is exposed to oxygen. In addition, a weld created by an amateur welder can
appear defects to the joint such as spatter, lack of fusion, misalignment, underfill and
concavity. Furthermore, an old weld, a painted or a corroded one displays color defects
as, shown in Figure 4.6. Overall, these geometrical imperfections cause a complex and
wide borderline which is not feasible to be precisely delineated.
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Figure 4.5: Segments.ai: The software segments the image and the weld is
marked(white)

Figure 4.6: Segments.ai: Sample of quite difficult circumference to be delineated

Figure 4.7: RGB Image and its Binary Mask



Chapter 5

Methodology

5.1 Hardware and software used
All preprocessing of images and model training were conducted in Julia environment
[38] using an Intel Core i7-7700HQ @ 3.50GHz processor and a NVIDIA GTX mobile
1060 6GB GDDR5 graphics processing unit (GPU). The model itself was built using
and modifying the UNet.jl [39] library which is built on top of Flux.jl. [40] [41]

Flux is a library for machine learning geared towards high-performance production
pipelines. It comes "batteries-included" with many useful tools built in, but also lets
you use the full power of the Julia language where you need it.

Flux integrates with high-performance automatic differentiation (AD) tools such as
Zygote.jl for generating fast code. Flux optimizes both CPU and GPU performance
and it also supports GPU accelerated computation. This provides a major performance
boost compared to training the model on a CPU, see Table 5.1.

Table 5.1: Comparison of CPU and GPU

Specifications Intel Core i7-7700HQ
Processor

NVIDIA GeForce
GTX 1060 Mobile

Base Clock Frequency (Boost) 2.8 GHz (3.8 GHz) 1.5 GHz (1.6GHz)
Processing units 8 1280
Memory Bandwidth 37.5 GB/s 192.2 GB/s
Floating-Point Calculations 166.8 GFLOPS 4275
Cost (Launched price) ∼$ 380 ∼$ 240

5.2 Data Preparation and Augmentation
The initial RGB large images, many of them with a resolution over 3000 x 3000 cropped
and downscaled to 224 x 224 which is the default size of VGG16 input. Afterwards, they
imported in Julia and the initial RGB value range of [0,255] was normalized to [0,1].
In addition, the 3-channel image array was further normalized according to VGG16
requirements using the following algorithm:

44



5.2. DATA PREPARATION AND AUGMENTATION 45

Algorithm 1 VGG normalization algorithm
mean← [0.485, 0.456, 0.406]
std← [0.229, 0.224, 0.225]
imagenorm = (imageinitial −mean)/std

Due to the limited size of the dataset the technique of data augmentation was applied
on testing images to multiply the dataset and to make the model more robust. On each
image was randomly applied a combination of the transformations listed below:

• Rotation of p/2rad or Flip across X or Flip across Y

• Color Jitter or Gaussian blur

• Elastic Distortion

where Color Jitter is an operation that adjusts both contrast and brightness (random
values were used for each image).

The Figure 5.1 illustrates the different possible color and shape transformations to
be applied. Visual testing to the augmented data has to be done to ensure that the
transformations have not vanished the important information and to check if the images
can actually exist and represent the same concept of the class.
Elastic Distortion plays a significant role by changing the shape of the weld, straight
welds are becoming curved. This technique increases the capability of the model to
recognize welds with various shapes.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Samples of Augmentation techniques: (a)Initial Image; (b)Initial Mask;
(c)Gaussian Blur (d)Color Jitter (e)Elastic Distortion + Flip Y; (f)Mask of (e)
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5.3 Model architecture
The model architecture was based on the UNet architecture proposed in [42]. DhairyaL
Gandhi has developed a generic UNet implementation written in Julia, on top of Flux.jl,
the library UNet.jl. The source code of the library was modified to create the model’s
architecture, as shown in Figure 5.2.

In the proposed model, asymmetric down and up sampling paths are utilized to design
the encoder-decoder structure.
The encoder structure consists of VGG16 convolutional core, as the transfer learning
technique is adopted and VGG16 is employed as backbone model. VGG16 is trained on
ImageNet dataset, a collection of over 14 million images belonging to 22,000 categories,
achieving 92.7% accuracy.
The decoder has fewer layers than the encoder creating an weight-imbalance at first
glance but according to literature, this architecture can also achieve high accuracy which
is boosted further by the utilization of Batch Normalization and Dropout operations
[43]. The output of the decoder is a grayscale image with values in range of (0,1), which
represents the probability of a pixel to be weld or background. Prior to the output
layer, a 1x1 convolutional operation occurs, followed by a sigmoid activation function.
The 1×1 filter is simple as it does not involve any neighboring pixels in the input. Thus,
it may not be considered a convolutional operation. Instead, it is a linear weighting or
projection of the input.
The skip-connection operations were preserved to provide a positive contribution to the
detailed reconstruction of the image through the decoder.
This architecture is used to reduce the computational cost without main data loss in
order to build a fast and accurate model.

Figure 5.2: Architecture of UNet-VGG16 with transfer learning

5.4 Loss function & Optimizer
The Binary Cross Entropy (BCE) was used as the loss function during the training
phase. BCE measures the difference between two probability distributions for a given
random variable or set of events. It is widely used for classification objectives and
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it performs well in image segmentation tasks. In many studies has been found that
the predictions from models trained with cross-entropy loss were of high quality, those
produced by models trained with the Dice loss appeared visually cleaner since they were
almost binary [44] [45].
The Binary Cross Entropy is defined by:

LBCE(y, ŷ) = −(y log(ŷ + ϵ) + (1− y) log(1− ŷ + ϵ)) (5.1)

where ŷ the predicted value and y the ground truth.

The optimizer used in this thesis is Adaptive Moment Estimator (Adam). Adam as
discussed in previous section has been proven to outperform concerning the training
cost and the final accuracy of the model. The initial learning rate is usually chosen
arbitrarily and is adjusted manually by monitoring training performance each time.

5.5 Evaluation of network performance
Evaluation of semantic segmentation can be quite complex because it is required to
measure classification accuracy as well as localization correctness. The aim is to score
the similarity between the predicted (prediction) and the annotated segmentation mask
(ground truth). The predicted binary mask contains pixel values of 0 or 1. Each pixel
in the predicted binary mask is compared with the corresponding pixel in the ground
truth mask and afterwards it is classified to one of the following categories:

• True Positive (TP): pixel considered as being in the object and being really in the
object

• False Positive (FP): pixel considered by the segmentation in the object, but which
in reality are not part of it

• True Negative (TN): pixel outside the object both in the segmentation and the
ground truth

• False Negative (FN): pixel of the object that the segmentation has classified out-
side
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Figure 5.3: Illustration of true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) of the segmentation in a binary case. The blue and red ellipses
represent the ground truth component and component recognized by the segmentation
method.

The efficiency and the effectiveness of the model during training can be measured in
various ways:

• Pixel accuracy is the easiest and most obvious index to be calculated. It is the
percentage of pixels in your image that are classified correctly. However, it might
be misleading in cases where the objects are tiny.

Accuracy = TP + TN

TP + TN + FP + FN
(5.2)

• The Intersection-Over-Union (IoU), also known as the Jaccard Index, is one of
the most commonly used metrics in semantic segmentation as it is a very straight-
forward metric that’s extremely effective. This metric ranges from 0–1 (0–100%)
with 0 signifying no overlap and 1 signifying perfectly overlapping segmentation

IOU = TP

TP + FP + FN
= A ∩B

A ∪B
(5.3)

• Precision effectively describes the purity of our positive detections relative to the
ground truth

Precision = TP

TP + FP
(5.4)

• Recall effectively describes the completeness of our positive predictions relative to
the ground truth

Recall = TP

TP + FN
(5.5)

• False Positive Rate effectively describes the image noise of false positive predictions
relative to background

FalsePositiveRate = FP

TN + FP
(5.6)

• Dice Coefficient (F1 Score) is a measure combining both precision and recall

F1-score = Precision ∗Recall

Precision + Recall
= TP

TP + 1
2(FP + FN)

(5.7)
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5.6 VGG16 Feature Extraction Testing
VGG16 was chosen apriori to be used for the transfer learning strategy as it is a network
tested among the community in various types of applications. Even though VGG16 is
trained in thousands of images and categories of them, we can not be 100% sure that its
filters work for our type of images as feature extractor. For that reason, it conducted
a visual testing to the feature maps exported on each block 1-5 (Figure 5.2). It can
be seen from the images below that the VGG16’s neurons respond to this type of input
images and the information of the weld is traveling through the convolutional core.

Figure 5.4: A sample image tested
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Figure 5.5: Feature maps exported on Block 1, size 224x224
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Figure 5.6: Part of feature maps exported on Block 2, size 112x112

Figure 5.7: Part of feature maps exported on Block 3, size 56x56
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Figure 5.8: Part of feature maps exported on Block 4, size 28x28

Figure 5.9: Part of feature maps exported on Block 5, size 14x14



Chapter 6

Results

6.1 General information about training
The model proposed was trained using the whole dataset which was randomly split
into training and testing dataset using a ratio of ∼80:20; 233 and 67 images were used
for training and testing accordingly. The augmentation technique was applied 2 times
on the training set, thus the total training dataset increased to 3 ∗ 233 = 699 images.
In the proposed architecture, transfer learning was employed by freezing layers of the
convolutional base of VGG16. Two strategies were tested; in the first one (Case A)
the total weights on the encoder were frozen, Block 1 - Block 5, and in the second one
(Case B) were frozen Block 1 - Block 4 (Figure 5.2). The total model’s parameters
as well as the trainable and non-trainable parameters in each case are presented on
Table 6.1. ADAM optimizer was used and various learning rates η tested, such as
10−4, 10−5 and 10−6 to reach the best convergence with maximum possible accuracy.
The loss was calculated by Binary Cross Entropy formula as defined. The data was
converted to CUDA arrays of (maximum) Float32 format and the model was trained
entirely on the GPU Nvidia GTX 1060 mobile 6gb increasing the speed of convolutional
operations. However, the batch size was limited to 3 images (224x224x3 pixels each)
due to GPU memory restrictions and the weights were updated after each batch via
back propagation based on the batch-loss. In addition, the whole training data were
shuffled and new batches formed at the beginning of every epoch to reduce overfitting
and variance.
The time needed for a single pass of the training dataset through the model was ∼1.5-
3 min and the performance was being monitored during the training process to stop
training once the model performance stops improving.

Table 6.1: VGG16-UNet parameters

Phase Layer Parameters
Encoder
(VGG16)

Block 1-4 7,635,264
Block 5 7,079,424

Decoder Block 6-9 8,007,489
Total parameters Block 1-9 22,722,177

Case A: Trained params 8,007,489
Case B: Trained params 15,086,913

The learning rate of η = 10−5 produced better results in both Case A & B models which
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are presented in the following pages.

Note
The output of the model is a grayscale image, with values of pixels in a range of [0,1]
in which a threshold (th) is applied to become binary, where 1.0 is white (object) and
0.0 black (background). The default threshold was applied is th = 0.5 but in case a
different value is used, this is mentioned.

6.2 Results
The first model trained according to Case A strategy with learning rate η = 10−5. The
spikes observed in training loss (Figure 6.1) can be attributed to a high learning rate
and additionally, according to the community, to the small batch size used with Adam
optimizer. But overall the mean testing loss through the last 10 epochs tends to be
lower than the testing loss.
Mean BCE loss of Epochs [240:250] | Training = 0.137 | Testing = 0.154
The metrics of testing set shows in Figure 6.2 that the effectiveness of the model is
relatively low. The IoU ≈ 0.37 and the other parameters can be improved as the visual
results seem promising, as Figure 6.3 illustrates.

Figure 6.1: Model - Case A: BCE loss

Figure 6.2: Model - Case A: Testing Set - Mean values; IoU, Recall, Precision
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Figure 6.3: Model - Case A results
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As discussed in the transfer learning section high-level feature representations are ex-
tracted from the final layers of the convolution core and in some cases, it is suggested
to retrain the last layer of the encoder, in order for the model to be adapted in accor-
dance to the training set. For that reason the Case A strategy was abandoned and the
following models trained implementing the Case B.

The results presented below show a significant enhancement due to the increment of the
trainable layers. The Figure 6.4 demonstrates the losses during training process. The
spikes of training loss which occurred in Case A (Figure 6.1) tend to be eliminated.
As far as the deviation between training and testing loss after Epoch 150 is observed, it
could be a sign of overfitting but it does not seem to decay the mean value of the other
metrics as shown in Figure 6.5. Nevertheless, the results presented below are exported
from the Epoch 150.
In addition, in Figure 6.5 a comparison of the usage of threshold 0.3 instead of 0.5
is demonstrated. Based on this plot, by applying the th = 0.3 it is observed an 1.7%
increase of IoU. The Recall is also increased by 13% which is an advantage but there is
an 9% decrease in Precision (more noise produced).

The mean value of IoU = 0.46 achieved in the testing set is an adequate result given
that for the training set the mean value is IoU = 0.59.
Another significant positive result is that the mean Recall values can be higher than
70% if th = 0.3 is applied, which means that the network has learnt in great extent
the pattern and geometry of weld. However, the F1-score remains almost the same
regardless the threshold value applied.
From the visual results presented below we can also conclude that the model does not
produce lots of false predictions (red pixels) Figure 6.7- 6.13. Despite the fact that a
relatively small amount of images was used for training and that they were not taken
from a controlled industrial environment, most of False positive pixels appeared mainly
near the circumference of the weld. In cases of high percentage of noisy pixel, the model
seems to be distracted by "uncommon" objects for it, such as spray paints, cables, etc.

Table 6.2: Summary of metrics at Epoch 150

Dataset th BCE Loss IoU F1-score Precision Recall

Training set 0.5 0.086 0.59 0.70 0.66 0.82
0.3 0.58 0.69 0.61 0.89

Testing set 0.5 0.15 0.46 0.60 0.64 0.64
0.3 0.47 0.61 0.59 0.72
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Figure 6.4: Model - Case B: BCE loss

(a) (b)

(c) (d)

Figure 6.5: Model - Case B: Testing Set - Mean values (a)Summary of Metrics;
(b)IoU(th=0.3 and 0.5); (c)Recall(th=0.3 and 0.5), (d)Precision(th=0.3 and 0.5)

It is also worth discussing these interesting facts revealed by scattering for each image
the Precision vs Recall at Epoch 150 in Figure 6.6.

• There are images with high Recall and low Precision. The model predicted the
weld but there is a large percentage of noise (either in the circumference of the
weld or elsewhere).

• There are images with high Precision and low Recall. The model made mainly
correct predictions but did not predict the entire surface of the weld.



6.2. RESULTS 59

(a) (b)

Figure 6.6: Model - Case B: Testing Set - Epoch 150 (a)Precision vs Recall ; (b)Precision
vs Recall (th=0.3)

In the following pages are presented visual results of the testing images (Figure 6.7-
6.13). For the sake of completeness are presented and samples of training set. In Ground
truth & Prediction column, the two individual masks were overlapped and the pixels
are depicted with different colors depending on the category they are classified:

• White pixels: True Positive

• Cyan pixels: False Negative

• Black pixels: True Negative

• Red pixels: False Positive
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Figure 6.7: Model - Case B Testing set results 1
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Figure 6.8: Model - Case B Testing set results 2
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Figure 6.9: Model - Case B Testing set results 3
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Figure 6.10: Model - Case B Testing set results 4
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Figure 6.11: Model - Case B Testing set results 5
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Figure 6.12: Model - Case B Testing set results 6
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Figure 6.13: Model - Case B Training set



Chapter 7

Conclusion

In this thesis, an automated algorithm for semantic segmentation of welds was pro-
vided. The initial thought was the model to be generalized, therefore images form
different sources collected for the dataset. The model was trained using transfer learn-
ing techniques, thus the overfitting was avoided and finally produced satisfactory results
for both training and testing set (Testing set: IoU = 0.46, F1-score = 0.6, Precision =
0.64 and Recal = 0.64). The threshold of IoU to be considered acceptable prediction
is 0.5 and in our case the model, despite the small amount of dataset, almost achieved
the acceptable threshold. The visual results of the testing set illustrate that the model
can predict almost in all images the existence and the location of the weld. According
to these values and the visual results the model can be used for weld localization and
existence tasks. For further analysis of the predicted welding surface, the model could
be sufficient if it produces higher IoU and F1-score values. This can be achieved by
enriching significantly the dataset with more images.
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