¢

A VP Popos

EeNIKo MET=0BIO [IOAYTEXNEIO
2X0AH HAEKTPOAOTOQN MHXANIKON KAI MHXANIKQN YTIOAOTIZSTQN

ToMEAr TEXNOAOTIAE [TAHPO®OPIKHE KAI YIIOAOTIETON

NPOMHOEV S

%

=N
/§

s

Heterogeneity-Aware Serverless Workflow

Scheduling

Meém kat viomoinon

AITIAQMATIKH EPTrAxIA

Tou

I'ATKOY I. AHMHTPIOY

EmBAénwv: Anurrpiog I. Zouvipng
Kabnynwg EMII

Abnva, 2022

EeNIKo MET=0BIO [TOAYTEXNEIO

Y. XOAH HAEKTPOAOTQN MHXANIKON KAI MHXANIKQN YIIOAOTIETQN

ToMEAs TEXNOAOTIAL ITAHPO®OPIKHE KAI YIIOAOTISTON

Heterogeneity-Aware Serverless Workflow

Scheduling

Meém kat viomoinon

AITIAGMATIKH EPTraAsIA
TOou

I'ATKOY I. AHMHTPIOY

EmBAénv: Anurrpiog I. Zouvipng
Kabnynmg EMII

EykpiBnke and v tpipedn e§etaotikr) erurportr) v 14n NoguBpiou 2022.

(Yroypagn) (Yroypagr) (Yroypagr)
Anprpilog I. Zovvipng Iavayioing Toavakag Yotplog Eubng
Kabnynig EMII Kabnyning EMIT Enik. Kabnyning XII

ABrjva, 2022

EeNIKo MET=0BIO IIOAYTEXNEIO

Y. XOAH HAEKTPOAOTQN MHXANIKON KAI MHXANIKQN YIIOAOTIETQN

ToMEAs TEXNOAOTIAL ITAHPO®OPIKHE KAI YIIOAOTISTON

Copyright (C) - All rights reserved. Me mv eruguAagn naviog Sikatdpatog.
Anpuntpiog 1. Taykog, 2022.

Arnayopeutetatl n avuypadr], arnobrkeuorn kat diavoyr) g apouoag epyaciag, £§ 0AOKApou
1) TUAPATOG AUTHG, YVid EPIoP1Ko okoro. Emitpénetal) avatvneoor), anobrkeuon kat diavo-
I Yla OKOTIO U1 KEPOOOKOITIKO, eKMAISEUTIKNAG 1] EPEUVITIKNG PUONG, UTIO TV Ipounobeon

va avagEpetatl 1 Ny rpogdeuong Kat va diatnpeital 1o mapdv prjvupd.

To meplexopevo autng g epyaoiag dev annyel anapaitnta tg anoyeig tou Turpartog, tou

ErmBAérovia, 1] TG EMTPOINAG TTOU TNV EVEKPILVE.

AHAQIH MH AOTI'OKAOIIHEX KAI ANAAHWHY ITPOXQIIIKHY EYOYNHX

Me mAf)p1) eMiyVOOT TOV CUVETIEI®OV TOU VOHOU TEPT MVEUPATIKGOV S1IKAIOPATOV, dNA®OVe evu-
OYPAP®S OTL £ij1atl AMOKAEIOTIKOG ouyypadéag g nnapouoag [Truxiaxkng Epyaciag, ya v
oloxrAnpwor) tng oroiag kKaBe Ponbeia eival MANP®S AvVAyVOPIOREVT KAl avapEPETAl AETTTO-
Hepwg otnyv gpyacia autr). 'Exe avapépel MANpwsg Kat pe oapeig avapopeg, OAeg TiG TYES
xpnong dedopévav, anmopemv, YEocmV Kal MIPOTACE®V, 18OV KAl AEKTIKOV avadopav, ite
Katd KuptoAedia eite BAoel ermotnuovikAg napddpaong. AvadapBave Tty IIPOORITIKY Kat
ATOWUKI] €UOUVI) OT1 08 TEPIMTI®OT] AMoTUYXiag otV UAOToinon 1oV avetép® dnlabiviov otot-
Xelwv, eipatl urtoAoyog Evavilt AOYOKAOIAG, YEYOVOG TToU onpaivel anotuyia oty ITtuyiakn
pou Epyaocia kat katd cuvénela anotuyia anokiong tou TitAou Zroudov, mEpav 1oV AoV
OUVETIEIRV TOU VOHOU TEPT TIVEUPATIKAV SIKAIOPATOV. AnAodve, cuvenog, ot autn n Iltu-
xwakn Epyaoia nipoetopdotnke Kat 0AoKANpoOnKe anod epéva MPOoOITIKA KAl ATTOKAEIOTIKA
Kat o1, avadapBave mANPog OAEg TIS CUVENEIEG TOU VOHIOU OTNV MEPINTIOON KATd ThV oroia
arodeixOei, Sraxpovika, 6T 1 epyacia autn 1 TPHPaA g dev pou avrket 610t elval mpoiov

AoyoxAor)g dAAng niveupatikng 1810k oiag.

(Yrnoypagpn)

Anpuntpiog 1. T'aykog
14 NoegpBpiou 2022

IlepiAnypn

H dnpoukotnta g eKtéAE0NG UMTOAOYIOTIK®V QPOPTI®V OTO VEPOG £XEL TIAEOV EKTOLEUDEL.
[ponyoupévwg, v ektédeon aut] avalapBavav 1810tikoi torukoi s§unnpetntég (servers)
eVQ Ta tedevutaia Ypovia yu autd to goptio eival uneubuva, katd v pepida tou Aeodvrog,
ouyxpova kat dnpootlag npooBaong repiBaAdovia oto vépog. H addayr auvtr €dwoe tnv
duvatotnta otoug nmpoypappatiotég va arnaldaxbouv amno v smninovr Stadikaocia Slaxeipt-
071G KAl EVOPXNOTP®ONG TOV EEUINPETNTMV KAl TOV UMOKEIPEVOV PNXavpAatov, pia eubuvr
Vv orota avédaBav ot TTdPoX0l UTIOAOYIOTIKGV UITPeotaV tou vépoug (cloud providers). Ot
MAPOXO01, PAAL0TA, £X0UV IPOX®PEHOLL OTNV AVAITTUSH UTPECIOV TRV OIOI®V 1] KEVIPIKY 16¢a
OTPEPETAL YUP® ATIO TNV IMAR P AMAYKIOTP®OT] TOV IIPOYPAPIATIOTOV ATld TOUG ECUITNPETTES.
Auto eiyxe og arotédeopa va yevvnOel o 6pog Serverless computing, 0 01oiog €TUHOAOYIKA
UTTIOVOEL TV aroucia tev egurnnpetntov and 1o redio 5pdong tov mpoypappatiotmy.

To Function-as-a-Service (FaaS) eivatl éva serverless uroAoylotiko povi€édo, to ortoio
ETITPETIEL OTOUG TIPOYPAPHATIONEG VA aveBACOUV KAl VA EKTEAECOUV OTO VEPOG HIKPA AE1TOUp-
YIKA Koppdtia Kodika, ta onoia £€Xouv v popdr ouvaptfoewv. [lap’ 0Aa autd, n eyyunon
yla yprniyopn Kat mAnprn KAAUWn tev mbavev anattjoemv ToU Xprotn aréxel Altyo amo to
apov 61011 PEPIKEG POPES 1] EKTEAEOT] EPAPHOYOV UITO AUTO TO POVIEAO propel va aroBet
npoBAnpatikn. ‘'Oueg, poopata £Xel AABel X®Ppa APKETY £PEUVA YUP® AITO TO CUYKEKPIIEVO
9¢pa yiati gatvetat dlaitepa UrIooxoOEVo, 0 TIOAAEG TIEPUTIOOELS XP0NG, va arnadAaxBei o
XPHotng arod v euBUvH H1axeiplong Kal OUVIPNONG TOU UTTOKEIIEVOU EOTALOOU £V TIA-
pAaAAnAa va dnpovpyoviatl KataAAnAotepeg OUVONKEG yla ArtodoTIKOTEPT] KA1 OIKOVOUIKOTEPT)
XP1O10TT0N 0 TV IopaVv (resource utilization).

H ouykexkpipévn SInmAepatike epyacia €peuvd T0Ug MAPAYOVIEG TTOU EMNPEACOUV TV &-
KtéAeon evog umodoylotikou serverless goptiou oto vEéQog Kat rpoteivel pia duvapikr) Avon
otnv dpopodoynon serverless epappoyrng avarrtuoooviag v pe v Borbsia Babiag Evi-
oxutikng Mdabnong. Ztoxog eivat i BEAtiotn eunnpEtnorn TV AttPAIeV TOV XP1oTev KAT®
a6 duvapikég ouvOnkeg. H Bedtiotonoinon autr) propet va 0dnynoet os onpavik) peio-
on KOotoug Katl PeAtiwpévn epnepia xpnong, KAt to oroio Sa ouvelopépet Eviova oe pia

eupUteprn UloBEtnon tou serverless oto gaopa tou edge-cloud.

Agterg KAe1ba

Serverless, Function-as-a-Service, Kubernetes, OpenFaas, Bafia Evioxutikr) Maénon,

Xpnowomnoinorn [Iopav, ITapepBoAég, Etepoyévela, DAG

Aitfouatxn Epyaoia n

Abstract

The increasing popularity of deploying workflows on cloud premises has skyrocketed.
Previously, this deployment was handled by private servers but lately the responsibility
has shifted towards public cloud environments. Now, the developers are free from the
infrastructure management responsibility and can focus solely on the development of their
application code, since the cloud service providers take care of the rest mechanisms.

Function-as-a-Service (FaaS) is a serverless paradigm that enables developers to u-
pload small, practical segments of code to the cloud, that are formatted as functions
while being unaware of the underlying infrastructure. Nonetheless, it is quite often that
the functions’ performance may be undermined by a set of factors that have to be taken
into consideration in order to provide the best possible Quality of Experience (QoE) to the
end-user. In this direction, a lot of work has been done by both academia and industry,
with the goal of making serverless more efficient.

This diploma thesis aims to examine the factors which influence the execution of se-
rverless workload and proposes a dynamic solution in scheduling a serverless application
with the aid of Deep Reinforcement Learning. The goal is to serve user requests efficiently
under dynamic conditions. This optimization can lead to important cost cuts and impro-
ved user experience which contributes highly to a wider adaptation of serverless in the

edge-cloud continuum.

Aégerg KAe1da

Serverless, Function-as-a-Service, Kubernetes, OpenFaas, Deep Reinforcement Lear-

ning Resource Utilization, Interference, Heterogeneity, DAG

Aitfouatxn Epyaoia E

otmv untépa pou I'ewpyla

Euyxaplotieg

Me v 0AokrANp®on g rapovoag Autdepatikig Epyaciag kat 1ou mpontuyiakoy pou
Titdou Znioudwv 9a 1)Beda va euxaploton eyKAPSing Pia oelpd and avhprdIioug mou Hou
napeiyav PorBela kat cupnapactacn KaBoAn v Sidpkela autng tng ropeiag.

Apyika, 9a nbsda va suxaplotoe tov ermBAénovia kat Kabnyntj pou k. Anprtplo
ZoUVIpn, O OIMOoi0g APEVAOS 10U TPOCEPEPE 1] dUVATOTNTA KAl TNV €UKAIPIA VA ATIOTEAE0®
pépog 1ou Epyaotnpiou Mikpournodoyiotov kat Pnelakov Zuotnpdiov, eKnoveviag v ot-
MAUATIKI] YOU £pyacia ¢ autd Kal aPetépou 0Ao tov Xpovo rou 81é0soe yia rmoAudapiOpeg
HakpooKeAelg ouldntroelg mavidg Sepdtmv, TIOU eiXAE ATIO TNV IIP®TI) OTIYHI)], Ol OIOiEg HoU
aAPrVOUV £vav ePITVEUCTIKO AVIIKTUITO.

ErurmA¢ov, 9a 110eAa va euxapiotrjom toug Zaotrplo Eudr), Anpoobévn Macoupo kat AXA-
Aéa T¢evetomouAo yla Vv emotnpovik kabodnynon kad' 0An v didpkela g eKOVNONG
g ouyKekppevng Atmdepatikng Epyaoiag, ou pou €6woe epodia mapandave arno rmoAvtipa
Yld OQAlP1KI) KAl TEXVIKI] KATAPTION 0TS oUYXPOoveg texvodoyieg. Ot 16€eg Kal POOEYYioelg
nou oulnOnkav petady pag nrav KOPBIKEG yia v aptiotntd 10U CUYKEKPIHIEVOU EPEUVI-
TIKOU anoteAéopatog otov xopo tou Cloud-, Serverless-Computing.

Emiong, 9a 16eAa va euxapiotjoem toug otevous PoU @iAoug yia tnyv umootr)pign Kat OAEg
TG APETPNTEG, OPOPPES OTIYHES TTIOU £1Xajle padi 6Aa 1a Xpovia, 1000 o akadnuaiko 600 ot
Ka1 TIPOOKITIKO ETTESO.

TelAeutaio Kat onpaviikotepo, 9a f10eda va eUXaPLIOTOR TV OIKOYEVELD POV IOV BpioKo-
vtav navta dirmda og orolodrnmote ermAoyr) pou Kat pe @bovoav o kabBévag pe Tov IPOITo Tou

va akoAouB ta ovelpa pou.

AB1nva, NogpBpilog 2022

Anunrpiog I. INiaykog

Aitfouatxn Epyaoia

Ileplrexopeva

MepiAnyn 1
Abstract 3
Evuyxapioticg 7
Extetapévn epidnyn 15
0.1 E10ay®VI] - - « « v v o o e e e e e e e e e e e e e e e 15
0.2 Iotopko yia tnv Ewwovikoroinono o oo oo oo 16
0.2.1 Ewovikornoinon Baowopévn oe Erumpnty oo oo oL 16

0.2.2 Ewovikomnoinon Baoopévnoe Ilakéto o 16

0.2.3 EVOPXNOTPMOT] - « « « v v v v v e e e e e e e e e e e e e e e 16

0.3 AvAAuon KvATp®V oL e e e e e e e e e 17
0.3.1 Tleprypadn wng Serverless Epappoyng kat twv Epappoyov Ilieong . . . 17

0.3.2 Avtikturiog tou Ap1Bpou Xuvaptoewv otnv Aniédoon 19

0.3.3 Avtiktuniog tov [TapepBoAov otnv Artodoon, oL . 20

0.3.4 Avtiktuniog tng Etepoyévelag oty Arnodoor) Lo L. 26

0.4 Zxedlaopog kat YAoroinorn Auvapikou ApOpoAOYNT « « . v v v v e e . 29
0.4.1 Babwa Evioyutuikr) Mabnono oL 29

0.4.2 Apxtektovikn kat YAoroinon Auvapikou Apopodoyrt 30

0.5 Armotedéopatd KAt ATIOAOYTIOT] « « v v v v v v v e e e e e e e e e e e e e 34
0.5.1 TIepapaTtiKEG ZUVOHKEG « « « v v v v v v e e e e e e e e e e e e e e 34

0.5.2 Kou)pla ASI0AOYIOTIG + « « v v v v e v e e e e e e e e e e e 35

0.5.3 Tlapouciaon T@v APOHOAOYNTOV .+« v v v v v v v e e e e e e e e e e 35

0.5.4 Zuykptukn AZI0AGYNON TOV APOHOAOYNTOV .« v v v v v v v o o e w o 36

0.5.5 ZUvOWn AZI0AOYNIONG + + « v v v v e v e e e e e e e e e e e 39

0.6 Zuvoyrn Kat MeAAOVTIK) AQUAEIA v v v v v e e e e e e e e e e e 40
0.6.1 Avayveopion E¢piktov Ave Xpovikgv Oplov. . . . o v v v v v v v e . 40

0.6.2 Emnéxktaon mpog Ayvootikiotiky duor tou mpotewvopevou Epyadeiou . . 40

1 Introduction 43
1.1 Scope & Goal e e e 43
1.2 Structureofthethesis. Lo oo L 44

Aitfouatxn Epyaoia E

I[NEPIEXOMENA

2 Related work 45
2.1 QoS-aware Serverless Frameworks 45
2.2 Workload Scheduling on Cloud Infrastructure 45
2.3 Runtime Resource Allocation for Serverless Functions 46
2.4 Our Approach e e 46

3 Background 47
3.1 Virtualization & Containers L. 47

3.1.1 Hypervisor-based virtualization 47
3.1.2 Container-based virtualization. 48
3.1.3 Kubernetes L L e 50
3.2 Cloudcomputing 54
3.2.1 Infrastructureasa Serviceo 54
3.2.2 Containersasa Service 55
3.2.3 PlatformasaService e e 55
3.2.4 SoftwareasaService e e e 55
3.3 Serverless computing Lo oo oo 56
3.3.1 Serverless cloud computing models 56
3.3.2 Benefits and drawbacks o oL 57
3.3.3 Serverless platformso 59
3.3.4 ApacheOpenWhisk 60
3.3.5 OpenFaas e 62
3.4 Machine Learning oo 64
3.5 Deep Reinforcement Learning, 65
3.5.1 Reinforcement Learning 65
3.5.2 Reinforcement Learning Algorithms 66
3.6 Scheduling and Migration of Serverless Functions 67
3.6.1 Why is Scheduling of Serverless Functions (SSF) needed? 67
3.6.2 How Does Scheduling of Serverless Functons Work 68

4 Motivational Analysis 69

4.1 Experimental infrastructure 0L, 69
4.1.1 Systemsetup Lo e e e 69
4.1.2 Monitoring and Communication 70

4.2 Implementationtools Lo Lo 72
4.2.1 SImple-swo e e e e e e 72
4.2.2 MIinlO oL e e 72
4.2.3 Faas-flow e 74
4.2.4 Custom Runtime Engine 75

4.3 Description of Serverless workflow and Interference microbenchmarks . . . 76
4.3.1 iBench e 76
4.3.2 Serverless Workflow 76

4.4 Impact of Granularity on the Workflow’s Perfomance 80

Awtflopatkn Epyaoia

INEPIEXOMENA

4.4.1 Faas-Flow Runtime Approach 81
4.4.2 Custom Runtime Approach 81

4.5 Impact of Interference on the Workflow’s Perfomance 82
4.5.1 Interference impact with FaasFlow 83
4.5.2 Interference impact with Custom Runtime 84

4.6 Impact of Heterogeneity on the Workflow’s Perfomance 87
4.6.1 Faas-Flow Runtime Approach 87
4.6.2 Custom Runtime approach 88
4.6.3 Queue-Workers and Accelerated Execution 89

4.7 Discussion L0 e 90
5 Dynamic Scheduling of Serverless Functions 91
5.1 Design Principleso 91
5.2 Architecture and Specificationso 92
5.2.1 System Monitor 92
5.2.2 DRL-based Agent e 93
5.2.3 Runtime Engine 000000 95
5.2.4 Function Mapper oo 95
5.2.5 Technical Implementation 95

6 Experimental Evaluation 99
6.1 Experimental Conditions 99
6.1.1 Trainingevents oo e 100
6.1.2 Inference Eventso 100
6.2 Examined Schedulers L0 0oL 100
6.2.1 Fullmap-guided DRL-based Scheduler 101
6.2.2 Custom-guided DRL-based Scheduler 101
6.2.3 Kubernetes-guided DRL-based Scheduler 101
6.2.4 Oracle-guided DRL-based Scheduler 102

6.3 Performance Evaluation of DRL-based Schedulers 102
6.4 Comparative Evaluation of Schedulers during Training 105
6.4.1 QoS Quotient e e 105
6.4.2 Cumulative Reward. 0. 107
6.4.3 QoS ViolationRatio.o 108
6.4.4 Time Required for Convergence 108
6.4.5 Scalability 108
6.4.6 DRL-based vs native Kubernetes Scheduling 109

6.5 Evaluation Summary L0 109
7 Conslusion and Future Work 111
7.1 SUMMATY« o v v et e e e e e e e e e e e e e e e e 111
7.2 Future Work oL e 111
7.2.1 Identification of Doable User Requests 111
7.2.2 Framework Expansion towards Application Agnosticism 112

Aitfouatxn Epyaoia m

I[NEPIEXOMENA

BiBAoypadia 116

m Awtflopatkn Epyaoia

KatdAoyog Zxnpatwv

g b W N -

3.1

3.2

3.3
3.4

3.5

Apxwtektovikny g Versionl L L L L L L L
Apxrtektovikny tng Version2 L. L L L L e e e e e
Apxrtektovikny g Version3 L L L L L L L L e e e e e
Apxrtektovikny g Version4d L L L L L L L L e e e e e
Méoog xpovog KabBuotépnong eKtEAeong yia g 4 ekdooelg pe eicodo 65 oty-
6 805
Zuykpuky ektédeon v Versionl, 4 otov k6p6o PMo oL oL L.
Versionl configurations and Version4(1)
Versionl configurations and Version4(2)
ZUyKpluikég ektedéoelg petaiu Versionl kat Version4 otov kopéo wOl
ZUyKpluikég ektedéoelg petasu Versionl kat Version4 otov kopéo w02
Zuykpluikég ektedéoelg petagu Versionl kat Version4 otov kopéo w03
Zuykpluikég ektedéoelg petagu Versionl kat Version4 otov kopo wo4
AVTIKTUTTOG TOV TTAPEPBOAGOV OTIS OUVAPTHOEIS TNG EPAPHUOYAS « « « « v « . . .
AVTIKTUTTOG TNG ETEPOYEVELAG OTIG CUVAPTIOELS o v v v v o o e e e e e o o
Versionl: placement configurations and number of replicas
Versionl: placement configurations and number of replicas
Apxttektovikn tou System Monitor L. L Lo Lo Lo Lo 0oL
Apxrtektovikn) tou DRL-based agent
Overview of the Runtime Engine
Apxrtektovikn tou Function Mappero oo oL
OAotikT) APYITEKTOVIKY] TOU AUVAPIKOU APOHOAOYNTH] & « « « v v v v v v v . .
KAdopa xpovou exktédeong mpog XPOVIKO Oplo XProtn Katd v eknaibeon . .
ZUOO®PEUPEVT eBPABEUOT) TV MPAKIOP®V KATA v eknaibeon
[TapaBlaoelg OTo XPOVIKO OP10 XPTIOTL] -« « « v v v v v v e e e e e e e e e e
Emnineda mapepBoArov, QoS rAdopa xkat Anwn anodpdoewv arnd toug DRL-

agents U0 G1APOPETIKEG TIOATTIKEG OPOPOAOGYNONG =+« v v v v v v v v o v v . .

Hypervisor-based virtualizaton and Container-based virtualization archite-
cture. The Guest OS’s overhead is missing in the container virtualization. .
Kubernetes components architecture
Kubernetes abstraction layers visualized.
The figure displays a comparison between the main cloud computing service
models. The green components are managed by the cloud provider and the
blue ones are managed by theuser.

FaaS model components.o

Aitfouatxn Epyaoia

KATAAOTOX EXHMATQN

3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Apache OpenWhisk architecture. 62
OpenFaas architecture and components. 63
Cluster Architectural Overview 70
Simple-sw architectural overview. 0oL 72
MinlO deployed above a Kubernetes cluster. 74
Versionl architecture visualized., 77
Version2 architecture visualized. 78
Version3 architecture visualized. 79
Version4 architecture visualized., 80
Versions’ average latency for 65 frames processed 81
Versionl and Version4 comparative executions at the wOl node. 82
Versionl configurations and Version4(1) 83
Versionl configurations and Version4(2) 84
Versionl and Version4 comparative executions at the wOl node. 85
Versionl and Version4 comparative executions at the wO2 node. 85
Versionl and Version4 comparative executions at the wO3 node. 86
Versionl and Version4 comparative executions at the wO4 node. 86
Impact of interference on serverless functions 87
Impact of heterogeneity on serverless functions 88
Versionl: placement configurations and number of replicas 89
Versionl: placement configurations and number of replicas 89
DRL Scheduler Framework Overview 92
Architectural Overview of the System Monitor 93
Overview of the DRL-based agent 94
Overview of the Runtime Engine 95
Overview of the Function Mapper 96
Fullmap-, Custom-based schedulers overview 101
Kubernetes scheduler overview 102
Oracle scheduler overview 103
Training plots of fullmap-guided DRL-based Scheduler 104
Training plots of custom-guided DRL-based Scheduler 104
Training plots of kubernetes-guided DRL-based Scheduler 105
Training plots of oracle-guided DRL-based Scheduler 106
QoS quotient over training oL oo 107
Cumulative reward over training 107
QoS violations over training Lo oL 108

Interference level, QoS Quotient and decision making of the DRL-agent un-

der different scheduling policies 110

Awtflopatkn Epyaoia

Extetapévn IepiAnywn

0.1 Ewaynyn

H epgadvion 1oV UTIOAOYI0TIKGOV CUCTNPAT®OV VEPOUG £XEL 00nynoet oty dpaoctiky) aAAa-
Y1 TG EKTEAEONG UTIOAOYIOTIKGOV QOPTi®V ard 1810tkd dopdtia eSurnpet)tov (servers) oe
dnuoola nepiBardovia vépoug. H aAdayn autn enérpsye otoug MPOYyPAPATIONES va HETa-
@Epouv v eubuvn Slaxeiplong eSUNPENTOV KAl TV UTIOSOPMV TOUG OTOV IIAPOYXO0 ULTHPECL-
v vépoug. Ipo autrg g e§€A€ng, o1 poypapatiotég frav adnptty avaykn va ayopacouv
1] VOIK1A00UV 1810TIKEG UTTOSOPEG ECUITNEETH V1A VA AEITOUPYCOUV TA CUCTHPATA TTOU d-
vérmuooav. H oUyKeRp1€Vr TAKTIKY €1XE ®G IPOATIATIOUHEVO UPNAT XPNHATIKL) £MEVOUOT
0€ UAKO eve TtapadAnda rpokalouviav avgnor v AETTOUPYIKGOV e§08mV AOY® TG avaykng
TMPOCANYIG IIPOCKITIKOU Yld TV AE1TOUPYIA KAl OUVINPL 0T TOV UAK®OV UTIOO0HUOV, AV OTIG
ortoieg otnpidovrav ta avarrtuooopeva epyadeia Aoylopikou. Emnpoobeta, av dnuioupyo-
uvtav n avaykn yla audnorn g UMOAOYIOTIKIG 10XU0G, autd 9a anattouoe apKetd Xpovo
plag kat ot dabikaoieg ayopdg, eykatdotaong Kat pubpiong véou UAkou da émpere va
€XOUV 0AOKANP®OEl TIPOTOU PUIMOPECOUV O1 UTIOSOES AUTEG va Xpnotportoinfouv. TTAeov, pe
TG véeg £8edigelg, fval Suvatd va eléyiel Kavelg véeg urtobopeg eEUMNPETNTOV 08 EAAX10TO

XPOVO KAvVOVTag XPr|0T) EUIOPIKOV TAATPOPHURDV VEPOUS.

Me 11§ ipdoateg AUOEIS OTO UTIOAOYIOTIKO VEPOG, 1] AVAITIUSH UINPEo1®V arotedel éva
npoidv pe xapndo xpovo aging otnv ayopd eve rnapdAAnia ot nipoypappatioteg dev sivat
avaykn va diaxeipifovial 11g avaloyeg UTIOAOY10TIKEG UTTOO0EG. O1 EPIOPIKEG TTAATPOPHLES
VEPOUG ouveEX®WS eediooovial WOte va mapEXOUV vea HOVIEAa urnpeoiv rou da dnpioup-
YHOOUV X®OPO Y1a MEPALTEP® ATIOTIO 0] £UBNVNG A6 TOUG IIPOYPAPHATIOTEG KAl NETAPOPAG
g otoug IapoXoug védpoug. H tedeutaia poobnkn oe autdv Tov Topéa UMTOAOYIOTIKGOV UITN-
peowv eival 1o serverless computing 1o oroio undoxetat va analddadel MANPEG tov XpHoty

amno Vv 51axXeip1or UTTOAOYIOTIKGOV UTIOS0H®V.

H Zuvdapmon Zav Yrinpeoia (FaaS) eivat éva UmoAoyiotiko PLOVIEAO TTOU EIITPETIEL OTOV
MPOYPAPATIOT!] VA €KTEAE0EL ATOUIKEG oUuvaptroelg oto vepog. H FaaS kupidpynoes xapn
OTNV €1KOVIKOTIONO ot €rinedo Aettoupyikou cuotrpatog. To umoloylotiko poviédo Se-
rverless Snpoupyel £va vEo TPOIIo 0Xe61a0110U KAl KATAK®OONG EGAPHIOYOV KAl UTIPECLAV,
ETUTPETIOVIAG OTOG IIPOYPAPHPATIOEG Va S1adUyouV artod v ouvnO1oPEVT) TAKTIKY avArttuéng
HOVOAOBIKGOV epAPPOY®V KAl va UL0BET 00UV €va IO AroSOPNPEVO UPOG TIOU IIPOCPEPE-
Tal ano 1g serverless cuvaptroelg, XOPI§ AVAYKL yid EMMITAEOV CUVIN PN O], KATHAK®OT Kat

dlaxeiplon v épev TOUG.

Aitfouatxn Epyaoia m

Extetapévn IepiAnyn

0.2 Iotopiko yua tnv Ewkovikonoinon

H ewkovikomoinon (virtualization) eivat o akpoywviaiog AiBog tng texvoloyiag server-
less Kal yevikOtepa TOU UTOAOY1OTIKOU VvEPoug. H ekovikomoinon dnpioupyel kKaAutepeg
OUVONKEG Y1la HETAPOPA T®V UMOAOYIOTIKGOV QOPTI®V KAl KAB10TA €UKOAO OTOUG MApOXOUg
UTIPECIOV OTO0 VEPOG va 1101pAlouv OToUG MEAATEG TOUG UTIOAOYIOTIKY] 10XU. TNV OUVEXEL
Ya avapepBoupe oe dUo €1bn ekovikooinoNg: ekoVIKOTONON Baclopuévn o emTnENIN Kal

swovukonoinon aoctopugvn os taksto (container).

0.2.1 Ewovikonoinon Baociopévn os Erutnpnty

Ao v dexkastia tou '60 kat tou ‘70, 1 EKOVIKOIIOINO APX10€ va KUplapxel oav uro-
Aoylotiko poviédo, pag xkat n IBM [1] eixe Xpnolporno|oet v OUYKEKPIPEVT) TeXVoAoyia
OTa OoUCTHPATd TNG. XINV €1KOVIKOIoinon Paociopévn oe ermnpenty [2], mpoopépetal éva o-
AOKANPGOUEVO EIKOVIKO PNXAVNHA [TOU £KOVIKA XPNO1Uorotel 6Ao 1o UAko hardware tou
OUCTHLATOG, TOU OII010U TO AEITOUPYIKO CUCTHIIA AYVOEL TV £IKOVIKOITOINOI TV UTOAOY1-
oTK®OV nopev. Ot ermnpniég propouv va diaxkpiBouv oe 6o kawyopieg: Emnpnng yu-
HVOU PeTtdAAou Kal @AOEEVOUIEVOG EMMITNPITIG, OTTOU £KAOTOG £XE1 H10(POPETIKES TEPIITIOOELS

Xpnons.

0.2.2 Ewovironoinon Baoiopévn oe ITarEto

AVTI0£T06 e TV EIKOVIKOITOINoT Baoclopévn) o ertpnty 1 onoia Asttoupyet pe éva Aet-
TOUPY1IKO oUCTN A va evepyel "Tave ™ amnod eikovikonoupévo UAiko (hardware), n eikovikorio-
inon Paciopévn o TAKETO Ae1TOUPYEL 0TO 1610 eminedo pe 10 Aettoupyko ocuotnpa. To nakéto
container sivat pia autoteAng povada AOYIoPIKOU TTOU TIEPIEXEL TOV KOOKA aAAd Kal OAeg
TG e€APTOELG TOU OUYKEKPIPEVOU KOSIKA MOTE 0 KOSIKAG va PIopel va ektedeotel ypriyopa
Katl agomorta og mokida urnodoylotika repiBailovia. Ta rmAsovektrpara arod v XpProrn
MAKETOV OUYKPITIKA € TV XPLOT EIKOVIKOV HnXavnudatev eivat apkretd. To onpavikote-
po eival n gueAi§ia Kat 0 ypnyopotepog KUKAOG avartuing Kkat 81a6eong 10U rmepieXopevou

Aoy1opKoU.

0.2.3 Evopx1otpwon

Zta TEP1000TEPA UTIOAOYIOTIKA PNXAvHHaTd UTIAPXEL 1] AVAYKI vopXnotpeong Kat dia-
Xeilplong moAAov maxkeétwv containers. Tnv avaykn aut) KAAUITIOUV OUCTHATA OTIOG O
KuBepvnngl[3]. O KuBepvring eival éva ouotnpa avolXtou K®O1KA ITOU AUTOHATOIIOEL TV
EKTEAEOT, TNV KATHAK®OT) Kat Vv daxeipion naketaplopévev epappoyev. H Google apyika
oxebiaoe 10 cuotnpa tou KuBepvr)tn, 1o oroio mAéov ocuvinpeitat aro tv CNCF. 'Otav syka-
Siotoupe tov KuBepvrtn, aroktape pia opada otoiyeinv Aoyiopikou. H opaba amoteleitat
and kopBoug turou Agévin (paotep) kat kopBoug turou Epydmn (wopkep). 'Evag xkop-
Bog tuimou Agévin neptdapBavet: kube-apiserver, etcd, kube-scheduler, kube-controller-
manager. 'Evag kopBog tumou Epyatn nepidapBaver: kubelet, kube-proxy, Container

runtime.

m AitAeouatxn Epyaoia

0.3 AvdaAuon Kwrtpov

O KuBepvrjing Asttoupyet pe modAarmda enineda adaipeong, ta oroia oe @Bivouoca oet-
pd agaipeong eivat ta e€hg: Deployment, ReplicaSet, Pod, Cluster Node, Node Process,
Docker container. XZuykekpipéva, yla va ektedéooupe pia epappoyr v torobetoupe o
éva naketo container to oroio Sa Siaxeipiotel anod éva Pod, 1o omoio pe v ogpd tou Sa
dlaxelprotel ano Aoylopikd peyadutepou emriedou agaipesong. O KuBepvring unootnpidet
pila peydAn nowiia amno Asttoupyieg rmou KAAurtouv éva péyalo @dopa tev duvatot) eV
OU MPOOPEPEL 1] TEXVOAOYia TOU UTIOAOY10TIKOU VEPOoUg. Baowkrn euBuvn tou KuBepvrtn e-
tvat va ektedéoet éva goptio péowm evog Pod oto kataAAnAdtepo §iabéotpo pnyavnpa oote va

ermtevyBel n kaAutepn Suvatn Saxeipion v Sabéonv opwv.

0.3 AvdAuon Kwvntpov

To urtoAoy10TIKO VEPOG £XE1 TTAPOUCIACEL AAPATAOST TIPO0S0 PETA TNV E1IKOVIKOTIO 0] TOU
UAwkoU hardware kat tng 16€ag TV €KOVIKOV pnyavnpdatev. Ma xpovia, modAég mpotu-
rieg mAatpoppeg dnuioupynOnkav xapn o autég Ti§ TEXVoAoyieg rou odnynoav oe peinon
KOotoug ot 6Aa ta peyédn stapiov. To emopevo Pripa ATav n avartudn g IKOVIKOIoinong
Baolopévng os TTaKETa 1 omoia HE IV og1pd g dnuiovpynoe Xwpo yia ouvexn npoodo. 'O-
B¢ 1 avaykn yla peyadutepn euedi§ia kat mo §ikatn KOOToAOy10n £PEPE OTO IIPOCKLVIO TO
serverless. To serverless eva eixe eKKIvr)oel oav teXvoloyia Baotopévn oe yeyovota events,
EPrace va xprnolponotieital yia epappoyeg avaduong 6edopévev, TeEXVNTHG VONHooUvng Kat
UTIOAOY1011OTNTA UWPNANG artodoong. Aoy autou 1tou S1eUpnpEVOU (PACHIATOS EPAPHIOYOV
katadaBaivoupe 611 0 aviiktumog rou propet va €xet pia PeAtioon oto serverless Sa wpe-
Afjoet pia oepd dAAev niediov. oot gival OU®S ot Tapayovieg Tou ennpealouv v arodoon
uiag serverless sgappoyric ou ektefleitar oe pia ouada vrofoytotwv (cluster) oto végog: Au-

T0UG TOUG IAPAYoVIeg eCETACAIE O Pia 0£1pd MEPAPATOV rou 9a avaduooupie akoAoubwg.

0.3.1 Ilepiwypagn tng Serverless Epappoyng kat tov Epappoyov Ilicong

H serverless epappoyr] rou ermdégapie va Xpnotioro)0oUpe otV HeAET) TS OUYKEKPL-
Bévng SumMepatikeg epyaociag anoteAeital anod éva oUVoAO CUVAPTACERV ITOU eredepyaldoviat
OTIYH10TUITIa €VOG apXelou Bivieo kavoviag avdaduorn ToU MePLEXOHEVOU KAOE OTIYH1OTUITOU
HE0® HOVIEA®V TEXVNTNG VONHooUvng. Xe IMo adalpetikd erimedo, n epappoyn Sexetat
apXka otv €ioodo €va ormolodrrote apxElo Pivieo tUrou mp4. XIinv OUVEXEW, 1] PO
ouvdptnon, framer, e§dyet, pe CUYKREKPIPEVO Bripa, OTYRIOTUIIA ATIO TO OCUYKEKPIREVO Bivie-
0 ta oroia mpowBel o' €va poviedo eupeong npoowriou, mou ovopdaletat facedetector. To
Hovtédo auto, apou aropaviel v Iapoucia 1 v aroucia avipaITvou MPoo®ITOU OTEAVEL
10 OTIYHLIOTUTIO £ite 0 éva poviédo avaduong ouvatobnpdtev, faceanalyzer, 11 o' éva poviéAo
avayvoplong avikepévou, mobilenet, avuiotoixeg.

[TpoKe1€VOU Va UAOTIOU)OOUYIE TV EKTEAECT] TG CUYKEKPIHEVNG EPAPHOYLS, OTPAPT|KA-
He apXka otg ermdoyég rou rpoodépet 1o Apache OpenWhisk[4]. To cuykekpipévo epya-
Aeio opwg Sev ermitpenel eUKoAa v TomoOEINON Piag ouvdaptnong oe KopBo tng €rmAoyrg
10U ¥pnotn aAld §popoAoyel v ouvAPTNOL OTTOU TOU SGOOEL EVIOAT O E0MTEPIKOG HPO}10A0-

yNtu)g Tou pe arnotédeopa va arotelel poxonedn oto §1ko pag eyxeipnpa. H torobétnon

Aitfouatxn Epyaoia

Extetapévn IepiAnyn

Zxnua 1: Apyuektovikn g Versionl

E%“

Zxnna 2: Apyuektovikn g Version2

ouvaptnong oe KOpBo ermAoyrg ival Baciko otoixeio g ouykekpipévng SouAeiag piag kat
0t0X06 £ivatl va §popoAoyoulie KATIOA CUVAPTNON OToV KAtaAAnAdtepo KoPBo BAon KATIORV
napaperpev. To emopevo Brjpa ftav n avukatactaor tou Apache OpenWhisk pie to Open-
Faas|[5], 1o oroio 6viag mo kovid otnv vdoroinor tou KuBepvritn mpoodEpel otov Xpr|otn
pia ogipa 18laitepa Xpriopev Suvatot)ey, OIKG AUTH) NG TOoHETNoNG piag ouvaptnong oe

KOp6o g ermAoyng pag.

Méow tou OpenFaas dnpioupyrjoape serverless ouvaptrjoelg rmou UAOIIO0UV TV ehap-
Hoyn pag Kai T ektedéoape evopxnotpepéva pe 6uo epyaldeia. To mpoto epyaAeio mou
Xxpnotponowjoape frav 1o faas-flow[6], éva Aoylopikd avorXtou KOSIKA MOV EMITPETEL TV
ouvOeon piag MOAUNAOKNG serverless cuvAptnong Mou anoteAeital amno 11§ CUVAPTIOELG TTOU
ermbupoupe va ouvbEcoUIE KAl va eKTEAE0OUPE evopxnotpapéva. Kabe popa rou Sa kale-
itat n mOAUTIAOKT OoUVAPTNOoT), da eKteAeital pia popd 1 OUVOALK) epappoyr]. Zav deutepo
epyaleio xpnotpomnooape pia mAatpoppa rmov vAornotf)Onke anod pag kat eivat oxediaopévn
yla TV OUYKeRPpEvVn edappoyr) rou pedetape. H mdatgpoppa avarntuyxbnke otnv yAwooa
npoypappatiopou Python kat ermtpénet kat n idwa pe v ogpd g EVOPXNOTPOUNEVT €-
KTEAEOT] TV OUVAPTIOE®V ITOU £X0UHE SN0Upyroel o€ riponyoupevo otadio. Ileplocotepeg

mAnpogopieg yla Tov custom pnyaviopo ektédeong Propouv va Bpebouuv £66.

[TpoKe1€VOU va PEAETHOOUE TV £PAPHOYT] AIld S1APOPETIKEG OTTTIKEG YOVIEG, KATAOKE-
yoape 1€00eptlg PopdEg g 181ag epappoyng pe dapopetkd apbud ouvaptroenv. Ilpo-
KEPEVOU va Pewbel 0 aplBpog tov ouvaptoe®v o KABe eMOPEVI PNOPPT] EVORIIATOVOUE
U0 ouvaptroeig o pia. Ot 1€00epig PopPEG Tapouctadovial mMapaxkat® oe eBivouca oelpd

ap1Bou cuvapTHoE®V.

m Awtflopatkn Epyaoia

0.3 AvdaAuon Kwrtpov

xnua 3: Apyuektovikn g Version3

e © = @
w————_lﬂfuif

Zxnna 4: Apyuektovikn g Version4

0.3.2 Avrtirtunog tou ApiOpou Cuvaptnioe®v otnv Anoédoon

Mia serverless edpappoyn ocuvrnBwg arotedeital anod MOAAATIAEG CUVAPTIOELG TIOU OUV-
deovrat petadu toug aduoidwtd oxnuatidoviag éva DAG, 1o oroio avadapBdavel v GUVOALKT)
extédeon g epappoyns. O apiBpodg ouvaptroswv rou anotedeital 1o DAG ennpedadet ape-
0a NV avaykn yla ermkovevia petall tov ouvaptioeny Kat apa railet Paciko polo otv
anoboon g epappoyng. H ouykekpipévn emppor] evioxUeTdl aKOPn TEPLIOCOTEPO ATIO TO
YEYOVOG OTL OAeg o1 IpOopateg serverless MAATPOPIEG EKTEAOUV KADE OUVAPTHOL EKKIVOVTIAG
éva véo nakéro container. Av yia karoto Adyo §Uo e§aptopeveg ouvaptr)oeig evoroinbouv oe
pia, n ouvoAlkn ermkowvavia da pelwdel aAdd auto da Pel®oet emiong Kat TNV KAvotnIa g
epappoyng va rmapaiindonownBei. H oxeblaotikr) ermAoyn apa og rpog v rapaiAniorot-
NOROTTA NG EPAPHOYNS 1) TNV HEIROT TOU aplBPol TV CUVAPToERV £ival KaOoPloTIKNAG
onpaociag kat mpémnet va AapBavetatl urioy mpw v eravadapBavopevn EKTEAEOT g O€ Tie-
pBaAdovia vépoug. H pedétn tou aviiktuou 1ou apifpiol 1oV oUVAPTHOE®V OtV arodoor)

¢ epappoyng €yve Kat pe ta 6uo npoavadepbévia epyaleia.

IIpooiyylon pe to epyaleio faas-flow

'Onwg avapépbnke nmapandve, 1€o00eplg Popeg g 1dag epappoyng dnpioupyndnkav
pe otoxo n kabepia va eknpoonriel 6Ao Kat Atyotepn oupnayr epappoyr). H Awydtepn ou-
prayn amno 0Aeg tig popdeg eivat) Versionl n oroia aroteAétal ano révie 61apopeTKEG
OUVAPTIOEIS EV® QPTAVOUHE OV IEPIOCOTEPO CUUIIAYY Hopdr ev téAel, v Version4 rou
aroteA£1Tal CUVOALKA amod oAl §Uo ocuvaptrioelg. 1o oxnua 5 napouotaloupe v OUYKPL-
TIKT] €MT16001 TV TE00APKOV POPP®V OTTOU eKTeEAoUVTAL PE TEéooepa €161 £10060U kKat kadouviat
va enegepyaotovv 7, 16, 32 kat 65 cuypidtuna avd nepinteorn £106dou. ‘Onwg ftav avape-
vopevo, n Version4 otnv peyaldutepn €icobo (65 ouypiotuna) sivatr kata 30% ypnyopodtepn

arto v Versionl. Emutpoobeta, otig nepumtwoetg e100dou 7, 16 kat 32 ouypiotuniev ot da-

Aitfouatxn Epyaoia m

Extetapévn IepiAnyn

Granularity-based Workflow Execution - FaasFlow

g — -&..,h__ —-= 7 frames
""'-..._HE 16 frames
60 - "~ —-= 32 frames
..
-, —- 65 frames
\h‘
M'*\.
w .
- S
E 50 ‘.
Juf] "".
E
F
= 40 A
=]
4
=
w
Q
>
L 30 _
o ————— —— = —r——— -
'~
20 & a 2
@ ———cm——— —y——— ——— = ==
! r ! J
versionl versionz Vversion3 versiond

Granularity Levels

rxnpa 5: Méoog ypovog kaduotépnong ektédsong yia tg 4 ekdooeig ue iocodo 65 otypdtuna

@opég petadu Versionl, Version2, Version3 eivat pikpég kat 1o oroio ogeidetat oto o1t ot

OUYKEKPIPEVOL aplOPoU oTyHIOTUIIRV eV eival apKetd PeydAot yia va anoteAéoouv KoAupa

OTG OUYKEKPIPEVES HOPPES NG EPAPHOYTIS.

IIpooiyylon pe to custom spyaleio

e BeUtepn) 0£1pd MEPAPNATOV IOV EKTEAECTNKAY UTIO 1o custom gpyaleio mou avartuga-
e ya 1ig OpenFaas ouvaptrosig ouykpivoupe v emniboorn tng Versionl pe tyv Version4
OVTag 1] IO ATOSoUNPEVE KAl 1) TTI0 CUPIIAYHS Popdr) TG epappioyng avilotoixws. Ta arote-
Aéopata 1oV nelpapdiov @aivovial oto oxnpa 6, 6rou napatnpouvpie e181KdA otV peyaAutepn
€loodo (65 ouypiotuna) v Version4 va sivat 46.5% taxutepn amo v Versionl eve oto
avtiotolXo meipapia XPnotHonowwviag 10 mPATo epyaldeio n aviiotowxn dagopd frav ion pe
30%. 'Eva aopaldég ouprnépacpa rou propet va egaxOel ano autég 1 oe1pég nmeElpapdtov
elvat 0T aveaptiwg and tov PnXaviopo eKéAeong g epappoyng, o Pabiidg arodopnong
piag epappoyng ennpeddetl Eviova Vv Xpovikn emnidoon tng, dedopévou ot n epappoyn dev
rtapaAAnAoronOei.

0.3.3 Avrtikrtunog tov [IapepBoAcv otnv Anédoorn

Y autr] Vv Umo-evotnta aSloAOYOUHE TV CUNIEPIPOPA S1aPOPETIKGOV TOTIOAOYIOV TG
Versionl kat tng Version4 otav ota pnxavipatia €MeVePyoUHE TIECT Ao tpiteg rapepBo-

Aég, uno peaAiotikég 6nAadr) ouvOnkeg. Me autd tov TPOIo PItoPoUE va SEX®PIoOUE TOUg

m AinAeopatxny Epyaocia

0.3 AvdaAuon Kwrtpov

: 799
E \ersionl

m Versiond

Execution time (sec)
w =y [¥)] [+] -] [¢2]
(=) (=] [=] o [=] [=]
1 1 1 1 1 1

B
(=]
I

10 +

7 16 32 65
Input size (# of frames)

xnpa 6: Zuykpukn ektéfeon wwv Versionl, 4 otov wou6o PM

TAPAYOVIEG TTOU £MNPEAJOUV AYOTEPO 1) TIEPLOCOTEPO TNV £ITIO00T) NG EGAPIOYNG OTAV EKTE-
Aeitat 0’ éva unodoylotko repiBaidov vépoug. I'a napddeypa, pabaivoviag ot n epappoyn
Hag anattel mapatetapévn Xprnon nopev g CPU, 1o va v 6popoloyrcoupie ¢ éva KOPBo
TOU OTT010U 1] EMESEPYAOTIKY] 10XUG Kartttadevetal 118 and dAda uroAoylouka @optia eivat
KAKI €MAOYT ©G IIPOg Vv eSurnpétnorn tou xprotn. H pedén yivetal Xphnoyionowviag Kat

toug 6U0 TpoavapepBEVIeg PNXAVIOHOUS EKTEAEONG.

IIpooiyylon pe to spyaleio faas-flow

[Mpokeévou va pedetn)Betl o aviiktumnog TV rmapepBoAl®v oto mpodid tng serverless e-
pappoyng, Stapopetikeg torodoyieg g Versionl oe d1adpopoug kopBoug Snpioupyoviag pia
MOKIAla TOTTOAOY1OV Ol oroieg Tapouocialdovral otov mivaka 1. ZUYKeKPIPEva, PETPoaE
TOUG XPOVoUg eKTEAeong yia tpia dradopetika peyedn e100dou: 16, 32 kat 65 otypotuna
WOt va e§dyoulie aopaléotepa CUPMEPAOPATA Y1d TV OUCXETIOTN PETASU XPOVOU EKTEAEOTG
Katl tapepBoAwv. Ta CUYKEVIPOTIKA aroteAéopata yia diagopa erinedn mieong tov nopev
napouociadovial ota oxnpata 7 xat 8.

KataAf§ape oug €§ng nmapatnprioelg: Apxikd 1o péyebog tng €106dou @aivetatl va pnv
ennpéadel onuavikd myv “paxn” petail 1@V T0rmoAoyiev yia Tnyv tayutepn eKTEAEon, KATl
10 OT010 TINyAadel amo 1O YEYOVOG OTL 1] IO ApyI) ouvaptnorn, framer, nuav toroBstnpévn
0 0Aeg TG ToroAoyieg otov 1610 kopBo (Davinci). To e1koviKO pnxavnpa rnou “¢riogevei” o
server Davinci eivat unodoytloukd to o duvato. EmutAéov, ot diadopeg tormobetroetg tov
UIIOAOUIOV OUVAPTHOE®V AOY® TOU HIKPOU XPOVOU €KTEAEOTIG TTOU ITAPOUOIALOUV OUYKPITIKA
e v ouvaptnor framer Sev ennpealdouv oe peyddo Pabuod Tig CUYKPITIKEG KaBuoteproelg
TV 61aPOP®V TOTTOAOY1®V.

EmunpdoBeta, n Version4d rtav taxutepn o OAeg TIG MEPUTIOOEIS TO OIIOI0 1TAV AVALE-
vOpEVO AOY® TG XAPAANG aVAYKNG TG Yl EMKOVAVIA HETAU TOV OUVAPTHOE®V TIOU TV
artapti¢ouv. Eival adoonpeioto BéBaia nwg otav otoug KOPBoug evrpynoav rapeBoAég

PiteV epappoyov ot dragopég eridoong petadu g Version4 kat tov ekdooewv g Version1

Aitfouatxn Epyaoia m

Extetapévn [epidnyn

pewwbnkav onpaviikd 510t KAmoleg ano tig ouvaptroelg g Versionl tuxaive va €Xouv to-
noBetnBel oe kOPBo ou Sev Héxetal mapepBoAég kat dpa va d1abétouv 6Aoug Toug TOPOUg

TOU OUYKEKPIPEVOU HINXAVIIATOG O ATTOKAEIOTIKOTHTA.

Tedikd, art’ 6Aa ta £idn napepBoAnv ou dSnuoupyroape ot mapepBoAég otnv L3 cache

ftav autég mou Snpoupynoav v PeyaAutepn oupgopnorn ota pnxaviypatd.

Functions Singlenode | Multinode 1a | Multinode 1b | Multinode 1c | Multinode 3 | Version4
Framer w01l wO1l wO1l w01l w01l wO1l
Facedetector w01 w02 w02 w01 w01 w01
Faceanalyzer w01 w03 w02 w02 w01 w01
Mobilenet w01 w01 w01 w02 w02 w01
Outputer w01l w02 w02 w02 w02 wO1l
Wrapper w01 w01 w01 w02 w02 w01

[Tivakag 1: TomoAoyieg ouvaptnocwv

Average exec time (s)
8

Average exec time (s)

16_frames i 5 frames

(a) Zero Interference (3) CPU-pressure Intereference

Yxfpa 7: Versionl configurations and Version4(1)

m Awtflopatkn Epyaoia

0.3 AvdaAuon Kwrtpov

5979
50 . se.51

73247024657 a6

Average exec time (s)
Average exec time (s)

16 frames EX

frames 65_frames
0-3Mem-0

EX;
0-0-3Cache

(a) Memory-pressure Intereference (B) L3-pressure Intereference

Zxnpa 8: Versionl configurations and Version4(2)

IIpooiyylon pe to custom epyaleio

Ye Oevteprn 0£1pd AVIOTOX@V TEPAPATeOV aAAd autr) v @opd XPNOolHOoIolwviag Tov
custom pnxaviopo extédeong, tonobetrioape kat v Versionl (oAlotikd) kat tnv Version4
o€ €va KopBo KABe popda eIl TOU CUVOAOU TV S1a0¢01eV KOPBmV. LTOV CUYKEKPIIEVO KOPBO
dnpiovpyroape niepBadAov napepBodmv oe 4 enineda micong: 0%, 10%, 50%, 80%. Ta

OUYKEVIPOTIKA arnotedéopata napouvoiadoviatl ota oxnuata 9, 10, 11 xkat 12.

e 'O00 peyaAuteprn) 1) rieon mapepBolmv, 1600 PiKPOTepn 1 Sapdpa emiboong petadu
Versionl, Version4

e H Swagopd petady 0% kat 80% rieong £xel wg anotédeopa 33%, 33%, 30% kat 47%
KAOUOTEPTON OTOV CUVOAIKO XPOVO 11ag EKTEAEOTG TS EPAPHOYTG OTOUG KOpBoug w01,
w02, w03, w04 avtiotoixwg

e Ta emineda napepBoAav 10% kail 50% oplaka “"artoppopovial” aro Toug ITOPoUs TV
KOopBav w01, w02, w03 ene1dr] pévouv eAsuBepot, otnv Xe1pOTeEPT MEPITTOOT, 01 P1001
TTUPIVEG TIOU €1val APKETOL Y1d va EKTEAECOUV ATTOSOTIKA TV OUYKEKPIHIEVT] EPAPIOVT)
pe moAdarAd vijpata. AvuiBEtng, to smninedo napsepBoAanv 50% otov kopBo w04 deope-
Vel HU0 aro T0Ug OUVOAIKOUG TECOEPTG TTUPTIVES TOU PINXAVIATOS KAt £101 adalpel amo

1oV KOPBo TNV 1IKavotnta va eKPETAaAAeUTel ta ITOAAAAG vijpata.

[Mpokeévou va xapaktinpiocoupe v eualobnoia twv ouvaptroeVv o oUVOrKeg TApPEL-
BoAwV aro Tpiteg EPaPPOYES, EKTEAOULIE TPiTeg EPpapoYES BE TV BonBeia tng covitag iBench
WOTE VA QUENOOUHE TO UITOAOYIOTIKO (POPTIO 0TOUg KOPBoUg tou cuotrpartog. ‘Onwg gaive-
tat oty ewkova 13, n epappoyr) pag rapouvciadel onuaviikég petaBodég onv emidoorn g
Kate anod ouvinkeg CPU mapspBoAwv ou @ravouv 57.6% amokAlon oty MeEPIoTn g

ouvapmong Framer kat 47.2% Yxeipdtepn eriboorn otV MEPINTOOn TOV OUVAPTIOEDV TRV
HOVIEAGV.

Aitfouatxn Epyaoia m

Extetapévn Iepidnyn

0% pressure

10% pressure

Execution time (sec)

16
Input size (# of frames)

50% pressure

Execution time (sec)

. \ersionl

16
Input size (# of frames)

80% pressure

84.51

2 65

= Versionl
= Versiond

Execution time (sec)

Input size (# of frames)

Execution time (sec)

120 | mmm Versionl

16
Input size (# of frames)

117.97

32

Zxnpa 9: Zuykpukeg ekteféocig uetalu Versionl kar Version4 otov kou6o wol

0% pressure

10% pressure

= Versionl
= Versiond

Execution time (sec)

3:
Input size (# of frames)

50% pressure

Execution time (sec)

= Versionl

Input size (# of frames)

80% pressure

Execution time (sec)

16 32
Input size (# of frames)

Execution time (sec)

16

Input size (# of frames)

2

Zynua 10: Zuykpoukeg extefcoeigs uetalv Versionl kar Version4 otov kou6o w02

Awtflopatkn Epyaoia

0.3

Avaluon Kwntpev

0% pressure

10% pressure

Execution time (sec)

16
Input size (# of frames)

50% pressure

2

Execution time (sec)

a
g

&

16

Input size (# of frames)

80% pressure

2

= Versionl
100 { === Versiond.

Execution time (sec)

16
Input size (# of frames)

Execution time (sec)

= Versionl

16

Input size (# of frames)

2

129.84

Ixnua 11: Zvuykoukég exteféocig uetalv Versionl kar Version4 otov kou6o w03

0% pressure

10% pressure

Execution time (sec)

50% pressure

32
Input size (# of frames)

Execution time (sec)

= \ersionl

Input size (# of frames)

80% pressure

12751

Execution time (sec)

16
Input size (# of frames)

2

Execution time (sec)

16

Input size (# of frames)

2

Zynua 12: Zuykoukeg extefcoeic uetalv Versionl kar Version4 otov kou6o w04

AwnAouatxn Epyaoia

Extetapévn IepiAnyn

" 40
9(_:’ N 15.40 15.76 17.82 EfeRele) 3.00 3.00 3.00 4.00 ’g
S o
5 A 15.76 16.12 17.65 EYAK: 5.33 5.40 5.50 9.00 GE’
2 o
- c
8 o 16.46 16.56 18.36 EYAEY) 9.50 9.00 11.00 18.00 -f:’
O >
o 0
g s 17.90 18.01 20.12 RN 18.00 17.50 20.00 fEfEHolo] 5
2
1 I
0% 25% 50% 75% 0% 25% 50% 75% CPU %
Framer function Models functions Pressure

Zxnpa 13: AvtiKtunog TV TapeuboA®y Ot oUVApTNOELS TG EPAPUOYNS

0.3.4 Avrtiktunog tng Etepoyéverag otnv Antodoon
IIpooiyylon pe to epyaleio faas-flow

[Tpokeévou va pedetr)Bel Kat 0 AVIIKTUIIOG NG €IEPOYEVELAG OTO TIPOPIA TG Server-
less epappoyrg, toroBetrioape T1g dradopetikeg torodoyieg g Versionl oe diapopetikoug
KOpBoug drpioupyoviag pia IoiKiAia TOroAoy1®V 01 0TI0ieg rapouociadoviatl otov mivaka 1.
ZUYKEKPIPEVA, PETIPHOAPE TOUG XPOVOUG eKTEAEONS yia tpia Siapopeukd pneyedn e100dou:
16, 32 kat 65 ouypotuna wote va e§dyoupe aopaiéotepa CUPMEPAoHATA Yld TV OUCXETION)
petady xpovou ektédeong Kat etepoyévelag. Ta oUYKeEVIpOTIKA aroteAéopata rapouaciadovrat

Katl raltl ota oxnpata 7 xat 8.

e Eivat ipogavég ot o k6pBog w01 rapouotddet v o Kupiapxn enidoorn aveSaptiiog
peyeboug e1oodou. O kopBog w02 épyetal deutepog oe emiboor, eved ot kopBot w3,

w04 ¢pxovial Ipitog Katl teAeutaiog aviiotolxa.

e Av ermkevipwBoupe otnv peyadutepn €icodo (65 otypioturna), mapatnpoupe Ot Ol
Srapopeg petadu Versionl kat Version4 peidvetatl ypappikda He v 10XU TOV JXav)-
parov. Ztov kopBo w01, n Siapopd autn €xel tnv PEyLoTn TP g Kat ivat ion pe

45% eve otoug kKopBoug w02, w03, w04 eivat ion pe 39%, 33% kat 23% avuotoixwg.

e To OoUYKeKPIEVO @AVOPEVO eTIIKPATEL O OAa ta peyedn e1008ou, adAd peylotoroteitat

otV peyalutepn eicodo.

e 'OlAeg o1 serverless ouvaptrjoelg ektedouvral pe moAAandd vijpata (threads) ano toug
Srabéooug upnveg kAbe pnxavnpatog. Auty) eivai n Baocikn attia miow anod v
XapnAn enidoorn tou kopBou w04 o oroiog §1abetel cUVOAIKA 4 TIUPTVEG HOALS KAt £T01

bev elval 1kavog va endeAnOel TG MOAUVNIATIKNG EKTEAEOTG.

Zinv ewkova 14 napouoiadovial ot PetaBolég otnv emidoon TV oUvVapTHoe®V IOV arap-
tidouv TV ePpappoyr) pag, ot oroieg IIPOKAAOUVIAL ATIO TV EIEPOYEVELA TOV PNXAVAHATOV Td
ortota tig ektedovuv. Ia tnv cuvaptnon Framer, Bpiokoupe anokAioslg pe peyiotn upn 23%
Kat edayiotn tpr 10% otig neputtwoetg g €100d6ou 16 kat 65 ouypiotunev aviictotya. E-

TTAE0V, OTI§ OUVAPTH OIS TOV HOVIEA®V, Ol HETPNIEVES ATIOKRAIOEIG £XoUuV péyiotn Tipn 34%

m Awtflopatkn Epyaoia

0.3 AvdaAuon Kwrtpov

Kat edayiotn 5%. I'evikeg, mapatnpouie 0Tl 0 AVIIKTIUIIOS TG ETEPOYEVELAS OTIS OUVAPTHOELG
auddvetatl pe v audnorn tou peyeboug g eoodou. ErurmAéov, ta pnxavipata woOl, w02

napouctadouv v Kadutepn emniboor.

(V)]

GEJ 15.40 15.76 16.46 17.90 3.00 3.00 3.00 3.20 ’g
S)
‘g 18.71 18.87 20.27 24.35 5.33 6.00 7.00 7.00 GE’
c -
— cC
8 24.71 25.66 26.23 28.59 9.50 9.00 13.00 14.00 -f:’
0 3
Q O
§ o -38.85 39.27 40.57 43.10 18.00 19.00 24.00 27.50 5
=

1 1 1 1
w0l w02 w03 w04 w0l w02 w03 w04
Framer function Models functions

Zxnpa 14: AvtiKtumog g ETEPOYEVELAS OTIC OUVAPTHOELS

'Eva xapakinpilotiko g serverless miatgpoppag OpenFaas [5] eivat ot prnopet va d1a-
XEP1oTel aouyypova attpata otig d1abéoipeg ouvaptoelg Katl apa va enapeAndsl anod wmyv
napadAndonoinon g ekdotote epappoyrng. H mapadAnloroinon piag epappoyrg anartet
Vv e§UINPENOT ACUYXPOVOV AlTUIATOV OOTE VA EIMKAAUITIOVIAL XPOvol Hetady tov Sia-
@opev cuypotuniov. To OpenFaas efunnpetel ta acuyxpova artjpata p€ow auinong tov
avuypdoav tou epyaleiou Tou rou ovopadetat Queue-Worker. Anpioupyoviag S1apopetikég
tortodoyieg tov Versionl, Version4 eietacape pe diapopetikod apiOpo didbsopov Queue-
Workers tnv xpovikr] enidoor 6Aev tov cuvduaop®v. Ta ocuyKevipeOTIKA anoteAéopatd ma-

poucialovtat ota oxnuata 15 kat 16.

O1 toroAoyieg TOU oXnpuaAtiotKav AIav ol e§ng:

Davinci: 'OAeg o1 ouvaptroeig TortoBetnpéveg otov KopBo w0l

e Liono: 'OAgg 01 cUvVApPTOElG TOTIOOETNEVEG OTOV KOPBo W02

e Coroni: 'OAeg o1 cuvaptroelg TOrOOETNEVEG OTOV KOPBo w03

e Davinci-Liono: H ouvdptnon Framer tonoBetpévn otov kopBo w01, ot uroAoirieg

otov kKopBo w02

e Davinci-Liono-Coroni: H cuvaptnon Framer toroBetnpévr otov k6pu6o w01, n Face-

detector otov kopBo w02 kat ot urtddotreg otov kKOpBo wO3.

Aitfouatxn Epyaoia

Extetapévn IepiAnyn

Versionl latencies (sec) - frames: 32 Versionl latencies (sec) - frames: 65

dav-lio-caroni dav-lio-coroni 4

dav-liono -

dav-liono

coroni coroni - 46.26

Placement configuration
Placement configuration

liono liono -

davinci davinci

b 2 L] % 16 1 2 a B 16
Queue-workers # Queue-workers
(a) 32 frames (B) 65 frames

Zxnpa 16: Versionl: placement configurations and number of replicas

Version1 latencies (sec) - frames: 7 Versionl latencies (sec) - frames: 16

dav-lio-coroni JRERICES 21.98 2098 20.68 dav-lio-coroni

dav-liono dav-liono

o .

liono

coroni

Placement configuration
Placement configuration

liono

davinci 19.05 :} davinci

hY 3 & ® 16 1 T & 3 16
Queue-workers # Queue-workers
(a) 7 frames () 16 frames

Zxnpa 15: Versionl: placement configurations and number of replicas

Zuprnepdopata autov IOV MEPAPATOV eival tTa akoiouba :

e H ouykpluiky] ermtaxuvorn) ano v XpHorn acUyXpovev attHatev £ival PIKPOTEPT) ota
Pkpotepa peyedn ewoodou. H péyiotn tipng emrayxuvong napatnpndnke otov k6p6o
w01 pe v peyadutepn eiocodo (65 otypioturia) orou nrav ion pe 60% esrmtdyuv-
ong, evw 1 eAayiotn frav ion pe 20% owv torodoyia Davinci-Liono-Coroni pe tv

HiKpotEPN €l0060 (7 ouypiotuna).

e Autavovtag tov apOpo anod Queue-Workers, ermtayUvoulle v EKTEAEOT] TG EPAPHIO-
1S ‘Oneg auto propei va oupBel £0g €va Ave 0p10 To 011010 e§aptatatl Kabe popd amno
VvV epappoyr) Kat tov fabpo napaiAndonownopotntag mg. Sty 61Kn pag nepintoon,
pe 1 Queue-Worker nietuyaivoupie KaAUtepo Xpovo ektedeong ioo pe 58 SeutepoAerta

eve pe 16 Queue-Workers 0 KaAUtepog Xpovog ektEAeong eivat poAig 15 Seutepolernta.

e 'Evag Queue-Worker ermBapuvel edayiota 1o pnyavnpa oto onoio Bpioketat. H emi-
Bapuvorn oe pvrun RAM 6ev eival epioodtepn arnd 10MB kat dpa ev ennpedadet Toug

TTIOPOUG TOU EKACTOTE PNYAVIIATOG.

m Awtflopatkn Epyaoia

0.4 Xxebraopog kat YAoroinorn Auvapikou ApopioAoyrtn

0.4 ZIxedraopog kat YAonoinon Auvaptrou ApopoAoynty)

H evotnua auvtr] avalduel v oxediaon katl v uvdornoinon evog duvapikou Spopolo-
yn Baowopévou oe Babia evioyutukn pabnorn, pe otoxo v daxeiplon piag epappoyns
avdluong Bivieo 1 oroia exteAeital oe serverless nepiBaAdov vépoug. H mpotewvopevn Avon
EKPETAAAEUETAL CUCTNHIKEG PETPIKEG TIPOKEIPEVOU va aviiAndOel TV Katdotaor) T0U EKACTO-
1€ EIEPOYEVOUG PNXAVHIATOG 000 adopd TS EVEPYES TIAPEPBOALG, MOTE va eCUNPETHOEL £va
attpa XpHotn pe otdxX0 TV KAVOVIKOITOINOoT] TOU XPOVOU EKTEAECTS TOU PECK HETATOINONG
1@V OUVAPTHoE®V O KatdAAndoug kopBoug aAdd kat peiwong/avinong tov avitypadev toug.
H mpoogyyion pag KatadEPvel va eVOPXNOTP®OEL TI§ OUYKEKPIIEVEG OUVAPTIOELG KAT® ATIO
duvapikég ouvOrkeg rieong MOPOV KAl ATHATOV TOU XP1Ootr.

Apx1kd 9a rmapouclacoue GUVOITIIKA TV Texvoloyia tng Badiag evioyutukng pabnong,
eVQ otV ouvéxela 9a arkoAoubrioetl avaduon yia Vv Paoikr) apXlIEKTOVIKY KAl TEXVIKI] UAO-

noinor tou duvapikou Spopoloynty.

0.4.1 Ba6ia Evioxutikry Maénon

H Babia evioyutikr pdbnon eivatl éva €ibog pnyxavikng pabnong mou yprnotporoteitat
OAO Kdl MEPIOCOTEPO TA TEAEUTAIA XPOVIA AOY® TOV AUCE®V TOU MPOOPEPEL 0 Pia opdada
MOAUTTAOKGV MPOBANPATOV OIKG 1] 6pACT] UTIOAOY10TY), 1] £MESePYaoia QUOIKAG YA®ooag 1 1)
avayvopton potiBou. H wavotnta g Badidg pdbnong va katavaiovet, pabaivoviag potiba,
peydloug oykoug Sedopévav kKabwg kat n rmpoodog oe UAKO untodoyiotr] hardware n omoia
MA£0V PItopel va KAAUWEL PEYAAES ATIAITOE1S O QUITOAOYIOTIKY] 10XU, 08 cUVOUAOO PE Vv
EVIOXUTIKY pabnon £xet avoifel véa povornata eriduong og rpoBAnpata rmouv péxPt rpdtivog
arnattovoav oAU ouvOeTeg MPOOEYYIioELS.

H Bab1d pabnor) eival €évag turog pnxavikng pabnong rmou dev arattet akpiBr) avBpwrivn
npoeregepyacia v debopévav rmou 9a kataval®oel 0 UroAoylotig. Aviif£twg, 0 UroAoyl-
otrg ivat oe 9éor va 6exOel Hedopéva noAdov Staotdoenv, P ardouoteupéva, Kat va egayet
potiBa 1ou xapaktnpi¢ouv povadikd autég tig opddeg dedopévav. 'Etot e§urnnpeteitat ka-
VOTIOINTIKA 0 OTOX0G TG TEXVNTNS VOIpioouvng IoU €ivdl 1] KAtavornor T0U KOOHUOoU HE TV
elaxiot duvat avbporuvny cuppetoxn. H apytiektoviky) tov diktuev fabiag pabnong a-
noteAeitat ard rmoAAardd erntineda avtdpatev kedikoronwv (RBM) kat otpwoelg ouveAEng.
Ta diktua déxovrat otnv £i00d0 ToUg Peydleg roootrteg debopévav, ta omnoia enegepyddoviat
oelplaka oe KABe erinebo. H £5060g evog erunedou arotedel v £ico0bo tou endpevou Kat
elvat ouvrOwg un ypappikoi cuvduaocpol tng e106dou toug. Ipoxeévou n tedikn €§060g
TOU G1KTUOU va AUVEL ETITUXOG T0 TIPpOBANa rmou {nteitat eivat avaykaio to Siktuo va €xelg
TG KATAAANAEG TIHEG OTO OUVOAO T®V UTEPTIAPAPETP®V Tou. H Siadikaocia eupeong katdl-
ANAevV TPV yla TI§ UMEPIIAPAPEIPOUS ToU S1KTUOU €ival ouyva pia apyr Siadikaoia 1ou
arattel §01KiON e TOUg S1APOPOUG TUITOUG APXIKTIEKTOVIKGOV Katl IPoBANudtov rmou Auvel
n kaBepia.

H evioxutikr pdabnor) sival évag tunog pnxaviking pabnong ornou o urnoAoyiotrg pabaivet
va Auvet éva rpoBAnpa aAAnAemdpavrag e 1o iep1BAadAov 1ou rpoBANATOg IOV KaAgital va

ermAvoetl. H Baoikn pébodog andkinong yvwong otnv evioxUuTiky pabnon eival n Siadkaoia

Aitfouatxn Epyaoia m

Extetapévn IepiAnyn

doxurig kal opdAparog. LUYKeERppéva, o umoloylotrg doxkipadet Avoelg oto mpoBAnpa

Kal avaddywg aro v €kBaon tng Katdotaong, 1o replBailov tou rpoodepet pia Seukr) 1

apvnukn emBpaBeuon. Z10X0G TOU MPAKTopd (evaAAaKiiKi) ovopacia tou uroloylotn otd

npoBArpata eVIoXUTIKAG PAabnong) eivat oe BAaBog XpOVOU va GUYKEVIPWOEL CUCOMPEUTIKA

000 yivetatl peyadutepn etk embBpabevorn).

0.4.2 Ap)ttektoviki Kat YAonoinon Auvapikou ApopoAoyntn

Zta mhaiola €peuvag g CUYKEKPTIEVNS SIMAOPATIKYG Epyaciag avartudapie £éva PoviEAo

duvapikou SpopoAoyntr| Baciopévo os Babid evioXUTIKY padnorn. TYXETKA € TV OTPATNYIKI)

mou akoloubBrjoape, Eexwpilouv ta £€ng onueia:

¢ EK 10V NPotépnv yvaor) ToU UIoAoylotikou nipodid g epappoyng dev anatteitat. Me

AAAa Aoyia, Sev xpelaletat €€tpa Xpovog yia PeALTng TG EPAPIOYHG TTOU MIPOKETAL va
avalddBet o Spoporoyntrg yia Suvapikn §popoAdoynon, addd o npdkropag Sa pddest
TV OUPIEPLPOPA NG ePappoyng Katd v didpkela g eknaideuong tou. Autr eivat
pia peadiotuiky] mpoogyylon mpoBAnuatog yia serverless epappoyeég rmou ekteAouvial

010 VEQOG.

Ot mbavég Spopodoyrioelg ToU propet va epappoost o dpopoloyning eivat daxpt-
1£€G, TIEMEPACEVEG KA1 ELAPTOVIAL A0 TI§ UTTOSONEG TOU OUCTHATOS TTAVR OTO OIToio

ekteAeital n popoAoynor).

'‘Otav ot ouvBnkeg 10U ouotpatog adlalouv, o dpopodoyntrg eival oe 9¢on va mpo-
OUPPOOTEL O' AUTEG AVIIOTOIX®G MOTE va eEUMNPETHOEl 600 10 duvatdv o 61010 aitnua

TOU Xprotn.

Apxttektoviky) Apopodoynty

H Soprj tou duvapikou §popoAoyntr| anoteAeital and:

System Monitor, 10 oroio cuAAéyel PETPIKEG ITOU OUVOETOUV TV KATAOTAOT) TOU OU-
otpatog. H ouAdoyr) tewv petpikov nieptdapBavert PCM metrics, 1ov ouvoAko xpovo
EKTEAEONG NG EPAPHOYLG, TNV TOTIOAOYIA TOV CUVAPTICER®V OTO CUCTHHA Kat dAAa pun-
vupata emBeBainong yia Sidpopeg Siepyaoieg. Ta PCM metrics ouykevipovoviatl and
KaBe kopBo pe xprjon Docker makEtwv, ta oroia pe v og1pd toug npowbouvial oto

system monitor. ZXnpatiky anekovion nPoopEPETal oto oxnpa 17.

System Monitor

Node

Exec lanfecy

State—>

U »| Golang Script
¥

Decker pem agents T

Acknowledgements

0

Yxnua 17: Apyuextovikn tou System Monitor

AinAeopatxny Epyaocia

0.4 Xxebraopog kat YAoroinorn Auvapikou ApopioAoyrtn

e DRL-based agent, o oroiog eivatl évag mpaktopag Pabdidg evioyutikng pabnong rmou
nipoottaBel va pabet g BEATioteg AMOPATEIS OOTE va AU oet TV ermBpdBeuon mou Aap-
Bavelr aAAnAsrudpoviag pe 1o repBadArov tou. O mpaktopag xpnotpornotei 1o didAnppa
£€ePEUVIOTG-EKPIETAAAEUOTG TO OTTO10 TOU EMMTPEIEL OX1 FIOVO VA EKPETAAAEUTEL NV £€®dG
10te PéAtiot andpaon adda va egepeuvnoet Kt AAAeg aroPAocelg IoU JITOPEL va ATlo-
Bouv kaAutepeg pakporpoBeopia. O mapdyoviag Pe TOV OI0i0 O IIPAKTIOPAS EITIAEYEL
va ekpetardeutel pia ardgaon 1) va e§epeuvroet pia dAAn, peidveral Katd tmy 81ap-
Kela NG eknaidevuong pe mporaboplopévo pubpo. Avaddywg TOU AmOTEAECHATOS NG
€KAOTOTE anopaong tou npdktopd, 1o DRL-based agent AapBdvet pia emBpdaBevon 1
ortoia propei va givat 9eukr, av e§unnpemBnKe emMuxeg 1o aitnpa Tou Xprotn, 1
apvnukn av dev e§unnpetOnke 1o aitnua. H akpiBr) iur) g ermBpaBsuong kabopile-
Tal anod v ouvaptnorn £mBpdBeuong rmMou mapouotddetal avaAlutikd 6. ZXNUATIKY

anelkovion PooPEPETAl oto oxnua 18.

128 neurons ——Action—>

State 64 neurons

256 neurons

Y

v

Zxnpa 18: Apyuektovikn tou DRL-based agent

¢ Runtime Engine, 6mou 6edopévng g tomoloylag v ouvaptoe®V TV eKACTOTE
ouypry avadapBavel va ektedéost pila emavaAnyn g spappoyns. Kata v @aon
g eknaidevong tou DRL-based agent, o ouvoAikdg XpOvog ekTEAeong NG EPappo-
YIS TIPOOHEPETAL OTO VEUP®VIKO GIKTUO ®OTe va urodoylotel 1 avaloyn smBpdaBeuor.
[Teploootepeg MANPOPOPieg yia v uldoroinon tng runtime engine Bpiokoviat edo.

ZXNHATIKL AEKOVION TIPOoPEPETAL OTo oXnua 19.

Aitfouatxn Epyaoia m

Extetapévn [epidnyn

\Th h

4
o

OpgnFaas ga'te,mxy

Runtime Engine @)
w Measured Lotency ;_

Zxnpa 19: Overview of the Runtime Engine

e Function Mapper, 6riou Bdaon g anopaong tou veupwvikou diktuou DRL-based
agent tortoBetel v {nrovpevn oUVAPTNOL OTOV €TMAEYHEVO KOPBO TOU OUOTATOG.

ZXNHUATIKL) AMEKOVIOT TPOoPEPETAL oto oxnpa 20.

Plocement request

kubect|

Zxnpa 20: Apxutektouvkn tou Function Mapper

Ta poavagpepBevia otorxeia anekovidovial ouvoAlka oto oxnpa 21.

m Awtflopatkn Epyaoia

0.4 Xxebraopog kat YAoroinorn Auvapikou ApopioAoyrtn

QoS achieved with proposed topology |———
DRL-based agent

New Topology

Deep 5
Reinforcement [Actions E;
Learning 1]
3 [P
(¥
5| | (&2

»/ State Representation /
A A

Target QoS

Current Topology

(@ e](a@)-[]

[Nodes' Monitoring] [Pipeline'sMonitoring
|

Runtime Engine

Information Aggregation nformation Aggregation

A A A A

1
]
1
1
:
: System Monitor
1
1
]
1
1
1
1
1

IPC
Mem.Reads
Mem.Writes

Node 1

Zxnpa 21: Ofwtkn Apxttektovikyy tou Avvapikou Apopoioynin

Texviki YAonoinon ApopoAoynty

APYX1KA y1a TV TEXVIKT] UAOTIOIN o ToV §p010A0yNTOV anaitouviav Kpilotieg HETPNOELS.
ZUyKeRplpEva, 1) PEIPN 0L TOU OUVOAIKOU XPOVOU eKTEAEOTG Piag emavAaAnyng tng Epappoyns
yivetat pe v runtime-engine. To odpdApa otnv petpnorn auvtr ivatl 1o moAu 400 millise-
conds. T'a 11§ PETPIKEG MOU AvATIAPIOTOUV TV KATAOTAOT TOU oUotnpatog Kabe debopévn
Xpoviky ouypr) (PCM metrics) xprnowpornoteitat to system monitor.

TNV OUuVvEXELd, TIPOKETIEVOU O TIPAKTIOPAG TOU VEUP®VIKOU S1IKTUOU va OUYKAIVEL OE OWOOTEG
aropAcelg Iou eSUINPETOUV BEATIOTA TA AT ATA TOU XPToTn anatteital pudpion twv dia-
@OpeV unepriapapéTpwv 10U diktuou. Wotepa ard repapatiopoug os dagopa erineda

KataArape oug 851G TéG:

e MeéyeBog minibatch = 32

e BeAuotornowntg Adap pe pubuod ekpddnong 0.0025

e Discount factor = 0.99

e [Tapayoviag e§epevvnong, apXikn uur = 1

e [Tapayoviag egepevvnong, tedikr) tpn = 0.01

e Tpia enineda kKOPBwV 010 VeupVIKO Siktuo pe peyedn 256, 128, 64 aviiotoixwg

e Yuvaptnorn evepyonoinong ReLU

MéyeBog kataxepnt = 10°

Aitfouatxn Epyaoia m

Extetapévn IepiAnyn

0.5 AmnoteAéopata kat A§lo0Adynorn

Te autr) v evotntd MApouctaloupe apXiKd Ti§ MEPANATIKEG OUVONKeg KAT® aro Tig
OIt0ieg PEAETOANE TOV IIPOTEVOPEVO SUuvapKO Spopodoyntr Kabwg Kat ta Kpttfpla aglo-
Aoynong tou, oty ouvéxela avaluoupe Toug teooeplg Spopoloyntég mou avarntuiape Kat

KATormyv akoAoubel 1] CUYKPITIKY] ToUg agloAoynorn).

0.5.1 IIsipapatirég ZuvOnKeg

KdBe Suvapikog SpopoAoynir|g mou avamtuxbnke yla v CUYKEKPIEV SUMAGUATIKY
epyaoia tonoBetOnke npog Asttoupyia otov kOpBo Adévin (Master) @ote va pnv rpoobetet
96puBo otoug kopBoug Epydteg, ot omoiot avalapBdavouv va ekteAécouv O0A0 TO UTIOAOY1-
otkoO @optio. Ot §popoAroyniég popadoviatl tov 1610 otdxo: va tornobetovv tig serverless
OUVAPTAOELS OTOUG KATtdAAndoug KopBoug yla va eSUInpetjoouv avaloyeg 1o aitnpa tou
xpnotn. Qg ermineda efunnpémong emAéape 1o 35 kat 1o 26, ta oroia £ival OUCIAoTIKA
0 AVOTIEPOG AVEKTOG XPOVOg eCUTPEong g epappoyng. H ouykekpipévn ermdoyr) mpo-
EKuYe and avaduong g EPAPHOYNS O TPWIO XPOVO, OToU BPEBnKe OTL Ta CUYKEKPIPEVA
erineda eSurnpétnong Propouv va ermteuyxBouv e OUYKEKPIIEVEG TOTOAOYIEG TV ouvap-
ToE®V 0ToUg KOPBoUg. L1oxog eivat ot Suvapikoi popodoyntég va avakaAuyouy ypryopa
TIG OUYKEKPIPEVEG TOTIOAOYIEG KAl va OUYKAIVOUV O QUTEG.

IMpokeévou va dnpioupynooupe MOAUTTAOKOTEPEG CUVONKEG yia 1o TpoBAnia, anatto-
Upe kaBe ertinedo eSunnpénong va ermteuyxOel pe Kal Xopig tnv rnapouvoia napepBolmv otoug
KOpBoug tou ouotnpatog. H avaykn npooopei®ong tov mapeBoAmv Xpnotponoioape pia
epappoyn iBench n omoia deopeviet 10 embupntd kabe opd nocootd 1wv rupnvev (CPU)
10U ekdotote pnxavipatos. H mpooopeinon €yive pe ouvoAikda t1éooepa emnineda rapepBo-
Aav: 0%, 25%, 50%, 75%. ZNPavilko va onpel®del 0Tt AOY® NG £1epoyEvelag TV KOPBmv
TOU OUOTATOG, 01 KOJBo1 £X0UV S1apopeTiko aplOpo cuvoAkeV ruprjvev. I'a napadetypa,
10 50% eminedo napepBoAav otov k6pBo Davinci 6eopevetl 4 anod toug 8 TTUPLVESG, EVR OTOV

KopBo Coroni deopevetl 8 anod toug 16 rupr)veg tou.

Katd v exknaideon tov Spoprodoyniov eixape 1g €§1g ouvOnKkeg:

QoS = { 35seconds, 0 < trainingsteps < 300 } "
26seconds, if 300 < trainingsteps < 500
25%PM 1, 50%PM4, if O < trainingsteps < 100
50%PM1, 25%PM4, if 100 < trainingsteps < 200
CPUpressure = { 50%PM2,25%PM3, if 200 < trainingsteps < 300 (2)
0%, if 300 < trainingsteps < 400
50%PM1,25%PM2, 75%PM3 if 400 < trainingsteps < 500

Metd v exknaibeon v Spopodoyntov yia nepattép® agloddynon Snuioupyroape tg

€€ng ouvOnKkeg:

m AinAeopatxny Epyaocia

0.5 Arotedéopata kat A§l0Aoynon

QoS = { 35seconds, if O < trainingsteps < 150 } 3)
26seconds, if 150 < trainingsteps < 250
25%PM1, 50%PM4, if O < trainingsteps < 50
50%PM1,25%PM4, if 50 < trainingsteps < 100
CPUpressure = { 50%PM2,25%PM3, if 100 < trainingsteps < 150 (4)
0%, if 150 < trainingsteps < 200
50%PM1,25%PM2, 75%PM3 if 200 < trainingsteps < 250

0.5.2 Kpuujpla A§loAdynong

A%iodoyoupe Vv mpotewvopevr Auon pag, 6ndadn v emiboon tou duvapikou Spopo-
Aoynt) va oto va eVOpXINOTIPWVEL TNV EKTEAEOT], HETAPOPA KAl KATHAK®OON TV OUVAPTHOERDV
®ote va egunnpetnoet éva aitnua xpnotn (un Senepvaviag 1o Xpoviko 0plo 1ou £xel 9€oetl 0
xpnotng). H mpog épeuva petpikr) mou pag evdiagépet eivat 1o KAAopa mpaypatikoy Xpovou
EKTEAEONG TIPOG TO AV XPOVIKO Oplo Tou €xel Y€oel o xprjotng. 'Eva kAdopa pikpotepo 1
100 g povadag, UTIOSIKVUEL TV EIMTITUXT] £CUINEETNOT TOU AUTHATOS TOU XPr0tn eve pia
TP KAAoPATog PeyaAutepn g povadag unodikvuel mapabiaon Tou XpOoviKoU opiou Tou
XPHOTH KAl apa arotuxia oty e§UInpEtnorn T0U attiiatog tou Xprotn. EmrmAéov, 6co o
KOVId otrv povada Bpioketal n tr] 1ou KAQOPATOg P1ag EMITUXNIEVNG ECUTTNPETNOTG TOCO
KAAUTEPT XPHON TOV MOP®V Je@POUE OTL METUXANE KAl £T01 ASl0MOoae T0UG eAAX10TOUG

duvatoug amo toug 61aB£01110Ug UTTOAOY10TIKOUG TIOPOUS.

0.5.3 Tlapouciacn TtV ApoHOAOYNTOV
Fullmap Auvapirog ApopoAoyntrg

O Fullmap duvapikog SpopoAoyntig eivat pia Avon e1d1kn yia tnyv unodor) 10U ou-
OTALATOG AV OtV ortoia KaAeitatl va ouAépel. ZUYKEKPIEVA, O TIPAKTOPAG £XEL £va XWPO
dpaocewv Sidotaong 15, o oroiog meptdapBavel 6wdexka Spdoelg ou torobetouv KAbOe ou-
vdptnon oe 6Aoug toug Srabéoppoug KOpBoug tou cuotrpatog, duo Hpdoelg ou ausavouv
KAl PEOVOUV Ta aviltypada v ouvaptoewmv faceanalyzer, mobilenet kat pia 6pdon yua

dlatrpnon g unapyouoag ToroAoyiag.

Custom Auvapikog Apopoldoyntig

O Custom 6uvapikog SpopoAoyntrg eivat pia e181ka oxediaopévn Avon yia v ermdey-
HEVN EpapPoyr] KAl IIPOEKUYPE ATIOKIOVTIAS KaArn Siaiobnon yupem aro v ouprnepidpopd g
EPAPPOVIG KAT® Ao 81adopeg oUVONKeG. LUYKEKPIPEVA, O TPAaKTopag Siabétel Eva Xwpo
dpdoewv didotaong 12, o oroiog eptdapBavel 8 §pdoeig yla TomobETNon 1@V CUVAPTHOEDV
framer, facedetector o' 6Aoug toug S1abéopoug kKOGpBoug, pia dpdon mou petakivel g ou-
vaptioeig faceanalyzer, mobilenet otov kKopBo pe v pikpoteprn tpr CO, duo dpaocelg rou
augdvouv 1] pewvouy ta avilypaga tov ouvaptroswv faceanalyzer, mobilenet kat pia 8pdon

yla diatr)pnorn g urnapyxouoag ToroAoyiag.

Aitfouatxn Epyaoia m

Extetapévn IepiAnyn

Kubernetes Auvapikog ApopoAoyntig

O Kubernetes duvapikog §popoloynig €ivat pia mpooeyylorn Orou tov KOPBo otdXo
piag petaxkivnong piag serverless ouvaptnong tov ermdéyet o SpopoAoyrng tou KuBepvrtn
tou ovotnpatog. ITio ouykexkpipéva, autdg o dpopoloyntrg €xel ouvodika 4 Srabéorpeg
Opaoeig: pia yua petakivnon g ouvaptnong framer, pia yla petakivnon g ouvaptnong
facedetector, pia ywa petaxkivnon tov faceanalyzer, mobilenet kat pia yla dwatrpnon g
uniapyouoag torrodoyiag. O Suvapikog dpopodoyntrg ouolactikd SlaAéyel rmola oUvAapTnon
9a petakivnOel aAAd o dpoporoyning tou KuBepvrtn ermdéyel 1ov KOPBoO OTOXO NG OUYKE-
KPUEvNg PETAKIvVIONG.

Oracle Auvapikog Apopodoyntyg

O tedeutaiog §popoAoyntrg ou avartuxOnke Paocidetatl os oracle mapatnpnoelg. Mia
oracle mapatrfpnon napgxet minpogopia yla pia toroAoyia rou £xel AngOei oe poT0 Xpodvo,
W Vv exknaibeuon 1wv Spopodoyniov. Lia mpotd otdadlda g OUYKEKPIEVNS SirmAmpatt-
KIG £pyaoiag PEAETHOAE TV CUHRIEPIPOPA NG EPAPHOYTG KATw and Sidpopsg ouvOnKeg
OTIOG £XEL TIPONYOUNEV®S avadpepBél kat £tol oUuAAEXOnKe éva ouvoAo amd oracle mapatn-
pfoelg. Emopévag, o Spopodoyntrg Sa €xel v eubuUvr va UnoS1KVUEL TV CUVAPTN 0T TTOU
nPEMEL va PetakivnBel adAd Tov KOopBo otoxog tng petakivnong Sa tov ermAéyetl pia oracle
napatpnorn. O pdktopag Tou tedeutaiou SpopoAroyntr) Siabitetl t€ooepig Gpaoelg 6IoU pia
yla petaxkivnon ing ouvaptnong framer, pia yua petakivnon g ouvaptnong facedetector,
pla yua petakivnon tv faceanalyzer, mobilenet xkat pia yia datrjpnon g unapxouoag

toroAoyiag.

0.5.4 Zuyrpltiki A§10A0YN 01 TOV ApOpoAoynTOV

Eb66 ntapoucialoupe v ouyKpuke) a§loAdynorn tov tecodpev Suvapikov §popiodoyntov
nou avarttugape. H ouykpilon mpaypatoroteitat Baon v £§hng mapayoviov: 1) KAdopa
XPOVOU EKTEAEOTIG TIPOG XPOVIKO OP10 XPNOTH 2) ZUCCKPEUNEVH ermBPABEUOT TV MIPAKTIOPOV
3) [apaBidoelg oto XPOVIKO 0p1o Xprjotn 4) Arattoupevog Xpovog yia oUuykAtlon kat 5) KAt-

pdxeon

KAdopa XpOvou eKTEAEONG MPOG XPOVIKO Oplo XPHoTN

'Onwg @aivetat oty ekoéva 22, exktog tou Oracle SpopoAoyntr), o Custom SpopoAoyntnig
napouoiadel a§lodoyn otabepodtnta unod ug petaBardopeveg ouvOrkeg ota erinedn rieong
TOV OPKV KAl TV aAAdyr T0U ave XPOVIKoU 0opiou tou Xprotn ot pia mo “avot)pn” Ty,
apou KatapEPVEL va IIPOCAPHO0TEL OXETIKA APE0a METUXAivoviag pia Tipn KAAopatog Kovid
otnv povada. M mapopola, aAAd oxetkd Atydtepo otabepr) cupriepipopd gixe kat o Full-
map SpopoAoyNTG, KATL TO OIOI0 PITopPel va opeidetal oto peyadutepo mAnbog Srabéotpiov
EVEPYEI®V TTIOU KATEXEL O TIPAKTOPAG TOU OUYKERPIPEVOU Spopodoyrtn. Tédog, o Kubernetes
dpopoloyntrg av Kat otnv apxr eaivetal va £xel pia alodoyr emniboor], otnv cuvéxela Aoywm
NG AYVOolag TOU Y1d TNV EIEPOYEVELA KAl TIS EVEPYES ITAPEPBOAEG TOU OUCTIIIATOS ATTOTUYXAVEL

va TETUYXEL TOV OTOXO0 TOU.

m AinAeopatxny Epyaocia

0.5 Arotedéopata kat A§loAoynon

|- Fullmap I Custom Scheduler [Kubernetes [Oracle |

2.00
1.75

ient

1.50 A

1.25 A

1.00 A
0.75 AF

0.50 A

QoS Quot

"3

0.25

200 300 400 500
Training Steps
(@)

Zxnpa 22: Kjdoua xpovou eKTEE0NS TPOS XPOVIKO 0PL0 XpNotn Katd TN eknaibeon

Zuoowpeupévn enBpabsuon TV MPARTOPRV

H emBpdBeuon mou AapBavel o mpaktopag kKabe Spopodoynty] AmOKAAUITIEL TV 1KA-
vOTNTa TOU va avaKAAUITIEl pia IO arodoTiKI] TOIOAOYid TRV OUVAPTIOE®V ITPOKEIEVOU
eurmpénoet 1o aitpa tou xprotn. H ewova 23 Seiyvel 1ig ermbBpabevosig mou AapBavouv
01 TIPAKTOPES Katd Vv exkrnaideor toug. Kat mdAl, o Oracle §popodoyntng ivat o mo Ku-
ptapxog. O Fullmap Spopoloynirg, onwg @aiveratl, AapBavel pe 10 mEPACUA TOU XPOVOU
peyaAutepn ermBpdBeuon aro tov Custom aAdd o Custom €xet pia mo "amotopn” deukn
KAlon ota tedevutaia otadia mou umodiKkvUEl pia IMo €MAPKI YVOOI T0U IIPOoBANATog mou
Kaleital va AUoEL, KATL TIOU 010 PEAAOV PIopel va Petadpaotél os KaAutepn emidoor). TEAog,
o Kubernetes Spopiodoyntrig A0y® g avikavotntag ToU va IPosappootel otnv aAAayr] tou
AVe XPOVIKOU 0PIloU TOU XP1otn Oreg avapepOnKe rmaparnave AapBavel apvnuikeg ermBpabe-

uoelg oty deutepn Aot g eKnaidevong.

|- Fullmap [Custom Scheduler [Kubernetes [Oracle |

4000
QoS = 35s QoS = 26s

3000 -

2000 - /

1000 A

Cumalative Reward

0 100 200 300 400 500
Training Steps
(@)

Zxnpa 23: Zuoowpeupsvn emBpd6eUon TOV TPAKIOP®V Katd v ekraideon

Aitfouatxn Epyaoia

Extetapévn IepiAnyn

IIapabBracelg 0To XPOVIKG Oplo Xproty

v ewkdéva 24 napoucialoviat ot apabldoelg 1@V SpopIoAoyNI®v ota Attpatd Tou
xpnotn. Ot Fullmap, Custom 6popiodoyntég anodeikvuouv vy kavotnta g Pabidg e-
VIOYUTIKIG PaBnong va Auvet to ripoBAnpa ng duvapikng §popoAoynong, apou ol EMTUXEig
€CUINPET OIS £1val TIEPIOCOTEPEG ATTO TIG AVEINTUXEIS pe peydaAn Sagopd. O Oracle Spopo-
Aoyntng pe peyaldn aveorn) eSUIMNPETEL TA AITHPATA ATOSEIKVUOVTAG TV IKavotnta tg Babiag
EVIOYXUTIKNG paOnong va ouvepyaotel pe nnapatnpnoeig Oracle. TéAdog, o Kubernetes §popo-

Aoyntng £Xel TV XEPOTEPT) £MMid0OT) Ao 0Aoug.

|- Fullmap I Custom Scheduler [Kubernetes [] Oracle |

200 QoS = 35s QoS = 265

400 {4 = Servings
== Violations
“E 300 A
o
O 200 A
100 A
0 100 200 300 400 500

Training Steps
(@)

Zxnpa 24: Ilapabiaoeig 0To Xpouvko 0plo xpnon

Anattoupevog Xpovog yla oUyKrAlon

'‘O00 agopd 1OV ATAITOUHEVO XPOVO yia oUyKAlon, o Oracle dpopodoyntng €ivat o ta-
XUtepog. Ztnv ouvéxela épxoviatl ot Fullmap, Custom 5popiodoyntég e oXeTKA rapopola
Ta)Utnta oUYKAONG eve tedeutaiog pe gavepd onpadia aotdBelag eivar o Kubernetes 6po-

PoAoyntng On®g @aiveral Kat otnv e1kova 22.

KAwypakoon

To 9¢pa g KApdkeong eivat dlaitepa onpaviiko yla 0Aeg 11 IIPOOEYYIOEIS KAl ITPETTEL
va AapBavetatl umoyv mpwv va epAapplooTel 1] TIPOTEWVOHEVT] TIPOCEYY10T] TG OUYKEKPIIEVIG
nmlepatkng oe 81aPopeTIKEG TOoT0AOYieg oUOTNUATOV 1] 0t Slapopetiky) epappoyr. Ot
Fullmap, Custom §popodoyniég anartovv mpooapiioy] 1oV S1a0£01ev EVEPYEIRV TV TIpa-
KTtopeVv 10Ug av aAddafouv ot urtobojiég 10U CUOTIATOS 1 1] EPAPOYT] TIPOG EVOPXHOTPROT).
Avubétng, o Kubernetes §popodoynirg dev xpeladetal kanola aAdayr] AOye g AyVROTIKL-
OTIKIG TOU (UOIG, eve 0 Oracle amattel pia pikpr] aAdayn av mmpoKeTal va evopXnotpadel pia

dlapopetikr) epappoyrn) Ao autr) Iou e§ETA0TNKE OtV OUYKEKPIPEVH Simlepatikn epyaoia.

m Awtflopatkn Epyaoia

0.5 Arotedéopata kat A§l0Aoynon

Auvapikog Spopoldoyntig £vavti Spopodoyrty tou Kubepvrtn

TéAog, ouykpivoupe TV mpooeyylon duvapikou Spopodoynty) Baociopévou oe Babia evi-
OXUTIKI] 1dOnon pe pla adedn pooyylon EVOPXI|OTPOOG AITOKAEIOTIKA Ao TOV SPOHOAo-
yntr) tou KuBepvrjtn xopig kapia aAAnAenidpaon pe dpopodoynin-nipdkropa. Extedcdviag
v 16la epappoyry avaduong Bivieo kat kate® and g 16ieg petaBardopeveg ouvOnKeg, 1
ageAr|S POoEyylon Katadepe va egurnpétnoet povo 1o 34% tev aufpatov pe “Xadapo”
ave opto xpnotn (35 6eutepdderita) eve dev pridpece va egurnnpenost Kavéva aitnpa pe
10 "auoTtnPOTEPO” AVE ETITPETIOPEVO OP10 XP1otr (26 deutepoAernta). Avubetng, 1 O1kr) pag
MPOCEYY10T) TIETUXAivel v e§unnpetnorn 95% 1oV MEPUTIOoERV yid 10 “Xadapd™ doplo kat 75%

TV IMEPUTIAOOE®V Y1d T0 "auoT)po” 0p1lo KATd PECO OPO AVIIOTOIX®G.

0.5.5 Zuvoyn A§oAdynong

'Ong 6eixOBnke mponyoupévag, 1 tedikr) smBpdaBeuon mou AapBaver o DRL-based a-
gent efapratal éviova aro v eKACTOTE MOALTIKY SpopoAoynong. Omnodte mPokuUIttet 1) €€1Ng
epwtnon : AAfddlet o DRL-based agent tig anogdoeig av aiialel eowtepucr moAitukr Spopo-
Aoynong: Ta va aglodoyrjooupe Vv “suguia” g Pabiag evioxutukng pabnong, “nayovoupe”
TG TIAPAPETPOUG TOU VEUP®VIKOU diktuou DQN kat peAetdpe tov XOpOo EVEPYEIDV Yla KAOe
dlapopetikd Spopodoyntyy. Egepsuvotpe Siadpopetirég paocelg, Orou n kabepia xapartnpide-
tat ano drtagopetika erineda mapepBoAmv Kal Ave Xpovikav opiev xprotn (QoS). H sikdova
25 belyvel ta aroteAéopata mou AdBape. LUYKEKPIHEVA, TO TIPHOTO YPAPNPA aAvarapiotd
1a emineda mapepBoAov ava kopBo, eved 10 SeUTEPO KAl TO TPITO ATTOTUTIOVOUV TO0 KAdopa
AV® XPOVIKOU 0piou XProtn KAl TIS ETMAEYEVES EVEPYELEG TV IIPAKTIOP®V avilotoixwg. 'Etot
MPOKUITIOUV ta &g arotédeopata: i) H mpatn @don xapaxktpidetat and peydAn nowkidia
OTOV X(OPO TRV EVEPYELMV, H1Ag KAl KAavevag aro toug dpopodoynteg dev eival oe 9éor va egu-
TINPETNOEL EMITUX®S T0 {nroupevo QoS ii) Zinv Sevtepn @aor, o Oracle dpopodoyntrg sivat
0 POVOG 1KAVOG Va ITETUXEL TO {NToupevo QOS, CUYKPLITIKA HPE TOUG UITOAOUTOUG SpOo10AOyNTES
MOU €IMAEYOUV POVO va petatortioouv v ouvaptnorn Framer, o Oracle 6popoloyntrg retu-
xaivel 1o {nrovpevo petatornidoviag v ouvdaptnon Facedetector map’ ot ny Framer eivatl n
ouvaptnon Pe v peyadutepn kabuotépnor). iii) Tédog, akopa Katl o MEPUTIOOEIS XAUNADV
napepBoA®V OTIOG OINV (Aot 4 1] 0 MEPUTIOOELG OTIOU 01 HPOIoAOYNTEG ETTIAEYOUV TIG 161G
EVEPYELEG OTIRG TNV (dor 5, o Kubernetes dpopoloyntng aduvatei va metuyet 1o {nroupevo
QoS A0y® g Ayvolag ToU Kdl yla Ta ermirneda napeBoA®v otoug KOPBOUG TOU CUOTHHATOS
adAd kat otig S1apopeg eridoong petal 1OV oUVAPTIOE®Y AOY® ETEPOYEVELAS.

[Ipoteivoupe éva duvapiko dpopoAoyntn Paociopévo os Babia evioyxutikry pabnon yia
dpopodoynon ouvaptoemv mou anoteAouv pia serverless epappoyr) avaluong PBivieo. H
AUon pag eKPETAAAEUETAL PETPIKEG TOV PNXAVAIATOV TOU GUCTHLATOG Y1d VA avayVoPioel TV
€KAOTOOTE KATAoTaon mou BpioKketal to ocuotpa Kat priopet va udomnownBel xprnotponoiwviag
pia mowkiAia mpooeyyioenv wg rpog v Anyn aropdacsmv. H Avorn pag npooappodetal oe
petaBaAAopeveg ouvOrKeg ricong Kat katagépvel va eurtnpetel 10 91.6% tov attnquatev

xpnow.

Aitfouatxn Epyaoia m

Extetapévn IepiAnyn

£ t L-’
¥
] A 4]
g 1.0 -1 A -—-‘u--*q-.-'—. i l ” daah , —
& W I B i o il v, 1 £
v RPN | g%] 1 2 E y
8 0.8 Tz LUMHWN L :ilh e - £E () v
(] I: TEAY - =ty = |
L \ ;& P ~a iy 1
0.6 .:'_l' =Y —@— Fullmap =& Custom --¥-- Kubernetes Oracle
1 1 1
T T T T T

Custom —| I I " r .

1 II]

1 I 1

Fullmap - | | 1 |

Kubernetes—\lll ||I : I f :I | I.I :

S R O B | O
0 50 100 150 200 250

Timestamp

I No Action [Migrate Framer [__] Migrate Face Detector
[Migrate Face Analyzer [Scale-up FA [] Scale-down FA

Zxnpa 25: Ernineba mapsuboAov, QoS kiaoua kar Anyn amogaocswv anod tou¢ DRL-agents
uno dwagopetukég moitikés dpouojoynong

0.6 ZTuvown xat MeAAovtiki AouAsla

Metprioelg, avadluoelg KAl IPOCEYYIOEIS TTOU MEPypAPnKav o€ autl] v SmA@NATIKY
epyaoia armotedouv éva mpoto Prjpa otV avagninon eV IpOnev he toug ornoioug 1 Babwa
Evioxutikny MdaOnon propet va entépBet oty Avor) tou ripoBAnpatog SpopoAoynong server-
less ouvaptoe®v ¢ €va UTIOAOY10TIKO TIEP1BAAAOV VEPOUG. ZInVv ouvexela riapabétoupe Suo

TPOTACELS Yia PeAAOVTIKY) Souleld.

0.6.1 Avayvopion Epiktov ‘Ave Xpovirkav Opiev

H npooéyyion pag mpoorabei va efurnnpetr)ost €va aitnua Xprotn péoe pubpiong tou
XPOVOU €KTEAEONS NG EPAPHOYHS O XPOVO ITOU Sev Cermepvda 10 Ave 0P10 TOU €xel €0t 0
xprotng. ‘'Oneg, ouyva ta ave opla rmou £xet 9oet évag xprotng dev eivat epiktd va eurnpe-
mOouv, 1.X. A0Y0 KAKNAG EKTIPINONG TOU XP1otr], e toug drabeoipoug iopoug. Ipoteivoupe
Aowrtdv v avartudn evog gpyaleiou mou 9a tadivopel ta dve opla xprjotn oe SUo Katnyo-
pieg: Epiktd kat pn epiktd. M' autd 1ov IpOIo Pmopoupe va TIETUXOUNE YPNYOPOTEPT] Kat

mo10TIKOTEPT eknaibeon otov paktopa g Pabiag evioxutikng pabnong.

0.6.2 Enéktaon npog Ayvaotikiotiky $uon tou npoteivopevou EpyaAeiou

To IPOTEWVOPEVO £pYAAEL0 TNG OUYKEKPIHEVNS SMAOIATIKAG epyaoiag £xel oxeblaotel va

AUvetl 10 IPOBANA g 6POPOAOYNONG Vid TV £PapHoyn] avaAuong Bivieo TTOU IEPLYPAPNKE

m Awtflopatkn Epyaoia

0.6 Zuvoyn kat MeAdovtikn) Aoudela

Og TIPONyoupevn evotnta. Mia onpaviki mpooBrkn oty undapyouoa Souleld da nrav
pla mbavr Tporonoinon 10U epyadeiou @ote va YevikeUel v £Qaployr] IOU MPOKETAl va

EVOPYXNOTPHOOEL KAl £T01 TO (pACHA TV ITPoBANpatev rmou Ja eivatl ikavo va AUoel va peyaidmoet.

Aitfouatxn Epyaoia m

Ke¢paldairo E

Introduction

Th emergence of cloud computing has led to the drastical change of run-
e ning workloads in on-promise server rooms to executing them into public
cloud environments. This change has enabled developers to shift the responsibility of se-
rver and infrastructure management to a cloud service provider. Before that, application
developers had to buy or lease dedicated server infrastructure to operate their systems.
This required high advance investment in hardware, while operational costs increased
from hiring specialized personnel to operate and maintain the infrastructure. In addition,
increasing the computing capacity required long lead times, as the procedures of orde-
ring, installation and configuration of the fresh hardware had to be done before it was
ready to be used. Nowadays, it is possible to provision new server infrastructure within
seconds using commercial cloud platforms.

With contemporary cloud computing solutions, deploying services is a low time-to-
market product, and developers do not need to manage the underlying server infrastru-
cture. Commercial cloud platforms are continually evolving to provide new service models,
which would allow even more of the operational responsibility to be taken away from ap-
plication developers and to be transferred to the cloud providers. The newest addition to
this set of cloud services is serverless computing, which promises, as the word implies,
to free the user entirely from server management.

Function-as-a-Service (FaaS) is a serverless cloud computing model, which allows the
developers to deploy individual functions to the cloud. FaaS has become prevalent, owing
to OS-level virtualization. Serverless computing enables a new way of building and scaling
applications and services by allowing developers to break traditionally monolithic server-
based applications into finer-grained cloud functions, without having to worry about their

provisioning, scaling and managing.

1.1 Scope & Goal

When deploying an application to a serverless platform, from the cloud provider’s
point of view, there are some factors that have to be taken into consideration when trying
to serve efficiently the end-user’s request. Among these factors are: the Granularity of
the application in terms of how many functions compose the workflow, Interference from

third-party workloads that happen to be deployed the same time and lastly, Heterogeneity

Aitfouatxn Epyaoia m

KepdAawo 1. Introduction

that often characterizes the machines within a cloud environment.

The main goal of this thesis is the construction of a scheduling framework which
aims to improve the deployment of a workflow above a serverless platform. Our proposed
solution utilizes real time decision making on migrating and scaling serverless functions
among a cluster, so as to serve successully user requests while coming in accordance

with the system’s constraints under dynamic conditions.

1.2 Structure of the thesis

This thesis is organized in six chapters: In Chapter 2, related work is presented,
as we examine from all aspects the problem of serverless scheduling. In Chapter 3,
background knowledge is offered for all technologies utilized for the completion of this
thesis. In Chapter 4, we measure and analyze the impact a list of factors could have
on the performance profile of a serverless application. This list includes factors such
as heterogeneity, inteference and granularity. In Chapter 5, we present our developed
DRL-based dynamic scheduling framework and its architectural characteristics. Chapter
6 is about evaluating our work and proving the efficacy of our proposed solution. Finally,

in Chapter 7, we discuss future work and conclude the thesis.

m AinAeopatxny Epyaocia

Ke¢paldairo E

Related work

In this chapter, we present related work that has been conducted regarding QoS-aware
serverless frameworks, workload scheduling on cloud infrastructure and runtime resou-
rce allocation for serverless functions. Lastly, our approach for tackling the scheduling

serverless functions problem is introduced.

2.1 QoS-aware Serverless Frameworks

The criticality of enhancing the performance of serverless workflows has been di-
scussed in various research works [7], [8], [9, 10, 11], which achieve to address the
user-defined latency requirements for a specific workload, by decreasing the functions
inter-communication. Faastlane [7], executes functions of a workflow instance on sepa-
rate threads of a process to minimize function interaction latency. Faastlane’s objective
is to minimize function interaction latency by striving to execute functions of a workflow
as threads within a single process of a container instance, which eases data sharing via
simple load/store instructions. Specifically, for functions that operate on sensitive data,
Faastlane provides lightweight thread-level isolation. Lastly, when parsing a workflow,
Faastlane exploits opportunities for parallelism by spawning new container instances to
serve parallel functions of a workflow. Yet, heterogeneity or resource interference that may
cause unpredictable performance variability are not taken into consideration. Respecti-
vely, in Sonic [12] it is thoroughly studied in which ways inter-function data exchange
could be implemented, in terms of storage technologies, in order to save execution ti-
me and costs. Sonic is a data-passing manager whose task is to optimize application
performance and cost by choosing the optimal data-passing method for each edge of a
serverless workflow DAG and implementing communication-aware function placement in
a multi-node environment. It is also capable of adjusting the best data-passing method

on the fly while infrastructure changes are going to take place.

2.2 Workload Scheduling on Cloud Infrastructure

Much research has been conducted regarding the placement of applications on Cloud
clusters[9, 13, 14]. In [14] the authors design an interference-aware scheduler for socket-

level workloads placement on a pool of homogeneous physical machines. The framework

Aitfouatxn Epyaoia m

KepdAawo 2. Related work

is designed mostly for batch workloads, thus it does not support service migration. Cir-
rus [9] improves the performance of ML training serverless workflows (time-to-accuracy)
by employing several techniques to extend AWS Lambda offerings at infrastructure-level,
i.e., data-prefetching, data-streaming, as well as in application-level, i.e., training algo-
rithms redesign. Therefore, while it achieves significant performance improvement, both
developer effort (for custom algorithm design), and domain-specific tuning knobs make it

difficult to be generalized for serverless workflow management.

2.3 Runtime Resource Allocation for Serverless Functions

In [15], Reinforcement Learning (RL) is employed for defining the concurrency level,
i.e., the per-function concurrent request allowance before auto-scaling out, taking only
into account the application-level virtual resources utilization. However, while cloud
is characterized by resource heterogeneity and multi-tenancy, neglecting system-level
resource interference [16], may impose increased latency. SequenceClock[17] employs a
PID controller for dynamic CPU quotas allocation on serverless function workflows under
different system-pressure levels. Nonetheless, vertical CPU scaling was not capable of

reducing latency in order to address QoS requirements.

2.4 Our Approach

In this thesis, firstly we discuss factors that influence the performance of a serverless
application deployed to a cluster of nodes. Moreover, deltas between different configu-
rations and placements are highlighted as we try to showcase the problem’s complexity.
After identifying the inefficacy of logic-based rules to schedule a serverless workflow under
dynamic cluster conditions, we employ a deep reinforcement learning approach to tackle
the problem of dynamic serverless scheduling. We focus on DRL-based dynamic sche-
duling and scaling of functions for video-analytics serverless workflows in order to meet
end-to-end latency constraints. We differentiate from prior art, in the following points: i)
we utilize low-level system metrics monitoring to capture resource interference [15], ii) we
consider workflow composition and node heterogeneity as model parameters|7], iii) adapt
the decisions both to fluctuating system-level resource pressure, as well as to variable
QoS requirements that change over time[11, 12, 14], and iv) we support not only service

scaling, but also service migration to another node when needed[17]

m AinAeopatxny Epyaocia

Ke¢palairo E

Background

Th < chapter introduces fundamental concepts for understanding cloud and
IS serverless computing as well as the technologies which came before
and paved the paths towards serverless workloads. Section 3.1, briefly discusses vir-
tualization, containers and Kubernetes. Section 3.2, examines different cloud computing
models that are predecessors of serverless computing. Furthermore, Section 3.3 is all
about serverless computing and serverless platforms. Finally, in Section 3.4 & 3.5, a

minimal analysis of machine learning and deep reinforcement learning is provided as it

is mainly utilized in our approach.

3.1 Virtualization & Containers

Virtualization is the essense of serverless and cloud computing in general. Virtualiza-
tion allows better portability of workloads and enables cloud service providers to provision
new computing capacity to their customers rapidly. In this section, we are going to di-

scuss about two types of virtualization: hypervisor-based and container-based.

3.1.1 Hypervisor-based virtualization

Virtualization has started to dominate running computing workloads in the past cou-
ple of decades, but its idea is even older. Specifically, IBM [1] had perceived and used this
revolutionary idea in the 60s and 70s in their systems. Hypervisor-based virtualization
offers a complete virtual machine by virtualizing all system’s hardware. A full operating
system can run on top of a virtual machine, and the fact is that the operating system
does not need to be aware that the hardware is virtualized. Therefore, virtual machines
can support any operating system.

In hypervisor-based virtualization, a hypervisor, which is also known as Virtual Ma-
chine Manager (VMM), manages virtual machines and their resources.

Hypervisors can be divided in two categories, which are listed below [2]:

e Type 1: Bare-metal hypervisor, which runs directly on the computing hardware.
The bare-metal hypervisor provides better performance in comparison to the hosted

hypervisor, because of the missing overhead generated by the host OS

Aitfouatxn Epyaoia

KepdAaiwo 3. Background

e Type 2: Hosted hypervisor, which runs within the operating system of the host

machine.

Hypervisor-based virtualization allows cloud service providers to run multiple virtual
machines using only one physical computer. Virtualization offers great portability as
long as the virtual machine images can easily be transferred between different hosts.
Furthermore, the resources of a single machine can be shared between multiple virtual
machines, which makes more efficient use of hardware. With hypervisor-based virtuali-
zation, cloud providers can abstract hardware from the user and so the user can easily
provision computing capacity by simply creating new virtual machines. Last, but not
least, provisioning virtual hardware is an efortless job. Users, for example, are able to
increase system’s memory by changing the virtal machine’s configurations. These tasks

would be much more laborious with the absense of virtualization.

3.1.2 Container-based virtualization

In contrast to hypervisor-based virtualization which essentially runs a full OS on top
of virtualized hardware, container-based virtualization, also known as operating system
virtualization, functions at operating system'’s level avoiding hardware virtualization’s o-
verhead. The containers, which implement the isolation at the OS level, run on top of
the same operating system kernel. Sharing the operating system of the underlying host
machine instead of full hardware virtualization, allows more lightweight virtualization.
Multiple studies have concluded that the overhead created by container-based virtualiza-
tion is negligent [18]. Additionally, when a container startup happens, there is no need for
a full operating system to boot, so the startup times of containers are reduced to seconds
or even milliseconds. On the contrary, the time taken for a virtual machine to startup
could be a minute-long period.

In Figure 3.1, the differences between hypervisor-based and container-based virtualiza-
tion are shown.

Isolation and resource allocation between containers is achieved in the operating sy-
stem level. For example, in Linux-based containers, these properties are implemented
with the help of cgroups and the namespaces. Specifically, the Linux kernel provides the
cgroups functionality that allows limitation and prioritization of resources (CPU, memory,
block I/0, network, etc.) without the need of starting any virtual machine, and also the
namespace isolation functionality that allows complete isolation of an application’s view
of the operating environment, including process trees, networking, user IDs and mounted
file systems [19]. There are multiple namespaces which handle the isolation of different

components:

e Cgroup namespace: allows isolation of cgroup root directories by virtualizing the

view of a process’s cgroups.

e Inter-process communication (IPC) namespace: provides isolation for different

IPC resources like message queues, semaphores, and shared memory segments.

m AinAeopatxny Epyaocia

3.1 Virtualization & Containers

App 3

| R
i

I T2 | e
os

Container Engine
Host Operating System Operating System

Hypervisor virtualization Container virtualization

Yxnpa 3.1: Hypervisor-based virtualizaton and Container-based virtualization architecture.
The Guest OS’s overhead is missing in the container virtualization.

e Network namespace: provides isolation for networking components like network

devices, protocol stacks, routing tables and firewall rules.
e Mount namespaces: allows mountpoint isolation between containers

e PID namespace: allows containers to have their own process ID space, which means
that two containers can use the same process ID, because they are in different

namespaces.

e User namespace: provides isolation for security-related identifiers and attributes

like user and group IDs.

e UTS namespace: allows isolation of system identifiers, namely hostname and NIS

domain name.

Although containers are better than virtual machines in terms of portability, resource
usage and maintaince, they lose some ground because of lacking security measures.
Containers provide lightweight isolation from the host operating system and containers
within the same system, and as a result the host kernel is exposed to the containers,
which could be an issue in multi-tenant environments. As analyzed in [20], there are
a lot of concerns regarding a container’s security including: i) container protection for
applications inside it ii) inter-container protection iii) protecting the host from containers
iv) container protection from a malicious or semi-honest host. For example, when a
container is running in "privileged" mode with root access rights, its processes have nearly
the same access rights as the processes running natively on the host. This problem can

be soften though, by running the containers inside virtual machines.

Aitfouatxn Epyaoia m

KepdAaiwo 3. Background

Container-based virtualization is super essential for the serverless computing model.
The applications in serverless services are usually injected into containers, which operate

on top of server infrastructure that is managed by the cloud service provider.

3.1.3 Kubernetes

Kubernetes [3], also known as K8s, is an open source system for automating deploy-
ment, scaling and management of containerized applications. It was originally designed
by Google, but now, the Cloud Native Computing Foundation (CNCF) maintains the pro-
ject. The initial realease happened in June 7, 2014 and the source code is written in
Go. The greatest thing about Kubernetes is the fact that gives you the freedom to take
advantage of on-premises, hybrid, or public cloud infrastructure and makes the moving
of workloads effortless. Kubernetes builds upon 15 years of experience of running pro-
duction workloads at Google, combined with best-of-breed ideas and practices from the
community.

When we deploy Kubernetes, we get a cluster. This cluster is consisted of Master and
Worker nodes as it follows the primary/replica architecture [21]. In the following parts
of this section, the Kubernetes cluster is analyzed while figure 3.2 visualizes the below

mentioned architecture.

Kubernetes Master node(s) components

Kubernetes Master node(s) serve as the cluster’s control plane. The control plane
consists of various components that make global desicions about the cluster, such as
scheduling, responds to cluster events as well as directs communication across the sy-

stem.

e kube-apiserver: Component that exposes the Kubernetes API, which serves as the

system’s frontend.

e etcd: Consistent and highly-available key value store used as Kubernetes’s backing

store for all cluster data.

e kube-scheduler: Component that watches for newly created Pods with no assigned
node, and selects a node for them to run on based on various factors such as

resource requirements, data locality, user-system constraints.

¢ kube-controller-manager: Service that manages a set of core Kubernetes control-

lers, including: Replication Controller, DaemonSet Controller, Cloud Controller.

Kubernetes Worker node(s) components

Worker node(s) are the place any workload is deployed. For the deployment to happen,
every worker node must run a container runtime such as Docker, as well as the below-

mentioned components, that are compulsory for network communication reasons.

m AinAeopatxny Epyaocia

3.1 Virtualization & Containers

e kubelet: Agent that runs on each node of the cluster. It is responsible for running

containers in a Pod.

e kube-proxy: Network proxy that runs on each node of the cluster, implementing
part of the Kubernetes service concept. For example, it balances load across the

containers in a Pod.

e container: Runs inside a Pod and represents the lowest abstraction level of a micro-

service, which holds the running application, libraries, and their dependencies.

O
Worker Worker

Zxnpa 3.2: Kubernetes components architecture

Architecture

Kubernetes architecture encapsules all the above-mentioned Master and Worker co-
mponents and the ways they communicate in order to operate as a container orchestration
system. The concepts and ideas upon which Kubernetes is engineered, are characterized
by multiple abstraction levels. In descending order of abstraction these are: Deployment,
ReplicaSet, Pod, Cluster Node, Node Process and Docker container. Deployments create
and manage ReplicaSets, which create and manage Pods, which run on Cluster Nodes,
which have a container runtime, which run the code the user inputs in a Docker image.

If we want to make an application that runs continuously, we need to create a Deploy-
ment which allows us to configure the application without downtime as well as to specify
restarting Pods strategies. After that, the Deployment creates a ReplicaSet that will ensu-
re our application is healthy and running as we have previously configured. ReplicaSets
will create and scale Pods based on the triggers we specified in the Deployment. Pods are
the building blocks upon which Kubernetes concepts operate on. A Pod contains a group

of containers and other useful information that are important for handling them. Pods

Aitfouatxn Epyaoia

Kepadawo 3. Background

live in Worker nodes, are ephemeral in nature and are subjects to restarting when they

die.

In figure 3.3, the levels shaded blue are higher-level K8s abstractions and the green

levels represent Nodes and Node subprocesses.

Deployment
|
ReplicaSet
|
Pod
|
Worker Node
]
[T |
kubelet kube-prox Container
proxy Runtime
|
Docker
Container

Zxnpa 3.3: Kubernetes abstraction layers visualized.

The six abstraction levels are going to be shortly discussed below, so as to get a better

view of Kubernetes functionalities.

e Deployment: A Deployment provides declarative updates for Pods and ReplicaSets.

The user describes the desired state in a Deployment, and the Deployment Contoller

changes the current state to the desired state at a controlled rate. The following is

an example of a Deployment. It creates a ReplicaSet to bring up three nginx Pods.

apiVersion: apps/vl

kind: Deployment

metadata:

name: nginx—deployment

labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx

template:

Awtflopatkn Epyaoia

3.1 Virtualization & Containers

metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:

- containerPort: 80

e ReplicaSet: A ReplicaSet’s purpose is to maintain a stable set of replica Pods run-
ning at any given time. Specifically, a ReplicaSet manages the deployment and
scaling of a set of Pods, and provides guarantees about the ordering and unique-
ness of these Pods. Like a Deployment, a StatefulSet controls Pods that are based
on an identical container spec. Unlike a Deployment, a StatefulSet maintains a
bond with each of its Pods in the form of a unique identity. It uses the same identity

whenever it needs to reschedule those Pods.

e Pod: Pods are the smallest deployable computing units that we can create and
manage in Kubernetes. A Pod is a group of one or more containers, which share
storage and network resources, and a specification for the way they should run the
containers. A Pod models a "logical host" for containers that are relatively tightly
coupled such as services of one or more applications. New Pods, when created,
are scheduled to run on a Worker Node of the cluster, where they remain until they
finish their execution. If a Node dies, the Pods scheduled to that Node are scheduled

for deletion after a timeout period, thus are ephemeral in nature.

e Worker Node: A Worker Node is a worker machine in Kubernetes which is managed
by the control plane. It is the place where Pods are scheduled and deployed. A

Worker Node can have multiple Pods running.

e Node Process: Each Node runs at least three processes: kubelet, kube-proxy and
a container runtime that are essential for the services provided. All of them are

described above.

e Container: The lowest level of Kubernetes abstraction.

Role

As mentioned before, in order to host a serverless platform that deploys containers on
demand (functions), in our private infrastructure that is consisted of four heterogeneous
virtual machines, we deployed Kubernetes. Out of the four nodes, one served as Master

Node while the remaining three served as Worker Nodes.

Aitfouatxn Epyaoia m

Kepadawo 3. Background

[aaS CaaS PaaS SaaS
Application Application Application Application
Runtime Runtime Runtime Runtime
Containers Containers Containers Containers
0s s 0s 0Ss
Virtualization Virtualization Virtualization Virtualization
Hardware Hardware Hardware Hardware

Zxnua 3.4: The figure displays a comparison between the main cloud computing service
models. The green components are managed by the cloud provider and the blue ones are
managed by the user.

3.2 Cloud computing

Cloud computing, according to the official definition published by the NIST (National
Institute of Standards and Technology) [22] is a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable computing resources
(e.g, networks, servers, storage, applications and services) that can be rapidly provisioned
and released with minimal management effort or user-service provider interaction. Cloud
computing enables faster provisioning of computer resources, and it abstracts many of
the management tasks from the user, letting him/her concentrate on delivering softw-
are services without worrying too much for the underlying infrastructure. The different
levels of infrastructure abstraction control the amount of user’s responsibilities and is
dependent on the cloud computing service model.

This chapter introduces the widely identified service models for building software arch-
itecture in the cloud. Service models related to serverless computing will be introduced
later in section 3. Figure 3.4 visualizes how the management responsibility is divided

between the user and the cloud service provider in each kind of service model.

3.2.1 Infrastructure as a Service

Infrastructure as a service ([aaS) is the type of cloud computing model where the
capability provided to the consumer is to provision processing, storage, networks, and
other fundamental computing resources where the consumer is able to deploy and run
arbitrary software which can include operating systems and applications. IaaS is out of
the four main types, the one with the minimum level of user abstraction. Commercial

examples of [aaS services are: Amazon Elastic Compute Cloud, Google Compute Enginge,

m AinAeopatxny Epyaocia

3.2 Cloud computing

Azure Virtual Machines [23]

3.2.2 Containers as a Service

Containers as a ervice (CaaS) is a relatively fresh term of cloud computing service and
it is used to describe container orchestration services. It allows software developers and IT
departments to upload, organise, run, scale and manage containers by using container-
based virtualization. Without Caa$S, software development teams need to deploy, manage
and monitor the underlying infrastructure that containers run on, which consists of cloud
machines and network routing systems. Well known tools that offer this capability are:
Docker Swarm, Kubernetes, Google Kubernetes Engine, Amazon EKS [24]

In comparison to IaaS, CaaS provides better re-usability and portability because of
containers’ nature that can be moved to the cloud, or deployed across private and public
clouds. The service provider usually offers automation and tools for provisioning hosts
where containers are run, rescheduling failed containers, updating new ones and scaling
the cluster up or down. But, the user is still responsible for security patches to be
applied. CaaS enables software development teams to design and operate at the higher
order of container level instead of spending valuable time for lower level infrastructure

and systems.

3.2.3 Platform as a Service

When it comes to platform as a service (PaaS), the capability provided to the user is to
deploy onto the cloud infrastructure user-created or acquired applications created using
programming languages, libraries, services, and tools supported by the provider. The
user does not manage or control the underlying cloud infrastructure including network,
servers, operating systems, or storage, but has control over the deployed applications and
possibly configuration setting for the application-hosting environment. [25]

PaaS model makes application management and deployment more straightforward by
providing automatic scaling, healing, and load balancing functionalities. The cloud pro-
vider, also, usually offers pre-configured auxiliary services like monitoring and logging for
the application’s needs. Therefore, the developers can focus more on application source
code and logic without needing to manage the underlying operating system. However, this
kind loss of control can reduce the application’s portability by causing a vendor lock-in

for the users.

3.2.4 Software as a Service

Last but not least, Software as a service (SaaS) is the cloud computing model with the
largest market share among the others. Specifically, the SaaS market is by far the largest
market, according to a Gartner study [26] that reported that enterprises spend $182B on
cloud services, with SaaS services making up to 43% of that spend.

In Saa$S, the capability provided to the consumer is to use the provider’s applications

running on a cloud infrastructure. These applications are accessible from a variety of

Aitfouatxn Epyaoia m

KepdAaiwo 3. Background

client devices through either a thin client interface, such as a web browser, or a program
interface. The consumer, obviously, does not manage or control the underlying cloud
infrastructure including network, servers, operating systems or storage [27]. This ease,
offered to the user, comes at the cost of limited user-specific application configuration

settings.

3.3 Serverless computing

Serverless computing represents the idea, where the user does not need to manage
any server infrastructure but instead deploys the application code to the cloud provider’s
platform. Whatever is needed for the application logic to be executed, is scaled and
billed on-demand for the user, without any running costs. It was in 2014 when the
term gained massive popularity, after Amazon announced their AWS Lambda service [28].
Since 2015, there have been numerous other serverless platforms including IBM Cloud
Functions, Google Cloud Functions, Microsoft Azure Cloud Functions and more. There
are also multiple open source serverless platforms to run serverless workloads in private
cloud infrastructures, such as OpenWhisk, OpenFaa$S, Fission, Knative and Kubeless.
[4, 5, 29, 30, 31]

Despite the etymological meaning of the term "Serverless" which indicates the absence
of physical servers, servers do exist but are not managed by the service users. What it
means is that the servers’ maintenance is abstracted from the user. The cloud provi-
der is responsible to manage, maintain, scale and update the underlying infrastructure
according to the user’s needs. As a result, by automating these tasks, the application
developers have more time to focus on application code and so the time-to-market for such
software products is significantly decreased. In some sense, Serverless is the "child" of

microservices, container virtualization and event-driven programming.

3.3.1 Serverless cloud computing models

Cloud Native Computing Foundation (CNCF) and Berkeley, divide serverless into two
cloud computing service models: Backend as a Service (BaaS) and Function as a Service
(FaaS). [32]

Backend as a Service

Backend as a service (Baa$S) refers to third-party services, which provide an API to
replace or enhance a subset of functionalities in an application. BaaS vendors provide
pre-written and transparent software for activities that operate on servers, such as user

authentication or database management.

Function as a Service

Function as a service (FaaS) refers to the logic where cloud platforms allow users to
execute code in response to events. These events could be triggered, for example, by an

HTTP request, database operation or a new message in a message queue. Developers

m AinAeopatxny Epyaocia

3.3 Serverless computing

Faa$S controller

Synchronous or

asynchronous invocation

Event sources _» Function instances

Zxnpa 3.5: FaaS model components.

deploy granular, event-driven functions to the cloud platform which operate in a stateless
manner when an event invokes them. FaaS functions are small, modular, highly scalable
and relieve developers from writing code for the underlying infrastructure management.

In contemporary FaaS platforms, each function is executed on a seperate container
and thus are stateless in nature. Their lifetime is generally short (a matter of milliseconds)
but it is up to the cloud provider how long a function instance actually lives. A typical
FaaS platform environment contains three main participants: FaaS controller, sources
of events, and function instances. Figure 3.5 visualizes the connection among these
participants. FaaS controller serves as an interface between the event sources and the
function instances. When a new event is created by the event sources, the FaaS controller
is going to trigger the right function to operate.

The life-cycle of a Faa$S function starts when the developer feeds the platform with the
function’s code along side with configuration settings that would determine the function’s
runtime profile such as its scaling behaviour or useful environment variables. In the
provider’s side, the platform takes the code and transforms it into a container, which

upon demand could be deployed as a function instance.

3.3.2 Benefits and drawbacks

Serverless comes around with a great list of benefits. Widely perceived benefits [33] of

serverless are listed below:

e Granular billing: The price paid by the end users does vary with the load because
of the on-demand philosophy. Serverless has a linear cost structure and there is
no charge when the function code is idle. This leads to great cost cuts when used

effectively.

e Scalability ease: Developers have no scaling responsibilities. Their service would
be offered via the cloud provider, to any system load automatically and transpare-

ntly, without having them to worry.

Aitfouatxn Epyaoia

KepdAaiwo 3. Background

e Efficient use of resources for cloud providers: Cloud providers offering serverless
computing services are able to distribute their infrastructure load effectively as the
FaaS functions are short-lived and could be deployed on demand. This means
providers can share resources between customers while there is no need to reserve

resources for idle capacity.

e Low time to market: As the end users have more time to focus on application code
rather than spending time to manage, maintain and scale the underlying infrastru-

cture, they can create software products with significantly lower time-to-market.

e Machine learning’s gateway: Recently, some machine learning use cases are for-
ged because of serverless computing. More specifically, by creating machine lear-
ning functions that are subject to user requests, one can employ a machine learning
tool on demand without having to worry for overpricing and thus make artificial i-

ntelligence more publicly accessible.

Although serverless has its advantages, there are also drawbacks. While making
progress in serverless platforms and tools these drawbacks could be improved later. Some

of the commonly identified drawbacks are listed below:

e Vendor lock-in: Every provider-specific offering comes with varying sets of features
and requirements which have to be fullfilled to actually start using it. These include
specific data formats, custom configuration settings and different likelihoods in pro-
gramming languages. Consequently, the serverless developers are tighlty coupled

to their current cloud service provider.

e Cold starts: The cold start problem is widely known across the cloud computing
field. Depending on the dependencies and the runtime environment of each fu-
nction, the container, when invoked for the first time, that carries its instance
suffers from relatively large start-up times (1-3 seconds long) that can cause dra-
matic impact on certain types of applications. On the other side, when the desired
container pre-exists the function request (warm container) and the resources are
already allocated there is no such delay. The frequency of cold starts needs to be

deeply examined when designing a serverless workload.

¢ Data transfer load: As commented above, FaaS functions are stateless. Thus no
state information can be saved between the invocations and an external database
has to be used for that particular reason. This can lead to high traffic load when

serverless workflow execution happens.

e Vendor and end users tradeoff: A serious dilemma is present in the serverless
stakeholders ecosystem and has to do with the cloud provider and the end-user.
From the cloud provider’s point of view, it is beneficial if executing a function’s
container takes longer times as this tactic is more profitable because the resource
allocation is more lasting. But end-users demand low latency execution for obvious

reasons and in many cases they are not willing to sacrifice their service’s end-to-end

m AitAeouatxn Epyaoia

3.3 Serverless computing

latency in some way. This problem is taken into consideration from both sides when

billing matters kick in.

3.3.3 Serverless platforms

This section discusses different FaaS platforms, both commercial and open source,
as well as OpenWhisk and OpenFaas, the open source platforms we chose to work our

project on.

Commercial FaaS platforms

In the cloud market there are numerous commercial FaaS platforms and each has its
selection of features and runtimes supported. Some of the most popular names in this
field are: AWS Lambda, IBM Cloud Functions, Google Cloud Functions, Microsoft Azure
Functions.

Depending on a range of parameters such as billing, memory asigned to function
or runtimes supported, each platform offers its own package in order to be competitive
enough in the cloud market. In table 3.1 we can have a look at these existing projects.
We need to take into consideration the fact that serverless lives in the realm of tradeoffs.
Thus depending on the user needs and constraints, the choice of a serverless platform

can vary at all times.

AWS Google Cloud IBM Cloud Microsoft Azure
Lambda Functions Functions Functions
Memory (MB) | {128 ... 10240} 128 3. {128 ... 2048} to 1536
emory Le{1.2.4.8. 16,32} up to
Billi Execution time Execution time based Execution time]Ifxec;ltion time
1Hing based on memory | on memory & CPU-power | based on memory aSZ on memory
use
Billing interval 1ms 100ms 100ms 1ms
Configurable memo Memory & memo n/a
Resource vy CPU-power Y

* Source: A Comparison of Serverless Function (FaaS) Providers [33]

[Tivakag 3.1: Commercial FaaS platforms comparison

Open source FaaS platforms

Open source projects cannot be missing from the serverless field. In fact, open source
platforms provide access to IT innovations so many developers are interested in those.
Some of the most well-known open source FaaS platforms include: Apache OpenWhisk,
OpenFaas, Knative, Kubeless and Fission. Each of them comes with its special attributes,
functionalities and weakenesses.

If one wants to avoid the vendor lock-in problem and wants not to depend on a specific
cloud provider, open source FaaS platforms is the way to go. Open source platforms al-

low running serverless workloads in a private cloud where the end user is responsible for

Aitfouatxn Epyaoia

KepdAaiwo 3. Background

scaling and maintaining the underlying infrastructure. This is not the exact case where
serverless technology is fully utilized but when it comes to a big company, this could be
easily tackled by having an operations team to manage the serverless platforms infrastru-
cture, which would be used by the developer team with the appropriate abstaction level
to promote productivity.

When choosing an open source Faa$S platform to work on, there are multiple important
factors to consider and decide afterwards. Some of them are: language support, supported
container orchestrator, performance, developer community and function trigger types.

These factors are to be discussed below.

e Language support: All open source Faas platforms make available a wide range
of runtimes. Furthermore, most platforms offer tools to create custom runtimes to
enrich their language support. It has to be mentioned that each language runtime
comes with different performance metrics and so a single runtime would not behave

the same way in any platform.

e Supported container orchestrator: In order to manage the underlying containers,
a Faa$S platform needs a container orchestrator. Kubernetes is the container orche-
strator every platform supports. But, OpenFaas also supports Docker Swarm and

more custom orchestrators.

e Performance: The perfomance of a Faas platform is directly affected by its un-
derlying architecture and execution overheads. When perfomance is critical for the

user, a detailed examination on every platform cannot be avoided.

e Developer community: Any open source project is by default community driven.
This means that if a project does not have a good enough community support, its
development and maintainance might be abandoned in any time. On the opposite
side, when an open source project is widely adopted by developers and organisa-

tions, then it is going to evolve in many directions.

e Function trigger types: There are three different types of function triggers: HTTP,
event and scheduled. HTTP triggers are HTTP requests, which start the execution of
a function and return a response to the client. Event function triggers are usually
created by a new addition in a message queue of any kind. Scheduled triggers are
the ones that are planned to arrive on certain frequency, e.g every two hours, twice
a day or ten times per month. Knative, Fission, Kubeless and OpenWhisk support

all three of them and OpenFaas supports HTTP and event triggers.

3.3.4 Apache OpenWhisk
History

OpenWhisk is an Apache project which provides a complete Serverless platform, client
SDKs and intergration tooling. Specifically, the project started in February of 2015 with

a small team of IBM researchers and was named Whisk. A year later, when the project

m AinAeopatxny Epyaocia

3.3 Serverless computing

was open sourced on GitHub, it got a new name: OpenWhisk. OpenWhisk was developed

with two main goals:

e Discovering the promising offerings of serverless computing

e Building the foundations upon which the open source, research community would

push forward the serverless computing domain

Architecture

Developers write functions, in a variety of programming languages, and deploy them
to OpenWhisk as actions. Actions are trigger-driven and that means when a new valid
event is created by the event source, it would trigger the execution of the appropriate
action. It is up to the developers to create one or more triggers and bind them to one or
more actions. By default, no action is bound to any trigger and that is the reason of rules
existence. Rules are the tool the developer uses in order to associate a trigger with an
action.

The OpenWhisk system contains a Nginx server, an API Controller, CouchDB, a Con-

sul key-value store, a Katka and Invokers.

e Nginx server: It is an HTTP server that acts as a reverse proxy for the interface
between clients and OpenWhisk’s API.

e API Controller: Responsible for authentication and orchestration processes, API

controller serves and forwards incoming requests to the appropriate component.

e CouchDB: It is the place where system’s state is saved. CouchDB is an open source

JSON data store and keeps record of all types of data including credentials.

e Consul: For distributed systems operations, a distributed key-value store is needed

for managing the system’s state. Consul is accessible by all OpenWhisk components

e Kafka: Apache Kafka is an open source, high perfomance distributed event stre-
aming platform which in the OpenWhisk use case, connects the Controller with
Invokers. Any message sent by the Contoller, is buffered into Kafka and then it is

delivered to an Invoker.

e Invoker: It is the runtime plane of OpenWhisk, as upon request it spins up a co-
ntainer that executes the invoked action. An Invoker communicates with CouchDB
both for configurating the container specs and saving the execution’s result for later

retrieval.

Why OpenWhisk

It is super essential the fact that OpenWhisk has got a long list of built-in supported
language runtimes but also offers the capability to the developer to create and customize

special runtimes, with the help of Docker SDK, which are not supported by the platform.

Aitfouatxn Epyaoia m

Kepadawo 3. Background

Kafka —-{ Invoker

Zxfpa 3.6: Apache OpenWhisk architecture.

To add, the deployment of OpenWhisk to Kubernetes could be managed and provisioned
with ease as the documentation is pretty detailed. Last but not least, the OpenWhisk
components are modular enough to enable the operation of custom monitoring services
as well as the construction of higher-level custom tools for the execution of serverless

workloads.

3.3.5 OpenFaas
History

OpenFaas is an independent open source project created by Alex Ellis and started
back in 2016. In 2017 after Dockercon, Kubernetes support was added and the commu-
nity seemed to be really enthusiastic about it. Since then, OpenFaas has had the highest
adoption rate, as compared to its alternatives, with more than 20k GitHub stars. That
results in huge community contributions, which are crucial for the project’s evolution.
Along the way, OpenFaas Pro was realeased, which is a commercial distribution of O-
penFaa$S for companies and enterprises with some extra included features, suitable for

production usage.

Architecture

OpenFaas architecture is based on a cloud-native standard and includes the following
components: API Gateway, Function Watchdog and the container orchestrators Kuberne-
tes, Docker Swarm, Prometheus and Docker. Figure 3.7 visualizes how these components

interact each other.

e The Gateway can be accessed through its REST API, via the CLI or through the
OpenFaas Ul

e A Watchdog component is intergrated into each container and provides a common

interface between the user and the function

e Prometheus collects metrics which are available via the Gateway’s API and which

are later used for auto-scaling purposes

m Awtflopatkn Epyaoia

3.3 Serverless computing

) ; service —|—|
El §5| OpenFaas | cRuDI - ice:latest
[y — uw » P — faas-netes Servicoidie

— REST SPETIFARE Gateway Invoke 5

_____ s e ‘Iunmlon —

M me } ol
Collect R.E.D. ~-Sca e java-in:2.0

Metrics down .
¥

. I . : : ,
r\ Dock
9 Prometheus 9 Merivanager || A7) Seng B Rogity

Zxnpa 3.7: OpenFaas architecture and components.

e OpenFaas enables long-running tasks or function invocations to run in the back-

ground through the use of NATS streaming
e The Queue-Worker processes asynchronous function invocations requests

e Alert manager reads usage (requests per second) metrics from Prometheus in order
to know when to fire an alert to the API Gateway

Asynchronous function invocations

OpenFaas enables function invocations to run in the background while it handles
HTTP transactions for other function calls.

By exploiting the asynchronous function invocation capability, we can achieve paral-
lelism by scaling the number of queue-workers deployed in the cluster which is by default
set up to run a single task at a time. By tuning the queue-worker’s "max-inflight" option
to a value greater than one, we can also increase the level of parallelism. Essentially, for
n replicas of queue-workers we can have up to n* max-inflight parallel invocations. The

asynchronous pipeline works as follows:

e An initial connection is formed to the gateway
e the user’s request is serialized to a queue via the queue-worker and NATS

e at a later time, the queue-worker dequeues the request, deserializes it and forwards

it to the function (directly or via the gateway using a synchronous call)

MAYBE MORE THINGS TO ADD HERE.

Why OpenFaas

Choosing OpenFaas as the major serverless platform for this thesis was not an obvious
solution. At first, we started to work on this thesis with Apache Openwhisk. But, the
main drawback of OpenWhisk was the difficulty to operate at the pod-level of the cluster.
Specifically, the cluster manager is not capable of placing a deployed function to a desired

node. The only way, one may approach this is by making changes to Openwhisk’s source

Aitfouatxn Epyaoia m

KepdAaiwo 3. Background

code, something considered as counter-productive. On the opposite side, OpenFaas is by
far more Kubernetes-friendly than OpenWhisk and that issue could easily be resolved.
Moreover, creating functions and managing language dependencies was not that easy in
OpenWhisk as it was in OpenFaas where the conceptual workflow of function development

is highly modular and manuverable.

3.4 Machine Learning

Machine learning is a core subfield of artificial intelligence, which is broadly perceived
as the capability of a machine to emulate intelligent human behaviour while executing
a properly defined task. These tasks are complex in nature and usually include written
text understanding and reasoning, object recognition and classification as well as mimi-
cing physical world actions. Machine learning essentially serves as a mean of deploying

artificial intelligence.

A common misconception with machine learning, when compared to the traditional
way of programming computers, is that in machine learning the machine is capable of
learning on its own without human intervention, whereas in the "old-school" way one
should provide the machine with a full-complete instruction set in order to perform a job,
which is frequently referred to as a painful task to do. But there is little truth in this
particular statement, as machine learning requires massive amount of human effort in
calibrating a machine in the early stages of its development. Once carefully calibrated
though, machines operate on their own and are capable of solving complex problems with
high efficiency. The impact of machine learning is already enormous in a wide variety of

domains and it is considered to grow even in a larger scale in the near future.

Machine learning has to do with data manipulation and these data could be processed
by a broad set of techniques that are currently under development and would allow us to
deal with more and more interesting problems. These techniques are categorized in three
different subcategories in terms of the way the machine is interacting with the available
data:

e Supervised machine learning models are trained with labeled data sets. While
training, they are forced to map an input to an output by making use of example

input-output pairs.

e Unsupervised machine learning is where a program tries to find patterns in unla-

beled data that humans are not explicitly looking for.

¢ Reinforcement machine learning trains a machine through trial and error to take
the best out of them by establishing a reward (or penalty) policy when the program

makes good or bad decisions respectively.

m AinAeopatxny Epyaocia

3.5 Deep Reinforcement Learning

3.5 Deep Reinforcement Learning

From an abstract point of view, the efficiency and the effectiveness of a machine
learning solution highly depends on the quality and characteristics of data and the per-
fomance of the learning algorithms. Deep learning is a subset of machine learning which
distinguishes itself from classical machine learning by the type of data it works with and
the methods in which it learns. While machine learning leverages structured, labeled
to make predictions, this does not imply that it does not use unstructered data; it is
just necessary to pre-process those data in some way to organise it into a structured
format. Deep learning eliminates some of data pre-processing that is typically involved
with machine learning, because of its ability to ingest large amounts of data such as text
and images and decide whether some features of the input data are important or not for
making a successful prediction.

Deep learning is a type of machine learning that is computationally expensive by de-
sign [34]. Deep-learning architectures such as deep neural networks, recurrent neural
networks or convolutional neural networks have been applied to fields including compu-
ter vision, speech recognition, natural language processing and more, where they have
produced high quailty results which in some cases are surpassing human expert perfo-
mance. Artificial neural networks (ANNs) were inspired by information processing and
communication nodes in biological systems, the human brain for example. The adjective
"deep" in deep learning refers to the use of multiple of such layers in a network. Deep
learning approaches may also be coupled with reinforcement learning methods, as it cur-
rently enabling reinforcement learning scale to problems that were previousle intractable,

such as learning to play video games directly from pixels [35].

3.5.1 Reinforcement Learning

Reinforcement learning (RL) has a clear objective: to maximise expected cumulative
rewards, which seems simple at first sight but developing efficient algorithms to optimise
such objectives usually involve a pipeline of research, experimentation and investigation
that quite often takes a lot of time and effort.

In a great range of problems including dynamic workload scheduling and robotics,
RL-based techniques have achieved significant performance. In general, an agent whose
target is to solve a problem, is fitted inside an environment and interacts with it via a
series of actions, observations and rewards. Upon observing the sequences of its actions,
the agent can learn to alter its own behaviour in response to rewards received. This
paradigm of trial-and-error learning has its roots in behaviourist psychology, and is one
the main foundations of RL. Thus creating an ideal learning environment is a vital job for
a domain expert.

In the RL set-up, an autonomous agent, controlled by a machine learning algorithm,
observes a state s; inside its environment at timestep t. The agent interacts with the
environment by taking an action a; in state s; and so it transitions to a new state s¢;;.

Every time the environment transitions to a new state, it offers the agent a reward r;;; as

Aitfouatxn Epyaoia m

KepdAaiwo 3. Background

a feedback to the selected action. The agent’s goal is to discover a policy = that maximises

the expected return. Formally, RL is a Markov decision process which consists of:

A set of states S, plus a distribution of starting states p(sy).
e A set of actions A.

e Transition dynamics 7 (s¢11 | St, ar) that maps a state-action pair at time t onto a

new state sy at time t + 1.
e A reward function R(s¢, ay, St+1).

e A discount factor y € [0, 1], where lower values mean more emphasis on immediate

rewards.

3.5.2 Reinforcement Learning Algorithms

There are two main approaches to solving RL problems: Value functions and policy

search.

A. Value Functions

Value functions methods are based on estimating the value of the agent’s presence
in a given state. The state-value function V"(s) is the expected reward when starting in

state s and following policy & henceforth:
V™(s) = E[R]| s, 7] (3.1)

The optimal policy, n*, has a corresponding state-value function V*(s), and vice-versa,

the optimal state-vale function can be defined as
V*(s) = max,;V*(s),Vs € S. (3.2)

If we had V*(s) available, the optimal policy could be retrieved by choosing among all
actions available at s; and picking the action a that maximises Es,, -7 (s.,,|s.0)[V" (St+1)].

In the RL setting, the transition dynamics 7 are unavailable though. Therefore, we
construct another function, the state-action-value or quality function Q™(s, a) which is
similar to V", except that the initial action a is provided, and = is only followed from the

succeeding state onwards:
Q"(s,a) =E[R | s, a, n]. (8.3)

The best policy given Q"(s, a), can be found by choosing a greedily at every state:
argmax@Q™(s, a). Under this policy, we can also define V™(s) by maximising Q"(s, a) :

V(s) = max,Q™(s, a)

m AinAeopatxny Epyaocia

3.6 Scheduling and Migration of Serverless Functions

Dynamic Programming: To actually learn Q" by exploiting the Markov property and

defining the function as a Bellman equation, the following recursive form occurs:
Q"(st, ar) = Es,,, [rt+1 + yQ"(St+1, m(St+1)]- (3.4)

This means that Q" can be improved by bootstraping, i.e, we can use the current va-
lues of our estimate of Q" to improve our estimate for future states. This is the foundation

of Q-learning and the state-action-reward-state-action (SARSA) algorithm:
Q"(st. ap) « Q"(st, ap) + ad (3.5)

where a is the learning rate and 6 = T — Q" (s;, a;) the temporal difference (TD) error; here,
T is a target as in a standard regression problem. SARSA, an on-policy algorithm, is used
to improve the estimate of Q" by using transitions generated by the behavioural policy,
which results in setting T = r; + y * Q™(S¢+1, 4i+1)- An on-policy algorithm essentially
estimates the value of the policy being followed. Q-learning is off-policy, as Q" is instead
updated by transitions that were not necessarily generated by the derived policy. Instead,

Q-learning uses T = ry + y * max,Q™(s¢+1, @), which directly approximates Q*

B. Policy Search

When speaking about policies, formally we say that an agent "follows a policy". For
example, if an agent follows policy m at time ¢, then n(a | s) is the probability that A; = a
if S; = s. This means that, at time ¢, under policy m, the probability of taking action a in
state sis n(a| s).

Policy search methods do not need to maintain a value function model, but their direct
goal is to find an optimal policy n*. Typically, a parameterised policy 7s is chosen, whose
parameters are updated to maximise the expected return E[R |] using either gradient-
based or gradient-free optimisation. Neural networks that encode policies have been
successfully trained using both gradient-free and gradient-based methods. Gradient-
free optimisation enables solving of low-dimensional parameter spaces, but despite some
successes in applying them to large networks, gradient-based training remains the way-
to-go for most of DRL algorithms, being more sample-efficient when policies possess a
large number of parameters. In simple words, policy search focuses on finding good

parameters for a given policy parameterization.

3.6 Scheduling and Migration of Serverless Functions

3.6.1 Why is Scheduling of Serverless Functions (SSF) needed?

When a cloud provider takes the responsibility of providing on demand serverless
functions’ execution, a lot of parameters have to be taken into consideration because of the
heterogeneity of users’ requests, complexity of code injected into a function and of course

infrastructure level issues such as intereference, machine availability and maintainance

Aitfouatxn Epyaoia

KepdAaiwo 3. Background

costs. As a concequence, scheduling effieciently serverless workflows is crucial. With a
poor scheduling strategy, one may result in unbearable traffic, unpredictable utilization
and end-user disatisfaction as their requests would suffer from low quality of service

(QoS).

3.6.2 How Does Scheduling of Serverless Functons Work

Quite a few ways of tackling the scheduling of serverless functions, or containers in
general, exist and are applicable depending on the problem that has to be resolved. Most of
the solutions do not take into account the runtime profile of the function as they decide to
deploy it in a machine where the Docker image of the appropriate function is pulled already
if possible or place the function to the most resource-rich machine. But this kind of tactics
are not going to be efficient in all deployment scenarios apparently. For example, the most
resource-rich machine might be under resource-stress conditions and so it would not be
able to outperform its fellow machines inside the cluster as expected. In most cases,
a serverless framework employs a container orchestrator, such as Kubernetes, under
the hood for scheduling the deployed functions. However, these schedulers are more
generically designed; thus custom approaches should be adopted to solve less generic
problems. An important conclusion to be drawn here is the fact that static solutions in
scheduling problems definitely are not the best approach when trying to solve a dynamic

problem.

m AinAeopatxny Epyaocia

Ke¢palairo ﬂ

Motivational Analysis

Cloud computing advanced significantly after the hardware virtualization and virtual
machine ideas. For years, a lot of paradigms and platforms were created and developed
that prompt to major long-term cost savings for businesses of all sizes. The next big step
after hardware virtualization was the operating system level virtualization, also known as
containerization. But, the need for even higher elasticity and more fine-grained billing has
recently led to the proliferation of serverless. Serverless, lately, is examined not only for
event-driven stateless applications but also for data analytics, machine learning and high
perfomance computing workflows and that is because serverless execution environments
offer ease-of-use and pay-as-you-go billing to scientists that have little experience in
provisioning clusters at scale. As pointed out in Eric Jonas et al work[36], even at UC
Berkeley, as it was examined via informal surveys, it is ordinary for machine learning
graduate students not to have written cluster computing jobs due to the complexity of
setting up cloud platforms.

In this chapter, we analyze and verify the key role of granularity when deploying a w-
orkflow on cloud premises regarding metrics like latency and utilization. Furthermore, we
present the impact interefence and heterogeneity could have on a serveless application’s
performance and also on the end-user experience. Firstly, a description of our experi-
mental setup is offered in Section 4.1, including tools and software that are integral to
this thesis. Secondly, in Section 4.2, we are referring to implementation tools. Moreover,
in Section 4.3 the workflow we studied is characterized so as to get a clear view of its
computational complexity profile, while in Section 4.4, Section 4.5 and Section 4.6 gra-
nularity’s, inteference’s and heterogeneity’s impact are investigated. Finally, in Section
4.7 we highlight the reasoning behind our approach to tackle the serverless functions

scheduling problem.

4.1 Experimental infrastructure

4.1.1 System setup

For the rest of the thesis, we consider four multi-processor systems PM1, PM2, PM3
and PM4 as shown in table 4.1. In order to simulate a proper cloud environment, all of
the referenced tools and workloads have beed containerized with the aid of the Docker

platform [37]. Furthermore, as the nodes of our cluster, five virtual machines (VMs) have

Aitfouatxn Epyaoia m

Kegpdldato 4. Motivational Analysis

Kubernetes

Zxnua 4.1: Cluster Architectural Overview

beed deployed on top of physical machines with diverse specifications. Specifically, each
VM'’s cores range from 4 up to 16 and RAM size ranges from 7.77(GB) to 31.4(GB) and,
we use KVM as our hypervisor. In fact, in PM; we have deployed the virtual machine woO;,
wherei€ 1,2,3,4

The approach of employing VMs with deployed containers is the common practice
of deploying cloud clusters at scale, since it establishes reliability and robustness. The
virtual cores of each VM have been mapped on physical cores of the servers using the CPU
pinning options of the libvirt library, to eliminate context-switching and monitor clearly
VM-specific metrics. On top of the aforementioned VMs, Kubernetes [3] is deployed
as our container orchestrator. The system holistically is presented in figure 4.1. The
Kubernetes cluster is configured with a single-master node with the corresponding VM
serving as master deployed in a different socket than the VM that serves as the fourth

worker that is also deployed on the same server (Cheetara).

4.1.2 Monitoring and Communication

In this subsection, the monitoring and communication means that were used for this
work are going to be introduced. First of all, in order to get information about the real
system metrics we utilized the Perfomance Counter Monitor (PCM). PCM is a tool developed
by Intel. It is deployed as an agent in machine and extracts from it a wide range of metrics.
The Intel®)Perfomance Monitor Counter provides C++ routines and utilities to estimate

the internal resource utilization of the Intel®) Xeon@®) and Core "processors.[38].

Awtflopatkn Epyaoia

4.1 Experimental infrastructure

VM/Server | vCPUs | Memory | Underlying CPU(Intel ®)Xeon (®)) | L3(MB)
Wo01l/PM1 8 15.6GB Gold 5218R @ 2.10GHz 28
WO02/PM2 8 15.6GB Gold 6138 @ 2.00GHz 28
wWo03/PM3 16 31.4GB Silver 4210 @ 2.00GHz 14
wWo04/PM4 4 15.6GB E5-2658A @ 2.20GHz 30

[Tivakag 4.1: Technical characteristics of heterogeneous nodes

The CPU utilzation does not tell you the actual utilization of the CPU. CPU utilization
number otained from operating systems (OS) is a metric that has been used for product
sizing, compute capacity planning, job scheduling, and so on. The current impleme-
ntation of this metric (the number that the UNIX* "top" utility and the Windows* task
manager report) shows the portion of time slots that the CPU scheduler in the OS could
assign to execution of running programs or the OS itself; the rest of the time is idle. For
compute-bound workloads, the CPU utilization metric calculated this way predicted the
remaining CPU capacity very well for architectures of 80ies that had much more uniform
and predictable performance compared to modern systems. The advances in computer
architecture made this algorithm an unreliable metric because of introduction of mul-
ti core and multi CPU systems, multi-level caches, non-uniform memory, simultaneous

multithreading (SMT), pipelining, out-of-order execution, etc. [39]

Using PCM we were able to extract core, socket and system level metrics from our
cluster. Those metrics were interpretated as the state of our system. The metrics that

were used are the following:

e Instructions Per Cycle (IPC) IPC describes the instructions required to execute a

piece of code divided by the the number of hardware cycles done at this time.

e Memory Reads / Writes Memory Reads/Writes describe the number of reads/wri-
tes from/to the memory. It is provided only at socket and system level and extracted

on a set time interval.

e L3 Misses L3 Misses counts the L3 cache misses occured in a certain time interval.
For the socket and system level, L3 misses are aggregated for all cores that are

included in the socket or the system.

e C-States(CO, C1) For energy saving reasons during CPU’s idle state, the CPU could
be forced to enter a low-power mode. Each core has three scaled idle states: CO, C1
and C6. CO is the normal CPU operating mode and so the CPU is 100% active. The
higher the C index is, the less activated is the CPU.

Aitfouatxn Epyaoia

Kepalaio 4. Motivational Analysis

S DAG generation = : Function deployemant ehemary|
@ E> KV store ;
c> { f'qs
@ WO > :

. || ¥ololo}
Workflow execution seguence H Diata trandfer 0 @ @ 1

e

Ixnua 4.2: Simple-sw architectural overview.

4.2 Implementation tools

4.2.1 Simple-sw

During the early stages of this thesis, the Faas platform we chose to work on was
Apache OpenWhisk. Due to the need of finding a way to deploy a FaaS workflow, we
looked for an open source runtime tool that could orchestrate OpenWhisk functions in a
DAG-like manner so as to use it accordingly to our needs. From an abstract point of view,
our vision to be implemented required deploying FaaS functions to a Serverless platform
and afterwards defining rules and conditions upon which functions would communicate,
before and after their execution in order to operate as a single unit.

Despite a tightly coupled function chaining capability offered by OpenWhisk itself,
nothing more interesting was found online. So, we decided to build our own runtime
orchestrator tool with the aid of Serverless Workflow. Serverless Workflow is an open
source project developed by Cloud Native Computing Foundation and offers standards-
based DSL, open source dev tools and runtimes within a vendor neutral, community-
driven workflow ecosystem. One of Serverless Workflow’s offerings is Specification [40],
which enables developers define DSL-based workflows. Specification comes together with
developer SDKs in a variety of programming languages.

We leveraged Specification and GoSDK and created simple-sw. Simple-sw is a tailor-
made workflow orchestrator that manages communication and invocations among deplo-
yed OpenWhisk functions. By providing a YAML file according to Specification’s DSL,
simple-sw is going to execute each state of the DAG workflow defined in the YAML in-
put file. In more details, Specification’s DSL offers a variety of executable states for a
workflow DAG, such as event state, operation state, for-each state. Under simple-sw, we
implemented these functionalities in the extend that a complex enough workflow would

be deployable within our runtime tool.

4.2.2 MinlO

MinlO offers a high-perfomance, cloud native, open source object storage that can be
easily deployed to a Kubernetes cluster. It is released under GNU Affero General Public
License v3.0 and is written in Go. It is API compatible with Amazon S3 cloud storage
service and can handle unstructured data such as photos, videos, log files and container

images with (currently) the maximum supported object size of 5TB. [41]

Awtflopatkn Epyaoia

4.2 Implementation tools

MinlO is designed in a cloud native manner to scale sustainably in multi-tenant envi-
ronments. Kubernetes is the main orchestration platform that provides a perfect cloud
native environment to deploy and scale MinlO. For example, we can set up multiple MinIO
tenants that are managed by a MinlO operator and act as different servers in a Kuber-
netes cluster. MinlO cloud storage server is designed to scale efficiently while remaining
a lightweight application so that can be bundled effortlessly with the application stack.
Moreover, MinlO server is hardware agnostic, thus can be installed on physical, virtual

machines or a Docker container deployed on platforms like Kubernetes.

e Architecture: By installing the MinlO Operator in a Kubernetes cluster, we can
deploy as many MinlO Tenants as we need. Each MinlO Tenant represents an in-
dependent MinlO Object Store within the Kubernetes cluster and requires sufficient

Persistent Volumes for binding. In figure 4.3 this architecture is visualized.

e MinIO Operator: The MinIO Operator extends the Kubernetes API to support de-
ploying MinlO-specific resources as a Tenant in a Kubernetes cluster. The MinIO
Kubernetes Operator automatically generates Persistent Volume Claims (PVC) as
part of deploying a MinlO Tenant. Furthermore, the MinlO Operator installs and
configures the Console for each tenant by default. Through the Console, a wi-
de variety of tasks could be performed including policy configuration, information

overview and usage percentages.

e MinIO Tenant: A MinlO Tenant deployed within a Kubernetes cluster is a indepen-
dent MinlO server instance that needs sufficient resources to allocate. Throught the

Operator, multi-tenant environments could be created.

e Role: For the shake of intermediate storage for a serverless workflow execution
there was a need for a cloud native, high perfomance object storage. As explained
above, there is no better solution than MinlO. We chose to deploy a single MinlO
tenant that was used for ephemeral file storage as well as efficient state transfer

across the FaaS functions when a workflow instance was invoked.

Aitfouatxn Epyaoia

Kepalaio 4. Motivational Analysis

4.‘ Administrators |.7

‘ Appiications ‘

I |

MinlO MinlO MinlO MinlO
Console Object Storage Object Storage Console

MinlQ Tenant 1 MinlO Tenant 2

— -
MIN IO Vs i
{ |
kubernetes

RACK1 RACK 2
' | | | | |
| \ | | |

Yxnpa 4.3: MinlO deployed above a Kubernetes cluster.

4.2.3 Faas-flow

Faas-flow [6] is an open source tool for FaaS function composition with OpenFaas. It
is written in Go while it is stateless by design. Faas-Flow allows us, by defining a simple
pipeline, to orchestrate and execute a complex workflow that is consisted of multiple
functions without having to worry about the internals.

It promotes function reusability as it accepts a single function to be used in more
than one workflows. Furthermore, FaaSFlow makes possible to manage with great ease
functions that execute different application logic while offering programmatical power for
a variety of different implementations.

Faas-flow is deployed and provisioned just like any other OpenFaas function. In some
sense, the faas-flow function could be considered as a wrapper function that handles the
functions that are included in its given pipeline. In this way, faas-flow takes advantage

of many rich functionalities available on OpenFaas.

e Design: Faas-flow’s design principles are set based on following written goals: le-
veraging the OpenFaas platform, not to violate the notions of FaaS function and

providing flexibility, scalability and efficiency

e Yet another OpenFaas function: Faas-flow is deployed just like any other Open-
Faas function, which is crucial for perfomance reasons as it allows faas-flow take

advantage of OpenFaas’s functionalities.

e Isolation: Faas-flow follows the adapter pattern, where the adaptee is the pipeline’s
functions and the adapter if the faas-flow function. Any type of composition or

configuration that changes the pipeline behaviour is done in the faas-flow function

Awtflopatkn Epyaoia

4.2 Implementation tools

level and needs no modification to be made in the rest functions. This logic promotes

reusability and flexibility.

e Event driven iteration: Faas-flow leverages the OpenFaas platform which uses
Nats for event delivery. As a result, faas-flow’s runtime is event-driven designed.
Node execution starts by a completion event of one or more previous nodes. A
completion event denotes that all the previous nodes have completed. With events,
faas-flow asynchronously executes all nodes by iterating over and over till no more

execution happens.

e Coordinating key-value store: Faas-flow operates as a distributed system and di-
stributed systems need a centralized service for successful coordination. Execution
state and intermediate data are saved thus in any external synchronous key-value

store.

e Role: As discussed above, this thesis is all about deploying the appropriate instace
of a serverless workflow in order to achieve optimal perfomance and utilization.
This deployment cannot happen without a tool that would make all functions of
an application instance communicate and exchange data one another. Faas-flow
makes a perfect match for our use case, as it orchestrates the application instance
in an really effective and efficient manner. Specifically, faas-flow provides elasticity
and transparency in the construction of a workflow because it operates as a white
box system. This is crucial when optimization goals come in discussion due to the
fact that if we want to step up the level of serverless workflow execution, we need to

dig deeply into all possible paths.

4.2.4 Custom Runtime Engine

Although Faas-Flow is a robust framework for OpenFaas functions orchestration, it
is developed to serve only synchronous functions communication and not asynchronous.
This creates no room for parallel execution and thus no accelaration could be achieved
when executing a workflow instance. As a result, we chose to develop a custom runtime
engine for this thesis that enables function invocations of both kinds. The engine is
written in Python and employs the subprocess python module that handles command
line calls over the OpenFaas framework. These calls include async function requests,
polling logs of OpenFaas components and functions intercommunication. The engine is
fed with an input request regarding the video used for inference and outputs the end-
to-end latency of its execution. We can accelerate the execution by scaling the Queue-
Workers but no change needs to be made in the engine as it is Queue-Workers agnostic

and is able of utilizing all Queue-Workers existing in the cluster at a certain moment.

Aitfouatxn Epyaoia

Kepadato 4. Motivational Analysis

4.3 Description of Serverless workflow and Interference micro-

benchmarks

Latest use cases of serverless except from simple event-driven functions, include ma-
chine learning training and inference, video processing and other complex workloads
which typically consist of multiple stages and require intermediate results to be shared
between tasks. This seems odd at first, when considering the stateless nature of FaaS
functions, but it is proven that in many scenarios the abstractions offered to the user by
serverless computing could be drastically beneficial. Not all developers are familiar with
provisioning clusters and managing distributed systems efliciently. Not to mention the
low cost services provided by serverless computing as it strongly forwards optimal utiliza-
tion. Towards this vision, we chose a complex enough video analysis inference workflow
to analyze and examine its behaviour when deployed to private infrastructure under all

shorts of conditions and constraints.

4.3.1 iBench

In order to apply specific and constant pressure on our cluster of VMs, we used
the iBench suite. iBench provides micro-benchmarks which can simulate multiple-level
stress to machine resources such as the CPU, caches and memory bandwidth. We fully
utilized those benchmarks and created artificial pressure on our machines so as to analyze
in depth the relation between cluster’s state and application’s granularity. Each micro-
benchmark was deployed as a Deployment object in our Kubernetes cluster. Specifically,

in this thesis we use the following micro-bencmarks:

e L3 cache pressure
e CPU pressure

e Memory Bandwidth pressure

4.3.2 Serverless Workflow

From a higher level of abstraction, our application’s workflow processes a video file
(mp4) by extracting frames and inferencing those frames with models to detect and analyse
a human face or a random object.

When the workflow receives at its input a video file, it will extract frames from it
based on parameters set previously by the user. At the next state, each image captured is
passed to a face detection filter that forwards each frame depending on whether it contains
a human face or not to a face analyzer model or an object recognition model respectively.
The last stage aggregates the results for all frames processed and writes them at once in a
text file that is uploaded to persistent storage or creates online notifications accompanied
with the respective result and image to a public endpoint.

Having coded these functions, we needed a component/framework to orchestrate their
holistic execution. Our first attempt was to use the custom function orchestrator, 4.2,

we developed for OpenWhisk functions but due to OpenWhisk’s incompatabilities with

AinAeopatxny Epyaocia

4.3 Description of Serverless workflow and Interference microbenchmarks

s’ﬁ‘-"
'?"“"e .

R el
i °e "Dt

xfpa 4.4: Versionl architecture visualized.

Kubernetes this path was aborted. The next step was to migrate from OpenWhisk to
OpenFaas, a process that required minimum overhead effort. The interesting part with
this migration was the utilization of the aforementioned OpenFaas framework, faas-flow
[6].

Using faas-flow we managed to created our workflow and execute in various versions.
Below we present four versions of our application workflow, where the former has the
most granular architecture and is named as Versionl while the latter is the most coarse-
grained one and is named as Version4. All versions are handled by wrapper functions
provided by the faas-flow framework. The functions that constitute these versions are
OpenFaas functions and are written in Python, the most popular language for machine
learning and image processing. The faas-flow wrapper functions are written in Go.

Four application versions are presented below, along with their inner functions.

Versionl

The fully decomposed version comprises of five different functiosn as shown in figu-
re 4.4, the most of all cases. Dotted lines represent parralel execution steps while solid

lines stand for sequential execution.

e Framer: Reads a video and depending on the user input parameters cuts it into
a collection of frames. The user provides the starting and the ending point of the
video’s duration between those the frames are going to be extracted. The user
request also contains the interval between two successive frame extractions. When
all desirable frames are gathered, framer sends all captured frames to a MinlO
bucket for temporal save. The frame extraction process is done within the OpenCV

library which is the most appropriate for this particular objective.

e FaceDetector: This function is responsible for processing each frame extracted in
the previous step. It examines for each frame created by framer, if it contains a
human face or not. If the answer is yes, it forwards the frame to the faceanalyzer
function. If the answer is no, it forwards the frame to the mobilenet function. Alike
the frame extraction, the face detection process is implemented using the OpenCV

library.

Aitfouatxn Epyaoia

Kepalaio 4. Motivational Analysis

D A

Zxnpa 4.5: Version2 architecture visualized.

e FaceAnalyzer: Runs an emotion analysis on frames that contain human faces and
returns whether the contained face is Angry, Disgusted, Feared, Happy, Neutral,
Sad or Surprised. The inference model in this stage is loaded from pretrained

weights that are saved in a json file. The model is available via tensorflow.

e Mobilenet: Classifies the frames that do not contain faces to a wide variety of
objects. The model used here is the vanilla edition of ResNet50 [42] offered by

tensorflow.

e Outputer: Aggregates the results of all frames processed and writes them to a text
file that is uploaded to a MinlO bucket.

e Versionl-wr: This is the wrapper function offered by faas-flow. It handles all com-
munication and synchronization between the rest functions so as the execution of
the workflow to be successful. It is written in Go, behaves exactly like any other
OpenFaas function and uses as mentioned above MinlO and Consul for data saving.
Specifically, the wrapper sequentially executes the Framer, meaning that it would
not forward already extracted frames until all desirable frames are collected. After
that, it applies FaceDetector to the frame collection in a parallel fashion, aggregates
the results and sends them dynamically to FaceAnalyzer / Mobilenet respectively
with the aid of a conditional branch offered by faas-flow. Finally, after a second ag-
gregation process, calls the Outputer to upload the final text file to a MinIO bucket.

Version2

The second version unifies the frame inference models in a single compact function.
Version2 is consisted of four functions as shown in figure 4.5 and represents the next

level of granularity after Versionl.
e Framer: Defined in 4.3.2

¢ FaceDetector: Defined in 4.3.2

Awtflopatkn Epyaoia

4.3 Description of Serverless workflow and Interference microbenchmarks

e Inference: It is a compact function with a dual role. It actually implements both
Mobilenet and FaceAnalyzer roles as mentioned above in Versionl. The Inference

function comprises the same software dependencies as Mobilenet and FaceAnalyzer.
e Outputer: Defined in 4.3.2

e Version2-wr: This is the wrapper function for Version2 which as in Versionl starts
with a sequential frame extraction process, continues with parallel face-detection
for all frames but then the dynamic conditional branch is skipped, as both kinds
of frames (face,no-face) are passed to the inference function which executes the
appropriate operation. Lastly, the outputer writes the text file which is going to be
uploaded to a MinlIO bucket.

Version3

The third version fully merges the face-detection process with the inference processes
in a single function. It is consisted of three functions as shown in figure 4.6 and represents

the next natural step of making Version2 more granular.

Cgtomsd
BNCE

18 X(|
<

Zxnpa 4.6: Version3 architecture visualized.

e Framer: Defined in 4.3.2

¢ Biginference: This function fully implements the facedetection and inference pro-

cesses.
e Outputer: Defined in 4.3.2

e Version3-wr: Version3’s wrapper orchestrate version3 execution in an even simpler
way by invoking the framer function and after that passes the frame collection to
the biginference function in a parallel way, which both detects faces in the extracted
frames and applies the inference models as needed.

Version4

Version4 is consisted just by two functions, as visualized in figure 4.7.

Aitfouatxn Epyaoia

Kepalaio 4. Motivational Analysis

QO =@

Yxnua 4.7: Version4 architecture visualized.

e Monolith: This function encapsules the whole application logic that is distributed
in Framer, FaceDetector, FaceAnalyzer, Mobilenet functions of the Versionl archite-
cture. Moreover, the Monolith executes the application logic sequentially, even the
parts that in Versionl are handled in parallel pattern, due to its inability to take full

advantage of faas-flow’s potential.
e Outputer: Defined in 4.3.2.

e Version4-wr: Another faas-flow wrapper, one that does not utilize parallel execution
at all. It simply invokes the monolith function which sequentially executes the

required processes emulating the previous mentioned versions.

4.4 Impact of Granularity on the Workflow’s Perfomance

A serverless application is usually consisted of multiple functions that are chained
one another to form a DAG which is going to execute an application’s workflow. The level
of granularity that characterizes a workflow influences the data transfer needs among the
functions and thus plays a significant role in perfomance. This influence is enhanced
by the fact that contemporary serverless platforms execute each function by deploying
a different container instance. For example, when two functions are merged in a single
one so as to reduce application’s granularity, some virtualization and data exchange
overheads are avoided but this comes at the cost of decreased capability of parallelizing
functions’ execution and increased limitations in function placement. E.g., as proposed in
ExCamera [43] by Fouladi et al., it is common to attempt and split a processing workflow
into tiny tasks that could be executed in parallel. This tradeoff depends on a wide variety
of parameters that need to be considered when designing the architecture of a desired
workflow. For example, having relatively smaller functions to manage, the cloud service
provider is closer to maximizing resource utilization.

Especially, Ashraf Mahgoub et al.[12] highlight the fact that in data-intensive ap-
plications passing data through remote storage, which is the most frequent approach
nowadays, takes over 75% of the computation time. Consequently, granularity level of a
workflow and function intercommunication affects directly its end-to-end perfomance.

In order to examine the impact of granularity on the workflow’s perfomance, we fir-
stly tested four levels of application granularity with the aid of the faas-flow framework
and secondly two levels of application granularity executed through our custom Python

runtime engine.

m Awtflopatkn Epyaoia

4.4 Impact of Granularity on the Workflow’s Perfomance

4.4.1 Faas-Flow Runtime Approach

As mentioned above, four versions of our application were developed, where each one
represents a different level of application granularity. Specifically, Versionl is the most
granular, Version2 is less granular than Versionl but more than Version3. Version4 is
essentially a monolith as it merges all Versionl’s functions in a single function named
monolith. In figure 4.8, the average execution latency of each version is displayed. All
versions are invoked with the same 10-minute long video and are requested to process
a different amount of frames each time. The input sizes are yet again 7, 16, 32 and 65
frames. It is obvious that the more coarse grained a workflow is, the faster it is been
executed. Indeed, in the largest input (65 frames) where the more deltas are observed,
Version4 is 30% faster than Versionl. Furthermore, it is quite interesting that Version2
is not faster than Versionl. It seems that making the branch desicion does not put any
signifcant overhead on the overall execution time. In the rest three cases, only Version4
looks to differentiate from the others and that is due to the fact that 7, 16 and 32 frames
are not too many for the more granular versions to lose much ground to the coarser

grained ones.

Granularity-based Workflow Execution - FaasFlow

>~ ——— s e . - —-- 7 frames
"“"—...__‘E 16 frames
60 - "~ —-= 32 frames
L
‘~., —= 65frames
\-"
.\"r
T ~
=] .
B S
E’, 50 ‘~.
w @
E
F
= 40
2
]
=
=]
@
s
Ll 30
o~ —— —————— —— .
Ih--"""'-.____'-‘-_
e
201 ® L -
—-—-— ———— T T e ==
! . . '
versionl version2 version3 version4

Granularity Levels

Yxnua 4.8: Versions’ average latency for 65 frames processed

4.4.2 Custom Runtime Approach

In a second phase of experiments, we used our tailor-made runtime for OpenFaas

functions in order to investigate furthermore the granularity’s effect on the execution of

Aitfouatxn Epyaoia m

Kepalaio 4. Motivational Analysis

the aforementioned machine learning workflow. We chose to compare the most granular
version with the monolithic one in order to test how great a factor faas-flow is on executing
the same application with a different granularity level. As clearly shown in 4.9, the deltas
between Versionl and Version4 are more significant in all input sizes. In particular, for the
65 frames input, the delta reach 46.5% whereas in the faas-flow case the corresponding
rate is 30%. Consequently, a certain conclusion could be drawn: independently of the
runtime engine, a workflow’s granularity would affect its execution time regardless of its
simplicity. Thus when deploying a serverless workflow on cloud premises, it is crucial to

handle this aspect carefully so at to offer the best possible QoS to the user.

: 799
80 - mmm Versionl

B Versiond

=] =l
(=] (=]
I I

%)
(=}
I

Execution time (sec)
w =Y
(=] [=]
1 1

B
(=]
I

10 A

16 32
Input size (# of frames)

Zxnua 4.9: Versionl and Version4 comparative executions at the w01 node.

4.5 Impact of Interference on the Workflow’s Perfomance

In this section, we evaluate the behaviour of Versionl variations and Version4 when
intereference is applied on the cluster nodes. It is useful to acquire knowledge of various
execution profiles under resource stressed conditions so as to offer the best possible
quality of performance. For example, getting to know if our application is "hungry" for
CPU resources, then deploying a monolithic version of it in a node that also lifts third
party workloads would be definitely an inefficient decision. In the first and second part,
using the faas-flow framework and the custom runtime we are targetting to investigate
the way a interferenced granular workflow version competes with a monolithic one. In the
third part, via the custom runtime, we further examine the sensitivity of the functions to
resource interference. Lastly, in the fourth part, we are conducting experiments through
our tailor-made runtime in order to check if scaling the Queue-Worker component of
OpenFaas accelerates the workflow execution and how this acceleration behaves under

inteference.

m Awtflopatkn Epyaoia

4.5 Impact of Interference on the Workflow’s Perfomance

4.5.1 Interference impact with FaasFlow

As described in section 4.1, with three different kinds of pressure, we could simulate
cluster interference. We created a YAML file for each possible pressure deployment,
e.g. cpuPressurel.yaml in order to apply CPU-pressure to the first node. Moreover, by
configuring each pod’s replicas we are able to scale up or down the desired pressure. The

aggregated results are shown in figures 4.10, 4.11

Functions Singlenode | Multinode 1a | Multinode 1b | Multinode 1c | Multinode 3 | Version4
Framer w01 w01 w01 w01 w01 w01
Facedetector w01 w02 w02 w01 w01 w01l
Faceanalyzer w01 w03 w02 w02 w01 w01l
Mobilenet w01 w01 w01 w02 w02 w01
Outputer w01 w02 w02 w02 w02 w01
Wrapper w01 w01 w01 w02 w02 w01

[Tivaxag 4.2: Configurations of functions placement

Average exec time (s)
Average exec time (s)

(a) Zero Interference (3) CPU Interference

Yxfpa 4.10: Versionl configurations and Version4(1)

Aitfouatxn Epyaoia m

Kepalaio 4. Motivational Analysis

Average exec time (s)
Average exec time (s)

5. frames

65_frames.

32_frames 52_frames
0-3Mem-0 " 0-0-3Cache

(a) Memory Interference (B) L3 cache Interference

Zxfpa 4.11: Versionl configurations and Version4(2)

We examined the results from various aspects. First of all, the input size seemed to
under-influence the configurations’ competition regarding the minimum time of execu-
tion. The intuition behind this is the fact that the long-lived function, the Framer, was
located at PM1 in all of the experiments. The virtual machine hosted at the PM1 server
is the best performing one among all. Besides that, moving the other functions that are
short-lived across the cluster did not make any particular difference in the configurations’

comparative latencies.

Furthermore, Version4 was at all times the faster configuration, which was utterly
anticipated as it generates the least amount of traffic and thus operates without the
functions’ intercommunication. When pressure was applied at specific nodes, Version4’s
gap to other configurations was smaller though, due to the fact that other configurations
had some of their functions deployed on non stressed nodes in comparison to Version4’s

single function (Monolith) that was placed in a highly intereferenced node.

Out of the three pressure scenarios, it was the L3 cache pressure the one that allocated
the largest amount of resources and therefore produced the greatest level of intereference.

In other words, workflow executions under 13-pressure lasted longer than the rest.

4.5.2 Interference impact with Custom Runtime

Moving on to a next series of experiments, we deployed Versionl (holistically) and
Version4 in a single node. More specifically, in the direction of acquiring a clear combi-
ned view of heterogeneity’s and interefence’s impact, for each cluster node (w01, w02,
w03, w04) we ran the same experiments with four discrete levels of CPU pressure:
0%, 10%, 50%, 80%. All information taken from this process is shown in figures 4.12,
4.13, 4.14, 4.15.

m Awtflopatkn Epyaoia

4.5 Impact of Interference

on the Workflow’s Perfomance

0% pressure

10% pressure

Execution time (sec)

Input size (# of frames)

50% pressure

= \ersionl

Execution time (sec)

84.51

Input size (# of frames)

80% pressure

Execution time (sec)

16
Input size (# of frames)

Execution time (sec)

2

16

32
Input size (# of frames)

Zxnpa 4.12: Versionl and Version4 comparative executions at the w01 node.

0% pressure

10% pressure

Execution time (sec)

16
Input size (# of frames)

50% pressure

. \ersionl

Execution time (sec)

2 16

32
Input size (# of frames)

80% pressure

65

Execution time (sec)

Input size (# of frames)

= Versionl

Execution time (sec)

16

128.33

32
Input size (# of frames)

Zxnua 4.13: Versionl and Version4 comparative executions at the w02 node.

AwmAouatxn Epyaoia

Kegpdldato 4. Motivational Analysis

0% pressure 10% pressure

= \ersionl
e Versiond

a
g

&

Execution time (sec)
Execution time (sec)

2 16
Input size (# of frames) Input size (# of frames)

50% pressure 80% pressure

= \ersionl
100 { == Versiond
120

100

®
g

a
8

Execution time (sec)
Execution time (sec)

16 32 16 32
Input size (# of frames) Input size (# of frames)

Zxnpa 4.14: Versionl and Version4 comparative executions at the w03 node.

0% pressure 10% pressure

1201 e version1 = \ersionl 12751
= Versiond

Execution time (sec)
Execution time (sec)

16 32 16 32
Input size (# of frames) Input size (# of frames)

50% pressure 80% pressure

160
= Versionl

= Versiond

Execution time (sec)
Execution time (sec)

32 16
Input size (# of frames) Input size (# of frames)

Zxnpa 4.15: Versionl and Version4 comparative executions at the w04 node.

Regarding the presence of iBench applications allocating the machines’ resources, we

draw the below conclusions:

m AinAouatxny Epyaoia

4.6 Impact of Heterogeneity on the Workflow’s Perfomance

e The greater the pressure from interference, the smaller the latency gap between

Versionl and Version4

e The delta between having 0% and 80% interference results in 33%, 33%, 30% and
47% total slowdown in an instance’s execution for wO1l, w02, w03 and w04 nodes

respectively

e The 10% and 50% levels of interference are nearly "absorved" by the wO1, w02 and
w03 nodes because they leave unallocated, in the worst case, half of the machine’s
cores that are enough for executing this specific workload with multithreading. The
50% level in the w04 node allocates two out of four cores, thus with two cores

available, multithreading could not be efficiently performed.

In order to characterize the sensitivity of the functions to resource interference, we
spawn different amount of cpu micro-benchmarks from the iBench suite, which increase
the computational load of the underlying VM. As depicted in figure 4.16, our pipeline pre-
sents great performance variability w.r.t. CPU interference, that reach up to 57.6% in the
Framer case and up to 47.2% worse performance compared to isolated execution. Moreo-
ver, the imposed degradation does not present a linear relationship with the interference
load, with CPU pressure levels below 50% imposing minimal performance degradation to
all the functions.

" 40
QE) N 15.40 15.76 17.82 EfeRele) 3.00 3.00 3.00 4.00 ’g
© L
5 A 15.76 16.12 17.65 EYAK: 5.33 5.40 5.50 9.00 GE’
o o
. c
8 S 16.46 16.56 18.36 YA 9.50 9.00 11.00 18.00 -f:’
O >
9 0
g e 17.90 18.01 20.12 RN 18.00 17.50 20.00 sfsHolo] 5
2
1 I
0% 25% 50% 75% 0% 25% 50% 75% CPU %
Framer function Models functions Pressure

Yxnpa 4.16: Impact of interference on serverless functions

4.6 Impact of Heterogeneity on the Workflow’s Perfomance

4.6.1 Faas-Flow Runtime Approach

For the shake of examining heterogeneity’s impact on the performance profile of our
workflow, we spreaded Versionl’s functions across the cluster and so five different con-
figurations of function placements were created which are shown in table 4.2. More
specifically, we measured the execution times of those configurations with three different
input sizes: 16, 32, 65 frames so as to obtain safer insights and check whether a cor-
relation between time and input size actually exists. The results are again presented in
figures 4.10 and 4.11.

Aitfouatxn Epyaoia

Kepalaio 4. Motivational Analysis

4.6.2 Custom Runtime approach

Regarding the presence of heterogeneous machines in a cluster, we shall look into
the way each one behaves before making deployment decisions that are willing to serve a
user’s request strictly. By examination of the figures 4.12, 4.13, 4.14 and 4.15 by looking

through the heterogeneity aspect, we conculde to the following:

e It is obvious from the figures that the wO1 node is the most dominant in terms of
perfomance regardless of the input size. w02 node comes second, while wO3 and

w04 nodes come third and fourth respectively.

e Ifwe focus on the largest input size (65 frames), we get to view that the delta between
Versionl and Version4 declines linearly with the machines’ "strength". On the w01
node, this delta peaks at 45% while it is up to 39%, 33%, 23% in the w02, w03, w04

nodes respectively (under no-interefence circumstances)

e This also happens more or less in all input sizes, but it is in the largest one that

peaks.

e All functions could be executed with multiple threads in a machine’s available cores.
This is the main reason that in the w04 node, which is employed only with four cores,
the execution times are even bigger than the rest as the workflow’s multithreaded

profile is not utilized enough.

Figure 4.17 shows the performance variation of the examined functions, w.r.t. hardw-
are heterogeneity. For the Framer function we find deltas with a maximum value of 23%
and a minimum of 10% performance variation in the 16-frames and 65-frames deploy-
ments respectively. Moreover, for the ML-models functions, the measured deltas have a
maximum value of 34% and a minimum of 5% variation respectively. Overall, we observe
that the impact of resource heterogeneity becomes more perceptible as the number of
frames increase, due to the accumulated computational burden to less powerful hardw-
are resources. Also, despite the variation in the available resources (vCPUs, memory) per
VM, w01 and w02 provide the overall best performance, due to the lack of vertical-scaling

mechanisms within the functions.

2]

GE" % 15.40 15.76 16.46 17.90 3.00 3.00 3.00 3.20 g
o)
‘g_ oA 18.71 18.87 20.27 24.35 5.33 6.00 7.00 7.00 GE)
c)
- c
8 o 24.71 25.66 26.23 28.59 9.50 9.00 13.00 14.00 -S
0 3
Q Q
§ @ -38.85 39.27 40.57 43.10 18.00 19.00 24.00 27.50 5
e

1 1 1 1
w0l w02 w03 w04 w0l w02 w03 w04
Framer function Models functions

Yxnua 4.17: Impact of heterogeneity on serverless_functions

Awtflopatkn Epyaoia

4.6 Impact of Heterogeneity on the Workflow’s Perfomance

4.6.3 Queue-Workers and Accelerated Execution

As described in 3.3.5, OpenFaas comes with the capability of handling asynchronous
invocations of serverless functions. By these means, a serverless function, i.e., a Docker
container, can process n requests at a time, where n is the number of queue-workers
deployed in the cluster. So, if the workflow is parallelizable a lot of time could be saved
by increasing the queue-workers’ replicas. Therefore, we inspected thoroughly the way
this component affects the execution time of our parallelizable workflow with regards to

different function placement configurations and input sizes.

Versionl latencies (sec) - frames: 16
Version1 latencies (sec) - frames: 7

dav-lio-coroni
dav-lio-coroni 25.98 21.98 20.98 20.68 20.7

dav-liono
dav-liono

o .

liono

Placement configuration
Placement configuration

liono

davinci 19.05 16. davinci

1 2 a 3 16 1 2 4 ? 16
Queue-workers # Queue-workers
(a) 7 frames () 16 frames

Yxfpa 4.18: Versionl: placement configurations and number of replicas

Versionl latencies (sec) - frames: 65

Versionl latencies (sec) - frames: 32
dav-lio-coroni 4
ARl 4937 © 3537 2987 2837 27.87

‘E dav-liono
c ’ . =
5 FEVRTE 47.28 | 33.95 B
s g
g =)
5 S
= £

g S coroni A 46.26 44.16

3 coroni =
z [
: :
E (v

g = liono
E licno - 27.05 e

davinci davinci A

1 2 4 [16 1 2 a ? 16
Queue-workers # Queue-wurkers
(a) 32 frames () 65 frames

Zxnpa 4.19: Versionl: placement configurations and number of replicas

As shown in figures 4.18 and 4.19, we conducted the same experiment with four
different input sizes: 7, 16, 32 and 65 frames. For each experiment, the functions were

placed in five distinct ways:

e davinci: all functions placed at the wO1 node

e liono: all functions placed at the w02 node

Aitfouatxn Epyaoia m

Kepadato 4. Motivational Analysis

e coroni: all functions placed at the w03 node
e davinci-liono: framer placed at the wO1 node, rest functions placed at w02

e davinci-liono-coroni: framer placed at the wO1l node, facedetector at the w02 node

and the rest functions at w03

Several conclusions were drawn after this series of evaluation. Firstly, the proportio-
nal performance acceleration achieved was minimum for the smaller-sized input cases.
This makes perfect sense when taking into account the fact that parallelizing a larger
instance creates more space for latency minimization. More specifically, a proportio-
nal improvement of 60% was the maximum accelaration (davinci placement along with
the 65 frames input), whereas the minimum one was observed was at the order of 20%
(davinci-liono-coroni placement along with the 7 frames input). Moreover, by employing
the queue-workers capability one can manage to shorten the latency gap between the
smallest and the largest input size execution instance. With a single queue-worker, this
gap could be up to 58 seconds while with 16 queue-workers deployed it is lessened down
to 15 seconds. Subsequently, it is a minimization of 74%.

An important aspect of this acceleration process should also be mentioned: A queue-
worker replica is deployed as a container in a Kubernetes cluster. This container allocates
a tiny amount of a node’s available RAM, most of the times not more that 10 MB. The fact
that RAM usage is not affected by scaling this component and one can achieve execution
accelaration without creating a resource contention problem makes this method extremely

valuable.

4.7 Discussion

As stated above, scheduling a serverless workflow dynamically over cloud infrastru-
cture is a complex task due to uncertainty and its probabilistic nature. The expected
performance might be affected by the application’s granularity, cluster’s inteference or
worker nodes’ heterogeneity. In order to tackle such a challenge, one needs to utilize
state of the art methods like deep reinforcement learning so as to bridge the gap between
static and dynamic scheduling. Deep reinforcement learning is powerful in solving big
data problems, where handling a great amount of data should be done under low latency
times. Other rule-based approaches fell short when followed for this kind of problems and
that is because of the inability a set of rules, generated by humans, present to fully cover
all possible scenarios of operation. Furthermore, designing logic-based rules for such a
problem demands a lot of time and effort of measurements that could be skipped if a deep
reinforcement learning approach is adopted. It is a common practice embracing machine
learning for reducing manual intervention for scheduling workloads of all types. [44] The
action-space and the state-space of this category of problems are not discrete and this is a

main concern while trying to solve problem instances and server user requests effectively.

m AinAeopatxny Epyaocia

Kegpalato E

Dynamic Scheduling of Serverless Functions

T his chapter includes our work on designing a dynamic scheduling framework for
managing video analytics pipelines in serverless infrastructures. The proposed
framework exploits low-level performance monitoring events to identify interference phe-
nomena on the underlying cluster and combines this information with user-defined QoS
requirements in order to regulate end-to-end latency of video analytics pipelines, through
horizontal-scaling and migration of the pipeline’s functions. Our solution manages to
successfully orchestrate the functions under different dynamic conditions, i.e., system-
pressure fluctuations and dynamically changing QoS criteria.

Specifically, we are interested in the following question: What is the "best" way of
serving a user request upon the deployed workflow so as to meet the user-defined QoS
while "sacrificing" minimum resources possible. Our intention of providing minimum
resources is primarily to help the underlying system become highly respondent to heavy
load and secondly to create more serving "space" for future high-demanding requests.

In Section 5.1, the design principles of the DRL-based scheduler are presented, while
in Section 5.2 a detailed analysis on the framework’s architecture and specifications is

provided.

5.1 Design Principles

The DRL-based dynamic scheduler is designed using the following design principles:

e Appriori knowledge of an application’s execution profile is not required. This means
no offline time needs to be spent in order to profile the application that is going to
be scheduled. This is a real world scenario for unknown applications that happen
to be deployed on cloud premises because this kind of information could not be

obtained.

e Scheduling decisions of the DRL scheduler are granular and based on the underlying
infrastructure. The deep network needs to be aware of the nodes that serve the

cluster upon which it operates.

e When the cluster’s state changes, the DRL scheduler in short time is able to reeva-
luate and place the functions accordingly in order to achieve the user-defined QoS,

if possible.

Aitfouatxn Epyaoia m

Kepadawo 5. Dynamic Scheduling of Serverless Functions

5.2 Architecture and Specifications
The DRL scheduler is depicted in figure 5.1 and it consists of:

e System Monitor which monitors and collects metrics that are going to represent the
current system’s state. The current system state is fed into the DRL-based agent as

input for further processing.

e DRI-based Agent, which reads the system metrics and calculates an action to be

performed regarding the user-defined QoS.

e Runtime Engine, that given the functions’ placement is responsible for executing
the workflow independently of the location of any function. During the training
phase, the measured time of executing a single workflow instance is passed to the
DRL-based agent in order to calculate its reward upon the decision it made in the

previous step.

e Function Mapper, that executes the DRL-based agent’s action and maps a function

to a specific node.

: QoS achieved with proposed topology I— :
: DRL-based agent :
: New Topology :
' Deep 5 !
|| Reinforcement Actions E .
' Learning 7} '
wn ! = 1
g § :
‘©—p/ State Representation _/ 1
o 1
3 ! A A !
1 Current Topology 1
1 — - 1
oce
: (ee)(oP] :
1 System Monltor]
1 1
. Nodes' Monitoring Pipeline's Monitoring 1 ,
! Information Aggregation Information Aggregation !
1 1
' A A '
1 1

IPC
Mem.Reads
Mem.Writes

Zxnpa 5.1: DRL Scheduler Framework Overview

5.2.1 System Monitor

The System monitor is responsible for gathering the required data for system-related
state representation, i.e., low-level performance hardware events. It aggregates system-,
socket-, and core-level information from distributed PCM monitoring agents (MA). All me-
trics extracted by the MAs are improted to an InfluxDB [45] instance where they are stored
in a 500ms interval, in batch mode for increased throughput on a time-series database.

A GoLang script, afterwards, retrieves the stored metrics and serves them to the System

m AinAeopatxny Epyaocia

5.2 Architecture and Specifications

Monitor. For the rest of this paper, we employ the following five performance counters:
Instructions Per Cycle (IPC) which is an approximate indicator of the performance of the
processor and gives insight information of the performance of the deployed functions.
Memory Reads/Writes that depict the access patters from/to the DRAM memory, which
is considered a major bottleneck in modern server systems. The amount of memory reads
and writes performed in a time period could be a highly accurate indicator of a system’s
load. L3 Cache Misses lead to increased memory reads/writes, thus it is critically repre-
sentative of performance. C-States (CO, C1): For energy saving reasons during CPU’s idle
state, the CPU could be forced to enter a low-power mode. Each core has three scaled idle
states: CO, C1 and C6. CO is the normal CPU operating mode, where the CPU is 100%
active. The higher the C index is, the less activated is the CPU, which differentiates the

utilization ratio A concrete overview of the system monitor is offered in figure 5.2.

System Monitor

A Exec lantecy

U »| Golang Script
§

Docker pcm agents T

Acknowledgements

State—>

0

xnua 5.2: Architectural Overview of the System Monitor

5.2.2 DRL-based Agent

The Deep-Q-Network is a reinforcement learning agent that tries to learn the "optimal"
decisions based on a given reward function by interacting with the environment. The agent
utilizes the exploration-exploitation dilemma during its training, where not only it needs
to exploit the "best" solution found so far but also to explore other solutions that may or
may not perform better than the current "best". The probability of chosing not the current
"best" solution so far is captured with epsilon €. But in this particular setup where the
action space is relatively large and complex we use an ¢ that decays over time. Specifically,
€ starts with exploration-initial-eps and ends up with the value of exploration-final-eps
where exploration-initial-eps > exploration-final-eps so as to have a more exploratory start
in order to explore thoroughly the action space and later conclude with a more exploitable
policy for the "best" found solutions. During training, the agent collects all state data
and performs an action which could be generated either deterministically or randomly.
Depending on the action’s result, the agent receives a reward or a penalty. Essentially,
the dynamic scheduler transforms the problem into a Markov decision problem that is
solved by a Deep-Q-Network.

The Deep-Q-Network agent is implemented using Stable Baselines 3 [46] while the
application’s environment is implemented by the OpenAl Gym which is a standard API
for reinforcement learning environments [47]. We used OpenAl Gym'’s API to build a

custom environment for our needs. The custom environment encapsulates and wraps

Aitfouatxn Epyaoia m

Kepadawo 5. Dynamic Scheduling of Serverless Functions

up all the underlying processes of training such as monitoring, rewarding, executing and

normalizing.

128 neurons —Action—»

State 64 neurons

256 neurons

Y

v

Zxnpa 5.3: Overview of the DRL-based agent

Reward Function

When attempting to solve a deep reinforcement learning problem, the key to be con-
sidered is the reward function which determines whether the agent receives an either
positive or negative reward for the action it just performed. Identifying a convenient re-
ward function is not an straightforward task and needs excellent understanding of the
problem one tries to solve and all of its aspects. The reward function we decided to employ

was the result of a series of experimentations that led to the below result:

Rewara = |5 * P HEXF i las L (5.1)
max(—koy, —kz — %), otherwise

The reward function is described in equation 5.1. The incentive behind its constru-
ction is the regulation of the execution latency by not violating the latency threshold L,
while attempting to minimize the number of utilized servers sp(maximum of N), and the
replica count r (maximum of Rs), parameters that depict the cost of resource reservations.
K1, k2, k3 are parameters that can be tuned accordingly, depending to the strictness of
the violation penalty (Lg > Ly).

Firstly, if the QoS is not achieved and therefore the ratio of latency to the QoS is greater
than 1, the agent should be definitely penalised in order to force it set a top level priority
for not violating the desired QoS. For the shake of bounding the value of the negative
reward, we cap it by the number k. This value was found empirically after trying lots of
numbers in the range of (-50, -1). More specifically, when capping with a relative large
numbers like -50, we got to view that the agent finds it difficult to explore enough the
action space in the earlier training stages. So, the balance was found in the value of -6
for the purposes of this thesis. Secondly, if the ratio of % is less or equal than 1, the

desired QoS has been met and consequently the agent should be given a positive reward.

m AinAeopatxny Epyaocia

5.2 Architecture and Specifications

Op gnFo;&s‘ saax‘te_wo;y

Rurtime Engine @
Reau <t Measured Lotency

Zxnpa 5.4: Overview of the Runtime Engine

But it is wise offering the agent a greater reward if its decision requires less resources or
presents more utilization when already having accomplished the desired QoS. In detail,

three terms are included to the positive reward case:

5.2.3 Runtime Engine

The Runtime Engine component used here is the one that is previously described in

4.2.4. An overview is provided for a more concrete representation.

5.2.4 Function Mapper

The Function Mapper component is responsible for deploying the function in the
determined by the DQN agent node of the cluster. It is written in python and uses
the subprocesses module to interact with kubectl in order to apply the corresponding

node affinity for the function’s container.

5.2.5 Technical Implementation
Critical Measurements

As mentioned above, a wide variety of measurements are happening under the hood.
For the end-to-end latency of the workflow instance execution we use the result provided
from the runtime engine 4.2.4. The end-to-end latency has a max of 400ms deviation of
the actual number because of the polling process it operates on. Furthermore, the system

monitor 5.2.1 gathers PCM metrics that are used for the system’s state representation.

Aitfouatxn Epyaoia m

Kepdldawo 5. Dynamic Scheduling of Serverless Functions

Plocement request

Yxnua 5.5: Overview of the Function Mapper

Neural Network Parameters

The neural network parameters were tuned through an experimental analysis of the
this task by training enough agents that converge to the most valuable end result. We
set the minibatch size to 32, meaning that a gradient update happens just after a batch
of 32 inputs. Adam is used as the optimizer configured with a learning rate of 0.0025,
while gamma (discount factor) is set to 0.99. The target network is updated every 60
training steps in order to mitigate the unstable learning problem. For the exploration-
exploitation matter, the initial value of e is set to 1 and over time it decays to the final
value of 0.01. The exploration fraction used for this decay is set to 0.2 and it indicates the
training period over which the exploration rate is reduced. For the deep neural network,
three hidden layers are used with 256, 128, 64 nodes accordingly. ReLU is used for
the neurons activation. Finally, in order to simulate the agent’s experience at a certain

moment we use a buffer with a size of 10°.

OpenAl Gym Environment

By making use of the OpenAl Gym API, we create a custom python class that inherits
the base Gym Environment class. This approach was selected because the base class
is quite modular and one can extend it accordingly to the desired problem needs by
overriding the constructor, reset and step methods.

Starting from the constructor, we have to define all class variables needed for our
environment to operate such as self.spread, self.replicas, self.actionTexts, self.state. Mo-
reover, we have to configure variables that are provided from the base class such as
self.actionspace, self.observationspace. Self.actionspace is set to gym.spaces.Discrete(12)
as the total actions available for the agent are 12, whereas self.observationspace is set
to gym.spaces.Box(low=0, high=20, shape=(35,), dtype=np.float64) as the state vector
comprises 35 floats in the range of 0-20.

The step function encapsulates the transition of the system from one state to another.
In our case, the step function requests from the system monitor the current state metrics,
passes the action to be performed to the function mapper and afterwards through the

runtime engine executes the workflow instance and collects its end-to-end latency. Later,

m Awtflopatkn Epyaoia

5.2 Architecture and Specifications

after an 8.5 seconds period, it collects again the system metrics, calculates the reward to
be given and transmits the agent to the next state. In the mean time, loggers inside the
step function store all information needed for future evaluation of the training phase.
With the reset function, we force the agent’s state back to its initial configuration
where we need to reset all the state-based variables in our custom environment.
After initializing both the custom environment and the agent(deep neural network),
we inject the agent into the environment and trigger the learning process. We chose the

location of all functions at start to be on the davinci node.

Aitfouatxn Epyaoia

Kegpalato E

Experimental Evaluation

In this chapter, we evaluate the results of our proposed framework in various scenarios.
In Section 6.1, the conditions under which we conducted our experiments are analy-
zed, as well as the evaluation criteria we set for this venture. In Section 6.2, we introduce
the four DRL-based schedulers we designed in order to examine our scheduling framew-
ork from various angles, while in Section 6.3 we are presenting a performance evaluation
of the four distinct DRL-based schedulers. A comparative evaluation of all schedulers is

provided in Section 6.4.

6.1 Experimental Conditions

A lot of conversation has beed made regarding the early stage this domain finds itself.
First of all, we deploy each DRL-based scheduler to the master node of our Kubernetes
cluster so as not to add noise and overload the rest worker machines. Each scheduler
shares the same responsibility with others: migrating OpenFaas functions from one w-
orker node to another, if necessary, in order to serve a user-defined QoS. We chose two
distinct values of QoS to be served, 35 and 26. The certain selection derives from offline
profiling of the workflow we are executing. In fact, we would like to examine whether
our schedulers could manage converging or not and at what speed, in those topology
configurations after appropriate training.

For making the schedulers’ task more complex, we are demanding both QoSs to be
served under conditions of with and without interference. For generating interference,
we used the CPU pressure iBench described in Section 4.3. We simulated four levels
of CPU pressure: 0%, 25%, 50%, 75%. If the CPU inteference ratio is equal to x, it
means that x% of the node’s total cores are unavailable due to resource contention with
"third-party" generated workloads. Due to the fact that our machines are heterogeneous
and have different number of cores, a 50% in the davinci node (wO1l) means "4 cores
occupied”, while a 50% in the coroni node (WO3) essentially means "8 cores occupied".
Nodes’ specifications are analyzed in depth here.

What is expected from the schedulers is to be adaptable to QoS changes or sudden
interference. If this is achieved, we pave the path for more elaborate solutions in the

future for handling even more complex usage scenarions.

Aitfouatxn Epyaoia m

Kepadao 6. Experimental Evaluation

6.1.1 Training events

With a more granular view on the conducted experiments, the scenario we simulated

during training is the following:

QoS = { 35seconds, if O < trainingsteps < 300 } 6.1)
26seconds, if 300 < trainingsteps < 500
25%PM1, 50%PM4, if O < trainingsteps < 100
50%PM1, 25%PM4, if 100 < trainingsteps < 200
CPUpressure = 50%PM2,25%PM3, if 200 < trainingsteps < 300 (6.2)
0%, if 300 < trainingsteps < 400
50%PM1, 25%PM2,75%PM3 if 400 < trainingsteps < 500

6.1.2 Inference Events

With a more granular view on the conducted experiments, the scenario we simulated

during infrence is a minature of the training one and is as following:

35seconds, if O < trainingsteps < 150
QoS = (6.3)
26seconds, if 150 < trainingsteps < 250
25%PM 1, 50%PM4, if O < trainingsteps < 50
50%PM1, 25%PM4, if 50 < trainingsteps < 100
CPUpressure = ¢ 50%PM2,25%PM3, if 100 < trainingsteps < 150 (6.4)
0%, if 150 < trainingsteps < 200
50%PM1,25%PM2, 75%PM3 if 200 < trainingsteps < 250

6.2 Examined Schedulers

We examine four different schedulers as part of the Mapper component (Mapper, so
as to determine the inter-relationship between the DRL-agent’s proposed actions and the
employed scheduling mechanism. With this approach, we aim to quantify the impa-
ct of i) the scheduling granularity when migrating functions and ii) heterogeneity- and
interference-awareness with our proposed framework. Specifically, we developed four
distinct schedulers, all differing in their actionspace, i.e., Fullmap-based, Custom- ba-
sed, Kubernetes-based, Oracle-based. The former two decide both the migration and the
destination of a function, while the latter two decide just whether a function should be
migrated or not and a third-party scheduler, Kubernetes and Oracle respectively, locates
the migrating function to a node, with its own policy. The Oracle-based scheduler levera-
ges offline profiling information of the performance of deployed functions and decides the

optimal scheduling policy accordingly.

m AinAeopatxny Epyaocia

6.2 Examined Schedulers

6.2.1 Fullmap-guided DRL-based Scheduler

The fullmap-guided DRL-based scheduler is a specific solution regarding the underl-
ying infrastructure. Specifically, the agent has an actionspace of size 15 which includes
twelve actions that place each available function to the all available nodes, two actions
that scale up and down the faceanalyzer and mobilenet functions and a action for remai-

ning in the same state.

6.2.2 Custom-guided DRL-based Scheduler

The custom-guided DRL-based scheduler is a tailor-made solution based on evidence
of repeative training of various agents. Specifically, the agent has an actionspace of size
12 which includes eight actions that place the framer and facedetector functions to all
nodes available, one action that moves the faceanalyzer and the mobilenet functions to
the node with the minimum CO score, two actions that scale up and down the faceanalyzer
and mobilenet functions and one more function for preserving the current state. The CO
score, essentially, is obtained from the PCM metrics and is metric that tells how active
the cores of this particular machine are at the specific moment. More details are offered

here.

ﬁ Imap, custom schedulers

DRL-agent

b

. Mapper

PRV)/

KN

Zxnpa 6.1: Fullmap-, Custom-based schedulers overview

6.2.3 Kubernetes-guided DRL-based Scheduler

The kubernetes-guided DRL-based scheduler, as the name states, is an approach
where functions’ migration is also depending to the k8s scheduler. More precisely, this
scheduler has an actionspace of size 4, which includes a function for moving the framer
function, one for moving the facedetector, one for faceanalyzer and mobilenet functions
and lastly one action for preserving the current state. The new location of the moved
function is determined from the k8s scheduler and not by the agent. For example, if the
agent’s action is "Move facedetector”, then facedetector would be moved and placed to

some node that k8s scheduler has decided upon its own logic.

Aitfouatxn Epyaoia m

Kepadao 6. Experimental Evaluation

Kubernetes scheduler \

-

[DRL-agent

Actions
\aa

Magger
4.

N

\ 7 VE

Yxnpa 6.2: Kubernetes scheduler overview

6.2.4 Oracle-guided DRL-based Scheduler

Last, but not least, we developed an oracle-guided DRL-based scheduler. An oracle
observation (the information that is invisible during online decision making, but is avai-
lable during offline training) is a way to facilitate learning and this is what we leveraged
in this final scheduler. Offline, in the early stages of this thesis, we performed a multi-
variational profiling on our workflow. With the oracle-guided scheduler, we utilized the
offline knowledge of execution profiles under mixed interference conditions in order to
place the candidate function to the best node possible depending on oracle observations
we have got in our property. Thus, the agent would be responsible of indicating the fu-
nction that has to be migrated to another node, and if so, oracle is telling the destination
node of this migration. This scheduler has an actionspace of size 4, which includes a
function for moving the framer function, one for moving the facedetector, one for the fa-
ceanalyzer and mobilenet and lastly one for preserving the current state and therefore

make no migrations.

6.3 Performance Evaluation of DRL-based Schedulers

In this section, a performance evaluation under training for each DRL-based scheduler
is offered as we get to view how much close the models succeed to be regarding the goals we
have set before. All schedulers have the same DQN architecture described in Section 5.2
but differ on the agents’ actionspace and the ways those actions are actually performed.

These deltas are to be examined in the following subsections.

Training of Fullmap-based

We trained the fullmap scheduler for 500 steps and the results are depicted in figu-
re 6.4. As we can see in the first plot, the average reward the agent gets is not that stable

and thus stability concerns are raised for this component. In the second plot, whereas

m AinAeopatxny Epyaocia

6.3 Performance Evaluation of DRL-based Schedulers

ﬁacle scheduler \

{ DRL-agent J

Actions

—

v
L

Ixnpa 6.3: Oracle scheduler overview

J

the QoS quotient is plotted, we can see that the model occasionally exceeds the value of
1, meaning that it violates the desired QoS. But generally, a mild convergence is obtained
on most of the time. Regarding the reward plots, it is evident that the scheduler manages
a lot of times to achieve its goal and thus the positive rewards outbalance the negative
ones, but not by far. At the time of the 400th training step, in particular, it seems that
the agent found it really difficult to find a solution to the interference applied at that stage

while the desired QoS was at its "stricter" form at the value of 26.

Training of Custom-based

We trained the custom scheduler for 500 steps and the results are deplicted in figu-
re 6.5. In the first plot we can see a nearly balanced earning of average reward (average
on 5 steps), even though at times it seems unstable and prone to deep and high peaks.
In the second plot, we are having a converged plot of the QoS quotient that indicates the
agent’s ability to achieve the desired QoS without overperforming and overutilizing the
underlying resources. In the following plots, the accumulative reward and the number of
successful servings and violations are provided. Especially in the 300th step, the agent
finds it difficult to adjust to a stricter QoS but eventually it manages to serve it with great

SUCCESS.

Training of Kubernetes-based

The kubernetes-guided scheduler was also trained for 500 steps and the results of
its training are shown in figure 6.6. In the first plot, we get to view a good start but in
the future it fails to get positive average rewards. The same thing is also present in the
second plot, where stability is not found enough. From the rest plots, it is evident that
this scheduler was quite sensitive and adaptable in the first half of training but failed
drastically to adjust when a different QoS was requested in the second half and especially
after the 300th training step.

Aitfouatxn Epyaoia m

Kegpdldato 6. Experimental Evaluation

Training of Fullmap

Average reward taken (Average per 5 training steps) Time Input 1 Accumulative reward
2.00
1750 4
* r
175
6 - 1500 4
1.50 4 g
=
1250 4
44 [
S F1 1000 4
) 3
g ol § 100+ 5 750
2 - =
24 075 4 5 500 -
<
4 050 250 4
61 T T T T T T T 0254 T T T T T T 1 T T T T T T
0 25 50 75 100 125 150 0 100 200 300 400 500 0 100 200 300 400 500
Training steps Training steps
Positive-Negative reward Action Input 1 Reward Input 1
3501 — positive rewards 14
—— negative rewards 84 al™
300 4 124
6
250 4 104
£ 1
,, 200 2 54
S 150 4 s 6|
¥ 0
2
100 44 24
50 4 2 4 u
0 0 64
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Training Steps Training steps Training steps
' P .
Yxnua 6.4: Training plots of fullmap-guided DRL-based Scheduler
Average reward taken (Average per 5 training steps) Time Input 1 Accumulative reward
10 1
] 1200 4
s 14
°
] £ 1000
6 12]
3
B x =
44 =]
2 Ed 800
g = 10
L 24 >
= g 600 4
© £]
z 0 © 0.8 ©
€ 400
o
24 2
0.6 2004
4
0.4 0
=61+ u T u T T T T T T T T T T T T T T
o 25 50 75 100 125 150 0 100 200 300 400 0 100 200 300 400 500
Training steps Training steps
Positive-Negative reward Action Input 1 Reward Input 1
10 4
300 4 _— pDS\tIYE rewards
—— negative rewards 104
8
2501
84 5
200 1 5 a4
2 S 6
H i o 24
3150 z
< a4 o4
100
24
50 21
4|
o1 T T T T T T °1 T T T T T T —6 T T T T T T
[100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Training Steps Training steps Training steps

Zxfpa 6.5: Training plots of custom-guided DRL-based Scheduler

m Awtflopatkn Epyaoia

6.4 Comparative Evaluation of Schedulers during Training

Training of Kubernetes

Average reward taken (Average per 5 training steps) Time Input 1 Accumulative reward
104 1.4 2500

s | 13
2000
61 12

15001

I
=

1000 4

Average reward
~
=
o

latency / TMAX
=
o
Agent accumalative reward

o
o

500 4

e
<

o
o
o

100 200 300 400 500 0 100 200 300 400 500
Training steps Training steps
Positive-Negative reward Action Input 1 Reward Input 1

300] — Positive rewards 3.0 10

&

250 2.5
61

200 2.0
4
150 4 -5 2
100 4 04 o
2

50 4 .5 1
Y

04]

[100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
Training Steps Training steps Training steps

oA

0 25 50 75 100 125 150

Count

Action chosen
= -
o o

o
G

o
o

oA

Zxnpa 6.6: Training plots of kubernetes-guided DRL-based Scheduler

Training of Oracle-based

The oracle-guided scheduler was trained for 500 steps and the results are shown in
figure 6.7. By keeping the same simulation scenarios with the above mentioned schedu-
lers, the scheduler achieved relatively fast a high quality adaptability. Its behaviour is
quite converging as we can see in the second plot, where at all times the scheduler has
made correct decisions that often nearly touch the best possible value of the QoS quotient
which is one. One is an upper limit for serving the user-defined QoS, a value greater than

one results in a violation.

6.4 Comparative Evaluation of Schedulers during Training

In this section, we are presenting a comparative evaluation of the four DRL-based
schedulers we developed. The comparison will be made in terms of QoS quotient, Cumu-
lative Reward, QoS violation ratio, required time for convergence and scalability. First, we
examine the ability of the DRL-agent to learn the appropriate actions to effectively adapt
to dynamic interference conditions and QoS requirements during training. For the first
300 training steps, as mentioned above we set a loose QoS value of 35 seconds while and
for the rest 200, a stricter QoS of 26 seconds.

6.4.1 QoS Quotient

The QoS quotient, which is the quotient of the execution latency achieved divided by

the target, user-defined latency requirement. A quotient less than or equal to one, implies

Aitfouatxn Epyaoia m

Kepadao 6. Experimental Evaluation

Training of Oracle

Average reward taken (Average per 5 training steps) Time Input 1 Accumulative reward
10 4 18 4000 {

84 ’J 3500

64

w
S
3
bS]

2500 1

2000

1500 4

Average reward
~
latency / TMAX
—
o
Agent accumalative reward

1000

500 4

0.6 0
o 25 50 75 100 125 150 0 100 200 300 400 500 0 100 200 300 400 500
Training steps Training steps
Positive-Negative reward Action Input 1 Reward Input 1
—— positive rewards 3.0 4 10
—— negative rewards
400 g
2.5
6
300 2.0
5 44
]
€ 2
H S1s 2
U 200 s
g
o4
<10 -nd
100 4 2
05
4]
0 0.0 4 6
[100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Training Steps Training steps Training steps

Yxnpa 6.7: Training plots of oracle-guided DRL-based Scheduler

a successful QoS serving while a quotient greater that one suggests a QoS violation.
Furthermore, the closer to one a successful QoS serving is, the more regulated the end-to-
end execution latency is considered, i.e., the Qo0S¢qrger is achieved without over-allocating
resources and thus utilization optimization is fulfilled. As depicted in figure 6.8, despite
the Oracle-based, the Custom-based approach also presents valuable stability regarding
the changes in resource stress levels and the change to a stricter QoS. It manages to
adapt relatively fast while remaining close to the value of 1. A similar but less stable and
less closer-to-1 behaviour is introduced by the Fullmap-based scheduler which might was
affected by a larger actionspace comparatively to the Custom-based. Last, the Kubernetes-
based approach even though at first seems to be expectantly adaptive, during the strict
QoS period due to its heterogeneity-, interference-unawareness fails to adjust its decisions

to the occurring conditions.

m Awtflopatkn Epyaoia

6.4 Comparative Evaluation of Schedulers during Training

|- Fullmap I Custom Scheduler [Kubernetes [Oracle |

2.00
DoS = 35s

1.75
el
S 1501 f
- A
© 1.251 ' !
3 (Y,
© 1.00 1 R
n F il | g
0 0.75 ‘hf
(o4

0.50 - g

0.25 . | .

0 200 300 400 500

Training Steps
(@)

Zxnpa 6.8: QoS quotient over training

6.4.2 Cumulative Reward

The reward achieved per scheduler reveals its effectiveness identify a more efficient
function topology in terms of resource utilization, since our proposed reward function is
designed to maximize the reward w.r.t. resource efficiency. Figure 6.9 shows the received
rewards per agent over time. Again, as expected, the Oracle-based approach is the most
dominant. The Fullmap-based scheduler seems to secure a greater amount of reward
than the Custom-based but the Custom-based approach presents a steeper slope at the
latest stages of training which hints a better knowledge of the given task that leads to
better results in the future. Finally, the Kubernetes-based scheduler as highlighted above
because of its inability to adjust to the QoS change, it failed to receive positive rewards in

the second half of the training period.

|- Fullmap [Custom Scheduler [Kubernetes [Oracle |

4000
QoS = 35s QoS = 26s

3000 -

2000 - /

1000 A

Cumalative Reward

0 100 200 300 400 500
Training Steps
(@)

Yxnua 6.9: Cumulative reward over training

AwmAopatxn Epyaoia 107

Kepadao 6. Experimental Evaluation

6.4.3 QoS Violation Ratio

Figure 6.10 shows the successful QoS servings and QoS violations per scheduler.
Fullmap-based and Custom-based prove the ability of DRL to tackle the dynamic schedu-
ling problem, since QoS successful servings outnumber the QoS violations. The Oracle-
based agent with great ease serves most of the requests, sealing the ability of DRL to
collaborate with oracle observations, showing the criticality of a highly-efficient schedu-
ler. Last, but not least, the Kubernetes-based scheduler, as mentioned above, seems to

be the last performer among all approaches.

|- Fullmap I Custom Scheduler [Kubernetes [] Oracle |

200 QoS = 35s QoS = 265

400 { = Servings :
== Violations :
1
'E 300 -
= 1
(]
O 200 A ""'--":2:
A A ! ,A’ ‘*
-
Aﬂ--"\"=.=‘=_-:‘1/:"__+” T
0 100 200 300 400 500

Training Steps
(a)

Zxnpa 6.10: QoS violations over training

6.4.4 Time Required for Convergence

In terms of training cycles needed for convergence, the oracle-guided scheduler is
again the winner for the same reason as hinted above. Despite that, the custom-guided
scheduler manages to learn faster the application’s profile and migrate the key functions
on the right nodes with higher stability. The fullmap-guided scheduler’s training is closely
related to the custom-guided as we could easily detect by observing figures 6.4 and 6.5.
For the kubernetes-guided approach, convergence is not achieved enough as we can see

in the second plot of figure 6.6 a lot of spikes, which are clear signs of instability.

6.4.5 Scalability

The scalability issue is of great importance and should always be adressed in order
to be aware of the migration overhead needed before making the scheduler available to
a different infrastructure or a different application. The fullmap-guided and the custom-
guided schedulers have an action space that is specific to the deployed application and
thus are not plug and play solutions to a workflow-agnostic environment. Moreover,
their actions are dependent to the underlying infrastructure as well, making it a little
bit laborious when redeploying them to a different topology. As a result, if one wants to
serve a different workflow on a different topology, an offline migration of the actionspace

is always needed. The kubernetes-guided scheduler is infrastructure-agnostic and could

m Awtflopatkn Epyaoia

6.5 Evaluation Summary

be plugged to any cluster that is managed by kubernetes. The "kubernetes DNA' of this
scheduler makes it the most scalable of all. Furthermore, its action space is less related
to the deployed application than the first two schedulers, so less migration is needed for
a different application. Lastly, the oracle-guided one is not fully bound to the underlying
infrastructure and no needs offline migration if deployed to a different cluster. Although,
this solution demands offline application profiling before any training would be performed

and consequently more latency is added to the overall migration.

6.4.6 DRL-based vs native Kubernetes Scheduling

Last we compare our DRL-agent with a naive orchestration approach, where contai-
ners are orchestrated solely by Kubernetes, without any interaction with the DRL compo-
nent. We deploy the video pipeline as separate containers sequentially, with one replica
per container and we run 500 iterations of the workflow with different QoS constraints
and resource interference. For the loose QoS constraint, Kubernetes manages to satisfy
the target QoS only 34% of the times, whereas for strict QoS, it fails to satisfy the con-
straint 100% of the times. In contrast, the DRL achieves the target almost 95% of the

times for loose and 75% for strict QoS on average respectively.

6.5 Evaluation Summary

As shown previously, the final reward calimed by the DRL-agent highly depends on
the integrated scheduling logic. So a question that arises is: "Does the DRL-agent alter
its decision based on the integrated scheduler?” To evaluate the "intelligence" of the DRL
for different schedulers we freeze the parameters of the DQN, and examine the action
space per scheduler during deployment. We explore different phases, where each one is
characterized by different interference and QoS levels. Figure 6.11 shows the respective
results, where the top figure reveals the interference pressure per VM and the middle and
bottom ones the QoS Quotient and the actions made per scheduler respectively. This
figure reveals three major insights: i) The first phase is characterized by high diversity
in the action space, since none of the schedulers is able to satisfy the target QoS. ii) In
the second phase, the Oracle-based agent is the only capable of meeting the target QoS.
Compared to the rest of the schedulers that mostly migrate the Framer function, the
Oracle-agent satisfies the QoS by migrating the Face-Detector, even though the Framer
accounts for the greater part of the workflow’s latency (Sections 4.5, 4.6) iii) Last, even
in cases with minimal interference (Phase 4) or with similar decision patterns with the
Oracle (Phase 5), the Kubernetes-based agent is unable to satisfy the target QoS, due to
its unawareness both regarding the interference of the underlying infrastructure and the
functions’ performance variability due to heterogeneity.

We propose a DRL-based scheduler for dynamic function scaling and scheduling of
serverless video analytics. Our solution exploits low-level system monitoring as part of the
RL state representation and can be implemented using a variety of schedulers. It adapts

to resource pressure fluctuations and achieves up to 91.6% compliance to changing QoS

Aitfouatxn Epyaoia m

KepdAaiwo 6. Experimental Evaluation

0 20 40 60 80
1 1 1 1 |
-
- wor NI i
< wo2 - 1 I
T
IR |11 |
I -1
1.4
- Y
€12 ;
.§ 1.0 ; S
54 ' o a4t !
9 0.8 232 ‘
o PO o WLy LB '
0.6 —@— Fullmap —& Custom --¥-- Kubernetes -f#~ Oracle
1 1 1
T T T T

custom | [LI 11) I [l LR
Fulimap -+ |] 71 Ir: [' L W

1 1

1 1

' l

Kubernetes - | ||I | IJ 1 III 1
oracte = [LN TR 0 I iR

50 100 0

1 1
0 150 200 250
Timestamp

I No Action [Migrate Framer [__] Migrate Face Detector
[Migrate Face Analyzer [Scale-up FA [] Scale-down FA

Yxnua 6.11: Interference level, QoS Quotient and decision making of the DRL-agent under
different scheduling policies

targets.

m Awtflopatkn Epyaoia

Ke¢palairo

Conslusion and Future Work

7.1 Summary

In this thesis, we discussed the needs that led to the full leverage of cloud computing
and the ways serverless furthermore contributes to a wide spectrum of domains. Mo-
reover, we presented some obstacles to be overcome in order to make the most of this
promising cloud computing paradigm, since there exist a lot of tradeoff surfaces that
should be taken into consideration before utilizing it.

Additonally, we analyzed and presented a set of factors that are able to undermine the
performance of a serverless video analytics application and create an important perfor-
mance variance when deployed on a cloud environment. More specifically, application’s
granularity, resource level interference from third-party workloads hosted on the same
premises and worker nodes’ heterogeneity could have a large impact on the important
metrics such as end-to-end latency, billing and resource utilization.

Lastly, we design and propose a dynamic scheduling framework based on Deep Rein-
forcement Learning that aims to orchestrate the migration and scaling of functions re-
garding the dynamic state of the system and varying user requests. We proved that a
DRL-based agent is able to learn, adapt and schedule serverless functions effectively w-
hile meeting the end-user time contraints 91.6% of requests on average during resource

pressure fluctuations.

7.2 Future Work

Investigations, analysis and approaches described in this thesis are a first step to-
wards identifying how Deep Reinforcement Learning can tackle the serverless function
scheduling problem when granularity, heterogeneity and interference matters kick in a
cloud environment. In the following subsections, we provide two suggestions for future

work.

7.2.1 Identification of Doable User Requests

Our current approach tries to serve a user request regarding a user-defined upper

time limit. It is often the case though, that an upper limit could not be served sufficiently

Aitfouatxn Epyaoia m

KepdAawo 7. Conslusion and Future Work

regardless the decisions made by a scheduler. In this scenario, we propose the develop-
ment of a tool that classifies a user-defined upper time limit either as doable or not. So,
unsavory attempts to serve an un-doable request can be skipped, something that may

lead to faster training and convergence for the DRL agent.

7.2.2 Framework Expansion towards Application Agnosticism

Our proposed DRL-based framework is designed to solve the scheduling problem for
the video-analytics pipeline described in the relative sections. A quite impactful approach
would be to generalize the solution for serving all kinds of similar applications. For
example, a possible solution towards that direction would be to design a tool that parses
the desired application into serverless functions and then apply the current’s framework

capabilities to the newly configured functions

m AinAeopatxny Epyaocia

BiBAloypadgia

[1] IBM. https://www.ibm.com/gr-en.

[2] types of Hypervisors. https://www.vmware.com/topics/glossary/content /bare-
metal-hypervisor. Accessed data: 13-12-2021.

[3] Kubernetes. https://kubernetes.io/. Accessed date: 18-03-2022.

[4] Apache OpenWhisk. https://openwhisk.apache.org/.

[B] OpenFaas. https://www.openfaas.com/.

[6] faas-flow. https://github.com/s8sg/faas-flow. Accessed date: 26-6-2022.

[7] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy kat Arkaprava Basu. Faastlane: Acce-
lerating Function-as-a-Service Worlflows. 2021 USENIX Annual Technical Conference
(USENIX ATC 21), oe)Aibeg 805-820. USENIX Association, 2021.

[8] Vikram Sreekanti kat others. Cloudburst. Proceedings of the VLDB Endowment,
13(12):2438-2452, 2020.

[9] Joao Carreira kat others. Cirrus: A Serverless Framework for End-to-End ML Worlc-
flows. Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19, oe)ida
13-24, New York, NY, USA, 2019. Association for Computing Machinery.

[10] Simon Shillaker kat Peter Pietzuch. Faasm: Lightweight Isolation for Efficient Stateful
Serverless Computing. 2020 USENIX Annual Technical Conference (USENIX ATC 20),
oeAibeg 419-433. USENIX Association, 2020.

[11] Ana Klimovicet al. Pocket: Elastic Ephemeral Storage for Serverless Analytics. 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18),
oelideg 427-444, Carlsbad, CA, 2018. USENIX Association.

[12] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali Chaterji
Kat Saurabh Bagchi. SONIC: Application-aware Data Passing for Chained Serverless
Applications. 2021 USENIX Annual Technical Conference (USENIX ATC 21), oe)ideg
285-301. USENIX Association, 2021.

[13] Christina Delimitrou kat Christos Kozyrakis. Paragon: QoS-aware scheduling for
heterogeneous datacenters. ACM SIGPLAN Notices, 48(4):77-88, 2013.

[14] Achilleas Tzenetopoulos kat others. Interference-Aware Orchestration in Kubernetes.
Berlin, Heidelberg, 2020. Springer-Verlag.

Aitfouatxn Epyaoia m

https://www.ibm.com/gr-en
https://www.vmware.com/topics/glossary/content/bare-metal-hypervisor
https://www.vmware.com/topics/glossary/content/bare-metal-hypervisor
https://kubernetes.io/
https://openwhisk.apache.org/
https://www.openfaas.com/
https://github.com/s8sg/faas-flow

BIBAIOTPADIA

[15] Lucia Schuler, Somaya Jamil kat Niklas Ktihl. Al-based Resource Allocation: Rein-
forcement Learning for Adaptive Auto-scaling in Serverless Environments. CoRR, a6-
0/2005.14410, 2020.

[16] Dimosthenis Masouros kat others. Rusty: Runtime Interference-Aware Predictive
Monitoring for Modern Multi-Tenant Systems. IEEE Transactions on Parallel and Di-
stributed Systems, I1T1:1-1, 2020.

[17] Ioannis Fakinos kat others. Sequence Clock: A Dynamic Resource Orchestrator for Se-
rverless Architectures. 2022 IEEE 15th International Conference on Cloud Computing
(CLOUD), ogAibeg 81-90. IEEE, 2022.

[18] Zheng Li, Maria Kihl, Qinghua Lu kat Jens A. Andersson. Performance Overhe-
ad Comparison between Hypervisor and Container Based Virtualization. 2017 IEEE
31st International Conference on Advanced Information Networking and Applications
(AINA). IEEE, 2017.

[19] Linux Containers. https://en.wikipedia.org/wiki/LXC. Accessed date: 10-12-2021.

[20] Sari Sultan, Imtiaz Ahmad kat Tassos Dimitriou. Container Security: Issues, Chal-
lenges, and the Road Ahead. IEEE Access, 7:52976-52996, 2019.

[21] Master/slave techonology. https://en.wikipedia.org/wiki/Master /slave
(technology). Accessed date: 13-01-2022.

[22] Definition of Cloud computing. https://www.govinfo.gov/app/details/GOVPUB-C13-
T4cdc274b1109a7elead 7185dfec2ada. Accessed data: 13-12-2021.

[23] IaaS definition. https://nvlpubs.nist.gov /nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf. Accessed data: 13-12-2021.

[24] CaaS definition. https://www.atlassian.com/continuous-delivery /microservices/

containers-as-a-service. Accessed data: 13-12-2021.

[25] PaaS definition. https://nvlpubs.nist.gov /nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf. Accessed data: 15-12-2021.

[26] Gartner study. https://www.forbes.com/sites/louiscolumbus/2019,/04 /07 /public-
cloud-soaring-to-331b-by-2022-according-to-gartner/?sh=61d762105739. Accessed
date: 15-12-2021.

[27] SaaS definition. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf. Accessed date: 15-12-2021.

[28] AWS Lamda. https://aws.amazon.com/lambda/. Accessed date: 05-01-2022.
[29] Fission. https://fission.io/.

[30] Knative. https://knative.dev/docs/.

m Awtflopatkn Epyaoia

https://en.wikipedia.org/wiki/LXC
https://en.wikipedia.org/wiki/Master/slave_(technology)
https://en.wikipedia.org/wiki/Master/slave_(technology)
https://www.govinfo.gov/app/details/GOVPUB-C13-74cdc274b1109a7e1ead7185dfec2ada
https://www.govinfo.gov/app/details/GOVPUB-C13-74cdc274b1109a7e1ead7185dfec2ada
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://www.atlassian.com/continuous-delivery/microservices/containers-as-a-service
https://www.atlassian.com/continuous-delivery/microservices/containers-as-a-service
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://www.forbes.com/sites/louiscolumbus/2019/04/07/public-cloud-soaring-to-331b-by-2022-according-to-gartner/?sh=61d762105739
https://www.forbes.com/sites/louiscolumbus/2019/04/07/public-cloud-soaring-to-331b-by-2022-according-to-gartner/?sh=61d762105739
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://aws.amazon.com/lambda/
https://fission.io/
https://knative.dev/docs/

BIBAIOT'PADIA

[31]

[32]

[33]

(34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Kubeless. https://kubeless.io/.

Serverless Definition. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-
2019-3.pdf. Accessed data: 05-01-2022.

Why use serverless. https://www.cloudflare.com /learning /serverless/why-use-
serverless/. Accessed date: 22-10-2022.

Neil C Thompson, Kristjan H. Greenewald, Keeheon Lee kat Gabriel F. Manso. The
Computational Limits of Deep Learning. ArXiv, a8o/2007.05558, 2020.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage kat Anil Anthony Bha-
rath. A Brief Survey of Deep Reinforcement Learning. arXiv e-prints, oeAiba ap-
E1:1708.05866, 2017.

Occupy the Cloud. https://dl.acm.org/doi/pdf/10.1145/3127479.3128601. Accessed
date: 01-02-2022.

An introduction to Docker and Analysis of its Performance. http://paper.ijcsns.org/
07 _book/201703/20170327.pdf. Accessed date: 30-7-2022.

Intel Performance Counter Monitor. https://github.com/opcm/pecm. Accessed date:
31-07-2022.

Intel Performance Counter Monitor content. https://www.intel.com /content /www /us/
en/developer/articles/technical /performance-counter-monitor.html. Accessed date:
31-07-2022.

Serverless Workflow Specification. https://github.com /serverlessworkflow/
specification. Accessed data: 19-02-2022.

MinlO Object storage. https://en.wikipedia.org/wiki/MinlO, https://min.io/. Acces-
sed date: 18-01-2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren xkat Jian Sun. Deep Residual Learning
Jfor Image Recognition, 2015.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasu-
bramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter kat
Keith Winstein. Encoding, Fast and Slow: Low-Latency Video Processing Using Thou-
sands of Tiny Threads. 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), ceAideg 363-376, Boston, MA, 2017. USENIX Association.

Tao Zheng, Jian Wan, Jilin Zhang kat Congfeng Jiang. Deep Reinforcement Learning-
Based Worlkload Scheduling for Edge Computing. J. Cloud Comput., 11(1), 2022.

Influx Database. https://www.influxdata.com/. Accessed date: 23-10-2022.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus
rat Noah Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implementa-
tions. Journal of Machine Learning Research, 22(268):1-8, 2021.

Aitfouatxn Epyaoia m

https://kubeless.io/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://dl.acm.org/doi/pdf/10.1145/3127479.3128601
http://paper.ijcsns.org/07_book/201703/20170327.pdf
http://paper.ijcsns.org/07_book/201703/20170327.pdf
https://github.com/opcm/pcm
https://www.intel.com/content/www/us/en/developer/articles/technical/performance-counter-monitor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/performance-counter-monitor.html
https://github.com/serverlessworkflow/specification
https://github.com/serverlessworkflow/specification
https://en.wikipedia.org/wiki/MinIO
https://min.io/
https://www.influxdata.com/

BIBAIOT'PA®IA

[47] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang xkat Wojciech Zaremba. OpenAl Gym, 2016.

m Awtflopatkn Epyaoia

	Περίληψη
	Abstract
	Ευχαριστίες
	Εκτεταμένη Περίληψη
	Εισαγωγή
	Ιστορικό για την Εικονικοποίηση
	Εικονικοποίηση Βασισμένη σε Επιτηρητή
	Εικονικοποίηση Βασισμένη σε Πακέτο
	Ενορχήστρωση

	Ανάλυση Κινήτρων
	Περιγραφή της Serverless Εφαρμογής και των Εφαρμογών Πίεσης
	Αντίκτυπος του Αριθμού Συναρτήσεων στην Απόδοση
	Αντίκτυπος των Παρεμβολών στην Απόδοση
	Αντίκτυπος της Ετερογένειας στην Απόδοση

	Σχεδιασμός και Υλοποίηση Δυναμικού Δρομολογήτη
	Βαθιά Ενισχυτική Μάθηση
	Αρχιτεκτονική και Υλοποίηση Δυναμικού Δρομολογήτη

	Αποτελέσματα και Αξιολόγηση
	Πειραματικές Συνθήκες
	Κριτήρια Αξιολόγησης
	Παρουσίαση των Δρομολογητών
	Συγκριτική Αξιολόγηση των Δρομολογητών
	Σύνοψη Αξιολόγησης

	Σύνοψη και Μελλοντική Δουλειά
	Αναγνώριση Εφικτών Άνω Χρονικών Ορίων
	Επέκταση προς Αγνωστικιστική Φύση του προτεινόμενου Εργαλείου

	Introduction
	Scope & Goal
	Structure of the thesis

	Related work
	QoS-aware Serverless Frameworks
	Workload Scheduling on Cloud Infrastructure
	Runtime Resource Allocation for Serverless Functions
	Our Approach

	Background
	Virtualization & Containers
	Hypervisor-based virtualization
	Container-based virtualization
	Kubernetes

	Cloud computing
	Infrastructure as a Service
	Containers as a Service
	Platform as a Service
	Software as a Service

	Serverless computing
	Serverless cloud computing models
	Benefits and drawbacks
	Serverless platforms
	Apache OpenWhisk
	OpenFaas

	Machine Learning
	Deep Reinforcement Learning
	Reinforcement Learning
	Reinforcement Learning Algorithms

	Scheduling and Migration of Serverless Functions
	Why is Scheduling of Serverless Functions (SSF) needed?
	How Does Scheduling of Serverless Functons Work

	Motivational Analysis
	Experimental infrastructure
	System setup
	Monitoring and Communication

	Implementation tools
	Simple-sw
	MinIO
	Faas-flow
	Custom Runtime Engine

	Description of Serverless workflow and Interference microbenchmarks
	iBench
	Serverless Workflow

	Impact of Granularity on the Workflow's Perfomance
	Faas-Flow Runtime Approach
	Custom Runtime Approach

	Impact of Interference on the Workflow's Perfomance
	Interference impact with FaasFlow
	Interference impact with Custom Runtime

	Impact of Heterogeneity on the Workflow's Perfomance
	Faas-Flow Runtime Approach
	Custom Runtime approach
	Queue-Workers and Accelerated Execution

	Discussion

	Dynamic Scheduling of Serverless Functions
	Design Principles
	Architecture and Specifications
	System Monitor
	DRL-based Agent
	Runtime Engine
	Function Mapper
	Technical Implementation

	Experimental Evaluation
	Experimental Conditions
	Training events
	Inference Events

	Examined Schedulers
	Fullmap-guided DRL-based Scheduler
	Custom-guided DRL-based Scheduler
	Kubernetes-guided DRL-based Scheduler
	Oracle-guided DRL-based Scheduler

	Performance Evaluation of DRL-based Schedulers
	Comparative Evaluation of Schedulers during Training
	QoS Quotient
	Cumulative Reward
	QoS Violation Ratio
	Time Required for Convergence
	Scalability
	DRL-based vs native Kubernetes Scheduling

	Evaluation Summary

	Conslusion and Future Work
	Summary
	Future Work
	Identification of Doable User Requests
	Framework Expansion towards Application Agnosticism

	Βιβλιογραφία

