Thesis Defense

Compressed Sensing MRI using Score-based Implicit Model

Dimitrios Dimos

School of Electrical & Computer Engineering National Technical University of Athens

Supervisors: Prof. Georgios Stamou, NTUA Prof. Alexandros Dimakis, UT Austin

Nov. 10, 2022

Summary

- 1 Introduction
- 2 Score-based Generative Modeling
- 3 Diffusion Models
- 4 Generation through Stochastic Differential Equations (SDEs)
- 5 Solving Inverse Problems using Score-based Models
- 6 Contribution Score-based Implicit Model
- 7 Compressed Sensing MRI using SBIM

ECE NTUA Thesis Defense 2 / 78

Introduction

ECE NTUA Thesis Defense 3 / 78

General definitions

Generative model: captures (a representation) of the distribution $p(\mathbf{x})$

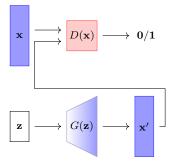
$$\begin{array}{c|c} & \mathbf{Z} & \\ \hline \\ & \text{latent} \\ & \text{variable} \end{array} \qquad \begin{array}{c|c} & \mathbf{X} & \\ \hline \\ & p(\cdot) & \\ \hline \\ & \text{datum} \end{array}$$

Discriminative model: captures the conditional probability p(y|x)

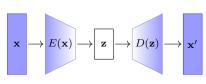
$$\xrightarrow[\text{datum}]{\mathbf{x}} p(\cdot|\mathbf{x}) \xrightarrow[\text{class}]{\mathbf{y}}$$

ECE NTUA Thesis Defense 4 / 78

Famous deep generative models (1/2)



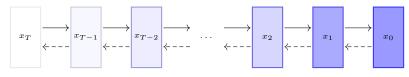
Generative Adversarial Networks (GANs)



Variational Autoencoders (VAEs)

ECE NTUA Thesis Defense 5 / 78

Famous deep generative models (2/2)



Diffusion Models and Score-based Models

In literature, **both** models are often referred to as **diffusion-based** models, or simply **diffusion models**.

ECE NTUA Thesis Defense 6 / 78

Why diffusion-based models?

Diffusion models have become increasingly popular the last 3 years. Why?

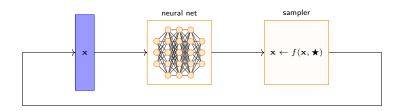
- State-of-the-art performance on many downstream tasks, such as:
 - image generation (beating even GANs !!!)
 - audio synthesis
 - shape generation
 - music generation
- Can be incorporated to solve inverse problems, among which are:
 - inpainting
 - deblurring
 - colorization
 - compressed sensing

ECE NTUA Thesis Defense 7 / 78

Score-based Generative Modeling

ECE NTUA Thesis Defense 8 / 78

Diffusion-based Generation Ingredients



- a neural net: produces a mathematical quantity (★)
- a **sampler**: an iterative procedure that updates x using ★.

ECE NTUA Thesis Defense 9 / 78

Langevin Dynamics

The first sampler for score-based models: Langevin Dynamics.

$$\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} + \frac{\epsilon}{2} \underbrace{\nabla_x \log p(\mathbf{x}_{t-1})}_{\text{score function}} + \sqrt{\epsilon} \, \mathbf{z}_t$$

- $p(\mathbf{x})$: distribution of \mathbf{x}
- $\epsilon > 0$: fixed step
- $\mathbf{z}_t \sim \mathcal{N}(0, I)$: Gaussian noise
- $\mathbf{z}_0 \sim \pi(\mathbf{x})$: initial value from known prior

ECE NTUA Thesis Defense 10 / 78

Intuition

$$\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} + \frac{\epsilon}{2} \left[\nabla_{\mathbf{x}} \log p(\mathbf{x}_{t-1}) \right] + \sqrt{\epsilon} \, \mathbf{z}_t$$

- Start from random point x_0
- Repeat:
 - Move towards a maximum of $p(\mathbf{x})$ (using $\nabla_{\mathbf{x}} \log p(\mathbf{x})$)
 - Inject a little noise $(\sqrt{\epsilon}\,\mathbf{z})$ to avoid collapses into local maxima

ECE NTUA Thesis Defense 11 / 78

Challenges

- We cannot have access to $\nabla_{\mathbf{x}} \log p(\mathbf{x})$. Why?
 - 1. **the manifold hypothesis**: most datasets live in low dimensional manifold embedded in a high dimensional space.
 - Space where no x lives $\Rightarrow \nabla_x \log p(x)$ is undefined
 - 2. **low data density regions**: even if we could move within the manifold, available data may not be covering all its areas \Rightarrow cannot estimate $\nabla_{\mathbf{x}} \log p(\mathbf{x})$.

ECE NTUA Thesis Defense 12 / 78

Solution (1/2)

- Gaussian noise does not suffer from these challenges
- Perturbing the data with Gaussian noise mitigates them.
- But if we add too much noise, we damage quality
- and if we add too little, we suffer from the challenges.

ECE NTUA Thesis Defense 13 / 78

Solution (2/2)

Let $q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})$ be Gaussian noise

Perturbing the data yields: $q_{\sigma}(\tilde{\mathbf{x}}) \triangleq \int q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x}) \, p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$

It is proven¹ that we **CAN** learn $\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})$.

ECE NTUA Thesis Defense 14 / 78

¹Aapo Hyvärinen. "Estimation of Non-Normalized Statistical Models by Score Matching". In: *J. Mach. Learn. Res.* (2005), pp. 695–709.

Learning $\nabla_{\mathbf{x}} \log q_{\sigma}(\mathbf{x})$: Score matching

Score matching²: a technique to learn $\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})$. Two popular ways to perform score matching:

- Denoising score matching³
- Sliced score matching⁴

Both are equally effective. We adopt **denoising score matching**, since it is slightly faster.

ECE NTUA Thesis Defense 15 / 78

²Hyvärinen, "Estimation of Non-Normalized Statistical Models by Score Matching".

³Pascal Vincent. "A Connection between Score Matching and Denoising Autoencoders". In: *Neural Comput.* (2011).

⁴Yang Song et al. "Sliced Score Matching: A Scalable Approach to Density and Score Estimation". In: *Proceedings of the 35th Uncertainty in Artificial Intelligence Conference*. 2020, pp. 574–584.

Denoising score matching

The objective function our network has to minimize is proven⁵ equal to:

$$\frac{1}{2}\mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})p(\mathbf{x})}\big[||\mathbf{s}_{\theta}(\tilde{\mathbf{x}},\sigma) - \nabla_{\tilde{\mathbf{x}}}\log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})||_2^2\big]$$

 $\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})$ is tractable since $q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})$ is Gaussian.

The optimal network $\mathbf{s}_{\theta}(\tilde{\mathbf{x}}, \sigma)$ satisfies $\mathbf{s}_{\theta}(\tilde{\mathbf{x}}, \sigma) = \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})$ (almost surely).

When $\sigma \to 0$: $\mathbf{s}_{\theta}(\tilde{\mathbf{x}}, \sigma) = \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$.

ECE NTUA Thesis Defense 16 / 78

⁵Vincent, "A Connection between Score Matching and Denoising Autoencoders".

Noise Conditional Score Networks

■ Pre-specify a noise schedule $\{\sigma_i\}_{i=1}^L$

 σ_1 must be large (too much noise)

 σ_L must be small (almost no noise)

■ A model $s_{\theta}(\mathbf{x}, \sigma)$ that is trained to learn $\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}), \forall \sigma \in \{\sigma_i\}_{i=1}^L$ is named **Noise Conditional Score Network (NCSN)**.

ECE NTUA Thesis Defense 17 / 78

Annealed Langevin Dynamics (1/2)

If we performed Langevin Dynamics using $\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})$ for some $\sigma \in \{\sigma_i\}_{i=1}^L$ then we will sample from $q_{\sigma}(\tilde{\mathbf{x}})$. Not good enough!

■ Begin with $\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma_1}(\tilde{\mathbf{x}})$ and reduce σ_i by a scale on every iteration.

ullet Then $ilde{\mathbf{x}}_t$ "has enough time" to reach a region with well defined score.

■ When $\sigma_i \to 0$ we end up sampling from $q_{\sigma}(\tilde{\mathbf{x}}) \approx p(\mathbf{x})$.

ECE NTUA Thesis Defense 18 / 78

Annealed Langevin Dynamics (2/2)

This modification of Langevin Dynamics is inspired by simulated annealing and is called **Annealed Langevin Dynamics**:

$$\tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\theta}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \mathbf{z}_t$$

 α_i is also decreased at every step.

ECE NTUA Thesis Defense 19 / 78

Score-based Modeling in a nutshell (1/2)

Training an NCSN

$$\nabla_{\tilde{\mathbf{x}}}{\log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} = \nabla_{\tilde{\mathbf{x}}}{\left\{\log{\left(\frac{1}{\sigma\sqrt{2\pi}}\right)} - \frac{1}{2}{\left(\frac{\tilde{\mathbf{x}}-\mathbf{x}}{\sigma}\right)^2}\right\}} = -\frac{\tilde{\mathbf{x}}-\mathbf{x}}{\sigma^2}$$

Denoising score matching objective:

$$\ell(\theta, \sigma) \triangleq \frac{1}{2} \mathbb{E}_p \mathbb{E}_{\tilde{\mathbf{x}} \sim \mathcal{N}(\mathbf{x}, \sigma^2 I)} \left[\left| \left| \mathbf{s}_{\theta}(\tilde{\mathbf{x}}, \sigma) + \frac{\tilde{\mathbf{x}} - \mathbf{x}}{\sigma^2} \right| \right|^2 \right]$$

Combined for all noise scales σ :

$$\mathcal{L}(\theta, \{\sigma_i\}_{i=1}^L) \triangleq \frac{1}{L} \sum_{i=1}^L \lambda(\sigma_i) \ell(\theta, \sigma_i)$$

ECE NTUA Thesis Defense 20 / 78

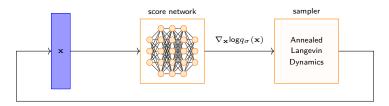
Score-based Modeling in a nutshell (2/2)

Inference

Annealed Langevin Dynamics

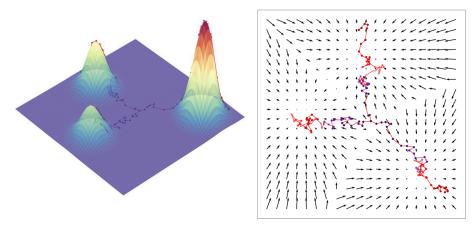
ECE NTUA Thesis Defense 21 / 78

Recall our diffusion-based recipe



ECE NTUA Thesis Defense 22 / 78

Visualization of Langevin Dynamics



Three random sampling trajectories generated with Langevin dynamics. Credits:⁶

ECE NTUA Thesis Defense 23 / 78

⁶Ling Yang et al. Diffusion Models: A Comprehensive Survey of Methods and Applications. 2022.

Diffusion Models

ECE NTUA Thesis Defense 24 / 78

Introduction

- Diffusion makes a datum to gradually lose its structure.
- Example: an image gradually turning into Gaussian noise.
- Backward diffusion is the reverse procedure.
- Example: Gaussian noise gradually taking the shape of an image.
- Forward diffusion is easy: gradually add noise to an datum.
- Reverse diffusion is not: it allows data generation from noise.

ECE NTUA Thesis Defense 25 / 78

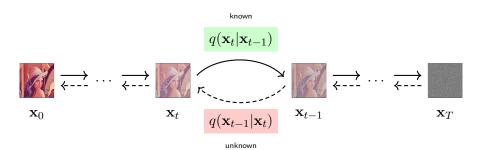
Forward Diffusion (1/3)

The forward diffusion process is fixed and known.

- Sample a datum: $\mathbf{x}_0 \sim p(\mathbf{x})$
- \blacksquare Set the diffusion steps T
- Set a variance schedule: $\{\beta_t \in (0,1)\}_{t=1}^T$
- Set a diffusion kernel (here gaussian):

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\,\mathbf{x}_{t-1}, \beta_t\,I)$$

ECE NTUA Thesis Defense 26 / 78



Forward and Reverse Diffusion Processes

ECE NTUA Thesis Defense 27 / 78

Forward diffusion (2/3)

We can directly calculate x_t for **any forward** diffusion step:

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \ \boldsymbol{\epsilon}$$

where:

$$\alpha_t = 1 - \beta_t$$

$$\bar{\alpha}_t = \prod_{i=0}^t \alpha_i$$

$$\bullet \ \epsilon \sim \mathcal{N}(0, I)$$

ECE NTUA Thesis Defense 28 / 78

Forward diffusion (3/3)

Proof.

Let us draw $\mathbf{x}_t \sim q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t} \mathbf{x}_{t-1}, \beta_t I)$. Then:

$$\mathbf{x}_t = \sqrt{a_t} \, \mathbf{x}_{t-1} + \sqrt{1 - a_t} \, \boldsymbol{\epsilon}_{t-1}$$
 where $\boldsymbol{\epsilon}_{t-1} \sim \mathcal{N}(0, I)$

$$= \sqrt{a_t} \left[\sqrt{a_{t-1}} \mathbf{x}_{t-2} + \sqrt{1 - a_{t-1}} \boldsymbol{\epsilon}_{t-2} \right] + \sqrt{1 - a_t} \boldsymbol{\epsilon}_{t-1} \qquad \text{where } \boldsymbol{\epsilon}_{t-2} \sim \mathcal{N}(0, I)$$

$$= \sqrt{a_t a_{t-1}} \mathbf{x}_{t-2} + \sqrt{a_t - a_t a_{t-1}} \boldsymbol{\epsilon}_{t-2} + \sqrt{1 - a_t} \boldsymbol{\epsilon}_{t-1}$$

The underbraced quantity is the sum of two gaussian distributions with different variances, $\mathcal{N}(0, \sigma_1^2 I)$ and $\mathcal{N}(0, \sigma_2^2 I)$. This sum can be expressed as: $\mathcal{N}(0, (\sigma_1^2 + \sigma_2^2)I)$. Therefore:

$$\mathbf{x}_t = \sqrt{a_t a_{t-1}} \, \mathbf{x}_{t-2} + \sqrt{1 - a_t a_{t-1}} \, \bar{\epsilon}_{t-2} \qquad \text{where } \bar{\epsilon}_{t-2} \sim \mathcal{N}(0, I)$$

By repeating this thinking, x_t finally becomes equal to:

$$\mathbf{x}_t = \sqrt{\bar{a}_t} \, \mathbf{x}_0 + \sqrt{1 - \bar{a}_t} \, \boldsymbol{\epsilon} \quad \text{where } \boldsymbol{\epsilon} \sim \mathcal{N}(0, I)$$

ECE NTUA Thesis Defense 29 / 78

Backward diffusion (1/6)

- When $\beta \to 0$, the backward diffusion kernel has the form of the forward one⁷ $\Longrightarrow q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ is also Gaussian.
- lacksquare To calculate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$, we need to use the entire dataset. Bad idea!
- We'll use a diffusion model to help approximate it.
- The reverse diffusion kernel will be:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

■ Make $\mu_{\theta}(\mathbf{x}_t, t)$ and $\Sigma_{\theta}(\mathbf{x}_t, t)$ tractable, and we're done!

ECE NTUA Thesis Defense 30 / 78

⁷William Feller. "On the Theory of Stochastic Processes, with Particular Reference to Applications". In: *Proceedings of the [first] Berkeley Symposium on Mathematical Statistics and Probability.* 1949.

Backward Diffusion (2/6)

Notice that $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ is not tractable, but $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ is:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\tilde{\boldsymbol{\mu}}(\mathbf{x}_t,\mathbf{x}_0),\tilde{\boldsymbol{\beta}}_t\mathbf{I})$$

Therefore, we'll approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$, instead.

ECE NTUA Thesis Defense 31 / 78

Backward Diffusion (3/6)

We apply Bayes' rule:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) = q(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q(\mathbf{x}_{t}|\mathbf{x}_{0})}$$

$$\propto \exp\left[-\frac{1}{2}\left(\frac{(\mathbf{x}_{t}-\sqrt{\alpha_{t}}\mathbf{x}_{t-1})^{2}}{\beta_{t}} + \frac{(\mathbf{x}_{t-1}-\sqrt{\alpha_{t-1}}\mathbf{x}_{0})^{2}}{1-\bar{\alpha}_{t-1}} - \underbrace{\frac{(\mathbf{x}_{t}-\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0})^{2}}{1-\bar{\alpha}_{t}}}_{C'(\mathbf{x}_{t},\mathbf{x}_{0})}\right)\right]$$

$$= \exp\left[-\frac{1}{2}\left(\frac{\mathbf{x}_{t}^{2}-2\sqrt{\alpha_{t}}\mathbf{x}_{t}\mathbf{x}_{t-1}+\alpha_{t}\mathbf{x}_{t-1}^{2}}{\beta_{t}} + \frac{\mathbf{x}_{t-1}^{2}-2\sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_{0}\mathbf{x}_{t-1}+\bar{\alpha}_{t-1}\mathbf{x}_{0}^{2}}{1-\bar{\alpha}_{t-1}} - C'\right)\right]$$

$$= \exp\left[-\frac{1}{2}\left(\underbrace{\left(\frac{\alpha_{t}}{\beta_{t}} + \frac{1}{1-\bar{\alpha}_{t-1}}\right)}_{A}\mathbf{x}_{t-1}^{2} - \underbrace{\left(\frac{2\sqrt{\alpha_{t}}}{\beta_{t}}\mathbf{x}_{t} + \frac{2\sqrt{\bar{\alpha}_{t-1}}}{1-\bar{\alpha}_{t-1}}\mathbf{x}_{0}\right)}_{B}\mathbf{x}_{t-1} + \underbrace{C(\mathbf{x}_{t},\mathbf{x}_{0})}_{\Gamma}\right)\right]$$

Where $C(\mathbf{x}_t, \mathbf{x}_0)$ is a function not involving \mathbf{x}_{t-1} .

ECE NTUA Thesis Defense 32 / 78

Backward Diffusion (4/6)

$$= \exp\left[-\frac{1}{2}\left(\mathbf{A}\,\mathbf{x}_{t-1}^{2} - \mathbf{B}\,\mathbf{x}_{t-1} + \Gamma\right)\right]$$

$$= \exp\left[-\frac{1}{2}\left(\sqrt{\mathbf{A}}\,\mathbf{x}_{t-1} - \frac{\mathbf{B}}{2\sqrt{\mathbf{A}}}\right)^{2} - \left(\frac{\mathbf{B}}{2\sqrt{\mathbf{A}}}\right)^{2} + \Gamma\right]$$

$$\propto \exp\left[-\frac{1}{2}\left(\sqrt{\mathbf{A}}\,\mathbf{x}_{t-1} - \frac{\mathbf{B}}{2\sqrt{\mathbf{A}}}\right)^{2}\right]$$

$$= \exp\left[-\frac{1}{2}\left(\frac{\mathbf{x}_{t-1} - \frac{\mathbf{B}}{2\mathbf{A}}}{\frac{1}{2\sqrt{\mathbf{A}}}}\right)^{2}\right]$$

ECE NTUA Thesis Defense 33 / 78

Backward Diffusion(5/6)

Since $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ is Gaussian, it is now clear that:

$$\tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0$$
$$\tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$

But we don't know x_0 .

In fact, we can't know x_0 during backward diffusion.

ECE NTUA Thesis Defense 34 / 78

Backward Diffusion (6/6)

Recall that we can directly calculate \mathbf{x}_t for any forward diffusion step:

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \ \boldsymbol{\epsilon}$$

Solve for x_0 :

$$\mathbf{x}_0 = \frac{1}{\sqrt{\bar{a}_t}} \left(\mathbf{x}_t - \sqrt{1 - \bar{a}_t} \, \boldsymbol{\epsilon} \right)$$

Plug in $\tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0)$:

$$\tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \right)$$

We now train our diffusion model to predict ϵ_t .

And we've finished!

ECE NTUA Thesis Defense 35 / 78

Training the model (1/2)

We want the model to predict $\epsilon_{\theta}(\mathbf{x}_t, t)$:

$$\tilde{\boldsymbol{\mu}}_{\theta}(\mathbf{x}_{t}, t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right)$$

The model must minimize the difference between $\tilde{\mu}_{\theta}(\mathbf{x}_t,t)$ and $\tilde{\mu}(\mathbf{x}_t,\mathbf{x}_0)$.

$$\begin{split} L_t &= \mathbb{E}_{\mathbf{x}_0, \epsilon} \Big[\frac{1}{2 \|\mathbf{\Sigma}_{\theta}(\mathbf{x}_t, t)\|_2^2} \|\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t)\|^2 \Big] \\ &= \mathbb{E}_{\mathbf{x}_0, \epsilon} \Big[\frac{1}{2 \|\mathbf{\Sigma}_{\theta}\|_2^2} \|\frac{1}{\sqrt{\alpha_t}} \Big(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \Big) - \frac{1}{\sqrt{\alpha_t}} \Big(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \Big) \|^2 \Big] \\ &= \mathbb{E}_{\mathbf{x}_0, \epsilon} \Big[\frac{(1 - \alpha_t)^2}{2\alpha_t (1 - \bar{\alpha}_t) \|\mathbf{\Sigma}_{\theta}\|_2^2} \|\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \|^2 \Big] \end{split}$$

ECE NTUA Thesis Defense 36 / 78

Training the model (2/2)

This simplified training loss was empirically found⁸ to work better:

$$L_t = \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, \epsilon_t} \Big[\| \boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \|^2 \Big]$$

Final objective: $L_{final} = L_t + C$, where C is a constant not dependent on θ .

ECE NTUA Thesis Defense 37 / 78

⁸ Jonathan Ho, Ajay Jain, and Pieter Abbeel. "Denoising Diffusion Probabilistic Models". In: *Advances in Neural Information Processing Systems*. 2020, pp. 6840–6851.

Ancestral Sampling

- Sampling is now straightforward.
- lacksquare In general, when $\mathbf{x} \sim \mathcal{N}(m{\mu}, \sigma^2 \, m{I})$, then: $\mathbf{x} = m{\mu} + \sigma m{\epsilon}$
- Therefore: to sample from $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\tilde{\boldsymbol{\mu}}(\mathbf{x}_t,\mathbf{x}_0),\sigma_t^2\mathbf{I})$, which we approximate via a neural net as $\mathcal{N}(\mathbf{x}_{t-1};\tilde{\boldsymbol{\mu}}_{\theta}(\mathbf{x}_t,t),\sigma_t^2\mathbf{I})$, we do the following:

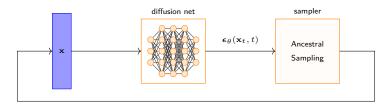
$$\mathbf{x}_{t-1} = \tilde{\boldsymbol{\mu}}_{\theta}(\mathbf{x}_t, t) + \sigma_t \, \boldsymbol{\epsilon} \Longrightarrow$$

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \, \boldsymbol{\epsilon}$$

■ This sampler is named **Ancestral Sampling**.

ECE NTUA Thesis Defense 38 / 78

Recall our diffusion-based recipe



ECE NTUA Thesis Defense 39 / 78

Denoising Diffusion Implicit Model (DDIM)

- How will we accelerate reverse diffusion?
- Reduce steps, i.e. update every $\lceil T/S \rceil$ steps $(S < T) \Longrightarrow$ quality is severely damaged.
- Denoising Diffusion Implicit Model⁹ (DDIM) is a sampler that reparameterizes the reverse diffusion, allowing for less steps with significantly less quality loss.
- DDIM simulates a reverse procedure, whose forward procedure is not a diffusion ⇒ *Implicit*.

ECE NTUA Thesis Defense 40 / 78

⁹ Jiaming Song, Chenlin Meng, and Stefano Ermon. "Denoising Diffusion Implicit Models". In: 9th International Conference on Learning Representations. ICLR. 2021.

DDIM Derivation (1/3)

Diffusion models approximate: $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\tilde{\boldsymbol{\mu}}(\mathbf{x}_t,\mathbf{x}_0),\beta_t\mathbf{I})$

Let:
$$\tilde{\beta}_t = \sigma_t^2$$

We have seen that:
$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_{t-1}}\boldsymbol{\epsilon}_{t-1}$$

Therefore:

$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1}} \boldsymbol{\epsilon}_{t-1}$$

$$= \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \boldsymbol{\epsilon}_t + \sigma_t \boldsymbol{\epsilon}$$

$$= \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \mathbf{x}_0}{\sqrt{1 - \bar{\alpha}_t}} + \sigma_t \boldsymbol{\epsilon} \Longrightarrow$$

$$q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \mathbf{x}_0}{\sqrt{1 - \bar{\alpha}_t}}, \sigma_t^2 \mathbf{I})$$

ECE NTUA Thesis Defense 41 / 78

DDIM Derivation (2/3)

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t}\mathbf{x}_0}{\sqrt{1 - \bar{\alpha}_t}}, \sigma_t^2 \mathbf{I})$$

- Set $\sigma_t^2 = \eta \cdot \tilde{\beta}_t$ ($\eta \in \mathbb{R}$ controls sampling stochasticity).
- $\eta = 0$ sampler becomes **deterministic**. This is **DDIM**.
- $\eta = 1 \Longrightarrow$ sampler becomes **Ancestral Sampling**.

Thesis Defense 42 / 78

DDIM Derivation (3/3)

Setting $\eta = 0$, we get DDIM:

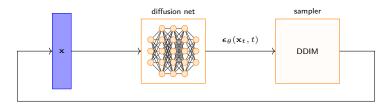
$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1}} \boldsymbol{\epsilon}_{t-1} \Longrightarrow$$

$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \, \frac{\mathbf{x}_t - \sqrt{1 - \bar{a}_t} \cdot \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t)}{\sqrt{\bar{a}_t}} + \sqrt{1 - \bar{\alpha}_{t-1}} \, \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t)$$

Produces best results when performed on a subset of the T steps.

Thesis Defense 43 / 78

Recall our diffusion-based recipe



ECE NTUA Thesis Defense 44 / 78

Generation through Stochastic Differential Equations (SDEs)

ECE NTUA Thesis Defense 45 / 78

Continuous diffusion with SDEs (1/2)

- Both score-based and diffusion models perturb the data using a noise schedule, lets say $\{\sigma_i\}_{i=1}^N$.
- If $N \to \infty$ and $\sigma_{i+1} \sigma_i \approx 0$ then $\{\sigma_i\}_{i=1}^N$ becomes continuous $\sigma(t)$.
- The noise perturbation procedure becomes a continuous-time stochastic process¹⁰.
- Such processes are solutions to SDEs.
- An SDE has a corresponding reverse SDE.

ECE NTUA Thesis Defense 46 / 78

¹⁰Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In: *International Conference on Learning Representations*. 2021.

Continuous diffusion with SDEs (2/2)

General forward SDE: $d\mathbf{x} = f(\mathbf{x},t) dt + g(t) d\mathbf{w}$

General reverse SDE:
$$d\mathbf{x} = \left[f(\mathbf{x},t) - g^2(t) \, \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) \right] dt + g(t) \, d\mathbf{w}$$

- $f(\mathbf{x},t)$: drift coefficient
- g(t): diffusion coefficient
- w: standard Brownian motion
- dw: infinitesmall white noise

ECE NTUA Thesis Defense 47 / 78

SDE that describes score-based modeling

Markov chain for score-based modeling:

$$\mathbf{x}_i = \mathbf{x}_{i-1} + \sqrt{\sigma_i^2 - \sigma_{i-1}^2} \, \mathbf{z}_{i-1}$$

- As $\{\sigma_i\}_{i=0}^L \to \sigma(t)$: the Markov chain $\{\mathbf{x}\}_{i=0}^L$ becomes a stochastic process $\{\mathbf{x}(t)\}_{t=0}^1$
- $\{\mathbf{x}(t)\}_{t=0}^{1}$ is the solution to the following SDE:

$$d\mathbf{x} = \sqrt{\frac{d[\sigma^2(t)]}{dt}}d\mathbf{w}$$

called Variance Exploding (VE) SDE, since $\sigma(t) \in (0, +\infty)$.

ECE NTUA Thesis Defense 48 / 78

SDE describing diffusion modeling

Markov chain for diffusion:

$$\mathbf{x}_i = \sqrt{1 - \beta_i} \, \mathbf{x}_{i-1} + \sqrt{\beta_i} \, \mathbf{z}_{i-1}$$

- As $\{\beta_i\}_{i=0}^T \to \beta(t)$: the Markov chain $\{\mathbf{x}\}_{i=0}^L$ becomes a stochastic process $\{\mathbf{x}(t)\}_{t=0}^1$
- $\{\mathbf{x}(t)\}_{t=0}^1$ is the solution to the following SDE:

$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x}dt + \sqrt{\beta(t)}d\mathbf{w}$$

called Variance Preserving (VP) SDE, since $\beta_i \in (0,1]$.

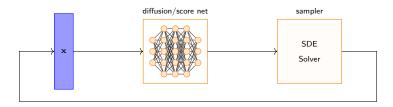
ECE NTUA Thesis Defense 49 / 78

A unified framework

- Diffusion-based methodologies are discretizations of reverse SDE solving.
- A diffusion-based model can be fully determined by an SDE.
- For training we now use infinite noise scales to perturb the data.
- Sample using ANY SDE solver that solves the reverse SDE of the one that the model was trained on.
- Langevin dynamics is a reverse VE SDE solver.
- Ancestral sampling is a reverse VP SDE solver.

ECE NTUA Thesis Defense 50 / 78

Recall our diffusion-based recipe



ECE NTUA Thesis Defense 51 / 78

Solving Inverse Problems using Score-based Models

ECE NTUA Thesis Defense 52 / 78

Definition of a linear inverse problem

Linear inverse problem (definition in the context of this thesis): Recover a signal $\mathbf{x} \in \mathbb{C}^N$ given some measurements $\mathbf{y} \in \mathbb{C}^M$.

$$\mathbf{y} = A\mathbf{x} + \mathbf{w}, \quad \mathbf{w} \sim \mathcal{N}_{\mathcal{C}}(0, \sigma^2 I)$$

Corruption matrix $A \in \mathbb{C}^{M \times N}$: it allows for a small quantity of \mathbf{x} 's information to survive in \mathbf{y} , i.e. the system is underdetermined.

$$m \quad \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \quad n + \mathbf{w}$$

No unique solution. We want to recovering the most probable one.

ECE NTUA Thesis Defense 53 / 78

How score-based models solve inverse problems (1/2)

- Let $\mathbf{x} \sim p$.
- We can train a score-based model and sample from $p(\mathbf{x})$ via Langevin Dynamics.
- But this would produce random samples. What about the measurements y?
- We must sample from $p(\mathbf{x}|\mathbf{y})$.

ECE NTUA Thesis Defense 54 / 78

How score-based models solve inverse problems (2/2)

Since $\mathbf{y}|\mathbf{x}$ is Gaussian $(\mathbf{y} = A\mathbf{x} + \mathbf{w}) \Longrightarrow \nabla_{\mathbf{x}} \log p(\mathbf{y}|\mathbf{x}) = \frac{A^H(\mathbf{y} - A\mathbf{x})}{\sigma^2}$

By applying Bayes' rule, we obtain:

$$\begin{split} \nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{y}) &= \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \nabla_{\mathbf{x}} \log p(\mathbf{y}|\mathbf{x}) \\ &= \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \frac{A^H(\mathbf{y} - A\mathbf{x})}{\sigma^2} \end{split}$$

And Langevin Dynamics transforms into **Guided Langevin Dynamics**:

$$\underbrace{\mathbf{x}_{t} \leftarrow \mathbf{x}_{t-1} + \frac{\alpha_{i}}{2} \mathbf{s}_{\theta}(\mathbf{x}_{t-1}, \sigma_{i}) + \sqrt{\alpha_{i}} \, \mathbf{z}_{t}}_{\downarrow\downarrow}$$

$$\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} + \frac{\alpha_i}{2} \left[\mathbf{s}_{\theta}(\mathbf{x}_{t-1}, \sigma_i) + \frac{A^H(\mathbf{y} - A\mathbf{x}_{t-1})}{\sigma_{\mathbf{y}}^2} \right] + \sqrt{\alpha_i} \, \mathbf{z}_t$$

ECE NTUA Thesis Defense 55 / 78

Credits for Guided Langevin Dynamics

This result was achieved by Jalal et al. in their 2019 work¹¹: Robust Compressed Sensing MRI with Deep Generative Priors.

They proposed a general framework to solve linear inverse problems using score-based models and applied it on Compressed Sensing MRI.

ECE NTUA Thesis Defense 56 / 78

¹¹Ajil Jalal et al. "Robust Compressed Sensing MRI with Deep Generative Priors". In: *Advances in Neural Information Processing Systems* (2019).

Contribution - Score-based Implicit Model

ECE NTUA Thesis Defense 57 / 78

Purpose of this thesis

- Guided Langevin Dynamics may need 4000 iterations to produce good reconstructions ⇒ low sampling speed.
- This thesis aims at speeding up this procedure: We want to use pretrained score-based models to solve inverse problems but faster.
- We propose two new samplers.
- We test them by performing Compressed Sensing on brain MRIs.

ECE NTUA Thesis Defense 58 / 78

Bijective Relation between VP and VE SDEs (1/4)

A score model is trained to learn the following:

$$\nabla_{\tilde{\mathbf{x}}_t} \log p(\tilde{\mathbf{x}}_t) = -\frac{\tilde{\mathbf{x}}_t - \mathbf{x}_t}{\sigma^2} = -\frac{\sigma \, \epsilon}{\sigma^2} = -\frac{\epsilon}{\sigma}$$

where $\epsilon \sim \mathcal{N}(0, I)$.

Considering VP SDE perturbations, we have:

$$\nabla_{\tilde{\mathbf{x}}_t} \log p(\tilde{\mathbf{x}}_t) = -\frac{\epsilon}{\sqrt{1 - \bar{a}_t}} \tag{1}$$

 This is a clear connection between a score-based and a diffusion model.

ECE NTUA Thesis Defense 59 / 78

Bijective Relation between VP and VE SDEs (2/4)

The following proof is inspired by Kawar et al. 12 (App. B).

The Variance Exploding and Variance Preserving specifications can be considered equivalent up to rescaling of the noisy latents \mathbf{x}_t .

Proof.

- noise schedule for VE SDE is: $\sigma_t \in [0, +\infty)$
- lacksquare noise schedule for VP SDE is: $a_t \in (0,1]$ $(a_t = \prod_{i=1}^t (1-eta_t))$
- noise perturbations for VE: $q(x_t^{VE}|x_0) = \mathcal{N}(x_t^{VE};x_0,\sigma_t^2I)$
- noise perturbations for VP: $q(x_t^{VP}|x_0) = \mathcal{N}(x_t^{VE}; \sqrt{a_t}x_0, (1-a_t)I)$

ECE NTUA Thesis Defense 60 / 78

¹²Bahjat Kawar et al. Denoising Diffusion Restoration Models. 2022.

Bijective Relation between VP and VE SDEs (3/4)

When x follows a VE trajectory:

$$\mathbf{x}_t^{VE} = \mathbf{x}_0 + \sigma_t \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(0, I)$$
 (2)

When x follows a VP trajectory:

$$\mathbf{x}_t^{VP} = \sqrt{a_t} \,\mathbf{x}_0 + \sqrt{1 - a_t} \,\mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(0, I)$$
 (3)

Divide each member of Eq. 3 by $\sqrt{a_t}$:

$$\frac{\mathbf{x}_t^{VP}}{\sqrt{a_t}} = \mathbf{x}_0 + \sqrt{\frac{1}{a_t} - 1} \,\mathbf{z}$$

Let $\sqrt{\frac{1}{a_t}-1}=\sigma_t$. Then: $x_t^{VE}=\frac{x_T^{VP}}{\sqrt{a_t}}$

ECE NTUA Thesis Defense 61 / 78

Bijective Relation between VP and VE SDEs (4/4)

We deduce the following bijections:

$$x_t^{VE} \longleftrightarrow \frac{x_t^{VP}}{\sqrt{a_t}}$$
 (4)

$$\sigma_t \longleftrightarrow \sqrt{\frac{1}{a_t} - 1}$$
 (5)

$$\frac{1}{1+\sigma_t^2} \longleftrightarrow a_t \tag{6}$$

Therefore, we can use a model trained on one SDE to solve the other.

ECE NTUA Thesis Defense 62 / 78

Transforming DDIM for Score-based models (1/3)

 We now reparameterize DDIM (which solves the VP SDE) in order to employ score-based models (which are trained to solve the VE SDE).

$$\mathbf{x}_{t-1}^{VP} \leftarrow \sqrt{a_{t-1}} \, \mathbf{x}_{0t}^{VP} + \sqrt{1 - a_{t-1}} \, \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}^{VP}) \Longleftrightarrow$$

$$\mathbf{x}_{t-1}^{VP} \leftarrow \sqrt{a_{t-1}} \, \frac{\mathbf{x}_{t}^{VP} - \sqrt{1-a_{t}} \, \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_{t}^{VP})}{\sqrt{a_{t}}} + \sqrt{1-a_{t-1}} \, \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_{t}^{VP}) \stackrel{\mathsf{Eq.}}{\Longleftrightarrow}$$

$$\mathbf{x}_{t-1}^{VP} \leftarrow \sqrt{a_{t-1}} \, \frac{\mathbf{x}_t^{VP} + \sqrt{1 - a_t} \cdot \sqrt{1 - a_t} \, \mathbf{s}_{\theta}(\mathbf{x}_t^{VE}, t)}{\sqrt{a_t}} - \sqrt{1 - a_{t-1}} \cdot \sqrt{1 - a_t} \, \mathbf{s}_{\theta}(\mathbf{x}_t^{VE}, t)$$

$$\mathbf{x}_{t-1}^{VP} \leftarrow \sqrt{a_{t-1}} \, \frac{\mathbf{x}_t^{VP} + (1-a_t) \, \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t^{VE}, t)}{\sqrt{a_t}} - \sqrt{1-a_{t-1}} \, \cdot \sqrt{1-a_t} \, \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t^{VE}, t)$$

ECE NTUA Thesis Defense 63 / 78

Transforming DDIM for Score-based models (2/3)

- Score-based models are trained on VE SDEs, hence their input must be accordingly perturbed. Therefore, every time we input \mathbf{x}_t into our model, we must first divide it by $\sqrt{a_t}$ as by Eq. (4).
- We divide both members of the last iteration rule by a_{t-1} . At the same time, we know that \mathbf{x}^{VE} and \mathbf{x}^{VP} converge to the same \mathbf{x}_0 , as a_t is slowly decreasing. Based on the above and Eq. (4) we get:

$$\mathbf{x}_{t-1}^{VE} \leftarrow \frac{\sqrt{a_t}\,\mathbf{x}_t^{VE} + (1-a_t)\,\mathbf{s}_{\theta}(\mathbf{x}_t^{VE},t)}{\sqrt{a_t}} - \frac{\sqrt{1-a_{t-1}}\,\cdot\sqrt{1-a_t}}{\sqrt{a_{t-1}}}\,\mathbf{s}_{\theta}(\mathbf{x}_t^{VE},t) \Longleftrightarrow$$

$$\mathbf{x}_{t-1}^{VE} \leftarrow \mathbf{x}_{t}^{VE} + \frac{(1-a_{t})\mathbf{s}_{\theta}(\mathbf{x}_{t}^{VE}, t)}{\sqrt{a_{t}}} - \frac{\sqrt{1-a_{t-1}} \cdot \sqrt{1-a_{t}}}{\sqrt{a_{t-1}}} \mathbf{s}_{\theta}(\mathbf{x}_{t}^{VE}, t) \Longleftrightarrow$$

$$\mathbf{x}_{t-1}^{VE} \leftarrow \!\! \mathbf{x}_{t}^{VE} + \left[\frac{1-a_{t}}{\sqrt{a_{t}}} - \frac{\sqrt{1-a_{t-1}} \cdot \sqrt{1-a_{t}}}{\sqrt{a_{t-1}}} \right] \mathbf{s}_{\theta}(\mathbf{x}_{t}^{VE}, t)$$

ECE NTUA Thesis Defense 64 / 78

Transforming DDIM for Score-based models (3/3)

From Eq. (6), we obtain:

$$1 - a_t = 1 - \frac{1}{1 + \sigma_t^2} = \frac{\sigma_t^2}{1 + \sigma_t^2} \tag{7}$$

From Eq. (7) and (6), we obtain:

$$\begin{aligned} \mathbf{x}_{t-1}^{VE} \leftarrow & \mathbf{x}_{t}^{VE} + \left[\frac{\frac{\sigma_{t}^{2}}{1 + \sigma_{t}^{2}}}{\sqrt{\frac{1}{1 + \sigma_{t}^{2}}}} - \frac{\sqrt{\frac{\sigma_{t-1}^{2}}{1 + \sigma_{t-1}^{2}}} \cdot \sqrt{\frac{\sigma_{t}^{2}}{1 + \sigma_{t}^{2}}}}{\sqrt{\frac{1}{1 + \sigma_{t-1}^{2}}}} \right] \mathbf{s}_{\theta}(\mathbf{x}_{t}^{VE}, t) \Longleftrightarrow \\ \mathbf{x}_{t-1}^{VE} \leftarrow & \mathbf{x}_{t}^{VE} + \left[\frac{\sigma_{t}^{2}}{\sqrt{1 + \sigma_{t}^{2}}} - \frac{\sigma_{t-1} \cdot \sigma_{t}^{2}}{\sqrt{1 + \sigma_{t}^{2}}} \right] \mathbf{s}_{\theta}(\mathbf{x}_{t}^{VE}, t) \Longleftrightarrow \\ \mathbf{x}_{t-1}^{VE} \leftarrow & \mathbf{x}_{t}^{VE} + \frac{\sigma_{t}}{\sqrt{1 + \sigma_{t}^{2}}} \left[\sigma_{t} - \sigma_{t-1} \right] \mathbf{s}_{\theta}(\mathbf{x}_{t}^{VE}, t) \end{aligned}$$

ECE NTUA Thesis Defense 65 / 78

Score-based Implicit Model

We name the last iterative procedure *Score-based Implicit Model* (*SBIM*), since it has been derived in our endeavor to perform DDIM using a score model.

Score-based Implicit Model

$$\mathbf{x}_{t-1} \leftarrow \mathbf{x}_t + \frac{\sigma_t}{\sqrt{1 + \sigma_t^2}} \left[\sigma_t - \sigma_{t-1} \right] \mathbf{s}_{\theta}(\mathbf{x}_t, t)$$

ECE NTUA Thesis Defense 66 / 78

Guided Score-based Implicit Model

We want to incorporate the measurements y into SBIM to solve inverse problems. Following Jalal et al.'s reasoning, we obtain:

Guided Score-based Implicit Model

$$\mathbf{x}_{t-1} \leftarrow \mathbf{x}_t + \frac{\sigma_t}{\sqrt{1 + \sigma_t^2}} \left[\sigma_t - \sigma_{t-1} \right] \left(\mathbf{s}_{\theta}(\mathbf{x}_t, t) + \frac{A^H(\mathbf{y} - A\mathbf{x}_t)}{\sigma_{\mathbf{y}}^2} \right)$$

ECE NTUA Thesis Defense 67 / 78

A little stochasticity always helps

- A Predictor-Corrector (PC) sampler repeats on every iteration:
 - one step using a predictor
 - several steps using a corrector
- We choose **Guided SBIM** as a predictor and **Langevin Dynamics** as a corrector ⇒ **Guided SBIM with LD corrector**
- Following Jolicoeur-Martineau et al. ¹³, we also add an extra denoising step at the end of generation.

ECE NTUA Thesis Defense 68 / 78

¹³Alexia Jolicoeur-Martineau et al. Adversarial score matching and improved sampling for image generation. 2020.

Guided SBIM with Langevin Dynamics Corrector

Guided SBIM with LD corrector

Require:
$$\{\sigma_t\}_{t=0}^N$$
, M
1: $\mathbf{x}_T \sim \mathcal{N}(0, I)$

2: **for**
$$t \leftarrow T$$
 to 1 **do**

3:
$$\mathbf{x}_{t-1} \leftarrow \mathbf{x}_t + \frac{\sigma_t}{\sqrt{1+\sigma_t^2}} \left(\sigma_t - \sigma_{t-1} \right) \cdot \left(s_{\theta}(\mathbf{x}_t, t) + \frac{A^H(\mathbf{y} - A\mathbf{x}_t)}{\sigma_{\mathbf{y}}^2} \right)$$

4:
$$\alpha_i \leftarrow \epsilon \cdot \sigma_t^2 / \sigma_L^2$$

5: **for**
$$i \leftarrow 1$$
 to M **do**

6:
$$z \sim \mathcal{N}(0, I)$$

7:
$$\mathbf{x}_{t-1} \leftarrow \mathbf{x}_{t-1} + \frac{\alpha_i}{2} \left(s_{\theta}(\mathbf{x}_{t-1}, t-1) + \frac{A^H(y - A\mathbf{x}_{t-1})}{\sigma_y^2} \right) + \sqrt{\alpha_i} z$$

8: **return**
$$\mathbf{x}_0 + \sigma_0^2 s_\theta(\mathbf{x}_0, \sigma_0)$$

ECE NTUA Thesis Defense 69 / 78

Compressed Sensing MRI using SBIM

ECE NTUA Thesis Defense 70 / 78

Multi-coil Compressed Sensing MRI in a nutshell

Inverse Problem: Recover a signal $\mathbf{x} \in \mathbb{C}^N$ given measurements $\mathbf{y} \in \mathbb{C}^M$ (possibly perturbed).

$$\mathbf{y} = A \mathbf{x} + \mathbf{w}, \quad \mathbf{w} \sim \mathcal{N}_{\mathcal{C}}(0, \sigma_{\mathbf{y}}^2 I)$$

Multi-coil MRI:

$$\mathbf{y}_i = PFS_i\,\mathbf{x} + \mathbf{w}$$

pointwise multiplication of the i_{th} coil sensitivity map spatial Fourier transform

k-space sampling operator

ECE NTUA Thesis Defense 71 / 78

Experiment Configuration

Test dataset: 200 brain MRIs from the fastMRI dataset¹⁴.

Neural Net:

- NCSNv2 (RefineNet backbone, publicly available at Jalal et al.¹⁵'s official Github repository)
- Pretrained on 14,539 brain MRIs.

Evaluation Metrics:

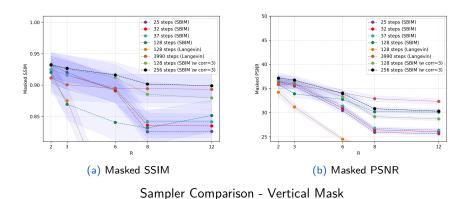
- Structural Similarity Index (SSIM): quantifies image quality degradation caused by processing.
- Peak signal-to-noise ratio (PSNR): quantifies the noise corrupting a signal.

ECE NTUA Thesis Defense 72 / 78

¹⁴ Jure Zbontar et al. "fastMRI: An Open Dataset and Benchmarks for Accelerated MRI". In: 2018.

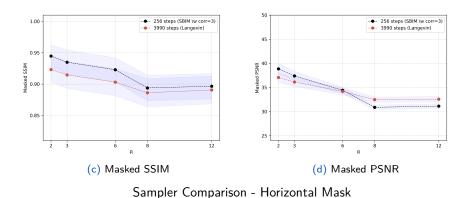
¹⁵Jalal et al., "Robust Compressed Sensing MRI with Deep Generative Priors".

Experimental Results (1/2)



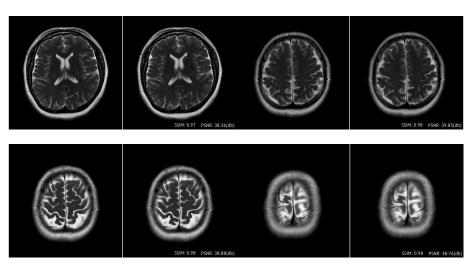
ECE NTUA Thesis Defense 73 / 78

Experimental Results (2/2)



ECE NTUA Thesis Defense 74 / 78

Sample Reconstructions

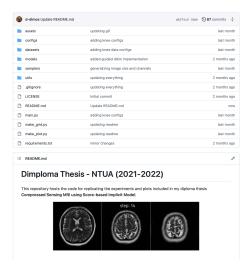


R=4, 96 steps (32 predictor steps with 2 corrector steps)

ECE NTUA Thesis Defense 75 / 78

Code

Code available at: https://github.com/d-dimos/thesis_ntua_sbim



Conclusion

Summary

- We propose (Guided) Score-based Implicit Model and a variation that also uses LD corrector.
- We evaluate our samplers' performance on Compressed Sensing MRI.
- Our Guided SBIM with LD corrector beats the pure LD inverse problem framework in terms of SSIM, PSNR and speed.

Future Directions

- Compare samplers on out-of-distribution data (e.g. knee MRIs).
- Compare samplers using diffusion models.
- Apply knowledge distillation algorithms for sampling acceleration.

ECE NTUA Thesis Defense 77 / 78

Fin