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Introduction

Introduction
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Introduction

General definitions

Generative model: captures (a representation) of the distribution p(x)

z
latent

variable
p(·) x

new
datum

Discriminative model: captures the conditional probability p(y|x)

x
existing
datum

p(·|x) y
class
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Introduction

Famous deep generative models (1/2)

x D(x) 0/1

z G(z) x′

Generative Adversarial Networks (GANs)

x E(x) z D(z) x′

Variational Autoencoders (VAEs)
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Introduction

Famous deep generative models (2/2)

xT xT−1 xT−2 . . . x2 x1 x0

Diffusion Models and Score-based Models

In literature, both models are often referred to as diffusion-based models,
or simply diffusion models.
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Introduction

Why diffusion-based models?

Diffusion models have become increasingly popular the last 3 years. Why?
State-of-the-art performance on many downstream tasks, such as:

image generation (beating even GANs !!!)
audio synthesis
shape generation
music generation

Can be incorporated to solve inverse problems, among which are:
inpainting
deblurring
colorization
compressed sensing
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Score-based Generative Modeling

Score-based Generative Modeling
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Score-based Generative Modeling

Diffusion-based Generation Ingredients

x

neural net

x← f(x,⋆)

sampler

a neural net: produces a mathematical quantity (⋆)
a sampler: an iterative procedure that updates x using ⋆.
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Score-based Generative Modeling

Langevin Dynamics

The first sampler for score-based models: Langevin Dynamics.

xt ← xt−1 +
ϵ

2
∇x log p(xt−1)︸ ︷︷ ︸

score function

+
√
ϵ zt

p(x): distribution of x

ϵ > 0: fixed step

zt ∼ N (0, I ): Gaussian noise

x0 ∼ π(x): initial value from known prior
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Score-based Generative Modeling

Intuition

xt ← xt−1 +
ϵ

2
∇x log p(xt−1) +

√
ϵ zt

Start from random point x0

Repeat:

Move towards a maximum of p(x) (using ∇x log p(x))

Inject a little noise (√ϵ z) to avoid collapses into local maxima
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Score-based Generative Modeling

Challenges

We cannot have access to ∇x log p(x). Why?

1. the manifold hypothesis: most datasets live in low dimensional
manifold embedded in a high dimensional space.

Space where no x lives ⇒ ∇x log p(x) is undefined

2. low data density regions: even if we could move within the manifold,
available data may not be covering all its areas ⇒ cannot estimate
∇x log p(x).
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Score-based Generative Modeling

Solution (1/2)

Gaussian noise does not suffer from these challenges

Perturbing the data with Gaussian noise mitigates them.

But if we add too much noise, we damage quality

and if we add too little, we suffer from the challenges.
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Score-based Generative Modeling

Solution (2/2)

Let qσ(x̃|x) be Gaussian noise

Perturbing the data yields: qσ(x̃) ≜
∫
qσ(x̃|x) p(x) dx

It is proven1 that we CAN learn ∇x̃ log qσ(x̃).

1Aapo Hyvärinen. “Estimation of Non-Normalized Statistical Models by Score Matching”. In:
J. Mach. Learn. Res. (2005), pp. 695–709.
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Score-based Generative Modeling

Learning ∇x log qσ(x): Score matching

Score matching2 : a technique to learn ∇x̃ log qσ(x̃).
Two popular ways to perform score matching:

Denoising score matching3

Sliced score matching4

Both are equally effective. We adopt denoising score matching, since it
is slightly faster.

2Hyvärinen, “Estimation of Non-Normalized Statistical Models by Score Matching”.
3Pascal Vincent. “A Connection between Score Matching and Denoising Autoencoders”. In:

Neural Comput. (2011).
4Yang Song et al. “Sliced Score Matching: A Scalable Approach to Density and Score

Estimation”. In: Proceedings of the 35th Uncertainty in Artificial Intelligence Conference. 2020,
pp. 574–584.
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Score-based Generative Modeling

Denoising score matching

The objective function our network has to minimize is proven5 equal to:

1

2
Eqσ(x̃|x)p(x)

[
||sθ(x̃, σ)−∇x̃ log qσ(x̃|x)||22

]
∇x̃ log qσ(x̃|x) is tractable since qσ(x̃|x) is Gaussian.

The optimal network sθ(x̃, σ) satisfies sθ(x̃, σ) = ∇x̃ log qσ(x̃) (almost surely).

When σ → 0: sθ(x̃, σ) = ∇x̃ log qσ(x̃) ≈ ∇x log p(x).

5Vincent, “A Connection between Score Matching and Denoising Autoencoders”.
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Score-based Generative Modeling

Noise Conditional Score Networks

Pre-specify a noise schedule {σi}Li=1

σ1 must be large (too much noise)

σL must be small (almost no noise)

A model sθ(x, σ) that is trained to learn ∇x̃ log qσ(x̃), ∀σ ∈ {σi}Li=1

is named Noise Conditional Score Network (NCSN).
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Score-based Generative Modeling

Annealed Langevin Dynamics (1/2)

If we performed Langevin Dynamics using ∇x̃ log qσ(x̃) for some
σ ∈ {σi}Li=1 then we will sample from qσ(x̃). Not good enough!

Begin with ∇x̃ log qσ1(x̃) and reduce σi by a scale on every iteration.

Then x̃t ”has enough time” to reach a region with well defined score.

When σi → 0 we end up sampling from qσ(x̃) ≈ p(x).
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Score-based Generative Modeling

Annealed Langevin Dynamics (2/2)

This modification of Langevin Dynamics is inspired by simulated annealing
and is called Annealed Langevin Dynamics:

x̃t ← x̃t−1 +
αi

2
sθ(x̃t−1, σi) +

√
αi zt

αi is also decreased at every step.
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Score-based Generative Modeling

Score-based Modeling in a nutshell (1/2)

Training an NCSN

∇x̃log qσ(x̃|x) = ∇x̃

{
log

( 1

σ
√
2π

)
− 1

2

( x̃− x

σ

)2
}

= − x̃− x

σ2

Denoising score matching objective:

ℓ(θ, σ) ≜ 1

2
EpEx̃∼N (x,σ2I)

[∣∣∣∣∣∣∣∣sθ(x̃, σ) + x̃− x

σ2

∣∣∣∣∣∣∣∣2]

Combined for all noise scales σ:

L(θ, {σi}Li=1) ≜
1

L

L∑
i=1

λ(σi)ℓ(θ, σi)
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Score-based Generative Modeling

Score-based Modeling in a nutshell (2/2)

Inference

Annealed Langevin Dynamics
Require: {σ}Li=1, ϵ, T

1: Initialize x̃0

2: for i← 1 to L do
3: αi ← ϵ · σ2

i /σ
2
L

4: for i← 1 to T do
5: zt ∼ N (0, I)
6: x̃t ← x̃t−1 +

αi
2 sθ(x̃t−1, σi) +

√
αi zt

7: x̃0 ← x̃Treturn x̃0
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Score-based Generative Modeling

Recall our diffusion-based recipe

x

score network

∇x logqσ(x) Annealed
Langevin
Dynamics

sampler
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Score-based Generative Modeling

Visualization of Langevin Dynamics

Three random sampling trajectories generated with Langevin dynamics. Credits:6

6Ling Yang et al. Diffusion Models: A Comprehensive Survey of Methods and Applications.
2022.
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Diffusion Models

Diffusion Models
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Diffusion Models

Introduction

Diffusion makes a datum to gradually lose its structure.

Example: an image gradually turning into Gaussian noise.

Backward diffusion is the reverse procedure.

Example: Gaussian noise gradually taking the shape of an image.

Forward diffusion is easy: gradually add noise to an datum.

Reverse diffusion is not: it allows data generation from noise.
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Diffusion Models

Forward Diffusion (1/3)

The forward diffusion process is fixed and known.
Sample a datum: x0 ∼ p(x)

Set the diffusion steps T

Set a variance schedule: {βt ∈ (0, 1)}Tt=1

Set a diffusion kernel (here gaussian):

q(xt|xt−1) = N (xt;
√
1− βt xt−1, βt I)
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Diffusion Models

x0 xt xt−1 xT

. . . . . .

q(xt−1|xt)

q(xt|xt−1)

unknown

known

Forward and Reverse Diffusion Processes
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Diffusion Models

Forward diffusion (2/3)

We can directly calculate xt for any forward diffusion step:

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ

where:

◦ αt = 1− βt

◦ ᾱt =
∏t

i=0 αi

◦ ϵ ∼ N (0, I)
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Diffusion Models

Forward diffusion (3/3)

Proof.
Let us draw xt ∼ q(xt|xt−1) = N (xt;

√
1− βt xt−1, βt I). Then:

xt =
√
at xt−1 +

√
1− at ϵt−1 where ϵt−1 ∼ N (0, I)

=
√
at

[√
at−1 xt−2 +

√
1− at−1 ϵt−2

]
+
√
1− at ϵt−1 where ϵt−2 ∼ N (0, I)

=
√
atat−1 xt−2 +

√
at − atat−1 ϵt−2 +

√
1− at ϵt−1︸ ︷︷ ︸

The underbraced quantity is the sum of two gaussian distributions with different variances,
N (0, σ2

1I) and N (0, σ2
2I). This sum can be expressed as: N (0, (σ2

1 + σ2
2)I). Therefore:

xt =
√
atat−1 xt−2 +

√
1− atat−1 ϵ̄t−2 where ϵ̄t−2 ∼ N (0, I)

By repeating this thinking, xt finally becomes equal to:

xt =
√
āt x0 +

√
1− āt ϵ where ϵ ∼ N (0, I)
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Diffusion Models

Backward diffusion (1/6)

When β → 0, the backward diffusion kernel has the form of the
forward one7 =⇒ q(xt−1|xt) is also Gaussian.

To calculate q(xt−1|xt), we need to use the entire dataset. Bad idea!

We’ll use a diffusion model to help approximate it.

The reverse diffusion kernel will be:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

Make µθ(xt, t) and Σθ(xt, t) tractable, and we’re done!

7William Feller. “On the Theory of Stochastic Processes, with Particular Reference to
Applications”. In: Proceedings of the [first] Berkeley Symposium on Mathematical Statistics and
Probability. 1949.
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Diffusion Models

Backward Diffusion (2/6)

Notice that q(xt−1|xt) is not tractable, but q(xt−1|xt,x0) is:

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI)

Therefore, we’ll approximate q(xt−1|xt,x0), instead.
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Diffusion Models

Backward Diffusion (3/6)

We apply Bayes’ rule:

q(xt−1|xt,x0) = q(xt|xt−1,x0)
q(xt−1|x0)

q(xt|x0)

∝ exp
[
−

1

2

( (xt −
√
αtxt−1)2

βt
+

(xt−1 −
√
ᾱt−1x0)2

1− ᾱt−1
−

(xt −
√
ᾱtx0)2

1− ᾱt︸ ︷︷ ︸
C′(xt,x0)

)]

= exp
[
−

1

2

(x2
t − 2

√
αtxtxt−1+αtx2

t−1

βt
+

x2
t−1−2

√
ᾱt−1x0xt−1+ᾱt−1x2

0

1− ᾱt−1
− C′

)]
= exp

[
−

1

2

(
(
αt

βt
+

1

1− ᾱt−1
)︸ ︷︷ ︸

A

x2
t−1 − (

2
√
αt

βt
xt +

2
√
ᾱt−1

1− ᾱt−1
x0)︸ ︷︷ ︸

B

xt−1+C(xt,x0)︸ ︷︷ ︸
Γ

)]

Where C(xt,x0) is a function not involving xt−1.
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Diffusion Models

Backward Diffusion (4/6)

= exp
[
− 1

2

(
Ax2

t−1 −B xt−1 + Γ
)]

= exp
[
− 1

2

(√
Axt−1 −

B

2
√
A

)2

−
(

B

2
√
A

)2

+ Γ
]

∝ exp
[
− 1

2

(√
Axt−1 −

B

2
√
A

)2]

= exp
[
− 1

2

(
xt−1 − B

2A
1√
A

)2]
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Diffusion Models

Backward Diffusion(5/6)

Since q(xt−1|xt,x0) is Gaussian, it is now clear that:

µ̃(xt,x0) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt
1− ᾱt

x0

β̃t =
1− ᾱt−1
1− ᾱt

βt

But we don’t know x0.

In fact, we can’t know x0 during backward diffusion.
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Diffusion Models

Backward Diffusion (6/6)

Recall that we can directly calculate xt for any forward diffusion step:

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ

Solve for x0:

x0 =
1√
āt

(
xt −

√
1− āt ϵ

)
Plug in µ̃(xt,x0):

µ̃(xt,x0) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
We now train our diffusion model to predict ϵt.
And we’ve finished!
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Diffusion Models

Training the model (1/2)

We want the model to predict ϵθ(xt, t):

µ̃θ(xt, t) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)

The model must minimize the difference between µ̃θ(xt, t) and µ̃(xt,x0).

Lt = Ex0,ϵ

[ 1

2∥Σθ(xt, t)∥22
∥µ̃t(xt,x0)− µθ(xt, t)∥2

]
= Ex0,ϵ

[ 1

2∥Σθ∥22
∥

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt
)
−

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
∥2

]
= Ex0,ϵ

[ (1− αt)2

2αt(1− ᾱt)∥Σθ∥22
∥ϵt − ϵθ(xt, t)∥2

]
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Diffusion Models

Training the model (2/2)

This simplified training loss was empirically found8 to work better:

Lt = Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥2

]
Final objective: Lfinal = Lt + C, where C is a constant not dependent on θ.

8Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic Models”. In:
Advances in Neural Information Processing Systems. 2020, pp. 6840–6851.
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Diffusion Models

Ancestral Sampling

Sampling is now straightforward.

In general, when x ∼ N (µ, σ2 I), then: x = µ+ σϵ

Therefore: to sample from q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), σt
2I),

which we approximate via a neural net as N (xt−1; µ̃θ(xt, t), σt
2I), we

do the following:

xt−1 = µ̃θ(xt, t) + σt ϵ =⇒

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
+ σt ϵ

This sampler is named Ancestral Sampling.
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Diffusion Models

Recall our diffusion-based recipe

x

diffusion net

ϵθ(xt, t) Ancestral
Sampling

sampler
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Diffusion Models

Denoising Diffusion Implicit Model (DDIM)

How will we accelerate reverse diffusion?

Reduce steps, i.e. update every ⌈T/S⌉ steps (S < T ) =⇒ quality is
severely damaged.

Denoising Diffusion Implicit Model9 (DDIM) is a sampler that
reparameterizes the reverse diffusion, allowing for less steps with
significantly less quality loss.

DDIM simulates a reverse procedure, whose forward procedure is not
a diffusion =⇒ Implicit.

9Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising Diffusion Implicit Models”.
In: 9th International Conference on Learning Representations, ICLR. 2021.
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Diffusion Models

DDIM Derivation (1/3)
Diffusion models approximate: q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI)

Let: β̃t = σ2
t

We have seen that: xt−1 =
√
ᾱt−1x0 +

√
1− ᾱt−1ϵt−1

Therefore:

xt−1 =
√
ᾱt−1x0 +

√
1− ᾱt−1ϵt−1

=
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ϵt + σtϵ

=
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtx0√

1− ᾱt
+ σtϵ =⇒

q(xt−1|xt,x0) = N (xt−1;
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtx0√

1− ᾱt
, σ2

t I)
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Diffusion Models

DDIM Derivation (2/3)

q(xt−1|xt,x0) = N (xt−1;
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtx0√

1− ᾱt
, σ2

t I)

Set σ2
t = η · β̃t (η ∈ R controls sampling stochasticity).

η = 0 sampler becomes deterministic. This is DDIM.

η = 1 =⇒ sampler becomes Ancestral Sampling.
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Diffusion Models

DDIM Derivation (3/3)

Setting η = 0, we get DDIM:

xt−1 =
√
ᾱt−1x0 +

√
1− ᾱt−1ϵt−1 =⇒

xt−1 =
√
ᾱt−1

xt −
√
1− āt · ϵθ(xt, t)√

āt
+
√

1− ᾱt−1 ϵθ(xt, t)

Produces best results when performed on a subset of the T steps.
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Diffusion Models

Recall our diffusion-based recipe

x

diffusion net

ϵθ(xt, t)

DDIM

sampler
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Generation through Stochastic Differential Equations (SDEs)

Generation through Stochastic Differential
Equations (SDEs)
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Generation through Stochastic Differential Equations (SDEs)

Continuous diffusion with SDEs (1/2)

Both score-based and diffusion models perturb the data using a noise
schedule, lets say {σi}Ni=1.

If N →∞ and σi+1 − σi ≈ 0 then {σi}Ni=1 becomes continuous σ(t).

The noise perturbation procedure becomes a continuous-time
stochastic process10.

Such processes are solutions to SDEs.

An SDE has a corresponding reverse SDE.

10Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential
Equations”. In: International Conference on Learning Representations. 2021.
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Generation through Stochastic Differential Equations (SDEs)

Continuous diffusion with SDEs (2/2)

General forward SDE: dx = f(x, t) dt+ g(t) dw

General reverse SDE: dx =
[
f(x, t)− g2(t)∇xlog pt(x)

]
dt+ g(t) dw

f(x, t): drift coefficient
g(t): diffusion coefficient
w: standard Brownian motion
dw: infinitesmall white noise
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Generation through Stochastic Differential Equations (SDEs)

SDE that describes score-based modeling

Markov chain for score-based modeling:

xi = xi−1 +
√
σ2
i − σ2

i−1 zi−1

As {σi}Li=0 → σ(t): the Markov chain {x}Li=0 becomes a stochastic
process {x(t)}1t=0

{x(t)}1t=0 is the solution to the following SDE:

dx =

√
d[σ2(t)]

dt
dw

called Variance Exploding (VE) SDE, since σ(t) ∈ (0,+∞).
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Generation through Stochastic Differential Equations (SDEs)

SDE describing diffusion modeling

Markov chain for diffusion:

xi =
√

1− βi xi−1 +
√

βi zi−1

As {βi}Ti=0 → β(t): the Markov chain {x}Li=0 becomes a stochastic
process {x(t)}1t=0

{x(t)}1t=0 is the solution to the following SDE:

dx = −1

2
β(t)xdt+

√
β(t)dw

called Variance Preserving (VP) SDE, since βi ∈ (0, 1].
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Generation through Stochastic Differential Equations (SDEs)

A unified framework

Diffusion-based methodologies are discretizations of reverse SDE
solving.

A diffusion-based model can be fully determined by an SDE.

For training we now use infinite noise scales to perturb the data.

Sample using ANY SDE solver that solves the reverse SDE of
the one that the model was trained on.

Langevin dynamics is a reverse VE SDE solver.

Ancestral sampling is a reverse VP SDE solver.
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Generation through Stochastic Differential Equations (SDEs)

Recall our diffusion-based recipe

x

diffusion/score net

SDE

Solver

sampler
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Solving Inverse Problems using Score-based Models

Solving Inverse Problems using Score-based
Models
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Solving Inverse Problems using Score-based Models

Definition of a linear inverse problem

Linear inverse problem (definition in the context of this thesis):
Recover a signal x ∈ CN given some measurements y ∈ CM .

y = Ax+w , w ∼ NC(0, σ2I)

Corruption matrix A ∈ CM×N : it allows for a small quantity of x’s
information to survive in y, i.e. the system is underdetermined.

= ×

1
1

nm +w

No unique solution. We want to recovering the most probable one.
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Solving Inverse Problems using Score-based Models

How score-based models solve inverse problems (1/2)

Let x ∼ p.

We can train a score-based model and sample from p(x) via Langevin
Dynamics.

But this would produce random samples. What about the
measurements y?

We must sample from p(x|y).
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Solving Inverse Problems using Score-based Models

How score-based models solve inverse problems (2/2)

Since y|x is Gaussian (y = Ax+w) =⇒ ∇x log p(y|x) = AH(y−Ax)
σ2

By applying Bayes’ rule, we obtain:

∇xlog p(x|y) = ∇xlog p(x) +∇x log p(y|x)

= ∇xlog p(x) + AH(y −Ax)

σ2

And Langevin Dynamics transforms into Guided Langevin Dynamics:

xt ← xt−1 +
αi

2
sθ(xt−1, σi) +

√
αi zt︸ ︷︷ ︸

⇓

xt ← xt−1 +
αi

2

[
sθ(xt−1, σi) +

AH(y −Axt−1)

σ2
y

]
+
√
αi zt
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Solving Inverse Problems using Score-based Models

Credits for Guided Langevin Dynamics

This result was achieved by Jalal et al. in their 2019 work11:
Robust Compressed Sensing MRI with Deep Generative Priors.

They proposed a general framework to solve linear inverse problems
using score-based models and applied it on Compressed Sensing MRI.

11Ajil Jalal et al. “Robust Compressed Sensing MRI with Deep Generative Priors”. In:
Advances in Neural Information Processing Systems (2019).
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Contribution - Score-based Implicit Model

Contribution - Score-based Implicit Model
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Contribution - Score-based Implicit Model

Purpose of this thesis

Guided Langevin Dynamics may need 4000 iterations to produce good
reconstructions =⇒ low sampling speed.

This thesis aims at speeding up this procedure: We want to use
pretrained score-based models to solve inverse problems but faster.

We propose two new samplers.

We test them by performing Compressed Sensing on brain MRIs.
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Contribution - Score-based Implicit Model

Bijective Relation between VP and VE SDEs (1/4)

A score model is trained to learn the following:

∇x̃t log p(x̃t) = −
x̃t − xt

σ2
= −σ ϵ

σ2
= − ϵ

σ

where ϵ ∼ N (0, I).

Considering VP SDE perturbations, we have:

∇x̃t log p(x̃t) = −
ϵ√

1− āt
(1)

This is a clear connection between a score-based and a diffusion
model.
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Contribution - Score-based Implicit Model

Bijective Relation between VP and VE SDEs (2/4)

The following proof is inspired by Kawar et al.12 (App. B).

The Variance Exploding and Variance Preserving specifications can be
considered equivalent up to rescaling of the noisy latents xt.

Proof.
noise schedule for VE SDE is: σt ∈ [0,+∞)

noise schedule for VP SDE is: at ∈ (0, 1] (at =
∏t

i=1(1− βt))

noise perturbations for VE: q(xV E
t |x0) = N (xV E

t ;x0, σ
2
t I)

noise perturbations for VP: q(xV P
t |x0) = N (xV E

t ;
√
atx0, (1− at)I)

12Bahjat Kawar et al. Denoising Diffusion Restoration Models. 2022.
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Contribution - Score-based Implicit Model

Bijective Relation between VP and VE SDEs (3/4)

When x follows a VE trajectory:

xV E
t = x0 + σt z, z ∼ N (0, I) (2)

When x follows a VP trajectory:

xV P
t =

√
at x0 +

√
1− at z, z ∼ N (0, I) (3)

Divide each member of Eq. 3 by √at:

xV P
t√
at

= x0 +

√
1

at
− 1 z

Let
√

1
at
− 1 = σt. Then: xV E

t =
xV P
T√
at
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Contribution - Score-based Implicit Model

Bijective Relation between VP and VE SDEs (4/4)

We deduce the following bijections:

xV E
t ←→ xV P

t√
at

(4)

σt ←→
√

1

at
− 1 (5)

1

1 + σ2
t

←→ at (6)

Therefore, we can use a model trained on one SDE to solve the other.
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Contribution - Score-based Implicit Model

Transforming DDIM for Score-based models (1/3)

We now reparameterize DDIM (which solves the VP SDE) in order to employ score-based
models (which are trained to solve the VE SDE).

xV P
t−1 ←

√
at−1 x

V P
0t +

√
1− at−1 ϵθ(x

V P
t )⇐⇒

xV P
t−1 ←

√
at−1

xV P
t −

√
1− at ϵθ(x

V P
t )

√
at

+
√

1− at−1 ϵθ(x
V P
t )

Eq.⇐⇒
(1)

xV P
t−1 ←

√
at−1

xV P
t +

√
1− at ·

√
1− at sθ(x

V E
t , t)

√
at

−
√

1− at−1 ·
√
1− at sθ(x

V E
t , t)

xV P
t−1 ←

√
at−1

xV P
t + (1− at) sθ(x

V E
t , t)

√
at

−
√

1− at−1 ·
√
1− at sθ(x

V E
t , t)

ECE NTUA Thesis Defense
Nov. 10, 2022

63 / 78



Contribution - Score-based Implicit Model

Transforming DDIM for Score-based models (2/3)

Score-based models are trained on VE SDEs, hence their input must be accordingly
perturbed. Therefore, every time we input xt into our model, we must first divide it by√
at as by Eq. (4).

We divide both members of the last iteration rule by at−1. At the same time, we know
that xV E and xV P converge to the same x0, as at is slowly decreasing. Based on the
above and Eq. (4) we get:

xV E
t−1 ←

√
at xV E

t + (1− at) sθ(x
V E
t , t)

√
at

−
√
1− at−1 ·

√
1− at

√
at−1

sθ(x
V E
t , t)⇐⇒

xV E
t−1 ←xV E

t +
(1− at) sθ(x

V E
t , t)

√
at

−
√
1− at−1 ·

√
1− at

√
at−1

sθ(x
V E
t , t)⇐⇒

xV E
t−1 ←xV E

t +

[
1− at√

at
−
√
1− at−1 ·

√
1− at

√
at−1

]
sθ(x

V E
t , t)
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Contribution - Score-based Implicit Model

Transforming DDIM for Score-based models (3/3)
From Eq. (6), we obtain:

1− at = 1− 1

1 + σ2
t

=
σ2
t

1 + σ2
t

(7)

From Eq. (7) and (6), we obtain:

xV E
t−1 ←xV E

t +

[ σ2
t

1+σ2
t√
1

1+σ2
t

−

√
σ2
t−1

1+σ2
t−1
·
√

σ2
t

1+σ2
t√

1
1+σ2

t−1

]
sθ(x

V E
t , t)⇐⇒

xV E
t−1 ←xV E

t +

[
σ2
t√

1 + σ2
t

− σt−1 · σ2
t√

1 + σ2
t

]
sθ(x

V E
t , t)⇐⇒

xV E
t−1 ←xV E

t +
σt√
1 + σ2

t

[
σt − σt−1

]
sθ(x

V E
t , t)
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Contribution - Score-based Implicit Model

Score-based Implicit Model

We name the last iterative procedure Score-based Implicit Model
(SBIM), since it has been derived in our endeavor to perform DDIM using
a score model.
Score-based Implicit Model

xt−1 ← xt +
σt√
1 + σ2

t

[
σt − σt−1

]
sθ(xt, t)
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Contribution - Score-based Implicit Model

Guided Score-based Implicit Model

We want to incorporate the measurements y into SBIM to solve inverse
problems. Following Jalal et al.’s reasoning, we obtain:

Guided Score-based Implicit Model

xt−1 ← xt +
σt√
1 + σ2

t

[
σt − σt−1

](
sθ(xt, t) +

AH(y −Axt)

σ2
y

)
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Contribution - Score-based Implicit Model

A little stochasticity always helps

A Predictor-Corrector (PC) sampler repeats on every iteration:
one step using a predictor
several steps using a corrector

We choose Guided SBIM as a predictor and Langevin Dynamics as
a corrector =⇒ Guided SBIM with LD corrector

Following Jolicoeur-Martineau et al.13, we also add an extra denoising
step at the end of generation.

13Alexia Jolicoeur-Martineau et al. Adversarial score matching and improved sampling for
image generation. 2020.
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Contribution - Score-based Implicit Model

Guided SBIM with Langevin Dynamics Corrector

Guided SBIM with LD corrector

Require: {σt}Nt=0, M
1: xT ∼ N (0, I)
2: for t← T to 1 do
3: xt−1 ← xt +

σt√
1+σ2

t

(
σt − σt−1

)
·
(
sθ(xt, t) +

AH(y−Axt)
σ2
y

)
4: αi ← ϵ · σ2

t /σ
2
L

5: for i← 1 to M do
6: z ∼ N (0, I)

7: xt−1 ← xt−1 +
αi
2

(
sθ(xt−1, t− 1) + AH(y−Axt−1)

σ2
y

)
+
√
αi z

8: return x0 + σ2
0 sθ(x0, σ0)
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Compressed Sensing MRI using SBIM
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Compressed Sensing MRI using SBIM

Multi-coil Compressed Sensing MRI in a nutshell

Inverse Problem: Recover a signal x ∈ CN given measurements y ∈ CM

(possibly perturbed).

y = Ax+w , w ∼ NC(0, σ2
yI)

Multi-coil MRI:
yi = PFSi x+w

k-space sampling operator

spatial Fourier transform

pointwise multiplication of the ith coil sensitivity map
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Compressed Sensing MRI using SBIM

Experiment Configuration

Test dataset: 200 brain MRIs from the fastMRI dataset14.

Neural Net:
NCSNv2 (RefineNet backbone, publicly available at Jalal et al.15’s
official Github repository)
Pretrained on 14,539 brain MRIs.

Evaluation Metrics:
Structural Similarity Index (SSIM): quantifies image quality
degradation caused by processing.
Peak signal-to-noise ratio (PSNR): quantifies the noise corrupting a
signal.

14Jure Zbontar et al. “fastMRI: An Open Dataset and Benchmarks for Accelerated MRI”. In:
2018.

15Jalal et al., “Robust Compressed Sensing MRI with Deep Generative Priors”.
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Compressed Sensing MRI using SBIM

Experimental Results (1/2)

(a) Masked SSIM (b) Masked PSNR

Sampler Comparison - Vertical Mask
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Compressed Sensing MRI using SBIM

Experimental Results (2/2)

(c) Masked SSIM (d) Masked PSNR

Sampler Comparison - Horizontal Mask
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Compressed Sensing MRI using SBIM

Sample Reconstructions

R = 4, 96 steps (32 predictor steps with 2 corrector steps)
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Compressed Sensing MRI using SBIM

Code
Code available at: https://github.com/d-dimos/thesis_ntua_sbim
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Compressed Sensing MRI using SBIM

Conclusion

Summary
We propose (Guided) Score-based Implicit Model and a variation that
also uses LD corrector.
We evaluate our samplers’ performance on Compressed Sensing MRI.
Our Guided SBIM with LD corrector beats the pure LD inverse
problem framework in terms of SSIM, PSNR and speed.

Future Directions
Compare samplers on out-of-distribution data (e.g. knee MRIs).
Compare samplers using diffusion models.
Apply knowledge distillation algorithms for sampling acceleration.
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Fin
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