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Περίληψη 

Τα τετράποδα ρομπότ έχουν γίνει δημοφιλή λόγω της ικανότητάς τους να διασχίζουν εδάφη 

που τα τροχοφόρα ρομπότ δεν μπορούν. Τα ρομπότ με πόδια μπορούν να ανεβαίνουν 

σκάλες, να περπατούν σε χωράφια που μπορεί να έχουν ανώμαλο έδαφος με λακκούβες και 

ακόμη να έχουν πρόσβαση σε σκηνές καταστροφής γεμάτες συντρίμμια. 

Στην παρούσα διπλωματική εργασία αναπτύσσονται αλγόριθμοι που σχετίζονται με τον 

σχεδιασμό κίνησης του τετράποδου ρομπότ “Άργος”. Το “Άργος” έχει σχεδιαστεί από την 

ομάδα “Legged Robots” του Εργαστηρίου Αυτόματου Ελέγχου και Ρυθμίσεως Μηχανών & 

Εγκαταστάσεων του ΕΜΠ και σκοπός του είναι η επιθεώρηση αμπελώνων. Έτσι, στο πλαίσιο 

αυτής της εργασίας, μία εργασία υψηλού επιπέδου όπως η μετακίνηση του ρομπότ με 

σταθερή ταχύτητα, μεταφράζεται σε ένα επιθυμητό σχέδιο κίνησης που μπορεί να εκτελέσει 

το τετράποδο. Οι ιδιοδεκτικοί αισθητήρες του “Άργους” παρέχουν τις απαραίτητες μετρήσεις 

ανάδρασης. 

Η κίνηση των συστημάτων με πόδια είναι δύσκολη λόγω της υποεπενέργησης τους. Η 

κίνηση του σώματος προς τα εμπρός δεν μπορεί να δημιουργηθεί άμεσα, αλλά προκύπτει 

από τις δυνάμεις επαφής μεταξύ των ποδιών και του περιβάλλοντος. Διερευνώνται τρεις 

διαφορετικοί αλγόριθμοι σχεδιασμού κίνησης, καθένας από τους οποίους έχει διαφορετικό 

επίπεδο πολυπλοκότητας και δυνατότητες κίνησης. 

Στο πρώτο σχήμα ελέγχου, τα πόδια ακολουθούν μια προκαθορισμένη συνεχή τροχιά 

στον Καρτεσιανό χώρο και η κίνηση του σώματος προκύπτει από τις δυνάμεις επαφής που 

δημιουργούνται κατά τη φάση της στάσης των ποδιών. Βασίζεται σε έναν προηγούμενο 

αλγόριθμο σχεδίου κίνησης που αναπτύχθηκε από την ομάδα “Legged Robots” [41], με τη 

διαφορά ότι εδώ η τροχιά του ποδιού ορίζεται από πολυωνυμικές καμπύλες. 

Στο δεύτερο σχήμα ελέγχου [23], η κίνηση του ρομπότ καθορίζεται από εντολές υψηλού 

επιπέδου που σχετίζονται με τη γραμμική και γωνιακή ταχύτητα του κύριου σώματος. Τα 

βήματα υπολογίζονται με βάση αυτές τις εντολές και από προβλέψεις που παρέχονται από 

απλοποιημένα δυναμικά μοντέλα. Η θέση του κυρίως σώματος ορίζεται σε σχέση με τη θέση 

των ποδιών και είναι επιθυμητό να γέρνει προς τα πόδια που βρίσκονται σε φάση στάσης. 

Υπολογίζονται οι εικονικές δυνάμεις που θα έπρεπε ιδανικά να ασκούνται στο κύριο σώμα και 

διαμορφώνεται ένα πρόβλημα βελτιστοποίησης για τη βέλτιστη κατανομή αυτών των 

δυνάμεων στα πόδια που είναι σε στάση. 

Η κίνηση του σώματος, οι κινήσεις των ποδιών και οι δυνάμεις επαφής είναι 

αλληλεξαρτώμενα μεγέθη, επομένως, η παραγωγή έγκυρων τροχιών για καθένα από αυτά 

μπορεί να είναι επίπονη ή ακόμα και ανέφικτη όταν η εργασία είναι πολύπλοκη. Για το λόγο 

αυτό, ο τελευταίος αλγόριθμος σχεδιασμού κίνησης [63] εστιάζει στην εύρεση αυτών των 

τροχιών με βέλτιστο και αυτοματοποιημένο τρόπο. Η βελτιστοποίηση τροχιάς είναι μια 

μέθοδος που παράγει βέλτιστα σχέδια κίνησης για κάθε εργασία υψηλού επιπέδου. Μόλις το 

πρόβλημα μοντελοποιηθεί σωστά και ληφθούν υπόψη οι φυσικοί περιορισμοί, μπορούν να 

παραχθούν οι τροχιές κάθε υποσυστήματος, έτσι ώστε ολόκληρο το σύστημα να οδηγηθεί 

στον επιθυμητό στόχο.  

Αυτή η Διπλωματική παρουσιάζει προσεγγίσεις για τη μετατροπή του φυσικού 

προβλήματος κίνησης σε ένα πρόβλημα μαθηματικής βελτιστοποίησης, το οποίο μπορεί να 

λυθεί με διαθέσιμο λογισμικό. Οι μεταβλητές απόφασης αποτελούνται από την εξαδιάστατη 

κίνηση του σώματος, τις θέσεις που θα πατήσουν τα πόδια, τις κινήσεις ποδιού στη φάση 

αιώρησης και τις δυνάμεις επαφής. Το τετράποδο διαμορφώνεται ως ένα ενιαίο άκαμπτο 
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σώμα που ελέγχεται από τις δυνάμεις επαφής. Η ακολουθία με την οποία κινούνται τα πόδια 

καθορίζεται από τον τύπο του βηματισμού. Έχει προταθεί μια παραλλαγή του βηματισμού 

«τροχασμού» (ή “trotting”), η οποία περιλαμβάνει επιπλέον φάσεις στάσης με όλα τα πόδια 

στο έδαφος, για την αποφυγή απότομων μεταβολών στις δυνάμεις επαφής όταν ένα πόδι 

έρχεται σε επαφή με το έδαφος. 

Οι τρεις αλγόριθμοι σχεδιασμού κίνησης που αναπτύχθηκαν επαληθεύτηκαν στο 

περιβάλλον προσομοίωσης Simscape Multibody. Τα προβλήματα βελτιστοποίησης 

ρυθμίστηκαν μέσω της CasADi, η οποία είναι μια εξωτερική βιβλιοθήκη που επιλύει με πολύ 

αποτελεσματικό τρόπο μη γραμμικά προβλήματα βελτιστοποίησης. 
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Abstract 

Quadruped robots have become popular due to their capability to traverse terrain that wheeled 

robots cannot. Legged robots can climb stairs, walk across fields that may have uneven terrain 

with puddles and even access debris-filled disaster scenes. 

In this thesis, algorithms that are related to the motion-planning of the quadruped Argos 

are developed. Argos is designed by the Legged Robots Team of the Control Systems Lab in 

NTUA, and its purpose is the inspection of vineyards. Thus, in the context of this work, a high-

level task which may be the locomotion of the robot with a constant speed, is translated into 

a desired motion-plan that the quadruped can execute. Argos’s proprioceptive sensors provide 

the necessary feedback measurements. 

Legged locomotion is challenging due to the system being underactuated. A forward body 

movement cannot be directly generated but results from contact forces between the feet and 

the environment. Three different motion planning algorithms are investigated, each of which 

has a different level of complexity and motion capabilities.  

In the first framework, the feet follow a predefined continuous trajectory in Cartesian space 

and the body motion arises from the contact forces generated during the feet’s stance phase. 

It is based on a prior motion plan algorithm that has been developed by the Legged Robots 

Team [41], but the main difference is that the foot trajectory is defined by polynomial splines. 

In the second control framework [23], the robot’s locomotion is specified by high-level 

commands related to the main body’s linear and angular velocity. The footsteps are calculated 

based on these commands and by predictions provided by simplified dynamic models. The 

main body’s position is defined relative to the feet’s position, and it is desirable that it leans 

towards the legs that are in stance phase. The virtual forces that should ideally act on the 

main body are calculated and an optimization problem is formulated for the optimal distribution 

of these forces to the stance legs. 

The body motion, the feet motions and the contact forces are interdependent quantities, 

thus, producing valid trajectories for each of them may be tedious or even infeasible when the 

task is complex. For this reason, the last motion planning algorithm [63] focuses on finding 

these trajectories in an optimal and automated way. Trajectory optimization is a method that 

produces optimal motion plans for any high-level task. Once the problem is properly modeled 

and the physical constraints are set up, the trajectories of each subsystem can be generated, 

so that the whole system is driven to the desired goal.  

This thesis presents approaches to transcribe the physical locomotion problem into a 

mathematical optimization problem, which can be solved by off-the-shelf software. The 

decision variables consist of the six-dimensional body motion, the footholds, the swing-leg 

motions, and the contact forces. The quadruped is modeled as a single rigid body controlled 

by the contact forces. The sequence in which the feet are moving is determined by the Gait 

pattern. A variation of the trotting gait, which include extra stance phases with all the feet on 

the ground, has been proposed to avoid abrupt changes in contact forces when a foot hits the 

ground.  

The three developed motion-planning algorithms have been verified in the Simscape 

Multibody simulation environment. The optimization problems are set up in CasADi, which is 

an external library that solves nonlinear optimization problems in a very efficient way. 
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1 Introduction 

Robotics has gained much attention in recent years. The goal is the construction of systems 

that can assist humans and replicate human actions in an automated way. For years, robots 

have been used mostly in the industry, as they can substitute humans in repetitive and tedious 

tasks, e.g., manufacturing, assembling, packaging, etc. Robotic systems are now intended to 

be used in disaster scenarios, such as in an area following an earthquake, or places where 

hazardous waste exists, which are risky to be approached by humans. Figure 1-1 shows 

pictures of animals performing highly dynamic motions and balancing on an almost vertical 

rock wall reliably. Legged animals possess natural abilities that currently outperform robotic 

systems. Compared to humans or animals, robots are not yet capable of fully autonomous 

movement in an uncontrolled environment. This challenge is addressed in this thesis. Three 

different motion planning algorithms are studied and proposed to yield alternative ways for the 

locomotion of a quadruped from an initial standing pose to a final one. 

 

 

 

(a) Cheetah running 

 

(b) Cheetah running (c) Goat climbing 

Figure 1-1. Legged animals performing highly dynamic motions. 

1.1 Motivation 

A major motivation for investigating legged locomotion is its usefulness in unstructured 

environments. Legged robots can traverse non-smooth, unstable terrain such as rocky terrain 

that wheeled robots or tracks cannot access. Quadrotors or gliders cannot carry heavy loads 

or manipulate objects the same way a ground vehicle can. Legged designs are powerful due 

to their versatility in accomplishing complex tasks. Both the natural and the urban environment 
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is mostly accessible by legged systems owing to their ability to take discrete steps. They are 

capable of crossing gaps to reach the opposite side, jump over obstacles, climbing stairs, and 

adapting to surface changes. No matter what the ground is, they can adjust their behavior to 

walk on roads, woods, grass or even mud without getting stuck. 

This thesis concerns the locomotion of the quadruped Argos, which is designed by the 

Legged Robots Team at Control Systems Lab – NTUA. Its main purpose is the inspection of 

vineyards, removing the need for daily human field presence. The motion planning algorithms 

studied herein use proprioceptive sensors feedback, and produce joint torques to force a 

quadruped move on flat terrain. The motion plans that are produced are based on optimization 

methods; an appropriate criterion is minimized while enforcing physical constraints. 

1.2 Literature Review 

At an early stage, trajectory generation arose from observations of animal gaits, leading to the 

investigation of efficient heuristics. In [50], the foot placement algorithm (FPA), proposed by 

Raibert, achieved balancing control of a hopping robot in terms of speed, posture, and height 

control. Another common physics-based heuristic that has proven to be highly influential in 

legged systems is the capture point heuristic which can be used when the robot is treated like 

a linear inverted pendulum [49]. Similar approaches approximate the full dynamics with the 

Spring-Loaded Inverted Pendulum (SLIP) model [12], which simplifies the high dimensional 

legged system problem to a small number of well-understood states. Regarding the earliest 

successful control schemes, the hydraulically actuated quadruped HyQ from IIT performs a 

trotting gait by employing a simple virtual model control approach that emulates the dynamic 

characteristics of linear springs for each leg [28]. Accordingly, dynamic quadruped trotting at 

various speeds is achieved using an active compliance controller to drive each leg [41]. 

The capabilities of legged robots can be further enhanced if the motion plans are 

determined by optimization methods. In a recent work, the Legged Robots Team has 

implemented CoM trajectory and footfalls optimization using MATLAB fmincon [16] and after 

that, a gait optimization algorithm was formulated using the TOWR optimization software [38]. 

Furthermore, the optimization algorithms that were developed in [15] led to life-like motions 

and dynamic gaits. It is worth mentioning that the second control framework presented in this 

thesis, is primarily based on [23], in which the robot’s posture was controlled through the 

optimal distribution of virtual forces, that should ideally act on the main body, to the stance 

legs. Finally, a really useful implementation of optimization is demonstrated in [46], where a 

Linear Program (LP) determines the online foothold selection and body motion generation 

while ensuring that the realization of the generated motion plans will not exceed the actuation 

limits. 

Approaches based on Model Predictive Control (MPC) have also shown promising 

results. The ΜΙΤ Cheetah 2 used MPC to place optimally its feet and adjust its pose before 

jumping over unexpected obstacles [48]. Its descendant, MIT Cheetah 3 stabilizes a diverse 

set of quadrupedal gaits by implementing a policy-regularized model-predictive control (PR-

MPC) [11], which biases the solution of the MPC towards common heuristics from the literature 

to accelerate the computations. The MPC formulation incorporates the system dynamics 

which can be approximated by common simplified models. MIT Cheetah 3 [10], [17], and Mini 

Cheetah [34] use Single Rigid Body Dynamics (SRBD) model, which is a good approximation 

of the real model and speeded up the computations greatly. The same dynamic model was 
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used in [39], where the trajectory optimization problem was formulated using a multiple 

shooting method, enabling a humanoid robot to climb stairs. 

A wide variety of methods can solve the optimal control problem. Differential Dynamic 

Programming (DDP), which is based on dynamic programming [40], is an optimal control 

algorithm in the class of trajectory optimization that has been applied successfully in legged 

systems. Iterative Linear Quadratic Gaussian Regulator (iLQG) [59] and Sequential Linear 

Quadratic Programming (SLQ) [55] are iterative methods that can handle nonlinear 

optimization problems. Another trajectory optimization formulation that generates plans for the 

body motion and the footholds using direct collocation with an SQP solver was proposed in 

[21]. It produces a coarse plan in a few seconds and due to the integration of simple state-

feedback laws and a hierarchical whole-body controller in the motion execution, the robot can 

successfully follow the motion plans and it is robust to perturbations. 

Some recent approaches overcome the restrictions that are applied to the achievable 

motions by the predefined contact schedule. The algorithms developed in [19], [42], [63] 

address only the contact sequence, but allow the optimization to eliminate specific phases by 

setting their duration to zero. A whole-body Nonlinear Model Predictive Control approach for 

Rigid Body Dynamics (RBD) systems subject to contacts, in which the contact locations, 

sequences and timings are optimized, is presented in [43]. The nonlinear optimal control 

problem was solved at a rate of 150 Hz for a time horizon of 0,5 s.  

1.3 Structure 

The current thesis is organized as follows. Chapter 2 presents the system parameters of 

Argos, which include the physical properties and the definition of the three degrees of freedom 

in each leg. Then, the forward and inverse kinematics are analyzed to relate the foot position 

to the body position through the angular positions of the joints. Next, the dynamic models that 

approximate the physical model of the quadruped are discussed. A static analysis follows that 

gives an estimation of the foot forces and the respective joint torques when the quadruped is 

in stance. Additionally, the simulation environment of Simscape, and how the foot-ground 

interaction is modelled, is described. Finally, the results of simulating the robot in stance are 

compared with those of the analytical solution. 

Chapter 3 describes the theory behind the optimal trajectory planning. The commonly 

used direct methods for the numerical solution of the trajectory optimization problem are 

analyzed and evaluated. Several gradient-based nonlinear programming solvers are listed, 

and the two most used solvers are compared. A two-link manipulator is stabilized at the upper 

position using the direct methods and two different optimization libraries which are also 

evaluated based on their computational speed. 

Chapter 4 can be separated in three main parts. The first part demonstrates a simple but 

effective control framework that is used for the locomotion of Argos. It consists of the gait 

scheduling, the definition of foot trajectories in Cartesian space which are mapped to joint 

angles through inverse kinematics and the implementation of a PD controller that tracks the 

desired motion plans. The second part describes a second motion planning approach, in which 

the robot tracks velocity and turn rate commands. Initially, a gait pattern is proposed and then 

the desired footholds and the foot trajectories are defined. The desired body pose is controlled 

by adjusting the virtual foot forces through the formulation of an optimization problem. A PD 

controller is also designed to track the desired foot trajectories. The last part develops the 



Introduction 
 

 
18/136 

implementation of a trajectory optimization algorithm using the Hermite-Simpson direct 

collocation method. Firstly, the techniques that can handle the discontinuous dynamics of the 

legged systems are explored and then the trajectory optimization problem is formulated step 

by step. The outputs are the optimal motions plans for the body pose, the foot trajectories and 

the foot forces that minimize the given objective function. In addition, the physical constraints 

are discussed analytically. Α section that presents the simulation results follows at the end of 

each motion planning approach.  

Finally, Chapter 5 discusses the importance of the results and the implications of the work 

developed. Then, several suggestions for future work are listed.  

Appendices contain helpful supplementary information Appendix A includes the code 

related to forward kinematics that was developed using Mathematica. Accordingly, Appendix 

B includes the code for the calculation of the geometric Jacobian. Appendix C provides 

supplementary information about the Simpson’s rule of integration. Appendix D and Appendix 

E describe the implementation of the two control frameworks in MATLAB-Simscape simulation 

environment and finally Appendix F refers to the code of the Trajectory Optimization 

formulation.  
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2 System Modelling 

2.1 Robot Model 

Argos is a quadruped robot (Figure 2-1, Figure 2-2) designed by the Legged Robots Team at 

Control Systems Lab – NTUA. Its main purpose is the inspection of vineyards. This is a 

complex task, but this work focuses on the robot’s motion planning. Argos is about 0.8 m tall 

and weighs 53 kg approximately. Each of the robot’s four legs has three torque-controlled 

joints: hip, knee, and abduction/adduction. The quadruped has 12 actuated degrees of 

freedom (DoFs) and 6 unactuated DoFs which describe its pose. To control the system, 

measurements/ estimations of all the joint angles 
12

j q , the joint velocities jq , as well as 

the pose 
6

b q and the velocities bq  of the main body are required. The position of each hip 

and foot at every time instance are obtained using the sensors’ measurements and the system 

kinematics. There are also pressure sensors installed on the feet that provide information 

whether a leg is in contact with the ground (ground force 0nF  ). 

Table 2-1, Table 2-2, and Table 2-3 list the robot’s parameters. M  is the mass of the 

body, and 1m , 2m , 3m  are the masses of upper segment, lower segment, and leg roll 

segment. The xxI , yyI , zzI  are the body and the four leg roll segments moments of inertia. The 

lengths listed in Table 2-3 are shown in Figure 2-1 and Figure 2-2. 

 

 

Figure 2-1. Geometrical properties of Argos - Left view. 
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Figure 2-2. Geometrical properties of Argos - Front view. 

 

Table 2-1. Robot’s mass properties. 

Body M  25 kg 

Leg upper segment 
1m   2.91 kg 

Leg lower segment 
2m  1.74 kg 

Leg roll segment 
3m  2.34 kg 

Total Mass 
totalM  52.96 kg 

 

Table 2-2. Robot’s moments of Inertia. 

Main body (x axis) xxI  0.26 kgm2 

Main body (y axis) yyI  1.05 kgm2 

Main body (z axis) 
zzI  1.07 kgm2 
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Table 2-3. Robot's geometrical properties. 

Body Length (x axis) L  0.8 m 

CoM to Hip distance (x axis) 
hL  0.43 m 

Body Width (z axis) W  0.26 m 

Leg upper segment 
1l  0.45 m 

Leg lower segment 
2l  0.62 m 

Leg roll segment 
3l  0.23 m 

2.2 Kinematics 

2.2.1 Forward Kinematics 

The quadruped can have different configurations depending on the leg coordinates. As it is 

easier to determine the motion of the robot in the Cartesian space, equations that map the 

joint angles to the desired motions in the Cartesian space are presented in this and the 

following section. Initially, to determine the position and orientation of the robot’s CoM, the 

transformation matrix that expresses the base frame B relative to the inertial frame I (Figure 

2-3) is obtained in (2-4) using the rotation matrices (2-1), (2-2), (2-3) in an Euler angle z-y-x 

sequence. Euler angles are used to describe the orientation of the floating body with respect 

to a fixed inertial frame. This is required when the motion plans expressed in the inertial frame 

need to be mapped to the base frame and then to a leg motion. The rotation about the three 

principal axis x, y, z is given by (2-1), (2-2), (2-3) respectively. The 
mx , my , mz  are the 

coordinates of the CoM’s position relative to the inertial frame and the xq , yq , zq  denote the 

rotation angle of the CoM about the x, y, and z axis respectively. 

 
( ) ( )

( ) ( )
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 
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Figure 2-3. Inertial frame I - Body fixed frame B. 

Table 2-4. Coordinate systems. 

The CS of the center of the body CSB  B B Bx y z  

The main CS of each leg CS0  0 0 0x y z  

The CS of the abd/add joint CS1  1 1 1x y z  

The CS of the hip joint CS2  2 2 2x y z  

The CS of the knee joint CS3  3 3 3x y z  

The CS of the foot CSE  E E Ex y z  

B

I
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Figure 2-4. Coordinate Systems. The X, Y, Z axes are denoted by red, green and blue color 
respectively. 

Table 2-5. Transformation matrices. 

 

The variables 
1th , 2th , 2eqth  and 

3th  are the joint angles, which are shown in Figure 2-1 

and Figure 2-2. The joint angle 2th  is defined as the angle between link 1 and 2. However, the 

purpose of this analysis is the derivation of the expression that relates the position of the 

contact point with the CS0. Thus, in the rest of this work, the joint angle 2eqth  will be used. The 

forward kinematic matrix given in (2-5) is derived from the transformations listed in Table 2-5 

and each coordinate system is represented in Figure 2-4. Equation (2-5) is expressed in 

symbolic form using Wolfram Mathematica (see Appendix A). 
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2

x

L
TRANS

 
− 
 

. 

0

B

1

2

3

E

 Front Right Front Left 

CSB→CS0
1 

2
x

L
TRANS

 
 
 

 
2

x

L
TRANS

 
 
 

 

CS0→CS1 ( )3
2

y zROT ROT th
 

− 
 

 ( )3
2

y zROT ROT th
 
 
 

 

CS1→ CS2 ( )3 1( )
2

x y zTRANS l ROT ROT th
 
 
 

 ( )3 1( )
2

x y zTRANS l ROT ROT th
 

− 
 

 

CS2→ CS3 ( )1 2( )y z eqTRANS l ROT th−  ( )1 2( )y z eqTRANS l ROT th−  

CS3→CSE 2( )yTRANS l−  2( )yTRANS l−  



System Modelling 

 
24/136 

 
0 0 1 2 3

1 2 3E ET T T T T=  (2-5) 

The positions of the left and right feet in Cartesian space are given by: 

 ( ) ( )0

1 1 2 1 2sin sinE eqx l th l th th= + +  (2-6) 

 ( ) ( ) ( ) ( )( )0

3 3 3 1 1 2 1 2sin cos cos cosE eqy l th th l th l th th= − + +  (2-7) 

Left: ( ) ( ) ( ) ( )( )0

3 3 3 1 1 2 1 2cos sin cos cosE eqz l th th l th l th th= − − + +  (2-8) 

Right: ( ) ( ) ( ) ( )( )0

3 3 3 1 1 2 1 2cos sin cos cosE eqz l th th l th l th th= + + +  (2-9) 

The foot velocity in Cartesian space (2-10) is related to the joint angular velocities (2-13) 

by differentiating (2-6)-(2-9). The foot acceleration (2-14) is obtained in a similar way by 

differentiating (2-10).  

 E =v Jq  (2-10) 
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 E = +v Jq Jq  (2-14) 

The geometric Jacobian J  is expressed in symbolic form using Wolfram Mathematica 

(see Appendix B). 

2.2.2 Inverse Kinematics 

In the inverse kinematic analysis, the position of the foot is provided, and the unknown 

variables are the joint angles that bring the foot to the desired position. Having already defined 

the forward kinematics, each joint angle can be uncoupled using simple geometry and 

trigonometry [1]. The variables used in (2-15)-(2-18) are displayed in Figure 2-5. The problem 

has two solutions (elbow up, elbow down), but due to the kinematic constraints, one of those 

is acceptable. 
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Figure 2-5. Inverse Kinematics - Geometrical Analysis. 

2.3 Dynamic Models 

There are several dynamic models in which the states, the controls, and the relationship 

between them differ significantly. These representations are approximations of the physical 

model with assumptions to simplify it and make it handy. A motion plan is acceptable if the 

modelling equations are always fulfilled. In general, the dynamics of a system is represented 

by Ordinary Differential Equations (ODEs) (2-19). Some of the most common dynamical 

models will be described next [62], starting from the most complex model, and ending up to 

the one including the most assumptions. 

 ( )F ( ), ( )x x t u t=  (2-19) 

2.3.1 Rigid Body Dynamics 

The quadruped robot studied herein consists of multiple rigid bodies (the main body and the 

four legs) (Figure 2-6). Each leg has three degrees of freedom. The links of the legs are 

connected to each other with rotary joints. It is assumed that bodies do not deform when 

external forces are applied. The states 
18 1[ ]T T T

b j
= q q q  comprise the position and 

orientation of the CoM (
6 1

bq  ) and the angle of each actuated joint (
12 1

jq  ). The model 

is described by: 

 ( ) ( ) ( )T T
M q q+h q,q = S τ+J q f  (2-20) 

ψ3 φ3

φ1

ψ1
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where 
18 18M  is the joint-space inertia matrix, 

18 1h  is the effect of Centrifugal, Coriolis 

and gravity terms, 12 6 12 12[ ]T T
 =S 0 I is a Selection Matrix which applies the torque 12 1   

to only the n joint rows and the Jacobian J  maps forces 12 1
1 4[ ]T T T = f f f  at the 4 

end-effectors to 6+12 dimensional generalized forces. Equation (2-20) can be separated into 

two groups; the one that is related to the underactuated part of the robot (2-21) and the rest 

that is fully-actuated since there is a torque-generating motor for each robot joint (2-22). 

 ( ) ( ) ( )T

u u uM q q + h q,q = J q f  (2-21) 

 ( ) ( ) ( )T

a a a+M q q + h q,q = τ J q f  (2-22) 

The joint torques cannot directly influence the body motion, as the latter is determined by 

the contact forces. These contact forces are generated through the torques that the actuators 

apply. Consequently, the actuation system affects the body movement indirectly. 

 

Figure 2-6. Visualization of Rigid Body Dynamics (RBD). 

2.3.2 Centroidal Dynamics 

Αs before the only assumption is that bodies do not deform, but in this model, the change of 

momentum is expressed at a body fixed frame at the body CoM. The dynamics are written as 
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18 1[ ]T T T

b j
= q q q  (2-24) 

where g  is the gravity acceleration, m is the entire body mass, r  is the position of the main 

body CoM in Cartesian space, ip  denotes the position of each foot i  in Cartesian space, and 

if  is the force acting on each foot. The Centroidal Momentum Matrix (CMM) 
6 18A  [45] 

maps the momentum of each rigid body to the CoM. In this model, the input to the system is 

the vector containing the external forces if . The first term of the right-hand side denotes the 

sum of the forces that are applied to the CoM, while the second term denotes the sum of 
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torques applied to the CoM. The left-hand side expresses the effect of linear and angular 

change of momentum of all rigid bodies on the CoM. As shown in the right-hand side, the 

positions of the feet depend on the joint configuration, thus these are included to the states 

vector. 

2.3.3 Single Rigid Body Dynamics 

The single rigid body dynamics (SRBD) model (Figure 2-7) is described by (2-25)-(2-27), 

which neglect the effect of joint velocities at the total momentum and it is assumed that the 

full-body inertia does not deviate significantly as the feet change their position. Due to the 

additional assumptions compared to the Centroidal Dynamics model, the joint dependency is 

eliminated. The dynamics of the robot is independent of the joint space which makes it easy 

to enforce the constraints in Cartesian space. As shown in (2-25)-(2-27), r  represents the 

base acceleration, ω  is angular velocity of the base calculated from Euler angles θ  and its 

rates of change θ , m  is the robot’s total mass, 
3 3I  is the constant inertia matrix 

calculated at the nominal position with respect to a frame anchored at the CoM and whose 

axis are parallel to the inertial frame, g  is the gravity acceleration, ip  is the three dimensional 

position of the feet and if  are the contact forces. The dynamics of the system includes the 

angular velocity ω  which is written as a function of θ  and ω . The relation between the Euler 

angle rates (order of application: yaw, pitch, roll) and the angular velocity is presented in (2-29)

. Both quantities are expressed relative to the inertial frame. The extraction of the 

transformation matrix is described analytically in [22]. 

 

Figure 2-7. Visualization of the Single Rigid Body Dynamics (SRBD) model. 
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2.3.4 Linear Inverted Pendulum Model 

The Linear Inverted Pendulum Model (LIPM) is a simplified form of the SRBD, since more 

assumptions are added to make it simpler and remove the nonlinearities of the cross product. 

The ODE equation that describes the model is given by (2-30) where the forward acceleration 

of the base xr  depends on the position of the center of pressure (CoP) ,c xp . The CoM’s 

position in x direction is denoted by 
xr  and the gravitational acceleration is denoted by g . The 

CoP refers to the point where the net torque caused by the ground-reaction forces is zero [33]. 

Replacing x  indices by z  in (2-30) determines the motion of the robot in z direction. The 

CoM’s height h  is constant, the footholds are at constant height, and the angular velocity and 

acceleration of the base are constrained to be zero. The input to this system is the CoP 

calculated by the vertical components of each individual contact force and the feet positions. 

Apparently, the contribution of the tangential components of the contact forces is omitted. This 

model cannot be used to generate complex motions and it is inappropriate for uneven terrain. 

A representation of LIPM is shown in Figure 2-8. 

 ,( )x x c x

g
r r p

h
= −  (2-30) 

 

Figure 2-8. Linear Inverted Pendulum Model (LIPM) [58]. 
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2.4 Statics 

Under the assumptions of sagittal (longitudinal) plane symmetry and that the frictional forces 

are zero, the ground reaction forces that act on the stance feet can be computed explicitly 

when the robot is in static equilibrium. The goal of this analysis is a rough estimation of the 

torques required, how the configuration of the leg affects the magnitude of the torque at each 

joint and the examination of the differences between front and rear leg’s loads. The results 

can be utilized as an estimation of the expected torque requirements and can be compared 

with those of the simulation.  

According to the first assumption, half of the body mass is supported by the front right and 

rear right leg. As shown in Figure 2-9, gravitational forces for each member are applied at their 

centers of mass (CoM) and the ground reaction forces are applied at the contact points. 

The equations of static equilibrium are given in (2-31)-(2-32). The problem has multiple 

solutions regarding the direction in which the contact forces are applied. The case where the 

contact forces are vertical to the ground and the friction forces that are exerted on the foot in 

the x and z direction are zero is analyzed next. Solving the system of equations (2-31)-(2-32)

, the foot forces on the front and the rear leg are equal to 106.2frontyF N=  and 153.6rearyF N=

. The torques that are computed counterbalance the robot’s weight. Greater joint torques do 

not imply that the foot will slip; it will start slipping if the force that is generated on the foot 

exceeds the friction force. The condition (2-33) where   is the static friction coefficient of the 

ground, ensures that the foot does not slip. The pivot point around which the torques are 

generated in (2-32) is defined to be the torso’s CoM. The distances 
kil , where 1,2,3i =  

symbolize upper, lower and roll segments respectively, and k refers to front or rear leg, are 

depicted in Figure 2-10. 

 
1 2 3

1
0 2 2 2

2rear fronty y yF F F M m m m g
 

=  + = + + + 
 

  (2-31) 

 

( ) ( )( )
( ) ( )( )

1 1 2 2 1 1 2 1 2

1 1 2 2 1 1 2 1 2

0 sin sin

sin sin

rear rear rear eq

front front front eq

y h

y h

m gl m gl F L l th l th th

m gl m gl F L l th l th th

 =  + − + − − +

− − + − − + +


 (2-32) 

 

Figure 2-9. Gravitational forces and ground reaction forces. 
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 ,x z yF F F  (2-33) 

 

 

Figure 2-10. Distances between links' CoM and main body's CoM. 

The knee torque is calculated by the equation of torque equilibrium at the isolated lower 

segment Figure 2-11 (left). Then, hip torque is calculated by the equation of torque equilibrium 

applied at the upper and the lower segments as depicted in Figure 2-11 (middle). Finally, the 

abduction torque is calculated by the equation of torque equilibrium applied at the whole leg 

Figure 2-11 (right). The geometrical parameters that are used in (2-34)-(2-39) are shown in 

Figure 2-12.  

   

Figure 2-11. Left: Forces and torques at leg lower segment. Middle: Forces and torques at leg 
lower and upper segments. Right: Forces and torques at the whole leg. 
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Figure 2-12. Geometrical parameters that relate the CoM of each link to the joints. 

 ( ) ( )( )1 1 1 2 1 2 1 1, 2 2,sin sin
rear reary hip hipF l th l th th m gl m gl = − + + − −  (2-34) 

 ( )2 2 1 2 2 2,sin
rear reary kneeF l th th m gl = − + +  (2-35) 

 ( )( )3 1 2 3 3 3,rear reary abm m g F l m gl = + − +  (2-36) 

 ( ) ( )( )1 1 1 2 1 2 1 1, 2 2,sin sin
front fronty hip hipF l th l th th m gl m gl = − + + − −  (2-37) 

 ( )2 2 1 2 2 2,sin
front fronty kneeF l th th m gl = − + +  (2-38) 

 ( )( )3 1 2 3 3 3,front fronty abm m g F l m gl = + − +  (2-39) 

2.5 Simulation Environment 

2.5.1 Plant description 

The quadruped was designed in Solidworks, and it is composed of the main body and three 

links at each leg that are connected together through rotary joints. These individual parts are 

imported into Simscape, and their position is specified by rigid transforms and joints that 

connect the world frame to the robot. The world frame is placed on the ground, and it is 

connected to the body-fixed frame through a bushing joint. The bushing joint ensures that the 

main body has six degrees of freedom (three translational and three rotational). The initial 

position of the robot relative to the world frame is specified by setting the state target options 

in the bushing joint block. 

2.5.2 Foot – Ground Interaction Model 

The quadruped interacts with the environment while walking. Choosing an appropriate force 

model and ground parameters that approximate the actual conditions is a challenging task. 

However, MATLAB provides a library, namely Simscape Multibody Contact Forces Library 

2,kneel

2l

2,hipl

1,hipl

1l

3,abl

3l
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[52] that can be used to model the contact with the ground. A ‘sphere to plane’ contact model 

is selected (Figure 2-13) and the ground is modeled as a spring-damper system. The force 

model can be linear, nonlinear, or even custom made. A linear spring-damper resists a toe’s 

penetration. According to that, a force is applied only along the direction of penetration and 

damping force is zero as penetration decreases (2-40), (2-41). 

 

Figure 2-13. Foot - Ground Interaction model. 

 

0, 0

0, 0

0 0

pen pen pen pen

x pen pen pen

pen

k y bv y v

F k y y v

y

 +  
 

=   
  

 (2-40) 

 0yF =  (2-41) 

The documentation of the contact forces library suggests starting with stiffness of 
41e N m  and damping of 

21e Ns m  and adjust from there. We assume flat ground with 

ground stiffness ( k ) and damping (b ) equal to 
41e N m  and 

25e Ns m  respectively. These 

parameters are used for the walking simulation experiments. In the statics experiments 

presented in Section 2.6, stiffness and damping are set equal to 
51e N m  and 

41e Ns m  to 

avoid the oscillations in the transient state. When a leg is in stance phase, it must stay still in 

its position. For this reason, a stick-slip continuous friction model is chosen from the library 

(Figure 2-14), where the friction coefficients must be tuned appropriately as they greatly affect 

toe’s slipping. 

 

Figure 2-14. Friction model indicating forces applied to the ground. 

The friction force is described by a stick-slip continuous model given by (2-42). It is equal 

to the normal force NF  multiplied by the friction coefficient   which is a function of the relative 

velocity at the point of contact pocv  and the velocity threshold thv .  
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 f NF F =  (2-42) 

 
( )

1.5
0.5

s
poc poc th

th

s k
s poc th poc th

th

k poc th

v v v
v

v v v v
v

v v



 
 



 
 

 
 − 

= −   
 
 
 
 

 (2-43) 

The values of the different friction coefficients, illustrated in Figure 2-15, were set as 0.9s = , 

0.88k =  and 0.001thv m s= . 

 

Figure 2-15. Friction coefficients. 

2.5.3 Solver selection 

The contact forces library that is imported recommends using the variable step solvers ode23t 

or ode15s. It was found that, ode15s needs almost half the time compared to the other. The 

library also recommends setting relative and absolute tolerances equal to 1e-4 and 1e-5 

respectively and the maximum step size equal to 1e-2. However, these parameters can be 

automatically adjusted, so these settings can be also set to ‘auto’. In summary, the solver 

ode15s with tolerances 1e-4 and 1e-5 and maximum step size 1e-2. was used in all the 

experiments presented in this work.  

2.6 Statics Experiments for Simulation Environment Verification 

Robot in stance phase - Inverse dynamics 

In this simulation, the quadruped stands on the ground and keeps a specified leg configuration 

given in (2-46). The joint primitive is actuated in inverse dynamics mode by providing motion 

as input while having actuation torque automatically computed. The goal is to compare the 

simulation results to those from the static equilibrium analysis. Figure 2-16, Figure 2-17 

represent the joint torques of the front and rear right leg. 

 
4

hipq rad


= −  (2-44) 

μs    = Static Friction Coefficient

μk = Kinetic Friction Coefficient

vth = Velocity Threshold

μk

μs

vth

μ

v

1.5*vth
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2

kneeq


=  (2-45) 

 0abq =   (2-46) 

 

Figure 2-16. Joint torques at stance - Inverse dynamics - Front Right Leg. 

 

Figure 2-17. Joint torques at stance - Inverse dynamics - Rear Right Leg. 
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Robot in stance phase - Forward dynamics 

If the joint primitive in the aforementioned case is actuated in forward dynamics mode, then 

the input is the actuation torque. The goal is to keep the legs still in their initial position. To 

handle this problem, a stabilizing PD controller regulates the torque needed, so that the 

quadruped stands at its nominal position. 

 ( ) ( )d a d a
j P j j D j jK q q K q q = − + −  (2-47) 

The subscript j  refers to the hip, knee or ab/ad joint, while the superscripts d and a  refer to 

the desired and the actual angles respectively. Table 2-6 summarizes the PD controller gains. 

The gain values are quite large to ensure that the desired joint angular position and angular 

velocity are tracked. The term DK  is high to avoid the oscillations at the transient state. The 

steady state appears in just a few seconds. Figure 2-18, Figure 2-19 represent the joint 

torques of the front and rear right leg  

Table 2-6. PD controller gains - Quadruped in stance. 

Gains Hip Knee Abduction 

PK  
61e  

61e  
61e  

DK
 

41e  
41e  

41e  

 

Figure 2-18. Joint torques at stance - Forward dynamics - Front Right Leg. 
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Figure 2-19. Joint torques at stance - Forward dynamics - Rear Right Leg. 

Comparison with analytical solutions 

Table 2-7 summarizes the results of the analytical solution, which are compared with those of 

the two aforementioned simulations. The simulation results are identical and their max 

deviation from the analytical solution is 0.3Nm . In the simulation, the contact force consists 

of the force component which is normal to the ground and the friction forces along x and z 

axis. However, the friction forces have a little impact, since their magnitude is almost 0.01N

in steady-state. The deviation may be caused by the assumption that the foot forces are 

exerted on a single point. Given that the cylindrical geometry of the foot penetrates the ground 

slightly, the forces are exerted on a contact area.  

Table 2-7. Comparison between the analytical solution and the simulation results. 

Torque [Nm] Leg 
Analytical 
Solution 

Simulation 

(Inverse Dynamics) 

Simulation 

(Forward Dynamics) 

Hip 
Front -9.8 -9.9 -9.9 

Rear -10.5 -10.6 -10.6 

Knee 
Front -34.2 -34.1 -34.1 

Rear -50.0 -50.0 -50.0 

Abduction 
Front -9.7 -9.4 -9.4 

Rear -20.9 -20.7 -20.7 
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3 Optimal Trajectory Planning 

3.1 Introduction 

This chapter focuses on the theory behind trajectory optimization (TO). Trajectory optimization 

is a process that outputs trajectories for a dynamical system while satisfying a set of physical 

constraints. The quadruped Argos is a dynamical system in which TO can be used to generate 

motion plans both for the unactuated main body and the actuated legs. The implementation 

of TO in Argos is investigated in Section 4.4. This chapter is organized as follows. Firstly, the 

term trajectory optimization is distinguished from the term optimal control and then some of 

the methods that can handle the TO problem are appraised. A simple TO example of a two-

link manipulator is formulated in two optimization libraries, which are evaluated in terms of 

computation speed.  

Optimal control is a mathematical optimization method which finds the control trajectories 

that drive a system to a desired state while minimizing an objective function and satisfying the 

constraints on the motion of the system. Before identifying the implementation details, the 

terms trajectory optimization and optimal control need to be distinguished. In general, 

trajectory optimization is a technique for computing an open-loop solution to an optimal control 

problem. These two terms must not be confused. The first one refers to the case of a function 

optimization problem that optimizes a given performance index ( )J x , where the vector x  

represents the optimization variables and it consists of static parameters (or real numbers). 

This type of problem is called parameter optimization problem [35]. On the other hand, in the 

case of a functional optimization problem that optimize a given performance index ( ( ))J tf  

where the optimization variables are vector functions ( )tf , the appropriate term is “optimal 

control” [51]. 

  

Figure 3-1. Left: Closed-loop solution - Right: open-loop solution [1]. 

The most general formulation of optimal control finds a closed loop solution which 

describes the ideal action that should be taken at every point in the entire space to reach the 

goal (Figure 3-1). In this case, the control is in general a function of state and time, ( , )u u x t=

. While this method ensures that the global solution is found, it is limited to lower-dimension 

problems since the complexity of the problem increases linearly with the number of states. On 

the other hand, using a local method and finding an open-loop solution is less difficult to 

compute and it is appropriate for higher-dimensional problems [35]. The goal of trajectory 
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optimization is to find an optimal open-loop control that is valid from only a single initial 

condition. This open-loop control is a function of time ( )u u t=  and under its influence, the 

system follows an optimal trajectory from an initial to a final point. Since the method provides 

an open-loop feed-forward control input (Figure 3-1), it must be combined with a stabilizing 

controller when applied to a real system. 

3.2 Approaches 

 

Figure 3-2. Overview of numerical methods for optimal control [18]. 

The optimal control problem could be handled with three types of algorithms, namely Dynamic 

Programming (Hamilton-Jacobi-Bellman Equations), Indirect Methods and Direct Methods 

(Figure 3-2). “Dynamic programming uses the principle of optimality of subarcs to compute 

recursively a feedback control for all times t  and all 0x ” [18]. However, it requires a 

discretization of the full state space, so it is preferred for unconstrained low-dimensional 

systems. Indirect methods refer to boundary value problems which are first optimized and then 

discretized. This class includes the calculus of variations, Euler-Lagrange differential 

equations and the Pontryagin’s Maximum Principle [18]. The main disadvantages are the 

difficulty in solving the differential equations due to the strong nonlinearity and instability and 

because changes in the control structure may require a completely new problem setup. Direct 

methods transcribe the original infinite horizon optimal control problem, where the decision 

variables are vector functions, to a finite dimensional nonlinear program (NLP). The NLP is a 

constrained parameter optimization where either the objective function or the constraints are 

nonlinear. Direct methods find the optimal solution of the discretized problem, so they are less 

accurate, but they are easier to pose and solve. The direct methods could be further classified 

as sequential or simultaneous methods. Their difference is that sequential methods 

parameterize only controls, while the simultaneous methods parameterize both states and 

controls. These parameterized variables are referred as optimization or decision variables. 

The trajectory optimization problem formulated in Section 4.4 is handled by one of the direct 

methods, so this category will be further explored next. 

Optimal Control

Direct Methods:
Transform into Nonlinear

Program (NLP)

Indirect Methods
(Potryagin Maximum Principle): 

Solve Boundary Value Problem

Dynamic Programming 
(Hamilton-Jacobi-Bellman 

Equation):

Tabulation in State Space

Multiple shooting:
Controls and node start values in 

NLP 

(simultaneous)

Collocation: 
Discretized controls and states in 

NLP 

(simultaneous)

Single Shooting: 
Only discretized controls in 

NLP

(sequential)
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3.3 Direct methods 

Transcription converts each continuous aspect of the problem into a discrete approximation. 

The methods that are used for the approximation of the objective function, the dynamics, which 

is expressed in the form ( )f ,=x x u and the constraints are investigated in the following 

publications [35][37][18]. Also, the output of the NLP is a vector that contains the points that 

compose the discretized optimal trajectory. Using all these points, a continuous polynomial 

spline of a predetermined degree can be constructed. 

3.3.1 Single shooting 

The simplest sequential method is single-shooting, where the state trajectory 
1sn N +

X  is 

regarded a function of the controls un N
U  and of the initial value 1

0
snx (3-1), where 

sn  is the number of states and un  is the number of the control inputs. Assuming that the 

controls and the states are discretized in N  segments, then the number of points is 1N + . 

The optimization variables are the control inputs, while the states result by a forward 

integration method. The most widely used integration method that finds approximate values 

at the discretized trajectory, is the Runge–Kutta 4th order (RK4) method. Each state, except 

the initial one, is described as the current state plus the weighted average of the slopes 

1 2 3 4, , ,k k k k  multiplied by the time interval of each segment h  (3-2). 

 
( )

( ) ( )( )

1

1 1 2 2 1
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s
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N N N N N

 +
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 
 
 = 
 
 

=  
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x u
X

x u x u u

 (3-1) 

 ( ) ( )1 1 2 3 4F , 2 2 , 0, ,
6

RK RK RK

n n n n

h
k k k k n N+ = = + + + + =x x u x  (3-2) 

 

Figure 3-3. Slopes used by the Runge-Kutta 4th order method [29]. 
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The formulas for the four slopes (derivatives) shown in Figure 3-3 are given by: 

 

( )

( )

1

2 1

3 2

4 3

f ,

f ,
2

f , ,
2

f ,

RK

n n

RK

n n

RK

n n

RK

n n

k

h
k k

h
k k

k hk

=

 
= + 

 

 
= + 

 

= +

x u

x u

x u

x u

 (3-3) 

The entire trajectory is represented as a single segment, with a single constraint at the 

last point, known as a defect constraint, requiring that the final state of the simulation (last row 

of (3-1)) matches the desired final state of the system. In this method, the decision variables 

are the control inputs, thus the problem remains relatively small. The control input can be 

chosen as a piecewise continuous arbitrary function such as a zero-order-hold, a linear, a 

cubic, or an orthogonal polynomial. The input is applied to the dynamic system and the states 

( )x t  are forward simulated using RK4. The state trajectory cannot be initialized directly. 

Unstable systems can be difficult to be handled, since small modifications of the input can 

have large effects on the state x  later in the trajectory. A block diagram that illustrates the 

steps of the single shooting method solved by an NLP solver, IPOPT, is given in Figure 3-4. 

IPOPT is investigated at the NLP solvers section. 

 

 

Figure 3-4. Single Shooting block diagram. 

Discretization of the

time horizon into N

grid points

Initial guess of Control 

Parameters

While (Cost!=Minimum & 
Constraints Not Satisfied)

Propagate the differential 

equations from tI to tF (i.e., 

‘shoot’ using Runge-Kutta

scheme

Initial guess of Control 

Parameters

Evaluate the error in the

boundary conditions

( )RK

N Ft= −e x x

Update unknown initial 

conditions by driving cost to 

lower value using IPOPT 

solver

Yes

Optimal values of 

Parameters and Optimal 

Trajectory

No



Optimal Trajectory Planning 

 
41/136 

3.3.2 Multiple shooting 

Two of the remarkable simultaneous methods, which will be explored, are multiple shooting 

and direct collocation. Multiple shooting works by breaking up a trajectory into several 

segments and using single shooting to solve for each segment. Figure 3-5 illustrates single 

shooting compared to the multiple shooting. In the former method, the defect constraint is 

enforced at the final point of the trajectory, while in the latter, these constraints are enforced 

at the final point of each segment. The integration of the ODE system is implemented through 

the Runge–Kutta 4th order (RK4) scheme. Both the controls un N
U  and the states 

1sn N +
X  are decision variables. A defect constraint is added to each of the knot points, 

which are the points between two adjacent segments (Figure 3-5 (Right)), so that the trajectory 

is continuous. The values of the states derived from the RK4 integration 
RK

nx (3-4) should 

match the state decision variables nx  at each grid point n . That is ensured through the 

equality constraints =g 0  (3-5). 

 ( )1 1 2 3 42 2 , 0, ,
6

RK

n n

h
k k k k n N+ = + + + + =x x  (3-4) 

 , 1, , 1RK

n n n N= − = +g x x  (3-5) 

This formulation increases the convergence and the stability since the inputs in one shot 

do not directly influence the trajectory of the next shot. The nonlinear effects of the continuity 

conditions are distributed over the whole horizon, while in single shooting the nonlinearity of 

the system is accumulated at the end condition. In conclusion, multiple shooting results in a 

higher dimensional problem, but it is sparse and less nonlinear than the NLP produced by 

single shooting. A block diagram that illustrates the steps of the multiple shooting method is 

given in Figure 3-6. 

 

Figure 3-5. Left: Single shooting - Right: Multiple shooting [37]. 
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Figure 3-6. Multiple shooting block diagram. 
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3.3.3 Direct collocation 

The basic idea behind these methods is the approximation of the state and control trajectories 

by polynomial splines. Starting with several predetermined points, called the collocation 

points, the interpolating polynomial is differentiated with respect to time. The differentiated 

polynomial equals the system dynamics ( )( ) f , ( ), ( )t t t t=x x u  at the collocation points. In 

direct collocation, the system dynamics are not enforced by forward integration, but through 

equality constraints. The solver varies the state x(t) and input u(t) trajectory simultaneously 

while enforcing the system dynamics relationship between them at specified times. These 

methods simulate the dynamics of the system implicitly (typically using implicit Runge-Kutta 

schemes) because the values of the state at each collocation point are obtained at the same 

time (as opposed to solving for the state sequentially). The decision variables include both the 

discretized state and control trajectories. An initial guess for these trajectories is required to 

be set up. It is worth mentioning that due to the decoupling between state and input, changes 

in the input only affect the state at that time instance, while future states remain unaffected.  

Trapezoidal Direct collocation  

Trapezoidal collocation is a commonly used low-order direct collocation method. The 

dynamics, path objective, and control are all represented using linear splines, and the 

dynamics are satisfied using trapezoidal quadrature. The continuous integral of the objective 

function is approximated as a summation that depends on the value of the integrand 

( )k kw t w=  at the collocation points kt  along the trajectory. Applying the trapezoid rule for 

integration between each collocation point results in (3-6), where k+1 kkh t t= − . 

 ( ) ( )( ) ( )
0

1

1

0

w , ,
2

Ft N
k

k k

kt

h
t x t u t dt w w

−

+

=

= +  (3-6) 

The system dynamics ( ) ( )( )f , ,t x t u t  is represented by the collocation constraints. For 

trapezoidal collocation, these are constructed by writing the dynamics in integral form and 

then approximating that integral using trapezoidal quadrature. Assuming that kx  is the 

decision variable in the NLP and ( )f , ,k k k kf t x u= is the result of computing the system 

dynamics at each collocation point, then the following equations arise: 

 =x f  (3-7) 

 

1 1k k

k k

t t

t t

dt dt
+ +

= x f  (3-8) 

 ( )1 1

1
0, , 1

2
k k k k kh k N+ +−  −  −x x f f  (3-9) 

In addition to the collocation constraints (3-9), which enforce the system dynamics, the 

problem might also have limits on the state and control, path constraints, and boundary 

constraints. The first one is expressed by setting a lower and upper limit on the state and 

control values at specific collocation points. The path constraints, which must be satisfied at 

specified collocation points along the trajectory, ensure that the output trajectories are 

feasible. Finally, the boundary constraints are expressions that are enforced at the initial and 

the final point of the trajectory. Ιt is noteworthy that trajectory optimization problems with path 

constraints tend to be much harder to solve than those without. 
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After defining the objective function, the dynamics constraints, the boundary constraints 

and the path constraints, the problem can be solved using an off-the-self solver. The vectors 

that contain the optimal values of the states and controls at the collocation points, must be 

exploited to construct continuous trajectories. In trapezoidal collocation, the control trajectory 

and the system dynamics are approximated by piecewise linear functions. These, which are 

also called linear splines are constructed by two sequential collocation points. For trapezoidal 

collocation, all the collocation points are considered knot points, as they join any two 

polynomial segments.  

The expression for u  on the interval  1,k kt t t +  requires the value of the control at the 

initial and the final knot point. Setting the parameter kt t = − , the control trajectory is a linear 

spline given by (3-10). 

 ( ) ( )1k k k

k

t
h


+= + −u u u u  (3-10) 

Similarly, the system dynamics on the interval  1,k kt t t +  is approximated as shown in (3-11)

: 

 ( ) ( ) ( )1k k k

k

t t
h


+=  + −f x f f f  (3-11) 

Integrating (3-11) results in the expression for the state, which is a quadratic polynomial (3-12)

. 

 ( ) ( ) ( )
2

1

2
k k k k

k

t t d
h


  +=  + + −x x x f f f  (3-12) 

Hermite Simpson 

Hermite-Simpson Collocation is a common medium-order direct collocation method, in which 

the state is represented by a cubic-Hermite spline. The integrand of the objective function and 

system dynamics are approximated as piecewise quadratic functions (3-13) using Simpson 

Quadrature, also known as Simpson’s rule for integration. More details on Simpson’s rule are 

given in Appendix C. 
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 
 + + 

 
  (3-13) 

Similarly, the continuous dynamics is transcribed to a set of collocation equations by 
approximating the continuous integral in (3-8) with Simpson quadrature (3-14). 

 1 1 1

2

1
4

6
k k k k k

k
h+ +

+

 
− = + + 

 
x x f f f  (3-14) 

The dynamics at the midpoint of the segment 1 2k+f are a function of the state 1 2k+x , which is 

calculated by constructing an interpolant for the state trajectory and then evaluating it at the 

midpoint of the interval (3-15): 

 ( ) ( )1 1 1

2

1

2 8

k
k k k k

k

h
+ +

+
= + + −x x x f f  (3-15) 

When the midpoint 1 2k+x  is considered as an additional decision variable, then both (3-14) 

and (3-15) are constraint equations the formulation is reported as separated form. On the 
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other hand, if (3-15) is substituted in (3-14), a single collocation constraint arise and the 

formulation is reported as compressed form. Each form has pros and cons, but as a rule of 

thumb, the separated form is preferred when the number of segments is small.  

The continuous trajectories that interpolate the solution of the controls between the 

collocation points are consisted of quadratic polynomial merged at the knot points. Each 

quadratic segment is fitted through three uniformly spaced points to approximate the 

integrand. A 2nd order polynomial that passes through the points ( ),A At u , ( ),B Bt u , ( ),C Ct u  

can be written in the form of (3-16). 

 
( )( ) ( )( ) ( )( )

( )
( )( ) ( )( ) ( )( )

B C A C A B
A B C

A B A C B A B C C A C B

t t t t t t t t t t t t
t u u u

t t t t t t t t t t t t

− − − − − −
= + +

− − − − − −
u  (3-16) 

However, in this formulation the segments have equal duration kh  and point B is in the 

middle of the segment. If the indices A, B, C are substituted by the indices k , 1 2k + , 1k + , 

then 1k k kh t t+= −  , ( )1/2 1 2k k kt t t+ += + . Defining the time as kt t = − , the simplified equation 

becomes: 

 ( ) ( )
2

1/2 1 1/2 1( ) 2 4 2 3 4k k k k k k kt
h h

 
+ + + +

   
= − + + − + − +   

   
u u u u u u u u  (3-17) 

The system dynamics ( ) =f x  is also represented by quadratic polynomials (3-18). 

 ( ) ( )
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h h

 
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f f f f f f f f  (3-18) 

The states trajectories are derived by integrating (3-18) as 
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 (3-20) 

It is noteworthy, that the state trajectory, which is represented by cubic Hermite splines, 

satisfies the continuity of the first derivative. 

Orthogonal collocation 

A subset of collocation methods that have seen extensive use in optimal control are orthogonal 

collocation methods [37]. Orthogonal collocation method differs from the aforementioned 

collocation methods in the determination of the collocation points positions along the 

trajectory. In view of this, in an orthogonal collocation method the collocation points are the 

roots of some orthogonal polynomial. Usually, these collocation points are obtained from the 

roots of either Chebyshev polynomials or Legendre polynomials. In such formulations, 

orthogonal polynomials are used to approximate both states and controls. 

3.3.4 Comparison of shooting methods with collocation methods 

The difference between multiple shooting and direct collocation lies on how each method 

enforces the constraint of the system’s dynamics [37]. The dynamics constraints can be stated 
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in two different forms: derivative and integral. In the first one, the derivative of the state with 

respect to time must be equal to the dynamics function (3-21). On the other hand, the integral 

form requires that the state trajectory matches the integral of the dynamics with respect to 

time (3-22). Collocation methods comply with the derivative form, while shooting methods 

comply with the integral form. A graphic representation of these two methods is illustrated in 

Figure 3-7.  

 f( , )=x x u  (3-21) 

 f( , )dt= x x u  (3-22) 

 

Figure 3-7. Integral vs. derivative form of the optimal control problem [37]. 

In addition, shooting methods could make use of adaptive, error-controlled ODE solvers. 

These can change their integration step-size depending on the current dynamics, thereby 

avoiding unnecessary calculation, and reducing computation time. Compared to collocation, 

the dimension of the NLP in multiple shooting has smaller dimension but it is less sparse. This 

loss of sparsity combined with the cost of the underlying ODE solution leads to theoretically 

higher costs per iteration. 

3.4 Nonlinear Model Predictive Control 

Nonlinear Model Predictive Control (NMPC) is an optimization-based feedback control 

technique [18]. The general idea is the generation of a closed-loop system whose feedback 

control is derived from the solution of an open-loop optimal control problem. The main 

advantage of NMPC is the fact that it allows the first value of optimal control vector to be 

executed, while keeping the rest as an initial guess for the next iteration. NMPC optimizes a 

finite time-horizon in a high frequency, and in each iteration, the most recent state observation 

is used as initial value 0x . Consequently, the system can deal with unexpected disturbances 

and errors due to the inaccuracies of the dynamic model. 

Another advantage of NMPC, is the capability of modelling nonlinear systems in the form 

( )f ,=x x u . Additionally, the optimal control problem can be formulated with any desired 

objective function and the boundary and path constraints are treated as equality and inequality 
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constraints which can be handled easily. It appears that NMPC has potential in robotics 

applications. However, a deterrent reason to its use is the high on-line computational load that 

is often associated with NMPC, since at each sampling instant a nonlinear optimal control 

problem must be solved. The algorithm must predict and optimize repeatedly, while the system 

performs commands in real time. Therefore, most of the applications so far concern the 

process industries in chemical plants, where time scales are typically in the range of minutes 

[18]. Another reason is the need to solve a non-convex optimization problem on-line, no global 

minimum or feasible solution can be guaranteed. 

3.5 Nonlinear programming solvers 

Numerical methods for solving NLPs fall into two categories: gradient-based methods and 

heuristic methods [51]. In this work, emphasis is given to the first category which includes 

Sequential Quadratic Programming (SQP) and Interior Point methods. Examples of well-

known software that use SQP methods include the dense NLP solver NPSOL [27] and the 

sparse NLP solvers SNOPT and SPRNLP [7]. Well-known sparse interior point NLP solvers 

include BARNLP [53] [5] [53], LOQO [5], KNITRO [14] [13] and IPOPT. Two of the most 

commonly used nonlinear programming solvers are SNOPT and IPOPT, which are based on 

mature methods in mathematical optimization. SNOPT is based on Sequential Quadratic 

Programming, while IPOPT uses the Interior Point Method. In [47], the performance of these 

two approaches is evaluated within a robotics application. In this survey, the trajectory 

optimization examples were set up according to the formulation of direct collocation method. 

The direct method can be configured in several ways depending on the accuracy and solving 

time requirements. In [47], two different integration methods (Trapezoidal, Hermite-Simpson) 

and three initialization methods (Zero, Linear and Incremental) were examined to enhance the 

validity of the results in different problem complexity. The performance criteria were set to be 

the accuracy, the solving time, and the quality of the solution. The accuracy of the solution is 

measured using the mean squared error between the planned and the actual control 

trajectories. In contrast to the number of iterations, running time is an absolute metric that 

provides information on how fast the motion planner compute trajectories online. The quality 

of the solutions is compared in terms of optimality using the resulting value of the objective 

function. The results of the study show that SNOPT requires more time to solve the same 

problem compared to IPOPT. The solving time deviation becomes noticeable in complex 

tasks. In terms of quality and accuracy, both solvers act similarly under different schemes. In 

summary, this comparison revealed that IPOPT is faster, so the NLP problems presented in 

Section 3.6 are solved by Interior Point algorithms. The first optimization library that is 

evaluated uses FMINCON’s Interior Point algorithm, while the second one uses the IPOPT 

solver. 

3.6 Evaluation of trajectory optimization methods 

The direct methods can be implemented using several optimization libraries. However, the 

goal of this study is to choose a library which already has been used for the formulation of 

optimal control problems in legged systems. The comparison of methods and libraries along 

with the aforementioned trajectory optimization theory determines the direct method and 

library choices in Section 4.3. The performance metrics are evaluated by executing a simple 

optimization example i.e., the swing up stabilization of a two-link manipulator, whose dynamics 
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is similar to that of a quadruped’s leg. It comprises two rotary actuators, one at the base and 

one at the elbow. The dynamics of this system is simple and can be derived using an Euler-

Lagrange approach to result in (3-23)-(3-24). 

 ( )1 11 1 12 2 1 1 2 1 2N , , ,u b q b q q q q q= + +  (3-23) 

 ( )2 21 1 22 2 2 1 2 1 2N , , ,u b q b q q q q q= + +  (3-24) 

where the terms 
11 12 21 22 1 2, , , , ,b b b b N N  are defined in (3-25)-(3-29): 

 ( ) ( )2 2 2

11 1 2 1 1 2 1 2 2 1 2 22 cosc c cb I I m l m l l m l l q= + + + + +  (3-25) 

 ( )2

12 21 2 2 2 2 1 2 2cosc cb b I m l m l l q= = + +  (3-26) 

 ( )2

22 2 2 2 2cb I m l q= +  (3-27) 

 
( ) ( )

( ) ( ) ( )( )

2

1 2 1 2 2 1 2 2 1 2 2 2

1 1 2 1 1 2 2 1 2

N 2 sin sin

sin sin

c c

c c

m l l q q q m l l q q

g m l m l q m l q q

= − −

+ + + +
 (3-28) 

 ( ) ( )( )2

2 2 1 2 2 1 2 2 1 2N sin sinc cm l l q q g m l q q= + +  (3-29) 

 

Figure 3-8. Two-link manipulator The two links are depicted in blue, the rotary joints and the 
joint angles are indicated by the yellow circles and green arrows respectively. 

The subscript 1 indicates the link from the base to the elbow and the subscript 2 the link 

from the elbow to the end effector. Regarding the parameters, I  is the inertia about link’s 

center of mass, m is the mass, 𝑙 is the length and icl  is the distance between the center of 

mass of the i-th link and the i-th joint. The angles are given by 1q  and 2q  respectively and the 

control torques by 1u , 2u . All standard trajectory optimization methods require that the 

dynamics of the system are in first-order form. This is accomplished by including both the 

generalized coordinates ( 1q  and 2q ) and their derivatives in the state vector. 

1q

2q

1l

2l
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  1 2 1 2

T
q q q q=x  (3-30) 

The dynamics of the system must be expressed in the form (3-31). The system of equations 

(3-23)-(3-24) can be written in compact matrix form. Introducing matrices in (3-32), the system 

of differential equations can be represented as shown in (3-33). Due to the inversibility of 

matrix M  (3-34), the dynamics can be written in the desired form explicitly (3-35). The 

example was performed in two specialized libraries, i.e., OptimTraj and CasADi2. Table 3-1 

summarizes the essential information in the formulation of each problem and how these four 

problems differ from each other. 

 ( )1 2 1 2f , , ,q q q q=x  (3-31) 

 
11 12 1 1 1

21 22 2 2 2

b b q N u

b b q N u
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 = −Mq N u  (3-33) 
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− 

=  
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M  (3-34) 

 ( )1−= −q M N u  (3-35) 

Table 3-1. Differences in the formulation of the implemented trajectory optimization examples 
for the two-link manipulator. 

Problem 
Setup 

1 2 3 4 

Library OptimTraj OptimTraj CasADi CasADi 

Method 
Trapezoidal 
Herm.Sim. 
Mult.Shoot. 

Trapezoidal 
Herm.Sim. 
Mult.Shoot. 

Single shooting 
Multiple 
shooting 

NMPC No No Yes Yes/No 

Opt. Variables     

Objective 
Function 

(3-37) (3-49) (3-49) (3-49) 

 1 2N+ 0  
1 2N+ 0  

1 2N+ 0  
1 2N+ 0  

 Linear interp. Linear interp. - Linear interp. 

 

 
2 The MATLAB codes can be found here: 
https://bitbucket.org/csl_legged/two_link_manipulator_trajectory_optimization/src/master/ 

,u x ,u x u ,u x

0
U

0X
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OptimTraj is a general-purpose trajectory optimization library that is written in MATLAB 

[61]. It handles continuous-time single-phase trajectory optimization problems. It is ideal for 

comparison of the optimization methods, as it includes the most commonly used algorithms 

which are: 

❖ Trapezoidal Direct Collocation 

❖ Hermite-Simpson Direct Collocation 

❖ Runge-Kutta 4th-order Multiple Shooting 

❖ Chebyshev-Lobatto Orthogonal Collocation 

CasADi is an open-source, general purpose software tool for nonlinear optimization and 

can be used for dynamic optimization in a flexible, interactive and numerically efficient way 

[4]. It has been written to be able to deal with the optimization of large-scale optimal control 

problems (OCPs). It has been designed to provide the necessary building blocks for solving 

OCPs. Key features of CasADi are algorithmic differentiation, interfaces to NLP and ODE 

solvers, and functions tailored for implementing direct methods. It is implemented in self-

contained C++ code and contains full interface capabilities to MATLAB. Thanks to convenient 

interfaces and efficient virtual machines, the implementation in a high-level language is as fast 

as an equivalent C implementation. The time spent in CasADi can furthermore be cut by a 

factor of five by generating C-code for the NLP functions [4]. 

3.6.1 Problem Setup 1 – OptimTraj 

In this problem setup trapezoidal direct collocation, Hermite Simpson direct collocation and 

multiple shooting methods are compared in the OptimTraj library. The decision variables that 

are required in this formulation are the matrices that contain the states given in (3-30) and the 

controls over the optimization horizon (3-36). If the trajectory is discretized in N  segments, 

then the number of grid points will be 1N + . 

 

1

2 14 1 2 1

1 2

2

N N +  +

 
 

  =  =     
 
 

q

q u
x u

q u

q

 (3-36) 

Objective Function 

The objective function was chosen as the integral of the actuator-effort (control) squared 

(3-37). Choosing the trapezoidal collocation method, the continuous objective is transformed 

in discretized form as shown in (3-38), where T  is the total simulation time. 

 ( )2

0

T

J d = u  (3-37) 

 ( )
1

2 2

1

0

min min
2

N
k

k k

k

h
J u u

−

+

=

 +  (3-38) 

This objective function tends to produce smooth trajectories, which are desirable for two 

reasons. The first is that the polynomial spline that is used by the most transcription methods 

will approximate very well the solution. The second is that a smooth solution can be found 

quickly and accurately. 
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Constraints 

The dynamics constraints for the trapezoidal direct collocation, Hermite Simpson direct 

collocation and multiple shooting are described in (3-9), (3-14), (3-5) respectively, where ( )f

is the right-hand side of the dynamics defined in (3-31). 

The boundary constraints restrict the full state of the two-link manipulator at both the initial 

and the final points on the trajectory. The manipulator starts from its equilibrium position where 

1 2, 0q q =  and the goal is to reach the upper vertical position (3-39).  
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 (3-39) 

The angles 1 2,q q  and the control torques are bounded (3-40)-(3-42): 

 1

3 3

2 2
q

 
−    (3-40) 

 2q −    (3-41) 

 
min 1 2 max,u u u u   (3-42) 

Initialization 

The trajectory optimization problem needs an initial guess for each decision variable. All 

segments are of uniform duration, so the vector that represents time is given by (3-43), where 

1N +  is the number of grid points. The state 1q is interpolated linearly between the initial and 

the final position (3-44), while the initial guess for the rest of the states and the controls is a 

zero matrix (3-45), (3-46). 

 ( )
1

1, 1F

k
t k t k N

N

−
= = +  (3-43) 

 ( )1

1
1, 1

k
q k k N

N


−
= = +  (3-44) 

 
1 1N += = =2 1 2q q q 0  (3-45) 

 1 1N += =1 2u u 0  (3-46) 

In this library, there is no need of determining an initial value at each grid point. Having defined 

the first and the final point, a linear interpolation can be automatically generated. The 

interpolation can also be piecewise linear. For instance, if four time instances between [0, ]Ft  

(including the boundaries of the interval) are specified (3-47), three piecewise linear 

trajectories connecting these four key frames will be generated (3-48). Then, the initial guess 

of the decision variables for each grid point results by substituting the time instances, 

represented by the grid points, to the piecewise linear function. In other words, the trajectory 

that was defined by four points is re-discretized into the number of grid points to obtain an 

initial guess for each grid point. The number of grid points can be specified by the user or 

selected by the library automatically. 

  ( )00 0.25 0.75 1 Ft t= −t  (3-47) 
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Results 

This example was solved in MATLAB, using FMINCON’s interior-point algorithm as the 

nonlinear programming solver. Setting up the optimization problem involves defining the 

objective function (3-38), the dynamics constraints (3-9), (3-14), (3-5), the boundary 

constraints (3-39), the range of acceptable values for each optimization variable (3-40)-(3-42) 

and the initial guess (3-43)-(3-48). The library allows to manually define the number of grid 

points, but if this option is not set by the user, the number of the required grid points is 

automatically determined by the library. Table 3-2 lists the solution information and the number 

of grid points that were chosen automatically for each method. The lower bound of the final 

time was set to 1FLt s= , while the upper bound was set to 6FUt s= , so the final time of the 

problem varies in each method. The results for the states and control torques are depicted in 

Figure 3-9. 

 

Figure 3-9. Trajectories of a two-link manipulator that reaches the upper position using three 
different direct methods. The dashed lines represent the case where the OCP was 
solved three sequential times using trapezoidal collocation. Each time the mesh 
was refined with more points. 

Trapezoidal direct collocation method is the fastest but lacks in accuracy. One way to 

improve the accuracy is by refining the mesh. The problem was solved again using trapezoidal 

direct collocation on a sequence of 3 collocation grids, with 20, 40 and 60 grid points 

respectively. By solving the OCP multiple times, starting with a coarse grid, and using the 

previous solution as an initial guess for the next OCP, it is sometimes possible to achieve 

faster convergence than trying to solve a finely resolved OCP with a poor initial guess from 
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the start. This iterative strategy is implemented to obtain the most accurate solution with the 

least amount of computational effort. The solution on the initial (20 grid points) mesh needed 

75 iterations, 2.42 s and the maximum value of error was 0.211. The solution on the (40 grid 

points) mesh needed 31 iterations, 1.9 s and the maximum value of error was 0.0305. The 

solution on the final (60 grid points) mesh needed 50 iterations, 6.94 s and the maximum value 

of error was 0.0095. 

Hermite Simpson direct collocation and multiple shooting are both considered as high-

accuracy methods but along with the accuracy, the solving time also increases. Between the 

two, Hermite Simpson direct collocation takes 0.6 times less time to solve the NLP than 

multiple shooting method. Figure 3-9 shows that the torque requirements in the Hermite-

Simpson direct collocation and the multiple shooting methods are similar and almost half of 

torque requirements in the Trapezoidal direct collocation method. Table 3-2 reveals that the 

objective function value is minimum when the Hermite-Simpson direct collocation is used, 

which means that the target is reached with the least actuation effort.  

Table 3-2. Solution information of the three different direct methods. 

Info 
Trapezoidal Direct 

Collocation 

Hermite Simpson 

Direct Collocation 
Multiple Shooting 

NLP Time [s] 2.88 10.45 25.24 

Iterations 79 189 204 

Func. Count 14752 47985 52010 

Grid points 30 40 40 

Obj value 58.59 28.45 32.93 

3.6.2 Problem Setup 2 – OptimTraj 

In this case, an alternate objective function is defined and the system’s response is examined 

when the final time is specified and when it is free. The boundary and path constraints are 

kept the same. The problem is solved using the OptimTraj library. 

Objective Function 

The objective function (3-49) is in quadratic form and the problem is considered as a quadratic 

programming (QP) problem. The first part of the equation penalizes the errors between the 

vector of each state and the reference state (goal) kFx  via the weighting matrix Q 0 . This 

term minimizes the time needed to reach the goal. The second term which contains the 

weighting matrix R 0  penalizes large input torques, so that the desired task is accomplished 

in an energy efficient way. Compared to the previous objective function, this one is also 

affected by the deviation of optimal states from a reference value. The elements of the 

reference state vector represent the desired states at each grid point k , so if the desired 

states at all grid points are equal to the final states, it means that the faster the system reaches 

the final position, the smaller the objective function will be. In case of desired intermediate 

states along the trajectory, these elements can be chosen accordingly. So, in this example, 

kFx  represents the final states  1,2,3,k N  . 
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Results 

The example was solved in MATLAB, using FMINCON’s interior-point algorithm as the 

nonlinear programming solver. Setting up the optimization problem involves defining the 

objective function (3-49), the dynamics constraints (3-9), (3-14), (3-5), the boundary 

constraints (3-39), the range of acceptable values for each optimization variable (3-40)-(3-42) 

and the initial guess (3-43)-(3-48). Figure 3-10 refers to the case where the lower bound of 

the final time was set to 1FLt s= , while the upper bound was set to 6FUt s= . Figure 3-11 

refers to the case where both final time bounds were set equal to 6s. The simulation stops 

when the pendulum reaches its goal. If the lower and upper bounds of time are set equal to a 

specific time, the pendulum will take just that much time to reach the goal. Table 3-3 lists the 

solution information of the two cases that were examined. The objective function value is 

minimum when the Hermite-Simpson direct collocation method is used. 

The maximum number of iterations is specified by the accuracy option. The default option, 

which is ‘medium’ accuracy, sets the maximum number of iterations equal to 400. This limit is 

reached when the final time is free and the problem is handled by Hermite Simpson direct 

collocation or multiple shooting method. If the accuracy is set to ‘high’, the maximum number 

of iterations becomes 800, but the allowable tolerances become smaller, so the maximum 

number of iterations is reached again. When the final time is free, the trajectories obtained 

from three different methods are almost identical. When the problem has additional restrictions 

(fixed final time), these trajectories are very different from each other. 

Table 3-3. Solution information of the three different direct methods when the final time is free 
and when it is fixed. 

Info 

Trapezoidal Direct 
Collocation 

Hermite Simpson 

Direct Collocation 
Multiple Shooting 

Free Fixed Free Fixed Free Fixed 

NLP Time [s] 10.25 8.58 31.27 11.46 73.95 30.48 

Iterations 196 192 400 191 400 196 

Func. Count 36569 35616 101085 47985 100970 49138 

Grid points 30 30 40 40 40 40 

Obj value 10.43 11.35 10.33 11.05 10.34 11.82 
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Figure 3-10. Trajectories of a two-link manipulator that reaches the upper position using three 
different direct methods when the final time is free. 

 

 

Figure 3-11. Trajectories of a two-link manipulator that reaches the upper position using three 
different direct methods when the final time is fixed. 
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3.6.3 Problem Setup 3 – CasADi – Single Shooting and NMPC 

CasADi is evaluated in this and the next problem setup, where the trajectory optimization 

problem is handled by shooting methods. Also, these two examples highlight the potential of 

NMPC when its feedback is derived from the solution of the trajectory optimization problem. 

Single shooting is the simplest method, but it is not recommended for unstable systems. To 

handle the two-link manipulator, single shooting is used in combination with NMPC. The 

prediction horizon, NMPCN , is the number of future control intervals the NMPC controller must 

evaluate by prediction when optimizing its optimization variables at control interval k. The 

prediction horizon is set to 20NMPCN =  and the sampling time is 0.05T s= . The optimization 

variables are the controls over the optimization horizon (3-51). The states over the 

optimization problem depend on the control inputs and the initial value 0x  as shown in (3-1). 

 
1 2

2

N 
=  
 

u
u

u
 (3-51) 

In this library, a vector of parameters p  is introduced, which includes the initial and the final 

states (goal) (3-52). The length of this vector is two times the number of states stn . 
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Objective Function 

The objective function defined in (3-49) is written in the form (3-53), where the selected 

elements of the vector p  are the final states. 
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k ref k ref k kx x Q x x u Ru  (3-53) 

NMPC loop 

 

Figure 3-12. NMPC flow chart. 
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NMPC is initialized every timestep, so the first four elements of the vector p  are the current 

states of the two-link manipulator. The solution of the optimization problem is a vector of the 

optimized controls optu . Only the first control input is used to compute the new 0x . The new 

0u  vector consists of the optimized controls from the simulation, but the first element is 

trimmed because it has been used and the last element is repeated twice as a guess for the 

last timestep. Figure 3-12 represents a block diagram of the single shooting method combined 

with NMPC.  

Results 

The example was solved in MATLAB, using IPOPT as the nonlinear programming solver. 

Setting up the optimization problem involves defining the objective function (3-53), the 

dynamics constraints (3-2), the boundary constraints (3-39) and the range of acceptable 

values for each optimization variable (3-40)-(3-42). The final time was set 6Ft s= . As an initial 

guess for the optimization variables, all the control inputs were set to zero. The results for the 

states and control torques are depicted in Figure 3-13. The solution took 2.94 s in total and 

the average time of each MPC iteration was 0.0526 s. 

 

Figure 3-13. CasADi -Solution of the NLP problem using Single Shooting and NMPC.  

3.6.4 Problem Setup 4 – CasADi – Multiple Shooting and NMPC 

In this problem setup, the NLP problem is solved using the direct multiple shooting method 

and a fixed step explicit Runge-Kutta integration method. The optimization variables are given 

in (3-36). The time interval T  is divided into N  equidistant segments of length h  according 

to (3-54): 
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T

h
N

=  (3-54) 

where the timestep was set to 0.06h s=  and the total number of segments was set to 

100N = . The objective function is the one defined in (3-53) and the defect constraints =g 0  

take the form of (3-5). The initialization is the same as in the problem setup 3. 

Results 

Figure 3-14 shows the open loop solution of the trajectory optimization problem, while Figure 

3-15 represents the closed loop solution in which multiple shooting was used in combination 

with nonlinear model predictive control (NMPC). Τhe weighting matrices Q , R  that were 

defined in (3-50) must be retuned when the problem formulation includes the NMPC. It was 

found that the objective function affects significantly the system, since the system fails to reach 

the final target when using the weights given in (3-50). The weighting matrices given in (3-55) 

lead to the response shown in Figure 3-15. The IPOPT solver was used, and the maximum 

number of iterations was set to 2000. The closed-loop solution took 5.07 s in total and the 

average time of each MPC iteration was 0.0818 s. 
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Figure 3-14. CasADi - Open-loop solution of the NLP problem using Multiple Shooting. 
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Figure 3-15. CasADi - Closed-loop solution of the NLP using Multiple shooting and NMPC. 

3.6.5 Conclusion 

The evaluation of the direct methods was performed in the OptimTraj library, which is easy to 

use and does not require expert knowledge of the numerical methods, since it includes the 

functions of the most important direct methods. The results proved that trapezoidal direct 

collocation is the fastest direct method, but when the grid points are not close enough, the 

linear interpolation does not provide sufficient accuracy. Regarding the high accuracy 

methods, Hermite Simpson direct collocation was much faster than multiple shooting. 

The OCPs that were setup in CasADi evaluate the shooting methods and their solving 

time when they are combined with a NMPC which recomputes the problem in each time step. 

The results revealed that when the TO problem was handled by the single shooting method, 

the average time of each MPC iteration was 52 ms, and when the multiple shooting was used, 

the average time of each MPC iteration was 82 ms. When using NMPC, it was observed that 

the time horizon and the definition of the weighting matrices in (3-49), affect in large extent the 

response of the system. Having tried various weighting values, it was found that the system 

was not always able to reach the final target.  

The solving times in the two optimization libraries can be compared by formulating the 

same problem. The stabilization of the two-link manipulator using multiple shooting and the 

objective function (3-49) was setup both in OptimTraj and CasADi and the graphs of the 

system’s response are depicted in Figure 3-16. The upper vertical position is reached in 4 s 

in both cases. OptimTraj uses the FMINCON’s interior point algorithm to solve the NLP, while 

CasADi uses IPOPT. Despite that in both cases the problem is solved by interior point 

algorithms, the required solving time differs significantly. In Casadi, the NLP was solved in 

1.72 s, while in OptimTraj, it was solved in 73.95 s. According to this example, the choice of 

the most relevant library is obvious, provided that CasADi returns a result much faster. The 
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value of the objective function is nearly the same, so solving time is the determinant of 

choosing CasADi. 

 

Figure 3-16. Trajectories of a two-link manipulator that reaches the upper position using 
multiple shooting in OptimTraj and CasADi. 
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4 Argos Motion Planning & Control 

4.1 Introduction 

This chapter focuses on effective motion planning algorithms related to Argos locomotion. It 

is divided in three main sections. Section 4.2 demonstrates a simple planning and control 

framework that consists of gait scheduling, definition of foot trajectories in Cartesian space 

and implementation of a PD controller that tracks the desired motion plans. In Section 4.3, an 

alternative motion planning approach is investigated, in which the robot tracks velocity and 

turn rate commands. Similarly, the sequence and timing of leg motions are determined by a 

gait pattern, but the desired footholds are indirectly derived from the high-level commands. 

The desired body pose is controlled by adjusting the virtual foot forces through the formulation 

of an optimization problem. A PD controller is also designed to track the desired foot 

trajectories. In Section 4.4, a multi-phase trajectory optimization problem is formulated, which 

not only produces valid motions plans for the main body and the feet, but also finds the 

required feet forces to execute these motion plans. The problem setup includes the equations 

that describe the physical constraints and an objective function that minimizes a selected 

criterion. The trajectory optimization problem is solved using the CasADi library. Simulation 

results are presented at the end of each motion planning approach.  

4.2 Toe level trajectory tracking with active compliance control 

The goal of this framework is the locomotion of the quadruped in flat terrain by specifying valid 

foot trajectories in the Cartesian space. It is based on a prior motion plan algorithm that has 

been developed by the Legged Robots Team [41], but the main difference is that in this 

approach, the foot trajectory is defined by polynomials. The quadruped’s base is unactuated; 

thus, its motion is determined indirectly by the feet’s motion and their interaction with the 

environment. The gait determines when each foot contacts the ground. The common gaits, 

like walk (& amble), trot, pace (rack), canter, and gallop can be executed, provided that the 

start and the end of the swinging phase are prespecified. The trotting gait has been assessed 

in the context of this work. The periodic motion that is illustrated in Figure 4-1 indicates that 

half of the period T  is spent in stance phase (grey color) and the other half in swing phase. 

In trotting gait, the diagonal legs move simultaneously and when the one pair touches down, 

the other one lifts up exactly at the same time instance. This section includes the planning of 

the swing foot trajectory and the controller that tracks the desired plans is analyzed next. The 

control framework is verified in the Simscape simulation environment3. The structure of the 

Simscape model is described in Appendix D. The results of the quadruped’s locomotion are 

presented at the end of this section. The simulation environment and the solver settings are 

described in Section 2.5 

 
3 The MATLAB codes can be found here: 
https://bitbucket.org/csl_legged/argos_active_compliance_control/src/master/ 
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Figure 4-1. Trotting gait pattern. 

4.2.1 Trajectory Planning 

The desired foot trajectory is defined relative to the hip frame, and it determines the motion in 

the xy plane (Figure 4-2), while the desired angular position of the abduction/adduction joint 

is set to 0. The inverse kinematics problem is 2D and the output are the joint angles of the hip 

and knee joint. In Figure 4-2, the swing phase appears in light blue color. The stance phase 

is represented as a constant line in the xy plane because while the foot stays still on the 

ground, the hip frame is translated forward due to the body’s movement. Then, the x, y 

coordinates of the trajectory must be expressed as a function of time. The polynomial that 

represents the swing phase can be defined by providing the desired position at the starting, 

the middle and the final point. However, four extra conditions are added for the transition points 

to ensure the continuity of the first and second derivative. Having already set seven conditions 

(4-4), the swing phase will be represented by a 6th order polynomial and the stance trajectory 

is derived easily by linear interpolation between the initial and the final point of the swing 

trajectory (4-1)-(4-2). While the foot is executing the flat part of the trajectory, it is assumed 

that it does not slip due to the ground friction. Thus, the foot stays still, and a forward force is 

generated that enables the main body to move. 
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The polynomial coefficients in (4-1)-(4-2) can be found by specifying the initial, the 

intermediate and the final point of the swing phase as ( ) ( ) ( )0 1 1 2,0 , , , ,0x x y x . Then, the stance 

phase polynomial coefficients arise from (4-3), where 
stT is the total duration of the stance 

phase. The variable swT in (4-4) denotes the total duration of the swing phase. In trotting gait 

swT  is equal to stT . 
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Figure 4-2. The swing trajectory is denoted by the light blue color while the stance trajectory 
is denoted by dark grey color.  
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 (4-4) 

The derivatives of (4-1)-(4-2) give the desired velocity of the foot in Cartesian space (4-5)-

(4-6). These are mapped to joint velocities through the inverse geometric Jacobian (4-7). The 

geometric Jacobian in 3D space is given by (2-12). Eliminating the third row and third column 

results in the simplified form of the Jacobian in 2D space (xy plane), which is given by (4-8). 

Apparently, the desired abduction/adduction velocity is set to zero. 
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4.2.2 Control 

 

Figure 4-3. Block diagram of the control framework based on a joint space PD controller. 

The desired trajectories and their derivatives in Cartesian space are transformed into joint 

angles and joint velocities respectively. Figure 4-3 represents the robot cartesian controller, 

which is based on a PD joint controller. Each leg and even each joint is independent of the 

others. To track the desired commands, a PD controller is employed, which takes as input the 

error between the desired and the actual joint angles and the error between the desired and 

the actual joint velocities. The output of the controller are the joint torques to the hip, knee and 

abduction/adduction actuators (4-9)-(4-11).  

 ( ) ( )d a d a
hip P hip hip D hip hipK q q K q q = − + −  (4-9) 

 ( ) ( )d a d a
knee P knee knee D knee kneeK q q K q q = − + −  (4-10) 

 ( ) ( )d a d a
ab P ab ab D ab abK q q K q q = − + −  (4-11) 

The gains that appear in (4-9)-(4-11) are listed in Table 4-1 and were found experimentally by 

trial and error. These gains ensure good tracking of the trajectory and smooth movements. 
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Table 4-1. PD controller gains – Trotting gait. 

Gains Hip Knee Abduction 

PK  1000  2000  2000  

DK  300  300  100  

4.2.3 Results 

In this simulation, the period was set to 0.75s , each new foothold was set 0.2m away from 

the current one and the maximum height of the swing trajectory was set to 0.07m . The ground 

stiffness ( k ) and damping ( b ) were set equal to 
41e N m  and 

31e Ns m  respectively. A 

saturation block has been added to limit the actuators torques. to the range 120 Nm . The 

first three graphs refer to the body’s motion (Figure 4-4-Figure 4-6). This formulation does not 

include desired commands for the body’s pose. However, ideally, the orientation should not 

deviate significantly from the nominal position. The orientation error about the x axis (roll) does 

not exceed 2 degrees, which is acceptable (Figure 4-5). The orientation about the y and z 

axes (yaw and pitch) can have larger deviations without causing a problem in the quadruped’s 

balance (Figure 4-5). Finally, the body’s mean velocity at steady state is around 0.4m s

(Figure 4-6). The periodic oscillations are due to the collisions with the ground. Figure 4-7 

depicts the tracking of the hip and knee joint angles. During the collision with the ground, the 

actual knee angular position deviates from the desired trajectory. Simulation results showed 

that if the gains are increased, better tracking is achieved. However, the torque requirements 

increase, thus there is a trade-off between the tracking accuracy and the magnitude of the 

torques. The large error in (4-10) is necessary to generate torques large enough to support 

the body weight and move the body forward due to the PD used. Figure 4-8 displays the joint 

torques for the front left and the rear right leg and it is revealed that the latter takes greater 

values, which is expected as the rear legs support a greater part of the total weight. 

 

Figure 4-4. CoM’s position. 
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Figure 4-5. CoM’s orientation described by roll, pitch, yaw Euler angles. 

 

Figure 4-6. CoM's velocity. 
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Figure 4-7. Desired vs actual joint angular position of the rear right leg. The upper graph refers 
to the hip joint and the bottom one refers to the knee joint.  

 

Figure 4-8. Joint torques of the front left and rear right leg. 
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4.2.4 Conclusion 

A really simple but effective way to achieve the quadruped’s locomotion is the one described 

in the previous sections. It incorporates three main parts; a gait pattern, which determines the 

swing and the stance timings for each foot, a motion planner through which the foot trajectories 

are defined and a controller that tracks the desired motions. The continuous transition from 

the swing to the stance trajectory results in smooth contact with the ground and no sudden 

change in torque requirements. The simulation revealed that the quadruped moves at a 

constant speed in steady state and the deviations in roll, yaw and pitch angles are negligible, 

so it keeps its balance. However, it cannot handle a perturbation by making adjustments at 

the footsteps. Thus, this formulation is recommended for walking on known terrain and 

especially on flat terrain. 

4.3 Motion Planning & Control Based on Optimal Force Distribution 

The original idea of this work comes from [23], which presents a control framework 

implemented on the quadruped StarlETH. The quadruped is able to perform various gaits and 

also to be robust to external disturbances. In comparison to the approach that was investigated 

in the previous section, in this formulation, the robot is moving according to high level 

commands, which determine the body’s velocity and its orientation about the y axis (yaw). An 

optimization problem is formulated for the force distribution to the stance legs, so that the robot 

maintains its desired pose. The above framework was tested on Argos to find out how the 

optimization algorithm improves its locomotion. It consists of a motion planner and a motion 

controller. The outputs are the desired joint torques 
d
τ for the stance legs or the desired joint 

angles d
jq , which are mapped to the desired torques using inverse dynamics. The optimization 

problem is formulated using CasADi; an open-source tool for nonlinear optimization and 

algorithmic differentiation [3]. An overview of the framework is shown in Figure 4-9. 

 

Figure 4-9. Block diagram of the control framework. Motion planning algorithms exploit high-
level velocity and turn rate commands to output the desired body pose and foot 
position. The control algorithms take as input these desired commands and output 
the required torques at the actuated joints. 

This section is organized as follows. The desired foothold selection at each gait cycle and 

the trajectory that the foot follows to reach the desired position are presented in Sections 4.3.2-

4.3.3. The goal is to track this trajectory, which is addressed in Section 4.3.7. The 

determination of a desired body pose and how this is achieved is explored in Sections 4.3.5 

and 4.3.8 through the formulation of an optimization problem. The desired velocity in x, z 

direction 
d
xv , 

d
zv  and the yaw rate 

d  are treated as high-level input parameters and can be 
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modified easily. The parameters related to the ground that were chosen for the simulation are 

discussed in Section 2.5.2 and the results are shown in Section 4.3.10. 

Compared to [23], there have been some modifications. Regarding the swing leg 

trajectories, a semi-ellipse is defined, instead of splines, which is simpler and can be easily 

generated. As for the trajectory that is generated when the foot loses contact with the ground, 

in [23] the foot is translated 1cm lower than its current position. In this work, the foot moves 

vertically downwards until the force sensor gives positive values. Additionally, the control 

framework of [23] comprises an extra low-level controller that takes as input the desired joint 

angles or the desired torque and regulates the motor current 
dI  by considering the dynamics 

of the actuators. Finally, Argos has different mass properties, size and leg configuration and 

this framework is verified in a different simulation environment, so the parameters that have 

been tuned experimentally in [23] are adapted accordingly. 

Regarding the desired body pose proposed in [23], even though the forward velocity is 

constant, the desired body position is not a linear function of time. It is defined relative to the 

footholds. It is claimed that this formulation produces smooth trajectories while ensuring the 

robot’s stability and the compatibility with the desired velocity commands. Quantities such as 

position or velocity are described in the inertial frame I or relative to the hip frame H of each 

leg (Figure 4-10). Both frames’ axes are aligned with the same orientation. The x axis indicates 

the heading direction, and the y axis is vertical to the ground. 

 

Figure 4-10. Inertial Frame and Front Right leg's Hip Frame. The foothold is defined relative to 
the Hip Frame. 

4.3.1 Gait Scheduling 

The quadruped moves forward according to a Gait pattern. The time normalized stride-phase 

  0 1  is the equivalent of the gait cycle T and not only informs the controller regarding a 

leg’s status (swing or stance phase), but also regarding the time left until the next phase. In a 

similar way, the variables sw  and st  indicate the time normalized progress made in swing 
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and stance mode (4-12), where swT  and stT are the time durations of swing and stance phase 

respectively. As a result, the controller anticipates how the support polygon will change (Figure 

4-12). 
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The vertices of the support polygon are described by the position of legs in contact with 

the ground. In case three legs are in stance at the same time, then it is a triangle, and if two 

legs are in stance, it is transformed to a support line. In general, static stability is ensured if 

the projection of the CoM lies over the support polygon and the polygon’s area is greater than 

zero [56]. This condition requires at least three legs on the ground. The static stability criterion 

implies that a set of forces over the region of contact exactly counteracts the forces of gravity. 

The gait that was proposed in this work is like the trotting gait, but with some modifications. 

In Figure 4-11, the dark areas indicate that a leg is in stance phase, while the light blue ones 

refer to the swing phase. After the swing phase of two diagonal legs, a phase where all legs 

are in stance is following and then the other two diagonal legs start their swing phase. In this 

way, if a swinging foot is late in contacting the ground, its diagonal leg will not have to support 

the whole weight of the robot on its own. Choosing properly the time intervals of each phase, 

at least two feet will be in contact with the ground simultaneously. The legs that are in swing 

phase shall reach the next foothold. On the contrary, the legs that are in stance phase shall 

ensure that the quadruped’s body maintains the desired pose. Figure 4-13 shows that 

depending on the gait pattern and the contact with the ground, a different control method is 

chosen. 

 

Figure 4-11. Gait pattern: the grey bar defines the stance phase of the rear left (RL), front left 
(FL), front right (FR), and rear right (RR) leg, respectively. 
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Figure 4-12. Support polygon/Support line that is generated from the feet that are in contact 
with the ground (black filled circles). 

 

Figure 4-13. Controller selection for swing and stance phases. 

4.3.2 Footstep planner 

At every control cycle, a new foothold position in xz plane is calculated for each swing leg 

(4-13). The position of the foothold relative to the hip frame (CS2) of each leg is computed by 

(4-14). Regarding the notation, the left superscript denotes in which coordinate system the 

vector is defined (H: Hip, see Figure 4-10), the right subscript refers to the position of the 

vector (e.g., F refers to foot), ff denotes a feed-forward term and fb a feedback term. 

 
 

=  
 

H

H

H

Fx

F

Fz
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r
 (4-13) 

 
H

H H ff fb

F F Fr = r + r  (4-14) 

 
1

2
stt= H ff d

Fr v  (4-15) 

 ( )= −H
hipfb d

F

y
r v v

g
 (4-16) 

The feedforward term takes into account the high-level command which is the desired 

velocity given by (4-17) and the stance duration stt . 
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0 1

d d d
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The feedback term is derived from the foothold prediction given by an inverted pendulum 

dynamic model. However, instead of incorporating the desired velocity, it includes the error 

between the desired and the actual velocity. The feedback term is treated as a corrective term 

that is used only when actual body velocity deviates from the desired command. The weight 

of this term is regulated through the scaling parameter  . It was set to 1.2 , as it is in the 

original work, because it was found that other values in the same region did not improve the 

performance. 

4.3.3 Foot trajectory planner 

Having already defined the next step of the foot, the following paragraph presents the 

trajectory that the foot follows to reach the desired foothold. An elliptical trajectory is defined 

in the xy plane (Figure 4-14), which is described by (4-18)-(4-21). 

 0 0 cos( )d

c ellipsex x  = +  (4-18) 

 0 0 sin( )d

c ellipsey y b = −  (4-19) 

 , [0, ]trajt t T  = +    (4-20) 

 
2

traj
T


 =  (4-21) 

 

Figure 4-14. Elliptical trajectory. The y axis of this figure represents the y axis of the inertial 
frame. 
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The center of the ellipse is denoted by ( , )c cx y  and more specifically 0
cy  is the vertical vector 

from the CS0 of each leg to the ground, ellipse is the semi-major axis and ellipseb  is the semi-

minor axis.   is set to  rads, ellipse  and cx  are defined at the beginning of the aerial phase 

as: 

 
0

2

−
=

0

Fx F
ellipse

r x
α  (4-22) 

 = +0 0

c F ellipsex x α  (4-23) 

where 0 Fx  is the foot position expressed at the CS0 (see Figure 2-4). 

Each leg has three degrees of freedom. Having already defined the next foothold in xz 

plane and the trajectories along x and y axes, a trajectory along z axis should be also defined. 

The desired position along the z axis and relative to the CS0 is given in (4-25), which 

encompasses two terms. The first term is the vector from the CS0 to the CS2 and the second 

term is the foothold defined in (4-14) which is expressed relative to the hip frame (CS2). The z 

component of the vector that relates the CS0 to the CS2 is given in (4-24): 

 
3 3cos( )l th=0

2z  (4-24) 

 
Right Leg

Left Leg

 +
=  

+ 

0 Η

0 d 2 Fz

0 Η

2 Fz

z r
z

- z r
 (4-25) 

Choosing a trapezoidal velocity profile (blue lines in Figure 4-15) is a way to determine 

the motion from an initial point to a final one. However, it is desired to keep the acceleration 

minimum. Given the total time ft  and the initial acceleration, the maximum velocity arises 

from (4-26), where bt is the time spent until it reaches the maximum velocity. 

 

Figure 4-15. Acceleration and position profiles given a trapezoidal (blue) or triangular (green) 
velocity profile. 
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Equation (4-29) gives a valid solution for the time 
bt if the inequality in (4-30) is satisfied. 

 
0
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4( )f

f

z z
z z

t

−
 =  (4-30)  

Therefore, when 
bt  is equal to half the final time, the maximum acceleration is the 

minimum possible ( minz ), and the velocity profile is triangular (green lines in Figure 4-15). 

Equations (4-31)-(4-33) give the acceleration, the velocity and the position as a function of 

time. 
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 (4-33) 

where 
0 iz  is the initial position of the foot relative to the CS0, swT is the time duration of the 

swing phase of each leg and bt  is half of the swT . 

4.3.4 Foot trajectory planning when contact is lost at stance phase 

When the swing phase ends, the foot is supposed to have reached the desired foothold and 

to have contacted the ground. However, it is possible to delay arriving at the final position, 

which means that the leg will have passed to the stance phase according to the Gait pattern, 

but the foot will still be in the air. Therefore, in case the force sensor does not detect positive 

force values, it is considered that the foot is in the air, and it should regain contact with the 

ground instantly. To achieve this, the foot starting from its current position follows a line that 

is perpendicular to the ground at a constant speed until the force sensors detect ground 

reaction forces. 

4.3.5 Pose finder 

The pose of the main body shall be controlled in a way to prevent the quadruped from falling 
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and at the same time to make it move smoothly with the desired forward velocity. The robot 

mostly leans on the legs that has just started their stance phase, and it starts to move away 

from them when their swing phase is about to start. To achieve this, the desired position of 

the body I d
Br  in the xz plane is computed relative to the positions of the legs 

i

I
Fr  multiplied by 

weights ( )iw  (4-34), [23]. The left superscript denotes in which coordinate system the vector 

is defined ( I : Inertial Frame, see Figure 4-10). 
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The leg weights iw  were found experimentally in [23], so their values vary according to 

the gait that was chosen. These are expressed as a function of the stride phase  . For the 

trotting gait, iw  is given in (4-35) and its value is maximum at the start of the stance phase in 

which the foot has just landed and can support the body weight. When the foot is about to 

swing, this value declines linearly. At the beginning of the swing phase, iw  is constant, but 

when the foot prepares to touch down, the weight increments linearly until it reaches its 

maximum limit again. 
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 (4-35) 

The desired height of the body relative to the ground is constant and equal to the torso’s 

height at the nominal position. The generalized desired position and velocity of the main body 

are given as: 

 [ 0 0 0]T

CoMh=
x z

d I d I d

b B Bq r r  (4-36) 

 [ 0 0 0]T=d d d d

b I x I zq v v ψ  (4-37) 

4.3.6 Control selection 

To achieve the desired motions that were described above, a hybrid control approach is 

implemented. When a leg is in the air, the foot’s desired motion is tracked by using position 

control. On the other side, the forces and torques that are generated from the legs that are in 

stance mode can affect the main body’s pose in a controlled manner to track the desired body 

positions. An optimization problem, which finds virtual forces that should act on each of the 

stance legs, is formulated and then these forces are mapped to joint torques. 

4.3.7 Swing Phase Position Control 

At swing phase, the desired joint angles d
jq  are obtained from the desired foot positions 

through inverse kinematics (see Section 2.2.2). Then, implementing a PD controller results in 

finding the torques needed to track the desired motion of the leg (4-38). The PD gains are 

listed in Table 4-2 and were found by trial and error. 
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 ( ) ( )= − + −d d

P j j D j ju K q q K q q  (4-38) 

Table 4-2. PD Controller Gains. 

Gains Hip Knee Abduction/Adduction 

KP 100 80 1000 

KD 10 8 90 

4.3.8 Control at stance phase 

The joint torques that need to be applied through the stance legs are investigated in this 

section, which is divided in three parts. Firstly, the forces and torques that should ideally act 

on the main body to force it to the desired pose, are calculated. These are optimally distributed 

to the stance legs. Finally, these virtual foot forces are mapped to joint torques. The desired 

forces and torques on the main body are given by (4-39): 

 ( ) ( )
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  
 
 
 
 

F
K q q K q q K

T
 (4-39) 

where pK , dK and ffK  are the proportional, derivative and feed-forward gains respectively 

and m  is the total mass of the robot. This equation is obtained by [23] and describes the 

required forces and torques on the main body, so that the actual pose matches the desired. 

The feed-forward gains improve tracking the desired velocities and compensate for gravity. 

The desirable contact and friction forces x  that should be applied at each stance foot 

arises from the solution of a convex optimization problem with linear constraints that is 

described below (4-40). 

 min , max

, , ,

( ) ( )T T

n n n

c i

n t n

c i c i c i

minimize

F F F
subject to

F F F 

− − +

 

−  

Ax b S Ax b x Wx

 (4-40) 

The vector x  is given in (4-41), where the superscripts 
xt  and zt  denote the tangential forces 

along the x and z axis respectively and n  denotes the normal forces. The subscripts 1, ,4  

refer to each of the legs and the constraints in (4-40) bound the normal forces between a 

minimum and a maximum limit. The second equation that should be satisfied is the friction 

cone constraint which ensures that the foot does not slip. The magnitude of the tangential 

forces must be smaller than the normal force multiplied by the friction coefficient 0.8 = . 

 
12

,1 ,1 ,1 ,4 ,4 ,4
x xz zt tt tn n

c c c c c cF F F F F F


 =  x  (4-41) 

The first term of the objective function in (4-40) is used to minimize the deviation from the 

desired forces and torques that should be applied at the main body in the least-squares sense. 
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The matrix A  (4-42) maps the foot forces on the main body (Figure 4-16), while the vector b

(4-43) has already been calculated in (4-39). 

 12 12

0 1 m
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F
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Figure 4-16.  Illustration of the foot forces mapping at the CoM. 

The weight matrix S  adjusts the degree to which each of the actual variables matches the 

desired one. On the other hand, the weighting matrix W , which is applied at the optimization 

variables, penalizes large output values at the leg forces. The optimization variables are 

bounded, not only to ensure that the virtual ground forces are always positive, but also that 

they are not excessively large. Assuming that the maximum force, that a leg can stand, is 

three times the total weight of the robot, this value is defined as the upper bound and the lower 

bound is chosen equal to Fmin
n = 2 N, because according to [23], this limitation makes the foot 

slip less times.  

The general formulation of (2-34)-(2-39), through which the contact forces are mapped to 

joint torques, can be written in the form (4-44). The vector 
3 1

i
u  encompasses the hip, 

knee and ab/ad torque for the leg i , 
3 1( ) G q are the gravitational terms, 3 3T J is the 

transpose geometrical Jacobian (see Appendix B) and 
3 1

,c i
F are the optimized contact 

forces. The foot is in stance, thus the inertial forces are zero. 

 ( )= − T

i c,iu G q J F  (4-44) 

The vector 
3 1( ) G q  arises from (4-45) where U is the leg’s potential energy given by 

(4-46) and iq are the joint angles. 
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The term , 1,2,3jy j =  in (4-47) expresses the position of the center of mass of link j  along 

the y axis relative to the CS0. 
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 (4-47) 

After calculating the partial derivatives of (4-45), the vector ( )G q  is written in the form (4-48), 

where 1cl  is the distance from the leg upper segment’s CoM to the hip joint, 2cl  is the distance 

from the leg lower segment’s CoM to the knee joint and 3cl  is the distance from the leg roll 

segment’s CoM to the ab/ad joint. 
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4.3.9 Optimization Solver 

The optimization problem (4-40) is formulated using the external library CasADi (see Appendix 

E). The choice of a solver is of great importance to achieve a good solution in minimum time. 

An initial guess is not necessary, since the optimization problem is convex. The nonlinear 

programming solvers, presented in Section 3.5 can handle a nonlinear objective function and 

nonlinear constraints. In this problem, the objective function is in quadratic form and the 

constraints are linear, hence it is considered as a quadratic programming problem, which is 

one of the simplest forms of non-linear programming. There is no need to use a NLP solver in 

this class of problems. Supported solvers for the quadratic problem are qpOASES [20], OSQP 

(Operator Splitting Quadratic Program) [57], OOQP [24] and CPLEX [16]. The first one, which 

is an active-set QP solver, is widely used and the simulations at the current problem shoed 

that it outputs acceptable solutions in one or two iterations. OSQP was also tested but failed 

to converge in some simulation runs. Thus, qpOASES was chosen, as it is fast and reliable. 

4.3.10 Results 

The control framework was verified in MATLAB Simscape4. The simulation environment and 

the solver settings are described in Section 2.5. The structure of the Simscape model is 

described in Appendix E. The quadruped is walking forward using the trotting gait and its 

speed in x direction ranges between 0.2 0.9m s m s− . It is not recommended to set the speed 

above the upper limit, because the distance between the current foothold to the next one 

(given by (4-15)) increases significantly. Thus, the leg would have to move faster or extend 

excessively, which may lead to singularities. However, if the frequency is increased, the 

quadruped’s speed can also be increased without affecting the stride length, but then the 

torques increase. Simulations have been performed for the entire velocity range, but then the 

graphs that are presented below stand for the case in which 0.4d
xv m s= . The illustration of 

the quadruped’s motion objectives at a certain speed gives all the essential data to assess its 

performance, provided that different forward velocity commands mostly affect the stride length 

 
4 The MATLAB codes can be found here: 
https://bitbucket.org/csl_legged/argos_optimal_force_distribution/src/master/ 
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and the rest quantities do not differ significantly. The other high-level parameters were set as 

0d
zv m s=  and 0d rad s = . The total stride duration is set equal to 0.8T s=  and the swing 

phase duration of each leg is set as 0.3swT s= .  

Simulations have revealed that high gait frequencies lead to robust locomotion, thus a 

commonly used value for the stride duration was chosen. Another parameter that was tuned 

for the swing leg motion is the semi-minor axis of the ellipse, for which a typical value was 

chosen, i.e., 0.08ellipseb m= . The initial conditions for the joint angles are shown in Table 4-3 

and the controller’s gains that were found experimentally are presented in Table 4-2. Table 

4-4 presents the parameters that were tuned in order to achieve good performance. 

Especially, the feedforward gain related to 
d
xv  needs a high value when the velocity is low and 

a smaller value as the speed increases. The gains have been tuned for the case of 

0.35d
xv m s= , and the expression that adapts the gain value for the different values of 

d
xv  is 

given by (4-49). This section includes the settings and results regarding the optimization and 

after that, graphs for the body pose, toes’ trajectories, forces and joint torques are presented. 
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 (4-49) 

The foot-ground interaction model parameters are described in Section 2.5.2. 

Table 4-3. Initial Joint angles. 

Hip th10  -36 ⁰ 

Knee th20 72 ⁰ 

Abduction/Adduction th30 0 

Table 4-4. Gains and weights for the optimization problem. 

Parameter Symbol Value 

virt. force proportional gain kp  ( )0 600 350 400 400 400diag  

virt. force derivative gain kd  ( )150 120 100 40 20 40diag  

virt. force feed-forward gain kff ( )1 0 0 0 0ffxdiag k    

weights for matching the des. virt. 
forces 

S  1 1 1 20 5 20  

weights for reducing joint torques W   1 120.00001 0.00001   

Optimization 

The solving time of the optimization problem ranges between 1-4ms and the average time is 

2ms.The simulation was executed on a 2-core Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 

computer. 

Body Pose 

Figure 4-17 displays the position of the center of mass of the robot body. The desired velocity 

is constant, so a linear displacement with time is expected in x direction. The height of the 
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robot in steady state is greater than that given as initial condition. This has the advantage that 

when the legs are extended, the knee torques will be relatively small. However, if the legs are 

stretched excessively, this will lead to a singularity. The orientation of the quadruped has a 

slight deviation from the desired values which ensures that the robot will not tumble over 

(Figure 4-18).  

 

Figure 4-17. CoM’s position 

 

Figure 4-18. CoM’s orientation. 
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Figure 4-20 depicts the robot’s speed in four different cases to demonstrate the 

controller’s robustness. The quadruped cannot move continuously at the desired forward 

velocity because after a swinging phase of two diagonal legs, a short phase with all the feet 

on ground has been introduced. This happens to ensure that the robot is supported by at least 

two legs even if a swinging leg delay making contact with the ground. However, Table 4-5 

attests that the mean velocity is almost equal to the desired. Figure 4-19 portrays a snapshot 

from an animation that was created in MATLAB to illustrate the body’s position in xz-plane 

(top view) and the support polygon created by the legs that are in stance phase. 

 

Figure 4-19. CoM's trajectory in xz plane illustrated with solid blue line. The black circles are 
the footholds in stance phase and the polygon that connects them is the support 
polygon. In this snapshot, all the legs are in stance. 

 

Figure 4-20. CoM’s forward velocity. The black dashed lines are the desired velocity commands. 
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Table 4-5. The average forward velocity that the robot achieves given the desired command. 

d

xv  0.2 0.35 0.5 0.65 0.8 0.9 

xv  0.1945 0.348 0.4986 0.6499 0.7873 0.8734 

 

Toe Trajectory 

Figure 4-21 illustrates in blue color the desired toe trajectory of the front left leg during the 

swing phase and the actual trajectory is portrayed in orange color. The purple vertical line is 

the desired trajectory of the foot when it is in stance phase but loses contact with the ground. 

The green line depicts the trajectory that it actually follows to regain contact. The deviation 

between the actual trajectories and the desired ones does not have a negative effect on the 

robot’s locomotion, since the foot’s motion is still smooth, and the quadruped achieves to step 

on the desired footholds. The foot trajectories of the other three legs are similar to that 

presented in Figure 4-21, so they can be omitted. 

 

Figure 4-21. Toe’s trajectory – Rear Right Leg. The detail represents the trajectory that the foot 
follows to regain contact with the ground. 

Joint Angles and Velocities 

The following figures (Figure 4-22 - Figure 4-27) represent the joint angles and joint velocities 

of the front left leg. The foot follows an elliptical trajectory in the xy-plane. On the other hand, 

a second order polynomial resulting from the triangular velocity profile is the desired command 

in the z direction. The blue lines represent the desired motion given during swing phase. The 

controller tracks the desired joint angles and angular velocities satisfyingly, but further gain 

tuning may lead to even better tracking. 
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Figure 4-22. Desired and actual hip joint angle of the front left leg. 

 

Figure 4-23. Desired and actual hip joint angular velocity of the front left leg. 

 

Figure 4-24. Desired and actual knee joint angle of the front left leg. 
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Figure 4-25. Desired and actual knee joint angular velocity of the front left leg. 

 

Figure 4-26. Desired and actual abduction joint angle of the front left leg. 

 

Figure 4-27. Desired and actual abduction joint angular velocity of the front left leg. 
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Virtual Optimized Forces – Actual contact forces 

Figure 4-28 shows the front left leg’s virtual forces that result from the solution of the 

optimization problem and the actual ones that are computed by the force sensors according 

to the foot-ground contact model. The spikes happen when the foot contacts the ground. If the 

ground stiffness is reduced, the surface will become softer, and the force change will not be 

so abrupt. Therefore, the maximum force values depend on the terrain and the toe material. 

Then, Figure 4-29 and Figure 4-30 show the resulting force and torques on the main body. 

The weighting gains that are listed in Table 4-4 affect the tracking of the desired forces and 

torques and the higher values assigned at the X-axis and Z-axis torque mean that these 

quantities need better tracking. The forces and the torques that are applied on the center of 

mass are calculated through mapping of the leg forces to the CoM. As a result, abrupt changes 

at the leg forces when the foot contacts the ground cause the spikes at the Figure 4-29 and 

Figure 4-30. 

 

Figure 4-28. Virtual-Actual Forces for Front Left Leg. 

 

Figure 4-29. Resulting force on the main body. 
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Figure 4-30. Resulting torque on the main body. 

Joint Torques 

The figures below show the torque required at the hip, knee, and abduction/adduction joints 

respectively. The torques at the rear legs are larger than those of the front legs. Also, the 

highest torque values appear at the knee joint because of the long lever arm.  

 

Figure 4-31. Hip, Knee and Abduction torques of the diagonal legs Front Left and Rear Right. 
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4.3.11 Conclusion 

The framework that was investigated can be used for a wide range of speeds. Both the 

formulation of the planning and the control has a lot of tunable parameters. Consequently, the 

parameter choice becomes a complex task. However, the conclusion that was drawn in [23], 

according to which a large range of parameters results in successful motions, is validated in 

this work. A change in one of the parameters cannot be easily related to a specific effect on 

the motion objectives. Thus, the tuning of the parameters has been based on the values used 

in [23], but the adjustments were made intuitively. Finally, the generation of other gaits will 

require different tuning of parameters. 

The mean forward velocity is almost identical to the desired, thus the high-level velocity 

commands are tracked very well. The orientation of the robot does not deviate significantly 

from the nominal position, so it remains stable. The slight lateral drift that is presented in [23], 

also appears in this simulation, but it does not affect the whole motion. The spikes that are 

shown in the force graphs are caused by the impact with the ground and can be eliminated if 

the shocks are absorbed by adding high damping feet elements, as it is done in [23]. Also, 

StarlETH is able to either damp out a certain amount of energy or to store it as potential energy 

in the actuator springs. The passive mechanical compliance in the actuators, as well as the 

high damping feet elements protect the system from the impact at landing [30]. The required 

joint torques are twice of those needed in [23], but this is expected, provided that the weight 

of StarlETH is less than half the weight of Argos. In summary, the optimal force distribution 

method improved quadruped’s locomotion by controlling indirectly the pose of the robot’s 

body, but further experiments, where external disturbances are acting on the body can be 

performed to verify the controller’s robustness. It is also worth identifying in a future work if the 

recovery process from an external disturbance leads to excessively large joint torques. 

Another advantage of this framework is its modularity, meaning that each of the small 

subsystems can be replaced by other algorithms, while the rest are kept as they are. 

4.4 Application of Trajectory Optimization in Argos 

4.4.1 Introduction 

In this section, trajectory optimization is applied in the quadruped Argos. In general, a high-

level task is translated into a desired motion plan for the legged robot, while satisfying the 

physical constraints. Trajectory optimization generates optimal plans, which drive the system 

to the final goal, given the initial state of the system and an estimate of the total time needed. 

The total time horizon is discretized in a number of grid points, each of which shall satisfy the 

according physical constraints. This work is based on [63], in which trajectory optimization is 

used for the generation of complex motions in several legged systems. 

4.4.2 Approaches in legged systems 

A walking robot is a dynamical system which goes through multiple phases of continuous 

dynamics, separated by discrete transitions [37]. The underlying optimization algorithm is 

typically a smooth, gradient-based method. Common nonlinear programming solvers such as 

SNOPT [25], [26], IPOPT [6], [60], [61], [8], FMINCON [44] rely on gradient based methods. 

The discrete transitions of such hybrid systems results in non-smooth dynamics. There are a 

few techniques to handle the discontinuous dynamics such as phase-based optimization, 
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through-contact optimization, techniques with slack variables and constraints and smoothing. 

The choice of the appropriate method depends on the problem, but in the context of this work, 

it is worth investigating the first two methods [37]. 

If the discontinuity is simple, such as an absolute value sign in the objective function, then 

there are many clever tricks with slack variables and constraints. If there is a simple non-

linearity, then every instance of the discontinuous function can be replaced with a smooth 

approximation. In [7], a smooth contact model which provides good gradients of the dynamics 

is used. This tends to be simple and fast, but less accurate than the slack variable method. 

There are two types of smoothing: exponential and polynomial. If polynomial smoothing is 

used, it has to be ensured that it is smooth to second order at least. 

Phase-based optimization 

If there is a small number of well-understood discontinuities, such as foot collisions with the 

ground during walking, that occur in a known sequence, then the best option is to pose a multi-

phase trajectory optimization problem. This method has been applied for the quadruped robot 

ANYmal [4]. Multi-phase methods implement a basic multiple shooting or collocation algorithm 

in each phase, but additional constraints ensure that the phases are linked together. First, the 

sequence of phases is defined and then standard constraints at the continuous phase and 

extra constraints at the transition are set up. They are faster and more accurate than through-

contact optimization, but they require explicit knowledge of the sequence of transitions. A 

software specialized for this type of problem is GPOPS-II [5]. 

Through-contact optimization 

Through-contact (contact invariant) optimization is best for systems with more complicated 

contact models and/or discontinuities, where the sequence of discontinuities is not known. 

The principle is to include some special constraints and extra decision variables to force all of 

the discontinuities into constraints, leaving the resulting NLP smooth. The system dynamics 

includes the contact impulses which are arbitrary. Compared to the multi-phase method, 

where the constraints at each grid point are known a priori, in this formulation, contact 

constraints are directly added to the required grid points. These impulses are then treated as 

a control variable, which is subject to constraints. If the foot is in the air, these constraints 

ensure that there is a gap between the foot and the ground. Otherwise, the foot forces are 

non-zero. These constraints form what is known as a linear complementarity problem (LCP). 

This method can deal with arbitrary sequences of contacts, but it is slower and less accurate. 

4.4.3 Optimization problem structure 

The problem is formulated according to the phase-based approach. An overview of the 

optimization problem is depicted in Figure 4-32. The inputs are the initial and final state of the 

system, the number of steps of each leg ,s in , the total duration T , the durations of the swing 

and the stance phases ,sw stT T   and subsequently the timings at which the feet make contact 

with the ground. A major difference from [63] is that the optimization problem is simplified by 

predefining the type of gait; it is not generated by the algorithm. The parameter selection 

concerns the trotting gait, thus if a different gait is chosen, the problem should be set up 

accordingly. The outputs are the base position 
3( )r t   and orientation 

3( )t   

(parameterized by Euler angles), the feet positions ip  and the feet forces if . The pose of 

the robot (base position and orientation) is described by cubic polynomials merged at the 

boundary points, so that a continuous spline is created. On the other hand, the foot position 
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is parameterized using one quartic polynomial at swing phase and a constant value at stance 

phase. For the foot force, three quadratic polynomials describe the stance phase, while at 

swing phase, the force is set to zero. Both the states (base pose) and the controls (feet 

positions and forces) are optimization variables; thus, a simultaneous method is pertinent for 

solving such problems. The optimization problem is formulated according to the Hermite-

Simpson direct collocation because according to the comparison made in Section 3.6, it 

provides satisfying accuracy and it is much faster compared to multiple shooting. Regarding 

the optimization software, CasADi was chosen as it turned out to be far more efficient than 

OptimTraj.  

 

Figure 4-32. Trajectory optimization formulation. 

To speed up the computations the optimization problem that was formulated in [63] does 

not include an objective function, but in this work it does. Problems without an objective 

function are known as Constraint Satisfaction Problems. In contrast, problems that include an 

optimization criterion are known as Constraint Optimization Problems. Not all optimization 

solvers require the specification of an objective function. Even if they do, it is possible to 

specify some dummy objective. However, it is important to note that introducing a dummy 

variable is a bad practice, unless all optimization variables are bounded. 

4.4.4 Objective function 

The goal of this implementation is the generation of feasible movements to reach a desired 

position in Cartesian space. The optimal trajectory is determined by the criteria that are set 

via the objective function JN .  

 ( ) ( ) ( ) ( )( )
1

1

minimize J ( ) ( ) ( ) ( )
N

T Tref ref
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k k k k
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=
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The objective function given in (4-50) consists of two terms. The first penalizes states x  that 

deviate significantly from the reference states, 
ref

x while the second term penalizes large 
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values for the feet forces if . The weighting matrix Q  trades off the degree to which each 

optimized state will match the respective reference state over the rest of them. The reference 

value for the forward velocity is the desired forward velocity, thus the reference body position 

along x axis is a linear function from the initial to the final position. The CoM’s reference height 

is equal to the nominal height in a leg configuration where the joint angles (Figure 2-1) are set 

as 1 36th = − and 2 72th = . The reference values for the rest of the states are set to 0. 

Regarding the weighting matrix R , the higher its elements are, the more high output forces 

are discouraged. Equation (4-51) gives an initial estimation of the weights. 
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2

max

2

,max

1

1

0

0

ii
ref

i

ii

i

ij

ij

Q
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R
f

Q
i j
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=
−

=

=


=

 (4-51) 

Then, these values are adjusted until the optimal performance is achieved. The feet forces 

are significantly larger than the error of the state’s variables. To compensate this difference, 

the values of the weighting matrix R  should be at least three orders of magnitude smaller. 

The index k  specifies the discretization points. 

4.4.5 Dynamic model 

In the trajectory optimization formulation, the dynamic model that is defined, is treated as a 

constraint that should be satisfied at every grid point. The dynamic models that were presented 

in Section 2.3 are approximations of the physical model, but the choice depends on the 

application. The simplest one, which is the Linear Inverted Pendulum Model (LIPM) is rejected 

because it cannot be used to generate complex motions and it is inappropriate for uneven 

terrain. More accurate dynamic models are the rigid body dynamics and the centroidal 

dynamics models which takes as input the joint torques and the contact forces respectively. 

Their states are the six-dimensional base pose and the joint angles. Although these models 

are good representations of the actual physics, the physical constraints cannot be easily set 

in the joint space. On the other hand, the constraints can be described in Cartesian space 

efficiently.  

For the aforementioned reasons, the single rigid body dynamics model is chosen, which 

can be written in the form of (4-52)-(4-53). The variables are described in detail in Section 

2.3.3. Regarding the coordinate systems (see Figure 2-3), there is one defined at the CoM of 

the robot which is the base c.s. B  and the other one is the inertial c.s. I in which the 

optimization variables are expressed (Figure 2-3). The direction of the forward movement is 

aligned with x-axis and y-axis is defined to be vertical to the ground. 
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4.4.6 Dynamics constraints using Hermite Simpson direct collocation 

The base position, orientation and their derivatives are continuous variables that are 

transcribed into decision variables for the NLP by splitting these continuous trajectories into 

segments. Having already defined the total time T  that the robot needs to accomplish a 

specified task, then this time interval is discretized every h  seconds. Consequently, the total 

number of segments will be: 

 
T

N
h

=  (4-54) 

The implementation of Hermite-Simpson collocation method requires the following 

constraints. Firstly, a vector x  that contains the base position r , the velocity r , the 

orientation θ  and the angular velocity ω  is defined as: 

 

 
 
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 

r

r
x

θ

ω

 (4-55) 

For the implementation of Hermite-Simpson direct collocation method, an extra collocation 

point in the middle of each segment should be defined. Then the system dynamics given in 

(4-52)-(4-53) and (2-29) have to be satisfied every 2h  seconds. The collocation constraints 

(4-58)-(4-59) are constructed to approximate the system dynamics. The change in state 

between any two knot points k and 1k +  should be equal to the integral of the system 

dynamics F( )  between those two knot points [35]:  

 F( , , )=x x p f  (4-56) 

 
1 1k k

k k
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t t
dt dt

+ +

= x F  (4-57) 

Transcription occurs when the continuous integral in (4-57) is approximated with Simpson 

quadrature (analyzed in Appendix C) as shown in (4-58): 
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where 1
k+

2

F is the dynamics at the midpoint 1
k+

2

x  calculated as follows: 
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h
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+
= + + −x x x F F  (4-59) 

Given that the state trajectories are discretized every h  seconds, then the algorithm will 

provide the solution of the states and their derivatives at the initial and the final point of this 

time interval. Consequently, there are four conditions available, and the state trajectory can 

be approximated by a cubic polynomial. The final point of one segment h  is the initial point 

of the next segment. Thus, the cubic polynomials that are merged together, create a 

continuous spline and the whole trajectory is smooth. 
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4.4.7 Feet motion and forces parameterization 

Quadrupeds can move in several ways and every gait has a distinctive pattern, with one or 

more feet leaving the ground at a time. The most common gaits are static walk, trotting, 

galloping and pace. The description of these gaits leads to a great number of phases, each of 

which represent a different combination of feet that makes contact with the ground. To simplify 

the problem, each foot is treated separately from the others, which results in two phases; 

contact and swing. These phases alternate, meaning that after a flight phase, a contact with 

the ground will occur and so on. One step includes a swing and a stance phase. When the 

physical problem is transcribed into an NLP, the decision variables have to be discretized. The 

position of each foot is parameterized using one quartic polynomial of duration 2h  at swing 

phase. At stance phase, the foot stays still, so the position is described by a constant function. 

On the other hand, foot force is parameterized using three quadratic polynomials of equal 

duration at stance phase and at swing phase, the force is set to zero. Apparently, the last point 

of one polynomial is the starting point of the next one. The total number of discretization points 

is 2 1N + . The quadratic polynomials that represent the force trajectories are constructed from 

the initial and the final point of each segment h  and the middle point that has been introduced 

in the problem. The quartic polynomials require 5 points, especially the two boundary points 

of two adjacent segments and the 3 intermediate points. 

4.4.8 Foot operational space 

 

Figure 4-33. Foot's operational space. 

In general, joint angles are restricted to be away from singularities to avoid undesirable effects. 

Also, robot’s configurations have to be restricted in a space to avoid self-collisions. Since, the 

optimization problem has been defined in the Cartesian space, it is convenient that the 
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constraints are defined in Cartesian space too. So, instead of restricting the joint angles, the 

position of the foot relative to the base has to be kept within the bounds of a hexahedron 

(Figure 4-33). The hexahedron is centered at the nominal position of the foot and the length 

of the cube determines how much the foot can deviate from its nominal position. The equation 

that describes this constraint is: 

  ( ) ( )B B

I i it t− − R p r p b  (4-60) 

  ( ) ( ) ( )B B

i I it t t= −p R p r  (4-61) 

where ( )i tp  is the current foot position relative to the world frame, 
B

ip is the nominal position 

of the foot relative to the base frame and b  is the vector that represents the allowable offsets 

from the nominal position in each direction. 

4.4.9 Position and force constraints 

The nodes of the swing polynomials are treated differently from those of stance polynomials, 

as they are subject to different constraints. As the swing polynomials always alternate the 

stance polynomials, it is known a priori in which polynomial each node belongs. Firstly, it has 

to be ensured that the feet do not slip during the stance phase (denoted by iC ) by setting the 

foot position constant: 

 , 1. ( ) ( )i st i k i i k iconst t C t C+=   = p p p  (4-62) 

Additionally, the position of the foot in y direction should be equal to the height of the terrain 

,i terrainh  at the point of contact: 

 , ,

y

i st i terrainp h=  (4-63) 

On the other hand, the contact forces determine the base motion, but they are subject to 

constraints. Regarding their direction, a unilateral constraint is added to ensure that these can 

only push into the ground and not pull on it. So, the nodes that belong to the stance phase 

polynomial have to be constrained as: 

 , ,( ) 0T xz

n st i stp= f f n  (4-64) 

where ,( )xz
i stpn is the normal vector to the ground at the position of the foot which is in stance. 

For flat terrain  ,( ) 0 1 0
Txz

i stp =n . The upper bound of the normal foot force, when the leg 

is in stance phase, is set equal to three times the body weight. Another essential constraint is 

that the tangential forces along x 
xtf  and z axis 

ztf  have to be inside the friction cone, to 

ensure that the foot does not slip: 

  , ,,x z
n st n stt t

 −  f f f  (4-65) 

Apparently, the greater the normal force, the larger the acceptable tangential forces can be 

without slipping. The cone is also defined by the friction coefficient  , which is set equal to 

0.8 . The above-mentioned constraints refer to the stance phase. At swing phase, the only 

restriction is that the feet forces should be zero: 

 ,i sw =f 0  (4-66) 

where 1, ,4i =  indicates each of the four legs. 
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4.4.10 Hermite-Simpson Collocation: Interpolation 

The solution of the trajectory optimization problem outputs the optimal values of the decision 

variables at each of the grid points. The goal is the construction of continuous trajectories 

which is achieved by polynomial interpolation passing through these optimal points. The 

unknown values that lie in between the known data points are determined through the 

interpolation process. As already mentioned, the feet forces are represented by quadratic 

polynomials. A 2nd order polynomial that passes through the points ( ),A At u , ( ),B Bt u , ( ),C Ct u  

can be written in the form of (4-67). 
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B C A C A B
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t t t t t t t t t t t t
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t t t t t t t t t t t t

− − − − − −
= + +
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 (4-67) 

However, in this formulation the segments have equal duration h  and the point B is at 

the middle of the segment. If the indices A, B, C are substituted by the indices k, k+1, k+2, 

then h  is given by (4-68) and the intermediate point by (4-69). Defining the time as kt t = −

, the simplified equation becomes: 

 
2k kh t t+= −  (4-68) 
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The system dynamics F( ) x =  is also represented by quadratic polynomials (4-71).  
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The states trajectories are derived by integrating (4-72) as 
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 (4-72) 

4.4.11 Quartic interpolation 

The foot position in swing phase is represented by a quartic polynomial which is given by 

(4-73). Given five data pairs { , }i it p , the coefficients of the polynomial can be found by solving 

the linear system (4-74). The 5 5  interpolation matrix is known as Vandermonde matrix. 

 
2 3 4

0 1 2 3 4( )p t t t t t    = + + + +  (4-73) 
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An alternative way to create an interpolant is by expressing the polynomial p(t) as a sum of 

four quartic polynomials ( )il t  which satisfy the “delta conditions” (4-77), given by: 
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This approach is called the Lagrange form of the interpolating polynomial. The quartic 

polynomial refers to two adjacent segments which last 2swh h= , so the optimal points which 

are evenly spaced will be  00, p ,  14,swh p ,  22,swh p , 33 4,swh p ,  4,swh p . After 

substituting the data points at (4-75)-(4-76), the resulting polynomial coefficients are: 

 0 0p =  (4-78) 

 1 0 1 2 3 4

25 16 1
16 12

3 3 sw

p p p p p
h


 

= − + − + − 
 

 (4-79) 

 2 0 1 2 3 4 2

70 208 112 22 1
76

3 3 3 3 sw

p p p p p
h


 

= − + − + 
 

 (4-80) 

 3 0 1 2 3 4 3

80 224 1
96 128 16

3 3 sw

p p p p p
h


 

= − + − + − 
 

 (4-81) 

 4 0 1 2 3 4 4

32 128 128 32 1
64

3 3 3 3 sw

p p p p p
h


 

= − + − + 
 

 (4-82) 

The aforementioned method simplifies the construction of a 4th order polynomial, which is 

essential as this formula creates smooth trajectories while exploiting all the available optimal 

points. 

4.4.12 Results 

The trajectory optimization problem that was analyzed in the previous sections incorporates 

differential-algebraic equations (DAE). The numerical solution of this problem requires its 

transcription to an NLP and then it can be solved by off-the-self NLP solvers. Section 3.6 

highlights the reasons to formulate the problem in CasADi, while Section 3.5 demonstrates 
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that IPOPT is the most efficient NLP solver compared to the others that were discussed. 

Therefore, CasADi is imported to MATLAB, the variables are defined as CasADi symbols and 

the NLP is solved by IPOPT. The code5 is included in Appendix F.  

Apparently, the elapsed time depends both on the time horizon and the discretization of 

the trajectories. A 2-core Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz computer needs 2-3 s 

to solve the problems that are presented below. Especially, the total CPU time in IPOPT (w/o 

function evaluations) is the 1 5  of the total time and the rest is the CPU time in NLP function 

evaluations.  

 

Figure 4-34. Gait pattern. The grey color indicates the stance phase while the light color 
indicates the swing phase. 

The results that are presented in the following sections include both the motion objectives 

of the quadruped and the torques required to achieve these motions. The robustness of the 

algorithm is tested in 3 simulation experiments with different final position and consequently 

different forward velocity. The target of the system is the final position, but the mean forward 

velocity is introduced indirectly as a reference state in the objective function and as an initial 

guess. The time horizon is kept constant in these three cases. The number of steps is set to 

4, which is equivalent to 4 full periods. The trajectory is discretized every 0.3h s= . The swing 

phase includes 2 adjacent segments (4-83) and the stance phase 4 segments, see (4-84). 

 2swT h =  (4-83) 

 4stT h =  (4-84) 

In this phase-based trajectory optimization formulation, the sequence of the phases for each 

leg is defined by the gait pattern that is illustrated in Figure 4-34. 

The weighting matrix 
12 12Q  (4-85) is a diagonal matrix that penalizes the deviation 

from the reference states. The values at the diagonal are equal to one except for the second 

element which is three orders of magnitude smaller. 

 
5 The MATLAB code can be found here: 
https://bitbucket.org/csl_legged/argos_trajectory_optimization/src/master/ 
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This gain penalizes to a lesser extent the deviation of the CoM’s height to its nominal 

value, which makes the movement seem more physical. If the value of the quadruped’s height 

exceeds the upper acceptable limit, this means that the feet are extended excessively which 

may lead to singularities. On the other hand, if the robot stops below the lowest acceptable 

position, then the torques at the knee will become really high. To avoid the aforementioned 

issues, strict constraints are set, which ensures that the body position along y axis is bounded 

by a lower and an upper limit. The weighting matrix 
4 4R  (4-86) penalizes large values at 

the components of the feet forces vectors which are normal to the ground. As mentioned in 

Section 4.4.4, the gains are chosen significantly smaller than those of the matrix Q .  
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As mentioned in Section 4.4.8, the foot is restricted to move inside a hexahedron. The 

operational space of the foot is constrained by the offsets given in Table 4-6. 

Table 4-6. Offsets from the nominal foot position 

X axis 
Front  0.4 m 

Rear 0.4 m 

Y axis 
Top 0.05 m 

Bottom 0.05 m 

Z axis 
Inner 0.03 m 

Outer 0.2 m 

Body poses and velocity 

The final position that the robot should reach is expressed as Fx . Three simulation 

experiments with different target position Fx  are presented in Figure 4-35. The quadruped 

starts with the desired mean forward velocity and at the end of the simulation time, it stops, 

i.e., its velocity becomes 0. The quadruped reaches the goal while keeping almost constant 

velocity. This is due to the fact that the smaller the deviation of the actual speed from the 

reference speed, the smaller the value of the objective function will be. The CoM’s position 

along the y axis of the inertial frame is periodical and its frequency depends on the gait pattern 

which is the same for the three cases. The amplitude of the oscillation is acceptable and does 

not affect the whole movement. The CoM’s position along the z axis is kept constant and equal 

to 0 as it is desired (Figure 4-35). To keep up with the reference velocity, the stride length of 

the third case is too long, so in order not to violate the foot operational constraints, the robot’s 

main body may tilt to the left or right side. Figure 4-36 displays that the order of magnitude of 
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the angular deviation along the x, y and z axis is 61e rad−  (roll), 71e rad−  (yaw) and 31e rad−  

(pitch) respectively. Therefore, it is ensured that the quadruped will not tumble over. 

 

Figure 4-35. Desired and actual body position in Cartesian space for three different target 

positions 
Fx . 

 

Figure 4-36. Body orientation in Cartesian space. 
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The velocity along the x and y axes (Figure 4-37) is changing periodically. Among the 

aforementioned constraints, the decision variables could also be bounded to avoid infeasible 

movements, so the acceptable values of yv  range between 0.3 m s  in order to avoid the 

abrupt changes in CoM’s height. As it was described earlier, between the swing phases of the 

two sets of diagonal legs, a stance phase occurs when all the feet make contact with the 

ground. The forward velocity xv falls below the reference value due to this intermediate stance 

phase. However, the mean forward velocity is slightly lower than the reference velocity (Table 

4-7), but this happens because the quadruped stops at the end and the final value is 0. Figure 

4-37 also depicts that the velocity along z is almost 0 (order of magnitude 
41e m s−

) which 

means it tracks the desired command. 

 

Figure 4-37. Body velocity in Cartesian space. 

Table 4-7. The average forward velocity that the robot achieves given the desired command. 

d

xv
 

0.2 0.4 0.6 

xv
 

0.19 0.39 0.57 

 

Foot trajectory 

The trajectories that are illustrated in Figure 4-38 refer to the rear left leg, but similar response 

is noticed for the rest of the legs. The foot position along the x axis is represented by a constant 

line in stance phase, while the foot position along the y axis is 0. The quartic polynomials that 
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are generated in swing phase seem to be really smooth and inside the acceptable range of 

values. As the distance that the quadruped should travel increases, while keeping during the 

simulation time and the frequency (or the number of steps) fixed, the foot should make bigger 

steps to reach the desired final position. The foot trajectory along y axis remains the same for 

all the different cases that were examined. 

 

Figure 4-38. Foot Trajectory (Rear Left leg). 

Foot forces and joint torques 

Figure 4-39 depicts the feet for the three different simulations. The forces during the swing 

phase are represented by four 2nd order polynomials. The normal forces are identical in all 

simulation experiments. The forces along the x and z axes should satisfy the friction cone 

constraints as: 

 ,x z yf f f  (4-87) 

When the foot is in the air, the forces are zero. The feet forces are mapped to the joint torques 

(4-88) via the geometrical Jacobian given in (2-12). Figure 4-40 illustrates the torques during 

stance phase which are the most critical.  

 = − T
τ J F  (4-88) 
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Figure 4-39. Foot Forces (Rear Left leg). 

 

Figure 4-40. Joint torques. 
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4.4.13 Conclusion 

The implementation of trajectory optimization in a multi-phase problem was successful and 

the process of finding valid trajectories for the CoM and the feet was automated. This 

formulation is applicable when the terrain map and the timings that each foot interacts with the 

environment are provided. This happens because the constraints at swing phase differ from 

those at stance phase. The outputs of the optimization problem are comparable to those of 

the previous models, so these motions are feasible. However, the optimal planning is based 

on a single rigid body dynamics model, so deviations may appear in the real experiment.  

The model can be further improved if a continuity constraint is added at the points 

between the three different polynomial splines that represent the forces at stance phase. This 

can be achieved by introducing the derivative of the force as decision variable. In [63], the 

trajectories are continuous in their entire range, but it is not stated clearly how this is achieved. 

As a final point, this optimal planning method should be combined with a whole-body controller 

or a MPC to evaluate the output trajectories and verify the overall response of the system. 
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5 Conclusions and Future Work 

5.1 Conclusion 

The first approach proves that a simple control framework leads to successful quadrupedal 

locomotion. The tunable parameters are few, so it is easy to observe the effect of changing 

one parameter on the response of the system. However, feasible motions are limited to simple 

foot trajectories that are predetermined and executed according to a gait pattern.  

The contribution of the second approach compared to the first is that the quadruped 

motion is determined by high-level velocity and yaw rate commands, which makes target 

specification easy. The optimal force distribution and the footstep planning ensure that in the 

event of a disturbance, the quadruped will place its feet at an appropriate position and the 

forces acting on the stance feet will restore the body to its desired posture. The optimization 

problem implicitly incorporates the torque limits by bounding the output foot forces under a 

specified limit, which leads to feasible output commands. The conclusion drawn is that 

footholds and body motion are important quantities in legged locomotion and tightly coupled. 

Another advantage of this framework is that it is highly modular. Each of the subsystems 

describing either the leg trajectories or their control can be replaced by other algorithms, thus 

allowing the exploration of new movements. Although tuning the various parameters to the 

optimum is a tedious process and even impractical, a wide range of parameters has been 

found to lead to successful movements. Overall, it is an efficient motion planning algorithm for 

legged robots that could be applied to unstructured terrain locomotion situations. 

Regarding the trajectory optimization process, the simulations of the two-link manipulator 

revealed that TO is a really efficient way to generate optimal trajectories, which can be easily 

adjusted by modifying the objective function. Additionally, the combination of trajectory 

optimization with MPC results in a good trajectory tracking and the final goal was reached 

successfully. Repeatedly generating motion plans starting from the current state of the system 

was feasible due to the fast control loop speed. 

The last approach demonstrated that the discrete dynamics of the legged locomotion 

problem can be handled successfully by the phase-based trajectory optimization technique. 

The process of finding valid trajectories for the CoM and the feet were automated and the 

range of achievable motions has been expanded. However, this technique requires a 

complete definition of the terrain map and the timings that each foot makes contact with the 

ground in order to enforce the appropriate constraints at each grid point. It is worth mentioning 

that the optimal planning is based on a single rigid body dynamics model, so deviations may 

appear at the real experiment. The outputs of the optimization problem are expected motions 

for the quadruped locomotion on flat terrain. The usefulness of this approach could be 

highlighted in more complex tasks, where the definition of all these tightly coupled trajectories 

is not evident.  

According to the aforementioned evaluation, each approach has its advantages and 

disadvantages. In summary, the choice of the appropriate motion planning and control scheme 

depends on the needs of the application. 
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5.2 Future Work 

Each of the three approaches that were investigated has different potential for improvement. 

Due to the simplicity of the first approach, it is ideal for the initial real experiments of the 

quadruped Argos. The response of the system during the trajectory tracking and during the 

interaction with the ground can be clearly observed. The simulations of the second motion 

planning approach can be extended to sloped and rough terrain. In this way, the contribution 

of the optimization in the control of the quadruped’s body pose can be better assessed. Further 

experiments with external disturbances acting on the body can be performed to verify system 

robustness.  

Trajectory optimization is an attractive approach, as a large variety of motions can be 

generated. Future work may include a model predictive control formulation that would allow 

the robot to re-plan and take corrective steps if the actual plan deviates from the desired one. 

Also, it would be robust to pushes or foot slips. The modelling errors that arise due to the 

approximation of the real dynamics by the SRBD model will not affect the performance 

because the quick replanning will correct any model inaccuracies. The only discouraging 

factor may be the control loop speed, but MPC is worth investigating further. In conclusion, 

improving the capabilities of the motion-planning algorithm and embedding it in an MPC 

formulation on a physical system, seems to have high potential. 
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Appendix A   

Mathematica Code – Forward Kinematics of the quadruped Argos 

The coordinate systems of the main body, hip, knee and foot are expressed relative to the 

inertial frame.  

Clear["Global`*"] 

Rx = {{1,0,0,0},{0 ,Cos[qx],-Sin[qx],0},{0,Sin[qx],Cos[qx],0},{0,0,0,1}}; 

Ry ={{Cos[qy],0,Sin[qy],0},{0 ,1, 0,0},{-Sin[qy],0,Cos[qy],0},{0,0,0,1}}; 

Rz ={{Cos[qz],-Sin[qz],0,0},{Sin[qz],Cos[qz],0,0},{0,0,1,0},{0,0,0,1}}; 

TCoM ={{1,0,0,rx},{0,1,0,ry},{0,0,1,rz},{0,0,0,1}}.Rx.Ry.Rz  ; 

 

T0front={{1,0,0,Lx},{0,1,0,0},{0,0,1,0},{0,0,0,1}}; 

T0rear={{1,0,0,-Lx},{0,1,0,0},{0,0,1,0},{0,0,0,1}}; 

 

TR01 = {{0,0,-1,0},{0,1,0,0},{1,0,0,0},{0,0,0,1}} ;  (*ROTy(-pi/2) *) 

TL01 = {{0,0,1,0},{0,1,0,0},{-1,0,0,0},{0,0,0,1}};  (*ROTy(pi/2) *) 

 

TR12 = {{Cos[Q3],-Sin[Q3],0,0},{Sin[Q3],Cos[Q3],0,0},{0,0,1,0},{0,0,0,1}}. 

{{1,0,0,l3},{0,1,0,0},{0,0,1,0},{0,0,0,1}}. 

{{0,0,1,0},{0,1,0,0},{-1,0,0,0},{0,0,0,1}};  (*ROTz(Q3).TRANSX(l3).ROTy(pi/2) *) 

TL12= {{Cos[Q3],-Sin[Q3],0,0},{Sin[Q3],Cos[Q3],0,0},{0,0,1,0},{0,0,0,1}}. 

{{1,0,0,l3},{0,1,0,0},{0,0,1,0},{0,0,0,1}}. 

{{0,0,-1,0},{0,1,0,0},{1,0,0,0},{0,0,0,1}};  (*ROTz(Q3).TRANSX(l3).ROTy(-pi/2) *) 

 

T23 = {{Cos[Q1],-Sin[Q1],0,0},{Sin[Q1],Cos[Q1],0,0},{0,0,1,0},{0,0,0,1}}. 

{{1,0,0,0},{0,1,0,-l1},{0,0,1,0},{0,0,0,1}};(*ROTz(Q1).TRANSy(-l1)*) 

 

T34 ={{Cos[Q2-theta],-Sin[Q2-theta],0,0},{Sin[Q2-theta],Cos[Q2-

theta],0,0},{0,0,1,0},{0,0,0,1}}.{{1,0,0,0},{0,1,0,-l2},{0,0,1,0},{0,0,0,1}} ;  

(*ROTz(Q2-theta) .TRANSy(-l2)*) 

 

TR04 = TR01.TR12.T23.T34; 

TL04 = TL01.TL12.T23.T34; 

 

TFL0 =TCoM.T0front;  (*Front Left *) 

FullSimplify[MatrixForm[TFL0]] ; 

 

XFL0 =FullSimplify[TFL0[[1,4]]]; 

YFL0 =FullSimplify[TFL0[[2,4]]]; 

ZFL0 =FullSimplify[TFL0[[3,4]]]; 

 

TFLhip = TFL0.TL01.TL12 ; 

XFLhip =FullSimplify[TFLhip[[1,4]]]; 

YFLhip =FullSimplify[TFLhip[[2,4]]]; 
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ZFLhip =FullSimplify[TFLhip[[3,4]]]; 

 

TFLknee = TFLhip .T23; 

XFLknee =FullSimplify[TFLknee[[1,4]]]; 

YFLknee =FullSimplify[TFLknee[[2,4]]]; 

ZFLknee =FullSimplify[TFLknee[[3,4]]]; 

 

TFLe = TFLknee.T34; 

XFLe=FullSimplify[TFLe [[1,4]]]; 

YFLe=FullSimplify[TFLe [[2,4]]]; 

ZFLe=FullSimplify[TFLe [[3,4]]]; 

 

TFR0 =TCoM.T0front; (*Front Right*) 

FullSimplify[MatrixForm[TFR0]] ; 

 

XFR0 =FullSimplify[TFR0[[1,4]]]; 

YFR0 =FullSimplify[TFR0[[2,4]]]; 

ZFR0 =FullSimplify[TFR0[[3,4]]]; 

 

TFRhip = TFR0.TR01.TR12 ; 

XFRhip =FullSimplify[TFRhip[[1,4]]]; 

YFRhip =FullSimplify[TFRhip[[2,4]]]; 

ZFRhip =FullSimplify[TFRhip[[3,4]]]; 

 

TFRknee = TFRhip .T23; 

XFRknee =FullSimplify[TFRknee[[1,4]]]; 

YFRknee =FullSimplify[TFRknee[[2,4]]]; 

ZFRknee =FullSimplify[TFRknee[[3,4]]]; 

 

TFRe = TFRknee.T34; 

XFRe=FullSimplify[TFRe [[1,4]]]; 

YFRe=FullSimplify[TFRe [[2,4]]]; 

ZFRe=FullSimplify[TFRe [[3,4]]]; 

 

TRL0 =TCoM.T0rear; (*Rear Left*) 

FullSimplify[MatrixForm[TRL0]] ; 

 

XRL0 =FullSimplify[TRL0[[1,4]]]; 

YRL0 =FullSimplify[TRL0[[2,4]]]; 

ZRL0 =FullSimplify[TRL0[[3,4]]]; 

 

TRLhip = TRL0.TL01.TL12 ; 

XRLhip =FullSimplify[TRLhip[[1,4]]]; 

YRLhip =FullSimplify[TRLhip[[2,4]]]; 

ZRLhip =FullSimplify[TRLhip[[3,4]]]; 
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TRLknee = TRLhip .T23; 

XRLknee =FullSimplify[TRLknee[[1,4]]]; 

YRLknee =FullSimplify[TRLknee[[2,4]]]; 

ZRLknee =FullSimplify[TRLknee[[3,4]]]; 

 

TRLe = TRLknee.T34; 

XRLe=FullSimplify[TRLe [[1,4]]]; 

YRLe=FullSimplify[TRLe [[2,4]]]; 

ZRLe=FullSimplify[TRLe [[3,4]]]; 

 

TRR0 =TCoM.T0rear; (*Rear Right*) 

FullSimplify[MatrixForm[TRR0]] ; 

 

XRR0 =FullSimplify[TRR0[[1,4]]]; 

YRR0 =FullSimplify[TRR0[[2,4]]]; 

ZRR0 =FullSimplify[TRR0[[3,4]]]; 

 

TRRhip = TRR0.TR01.TR12 ; 

XRRhip =FullSimplify[TRRhip[[1,4]]]; 

YRRhip =FullSimplify[TRRhip[[2,4]]]; 

ZRRhip =FullSimplify[TRRhip[[3,4]]]; 

 

TRRknee = TRRhip .T23; 

XRRknee =FullSimplify[TRRknee[[1,4]]]; 

YRRknee =FullSimplify[TRRknee[[2,4]]]; 

ZRRknee =FullSimplify[TRRknee[[3,4]]]; 

 

TRRe = TRRknee.T34; 

XRRe=FullSimplify[TRRe [[1,4]]]; 

YRRe=FullSimplify[TRRe [[2,4]]]; 

ZRRe=FullSimplify[TRRe [[3,4]]]; 
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Appendix B  

Mathematica Code – Jacobian Calculation of the three DoF leg 

 

(*Right Side*) 

(*Foot Position*) 

xeR =l1*Sin[th1[t]]+l2*Sin[th1[t]+th2[t]-theta] ; 

yeR = l3*Sin[th3[t]]-(l1*Cos[th1[t]]+l2*Cos[th1[t]+th2[t]-theta])*Cos[th3[t]]; 

zeR = (l1*Cos[th1[t]]+l2*Cos[th1[t]+th2[t]-theta])*Sin[th3[t]]+l3*Cos[th3[t]]; 

(*Foot Velocity*) 

xeR' = FullSimplify[D[xeR,t]] ; 

yeR' = FullSimplify[D[yeR,t]] ; 

zeR' = FullSimplify[D[zeR,t]] ; 

(*Foot Acceleration*) 

xeR'' = FullSimplify[D[xeR',t]] ; 

yeR'' = FullSimplify[D[yeR',t]] ; 

zeR'' = FullSimplify[D[zeR',t]] ; 

 

(*Jacobian*) 

j11R= D[xeR',th1'[t]]; 

j12R= D[xeR',th2'[t]]; 

j13R= D[xeR',th3'[t]]; 

j21R= D[yeR',th1'[t]]; 

j22R= D[yeR',th2'[t]]; 

j23R= D[yeR',th3'[t]]; 

j31R= D[zeR',th1'[t]]; 

j32R= D[zeR',th2'[t]]; 

j33R= D[zeR',th3'[t]]; 

 

(*Jacobian Derivative*) 

jd11R= D[j11R,t]; 

jd12R= D[j12R,t]; 

jd13R= D[j13R,t]; 

jd21R= D[j21R,t]; 

jd22R= D[j22R,t]; 

jd23R= D[j23R,t]; 

jd31R= D[j31R,t]; 

jd32R= D[j32R,t]; 

jd33R= D[j33R,t]; 

 

(*Left Side*) 

(*Foot Position*) 

xeL =l1*Sin[th1[t]]+l2*Sin[th1[t]+th2[t]-theta] ; 

yeL = l3*Sin[th3[t]]-(l1*Cos[th1[t]]+l2*Cos[th1[t]+th2[t]-theta])*Cos[th3[t]]; 
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zeL = -(l1*Cos[th1[t]]+l2*Cos[th1[t]+th2[t]-theta])*Sin[th3[t]]-l3*Cos[th3[t]]; 

(*Foot Velocity*) 

xeL' = FullSimplify[D[xeL,t]] ; 

yeL' = FullSimplify[D[yeL,t]] ; 

zeL' = FullSimplify[D[zeL,t]] ; 

(*Foot Acceleration*) 

xeL'' = FullSimplify[D[xeL',t]] ; 

yeL'' = FullSimplify[D[yeL',t]] ; 

zeL'' = FullSimplify[D[zeL',t]] ; 

 

(*Jacobian*) 

j11L= D[xeL',th1'[t]]; 

j12L= D[xeL',th2'[t]]; 

j13L= D[xeL',th3'[t]]; 

j21L= D[yeL',th1'[t]]; 

j22L= D[yeL',th2'[t]]; 

j23L= D[yeL',th3'[t]]; 

j31L= D[zeL',th1'[t]]; 

j32L= D[zeL',th2'[t]]; 

j33L= D[zeL',th3'[t]]; 

 

(*Jacobian Derivative*) 

jd11L= D[j11L,t]; 

jd12L= D[j12L,t]; 

jd13L= D[j13L,t]; 

jd21L= D[j21L,t]; 

jd22L= D[j22L,t]; 

jd23L= D[j23L,t]; 

jd31L= D[j31L,t]; 

jd32L= D[j32L,t]; 

jd33L= D[j33L,t]; 
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Appendix C  

Simpson’s rules 

Simpson’s rules are several approximations for definite integrals of a function F  by evaluating 

it at the boundaries and the middle point of the segment. This approximation is exact if F is a 

polynomial up to 3rd degree. Simpson’s 1/3 is the most common rule and requires 3 points at 

each segment. If the discretized segments are equal then the weights alternate between 4/3 

and 2/3. Simpson 3/8 rule which requires one more function evaluation gives lower error 

bounds, but it does not increment the order of the error. Equation (C-89) represents a 

quadratic curve that is defined at the interval [0, h] [35].  

 
2( )v t A Bt Ct= + +  (C-89) 

The integral of (C-89) is given at the following equations (assuming (0) 0x = ): 

 ( ) (0)x h x−
0

( )
h

v t dt=   (C-90) 

 ( )2

0
( )

h

x h A Bt Ct dt= + +  (C-91) 

 2 31 1
( )

2 3
x h Ah Bh Ch= + +  (C-92) 

To determine the coefficients , ,A B C , three points that belong to the curve ( )v t  are 

needed. Choosing the two boundary points and the midpoint of the polynomial ( )v t  as shown 

in (C-93) results in coefficient values that depend on the lower the midpoint and the upper 

point of the polynomial ( )v t  as shown in (C-94)-(C-96). 

 (0) ( )
2

L M U

h
v v v v v h v

 
= = = 

 
 (C-93) 

 
LA v=  (C-94) 

 3 4L M UBh v v v= − + −  (C-95) 

 2 2 4 2L M UCh v v v= − +  (C-96) 

The sum of the weights at (C-95) and (C-96) is equal to zero. Substituting (C-94)-(C-96) 

at (C-89) gives the Simpson’s rule for quadrature: 

 ( )( ) 4
6

L M U

h
x h v v v= + +  (C-97) 
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Appendix D  

Simscape model description 

A complete representation of the Simscape model presented in Section 4 is shown in Figure 

D-1. It consists of the main body which is linked with the four legs and the feet interact with 

the floor. The body fixed frame which is located at the CoM of the main body is defined relative 

to an inertial frame.  

 

Figure D-1. Simscape Model. 

Figure D-2 displays the fundamental building blocks to begin the quadruped’s modelling. A 

bushing force provides a full, six degree-of-freedom (DOF) connector between the main body 

and the fixed world frame. The solver block defines the solver settings used in simulation. The 

mechanism configuration defines uniform gravity along y axis. A Transform Sensor passively 

senses this 3-D time-varying transformation, and its derivatives, between the two frames. 
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Figure D-2. The main body is connected to the fixed world frame through a bushing joint. 

The rigid transform (Figure D-3) defines a fixed 3-D rigid transformation (translation and 

rotation) between the coordinate systems. Each actuated joint (abduction/hip/knee) is 

described by a revolute joint block, which takes torque as input and the sensors 

measurements are the joint angles and the joint velocities. Each link of the leg is imported as 

STEP file, and it is connected between the relevant coordinate systems. 

 

Figure D-3. Actuated joints modelling. 

Each of the leg subsystems consists of a planner and the controller (Figure D-4). The 

blocks of the controller are depicted in Figure D-5 and the Matlab function of the planner is 

given right after that figure. 
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Figure D-4. The planner outputs the desired joint angles and the controller outputs the joint 
torques. 

 

Figure D-5. Implementation of a PD controller. 
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Matlab Code – Front Left Leg Planner 

 
function [th1,th1_dot,th2,th2_dot,th3,th3_dot] = 
fcn(t,T,y0,coeff_x,coeff_y,x_st,xdes_dot_st,theta) 
 
% Trajectory Planning 
% Parameters 
l1 = 0.45034 ;          % Length of Upper Segment 
l2 = 0.61763 ;          % Length of Lower Segment 
 
% Trajectory in cartesian space 
t = mod(t,T) ; 
 
if t<=T/2               % Swing phase trajectory 
    xdes= coeff_x.'* [t^6; t^5; t^4; t^3; t^2;t; 1]; 
    ydes= coeff_y.'* [t^6; t^5; t^4; t^3; t^2;t; 1]; 
    xdes_dot= coeff_x(1:end-1).'* [6*t^5; 5*t^4; 4*t^3; 3*t^2; 2* t; 1]; 
    ydes_dot= coeff_y(1:end-1).'* [6*t^5; 5*t^4; 4*t^3; 3*t^2; 2* t; 1]; 
else 
    t=t-T/2;            % Stance phase trajectory 
    xdes = x_st+xdes_dot_st*t; 
    ydes=0; 
    xdes_dot= xdes_dot_st; 
    ydes_dot=0; 
end 
 
ydes = ydes-y0; 
 
% Inverse Kinematics 
c_th2 = (ydes^2 + xdes^2 - l1^2 - l2^2)/(2*l1*l2); 
th2= acos(c_th2)+theta ; 
phi = atan2(xdes, -ydes); 
psi = atan2(l2*sin(th2-theta),l1+l2*cos(th2-theta)); 
th1 = phi-psi; 
 
% 2D Jacobian 
J = [l1*cos(th1)+l2*cos(th1+th2-theta) l2*cos(th1+th2-theta); 
l1*sin(th1)+l2*sin(th1+th2-theta) l2*sin(th1+th2-theta)] ; 
th_dot = J\([xdes_dot; ydes_dot]) ; 
th1_dot = th_dot(1) ; 
th2_dot = th_dot(2) ; 
 
% Abduction joint angle/angular velocity 
th3=0; 
th3_dot=0; 
end 
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The interaction of the foot with the ground is described by a sphere to plane contact model 

(Figure D-6). This block is included at the Simscape Contact Forces Library and the 

parameters that are tuned are the contact stiffness ( k ), the contact damping (b ) and the 

friction coefficients which are discussed in Section 2.5.2. Other parameters to be specified are 

the sphere radius, which is 0.035m  and the depth of the contact surface to the reference 

plane, which is half the height of the 3D ground model. The ground is represented by a 

40 0.2 5m m m  block. These are the dimensions along x, y and z axis, so the height which 

is defined along y axis is equal to 0.2m . 

 

Figure D-6. Contact Forces model for the interaction between the foot and the floor. 
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Appendix E   

Simscape model description 

A complete representation of the Simscape model presented in 4.3 is shown in Figure E-1. It 

consists of the Gait Pattern, which determines the actions of each leg at any moment, the 

main body which is linked with the four legs and the feet-floor contact model.  

 

Figure E-1. Simscape Model. 
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Figure E-2. Gait pattern. 

Figure E-2 illustrates the trotting gait pattern and outputs the state of each leg (swing-

stance) the current time instance. An overview of a leg subsystem, which includes the links, 

the connections between them and the control algorithms, is portrayed in Figure E-3.  

 

Figure E-3. Leg subsystem. 

The control subsystem shown in Figure E-4, Figure E-5, and Figure E-3 incorporates 

switches that determine the control selection according to the gait pattern and the detected 

contact forces. 
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Figure E-4. Controller selection at swing phase. 

 

Figure E-5. Controller selection at stance phase. 

The following section documents the code for the optimal force distribution which is written 

in CasADi, but there is an interface with MATLAB/Simscape. 
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Matlab-CasADi Code – Optimal Force Distribution 

 
classdef CasADi_block < matlab.System & matlab.system.mixin.Propagates 
    % Quadratic Optimization problem for Force distribution 
    % This template includes the minimum set of functions required 
    % to define a System object with discrete state. 
 
    % Public, tunable properties 
    properties 
 
    end 
 
    properties(DiscreteState) 
 
    end 
 
    % Pre-computed constants 
    properties(Access = private) 
       % Pre-computed constants. 
        casadi_solver; 
        lbx; 
        ubx;  
        ubg; 
    end 
 
    methods(Access = protected) 
        function num = getNumInputsImpl(~) 
            num = 2; 
        end 
        function num = getNumOutputsImpl(~) 
            num = 1; 
        end 
        function dt1 = getOutputDataTypeImpl(~) 
         dt1 = 'double'; 
        end 
        function dt1 = getInputDataTypeImpl(~) 
         dt1 = 'double'; 
        end 
        function sz_1 = getOutputSizeImpl(~) 
            sz_1 = [12,1]; 
        end 
        function [sz_1,sz_2] = getInputSizeImpl(~) 
         sz_1 = [6,12]; 
            sz_2 = [6,1]; 
        end 
        function cp1 = isInputComplexImpl(~) 
         cp1 = false; 
        end 
        function cp1 = isOutputComplexImpl(~) 
         cp1 = false; 
        end 
        function fz1 = isInputFixedSizeImpl(~) 
         fz1 = true; 
        end 
        function fz1 = isOutputFixedSizeImpl(~) 
         fz1 = true; 
        end 
        function setupImpl(obj,~,~) 
            % Perform one-time calculations, such as computing constants 
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            import casadi.* 
             
            x = SX.sym( 'x', 12) ; 
 
            S = [1 1 1 20 5 20]; 
            W = 0.00001*ones(1,12); 
            Asys = SX.sym('Asys',6,12); 
            Fdes = SX.sym('Fdes',6,1); 
             
            % Objective Function 
            J= S*(Asys*x-Fdes).^2+W*x.^2 ; 
                         
            % Friction cone constraints 
            A = zeros(16,12); 
            c = [1 -0.8 0; -1 -0.8 0; 0 -0.8 1; 0 -0.8 -1]; 
            A(1:4,1:3)=c; A(5:8,4:6)=c; A(9:12,7:9)=c; A(13:16,10:12)=c; 
            con=A*x ; 
             
            % NLP 
            qp = struct( 'x' ,x , 'f' ,J, 'g', con, 'p', [Asys, Fdes]); 
             
%             opts = struct; 
%             opts.osqp.eps_abs = 1e-02; 
%             opts.osqp.eps_prim_inf = 1e-02; 
%             opts.osqp.eps_dual_inf =1e-02; 
%             opts.osqp.alpha = 1.9; 
             
            % Solver 
%             solver = qpsol('solver', 'osqp', qp, opts); 
          solver = qpsol('solver', 'qpoases', qp); 
           
            % Bounds 
            lbx(1:12) = -inf; 
            lbx(2:3:12) = 2; 
            ubx(1:12) = 1500;  
            ubg(:) = 0; 
             
            % Initialization           
            obj.casadi_solver = solver; 
            obj.lbx = lbx; 
            obj.ubx = ubx;  
            obj.ubg = ubg; 
 
        end 
 
        function Fopt = stepImpl(obj,Asys,Fdes) 
            % Implement algorithm 
 
            lbx = obj.lbx; 
            ubx = obj.ubx; 
            ubg = obj.ubg; 
             
            % Initialization   
%             x0 = zeros(12,1); 
%             x0(2:3:6) = Fdes(2)/4; 
%             x0(8:3:12) = Fdes(2)/4; 
             
            solver = obj.casadi_solver; 
            sol = solver('lbx', lbx, 'ubx', ubx,'ubg', ubg, 'p', [Asys, Fdes]);      
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%             sol = solver('x0', x0, 'lbx', lbx, 'ubx', ubx,'ubg', ubg, 'p', 
[Asys, Fdes]); 
            Fopt = full(sol.x(:)); 
        end 
 
        function resetImpl(~) 
            % Initialize / reset discrete-state properties 
        end 
    end 
end 
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Appendix F   

Matlab-CasADi Code – Trajectory Optimization 

 
clear; 
close all 
clc; 
% Specify the path of CasAdi library 
addpath("C:\Users\...\casadi-windows-matlabR2016a-v3.5.5") 
import casadi.* 
 
%% Robot Parameters & initial conditions 
L = 0.8 ;         % Whole Body length 
y0 = 0.9231;      % Robot's height at nominal position 
vx0 = 0.3;        % Initial velocity in x direction 
% Feet's nominal position relative to the CoM 
p_nom = [0.42; -0.9231; -0.23; 0.42; -0.9231; 0.23; -0.44; -0.9231; -0.23; -0.44; 
-0.9231; 0.23];  
 
m = 52.96;        % Robot's total mass 
% Moments of inertia[kg*m^2]: 
% Taken at the center of mass and aligned with the output coordinate system 
I = [3.7223 0.6859 0; 0.6859 8.1901 0; 0 0 8.8015];  
 
% Environment 
g = 9.81;           % Gravity acceleration 
friction_coef = 0.8; % Friction coefficient 
 
%% Optimization setup 
% Discretization 
h = 0.3;   % Timestep 
ns = 4;                   % Number of steps 
sw_segm=2;                % 2 segments for swing phase 
st_segm=4;                % 4 segments for stance phase 
N = ns*(sw_segm+st_segm); % Number of segments 
T_sim = N*h;              % Total simulation time 
 
% System Dynamics 
r = MX.sym('r',3); 
rdot = MX.sym('rdot',3); 
th = MX.sym('th',3); 
w = MX.sym('w',3); 
pos = MX.sym('pos',12); 
fi = MX.sym('fi',12);  
 
states = [r; rdot; th; w]; 
n_states = length(states); 
 
rdd = 1/m*[sum(fi(1:3:end));sum(fi(2:3:end));sum(fi(3:3:end))]-g*[0;1;0]; 
thdot = [cos(th(3))*sec(th(2)) sin(th(3))*sec(th(2)) 0; -sin(th(3)) cos(th(3)) 0; 
cos(th(3))*tan(th(2)) sin(th(3))*tan(th(2)) 1]*w; 
ext_torque = MX.zeros(3,1); 
for i=1:4 
    ext_torque = ext_torque+([0 -fi(i*3) fi(i*3-1); fi(i*3) 0 -fi(i*3-2); -fi(i*3-
1) fi(i*3-2) 0]*[r(1)-pos(i*3-2); r(2)-pos(i*3-1); r(3)-pos(i*3)]); 
end 
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wd = I\(ext_torque-[0 -w(3) w(2); w(3) 0 -w(1); -w(2) w(1) 0]*I*w); 
 
rhs = [rdot;rdd;thdot;wd]; % right hand system 
 
% Nonlinear mapping function f(x,u) 
f = Function('f',{states,pos,fi},{rhs});      
 
Pos = MX.sym('Pos',12,(2*N+1));   % Decision variables (controls) 
Fi = MX.sym('Fi',12,(2*N+1));     % Decision variables (controls) 
 
% Parameters (which include the initial state and the reference state) 
P = MX.sym('P',n_states + n_states); 
 
% A vector that represents the states over the optimization problem 
X = MX.sym('X',n_states,(2*N+1)); 
 
obj = 0; % Objective function 
g = [];  % Constraints vector 
 
C0 = [0; 1; 1; 0]; % Starting phase for each leg (FL,FR,RL,RR) 
% 1 indicates contact (stance phase), 0 indicates swing phase.  
% In this case, FL and RR legs start in swing phase 
 
xdes = zeros(1,2*N+1); 
for i=1:2*N+1 
    xdes(i) = L/2+T_sim*vx0*(i-1)/(2*N) ; 
end 
 
st = X(:,1);                   % Initial state 
g = [g;st-P(1:n_states)];      % Initial condition constraints 
 
Q = 1*eye(n_states,n_states);  % Weighing matrices (states) 
Q(2,2) = 1e-4; 
Q(4,4) = 0; 
R = 1e-3*eye(4,4); 
 
 
for k=1:2:2*N-1 
 st = X(:,k);   
    st_middle = X(:,k+1); 
    st_next = X(:,k+2); 
    fy = Fi(2:3:end,k); 
    fy_middle = Fi(2:3:end,k+1); 
    fy_next = Fi(2:3:end,k+2); 
     
    obj_k = (st-[xdes(k); P(n_states+2:2*n_states)])'*Q*(st-[xdes(k); 
P(n_states+2:2*n_states)])+fy'*R*fy;  
    obj_mid = (st_middle-[xdes(k+1); P(n_states+2:2*n_states)])'*Q*(st_middle-
[xdes(k+1); P(n_states+2:2*n_states)])+fy_middle'*R*fy_middle; 
    obj_next = (st_next-[xdes(k+2); P(n_states+2:2*n_states)])'*Q*(st_next-
[xdes(k+2); P(n_states+2:2*n_states)])+fy_next'*R*fy_next; 
  
%     obj_k = (st-[xdes(k); P(n_states+2:2*n_states)])'*Q*(st-[xdes(k); 
P(n_states+2:2*n_states)]);  
%     obj_mid = (st_middle-[xdes(k+1); P(n_states+2:2*n_states)])'*Q*(st_middle-
[xdes(k+1); P(n_states+2:2*n_states)]); 
%     obj_next = (st_next-[xdes(k+2); P(n_states+2:2*n_states)])'*Q*(st_next-
[xdes(k+2); P(n_states+2:2*n_states)]); 
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    obj = obj+h/6*(obj_k+4*obj_mid+obj_next); % calculate obj 
     
    st_middle_col = 1/2*(st+st_next)+h/8*(f(st,Pos(:,k),Fi(:,k))-
f(st_next,Pos(:,k+2),Fi(:,k+2))); 
    st_next_col= 
st+h/6*(f(st,Pos(:,k),Fi(:,k))+4*f(st_middle,Pos(:,k+1),Fi(:,k+1))+f(st_next,Pos(:
,k+2),Fi(:,k+2))); 
    g = [g;st_middle-st_middle_col; st_next-st_next_col]; % compute constraints 
     
end 
 
for k=1:2*N+1 
%     Rotqx = [1 0 0; 0 cos(X(7,k)) -sin(X(7,k)); 0 sin(X(7,k)) cos(X(7,k))]; 
%     Rotqy = [cos(X(8,k)) 0 sin(X(8,k)); 0 1 0; -sin(X(8,k)) 0 cos(X(8,k))]; 
%     Rotqz = [cos(X(9,k)) -sin(X(9,k)) 0; sin(X(9,k)) cos(X(9,k)) 0; 0 0 1]; 
%     Rotq = (Rotqx*Rotqy*Rotqz)'; %Rotation matrix from the world frame to the 
base frame 
%     g = [g; kron(eye(4),Rotq)*(Pos(:,k)-repmat(X(1:3,k),4,1))-p_nom] ;  % Foot 
position should be inside a cube centered at nominal foot position 
    g = [g; Pos(:,k)-repmat(X(1:3,k),4,1)-p_nom] ;  % Foot position should be 
inside a cube centered at nominal foot position 
end 
 
% Foot Position constraints at stance phase 
st_points = zeros(12,2*N+1); 
for j=1:4 
    if C0(j)==0 
        for ind_st=[1:2,st_segm/2+2*sw_segm+1:st_segm/2+2*sw_segm+2*(st_segm-1)] 
         g = [g;reshape(Pos(3*(j-1)+1:3*j,ind_st:2*(sw_segm+st_segm):2*N)-
Pos(3*(j-1)+1:3*j,ind_st+1:2*(sw_segm+st_segm):2*N+1),3*ns,1)]; 
         st_points(3*(j-1)+2,ind_st:2*(sw_segm+st_segm):2*N+1)=1; 
        end 
    else 
        for ind_st=1:2*st_segm 
         g = [g;reshape(Pos(3*(j-1)+1:3*j,ind_st:2*(sw_segm+st_segm):2*N)-
Pos(3*(j-1)+1:3*j,ind_st+1:2*(sw_segm+st_segm):2*N+1),3*ns,1)];                                              
; 
         st_points(3*(j-1)+2,ind_st:2*(sw_segm+st_segm):2*N+1)=1; 
        end 
    end 
end 
 
sw_points = zeros(12,2*N+1); 
for j=1:4 
    if C0(j)==1 
        for ind_sw=1:2*sw_segm+1 
        sw_points(3*(j-1)+1:3*j,2*st_segm+ind_sw:2*(sw_segm+st_segm):2*N+1)=1; 
        end 
    else 
        for ind_sw=1:2*sw_segm+1 
        sw_points(3*(j-1)+1:3*j,st_segm/2+ind_sw:2*(sw_segm+st_segm):2*N+1)=1; 
        end 
    end 
end 
 
% Forces should be inside the friction cone 
for k=1:2*N+1 
    for j=1:4 
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        g = [g;reshape(Fi(3*(j-1)+1:2:3*(j-1)+3,k)-friction_coef*Fi(3*(j-
1)+2,k)*DM.ones(2,1),2,1);reshape(-Fi(3*(j-1)+1:2:3*(j-1)+3,k)-
friction_coef*Fi(3*(j-1)+2,k)*DM.ones(2,1),2,1)]; 
    end 
end 
 
OPT_variables = 
[reshape(X,12*(2*N+1),1);reshape(Pos,12*(2*N+1),1);reshape(Fi,12*(2*N+1),1)]; 
 
nlp_prob = struct('f', obj, 'x', OPT_variables, 'g', g, 'p', P); 
 
opts = struct; 
opts.ipopt.max_iter = 2000; 
opts.ipopt.print_level =5; 
opts.print_time = 0; 
opts.ipopt.acceptable_tol =1e-6; 
opts.ipopt.acceptable_obj_change_tol = 1e-6; 
 
solver = nlpsol('solver', 'ipopt', nlp_prob, opts); 
 
args = struct; 
 
% Equality & Inequality constraints 
p_offest_x = 0.4; 
p_offest_y = 0.05; 
p_in_offest_z = 0.03; 
p_out_offest_z = 0.2; 
 
args.lbg(1:length(g)) = 0;  % -1e-20  % Equality constraints 
args.ubg(1:length(g)) = 0;  % 1e-20   % Equality constraints 
args.lbg(n_states*(2*N+1)+1:3:(n_states+12)*(2*N+1)) = -p_offest_x;   
args.ubg(n_states*(2*N+1)+1:3:(n_states+12)*(2*N+1)) = p_offest_x; 
% The leg should not extend too much to avoid singularities  
args.lbg(n_states*(2*N+1)+2:3:(n_states+12)*(2*N+1)) = -p_offest_y;        
% The leg should not retract too much to avoid high knee torques  
args.ubg(n_states*(2*N+1)+2:3:(n_states+12)*(2*N+1)) = p_offest_y;           
% Constraint along z axis for FR&RR legs  
args.lbg(n_states*(2*N+1)+6:6:(n_states+12)*(2*N+1)) = -p_in_offest_z;     
args.ubg(n_states*(2*N+1)+6:6:(n_states+12)*(2*N+1)) = p_out_offest_z;      
% Constraint along z axis for FL&RL legs  
args.lbg(n_states*(2*N+1)+3:6:(n_states+12)*(2*N+1)) = -p_out_offest_z;      
args.ubg(n_states*(2*N+1)+3:6:(n_states+12)*(2*N+1)) = p_in_offest_z;        
% Fricition cone inequality constraints 
args.lbg(length(g)-4*4*(2*N+1)+1:end) = -inf;  % 1e-20    
 
 
% Descision variables constraints 
args.lbx(1:length(OPT_variables),1)= -inf; 
args.ubx(1:length(OPT_variables),1)= inf; 
% CoM position along y at the final point shall be equal to the nominal height  
% args.lbx(n_states*(2*N+1)-10,1)= y0;   
args.ubx(n_states*(2*N+1)-8,1)= 0;                          % The forward velocity 
is set to 0 at the end  
args.lbx(5:12:n_states*(2*N+1),1)= -0.3;                    % Velocity along y 
axis (Lower bound) 
args.ubx(5:12:n_states*(2*N+1),1)= 0.3;                     % Velocity along y 
axis (Upper bound) 
args.lbx(n_states*(2*N+1)+2:3:(n_states+12)*(2*N+1),1)= 0;  % Feet position shall 
be positive in y direction 
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args.ubx(n_states*(2*N+1)+find(st_points),1)= 0;            % Feet position shall 
be zero in y direction in stance phase 
args.lbx(end-12*(2*N+1)+2:3:end,1)= 0;                      % Feet force along y 
axis shall be positive (push the ground) 
args.lbx(end-10,1)= 200;                                    % Feet force along y 
axis at final point for FL 
args.lbx(end-1,1)= 200;                                     % Feet force along y 
axis at final point for RR 
args.lbx(end-12*(2*N+1)+find(sw_points),1)= 0;              % Feet force shall be 
zero in stance phase 
args.ubx(end-12*(2*N+1)+find(sw_points),1)= 0;              % Feet force shall be 
zero in stance phase 
 
%% THE SIMULATION LOOP SHOULD START FROM HERE 
%------------------------------------------- 
 
x0 = [L/2; y0; 0; vx0; 0; 0; 0; 0; 0; 0; 0; 0];         % State initial conditions 
xs = [L/2+T_sim*vx0; y0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0]; % Reference posture 
 
X0 = repmat(x0,1,2*N+1)';   % Initialization of the states decision variables 
 
X0(:,1) = xdes' ; 
 
 
p0 = repmat(x0(1:3),4,1)+p_nom; 
ps = repmat(xs(1:3),4,1)+p_nom; 
 
P0 = repmat(p0,1,2*N+1)';   % Initialization of the feet's positions 
 
for i=1:2*N+1 
    for j=1:3:10 
    P0(i,j) = p0(j,1)+(ps(j,1)-p0(j,1))*(i-1)/(2*N) ; 
    end 
end 
 
 
for j=1:4 
    if C0(j)==0 
        Py = [0; 0; 0; 0.1; 0.2; 0.1; 0; 0; 0; 0; 0; 0]; 
    else 
        Py = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0.1; 0.2; 0.1]; 
    end 
    P0(:,3*(j-1)+2) = [repmat(Py,ns,1);0] ; 
end 
 
 
F0 = zeros(2*N+1,12); 
 
for j=1:4 
    if C0(j)==0 
        Fy = [200; 200; 0; 0; 0; 0; 0; 200; 300; 300; 300; 200]; 
    else 
        Fy = [0; 200; 300; 300; 300; 300; 300; 200; 0; 0; 0; 0;]; 
    end 
    F0(:,3*(j-1)+2) = [repmat(Fy,ns,1);Fy(1)] ; 
end 
 
% Initial value of the optimization variables 
args.x0  = [reshape(X0',n_states*(2*N+1),1);reshape(P0',12*(2*N+1),1);... 
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    reshape(F0',12*(2*N+1),1)]; 
args.p   = [x0;xs]; % Set the values of the parameters vector 
 
tic 
sol = solver('x0', args.x0, 'lbx', args.lbx, 'ubx', args.ubx,... 
    'lbg', args.lbg, 'ubg', args.ubg,'p',args.p); 
toc 
 
 
CoM_pos(1:n_states,:)= reshape(full(sol.x(1:n_states*(2*N+1)))',n_states,2*N+1); % 
Get CoM's trajectory from the solution 
foot_pos = 
reshape(full(sol.x(n_states*(2*N+1)+1:(n_states+12)*(2*N+1)))',12,2*N+1); % Get 
feet's positions from the solution 
foot_force = 
reshape(full(sol.x((n_states+12)*(2*N+1)+1:(n_states+24)*(2*N+1)))',12,2*N+1); % 
Get feet's positions from the solution 
 
%% Interpolate the solution on a uniform grid for plotting and animation: 
tGrid = zeros(1,2*N+1); 
for i=1:2*N+1 
    tGrid(i) = (i-1)*T_sim/(2*N) ; 
end 
xGrid = CoM_pos; 
uGrid = [foot_pos; foot_force]; 
fGrid=zeros(n_states,2*N+1); 
 
for i=1:2*N+1 
    pos=uGrid(1:12,i); 
    fi=uGrid(13:24,i); 
    r=xGrid(1:3,i); 
    rdot=xGrid(4:6,i); 
    th=xGrid(7:9,i); 
    w=xGrid(10:12,i); 
     
    g = 9.81; % gravity [m/s^2] 
    rdd = 1/m*[sum(fi(1:3:end));sum(fi(2:3:end));sum(fi(3:3:end))]-g*[0;1;0]; 
    thdot = [cos(th(3))*sec(th(2)) sin(th(3))*sec(th(2)) 0; -sin(th(3)) cos(th(3)) 
0; cos(th(3))*tan(th(2)) sin(th(3))*tan(th(2)) 1]*w; 
    ext_torque = zeros(3,1); 
    for i=1:4 
        ext_torque = ext_torque+([0 -fi(i*3) fi(i*3-1); fi(i*3) 0 -fi(i*3-2); -
fi(i*3-1) fi(i*3-2) 0]*[r(1)-pos(i*3-2); r(2)-pos(i*3-1); r(3)-pos(i*3)]); 
    end 
    wd = I\(ext_torque-[0 -w(3) w(2); w(3) 0 -w(1); -w(2) w(1) 0]*I*w); 
 
    fGrid(:,i) = [rdot;rdd;thdot;wd]; % state derivative 
end 
 
soln.interp.state = @(t)( pwPoly3(tGrid,xGrid,fGrid,t) ); 
soln.interp.control = @(t)(pwPoly2(tGrid,uGrid(13:end,:),t)); 
soln.interp.footpos = @(t)(pwPoly5(tGrid,uGrid(1:12,:),t,C0)); 
 
tc1 = linspace(tGrid(1),tGrid(end),1000); 
 
% State Interpolation 
xc1 = soln.interp.state(tc1);       % Main body's pose 
fc1 = soln.interp.control(tc1);     % Foot forces 
pc1 = soln.interp.footpos(tc1);     % Foot position 
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% uc1 = [pc1;fc1]; 
 
% Mean forward velocity 
vx_mean = mean(xc1(4,:)); 
 
%% Functions 
 
function x = pwPoly3(tGrid,xGrid,fGrid,t) 
nGrid = length(tGrid); 
if mod(nGrid-1,2)~=0 || nGrid < 3 
    error('The number of grid-points must be odd and at least 3'); 
end 
 
% Figure out sizes 
n = floor((length(tGrid)-1)/2); 
m = size(xGrid,1); 
k = length(t); 
x = zeros(m, k); 
 
% Figure out which segment each value of t should be on 
edges = [-inf, tGrid(1:2:end), inf]; 
[~,~,bin] = histcounts(t,edges); 
 
% Loop over each quadratic segment 
for i=1:n 
    idx = bin==(i+1); 
    if sum(idx) > 0 
        kLow = 2*(i-1) + 1; 
        kUpp = kLow + 2; 
        h = tGrid(kUpp)-tGrid(kLow); 
        xLow = xGrid(:,kLow); 
        fLow = fGrid(:,kLow); 
        xUpp = xGrid(:,kUpp); 
        fUpp = fGrid(:,kUpp); 
        alpha = t(idx) - tGrid(kLow); 
        x(:,idx) = cubicInterp(h,xLow, fLow, xUpp, fUpp,alpha); 
    end 
end 
 
% Replace any out-of-bounds queries with NaN 
outOfBounds = bin==1 | bin==(n+2); 
x(:,outOfBounds) = nan; 
 
% Check for any points that are exactly on the upper grid point: 
if sum(t==tGrid(end))>0 
    x(:,t==tGrid(end)) = xGrid(:,end); 
end 
 
end  
 
function x = cubicInterp(h,xLow, fLow, xUpp, fUpp,del) 
% 
% This function computes the interpolant over a single interval 
% 
% INPUTS: 
%   h = time step (tUpp-tLow) 
%   xLow = function value at tLow 
%   fLow = derivative at tLow 
%   xUpp = function value at tUpp 
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%   fUpp = derivative at tUpp 
%   del = query points on domain [0, h] 
% 
% OUTPUTS: 
%   x = [m, p] = function at query times 
% 
 
%%% Fix matrix dimensions for vectorized calculations 
nx = length(xLow); 
nt = length(del); 
xLow = xLow*ones(1,nt); 
fLow = fLow*ones(1,nt); 
xUpp = xUpp*ones(1,nt); 
fUpp = fUpp*ones(1,nt); 
del = ones(nx,1)*del; 
 
a = (2.*(xLow-xUpp)+h.*(fLow + fUpp))./(h.^3); 
b = -(3.*(xLow-xUpp)+h.*(2.*fLow + fUpp))./(h.^2); 
c = fLow; 
d = xLow; 
 
x = d + del.*(c + del.*(b + del.*a)); 
 
end 
 
function x = pwPoly2(tGrid,xGrid,t) 
% x = pwPoly2(tGrid,xGrid,t) 
% 
% This function does piece-wise quadratic interpolation of a set of data, 
% given the function value at the edges and midpoint of the interval of 
% interest. 
% 
% INPUTS: 
%   tGrid = [1, 2*n+1] = time grid, knot idx = 1:2:end 
%   xGrid = [m, 2*n+1] = function at each grid point in tGrid 
%   t = [1, k] = vector of query times (must be contained within tGrid) 
% 
% OUTPUTS: 
%   x = [m, k] = function value at each query time 
% 
% NOTES: 
%   If t is out of bounds, then all corresponding values for x are replaced 
%   with NaN 
% 
 
nGrid = length(tGrid); 
if mod(nGrid-1,2)~=0 || nGrid < 3 
    error('The number of grid-points must be odd and at least 3'); 
end 
 
% Figure out sizes 
n = floor((length(tGrid)-1)/2); 
m = size(xGrid,1); 
k = length(t); 
x = zeros(m, k); 
 
% Figure out which segment each value of t should be on 
edges = [-inf, tGrid(1:2:end), inf]; 
[~,~,bin] = histcounts(t,edges); 
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% Loop over each quadratic segment 
for i=1:n 
    idx = bin==(i+1); 
    if sum(idx) > 0 
        gridIdx = 2*(i-1) + [1,2,3]; 
        x(:,idx) = quadInterp(tGrid(gridIdx),xGrid(:,gridIdx),t(idx)); 
    end 
end 
 
% Replace any out-of-bounds queries with NaN 
outOfBounds = bin==1 | bin==(n+2); 
x(:,outOfBounds) = nan; 
 
% Check for any points that are exactly on the upper grid point: 
if sum(t==tGrid(end))>0 
    x(:,t==tGrid(end)) = xGrid(:,end); 
end 
 
end 
 
 
function x = quadInterp(tGrid,xGrid,t) 
% 
% This function computes the interpolant over a single interval 
% 
% INPUTS: 
%   tGrid = [1, 3] = time grid 
%   xGrid = [m, 3] = function grid 
%   t = [1, p] = query times, spanned by tGrid 
% 
% OUTPUTS: 
%   x = [m, p] = function at query times 
% 
 
% Rescale the query points to be on the domain [-1,1] 
t = (t-tGrid(1))/(tGrid(3)-tGrid(1)) ; 
 
% Compute the coefficients: 
a = 2*(xGrid(:,3) + xGrid(:,1)) - 4*xGrid(:,2); 
b = -3*xGrid(:,1)+4*xGrid(:,2)-xGrid(:,3); 
c = xGrid(:,1); 
 
% Evaluate the polynomial for each dimension of the function: 
p = length(t); 
m = size(xGrid,1); 
x = zeros(m,p); 
 
tt = t.^2; 
for i=1:m 
    x(i,:) = a(i)*tt + b(i)*t + c(i); 
end 
 
end 
 
function x = pwPoly5(tGrid,xGrid,t,C0) 
% x = pwPoly5(tGrid,xGrid,t,C0) 
% 
% This function does piece-wise quartic interpolation of a set of data, 
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% given the function value at the edges and 3 evenly spaced of the interval of 
% interest. 
% 
% INPUTS: 
%   tGrid = [1, 2*n+1] = time grid, knot idx = 1:2:end 
%   xGrid = [m, 2*n+1] = function at each grid point in tGrid 
%   t = [1, k] = vector of query times (must be contained within tGrid) 
% 
% OUTPUTS: 
%   x = [m, k] = function value at each query time 
% 
% NOTES: 
%   If t is out of bounds, then all corresponding values for x are replaced 
%   with NaN 
% 
nGrid = length(tGrid); 
if mod(nGrid-1,2)~=0 || nGrid < 5 
    error('The number of grid-points must be odd and at least 5'); 
end 
 
% Figure out sizes 
n = floor((length(tGrid)-1)/2); 
m = size(xGrid,1); 
k = length(t); 
x = zeros(m, k); 
 
% Figure out which segment each value of t should be on 
edges = [-inf, tGrid(1:2:end), inf]; 
[~,~,bin] = histcounts(t,edges); % Bin sorts the query times in the appropriate 
segment 
 
% Loop over each segment 
for j=1:4 
    for i=1:n 
        idx = bin==(i+1); % Logical variable which indicated which query times 
belong to the current segment 
        if sum(idx) > 0 
            if C0(j)==0 
                if  (mod(bin(find(idx,1))-3,6)==0 || mod(bin(find(idx,1))-3,6)==1) 
                    kLow = fix(bin(find(idx,1))/6)*12+3; 
                    kUpp = kLow + 4; 
                    h = tGrid(kUpp)-tGrid(kLow); 
                    x1 = xGrid(3*(j-1)+1:3*j,kLow); 
                    x2 = xGrid(3*(j-1)+1:3*j,kLow+1); 
                    x3 = xGrid(3*(j-1)+1:3*j,kLow+2); 
                    x4 = xGrid(3*(j-1)+1:3*j,kLow+3); 
                    x5 = xGrid(3*(j-1)+1:3*j,kUpp); 
                    alpha = t(idx) - tGrid(kLow); 
                    x(3*(j-1)+1:3*j,find(idx)) = 
quarticInterp(h,x1,x2,x3,x4,x5,alpha); 
                else 
                    kstance = 2*i-1; 
                    x(3*(j-1)+1:3*j,find(idx)) = repmat(xGrid(3*(j-
1)+1:3*j,kstance),1,sum(idx));  
                end 
            else 
                if  mod(bin(find(idx,1)),6)==0 || mod(bin(find(idx,1)),6)==1 
                    kLow = fix(bin(find(idx,1))/6)*12-3; 
                    kUpp = kLow + 4; 
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                    h = tGrid(kUpp)-tGrid(kLow); 
                    x1 = xGrid(3*(j-1)+1:3*j,kLow); 
                    x2 = xGrid(3*(j-1)+1:3*j,kLow+1); 
                    x3 = xGrid(3*(j-1)+1:3*j,kLow+2); 
                    x4 = xGrid(3*(j-1)+1:3*j,kLow+3); 
                    x5 = xGrid(3*(j-1)+1:3*j,kUpp); 
                    alpha = t(idx) - tGrid(kLow); 
                    x(3*(j-1)+1:3*j,find(idx)) = 
quarticInterp(h,x1,x2,x3,x4,x5,alpha); 
                else 
                    kstance = 2*i-1; 
                    x(3*(j-1)+1:3*j,find(idx)) = repmat(xGrid(3*(j-
1)+1:3*j,kstance),1,sum(idx));  
                end 
            end 
        end 
    end 
end 
 
% Replace any out-of-bounds queries with NaN 
outOfBounds = bin==1 | bin==(n+2); 
x(:,outOfBounds) = nan; 
 
% Check for any points that are exactly on the upper grid point: 
if sum(t==tGrid(end))>0 
    x(:,t==tGrid(end)) = xGrid(:,end); 
end 
 
end  
 
function x = quarticInterp(h,x1,x2,x3,x4,x5,del) 
% 
% This function computes the interpolant over a single interval 
% 
% INPUTS: 
%   h = time step (tUpp-tLow) 
%   del = query points on domain [0, h] 
% 
% OUTPUTS: 
%   x = [m, p] = function at query times 
% 
 
%%% Fix matrix dimensions for vectorized calculations 
nx = length(x1); 
nt = length(del); 
x1 = x1*ones(1,nt); 
x2 = x2*ones(1,nt); 
x3 = x3*ones(1,nt); 
x4 = x4*ones(1,nt); 
x5 = x5*ones(1,nt); 
del = ones(nx,1)*del; 
 
a = (32/3*x1-128/3*x2+64*x3-128/3*x4+32/3*x5)./(h.^4); 
b = (-80/3*x1+96*x2-128*x3+224/3*x4-16*x5)./(h.^3); 
c = (70/3*x1-208/3*x2+76*x3-112/3*x4+22/3*x5)./(h.^2); 
d = (-25/3*x1+16*x2-12*x3+16/3*x4-x5)./h; 
e = x1; 
x = e+del.*(d + del.*(c + del.*(b + del.*a))); 
end 


