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MepiAnyn

Ta TeTpdTToda POPTTOT £XOUV Yivel dDNUOGIAR AOYw TNG IKAVOTNTAG TOUG va dlacyifouv £dAgn
TTOU TA TPOXOPOPA POUTTOT Oev PTTOopoUV. Ta POPTIOT PE TTOdIa PTTOPOUV va aveRaivouv
OKGAAEG, va TTEQTTATOUV O XWEAPIA TTOU PTTOPET va £X0UV aVWUAAO £6a@POoG Pe AOKKOUBES Kal
OKOMN Va €X0UV TTPOCROCH 0€ OKNVEG KATAOTPOPAG YEUATEG CUVTPRIUMIAL.

21NV TTapouod JITTAWMATIKA €pyacdia avaTrTiooovTal dAyopIBuol TTou OXETICovTal JE TOV
oxedIooPO Kivnong Tou TeTPATTOd0U POUTTOT “Apyog”. To “Apyog” éxel oxedlaoTei atrd Tnv
oupdda “Legged Robots” Tou EpyaoTtnpiou Autduatou EAéyxou kal PuBuicewg Mnyxavwy &
EykaTtaoTtdoewy Tou EMI kai okotrdg Tou gival n emBewpnon autreAwvwy. ‘ETol, 010 TTAQiCI0
QUTAG TNG epyaciag, pia epyacia uwnAoU emmITTEdOU OTIWG N UETAKIVNON TOU POMTIOT WE
oTaBepn TaxUTNTA, HETAPPAZETAI Ot £va TTIBUUNTO OXEDIO KivnOoNng TTOU PTTOPET va EKTEAECEI
10 TETPATTO00. O1 18108eKTIKOI AIGONTAPES TOU “APYous” TTAPEXOUV TIG ATTAPAITNTEG HETPROEIG
avadpaong.

H kivnon Twv cuoTnuaTwy pe TTodIa gival SUOKOAN AOyw Tng UTToETTEVEPYNONG TOug. H
Kivnon Tou CWuaTog TTPog Ta eUTTPOG dev PTTopei va dnuioupynBei dueoa, aAA& TTPOKUTTTE
ammo TIG BUVANEIG ETTAPAG METAEU TwV TTOOILV KAl TOU TTEPIBAAAOVTOG. AIEPEUVWVTAI TPEIG
OlapopeTIKoi aAydpIBuol oxedlaouou Kivnong, kabévag atrd Toug oTToioug £xel SIOPOPETIKO
ETTITTEQO TTOAUTTAOKOTNTAG KAl SuvaTOTNTEG Kivnong.

2T0 TTIPWTO OXNHa eAéyxou, Ta TTOdIa akoAouBoUlv pia TTpokaBopiouévn auvexr TpoxId
oTov KapTteoiavd xwpo Kal N Kivnon Tou CWHATOS TTPOKUTITEI aTTd TIG SUVAUEIG ETTAPAG TTOU
onuioupyouvTal Katd Tn @Acon Tng oTdong Twv Todiwv. Baociletal og €vav Tponyouuevo
aAy6piBuo oxediou Kivnong tmou avattuxOnke amd tnv oudda “Legged Robots” [41], ue Tn
olagpopd o611 €dw n TpoxI& Tou TTodIoU opileTal ATTO TTOAUWVUMIKEG KAUTTUAEG.

270 OeUTEPO OXNMa eAéyXou [23], n Kivnon Tou poUTTOT KaBopileTal atrd eVTOAEG uwnAou
ETITTEOOU TTOU OXETICOVTAI PE TN YPOMMIKA KAl ywvIakr TaxUTnTa Tou KUpiou cwuaTtog. Ta
Bripwata utroAoyifovtal e BAON AUTEG TIG EVTOAEG Kal ATTO TTPORAEWYEIC TTOU TTapEXOVTal aTro
atrAoTroinuéva duvauiké povtéAa. H B€on Tou Kupiwg owPaTog opileTal oe oxEon WE Tn B€an
TwV TTOdIWV Kal gival eMBOuPNTO va yépvel TTpog Ta TTédIa TTou BpiokovTal o€ @Aacn oTAonG.
YT1roAoyiovTai o1 EIKOVIKEG OUVAEIC TTOU Ba £TTPETTE IBAVIKA VO A0KOUVTAl OTO KUPIO CWHA Kal
olapgopewvetal éva TPOPANuUa BeAtioTtommoinong yia Tn BEATIOTN KOTOVOMPN QUTWV TWV
ouvduewyv oTa TAdIa TTou gival o oTdon.

H kivnhon TOU OWMATOG, OI KIVACEIS Twv TTOdIWV KAl Ol OUVAMEIC £TTaQnG E€ival
aAAnAeCapTwpeva PEYEDN, ETTOPEVWG, N TTAPAYWYN £YKUPWY TPOXIWV yia KaBéva atrd autd
MTTOPEI va gival eTTiTTovn A aKOUa Kal avEPIKTN OTav n gpyacia gival TToAUTTAOKN. INa 10 Adyo
auTd, o TeAeuTtaiog aAyopiBuog oxedlaapou kivnong [63] €oTidlel oTnv €UPECN AUTWYV TWV
TPOXIWY HE PBEATIOTO KOl auTopaTOTTOINUEVO TPOTTo. H BeATioTOTTOINGON TPOXIAG €ival HIa
MEBOBOG TToU TTapayel BEATIOTa oxEdIa Kivnong yia KaBe epyacia uwnAou emmimmédou. MOAIG To
TPORBANUA povTeAoTTOINBEl CWATA Kal ANPBoUV uTTéWn Ol PUOCIKOI TTEPIOPICHOI, UTTOPOUV va
TTapaxbouv o1 TPpoxIEG KABE UTTOOUCTHPOTOG, £T01 WOTE OAOKANPO TO oUCTNUA va odnynoci
oTov €mMBuunTé oToXO.

Autr] n AnTAwpatik TTApoucIadel TTPOCEYYIOEIC yIa Tn HETATPOTI) TOU @QUOIKOU
TTPORAAPATOG Kivnong o€ £va TTPORANPa pabnuatikig BEATIOTOTTOINONG, TO OTTOI0 YTTOPEI va
AuBei pe di1oBéaipo Aoyiopikd. O1 yeTaBANTEG amo@acng atroTeAoUvTal atmd Tnv e§adidoTatn
Kivnon Tou owpatog, Ti§ Béoeig Tou Ba Trathcouv Ta TOdIA, TIG KIVACEIG TTOdI0U OTn @Acn
alwpnong Kai TIg dUVAUEIG TTAQPNG. To TETPATTODO JIAPOPPUIVETAI WG EVA EVIAIO AKAUTITO
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OWHA TTOU EAEYXETAI ATTO TIG DUVANEIG ETTAPAG. H akoAouBia pe Tnv oTToia KivouvTal Ta TTodIa
KaBopifeTal atrd TOV TUTTO TOU PBnuaTtiopou. ‘Exel TTpoTaBei pia TapaAlayr Tou BnuaTtiouou
«TpOYXaopoU» (A “trotting”), n otroia TrepIAaUBAvel eTTITTAéOV QACEIG 0TAONG ME OAa Ta TTOdIA
oTo £00Q0¢, YIa TNV ATTOPUYA aTTOTOPWY HETABOAWV OTIC BUVAUEIG ETTAPAG OTav £va TTOI
£pXeTal o€ €TTOPNA PE TO £€0AQOG.

O1 1peIg aAyopiBuol oxedlaopoU Kivnong TTou avamTuxenkav emmaAnBedtnkav OTO
mepIBGANOV  TTpooopoiwong  Simscape Multibody. Ta TrpoBAjuata  BeATioTotToinong
puBuioTnkav péow Tng CasADi, n otroia gival pia e§wTepIKA BIBAIOBAKN TTOU ETTIAUEI UE TTOAU
QTTOTEAECHPATIKO TPOTTO N YPOUMIKA TTPoBAAATA BEATIOTOTTOINONG.

3/136



Abstract

Quadruped robots have become popular due to their capability to traverse terrain that wheeled
robots cannot. Legged robots can climb stairs, walk across fields that may have uneven terrain
with puddles and even access debris-filled disaster scenes.

In this thesis, algorithms that are related to the motion-planning of the quadruped Argos
are developed. Argos is designed by the Legged Robots Team of the Control Systems Lab in
NTUA, and its purpose is the inspection of vineyards. Thus, in the context of this work, a high-
level task which may be the locomotion of the robot with a constant speed, is translated into
a desired motion-plan that the quadruped can execute. Argos’s proprioceptive sensors provide
the necessary feedback measurements.

Legged locomotion is challenging due to the system being underactuated. A forward body
movement cannot be directly generated but results from contact forces between the feet and
the environment. Three different motion planning algorithms are investigated, each of which
has a different level of complexity and motion capabilities.

In the first framework, the feet follow a predefined continuous trajectory in Cartesian space
and the body motion arises from the contact forces generated during the feet’s stance phase.
It is based on a prior motion plan algorithm that has been developed by the Legged Robots
Team [41], but the main difference is that the foot trajectory is defined by polynomial splines.

In the second control framework [23], the robot’s locomotion is specified by high-level
commands related to the main body’s linear and angular velocity. The footsteps are calculated
based on these commands and by predictions provided by simplified dynamic models. The
main body’s position is defined relative to the feet’s position, and it is desirable that it leans
towards the legs that are in stance phase. The virtual forces that should ideally act on the
main body are calculated and an optimization problem is formulated for the optimal distribution
of these forces to the stance legs.

The body motion, the feet motions and the contact forces are interdependent quantities,
thus, producing valid trajectories for each of them may be tedious or even infeasible when the
task is complex. For this reason, the last motion planning algorithm [63] focuses on finding
these trajectories in an optimal and automated way. Trajectory optimization is a method that
produces optimal motion plans for any high-level task. Once the problem is properly modeled
and the physical constraints are set up, the trajectories of each subsystem can be generated,
so that the whole system is driven to the desired goal.

This thesis presents approaches to transcribe the physical locomotion problem into a
mathematical optimization problem, which can be solved by off-the-shelf software. The
decision variables consist of the six-dimensional body motion, the footholds, the swing-leg
motions, and the contact forces. The quadruped is modeled as a single rigid body controlled
by the contact forces. The sequence in which the feet are moving is determined by the Gait
pattern. A variation of the trotting gait, which include extra stance phases with all the feet on
the ground, has been proposed to avoid abrupt changes in contact forces when a foot hits the
ground.

The three developed motion-planning algorithms have been verified in the Simscape
Multibody simulation environment. The optimization problems are set up in CasADi, which is
an external library that solves nonlinear optimization problems in a very efficient way.

4/136



To my best friend, Alex
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1 Introduction

Robotics has gained much attention in recent years. The goal is the construction of systems
that can assist humans and replicate human actions in an automated way. For years, robots
have been used mostly in the industry, as they can substitute humans in repetitive and tedious
tasks, e.g., manufacturing, assembling, packaging, etc. Robotic systems are now intended to
be used in disaster scenarios, such as in an area following an earthquake, or places where
hazardous waste exists, which are risky to be approached by humans. Figure 1-1 shows
pictures of animals performing highly dynamic motions and balancing on an almost vertical
rock wall reliably. Legged animals possess natural abilities that currently outperform robotic
systems. Compared to humans or animals, robots are not yet capable of fully autonomous
movement in an uncontrolled environment. This challenge is addressed in this thesis. Three
different motion planning algorithms are studied and proposed to yield alternative ways for the
locomotion of a quadruped from an initial standing pose to a final one.

(a) Cheetah running

(b) Cheetah running (c) Goat climbing

Figure 1-1. Legged animals performing highly dynamic motions.

1.1 Motivation

A major motivation for investigating legged locomotion is its usefulness in unstructured
environments. Legged robots can traverse non-smooth, unstable terrain such as rocky terrain
that wheeled robots or tracks cannot access. Quadrotors or gliders cannot carry heavy loads
or manipulate objects the same way a ground vehicle can. Legged designs are powerful due
to their versatility in accomplishing complex tasks. Both the natural and the urban environment
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is mostly accessible by legged systems owing to their ability to take discrete steps. They are
capable of crossing gaps to reach the opposite side, jump over obstacles, climbing stairs, and
adapting to surface changes. No matter what the ground is, they can adjust their behavior to
walk on roads, woods, grass or even mud without getting stuck.

This thesis concerns the locomotion of the quadruped Argos, which is designed by the
Legged Robots Team at Control Systems Lab — NTUA. Its main purpose is the inspection of
vineyards, removing the need for daily human field presence. The motion planning algorithms
studied herein use proprioceptive sensors feedback, and produce joint torques to force a
guadruped move on flat terrain. The motion plans that are produced are based on optimization
methods; an appropriate criterion is minimized while enforcing physical constraints.

1.2 Literature Review

At an early stage, trajectory generation arose from observations of animal gaits, leading to the
investigation of efficient heuristics. In [50], the foot placement algorithm (FPA), proposed by
Raibert, achieved balancing control of a hopping robot in terms of speed, posture, and height
control. Another common physics-based heuristic that has proven to be highly influential in
legged systems is the capture point heuristic which can be used when the robot is treated like
a linear inverted pendulum [49]. Similar approaches approximate the full dynamics with the
Spring-Loaded Inverted Pendulum (SLIP) model [12], which simplifies the high dimensional
legged system problem to a small number of well-understood states. Regarding the earliest
successful control schemes, the hydraulically actuated quadruped HyQ from IIT performs a
trotting gait by employing a simple virtual model control approach that emulates the dynamic
characteristics of linear springs for each leg [28]. Accordingly, dynamic quadruped trotting at
various speeds is achieved using an active compliance controller to drive each leg [41].

The capabilities of legged robots can be further enhanced if the motion plans are
determined by optimization methods. In a recent work, the Legged Robots Team has
implemented CoM trajectory and footfalls optimization using MATLAB fmincon [16] and after
that, a gait optimization algorithm was formulated using the TOWR optimization software [38].
Furthermore, the optimization algorithms that were developed in [15] led to life-like motions
and dynamic gaits. It is worth mentioning that the second control framework presented in this
thesis, is primarily based on [23], in which the robot’s posture was controlled through the
optimal distribution of virtual forces, that should ideally act on the main body, to the stance
legs. Finally, a really useful implementation of optimization is demonstrated in [46], where a
Linear Program (LP) determines the online foothold selection and body motion generation
while ensuring that the realization of the generated motion plans will not exceed the actuation
limits.

Approaches based on Model Predictive Control (MPC) have also shown promising
results. The MIT Cheetah 2 used MPC to place optimally its feet and adjust its pose before
jumping over unexpected obstacles [48]. Its descendant, MIT Cheetah 3 stabilizes a diverse
set of quadrupedal gaits by implementing a policy-regularized model-predictive control (PR-
MPC) [11], which biases the solution of the MPC towards common heuristics from the literature
to accelerate the computations. The MPC formulation incorporates the system dynamics
which can be approximated by common simplified models. MIT Cheetah 3 [10], [17], and Mini
Cheetah [34] use Single Rigid Body Dynamics (SRBD) model, which is a good approximation
of the real model and speeded up the computations greatly. The same dynamic model was
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used in [39], where the trajectory optimization problem was formulated using a multiple
shooting method, enabling a humanoid robot to climb stairs.

A wide variety of methods can solve the optimal control problem. Differential Dynamic
Programming (DDP), which is based on dynamic programming [40], is an optimal control
algorithm in the class of trajectory optimization that has been applied successfully in legged
systems. lIterative Linear Quadratic Gaussian Regulator (iLQG) [59] and Sequential Linear
Quadratic Programming (SLQ) [55] are iterative methods that can handle nonlinear
optimization problems. Another trajectory optimization formulation that generates plans for the
body motion and the footholds using direct collocation with an SQP solver was proposed in
[21]. It produces a coarse plan in a few seconds and due to the integration of simple state-
feedback laws and a hierarchical whole-body controller in the motion execution, the robot can
successfully follow the motion plans and it is robust to perturbations.

Some recent approaches overcome the restrictions that are applied to the achievable
motions by the predefined contact schedule. The algorithms developed in [19], [42], [63]
address only the contact sequence, but allow the optimization to eliminate specific phases by
setting their duration to zero. A whole-body Nonlinear Model Predictive Control approach for
Rigid Body Dynamics (RBD) systems subject to contacts, in which the contact locations,
sequences and timings are optimized, is presented in [43]. The nonlinear optimal control
problem was solved at a rate of 150 Hz for a time horizon of 0,5 s.

1.3 Structure

The current thesis is organized as follows. Chapter 2 presents the system parameters of
Argos, which include the physical properties and the definition of the three degrees of freedom
in each leg. Then, the forward and inverse kinematics are analyzed to relate the foot position
to the body position through the angular positions of the joints. Next, the dynamic models that
approximate the physical model of the quadruped are discussed. A static analysis follows that
gives an estimation of the foot forces and the respective joint torques when the quadruped is
in stance. Additionally, the simulation environment of Simscape, and how the foot-ground
interaction is modelled, is described. Finally, the results of simulating the robot in stance are
compared with those of the analytical solution.

Chapter 3 describes the theory behind the optimal trajectory planning. The commonly
used direct methods for the numerical solution of the trajectory optimization problem are
analyzed and evaluated. Several gradient-based nonlinear programming solvers are listed,
and the two most used solvers are compared. A two-link manipulator is stabilized at the upper
position using the direct methods and two different optimization libraries which are also
evaluated based on their computational speed.

Chapter 4 can be separated in three main parts. The first part demonstrates a simple but
effective control framework that is used for the locomotion of Argos. It consists of the gait
scheduling, the definition of foot trajectories in Cartesian space which are mapped to joint
angles through inverse kinematics and the implementation of a PD controller that tracks the
desired motion plans. The second part describes a second motion planning approach, in which
the robot tracks velocity and turn rate commands. Initially, a gait pattern is proposed and then
the desired footholds and the foot trajectories are defined. The desired body pose is controlled
by adjusting the virtual foot forces through the formulation of an optimization problem. A PD
controller is also designed to track the desired foot trajectories. The last part develops the
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implementation of a trajectory optimization algorithm using the Hermite-Simpson direct
collocation method. Firstly, the techniques that can handle the discontinuous dynamics of the
legged systems are explored and then the trajectory optimization problem is formulated step
by step. The outputs are the optimal motions plans for the body pose, the foot trajectories and
the foot forces that minimize the given objective function. In addition, the physical constraints
are discussed analytically. A section that presents the simulation results follows at the end of
each motion planning approach.

Finally, Chapter 5 discusses the importance of the results and the implications of the work
developed. Then, several suggestions for future work are listed.

Appendices contain helpful supplementary information Appendix A includes the code
related to forward kinematics that was developed using Mathematica. Accordingly, Appendix
B includes the code for the calculation of the geometric Jacobian. Appendix C provides
supplementary information about the Simpson’s rule of integration. Appendix D and Appendix
E describe the implementation of the two control frameworks in MATLAB-Simscape simulation
environment and finally Appendix F refers to the code of the Trajectory Optimization
formulation.
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2 System Modelling

2.1 Robot Model

Argos is a quadruped robot (Figure 2-1, Figure 2-2) designed by the Legged Robots Team at
Control Systems Lab — NTUA. Its main purpose is the inspection of vineyards. This is a
complex task, but this work focuses on the robot’s motion planning. Argos is about 0.8 m tall
and weighs 53 kg approximately. Each of the robot’s four legs has three torque-controlled
joints: hip, knee, and abduction/adduction. The quadruped has 12 actuated degrees of
freedom (DoFs) and 6 unactuated DoFs which describe its pose. To control the system,
measurements/ estimations of all the joint angles q; € R™, the joint velocities ¢ ;, as well as
the pose q, € R® and the velocities ¢, of the main body are required. The position of each hip
and foot at every time instance are obtained using the sensors’ measurements and the system
kinematics. There are also pressure sensors installed on the feet that provide information
whether a leg is in contact with the ground (ground force F, >0).

Table 2-1, Table 2-2, and Table 2-3 list the robot’s parameters. M is the mass of the
body, and m,, m,, m, are the masses of upper segment, lower segment, and leg roll
segment. The 1, |y, |, arethe body and the four leg roll segments moments of inertia. The
lengths listed in Table 2-3 are shown in Figure 2-1 and Figure 2-2.

I L J

Figure 2-1. Geometrical properties of Argos - Left view.
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Figure 2-2. Geometrical properties of Argos - Front view.

Table 2-1. Robot’s mass properties.

f )+

f+)

f+)-

)

(&~
-t
3
®
Ly
=4
Uiy
ol
L
*
By
-4
i
-
3
B
[iry
-4
|
ol
-y
g
b
“

}+)

N
)

Body M 25 kg
Leg upper segment m, 2.91 kg
Leg lower segment m, 1.74 kg
Leg roll segment m, 2.34 kg
Total Mass M ot 52.96 kg
Table 2-2. Robot’s moments of Inertia.
Main body (x axis) | 0.26 kgm?
Main body (y axis) ly 1.05 kgm?
Main body (z axis) I, 1.07 kgm?
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Table 2-3. Robot's geometrical properties.

Body Length (x axis) L 0.8m

CoM to Hip distance (x axis) L, 0.43m
Body Width (z axis) W 0.26 m
Leg upper segment 1, 0.45m
Leg lower segment 1, 0.62 m
Leg roll segment 1, 0.23m

2.2 Kinematics

2.2.1 Forward Kinematics

The quadruped can have different configurations depending on the leg coordinates. As it is
easier to determine the motion of the robot in the Cartesian space, equations that map the
joint angles to the desired motions in the Cartesian space are presented in this and the
following section. Initially, to determine the position and orientation of the robot’s CoM, the
transformation matrix that expresses the base frame B relative to the inertial frame | (Figure
2-3) is obtained in (2-4) using the rotation matrices (2-1), (2-2), (2-3) in an Euler angle z-y-x
sequence. Euler angles are used to describe the orientation of the floating body with respect
to a fixed inertial frame. This is required when the motion plans expressed in the inertial frame
need to be mapped to the base frame and then to a leg motion. The rotation about the three
principal axis X, y, z is given by (2-1), (2-2), (2-3) respectively. The X, Y, , Z, are the
coordinates of the CoM’s position relative to the inertial frame and the qy, (y, g, denote the
rotation angle of the CoM about the X, y, and z axis respectively.

1 0 0 0]
T - 0 c?s(qx) —sin(q,) O (2-1)
0 sin(q,) cos(q,) O
0 0 0 1]
i cos(q,) 0 sin(a,) 0]
ro| 0 1 0 o 02
~sin(q,) 0 cos(q,) O
0 o0 o0 1]
‘cos(q,) -sin(g,) 0 O]
T - sin(q,) cos(q,) 0 0 (2.3)
0 0 10
0 0 01
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Figure 2-3. Inertial frame | - Body fixed frame B.

Table 2-4. Coordinate systems.

o —» O O

System Modelling

(2-4)

The CS of the center of the body

The main CS of each leg
The CS of the abd/add joint
The CS of the hip joint

The CS of the knee joint

The CS of the foot

CSs

CSo

CS:

CS2

CSs

CSe

Ye

Yo

Y1

Y,

Ys

Ye
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Figure 2-4. Coordinate Systems. The X, Y, Z axes are denoted by red, green and blue color
respectively.

Table 2-5. Transformation matrices.

Front Right Front Left
L L
CSa—CSot TRANS, [Ej TRANS, (EJ
T T

CseCs: RO, (_EJ ROT, (th,) ROT, (Ej ROT, (th,)
CS1— CS, TRANS, (I,)ROT, (gj ROT, (th,)  TRANS,(I,)ROT, (—%) ROT, (th, )
CS»— CSs TRANS, (~1,)ROT, (th,,, ) TRANS, (,)ROT, (th,,, )
CSaCSe TRANS, (-1,) TRANS, (-1,)

The variables th,,th,, thy, and th, are the joint angles, which are shown in Figure 2-1
and Figure 2-2. The joint angle th, is defined as the angle between link 1 and 2. However, the
purpose of this analysis is the derivation of the expression that relates the position of the
contact point with the CSo. Thus, in the rest of this work, the joint angle thy,, will be used. The
forward kinematic matrix given in (2-5) is derived from the transformations listed in Table 2-5
and each coordinate system is represented in Figure 2-4. Equation (2-5) is expressed in
symbolic form using Wolfram Mathematica (see Appendix A).

L
! The Transformation matrix for the rear legs gets a negative sign as TRANS, (—Ej
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OTE = OTl 1Tz 2T3 3TE (2-5)
The positions of the left and right feet in Cartesian space are given by:
"xe =1 sin(th,)+1,sin(th, +th,, ) (2-6)
°Ye =l,sin(th,) - cos(th?,)(l1 cos(th, ) +1, cos(th, +th,,, )) (2-7)
Left: °z, =1, cos(th,)—sin (thg,)(ll cos(th, ) +1, cos(th, +th,,, )) (2-8)
Right: °z, =1, cos(th,)+sin (ths)(l1 cos(th, ) +1, cos(th, +thy,, )) (2-9)

The foot velocity in Cartesian space (2-10) is related to the joint angular velocities (2-13)
by differentiating (2-6)-(2-9). The foot acceleration (2-14) is obtained in a similar way by
differentiating (2-10).

ve =Jg (2-10)
OXE
v =| %, (2-11)
OZ'E
00X, °X. °X. |
oth,  oth,,,  oth,
3. %,  o%. a%. (2-12)
oth,  oth,,  oth,
2z, 9°Z. 9°Z.
| ath, othy,,  othy |
th,
Q=] thy, (2-13)
th,
Ve =Jg+J4 (2-14)

The geometric Jacobian J is expressed in symbolic form using Wolfram Mathematica
(see Appendix B).

2.2.2 Inverse Kinematics

In the inverse kinematic analysis, the position of the foot is provided, and the unknown
variables are the joint angles that bring the foot to the desired position. Having already defined
the forward kinematics, each joint angle can be uncoupled using simple geometry and
trigonometry [1]. The variables used in (2-15)-(2-18) are displayed in Figure 2-5. The problem
has two solutions (elbow up, elbow down), but due to the kinematic constraints, one of those
is acceptable.
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2 2 2 2 2 2
Xe +Ye +Ze -1 —15 -1
th,,, =arccos| = YetZe —h % 7% (2-15)
211,
Right Legs: th, =y, —¢, =arctan 2(«/y§ +z2 12, Is)—arctan 2(—Ye. 2¢) (2-16)
Left Legs: th, =y, —¢, =arctan 2(«/y§ +22 —I32,I3)—arctan 2(—Ye—2¢) (2-17)

th, = ¢, —w, = arctan Z(XE AJYE+ZE - )— arctan 2(I2 sin(th,e), L +1, cos(tthq)) (2-18)

'L';';"'""*":;':"III

ey
Ea

Figure 2-5. Inverse Kinematics - Geometrical Analysis.

2.3 Dynamic Models

There are several dynamic models in which the states, the controls, and the relationship
between them differ significantly. These representations are approximations of the physical
model with assumptions to simplify it and make it handy. A motion plan is acceptable if the
modelling equations are always fulfilled. In general, the dynamics of a system is represented
by Ordinary Differential Equations (ODEs) (2-19). Some of the most common dynamical
models will be described next [62], starting from the most complex model, and ending up to
the one including the most assumptions.

x=F(x(t),u(t)) (2-19)

2.3.1 Rigid Body Dynamics

The quadruped robot studied herein consists of multiple rigid bodies (the main body and the
four legs) (Figure 2-6). Each leg has three degrees of freedom. The links of the legs are
connected to each other with rotary joints. It is assumed that bodies do not deform when
external forces are applied. The states q=[qy Q)] €R'™" comprise the position and
orientation of the CoM (g, € R**) and the angle of each actuated joint (g; € R**). The model
is described by:

M(a)d+h(g,6) =S"t+J(q)' (2-20)

25/136



System Modelling

where M e R*®* is the joint-space inertia matrix, h € R'®* is the effect of Centrifugal, Coriolis
and gravity terms, S" =[01.s  l12a2]" iS @ Selection Matrix which applies the torque 7 e R*?*
to only the n joint rows and the Jacobian J maps forces f =[f{ ... f;]" eR™" at the 4
end-effectors to 6+12 dimensional generalized forces. Equation (2-20) can be separated into
two groups; the one that is related to the underactuated part of the robot (2-21) and the rest
that is fully-actuated since there is a torque-generating motor for each robot joint (2-22).

M, (@)d+h,(@,g)=J,(@)f (2-21)
M, (@)d+h,(q.q)=t+J,(q)f (2-22)

The joint torques cannot directly influence the body motion, as the latter is determined by
the contact forces. These contact forces are generated through the torques that the actuators
apply. Consequently, the actuation system affects the body movement indirectly.

Figure 2-6. Visualization of Rigid Body Dynamics (RBD).

2.3.2 Centroidal Dynamics

As before the only assumption is that bodies do not deform, but in this model, the change of
momentum is expressed at a body fixed frame at the body CoM. The dynamics are written as

. it
WD _ @i A@a=| 2 (2:29)
t 2 fix(r@-pi@)
q=[af qjT eR™ (2-24)

where ( is the gravity acceleration, m is the entire body mass, r is the position of the main
body CoM in Cartesian space, p; denotes the position of each foot | in Cartesian space, and
f; is the force acting on each foot. The Centroidal Momentum Matrix (CMM) AcR%® [45]
maps the momentum of each rigid body to the CoM. In this model, the input to the system is
the vector containing the external forces f;. The first term of the right-hand side denotes the
sum of the forces that are applied to the CoM, while the second term denotes the sum of
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torques applied to the CoM. The left-hand side expresses the effect of linear and angular
change of momentum of all rigid bodies on the CoM. As shown in the right-hand side, the
positions of the feet depend on the joint configuration, thus these are included to the states
vector.

2.3.3 Single Rigid Body Dynamics

The single rigid body dynamics (SRBD) model (Figure 2-7) is described by (2-25)-(2-27),
which neglect the effect of joint velocities at the total momentum and it is assumed that the
full-body inertia does not deviate significantly as the feet change their position. Due to the
additional assumptions compared to the Centroidal Dynamics model, the joint dependency is
eliminated. The dynamics of the robot is independent of the joint space which makes it easy
to enforce the constraints in Cartesian space. As shown in (2-25)-(2-27), I' represents the
base acceleration, ® is angular velocity of the base calculated from Euler angles 0 and its
rates of change 6, m is the robot’s total mass, | € R*® is the constant inertia matrix
calculated at the nominal position with respect to a frame anchored at the CoM and whose
axis are parallel to the inertial frame, { is the gravity acceleration, p; is the three dimensional
position of the feet and f, are the contact forces. The dynamics of the system includes the
angular velocity @ which is written as a function of § and ®. The relation between the Euler
angle rates (order of application: yaw, pitch, roll) and the angular velocity is presented in (2-29)
. Both quantities are expressed relative to the inertial frame. The extraction of the
transformation matrix is described analytically in [22].

Figure 2-7. Visualization of the Single Rigid Body Dynamics (SRBD) model.

mi(t) = ﬁfi (t)+mg (2-25)
g=[0 -9.81 0 (2-26)
lo(t) + o) xIo(t) = iﬁfi ) x(rt)—p;(®)) (2-27)
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)

cos(6,)sec(d,) sin(d,)sec(d,) 0| o,
0=| —sin(8,) cos(8,) 0| o, (2-29)
cos(,)tan(0,) sin(@,)tan(d,) 1| o,

2.3.4 Linear Inverted Pendulum Model

The Linear Inverted Pendulum Model (LIPM) is a simplified form of the SRBD, since more
assumptions are added to make it simpler and remove the nonlinearities of the cross product.
The ODE equation that describes the model is given by (2-30) where the forward acceleration
of the base i, depends on the position of the center of pressure (CoP) p..x. The CoM’s
position in x direction is denoted by r, and the gravitational acceleration is denoted by g . The
CoP refers to the point where the net torque caused by the ground-reaction forces is zero [33].
Replacing X indices by z in (2-30) determines the motion of the robot in z direction. The
CoM’s height h is constant, the footholds are at constant height, and the angular velocity and
acceleration of the base are constrained to be zero. The input to this system is the CoP
calculated by the vertical components of each individual contact force and the feet positions.
Apparently, the contribution of the tangential components of the contact forces is omitted. This
model cannot be used to generate complex motions and it is inappropriate for uneven terrain.
A representation of LIPM is shown in Figure 2-8.

rx = F(rx - pc,x) (2_30)
Ay
\g CoM
j | | | |
L R R B
3 ~ RL RR RL RR

? ? . i - O @ : Quadruped foot
o R =, | f I : Biped foot
f-n R FL : Front Left foot
LI R [} = f FR : Front Right foot
? ? = RL : Rear Left foot
RL RL RR : Rear Right foot
RL RR RR R : Right foot
quadruped biped quadruped biped quadruped biped L * Left foot
1st step 2nd step 3rd step

Figure 2-8. Linear Inverted Pendulum Model (LIPM) [58].
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2.4 Statics

Under the assumptions of sagittal (longitudinal) plane symmetry and that the frictional forces
are zero, the ground reaction forces that act on the stance feet can be computed explicitly
when the robot is in static equilibrium. The goal of this analysis is a rough estimation of the
torques required, how the configuration of the leg affects the magnitude of the torque at each
joint and the examination of the differences between front and rear leg’s loads. The results
can be utilized as an estimation of the expected torque requirements and can be compared
with those of the simulation.

According to the first assumption, half of the body mass is supported by the front right and
rear right leg. As shown in Figure 2-9, gravitational forces for each member are applied at their
centers of mass (CoM) and the ground reaction forces are applied at the contact points.

The equations of static equilibrium are given in (2-31)-(2-32). The problem has multiple
solutions regarding the direction in which the contact forces are applied. The case where the
contact forces are vertical to the ground and the friction forces that are exerted on the foot in
the x and z direction are zero is analyzed next. Solving the system of equations (2-31)-(2-32)
, the foot forces on the front and the rear leg are equal to Fy,., =106.2N and Fy.. =153.6N
. The torques that are computed counterbalance the robot’s weight. Greater joint torques do
not imply that the foot will slip; it will start slipping if the force that is generated on the foot
exceeds the friction force. The condition (2-33) where / is the static friction coefficient of the
ground, ensures that the foot does not slip. The pivot point around which the torques are
generated in (2-32) is defined to be the torso’s CoM. The distances |, , where i=1,2,3
symbolize upper, lower and roll segments respectively, and k refers to front or rear leg, are
depicted in Figure 2-10.

Z Fy = o = Fyrear + Fyfrom = (% M + 2m1 + 2m2 + 2m3j g (2-31)

Sr=0=mgl,_ +mgl, -F, (Lh +l,sin (—th, ) -1, sin th, +th,_ ))

(2-32)
-mgl, ~mygl,  +F, (L, ~Lsin(-th)+1,sin(th +th, ))

Figure 2-9. Gravitational forces and ground reaction forces.

29/136



System Modelling

- F, < uF, (2-33)

Figure 2-10. Distances between links' CoM and main body's CoM.

The knee torque is calculated by the equation of torque equilibrium at the isolated lower
segment Figure 2-11 (left). Then, hip torque is calculated by the equation of torque equilibrium
applied at the upper and the lower segments as depicted in Figure 2-11 (middle). Finally, the
abduction torque is calculated by the equation of torque equilibrium applied at the whole leg
Figure 2-11 (right). The geometrical parameters that are used in (2-34)-(2-39) are shown in
Figure 2-12.

Figure 2-11. Left: Forces and torques at leg lower segment. Middle: Forces and torques at leg
lower and upper segments. Right: Forces and torques at the whole leg.
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I2,hip

Figure 2-12. Geometrical parameters that relate the CoM of each link to the joints.

7, =—F, (Lsin(th)+1,sin(th +th,))-mgl, . —mgl, (2-34)
7, =-F, l,sin (th +th, )+ m,gl, e (2-35)

T, = ((m1 +m,)g-F, )I3 +mygl; 5, (2-36)

7, =-F, (Lsin(th)+l,sin(th +th,))-mgl, . —m,gl, . (2-37)
2. =—F, lsin(th +th,)+m,gl, .. (2-38)

T, = ((m1 +m,)g-F, )I3 +mygl; ., (2-39)

2.5 Simulation Environment

2.5.1 Plant description

The quadruped was designed in Solidworks, and it is composed of the main body and three
links at each leg that are connected together through rotary joints. These individual parts are
imported into Simscape, and their position is specified by rigid transforms and joints that
connect the world frame to the robot. The world frame is placed on the ground, and it is
connected to the body-fixed frame through a bushing joint. The bushing joint ensures that the
main body has six degrees of freedom (three translational and three rotational). The initial
position of the robot relative to the world frame is specified by setting the state target options
in the bushing joint block.

2.5.2 Foot — Ground Interaction Model

The quadruped interacts with the environment while walking. Choosing an appropriate force
model and ground parameters that approximate the actual conditions is a challenging task.
However, MATLAB provides a library, namely Simscape Multibody Contact Forces Library
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[52] that can be used to model the contact with the ground. A ‘sphere to plane’ contact model
is selected (Figure 2-13) and the ground is modeled as a spring-damper system. The force
model can be linear, nonlinear, or even custom made. A linear spring-damper resists a toe’s
penetration. According to that, a force is applied only along the direction of penetration and
damping force is zero as penetration decreases (2-40), (2-41).

Follower
ypen
Base
Figure 2-13. Foot - Ground Interaction model.
KYpen +DVen Yopen >0V, >0
F.= K'Y pen Ypen > 0,Vpe, <0 (2-40)
0 Ypen =0
F,=0 (2-41)

y

The documentation of the contact forces library suggests starting with stiffness of
1e* N/m and damping of 1e? Ns/m and adjust from there. We assume flat ground with
ground stiffness (k ) and damping (b ) equal to 1e* N/m and 5e° Ns/m respectively. These
parameters are used for the walking simulation experiments. In the statics experiments
presented in Section 2.6, stiffness and damping are set equal to 1e> N/m and 1e* Ns/m to
avoid the oscillations in the transient state. When a leg is in stance phase, it must stay still in
its position. For this reason, a stick-slip continuous friction model is chosen from the library
(Figure 2-14), where the friction coefficients must be tuned appropriately as they greatly affect
toe’s slipping.

mmm) Normal Force (Fy)
Follower mmm) Friction Force (Fy)
£ ™\, Angular Velocity
O ===l Translational Velocity
B O  Point of Contact

Figure 2-14. Friction model indicating forces applied to the ground.

The friction force is described by a stick-slip continuous model given by (2-42). It is equal
to the normal force Fy multiplied by the friction coefficient 4 which is a function of the relative
velocity at the point of contact V. and the velocity threshold vy, .
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Fo=Fu (2-42)
H
V. ..— V. .. <V
poc Vth poc th
(s — 1)
JTER YT OsTvthk Vin Ve <15V, (2-43)
/uk Vpoc > Vth

The values of the different friction coefficients, illustrated in Figure 2-15, were set as u, =0.9,
4, =0.88 and v, =0.001m/s.

Ms = Static Friction Coefficient
Mk = Kinetic Friction Coefficient
Vi, = Velocity Threshold

Figure 2-15. Friction coefficients.

2.5.3 Solver selection

The contact forces library that is imported recommends using the variable step solvers ode23t
or odel5s. It was found that, odel5s needs almost half the time compared to the other. The
library also recommends setting relative and absolute tolerances equal to 1e-4 and le-5
respectively and the maximum step size equal to 1e-2. However, these parameters can be
automatically adjusted, so these settings can be also set to ‘auto’. In summary, the solver
odel5s with tolerances le-4 and le-5 and maximum step size le-2. was used in all the
experiments presented in this work.

2.6 Statics Experiments for Simulation Environment Verification

Robot in stance phase - Inverse dynamics

In this simulation, the quadruped stands on the ground and keeps a specified leg configuration
given in (2-46). The joint primitive is actuated in inverse dynamics mode by providing motion
as input while having actuation torque automatically computed. The goal is to compare the
simulation results to those from the static equilibrium analysis. Figure 2-16, Figure 2-17
represent the joint torques of the front and rear right leg.

Ghip = _% rad (2-44)
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T
== 2-45
qknee 2 ( )
Oy =0 (2-46)

Joint torques at FR leg

Hip
-5 X 1.20022 Knee |4
. Abduction
Y -9.44423
X 1.20022
Y -9.88912

-10 e

T
1

-15

N
(&)}
T
1

&
o
T

X1.20022 7
Y -34.1155

_40 1 1 1 1 1 1 1 Il 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

Joint torques at stance - Inverse dynamics - Front Right Leg.

Joint torques at RR leg

0 T T Hip
X 1.20022 Knee
Y -10.6198 Abduction
-10 =
X 1.20022
Y -20.6937
'20 \ Y -
-30 |- .
40 | 4
X 1.20022
Y -50.0139
-50 Lf
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time [s]
Joint torques at stance - Inverse dynamics - Rear Right Leg.
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Robot in stance phase - Forward dynamics

If the joint primitive in the aforementioned case is actuated in forward dynamics mode, then
the input is the actuation torque. The goal is to keep the legs still in their initial position. To
handle this problem, a stabilizing PD controller regulates the torque needed, so that the
guadruped stands at its nominal position.

7, =Ke (af —af )+ Ko (df —a7) (2-47)

The subscript j refers to the hip, knee or ab/ad joint, while the superscripts d and a refer to
the desired and the actual angles respectively. Table 2-6 summarizes the PD controller gains.
The gain values are quite large to ensure that the desired joint angular position and angular
velocity are tracked. The term K is high to avoid the oscillations at the transient state. The
steady state appears in just a few seconds. Figure 2-18, Figure 2-19 represent the joint
torques of the front and rear right leg

Table 2-6. PD controller gains - Quadruped in stance.

Gains Hip Knee Abduction
KP le6 leG 1e6
KD 1e4 le4 1e4

Joint torques at FR leg

Hip 4
Knee

-5 X 3.42078 Abduction | |

Y -9.44585

-~
°

-10
r X 3.42078
Y -9.88945

Torque [Nm]
Ny
o

-30 X 3.42078 4
Y -34.1173

EN
o
T
I

Time [s]

Figure 2-18. Joint torques at stance - Forward dynamics - Front Right Leg.
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10 '
Hip
Knee
0F Abduction | |
X 3.42078
Y -10.6236
=10 FiSN~— ° -
é -20 B ) =
o X 3.42078
g a0l Y -20.6939 |
o
40 + i
X 3.42078
Y -50.0221
-50 — °
_60 1 L 1 1
0 2 3 4 5 6
Time [s]

Figure 2-19. Joint torques at stance - Forward dynamics - Rear Right Leg.

Comparison with analytical solutions
Table 2-7 summarizes the results of the analytical solution, which are compared with those of
the two aforementioned simulations. The simulation results are identical and their max
deviation from the analytical solution is 0.3Nm. In the simulation, the contact force consists
of the force component which is normal to the ground and the friction forces along x and z
axis. However, the friction forces have a little impact, since their magnitude is almost 0.01N
in steady-state. The deviation may be caused by the assumption that the foot forces are
exerted on a single point. Given that the cylindrical geometry of the foot penetrates the ground
slightly, the forces are exerted on a contact area.

Table 2-7. Comparison between the analytical solution and the simulation results.

Torque [Nm] Leg

Front
Hip

Rear

Front
Knee

Rear

Front
Abduction

Rear

Analytical
Solution

-9.8
-10.5
-34.2
-50.0

-9.7
-20.9

Simulation

(Inverse Dynamics)

-9.9
-10.6
-34.1
-50.0
9.4
-20.7

Simulation

(Forward Dynamics)

-9.9
-10.6
-34.1
-50.0
9.4
-20.7
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3.1 Introduction

This chapter focuses on the theory behind trajectory optimization (TO). Trajectory optimization
is a process that outputs trajectories for a dynamical system while satisfying a set of physical
constraints. The quadruped Argos is a dynamical system in which TO can be used to generate
motion plans both for the unactuated main body and the actuated legs. The implementation
of TO in Argos is investigated in Section 4.4. This chapter is organized as follows. Firstly, the
term trajectory optimization is distinguished from the term optimal control and then some of
the methods that can handle the TO problem are appraised. A simple TO example of a two-
link manipulator is formulated in two optimization libraries, which are evaluated in terms of
computation speed.

Optimal control is a mathematical optimization method which finds the control trajectories
that drive a system to a desired state while minimizing an objective function and satisfying the
constraints on the motion of the system. Before identifying the implementation details, the
terms trajectory optimization and optimal control need to be distinguished. In general,
trajectory optimization is a technique for computing an open-loop solution to an optimal control
problem. These two terms must not be confused. The first one refers to the case of a function
optimization problem that optimizes a given performance index J(X), where the vector X
represents the optimization variables and it consists of static parameters (or real numbers).
This type of problem is called parameter optimization problem [35]. On the other hand, in the
case of a functional optimization problem that optimize a given performance index J(f(t))
where the optimization variables are vector functions f(t), the appropriate term is “optimal
control” [51].

Vv
Trajectory Optimization
N
NN YT
N /
VA s s e e o
R B T S, B, e S

Figure 3-1. Left: Closed-loop solution - Right: open-loop solution [1].

The most general formulation of optimal control finds a closed loop solution which
describes the ideal action that should be taken at every point in the entire space to reach the
goal (Figure 3-1). In this case, the control is in general a function of state and time, u =u(Xx,t)
. While this method ensures that the global solution is found, it is limited to lower-dimension
problems since the complexity of the problem increases linearly with the number of states. On
the other hand, using a local method and finding an open-loop solution is less difficult to
compute and it is appropriate for higher-dimensional problems [35]. The goal of trajectory
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optimization is to find an optimal open-loop control that is valid from only a single initial
condition. This open-loop control is a function of time u=u(t) and under its influence, the
system follows an optimal trajectory from an initial to a final point. Since the method provides
an open-loop feed-forward control input (Figure 3-1), it must be combined with a stabilizing
controller when applied to a real system.

[ Optimal Control \]

3.2 Approaches

Dynamic Programming

: . Indirect Methods Direct Methods:
(Hamilton-Jacobi-Bellman : . TR . ;
L (Potryagin Maximum Principle): Transform into Nonlinear

Equation): Solve Boundary Value Problem Program (NLP)

Tabulation in State Space
Single Shooting: Collocation: Multiple shooting:
Only discretized controls in Discretized controls and states in Controls and node start values in
NLP NLP NLP
(sequential) (simultaneous) (simultaneous)

Figure 3-2. Overview of numerical methods for optimal control [18].

The optimal control problem could be handled with three types of algorithms, namely Dynamic
Programming (Hamilton-Jacobi-Bellman Equations), Indirect Methods and Direct Methods
(Figure 3-2). “Dynamic programming uses the principle of optimality of subarcs to compute
recursively a feedback control for all times t and all X, ” [18]. However, it requires a
discretization of the full state space, so it is preferred for unconstrained low-dimensional
systems. Indirect methods refer to boundary value problems which are first optimized and then
discretized. This class includes the calculus of variations, Euler-Lagrange differential
equations and the Pontryagin’s Maximum Principle [18]. The main disadvantages are the
difficulty in solving the differential equations due to the strong nonlinearity and instability and
because changes in the control structure may require a completely new problem setup. Direct
methods transcribe the original infinite horizon optimal control problem, where the decision
variables are vector functions, to a finite dimensional nonlinear program (NLP). The NLP is a
constrained parameter optimization where either the objective function or the constraints are
nonlinear. Direct methods find the optimal solution of the discretized problem, so they are less
accurate, but they are easier to pose and solve. The direct methods could be further classified
as sequential or simultaneous methods. Their difference is that sequential methods
parameterize only controls, while the simultaneous methods parameterize both states and
controls. These parameterized variables are referred as optimization or decision variables.
The trajectory optimization problem formulated in Section 4.4 is handled by one of the direct
methods, so this category will be further explored next.
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3.3 Direct methods

Transcription converts each continuous aspect of the problem into a discrete approximation.
The methods that are used for the approximation of the objective function, the dynamics, which
is expressed in the form X=f(x,u)and the constraints are investigated in the following
publications [35][37][18]. Also, the output of the NLP is a vector that contains the points that
compose the discretized optimal trajectory. Using all these points, a continuous polynomial
spline of a predetermined degree can be constructed.

3.3.1 Single shooting

The simplest sequential method is single-shooting, where the state trajectory X e R™="* is
regarded a function of the controls U e R™N and of the initial value X, € R*™ (3-1), where
n, is the number of states and n, is the number of the control inputs. Assuming that the
controls and the states are discretized in N segments, then the number of points is N +1.
The optimization variables are the control inputs, while the states result by a forward
integration method. The most widely used integration method that finds approximate values
at the discretized trajectory, is the Runge—Kutta 4" order (RK4) method. Each state, except
the initial one, is described as the current state plus the weighted average of the slopes
k., k,,k;,k, multiplied by the time interval of each segment h (3-2).

T
Xo

F(xo.,uo)

X — c RnstH. (3_1)

F(XN—l’uN—l) = F(F(XN—Z’UN—Z)’UN—l)

0,...,N (3-2)

n+1 n !

XK :F(xRK un)zxsK+g(kl+2k2+2k3+k4), n

X()

Y

to t0+h/2 t0+h

Figure 3-3. Slopes used by the Runge-Kutta 4th order method [29].
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The formulas for the four slopes (derivatives) shown in Figure 3-3 are given by:

k, =f(xf,u,)

k, =f[x§" +gk1,un)

h (3-3)
k3 :f(XEK,+Ek2,Un)

ky = (X +hk,u, )

The entire trajectory is represented as a single segment, with a single constraint at the
last point, known as a defect constraint, requiring that the final state of the simulation (last row
of (3-1)) matches the desired final state of the system. In this method, the decision variables
are the control inputs, thus the problem remains relatively small. The control input can be
chosen as a piecewise continuous arbitrary function such as a zero-order-hold, a linear, a
cubic, or an orthogonal polynomial. The input is applied to the dynamic system and the states
x(t) are forward simulated using RK4. The state trajectory cannot be initialized directly.
Unstable systems can be difficult to be handled, since small modifications of the input can
have large effects on the state x later in the trajectory. A block diagram that illustrates the

steps of the single shooting method solved by an NLP solver, IPOPT, is given in Figure 3-4.
IPOPT is investigated at the NLP solvers section.

Propagate the differential

equations from ¢, to t (i.e.,

‘shoot’ using Runge-Kutta
scheme

Discretization of the
time horizon into N
grid points

Initial guess of Control

Initial guess of Control
Parameters

Parameters

Evaluate the error in the
boundary conditions

e= XEK = X(t)

While (Cost!=Minimum &
Constraints Not Satisfied)

Optimal values of
Parameters and Optimal

Update unknown initial
conditions by driving cost to
lower value using IPOPT
solver

Trajectory

Figure 3-4. Single Shooting block diagram.
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3.3.2 Multiple shooting

Two of the remarkable simultaneous methods, which will be explored, are multiple shooting
and direct collocation. Multiple shooting works by breaking up a trajectory into several
segments and using single shooting to solve for each segment. Figure 3-5 illustrates single
shooting compared to the multiple shooting. In the former method, the defect constraint is
enforced at the final point of the trajectory, while in the latter, these constraints are enforced
at the final point of each segment. The integration of the ODE system is implemented through
the Runge-Kutta 4™ order (RK4) scheme. Both the controls UeR"Y™ and the states
X eR™N*" are decision variables. A defect constraint is added to each of the knot points,
which are the points between two adjacent segments (Figure 3-5 (Right)), so that the trajectory
is continuous. The values of the states derived from the RK4 integration X (3-4) should
match the state decision variables X, at each grid point n. That is ensured through the
equality constraints g=0 (3-5).

K =X (k2 2K, =0, N o)

g=x,-x,  n=1..,N+1 (3-5)

This formulation increases the convergence and the stability since the inputs in one shot
do not directly influence the trajectory of the next shot. The nonlinear effects of the continuity
conditions are distributed over the whole horizon, while in single shooting the nonlinearity of
the system is accumulated at the end condition. In conclusion, multiple shooting results in a
higher dimensional problem, but it is sparse and less nonlinear than the NLP produced by
single shooting. A block diagram that illustrates the steps of the multiple shooting method is
given in Figure 3-6.

Single Shooting Multiple Shooting

u(t

p—

C Arbitrary Function Approximator
N

_/--—Arbitrary Function Approximator

Control

\"-— Knot Point

Time Time

x(t) Remove Defect —_ o] x(t

=
®

State

State
""\‘_\\-l-%-

/
/ /

AN
“— Simulation

Time Time

Figure 3-5. Left: Single shooting - Right: Multiple shooting [37].
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Discretization of the time
horizon into N grid points

Initial Guess of State and
Control Parameters

While (Cost != Minimum & Optimal values of

Constraints Not Satisfied) ParameTureE;jse?tr:)dryOptlmal

Propagate the differential
equations on each interval
[tk,t+1] iIndependently using state
paramaters as initial conditions
(using Runge-Kutta scheme)

Impose defect constraints to
ensure continuity between the
segments

Update unknown initial
conditions by driving cost to
lower value and satisfying
defect constraints using IPOPT
solver

Figure 3-6. Multiple shooting block diagram.
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3.3.3 Direct collocation

The basic idea behind these methods is the approximation of the state and control trajectories
by polynomial splines. Starting with several predetermined points, called the collocation
points, the interpolating polynomial is differentiated with respect to time. The differentiated
polynomial equals the system dynamics X(t) =f (t,x(t),u(t)) at the collocation points. In
direct collocation, the system dynamics are not enforced by forward integration, but through
equality constraints. The solver varies the state x(t) and input u(t) trajectory simultaneously
while enforcing the system dynamics relationship between them at specified times. These
methods simulate the dynamics of the system implicitly (typically using implicit Runge-Kutta
schemes) because the values of the state at each collocation point are obtained at the same
time (as opposed to solving for the state sequentially). The decision variables include both the
discretized state and control trajectories. An initial guess for these trajectories is required to
be set up. It is worth mentioning that due to the decoupling between state and input, changes
in the input only affect the state at that time instance, while future states remain unaffected.

Trapezoidal Direct collocation

Trapezoidal collocation is a commonly used low-order direct collocation method. The
dynamics, path objective, and control are all represented using linear splines, and the
dynamics are satisfied using trapezoidal quadrature. The continuous integral of the objective
function is approximated as a summation that depends on the value of the integrand
W(tk):Wk at the collocation points t, along the trajectory. Applying the trapezoid rule for
integration between each collocation point results in (3-6), where h, =ty —tx«.

Twleox(u(o)at -5 g+, -

t

The system dynamics f(t, X(t),u(t)) is represented by the collocation constraints. For
trapezoidal collocation, these are constructed by writing the dynamics in integral form and
then approximating that integral using trapezoidal quadrature. Assuming that X, is the
decision variable in the NLP and f, :f(tk,xk,uk) is the result of computing the system
dynamics at each collocation point, then the following equations arise:

x=f (3-7)
tia1 1
[ xdt= [t (3-8)
tk ty
1
Xks1 — Xk thk (fk+1—fk) kGO,...,N—l (3-9)

In addition to the collocation constraints (3-9), which enforce the system dynamics, the
problem might also have limits on the state and control, path constraints, and boundary
constraints. The first one is expressed by setting a lower and upper limit on the state and
control values at specific collocation points. The path constraints, which must be satisfied at
specified collocation points along the trajectory, ensure that the output trajectories are
feasible. Finally, the boundary constraints are expressions that are enforced at the initial and
the final point of the trajectory. It is noteworthy that trajectory optimization problems with path
constraints tend to be much harder to solve than those without.
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After defining the objective function, the dynamics constraints, the boundary constraints
and the path constraints, the problem can be solved using an off-the-self solver. The vectors
that contain the optimal values of the states and controls at the collocation points, must be
exploited to construct continuous trajectories. In trapezoidal collocation, the control trajectory
and the system dynamics are approximated by piecewise linear functions. These, which are
also called linear splines are constructed by two sequential collocation points. For trapezoidal
collocation, all the collocation points are considered knot points, as they join any two
polynomial segments.

The expression for u on the interval t e [tk,tk+1] requires the value of the control at the
initial and the final knot point. Setting the parameter 7 =t —t, , the control trajectory is a linear
spline given by (3-10).

u(t)=u +hi(uk+1—uk) (3-10)
k

Similarly, the system dynamics on the interval t € [tk , tkﬂ] is approximated as shown in (3-11)

. T
f(t)=x(t)=f +—(f.,—f) (3-11)
Integrating (3-11) results in the expression for the state, which is a quadratic polynomial (3-12)

2
x(t)=IX(t)dfzxk+fkr+ZTT(fk+l—fk) (3-12)
k
Hermite Simpson
Hermite-Simpson Collocation is a common medium-order direct collocation method, in which
the state is represented by a cubic-Hermite spline. The integrand of the objective function and
system dynamics are approximated as piecewise quadratic functions (3-13) using Simpson
Quadrature, also known as Simpson'’s rule for integration. More details on Simpson’s rule are
given in Appendix C.

te N-1 hk

J.W(t)dfz —(Wk +4w +Wk+1) (3-13)
= 6 k+5

to k=0 2

Similarly, the continuous dynamics is transcribed to a set of collocation equations by
approximating the continuous integral in (3-8) with Simpson quadrature (3-14).

Xks1 — Xk = % hk (fk + 4fk+1 +fk+1J (3-14)
2

The dynamics at the midpoint of the segment fi.12 are a function of the state Xk.y2, which is
calculated by constructing an interpolant for the state trajectory and then evaluating it at the
midpoint of the interval (3-15):

X 1= %(Xk + X1 )+ %(fk —fi) (3-15)
2

When the midpoint X2 is considered as an additional decision variable, then both (3-14)
and (3-15) are constraint equations the formulation is reported as separated form. On the
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other hand, if (3-15) is substituted in (3-14), a single collocation constraint arise and the
formulation is reported as compressed form. Each form has pros and cons, but as a rule of
thumb, the separated form is preferred when the number of segments is small.

The continuous trajectories that interpolate the solution of the controls between the
collocation points are consisted of quadratic polynomial merged at the knot points. Each
guadratic segment is fitted through three uniformly spaced points to approximate the
integrand. A 2nd order polynomial that passes through the points (t,,uU,), (ts,Ug),(tc,Uc)
can be written in the form of (3-16).

= )t) | t)E-t) | ()(Et) (3-16)
(tA _tB)(tA _tc) (tB _tA)(tB _tc) (tc _tA)(tC _tB)

However, in this formulation the segments have equal duration h, and point B is in the
middle of the segment. If the indices A, B, C are substituted by the indices k, k+1/2, k+1,
then h =t s -t , L. = ('[k +tk+1)/2. Defining the time as 7 =t —t,, the simplified equation
becomes:

2
T T
u(t) = (2uy — AUy, + 2uk+l)(ﬁj +(=3u, +4u,.y, _Uk+1)(ﬁj+uk (3-17)

The system dynamics f(-) = X is also represented by quadratic polynomials (3-18).

2
f(t) = X = (2f, —4f,,,, + 2fk+1)(%j +(-3f, +4f, ., —fkﬂ)(%j#k (3-18)
The states trajectories are derived by integrating (3-18) as

t

2
X = I)‘(dt = J‘((ka —4af L, + ka”)(ﬁj +(-3f, +4f, .., —fkﬂ)[%}tfk Jdt (3-19)

3 2
x=1h (2f, —4f, ), + 2fk+1)(£j e h(=3f, +4f,..,, —fm)(ﬁj +fr+%, =

1 1
X = W(ka — 4,26 )T+ %(—Bfk +4f L, —f) T2+ T X

It is noteworthy, that the state trajectory, which is represented by cubic Hermite splines,
satisfies the continuity of the first derivative.

Orthogonal collocation

A subset of collocation methods that have seen extensive use in optimal control are orthogonal
collocation methods [37]. Orthogonal collocation method differs from the aforementioned
collocation methods in the determination of the collocation points positions along the
trajectory. In view of this, in an orthogonal collocation method the collocation points are the
roots of some orthogonal polynomial. Usually, these collocation points are obtained from the
roots of either Chebyshev polynomials or Legendre polynomials. In such formulations,
orthogonal polynomials are used to approximate both states and controls.

3.3.4 Comparison of shooting methods with collocation methods

The difference between multiple shooting and direct collocation lies on how each method
enforces the constraint of the system’s dynamics [37]. The dynamics constraints can be stated
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in two different forms: derivative and integral. In the first one, the derivative of the state with
respect to time must be equal to the dynamics function (3-21). On the other hand, the integral
form requires that the state trajectory matches the integral of the dynamics with respect to
time (3-22). Collocation methods comply with the derivative form, while shooting methods
comply with the integral form. A graphic representation of these two methods is illustrated in
Figure 3-7.

x =f(x,u) (3-21)

x = [f(x,u)dt (3-22)

Derivative form Integral Form

u(t)
- i i u(t
( Arbitrary function approx. ( ) _— Arbitrary function approx.
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Time
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Figure 3-7. Integral vs. derivative form of the optimal control problem [37].

In addition, shooting methods could make use of adaptive, error-controlled ODE solvers.
These can change their integration step-size depending on the current dynamics, thereby
avoiding unnecessary calculation, and reducing computation time. Compared to collocation,
the dimension of the NLP in multiple shooting has smaller dimension but it is less sparse. This
loss of sparsity combined with the cost of the underlying ODE solution leads to theoretically
higher costs per iteration.

3.4 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is an optimization-based feedback control
technique [18]. The general idea is the generation of a closed-loop system whose feedback
control is derived from the solution of an open-loop optimal control problem. The main
advantage of NMPC is the fact that it allows the first value of optimal control vector to be
executed, while keeping the rest as an initial guess for the next iteration. NMPC optimizes a
finite time-horizon in a high frequency, and in each iteration, the most recent state observation
is used as initial value X,. Consequently, the system can deal with unexpected disturbances
and errors due to the inaccuracies of the dynamic model.

Another advantage of NMPC, is the capability of modelling nonlinear systems in the form
>’<=f(x,u). Additionally, the optimal control problem can be formulated with any desired
objective function and the boundary and path constraints are treated as equality and inequality
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constraints which can be handled easily. It appears that NMPC has potential in robotics
applications. However, a deterrent reason to its use is the high on-line computational load that
is often associated with NMPC, since at each sampling instant a nonlinear optimal control
problem must be solved. The algorithm must predict and optimize repeatedly, while the system
performs commands in real time. Therefore, most of the applications so far concern the
process industries in chemical plants, where time scales are typically in the range of minutes
[18]. Another reason is the need to solve a non-convex optimization problem on-line, no global
minimum or feasible solution can be guaranteed.

3.5 Nonlinear programming solvers

Numerical methods for solving NLPs fall into two categories: gradient-based methods and
heuristic methods [51]. In this work, emphasis is given to the first category which includes
Sequential Quadratic Programming (SQP) and Interior Point methods. Examples of well-
known software that use SQP methods include the dense NLP solver NPSOL [27] and the
sparse NLP solvers SNOPT and SPRNLP [7]. Well-known sparse interior point NLP solvers
include BARNLP [53] [5] [53], LOQO [5], KNITRO [14] [13] and IPOPT. Two of the most
commonly used nonlinear programming solvers are SNOPT and IPOPT, which are based on
mature methods in mathematical optimization. SNOPT is based on Sequential Quadratic
Programming, while IPOPT uses the Interior Point Method. In [47], the performance of these
two approaches is evaluated within a robotics application. In this survey, the trajectory
optimization examples were set up according to the formulation of direct collocation method.
The direct method can be configured in several ways depending on the accuracy and solving
time requirements. In [47], two different integration methods (Trapezoidal, Hermite-Simpson)
and three initialization methods (Zero, Linear and Incremental) were examined to enhance the
validity of the results in different problem complexity. The performance criteria were set to be
the accuracy, the solving time, and the quality of the solution. The accuracy of the solution is
measured using the mean squared error between the planned and the actual control
trajectories. In contrast to the number of iterations, running time is an absolute metric that
provides information on how fast the motion planner compute trajectories online. The quality
of the solutions is compared in terms of optimality using the resulting value of the objective
function. The results of the study show that SNOPT requires more time to solve the same
problem compared to IPOPT. The solving time deviation becomes noticeable in complex
tasks. In terms of quality and accuracy, both solvers act similarly under different schemes. In
summary, this comparison revealed that IPOPT is faster, so the NLP problems presented in
Section 3.6 are solved by Interior Point algorithms. The first optimization library that is
evaluated uses FMINCON’s Interior Point algorithm, while the second one uses the IPOPT
solver.

3.6 Evaluation of trajectory optimization methods

The direct methods can be implemented using several optimization libraries. However, the
goal of this study is to choose a library which already has been used for the formulation of
optimal control problems in legged systems. The comparison of methods and libraries along
with the aforementioned trajectory optimization theory determines the direct method and
library choices in Section 4.3. The performance metrics are evaluated by executing a simple
optimization example i.e., the swing up stabilization of a two-link manipulator, whose dynamics
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is similar to that of a quadruped’s leg. It comprises two rotary actuators, one at the base and
one at the elbow. The dynamics of this system is simple and can be derived using an Euler-
Lagrange approach to result in (3-23)-(3-24).

Uy = by, +by,0, + Ny (0, 0, G, G ) (3-23)
U, =Dy, +105,05, + N, (0, 0,6, d, ) (3-24)

where the terms b, b,,,b,,,b,,,N,,N, are defined in (3-25)-(3-29):
by =1, + 1, +ml2 +m, (17 +12, )+ 2m, L1, cos(q,) (3-25)
b, =by =1, + mzlzzc + M,y cos(qz) (3-26)
b,, = ( I, + mzlzzc)qz (3-27)
N, =-2m,L 1, sin(q,)d,d, —m,Ll, sin(q,)d; 328)

+g((ml, +m,l,)sin(q,)+m,l, sin(q, +a,))

N, =MLl sin (g, ) ¢ +g(m,ly sin(a, +3,)) (3-29)

Ch

Figure 3-8. Two-link manipulator The two links are depicted in blue, the rotary joints and the
joint angles are indicated by the yellow circles and green arrows respectively.

The subscript 1 indicates the link from the base to the elbow and the subscript 2 the link
from the elbow to the end effector. Regarding the parameters, | is the inertia about link’s
center of mass, m is the mass, L is the length and ;. is the distance between the center of
mass of the i-th link and the i-th joint. The angles are given by @, and q, respectively and the
control torques by u,, u,. All standard trajectory optimization methods require that the
dynamics of the system are in first-order form. This is accomplished by including both the
generalized coordinates (0, and (,) and their derivatives in the state vector.
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x=[q, q, & 6] (3-30)

The dynamics of the system must be expressed in the form (3-31). The system of equations
(3-23)-(3-24) can be written in compact matrix form. Introducing matrices in (3-32), the system
of differential equations can be represented as shown in (3-33). Due to the inversibility of
matrix M (3-34), the dynamics can be written in the desired form explicitly (3-35). The
example was performed in two specialized libraries, i.e., OptimTraj and CasADi?. Table 3-1
summarizes the essential information in the formulation of each problem and how these four
problems differ from each other.

X:f(q11q21Q1'q2) (3'31)
SR
M = g=| _ N = u= (3-32)
|:b21 bzz 4, Nz u,
Mg =N-u (3-33)
M—l _ ;{ b22 _b12:| (3_34)
b11b22 - b12b21 _b21 b11
G=M"(N-u) (3-35)

Table 3-1. Differences in the formulation of the implemented trajectory optimization examples
for the two-link manipulator.

e : ; ;

Library OptimTraj OptimTraj CasADi CasADi
Trapezc_)idal Trapezqidal _ _ Multiple

Method Herm.Sim. Herm.Sim. Single shooting shooting
Mult.Shoot. Mult.Shoot.

NMPC No No Yes Yes/No

Opt. Variables U, X u, X u u, X

Objective (3-37) (3-49) (3-49) (3-49)

U0 0N+1><2 0N+1><2 0N+1><2 0N+1><2

X Linear interp. Linear interp. - Linear interp.

2 The MATLAB codes can be found here:
https://bitbucket.org/cs|_legged/two_link_manipulator_trajectory_optimization/src/master/
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OptimTraj is a general-purpose trajectory optimization library that is written in MATLAB
[61]. It handles continuous-time single-phase trajectory optimization problems. It is ideal for
comparison of the optimization methods, as it includes the most commonly used algorithms
which are:

+ Trapezoidal Direct Collocation

+ Hermite-Simpson Direct Collocation

+ Runge-Kutta 4th-order Multiple Shooting

+ Chebyshev-Lobatto Orthogonal Collocation

CasADi is an open-source, general purpose software tool for nonlinear optimization and
can be used for dynamic optimization in a flexible, interactive and numerically efficient way
[4]. It has been written to be able to deal with the optimization of large-scale optimal control
problems (OCPs). It has been designed to provide the necessary building blocks for solving
OCPs. Key features of CasADi are algorithmic differentiation, interfaces to NLP and ODE
solvers, and functions tailored for implementing direct methods. It is implemented in self-
contained C++ code and contains full interface capabilities to MATLAB. Thanks to convenient
interfaces and efficient virtual machines, the implementation in a high-level language is as fast
as an equivalent C implementation. The time spent in CasADi can furthermore be cut by a
factor of five by generating C-code for the NLP functions [4].

3.6.1 Problem Setup 1 - OptimTraj

In this problem setup trapezoidal direct collocation, Hermite Simpson direct collocation and
multiple shooting methods are compared in the OptimTraj library. The decision variables that
are required in this formulation are the matrices that contain the states given in (3-30) and the
controls over the optimization horizon (3-36). If the trajectory is discretized in N segments,
then the number of grid points will be N +1.

d;
u
X = qZ ER4XN+1 u=|: li|ER2><N+l (3_36)
. U,
d,

Objective Function

The objective function was chosen as the integral of the actuator-effort (control) squared
(3-37). Choosing the trapezoidal collocation method, the continuous objective is transformed
in discretized form as shown in (3-38), where T s the total simulation time.

.
J =.[u2(r)dr (3-37)
0
Nflh
min J ~ min Z?k(u'f +U7,) (3-38)
k=0

This objective function tends to produce smooth trajectories, which are desirable for two
reasons. The first is that the polynomial spline that is used by the most transcription methods
will approximate very well the solution. The second is that a smooth solution can be found
quickly and accurately.
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Constraints
The dynamics constraints for the trapezoidal direct collocation, Hermite Simpson direct
collocation and multiple shooting are described in (3-9), (3-14), (3-5) respectively, where f ()
is the right-hand side of the dynamics defined in (3-31).

The boundary constraints restrict the full state of the two-link manipulator at both the initial
and the final points on the trajectory. The manipulator starts from its equilibrium position where
0:,9, =0 and the goal is to reach the upper vertical position (3-39).

q(t,)=0 %(te)=7
qz (t,)=0 qz (t)=0 (3-39)

C11(t0):0 ql(tF):O

qZ(tO):o %(tF):O

The angles @, ., and the control torques are bounded (3-40)-(3-42):
3z 3z

——<Q, <— 3-40
y = (3-40)
-T<Q,<rxw (3-41)
umln - ul’ u2 - umax (3-42)

Initialization

The trajectory optimization problem needs an initial guess for each decision variable. All
segments are of uniform duration, so the vector that represents time is given by (3-43), where
N +1 is the number of grid points. The state q; is interpolated linearly between the initial and
the final position (3-44), while the initial guess for the rest of the states and the controls is a
zero matrix (3-45), (3-46).

t(k):TtF k=1..N+1 (3-43)
1(k):kT—1” k=1..N+1 (3-44)
d. :ql :qz = 01><N+l (3-45)

u, =u, =Ol><N+l (3-46)

In this library, there is no need of determining an initial value at each grid point. Having defined
the first and the final point, a linear interpolation can be automatically generated. The
interpolation can also be piecewise linear. For instance, if four time instances between [0, t¢]
(including the boundaries of the interval) are specified (3-47), three piecewise linear
trajectories connecting these four key frames will be generated (3-48). Then, the initial guess
of the decision variables for each grid point results by substituting the time instances,
represented by the grid points, to the piecewise linear function. In other words, the trajectory
that was defined by four points is re-discretized into the number of grid points to obtain an
initial guess for each grid point. The number of grid points can be specified by the user or
selected by the library automatically.

t=[0 025 0.75 1](t.—t,) (3-47)
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ql{o % 37” ;z} ¢=[0 0 0 0] u=[0 0 0 0]

g,=[0 0 0 0] ¢=[0 000 u=[00 0 0

(3-48)

Results

This example was solved in MATLAB, using FMINCON’s interior-point algorithm as the
nonlinear programming solver. Setting up the optimization problem involves defining the
objective function (3-38), the dynamics constraints (3-9), (3-14), (3-5), the boundary
constraints (3-39), the range of acceptable values for each optimization variable (3-40)-(3-42)
and the initial guess (3-43)-(3-48). The library allows to manually define the number of grid
points, but if this option is not set by the user, the number of the required grid points is
automatically determined by the library. Table 3-2 lists the solution information and the number
of grid points that were chosen automatically for each method. The lower bound of the final
time was set to ty, =1s, while the upper bound was set to tg;, =6S, so the final time of the
problem varies in each method. The results for the states and control torques are depicted in
Figure 3-9.

Trapez. Dir.Col.
Herm.Sim. Dir.Col.

3 3

2 5 Multiple Shooting
E<) <) = = = :Trapez. Dir.Col.MeshRef.
S 1 S 1
=0 N 0 S

-1 1

0 2 4 6 0 2 4 6
time [s] time [s]

dqg1 [rad/s]

o (6]

dqg2 [rad/s]
[6;]

5
>
q

time [s] time [s]

Figure 3-9. Trajectories of a two-link manipulator that reaches the upper position using three
different direct methods. The dashed lines represent the case where the OCP was
solved three sequential times using trapezoidal collocation. Each time the mesh
was refined with more points.

Trapezoidal direct collocation method is the fastest but lacks in accuracy. One way to
improve the accuracy is by refining the mesh. The problem was solved again using trapezoidal
direct collocation on a sequence of 3 collocation grids, with 20, 40 and 60 grid points
respectively. By solving the OCP multiple times, starting with a coarse grid, and using the
previous solution as an initial guess for the next OCP, it is sometimes possible to achieve
faster convergence than trying to solve a finely resolved OCP with a poor initial guess from

52/136



Optimal Trajectory Planning

the start. This iterative strategy is implemented to obtain the most accurate solution with the
least amount of computational effort. The solution on the initial (20 grid points) mesh needed
75 iterations, 2.42 s and the maximum value of error was 0.211. The solution on the (40 grid
points) mesh needed 31 iterations, 1.9 s and the maximum value of error was 0.0305. The
solution on the final (60 grid points) mesh needed 50 iterations, 6.94 s and the maximum value
of error was 0.0095.

Hermite Simpson direct collocation and multiple shooting are both considered as high-
accuracy methods but along with the accuracy, the solving time also increases. Between the
two, Hermite Simpson direct collocation takes 0.6 times less time to solve the NLP than
multiple shooting method. Figure 3-9 shows that the torque requirements in the Hermite-
Simpson direct collocation and the multiple shooting methods are similar and almost half of
torgue requirements in the Trapezoidal direct collocation method. Table 3-2 reveals that the
objective function value is minimum when the Hermite-Simpson direct collocation is used,
which means that the target is reached with the least actuation effort.

Table 3-2. Solution information of the three different direct methods.

Info TrapezoidaI_Direct H.ermite Simps.on Multiple Shooting
Collocation Direct Collocation

NLP Time [s] 2.88 10.45 25.24

Iterations 79 189 204

Func. Count 14752 47985 52010

Grid points 30 40 40

Obj value 58.59 28.45 32.93

3.6.2 Problem Setup 2 — OptimTraj

In this case, an alternate objective function is defined and the system’s response is examined
when the final time is specified and when it is free. The boundary and path constraints are
kept the same. The problem is solved using the OptimTraj library.

Objective Function

The objective function (3-49) is in quadratic form and the problem is considered as a quadratic
programming (QP) problem. The first part of the equation penalizes the errors between the
vector of each state and the reference state (goal) Xg via the weighting matrix Q >0 . This
term minimizes the time needed to reach the goal. The second term which contains the
weighting matrix R >0 penalizes large input torques, so that the desired task is accomplished
in an energy efficient way. Compared to the previous objective function, this one is also
affected by the deviation of optimal states from a reference value. The elements of the
reference state vector represent the desired states at each grid point k, so if the desired
states at all grid points are equal to the final states, it means that the faster the system reaches
the final position, the smaller the objective function will be. In case of desired intermediate
states along the trajectory, these elements can be chosen accordingly. So, in this example,
Xr, represents the final states Vk €{1,2,3,...N}.
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min J = min ZN:(XK — X, )T Q(X —Xg, )+u,"Ru, (3-49)
k=1

01 0 0 O
0 001 0 O R_{0.08 0}
0 0 01 0} 0 0.08
0 0 0 01

Q= (3-50)

Results

The example was solved in MATLAB, using FMINCON’s interior-point algorithm as the
nonlinear programming solver. Setting up the optimization problem involves defining the
objective function (3-49), the dynamics constraints (3-9), (3-14), (3-5), the boundary
constraints (3-39), the range of acceptable values for each optimization variable (3-40)-(3-42)
and the initial guess (3-43)-(3-48). Figure 3-10 refers to the case where the lower bound of
the final time was set to t;, =1s, while the upper bound was set to t., =6s. Figure 3-11
refers to the case where both final time bounds were set equal to 6s. The simulation stops
when the pendulum reaches its goal. If the lower and upper bounds of time are set equal to a
specific time, the pendulum will take just that much time to reach the goal. Table 3-3 lists the
solution information of the two cases that were examined. The objective function value is
minimum when the Hermite-Simpson direct collocation method is used.

The maximum number of iterations is specified by the accuracy option. The default option,
which is ‘medium’ accuracy, sets the maximum number of iterations equal to 400. This limit is
reached when the final time is free and the problem is handled by Hermite Simpson direct
collocation or multiple shooting method. If the accuracy is set to ‘high’, the maximum number
of iterations becomes 800, but the allowable tolerances become smaller, so the maximum
number of iterations is reached again. When the final time is free, the trajectories obtained
from three different methods are almost identical. When the problem has additional restrictions
(fixed final time), these trajectories are very different from each other.

Table 3-3.  Solution information of the three different direct methods when the final timeis free
and when it is fixed.

Trapezoidal Direct H-ermite Simps.on Multiple Shooting
Info Collocation Direct Collocation
Free Fixed Free Fixed Free Fixed
NLP Time [s] 10.25 8.58 31.27 11.46 73.95 30.48
Iterations 196 192 400 191 400 196
Func. Count 36569 35616 101085 47985 100970 49138
Grid points 30 30 40 40 40 40
Obj value 10.43 11.35 10.33 11.05 10.34 11.82
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Figure 3-11. Trajectories of a two-link manipulator that reaches the upper position using three
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3.6.3 Problem Setup 3 — CasADi - Single Shooting and NMPC

CasADi is evaluated in this and the next problem setup, where the trajectory optimization
problem is handled by shooting methods. Also, these two examples highlight the potential of
NMPC when its feedback is derived from the solution of the trajectory optimization problem.
Single shooting is the simplest method, but it is not recommended for unstable systems. To
handle the two-link manipulator, single shooting is used in combination with NMPC. The
prediction horizon, Ny, . is the number of future control intervals the NMPC controller must
evaluate by prediction when optimizing its optimization variables at control interval k. The
prediction horizon is setto N,,.c =20 and the sampling time is T =0.05s . The optimization
variables are the controls over the optimization horizon (3-51). The states over the
optimization problem depend on the control inputs and the initial value X, as shown in (3-1).

u
u { 1} e R>™ (3-51)
u2

In this library, a vector of parameters p is introduced, which includes the initial and the final
states (goal) (3-52). The length of this vector is two times the number of states n, .

0 :[ X } c R (3-52)

Objective Function

The objective function defined in (3-49) is written in the form (3-53), where the selected
elements of the vector p are the final states.

J= Z{(xk Xt ) Q% —xref)+ukTRuk} (3-53)
K=

1

NMPC loop

while

iterations,,,.. < iterations,,

[, —x

<le™?
2

ref

l

Ugge = SOIVE(Xy, Uy, P)
Xo =X, +ff (x,u(:,1))
U, = [uopt (:1 2: NNMPC) Uopt (:- NNMPC ):I

= Xo
pnew = |:Xref j|

Figure 3-12. NMPC flow chart.
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NMPC is initialized every timestep, so the first four elements of the vector p are the current
states of the two-link manipulator. The solution of the optimization problem is a vector of the
optimized controls Uy . Only the first control input is used to compute the new X,. The new
u, vector consists of the optimized controls from the simulation, but the first element is
trimmed because it has been used and the last element is repeated twice as a guess for the
last timestep. Figure 3-12 represents a block diagram of the single shooting method combined
with NMPC.

Results

The example was solved in MATLAB, using IPOPT as the nonlinear programming solver.
Setting up the optimization problem involves defining the objective function (3-53), the
dynamics constraints (3-2), the boundary constraints (3-39) and the range of acceptable
values for each optimization variable (3-40)-(3-42). The final time was set t- =6S . As an initial
guess for the optimization variables, all the control inputs were set to zero. The results for the
states and control torques are depicted in Figure 3-13. The solution took 2.94 s in total and
the average time of each MPC iteration was 0.0526 s.
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7 @
S 4r o
© ©
o 2| T
o ©
0
0 1 2 3 3
20
B
Z.10
=
0
0 1 2 3 3

Figure 3-13. CasADi -Solution of the NLP problem using Single Shooting and NMPC.

3.6.4 Problem Setup 4 — CasADi — Multiple Shooting and NMPC

In this problem setup, the NLP problem is solved using the direct multiple shooting method
and a fixed step explicit Runge-Kutta integration method. The optimization variables are given
in (3-36). The time interval T is divided into N equidistant segments of length h according
to (3-54):
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h= T (3-54)

N
where the timestep was set to h=0.06s and the total number of segments was set to
N =100. The objective function is the one defined in (3-53) and the defect constraints g =0

take the form of (3-5). The initialization is the same as in the problem setup 3.

Results

Figure 3-14 shows the open loop solution of the trajectory optimization problem, while Figure
3-15 represents the closed loop solution in which multiple shooting was used in combination
with nonlinear model predictive control (NMPC). The weighting matrices Q, R that were
defined in (3-50) must be retuned when the problem formulation includes the NMPC. It was
found that the objective function affects significantly the system, since the system fails to reach
the final target when using the weights given in (3-50). The weighting matrices given in (3-55)
lead to the response shown in Figure 3-15. The IPOPT solver was used, and the maximum
number of iterations was set to 2000. The closed-loop solution took 5.07 s in total and the
average time of each MPC iteration was 0.0818 s.

06 O 0 0
0 006 O 0 R_[0.06 0 }
0 0 0001 O | 0 0.006
0 0 0 001

(3-55)
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Figure 3-14. CasADi - Open-loop solution of the NLP problem using Multiple Shooting.
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Figure 3-15. CasADi - Closed-loop solution of the NLP using Multiple shooting and NMPC.

3.6.5 Conclusion

The evaluation of the direct methods was performed in the OptimTraj library, which is easy to
use and does not require expert knowledge of the numerical methods, since it includes the
functions of the most important direct methods. The results proved that trapezoidal direct
collocation is the fastest direct method, but when the grid points are not close enough, the
linear interpolation does not provide sufficient accuracy. Regarding the high accuracy
methods, Hermite Simpson direct collocation was much faster than multiple shooting.

The OCPs that were setup in CasADi evaluate the shooting methods and their solving
time when they are combined with a NMPC which recomputes the problem in each time step.
The results revealed that when the TO problem was handled by the single shooting method,
the average time of each MPC iteration was 52 ms, and when the multiple shooting was used,
the average time of each MPC iteration was 82 ms. When using NMPC, it was observed that
the time horizon and the definition of the weighting matrices in (3-49), affect in large extent the
response of the system. Having tried various weighting values, it was found that the system
was not always able to reach the final target.

The solving times in the two optimization libraries can be compared by formulating the
same problem. The stabilization of the two-link manipulator using multiple shooting and the
objective function (3-49) was setup both in OptimTraj and CasADi and the graphs of the
system’s response are depicted in Figure 3-16. The upper vertical position is reached in 4 s
in both cases. OptimTraj uses the FMINCON'’s interior point algorithm to solve the NLP, while
CasADi uses IPOPT. Despite that in both cases the problem is solved by interior point
algorithms, the required solving time differs significantly. In Casadi, the NLP was solved in
1.72 s, while in OptimTraj, it was solved in 73.95 s. According to this example, the choice of
the most relevant library is obvious, provided that CasADi returns a result much faster. The
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value of the objective function is nearly the same, so solving time is the determinant of
choosing CasADi.

OptimTraj
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time [s]
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Figure 3-16. Trajectories of a two-link manipulator that reaches the upper position using
multiple shooting in OptimTraj and CasADi.
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4 Argos Motion Planning & Control

4.1 Introduction

This chapter focuses on effective motion planning algorithms related to Argos locomotion. It
is divided in three main sections. Section 4.2 demonstrates a simple planning and control
framework that consists of gait scheduling, definition of foot trajectories in Cartesian space
and implementation of a PD controller that tracks the desired motion plans. In Section 4.3, an
alternative motion planning approach is investigated, in which the robot tracks velocity and
turn rate commands. Similarly, the sequence and timing of leg motions are determined by a
gait pattern, but the desired footholds are indirectly derived from the high-level commands.
The desired body pose is controlled by adjusting the virtual foot forces through the formulation
of an optimization problem. A PD controller is also designed to track the desired foot
trajectories. In Section 4.4, a multi-phase trajectory optimization problem is formulated, which
not only produces valid motions plans for the main body and the feet, but also finds the
required feet forces to execute these motion plans. The problem setup includes the equations
that describe the physical constraints and an objective function that minimizes a selected
criterion. The trajectory optimization problem is solved using the CasADi library. Simulation
results are presented at the end of each motion planning approach.

4.2 Toe level trajectory tracking with active compliance control

The goal of this framework is the locomotion of the quadruped in flat terrain by specifying valid
foot trajectories in the Cartesian space. It is based on a prior motion plan algorithm that has
been developed by the Legged Robots Team [41], but the main difference is that in this
approach, the foot trajectory is defined by polynomials. The quadruped’s base is unactuated;
thus, its motion is determined indirectly by the feet's motion and their interaction with the
environment. The gait determines when each foot contacts the ground. The common gaits,
like walk (& amble), trot, pace (rack), canter, and gallop can be executed, provided that the
start and the end of the swinging phase are prespecified. The trotting gait has been assessed
in the context of this work. The periodic motion that is illustrated in Figure 4-1 indicates that
half of the period T is spent in stance phase (grey color) and the other half in swing phase.
In trotting gait, the diagonal legs move simultaneously and when the one pair touches down,
the other one lifts up exactly at the same time instance. This section includes the planning of
the swing foot trajectory and the controller that tracks the desired plans is analyzed next. The
control framework is verified in the Simscape simulation environment®. The structure of the
Simscape model is described in Appendix D. The results of the quadruped’s locomotion are
presented at the end of this section. The simulation environment and the solver settings are
described in Section 2.5

3 The MATLAB codes can be found here:
https://bitbucket.org/cs|_legged/argos_active_compliance_control/src/master/
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Figure 4-1. Trotting gait pattern.

4.2.1 Trajectory Planning

The desired foot trajectory is defined relative to the hip frame, and it determines the motion in
the xy plane (Figure 4-2), while the desired angular position of the abduction/adduction joint
is set to 0. The inverse kinematics problem is 2D and the output are the joint angles of the hip
and knee joint. In Figure 4-2, the swing phase appears in light blue color. The stance phase
is represented as a constant line in the xy plane because while the foot stays still on the
ground, the hip frame is translated forward due to the body’s movement. Then, the x, y
coordinates of the trajectory must be expressed as a function of time. The polynomial that
represents the swing phase can be defined by providing the desired position at the starting,
the middle and the final point. However, four extra conditions are added for the transition points
to ensure the continuity of the first and second derivative. Having already set seven conditions
(4-4), the swing phase will be represented by a 6™ order polynomial and the stance trajectory
is derived easily by linear interpolation between the initial and the final point of the swing
trajectory (4-1)-(4-2). While the foot is executing the flat part of the trajectory, it is assumed
that it does not slip due to the ground friction. Thus, the foot stays still, and a forward force is
generated that enables the main body to move.

x$, =at’ +bt® +ct +dtP +et’ + fit+ (swing)
X(: (t) — ) al bl 1 1 1 1 gl (4_1)
Xq = a5t +D, (stance)
v (1) = y;:W =at’ +ht’ +ct* +d,tP +et’ + ft+g, (swing) @2
Y =0 (stance)

The polynomial coefficients in (4-1)-(4-2) can be found by specifying the initial, the
intermediate and the final point of the swing phase as (X,,0),(x,,Y;).(X,,0). Then, the stance
phase polynomial coefficients arise from (4-3), where T is the total duration of the stance
phase. The variable T, in (4-4) denotes the total duration of the swing phase. In trotting gait
Tw isequalto Ty .

b3:X2
> (0)= Xz}: = XZ}: (% —%,) (4-3)
T):X Ty +by =X, a; = T—

st
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Figure 4-2. The swing trajectory is denoted by the light blue color while the stance trajectory
is denoted by dark grey color.

X3, (0) = X Ya,(0)=0
XS [%Wj =% Yo (T?j =y,
Xau (T ) = X, You (Tew) =0
%5,(0) = Ya,(0)=0 (4-4)
%6, (To) = t4 Yau(To) =0
%,(0)=0 Yo, (0) =0
%5, (To) =0 Yau(Tu) =0

The derivatives of (4-1)-(4-2) give the desired velocity of the foot in Cartesian space (4-5)-
(4-6). These are mapped to joint velocities through the inverse geometric Jacobian (4-7). The
geometric Jacobian in 3D space is given by (2-12). Eliminating the third row and third column
results in the simplified form of the Jacobian in 2D space (xy plane), which is given by (4-8).
Apparently, the desired abduction/adduction velocity is set to zero.
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20— {xfw =6a,t’ +5bt* +4ct® +3d,t* + 2et + f, 4.5)
d
Xst:a3
¢ =6a,t® +5h,t* +4c,t> +3d,t% + 2e,t + f,t
y;’:{y?ﬁw SR (4-6)
yst:O
od )-(d
q° =J—1v:>[9d“"’ }:J-{ _L} (4-7)
qknee yf
0°%Xy  9°X,
0 0
J= thp qknee (4'8)
o%. 0%,

4.2.2 Control

a a a
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qup, qgmeea ng
Figure 4-3. Block diagram of the control framework based on ajoint space PD controller.

The desired trajectories and their derivatives in Cartesian space are transformed into joint
angles and joint velocities respectively. Figure 4-3 represents the robot cartesian controller,
which is based on a PD joint controller. Each leg and even each joint is independent of the
others. To track the desired commands, a PD controller is employed, which takes as input the
error between the desired and the actual joint angles and the error between the desired and
the actual joint velocities. The output of the controller are the joint torques to the hip, knee and
abduction/adduction actuators (4-9)-(4-11).

Thip = Kp (qgip —Oip ) +Kp (qgip _qﬁip) (4-9)
Tknee = KP (qgnee - ql?nee ) + KD (qlijnee - qfnee) (4'10)
Tar = Kp (ng _ng)Jr Ko (ng —Qaab) (4-11)

The gains that appear in (4-9)-(4-11) are listed in Table 4-1 and were found experimentally by
trial and error. These gains ensure good tracking of the trajectory and smooth movements.
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Table 4-1. PD controller gains — Trotting gait.

Gains Hip Knee Abduction
Kp 1000 2000 2000
Kb 300 300 100

4.2.3 Results

In this simulation, the period was set to 0.75s, each new foothold was set 0.2m away from
the current one and the maximum height of the swing trajectory was setto 0.07m. The ground
stiffness (k ) and damping (b ) were set equal to 1e* N/m and 1e* Ns/m respectively. A
saturation block has been added to limit the actuators torques. to the range +120 Nm. The
first three graphs refer to the body’s motion (Figure 4-4-Figure 4-6). This formulation does not
include desired commands for the body’s pose. However, ideally, the orientation should not
deviate significantly from the nominal position. The orientation error about the x axis (roll) does
not exceed 2 degrees, which is acceptable (Figure 4-5). The orientation about the y and z
axes (yaw and pitch) can have larger deviations without causing a problem in the quadruped’s
balance (Figure 4-5). Finally, the body’s mean velocity at steady state is around 0.4m/s
(Figure 4-6). The periodic oscillations are due to the collisions with the ground. Figure 4-7
depicts the tracking of the hip and knee joint angles. During the collision with the ground, the
actual knee angular position deviates from the desired trajectory. Simulation results showed
that if the gains are increased, better tracking is achieved. However, the torque requirements
increase, thus there is a trade-off between the tracking accuracy and the magnitude of the
torques. The large error in (4-10) is necessary to generate torques large enough to support
the body weight and move the body forward due to the PD used. Figure 4-8 displays the joint
torgues for the front left and the rear right leg and it is revealed that the latter takes greater
values, which is expected as the rear legs support a greater part of the total weight.

Body position

T T T T T
_1.5F 1
E
< 1r .y
} |
Body position along x axis
05 (s 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time [s]
0.92 T T T T i Body position along y axis
E
—_— 09 -
>
o
0.88& I I I I I N
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time [s]
0.02F T T T T T T T T 5
1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 25 3 3.5 4 45
Time [s]

Figure 4-4. CoM'’s position.
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Body orientation
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Figure 4-5. CoM'’s orientation described by roll, pitch, yaw Euler angles.
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Figure 4-6. CoM's velocity.
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Joint Angles of Rear Right Leg

0.5 1 1.5 2 25 3 3.5 4 4.5

Time [s]

Desired
Actual

ANARANANANA

o

0.5 1 1.5 2 25 3 3.5 4 4.5

Time [s]

Figure 4-7. Desired vs actual joint angular position of the rear right leg. The upper graph refers
to the hip joint and the bottom one refers to the knee joint.
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Joint torques of the front left and rear right leg.
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4.2.4 Conclusion

A really simple but effective way to achieve the quadruped’s locomotion is the one described
in the previous sections. It incorporates three main parts; a gait pattern, which determines the
swing and the stance timings for each foot, a motion planner through which the foot trajectories
are defined and a controller that tracks the desired motions. The continuous transition from
the swing to the stance trajectory results in smooth contact with the ground and no sudden
change in torque requirements. The simulation revealed that the quadruped moves at a
constant speed in steady state and the deviations in roll, yaw and pitch angles are negligible,
so it keeps its balance. However, it cannot handle a perturbation by making adjustments at
the footsteps. Thus, this formulation is recommended for walking on known terrain and
especially on flat terrain.

4.3 Motion Planning & Control Based on Optimal Force Distribution

The original idea of this work comes from [23], which presents a control framework
implemented on the quadruped StarlETH. The quadruped is able to perform various gaits and
also to be robust to external disturbances. In comparison to the approach that was investigated
in the previous section, in this formulation, the robot is moving according to high level
commands, which determine the body’s velocity and its orientation about the y axis (yaw). An
optimization problem is formulated for the force distribution to the stance legs, so that the robot
maintains its desired pose. The above framework was tested on Argos to find out how the
optimization algorithm improves its locomotion. It consists of a motion planner and a motion
controller. The outputs are the desired joint torques t° for the stance legs or the desired joint
angles q¢, which are mapped to the desired torques using inverse dynamics. The optimization
problem is formulated using CasADi; an open-source tool for nonlinear optimization and
algorithmic differentiation [3]. An overview of the framework is shown in Figure 4-9.

motion Generation \

Configuration

Swing/Stance Leg
vl vy

Position Control
Main Body

r=J'F
A 4 *

Configuration

B

Figure 4-9. Block diagram of the control framework. Motion planning algorithms exploit high-
level velocity and turn rate commands to output the desired body pose and foot
position. The control algorithms take as input these desired commands and output
the required torques at the actuated joints.

This section is organized as follows. The desired foothold selection at each gait cycle and

the trajectory that the foot follows to reach the desired position are presented in Sections 4.3.2-

4.3.3. The goal is to track this trajectory, which is addressed in Section 4.3.7. The

determination of a desired body pose and how this is achieved is explored in Sections 4.3.5

and 4.3.8 through the formulation of an optimization problem. The desired velocity in X, z

direction v{ , v¢ and the yaw rate 1/]" are treated as high-level input parameters and can be
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modified easily. The parameters related to the ground that were chosen for the simulation are
discussed in Section 2.5.2 and the results are shown in Section 4.3.10.

Compared to [23], there have been some modifications. Regarding the swing leg
trajectories, a semi-ellipse is defined, instead of splines, which is simpler and can be easily
generated. As for the trajectory that is generated when the foot loses contact with the ground,
in [23] the foot is translated 1cm lower than its current position. In this work, the foot moves
vertically downwards until the force sensor gives positive values. Additionally, the control
framework of [23] comprises an extra low-level controller that takes as input the desired joint
angles or the desired torque and regulates the motor current | ¢ by considering the dynamics
of the actuators. Finally, Argos has different mass properties, size and leg configuration and
this framework is verified in a different simulation environment, so the parameters that have
been tuned experimentally in [23] are adapted accordingly.

Regarding the desired body pose proposed in [23], even though the forward velocity is
constant, the desired body position is not a linear function of time. It is defined relative to the
footholds. It is claimed that this formulation produces smooth trajectories while ensuring the
robot’s stability and the compatibility with the desired velocity commands. Quantities such as
position or velocity are described in the inertial frame | or relative to the hip frame H of each
leg (Figure 4-10). Both frames’ axes are aligned with the same orientation. The x axis indicates
the heading direction, and the y axis is vertical to the ground.

Figure 4-10. Inertial Frame and Front Right leg's Hip Frame. The foothold is defined relative to
the Hip Frame.

4.3.1 Gait Scheduling

The quadruped moves forward according to a Gait pattern. The time normalized stride-phase
@ €[0 1] is the equivalent of the gait cycle T and not only informs the controller regarding a
leg’s status (swing or stance phase), but also regarding the time left until the next phase. In a
similar way, the variables ¢y, and ¢y indicate the time normalized progress made in swing
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and stance mode (4-12), where T, and T are the time durations of swing and stance phase
respectively. As aresult, the controller anticipates how the support polygon will change (Figure
4-12).

¢:% tefo T]

Oy = te[0 T,] (4-12)

b
TSW
t

(pst = tE[O Tst]

st

The vertices of the support polygon are described by the position of legs in contact with
the ground. In case three legs are in stance at the same time, then it is a triangle, and if two
legs are in stance, it is transformed to a support line. In general, static stability is ensured if
the projection of the CoM lies over the support polygon and the polygon’s area is greater than
zero [56]. This condition requires at least three legs on the ground. The static stability criterion
implies that a set of forces over the region of contact exactly counteracts the forces of gravity.

The gait that was proposed in this work is like the trotting gait, but with some modifications.
In Figure 4-11, the dark areas indicate that a leg is in stance phase, while the light blue ones
refer to the swing phase. After the swing phase of two diagonal legs, a phase where all legs
are in stance is following and then the other two diagonal legs start their swing phase. In this
way, if a swinging foot is late in contacting the ground, its diagonal leg will not have to support
the whole weight of the robot on its own. Choosing properly the time intervals of each phase,
at least two feet will be in contact with the ground simultaneously. The legs that are in swing
phase shall reach the next foothold. On the contrary, the legs that are in stance phase shall
ensure that the quadruped’s body maintains the desired pose. Figure 4-13 shows that
depending on the gait pattern and the contact with the ground, a different control method is
chosen.

RL
FL
FR
RR
0 0.5 1
¢

Figure 4-11. Gait pattern: the grey bar defines the stance phase of the rear left (RL), front left
(FL), front right (FR), and rear right (RR) leg, respectively.
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CoM

Figure 4-12. Support polygon/Support line that is generated from the feet that are in contact
with the ground (black filled circles).
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Figure 4-13. Controller selection for swing and stance phases.

4.3.2 Footstep planner

At every control cycle, a new foothold position in xz plane is calculated for each swing leg
(4-13). The position of the foothold relative to the hip frame (CS,) of each leg is computed by
(4-14). Regarding the notation, the left superscript denotes in which coordinate system the
vector is defined (H: Hip, see Figure 4-10), the right subscript refers to the position of the
vector (e.g., F refers to foot), ff denotes a feed-forward term and fb a feedback term.

Hr
M =[ FX} (4-13)
" er
—_ ff fb
HrF — H rF + H rF (4_14)
npll = %vdAtst (4-15)

= (v ), /yT (4-16)

The feedforward term takes into account the high-level command which is the desired
velocity given by (4-17) and the stance duration At .

v =ve [(ﬂ +v? [ﬂ (4-17)
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The feedback term is derived from the foothold prediction given by an inverted pendulum
dynamic model. However, instead of incorporating the desired velocity, it includes the error
between the desired and the actual velocity. The feedback term is treated as a corrective term
that is used only when actual body velocity deviates from the desired command. The weight
of this term is regulated through the scaling parameter 7. It was set to 1.2, as it is in the
original work, because it was found that other values in the same region did not improve the
performance.

4.3.3 Foot trajectory planner

Having already defined the next step of the foot, the following paragraph presents the
trajectory that the foot follows to reach the desired foothold. An elliptical trajectory is defined
in the xy plane (Figure 4-14), which is described by (4-18)-(4-21).

X = X, + Clyipse COS() (4-18)

Oyd = ch - bellipse Sln((l)) (4_19)

p=w;t+Ap, te[0,T] (4-20)
2r

Wy = T (4-21)

012 |
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Figure 4-14. Elliptical trajectory. The y axis of this figure represents the y axis of the inertial
frame.
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The center of the ellipse is denoted by (X;, y.) and more specifically °y, is the vertical vector
from the CSo of each leg to the ground, Qeiipse is the semi-major axis and Beipse iS the semi-
minor axis. Ag is setto rrads, Qeiipse @and X, are defined at the beginning of the aerial phase
as:

or. — %

o _ "~ *F (4-22)

ellipse 2

°%. =X +a (4-23)

ellipse

where (Xg is the foot position expressed at the CS, (see Figure 2-4).

Each leg has three degrees of freedom. Having already defined the next foothold in xz
plane and the trajectories along x and y axes, a trajectory along z axis should be also defined.
The desired position along the z axis and relative to the CSq is given in (4-25), which
encompasses two terms. The first term is the vector from the CSoto the CS; and the second
term is the foothold defined in (4-14) which is expressed relative to the hip frame (CS3). The z
component of the vector that relates the CSO to the CS: is given in (4-24):

°z, =1, cos(th,) (4-24)
o | 2z, + ", Right Leg
Z = 0 H (4'25)
-2, + Left Leg

Choosing a trapezoidal velocity profile (blue lines in Figure 4-15) is a way to determine
the motion from an initial point to a final one. However, it is desired to keep the acceleration
minimum. Given the total time t; and the initial acceleration, the maximum velocity arises
from (4-26), where t; is the time spent until it reaches the maximum velocity.

Velocity (m/s) ¢

N

max

»

]
!
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i i H
i ! ! Time (s)
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(m/s”) i i i
| ] |
] 1
1 1
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Time (s)
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:JJI g |
]
i
f I -=
0 i, 7f ti—t t, Time (s)

Figure 4-15. Acceleration and position profiles given a trapezoidal (blue) or triangular (green)
velocity profile.

73/136



Argos Motion Planning & Control

Vi = 21, =27 (4-26)
.
Z,+12,
Z,= 4-27
m 2 ( )
Z, :12t§ (4-28)
2
2%F —474(z, -z
L b O 4e ) 429)

2 27

Equation (4-29) gives a valid solution for the time t, if the inequality in (4-30) is satisfied.

o 4(Zf _Zo) o
I2————="1. (4-30)
tf
Therefore, when t, is equal to half the final time, the maximum acceleration is the
minimum possible (Z,,), and the velocity profile is triangular (green lines in Figure 4-15).
Equations (4-31)-(4-33) give the acceleration, the velocity and the position as a function of
time.

) 4(Ozd_ozi)
I=——"7—F—" (4-31)
2
TSW
,_| t<t, (4-32)
(T, —1) t>t,
o+ 1y t<t,
7= 2 (4-33)

1
°z“—§'z'(TSW—t)2 t>t

where °Z' is the initial position of the foot relative to the CSy, T, is the time duration of the
swing phase of each leg and t, is half of the T, .

4.3.4 Foot trajectory planning when contact is lost at stance phase

When the swing phase ends, the foot is supposed to have reached the desired foothold and
to have contacted the ground. However, it is possible to delay arriving at the final position,
which means that the leg will have passed to the stance phase according to the Gait pattern,
but the foot will still be in the air. Therefore, in case the force sensor does not detect positive
force values, it is considered that the foot is in the air, and it should regain contact with the
ground instantly. To achieve this, the foot starting from its current position follows a line that
is perpendicular to the ground at a constant speed until the force sensors detect ground
reaction forces.

4.3.5 Pose finder

The pose of the main body shall be controlled in a way to prevent the quadruped from falling
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and at the same time to make it move smoothly with the desired forward velocity. The robot
mostly leans on the legs that has just started their stance phase, and it starts to move away
from them when their swing phase is about to start. To achieve this, the desired position of
the body 'rg in the xz plane is computed relative to the positions of the legs 'l’p, multiplied by
weights W, (go) (4-34), [23]. The left superscript denotes in which coordinate system the vector
is defined (| : Inertial Frame, see Figure 4-10).

i=4
Z W, (¢) I e
e=E (4-34)
W ()
i=1
The leg weights w, were found experimentally in [23], so their values vary according to
the gait that was chosen. These are expressed as a function of the stride phase ¢ . For the
trotting gait, w; is given in (4-35) and its value is maximum at the start of the stance phase in
which the foot has just landed and can support the body weight. When the foot is about to
swing, this value declines linearly. At the beginning of the swing phase, w, is constant, but
when the foot prepares to touch down, the weight increments linearly until it reaches its
maximum limit again.

1 0<¢, <07
0.895-0.85¢, 07 < <1
W, (¢) = 0.3 (4-35)
0.15 0<q, <0.7
055+0850, oo
0.3 o

The desired height of the body relative to the ground is constant and equal to the torso’s
height at the nominal position. The generalized desired position and velocity of the main body
are given as:

qg:['rgx Neom 'rgz 0 0 O (4-36)

- d

d d
dy, =1, Vx 0 v

0 g o (4-37)

4.3.6 Control selection

To achieve the desired motions that were described above, a hybrid control approach is
implemented. When a leg is in the air, the foot’s desired motion is tracked by using position
control. On the other side, the forces and torques that are generated from the legs that are in
stance mode can affect the main body’s pose in a controlled manner to track the desired body
positions. An optimization problem, which finds virtual forces that should act on each of the
stance legs, is formulated and then these forces are mapped to joint torques.

4.3.7 Swing Phase Position Control

At swing phase, the desired joint angles qf are obtained from the desired foot positions
through inverse kinematics (see Section 2.2.2). Then, implementing a PD controller results in
finding the torques needed to track the desired motion of the leg (4-38). The PD gains are
listed in Table 4-2 and were found by trial and error.
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U= K, (q? —a;) + Ko @ —d)) (4-38)

Table 4-2. PD Controller Gains.

Gains Hip Knee Abduction/Adduction
Kp 100 80 1000
Kb 10 8 90

4.3.8 Control at stance phase

The joint torques that need to be applied through the stance legs are investigated in this
section, which is divided in three parts. Firstly, the forces and torques that should ideally act
on the main body to force it to the desired pose, are calculated. These are optimally distributed
to the stance legs. Finally, these virtual foot forces are mapped to joint torques. The desired
forces and torques on the main body are given by (4-39):

F od
{B Bi|:Kp(qg_qb)+Kd(QS_qb)+Kﬁ ‘ (4-39)

d
BTB

where K, ,Kjand Ky are the proportional, derivative and feed-forward gains respectively
and m is the total mass of the robot. This equation is obtained by [23] and describes the
required forces and torques on the main body, so that the actual pose matches the desired.
The feed-forward gains improve tracking the desired velocities and compensate for gravity.

The desirable contact and friction forces X that should be applied at each stance foot
arises from the solution of a convex optimization problem with linear constraints that is
described below (4-40).

minimize (Ax—Db)" S(Ax-b)+x"Wx
I:n:]in < Fcrji < Fn?ax (4'40)
_IUFn < Ft <ILlFCr,]i

ci—'ci—

subjectto

The vector X is givenin (4-41), where the superscripts t, and t, denote the tangential forces

along the x and z axis respectively and n denotes the normal forces. The subscripts 1,...,4

refer to each of the legs and the constraints in (4-40) bound the normal forces between a

minimum and a maximum limit. The second equation that should be satisfied is the friction

cone constraint which ensures that the foot does not slip. The magnitude of the tangential
forces must be smaller than the normal force multiplied by the friction coefficient 2 =0.8.

T

X= I:Fctxl Fcr,]l Fctzl Fct,x4 Fcr,]4 Fct,zzl] € ]Rlz (4'41)

The first term of the objective function in (4-40) is used to minimize the deviation from the

desired forces and torques that should be applied at the main body in the least-squares sense.
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The matrix A (4-42) maps the foot forces on the main body (Figure 4-16), while the vector b
(4-43) has already been calculated in (4-39).

A{I I } Rz (4-42)
X

hx nx - I,

(4-43)

Figure 4-16. lllustration of the foot forces mapping at the CoM.

The weight matrix S adjusts the degree to which each of the actual variables matches the
desired one. On the other hand, the weighting matrix W, which is applied at the optimization
variables, penalizes large output values at the leg forces. The optimization variables are
bounded, not only to ensure that the virtual ground forces are always positive, but also that
they are not excessively large. Assuming that the maximum force, that a leg can stand, is
three times the total weight of the robot, this value is defined as the upper bound and the lower
bound is chosen equal to Fy;, = 2 N, because according to [23], this limitation makes the foot
slip less times.

The general formulation of (2-34)-(2-39), through which the contact forces are mapped to
joint torques, can be written in the form (4-44). The vector u; € R** encompasses the hip,
knee and ab/ad torque for the leg I, G(q) € R**are the gravitational terms, J" e R*®is the
transpose geometrical Jacobian (see Appendix B) and F.; e R**are the optimized contact
forces. The foot is in stance, thus the inertial forces are zero.

u, =G(q)-J'F, (4-44)

The vector G(q) € R** arises from (4-45) where U is the leg’s potential energy given by
(4-46) and (; are the joint angles.

T
G{@ u @} (4-45)
oq, aq, od,
U:mlgyl"'ngyz"'msgys (4-46)
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The term vy;, j=1,2,3 in (4-47) expresses the position of the center of mass of link j along
the y axis relative to the CSo.

Y1 |3 Sin(q3) - Ilc Cos(ql) cos(q3)
y2 = |3 Sin(qs) - (Il Cos(ql) + I2c Cos(ql + Q2)) COS(C]3) (4'47)
A l,. sin(q,)

After calculating the partial derivatives of (4-45), the vector G(q) is written in the form (4-48),
where | is the distance from the leg upper segment’s CoM to the hip joint, I,, is the distance

from the leg lower segment’s CoM to the knee joint and |,, is the distance from the leg roll
segment’s CoM to the ab/ad joint.

(m,gl,.sin(q,)+m,g(l,sin(q,)+,sin(a,+,)))cos(a,)
G(q) m, gl,.sin(g,+4,)cos(ds) (4-48)
(m,gl,.cos(q,)+m,g(1,cos(q, )+, cos(a,+a,))Jsin(g,)+g((m,+m,)l+myl, Jcos(q,)

4.3.9 Optimization Solver

The optimization problem (4-40) is formulated using the external library CasADi (see Appendix
E). The choice of a solver is of great importance to achieve a good solution in minimum time.
An initial guess is not necessary, since the optimization problem is convex. The nonlinear
programming solvers, presented in Section 3.5 can handle a nonlinear objective function and
nonlinear constraints. In this problem, the objective function is in quadratic form and the
constraints are linear, hence it is considered as a quadratic programming problem, which is
one of the simplest forms of non-linear programming. There is no need to use a NLP solver in
this class of problems. Supported solvers for the quadratic problem are gpOASES [20], OSQP
(Operator Splitting Quadratic Program) [57], OOQP [24] and CPLEX [16]. The first one, which
is an active-set QP solver, is widely used and the simulations at the current problem shoed
that it outputs acceptable solutions in one or two iterations. OSQP was also tested but failed
to converge in some simulation runs. Thus, gpOASES was chosen, as it is fast and reliable.

4.3.10 Results

The control framework was verified in MATLAB Simscape®*. The simulation environment and
the solver settings are described in Section 2.5. The structure of the Simscape model is
described in Appendix E. The quadruped is walking forward using the trotting gait and its
speed in x direction ranges between 0.2m/s—0.9m/s. Itis not recommended to set the speed
above the upper limit, because the distance between the current foothold to the next one
(given by (4-15)) increases significantly. Thus, the leg would have to move faster or extend
excessively, which may lead to singularities. However, if the frequency is increased, the
quadruped’s speed can also be increased without affecting the stride length, but then the
torgues increase. Simulations have been performed for the entire velocity range, but then the
graphs that are presented below stand for the case in which v¢ =0.4 m/s. The illustration of
the quadruped’s motion objectives at a certain speed gives all the essential data to assess its
performance, provided that different forward velocity commands mostly affect the stride length

4 The MATLAB codes can be found here:
https://bitbucket.org/csl_legged/argos_optimal_force_distribution/src/master/
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and the rest quantities do not differ significantly. The other high-level parameters were set as
vi =0m/s and y! =0rad/s . The total stride duration is set equal to T =0.8s and the swing
phase duration of each leg is setas T, =0.35.

Simulations have revealed that high gait frequencies lead to robust locomotion, thus a
commonly used value for the stride duration was chosen. Another parameter that was tuned
for the swing leg motion is the semi-minor axis of the ellipse, for which a typical value was
chosen, i.e., buiipse =0.08 M. The initial conditions for the joint angles are shown in Table 4-3
and the controller's gains that were found experimentally are presented in Table 4-2. Table
4-4 presents the parameters that were tuned in order to achieve good performance.
Especially, the feedforward gain related to v{ needs a high value when the velocity is low and
a smaller value as the speed increases. The gains have been tuned for the case of
ve =0.35 m/s, and the expression that adapts the gain value for the different values of vy is
given by (4-49). This section includes the settings and results regarding the optimization and
after that, graphs for the body pose, toes’ trajectories, forces and joint torques are presented.

d
v, —0.35
Ke, =90 [1—*—(1} (4-49)
VX
The foot-ground interaction model parameters are described in Section 2.5.2.
Table 4-3. Initial Joint angles.
Hip thlo -36°
Knee th2o 72°
Abduction/Adduction th3o 0
Table 4-4. Gains and weights for the optimization problem.
Parameter Symbol Value
virt. force proportional gain Kp diag ([O 600 350 400 400 400])
virt. force derivative gain Kq diag ([150 120 100 40 20 40])
virt. force feed-forward gain Kt diag ([kﬁ 100 0 0])
weights for matching the des. virt. S [1 11 20 5 20]
forces
weights for reducing joint torques w [0_00001 0_00001] c R¥42

Optimization

The solving time of the optimization problem ranges between 1-4ms and the average time is
2ms.The simulation was executed on a 2-core Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz
computer.

Body Pose
Figure 4-17 displays the position of the center of mass of the robot body. The desired velocity
is constant, so a linear displacement with time is expected in x direction. The height of the
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robot in steady state is greater than that given as initial condition. This has the advantage that
when the legs are extended, the knee torques will be relatively small. However, if the legs are
stretched excessively, this will lead to a singularity. The orientation of the quadruped has a
slight deviation from the desired values which ensures that the robot will not tumble over
(Figure 4-18).

Body Position in x direction
T T

T T T T T
E 2 1
e Py
O 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
t[s]
Body Position in y direction
T T T T T
E 096} il
Q_>‘
py
0.94 1 1 1 1 1 | 1 -
0 1 2 3 4 5 6 7 8
t[s]
oA Body Position in z direction
. T T T T T T T
£ 0.05F
N
Q.
pZ
0 1 1 Il 1 1 L
0 1 2 3 4 5 6 7 8
t[s]
Figure 4-17. CoM’s position
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Figure 4-18. CoM’s orientation.
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Figure 4-20 depicts the robot’s speed in four different cases to demonstrate the
controller’s robustness. The quadruped cannot move continuously at the desired forward
velocity because after a swinging phase of two diagonal legs, a short phase with all the feet
on ground has been introduced. This happens to ensure that the robot is supported by at least
two legs even if a swinging leg delay making contact with the ground. However, Table 4-5
attests that the mean velocity is almost equal to the desired. Figure 4-19 portrays a snapshot
from an animation that was created in MATLAB to illustrate the body’s position in xz-plane
(top view) and the support polygon created by the legs that are in stance phase.

t=7.9825

Trajectory of the CoM

CoM
04

FL

o o O

02 FR
» RL
N0 ® RR

@ Contact with the ground

0.2

04—

-0.5 0 0.5 1 1.5 2 25 3 3.5 4 4.5

Figure 4-19. CoM's trajectory in xz plane illustrated with solid blue line. The black circles are
the footholds in stance phase and the polygon that connects them is the support
polygon. In this snapshot, all the legs are in stance.

Body Velocity in x direction

1ol V,=0.35 V =0.65 — — — -Desired
V. =0.5 V. =0.8
X X

V_[m/s]

0 1 | 1 1 Il | | 1 1 |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
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Figure 4-20. CoM’s forward velocity. The black dashed lines are the desired velocity commands.
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Table 4-5. The average forward velocity that the robot achieves given the desired command.

Ve 0.2 0.35 0.5 0.65 0.8 0.9

v 0.1945 0.348 0.4986 0.6499 0.7873 0.8734

Toe Trajectory

Figure 4-21 illustrates in blue color the desired toe trajectory of the front left leg during the
swing phase and the actual trajectory is portrayed in orange color. The purple vertical line is
the desired trajectory of the foot when it is in stance phase but loses contact with the ground.
The green line depicts the trajectory that it actually follows to regain contact. The deviation
between the actual trajectories and the desired ones does not have a negative effect on the
robot’s locomotion, since the foot’s motion is still smooth, and the quadruped achieves to step
on the desired footholds. The foot trajectories of the other three legs are similar to that
presented in Figure 4-21, so they can be omitted.

Swing phase-Desired
Swing phase-Actual

Toe Trajectory - Rear Right Leg

Stance phase-Desired
Stance Phase-Actual
0.08 -
0.07
0.06 -
0.05 -
Eoo0af
>
0.03 -
0.02 -
0.01 - -
! I
! I
0 — _ .
1 1 1 1 1
0 0.5 1 1.5 2
x [m]

Figure 4-21. Toe’s trajectory — Rear Right Leg. The detail represents the trajectory that the foot
follows to regain contact with the ground.

Joint Angles and Velocities

The following figures (Figure 4-22 - Figure 4-27) represent the joint angles and joint velocities
of the front left leg. The foot follows an elliptical trajectory in the xy-plane. On the other hand,
a second order polynomial resulting from the triangular velocity profile is the desired command
in the z direction. The blue lines represent the desired motion given during swing phase. The
controller tracks the desired joint angles and angular velocities satisfyingly, but further gain
tuning may lead to even better tracking.
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Figure 4-24. Desired and actual knee joint angle of the front left leg.
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Figure 4-25. Desired and
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actual knee joint angular velocity of the front left leg.
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Figure 4-26. Desired and
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actual abduction joint angle of the front left leg.
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actual abduction joint angular velocity of the front left leg.
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Virtual Optimized Forces — Actual contact forces

Figure 4-28 shows the front left leg’s virtual forces that result from the solution of the
optimization problem and the actual ones that are computed by the force sensors according
to the foot-ground contact model. The spikes happen when the foot contacts the ground. If the
ground stiffness is reduced, the surface will become softer, and the force change will not be
so abrupt. Therefore, the maximum force values depend on the terrain and the toe material.
Then, Figure 4-29 and Figure 4-30 show the resulting force and torques on the main body.
The weighting gains that are listed in Table 4-4 affect the tracking of the desired forces and
torgues and the higher values assigned at the X-axis and Z-axis torque mean that these
guantities need better tracking. The forces and the torques that are applied on the center of
mass are calculated through mapping of the leg forces to the CoM. As a result, abrupt changes
at the leg forces when the foot contacts the ground cause the spikes at the Figure 4-29 and
Figure 4-30.

Virtual - Actual Forces in x direction for FL leg
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Figure 4-28. Virtual-Actual Forces for Front Left Leg.
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Figure 4-29. Resulting force on the main body.
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Resulting Torque about x axis
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Figure 4-30. Resulting torque on the main body.

Joint Torques
The figures below show the torque required at the hip, knee, and abduction/adduction joints

respectively. The torques at the rear legs are larger than those of the front legs. Also, the
highest torque values appear at the knee joint because of the long lever arm.

Joint torques

[Nm]

abduction

T

Figure 4-31. Hip, Knee and Abduction torques of the diagonal legs Front Left and Rear Right.
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4.3.11 Conclusion

The framework that was investigated can be used for a wide range of speeds. Both the
formulation of the planning and the control has a lot of tunable parameters. Consequently, the
parameter choice becomes a complex task. However, the conclusion that was drawn in [23],
according to which a large range of parameters results in successful motions, is validated in
this work. A change in one of the parameters cannot be easily related to a specific effect on
the motion objectives. Thus, the tuning of the parameters has been based on the values used
in [23], but the adjustments were made intuitively. Finally, the generation of other gaits will
require different tuning of parameters.

The mean forward velocity is almost identical to the desired, thus the high-level velocity
commands are tracked very well. The orientation of the robot does not deviate significantly
from the nominal position, so it remains stable. The slight lateral drift that is presented in [23],
also appears in this simulation, but it does not affect the whole motion. The spikes that are
shown in the force graphs are caused by the impact with the ground and can be eliminated if
the shocks are absorbed by adding high damping feet elements, as it is done in [23]. Also,
Starl[ETH is able to either damp out a certain amount of energy or to store it as potential energy
in the actuator springs. The passive mechanical compliance in the actuators, as well as the
high damping feet elements protect the system from the impact at landing [30]. The required
joint torques are twice of those needed in [23], but this is expected, provided that the weight
of StarlETH is less than half the weight of Argos. In summary, the optimal force distribution
method improved quadruped’s locomotion by controlling indirectly the pose of the robot’s
body, but further experiments, where external disturbances are acting on the body can be
performed to verify the controller’s robustness. It is also worth identifying in a future work if the
recovery process from an external disturbance leads to excessively large joint torques.
Another advantage of this framework is its modularity, meaning that each of the small
subsystems can be replaced by other algorithms, while the rest are kept as they are.

4.4 Application of Trajectory Optimization in Argos

4.4.1 Introduction

In this section, trajectory optimization is applied in the quadruped Argos. In general, a high-
level task is translated into a desired motion plan for the legged robot, while satisfying the
physical constraints. Trajectory optimization generates optimal plans, which drive the system
to the final goal, given the initial state of the system and an estimate of the total time needed.
The total time horizon is discretized in a humber of grid points, each of which shall satisfy the
according physical constraints. This work is based on [63], in which trajectory optimization is
used for the generation of complex motions in several legged systems.

4.4.2 Approaches in legged systems

A walking robot is a dynamical system which goes through multiple phases of continuous
dynamics, separated by discrete transitions [37]. The underlying optimization algorithm is
typically a smooth, gradient-based method. Common nonlinear programming solvers such as
SNOPT [25], [26], IPOPT [6], [60], [61], [8], FMINCON [44] rely on gradient based methods.
The discrete transitions of such hybrid systems results in non-smooth dynamics. There are a
few techniques to handle the discontinuous dynamics such as phase-based optimization,
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through-contact optimization, techniques with slack variables and constraints and smoothing.
The choice of the appropriate method depends on the problem, but in the context of this work,
it is worth investigating the first two methods [37].

If the discontinuity is simple, such as an absolute value sign in the objective function, then
there are many clever tricks with slack variables and constraints. If there is a simple non-
linearity, then every instance of the discontinuous function can be replaced with a smooth
approximation. In [7], a smooth contact model which provides good gradients of the dynamics
is used. This tends to be simple and fast, but less accurate than the slack variable method.
There are two types of smoothing: exponential and polynomial. If polynomial smoothing is
used, it has to be ensured that it is smooth to second order at least.

Phase-based optimization

If there is a small number of well-understood discontinuities, such as foot collisions with the
ground during walking, that occur in a known sequence, then the best option is to pose a multi-
phase trajectory optimization problem. This method has been applied for the quadruped robot
ANYmal [4]. Multi-phase methods implement a basic multiple shooting or collocation algorithm
in each phase, but additional constraints ensure that the phases are linked together. First, the
sequence of phases is defined and then standard constraints at the continuous phase and
extra constraints at the transition are set up. They are faster and more accurate than through-
contact optimization, but they require explicit knowledge of the sequence of transitions. A
software specialized for this type of problem is GPOPS-II [5].

Through-contact optimization

Through-contact (contact invariant) optimization is best for systems with more complicated
contact models and/or discontinuities, where the sequence of discontinuities is not known.
The principle is to include some special constraints and extra decision variables to force all of
the discontinuities into constraints, leaving the resulting NLP smooth. The system dynamics
includes the contact impulses which are arbitrary. Compared to the multi-phase method,
where the constraints at each grid point are known a priori, in this formulation, contact
constraints are directly added to the required grid points. These impulses are then treated as
a control variable, which is subject to constraints. If the foot is in the air, these constraints
ensure that there is a gap between the foot and the ground. Otherwise, the foot forces are
non-zero. These constraints form what is known as a linear complementarity problem (LCP).
This method can deal with arbitrary sequences of contacts, but it is slower and less accurate.

4.4.3 Optimization problem structure

The problem is formulated according to the phase-based approach. An overview of the
optimization problem is depicted in Figure 4-32. The inputs are the initial and final state of the
system, the number of steps of each leg ny;, the total duration T , the durations of the swing
and the stance phases AT,,, AT and subsequently the timings at which the feet make contact
with the ground. A major difference from [63] is that the optimization problem is simplified by
predefining the type of gait; it is not generated by the algorithm. The parameter selection
concerns the trotting gait, thus if a different gait is chosen, the problem should be set up
accordingly. The outputs are the base position r(t)e R® and orientation o(t) eR’?
(parameterized by Euler angles), the feet positions p, and the feet forces f,. The pose of
the robot (base position and orientation) is described by cubic polynomials merged at the
boundary points, so that a continuous spline is created. On the other hand, the foot position
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is parameterized using one quartic polynomial at swing phase and a constant value at stance
phase. For the foot force, three quadratic polynomials describe the stance phase, while at
swing phase, the force is set to zero. Both the states (base pose) and the controls (feet
positions and forces) are optimization variables; thus, a simultaneous method is pertinent for
solving such problems. The optimization problem is formulated according to the Hermite-
Simpson direct collocation because according to the comparison made in Section 3.6, it
provides satisfying accuracy and it is much faster compared to multiple shooting. Regarding
the optimization software, CasADi was chosen as it turned out to be far more efficient than
OptimTraj.

Trajectory Optimization formulation

}unmui)}

[System Dynamics [i’:, (i)]T = ]((l‘,(x),pi ,fl) }

N+1
[Objective Function ~ MinJy = Z("X(k) —x™
=

Kinematic model
[Be inside operational space P (t) € R (r,0) } Output
r,, 0,17, 0; r(t) e R? 0(t) e R®
AT, AT, T,n,, Foetin contact [pi O R f(t)e RJ
' No slip pt, €C)=p(t.. €C)

Terrain height piy (t E Ci) = hterrain
Pushing Force fi (t € CI) -n=>0

Friction Cone f(teC)eF(un)

Foot in air
No force in air fi (t 3 Ci) =0

Figure 4-32. Trajectory optimization formulation.

To speed up the computations the optimization problem that was formulated in [63] does
not include an objective function, but in this work it does. Problems without an objective
function are known as Constraint Satisfaction Problems. In contrast, problems that include an
optimization criterion are known as Constraint Optimization Problems. Not all optimization
solvers require the specification of an objective function. Even if they do, it is possible to
specify some dummy objective. However, it is important to note that introducing a dummy
variable is a bad practice, unless all optimization variables are bounded.

4.4.4 Objective function

The goal of this implementation is the generation of feasible movements to reach a desired
position in Cartesian space. The optimal trajectory is determined by the criteria that are set
via the objective function Jy .

N+1

minimize J, :Z((x(k)—xfef ) Q(x(k) =X )+ (F, (<)) R(f (k))) (4-50)

k=1

The objective function given in (4-50) consists of two terms. The first penalizes states X that

ref

deviate significantly from the reference states, X~ while the second term penalizes large
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values for the feet forces f,. The weighting matrix Q trades off the degree to which each
optimized state will match the respective reference state over the rest of them. The reference
value for the forward velocity is the desired forward velocity, thus the reference body position
along x axis is a linear function from the initial to the final position. The CoM’s reference height
is equal to the nominal height in a leg configuration where the joint angles (Figure 2-1) are set
as th =—36 and th, =72 . The reference values for the rest of the states are set to O.
Regarding the weighting matrix R, the higher its elements are, the more high output forces
are discouraged. Equation (4-51) gives an initial estimation of the weights.

R, = (4-51)

Qij:O iz
R, =0 .

Then, these values are adjusted until the optimal performance is achieved. The feet forces
are significantly larger than the error of the state’s variables. To compensate this difference,
the values of the weighting matrix R should be at least three orders of magnitude smaller.
The index k specifies the discretization points.

4.45 Dynamic model

In the trajectory optimization formulation, the dynamic model that is defined, is treated as a
constraint that should be satisfied at every grid point. The dynamic models that were presented
in Section 2.3 are approximations of the physical model, but the choice depends on the
application. The simplest one, which is the Linear Inverted Pendulum Model (LIPM) is rejected
because it cannot be used to generate complex motions and it is inappropriate for uneven
terrain. More accurate dynamic models are the rigid body dynamics and the centroidal
dynamics models which takes as input the joint torques and the contact forces respectively.
Their states are the six-dimensional base pose and the joint angles. Although these models
are good representations of the actual physics, the physical constraints cannot be easily set
in the joint space. On the other hand, the constraints can be described in Cartesian space
efficiently.

For the aforementioned reasons, the single rigid body dynamics model is chosen, which
can be written in the form of (4-52)-(4-53). The variables are described in detail in Section
2.3.3. Regarding the coordinate systems (see Figure 2-3), there is one defined at the CoM of
the robot which is the base c.s. B and the other one is the inertial c.s. | in which the
optimization variables are expressed (Figure 2-3). The direction of the forward movement is
aligned with x-axis and y-axis is defined to be vertical to the ground.

(t) = %[Zf ) - mgj (4-52)

at) = %(if (t)x (r(t) —p;(t)) —(t) x Im(t)j (4-53)
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4.4.6 Dynamics constraints using Hermite Simpson direct collocation

The base position, orientation and their derivatives are continuous variables that are
transcribed into decision variables for the NLP by splitting these continuous trajectories into
segments. Having already defined the total time T that the robot needs to accomplish a
specified task, then this time interval is discretized every h seconds. Consequently, the total
number of segments will be:

N = (4-54)

T
h
The implementation of Hermite-Simpson collocation method requires the following
constraints. Firstly, a vector X that contains the base position r , the velocity r, the
orientation 0 and the angular velocity o is defined as:

X = (4-55)

r
r
0
0

For the implementation of Hermite-Simpson direct collocation method, an extra collocation
point in the middle of each segment should be defined. Then the system dynamics given in
(4-52)-(4-53) and (2-29) have to be satisfied every h/2 seconds. The collocation constraints
(4-58)-(4-59) are constructed to approximate the system dynamics. The change in state
between any two knot points k and k+1 should be equal to the integral of the system
dynamics F(s) between those two knot points [35]:

x=F(x,p,f) (4-56)
[“xdt=[""Fdt (4-57)
ty ty

Transcription occurs when the continuous integral in (4-57) is approximated with Simpson
guadrature (analyzed in Appendix C) as shown in (4-58):

Xq — Xy = % h[Fk HAF 4 Fkﬂ] (4-58)
2

where Fk , Is the dynamics at the midpoint X 1 calculated as follows:

xk% = %(xk +xk+1)+g(Fk —Fet) (4-59)
Given that the state trajectories are discretized every h seconds, then the algorithm will
provide the solution of the states and their derivatives at the initial and the final point of this
time interval. Consequently, there are four conditions available, and the state trajectory can
be approximated by a cubic polynomial. The final point of one segment h is the initial point
of the next segment. Thus, the cubic polynomials that are merged together, create a
continuous spline and the whole trajectory is smooth.
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4.4.7 Feet motion and forces parameterization

Quadrupeds can move in several ways and every gait has a distinctive pattern, with one or
more feet leaving the ground at a time. The most common gaits are static walk, trotting,
galloping and pace. The description of these gaits leads to a great number of phases, each of
which represent a different combination of feet that makes contact with the ground. To simplify
the problem, each foot is treated separately from the others, which results in two phases;
contact and swing. These phases alternate, meaning that after a flight phase, a contact with
the ground will occur and so on. One step includes a swing and a stance phase. When the
physical problem is transcribed into an NLP, the decision variables have to be discretized. The
position of each foot is parameterized using one quartic polynomial of duration 2h at swing
phase. At stance phase, the foot stays still, so the position is described by a constant function.
On the other hand, foot force is parameterized using three quadratic polynomials of equal
duration at stance phase and at swing phase, the force is set to zero. Apparently, the last point
of one polynomial is the starting point of the next one. The total number of discretization points
is 2N +1. The quadratic polynomials that represent the force trajectories are constructed from
the initial and the final point of each segment h and the middle point that has been introduced
in the problem. The quartic polynomials require 5 points, especially the two boundary points
of two adjacent segments and the 3 intermediate points.

4.4.8 Foot operational space

¥ 1

Figure 4-33. Foot's operational space.

In general, joint angles are restricted to be away from singularities to avoid undesirable effects.
Also, robot’s configurations have to be restricted in a space to avoid self-collisions. Since, the
optimization problem has been defined in the Cartesian space, it is convenient that the
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constraints are defined in Cartesian space too. So, instead of restricting the joint angles, the
position of the foot relative to the base has to be kept within the bounds of a hexahedron
(Figure 4-33). The hexahedron is centered at the hominal position of the foot and the length
of the cube determines how much the foot can deviate from its nominal position. The equation
that describes this constraint is:

°R, [p,(®)-r()]-°pi| <b (4-60)
"pi (1) ="R, [p;®) - r(t)] (4-61)

where p;(t) is the current foot position relative to the world frame, °p; is the nominal position
of the foot relative to the base frame and b is the vector that represents the allowable offsets
from the nominal position in each direction.

4.49 Position and force constraints

The nodes of the swing polynomials are treated differently from those of stance polynomials,
as they are subject to different constraints. As the swing polynomials always alternate the
stance polynomials, it is known a priori in which polynomial each node belongs. Firstly, it has
to be ensured that the feet do not slip during the stance phase (denoted by C;) by setting the
foot position constant:

P; s = CONst. = p; t, €C)=pit..€C) (4-62)

Additionally, the position of the foot in y direction should be equal to the height of the terrain
hi errain @t the point of contact:

pi),/st = hi terrain (4'63)

On the other hand, the contact forces determine the base motion, but they are subject to
constraints. Regarding their direction, a unilateral constraint is added to ensure that these can
only push into the ground and not pull on it. So, the nodes that belong to the stance phase
polynomial have to be constrained as:

f.o=f'n(p<%)=0 (4-64)

i,st

where n(pi%) is the normal vector to the ground at the position of the foot which is in stance.
For flat terrain n(p%)=[0 1 O]T. The upper bound of the normal foot force, when the leg
is in stance phase, is set equal to three times the body weight. Another essential constraint is
that the tangential forces along x f, and z axis f, have to be inside the friction cone, to
ensure that the foot does not slip:

—uf <f{tt < uf (4-65)

n,st — X,Z} n,st

Apparently, the greater the normal force, the larger the acceptable tangential forces can be
without slipping. The cone is also defined by the friction coefficient x, which is set equal to
0.8. The above-mentioned constraints refer to the stance phase. At swing phase, the only
restriction is that the feet forces should be zero:

f.=0 (4-66)

where i=1,...,4 indicates each of the four legs.
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4.4.10 Hermite-Simpson Collocation: Interpolation

The solution of the trajectory optimization problem outputs the optimal values of the decision
variables at each of the grid points. The goal is the construction of continuous trajectories
which is achieved by polynomial interpolation passing through these optimal points. The
unknown values that lie in between the known data points are determined through the
interpolation process. As already mentioned, the feet forces are represented by quadratic
polynomials. A 2nd order polynomial that passes through the points (tA,UA), (tB,UB),(tC : UC)
can be written in the form of (4-67).

S (S A G (5 I G Y e S Y
(ta—te)ta—te) © (G-t )t —te) (o —t)(t —t5)

However, in this formulation the segments have equal duration h and the point B is at
the middle of the segment. If the indices A, B, C are substituted by the indices k, k+1, k+2,
then h is given by (4-68) and the intermediate point by (4-69). Defining the time as 7 =t —t,
, the simplified equation becomes:

(4-67)

h=t_, -1t (4-68)
fy = (4-69)
T ? T
u(t) = (2u, —4u,,, +2u,,,) [Hj +(—3u, +4u,,, — Uy, )(Hj +U, (4-70)

The system dynamics F(:) = X is also represented by quadratic polynomials (4-71).

2
F(t)= X = (2R —4F ,+2F, )(%) +(-3F+4F, - FM)(%] +F, (4-71)

The states trajectories are derived by integrating (4-72) as

. t 2 t
X :.[th - J-((ZFk_4Fk+l+2Fk+2)(Hj +(-3F+4F,~ Fk+2)(ﬁj+ F Jdt =

3 2
X:%h(ZFk—4Fk+l+2Fk+2)(%J +%h(—3Fk+4Fk+l—Fk+2)(%j +Fr+x = (472

X :3%(2 F—4F..+2F,,)7° +%(_3Fk+4l:k+l_ Feo) T2 +FR T+ X,
4.4.11 Quartic interpolation

The foot position in swing phase is represented by a quartic polynomial which is given by
(4-73). Given five data pairs {t;, pi}, the coefficients of the polynomial can be found by solving
the linear system (4-74). The 5x5 interpolation matrix is known as Vandermonde matrix.

P(t) = ap + ot + ot + ot + b’ (4-73)
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1t 2t ) e P,
14 t12 tl3 t14 2] Py
1t 6 t|al=p (4-74)
1ty 6§ t5)a| |Ps
1t tf t7 )\ P,

An alternative way to create an interpolant is by expressing the polynomial p(t) as a sum of
four quartic polynomials [, (t) which satisfy the “delta conditions” (4-77), given by:

p(t)=> pl(t), (4-75)
i=0
j=4
2 (=)
(1) = S—— (4-76)
_ __(ti‘tj)
j=1, j=#i
Lo L=t -
()= 0 if tet (4-77)

This approach is called the Lagrange form of the interpolating polynomial. The quartic
polynomial refers to two adjacent segments which last hy, =2h, so the optimal points which
are evenly spaced will be {0, po}. {hw/4, P}, {hw/2, P2} .{3hw/4, Ps}. {Ns, Pa}. After
substituting the data points at (4-75)-(4-76), the resulting polynomial coefficients are:

oy = Py (4-78)
25 16 1
0‘1:(—? p0+16p1—12p2+§ p3—p4ja (4-79)
70 208 112 22 1
0‘2=(? Po——3~ p1+76p2—Tp3+?p4 W (4-80)
80 224 1
a, =(—? p0+96p1—128p2+T p,—16p, h_3 (4-81)
32 128 128 32 1
0‘4=(? pO_T p1+64p2_? p3+? P, E (4-82)

The aforementioned method simplifies the construction of a 4™ order polynomial, which is
essential as this formula creates smooth trajectories while exploiting all the available optimal
points.

4.4.12 Results

The trajectory optimization problem that was analyzed in the previous sections incorporates
differential-algebraic equations (DAE). The numerical solution of this problem requires its
transcription to an NLP and then it can be solved by off-the-self NLP solvers. Section 3.6
highlights the reasons to formulate the problem in CasADi, while Section 3.5 demonstrates
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that IPOPT is the most efficient NLP solver compared to the others that were discussed.
Therefore, CasADi is imported to MATLAB, the variables are defined as CasADi symbols and
the NLP is solved by IPOPT. The code® is included in Appendix F.

Apparently, the elapsed time depends both on the time horizon and the discretization of
the trajectories. A 2-core Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz computer needs 2-3 s
to solve the problems that are presented below. Especially, the total CPU time in IPOPT (w/o
function evaluations) is the 1/5 of the total time and the rest is the CPU time in NLP function
evaluations.

0 0.3 0.6 0.9 1.2 1.5 1.8
T (s)

Figure 4-34. Gait pattern. The grey color indicates the stance phase while the light color
indicates the swing phase.

The results that are presented in the following sections include both the motion objectives
of the quadruped and the torques required to achieve these motions. The robustness of the
algorithm is tested in 3 simulation experiments with different final position and consequently
different forward velocity. The target of the system is the final position, but the mean forward
velocity is introduced indirectly as a reference state in the objective function and as an initial
guess. The time horizon is kept constant in these three cases. The number of steps is set to
4, which is equivalent to 4 full periods. The trajectory is discretized every h=0.3s. The swing
phase includes 2 adjacent segments (4-83) and the stance phase 4 segments, see (4-84).

AT,, =2h (4-83)
AT, =4h (4-84)

In this phase-based trajectory optimization formulation, the sequence of the phases for each
leg is defined by the gait pattern that is illustrated in Figure 4-34.

The weighting matrix Q € R'** (4-85) is a diagonal matrix that penalizes the deviation
from the reference states. The values at the diagonal are equal to one except for the second
element which is three orders of magnitude smaller.

5 The MATLAB code can be found here:
https://bitbucket.org/csl_legged/argos_trajectory_optimization/src/master/
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1 0 0
2 0
Q= ° 1 .0 (4-85)
: 0 . 0 :
: 0 .
0 0 1 |

This gain penalizes to a lesser extent the deviation of the CoM’s height to its nominal
value, which makes the movement seem more physical. If the value of the quadruped’s height
exceeds the upper acceptable limit, this means that the feet are extended excessively which
may lead to singularities. On the other hand, if the robot stops below the lowest acceptable
position, then the torques at the knee will become really high. To avoid the aforementioned
issues, strict constraints are set, which ensures that the body position along y axis is bounded
by a lower and an upper limit. The weighting matrix R € R** (4-86) penalizes large values at
the components of the feet forces vectors which are normal to the ground. As mentioned in
Section 4.4.4, the gains are chosen significantly smaller than those of the matrix Q.

® 0 0 O
-3
ro| 0 7 00 (4-86)
0 0 1. 0

0 0 0 1e°

As mentioned in Section 4.4.8, the foot is restricted to move inside a hexahedron. The
operational space of the foot is constrained by the offsets given in Table 4-6.

Table 4-6. Offsets from the nominal foot position

X axis Front 0.4m
Rear 0.4m

. Top 0.05m

Y axis Bottom 0.05m

7 axis Inner 0.03m
Outer 0.2m

Body poses and velocity

The final position that the robot should reach is expressed as Xg . Three simulation
experiments with different target position Xg are presented in Figure 4-35. The quadruped
starts with the desired mean forward velocity and at the end of the simulation time, it stops,
i.e., its velocity becomes 0. The quadruped reaches the goal while keeping almost constant
velocity. This is due to the fact that the smaller the deviation of the actual speed from the
reference speed, the smaller the value of the objective function will be. The CoM’s position
along the y axis of the inertial frame is periodical and its frequency depends on the gait pattern
which is the same for the three cases. The amplitude of the oscillation is acceptable and does
not affect the whole movement. The CoM’s position along the z axis is kept constant and equal
to 0 as it is desired (Figure 4-35). To keep up with the reference velocity, the stride length of
the third case is too long, so in order not to violate the foot operational constraints, the robot’s
main body may tilt to the left or right side. Figure 4-36 displays that the order of magnitude of
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the angular deviation along the x, y and z axis is le®rad (roll), le” rad (yaw) and le*rad
(pitch) respectively. Therefore, it is ensured that the quadruped will not tumble over.

Body Position along x axis

4 ’ x.=1.8 x.=3.3 xF=4.7‘ o

t[s]
Body Position along y axis

— 0.95
E K__ L \_S NS L _ S NS NS\
<> 0.9
0.85 ! 1 I I I I I |
0 1 2 3 4 5 6 7 8
t[s]
«10® Body Position error along z axis
_ 2
E o _ —
- -2
_4 | | I | | | | |
0 1 2 3 4 5 6 7 8
t[s]

Figure 4-35. Desired and actual body position in Cartesian space for three different target
positions X .

108 Rotation around x axis (roll)

1 X
T
g 0 o — —_— —
. . ] Sim 1 Sim 2 sim3 |
-1
0 1 2 3 4 5 6 7 8
t[s]
%1077 Rotation around y axis (yaw)
— ZT | sim 1 Sim 2 Sim 3
o
g P~ - — VA N
®>~
-2
1 1 1 1 | 1 1 |
0 1 2 3 4 5 6 7 8
t[s]
%1073 Rotation around z axis (pitch)
= 2 | Sim 1 Sim 2 sim 3
K
=0 - -
®N
-2
| | | 1 | | | |
0 1 2 3 4 5 6 7 8

t[s]

Figure 4-36. Body orientation in Cartesian space.
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The velocity along the x and y axes (Figure 4-37) is changing periodically. Among the
aforementioned constraints, the decision variables could also be bounded to avoid infeasible
movements, so the acceptable values of v, range between +0.3m/s in order to avoid the
abrupt changes in CoM’s height. As it was described earlier, between the swing phases of the
two sets of diagonal legs, a stance phase occurs when all the feet make contact with the
ground. The forward velocity v, falls below the reference value due to this intermediate stance
phase. However, the mean forward velocity is slightly lower than the reference velocity (Table
4-7), but this happens because the quadruped stops at the end and the final value is 0. Figure
4-37 also depicts that the velocity along z is almost 0 (order of magnitude 1e™ m/s) which
means it tracks the desired command.

VX [m/s]

V_[m/s]

V_ [m/s]

Body Velocity along x axis

Vx=0.40 Vx=0.60

Vx=0.20

t[s]
Body Velocity along y axis

| Sim 1 Sim 2 Sim 3
0 =
_1 | | | | | | | |
1 2 3 4 5 6 7 8
t[s]
; %107 Body Velocity along z axis
(V]S A —— ———— R — f
| Sim 1 Sim 2 Sim 3
-1 1 | L
0 1 2 3 4 5 6 7 8
t[s]

Figure 4-37. Body velocity in Cartesian space.

Table 4-7. The average forward velocity that the robot achieves given the desired command.
vf 0.2 0.4 0.6
v 0.19 0.39 0.57

Foot trajectory

The trajectories that are illustrated in Figure 4-38 refer to the rear left leg, but similar response
is noticed for the rest of the legs. The foot position along the x axis is represented by a constant
line in stance phase, while the foot position along the y axis is 0. The quartic polynomials that
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are generated in swing phase seem to be really smooth and inside the acceptable range of
values. As the distance that the quadruped should travel increases, while keeping during the
simulation time and the frequency (or the number of steps) fixed, the foot should make bigger
steps to reach the desired final position. The foot trajectory along y axis remains the same for
all the different cases that were examined.

Foot Position along x axis (RL Leg)

VX 0.2 m/s

V_0.4m/s
X

V_0.6 m/s
X

8
t[s]
Foot Position along y axis (RL Leg)
0.06 -
E 0.04 |-
Q_>
0.02
0 1 1 | 1 |
0 1 2 3 4 5 6 7 8
t[s]
0.31 Foot Position along z axis (RL Leg)
E
— -0.315 —
N
o
_032 | | | | | | | |
0 1 2 3 4 5 6 7 8

Figure 4-38. Foot Trajectory (Rear Left leg).

Foot forces and joint torques

Figure 4-39 depicts the feet for the three different simulations. The forces during the swing
phase are represented by four 2" order polynomials. The normal forces are identical in all
simulation experiments. The forces along the x and z axes should satisfy the friction cone
constraints as:

£, 1, < uf, (4-87)

When the foot is in the air, the forces are zero. The feet forces are mapped to the joint torques
(4-88) via the geometrical Jacobian given in (2-12). Figure 4-40 illustrates the torques during
stance phase which are the most critical.

t=-J'F (4-88)
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Foot Force along x axis (RL Leg)

—_ 0 “ \—/ | v \—/ ‘ | /
= AR AN Sim 1
«>*-100 Sim 2
Sim 3
-200 I 1 1 I 1 !
0 1 2 3 4 5 6 7 8
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Foot Force along y axis (RL Leg)
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0 | | | L | L |
0 1 2 3 4 5 6 7 8
t[s]
Foot Force along z axis (RL Leg)
0.2
£ 0
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-0.2F
| | | | I | Il |
0 1 2 3 4 5 6 7 8

Figure 4-39. Foot Forces (Rear Left leg).

Hip Torque (RL Leg) Sim 1

Sim 2
Sim 3

t[s]
Knee Torque (RL Leg)

W\

8
t[s]
Abduction Torque (RL Leg)
c 0
Z
15
‘g -50
2
'_CU 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

t [s]

Figure 4-40. Joint torques.
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4.4.13 Conclusion

The implementation of trajectory optimization in a multi-phase problem was successful and
the process of finding valid trajectories for the CoM and the feet was automated. This
formulation is applicable when the terrain map and the timings that each foot interacts with the
environment are provided. This happens because the constraints at swing phase differ from
those at stance phase. The outputs of the optimization problem are comparable to those of
the previous models, so these motions are feasible. However, the optimal planning is based
on a single rigid body dynamics model, so deviations may appear in the real experiment.

The model can be further improved if a continuity constraint is added at the points
between the three different polynomial splines that represent the forces at stance phase. This
can be achieved by introducing the derivative of the force as decision variable. In [63], the
trajectories are continuous in their entire range, but it is not stated clearly how this is achieved.
As a final point, this optimal planning method should be combined with a whole-body controller
or a MPC to evaluate the output trajectories and verify the overall response of the system.
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5.1 Conclusion

The first approach proves that a simple control framework leads to successful quadrupedal
locomotion. The tunable parameters are few, so it is easy to observe the effect of changing
one parameter on the response of the system. However, feasible motions are limited to simple
foot trajectories that are predetermined and executed according to a gait pattern.

The contribution of the second approach compared to the first is that the quadruped
motion is determined by high-level velocity and yaw rate commands, which makes target
specification easy. The optimal force distribution and the footstep planning ensure that in the
event of a disturbance, the quadruped will place its feet at an appropriate position and the
forces acting on the stance feet will restore the body to its desired posture. The optimization
problem implicitly incorporates the torque limits by bounding the output foot forces under a
specified limit, which leads to feasible output commands. The conclusion drawn is that
footholds and body motion are important quantities in legged locomotion and tightly coupled.
Another advantage of this framework is that it is highly modular. Each of the subsystems
describing either the leg trajectories or their control can be replaced by other algorithms, thus
allowing the exploration of new movements. Although tuning the various parameters to the
optimum is a tedious process and even impractical, a wide range of parameters has been
found to lead to successful movements. Overall, it is an efficient motion planning algorithm for
legged robots that could be applied to unstructured terrain locomotion situations.

Regarding the trajectory optimization process, the simulations of the two-link manipulator
revealed that TO is a really efficient way to generate optimal trajectories, which can be easily
adjusted by modifying the objective function. Additionally, the combination of trajectory
optimization with MPC results in a good trajectory tracking and the final goal was reached
successfully. Repeatedly generating motion plans starting from the current state of the system
was feasible due to the fast control loop speed.

The last approach demonstrated that the discrete dynamics of the legged locomotion
problem can be handled successfully by the phase-based trajectory optimization technique.
The process of finding valid trajectories for the CoM and the feet were automated and the
range of achievable motions has been expanded. However, this technique requires a
complete definition of the terrain map and the timings that each foot makes contact with the
ground in order to enforce the appropriate constraints at each grid point. It is worth mentioning
that the optimal planning is based on a single rigid body dynamics model, so deviations may
appear at the real experiment. The outputs of the optimization problem are expected motions
for the quadruped locomotion on flat terrain. The usefulness of this approach could be
highlighted in more complex tasks, where the definition of all these tightly coupled trajectories
is not evident.

According to the aforementioned evaluation, each approach has its advantages and
disadvantages. In summary, the choice of the appropriate motion planning and control scheme
depends on the needs of the application.
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5.2 Future Work

Each of the three approaches that were investigated has different potential for improvement.
Due to the simplicity of the first approach, it is ideal for the initial real experiments of the
quadruped Argos. The response of the system during the trajectory tracking and during the
interaction with the ground can be clearly observed. The simulations of the second motion
planning approach can be extended to sloped and rough terrain. In this way, the contribution
of the optimization in the control of the quadruped’s body pose can be better assessed. Further
experiments with external disturbances acting on the body can be performed to verify system
robustness.

Trajectory optimization is an attractive approach, as a large variety of motions can be
generated. Future work may include a model predictive control formulation that would allow
the robot to re-plan and take corrective steps if the actual plan deviates from the desired one.
Also, it would be robust to pushes or foot slips. The modelling errors that arise due to the
approximation of the real dynamics by the SRBD model will not affect the performance
because the quick replanning will correct any model inaccuracies. The only discouraging
factor may be the control loop speed, but MPC is worth investigating further. In conclusion,
improving the capabilities of the motion-planning algorithm and embedding it in an MPC
formulation on a physical system, seems to have high potential.
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Appendix A

Mathematica Code — Forward Kinematics of the quadruped Argos

The coordinate systems of the main body, hip, knee and foot are expressed relative to the
inertial frame.

Clear["Global *"]

Rx = {{1,0,0,0},{0 ,Cos[qgx],-Sin[gx],0},{0,Sin[gx],Cos[qx],0},{0,0,0,1}};

Ry ={{Cos[ay],0,Sin[qy],0},{@ ,1, 0,0},{-Sin[qy],0,Cos[qy],0},{0,0,0,1}};

Rz ={{Cos[qz],-Sin[qz],0,0},{Sin[qz],Cos[qz],90,0},{0,0,1,0},{0,0,0,1}};

TCoM ={{1,0,0,rx},{0,1,0,ry},{0,0,1,rz},{0,0,0,1}}.Rx.Ry.Rz ;

T@'FI"OI’]t={{1, e: @, LX}J{eJlJ 010}1{01 011:0}1{01 0: 911}};
Torear={{1,0,0,-Lx},{0,1,0,0},{0,0,1,0},{0,0,0,1}};

TRl = {{eo,0,-1,0},{0,1,0,0},{1,0,0,0},{0,0,0,1}} ; (*ROTy(-pi/2) *)
TLe1l = {{e,0,1,0},{0,1,0,0},{-1,0,0,0},{0,0,0,1}}; (*ROTy(pi/2) *)

TR12 = {{Cos[Q3],-Sin[Q3],0,0},{Sin[Q3],Cos[Q3],0,0},{0,0,1,0},{0,0,0,1}}.
{{1,0,0,13},{0,1,0,0},{0,0,1,0},{0,0,0,1}}.
{{0,0,1,0},{0,1,0,0},{-1,0,0,0},{0,0,0,1}}; (*ROTZz(Q3).TRANSX(13).ROTy(pi/2) *)
TL12= {{Cos[Q3],-Sin[Q3],0,0},{Sin[Q3],Cos[Q3],0,0},{0,0,1,0},{0,0,0,1}}.
{{1,0,0,13},{0,1,0,0},{0,0,1,0},{0,0,0,1}}.
{{0,0,-1,0},{0,1,0,0},{1,0,0,0},{0,0,0,1}}; (*ROTz(Q3).TRANSX(13).ROTy(-pi/2) *)

T23 = {{Cos[Q1],-5in[Q1],0,0},{Sin[Q1],Cos[Q1],0,0},{0,0,1,0},{0,0,0,1}}.
{{1,0,0,0},{0,1,0,-11},{0,0,1,0},{0,0,0,1}}; (*ROTz(Q1) . TRANSY(-11)*)

T34 ={{Cos[Q2-theta],-Sin[Q2-theta],0,0},{Sin[Q2-theta],Cos[Q2-
thEta]JeJe}J{eJeJ1J9}J{9J9J9J1}}'{{1)9)9)9}){9)1)9) _12},{0,6,1,6},{6,0,0,1}} ;
(*ROTz(Q2-theta) .TRANSy(-12)%*)

TRO4
TLe4

TRO1.TR12.T723.T34;
TLO1.TL12.T723.T734;

TFLO =TCoM.Tofront; (*Front Left *)
FullSimplify[MatrixForm[TFLO]] ;

XFLO =FullSimplify[TFLO[[1,4]1]];
YFLO =FullSimplify[TFLO[[2,4]]];
ZFLO =FullSimplify[TFLO[[3,4]1];

TFLhip = TFLO.TLO1.TL12 ;

XFLhip =FullSimplify[TFLhip[[1,4]]];
YFLhip =FullSimplify[TFLhip[[2,4]1]];
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ZFLhip =FullSimplify[TFLhip[[3,4]]1];

TFLknee = TFLhip .T23;

XFLknee =FullSimplify[TFLknee[[1,4]]1];
YFLknee =FullSimplify[TFLknee[[2,4]]1];
ZFLknee =FullSimplify[TFLknee[[3,4]]1];

TFLe = TFLknee.T34;

XFLe=FullSimplify[TFLe [[1,4]1]];
YFLe=FullSimplify[TFLe [[2,4]]];
ZFLe=FullSimplify[TFLe [[3,4]]1];

TFR@ =TCoM.T@front; (*Front Right*)
FullSimplify[MatrixForm[TFRO]] ;

XFRO =FullSimplify[TFRO[[1,4]1]1];
YFRO =FullSimplify[TFRO[[2,4]1]1];
ZFRO =FullSimplify[TFRO[[3,4]1]1];

TFRhip = TFRO.TRO1.TR12 ;

XFRhip =FullSimplify[TFRhip[[1,4]]];
YFRhip =FullSimplify[TFRhip[[2,4]1]];
ZFRhip =FullSimplify[TFRhip[[3,4]]];

TFRknee = TFRhip .T23;

XFRknee =FullSimplify[TFRknee[[1,4]]1];
YFRknee =FullSimplify[TFRknee[[2,4]]1];
ZFRknee =FullSimplify[TFRknee[[3,4]]];

TFRe = TFRknee.T34;

XFRe=FullSimplify[TFRe [[1,4]]];
YFRe=FullSimplify[TFRe [[2,4]]];
ZFRe=FullSimplify[TFRe [[3,4]]1];

TRLO =TCoM.T@rear; (*Rear Left*)
FullSimplify[MatrixForm[TRLO]] ;

XRLO =FullSimplify[TRLO[[1,4]]];
YRLO =FullSimplify[TRLO[[2,4]]];
ZRLO =FullSimplify[TRLO[[3,4]]1];

TRLhip = TRLO.TLO1.TL12 ;

XRLhip =FullSimplify[TRLhip[[1,4]1]];
YRLhip =FullSimplify[TRLhip[[2,4]1]];
ZRLhip =FullSimplify[TRLhip[[3,4]]];
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TRLknee = TRLhip .T23;

XRLknee =FullSimplify[TRLknee[[1,4]]1];
YRLknee =FullSimplify[TRLknee[[2,4]]];
ZRLknee =FullSimplify[TRLknee[[3,4]1];

TRLe = TRLknee.T34;

XRLe=FullSimplify[TRLe [[1,4]1]1];
YRLe=FullSimplify[TRLe [[2,4]]11;
ZRLe=FullSimplify[TRLe [[3,4]1]1];

TRRO =TCoM.T@rear; (*Rear Right*)
FullSimplify[MatrixForm[TRRO]] ;

XRRO =FullSimplify[TRRO[[1,4]]1];
YRRO =FullSimplify[TRRO[[2,4]1]];
ZRRO =FullSimplify[TRRO[[3,4]1]1];

TRRhip TRRO.TRO1.TR12 ;

XRRhip =FullSimplify[TRRhip[[1,4]]];
YRRhip =FullSimplify[TRRhip[[2,4]]];
ZRRhip =FullSimplify[TRRhip[[3,4]]];

TRRknee = TRRhip .T23;

XRRknee =FullSimplify[TRRknee[[1,4]]1];
YRRknee =FullSimplify[TRRknee[[2,4]]1];
ZRRknee =FullSimplify[TRRknee[[3,4]]];

TRRe = TRRknee.T34;

XRRe=FullSimplify[TRRe [[1,4]]];
YRRe=FullSimplify[TRRe [[2,4]]];
ZRRe=FullSimplify[TRRe [[3,4]1]1];
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Appendix B

Mathematica Code — Jacobian Calculation of the three DoF leg

(*Right Side*)

(*Foot Position*)

xeR =11*Sin[th1[t]]+12*Sin[th1[t]+th2[t]-theta] ;
13*Sin[th3[t]]-(11*Cos[th1[t]]+12*Cos[thl[t]+th2[t]-theta])*Cos[th3[t]];
zeR (11*Cos[th1[t]]+12*Cos[th1[t]+th2[t]-theta])*Sin[th3[t]]+13*Cos[th3[t]];
(*Foot Velocity*)

xeR' = FullSimplify[D[xeR,t]] ;

yeR' FullSimplify[D[yeR,t]] ;

zeR' FullSimplify[D[zeR,t]] ;

(*Foot Acceleration*)

yeR

xeR"' = FullSimplify[D[xeR',t]] ;
yeR'"' = FullSimplify[D[yeR"',t]] ;
zeR'' = FullSimplify[D[zeR',t]] ;
(*Jacobian¥*)

j11R= D[xeR',th1'[t]];
j12R= D[xeR',th2'[t]];
j13R= D[xeR',th3'[t]];
j21R= D[yeR',th1'[t]];
j22R= D[yeR',th2'[t]];
j23R= D[yeR',th3'[t]];
j31R= D[zeR',thl'[t]];
j32R= D[zeR',th2'[t]];
j33R= D[zeR',th3'[t]];

(*Jacobian Derivative*)
jd11R= D[Jj11R,t];
jd12R= D[j12R,t];
jd13R= D[j13R,t];
jd21R= D[j21R,t];
jd22R= D[j22R,t];
jd23R= D[j23R,t];
jd31R= D[j31R,t];
jd32R= D[j32R,t];
jd33R= D[j33R,t];

(*Left Side¥*)

(*Foot Position*)

xeL =11*Sin[th1[t]]+12*Sin[thl[t]+th2[t]-theta] ;

yeL = 13*Sin[th3[t]]-(11*Cos[th1[t]]+12*Cos[thl1[t]+th2[t]-theta])*Cos[th3[t]];
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zel =
(*Foot

xelL
yeL' =
zel' =
(*Foot

xeL

yeL

zelL

(*Jaco
j11L=
j12L=
j13L=
j21L=
j22L=
j23L=
j31L=
j32L=
j33L=

(*Jaco
jd1iL=
jdi2L=
jdi3L=
jd21L=
jd22L=
jd23L=
jd31L=
jd32L=
jd33L=

Appendix B

-(11*Cos[th1[t]]+12*Cos[th1[t]+th2[t]-theta])*Sin[th3[t]]-13*Cos[th3[t]];

Velocity*)
FullSimplify[D[xeL,t]] ;
FullSimplify[D[yeL,t]] ;
FullSimplify[D[zeL,t]] ;
Acceleration*)
FullSimplify[D[xeL',t]] ;
FullSimplify[D[yeL',t]] ;
FullSimplify[D[zeL',t]] ;

bian*)

D[xeL"',th1'[t]];
D[xeL"',th2'[t]];
D[xeL',th3'[t]];
D[yeL',th1'[t]];
D[yeL',th2'[t]];
D[yeL',th3'[t]];
D[zeL',th1'[t]];
D[zeL',th2'[t]];
D[zeL',th3'[t]];

bian Derivative¥*)
D[j11L,t];
D[j12L,t];
D[j13L,t];
D[j21L,t];
D[j22L,t];
D[j23L,t];
D[j31L,t];
D[j32L,t];
D[j33L,t];
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Simpson’s rules

Simpson’s rules are several approximations for definite integrals of a function F by evaluating
it at the boundaries and the middle point of the segment. This approximation is exact if Fis a
polynomial up to 3" degree. Simpson’s 1/3 is the most common rule and requires 3 points at
each segment. If the discretized segments are equal then the weights alternate between 4/3
and 2/3. Simpson 3/8 rule which requires one more function evaluation gives lower error
bounds, but it does not increment the order of the error. Equation (C-89) represents a
guadratic curve that is defined at the interval [0, h] [35].

v(t) = A+ Bt +Ct’ (C-89)
The integral of (C-89) is given at the following equations (assuming X(0) =0):
x(n) — x40 = [ v(t)dt (C-90)
x(h) = [ (A+Bt+Ct? it (C-91)
x(h) = Ah+% Bh? +%Ch3 (C-92)

To determine the coefficients A, B, C, three points that belong to the curve V(t) are
needed. Choosing the two boundary points and the midpoint of the polynomial V(t) as shown
in (C-93) results in coefficient values that depend on the lower the midpoint and the upper
point of the polynomial V(t) as shown in (C-94)-(C-96).

h
v(0)=v, V(Ej =v,, v(h)=v, (C-93)
A=v_ (C-94)
Bh=-3v +4v,, -V, (C-95)
Ch? =2v, —4v,, +2v, (C-96)

The sum of the weights at (C-95) and (C-96) is equal to zero. Substituting (C-94)-(C-96)
at (C-89) gives the Simpson’s rule for quadrature:

x(h) = %(vL +4v,, +Vy ) (C-97)
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Simscape model description

A complete representation of the Simscape model presented in Section 4 is shown in Figure
D-1. It consists of the main body which is linked with the four legs and the feet interact with

the floor. The body fixed frame which is located at the CoM of the main body is defined relative
to an inertial frame.

‘Connf

Body Constaint

k

@ Body

a
Ddl
Front

Rear Right Rear Left Front Right

Front Left

Floor

Conm

Figure D-1. Simscape Model.

Figure D-2 displays the fundamental building blocks to begin the quadruped’s modelling. A
bushing force provides a full, six degree-of-freedom (DOF) connector between the main body
and the fixed world frame. The solver block defines the solver settings used in simulation. The
mechanism configuration defines uniform gravity along y axis. A Transform Sensor passively
senses this 3-D time-varying transformation, and its derivatives, between the two frames.
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F
Bushing
Joint axb
World Frame E@ L
qy]
Ak},v qzp>
‘World
Bushing Joint
fx)=0 Transform
nsor
Solver Senso
F
x WX
g w
o Y =
E Body

WZ
Mechanism g oM *
Configuration !

Figure D-2. The main body is connected to the fixed world frame through a bushing joint.

EBack
[EFront

The rigid transform (Figure D-3) defines a fixed 3-D rigid transformation (translation and
rotation) between the coordinate systems. Each actuated joint (abduction/hip/knee) is
described by a revolute joint block, which takes torque as input and the sensors
measurements are the joint angles and the joint velocities. Each link of the leg is imported as
STEP file, and it is connected between the relevant coordinate systems.

Rigid
Transform . R ‘ T8 Leo @
CSs2
{3 —B\INF B
Cs0 Leg Roll 1
Front to Link 1 » i
q p- Abduction Angle FL P Abduction Angle FL )
y
w e »( Abduction Velogity FL )
Abduction Velocity FL
{5 Dt
Abduction Torque
t e out.Abduction_Torque_FL
Abduction Torque FL
Revolute
Joint

Figure D-3. Actuated joints modelling.

Each of the leg subsystems consists of a planner and the controller (Figure D-4). The
blocks of the controller are depicted in Figure D-5 and the Matlab function of the planner is
given right after that figure.
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Figure D-4. The planner outputs the desired joint angles and the controller outputs the joint

torques.
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Implementation of a PD controller.
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Matlab Code — Front Left Leg Planner

function [th1,thl_dot,th2,th2_dot,th3,th3_dot] =
fcn(t, T,y0, coeff_x,coeff_y,x_st,xdes_dot_st,theta)

% Trajectory Planning

% Parameters

11 = 0.45034 ; % Length of Upper Segment
12 = 0.61763 ; % Length of Lower Segment

% Trajectory in cartesian space
t = mod(t,T) ;

if t<=T/2 % Swing phase trajectory
xdes= coeff x.'* [t"6; t~5; t™4; t73; th2;t; 1];
ydes= coeff_y.'* [t"6; t~5; t™4; t73; t72;t; 1];
xdes_dot= coeff_x(l:end-1)."'* [6*t"5; 5*t"4; 4*t"3; 3*t~2; 2* t; 1];
ydes_dot= coeff_y(l:end-1).'* [6*tA5; 5*t"4; 4*tA3; 3*tnh2; 2* t; 1];
else
t=t-T/2; % Stance phase trajectory
xdes = x_st+xdes_dot_st*t;
ydes=0;
xdes_dot= xdes_dot_st;
ydes_dot=0;
end

ydes = ydes-y@0;
% Inverse Kinematics

c_th2 = (ydes”2 + xdes”2 - 1172 - 1272)/(2*11*12);
th2= acos(c_th2)+theta ;

phi = atan2(xdes, -ydes);
psi = atan2(12*sin(th2-theta),l1+12*cos(th2-theta));
thl = phi-psi;

% 2D Jacobian

J = [11*cos(thl)+12*cos(thl+th2-theta) 12*cos(thl+th2-theta);
l1*sin(th1)+12*sin(thl+th2-theta) 12*sin(thl+th2-theta)] ;
th_dot = J\([xdes_dot; ydes dot]) ;

thl _dot = th_dot(1) ;

th2_dot = th_dot(2) ;

% Abduction joint angle/angular velocity
th3=0;

th3_dot=0;

end
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The interaction of the foot with the ground is described by a sphere to plane contact model
(Figure D-6). This block is included at the Simscape Contact Forces Library and the
parameters that are tuned are the contact stiffness (k ), the contact damping (b ) and the
friction coefficients which are discussed in Section 2.5.2. Other parameters to be specified are
the sphere radius, which is 0.035m and the depth of the contact surface to the reference
plane, which is half the height of the 3D ground model. The ground is represented by a
40mx0.2mx=5m block. These are the dimensions along x, y and z axis, so the height which
is defined along y axis is equal to 0.2m .

Contact Forces Rigid
Transform

Foot !?.Ph':@ P(;l; ! F >§<B-—

Sphere to Plane Force

Front Left Leg

-B>‘2,<F
Rigid

: Transform ¥
i/ ' Floor

World Frame Ground

Figure D-6. Contact Forces model for the interaction between the foot and the floor.
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Simscape model description

A complete representation of the Simscape model presented in 4.3 is shown in Figure E-1. It
consists of the Gait Pattern, which determines the actions of each leg at any moment, the
main body which is linked with the four legs and the feet-floor contact model.

pose | pose

gl Optimization
FL_RR_aeral FL_RR_aerial Baody Constaint
O | )
I I r ]
e 2
T_cg @
Sw_FRF—< Sw_FR |
_FR) Sw_FR

g
Gait Pattern | 5
Body

—Front

Rear Right

Rear Left

| |
b i
i i
) I
Contact Fprces RR Contact Forces RL Contact Forces FR Contact Fprees FL

Figure E-1. Simscape Model.
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I

Phase1 Phase2
FL_RR_aerial = 1; FL_RR_aerial = 0;
FR_RL_aerial=0; [t>=T _sw/2] FR_RL_aerial=0;
Sw_FL=2*t/T_sw; = Sw_FL=0;
Sw_FR=0; Sw_FR=0;

W [t<T swi2] [t>=T_cg/2]
Phase4 [t>=(T_cg+T_sw)/2] Phase3
FL_RR_aerial = 0; FL_RR_aerial = 0;
FR_RL_aerial=0; = FR_RL_aerial=1;
Sw_FL=0; Sw_FL=0;
Sw_FR=0; Sw_FR=2*(t-T_cg/2)/T_sw;

Figure E-2. Gait pattern.

Figure E-2 illustrates the trotting gait pattern and outputs the state of each leg (swing-
stance) the current time instance. An overview of a leg subsystem, which includes the links,
the connections between them and the control algorithms, is portrayed in Figure E-3.

<0_FLs

<03_dot_FL>

pose

<Qi>

(CZ)—»| <Momal Force>

FL Control

Figure E-3. Leg subsystem.

The control subsystem shown in Figure E-4, Figure E-5, and Figure E-3 incorporates
switches that determine the control selection according to the gait pattern and the detected

contact forces.
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Figure E-4. Controller selection at swing phase.
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Figure E-5. Controller selection at stance phase.

The following section documents the code for the optimal force distribution which is written
in CasADi, but there is an interface with MATLAB/Simscape.
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Matlab-CasADi Code — Optimal Force Distribution

classdef CasADi_block < matlab.System & matlab.system.mixin.Propagates
% Quadratic Optimization problem for Force distribution
% This template includes the minimum set of functions required
% to define a System object with discrete state.

% Public, tunable properties
properties

end
properties(DiscreteState)
end

% Pre-computed constants
properties(Access = private)
% Pre-computed constants.
casadi_solver;
1bx;
ubx;
ubg;
end

methods (Access = protected)
function num = getNumInputsImpl(~)

num = 2;

end

function num = getNumOutputsImpl(~)
num = 1;

end

function dtl = getOutputDataTypeImpl(~)
dtl = 'double’;
end
function dtl = getInputDataTypeImpl(~)
dtl = 'double’;
end
function sz_1 = getOutputSizeImpl(~)
sz_1 = [12,1];
end
function [sz_1,sz 2] = getInputSizeImpl(~)
sz 1 =[6,12];
sz 2 = [6,1];
end
function cpl = isInputComplexImpl(~)
cpl = false;
end
function cpl = isOutputComplexImpl(~)
cpl = false;
end
function fzl1l = isInputFixedSizeImpl(~)
fz1 = true;
end
function fz1 = isOutputFixedSizeImpl(~)
fz1 = true;
end
function setupImpl(obj,~,~)
% Perform one-time calculations, such as computing constants
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3% 3R 3R 3% X

B

3% R ¥

solver = gpsol('solver’,

end

import casadi.*

X

SX.sym( 'x', 12) ;

S=[111205 20];

W = 0.00001*0nes(1,12);
Asys = SX.sym('Asys',6,12);
Fdes = SX.sym('Fdes',6,1);

% Objective Function
J= S*(Asys*x-Fdes) . 2+W*x. 2 ;

Friction cone constraints
= zeros(16,12);
=[1-0.80; -1 -0.80; 0 -0.81; 0 -0.8 -1];

N > X

Appendix E

A(1:4,1:3)=c; A(5:8,4:6)=c; A(9:12,7:9)=c; A(13:16,10:12)=c;

con=A*x ;

% NLP

gp = struct( 'x' ,x , 'f' ,3, 'g', con,
opts = struct;

opts.osqp.eps_abs = 1e-02;
opts.osqgp.eps_prim_inf = 1le-02;
opts.osqgp.eps_dual_inf =1e-02;
opts.osqgp.alpha = 1.9;

% Solver
solver = gpsol('solver', 'osqp', qp, opts);

‘gpoases’, qp);

% Bounds
lbx(1:12) = -inf;
1bx(2:3:12) = 2;
ubx(1:12) = 1500;
ubg(:) = @;

% Initialization
obj.casadi_solver = solver;
obj.1lbx = 1bx;

obj.ubx = ubx;

obj.ubg = ubg;

function Fopt = stepImpl(obj,Asys,Fdes)

% Implement algorithm

lbx = obj.1lbx;
ubx = obj.ubx;
ubg = obj.ubg;

% Initialization
X0 = zeros(12,1);
x0(2:3:6) = Fdes(2)/4;
x0(8:3:12) = Fdes(2)/4;

solver = obj.casadi_solver;
sol = solver('lbx', lbx, 'ubx', ubx,'ubg', ubg,
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% sol = solver('x@', x0, 'lbx', lbx, 'ubx', ubx,'ubg', ubg, 'p',
[Asys, Fdes]);
Fopt = full(sol.x(:));
end

function resetImpl(~)
% Initialize / reset discrete-state properties
end
end
end
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Matlab-CasADi Code — Trajectory Optimization

clear;

close all

clc;

% Specify the path of CasAdi library
addpath("C:\Users\...\casadi-windows-matlabR2016a-v3.5.5")
import casadi.*

%% Robot Parameters & initial conditions

L =0.8; % Whole Body length
yo = 0.9231; % Robot's height at nominal position
VX0 = 0.3; % Initial velocity in x direction

% Feet's nominal position relative to the CoM
p_nom = [0.42; -0.9231; -0.23; 0.42; -0.9231; 0.23; -0.44; -0.9231; -0.23; -0.44;
-0.9231; 0.23];

= 52.96; % Robot's total mass

Moments of inertia[kg*m"2]:

Taken at the center of mass and aligned with the output coordinate system
= [3.7223 0.6859 0; 0.6859 8.1901 0; © 0 8.8015];

H 3R 3% =3

% Environment
g = 9.81; % Gravity acceleration
friction_coef = 0.8; % Friction coefficient

%% Optimization setup
% Discretization

h =0.3; % Timestep

ns = 4; % Number of steps

SW_segm=2; % 2 segments for swing phase
st_segm=4; % 4 segments for stance phase
N = ns*(sw_segm+st_segm); % Number of segments

T_sim = N*h; % Total simulation time

% System Dynamics

r = MX.sym('r',3);

rdot = MX.sym('rdot',3);
th = MX.sym('th',3);

w = MX.sym('w',3);

pos = MX.sym('pos',12);
fi = MX.sym('fi',12);

states = [r; rdot; th; w];
n_states = length(states);

rdd = 1/m*[sum(fi(1:3:end));sum(fi(2:3:end));sum(fi(3:3:end))]-g*[0;1;0];
thdot = [cos(th(3))*sec(th(2)) sin(th(3))*sec(th(2)) ©; -sin(th(3)) cos(th(3)) o;
cos(th(3))*tan(th(2)) sin(th(3))*tan(th(2)) 1]*w;
ext_torque = MX.zeros(3,1);
for i=1:4
ext_torque = ext_torque+([0 -fi(i*3) fi(i*3-1); fi(i*3) @ -fi(i*3-2); -fi(i*3-
1) fi(i*3-2) 0]*[r(1)-pos(i*3-2); r(2)-pos(i*3-1); r(3)-pos(i*3)]);
end
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wd = I\(ext_torque-[0 -w(3) w(2); w(3) 0 -w(l); -w(2) w(l) 0]*I*w);
rhs = [rdot;rdd;thdot;wd]; % right hand system

% Nonlinear mapping function f(x,u)
f = Function('f',{states,pos,fi},{rhs});

Pos = MX.sym('Pos',12,(2*N+1)); % Decision variables (controls)

Fi = MX.sym('Fi',12,(2*N+1)); % Decision variables (controls)
% Parameters (which include the initial state and the reference state)
P = MX.sym('P',n_states + n_states);

R
>

vector that represents the states over the optimization problem
MX.sym('X',n_states, (2*N+1));

>
]

obj = @; % Objective function
g = []; % Constraints vector

Co =[0; 1; 1; @], % Starting phase for each leg (FL,FR,RL,RR)
% 1 indicates contact (stance phase), © indicates swing phase.
% In this case, FL and RR legs start in swing phase

xdes = zeros(1,2*N+1);
for i=1:2*N+1
xdes(i) = L/2+T_sim*vx@*(i-1)/(2*N) ;

end
st = X(:,1); % Initial state
g = [g;st-P(1:n_states)]; % Initial condition constraints

Q = 1*eye(n_states,n_states); % Weighing matrices (states)
Q(2,2) = 1e-4;

Q(4J4) = 0;

R = le-3*eye(4,4);

for k=1:2:2*N-1
st = X(:,k);
st_middle = X(:,k+1);
st_next = X(:,k+2);
fy = Fi(2:3:end,k);
fy middle = Fi(2:3:end,k+1);
fy next = Fi(2:3:end,k+2);

obj k = (st-[xdes(k); P(n_states+2:2*n_states)])'*Q*(st-[xdes(k);
P(n_states+2:2*n_states)])+fy' *R*fy;

obj mid = (st_middle-[xdes(k+1l); P(n_states+2:2*n_states)])'*Q*(st_middle-
[xdes(k+1); P(n_states+2:2*n_states)])+fy middle'*R*fy middle;

obj next = (st_next-[xdes(k+2); P(n_states+2:2*n_states)])'*Q*(st_next-
[xdes(k+2); P(n_states+2:2*n_states)])+fy next'*R*fy next;

% obj k = (st-[xdes(k); P(n_states+2:2*n_states)]) '*Q*(st-[xdes(k);
P(n_states+2:2*n_states)]);

% obj mid = (st_middle-[xdes(k+1l); P(n_states+2:2*n_states)]) '*Q*(st_middle-
[xdes(k+1); P(n_states+2:2*n_states)]);

% obj next = (st _next-[xdes(k+2); P(n_states+2:2*n_states)]) '*Q*(st_next-

[xdes(k+2); P(n_states+2:2*n_states)]);
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obj = obj+h/6*(obj_k+4*obj_mid+obj_next); % calculate obj

st_middle_col = 1/2*(st+st_next)+h/8*(f(st,Pos(:,k),Fi(:,k))-
f(st_next,Pos(:,k+2),Fi(:,k+2)));

st_next_col=
st+h/6*(f(st,Pos(:,k),Fi(:,k))+4*f(st_middle,Pos(:,k+1),Fi(:,k+1))+f(st_next,Pos(:
s K+2),Fi(:,k+2)));

g = [g;st_middle-st_middle_col; st_next-st_next_col]; % compute constraints

end

for k=1:2*N+1
% Rotgx = [1 @ ©; @ cos(X(7,k)) -sin(X(7,k)); @ sin(X(7,k)) cos(X(7,k))1;

% Rotqy = [cos(X(8,k)) © sin(X(8,k)); © 1 0; -sin(X(8,k)) @ cos(X(8,k))];

% Rotqz = [cos(X(9,k)) -sin(X(9,k)) ©; sin(X(9,k)) cos(X(9,k)) ©; © @ 1];

% Rotq = (Rotgx*Rotqy*Rotqz)'; %Rotation matrix from the world frame to the
base frame

% g = [g; kron(eye(4),Rotq)*(Pos(:,k)-repmat(X(1:3,k),4,1))-p_nom] ; % Foot

position should be inside a cube centered at nominal foot position

g = [g; Pos(:,k)-repmat(X(1:3,k),4,1)-p_nom] ; % Foot position should be
inside a cube centered at nominal foot position
end

% Foot Position constraints at stance phase
st_points = zeros(12,2*N+1);
for j=1:4
if co(j)==0
for ind_st=[1:2,st _segm/2+2*sw_segm+l:st segm/2+2*sw_segm+2*(st_segm-1)]
g = [g;reshape(Pos(3*(j-1)+1:3*j,ind_st:2*(sw_segm+st_segm):2*N)-
Pos(3*(j-1)+41:3*j,ind_st+1:2*(sw_segm+st_segm):2*N+1),3*ns,1)];
st_points(3*(j-1)+2,ind_st:2*(sw_segm+st_segm):2*N+1)=1;
end
else
for ind_st=1:2*st_segm
g = [g;reshape(Pos(3*(j-1)+1:3*j,ind_st:2*(sw_segm+st_segm):2*N)-
Pos(3*(j-1)+41:3*j,ind_st+1:2*(sw_segm+st_segm):2*N+1),3*ns,1)];
3
st_points(3*(j-1)+2,ind_st:2*(sw_segm+st_segm):2*N+1)=1;
end
end
end

sw_points = zeros(12,2*N+1);
for j=1:4
if Cco(j)==1
for ind_sw=1:2*sw_segm+1
sw_points(3*(j-1)+1:3*j,2*st segm+ind sw:2*(sw_segm+st_segm):2*N+1)=1;
end
else
for ind_sw=1:2*sw_segm+1
sw_points(3*(j-1)+1:3*j,st segm/2+ind sw:2*(sw_segm+st_segm):2*N+1)=1;
end
end
end

% Forces should be inside the friction cone

for k=1:2*N+1
for j=1:4
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g = [g;reshape(Fi(3*(j-1)+1:2:3*(j-1)+3,k)-friction_coef*Fi(3*(j-
1)+2,k)*DM.ones(2,1),2,1);reshape(-Fi(3*(j-1)+1:2:3*(j-1)+3,k)-
friction_coef*Fi(3*(j-1)+2,k)*DM.ones(2,1),2,1)];

end
end

OPT_variables =
[reshape(X,12*(2*N+1),1);reshape(Pos,12*(2*N+1),1);reshape(Fi,12*(2*N+1),1)];

nlp_prob = struct('f', obj, 'x', OPT_variables, 'g', g, 'p', P);

opts = struct;

opts.ipopt.max_iter = 2000;
opts.ipopt.print_level =5;

opts.print_time = 0;
opts.ipopt.acceptable_tol =le-6;
opts.ipopt.acceptable_obj change_tol = 1le-6;

solver = nlpsol('solver', 'ipopt', nlp_prob, opts);
args = struct;

% Equality & Inequality constraints
p_offest x = 0.4;

p_offest y = 0.05;

p_in_offest_z = 0.03;
p_out_offest z = 0.2;

args.lbg(l:length(g)) = ©; % -1e-20 % Equality constraints
args.ubg(l:length(g)) = @; % 1le-20 % Equality constraints
args.lbg(n_states*(2*N+1)+1:3:(n_states+12)*(2*N+1)) = -p_offest_x;
args.ubg(n_states*(2*N+1)+1:3:(n_states+12)*(2*N+1)) = p_offest_x;
% The leg should not extend too much to avoid singularities
args.lbg(n_states*(2*N+1)+2:3:(n_states+12)*(2*N+1)) = -p_offest_y;
% The leg should not retract too much to avoid high knee torques
args.ubg(n_states*(2*N+1)+2:3:(n_states+12)*(2*N+1)) = p_offest_y;
% Constraint along z axis for FR&RR legs
args.lbg(n_states*(2*N+1)+6:6:(n_states+12)*(2*N+1))
args.ubg(n_states*(2*N+1)+6:6:(n_states+12)*(2*N+1))
% Constraint along z axis for FL&RL legs
args.lbg(n_states*(2*N+1)+3:6:(n_states+12)*(2*N+1))
args.ubg(n_states*(2*N+1)+3:6:(n_states+12)*(2*N+1))
% Fricition cone inequality constraints
args.lbg(length(g)-4*4*(2*N+1)+1:end) = -inf; % le-20

-p_in_offest_z;
p_out_offest_z;

-p_out_offest_z;
p_in_offest_z;

% Descision variables constraints

args.lbx(1:1ength(OPT_variables),1)= -inf;

args.ubx(1l:1ength(OPT _variables),1)= inf;

% CoM position along y at the final point shall be equal to the nominal height
% args.lbx(n_states*(2*N+1)-10,1)= yO;

args.ubx(n_states*(2*N+1)-8,1)= 0; % The forward velocity
is set to @ at the end

args.lbx(5:12:n_states*(2*N+1),1)= -0.3; % Velocity along y
axis (Lower bound)

args.ubx(5:12:n_states*(2*N+1),1)= 0.3; % Velocity along y

axis (Upper bound)
args.lbx(n_states*(2*N+1)+2:3:(n_states+12)*(2*N+1),1)= ©; % Feet position shall
be positive in y direction
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args.ubx(n_states*(2*N+1)+find(st_points),1)= 0; % Feet position shall
be zero in y direction in stance phase

args.lbx(end-12*(2*N+1)+2:3:end,1)= 0; % Feet force along y
axis shall be positive (push the ground)

args.lbx(end-10,1)= 200; % Feet force along y
axis at final point for FL

args.lbx(end-1,1)= 200; % Feet force along y
axis at final point for RR

args.lbx(end-12*(2*N+1)+find(sw_points),1)= 0; % Feet force shall be
zero in stance phase

args.ubx(end-12*(2*N+1)+find(sw_points),1)= 0; % Feet force shall be

zero in stance phase

%% THE SIMULATION LOOP SHOULD START FROM HERE

x0 = [L/2; y@; ©; vx0; 0; 0; 0, 0, 0; 0; 0; 0]; % State initial conditions
xs = [L/2+T_sim*vx@; y0@; ©; 0; 0; 0; 0; 0; 0; 0; 0; 0]; % Reference posture
X0 = repmat(x@,1,2*N+1)"'; % Initialization of the states decision variables

X0(:,1) = xdes"' ;

po = repmat(x0(1:3),4,1)+p_nom;
ps = repmat(xs(1:3),4,1)+p_nom;
PO = repmat(p@,1,2*N+1)'; % Initialization of the feet's positions

for i=1:2*N+1

for j=1:3:10
P@(i,j) = p@(j,1)+(ps(j,1)—p0(j,1))*(i—1)/(2*N) 5
end
end
for j=1:4
if Co(j)==0
Py = [0; ©; 0; 0.1; 0.2; 0.1; 0; 0; 0; 0; 0; 9];
else
Py = [0; ©; ©; ©; 0; 0; 0; 0; 0; 0.1; 0.2; 0.1];
end
PO(:,3*(j-1)+2) = [repmat(Py,ns,1);0] ;
end

FO = zeros(2*N+1,12);

for j=1:4
if Co(j)==0
Fy = [200; 200; ©0; ©; 0; 0; O; 200; 300; 300; 300; 200];
else
Fy = [0; 200; 300; 300; 300; 300; 300; 200; 0; 0; 0; 0;];
end

FO(:,3*(j-1)+2) = [repmat(Fy,ns,1);Fy(1)] ;
end

% Initial value of the optimization variables
args.x0@ = [reshape(X0',n_states*(2*N+1),1);reshape(PO',12*(2*N+1),1);...
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reshape(Fe',12*(2*N+1),1)];
args.p = [x0;xs]; % Set the values of the parameters vector

tic

sol = solver('x0', args.x@, 'lbx', args.lbx, 'ubx', args.ubx,...
"lbg', args.lbg, 'ubg', args.ubg,'p',args.p);

toc

CoM_pos(1:n_states, :)= reshape(full(sol.x(1:n_states*(2*N+1)))',n_states,2*N+1); %
Get CoM's trajectory from the solution

foot_pos =
reshape(full(sol.x(n_states*(2*N+1)+1:(n_states+12)*(2*N+1)))"',12,2*N+1); % Get
feet's positions from the solution

foot_force =
reshape(full(sol.x((n_states+12)*(2*N+1)+1:(n_states+24)*(2*N+1)))"',12,2*N+1); %
Get feet's positions from the solution

%% Interpolate the solution on a uniform grid for plotting and animation:
tGrid = zeros(1,2*N+1);
for i=1:2*N+1
tGrid(i) = (i-1)*T_sim/(2*N) ;
end
xGrid = CoM_pos;
uGrid = [foot_pos; foot_force];
fGrid=zeros(n_states,2*N+1);

for i=1:2*N+1
pos=uGrid(1:12,1i);
fi=uGrid(13:24,1i);
r=xGrid(1:3,1i);
rdot=xGrid(4:6,1i);
th=xGrid(7:9,1i);
w=xGrid(10:12,1i);

g = 9.81; % gravity [m/s"2]

rdd = 1/m*[sum(fi(1:3:end));sum(fi(2:3:end));sum(fi(3:3:end))]-g*[0;1;0];

thdot = [cos(th(3))*sec(th(2)) sin(th(3))*sec(th(2)) ©; -sin(th(3)) cos(th(3))
0; cos(th(3))*tan(th(2)) sin(th(3))*tan(th(2)) 1]*w;

ext_torque = zeros(3,1);

for i=1:4

ext_torque = ext_torque+([0 -fi(i*3) fi(i*3-1); fi(i*3) @ -fi(i*3-2); -

fi(i*3-1) fi(i*3-2) @]*[r(1)-pos(i*3-2); r(2)-pos(i*3-1); r(3)-pos(i*3)]);

end

wd = I\(ext_torque-[0 -w(3) w(2); w(3) © -w(1l); -w(2) w(l) 0]*I*w);

fGrid(:,1) = [rdot;rdd;thdot;wd]; % state derivative
end

soln.interp.state = @(t)( pwPoly3(tGrid,xGrid,fGrid,t) );
soln.interp.control = @(t)(pwPoly2(tGrid,uGrid(13:end,:),t));
soln.interp.footpos = @(t)(pwPoly5(tGrid,uGrid(1:12,:),t,C0));
tcl = linspace(tGrid(1),tGrid(end),1000);

% State Interpolation

xcl = soln.interp.state(tcl); % Main body's pose
fcl = soln.interp.control(tcl); % Foot forces
pcl = soln.interp.footpos(tcl); % Foot position
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% ucl = [pcl;fcl];

% Mean forward velocity
vx_mean = mean(xcl(4,:));

%% Functions

function x = pwPoly3(tGrid,xGrid,fGrid,t)
nGrid = length(tGrid);
if mod(nGrid-1,2)~=0 || nGrid < 3
error('The number of grid-points must be odd and at least 3');
end

R

Figure out sizes
floor((length(tGrid)-1)/2);
size(xGrid,1);

length(t);

zeros(m, k);

X X3 S5
]

% Figure out which segment each value of t should be on
edges = [-inf, tGrid(1:2:end), inf];
[~,~,bin] = histcounts(t,edges);

% Loop over each quadratic segment
for i=1:n
idx = bin==(i+1);
if sum(idx) > ©
kLow = 2*(i-1) + 1;
kUpp = kLow + 2;
h = tGrid(kUpp)-tGrid(kLow);

xLow = xGrid(:,kLow);
fLow = fGrid(:,kLow);
xUpp = xGrid(:,kUpp);
fUpp = fGrid(:,kUpp);

alpha = t(idx) - tGrid(kLow);
x(:,idx) = cubicInterp(h,xLow, fLow, xUpp, fUpp,alpha);
end
end

% Replace any out-of-bounds queries with NaN
outOfBounds = bin==1 | bin==(n+2);
x(:,outOfBounds) = nan;

% Check for any points that are exactly on the upper grid point:
if sum(t==tGrid(end))>0

x(:,t==tGrid(end)) = xGrid(:,end);
end

end
function x = cubicInterp(h,xLow, fLow, xUpp, fUpp,del)
This function computes the interpolant over a single interval
INPUTS:
h = time step (tUpp-tLow)
xLow = function value at tlLow

fLow = derivative at tlLow
xUpp = function value at tUpp

3% 3R 3R 3% 3« R R X
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fUpp = derivative at tUpp
del = query points on domain [0, h]

OUTPUTS:
x = [m, p] = function at query times

% Fix matrix dimensions for vectorized calculations
= length(xLow);
= length(del);

ow = XLow*ones(1,nt);

ow = flLow*ones(1,nt);

pp = xUpp*ones(1,nt);

pp = fUpp*ones(1,nt);

1 = ones(nx,1)*del;

(2.*(xLow-xUpp)+h.*(fLow + fUpp))./(h.”3);
-(3.*(xLow-xUpp)+h.*(2.*fLow + fUpp))./(h."2);
fLow;

XLow;

d + del.*(c + del.*(b + del.*a));
d

nction x = pwPoly2(tGrid,xGrid,t)
X = pwPoly2(tGrid,xGrid,t)

This function does piece-wise quadratic interpolation of a set of data,
given the function value at the edges and midpoint of the interval of
interest.

INPUTS:
tGrid = [1, 2*n+1] = time grid, knot idx = 1:2:end
xGrid = [m, 2*n+1] = function at each grid point in tGrid
t = [1, k] = vector of query times (must be contained within tGrid)

OUTPUTS:
x = [m, k] = function value at each query time

NOTES:
If t is out of bounds, then all corresponding values for x are replaced
with NaN

rid = length(tGrid);

mod(nGrid-1,2)~=0 || nGrid < 3

error('The number of grid-points must be odd and at least 3');
d

Figure out sizes
floor((length(tGrid)-1)/2);
size(xGrid,1);

length(t);

zeros(m, k);

Figure out which segment each value of t should be on
ges = [-inf, tGrid(1:2:end), inf];
,~,bin] = histcounts(t,edges);
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% Loop over each quadratic segment
for i=1:n
idx = bin==(i+1);
if sum(idx) > ©
gridIdx = 2*(i-1) + [1,2,3];
x(:,1idx) = quadInterp(tGrid(gridIdx),xGrid(:,gridIdx),t(idx));
end
end

% Replace any out-of-bounds queries with NaN
outOfBounds = bin==1 | bin==(n+2);
x(:,out0OfBounds) = nan;

% Check for any points that are exactly on the upper grid point:
if sum(t==tGrid(end))>0

x(:,t==tGrid(end)) = xGrid(:,end);
end

end

function x = quadInterp(tGrid,xGrid,t)
This function computes the interpolant over a single interval

INPUTS:
tGrid = [1, 3] = time grid
xGrid [m, 3] = function grid
t = [1, p] = query times, spanned by tGrid

OUTPUTS:
x = [m, p] = function at query times

3R 3R 3R R 3R 3R 3R o o ¥ X

R

Rescale the query points to be on the domain [-1,1]
= (t-tGrid(1))/(tGrid(3)-tGrid(1)) ;

~+

R

Compute the coefficients:

2*(xGrid(:,3) + xGrid(:,1)) - 4*xGrid(:,2);
-3*xGrid(:,1)+4*xGrid(:,2)-xGrid(:,3);
xGrid(:,1);

Nn ocw
n o

S

Evaluate the polynomial for each dimension of the function:
= length(t);

= size(xGrid,1);

= zeros(m,p);

X 3T

tt = t.A2;
for i=1:m

x(i,:) = a(i)*tt + b(i)*t + c(i);
end

end
function x = pwPoly5(tGrid,xGrid,t,CO)
% X = pwPoly5(tGrid,xGrid,t,Co)

%
% This function does piece-wise quartic interpolation of a set of data,
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given the function value at the edges and 3 evenly spaced of the interval of
interest.

INPUTS:
tGrid = [1, 2*n+1] = time grid, knot idx = 1:2:end
XGrid = [m, 2*n+1] function at each grid point in tGrid
t = [1, k] = vector of query times (must be contained within tGrid)

OUTPUTS:
x = [m, k] = function value at each query time

NOTES:
If t is out of bounds, then all corresponding values for x are replaced
with NaN

SR 3% 3R 3R 3% 3R 3R R 3R 3R 3R 3 o« ¥ X

nGrid = length(tGrid);
if mod(nGrid-1,2)~=0 || nGrid < 5

error('The number of grid-points must be odd and at least 5');
end

3R

Figure out sizes
floor((length(tGrid)-1)/2);
size(xGrid,1);

length(t);

zeros(m, k);

X X3 S
o n

% Figure out which segment each value of t should be on

edges = [-inf, tGrid(1:2:end), inf];

[~,~,bin] = histcounts(t,edges); % Bin sorts the query times in the appropriate
segment

% Loop over each segment
for j=1:4
for i=1:n
idx = bin==(i+1); % Logical variable which indicated which query times
belong to the current segment
if sum(idx) > ©
if Cce(j)==0
if (mod(bin(find(idx,1))-3,6)==0 || mod(bin(find(idx,1))-3,6)==1)
kLow = fix(bin(find(idx,1))/6)*12+3;
kUpp = kLow + 4;
h = tGrid(kUpp)-tGrid(kLow);
x1 = xGrid(3*(j-1)+1:3*j,kLow);
X2 = XGrid(3*(j-1)+1:3*j,kLow+l);
X3 = XGrid(3*(j-1)+1:3*j,kLow+2);
x4 = XGrid(3*(j-1)+1:3*j,kLow+3);
x5 = xGrid(3*(j-1)+1:3*j,kUpp);
alpha = t(idx) - tGrid(kLow);
x(3*(j-1)+41:3*j,find(idx)) =
quarticInterp(h,x1,x2,x3,x4,x5,alpha);
else
kstance = 2*i-1;
x(3*(j-1)+41:3*j,find(idx)) = repmat(xGrid(3*(j-
1)+1:3*j,kstance),1,sum(idx));
end
else
if mod(bin(find(idx,1)),6)==0 || mod(bin(find(idx,1)),6)==1
kLow = fix(bin(find(idx,1))/6)*12-3;
kUpp = kLow + 4;
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h = tGrid(kUpp)-tGrid(kLow);
x1 = xGrid(3*(j-1)+1:3*j,kLow);
X2 = XGrid(3*(j-1)+1:3*j,kLow+1);
X3 = XGrid(3*(j-1)+1:3*j,kLow+2);
x4 = xGrid(3*(j-1)+1:3*j,kLow+3);
x5 = xGrid(3*(j-1)+1:3*j,kUpp);
alpha = t(idx) - tGrid(kLow);
x(3*(j-1)+1:3*j,find(idx)) =
quarticInterp(h,x1,x2,x3,x4,x5,alpha);
else
kstance = 2*i-1;
x(3*(j-1)+1:3*j,find(idx)) = repmat(xGrid(3*(j-
1)+1:3*j,kstance),1,sum(idx));
end
end
end
end
end

% Replace any out-of-bounds queries with NaN
outOfBounds = bin==1 | bin==(n+2);
x(:,outOfBounds) = nan;

% Check for any points that are exactly on the upper grid point:
if sum(t==tGrid(end))>0
x(:,t==tGrid(end)) = xGrid(:,end);

end
end
function x = quarticInterp(h,x1,x2,x3,x4,x5,del)
This function computes the interpolant over a single interval
INPUTS:

h = time step (tUpp-tLow)

del = query points on domain [@©, h]

OUTPUTS:
x = [m, p] = function at query times

3% 3R 3R 3R 3R 3% R R ¥ X

%%% Fix matrix dimensions for vectorized calculations
nx = length(x1);

nt = length(del);

x1 = x1*ones(1,nt);

x2 = x2*ones(1,nt);

x3 = x3*ones(1,nt);

x4 = x4*ones(1,nt);

x5 = x5*ones(1,nt);

del = ones(nx,1)*del;

a = (32/3*x1-128/3*x2+64%x3-128/3*x4+32/3*x5)./(h."4);
b = (-80/3*x1+96%x2-128%x3+224/3*x4-16*x5)./(h."3);

c = (70/3*x1-208/3*x2+76%x3-112/3*x4+22/3*x5)./(h."2);
d = (-25/3*x1+16*x2-12*x3+16/3*x4-x5)./h;

e = x1;

x = e+del.*(d + del.*(c + del.*(b + del.*a)));

end
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