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Abstract

Climate change is a major challenge of our time. Adapting to climate action is an economic and environmental
imperative. In order to enhance our climate resilience, we need to improve our understanding of climate change
impacts. Some of the most important impacts are temperature increase, more severe storms, increased drought and
warming and increasing ocean. Many of these impacts are interrelated and have many associated causes. An essential
need is to better understand the interdependencies between climate change cause/effect variables.

Earth observation data have a unique role for improving understanding of climate change, due to the fact that they
enable monitoring at several spatiotemporal scales with global coverage. Remote sensing technology can improve
climate change modelling but it also has some limitations. For example, multispectral and hyperspectral sensors can
provide data only during the day with no cloud coverage. On the contrary, SAR datasets can provide consistent data
flows day and night. The unprecedented increased volume of SAR/InSAR data can enable approaches that can hugely
benefit climate change adaptation actions. This dissertation contributes to enhancing the role of time series of
SAR/InSAR data for three climate change related topics.

The first topic is the study of TSInSAR methodologies that estimate ground deformations, as well as ground
deformation relationships with natural agents. Ground deformation is an essential climate change variable which is
connected to a) increasing groundwater extraction due to increasing droughts; b) permafrost thawing due to increasing
temperature and c) increased flood/sinking risk over coastal regions. A thorough analysis of several TSInSAR
methodologies for ground deformation is presented. First, an accuracy assessment of the vertical component of ground
deformation which was estimated from multiple orbit TSInSAR results is presented. Then, a detailed performance
analysis of several TSInSAR methodologies is provided. Next, a wavelet-based methodological approach able to
capture the relationships between driving factors and ground deformation is developed. Finally, a description of the
developed software package (INTERFERON) for ground deformation estimation from InSAR data is provided.

The second topic of this dissertation is the soil moisture estimation from InSAR time series. Soil moisture is an
essential climate variable which is mainly used for drought monitoring. Climate change is expected to increase the
probability of longer, intense, and frequent droughts over the world. An innovative methodological approach with its
open-source implementation (INSAR4SM), able to capture surface soil moisture information over arid regions is
introduced. A remarkable accuracy (RSME~0.035 m3/m3) of volumetric surface soil moisture estimations over an
arid region in California, USA at high spatial resolution (250 m) was achieved.

The third topic of this dissertation is floodwater mapping and monitoring by exploiting SAR time series data. Flooding
is one of the most impacting environmental hazards that causes huge economic damages. Climate change is expected
to increase flood events mainly due to extreme precipitation events. A methodological framework for unsupervised
floodwater mapping and monitoring using Sentinel-1 time series is proposed. Its robust performance (OA~ 0.97,
Kappa score~ 0.77) was demonstrated over several investigated flood cases around the world by the EMS, Copernicus
service. An open-source toolbox (FLOMPY) implements the proposed methodological framework and two case
studies that utilize FLOMPY s floodwater maps are presented. The first is related to flood damage assessment on

agricultural regions and the second is a sensitivity analysis of a coupled 1D/2D hydrodynamic model. Both case studies
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highlighted the FLOMPY s significant contribution to tackle scientific and socioeconomic issues related to increasing

flood events due to climate change.



Extetapévn Hepiinyn (Abstract in Greek)

H Aoty odhayn etvor o peydin tpoxinon g emoyns pog. Ot Spacels yio v TpoGapLOYn LOG OTN
KAapotiky] oAhayn etvor emtoktikny avaykn. I[pokeyévov va evioyocovpe v avlekTikdTTo Kot TV
TPOCUPUOCTIKOTNTA HOG OTNV KMUOTIKY oAloyr], Tpémel va katavonoovue o Pabog tic dvopeveic
EMNTMOGELS TNG 6T0 MEPPAALOV Kat otV otkovopia. Mepués amd TG mo CNUOVTIKEG EMNTAOGELS givar M
avénon g Beppoxpaciog, Ta Eviovo Kaptkd @orvopeva (Y. katoryides), n avénuévn Enpacia kot M
avénomn g otdbung g Bdhaccoc. [ToAAEC amd aVTEG TIC EMMTOCELS Eival OAANAEVIETEG Kal oyeTilovTal
pe pio TAnBopa mapayoviov. H épevva yio Ty KOADTEPN KOTAVONGT TOV UNYXOVICU®V, GYECEDV KOl
oAnie&optioemv HeTAED TOV OITIOV KoL TOV ENMTOCEDV TNG KAUATIKNAG OAAAYNG Vol TAEOV OVCLUGTIKN
ovAayK.

Ta dedopéva mapatipnong yng mailovv povadikd poro ot Peltimon g KaTOvONGNG TG KALLOTIKNAG
oAAoyNG, O10TL EMITPEMOVY TNV GULVEYN KOTOYPOPT] TANPOPOPIOG GE VLYNMAEC YOPIKEG OVOADGEIS WE
naykoco kdAoyn. Evd n tmieniokonnon umopei vo PeAtidoetl o peydlo Pabud t povielomoinon g
KMUOTIKNAG OAAOYNC, €XEL OPIOUEVOVS TTEPLOPIGLOVE TOL TPEMEL VO, GUVLTOAOYIGTOVV. [l Topadetypa, ot
TOAVQOGLOTIKOL KO VTEPPOAGLOTIKOL OEKTEG UTOPOVV VO TOPEYOVY OEGOUEVOL LLOVO KOTA TN SLUPKELD TNG
NUEPOS OTOV dev VTAPYEL VEPokdALYT. AvtiBeta, ol dékteg pavtdp cuvBetikol avoiyuatog pmopohv va
Tapéyovy 4edoUEVE KOl KOTA TN SEPKELN TNG VOXTAG aveEapTITOS Koptkdv cuvOnkov. H mpdoparn
paydaio. 0OENCM TOL OYKOL TV SESOUEVOV PaVTAP GUVOETIKOD OVOTYLOTOG EMTPEMEL TNV OVATTLEN VEOV
pebodoroyldv mov moAodTEP dEV NTOV SUVATH. TN GLYKEKPLUEVT S1OUKTOPIKY| dlatpiPr) Tapovcidletan
N SlEpPeguvNoN TOV SLVOTOTATOV LIAPYOLCMV HEBOJOAOYIDV Kal 1 avanTuén véwv pebodoloyidv Kot
AOYIOUIK®V TOKETOV TOV AELOTOI00V YPOVOGELPES OESOUEVAOV PAVTOP GLVOETIKOV OVOIYUATOS Y10 TPELS
Oepatikég evotnteg, ol omoieg oyetifovtal pe v KAPOTIK) oAAoyn. AVTEG €lval Ol TOPOUUOPPDGCELS
€04.povg, 1 £3APIKT| VYPACIO Kot 01 TANUUOPEG,.

[Ipata, a&oloyovviarl o1 peBodoroyieg EKTIUNONG TOV EGUPIKOV TAPALOPPDOCEDV Ond dedOUEVA pavTap
oLvOeTIKOD OVOLYHOTOG KOl GTN GUVEYELN OLEPELVAOVTIOL Ol PLGIKOL TAPAYOVTEC OV TIC Tpo&evovy. H
TOPUUOPPOGCT] TOVL E3GPOVG Eivar Hio BocTKT LETAPANTH TNG KAWLOTIKNG OAACYNG TOV GUVOEETOL LUE O) TNV
avénomn g AvTANoNG VIOYEIWV LOATOV AdY® TG avéavouevng Enpaciag B) v amoyvén Tov £50QIKOV
OTPOUOTOG TOV Tav UOVIUE 68 TayeTd, AOYm TG avénong g Bepuokpaciag kot y) tov kivovvo Bodiong
TOPAKTIOV TEPIOYDV KL ETOUEVAOC aENGNE TOV TANUUVPIKOV YeyovoTtwv. [Tapovoialetar pio deodikn
avéivon kot afloldynon opketdv uebodoloyiov emefepyociag ypovocelp®v pavtdp ouvOeTicon
OVOIyUOTOG Yo TNV EKTIUNGCT TOPOUOPPDOCEDV €0GMOVG. XTI GULVEXELWN, Olepevvdatal 1 axpifea Tng
EKTIUNONC TNG KATAKOPLPTG CLUVIGTAOGHS TNE TOPOUOPPMGTG TOV £6G.POVE TOV VIOAOYIGTNKE ad dedouévol
pavtdp cuvletikod avolypatog ToAamA®v Tpoymv. Enctta avarntocoetat pia nebododoyikn mpocéyyion

Bacwopévn oe kopatidw (wavelets) yio v e&étaon g cvoyétiong peta&d mopayoviov (aitidv) tng
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TOPOUOPPOONG KOl TNG TAPOUOPe®ONG &dapovs. Télog, meplypd@eTol TO TOKETO AOYIGUIKOD
INTERFERON 7ov avamtoydnke yio tnv eKTipno”n e TopapopPmong ToV €0GP0VG amd YPOVOsELPEG
GUUPOAOUETPIKMV SESOUEVDV POVTAP GUVOETIKOV OVOTYLLOTOC.

H devtepn Bepatikny evomnto g mopodoos SOOKTOPIKNG SaTpiPng elvar 1 extipmon g edapikng
vypaciog and cvpuPoropeTpikd dedopéva pavtap cuvheticod avoiypatoc. H vypacio tov ddpovg ival pio
Bootkr] KAMUOTIKY UETUPANTH TOL YPNOLUOTOLEITOL KLPIOG Yoo TNV Tapakoiovdnon g Enpaciag. H
KMUOTIK 0AAoyn ovopévetor vo avénoel v mlavotnra Yo PEYOADTEPES, EVIOVEG KOl TTO GUYVEG
Enpoocieg oe OA0 TOV KOoUO. Xty mapovoo SatpiPr), mpoteivetal po Kovotopog pebodoroyikn
TPOGEYYIOT, 1] OTTOi0 VAOTOMONKE e TNV avarTTLEN TOV AOYIGHKOD TaKETOL ovoyToy KMdtka INSAR4SM,
YL TNV EKTIUNGY] TNG EMPAVEINKNG VYpAciag Tov €ddpovg e epnukés meployés. Ilapovoidletar
epappoy” g o€ o Enpn meproyn oty Kaiipopvia tov HITA 6mov 1 oyKopeTpikt| enpavelakn vypacio
ekt Onke og vynAn ywpiky avéivon (250 m) pe a&oonueiotn akpifeio (RMSE ~ 0.035 m*/m?).

H tpim Bepatikn evotnto avtig e SdaKToptkng StatpiPrg eival 1 xopToypaenomn Kot 1 TopakoAovdnon
TOV TANUHVPICUEVOV EKTAGEMV 0EI0TOIMVTAG XPOVOGELPEG 0edOUEVOV pavTdp cuvOeTioD avoiypatog. Ot
TNppdpeg etvar €vog amd TOLG MO GNUAVTIKOVG TEPPAAAOVTIKODS KIvODVOUG OV TPOKAAEL TEPAUCTIEG
owovopkés Inuiés. H kApatikn adlayr avopéveral vo av&noetl ta gavopeve mAnppdpag koping Aoym
aKpaiov fpoyonTtdce®v. TNV Topovca datpPn Tpoteivetal £va KavoTopo nefodoroyikd TANIG1O Yol un
EMPAETOUEV]  YOPTOYPAPGNOT KOl TOPAKOAOVONGOT TANUULPICUEVOV  EKTAGEDV  YPNCUOTOLDVTOG
yxpovocelpég dedopévav Sentinel-1. H akpifeia tng uebddov (OA~ 0.97, Kappa score~ 0.77) vmoroyictnke
e€etalovtag ToALA TANUUVPIKE ETEIGOOIN GE OAO TOV KOGLO, Ta 0Toia £YovV peAetnOel amd v vanpecio
EMS COPERNICUS. To pefodoroyikd TAaiclo vAOTOMONKE 6TO TAKETO AOYIGUIKOD OVOLYTOV KMOUKO!
FLOMPY. Emnpocétmg, mapovoidlovral 600 Tepmtdoelg ol omoieg a&lomoloby v e&ayduevn amod to
FLOMPY minpogopia yio ti¢ mAnupuoptopéveg ektdoeic. H mpdt nepintwon oyetiletat pe v extipnon
TV (Nuov and TIANUUOPES e YEMPYIKEG TTEPLOYEG Kot 1 OEVTEPT &ival Uio, avaivon evaictnciog evog
oLlevYUEVOL VOPOSLVOULKOD HoVTEAOV. Kot 6Tig 000 TEPIMTMGEIC OMOSEIKVIETAL 1] CUAVTIKY) GLUUPBOAN

tov FLOMPY o¢ teyvikd Kot Kovmviko-otkovoukd 0€poata mov Tpokimtovy amd TV KAUATIKY GAA0YT.
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Introduction 1

1 INTRODUCTION

This doctoral dissertation deals with the subject of exploiting SAR and InSAR satellite data for
estimating ground deformation, soil moisture and for monitoring floodwater. The overall work crosses
boundaries between earth observation, remote sensing and data science disciplines to identify tools and
gain unique insights into the dissertation’s subject. This chapter aims to provide a brief introduction
highlighting the current challenges, the motivation, the objectives and the scientific contributions conducted
during the dissertation. A detailed description of the contributions of this work are presented in the

subsequent chapters.

1.1 Current Scientific Challenges and Motivation

Climate change is not a future problem, it is a major challenge of our time [1]. The need for climate
action is an undeniable fact for reducing our risks from the harmful effects of climate change. Adapting to
climate change poses challenges on whether and how to adapt activities, systems and sectors to a
continuously changing climate [2]. Moreover, as the frequency of climate-related extremes is increasing
more economic, social and environmental losses can be caused. Modelling of climate change impacts is a
crucial step for adaptation planning for a more resilient tomorrow.

The main impacts of climate change are temperature increase, more severe storms, increased
drought, warming and increasing ocean, health risks, hunger, poverty, and biodiversity loss [3]. Many of
these impacts are interrelated and have many associated causes. There is an unmet need to better understand
the interdependencies between climate change cause/effect variables [4]. Data related to climate risk and
losses are crucial to push the frontiers of climate change knowledge [5]. Continuous monitoring, reporting
and evaluation is also essential for a systemic climate change adaptation [1]. Finally, it is important to speed
up adaptation at a local and global level in order to ensure international climate resilience.

Earth observation data have been used for improving understanding of climate change. Remote
sensing enables monitoring at several spatiotemporal scales with global coverage [6]. Exploiting remote
sensing big data in conjunction with climate models and conventional observations, improved climate
projections and revealed new climate-related insights. However, remote sensing data uncertainties pose
challenges for extracting robust information [7]. These uncertainties can be related to biases in sensors
and/or retrieval algorithms. There is a need for building systems that make better use of remote sensing data
in climate change adaptation actions. In the next paragraphs, we provide a brief description to some of the

climate change topics where the use of remote sensing can be beneficial.
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Ground deformation is related to several climate change impacts. As we already described, water
scarcity can intensify the groundwater depletion and cause ground subsidence. This may cause serious
damages in buildings, cultural heritage assets, infrastructures, etc. with severe economic and social impact.
Another example is that the warming and the temperature fluctuations can cause land degradation over
permafrost regions [13]. Land degradation leads to increased risks to infrastructure and affects the water
and carbon cycle by altering the soil freeze-thaw state. Temperature fluctuations are reflected as ground
deformation mainly due to the freezing and thawing of the permafrost layer close to the ground surface
[14]. Another climate change impact is related to the sea level rise. In many densely populated coastal areas,
occurring ground subsidence can increase coastal flood events and magnify the impact of sea level rise
which will put a lot of regions below relative sea level. Last, but not least, ground deformation is an indicator
for many anthropogenic activities that are connected to climate change. One of the most important ones is
mining which is currently responsible for 4 to 7 percent of greenhouse-gas emissions globally [15]. Ground
deformation monitoring over a mining region is an essential need [16] during operation and also during
sustainable transformation process [17] to minimize its climate impact. The sparsity of ground equipment
is considered a huge limitation for understanding and modelling ground deformation dynamics. TSInSAR
remote sensing technology using SAR data can make a huge impact by providing invaluable ground
deformation estimations [19]. Moreover, the increasing number of SAR satellites and the unprecedented
increasing volume of InNSAR data offer huge potential for methodological improvements and are important
motivation factors for this dissertation.

Climate change increases the probability of longer, intense and frequent droughts over the world
[8]. Droughts are caused by high evaporation due to temperature warming and by water sparsity due to less
precipitation. Increased precipitation variability due to climate change can also lead to longer periods of
droughts. Droughts are directly connected with groundwater [9] usually over agricultural regions. A
conjunctive analysis is required to better understand the interconnections between drought and groundwater
to create a better water management plan. For drought monitoring, soil moisture is considered one the most
essential variables [10]. Due to the limited number of ground soil moisture stations, satellite derived soil
moisture information is considered an excellent alternative for soil moisture monitoring. For groundwater
monitoring, due to the sparsity of water-level data and in-situ ground deformation observations, remotely
sensed ground deformation can be used alternatively [11]. TSInSAR technology can provide accurate
ground deformation estimations at high spatiotemporal scales which can be used to track groundwater
fluctuations [12].

Flooding is one of the most impacting environmental hazard that causes huge economic damages
[20]. The climate-related changes in temporal distribution and intensity of precipitation events is expected

to increase flood risk [21]. To mitigate the flood casualties, remote sensing can provide invaluable data that
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can be used for flood monitoring and forecasting. Especially SAR sensors which are able to provide data
under all-weather conditions, day and night, have an essential role in flood monitoring [22]. The big volume
of SAR data with high spatiotemporal resolution offer huge potential for methodological improvements in

order to provide accurate floodwater monitoring solutions.

1.2 Objectives

The main objectives of this thesis are outlined as follows:

Objective 1: Assess the performance, interpretability and potential of TSInSAR methodologies for ground

deformation estimation. This objective can be divided into accuracy assessment of vertical ground

deformation from multiple track TSInSAR results; comparison methodology based on the results produced
from different TSInSAR methodologies; discussion of advantages, limitations and critical factors that are
related to the performance of several TSInSAR approaches and development of a methodology for the
identification of the driving factors of ground deformation which will help the interpretation of TSInSAR

estimations.

Objective 2: Development of a methodology for soil moisture estimation using InSAR observations. This

objective can be divided into a) review of the existing soil moisture estimation approaches that exploit
InSAR observations; b) innovative methodological workflow and c) real world application to demonstrate

the performance of the proposed methodology.

Objective 3: Development of a methodological framework for floodwater monitoring using SAR datasets.

This objective can be thought of as a) development of an unsupervised methodological framework for
floodwater monitoring/mapping using SAR datasets and b) development of real world applications that

address problems related to flood modelling and flood disaster assessment.

Objective 4: Release developed research code as open-source software. This objective is inspired by the

FAIR (Findability, Accessibility, Interoperability, and Reusability) data principles.

1.3 Scientific publications and software

Most of the work in the framework of this doctoral dissertation has been disseminated through a number of

scientific publications and published scientific software as listed below.

Journals
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Karamvasis, K., & Karathanassi, V. (2020). Performance Analysis of Open Source Time Series
InSAR Methods for Deformation Monitoring over a Broader Mining Region. Remote Sensing,
12(9), 1380.

Karamvasis, K., & Karathanassi, V. (2021). FLOMPY: An Open-Source Toolbox for Floodwater
Mapping Using Sentinel-1 Intensity Time Series. Water, 13(21), 2943.

Karamvasis, K., & Karathanassi, V. (2022). Soil moisture estimation from Sentinel-1

interferometric observations over arid regions. Computers and Geosciences. (under review)

Author Contributions: For all the journal articles, I came up with the idea, designed the methodology,

implemented all the source code, conducted all experiments and prepared the original manuscript draft. The

manuscripts were revised and edited by Prof. Vassilia Karathanassi.

Conferences

Karamvasis, K., & Karathanassi, V. (2019). Multi-track N-SBAS Sentinel-1 Interferometry
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1.4 Thesis Roadmap

The following chapters in this dissertation are briefly summarized below: Chapter 2 constitutes of the work

related to ground deformation estimation from TSInSAR methodologies. In Chapter 3, we introduce a

methodological pipeline for estimating soil moisture from InSAR observables (interferometric coherence

and phase closure) over arid regions. In Chapter 4, the work related to floodwater mapping using

multitemporal SAR observations is presented. Finally, in Chapter 5 we provide concluding remarks and

suggestions for future work.
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2 GROUND DEFORMATION ESTIMATION FROM TSINSAR
METHODOLOGIES

In Chapter 2, the work related to ground deformation estimation using TSInSAR methodologies is
presented. In section 2.1, we provide an introduction and specific research questions that we will try to
answer. Next, in section 2.2, the main theoretical concepts of several TSInSAR algorithmic approaches are
described. In section 2.3, three case studies using TSInSAR approaches are presented. In the first case study,
a multi-track TSInSAR approach able to estimate vertical and horizontal over a mining region is presented.
In the second case study, a performance comparison between three TSInSAR open source implementations
over an extended mining region is presented. In the third case study, a wavelet-based approach to explore
the connections of five potential driving factors (surface soil moisture, precipitation, lake water area
variations, NDVI and ground temperature) with ground deformation results from TSInSAR is presented. In
section 4, a brief description of the in-house software package Interferon is provided. In Section 5, the

conclusions regarding TSInSAR studies for ground deformation estimation are presented.

2.1 Introduction

Ground deformation information can be acquired from various techniques. Traditional ground-
based methods such as leveling and GNSS (Global Navigation Satellite System) are widely used and
considered the most accurate and well-developed methods [23]. However, for extended areas, the
aforementioned techniques are labor-intensive and limited in spatial coverage and density. By contrast,
TSInSAR can obtain surface deformation along the LOS exploiting the phase information of the SAR
images acquired at different times.

TSInSAR techniques were proven to be powerful tools and have gained increasing attention
because they can provide at all-times, all-weather deformation information in a wide area. This is related
to the recent advances in terms of the temporal/spatial resolution and coverage of satellite data, the
processing chains and the increase of the computational capabilities (parallel processing, cloud computing)
[24]. A lot of TSInSAR techniques have been developed and widely applied in many fields such as
earthquake displacement [25], volcanic activity [26], groundwater/gas extraction [ 18], landslides instability
[27], [28], urban subsidence [29], and mining activity [30]. A brief summary of the most important
TSInSAR methods is presented in the next paragraphs.

The oldest and first group of TSInSAR approaches focuses on a subset of points (called measurement
points) that have high phase stability and are referenced as persistent scatterer (PS) methods [31]-[34]. PS
methodologies extract the measurement points from a single-master network interferograms and can

achieve even submillimeter accuracy [35]. The main selection strategies of the measurement points are
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based on their phase variation in time [31] or on the correlation of their phase variation in space [34]. Many
applications of PS methods can be found for urban environments. An open-source implementation of a PS
methodology is provided by Stamps toolbox [34], [36].
The second group of TSInSAR approaches focuses on exploiting a redundant network of multi-master
interferograms that have small temporal and spatial baselines. These approaches are referred to as Small
BAseline Subset (SBAS) methods [37]. The network of the SBAS methods consists of unwrapped
interferograms that can be fully-connected or form isolated clusters over time. Fully-connected networks
are inverted using least square estimation or L1-norm minimizations [38]. Non-fully connected networks
are inverted/solved using singular value decomposition or a regularization constraint to obtain physically
sound solutions [37], [39]. Open source implementations of SBAS methodologies are provided in several
software packages, such as GMTSAR [40], Giant [41], Stamps [36], MSBAS [42], Pyrate [43] and, Mintpy
[44].
The third group of TSInSAR approaches exploits all the possible interferograms of a given set of SLC
acquisitions [45]-[47]. Similar to the aforementioned techniques, the goal of the network inversion is to
obtain optimal and noise-limited phases of the given SAR acquisitions. Maximum likelihood estimator [48]
and eigenvalue decomposition of the covariance matrix [49], [50] are some of the tools that can be used for
optimal phase estimation. The main characteristic of these methods is that the network inversion is
performed before phase unwrapping. Another important characteristic of these methods is the preprocessing
of the distributed scatterers in order to be processed by PS algorithms. The preprocessing step enables the
joint processing of distributed and persistent scatterers, which increases coverage with high accuracy
deformation retrieval. This is due to the fact that the estimator of a distributed scatterer signal provides
triangular phase that enables spatiotemporal (3D) unwrapping, which is superior to 2D unwrapping [51].
The main limitation of these techniques is the computational complexity given the big volume of SAR data.
The unprecedented availability of open SAR data, open source interferometric software packages as
well as the ready-to-use interferometric products such as ground displacement maps, resulted in their wide
use by a range of stakeholders such as scientists, institutional organizations and the commercial sector.
Furthermore, in recent years, many algorithmic approaches and improvements able to exploit the large
amount of multi-temporal interferometric SAR data and provide high accuracy ground deformation results
have been developed. However, the repeatability and the reliability of multi-temporal interferometric
processing still remains an open issue, mainly due to the ongoing and continuous algorithmic improvements
[52]. Different processing methodologies may produce inconsistent ground displacement results. Moreover,
the high complexity of the interferometric SAR signals makes interpretation a challenging task [53].
In this chapter, the three published case studies related to ground deformation from TSInSAR

methodologies are presented. In the framework of this dissertation, the main objectives of this chapter are:
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e Examine the accuracy of vertical ground deformation estimations from multiple track TSInSAR
results.

e Develop a comparison methodology for results from different TSInSAR methodologies.

e Present the positive and negative sides of several TSInSAR approaches in respect to environmental
conditions, accuracies and spatial coverage.

o Present the critical factors that are related to the performance of several TSInSAR approaches and
present some best practices.

e Develop a methodology for identification of driving factors of ground deformation that will help

the interpretation of TSInSAR estimations.

2.2 Description of TSInSAR methodologies/implementations

a) Interferograms | _ b) Interferograms
€ 125} « SAR acquisitions £ 125 " ——— « Secondary SAR acquisitions
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Figure 2.1 Interferogram network types a) fully connected network for Mintpy, Giant and Stamps/MTI approaches b)
single master network for Stamps-PS approach

2.2.1 Mintpy-Miami InSAR Time-Series Software in Python

The Mintpy toolbox is a python 3 software for small baseline InSAR time series analysis. The input
is a stack of differential interferograms that form a fully connected network (Figure 2.1a). Interferograms
have to be already unwrapped with small geometric perpendicular and temporal baselines for maximizing
their quality. For modern SAR constellations with small orbital tube and short revisit time, such as Sentinel-
1, a fully connected network of interferograms can easily be formed. The input stack can be generated using
among other tools, the Interferometric SAR Scientific Computing Environment ISCE [54]. The main steps
of the interferometric processing performed by ISCE are orbit correction, de-burst, co-registration,
interferogram generation and adaptive filtering, subtraction of topographic phase using given Digital

Elevation Model (DEM) and 2D (space) unwrapping.
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The Mintpy toolbox consists of three main processing steps a) the raw interferometric phase time
series calculation b) the correction of the raw phase time series from error sources and c) the noise
evaluation step that results in the exclusion of noise SAR acquisitions and the final calculation of noise-
reduced displacement time series. Moreover, in order to have a quality index for the extracted deformation
values, temporal coherence is calculated for each pixel according to [55].

The first processing step of Mintpy is the inversion of the input redundant, fully connected stack
via an unbiased weighted least square estimator in order to acquire raw time series of interferometric phase
for each date. The weight information can be related with a uniform behavior or no weighting [37], spatial
coherence at pixel level [56], [57], inverse of the phase variance [58], and nonparametric Fisher information
matrix (FIM) [50], [59]. For this study, only the inverse of the phase variance weighting was selected
because, according to [48] and for a small number of looks [44] the inverse of phase variance as a weighting
factor gives the most robust and one of the best performances for network inversion.

The second processing step is the correction of the raw inverted phase time-series from phase error
sources at the time domain. Deterministic components such as tropospheric delays, topographic residuals
and/or phase ramps are preserved after inversion and can be suppressed in the time-series domain in order
to obtain a time series of noise-reduced displacement. Moreover, a correction scheme of 2D unwrapping
procedure errors with a variety of approaches is offered. The unwrapping correction method that was
selected is related with the phase closure of triplets of interferograms, based on the assumption that the
SAR phase field is conservative [25].

The third processing step is the noise evaluation of each SAR acquisition in terms of residual phase.
Mintpy considers the residual phase as a combination of residual tropospheric turbulence, uncorrected
ionospheric turbulence, and the remaining decorrelation noise. The root mean square error of the residual
phase is calculated for each SAR acquisition after a quadratic deramping [60] over the reliable pixels that
are used in the network inversion. The identified noisy acquisitions are excluded and the topographic

residual and velocity estimation is performed for a second time.

2.2.2 Giant - Generic InSAR Analysis Toolbox

The Giant toolbox [41] was developed for small baseline InSAR time series analysis in python 2.
It requires a stack of differential geocoded or slant-range unwrapped interferograms (Figure 2.1a) for the
extraction of ground deformation time evolution information. The input interferogram stack can be

generated among other tools using ISCE [54].
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The first step is the preparation of the interferograms stack by applying phase correction schemes.
Firstly, a deramping correction scheme at a network level [25], [61] is applied. Secondly, a tropospheric
correction scheme based on ERA-5 atmospheric model [62] is applied.

The next step is the inversion of the interferograms stack to obtain deformation information.
Conventional SBAS [37], NSBAS [39], [62], [63] and Multiscale InSAR Time-Series MInTS [64] are the
available inversion choices. Conventional SBAS uses singular value decomposition to redundant
information from the interferometric stack to provide ground deformation time series. The main difference
of NSBAS with respect to the conventional SBAS technique is that NSBAS includes constraints from user
predefined temporal functions to join islands of disconnected interferograms. The main differences of
MInTS with respect to conventional SBAS technique are firstly the transformation of the interferometric
phase into the wavelet domain before the temporal inversion and secondly the description of the time
evolution of the ground deformation by predefined functions. In all the strategies, the inversion operation
is performed in each pixel separately subject to coherence and valid number of observation criteria. In this

dissertation, only Giant-NSBAS approach was considered.

2.2.3 Stamps - Stanford Method for Persistent Scatterers

Stamps consists of a PS and a combined PS and SBAS (Stamps/MTI) processing workflow which
are briefly described below. Comprehensive algorithm descriptions can be found in [33], [36], [65].

The Stamps-PS approach (Figure 2.1b) is based on spatial correlation of interferometric phases.
Conventional PS methodologies [31] extract deformation over high amplitude pixels assuming a well-
defined phase history. Furthermore, the phase history of each pixel is compared with a predefined temporal
deformation model. Stamps-PS implementation is based on the stable spatial phase characteristics and is
able to extract deformation over low-amplitude pixels without prior knowledge of temporal deformation
behavior. However, the assumption that the deformation is spatially correlated is not true for isolated
movement of individual scatterers which are considered as noise. Stamps-PS approach has a lot of
applications in urban and non-urban areas like volcanic regions.

The combined Stamps/MTI approach (Figure 2.1a) is able to combine information from PS and
SBAS at a full resolution and have some clear advantages over conventional multilooking SBAS
approaches. It was observed that multilooking procedure may include pixels that completely decorrelate
and add noise to the multilooked pixel. In this direction, adaptive multilooking approaches have been
developed [46]. The full resolution processing that Stamps/MTI adopts, mitigates the noise from traditional
boxcar multilooking procedures. Moreover, Stamps/MTI performs the unwrapping of the phase in three
dimensions (space and time) and therefore produces more robust results in respect to two dimensional

(space) unwrapping algorithms [34].
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Both approaches include a selection strategy of pixels that the deformation information will be
extracted. First, for computation reduction reasons an initial selection of pixels that are expected to be either
persistent scatterers or slowly-decorrelating filtered phase (SDFP) pixels through amplitude dispersion
analysis [65] is performed. For the selected pixels, a spatially-correlated part of interferometric phase is
estimated by bandpass filtering of the surrounding pixels. The spatially-correlated part consists of phase
due to ground displacement, atmospheric phase delay, orbit errors and spatially-correlated height error.
Moreover, for each measurement point, a spatially-uncorrelated height/DEM error is estimated from its
correlation with perpendicular baseline. By subtracting the spatially-correlated part and the spatially-
uncorrelated height error from raw wrapped interferometric phase a temporal coherence metric is calculated
for each measurement point. Then, a thresholding approach on the aforementioned coherence metric is

performed to select the measurement points that are going to be processed.
2.3 Ground deformation case studies

2.3.1 Multi-track N-SBAS Sentinel-1 Interferometry focused on opencast mine monitoring: The

case study of the Ptolemaida-Florina coal mine in Greece

2.3.1.1 Introduction

Deformation monitoring in mining areas has a great importance because mining activities impact
the nearby environment and may cause severe mining hazards [66]. From the “interferometric” point of
view, the mining areas have some special issues that have to be addressed. First of all, it is the loss of
coherence that is usually caused by the mining operations that prevent the detection of ground surface
deformation [67]. Secondly, the low density and the inhomogeneous distribution of persistent scatterers in
the mining regions limit the use of high-accurate persistent scatterer methods [68], [69]. In contrast, SBAS
techniques allow the measurement of surface displacements in low reflectivity areas like scattered outcrops,
bare soil areas, debris areas that are usually found in mining regions [70].

In this study, a Sentinel-1 multi-track methodology based on N-SBAS [39] is presented. The main
objective of this case study is to explore the deformation monitoring ability of the proposed methodology
in mining regions. The case study of the Ptolemaida-Florina coal mine in Greece helped us to outline the
strengths and the limitations of the proposed methodology. Validation between multi-track N-SBAS and
levelling measurements was conducted. The output of this case study shows the effectiveness of the
Sentinel-1 constellation for the monitoring of ground subsidence over non-active mining areas. The results

can be useful for management, risk analysis and planning of mining operations.
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2.3.1.2 Methodology

One of the limitations of deformation measurements made with TSInSAR techniques is that they
provide only one component of the surface deformation in the satellite’s line of sight (LOS) [71]. The
availability of ascending and descending tracks of Sentinel-1 constellation that cover the same region is
important in order to resolve the 3D surface deformation. Each orbit/track can yield only a single
deformation measurement along LOS (Figure 2.2) so multiple orbits should be exploited in order to estimate

northing, easting and vertical components.
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Figure 2.2 The SAR imaging geometry and the relationship between LOS deformation and
the vertical, North-South and East-West components. 6 and a are the radar incidence angle
and the orbit azimuth angle, respectively.

According to Figure 2.2, the following equation derives [71], [72]:

dios = dycosf + sinf(dysina — dgcosa) 2.1

Where d;os = deformation along LOS; dy,dy,dg = vertical, North-South, East-West deformation
components; & = heading angle; 8 = incidence angle

From a theoretical point of view, in order to be able to resolve the 3D deformation components at
least three LOS deformation measurements are required. Due to the high computational cost to obtain
deformation time series for three tracks, a method that combines information from neighboring pixels is
proposed. The main assumption of the method is that a subset of the neighborhood pixels share the same
deformation behavior with the central pixel for which we want to obtain the 3D deformation components.
The neighborhood pixels are defined by a 3x3 window. The gradient information is the criterion for
neighborhood pixel selection. Gradient is estimated using a DEM with better resolution than the SAR grid.

Two neighborhood pixels with the most similar gradient with the central pixel are selected for the solution
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of the system of equations (2.1). In the following section a case study in Ptolemaida-Florina mine is

presented.

2.3.1.3 Study area and datasets

The area of interest is located in the region of Western Macedonia (Kozani), Greece, which is
considered one of the most important industrial areas in Greece. In particular this work focuses on a part of
the Ptolemaida-Florina opencast lignite mine, illustrated in the left part of Figure 2.3. Due to the mining
activities in the AOI “unstable” regions were delineated. In Figure 2.3, the “unstable” regions are denoted
with a gray color. In these regions, TSInSAR techniques cannot provide reliable results due to strong
decorrelation of the SAR signal. The main objective of the case study is to examine the stability of the zone
along “Soulou” water stream that could potentially provide insights about the risks of the existing
transportation network inside the mining area. For the validation of the results of the proposed methodology
10 leveling points located in the buffering zone along the “Soulou” water stream have been used.

A total of 249 Sentinel-1 TOPS IW acquisitions from the descending track 80 and the ascending
track 102, spanning two and a half years have been processed. Around 1400 interferograms were created
and processed with the multi-track Giant-NSBAS technique that was described in the previous section. The
processed area is about 4x8 km?. The earlier scene of each orbit stack was selected as the zero-deformation
reference image. As an external DEM, a photogrammetric DEM with ground pixel size of 5 m, provided

by KTIMATOLOGIO S.A. is used.
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Figure 2.3 Study area (part of Ptolemaida-Florina coal mine) and available datasets
(Sentinel-1 and leveling). Reference system is WGS84 UTM34N. The background image
is a very high resolution optical image © Google Earth Copyright 2018

2.3.1.4 Results and validation

In this section the most significant results are reported and analyzed. In Figure 2.4 the cumulative
displacements for the time period from the start of 2016 till the half of 2018 are presented. The pixel size
of each map/grid in Figure 2.4 per each component is 15m. It can easily be identified that the vertical
displacement values are relatively higher than in the other directions. Looking closely at the vertical
component the subsidence zone (red ellipse) close to the active mining regions (gray regions) can be
identified. It is important to state that for each point in the grid the time series of displacement are calculated.
Inside the subsidence zone, the time series displacement information of a point (bottom right of Figure 2.4)
is presented. Different linear components of the deformation in a time sense can be identified. The

decreasing behavior of the subsidence rates is clearly evident.
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Figure 2.4 Cumulative displacement components from Figure 2.5 Time series of vertical ground deformations in

10/1/2016 to 5/7/2018. Time series of displacement correspondence of six locations the subsidence zone. The

inside the subsidence zone (bottom right). nearest centroid of the deformation grid was selected
according to location of the leveling point.

The validation procedure has been performed by comparing the vertical component of multi-track
N-SBAS approach with the levelling measurements in the levelling points close to the subsidence zone
(Figure 2.5). In Figure 2.5, for each point, the evolution of the subsidence according to leveling
measurements and to multi-track Giant-NSBAS estimations (denoted as SAR estimations) is presented. In
most cases, SAR estimations tend to overestimate subsidence values. On the other hand, the subsidence
rates between the two different methods are in good agreement. The overall RMSE between all (160) the

leveling measurements at 10 leveling points and the multi-track N-SBAS estimations is 1.07 cm.
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2.3.1.5 Discussion and conclusion

The above results demonstrate that the subsidence zone along a part of the “Soulou” water stream
can be identified by the proposed methodology. In particular, subsidence and subsiding trend can be
estimated with centimetric accuracy with the proposed technique over a complex mining environment. The
subsidence is possibly connected with operations in the mine. However, the interpretation of the
measured/observed deformation patterns is a complex task and requires the knowledge of the geological,
tectonic, hydrogeological and geotechnical conditions. A deeper understanding of the subsidence
mechanism requires more investigation.

The validation of the methodology for average subsidence values and subsidence rates showed that
the proposed method can provide high temporal/spatial resolution and accurate subsidence information. In
other studies such as [46], millimetric accuracy level has been achieved using an approach mainly based on
persistent scatterer interferometry. Due to the absence of persistent scatterers in the study area, the
centimetric level of accuracy is considered satisfactory. Combining InSAR and leveling measurements can
be a good strategy to better monitor the subsidence of the area of interest. One possible solution for better
monitoring of the subsidence phenomena can be the following: (1) to detect the hotspot areas using the
multi-track Giant-NSBAS technique over the whole region and; (2) to plan ground survey measurements
and collect precise ground information about the hotspot areas.

One of the most important limitations of the proposed method is related to the orientation and the
slope of the ground. In steep-slope regions, the reliability of the interferometric estimations is decreased
mainly due to geometric distortions of the SAR signal [23]. The geometric distortions also affect the spatial
resolution of the SAR sensor which will cause lower spatial resolution of the final deformation results.

Another limitation factor of the proposed method is the 1- dimensional measurement of SAR
systems in the LOS direction [71]. Moreover, due to the current near-polar orbiting SAR sensors the
accuracy of each estimated component is different. The north component is considered the most difficult to
determine, due to the small angular separation of the different LOSs in respect to the South-North direction
[71]. In other studies, 3D deformations have been resolved using offset-tracking azimuth techniques [73]
and multi-aperture InNSAR techniques [68], [74]. The aforementioned techniques are valuable tools mainly
in studies of large-scale displacement events like earthquakes, volcano eruption, glacier dynamics but they
cannot provide sufficient accuracy for small-scale deformation phenomena [75]. The proposed approach
which is based on the combination of multiple track interferometric results can produce estimations with
sufficient accuracy at the vertical direction. Even though a lot of methods that resolve the 3D deformation
components have been developed, it remains unclear which approach is the most suitable for each case

[75].
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One of the benefits of the proposed method is that the produced results can support decision makers
for mining risk management and disaster awareness. The fact is that active mining operations are well
monitored by the mining authorities. However in abandoned mines or abandoned regions of the mines even
though they have been considered secured, hidden factors can cause geohazards at any time [76]. The
proposed method can provide critical information to mitigate fatalities and ensure the safety of mining
operations and local societies during pre-mining, mining and post-mining periods.

The multi-track Giant-NSBAS method yielded deformation results with centimetric level of
accuracy at the vertical component. It has to be tested in regions with different conditions and to be
compared with other methods. The results of the proposed method can be used for further planning of the
ground surveys from mine authorities. Using Sentinel-1 free data the proposed method can provide regional
coverage and continuous delivery information with no cost. The produced results can support decision

making authorities for risk mitigation and sustainability.

2.3.2 Performance Analysis of Open Source Time Series InSAR Methods for Deformation

Monitoring of Ptolemaida-Florina coal mine

2.3.2.1 Introduction

Ground movements and surface deformation on mines can lead to instabilities and slope failures
that can cause risks to personnel, equipment and production [77]. The main limitations in our ability to
monitor deformation in mining regions are the difficult and fast changing conditions caused by the ongoing
mining activity. In order to successfully monitor the complex spatial and temporal behavior of the
deformation in mining regions, a monitoring system with suitable spatial density of measurement points
(MPs) with a high measurement frequency is required. In most cases, the monitoring techniques of such a
system can be divided into two main categories. The first category is related to surveying techniques that
determine the absolute and relative positions of certain points. The most popular surveying instruments that
are commonly used are GNSS (Global Navigation Satellite Systems), total stations, levels, Terrestrial Laser
scanners, Ground-based SARs, and photogrammetric cameras. The second category is related to the use of
geotechnical equipment such as extensometers, piezometers, inclinometers etc. The aforementioned
conventional techniques can provide high quality measurements but are limited by their operation and
maintenance cost.

Due to the high maintenance and operation cost of the aforementioned deformation monitoring
strategies, alternative approaches based on remote sensing data can potentially improve the monitoring
procedure in terms of cost and accuracy. TSInSAR methodologies are capable to extracting the time series
of ground deformation from a set of SAR acquisitions [78]. In the mining world, to our knowledge, there

are only a few organizations that are using TSInSAR deformation results in existing deformation
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monitoring systems. Open source tools play a crucial role in this respect. Nowadays, the availability of the
TSInSAR algorithms will enable mining organizations and interested stakeholders to generate their own
SAR derived ground deformation estimations. Given the fact that most of the mining organizations perform
ground surveys for deformation measurements, open source TSInSAR estimations can be assessed and
validated, and capabilities and limitations of each TSInSAR approach can be pointed out. However, an
assessment and comparison approach of the results between different TSInSAR approaches and the in-situ
measurements is missing. In fact, this will not only provide best practices and insights on the preferred
existing methodological strategies over mining regions but also will potentially support the rapid evolution
of algorithmic approaches that will make optimal use of big data in terms of accuracy and computational

cost. Therefore, the following comparison methodological framework is proposed.

2.3.2.2 Comparison framework

The proposed comparison methodological framework consists of three steps. The first step is the
conversion of the TSInSAR results to vector GIS compatible format with common attributes. Raster
datasets from each of the selected open source TSInSAR tools (Stamps, Giant, Mintpy) are converted to
TSInSAR point vector datasets mainly for visualization reasons and also to benefit from GIS processing
tools. The common structure of the vector data from different TSInSAR tools is suitable for post-processing
and comparison analysis.

The second step is the identification of the homologous points between the different TSInSAR
point vector datasets. For every pair of vector datasets, a set of points for comparison is selected using a
geographical distance criterion. For every point in the first TSInSAR result, the point from the second
TSInSAR result with the nearest distance is selected. If this distance is below the predefined geographical
distance, then this pair of points will be compared. For each pair of TSInSAR point vector datasets, a vector
file including the comparison points is created.

The third step is the calculation of the similarity metrics for each point. Similarity metrics are
important for an insightful comparison of time series data. The selection of the similarity metrics is required
for optimizing grouping that can potentially reveal distinctive time-dependent processes related with
deformation or noise sources. The Euclidean distance metric was selected because a) can provide robust
results in a wide range of applications [79] and b) can provide insights because the unit have the same units
as the input data. Moreover, the dynamic time warping method [80] has been used. Dynamic time warping
method can handle time series that don’t share the same exact time of observations, like the deformation
time series that have different observation dates when they come from different sensors, different orbit

geometries or result from different algorithms that exclude some observation dates. The Euclidean distance
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metric is expressed as the RMSE by setting the one TSInSAR point vector dataset as a reference dataset

and the other as test dataset. RMSE is calculated according to the following formula:

" ,
YitF (dnetnoas — methoan)’ 2.2)

RMSEHP = NSA — 1
Rs

Where, Ngugs is the total number of common used SAR acquisitions for methods A and B, HP is the
homologous point that is and, dl,,;n0q4 is the ith LOS deformation estimation of method A.

The above steps enable the spatial identification of agreements and disagreements between TSInSAR
results in terms of deformation and deformation rates. The spatial identification of these agreements can
provide insights regarding the performance of each algorithm. The interested user can focus on particular
regions to identify the common deformation patterns or to search potential uncorrected error sources among

the different TSInSAR results.

2.3.2.3 Study area

The area of interest is located in the region of Western Macedonia, in Greece, which is one of the most
important industrial areas of the country. The land cover classes in the area can be categorized into three
main classes according to Corine level-1 land cover classes [81]: artificial surfaces, agricultural areas and
forest/semi-natural areas. Interferometric coherence is different for each land cover class and is exploited
in a lot of land cover classification studies [82], [83]. The different backscattering properties of each land

cover can affect the density of the TSInSAR measurements [84] as well as their expected accuracies.
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Figure 2.6 Corine land cover level-2 classes of the study area (Source Copernicus Land Monitoring Service [81]).
a) The spatial extent of the AOI is denoted with the red dashed rectangle. b) Sentinel-1 footprint is denoted with
filled red rectangle. Reference system is WGS84. © Google Earth background map Copyright 2018.



Ground deformation estimation from TSInSAR methodologies 20

Active mining regions due to fast changing conditions need special treatment. There are regions
inside the mine that are under work for certain time periods and other regions that are inactive. Fast
changing surface properties result in temporal decorrelation. The study area is included in the dashed red
rectangle and is around 357 km?2. This work focuses on the part of the Ptolemaida-Florina opencast coal
mine, which covers around 90 km2, illustrated with gray color in Figure 2.6a. Since the 1960s, Ptolemaida-
Florina mine has been one of the main sources of energy production for the country and is owned by Public
Power Corporation S.A.-Hellas [85]. Since 2020, according to the European Commission, the particular
coal region is included in the transition initiative that will lead to mine closure. The gradual decrease of
mining operations is an interesting subject for the study of post-mining deformation using TSInSAR

techniques.

2.3.2.4 Datasets

Due to the expected temporal decorrelation of the mining regions, SAR data from short revisiting
(6-day) Sentinel-1 constellation from ESA (European Space Agency) are used. Sentinel-1 consists of two
satellites namely, Sentinel-1A and Sentinel-1B that were launched in 2014 and 2016, respectively. Sentinel-
1 constellation is a polar-orbiting radar imaging system working at C-band (~5.7 cm wavelength). A total
of 125 Sentinel-1 TOPS IW acquisitions from the descending track with relative orbit number 80, dating
from 2016 till middle of 2018 have been processed. All the data are in the Single Look Complex (SLC)
format and only the VV polarization is considered. All the employed S1 acquisitions were snow-free. The
input SLC stack is prepared using ISCE Topstack functionality [86].

Due to the great importance of the stability of the transportation network, leveling measurements
were performed in the “Soulou” region from June 2016 to the end of 2016. Leveling measurements for 7
points that are located inside the “Soulou” region Figure 2.7 are used for the validation of the TSInSAR

results.
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Figure 2.7 In-situ deformation measurements. a) Location of levelling points in Soulou region (light
blue rectangle). b) The spatial extent of the AOI. Reference system is WGS84. © Google Earth
background map Copyright 2018.

As an external DEM, a photogrammetric DEM with ground pixel size of 5 m, provided by
KTIMATOLOGIO S.A is used. The aforementioned DEM was created in the years 2008-2009 and is more
recent in respect to the SRTM DEM.

2.3.2.5 Experimental Results

In this section the generated results of the selected algorithms from the open source TSInSAR
software packages are presented (Figure 2.8). It is important to state, that because of the high inconsistencies
in the connected components of the 2D unwrapping procedure resulting from the available 12-day
interferograms at the start of 2016, the Mintpy processing was performed only for 6-day interferograms
(from October of 2016 till June of 2018). Stamps and Giant results refer to the time span from January 2016
till June 2018. All the results are differential in space and time. They are spatially related to the same
reference point (Figure 2.8) that is located in a very high coherent region of Ptolemaida town. Temporally,
the latest date of the SAR acquisition dataset is selected for all the approaches. The temporal reference has
been changed to the first available satellite acquisition after the inversion of each algorithm approach. All

the results are referring to the LOS sensor to target direction.
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Figure 2.8 LOS deformation rate results of open source TSInSAR approaches. a) Google earth optical image
at 2018. AOI is denoted with the red dashed rectangular. Mining region is denoted with purple polygon. b)
Temporal coherence of the SAR dataset from Mintpy. c¢) Stamps Permanent Scatterers (PS) results d)
Stamps/MTI results e) Mintpy-WSBAS results f) Giant-NSBAS results. Red color indicates subsidence while
blue showing uplift.

In Figure 2.8, it is obvious that the density of measurement points for each selected algorithm is
varying. The following can be related with the temporal coherence Figure 2.8b that can be considered as an
index for the resulting point density. Temporal coherence can yield values from zero to one. According to
Figure 2.8, over bright regions such as urban areas, rocks, roads, abandoned parts of mining regions, which

preserve their scattering properties, a high density and good quality result is expected. Over the darker
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regions, such as forests, crops, and active mining regions, due to temporal decorrelation, a sparse and low
quality result is expected. In particular, the Stamps-PS method yielded around 100K measurement points
over the high coherence regions. Using the combined Stamps approach that merges PS and SBAS results
the measurement points increased to 135K. It is important to state that oversampling is not implemented in
the Stamps processing chain, something that is expected to increase the density of MPs [87]. Mintpy-
WSBAS and the NSBAS approach that is included in the Giant toolbox outperformed in terms of
measurement point density and yielded 900K and 1300K points, respectively. Spatial patterns of ground
deformation can be extracted easier from the results of these TSInSAR approaches.

All the algorithms performed similarly over urban areas. The deformation rate of spatial patterns
inside the mining area are in agreement for Stamps/MTI, Mintpy-WSBAS and Giant-NSBAS approaches.
Discrepancies between TSInSAR results can be found over low-medium coherent vegetated regions. Even
though the Mintpy-WSBAS and Giant-NSBAS approaches yielded denser results their quality is
questionable in vegetated regions. The deformation picture of the vegetated regions is similar for Stamps-
PS and Stamps/MTI results, only. Thus, further investigation is required to identify and mitigate effects
from potential noise sources such as the soil or/and vegetation moisture in forest, mountainous and crop

field regions.

2.3.2.6 Cross-comparison

An RMSE metric is calculated for each pairwise combination of the results provided by the methods.
For each pairwise combination, the results of one method are selected as a reference dataset and the results
of the second method as a test dataset. RMSE metric is calculated for all the homologous points that are
present in both results. Homologous points are selected based on the second step of the comparison

methodology [2.3.2.2] using a 10m geographical distance criterion.
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Figure 2.9 Deformation (a) and deformation rate (velocity) (b) RMSE values for each Corine land cover level-2 class
in the AOL

The deformation and deformation rate RMSE values for each Corine land cover level-2 class are
presented in Figure 2.9. In general, the lowest RMSE values were found in industrial, commercial and
transportation units, in open spaces with little or no vegetation, in pastures, and in urban fabric classes. This
is expected due to their high coherence in respect with that of other land cover classes (Figure 2.8b). In land
cover classes that include medium to high vegetation, the TSInSAR approaches showed the most
controversial results. The different performance of the TSInSAR approaches in the vegetated areas, can be
related with effects caused by seasonal variation in vegetation density, as well as, effects from variations in
soil and vegetation moisture. Overall, among the three pairwise combinations (Figure 2.9), Stamps and
Giant results showed the best agreement with each other. Stamps-Mintpy combination yielded the highest

disagreements.
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Figure 2.10 Cross-comparison of the deformation results in the mining region (denoted with purple polygon).
a) Google earth optical image at 2018 b) Temporal coherence from Mintpy c) Average velocity (deformation
rate) from Mintpy d) Stamps-Giant deformation RMSE map e) Stamps-Mintpy deformation RMSE map f)
Mintpy-Giant deformation RMSE map.

In Figure 2.10, deformation RMSE maps for all available pairs between the used TSInSAR
approaches for the corresponding comparison points are presented. TSInSAR approaches were not able to
yield results in the high deformation mine regions, which present low temporal coherence (Figure 2.10b).
These regions are observed with very high average deformation velocity in the result provided by Mintpy
toolbox [44] (Figure 2.10c¢). In the borders of the high deformation regions, big deformation RMSE values,

denoted with yellow color (Figure 2.10d, e, ) are observed. This occurs because of the low accuracy of the
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results due to high temporal decorrelation. However, in the stable regions of the mine which are the brightest
regions in Figure 2.10b, TSInSAR approaches yield comparable results, with low RMSEs. These regions
are shown with purple color. The regions in the mine for which useful deformation results can be extracted
are mainly high coherent regions such as abandoned mining regions, infrastructure and transportation

network.

2.3.2.7 External comparison with in-situ levelling measurements

In this section, the comparison of TSInSAR results with levelling measurements is presented. The
Mintpy processing was performed only from September of 2016 till June of 2018. The Giant-NSBAS
deformation results present a smoothed behavior of the subsidence due to the inclusion of temporal
functions (quadratic in this case) in the design matrix of the system. Mintpy and Stamps results were

generated without the use of predefined temporal constraints.
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Figure 2.11 Comparison of TSInSAR accumulated displacement (subsidence) results with in-situ measurements
for seven levelling points (position of the levelling pointc given in Fig 2.6). Levelling values are projected in the
LOS direction for the comparison.

Overall, all of the TSInSAR methods overestimated the subsidence rate according to the regression
equations at top left side of Figure 2.11. Stamps and Mintpy regression equations for deformation rates
presented the highest coefficients of determination (0.86). Stamps" approach was able to better capture the
deformation rate information of the leveling points with an overall RMSE of 15.2 mm/year. Regarding the
deformation information, Giant-NSBAS approach was able to better estimate the leveling observation with
an overall RMSE of 5.9 mm. The RMSE values are calculated for the displacements in the LOS direction.
In particular, leveling values are projected in the LOS direction by multiplying with the cosine of incidence
angle of Sentinel-1 radiation, neglecting horizontal deformation, for the simplicity of validation.

The above results demonstrate that the subsidence behavior on the levelling points can be identified
from all the selected open-source methodologies. The regional subsidence is possibly connected with

mining operations. However, the interpretation of the deformation patterns is a complex task that requires



Ground deformation estimation from TSInSAR methodologies 28

geological, hydrogeological and geotechnical information. In order to draw safe conclusions, the mining
schedule activity may also be required. For the abovementioned reasons, the interpretation of the subsidence

mechanism is omitted at the current stage of this study.

2.3.2.8 Discussion
In this session, the main advantages and limitations of each algorithm are discussed. Then, potential
improvements for better monitoring of deformation in mining regions based on our case study results and

other recent existing studies are proposed.

Table 2-1 Processing factors for the selected TSInSAR approaches

Algorithmi Ph i
gorithmic ase Unwrapping Multilooking Measurement point selection factor
approach method
Giant-NSBAS 2D - space suggested spatial coherence
Mintpy-WSBAS 2D - space + suggested spatial/temporal Coheljenc.e, conne?ted component
corrections unwrapping information
Stamps/MTI 2D - space + 1D time - Spatial deformation criteria

The performance of each TSInSAR approach is controlled by the following important factors
(Table 2-1). The first factor is related to the unwrapping procedure of the interferometric phase. Mintpy
and Giant software toolboxes require a stack of the differential unwrapped interferograms. In most cases,
the unwrapping procedure is performed in space (2D) and for each interferograms separately. 2D
unwrapping can produce errors that a sophisticated TSInSAR approach should be able to correct or mitigate
their effects. Mintpy includes unwrapping error correction modules that can be employed and minimize the
impact of the unwrapping errors in the displacement time series. NSBAS approach can mitigate the
unwrapping errors by using predefined time functions. In our view, Stamps/MTI approach includes the
most sophisticated unwrapping approach which exploits the spatiotemporal behavior of the wrapped phase.
However, the 3D unwrapping inherently assumes the high temporal coherence of each point. This results
in a network of points that will be sparser than that resulting from the 2D unwrapping procedures, as it is
shown in Figure 2.8.

The second factor is related to the multilooking operation which is usually performed to improve
the SNR with the cost of spatial resolution. The multilooking procedure is suggested using single-pixel
SBAS techniques such as the Giant-NSBAS and Mintpy-WSBAS. On the other hand, multilooking can
introduce noise to the resulting up-scaled pixel in case small scale deformation patterns exist or in case the
study region is prone to geometric distortions. Adaptive multilooking approaches [46] can mitigate the
errors from the multilooking operation. Additionally, multilooking procedure can also affect the

performance of the unwrapping error correction algorithms that are based in the phase closure since the
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assumption of conservative interferometric phase is violated [88]. Stamps/MTI approach is applied for the
processing of full-resolution (without multilooking) interferograms which is critical for studying
deformation in mining regions. However, full-resolution processing increases the processing cost which
can be crucial for wide-coverage and/or large time series applications.

The third factor is related to the formulation and inversion of the interferogram network for each
measurement point that takes place in each TSInSAR approach. Mintpy and Giant software packages
require a stack of unwrapped differential interferograms in comparison with Stamps software which
provides the functionality to form the unwrapped differential interferogram stack. Temporal and geometric
baseline criteria should be defined to form the interferogram stack. For all the software packages, a quality
check for each pixel in order to decide whether the pixel will be analyzed or will be discarded, is performed.
In single-pixel SBAS techniques such as Giant-NSBAS and Mintpy-WSBAS for each pixel a separate
interferogram network is formed.

In Giant-NSBAS approach, a thresholding technique based on spatial coherence is supported. This
will result in the use of a subset of the initial interferograms stack for deformation estimation. The formed
interferogram network can have isolated clusters of interferograms or to include only a small number of
interferograms. In both cases, unstable inversion of ground deformation can be observed [89]. The sufficient
number of interferograms that will lead to an unbiased estimation of deformation is also a common problem
in modern sequential estimation techniques [90], [91]. The Giant-NSBAS approach requires a-priori
knowledge of the temporal behavior of deformation in order to connect the isolated clusters in the network.
In this study, based on the Stamps-PS results and the available levelling measurements the quadratic
function is selected. It is important to state that the selection of the temporal function is a critical step for
the Giant-NSBAS approach and this is possibly the main reason that Giant-NSBAS outperformed the most
recent and sophisticated Mintpy-WSBAS approach.

In Mintpy-WSBAS approach, pixel selection criteria include the connected component information
from the 2D unwrapping procedure and the temporal coherence information. The abovementioned approach
exploits information about the temporal coherence and unwrapping quality and can ensure an unbiased
deformation estimation [44]. Note that with this pixel selection strategy, after masking, the network
inversion result is not sensitive to the few very low coherent interferograms in a redundant network, giving
robust and consistent spatial coverage. On the other hand, in case of isolated islands in the interferograms
network for high de-correlated regions such as mining regions, this approach can provide results at certain
time periods. In this case study, during the start of 2016 only Sentinel-1A 12-day interferograms were
available. However, after the launch of Sentinel-1B, using 6-day interferograms were formed and a fully

connected interferograms network with great spatial coverage is constructed (Figure 2.8e).
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Stamps/MTTI approach identifies the measurement pixels based on their phase characteristics. This is
performed by calculating the phase stability of each pixel by using the spatial correlation of the phases in
the neighborhood. The high threshold value of the amplitude dispersion index (0.6 in this study) in the pixel
selection strategy enables the selection of almost all PS and SDFP points [65]. One advantage of
Stamps/MTTI approach is the fact that this method is not based on the phase history of a single pixel but in
phase similarity of the neighborhood assuming that deformation is spatially correlated. Moreover,
accounting for spatial correlation significantly improves deformation estimates [36], [88]. This way there
is no need to parameterize the deformation in time (performed in Giant) which can be challenging for
temporally-variable deformation processes that are common in mining environments. Stamps/MTI
approach employs an iterative band-pass adaptive filtering approach to estimate phase noise for each pixel
in the interferogram stack. If the iterative filtering procedure doesn’t converge then this pixel will be
discarded. This will result in the inability of detecting isolated deformation phenomena, as well as, to extract
information in cases of complex deformation at small spatial scales [87]. It can be critical in the deformation
study of narrow regions inside mining regions such as transportation networks that remain coherent but
their neighborhood experiences intense deformation or decorrelation. Another limitation of the Stamps/MTI
approach that can be relevant for processing big SAR data is the processing cost.

In this paragraph, a discussion regarding the feasibility of TSInSAR approaches for deformation
monitoring over opencast mining regions is presented. The main limitation of the TSInSAR approaches is
related to the ambiguous nature of the wrapped interferometric observations. The following comes from
the fact that a difference bigger than © between two subsequent differential phases cannot be converted to

deformation unambiguously [92]. Moreover, in order to get a correct estimation of the unwrapped phase,
the phase gradient between two adjacent pixels has to be less that , which corresponds to ’1/ 4~1.4 cm for
Sentinel-1 [93]. For a 6-day interferometric stack over one year, the maximum detectable deformation rate
is ’1/ 4st”™ 85 cm/year . Longer wavelength interferometric data can yield higher maximum detectable

deformation rate and should be considered in future studies. According to administration of the Mines
Central Support Department of Public Power Corporation S.A.-Hellas [85], the displacement rates in the
active mining regions of Ptolemaida-Florina opencast lignite mine are several meters per year. For this
reason, the deformation values were not reasonable in the active mining regions. However, the
administration found that TSInSAR displacement patterns (uplift or subsidence) (Figure 2.8) should be
analyzed in combination with their excavation and dumping activities. Furthermore, TSInSAR results over
abandoned mining regions, infrastructure, road network and neighbor regions were the most useful for the

mining administration.
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Based on the recent algorithmic advantages of TSInSAR techniques, there is a lot of room for
improvements and advances for better monitoring of the deformation in mining regions. The main
improvements according to our case study are related with the use of soil/vegetation moisture information
that lead to high RMSE values (Figure 2.10). One other significant improvement is related with the
parametrization of phase term due to DEM error in the inversion system. In the open-source toolboxes that
are used in this study, the residual topographic phase due to DEM error is considered constant in time, fact
that is not valid in active mining regions in case of large height changes. One possible solution to this
problem can be a time varying parametrization of the DEM error phase term similar to the work of [94].

The proposed comparison scheme that is developed for this work can be useful for various
communities and entities. Currently, many initiatives such as [95], [96] provide freely available geocoded
unwrapped interferograms for most of the parts of the earth. Moreover, open source software tools such as
Giant [41], Mintpy [44] and LICSBAS [97] are selected to extract ground deformation information. To this
point, we believe that the need of comparing and interpreting the differences of the results between several
processing strategies is imperative. Moreover, identifying the differences can reveal the limitations of each

methodology and the need for further corrections.

2.3.3 Exploring Driving Factors of Ground Deformation Using Wavelet Tools

2.3.3.1 Introduction

As we already discussed in the previous section, different TSInSAR methodologies can yield different
ground deformation estimations (up to 5 mm/y over urban regions) even using the same SAR dataset
(Figure 2.9). The motivation of this study is related to the complexity of the ground deformation extracted
from interferometric SAR signals. In many cases, ground deformation information is hard to interpret and
to use due to its complex nature and noisy interferometric SAR signals. Ground deformation complex
patterns are a result of co-existing driving factors which can be related to natural and anthropogenic
processes. The measured total ground deformation can be considered as a sum of several deformation
components induced by several driving factors. Driving factors can be related with natural and
anthropogenic processes such as tectonic activity, groundwater extraction etc. [98] successfully identified
connections of natural driving factors (temperature and soil moisture) with ground deformation. In this case
study, we present a wavelet-based approach to explore the connections of five potential driving factors
(surface soil moisture, precipitation, lake water area variations, NDVI and ground temperature) with ground

deformation results from TSInSAR.

2.3.3.2 Methodological framework and application
The study area covers a part of the Korisos basin, in Kastoria region, which is located in northwestern

Greece (Figure 2.12). The area of the region of interest is about 95 square kms. The land cover of the study



Ground deformation estimation from TSInSAR methodologies 32

area consists mainly of agricultural, mountainous regions and some villages. The methodological

framework consists of four steps.
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Figure 2.12 Area of interest (left), ground deformation rate information (left) and in-situ photographs of buildings
located inside subsidence zone (bottom right).

Step 1: Ground deformation estimation using Stamps TSInSAR methodology

The ground deformation information time series, using a well-known Stamps-PS approach implemented in
STaMPS toolbox [36], were extracted. A dataset of 193 single look complex C-band SAR images acquired
by Sentinel-1A/B, from September of 2016 till December of 2019, have been processed. The preprocessing
of the SAR dataset in order to be further processed by the Stamps-PS approach was performed using the
ISCE software package [54]. As a reference stable point, a high coherent point located in Kastoria city
outside of the AOI was selected. The first image of the SAR dataset was used as a temporal reference. The
extraction of the topographic term from the interferograms was done using a photogrammetrically produced
digital elevation model with ground pixel size of 5 m created in 2009, provided by KTIMATOLOGIO S.A.
The calculated displacement time series was sampled every 6 days. The ground displacement values
correspond to the direction between the sensor and the target (LOS). Only the points with high temporal
coherence (>0.90) were used in this study. In Figure 2.12 we can identify the subsidence zone and

subsidence effects from in-situ photographs taken in August 2020.
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Figure 2.13 Ground deformation time series of a subsiding region in Mavrochori village, Kastoria, Greece.

In Figure 2.13, we can clearly identify the seasonal behaviour of ground deformation of a subsiding region
over Mavrochori village. Based on our three and a half year analysis, we can say that a seasonal subsidence
occurs from around March to September in an order of 2 cm and then we have the uplift period from
September to the next March in an order of 1 cm. The subsidence behavior seems to have a significant
impact on buildings according to our in-situ photographs (Figure 2.12).

Step 2: Clustering of ground deformation estimation

Next, a three-step clustering analysis of the ground deformation time series has been performed in order to
reduce the volume of the data to be analysed (Figure 2.14). The t-distributed stochastic neighbor embedding
(T-SNE) transformation [99] was applied in the ground deformation time series for all the points. Then
using elbow and silhouette methods the optimal number of clusters was calculated [100]. Finally, a density-
based spatial clustering of applications with noise (HDBSCAN) clustering [101] was applied to the
transformed ground deformation data. This 3-step clustering analysis provided geographically well-
separated clusters (Figure 2.15). Based on the average ground deformation time series, some of the regions

appear to have stronger seasonal patterns than others.
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T-SNE tranformation

Figure 2.14 Three-step clustering analysis of ground deformation estimation
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Figure 2.15 Clustered ground deformation results (left), Average deformation over time for each cluster/region

Step 3: Preprocessing of driving factor information

At a third stage, the preprocessing of the information related to the driving forces of the ground deformation

is implemented. The driving factors that were considered consist of a) NDVI calculated from a stack of 250

Sentinel-2 acquisitions, b) the variations in lake water area by applying a thresholding approach on the

intensity of the Sentinel-1 dataset, c) the temperature from ERAS-Land reanalysis dataset, d) the soil

moisture from ERAS5-Land reanalysis dataset and e) the total precipitation from ERA5-Land reanalysis

dataset (Figure 2.16). It is important to state that the considered AOI covers a single ERA5-Land pixel,

which means we have only a single value for ERAS-Land factors for the whole AOI in time.
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Figure 2.16 Considered potential driving factors of ground deformation over time.

Step 4: Cross wavelet analysis and results

In the fourth step, cross wavelet analysis (XWT) of the calculated ground deformation time series in
conjunction with each one of the considered driving factors for each region/cluster was performed. The
XWT analysis was performed to identify patterns at different time intervals and consists of two steps. The
first step is the calculation of the continuous wavelet transform (CWT) of each time series to identify
localized intermittent periodicities at time/frequency space. The second step is the multiplication of the
CWT of the first time series with the complex conjugate of the CTW of each driven factor. Each XWT
result is a 2-D representation of the absolute value and the phase of the complex number in the time-
frequency space. The XWT analysis was performed using the freely available MATLAB wavelet tool [102].
The XWT results (Figure 2.17) of three regions (3, 5 and 6) are presented. The XWT results of all regions
are provided at [103]. We encourage interested readers to have a look at [104] regarding the interpretation

of XWT results. The following interpretations have been made.
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Figure 2.17 Cross wavelet results between driving factors and ground deformation for regions 3, 5 and 6.

e For all regions (3, 5 and 6) deformation and soil moisture are in phase. For region 6, deformation

is leading precipitation for about 1.5 months. In regions 3 and 5 there is no time lag.



Ground deformation estimation from TSInSAR methodologies 37

e For all regions (3, 5 and 6) deformation and precipitation are in phase. For region 6, deformation
is leading precipitation for about 1 month for 1-year period. For regions 3 and 5 there is no time
lag.

e For all regions (3, 5 and 6) deformation and temperature have an anti-phase relationship for 1-year
period. For agricultural regions (3 and 5) deformation is leading temperature for about one month.
We believe that this particular lag can be potentially related to the crop calendar. For region 6, no
time lag was observed.

e For regions 5 and 6 deformation and NDVI were in-phase where NDVI is leading deformation
about 1-2 months for 1-year period. For region 5, deformation and NDVI were anti-phase with
NDVI leading deformation about 0.5-1 months for 6-month period. For region 6, deformation and
NDVI were anti-phase where deformation is leading NDVI about 0.5-1 months for 6-month period.
We can identify that results between different time periods are contradictory possible due to
different agricultural actions at a field level. For region 3 we cannot draw any conclusions because
the majority of the points are not located over/close to vegetated areas.

e Regions 3 and 5 deformation and lake water variations are in phase at 1-year period with no time

lag. For region 6, deformation is leading lake water variations by around 1.5 months.

2.3.3.3 Discussion and conclusions

In this study, we presented the capabilities of the proposed wavelet-based approach which was able
to reveal the different interactions of several driving factors to the ground deformation. We believe that the
proposed methodology is a robust and efficient way to explore and analyse the impact of multiple and co-
existing potential driving factors to a massive volume of ground deformation information.

A subsidence phenomenon with seasonal behaviour is identified over Mavrochori and Polikarpi
villages. In particular, a subsiding trend from March to September is identified (Figure 2.13). Based on the
wavelet analysis, the deformation information of regions 3 and 5 presented the highest agreement (in-phase)
with no time lag with the variations of water cycle. The water cycle variations are captured via the following
driving factors: a) lake water variations, b) precipitation and c) soil moisture. This is an important result
given that the main deformation source of the study area is closely related to groundwater extraction
activities for irrigation and domestic use purposes during the dry season from May to September [105]. We
strongly believe that groundwater information is an essential factor of the water cycle that should be studied.
Studying ground deformation can provide information in order to construct a better water management plan

which is essential to ensure water sustainability and food security.
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Regarding the relationship between ground deformation and vegetation variations, we observed
different behaviour at 6-month and 12-month span. In particular, ground deformation and NDVI was found
to have an anti-phase relationship for a 6-month period. Over agricultural regions, ground deformation is
leading (0.5-1 month) NDVI. Over the regions with natural vegetation no time lags are identified. The
contradictory results between deformation and NDVI can be related to the different agricultural actions on
each field over the agricultural regions of the AOI. Further investigation is required to draw a safe
conclusion.

Ground deformation and temperature was found to have an anti-phase relationship for a 12-month
period for all regions of that AOI. Over agricultural regions, deformation is leading temperature by about
one month, in comparison with all the other regions, no time lag was identified. We believe that the
observed time lag over agricultural regions can be related with the crop calendar and agricultural practices.
However, further investigation is required mainly due to the fact that a single temperature value from the
ERAS5-land dataset is used for this study. We generally believe that temperature datasets with higher spatial
resolution (e.g. Landsat-8/9, ECOSTRESS) can potentially reveal unobserved relationships.

The proposed methodology can be used as an exploration tool to improve the interpretation and the
usability of ground deformation from interferometric SAR signals via exploring the links with predefined
possible driving deformation factors. We consider the exploration of the driving factors of the ground

deformations a critical step towards applying new methodologies such as data-driven approaches.

2.4 Interferon - Interferometric Time Series for Deformation

A software package (Interferon) for ground deformation estimation was developed based on the published
and unpublished work. Interferon is a python software package able to provide ground deformation
estimation using Sentinel-1 datasets. Currently, Interferon is an in-house software but will be released as
an open-source software under GPLv3 license in the near future. The main features of Interferon are:
Innovation: Interferon includes implementations of state-of-the-art TSInSAR methodological advances. It
encourages collaboration of ideas and sharing of resources and promotes research initiatives.

Usability: Interferon is easy to use and learn. It can be utilized as a learning medium, for educational
purposes.

Continuity: Interferon is a cost-effective solution because it allows people to save time and effort by
leveraging existing code. Contributors can boost the scalability and the sustainability of the software.
Freedom: Interferon is developed in open-source language (Python) in order to ensure its use at no cost. In

particular, many functionalities from MATLAB-based software (e.g. Stamps) were translated to Python.



Ground deformation estimation from TSInSAR methodologies 39

Interferon includes implementation of several methodological steps for ground deformation estimation by
utilizing PS and DS. Interferon requires as input a coregistrated SLC stack and outputs a point vector file
with ground deformation time series. A brief description of these steps is provided.

1. Calibration of SAR amplitude information [36]

2. Identification of PS candidates using amplitude dispersion thresholding [31]

3. Identification of similar neighbors for every pixel that is not a PS candidate. The identification is
based on non-parametric statistical test (e.g. Kolmogorov-Smirnov, Andersen-Darling) on temporal
behavior of SAR amplitude. [46]

4. Identification of DS candidates based on temporal coherence thresholding and phase linking of DS
phase information to generate PS-like phases [49], [106]

5. Estimate of phase noise of PS/DS candidates and dropping of noisy PS/DS scatterers [65]

6. Construction of graph using PS/DS time series information [107].

7. Outlier detection and removal of PS/DS candidates based on graph theory [34], [108].

8. PS/DS spatiotemporal phase unwrapping [29].

9. Calculation and subtraction of spatially correlated DEM error [107].

10. Estimation and subtraction of spatially correlated noise using kriging [107].

2.5 Conclusions

In this chapter the work related to TSInSAR methodologies was presented. First, several of multiple
track/orbit TSInSAR (Giant-NSBAS) results are combined to calculate vertical and horizontal ground
deformation. The estimated vertical component of ground deformation had centimetric accuracy in
comparison with in-situ leveling data. Then, a detailed performance analysis of several TSInSAR
methodologies (Stamps/MTI, Giant-NSBAS, Mintpy-WSBAS) is provided. All the considered TSInSAR
methods generated similar spatial patterns of ground deformation over a region with high complexity of
ground deformation patterns (mining region). Land cover categories that have stable scattering properties
(e.g. urban areas, rocks) presented the best accuracies (RMSE of deformation rate: 5 mm/y). Disagreements
between the results of the selected algorithmic approaches were found in the vegetated areas. A thorough
discussion regarding the positive and negative sides of each TSInSAR approach is presented. Next, a
wavelet-based approach is introduced which was able to explore the relationships between five driving
factors (surface soil moisture, precipitation, lake water area variations, NDVI and ground temperature) and
ground deformation results from TSInSAR. Finally, Inteferon software package is developed where, most

of the knowledge acquired and lessons learned can be found.
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3 SOIL MOISTURE ESTIMATION USING INSAR DATA

In Chapter 3, the work related to soil moisture estimation from InSAR observables (interferometric
coherence and phase closure) is presented. In section 3.1, we provide an introduction and background
information regarding soil moisture estimation from InSAR observables. In section 3.2, we introduce our
proposed methodological framework that is focused on arid regions. In section 3.3, the study area and the
datasets of the case study on an arid region located at California, USA are described. In section 3.4, the soil
moisture estimation and their accuracy assessment is presented. In section 3.5, the main benefits and
limitations of the proposed methodology are highlighted. Finally, in section 3.6 the conclusions of the work

related to soil moisture estimation from InSAR observables are provided.

3.1 Background and Introduction

Soil moisture is considered a crucial environmental variable related to water, energy, and carbon
cycles [109]. In arid and semi-arid environments, which cover around 40% of global terrestrial surface, soil
moisture exhibits significant spatio-temporal variability [110] and is a critical input to weather, climate,
drought and flood modelling and forecasting [111]. In order to study the complex patterns of soil moisture,
methodologies and surface soil moisture (SSM) products that exploit satellite earth observation data have
been developed [112], [113]. However, the challenge of an operational soil moisture product with high
spatial resolution and high spatiotemporal coverage remains elusive [114]. Current and upcoming satellite
missions offer opportunities to bridge the gap between soil moisture products and user/application
requirements. SAR missions which can provide all-weather, day and night, global, and data with extensive
and continuous coverage, have a critical role for high-resolution satellite SSM applications [114]. Recent
studies [115]-[117] highlight the great potential of interferometric synthetic aperture radar (InSAR) time
series for high-resolution and accurate SSM mapping over arid environments.

Time series InSAR is a well-established technique to estimate ground surface deformation [44]. In
order to extract deformation signals, other factors that can decorrelate SAR signals such as residual
topography, atmospheric delay, vegetation and soil moisture variations have to be compensated [118]. In
most of the ground deformation studies, in order to overcome limitations associated with decorrelation, a
methodology based on phase-stable point scatterers technique and/or distributed scatterers is implemented
[36], [46], [S1]. In those studies, soil moisture contributions are treated as noise and mitigated by applying
filtering approaches. However, due to the observed relationship between SSM and InSAR observations,
methodological approaches able to estimate SSM from InSAR phase and coherence information have been
developed [111], [115]-[117], [119], [120].

The InSAR observables that are mainly used for SSM estimation are interferometric phase,

coherence magnitude and phase closure. De Zan et al., (2014) proposed an analytical solution for bare lands
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based on plane waves and the Born approximation that models soil moisture as vertical complex
wavenumbers and successively interferometric observables from L-band airborne SAR data. Coherence
and phase closure observables were inverted to estimate soil moisture. Zwieback et al., (2015) assessed the
relationship of the three aforementioned observables with the soil moisture using regression tools, for
airborne and UAV L-band SAR. A positive relationship with increased sensitivity between soil moisture
and interferometric phase, compared to the two other observables, was reported. Moreover, changes in soil
moisture were found to be associated with a loss of coherence. Zwieback et al., (2017) highlighted the
importance of phase referencing in order to estimate soil moisture. Phase referencing was found challenging
using only InSAR observations in cases where displacement and soil moisture variations are correlated. De
Zan and Gomba, (2018) used satellite L-band data and estimated successfully soil moisture at sub-kilometer
scale by inverting phase closures constrained by coherence information. In this study, the need for
evaluating the potential of phase closure for soil moisture estimation in the context of an operational
approach and in shorter wavelengths was highlighted. Michaelides, (2020) introduced a partially correlated
interferometric model (PCIM) that considers the statistical properties of surface roughness and volume
scattering. The PCIM model yields a closer match to the simulation results than De Zan's model [119].
Biirgi and Lohman, (2021); Jordan et al., (2020); Scott et al., (2017) introduced approaches able to generate
accurate SSM proxies after precipitation events from InSAR coherence over arid and hyper-arid
environments. Mira et al., (2022) proposed a two-step SSM estimation method for bare soils that uses C-
band (Sentinel-1) SAR data. In the first step, the atmospherically corrected interferometric phase and
coherence were calculated by exploiting nearby Global Navigation Satellite System (GNNS) observations.
In the second step, the De Zan's model was inverted and SSM were estimated with high accuracy (RMSE:
0.04 m*/m®) over bare soils.

To the best of our knowledge, a limited amount of existing studies [115], [117], [123] are based on
C-band InSAR datasets. We believe that the continuously increasing volume of C-band, mainly due to the
Sentinel-1 constellation, offers a great opportunity for exploring the potential of C-band data for SSM
estimation. In this study, we developed a SSM estimation methodology for arid environments based on VV
polarized Sentinel-1 InSAR time series. The implementation of the proposed approach is implemented and

provided as an open-source software toolbox (INSAR4SM) available at

www.github.com/kleok/INSAR4SM under GPLv3 license. The main research questions that we will try to
address are:
e Can we improve the quality of InSAR observables that will be used for soil moisture estimation?
e Can we resolve coherence ambiguity which is reported at [121], to improve soil moisture

estimation?
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e (Can we provide a more robust inversion scheme for soil moisture estimation from InSAR

observables?

3.2 Methodology

The required inputs for our methodology are a co-registrated SLC stack and a meteorological dataset
(precipitation, snow and temperature) for the same area and time considered. Currently, SLC stacks that are
prepared using ISCE TopStack functionality [86] are supported by the INSAR4SM tool. The main

methodological steps (Figure 3.1) are described as follows:

Step 1: Identification of driest SAR acquisition.

Over arid regions, we assume that the majority of the selected SAR acquisitions correspond to low
SSM conditions [124]. Using the input meteorological dataset, we select the SAR acquisitions that are
ice/snow free and are not related to precipitation activity. The driest SAR acquisition is selected as the one

that yields the highest mean coherence in respect to the other selected images.

Step 2: Coherence and phase closure calculation.

First, a SSM estimation grid is constructed according to specified grid size (e.g. 250 m). For each
SSM grid cell, a DS is constructed from SLC SAR pixels that have similar intensity temporal patterns. A
DS is a group of SLC SAR pixels that has lower noise in respect with a single SLC SAR pixel [46]. The
selection of those SLC SAR pixels is performed by using the non-parametric statistical Kolmogorov-
Smirnov test [46]. Then, the matrix ZP** is formed by using the [ selected SLC SAR pixels at p SAR
acquisitions. We assume that the statistically homogeneous region of each SSM grid cell that consists of [
selected SLC SAR pixels, follow a zero-mean complex circular Gaussian model with sample covariance

matrix C [46], [49], [90] that can be expressed by the following formula:

AL
( =—-—— (3.1

VIZIEAIZIHT

Where, . indicates the Hermitian conjugation, ||Z|| gives the row-wise Euclidean norm of the matrix Z.
Power and division operations are elementwise. According to [49], an element of C at SAR acquisitions

n, m can be decomposed/considered as:

Com = YamInm (3.2)
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Ly = e/¥nm (3.3)

Where, y is the magnitude of the interferometric coherence, I the complex interferometric value and ¢ the
interferometric phase over the region that is covered by the I selected SLC SAR pixels. Imaginary number
is denoted with j. Phase closure = for n,m, k SAR acquisitions according to [121] can be expressed by the

following formula:

Enmk = ArgUnmImklkn) 3.4

Step 3: Identification of “dry” SAR acquisitions.

For each SSM grid cell, the ordering of SAR acquisitions based on SSM levels is calculated by
exploiting the magnitude of the interferometric coherence and SAR backscattering. The ordering algorithm
was based on the hypothesis that similar SSM levels yield high coherence values and different SSM levels
yield low coherence values [115], [121]. The magnitude of the interferometric coherence between SAR
acquisitions can be affected by several factors such as vegetation changes, sediment transport, soil moisture
changes or other types of changes that alter the composition of scatterers within a resolution pixel [125]. It
is important to state that the contribution of vegetation on coherence losses is assumed zero because of the
low vegetation coverage of arid regions [115]. This allows us to exploit the coherence information for
ordering SAR acquisitions based on their SSM levels.

The identified driest acquisition from Step 1 is selected as a starting point. Then, based on the
coherence values of the remaining acquisitions in respect to the driest acquisition we order every other SAR
acquisition. Besides the coherence-based ordering, we calculate a backscattering-based ordering by
assuming the positive monotonic relationship between SSM and SAR backscattering levels [126]. In the
end, the best ordering is considered the one that yields the steepest negative slope of coherence with respect
to the distance between the temporal positions of ordered SAR acquisitions [121]. After the ordering, the
30% of the driest SAR acquisitions are considered to have low SSM and characterized as “dry”. The
abovementioned statement is considered valid, over arid regions and using a considerable length of SAR

time series [124].

Step 4: Calculation of coherence due to SSM variations.

In this step, for each SSM grid cell we calculate the coherence due to SSM variations. Coherence

is related to several decorrelation sources with the following product form [45], [111], [115]:
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Y = YoVpVsm 3.5)

Where, y, is the background coherence due to surface roughness, slope, etc; yp is the permanent coherence
loss due to permanent changes due to precipitation events, erosion, deposition; and Y, is the coherence
loss due to SSM changes. The abovementioned expression is considered valid given that we operate over
arid environments and for SAR stack with small spatial baseline separation [115].

Over arid regions, the variations of low vegetation cover are considered to have negligible impact
in coherence and small perpendicular baselines mitigate geometric decorrelation that cause coherence loss.
Coherence loss due to SSM over “dry” SAR acquisitions is assumed to be negligible (¥5,, = 1). Then, y,
and yp are estimated by considering the exponential model introduced by [127] only over the coherence

values calculated by the “dry” SAR acquisitions y .

-t
Yary = (Yo —Vvp)e 4 yp (3.6)

Where, 7 is the decorrelation rate and t the time span between SAR acquisitions. After fitting the model for
each SSM grid cell we have a single y, value, a single 7 value and a temporal function of y,,. Then, for

each combination of SAR acquisitions we calculate yg,.

Step 5: SSM inversion.

For each SSM grid cell, an inversion of the analytical interferometric model proposed by [119] is
performed. The selected model provides a direct relationship between the SSM change and the coherence
and phase closure information. The modelled complex interferometric value between n,m SAR

acquisitions reported in De Zan et al., (2014) is:

Jmodel — 1 (3.7)
2l = k) '

Where, k is the complex wavenumber in the vertical direction and j is the imaginary number. The model
assumes that soil moisture variations cause different propagation of the SAR signals that can be described
by the complex wavenumbers in the vertical direction. The soil is modeled as a uniform lossy dielectric

layer and k is described by the formula [121]:

k = w?ue (3.8)
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Where, w is the angular frequency; u is the magnetic permeability; and ¢ the dielectric permittivity.
Dielectric permittivity is related to soil moisture and is given by Hallikainen’s empirical model [128]. The

following cost function L for all n,m, k SAR acquisitions is considered:

L = |': __ =model 2
nmk nmk |y

n<m<k
del del )2 3.9
+ Z (|YSm,nm - Y77:rlrtl)del| + |Vsm,mk - Vrrrrzll(c) ¢ | + |Vsm,nk - )/TT{;,(O ¢ D (3-9)
n<m<k
Where, % is the observed phase closure; Z™°%€! is the modelled phase closure based on De Zan's model;

Yem the coherence due to soil moisture variations; and y™°%¢! the modelled coherence based on De Zan's
model.

The Sequential Least SQuares Programming (SLSQP) solver [129] is selected due to its robust and
fast performance. In our implementation, the SSM value of the driest SAR acquisition identified at step 1
is set to 0.03 m?*/m?, which we assume is a reasonable value for arid environments. Next, the computed
coherence due to soil moisture variations (output of step 4) over “dry” SAR acquisitions (output of step 3)
was exploited to update the sorting of SAR acquisitions. Then, starting from the driest SAR acquisition, the
initial SSM values of all other SAR acquisitions are calculated by the following formula which is based on

Eq. 4 in [115].

sMmy, ]
smy, = , if sm, <sm,, (3.10)
Vsm,nm

Where, n, m are indices for SAR acquisitions and sm the SSM level of a SAR acquisition.

The inversion procedure was constrained in order to yield the SSM value of the driest SAR
acquisition with an upper limit equal to the predefined SSM value of the driest SAR acquisition (0.03
m’/m?). The method may produce a soil moisture offset that is due to an error in the considered initial soil

moisture value of the driest SAR acquisition.
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The proposed methodology is applied to an arid region located at California, USA (Figure 3.2). In

particular, the area of interest is located in the central Sonoran desert, in the Lower Colorado River Basin,

and has low annual rainfall (50-300 mm) and high temperatures [130]. The soil type of the area of interest

is Orita gravelly fine sandy loam with low runoff rates and high percolation rates [131].

Regarding the land

cover of the area of interest, the vegetation of the area of interest has low coverage and consists mainly of

creosote bush (Larrea divaricata) and white bursage (Ambrosia dermosa) [130]. Moreover, anthropogenic

surfaces such as highways, gravel roads, solar farms and agricultural fields can be found. The area of interest

has broad, nearly flat valley bottoms to high rocky mountain peaks.
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Figure 3.2 Area of interest and ground footprint of datasets used

In the presented application, frequent (12-day repeats) Sentinel-1 (C-band) and ERAS5-Land
reanalysis meteorological data [132] were used for estimating soil moisture in top 5 cm for bare soils over
the area of interest. In our area of interest data from three orbits (173, 100, 166) of Sentinel-1 can be
retrieved. For this study, we selected 23 (orbit 173) and 22 (orbit 100) Sentinel-1 acquisitions acquired at
about 14:30 UTC from July 2018 to March 2019. We dropped SAR acquisitions from orbit 166 because
the acquisition time was during early morning (04:30 UTC). This decision is made because the thin water
layer due to potential dew during the mornings affects the SAR signal and cannot be captured by soil
moisture sensors used for validation [133]. Precipitation and temperature data from ERAS5-Land model
were used for identifying the driest SAR acquisition. For validation purposes in-situ soil moisture
observations and soil moisture ERAS model data were exploited. In-situ soil moisture measurements at
depth of 5 cm from FordDryLake station of the SCAN network [134] that belongs to ISMN network [135],
[136] were used for assessing the performance of the proposed methodology. ERAS-Land reanalysis soil

moisture data at depth of 0-7 cm were also used for quantitative assessment.

3.4 Results and accuracy assessment

In Figure 3.3, the precipitation and soil moisture observations from the FordDryLake station are
presented. Moreover, the SSM estimations at six selected time points on a 250 m SSM grid using the
proposed methodology are presented. The 250 m SSM grid size was decided because it yielded the most

accurate results after experimentation at the FordDryLake station. Based on the results, we can identify that
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valley regions experience more SSM variation in respect with the mountainous regions. Moreover, some
regions tend to have higher SSM values in respect to other regions. For time points A, B and D in Figure
3.3, we observe that after rain events the SSM is increasing. The decay of SSM between time points (B to
C) that we don’t have rain events can also be observed. Based on the SSM estimations at time points E and

F, we can also observe the temporal evolution of the SSM when no major rain events took place.
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Figure 3.3 InNSAR4SM SSM estimations

In Figure 3.4, the soil moisture observations at 5 cm depth from FordDryLake ISMN station are
compared with SSM estimations for orbits 173 and 100. For orbit 173, we have 23 SSM estimations with
root mean square error (RMSE) of 0.031 m3/m? and Pearson’s correlation (R) of 0.93. For orbit 100, we
have 22 SSM estimations with RMSE of 0.022 m?/m? and R of 0.82. We can identify that in most cases, we
have a positive monotonic relationship between the ISMN observations and InNSAR4SM SSM estimations.
In both orbits, the INSAR4SM was able to successfully capture the SSM increases due to rain events.

However, in cases that we have a SSM decrease, SSM values are overestimated. We believe that this can
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be caused by the post-rain coherence loss that is not modeled by the proposed exponential temporal
decorrelation model. It is also important to state that the predefined SSM value for the driest acquisition

plays an important role and can cause bias/offset effects visible in Figure 3.4.
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Figure 3.4 InSAR4SM SSM (volumetric %) estimations vs FordDryLake ISMN SSM (volumetric %) observations

In Figure 3.5, the comparison between the InNSAR4SM SSM estimations and the ERA5-Land soil moisture
data from 0 to 7 cm depth is presented. A consistency between the INSAR4SM SSM estimations from two
different orbits can also be observed. For each ERAS5-Land grid cell, we can observe the temporal pattern
of the INSAR4SM SSM estimations in respect to ERAS5-Land data. Different performance of InSAR4SM
is observed for each ERAS5-Land grid cell due to different land cover composition. In particular, InNSAR4SM
was not able to capture the SSM temporal pattern for ERAS-Land grid cells 1, 2, 3, 7, 8, 9 and 10 (Figure
3.5) due to their rocky land coverage. Over the other ERAS-Land grid cells (4, 5, 6, 11 and 12), InSAR4SM
was able to capture the SSM increases due to rain events. In all cases, INSAR4SM overestimated the SSM

decreases after rain events in respect to ERAS5-Land data
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Figure 3.5 InSAR4SM SSM (volumetric %) estimations vs ERAS-Land soil moisture (volumetric %) estimations

For our accuracy assessment, it is important to also consider the accuracy of the ERA-5-Land soil
moisture data [132]. In particular, based on the FordDryLake ISMN soil moisture observations (Figure 3.3)
and Normalized Difference Moisture Index (NDMI) information [137] from multispectral data (Landsat-8
and Sentinel-2) (Figure 3.5) we identified an anomaly of ERAS5-Land soil moisture data point (circled in
red in Figure 3.5). In addition, we believe that the observed dispersion of ERAS5-Land soil moisture data in
2019 (Figure 3.5) needs further investigation. We consider ERA5-Land soil moisture data the second best
option after soil moisture observations from in-situ stations. After dropping the identified outlier, the mean
RMSE value over the whole region of InNSAR4SM estimations from orbits 173 and 100 is 0.035 m*/m’ with
R value 0.71.
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3.5 Discussion

InSAR4SM was able to produce SSM estimations with remarkable accuracy (~0.035 m*/m?) at high
spatial resolution (250 m). Complex spatiotemporal patterns of SSM can be identified (Figures 3.3, 3.4) in
our case study. Moreover, different orbits yielded consistent results without abnormal discontinuities
(Figure 3.5). We believe that the good performance of INSAR4SM is due to three main methodological
innovations. First, interferometric observables (InSAR coherence and phase closure) are calculated over
homogeneous regions in terms of SAR backscattering [46]. Due to the linkage between SAR intensity and
SSM [113], by ensuring that the selected SAR pixels have similar intensity behavior we mitigate the risk
to include scatterers that have different SSM patterns. This is considered a methodological improvement in
respect to other approaches [111], [115] that assume that all the SAR pixels inside a window share similar
SSM patterns. Second, InNSAR4SM exploits external meteorological data and SAR backscattering in order
to identify the driest image, resolve coherence ambiguity, which is reported at [121] and order SAR
acquisitions based on their SSM levels. Ordering is used for the identification of SAR acquisitions that have
low SSM conditions. Those “dry” acquisitions are exploited to model coherence loss due to temporal
decorrelation and calculate only the coherence information due to SSM variations. Third, SSM inversion
procedure was improved because: a) an initialization based on the coherence-based SSM index (Eq. 10)
was introduced in order to avoid ambiguities due to randomized initializations [121]; b) a constraint based
on the identified driest SAR acquisition was introduced; ¢) the decomposition of coherence and use only
the coherence component related to SSM variations. Next, the main assumptions/limitations of the
InSAR4SM approach are discussed.

A complex relationship between interferometric observables, SSM, and land coverage exists [111],
[121], [123]. In this study, in order to estimate the coherence information due to SSM variations from the
raw coherence a) we considered that coherence losses due to vegetation and geometric decorrelation are
negligible and b) we modelled coherence mainly due to surface roughness, and permanent changes from
precipitation events. It is important to state that land cover and ground surface roughness are assumed to be
constant over time. However, in many cases this is not valid due to anthropogenic (e.g. constructions,
mining, agricultural activity) and natural factors (e.g. vegetation changes, post-storm erosion and deposition
of sediments). The coherence variations due to the abovementioned factors are not captured by the
InSAR4SM's exponential modelling of temporal decorrelation and SSM estimation errors are introduced.
In our case study, this is mostly evident after rain events. In order to overcome this limitation, we believe
that coherence loss due to post-storm erosion or deposition of sediments should be modelled. We believe,

in order to better discriminate the coherence contribution from SSM variations it is important to consider
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more data related to topography, soil composition, temporal and spatial information of precipitation and
land cover changes.

Another limitation is related to the complex relationship between different soil types and
interferometric observables [111]. For this study, the soil composition of the FordDryLake station was used
for the whole region. This choice is considered reasonable due to the ongoing changes from fluvial sediment
transport [138] and aeolian sand supplies [139] over desert environments. However, a lower performance
of InNSAR4SM mainly to rocky desert soils (Figure 3.5) was identified. We believe that incorporating soil
properties information [140] and studying interactions between soils and rocks can provide insights
regarding the relationship between soil compositions and SSM estimation from interferometric observables.

After several experiments, we concluded that using a SSM grid of 250 m for our case study was
suitable to provide accurate SSM estimations. The abovementioned spatial resolution is considered an
improvement in comparison with backscattering approaches where 1xlkm grid size is commonly used
[113]. The selected spatial resolution corresponds to about 12x50 C-band Sentinel-1 SLC resolution pixels.
In order to enhance the signal quality and compute the interferometric observables, grouping of the
statistically homogeneous pixels is required [51]. In our view, spatial resolution can be improved if we
ensure the quality of interferometric measurements. This can be achieved by either using SAR datasets with
better spatial resolution or by using SAR data (e.g. L-band) with better signal-to-noise ratio. Further
investigation is required in order to understand the relationship between spatial resolution and achieved
accuracy by using SSM products with high spatial resolution.

Another assumption of this work is the validity of De Zan’s interferometric model. Even though the
model was developed for L-band data, it has been used also for C-band data [117], [141]. The proposed
InSAR4SM workflow can support L-band data from upcoming SAR missions (NISAR, ROSE-L). It is
important to consider that L.-band data can provide soil moisture estimations at deeper levels and have lower
temporal decorrelation due to changes in the surface conditions (e.g. vegetation) over time. Even though L-
band interferometric observables are considered to have better quality in respect to C-band observables
[142], over sandy regions L-band presents lower interferometric coherence than C-band [143]. Finally, it

would be interesting to evaluate the performance of a more sophisticated interferometric model [122].

3.6 Conclusions

This chapter provides a methodological approach and provides a description of the open-source
software package InSAR4SM for soil moisture estimation over arid regions using InSAR and
meteorological observations. The following three methodological improvements were introduced (listed
below) and accurate SSM estimations at high spatial resolution over an arid region using Sentinel-1 data

had been made.
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i.  InSAR coherence and phase closure observables are calculated by forming distributed scatterers
[46] and not over squares assuming homogeneity of scatterers [111], [115].

ii.  Use of external meteorological and SAR backscattering information for resolving coherence
ambiguity which is reported at [121] in order to calculate ordering of SAR acquisitions based on
their SSM levels.

iii.  Constrained inversion by using the identified dry SAR acquisition. Improved initialization of the
inversion by exploiting the relationship between coherence and SSM [111], [115].

InSAR4SM contributes to better understanding the potential of interferometric observables for SSM

estimation for arid regions. InNSAR4SM can boost research initiatives and complement other soil moisture

products.
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4 UNSUPERVISED FLOODWATER MONITORING USING SAR DATA

In this chapter, the work related to floodwater monitoring using SAR data is thoroughly assessed and
discussed. First, background information and the objectives of this work are provided in section 4.1. The
Flood Mapping Python toolbox (FLOMPY) with its methodological pipeline is introduced in section 4.2.
In section 4.3, a case study for Pinios flood is presented. An accuracy assessment of the proposed
methodology using EMS products as reference data and a comprehensive discussion regarding the
theoretical concepts of the proposed methodology and its limitations are presented in section 4.4. Two case
studies that utilize FLOMPY s floodwater maps are presented in section 4.5. In Section 4.6, conclusions

are outlined.

4.1 Background and Introduction

Mapping the spatial extent of surface waters is considered an important step for many initiatives
related to water sustainability and natural hazards such as floods [144]. Floods are among the most severe
natural disasters, causing great losses to anthropogenic and natural environment around the globe [20].
Moreover, it is important to improve flood relief efforts due to expected increases in the frequency and
magnitude of flood events due to climate change [145]. Fast responses from decision makers and emergency
managers can mitigate casualties and damages. For this reason, near-real time spaceborne remote sensing
data could be exploited in order to provide accurate and rapid maps of affected areas by floods [146]. These
maps can be used for calibration and validation of hydrological models [147]. Furthermore, they can help
to better set intervention priorities in order to form a loss mitigation plan [148] and even improve flood
forecasting [149].

Optical multispectral satellite data can be used in an easy and straightforward way in order to identify
flood features in a scene [150], [151]. However, optical data are not optimal to use mainly due to their
sensitivity to high cloud coverage which is usually present during rain/flood events [22]. On the other hand,
synthetic aperture radar (SAR) sensors have their own source of illumination and can acquire data day and
night in all-weather conditions. Over open water surfaces and open floodwater regions, the active SAR
pulses have low signal returns due to the specular backscattering [152]. However, inundated vegetation and
flooding in urban regions may have strong signal returns due to “double bounce” effect [22]. Moreover,
wind can increase the roughness of water surfaces which results in higher backscattering values [153].

A considerable number of methodological approaches based on SAR data have been developed in
recent years. Some of the developed methods are based on supervised approaches that require human
intervention [154] and/or they are using labelled data which require manual work. This is an important
obstacle for developing a robust automatic approach and an ongoing effort to exploit data-driven

approaches is present [155]. On the other hand, unsupervised methods are suitable from automatic
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workflows. The majority of the unsupervised methods include thresholding operations. Thresholding
approaches rely on selecting an adequate threshold in order to determine flooded versus non-flooded areas.
Thresholding can be applied on a single backscatter image [156] or on a combination of backscatter time
series [157] and on a global or local scale in order to account backscatter spatial variability [158].

It is known that thresholding approaches have many drawbacks and can be affected by a lot of errors
[146], [153], [158] such as a) Bragg scattering due to wind [159]; b) “double bounce” effects due to urban
and inundated vegetation; c) water-like features (smooth surfaces, soils with high soil moisture, shadow
regions) [160]; d) speckle effect and e) selection of threshold. Due to the continuous increase of the data
volume and availability, one of the most promising ways to overcome some of the abovementioned
drawbacks is via exploiting multi-temporal information [146], [161], [162]. Change detection approaches
exploit the multi-temporal information by comparing data related with pre-flood and flood state. It is
important to state that the forming of the pre-flood (baseline) dataset is a crucial step to accurately estimate
the extent of the floodwater using change detection approaches [152], [163].

In this chapter, we describe a robust methodological approach we introduced [164] able to mitigate
the abovementioned drawbacks and provide rapid and accurate flood maps. The proposed approach
includes four steps: a) baseline (pre-flood) dataset formation; b) preprocessing; c) SAR statistical temporal
analysis; and d) floodwater classification. The proposed pipeline is provided as a free open-source python
tool [165] inspired by the free policy of Sentinel-1 data. The objective of this work is to release a tool able
to produce floodwater maps which mainly can be used for a) flood damage assessment for fast responses,

b) calibration and validation of hydrological models, and c) flood forecasting.

4.2 Methodological pipeline of FLOMPY

In this section, we describe the proposed methodology that is implemented in Flood Mapping Python
toolbox (FLOMPY) [165]. FLOMPY is a free and open-source toolbox which is written in Python 3 and
published under the GNU GPL version 3 license. Some modules are based on Sentinel’s Application
Platform (SNAP) [166] functionalities. The proposed and implemented methodology consists of following

steps:
4.2.1 Baseline dataset formation

In the first step, a selection of the Sentinel-1 images in order to form a pre-flood (baseline) dataset
is performed. Starting with a predefined area of interest and flood event time, all available metadata for
Sentinel-1 acquisitions are assessed. We select the optimal orbit track for analysis based on the time
difference between acquisition time and the selected time of the flood event. For facilitating the description

of the methodology, the acquisition right after the selected time of the flood event will be referred to as the
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flood image. Next, we form a pre-flood (baseline) dataset by using only the acquisitions with the same orbit
as the flood image of the latest past months that are related with low precipitation.

In particular, based on historical precipitation data (ERA-5), we keep only the acquisitions that
have previous 5-day cumulative precipitation lower than a predefined threshold (45 mm in most cases). A
3-month time period was selected to minimize the temporal changes which are not related with the flood
and to achieve an adequate number of acquisitions (>5) for temporal statistical analysis. Next, the

preprocessing step of the selected pre-flood images and the flood image is performed.

4.2.2 Preprocessing

The pre-processing workflow is based on ESA Sentinel's Application Platform (SNAP) functionalities and
consists of the following steps [166], [167]:
e  Orbit correction using precise orbit information or restituted orbit information if the former is not
available.
e Thermal noise removal operation.
e Border noise removal which masks artificially low backscatter pixels and invalid data found at the
edge of the image swath.
e Radiometric calibration to produce unitless backscatter intensity.
e Subsetting at a given spatial extent.
e Co-registration between all images in order to create a stack that will be used for time series
analysis.
e Terrain geocoding using the 1-arcsec digital elevation model (DEM) from the Shuttle Radar
Topography Mission (SRTM).

e Local incidence angle normalization based on [168]

4.2.3 SAR statistical temporal analysis

After the preprocessing, a statistical temporal analysis between pre-flood (baseline) stack and flood
image is performed. In order to exploit the polarimetric capabilities of Sentinel-1 products, both VV and
VH polarizations were exploited. In particular, the product of VH and VV polarizations was calculated
using formula (1) and used for the temporal statistics (Appendix A). This way, the processing cost was

reduced because only one band (product of VV with VH) is used.

oyywvu = 10logso(oyy * oyy) 4.1

Where, oyy.yy, the product of backscatter coefficients of VV and VH in decibel and oy, oy the

unitless backscatter coefficient of VV and VH, respectively.
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The temporal t-score was selected due to the small sample size and is calculated for each pixel
according to the formula (2). The hypothesis is that the backscatter coefficient of the pre-flood state follows

a T-distribution. T-distribution is a type of normal distribution for smaller sample sizes.

" __ OvvsVH,flood — MEANOyy.vH baseline
score T
SthVV*VH,baseline (4.2)

Vn

Where, 0yy.vh fiooa the product of backscatter coefficients between VV and VH of the flood

image; meanoyy.yy pasetine aNd Stdoyy.yy paseline the average value and the standard deviation of the
product of VV and VH backscatter coefficients of the baseline (pre-flood) stack, respectively; n the number

of the acquisitions in the baseline stack

4.2.4 Classification

In the final step, a novel spatially adaptive thresholding methodology was developed for the
classification of the calculated t-score map in flooded and non-flooded areas. The t-score has the same
resolution with Sentinel-1 GRD products. The classification scheme consists of five main steps (Figure
4.2):

Step 1: Calculation of a mask in order to achieve similar class sizes of the flooded and non-flooded samples.
The use of this mask by histogram thresholding algorithms improves their performance significantly [169],
[170]. This mask is referred to as a bimodality mask because it is calculated by using bimodality coefficient
(BC) [171]. The bimodality coefficient is expressed by the formula:

s?+1

(n—1)? (4.3)
kt3G—2m—13)

BC =

Where, s the skewness of the distribution, k its kurtosis and n the number of the samples.

The bimodality mask is computed as follows. First, BC values are calculated at multiple grid sizes that
range from 25 to 500 pixels with a step of 25 pixels. The result of each grid size is saved at the t-score’s
pixel level. Then, a mean BC value for each pixel is calculated and a single thresholding approach is applied.
If the BC value is smaller than 0.555, a uniform distribution is expected. Higher values point toward
multimodality [171].

Step 2: In this step, a single threshold that discriminates the flooded and the non-flooded regions based on
Kittler-Illingworth algorithm [172] was implemented over the masked t-score. The result of this step is a
first binary flood mask by applying the scene-level threshold.
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Step 3: Next, a spatial adaptive local thresholding was applied to compress over-detection and under-

detection issues from the single scene-level thresholding. The main steps that apply for each flooded-pixel

according to the binary flood mask of the previous step are the following:

For each flooded pixel we select the optimal window size based on the bimodality index value. In
particular, from a predefined range of window sizes (from 15 to 80 pixels with a step of 5 pixels)
we select the one that yields the maximum bimodality index. If its value is above 0.555 [171] we
proceed to the next step. Otherwise, we move in the next flooded pixel.
A local histogram thresholding based on the Otsu algorithm is performed. More information
regarding the Otsu algorithm can be found in [173], [174]. Otsu algorithm was selected due to its
good performance in tiled thresholding [170]. From the local thresholding we get two samples. The
first sample (sample-1) is the one that includes values less than the local threshold and the second
sample (sample-2) is the one that includes values bigger or equal with the local threshold. Next, we
test how sample-1 and sample-2 are related with floodwater and non-floodwater population from
the step-2 binary flood mask by calculating the following flags:

o Water flagl: Is sample-1 similar to floodwater population.

o Water flag2: Does sample-1 have significantly lower values in respect to floodwater

population.
o Land flagl: Is sample-2 similar to non-floodwater population.
o Land flag2: Does sample-2 have significantly higher values in respect to floodwater
population.

The similarity flags (Water flagl, Land flagl) were calculated using a non-parametric two-sample
Kolmogorov-Smirnov test with 95% confidence ratio [175]. The comparison flags ((Water_flag2,
Land flag?) were calculated by utilizing the Fisher discriminant ratio [176]. In order to ensure that
the local thresholding can improve the scene-level thresholding we follow the decision tree (Figure

4.1) based on the computed flag values.
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Figure 4.1 Decision tree of adaptive local thresholding methodology

Step 4: Region growing was used in order to improve pixel-based performance by accounting spatial
information, compress under-detection issues and reduce omission errors [152]. The region growing
algorithm that we developed searches for pixels within the t-score map that are connected neighbours to the
flood pixels (seeds) from step 3 and that fall within a tolerance criterion. We point out that the tolerance
level is not the same for each seed but it is linearly related with its t-score value. This way the algorithm is
stricter for seeds with higher t-scores than for seeds with lower t-scores.

Step 5: Refinement is the final step and consists of a) masking out high slope regions (>15 degrees) from
available DEM and b) morphological filtering based on a predefined minimum mapping unit. In particular,

based on the predefined minimum mapping unit we fill the small holes and we remove the small objects.
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Figure 4.2 Flowchart of the four-step proposed methodological pipeline (FLOMPY).

4.3 The case study of Pinios flood

4.3.1 Area of Interest

Pinios catastrophic flood event occurred in spring of 2018 and was caused by a series of storm
events from 21 to 26™ of February, 2018 [177], [178]. In the particular flood event, Pinios River and all
its tributaries have overflowed since 24" of February, 2018 and hundreds of acres of rural and urban areas
have been affected by flooding [179].

The area of interest (AOI) is located in the region of central Greece between the cities of Larissa
and Trikala. (Figure 4.3a). The complex dendritic hydrographic network consists of Pinios River and its
tributaries, and has a length of around 1188 km [180]. Due to the high frequency of the flood events along
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Pinios River, many flood protection works have been performed in the past and still planned for the future
[181].

We focus on a region (Figure 4.3b) that covers an area of about 764 km? and with elevations that
vary from 69 to 970 m above sea level (a.s.l.). The relative low terrain elevation along the hydrographic
network increases the flood risk at the study area [180]. In Figure 4.3c, a map of maximum floodwater
depth is shown to demonstrate the severity and the impact of the flood events over the area of interest.
According to the land cover map (Figure 4.3d), cropland covers the largest part of the AOI, especially along
Pinios River which is mainly used for irrigation [180], [181]. The intense and high-frequency flood events

can cause significant damages to the agricultural production and to several villages along the river network.
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Figure 4.3 Description of the case study a) Pinios river with its major tributaries and main cities over a broader area.
The area of interest is denoted with the red rectangle. b) Elevation and hydrographic network of the area of interest c¢)
Spatial distribution of maximum floodwater depth for return period T=50-years over the area of interest [182]. d)
Corine land cover level-2 classes of the study area [81]. Reference system is WGS84.
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4.3.2 Datasets

SAR data from short revisiting (6-day over Europe) Sentinel-1 constellation from ESA (European
Space Agency) are used. Sentinel-1 consists of two satellites namely, Sentinel-1A and Sentinel-1B that
were launched in 2014 and 2016, respectively. Sentinel-1 constellation is a polar-orbiting radar imaging
system working at C-band (~5.7 cm wavelength). All the Sentinel-1 TOPS IW acquisitions (9) from the
descending track with relative orbit number 80, dating from December 2017 till the flood event
(28/02/2018) have been processed. All the data are in the Ground Range Detected (GRD) format at a 10-m
spatial resolution and both VV and VH polarizations are considered.

The ancillary data consists of the larcsec SRTM Digital Elevation Model (DEM) and the precise
orbit ephemerides. For validation purposes the EMS product was used. The EMS product was extracted
using the semi-automatic method. More information regarding the semi-automatic method and the quality
control of the EMS products can be found in [183]. The EMS flood map was produced from a semi-
automatic approach on a 3-m Cosmo-Skymed image acquired at 04:00 of 28/02/2018 [179]. We point out
that in this case study, the Sentinel-1 image that was used as a flood image was acquired at 04:20 of the

28/02/2018.

4.3.3 Results and accuracy assessment

In this section the FLOMPY results and the validation with EMS product are presented. In Figure
4.4a, an optical image that covers a part of the area of interest is presented. This part will be used for
validation purposes. We will focus in three regions to comment on FLOMPY s performance. In Figure
4.4b, we can visually identify the open floodwater regions with high negative values (dark tones) in the t-
score map. The high negative values correspond to a big negative change to the backscatter characteristics
of these regions that are connected with the change due to flood event. In Figure 4.4c, we can visually verify
the strong agreement of the FLOMPY results with the dark regions of the t-score map and with the EMS

product.
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Figure 4.4 Results of the case study a) Optical Google earth imagery, b) T-scores of the Sentinel-1 intensity dataset.
¢) FLOMPY results. d) EMS results.

The quantitative accuracy assessment of the FLOMPY results was also performed using EMS product
as ground truth. Firstly, EMS vector product was rasterized and resampled to FLOMPY 10-m map using
nearest neighbor resampling. Then, the accuracy metrics that were calculated according to [184] are the
following:

e Overall accuracy which is the proportion of the flood pixels that are mapped correctly.

e User's accuracy (precision) which is the accuracy related to the commission errors of the flood

pixels.

e Producer’s accuracy (recall) which is the accuracy related to the omission errors of the flood pixels

e Kappa score which is a performance metric of the classification compared to just randomly

assigning values. Kappa scores can range from -1 to 1. Values close to one indicate that the
classification has significantly better performance than random.

In Pinios flood case study the overall accuracy was 0.97 with a kappa score of 0.76. The user's accuracy

of floodwater was 0.78 and the producer's accuracy of floodwater was 0.76.
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Figure 4.5 Results of selected regions for the case study

We strongly believe that the actual performance of the FLOMPY toolbox cannot be sufficiently
depicted by only comparing with EMS products. The abovementioned statement is valid over the three
selected regions (Figure 4.4a) where discrepancies between t-score map and EMS product are visible
(Figure 4.5). We point out that the omission errors of the EMS product affect the derived accuracy metrics
and underestimate the actual FLOMPY s performance. However, due to the lack of other validation data,

EMS products were considered as ground truth data.

4.4 Validation using EMS products

In this section, we describe the main benefits and limitations of the FLOMPY toolbox. FLOMPY
toolbox aims at exploiting big EO data, and is especially designed for Sentinel-1 intensity data. Based on a
selection of the pre-flood images, a statistical temporal analysis and an adaptive thresholding method
satisfactory results were obtained over Pinios flood case study. Moreover, based on thorough
experimentation a fixed parametrization for the FLOMPY pipeline was decided.

In order to test the transferability of the implemented methodology, we assessed the accuracy based
on EMS products in four more EMS cases. In order to be consistent, we selected EMS cases that their

product is based on the analysis of Sentinel-1 images. The same images were used by FLOMPY toolbox.
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In Figure 4.6, the main land cover characteristics for each flood case are presented. We point out that in
those cases, the floodwater was found over bare soil and low-height vegetated regions. In the Table 1, the
FLOMPY's accuracy metrics are presented. FLOMPY yielded high and consistent accuracies over the
presented case studies, which is promising. The SAR temporal t-scores proved to be an objective measure
of changes due to flood events. Moreover, the pixel-wise implementation of the FLOMPY is compatible

for computation cost improvements such as parallelization.

Figure 4.6 Optical Google earth imagery of validation regions over four EMS cases: a) EMSR504. b) EMSR456. c)
EMSR497. d) EMSR520. The validation regions are denoted with the red polygons.

Table 4-1 Accuracy assessment for floodwater in other EMS cases

Case study EMSR504 EMSR456 EMSR497 EMSR520
Sentinel-1 datetime 19/3/2021 19:07 16/08/2020 23:50 03/02/2021 05:49 16/7/2021 05:41
Location Taree (Australia) Nicaragua Germany Netherlands
Overall accuracy (OA) 0.95 0.97 0.98 0.95
User's accuracy (UA) 0.83 0.88 0.81 0.85
Producer's accuracy (PA) 0.82 0.80 0.81 0.75

Kappa score 0.80 0.83 0.79 0.77
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Another important issue is related to the flood classification accuracy. As we already presented in
the previous section, EMS accuracy is not homogeneous over different regions of an EMS product. Based
on our further analysis of four more EMS cases, we realized that there is also an issue regarding offset
errors in EMRS504 [185]. As we can see in Figure 4.7, a systematic offset of the EMS flood map [185] can
be observed. In the same figure, a superior performance of the FLOMPY map can be also observed. To our
knowledge, no in-situ observations were available for any of the investigated case studies. Even though,
the purpose of this study is not to evaluate existing EMS products, we believe that it is important to focus

on producing high-quality validated datasets in order to better assess new developed methodologies.

Flood
extent
(EMS)

M Flooded area (EMS) M Flooded area (Flompy)

Figure 4.7 Geometric distortions of EMS product (EMSR504) a) Optical Google earth imagery. b) Amplitude which
is the product of backscatter coefficients of VV and VH in decibel at flood date. c) T-scores of the Sentinel-1
intensity dataset. d) EMS results overlaid over the t-score image. €) FLOMPY results overlaid over the t-score
image. f) Flood extents between FLOMPY and EMS products.

One of the biggest limitations of the FLOMPY pipeline is related with the mapping of flooded
regions over medium- and high-height vegetated and urban environments. FLOMPY pipeline was
specifically designed to map open floodwater over bare soil and low-height vegetated regions where a
decrease of backscatter coefficient is distinct due to specular scattering mechanism [152]. Over flooded
medium- and high-height vegetated regions, as well as, flooded urban regions a high increase of the
backscatter coefficient can also be observed due to double-bounce scattering mechanisms [158]. Over these

regions, mapping floodwater in an unsupervised way at Sentinel-1 resolution (~20x22m) is considered a
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really challenging task [186]. One of the future improvements of the FLOMPY toolbox will be the
exploitation of interferometric coherence information in order to overcome the abovementioned limitation.

One other limitation of the FLOMPY methodology is related to the quality of the baseline stack.
Currently, the baseline stack is formed using images from three months before the flood event. In some
cases, a small number of pre-flood images can be available/useful, due to low Sentinel-1 data availability,
high precipitation rates or regular inundation patterns (rice fields). In those cases, the assumption regarding
the t-distribution of the backscattering coefficient will not be valid anymore. Exploiting more acquisitions
with higher temporal separation from the flood date would increase the risk of introducing errors in t-score
statistic due to land surface changes (removal of crop canopies). Future improvements of the developed
toolbox would be related with the forming of a higher-quality baseline stack with support from multi-orbit
Sentinel-1 data, ancillary data and data from other sensors. Exploiting multiple types of data would also
lead to a contextualization of the flood extracted areas which is critical. Nevertheless, it is worth exploring
since discrimination of the flooded areas can significantly help damage assessment and disaster response

actions.
4.5 Case studies based on FLOMPY s floodwater maps

4.5.1 Flood damage assessment on agricultural regions

Floods are considered the second gravest disaster for the agricultural sector. The increasing intensity
and the frequency of flood events can result in significant yield losses. A methodological pipeline able to
provide information related to flood-affected agricultural fields is introduced [187]. The proposed
methodology is an extension of the initial FLOMPY's functionalities. Multi-temporal S-2 data were
exploited for agricultural information extraction. The required inputs are the geographical region and the
time of the flood event. The main processing steps are:

1. Generation of floodwater map using FLOMPY toolbox.

2. Generation of the multispectral cube. In particular, Sentinel-2 level 2A products for three months
before the flood event are retrieved. Up-sampling (10m), subsetting and cloud masking are
performed.

3. Calculation of field intensity map and field-edge intensity map by analyzing the temporal variation
of optical NIR and SWIR information [188] of multispectral cube is performed.

4. Pixel classification of the multispectral cube as field-edge, cultivated or non-cultivated class. The
classification is performed by thresholding field and field-edge intensity maps.

5. Calculation of vector field-edge map by combining information from field-edge intensity maps and

field-edge binary map predicted from pretrained U-net segmentation model [189].
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6. Classification of each delineated field as cultivated or non-cultivated. A field is considered

cultivated if at least 30% of its pixels are classified as cultivated.

A case study related to the “lanos” Mediterranean tropical-like cyclone over an agricultural area in
central Greece is presented. The “Ianos” cyclone took place from 14th to 19th of September 2020 causing
floods and significant damage in Central Greece. We focus on an agricultural area of 325 km? near Palamas
city. The results consist of a) the floodwater map based on FLOMPY toolbox functionalities and b) the

flood-affected agricultural fields and their agricultural status (cultivated or non-cultivated).
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Figure 4.8 Floodwater map (FLOMPY) and in-situ observed flooded fields over the area of interest.

For the particular case study, we managed to collect some in-situ observations of flooded fields that
we used to quantify the performance of the FLOMPY algorithm. We need to highlight that due to the
severity of the event our in-situ observations (regions 1 and 2 in Figure 4.8) are limited (close to roads) and
cannot capture the actual flood conditions. Therefore, we used the observed flooded fields in order to
quantify only the omission errors of the FLOMPY performance. FLOMPY successfully detected the 76%
of the observed flooded fields. Based on personal communication with farmers of the region, many omitted
flooded fields were cultivated with corn that at that time had a height of about 1.5m. Vegetation height is

identified as a limitation for floodwater mapping over agricultural regions.
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In Figure 4.9, delineated flood affected field geometries are presented. The total amount of detected
flood-affected fields were 1582 in total, covering 30 km?. Cultivated and non-cultivated fields are presented
in green and orange colors, respectively. 1222 out of 1582 fields were detected as cultivated covering 24
km?. After personal communication with farmers of the regions, we were able to classify some of the fields
as cultivated and non-cultivated. Those fields were used as ground truth for validation reasons. The
proposed methodology was able to classify the identified fields correctly with 90% overall accuracy. We
believe that the produced maps with delineated flood-affected agricultural fields can be helpful for flood

damage assessment, agricultural insurance, food security and recovery planning.
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Figure 4.9 Flood-affected delineated agricultural fields and their agricultural status (cultivated or non-cultivated).

4.5.2 Sensitivity analysis of a coupled 1D/2D hydrodynamic model

Hydrodynamic modeling is essential for all the stages of flood disaster management (mitigation,
preparedness, response, and recovery). During the last decades, earth observation data have been widely
used to improve the performance of flood models. In this case study, a hydraulic modeling analysis was
performed and satellite-derived flood delineation maps were exploited. In particular, a sensitivity analysis
of an integrated 1D/2D hydraulic model in respect to roughness coefficient and upstream inflow variations,

is presented. Upstream inflow information was estimated through a hydrological simulation combined with
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a Monte-Carlo uncertainty analysis [178]. Roughness coefficient information was extracted for each land
cover from literature [190]. The accuracy assessment was performed by using generated flood delineation
maps from FLOMPY software package [165] as reference.

The area of the case study is located at Spercheios River, Central Greece. The flood event which took

place in early February of 2015, is studied. The main methodological steps [191] are:

1. Upstream inflow variations were estimated combining a HEC-HMS hydrologic model and Monte-
Carlo uncertainty analysis.

2. Estimation of roughness coefficient value ranges for main river (1D) channel based on its reaches
(lower, middle and upper).

3. Estimation of roughness coefficient value ranges for each land use category (Paved roads and
driveways, Construction sites, Cultivated Crops, Emergent Herbaceous Wetlands, Pasture/
grasslands and Mixed forests) of the overbank flow (2D) area based on the literature.

4. Implementation of HEC-RAS hydraulic simulations incorporating the generated upstream inflow
variations, roughness coefficient value ranges for main river (1D) and for each land use category
of the overbank flow (2D).

A number of simulations have been performed by using different values for the considered parameters
(upstream inflow and roughness coefficient). The sensitivity metrics that have been considered are a) the
flooded area generated by the hydraulic model and b) the agreement between the hydraulic model's flood
map and FLOMPY s flood map. According to the sensitivity analysis results, two main conclusions have
been drawn

e The upstream inflow exerted the greatest impact on the hydraulic simulation results.

e Considering the roughness coefficients, the main channel and cultivated crop land cover presented
the highest sensitivity. The optimal roughness coefficient value range for the cultivated crop land
cover was close to average. For the main channel, it was observed that increasing roughness
coefficient yields better performance.

In this case study, satellite derived flood maps were used to investigate the sensitivity of hydraulic model.
FLOMPY s maps have been used to assess and improve the performance of hydraulic modeling procedure.
According to our view, an uncertainty layer of satellite derived flood maps could have been beneficial to

better assess the performance of hydrodynamic modelling.

4.6 Conclusions

In this chapter we described a methodological framework for floodwater mapping using Sentinel-1
time series. We demonstrated its robust performance over several investigated cases around the world

achieving high accuracy (OA~ 0.97, Kappa score~ 0.77). The proposed methodology was implemented in
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an open-source python toolbox named FLOMPY. FLOMPY toolbox requires as inputs only the location
and the time of the flood event. Using FLOMPY, even less-experienced users can exploit the Sentinel-1
time series in a standard and consistent way. The FLOMPY toolbox is open-source, modular and easy to
integrate in workflows, therefore optimal for collaboration and potential future improvements. We also
presented two case studies that utilized FLOMPY floodwater maps for a) flood damage assessment on
agricultural regions and b) sensitivity analysis of a coupled 1D/2D hydrodynamic model. We consider this

tool useful and relevant in the context of emerging initiatives such as EMS [192] and ARIA [95].
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S CONCLUSIONS & FUTURE WORK

5.1 Overall Conclusions

In this dissertation, we have introduced methodologies and presented applications for monitoring
ground deformation, soil moisture and floodwater with time series analysis of SAR data. The majority of
the proposed methodologies and developed algorithms are released as open source software according to
the fourth objective of this dissertation.

In Chapter 2, we demonstrated the potential of several TSInSAR methodologies for ground
deformation estimation, following the first objective of this dissertation. Firstly, we decomposed multiple
track LOS ground deformation estimations to vertical and horizontal components. A centimetric accuracy
in respect to leveling measurements was achieved. Then, we provided a thorough performance analysis of
several TSInSAR methodologies over a region with high complexity of ground deformation patterns
(mining region). All the considered TSInSAR methods presented the best accuracies over land cover
categories with stable scattering properties. Disagreements between the results of the selected TSInSAR
approaches were found in the vegetated areas. Stamps/MTI approach was found the most reliable method
mainly due to its sophisticated unwrapping approach which exploits the spatiotemporal behavior of the
wrapped phase. Next, we proposed a wavelet-based approach able to visualize and explore the relationships
between potential driving factors and ground deformation results from TSInSAR. Lastly a software
(Interferon) has been developed that implements the TSInSAR using persistent and/or distributed scatterers.

In Chapter 3, we proposed an innovative methodology for soil moisture estimation exploiting
InSAR observables and we presented an application over an arid region, fulfilling in this way the second
objective of this dissertation. We released the open-source software package InSAR4SM for soil moisture
estimation over arid regions using InSAR and meteorological observations. Three main methodological
improvements were introduced and accurate SSM estimations at high spatial resolution (250 m) over an
arid region in California, USA using Sentinel-1 data had been made. These are a) the calculation of
interferometric observables by forming distributed scatterers, b) incorporation of meteorological
information, and c) enhanced inversion procedure. The released software package (InSAR4SM) is an
initiative that can improve the understanding of the interferometric observables for soil moisture estimation,
can boost research initiatives and can generate information to complement other soil moisture products.

In Chapter 4, we proposed a fast, unsupervised methodological framework for floodwater
monitoring/mapping using Sentinel-1 intensity time series, according to the third objective of this
dissertation. The methodological framework was released as an open-source project called Flood Mapping
PYthon toolbox (FLOMPY). The main innovations are: a) use of meteorological data as a-priori knowledge

b) exploitation of multitemporal SAR data and c) adaptive sophisticated thresholding. We demonstrated



Conclusions & Future work 73

FLOMPY s robust performance over several investigated cases around the world. We also presented two

case studies that utilized FLOMPY floodwater maps for a) flood damage assessment on agricultural regions

and b) sensitivity analysis of a coupled 1D/2D hydrodynamic model. The vision of FLOMPY initiative is

similar to emerging initiatives such as EMS and ARIA in the context of flood disaster resilience.

5.2 Future Work

In this section, we present some areas of future activities, inspired by the work of this dissertation. In chapter

2, we presented the capabilities and the limitations of several TSInSAR methodologies for ground

deformation estimation. In our view, the following future actions can be accomplished:

1.

ii.

ii.

Release of the developed TSInSAR software (Interferon) as an open-source software package under
FAIR principles [193]. We believe this will boost research and help collaborations.

Applications of the Interferon over regions that groundwater extraction activities occur. Extraction
of the TSInSAR ground deformation component that is related to groundwater fluctuations and
optional use of gravimetric data [12]. Modelling of groundwater variations by exploiting TSInSAR
technology. A data-driven approach is considered promising due to the big volume of TSInSAR
results.

Application of the Interferon over permafrost regions. Due to peculiar characteristics of permafrost
regions, methodological enhancements to increase the estimation accuracy of ground deformation
in such areas are required. Modelling of the active layer freeze-thaw cycle by exploiting TSInSAR

ground deformation results is the final goal of this activity.

In chapter 3, a novel methodological pipeline able to estimate soil moisture from interferometric coherence

and phase closure is presented. A list of the future actions in order to improve the accuracy of soil moisture

estimations and the performance of InNSAR4SM software package is provided.

ii.

1ii.

Applications of InSAR4SM to other arid regions in order to further test its performance and
comparison with other interferometric models (e.g. PCIM [122]). Potential improvements of the
spatial resolution of the produced soil moisture maps. Use of soil properties from soil databases
[140] in order to better model the scattering behavior of soil.

One of the biggest limitations of INSAR4SM is its inability to model coherence loss due to post-
storm erosion or deposition of sediments. We believe that the use of topography, land cover, rain
rate and soil composition information can be beneficial.

Experiment with simulated NISAR data in order to provide support for upcoming L-band (NISAR,
ROSE-L) data.
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In chapter 4, a methodological pipeline able to identify floodwater regions by using Sentinel-1 intensity
time series is introduced. The following list of future actions can improve the performance and accuracy of
floodwater mapping/monitoring.

i.  Support the SLC Sentinel-1 products in order to include interferometric coherence information.
Coherence information is considered an essential observable for floodwater mapping over
urban environments [194], [195].

ii.  Investigate the performance of convolutional neural networks (such as AlbuNet-34; FCN;
DeepLabV3+; UNet; U-Net++) which according to [196] outperform rule-based approaches
and potential inclusion in the FLOMPY.

iii.  Extension of FLOMPY for urban areas by introducing a recurrent neural network approach as
a probabilistic anomaly detector of the temporal coherence. This particular action is inspired

by [197].
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