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Abstract

In this study, the problems of di�raction and radiation of water waves from a surface porous
cylindrical body are considered. The body is free �oating in a constant water depth, and is
consisted of a porous sidewall and impermeable bottom. Within the realms of linear potential
theory, a three dimensional solution based on the method of matched eigenfunction expansions is
applied in order to predict the velocity potential of the �ow �eld surround the body. Numerical
results are presented and discussed concerning the e�ect the porosity, the draught and the
radius have on the cylindrical body's hydrodynamic forces and moments. It is revealed by
the results that the porosity and the dimensions of the body play a signi�cant role in either
reducing or increasing the exciting wave loads.
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Περίληψη

Στην παρούσα μελέτη εξετάζονται τα προβλήματα της διάθλασης και ακτινοβολίας κυματισμών,
από την παρουσία πορώδους κυλινδρικού σώματος. Το σώμα πλέει ελεύθερο σε σταθερό βάθος,
διαπερνά την ελεύθερη επιφάνεια και αποτελείται από διάτρητη εξωτερική επιφάνεια και αδιαπερατό

πυθμένα. Στα πλαίσια της γραμμικής θεωρίας κυματισμών, εφαρμόστηκε τρισδιάστατη μέθοδος
ανάπτυξης ιδιοσυναρτήσεων ώστε να υπολογιστεί το δυναμικό ταχύτητας του πεδίου ροής που

περιβάλλει το σώμα. Στην συνέχεια, παρουσιάζονται και σχολιάζονται αριθμητικά αποτελέσματα
που αφορούν την επίδραση του πορώδους, της ακτίνας και του βυθίσματος του διάτρητου κυλιν-
δρικού σώματος στα υδροδυναμικά φορτία. Γίνεται εμφανές, οτι τόσο το πορώδες όσο και οι
διαστάσεις του σώματος παίζουν σημαντικό ρόλο στην μείωση ή αυξησή των φορτίων.
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1 Introduction

1.1 Perforated Structures in O�shore Engineering

Perforated structures are commonly used in a variety of applications in o�shore engineering.
One of the most common uses is the construction of perforated breakwaters and seawalls. The
way in which the porosity of these breakwaters dissipates wave energy and reduces wave loads
has been thoroughly studied in the literature, as discussed in section (1.2), making them a very
suitable choice for protecting coasts and infrastructure. Some typical examples of perforated
breakwaters and seawalls are shown in the following �gures:

Figure 1.1: Wolnae �shing port of Busan [1]

Figure 1.2: Chilam �shing port of Busan [1]
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Figure 1.3: A bottom-sitting, surface-piercing pile breakwater along the coast of Singapore [2]

In Figures [1.1]-[1.2] the type of breakwater (or seawall) depicted is the one �rst studied by
Jarlan [3] and now it bears his name. In fact, they are partially or fully perforated-wall caisson
breakwaters. In their simplest form, they consist of a perforated front wall, in the cases depicted
Figures [1.1]-[1.2] circular perforated caisson wall, and a vertical impermeable back-wall.
Whereas, in Figure [1.3] the perforated breakwater has no impermeable back-wall. This type
of breakwater is particular useful in applications where the wave circulation is of essence. This
could be the case, in near-shore applications, e.g harbours or marinas, where it is important to
keep the water of being stagnant. Furthermore, the natural wave circulation that is allowed in
this type of structures can help improve the water quality and maintain a healthy ecosystem.
Additional advantages of this type of perforated breakwater, are the sediment transport along
them and the low construction costs when the water is relatively deep [4].
Another important application of perforated/porous structures in o�shore engineering is the
use of �sh cages. The high environmental impact of aquaculture in near-shore applications, and
as the availability of coastal areas becomes progressively more limited, the need for o�shore
aquaculture has become more urgent. In the following Figures [1.4],[1.5] some examples of
o�shore aquaculture with the use of �sh cages are shown:
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Figure 1.4: Fish cages in Velfjorden, Brønnøy, Norway.

Figure 1.5: The Samkna o�shore �sh farm site o� the Qatar coast in the Persian Gulf.
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1.2 Literature Review

The subject of modelling wave interaction with porous structures have been widely studied
in the literature through di�erent approaches. In [5]- [6] the Computational Fluid Dynamics
(CFD) approach is followed. In this approach, the �ow through the porous surface is modelled
explicitly. This requires a numerical grid which solves both the small-scale characteristics of the
openings in the porous surface and the large scales required for the wave propagation, resulting
in a high number of grid cells and correspondingly high computational times. As an alternative,
and in order to solve �ow �elds complex structures, numerical approaches such as Boundary
Element Methods (BEM) are required. A few examples of BEM models for wave interaction
with porous bodies are [7]- [8]. For less complex structures such as cylinders, plates and vertical
barriers (e.g breakwaters), the potential �ow methods based on linear wave theory are often
preferred. In such approaches, the �ow through the porous surface openings is not explicitly
modelled, but is rather parameterised on the grounds of the pressure drop as a function of the
�ow velocity, with a linear or quadratic pressure-velocity relationship.

As aforementioned, the most common use of porous structures on o�shore engineering is the use
of porous breakwaters. [9]- [10] are just a few, that investigated the wave re�ection, transmission
and energy dissipation inside such structures, with the application of eigenfunction expansions
in the �ow �eld in front and inside the porous medium, as well as behind the breakwater. Using
the same method, [11] proved that the wave loads on a semi-porous cylindrical breakwater were
signi�cantly reduced due to its porosity. Several subsequent studies followed, which theoretically
and experimentally examined the induced wave �ow in a porous breakwater and its ability to
scatter wave energy and minimize the environmental impact [12]- [13]. In addition, porous
plates or meshes are sometimes used to absorb waves in narrow channels [14]- [15] and have
have also been studied in the literature because of their ability to freely exchange water or
marine species. More speci�cally,in [16]- [17] in order to analyse small amplitude surface waves
generated by a porous plate oscillations, a porous wavemaker theory was developed. While,
in [18] the re�ection and transmission of small amplitude waves produced by a rigid porous
plate that is bottom-mounted in a channel of constant depth, is investigated. The solution
of scattering and radiation problems, in both submerged and �oating elastic porous plates,
was further expanded by the work of [19]- [20], as wells as by, [21]and [22] who studied the
hydroelastic behaviour of �exible submerged porous plates, in terms of wave energy absorption.

The interaction of waves with porous cylindrical bodies is another issue that has been particu-
larly studied in the literature. The wave interaction of a porous free surface piercing cylindrical
body with a coaxial inner impermeable cylinder was initially studied in [23], concluding in
the fact that the existing of porous outer surface leads to reduced hydrodynamic forces in the
inner cylinder. In order to evaluate wave kinematics around a protected cylindrical imperme-
able pile, an analytical methodology was developed and presented in [24]. Furthermore, the
wave interaction with an array of bottom-mounted surface-piercing porous cylinders was in-
vestigated in [25] using an eigenfunction expansion method. This was further extended in [26]
where the body interacting with the waves, is a free �oating cylinder and its proven that its
porosity directly a�ects the hydrodynamic loads. In [27] the problem of wave di�raction around
a cylinder with porous upper wall and an inner column was studied, and concluded in that an
increased porous coe�cient lead to a reduced wave elevation around the body.The case of wave
di�raction around a group of dual porous cylinders was numerically and experimentally studied
in [28]. Similarly, numerical and experimental results regarding the hydrodynamics of a con-
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centric twin perforated circular cylinder system were presented in [29]. Bao et al [30], applied
the Haskind relations in order to evaluate the the eigenfunctions values of the �uid domain in-
side a semi-submerged porous circular cylinder and in order. This concluded to the derivation
of a new damping term created by porosity. The case of an array of freely �oating, porous,
circular cylinders was investigated in [31]. In [32] the wave interaction with a single truncated
cylinder was investigated and a theoretical method, that was also validated experimentally was
developed. Theoretical and experimental results regarding an array of porous circular cylinders
with impermeable bottom, supplemented by horizontal, porous plates inside the bodies were
presented in [33].In addition, an array of partially porous, surface-piercing cylindrical bodies
were examined in [34] with the development of a 3D numerical model. An optimal ratio of
porous to impermeable portion of surface was adopted in order to minimize the hydrodynamic
impact. In [35] they study the impact of geometrical characteristics and porous coe�cient on
the hydrodynamic loads on a truncated cylinder, and the proper selection of said values that
will lead in reduced hydrodynamic loads. Furthermore, in [36], [37], the e�ect of linear and
quadratic resistance laws on porous bodies of arbitrary shape was examined. Cong et al [38]
applied the image method to study the e�ect of a vertical breakwater on the hydrodynamics of
a bottom-mounted, porous cylinder that pierces the free surface and is placed in front of the
wall. It was concluded that the presence of the porous cylinder can reduce the ampli�ed wave
e�ects that derive from the presence of the wall. In [39] the hydrodynamics of a moored porous
cylindrical body are studied.

Another widely investigated subject in the literature of porous cylinders is the water wave
interaction with �sh-farm cages. In the recent decade some notable studies are [40]- [41], where
a porous �exible circular cylinder is simulating the �sh net. In order to further investigate wave
interaction with �sh cages, several computational models have been developed. For example,
in [42] in the framework of potential theory and without taking under consideration the existence
of currents, a slender-body theory is presented to simulate the wave e�ects on a �oating �sh
cage. This study was further extended in [43] with the development of a numerical model
capable of calculating viscous waves and current loads on �sh nets. Continually, this was
further developed in [44], [45] to taking into account the induced wave and current mooring
loads on the �sh cage nets. The mooring characteristics and behaviour of a elastic �sh cage
with a cubic shape was validated with experimental results and presented in [46]. In [47] the
hydrodynamic response of a porous �exible circular-cylinder �sh cage in regular waves was
analytically studied where in [48] a semi analytical a model was developed describing the wave
�eld around a submerged cylindrical �sh net cage. Furthermore, in [] a numerical model to
describe wave�current interactions with a moored �exible cylindrical cage was developed. It was
further validated with numerical �nite element model results. In [49] a semi-analytical solution
to describe the interactions between waves and a �exible cylindrical net cage, the deformation
of which is governed by the membrane vibration equation of cylindrical shells, is presented.

1.3 Thesis Objective

In the present study, a free �oating, free surface piercing, porous cylindrical body is examined.
The porous outer surface is assumed to be in�exible while the bottom of the body to be
impermeable. The linearised problems of di�raction and radiation around the porous body are
solved in the frequency domain according to the theoretical approach described thoroughly in
the following chapters. The hydrodynamic problems of surge, heave and roll are resolved with
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the implementation of matched axisymmetric eigenfunction expansions method. This method
allows the subdivision of the �ow �eld around and inside the body into coaxial, ring shaped
�uid regions categorized by the numerals I, II, III (see 2.1), in each of which di�erent series
representations of the velocity potential are made. These series expansions are selected in
such a way, that the kinematic boundary condition at the horizontal walls of the body, the
kinematic condition on the sea bed, the radiation one at in�nity and the linearised condition
at the free surface,are a priori satis�ed. The various solutions, that derived with the use of
Galerkin method, are matched by the requirements for continuity of the hydrodynamic pressure
and radial velocity along the vertical boundaries of adjacent �uid regions, as well as by ful�lling
appropriate boundary conditions of the porous vertical walls of the body, that derived from the
application of Darcy's linear law. The accuracy of the present study is validated by comparisons
of data available in the existing literature. Lastly, the e�ect of porosity and radius on the
body's exciting forces and moments, hydrodynamic coe�cients of added mass and damping,
and motions is investigated.

1.4 Thesis Structure

Chapter 1 brie�y reviews the use and types of porous structures in o�shore engineering, sum-
marizes and reviews relevant to the present thesis literature, and presents the aim and structure
of the thesis.

Chapter 2 presents the formulation of the problem, describes the boundary value problem,
presents the analytical solutions for the hydrodynamic coe�cients of added mass and damping
and the solutions for the excitation forces and moments and describes the equation of motion
of the body.

Chapter 3 presents results regarding the e�ect of porous coe�cient G, body's radius and
draught, on the permeable body's exciting forces and moment and hydrodynamic coe�cients
of added mass and damping, as well as on the body's motions. Furthermore, the numerical
method used in this study is validated by comparisons of data, available in the existing litera-
ture.

Chapter 4 presents the conclusions drawn from the present study and suggests areas for future
research.

Lastly, bibliographical references are listed.
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2 Problem Formulation

2.1 Boundary Values Problem

In the present study the examined body is assumed to be, a free �oating cylinder that pierces
the free surface, has an impermeable thin bottom and a permeable outer surface. It is sub-
jected to the action of regular waves of circular frequency ω and linear amplitude (H/2) which
propagate at a zero angle in a constant water depth of d. The radius of the body is denoted by
α, the distance of the bottom of the body to the seabed is denoted by h, while the distance of
the bottom porous surface (the top of the impermeable bottom) is denoted by h1. The problem
is described by a cylindrical coordinate system (r, θ, z) originating at the seabed and coinciding
with the axis of symmetry of the body (see Figure 1). Furthermore, the �uid is assumed to be
inviscid and incompressible while the �ow irrotational.

It is assumed that the water domain is divided into three regions as follows, see Figure [2.1]:

� �ow region I

r ≥ a; 0 ≤ z ≤ d;

� �ow region II

0 ≤ r ≤ a; h1 ≤ z ≤ d;

� �ow region III

0 ≤ r ≤ a; 0 ≤ z ≤ h;

Figure 2.1: A 3D representation of the examined permeable vertical cylindrical body [39]

The assumption of irrorational �ow allows the �ow in each �uid region to be described in terms
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of velocity potential as follows:

Φk(r, θ, z; t) = Re[ϕk(r, θ, z)e−iωt], k = I, II, III (2.1)

The linearisation of the problem leads to the decomposition of the potential function into
three terms: the velocity potential due to undisturbed incident harmonic wave ϕ0, the veloc-
ity potential related to the scattered disturbance of the incident waves from the body ϕs, the
velocity potential of waves radiated due to the motion of the body ϕ7. Further, we denote
the velocity potential due to the di�racted waves ϕD. In the cases of ϕs and ϕD the body is
considered to be stationary at its mean static equilibrium, whereas in the case of radiation po-
tential ϕ7 the body is considered to be performing forced oscillations at its motions of freedom
in still liquid. The following equations describe the aforementioned velocity potentials and the
relations between them.

The velocity potential of every �uid region can be described as:

ϕk(r, θ, z) = ϕ0(r, θ, z) + ϕk
7(r, θ, z) +

∑
j=1,3,5

ξ̇j0 ϕk
j (r, θ, z), k = I, II, III (2.2)

where ξ̇j0 is the complex velocity amplitude of body motion in the j-th direction.

While the di�raction problem is described by:

ϕk
D(r, θ, z) = ϕ0(r, θ, z) + ϕk

7(r, θ, z), k = I, II, III (2.3)

The velocity potential of the undisturbed incident wave can be expressed using Jacobis's ex-
pansion as:

ϕ0(r, θ, z) = −iω
H

2

cosh(kz)

ksinh(kd)

∞∑
m=0

ϵmi
mJm(kr)cos(mθ) (2.4)

where where Jm denotes the m-th order Bessel function of �rst kind and m the Neumann's
symbol:

ϵm =

{
1 , m = 0
2 , m ≥ 0

(2.5)

The circular frequency ω and wave number k are related by the dispersion equation:

ω2 = gktanh(kd) (2.6)

In accordance to Equation (2.4) the di�raction potential of the �ow �eld around the body can
be expressed as:

ϕk
D(r, θ, z) = −iω

H

2

∞∑
m=0

ϵmi
mΨk

Dm(r, z)cos(mθ) (2.7)

Similar to Equation (2.7) the radiation potentials can be described as:

ϕk
1(r, θ, z) = Ψk

11(r, z)cos(θ) (2.8)

ϕk
3(r, θ, z) = Ψk

30(r, z) (2.9)

ϕk
5(r, θ, z) = Ψk

51(r, z)cos(θ) (2.10)
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In the Equations (2.8) the �rst subscript l = D, 1, 3, 5 denotes the respective boundary value
problem while the second one denotes the values of m that should be taken into account in the
solution process. Therefore, the functions Ψk

lm, k = I, II, II remain the main unknown of the
problem.
The complex velocity potentials ϕj, j = 0, 1, 3, 5, 7 have to satisfy:
The Laplace equation in the entire corresponding �uid domain:

∆ϕk
j =

∂2ϕk
j

∂r2
+

1

r

∂ϕk
j

∂r
+

1

r2
∂2ϕk

j

∂θ2
+

∂2ϕk
j

∂z2
, k = I, II, III (2.11)

The free surface boundary condition:

− ω2ϕk
j + g

∂ϕk
j

∂z
= 0, z = d; k = I, II (2.12)

And the impermeable boundary condition at the seabed:

∂ϕk
j

∂z
= 0, z = 0; k = I, III (2.13)

In addition, the radiation and scattering potentials ϕj, j = 1, 3, 5, 7 have to ful�l the Somer�eld
radiation condition at the far-�eld [50]:

lim
r→∞

√
kr(

∂ϕk
j

∂r
− ikϕk

j ) = 0 (2.14)

Furthermore, the kinematic condition at the impermeable wetted surface S of the body, in its
average position, has to be satis�ed:

∂ϕk
7

∂n
= −∂ϕ0

∂n
= 0, on S (2.15)

and,
∂ϕk

j

∂n
= nj, on S; j = 1, 3, 5 (2.16)

In Equations (2.15) and (2.16) ∂
∂n

denotes the derivative in the direction of the outward unit
normal vector, n, to the mean wetted surface of the body and nj is the generalised normal
vector de�ned as:

(n1, n2, n3) = n (2.17)

and
(n4, n5, n6) = r × n (2.18)

where r is the position vector with respect to the origin of the coordinate system.

The �ow through the porous openings of the body's sidewall is characterized by relatively small
Reynold's numbers, so it can be assumed to obey the linear Darcy's law [51]. The normal �ow
velocity is assumed to be continuous and linearly proportional to the pressure di�erence through
the porous boundary [25]. Hence, the boundary condition on the porous surface of the body
forms:

∂ϕII
j

∂r
= nj + ikG(ϕII − ϕI) on r = a, h1 ≤ z ≤ d, j = 1, 3, 5, D (2.19)

where G denotes the complex dimensionless porous e�ect parameter. This coe�cient can be
composed as G = Gre + iGim, where Gre is its real part representing the linearised drag e�ect
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on the porous sidewall and Gim its imaginary part, representing the inertial e�ect. Therefore,
for a real G, the resistance e�ects dominate over inertia e�ects, while G acquires complex
values when inertia e�ects dominate over resistance ones. The parameter G also expresses a
measure for the porosity e�ect, when its value tends to zero G = 0 the sidewall is completely
impermeable, while when it tends to values much higher than unity, G >> 1, the sidewall is
completely permeable, i.e. there is no sidewall. In [], it was proven experimentally that the
porous coe�cient G is related to the opening rate τ of the material, the ratio between the area
of the opening holes and the total area, as well as the waveslope ϵ = kH

2
, through the following

Equation:

G =
(17.8

ϵ
+ 432.2)τ 2

2π(1 + 1.06τ)
(2.20)

As the �ow is considered to be continuous on either side of the boundary, both the velocity
potential and its derivative must be continuous at at the vertical boundaries of adjacent �uid
regions.

� at r = a for 0 ≤ z ≤ h
ϕI
j = ϕIII

j (2.21)

∂ϕI
j

∂r
=

∂ϕIII
j

∂r
(2.22)

� at r = a for h1 ≤ z ≤ d
∂ϕI

j

∂r
=

∂ϕII
j

∂r
(2.23)

2.2 Analytical Solutions

� In�nite �ow region I

1

δj
ΨI

lm(r, z) = f I
lm(r, z) +

∞∑
i=0

F I
lm,i

Km(a
I
i r)

Km(aIi a)
Zi(z) (2.24)

where Km is the m-th order modi�ed Bessel function of the second kind and δl = d, for
l = D, 1, 3 and δ5 = d2. Whereas, the term f I

lm equals to:

f I
11 = f I

30 = f I
50 = 0 (2.25)

and

f I
Dm = (Jm(kr)−

Jm(ka)

Hm(ka)
Hm(kr))

Z0(z)

dŹ0(z)
(2.26)

where the term Hm is the m-th order Hankel function of the �rst kind.
The terms Zi(z), in Equations (2.24) and (2.45), are the orthonormal functions in [0, d]
de�ned as follows:

Z0(z) = N
− 1

2
0,I cosh(k

Iz) (2.27)

Zi(z) = N
− 1

2
i,I cosh(aIi z) (2.28)

where

N0,I =
1

2
[1 +

sinh(2kId)

2kId
] (2.29)
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Ni,I =
1

2
[1 +

sinh(2aIi d)

2aIi d
] (2.30)

The wave number kI ≡ k and is related to ω through the dispersion relation (Equation
(2.6)).
The terms aIi are the positive real roots of the transcendental equation:

ω2

g
+ aIi tan(a

I
i d) = 0 (2.31)

and the imaginary root aI0 = −ik.

� Second �ow region II

1

δj
ΨII

lm(r, z) = f II
lm(r, z) +

∞∑
i=0

F II
lm,i

Im(a
II
i r)

Im(aIIi a)
Zi(z − h1) (2.32)

where the term Im is the m-th order modi�ed Bessel function of the �rst kind and the
term f II

lm is equal to:
f II
Dm = f II

11 = 0 (2.33)

f II
30 =

z

d
− 1 +

g

dω2
(2.34)

f II
51 = − r

d2
((z − d) +

g

ω2
) (2.35)

Where the term Zi(z − h1) is derived as follows:

Z0(z − h1) = N
− 1

2
0,IIcosh(k

II(z − h1)) (2.36)

Zi(z − h1) = N
− 1

2
i,IIcosh(a

II(z − h1)) (2.37)

where

N0,II =
1

2
[1 +

sinh(2kII(d− h1))

2kII(d− h1)
] (2.38)

Ni,II =
1

2
[1 +

sin(2aII(d− h1)

2aII(d− h1)
] (2.39)

The terms aIIi are the roots of the transcendental equation:

ω2

g
+ aIIi tan(aIIi (d− h1)) = 0 (2.40)

with the imaginary root aIIi = −ikII to be considered as �rst.

� Third �ow region III

1

δj
ΨIII

lm (r, z) = f III
lm (r, z) +

∞∑
n=0

ϵmF
III
lm,n

Im(
nπ
h
r)

Im(
nπ
h
a)
cos(

nπ

h
z) (2.41)

where the term f III
lm equals to:

f III
Dm = f III

II = 0 (2.42)

f III
30 =

z2 − 0.5r2

2hd
(2.43)

f III
51 =

−r(z2 − 0.25r2)

2hd2
(2.44)
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2.3 Hydrodynamic Forces

The various hydrodynamic forces acting on the permeable body are calculated by the pressure
distribution given by the linearized Bernoulli's equation. Therefore they can be written as:

F1 = −2πiρω2d
H

2
a[

∫ d

h

1

d
ΨI

D1(a, z)dz −
∫ d

h1

1

d
ΨII

D1(a, z)dz] (2.45)

Given the Equations (2.24) and (2.32)), Equation (2.45) becomes:

F1

B
= −2ikdtanh(kd)[N

− 1
2

0,I F
I
D1,0

sinh(kd)− sinh(kh)

ka
+

∞∑
i=1

N
− 1

2
i,I F I

D1,i

sin(aIi d)− sin(aIih)

aIi a
]

−N
− 1

2
0,IIF

II
D1,0

sinh(kII(d− h1))

kIIa
−

∞∑
i=1

N
− 1

2
i,IIF

II
D1,i

sin(aIIi (d− h1)))

aIIi a
]

(2.46)

where B = πρga2(H
2
), ρ is the water density of seawater, g is the gravity acceleration. Accord-

ingly, the vertical forces acting on the permeable body are equal to the sum of the forces acting
on the upper surface (0 ≤ r ≤ a; z = h1) and lower surface (0 ≤ r ≤ a; z = h). Therefore,

F3 = 2πρω2d
H

2
[

∫ a

0

1

d
ΨIII

D0 (r, h)rdr −
∫ a

0

1

d
ΨII

D0(r, h1)rdr] (2.47)

When substituting Equations (2.32) and (2.41) in Equation (3.12b), we get

F3

B
= 2kdtanh(kd)[

1

2
F III
D0,0 + 2

∞∑
i=1

(−1)nF III
D0,i

1
nπa
h

I1(
nπ
h
a)

I0(
nπ
h
a)
]

−N
− 1

2
0,IIF

II
D0,0

1

kIIa

J1(k
IIa)

J0(kIIa)
−

∞∑
i=1

N
− 1

2
i,IIF

II
D0,i

1

aIIi

I1(a
II
i a)

I0(aIIi a)
]

(2.48)

The moment on the permeable body about a horizontal axis in arbitrary distance z = e from
the seabed can be analysed in terms of MS and Mb obtained from the distribution of pressure
on the wetted surfaces of the body, both permeable and impermeable, and it holds:

MS = −2iπρω2d
H

2
a[

∫ d

h

1

d
ΨI

D1(a, z)(z − e)dz −
∫ d

h1

1

d
ΨII

D1(a, z)(z − e)dz] (2.49)

Mb = −2πρω2d
H

2
[

∫ 2

0

1

d
ΨIII

D1 (r, h)r
2dr −

∫ a

0

1

d
ΨII

D1(r, h1)r
2dr] (2.50)

Substituting Equations (2.24), (2.32), and (2.41) into Equations (2.49) and (2.50), it is derived
that

MS

Ba
= −2ikdtanh(kd)[−N

− 1
2

0,I F
I
D1,0L

I
0 +

∞∑
i=1

N
− 1

2
i,I F I

D1,iL
I
i −N

− 1
2

0,IIF
II
D1,0L

II
0 −

∞∑
i=1

N
− 1

2
i,IIF

II
D1,iL

II
i ]

(2.51)
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Mb

Ba
= −2kdtanh(kd)[

1

4
F III
D1,0 + 2

∞∑
i=1

(−1)nF III
D1,i

1
nπa
h

I2(
nπ
h
a)

I1(
nπ
h
a)

−N
− 1

2
0,IIF

II
D1,0

1

kIIa

J2(k
IIa)

J1(kIIa)
−

∞∑
i=1

N
− 1

2
i,IIF

II
D1,i

1

aIIi

I2(a
II
i a)

I1(aIIi a)
]

(2.52)

where the terms LI
0, L

II
0 , LI

i , L
II
i are de�ned as follows,

LI
0 =

k(d− e)sinh(kd)− k(h− e)sinh(kh)− cosh(kd) + cosh(kh)

(ka)2
(2.53)

LI
i =

aIi (d− e)sin(aIi d)− aIi (h− e)sin(aIih) + cos(aIi d)− cos(aIih)

(aIi a)
2

(2.54)

LII
0 =

−1− kII(d− e)sinh(kII(d− h1)) + cosh(kII(d− h1))

(kIIa)2
(2.55)

LII
i =

−1 + aIIi (d− e)sin(aIIi (d− h1)) + cos(aIIi (d− h1))

(aIIi a)2
(2.56)

Similarly due to the permeable body's sinusoidal motion in the the i-th direction with frequency
omega and unit amplitude in the j-th direction, the corresponding reaction forces and pitching
moment Fij equal to:

Fij = −ρω2

∫∫
S

Ψy
j0(r, z)cos(mθ)nidS, y = I, II, III; i, j = 1, 3, 5 (2.57)

where S stands for the wetted surface and ni as de�ned in Equation (2.16). Furthermore,
Equation (2.57) can also be written as:

Fij = ω2aij + iωbij (2.58)

where aij and bij denote the hydrodynamic mass and damping coe�cients in the i-th direction
due to the unit sinusoidal motion of the body in the j-th direction. It is worth noted that both
aij and bij are real and ω-dependent.

Substituting Equations (2.24), (2.32) and (2.41) into equation (2.58) gives the following rela-
tionships for the non-dimensional hydrodynamic coe�cients:

a11
ρa3

+ i
b11
ρωa3

= −π
d

a
[N

− 1
2

0,I F
I
11,0

sinh(kd)− sinh(kh)

ka
+

∞∑
i=1

N
− 1

2
i,I F I

11,i

sin(aIi d)− sin(aIih)

aIi a

−N
− 1

2
0,IIF

II
11,0

sinh(kII(d− h1)

kIIa
−

∞∑
i=1

N
− 1

2
i,IIF

II
11,i

sin(aIIi (d− h1))

aIIi a
]

(2.59)

a33
ρa3

+ i
b33
ρωa3

= 2π
d

a
[(
h

4d
− a2

16hd
+

1

2
F III
33,0 + 2

∞∑
n=1

(−1)nF III
33,i

1
nπa
h

I1(
nπa
h
)

I0(
nπa
h
)

− 1

2
(
h1

d
− 1 +

g

ω2d
)−N

− 1
2

0,IIF
II
30,0

1

kIIa

J1(k
IIa)

J0(kIIa)
−

∞∑
i=1

N
− 1

2
i,IIF

II
30,i

1

aIIi a

I1(a
II
i a)

I0(aIIi a)

(2.60)
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a55
ρa5

+ i
b55
ρωa5

= −π
d2

a2
(MS +MB) (2.61)

The terms MS and MB are de�ned as follows:

MS = N
− 1

2
0,I F

I
51,0L

I
0 +

∞∑
i=1

N
− 1

2
i,I F I

51,iL
I
i −N

− 1
2

0,IIF
II
51,0L

II
0 +

∞∑
i=1

N
− 1

2
i,IIF

II
51,iL

II
i (2.62)

MB =
1

8

ah

d2
− 1

48

a3

d2h
+

1

4
F III
51,0 + 2

∞∑
n=1

(−1)nF III
51,i

1
nπa
h

I2(
nπa
h
)

I1(
nπa
h
)
− ag

4d2ω
+

a(d− h1)

4d2

−N
− 1

2
0,IIF

II
51,0

1

kIIa

J2(k
IIa)

J1(kIIa)
−

∞∑
i=1

N
− 1

2
i,IIF

II
51,i

1

aIIi a

I2(a
II
i a)

I1(aIIi a)

(2.63)

The terms LI
0, L

I
i , L

II
0 , LII

i are de�ned in Equations (2.53)-(2.56.

2.4 Equations of Motions

In the present study, the assumption of small motions and rotations in the free �oating body's
six degrees of freedom is made. This allows the the motions and rotation of the body to be
calculated as follows:

6∑
j=1

[−ω2(mij + aij)− iωbij + cij]xj0 = Fi (2.64)

The terms mij in Equation 2.64 denote the generalized masses of the �oating body, aij and bij
the hydrodynamic added mass and damping coe�cients respectively,cij the hydrostatic sti�ness
coe�cients and Fi the exciting forces and moments.

The free �oating permeable cylinder body is assumed to have symmetrical distribution of mass
and to perform two translations moves, more precisely surge and heave, and one rotational
move, pitch. Following these assumptions, the motions can be expressed in terms of response
amplitude operator (RAOs) as follows:

RAOi =
xj0

H/2
, i=1,3 (2.65)

and
RAO5 =

xj0

kH/2
, i=5, (2.66)

where k denotes the wave number.

2.5 Response Spectrum

The response spectrum results from the transformation of wave energy into response energy
of a �oating body in the frequency domain. The principle of this transformation is shown in
Figure [2.3]. for the heave motions being considered here.
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Figure 2.2: Principle of Transfer of Waves into Responses [52]

In Figure [2.3] the wave spectrum is depicted by Sζ(ω) and the term ζ(t) denotes the irregular
wave history, which in terms of the linear wave theory, is the sum of regular waves components,
each one with its own frequency, amplitude and energy. Figure [2.3] also shows the the response
spectra for heave motion, denoted as Sz(ω). The regular heave components are obtained by
multiplying each of the wave components by the motion RAO and then superpositioned to
obtain the irregular heave history, z(t).

2.5.1 JONSWAP Spectrum

It is known that, the wave spectrum describes the distribution of energy between wave com-
ponents of di�erent frequencies of a sea state. Wave spectra can be obtained directly from
measured data. However, various mathematical formulas of wave spectra are available based
on analysis of measured data, most notably, for fetch-limited regions, the Joint North Sea Wave
Project (JONSWAP). The spectral density of the JONSWAP spectrum is described by [53]:

Sζ(ω) = AγSPM(ω)γ
exp[− 1

2
(
ω−ωp
σωp

)2]
(2.67)

where,

� Aγ = 1− 0.287ln(γ)

� γ = 3.3 peakedness factor
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� SPM(ω) = 5
16
(H2

sω
4
p)ω

−5exp(−5
4
( ω
ωp
)−4)

� σ =

{
0.07 (ω ≤ ωp)
0.09 (ω ≥ ωp)

where ω and ωp are the the incident wave frequency and modal frequency, respectively. Aγ

is the normalising factor with γ referring to the non-dimensional peak-enhancement factor.
SPM(ω) is the Pierson-Moskowitz spectrum, Hs is the signi�cant wave height, and σ denotes
the spectral width parameter as shown in Figure [2.3].

Figure 2.3: Measured wave spectra under ideal conditions and parametrical approximations.
Principal sketch of the peak shape parameters γ, σa and σb. [53]
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2.5.2 Climate Data

In this study, various values of climate data, signi�cant wave height Hs and spectral period Tp

were used to calculate the response spectrum of the examined body correspond. The upper
limit of those values was determined by the maximum signi�cant wave height Hs and the
corresponding spectral wave period Tp as calculated in [54], for a given location in Greek seas.

Hs (m) 5.48
Tp (s) 10.28

Table 1: Climate Data
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3 Results

3.1 Validation

In order to validate the numerical method used in the present study, its results are compared
to corresponding ones available in the literature. The following results are produced by code
developed in FORTRAN. The examined body is a porous free �oating cylinder with a radius
of a, draught (d − h1/a = 2) that has an impermeable bottom, of negligible thickness and is
subjected to waves propagating at zero angle in a constant water depth of d = 100a/3.
The porous coe�cient G is assumed to be a real number and equal to G=1.432. As can be
seen, in Figures 1 and 2 the hydrodynamic coe�cients and exciting forces respectively are
in total accordance to the results reported in [32]. In order for them to be comparable, the
exciting forces and moment have been normalized by ρga2/(H/2) and ρga3/(H/2) while the
hydrodynamic added mass and damping by ρa3 and ρωa3 respectively.

Figure 3.1: Comparison of the present method results against those from Zhao et al. the
exciting forces and moments on a porous cylinder
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(a) (b)

Figure 3.2: Comparison of the present method results against those due to Zhao et al. [32],
concerning the hydrodynamic added mass in surge and heave (3.2a), hydrodynamic damping

coe�cients in surge and heave (3.2b)
.

3.2 Test Cases

3.2.1 E�ect of the Porous G coe�cient

In this section the e�ect of the porous coe�cient in the exciting forces and hydrodynamic
coe�cients is explored. The examined body is, as aforementioned, a porous free �oating cylinder
with a radius of a = 0.15, draught (d−h1)/a = 2 that has an impermeable bottom, of negligible
thickness and is subjected to waves propagating at zero angle in a constant water depth of
d = 100α/3. The body's mass is assumed to be constant regardless of the porosity and equal
to M = 3.62 ∗ 10−4 t, the center of gravity is located at the body's vertical axis at 4.697 m
below the free surface and the mass moment of inertia relative to the free surface equals to
Iz = 4.075 ∗ 10−6 tm2

In Table 1 (2) the values of opening ratios τ and the corresponding values of G, as derived
from the Equation (2.20), are depicted . The wave slope is considered to be ϵ = 0.05 [36].
Furthermore, the cases of G = 0 and G >> 1, the body being fully impermeable and fully
permeable respectively, are considered.

τ 0.037 0.08 0.12 0.14 0.22 0.41 0.60
G 0.101 0.468 1.015 1.432 3.118 9.309 17.482

Table 2: Opening ratios τ and the corresponding porous coe�cient G for wave slope ϵ = 0.05

The e�ect the porous coe�cient G has on the surge, heave and pitch exciting forces and moment
is depicted in Figure [3.3], while the e�ect on the corresponding hydrodynamic coe�cients of
added mass and damping is depicted in Figures [3.4]-[3.5].

19



(a) (b)

(c)

Figure 3.3: Exciting forces F1, F3 and moment F5 on the permeable cylindrical body against
wave frequency ω for various values of porous e�ect parameter

In Figure [3.3b], it can be clearly seen that the heave exciting forces behave di�erently for
G = 0 and G > 0. For the case of impermeable cylinder, G = 0, the heave exciting force has
a value of about 0.7 kN/m for ω ≃ 0 whereas in the same frequencies, for cases of G > 0, F3

tends to zero as G increases. This pattern, the decline of F3 as G increases, is also observed
at higher frequencies. It is also worth noted, that as G increases the local maxima of F3 are
observed in higher frequencies. As far as the surge excitation force F1, Figure [3.3a], and the
overturning moment F5, Figure [3.3c], are concerned, the e�ect of G is not signi�cant in the
lower frequency range ω < 1 rad/s. However, as the frequencies become higher, it becomes
clearer that again, as the value of G increases, the excitation force and the overturning moment
decrease. This holds true for all cases of G except of the fully submerged plate, G >> 1 where
both F1 and F5 have a constant value for frequencies greater than ω = 0.2 rad/s.
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(a) (b)

(c) (d)

Figure 3.4: Ηydrodynamic added mass A11 A33, A55 A15 of the permeable cylindrical body
against wave frequency ω for various values of porous e�ect parameter.

Regarding the added mass in the wave direction, as depicted in �gure [3.4a], it is noted that
A11 decreases as G increases and gradually tends to zero in the higher frequency range. This
trend is more evident in the case of higher values of G and especially in the case of the fully
submerged plate, G >> 1, which exhibits a steeper decline towards zero. As far as, heave
added mass, A33, is concerned, it can be seen in Figure [3.4b] that for low frequencies, the
added mass behaves proportionally to G, meaning it increases as G does, tending to the values
of the submerged plate case G >> 1. It is worth noted that the pitch added mass A55, as
can be observed in Figure [3.4c],is characterized by the existence of local maxima at the lower
frequency range ω < 0.2 rad/s for all cases of G, expect the one of impermeable cylinder G = 0.
At higher frequencies though, the same pattern as in Figure [3.4a] is observed. Similarly, the
surge pitch added mass, Figure [3.4d], follows a similar rational, for greater values of G smaller
values of A15 are noted. It is also noted that due to the body's symmetry A15 = A51 which also
holds true for this study.
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(a) (b)

(c) (d)

Figure 3.5: Ηydrodynamic damping B11 B33, B55 B15 of the permeable cylindrical body
against wave frequency ω for various values of porous e�ect parameter.

In Figure [3.5] the e�ect the porous coe�cient has on the hydrodynamic damping of the porous
cylindrical body, is shown. More speci�cally, in Figure [3.5a] one can notice that for lower
frequencies ω < 0.5 rad/s, B11 behaves proportionally, as the hydrodynamic damping increases
as G does. However, for higher frequencies ω > 1.5 rad/s the behaviour reverses. Now, for
higher values of G the local maxima of B11 are shifted to higher values. The same holds true
for the cases of pitch hydrodynamic damping, as can be seen in Figure [3.5c] and of surge pitch
hydrodynamic damping, Figure [3.5a]. Regarding, heave hydrodynamic damping B33, as can be
seen in Figure [3.5b], the same conclusions as in A33 variation can be drawn, as B33 decreases
as G obtains larger values for small values of wave frequencies, and the increase of G tends to
have no e�ect on B33 as frequency values get higher.

The e�ect the porous parameter G has on the permeable body's heave motion and οn its
response is shown in Figure [3.7]. The mass of the body is equal to M = 3.62e−4t, regardless of
the G value, since the porous sidewall is assumed to be in�nitesimally thin and have negligible
mass. The cases of the fully impermeable cylinder and of the fully submerged plate are not
taken under consideration as they attain completely di�erent hydrostatic coe�cients.
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Figure 3.6

Figure 3.7: Motion RAO3 of the permeable cylindrical body against wave frequency ω for
various values of porous e�ect parameter G

Regarding motion RAO3, as can be seen in Figure [3.6] for ω tending to zero RAO3 starts
its variation from unity. However, as the G increases the permeable body's heave motion
displacement decreases.

The following plots, Figure [3.8]-[3.11], show the e�ect of porous coe�cient G on the hydro-
dynamic forces, moments and heave motion of the permeable cylindrical body, in various sea
conditions. As can be seen in Figure [3.8], the surge hydrodynamic force, F1, behaves reverse
proportional to G. Furthermore, in every case of signi�cant wave height Hs, F1 decreases as
peak wave period Tp obtains greater values and increases as signi�cant wave height Hs does.
Heave hydrodynamic force F3, as seen in Figure [3.9, behaves reverse proportional to porous
coe�cient G. But, contrary to F1, F3 behaves proportional to peak wave period Tp, as well
as to signi�cant wave height Hs. Pitch hydrodynamic moment, F5 as depicted in Figure [3.10]
follows the same trend as F1.

In Figure [3.11], the e�ect of porous coe�cient G on the permeable cylindrical body's heave
motionRAO3 is depicted. RAO3 obtains smaller values asG increases, though its e�ect becomes
less signi�cant as peak wave period Tp increases. Additionally, RAO3 behaves proportional to
both peak wave period Tp and signi�cant wave height Hs.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Values of F1 against peak wave period Tp and signi�cant wave height Hs for
various values of porous e�ect parameter
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Values of F3 against peak wave period Tp and signi�cant wave height Hs for
various values of porous e�ect parameter
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Values of F5 against peak wave period Tp and signi�cant wave height Hs for
various values of porous e�ect parameter
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Values of RAO3 against peak wave period Tp and signi�cant wave height Hs for
various values of porous e�ect parameter
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3.2.2 E�ect of the Radius

In this section, the e�ect the radius has on the hydrodynamic coe�cients and exciting forces is
examined. The body is, as aforementioned, a porous free �oating cylinder of radius r, with an
impermeable bottom of negligible thickness. It is subjected to waves propagating at zero angle
in a constant water depth equal to d = 5 m. The circular frequency of the waves is denoted
by ω with values ranging from ω = 0.05 rad/s to ω = 3.0 rad/s in steps of 0.05 rad/s. The
characteristics, as in radius, mass, and mass moment of inertia relative to the free surface, of
the examined test cases are seen below in 3. The center of gravity in all four cases is located
in the vertical axis at 4.975 m below the free surface, and the porous coe�cient G is real and
equal to G = 1.432.

a 2a 3a 4a
r (m) 0.15 0.30 0.45 0.60
M (t) 3.62 ∗ 10−4 0.0014 0.0033 0.0058
Iz (tm2) 4.07 ∗ 10−6 6.52 ∗ 10−4 3.30 ∗ 10−4 0.001

Table 3: Characteristics of Test Cases
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(a) (b)

(c)

Figure 3.12: Exciting forces F1, F3 and moment F5 on the permeable cylindrical body against
wave frequency ω for various values of radius

The e�ect the value of the body's radius has on the exciting forces and overturning moment,
is visualised in Figure [3.12]. Both surge F1 and heave F3 exciting forces, as seen in Figures
[3.12a]-[3.12b], behave proportionally to radius values. It is also noted that in the case of
heave,F3, Figure [3.12b], the case of r = 4a the curve corresponding to the r = 4a case is
characterised by a steeper slope and a rather larger local maximum in relation to the others.
However, for the overturning moment, F5, Figure [3.12c] the case is not the same. In the range
of smaller frequencies ω < 1 the case of the r = 3a exhibits values close to r = a case and as
the frequencies increase it tends to meet the r = 2a curve, while the r = 4a curve continues
to exhibit similar behaviour as in surge and heave, see Figures [3.12a]-[3.12b], with the main
di�erence being that it exhibits maximum values at higher frequencies.
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(a) (b)

(c) (d)

Figure 3.13: Ηydrodynamic added mass A11 A33, A55 A15 of the permeable cylindrical body
against wave frequency ω for various values of radius.

Figure [3.13] depicts the hydrodynamic coe�cient of added mass, of the examined permeable
body, for various cases of radius value. Regarding the added mass in surge direction A11,Figure
[3.13a]], in the frequency range of ω < 1.5 rad/s added mass is of proportionally greater value
and constant for each case. As ω increases A11 tends to decrease, more rapidly so, for higher
radius values. In Figure [3.13b] the added mass in heave direction, A33 is depicted. It can be
seen that, A33 behaves reverse proportionally with r, as it decreases as r increases. This e�ect
is more prominent for ω < 2.5rad/s as for frequencies higher than that, A33 tends to zero in
all the examined cases, making the e�ect of r negligible. The added mass in pitch direction
A55, is depicted on Figure [3.13c]. It can be noted, that the curves of r = a, r = 2a, r = 4a
attain a local maxima, that is of higher value for greater r values in the lower frequency range
ω < 0.2 rad/s whereas r = 3a attains a local minima in the same range. For greater values of
ω, A55 behaves proportionally with r. In case of surge pitch added mass A15, Figure [3.13d],
the curve corresponding to r = 4a follows a similar behaviour as the one in surge, see Figure
[3.13a], while it also holds true that for greater values of r, A15 increases as well, except for the
case of r = 2a which for the whole frequency range has a negative value of A15. It also holds
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true that A15=A51.

(a) (b)

(c) (d)

Figure 3.14: Ηydrodynamic damping B11 B33, B55 B15 of the permeable cylindrical body
against wave frequency ω for various values of radius.

In Figure [3.14] the e�ect the value of the permeable cylindrical body's radius has on the hy-
drodynamic damping coe�cient, against frequency, is depicted. The hydrodynamic damping
coe�cient in the surge direction B11, Figure [3.14a], behaves proportionally with r, as r in-
creases so does B11, and this e�ect is more prominent as ω values get higher. In the range of
ω < 0.3 rad/s the e�ect of r is practically negligible. As can be seen in Figure [3.14b], the hy-
drodynamic damping in the heave direction B33, behaves proportionally to r similarly with the
case of B11, see Figure [3.14a], with the key di�erence being, that in the case of B33 the e�ect of
r is prominent in the whole frequency range. In the case of damping on the pitch direction B55,
Figure [3.14c], however, the aforementioned pattern is not followed. Here, the lowest values of
B55 correspond to the case of r = 3a presenting values near zero for frequencies smaller than
ω < 1 rad/s and attains negative values for the rest of the frequency range. Similarly, in the
case of surge pitch damping B15 the case of r = 4a exhibits a similar behaviour as in surge B11,
see Figure [3.14a], while the rest behave reverse proportionally and as r increases B15 attains
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smaller values which for ω > 07 rad/s B15 are negative.

Figure 3.15

Figure 3.16: Motion RAO3 of the permeable cylindrical body against wave frequency ω
against wave frequency ω for various values of radius

As it is shown in Figure [3.15] the heave motion RAO for ω tending to zero, starts its variation
from unity. As ω increases, it is evident that for radius of greater values the heave motion
displacement decreases.

The following plots, Figure [3.17]-[3.20], show the e�ect of radius on the hydrodynamic forces,
moments and heave motion of the permeable cylindrical body, in various sea conditions. As
can be seen in Figure [3.17], the surge hydrodynamic force, F1, behaves proportional to radius.
Furthermore, in every case of signi�cant wave height Hs, F1 increases until peak wave period
obtains a value of Tp = 2.5 s and then gradually decreases.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: Values of F1 against peak wave period Tp and signi�cant wave height Hs for
di�erent values of radius
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Values of F3 against peak wave period Tp and signi�cant wave height Hs for
di�erent values of radius
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(a) (b)

(c) (d)

(e) (f)

Figure 3.19: Values of F5 against peak wave period Tp and signi�cant wave height Hs for
di�erent values of radius
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: Values of RAO3 against peak wave period Tp and signi�cant wave height Hs for
di�erent values of radius

Heave hydrodynamic force F3 as depicted in Figure [3.18], is also proportional to radius. In
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most case of signi�cant wave height, Hs, F3 increases until peak wave period obtains a value
of Tp = 4.5 s and then gradually decreases. In the case of Hs = 0.5 m the maximum value of
F3 corresponds to period of value Tp = 5.5 s. As can be observed, in Figure [3.19], F5 does
not behave proportional to radius. In this case and in accordance to Figure [3.12], in case of
r = 2a hydrodynamic moment F5 obtains greater values for every Tp, compared to r = 3a.
Additionally, greater values F5 correspond to lower values of peak wave period Tp.

In Figure [3.15 ], the e�ect of radius on the heave motion RAO3 is shown. RAo3 behaves reverse
proportionally to radius, and as peak wave period obtains greater values the e�ect of radius
becomes negligible.

3.2.3 E�ect of Draught

In this section, the e�ect the draught has on the hydrodynamic coe�cients and exciting forces
is examined. The body is, as aforementioned, a porous free �oating cylinder of radius r, with
an impermeable bottom of negligible thickness. It is subjected to waves propagating at zero
angle in a constant water depth equal to d = 5 m. The circular frequency of the waves is
denoted by ω with values ranging from ω = 0.05 rad/s to ω = 3.0 rad/s in steps of 0.05 rad/s.
The porous coe�cient is real and equal to G = 1.432. The examined cases and the locations
of corresponding center of gravity (CoG) at the vertical axis ZG, of each case is shown below
in Table (4).

(d− h1)/a 2 3 4 5 6
ZG (m) 4.697 4.547 4.397 4.247 4.097

Table 4: Examined cases of draught e�ect and location of center of gravity ZG at the vertical
axis

The e�ect the value of draught has on the body's exciting forces and moment is depicted in
Figure [3.21]. Both surge F1 exciting force and pitch F5 moment , as seen in Figures [3.21a]-
[3.21c] behave proportionally to the value of draught. As the draught increases so do the
exciting force and moment. However, this is not the case for the heave exciting force F3. In
this case, as seen in Figure [3.21b], F3 behaves reverse proportionally to the draught values.
The e�ect of draught for the cases of (d − h1)/a = 4, 5, 6 is more prominent in the frequency
ranges of ω < 1.5 rad/s and ω > 2 rad/s.
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(a) (b)

(c)

Figure 3.21: Exciting forces F1, F3 and moment F5 on the permeable cylindrical body against
wave frequency ω for various values of draught

The e�ect the draught has on the hydrodynamic added mass of the permeable body is depicted
in Figure [3.22]. In the case of surge added mass A11 and surge pitch added mass A15, Figure
[3.22a] and Figure [3.22d] respectively, is clear that as the draught increases so does the added
mass. The same holds true for the case of heave added mass A33 but in this case, as ω increases,
the curves of A33 for di�erent draught values tend to collide. In case of the pitch added mass
A55, Figure [3.22c] is worth noted that while in the cases of (d−h1)/a = 2, 4, 6 the corresponding
added mass curves obtain local minima in the range of ω ≃ 0.1rad/s the remaining cases of
(d− h1)/a = 3, 5 obtain local maxima in the same frequency region.
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(a) (b)

(c) (d)

Figure 3.22: Ηydrodynamic added mass A11 A33, A55 A15 of the permeable cylindrical body
against wave frequency ω for various values of draught.

In Figure [3.23] the e�ect the draught has, on the permeable cylindrical body's hydrodynamic
damping coe�cients, is depicted. In the cases of surge,B11, pitch ,B55 and surge pitch B15,
Figures [3.23a],[3.23c] and [3.23d] respectively, the hydrodynamic damping coe�cients exhibit
the same behaviour. In the lower frequency range, ω < 0.5 rad/s the value of draught has no
signi�cant impact on hydrodynamic damping, and as ω increases, the hydrodynamic damping
coe�cients behave proportionally to the draught, as the draught increases so does the hydrody-
namic damping. This, however, is not the case for the heave hydrodynamic damping coe�cient
B33 as shown in Figure [3.23b]. In this case, for frequencies smaller than ω < 1.5 rad/s B33

behaves reverse proportionally to draught, and for ω > 1.5 rad/s the curve that corresponds
to (d − h1)/a = 6 follows an increasing trend whereas the rest of the cases exhibit a steady
decline.
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(a) (b)

(c) (d)

Figure 3.23: Ηydrodynamic damping B11 B33, B55 B15 of the permeable cylindrical body
against wave frequency ω for various values draught.

In Figure [3.24], the e�ect di�erent values of draught have on the permeable cylindrical body's
heave motion RAO, is depicted. For ω tending zero, RAO3 obtains a value of 1 for all the
examined cases. As the ω increases, it is clear that for greater values of draught the heave
motion displacement decreases.
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Figure 3.24

Figure 3.25: Motion RAO3 of the permeable cylindrical body against wave frequency ω for
various values of draught

The following plots, Figure [3.26]-[3.29], show the e�ect of draught on the hydrodynamic forces,
moments and heave motion of the permeable cylindrical body, in various sea conditions. Re-
garding the hydrodynamic forces F1 and F5 Figures [3.26] and [3.28], it is evident that they
behave proportional to the draught. It is also worth noted that the force and moment attain
larger values as the signi�cant wave height increases. Contrary, as the peak wave period in-
creases, F1 and F5 decrease. In Figure [3.27] the e�ect of draught on heave force is depicted. In
this case, the force behaves reverse proportional to the body, meaning that for higher values of
draught, F3 decreases. The peak values of heave F3 in most sea states, are obtained for values
of peak wave period Tp ≃ 3.5 s. The exception being the case of Hs0.5 m, Figure [3.29] where
F3 obtains peak values for peak wave period of Tp = 4.5 s.

Regarding heave motion RAO3, as it is shown in Figure [3.29], it also behaves proportional
to draught. The higher values of RAO3are obtained for the extreme weather conditions of
Hs = 5.5 m and Tp = 11.5 s. It is also worth noted, that draught seems to have less e�ect on
RAO3 as Tp increases.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.26: Values of F1 against peak wave period Tp and signi�cant wave height Hs for
various values of draught
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(a) (b)

(c) (d)

(e) (f)

Figure 3.27: Values of F3 against peak wave period Tp and signi�cant wave height Hs for
various values of draught
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(a) (b)

(c) (d)

(e) (f)

Figure 3.28: Values of F5 against peak wave period Tp and signi�cant wave height Hs for
various values of draught
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(a) (b)

(c) (d)

(e) (f)

Figure 3.29: Values of RAO3 against peak wave period Tp and signi�cant wave height Hs for
various values of draught
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4 Conclusions and Future Work

In the present a study a free �oating, permeable cylinder body in the presence of regular
waves was investigated. In order to investigate the hydrodynamics of the body, and within the
realm of the linear theory, a three dimensional theoretical solution based on the eigenfunction
method was developed for the determination of the velocity potential of the �ow �eld around
the cylindrical body. Furthermore, the linear resistance law was implemented to connect the
the pressure drop across the porous boundary to normal velocity. The main conclusions drawn
from this study are:

� The porous boundary contributes to the presence of reduced hydrodynamic forces and
moment compared to those of the solid cylinder.

� The value of porous coe�cient G plays a key role in the hydrodynamic forces and moment
acting on the body as they decrease proportionally with its increase.

� The value of porous coe�cient G is signi�cant in the body's heave motion RAO as well
as in its response in real waves.

� The overturning moment F5 increases proportionally with the body radius for all cases
except r = 2a, this occurs due to the low damping values B55 for the case of r = 2a
leading to higher values of exciting moment.

This research can by further expanded by taking into account the wave interaction between
arrays of �oating porous bodies. Additionally, it can be further developed in order to study
�oating porous bodies with �exible sidewalls, in order to simulate �sh cages.
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