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Chapter 1

INTRODUCTION

The concept of optimality with regards to investment selection is an extensively studied “problem”
in Mathematical Finance. The substantial variety of approaches aiming to answer the question:

“What constitutes an optimal portfolio?” can be traced back, at least partially, to the following:

What are we trying to optimize? In other words, what would be a realistic representation of an

intestor’s criterion.

For this thesis, this question is the initial setting. For this, we adapt a stochastic version of the
Mean-variance portfolio selection (MVPS) criterion. More precisely, we consider that the investors
participating in the market invest in a non self-financing strategy aiming for maximal mean and
minimal variance H Moreover, after having determined the optimal strategies—according to the

investors’ preferences—we study their influence on the market at the equilibrium.

More precisely, the main goals of this thesis are:

(I) Study the MVPS criterion when the drift of the market is derived endogenously.
(IT) Analyze the model and the results of [Bou+18].
(ITI) Introduce the price impact model of [Ant17] in continuous time without frictions.

(IV) Generalize the notion of impact for a market with frictions.

The second chapter of the thesis is introductory and it aims to define some mathematical concepts
which are frequently used. This chapter is partially supplemented by Appendix [A] which we use

to further analyze and/or clarify some concepts present in the main text. To this end, throughout

! Alternatively, as expressed in |GP16|, we could say that the investors have mean-variance preferences over the
change in their wealth over time.



the thesis, there can also be found some special blocks of text called “Closer looks”, which focus

on delving somewhat deeper in a few relevant notions without disrupting the main flow of the text.

In the third chapter and onwards, we work towards analyzing the main part of the thesis, that is
defining and solving the portfolio optimization problem and exploring the influence of its solutions
at the equilibrium, in various types of markets. Note that in Chapter 3 and 4, we essentially
analyze and discuss the results of [Bou+18|. More precisely, we initially consider a financial market
with 1 riskless and d risky assets, modelled by a diffusion process, where the diffusion coefficient
is exogenously given, while its drift is derived endogenously by an equilibrium condition. There
are N investors with heterogenous risk aversions that participate in the market and trade amongst
themselves. The investors are endowed with a random wealth process consisting of two parts:
their holdings on the financial market, which naturally depend on their strategy of choice, and a
exogenously given random endowment which captures other sources of income, possibly correlated
with the assets. The rest of the market’s participants, called noise traders, are assumed to follow
strategies that are not derived through any specific optimization criterion. Having introduced the
above, we assume that the trades of risky assets in the market do not incur transaction costs, i.e.
a frictionless market, and define an appropriate objective function, representing the mean-variance
preferences over the change of an investor’s wealth. Optimizing the aforementioned function over
the space of potential strategies and for each investor independently gives us the optimal asset
allocation in a frictionless market. Closing the third chapter, we concern ourselves with determining
the drift coefficient of the process that drives the market. In fact, the equilibrium condition that is
imposed in the market dictates that the sum of the optimal strategies of the investors matches the
exogenous demand of the noise traders. Via this condition we derive endogenously the drift of the

market, called equilibrium returns.

In the fourth chapter, we introduce frictions in the market. We follow [Bou+18| and assume that
each trade incurs a cost in the form of a transaction taz, which goes to an exogenous recipient
(who does not participate in the market). To derive the respective optimal strategies in a market
with frictions, we have to assume that the strategies of the investors are now absolutely continuous

and incur transaction costs proportional to the square of their pointwise derivatives (that is, the



investors’ trading rates). This yields a new objective function for investors’ optimal allocation, which
in turn is characterized by a system of coupled but linear Forward-Backward SDEs. These equations
can be solved explicitly in terms of matrix power series, leading to closed-form expressions for the
liquidity premia between the equilibrium returns in a market with frictions and their frictionless
counterpart. Interestingly enough, under the assumption of homogenous risk aversions and without
the presence of any noise traders in the market, the frictional equilibrium returns revert to their

frictionless form.

In the fifth chapter we go back to the frictionless optimization problem presented in the third
chapter, and we introduce a notion of price impact. Price impact can be defined as the effect that
an investor has on the price of a risky asset as a result of her buying or selling it. In some sense, we
could view the price of the assets as a function of an investor’s strategy. The aforementioned give
us a natural way to model the concept of “impact”, through the equilibrium returns. Recall that
this process drives the prices of the risky assets that exist in the market and is determined via the
strategies of the investors by the equilibrium condition. Similar concepts are also studied in [Ant17]
and [AK17]. Having derived a form for the price impact through the equilibrium returns, we have
essentially created a new optimization problem (since the wealth of each investor depends on the
assets’ return process). Its solution determines the respective optimal strategies in a frictionless
market with price impact (called best-response). When all N investors adapt the same best-response
strategy, the market equilibrates at the induced fixed point, determining a Nash-equilibrium. We
also note that under the assumptions of homogenous risk aversions and without the presence of any
noise traders in the market, the Nash equilibrium reverts to the frictionless equilibrium returns of

the third chapter.

Lastly, in the sixth chapter we extend the notions already introduced during the fifth chapter, but
in a market with frictions. Therein, for tractability, we consider that the investors have homogenous
risk aversions. By this assumption, the solution to the new objective function in a market with
frictions under the price impact of a single investor is characterized by a second order, linear, non-
homogenous (random) ODE. We again note that the frictional equilibrium returns under the price

impact of a single investor revert to their frictionless counterpart in both of the following cases: (i)



same risk aversions and no noise traders and (ii) the transaction costs, which come in the form of

a transaction tax, go to zero (while the investors have homogenous risk aversions).



Chapter 2

INTRODUCTORY CONCEPTS

In this chapter we shall give a brief introduction of the concepts depicted in the graph below:

T

Notation A general form for Some relevant Theorems
Forward-Backward for
SDEs Semimartingales

Figure 2.1: Outline of the 2" chapter

2.1 Notation

Throughout this thesis, we use the following notations for a continuous stochastic process for

te 7, we Q) and a state space S:

(I) The mapping depicted as either X or (X¢);e 7, or equivalently X(-,-) : 7 x 3 — S denotes

a stochastic process.

(IT) By fixing t we get a random variable X(¢,-) or equivalently X; : w — X(t,w). From this

perspective the stochastic process is a collection of random variables X;, indexed by the time

variable t.

(IIT) By fixing w we get a function of time X (-, w) or equivalently X¢ : t — X(t,w). X“ denotes a

realization/sample path of the stochastic process, which is formed by taking a single possible

value of each random variable of the stochastic process. From this perspective the process is

a function of time.



We fix a probability space (Q),.%,P) equipped with a complete filtration (%) 7 F_-I generated by a

standard d-dimensional Brownian motion (W;);ec 7, where 7 = [0,T] for T € (0,00) (“finite time

horizon”) or .7 = [0,00) for T = oo (“infinite time horizon”). Moreover, we fix a non-negative

constant ¥ > 0 (which will stand for the discounting interest rate) and let an R’-valued progressive  For more

process (X;)iez belonging to ZF, p > 1, if || - l(pr) = (IE[fOT e_’tHXtHF’dt])l/p < holds That  nformation
about

is: .
progressive

processes,
local
P = {X : Q) x 7 — R': X is progressively measurable s.t. || - ||(p,,) < 00} martingales
and the space

LF | refer to

2.2 Forward Backward Stochastic Differential Equations (FBSDE) a1

As stated in the introduction, the equilibrium of a market with frictions will be characterized
as a unique solution of a system of coupled but linear Forward-Backward Stochastic Differential
Equations (FBSDE). Below, we give a general representation for such system considering an

one-dimensional Brownian motion, as in [MJ07].

Let (Q),.Z, (Zt)t>0,P) be a complete filtered probability space on which an one-dimensional stan-
dard Brownian motion (W;);>o is defined, such that (.%;);>0 is the natural filtration generated by
it. A general form of a system of coupled linear FBSDE, driven by a one-dimensional Brownian

motion, is:

dX; = (AXt + BY;+CZ; + Dbt> dt + (AlXt 4+ BY:+ CiZ; + DlUt)th,
dY; = (AX; + BY, + CZ + Dby )dt + (A1 X + BrY + C1 2y + Diy ) dW,

te0,T],

Xy =x, YT:GXT—i—Fg.

Let #p ={ACQ:ACBst P(B)=0}. A filtration is called complete if every (.F;);>0 contains Ap.
2Note that || - || could be any norm in R!.

3Note that since we are working with Lebesgue-integrable functions, most equalities are understood in an “almost
everywhere sense”.



In the above, A, Ay, A, Ay, B, By, B, By etc, are (deterministic) matrices of suitable sizes, b, 0, b,o
are measurable, adapted stochastic processes and g is a measurable random variable. We see that
the equation is forward with regards to X(-), its initial point is given and backward with regards
to Y(-). Note that the solution to the above system will be of the form (X, Y}, Z;). It is clear that
the above system is coupled, since at least one differential equation (in this case two) depends on

both output variables.

2.3 A primer on semimartingales and quadratic variation

Let us initially define the concept of quadratic variation as well as some relevant properties.

A Closer Look I: Quadratic variation, covariation and the notion of compensators

Following the notation of [KS91], the variation of a stochastic process X : [0,f] — R over some

partition P = {0 = fg,t1, ..., t, = t} is defined by:

n

Vi(X,P) = 21 | X(t:) — X(ti-1) |,
= AX

V1(X,10,t]) = sup{Vi(X, P) : for any partition P of [0, ¢]}.
P

The above equations defines the total variation of a process. A function is of bounded variation on
[0, ¢] if V1(X, [0, ¢]) is finite[] Let us now focus on the concept of quadratic variation, which plays

a fundamental role in the theory of stochastic processes. To this end, we define the following;:

Va(X, P) = ) (X(t) = X(ti1))?,

M-

Il
—

1

Xl, = lim Vi(X,P),
Xy = lim V2(X,P)

where ||P|| is the so-called mesh ﬂ If the above limit converges in probability for any partition,

then we say that the quadratic variation of X exists [] In a similar manner, the notion of

covariation between X,Y is defined as follows (see further in [Kal02]):



C(X,Y,P) = Y (X(8) = X(t1))(X(8) — Y(ti1))
=1 AX AY

[X,Y]; = lim C(X,Y,P)
P[>0

If the above limit converges in probability for any partition, we say that the covariation of X,Y

exists. Equivalently, the above concepts in integral form are:

M o,) = [ lax)
Xl = [ (X,

t
X, Y], = / AX.dY..
0

In the case of a d-dimensional process X = (X, ..., X(@) the quadratic variation [X] is defined

as the d x d matrix valued process:

(X0, xM] [x0,x@] ... [xO,x@]

[X(Z), X(l)] [X(Z), X(Z)] . [X(2), X(d)]
[X] = :

[X(d), X(l)] [X(d), X(Z)] ... [X(d), X(d)]

the covariation process is also defined accordingly.

%The above concepts can be generalized for X : [0,#] — Y, where Y is a normed space, as Vi(X,[0,t] =
sup { Y 1X(t) — X(ti—1)||y ¢ for any partition P of [0, t}}
P

®The mesh of a partition can be defined as: max{|t; —t;_1| : i = 1,..,n} |Hij16]. Another partition Q of the
given interval [a,b] is defined as a refinement of the partition P, if Q contains all the points of P and possibly some
other points as well. In this case Q is said to be "finer” than P.

“Note that in the context of Analysis, a different definition is offered. For more information, refer to [MW12].

We now give some useful definitions as stated in [Pro05|, which help us better understand the
modelling process of the problem at hand and also provide some insight for a few concepts discussed

later on.

Definition 2.3.1 (Finite variation process) An adapted, a.s. right continuous with left limits process



A is a finite variation process (F'V) if a.s. the paths of A are of bounded variation on each compact

interval of [0,00). o

Definition 2.3.2 (Predictable o-algebra) The predictable o-algebra on Ry x Q), also denoted by 2,
is generated by the left continuous and adapted processes (or by the continuous adapted processes).

A stochastic process said to be predictable if it is &?-measurable E] ¢

Definition 2.3.3 (Decomposable process) An adapted, a.s. right continuous with left limits process

X is decomposable if there exist processes N, A such that:

Xy = Xo+ Ne+ Ay,

with Ny = Ag = 0, N is a locally square integrable (i.e. 1.2 on all compact subsets of the domain)

local martingale and A is a finite variation process (these concepts shall be discussed in more length

below). ¢

Definition 2.3.4 (Classical semimartingale) An adapted, a.s. right continuous with left limits pro-

cess Y is a classical semimartingale if there exist processes M, B with Mg = By such that:

Y; = Yo+ M; + By,

where M is a local martingale and B is a finite variation process. If, furthermore, B is a predictable

process, then the above decomposition is also unique. %

The two aforementioned Definitions are linked by the below result as proven in [Pro05|, for any

local martingale M.

M=N+¢(,

where N is a locally square integrable, local martingale and C a F'V process. Therefore, the above
notions can be summarized in the Theorem presented below which gives equivalent statements for

a semimartingale, as shown in [Pro05].

4In a similar manner, we define the optional o-algebra, also denoted by ¢, which is generated by the right
continuous and adapted processes.



Theorem 2.3.1 (Equivalent statements for semimartingales) Let X be an adapted right continuous

with left limits process. The following are equivalent:

(I) X is a semimartingale.
(1) X is decomposable.
(III) X is a classical semimartingale. o
We are now ready to define the concept of compensators in the context of quadratic variation/co-

variation. The following definitions are given in accordance with [Kal02]. Let A be a process of

locally integrable variation. Then A can be uniquely decomposed by means of the Rao’s Theorem

[Pro05] as follows:

A=M+A,

where A is a predictable finite variation process. Alternatively, we could state that A is the unique,
predictable, finite variation process such that A — A is a local martingale. The following definition

stems naturally from the above.

Definition 2.3.5 (Compensator) Let A be an adapted process with locally integrable variation. The
unique, predictable finite variation process A, with Ag = 0, such that A — A is a local martingale

is called the compensator of A. ¢
Notice that some obvious observations are:

e We have that E[A;] = E[A{] for all t, 0 < t < oco.

e Let A be an adapted increasing process of (locally) integrable variation and let E[ fot H,dAs] <

oo a.s. for every t > 0 and progressively measurable H. Then, we have that:

]E[/OtHsdAs] :IE[/OtHSdAS}

The above stems from the fact that since A — A is a martingale, f Hsd(As — As) is also and

therefore the aforementioned quantity has constant expectation, equal to zero.

10



Now let’s place the above in the context of variations.

Definition 2.3.6 (Quadratic variation’s compensator) Let X be a semimartingale with locally inte-
grable quadratic variation. The predictable quadratic variation (X, X); is the compensator of the

quadratic variation process [X, X, that is A = [X, X]. o
Here is a relevant property as shown in [Kal02]:

e For a continuous local martingale the predictable quadratic variation process exists and co-

incides with the quadratic variation process a.s.

Definition 2.3.7 (Covariation’s compensator) Let X,Y be two semimartingales with locally inte-
grable quadratic variation. The predictable covariation (X,Y) is the compensator of the covariation

process [X,Y]. o
Here is a relevant property as shown in [Kal02]:

e For continuous local martingales X, Y, the predictable covariation exists and coincides with

the covariation process a.s.

11



Chapter 3

THE MODEL FOR THE FRICTIONLESS MARKET

In this chapter we examine the concepts stated in the graph below:

-

Frictionless model Frictionless optimal asset allocation Frictionless equilibrium
Construction of the goal functional Optimality conditions Conditions Noise traders
15t order condition 2" order condition

Figure 3.1: Outline of the 3" chapter

3.1 The frictionless model

In this section we are going to primarily discuss the construction of the optimization problem, i.e.
the optimal allocation of assets of an investor, in the context of a market without frictions. For
such a market this means one can trade continuously with no transaction costs, taxes, or other

encumbrances of any kind |[Durl0]. The market consists of two kinds of participants, that is:

(I) The investors, indexed by n = 1,..., N with mean-variance preferences and heterogenous risk

exposure and risk aversions.

(IT) The noise traders whose decisions to buy or sell an asset are not determined by any optimiza-

tion criterion.

The objective is to derive a progressively measurable optimal asset allocation (¢f')ies € .,S”rz,

for each investor n = 1,..., N, which maximizes the discounted expected (proportional changes)

12



of her wealth, penalized by their quadratic variation. Equivalently we could say, as expresed in
[GP16], the aforementioned objective means that the investor has mean-variance preferences over

the change in her wealth for each time period.

Let us now explain a bit more thoroughly the various “building blocks” used to construct the above
representation. We consider a financial market with 1+ d assets. The first one holds no risk and its
price process is exogenous and normalized to one. The remaining assets are risky, with dynamics

which are driven by a d-dimensional standard Brownian motion (W;)se 7.

Plgl) o1 - 014
sy = | ¢ |- dt+ | N AL/ (3.1)

yﬁ‘” Oa1 -~ Odd
As previously stated, defines the dynamics of the proportional returns of the market. The
drift parameter of is defined by the R%process (ji¢);c# which depicts the (instantaneous)
return process of the risky assets and will be determined endonegously by an equilibrium condition.
Futhermore, the diffusion parameter of the above SDE is assumed to be constant, R?*?-valued

volatility matrix o, given exogenously—which in turn yields the infinitesimal covariance matrix

Ydt = oo'dt. Note that X is assumed to be positive-definite and therefore non-singular.

The previously described optimization problem can be posed through the maximization of the

functional presented below:

Market  Endowment
T B /_/TH — ,),n . T ..
F"(¢p) =E / e " | (¢f)'dS; +dY) —2d</ (¢") dSs+Y”> — maximize, (3.2)
0 0 ¢

Dynamics of Wealth

where ¥" > 0 denotes the investor’s n risk aversion. We also set without loss of generality that:

AN = max(9!,..4N).

Furthermore, each of the aforementioned investors receive cumulative random endowments (Y{")c7

with dynamics:

13



Ayl = dA? + () TodW; +dM;", n=1,..,N. (3.3)

We now discuss in more detail the terms that comprise (3.3]) in accordance with [Bou+18].

e We define (A}')ic s as the R-valued finite variation process such that IE[fOT e "dA;|] < oo,
which models both cash inflows and outflows for each investor at any moment. We can think
of this specific component as the cummulative cashflow of each position that is not necessarily

spanned by the assets (eg. some other obligations, salary, private placements etc.).

e We define " € £? as the R%-valued process [2, which describes the exposure of an investor
to market’s shocks. This component essentially means that the endowment of an investor is
correlated with the risky assets. Each investor has motive to hedge against those fluctuations
of her endowment through trading in the market. Note that the strategies are not self-

financing.

e We define M, such that E[|| fOT e "'d[M];]|] < oo, as the R-valued orthogonal martingale
which models unhedgeable shocks ﬂ The purpose of this process is to model forces stemming
from outside the market that the investors participate or more specifically, forces that cannot

be hedged against by trading in the market.

Motivated by the formal setting of the concepts presented above, we simplify (3.2]) as follows:

E

T
/0 e <(¢f)T(ytdt +odWy) + dA} + (§) TodWy + dM; "

n

=L 2(gn)Tasiavy + (g TEgpdt + () Egidt + d<M“>f}>] B

a b c
—_——— —_—N—

T
E / o (<¢?>Tutdt + (@) TodWs +d AT + ()T od W, +dM;"
0

- T{ @)zt + (@) TEgldt + (gf) "Egpdt + () g dr +d<ML'”>t}>] :
(PF+CE) TP+ )at

L A; is of size N x 1.
2@ is of size d X N.

3MtL is of size N x 1.

14
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Commenting on (3.4)), by the linearity of expectation and the Fubini-Tonelli Theorem, the terms
a, b, c are equal to zero. The aforementioned is a direct result of the following theorem coupled

with the basic properties of martingales (see [Kal02] for the proof):

Theorem 3.1.1 (Stochastic integral: I1t6, Kunita and Watanabe) For every continuous local mar-
tingale M and progressively measurable process V such that (V2 - (M)); = fot V2d({M)s < 0 a.s.

for every t > 0, there exists an a.s. unique continuous local martingale (V- M); = fot Ved M with

(V-M)o=0. ¢
Therefore, by properly rearranging the terms of (3.4]), the goal functional becomes:

15t part

n

T
/0 e (@) — Lo (91 + (91 + 1) )t

T n
—rt n_ Y 1,n
+/0 e (dAt ~-d(m >t)].

21 part

FM(¢) = E

Remark 3.1.1 The first part of (3.5)) is linked (but not the same) to the “usual” mean-variance
goal functional, as expressed in the context of the MVPS problem (i.e. the problem of producing
a portfolio with maximal mean and minimal variance). More precisely, a discrete version of the

MVPS problem can be found by mazximizing the following expression:

wTy — ’waZw,
where v defines the risk aversion parameter, w is a vector of portfolio weights, ¥ is the covariance
matriz, wT Zw is the variance of the portfolio and w'u is the expected return of the portfolio.
An appropriate generalization of the MVPS problem in the context of our continuous time model is
given by:

max E[Vr(x,0)] — yVar[Vr(x,0)] over all 6 € O,

where, V depicts the portoflio value, with initial value x, v > 0 s a risk aversion parameter,

0; stands for the holdings in time t and © is defined as a class of progressive processes with

15



appropriate integrability conditions.

By the above it should be clearer that by optimizing , an tnvestor’s goal in investing on the
market is twofold. On the one hand, the investor invests to produce a portfolio ¢} that has an
optimal trade-off between risk (X) and expected returns (ui) and on the other to hedge against the
exposure of her endowment (C}') to the fluctuations of the market. Lastly note, the optimizer for a

goal functional of the type shown in (3.2) is not dependent on the 2™ part of (3.2). o

3.2 Frictionless optimal asset allocation

In this section we discuss the problem of optimal allocation of assets for each investor and how its
solution, by certain conditions, leads us to the derivation of equilibirum returns in a frictionless
market. To this end, we develop some appropriate background. For more information about how

the Gateaux derivative is defined, refer to

Optimality conditions

We shall initially present the conditions for a maximum of the goal functional and then
continue with explicit calculations, in order to derive the optimal allocation of assets for each
investor. Note that the goal functionals we consider throughout this thesis are (strictly) concave,
therefore we need a few “tools” from convex analysis at our disposal. Namely, we present a few

properties which are discussed extensively in [ET99|, [GH04] and [KZ05|:

Proposition 3.2.1 Let X be a Banach space and let F : X O 2(F) — R be Gateaux differentiable

over the closed, convex set D(.F).

(I) F being concave over D (F) is equivalent to the second Gateaux differential existing and
being non-positive over P(F) for every “direction” in the domain. In a similar manner,

strict concavity is implied by the second diferential being negative E|

4Note that the second differential being negative is a sufficient condition but not a necessary one for strict
concavity.

16



(II) Assuming that F is as defined above and concave, if the Gateauz differential is zero at
i € P(F), then i is a global mazimum on P(F). Moreover, strict concavity implies

uniqueness. %

First order condition

Note that, as previously discussed, ¢} is a d x 1 vector. We now recall (3.5]) and get for all 0] € £?:

d7"(¢" + p8")

dp =E

[ e (e - - (2tonep + 2000 z0p + Z(C?)TZO?)>dt] =

(dgﬂ(qﬁ),e") —E

T
| e (;J o — " ((g1) " z0 + <@?>Tzer)>dt] =

E

/OTe” (Vf 7" (9F + C?)T2>0;ldt] ,

Therefore, the first order condition imposes:

E

T
[ e (v~ o) e?dt] ~o.
0
An extended version of fundamental theorem of calculus of variations (see |[JLJ98] among others),

gives us the following:

Lemma 3.2.1 Let f be a real function with f € ILZ(Q), and suppose that for all compactly supported

and sufficiently smooth w we have that:

/wadx:&

Then, f =0 (in L2, that is almost everywhere in L2 with respect to the assigned measure). o

Proof: Since, as shown in [JLJ98], Co(Q) (as well as CF(Q)) is dense in L?(Q) and since w

Jq fwdx is a continuous linear functional on L2(Q)), we obtain that:

/ fwdx =0 forall w € L*(Q).
0
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Putting w = kf, for positive real function k yields the result, since a continuous non-negative real
function with zero integral is the zero function. |

Hence, by Lemma we have that:

e —Y"Z(pf —¢f) =0 dP®dt—a.e.
which leads to the following frictionless optimizer for a positive definite (and hence invertible) X:
Z_lyt

,)/n

The first term of the optimizer is similar to the usual Merton’s optimal allocation (see [KSO§| and

¢ = — & (3.6)

[IMS92|), while the second term deals with hedging against the exposure of the endowment to asset

price shocks (see discussion in Remark |3.1.1)).

Second order condition

For the second order condition in the direction of 87 € .Z2, note that (s.f. [GF63|, [JLJ98|) by

Proposition we have that the second Gateaux differential of (3.2) is:

T
/ et ( - 7"(9;1)T29;:> dt] <o.
0

Therefore, for 4" > 0 and positive-definite matrix X, the asset allocation of (3.6]) is the optimal

(dzy"(cpn)e",e”) —E

one under no frictions.

3.3 Frictionless Equilibrium

In this section we deal with determining the returns process (y;)se7, i.e. the drift of the tradeable
assets in the market, as expressed in . We initially study the case of the frictionless market. For
the derivation of (y)ie 7, we introduce the equilibrium condition which imposes that the exogenous
demand of noise traders iy € £? matches the aggregate optimal asset allocation of the investors
(a market clearing condition). In other words, we impose that the following equality holds for the

optimal strategies at all times:
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o4+ N+ =0. (3.7)

By the above we can deduce an explicit form for the returns process ()7, which we henceforth

call equilibrium returns, by utilizing (3.6]) as follows:

_ _vy—1 al n__ al n
pr="lue Y 1/ =) 0=
n=1 n=1

He = Wz (38)

where (; = ZnNzl ¢} defines the aggregate exposure of the investors and § = Zﬁ;l 1/9" their
aggregate risk tolerance.

Let us now give a more intuitive explanation for the terms involved in ({3.8)):

e Note that as the exposure of the investors increases so do the equilibrium returns. To get a
better sense on why that happens, initially recall that g’;"‘ denotes the exposure of investor
n’s endowment to market shocks in asset k and assume, for the sake of simplicity, that there
is only this asset in the market (hence ¢ is one-dimensional and denotes the asset’s standard
deviation). In this context, we loosely define a “shock” as a market influencing factor that
alters either the demand or supply of k, therefore causing a subsequent change to its price.
Shocks that produce a positive co-movement in the risky asset and the endowment of the
investor n (i.e. ?’k > 0) reflect the fact that both the risky asset k and the investor’s
endowment are exposed to them. Shocks that drive the price of the asset and the value of the
endowment in opposite directions (i.e. ka < 0), arise from asset k providing a hedge for the
endowment’s fluctuations. Thus, a negative exposure to asset k implies that investor n “uses”

this asset to hedge against the market risk to her endowment, driving asset k’s price down in

the process and vice versa.

e Large values of 7" contribute towards the increase of the absolute value of equilibrium returns.
This stems from the fact that, by definition, as the risk aversity of an investor increases, she
requires higher returns from her investments on the risky assets in order to be willing to

undertake the same level of risk.
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e Note that p; also increases with . This stems from the fact that, in general, investments
with higher risk need to be able to provide the investor with greater returns when compared

with less risky ones, in order for her to be willing to undertake the excess amount of risk.

In the next chapter, we analyze the above results in a market with frictions following [Bou-+18].
Chapter 5 aims to introduce the price impact model of [Ant17] in continuous time without frictions.
In other words, we study a new maximization problem where the investors act optimally after
considering how their transactions impact the prices of the risky assets. As we see on a later note,
the equilibrium condition provides a natural way to model the concept of “impact” into our problem.
Lastly, chapter 6 combines the aforementioned, generalizing the notion of price impact in a market

with frictions.
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Chapter 4

THE MODEL FOR A MARKET WITH FRICTIONS

In this chapter we study the concepts depicted in the graph below:

-

Model with frictions Optimal asset allocation Equilibrium
‘ with frictions with transaction costs
Construction /\ ‘
of First order Second order Liquidity premium
the goal functional condition condition

Figure 4.1: Outline of the 4 chapter

4.1 The model under frictions

We are now ready to present the respective version of the goal functional, (3.5, in a market with
frictions. This model is taken from |Bou+18|, while similar models are also discussed in |CL13],

[GP16], [KXG15|, [XZ16] and [Zit09]. In this context the investors’ strategies ¢; are absolutely

continuous processes, given as follows: For more
information
t about
¢ = ¢y + /0 ¢tds, te 7, forn=1,..,N, absolutely
where ¢, ¢F € £? and ¢! defines the trading rate of the investor. Moreover, we require that contimuous
functions,
¢y = 0, and since ¢} is absolutely continuous, we get: refer to A3

dc(zptt = ¢!, ¢h=0, forn=1,.,N. (4.1)

We furthermore assume that these costs take the form of a transaction tax, which goes to an

exogenous recipient that does not trade in the market. More precisely, we define A € R?*? as the
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diagonal matrix with elements A™ > 0, m = 1,...,d that express the costs levied separately on each

investor’s order flow for a specific asset. Therefore, the goal functional becomes:

L6 -1
/Te”(dA;?—"YdMM ]
0

n

FAG) =

(@F + ) TE(9f + 1) (¢I’)TA¢?)dt]
(4.2)
+E

Remark 4.1.1 Following the discussion in Remark a similar form to that of (4.2) —stemming
from the objective of determining a portfolio with mazimal mean and minimal variance, under the

presence of transaction costs—can be represented as follows:

T, oo Ty
ngx{wy yw' Zw —c(w) },

where c(w) represents the total transcation costs incurred on the portfolio. In general the above for-
mulation constitutes a mon-concave problem, however simplifying assumptions are usually imposed
in the relevant literature in order to end up with problems that are easier to solve. More precisely,
in our case as previously mentioned, this takes the form of quadratic costs levied on each investor’s

order flow.

The above reveals that the goal of an investor remains the same as the frictionless market, but under
the presence of transaction costs. On the one hand, the investor invests to produce a portfolio ¢y
that has an optimal trade-off between risk () and expected returns (uy) and to hedge against the

exposure of her endowment (C}') to the fluctuations of a market with transaction costs. o

4.2 Optimal asset allocation under frictions

First order condition

We now move towards the calculation of the optimal asset allocation of an investor in a market

with frictions. More precisely, in the case of a finite time horizon, the initial condition of (4.1)) is

INote that by the absolute continuity of ¢f, n =1,.., N, the goal functional of (4.2)) can be seen as either a
function of ¢} or ¢}'. For this case, we specifically choose to view it as a function of ¢}.
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coupled by a terminal condition for ¢}, while in the case of infinite time horizon, an appropriate

transversality condition is used. Namely, we have:

T <oo: ¢} =0,
(4.3)
T=co:e "¢ 2950 as t goes to oo
The above tells us that for infinite time horizons, the usual terminal condition is replaced by an im-
plicit condition. To get a better sense on what is the intuition behind e~ "¢ P08 0 as t goes to 0o
consider that ¢} represents the rate at which an investor n either buys or sells an asset. In this
context, this condition imposes that the present value of the marginal value of an additional unit
of a risky asset must go to zero as t goes to infinity. Hence, the current value (at time t) of an
additional unit must either be finite or grow at a rate slower than the discount rate r, so that the

7

discount factor e~"t, pushes the present value to zero. This is tied to a concept called time value

of money, which assumes that a specific amount of money in the present (acquired by trading the

asset) is worth more than the same amount in the future.

In a similar manner to that of the frictionless market, the first order condition can be expressed as:

(dyA,n((i)n)lén) —

By the above, we could construct the following lemma:

-1
Lemma 4.2.1 Recall that ¢} = Z,y,,yf — C} is the frictionless mazimizer from (3.6). The goal func-

tional (4.2) has a unique optimizer, characterized by the following FBSDE:

a0 = g, g —o,

Y'ATIE
2

(4.4)

dgy" =AM} + (97" — gi)dt + rg"dt,

where cpf\’n,cﬁf\’" € L2 and the R?-valued square-integrable martingale M" needs to be determined

as part of the solution. The terminal condition is given in (4.3)). o
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Proof: After simplifying the expression for the first order condition, for all 67,0 € £? with

8y = 0 and 6} = fot ég’ds and by the linearity of the integral (and the expectation) we get:

dgA,n(¢n +p9n) n

dp /O%—rf<( [ onas) v (2( [ ) s [ )+
2(/(: é;‘ds>TZ(/Ot uds ) p +2(g¢)Tz(/Ot égds)> —2(01)TAG! — 2(9@%9@) dt
/OTert (Vf(/otégds) — 7"((/Ot¢§ds)TZ</()t9§ds)+
@e( [ e';ws)) - z(e'wTAqbr) dt]

T t T . .
| e (nf =+ anTe) [ ordsar— | Ze’t(f)t”)TA(p?dt].

=E

=

(a7 (¢, 0") =E

=E

By Fubini’s Theorem the above can be written as:

E

T T : T . ;
/ (/ e’ (yST — " (P! +§§)Tz)ds> efdt—/ Ze_”(ﬂf)TAMdt].
0 t 0
By the law of total expectation in turn we get (9,’? is .#-measurable, since éf € ZL?):

/OT (E [ /t Lo (VST — " (¢} + é?)TZ) ds

Now by Lemma for non-singular A and with the help of the Fubini-Tonelli Theorem as

E

3@] — 2e”(4‘>;1)TA> Q?dt] :
studied in [Sch05], we get E

E| [ e (4 gt + &) as

L%} — 27N TA=0 dP®dt—ae.

Therefore, we have:

, "ATIE T I
g =T5= e”]E[ | (Ul )

%] : (4.5)

2In the case of a finite time horizon market we also have 9% = 0, while for the case of infinite time horizon the
transversality condition of (4.3) is used.

3Note that 4)?’" denotes the optimal asset allocation under frictions, as oposed to ¢} in the case of a frictionless
market.
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Consequently, in order for the first order condition of (4.2)) to be satisfied, the above must also have
a solution. Going back to the finite time horizon model (4.3)), as previously examined, we should

also have gb/T\” = 0. So, we essentially are looking for an adapted backward solution, since we have a

nA—1 -1
terminal condition, that has the dynamics of (4.5)). Note that ~ AZ = J tT e’ ’s (% — " — (p?’”)ds
is not necessarily (.%;)>0-adapted, it is .Zr-measurable. That is why we reformulated the terminal

value problem by inserting the conditional expectation as presented above, so that we may allow a

ﬂt],tEy,

solution which is (.#;);>o-adapted. Let M; = A’nA;ZIE [ OT e ’s (Z;—l,f‘s - — 475{\’")515

we could write:

. ~ TATIE t »t
efrt(PtA,n = M; — Y 5 E |:/0 efrs( ,yn,us o gg - SA,n)dS

Now if we apply Ité’s Lemma, we get:

o - TATIY
d(eg(") = it — L= (g — g )dt =
Fi—measurable
. . - "TATIE
—re "Mt + e AN = dbt, — L= e (gf - ") dt =
. . TATTY .
e AN = dnt, — L= 5 e (Pl — ¢ dt 4 re TGPt =
Y'ATIE

dpM" = et d M, — (¢F — pP")dt + rg™mdt.

2
Note that M; shall be a part of the above BSDE’s solution. Moreover, note that M; is square
integrable, that is E[|M;|?] < oo, t € Z [ and by Lemma in it is also continuous.
Now note that since e is trivially predictable (and hence progressive), dM}' = e"tdM;, My =0
also defines a continuous local martingale with finite second moments, as shown in Theorem

Coupling the above with (4.1), for T < oo, the first order condition of (4.2)) can be characterized

by the following linear, coupled FBSDE:

R
nA—1
g — anay — TR g gt gL, =,

4This is a direct consequence of the triangle inequality for integrals, the Cauchy-Swartz inequality and the fact
that the integrand inside M; is in .Z2.
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Notice that the solution of the above system of SDEs shall be of the form: (¢f*", ¢, M"). To see

that the second equation of (4.4) does indeed satisfy (4.5)), we initially note that:

. . t EyATIE
G = g+ [Ceramy 4 [ e TS S (g — gas. (4.6)
0 0
Next, if we let:
T T nA—1
LA, _ _YTATE
g == [ ez — e TS = (g — gl (4.7)

For finite time horizon models this holds by the terminal condition (p?" = 0. Conversely, in the case
of T = oo we arrive at the same result through the transversality condition of 4)1{\" In other words,
there exists an increasing sequence (fi)ren With limy o fx = oo along which e*”kcl')lf:’” converges
to zero. For the right-hand side of we use the Martingale convergence Theorem as shown in
[Bou+18|. Thus, inserting to and taking conditional expectations we arrive at . |

Second order condition

The concavity of (4.2) in ¢ is direct, since we have a negative quadratic form.

Remark 4.2.1 Note that as shown in detail on [Bou+18], (4.4) can be reduced to a first order ODE

of the following form:

4')A,n _ S(T]P _ (PAr”), n=1,.., N,

where S, TIP are functions which depend on the nature of time horizon. By the above equation
we could say that, in the context of individually optimal strategies, the optimal trading rate of an
investor prescribes to trade with speed S towards a target portfolio TIP. Thus, when the investor
reaches her target, she stops trading (at time t). More precisely, as discussed in [MMKS1j|], as
transaction costs get smaller the target portfolio tends closer to the frictionless optimizer and the
current position in the market with frictions is pushed back more aggresively to that target. Hence,
the frictional optimal allocation trades towards the current frictionless benchmark, rather than a

different optimum. ¢
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4.3 Equilibrium with frictions

In this subsection we shall show an appropriate form for the equilibrium returns process, (jit)ic 7,
under the pressence of transaction costs. To this end, we work in a similar way as in the
corresponding frictionless form of , using the dynamics for the individually optimal strategies,
as expressed in . Specifically, we require that the optimal demands of the investors match the

null net supply of the risky asset.

We initially introduce the (exogenous) dynamics for the noise traders in the market under frictions,

which are modelled in a similar way to that of the investors:

Ay, = udt,
dipr = pldt +dmy,
where, u¥, 1,9 € Z£? and MY a continuous local martingale (more information about the exact

localization is given on a later note).

In order to derive the equilibrium returns, we need the following proposition (the proof is taken

from [Kal02]).

Proposition 4.3.1 If M is a continuous local martingale of locally finite variation, then M = My

a.s. o

Proof: By localization we may reduce to the case when My = 0 and M is of bounded variation.
In fact, let V1(M, [0,t]) be the total variation of M and note that V;(M, [0,¢]) is continuous and
adapted. Now introduce a sequence of the optional times E] that makes M a local martingale with
bounded variation, that is 7, = inf{t > 0: V1(M, [0,t]) = n}. Note that M™ — My is a continuous
martingale with total variation bounded by n. Note also that 7,, — co and that if M™ = M, a.s.

for each n, then we have M = M, a.s..

5For some basic information about stopping/optional times, refer to
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In the reduced case (i.e. the case where the above localizing sequences ensures the properties we
require), fix t > 0, consider a partition P, with t,; = K and conclude from the continuity of M

n

that a.s.:

n
VZ(M/ P) = Z(Mtn,k - Mtn,k—l)z <V (M/ [0/ t]) sup ’Mtn,k - Mtn,k—l’ — 0,
k=1 1<k<n

since M is continuous on [0, ] and thus uniformly continuous on the same interval, for € > 0,
Ja(e): |u—v| <athen |M, — My| < € for all u,v € [0,t]. Now consider ||P|| < a and note that
|My,, — M, | < e. Thus, the above tends to zero as n — oo (||P|| — 0). Moreover, we have
that V2(M, P) < [M] ([M] is increasing), which is bounded by a constant. It now follows by the
martingale property and the dominated convergence theorem (which lets us bring the limit inside the
nveo

expectation E[V,(M, P)], since V2(M, P) is bounded by a constant) that E[M?] = E[V,2(M, P)] =
0] Thus, we get that M; = 0, a.s. for each t > 0. |

Theorem 4.3.1 As shown in [Bou+18], the unique frictional equilibrium returns is of the form:

up = ;W@A”Z"Z ¢t+%( I — i), (4.83

where for the investors n = 1,...,N, ¢A'1,..., q)A'N ~1 denotes the optimal asset allocation in the
frictional market, which maximizes (4.2)) and satisfies the FBSDE coupled system depicted in
[@4). Moreover, we have that ¢™N = — N _11 PN — .

n=

Below we address how (4.8)) is derived.

Proof: Let v € .Z? be any equilibrium return and 6 = (61, ...,0N) the corresponding optimal
strategies of the investors, under frictions. Now notice that the conditions imposed at equilibrium,
imply the following:

N

0= 67"+, (4.9)

n=1

6Note that by the martingale property we have that IE[M?] = E[Y.(AM;,)?] when n — oo, since for any i > j we
have that Cov(AMy, AMy;) = 0. This stems from the fact that E[AMy,|E[AMy,] = (E[My] — E[M, ,])E[AM] =0
and ]E[AMtiAMtj] = ]E[]E [AMt,-AMtj L%/]] = ]E[AMthE[AMti |ﬂt1H =
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N s An .
0=Y 6" + ¢ (4.10)
n=1

Now going back to (4.4), setting 6} = Z;n"f
(4.10) becomes:

— ¢} and summing the trading rates for all the investors,

1
o_th+2A

N
7"20?’” — (Vt — 7”2@?) dt + Z VétA,ndt + let ,
=1 S n=1

VEP} T dt+dM‘p
where M;, M;p are continuous local martingales, which are reduced to be of finite variation, as shown
in the proof for Proposition Now, from , we get: 0 = 04N + 2,11\[:_11 oA + ¢ = 9MN =
ZN Loam Y. Furthermore, through we have ZnN:1 étA'n = —p;. Thus, by substituting

the aforementioned, we arrive at:

Ail N nnlAn N Nt An N n n '

o—thJrT Y A0 — NS 0 ) = Y (v —"EE)) | dt — ripdt+

n=1 n=1 n=1

gAN
Yt +dMY =

iy at +

- N
O-dMﬁ—— Z 7= N)ZOM — Y (v — y"ELY) — ANE | db — ripydt + pldt -+ dMY

n=1 n=1

(4.11)

Now note that for properly localized continuous martingales M;, M;p and by Proposition

dM;, dM;p vanish since the aforementioned martingales are constant. Then, (4.11) becomes:

N
Z At — N GA’” — Nv; + Z Y'ECT — ANZyy | dt — rijydt + y;pdt =

N-1 " N N "~ (4.12)
— (7" = 7V)Z A, ’Y"Z SN 2A :

utzzl N efuzl NG et g (e i)
n—= n=

For a detailed explanation of the uniqueness of the equilibrium returns in a market with frictions,
refer to [Bou+18]. Naturally the uniqueness of uf*, which as shown in [Bou+18] is given by the

uniqueness of the frictional solutions, implies that v; = uf. n
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As shown in [Bou+18| the FBSDE system of (4.4)), which characterizes the individually optimal
asset allocation in a frictional market, is a part of linear and coupled systems of FBSDEs. A more

general representation of this class is the following:

dpr = pdt, ¢o=0, t€ T
(4.13)
d(,bt =dM; + B((Pt — gt)dt + V¢tdf, te 7
where B € R is a matrix with strictly positive eigenvalues, r > 0 and ¢ € .£? is derived through
the equilibrium, as shown in Remark The terminal condition of the BSDE in the system

depends on the nature of the time horizon, as it was already explained for (4.4)).

As is thoroughly explained in [Bou+18] the BSDE of (4.13) reverts to a known (stochastic) ODE
yielding an explicit representation of an investor’s optimal asset allocation in a market with frictions.

Once again, the solutions depend on the nature of the time horizon and are briefly expressed below.

Finite time horizon solution

For a finite time horizon, system (4.13)) is reduced to the following expression, which characterizes

the individually optimal problem at equilibrium:

¢t = Gt — Fa(t) . (4.14)

The above ODE, as shown in [Bou+18|, in turn yields the optimal asset allocation in a finite time

horizon market with frictions forn =1,..., N — 1:
t -
4);\,71 _ /0 o= fst Fﬂ(u)dué';’ldsl
r -1
F.(t) = — (AnGn(t) — 2Gn(t)> B, Gy(t),

&= <AnGn(t) - ;Gn(t)> _1113

T
/ (AnGn(s) — an (s)) Bue 271t ds
t

%] ()

Gn(t) = cosh (m(T - t)) with Gu(T) = 1 and Gy (t) = AuGul(t),

Gu(t) = —V/A, sinh (\/AT(T— t)) with Gu(T) = 0
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where A, = B, + %Id has only positive eigenvalues, ¥ > 0 and (Pf\ N'is determined by the

equilibrium condition (see Remark [4.3.1)).

In this context we could interpet the optimal asset allocation process in a market with frictions,
qbtA’”, as the discounting of ((f{’)te 7, using an exponential kernel. Note that the latter process, is

controlled by the “signal process” (&}')tc7, which stems from the frictionless optimizer, ¢;'.

Remark 4.3.1 Let us clarify why the optimal allocation of (4.15|) holds for investorsn =1,..., N —1,
while investor N is determined via the equilibrium. Recall that the optimization of the goal functional

in a market with frictions yielded the following system of SDFEs:

dcpff”:cﬁ?'”dt 4>0 =0,

" = dM}! + ( = ))dt +rgat,
where ¢} = Z?fp — . Note that the term % is a function of uf*, which as shown in (&.8)), takes
the following form:

_ 2A .
wr= ¥ ¢?”+Z” ST s 2 ).

n=1

The above expression does not directly depend on ¢, AN Iy other words, the equilibrium condition
was used to express the optimal asset allocation of investor N as: q)f\’N = - 271;7;11 tA’" — . If we
now substitute the above expression for ],t{\ into %, bring it to the form of , reduce the system
to and solve it, we arrive at forn=1,...,N —1. It should be clear by the above that
is directly linked to how we express ul and whether we choose to substitute it in the x term

or not.
Lastly note that the process ¢} of (4.15) is in essence the x term after we substitute the frictional

equilibrium returns of (4.8) and group together all the terms but (,bl{\’", transforming (4.4)) into
@13). o
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Infinite time horizon

In a similar manner to that of the finite time horizon, as shown in [Bou+18|, (4.13) is reduced to
the following ODE:

, . r
o =& - (V- S )ol (1.16)
The above ODE, as shown in [Bou+18]|, in turn yields the optimal asset allocation in an infinite

time horizon market with frictions forn =1,..., N — 1:

oo — /0 o (VB -9) g g,

. (4.17)
& = (JATZ - ;Id>1E / ( B+ gld)e*mﬂfd)“‘“é?ds %]

where A, = B, + %Id has only positive eigenvalues, r > 0 and qbtA N is determined by the equilibrium

condition.

Liquidity premium

A direct step, which is implied by the form of the equilibrium returns in a market with frictions
in , is to discuss the so-called liquidity premium between y{\ and its frictionless counterpart in
. In this context, if we recognize the presence of transactions costs as a new source of risk, one
that is connected to the notion of market illiquidity and is not present in the frictionless market, we
could view the liquidity premium as a form of additional return which is required by the investors

to undertake the excess amount of risk. To make this more clear, we define this premium as follows:

LiPr; = y{\ — Ut,

where uf* denotes the frictional equilibrium of (@.8)) and y; its frictionless counterpart of (3.8).

Let us now derive an explicit expression for the liquidity premium. To this end, if we substitute

the frictionless equilibrium of (3.8) in , we get:
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Ct

on —N—
—~
Uy (L o =)
o = N —-¢f, n=1,.,N.
Yo 1/9"
m=
;\/_/
6
With this change in notation and while having in mind that p; = Z(gt;lp’), the corresponding form
for the frictional equilibrium returns becomes:
N . n
Y
m=3 5 "+
n=1
Substracting the above from (4.8)), we get
N-1 ( n__ N N . n N n
vv)AnVZ VI, 2A gt oy on
LiPr; = — — - — =
1r n;l ¢ Nlpt+1§1 N§t+N(.”t ) Lz N((Pt +2t)
3 N-1 A N-1 A N ,ynz 2A N ,),n B
LiPry = ( (A A IR ) + Y e S ) - (6" +F
N n=1 <n1 ) n=1 N N n=1 N
o
3 N-1 A AN N ,Ynz 2A " N ,},nz B N ,)/nz
LiPre = | 3 "o+ e |+ ) O e =) = ) o - P =
N <n1 n=1 N N n=1 N n=1 N
¥ ol el
, gl _ 2A .
LiPr = Y@ - @) + W(V;p — ). (4.18)
n=1
Equivalently, we express the liquidity premium as follows:
, P N 2A .
LiPri = G (L 0" @F" =9 =7 LM =8+l ) =
n=1 n=1
Tl (97" @) == ety
. gl _ - 2A :
LiPre= 35 Y (1" = D@ = ¢") + 5 (1w = ripo), (4.19)

n=1

where ¥ = YN | 4" /N defines the average risk aversion of the investors. Let us now discuss some

specific cases, taken from [Bou-+18|.

Remark 4.3.2 Note that, when:
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(I) There are no noise traders in the market.

(II) The investors are assumed to have the same risk aversions ¥ = 4 = ... = y/N.

Then the LiPr; = 0.
The absence of noise traders, implies that the market consists solely of investors. Therefore, going

back to (4.18) assuming the homegenous risk aversions, we have that:

TE &, A,
. n TZ
LlPrt W Z (Pt .

%,_,

*

The liquidity premium is hence determined by the relative position of each investor between the
market with frictions and its frictionless counterpart. In the absence of noise traders, the investors
trade each risk asset amongst themselves. Therefore, by the equilibrium condition we have that
the aggregate demand of the investors must be null, hence the x term vanishes. Note that while
the equilibrium condition implies that the aggregate demand for the assets is equal between the two

markets (frictionless and with frictions), this does not suggest in any form an equality among the

individual strategies (])tA’” and ¢} O

Corollary 4.3.1 Assume that the investors have same risk aversions ¥ = 4' = ... = yN. Then:

) 2A .
LiPr; = W(yf’ — r1r). 0

Note that, by the above result, if the noise traders only sell at a constant rate ¢y < 0 we have that
—Z—I/\\,rl/}t > 0, leading to a positive liquidity premium. This serves to underline that even in this

context, we could get positive liquidity premia in market expanding at a rate o ;.

Corollary 4.3.2 Assume that there are no noise traders in the market. Then (4.19)) reduces to:

. I
LZPT’;}ZNZ (Pf\n—qbt) ¢
n=1 — N
o

As it is also stated in [Bou+18] we view the above result as the covariance between the vector of
risk aversions (7?,...,9N) and the vector of the relative positions of the investors between the two

markets ¢~ The liquidity premium becomes positive if and only if (9" — ) and (¢p/" — ¢")
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have the same sign. That is to say that in the market with frictions, the less risk averse investors

tend to hold smaller positions on the risky assets compared to the frictionless case.
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Chapter 5

PRICE IMPACT IN A FRICTIONLESS MARKET

In this chapter, we study the concepts in the graph below:

- T

Frictionless optimizer Frictionless equilibrium Aggregate price impact
under under in a frictionless market
price impact price impact
from a single investor from a single investor
First order condition Second order condition The revealed }

Figure 5.1: Outline of the 5 chapter

5.1 Frictionless optimization under price impact of a single investor

We are now ready to consider the notion of “price impact” and how it can be applied in the context
of this thesis. The so-called price impact can be defined as the effect that an investor has on the
price of a risky asset as a result of her buying or selling it. In a sense, one could see the price of assets
as a function of an investor’s strategy. This give us a natural way to model the concept of “impact”,
through the equilibrium returns. Recall that this process drives the prices of the tradeable risky
assets and is determined via the strategies of the investors by the equilibrium condition. Let us
first consider, without loss of generality, the price impact of investor 1 and express p; as a function
of investor her demand. The goal is now to determine how the incorporation of price impact affects
the optimization problem both on the market with frictions and on its frictionless counterpart.
Similar ideas are also expressed in [Ant17]. Note that the concept of price impact is closely reated
to that of market liquidity and as such, it can be thought as an additional source of frictions in

a market. To better understand the importance of such generalization, it suffices to consider the
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case when an investor’s “buying strength” is significant relative to the size of the market. If such an
investor for example enters a big long position on an asset, relative to the size of the market, she
drives its price up in the process. Consequently, she now is required to pay an additional amount
to that of the original price of the asset as a result of price impact. Naturally, price impact is a

stronger force in relatively thinner markets.

In order to model the price impact of investor 1, we “extend” the original equilibrium condition of
(3.7) such that it holds for every strategy qbtl, while the rest of the investors act optimally as in

(13.6). Therefore, in the case of the frictionless market, we have:

N Z—l
¢t1+22{ Vnyt—é”?}ﬂbt:& (5.1)

Solving the above for p, the price impact of investor 1 on the market is modelled as follows:

3 -1 _ 45l
(gt = = 51” P, (5.2)

where we define {; ! = YN, and 61 = YN ,1/9" Having defined (5.2) we now establish a
new goal functional, which is to be optimized in order to determine investor 1’s optimal strategy

under price impact. To this end, we modify the frictionless goal functional of (3.5)) as follows:

n

T —rt n\T 1 Y n n TZ n Y\ dt
e (o@D = L gr + ) m(er +2))

n /OTe” (aay - ;d<MM>t)] .

Thus, for investor 1 we get:

7M(¢) = E

T -1 _ _pl 1
Fg = [ e (o[PS T ayaiel o)

T 'Yl
+ /O e”<dA}—2d(M“>t> =

/Te_rt<(4>%>T2€tl @)™z (9)TZg)
0

gl —
= ((P ) =E (571 571 571
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1 T 1
T bzt + b e+ e Jare [ e (aat - §d<Mu>f)] -

7' (¢") =E

J_1 (E

=

T 1 TZ 1 1 -1 1
e (- - Gl ) bl - b= (v - S ) - T e )
———

kq

T ,Yl
n /O e”<dA}—2d(MM)t> .

Hence, when investor 1’s price impact is taken into account, her goal functional becomes:

11y
‘? (4) ) =E 5_1 (5_1

T ’)/1
+/ e”(dA}—zd(MM)t) :
0

Henceforth, we use the tilde notation to refer to quantities pertaining to single investor price impact.

T -1 k 1
[ e (ohr=(5s e - ) - Saheet - Tehreat )ar
0

(5.3)

First order condition

Regarding the first order condition of (j5.3)), for 9} € Z£? we have:

AF (1 + pf)

dp =k

T INT _1
[ e (= O kgl el ~ knpteh) Tzt — o1 (01" Eg) + <6}>Tz§f)dt]
-1 -1

-1
(-4 - miare- ez G o).

= (dﬁl(qﬂ),el) —E - -

Therefore, by Lemma (3.2.1)) we have:

T
I @bz - e

which leads to the following representation of the frictionless optimizer under the price impact of

“I\T
(% ) =0 dP®dt—ae.,
1

investor 1:

-1 11 1
1 G =0 G L1 7
bl = S E k= 2(571 : ) (5.4)
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Equivalently, defining investor 1’s risk tolerance &, = 1/9%, her risk tolerance Ay = 6;/6 and
A_1 =1— A4, we have that: d_1k; = 2(1 +6_1 /2(51) = (2(51 + (5_1)/(51 = ((51 + (5)/(51 Hence, ‘)

becomes:

(G =) =6l

71
4)1‘ - (51 +5
Co(B@ e -5
5(51/(5 + 1) '
Therefore, we have:
-1 _ 1
g = MG =) —Aad) 55

AM+1
Second order condition

Similarly to the frictionless case (see Proposition , for 0} € .£? we get:

(d%il((pl)el,el) -E| |

T
/ e‘”( - kl(G})TZth)dt] <0,
for a constant k1 > 0 and a positive-definite matrix Z. Therefore, the optimizer presented in ([5.4])

is indeed a (global, unique) maximum.

5.2 Frictionless equilibrium under the price impact of a single investor

Motivated by the result of (5.4]), we now move forward to define a new form for the equilibrium
returns under the price impact of a single investor. It should be noted that for the sake of clarity,

we make the following comments with regards to some of the parameters discussed above:

(I) We make a slight abuse of notation and use y; to represent both the frictionless equilibrium

Zilﬂt .
o

¢, n=1,..,N of (3.6). Instead, in order to ease notation, when we want to denote the

returns of (3.8) and the yet “undetermined returns” in the frictionless optimizer ¢} =

former instead of the latter we state it explicitly. The same goes for any strategy in the

-1
frictionless market and the frictionless optimizer ¢f' = = Aﬂ,” t—¢f, n=1,..,N of (3.6).
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(IT) We shall denote the new equilibrium returns process as (fit)ic7, in order to distinguish it

from the process (y)ie7 in (3.6)).

Proposition 5.2.1 The frictionless equilibrium returns process under the price impact of investor 1,

takes the following form:

1 _ O1ph, 1+ O
Hi 51 +0

where iy = ZE) from BF) and py, - = H—t, o

-1

, (5.6)

Proof: Going back to the equilibrium condition of (3.7) and substituting (5.4) for the optimal

strategy of investor 1, we get for §_1k; = y'(1/9! +6):

o
) B (21—t — 61171
At =2 =)+ — (€ ;/)—t1k1 17 6) +0_1 =
—1_ -1_
L 54 (Z(éféil ¥ ’YlZC}) (Z(é%il ¥ 712€}>
Pt = Mt,—1— = Ht,—1 — i = (5.7)
g416-1ky sa2(s-+ 1)
)
kq
-1 —t, 1+ 7'Eg
AV
Now we notice the following;:
(g — (g -
I (Ct5 V) (€t5 ¥t) N
-1
2@+ -y -
Wt — Yt,—1 = : : ) EE _wt):>
b d_1+1/41 o1
O BT+ O %G — ST — SaBE + BT — XL+
He — Ut —1 = 56 =
-1
AR g0 40z S 6y
= Hi-1= 561 - 361

So, we get:

He— 1= 17157 4y (5.8)
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Therefore ((5.7]) becomes:

YO (e — pte,—1)
YL 1/t +9)

fif =p1+

gl = o + Yo + y'ou — Ao
t —_— .

Y1/ +9)

Then, by the above, we get the following form for the equilibrium returns under price impact, which

is expressed as a weighted average between p; 1 and py:

P %Vt,—l + opt
‘ut - 1/,)/1 +5

(5.6) does indeed verify ([5.2)), reverting to the new optimal asset allocation, as expressed in ([5.4)).

1 _
~THE—1 + O Tl
7! ¢, =

s aki/yt 1= oq

-1+ 7 o ko_1pt,—1 — pe—1 — ')’15(,14t,—1 4 TPty

TP =6 1pr-1— =

kq
5§ — (/7 + 5)Vt,1k— VO =V EG e —'EG
1
431 _ 5;1 — Y1 — 71‘5*1@1
! 5_1ky '

In order to better understand the form of (5.6 we also examine the following liquidity premium:

Corollary 5.2.1 The liquidity premium between the equilibrium returns under price impact of ((5.6))

and the frictionless equilibrium of (3.8)) is:

where yy = Z(@(S—llﬂ) and ¢} = 2_11}“ —Z}

Proof: Coing back to to (5.6), we have for y16 =1 +15_1:
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it — e =1/9 1 —1/9 e
_EG ) E(G )
Y4 1+915 4
(G ) O ) — AR (G — )
Yo 1(1+~10-1)
(g =) — 11045
Y1o_1(147'6_1)
_ X ) 220 -9 xg
B Y16 1(1+9%61)
X —y) X

A o R O
R T (e
N ( et gt)

Y11
_ I (Zm_g)
Yo\ ot Y
Now note that 71}5 - = 1(15 = - 1 - = X‘—ll, which concludes the proof. [ |
_ T p _

The price impact derived in ([5.9) is endogenous and linearly dependent on the frictionless optimizer
at equilibrium. More precisely, we note that the price impact of investor 1 grows with her relative

risk tolerance, which is consistent with relevant literature.

The revealed form for (7

A Closer Look II: The optimal asset allocation ¢}

Let us take a closer look on investor 1’s optimal asset allocation under price impact as in ([5.4)).

To this end, to simplify the discussion, we note that:

71 -1 11
$r <G —Pr =017 Gy (CLIL1)
Furthermore, in order to focus on the interaction between investor 1 and the rest, we ignore for

now the pressence of noise traders. Therefore, (CLII. 1) becomes:
71 > T 5 YA N_ T A
Pr (ét - ?ét) + (ét - ?Ct) +ot (gt - WCt) (CLIIL.2)
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1
The above is controlled by two parameters: on the one hand the fraction %, m = 2,..,N,
which can by seen as the relative risk aversion of investor 1 with respect to investor 1, and on

the other the relationship between {} and /.

We can see that, in essence 43} is expressed as the endowments’ exposure of the rest of the
investors, penalized by the weighted exposure of the first investor. In this context, the weights

are the relative risk aversion between investors 1 and m.

We may argue that the strategic investor’s (or non-price taker) goal is twofold. In other words,
she uses the information she has about the other investors’ exposure to set her demand, while
simultaneously taking into account the “needs” of her own endowment. Moreover, this is con-
trolled by z—; in the sense that if the aforementioned fraction is greater than one, then the second

term is each parenthesis of (CLIL2|) is strengthened and vice versa.

In we essentially gave a new expression for the optimal asset allocation of the strategic investor,
which takes into account her influence to the equilibrium. Investor 1 stirs the returns to a different
equilibrium point, as shown in . To put it differently, we could once more say that the investor
invests to hedge agaist the exposure of her endowment to price shocks. The only feature that changes
is the aforementionted exposure. We are interested in determining this new exposure process 5} that
drives the market to the new equilibrium point fi; (in a similar manner as in [Ant17]). Generalizing
the above concepts, after taking into account that the optimization problem in a frictionless market

under the price impact of a single investor is symmetrical, we give the following definition:

Definition 5.2.1 (The revealed exposure process) Consider a frictionless market under the price

impact of a single investor n. Then this investor’s revealed exposure is defined to be:

1~
o X P g 1N,

where fi; is the “new” equilibrium point, determined by the equilibrium condition of (3.7) and ¢} is

the strategqy determined by the optimization of the frictionless goal functional with price impact. ©
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Proposition 5.2.2 The revealed exposure under the price impact of one investor in a frictionless

market can be expressed in the following equivalent forms:

5 &= 7"oC}
n
= = cee 1
G (y'6 —1)(y"6 +1) + Yo+ 17 n=1.,N, (5.10)
where we define ;" Z ¢ and 6—y = 2 1/9™. o
m;én m;én

Proof: Note that below we derive &1, which generalizes directly to the rest of the investors by

their symmetry. Recalling Definition substituting ¢} from (5.4) and fi} from (5.6)), we have:

it

- < THt 1+(5m>
G~ — 6470} 1/ +6 | xTAg
5*1’(1 ')/1 X+
OR(G o) XTI} Aeang gt e/ oo
8 1k 0-1kq 5 1k 5 1k }5/1

1 =6 —9r) (étflilpt) 1 1
Zé} - ;y] EEEE V4, Y 5712@

YHO+1/9Y) Ao+ /9Y) A +1/9Y)

By the above, we arrive at the first form of 5}, which shall fascilitate the comparison with ¢} in a

later note.

gt 1
- tl +€ +’Y‘51€
1 _ 51 t t
7= AGTi (5.11)

We also derive the following equivalent form for f}

g R (R el N

i ot 7o+1

_ G~ d+y'e(vle —1)g
(o-1(o+1)

Gt =

Therefore, we arrive at:

1 _ G — n v'egt
P (1 —1)(y16+1) Ao+ 1
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Remark 5.2.1 Let us now give a more intuitive explanation of investor 1’s revealed exposure. Recall

that by (5.10), we have:

1 1
51 _ G — 7o 1
G = (Y16 —1)(v16+1) * y6+1 G
V/
* *%

A2 -
(1 —Al)(11+/\1)(€t DR 1+M0

Zi

Note that the %x term is positive and less than one, since y'8 > 1. Whence the revealed exposure
consists of a fraction of the true exposure, plus the x term. We call g;l — U as the residual exposure
to risk. If we now assume for the sake of the argument, that there are not any noise traders in the
market then * becomes solely proportional to the aggregate exposure of the rest of the investors. In
other words, strategic investor 1 on the one hand lessens the true exposure of her endowment and
on the other supplements it by a fraction o g;l. We could think of the above concept as investor
1 declaring only a part of her true exposure (%x) to the rest of the investors, while exploiting her
influence on the equilibrium by “informing” her declared exposure with a portion of the aggregate
exposure of the rest of the investors ((')/1(5)2 -1 > O). Moreover, it is crucial to note that the

constants that affect both {} and G U are directly related to the relative risk aversion between the

o

'Yl

1
strategic investor and the rest of the investors, i.e.: 1+ % 4+ -+ pog

Comparison between ¢! and ¢/

In this subsection we will examine more closely how the following optimal strategies compare: the
optimal asset allocation under no price impact, derived by the optimization of (3.5 and the optimal

asset allocation under the effects of price impact, derived by the optimization of ([5.3)).

Proposition 5.2.3 The following holds at equilibrium E|

Z_l‘ut
r),n

o = —, n=1,.,N dP®dt—ae.

If and only if:

INote that while we usually omit to underline that most equalities throughout this thesis are understood in an
almost everywhere sense (opting to underline the equalities that hold for every t instead, in order to ease notation),
we chose to explicitly express it for this proposition to make the comparison between the optimal strategies clearer.
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where py =

Z(Ge—pr)
o

Z_l‘ut
,)/n

-0 =0

n —=

dP @ dt almost everywhere.

1,..,N dP®dt—a.e,

Proof: Below we derive the case for investor 1, which generalizes directly to the rest of the investors

by their symmetry. Now note that ¢} =

Zil}lt
1

— {} dP ®dt — a.e. implies that by the equilibrium

condition of (3.7)), the new equilibrium point fi; reverts to its frictionless counterpart of (3.8). In

turn, by the definition of the revealed exposure process in Definition we have that:

ot =12l

n =

1,..,

N dP®dt—a.e.

More precisely, for the above assertion to hold, (5.11)) implies that:

for e =

4
C g -1 g e =0 =
-
# — {1 =0 dP®dt—ae,
Y
where py 1 = %1_%). Now, using (5.8]), we have that p; 1 = ps — M
Expanding the left-hand side of (5.12)), we have:
! Vt L S o 'S — )
7! o (vl)zf5
_ S 7 Ct —
'Yl t ,),157 ,),15
_ P iy — i —'0.1(]
o 71(571715
R T + Gl =0 —7'g)
s 1161718
T ot G- g
A & T R I
D TR S Tt 2
- ,)/1 _€t+715_1< ,)/ _€t>
|
g
Z Ut 1
= (5 - a) (1 5

(5.12)

(Ct 1Pt)



Therefore, by (5.12)) we have:

(Z’;ﬂt _€t1> (1+ ’Y1}51> =0 dP®dt—aee.

In turn, by noting that 1+ ﬁ > 0 we have that Z;llw — 1 =0dP®@dt —a.e.

For the other direction, we have that:

—
2—1M
0= 715 — =

& — =00 =
G-+ =10+ & =
ot = =261 =0.

Now by recalling how qS} was derived in (5.4) and using the above result, we see that the numerator
of ¢} vanishes, yielding ¢! = ¢} =0 dP @ dt — a.e. u

5.3 The Nash equilibrium in a frictionless market

The new goal now becomes to derive the new point of equilibrium returns when all investors apply
the same price impact strategy. That is, we consider a market where all the investors are aware of
their impact on the risky assets. This is the so-called Nash equilibrium, where all investors apply
the same strategic behavior (as investor 1 in (5.4)), and the market equilibrates at the induced
fixed point. Thus, going back how the revealed exposure was defined in Definition after

substituting (5.4) for each investor, we have:

15 7 _ A n
o= Zry)f’f — (gff*” ;Pf k’V Oty ) n=1,.. N. (5.13)

Note that {; " became 5; " since in this setting all the investors influence the equilibrium. In other
words, the aggregate revealed exposure of the investors drives the market to a new equilibrium,
taking into account the price impact of each investor, which is to be determined by the equilibrium

condition.
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Theorem 5.3.1 The Nash equilibrium in a frictionless market is of the following form:

S (G — ) — Thig Anll

fir = = , (5.14)
o 11— A2
where 6, = 1/9" and Ay = 6,/9. ¢
Proof: Going back to , adding and substracting f
D Y7 Gt 4 Pt Y'0-nlt
n __ o t not
S T S I S L T L S g
> gt =iy G [
n
_ — — =
O T T ok ok T ok,
"o
S_pkn, 7! A S_pkn  O_ykn = O_uky
I LA a2 T R R Y
f D) Y e )
D TR Yy IR TR S 44
G T A S
N . N 1 . _ N 1 N 1
n_ y-lp + 27 06— — + —nCt
;gt P‘tn; (7% fit ?tn; 7,15 P 21 T nCt
—Z_1ﬁ5<1+§: ! ) G+ + 25 zt.
t = (,)/ )252 t t 5 not -
Therefore, we have:
. Z ]/l (1+2 252)+lpt+ Zn 1(5 ”gt
Cr = 5 (5.15)

In turn, by (5.15)), the equilibrium condition of (3.7)) and the linearity of summation we get:

1
> “I/lt(s > ytcS = gt — 7t —
Z )252 nX::l 7715
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N (G — ZYaa ot/
i — ; 252_ (t(S ¥) _ 1S

Thus, taking into account that the matrix < — I Zn 1 e 52) = < Zn 1 e 52) 1, is positive

definite (since y"6 > 1), and thus invertible, the Nash equ1hbr1um is given by:

_E (G =) — Tl Al
T 1-yN A2 '

This concludes the proof. [ |

=i

Corollary 5.3.1 Let the following conditions hold:

(I) There are not any noise traders in the market.

(II) The investors have homogenous risk profiles, v = ... = 4N = 4.

Then fiy = py, where py = Txet. ¢

Proof: Note that by substracting the frictionless equilibrium of (3.8 from the Nash equilibrium

of (5.14)) we have:

) R (G =) - A (G — )

=g 1-yN A2 4
_ Z((Ct — ) Ll A -0 /\nC?>.
6 11— A2

Assuming there are no noise traders in the market and the investors have the same risk aversions,

and therefore A, = %, the above becomes:

o z<ctan_1<1/N)2—an_la/N)C?)
MRS 1-DL(1/N)?
=0.

This concludes the proof. [ |
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Chapter 6

PRICE IMPACT IN A MARKET WITH FRICTIONS

In this chapter, we study the notions depicted in the following graph:

/\

Optimal allocation with frictions Equilibrium with frictions under
under price impact the price impact of a single investor

Figure 6.1: Outline of the 6/ chapter

In this chapter we extend the notion of price impact in a finite time horizon market with frictions.

To this end, also recall the discussion about the solution of the FBSDE (4.4]) in Chapter 4.

6.1 Optimal allocation with frictions under price impact

In this section, we consider the optimization problem in a market with frictions, under the price
impact of a single investor (say investor 1). To this end, apart from the concepts already introduced

in Chapter 4, we define the following which hold throughout this chapter:

(I) Assume that investor 1’s trading rate is absolutely continuous, given by:

P = x—l—/otgb'slds, te|[S,T],
where ¢} € L2,
(IT) The time horizon of the market is finite.
(III) Investors have the same risk aversions.

(IV) We consider the optimization problem, in a market with frictions and price impact, on a

compact interval £ € [S,T], where 0 < S < T (S, T are fixed). Furthermore, we define
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the “ZFs-restrictions” of the following processes: ¢ = E[(}'|Zs], V n € N, ¥, = B[] Fs],
¥, = E[¢].F5] and uti = E[u!|.Zs] ['| Lastly, while the terminal condition remains the same
to that of a finite time horizon market with frictions (i.e. ¢+ = 0), we now have ¢ = 0 (the

new starting point, which of course might be S = 0).

(V) We define the following classes:

wl? — {X Q% [S,T] — R’ : X is absolutely continuous s.t. X; € i”,z},

W22 = {X : Q% [S,T] = R : X is absolutely continuous s.t. X; € 7/1’2}.

Lemma 6.1.1 Assume 4! = ... = 4N = 4. Then, the respective form of investor 1’s frictionless

price impact of (5.2), in a finite time horizon market with frictions is given as follows:

. 2A ., 2rA % 7 X Tz 2A oy
1 41 %1y 1 1 1 n__ ¥ o
ﬂt((P,(l),(P) N—lcpt N_14)t N—1¢t+N—1n§;2§t N—th—i_N—l(ut r&t)

Proof: In a similar way to the one we followed to derive the price impact of a single investor in a
frictionless market, (5.1)) generalizes to the following equilibrium conditions, “extending” (4.9 and
(4.10|) respectively by the conditions of this chapter:

N
¢+ Y ¢+, =0, (6.1)
n=2
. N . .
b+ Y ¢+, =0, (6.2)
n=2

where ¢}, ¢} are any strategies and trading rates of investor 1, cpf\’”, n = 2,..,N are the optimal
strategies of the rest of the investors in a finite time horizon market with frictions, without price

impact and (])tA’”, n = 2,...,N their respective optimal trading rates. Equivalently, the differential

form of (6.2)) becomes:

I'Note that in the case where S = 0, &g becomes the trivial o-algebra.
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N
dpt + Y dpP" + dip, = 0. (6.3)
n=2
Let us begin by determining d¢}, n = 2,..,N. The new form of (4.2) under the conditions

introduced in this chapter will be:

FA($) =

T—rt n\T ’711 n\T n n in\T A in
/e 0@>m—2www»zwﬁ4»—wnA@w4

/S "ot (a4y - 7znd<Mif">t)] .

Following the same process as we did in Chapter 4, for (4.5 we get for t € [S, T]:

+E

. yATIZ T r-1
i = T g [T (B g o)

yt:|, n:2,...,N.

As previously shown, the above for a finite time horizon is characterized by the following system of

FBSDEs, derived in Lemma

dpp" = ¢"dt, g =0,

A (6.4)
. ATIE , .
Ag" =AMy + TS (9 — i)t +rgdt, 7" =0,
where now we respectively have ¢;' = Z%% — (/. Furthermore, coupling the absolute continuity of
@} with the terminal condition at t = T, we have:
dgr = pidt, 1 =0, (6.5)

where ¢} € £2.
Substituting (6.5)) for investor 1 and the BSDE of ([6.4) for the rest of the investors in (6.3]), we

have:

-1 N R N _
S (TN — (ue— AT )t +r Y g+ b,
n=2 S~

iy A
0=¢idt+ dM; +
™V n=2

2
=2,.,N
e wdt+aME
where M;, th are continuous local martingales. Moreover, (6.2)) yields 1’25:2 (ptA" = —r((i)tl + Q t).

Therefore, we have:
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. Al N A YN -1 Al N
0= ¢r 5 v M dt — (2) 5 yerdt
n=2

— (pF + b, )t + dt + dMY

Now recall that, using the same arguments as in (4.8)), dM;, dM% vanish, as shown in [Bou+18|,

yielding:

Aflz 71(N_ 1) 71 N

Z FoiMdt — fytdwr Z Yt — r(§} + b, )dt + wldt.

0= ¢jdt+

By the homogenous risk aversions and (6.1]) we in turn have that 7Y\, ¢/ = —3¢! — T, which

gives us:
; ATE AN =1 A-ly N
0=¢t1df+2(—7¢t1—'?ll)t)dt—(2) dr+ 2 2 gt — r(@F +b,)dt + ui'dt.
Solving the above for p; concludes the proof. |

Remark 6.1.1 Let us now briefly discuss the form of ui(¢p!,$', ') in Lemmal6.1.1. Recall that in

the case of a frictionless market under the price impact of investor 1, we have:

-1 _ sl
]/lt((,bl) _ Z‘(Ct 511lbt ¢t)’

which under the homogenous Tisk aversion assumption, becomes:

TE(G ! — = ¢i)

1y _
Thus, by the above we have:
2A . 2rA oy 4oN 2N p ,
m(@' ¢l ¢ = b - % ¢t+—cl Nt o (e )
2A . . >
= o @ =g =)+ (G b, — )
ZA

=N 1P i+ 0 —rh,) + w(eh),
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YL -, —p} . .
where Et(‘Pl) = % Note, by the last equality, that as A goes to zero, the price impact

in a market with frictions goes towards Et(‘Pl)' This is to be expected since, as previously discussed

in Chapter 4, the transaction costs in a market with frictions are modelled through the matriz A.O

We are now ready to establish a new goal functional, in a market with frictions, which takes into
account investor 1’s price impact. Therefore, in a similar manner to that of the frictionless case

and by Lemma [6.1.1] we have:

3 T 2A . 2rA oo 5y Y ¥
a1 — —rt 1_ 1_ 1 n__

2Ny . 0 , ; T _ 0%
g b)) = T+ TR+ &) — (GhTAG )dt+ [ e (daf - Jaimty) |.
N-—-1 2 S 2
(6.6)
Theorem 6.1.1 Assume that ¥y = ... = YN = 4. Then the solution to is characterized by the
following system of linear, coupled, non-homogenous first order ODFEs:
del ;
=gl ko,
44! (6.7)
S TP EBeI QL 9r=0,
A _ 1_pr—1_( ¥ i
where B = L\zlz and Q; = (N-1)Bg BE‘NH(M @fHBE. O

Proof: Taking the Gateaux differential of for 0} € #?? with 9; = 0, 91T = 0 and using

integration by parts, we have ﬂ

3 T 2A 2A
(dﬁA’1(¢1),91) = /5 [ 7rt(4’t)T et} +2e 7rt(¢t) Gt 7”(4’t)T 9t
2A 2A T 2A oy
P (@) 01— [re @) 50— e o) gt — 20 (9D g6+
N T & . 2A
ert<r§(ﬁf) %9} +€7rt(HtE—T’Q)Tm9} 7rt1|)T = 9t 7rt((4’t1)T’729t1 + (Q)WZ@})

ZNote that in a finite time horizon market, ¢} € £? suffices in order to have that ¢},¢} € £2. For more
information about the integrability of (ptl,(p} and (the Lebesgue) integration by parts, refer to

54



—e () 2rN0} + e (f)T2A0} dt

— (@1 T2rA — (DTS (o) az

_E T 4rA

e (@t + @A - G

(L) 55 - @ T 2 w?N"*i)e%df]'

T -1
Now by using Lemma |3.2.1] and multiplying by the factor Et(N_il)A, we finally arrive at the
y g Y 2(N+1)

following second order linear random ODE with constant coefficients:

1]) .
GM g B = (N—l)BCl BCl (F‘T_rit) By,
! f t° 7 N+1  N+1 N+1 N+1’
Q!

yATIS - N
where B = 15= and (; L=yN, [
To ensure that does indeed characterize a unique global maximum, we deal with the second

order condition. Using once more integration by parts we have:

E

T o% . . . .
/ (= @S 6 — (6D g0 — (6 gzel — (8)728] )ae| <o,
S N-1 N-1

for ¥, 5 1 > (0 and positive definite matrices X, A. Therefore, by Proposition u charac-

terizes the unique global maximum.

Lastly, we note that can be reduced to the following system of linear, coupled, non-homogenous

first order ODEs by considering;:

ZA1 A1
d (¢ | (O  La| |$ N 0a,1
dt | za1| AAL1 ’
Py B rla| |9 Q}
where 0, , denotes a m X n zero matrix. [ |

Before moving forward, let us introduce a usefull theorem as shown in [Sch05]:

Theorem 6.1.2 (Conditional Fubini Theorem) Let (X,.7,u),(Y,B,v) be o-finite measure spaces
and 4 C o be a sub-c-algebra containing a sequence (Gp)neN such that G, T X and u(Gy) < oo.

If u(x,y) satisfies u € LY (p@v), then:
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E| /Yuc,y)v(dy)\%} = [ Bl ) v (dy). o

Lemma 6.1.2 Consider a frictional market with a single risky asset. Then the solution to (6.7)), is

given by:
1,(r/24VA)t _ 1,(r/2—
s = Cle (VA=r/2) Gl VN (r/2+VA) H, (6.9)
B B
where:
o (r/2+ V/B)e 2VAS]L
1 (\/K—T’/2> (r/2—/M)T 7’/2—|— \/>) —2\/75€(r/2+\ﬁ)
Cl _ (1’/2 — \/>>]T
2T (VB — 1/2)elr/2=VB)T+(r/2+VB)e 2V8selt /2 /AT
t
e /5 o/2(t-5) <cosh (Va(-s))+ 2\7/5 sinh (VA(t - s))> Qlds,
 (N=DBZ =BG — (1 — b)) + B,
£ N+1 '
¢ ¢"/2(=9) sinh (\/Z(t — s))
H! = / Qlds.
s VA
withB=12"2 A=12/4+Band ' = YN, O 0

Proof: Going back to Theorem [6.1.1 we have the following system of ODEs which characterize

the optimal strategy:

A1 A1
g e 0 1 / 0
& (PtAl = (PtAl e (6.10)
(o B ¢ 1
—_——
M

Beginning with the homogenous solution, we calculate the eigenvalues and eigenvectors of matrix

M such that Mv = zv:

IM —zI| = 2% —rz — B.
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The above quadratic in turns yields the following eigenvalues for D = 1> +4B > 0 — Z1p =

_ r+vD

Moving forward with the eigenvectors, for z; = ==, we have:
—r—\/D
— 1 ul
B # vy

—r—/D

Dividing the first row by =¥+ and by Gaussian elimination, the above matrix becomes:

1 r=vD | |y
2B 1 —0,
0 0 U2

which in turns yields the first eigenvector:

_ (r-vD)
2B
1
In a similar way for z, = #, we arrive at:
_ (r+VD)
2B
1

Therefore, the homogenous solution (HS) of (6.10]) will be of the form:

| = (r—vD) s | = (r+vD)

r+ r—

Cie 2! ol g cle S
1 1

with C}, C% to be determined by the initial and terminal conditions of the system.

For the particular solution, we are searching a solution in the following form:

(r—vD) ,r+yDy (r+VvD) ,r=YD;
— e 2 — e 2
u 2B +u 2B
1 r+\/5t 2 r—\/ﬁt
e 2 e 2

Using the variation of parameters method, we essentially need to solve the following system:
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VD) e (D) o) [y 0

r—\/ﬁt ’
e 2 e 2

Q!

—
b

=
IN)

K

The above system can be solved by Cramer’s rule, yielding uq, up as follows:

where K; is the matrix formed by replacing the i-th column of matrix K by the column vec-

tor b. Calculating the above determinants, we have that u; = fs %dis and up =

_ [tl=vD lds. Noting that D = 2v/72/4+ B = 2v/A (by ({#.15)), we have a particular
5 Z\Fefs
solution (PS) of (6.10)) can be written in the form:

H] :/ (r/2 4+ VA)elr/2- Qlds _(V/ZE\/Z)e(r/2+\/Z)t
I s 2v/Ae’s ’ o(r/24VA)
_/t (r/z_ﬂ)e(r/ZJr\/Z)sQldS (r/ZJ]g\f (r/2—V/DA)t
s 2v/Aers ’ o(r/2- VD)t

Equivalently, using the definitions of hyperbolic functions, the above can be written as:

r/2(t=5) ginh \/E F
1l — /t e sin ( ( s)) Olds,
s VA (PS)

JE = /St e/ 2(t=s) (cosh (\/K(t — s)) + Z\ZZ sinh (\/K(t - 5))) Qsds.

Note that Htl, ]tl are absolutely continuous, by the definition of absolute continuity and the fact that

the sum and the product of absolutely continuous functions over a compact domain is absolutely

continuous. Furthermore, Htl, ]tl are #;-adapted, by Lemma since their integrands are in
2. Combining (HS) and (PS)), we get:

G — C}e(r/zJ“\/Z)t(\/X—r/Z) Clel/2VDt(r /2 4+ \/A)
t = B B
q?fm _ C}e(r/2+\/g)t + C%e(r/zf\/g)t +]t1'

+ Hj,

Using the initial and terminal conditions, i.e. (f)gu =0 and (ﬁ/T\l = 0, we derive C%,C%, which we

substitute in the above to get the following general solution (GS):
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Al C}e(r/zJ’\/E)t(\/X—r/Z) Clel/2=VD)t(r /2 4+ \/A) 1
q>t - B B + Ht/ (GS)
B = Clelr /Iy Clelr By 1

1 _ (r/2+VA)e 255y 1 _
where & = T (VB=1/2)er 72 VET 1 (1) 24/ e 2VAS /2T and G =
(r/2-VA)Jr . Note that by the fact that Q; € .Z? (the other parts

(\/Z_r/z)e(,/z,\/K)T+(,/2+\/g)672ﬂse(r/2+\/Z)T
of the integrands of Htl, ]f1 are uniformly continuous on a compact interval and therefore bounded)

and Theorem [6.1.2] we have:

ot
_ & .
Jh= -/ST ¢ /2(T=s) (cosh (VAT =s))+ ﬁ sinh (VA(T - S))> ((N— 1)BG; — Bgs;:us —np)+ BQS) .
ot
=E /ST o /2T —s) (cosh (\/K(T — S)) + ﬁ sinh (\/K(T _ s))) ((N —1)Bgl - BCillJ:l(y;/’ —rips) + szs) ds'ﬁs} ,

which makes ]% Zs-measurable and therefore by the definition and completeness of the filtration
F-measurable for each t € [S, T]. Thus (GS)) is indeed in the class of admissible strategies H
Lastly, we can see that (HS]) is indeed a homogenous solution for . Likewise for the particular

solution, we have by integration by parts for ]tlz

it~ 2
+(r/2+\/Z)Q}_(r/2 VA)Q;
2vVA 2VA

1
i _ L I N ge(r/z_\/z)tuz VA2V,

We also have:

_ Tftl B BH} _ _re(r/2+\/Z)tu1 + or/2=VB)t 1y + e(r/z+f — Ve (r/2+VA)t,

o (r/2 fe (r/2—
2
_ 2 (r/2+f) u + e(r/2 \F fe r/2+f \/>e (r/2—

Combining the above in we finally get:

3The fact that 435\ e .542 can be directly derived, since ([31{\ s given in feedback form by .
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2vVA 2vV/A
Therefore (GS)) does indeed satisfy (6.8). [

aji
dt

6.2 Equilibrium with frictions under the price impact of a single investor

We are now ready to derive an explicit form for the equilibrium returns in a finite time horizon
market with frictions and under the price impact of investor 1. Recall that, as shown in Remark
the equilibrium with frictions without price impact reverts to its frictionless counterpart if
we have homogenous risk aversions and there are no noise traders in the market. As we see in the
following corollary, this is not the case for the equilibrium with frictions under the price impact of

a single investor.

Corollary 6.2.1 Assume that y' = ... = vN = 4. Then, the equilibrium returns in a market with

frictions and under the price impact of investor 1, take the following form:

N? 7= 2NA .
~A1 1 "
- Elpu| #s] = L 11
where pp = w is the frictionless equilibrium. o

Proof: Going back to Lemma after substituting the optimal dynamics in a market with

frictions and under the price impact of investor 1, as derived in Theorem we have:

2A /s YATIZ x o 2 .
“A1 Al sa1 Y ! v -1_ 7 v
S e | C AU T TR et a v (et
B
By the above becomes:
Ql

_ P ; e _ P :
A1 2N\ <(N_1>BC} . Bgtl . (uf—rgt) BQt ) 72£t1 . IYZ‘Qt 2A<“7_r$t)
B = N1\ N+ N +1 N+1 N+1) " N—-1 N-1 N—-1
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_ 7RG NEGY 2NA(W -rb)  NTEW,

NI T INCDWNED T INSD(N+)  (N—D(N+ D)

Now recall that the frictionless equilibrium under no price impact is of the form p; = M, which

in turn under the homogenous risk aversions assumption becomes y; = w Therefore, after
—5 -1
adding and substracting % in the above and by the linearity of the conditional expectation,
we get:
A1 T 4 Ny 1 N _ 2NA v
A _ _ (. — - _
e N L (T A G V a  MA C R v T oy y A
N2 0o 2NA n .
= E[p|Zs] — ! =)
T S i A pr e s e S LR s s Yo varig S Y

This concludes the proof. |

Let us now briefly discuss the results of Corollary [6.2.1] and compare them with some previous
ones. Note that in order to make the comparisons more clear, besides the standing assumption of
common risk aversions, we assume that there are no noise traders in the market. By Remark

the equilibrium with frictions from (4.8) reverts to its frictionless counterpart from (3.8]), that is:

A
e = Kt
Having said the above, let us now compare ‘ﬁ{\’l with its frictionless counterpart ]71}, under the price

impact of a single investor.

Corollary 6.2.2 Assume that there are no noise traders in the market and ¥" = %, Vun = 1,...,N.

Then:

it =E[ji;|Zs], te[ST]

where ﬁi\l,ﬁ} are the equilibrium returns in a market with and without frictions, under the price

impact of investor 1, derived in (6.11)) and (5.6) respectively. o

Proof: Going back to (5.6, we have:

~1 %]’ltzfl + (Syt
A VAW
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17EE =) | N ARG )
3 N-T YN
1/79+N/7¥
_ He 4 n(g - )
(N+1)/7
_ NXZ(Ce — ) —2(Ce — ) + Z(Q_l — )

N—1
(N+1)/79

_ NX(g — ) — 2}
= N-1
(N+1)/9

_ NYE(G — ) — T2
NZ—1
N? 0y
N2 1M T N

G-
Corollary and the linearity of conditional expectation yields the result. |

Remark 6.2.1 By Corollary[6.2.3 we have determined that the frictionless equilibrium returns under

the price impact of a single investor, of (5.6, can be equivalently written as:

4 N? B
=Nt TN

0oy
> 1@’}, (6.12)
where yy is the frictionless equilibrium of (3.8)). Thus, the counterpart of (6.12)) in a market with

frictions, as shown in (6.11)), can be written as:

_ - 2NA v .
P‘f\'l = IE[HHQS] + m(uf - r%)-

By the above, it becomes easy to see that as A goes to zero, (6.11) reverts to its frictionless

counterpart of (5.6, restricted by the “information” of Fs.

Further examining the results of Corollary[6.2.3, if we drop the assumption of no noise traders in
the market and compare the results with that of Corollary [{.3.1] we have:

2NA | v

at — i} = Bl | Fs] — i + ﬁ(ﬂ? —1,), (6.13)
2A .
it == 55 (= ripo). (6.14)
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Note that the liquidity premium of (6.13]) now also depends on the amount of information investor

1 has, depicted through the o-algebra Fs. We also note that as A — 0, ﬁtA’l — ‘ﬂ} goes towards

E(fif | Zs] — i1y - o

Remark 6.2.2 (Investor 1’s frictional best response strategy under small transaction costs)
Recall that by in Theorem investor 1’s optimal strategy in a market with frictions, under
her price impact (alternatively called as her best response strateqy under frictions), is characterized

by the following second order ODE:

ZA1 SAL1 A1 Al
¢y —ry —Bo = Qy,

_ 1 —1 v B .
NNi)lBE, — i]%l - (”'NJ:%) + % and B := # Now note that the above equation

where QF = ( N

can be equivalently written as:

¢ = B/r(TP} + D} M), (6.15)

where we set D} := B_lfﬁtA’l and TP} := —B~'Q} and propose that TP} represents investor 1’s
“target portfolio”. In other words, the investor’s best response strategy in a market with frictions
trades towards the previously stated “target” and is influenced by B,r and (fbf\l in the process. Like-
wise, ]D} can be thought as the distortions to the price of an asset, caused by the investor’s trading
in the market.

Now recall that investor 1’s frictionless optimal strategy under her price impact is of the following

form, as shown in (5.4)):

-1 11 1
G P0G Y
Pr = 5 1k k= 2(5,1 T )
L == (N=1)]
- e , (6.16)

where the second equality stems from the homogenous risk aversions assumption. Now, by comparing

TP} in (6.15) with (6.16), provided the individual limits exist, it should be clear that:

TP} — E[¢}|.Fs] & D} — 0 as A — 0, (6.17)
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since both the distortions ]D} and Bil(mifiﬁb;’) mn T]P} vanish as A goes to zero. That is to say, as
transaction costs get smaller, investor 1’s target portfolio converges to her frictionless best response,
while being infuenced by the distortions she causes to the market. Hence, as stated in [MMKS1/j),
the frictional optimal strategy under the price impact of a single investor is “myopic” in the sense
that it trades towards the current frictionless mazimizer (rather a projected future optimum) with

a speed determined by current market and preference parameters. Similar results are discussed for

relevant problems in [GP16] and [MMKS14).
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Appendix A

REMARKS AND PROOFS

A.1 Section 2.1

In this section we explore in more detail the concepts of progressive measurability, localizing se-

quences and the space .Z?2. For more information, refer to [KS91] and [Kal02].

Progressive measurability and localizing sequences

Remark A.1.1 We fiz a filtration (%)= on (Q,.Z,P). Following the notation of [Gall6], a ran-
dom process (X (t,w))i>0 is called adapted if, for every t > 0, X(t,w) is Fi-measurable. Equiva-
lently, we could say that X : Ry x QQ — R is Fs-adapted iff (s,-) — X(s,w) defined on [0,t] x Q
is measurable with respect to % for each fixed s. Moreover, this process is said to be progressive

(or progressively measumble)ﬂ if, for every t > 0, the mapping:
(s,w) — X(s,w).

defined on [0,t] x Q) is measurable for the c-algebra B([0,t]) ® F [P

From the above it is evident that progressive measurability is stronger than adaptedness and mea-
surability. Specifically, a progressive process is both adapted and measurable. Saying that a process
is measurable is equivalent to saying that, for each w € Q, the mapping (-, w) — X(s,w) defined
on [0,t] x Q is B([0,]) @ F-measurable. The above relationships can be summarized in the graph

presented below ]

INote that the Lebesgue integral of a progressive process is also progressive [KS91].

2Note that if X is adapted with right/left continuous sample paths (i.e. for every w € Q, t > X;(w) is right/left
continuous), then X is progressive. On the other hand if the aforementioned process is adapted and with left continuous
sample paths, then it is predictable [Gall6|, [KS91].

3Note that in discrete time optional, progressive and adapted processes coincide.
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Progressive Adapted

Measurable

Figure A.1: The relationship between Progressiveness, Adaptedness and Measurability

We could now move to some general concepts about stopping times in a continuous contert.
Specifically, given a filtered probability space (Q, F,(Ft)i>0,P), a stopping time T : QO — [0, c0]
is a random variable satisfying {w € QO : t(w) <t} € F, VE >0 E] Correspondigly, a stopped
process is a stochastic process that is forced to assume the same value after the prescribed stopping
time and is denoted by X" (t,w) or Xinc(w). A stopping time can be thought as a strategy that
dictates the specific point of “exit”. Therefore, rephrasing the above definition, in order for T to be
a stopping time, it is not permitted to “see into the future”. Naturally, there are many more things
to consider, for the above cocnepts, which are out of the scope of this thesis. For more, you could

for example refer to [Kal02], [KS91].

We shall conclude this remark by introducing the concept of a localizing sequence. We define a

localizing sequence as an increasing sequence of stopping times (Ty)n>1, such that P( li_r>n =o00)=1.
- n—oo

Localizing sequences are generally used to ensure that a process X; has certain properties we want,

at least in a local manner, that would not hold universally (for the specific process). A noteworthy

4An optional time is defined similarly, that is a random variable satisfying {w € Q : T (w) < t} € %, ¥Vt > 0.
Note that optional and stopping times coincide for a right continuous filtration, as shown in [KS91J.
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example would be a local martingale, which should satify the following:

For all n > 1, the stopped process (Xinz,)t>0 should be a martingale, adapted to the respective

filtration. ¢

ILP vs ZP spaces and equivalence classes

Below we give some basic information about the IL? and .#? spaces. For more information as well
as proofs for the statements presented below, refer to [MW12], [Sch05]. We fix a measure space

(Q, #,u) and define the following set of functions:

Definition A.1.1 The set of square-integrable functions is defined to be:

PO, F,n) = {fQ — R : f is F-measurable and / |f|2du < oo}.
Q

Henceforth simply denoted as £>. o

For an .#-measurable function f, we define the 2-norm of f as:

it = [ 1ran)

Proposition A.1.1 The £ is a linear space and the 2-norm defines a seminorm on £2. ¢

Recall that while a seminorm satisfies the triangle inequality and absolute homogeneity properties
of a norm, it is not positive definite, i.e. ||f||2 = 0 does not imply f = 0 in #2. This becomes

clearer by the following lemma:

Lemma A.1.1 Let f : QO — R be .#-measurable. Then ||f||2 = 0 if and only if f =0 p-a.e. o

In order to ensure the positive definiteness of || f||2, we consider the functions which are a.e. equal in
(Q, Z,u). This is done by introducing an equivalence relation in .#? and then taking the quotient

space.

Definition A.1.2 We say that two functions f,g € £? are equivalent if f = ¢ p-a.e. More precisely,

we write:
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f~g&e f=gu—ae. o

The relation presented in te above definition is an equivalence relation. We are now ready to define
the notion of an equivalence class in .Z2. More precisely, we write [f] for the equivalence class of

a function f € #2. That is,

fl={ge2*: f~g}
Definition A.1.3 Let ~ be the equivalence relation from Definition . Define IL.2(Q), F, ) to be
the quotient space L*(Q), F,u)/ ~. That is:
L2(Q, 7, 1) = {lf]: f € 220 7, 1)} 4
1/2
L2 is a linear space in which ||[f]]|2 = ||f]l2 = (fQ ]f|2d;1) defines a norm.

Remark A.1.2 (The space .£?) In this subsection we explore in more detail the space L2, which

will be referenced extensively throughout this thesis.

Let (Q, F,P) be a probability space and X : T x QQ — R! @ measurable mapping w.r.t. A(]0,0]) ®

yﬂ Then, as previously shown, the norm || - |5 is defined as ﬂ:

T
X2, = E :/0 /Qe’”HXtHZdet. (CIVLI)

T I
/ et Y X, Pt
0 i=1

Note that the addition of et enables us to treat finite and infinite horizon models in a unified

manner. More precisely, in order to deal with the infinite limit int he time integral, we essentially

require that e~ "t

goes to zero faster than X;; goes to infinity. Hence, the current value (at time t)
of Xi; must either be finite or grow at a rate slower than r so that the discount factor pushes the

present value to zero. That is why in infinite horizon models we have the strict inequality v > 0.

5Note that for finite dimension spaces, such as R/ , all norms (or seminorms) are equivalent, i.e. the following holds
for x in a normed space and constants C, C; > 0: Cy||x|ly < [lx]|, < Coflx|ly. Equivalent norms define equivalent
metrics, which produce the same topology and Cauchy sequences [Fol13].

6We also make use of the Tonelli Theorem, as shown in [Sch05], which lets us change the order of integration for
measurable, non-negative functions.
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"t as a “weight” in the context of Lebesque spaces. This stems from the

We could also interpet e
fact that with the help of Radon-Nikodym Theorem we could construct a new measure dy = e "'dt

which is absolutely continuous with regards to dt |Z| Having said the above, we could also represent

(ICLVI.1) as follows:

[ [ 1t w))2apd. (CLVL.2)

(CLVL.1)) is a part of a general class of norms, which form spaces known as “mized norm Lebesgue
spaces”.  Specifically as shown in [EM18], a mized norm Lebesgque space consists of measurable
multivariable functions with a norm defined in terms of potentially different, iteratively calcu-
lated p-norms. More precisely, for (Q,ui), i = 1,..,n o-finite measurable spaces, p; > 1 and

(P1, - Pn—1,Pn) and a mapping f, we could defined the following norm:

1= (f, o ()™ )" ) )

We now present a useful property, as shown in [Sch05], regarding integrals of functions over a null

set. More precisely, we have:

Theorem A.1.1 Let (X,%, u) be a measure space. Let f : X — R be a p-integrable function and N

a u-null set. Then:

/Nfdyzo. o

Lastly, we present an important lemma relevant to the class .#? (see further in [KS91]). Namely:

Lemma A.1.2 Let X; € .£?, then the process:

Yt - Xs dS,

s<t

is continuous in t (for almost all w) and progressively measurable. o

"If we define two measures j, v on a measurable space (X,.Z) and let .4, = {A € F | u(A) =0}, #4 ={A €
F ‘ v(A) = 0} be their respective null sets, then the measure v is said to be absolutely continuous with respect to p
iff A7 2 A, We denote this relationship as: v < p. In a similar manner, the two measures are called equivalent iff
< vand v < u. It should be noted that equivalent measures share their a.s. properties [Kall7].
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A.2 Section 3.1

In this section we see in detail how (3.2) transforms into (3.5). For more information about the

statements and proofs presented below, refer to [KS91], [Kal02], [Pro05|, [MW12] and [Osel2].

Remark A.2.1 Let X,Y be two semimartingales taking values in R?. We say that X and Y are

orthogonal, if for any non-negative integers i,j we have:

(X', Y] = 0. (A.1)
0

Theorem A.2.1 Let X,Y be semimartingales and & be a X-integrable process. Then, & is [X,Y]-

integrable and the following hold:

(1) [[¢aX] = [ ¢2d[X].
(II) [[¢dX, Y] = [¢d[X,Y]. o

Before continuing further, let us extent the definition of stochastic integrals to a larger class of
integrators as shown in [Kal02]. As previously expressed, a process X is said to be a continuous

semimartingale if it can be written in the form:

X=M+A,

where M is a continuous (local) martingale and A is a continuous adapted process of locally finite
variation with Ag = 0. Now let L(A) denote the class of progressively measurable processes V
such that the process (V- A); = fot VdA exists in the Lebesgue-Stieltjes sense. For any continuous
martingale X, we may write L(X) = L(M) N L(A), where L(M) denotes the class of all progressive
processes V such that (V?-[M]); < oo a.s. for each t > 0. By the above, we can define the integral

of the process V € L(X), as

/de /VdM+/VdA

\/—/ ;\/—/ R/—/

Note that V - X is again a continuous semimartingale with decomposition V-X =V - M+ V - A.
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Lemma A.2.1 Let a function f; : [a,b] — R be continuous on [a,b] and set a partition P =
(to, t1, s tn) of [, D).

If i (f, [a, b]) < 0 = Lf] [a,b] = 0. %

Proof: Note that the term Vo(f, P) = Y1y | ft, — f ‘2 can be decomposed as follows:

Z ’fti _fti—1’2 = Z ‘fti _fti—l’ ’fti _fti—1’ < Sup ‘ft,’ _ftiq‘vl(ffp)'
i=1 i=1 1<i<n

Now, by the continuity of f on [a,b] we have:

sup |ft, — f._,| =0 as n— oo,
1<i<n

since f is continuous on [a,b] and thus uniformly continuous on the same interval, for € > 0,
Jc(e) : |lu—v| < cthen |f, — fo| < € for all u,v € [a,b]. Now consider ||P|| < ¢ and note that
|fr, — ftH\ < €. The result follows. The same of course holds for the covariation [f, g] (0] between

f and a continuous g : [a,b] — R, since:

n

C(f,8P) =Y (fr = fr) (8t — &ty) < sup |y — &, |Vi(f, [a,b]),

i=1 1<i<n

using the same argument as before, we conclude the proof. |
Lemma A.2.2 Let f be non-decreasing function on [a,b], then f has bounded variation on [a,b] and

Vi(f, [a,b]) = fo = fa- 0

Proof: Let P = (tg,t1,...,tn) be a partition of [a,b]. Then:

i=1

Vi(f, P) = imi ) = Y Fi) = U — o)+ (R — )+ (= Fou) + = fo— fo

The above result holds for every partition of [4,b]. A similar argument can be made for a non-
increasing function g, with V;(g, [a,b]) = g2 — Q- [

Some other useful results for functions of bounded variation are presented in the following theorems:

Theorem A.2.2 Let f,g be functions of bounded variation on [a,b] and k be a constant. Then:
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(I) f is bounded on [a,b].

(II) f is of bounded variation on every closed subinterval of [a,b].
(IIT) kf is of bounded variation on [a,b].
(IV) f+g and f — g are of bounded variation on [a,b].

(V) fg is of bounded variation on [a,b)]. o

Theorem A.2.3 Let f be a function defined on [a,b] and ¢ € (a,b). If f is of bouned variation
on [a,c] and [c,b], then it is of bounded variation on [a,b] with Vi(f,[a,b]) = Vi(f,[a,c]) +
Vi(f, [c, b]). ¢

Theorem A.2.4 (Quadratic variation of Brownian motion) For every 0 < a < b the quadratic vari-

ation of the Brownian motion W on [a,b] is b — a. Moreover the following hold:

2
(I) For every partition P with ||P|| — 0, we have that Vo(W, P) Lb—a .

(I) For every partition P with Y321 |P|| < o0, Va(W, P) — b — a with probability 1[)| o

Proof: Let P = (a = to,t1,..,ty = b). Weset Y; = (W, — W, )2 — (ti—tiq), i = 1,2,...,n
Then:

n

[Va(W,P) — (b—a)]* = [Z Y,

2
n
=YY’ +2 Y Yvyj.
i=1 i=1

1<i<j<n

Yl L VY5

Notice that Y; are independent and as such E[Y;] = 0, since W; — Ws ~ N(0,t —s), (t > s), and
E[Y?] = E[(Wy, — Wi,_)*] = 2(ti — i) E[(By, — By, ,)?] + (i — tic1)? = (i — ti1)*E[Z%] — (1 —

1

ti_1)? with Z ~ N(0,1) [} Thus, E[Y?] = 2(#; — t;_1)?. Combining the above, we get:

E[(Va(W, P) — (b—a))’] = é(ti ) < (b—a)P| o,

8 A sequence X, converges in LP, p > 0 to X if li_r}n E[|X, — X|F] =0.
n—oo
9A sequence X, converges almost surely to X if P (rllgn Xy = X) =1.

10Note that with the help of the characteristic function of N(0,1) we can deduce that E[Z%] = %, E[z2+1] =
0, k=0,1,... .
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For the second part of the proof, we set U, = Vo(W, P,) — (b — a) for different partitions P,. The

above result together with the linearity of the expectation give us that IE [Y_n; U2] = Yoo E[UZ] <

00. In other words we have, with probability 1, that }7° ; U, < oo and consequently li_r)n u, =0.
n—oo

Remark A.2.2 For one-dimensional semimartingales Z;, X, Y; with Z; = aXy + bY;, following the

notation introduced in we calculate the quadratic variation as follows:

n n
7,7y = i aAX; + bAY;)? = i a2(AX:)? + b2(AY:)? + 2abAX;AY;
221 i oo g 5 ()
n n n
2 1; 2 2 1: 2 .
=a° lim ) (AX;)"4b" lim ) (AY;)*+42ab lim Y AX;AY;.
HPH—>01-; l HPH—>0; ’ npnao,; e

~~

(X (Y] (XY

Then by the compensator’s properties, as expressed in Definition [2.53.5, we have:

]EUOT“Vznd </0'<¢")Tdss+w>t] =1E[/OT72”d [/0'(¢")Tdss+w]t} (A.2)
/OT 7;01(2 </O'(<p")Tdss,Y">t+ </O'(¢”)Tdss>t+ (Y”)t>

Calculating explicitly the above quantities, we omit the expectations in order to simplify notation.

=E

Moreover, we should have in mind that the reason behind the use of the predictable quadratic varia-
tion inside the expectation is to ensure that the process we consider is predictable (which is generally

not the case for the “usual” quadratic variation). o

Excplicitly calculating the terms in (A.2), we finally get:

a( [ tg7as.) Dinrzra,

d{Y"),

(dA'; + (T odW, + thif”) (dAy (T odW, + de'") =

[}

d(Y"), = (&) Egidt +d(M*")y,

A direct result of Lemmas|[A.2.1}| A.2.2| and Theorems |A.2.4| |A.2.1
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(91) (udt + cdWy) (AT + (1) TodW; +dM;" ) =
t
=

t

(o) =gyt

d</0'(4>")Tdss,Y">
)

T n
([ onyras, v

A.3 Section 3.2

In this section we see in detail how the Gateaux derivative is defined in infinite-dimensional spaces.

For more information, refer to [ET99|, [GF63] and [JLJ9S].

Generally we could make the following distinction based on the kind of spaces a mapping operates,

ie.:

e A mapping of the form f: R D [a,b] — X, where X is a general normed space is denoted as

an abstract function.

e A mapping of the form .7 : X D 2(.%) — R, where X is a general normed space is denoted

as a functional.

e A mapping of the form F: X O Z(F) — Y, where X, Y are general normed spaces is denoted

as an operator. Clearly this category includes the other two.

In this context, we could express the functional depicted in (3.2)) as:

. 2
7" (L2 M) = (R,
Let us now move on to define the generalization of directional derivative to locally convex topological

vector spaces (e.g. Banach spaces) EL Specifically following the concepts expressed in [Car83)],
[Eva98| we have:

12 A direct result of Lemma |A.2.1, Theorems |A.2.4, |A.2.1]and (A 1))

13 A direct result of Lemmas|A.2.1}| A.2.2| and Theorems |A.2.1}|A.2.4, (A1)

M7 ocally convex topological vector spaces generalize normed spaces. Following the notation of INB11], a locally
convex topological vector space is one that is induced by a family of seminorms.
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Definition A.3.1 (Directional derivative - generalization) Let X, Y be linear topological vector
spaces, F: X O P(F) — Y be an operator, xy an interior point of 2 (F) E and 6 € X, 0 # 0x.
Then there is an interval Ic = (—€,€), € > 0 such that xo+ p0 € Z2(F), ¥V p € I.. Therefore,
we could define an abstract function ¢ : I — Y, with g(p) = F(xo + p0). We shall say that the
operator F is differentiable at xo and in the direction of 0, if the aforementioned abstract function

g s differentiable at p = 0. Then, the directional derivative at xq is given by:

dF(xo + pb)

dF(xo,' 9) = dp

0—0

Note that in some cases it might be meaningful to consider the one-sided limit, thus defining the

appropriate right/left directional derivatives as follows:

dF(xo + pf
d,F(x;0) = (g") ,
P o—0+
d_F(xp;0) = W . O
p o—0—

In a similar manner, we can define higher order directional derivatives as follows:

d”F(xO; 9) = —d F(;C(;):_ pe)

o—0

Note that the above defines a homogeneous function of degree n in 6 (it is not necessarily additive).

Definition A.3.2 (Gateaux derivative) Following the notions presented in Definition F is

Gateauz differentiable at a point xo € 2(F) if:

o dF(x;0) exists for all 6 € X.

e 0 — dF(xg;0) is a linear continuous function, that is:
AF(x0;0) = dF(x0)6, dF(xo) € LC(Z(F),Y)

We denote dF(xg), (dF(xo),9> as the Gateauz derivative and differential at xo respectively.

15Note that xg € Z(F) is called an interior point if 3¢ > 0 such that B(xo,e) C 2(F).

16The space of linear continuous mappings.
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e In a similar manner, F is twice Gateaux differentiable at a point xg € Z(F) in the directions

0,h € X if the operator dF(xy)0 is once Gateauz differentiable at point xo in the direction h. <

Latly, regarding all the goal functionals that are considered throughout this thesis, note the follow-

ing:
e The linearity of 0 — dF(x;0) is easily verified when calculating the Gateaux differential.

e The continuity of 6 — dF(xp;0) is a direct consequence of the Cauchy-Swartz inequality (CS)

and the Triangle Inequality for integrals (TT) E

To prove the aforementioned two points we examine the case of the Gateaux derivative for the
frictionless goal functional without price impact of . Similar results for all the other derivatives
presented throughout this thesis can be derived in the same manner. Recall that the Gateaux
derivative of is of the following form:

(a77¢).0") =8| [" e (F (ot + é?)TZ>9?dt] =0,

where Z" : (,ﬁfrz, || - H(Z,r)) — (]R, | - Hoo) The linearity of 6" +— d.%(¢";0") is direct. To
prove the continuity of the derivative in 8" we use the epsilon-delta definition of continuity, where

0" — 9"\](21) < 4. Therefore, we have:

A T A
(a7 @n0) = (4770, 07) | = [E| | e‘”(uf—7”(¢?+€?)TZ)(9?—9?)dt]
(CS) .
= I =0+ |6 8]

<[lp" =9"(@" + ") Z| 0.

Finally, choosing § = yields the desired result.

€
1l =7 (7 +E) T )

17The functional in Chapter 6 is a more special case. Nevertheless, continuity is also achieved there by the finite
£2 (semi) norms of (p} and its derivatives.
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A.4 Section 4.1

In this section we explore in more detail the concept of absolute continuity and its relation with
regards to differentiability. For more information about the following statements and their proofs,
refer to [MW12]. We begin with some introductory statements about Riemann integrable functions.
More precisely, recall that the First Fundamental Theorem of Calculus states: Suppose f is Riemann

integrable on [a, b]. Let:

F(x) = /ﬂxf(t)dt, a<x<b.

Then F is differentiable at all points which f is continuous and at such points dl;gcx) = f(x). In

other words we have:

d [* P
— t)dt = ,
= [ fnde =5
at all continuity points of f. The above results can be generalized for the Lebesgue integral, leading

to the following theorem:

Theorem A.4.1 (First Fundamental Theorem of Calculus - Lebesgue) Suppose f € £1(A), where

A denotes the Lebesgue measure [ and set:

F(x) = /axf(t)dt, a<x<b.

Then F is differentiable almost everywhere on [a,b] and dl;(xx) = f(x) for almost all x € [a,b]. <€

We are now ready to introduce a definition for an absolutely continuous function. That is:

Definition A.4.1 (Absolutely continuous function) Suppose that F is defined on [a,b], [ exists al-

most everywhere and f € £(A) on [a,b] and:

Then f is said to be absolutely continuous on [a,b]. O

18For more information about Lebesuge spaces, refer to
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Equivalently for F(a) = 0, we say that f is absolutely continuous if it can represented as F(x) =

fax f(t)dt for all x and therefore it is differentiable almost everywhere with dl;(xx) = f(x) for almost

all x.

Definition A.4.2 (Absolutely continuous process) Let a probability space (Q,.%,P). Then a
stochastic process X is absolutely continuous if t — X(t,w) is absolutely continuous for dP al-

most all w. o

Now recall that for a market with frictions, the strategy for investor n is of the following form

(95 = 0):

PF :/th');“ds, te 7,
where ¢, pf' € £2. Therefore, by the above we can reason that ¢} is almost everywhere differen-
tiable with % = ¢ almost everywhere for (w,t) on the product measure dP ® dt Note that
the almost everywhere existence of the pointwise derivative (instead of everywhere) does not affect
the optimization of the goal functional, since by Theorem integrals over nullsets are null.
Lastly, note a relevant property for absolutely continuous functions presented in the following

proposition:

Proposition A.4.1 If f is absolutely continuous on [a,b], then it is continuous and of bounded vari-

ation on [a,b]. 0

A.5 Section 6.2

Recall that in the case of a market with frictions and under the price impact of investor 1, her

strategy and trading rate are respectively given as follows (taking into account the initial condition):

t
<p}:/ plds. te 7,
0

19This is a direct consequence of the fact that for for two o-finite measure spaces: (X1, X1, 1), (X, Zo, #2), the
product measure is uniquely defined for every measurable E as (1 ®@ p2)(E) = [y, p1(E¥)dpa(y) = [y, pa(Ex)dpr(x),

where Ex = {y € X : (x,y) € E} and EY = {x € X; : (x,y) € E}. That is, almost everywhere on sections implies
almost everywhere on product for measurable sets (the opposite is generally not true).
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t
(j)}:x+/cﬁslds, xeRY, te .
0

Furthermore, recall that by the discussion in ¢; is differentiable everywhere on t € 7 with
pointwise derivative: % = ¢}, since ¢} is continuous on + € Z. On the other hand, ¢} is
differentiable almost everywhere on t € 7 with pointwise derivative % = ¢t and ] € L2 Let
us now examine the integrability of (,bt1 in a finite time horizon market (the same arguments can be

made for 4)}) More precisely, we examine the case where (ptl is one-dimensional. Similar arguments

can be made in the multi-dimensional case.

Lemma A.5.1 Consider a finite time horizon market (T < oo) with two assets (one risky and one

riskless) and let:

t
q5t1:x+/¢'§ds, xeR, te.g,
0

where $ € L?. Then:
¢ € 2 0

Proof: The progressive measurability of ¢/ is a direct consequence of Lemma For the mixed

integrability, we initially use the trivial inequality |x + y[> < 2|x|? + 2|y|? ] getting:

T b2 T b2
IE[/ et x+/ <p§ds‘ dt} g]E[/ e”<2|x|2+2‘/ (pgds‘ )dt].
0 0 0 0

By the triangle inequality for intergrals, as shown in [Sch05] we have:

C

IE[/OTe”<ZIX\2+2‘/()t¢sldS‘2>dt] < 2|x\2(1_:_ﬁ) +21E[/0Te”(/ot|¢3!ds)2dt]

T T . 2
= C+2]E[/ e’ (/ Loty 1951 1gs<y ds) dt]'
0 0 e ———
f 8

Applying the Cauchy-Swartz inequality in the time domain for f, g, we have:

20For x,y € R, we have that (x —y)? > 0= |x|? + |y|?> > 2xy. Thus, (x +y)? = |x|* + |y|> + 2xy < 2|x|2 +2|y|*.
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C+2E g T1 hl1 d Zdt < C+2E T’”t t"”d dt
+ /03 </0 {sgt}|¢s’ {s<t} S) < C+ /Oe (/0’475’ S) .

Applying Fubini’s Theorem, we have:

c+21EUOTe—” (t/0t|gbsl|2ds)dt] - C+21E[/T /Te_”t]diﬂzdtds}
o [ [T ]

(rT+1

Noting that |qb | > 0 and using the monotonicity and the linearity of the integral (and

the expectation), we have:

C+2]E[/O (st D™ 51 pas - /O(rTﬂ) \¢g|2ds]<c+2115[/ (st 1e™ |cps]2ds}

r2 r2 r2

Noting that (rSH) < (th?eirS

and using once more the monotonicity of the integral, we have:

r2

c+211~:[/0 (“Jrrl)kp |2ds] <c+211~:[/ M|q>s]2ds}

.. 2.
— 1112 1112
=C+ 7”4’ oy + 2 19°11%,)-
This concludes the proof. |

Lastly, we present a generalized form of integration by parts used in Lebesgue spaces, for absolutely

continuous functions. For more information, refer to [MW12].

Lemma A.5.2 [Integration by parts - Lebesgue] Let [a,b] be a finite interval, u,v € 1L'([a,b]) and

U,V absolutely continuous functions, that is:

t
u, = U, +/ usds, t€la,b],
a
t
Vi = V,ﬁ—/ vsds, t€ [a,b].
a

Then:
b b b
/ let‘/tdt = UtVt|u —/ Utvtdt. o
a a
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Proof: Note that:

b b s s
/ utdt = / thdt — / utdt = LI;, — Ua — / Mtdt = Ub — US.
s a a a

Now, using Fubini’s Theorem and the absolute continuity of U;, V;, we have:

b b t
/ uttht:/ ut(Va+/ vsds)dt
a a a
b b t
:/ utVadt+/ ut/ vsdsdt
a a a

b rb
- (llb—ua)Va+/ / wvsdtds
a S

()

b
(U, — Ua)Vi +/ (U, — U, )ouds
a
b
= (Up — Ua)Vy + Up(Vy — Vi) — / Usvsds
a
b
= Ube - u,v, — / Utvtdt.
a

This concludes the proof.
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Appendix B

THE MERTON'’S PROBLEM

The Merton’s problem defines an integral part of the process of understanding (3.6)). Specifiacally
through the aforementioned problem, which shares many similarities with the frictionless optimizer
of (3.6)), one can better understnd the guiding principles behind the formulation of such an

optimization problem.

Note that before we delve deeper into the above, it is deemed crucial to introduce some relevant
concepts of Dynamic programming. For more information about the concepts examined in this

section of the appendix, refer to [Bel54], [Ber12|, [How60|, [FR12|, [KS08] and [MS92].

One could argue that the main idea behind a problem in the context of Dynamic programming
lies in the interaction between a set of actions that we can do, a set of states that we could be
and a set of rewards that are linked with those actions in each of these states. In this context,
our goal essentially becomes to define a specific sequence of actions that optimizes the sum of the
aforementioned rewards, by "breaking” the original problem into a sequence of smaller sub-problems.

Let us now approach the above more rigorously.

Basic definitions of Dynamic programming

In the context of problem approached through the lense of Dynamic programming (dynamic pro-

gram), in discrete time t = 0,..., T, we could make the following observations:

(I) We denote x as a specific state and 2" as the set of all possible states of the program, with

x;y € 2 being the state of the dynamic program at time t.

(IT) We denote a as a specific action and &7 as the set of possible actions.
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(111)

(IV)

(V)

(VD)

(VII)

We denote the reward that is linked with a specific action a in a specific state x as r(x,a).

Moreover, the reward for terminating in state x at time T is denoted as r(x).

We define the mapping:

%= f(x,a),

which connects an action a in a specific state x with the next state £ € 2. The above

mapping is also called Plant equation of a dynamic program, where f : 2" X o/ — <.

The guiding principle behind chosing a specific action on a specific time t = 0,..., T — 1, is

called policy and is denoted as T = (714 : t =0,..., T — 1).

We evaluate how good each policy is by the sum of it rewards (cumulative rewards):
R(xo, 1) = r(x0, 10) 4+ 1r(x1, 711) + - - - + 7r(xT).

In a similar manner we could also define R(x, 1) = S,T;Tlft r(xs, 705) + r(x7).

For a cumulative reward function R(x,7r), we define the value function to be the maximum

reward:

V(x9) = max R(xo, 7).
T

In a similar manner we could also define V;(x;) = max Ry(xy, 7).
7T

Having introduced the basic "building blocks” of a dynamic program, we could now move on its

specific definition.

Definition B.0.1 (Dynamic program) Given an initial state xo, a dynamic program is the following

optimization fort =0,..,T —1:

V(xo) =max R(xg, )

s.t. Xtr1 = f(xt, 7Tt>

for m e . o
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As it was previously expressed, the main idea behind a dynamic program is the reduction of the
original problem to a sequence of simpler optimizations. Specifically, under this condition, the

optimization problem could be depicted via the Bellman equation, which is presented below.

Definition B.0.2 (Bellman equation) The optimality of a dynamic program for Vo(x) = rr(x) and

t=0,..,T—1 can be given by:

V; = max{r(x,a) + V;_1(%)},
acd

where x € 2 and £ = f(x,a). o

Diffusion Control Problems (DCP)

Generalizing accordingly the above concepts, in this context time is continuous € R, X; € R”
defines the state of the dynamic program at time f and a; € &7 defines the respective action at time

t.

Definition B.0.3 (Plant equation) Given the drift u(Xy, a;) and the diffusion o(X;,a;) processes of

X¢, the state of the dynamic program evolves according to the following dynamics:

dXt = ]/l(Xt, (lt)dt + (T(Xt, at)th,
where W; is a d-dimensional Brownian motion. The above SDE defines the Plant equation in the

context of a DCP. ¢

Furthermore, in a similar manner to the discrete case defined above, a policy 7t chooses an action
at each time f (with the only technical difference being that usually in this context, we assume that
7t; is predictable). Let & be the set of policies, the a dynamic program in the context of a DCP is

reformulated as follows:

Definition B.0.4 (Diffusion control problem) Given initial state xg, a dynamic program is the fol-

lowing optimization:

T
V(XO) = ma; R(XO, 7'[) = ]Exo [/ Bfati’t(Xt, ﬁt)dt + eiuTVT(XT) .
TES 0
The above can be restated accordingly for a minimization problem. ¢

84



Regarding the Bellman equation, as it was presented above, the corresponding form in this context is
called Hamilton-Jacobi-Bellman equation (HJB) and it yileds the necessary and sufficient conditions

for optimality of a DCP.

Definition B.0.5 (Hamilton-Jacobi-Bellman equation) The optimality of a DCP can be given by:

1
0= mzi;( re(x,a) + 0 Vi(x) + 0, Vi(x) + EUToaxth(x) —aVi(x)|,
ac.of

where 9y, dy, Oxx denote the respective first and second order patial derivatives of V. ¢

Modelling for the Merton’s problem

We shall now venture to examine the one-dimensional case of Merton’s problem, under which an
investor chooses to invest between a riskless and a risky asset. In this context, the goal is the
maximization of the expected utility of the investor’s long run consumption. In other words, we
assume that the investor could either allocate his money in a riskless investment (e.g. bank),

receiving interest r, or invest in a risky asset which is driven by the following dynamics:

dSt = St(ydt -+ (wat),

where p, 0 are constants and (W;)ic o defines the standard Brownian motion. Furthermore, under
the aforementioned modelling procedure, the wealth (K;);c# of the investor evolves according to

the following SDE

th =T (Kt — ntSt) dt + ntdSt — Ctdt ’ (Bl)
———— N~ ~—~
* Hk consumption

where x is the wealth allocated in the risky asset, xx is the wealth allocated in the risky asset, c;
is the investor’s rate of consumption at time t and 7; is the number of stocks in the risky asset at
time t. Moreover, we define 6; to be the wealth in the risky asset at time ¢.

By the above, it is clear that defines the Plant equation in this problem. Therefore, in this

context, the objective becomes:

Vi(ko) = max (kO)IE[/OOO e_ptu(ct)dt}, (B.2)

(}’lt,Cf)fz[)G(@
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where p > 0 defines the discounting factor, u(c) defines a concave function and Z(kj) defines the

set of all admissible policies. Let us now move forward to the optimization of the problem at hand.

Proposition B.0.1 The Hamilton-Jacobi-Bellman equation for the Merton’s problem can be written

as:

1
0 = max{u(c) —co,V} + max {9(;{ —1)ocV + Eazezaka} —pV +rko, V. (B.3)
Cc
¢

Proof: Initially note that (B.1)) can be equivalently written as:

dK; = (rKe + (u — 1)0s — ¢t) + O,0d W,

if we now apply Ito’s Lemma on V(K};) we get:

1
d%(KO = BKV(Kt)th + EGKKV(Kt)d[K]t =

6202
dV,(K;) = 0k V(K;) ((th + (=)0 — i) + Gtadwt) + 0k V (Kot

Substituting the above into (B.3)), while having in mind how the HJB is defined in the context of

a DCP, we arrive at the result. |

Proposition B.0.2 The optimal wealth invested in the risky asset 0%, is given by:

14
0" = — 9K o2 (u—r). (B.4)
oxkxV o
Proof: Differentiating (B.3|) w.r.t. 6 yields the desired result. n

The Merton’s problem for CRRA utility

Let us now derive (B.4) under a specific representation for the utility function called: Constant

Relative Risk Aversion (CRRA) utility function, which is defined as follows:
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1—y .

c—, if y>0,7v#1

u(c)=4 """ / (B.5)
Inc, if y=1

where 7 defines the relative risk aversion of the investor.

Remark B.0.1 [t should be noted that (B.D) takes that name since the coefficient of relative risk

aversion for the aforementioned expression is constant. Specifically, we have:

Let us now see in detail how we arrive at such an expression for R(c). Intuitevely, we could say
that there is a certain amount Xcg of a good or service for which a consumer is indifferent between
either taking xcp or taking a chance to receive more (or less). Specifically, we could say that the
above state could be depicted as: u(xcg) = E[u(x)], where xcg is denoted as Certainty Equivalent

value. We now move forward to defining the following:
(I) The Absolute Risk premium: p4 = E[x| — xcE.
(II) The Relative Risk premium: pr = pa/E[x].

Through the use of Taylor’s Theorem, note that by expanding u(x) (up to the second order term)

and u(xcg) (up to the first order term) around E[x|, we get the following approzimations:

u(x) ~ u(E[x]) +u'(E[x])(x — Elx]) + Ju (E[x])(x — E[x])?

u(xce) ~ u(E[x]) + ' (E[x]) (xce — E[x]),

taking expectations on the first expression and by the equality u(xcg) = Elu(x)], we then have:

' (E[x)) (xce — E[x]) ~ % "(E[x])E [(x - E[x))?] =
_ 1u'(E[x])
pa = E[x] — xcp ~ “3 W (EL) E[(x—E[x])?].
We define A(x) = —Z,,/((;C)) as the absolute risk aversion coefficient. In a similar manner, we have:
_ pa _ _1u'(E[x])E[x] E[(x — E[x])’]
POTER T T2 WER)  ERPE
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We define R(x) = —% as the relative risk aversion coefficient.
Having defined all the above, let us now see more intuitively what the CRRA wutility function
essentially depicts. It is easy to see that through the choice of a utility function, we could deduce
an investor’s stance on undertaking risk for a given initial wealth. Therefore, if for example we
have 1 euro at our disposal (which corresponds to a specific value for a given utility function) and
a potential investment arises which yields 1 euro with probability p or —1 euro with probability
1 —p, if we calculate the corresponding utility for this investment and compare it with our current

utility (which stems by keeping our initial wealth, without participating in this investment), we

could deduce if it is in our interest to undertake this “excess risk” or not.

An important condition on the above “simulation”, to determine if we are going to undertake the
excess Tisk or not, constitutes our initial wealth relative to the amount we stand to "win” or "lose”.
This condition would not make a difference under the CRRA wutility function if our relative winnings
or losses remain the same. In other words, under the CRRA wutility function, the decision to
participte in an investment which takes us to either 2 or O euro, when our initial wealth is 1 euro,
will have the same answer as to that for an investment which takes us to either 200 or 0 euros,

while having 100. ¢

Thus, by using (B.5)), (B.2)) becomes:

© 1=y
Vi(ko) = max E [/ eptctdt}.
(ko) 0 1

(111,¢t)10€ P

Proposition B.0.3 For the CRRA utility function, the following holds:

K=
1—7

where ¢ is a positive constant. o

V(k) =c , (B.6)

Proof: Note that for a constant multiplier A, we have:

) 1—y
V(Ak) = max E / e Pt gt
(Ako) 0 1

(ng,ct)i>0€ P
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= max
(ne,ct)i=0€P

00 11—y
o [/ e_pt(/\lct)vdt = ATV (k).
0 0 -

Thus, by setting A = k=1, we have:

k1= _ Vik k1=
VI = v =k g~ a- v,
v p

V(kk)=V(1)
|

Proposition B.0.4 The optimal amount invested in the risky asset under the CRRA utility function

is given by:

Proof: Differentiating w.r.t. k, yields: 9xV (k) = ck™7 and 9V (k) = —yck™7~1, conse-

quently:
x akv 2 o Ckil)/ 2 o k -2
0" = v’ §7 r)—iwk_y_lff §7 r)—;ff (n—7).
|

If we now want to derive the fraction of the investor’s wealth which is to be invested in the risky

asset, this easily emerges by dividing with k resulting in:
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