
National Technical University of Athens

School of Naval Architecture and Marine Engineering
Laboratory of Ship & Marine Hydrodynamics

Diploma Thesis

Fast flow prediction along airfoils operating at
transonic conditions using Machine Learning

Rekoumis Konstantinos

February, 2022

Supervisor: Assistant Prof. George Papadakis
Supervisor: Associate Prof. George Papalamprou

Committee: Professor Gregory Gregoropoulos

Abstract

This Thesis’s main focus is how we can couple Fluid Dynamics with Artificial
Intelligence. This work is not an original idea as many other scientists have
already explored this field [1][2][3], yet it is fascinating to further research
and experiment as it shows immense potential. Based on the work of Hui
et al. [1], a system of Convolutional Neural Networks will be created where
each Network would be responsible for predicting the Coefficient of Pressure
distribution for an airfoil’s two sides (top and bottom sides). The airfoil
of choice is the RAE-2822, operating under subsonic conditions close to the
Critical Mach number. This way we can also study whether the Neural
Network can predict the formation of sonic waves, phenomena with great
mathematical and physical interest because of their extremely non-linear
behavior.

Also, an interesting concept used by Hui et al. is utilizing the Signed Dis-
tance Function to colorize the input image’s pixels. Signed Distance Function
enables us to describe more complex geometry with less image resolution. It
achieves that by colorizing each pixel according to the distance information
between the pixel’s center and its nearest geometry point. That leads to
packing more information into fewer pixels by utilizing almost the entirety
of available pixels.

To train and test the Neural Networks, the RAE-2822 is randomly uni-
formly deformed for deformation percentages ∈ [−20, 20] %, with 1000 spec-
imens being used for training and 500 for testing. Each variant’s Cp distri-
bution was calculated using the CFD solver MaPFlow. Then the Cp distri-
bution’s values were extracted at specific length intervals for each side, thus
creating a file storing these values for each side. This process, along with
the creation of the SDF formatted images, constitute the data generation
process. Then this data were used to train the Neural Network.

After training the Networks, we study their accuracy in predicting the
Cp distribution of previously unknown specimens and repeat the process for
4000 Epochs. Finally, the Networks’ error convergence per Epoch history
would be studied both for the training and the testing sets. Also, the time
per Epoch data as long as the single case prediction time data would be
studied to validate the Networks’ prediction speed.

Following the verification of the Neural Networks’ accuracy, we will study
the influence of the minibatch size in the training-testing precision and speed.
Also, we will examine the Networks’ precision in predicting Cp Distribution
for airfoils out of the original training and testing range. Finally, a short

ii

and simplistic application of the trained Networks’ will be presented; a sim-
ple geometry optimizer, whose purpose is to maximize the Lift capacity by
optimizing the original RAE-2822 geometry for specific Free-flow conditions.

Acknowledgements

This Diploma Thesis has been carried out at the Laboratory of Ship and
Marine Hydrodynamics of the School of Naval Architecture and Marine En-
gineering of the National Technical University of Athens, under the Super-
vision of the Assistant Professor Mr. George Papadakis. Due to this Thesis
focus on Machine Learning in conjunction with Aerodynamics, this Thesis
was also supervised by Associate Professor Mr. George Papalambrou of the
Laboratory of Marine Engineering of the School of Naval Architecture and
Marine Engineering of the National Technical University of Athens.

First, I would like to thank Assistant Professor Mr. Papadakis for ac-
cepting my ambitious Thesis proposal and letting me carry it out under his
supervision. Also, I would like to thank him for his constant support, under-
standing, motivation, as well as his valuable knowledge and feedback during
the entirety of my Thesis.

Second, I would like to thank Associate Professor Mr. George Papalam-
brou for providing me with valuable knowledge and feedback, during the
time I spent developing the Neural Networks for this Thesis. His expertise
on the field of Machine Learning was a great motivation for me to conduct
this Thesis as I had zero knowledge of Machine Learning prior to this Thesis.

I am also grateful to Professor Mr. Gregory Gregoropoulos for evaluating
my work and being a member of my supervisors committee.

I would also like to thank Doctoral Student Mr. Dimitris Ntouras for
helping me with creating my own airfoil mesh and passing me his knowledge
on computational grid creation.

Also, I am grateful to my family, for their encouragement, support, and
understanding all those years I devoted studying and completing my Msc of
Naval Architecture and Marine Engineering. They always had faith in me,
encouraging me to pursue my dreams and ambitions.

Last but not least, I want to thank my friends for all the good times we
had together during our studies, who constantly supported me, and spent
enormous amounts of time listening to me being excited or disappointed
during my studies, and especially during my Thesis. Finally, I want to thank

i

ii

Alex for being a constant source of motivation and support, never doubting
me even when I did so myself. Also, I want to thank her for her constructive
feedback while I was writing this essay.

List of Figures

1.1 Leonardo DaVinci’s turbulence sketch 2
1.2 Images of a Hydroplane Vessel and Ship Stabilizer Fins 4

1.2a A Hydrofoil vessel during planning operation [7] 4
1.2b Ship stabilizer fin [8] 4

1.3 NACA series airfoil plots . 5
1.4 Boundary Layer over a flat plate 6
1.5 An F/A-18E Super Hornet reaches the speed of sound 8
1.6 CFD simulation of a WRC racecar 9

2.1 Forces on an airfoil [20] . 15
2.2 Different flow characteristics with respect to Mach number . . 17

2.2a Mach Number Spectrum [21] 17
2.2b Nozzle and Diffuser behavior fo Subsonic and Super-

sonic flows [21] . 17
2.3 Flow separation over an airfoil [23] 19
2.4 The formation of a shock wave during subsonic flight [24] . . . 21
2.5 The Laval nozzle and different Pressure differences [26] 22
2.6 Cp distribution of a RAE-2822 airfoil 24
2.7 Reconstruction of variables on a face (f). 30
2.8 The case of a subsonic inlet face. Note that on an inlet face

and the normal defined to point outwards, the normal to the
boundary velocity component u = V⃗ · n⃗ < 0. This means that
in reality the flow information associated to R,R− is provided
by the state defined in (a). 35

2.9 Riemann Invariants on a far-field subsonic boundary 36
2.9a Subsonic Inlet . 36
2.9b Subsonic Outlet . 36

2.10 The boundary layer’s area mesh structure 46
2.11 The active mesh structure used for the CFD simulations . . . 47

3.1 Venn Diagram of Artificial Intelligence [54] 49

iii

LIST OF FIGURES iv

3.2 A sample Multi Layer Percepetron (MLP) Network 50
3.3 Graphical Representation and Mathematical Model of an MLP

Node . 51
3.3a An MLP node . 51
3.3b Node Mathematical Model 51

3.4 Activation Functions Plots . 52
3.5 A typical Convolutional Neural Network [58] 54
3.6 Graphical representation of the convolution operation over a

two-dimensional array [53] . 56
3.7 Polynomial curves fitting over sinusoid data with random noise

[63] . 60

4.1 SDF function images . 71
4.1a An SDF function’s contour plot 71
4.1b An SDF image used for Neural Network’s input (scaled) 71

4.2 NACA-0012 airfoil bitmap image under different resolutions . 73
4.2a Image resolution: 640x360 px 73
4.2b Image resolution: 100x50 px 73

4.3 The entirety of airfoils plotted in one Figure 74
4.4 2D Signed Distance Function transformed image 75
4.5 Comparison between the different meshes’ accuracy 76
4.6 Cp divergence for each of the two faces 79

4.6a Cp difference for the top face 79
4.6b Cp difference for the bottom face 79

4.7 Cp divergence [%] at ranging iteration cycles 80
4.7a Iteration spectrum : {5000, 10000, 15000, 20000} . . . 80
4.7b Iteration spectrum : {10000, 15000, 20000, 25000} . . . 80

4.8 Project Pipeline Chart . 83

5.1 Accuracy convergence history per 1% of Epochs 85
5.2 Cp distributions of CFD simulation and Neural Net Prediction

for RAE-2822 . 86
5.3 Convergence per Epoch for Batch Size of size 50 87
5.4 Time history per Epoch of training and validation for Batch

Size of size 50 . 88
5.5 CFD execution times per airfoil case 89
5.6 Averaged MSE diagrams for each NN 90

5.6a Averaged Error Diagram for the top side NN 90
5.6b Averaged Error Diagram for the bottom side NN 90

5.7 Time per Epoch for training with different batch size 91

LIST OF FIGURES v

5.8 Accuracy of the Neural Networks for deformation rates out of
±20% used in training and validation 92

5.9 Comparison between the CFD simulation and Neural Net Pre-
diction for ±50% deformation rate 94
5.9a Deformation rate +50% 94
5.9b Deformation rate -50% 94

6.1 Cp distributions of the optimized airfoils 98
6.2 Profiles of the optimized airfoils 98

B.1 Batch Size = 100 . 105
B.1a Convergence per Epoch 105
B.1b Training and Validation per Epoch 105

B.2 Batch Size = 150 . 106
B.2a Convergence per Epoch 106
B.2b Training and Validation per Epoch 106

B.3 Batch Size = 200 . 107
B.3a Convergence per Epoch 107
B.3b Training and Validation per Epoch 107

C.1 Mesh #1 Boundary layer geometry 108
C.2 Mesh #1 . 109

C.2a Close field geometry 109
C.2b General geometry . 109

C.3 Mesh #2 . 110
C.3a Boundary layer geometry 110
C.3b General geometry . 110

C.4 Mesh created by NASA . 111
C.4a Boundary layer geometry 111
C.4b General geometry . 111

List of Tables

2.1 Backwards Difference Schemes 33

4.1 Convolutional Neural Networks’ Architecture 70
4.2 X axis points intervals . 73

5.1 Times to train the Networks for different Batch Sizes 91

6.1 Optimization Results . 97

A.1 Hardware and Software specifics of the Computational Frame-
work used in this work . 103

vi

Contents

1 Introduction 1
1.1 Introduction to the physical problem 1
1.2 Introduction to Artificial Intelligence and its implementation

in Fluid Dynamics . 10
1.3 Thesis structure . 13

2 Physical Problem 14
2.1 Flow around an airfoil . 14

2.1.1 Airfoil operation basics 14
2.1.2 Boundary Layer . 18
2.1.3 Shock Waves . 21

2.2 MaPFlow internals . 24
2.2.1 Governing equations 25
2.2.2 Spatial Discretization 29
2.2.3 Temporal Discretization 32
2.2.4 Boundary Conditions 34
2.2.5 Turbulence Modeling 38
2.2.6 Solution of the System 42
2.2.7 Deforming Grids . 43

2.3 Mesh Generation . 45

3 Artificial Intelligence 48
3.1 Mimicking the human brain 48
3.2 Activation Functions . 51
3.3 Introduction to Convolutional Neural Networks 52
3.4 Training and validation . 58

3.4.1 Back propagation algorithm 59
3.4.2 ADAM optimization algorithm 62
3.4.3 Batch Normalization 63

vii

CONTENTS viii

4 Coupling Machine Learning with Fluid Dynamics 66
4.1 Introduction to DL Algorithms in Fluid Mechanics applications 66
4.2 Software used in this Thesis 68
4.3 Convolutional Neural Network Architecture and Input Gener-

ation . 70
4.4 CFD setup . 74
4.5 Project Architecture . 81

5 Results and further experimentation 84
5.1 Initial accuracy results . 84
5.2 Batch size and Networks’ flexibility experimentation 87

5.2.1 Minibatch size investigation 88
5.2.2 Investigating Neural Network’s flexibility 91

6 Potential Applications 95
6.1 A simplistic geometry optimizer 95

7 Conclusions and Future Work 99
7.1 Conclusion . 99
7.2 Future Work . 100

A Hardware and Software specifics 103

B Convergence Characteristics and Epoch times for different
Batch Sizes 104

C Pictures of the different Mesh variants 108

Chapter 1

Introduction

1.1 Introduction to the physical problem
Understanding how nature works and then how to harness its power to create
various constructs has always been the main point of interest of engineering.
Acquiring this knowledge led to humans engineering many everyday things,
from enormous skyscrapers to tiny wireless devices. In our field of expertise,
Naval Architecture and Marine Engineering, it is crucial to understand and
calculate with precision how fluids behave. Even from ancient times, hu-
mankind showed interest in studying fluid mechanics. The most known piece
of research, from this time, on this field, was the work of Archimedes, who
investigated fluid statics, buoyancy, and formulated the famous Archimede’s
principle (eq. 1.1). Later many renowned scientists, like Isaac Newton,
Leonardo Da Vinci, Daniel Bernoulli, contributed to furthering our knowl-
edge of fluid mechanics by running many experiments, writing equations,
like Blaise Pascal’s law (eq.: 1.2), and creating various contraptions, like
Evangelista Torricelli’s barometer. Many other scientists over the years have
researched the fluids’ nature (fluid statics and dynamics), trying the find
the underlying mechanics of turbulence, viscosity, to name a few, with their
collective work being described in the Navier-Stokes equations.

F = ρg∇ [N (SI)] (1.1)

, Buoyancy force F equals to ρ the fluid’s density [kg/m3 SI] times g
gravitational acceleration [m/s2 SI] times the submerged volume ∇ [m3 SI]

(The Archimede’s Buoyancy principle)

The Navier–Stokes equations mathematically express conservation of mo-
mentum and mass for Newtonian fluids (eq. 1.3). Sometimes they are ac-

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Leonardo DaVinci’s turbulence sketch

Leonardo DaVinci has done many experiments to study the flow of fluids and
especially water and blood. This figure is his sketch of observing the creation of
eddies during turbulent flow. [4]

companied by an equation of state relating pressure, temperature, and den-
sity. They arise from applying Isaac Newton’s second law to fluid motion,
together with the assumption that the stress in the fluid is the sum of a dif-
fusing viscous term (proportional to the gradient of velocity) and a pressure
term—hence describing viscous flow. The Navier–Stokes equations are useful
because they describe the physics of many phenomena of scientific and engi-
neering interest. They are used to model the weather, ocean currents, water
flow in a pipe, airflow around a wing, and many other natural phenomena
[5][6].

∆p = ρ g ∆h (1.2)

,∆p is the hydrostatic pressure (given in pascals in the SI system), or the
difference in pressure at two points within a fluid column, due to the weight
of the fluid)
ρ is the fluid’s density in kg/m3 (SI)
g is the local acceleration in m/s2 (SI)
∆h is the height of fluid above the point of measurement, or the difference
in elevation between the two points within the fluid column (in meters).

CHAPTER 1. INTRODUCTION 3

(Blaise Pascal’s principle of transmission of fluid-pressure)

Navier-Stokes equations mathematically express what people intuitively
thought of fluids. Ship-building is one of the most ancient fields of application
of fluid mechanics, but due to the lack of extensive understanding of fluid
mechanics, ships were built based on intuition, observation, and experience.
However, the beginning of the 20th century introduced new technologies, thus
challenges to overcome. Technologies like aviation, automobiles, and civil
engineering emphasized the need to further our knowledge on how fluids
(especially air and water) work.

ρ
Du⃗

Dt
= ρg⃗ −∇p+ µ∆u⃗ (1.3)

The Navier-Stokes equation for incompressible flow where,
Du⃗
Dt

is the material derivative of the fluid’s velocity vector further analyzed
as Du⃗

Dt
= ∂u⃗

∂t
+∇u⃗,

p the pressure field,
µ the absolute or dynamic viscosity of the fluid

More and more scientists studied fluids in greater detail, focusing on dis-
covering the secrets behind viscous and inviscid flow, turbulence, sonic and
hypersonic flows, and many other aspects of fluid mechanics. This trend
helped expand the boundaries of naval architecture as well, as the engineers
transformed the empirical knowledge of the past into equations, normalized
data charts, and scientifically proven methodologies to design a ship. Famous
works in this domain are the :

1. Froude and Reynolds number equations:

Re =
Lu

ν
Reynold’s equation, (1.4)

Fn =
u√
gL

Froude’s equation (1.5)

Where, u is the fluid’s velocity, L the boundary’s significant
dimension, ν the fluid’s kinematic viscosity, and g the acceleration of

gravity

2. Froude and Hughes design methods for scaling models to actual size
vessels

3. Normalized systematic series to design ships like Formdata, Taylor Se-
ries, to name a few.

CHAPTER 1. INTRODUCTION 4

(a) A Hydrofoil vessel during plan-
ning operation [7]

(b) Ship stabilizer fin [8]

Figure 1.2: Images of a Hydroplane Vessel and Ship Stabilizer Fins

4. Normalized systematic propeller series, like Wageningen B-series.

These pieces of work made Shipbuilding a consistent, cost-efficient, and sci-
entifically proven process, deobfuscating any mysteries and inaccuracies sur-
rounding ship construction in the past.

Even though our field of interest lies within naval architecture and marine
engineering, studying airfoils and general air dynamics is quite beneficial. In
their core airfoils, and hydrofoils are more similar than different. Actually,
for some series, a foil is utilized both as hydrofoil and airfoil, for example, the
NACA series (fig.:1.3). Hydrofoils in our field are mainly used to create Lift
force, with which we can control a vessel’s movements. To be precise, the
ship’s rudder is a hydrofoil controlling Lateral rotation (Yaw), and stabilizers,
hydrofoils placed along the ship’s hull, the Longitudinal and Transverse ro-
tational movements (Pitch and Roll respectively) (fig.: 1.2b). Furthermore,
they are used in Hydrofoil Crafts to create Lift to raise the ship’s hull out of
the water and then support its weight during operation (fig.: 1.2a). Finally,
the propeller is the most complex hydrofoil a ship has, where each blade is a
complex three-dimensional hydrofoil.

However, airfoils are also a crucial part of marine engineering. Airfoils
are inside marine engines’ turbochargers, air-compressors, steam turbines,
and many other applications. In these applications, an airfoil might face
conditions even worse than in aviation; being subjected to extreme pressures
and temperatures, contrasting to being an airplane’s wing, flying through the
clear air. Nevertheless, studying an airfoil under heavy thermal and pressure
loads can be very tough compared to studying its free-flow characteristics
under various speed and temperature conditions.

Even-though, it can be easier to study the free flow of an airfoil, that does

CHAPTER 1. INTRODUCTION 5

0.00 0.25 0.50 0.75 1.00

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

NACA0012

0.00 0.25 0.50 0.75 1.00

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

NACA0021

0.00 0.25 0.50 0.75 1.00

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

NACA2410

0.00 0.25 0.50 0.75 1.00

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

NACA4421

Figure 1.3: NACA series airfoil plots
NACA series are one of the earliest developed systematic series. In Naval Architec-
ture, their symmetrical variants (like NACA0012 and NACA0021) are commonly
used as the ship’s rudder.

not eliminate the problem’s complexity whatsoever. One cannot simply apply
the Navier-Stokes equations (which are notoriously difficult to solve and have
a “mathematical bounty on their head” 1) to solve the flow problem around
an airfoil and calculate the flow field and pressure distribution. Turbulence
and viscosity introduce huge implications to any attempt to solve even the
simplest fluid mechanics problem.

Viscosity is a physical property of the fluids, which quantifies the internal
friction between the molecules of a fluid [6]. Viscosity is responsible for the
boundary layers near the boundaries with solid geometry, as the fluid gets a
gradient velocity u being 0 at the solid geometry’s boundary, and then equal
to the Free-flow velocity further from the boundary. Boundary layers are also
created when two fluids are in relative motion with each other, for example,
when the wind (air - gases are fluids as well) blows over the sea (water).
Boundary layers’ complexity can vary from very simple during laminar flow
to extremely difficult to solve during turbulent flow (fig. 1.4).

1It has not yet been proven whether smooth solutions always exist in three dimen-
sions—i.e. they are infinitely differentiable (or even just bounded) at all points in the
domain. This is called the Navier–Stokes existence and smoothness problem. The Clay
Mathematics Institute has called this one of the seven most important open problems in
mathematics and has offered a 1 million USD prize for a solution or a counterexample.[5]

CHAPTER 1. INTRODUCTION 6

Figure 1.4: Boundary Layer over a flat plate
The boundary layer’s state is heavily depended on the Raynolds number. So even
when the u∞ = cons, the boundary layer may enter a turbulent state if the plate
is sufficiently long. That emphasizes even more the need to better understand
turbulence, as rarely there wil be an application where only laminar flow in the
boundary layer will exist.(image courtesy of [9]).

On the other hand, turbulence is the manifestation of chaos in the physical
world. Many famous physicists and engineers have studied turbulence, but
still, we have no clear answer on how it works. As quoted by the renowned
physicist Richard Feynman: “Turbulence is the most important unsolved
problem in classical physics.” [10]. Turbulence is a quantity that cannot
be deterministically calculated, as time or mass, and we use statistics to
quantify it. However, turbulence is a natural phenomenon that we can predict
when will occur by using the Reynolds Number eq.: 1.4. Reynolds Number
normalizes the fluid velocity and the solid boundary’s significant -for the
problem- dimension against the fluid’s kinematic viscosity. In this way, we
can have a metric of whether the fluid’s kinetic energy is high enough to
overflow parallel flow (laminar flow) and the flow to -become turbulent, or
enter a chaotic state. While studying ships 2 and foils (both hydrofoils and
airfoils), the significant dimension is their longitudinal length. On the other
side, studying flow inside tubes of any kind, the significant dimension is their
diameter.

Focusing now on the problem at hand, during this thesis, we will focus on
calculating an airfoil’s pressure distribution during subsonic flight. A fluid
achieves sonic flow when the fluid’s velocity is equal to its speed of sound.
Speed of sound is an innate property of every material, describing the speed

2With some imagination, we can observe that a ship resembles a symmetric hydrofoil
with a variable thickness along the lateral axis)

CHAPTER 1. INTRODUCTION 7

with which sound waves travel through it and, of course, ranges from one to
another. Subsonic flows around airfoils have various interesting properties
to investigate, like shock waves. Shock waves form on the suction side of an
airfoil where the fluid’s speed locally exceeds the speed of sound.

To create Lift force, airfoils need to operate on different Pressure dis-
tributions between their two sides. They require a low and a high-pressure
side. The difference between the two sides creates a differential pressure dis-
tribution that produces a resultant force to the desired direction. However,
the Bernoulli theorem (eq.: 1.6) suggests that assuming no losses of kinetic
energy, when studying a single line of flow, a pressure drop results in a ve-
locity increase and vice versa. So on the low-pressure side, there is a local
increase of the fluid’s velocity, while on the high pressure side, there is a lo-
cal decrease. This local increase results in the fluid acquiring Mach 1 speed,
or sonic speed. However, as the fluid cannot maintain this unstable state
for very long, leading the flow to violently collapse back to subsonic speed,
creating an energy spike that dissipates through the fluid with the speed of
sound. This energy spike is perceived by humans as a loud noise, thus calling
it a shock wave. From a mathematical standpoint, shock waves are discon-
tinuous and non-linear phenomena that introduce enormous complexity, and
they are fascinating to research.

By now, one can easily understand that even though we have the tools to
study fluids, the enormous mathematical complexity of their physics handi-
caps our efforts. To combat this problem, we tend to make reasonable sim-
plifications that reduce the mathematical complexity, yet they introduce a
small error to our calculations. For example, it is common to assume that
air is an inviscid fluid 3; an approximation that introduces minimal error and
simplifies a lot the problem. Simplification enables us to reduce the complex-
ity of the Navier-Stokes equations and transform them to simpler equations
that are easier to solve.

p

ρ
+ gz +

1

2
u2 = const (1.6)

Where, u is the fluid’s velocity, p the pressure, z is the lateral distance from
the plane of reference, ρ the fluid’s density, and g the acceleration of gravity

(Bernoulli’s principle)

Another common simplification is to study airfoils with high aspect ratio
(Length
Beam

) as infinitely long beams. Doing this we can find the flow field in two
dimensions, as in an infinitely long beam the flow field would be the same at

3Air has a dynamic viscosity of 0.01803 mPa/s at 20℃ and 1 atm, while water has
1.0005 mPa/s under the same conditions

CHAPTER 1. INTRODUCTION 8

Figure 1.5: An F/A-18E Super Hornet reaches the speed of sound
As the airplane reaches the speed of sound, a sonic wave is formed. In the image it
is the white mist that surounds the aft part of the plane. (photo courtesy of Jesse
L. Dick [11])

every point along the airfoil’s Length. Then we can solve the flow problem
around only a transverse section of the airflow reducing the total calculations’
time required. However, this is not absolutely right because this way we do
not account for other significant phenomena, like the vortices which form at
the foil’s edge, or the flow where the foil is connected to main body of the
structure (being an airplane’s hull, a turbine’s rotor drum, etc.).

Also, studying an foil in two dimensions enables us to use some clever
mathematics to simplify the flow field’s calculation. Many times the airfoils’
geometry is not given by a single simple formula, like y = cos(x) or y =
ax2+bx+c, making the integration vary hard. Instead, we can substitute the
material nodes of the airfoil with a proper combination of fluid sources and
sinks to emulate the flow around the foil [6]. This way, using complex analysis
we can analytically solve the flow field around the airfoil. However, this
method works under some important approximations, like having a steady-
state laminar flow, a non viscous, non turbulent, non compressible fluid, etc.

As it becomes apparent, not all problems can be solved with approxima-
tions and geometry substitutions. When dealing with more complex prob-
lems, approximations can lead to significant inaccuracies. To deal with this
need, engineers have created pieces of software that can resolve Navier-Stokes
equations arithmetically. These programs, called Computational Fluid Dy-

CHAPTER 1. INTRODUCTION 9

Figure 1.6: CFD simulation of a WRC racecar
In the images are presented CFD simulation’s results for a WRC (World Rally
Championship) racecar. Two different images are presented; one of the pressure
distribution on the car’s surface and one of the pressure distribution at the car’s
longitudinal midsection. CFD simulations are very useful in racing industry as
small design changes can have a drastic impact on the car’s aerodynamic perfor-
mance, where engineers want to balance Downforce (or negative Lift) with Drag
to achieve optimal performance. (photos courtesy of Matthieu Horsky [12])

namics Solvers (or CFD Solvers for short), can solve the flow field around
any kind of geometry, under various conditions, and for every Newtonian
fluid, where the Navier-Stokes equations are applicable. They can accurately
model the boundary layer, vortex formation, flow field, pressure distribution,
and, of course, in both three and two dimensions. Nowadays, there are many
sophisticated CFD solvers available in the market, both open-source (free)
and proprietary (paid), with notable mentions of OpenCFD’s OpenFOAM™,
ANSYS CFX™, Siemens Digital Industries STAR-CCM+™. For this thesis,
MaPFlow is the program of choice when it comes to resolving Fluid Dynamics
simulations. MaPFlow is developed and maintained by Assistant Professor
Mr. George Papadakis in the Laboratory of Ship and Marine Hydrodynam-
ics. MaPFlow was used instead of another solution as it is developed in-house,
being easy to modify to our needs, and, of course, it is a stable and refined
piece of software.

As technology progresses new demands and thus opportunities arise. 20
years ago there was less emphasis on optimization than there is today. To-
day designing the most optimal part is the main focus of engineers, as the
agenda is pushed towards environmental protection by making everything
more efficient and harnessing nature’s renewable energy sources more effec-
tively. CFD solvers can help us design efficient airplanes, cars, ships, and
many more. However, CFD solvers have some significant deficiencies. First
and foremost, they require large amounts of computational power to resolve
even a simple simulation with acceptable accuracy. This problem is han-

CHAPTER 1. INTRODUCTION 10

dled by either using more powerful and efficient Computational Systems or
simply waiting for some inefficient machinery to resolve a simulation, con-
suming considerable amounts of energy in the meanwhile. However, even
if we push current computational systems to their limits, the need to ex-
ecute complicated simulations or optimization algorithms can be time and
energy-consuming. Advances in software development and quantum com-
puting may alleviate this problem, but for the time being, it is significant.
Further information on the subject are presented in Chapter 3.

1.2 Introduction to Artificial Intelligence and
its implementation in Fluid Dynamics

In recent years, the technological explosion of computers created fertile soil
for breakthroughs in the Artificial Intelligence domain. Artificial Intelligence
is not an old idea, however. Even in ancient Greece, many people concep-
tualized Artificial Intelligence and “materialized" it through magical beings.
For example, the ancient greek poet Hesiodos wrote in his work about Talos,
an enormous, brass human-like robot that was intelligent and was created
by the god Hephaestus to guard the island of Crete. As the centuries passed
the interest in artificial intelligence did not fade away, with many scientists
searching the synthesis of human intelligence and how a machine would be
made to embrace it. One of the most famous works in this field was the
work of English mathematician Alan Turing during the 1950s. Turing set
the foundations of computer science as we know it today and created a test
where one shall determine if they have a conversation with a machine or not;
the famous Turing test [13].

Nowadays, the immense progress of electronic computers has enabled
researchers to bring forth the AI concepts of the past and create a mini-
revolution. AI finds applications everywhere in our everyday lives, like smart
home appliances, object recognition via camera feed, etc. These applica-
tions are mainly focused on easing our everyday lives, but the underlying
framework is robust and can be applied to other applications as well. Many
researchers found interest in using AI, and more specifically Deep Learning
algorithms, to solve many fluid dynamics problems. Searching in the avail-
able bibliography one can see many contributions to the implementation of
Deep Learning in Fluid Mechanics, targeting almost the entirety of Fluid
Mechanics and Computational Fluid Mechanics. For example, there are at-
tempts to augment turbulent models with experimental data-driven models,
like the work of Wu et al. [14], Cruz et al. [15] used Neural Networks to

CHAPTER 1. INTRODUCTION 11

improve the accuracy of RANS simulations. Xiaowei et al. [3] used Convo-
lutional Neural Networks to predict the flow field around a cylinder under
various Reynolds numbers. Zhou et al. [16] used Bayesian neural Networks
to create an ice detecting system that could rapidly calculate the probability
of ice formation. Also, many researchers investigated the use of Neural Net-
works to calculate the flow field or the pressure distribution around airfoils.
Some works regarding that field are, with no particular order:

1. X. Hui et al. [1] use of Convolutional Neural Networks along with SDF
formatted images to predict the pressure distribution around an airfoil.

2. H. Chen et al. [2] use Convolutional Neural Networks to predict the
lift coefficient. Image was properly formatted to incorporate angle of
attack numbers, by altering the image shading accordingly.

3. Y. Zhang et al. [17] application of Convolutional Neural Networks to
predict lift coefficient under various Mach and angles of attack but
approached differently from H. Chen [2].

4. V. Sekar [18] use a Neural Network with mixed architecture, both Con-
volutional and Fully Connected, to predict the flow field for various
low Reynolds numbers, and varying angles of attack, targeting NACA
symmetrical airfoils.

As it becomes apparent, there is a growing interest in studying how Artificial
Intelligence can be utilized in the field of Fluid Dynamics. For the purpose of
this thesis, we will focus on the work of Hui et al. [1] as it has some aspects
that make it very interesting. For the time being, we will explore whether
their proposed solution holds any benefits over classic CFD solvers, regarding
speed and precision.

The main points of interest would be their use of Convolutional Neural
Networks and the SDF formatted image. Convolutional neural networks are
commonly used for image classification, and especially in computer vision.
A very well-known application is algorithms that can tell apart animals from
objects or humans, like in the CIFAR-10 and CIFAR-100 bibliography [19].
So it is very compelling to study how these algorithms, which are used mainly
for something completely irrelevant to the task at hand, perform at it. Also,
they use SDF formatted images to represent the airfoil’s geometry. Signed
Distance Function (or SDF for short) can be used to better represent a ge-
ometry under low image resolution (Further proof on how SDF works will
be presented in Chapter 4). Using SDF, we can both limit the data size and
simultaneously increase depiction accuracy, thus enabling our algorithm to
perceive even more complicated geometrical features.

CHAPTER 1. INTRODUCTION 12

However, the main issue they address and is quite fascinating to study
is their choice of airfoil design and Mach number. They use an RAE-2822
airfoil, and its randomly generated variants, that operate under transonic
flight, specifically in Mach = 0.734, with a relatively small angle of attack.
These conditions result in the development of one or more sonic waves along
its suction side. As mentioned earlier, sonic waves formation is an extremely
non-linear phenomenon that introduces enormous complexity to the solution
and can even jeopardize a CFD solver’s arithmetical stability. 4

First and foremost, to train the Neural Network there needs to be cre-
ated a lot of images data. For this purpose, we will use a random uniform
deformation approach to create random airfoil variants that will be used to
create lots of pressure distribution data. To have a sufficient training and
validation pool there would be created 1500 airfoils, where 1000 are used for
training, and the other 500 for testing the algorithm’s accuracy to “blind”
data. Testing to “blind” data is done to find whether the algorithm over-
fitted to training data, and therefore is inefficient against airfoils that did
not belong to them. Here we will apply a uniform deformation of each face
with a random and different, for each face, coefficient. These deformed airfoil
variants will be depicted as SDF formatted images sized 32x32 pixels.

Then, using MaPFlow their Pressure distributions will be calculated. As
we will tackle the problem in the normalized domain, where every dimension
is normalized against the foil’s length, it is better to calculate their Pressure
Coefficient distribution instead of raw Pressure. Finally, all data will be
formatted appropriately and will be used to train the neural network and
test its accuracy to unknown data.

Having proven that our Neural Networks can accurately predict the Cp
distributions of the training-testing variants’ pool we will do some experimen-
tation on the Networks. Namely, we will check the influence of minibatch
size in training-testing precision and speed, and we will search for the Net-
works’ precision boundaries by introducing them airfoils completely out of
their original training and testing spectra.

Finally, a small application will be presented, where we will explore how
the Machine Learning technology can be implemented in the design opti-
mization procedure. This is done to showcase how we can potentially utilize
Neural Networks to speed-up and ease the optimization of airfoils for use in
Aerospace, Mechanical, and Marine Engineering.

4State-of-the-art solvers, with a properly built mesh, can rarely face such problems.
However, it is still possible to happen on a more simplistic solver, like one developed for
a School assignment.

CHAPTER 1. INTRODUCTION 13

1.3 Thesis structure
This thesis is structured in a simple hierarchy of first presenting the concepts
that would be later used. Initially in Chapter 2, we will lay the required
Fluid Mechanics theoretical background, and present how MaPFlow works
and the mechanics of building a successful computational grid. In Chapter 3
we will present information about Artificial Intelligence and its components
that are utilized in this work.

Subsequently, in Chapter 4 we will show how the Artificial Intelligence
concepts presented in Chapter 2 are bound with the physical problem, pre-
senting the proposed AI framework’s structure and properties. Also, would
specify the inner workings of SDF images, the reasoning behind Mesh selec-
tion and CFD simulation iterations, the software used and developed, and
finally the project architecture.

In Chapter 5, the Neural Network results will be presented along with
the results of minor experiments conducted to test the training process de-
pendance in the mini-batch size and the Networks’ ability to extrapolate
and calculate Cp-distributions for airfoils out of the original training-testing
range.

Chapter 6 contains information about a simple application of the trained
Neural Networks in a geometry optimizer. The thesis will conclude with
Chapter 7 where this work’s conclusions are commented and some incentives
for future work are proposed.

Chapter 2

Physical Problem

2.1 Flow around an airfoil
As mentioned in the introductory chapter 1, we are interested in studying the
application of Neural Networks in the field of Fluid Dynamics. To be spe-
cific, we want to use Neural Networks to predict the Cp distribution around
an airfoil under subsonic flow close to air’s Mach Number. Under these cir-
cumstances, the flow around the airfoil is compressible and develops shock
waves. Shock waves are non-linear phenomena that introduce complexity to
the solution of the flow field. Not only are they expected to trouble the CFD
solver but the Neural Networks, as well. It is important to note that the
formation of the boundary layer imposes great difficulty in solving the flow
problem. Also, modeling the flow close to the boundary is always a difficult
task that if is not accounted properly, would probably lead to a poor solution
of the flow field.

2.1.1 Airfoil operation basics

To avoid confusion about the boundary layer and shock waves, an introduction
in airfoil operation mechanics is needed.

Airfoils operate on a very simple principle; they have two sides that op-
erate on the different pressure distributions to generate a net force in the
desired direction. Observing the figure 2.1, we can notice that airfoils op-
erate in a way that enables them to displace the fluid flow in a direction
opposite to the direction they want to produce force. Then by the Newton’s
3rd Law of Action-Reaction they produce a force with magnitude analogous
to the mass of fluid they displace and a direction opposite to the displacement
force.

14

CHAPTER 2. PHYSICAL PROBLEM 15

Figure 2.1: Forces on an airfoil [20]

Another way to look at it is using the Conservation of Mechanical Energy
assuming the flow is inviscid and apply the Bernoulli’s principle (eq.: 1.6).
Observing again figure 2.1, we can notice that the airfoil constraints the flow’s
section on its top side and widens it on the bottom side. By the conservation
of mass, as there is no mass transfer during the flow, we get:

A1 · u1 = A2 · u2 ⇒ u2 =
A1

A2

u1 (2.1)

So if :

A1 < A2 ⇒ u2 < u1 (2.2)
A1 > A2 ⇒ u2 > u1 (2.3)

Using Bernoulli’s principle we get that where the velocity is increased the
pressure is decreased and vice versa. So, the bottom side will experience a
increase in static pressure due to its flow deceleration and the top side will
experience a pressure loss due to its flow acceleration.

Integrating the pressure distribution on each face we get the force applied
by the air to each face due to Newton’s 3rd Law. Then by adding the two
forces together, the net force is obtained. As seen in figure: 2.1, the net
force is in most cases not normal to the Free-stream Velocity direction of air.
Analyzing the net force into a normal and a perpendicular to the Free-stream
Velocity direction of air components, we get two forces named Lift and Drag
respectively. Lift is the useful component that we want to maximize and Drag
is the component we want to minimize. As we want airfoils to convert fluid
flow to a normal force with respect to some direction is only normal to want
to maximize the normal component. Yet, Drag is something we cannot truly
get rid of as it is heavily connected with the airfoil’s capability to produce
Lift, but we want to keep it minimal in all cases. For the time being it should
be understood that Drag is produced due to the airfoil’s geometry and has
nothing to do with friction.

Having explored the basic mechanics of airfoils, some things become ap-
parent. First, we want our airfoil to always produce as much Lift as possible

CHAPTER 2. PHYSICAL PROBLEM 16

with as less Drag as possible. So, designing a very optimized geometry is very
important to the application. For example, if the need is to have unidirec-
tional lift production (ship or airplane rudders), we may consider designing
a symmetrical foil where we want a smooth and optimal geometry on both
sides. On the contrary, if the application dictates generating normal force
constantly in a single direction, we may want to develop an airfoil optimized
for creating the maximum normal force under very specific angles of attack1

spectrum.
Also, we notice that operating a foil on higher speeds can lead to further

pressure difference between the two sides. So, a simplistic line of thought
would be to increment the velocity to produce more Lift. However, this is
not always the case. Different fluids’ properties creates various problem to
this simplistic approximation. Viscid fluids, like water, experience immense
increase in Friction making it impossible to accelerate them beyond a certain
point. Inviscid fluids 2, like air, do not experience this sudden increase in
friction, yet they are compressible and that complicates things even more.

Air having low viscosity means we can accelerate an airfoil to enormous
speeds, ranging from close to air’s speed of sound in commercial airlines to
hypersonic flight where the speed is many times greater than the air’s speed
of sound. To get a better metric of the flow’s speed with respect to the air’s
speed of sound, we use the Mach number:

Mach =
uairfoil

α
(2.4)

,where α is the local speed of sound. Mach = 1 is obtained when the
uairfoil = α. As the Mach number increases the compressibility of air is
getting more and more significant, affecting significantly the flow. Also, when
the flow is hypersonic due to compressibility something paradoxical happens
that contradicts the incompressible inviscid Bernoulli’s principle; the flow is
accelerated when the section area increases and decelerates when the section
area decreases. This does not contradict the Conservation of Mass, as in
equation 2.1 we treated air as incompressible or operating far from the sonic
state where the compressibility is negligible and density ρ can be considered
constant without too much error. Even when approximating Mach ≤ 1 the
flow is expected to behave like for Mach << 1 considering we account for the
density change. However, for Mach ≥ 1 the flow behaves differently because
of it being compressible.

1Angle of Attack is the angle of the airfoil’s chord relative to the Free-stream Velocity
direction of air

2All commonly encountered fluids are viscid but in some cases the viscosity is almost
negligible, like in atmospheric air and other gases. However, in water, oil, etc. viscosity is
very important and is took into consideration when solving their flow field.

CHAPTER 2. PHYSICAL PROBLEM 17

(a) Mach Number Spectrum [21] (b) Nozzle and Diffuser behavior fo
Subsonic and Supersonic flows [21]

Figure 2.2: Different flow characteristics with respect to Mach number

So in figure : 2.1 the flow instead of slowing down near the top face’s
trailing edge, as it happens during Mach << 1, accelerates even more dur-
ing hypersonic operation. However, for this thesis we are not particularly
interested in pure hypersonic flow, rather transonic flow. Transonic flow
happens when Mach ∈ ≈ [0.7, 1.3] as seen is figure 2.2a. The interest with
transonic flows is that they are commonly used for aviation, gas transfer,
steam turbines, etc., and revolve around the fine balance between alternat-
ing Mach Number in the vicinity of Mach = 1, developing shock waves,
minimizing heat transfer between the gas and its environment, and other
interesting phenomena.

In this thesis, we will study the RAE-2822 operating at Mach = 0.734, an
angle of attack aa = 2.73o and free-stream Reynolds number Re = 6.5 · 106.
Under this circumstances the flow is expected to briefly enter hypersonic
state around ≈ 60% of chord length from the leading edge. Due to reasons
we will shortly explain, around this area is expected the formation of a shock
wave and of course as the Reynolds number is high enough, a complicated
Boundary Layer would form that would increase the complexity of calculating
the pressure distribution around the airfoil.

Finally, we will calculate the Pressure distribution and subsequently Lift
and Drag as non-dimensional constants. This is a standard practice in the
field of Fluid Mechanics, where we prefer to solve the flow field in a nor-
malized space and extract non-dimensional coefficients which in turn can be
accordingly scaled to a specific case using Buckingham’s Π Theorem.

Buckingham’s Π Theorem indicates that validity of the laws of physics
does not depend on a specific unit system. A statement of this theorem

CHAPTER 2. PHYSICAL PROBLEM 18

is that any physical law can be expressed as an identity involving only di-
mensionless combinations (ratios or products) of the variables linked by the
law (for example, pressure and volume are linked by Boyle’s law – they are
inversely proportional). If the dimensionless combinations’ values changed
with the systems of units, then the equation would not be an identity, and
Buckingham’s theorem would not hold [22].

2.1.2 Boundary Layer

As already mentioned in section 1, to calculate to flow field around the airfoil
we need to solve the Navier–Stokes equations. A partial differential equation,
like Navier-Stokes, requires the input of proper boundary conditions to ac-
count for the spatial boundaries of the control volume and initial conditions
to set the conditions for time t = 0. The boundary conditions for an airfoil
flow problem are:

1. U∞ = cons far-away from the airfoil body (Undisturbed flow)

2. u⃗ = u⃗w on the solid boundary (Non-slip boundary condition), where u⃗
is the fluid’s velocity vector and u⃗w the solid boundary’s velocity field

In the previous section, we analyzed how the air flow behaves far from the
solid boundary, yet to solve the Navier–Stokes equations we also need to
study the proximity of the solid boundary.

In order to apply the solid boundary’s boundary condition we have to
account for the fluid’s viscosity. The already mentioned non-slip condition
works only under the premise of a viscous flow, otherwise it is degraded to
the non-intrusion boundary condition of ∂u⃗

∂η⃗
= 0, where the η⃗ is the boundary

geometry’s normal vector. This is done as in non-viscid flows the cohesion
between the fluid’s molecules is negligible and no shear forces are developed
to restrict the fluid’s motion. However, the molecules cannot penetrate the
solid boundary.

In a viscous flow, the molecules’ cohesion is not negligible and shear
forces are developed to restrict the molecules relative motion. Viscosity is
the measure of the molecules’ cohesion. As we have a fluid that restricts
the relative motion between two of its adjacent layers by developing shear
forces, a new challenge emerges. Solving the problem in the far-field where
the fluid’s velocity is either constant or has smooth, gradual gradients we
can almost treat the flow as inviscid without great error. Yet, near the solid
boundary where the velocity gradient is steep we can not neglect the fluid’s
shear forces.

CHAPTER 2. PHYSICAL PROBLEM 19

Figure 2.3: Flow separation over an airfoil [23]

Assuming a high Reynolds number (Re >> 1) over elongated bodies, we
define the boundary layer as a thin area around the solid boundary where
the cohesive phenomena are very intense, and steep gradients of the velocity
distributions exist. Inside the area apply specially modified Navier–Stokes
equation that take into consideration the viscous stresses [6]. Introducing
the boundary layer we can split the problem in two pieces; one regarding the
far-field and one for the solid boundary, keeping into consideration that the
two fields must match in terms of u⃗, p in the boundary of the two fields.

As seen in figure : 1.4 the boundary layer constitutes of three somewhat
discrete states. First, for local Reynolds number Rex < Recritical the flow
is laminar, having a steeper velocity distribution gradient and accelerating
faster to the local average3 velocity U . When the Rex is in the vicinity of the
Recritical and specifically Rex ≥ Recritical, the flow transitions from laminar
to turbulent. And finally for Rex >> Recritical the flow is turbulent. The
Recritical is a property that is heavily depended on the geometry of the solid
boundary. For example, a flow inside a pipe has a Recritical = 2300 and a
flow over a flat plate has a Recritical = 3.2 · 105 ÷ 106. Of course these values
are not absolute as the surface smoothness plays a detrimental role in the
development of turbulent flow, but these numbers are under the assumption
of a perfectly smooth surface, an assumption that we will also make for the
current analysis.

As the Freestream Reynolds number of our scenarios is ReF = 6.5 · 106 it
is apparent that the boundary layer will be mostly turbulent. The turbulent
flow is characterized by consisting of random vortices that transfer momen-
tum between the different layers of the fluid, thus creating smoother velocity
distribution gradients in expense of losing average speed in the boundary
layer. However, this is not always a bad thing as the flow slows down and

3In laminar flow the velocity is uniform and the average is redundant. However, in
turbulent flows is better to separate the velocity into a average ‘deterministic’ component
and a random noise component induced by vorticity.

CHAPTER 2. PHYSICAL PROBLEM 20

the separation point is moved downstream, reducing the ‘dead area’ of the
flow [6]. This is commonly utilized in golf balls where the pits on their surface
induce the turbulent flow, propelling the ball further with the same amount
of energy. This can also be useful when designing airfoils as having less sep-
aration can help with gaining more Lift, by extending the area affected by
the fluid’s attached flow.

Flow separation is a phenomenon that happens naturally due to flow
mechanics that are irrelevant to having or not a turbulent flow. Considering
the flow over an airfoil, we already analyzed in the previous section how the
flow accelerates and decelerates over the two faces. As the top side of the
foil can be perceived as a nozzle and a diffuser in series, we can understand
that the flow is decelerated and the pressure is increased towards the trailing
edge. That increase in pressure the flow faces downstream causes the layer of
fluid closer to the boundary that has low kinetic energy to change direction
and move in the opposite direction [6], as seen in figure 2.3.

Separated flows can reattach to the foil’s body, forming defined, closed
vortices on the solid boundary, yet they can also never reattach creating
large vortices that are dampened due to viscous forces far from the body.
In either case, there is a loss of net force due to the fluid’s recirculation.
The separation is a phenomenon that occurs both for laminar and turbulent
boundary layers as it is more connected to the geometry of the boundary
than the Reynolds number of the flow.

To conclude, the formation of a boundary layer is a by-product of the
fluid’s viscosity and an inherent property of fluids. Separation is also a
phenomenon closely related with the basic mechanics of a fluid flow that is
in most cases inevitable. Namely, even if we design the most aerodynamic
foil in existence for a specific α, there are only a specific range of angles of
attack where no separation would form. So, when designing an airfoil we
have to take into consideration these phenomena and design the desired foil
by respecting and utilizing our knowledge of boundary layers and separation.

However, even if we have some adequate knowledge around separation
and boundary layers we are still not able to find an analytical solution for
them. For laminar flow things are considerably easier due to the flow’s excel-
lent mathematical modelling 4. Nevertheless, turbulent boundary layers and
separation in a turbulent context are extremely hard to solve analytically,
and are solved analytically by using approximations. So, we resort to highly
sophisticated models in order to get a glimpse inside turbulent boundary lay-

4Even-though we can analytically solve some special cases, there is no analytical solu-
tion for every case as solving the boundary layer flow field utilizes high order ODEs. Yet,
we can numerically solve them with relative ease.

CHAPTER 2. PHYSICAL PROBLEM 21

Figure 2.4: The formation of a shock wave during subsonic flight [24]

ers and separation by approximating the turbulent flow. Consequently, we
get somewhat accurate results only after consuming a considerable energy
amount for the CFD solvers to resolve these models.

2.1.3 Shock Waves

To understand shock waves we have to comprehend how a simple one - dimen-
sional compressible flow works. The simplest flow to analyse is the flow of a
compressible fluid through a Laval nozzle (fig.: 2.5). In order to proceed, we
have to assume that the flow through the nozzle is isentropic, ie. reversible.
This assumption requires that the flow is inviscid and no heat is transferred
outside of the control volume. This assumption is done to simplify things a
bit and not resort to complicated equations that are out of this thesis scope.
However, this assumption is not far from reality as it is a special case of the
Rayleigh and Fanno flows for compressible liquids [25].

Considering the pressure difference is sufficient, a hypersonic flow may
develop and sustain itself. However, if the pressure difference is not sufficient
for a hypersonic flow to develop, but is sufficient to reach sonic flow at the
nozzle’s neck, the flow will become shortly hypersonic and then will collapse
into subsonic. This transition happens almost instantly both with respect
to time and space. This phenomenon is called a normal shock wave which
is a special case of a shock wave. During a shock wave, the flow is chocked,
meaning that the pressure is increased and subsequently the velocity is de-
creased in a non isentropic way, thus there is no knowledge on what happens
in the shock wave only what happens before and after it.

Shock waves also emerge when studying any kind of flow that its velocity
is close to a fluid’s speed of sound (Mach = 1). Studying any kind of airfoil
or airplane that operates close to Mach = 1 will develop shock waves (see

CHAPTER 2. PHYSICAL PROBLEM 22

Figure 2.5: The Laval nozzle and different Pressure differences [26]
Denoting the fluid’s properties in the inlet of the nozzle with o and the fluid’s
properties in the outlet with e we can observe how can the pressure difference
between inlet and outlet can affect the fluid’s velocity downstream. In this figure,
we see the geometrical characteristics of the Laval nozzle, as well, how it behaves
under different po

pe
. Along with, the diagrams showing the pressure ratios and local

Mach number with respect to x (distance inside the nozzle), Liepmann and Rosko
have placed sketches that show how the flow develops what shock waves manifest.
For every pe ∈ (pc, pj), the pressure ratio is not sufficient to develop and maintain
hypersonic flow, thus leading to the creation of shock waves. The shock waves have
different geometries depending on the pressure ratio po

pe
, with them being normal

for pe ≤ pc and |pe− pc| ≤ |pe− pj |, and then becoming gradually more angular as
pe → pj . For pe = pj the flow is hypersonic and for pe > pj it develops expansion
waves.

CHAPTER 2. PHYSICAL PROBLEM 23

figure : 1.5). However, the normal shock waves introduced earlier are only a
subset of the the shock waves. Shock wave’s angle of formation depends not
only in the velocity of the fluid but the boundary’s geometry, as well. For
example, for our RAE-2822 that operates in a transonic flow it is expected
to develop at least one oblique shock wave on the low pressure side due to
the flow locally reaching hypersonic status, as already mentioned earlier.

As mentioned earlier, for a converging duct if Mach < 1 then the flow is
accelerated and for diverging duct if Mach > 1 the flow is again accelerated
further. So, considering our airfoil operates under a sufficient Mach number
that is less than 1 it can still locally develop hypersonic flow. This is some-
thing that happens inevitably due to the foil’s geometry. As the hypersonic
mode cannot be maintained because of the operation of the airfoil and the
static pressure of the surrounding air, the flow develops a shock wave and
drops to a subsonic state.

As the flow exists in the three-dimensional space, 5 no normal shock waves
are produced, instead the flow generates oblique shock waves. Oblique shock
waves are three dimensional phenomena that manifest for a three dimen-
sional flow over three dimensional object, like an airfoil (see figure : 1.5).
Nevertheless, we simplify things by studying them only on the two axis of
the airfoil’s cross section.

Shock waves are pretty interesting as they disturb the fluid’s flow and
insert non-linearities in the pressure distribution. Observing the Cp distri-
bution diagram for a RAE-2822, figure : 2.6, we can immediately notice the
effects of the shock wave on the pressure distribution. At around 50 % of
the chord’s the shock wave manifests, as the Cp coefficient suddenly expo-
nentially increases from ≈ −1.2 to ≈ −0.5. Then as the flow has decelerated
into a subsonic flow, the Cp is further increased as we approach the trailing
edge. We expected that Cp would definitely increase in the top side, princi-
pally due to flow separation, but the shock wave deprived us from even more
net area to develop Lift. Even-though, shock waves are inevitable along with
flow separation, understanding them leads to better designed airfoil’s that
can perform under this circumstances with better efficiency.

Also, it should be noted that the formation of shock waves can help in the
formation of flow separation. As already analyzed, downstream of the shock
wave the pressure spikes and the formation of separation is inevitable. In
figure : 2.4, we can see a schematic of this. So, when calculating the effect of
the shock wave, we must also account for its effect on the boundary layer. As
it can be easily understood, this makes calculations even more complicated

5Even-though our calculations do not take into consideration the airfoil’s third axis due
to having a uniform geometry along it

CHAPTER 2. PHYSICAL PROBLEM 24

0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

x - normalized

Cp

Cp distribution of RAE-2822
Bottom side
Top side

Figure 2.6: Cp distribution of a RAE-2822 airfoil

The Cp distribution of the above figure is based on experiments carried by the
Berlin TU to validate various turbulence models in order to use them with their
CFD solver [27]

and adds to the computational cost of CFD simulations.

2.2 MaPFlow internals
Calculating the flow around the airfoil is an intimidating task to address
by analytically solving the Navier-Stokes equations. All the phenomena al-
ready discussed in the previous section impose extreme difficulty in doing
so. However, using numerical analysis the Fluid Dynamics problem can be
transferred from the continuous time-space to a discrete time-space. Then
using various techniques of discretizing space to simple geometric entities we
can approximate the solution on this discrete space and apply the results
to the continuous time-space. This task can be manually done by utilizing
complex analysis [6] for low Mach numbers and special algorithms designed
to solve Navier-Stokes equations for everything more elaborate.

MaPFlow is a Computational Fluid Dynamics solver, developed by Mr.
Papadakis [28]. MaPFlow is an Eulerian CFD solver that can solve both
compressible and incompressible problems utilizing an unstructured Finite
Volume computational grid to solve the Unsteady Reynolds Averaged Navier-

CHAPTER 2. PHYSICAL PROBLEM 25

Stokes (URANS) equations.
In this segment we will present some of the concepts that make up

MaPFlow. MaPFlow is developed and maintained by Mr. Papadakis, who
also was kind enough to give me access to its documentation [28]. Thus
the following analysis is heavily based on the dense, yet excellent analysis of
MaPFlow given to me. MaPFlow has lots of components that enable it to
solve any kind of fluid dynamics problem, however here are presented only
the components that are useful in the present study.

2.2.1 Governing equations

Conservative form

Let D denote a volume of fluid and ∂D its boundary. By integrating the
Governing equations over D, the following integral form is obtained:∫

D

∂U⃗

∂t
dD +

∮
∂D

(F⃗cdS − F⃗v)dS =

∫
D

Q⃗dD (2.5)

In (2.5) U⃗ , is the vector of the Conservative Flow Variables,

U⃗ =

ρ
ρu
ρv
ρw
ρE

 (2.6)

where ρ denotes the density, (u, v, w) the three components of the velocity
field and E the total energy. F⃗c and F⃗v denote the Convective and Viscous
Fluxes respectively,

F⃗c =

ρV

ρuV + nxp
ρvV + nyp
ρwV + nzp
ρ(E + p

ρ
)V

 (2.7)

F⃗v =

0

nxτxx+ nyτxy + nzτxz
nxτyx+ nyτyy + nzτyz
nxτzx+ nyτzy + nzτzz
nxΘx + nyΘy + nzθz

 (2.8)

CHAPTER 2. PHYSICAL PROBLEM 26

where V is the contravariant velocity, V = u⃗ · n⃗ and

Θx = uτxx + vτxy + wτxz + k
∂T

∂x

Θy = uτyx + vτyy + wτyz + k
∂T

∂y

Θz = uτzx + vτzy + wτzz + k
∂T

∂z
(2.9)

The above system is completed with the equation of state for perfect gas:

p = (γ − 1)ρ

[
E − u2 + v2 + w2

2

]
(2.10)

Variable Transformations

CFD solvers are formulated using the governing equations (2.5) written in
primitive (V⃗) or characteristic (V⃗ch) variables,

V⃗ =

ρ
u
v
w
p

 (2.11)

Primitive Variables Starting from the differential form of the governing
equations,

∂U⃗

∂t
+

∂F⃗c

∂x⃗
− ∂F⃗v

∂x⃗
=

∂Q⃗

∂x⃗
(2.12)

and neglecting the viscous terms and using the chain rule:

∂U⃗

∂t
+

∂F⃗c

∂U⃗

∂U⃗

∂x⃗
=

∂Q⃗

∂x⃗

∂U⃗

∂t
+ Ac

∂U⃗

∂x⃗
=

∂Q⃗

∂x⃗
(2.13)

the Jacobian of the convective fluxes Ac = ∂F⃗c/∂U⃗ is obtained. By intro-
ducing the transformation matrix M = ∂U⃗/∂V⃗ , the system of equations is

CHAPTER 2. PHYSICAL PROBLEM 27

written in Primitive Variables form [29]:

∂U⃗

∂V⃗

∂V⃗

∂t
+ Ac

∂U⃗

∂V⃗

∂V⃗

∂t
=

∂Q⃗

∂x⃗

M
∂V⃗

∂t
+ AcM

∂V⃗

∂t
=

∂Q⃗

∂x⃗

∂V⃗

∂t
+M−1AcM

∂V⃗

∂t
= M−1∂Q⃗

∂x⃗

∂V⃗

∂t
+ Ap

∂V⃗

∂t
=

∂Q⃗v

∂x⃗
(2.14)

The transformation matrix M is defined as:

M =
∂U⃗

∂V⃗
=

1 0 0 0 0
u ρ 0 0 0
v 0 ρ 0 0
w 0 0 ρ 0

u2+v2+w2

2
ρu ρv ρw 1

γ−1

 (2.15)

and its inverse as:

M−1 =
∂V⃗

∂U⃗
=

1 0 0 0 0
−u

ρ
1
ρ

0 0 0

−v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0
γ−1
2

(u2 + v2 + w2) −u(γ − 1) −v(γ − 1) −w(γ − 1) γ − 1

(2.16)

Equation (2.14) has the same form as (2.13) but the convective flux Ja-
cobian Ap is in primitive variables.

Characteristic Variables Diagonalization of Ac (Ac = RΛL, where R,L
contain the right and left eigenvectors respectively and Λ the eigenvalues)
enables to transform (2.13) in characteristic variables and by that to decouple
the system of equations.

∂U⃗

∂t
+ L−1ΛL

∂U⃗

∂x⃗
=

∂Q⃗

∂x⃗

L
∂U⃗

∂t
+ ΛL

∂U⃗

∂x⃗
= L

∂Q⃗

∂x⃗
(2.17)

CHAPTER 2. PHYSICAL PROBLEM 28

By defining Mch ≡ ∂U⃗/∂V⃗ch = L the decoupled system is acquired:

∂V⃗ch

∂t
+ Λ

∂V⃗ch

∂x⃗
=

∂Q⃗ch

∂x⃗
(2.18)

with:

Λ =

V 0 0 0 0
0 V 0 0 0
0 0 V 0 0
0 0 0 V + c 0
0 0 0 0 V − c

 (2.19)

Depending on the variables chosen the diagonalization of the Jacobian
Matrix (Ac for conservative variables,Ap for primitive) will lead to different
eigenvectors. Of course, using the appropriate transformation matrix the
eigenvectors can be transformed to the variables desired. For example in
between primitive and characteristic variables the following hold:

Ap = M−1AcM =
(
M−1R

)
Λ (LM) = RpΛLp (2.20)

where Rp = M−1R and Lp = LM are the right and left eigenvectors in
primitive variables. Using the inverse transformation matrix enables the
transformation from primitive eigenvectors to conservative eigenvectors.

The right eigenvectors in primitive variables are :

Rp =

nx 0 nz −ny −nx

c2

ny −nz 0 nx −ny

c2

nz ny −nx 0 −nz

c2

0 nx ny nz −λ1−λ4

ρc2

0 −nx −ny −nz
λ1−λ5

ρc2

(2.21)

where n⃗ = (nx, ny, nz) is the unit normal vector, λ1 = λ2 = λ3 = V , λ4 =
V + c and λ5 = V − c.

The left eigenvectors in primitive variables are :

Lp = R−1
p =

nx ny nz
ρ

λ4−λ5

ρ
λ4−λ5

0 −nz ny
λ1−λ5

λ4−λ5
nx

λ1−λ4

λ4−λ5
nx

nz 0 −nx
λ1−λ5

λ4−λ5
ny

λ1−λ4

λ4−λ5
ny

−ny nx 0 λ1−λ5

λ4−λ5
nz

λ1−λ4

λ4−λ5
nz

0 0 0 ρc2

λ4−λ5

ρc2

λ4−λ5

(2.22)

CHAPTER 2. PHYSICAL PROBLEM 29

2.2.2 Spatial Discretization

In MaPFlow the flow variables are calculated and stored at cell centers.
Assuming that the cell volume remains unchanged:

∂

∂t

∫
D

U⃗dD = D
∂U⃗
∂t

(2.23)

where:
U⃗ =

1

D

∫
D

U⃗exactdD (2.24)

Thus equation (2.5) becomes:

∂U⃗
∂t

= − 1

D
[

∮
∂D

(F⃗c − F⃗v)dS −
∫
D

Q⃗dD] (2.25)

The surface integral is approximated using piecewise constant fluxes over the
cell faces that are calculated at their centers. For cell I,

dU⃗I

dt
= − 1

DI

[

Nf∑
m=1

(F⃗c − F⃗v)m∆Sm)− (Q⃗D)I]︸ ︷︷ ︸
RI

= − 1

DI

R⃗I (2.26)

where Nf is the number of faces the cell has and ∆Sm is the area of face "m".
The terms (F⃗c)m, (F⃗v)m represent the convective and viscous fluxes through
face m.

Reconstruction of variables In order to calculate the fluxes appearing
in the right hand side of (2.26), the values of all flow variables at the face
centers are needed. This information is absent, since all flow variables are
defined at the cell centers. Passing the flow information from the cell centers
to the faces is carried out by means of variable reconstruction.

Consider two cells I,J being in contact over face f. Variable reconstruction
on f can be defined either starting from cell I or cell J. For compressible solvers
it is assumed that across the face the flow experiences a jump defined by the
left L and right R states. The L/R specification depends on the normal to f
which directs from L to R.

CHAPTER 2. PHYSICAL PROBLEM 30

Figure 2.7: Reconstruction of variables on a face (f).

In MaPFlow, the Piecewise Linear Reconstruction (PLR) is used which
is formally second order on regular grids [30]. PLR approach implies that
the flow variables are linearly distributed over the control volume. Thus the
Left and Right reconstructed states are defined as follows:

V⃗L = V⃗I +ΨI(∇V⃗I · r⃗L) (2.27)

V⃗R = V⃗J −ΨJ(∇V⃗J · r⃗R) (2.28)
where r⃗L, r⃗R denote the distance vectors pointing from the cell centers to the
face center(Fig. 2.7) and Ψ a limiter function. In the above expression, the
gradients are calculated at the corresponding cell centers using the Green-
Gauss formulation:

∇V⃗ ≈ 1

D

∫
∂D

V⃗ n⃗dS (2.29)

which in the Cell-Centered scheme takes the form:

∇V⃗I ≈
1

D

Nf∑
J=1

1

2
(V⃗I + V⃗J)n⃗IJ∆SIJ (2.30)

Limiters Function Ψ appearing in (2.27) and (2.28) is a limiter function
that reduces the gradients ∇V⃗I ,∇V⃗J . Limiter functions are widely used in
compressible solvers in order to ensure convergence in areas with strong gra-
dients. In MaPFlow, the Venkatakrishnan limiter is used due to its good
convergence properties [31], [32].

Ψi = minj

1
∆2

[
∆2

1,max+ϵ2)∆2+2∆2
2∆1,max

∆2
1,max+2∆2

2+∆1,max∆2+ϵ2
] if ∆2 > 0

1
∆2

[
∆2

1,min+ϵ2)∆2+2∆2
2∆1,min

∆2
1,min+2∆2

2+∆1,min∆2+ϵ2
] if ∆2 < 0

1 if ∆2 = 0

(2.31)

CHAPTER 2. PHYSICAL PROBLEM 31

where
∆2 = ∇V⃗i · r⃗i (2.32)

∆1,max = V⃗max − V⃗i (2.33)

∆1,min = V⃗min − V⃗i (2.34)

V⃗max, V⃗min refer,to the maximum and minimum of V⃗ of all neighboring cells.
The parameter ϵ2 defines the amount of limiting. In practice ϵ is proportional
to the length scale of the grid (∆h),

ϵ2 = (K∆h)3 (2.35)

where K is a free parameter. Small values of K make the limiter strict
rendering the PLR first order, while K = ∞ leads to an unlimited scheme.
Typically the value of K = 5 is used.

Convective Fluxes The discretization of the convective fluxes can be
based on central, flux-vector or flux-difference schemes. Central schemes
calculate the convective fluxes across faces as the arithmetic average of the
values obtained at the two sides of the face plus an artificial dissipation term
added to enhance stability [33]. Flux-vector schemes are based on upwind-
ing which respects the direction of propagation of waves [34], [35]. Finally,
flux-difference schemes calculate convective fluxes at cell faces solving the
Riemann problem for the Left and Right states defined on the face [36].

MaPFlow uses Roe’s approximate Riemann solver [36], which is a flux-
difference scheme. Roe’s scheme consists of constructing the convective flux
as a sum of wave contributions:

(F⃗c)I+ 1
2
=

1

2
[F⃗c(V⃗R) + F⃗c(V⃗L)− |ARoe|I+ 1

2
(V⃗R − V⃗L)] (2.36)

where the Left and Right states (V⃗L, V⃗R) are calculated using (2.27) and (2.28)
respectively. The Roe matrix ARoe has the same form as the convective flux
Jacobian but instead of formally averaged values, the following Roe-averaged
variables are used:

ρ̃ =
√
ρLρR

ũ =
uL

√
ρL+uR

√
ρR√

ρL+
√
ρR

ṽ =
vL

√
ρL+vR

√
ρR√

ρL+
√
ρR

w̃ =
wL

√
ρL+wR

√
ρR√

ρL+
√
ρR

H̃ =
HL

√
ρL+HR

√
ρR√

ρL+
√
ρR

CHAPTER 2. PHYSICAL PROBLEM 32

c̃ =
√

(γ − 1)(H̃ − q̃2/2)

q̃ = ũ2 + ṽ2 + w̃2

In (2.36), |ARoe| is constructed using the absolute values of the eigenvalues
and the the right eigenvector matrix R:

|ARoe| = R−1|Λ|R (2.37)

Viscous Fluxes For the calculation of the Viscous Fluxes, variable values
and space derivatives are needed. For the face in between cells I and J,
variable values are obtained from simple averaging:

V⃗IJ =
1

2

(
V⃗I + V⃗J

)
(2.38)

while for the gradients, the Green-Gauss formula is applied using the face
averaged values V⃗IJ as defined in (2.38) but supplemented with a directional
derivative[37]:

∇V⃗IJ = ∇V⃗IJ −
[
∇V⃗IJ · t⃗IJ −

(
∂V⃗

∂l

)
IJ

]
· t⃗IJ (2.39)

where,

∇V⃗IJ =
1

2

(
∇V⃗I +∇V⃗J

)
(2.40)

is the mean gradient, (
∂V⃗

∂l

)
IJ

≈ V⃗J − V⃗I

lIJ
(2.41)

and lIJ is the distance between cell centers I and J and t⃗IJ is the unit vector
pointing from cell center I to cell center J.

2.2.3 Temporal Discretization

For the temporal discretization the method of lines is used. This means
that temporal and spatial discretization are done separately leading for every
control volume to the following equation:

d
(
DIU⃗I

)
dt

= −RI (2.42)

CHAPTER 2. PHYSICAL PROBLEM 33

In comparison to (2.25) the form of equation (2.42)is more general in the
sense that the control volume can vary with time.

Temporal discretization can be either explicit or implicit. Explicit meth-
ods use the U⃗n known solution and march in time using the corresponding
residual R⃗n to obtain solution at (t + ∆t). On the other hand the implicit
schemes use R(U⃗n+1) = R⃗n+1 to obtain the new solution and are favored
because they allow larger time-steps. Since R⃗n+1 is unknown, the following
linear approximation is used:

R⃗n+1 ≈ R⃗n +

(
∂R⃗

∂U⃗

)
n

·∆U⃗n, ∆U⃗n = U⃗n+1 − U⃗n (2.43)

In MaPFlow a finite difference scheme is used for the time derivative (see
[38]):

1

∆t

[
ϕn+1

(
DU⃗

)n+1

+ ϕn

(
DU⃗

)n
+ ϕn−1

(
DU⃗

)n−1

+ ϕn−2

(
DU⃗

)n−2

+ . . .

]
= −Rn+1

(2.44)
Depending on the choice of ϕn the corresponding backwards difference

formulae (BDF) of the temporal scheme is defined. BDF2OPT , refers to a
class of optimized, second-order, backward difference methods with an error
constant half as large as the conventional 2nd order scheme [39].

Table 2.1: Backwards Difference Schemes

order ϕn+1 ϕn ϕn−1 ϕn−1

1st 1 -1 0 0
2nd 3/2 -2 1/2 0
3rd 11/6 -3 3/2 −1/3

BDF2OPT 3/2− ϕn−2 −2 + 3ϕn−2 1/2− 3ϕn−2 −0.58/3

Steady State Computations Even when steady state simulations are
considered a pseudo-unsteady technique is followed. For steady state simu-
lations 1st order scheme is chosen to march the solution in pseudo-time until
convergence is reached. At 1st order, after linearizing Rn+1, (2.44) becomes:(

DI∆U⃗n
I

)
∆tI

= R⃗n
I +

(
∂R⃗

∂U⃗

)
I

∆U⃗n
I (2.45)

CHAPTER 2. PHYSICAL PROBLEM 34

By rearranging the terms the final system of discrete equations is obtained
in which the system matrix defines the implicit operator of the scheme:[

(D)I
∆tI

+

(
∂R⃗

∂U⃗

)
I

]
︸ ︷︷ ︸

Implicit Operator

∆U⃗n
I = −R⃗n

I (2.46)

Local Time Stepping

In order to facilitate convergence, the Local Time Step technique is used [40].
The time step for steady state calculation can be defined using the spectral
radii of each cell. For every cell, a different time step is defined by:

∆t = CFL
DI(

Λ̂c + CΛ̂v

)
I

(2.47)

where Λ̂c, Λ̂v is the sum of convective and viscous eigenvalues over all cell
faces. The convective spectral radii defined by:

(Λ̂c)I =

Nf∑
J=1

(|u⃗IJ · n⃗IJ |+ cij)∆SIJ (2.48)

and the viscous spectral radii by:

(Λ̂v)I =
1

DI

Nf∑
J=1

[max(
3

3ρIJ
,
γIJ
ρIJ

)(
µL

PrL
+

µT

PrT
)IJ(∆SIJ)

2] (2.49)

2.2.4 Boundary Conditions

In external aerodynamics the following boundary conditions are needed:

• Far-field Boundaries

• Solid wall Boundaries

• Symmetry Boundaries

• Periodic Boundaries

Before analyzing each one of the boundary condition types, it is impor-
tant to discuss the concept of dummy cells. Dummy cells are additional

CHAPTER 2. PHYSICAL PROBLEM 35

virtual cells that extend the computational domain. Their purpose is to pro-
vide assistance in calculating the flow variables at the computational domain
boundaries. Far-field and solid wall conditions are defined exactly at the
boundary face while the other two are applied at the center of the dummy
cell.

Far-field Boundaries

In the far-field, it is important to comply with the hyperbolic character of
the problem as expressed when formulated in characteristic variables. The
information provided is related to the sign of the eigenvalues of the flow state
at the far-field boundary and the associated Riemann invariants. Both must
be respected and so the far-field boundary conditions must be accordingly
defined. The approach followed is based on the characteristics of the 1D
Euler equations along the normal direction to the boundary [29], u = V⃗ · n⃗.
The sign of each of the three eigenvalue u, u+ c, u− c, defines the direction
of propagation while along the corresponding characteristic the associated
Riemann invariants R,R+, R− (see Fig. 2.8).

R± = u± 2c

γ − 1
, R = s (2.50)

remain constant.

Figure 2.8: The case of a subsonic inlet face. Note that on an inlet face and
the normal defined to point outwards, the normal to the boundary velocity
component u = V⃗ · n⃗ < 0. This means that in reality the flow information
associated to R,R− is provided by the state defined in (a).

Thus on an inflow face (and similarly for an outflow face), using the
invariants:

CHAPTER 2. PHYSICAL PROBLEM 36

fromR+ uf +
2cf
γ − 1

= uc +
2cc

γ − 1

fromR− uf −
2cf
γ − 1

= ua −
2ca
γ − 1

(2.51)

isentropic assumption sf = sa

Although the flow variables at boundary faces can be obtained as linear
combinations of these invariants, in the present formulation, the characteris-
tic equations are used instead:

dρ− 1

c2
dp = 0 along λ1 = u

du+
1

ρc
dp = 0 along λ2 = u+ c (2.52)

du− 1

ρc
dp = 0 along λ3 = u− c

(a) Subsonic Inlet (b) Subsonic Outlet

Figure 2.9: Riemann Invariants on a far-field subsonic boundary

Subsonic inlet-outlet For subsonic inflow and along the normal to the
boundary, the two characteristics propagate information from outside of the
domain while the third propagates flow information from inside of the domain
(see Fig. 2.9). The situation reverses in case of subsonic outflow where two
characteristics propagate information from inside the domain while the third
propagates information from outside into the flow domain. Note that the
three Riemann invariants, associated with the eigenvalues, are defined with
respect to the normal direction. Thus for the subsonic inlet with the normal
vector pointing outwards u− c < 0, u < 0, u + c > 0 while for the subsonic
outlet u− c < 0, u > 0, u+ c > 0.

CHAPTER 2. PHYSICAL PROBLEM 37

Based on (2.52), with the normal pointing outwards of the inlet face:

pf
ργf

=
pa
ργa

along λ1 = u, (R)

pf − pc +
1

ρaca
(uf − uc) = 0 along λ2 = u+ c, (R+) (2.53)

pf − pa −
1

ρaca
(uf − ua) = 0 along λ3 = u− c, (R−)

By combining R+ and R− pressure and velocity at the boundary are deter-
mined. Density can be retrieved from the isentropic relation. As reference
state at the inlet, that at the exterior of the domain is used. Similarly, under
the assumption that the normal direction is pointing outside of the domain,
at the outlet boundary,

pf
ργf

=
pc
ργc

along λ1 = u, (R)

pf − pc +
1

ρccc
(uf − uc) = 0 along λ2 = u+ c, (R+) (2.54)

pf − pa −
1

ρccc
(uf − ua) = 0 along λ3 = u− c, (R−)

in which the reference state is defined from inside of the computational do-
main.

Wall Boundary Conditions

Inviscid Wall When the fluid is assumed inviscid on solid boundaries,

(u⃗− u⃗g) · n⃗ = 0 (2.55)

where u⃗g denotes the grid velocity. Density and pressure are set equal to
their values at the cell center next to the wall,

pw = pI , ρw = ρI (2.56)

Viscous Wall In the general case, the fluid is viscous and the no slip wall
condition is applied,

u⃗ = u⃗g (2.57)

CHAPTER 2. PHYSICAL PROBLEM 38

Density and pressure are treated as in the inviscid case. Regardless the
assumptions made for the fluid, the convective fluxes take the form,

F⃗cwall =

0

nxpw
nypw
nzpw
pwVg

 (2.58)

where Vg = u⃗g · n⃗

2.2.5 Turbulence Modeling

In order to account for turbulence modeling, flow variables are split in their
mean:

ui = lim
T→∞

1

T

∫ t+T

t

uidt (2.59)

and fluctuating parts u′
i:

ui = ui + u′
i with u′

i = 0 but u′
iu

′
j ̸= 0 (2.60)

The above is known as Reynold’s time averaging and is suitable for sta-
tistically stationary turbulence. In compressible flows due to the fluctuation
of density, the Favre (Mass) Averaging is applied:

ũi =
1

ρ
lim
T→∞

1

T

∫ t+T

t

ρuidt (2.61)

ui = ũi + u′′
i with ρ̃ui = ρũi, ρu′′ = 0 but u′′

i ̸= 0 (2.62)

Favre’s averaging is similar to the Reynold’s one but not identical. Again,
ũ′′
i = 0 and ũ′′

i u
′′
j ̸= 0.

Application of Favre’s averaging to the governing equations, leads to a
considerably more complex system. Thus, Reynold’s averaging is only ap-
plied to density and pressure while Favre’s averaging to all other variables
[37]. Dropping the bar and the tilde sign for the averaged variables:

CHAPTER 2. PHYSICAL PROBLEM 39

∂ρ

∂t
+

∂ρui

∂xi

= 0

∂ρui

∂t
+

∂ρuiuj

∂xj

= −∂p
∂t

+
∂

∂xj

(
τij − ρũ′′

i u
′′
j

)
(2.63)

∂ρE

∂t
+

∂ρujH

∂xj

=
∂

∂xj

(
k
∂T

∂xj

− ρũ′′
jh

′′ + τ̃iju′′
i − ρũ′′

jK

)
+

∂

∂xj

[
ui

(
τij − ρũ′′

i u
′′
j

)]
where ρK = 1/2ρũ′′

i u
′′
i denotes the Turbulent Kinetic Energy.

The above system defines the compressible Reynolds-averaged Navier-
Stokes equations or the Favre-averaged Navier-Stokes equations. By intro-
ducing the Favre-Averaged Reynolds-stress tensor as:

τFij = −ρũ′′
i u

′′
j (2.64)

and by neglecting temperature variations, molecular diffusion of K and tur-
bulent transport, the equations (2.63) become:

∂ρ

∂t
+

∂ρui

∂xi

= 0

∂ρui

∂t
+

∂ρuiuj

∂xj

= −∂p
∂t

+
∂

∂xj

(
τij + τFij

)
(2.65)

∂ρE

∂t
+

∂ρujH

∂xj

=
∂

∂xj

[
ui

(
τij + τFij

)]
Eddy-Viscosity Hypothesis The turbulence models implemented in MaPFlow
are first order closures based on the Boussinesq approximation for the Reynold’s
stresses:

τFij = 2µT

(
Sij −

1

3

∂uk

∂xk

)
− 2

3
Kδij (2.66)

where:
Sij =

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.67)

and µT denotes the turbulent molecular viscosity. Depending on the specific
turbulence model, turbulent kinetic energy is either used or neglected in the
state equation,

p = (γ − 1)

[
ρE − ρ

u2 + v2 + w2

2
− ρK

]
(2.68)

CHAPTER 2. PHYSICAL PROBLEM 40

Menter k − ω SST Turbulence Model

Menter’s Shear Stress Transport (SST) turbulence model [41] is a modifi-
cation of Wilcox’s two equation Eddy-Viscosity model [42] defined for the
turbulence kinetic energy K and the specific dissipation rate ω. The trans-
port equations of k and ω are given below:

∂ρK

∂t
+

∂

∂xj

(ρKuj) = P − β⋆ρωK +
∂

∂xj

[
(µ+ σKµT)

∂K

∂xj

]
(2.69)

∂ρω

∂t
+

∂

∂xj

(ρωuj) =
γ

νT
P − β⋆ρω2 +

∂

∂xj

[
(µ+ σωµT)

∂K

∂xj

]
(2.70)

+ 2(1− F1)
ρσω2

ω

∂K

∂xj

∂ω

∂xj

where:

P = τij
∂ui

∂xj

, τij = µT

(
2Si −

2

3

∂uk

∂xk

)
− 2

3
ρKδij (2.71)

Sij is the stress tensor given by (2.67) and νT = µT/ρ. Eddy viscosity µT is
given by:

µT =
ρα1K

max(α1ω,ΩF2)
(2.72)

with Ω being the vorticity magnitude.
The constants for Menter’s SST turbulence model are a blend of inner

(1) and outer (2) constants defined by the following weighted expression:

ϕ = F1ϕ1 + (1− F1)ϕ2 (2.73)

with F1 being defined by:

F1 = tanh(arg41), arg1 = min

[
max

(√
K

β⋆ωd
,
500ν

d2ω

)
,
4ρσω2K

CDKωd2

]
(2.74)

CDkω = max

(
2ρσω2

1

ω

∂K

∂xj

∂ω

∂xj

, 10−20

)
(2.75)

F2 = tanh(arg2), arg2 = max

(
2

√
K

β⋆ωd
,
500ν

d2ω

)
(2.76)

In the above, d is the distance from the cell center to the viscous wall bound-
ary.

CHAPTER 2. PHYSICAL PROBLEM 41

The inner constants (those denoted with subscript 1) are:

γ1 =
β1

β⋆
− σω1κ

2

√
β⋆

, (2.77)

σk1 = 0.85, σω1 = 0.5, β1 = 0.075

β⋆ = 0.09, κ = 0.41, α1 = 0.31

The outer constants (those with subscript 2) are:

γ2 =
β2

β⋆
− σω2κ

2

√
β⋆

(2.78)

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828

In [43], a limiter on the production term in the K equation is recom-
mended. Hence, the production term in the K-equation is replaced by:

P = min(P, 20β⋆ρKω) (2.79)

Boundary Conditions The boundary conditions as defined in [41] are:

U∞
L

< ω∞ < 10
U∞
L

,
10−5U2

∞
ReL

< K∞ <
10−1U2

∞
ReL

(2.80)

ωwall =
6ν

β1d21
, Kwall = 0 (2.81)

where L is the approximate length of the computational domain and d1 the
distance to the next point off the wall.

Discretization

Convective terms: For the convective term first order up-winding is ap-
plied:

ρujnjUT = max(ρLVLnUTL, 0) +min(ρRVRnUTR, 0) (2.82)

in which the left and right states are the values at the cell, centers I, J and
the corresponding contravariant velocity.

UL = UI , UR = UJ , V(·)n = u⃗(·) · n⃗ (2.83)

CHAPTER 2. PHYSICAL PROBLEM 42

Diffusion terms The discretization of the diffusion terms consists of first
order central differencing. The value of the diffusion terms at a face is taken
as an arithmetic mean of the values at the center of the cells sharing the
face. The gradient that appears on that term is calculated in the same
manner as the gradients of flow variables that contribute to the governing
equation diffusion terms (2.39).

Finally the discretization of the temporal and source terms is done in the
same manner as for the governing equations.

2.2.6 Solution of the System

The final form of the discrete equations corresponds to a linear system

AX = B (2.84)

of large dimension. The above system can be either solved directly or itera-
tively. Direct solvers are accurate but have demanding memory requirements
and are not easily parallelised. On the contrary, iterative solvers might need
many iterations to converge but are suitable for parallel coding and have
limited memory requirements. Therefore in the present work, an iterative
solver was chosen. Following the work of [44], the Jacobi iterative solver was
implemented.

Noting that all but one terms in the discrete form of the equations for
cell I, [

(D)I
∆tI

+

(
∂R⃗

∂U⃗

)
I

]
∆U⃗n

I = −R⃗n
I (2.85)

refer to the cell in consideration, the following splitting

DI∆U⃗n
I +OI

∑
∆U⃗n

J = −R⃗n
I (2.86)

is introduced. In (2.86), the first term is block diagonal and is linked to cell
I, while the second contains the off diagonal contributions in (2.85) that are
linked to

(
∂R⃗

∂U⃗

)
I
. This term involves the cells that surround I.

Jacobi iterative solver Equation 2.86 can be easily solved iteratively
using the Jacobi method:

DI∆U⃗n,k+1
I = −R⃗n

I −OI

∑
∆U⃗n,k

J (2.87)

where k is the Jacobi iterations index.

CHAPTER 2. PHYSICAL PROBLEM 43

Gauss-Seidel iterative solver As an alternative, the Gauss-Seidel method
can be used. It is similar to Jacobi solver, except the fact that the off diagonal
terms are calculated using the current update for U⃗ ,

DI∆U⃗n,k+1
I = −R⃗n

I −OI

∑
∆U⃗n,k+1

L −OI

∑
∆U⃗n,k

J (2.88)

where UL concerns the cell values that have been updated in k+1 iteration.
The performance of the Gauss-Seidel method strongly depends on the

type of the matrix A in (2.84). If A is banded, the matrix can be split in an
Upper and Lower part and thus Gauss-Seidel becomes:

DI∆U⃗n,k+1
I = −R⃗n

I −OI

∑
∆U⃗n,k+1

L −OI

∑
∆U⃗n,k

R (2.89)

However if the sparsity of A is substantial, the Gauss-Seidel solver has the
same convergence properties as the Jacobi method [45].

In case the grid is structured, the matrix is indeed banded and the Gauss-
Seidel solver will behave well. On the contrary, if an unstructured grid is used,
because the band width of the matrix depends on the cell numbering, good
performance is directly linked to proper renumbering. In this respect the Re-
verse Cuthill-Mckee (RCM) reordering scheme [45] substantially reduces the
band-width and therefore the Gauss-Seidel methods outperforms the Jacobi
solver.

It is important to note here that in a parallel environment even if Gauss-
Seidel iterative solver is used the update ∆Un

J must remain in the k iteration
if UJ is a multi-block ghost cell. The reason behind this constraint is to
ensure that the solution will be continuous across the blocks at all times.

2.2.7 Deforming Grids

Often the grid must deform, as in the case of a deformable trailing edge
flap [46] or fluid-structure interaction. In such cases, on one hand the grid
deformation must ensure that the grid lines do not overlap and that the
change of the cell volume is taken into account.

For grid deformation, the work by Zhao [47] was followed. The idea in
Zhao’s scheme is to propagate the displacements of the solid boundaries into
the grid without changing the far-field boundary while keeping the same grid
topology. This is carried out at nodal level as follows:

d⃗r(node) = f(node)d⃗r(nodewall) (2.90)

where d⃗r is the displacement of the any grid node, d⃗r(nodewall) is the dis-
placement of a node on the solid boundary and f is the propagation function.

CHAPTER 2. PHYSICAL PROBLEM 44

For a two-dimensional problem:

f(x) =
ly2(x)

lx2(x) + ly2(y)
(2.91)

lx(x) =
1− exp(−d(x)/dmax)

(e− 1)/e

ly(x) =
1− exp(1− d(x)/dmax)

(e− 1)/e
(2.92)

where d(x), is the distance of the node to the nearest solid node and dmax is
the maximum distance of all nodes from the solid boundary.

Grid deformation will render the cell volume D(t) time dependent. Thomas
and Lombard [48] proposed the so called Geometric Conservation Law (GCL)

d

dt

∫
D(t)

dD =

∮
∂D(t)

V⃗g · n⃗dS (2.93)

The principle of GCL is that a uniform flow solution must remain unchanged
regardless of the grid motion.

Various numerical implementations of the GCL are found in the literature
(e.g [49]). In the present work the implementation in [50] is adopted, which
consists of adding a source term to the original equations. Starting from the
integral form of the equations and assuming volume averaged approximation,

d

dt
(U⃗D) +R = 0 (2.94)

it follows that
dU⃗

dt
D +

dD

dt
U⃗ +R = 0 (2.95)

So by introducing (2.93),

dU⃗

dt
D +R = −U⃗

∮
∂D(t)

V⃗g · n⃗dS (2.96)

and applying (2.44), the following discrete formulation is obtained,

1

∆t

[
ϕn+1U⃗

n+1 + ϕnU⃗
n + ϕn−1U⃗

n−1 + ϕn−2U⃗
n−2 + . . .

]
·Dn+1 = −Rn+1−U⃗

∮
∂D(t)

V⃗g·n⃗dS
(2.97)

It is noted that for rigid body motions
∮
∂D(t)

V⃗g · n⃗dS ≈ 0.

CHAPTER 2. PHYSICAL PROBLEM 45

2.3 Mesh Generation
MaPFlow requires a computational grid (also called mesh) to solve the URANS
equations on to. The mesh can either be two or three dimensional depending
on the task at hand. For example, studying an airfoil does not require solv-
ing the problem in the three dimensions as the geometry is the same along
the one out of the three axis and the problem can be simplified in two di-
mensions. On the other hand, studying the water’s interaction with a ship’s
propeller is a problem that cannot be simplified to two dimensions. Contrast
to an airplane’s airfoil, a propeller’s blade often has variable geometry along
all of its axis, disabling us from further simplifying the problem. So a mesh
can either be a computer surface or volume which describes the relationship
between the target geometry and the control volume. In the current study, a
2-D mesh was developed to study the air flow around the RAE-2822 airfoil.

Creating a mesh is not an easy process as there are many thing to take into
consideration, like the formation of the boundary layer, having enough cells to
minimize arithmetic diffusion, refining the mesh where is needed to account
for the wake, etc. Thus it becomes apparent that creating a successful is
an elaborate process that prerequisites having a deeper understanding of the
problem’s physics and the arithmetic characteristics of the solver of choice.
As already mentioned in the previous section, MaPFlow is an Eulerian solver
that tackles the fluid simulations using an Eulerian frame of reference. That
means that in each node of the mesh the fluid’s properties are calculated
with respect to a fixed location. Also, being an Finite Volume Solver means
that the computational grid constitutes of smaller entities or sub-volumes in
which the fluid’s properties are stored while the simulation takes place.

These arguments imply that we need to construct the mesh with regard
to physical phenomena that manifest around certain areas of the control
volume. Areas like the proximity of the solid boundary or the area of the
wake manifestation are filled with intricate phenomena that require greater
grid resolution to yield an accurate result. On the other hand, the Far-field
area where the flow has its free-stream characteristics is easier to resolve
without requiring too much resolution. However, in the current study, we
face another problem, as well. As the main objective is to train a Neural
Network, there is a need to create lots of airfoil variants that would need to
be resolved in a reasonable time frame. So, having a high resolution grid is not
the optimal solution contrast to the general case as more detail requires more
time to resolve the simulation. Considering the above-mentioned arguments,
it becomes apparent that the created mesh needs special treatment. Of
course, it is mandatory to have very refined mesh close to the solid boundary
and the wake formation area yet some resolution “discounts” will happen in

CHAPTER 2. PHYSICAL PROBLEM 46

Figure 2.10: The boundary layer’s area mesh structure

the Far-field cells.
First things first, the basic principles of Mesh generation must be pre-

sented. In meshes used by Eulerian CFD solvers, it is mandatory to capture
a significant part of the Far-field to have a successful simulation. It is com-
mon practice to create a mesh with a far-field length of around 5-10 times
the airfoil’s chord length to accurately approximate the free-stream charac-
teristics of the flow far from the solid boundary. In this area, there is no need
to have a very refined mesh and a moderate resolution is used. However, as
we get closer to the solid boundary there is a gradual refinement of the mesh
to create a smooth transition from the far-field to the solid boundary.

On the other hand, the mesh needs to be refined close to the boundary.
Having high resolution near the boundary is mandatory to capture the vis-
cous boundary layer that forms. In case of not having fine enough mesh, the
solution will probably experience numerical instabilities and will generally
converge to a significantly high error. So, near the boundary layer the mesh
is very refined, as seen in figure : 2.10, and also is structured compared to
the entirety of the mesh which is unstructured. The structured cells have an
almost rectangular shape, with one side being adjacent to the boundary and
the other being normal to the boundary. Using a structured array of cells
enables us to capture the longitudinal behavior of the flow better than hav-
ing an unstructured one. Also, the cell’s normal side is gradually declining
while the boundary is approached from the far-field to better capture the
development of the viscous boundary layer and analyze the flow field close to
the solid boundary. Another area of interest is the airfoil’s wake where the
disturbed from the solid boundary flow develops. There we can observe the

CHAPTER 2. PHYSICAL PROBLEM 47

Figure 2.11: The active mesh structure used for the CFD simulations

formation of large or smaller vortices whose formation is explicitly connected
to the flow around the airfoil.

All the above mentioned parameters must be taken into consideration
while creating a mesh. However, there is no absolute way to build a mesh
that would guarantee absolutely zero error. Building a mesh is a rigorous
process that requires extensive knowledge of the physical phenomena, lots of
trial and error, and of course understanding of how the solver of choice works.
As will later be discussed in greater detail, in section 4.4, many computational
grids were created to use for the simulation of the RAE-2822 with various
degrees of precision. Even-though in theory all the meshes created complied
with the above mentioned criteria, relatively small differences between them
had significant implications in the accuracy of the results. Also, the meshes
created by experts in the field with years of experience had better accuracy,
while retaining the same number of cells with the one created by the author,
who has the least experience on the field. This proves that creating the
geometrical input of a CFD solver is no easy task, consuming great amounts
of time and requiring extensive knowledge on the field.

Chapter 3

Artificial Intelligence

3.1 Mimicking the human brain
Artificial Intelligence is intelligence demonstrated by a machine. As de-

fined Artificial Intelligence, for short AI, is pretty vaguely defined, thus hint-
ing the fact that can be utilized in a great spectrum of applications, ranging
from defeating the world chess champion Garry Kasparov in 1997 [51] to sug-
gesting the next video Youtube shall play or even identifying a person, while
analyzing video footage from CCTV. Such a great variety of applications
may suggest that AI is more than meets the eye.

Artificial Intelligence can manifest in different ways, generalized in 2 cat-
egories: Problems defined by strict rules (ie. a game of Chess) and abstract
problems (ie. hand-written numbers classification [52]). Problems dictated
by strict rules can be run and programmed quite efficiently on a Computer
as they involve strict logic and predetermined patterns [53]. On the other
side, abstract problems are not that easy to solve by imposing pure predeter-
mined logic as abstraction introduces incredible complexion. For example,
the MNIST problem is a common problem associated with AI, where the
computer needs to determine what number a person wrote. This problem is
quite intimidating to solve with hard-coded logic. However, for us humans
it is pretty easy to determine what a hand-drawn digit is, as our brains can
recognize the patterns that imply what number a digit corresponds to. That
is why AI researchers focused their efforts on mimicking the human brain.
More specifically they wanted to mimic the brain’s learning capability, its
ability to learn and memorize new patterns by presented to raw data [53].

The process of training a machine to recognize certain patterns based on
given raw data is called Machine Learning, or ML for short. ML is a subset
of AI, as shown in figure 3.1, as it enables a machine to "understand" more

48

CHAPTER 3. ARTIFICIAL INTELLIGENCE 49

Figure 3.1: Venn Diagram of Artificial Intelligence [54]

complex and abstract problems. ML as mentioned above relies on data to
learn and enable itself to recognize patterns and solve abstract problems, yet
giving a machine "raw data" to "crunch" is not that easy. Many Machine
Learning algorithms rely on proper data structure to be able to learn. Using
again the MNIST paradigm mentioned above, presenting an image to a com-
puter or an matrix with "random" values as perceived by a computer, holds
no valuable information for a "simplistic" ML algorithm. On the contrary,
an ML algorithm presented with properly structured data can learn and eval-
uate a result. To overcome this problem, researchers started mimicking not
only the human brain’s capacity to learn but its structure too.

Deep Learning is the process where the machine can build complex con-
cepts out of simpler concepts [53]. Of course, Deep Learning is a part of ML
and AI, as shown in figure 3.1, as it is the AI method better suited to observe
the true abstraction of the natural world. To achieve that feat, Deep Learn-
ing Algorithms utilize arithmetic models that resemble the human brain’s
structure. The cornerstone example of Deep Learning models, as claimed by
[53], is the feedforward deep network of multilayer percepetron (MLP).
The MLP is nothing more than a mathematical function that maps certain
input to some output values. Specifically, the MLP consists of simple func-
tions that are chained together in various formats, thus adding the required
complexity to the function as shown in figure 3.2. These simple functions

CHAPTER 3. ARTIFICIAL INTELLIGENCE 50

Figure 3.2: A sample Multi Layer Percepetron (MLP) Network

are graphically represented as multiple input-output nodes, excluding the
input layer nodes that are the graphical representation of data entry, which
are structured in layers. The layers are organized as input layer → hid-
den layer(s) → output layer, where the mathematical operations are
performed on the hidden layer(s). Each node, as seen in 3.3a, 3.2, is a multi-
argument function that translates its input into a single output that can be
then transmitted to the next layer’s nodes or be the Neural Network’s final
result.

To be specific, a proper mathematical model of the above-mentioned ar-
guments shall be presented. Let x be the input vector of the node and y the
output value. As is already well established, a node is a function that takes
as an argument a vector and outputs a single value. To achieve that, let w
be the weight matrix of the node and b the bias of the node. The weight
matrix is multiplied with the input vector x, and then the bias is added to
give the output value y (equations 3.3b).

CHAPTER 3. ARTIFICIAL INTELLIGENCE 51

y = wi ∗ x+ bi

Node#i

(a) An MLP node

y = w ∗ xT + b,

x = [x1, x2, ..., xN] input vector
w = [w1, w2, ..., wN] weight vector

(b) Node Mathematical Model

Figure 3.3: Graphical Representation and Mathematical Model of an MLP
Node

3.2 Activation Functions
Nevertheless, not all problems can be approximated by linear models. To
solve this problem, often are used non-linear functions that alter the input in
a non-linear fashion (eq. 3.1). These Activation Functions filter the node’s
input, thus normalizing its output or excluding extreme input values that
can jeopardize the Neural Network’s stability.

y = w ∗ F (xT) + b, (3.1)

where F(x) is the activation function

There are several Activation Functions used in Neural Network Algorithms,
and figure 3.4 presents the graphs of three of the most common ones. The
figure 3.4 contains the graphs of these three activation functions, along with
the graph of the default linear behavior for reference. Observing the different
functions one can observe how they alter the node’s response to input. For
example, Rectified Linear Unit (relu for short) has the same behavior as the
linear response for positive values while excluding any negative values. On
the other hand, both sigmoid and the Hyperbolic Tangent (tanh) functions
normalize the input values around (−1, 1), while having slightly different
behavior.

y = max(0, x), Rectified Linear Unit relu(x) (3.2)

y =
1

1 + e−x
, Sigmoid function σ(x) (3.3)

y =
e2x − 1

e2x + 1
, Hyperbolic Tangent tanh(x) (3.4)

CHAPTER 3. ARTIFICIAL INTELLIGENCE 52

Relu is very useful, having all the benefits of the linear activation function
(ie. easy to differentiate and optimize the network) while filtering the input,
excluding extreme values. The standard Relu is described by the equation 3.2
and during this thesis whenever the name relu is referred, this is the equation
that would refer to. This is done to avoid further confusion later, excluding
the other Relu variants that are commonly used, for example, Leaky Relu
[55] and Parametric Relu [56], to name a few.

−10 −5 0 5 10
−10

−5

0

5

10

linear model

−10 −5 0 5 10
0.00

0.25

0.50

0.75

1.00

σ sigmoid

−10 −5 0 5 10
0.0

2.5

5.0

7.5

10.0

relu

−10 −5 0 5 10
−1.0

−0.5

0.0

0.5

1.0

tanh

Figure 3.4: Activation Functions Plots

3.3 Introduction to Convolutional Neural Net-
works

Feed Forward Neural Networks, like MLP, have some deficiencies when it
comes to dealing with two-dimensional input, like images. As seen in section
3.1, their input is a one-dimensional array of arithmetic data. On the other
hand, an image is a file that consists of a three-dimensional array, which
when read by an appropriate computer program is translated as different
colored pixels on the end user’s screen, print out, etc.

CHAPTER 3. ARTIFICIAL INTELLIGENCE 53

Natively, the computer cannot store colors as they manifest in nature,
but it can relate colors on a visual output device to numerical values by com-
posing them out of the three or more basic colors. The industry-standard
formats when it comes to storing and projecting images to a computer screen
are the RGB (Red Green Blue) and RGBA formats, where the latter includes
an alpha channel to model transparency 1. A screen’s pixel element consists
of 3 subelements that each corresponds to one of the three colors. By varying
these elements’ luminosity amplitude we create the illusion of the pixel having
a color, providing we look at the screen from far enough. These amplitudes
for each pixel’s chromatic subelements are these RGB values, commonly rang-
ing from 0 to 255 2. So an image is nothing more than a two-dimensional
array that each cell holds an RGB triplet. However, for Machine Learning
applications it is more convenient to think of it as a three-dimensional array,
which holds three two-dimensional arrays one for each color value.

After the previous analysis, it becomes apparent that a Feed-Forward Net
can not take image data natively, without some formatting. For example, we
could arrange the pixel cells in order and then flatten the RGB values like

[RGB1, RGB2, ..., RGBN]− > [Red1, Green1, Blue1, ..., RedN , GreenN , BlueN]

, where N is the number of total pixels N = heightpx ∗ lengthpx .
Another attempt to solve this problem is to use binary colormaps (grayscale

color spaces). Then the problem is simplified a lot as there is no need to in-
put image data anymore. Using a grayscale image, the pixels have only
alternating luminosity ranging from 0 to 255 rather than 3 distinct color
channels. Thus, the image data can be normalized as values ranging from 0
to 1, in a single one dimensional array. So the multi-dimensional input data
can be simplified to one dimensional. Some applications of grayscale images
with Feed-Forward Networks are some of the classic MNIST’s examples [52],
fashion MNIST’s examples [57], Sekar et al. work [18], and many more.

However, there is an even greater problem looming. For example, during
image classification, we are especially interested in the patterns that are form-
ing on the image and what underlying information they carry. To prepare
for MLP’s input, the image data are flattened, and locally forming patterns

1The alpha channel has no physical manifestation on a physical screen. It is something
handled internally by the graphics card to generate overlap of different shaders and colorize
the screen properly

2This range occurs as the common format for images is RGB 8bit. This protocol
dictates that each chromatic value is represented by a variable with a size of 8 bits or
1 byte in computer memory. As there is no interest for negative numbers this variable
is an Unsigned Integer of size 8 bit, with minimum value 0 and maximum value 255. (
8 bits− > 28 = 256 combinations)

CHAPTER 3. ARTIFICIAL INTELLIGENCE 54

Figure 3.5: A typical Convolutional Neural Network [58]

can no longer be observed as the algorithm ruins any information carried by
the image’s dimensionality. This problem is even more apparent in colored
images as there the color information is significant as well.

Contrary to the single dimensionality of MLPs exist the Convolutional
Neural Networks (CNN). Drawing inspiration from the mammalian brain’s
visual system researchers were inspired to create CNNs [53]. The convolution
operation can be described as follows:

s(t) =

∫
f(x)w(t− x)dx = (f ⋆ w)(t) (3.5)

,where f(x) is a function in which the filter w is applied.
In Machine Learning function f(x) is often referred as input while w(t−

x) is often referred as kernel. Also it is common to work with two-dimensional
data, like images. So if we use a two-dimensional image I as our input, and
a two-dimensional kernel K, the convolutional operation becomes as follows
:

S(i, j) = (I ⋆ K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (3.6)

A very accurate visual representation of how Convolution works is dis-
played in the figure: 3.6.

CNN’s main parameters are Kernel size, stride, padding, and Channels.
Kernel size is the kernel’s dimensions. Channels are the number of kernels
that scan the same input, extracting an equivalent number of new layers.

CHAPTER 3. ARTIFICIAL INTELLIGENCE 55

Stride defines how many columns of data does the kernel travels after each
scan. Padding describes how many pseudo points are inserted at the edges
of each layer’s Channel input. Padding is useful as it can eliminate the
shrinkage that occurs when the kernel is very big relative to the input data.
CNNs usually consist of many Convolutional Layers with varying parameters.
For example, even though it is common to have a Kernel with constant size,
the number of Channels, the stride, and padding may vary.

CNNs have some significant benefits to MLPs regarding how they handle
two(or more3)-dimensional data. First, as already mentioned, they are built
for having two-dimensional input. Convolution filters the current layer’s
information to the next, like MLPs, but, unlike MLPs, respects the position
of the extracted information. As the kernel serially scans the input data, each
scan passes to the next layer the extracted information at a specific discrete
position. This way there is always reference to the layer above and the data
do not mix, retaining any information about any locally formed patterns
providing the kernel size is appropriate. Kernel size is a very important
parameter to take into consideration while designing a CNN; too small and
the kernel cannot extract any pattern information; too big and the kernel
will not capture any detail whatsoever.

However, preserving the pattern’s exact location and amplitude may not
be always beneficial. There are cases were we are interested in knowing
that a feature exist more than its precise location, like facial recognition
where knowing that an eye exists in the image is more important than to
know exactly where it is located. Also, we must not neglect the cases where
an image may have some form of noise in it. This can be very common
especially in classification algorithms that analyze image data from live feed,
like CCTV footage where rain, sun, dust on the lens, and many more can
introduce unwanted noise to the image. For mainly these reasons and many
more, it is common after each convolutional layer a pooling layer to follow.

Pooling operation is vary similar to convolution as a kernel scan the in-
put data and creates new data, but the kernel works completely different.
In pooling layers the kernel is a function that transform the data in a pre-
determined way contrast to the trainable convolutional kernel. The most
common kernel architectures are the max pooling and the average pooling.
In max pooling the kernel is a maximum function, where from the input data
scanned by the kernel only their maximum value is chosen and passed to the

3There is some research done towards the three-dimensional CNNs. However, during
this thesis, we will not concern about them. For further reading here are some interesting
papers: [59][60][61]

CHAPTER 3. ARTIFICIAL INTELLIGENCE 56

Figure 3.6: Graphical representation of the convolution operation over a two-
dimensional array [53]

CHAPTER 3. ARTIFICIAL INTELLIGENCE 57

next layer (eq.: 3.7).

S(i, j) = max
m, n

(I(i−m, j − n)) (3.7)

On the other hand, in average pooling the kernel is an averaging func-
tion, where from the input data scanned by the kernel their average value is
calculated and passed to the next layer (eq.: 3.8).

S(i, j) =
1

n ∗m
∑
m

∑
n

I(i−m, j − n) (3.8)

These pooling layers are most of the times quintessential to a CNN’s
architecture as the statistical benefits they bring are extremely significant.
Filtering random noise or focusing the algorithm on what is important are
significant in our efforts to maximize the Networks accuracy. They allow
the Network to focus on the actual features we want to focus by either dis-
regarding features that irrelevant or generalizing the input data. This way
the statistical efficiency of the Network is augmented and because each Con-
volutional Layer is smaller there are less parameters to train boosting the
training performance and cutting down training times. Yet sometimes fil-
tering by pooling is not desirable as we want to preserve features’ positional
information and/ or noise is not relevant. For example, during this thesis, as
we have absolute control over the image data, thus we have no undesirable
noise in the data. Also, we have a keen interest in positional information as
we study how small positional deformation affects the final result. So, we will
not use any kind of pooling on this thesis CNNs. However, in order to boost
the Networks’ statistical efficiency we will use Batch Normalization [62], as
proposed by Hui et al.[1], a technique that would be discussed in detail in
section 3.4.3.

Finally, as seen in figure : 3.5, after the convolutional layers we usually
use one or more Fully Connected Layers to flatten the data processed by the
Convolutional Layers and output them. One may wonder if we use Activation
Functions on the Convolutional Layers to filter the kernels output. As far as
the author is concerned, there is no such thing as the kernel is responsible
for capturing features that are then filtered by pooling layers. So there is no
need to use an activation function. However, in the Fully Connected Layers
that flatten and output data is common to use an Activation Function. For
example, in figure : 3.5, the author has chosen that the Fully Connected
Layers that flatten the data shall use the ReLU Activation Function.

CHAPTER 3. ARTIFICIAL INTELLIGENCE 58

3.4 Training and validation
Creating a Neural Network consist of two sequential process; first the Net-
work’s architecture is conceptualized and then the network is trained to fit
the data. Training enables the Network to adapt to the dataset and pre-
dict whatever result is desired from the dataset. In parallel to training is
useful to monitor the Network’s error rate when faced with unknown to the
training dataset items. By doing so it is possible to discern whether the Net-
work has over-fitted the training dataset. Over-fitting the training dataset
is something extremely harmful for the Network’s performance as it renders
the Network useless when presented to unknown data that are in the vicinity
of the training dataset. A nice example of this problem is presented in figure
3.7. This piece is out of the work of Bishop [63], where the problem of over-
fitting is demonstrated as fitting simple polynomial curves over some points
that have some form of noise in them. Having a not sufficiently complex
architecture for the task at hand can lead to incredible error as seen in the
cases M = 0 and M = 1. On the other hand, having a more intricate system
than the problem requires can be problematic, as well. As seen in case M = 9,
a more intricate system can develop an over-fitting behavior, thus not being
able to capture the problem’s general behavior but a very specific subset of
it. This analysis fully justifies the critical importance of testing the Network
while it trains.

Testing is a pretty straightforward process; the algorithm is presented to
new data and its performance is measured by a method to quantify error,
like Mean Squared Error. On the other hand, training -which is arguably of
outmost importance- is not. Similar to testing, in training we are interested
in finding the algorithms error, as well. However, in training the error is used
to optimize the algorithm compared to just observing its behavior. Training a
Neural Network, involves around finding the algorithm’s error and minimize
it. To do so, we have to calculate the error and subsequently update the
Network’s parameters to minimize the error with an appropriate method.
In order to converge to an error’s local minimum, we have to repeat the
training process, as defined above, many times and monitor both the training
error rate and the testing error rate, observing whether the Network fitted
and/or over-fitted the training data. In literature every training iteration
is commonly referred to as an Epoch and that convention will be followed
during this study as well.

Using Linear Algebra along with Variational Analysis, we can define the
functions that are involved in training a Neural Network. First, the algo-
rithm’s error is modelled with respect to the algorithm’s parameters. Let
x = {x1, x2, ..., xN} be the input vector of the training dataset, f(x;w) the

CHAPTER 3. ARTIFICIAL INTELLIGENCE 59

Neural Network’s function, and ŷ = {ŷ1, ŷ2, ..., ŷN} the target values of the
training dataset. As it is convenient for later, let the Error function of the
algorithm with respect to the algorithms parameters be :

E(w) =
1

N

N∑
n=1

(f(xn;w)− ŷn)
2 (3.9)

This equation describes the Mean Squared Error equation with respect to
the algorithm’s parameters. MSE is not the only available function available
as modelling the Network’s error depends on the Network’s task, namely
cross-entropy is better for classic classification problems . MSE is arguably
a good error function and finds many applications in Deep Learning due to
its good statistical behavior [53].

Having defined the algorithm’s error function, the next step is to minimize
the error function. Variational Analysis describes that to find a function
minima (or maxima) we must study its first order gradient. Moreover, local
minima (maxima and saddle points) are located wherever the ∇E(w) = 0.
So, the next steps are to find a way to calculate the Error Function’s gradient
and then optimize the Neural Network algorithm to reduce the error and
reach a local minima.

3.4.1 Back propagation algorithm

Calculating the Error function’s gradients can not be done analytically as
the Function is data driven and is based on the very complex model’s func-
tion. To solve this problem the Back Propagation algorithm is used. The
Back Propagation algorithm relies on the concept of using the Network’s Er-
ror, that is calculated on the output layer, to calculate the Error Function’s
gradient with respect to all the Network’s parameters [63].

Let E(w) be the Error Function, or E(w) =
∑

nEn(w) where En(w) is
the error of a single data term. For many error functions commonly used in
practice the above separation of the different error terms is totally valid. So,
working with the error function for a single data term we can calculate its
gradient as :

∂En(w)

∂wji

=
∂En(w)

∂αj

∂αj

∂wji

(3.10)

Using the chain rule we can split the Error function’s partial derivative
with respect to the the parameters in the partial derivative of the Error
Function with respect to the summed input αj of unit j multiplied with the

CHAPTER 3. ARTIFICIAL INTELLIGENCE 60

Figure 3.7: Polynomial curves fitting over sinusoid data with random noise
[63]
Here is presented the fitting of different order polynomial curves to sinusoid data
with some random noise. This is a simplification of a Neural Network architecture
that makes crystal clear how overfitting the training dataset works. Let (x, y) be
points of a cartesian grid where y = sin(x) +N(x;β), with N(x;β) be a Random
Function of x and a Random Variable β. As seen the noise is taken as such as its
magnitude only slightly shifts the y coordinate and does not radically change the
data points’ sinusoid behavior. Treating these data as completely random data, we
want to approximate the underlying x to y transform using polynomial curves. As
already known polynomials are functions where different powers of x are weighted
and then added together, or y =

∑M
i=0 aix

i. It is easily observable that choosing
a low order polynomial is not able to capture the dataset behavior. On the other
hand, using a very high order polynomial can lead to overfitting the dataset as seen
in case of M=9.

CHAPTER 3. ARTIFICIAL INTELLIGENCE 61

partial derivative of the αj with respect to the parameter wji. Notating,

δj ≡
∂En(w)

∂αj

(3.11)

and knowing that,

αj =
∑
i

wjizi ⇒
∂αj

∂wji

= zi (3.12)

where the zi is the activated (or not) input of the layer j . Then substituting
these equations to the equation (3.10) we get:

∂En(w)

∂wji

= δjzi (3.13)

One useful property that arises from doing the above separation using
chain rule is that the partial derivative of the Error Function with respect
to the node’s input can be further analyzed using the chain rule using the
partial derivatives of its previous nodes. For example, to calculate the Error
Function’s derivative in node i we can use the information from its next node
k and do the following:

δj ≡
∂En(w)

∂αj

=
∑
k

∂En(w)

∂αk

∂αk

∂αj

=
∑
k

∂αk

∂αj

δk (3.14)

However as :

αk =
∑
k

wjk zj ⇒ dαk =
∑
k

wjk dzj (3.15)

Also considering that unit j may not be linear activated and has an Activation
Function, where:

zj = f(αj)⇒ dzj = f ′(αj)dαj (3.16)

The equation 3.15 becomes :

dαk =
∑
k

wjk f ′(αj) dαj (3.17)

Then using equation 3.17 :

δj ≡
∂En(w)

∂αj

= f ′(αj)
∑
k

wjkδk (3.18)

CHAPTER 3. ARTIFICIAL INTELLIGENCE 62

So using the Error of the last layers (with respect to the information vector
during feedforward operation) we can calculate the error of their previous
layer. The equation 3.18 can be generalized for the other units of layer j
and of course for different layers as well. This way by evaluating the network
during feedforward operation we can get half the data needed to calculate the
Error Function’s gradient and by calculating a layer’s error with starting from
the output and working backwards we calculate all the required errors. This
makes the Back Propagation algorithm a very efficient method to evaluate
the Error’s parameter gradient.

3.4.2 ADAM optimization algorithm

Having calculated the Error Function’s gradient with respect to the model’s
parameters we can finally optimize the model to reduce error. Probably the
most common method to optimize a network is Gradient Descent. Gradient
Descent is fairly simple to implement as it uses the Error gradient to update
the Network’s parameters as seen in equation 3.19.

w(τ+1) = w(τ) − η∇E(x;w(τ)) (3.19)

where η is the learning rate; η > 0 is a constant arbitrarily small that is
chosen by the designer of the network. Usually it is chosen in the region of
≈ 10−5 to improve the stability of the training process.

Even-though, the Gradient Descent is simple and straightforward to im-
plement has its fair share of deficiencies. First and foremost, Gradient De-
scent requires the entire input dataset to be evaluated to calculate the Error’s
gradient making it a vary inefficient method. Even if, the input dataset are
split into smaller batches to optimize the training times there are still prob-
lems using Gradient Descent. Also, the Gradient Descent is heavily reliant
on the initial parameters of the Network (which are in most cases randomly
selected) to achieve good convergence to low error. This behavior leads to
training a single model loads of times in order to get a sufficiently low er-
ror model. These and many other problems lead the use of other training
algorithms instead of Gradient Descent.

Hui et al. [1] proposed that the ADAM optimization algorithm [64] is
used to train the Networks. ADAM is an algorithm for first-order gradient-
based optimization of stochastic objective functions, based on estimates of
lower-order moments. ADAM is based on the concept of combining the
advantages of two other popular methods for optimization of Neural Networks
and more specifically AdaGrad [65] and RMSProp [66]. ADAM uses first-
order gradients that can be efficiently computed with the Back Propagation

CHAPTER 3. ARTIFICIAL INTELLIGENCE 63

algorithm requiring relatively less memory than other methods. In order to
train the model ADAM uses 1st and 2nd order moments estimates, that are
further corrected with adaptive learning rates.

The ADAM algorithm similar to other optimization algorithms requires
some hyper-parameters to be given by the user, namely the learning step-size
α and the exponential decay rates for the moment estimates β1, β2 ∈ [0, 1).
For the current case, Hui et al. proposed that α = 0.0001 and β1, β2 would
be left with their default values which Kingma and Ba [64] propose as β1 =
0.9, β2 = 0.999.

Algorithm 1 ADAM optimization algorithm. Here the g2t symbolizes the
element-wise multiplication gt ⊙ gt. Also, βt

1 and βt
2 are raised to the power

of t. By default ϵ = 10−8.
m0 ← 0 (Initialization of 1st order moment)
u0 ← 0 (Initialization of 2nd order moment)
t← 0 (Initialization of timestep)
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) (Gradient calculation)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
ut ← β2 · ut−1 + (1− β2) · g2t (Update biased second moment estimate)
m̂t ← mt/(1− βt

1) (Compute first bias-corrected moment estimate)
ût ← ut/(1− βt

2) (Compute second bias-corrected moment estimate)
θt ← θt−1 − α · m̂t/(

√
ût + ϵ) (Update parameters)

end while
return θt (Resulting parameters)

ADAM, contrast to Gradient Descent, utilizes a model of iterative calcula-
tions to converge on the new set of parameters. By continuously evaluating
the moments of the Errors’s gradient distribution the model’s parameters
converge to an optimal set that minimizes the Error Function. As the mo-
ments are initialized as vectors of zeros they are biased towards zero. This
bias forces the convergence of the gradient towards zero faster than other
methods although in some cases this is not desirable in some cases. This is
where the bias correction comes into place.

3.4.3 Batch Normalization

A common problem that Neural Networks face during training is the Internal
Covariate Shift. Internal Covariate Shift happens as the training alters each

CHAPTER 3. ARTIFICIAL INTELLIGENCE 64

layer’s parameters distribution. These changes are fed forwards in the Neural
Network as changes in the previous nodes affect the input of their next ones.
This effect can have negative effects in the training stability and efficiency of
the optimization algorithm as it becomes significantly more difficult to train
the latter layers. To generalize these problems, Ioffe and Szegedy define In-
ternal Covariate Shift as the change in the distribution of network activations
due to the change in network parameters during training [62].

As Ioffe and Szegedy suggest, the Internal Covariate Shift may move the
layers’ output into the saturated regime of the non-linearity and eventually
slow down convergence. They claim that using Rectified Linear Units for Ac-
tivation, careful Initialization of the model’s parameters and small learning
rates can help reduce the Internal Covariate Shift effects. However, in many
cases this is not applicable as the model’s complexity or wanting to explore
different hyper-parameters of the model could limit the effectiveness of said
measures. This justifies the need to create a method in order to eliminate
the effects of Internal Covariate Shift without limiting the features of our
Network. Also, splitting the optimizer’s performance from the model archi-
tecture is quite significant as training becomes more independent and can
better preserve the model’s nonlinear characteristics.

Ioffe and Szegedy [62] propose a technique to eliminate Internal Covariate
Shift named Batch Normalization. Batch Normalization promises reduction
of the Internal Covariate Shift by normalizing the layers input by fixing the
means and variances of layers inputs. They also claim that Batch Normal-
ization has beneficial effects on the gradient flow through the Network as
it reduces the dependence of gradients on the scale of their parameters or
their initial values. Finally, they suggest that Batch Normalization enables
the Network to use saturating nonlinearities as the Batch Normalization pre-
vents the Network from getting stuck in saturated modes during training.

Batch Normalization is a very straightforward method to implement on a
Neural Network as it is based for normalizing data. Let x = [x1, x2, ..., xN] the
input vector to a layer and B a minibatch of size M that contains various
instances of x, let B = [x1,x2, ...,xM]. Batch Normalization requires the
calculation of the mean and variance for each xn over the entirety of the
minibatch based on equations : 3.20, 3.21.

µn =
1

M

M∑
m=1

xn,m (3.20)

σ2
n =

1

M

M∑
m=1

(xn,m − µn)
2 (3.21)

After obtaining the two moments using equation 3.22 the input vector

CHAPTER 3. ARTIFICIAL INTELLIGENCE 65

parameters are normalized.

x̂n =
x− µn√
σ2
n + ϵ

(3.22)

Just normalizing the batch based on the current batch data without respect
to the entirety of the dataset is not desirable as it can probably change the
layer’s identity and restrict the model’s capability of extracting any useful
data. In order to eliminate that problem, the normalized x̂n data are scaled
and shifted according to equation 3.23:

ŷn = γn · x̂n + βn (3.23)

In equation 3.23 the γn and the βn are trainable parameters, that are trained
to restore the representation power of the network.

According to Ioffe and Szegedy [62], Batch Normalization have applicable
effects on a Neural Network that are concurrent with the expected theoretical
ones. Their testing bench was a Convolutional Neural Network trained with
Stochastic Gradient Descent using momentum. The Network was trained on
the ImageNet classification task [67], having only one fully connected layer
to output the class of the recognized object. Namely, they increased learn-
ing rate, removed Dropout, accelerated the learning rate decay, and many
other things that can harm the training stability and efficiency. However,
their model with Batch Normalization was able to outshine their standard
benchmark model with the above mentioned features. More specifically, they
noticed that even increasing the learning rate helped with accelerate the
training times and then increase the model’s accuracy. To conclude, Batch
Normalization is a helpful mechanism to implement in the Neural Network
as it can increase the training efficiency of the model.

Hui et al. [1] proposed the use of a Batch Normalization layer with ReLU
instead of a pooling layer between the convolutional layers of the model.
Studying the Ioffe and Szegedy study on Batch Normalization shines light on
the reasons that made them choose Batch Normalization instead of Pooling.
The promise of achieving better performance while maintaining the airfoil
family’s statistical properties sounds very promising. Sadly enough they did
not check whether the same performance would be achieved by using pool-
ing layers between convolutions, thus studying whether Batch Normalization
has any advantages in our case over standard pooling. As the purpose of
this thesis revolves around studying the ability of the Neural Network to
approximate the physical phenomena rather than studying the properties of
the Neural Network architecture, we will not study it as well.

Chapter 4

Coupling Machine Learning with
Fluid Dynamics

4.1 Introduction to DL Algorithms in Fluid Me-
chanics applications

Having presented the physical problem and the Deep Learning basics will
now commence introducing how to combine these two concepts to solve the
fluid mechanics problem at hand. Using AI to solve Fluid Dynamics problems
may sound odd at first, but there are numerous advantages in doing so. After
all, that is the main point of this Diploma Thesis; how to use Convolutional
Neural Networks to solve Fluid mechanics problems, focusing on estimating
the Cp distribution around an airfoil during sonic flight.

As mentioned in Chapter 1, running CFD simulations requires significant
CPU time, fast and efficient CFD programs, and large amounts of energy. An
engineer’s main task is to design an item that is optimal in one or more ways.
That said, an airfoil’s (or a hydrofoil’s) designing procedure can be a difficult
task, as finding an immediate optimal solution is, most of the time, very dif-
ficult. Nature, as analyzed before, is composed of various intricate systems
that coexist in harmony, adding even more complexity to studying any natu-
ral phenomenon. For example, an airplane designed for hypersonic flight may
experience issues during subsonic flight, even for short time amounts, because
the airflow is significantly different during the two states. Problems like that
impose the need to run multiple tests to confirm that a given design may
optimally operate at service conditions while maintaining a semi-optimal or
(at least) acceptable behavior throughout its spectrum of operation. How-
ever, even if the engineers “cut corners" and focus solely on designing a very
efficient airfoil for a single mode of operation, there is no guarantee that it

66

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 67

would be an easier task.
To get some solid data on how an airfoil would behave, engineers use

sophisticated CFD programs that most of the time require an expert to op-
erate them to return valid data. A CFD program is nothing more than an
arithmetic solver that needs properly defined input to account for the air-
foil’s geometry, boundary conditions, turbulence modeling, fluid characteris-
tics, and many other things. Nowadays, most contemporary state-of-the-art
solvers come with integrated, sophisticated solutions to improve simulation
parameter input, yet building a proper airfoil mesh remains a craft. To fur-
ther illustrate this point, during this thesis, a total of 4 different meshes were
used (one created by the author, two by the supervising Professor Mr. Pa-
padakis, and one from a NASA paper [68]), either of them yielding different
results, with varying degrees of accuracy -(fig. 4.5)-. All that work was for a
single prototype design. Imagine now having to repeat that process over and
over again for a plethora of slightly different designs. It becomes apparent
that it can be a long and tedious process that hinders the optimization pro-
cess. From my standpoint, there are no tools that can automatically build
reliable meshes for use in CFD solvers without requiring an expert’s touch.
Instead, there are efforts to build tools that can automatically deform an
existing mesh to account for relatively small geometrical differences between
two different geometries [28].

However, solving the geometry input problem does not alleviate a CFD
solver’s principal deficiency. No matter how much geometrical input is opti-
mized, there is no way to eliminate the fact that a CFD simulation remains
a computationally heavy task. Although a mesh is built with the minimum
possible elements to yield valid results, a CFD simulation will still require
significant time and energy to compute. On the contrary, AI algorithms tend
to be very fast and energy-efficient while running on the same piece of hard-
ware as a CFD solver or solving another equally complex problem. Also, it is
significant to emphasize that speed does not handicap the algorithm’s accu-
racy, as in most cases, the algorithm’s precision is at least adequate for the
task at hand. Testament to these arguments is the following time, precision
data gathered from different sources:

1. Hui et al.’s Convolutional Neural Network average prediction time per
airfoil case 180 ms (Intel CPU) with mean Test Accuracy ≈ 96% [1]

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 68

2. Open AI 5 managed to defeat Dota 2’s 1 world reigning team (Team
OG). Each timestep, or AI operation, was ≈ 133 ms, with the AI man-
aging very complex input data and evaluating an even more complex
set of actions [70].

Finally, as described in section 3.3, DL algorithms do not require a highly
sophisticated input, unlike CFD solvers where the mesh is crucial to the
simulation. A DL algorithm that approximates the solution of a CFD solver
can take a plethora of different inputs. Some of them are:

1. Binary bitmap image where the value 1 corresponds to the airfoil’s solid
boundary and 0 to everything else [18].

2. Bitmap image that takes into consideration the Freestream Mach Num-
ber to colorize pixels while having a binary approach to describing the
airfoil’s boundary [17].

3. Bitmap image using Signed Distance Function (SDF) to colorize the
image. This method can meticulously capture the airfoil’s geometry
and input precise data in the Neural Network while using a relatively
small amount of pixels [1].

All these methods utilize Convolutional NN to handle input and some
Fully Connected Layers to handle the output. Also, advanced MLPs are
potential AI algorithms to solve this problem, the difference being shifting
the input data to numerical rather than image data. However, studies show
that, for this application, MLPs tend to be slower to train and less accurate
than CNNs while being slightly faster to yield results [1]. In this thesis,
following Hui et al. [1] paper, a CNN is used to estimate Cp data using an
SDF image as input.

4.2 Software used in this Thesis
In this project, several programming languages were used. The neural net-
work was developed using the Julia programming language, and its Flux
module [71][72]. Julia language is an up-and-coming programming language

1Dota 2 is a multiplayer online battle arena (MOBA) videogame where 2 teams con-
sisting of 5 players each, clash to destroy their enemies’ base, whilst defending their own.
Each player controls a character, with specific abilities and deficiencies, from a pool of
121 unique characters. Making things even more complicated, each team has partial vi-
sion of the map, fighting to establish better map control while depriving the enemy team
information of their location at all times.[69]

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 69

that uses just-in-time (JIT) compilation and Dynamic typing. Julia is a
high-level programming language similar to Python, yet due to JIT compi-
lation, it can perform like C or C++. Also, Julia has native support for the
NVIDIA™ GPUs, as it is written to facilitate easy use of their programming
language CUDA, making Julia every efficient to write GPU executed code.
Julia has a growing support for ATI™ GPUs as well. That said, Julia is very
efficient in prototyping and writing easy-to-understand code without having
any significant drawbacks in execution speed, making her very appealing to
develop neural networks. Both Julia and Flux are actively maintained and
developed by a large group of experts in Data science, computer science, and
Academics, who are interested in the fields of computer science and data
analysis. Among the many organizations that use and develop Julia and its
packages are MIT, University of Cambridge, Microsoft, NASA, and many
more, proving that it is a robust platform to develop software. Python was
the other main language used to develop this project.

Python is a staple when it comes to General programming as it is both
lightweight and efficient. Being a high-level programming language makes her
very appealing to write small pieces of code that do various things ranging
from simple text manipulation to creating large data sets. In this project,
Python was used to randomly deform the RAE-2822 airfoil and generate the
respective SDF images off its variants, using the popular and very useful
NumPy [73], SciPy [74], and MatPlotLib [75] packages. Also, was utilized
in various little scripts that did small tasks like manipulating the output
of MaPFlow to create properly structured data files for the neural network,
monitoring the computer resources use, during the CFD simulations, and
sorting the airfoil variants’ points for later use in automatically deforming
the computational grid (Mesh).

Another programming language that was used during this project is For-
tran98. MaPFlow and some other auxiliary programs, that found use during
this project, are developed in Fortran98. Fortran98 is a robust and extremely
fast, scientifically oriented programming language that may be old but is still
relevant in the field of computer simulations because of its immense speed
and efficiency. Last but not least, as the entire project ran on Ubuntu Linux,
Bourne-Again-Shell (BASH) scripting language was used to make all the
pieces of code work together in harmony. All the codes developed for this
thesis are available on GitHub for everyone who wants to study them.

https://github.com/KonstantinosRekoumis/CFD_CNN_Thesis

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 70

4.3 Convolutional Neural Network Architecture
and Input Generation

Based on Hui et al.’s work [1], a five-layer Convolutional Neural Network is
used. This architecture is supposed to have the best accuracy during their
experimentation with different Neural Networks solving this problem. This
architecture consists of five convolutional layers, a Fully Connected Layer,
and, of course, the output layer. The kernel size was constantly 5x5 across
all convolutional layers, while the padding, stride, and layer size changed
between the layers according to the values on table 4.1. This combination
of layers resulted in having a fully connected layer with 14400 nodes, which
connect to the 49 output layer nodes. Between each convolution layer there
exist a Batch Normalization layer, with ReLU as the activation function.
Then two identical models were used to calculate the Cp distributions, one
for the top and one for the bottom airfoil face. These models were trained
and validated separately from each other, but they used the same input at
all times.

In order to cut down training and testing times, the data and functions
were translated to GPU related data and functions using Julia’s CUDA.jl
package [76]. The GPU is better suited for this kind of applications due to
having more arithmetic units than a standard CPU. GPUs are dealing with
image, video encoding and streaming that most of the time involve large
matrix manipulation and linear algebra, compared to the general purpose
load of a CPU which except from arithmetical operations deals with boolean
operations, data registry manipulation, data IO, etc. That is why GPUs are
loaded with a lot arithmetical operations units that work in parallel making
them ideal for Neural Network Applications as the Neural Networks at their
basis are consisted of enormous matrices.

Table 4.1: Convolutional Neural Networks’ Architecture

Convolutional Neural Network Architecture
input layer padding stride kernel output Channels

Layer 1 32 2 1 5x5 32 20
Layer 2 32 1 1 5x5 30 40
Layer 3 30 1 1 5x5 28 60
Layer 4 28 1 1 5x5 26 80
Layer 5 26 1 2 5x5 12 100

Fully Connected Layer Nodes 14400
Output Layer Nodes 49

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 71

0.0 0.2 0.4 0.6 0.8 1.0
0.15

0.10

0.05

0.00

0.05

0.10

0.15

-0.060
-0.050-0.040

-0.030
-0.020 -0.010

0.000

0.010

0.020

0.030

0.040

0.050

0.060
0.070

0.080

0.090

0.090

0.100

0.100

0.110 0.110

0.1
10 0.110

0.120 0.120

0.
12

0

0.120

0.130 0.130

0.
13

0 0.130

0.140 0.140

0.
14

0 0.140

0.150

0.1
50

0.150

0.06

0.03

0.00

0.03

0.06

0.09

0.12

0.15

0.18

(a) An SDF function’s contour plot

Here are visible the iso-value curves
and the airfoil’s boundary with black stars.

(b) An SDF image used
for Neural Network’s input
(scaled)

Figure 4.1: SDF function images

Mean Squared Error (MSE) was used for acquiring a measure of the al-
gorithm’s precision. ADAM algorithm was used for the algorithm’s training,
with learning rate of 10−4. All of the above parameters and choice of activa-
tion function, optimizer,layer structure and so on, was after the model of Hui
et al.. However, there were no data for each convolutional layer structure,
namely the stride and padding values, and so there may be a divergence from
the paper. They were discovered through trial and error, by comparing the
resulting nodes of the fully connected layer to what their paper had proposed
(14400) as a criteria of similarity between the two architectures.

Also, as proposed by Hui et al., the network was trained and tested
using minibatch training. Minibatch training is a technique were the bulk of
input data is split into smaller pieces (batches) before they are input to the
Neural Network for training or validation. The minibatch training technique
is relied on the observation that it is better to use less data and get a rougher
estimate of the algorithm’s gradient in less time than using all of the data at
once and get a precise result. The modern training algorithms’ converging
characteristics are such that see no additional benefit from a precise result
of the Network’s gradient as even with less data they are rapidly converging
[53]. As a result, we can use less data per batch, then update the Network
through the optimizer function and repeat the process for the rest of the
batches per epoch. This way we cut down total training time as each batch
that is x times smaller than the total bulk takes x times less time to compute,
while updating x times more the Network. For the task at hand, a minibatch

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 72

of 50 variants size was chosen, similar to the Hui et al. paper.
SDF formatted images, as in the Hui et al. paper, were used to inform the

network of the airfoil’s geometry. SDF formatted images are very convenient
for modeling an airfoil’s geometry as it can capture more detail in fewer
pixels than a simple image. Signed Distance Function is used in many ways
in the field of computer graphics, some examples being font scaling [77], and
in Computer Vision to get a better perception of depth [78].

Let ω be a subset of a metric space, X, with metric, d then the signed
distance function, f , is defined by:

f(x) =

{
d(x, ∂Ω) if x ∈ Ω

−d(x, ∂Ω) if x ∈ Ωc
(4.1)

where ∂Ω denotes the boundary of Ω. For any x ∈ Ω:

d(x, ∂Ω) := inf
y∈∂Ω

d(x, y)

where inf denotes infimum.

Signed Distance Function (SDF) creates a surface, using a definite grid,
where every node is assigned a value equal to the minimum distance of the
node to the geometry’s boundary. From a rather simplistic geometric stand-
point, in every grid point, we calculate a circle tangent to the geometry’s
boundary, as shown in figure 4.4, whose radius is ultimately SDF’s value at
that node. Then whether the node is inside or outside the geometry, this
distance is signed positive or negative. For this thesis, a node inside the
airfoil will have a negative distance from the boundary, and a node outside
the airfoil will have a positive. Using SDF, we can create an image packed
with detail by simply mapping a color value to a distance value. Unlike SDF
images, when pixels are colored with a single color to digitize geometry, it can
result in accuracy loss the lower the image resolution is. In low-resolution
images, it is common to get "staircase" edges as there are not enough pixels
to create the illusion of curves, as seen in fig. 4.2. As a CNN perceives images
in a human-like manner, using a low-resolution binary image can handicap
the algorithm’s precision, having less geometric information. A solution is
to raise the image’s resolution, thus increasing image data volume, resulting
in higher execution and training times. On the other hand, using SDF, ev-
ery pixel gets geometric information, thus utilizing the entirety of the image
data available. This solution increases the entire process’s accuracy while
reducing data size, and execution, training times.

As said earlier, two different networks are trained; one responsible for
predicting the Cp distribution on the top side and one for the bottom. So

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 73

(a) Image resolution: 640x360 px (b) Image resolution: 100x50 px

Figure 4.2: NACA-0012 airfoil bitmap image under different resolutions
Here are presented two different images that depict the same airfoil under different
resolutions. The right image has a resolution of 100x50 px, while the left image
640x360 px. In the right image the staircase phenomenon is more intense as there
are less pixels to capture the geometrical information compared to the right image.
That has an effect the image to seem blurry and deprive as from further significant
details.

Table 4.2: X axis points intervals

Start Position End Position (not included) Interval
0 0.1 0.01

0.1 0.4 0.05
0.4 0.6 0.01
0.6 0.95 0.05
0.95 1 0.01
1 - 0.01

there are required 49 Cp values for the top and 49 for the bottom face. Hui
et al. suggested a point sequence to get these values, presented in table: 4.2.
Studying the point interval they suggest, we notice that it is more dense at
the leading and trailing edges, as well as the area x ∈ [0.4, 0.6], as this the
area were a sonic wave will probably form. MaPFlow provides the entire
flow field and the Cp distribution at all mesh’s boundary faces’ centroids.
So a Python script (Cp_export.py) was used to search for the points of
interest among all of the available and then appropriately format them to
simple text files. Then the neural network was able to load per variant both
its image and the Cp values for its respective face. As mentioned earlier,
the airfoil variants are products of random homogeneous deformation of the
father airfoil. Firstly, are extracted two spline curves from the RAE-2822,
one for the upper and one for the bottom side. Then we can extract from
the spline its knot-vector and have access to the original lines control nodes.

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 74

Figure 4.3: The entirety of airfoils plotted in one Figure

By multiplying the control nodes y- coordinate with the random deformation
rate, we can shift all the control points up or down and deform the airfoil on
the lateral axis. This approach may seem simplistic over other deformation
algorithms, yet it is sufficient for this project.

The random coefficients used to deform the control points of the spline
were generated using the Latin Hypercube Sampling algorithm, as Hui et al.
suggested. Latin hypercube sampling algorithm is a random number gener-
ation algorithm that produces random values with respect to the previously
generated values, thus minimizing overlaps [79]. In other words, by using the
LHS algorithm, we minimize the risk of creating lots of duplicate airfoil vari-
ants. Another measure towards this direction is the use of different sampling
procedures for the top and the bottom face. This is done to further increase
randomness in the data generation process, improving the dataset’s efficiency
in training the network. Finally, it was chosen to have a relatively moderate
spectrum of deformation ranging from -20% to 20% lateral deformation.

After the creation of the father airfoil variants, the following steps were
to create a data file with the variant’s coordinates as long as their respective
SDF images. This procedure took place along with the generation of the
Database structure, both for the training and the testing set.

4.4 CFD setup
Acquiring the Cp distribution data for each airfoil was the next problem at
hand. Firstly a mesh of the father foil, RAE-2822, was created. As already
mentioned in section 4.1 this is a tedious process that required expertise to
yield a sufficient mesh. Many attempts were done to create a mesh, resulting

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 75

Figure 4.4: 2D Signed Distance Function transformed image
This is an image visualizing a discrete 2D signed distance field (SDF). The
original represented shape (duck) is in grey. Crosses mark pixel centers where
SDF values are stored. From each pixel center a circles expands that visual-
izes the value stored at the pixel. The radius represents magnitude, the color
represents a sign (red is negative, inside the shape; green is positive, outside
the shape). Unification of green areas define the set of points that are defi-
nitely outside the shape, the unification of red ones define the set of points
that are definitely inside. We can see that although the SDF representation
may be better than classical raster image at this resolution, with a limited
number of pixels in the raster the image is still represented imperfectly, with
areas that are neither green nor red, defining a set of points whose belonging
to the shape is unknown and for which a separate algorithm has to be used
to estimate this. The picture also shows how more pixels further away from
the shape improve accuracy of the representation. [80]

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 76

in various meshes being used, with varying degrees of accuracy. As we can
see in figure 4.5 out of the three available meshes only the two of them were
close to the experimental data. The Mesh #1 was created by the author,
the Mesh #2 from Mr. Papadakis, and the NASA was created from NASA
laboratories [68]. Experimental data from a Berlin TU’s experiment on an
RAE-2822’s performance during the same conditions were used to set a com-
parison reference between our meshes [27]. In that experiment, researchers
wanted to test various turbulence models against data from a wind-tunnel
experiment, where the flow conditions were similar to our own. These data
were close to what Hui et al. proposed as the Cp distribution of the RAE-
2822 airfoil from their simulations. So having crosschecked these data, we
can assert that they are the ground truth to compare our meshes against
them.

0.00 0.25 0.50 0.75 1.00

−2

−1

0

1

x-axis normalized

Cp

Comparison between the different meshes
exp top side

exp bottom side
Mesh #1 top side

Mesh #1 bottom side
NASA mesh top side
NASA mesh top side

Mesh #2 top side
Mesh #2 bottom side

Figure 4.5: Comparison between the different meshes’ accuracy

Observing the figure 4.5, we can notice various things regarding the avail-
able meshes. First of all, it becomes apparent that creating a decent mesh is
something not trivial. Out of the three meshes, the one created by the person

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 77

of least experience deviated the most from the baseline. Even though all ex-
perts’ guidelines were followed, it becomes apparent that there was still room
for error. This further solidifies the argument about the required expertise
to operate CFD software.

Having said that, even the experts’ meshes have some minor divergence
from the experimental data. As at the time, we were more interested in
testing whether the AI algorithm proposed by Hui et al. was capable of
accurately predicting the Cp distribution, rather than setting a very precise
simulation, so we opted to use NASA Mesh as it was closer to the experi-
mental data. This behavior is reasonable shall we take into consideration the
fact that we are more concerned about the algorithm accurately predicting
the target Cp distribution than whether she is accurate herself. Even with
the not-precise mesh, we got the non-linear phenomena that concern us, but
not to the right extent. In figures 4.6a, 4.6b we can even observe the local
relative difference from ground truth. Another factor that may contribute
to not getting a more accurate Cp distribution may be the turbulence model
used. However, like the mesh inaccuracies, this is not significant as the
Neural Network is tested against the solver’s data, not against the natural
phenomenon.

After creating the airfoil mesh, the need to automate geometrical input
to facilitate the data creation process became apparent. As said earlier, the
author is not aware of any tools that can automatically generate high fidelity
airfoil meshes, while creating 1500 different meshes for each variant is simply
absurd. There may not be an automatic mesh builder, yet there are tools that
can automatically deform a mesh to account for relatively small geometrical
differences. Such a tool was developed for use in MaPFlow by Mr. Papadakis
[28]. This diploma thesis presents an algorithm that can deform a grid given
proper data sets for the initial geometry, that the mesh is built for, and the
target geometry. Then by comparing the original geometry’s points with the
target geometry’s points, the algorithm can map the target geometry’s points
to the grid’s existing geometry points. Then it uses the relative difference of
these points to deform the already existing mesh structure without altering
its very core. Tools like this make it possible to fast prototype and test new
designs, without spending lots of time creating and validating new meshes.

For this algorithm to work, some files that contain geometrical data are
required. First, as the mesh is unstructured we have no clear indication of
the nodes and boundary points order. Also, the solver utilizes finite volumes
to solve the simulation, which creates the problem of duplicate points. Du-
plicates exist because a volume’s perimeter points are overlapping with its
adjacent volume ones. By eliminating duplicates and then properly sorting
the points, we get a map that correlates each point to the respective vol-

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 78

ume’s boundary. We can also create each face as a spline, during the dataset
creation process. Splines make the deformation and SDF image creation pro-
cess streamlined as the geometry is well defined. Working with an array of
unsorted, duplicate points can be troublesome, especially in troubleshooting
problems where the deformation failed or there was a logical error, resulting
in geometry that is not smooth or continuous. Then by comparing these
coordinates to the target ones, we can relate the new coordinates to existing
mesh entities. Finally, the deformation algorithm resolves the geometrical
relationship between new and existing points and deforms the grid accord-
ingly.

Most of the work is handled by the grid deformation algorithm [28], yet
creating the proper data to feed the algorithm is done separately. The geo-
metrical boundary points of the original mesh are taken after a solver’s com-
plete simulation, being part of its output. Then a Python script (sort.py)
excludes duplicates and sorts these points. On the other hand, in parallel
with the creation of SDF images for each variant, a data file holding the
airfoil geometry’s points’ coordinates is created. Then before resolving each
variant, MaPFlow reads these two files (the original mesh’s sorted points and
the respective variant’s file), deforms the mesh, and solves the simulation.

Last but not least, each simulation completed 5000 iterations. Not know-
ing the exact number of iterations for the solver to converge to zero2, initially,
we set 30000 iterations to study its convergence. As seen in figure: 4.7b the
solver converges at around 20 thousand with a maximum absolute error of
0.03%. However, 20 thousand iterations require almost 27 minutes to calcu-
late on the available hardware 3 which is fairly long for a single case, consid-
ering the bulk of cases. Instead, we opted to run the solver for 5 thousand
iterations that took approximately four times less time per case. As seen
in figure: 4.7a 5 thousand iterations were significantly less accurate than 15
thousand, yet the time saved was more beneficial than the extra precision.
After all, there is already enough divergence from the experimental data due
to the mesh structure and not choosing an appropriate turbulence model, for
a maximum absolute error of 1.46% to impose a greater error to the solution.

2For a computer program, convergence to zero is impossible to achieve due to floating
numbers precision. Here it is referred from a clear mathematical standpoint, parallelizing
the solver’s convergence to an infinite series result.

3Hardware and software characteristics are listed on Appendix A. For quick reference,
the available CPU was an Intel™ I7-6700k running at 4 GHz utilizing 7 out of 8 cores.

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 79

0.00 0.25 0.50 0.75 1.00

0

10

20

30

x-axis normalized

%

Cp distribution divegence from the experiment for the top face [%]
Mesh #2

NASA Mesh
|CpMesh i−Cpexp i|

max(|Cpexp|)

(a) Cp difference for the top face

0.00 0.25 0.50 0.75 1.00

0.0

2.5

5.0

7.5

10.0

x-axis normalized

%

Cp distribution divegence from the experiment for the bottom face [%]
Mesh #2

NASA Mesh
|CpMesh i−Cpexp i|

max(|Cpexp|)

(b) Cp difference for the bottom face

Figure 4.6: Cp divergence for each of the two faces

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 80

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

x-normalized

|%|

|∆Cp| [%]

Cp5000i−Cp30000i
max(|Cp30000|)

Cp10000i−Cp30000i
max|Cp30000|

Cp15000i−Cp30000i
max|Cp30000|

Cp20000i−Cp30000i
max|Cp30000|

(a) Iteration spectrum : {5000, 10000, 15000, 20000}

0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

0.5

x-normalized

|%|

|∆Cp| [%]

Cp10000i−Cp30000i
max|Cp30000|

Cp15000i−Cp30000i
max|Cp30000|

Cp20000i−Cp30000i
max|Cp30000|

Cp25000−Cp30000
Cp30000

(b) Iteration spectrum : {10000, 15000, 20000, 25000}

Figure 4.7: Cp divergence [%] at ranging iteration cycles

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 81

4.5 Project Architecture
Having presented the different parts of this project, they will be put in order,
like puzzle pieces, to complete the project pipeline. Writing a single piece of
code to conduct the entire pipeline was a mandatory step to continue. As
the project consisted of many smaller or bigger programs written in various
programming languages, it was considered optimal to bind them together
with a terminal script. As already mentioned in section 4.2, the project ran
on Ubuntu Linux, and the terminal of choice was BASH. The conducting
script (cfd_pip.sh) was developed to implement as lines of code the following
analysis.

First of all, after creating the mesh using BETA CAE™ ANSA and ex-
porting it for use in MaPFlow, the simulation of the original RAE-2822 takes
place. Of course, for the original airfoil, there is no need to use the defor-
mation algorithm. Then MaPFlow calculates the simulation and exports the
results in a binary formatted file, whose contents are then transformed to
ASCII text by an auxiliary program that comes with MaPFlow (2dcp.f90).
However, the data needs to be formatted as Cp values at certain x-axis in-
tervals for each airfoil’s face. For this purpose, was developed a script that
handles this task (CP_export.py). Also, during that step, the coordinates
at the airfoil’s geometrical boundary of the mesh are exported in a sepa-
rate ASCII text file. This file is then input into the sorting program, -that
was presented in the previous section- to sort the points and eliminate the
duplicates.

After obtaining the sorted points file, the dataset generation process takes
place. Then the sorted points are inserted in the Dataset Generation pro-
gram (Airfoil_DataSet_Generator_Randomizer.py), where the airfoil faces
are deformed, and their respective SDF images are created, as presented in
section 4.3. The dataset generation program also creates the proper folder
structure, creating separate folders for the training and testing datasets and
then organizing the geometric, and image data for each variant in separate
folders inside them. Then the conducting script places the other prerequisite
files for the CFD simulation to execute, namely the simulation parameters
input, the original mesh file, and the original airfoil’s sorted points file.

After the database is complete, the CFD simulations commence. The
database created by the Dataset Generation program is indexed, and the
paths to each variant are documented in a text file. Also, a file is created
to save the project’s execution status, enabling us to pause and resume the
project whenever the situation demands it. Then the conducting script reads
these two files, compares their contents, and runs the CFD simulation of every
variant that is not documented in the save-file.

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 82

The deformed airfoils are handled by the conducting script a bit differ-
ently than the original airfoil. As they are already variants, there is no need
to save nor sort their boundary mesh points, and, of course, to recreate the
database after each of their simulations. However, they require the use of
the Mesh Deformation algorithm, as presented in the previous section. So
their geometry data along with the original airfoil’s sorted geometry data are
input to the Deformation algorithm. Then the algorithm deforms the orig-
inal mesh and inputs it to the solver that executes the simulation. Finally,
similar to the original airfoil’s run, the binary data from MaPFlow are ini-
tially translated to ASCII text and then to the formatted files for the Neural
Network.

Ultimately, all these data created are used to train the Neural Network.
Convenience sake, a single Julia Jupyter Notebook was created to facilitate
all the Neural Network related functions (Diploma Thesis Neural Net Note-
book.ipynb). Specifically, the Notebook contains the code responsible for data
input, the Neural Networks’ architecture, the loss and accuracy functions, the
optimizer function used to train them, and the training function with a train-
ing loop for each Network. In the notebook are also included some minor
functions that deal with data output, testing single cases and storing-loading
the neural network. Data output is done through graphs were the respective
Network’s training and testing accuracy is logged for every epoch. The time
required to complete a single epoch of training and validation per Network
is logged for every epoch, as well.

CHAPTER 4. COUPLING MACHINE LEARNING WITH FLUID
DYNAMICS 83

Figure 4.8: Project Pipeline Chart

Chapter 5

Results and further
experimentation

5.1 Initial accuracy results
Having analyzed the underlying mechanics of Artificial Intelligence and Com-
putational Fluid Dynamics and how these two concepts can coexist in this
project, it is high time the results of this project were presented. There are
many things to discuss but, first, we must address “the elephant in the room”:
“ Does the concept actually works? ”. The definite answer is yes, it does.
As seen in figure: 5.3 both Neural Networks are rapidly reaching a training
MSE of ≈ 10−4 in 1000 Epochs while converging to a final MSE of ≈ 2 · 10−5

for the top side and ≈ 10−5 for the bottom side. Also, it should be noted
that their testing accuracy is very well behaved, as well, as seen again in the
figure: 5.3, following closely their training MSE. This is to expected though
as the testing data are not completely new to the algorithms, but more on
that in section 5.2.

Also, what is important to notice is the impact that the non-linear phe-
nomena have on the algorithm’s convergence. As seen in figure : 5.3, the top
side’s Neural Network MSE after 1000 Epochs oscillates around ≈ 10−4 for
at least 2000 Epochs while converging to its final value close to 4000 Epochs.
However, is highly probable that it would continue to oscillate have we let
it train for more Epochs. On the other hand, the bottom side’s precision
was steadily increasing as the MSE was lessening every Epoch hitting a ab-
solute minimum of ≈ 1.5 · 10−6 for training while the verification error was
≈ 8.5 · 10−7. However, after the minima the algorithm’s errors converged
to ≈ 10−5. This increase in MSE may actually be beneficial as the Epoch
where the local minima emerged might have been the result of the algorithm

84

CHAPTER 5. RESULTS AND FURTHER EXPERIMENTATION 85

over-fitting the data. Nevertheless, we will not know for sure as they prob-
ably have been a random incident caused by the network’s random initial
parameters and unfortunately the network was not saved during this exact
state. This is not a problem as we are interested to see whether the proposed
architecture can be accurate over our data without relying on the random
occasion where the parameters where ideally initiated. To rephrase a bit,
we want to prove that the model can be trained infinitely many times and
converging to extremely low MSEs every single time. For ease of understand-
ing how these oscillations affect the Prediction accuracy of the Networks the
figure: 5.1 is presented, where the accuracy of the Networks during training
and testing are plotted. The averages are taken at 1% of Epochs intervals
to de-cluster the diagram. Observing the figure: 5.1, becomes immediately
apparent that the accuracy converges to > 98% very quickly, further proving
that the oscillations of O(1e − 4) and O(1e − 5) are not handicapping the
Networks’ performance at all. Finally, in figure: 5.2 we can also observe
how the Cp distribution predicted by the Neural Networks compares to the
experiment and the CFD simulation.

0 1000 2000 3000 4000

85

90

95

100

Epochs

A
cc

ur
ac

y
[%

]

Averaged Accuracy History
training top side

validation top side
training bottom side

validation bottom side

Figure 5.1: Accuracy convergence history per 1% of Epochs

The next main point of interest is whether there are any significant time
gains over the standard CFD simulation. As seen in figure: 5.4 the Neural
Networks’ average training and testing time is ≈ 2.29 s per epoch per Net-
work, totally adding up to 154.1 mins for both the Neural Networks after
4000 epochs. Also, the average time to evaluate the original RAE-2822 airfoil

CHAPTER 5. RESULTS AND FURTHER EXPERIMENTATION 86

0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

Cp distribution of CFD simulation and Neural Net Prediction
CNN prediction distribution
CFD simulation distribution

Figure 5.2: Cp distributions of CFD simulation and Neural Net Prediction
for RAE-2822

and predict its Cp distribution is ≈ 5.4 ms with MSE ≈ 4.8 ·10−5 for the top
side and ≈ 1.2 · 10−5 for the bottom side. Even-though the accuracy may
change for other cases the execution time probably wont so we have a very
accurate estimate of the execution times. Comparing these numbers now to
the CFD simulation times, fig.: 5.5 we observe that, on the same hardware,
a single simulation lasts ≈ 5.5 min. While the time it takes to train and
test the entirety of the Neural Network structure is 30 times greater than to
evaluate a single airfoil, it is yet 50 times faster than running the entirety
of the simulations. Also, we must bear in mind that the time to evaluate
a single airfoil is insignificant compared to running a single CFD simulation
case. There lies the true power and efficiency of our Neural Networks. As it
was proven, the proposed Neural Networks require relatively moderate times
to train and test them, while they are able to predict a single airfoil’s Cp
distribution in a fraction of a second.

In conclusion, Neural Networks are extremely fast to both train and use
in singular cases while being sufficiently precise for the task at hand. So
we can conclude that the work presented by Hui et al. [1] is accurate, and
their proposed AI architecture is working as expected. That bears great
significance as it opens the path for using AI in CFD simulation to quickly
and accurately predict the pressure distribution around an airfoil, making
prototyping a fast and efficient procedure.

CHAPTER 5. RESULTS AND FURTHER EXPERIMENTATION 87

0 1000 2000 3000 4000

10−6

10−5

10−4

10−3

10−2

Epochs

Mean Square Error

Training and verification loss Batch Size = 50

training loss top face
verification loss top face
training loss bottom face

verification loss bottom face

Figure 5.3: Convergence per Epoch for Batch Size of size 50

5.2 Batch size and Networks’ flexibility exper-
imentation

Having proven that the entire concept is fully functional there are some
observations made that raised some questions. For example, observing the
figure: 4.3 one thing becomes immediately apparent; both the training and
the testing set have common geometrical boundaries as the airfoils of both
sets were sampled randomly inside the range of ±20%. Also, due to the
number of variants in both sets is not impossible to encounter duplicates
amongst the two sets. Is this a problem for our Networks’ reliability? Have
the Networks over-fitted the training data and because the validation dataset
is quite similar to the training dataset we were not able to identify this
problem ?

Another question that was raised was about the size of minibatches chosen
by the authors. In theory, we know that splitting the data in minibatches is
more beneficial for the algorithm’s training speed as less data are involved
in calculating the algorithm’s gradient[53]. However, after the gradient’s
calculation we update the network by evaluating its loss function for the
minibatch and updating the Network’s parameters. So, is minibatch training
more beneficial for speed or precision ?

Considering our Network Structure is successful in predicting the RAE-
2822 Cp distribution and its variants, can we use to predict the Cp distribu-
tion for other airfoils with very similar geometry under the same flow con-

CHAPTER 5. RESULTS AND FURTHER EXPERIMENTATION 88

0 1000 2000 3000 4000

0

250

500

750

1000

1250

Epochs

Time [ms]

Neural Networks’ timelog Batch Size = 50
training top side

validation top side
training bottom side

validation bottom side
Total training and

validation time = 154.1 mins

Figure 5.4: Time history per Epoch of training and validation for Batch Size
of size 50

ditions ? For example, an airfoil similar to RAE-2822 is NASA SC(2)-0412.
What would be our algorithms’ precision in evaluating their Cp distributions?

During this section, we will focus on answering these questions and gen-
erally speaking researching the robustness and flexibility of our Networks.
Initially, we will shed light on the effect of minibatch size as this is some-
thing closely related to the Networks’ architecture. Then the focus will be
shifted in identifying whether the Networks was over-fitted to the training
data or not, by testing their performance on airfoils out of the original ±20%
range.

5.2.1 Minibatch size investigation

As described in the section’s intro, investigating how the minibatch size af-
fects both the Epoch times and the algorithms’ precision is quite interesting.
Hui et al. have proposed a minibatch size of 50 items per batch. However,
during an author’s happy accident where the batch size was set to 200, signif-
icant time gains per Epoch were documented but with a penalty on precision.
This accident raised the question of how the batch size affects precision and
execution times; are the increased number of updates more computationally
intense than simply evaluating the gradient of more data and what is the
effect on precision. Hui et al.[1] did not disclose any information on how a
batch size of 50 was selected.

To investigate the effects of minibatch size averaged-error graphs for each

CHAPTER 5. RESULTS AND FURTHER EXPERIMENTATION 89

0 500 1000 1500

5.25

5.50

5.75

6.00

6.25

6.50

6.75

Variant number

Time [min]

CPU time per aifoil variant simulation
CPU times

Median CPU time value

Figure 5.5: CFD execution times per airfoil case

operation along with the time-Epoch graph were used. The averaged er-
ror graphs are used to de-cluster the clustered error-Epoch diagrams as we
are more interested in comparing the Networks momentum towards conver-
gence. It was chosen that the average would be taken every 1% of Epochs (40
Epochs). Observing the figures : 5.6a,5.6b we can notice some interesting
things going on. Starting from the top side Neural Network we notice that
with batch size 50 the error plummets at first yet it converges in a somewhat
oscillatory behavior around 10−4, something we have already seen in section
5.1. What is interesting is that when trained with the other batch sizes the
convergence is almost linear (in the logarithmic scale) with some noise. Also,
it should be noted that ultimately at 4000 Epochs they all share almost the
same error except from batch size 50 curve.

Observing now the bottom side averaged error diagram becomes apparent
that batch size 50 yields the optimal results. Even from the start of the
training procedure at around 400 Epochs, the Network trained with batch size
50 converges pretty fast to very low error. In similar fashion, the batch size
100 Network from the 150 one, which in turn outperforms the 200 one. This
may be a byproduct of the more linear and continuous (compared to the top
side) field flow that develops around the bottom side. As the phenomena are
more predictable and well-behaved, it is easier to train the Neural Network
to predict them.

Having seen how the Networks trained with different batch size perform
it is time to see how fast are they trained and check whether the small batch
size leads to small training times. As we can see in figure : 5.7, contrast to

CHAPTER 5. RESULTS AND FURTHER EXPERIMENTATION 90

0 1000 2000 3000 4000

10−4

10−2

Epochs

M
ea

n
Sq

ua
re

Er
ro

r

Comparison between the different Batch Sizes
training top side Batch Size = 50
training top side Batch Size = 100
training top side Batch Size = 150
training top side Batch Size = 200

(a) Averaged Error Diagram for the top side NN

0 1000 2000 3000 4000

10−4

10−2

Epochs

M
ea

n
Sq

ua
re

Er
ro

r

Comparison between the different Batch Sizes
training bottom side Batch Size = 50
training bottom side Batch Size = 100
training bottom side Batch Size = 150
training bottom side Batch Size = 200

(b) Averaged Error Diagram for the bottom side NN

Figure 5.6: Averaged MSE diagrams for each NN

CHAPTER 5. RESULTS AND FURTHER EXPERIMENTATION 91

0 1000 2000 3000 4000

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Epochs

T
im

e
[se

c]

Comparison between the different Batch Sizes
Total Epoch time Batch Size = 50
Total Epoch time Batch Size = 100
Total Epoch time Batch Size = 150
Total Epoch time Batch Size = 200

Figure 5.7: Time per Epoch for training with different batch size

Table 5.1: Times to train the Networks for different Batch Sizes

Average Time per Epoch [sec] Total Time to Train [min]
Batch Size 50 2.947 152.5
Batch Size 100 1.952 130.1
Batch Size 150 1.826 121.7
Batch Size 200 1.241 82.72

theory batch size 50 takes more time per Epoch out of all the other options.
It is probable that due to how the Networks were structured as code that an
Network update would be most computationally intense task than calculating
the gradient for more data. However, we also notice that batch size 50 helped
the algorithm have the best error characteristics out of all the other options.
For reference, in table: 5.1 are the total times required to train the Networks
along with the average time per Epoch. Batch size 200 took almost half
the time required to train the network with batch size 50. It did so while
maintaining an error close to 50’s for the top side, and vastly different for
the bottom side but with converging to a low error characteristics.

5.2.2 Investigating Neural Network’s flexibility

As mentioned earlier, the Neural Networks are proven to predict the Cp dis-
tributions of the deformed airfoils with significant accuracy. Yet, it would
be interesting to investigate whether the Networks have the capacity to "ex-

CHAPTER 5. RESULTS AND FURTHER EXPERIMENTATION 92

−40 −20 0 20 40

70

80

90

100

Deformation Percentage [%]

A
cc

ur
ac

y
Pe

rc
en

ta
ge

[%
]

Accuracy plot for airfoils deformed over the original range
Top side

Bottom side

Figure 5.8: Accuracy of the Neural Networks for deformation rates out of
±20% used in training and validation

trapolate" and predict Cp distributions for airfoils out of the original ±20%
range. There are many ways to test this, and for the sake of the current
analysis we will create a linear spectrum of different deformation rates to
deform both sides. The chosen range is ±50%, excluding the initial range
of ±20%. The choice of the outer percentage bounds is not dictated by a
specific problem that we may encounter, rather than stretching the Neural
Networks’ "imagination" to a significantly different deformation spectrum; a
spectrum that is both wide enough to challenge them yet is not wide enough
to imply the use of other types of foils. In another words, the choice was
objective and somewhat based on intuition.

Observing the figure 5.8, it becomes apparent that the Neural Network is
actually well trained and can extrapolate fairly well for specimens out of its
training range. First, the Networks are well trained as their accuracy near
the training edge is quite close to that of the testing procedure 1 and the fact
that they have a buffer zone of having good accuracy (> 90%) in predicting
completely new foils is a sign of good training.

Second, we see that after that buffer zone that the two Networks have
1With the exception, of the top-side’s Neural Network’s accuracy for -20%. However,

this does not constitute an anomaly as it is expected the predictions to have a slight
variance.

CHAPTER 5. RESULTS AND FURTHER EXPERIMENTATION 93

difference in how they behave. The best overall performance is exhibited
by the Bottom side Neural Network. It has a slowly decaying accuracy in
the [−50%, 20%) range that manages to stay in the upside of 90%, while
having a respectable accuracy up until ≈ +36%. These results are better
than anticipated for this side proving that the Network is quite flexible and
has definitely not over-fitted the training data.

On the other hand, the top side Neural Network has worse performance
than the bottom side’s. For deformation rates inside the [−50%, 20%) range
its performance is quite poor; rapidly decaying south of 90%. However, for
deformation rates inside the (−20%, 50%] range it holds its ground by having
a similar decay to the bottom side’s accuracy. Another difference between
the two Networks is the fashion in which they lose their accuracy as the
specimens further deviate from the original range. Contrast to the bottom
side’s smooth transition to less accuracy with somewhat linear segments, the
top side’s Neural Network has a more erratic behavior that may have to do
with the fact that the top side faces the formation of shock waves and flow
separation.

Observing how the Neural Networks predict the Cp distributions at −50%
and 50% holds significant interest. First, observing the figure 5.9a where
both Networks heavily underperform, what becomes immediately apparent
is the fact the bottom side Network can not account for the flow separation
happening due to the extreme alternating curvature of the bottom side, while
not deviating much where the flow attaches again. Top side network still
underperforms in a more consistent manner, contrast to the bottom side.
Last, as seen in figure 5.9b, the bottom side performs pretty good and the
top side Network can not accurately predict where the shock wave forms

CHAPTER 5. RESULTS AND FURTHER EXPERIMENTATION 94

0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

Cp distribution between CFD simulation and Neural Net Prediction
Deformation rate = +50%

CNN prediction distribution
CFD simulation distribution

(a) Deformation rate +50%

0.00 0.25 0.50 0.75 1.00

−1.5

−1.0

−0.5

0.0

0.5

Cp distribution between CFD simulation and Neural Net Prediction
Deformation rate = -50%

CNN prediction distribution
CFD simulation distribution

(b) Deformation rate -50%

Figure 5.9: Comparison between the CFD simulation and Neural Net Pre-
diction for ±50% deformation rate

Chapter 6

Potential Applications

As already seen in the previous chapter, the Neural Networks are very reliable
in accurately predicting the pressure distribution around airfoils. Especially,
when the deformation rate is inside the training range they have stellar accu-
racy. Even though, the present Networks, developed for this Thesis, are a bit
limited in terms of respecting changes in the flow’s Mach and Reynolds num-
ber 1 they are still very useful for fast prototyping around these operation
conditions. To further illustrate this point, a small application was created
to demonstrate the efficiency of our Neural Networks.

6.1 A simplistic geometry optimizer
A simplistic optimizer was developed, using the openMDAO framework [81],
to optimize the airfoil’s geometry for the present flow conditions. OpenM-
DAO is an open-source framework for efficient multidisciplinary optimization,
used to solve design problems involving coupled numerical models of complex
engineering systems [81]. Using openMDAO is possible to make a computer
model of the task at hand (ie. optimizing the airfoil design) and later to
optimize the model by setting certain initial values and constraints. So, we
could possibly try and bind openMDAO with our AI technology to create an
incredibly fast optimization framework.

In order to, optimize the airfoil’s design we have to initially specify the
model(s) of the problem to be solved. During the present application a single
explicit model was developed, whose inputs are the deformation rates for two

1Reminder that Mach and Reynolds numbers are kept constant along with the angle
of attack, while training the Networks. However, with further research the author is
optimistic that they can be integrated as dynamic data in the Networks as shown by [18],
[17], [2]

95

CHAPTER 6. POTENTIAL APPLICATIONS 96

airfoil’s sides and its output is the Lift and Drag Coefficients. To be more
specific, as it was not the main focus of this thesis, it was chosen to keep the
design optimization fairly simple. To achieve that, the y-components of the
airfoil are scaled with a simple coefficient ri according to eq.: 6.1, unique for
each side.

ŷ = (1 + ri) ∗ yRAE 2822, (6.1)

Then the new y-coordinates are passed to the image creation code to create
an SDF image, that is then input to the Neural Networks to calculate the
Pressure Distribution. Knowing the pressure distribution and the airfoil’s
geometry, we can integrate the pressure on the boundary geometry and obtain
the Net Forces in each direction. What is important to notice is that only the
Lift coefficient (the Vertical component of the Net Force) is of importance,
as the Drag Coefficient is lacking the viscous terms and does not represent
the reality of the physical problem2.

After specifying the model, the driver of the problem is selected. As
proposed by openMDAO’s documentation, the SciPy Optimization Driver is
a good choice when dealing with simple problems. The Driver contains among
many things like Derivative Calculation, the optimization algorithm. For the
present application, two of the most used optimization algorithms were used
: COBYLA and SLSQP. COBYLA algorithm (Constrained Optimization
By Linear Approximation) is a derivative-free optimization solver, developed
by Michael J. Powell, that linearly approximates the problem using linear
programming models [82]. On the other hand, SLSQP (Sequential Least
SQuares Programming) minimizes a function of several variables with any
combination of bounds, equality and inequality constraints. The SLSQP
Optimization algorithm was originally implemented by Dieter Kraft and is
ideal for mathematical problems for which the objective function and the
constraints are twice continuously differentiable [83]. Both algorithms are
proposed by the openMDAO documentation, yet COBYLA due to its lack
of respect towards the model’s derivatives is arguably better at exploring the
design space than the SLSQP algorithm.

As minimizing the Coefficient of Drag is pointless, the optimizer targeted
at maximizing the Coefficient of Lift, while constraining the allowable defor-
mation of both sides inside the [−20%,+20%] range. Also, both optimization

2Calculating the two forces via the Neural Network and comparing them to the forces
calculated by MaPFlow, that problem becomes immediately apparent. Even-though, the
Lift component is spot-on, the airfoil seems to create Thrust by having a negative Cd.
MaPFlow accurately calculates the expected and logical positive Cd, pointing to the exis-
tence of Drag. As the Network predicts only pressure distribution, the Drag components
that heavily rely on viscous terms are not calculated properly, so we will ignore them from
here on.

CHAPTER 6. POTENTIAL APPLICATIONS 97

Table 6.1: Optimization Results

Default RAE-2822 COBYLA optimizer SLSQP optimizer
rtop 0 -0.0453 -0.0257

rbottom 0 -0.1997 -0.0113
CL 0.7629 0.8077 0.7678

Toptimization [sec] - 48.9 51.5

methods were used in the code created to optimize the design (optim.ipynb)
in order to measure their performance. Last the optimizations’ results are
presented in the table 6.1.

Studying the results the entire framework’s efficiency and speed become
apparent. Optimizing an airfoil in such short time is very important, con-
sidering that if we used the openMDAO optimization framework along with
a classic CFD solver, like MaPFlow, the optimization would transition to
minutes. Nevertheless, we must not forget that our Networks are limited by
a specific operational range where their accuracy is relevant, compared to a
CFD solver.

However, it is highly probable that using Neural Networks which are
trained to take into consideration the Mach and the Freestream Re we could
use AI to create an optimal design for many operational conditions at the
same time. This trivial application of the Neural Networks shows a glimpse of
their potential to aid engineers in designing better and more efficient systems
more efficiently.

CHAPTER 6. POTENTIAL APPLICATIONS 98

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

Cp distributions after optimization
RAE-2822
COBYLA optimal
SLSQP optimal

Figure 6.1: Cp distributions of the optimized airfoils

0.0 0.2 0.4 0.6 0.8 1.0
0.06

0.04

0.02

0.00

0.02

0.04

0.06

Airfoil Profiles after optimization

RAE-2822
COBYLA optimal
SLSQP optimal

Figure 6.2: Profiles of the optimized airfoils

Chapter 7

Conclusions and Future Work

7.1 Conclusion
In this Thesis was investigated the use of Deep Learning techniques to rapidly
predict the Pressure distribution along airfoils that operate under transonic
flight speed, namely the RAE-2822 airfoil. Based on the work of Hui et
al.[1], two Convolutional Neural Networks were trained to predict the Pres-
sure distributions for the airfoil’s top and bottom face respectively using
SDF formatted pictures as input. The Neural Networks developed were 5
Convolutional layers and 2 Fully Connected layers deep. Between each Con-
volutional layer there is a Batch Normalization layer that helped with the
statistical efficiency of the Neural Networks.

As there were no available proper training and testing data for the Neural
Networks, they were created from the beginning. To begin, two computa-
tional grids (Meshs) were developed and one found in bibliography [68], to
be used as an input to the CFD solver MaPFlow. All meshes were validated
against experimental data [27], choosing the most accurate one.

Amongst the many capabilities of MaPFlow is the ability to automatically
deform the computational grid given a file containing the exact geometric
differences. That enabled us to automate the process of solving the CFD
simulations for the training-testing variants, without altering the original
Mesh, making the whole process feasible.

In order to create lots of different variants of the original airfoil to train
the Neural Networks, the original airfoil was appropriately randomly de-
formed within a range of ±20% to create 1000 training variants and 500
testing variants. The deformation process concluded with the generation of
a coordinates file for MaPFlow and the respective SDF formatted image of
each variant.

99

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 100

After solving the CFD simulations for all variants, the Neural Networks
were trained. The Neural Networks resulting values were compared to the
CFD simulation results to estimate the Networks’ error. Mean Squared Error
was the error function of choice, and the Neural Networks were trained using
the ADAM optimizer with its default hyper-parameters and 10−4 learning
rate. Also, they were trained using the mini-batch technique with a batch
size of 50.

During the training process, MSE and training time per Epoch data were
documented. As it became immediately apparent the Neural Networks were
highly performant, managing to predict the Cp-distributions of the given
airfoils with an mean accuracy of over 98%. They were also incredibly fast in
estimating a single case, with a airfoil’s Cp-distribution prediction evaluating
in mere milliseconds compared to the couple of minutes required by a CFD
solver.

Additionally to the validation of the Neural Networks’ precision and
speed, the influence of the batch size in the training and the Neural Net-
works’ ability to predict the Cp-distribution for airfoils out of the original
training-testing range. Mini-batch size was very influential both in the Neu-
ral Networks’ accuracy and training speed; a increase in batch size resulted
in less training times yet an increase in MSE and vice versa.

On the other hand, the Neural Networks were capable to predict the
Pressure distribution of airfoils out of the original range with a decaying
accuracy. Namely, the bottom side Network had better performance than the
top side Network, something completely expected as the top side is subjected
to extreme non-linear phenomena.

Finally, a simple geometry optimizer was developed using the Neural Net-
works to calculate the Pressure distribution. The geometry optimizer’s target
was to maximize the airfoil’s Lift capacity by uniformly deforming the air-
foil’s two sides. The deformation was done with a simple one weight per side
y-coordinate scaling. This simplistic application proved the efficiency and ap-
plicability of Deep Learning techniques in the field of geometry optimization
for aerodynamic applications.

7.2 Future Work
As of the year this Thesis was written no one can argue that Artificial Intel-
ligence is a very prosperous field of research that shows promise and offers
solutions to many fields of everyday life. The cornerstones of Artificial Intel-
ligence are its adaptability and efficiency. During this study it became clear
enough that Artificial Intelligence can be utilized in the field of Aerospace

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 101

and Mechanical Engineering to predict Pressure distribution along airfoils.
It is significant to notice that this Thesis just proved the feasibility of

using SDF images with CNNs to estimate Pressure distributions, yet the
field of applications is quite limited. This is a by-product of only accounting
for geometrical differences between the airfoils. Contrast to other works, for
example Sekar et al.[18], the Neural Networks were trained for fixed Mach and
Reynolds Numbers, and the Angle of Attack was kept constant as well. This
is highly probable that handicapped the flexibility of the Neural Networks in
generalizing and resolving more cases, where the flow particulars are slightly
different. So, research on a Network of similar Architecture where the flow
conditions are input and not constant is highly advised.

Furthermore, according to the author’s point of view, SDF format has
huge untapped potential in encoding data and this Thesis only scratched the
surface. SDF results a number for its grid point that the plotting library
automatically assigns to a color according a predetermined colormap. As the
colormaps are compromised from colors within a varying RGB triplet, there
are at most 2553 = 16, 581, 375 different colors to discretize the x-y plane,
which are arguably more than enough. However, if a colormap uses only, for
example, the Red and Green channels to map the SDF values, lets the Blue
channel operate as a different indipendent colormap where, for example, the
Reynolds Number or the Angle of Attack could be encoded. Still there are
2552 = 65, 025 values to discretize the x-y plane resulting to an accuracy of
dr = 1.538e− 5, while there are another 255 values available to encode data
other than the geometric data.

Moreover, something that could be assessed is the quantity of training
and testing specimens. Considering that the Networks’ precision does not
suffer greatly by reducing the training data could lead to lessen the training’s
and the data generation’s times as less simulations are required. This would
increase even more the Neural Networks’ efficiency. Also, it could lead the
way in creating software solutions where Neural Networks would be trained
in highly efficient supercomputers and then distributed to the general public,
making CFD simulations accessible to more people lacking the hardware to
run CFD solvers on their machines.

Another thing that could be investigated is how the present Networks
trained on the RAE-2822 specimens can perform when subjected to relevant
to RAE-2822 airfoils, like NASA SC(2)-0412. Considering that they will
achieve the same performance as with RAE-2822, this could lead the way of
implementing Free Form Deformation in the optimizer, where there would be
more degrees of freedom in distorting an airfoil. This would result in further
increasing the efficiency of optimizers, who would no longer be restrained in
uniformly deforming a single airfoil and would be able to freely explore the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 102

design space.
To add up to the functionality of the optimizer, the system of two Net-

works could be augmented by a third Neural Network that can predict the
airfoil’s total Drag Coefficient, using as input, maybe, the resulting pressure
distribution of the two Networks and/or the SDF image. Now there would
be a complete approach to predicting the forces an airfoil experiences. This
would eradicate the present optimizer’s deficiency in calculating the airfoil’s
Drag and would further solidify the concept of a Deep Learning powered
geometry optimizer.

To conclude, this work is not expected to give a definite answer on the
utility of Neural Networks, rather to inspire further research as its results
indicate the immense potential Deep Learning has in aiding the design of
better and more efficient systems in Aerospace, Mechanical and Marine En-
gineering.

Appendix A

Hardware and Software specifics

Table A.1: Hardware and Software specifics of the Computational
Framework used in this work

Hardware Particulars
CPU Intel(R) Core(TM) i7-6700K

CPU ClockSpeed [Hz] 4.00GHz
CPU Threads 4 cores (8 threads)

RAM 16 GB DIMM DDR4 2133 MHz
GPU Nvidia GeForce GTX 1070

GPU ClockSpeed [Hz] 1506 MHz
VRAM 8 GB GDDR5
Storage 240GB Corsair Force LE SSD

Software Particulars
OS 18.04.1-Ubuntu GNU\Linux

Kernel release 5.4.0-97-generic
Architecture x86_64
CUDA ver. 11.0.0

Fortran Compiler Intel(R) Parallel Studio XE 2020 Update 4 for Linux
Python ver. 3.7.7
Julia ver. 1.6.1
Flux ver. 0.12.8

CUDA.jl ver. 3.5.0

103

Appendix B

Convergence Characteristics and
Epoch times for different Batch
Sizes

104

APPENDIX B. CONVERGENCE CHARACTERISTICS AND EPOCH
TIMES FOR DIFFERENT BATCH SIZES 105

0 1000 2000 3000 4000

10−4

10−3

10−2

Epochs

Mean Square Error

Training and verification loss Batch Size = 100

training loss top face
verification loss top face
training loss bottom face

verification loss bottom face

(a) Convergence per Epoch

0 1000 2000 3000 4000

0

250

500

750

1000

Epochs

Time [ms]

Neural Networks’ timelog Batch Size = 100
training top side

validation top side
training bottom side

validation bottom side
Total training and

validation time = 131.8 mins

(b) Training and Validation per Epoch

Figure B.1: Batch Size = 100

APPENDIX B. CONVERGENCE CHARACTERISTICS AND EPOCH
TIMES FOR DIFFERENT BATCH SIZES 106

0 1000 2000 3000 4000

10−4

10−3

10−2

Epochs

Mean Square Error

Training and verification loss Batch Size = 150

training loss top face
verification loss top face
training loss bottom face

verification loss bottom face

(a) Convergence per Epoch

0 1000 2000 3000 4000

0

250

500

750

1000

Epochs

Time [ms]

Neural Networks’ timelog Batch Size = 150
training top side

validation top side
training bottom side

validation bottom side
Total training and

validation time = 121.8 mins

(b) Training and Validation per Epoch

Figure B.2: Batch Size = 150

APPENDIX B. CONVERGENCE CHARACTERISTICS AND EPOCH
TIMES FOR DIFFERENT BATCH SIZES 107

0 1000 2000 3000 4000

10−4

10−3

10−2

Epochs

Mean Square Error

Training and verification loss Batch Size = 200

training loss top face
verification loss top face
training loss bottom face

verification loss bottom face

(a) Convergence per Epoch

0 1000 2000 3000 4000

0

200

400

600

800

Epochs

Time [ms]

Neural Networks’ timelog Batch Size = 200
training top side

validation top side
training bottom side

validation bottom side
Total training and

validation time = 82.8 mins

(b) Training and Validation per Epoch

Figure B.3: Batch Size = 200

Appendix C

Pictures of the different Mesh
variants

Figure C.1: Mesh #1 Boundary layer geometry

108

APPENDIX C. PICTURES OF THE DIFFERENT MESH VARIANTS109

(a) Close field geometry

(b) General geometry

Figure C.2: Mesh #1

APPENDIX C. PICTURES OF THE DIFFERENT MESH VARIANTS110

(a) Boundary layer geometry

(b) General geometry

Figure C.3: Mesh #2

APPENDIX C. PICTURES OF THE DIFFERENT MESH VARIANTS111

(a) Boundary layer geometry

(b) General geometry

Figure C.4: Mesh created by NASA

Bibliography

[1] X. Hui, J. Bai, H. Wang, and Y. Zhang, “Fast pressure distribution
prediction of airfoils using deep learning”, Aerospace Science and Tech-
nology, vol. 105, p. 105 949, 2020, issn: 1270-9638. doi: https://doi.
org/10.1016/j.ast.2020.105949. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1270963820306313.

[2] H. Chen, L. He, W. Qian, and S. Wang, “Multiple aerodynamic co-
efficient prediction of airfoils using a convolutional neural network”,
Symmetry, vol. 12, p. 544, Apr. 2020. doi: 10.3390/sym12040544.

[3] X. Jin, P. Cheng, W.-L. Chen, and H. Li, “Prediction model of ve-
locity field around circular cylinder over various reynolds numbers by
fusion convolutional neural networks based on pressure on the cylin-
der”, Physics of Fluids, vol. 30, no. 4, p. 047 105, 2018. doi: 10.1063/
1.5024595. eprint: https://doi.org/10.1063/1.5024595. [Online].
Available: https://doi.org/10.1063/1.5024595.

[5] Wikipedia. “Navier-stokes equations”. (), [Online]. Available: https:
//en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations.

[6] Σωκράτης Τσαγγάρης, Μηχανική των Ρευστών Θεωρία και ασκήσεις.
Εκδόσεις Τσότρας, 2016, isbn: 978-618-5066-55-0.

[10] R. P. Feynman, R. B. Leighton, M. Sands, and S. B. Treiman, “The
feynman lectures on physics”, Physics Today, vol. 17, no. 8, pp. 45–
46, 1964. doi: 10.1063/1.3051743. eprint: https://doi.org/10.
1063/1.3051743. [Online]. Available: https://doi.org/10.1063/1.
3051743.

[13] A. M. TURING, “I.—COMPUTING MACHINERY AND INTELLI-
GENCE”, Mind, vol. LIX, no. 236, pp. 433–460, Oct. 1950, issn: 0026-
4423. doi: 10.1093/mind/LIX.236.433. eprint: https://academic.
oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-
433.pdf. [Online]. Available: https://doi.org/10.1093/mind/LIX.
236.433.

112

https://doi.org/https://doi.org/10.1016/j.ast.2020.105949
https://doi.org/https://doi.org/10.1016/j.ast.2020.105949
https://www.sciencedirect.com/science/article/pii/S1270963820306313
https://www.sciencedirect.com/science/article/pii/S1270963820306313
https://doi.org/10.3390/sym12040544
https://doi.org/10.1063/1.5024595
https://doi.org/10.1063/1.5024595
https://doi.org/10.1063/1.5024595
https://doi.org/10.1063/1.5024595
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://doi.org/10.1063/1.3051743
https://doi.org/10.1063/1.3051743
https://doi.org/10.1063/1.3051743
https://doi.org/10.1063/1.3051743
https://doi.org/10.1063/1.3051743
https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433

BIBLIOGRAPHY 113

[14] J.-L. Wu, H. Xiao, and E. Paterson, “Physics-informed machine learn-
ing approach for augmenting turbulence models: A comprehensive frame-
work”, Physical Review Fluids, vol. 3, no. 7, 2018, issn: 2469-990X.
doi: 10.1103/physrevfluids.3.074602. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevFluids.3.074602.

[15] M. A. Cruz, R. L. Thompson, L. E. Sampaio, and R. D. Bacchi, “The
use of the reynolds force vector in a physics informed machine learn-
ing approach for predictive turbulence modeling”, Computers & Fluids,
vol. 192, p. 104 258, 2019, issn: 0045-7930. doi: https://doi.org/10.
1016/j.compfluid.2019.104258. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0045793019302257.

[16] B. Y. Zhou, N. R. Gauger, J. Hauth, X. Huan, M. Morelli, and A.
Guardone, “Towards real-time in-flight ice detection systems via com-
putational aeroacoustics and machine learning”, AIAA Aviation 2019
Forum, p. 3103, 2019. [Online]. Available: www.scopus.com.

[17] Y. Zhang, W. J. Sung, and D. N. Mavris, “Application of convolutional
neural network to predict airfoil lift coefficient”, in 2018 AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference. 2018. doi:
10.2514/6.2018-1903. eprint: https://arc.aiaa.org/doi/pdf/
10.2514/6.2018-1903. [Online]. Available: https://arc.aiaa.org/
doi/abs/10.2514/6.2018-1903.

[18] V. Sekar, Q. Jiang, C. Shu, and B. C. Khoo, “Fast flow field prediction
over airfoils using deep learning approach”, Physics of Fluids, vol. 31,
no. 5, p. 057 103, 2019. doi: 10.1063/1.5094943. eprint: https:
//doi.org/10.1063/1.5094943. [Online]. Available: https://doi.
org/10.1063/1.5094943.

[19] A. Krizhevsky, Learning multiple layers of features from tiny images,
2009. [Online]. Available: http : / / www . cs . toronto . edu / ~kriz /
cifar.html.

[20] Swyde. “Airfoil”. (), [Online]. Available: https : / / swyde . com / s /
Airfoil.

[21] Wikipedia. “Compressible flow”. (), [Online]. Available: https://en.
wikipedia.org/wiki/Compressible_flow.

[22] ——, “Buckingham Π theorem”. (), [Online]. Available: https://en.
wikipedia.org/wiki/Buckingham_%CF%80_theorem.

[25] G. Bar-Meir, Fundamentals of Compressible Fluid Mechanics. Version
0.5.0, GNU Free Documentation License, 2021. [Online]. Available:
https://potto.org/gd.pdf.

https://doi.org/10.1103/physrevfluids.3.074602
http://dx.doi.org/10.1103/PhysRevFluids.3.074602
http://dx.doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/https://doi.org/10.1016/j.compfluid.2019.104258
https://doi.org/https://doi.org/10.1016/j.compfluid.2019.104258
https://www.sciencedirect.com/science/article/pii/S0045793019302257
https://www.sciencedirect.com/science/article/pii/S0045793019302257
www.scopus.com
https://doi.org/10.2514/6.2018-1903
https://arc.aiaa.org/doi/pdf/10.2514/6.2018-1903
https://arc.aiaa.org/doi/pdf/10.2514/6.2018-1903
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1903
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1903
https://doi.org/10.1063/1.5094943
https://doi.org/10.1063/1.5094943
https://doi.org/10.1063/1.5094943
https://doi.org/10.1063/1.5094943
https://doi.org/10.1063/1.5094943
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://swyde.com/s/Airfoil
https://swyde.com/s/Airfoil
https://en.wikipedia.org/wiki/Compressible_flow
https://en.wikipedia.org/wiki/Compressible_flow
https://en.wikipedia.org/wiki/Buckingham_%CF%80_theorem
https://en.wikipedia.org/wiki/Buckingham_%CF%80_theorem
https://potto.org/gd.pdf

BIBLIOGRAPHY 114

[26] H. Liepmann and A. Roshko, Elements of Gasdynamics. Wiley, 1957,
isbn: 9780471534600. [Online]. Available: https://books.google.
gr/books?id=1BxRAAAAMAAJ.

[27] M. Franke. “Advanced turbulence modelling in aerodynamic flow solvers”.
(), [Online]. Available: https://www.cfd.tu-berlin.de/research/
thermofluid/transport/aero.html.

[28] G. Papadakis, “Development of a hybrid compressible vortex parti-
cle method and application to external problems including helicopter
flows”, Dec. 2014. doi: http://dx.doi.org/10.26240/heal.ntua.
1582.

[29] C. Hirsch, Numerical Computation of Internal and External Flows. Wi-
ley, 1990.

[30] A. M., G. D., and T. T.S., “Behavior of Linear Reconstruction Tech-
niques on Unstructured Meshes”, AIAA Journal, vol. 33, pp. 2038–
2049, Nov. 1995.

[31] V. Venkatakrishnan, “On the Accuracy of Limiters and Convergence to
Steady State Solutions”, AIAA paper 93-0880, 1993.

[32] ——, “Convergence to Steady State Solutions of the Euler Equations on
Unstructured Grids with Limiters”, Journal of Computational Physics,
vol. 118, no. 1, pp. 120–130, 1995.

[33] A. Jameson, W. Schmidt, E. Turkel, et al., “Numerical solutions of
the euler equations by finite volume methods using runge-kutta time-
stepping schemes”, AIAA paper, vol. 1259, 1981.

[34] B. Van Leer, “Flux-vector splitting for the euler equations”, in Eighth
international conference on numerical methods in fluid dynamics, Springer,
1982, pp. 507–512.

[35] J. L. Steger and R. Warming, “Flux vector splitting of the inviscid
gasdynamic equations with application to finite-difference methods”,
Journal of computational physics, vol. 40, no. 2, pp. 263–293, 1981.

[36] P. L. Roe, “Approximate riemann solvers, parameter vectors, and differ-
ence schemes”, Journal of computational physics, vol. 43, no. 2, pp. 357–
372, 1981.

[37] J. Blazek, Computational Fluid Dynamics: Principles and Applications.
Elsevier Science, 2001.

https://books.google.gr/books?id=1BxRAAAAMAAJ
https://books.google.gr/books?id=1BxRAAAAMAAJ
https://www.cfd.tu-berlin.de/research/thermofluid/transport/aero.html
https://www.cfd.tu-berlin.de/research/thermofluid/transport/aero.html
https://doi.org/http://dx.doi.org/10.26240/heal.ntua.1582
https://doi.org/http://dx.doi.org/10.26240/heal.ntua.1582

BIBLIOGRAPHY 115

[38] B. Robert, V. Veer, and A. Harold, “Simulation of Unsteady Flows
Using an Unstructured Navier-Stokes Solver on Moving and Stationary
Grids”, 23rd AIAA Applied Aerodynamics Conference, pp. 1–17, Jun.
2005.

[39] V. N. Vatsa, M. H. Carpenter, and D. P. Lockard, “Re-evaluation of
an optimized second order backward difference (bdf2opt) scheme for
unsteady flow applications”, AIAA Paper, vol. 122, p. 2010, 2010.

[40] D. Mavriplis and A. Jameson, “Multigrid solution of the Navier-Stokes
equations on triangular meshes”, AIAA Journal, vol. 28, no. 8, pp. 1415–
1425, Aug. 1990.

[41] F. Menter, “ Two-Equation Eddy-Viscosity Turbulence Models for En-
gineering Applications”, AIAA Journal, vol. 32, pp. 1598–1605. 1994.

[42] D. C. Wilcox et al., Turbulence modeling for CFD. DCW industries La
Canada, CA, 1998, vol. 2.

[43] F. Menter, “Zonal Two Equation k-omega Turbulence Models for Aero-
dynamic Flows”, AIAA Paper 93-2906, 1993.

[44] D. Koubogiannis, “Numerical Solution of the Navier-Stokes Equations
on Unstructured Grids in a Parallel Processing Environment”, Ph.D.
dissertation, Laboratory of Thermal Turbomachines, Fluids Section,
Department of Mechanical Engineering, NTUA, 1998.

[45] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2003,
isbn: 0898715342.

[46] A. Theofilopoulos, “Numerical analysis of the dynamic behavior of air-
foils with deformable and articulated trailing edge flap”, Dept. Mech.
Engineering, Aerodynamics Laboratory, National Technical University
of Athens , Greece, 2013.

[47] Y. Zhao, J. Tai, and F. Ahmed, “Simulation of micro flows with moving
boundaries using high-order upwind fv method on unstructured grids”,
Computational mechanics, vol. 28, no. 1, pp. 66–75, 2002.

[48] P. Thomas and C. Lombard, “Geometric conservation law and its ap-
plication to flow computations on moving grids”, AIAA journal, vol. 17,
no. 10, pp. 1030–1037, 1979.

[49] D. J. Mavriplis and Z. Yang, “Construction of the discrete geometric
conservation law for high-order time-accurate simulations on dynamic
meshes”, Journal of Computational Physics, vol. 213, no. 2, pp. 557–
573, 2006.

BIBLIOGRAPHY 116

[50] H. T. Ahn and Y. Kallinderis, “Strongly coupled flow/structure inter-
actions with a geometrically conservative ale scheme on general hybrid
meshes”, Journal of Computational Physics, vol. 219, no. 2, pp. 671–
696, 2006.

[51] M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep blue”, Artif. Intell.,
vol. 134, no. 1–2, pp. 57–83, Jan. 2002, issn: 0004-3702. doi: 10.1016/
S0004-3702(01)00129-1. [Online]. Available: https://doi.org/10.
1016/S0004-3702(01)00129-1.

[52] Y. L. Cunn, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition”, Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998. doi: http://yann.lecun.com/
exdb/publis/pdf/lecun-98.pdf.

[53] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[55] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models”, in in ICML Workshop on
Deep Learning for Audio, Speech and Language Processing, 2013.

[56] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification, 2015.
arXiv: 1502.01852 [cs.CV].

[57] H. Xiao, K. Rasul, and R. Vollgraf. “Fashion-mnist: A novel image
dataset for benchmarking machine learning algorithms”. arXiv: cs.LG/
1708.07747 [cs.LG]. (Aug. 28, 2017).

[59] M. Khosla, K. Jamison, A. Kuceyeski, and M. R. Sabuncu, “3d convo-
lutional neural networks for classification of functional connectomes”,
in Deep Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support, D. Stoyanov, Z. Taylor, G. Carneiro, et
al., Eds., Cham: Springer International Publishing, 2018, pp. 137–145,
isbn: 978-3-030-00889-5.

[60] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221–231, 2013. doi: 10.
1109/TPAMI.2012.59.

[61] A. Payan and G. Montana, Predicting alzheimer’s disease: A neu-
roimaging study with 3d convolutional neural networks, 2015. arXiv:
1502.02506 [cs.CV].

https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
https://doi.org/http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://www.deeplearningbook.org
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/cs.LG/1708.07747
https://arxiv.org/abs/cs.LG/1708.07747
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1109/TPAMI.2012.59
https://arxiv.org/abs/1502.02506

BIBLIOGRAPHY 117

[62] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, 2015. arXiv: 1502.03167
[cs.LG].

[63] C. Bishop, Pattern Recognition and Machine Learning, ser. Information
Science and Statistics. Springer-Verlag New York, 2006, isbn: 978-1-
4939-3843-8.

[64] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,
2017. arXiv: 1412.6980 [cs.LG].

[65] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization”, Journal of Machine
Learning Research, vol. 12, no. 61, pp. 2121–2159, 2011. [Online]. Avail-
able: http://jmlr.org/papers/v12/duchi11a.html.

[66] T. T. and H. G. “Lecture 6.5 - rmsprop”. (2012).

[67] O. Russakovsky, J. Deng, H. Su, et al., Imagenet large scale visual
recognition challenge, 2015. arXiv: 1409.0575 [cs.CV].

[68] J. W. Slater. “Rae 2822 transonic airfoil: Study # 4”. (), [Online].
Available: https://www.grc.nasa.gov/WWW/wind/valid/raetaf/
raetaf04/raetaf04.html.

[69] Wikipedia. “Dota 2”. (), [Online]. Available: https://en.wikipedia.
org/wiki/Dota_2.

[70] OpenAI, : C. Berner, et al., Dota 2 with large scale deep reinforcement
learning, 2019. arXiv: 1912.06680 [cs.LG].

[71] M. Innes, E. Saba, K. Fischer, et al., “Fashionable modelling with flux”,
CoRR, vol. abs/1811.01457, 2018. arXiv: 1811.01457. [Online]. Avail-
able: https://arxiv.org/abs/1811.01457.

[72] M. Innes, “Flux: Elegant machine learning with julia”, Journal of Open
Source Software, 2018. doi: 10.21105/joss.00602.

[73] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array pro-
gramming with NumPy”, Nature, vol. 585, no. 7825, pp. 357–362, Sep.
2020. doi: 10.1038/s41586-020-2649-2. [Online]. Available: https:
//doi.org/10.1038/s41586-020-2649-2.

[74] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python”, Nature Methods,
vol. 17, pp. 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[75] J. D. Hunter, “Matplotlib: A 2d graphics environment”, Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007. doi: 10.1109/
MCSE.2007.55.

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v12/duchi11a.html
https://arxiv.org/abs/1409.0575
https://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf04/raetaf04.html
https://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf04/raetaf04.html
https://en.wikipedia.org/wiki/Dota_2
https://en.wikipedia.org/wiki/Dota_2
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://doi.org/10.21105/joss.00602
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55

BIBLIOGRAPHY 118

[76] T. Besard, C. Foket, and B. De Sutter, “Effective extensible program-
ming: Unleashing Julia on GPUs”, IEEE Transactions on Parallel and
Distributed Systems, 2018, issn: 1045-9219. doi: 10.1109/TPDS.2018.
2872064. arXiv: 1712.03112 [cs.PL].

[77] C. Green, “Improved alpha-tested magnification for vector textures and
special effects”, in SIGGRAPH ’07, 2007.

[78] S. Izadi, D. Kim, O. Hilliges, et al., “Kinectfusion: Real-time 3d recon-
struction and interaction using a moving depth camera”, Proceedings
of the 24th annual ACM symposium on User interface software and
technology, 2011.

[79] “Randomized designs - pydoe 0.3.6 documentation”. (), [Online]. Avail-
able: https://pythonhosted.org/pyDOE/randomized.html#latin-
hypercube.

[81] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A.
Naylor, “OpenMDAO: An open-source framework for multidisciplinary
design, analysis, and optimization”, Structural and Multidisciplinary
Optimization, vol. 59, no. 4, pp. 1075–1104, Apr. 2019. doi: 10.1007/
s00158-019-02211-z.

[82] “Cobyla”. (), [Online]. Available: https : / / handwiki . org / wiki /
COBYLA.

[83] “Slsqp”. (), [Online]. Available: https://qiskit.org/documentation/
stubs/qiskit.algorithms.optimizers.SLSQP.html.

https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1109/TPDS.2018.2872064
https://arxiv.org/abs/1712.03112
https://pythonhosted.org/pyDOE/randomized.html#latin-hypercube
https://pythonhosted.org/pyDOE/randomized.html#latin-hypercube
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://handwiki.org/wiki/COBYLA
https://handwiki.org/wiki/COBYLA
https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.SLSQP.html
https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.SLSQP.html

Image bibliography

[4] M. Kemper, “Leonardo’s laboratory: Studies in flow”, in Nature issue
571, pp. 322–323. doi: 10.1038/d41586- 019- 02144- z. [Online].
Available: https://doi.org/10.1038/d41586-019-02144-z.

[7] “How hydrofoil boat reduce drag force?” (), [Online]. Available: https:
//mfame.guru/wp-content/uploads/2021/05/Hydrofoil.jpg.

[8] “Ship stabilizers and different types of ship stabilizers”. (), [Online].
Available: https://www.marinesite.info/2013/09/ship-stabilizers-
and-different-types-of.html.

[9] W. Frei. “Which turbulence model shoold i choose for my cfd applica-
tion ?” (2017), [Online]. Available: https://www.comsol.com/blogs/
which-turbulence-model-should-choose-cfd-application/.

[11] J. L. Dick. “080830-n-6107d-001 atlantic ocean (aug. 30, 2008) an f/a-
18e super hornet, assigned to the "jolly rogers" of strike fighter squadron
(vfa) 103, reaches the speed of sound near the nimitz-class aircraft car-
rier uss dwight d. eisenhower, cvn-69, during a friends and family day
cruise off the coast of virginia.” (2008), [Online]. Available: https:
//commons.wikimedia.org/wiki/File:An_F-A-18E_Super_Hornet,
_assigned_to_the_%22Jolly_Rogers%22_of_Strike_Fighter_
Squadron_(VFA)_103,_reaches_the_speed_of_sound_near_the_
Nimitz-class_aircraft_carrier_USS_Dwight_D._Eisenhower,
_CVN-69.jpg.

[12] M. Horsky. “Wrc model cfd results”. (2013), [Online]. Available: https:
//mathieuhorsky.wordpress.com/2013/06/29/wrc-model-cfd-
results/.

[23] H. Sturm, G. Dumstorff, P. Busche, D. Westermann, and W. Lang,
“Boundary layer separation and reattachment detection on airfoils by
thermal flow sensors”, Sensors, vol. 12, no. 11, pp. 14 292–14 306, 2012,
issn: 1424-8220. doi: 10.3390/s121114292. [Online]. Available: https:
//www.mdpi.com/1424-8220/12/11/14292.

119

https://doi.org/10.1038/d41586-019-02144-z
https://doi.org/10.1038/d41586-019-02144-z
https://mfame.guru/wp-content/uploads/2021/05/Hydrofoil.jpg
https://mfame.guru/wp-content/uploads/2021/05/Hydrofoil.jpg
https://www.marinesite.info/2013/09/ship-stabilizers-and-different-types-of.html
https://www.marinesite.info/2013/09/ship-stabilizers-and-different-types-of.html
https://www.comsol.com/blogs/which-turbulence-model-should-choose-cfd-application/
https://www.comsol.com/blogs/which-turbulence-model-should-choose-cfd-application/
https://commons.wikimedia.org/wiki/File:An_F-A-18E_Super_Hornet,_assigned_to_the_%22Jolly_Rogers%22_of_Strike_Fighter_Squadron_(VFA)_103,_reaches_the_speed_of_sound_near_the_Nimitz-class_aircraft_carrier_USS_Dwight_D._Eisenhower,_CVN-69.jpg
https://commons.wikimedia.org/wiki/File:An_F-A-18E_Super_Hornet,_assigned_to_the_%22Jolly_Rogers%22_of_Strike_Fighter_Squadron_(VFA)_103,_reaches_the_speed_of_sound_near_the_Nimitz-class_aircraft_carrier_USS_Dwight_D._Eisenhower,_CVN-69.jpg
https://commons.wikimedia.org/wiki/File:An_F-A-18E_Super_Hornet,_assigned_to_the_%22Jolly_Rogers%22_of_Strike_Fighter_Squadron_(VFA)_103,_reaches_the_speed_of_sound_near_the_Nimitz-class_aircraft_carrier_USS_Dwight_D._Eisenhower,_CVN-69.jpg
https://commons.wikimedia.org/wiki/File:An_F-A-18E_Super_Hornet,_assigned_to_the_%22Jolly_Rogers%22_of_Strike_Fighter_Squadron_(VFA)_103,_reaches_the_speed_of_sound_near_the_Nimitz-class_aircraft_carrier_USS_Dwight_D._Eisenhower,_CVN-69.jpg
https://commons.wikimedia.org/wiki/File:An_F-A-18E_Super_Hornet,_assigned_to_the_%22Jolly_Rogers%22_of_Strike_Fighter_Squadron_(VFA)_103,_reaches_the_speed_of_sound_near_the_Nimitz-class_aircraft_carrier_USS_Dwight_D._Eisenhower,_CVN-69.jpg
https://commons.wikimedia.org/wiki/File:An_F-A-18E_Super_Hornet,_assigned_to_the_%22Jolly_Rogers%22_of_Strike_Fighter_Squadron_(VFA)_103,_reaches_the_speed_of_sound_near_the_Nimitz-class_aircraft_carrier_USS_Dwight_D._Eisenhower,_CVN-69.jpg
https://mathieuhorsky.wordpress.com/2013/06/29/wrc-model-cfd-results/
https://mathieuhorsky.wordpress.com/2013/06/29/wrc-model-cfd-results/
https://mathieuhorsky.wordpress.com/2013/06/29/wrc-model-cfd-results/
https://doi.org/10.3390/s121114292
https://www.mdpi.com/1424-8220/12/11/14292
https://www.mdpi.com/1424-8220/12/11/14292

IMAGE BIBLIOGRAPHY 120

[24] Wikipedia. “File:transonic flow patterns.svg”. (), [Online]. Available:
https://commons.wikimedia.org/wiki/File:Transonic_flow_
patterns.svg.

[54] ——, “Machine learning”. (), [Online]. Available: https://en.wikipedia.
org/wiki/Deep_learning#/media/File:AI-ML-DL.svg.

[58] S. Saha. “A comprehensive guide to convolutional neural networks —
the eli5 way”. (), [Online]. Available: https://towardsdatascience.
com/a-comprehensive-guide-to-convolutional-neural-networks-
the-eli5-way-3bd2b1164a53.

[80] Wikipedia. “Signed distance function (sdf)”. (), [Online]. Available:
https://en.wikipedia.org/wiki/Signed_distance_function#
/media/File:Signed_distance_field_duck.svg.

https://commons.wikimedia.org/wiki/File:Transonic_flow_patterns.svg
https://commons.wikimedia.org/wiki/File:Transonic_flow_patterns.svg
https://en.wikipedia.org/wiki/Deep_learning#/media/File:AI-ML-DL.svg
https://en.wikipedia.org/wiki/Deep_learning#/media/File:AI-ML-DL.svg
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://en.wikipedia.org/wiki/Signed_distance_function#/media/File:Signed_distance_field_duck.svg
https://en.wikipedia.org/wiki/Signed_distance_function#/media/File:Signed_distance_field_duck.svg

	Introduction
	Introduction to the physical problem
	Introduction to Artificial Intelligence and its implementation in Fluid Dynamics
	Thesis structure

	Physical Problem
	Flow around an airfoil
	Airfoil operation basics
	Boundary Layer
	Shock Waves

	MaPFlow internals
	Governing equations
	Spatial Discretization
	Temporal Discretization
	Boundary Conditions
	Turbulence Modeling
	Solution of the System
	Deforming Grids

	Mesh Generation

	Artificial Intelligence
	Mimicking the human brain
	Activation Functions
	Introduction to Convolutional Neural Networks
	Training and validation
	Back propagation algorithm
	ADAM optimization algorithm
	Batch Normalization

	Coupling Machine Learning with Fluid Dynamics
	Introduction to DL Algorithms in Fluid Mechanics applications
	 Software used in this Thesis
	Convolutional Neural Network Architecture and Input Generation
	CFD setup
	Project Architecture

	Results and further experimentation
	Initial accuracy results
	Batch size and Networks' flexibility experimentation
	Minibatch size investigation
	Investigating Neural Network's flexibility

	Potential Applications
	A simplistic geometry optimizer

	Conclusions and Future Work
	Conclusion
	Future Work

	Hardware and Software specifics
	Convergence Characteristics and Epoch times for different Batch Sizes
	Pictures of the different Mesh variants

