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Abstract 

The environmental impact of air emissions produced by the maritime industry is being 

reduced by increasing the operating energy efficiency of existing ships. An increasing number 

of vessels are equipped with sensors and devices for monitoring operational behavior, and 

the amount and access to operational data is gradually increasing. Big data analytics can 

drastically improve the ship's performance. With the use of proper data preprocessing 

techniques as well as domain expertise, this research provides an extensive data analytics 

framework for tracking ship performance under localized operational conditions. A data set 

from a containership is used to demonstrate the proposed framework. Due to various reasons 

described in this thesis, the operational data may contain erroneous data points that are 

critical to assess before performing data analysis or building mathematical and statistical 

models. The presented investigation relates to detecting data anomalies, identifying the ship's 

localized operational conditions, calculating the relative correlations among the ship’s 

operational parameters, quantifying the ship's performance in each of the respective 

conditions, and the visual representation and analysis of the results. The innovative aspect of 

this study is the provision of a KPI (i.e., key performance indicator) for ship performance 

quantification in order to determine the optimal performance trim-draft mode under the 

engine modes of the case study ship. The suggested framework can be used as an operational 

energy efficiency measure to provide data quality evaluation and decision support for ship 

performance monitoring that is valuable to both ship operators and decision-makers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Περίληψη 

Οι περιβαλλοντικές επιπτώσεις των ατμοσφαιρικών ρίπων , οι οποίοι παράγονται από τη 

ναυτιλιακή βιομηχανία, μπορούν να μειωθούν με την αύξηση της ενεργειακής 

αποδοτικότητας των υφιστάμενων πλοίων. Πολλά υπάρχοντα πλοία είναι εξοπλισμένα με 

αισθητήρες και συσκευές που στοχεύουν στην συνεχή παρακολούθηση και καταγραφή του 

επιχειρησιακού προφίλ τους. Γι΄αυτό τον λόγο η ποσότητα και η πρόσβαση σε επιχειρησιακά 

δεδομένα εν-λειτουργία πλοίων αυξάνεται σταδιακά. Με την ανάλυση επιχειρησιακών 

δεδομένων μπορεί να βελτιωθεί δραστικά η ενεργειακή απόδοση του πλοίου κατά την 

διάρκεια του κύκλου ζωής του. Στην συγκεκριμένη μελέτη παρουσιάζεται μια καινοτόμος 

μεθοδολογία  ανάλυσης δεδομένων ,με σκοπό την παρακολούθηση και καταγραφή της 

ενεργειακής απόδοσης του υπό μελέτη πλοίου ,υπό συγκεκριμένες επιχειρησιακές συνθήκες, 

μέσω της εφαρμογής κατάλληλων τεχνικών προετοιμασίας και ανάλυσης δεδομένων καθώς 

και την αξιοποίηση της εμπειρικής γνώσης στον τομέα της ναυτιλιακής βιομηχανίας. Ένα 

σύνολο λειτουργικών δεδομένων από ένα υπάρχον πλοίο μεταφοράς εμπορευματοκιβωτίων 

μελετήθηκε για την παρουσίαση και την αξιολόγηση της προτεινόμενης μεθοδολογίας. Για 

διάφορους λόγους που περιγράφονται στην παρούσα εργασία, τα δεδομένα των υπό 

εξέταση λειτουργικών παραμέτρων του πλοίου μπορεί να περιέχουν επισφαλείς μετρήσεις, 

και γι΄αυτό  είναι κρίσιμη η διερεύνηση και η αξιολόγηση των διαθέσιμων μετρήσεων πριν 

την εφαρμογή εξεζητημένων μαθηματικών και στατιστικών μοντέλων ανάλυσης δεδομένων. 

Στο υπό μελέτη σύνολο δεδομένων εξετάζετε η  ανίχνευση και απομόνωση επισφαλών 

μετρήσεων , διερευνάτε το επιχειρησιακό προφίλ του πλοίου υπό τοπικές λειτουργικές 

συνθήκες, προσδιορίζετέ η αλληλεπίδραση και η συσχέτιση μεταξύ συγκεκριμένων 

λειτουργικών παραμέτρων, προσδιορίζετε ποσοτικά η απόδοση του πλοίου σε κάθε μία από 

τις αντίστοιχες τοπικές λειτουργικές συνθήκες και γίνεται η γραφική αναπαράσταση και 

ανάλυση των τελικών αποτελεσμάτων. Η καινοτόμος πτυχή αυτής της μελέτης είναι ο 

υπολογισμός ενός KPI (δηλαδή, καίριου δείκτης απόδοσης) για τον ποσοτικό προσδιορισμό 

της βέλτιστης απόδοσης του πλοίου με σκοπό τον εντοπισμό του καταλληλότερου 

συνδυασμού των λειτουργικών παραμέτρων  τρίμ και βυθίσματος. Η ανάλυση αυτή μπορεί 

να αποτελέσει χρήσιμο οδηγό στην διαδικασία λήψης κρίσιμων αποφάσεων που αφορούν 

τις συνθήκες λειτουργίας ,συντήρησης και φόρτωσης ενός πλοίου και να οδηγήσει στην 

βελτίωση της λειτουργικής αποδοτικότητα τους. 

 

 

 

 

 

 

 

 



 

 
 

Acknowledgments 

The present work is the final requirement for completing my studies at the School of Naval 

Architecture and Marine Engineering of the National Technical University of Athens.  

To begin with, I would like to express my sincere gratitude to all the academic personnel of 

the school and, especially, to my supervisor, Assistant Professor Nikolaos Themelis, for giving 

me the opportunity and inspiration to explore this topic. This diploma thesis would not have 

been possible without his support. Furthermore, I am grateful for his excellent cooperation, 

patience, and guidance throughout the project. 

I want to express my gratitude to my family and friends for their constant encouragement, 

support, and motivation throughout my studies. In addition, I want to thank my colleagues for 

their encouragement and support throughout my studies, with whom I worked side-by-side 

and who inspired me to evolve into a better person and engineer.  

I am also grateful for the data provided by Prisma Electronics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Table of contents 
List of Figures .............................................................................................................................. I 

List of Tables ............................................................................................................................. III 

1. Introduction ........................................................................................................................... 1 

1.1 Data analysis in shipping ................................................................................................. 1 

1.2 Introduction to data analytics ......................................................................................... 2 

1.2.1 Data analytics techniques ......................................................................................... 3 

1.3 Data preprocessing .......................................................................................................... 4 

1.4 Purpose and study structure ........................................................................................... 5 

2. Literature review ................................................................................................................... 7 

3. Methodology ......................................................................................................................... 9 

3.1 Domain knowledge .......................................................................................................... 9 

3.2 Data pattern recognition ................................................................................................. 9 

3.2.1 Histograms .............................................................................................................. 10 

3.2.2 Scatter plots ............................................................................................................ 10 

3.2.3 Density scatter plots ............................................................................................... 10 

3.2.4 Kernel Density Estimation method ......................................................................... 11 

3.3 Data clustering ............................................................................................................... 12 

3.3.1 Types of clustering .................................................................................................. 12 

3.3.2 Types of clustering algorithms ............................................................................... 12 

3.3.3 Investigated clustering methods ............................................................................ 13 

3.3.4 K-MEANS Algorithm ................................................................................................ 13 

3.3.5 Gaussian Mixture Models ....................................................................................... 15 

3.3.6 Expectation-Maximization algorithm ..................................................................... 16 

3.3.7 Clustering evaluation criteria ................................................................................. 17 

3.4 Outlier detection ........................................................................................................... 20 

3.4.1 Types of outliers ..................................................................................................... 20 

3.4.2 Outlier detection methods ..................................................................................... 21 

3.4.3 Common outlier causes .......................................................................................... 21 

3.4.4 Challenges of outlier detection .............................................................................. 22 

3.4.5 Outlier detection method selection ....................................................................... 22 

3.4.6 Principal Component Analysis ................................................................................ 23 

3.5 Visual analytics .............................................................................................................. 24 

3.6 Ship performance quantification ................................................................................... 25 

3.7 Presentation of the calculation framework .................................................................. 26 

3.8 Outlier evaluation algorithms ........................................................................................ 27 



 

 
 

3.8.1 “Outlier evaluation 1” ............................................................................................ 27 

3.8.2 “Outlier evaluation 2” ............................................................................................ 28 

4. Results ................................................................................................................................. 30 

4.1 Introduction ................................................................................................................... 30 

4.2 Data description ............................................................................................................ 30 

4.3 First data anomaly detector .......................................................................................... 31 

4.4 Data pattern recognition ............................................................................................... 36 

4.5 Data clustering ............................................................................................................... 38 

4.6 Clustering evaluation criteria ........................................................................................ 39 

4.6.1 Evaluation of K-means algorithm clustering results ............................................... 40 

4.6.2 Evaluation of gaussian mixture models clustering results ..................................... 42 

4.7 Second data anomaly detector ..................................................................................... 44 

4.8 Exploration of the ship’s localized operational conditions ........................................... 49 

4.9 Data sub-clustering ........................................................................................................ 51 

4.10 Ship performance quantification ................................................................................. 52 

4.11 Outlier evaluation algorithms ...................................................................................... 53 

4.11.1 Outlier evaluation 1 algorithm ............................................................................. 53 

4.11.2 Outlier evaluation 2 algorithm ............................................................................. 57 

4.11.3 Correlation matrices ............................................................................................. 58 

5. Conclusions .......................................................................................................................... 64 

References ............................................................................................................................... 66 

Appendix A: Engine data clustering investigation  .................................................................. 68 

Appendix B: Cluster plots after the second anomaly detector implementation. ................... 69 

PART A: Cluster plots based on k-means algorithm ................................................................ 69 

PART B: Cluster plots based on gaussian mixture models ...................................................... 70 

Appendix C: Exploration of the ship’s localized operational conditions. ................................ 71 

PART A: Slow speed cluster (cluster A) investigation. ............................................................. 71 

PART B: Transient speed cluster (cluster B) investigation ....................................................... 72 

PART C: Service speed cluster (cluster C) investigation. ......................................................... 73 



 

I 
 

 

List of Figures 

Figure 1: Data preparation process bar. ................................................................................................... 4 
Figure 2: Data preprocessing techniques. ................................................................................................ 5 
Figure 3: Abstract flowchart of the proposed framework. ....................................................................... 9 
Figure 4: Data density estimation plots. ................................................................................................. 10 
Figure 5: Kernel Density Estimation Plot. [11] ........................................................................................ 11 
Figure 6: An example of a data set before clustering and after clustering. ............................................ 12 
Figure 7: Gaussian mixture model parameters explained graphically. [16] ........................................... 16 
Figure 8: Elbow plot. [17]........................................................................................................................ 17 
Figure 9: BIC score curve. [18] ................................................................................................................ 19 
Figure 10: Gradient plot of the BIC scores. [18] ...................................................................................... 19 
Figure 11: Steps involved in Principal Component Analysis. ................................................................... 24 
Figure 12: Tight integration of visual and automatic data analysis methods with database technology 

for scalable interactive decision support. [22] ........................................................................................ 25 
Figure 13: Graphical representation of the constructed algorithm. ....................................................... 27 
Figure 14: Propeller shaft power-speed diagram before and after first anomaly detector 

implementation. ..................................................................................................................................... 32 
Figure 15: Propeller shaft power - speed diagram and propeller shaft power - time diagram concerning 

main engine’s fuel consumption zero values. ......................................................................................... 32 
Figure 16: Propeller shaft speed histograms before and after the first anomaly detector 

implementation. ..................................................................................................................................... 33 
Figure 17: Propeller shaft power histograms before and after the first anomaly detector 

implementation. ..................................................................................................................................... 33 
Figure 18: Speed over ground histograms before and after the first anomaly detector implementation.

 ................................................................................................................................................................ 34 
Figure 19: Main engine fuel oil consumption histograms before and after the first anomaly detector 

implementation. ..................................................................................................................................... 34 
Figure 20: Mean draft histograms before and after the first anomaly detector implementation. ........ 35 
Figure 21: Trim histograms before and after the first anomaly detector implementation. ................... 35 
Figure 22: Bivariate colored histogram based on engine data density. ................................................. 36 
Figure 23: Scatterplot combined with univariate histograms and kernel Density Estimation plots. ...... 37 
Figure 24: Data density scatter plot based on engine data (i.e., Propeller shaft power - speed). .......... 37 
Figure 25: K-MEANS Clustering plot based on engine data (i.e., Propeller shaft speed and power). ..... 38 
Figure 26: GMM'S Clustering plot based on engine data (i.e., Propeller shaft speed and power). ........ 39 
Figure 27: Elbow plot for k-means clustering results evaluation. ........................................................... 40 
Figure 28: Gradient values of elbow plot. ............................................................................................... 41 
Figure 29: AIC/BIC information criterion plot. ........................................................................................ 42 
Figure 30: Gradient value of AIC/BIC score. ............................................................................................ 43 
Figure 31: Histogram of Service Speed Cluster Data represented by the Second Principal Component. 44 
Figure 32: Detected data anomalies presented in a discrete-time signal plot. ...................................... 45 
Figure 33: Frequency of detected outliers concerning the time-series format of our data set............... 45 
Figure 34: Graphical representation of Service speed cluster after k-means clustering regarding inlier 

and identified outlier data points. .......................................................................................................... 46 
Figure 35: Graphical representation of Service speed cluster after GMM'S clustering regarding inlier 

and identified outlier data points. .......................................................................................................... 47 
Figure 36: Time series plot of the Main engine operational variables regarding the KMEANS Service 

Speed Cluster identified outlier points. ................................................................................................... 48 
Figure 37: Time series plot of the Main engine operational variables regarding the GMMS Service 

Speed Cluster identified outlier points. ................................................................................................... 48 



 

II 
 

Figure 38: Data density scatter plot of trim/draft variables with respect to Slow Speed Cluster. After 

GMMS (on the left) and K-MEANS clustering (on the right). .................................................................. 49 
Figure 39: Data density scatter plot of trim/draft variables with respect to Transient Speed Cluster. 

.After GMMS (on the left) and K-MEANS clustering (on the right). ........................................................ 50 
Figure 40: Data density scatter plot of trim/draft variables with respect to Service Speed Cluster. After 

GMMS (on the left) and K-MEANS clustering (on the right). .................................................................. 50 
Figure 41: Subclusters plot of Trim-Draft variables concerning Slow Speed Region. After GMMS (on the 

left) and K-MEANS clustering (on the right). .......................................................................................... 51 
Figure 42: Subclusters plot of Trim-Draft variables concerning Transient Speed Region. After GMMS 

(on the left) and K-MEANS clustering (on the right). .............................................................................. 51 
Figure 43: Subcluster plot of Trim-Draft variables concerning Service Speed Region. After GMMS (on 

the left) and K-MEANS clustering (on the right). .................................................................................... 52 
Figure 44: Time series plot of a reasonable individual outlier concerning propeller shaft power 

measurements. ....................................................................................................................................... 54 
Figure 45: Time series plot of an unreasonable individual outlier concerning propeller shaft power 

measurements. ....................................................................................................................................... 54 
Figure 46: Time series plot of three reasonable successive outliers concerning propeller shaft power 

measurements. ....................................................................................................................................... 55 
Figure 47: Time series plot of three unreasonable successive outliers concerning propeller shaft power 

measurements. ....................................................................................................................................... 55 
Figure 48: Time series plot of five reasonable successive outliers concerning propeller shaft power 

measurements. ....................................................................................................................................... 56 
Figure 49: Time series plot of five unreasonable successive outliers concerning propeller shaft power 

measurements. ....................................................................................................................................... 56 
Figure 50: Graphical representation of the outlier evaluation 2 algorithm in the service speed cluster 

after GMMS implementation. ................................................................................................................ 57 
Figure 51: Correlation matrix between the number of identified outlier and seven operational 

parameters of the investigated data set. ............................................................................................... 58 
Figure 52: Correlation matrix between the number of identified outliers and the measured variability in 

the propeller shaft power values. ........................................................................................................... 59 
Figure 53: Correlation matrix between the number of identified outliers and the measured variability in 

the propeller shaft speed values. ............................................................................................................ 59 
Figure 54: Correlation matrix between the number of identified outliers and the measured variability in 

the propeller shaft toque values. ............................................................................................................ 60 
Figure 55: Correlation matrix between the number of identified outliers and the measured variability in 

the Main engine’s fuel oil consumption values....................................................................................... 60 
Figure 56: Correlation matrix between the number of identified outliers and the measured variability in 

speed over ground values. ...................................................................................................................... 61 
Figure 57: Correlation matrix between the number of identified outliers and the measured variability in 

Mean draft values. ................................................................................................................................. 61 
Figure 58: Correlation matrix between the number of identified outliers and the measured variability in 

Trim values. ............................................................................................................................................ 62 
Figure 59:  Correlation matrix between the number of identified outliers and the measured variability 

in wind speed values. .............................................................................................................................. 62 
Figure 60: Time series plot of speed over ground variable concerning the identified engine data 

clusters.................................................................................................................................................... 68 
Figure 61: Graphical representation of Slow Speed Cluster after K-MEANS clustering regarding inlier 

and identified outlier data points. .......................................................................................................... 69 
Figure 62: Graphical representation of Transient Speed Cluster after K-MEANS clustering regarding 

inlier and identified outlier data points. ................................................................................................. 69 
Figure 63: Graphical representation of Slow Speed Cluster after GMM'S clustering regarding inlier and 

identified outlier data points. ................................................................................................................. 70 



 

III 
 

Figure 64: Graphical representation of Transient Speed Cluster after GMM'S clustering regarding inlier 

and identified outlier data points. .......................................................................................................... 70 
Figure 65: Bivariate histogram of trim/draft variables in Slow Speed Cluster. After GMMS (on the left) 

and K-MEANS clustering (on the right). .................................................................................................. 71 
Figure 66: Scatterplot Combined with univariate Histograms and kernel Density Estimation plots for 

trim/draft variables of Slow Speed Cluster. After GMMS (on the left) and K-MEANS clustering (on the 

right). ...................................................................................................................................................... 71 
Figure 67: Bivariate histogram of trim/draft variables in Transient Speed Cluster. After GMMS (on the 

left) and K-MEANS clustering (on the right). .......................................................................................... 72 
Figure 68: Scatterplot Combined with univariate Histograms and kernel Density Estimation plots for 

trim/draft variables of Transient Speed Cluster. After GMMS (on the left) and K-MEANS clustering (on 

the right). ................................................................................................................................................ 72 
Figure 69: Bivariate histogram of trim/draft variables in Service Speed Cluster. After GMMS (on the 

left) and K-MEANS clustering (on the right). .......................................................................................... 73 
Figure 70: Scatterplot combined with univariate histograms and kernel Density Estimation plots for 

trim/draft variables of Service Speed Cluster. After GMMS (on the left) and K-MEANS clustering (on the 

right). ...................................................................................................................................................... 73 

 

 

 

List of Tables 

Table 1: Main ship's particulars. ............................................................................................................. 30 
Table 2: Examined parameters description. ........................................................................................... 30 
Table 3: Ship operational parameters and their minimum–maximum values. ...................................... 31 
Table 4: Number and percentage of identified anomalies based on the second anomaly detector. ..... 47 
Table 5: Ship performance quantification results. .................................................................................. 53 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/panos/Downloads/Thesis_Document.docx%23_Toc121959875
file:///C:/Users/panos/Downloads/Thesis_Document.docx%23_Toc121959875
file:///C:/Users/panos/Downloads/Thesis_Document.docx%23_Toc121959875


Introduction  Panagiotis Georgios Iliopoulos 

1 
 

1. Introduction 

1.1 Data analysis in shipping 

The marine industry is one of many in today's digital age, where competition is severe, and 

businesses are continuously investing in solutions that can help them enhance efficiency while 

cutting overall costs. As a result, commercial shippers and other end users are increasingly in 

demand for cutting-edge solutions like marine data analysis. Big data is utilized in the shipping 

sector to perform predictive analysis, enhance overall ship performance, and increase the 

ship's productivity. In addition, big data analytics is being actively used to improve decision-

making and can be used for the duration of a ship's life to prevent and predict further costs.  

[1] 

By enhancing overall shipping operations, enhancing ship safety, and protecting the 

environment, predictive analytics technologies have the potential to transform the shipping 

sector. The great degree of customization that these solutions provide, depending on the 

particular requirements of any port or shipping company, is also anticipated to support 

demand over the projected period. The demand for freight transport will rise dramatically in 

the upcoming years due to the expansion of globalization. As a result, maritime enterprises 

will increasingly need advanced data processing and predictive analytics to improve 

productivity and cost savings. These elements are fueling global demand for marine analytics. 

[2] 

Big Data in maritime and marine data analytics can essentially be classified into three sections 

based on the type and volume of data generated: 

• Utilizing information from numerous logs, manifests system parameters, bunker 

statistics, etc., to manage vessels. This will involve effective bunkering, better staff 

management, and improved vehicle maintenance using digital twins. 

• Using information kept by port authorities, freight forwarders, trading houses, etc., 

for port and cargo management. This will entail effective cargo handling, 

commodities tracking, port infrastructure improvement, etc. 

• Data from location monitoring systems like AIS and LRIT, photos from ships, coastal 

and space radars, optical sensors, etc., are used in the analysis of spatial imaging. 

Soon, this will also encompass effective routing, fleet tracking, traffic pattern analysis, 

anomaly detection, etc. 

Even if the shipping industry acknowledges the importance of data analysis for decision-

making in areas like reduction in fuel consumption and improving the vessels’ environmental 

footprint, there are many challenges they have yet to overcome in order to establish a data-

driven culture as it is moving towards digitalization. [3] 

Some of them are summarized down below: 

• Data transfer: Ships frequently have a huge number of sensors inside. Data transfer 

from the sensors is a significant source of uncertainty. Every sensor has a unique 

connection bandwidth requirement, so it's critical to have appropriate data 

transmission for each sensor to send its data to the database. High-tech 

communication technologies can help to accelerate the rate of data transport. 
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• Data Accuracy: Interpretation mistakes could arise from insufficient data. All new 

entries will be too many for the database to keep up with. Therefore, the data should 

preferably be free from errors. A major issue for the sector will be data quality. 

• Data Integration: The marine sector currently uses inconsistent and frequently 

erroneous data collection methods. For analysis, it will be necessary to integrate data 

from several sources. To monitor the performance of the ship, for instance, fuel 

usage, GPS data, and engine data would need to be combined. 

The shipping industry must address these challenges to drastically improve the quality of 

available data. This will require critical investments in technological equipment. Remote 

networks should be used to collect data from ships autonomously using sensors. A robust 

wireless network with high transmission capabilities is required for the shipping industry. The 

real-time sensor data will come to the database and be distributed to the interested parties 

giving them up-to-date information on what is happening onboard. Data management needs 

to be considered as well. It is necessary to store and structure the data effectively after data 

acquisition, especially when dealing with big data sets. Sophisticated data storage systems 

and technologies need to be implemented for the storage and distribution of the data for 

further and more detailed analysis. After improving the quality of the available data, advanced 

data analytics techniques need to be considered. A comprehensive description of data 

analytics is presented in the next paragraphs. 

1.2 Introduction to data analytics 

Data analytics has just recently been incorporated into the maritime industry. So, there is a 

lot of research yet to be done before engineers conclude effective and easily interpreted ways 

to manage and analyze vessel data. The main phases of data analysis, followed by the four 

most fundamental data analytics categories, are described below. A short description of data 

analytics techniques is given afterward.  [4] 

Data analysis involves various phases, including: 

• Identifying the data requirements or how the data is grouped is the first stage. Data 

might be divided based on the ship’s operational profile, loading conditions, weather 

conditions, or other factors. Data values could be categorical or numerical. 

• The process of gathering data is the second phase in data analytics. Multiple tools, 

including speed sensors, pressure sensors, mass flow meters, anemometers, and 

others, can be used to accomplish this. 

• Data must first be structured so that it may be studied after it has been collected. A 

spreadsheet or other software tool that can handle statistical data may be used for 

this. 

• After then, the data is cleaned up for analysis. This indicates that it has been cleaned 

up and double-checked to make sure there is no duplicate, errors, or missing 

information. Before the data is sent to a data analyst for analysis, this stage aids in the 

correction of any inaccuracies, and it’s called the data preparation process. 

Four fundamental categories of data analytics are distinguished. 

• Descriptive analytics: This explains what has occurred over a specific time period. 

• Diagnostic analytics: Ιt reflects an understanding of why something happened to the 

system. This requires more varied data inputs as well as some speculation.  
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• Predictive analytics: This shifts to what is most likely going to occur soon.  

• Prescriptive analytics: This offers suggestions on how to proceed. 

Nowadays, due to enormous volumes of data, new data analytics methods are being 

investigated. A worth-mentioned category is visual analytics which aims to Synthesize 

information and derive insight from massive, dynamic, ambiguous, and often conflicting data. 

Research in visual analytics is very diverse and combines a number of related fields, including 

statistics, data fusion, data management, visualization, data mining, and cognitive science 

(among others). There is more to visual analytics than just visualization. Instead, it can be 

thought of as a comprehensive strategy for making decisions that integrates data analysis, 

human factors, and visualization. The difficulty lies in determining the best-automated 

algorithm for the analysis task at hand, identifying its limits where further automation is not 

possible, and then developing a tightly integrated solution that effectively integrates the best-

automated analysis algorithms with suitable visualization and interaction techniques. 

Although some of this research has been done in the visualization field in the past, there hasn't 

been much application of sophisticated knowledge discovery techniques. To radically alter 

that is the goal of visual analytics. This will assist in keeping the emphasis on the proper aspect 

of the issue and offer solutions to issues that we have previously been unable to address. 

1.2.1 Data analytics techniques 

Data analysts can process data and extract information using a variety of analytical 

methodologies and techniques. Below is a list of some of the most widely used techniques. 

[4] 

• Regression analysis comprises examining the relationship between dependent 

variables to determine whether a change in one may have an impact on a change in 

another. 

• In order to perform factor analysis, a huge data collection must be reduced to a 

smaller data set. This strategy is to look for hidden trends that would have been more 

challenging to spot otherwise. 

• The practice of dividing a data collection into groups of related data is known as 

cohort analysis. This enables data analysts and other data analytics users to go deeper 

into the statistics relevant to certain subsets of data. 

• Monte Carlo simulations simulate the likelihood that various events will occur. These 

simulations, which frequently include many values and variables and frequently have 

better-predicting abilities than other data analytics techniques, are frequently utilized 

for risk reduction and loss prevention. 

• Time series analysis examines data across time and establishes a connection between 

a data point's value and its occurrence. This method of data analysis is frequently 

employed to identify cyclical patterns or to forecast financial outcomes. 

As illustrated in Figure 1 below, before moving to more detailed data analysis after the data 

structure, a data preprocessing framework shall be implemented. This aims to improve the 

quality of the data by removing outliers, handling missing values, etc. In the next paragraph, 

we will discuss more details about the Data Preprocessing framework.  
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Figure 1: Data preparation process bar. 

1.3 Data preprocessing 

Data preprocessing, a part of data preparation, refers to any type of processing done on raw 

data to get it ready for another data processing technique. It has historically been a crucial 

first stage in the data mining process. Data preprocessing approaches have lately been 

modified for the training of AI and machine learning models as well as for gaining insights 

about them. Data mining, machine learning, and other data science tasks can more quickly 

and effectively analyze data that has undergone data preprocessing. In order to get correct 

results, the techniques are typically applied early in the machine learning and AI development 

pipeline.[5] 

Real-world data is unorganized and frequently generated, processed, and stored by a variety 

of people, business procedures, and software programs. A data set may therefore be 

incomplete, contain manual input errors, contain duplicate data, or use several names to 

represent the same thing. That’s why data used to train machine learning or deep learning 

algorithms it’s important to be automatically preprocessed. 

The main steps in data preprocessing are described as follows: 

• Data profiling: Data profiling is the process of looking at, evaluating, and reviewing 

data to gather statistics on its quality. It begins with an analysis of the qualities of the 

currently available data. Data scientists find the data sets that are relevant to the issue 

at hand, list their important characteristics, and make a hypothesis about which 

properties would be pertinent for the suggested analytics or machine learning 

assignment. Additionally, they think about which preprocessing libraries might be 

employed and tie data sources to the necessary business principles. 

• Data cleansing: Here, the goal is to identify the simplest way to address quality 

issues, such as removing inaccurate data, completing data gaps, or generally ensuring 

that the raw data is appropriate for feature engineering. 

• Data transformation: Here, data scientists consider how various data elements might 

be arranged to best serve the objectives. This may entail actions like structuring 

unstructured data, grouping significant variables where it makes sense, or choosing 

crucial ranges to focus on. 

• Data integration: the process of putting together data from diverse sources into a 

single, unified view for effective data management, acquiring insightful 

understanding, and making effective decisions. 

• Data compression: Raw data collections typically contain redundant data that results 

from categorizing occurrences in many ways, as well as data that is unrelated to a 

certain ML, AI, or analytics application. Principal component analysis and other data 

reduction techniques are used to simplify the raw data so that it is more acceptable 

for specific use cases. 
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• Data validation: Data validation refers to the process of making sure that data is 

accurate and of high quality. In order to assure the logical consistency of input and 

stored data, it is implemented by including a number of checks in a system or report. 

The main techniques of data preprocessing are summarized in Figure 2. 

 

 

Figure 2: Data preprocessing techniques. 

1.4 Purpose and study structure  

Data availability in shipping is continuously increasing. However, fleet managers and marine 

superintendents often fail to identify complex data patterns and gain useful insights from the 

available data. It is also challenging for them to integrate data analysis into the decision-

making process. The neglected area of data quality for the ship’s operation and performance 

analysis is the main reason for this issue, and little attention has been given to this matter in 

the scientific literature. Even though there are many available studies in detailed data analysis 

with complex statistical and machine-learning models, little attention has been given to the 

prepossessing of the available data prior to their analysis. This study aims to investigate the 

available data preprocessing techniques, with the main goal of improving the quality of the 

available data before their analysis.  

Most scientific research concerning ship performance analysis mainly focuses on ship 

performance quantification through consecutive time intervals, neglecting the effect that 

other operational variables, such as weather or loading conditions, may have on the ship’s 

performance. Additionally, the presented study aims to quantify the ship’s performance under 

specific localized operational conditions. 
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Domain knowledge is incorporated into every step of the presented study since the little 

emphasis given to the existing literature failed to highlight its importance in data 

preprocessing and ship performance analysis. 

To sum up, the overall purpose of the diploma thesis is to present a data preprocessing 

framework for ship performance quantification under localized operational conditions 

concerning domain knowledge. The proposed framework is capable of: a) detecting and 

isolating existing data anomalies in the available data set, b) investigating the ship’s localized 

operational profile, and c) measuring the ship’s performance under specific localized 

operational conditions. 

The thesis structure is organized as follows. In the first chapter, an introduction to data 

analysis and data preprocessing in the maritime industry is given, followed by a brief literature 

review in chapter 2. An in-depth analysis of the proposed methodology is presented in chapter 

3, accompanied by the corresponding mathematical equations and the constructed algorithm 

flowchart. The results of the suggested methodology are reviewed in chapter 4, along with 

the available interpretation of the corresponding outcome in each step of the proposed 

framework. The final conclusions are summed up in chapter 5. 
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2. Literature review 

In Perera and Mo’s publication [6], a marine engine-centered data analytics framework is 

presented. Gaussian mixture models appliance is collectively proposed as part of the 

framework with the expectation-maximization algorithm (ΕΜ). This study includes the data 

set's three parameters (Shaft speed, ME power, and fuel consumption). Data points that stand 

for slow-moving conditions are extracted from data analysis. Statistical analysis is used for the 

identification of engine propeller operating regions. The combinator diagram is used in 

considering engine-propulsion interactions. ME power and Shaft speed variables are used for 

developing the combinator diagram in a high-dimensional space concerning other navigation 

variables.  

Also, Perera and Mo [7] proposed a structure for identifying ship power performance under 

relative wind conditions using statistical data analysis and visualization approaches. The 

selective data are investigated with the purpose of data outliers and data anomalies 

detection. These anomalies are isolated and cleaned to further measure vessel performance 

and navigation conditions. For predicting accurate ship speed and motion conditions along a 

voyage, relative wind profiles along the shipping route and ship model tests are proposed. 

Also, multiple visualization methods are presented in this study, targeting the extraction of 

applicable information for ship performance quantification and data anomaly detection. 

Statistical data analysis is presented with the ship’s main navigation parameters. The 

combined plots of the individual parameters are utilized for pattern recognition throughout 

each data set and form an effective technique for data cleaning, resulting in a better 

representation of speed-power performance. 

In their research [8], Perera presented a framework for sensor and data acquisition (DAQ) 

fault detection based on statistical filters. An analysis of the principal components is used to 

determine hidden paths in the data set and anomaly values in DAQ concerning a particular 

operating region. Perera reports that a model learning approach can efficiently deal with large 

data sets. The respective principal components are presented in descending order. The most 

important information is shown on the top PCs, and the least important information is on the 

bottom PCs. In this study, two parameters monitor condition is presented. Firstly, the 

respective thresholds used for sensor and DAQ fault identification are discussed. Then, the 

PCA method is implemented for the title of the sensor and DAQ faults detection, which are 

within the thresholds. Then, the data set is presented with two new parameters based on two 

principal components. It's worth noting that the bottom PC identifies all fault situations. Ship 

performance and navigation data cluster are further analyzed by considering the vessel's main 

engine. A normalized data set consists of ten parameters associated with ship performance 

and navigational data. Statistical distributions are used to present the PCs derived from PCA. 

The value of three standard deviations ( 3σ ) is defined as the threshold limit, so every data 

point beyond this range is considered an outlier. Sensor and DAQ faults are subdivided from 

A to S windows for a more detailed investigation. The parameter variation under each fault 

window and the separate filter that each fault situation is noted are presented. Results are 

summarized in a table that displays the filter numbers versus the fault windows. 

 Dalheim and Steen [9] proposed a data preparation framework for ship operation and 

performance investigation. Therefore, this paper offers a structure for unifying the maximum 

physical interpretable data preprocessing strategies that are easy to use, identifies the order 

in which the respective method should be implemented, and logically connects all relevant 
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facts. Feature selection is the first stage in the proposed data preparation framework. As the 

next step, time vector jumps, and synchronization should be considered. A mathematical 

approach for coping with time synchronization is also presented. The primary purpose of this 

approach is to select the most representative time reference for the whole data set. It also 

ensures that the final time reference tries to obtain maximum overlap with its parent time 

vector. Finally, a brief introduction to signal synchronization when the time vector is 

unavailable is presented. An outlier detection method is also presented in this study, and the 

outlier detection method is separated into four blocks, each used to identify a specific type of 

outlier. In the first block, domain knowledge is implemented. In the second block, repeated 

values are determined. And in the third and fourth blocks, dropouts and spikes are 

respectively placed. Data validation is the last step in the presented data preparation 

framework. Using this method ensures that erroneous data are removed from ship 

performance analysis. Two methods for data extraction are presented in this study. The first 

one is port-to-port trips to avoid low-speed maneuvering conditions in the port. The second 

method involves a steady-state detector to identify stationary portions of the in-service data 

measurement. 
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3. Methodology 

The proposed framework is aimed at preprocessing and analyzing data effectively to monitor 

ship performance under specific operational conditions. Domain knowledge has been 

incorporated into every step of this process. The techniques that have been examined can be 

briefly described as follows: Data pattern recognition, Data Clustering, Outlier detection, 

Visual analytics, and Ship performance analysis. 

A flowchart illustrating the steps that must be implemented to achieve the final goal of ship 

performance quantification under localized operational conditions is provided in  Figure 3. 

 

Figure 3: Abstract flowchart of the proposed framework. 

3.1 Domain knowledge 

It is crucial to pinpoint the importance of domain knowledge in our investigation. In data 

science, the term domain knowledge refers to the general background knowledge of the field 

or environment in which data science methods are applied. Our case involves knowing the 

ship's operational profile. Every vessel operates in a specific range, so knowing our ship's 

behavior can help us better understand the outcomes of our implemented Statistics and 

machine-learning models. For example, the ship's speed and propeller shaft power are non-

linearly related. The total ship's resistance is proportional to the square of the ship's velocity, 

and the propeller's shaft power is proportional to the cube of the propeller's shaft speed 

(propeller law). So, domain knowledge guide and intervenes in the data preparation process 

when necessary. Domain knowledge is required to specify the minimum and maximum values 

of parameters. These numbers represent the parameters' typical range of values. Whenever 

the data points exceed the minimum and maximum thresholds, data anomalies are detected 

and eliminated. 

3.2 Data pattern recognition 

Various data density estimation methods are explored in this framework. For example, 

Histograms, scatter plots, density scatter plots, and the interesting case of the Kernel Density 

Estimation method, which is based on the Probability Density Function. Examples of various 

data estimation methods and plots are presented in Figure 4. The aforementioned methods 

are assigned in the research literature as exploratory data analysis. These techniques aim to 

identify structures and regularities in data, which can later be classified based on statistical 

information or knowledge gained from patterns and their representation. 
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3.2.1 Histograms 

A frequency distribution shows how often each different value in a set of data occurs. A 

histogram is the most used graph to show frequency distributions. There are many types of 

histograms. We mainly use bivariate histograms, which allow us to group data in 2-d bins.  

 

3.2.2 Scatter plots 

In a scatter plot, dots are used to show the values of two different numerical variables. The 

placement of each dot on the horizontal and vertical axes indicates an individual data point's 

values. To see how other variables relate to one another, utilize scatter plots. Finding different 

data patterns can be done using a scatter plot. We can categorize data points into groups 

based on how closely sets of points cluster together. If there are any unexpected gaps in the 

data or any outlier points, scatter plots might also expose them.  

 

Figure 4: Data density estimation plots. 

 

 

3.2.3 Density scatter plots 

A sort of two-dimensional histogram that displays the number of points in each plot section is 

called a density scatterplot. It is mainly used when the plotted data in the scatter plot are too 

dense to get a good impression of the distribution of the data.  
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3.2.4 Kernel Density Estimation method 

The Kernel Density Estimation is a mathematical process for estimating the probability density 

function of a random variable. It produces a smooth empirical pdf based on individual 

locations of all sample data. Such a pdf estimate seems to better represent the "true" pdf of 

a continuous variable. In kernel estimating, two ideas are fundamental: kernel function form 

and coefficient of smoothness, the latter of which is essential to the approach. In this 

application, Kernel Density Estimation is used to gain insights into the properties of the data. 

Let (x1, x2, ..., xn) be independent and identically distributed samples drawn from some 

univariate distribution with an unknown density ƒ at any given point x. We are interested in 

estimating the shape of this function ƒ. Its kernel density estimator is 

 

f h (x) =  
1

ℎ
 ∑ 𝑘ℎ(𝑥 − 𝑥𝑖)𝑛

𝑖=1 = 
1

𝑛ℎ
 ∑ 𝑘( 

𝑥−𝑥𝑖

ℎ
𝑛
𝑖=1  )       (3.1) 

 

where K is the kernel — a non-negative function — and h > 0 is an explored parameter called 

the bandwidth, K(x) = ϕ(x), where ϕ is the standard normal density function. In principle, the 

Κernel can be any valid probability density function but the usual choice is the gaussian one. 

[10] 

An example of a kernel density plot along with the individual gaussian kernels is presented in 

Figure 5. 

 

 
Figure 5: Kernel Density Estimation Plot. [11] 

https://deepai.org/machine-learning-glossary-and-terms/random-variable
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Kernel_(statistics)#In_non-parametric_statistics
https://en.wikipedia.org/wiki/Standard_normal
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3.3 Data clustering 

The goal of cluster analysis or clustering is to organize a collection of objects into groups that 
are more similar (in some ways) to one another than to objects in other groups (clusters). 
Clustering only required the data set to have data points without being provided with the 
labels (unsupervised learning). Clustering is one of the most common exploratory data analysis 
techniques used for pattern recognition and will provide us with useful findings about our 
data's behavior. A clustering example is presented in Figure 6. 

3.3.1 Types of clustering 

In general, there are two clustering types: 

• Hard Clustering: Data points in hard clustering either belong to a cluster completely 

or not. 

• Soft Clustering: In soft clustering, a probability or likelihood of each data point being 
in those clusters is assigned rather than placing each data point into a separate 
cluster. 

 

 
Figure 6: An example of a data set before clustering and after clustering. 

3.3.2 Types of clustering algorithms 

Connectivity models: These models, as their names imply, are based on the idea that data 

points that are closer to one another in a data space show greater similarity than those that 

are farther apart. There are two possible approaches for these models. In the first method, 

they begin by grouping every data point into a different cluster and then aggregate them as 

the distance grows less. The second method partitions the data as the distance grows after 

classifying all the data points into a single cluster. Choosing a distance function is also an 

individual decision. Although fairly simple to understand, these models cannot handle large 

datasets due to their lack of scalability. These models include the hierarchical clustering 

technique and its variations. [12] 
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Centroid models: These techniques for iterative clustering get the idea of similarity from how 

near a data point is to the centroid of the clusters. One well-known algorithm that fits this 

description is the k-means clustering algorithm. It is crucial to have prior knowledge about the 

dataset in these models since the number of clusters needed at the conclusion must be 

specified beforehand. In order to locate the local optimum, these models run iteratively.[12] 

Distribution models: The idea behind these clustering models is how likely it is for all the data 

points in the cluster to belong to the same distribution (For example: Gaussian). Overfitting 

affects these models frequently. Gaussian Mixture Model and the Expectation-Maximization 

algorithm, which employs multivariate normal distributions, are well-known examples of 

these models. [12] 

Density models: These models look for regions in the data space where there is a variety in 

the density of data points. The data points are assigned to the same cluster after the system 

isolates different density zones. DBSCAN and OPTICS are common examples of density 

models. [12] 

3.3.3 Investigated clustering methods 

In this framework, two data clustering techniques are proposed, the K-Means algorithm and 

Gaussian Mixture Model. Although K-Means is an easy and quick clustering method, it might 

not accurately represent the heterogeneity in the data set. Complex patterns can be found 

using Gaussian Mixture Models, which can then be sorted into cohesive, homogenous 

components that closely resemble the data set's actual patterns. Therefore, it is of actual 

interest to implement both algorithms and evaluate their results based on similarities and 

differences. Βy using K-Means and GMM's clustering methods, Ship's localized operational 

profiles are further investigated. A key step in this process is clustering the examined data by 

engine modes, utilizing domain knowledge and data density estimation plots. The identified 

engine data clusters are further divided into sub-clusters regarding the identified trim-draft 

modes of each cluster. The spotted sub-clusters represent the ship’s localized operational 

conditions. They are particularly useful for quantifying the ship's performance under its 

localized operational conditions, which can provide many insights into its operational profile. 

[12] 

3.3.4 K-MEANS Algorithm 

The k-Means algorithm establishes the presence of clusters by finding their centroid points. A 
centroid point is the average of all the data points in the cluster. By iteratively assessing the 
Euclidean distance between each point in the dataset, each one can be assigned to a cluster. 
The centroid points are random, to begin with, and will change each time as the process is 
carried out. K-means is commonly used in cluster analysis, but it has a limitation in being 
mainly useful for scalar data.[13], [14] 

K-Means Algorithm [14]: 

1. Indicate K, the number of clusters. 

2. Choose K random data points for the centroids without replacing them after 

shuffling the dataset. 
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3. Continue iterating until the centroids remain unchanged. In other words, the clusters 

to which the data points are assigned remain the same. 

• Calculate the total of the squared distances between each centroid and the 

data points. 

• Assign each data point to the nearest cluster (centroid). 

• Calculate the centroids for each cluster by averaging all the data points that 

make up that cluster. 

K-Means uses the Expectation-Maximization strategy to resolve the iteration problem. The 

data points are assigned to the closest cluster in the E-step. The centroid of each cluster is 

calculated in the M-step. Here is how we can resolve it mathematically, in detail. [13], [14] 
 

The objective function is: 

                                                𝐽 = ∑ ∑ 𝑤𝑖𝑘
𝐾
𝑘=1

𝑚
𝑖=1 ‖𝑥𝑖 − 𝜇𝑘‖

2
                        (3.2) 

 

Where 𝑤𝑖𝑘 = 1 for data point 𝑥𝑖 if it belongs to cluster k, otherwise, 𝑤𝑖𝑘 = 0. Also, 𝜇𝑘 is the 

centroid of 𝑥𝑖’s cluster. 

It's a two-part minimization problem. First, we treat 𝜇𝑘  as fixed and minimize J with respect to 

𝑤𝑖𝑘. Then, we assume 𝑤𝑖𝑘  as fixed and minimize J with respect to 𝜇𝑘. Technically, we 

differentiate J regarding 𝑤𝑖𝑘 first and update cluster assignments (E-step). After the cluster 

assignments from the previous phase, we differentiate J with respect to μk and recompute the 

centroids (M-step). As a result, E-step is: 

 

                                                 
𝜗𝐽

𝜗𝑤𝑖𝑘
= ∑ ∑ 𝑤𝑖𝑘

𝐾
𝑘=1

𝑚
𝑖=1 ‖𝑥𝑖 − 𝜇𝑘‖

2
                                               (3.3) 

 

                                     → 𝑤𝑖𝑘 = {1    𝑖𝑓 𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗 ‖𝑥𝑖 − 𝜇𝑗‖
2

0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                                          (3.4) 

Assign the data point 𝑥𝑖 to the cluster that is closest to it, as determined by its sum of 

squared distances from its centroid. 

And M-step is: 

                                       
𝜗𝑗

𝜗𝜇𝜅
= 2 ∑ 𝑤𝑖𝑘(𝜒𝑖 − 𝜇𝜅) = 0𝑚

𝑖=1                                                          (3.5) 
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                                → 𝜇𝜅 =  
∑ 𝑤𝑖𝑘𝑥𝑖𝑚

𝑖=1

∑ 𝑤𝑖𝑘
𝑚
𝑖=1

                                                                                   (3.6) 

Which corresponds to recalculating each cluster's centroid to account for the new 

assignments. 

3.3.5 Gaussian Mixture Models 

Gaussian mixture models are a type of machine learning algorithm that is commonly used 

in data science. It is also a probabilistic model that assumes all the data points are generated 

from a mix of Gaussian distributions with unknown parameters. A Gaussian mixture model 

can be used for clustering. GMMs can be used to find clusters in data sets that may not be 

clearly defined.[13], [15] 

The Gaussian distribution of a 𝑑-dimensional vector 𝑥 is defined as : 

 

            𝑁(𝜒/𝜇, 𝛴) =
1

√2𝜋 𝑑 |𝛴|
  exp (−

1

2
(𝑥 − 𝜇)𝛵𝛴−1(𝜒 − 𝜇))                                  (3.7) 

where μ is a mean vector and Σ  is a covariance matrix. 
The probability given in a mixture of  Κ Gaussians is defined as: 

 

         p(x)=∑ πκ
K
K=1 Ν (Χ / μκ , Σκ )                                                                                             (3.8) 

 

where each Gaussian density 𝑁(𝜒/μκ , Σκ ) is called a component of the mixture with its mean 

vector μκ  and covariance Σκ for the 𝑘𝑡ℎ Gaussian component,𝜋𝜅 is the prior probability of the 

𝑘𝑡ℎ Gaussian, 𝜋𝜅 is also defined as the mixing coefficients with the constraint that  

∑ 𝜋𝜅
𝜅
𝜅=1 =1.(3.9) 

 

Let us now illustrate these parameters graphically in Figure 7. In which three Gaussian 

functions are presented. Each one interprets the data contained in each of the three existing 

clusters. As mentioned before the mixing coefficients, are themselves probabilities and must 

meet the condition ∑ 𝜋𝜅
𝜅
𝜅=1 =1. 

https://vitalflux.com/category/machine-learning
https://vitalflux.com/category/data-science
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Figure 7: Gaussian mixture model parameters explained graphically. [16] 

 

3.3.6 Expectation-Maximization algorithm 

The expectation-maximization algorithm is an approach for performing maximum likelihood 

estimation in the presence of latent variables. It does this by first estimating the values for the 

latent variables, then optimizing the model, then repeating these two steps until convergence. 

It is an effective and general approach and is mostly used for density estimation with missing 

data, such as clustering algorithms like the Gaussian Mixture Model. [15], [16] 

Step 1: Initialize 𝜇k, 𝛴k, 𝜋k, and evaluate the initial value of the 
Log-likelihood. 

Step 2: (Expectation step): Use the current values for parameters to evaluate the posterior 
probabilities, or the responsibilities γ(znk) which is taken by component 𝑘 for explaining the 
observation of data point 𝑥n : 
 

                                               γ(znk)=
𝜋𝜅 𝑁(𝑋𝑛  / 𝜇𝜅, 𝛴𝜅) 

∑ 𝜋𝑗
𝐾
𝑗=1 𝑁(𝑋𝑛  / 𝜇𝑗, 𝛴𝑗) 

                                        (3.10) 

 
Z is a latent variable that takes only two possible values. It is one when x came from Gaussian 
k, and zero otherwise. 
 
Step 3: (Maximization step): Re-estimate the parameters using the current responsibilities: 
 

                                   μκnew =
1

𝛮𝛫
∑ 𝛾(𝛧𝑛𝑘)𝑥𝑛

𝛮
𝑛=1                                                                (3.11) 

 Σκnew =
1

𝛮𝛫
∑ 𝛾(𝛧𝑛𝑘)(𝑥𝑛 −𝛮

𝑛=1 𝜇
𝜅
𝑛𝑒𝑤 ) (𝑥𝑛 − 𝜇𝜅

𝑛𝑒𝑤 )Τ     (3.12) 

                                                    𝜋𝜅
𝑛𝑒𝑤  =

𝑁𝐾

𝑁
                                                                                           (3.13) 

Where 

                             NK = ∑ 𝛾(𝛧𝑛𝑘
𝑁
𝑛=1 )                                                                              (3.14) 

 
𝑁𝑘 can be interpreted as the effective number of points assigned to cluster 𝑘. 
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Step 4: Evaluate the log-likelihood: 

 
    ln p(X /π, μ, Σ)= ∑ 𝑙𝑛𝛮

𝑛=1  (∑ 𝜋𝑘
𝐾
𝑘=1  Ν (χn / μκ , Σκ ))                                              (3.15) 

 

and check for convergence of either the parameters or the log-likelihood. If the convergence 

criterion is not satisfied, get back to Step 2. 

3.3.7 Clustering evaluation criteria 

As already stated, in order to perform clustering analysis with the K-means algorithm and 

GMM model, the number of clusters needs to be predefined. The best number of clusters in 

the specific application is determined based on data density plots and domain knowledge. The 

available literature has also proposed mathematical approaches for identifying the optimum 

number of clusters and evaluating the clustering results. Some of them will be implemented 

in the specific framework to examine the effectiveness of data density plots in identifying the 

optimum number of clusters. 

Elbow method 

The first method, which will be examined, is the most well-known method in cluster validation 

literature, and it’s called the “elbow” method. The “elbow” method uses the sum of squared 

distance (SSE) to choose an ideal number of clusters (k) based on the distance between the 

data points and their assigned clusters. We would select a value of k where the SSE begins to 

flatten out, and we see an inflection point. When visualized, this graph would look somewhat 

like an elbow, hence the method's name. 

An example of an elbow plot is presented in Figure 8: 

 

Figure 8: Elbow plot. [17] 
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This plot shows that the number of optimal clusters (k) is four. Initially, the SSE, within-cluster 

variance, decreases with an increase in cluster number. However, after a particular point, k=4, 

the SSE value starts flattening. So, there is no added value in increasing the number of clusters. 

Therefore, the number of clusters corresponding to that point, k=4, should be considered the 

optimal number of clusters. The ”Elbow” method is an easily applicable measure for 

identifying the optimum number of clusters, but sometimes it can be hard to interpret the 

plotted results. That’s why it’s considered a subjective measure of clustering validation. [17] 

AIC/BIC Criterion 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are considered to 
evaluate the clustering results of the implemented GMM model. The simplest way to choose 
the best model that fits the data is to compare all the competing models and select the one 
with the highest likelihood. However, the maximization of likelihood can lead to an overfitting 
of the model to the data with additional degrees of freedom. That’s why a more robust and 
accurate criterion, which penalizes the use of extra free parameters, is needed. That can be 
achieved by using the Information criterion tests, such as Akaike Information Criteria (AIC) and 
the Bayesian Information Criteria (BIC), commonly used in Astrophysics literature. Information 
criteria are likelihood-based measurements of model fit with a penalty for complexity 
(specifically, the number of parameters). Different information criteria can favor various 
models and can be recognized by how the penalty is formed. 
 
The AIC compares models from the perspective of information entropy, as measured by 
Kullback-Leibler divergence. The AIC for a given model is : 
 
                                                          AIC=2q – 2ln(L)                                                                  (3.16) 

 
The BIC compares models from the decision theory perspective, as measured by expected 

loss. The BIC for a given model is  

                                                         BIC = ln(n)q - 2ln(L)                                                          (3.17) 

 
Where n is the number of observations, q is the number of parameters learned by the model, 

and L is the maximized value of the likelihood function of the model. In both cases, a lower 

value denotes the better model. 

Although information criteria penalize the models with a large number of clusters, there are 

many cases in which the greater the number of clusters, the lower the AIC/BIC value. So 

overfitting cannot always be avoided. In such cases, an additional technique is implemented 

to calculate the gradient of the AIC/BIC scores curve. Comparing the gradient values of the 

AIC/BIC score curve can reveal the optimum number of clusters. Such an example is given in 

Figure 9, in which we notice that the greater the number of clusters, the lower the BIC score. 

That can cause overfitting to the model. 
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Figure 9: BIC score curve. [18] 

 

That’s why the gradient value of the BIC score curve is calculated and plotted in Figure 10, and 

it can be noticed that after the cluster size of seven, the gradient becomes almost constant. 

So, the BIC scores in the original function are decreasing much gentler. That leads to the 

conclusion that there is little gain in increasing the number of clusters. So, according to this 

technique, the ideal number of clusters is six (6). 

 

 

 

Figure 10: Gradient plot of the BIC scores. [18] 

 



Methodology  Panagiotis Georgios Iliopoulos 

20 
 

3.4 Outlier detection 

In actual data sets, it frequently occurs that some observations deviate from the norm. These 

observations are referred to as outliers. Observations that are outliers may be errors, or they 

may have been acquired under unusual circumstances. They, therefore, do not accurately suit 

the model. Understanding how to spot these outliers is crucial for the final quality of the data 

set.  [19], [20] 

3.4.1 Types of outliers 

Relevant to machine learning models, there are three basic categories of outliers. Each type 

differs in terms of the ability to detect anomalous data and the characteristics that set the 

data point apart from the rest of the data collection. For outlier analysis, types are crucial 

since each type has a unique pattern to look for.  

The three main types of outliers are: 

• Point outliers 

A point outlier is a single data point that falls beyond the dataset's normal operational range. 

Within the dataset, there may be a definite pattern, trend, or grouping; an outlier as a data 

point will be very distinct from this. Point outliers are frequently the result of a measurement 

or data entry error. 

• Contextual outliers 

A data point that significantly deviates from the dataset only when seen in a particular context 

is known as a contextual outlier. A dataset's context may change seasonally or shift in response 

to larger trends or human activity. When the context of the dataset changes, a contextual 

outlier will become apparent. This could be due to seasonal variations in the weather, the state 

of the economy, modifications in consumer behavior around important holidays, or simply the 

time of day. A contextual outlier may therefore appear to be a typical data point in other 

situations. 

• Collective outliers 

A group of data points that deviates significantly from the overall dataset's trends is referred 

to as a collective outlier. A collective outlier's individual data points might not appear to be 

outliers in terms of point or context. Anomaly patterns are only visible when the data points 

are seen as a group. Because of this, collective outliers may be the most challenging kind of 

outlier to spot. Collective outliers play a crucial role in machine learning's notion of drift 

monitoring. A series of data has deviated from the model's predicted behavior. 

There are machine learning methods for a wide variety of applications. The type of data and 

potential outlier will change depending on the model, whether it is trained to cluster engine 

data or to identify operational regions with the lowest fuel oil consumption. Outlier detection 

is fundamentally divided into three broad categories based on how outliers are detected. 

 

 



Methodology  Panagiotis Georgios Iliopoulos 

21 
 

3.4.2 Outlier detection methods 

• Statistical Methods 

Finding the extreme values in the data can be done by simply beginning with a visual study of 

the Univariate data using Boxplots, Scatter plots, Whisker plots, etc. Calculate the z-score, 

which represents how far away from the sample mean the standard deviation (σ) times the 

data point is, presuming a normal distribution. We can recognize data points that are more 

than three times the standard deviation as outliers because we know from the Empirical Rule 

that 68% of the data falls within one standard deviation, 95% percent within two standard 

deviations, and 99.7% percent within three standard deviations from the mean. Another 

approach would be to treat outliers that are more than 1.5 times the first or third interquartile 

range (IQR) as a criterion. 

• Proximity Methods 

Proximity-based methods utilize clustering techniques to locate each cluster's centroid and 

identify the clusters in the data. If an object's closest neighbors are far away from it in feature 

space, deviating noticeably from the proximity of the majority of the other objects to their 

neighbors in the same data set, they are assumed to be outliers. The typical method is as 

follows: Set a threshold, measure each data point's separation from the cluster centroid, then 

exclude any outliers before continuing with the modeling. As obvious as it may seem, the 

metric chosen to measure distance has a significant impact on the effectiveness of these 

models. The disadvantages include the possibility of difficulty in determining the appropriate 

distance measure for some particular problem types. Another issue is that it is less reliable 

when the outliers are clustered together. Two categories of proximity-based approaches are 

recognized: Data points are evaluated using distance-based approaches based on how far they 

are from their neighbors. The density-based approach interprets the behavior of data groups 

based on their local density. Proximity-based outlier detection approaches include DBScan, k-

means, and hierarchical clustering. 

• Projection Methods 

By exploiting linear correlations, projection methods map the data into a lower-dimensional 

subspace using techniques like Principal Component Analysis. Post that, the distance of each 

data point to a plane that fits the sub-space is calculated. Then, the outliers can be identified 

using this distance. Methods for projecting values are intuitive, simple to use, and can draw 

attention to minor values. The PCA-based method analyzes the features that are currently 

accessible to decide what constitutes a "normal" class. The module then applies distance 

metrics to identify cases that represent anomalies. 

3.4.3 Common outlier causes 

Machine learning algorithms and models are trained using a variety of several sorts of data. 

Particularly if data needs to be prepared and labeled, as, in supervised machine learning, a 

human mistake can frequently be the cause of outliers. However, there can be outliers as a 

result of measurement or data extraction problems in all kinds of datasets and machine 

learning use cases. 
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Common causes of outliers in machine learning include: 

• Human error when entering or labeling data. 

• Errors in measuring or collecting the data. 

• Errors in data extraction, processing, or manipulation. 

• Man-made outliers for testing outlier detection processes. 

• Natural occurrences of outliers that aren’t errors, which can be called dataset 

novelties. 

3.4.4 Challenges of outlier detection 

1. Effective Identification 

An outlier can be defined in a very specific way, depending on the application scenario and the 

domain. Often, the difference between normal observations and outliers is quite narrow, and 

even a little misinformation can result in an outlier being treated as a regular observation. As a 

result, we must be extremely careful while choosing the outlier identification approach to 

handle the outliers. 

         2. Application-Specific Challenges 

As previously said, selecting the similarity or distance metric as well as the relationship model 

to represent data objects is crucial for outlier detection. Sadly, they are frequently application-

specific. As an illustration, datasets from the medical industry may have outliers that are even 

slightly off from the rest of the dataset. Different applications may have quite different needs. 

Consequently, it is necessary to create specialized outlier identification techniques for a 

particular application. 

3. Handling Noise 

Noise in the data tends to be similar to the actual outliers and hence is difficult to distinguish 

and remove them from harmful outliers. Since noise in the data often resembles true outliers, 

it can be challenging to separate it from harmful outliers. We must comprehend that outliers 

and noise are two distinct things that differ from one another. Additionally, because noise can 

frequently and clearly be present in all types of data collected, it can pose several difficulties 

for outlier detection by distorting the distinction between regular observations and outliers. 

Outlier objects are hidden by noise, which reduces the effectiveness of the method used to 

find them. 

3.4.5 Outlier detection method selection 

Effective outlier detection can be a real challenge in many real-world applications. This can 

happen due to various types of outliers that are difficult to identify and due to the complexity 

of the data, making it harder to distinguish regular data points from outliers. However, many 

methods are available to deal with any outlier point. The technique used in this case for outlier 

detection is Principal Component Analysis (PCA). This simple method can be applied in a 

machine learning model and is effective in identifying complex outliers. 
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3.4.6 Principal Component Analysis 

Principal component analysis (PCA) is a technique for reducing the dimensionality of large 
datasets, increasing interpretability while minimizing information loss. It does so by creating 
new uncorrelated variables that successively maximize variance. 

Accordingly, "preserving as much variability as possible" entails identifying new uncorrelated 
variables, linear functions of the original dataset's variables, and successively maximizing 
variance. Solving an eigenvalue/eigenvector problem is how the principal components (PCs), 
these new variables, are identified. 

PCA implementation is essential in our data set because smaller data sets are easier to explore 
and visualize and make analyzing data much easier and faster for machine learning algorithms 
without extraneous variables to process.  [21] 

PCA Algorithm  

• Standardization 

This stage standardizes the range of the continuous initial variables with the intention of 
ensuring that each one contributes equally to the analysis. Standardization must be done 
before PCA because the latter is very sensitive to variations in the initial variables. That is, if 
there are significant differences in the initial variable ranges, the variable with the larger range 
will take precedence over the variable with the smaller range. 

 
Mathematically, this can be done by subtracting the mean and dividing it by the standard 
deviation for each value of each variable. 
 

Z = 
𝑣𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 
Once the standardization is done, all the variables will be transformed to the same scale. 
 
 

• Covariance matrix computation 

In other words, this step's goal is to determine whether there is any link between the variables 

in the input data set and how they differ from the mean relative to one another. Because 

variables can occasionally be highly connected in a way that causes them to contain redundant 

information. Therefore, we compute the covariance matrix to find these relationships. 

• Compute the eigenvectors and eigenvalues of the covariance matrix to identify the 
principal components 

Principal components are new variables constructed as linear combinations or mixtures of the 

initial variables. As a result of these combinations, the new variables (i.e., principal 

components) are uncorrelated, and most of the information in the initial variables is squeezed 

into the first components. Principal components are the lines that, geometrically speaking, 

encompass most of the information in the data and reflect the directions of the data that 

account for the greatest amount of variance. The eigenvectors are computed and sorted by 
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their eigenvalues in descending order to find significant principal components. Simply defined, 

principal components are new axes that offer the greatest perspective for seeing and 

analyzing the data, making the differences between the observations easier to see. 

•  Feature vector 

In this step, we decide whether to keep all of these components or discard any that have low 
eigenvalues and create a matrix of vectors that we refer to as the "Feature vector" using the 
ones that are left. Therefore, the feature vector is just a matrix with the eigenvectors of the 
components that we choose to maintain as columns. This makes it the first step towards 
dimensionality reduction since the final data set will only have p dimensions if we decide to 
keep only p eigenvectors (components) out of n. 

•  Recast the data along the principal components’ axes  

The goal of this final step is to reorient the data from the original axes to those represented 

by the principal components using the feature vector created using the eigenvectors of the 

covariance matrix. This can be done by multiplying the transpose of the original data set by 

the transpose of the feature vector. 

The steps of the Principal Component analysis are summarized in  

Figure 11: 

 

Figure 11: Steps involved in Principal Component Analysis. 

 

3.5 Visual analytics 

Visual analytics combines automated analysis techniques with interactive visualizations for a 

practical understanding, reasoning, and decision-making based on extensive and complex 

data sets. 

The goal of visual analytics is the creation of tools and techniques to enable people to: 

• Synthesize information and derive insight from massive, dynamic, ambiguous, and often 

conflicting data. 

• Detect the expected and discover the unexpected. 

• Provide timely, defensible, and understandable assessments. 

• Communicate assessment effectively for action. 
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Figure 12: Tight integration of visual and automatic data analysis methods with database technology for scalable 
interactive decision support. [22] 

Visual analytics is more than just visualization. It can rather be seen as an integral approach 
to decision-making, combining visualization, human factors, and data analysis. A challenge lies 
in determining the best-automated algorithm for the analysis task at hand, identifying its 
limitations that cannot be further automated, and developing an integrated solution that 
integrates the best-automated analysis algorithms with appropriate interaction and 
visualization techniques. Visual analytics can help us better understand our data. By visualizing 
the enhanced data, we can determine the relationships or correlations among ship 
performance and navigation characteristics under localized operational conditions. MATLAB 
has extended capabilities for data visualization and analysis. This analysis uses interactive 
plots and more sophisticated charts to extract as much information as possible.[22] 

3.6 Ship performance quantification 

Evaluating the Ship’s performance requires a good amount of qualitative data obtained in our 
case in the data preprocessing framework as mentioned above. The interpreted results of ship 
performance analysis can be a practical guide for the Ship’s captain, crew, and operators. For 
quantifying a ship’s performance considering localized operational conditions, two selected 
key performance indicators (KPIs) are proposed. The proposed KPIs are calculated in each 
subcluster (trim-draft) mode concerning the identified clusters (engine modes). 

The resulting KPI for ship performance quantification can be expressed as: 

• KPIai = 
𝑃𝑖

𝑛𝑖
3 : It corresponds to the propeller curve coefficient. When the KPI’s value 

decreases, the vessel’s performance increases since less engine power is required 
to maintain constant shaft revolutions, and greater rpm can be achieved for the 
same level of engine power. 

Where: Pi, is the propeller’s shaft power [KW] and ni is the propeller’s shaft speed [RPM].               

i corresponds to the ship’s localized operational conditions. 

• KPIbi = 
FCi

Di
 : Is the representation of the ship’s main engine fuel consumption per 

nautical mile. When the KPI’s value decreases, the vessel’s performance increases 
since less fuel oil is consumed for the same traveled distance, and greater distance 
is covered for the same fuel oil consumption. 
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Where: FCi=FCavg,i x ti   [Ton/day],   Di = SOGavg,i x ti [NM]. 
 
FCi is the main engine (ME) fuel consumption (cons) [ton], FCavg, i is the average ME fuel cons 

[ton/day], Di is the traveled distance [NM], ti is the time traveled [day], and SOGavg,I is the 

average speed over ground (SOG) [NM/h] under the respective localized operational condition 

i, correspondingly. For the sake of unit, consistency can be rewritten as follows. 

 

KPIbi = 
𝐹𝐶𝑎𝑣𝑔,𝑖

24 𝑆𝑂𝐺𝑎𝑣𝑔,𝑖
 

 

3.7 Presentation of the calculation framework 

After presenting all the methods which are investigated in this analysis, a brief introduction 

to the structure of the proposed algorithm is going to be given. 

Once the investigation vessel's operational data has been collected, the first anomaly detector 

is applied. The first anomaly detector defines the minimum-maximum values that each 

investigated parameter can obtain. The used thresholds are based on domain knowledge, 

specifically in identifying the physical range of the investigated parameters and the ship's 

operational limitations. Additional limitations are imposed in the propeller shaft speed and 

power parameters to exclude measurements that apply to the ship's maneuvering conditions 

from the investigating data set. Afterward, the data density plots are utilized to identify 

regularities and patterns in the engine data, i.e. (propeller shaft speed and power). K-means 

algorithm and Gaussian Mixture model clustering methods are applied in the engine data set. 

The number of clusters needs to be predefined in both clustering methods. The optimum 

number of clusters is selected based on domain knowledge and the implemented data density 

plots. Note that the "Elbow" method and AIC/BIC information criteria are utilized to evaluate 

KMEANS and GMMS clustering implementation, respectively. Once the data set is divided into 

clusters, the second anomaly detector is deployed to detect outlier points in each data set. 

The second anomaly detector is based on principal component analysis since the engine data 

are transformed and projected into principal axes. The detected outliers are isolated and 

omitted from the respective engine data cluster. Data density plots are presented again in 

order to gain insights into the behavior of trim-draft parameters and identify the optimum 

number of clusters under the respective engine mode. Trim-draft data are classified into 

subclusters concerning each engine mode cluster. These sub-clusters represent the ship's 

localized operational conditions. A KPI index is calculated under each trim-draft mode in order 

to quantify the ship's performance. The optimum trim-draft mode is identified based on the 

KPI analysis. Identifying and analyzing the ship's localized operational conditions is vital since 

hidden data patterns and underlying parameter correlations may be distinguished. It is also a 

robust and versatile way to identify the optimum operating range of the investigated ship's 

parameters. Finally, two extra algorithms are presented to evaluate the second data anomaly 

detector results. The first is based on assessing each outlier point individually, and the second 

is in evaluating the detected outliers in groups. There is also an attempt to explain why these 

outliers occur.   

In the flowchart down below (Figure 13), we see every step of this algorithm in sequential 

order. 
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Figure 13: Graphical representation of the constructed algorithm. 

 

3.8 Outlier evaluation algorithms 

The first and the second anomaly detector isolate and exclude the detected outliers in the 

data set. As already stated, the second anomaly detector is based on Principal Component 

Analysis to identify the existing outliers effectively and comprehensively. After integrating the 

presented framework, the results of the second anomaly detector are further investigated to 

evaluate if the algorithm marked the emerged outlier points correctly. Also, an attempt to 

explain what causes these outliers is based on their time position and the correlation between 

the investigated operational variables, and the number of identified outliers. For the specific 

application, we construct two algorithms. The first is called “Outlier evaluation 1”, and the 

second is called “Outlier evaluation 2”.  

3.8.1 “Outlier evaluation 1” 

The “Outlier evaluation 1” algorithm examines the detected outliers individually in a time 

series order.  

Let DATAnXm be a matrix, where n represents the number of observations and m represents 

the parameters in the investigated data set after the first data anomaly detector 

implementation. 

Let d be a list of the identified outlier data points of a particular parameter’s signal, which are 

contained in the DATAnXm matrix, and t a list of the data points’ time stamps. 

Then di, i=1,…,n is the i-th element of the list d, and ti, i=1,…,n is the corresponding i-th 

timestamp, and n is the number of the identified outlier points by the second anomaly 

detector. Also, di-1 and di+1 are the consecutive points of the di outlier point. 

The absolute difference between the identified outlier value and its previous measured value, 

plus the absolute difference between the identified outlier value and its occurring measured 
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value, is calculated. The corresponding values are marked as adi, i=1,…,n, and are stored in a 

vector called DIFF1Xn , DIFF= [ad1,..,adi,…,adn] 

Then the maximum value of the DIFF1Xn vector is identified, and the corresponding outlier 

point, along with its timestamp, is presented in a time-series plot, along with ten previous 

points and ten successive points, so as to give the end-user a sense of the particular 

parameters’ signal local behavior. Next, the identified outlier is plotted with green color and 

considered a “reasonable outlier” point since the difference between the specific outlier and 

its consecutive points is the maximum observed within the cluster. Finally, the regular data 

points are plotted with blue color. 

The exact process is followed for the minimum value of the DIFF1Xn vector. But with the 

difference that, the identified outlier point is plotted with red color and considered an 

“unreasonable outlier” point since the difference between the specific outlier and its 

consecutive points is the minimum that can be observed in the cluster. 

At that point, we need to highlight that the outlier designations are objective, and the main 

goal of the presented algorithm is to give the end user a sense of the behavior of the outlier 

data points in a time-series plot. Furthermore, the principal component analysis is well known 

for detecting outliers based on the mean and standard deviation of a whole set of data, which 

includes many different operational parameters rather than just the consecutive 

measurement of a single parameter.  

In addition, it is essential to note that the algorithm has been designed so that the end user 

can choose from a variety of cluster types, such as (slow, transient, and service), along with 

the corresponding clustering method (KMEANS, GMMS). The algorithm can also be adjusted 

to simultaneously examine more than one outlier data point. As a result, the final plots can 

include several "reasonable" or "unreasonable" consecutive outliers. This modification can 

give the end user a greater sense of the local behavior of the identified outliers in a time-series 

format. The algorithm can also be modified to examine outlier points in between the minimum 

admin and maximum admax values. 

3.8.2 “Outlier evaluation 2” 

The “Outlier evaluation 2” algorithm collectively evaluates the detected outliers based on a 

time series order. 

Let DATAnXm be a matrix, where n represents the number of observations and m represents 

the parameters in the investigated data set after the first data anomaly detector 

implementation. 

Let d be a list of the identified outlier data points of a particular parameter’s signal, which are 

contained in the DATAnXm matrix, and t a list of the data points’ time stamps. 

Then di, i=1,…,n is the i-th element of the list d, and ti, i=1,…,n is the corresponding i-th 

timestamp, and n is the number of the identified outlier points by the second anomaly 

detector. 

The data set is sorted into eleven equally spaced time groups, and the sum of the detected 

outliers in each group is calculated. Afterward, a time-series plot is presented, split into eleven 

sections containing the corresponding data group. Red lines delimit the sections. The 
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distinctiveness of this plot is that the sections that contain a sufficient number of detected 

outliers are marked with dark red color, and the sections which contain very few outliers are 

marked with light red color. The color intensity depends on the number of identified outlier 

data points. So, it becomes easier for the end user to decide visually the groups that contain 

a lot of outliers and those that contain fewer outliers and consequently to identify the time 

period when these outliers occur. Finally, a histogram presents the calculated sums of the 

detected outliers in each group. Also, the detected outliers are presented in ascending time 

order by blue pulses in a signal plot. 

After visualizing the detected outliers in a time series plot, the “Outlier evaluation 2” algorithm 

examines what caused these outlier points to occur. In order to achieve that, the mean values 

for the main operational parameters in each of the eleven date-time groups of the data set 

are calculated. Then, the correlation between the mean values and the number of the 

identified outlier data points of the respective groups is calculated and plotted for every 

investigated parameter. In this way, the algorithm reveals any possible connections between 

the number of the identified outliers and the measured values of each parameter. For 

example, if the mean value of the trim parameter is higher in the groups that contain a lot of 

outliers and lower in the groups that include only a few outliers, the measured correlation 

between these two variables will be close to 1. That can strongly indicate that higher trim 

values cause more outlier points. 

The “Outlier evaluation 2” algorithm can also investigate the connection between the ship’s 

main operational parameters and the number of the identified outlier data points to a greater 

degree. That can be done by calculating the correlation between the variability in each main 

operational parameter and the number of the identified outliers for the eleven date-time 

groups.  

The following variability measures are being used in the specific application:  

• Range: the difference between the highest and lowest values 

• Interquartile range: the range of the middle half of a distribution 

• Standard deviation: average distance from the mean 

• Variance: average of squared distances from the mean 

This way, the algorithm can reveal the connection between the ship’s operational parameters 

variability and the identified number of outlier points. For example, groups with many outlier 

points display high variability in wind speed measurements. That possibly means that sudden 

changes in weather conditions can spark more outlier points in the final data set. 
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4. Results 

4.1 Introduction 

In this chapter, the results of the proposed framework are presented. Below are the minimum-

maximum values of the navigation parameters imposed by the first anomaly detector, 

followed by data density plots of the engine data (i.e., propeller shaft speed and propeller 

shaft power). Afterward, we present the plots of the K-Means and GMM clustering methods. 

A scatter plot and a consecutive table highlight both clustering methods’ second anomaly 

detector outcome. Next, data density plots and clustering implementation plots represent the 

ship's localized operational modes. Afterward, Ship performance quantification results and 

visual analytics are displayed with the respective tables and figures. Finally, the two 

constructed algorithms, outlier evaluation 1 and outlier evaluation 2, are presented to assess 

the efficiency of the second anomaly detector.  

For the specific application, a data set from a containership was obtained. The main 

characteristics of the investigated containership are presented in Table 1. 

Table 1: Main ship's particulars. 

Main Ship’s particulars 

Length B.P 199.00 (m) 
Breadth 30.20   (m) 
Depth 16.70   (m) 
Draft 11.50   (m) 
TEU 2550 

Engine type: Hyundai-Wärtsilä 7RTA72U-B M.C.R : B.H.P (kW):21560 / 99.0 R.P.M 
 

4.2 Data description 

This application obtained a data set of fifteen ship operational parameters (navigation, 

engine data, etc.). This time series data set contains data measurements from mid-

December 2016 till late December 2017, with a sampling rate of 1 minute. Table 2 below 

presents the physical quantities that were examined in the respective data set. 

Table 2: Examined parameters description. 

Measured physical quantity Parameter name Units 

Speed over ground SOG Knots (kn) 

Propeller shaft speed PSS revolutions per minute (rpm) 

Propeller shaft power PSP kilowatts (kW) 

Draft mean DM meters(m) 

Trim T meters(m) 

Main engine’s fuel oil 

consumption 

MEFOC                                                 

Tons/day 

Propeller shaft torque PST kilonewton meters (kN*m) 

Wind Speed WS Meters per second (m/s) 
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4.3 First data anomaly detector 

It was discovered that numerous data points were erroneous during the deployment of the 

first data anomaly detector, which is based on domain knowledge. For example, many Main 

Engine (ME) fuel consumption measurements are identified with zero values while their 

physical value should be different. These points were characterized as outliers and removed 

from the data set. In addition, all data points with propeller shaft Power and Shaft Speed 

measurements less than 3000kW and 60 rpm were excluded from the study because they 

were considered to correspond to not an open-sea operation (e.g., port maneuvers). These values 

were isolated and omitted from the data set. A percentage of 24.33 % of the data points were 

omitted from the original data set during the first anomaly detector implementation. 

The minimum and maximum values of the navigation parameters, which are based on domain 

knowledge, are shown in Table 3.  

 

Table 3: Ship operational parameters and their minimum–maximum values. 

 

Figure 14 shows the propeller shaft power - Speed diagram before and after the First Anomaly 

Detector implementation. There are two main regions in this plot where outliers have been 

identified. Outlier points are detected in the first region, which is in the bottom-left of the 

diagram, and are prompted by thresholds applied to propeller shaft power and propeller Shaft 

Speed measurements. There is a second smaller region on the right, which is prompted by 

some zero values in fuel consumption measurements, as identified by the respective 

thresholds. The interesting case of zero values in fuel consumption measurements is further 

investigated in Figure 15. In which the identified zero fuel consumption values are presented 

in the propeller shaft power-speed diagram on the left and in the propeller shaft power-time 

diagram on the right in red color. According to the right plot in Figure 15, the data acquisition 

system acquired the second region measurements in a relatively short time. As a result, we 

assume that there was an error in the specific system during that period. 

Parameter Unit Min-value Max-value 

Propeller shaft power [kW] 3000 21560 

Propeller shaft speed [rpm] 60 100 

Main Engine (ME) fuel oil consumption (cons) [Ton/day] 1 100 

Speed over ground (SOG) [Knots] 2 25 

Average (Avg) draft [m] 0 11.5 

Trim [m] -2 4 

Propeller shaft torque [kN*m] 0 - 

Wind Speed [m/s] 0 - 
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Figure 14: Propeller shaft power-speed diagram before and after first anomaly detector implementation. 

 

 

 

 

Figure 15: Propeller shaft power - speed diagram and propeller shaft power - time diagram concerning main 
engine’s fuel consumption zero values. 

The histograms for each of the examined parameters before and after the first anomaly 

detector implementation are presented in the left and the right plot, respectively. The black 

dotted lines represent the applied thresholds of the first anomaly detector, which are based 

on domain knowledge. The propeller shaft speed, propeller shaft power, speed over ground, 

main engine fuel oil consumption, mean draft, and trim histogram plots are presented in 

Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, and Figure 21 correspondingly. 
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Figure 16: Propeller shaft speed histograms before and after the first anomaly detector implementation. 

 

 

Figure 17: Propeller shaft power histograms before and after the first anomaly detector implementation. 
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Figure 18: Speed over ground histograms before and after the first anomaly detector implementation. 

 

 

 

 

Figure 19: Main engine fuel oil consumption histograms before and after the first anomaly detector 
implementation. 
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Figure 20: Mean draft histograms before and after the first anomaly detector implementation. 

 

 

 

Figure 21: Trim histograms before and after the first anomaly detector implementation. 
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It is worth noting that most measurements of the respected parameters fall within the applied 

thresholds, except for the lowest data points of the propeller shaft power and shaft speed 

parameters, which are set to exclude maneuvering conditions from the investigated data set. 

So, the main volume of the excluded data points is marked as maneuvering measurements. It 

is also visible in the presented histograms that the observed values of the speed over ground 

measurements are approximately between 8 and 22 knots, higher than the 2 knots lower limit 

we imposed during the first anomaly detector. 

4.4 Data pattern recognition 

The bivariate histogram is utilized to visualize the behavior of our data about the propeller 

shaft power-Speed variables. The Kernel Density Estimation Function is considered afterward 

with the main goal of giving us insights into the number of clusters in our data combined with 

univariate histograms into a scatterhist plot. Lastly, a density scatter plot is regarded to give a 

better insight into the density of our data. The results are presented in Figure 22, Figure 23, 

and Figure 24, respectively. 

 

 

 

 

 

Figure 22: Bivariate colored histogram based on engine data density. 
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Figure 23: Scatterplot combined with univariate histograms and kernel Density Estimation plots. 

 

 

Figure 24: Data density scatter plot based on engine data (i.e., Propeller shaft power - speed). 

 

In the above figures, it is noticed that there are specific areas with high-density data and some 

others with low-density data. The bivariate histogram is very insightful about the frequency 

of the examined data. In the scatterhist plot, it is worthwhile to note that the histogram plot 

and kernel density estimation function follows the same trend, so the insights provided by 

these plots are nearly identical. It is primarily due to MATLAB's automated binning algorithm 
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that reveals the shape of the underlying distribution with high accuracy in histogram plots. 

Lastly, the Data Density plot depicts very accurately the density of our data in a 2-D space 

making this plot informative and comprehensible at the same time. 

4.5 Data clustering  

Approximately three components (clusters A, B, and C) may be distinguished from the density 

estimation of the engine data, as illustrated in Figure 22, Figure 23 and Figure 24. Among 

these, clusters A and C represent the two primary engine operating modes, the slow speed 

mode and the service speed mode. Whereas the data points which are included in cluster B 

represent a transient engine condition. Therefore, K = 3 was recommended as the number of 

components (i.e., the number of clusters) for the K-Means algorithm and GMMs. Clustering 

results are presented in Figure 25 and Figure 26. 

 

 

Figure 25: K-MEANS Clustering plot based on engine data (i.e., Propeller shaft speed and power). 
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Figure 26: GMM'S Clustering plot based on engine data (i.e., Propeller shaft speed and power). 

 

It is observed in Figure 25 and Figure 26 that the clustering results in implemented methods 

are similar but not identical. That may be due to differences in the mathematical approaches 

of these methods. The Euclidean distance, the within-cluster similarity measure in K-Means, 

cannot detect complex non-linear usage patterns in the data set. The main difference 

between these methods is that K-means uses a deterministic approach and assigns each data 

point to a unique cluster. This is referred to as the hard clustering method. GMM uses a 

probabilistic approach and gives the probability of each data point belonging to any of the 

clusters. This is referred to as the soft clustering method. Two clustering evaluation 

techniques are deployed for clustering assessment as presented in chapter 4.6. Also, a time 

series plot is shown in Appendix A: to manifest the behavior of the speed over ground 

parameter after the clustering implementation to the engine data. 

4.6 Clustering evaluation criteria  

The clustering results are further investigated as described in chapter 3.3.7. The optimum 

number of clusters is also identified based on heuristic and information criteria for the K-

means algorithm and gaussian mixture models, respectively. 

 

 

 

 



Results  Panagiotis Georgios Iliopoulos 

40 
 

4.6.1  Evaluation of K-means algorithm clustering results 

The elbow plot method is implemented to evaluate the clustering results of the k-means 

algorithm, as presented in Figure 27. The investigated range of clusters for that specific case 

varies from 1 to 10. It is evident that when the number of clusters rises, the sum of squared 

distances within clusters is reduced. But after the third cluster, the respective value gradually 

decreases. As a result, according to this method, the k-means algorithm works best for three 

clusters. Also, at this point, the ‘’elbow shape’’ is presented. 

 

 
Figure 27: Elbow plot for k-means clustering results evaluation. 

 

Another way to identify the optimum number of clusters is to calculate the gradient values 

of the elbow plot so as to be informed about the magnitude difference of two consecutive 

points. The individual results are presented in Figure 28. 
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Figure 28: Gradient values of elbow plot. 

 

As expected, all the gradients have negative values. But We can notice that after the fourth 

cluster, the gradient becomes almost constant, so the ideal number of clusters for this data 

set is three. 
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4.6.2 Evaluation of gaussian mixture models clustering results 

For Gaussian mixture model clustering, the AIC/BIC criterion is investigated. The lowest 

calculated AIC/BIC score for a range of clusters depicts the best fit for the model. 

 

Figure 29: AIC/BIC information criterion plot. 

 

In Figure 29, it is evident that the greater the number of clusters, the better the model should 

be. Unfortunately, that causes overfitting to our data, and it's one of the major disadvantages 

of these criteria. One way to overcome this problem is to calculate the Gradient of the AIC/BIC 

score curves. The calculated Gradient of the AIC/BIC score is depicted in Figure 30. 
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Figure 30: Gradient value of AIC/BIC score. 

 

As expected, all the gradients have negative values. But we see more clearly that starting from 

a cluster size of four, the gradient becomes almost constant, i.e., the original function has a 

gentler decrease, i.e., there is not much gain in increasing the number of clusters. In short, 

this technique suggests we use three clusters. 
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4.7 Second data anomaly detector 

After dividing the data into clusters, the second data anomaly detector was set up and used. 

The results of the Second anomaly detector implemented in the Service Speed cluster after 

the K-MEANS clustering algorithm are first analyzed.   As already stated, the second anomaly 

detector was based on Principal Component Analysis, where the first components contain the 

most information and the last components contain the least information. Then our data were 

projected along the principal component axes. It should be noted that the proper threshold 

values were -3σ and 3σ, where σ is the standard deviation of the corresponding data 

distribution. Data points that are greater than specified values are marked as anomalies by 

this detector. Several abnormalities are found in this regard, as demonstrated in Figure 31. 

 

Figure 31: Histogram of Service Speed Cluster Data represented by the Second Principal Component. 

 

A graph is also presented in Figure 32, in which pulses represent outlier data points. Our 

analysis shows that outliers are highly concentrated in some areas, whereas in other areas, 

there are only a few detected outlier points. That can be justified by the fact that sensor 

measurements are more vulnerable in unsteady and harsh weather operational conditions 

(areas with high concentrations of outliers) in comparison with more steady weather 

operating conditions (areas with low concentrations of outliers). This is also supported by 

Figure 33, which displays a histogram of detected outliers in relation to the time-series format 

of our data set. 
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Figure 32: Detected data anomalies presented in a discrete-time signal plot. 

 

 

Figure 33: Frequency of detected outliers concerning the time-series format of our data set. 

 In Figure 34, the Service Speed Cluster after the K-MEANS algorithm and Second Anomaly 
Detector implementation is presented. The identified outliers are marked with red color and 
the regular data points with green color. It is observed that the identified outliers are located 
on the edge of the cluster where the detected data density is low. That’s one of the main 
characteristics of outlier points, so we conclude that the Second Anomaly Detector efficiently 
identified the existing outlier points. 
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Figure 34: Graphical representation of Service speed cluster after k-means clustering regarding inlier and 
identified outlier data points. 

 

In Figure 35, the Service Speed Cluster after the GMMS model and Second Anomaly Detector 
implementations are presented. The identified outliers are marked with red color and the 
regular data points with green color. It is observed that the identified outliers are located on 
the top edge of the cluster where the detected data density is low. Most of the detected 
outlier points identified in the KMEANS Service Speed Cluster and GMM’S Service Speed 
Cluster are identical. The existing differences are attributed to the differences in the structure 
of the clusters.  

The graphical representations of Slow and Transient Speed Clusters for K-MEANS and GMMS 
clustering methods regarding inlier and identified outlier data points are presented in 
Appendix B:. 
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Figure 35: Graphical representation of Service speed cluster after GMM'S clustering regarding inlier and identified 
outlier data points. 

The total number and the percentage of the identified outliers for each of the three engine 

modes for both Clustering methods are summarized in Table 4. Finally, the detected outlier 

points are omitted from the respective cluster to improve the quality of the data set and 

proceed with further analysis of the ship’s performance under specific localized operational 

conditions. 

Table 4: Number and percentage of identified anomalies based on the second anomaly detector. 

             Clustering Method 
 
Engine Operating Region 

K-Means Algorithm Gaussian Mixture Model 

Identified 
Anomalies 

Percentage 
(%) 

Identified 
Anomalies 

Percentage       
(%) 

Slow Speed Region 1709 1.48 % 698 0.60 % 

Transient Speed Region 779 0.88 % 936 0.92 % 

Service Speed Region 1117 1.28 % 955 1.3 % 

The percentage of identified outliers varies depending on the clustering method. A significant 
percentage difference is noticed in the Slow Speed Region, as expected. In this cluster, the 
results of clustering deviate the most. In the other two clusters, the percentages of identified 
outliers converge because the structure of the identified clusters also converges. In total, 3605 
outlier points are detected in K-MEANS Service Speed Cluster, 39.2% more than 2589  
detected outlier points in GMM’S Service speed cluster. That difference is attributed to the 
inadequacy of the K-MEANS algorithm to detect complex data clusters in comparison with 
GMM’S model, which can identify hidden data patterns and return robust results in complex 
data sets. So, we consider the results of the second anomaly detector more reliable in GMM 
clustering. 
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To further explore the efficiency of the Second Anomaly Detector and the outlier’s behavior, 
Visual analytics are applied. The detected anomaly points for the KMEANS Service speed 
Cluster are presented in a time-series plot, as shown in Figure 36  and in Figure 37 for GMMS 
Service Speed Cluster. 

 

Figure 36: Time series plot of the Main engine operational variables regarding the KMEANS Service Speed Cluster 
identified outlier points. 

  

 

Figure 37: Time series plot of the Main engine operational variables regarding the GMMS Service Speed Cluster 
identified outlier points. 
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In the aforementioned plots, the first three detected outliers are marked in a time series plot 
with red color, and the regular data points between them are marked with blue color. Five 
operational parameters are included in this time-series format. The first one is Shaft Speed 
(rpm), followed by propeller shaft power (kW), Main Engine fuel consumption (Ton/day), 
Speed over ground (knots), and Propeller Shaft torque (kN*m). We notice that in these 
detected anomalies, sudden changes are observed with respect to Shaft Speed, Main Engine 
Power, and Propeller shaft torque. Due to the extreme challenge of visually investigating all 
the detected outliers in the specific cluster, two different algorithms were constructed, with 
the primary goal of providing us some more insights into the behavior of the detected outliers. 
More details about these algorithms are discussed in 4.11. 

4.8 Exploration of the ship’s localized operational conditions 

To better understand the ship's localized operational conditions, we investigate the trim-draft 

modes under which the vessel operates in each engine mode. To achieve that, the deployment 

of data density plots is determined. Domain knowledge combined with KDE provides us with 

the most information to decide under how many trim-draft modes our ship operates 

concerning each engine mode. Subclusters can represent these regions. 

The bivariate histogram is utilized to visualize the behavior of our data in relation to the Trim–

Draft variables. The Kernel Density Estimation Function was considered afterward with the 

main goal of giving us insights into the number of subclusters in our examined cluster, 

combined with univariate histograms into a scatterhist plot. Lastly, a density scatter plot is 

regarded to give a better insight into the density of our data in the respective cluster.  

Based on GMMS and K-MEANS clustering, the Slow Speed Cluster (Cluster A) is being analyzed. 

The results of the implemented data density plots are shown in Figure 38.  

The respective results of bivariate Histogram, Kernel Density Estimation plot are presented in 

Appendix C: 

 

 

Figure 38: Data density scatter plot of trim/draft variables with respect to Slow Speed Cluster. After GMMS (on 
the left) and K-MEANS clustering (on the right). 
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Based on GMMS and K-MEANS clustering, the Transient Speed Cluster (Cluster B) is being 

analyzed. The results of the implemented data density plots are shown in Figure 39.  

The respective results of Histograms, Kernel Density Estimation plots are presented in 

Appendix C: 

 

Figure 39: Data density scatter plot of trim/draft variables with respect to Transient Speed Cluster. .After GMMS 
(on the left) and K-MEANS clustering (on the right). 

 

 

 

Based on GMMS and K-MEANS clustering, the Service Speed Cluster (Cluster C) is being 

analyzed. The results of the implemented data density plots are shown in Figure 40.  

The respective results of Histograms, Kernel Density Estimation plots are presented in 

Appendix C: 

 

Figure 40: Data density scatter plot of trim/draft variables with respect to Service Speed Cluster. After GMMS (on 
the left) and K-MEANS clustering (on the right). 
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4.9  Data sub-clustering  

From the previous analysis, we conclude that the number of sub-clusters varies depending on 

the Engine mode (i.e., Cluster A, Cluster B, Cluster C). Therefore, three Trim-Draft modes are 

identified under the Slow Speed Region (Cluster A), two Trim-Draft modes are identified under 

the Transient Speed Region (Cluster B), and one Trim-Draft mode is identified under Service 

Speed Region (Cluster C). The respective Sub-clusters are presented in                 Figure 41, 

Figure 42, and,              Figure 43 regarding GMMS and K-MEANS clustering implementation. 

 

 

                Figure 41: Subclusters plot of Trim-Draft variables concerning Slow Speed Region. After GMMS (on the 
left) and K-MEANS clustering (on the right). 

 

 

 

Figure 42: Subclusters plot of Trim-Draft variables concerning Transient Speed Region. After GMMS (on the left) 
and K-MEANS clustering (on the right). 
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             Figure 43: Subcluster plot of Trim-Draft variables concerning Service Speed Region. After GMMS (on the 
left) and K-MEANS clustering (on the right). 

 

4.10 Ship performance quantification 

The final goal is to provide a Ship performance index to measure the ship’s performance under 
localized operational conditions. The calculation is being made concerning each trim-draft 
mode under the respective engine mode. The results are summarized in the table below for 
both K-Means and GMMS clustering methods. By comparing the results for each cluster, we 
can identify the best performance mode with the lowest KPI value. As described in chapter 
3.6, the mean values of two different KPIs are calculated, KPIa and KPIb. The mathematical 
expression of these two key performance indexes is given down below: 

KPIai = 
𝑃𝑖

𝑛𝑖
3  , [

𝐾𝑤

 𝑟𝑝𝑚3 ] 

KPIbi = 
FCi

Di
 ,  [ 

𝑇𝑜𝑛

𝑁𝑀
 ] 

i corresponds to the respective subcluster under the concerning engine mode. 
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Table 5: Ship performance quantification results. 

 K-MEANS  GMMS 

 KPIa 
𝐾𝑤

 𝑟𝑝𝑚3 KPIb  
𝑇𝑜𝑛

𝑁𝑀
 KPIa 

𝐾𝑤

 𝑟𝑝𝑚3 KP1b  
𝑇𝑜𝑛

𝑁𝑀
 

 
CLUSTER A 

Subcluster 1 0.0175 0.0818 0.0173 0.0811 
Subcluster 2 0.0168 0.0860 0.0166 0.0855 
Subcluster 3 0.0166 0.0845 0.0161 0.0826 

 
CLUSTER B 

 

Subcluster 1 0.0173 0.1146 0.0175 0.1175 

Subcluster 2 0.0171 0.1128 0.0174 0.1157 

CLUSTER C Subcluster 1 0.0170 0.1374 0.0169 0.1385 

 

After completing the investigation, it turns out that each key performance indicator results 
converge for K-Mean and GMM’S clustering concerning the ship’s localized operational mode.  

In relation to KPIa, subcluster 3 in the slow speed cluster, cluster A, is the most efficient in 
total and in the specific cluster since it has the lowest KPI value. For the transient speed region, 
cluster B, subcluster2, is the best performance trim-draft mode. As we pointed out before, for 
cluster C, there is only one trim-draft mode with a KPIa value (0.0170/0.0169) for KMEANS 
and GMM clustering, respectively. 

According to KPIb, for cluster A, the slow speed region, subcluster 1, is the best performance 
mode and the best performance mode in total since it has the lowest KPI value. For cluster B, 
the transient speed region, subcluster 2, is the best performance trim-draft mode. Finally, as 
we pointed out before, for cluster C, there is only one trim-draft mode with a KPIb value 
(0.1374/0.1385) for KMEANS and GMM clustering, respectively. 

4.11 Outlier evaluation algorithms 

4.11.1 Outlier evaluation 1 algorithm 

The first algorithm aims to examine the behavior of each detected outlier individually. A brief 

description of the construction and the visualization of the presented algorithm is given in 

chapter 3.8.1. Three different cases of the proposed algorithm are presented here for two 

variables. Firstly, the outlier evaluation 1 algorithm results are displayed for one outlier point, 

followed by the respective outcome when three consecutive outliers are investigated. Finally, 

the results of 5 successive detected outliers are presented to highlight the flexibility the 

specific algorithm offers when examining the detected outliers in a time-series format. The 

propeller shaft power variable is investigated in this case. The presented algorithm also 

evaluates outliers in other variables efficiently. Note that the investigated outliers emerged in 

the service speed cluster after GMM’S model implementation. 

Firstly, the reasonable and unreasonable outliers of the aforementioned cases for the 

propeller shaft power variable are presented in Figure 44/Figure 45 for an individual outlier, 

Figure 46/Figure 47 for three successive outliers, and Figure 48/Figure 49 for five successive 

outlier points. 
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Figure 44: Time series plot of a reasonable individual outlier concerning propeller shaft power measurements. 

 

 

 

 

Figure 45: Time series plot of an unreasonable individual outlier concerning propeller shaft power measurements. 
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Figure 46: Time series plot of three reasonable successive outliers concerning propeller shaft power 
measurements. 

 

 

Figure 47: Time series plot of three unreasonable successive outliers concerning propeller shaft power 
measurements. 
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Figure 48: Time series plot of five reasonable successive outliers concerning propeller shaft power measurements. 

 

 

Figure 49: Time series plot of five unreasonable successive outliers concerning propeller shaft power 
measurements. 

 

In Figure 44, Figure 46, and Figure 48, the ‘’reasonable’’ outlier data points are presented in 

green color. We notice sudden changes between the identified anomalies and their 

consecutive points on these occasions. So, the second anomaly detector correctly 

characterized these points as outliers. In Figure 45, Figure 47, and Figure 49, we present the 

‘’unreasonable’’ outlier data points in red. It is obvious that even though they were marked 

as outliers, there are no sudden changes between the identified anomalies and their 

consecutive points. So, the second anomaly detector possibly wrongly indicated these 

measurements as outliers. Please note that the unreasonable outliers must be further 

investigated before we can draw any conclusions. As the second anomaly detector examines 

and characterizes the data points combined for propeller shaft speed-power variables, it 

projects them onto the principal component axis to determine the anomalies. 
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4.11.2 Outlier evaluation 2 algorithm 

As noted in chapter 3.8.2, the outlier’s evaluation 2 algorithm points to a broader visual 

analysis and investigation of the second anomaly detector efficiency. It focuses more on 

identifying the general trend of the outlier data and comparing it with the general trend of 

the regular data points. As illustrated in the figure below, the total data set is plotted in a time 

series format and divided into eleven groups of data regarding the propeller shaft speed and 

the propeller shaft power variables. The goal is first to identify the time position of the 

detected outliers and bin the data points that belong to the same group. Then the binning 

results are plotted in a histogram, as presented in Figure 50. The identified outliers are shown 

as discrete signal points. Note that the groups with a high frequency in outlier points are 

marked with red color. The red color gets more intense as the outliers rise in frequency in the 

specific group. In Figure 50, the identified outliers in the service speed cluster after GMM’S 

implementation are investigated.  

 

 

Figure 50: Graphical representation of the outlier evaluation 2 algorithm in the service speed cluster after GMMS 
implementation. 

 

Most outliers are detected in group 2, while some are in groups 3, 4, 9, and 10. The same 

results arise when the outlier evaluation 2 algorithm is utilized in the service speed cluster 

after the K-means algorithm implementation. So the majority of the identified outliers 

emerged under a specific time period. That strongly indicates that the marked outliers didn’t 

come up by chance, but possibly there is a systemic failure in the data collection system under 

these periods. The reason for that systemic failure will be investigated in PART C, in which the 

correlation between the ship’s main operational parameters and the number of the identified 

outlier data points concerning each data group is calculated. 
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4.11.3 Correlation matrices 

Firstly the correlation matrix between the number of the identified outliers and the 

measurements of seven operational variables concerning each data group is presented. The 

presented operational variables are wind speed (W.SPE), draft (DRAFT), trim (TRIM), speed 

over ground (SOG), fuel oil consumption (FOC), propeller shaft power (PSP), propeller shaft 

speed (PSS). In the presented matrix, we notice a moderate positive correlation between the 

number of identified outliers and the wind speed measurements, a negligible correlation 

between the number of identified outliers and the draft, trim, and speed over ground 

variables, and a low positive correlation between the number of identified outliers and the 

fuel oil consumption, propeller shaft power-speed variables. In this case, we can not make any 

safe conclusions about the connection between the number of identified outliers and the 

measurements of the presented operational variables. 

 

Figure 51: Correlation matrix between the number of identified outlier and seven operational parameters of the 
investigated data set. 

The investigation extends to a greater degree in which the correlation between the variability 

in each main operational parameter and the number of the identified outliers is calculated for 

the eleven date-time groups. As described in chapter 3.8.2, four variability measures are 

utilized in the specific application, including variance (VAR), standard deviation (ST.DE), range 

(RANGE), and Interquartile range (IQR). 

The results are presented down below:  



Results  Panagiotis Georgios Iliopoulos 

59 
 

 

Figure 52: Correlation matrix between the number of identified outliers and the measured variability in the 
propeller shaft power values. 

In Figure 52, we notice a moderate positive to a high positive correlation between the number 

of identified outliers and the calculated variability measures of the propeller shaft power 

values. That’s a strong indication that higher variability to the propeller shaft power 

measurements leads to more identified outlies by the second anomaly detector. 

 

 

Figure 53: Correlation matrix between the number of identified outliers and the measured variability in the 
propeller shaft speed values. 

In Figure 53, we notice a low to moderate positive correlation between the number of 

identified outliers and the calculated variability measures of the propeller shaft speed values. 

That may suggest that higher variability to the propeller shaft speed measurements leads to 

more identified outlies by the second anomaly detector. 
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Figure 54: Correlation matrix between the number of identified outliers and the measured variability in the 
propeller shaft toque values. 

In Figure 54, we notice a high positive correlation between the number of identified outliers 

and the calculated variability measures of the propeller shaft torque values. That strongly 

indicates that higher variability to the propeller shaft torque measurements leads to more 

identified outlies by the second anomaly detector. 

 

 

Figure 55: Correlation matrix between the number of identified outliers and the measured variability in the Main 
engine’s fuel oil consumption values. 

In Figure 55, we notice a moderate positive to a high positive correlation between the number 

of identified outliers and the calculated variability measures of the Main engine’s fuel oil 

consumption values. That’s a strong indication that higher variability to main engine fuel oil 

consumption measurements leads to more identified outliers by the second anomaly 

detector. 
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Figure 56: Correlation matrix between the number of identified outliers and the measured variability in speed over 
ground values. 

In Figure 56, we notice a low positive to moderate positive correlation between the number 

of identified outliers and the calculated variability measures of the Speed over ground values. 

That may suggest that there is an underlying connection between the number of identified 

outliers and the variability in the Speed over ground measurements. 

 

 

Figure 57: Correlation matrix between the number of identified outliers and the measured variability in Mean 
draft values. 

In Figure 57, we notice a negligible correlation between the number of identified outliers and 

the calculated variability measures of the Mean Draft values. That strongly indicates that there 

is not an actual connection between the number of identified outliers and the variability in 

the mean draft measurements. 
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Figure 58: Correlation matrix between the number of identified outliers and the measured variability in Trim 
values. 

In Figure 58, we notice a negligible to low positive correlation between the number of 

identified outliers and the calculated variability measures of the Trim values. Consequently, 

we can not set up any connection between the number of identified outliers and the variability 

of the Trim measurements. 

 

 

Figure 59:  Correlation matrix between the number of identified outliers and the measured variability in wind 
speed values. 

In Figure 59, we notice a negligible to low positive correlation between the number of 

identified outliers and the calculated variability measures of the wind speed values. 

Consequently, we can not set up any connection between the number of identified outliers 

and the variability of the wind speed measurements. 
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After presenting all the correlation matrices between the number of identified outliers and 

the variability of the ship’s main operational parameters, we lead to some final conclusions. 

Firstly there is a strong indication that the number of identified outliers largely depends on 

the variability of the main engine's operational parameters, such as propeller shaft power, 

propeller shaft speed, propeller shaft torque, and main engine fuel oil consumption. There is 

a possible connection between the number of identified outliers and the varibility in speed 

over ground measurements, which is closely correlated with the main engine’s operational 

parameters. Finally, we can not establish any actual connection between the number of 

identified outliers and the variability in wind speed, trim, and draft measurements. The 

conclusions mentioned above are desirable and foreseeable since the second anomaly 

detector is based on engine data measurements to mark and isolate the outliers points. 
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5. Conclusions 

The intention and purpose of this thesis was twofold. First, we constructed a data 

preprocessing framework able to detect and isolate erroneous data points and identify 

underlying data patterns concerning the ship’s localized operational conditions in the 

investigated data set. To achieve this, data density plots were deployed along with two 

different clustering techniques and domain knowledge to quantify the ship’s operational 

behavior. Also, two distinct clustering evaluation methods were presented to determine the 

efficiency of the applied clustering techniques. Furthermore, domain knowledge coupled with 

principal component analysis was utilized to detect and isolate erroneous data measurements 

aiming to improve the quality of the investigated data set. Also, two outlier evaluation 

algorithms were constructed to assess the results of the applied outlier detection technique 

and to identify possible connections between the identified outliers and the behavior of the 

ship’s main operational parameters. Secondly, two key performance indicators were 

proposed to quantify the ship’s performance under the specified operational conditions. The 

following are the main conclusions derived from this analysis: 

• Domain knowledge utilization in every step of the process is decisive to the 

construction and evaluation of the presented framework and should gain more 

attention in the scientific literature. 

• The applied minimum-maximum thresholds in the data set’s variables should be 

defined carefully since they have a significant impact on the final results of the applied 

framework. 

• Histograms, scatter plots, and data density plots can be insightful in identifying 

underlying data patterns and quantifying a ship’s operational behavior. 

• The k-means algorithm is a relatively easily implemented and time-efficient clustering 

technique since the computational cost is low and the execution time is short. But the 

k-means algorithm can not identify complex data patterns that may exist in the 

examined data set. 

• Gaussian mixture models can identify complex data patterns and provide more 

accurate and realistic results. But it can be hard to implement and time-consuming, 

especially in large data sets, since the computational cost is high and the execution 

time is long. 

• The k-means algorithm can be used in cases where the time limits are strict, the 

computational capacity is low, and there is no demand for highly accurate results. 

Gaussian mixture models can be used when there are extended time limits, high 

computational capacity, and a need for high-quality, accurate results. 

• Clustering evaluation methods can be very insightful about the final clustering results 

and the existing number of clusters in the examined dataset. 

• The principal component analysis is an effective and easily interpretable technique 

for identifying outlier data points in the respected data set. 

• The two constructed outlier evaluation algorithms are very informative about the 

behavior of the detected outliers in a time series plot and capable of identifying 

possible causes of the occurring outlier points. 
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• The ship performance quantification under the ship’s localized operational conditions, 

utilizing Key performance indexes, drastically increases our awareness about the 

ship’s total and side performance efficiency. 

Concerning the aforementioned, it is concluded that the utilization of proper data 

preprocessing techniques, coupled with domain knowledge, drastically improves the quality 

of the examined data sets and provides powerful insights about underlying data patterns and 

possible connections between the examined variables. Furthermore, ship performance 

quantification can also enhance our understanding of the investigated ship’s operational 

behavior and performance efficiency. Also, the outlier evaluation algorithms efficiently 

validate the identified outliers and identify possible outlier causes. The constructed 

framework is, therefore, a versatile and functional tool for ship operators and managers. 

Based on the present thesis and the above conclusions, some suggestions for further 
research are listed. 
 

• Try to define the minimum - maximum thresholds of the examined parameters that 
apply to maneuvering conditions concerning the engine propeller combinator 
diagram and ship’s position data. 
 

• Consider adding more operational variables than the two in the specific investigation 
in order to extend the clustering analysis to a higher dimensional space. 

 
• Perform principal component analysis to identify outlier points in a more detailed 

data set by adding extra variables in the respective study. 
 

• Utilize the ship’s position data to perform data preprocessing and ship performance 
quantification techniques between voyages. 

 
In conclusion, data preprocessing and analysis can play a key role in improving a ship's 

operational performance. So, more research needs to be done in that direction. In addition, 

more applicable and flexible algorithms and tools need to be constructed to serve each 

investigation's application-specific needs. 
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Appendix A: Engine data clustering investigation  

A time series plot of the speed over ground variable concerning the identified engine mode 
clusters is presented. Each point is plotted with a different color based on the cluster 
assignment. A polynomial fitting is also applied to the specific investigation to give us a greater 
sense of the behavioral patterns of the respective data. 

 

Figure 60: Time series plot of speed over ground variable concerning the identified engine data clusters. 
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Appendix B: Cluster plots after the second anomaly detector 
implementation. 

The graphical representations of Slow and Transient Speed Clusters for K-MEANS and GMMS 
clustering methods regarding inlier and identified outlier data points are presented next. The 
outlier points are marked with red color and the inlier points are marked with green color. 

PART A: Cluster plots based on k-means algorithm 

 

Figure 61: Graphical representation of Slow Speed Cluster after K-MEANS clustering regarding inlier and identified 
outlier data points. 

 

 

Figure 62: Graphical representation of Transient Speed Cluster after K-MEANS clustering regarding inlier and 
identified outlier data points. 
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PART B: Cluster plots based on gaussian mixture models 

 

Figure 63: Graphical representation of Slow Speed Cluster after GMM'S clustering regarding inlier and identified 
outlier data points. 

 
 
 

 

Figure 64: Graphical representation of Transient Speed Cluster after GMM'S clustering regarding inlier and 
identified outlier data points. 
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Appendix C: Exploration of the ship’s localized operational conditions. 

Based on K-MEANS and GMMS clustering, the engine mode clusters (cluster A, cluster B, 

cluster C) are being analyzed. The results of the implemented data density estimation 

methods are shown in the following figures. Bivariate Histograms and Kernel Density 

Estimation plots are presented. 

PART A: Slow speed cluster (cluster A) investigation. 

 

 

Figure 65: Bivariate histogram of trim/draft variables in Slow Speed Cluster. After GMMS (on the left) and K-
MEANS clustering (on the right). 

 

 

Figure 66: Scatterplot Combined with univariate Histograms and kernel Density Estimation plots for trim/draft 
variables of Slow Speed Cluster. After GMMS (on the left) and K-MEANS clustering (on the right). 
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PART B: Transient speed cluster (cluster B) investigation 

 

 

Figure 67: Bivariate histogram of trim/draft variables in Transient Speed Cluster. After GMMS (on the left) and K-
MEANS clustering (on the right). 

 

 

 

 

Figure 68: Scatterplot Combined with univariate Histograms and kernel Density Estimation plots for trim/draft 
variables of Transient Speed Cluster. After GMMS (on the left) and K-MEANS clustering (on the right). 
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PART C: Service speed cluster (cluster C) investigation. 

 

 

 

Figure 69: Bivariate histogram of trim/draft variables in Service Speed Cluster. After GMMS (on the left) and K-
MEANS clustering (on the right). 

 

 

 

 

 

 

 

 

 

 

Figure 70: Scatterplot combined with univariate histograms and kernel Density Estimation plots for trim/draft variables of Service 
Speed Cluster. After GMMS (on the left) and K-MEANS clustering (on the right). 


